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Hepiinyn

H dwrpin ot emikevipdveral otn depehivon TG YEVIKNG TOAVUOPPIKNG KIVI|ONG CEIGHKA
HOVOUEVOV GKOUTTOV UTAOK OTO EMimed0, OtV LROKEWTOL o€ edapikés deyépoelc. To
povtélo mov avamtoydnke omotedeitor omd €vo GUUUETPIKA OGKOUTTO UTAOK TO OTOi0
eopdletan og pio oewopkd povopuévn akapmtn PBaorn. Kdto ond pia ceiopikn di€yepon, to
ocvotnuo pmopel va amokplfel SuVOKG pHE TEGGEPLS OAPOPETIKOVG TPOTOLS: (0) OomAn
opwlovtia petokivnon, kotd v omoio T0 GLOTNHO LETOKIVEITOL OplOVTIOL ™G piar ovTOTNTA,
(B) oAicOnom, xotd v omoio to umAok oMcBaiver mAve ot petokwovpevn Paom, (v)
MKVIGUOC, KOTG TOV Omoio TO UTAOK TEPICTPEPETOL YOP® omd TG 000 Ywvieg KaOdG
petakweitar n Paon opilovtia kot (8) oAicOnon-Akviopds, koTd TNV OMOi0. TO UTAOK
oMcBaivel kol Tovtoypovo AMkviletor Téve ot petaxwovpevn Bacn. Ot eElodoelg kivnong
OV TEPLYPAPOVY TNV KivoN TOL GLGTHUOTOS HoPEMOONKav pe T Pondewa g pedddov
Lagrange. ['a v avdAivon tov povtélov ypnoipomomdnkoay 600 TOTOL GEIGHKNG LOVMOONG,
VoL YPOUUIKO HE PIOKOEAOOTIKY] GUUTEPLPOPA KOL VO UN-YPOUUIKO HE  SUYPOUIKNI

GLUTEPLPOPA.

H molvmhokdtnta Tov pofnpotikod HoviéAon SEmETOL KUPImG amd TV KPOVUGT TOV UITOPEL Vo
oupPel peta&d tov AKVICOHEVOD PTAOK KOl TNG HETAKIVOUUEVNG BAonc, Onwg emiong Kot and
Vv mlavn evoAlacouevn petdfaocn amd ™ pio kivinon o dAAN, aAlalovtag £TG1 Kot TOVG
Babuovg elevbepiog TOL GLOTNUOTOC. XVVEM®S, o©TN OWIPPN ALVT avarTOYONKE €va
OVOAVTIKO HOVTEAD TOL TEPLYPAPEL TNV KPOVOT, KOTA TN OIPKEW TOV KIVIGE®V TOL
MKVIGHOV Kot TNG oAloOnomng-Akviopo?, pe faon v khaciwkn Beopia. H épgvuva eetdlel eig
BaBog v kivnon 1oV GLOTAHATOG, GLVIVALOVTOG TIC UN-YPAUIKES EEIGMOELS Kiviong Le TO
povtédo g kKpovong. Emiong, ot dwrpifn avt) dtumd@Onkay kol tor Kprrnple to. omoia

kaBopilovv Tig cVVONKES KATWO Amd TIG OmOieg UmOpEL va Yivel | evaAlaymn g Kivnong.

o ™ Jepegvvnon g SVVOUIKNG GLUTEPUPOPES TOV GLGTNUOTOG, avamtOHyONnKe &voag
VTOAOYIOTIKOG KOSIKAG TOL TPoodtopilel T SVVOIKT amOKPION TOV GEICUIKA LOVOUEVOL 1)
UN-CEICMKGE HLOVOUEVOD CLGTHHOTOS, AQUPBAVOVTOS LROYN TOLG OPOPETIKOVS TPOTOVG
amOKPIONG, TNV KPOLGT, T KPP0 EVOAAAYNG TNG Kivnong kot TN ookt déyepon. Eyve
po ekteTapévn oepedhivnon oAAALOVTOG TO YEMUETPIKA YOPOKTNPIOTIKE TOL UTAOK KOl TIG

TOPAUETPOVS TNG CECUIKNG HOVOONG. €2C CEICUIKES JIEYEPCELS YpNoLoTomOnkay omiol
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TPLYOVOUETPIKOL TOANOT KOl TPAYUOTIKOL GEIGUOL TOV KATAYPAONKAYV KOVTO GTO EMIKEVTIPO.
2tOY0¢ ™G £peuvag elvor M HEAETN TNG EMIOPAONG TNG CGEICUIKNG HUOVOONG OTI OUVOLIKY

GLUTEPLPOPA KOl TNV EVOGTAOEL TOV GUGTILLOTOG.

H épeuva xotédei&e OtL M oelopky povoorn Peitidvel v gvotdfeln Tov pmlok Oty
VROKELTOL GE MOAUOVG LE WIKPT TEPI0O0. XVYKEKPIUEVA, N XPNON TNG CEICUIKNG HOVOONG
Beltidvel TV gvotdbela Tov UTAOK KaOdS peldveTaL To péEyehog Tov, e v Tpovmdeon Ot
dgV LTOKEITOL GE TOALOVG P PEYAAN Ttepindo. e avtiBeon, N ¥pMon TG CEWGUKNG HOVAOONG
o€ PeATU®VEL TNV €VOTAOELN TOV UTAOK, GE GUYKPIOT] LE TO UN-CEICUIKA LOVOUEVO UTAOK, OTOV
VROKELTOL 6 TOAUOVG He peydAn mepiodo. Tapoia avtd, v va avaonkmbel éva celopukd
HOVOUEVO UTAOK OONTEITOL LEYOAVTEPT E0QPIKY| EMLTAYVLVON GE OYEOTN LUE EVO UN-GEIGHUKA
LOVOUEVO UTAOK, OVEEQPTNTMG TNG TTEPLOdOL TOL TOAROD. O cuvtedeotng TpPNg petald tov
UmAoK Kot TG Paong £xel kaboploTiky eMOPAoN GTN SVVOIKY CUUTEPUPOPE TOV GEIGUIKA

HLOVOUEVOD UTAOK.
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Abstract

This dissertation presents a comprehensive investigation on the general planar-motion
dynamics of base-isolated rigid blocks subjected to ground excitation. The system considered
consists of a symmetric rigid block standing free on a seismically isolated rigid base. The
response of the system is described in terms of four distinct oscillation regimes: system
translation, in which the base-block system translates as a whole; sliding, in which the block
slides relative to the horizontally-moving base; rocking, in which the block pivots on its edges
with respect to the horizontally-moving base; and slide-rocking, in which the block
simultaneously slides and pivots on its edges with respect to the horizontally-moving base.
The governing equations of motion are obtained for each oscillation regime using the
Lagrange method. Two models for the isolation system are considered, a linear model with

viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior.

The mathematical description of the system dynamics is profoundly complex, primarily due to
the inherent nonlinear nature of the impact phenomenon and the potential transition from one
oscillation pattern to another, each one governed by a different set of differential equations. A
rigorous model governing impact from rocking and slide-rocking regimes is formulated using
classical impact theory. The study examines in depth the motion of the system with a large-
displacement formulation that combines the nonlinear equations of motion along with the
developed model governing impact. Moreover, transition criteria that specify the conditions

under which switching between the various oscillation regimes are established.

On the basis of the proposed analytical model, a computer program was developed to
determine numerically the dynamic response of the system, being either isolated or not, by
considering the different possible oscillation regimes, impact occurrence(s), transition criteria,
and arbitrary excitation. An extensive numerical investigation was carried out under idealized
base-acceleration pulses and recorded pulse-type earthquake motions with a wide range of
amplitude and frequency content, for varying block geometric characteristics and isolation-
system parameters, with the aim of identifying potential trends in the response and stability of

the system.

The investigation has shown that the use of isolation results in better system performance,

with respect to the initiation of rocking and overturning, for short-period pulses. In particular,



the use of isolation improves the stability of blocks with decreasing block size, provided that
the system is not subjected to long-period acceleration pulses. On the contrary, for long-period
pulses, the use of isolation is not beneficial in improving the stability of the block, compared
with the non-isolated case. Nevertheless, the use of isolation results in an increase in the
acceleration required to initiate rocking in comparison with the non-isolated block, regardless
the pulse-period. In addition, the value of coefficient of friction between the block and the

supporting base has a significant impact on the performance of the isolated block.
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CHAPTER 1

Introduction

1.1 Motivation

Base isolation is worldwide accepted as one of the most effective strategies for seismic
protection of civil structures. Particular attention has been given to date to the application of
seismic isolation in earthquake-resistant design to safeguard engineering structures in their
entirety. The effectiveness of this innovative technology paved the way for extending the
concept to individual elements of high importance such as high-value building contents,
mechanical/electrical equipment, computer servers, and irreplaceable museum artifacts. This

dissertation concentrates on the case of nonstructural components, which behave as rigid

blocks.

The aim of this dissertation is to present the two-dimensional nonlinear formulation of the
general response of base-isolated rigid blocks subjected to ground excitation. The system
response is described in terms of four distinct oscillation regimes: system translation, sliding,
rocking, and slide-rocking. Two models of the isolation system is considered; a linear model
with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. The
dissertation examines in depth the motion of the system with a large-displacement formulation
that combines the exact (nonlinear) equations of motion together with a rigorous model
governing impact. An extensive numerical investigation is carried out for varying block
geometric characteristics and isolation-system parameters, with the aim of identifying

potential trends in the response and stability of the system.

1.2 Objectives

This dissertation presents a comprehensive mathematical formulation of the general planar-
motion of seismically isolated free-standing rigid blocks to base excitation. The main

objectives of the dissertation can be summarized as follows:
e to give a brief description of the literature relevant to the dynamics of a rigid block,

e to develop a comprehensive 2D mathematical model for the general planar nonlinear

response of seismically-isolated free-standing rigid blocks to base excitation,



e to formulate the equations of motion for each oscillation pattern,

e to formulate a rigorous model governing impact between the block and the supporting

base during rocking motions,

e to calculate the transition criteria which are responsible for the potential transition from

one oscillation regime to another

e to develop a computer program to determine the response of the system considering
the different possible oscillation regimes, impact, transition criteria and arbitrary

excitation, and

e to investigate the system dynamics through an extensive parametric study with the aim
of revealing interrelations among the problem variables and identifying potential trends

in the response and stability of the system.

1.3 Outline

The dissertation is organized into 10 chapters. The introductory chapter embraces the prime

motivation, objectives, and organization of the dissertation.

Chapter 2 describes in brief the main work and findings of the literature relevant to the
dynamics of a rigid block. The review is focused on studies considering the rigid-body motion
of free-standing or base-isolated symmetric blocks, on the assumption of rigid foundation and

perfectly inelastic point impact.

Chapter 3 highlights the concept of seismic isolation, as an innovative approach aiming to
mitigate the damaging effects of earthquakes on engineering structures. Typical seismic-
isolation systems are outlined and their mechanical behavior and mathematical modeling is

presented.

Chapter 4 presents the dynamics of a single rigid block free-standing on a rigid foundation as
established in the literature. The review presents the various possible oscillation patterns of a
rigid block along with their governing equations of motion, the criteria for the initiation of

motion in each oscillation pattern, and an impact model based on classical impact theory.

Chapter 5 presents the analytical formulation of the general response of seismically isolated



rigid blocks, free-standing on the isolation base, subjected to ground excitation. The response
of the system is classified into four oscillation regimes: (i) system translation, in which the
system in its entirety oscillates horizontally; (ii) sliding, in which the block slides relative to
the supporting base, which translates horizontally; (iii) rocking, in which the rigid block pivots
on its edges as the supporting base translates horizontally; and (iv) slide-rocking, in which the
block simultaneously slides and pivots on its edges, as the supporting base translates
horizontally. Two models for the isolation system are considered; a linear model with
viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. Equations of
motion for each oscillation pattern are formulated by using the Lagrange method. Moreover,
this chapter presents the criteria that govern the potential transition from one oscillation

regime to another.

Chapter 6 addresses the impact problem through a rigorous formulation, whereby an analytical
model governing impact from the rocking and slide-rocking regimes is derived from first
principles using classical impact theory. This model assumes point-impact of short duration,
zero coefficient of restitution (perfectly inelastic impact) and impulses acting only at the
impacting corner. Changes in position and orientation are neglected, and changes in velocity

are considered instantaneous.

Chapter 7 describes an ad hoc computational scheme developed to calculate the response of
the system under ground excitation. The numerical integration of the equations of motion is
pursued in MATLAB through a state-space formulation. In each time step, close attention is
paid to the eventuality of transition from one pattern of motion to another due to the
satisfaction of transition criteria or the impact event and to the accurate evaluation of the

initial conditions for the next pattern of oscillation.

Chapter 8 and 9 present numerical results from an extensive numerical investigation of the
dynamic response of the system under simple base-acceleration pulses and horizontal near-
fault ground motions, aiming to identify potential trends in the response and stability of the
system. The numerical investigation is carried out based on two assumptions: (a) sufficient
friction to prevent sliding between the block and the supporting base, entailing rocking
response, Chapter 8, and (b) insufficient friction to permit sliding between the block and the

supporting base, entailing multi-pattern response, Chapter 9.



Chapter 10 presents a summary and conclusions drawn from this dissertation and a discussion

on the future work that may follow from this study.



CHAPTER 2

Literature Review

A review focused on studies considering the rigid-body motion of free-standing non-isolated

and isolated blocks are presented in this section.

Housner's landmark study (1963) is perhaps the first systematic work that provided basic
understanding on the rocking response of a rigid block and motivated further scientific
interest. Considering a slender rigid block resting upon a rigid foundation he investigated the
free- and forced-vibration rocking response to a rectangular pulse, a half-sine pulse, and an
earthquake-type excitation, based on the assumption of a perfectly-inelastic impact and

sufficient friction to prevent sliding of the block during impact.

Following Housner, many researchers have dealt with various aspects of the complex
dynamics of the single rigid block. Yim et al. (1980) adopted a probabilistic approach to
conducting a numerical study using artificially-generated ground motions. This research
shows that the rocking response of a block depends on the characteristics of the ground motion
and the system parameters, namely the coefficient of restitution, the aspect ratio, and the size

of the block.

Aslam el al. (1980) performed experimental and analytical studies on slender rigid blocks
subjected to artificially-generated ground motion. Their work, confirmed that the rocking

response of rigid bodies is sensitive to system parameters.

Ishiyama (1982) examined the motions of rigid bodies resting on a rigid foundation and
subjected to earthquake excitations. His work included classification of the motion of rigid
bodies (i.e. rest, slide, rotation, slide-rotation, translation jump, and rotation jump), derivation
of the equations of each type of motion, study of the transition between them, solution of the
nonlinear equations of motion for different types of ground acceleration and proposition of
criteria for the overturning of rigid bodies. One of the features of his investigation was the
introduction of the tangent restitution coefficient in order to estimate the magnitude of the

tangent impulse at the instant of impact.

Spanos and Koh (1984) linearized the nonlinear equations of rocking of a slender rigid block,



resting on a rigid foundation harmonically excited in the horizontal direction. Moreover, they
plotted stability diagrams that can be used to estimate the prospective of topple of a known
amplitude and frequency rigid-block structure under harmonic excitation. Additionally, they
detected several possible modes of the steady-state response and developed analytical
procedures in order to determine the amplitudes of the predominant modes and perform

stability analyses.

Shenton III and Jones (1991) formulated the generalized response of free-standing rigid bodies
to base excitation, assuming rigid body, rigid foundation, and Coulomb friction. Their
formulation takes into account the five possible modes of response (rest, slide, rock, slide-
rock, and free flight) and the impact between the block and foundation. In their work, Shenton
IIT and Jones (1991) derived a model governing impact from a rock, slide-rock or free-flight
mode based on the classical impact theory, assuming point-impact, nonzero coefficient of

restitution and finite value of friction.

Considering cycloidal impulsive excitation, Makris and Roussos (2000) and Zhang and Makris
(2001) examined in depth the transient rocking response of free-standing rigid blocks. Making
linear approximations, Makris and Roussos (2000) set up the conditions and the expression for
the minimum acceleration required for the overturning of a block. Zhang and Makris (2001)
derived relations for the dynamic horizontal and vertical reactions exerted at the point of
rotation of a rocking rigid block. They showed that the coefficient of friction needed to
maintain pure rocking motion generally increases with the acceleration level of the pulse.
Subsequently, they identified a safe region on the acceleration-frequency plane where the
block overturns without experiencing any impact and they showed that the shape of this region

depends on the coefficient of restitution.

Yang et al. (2000) examined the dynamic response of a rigid block standing unrestrained on a
rigid foundation which shakes horizontally. Their formulation takes into account four modes
of motion: rest, slide, rock and slide and rock. A general two-dimensional theory is presented
for dealing with the various modes of a free-standing rigid block, considering in particular the
impact occurring during the rocking motion. Numerical examples demonstrate the occurrence

of each of the four modes and the transition between different modes.

Taniguchi (2002) investigated the nonlinear seismic response of free-standing rectangular



rigid bodies on horizontally and vertically accelerating rigid foundations. Three modes of
response are considered in his formulation: liftoff, slip, and liftoff-slip. This study concluded
that the body is sensitive to small changes in the friction coefficient and slenderness, and to

the wave properties and intensity of ground motions.

Apostolou et al. (2007) examined the rocking of rigid structures uplifting from their support
under strong earthquake shaking. The structure is resting on the surface of either a rigid base
or a linearly elastic continuum. A large-displacement approach is adopted to extract the
governing equations of motion allowing for a rigorous calculation of the nonlinear response
even under near-overturning conditions. Directivity affected near-fault ground motions,
idealized as Ricker wavelets or trigonometric pulses are used as excitation. The conditions,
under which uplifting leads to large angles of rotation and eventually to overturning, are
investigated. It is concluded that the practice of estimating ground accelerations from

overturning observations is rather misleading and meaningless.

Chatzis and Smyth (2012) studied the rocking motion of a solid block on a moving deformable
base. Two new models were developed for the simulation of a rigid body experiencing a 2D
rocking motion on a moving deformable base. The first model, the concentrated springs
model, simulates the ground as tensionless vertical springs with vertical dampers placed at
each of the two bottom corners of the body, whereas the second, the Winkler model, simulates
the ground as a continuous medium of tensionless vertical springs with vertical dampers. Both
models take into consideration sliding and uplift and both are geometrically nonlinear. The
behavior of the two models is discussed and compared with the classic theory proposed by

Housner.

Dimitrakopoulos and DeJong (2012) investigated the use of viscous damping to limit the
rocking motion by characterizing the fundamental behavior of damped rocking structures
through analytical modeling. A rocking block model is used to determine the viscous damping
characteristics, which exploit the beneficial aspects of the rocking motion, while dissipating

energy and preventing overturning collapse.

Voyagaki et al. (2013) examined the classical problem of rocking behavior of a rigid, free-
standing block to earthquake shaking containing significant pulses, as is the case in near-field

ground motions. A rectangular block resting on a perfectly rigid base is considered, subjected



to a suite of idealized acceleration pulses expressed by a generalized function controlled by a
single shape parameter. The problem is treated analytically in the realm of the linearized
equations of motion, under the assumption of slender block geometry and rocking without
slippage. Simple overturning criteria for different earthquake waveforms are presented in the
form of dimensionless closed-form expressions and graphs that provide insight into the

physics of the response.

The studies reported on the dynamics of rigid blocks are not limited to the case of a single
rigid block but are expanded on the dynamics of rigid-block assemblies. Psycharis (1990) and
Spanos et al. (2001), for instance, dealt with the dynamics of systems consisting of two blocks,
one placed on top of the other, free to rock without sliding. Their work has included
classification of the possible regimes of response, study of the impact either between two
blocks or between the base block and the ground, and derivation of criteria for the initiation of
motion and for the transition between modes. Moreover, they derived equations governing the
rocking response of the system under horizontal and vertical ground accelerations and

developed an impact model.

Motivated by the increasing challenge to preserve elements of cultural heritage worldwide,

which can be modeled as rigid blocks, a great deal of attention is received in recent years.

One of the earliest studies that explicitly relate to the protection of museum artifacts against
earthquakes is attributed to Agbabian et al. (1988). This study aimed at the development of
analytical and experimental procedures for the evaluation of the seismic mitigation of various
museum objects, at the Jean Paul Getty Museum in Malibu, California. For this purpose they
created an art object database in which selected art objects of the museum were categorized
according to their type, their support type, the probable earthquake response mode, and the
seismic mitigation method (if used). Each art/support system was characterized by applicable
structural parameters. Using the developed database, generic art/support systems were
established for which simplified analytical models were formulated. The analytical models
were verified experimentally and they were parametrically studied in order to evaluate the

performance of each type of generic system.

Following the work by Agbabian and coworkers, further research efforts have been made

toward the protection of the integrity of museum contents from the destructive effects of



earthquakes. In their study on the response of rigid art objects subjected to earthquake-induced
oscillations, Augusti et al. (1992) and (1995) proposed simple rules for the design of the

display cases in order to mitigate the seismic risk of valuable exhibits.

Only recently has base-isolation strategy been implemented for the preservation of important
elements of cultural heritage. In particular, Vestroni and Di Cintio (2000), introduced base-
isolation devices consisting of multi-stage high-damping laminated rubber bearings and
studied the response of the isolated system, modeled as a single-degree-of-freedom system
with the isolator characterized by a hysteretic force-displacement law, in the frequency and
time-domain. In order to identify the influence of the characteristics of the devices and seismic

forces, they performed a parametric study on the response of an isolated statue.

Moreover, Myslimaj et al. (2003) proposed the installation of Tuned Configuration Rail
(TCR), a rolling type base-isolation system, underneath showcases, preservation racks, shelves

and statues to control their seismic response.

The protection of art objects was also an issue of interest for Calio and Marletta (2003), who
examined the vibrations of art objects modeled as rigid blocks simply supported on a movable
mass support isolated with viscoelastic devices. In their study, they performed numerical
investigations under impulsive and seismic excitations and evaluated analytically the
minimum values of the horizontal support acceleration impulse that cause rocking of the
object in the cases of damped and undamped systems. Furthermore, Calid and Marletta (2004)
studied the seismic vulnerability of isolated and non-isolated ancient Greek vessels and stone

statues.

More recently, Di Egidio and Contento (2009) analyzed the behavior of a work of art modeled
as non-symmetrical rigid block isolated with a viscoelastic device. The model applied was an
extension of the model studied by Calido and Marletta (2003), considering eccentricity of the
mass center of the rigid block and existence of security stops to limit the displacement of the
oscillating base to a maximum safety value, thus protecting the isolator. The analysis was

performed considering both impulsive and seismic excitations.

Roussis et al. (2008) investigates the dynamic response of base-isolated block-like slender
objects, such as statues, subjected to horizontal ground excitation. The structural model

employed consists of a rigid block supported on a rigid base, beneath which the isolation
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system is accommodated. Assuming no sliding of the block relative to the supporting base,
when subjected to ground excitation the system may exhibit two possible regimes of motion,
namely pure translation, in which the system in its entirety oscillates horizontally, and rocking,
in which the rigid block pivots on its edges with respect to the horizontally-moving base. The
dynamic response of the system is strongly affected by the occurrence of impact between the
block and the horizontally-moving base, as impact can modify not only the energy but also the
degrees of freedom of the system by virtue of the discontinuity introduced in the response. A
model governing impact from the rocking mode is derived from first principles using classical
impact theory. Numerical results are obtained via an ad hoc computational scheme developed

to determine the response of the system under horizontal ground excitation.

Vassiliou and Makris (2012) examines the rocking response and stability of rigid blocks
standing free on an isolated base supported on linear viscoelastic, single concave and double
concave spherical sliding bearing. This study concludes that seismic isolation improves the
stability of small blocks only. It suggests that free-standing ancient classical columns exhibit

superior stability as they are built rather than if they were seismically isolated.
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CHAPTER 3

Seismic Isolation Technique

3.1 The concept

In general, most structures have low flexibility and low vibration damping and under typical
design-level earthquakes, they develop large horizontal forces. The seismic forces can be
reduced by supporting the structure on systems with high horizontal flexibility and high
vibration damping. Such system is the seismic isolation which is a developing technology
aiming at limiting the seismic energy transfer to the structure. The system decouples the
structure from the foundation by interposing seismic isolators between them. Seismic isolators
have much lower lateral stiffness than the lateral stiffness of the structure. The low lateral
stiffness gives the structure a natural period that is much higher than predominant periods of
typical earthquakes and reduces the spectral demands, Figure 3-1a. The displacement of an
isolation system increases, as the period is getting larger. Therefore, an isolation system

should also dissipate energy in order to decrease the induced displacements (Figure 3-1b).
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Figure 3-1: a) Effect of period lengthening on floor accelerations b) Effect of damping on

displacement.

3.2 Brief History

Based on Christopoulos and Filiatrault’s research (2006), John Milne, a British scientist, is the
inventor of the modern seismic isolation concept in 1885. He built a wood house on 6-mm

diameter cast-iron shots at the top of the piles, which performed well under real earthquake
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ground motions.

In 1909, J.A. Calantarients, an English medical doctor, invented a new method in which
buildings could be built on lubricated “free joints” on a layer of fine material. Hence, the

building during an earthquake would slide free reducing the forces transmitted to the structure.

In the late sixties, the development of modern materials brought to the surface the modern
application of seismic isolation. Rubber and thin steel sheets were used to make the multi-
layer elastomeric bearings that are very stiff in the vertical direction but are very flexible in the

horizontal direction.

In 1969, in Skopje, Yugoslavia, was the first application of rubber isolation system on a three-
storey concrete elementary school structure (Naeim and Kelly (1999)). After this installation,
seismic isolation technology was spread worldwide. Nowadays, many types of seismic
isolations are available such as elastomeric bearings, lead-rubber bearings, and friction

pendulum bearings.

3.3 Seismic Isolation Systems

This section gives a description of the main types of seismic isolation systems and their

mechanical properties.

3.3.1 Elastomeric bearings

Elastomeric Bearings or Laminated-rubber bearings were used mostly for bridges to control
movements and deformations due to changes in temperature. More recently, their use has been
extended to seismic isolation of buildings and other structures. Based on (Naeim and Kelly
(1999)), the first use of elastomeric bearing to structure was in 1969 for the Pestalozzi in

Skopje, Yugoslavia.

A typical laminated-rubber bearing is composed of elastomeric rubber with internal steel
reinforcing plates solidly joined together under high pressure and temperature, Figure 3-2.
Using steel and rubber layers, the gravity load resisting capacity of the bearing is increased by
reducing the thickness of individual rubber layers. The steel reinforcing plates reduce the

lateral bulging of the bearings and increase the vertical stiffness.

The most important parameters of elastomeric bearings are the gravity load carrying capacity,

12



the lateral stiffness and the maximum achievable relative displacement between the top and

the base of the bearing.

Based on Christopoulos and Filiatrault (2006), the maximum allowable vertical load that can

be carried by a bearing W__ is given by
Wmax :A'G}"Sj/w/' (3'1)

where: A' is the overlap area between the displaced top and bottom faces of the bearing when
the top of the bearing is displaced an amount x, relative to its base as shown in Figure 3-3; G,
is the shear modulus of rubber which is between 0.5 to 1 MPa; S is the shape factor of each
rubber layer, equal to the loaded area of the bearing divided by the load-free area of the

bearing; y, is the allowable shear strain under gravity load.

The shape factor, S, for a cylindrical bearing of diameter D and made of rubber layers of

thickness 7, is given by

loaded area (”Dz ) /4 D
S= = =— (3.2)
load free area Dt 4¢

r r

The shape factor, S, for a rectangular bearing of sides b x d and made of rubber layers of
thickness 7, is given by
loaded area bd

§= = 33
load free area 2t (b+d) (3:3)

The allowable shear strain, y, , can be estimated as a ratio of the short-term failure strain of
the rubber in pure tension ¢, such as:
v, =02¢

7, = 0.4¢, for design base earthquakes (3.4)

7, = 0.7¢, for maximum credible earthquakes
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Figure 3-2: Laminated-rubber bearing (elastomeric bearing) (Christopoulos and Filiatrault
(20006)).
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Figure 3-3: Circular Laminated-rubber bearing under gravity and lateral loads (Christopoulos
and Filiatrault (2006)).

The lateral stiffness of a laminated-rubber bearing k, is given by

k, = (3.5)

where G, is the shear modulus of rubber; A is the rubber layer area; /4, is the total rubber

height.

The period of vibration, 7, , of the bearings equals with
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T, 27 | o (3.6)

g kb tot

where W

o1 is the total lateral stiffness of all

is the total weight of the rigid superstructure; &,

tot

bearings that is calculated by summing the individual lateral stiffness of each bearing.

The vertical stiffness, k, , of an elastomeric bearing is given by

k, k
e 6
vy 114

where &, is the sum in series of the vertical stiffness due to the rubber shear strain without

volume change; £k, is the vertical stiffness caused by the volume change of the rubber without

shear.

Based on Skinner et al. (1993) the condition £, is given by

6G S 4.
s (3.83)
and k , is given by
kw=24 (3.9)

where x. is the compression modulus of the rubber (x. ~ 2000 MPa for typical rubber.

Based on Christopoulos and Filiatrault (2006), the allowable lateral displacement, x, ,, is

given by
Xy a1 = h Y, (3.10)

where y, is the allowable seismic shear strain that depends on how much shear strain is

mobilized be the vertical load, see (3.1).

In addition, the limit of the overlap factor 4 A is important for the allowable lateral
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displacement, x, ,, . For design basis earthquakes, a limit of about 0.6 is typically used.

3.3.2 Lead-rubber bearings

The lead-rubber bearing was invented in New Zealand in 1975 (Robinson and Tucker (1977),
(1983)) and has been extensively used in New Zealand, Japan and United States. It is
composed of a laminated-rubber bearing with a cylindrical lead plug inserted in its center,
Figure 3-4, to increase the damping of the bearing. Based on Skinner et al. (1993), the lead, at
room temperature, behaves approximately as an elastic-plastic solid and yields in shear at
relatively low stress of about 10 MPa. In addition, lead has fatigue resistance properties as

they restored when cycled in the inelastic range and it is commonly available.

Lead Core
Top Cover Steel Plate
Protective Bottom
Rubber Layer Laminated Cover Steel Plate

Rubber
Figure 3-4: Lead-Rubber Bearing (Christopoulos and Filiatrault (2006)).
Based on Christopoulos and Filiatrault (2006), the lead-rubber bearing has a bilinear behavior

with elastic stiffness £, a post-yield stiffness k, and a yield force F,. The elastic stiffness £,

is given by

k~—(G,4,+G,4,)~10k, (3.11)

s
hr
where £, is the total rubber height, 4, is the area of the lead plug, 4, is the area of the

rubber, G, is the shear modulus of lead ~150 MPa at room temperature, G, is the shear

modulus of rubber ~0.5to1MPa and £k, is the lateral stiffness of the laminated-rubber

bearing (see Equation (3.5)).
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The post-yield stiffness k, is equal with the lateral stiffness of the laminated-rubber bearing,

Equation(3.5).

The yield force F, is given by

G.A
F,=7,4, [1+ ]zrpyAp (3.12)

where 7, ~10 MPais the shear yield strength of the lead.

3.3.3 Friction pendulum systems

Friction Pendulum System (FPS) is a sliding isolator and it is composed of two parts: the
articulated slider and the concave sliding stainless steel surface (Figure 3-5). The spherical
surface provides restoring force using gravity and friction to dissipate energy. The FPS
isolator is manufactured by Earthquake Protection Systems in Richmond California

(Christopoulos and Filiatrault (2006)).

Supersructure

Connection
/ Plate
5‘ T j r—;‘- J
[\
= . Articulated

- L J 5y Friction Slider
| }
Iic:mn_, / Spherical

Mab l Concave
Aa
eria / Surface

Sub-structure or
Foundation
Connection
Plate

Figure 3-5: Friction Pendulum System (Christopoulos and Filiatrault (2006)).

The FPS bearing is activated when the earthquake forces overcome the static value of friction.
When set in motion, the slider slides over the concave spherical surface causes the supported
mass to rise. The component of the gravitational force acting parallel to the spherical surface

provides the necessary restoring force. Because of the induced rising of the structure along the
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spherical surface (Figure 3-6), the bearing develops a lateral force equal to the combination of
the mobilized frictional force and the restoring force that develops. This restoring force is
proportional to the displacement and the weight carried by the bearing, and it is inversely
proportional to the radius of curvature of the spherical surface (Mokha et al. (1990)). The
stiftness of the FPS isolator is the restoring force during sliding motion. The friction force
between the articulated slider and the spherical surface generates damping in the isolators (Al-

Hussaini et al. (1994)).

—_—d =~ 2

(a) (b)
Figure 3-6: Single pendulum bearing (a) center position, (b) maximum credible earthquake.

The FPS is based on the principles of pendulum motion and the friction force. During sliding

motion the shear force,

Figure 3-6, mobilized at each FPS isolator is given by

F =R£u+,ungZ (3.13)

b

where N is the normal load on bearing, R, is the radius of curvature, x, is the coefficient of

friction of the friction-pendulum (FP) isolators, u is the bearing displacement and Z is a
dimensionless variable describing the rigid-plastic behavior, being governed by the following

differential equation
YZ +y|i|Z|Z|+ piZ’® —1i=0 (3.14)
in which Y is the yield displacement, and £, y are dimensionless parameters that control the

shape of the hysteresis loop, with assigned values: f=0.1, =09 and Y =0.3mm

(Constantinou et al. (1990)).

The normal load, N , is defined by
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N:W(1+Z—g+£J (3.15)
g W

in which W is the gravity load, z, is the vertical ground acceleration, P, is the additional

N

seismic load due to overturning moments, and g is the gravitational acceleration.

In Equation (3.13), the coefficients of u and Z represent the second slope of the bilinear

model and the strength of the system, respectively. This corresponds to an isolator period of

1, =27 /K =2r /& (3.16)
gk, g

The second term in Equation (3.1) is the friction force between the slider and sliding surface.
The single-curvature spherical sliding surface is typically made of PTFE or PTFE-based
composites in contact with polished stainless steel. The shape of the sliding surface allows
large contact areas that, depending on the materials used, are loaded to average bearing

pressures in the range of 7 to 70 MPa.

For bearings with large contact area, and in the absence of liquid lubricants, the coefficient of
friction depends on a number of parameters, of which the three most important are the
composition of the sliding interface, bearing pressure and velocity of sliding. For interfaces
composed of polished stainless steel in contact with PTFE or PTFE-based composites, the

coefficient of sliding friction may be described by (Constantinou et al. (1990))
/uh :fmax_(fmax_fmin)exp(_a|a|) (317)

where f_ is the coefficient of friction at large velocity of sliding and under constant
pressure, f . is the coefficient of friction at small velocity of sliding and under constant

pressure and a is the parameter that controls the variation of the coefficient of friction with

velocity

The variation of the coefficient of friction with velocity is illustrated in Figure 3-7.
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1= Frnwe = (Fowe = fonn )exp(—ali])

Coefficient of sliding friction

fmin

Velocity of sliding

Figure 3-7: Variation of coefficient of friction with velocity (Tsopelas et al. (1994)).

Generally, the parameters f,_, f.. and a depend on bearing pressure and temperature.

However, the dependency of f,

i and a is not as significant as the dependency of f  and
can be neglected (Tsopelas et al. (1994)). The variation of parameter f, _ with pressure can be

expressed by the equation
fmax = maxO_(fmaxo_fmaxp)tanh(gp) (318)

where f ., is the maximum value of the coefficient of friction at zero pressure, f, . , is the

maximum value of the coefficient of friction at very high pressure, ¢ is the constant that

controls the variation of f

max

between very low and very high pressures and p is the

instantaneous bearing pressure, which is equal to the normal load N (Equation (3.15)) divided

by the contact area.

Figure 3-8 presents the assumed variation of friction parameter f.

max

with pressure, which is

typical of the behavior of sliding bearings (Soong and Constantinou (1994)).
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fmaxO

AW

ﬁ f;nax = Jmax0 _(fmaxo _fmax p)tanh(gp)

¢ T~

Contact pressure

Figure 3-8: Variation of coefficient of friction with pressure (Soong and Constantinou (1994)).

Based on Christopoulos and Filiatrault (Christopoulos and Filiatrault (2006)), in reality,
friction forces are present at the sliding interface and must be overcome before the bearing can
slide. The energy dissipation occurring in the isolators is represented by the area enclosed by
the hysteresis loops. Figure 3-9 shows a typical hysteresis response of a FPS bearing where a
certain amount of friction is present at the sliding interface. The system is near rigid until the
friction force is overcome. Then the force increase is proportional to the lateral stiffness of the
FPS, Equation (3.1). The force required to overcome the initial friction is equal to WV .
Because of the initial breakaway friction, the effective stiffness of the isolator is dependent on

the friction coefficient of the system g, and the maximum displacement of the isolator D_ .

This effective stiffness k&

o » Which is larger than k, =W /R , is given by:

1 u
k, =W|—+-—"-2 3.19
eff (R D ] ( )

max

Figure 3-10 represents an experimentally hysteretic response of an FPS system (Zayas et al.

(1990)).
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Figure 3-9: Hysteresis Loops of FPS (Christopoulos and Filiatrault (2006)).

¢ ) .
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Figure 3-10: Experimental Response of FPS (Zayas et al. (1990)).

3.4 Mechanical Behavior of Isolation Systems

Generally, the seismic isolation system provides horizontal flexibility and damping to the
superstructure during an earthquake. There are isolation systems that are composed of linear
flexibility and linear damping namely as linear isolation systems with viscoelastic behavior.
However, in most cases, isolation systems have nonlinear behavior, which can be described
simply as a combination of viscoelastic and hysteretic behavior, Figure 3-11. Referring to
previous section, the only isolation system with linear restoring force and linear damping is
the laminated-rubber bearing. For this dissertation, two types of isolation systems are used for
the analysis: a) a linear system with viscoelastic behavior Figure 3-12(a) and b) a nonlinear

system with bilinear behavior Figure 3-12(b).
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Figure 3-11: Idealized force-displacement relation of isolation systems.
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Figure 3-12: a) Viscoelastic behavior, b) Bilinear Hysteretic Behavior.

3.4.1 Linear isolation system

A linear isolation system is composed of a linear spring with stiffness &, and a linear viscous
damper with coefficient ¢,, Figure 3-13. The behavior of such a linear viscoelastic model,

Figure 3-12(a), in terms of the lateral force developed in the isolation system is described by
F, =ku+cu (3.20)
where u and u is the horizontal displacement and velocity of the isolation system.

The (isolation) system period 7, and damping ratio &, are given respectively by

T,=2r /M (3.21)
kb
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S

% = 2.Jk,M

where M is the total mass above the isolation system.

(3.22)

-

Figure 3-13: Schematic diagram of a linear isolation system.

3.4.2 Nonlinear isolation system - bilinear

A bilinear isolation system, Figure 3-12(b), is composed of a linear spring and a slider
(Coulomb) that provides restoring force and friction force to the system, respectively, Figure
3-14. For this dissertation, the friction pendulum system (FPS) represents the nonlinear

isolation system, (see Section 3.3.3), with a constant friction coefficient (static), g, , based on

Coulomb friction. This type of friction is also called dry friction. Coulomb friction or dry
friction occurs when the un-lubricated surfaces of two solids are in contact under a condition
of sliding or a tendency to slide (Meriam and Kraige (2008)). The principles of Coulomb
friction were developed from the experiments of Coulomb in 1781 and from the work of
Morin from 1831 to 1834. Some typical values of coefficients of friction under normal

working conditions are given in Table 3-1 (Meriam and Kraige (2008)).

Vs

kb
W\_

N/
Hy

Figure 3-14: Schematic diagram of a nonlinear isolation system (FPS).

24



Table 3-1: Typical values of coefficient of Coulomb static friction
(Meriam and Kraige (2008)).

Contacting Surface

Coefficient of static friction, u,

Steel on steel (dry)

Steel on steel (greasy)

Teflon on steel

Steel on babbitt (dry)

Steel on babbitt (greasy)

Brass on steel (dry)

Brake lining on cast iron

Rubber tures on smooth pavement (dry)
Wipe rope on iron pulley (dry)

Hemp rope on metal

0.6
0.1
0.04
0.4
0.1
0.5
0.4
0.9
0.2
0.3
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CHAPTER 4
Dynamic Analysis of a Free Standing Rigid Block

4.1 Introduction

In this section a review of the rocking analysis of a rigid block resting on a rigid ground is
presented, based on the works done by Housner (1963) and Shenton III and Jones (1991). In
particular, the work discussed includes classifications of the different oscillation patterns of a
rigid block and definitions of the criteria for the initiation of motion. Moreover, a model
governing the impact between the block and the rigid ground during rocking and slide-rocking

motions is also presented.

4.2 Model Description

Consider a symmetric rigid block of mass m and centroid mass moment of inertia /7,
supported on a horizontal rigid foundation (Figure 4-1). The rigid block of height H =2/ and
width B=2b is assumed to rotate about the base corners O and O'. The distance between
one corner of its base and the mass center is denoted by R and the angle measured between R

and the vertical when the body is at rest is denoted by &, where o =tan™ (b/h).

2b
Block *
m,
2l
C X 2h
R o
Zg 0
v 0’ 0

X

Figure 4-1: Model at rest.

The horizontal and vertical absolute displacements of the mass center of the block measured

from the original at-rest position of the mass center are denoted by x(¢) and z()

respectively. The angular rotation of the block is denoted by 6(7), positive in the clockwise
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direction. The ground motion is prescribed by a horizontal acceleration, ¥,(¢), and vertical

acceleration, Z (7).

4.3 Oscillation Regimes

When subjected to ground acceleration with horizontal and vertical components ¥, and Z,

respectively, the block can be set into sliding, rocking, slide-rocking, or free-flight regime.

The five possible oscillation regimes are illustrated schematically in Figure 4-2.

¢ X
ZgL
> -
xg
(a) Rest (b) Slide Mode (¢) Rock Mode
,,,,,,, | —
i :
3 i 0
w b T
AN B i S o
e tek
. | i
Zg{ ; i
xg
(d) Slide-Rock Mode (e) Free-Flight Mode

Figure 4-2: Oscillation patterns of a rigid block under ground acceleration.

At rest (Figure 4-2a), the block is assumed to be in full contact with the foundation at all
times, with no relative motion between them. The rest mode is characterized by a normal

reaction force greater than zero ( f, >0), a friction force owed to Coulomb friction acting
between the block and the foundation ( f, >0), zero translation relative to the ground, and

Zero rotation.

During the sliding regime (Figure 4-2b), contact is still made with the foundation but the block
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translates horizontally with displacement x (f) relative to the ground. The sliding mode is
characterized by a normal reaction force greater than zero ( f, >0), a friction force depent on

the normal force and the velocity of the center of mass, and zero rotation (6(r)= 0) :

In the rocking mode the rigid block pivots on its edges with rotation angle 6(¢) (Figure 4-2c¢).

This is true under the assumption that the block has small legs of negligible size and mass, or a

slightly concave bottom.

In the slide-rocking mode (Figure 4-2d) the block rotates about either corner O or O' with

rotation angle 6(¢), and simultaneously slides with displacement x, (¢) relative to the

foundation. The friction force acting on the block is a function of the normal reaction and the

velocity of the corner in contact.

Free-flight (Figure 4-2¢) is characterized by zero normal reaction force, which results in loss
of contact between the block and the foundation. The rigid block translates horizontally and

vertically with displacements x(¢) and z(¢) relative to the ground, as it rotates with rotation

angle 6(¢) .

4.3.1 Sliding regime
Assuming that the rigid block is initially at rest, a sliding regime (Figure 4-2b) is initiated once

the inertia force of the mass exceeds the resistance provided by friction, which yields
‘)’ég‘>,us(ég+g) 4.1

where 4 is the coefficient of static friction between the block and the foundation, ¥ , and Z

are the horizontal and vertical components of ground acceleration respectively, and g is the

gravitational acceleration.

The equation of motion during sliding regime can be derived by taking the equilibrium of

horizontal forces acting on the block, yielding

X, +sgn (X)) u, (g + Zg) =—X, (4.2)

28



in which, x, and X, are respectively the horizontal velocity and the acceleration of the center
of mass of the block relative to the foundation and 4, is the coefficient of kinetic friction

between the block and the foundation.

4.3.2 Rocking regime
Rocking of the block on the supporting foundation (Figure 4-2c) is initiated from rest once the

overturning moment of the horizontal inertia force about one base corner, M =mX,h,

exceeds the restoring moment due to the weight of the block and the vertical inertia force,

M, =mgb+mZ b, yielding
i >(z, +¢) (43)

If the acceleration X, of the block is positive, then rocking takes place about corner O,

otherwise if it is negative rocking takes place about corner O.

The equation of motion during rocking mode can be derived by taking the equilibrium of

moments about the corner being the center of rotation, O or O', yielding
1,6 = mRcos(a—|0]) %, —mRsgnOsin(a —|0|)(2g + g) (4.4)

where [, is the mass moment of inertia of the block about the corner O. For rectangular

4 .
blocks, 7, = ngz , and the equation (4.4) can be expressed as

. 3 X ) zZ,+g
9=ﬁ cos(a—|8|)?—sgn951n(a—|l9|)( gg ) 4.5)

. 3 :
According to Housner (1963), the term ﬁ = p° can be used as a measure of the dynamic

characteristics of the block.

Note that Equation (4.4) holds only in the absence of impact (€ #0). At that instant, both

corner points O and O' are in contact with the base, rendering the equation of motion invalid.
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The impact problem is presented separately in Section 4.4.

4.3.3 Slide-rocking regime
The conditions governing the initiation of slide-rocking regime (Figure 4-2d) are not
altogether clear (Shenton and Jones (1991)). Slide-rocking is perhaps initiated from rest in the

singular case when

‘jég‘>|:’u3‘(ég+g)’%(zg+g)} (4.6)

and thus the sliding and rocking regime conditions are satisfied simultaneously.

However, a slide-rocking mode may be initiated by transition from another mode of response,

for example, from rocking mode when friction is not sufficient to sustain pure rocking.

Once the slide-rocking motion has been initiated, the response is governed by the following

equations:

mx, +m[h cos@+sgnd(bsin 9)]é+m[sgn¢9(bcos 0)—hsin 49] 0*
.. ) 4.7
+sgn()'cs)ykm{g+2g +[sgn 0(bcos@)—hsin 6’]0—[}1 cos@+sgnf(bsin 6’)] 92} =—mj¥, 50

(mr2 +I)é+m5c's [h cos @ +sgn @ (bsin 6’)]+mg [sgn 0(bcos@)—hsin 9]

4.8)
=—m [h cos @ +sgn @ (bsin 6’)]5c’g —m[sgn@(bcos 60)— hsin 6’] Z,

where x, and X are respectively the horizontal velocity and the acceleration of the mass
center of the block relative to the foundation, and g, is the coefficient of kinetic friction

between the block and the foundation. Equations (4.7) and (4.8) are valid only in the absence
of impact (€ #0).

4.3.4 Free-flight regime
Free-flight occurs when the normal reaction force equals zero ( f, =0). Assuming that the

block is initially at rest or in a slide mode, free-flight is initiated when
Z,(t)=-¢g (4.9)
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If the block is in a rock or slide-rock mode, free-flight is initiated when
Z, =—nganin(a—|9|)5+Rcos(a—|9|)92—g (4.10)

where 0 and 6 are the angular velocity and acceleration of the block respectively and sgn &

denotes the signum function in @ defined by

g1 >0 @4.11)
Seno = .
g -1 <0

The equations of motion for a block in a free-flight mode are

m(%+%,)=0 (4.12)
m(z+2,+g)=0 (4.13)
16=0 (4.14)

where X and Z are the horizontal and vertical accelerations of the mass center of the block
relative to the foundation, respectively. Equations (4.12) through (4.14) are valid until an

impact of the block with the foundation occurs.

4.4 The Impact Model

The impact problem is one of the most complicated problems in dynamics and it refers to the
collision between two bodies. Impact is characterized by the generation of relatively large
contact forces which act over a very short interval of time. The interrelationship of the transfer
of energy and momentum, energy dissipation, elastic and plastic deformation, relative impact
velocity and body geometry is quite complicated. Small changes in the impact conditions may
cause large changes in the impact process and thus in the conditions immediately following

the impact.

During rocking or slide-rocking motions, the block may experience one or more impacts with
the foundation. At the instant of impact, both corners of the block are in contact with the base,

rendering the governing equation of motion invalid. The instantaneous change of the block’s

31



velocity must be taken into account for the integration of the equation governing the post-

impact motion.

The formulation of the impact problem presented herein is based on the classical impact

theory based on the following assumptions:
(1) Point-impact
(i1) Short duration of impact
(i11) Large impulsive forces relative to the other forces acting on the block
(iv) Negligible impulses at the rotating corner (impulses act only at the impacting corner)
(v) Instantaneous changes in velocity
(vi) Negligible changes in position and orientation of the block

(vii) Perfectly inelastic impact

Under the assumption of perfectly inelastic impact, the coefficient of restitution, e, that relates
pre- to post-impact translational velocities (normal to the impact surface) of the impacting

corner is zero (e = 0) )

The theoretical background of the classical impact theory is described analytically in Chapter
6.

4.4.1 Impactin rocking regime

Based on the assumption of perfectly inelastic impact, there is only one possible response
mechanism following the impact: tilting about the impacting corner while the block re-uplifts

(no bouncing).

The formulation of impact is divided into three phases: pre-impact, impact, and post-impact as

(1321

illustrated schematically in Figure 4-3 and Figure 4-4. In the following, a superscript “-” refers

to a pre-impact quantity and a superscript “+” to a post-impact quantity.

Consider the block at the instant when it hits the foundation from rocking about O and re-

uplifts pivoting about the impacting corner O' (Figure 4-3). Impact is accompanied by an
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instantaneous change in velocities, with the block displacements being unchanged. Therefore,

the impact analysis is reduced to the computation of the block's post-impact angular velocity,

o, given its position and pre-impact angular velocity, 0.

Pre-impact (-) Impact Post-impact (+)

[Fdt| o 0
[F.dt
uF:dth dt
| F
g
Zé’
0"=60"=0

o 0" =po°

Figure 4-3: Impact from rocking about O followed by re-uplift about O'.

With regard to the block, the principle of linear impulse and momentum in the x and z

directions states that

[Fdi=(AL) = Li-L: [Fdt=mX"—mX" (4.15)
[Fdt=(AL) =L;-L: [Fdt=mZ"-mZ" (4.16)

in which J F dt and IEdt are the horizontal and vertical impulses (assumed to act at O");

+
rot

- . S+ . 7— _ = . 7+ _ .+
X =x,+%,, X '=x,+%, and Z =z +z,, Z =z +z, are the absolute pre- and

post-impact horizontal and vertical velocities of the mass center of the block respectively; x

rot

+
rot

+

., z. . are the relative pre- and post-impact horizontal and vertical velocities of the

x,, and z_
mass center of the block due to the rocking, relative to the foundation; L , L', L and L] are
the pre- and post-impact horizontal and vertical linear momentum, respectively; (AL)V and

(AL )z are the changes in horizontal and vertical linear momentum, respectively.
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Substituting these expressions into Equations (4.15) and (4.16), we obtain

_[det =m(x, +%,,)—m(¥, +%,)= _[det = mi’, —mx, (4.17)
[Fdt=m(z,+2,)-m(z,+%,)= [Fdt=mz, —mz, (4.18)

In addition, the principle of angular impulse and momentum states that
[Medt=At, =H.-H: b([F.dt)=h([Fdt)=10"~16 (4.19)

in which j M .dt is the angular impulse; /. and H_ are the pre- and post-impact angular
momentum about the mass center respectively; AH . is the change in the angular momentum

about the mass center.

In Equations (4.17) and (4.18), the pre- and post-impact horizontal and vertical components of

the relative translational velocity of the mass center can be expressed in terms of the pre- and

post-impact angular velocity of the block (9’, 9*) as follows.

For the pre-impact state, the translational velocity vector of the mass center can be expressed

as
Vo =v,+o X1, (4.20)

where v~ is pre-impact translational velocity vector of center-of mass, v, is pre-impact

translational velocity vector of point O, @ is pre-impact angular velocity vector of the block,

and r.,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

v =Xi+Zk=(x,+%,)i+zk (4.21)
v, =i,i (4.22)
w =0 (4.23)
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Teo =—rsin(a—0)i+rcos(a—0)k (4.24)

At impact, the angular rotation of the block becomes zero (6 =0) and the position vector of

the mass center can be rewritten as
too =—(rsina)i+(rcosa)k =—bi +hk (4.25)

On substituting Equations (4.21) through (4.25) into Equation (4.20), the pre-impact

translational velocity becomes

4 E(xg+x

)itk =(xg)f+(é-})x(—bi+h1€) (4.26)

ot
which reduces to
g0+ 2,k = (607 )+ (h6 )i (4.27)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (4.28)
. =bO" (4.29)
For the post-impact state, the translational velocity vector of the mass center is

vi=v, +o xr,, (4.30)

where v* is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O', @" is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

A

v*=)'(*'+Z'*I€=()'cg+jc+ )f+z‘*l€ (4.31)

rot rot
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v =x,i (4.32)
0 =60 (4.33)
tep =rsin(a—0)i+rcos(a—0)k (4.34)
At impact (6 = 0) the position vector of the mass center is
oo :(rsina)f+(rcosa)lgzbf+hle (4.35)

On substituting Equations (4.31) through (4.35) into Equation (4.30), the post-impact

translational velocity becomes

A ~

v = (i, 45, )i+ 2k =(xg)i+(9’+j)x(bi+hlé) (4.36)

rot
which simplifies to

i+t k :(—b9+)12+(h9+)i (4.37)

rot rot

From Equation (4.37), the post-impact horizontal and vertical components of v’ can be

retrieved as

Xt =hO" (4.38)

rot

2 =—bO* (4.39)

rot

Substitution of Equations (4.28), (4.29), (4.38) and (4.39) into Equations (4.15) through (4.19)

yields
J£d=m(16")-m(h6") (440)

J .t (-b0° )80 (440
b([Ft)=n([Fdr)=1(67)-1(0") 442)
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in which the centroid mass moment of inertia for the rectangular block is given by

I =%r2 :?(bz +h?) (4.43)

Equations (4.40) through (4.42) constitutes a set of three equations in three unknowns: I F dt,

Jdet, 0.

Equivalently, the three equations can be combined in one (by eliminating the two impulses) in

one unknown:
b(~mb0" —mb0" )~ h(mh&" —mh~) = ?(b2 +1?)(6"-6) (4.44)

which yields the post-impact angular velocity of the block as

* (-2 6 4.45
~(4n* +4b%) (4.43)

Equation (4.45) can be written in the form

o (22 -1) 6 = po- (4.46)
C(2r+2) '
o . . . (247-1)
in which A=h/b is the geometric aspect ratio of the block and ﬁ:m is the
+

coefficient of angular restitution.

Following the same procedure, it can be shown that the post-impact velocity for impact from
rocking about O' (Figure 4-4) (realized when 0> 0) is identical to that given by Equation

(4.46), which was derived considering impact from rocking about O (realized when 0< 0).
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Pre-impact (-) Impact Post-impact (+)

o 0" =po

Figure 4-4: Impact from rocking about O' followed by re-uplift about O.

4.4.2 Impactin slide-rocking regime

Under the assumption of perfectly inelastic impact, there are three possible response
mechanisms following impact: (a) pure rocking about the impacting corner, when sliding
motion ceases after impact, Figure 4-5, (¢) pure sliding, when rocking ceases after impact,
Figure 4-6, and (d) simultaneous sliding and rocking about the impacting corner, Figure 4-7.

(134

As explained earlier, a superscript “-” refers to a pre-impact quantity and a superscript “+” to a

post-impact quantity.
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Pre-impact (-) Impact Post-impact (+)

[Fdt| o o)
[F.dt

UEdt
.| Fdt

0, x;

Figure 4-5: Impact from slide-rocking about O followed by pure rocking about O’ (sliding

ceases).
Pre-impact (-) Impact Post-impact (+)
[Fdt] o ) —
X
[F.dt ’
qu dt
- | Pt 0 0

Figure 4-6: Impact from slide-rocking about O followed by pure sliding (rocking ceases).
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Pre-impact (-) Impact Post-impact (+)

[Fdtl o o)
[F.dt
F.di
lf.;tfﬂdz
&
e
2}3
6 =0, x 0'=0"=0,x]
o, i 6, i

Figure 4-7: Impact from slide-rocking about O followed by slide-rocking about O".

4.4.2.1 Pure rocking occurs after impact

Derivation for the case of impact during rocking about point O

Consider the system at the instant when the block hits the moving base from rocking about O
and re-uplifts pivoting about the impacting corner, O'. As aforementioned, impact is
accompanied by an instantaneous change in velocities, with the system displacements being

unchanged. Therefore, the impact analysis is reduced to the computation of the initial
conditions for the post-impact motion o, given the position and the pre-impact velocities,

x, ,and o .

With regard to the block, the principle of linear impulse and momentum in the x and z

direction states that
[Fdt=(AL) =Li-L: [Fdt=mX"—mx (4.47)
[Fdt=(AL) ==L : [Fdt=mZ"-mZ" (4.48)

in which J F dt and IEdr are the horizontal and vertical impulses (assumed to act at O");

- +

- . . ' .+ . '7_ . — . '+_ .+ .
X =X, +x +x,, X =X +i +%, and Z —(zm,+zg), z —(z +zg) are the

rot

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

40



x' and z_,, z.  are the relative pre- and post-impact horizontal and

rot rot > rot

respectively; x,,,

vertical velocities of the mass center of the block due to the rocking, relative to the foundation;

%, and X are the relative pre- and post-impact horizontal velocities of the mass center of the
block due to the sliding, relative to the foundation; L , L., L and L. are the pre- and post-
impact horizontal and vertical linear momentum, respectively; (AL) and (AL) are the

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (4.47) and (4.48), we obtain

[ Fudt = mi +mi), —mi; —mi,, (4.49)
[F.dt=mz}, —mz, (4.50)

In addition, the principle of angular impulse and momentum states that
[Medt=ati, = HE=H: b([Fdt)-h([Fdi)=16" - 16 (4.51)

in which I M .dt is the angular impulse; /. and H_ are the pre- and post-impact angular
momentum about the mass center, respectively; AH. is the change in the angular momentum
about the mass center.

In Equations (4.49) and (4.50), the pre- and post-impact horizontal and vertical components of

the relative translational velocity of the mass center can be expressed in terms of the pre- and

post-impact angular velocity of the block, 0 and 0" as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can

be expressed as

Vo =v,+m Xr., (4.52)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @ is pre-impact angular velocity vector of the block,

and 1., is position vector of the mass center relative to point O.
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Figure 4-8: Components of pre-impact translational velocity of the non-isolated block for the

case of impact during slide-rocking about point O.

Expressions for these vector quantities are given below:

v =Xi+Zk=(x,+% +%,)i+(z,+2,)k (4.53)
v, = (%, +% )i +(z, )k (4.54)

0 =0j (4.55)

ro o =-rsin(a—-0)i+rcos(a—0)k (4.56)

At impact, the angular rotation of the block becomes zero (9 = 0) and the position vector of

the mass center relative to point O, r,,, , can be rewritten as
too =—(rsina)i+(rcosa)k =—bi +hk (4.57)

in which i and k are the horizontal and vertical unit vectors, respectively.

On substituting Equations (4.53) through (4.57) into Equation (4.52), the pre-impact

translational velocity becomes

rot

v z(xg +X, +x;m)i+(z'— +z‘g)l€ =(5cg +5c§)f+(z‘g)l€+(9‘}')x(—bf+hl€) (4.58)

which reduces to
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g i+ 2,k = (607 )+ (h67 )i (4.59)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X =hO" (4.60)

z. =bo" (4.61)

For the post-impact state, the translational velocity vector of the mass center (Figure 4-9) can

be expressed as
V=V, 0 X, (4.62)

where v* is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O', @" is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O".

Figure 4-9: Components of post-impact translational velocity of the non-isolated block for the

case of impact during slide-rocking about point O

Expressions for these vector quantities are given below:

v = X'+ 2=k, +x),)i+(2, 42, )k (4.63)
vo = (%, )i+(2, )k (4.64)
o = é’*} (4.65)
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teo =rsin(a—0)i+rcos(a—0)k (4.66)

At impact (6 =0) the position vector of the mass center relative to point O', r,,, becomes
teo =(rsina)i+(rcosa)k = bi + hk (4.67)

On substituting Equations (4.63) through (4.67) into Equation (4.62), the post-impact

translational velocity becomes

rot rot

v’ E(jcg +x )f+(z‘+ +z‘g)l€ :()'cg)f+(z‘g)l€+(9f}‘)x(bf+hl€) (4.68)
which simplifies to

i+ 2] k= (=07 e+ (h6" )i (4.69)

from which the post-impact horizontal and vertical components of v* can be retrieved as

x5 =ho" (4.70)

rot

2 =—bO* 4.71)

rot

Substituting Equations (4.60), (4.61), (4.70) and (4.71) into Equations (4.47) through (4.51)

yields
[Fdt=mi* +m(h6")=mi™ —ms; —m(h6") (4.72)
[F.dt =m(-b6")-m(b0") (4.73)
b(jgdt)—h(jdet) =1(67)-1(6") (4.74)

in which block the centroid mass moment of inertia for the rectangular block is given by
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1:%# :%(b2 +1?) (4.75)

Equations (4.72), (4.73) and (4.74) constitute a set of three equations in three unknowns,

namely J‘det , .[det , 0.

Equivalently, the three Equations (4.72), (4.73) and (4.74) can be combined in one (by

eliminating the two impulses) with two unknowns:
(40 +4h*)0" = (4> =267 )6 + 3hx, (4.76)
which yields the post-impact angular velocity of the block as

. (417 —26°) 6 +3hs; 477
o (4b7 ) @.77)

An identical expression can be derived for the case of impact during rocking about point O".

4.4.2.2 Pure sliding occurs after impact

When rocking of the block on top of the moving base ceases, the system attains a sliding

regime. In this case, the impact analysis is reduced to the computation of the post-impact

translational velocity of the system, x,, given the position and the pre-impact velocities, x_,

and 0.
Derivation for the case of impact during rocking about point O
Consider the system at the instant when the block hits the moving base from rocking about O.

With regard to the block, the principle of linear impulse and momentum in the x and z

directions states that

[Fdt=(AL) =L -L: [Fdt=mX"—mX" (4.78)

[Fdt=(AL) =L-L: [Fdt=mZ" -mZ" (4.79)
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in which J F dt and IEdr are the horizontal and vertical impulses (assumed to act at O");

- .- .— S+ .+ .+ 7— [ »— . 7+ _ [ 2+ .
X =x,+x +x,, X =% +x +%, and Z —(zmt+zg), VA —(zmt+zg) are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

+ +

respectively; X, x  and zZ_, Z  are the relative pre- and post-impact horizontal and

rot 2 rot rot rot

vertical velocities of the mass center of the block due to the rocking, relative to the foundation;

%, and X are the relative pre- and post-impact horizontal velocities of the mass center of the
block due to the sliding, relative to the foundation; L , L., L, and L are the pre- and post-
impact horizontal and vertical linear momentum, respectively; (AL) and (AL) are the

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (4.78) and (4.79), we obtain

[ Fdt = mi! +mi, —ms; —mi,, (4.80)

[F.dt=mz), —mz,

rot rot

4.81)

In Equations (4.80) and (4.81), the pre- and post-impact horizontal components of the relative

translational velocity of the mass center can be expressed in terms of the pre-impact angular

velocity of the block, 0" as follows

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can

be expressed as
Vo =v,+o xr., (4.82)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact
translational velocity of point O, @ is pre-impact angular velocity of the block, and

r.,, 1s position vector of center-of-mass relative to point O.

Expressions for these vector quantities are given below:

v =X i+Z k=%, +x,+x )i+(z,+2,)k (4.83)
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vy =(x, +x)i+(z,)k (4.84)
o =0] (4.85)
teo = —rsin(a—0)i+rcos(a—0)k (4.86)

At impact, the angular velocity of the block becomes zero (6 =0) and the position vector of

the mass center relative to point O can be rewritten as
Yoo =—(rsina)i +(rcosa)k =—bi + hk (4.87)

On substituting Equations (4.83) through (4.87) into Equation (4.82), the pre-impact

translational velocity therefore becomes

A A

Vo= (%, i, 5 )i+ (2, 42, )= (%, + 5 )i+ (2, )+ (67 7)< (—bi + k) (4.88)
which reduces to
o d + 2,k = (b0 Ve +(h6 )i (4.89)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X =h6 (4.90)
z., =b6" (4.91)

For the post-impact state, the translational velocity vector of the mass center can be expressed

as
vi=v) +o X1, (4.92)

where v* is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O', @" is post-impact angular velocity vector of the
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block, and r,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

vi= X+ Zk=(x, 45,410 )i+ (2, + 2, )k (4.93)
v = (%, +x )i +(z, )k (4.94)

0 =0"j=0j (4.95)

too =rsin(a—0)i+rcos(a—0)k (4.96)

At impact =0, the position vector of the mass center relative to point O' becomes

A

teo =(rsina)i +(rcosa)k =bi + hk (4.97)

On substituting Equations (4.93) through (4.97) into Equation (4.92), the post-impact

translational velocity becomes

v’ E()'cg +X +x;)i+(z';m +z‘g)l€ =(5cg +x;)f+(z'g)le+(0})x(bf+hlg) (4.98)
which simplifies to
i i+z0 k =0k +0i (4.99)

rot

From Equation (4.98) the post-impact horizontal and vertical components of v* can be

retrieved as
x . =0 (4.100)
2t =0 (4.101)
Substituting Equations (4.90) through (4.101) into Equations (4.80) and (4.81) yields
[ Fdt=ms; —m(h6™ )= mi; (4.102)
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j F.dt =—mb0" (4.103)

which constitutes one equation with two unknowns: J‘det , X[

One additional equation is therefore required to uniquely determine the post-impact velocity

X, .

s

With regard to the block, the principle of frictional impulse in the x and z directions states

that

[Fdt=—sgn(57)

| det‘ (4.104)
Substituting Equations (4.102) and (4.103) in Equation (4.104) gives
ms} —m(hO" )= mi; = —sgn (&7 ), |-mbe"| (4.105)
Assuming that sgn (x:) > 0, Equation (4.105) can be rewritten as
i =gty [-bO |+ RO+ %] (4.106)

Once Equation (4.106) is solved and x; is calculated positive, then the assumption and
Equation (4.106) are correct, else a second assumption must be computed, sgn(fc:) <0 and

Equation (4.105) can be rewritten as
i = | b0 |+ h6 + i (4.107)

The absolute value in Equations (4.106) and (4.107) can be dropped since the impulse in the z

direction must be positive.

Derivation for the case of impact during rocking about point O'

Consider the system at the instant when the block hits the moving base from rocking about

o'

With regard to the block, the principle of linear impulse and momentum in the x and z
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direction states that

[Fdt=(AL) = Li-L;: [Fdt=mX"—mx (4.108)

X

[Fdt=(AL) = Li-L;: [Fdt=mZ"-mZ (4.109)

in which I F dt and IFZ dt are the horizontal and vertical impulses (assumed to act at O');

- . — . — S+ .+ .+ 7— [ »— . 7+ _ [ 2+ .
X =x,+x +x,, X' =x+x +%, and Z —(zmt+zg), VA —(zmt+zg) are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

x' and z ., z' are the relative pre- and post-impact horizontal and

rot rot rot rot

respectively; X
vertical velocities of the mass center of the block due to the rocking, relative to the foundation;
x, and x; are the relative pre- and post-impact horizontal velocities of the mass center of the
block due to the sliding, relative to the foundation; L , L', L. and L. are the pre- and post-
impact horizontal and vertical linear momentum, respectively; (AL) and (AL )Z are the

X

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (4.108) and (4.109), we obtain

[ Fdt = mi +mi, —ms; —mi,, (4.110)
[Fdt=mz}, —mz, (4.111)

In Equations (4.110) and (4.111), the pre- and post-impact horizontal components of the

relative translational velocity of the mass center can be expressed in terms of the pre-impact

angular velocity of the block, 8~ as follows.

For the pre-impact state, the translational velocity vector of the mass center can be expressed

as

v o=y, +o Xr, (4.112)
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where v~ is pre-impact translational velocity vector of center-of-mass, v, 1is pre-impact

translational velocity of point O', @ is pre-impact angular velocity of the block, and

¥, 1s position vector of center-of-mass relative to point O'.

Expressions for these vector quantities are given below:

v =X+ Z k=%, +x,+% )i+(z,+2, )k (4.113)
v = (%, +x )i+(z,)k (4.114)

o =0 (4.115)

r. =rsin(a—0)i+rcos(a—0)k (4.116)

At impact, the angular velocity of the block becomes zero (6 =0) and the position vector of

the mass center relative to point O' can be rewritten as

ro =(rsina)f+(rcosa)l€=bf+hl€ (4.117)

Cc/o

On substituting Equations (4.113) through (4.117) into Equation (4.112), the pre-impact

translational velocity therefore becomes
vo=(%, vk, 4% )i+ (2, 42, )k= (%, + % )i+(2,)k +(9‘}')x(bf+hl€) (4.118)
which reduces to
i i+ 2, = (=b07 e+ (hO7 )i (4.119)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as

X, =hO (4.120)

i =—bl" (4.121)

rot
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For the post-impact state, the translational velocity vector of the mass center can be expressed

as
vi=v,+o' xr,, (4.122)

where v* is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O, @" is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

v =X+ Zk=(x, 45,410 )i+ (2, + 2, )k (4.123)
vo = (%, +x7)i+(z, )k (4.124)

0" =0"j=0j (4.125)

teo =—rsin(a—0)i+rcos(a—0)k (4.126)

At impact 8 =0, the position vector of the mass center relative to point O becomes
Foo =—(rsina)i +(rcosa)k =—bi + hk (4.127)

On substituting Equations (4.123) through (4.127) into Equation(4.122), the post-impact

translational velocity therefore becomes

~

V' (i, 4D, )2, 42, )= (o, +5) )+(2,)K+(07)x(-bi +hk)  (4.128)
which simplifies to
X i+ k=0k+0i (4.129)

rot rot

from which the post-impact horizontal and vertical components of v* can be retrieved as
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it =0 (4.130)
2 =0 (4.131)

Substitution of Equations (4.120) through (4.131) into Equations (4.110) and (4.111) yields

[ Fdt=ms; —m(h6™ )= mi; (4.132)
F.dt = mbO (4.133)
J

which constitutes one equation with two unknowns: Idet , X

One additional equation is therefore required to uniquely determine the post-impact velocity

.+
X, .

With regard to the block, the principle of frictional impulse in the x and z directions states

that

[ Fat=—sen(i)

[ dez‘ (4.134)
Substituting Equations (4.132) and (4.133) in Equation (4.134) gives

s —m(h0")—mx; =—sgn (%) g, |mbo| (4.135)
Assuming that sgn (x:) >0, Equation (4.135) can be rewritten as
i == |07 |+ 16+ i (4.136)

Once Equation (4.136) is solved and x, is calculated positive, then the assumption and
Equation (4.136) are correct, else a second assumption must be computed, sgn()'c:) <0 and

Equation (4.135) can be rewritten as

i = gy [pO°|+ hO + % (4.137)
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The absolute value in Equations (4.136) and (4.137) can be dropped since the impulse in the z

direction must be positive.

4.4.2.3 Slide-rocking continues after impact
In this case, the system continues slide-rocking regime after impact and the impact analysis is

reduced to the computation of the initial conditions for the post-impact motion, X, and o',

given the position and the pre-impact velocities, x, , and 0.

Derivation for the case of impact during rocking about point O
Consider the system at the instant when the block hits the moving base from rocking about O.

With regard to the block, the principle of linear impulse and momentum in the x and z

direction states that

[Fdt=(AL) =L -L: [Fdt=mX"—mX" (4.138)
[Fdi=(AL) = Li-L.: [Fdt=mZ"-mZ" (4.139)

in which J. F dt and jFZ dt are the horizontal and vertical impulses (assumed to act at O');

- . . S+ .t .4 7— [ - . 7+ _ [ 2+ o
X =X, +x +x,, X =% +x +x, and Z —(th+Zg), Z _(Zrut+Zg) are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

x' and z ., z' are the relative pre- and post-impact horizontal and

rot rot ? rot

respectively; X

rot ?

vertical velocities of the mass center of the block due to the rocking, relative to the foundation;

x, and x; are the relative pre- and post-impact horizontal velocities of the mass center of the
block due to the sliding, relative to the foundation; L , L., L and L' are the pre- and post-

impact horizontal and vertical linear momentum, respectively; (AL) and (AL) are the

X

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (4.138) and (4.139), we obtain

[ Fudt = mi +mi), —mi; —mi,, (4.140)
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[Fdt=mz), —mz,, (4.141)
In addition, the principle of angular impulse and momentum states that
[Medt=ati = HE-H: b([Fdt)-h([Fdt)=16"~16 (4.142)

in which IM ~dt is the angular impulse; /. and H_ are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum

about the mass center.

In Equations (4.140) and (4.141), the pre- and post-impact horizontal and vertical components

of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, 0 and 6" as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can

be expressed as
Vo =v,+m Xry, (4.143)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r,,, is position vector of mass center relative to point O.

Expressions for these vector quantities are given below:

vo=X i+ Z k=%, +x +%,)i+(z, +2, )k (4.144)
vo = (%, +%, )i +(z, )k (4.145)

w =0 (4.146)

Feo =—rsin(a—0)i+rcos(a—0)k (4.147)

At impact, the angular rotation of the block becomes zero (6 =0) and the position vector of
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mass center relative to point O, r.,,, , can be rewritten as

A

too =—(rsina)i+(rcosa)k =—bi +hk (4.148)

in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (4.144) through (4.148) into Equation (4.143), the pre-impact

translational velocity therefore becomes

A

vo= (%, v, i (2, w2, = (5, 45 )i (2, )R+ (67 ) x(-bi+hk)  (4.149)
which reduces to
0+ 2,k = (b0 Ve +(h6" )i (4.150)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (4.151)

i =hO (4.152)

For the post-impact state, the translational velocity vector of the mass center (Figure 4-10) can

be expressed as

vi=v, +o xr,, (4.153)

where v" is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O', @" is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O'.
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Figure 4-10: Components of post-impact translational velocity of the non-isolated block for

the case of impact during slide-rocking about point O".

Expressions for these vector quantities are given below:

vi= X4 2= (%, x50 45, )i+ (2,42, )k (4.154)
v = (%, +1 )i +(z, )k (4.155)

0 =0'] (4.156)

teo =rsin(a—0)i+rcos(a—0)k (4.157)

At impact (6 = 0) the position vector of mass center relative to point O', ., , becomes
teo =(rsina)i +(rcosa)k = bi + hk (4.158)

On substituting Equations (4.154) through (4.158) into Equation (4.153), the post-impact

translational velocity therefore becomes

A

v' = (%, o, 5 )i+ (2, 42, o= (5, 45 )i+ (2, )k +(07])x(bi +hk)  (4.159)

rot rot
which reduces to

i+ 2] k= (=07 e+ (h6" )i (4.160)
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from which the post-impact horizontal and vertical components of v* can be retrieved as

Xt =ho* (4.161)

rot

z =—bhO" (4.162)

rot

Substituting Equations (4.151) through (4.162) into Equations (4.140) through (4.142) yields

[Fdt=m(h6")+ms; —mi —m(h") (4.163)
j F.dt =m(~b6")~m(b6") (4.164)
b(jf;dz)—h(jgdr)=1(9’+)—1(9-) (4.165)

in which the centroid mass moment of inertia for the rectangular block is given by
m ,_ _Mge,o 2
I=—r=—(b"+h 4.166
7= () (4.166)

Equations (4.163), (4.164) and (4.165) constitute a set of three equations with four unknowns,

s

namely J-det , J-det , 6'”, x!

Equivalently, the three Equations (4.163), (4.164) and (4.165) can be combined in one (by

eliminating the two impulses) with two unknowns:
(407 + 407 )67 +3hx; = (4h> =26 )0 +3hs; (4.167)
which upon rearranging terms becomes

. (4n*—2b7)6" +3hi, - 3hi;
6" = = (4.168)

One additional equation is therefore required to uniquely determine the post-impact velocity

X,

N
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With regard to the block, the principle of frictional impulse in the x and z direction states

that

[ = —sen (5 )

[F dt‘ (4.169)
Substituting Equations (4.163) and (4.164) in Equation (4.169) gives
m(h6" )+ mi; —mi; —m(h0")=—sgn () g [m(~b0" )~ m(b6" (4.170)
Assuming that sgn () > 0, Equation (4.170) can be rewritten as
5 ==t |(~b0") = (b67)|~h6" +3; +ho" (4.171)

Once Equation (4.171) is solved and x; is calculated positive, then the assumption and
Equation (4.171) are correct, else a second assumption must be computed, sgn(x:) <0 and

Equation (4.170) can be rewritten as
%5 = 1 |(~b07) = (b6°)| ~hO" + 5 + 6 (4.172)

The absolute value in Equations (4.171) and (4.172) can be dropped since the impulse in the z

direction must be positive.

Derivation for the case of impact during rocking about point O'

Consider the system at the instant when the block hits the moving base from rocking about

o'

With regard to the block, the principle of linear impulse and momentum in the x and z

directions states that

[Fdt=(AL) =Li-L: [Fdt=mX" —mx (4.173)

[Fdi=(AL), = Li-L;: [Fdt=mZ"-mZ° (4.174)
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in which J F dt and IEdr are the horizontal and vertical impulses (assumed to act at O");

- .- .— S+ .+ .+ 7— [ »— . 7+ _ [ 2+ .
X =x,+x +x,, X' =% +x +%, and Z —(zmt+zg), VA —(zmt+zg) are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

+ +

respectively; X, x  and Z_, Z are the relative pre- and post-impact horizontal and

rot 2 rot rot rot

vertical velocities of the mass center of the block due to the rocking, relative to the foundation;

%, and X are the relative pre- and post-impact horizontal velocities of the mass center of the
block due to the sliding, relative to the foundation; L , L., L, and L are the pre- and post-
impact horizontal and vertical linear momentum, respectively; (AL) and (AL) are the

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (4.173) and (4.174), we obtain

[ Fdt = mi! +mi, —ms; —mi,, (4.175)
[Fdt=mz), —mz, (4.176)

In addition, the principle of angular impulse and momentum states that
[Medt=AH, =H ~H: —b([Fdt)-h([Fdt)=16" 16 (4.177)

in which IM ~dt is the angular impulse; /. and H_ are the pre- and post-impact angular

momentum about the mass center, respectively; AH . is the change in the angular momentum

about the mass center.

In Equations (4.175) and (4.176), the pre- and post-impact horizontal and vertical components

of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, 0 and 6" as follows.

For the pre-impact state, the translational velocity vector of the mass center can be expressed

as

vo=vote Xr, (4.178)
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where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O', @™ is pre-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O

Expressions for these vector quantities are given below:

vo=X i+ Z k=%, +x +%,)i+(z, +2, )k (4.179)
v =(x, % )i+(z, )k (4.180)

0 =0j (4.181)

r.; =rsin(a—0)i+rcos(a—0)k (4.182)

At impact, the angular rotation of the block becomes zero (6 =0) and the position vector of

the mass center relative to point O', r_ ., can be rewritten as

c/o”’

r z(rsina)t:+(rcosa)lezbf+hlg (4.183)

C

in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (4.179) through (4.183) into Equation (4.178), the pre-impact

translational velocity therefore becomes

A

vo= (%, v, i (2, w2, = (5, 45 )i+ (2, )R+ (67 )x(bihk)  (4.184)
which reduces to
f i+ 2, k= (=6 Ve +(h6" )i (4.185)

from which the pre-impact horizontal and vertical components of v~ can be retrieved as

X =ho (4.186)
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z. =—bl" (4.187)

For the post-impact state, the translational velocity vector of the mass center can be expressed

as
v =y, +o" xr,, (4.188)

where v" is post-impact translational velocity vector of center-of-mass, v,, is post-impact

translational velocity vector of point O, @’ is post-impact angular velocity vector of the

block, and r,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

vi= X+ Zk=(x, 450+ %), )i+(2, + 2, )k (4.189)
vo = (%, +57)i+(z, )k (4.190)

0 =0 (4.191)

Teo =—rsin(a—0)i+rcos(a—0)k (4.192)

At impact (6 = 0) the position vector of the mass center relative to point O, r,, , becomes

A

too =—(rsina)i+(rcosa)k =—bi +hk (4.193)

On substituting Equations (4.189) through (4.193) into Equation(4.188), the post-impact

translational velocity therefore becomes

A

vo= (i, 1802, 2 =, v )i (2, )R+ (077 )x(-bi+hk)  (4.199)

which simplifies to

k5,0 + 20k = (b0 e+ (h6 )i (4.195)
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from which the post-impact horizontal and vertical components of v* can be retrieved as

Xt =ho* (4.196)

rot

 =bO" (4.197)

rot

Substituting Equations (4.186), (4.187), (4.196) and (4.197) into Equations (4.175) through
(4.177) yields

[Fdt=m(h6")+ms; —mi —m(h6") (4.198)
j F.dt =m(b0")+m(b6") (4.199)
—b(jgdz)—h(jgdr) =1(07)-1(6") (4.200)

in which the centroid mass moment of inertia for the rectangular block is given by
m , Mg, 2
I=—r =—(b"+h 4.201
ey R (4201

Equations (4.198), (4.199) and (4.200) constitute a set of three equations with four unknowns,

s

namely Iﬂdt , Idet L0, 5

Equivalently, the three Equations (4.198), (4.199) and (4.200) can be combined in one (by

eliminating the two impulses) with two unknowns:
(407 + 417 ) 6" +3hx; = (4h* —2b )0 +3hs; (4.202)
which upon rearranging terms becomes

. (4n*—2b7)6" +3hi, - 3hi;
6" = = (4.203)

One additional equation is therefore required to uniquely determine the post-impact velocity

X,

N
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With regard to the block, the principle of frictional impulse in the x and z directions states

that

[ i =—sen (5 )

[F dt‘ (4.204)
Substituting Equations (4.198) and (4.199) in Equation (4.204) gives
m(h6" )+ mi; =i, —m(h0")=—sgn () g (66" ) +-m (b6 )| (4.205)
Assuming that sgn () > 0, Equation (4.205) can be rewritten as
5 ==t |(b0°)+ (67| ~h6" + 55 + hé" (4.206)

Once Equation (4.206) is solved and x; is calculated positive, then the assumption and
Equation (4.206) are correct, else a second assumption must be computed, sgn(x:) <0 and

Equation (4.205) can be rewritten as
i=u ‘(bé* )+(v6 )\ —hO" 3% +hO (4.207)

The absolute value in Equations (4.206) and (4.207) can be dropped since the impulse in the z

direction must be positive.
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CHAPTER 5
Dynamic Analysis of Base Isolated Rigid Block

5.1 Introduction

This dissertation presents a comprehensive mathematical formulation on the dynamic response
of base-isolated rigid blocks subjected to horizontal and vertical ground motions. The system
to be analyzed consists of a free-standing rigid block supported on a seismically-isolated rigid
base. The dynamic response of the system is realized through four distinct oscillation regimes:
(a) pure system translation (T), in which the block and base remain in full contact at all time
as the system oscillates horizontally, (b) sl/iding (S/T), in which the block slides relative to the
supporting base, which translates horizontally, (¢) rocking (R/T), in which the rigid block
pivots on its edges as the supporting base translates horizontally and (d) s/ide-rocking (SR/T),
in which the block simultaneously slides and pivots on its edges, as the supporting base
translates horizontally. Two models for the isolation system are considered; a linear model

with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior.

Despite the apparent geometric simplicity of the problem, the mathematical description of the
system dynamics is profoundly complex, primarily due to the inherent nonlinear nature of the
impact phenomenon, which may occur during rocking and slide-rocking response. A rigorous
formulation of the impact problem is presented in this dissertation based on the classical
impact theory. Derived from first principles, the impact model assumes point-impact and
perfectly-inelastic impact (i.e. zero coefficient of restitution). Evidently, apart from the
nonlinear nature of the governing equations, the dynamic behavior of the system is highly
complex due to the potential transition from one oscillation regime to another following
impact. Transition criteria that specify the conditions under which switching between the

various oscillation regimes are derived.

5.2 Model Description

The system considered consists of a symmetric rigid block of mass m and centroid mass-

moment of inertia /., standing free on a seismically-isolated rigid base of mass m, (Figure

5-1a). The block of height H =2A and width B =2b is assumed to rotate about the corners O
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and O'. A measure of the size of the block is given by the half-diagonal R = \/m of the
rectangle, while a measure of its slenderness is given by the characteristic angle
a=tan"'(b/h) or equivalently (but inversely proportionally) by the height-to-width ratio
A=h/b.

2b

Block: m, I

c\ x| |2 | o

Isolators 0] 0

\Jb Base: m, ﬂ,? j; i”_ j; ‘ ‘ i?,
(a) Model at Rest ‘—I—>xg ﬁ}»xg

(b) System Traflslation (T) (c) Slidingg (S/T)
,,,,,,, [—
0
X .
Tr—.c
C C’

"

4 Z
g 4
(d) Rocking (R/T) (e) Slide-Rocking (SR/T)

Figure 5-1: Model considered and oscillation regimes.

The dynamic response of the system is realized through four distinct oscillation regimes: (a)
pure system translation (T), in which the block/base system in its entirety oscillates

horizontally with displacement u(#)—1DOF response (Figure 5-1b); (b) sliding (S/T), in
which the block slides with displacement x (#) relative to the supporting base, which
translates horizontally with u(1)—2DOF response (Figure 5-1c); (¢) rocking (R/T), in which
the rigid block pivots on its edges with rotation angle €(¢) as the supporting base translates

horizontally with u(#)—2DOF response (Figure 5-1d); and (d) slide-rocking (SR/T), in which
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the block simultaneously slides with x,(#) and pivots on its edges with 8(¢), as the supporting

base translates horizontally with u(#)—3DOF response (Figure 5-1¢).

The rotation angle of the block is denoted by &(¢), positive in the clockwise direction. The
horizontal displacement of the base relative to the foundation is denoted by u(¢), the
horizontal displacement of the block relative to the base due to sliding is denoted by x ().

The ground motion is prescribed by a horizontal acceleration, X, (7), and vertical acceleration,

£,(1).

5.3 Formulation of the Equations of Motion

The governing equations for each regime of motion is formulated by means of the Lagrange
method, which permits the derivation of the equations of motion from three scalar quantities;
namely, the kinetic energy, the potential energy, and the virtual work due to non-conservative
forces. The application of the Lagrange method for the formulation of the equations of motion
is beneficial compared to the application of the Newtonian method, especially for systems
composed of a number of components, as it considers the system as a whole rather than the
individual components of the system separately, a process that excludes the reaction and
constraint forces (Meirovitch (2001)). Lagrange's equations are derived using the extended
Hamilton's principle:

)

j(&T—5V+5_Wm)dt=o, 5¢,=0, i=123,.,n, (=11, (5.1)

1°
i

where ¢, denotes the generalized coordinate, 7 the kinetic energy of the system, } the
potential energy of the system, and SW . the virtual work of the non-conservative forces.

The generalized coordinates are defined as any set of i independent quantities that are
sufficient to completely specify the position of every point within an i —DOF system. The
kinetic energy of the system, 7', can be expressed in terms of the generalized coordinates and

their first derivatives. That is,

T:T(ql,q2,...,qn,q'l,qz,...,qn,t) (5.2)
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so that the variation in the kinetic energy is simply

= a4,

i i

ST = ZLG—T&L +8—T5ql.j (5.3)

The potential energy, V', can be expressed in terms of the generalized coordinates alone. That

1S,
V=V (q>q259,51) (5.4)

so that the variation in the potential energy is

oV
SV =Y —dq, (5.5)
=1 04;
The virtual work of non-conservative forces, as they act through virtual displacements caused

by arbitrary variations in the generalized coordinates, is given by
W= 0,4, (5.6)
i=1

where Q,,0,,...,0, are the generalized forces. The symbol 6 denotes the virtual character of

the instantaneous variations, as opposed to the symbol d, which denotes actual differentials of
position coordinates taking place in the time interval df, during which time interval forces can

change.
Substituting Equations (5.3), (5.5) and (5.6) into the extended Hamilton's principle yields

153

j(5T—5V+W,w)dt=tfi{[2—§—%+gij5qi +%6q’l}dt =0,
4 4 i=l1 i i i

(5.7)

0q,=0, 1=123,.,n, t=1,t,

i

Then, the integration of the last term is given by
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vl (5.8)
in which the auxiliary conditions, d¢,=0 (i=1,2,3,...,n), are zero at =t and t=¢,.
Substituting Equation (5.8) into Equation (5.7) yields

> 5_T_5_V+Qi_i a 5q,dt =0 (5.9)
0q, dt\ oq

i

Assigning arbitrary values to 6g, while setting dq, =0 (i=2,3,...,n), Equation (5.9) can be
satisfied only if the coefficient of Oq, is zero. Using the same argument but with
0q,,04q;,...,0q, playing the role of Og,, the coefficient of every virtual generalized

n

displacement og, (i=1,2,3,...,n) must be zero, which yield Lagrange's equations

d(aT]_a_TJraV_ ' i=1,2,3,...n (5.10)

di\oq,) oq, " oq,

Equations (5.10) represent the most general form of Lagrange's equations.

5.3.1 System-translation regime (T)
The supporting base will oscillate in the horizontal direction with a displacement u(¢) relative

to the foundation, "system translation" regime (T), (Figure 5-1b) when
%[>0 (5.11)

Linear isolation system

Consider first the block isolated with a linear isolation system composed of a linear spring

with stiffness &, and a linear viscous damper with coefficient c,, by interposing a rigid base
of mass m, , (Section 3.4.1). In the pure-translation regime the system possesses one degree of

freedom. Using as generalized coordinate the horizontal translation of the base relative to the

ground, g, =u, Lagrange’s equation takes the form
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d(aTJ_6T+6V_£% 5.12)

di\oi) ou ou

in which 7 denotes the kinetic energy of the system, V' the potential energy of the system,

and Q, the generalized non-conservative forces.

The kinetic energy due to the translation of the system is obtained as
1 oV )2
]’zvg(nm,+7n)[(u-kxg) +(z,) J (5.13)

in which (m, +m) is the total mass of the system, # is the horizontal velocity of the base

relative to the foundation, x, and z, is the horizontal and vertical velocity of the ground.

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations

arc:

Lo (5.14)
L (m +m) i+, (5.15)
%(Z—Zj=(mb+m)(u+xg) (5.16)

The potential energy of the system is obtained by

V=V,+V, (5.17)

where ¥V, is the potential energy due to elastic deformation of spring given by

%Zghf (5.18)

and V, is the potential energy due to gravity given by

Vgr :ng:() (519)
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so that

1
V= Ekbuz (5.20)

The derivative of the potential-energy function required in formulating Lagrange’s equations
is:

oV
—=ku (5.21)
ou

The generalized force Q, is derived via the virtual work of the non-conservative forces. In

particular, to find Q,, consider a virtual displacement ou and compute the work done by the

non-conservative forces of the system, i.e. the damping force f,,, Figure 5-2. The latter is

given by
oW =—f,0u=—cudu=Q,ou (5.22)
so that
0, = 4 =—cu (5.23)
ou

-—

fo

Figure 5-2: Displacement u , virtual displacement ou and non-conservative damping force.

Substituting Equations (5.14), (5.16), (5.21) and (5.23) in Lagrange’s equation (Equation
(5.12)) yields
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(m+m, ) (i + %, )+ kyu = —c,ii (5.24)
which upon rearranging terms Equation (5.24) becomes
(m+m,)ii +cii+kyyu =—(m+m,)X, (5.25)

Equation (5.25) is the classical linear second-order differential equation governing the

response of a single-degree-of-freedom system to ground excitation (Chopra (2001)).
Nonlinear isolation system

Consider now the bilinear hysteretic model which represents the mechanical behavior of
friction-pendulum-type isolation system, (Section 3.4.2). The kinetic energy of such system is

given by Equation (5.13), while the potential energy of the system can be obtained by

V=%(m+mb)£g;2g)u2 (5.26)

b

The derivative of the potential-energy function required in formulating Lagrange’s equations

1S:

oV

|

gju (5.27)

The generalized force O, is derived via the virtual work of the non-conservative forces. In
particular, to find Q,, consider a virtual displacement éu and compute the work done by the

non-conservative forces of the system. The latter is given by

SW == fpou=—p,(m+m,)(g+%,)Z6u=0,0u (5.28)
so that
ow "
0= Ty (mim)(s+2,)2 529

where Z is a dimensionless variable describing the rigid-plastic behavior, being governed by

the following differential equation
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YZ +y|i|Z|Z|+ piZ’® —1i=0 (5.30)

in which Y is the yield displacement, and £, y are dimensionless parameters that control the
shape of the hysteresis loop, with assigned values: F=0.1, =09 and Y =0.3mm

(Constantinou et al. (1990)).

Substituting Equations (5.14), (5.16), (5.27) and (5.29) in Lagrange’s equation (Equation
(5.12)) yields

(m+mh)(ii+5ég)+(m+mb)(g;—ezg]u =—u, (m+mh)(g+'z'g)Z (5.31)
b
which upon rearranging terms becomes
(m+m,)ii+ (m+mb)(g+2g)Z+(m+mb)[g;Zgju =—(m+m,)X, (5.32)
b

5.3.2 Sliding regime (S/T)

When subjected to ground acceleration i , the supporting base will oscillate in the horizontal
direction with a displacement u(t) relative to the foundation, (Figure 5-1c). The rigid block

will initiate sliding in the horizontal direction with displacement xs(t) relative to the

supporting base, once the inertia force of the mass exceeds the resistance provided by friction,

F,=puN = ,usm(ég +g), namely

i + 5%, | > u, (2, + ) (5.33)

in which g is the coefficient of static friction between the block and the supporting base, ¥ .
and 7 are the horizontal and vertical components of ground acceleration respectively, and g

is the gravitational acceleration.
Linear isolation system
Firstly, consider the block isolated with a linear isolation system composed of a linear spring

with stiffness &, and a linear viscous damper with coefficient c,, by interposing a rigid base
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of mass m,, (Section 3.4.1). In the sliding regime, the system possesses two degrees of
freedom. Using as generalized coordinates ¢, =u, the horizontal translation of the base
relative to the ground, and ¢, =x,, the horizontal translation of the block relative to the

supporting base, Lagrange’s equations take the form

d(oT\ oT oV
dt ( ol j ou Ou O (539)

0, (5.35)

s

dfor) or ov_
dt\ ox, ) ox, Ox,

in which 7 denotes the kinetic energy of the system, V' the potential energy of the system,

and Q,, O, the generalized non-conservative forces.

u

The kinetic energy due to the translation of the system is obtained as
1 L2 . \2 1 == Y N2
T :Emb [(u+xg) +(Zg) }+Em[(u+xs +xg) +(Zg) } (5.36)

in which m is the mass of the block, m, is the mass of the supporting base, u is the horizontal
velocity of the base relative to the foundation, x; is the horizontal velocity of the block

relative to the supporting base, and x, is the horizontal velocity of the ground.

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations

arc:

= =0 5.37
o (5.37)
a_y (5.38)
Ox,

oT S .

az(m+mb)(u+xg)+mxg (5.39)
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or

—=m(i+x, +x,)
Ox,

d(aT

E Ej:(m+mb)(ii+5ég)+mjés

d|oT o
—|— =m(u+xs +xg)
dt\ Ox,
The potential energy of the system is obtained as
V=V,+V,
where V, is the potential energy due to elastic deformation of spring, given by

v, =+

2
el 2 kbu

and ¥, is the potential energy due to gravity, given by
V,=mgZ=0

so that

V:l@f
2

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

The derivatives of the potential-energy function required in formulating Lagrange’s equations

arc:

Y
ou
¥ o
Ox,

(5.47)

(5.48)

The generalized forces, O, are derived via the virtual work of the non-conservative forces.
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To find Q,, consider a virtual displacement ou (keeping the other generalized coordinate
zero, ox, =0) and compute the work done by the non-conservative forces of the system,

Figure 5-2. The latter is given by

oW =—f,0u=—cuou=Q,ou (5.49)
so that
0-__.i (5.50)
ou

To find Q_, consider a virtual displacement Jx, (keeping the other generalized coordinate

zero, ou =0) and compute the work done by the non-conservative forces of the system. In

this case
SW! =~ [,6x, = —pm(g+Z2,)5x, =0, 5x, (5.51)

so that

0, =g—xW=—ﬂkm(g+2g) (5.52)

s

in which g is the coefficient of kinetic friction between the block and the supporting base.

%
=
P

Xs

e 2

&

e

|

SN

Figure 5-3: Displacement x_, virtual displacement ox, and non-conservative friction force.

Substituting Equations (5.37), (5.38), (5.41), (5.42), (5.47), (5.48), (5.50) and (5.52) in
Lagrange’s equations (Equations (5.34) and (5.35)) yield
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(m+mb)(ii+)'c'g)+m5c's +kyu=—cu (5.53)

m(ii+%,+%,)=—um(g+Z,) (5.54)

The specify equations are valid for x > 0. In the case of, x <0 the governing equations of

motion are similarly derived and written in the form

(m+m,)(ii + &, )+ ms, + kyu = —c,ii (5.55)

m(ii+%, +%, )= mm(g+Z,) (5.56)

Combining Equations (5.53) through (5.56) leads to a compact set of equations for the sliding

regime, namely

(m+my )ii+mi, +ci+kyu=—(m+m,) X, (5.57)

mii +m3, +sgn (X, )mu, (g+2g):—m)'ég (5.58)
where sgn x, denotes the signum function in x,, defined by
. I x,>0
sgnx, = i (5.59)
-1 x <0

Nonlinear isolation system

Consider now the bilinear hysteretic model which represents the mechanical behavior of
friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is

given by Equation (5.36). The potential energy of the system is obtained as

1 +Z,
V:E(m—i-mb)[gR éJuz (5.60)

b

The derivatives of the potential-energy function required in formulating Lagrange’s equations

arc:
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a—V=(m+mb)[g+2<‘>’ju (5.61)

o _
Ox,

0 (5.62)

The generalized forces, O, are derived via the virtual work of the non-conservative forces. To
find Q,, consider a virtual displacement du (keeping the other generalized coordinate zero,
ox, =0) and compute the work done by the non-conservative forces of the system. The latter

is given by
SW,) =~ fr0u=—p,(m+m,)(g+Z,)Z5u=Q,du (5.63)

so that

SW
0, =E=—,ub(m+mb)(g+2g)Z (5.64)

where Z is a dimensionless variable describing the rigid-plastic behavior, being governed by

the differential equation (5.30).

To find Q, , consider a virtual displacement Jx, (keeping the other generalized coordinate

zero, ou =0) and compute the work done by the non-conservative forces of the system. In

this case
OW! =~ f,6x=—pm(g+%,)0x,= 0, Ox, (5.65)

so that

0, =§5—Vj =—pym(g+Z,) (5.66)

in which g is the coefficient of kinetic friction between the block and the supporting base.

Substituting Equations (5.37), (5.38), (5.41), (5.42), (5.61), (5.62), (5.64) and (5.66) in
Lagrange’s equations (Equations (5.34) and (5.35)) yields

78



(m+mb)(ii+5ég)+m)'c's +(m+mb)[g;2gJu=—,ub (m+mb)(g+2g)Z (5.67)

b

m(ii+ %, +%,)=—um(g+Z,) (5.68)

The specify equations are valid for x, > 0. In the case of, x; <0 the governing equations of

motion are similarly derived and written in the form

(m+mb)(ii+5c'g)+m)'és+(m+mb)[g;2gJu=—,ub (m+mb)(g+2g)Z (5.69)
m(ii+%,+%, )= mm(g+Z,) (5.70)

Combining Equations (5.67) through (5.70) leads to a compact set of equations for the sliding

regime, namely

(m+mb)ii+m5c's +,ub(m+mb)(g+2g)Z+(m+mb)(

mii + mx_+ sgn(ics),ukm(g + 'Z'g) =—mX, (5.72)

5.3.3 Rocking regime (R/T)
The rigid block is set into rocking on top of the moving base, (Figure 5-1d), when the

overturning moment due to external loads, M :m(ii+)'c'g)h , exceeds the available

over

resisting moment due to gravity and vertical inertia force, M, =mb ( g+i, ) , yielding

\a+xg\>%(g+zg) (5.73)

If the acceleration of the block, (ii +%,), is positive, then rocking takes place about the corner
O', or else if it is negative rocking takes place about the corner O.

Linear isolation system

Firstly, consider the block isolated with a linear isolation system composed of a linear spring
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with stiffness &, and a linear viscous damper with coefficient c,, by interposing a rigid base
of mass m,, (Section 3.4.1). In the rocking regime, the system possesses two degrees of
freedom. Using as generalized coordinates ¢, =u, the horizontal translation of the base
relative to the ground, and ¢, =6, the rotation angle of the block about a base corner,

Lagrange’s equations take the form

d(oT\ oTr ov
R e 5.74
dt(@d} ou Ou O -74)
d(oT\ oTr ov
ajol ) _of or _ 5.75
dz(aej 060 00 % (575)

in which 7 denotes the kinetic energy of the system, V' the potential energy of the system,

and Q,, O, the generalized non-conservative forces.

u

The kinetic energy due to the translation of the system and rotation of the block is obtained as

1 P ) 1 2 1 2
Tzamb[(u+xg) +zg}+5mv +516’ (5.76)

in which m is the mass of the block, m, is the mass of the supporting base, / is the centroid
mass moment of inertia, u is the horizontal velocity of the base relative to the foundation, X,
is the horizontal velocity of the ground, z  is the vertical velocity of the ground, v is the
velocity of the center-of-mass of the block, and @ is the angular velocity of the block.

In Equation (5.76), the first term is associated with pure translation of the base, and the second
and third term are associated with general planar motion of the block (which may be
considered equivalent of pure translation of the center-of-mass plus pure rotation about the

center-of-mass). The problem then reduces to computing the (magnitude of) velocity of the

center-of-mass of the block.

The magnitude squared of the velocity vector of the block’s center-of-mass, v, is given by

V=X"+27’ (5.77)
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With reference to Figure 5-1d, the position of the center-of-mass of the block is given by

X =u+x,+x, (5.78)
Z=z,+z, (5.79)

in which x, and z_ are the horizontal and vertical ground displacements respectively; x,, is

the horizontal relative displacement of the block due to rocking by an angle &,
X =X +X, =(b—bcos&)+hsin@=hsinf+b(1—cosb) (5.80)

and z_, is the vertical relative displacement of the block as it rotates by an angle &, given by

Zw =(2,+2,)—h=(bsin@+hcos@)—h (5.81)

so that
X =u+x,+hsin@+b(1-cosb) (5.82)
Z=z,+bsin@—h(1-cosb) (5.83)

The quantities x,, x,, z, and z, used in the calculation of x,, and z, , are shown in Figure

5-4.
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Figure 5-4: Schematic of isolated block in rocking regime.

The velocity of the center-of-mass is derived by differentiating Equations (5.78) and (5.79)

with respect to time:
X:u+xg+hécosﬁ+bésin0 (5.84)
Z:2g+b900s9—k9sin9 (5.85)
Thus, the kinetic energy of the system takes the form

T TS LT .
T:—mb[(u+xg) +zg}+—m[(u+xg+h6’cos€+b6’sm6’)
2 2
1 (5.86)
. . 2 .
+(2, +bcos—hbsino) |+=16°

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations

arc:

oT
By ' 5.87
. (5.87)
oT . . - . -
—=m(u+x +h90059+b6’sm9)(b6’cost9—h951n9)
00 £
+m(z'g +b0 cos O —hBsin 0)(—b6’sin9—h6’cos 6’) (5.88)

= m(u+)'cg)(bécos@—hésinH)erz'g (—bésin@—hécos@)
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%:m,, (u+xg)+m(a+xg +h6’cosé’+bésin9)
1l

oT

Ezm(iwicg +h900s9+b9sin9)(hc0s¢9+bsin¢9)

+m(z'g +b90059—h9$in6’)(bcos:9—hsint9)+]9
=771(L't+)'cg)(hcos«9+bsin6?)+mz'g (bcos@—hsin9)+mR29+]9

d (GT

—| = =mb(ii+5c' )+m(z’i+5c' +héc059—h92sin¢9+bésin9+b92cosH)
dt\ ou ¢ ¢

:(m+mb)(ii+5c'g)+m(hcost9+bsint9)éi+m(bcosé’—hsinl9)92

d(oT o ) o N .
E(Ej = m(u +xg)(hcos€+bs1n6’)+m(u+xg)(—h0s1n0+bﬁcos0)
+mZ, (bcos O —hsin @) +mz, (—bésin@—hécos 9)+ mR*0 + 10
The potential energy of the system is obtained as
V=V,+V,

where V, is the potential energy due to elastic deformation of spring, given by

v, =<

2
el 2 kbu

and 7, is the potential energy due to gravity, given by
V, =mgZ =mg [b sin@—h(1-cos 49)]
so that

1 )
vV =Ekbu2 +mg[bsm6’—h(l—cos6’)]

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

The derivatives of the potential-energy function required in formulating Lagrange’s equations

arc.
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v _

k.u 5.97
FL (5.97)

i

i mg(bcos6—hsin ) (5.98)

The generalized forces, O, are derived via the virtual work of the non-conservative forces.

To find Q,, consider a virtual displacement ou (keeping the other generalized coordinate

zero, 08 =0) and compute the work done by the non-conservative forces of the system, Figure

5-2. The latter is given by

oW =—f,0u=—cuou=Q,ou (5.99)
so that
ow
Q =—=—u (5.100)
ou

To find Q,, consider a virtual rotation 66 (keeping the other generalized coordinate zero,

ou =0) and compute the work done by the non-conservative forces of the system. In this case
oW, =0=0,50 (5.101)
so that

0,=0 (5.102)

Figure 5-5: Displacement € and virtual displacement 66 .
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Substituting Equations (5.87), (5.88), (5.91), (5.92), (5.97), (5.98), (5.100) and (5.102) in
Lagrange’s equations (Equations (5.74) and (5.75)) yields

(m+m,)(ii+%,)+m(hcos@+bsin@)6 +m(bcos@—hsin0)6” +ku=—cgi  (5.103)

m(ii+)'c'g)(hcos:9+bsin6')+m(u +xg)(—hésin0+b9c0s6’)
+mz, (bcos@—hsin @) +mz, (—bé’siné’—hé’cos 0)+mR2é+lé st
—[m(u +xg)(b900s9—h6?sin 0)+mz’g (—bésiné’—hé’cos 0)] '

+mg(bcos@—hsinf)=0
which upon rearranging terms become

(m+m, )i +c,i+kyu+m(hcos+bsin0) 0 +m(bcos@—hsin0) 6 =—(m+m,) %, (5.105)

(mRZ+1)9+mii(hcos¢9+bsin6?)+mg(bcosH—hsinH)

o 4 (5.106)
=—m(hcos€+bsm6’)xg —m(bcosH—hsmH)zg

The specify equations are valid for 8 >0, i.e. in the case of rocking about the corner O. In the
case of €<0, i.e. rocking about the corner O', the governing equations of motion are

similarly derived and written in the form

(m+m, )i+ c,ii+ku+m(hcos@—bsin®)6+m(—bcosd—hsin )6’

Y (5.107)

(mR2 +I)é+mii(hcos€—bsin¢9)+mg(—bcos@—hsin@)

o o (5.108)
=—m(hc059—bsml9)xg —m(—bcosé’—hsmé’)zg

Combining Equations (5.105) through (5.108) leads to a compact set of equations for the

rocking regime, namely

(m+m,)ii+c,ii+ku+m| hcos0+sgn 6 (bsin0) |6

. (5.109)
+m| sgn@(bcos@)—hsin0]6” =—(m+m,)x,
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(mR2 +1)é+mii[hcos<9+sgn¢9(bsint9)]+mg(sgn9(bcosl9)—hsin9)

(5.110)
= —m[hcos¢9+sgn6(bsin9)]5ég —m(sgn@(bcos@)—hsin@)ég
where sgn @ denotes the signum function in @, defined by
0 b o>0 (5.111)
sgnd = .
77141 9<o0

Evidently, the mutually coupled equations governing the rocking regime are highly nonlinear

and not amenable to closed-form solution, even for the simplest form of ground excitation.

Note that Equations (5.109) and (5.110) are only valid in the absence of impact (€ #0). At
that instant, both corner points O and O' are in contact with the base, rendering the above

formulation invalid. The impact problem is addressed separately in Chapter 6.
Nonlinear isolation system

Consider now the bilinear hysteretic model which represents the mechanical behavior of the
friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is
given by Equation (5.86). The potential energy of the system is obtained as

g+z

V=%(m+mb)( P g]u2+mg[bsin0—h(l—cosé?)] (5.112)

b

The derivatives of the potential-energy function required in formulating Lagrange’s equations

are:
e

Vo (mrm)| E 2y (5.113)
Ou R,

Z—I;:mg(bcosﬁ—hsin@) (5.114)

The generalized forces, Q, are derived via the virtual work of the non-conservative forces.

To find Q,, consider a virtual displacement ou (keeping the other generalized coordinate

zero, 00 =0) and compute the work done by the non-conservative forces of the system. The
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latter is given by
SW, =~ fr6u=—p,(m+m,)(g+Z2,)Z5u=Q,du (5.115)

so that

0, =——=-p,(m+m,)(g+%,)Z (5.116)

where Z is a dimensionless variable describing the rigid-plastic behavior, being governed by

the differential equation (5.30).

To find Q,, consider a virtual rotation 66 (keeping the other generalized coordinate zero,

ou =0) and compute the work done by the non-conservative forces of the system. In this case
oW, =0=Q,00 (5.117)

so that
0, =0 (5.118)

Substituting Equations (5.87), (5.88), (5.91), (5.92), (5.113), (5.114), (5.116) and (5.118) in
Lagrange’s equations (Equations (5.74) and (5.75)) yields

(m+mb)(ii+jég)+m(hcosl9+bsin¢9)é+m(bcosé’—hsin@)éz

g+ ) (5.119)
+(m+mb)( 7 gju:—,uh(m+mb)(g+zg)Z
b
which upon rearranging terms become
(m+my)ii+(m+m,) g+s u+ub(m+mb)(g+'z' )Z+m(hcosl9+bsinl9)é
R, ¢ (5.120)
+m(bcos@—hsin0) 0" =—(m+m,)%,
(mR2+1)9+mii(hcosl9+bsin9)+mg(bcos@—hsin@)
(5.121)

=—m(hcos@+bsin@)x, —m(bcosf—hsinb)z,
The specify equations are valid for @ >0, i.e. in the case of rocking about the corner O. In the
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case of €<0, i.e. rocking about the corner O', the governing equations of motion are

similarly derived and written in the form

(m+mb)ii+(m+mb){g+zgju+yb (m+mb)(g+2g)Z+m(hcosﬁ—bsint9)é
, (5.122)
+m(=bcos@—hsin0)0* =—(m+m,)x,
(mR2 +I)é+mii(hcos@—bsiné’)+mg(—bcos6’—hsin6’)
(5.123)

z—m(hcosﬁ—bsinﬁ))'ég —m(—bcosl9—hsinl9)2g

Combining Equations (5.105) through (5.108) leads to a compact set of equations for the

rocking regime, namely

. g+z, $
m+m, )ii+(m+m U+, (m+m +z |7
( b) ( b){ R, J ﬂb( b)(g g) (5.124)
+m[hcos€+sgn9(bsin9)]é+m[sgné’(bcos@)—hsin@]éz=—(m+mh))'c'g
(mR2 +1)9+mii[hcosHJrsgnH(bsin6’)]+mg(sgn9(bcos6’)—hsin¢9) (5.125)

=—m [h cos & +sgn & (bsin 6’)]5c'g —m(sgné’(bcos 0)—hsin H)Zg

5.3.4 Slide-rocking regime (SR/T)

Slide-rocking, (Figure 5-1e), is initiated from rest or from the system-translation regime in the
singular case when the sliding-regime and rocking-regime conditions are satisfied

simultaneously (Shenton IIT and Jones (1991)), yielding
S .\ b . 5126
‘u+xg‘> /Jx(g+zg),;(g+zg) (5.126)

Linear isolation system

Firstly, consider the block isolated with a linear isolation system composed of a linear spring
with stiffness &, and a linear viscous damper with coefficientc,, by interposing a rigid base of

mass m, , (Section 3.4.1). In the slide-rocking regime, the system possesses three degrees of

freedom. Using as generalized coordinates g, =u, the horizontal translation of the base
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relative to the ground, ¢, = x_, the horizontal translation of the block relative to the supporting
base, and ¢, =6, the rotation angle of the block about a base corner, Lagrange’s equations

take the form

d(oT\ oT oV
dt( uj ou Ou © ( )
d{oT | or oV
dfor)_or ov _ 5.128
dt ( Ox, j ox, Ox, o, ( )

d(aT] or oV _

S 5.129
dt\ oo ) o060 00 Z ( )

in which 7 denotes the kinetic energy of the system, V' the potential energy of the system,

and Q,, O_and Q, the generalized non-conservative forces.

The kinetic energy due to the translation of the system and rotation of the block is obtained as
1 1 1 -
T:Emb[(a+)'cg)2+Z'§}+Emv2+5102 (5.130)

in which m is the mass of the block, m, is the mass of the supporting base, / is the centroid

mass moment of inertia, # is the horizontal velocity of the base relative to the foundation, x is

the horizontal velocity of the block relative to the supporting base, i, is the horizontal

velocity of the ground, v is the velocity of the center-of-mass of the block, and @ is the

angular velocity of the block.

In Equation (5.76), the first term is associated with the pure translation of the base, while the
second and third term is associated with general planar motion of the block. The problem then

reduces to computing the (magnitude of) velocity of the center-of-mass of the block.

The magnitude squared of the velocity vector of the block’s center-of-mass, v, is given by
Vi=X*+7? (5.131)

With reference to Figure 5-1e, the position of the center-of-mass of the block is given by
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X =u+x, +x +x, (5.132)
Z=z,+z, (5.133)

in which x, and z_  are the horizontal and vertical ground displacements respectively; x, is

the horizontal relative displacement of the block as it slides on the base, x,, is the horizontal

relative displacement of the block as it rotates by an angle &, given by

X =X +x, =(b—bcos)+hsin@=hsin@+b(1-cos0) (5.134)
and z_, is the vertical relative displacement of the block as it rotates by an angle &, given by
Zw =(2,+2,)—h=(bsin@+hcosO)—h (5.135)
so that
X =u+x,+x +hsin@+b(1-cos ) (5.136)
Z =z, +bsin@—h(1-cosb) (5.137)

The quantities x,, x,, z, and z, used in the calculation of x,_, and z

rot

are shown in Figure

rot

5-6.
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Figure 5-6: Schematic of isolated block in slide-rocking regime.

The velocity of the center-of-mass is derived by differentiating Equations (5.132) and (5.133)

with respect to time:
X =ti+X, +%, +hOcosO+bPsin 6 (5.138)
Z:2g+b90059—k9sin9 (5.139)

Therefore, the squared magnitude of the velocity vector of the block’s center-of-mass can also

be retrieved as
V= X247 =i+, + % +hcos@+bOsinG | +[z, +bhcosd—hsin@]  (5.140)
Thus, the kinetic energy of the system takes the form
1 oy 1 S : s \2
T'=—m, (u+xg) +—m[(u+xg + X, +h90059+b05m9)
2 2 (5.141)

. . .. 2 |
+(2, +bOcosO—hbsin 0) }rgm

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations

are:
= =0 (5.142)
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—:m(u+)'cg + X, +h900$0+bésin@)(bécos@—hésin@)

+m(z'g +b6 cos O —hfsin 0)(—b9 sin @ — hf cos (9)
= m(u +x, +5c_v)(b6"cost9—h6"sint9)+ mz, (—bésin&’—hécos@)

T . -
_Zu = m, i+, )+ m(ii+ %, + %, + hOcos O+ bsin O)
a.T:m(ﬂ+3'C +x,+h9c059+b9sin9)

axs g K

m(t’t+)'cg +X, +hécos9+b95in6’)(hcos€+bsin0)

+m(z'g +b9cosé’—hésin@)(bcos@—hsin0)+19

4
dt

d

dt

m(z’t+5cg +xs)(hcos6+bsin9)+mz'g (bcos@—hsin0)+mR29+19

oT N -
(Ej:mb (i+5,)
+m(ii+)'c'g + %+ h6 cos @ — h6* sin 6 + b0 sin O + bO* cosH)
=(m+mb)(ii+5c'g)+mjés

+m(hcos9+bsin6’)l§5+m(bcos@—hsiné’)é’2

[S—TJ = m(ii+)'c'g + % +h6 cos @ — h& sin O+ bfsin O + b6’ cos@)
xS

(5.143)

(5.144)

(5.145)

(5.146)

(5.147)

(5.148)

(5.149)
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1(61
00

P )zm(iﬂ—)'c'g+5és)(hc059+bsin6’)

+m(u+5cg+xs)(—hésin9+b9cosl9) (5.150)
+mz, (bcos@—hsin6)
+mz'g (—bésin@—hécos 49) +mR*0+ 160

The potential energy of the system is obtained as
V=V,+V, (5.151)

where V), is the potential energy due to elastic deformation of spring, given by

v, :%kbuz (5.152)

and 7, is the potential energy due to gravity, given by
vV, :ngzmg[bsinG—h(l—cosﬁ)] (5.153)
so that

V=%kbu2 +mg| bsin@—h(1-cos0)] (5.154)

The derivatives of the potential-energy function required in formulating Lagrange’s equations

are.

Y tu (5.155)
ou
Ay (5.156)
Ox,

Z—szg(bcos@—hsin@) (5.157)

The generalized forces, O, are derived via the virtual work of the non-conservative forces.
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To find Q,, consider a virtual displacement Su (keeping the other generalized coordinates
zero, 6x=0_60=0) and compute the work done by the non-conservative forces of the

system, Figure 5-2. The latter is given by

oW =—f,0u=—cyudu=Q, u (5.158)
so that
0, :5—W:—cba (5.159)
ou

To find QO , consider a virtual displacement Sx,_ (keeping the other generalized coordinates
zero, ou=0_060=0) and compute the work done by the non-conservative forces of the

system, Figure 5-3. In this case

é‘Wv’:C z—ffé‘xs :—’ukm(g+2)5xs EQxxé‘xs (5.160)
where,
Z =% +bfcosd—b@ sin@—hfsin@—ho’ cos & (5.161)
so that
ow \ 3 o . .
0, =5—=—,ukm(g+zg+b6?cos¢9—b6? sin@ —h@'sin 6 — ho cosH) (5.162)
’ X

s

in which g, is the coefficient of kinetic friction between the block and the supporting base.

To find Q,, consider a virtual rotation 06 (keeping the other generalized coordinates zero,
ou=0, ox,=0) and compute the work done by the non-conservative forces of the system,

Figure 5-5. In this case

oW, =0 (5.163)
so that
ow
=—=0 5.164
Oy 0 ( )

Substituting BEquations (5.142), (5.143), (5.144), (5.148), (5.149), (5.150), (5.155),
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(5.156), (5.157), (5.159), (5.162), (5.164) in Lagrange’s equations (Equations (5.127), (5.128)
and (5.129)) yields

(m+m,)(ii+%,)+ms, +m(hcos@+bsin0)f +m(beos®—hsin0) 0 +ku =—c,i (5.165)

m(ii+)'c'g + X% +h6 cos @ —h&” sin @+ bOsin O + b’ cos@)

i} . i} . (5.166)
= —sgn(x,)ym(g + 2, +b0 cos b6 sin 6 — hiisin 6 — h6” cos 6)
(mR2 +1)é+m(ij+)'C'S)(hcos9+bsin9)+mg(bcos¢9—hsin¢9) (5.167
=—m(hcos@+bsin@)x, —m(bcos@—hsinb)z, .
which upon rearranging terms become
(m+m, )i + mi_+cyi+ku+m(hcos@+bsing)6+m(bcosd—hsin )0’ (5.168)
=—(m+mh))'c'g .
(5.169)
R*+1)0+m(ii+% )(hcos@—bsin@)+mg(—bcosd—hsind
(mie +1)5 e mii+ ) )+ e )

=—m(hcos€+bsin¢9)5c'g —m(bcosH—hsinH)Zg

The specify equations are valid for 8> 0, i.e. in the case of rocking about the corner O. In the
case of #<0, i.e. rocking about the corner O', the governing equations of motion are

similarly derived and written in the form

(m+m, )i + mi, +c,i+ku+m(hcos@—bsin @) +m(—bcosd—hsin 0) 0’

5.171
=—(m+mb))'c'g ( )
m(ii+%,)+m(hcos@—bsin)0+m(-bcosd—hsin )6’
.. . . . 5.172
+sgn(x,)m(g +2, —blcos 0+ b6’ sin 0 — hfsin 0 — hi® cos 0) = —m¥, (6.172)
R*+1)0+m(ii+%,)(hcos@—bsin@)+mg(~bcos@—hsin
(m ) m(ii+%)(hcos sin @)+ mg (—bcos sin6) (5.173)

=—m(hcos€—bsin9)jég —m(—bcosH—hsinH)Zg

Combining Equations (5.168) through (5.173) leads to a compact set of equations for the
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rocking regime, namely

(m+m,)ii+m&, +cyii+kyu+m| heos @ +sgn0(bsin6) |0

. (5.174)
+m|sgn@(bcos)—hsin0]6° =—(m+m,)%,
m(ii+)'és)+m[hcos€+sg119(bsin49)}é+m[sgn@(bcos@)—hsin6’]¢92
+sgn(5cs),ukm{g +Z, +[sgn6’(b cos @) —hsin 9]65 (5.175)
—[hcos9+sgn9(bsin0)]92}z—m)'c'g
(mR2+1)9+m(ii+)'c's)[hcosz9+sgn¢9(bsin6’)]+mg[sgn9(bcos6’)—hsin9] 5.176)

=—m [h cos & +sgn @(bsin 6’)] X, —m[sgn 0(bcosd)—hsin 49] Z,

where sgnx, denotes the signum function in x, , defined by Equation (5.59), and sgn@

denotes the signum function in @, defined by Equation (5.111).

Note that Equations (5.174)-(5.176) hold only in the absence of impact (€ #0). At that
instant, both corner points O and O' are in contact with the base, rendering the above

formulation invalid. The impact problem is addressed separately in Chapter 6.
Nonlinear isolation system

Consider now the bilinear hysteretic model which represents the mechanical behavior of
friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is
given by Equation (5.141). The potential energy of the system is obtained as

g+z

1 . .
V:E(m+mb)( = Z’Ju2+mg[bsm(9—h(l—cosl9)] (5.177)

b

The derivatives of the potential-energy function required in formulating Lagrange’s equations

are:
+Z
a—V:(m+mb) 7% |, (5.178)
ou R,
@ _y (5.179)
ox
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4

= =mg(bcosO—hsin0) (5.180)

The generalized forces, O, are derived via the virtual work of the non-conservative forces.

To find Q,, consider a virtual displacement ou (keeping the other generalized coordinate

zero, 00 =0) and compute the work done by the non-conservative forces of the system. The

latter is given by
5Wu””=—fD5u=—,ub(m+mh)(g+2g)Z5uEQu5u (5.181)

so that

ow

Qu:E:—,ub(m+mb)(g+2g)Z (5.182)

where Z is a dimensionless variable describing the rigid-plastic behavior, being governed by

the differential equation (5.30).

To find Q_, consider a virtual displacement dx_ (keeping the other generalized coordinates
zero, ou=0_60=0) and compute the work done by the non-conservative forces of the

system. In this case

SW, =—f,0x, =—um(g+Z)ox,=Q, 5x, (5.183)

Where,
Zzég+bécos¢9—b92sin@—hésin@—hézcosﬁ (5.184)

so that
0, = ?‘_XW = —,ukm(g +Z, +b6 cos @ — b6’ sin @ — hf sin O — h6® cos&) (5.185)

s

in which g, is the coefficient of kinetic friction between the block and the supporting base.

To find Q,, consider a virtual rotation 66 (keeping the other generalized coordinate zero,

ou =0) and compute the work done by the non-conservative forces of the system. In this case
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oW, =0=0,56 (5.186)
so that
0,=0 (5.187)

Substituting Equations (5.142), (5.143), (5.144), (5.148), (5.149), (5.150), (5.178), (5.179),
(5.180), (5.182), (5.185), (5.187) in Lagrange’s equations (Equations (5.127), (5.128) and
(5.129)) yields

(m+mb)(ii+jég)+mjc's +m(hcos@+bsin)d+m(bcosd—hsin )6’

gt ) (5.188)
+(m+mb)( 2 gJu:—,ub(m+mb)(g+zg)Z
b
m(ii+)'c'g+)'c's+hécosﬁ—h92sin9+bésin9+b92cosé?)
) . ) . (5.189)
=—sgn(5cs),ukm(g+2g+b¢90050—b6’2siné’—hesiné’—hezcose)
(mR2 +1)65+m(ii+)'c's)(hcost9+bsint9)+mg(bcosz9—hsint9) (5.190)
=—m(hcos@+bsin@)i, —m(bcos@—hsinb)z, '
which upon rearranging terms become
. W g+z, .
VA
(m+mb)u+mxs+(m+mb)( R ]u+,ub(m+mb)(g+zg) 5.191)
+m(hcos@+bsin @) +m(bcos@—hsin0)6” =—(m+m,)¥,
m(ii+%,)+m(hcos@+bsin@)d +m(bcosd—hsin0) 6’
.. . .. . 5.192
+sgn(x,)m (g + 2, +b6 cos 0 — b sin 0 —hbisin 0 — ho” cos 0) = —m, (.152)
R*+1)0+m(ii+5%,)(hcos@—bsin@)+mg(~bcos@—hsind
(m ) m(ii+%)(hcos sin ) +mg (—bcos sin6) (5.193)

=—m(hcos€+bsin¢9)5€g —m(bcosH—hsinH)ég

The specify equations are valid for 8> 0, i.e. in the case of rocking about the corner O. In the
case of #<0, i.e. rocking about the corner O', the governing equations of motion are

similarly derived and written in the form
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. g+z, .

+ + +(m+ + + +zZ, |Z
(m~+my )i +mi, +(m mb)( b ]u w, (m mb)(g Zg) (5.194)

+m(hcos@—bsin@)0+m(-bcosd—hsin0)6* =—(m+m,)¥,

m(ii+%,)+m(hcos@—bsin0)6+m(-bcosO—hsin0) 6’

.. . .. A 5.195
+sgn(t,)m(g +2, —blcos 0 +b6” sin 6 — hfsin 0 — ho* cos ) = —m, R
(mR> +1)6+m(ii+%,)(hcos@—bsin0)+ mg (~bcos O hsin ) 2 o6,

:—m(hcosﬁ—bsinﬁ)jég —m(—bcosé’—hsin@)ég

Combining Equations (5.191) through (5.196) leads to a compact set of equations for the
rocking regime, namely
+Z

(m+mb)1}i+m5c's+(m+mb)[gR gJu+ﬂb(m+mh)(g+'z'g)Z

b

(5.197)
+m[hcos€+sgn9(bsin 9)]é+m[sgn H(i)cosﬁ)—hsinﬁ]é2 =—(m+m,)X,

m(ii+)'és)+m[hcos€+sg119(bsin49)}é+m[sgn@(bcos@)—hsinlﬂé’2
+sgn(5cs),ukm{g +Z, +[sgn6’(b cos@)—hsin 9]65 (5.198)
—[h cos @ +sgn & (bsin 6’)] 9} =—m¥,

(mR2 +I)é+m(ii+)'és)[hcosﬁ+sgn6’(bsint9)]+mg[sgn0(bcosz9)—hsint9]

(5.199)
= —m[hcos@+sgn6’(bsin 9)]56g —m[sgn H(bcose)—hsintﬂfg

5.4 Transition Criteria between Oscillation Regimes

The dynamic behavior of the system is highly complex primarily due to the potential transition
from one oscillation regime to another, each one governed by different equations of motion.
This transition is governed by certain criteria, which are established by balancing the acting
forces on the system for a specific time and state. A state diagram indicating the different

response regimes together with the associated transition criteria is shown in Figure 5-7.
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S,: Sliding

Si: System
Translation

S3: Rocking

S4: Slide-
Rocking

Figure 5-7: State diagram and transition criteria among different oscillation regimes.

The transition from the system-translation regime (S;) to other oscillation regimes is governed

by the following criteria:
e To sliding regime (S,):
Coy: Jii+i,|>p (g+2,) and fii+3,| Sz(g+zg) (5.200)

e To rocking regime (S;):

C.,: ‘ii+5ég‘>%(g+2g) and [ii+,|< p,(g+2,) (5.201)

e To slide-rocking regime (S4):

C.,: \u‘+xg\>%(g+zg) and [ii+%,|> p,(g+2,) (5.202)

The criteria (5.200), (5.201) and (5.202) are based on the initiation criteria of each oscillation

pattern that are given analytically in Section 4.3.

The transition from the sliding regime (S;) to other oscillation regimes is governed by the

following criteria:
e To system-translation regime (S;):
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G, : |x|=0 (5.203)
e To rocking regime (S3):
Cyy: |%]=0 and fii+3,) >Z(g+zg) (5.204)
e To slide-rocking regime (S4):
C, ‘u+xg +xs‘ >, (g+zg) and ‘u+xg +xs‘ >Z(g+zg) (5.205)

The criteria (5.203) and (5.204) state that the transition from sliding regime to system

translation or rocking regimes will be accomplished when the horizontal translation velocity of

the block, X, , equals zero (sliding ceases). In addition, the initiation criterion of rocking,

Section 4.3, must be satisfied. During sliding regime, the slide-rocking will be initiated once

the inertia force of the mass exceeds the resistance provided by friction,

F,=unN = ,usm('z'g + g) and at the same time when the overturning moment due to external

loads, M

over

= m(ii+)'c'g +5c'_v)h, exceeds the available resisting moment due to gravity and

vertical inertia force, M, = mb( g+z, ) , criterion (5.205).

The transition from the rocking regime (S3) to other oscillation regimes is governed by the

following criteria:
e To system-translation regime (S;):
Cyy: |0]=0 and |9]=0 (5.206)
e To sliding regime (S,):
G, |(9| =0 and ‘6" =0 and ‘1'4'+)'ég‘ > U (g+'z'g) (5.207)
e To slide-rocking regime (Sa):
C,: |9| >0 and ‘H‘ >0 and %

z

> u (5.208)

The criteria (5.206) and (5.207) state that the transition from rocking regime to system
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translation and sliding regimes will be accomplished when the rotational velocity, &, and the
rotation angle, €, of the block equal zero (rocking ceases). In addition, the initiation criterion
of sliding, Section 4.3, must be satisfied. During rocking regime, the slide-rocking will be
initiated once the rotational velocity, 0, and rotation angle, @, of the block are nonzero

(rocking continues) and the absolute ratio of horizontal, f , and vertical, f,, reactions of the
base, at points O or O', exceeds the coefficient of static friction, g, criterion (5.208). The
criterion (5.208) can be expressed as:

|m (i + %, )+ mA,d + ma,6” |

209
‘m(g+2g)+mA29'—mA10'2‘>#s © )

where, 4, =hcos@+sgnf(bsind) and 4, =sgn&(bcosd)—hsind

Note that if slide-rocking regimes initiates after impact, then f, and f, are the horizontal and

vertical impulses forces acting at the impacting corner, see Section 6.3.1.

The transition from the slide-rocking regime (S4) to other oscillation regimes is governed by

the following criteria:

e To system-translation regime (S;):

Cyi: |6]=0 and |6]=0 and |5,|=0 (5.210)

e To sliding regime (S,):
Cpzt |6]=0 and [6|=0 and fii+%, +%|> 1 (g+Z,) (5.211)

e To rocking regime (S):
C,.: ; <, and [6]>0 (5.212)

The criterion (5.210) states that the transition from slide-rocking regime to system translation
regime will be accomplished when the rotational velocity, &, the rotation angle, @, and the

horizontal translation velocity of the block, x_, equal zero (rocking and sliding cease). During

slide-rocking regime, the rocking will cease and the sliding will continue once the rotational
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velocity, €, and the rotation angle, @, of the block equal to zero (rocking ceases) and the

inertia force of the mass continue to exceeds the resistance provided by friction,
F,=uN = ,usm('z'g + g), criterion (5.211). The rocking regime will continue when sliding
ceases. This will be accomplished when the ratio of horizontal, f, , and vertical, f,, reactions
of the base, at points O or O', becomes smaller than the coefficient of static friction, s, and

the rotational velocity, &, of the block remains nonzero, criterion (5.212). The criterion

(5.212) can be expressed as:

|m u+x +x +mAé+mA 0*
‘ <u, (5.213)

m g+z +mAt9 mAt92 ‘
where, 4, =hcos@+sgnf(bsing) and A4, =sgn&(bcosd)—hsind

Note that if rocking regime continues after impact, then f, and f, are the horizontal and

vertical impulses forces acting at the impacting corner, see Section 6.4.2.
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CHAPTER 6

Formulation of Impact Model

6.1 Introduction

The dynamic response of the system is strongly affected by the occurrence of impact(s)
between the block and the horizontally-moving base, during “rocking” and “slide-rocking”
oscillation regime. In fact, impact affects the system response on many different levels. On
one level, it renders the problem highly nonlinear (aside from the nonlinear nature of the
equations themselves) by virtue of the discontinuity introduced in the response (i.e. the
governing equations of motion cease to be valid at §=0). As a result, impact causes the
system to switch from one oscillation regime to another (potentially modifying the degrees of
freedom), each one governed by a different set of differential equations. This in turn entails
that the integration of equations of motion governing the post-impact response must account
for the ensuing instantaneous change of the system velocity regime. In this regard, the
dynamic response is critically influenced by impact, in that impact contributes (exclusively) to
the energy dissipation in the system, manifested through the reduction of the post-impact

velocities.

Therefore, the critical role of impact in the dynamics of the system necessitates a rigorous
formulation of the impact problem. In this dissertation, a model governing impact is derived
from first principles using classical impact theory. According to the principle of impulse and
momentum, the duration of impact is assumed short and the impulsive forces are assumed
large relative to other forces in the system. Changes in position and orientation are neglected,
and changes in velocity are considered instantaneous. Moreover, this model assumes point-
impact, perfectly inelastic impact (i.e. zero coefficient of restitution) and impulses acting only
at the impacting corner (i.e. impulses at the rotating corner are small compared to those at the

impacting corner and are neglected).

It is worth noting that the coefficient of restitution, e, as defined in classical impact theory,

relates pre- to post-impact translational velocities normal to the impact surface (v =—ev; ),

and hence it must not be confused (as often encountered in the literature) with the coefficient

of “angular restitution” &, which relates the pre- to post-impact angular velocities of the body

104



(6" =¢07). In this dissertation, the coefficient of restitution e enters in the expression

z,. = —ez, which relates pre- to post-impact vertical relative velocities of the impacting

corner (O"). According to the classical impact theory, the value e=1 means that the capacity
of the two particles to recover equals their tendency to deform. This condition is one of elastic
impact with no energy loss. The value e=0, on the other hand, describes inelastic or plastic
impact where the particles cling together after collision and the loss of energy is maximum. In
this dissertation, under the assumption of perfectly inelastic impact, the coefficient of

restitution is then justified by considering e=0.

6.2 Theoretical Background

In this section a review of the principles of linear impulse, linear momentum, angular impulse

and angular momentum are presented, mainly based on Meriam and Kraige (2009).

6.2.1 Linear impulse and linear momentum
Based on Newton’s second law, when a particle of mass m is subjected to the action of

concurrent forces F), F,, F,,..., the vector sum XF equals with

=4
ZF-mv-dt(mv) (6.1)

where v and v is the acceleration and velocity of the particle, respectively.

The product of mass and velocity, L=mpv, is defined as the linear momentum of the particle.
Equation (6.1) states that the resultant of all forces acting on a particle equals its time of
change of linear momentum. The direction of the resultant force coincides with the direction
of the rate of change in linear momentum, which is the direction of the rate of change in
velocity. Equation (6.1) is one of the most useful and important relationships in dynamics, and

is valid as long as the mass m of the particle is not changing with time.

The effect of the resultant force £F on the linear momentum of the particle over a finite
period of time can be calculated simply by integrating equation (6.1) with respect to the time

¢t . Multiplying the equation by dt gives XFdt =dL . Integrating equation from time 7, to time

t, yields
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)

[sFdt=1L,-L (6.2)

4
where L, is the linear momentum at time ¢,, L, =mv,, and L, is the linear momentum at
time #,, L =mv,. The product of force and time is defined as the linear impulse of the force.
Equation (6.2) states that the total linear impulse on m equals the corresponding change in

linear momentum of m .

If the resultant force on a particle is zero during an interval of time, then Equation (6.1)

requires that its linear momentum L remain constant and can be written as
AL=0 or L =L, (6.3)

In such a case, the linear momentum of the particle is said to be conserved. Linear momentum

may be conserved in one coordinate direction, such as x, but not necessarily in the y- or z-

direction. This relation expresses the principle of conservation of linear momentum.

6.2.2 Angular impulse and angular momentum

Analogous to the equations of linear impulse and linear momentum, there exists a parallel set

of equations for angular impulse and angular momentum.

Consider a single particle, P, of mass m travelling along a curve in space with a velocity v,
Figure 6-1(a). The particle is located by its position vector r with respect to a convenient
origin O of fixed coordinates x-y-z. The linear momentum of the particle is L=my. The
moment of the linear momentum vector muw about the origin O is defined as the angular

momentum, H,, of P about O and is given by the cross-product relation for the moment of

a vector:
H, =rxmy (6.4)

Figure 6-1(b) shows a two-dimensional representation of the vectors involved in Equation

(6.4).
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Ho = mvr sinf

T Lsing

(a) (b)

Figure 6-1: Three-dimensional (a) and two-dimensional (b) representation of the angular

momentum, H ,, of P about O.

For planar motion, the angular momentum vector has fixed direction (normal to the plane of
motion), thus vector notation may be dropped. The magnitude of angular momentum is given

by
H,=mvrsin@ (6.5)

Note that angular momentum is defined and measured relative to the origin chosen. This
choice is arbitrary, and our origin can be chosen to correspond to the most convenient

calculation.

Meaningful is that the moment of the forces, 2F , acting on the particle P, is related to its
angular momentum. If ZF represents the resultant of all forces acting on the particle, P, of

Figure 6-1, the moment M, about the origin O is the product
XM, =rxZF =rxmy (6.6)

where Newton’s second law, Equation (6.1), has been substituted. Differentiating Equation

(6.6) with time, using the rule for the differentiation of cross product we obtain

H, =Fxmy+rxmy=vxmy+rxmy (6.7)

The term vxmv is zero since the cross product of parallel vectors is identically zero.

Substituting Equation (6.7) into Equation (6.6) yields
M,=H, (6.8)
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Equation (6.8) states that the moment of all forces acting on m about the fixed point O equals

the time rate of change of angular momentum of m about O.
In addition, Equation (6.8) gives the instantaneous relation between the moment and the time-
rate of change of angular momentum. The effect of the moment XM, on the angular

momentum of the particle over a finite period of time, is obtained by integrating Equation

(6.8) from time ¢, to time ¢, . Multiplying this equation by df, gives
XM ,dt=dH , (6.9)

which by integrating we obtain

TZModlz(Ho)z—(Ho)l =AH, (6.10)

4
where (HO )2 =r,xmv, and (H o )l =1, xmy,. The product of moment and time is defined as
angular impulse. Equation (6.10) states that the total angular impulse on m about the fixed
point O equals the corresponding change in angular momentum of m about O.

Similar with the principle of conversation of linear momentum, if the resultant moment about
a fixed point O of all forces acting on a particle is zero during a particular interval of time,

then
AH,=0 or (Ho)l: (HO)2 (6.11)

This relation expresses the principle of conversation of angular momentum for a general mass

system in the absence of an angular impulse.

6.2.3 Impulse-momentum principles on rigid bodies

In Section 6.2.1 and 6.2.2 the impulse-momentum principles covers any defined system of
mass particles without restriction as to the connections between the particles of the system.
These extended relations all apply to the motion of a rigid body, which is merely a special case

of a general system mass.
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Linear momentum

The linear momentum of a mass system is the vector sum of the linear momentum of all its

particles
L=%my, (6.12)

With r, representing the position vector to m, then, v, =# and Equation (6.12) can be

rewritten as
L=%mr (6.13)
For a system whose total mass is constant, Equation (6.13) can be rewritten as

L=d(Emi)/dt (6.14)

Substituting the principle of moments, mr =Xmr,, to locate the mass center, the momentum
becomes

L=d(mr)/dt=mr (6.15)

where ¥ is the velocity v of the mass center, Figure 6-2. Therefore, the linear momentum of

any mass system, rigid or non-rigid, is
L=mv (6.16)

Note that it was unnecessary to employ the kinematic condition for a rigid block, Figure 6-2,

which is
V. =v+oxp, (6.17)

The time derivative of L is mv = ma , where a is the acceleration of the center of mass of the

system, is the resultant external force acting on the system. Thus, we have
>F=L (6.18)

Integrating Equation (6.18) from time ¢, to time ¢, yields
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)
L+[sFdt=1, (6.19)

i

In words, Equation (6.18) states that the resultant force equals the time rate of change of
momentum and Equation (6.19) states that the initial linear momentum plus the linear impulse

acting on the body equals the final linear momentum.
Angular momentum

Angular momentum is defined as the moment of linear momentum. The angular momentum

about the mass center, G , of any prescribed system of mass equals with
H;=Y pxmpy, (6.20)

which is the merely the vector sum of the moments about G of the linear momentum of all

particles. With r, representing the position vector to m, then, v, =7 and Equation (6.20) can

be rewritten as
H;=) pxmf (6.21)

Referring to Figure 6-2, velocity 7. can be rewritten as (? + p,.) and Equation (6.21) becomes

Hg =) pxm(F+p,)= D pxmF+) pxmp, (6.22)

The first term on the right side of this equation may be rewritten as —?meipl. , which is zero

because Xm p. =0 by definition of the mass center. Thus, Equation (6.21) can be rewritten as

H; =Y pxmp, (6.23)
where p, is the velocity of m with respect to G .
The relative velocity equals with

p=wxp, (6.24)
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Where the angular velocity of the body is @ = wk . The unit vector k is directed into the

expression for the sense of @ shown. Since p,, p,, and @ are at right angles to one another,
the magnitude of p, is p,w and the magnitude of p, xm,p, is pfa)m[ . Hence, Equation (6.23)

can be rewritten as

H, =Y p’mok =0k (6.25)

where [ =2m, pf is the mass moment of inertia of the body about its mass center.

For planar motion, the angular-momentum vector is always normal to the plane of motion,
vector notation is generally unnecessary, and the angular momentum about the mass center

can be written as
H.=1w (6.26)

The moment-angular-momentum relation, see Section 6.2.2, which is scalar notation for plane

motion, equals with

M, =H, (6.27)

G

Integrating Equation (6.27) from time ¢, to time ¢, yields

153
(H,), +szGdt =(H,), (6.28)
In words, Equation (6.27) states that the sum of the moments about the mass center of all
forces acting on the body equals the time rate of change of angular momentum about the mass
center. Equation (6.28) states that the initial angular momentum about the mass center G plus

the external angular impulse about G equals the final angular momentum about G .
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Figure 6-2: Impulse-momentum principles on rigid block.

6.3 Impact in Rocking Regime

This section is based on previous work done by Roussis et al. (2008). During the rocking
oscillation regime, the dynamic response of the system is strongly affected by the occurrence
of impact(s) between the block and the horizontally-moving base. Based on the assumption of
perfectly inelastic impact, the block can exhibit two possible response mechanisms following
impact: (a) rocking about the impacting corner, when the block re-uplifts (no bouncing), and
(b) pure translation in full-contact with the base, when the block’s rocking motion ceases after
impact. The formulation of impact is divided into three phases: pre-impact, impact, and post-
impact, as illustrated schematically in Figure 6-3 and Figure 6-6. In the following, a

(I

superscript “-” refers to a pre-impact quantity and a superscript “+” to a post-impact quantity.

6.3.1 Pure rocking continues after impact

Derivation for the case of impact during rocking about point O

Consider the system at the instant when the block hits the moving base from rocking about O
and re-uplifts pivoting about the impacting corner, O' (Figure 6-3a). As mentioned before,
impact is accompanied by an instantaneous change in velocities, with the system

displacements being unchanged. Therefore, the impact analysis is reduced to the computation
of the initial conditions for the post-impact motion, %" and #*, given the position and the pre-

impact velocities, 1~ and 6" .
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Pre-impact (-) Impact Post-impact (+) Post-impact (+)

(a) (b)

Fdtlo
[Fdt|o o) OR
[F.dt
Fdt
0 u.'_IF,dt o) o o
— — —
i 4 g

0 =0, u 0" =0"=0,u" =u" 0" =0"=0,u" =u"
6, i 0, it 0" =0, 4"

Figure 6-3: Impact from rocking about O followed by
(a) re-uplift about O' and (b) termination of rocking.

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction requires that

[Fdi=(AL) =L ~L : [Fdt=mX*—mX" (6.29)
[Fdi=(AL), =Li-L: [Fdt=mZ" -mZ (6.30)

in which I F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O"');

'__ .- . . '+_ .4 . .+
X —(u +xg)+xmt, X —(u +xg)+x

rot

and Z~ =(z';m +z'g), zZ =(z':0t +z'g) are the
absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,
respectively; X, X. and Z ,, Z  are the relative pre- and post-impact horizontal and

vertical velocities of the mass center of the block due to the rocking, relative to the rigid base;

L., L, L and L! are the pre- and post-impact horizontal and vertical linear momentum,

respectively; (AL)X and (AL)Z are the changes in horizontal and vertical linear momentum,

respectively.

Substituting these expressions into Equations (6.29) and (6.30), we obtain

[ Fdt = mii* +mx}, —mi™ —ms,,, (6.31)
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[Fdt= mz, —mz,, (6.32)
In addition, the principle of angular impulse and momentum states that
[Medt=Ati, =H.~H: b([F.dt)-h([Fdt)=10"-16 (6.33)

in which I M .dt is the angular impulse; H_ and H/ are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum
about the mass center.

In Equations (6.31) and (6.32), the pre- and post-impact horizontal and vertical components of
the relative translational velocity of the mass center can be expressed in terms of the pre- and

post-impact angular velocity of the block, 8~ and 6 as follows.
For the pre-impact state, the translational velocity vector of the mass center (Figure 6-4) can
be expresses as

vV o =v,+0 xXr., (6.34)

where v is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r.,, is position vector of the mass center relative to point O .

Figure 6-4: Components of pre-impact translational velocity of the isolated block for the case

of impact during rocking about point O.

Expressions for these vector quantities are given below:
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v =Xi+Z k=i +%,+%,)i+(z,+z, )k (6.35)

rot

vo =(i +x,)i+(z, )k (6.36)
0 =07j (6.37)
teo=—rsin(a—0)i+rcos(a—0)k (6.38)

At impact, the angular rotation of the block becomes zero (9 = O) and the position vector of

the mass center relative to point O, r,,, can be rewritten as
Yoo =—(rsina)f+(rcosa)l€=—bi+hl€ (6.39)

in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (6.35) through (6.39) into Equation (6.34), the pre-impact

translational velocity becomes

A

vo= (i, b, )i+ (2, 2, k= (00 + 5, )i +(z'g)1€+(<9'-})x(—bf+h1€) (6.40)

ot
which reduces to
%+ 2,k = (b0 )k+(h0)i (6.41)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.42)
z., =bO" (6.43)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-5) can

be expresses as

vi=v,.+o xr,, (6.44)

115



where v" is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O', w" is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Figure 6-5: Components of post-impact translational velocity of the isolated block for the case

of impact during rocking about point O.

Expressions for these vector quantities are given below:

v*:X*i+z’*1€:(u*+xg+x;t)f+(z';,+z'g)l€ (6.45)
v = (" +x,)i+(2, )k (6.46)

0t =0"j (6.47)

Tero = rsin(a—0)i+rcos(a—0)k (6.48)

At impact the position vector of the mass center relative to point O', r,,,., becomes

A
.

teo =(rsina)i+(rcosa)k =bi +hk (6.49)

On substituting Equations (6.45) through (6.49) into Equation (6.44), the post-impact

translational velocity becomes

A

Ji+ (2, + 2, k= (i +x, )+ (2, )+ (6 F)x(bi + k) (6.50)

v*z(a++xg+x,*

rot

which simplifies to
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i+ 2],k = (—b0" )k + (0" )i (6.51)
from which the post-impact horizontal and vertical components of v* can be retrieved as

it =he (6.52)

rot

2 = —bg* (6.53)

rot

Substitution of Equations (6.42) through (6.53) into Equations (6.31) through (6.33) yields

[Fdt=mi™ +m(h6")=mi” —m(h0") (6.54)
szdz = m(-b6")-m(b0") (6.55)
b(jgdz)—h(jdet)=1(9’+)—1(9’-) (6.56)

in which for rectangular block the centroid mass moment of inertia for the rectangular block is

given by
m , Mo 12
I=—r"=—(b"+h 6.57
S (671 (6.57)
Equations (6.54), (6.55) and (6.56) constitute a set of three equations in four unknowns,
namely J.det, Idet L0, ut.

Equivalently, the three Equations (6.54), (6.55) and (6.56) can be combined in one (by

eliminating the two impulses) in two unknowns:
(40> +4h*)0" +3hi* = (4h* —2b7 )0 +3hii” (6.58)

One additional equation is therefore required to uniquely determine the post-impact velocities
0" and u". By considering the system in its entirety during the impact, it can be stated that
the horizontal impulse on the system is zero, resulting in the conservation of the system’s

linear momentum in the horizontal direction. That is,
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(AL,), =(E0 ), ~(2), =05 [(E): (2 [ (B #(2). ] =0

(6.59)
= [ m, (i 3, )+ m(” + %, + 5, ) | =[m, (i + 5, )+ m(i +5,+ %, )]

in which (Lsys )7 and (Lsys )+ are the pre- and post-impact horizontal linear momentum of the

system respectively; (ALWS) is the change in horizontal linear momentum of the system.
Substituting Equations (6.42) and (6.52) in Equation (6.59) gives

mi* +mi* +mhO* = myi” +mi” +mh@” (6.60)

which upon rearranging terms becomes

it = m1)im[(mb+m)u—mh6"++mh6.’] (6.61)

Substituting Equation (6.61) in (6.58) gives

3h

m, +m

(4b% +4n*) 6" + [(m, +m)i™ —mh6" +mh0™ | = (4h* =2b°)0" +3hi”  (6.62)
which yields the post-impact angular velocity of the block as a function of the pre-impact

angular velocity as

. (4m,p® =2m,b* +mh® —2mb*)
6" = : — Lo (6.63)
(4m,1* +4m,b* +mh’ +4mb’ )

Substituting the expression for @ in Equation (6.61) gives the post-impact translational

velocity as a function of the pre-impact translational and angular velocity as

2
i =i+ 50 ( m, +m jé (6.64)

my, +m\ 4m,h’ +4m,b> +mh’ +4mb’

Equations (6.63) and (6.64) can be written as
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: +4)-2(p+1) .. .
o = 1)9 = &0 (6.65)

e 6h - -
= 0 = o 6.66
S T ped)<a(pn) A (6.66)

in which A =h/b is the geometric aspect ratio and p =m/m, is the mass ratio.

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

_.[ F;cdt = (ALbase )x = (Lbase ): - (Lbase ); (667)

in which (AL,,) is the change in horizontal linear momentum of the base;

X

(L

‘base

); =m, (L'f +5cg) and (Lbase

): =m, (Lf +5cg) are the pre- and post-impact horizontal

linear momentum of the base respectively. Equation (6.67) can be rewritten in the form
[ Fudt=myi™ —myi* (6.68)

Substituting Equation (6.68) into Equation (6.54) gives

myii” —myi” = mi" —mi +mh0" —mh6 (6.69)
which yields
i =——[ (m, + m)i” —mh6" + mhé" ] (6.70)
m, +m

Substituting Equation (6.70) in Equation (6.58) gives

(4mbh2 —2m,b* +mh® —2mb’ )

o =
(4mbh2 +4mb* + mh® +4mb’ )

0 (6.71)
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which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.
Derivation for the case of impact during rocking about point O’

Consider the system at the instant when the block hits the moving base from rocking about O'
and re-uplifts pivoting about the impacting corner, O (Figure 6-6a). As mentioned before,
impact is accompanied by an instantaneous change in velocities, with the system

displacements being unchanged. Therefore, the impact analysis is reduced to the computation
of the initial conditions for the post-impact motion, %" and ", given the position and the pre-

impact velocities, #~ and 6.

Pre-impact (-) Impact Post-impact (+) Post-impact (+)

(@) (b)

ok o|JFar
[F.dt

lj F.dt

0 [Fdi__, o) 0 (0]
—y" —y" pE—
& e &
“ > ‘;K . > X? - > x?
6 =0, u 0"'=0"=0,u"=u" 0"=0"=0,u"=u"
6, i o, i 6r =0, u*

OR

Figure 6-6: Impact from rocking about O' followed by (a) re-uplift about O and (b)

termination of rocking.

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) =Li-L;: [Fdt=mX"—mX" (6.72)

[Fdt=(AL) =L:-L;: [Fdt=mZ"-mZ" (6.73)
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in which J‘del and Idet are the horizontal and vertical impulses (assumed to act at O);

’7_ .- . . '+_ .+ . .+
X —(u +xg)+xmt, X —(u +xg)+x

rot

and Z"=(z';m+z'g), Z+=(i+ +z'g) are the

rot

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block,

x' and z_,, zZ.  are the relative pre- and post-impact horizontal and

rot rot > rot

respectively; X

rot >
vertical velocities of the mass center of the block due to the rocking, relative to the rigid base;

L., L', L. and L! are the pre- and post-impact horizontal and vertical linear momentum,
respectively; (AL))c and (AL)Z are the changes in horizontal and vertical linear momentum,
respectively.

Substituting these expressions into Equations (6.72) and (6.73), we obtain

[ Fdt = mi* +mi), —mi” —ms,,, (6.74)
[Fdt=mz, —mz, (6.75)

In addition, the principle of angular impulse and momentum states that
[Mcdt=AH = H;~H: =b([F.dt)~h([Fdt)=10" 16" (6.76)

in which _[ M .dt is the angular impulse; A, and H/ are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum
about the mass center.

In Equations (6.74) and (6.75), the horizontal and vertical components of relative translational
velocity of the center-of-mass can be expressed in terms of the pre- and post-impact angular

velocity of the block, #~ and 0" as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-7) can

be expressed as

V o=y, + 0 XI, (6.77)
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where v is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O', w™ is pre-impact angular velocity vector of the

block, and r.,, is position vector of the mass center relative to point O'.

Figure 6-7: Components of pre-impact translational velocity of the isolated block for the case

of impact during rocking about point O".

Expressions for these vector quantities are given below:

v*:X*i+z’*1€:(u*+xg+x;m)i+(z';m+z'g)1€ (6.78)
vy = +%,)i+(z,)k (6.79)

0 =07j (6.80)

teo =rsin(a—0)i+rcos(a-0)k (6.81)

At impact, the angular rotation of the block is zero (6? = 0) and the position vector of the mass

center relative to point O' can be rewritten as
teo =(rsina)i+(rcosa)k = bi + hk (6.82)

On substituting Equations (6.78) through (6.82) into Equation (6.77), the post-impact

translational velocity becomes

vo=(i+x, 4, )i+ (2, +2, )k :(u*+xg)f+(z'g)12+(0'*})x(b2+h12) (6.83)
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which reduces to
g+ 2,0 =(—bO )k + (6 )i (6.84)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.85)
i =—bO" (6.86)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-8) can

be expressed as
vi=v +o xr., (6.87)

where v" is post-impact translational velocity vector of center-of-mass, v is post-impact

translational velocity vector of point O, w" is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O.

Figure 6-8: Components of post-impact translational velocity of the isolated block for the case

of impact during rocking about point O".

Expressions for these vector quantities are given below:

vi= X4 Z k=it vk, 4%, )i+ (2, 2, )k (6.88)

rot

vo=(i" +x,)i+(z, )k (6.89)
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A

0 =0} (6.90)
reo=-rsin(a—0)i+rcos(a—0)k (6.91)

At impact (6’ = O) the position vector of the mass center relative to point O becomes
teo =—(rsina)i+(rcosa)k =—bi +hk (6.92)

On substituting Equations (6.88) through (6.92) into Equation (6.87), the post-impact

translational velocity becomes

A

v = (i, i, )i+ (2 +z'g)1€=(a++xg)f+(z'g)k+(0'+})x(-bi+h12) (6.93)

ot ot
which simplifies to
itz k =(b9+)1€+(h9'+)£ (6.94)
from which the post-impact horizontal and vertical components of v* can be retrieved as
it =hot (6.95)

rot

), =b0" (6.96)

rot

Substitution of Equations (6.85) through (6.96) into Equations (6.74) through (6.76) yields

.[det =mii* +m(h0")—=mi” —m(h6") (6.97)
[ F.dt =m(b67 ) —m(-b0") (6.98)
—b(j]«;dz)—h(jadt) =1(07)-1(0") (6.99)

in which the centroid mass moment of inertia for the rectangular block is given by Equation

(6.57).
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Equations (6.97), (6.98) and (6.99) constitute a set of three equations in four unknowns:
[Fae, [Fadi, 67, 0.

Equivalently, the three equations can be combined in one (by eliminating the two impulses) in

two unknowns:
(40> +4h*) 0" +3hii* = (4h* =257 )6 +3hii” (6.100)

One additional equation is therefore required to uniquely determine the post-impact velocities
0" and u". By considering the system in its entirety during the impact, it can be stated that
the horizontal impulse on the system is zero, resulting in the conservation of the system’s

linear momentum in the horizontal direction. That is,

(80), =(5 ) (L) =05 [(Ba) # (L), |-[ () #(2); |20

(6.101)
= m, (i 3, )+ m( + %, + 5, ) | = m, (0 + %, )+ m(i +3, + %, )]

rot

in which (LS_W )_ and (L_vi )+ are the pre- and post-impact horizontal linear momentum of the

x " /x

system respectively; (ALM) is the change in horizontal linear momentum of the system.

Substituting Equations (6.85) and (6.95) in Equation (6.101)

myui’ +mu’” +mho* =myu +mi” +mhO” (6.102)
which yields
1 . .
1= +m)ii” —mh@" +mhl” 6.103
u - [(mb m)i~ —m m ] ( )

Substituting in (6.100) gives

3h
m, +m

(40” +4n* )6 + [ (m, +m)i —mhO* +mh0™ | = (4h> =267 )6 +3hi”  (6.104)

which upon rearranging terms becomes
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. (4mhh2 —2m,b’* +mh’ —Zmbz) .
0" = 5 <0 (6.105)
(4mbh2 +4m,b* +mh’® +4mb )

Substituting the expression for * in Equation (6.102) gives

2
P S L N (6.106)
dm,h” +4m,b” + mh” +4mb

Equations (6.104) and (6.106) can be written as

. A(p+4)-2(p+1)

0" = 0 =0 6.107
P (prd)ra(pr)). ° (6.107)

e 6ph - -
= 0 = 0 6.108
S T e d)<a(prn). LA (6108

in which A =/h/b is the geometric aspect ratio and p =m/m, is the mass ratio.

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

L

_J. Fdt = (ALhase )x = (Lbase )x - (Lbase ); : —J‘F;dt =m, (Z/rr +X, ) —-m, (”.‘7 + xg)

-+

(6.109)
= Idet =mu —myu

in which (L,,m )7 and (Lhase )+

X X

are the pre- and post-impact horizontal linear momentum of

the base respectively; (AL, )X is the change in horizontal linear momentum of the base.

Substitute (6.109) into (6.97):
myii” —myi” = mi" —mi +mhO" —mh6 (6.110)

which yields
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a+=mb1+m[(mb+m)a—mh9++mh9] (6.111)

Substituting in (6.100) gives

. (4mbh2 —2m,b* + mh’ —2mb2) .
o = > > > 0 (6.112)
(4mbh +4m,b” + mh” +4mb )

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.

Observe that Equations (6.107) and (6.108) giving the post-impact velocities for impact from
rocking about O' (realized when @ > 0) are identical to the Equations (6.65) and (6.66) giving

the post-impact velocities for impact from rocking about O (realized when 6 <0).

The coefficient of “angular restitution” ¢ in Equation (6.107), associated with the reduction of

the post-impact angular velocity of the block, is defined by

1
, (6.113)

and the coefficient of “linear restitution” £ in Equation (6.108), associated with the reduction

of the post-impact linear velocity of the rigid base, is defined by

6ph
A (p+4)+4(p+1)

B = (6.114)

Equation (6.113) reveals that the coefficient of angular restitution & depends both on the

slenderness ratio A and the mass ratio p. An upper bound for the coefficient of angular

restitution is obtained by taking the limit as 4 — oo, yielding

2 p—
; :lim/l (p+4)-2(p+1)

=1 A1
e = T (prd)+a( o) (6-113)
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The value ¢ =1, implying preservation of the magnitude of the angular velocity after impact,

is associated with an energy-lossless impact.

For the assumption of no-bouncing to be satisfied, the coefficient of angular restitution ¢
should have a positive value. In such a case, the angular velocity of the block will maintain
sign upon impact, implying switching pole of rotation from one corner to the other. This

requires that

A> 2ptD (6.116)

p+4
The variation of the coefficient of restitution & with the slenderness ratio A is shown in
Figure 6-9a for different values of the mass ratio p . The strong effect of A on the coefficient
of angular restitution, and hence on the energy dissipated during impact, is evident from this
figure. This effect is more pronounced in the lower A-range (stocky blocks). Similarly, the

dependency of coefficient ¢ on the mass ratio p is seen to be weak for very slender blocks,

practically diminishing for 4 >8§.

1.00

i
0.75 /)//’/ 2 —_———— =00l
/2// 2 p=0.1
0.50 //{/ ; . W gi?'s
/2 =2
A , <
1 /7 —— p=5 =
© 025 i/ R & =
/,’ / Rocking
0.00 —fjé#
i, 4 Bouncing
-0.25 1
-0.50
0 1 2 3 4 5 6 7 8 9 10
A 2
(a) (b)

Figure 6-9: Variation of (a) coefficient of angular restitution &, and (b) coefficient g with

slenderness ratio 4.

The coefficient [ in Equation (6.114), which is associated with the reduction of the post-

impact linear velocity of the rigid base, depends not only on the parameters A and p, but also
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on the absolute size of the block (in terms of its height). The normalized coefficient 8 = g, /h
is plotted against the slenderness ratio A for different values of the mass ratio p in Figure
6-9b. Observe that the value of the coefficient B decays rapidly with the slenderness ratio 4.

As follows from the comparison of Figure 6-9a and Figure 6-9b, the influence of the mass

ratio p on the coefficient S is much greater than that on the coefficient &.

Equation (6.108) elucidates the character of base-block dynamic interaction realized upon
impact. In effect, the response of the “structure” (rocking block) modifies the input motion of
the “foundation” (translating base). This inherent response feature stands in contrast to the
dynamic behavior of the Housner-type model, in which the foundation mass is infinite. This

interaction ceases to exist when coefficient £ becomes zero, which by virtue of Equation

(6.114) occurs when A —>© or p—0. That is to say, the horizontal velocity of base will

remain practically unchanged upon impact either in the case of extremely slender block
(independently of the block size and value of the mass ratio) or in the case of extremely small
block mass relative to the base mass (independently of the block size and slenderness). This

observation is demonstrated in Figure 6-10 using different mass ratios, p =0.003, p=0.5,
p=2 and p=300. As can be seen, the horizontal velocity of the base remains practically

unchanged upon impact, 8/« =0 (dot vertical lines), as the mass ratio, p , is getting smaller.
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Figure 6-10: Influence of mass ratio on base-block dynamic interaction.
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6.3.2 Pure system translation occurs after impact

When rocking of the block on top of the moving base ceases, the system will attain a pure-

translation regime (Figure 6-3b and Figure 6-6b). In this case, the impact analysis is reduced
to the computation of the post-impact translational velocity of the system, u*, given the

position and the pre-impact velocities, #~ and 0~ .
Derivation for the case of impact during rocking about point O

Consider the system at the instant when the block hits the moving base from rocking about O

(Figure 6-3b).

With regard to the block, the principle of linear impulse in the x direction states that

[Fdt=(AL) =Li-L;: [Fdt=mX"—mX" (6.117)

in which jdet is the horizontal impulse (assumed to act at O'); X~ = (L'f +)'cg)+)'c;m and
X = (L't* +X, ) +x, are the absolute pre- and post-impact horizontal velocities of the mass

center of the block, respectively; X, and X are the relative pre- and post-impact horizontal

ot rot

velocities of the mass center of the block due to the rocking, relative to the rigid base; L. and
L' are the pre- and post-impact horizontal linear momentum, respectively; (AL)X is the
change in horizontal linear momentum.

Substituting this expression into Equation (6.117), we obtain
[ Fdt =mii* +mx}, —mi” —ms, (6.118)

In Equation (6.118), the pre- and post-impact horizontal components of the relative

translational velocity of the mass center can be expressed in terms of the pre-impact angular

velocity of the block, 8~ as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-4) can

be expressed as

Vo =v,+0 Xr., (6.119)
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where v is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r,,, is position vector of the mass center relative to point O .

Expressions for these vector quantities are given below:

v =Xi+Z k=0 +x,+%,)i+(z,+2,)k (6.120)
vo =(i +x,)i+(z, )k (6.121)

0 =0j (6.122)
teo=-rsin(a—0)i+rcos(a—0)k (6.123)

At impact, the angular velocity of the block becomes zero (0 = 0) and the position vector of

the mass center relative to point O can be rewritten as
Teo =—(rsina)i+(rcosa)k = —bi + hk (6.124)

On substituting Equations (6.120) through (6.124) into Equation (6.119), the pre-impact

translational velocity becomes

vo= (i, v, )i (2, v 2, )= (i 4%, )i+ (2, )R+ (67 )x(-bi+hk)  (6.125)
which reduces to
%0+ 2,k = (b0 )k+(h0)i (6.126)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as

X, =hO (6.127)

. =bO" (6.128)

rot
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For the post-impact state, the translational velocity vector of the mass center can be expressed

as
vi=v,.+o xr,, (6.129)

where v" is post-impact translational velocity vector of center-of-mass, v, is post-impact

+

translational velocity vector of point O', w" is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

vi= X+ Zk=(0" x4 %), )i+ (2, + 2, )k (6.130)
vo = (" +x,)i+(z, )k (6.131)
0t=0"j=0j (6.132)

teo =rsin(a—80)i+rcos(a—0)k (6.133)

At impact 8 =0, the position vector of the mass center relative to point O' becomes
teo =(rsina)i+(rcosa)k = bi + hk (6.134)

On substituting Equations (6.130) through (6.134) into Equation (6.129), the post-impact

translational velocity becomes

v E(L'ﬁ +X, +x;m)f+(z'+ +z‘g)l€ :(L'f +xg)f+(z'g)1:r+(0})x(bf+h12) (6.135)

rot
which simplifies to

* k=0k+0i (6.136)

e .
xrotl + Zwt
from which the post-impact horizontal and vertical components of v* can be retrieved as

i =0 (6.137)

rot
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2 =0 (6.138)

rot

Substitution of Equations (6.127) through (6.138) into Equation (6.118) yields

[Fdt=mi™ —mi —m(h0") (6.139)

which constitutes one equation in two unknowns: jdet , U

One additional equation is therefore required to uniquely determine the post-impact velocity
u". By considering the system in its entirety during the impact, it can be stated that the
horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(ALWS )x = (Lsys ): - (Lsys ); =0: |:(Lbase ), + (Lohj ): } ) [(Lbase ), + (Lohj )j =0

= [mb (u* -|-)'cg)+m(a+ + X, +)'c:m)] :[mh (L'f +)'cg)+m(b'f +X, +)'c;m)] (6140
Substituting Equations (6.127) and (6.137) in Equation (6.140) gives
myii" +mi’ = myg” +mi +mhé” (6.141)
which upon rearranging terms becomes
it = mbim[(mﬁm)uwmhé-] (6.142)
Equation (6.141) can be written as
i =i+ g =i v i (6.143)

in which p =m/m, is the mass ratio.

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that
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+

—[Fdt=(AL,,), = (L) (L), -[Fdt=m, (i + %, )=m, (i +%,)

(6.144)
= [ Fdt =m~ —mi’
Substitute (6.144) into (6.139):
1 .
"= +m)u +mh6” 6.145
u mb+m[(mb m)u m J ( )

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.
Derivation for the case of impact during rocking about point O’

Consider the system at the instant when the block hits the moving base from rocking about O'

(Figure 6-6b).

With regard to the block, the principle of linear impulse in the x direction states that

[Fdt=(AL) = Li-L;: [Fdt=mX"—mx (6.146)

X

in which J.det is the horizontal impulse (assumed to act at O); X = (a' +5cg)+5cr'ot and

X = (zf + X g)+ x. are the absolute pre- and post-impact horizontal velocities of the mass

rot

center of the block, respectively; X, and X, are the relative pre- and post-impact horizontal

ot rot

velocities of the mass center of the block due to the rocking, relative to the rigid base; L. and
L' are the pre- and post-impact horizontal linear momentum, respectively; (AL))C is the
change in horizontal linear momentum.

Substituting this expression into Equation(6.146), we obtain
[ Fdt =mii* +ms}, —mi” —ms, (6.147)

In Equation (6.147), the horizontal component of relative translational velocity of the center-
of-mass can be expressed in terms of the pre-impact angular velocity of the block, 8~ as

follows.
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For the pre-impact state, the translational velocity vector of the mass center (Figure 6-7) can

be expressed as
Vo=V, 0 Xr, (6.148)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O', w™ is pre-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

v =Xi+Z k=0 +x,+%,)i+(z,+2,)k (6.149)
vo = (i +x,)i+(z, )k (6.150)

0 =07j (6.151)

teo =rsin(a—80)i+rcos(a—0)k (6.152)

At impact, the angular rotation of the block becomes zero (9 = 0) and the position vector of

center-of-mass relative to point O' can be rewritten as
teo =(rsina)i+(rcosa)k = bi + hk (6.153)

On substituting Equations (6.149) through (6.153) into Equation (6.148), the pre-impact

translational velocity becomes

v = (“ + xg + xr()t rot

)f+(z“ +z‘g)l€ =(a‘ +5cg)f+(z'g)l€+(9‘})x(bf+h12) (6.154)
which reduces to
to, 0+ 2,0 = (=bO" )k +(hO )i (6.155)

from which the pre-impact horizontal and vertical components of v~ can be retrieved as
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i =ho (6.156)

i =—bO" (6.157)

rot

For the post-impact state, the translational velocity vector of the mass center can be expressed

as

vi=v,+o xr,, (6.158)

where v" is post-impact translational velocity vector of center-of-mass, v is post-impact

translational velocity vector of point O, " is post-impact angular velocity vector of the

block, and r.,,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

v =X+ Zk= (0", 45, )i+ (2, + 2, )k (6.159)
vo =(i+x,)i+(z,)k (6.160)

0 =0"j=0j (6.161)
teo=-rsin(a—0)i+rcos(a—0)k (6.162)

At impact (6’ = O) the position vector of the mass center relative to point O becomes
teo =—(rsina)i+(rcosa)k = —bi + hk (6.163)

On substituting Equations (6.159) through (6.163) into Equation (6.158), the post-impact

translational velocity becomes

v'= (i, b, )i (2], 2, V= (a0 43, )T+ (2, )+ (0])x(-bi+hk)  (6.164)
which simplifies to
X i+ k=0k+0i (6.165)

rot
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from which the post-impact horizontal and vertical components of v* can be retrieved as
x, =0 (6.166)
z . =0 (6.167)
Substitution of Equations (6.156) through (6.167) into Equation (6.147) yields
[Fdt=mi" —mi= —m(h0") (6.168)

which constitutes one equation in two unknowns: jdet ,ut.

One additional equation is therefore required to uniquely determine the post-impact velocity
u" . By considering the system in its entirety during the impact, it can be stated that the
horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(aL,.) =(L,.) ~(L,.). =0: [(L,W )+ (L), } - [(me ) +(Ly );] 0

(6.169)
= [m, (6" + 35, )+ m (i + 5, + 50, [ = m, (0 +5,)+m(i+ 5, +%,)]
Substitution of Equations (6.156) and (6.166) in Equation (6.169) gives
mi" +mi = myg” +mi” +mhé” (6.170)
which yields
a+=Mb1+m[(m,,+m)u-+mh9-] (6.171)
Equation (6.170) can be written as
it =i+ =i + 4,0 (6.172)

p+1

in which p=m/m, is the mass ratio.
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Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

+

—[Fdt=(AL,,), = (L) (L), -[Fdt=m, (i +%,)=m, (i +%,)

(6.173)
= [ Fdt =ma~ —mi’
Substituting Equation (6.173) into Equation (6.168) gives
i =——[ (m, +m)ic” —mh6" + mhé" ] (6.174)
m, +m

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.

As it can be seen the Equation (6.174) giving the post-impact horizontal velocity for impact
from rocking about O' (realized when 6 > 0) is identical to the Equation (6.142) giving the

post-impact horizontal velocity for impact from rocking about O (realized when 6 <0).

6.4 Impact in Slide-Rocking Regime

During slide-rocking regime, the response of the system can be drastically affected by the
occurrence of impact(s) between the block and the horizontally-moving base. Under the
assumption of perfectly inelastic impact, there are four possible response mechanisms
following impact: (a) system translation when rocking and sliding motions cease after impact,
Figure 6-11, (b) rocking about the impacting corner when the block re-uplifts (no bouncing),
sliding motion ceases after impact, Figure 6-12, (¢) sliding only when the rocking ceases after
impact, Figure 6-13, or (d) sliding and rocking about the impacting corner when the block re-

({32

uplifts (no bouncing), Figure 6-14. In the following, a superscript refers to a pre-impact

quantity and a superscript “+” to a post-impact quantity.
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Pre-impact (-) Impact Post-impact (+)

6 =0, u’,x; Q=0 = A u*]xﬁ':x"
0, i, i 0" =0, i, &'

Figure 6-11: Impact from slide-rocking about O followed by pure system translation.

Pre-impact (-) Impact Post-impact (+)

Figure 6-12: Impact from slide-rocking about O followed by pure rocking about O’ (sliding

ceases).
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Pre-impact (-) Impact Post-impact (+)

o’ o T
[F.dt

U F.dt

R

e
-

Z&'
0"=0"=0,u", x =x

0" =0,u", x;

s

Figure 6-13: Impact from slide-rocking about O followed by pure sliding (rocking ceases).

Pre-impact (-) Impact Post-impact (+)

Figure 6-14: Impact from slide-rocking about O followed by slide-rocking about O'.

6.4.1 Pure system translation occurs after impact

When rocking and sliding of the block on top of the moving base ceases, the system will attain

a pure-translation regime. In this case, the impact analysis is reduced to the computation of the
post-impact translational velocity of the system, #", given the position and the pre-impact

velocities, i~ , x,,and 6" .
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Derivation for the case of impact during rocking about point O
Consider the system at the instant when the block hits the moving base from rocking about O.

With regard to the block, the principle of linear impulse in the x direction states that

X

[Fdt=(AL) = Li-L;: [Fdt=mX"—mx (6.175)

in which I F.dt is the horizontal impulse (assumed to act at O'); X~ = (L'f +X, ) +X_ + X,

and X' = (L'ﬁ +)'cg)+)'c+ +x; are the absolute pre- and post-impact horizontal velocities of

rot

the mass center of the block, respectively; X, and X are the relative pre- and post-impact

rot rot

horizontal velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X! are the relative pre- and post-impact horizontal velocities of the mass center
of the block due to the sliding, relative to the rigid base; L. and L' are the pre- and post-
impact horizontal linear momentum, respectively; (AL)Y is the change in horizontal linear

momentum.

Substituting this expression into Equation (6.175) we obtain
[ Fudt = mi +m},, +mi; —mi™ —mi,,, —ms; (6.176)

In Equation (6.176), the pre- and post-impact horizontal components of the relative
translational velocity of the mass center can be expressed in terms of the pre-impact angular

velocity of the block, 6~ as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can

be expressed as

vV o=v,+0 xr., (6.177)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r,,, is position vector of the mass center relative to point O .
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Expressions for these vector quantities are given below:

v =X i+Z k=i +x,+%,+% )i+(z,+2, )k (6.178)
vo = (i + %, +4, )i +(2, )k (6.179)

0 =07 (6.180)

teo =—rsin(a—0)i+rcos(a—0)k (6.181)

At impact, the angular velocity of the block becomes zero (49 = O) and the position vector of

center-of-mass relative to point O can be written as

reo =—(rsina)i+(rcosa)k =—bi + hk (6.182)

Figure 6-15: Components of pre-impact translational velocities of the isolated block for the

case of impact during slide-rocking about point O.

On substituting Equations (6.178) through (6.182) into Equation (6.177), the pre-impact

translational velocity becomes
Vo (i, 4 (2, 42, = (i 4%, 0 )T+ (2, ) K+ (07 )x(—bE + k) (6.183)
which reduces to

%0+ 2,k = (b0 )k+(h0")i (6.184)
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from which the pre-impact horizontal and vertical components of v~ can be retrieved as

X =hO (6.185)

i =bl (6.186)

For the post-impact state, the translational velocity vector of the mass center can be expressed

as

vi=v, +o xr.,, (6.187)

where v" is post-impact translational velocity vector of center-of-mass, v/, is post-impact

4

translational velocity vector of point O', " is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O"'.

Expressions for these vector quantities are given below:

v*=X*§+Z*1€=(u*+xg+x;m)i+(z';,+z'g)1€ (6.188)
vy = (" +x,)i+(z, )k (6.189)

0 =0"j=0j (6.190)

teo =rsin(a—80)i+rcos(a—0)k (6.191)

At impact 6 =0, the position vector of the mass center relative to point O' becomes

A

teo =(rsina)i+(rcosa)k =bi +hk (6.192)

On substituting Equations (6.188) through (6.192) into Equation (6.187), the post-impact

translational velocity becomes
v’ z(p‘ﬁ +X, +5C:o;)’:+(z':ot +z'g)l€ =(L'ﬁ +xg)f+(z’g)l€+(0})x(bf+hl€) (6.193)

which reduces to
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X i+z k=0k+0i (6.194)

rot
from which the post-impact horizontal and vertical components of v* can be retrieved as

i =0 (6.195)

rot

2t =0 (6.196)

rot

Substitution of Equations (6.185), (6.186), (6.195), (6.196) into Equation (6.176) yields

[ Fodt = mi —mim —m(h6")—mx; (6.197)

which constitutes one equation in two unknowns: J.det , U

One additional equation is therefore required to uniquely determine the post-impact velocity
u" . By considering the system in its entirety during the impact, it can be stated that the
horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(A, ), =(20. ) ~(2), =05 [ (), + (L)) || (L) +(2), |0

= [mb (L'ﬁ +5cg)+m(5,+ +X, + X +5c:m)] =[mb (u- +xg)+m(zr +X, +X+X + X, G0
Substituting Equations (6.185), (6.186), (6.195), (6.196) in Equation (6.198) gives
myi" +mi” = myi” +mi +mhO + mx; (6.199)
which upon rearranging terms becomes
gt = mb:_m[(mb+m)a+mhc9'+mxs] (6.200)
Equation (6.200) can be written as
i =a-+(ppj’1)é-+(p’jrl)x; za-+ﬁ39‘-+%x; (6.201)
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in which p=m/m, is the mass ratio.

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

—[Fdt=(AL,,), = (L. ). ~(Ly. ), -[ Fdt=m, (i +%,)=m, (i +%,)

(6.202)
= [ Fdt =m~ —mi’
Substitute (6.197) into (6.202):
i =—[(m, +m)i +mh +mic | (6.203)
m, +m

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.

Derivation for the case of impact during rocking about point O'

Consider the system at the instant when the block hits the moving base from rocking about
0'.

With regard to the block, the principle of linear impulse in the x direction states that

[Fdi=(AL) =Li-L;: [Fdt=mX"—mX" (6.204)

in which I F dt is the horizontal impulse (assumed to act at O); X = (L'f +xg)+x;m +X,
and X' = (L'ﬁ +5cg)+)'c;t +x, are the absolute pre- and post-impact horizontal velocities of

the mass center of the block, respectively; X, and X are the relative pre- and post-impact

rot rot

horizontal velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X are the relative pre- and post-impact horizontal velocities of the mass center
of the block due to the sliding, relative to the rigid base; L. and L! are the pre- and post-
impact horizontal linear momentum, respectively; (AL))C is the change in horizontal linear

momentum.
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Substituting this expression into Equation (6.204) we obtain
[ Fudt = mi +mi},, +mi; —mi™ —m,,, —ms; (6.205)

In Equation (6.176), the pre- and post-impact horizontal components of the relative
translational velocity of the mass center can be expressed in terms of the pre-impact angular

velocity of the block, 8~ as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can

be expressed as
Vo=V, 40 XF,, (6.206)

where v is pre-impact translational velocity vector of center-of-mass, v,. 1is pre -impact

translational velocity vector of point O', @™ is pre-impact angular velocity vector of the

block, and r.,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

v =X i+Z k=i +x,+%,+% )i+(z,+2, )k (6.207)
vo = (17 + %, + % )i+ (2, )k (6.208)

0 =07j (6.209)

teo =—rsin(a—0)i+rcos(a-0)k (6.210)

At impact, the angular velocity of the block becomes zero (49 = O) and the position vector of

the mass center relative to point O' can be rewritten as

teyo =—(rsina)i+(rcosa)k =—bi +hk (6.211)
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Figure 6-16: Components of pre-impact translational velocity of the isolated block for the case

of impact during slide-rocking about point O'.

On substituting Equations (6.207) through (6.211) into Equation (6.206), the pre-impact

translational velocity becomes

v z(u-+xg +X +5c_;)f+(z" +z‘g)1€=(a-+xg +5c;)f+(z'g)l%+(9‘})x(—bf+hl€) (6.212)

ot ot
which reduces to
ki +2,k= (b0 )k+(h0)i (6.213)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.214)
z. =bO" (6.215)

For the post-impact state, the translational velocity vector of the mass center can be expressed

as
vi=v, +o xr., (6.216)

where v" is post-impact translational velocity vector of center-of-mass, v is post-impact

translational velocity vector of point O, " is post-impact angular velocity vector of the

block, and r.,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:
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v*=)'(*f+z'*12=(a*+xg+x* )f+(z‘+ +z'g)l€ (6.217)

rot rot

vo=(i" +x,)i+(z, )k (6.218)
0t =0"j=0j (6.219)
reo =rsin(a—0)i+rcos(a—0)k (6.220)

At impact (6’ = O) , the position vector of the mass center relative to point O becomes
teo =(rsina)i+(rcosa)k =bi +hk (6.221)

On substituting Equations (6.217) through (6.221) into Equation (6.216), the post-impact

translational velocity becomes
v (i, v, i (2], v 2, = (00 4 x, )i (2, )R+ (07)x (b4 hk)  (6222)
which reduces to

X i+z k=0k+0i (6.223)

rot
from which the post-impact horizontal and vertical components of v* can be retrieved as

=0 (6.224)

rot

2t =0 (6.225)

rot

Substitution of Equations (6.185), (6.186), (6.195), (6.196) into Equation (6.176) yields

[ Fodt = mi —mim —m(h6")—ms; (6.226)

which constitutes one equation in two unknowns: ‘[det ,u.

One additional equation is therefore required to uniquely determine the post-impact velocity

u" . By considering the system in its entirety during the impact, it can be stated that the
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horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(8,), =2 ~(2,) =0¢ [ +(2) (00 #(20) |0

(6.227)
= m, (i 5, ) o (i + 5, #5745, ) | = my (6, )+ m( 4, 5+ )]
Substituting Equations (6.185), (6.186), (6.195), (6.196) in Equation (6.198) gives

mii* +mi" = myi” +mi” +mhO” +mx;, (6.228)
which upon rearranging terms becomes
- 1 . . n
u = [(mb +m)u” +mhO” + mx; ] (6.229)
m, +m
Equation (6.200) can be written as
i =i+ e P il Lo (6.230)
(p+1) (p+1) h

in which p =m/m, is the mass ratio.

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

+

~[Fdt=(AL,.), =(Ly). ~ (L), <[ Fudt=m, (i + %, )—m, (i +%,)

(6.231)
= [ Fdt = myi” —myi"
Substitute (6.226) into (6.231):
- 1 . - .
u = [(mb +m)u” +mhO” +mx; ] (6.232)
m, +m

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.
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As it can be seen the Equation (6.232) giving the post-impact horizontal velocity for impact
from slide-rocking about O' (realized when 6 > 0) is identical to the Equation (6.203) giving

the post-impact horizontal velocity for impact from slide-rocking about O (realized when

0<0).

6.4.2 Pure rocking occurs after impact

Derivation for the case of impact during rocking about point O

Consider the system at the instant when the block hits the moving base from rocking about O
and re-uplifts pivoting about the impacting corner, O'. As mentioned before, impact is
accompanied by an instantaneous change in velocities, with the system displacements being

unchanged. Therefore, the impact analysis is reduced to the computation of the initial
conditions for the post-impact motion, u*, and @*, given the position and the pre-impact

velocities, i~ , x,,and 6" .

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdt=(AL) =L -L: [Fdt=mX"—mX" (6.233)
[Fdi=(AL), =Li-L: [Fdt=mZ" -mZ (6.234)

in which J. F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O");

X‘z@‘+&)+ﬁ#&? X*:Qﬁ+xg+x;+ﬁn and Z‘:@@+2g, Z*:@*+2J

rot ? rot

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

the block, respectively; X, X. and Z,,, z. are the relative pre- and post-impact horizontal

rot rot > rot
and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X are the relative pre- and post-impact horizontal velocities of the mass center
of the block due to the sliding, relative to the rigid base; L, L, L. and L. are the pre- and

post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the

changes in horizontal and vertical linear momentum, respectively.
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Substituting these expressions into Equations (6.233) and (6.234) we obtain

[ Fudt = mi” +ms; +mi), —mi” —mi —ms,, (6.235)

[Fdt=mz, —mz, (6.236)
In addition, the principle of angular impulse and momentum states that
[Medt=AH, =H; ~H,: b([Fdt)=h([Fdt)=10"-16 (6.237)

in which J M .dt is the angular impulse; H_ and H_ are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum
about the mass center.

In Equations (6.235) and (6.236), the pre- and post-impact horizontal and vertical components
of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, 8~ and #* as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can

be expressed as
vV o =v,+0 xr., (6.238)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r.,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

v =X i+Zk=(u +x,+% +%,,)i+(z,+2,)k (6.239)
vo=(i +x,+ % )i+(z, )k (6.240)
0 =07] (6.241)
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teo =—rsin(a—0)i+rcos(a—0)k (6.242)

At impact, the angular rotation of the block becomes zero (6’ = 0) and the position vector of

center-of-mass relative to point O, r,,,, can be rewritten as

teo =—(rsina)i+(rcosa)k =—bi + hk (6.243)

in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (6.239) through (6.243) into Equation (6.238), the pre-impact

translational velocity becomes

vo= (i, (2, 42, = (i, )i (2, )R+ (07 ])x(<bi +hE) (6.244)

which simplifies to
%0+ 2,k =(b0 ) k+(ho)i (6.245)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.246)

. =bO" (6.247)

rot

For the post-impact state, the translational velocity vector of the mass center (Figure 6-17) can

be expressed as

Vo= vh tet xr, (6.248)

where v* is post-impact translational velocity vector of center-of-mass, v/ is post-impact

+

translational velocity vector of point O', w" is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O"'.
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Figure 6-17: Components of post-impact translational velocity of the isolated block for the

case of impact during slide-rocking about point O.

Expressions for these vector quantities are given below:

vi= X+ 2= (0" + %, + 1], )i+ (2], + 2, )k (6.249)
vy = (" +x,)i+(z, )k (6.250)

0 =0"j (6.251)

teo =rsin(a—0)i+rcos(a-0)k (6.252)

At impact (9 = 0) the position vector of the mass center relative to point O', r,,,, becomes
teo =(rsina)i+(rcosa)k = bi + hk (6.253)

On substituting Equations (6.249) through (6.253) into Equation (6.248), the post-impact

translational velocity becomes

vi= (i i, i, )i+ (2 +z'g)12:(u++xg)i+(z'g)12+(0’+}')x(bf+h1€) (6.254)

rot
which reduces to

i+ 2l k= (b0 e+ (h6" )i (6.255)

rot rot

from which the post-impact horizontal and vertical components of v* can be retrieved as
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i = he* (6.256)

rot

z =—bO* (6.257)

rot

Substitution of Equations (6.246) through (6.257) into Equations (6.235) through (6.237)

yields
[ Fodt = mi +m(h6")=mi™ —ms; —m(h6") (6.258)
[F.dt =m(-b6")=m(b0") (6.259)
b(jgdr)—h(jzadz) =1(67)-1(6") (6.260)

in which the centroid mass moment of inertia for the rectangular block is given by
m o, M2 12
I=—r=—(b"+h 6.261
=) (6:261)

Equations (6.258), (6.259) and (6.260) constitute a set of three equations in four unknowns,

namely Idet , Idet , 0%, 0.

Equivalently, the three Equations (6.258), (6.259) and (6.260) can be combined in one (by

eliminating the two impulses) in two unknowns:
(407 +4h*) 0" +3ha* = (40> =267 )0 +3hii” + 3, (6.262)

One additional equation is therefore required to uniquely determine the post-impact velocities
0", u". By considering the system in its entirety during the impact, it can be stated that the
horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(AL, =(L, ) ~(2,), =0 [(2)i+(2) | (1) (1), ] -0

(6.263)
)] :[mb(u— w3, )+ m(i 4+ +x)]

B i s
:>[mb(u +xg)+m(u +X, +X,

rot
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in which (LSyS )7 and (Lm )+ are the pre- and post-impact horizontal linear momentum of the

X X

system respectively; (ALWS) is the change in horizontal linear momentum of the system.

Substituting Equations (6.246) and (6.256) in Equation (6.263) gives
myi" +mi” +mhO" = myui” +mi” +mx, +mh6” (6.264)
which upon rearranging terms becomes

ut = . i " [(mb +m)L'f +mx; —mhO" + mhé’} (6.265)

Substituting Equation (6.265) in (6.262) gives

(40> +41°) 0" + [(mb +m)i +mi; —mh* +mh9’*]

m, +m (6.266)
= (41" =207 )0 +3hii” +3hi;

which yields

. (4mbh2 —2m,b* + mh® —2mb’ )9" +3hm,x;
0" = . — (6.267)
(4m, 1> +4m,b* +mh’ +4mb’ )

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

+

~[Fdt=(AL,.), =Ly ). = (Lyw ). - Fudt =m, (i + %, ) —m, (i +%,)

+

(6.268)
= J.det =myu —myu

in which (me )7

X

and (me )+

X

are the pre- and post-impact horizontal linear momentum of

the base respectively; (AL

‘base

)x is the change in horizontal linear momentum of the base.

Substituting Equation (6.268) into Equation (6.258) gives
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mi —myi" =mi" +m(h" ) —mi” —ms; —m(h0") (6.269)

which yields

it = mbim [(m, +m)i™ +mi, —mh0" +mhé" | (6.270)

Substituting Equation (6.270) in Equation (6.262) gives

. (4mp* =2m b + mh® —2mb* )0 +3hm,x;
6 = - —— — (6.271)
(4mbh +4m,b” +mh” +4mb )

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.
Derivation for the case of impact during rocking about point O'

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) = Li-L;: [Fdt=mX"—mX" (6.272)
[Fdt=(AL) =L:~L;: [Fdt=mZ"-mZ" (6.273)

in which J.det and Idet are the horizontal and vertical impulses (assumed to act at O);

= .- . .- .- Y e . .+ .+ 7— [ 2— . 7+ _ [ o+ .
X —(u +xg)+x3_+x X —(u +xg)+x5+xmt and Z —(zmt+zg), z _(Zr'at+Zg)

rot ?

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

x' and Z_ , Z  are the relative pre- and post-impact horizontal

rot rot ° rot

the block, respectively; x_,
and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X are the relative pre- and post-impact horizontal velocities of the mass center

of the block due to the sliding, relative to the rigid base; L_, L, L, and L. are the pre- and

post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the

changes in horizontal and vertical linear momentum, respectively.
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Substituting these expressions into Equations (6.272) and (6.273) we obtain

[ Fudt = mi” +ms; +mi), —mi” —mi —ms,, (6.274)

[Fdt=mz, —mz, (6.275)
In addition, the principle of angular impulse and momentum states that
[Medt=AH, =H; ~H,: b([Fdt)=h([Fdt)=10"-16 (6.276)

in which jM cdt is the angular impulse; H. and H are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum
about the mass center.

In Equations (6.235) and (6.236), the pre- and post-impact horizontal and vertical components
of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, 8~ and #* as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can

be expressed as

Vo=V, + 0 XF, (6.277)

where v~ is pre-impact translational velocity vector of center-of-mass, v,. is pre -impact

translational velocity vector of point O', @™ is pre-impact angular velocity vector of the

block, and r,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

v =X i+Zk=(u +x,+% +%,,)i+(z,+2,)k (6.278)
vo =(i+x,+x)i+(2, )k (6.279)
0 =07] (6.280)
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Tero =—rsin(a—0)i+rcos(a—0)k (6.281)

At impact, the angular rotation of the block becomes zero (6’ = 0) and the position vector of

the mass center relative to point O', r.,,, can be rewritten as
teyg =—(rsina)i+(rcosa)k = —bi +hk (6.282)

in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (6.278) through (6.282) into Equation (6.277), the pre-impact

translational velocity becomes

vo= (i i, i i, )i (2, 42 k=00 + 5, +x;)i+(z'g)1€+(9-})x(—bf+h1€) (6.283)

which reduces to
%0+ 2,k =(b0 ) k+(ho)i (6.284)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.285)
i, =bO (6.286)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-18) can

be expressed as

vi=v +o xr,, (6.287)

where v" is post-impact translational velocity vector of center-of-mass, v is post-impact

translational velocity vector of point O, " is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O.
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Figure 6-18: Components of post-impact translational velocity of the isolated block for the

case of impact during slide-rocking about point O'.

Expressions for these vector quantities are given below:

vi= X+ 2= (0" + %, + 1], )i+ (2], + 2, )k (6.288)
vo=(i" +x,)i+(z,)k (6.289)

0 =0"j (6.290)

top =rsin(a—0)i+rcos(a—0)k (6.291)

At impact (9 = 0) the position vector of the mass center relative to point O, r,,,, becomes
teo = (rsina)i +(rcosa)k =bi + hk (6.292)

On substituting Equations (6.288) through (6.292) into Equation (6.287), the post-impact

translational velocity becomes

vi= (i i, i, )i+ (2 +z'g)12:(u++xg)i+(z'g)12+(0’+}')x(bf+h1€) (6.293)

rot
which simplifies to
i+ k :(—bé*)12+(h6"*)f (6.294)

rot rot

from which the post-impact horizontal and vertical components of v* can be retrieved as
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i = he* (6.295)

rot

z =—bO* (6.296)

rot

Substitution of Equations (6.246) through (6.257) into Equations (6.235) through (6.237)

yields
[ Fodt = mi +m(h6")=mi™ —ms; —m(h6") (6.297)
[ F.dt=m(-b0")—m(p0") (6.298)
b(jgdr)—h(jzadz) =1(67)-1(6") (6.299)

in which the centroid mass moment of inertia for the rectangular block is given by
m o, M2 12
I=—r=—(b"+h 6.300
=) (6:300)

Equations (6.258), (6.259) and (6.260) constitute a set of three equations in four unknowns,

namely Idet , Idet , 0%, 0.

Equivalently, the three Equations (6.258), (6.259) and (6.260) can be combined in one (by

eliminating the two impulses) in two unknowns:
(407 +4h*) 0" +3ha* = (40> =267 )0 +3hii” + 3, (6.301)

One additional equation is therefore required to uniquely determine the post-impact velocities
0" , " . By considering the system in its entirety during the impact, it can be stated that the
horizontal impulse on the system is zero, resulting in the conservation of the system’s linear

momentum in the horizontal direction. That is,

(AL, =(L, ) ~(2,), =0 [(2)i+(2) | (1) (1), ] -0

(6.302)
)] :[mb(u— w3, )+ m(i 4+ +x)]

B i s
:>[mb(u +xg)+m(u +X, +X,

rot
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in which (LSyS )7 and (Lm )+ are the pre- and post-impact horizontal linear momentum of the

X X

system respectively; (ALWS) is the change in horizontal linear momentum of the system.

Substituting Equations (6.246) and (6.256) in Equation (6.263) gives
myi" +mi” +mhO" = myui” +mi” +mx, +mh6” (6.303)
which upon rearranging terms becomes

it = . 1+ ~ [(m, +m)i™ +mi, —mh0" +mhé" | (6.304)

Substituting Equation (6.265) in (6.262) gives

(40> +41°) 0" + [(mb +m)i +mi; —mh* +mh9’*]

m, +m (6.305)
= (41" =207 )0 +3hii” +3hi;

which yields

. (4mbh2 —2m,b* + mh® —2mb’ )9" +3hm,x;
0" = . — (6.306)
(4m, 1> +4m,b* +mh’ +4mb’ )

Alternatively, instead of considering the conservation of the linear momentum (in the
horizontal direction) of the entire system, one can apply the principle of linear impulse and

momentum (in the horizontal direction) of the base alone, which states that

+

~[Fdt=(AL,.), =Ly ). = (Lyw ). - Fudt =m, (i + %, ) —m, (i +%,)

+

(6.307)
= J.det =myu —myu

in which (me )7

X

and (me )+

X

are the pre- and post-impact horizontal linear momentum of

the base respectively; (AL

‘base

)x is the change in horizontal linear momentum of the base.

Substituting Equation (6.268) into Equation (6.258) gives
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mi —myi" =mi" +m(h" ) —mi” —ms; —m(h0") (6.308)
which yields

it = mbim [(m, +m)i™ +mi, —mh0" +mhé" | (6.309)

Substituting Equation (6.270) in Equation (6.262) gives

. (4mp* =2m b + mh® —2mb* )0 +3hm,x;
6 = - —— — (6.310)
(4mbh +4m,b” +mh” +4mb )

which is identical to the result derived by considering the conservation of the system’s linear

momentum in the horizontal direction.

Substituting the expression for §* in Equation (6.309), Equations (6.309) and (6.311) can be

written as
N p(2°+4) ] 6 ph L
= o = O (6312
S T (o d)ealpe)) " T (pra)ra(prn) U AN TAC (631
j 34 _ A(p+d)-2(p+l) .
0= + 0 = B, +¢e0 6.313
b[/lz(p+4)+4(p+1)]xs 2 (p+4)+4(p+1) i, +e ( )

where A=h/band p=m/m,.

As it can be seen the Equations (6.270) and (6.271) giving the post-impact horizontal velocity
for impact from slide-rocking about O' (realized when € > 0) is identical to the Equations
(6.309) and (6.310) giving the post-impact horizontal velocity for impact from slide-rocking
about O (realized when 6 <0).

The coefficients of “linear restitution” f, and S, in Equation (6.312), associated with the
reduction of the post-impact linear velocity of the rigid base, is defined by

6h

b (pea)+a(o])

(6.314)
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p(/12+4)
A (p+4)+4(p+1)

B = (6.315)

and the coefficients of “angular restitution” & and “linear restitution” f; in Equation (6.313),

associated with the reduction of the post-impact angular velocity of the block, is defined by

2 (p+4)-2(p+1)

ST (pea)ra(pe) V&
. 31
P (pra) e a(p11)] (6:317)

Equation (6.316) reveals that the coefficient of angular restitution & depends both on the

slenderness ratio A and the mass ratio p. The coefficient S, in Equation (6.314), which is

associated with the reduction of the post-impact linear velocity of the rigid base, depends not

only on the parameters A and p, but also on the absolute size of the block (in terms of its
height). The variation of coefficient of angular restitution &, and coefficient g, with

slenderness ratio A is shown in Figure 6-9.

The coefficient S, in Equation (6.315), which is associated with the reduction of the post-
impact linear velocity of the rigid base, depends on the parameters A and po. The variation of
the coefficient S, is plotted against the slenderness ratio A for different values of the mass
ratio p, Figure 6-19a. Observe that value of the coefficient S, reduces faster for lower values

of slenderness ratio A (stocky blocks) in comparison with larger values of A which the

coefficient f, is almost steady. In contrast, the coefficient [, is seen to be dependent on the

mass ratio p, regardless of slenderness ratio 4. As follows from the comparison of Figure

6-9 and Figure 6-19, the post-impact linear velocity of the rigid base is strongly dependent on

the mass ratio p and on small values of slenderness ratio 4 (stocky blocks).

The coefficient S in Equation (6.317), which is associated with the reduction of the post-
impact angular velocity of the rigid base, depends not only on the parameters A and p, but

also on the absolute size of the block (in terms of its width). The normalized coefficient
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B = B.b is plotted against the slenderness ratio A for different values of the mass ratio p in
Figure 6-19b. Observe that the value of the coefficient g, increases rapidly with the

slenderness ratio A, until A =1 and then it decreases more slowly as the slenderness ratio is
getting larger. Similarly, the dependency of coefficient ¢ on the mass ratio p is seen to be
weak for very slender blocks, practically diminishing for A>8. As follows from the
comparison of Figure 6-9 and Figure 6-19, the post-impact angular velocity of the rigid base is

strongly dependent on the slenderness ratio A and the influence of the mass ratio o on the

coefficients 4, and f, is much greater than that on the coefficients ¢ and g, = B;b.
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Figure 6-19: Variation of (a) coefficient £, , and (b) coefficient 5. with slenderness ratio 4.

6.4.3 Pure Sliding occurs after impact
When rocking of the block on top of the moving base ceases, the system will attain a sliding

regime. In this case, the impact analysis is reduced to the computation of the post-impact

translational velocity of the system, #", x', given the position and the pre-impact velocities,

u , x,,and 0.
Derivation for the case of impact during rocking about point O

Consider the system at the instant when the block hits the moving base from rocking about O.
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With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) = Li-L: [Fdt=mX"—mX" (6.318)
[Fdi=(AL), =Li-L: [Fdt=mZ" -mZ" (6.319)

in which I F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O');

X‘:(a'+xg)+x;+x- )’(+=(a++xg)+x;+x+ and Z_z(é;)t+z'g), Z+=(Z+ +z'g)

rot ? rot rot

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

x' and z_ , Z  are the relative pre- and post-impact horizontal

rot rot > rot

the block, respectively; x_,
and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X, are the relative pre- and post-impact horizontal velocities of the mass center

of the block due to the sliding, relative to the rigid base; L, L, L, and L] are the pre- and

post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the
changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (6.318) and (6.319) we obtain

[ Fdt = mii* + mi +mx), —mi” —mi; - m,, (6.320)
[Fdt=mz}, —mz, (6.321)

In Equations (6.320) and (6.321), the pre- and post-impact horizontal components of the

relative translational velocity of the mass center can be expressed in terms of the pre-impact

angular velocity of the block, ™ as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can

be expressed as

vV o=v,+0 xr., (6.322)
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where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r.,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

vo=XTi+Z k=0 +x, 4%, 45 )i +(2, +2, )k (6.323)
vo = (i +x, +x )i+ (z, )k (6.324)

0 =0j (6.325)

teo =—rsin(a—0)i+rcos(a—0)k (6.326)

At impact, the angular velocity of the block becomes zero (49 = 0) and the position vector of

center-of-mass relative to point O can be written as
teo =—(rsina)i+(rcosa)k =—bi + hk (6.327)

On substituting Equations (6.323) through (6.327) into Equation (6.322), the pre-impact

translational velocity becomes
vo= (i, i, + X )i+ (2, 42, k=i +x, +x;)f+(z‘g)12+(9'*j)x(—bi+h12) (6.328)
which reduces to
%0 +2,k= (b0 )k+(h0)i (6.329)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =hO (6.330)

i, =bO" (6.331)
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For the post-impact state, the translational velocity vector of the mass center can be expressed

as
vi=v, +0" xr.,, (6.332)

where v* is post-impact translational velocity vector of center-of-mass, v/ is post-impact

+

translational velocity vector of point O', w" is post-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

v =X+ Z k=i ki, 410 )i+ (2, 2, )k (6.333)
v = (" + %, +47 )i +(2, )k (6.334)

0t =0"j=0j (6.335)

Yoo =rsin(a—0)i+rcos(a—0)k (6.336)

At impact (6’ = 0) , the position vector of the mass center relative to point O' becomes

A

too =(rsina)i+(rcosa)k = bi + hk (6.337)

On substituting Equations (6.333) through (6.337) into Equation (6.332), the post-impact

translational velocity becomes

vi= (i 4, i, i)+ (2 +z'g)1€=(a++xg+x;)i+(z‘g)12+(o})x(bi+h1€) (6.338)

rot rot
which simplifies to
X i+z k=0k+0i (6.339)
from which the post-impact horizontal and vertical components of v* can be retrieved as

i =0 (6.340)

rot
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2 =0 (6.341)

rot

Substitution of Equations (6.330) through (6.341) into Equations (6.320) and (6.321) yields

jdet =mu" +mx;] —mu" —m(hé"’)—mfc; (6.342)
j F.dt =—mb6" (6.343)

which constitutes one equation in three unknowns: Idet ,ut, x!.

Two additional equation is therefore required to uniquely determine the post-impact velocity

4" and % .

By considering the system in its entirety during the impact, it can be stated that the horizontal
impulse on the system is zero, resulting in the conservation of the system’s linear momentum

in the horizontal direction. That is,

(AL,.), =(2,.) ~(20), =0 | (L) +(Ly)! || (B ) (£, =0

= [mb (L'ﬁ +5cg)+m(a+ +X, +5c:)] =[mb (a- +xg)+m(u' +X, +X + X, +5c;o,) 0349
Substituting Equations (6.330) and (6.331) in Equation (6.344) gives
mi" +mi” +mxl = my” +mi” +mhO” + mx; (6.345)
which upon rearranging terms becomes
i = [(m, +m)i™ +mh6™ +mi; —mi; | (6.346)
m, +m

With regard to the block, the principle of frictional impulse in the x and z direction states that

[ Ft=—sen(i )

_[FZdt‘ (6.347)
Substituting Equations (6.342) and (6.343) in Equation (6.347) gives

mu" +mx; —mi~ —m (hé”)— mx, = —sgn()'c_: ),uk ‘—mbé" (6.348)
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Assume that sgn (xj) > 0, Equation (6.348) can be written as
e A AR LA Ay (6.349)

Substituting Equations (6.349) in Equation (6.346) gives

ut = p 1+ - [(mb +m)i” +mh6 +mx; —m(—,uk ‘—bé’"JrLf +hO +x; —Ll+):| (6.350)

Which upon rearranging terms become

0 =i g [-bO| (6.351)
m

b

Substituting Equation (6.351) in Equation (6.349) gives
o m . =L
i =—(1+—j 1 |-b67 |+ ho + %, (6.352)
n,

Once Equation (6.352) is solved and x is calculated positive, then the assumption and
Equation (6.352) are correct, else a second assumption must be computed, sgn()‘c:) <0 and

Equation (6.351) can be rewritten as

X = | -bO |+ i+ RO+ i (6.353)

Substituting Equations (6.353) in Equation (6.346) gives

0t = — [(mh+m)u*+mh9’*+mx;—m(ﬂk\—béf\mwhéwxg-L'fﬂ (6.354)
m, +m

Which upon rearranging terms become

i =i = gy || (6.355)
mh

Substituting Equation (6.355) in Equation (6.353) gives
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it= [1 +ﬂj s |-b0 |+ h6 + i (6.356)
n,

The absolute value in Equations (6.351), (6.352), (6.355) and (6.356) can be dropped since the

impulse in the z direction must be positive.

Equations (6.351), (6.352), (6.355) and (6.356) can be rewritten in the form

i =i +sgn (57) 2 g, (-b07) (6.357)
m,
X = —sgn(x;)(nﬂJ 1, (~bO" )+ hO™ + 5 (6.358)
m,,

Derivation for the case of impact during rocking about point O’
Consider the system at the instant when the block hits the moving base from rocking about O.

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) = Li-L: [Fdt=mX"—mX" (6.359)
[Fdi=(AL), =Li-L: [Fdt=mZ" -mZ° (6.360)

in which J. F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O');

rot ? rot

X~ :(a‘ +xg)+x; +x ., X°* :(LZ+ +5cg)+5c; +x' and Z~ :(z‘;m +z'g), z* :(z‘+ +z‘g)
are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

the block, respectively; X, X, and Z,,, z. are the relative pre- and post-impact horizontal
and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X, are the relative pre- and post-impact horizontal velocities of the mass center

of the block due to the sliding, relative to the rigid base; L, L, L, and L] are the pre- and

post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the

changes in horizontal and vertical linear momentum, respectively.

171



Substituting these expressions into Equations (6.359) and (6.360) we obtain

[ Fudt = mi” +ms; +mi), —mi” —mi —ms,, (6.361)

(6.362)

rot ot

[Fdt=mz, —mz,

In Equations (6.361) and (6.362), the pre- and post-impact horizontal components of the
relative translational velocity of the mass center can be expressed in terms of the pre-impact

angular velocity of the block, 8~ as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can

be expressed as

Vo=V, o XFg, (6.363)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre -impact

translational velocity vector of point O', w™ is pre-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

vo=XTi+Z k= +x, + %, 45 )i +(2, +2, )k (6.364)
v =(i +x,+x )i+(2, )k (6.365)

0 =07j (6.366)

Feo =rsin(a—0)i+rcos(a—0)k (6.367)

At impact, the angular velocity of the block becomes zero (6’ = 0) and the position vector of

the mass center relative to point O' can be rewritten as

r —(rsina)f+(rcosa)l€ =bi + hk (6.368)

c/o"
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On substituting Equations (6.364) through (6.368) into Equation (6.363), the pre-impact

translational velocity becomes

A A

vo= (i i, v, )i+ (2, 2, k= (0 + x5, 45 )i +(2,)k +(9"})><(bi+hl€) (6.369)
which reduces to
i i+ 2, k= (=bO7 Ve +(hO7 )i (6.370)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =ho" (6.371)
i =—bO" (6.372)

For the post-impact state, the translational velocity vector of the mass center can be expressed

as

vi=v, +o xr., (6.373)

where v" is post-impact translational velocity vector of center-of-mass, v is post-impact

translational velocity vector of point O, " is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

v =X+ Z k=i ki), 410 )i+ (2, 2, )k (6.374)
vo = (" +x, +x )i+ (z, )k (6.375)
0t=0"j=0j (6.376)

teo =—rsin(a—0)i+rcos(a—0)k (6.377)

At impact (6’ = 0) , the position vector of the mass center relative to point O becomes
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teo =—(rsina)i+(rcosa)k =—bi + hk (6.378)

On substituting Equations (6.374) through (6.378) into Equation (6.373), the post-impact

translational velocity becomes

rot rot

v (i, ), 1 )T (2, 2, k= (i, )i (2, )R+ (07)x(<bE + k) (6.379)
which simplifies to

X i+z k=0k+0i (6.380)

rot
from which the post-impact horizontal and vertical components of v* can be retrieved as

i =0 (6.381)

rot

2t =0 (6.382)

rot

Substitution of Equations (6.371), (6.372), (6.381) and (6.382) into Equations (6.361) and
(6.362) yields

[ Fdt = mi* +mi; —mi” —m(h6")—ms; (6.383)
[ F.dt =mbb- (6.384)

which constitutes one equation in three unknowns: j Fdt,u", x;.

Two additional equation is therefore required to uniquely determine the post-impact velocity

u’ and x.

By considering the system in its entirety during the impact, it can be stated that the horizontal
impulse on the system is zero, resulting in the conservation of the system’s linear momentum

in the horizontal direction. That is,
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(AL ), =(Eo ), ~(20), =05 [(B) (1) [ () #(2). ] =0

(6.385)
= [ m, (6 4%, )+ m(i 5, +57) | = m, (6 4%, ) +m(i + %, 43 +5 +%,)
Substituting Equations (6.371) and (6.372) in Equation (6.385) gives
mui’ +mu’ +mx; =mu +mu + mhO~ + mx, (6.386)
which upon rearranging terms becomes
1 .
u = m, +m)u +mh@ +mx, —mx’ 6.387
m, +m L m) ‘ '] (6.387)

With regard to the block, the principle of frictional impulse in the x and z direction states that

[ Ft=—sen(i) || F.tf (6.388)
Substituting Equations (6.383) and (6.384) in Equation (6.388) gives

mii* +ms! —mi” —m(h6")-mx; =—sgn (%), [mb6" | (6.389)
Assume that sgn (x:) > 0, Equation (6.389) can be written as

=gy [pO| i+ RO+ i (6.390)

Substituting Equations (6.390) in Equation (6.387) gives

i = mhler [(mb +m)i +mhO +mx; —m(—,uk ‘bé"ﬂl’ +hO +x; —u*)} (6.391)

Which upon rearranging terms become

i =i+ g, || (6.392)
m,

Substituting Equation (6.392) in Equation (6.390) gives
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it = —(1+ﬂJ p b0+ hé + i (6.393)
m,

Once Equation (6.393) is solved and x is calculated positive, then the assumption and
Equation (6.393) are correct, else a second assumption must be computed, sgn()'c:) <0 and

Equation (6.392) can be rewritten as
X = b6 |+ + RO+ i i (6.394)

Substituting Equations (6.394) in Equation (6.387) gives

it = mlerm [(mb +m)i +mhO +mx; —m(,uk ‘bé"ﬂl’ +hO + %] —a*)} (6.395)

Which upon rearranging terms become

i =i = g || (6.396)
m,
Substituting Equation (6.396) in Equation (6.394) gives
. m S
i =(1+—J p b0 |+ 6+, (6.397)
m,

The absolute value in Equations (6.392), (6.393), (6.396) and (6.397) can be dropped since the

impulse in the z direction must be positive.

Equations (6.392), (6.393), (6.396) and (6.397) can be rewritten in the form

i =1 +sgn (i), (b07) (6.398)
m,
X = —sgn(x;)[l +ﬂJ 4, (bé’) +hO + % (6.399)
m,

6.4.4 Slide-rocking continues after impact

Derivation for the case of impact during rocking about point O
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Consider the system at the instant when the block hits the moving base from rocking about O
and re-uplifts pivoting about the impacting corner, O'. As mentioned before, impact is
accompanied by an instantaneous change in velocities, with the system displacements being

unchanged. Therefore, the impact analysis is reduced to the computation of the initial

conditions for the post-impact motion, #" , x, and 0", given the position and the pre-impact
velocities, 1~ , x,, and o .

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) = Li-L: [Fdt=mX"—mX" (6.400)
[Fdi=(AL), = Li=L.: [Fdt=mZ"-mZ° (6.401)

in which I F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O');

rot ? rot rot

X :(a' +5cg)+5c; +x,,, X'=(i +5cg)+)‘c; +x° and Z° =(z',,‘ot +z'g), z* =(z’+ +z'g)
are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

the block, respectively; x_,, X, and Z_, Z.  are the relative pre- and post-impact horizontal

rot > rot rot > rot

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X are the relative pre- and post-impact horizontal velocities of the mass center

of the block due to the sliding, relative to the rigid base; L, L), L. and L. are the pre- and

post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (6.400) and (6.401) we obtain

[ Fdt = mii* + mi +m),, —mi™ —mi; - m,, (6.402)
j Fdt= mz, —ms. (6.403)

rot ot

In addition, the principle of angular impulse and momentum states that
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[Medt=AH =H~H: b([F.dt)=h([Fdt)=10"~16" (6.404)

in which J. M .dt is the angular impulse; H_ and H/ are the pre- and post-impact angular
momentum about the mass center, respectively; AH. is the change in the angular momentum
about the mass center.

In Equations (6.400) and (6.401), the pre- and post-impact horizontal and vertical components

of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, 8~ and #* as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can

be expressed as

Vo=V, + 0 Xr., (6.405)

where v~ is pre-impact translational velocity vector of center-of-mass, v, is pre-impact

translational velocity vector of point O, @™ is pre-impact angular velocity vector of the block,

and r.,, is position vector of the mass center relative to point O.

Expressions for these vector quantities are given below:

vi=Xd+Zk=(d +x, 45 %, )i+(2, +2, )k (6.406)
vo = (i +x, +x )i+ (2, )k (6.407)

w =0"j (6.408)

Tero =—rsin(a—0)i+rcos(a—0)k (6.409)

At impact, the angular rotation of the block becomes zero (6’ = 0) and the position vector of

center-of-mass relative to point O, r,,,, can be rewritten as

reo =—(rsina)i+(rcosa)k =-bi +hk (6.410)
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in which i and k are the horizontal and vertical unit vectors respectively.

On substituting Equations (6.406) through (6.410) into Equation (6.405), the pre-impact

translational velocity becomes

v z(a’ﬂ'cg X+ )f+(z';m +z'g)l€=(zf+5cg +>'c;)f+(z'g)ﬁ+(9’}')x(—b§+hl€) (6.411)

rot
which reduces to
%, i+ 2,k = (b0 )k+(h0)i (6.412)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as

X =h6" (6.413)

5, = b6 (6:414)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-20) can

be expressed as

vi=v, +0 xr.,, (6.415)

where v" is post-impact translational velocity vector of center-of-mass, v/, is post-impact

4

translational velocity vector of point O', " is post-impact angular velocity vector of the

block, and r,,, is position vector of the mass center relative to point O".

Figure 6-20: Components of post-impact translational velocity of the isolated block for the

case of impact during slide-rocking about point O.
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Expressions for these vector quantities are given below:

vi= X4 Z k= (0" vk, x4 1] )+ (2], 42, )k (6.416)
v = (0" + %, + 57 )i +(2, )k (6.417)

0 =0"j (6.418)

reo =rsin(a—0)i+rcos(a-0)k (6.419)

At impact (6 =0) the position vector of center-of-mass relative to point O', r,,, becomes

A

teo =(rsina)i+(rcosa)k = bi + hk (6.420)

On substituting Equations (6.416) through (6.420) into Equation (6.415), the post-impact

translational velocity becomes

A

v = (i, )i (2 +z'g)1€=(a++xg+x;)i+(z'g)k+(9’+})x(bi+h12) (6.421)

ot
which simplifies to
i+ 20k = (b0 )k +(h0" )i (6.422)
from which the post-impact horizontal and vertical components of v* can be retrieved as
Xt =ho* (6.423)

rot

z =—bh* (6.424)

rot

Substitution of Equations (6.410), (6.411), (6.420) and (6.421) into Equations (6.402) through
(6.404) yields

[Fdt = mi +m(h0")+ms; —mi” —mi; —m(h6") (6.425)
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j F.dt =m(-b6")-m(b6") (6.426)

b(J.det)—h(.fodt)=1(9*)—I(9’) (6.427)

in which the centroid mass moment of inertia for the rectangular block is given by

_m o, Mg, 2
1=2r _?(b +h’) (6.428)

Equations (6.425), (6.426) and (6.427) constitute a set of three equations in five unknowns,
namely Idet , Idet , 0%, ut, x!

Equivalently, the three Equations (6.425), (6.426) and (6.427) can be combined in one (by
eliminating the two impulses) in three unknowns:

(407 +4h*) 0" + 3hii* +3hs! = (4h* =2b )0 +3hi” + 3, (6.429)

Three additional equations is therefore required to uniquely determine the post-impact
velocities @°, ", % *. By considering the system in its entirety during the impact, it can be

stated that the horizontal impulse on the system is zero, resulting in the conservation of the

system’s linear momentum in the horizontal direction. That is,

(80,), (1) (), =00 [(1n) {2 () #(20), ]=0

A /A
:>[mb(u +xg)+m(u +X, +X; +X,

rot

(6.430)
)] =[mb (i + %, )+ m(i +3, +3 +x)]

in which (Lsys )_ and (Lw )+ are the pre- and post-impact horizontal linear momentum of the

X X

system respectively; (ALM) is the change in horizontal linear momentum of the system.
Substituting Equations (6.413), (6.414), (6.423) and (6.424) in Equation (6.430) gives
mi* +mit + mx” +mhO" =mgi +mi +mx; +mhé” (6.431)

which upon rearranging terms becomes

181



u = " 1+ — [(mb +m)u” +mx; - mhé* —mx; + mh@’} (6.432)

Substituting Equation (6.432) in (6.429) gives

)

my +m (6.433)
=(4h* =26 )60 +3hii” +3hx;

(467 + 4R )6 + [(m, +m)i™ +mi; —mh0® —m; +mh6 | +3hi;

which yields

: (4mbh2 —2m,b”* +mh* —2mb’ ) 0™ +3hm,x, —3hm, %’
0" = > > > > (6.434)
(4m,1* +4m,b* + mh® + 4mb” )

With regard to the block, the principle of frictional impulse in the x and z direction states that

[ Ft=—sen(i) || F.tf (6.435)

Substituting Equations (6.425) and (6.426) in Equation (6.435) gives
mi* + m(hé’+ ) +mx] —mu~ —mx, — m(hé"’) = —sgn()'c:),uk ‘m(—bé+ ) —m(b@" )‘ (6.436)
Assume that sgn (xj) > 0, Equation (6.436) can be written as
% ==, |(~b0")~(b67 )|~ ~h6" +i” 435 + h6" (6.437)

Once Equation (6.437) is solved and x is calculated positive, then the assumption and
Equation (6.437) are correct, else a second assumption must be computed, sgn()'c:) <0 and

Equation (6.436) can be rewritten as
55 = 1 |(~b0" ) =(b0° )|~ —hO" +ii” + %, + h" (6.438)

The absolute value in Equations (6.437) and (6.438) can be dropped since the impulse in the z

direction must be positive.
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Equations (6.437) and (6.438) can be rewritten in the form
%) =—sgn () g | (-b0")~(b67) |~ii" ~h6" +ii” +, +ho" (6.439)

Derivation for the case of impact during rocking about point O'

With regard to the block, the principle of linear impulse and momentum in the x and :z

direction states that

[Fdi=(AL) = Li-L: [Fdt=mX"—mX" (6.440)
[Fdt=(AL) =L:~L;: [Fdt=mZ"-mZ" (6.441)

in which I F dt and I F.dt are the horizontal and vertical impulses (assumed to act at O"');

X =(0 +x,)+% +x,, X =(i"+x)+x+%, and Z =(z,+2,), Z'=(z,+2,)
are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of

x' and z._ , Z  are the relative pre- and post-impact horizontal

rot rot rot

the block, respectively; x_,
and vertical velocities of the mass center of the block due to the rocking, relative to the rigid
base; X, and X, are the relative pre- and post-impact horizontal velocities of the mass center
of the block due to the sliding, relative to the rigid base; L, L), L. and L. are the pre- and
post-impact horizontal and vertical linear momentum, respectively; (AL)X and (AL)Z are the

changes in horizontal and vertical linear momentum, respectively.

Substituting these expressions into Equations (6.440) and (6.441) we obtain

[ Fdt = mii* + mi +mx), —mi” —mi; —mi,, (6.442)
[Fdt=mz, —mz, (6.443)

In addition, the principle of angular impulse and momentum states that
[Medt=AH =H;~H: —b([Fdt)=h([Fdt)=16"-10" (6.444)
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in which J M .dt is the angular impulse; H_ and H_ are the pre- and post-impact angular
momentum about the mass center, respectively; AH . is the change in the angular momentum
about the mass center.

In Equations (6.442) and (6.443), the pre- and post-impact horizontal and vertical components

of the relative translational velocity of the mass center can be expressed in terms of the pre-

and post-impact angular velocity of the block, &~ and #* as follows.

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can

be expressed as

V=V, 0 XF (6.445)

where v is pre-impact translational velocity vector of center-of-mass, v, is pre -impact

translational velocity vector of point O', w™ is pre-impact angular velocity vector of the

block, and r,,,, is position vector of the mass center relative to point O'.

Expressions for these vector quantities are given below:

v =X i+Z k=i +x,+% +%,)i+(z,+2,)k (6.446)
v = (i + %, + % )i+ (2, )k (6.447)

0 =0j (6.448)

Teror =rsin(a—0)i+rcos(a—0)k (6.449)

At impact, the angular rotation of the block becomes zero (9 = 0) and the position vector of

center-of-mass relative to point O', r,,,,, can be written as
teo = (rsina)i+(rcosa)k = bi +hk (6.450)

c/o" —

in which i and k are the horizontal and vertical unit vectors respectively.
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On substituting Equations (6.446) through (6.450) into Equation (6.445), the pre-impact

translational velocity becomes
vo=(i i, v, )i+ (2, 42, k= (00 + 5, +x_;)i+(z'g)12+(9"})><(bi+hl€) (6.451)
which reduces to
Ko+ 2,0 = (b0 )k +(hO )i (6.452)
from which the pre-impact horizontal and vertical components of v~ can be retrieved as
X, =h6 (6.453)

i =—bO" (6.454)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-21) can

be expressed as
vi=v, +o xr., (6.455)

where v" is post-impact translational velocity vector of center-of-mass, v, is post-impact

translational velocity vector of point O, " is post-impact angular velocity vector of the

block, and r.,, is position vector of the mass center relative to point O.

Figure 6-21: Components of post-impact translational velocity of the isolated block for the

case of impact during slide-rocking about point O"'.

Expressions for these vector quantities are given below:
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v =X+ Z k=i vk, 1]+ )i+ (2, 12, )k (6.456)

rot

vo = (i +x, + % )i +(2, )k (6.457)
0 =0"j (6.458)
teo=—rsin(a—0)i+rcos(a—0)k (6.459)

At impact (6’ = O) the position vector of the mass center relative to point O, r,,, becomes
Fop =—(rsina)i +(rcosa)k = —bi + hk (6.460)

On substituting Equations (6.456) through (6.460) into Equation(6.455), the post-impact

translational velocity becomes

~ <A

V' (7 ok, )i (2, 2, Y= (0 )+ (2, )+ (07 F) (i + k)

A s (6.461)
:>x*i+z'+k=(b.9*)k+(he+)i

rot rot

from which the post-impact horizontal and vertical components of v* can be retrieved as

i =ho* (6.462)

rot

i =bho" (6.463)

rot

Substitution of Equations (6.453), (6.454), (6.462) and (6.463) into Equations (6.442) through
(6.444) yields

[Fudt = mi +m(h0")+ms; —mi~ —mi; —m(h6") (6.464)
j F.dt =m(b0")-m(-b6") (6.465)
~b([F.dt)=h([Fdt)=1(6")-1(6) (6.466)

in which the centroid mass moment of inertia for the rectangular block is given by
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m , mg¢ ., 2
[=—r =—|b"+h 6.467
77 =5 ) (6.467)

Equations (6.464), (6.465) and (6.466) constitute a set of three equations in five unknowns,
namely J‘det, .[det, 0, u", X!

Equivalently, the three Equations (6.464), (6.465) and (6.466) can be combined in one (by
eliminating the two impulses) in three unknowns:

(407 + 417 )0 +3hii* +3hs] = (4h* =257 )0 +3hi” +3hi; (6.468)

Three additional equations are therefore required to uniquely determine the post-impact
velocities 6*, u*, x,”. By considering the system in its entirety during the impact, it can be

stated that the horizontal impulse on the system is zero, resulting in the conservation of the

system’s linear momentum in the horizontal direction. That is,

(AL,.), = (L) ~(£0), =00 | (L), +(Ly), || (), #(24y), |0

(6.469)
= [ m, (i 3, )om (i + %, 45 450, ) | = my (0 45, ) 4m(i +5, 4% +3,) |

in which (Lsys )7 and (Lm )+ are the pre- and post-impact horizontal linear momentum of the

system respectively; (ALSyS )xis the change in horizontal linear momentum of the system.
Substituting Equations (6.453), (6.454), (6.462) and (6.463) in Equation (6.469) gives

myii* +mi* + mx’ +mhO" =mui +mi +mx, +mhé” (6.470)
which upon rearranging terms becomes

ut = " 1+ - [(mb +m)u” +mx; —mhO" —mx! + mhé’*} (6.471)

Substituting Equation (6.471) in (6.468) gives
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(4192 + 4}12)9+ +

[(mb +m)i +mx; —mhO* —mx! + mh@’] +3hx]
m, +m (6.472)

=(4h* =26 )0 +3hii” +3hx;
which yields

. (4m,* —2mb? +mh® —2mb* )0 +3hm, %, - 3hm,x;
6" = - — - (6.473)
(4m,1* +4m,b* + mh® + 4mb* )

With regard to the block, the principle of frictional impulse in the x and z direction states that
[ Pt ==sgn() | .| (6.474)

Substituting Equations (6.464) and (6.465) in Equation (6.474) gives
mii” +m(hO" )+ mi; —mi” = mi; =m(h0")=—sgn () g (60" )+m(b0°)  (6.475)

Assume that sgn (xj) > 0, Equation (6.475) can be written as

bO" ) +(bO ) —i" —hO" +ii +x, +hO" (6.476)
(b6°)+(66") A

v
X, ==

Once Equation (6.476) is solved and x is calculated positive, then the assumption and
Equation (6.476) are correct, else a second assumption must be computed, sgn()'c:) <0 and

Equation (6.475) can be rewritten as
5 = (607 )+ (667 )| i —h6" i 55+ h6” (6.477)

The absolute value in Equations (6.476) and (6.477) can be dropped since the impulse in the z

direction must be positive.
Equations (6.476) and (6.477) can be rewritten in the form

i) =—sgn(x)) | (607 )+ (b0 ) |—ii* —h0" +ii +, + b6 (6.478)
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CHAPTER 7

Computer Program and Numerical Solution

7.1 Introduction

A computer program was developed to numerically determine the response of the system
under horizontal and vertical ground excitations. The numerical integration of the equations of
motion is pursued in Matlab (MathWorks 2006) through a state-space formulation. The
computer program calculates the response of a non-isolated or isolated block subjected to
ground excitation under general conditions, considering the different possible oscillation
regimes, impact, transition criteria and arbitrary excitation. In particular, at each time step the
program determines the correct oscillation regime and integrates the corresponding exact
nonlinear equations of motion. In addition, close attention is paid to the possibility of
transition from one regime of motion to another and to the accurate evaluation of the initial

conditions for the next regime of oscillation.

By utilizing the developed computer program, an extensive numerical investigation is
performed to calculate the dynamic response of the system under simple trigonometric,
idealized ground-acceleration pulses and recorded pulse-type earthquake motions, with the
aim of revealing interrelations among the problem parameters and identifying potential trends
in the response and stability of the system.

7.2 Structure of the Program

Figure 7-1 presents the main structure of the program through a flowchart. The program is

versatile and easy to use as it gives the ability to the user to choose different variables:

e the type of model: rocking rigid block or general rigid block (sliding, rocking, slide-

rocking etc.),
e the type of system: non-isolated or isolated,
e the type of isolation system: linear or nonlinear, and its characteristics,

e the characteristics of the block: mass of the block, mass of the base, block size,

slenderness ratio, coefficient of static friction between the block and the base (for
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general rigid block),
e the type of ground excitation: earthquake or pulse-type motion and
e the results: response histories, response-regime spectra etc.

The developed program runs an accurate and highly nonlinear analysis to determine the
response of the system under horizontal and vertical ground excitations. The system may
transit from one oscillation pattern to another (potentially modifying the degrees of freedom),

at any time due to an impact event and when an appropriate transition criterion is satisfied.

In particular, the run analysis section is composed of a main program that is divided into
several functions. Each function represents an oscillation pattern and integrates the
corresponding exact nonlinear equations of motion using an ordinary-differential-equation
solver. The main program calls for the first time a function when an initiation criterion is
satisfied. In each time step, the function checks if any appropriate transition criterion is
satisfied, if an impact event is detected (6 =0), or if the rigid block has failed (overturning,
O/a=1). If any of the aforementioned criteria are detected, the output of the function
includes the exact time that the event happened and the values of the appropriate variables

(degrees-of-freedom) that were calculated using integration until this time.

Then, the main program checks which transition criterion is satisfied, or if an impact event is
detected, and computes the initial conditions or the post-impact velocities for the next regime
of oscillation. If the block fails (overturns) then the program stops the analysis and exports the
appropriate results. The above procedure is accomplished at each time step of the excitation.
Finally, the program exports the results from the analysis that can be easily processed by the
user. The main structure of the aforementioned procedure for the general isolated rigid block

is shown through flowcharts in Figures 7-2 through 7-5.
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Figure 7-1: Structure of developed program.
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7.3 State-space formulation

The numerical integration of the governing equations of motion is accomplished using
Matlab’s ordinary-differential-equation solver ODE45, which is an implementation of
fourth/fifth-order Runge-Kutta method (Dormand and Prince (1980)). Solving the equations of
motion applying this function involves re-writing the differential equations as a set of first-
order ordinary differential equations (ODEs). This involves introduction of new variables and
recasting the original equations in terms of first-order ODEs in the new variables. For this
reason, a state-space formulation is employed to yield a system of first-order differential

equations.

7.3.1 System translation regime

Linear Isolation System

For motion in the system translation regime, the governing equation of motion is
Mii+ ¢+ ku = -MX, (7.1)
where
M=m+m, (7.2)

The state-space formulation of a second-order differential equations is derived by setting the

displacement, u , and velocity, u , of the linear isolation system equal to the state variables z,

and z, respectively as
zZ, =u (7.3)
z, =1 (7.4)
The derivatives of the state variables are expressed as
Z=u=z, (7.5)

S I .
2, =ii= —H(chu + kyu+ Mz, ) (7.6)

196



Finally, Equation (7.1) can be rewritten as a set of two first-order ODEs, representing the first
derivative (Equation (7.5)) and the second derivative (Equation (7.6)) of the displacement of

isolation system as
. Z,
yA
{z‘}={f}= ! ) (7.7)
M

Nonlinear Isolation System

For motion in the system translation regime, the governing equation of motion is

Mii+begZ+[(Mg + Mz, )/R]u = M5 (7.8)

g

where
M=m+m, (7.9)

The state-space formulation of a second-order differential equations is derived by setting the

displacement, u, velocity, u, and dimensionless variable, Z, of the nonlinear isolation

system equal to the state variables z,, z,, and z, respectively as

zZ, =u (7.10)
z,=u (7.11)
z,=Z (7.12)

The derivatives of the state variables are expressed as

4 =ii=2z, (7.13)
2, =ii :—ﬁ{(,ung+be\fz'g)Z+[(Mg + Mz, )[R Ju +Mx'g} (7.14)

5 _lilz|Z] —Yﬂa|z|2 + At

(7.15)

Z3:
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Finally, Equation (7.8) can be rewritten as a set of three first-order ODEs, representing the
first derivative (Equation (7.13)) and the second derivative (Equation (7.14)) of the
displacement of isolation system and the first derivative (Equation (7.15)) of the

dimensionless variable as

. Z
Z

1=z L= —ﬁ{(ﬂng+ybA[Z'g)z3+[(Mg+A[Z’g)/R}Zl}—)'ég (7.16)
Z.3

—}/|Z2|Z3 |Z3| - pz, |Z3|2 + Az,
Y

7.3.2 Sliding regime

Linear Isolation System

The motion of the system in the sliding regime can be described by the following set of

equations
Mii+m3i +c,ui+ku =-Mx, (7.17)
miier)'c'Sersgn()'cs)yk(ngZg)z—mjc'g (7.18)
where
M=m+m, (7.19)
Adding Equation (7.18) to Equation (7.17) gives
a:-xg—iu—ﬁwﬂsgn(xs)uk(g+'z'g) (7.20)
m, m, m,
Multiplying Equation (7.17) by % and adding to Equation (7.18) gives
)'c'j={kbu+c‘ﬁ—sgn()'cs)yk(g+2g)}/(l—mj (7.21)
M M M
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The state-space formulation of a second-order differential equations is derived by setting the

displacement, u, velocity, u, of the linear isolation system and the displacement, x_, and
velocity, X, of the rigid block due to sliding on the rigid base equal to the state variables z,,

z,, z,and z, respectively as

zZ,=u (7.22)
Z,=U (7.23)
23 =X (7.24)
Z, =X, (7.25)

The derivatives of the state variables are expressed as

4 =li=z, (7.26)
2, =ii (7.27)
i=x% =z, (7.28)
z, =X, (7.29)

Finally, Equations (7.20) and (7.21) can be rewritten as a set of four first-order ODEs,
representing the first derivative (Equation (7.26)) and the second derivative (Equation (7.27))
of the displacement of isolation system and the first derivative (Equation (7.28)) and the
second derivative (Equation (7.29)) of the displacement of rigid block due to sliding as

Z
z . k .
! —xg—izz——”zl+ﬂsgn(z4),uk(g+zg)
. Z m, m, m,
(Fh=121= ! (7.30)
3 4
zZ kz, ¢z . m
4 {]’;/[1+;’V[2—sgn(z4)yk (g+zg)}/(l—M)
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Nonlinear Isolation System

The motion of the system in the sliding regime is governed by the following set of equations

(m+m, )i+ mx, +,ungZ+[(Mg+]V[Z'g )/R]u =—(m+m,)%, (7.31)
mii +m, +sgn(x) pm(g + 2, ) = —mi, (7.32)

where
M =m+m, (7.33)

Adding Equation (7.32) to Equation (7.31) gives

ii = -, —M—[(Mng )/(m,R) Ju+sgn (%,) 1, (g +2,) (7.34)

m, m,

Multiplying Equation (7.31) by % and adding to Equation (7.32) gives

i = {[(Mg + Mz, ) /(MR) Ju +“"jj‘égz—sgn(xs)yk (g+z, )}/(1—1\”;) (7.35)

The state-space formulation of a second-order differential equations is derived by setting the
displacement, u , velocity, u , dimensionless variable, Z, of the nonlinear isolation system

and the displacement, x,, and velocity, x_, of the rigid block due to sliding on the rigid base

equal to the state variables z,, z,, z,, z, and z; respectively as

zZ,=u (7.36)
zZ, =1 (7.37)
z,=2 (7.38)
Z, =X, (7.39)
Zs = X, (7.40)
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The derivatives of the state variables are expressed as

. . 2 .
oo ~yli|Z|Z| —Y,Bu|Z| + At

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

Finally, Equations (7.34) and (7.35) can be rewritten as a set of five first-order ODEs,

representing the first (Equation (7.41)) and the second derivative (Equation (7.42)) of the

displacement of isolation system, the first derivative (Equation (7.43)) of the dimensionless

variable and the first (Equation (7.44)) and the second derivative (Equation (7.45)) of the

displacement of rigid block due to sliding as

2,

i, LV (g antz,)f(mR) |z, +osen (=), (g +2,)

m, m,

—}/|zz|z3 |Z3| - pz, |Z3|2 + A4z,
Y
z

5

{[(Mg+z\fz'g)/(MR)]z] +’u”jj\égz3—sgn(zs)yk(g+'z'g)}/(

7.3.3 Rocking regime

Linear Isolation System

(7.46)

The motion of the system in the rocking regime is governed by the following set of equations

Mii+c,i + kyu+m[ hcos 0 +sgn0(bsin0) |6 +m| sgn (bcos0) - hsin 6 |0?

= M5

g

(7.47)
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1,0+mii[ hcos 6 +sgn 6 (bsin ) |+ mg(sgn O (bcosd)—hsin )
=—m[ hcos0+sgn@(bsin6) | %, —m[sgnO(bcosd)—hsinf]z,
where

M =m+m,

I,=mr’+1

Letting
A =hcosO+sgnd(bsind) = 4,(0)
A, =sgn6(bcos@)—hsinb = 4,(6)
Equations (7.47) and (7.48) can be rewritten in the form
Mii+cu+ kyu + mAlé + mAZH'2 =-MX,
1,0 +mAii+mgd, =-mAi, —mA,z,
Equations (7.53) and (7.54) can be rewritten as

Mii+mA,6 = =M, —cu—kyu— mA, 6

1,0 +mAii+mgd, =-mAi, —mA,z,

Multiplying Equation (7.56) by —mI—A‘ and adding to Equation (7.55) gives

o

2 42 2 42 2 2
(M—m A4 ]uz(’" 4 —M}'c'g —ei—ku-mAQ + 2 g]AIAZ JmAA,

1

o

I

o

1

o o

which upon rearranging terms yields

z

g

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)
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. .. 1 mzAlAz
ii=—%, +

4 M_m2A12
]0
1

A
Multiplying Equation (7.55) by — ”;M

[—chu—khu —mA,6” + (g+2g)

o

and adding to Equation (7.56) gives

&’ —mA, (g+2g)

I - m’ A4’ b mAc, i mAk, . m’ 4,4,
M M M M

which upon rearranging terms yields

0=

1 mAc, . mAdk, ~m'A4A4,
T3 u—+ u+
,omA || M M M
M

6’ —mAz(g+'z'g)}

(7.58)

(7.59)

(7.60)

The state-space formulation of a second-order differential equations is derived by setting the
displacement, u, velocity, u, of the linear isolation system and the rotation angle, &, and

rotation velocity, @, of the rigid block due to rocking on the rigid base equal to the state

variables z,, z,, z, and z, respectively as

zZ, =u (7.61)
z, =1 (7.62)
z,=0 (7.63)
z,=0 (7.64)
The derivatives of the state variables are expressed as
I =u=z, (7.65)
z, =ii (7.66)
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(7.67)

(7.68)

Finally, Equations (7.58) and (7.60) can be rewritten as a set of four first-order ODEs,

representing the first (Equation (7.65)) and the second derivative (Equation (7.66)) of the

displacement of isolation system and the first (Equation (7.67)) and the second derivative

(Equation (7.68)) of the rotation angle of rigid block due to rocking as

Z,
2
%, +;{—c bz —md,z,? +
m*A4? 1
Z M - 1 <
2 L
o _ )2 _
{Z} - Z'3 Z4
z
) 1 mAc,  mAk, m’AA,
242 z,+ zZ +
S oA | M M M
¢ M

Nonlinear Isolation System

Z4z—mA2(g+2g)}

(7.69)

The motion of the system in the rocking regime is governed by the following set of equations

where

Mii+ (Mg+]\fz'g)Z+[(Mg+]\/[z'g)/R}u+m[hcosz9+sgn9(bsin6’)]é

+m [sgn 0(bcos@)—hsin 0] 0* = —M5x

g

1,6+ mu[h cos@+sgnd(bsin 9)] + mg(sgn 0(bcos@)—hsin 9)

X —m[hcos9+sgn¢9(bsin9)]jég —m[sgn@(bcos@)—hsin@] Z,

M=m+m,

I,=mr’+1

(7.70)

(7.71)

(7.72)

(7.73)

204



Letting

A =hcos@+sgnf(bsind)= 4 (0)
A, =sgné(bcos)—hsinb = 4,(6)

Equations (7.70) and (7.71) can be rewritten in the form

Mii+ 1, (Mg + Mz, ) Z +[ (Mg + Mz, ) [R [u+mAf + ma,6” = -Ms,
1,0+ mAii +mgd, =-mAi, —mA,z,

Equations (7.76) and (7.77) can be rewritten as

Mii+mA @ = M, - i, (Mg + Mz, ) Z = (Mg + Mz, )[R |u~mA,0°
1,0 +mAjii+mgA, = —-mAX, —mA,zZ,

Multiplying Equation (7.79) by —m]—A‘ and adding to Equation (7.78) gives

o

{M—mzAlzjﬁz(mzAlz —ijeg — (Mg + Mz, ) Z - [ (Mg + Mz, ) [R |u

10 10
2 2
—mAH* + m g4 4, L1 4.4, z
I g

which upon rearranging terms yields
1 —p, (Mg + Mz, ) Z - | (Mg + Mz, )R |u

: *AA ..
g (M_mZAIZJ —mA292+%(g+Zg)

A . . .
Multiplying Equation (7.78) by —% and adding to Equation (7.79) gives

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

205



242 ) md _ 4 _
(1 A ngn;wl (Mg+Mzg)Z+%[(Mg+Mzg)/R]u

CoM (7.82)
+mAjjA2 6 - mAz(g+'z'g)
which upon rearranging terms yields
) | %(Mg +Mz'g)2+%1[(Mg + Mz, )[R |u
1,-" 0 N AL o g (g4 2,)
o M M 4

The state-space formulation of a second-order differential equations is derived by setting the
displacement, u , velocity, u , dimensionless variable Z of the nonlinear isolation system and
the rotation angle, @, and rotation velocity, @, of the rigid block due to rocking on the rigid

base equal to the state variables z,, z,, z,, z, and z, respectively as

2 =u (7.84)
z, =1 (7.85)
z,=2 (7.86)
z, =0 (7.87)
z,=0 (7.88)

The derivatives of the state variables are expressed as

2 =ii=z, (7.89)
2, =ii (7.90)

—y|i| z| 2|~ pi) 2| + 4i

Z'3:Z: v

(7.91)

Z,=0=z, (7.92)
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;=0 (7.93)

5

Finally, Equations (7.81) and (7.83) can be rewritten as a set of five first-order ODEs,
representing the first (Equation (7.89)) and the second derivative (Equation (7.90)) of the
displacement of isolation system, the first derivative (Equation (7.91)) of the dimensionless
variable and the first (Equation (7.92)) and the second derivative (Equation (7.93)) of the

rotation angle of rigid block due to rocking as

2
. —,ub(Mg+]\[z'g)z3—[(Mg+]\fz’g)/R]zl
a1 W SR SLLLTPIEN
I o
z, ’ i
AN i —¥\2,|2; |25\ — Pz, |25 + Az, 794
Z, b
2, %
mA4, . mA4, .
| 7(Mg+1\[zg)z3+7[(Mg+]\/fzg)/R]zl
Io_m;/z[‘llz +mZA‘jA2252—mA2(g+2g)

7.3.4 Slide-rocking regime

Linear Isolation System

The motion of the system in the slide-rocking regime is governed by the following set of

equations

(m+m,)ii+ms, +c,i+ku+m| hcos@+sgnd(bsin0)]6

. (7.95)
+m| sgn0(bcos@)—hsin0|0° =—(m+m,)X,

m(ii+ X, )+ m| hcos0+sgn@(bsin0) |6 +m|sgn O (bcosd)—hsin |6’
+sgn()'cs)ykm{g+2g +[sgn9(b cos@)—hsin 6’]9—[%1 cos & +sgn @ (bsin 6)] 92} (7.96)

= —mxg
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(mR2 +1)9+m(ii+)'c's)[hcosl9+sgn@(bsin 9)]+mg[sgn9(bcos€)—hsin9]

=—m [h cos @ +sgn(bsin 9)] X,—m [sgn 0(bcos)—hsin 6’] Z, 77
where
M=m+m, (7.98)
I,=mR*+1 (7.99)
Letting
A =hcosO+sgnd(bsind) = 4,(0) (7.100)
A, =sgn6(bcosd)—hsinb = 4,(6) (7.101)
Equations (7.95), (7.96) and (7.97) can be rewritten in the form
Mii+m3, +cyti+kyu+mA0 +mA,0° =M, (7.102)
m(ii+ %)+ mAG +mA,0° +sgn(x ) um(g+ 2, + 4,0 - A6 ) = —ms, (7.103)
LO+m(ii+% ) A +mgd, =-mAX, —mA,z (7.104)
Adding Equation (7.103) into Equation (7.104), Equation (7.104) can be rewritten as
1,6 -mA}0 —mA 4,67 —sgn(i ) umd, (g + 2, + 4,0 — 467 ) —mA %, 7.105)
+mgAd, =-mA X, —mA,z,
which upon rearranging terms yields
b 1 mA, A4,6" —sgn(x, ) 1, mA’ 6> (7.106)

(10 —mA; —sgn()'cs),ukmAlAZ) +(sgn(x,) g, mA, —mA, )(g + Zg)

Adding Equation (7.103) into Equation (7.102), Equation (7.102) can be rewritten as
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Mii —mii —mA§ —mA,0° —sgn(x,)u,m(g + 2, + 4,0 - 46°)

.. : (7.107)
—m¥, +cu+ku+mA,0 + mA,0° = —MX,
which upon rearranging terms yields
ii =%, +%(sgn(§cs)ykm(g +2,+ 40— 467 ) -, —kbu) (7.108)
(M —m)
Equation (7.103) can be rewritten as
¥, = —ii = A0 — 4,07 —sgn(x,)u, (g +Z, + 4,0 - 467 ) - %, (7.109)

The state-space formulation of a second-order differential equations is derived by setting the
displacement, u, velocity, u, of the linear isolation system, the rotation angle, €, and
rotation velocity, @, of the rigid block due to rocking on the rigid base and the displacement,

x,, and velocity, x,, of the rigid block due to sliding on the rigid base equal to the state

N

variables z,, z,, z;, z,, z; and z, respectively as

zZ,=u 7.110)
| (
z,=u 7.111
> (7.111)
z,=0 (7.112)
z,=0 (7.113)
Zg =X, (7.114)
Zg = X, (7.115)

The derivatives of the state variables are expressed as

2 ==z, (7.116)

2, =ii (7.117)
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z,=0=z, (7.118)

2,=0 (7.119)
to=k =z, (7.120)
2 = (7.121)

Finally, Equations (7.106), (7.108) and (7.109) can be rewritten as a set of six first-order
ODEs, representing the first (Equation (7.116)) and the second derivative (Equation (7.117))
of the displacement of isolation system, the first (Equation (7.118)) and the second derivative
(Equation (7.119)) of the rotation angle of rigid block due to rocking and the first (Equation
(7.120)) and the second derivative (Equation (7.121)) of the displacement of rigid block due to

sliding as
Z

. .. 1 .. .
Z X, + m(sgn(zé)ykm (g +Z,+ 4,2, - Az; ) —c,z, —k,z, )
Z.2

NINE &

{z}= , = 1 mA, A,z; —sgn(z, ) p,mA’ z; (7.122)
z, (]0 —mA’ —sgn(z,) u,mA A, ) +(sgn(z6),ukmAl —mA, )(g +2Z, )
Z Z,
—2,— Az, — A,z —sen(z )y (g + 2, + Az, — A4z ) -,

Nonlinear Isolation System

The motion of the system in the slide-rocking regime is governed by the following set of

equations

(m+mb)z'j+m)'és+,ub(Mg+]\f{2g)Z+[(Mg+MEg)/R]u | .
+m[hcost9+sgnﬁ(bsinﬁ)]<9+m[sgn@(bcos@)—hsin9]92 =—(m+m,)%,
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m(ii+jc's)+m(hcosl9+sgn&’(bsiné’))éi+m(sgn@(bcosé’)—hsinﬁ)é2
+sgn(5cs),ukm{g+2g +[sgn¢9(bcos€)—hsin0]é—[h cos @ +sgn 6’(bsin9)]92} (7.124)

= —mxg

(mR2 +1)9+m(ii+5és)[hcosl9+sgn6’(bsin0)]+mg[sgné’(bcos@)—hsiné’]

= —m[ hcos@+sgn@(bsin§) ], —m[sgnd(bcos@)~hsind |z, X -
where
M=m+m, (7.126)
I,=mR*+1 (7.127)
Letting
A =hcosO+sgnd(bsind) = 4,(0) (7.128)
A, =sgnf(bcos@)—hsinf=4,(0) (7.129)

Equations (7.123), (7.124) and (7.125) can be rewritten in the form

Mii+mi. + 1, (Mg+]\[z'g)Z+[(Mg+]\[z’g )/R]u +mAG+mA0? =Mz, (7.130)

m(ii+ %)+ mAG +mA,0° +sgn(x ) um (g + 2, + 4,0 - A6 ) = —m5, (7.131)
LO+m(ii+%) A +mgd, =-mAX, —md,z, (7.132)

Adding Equation (7.131) into Equation (7.132), Equation (7.132) can be rewritten as
1,0 -mA20 —mA 4,07 —sgn(x ) umd, (g + 7, + 4,0 — 407 ) —mA %, 7133)

+mgAd, =—mA X, —mA,z,

which upon rearranging terms yields
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1 mA, A,6° —sgn(x,) 1, mA’ 6>

6= ; : . ) (7.134)
(Io —mA —sgn(x,)p,mA, A, ) +(sgn(xs),ukmAl —mA, )(g +Z, )
Adding Equation (7.131) into Equation (7.130), Equation (7.130) can be rewritten as
Mii —mii = mAG —mA,0° —sgn(x,) pyym (g + 2, + 4,0 - 4,0°)
(7.135)

—mi, +p, (Mg + Mz, ) Z + [(Mg +Mz, )/R]u +mA0 +mA,0" = -Mz,
which upon rearranging terms yields

1 sgn()'cs),ukm(g+2g+A2é—A192)—y(Mg+A[2g)Z
fi= =¥, 4 (7.136)
(M =m) |-[(Mg+Mz,) /R u

Equation (7.131) can be rewritten as

¥, = —ii = 4,0 — 4,0° —sgn(x,)u, (g +Z, + 4,0 — 4,67 ) % (7.137)

g

The state-space formulation of a second-order differential equations is derived by setting the
displacement, u, velocity, u#, the dimensionless variable, Z, of the nonlinear isolation
system, the rotation angle, @, and rotation velocity, @, of the rigid block due to rocking on

the rigid base and the displacement, x,, and velocity, x_, of the rigid block due to sliding on

the rigid base equal to the state variables z,, z,, z;, z,, z,, z, and z, respectively as

Z,=u (7.138)
zZ,=U (7.139)
z,=6 (7.140)
z,=0 (7.141)
Zy = X, (7.142)

212



The derivatives of the state variables are expressed as

s =7 =

7

Zi=u=2z,

~r|i| 2| z|- pi|z| + Ai

Y

(7.143)

(7.144)

(7.145)

(7.146)

(7.147)

(7.148)

(7.149)

(7.150)

(7.151)

Finally, Equations (7.134), (7.136) and (7.137) can be rewritten as a set of seven first-order

ODEs, representing the first (Equation (7.145)) and the second derivative (Equation (7.146))

of the displacement of isolation system, the first derivative (Equation (7.151)) of the

dimensionless variable, the first (Equation (7.147)) and the second derivative (Equation

(7.148)) of the rotation angle of rigid block due to rocking and the first (Equation (7.149)) and

the second derivative (Equation (7.150)) of the displacement of rigid block due to sliding as
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2
) 1 sgn(zé),ukm(g+2g +4,z, —Alzj)
¢ (M—m) — 1, (Mg+]\[z'g)z7 —[(Mg+]\[z'g)/R]zl

Zy

1 mA Az, —sgn(ze) pymA; z,
(10 —mA} - sgn(zé)ykmAlAz) +(sgn(z) ymA, — mA, )(g + Zg)

Zg

—2, = Az, — A7) —sgn(z) (g + 2, + Az, - A7) ) - K,

—]/|22|Z7 |Z7|—,Bz2 |Z7 |2 + Az,
Y

|

(7.152)
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CHAPTER 8

Rocking Response to Dynamic Base Excitation

The dynamic response of the system is investigated herein by assuming sufficient friction
between the block and the supporting base under simple half- and full-cycle horizontal
acceleration pulses, horizontal near-fault ground motions, and idealized pulse-type motions.
Under the assumption of sufficient friction to prevent sliding, the response of the isolated
system can be described in terms of two oscillation regimes: system translation, in which the
base-block system translates as a whole; and rocking, in which the block pivot on its edges
with respect to the horizontally-moving base. The investigation aims to identify potential

trends in the response and stability of the system.

8.1 Response to Simple Base-Acceleration Pulses

The response of the system is investigated under simple half- and full-cycle horizontal
acceleration pulses. In particular, the analysis considers a half-cycle rectangular pulse, a half-

cycle sinusoidal pulse, and a full-cycle sinusoidal pulse, characterized by amplitude 4, and

half-cycle duration 7, (corresponding to frequency o, =z /t,), expressed mathematically as

follows
¥ (¢) A 1T 0121, half-cycle rectangular pul (8.1)
X (t)= alf-cycle rectangular pulse :
s 0, if t>1, Y suarp
A sin(m/t) if 0<¢<¢
¥ (t)=4"*%° a7 ‘" half-cycle sinusoidal pulse 8.2
g0 { 0, if ¢>1, Y P (82
A sin(zt/t,), it 0<1<2 o
%, (1)=1"%° sin (7t /1,) - ‘" full-cycle sinusoidal pulse (8.3)
¢ 0, if ¢>2t,

The stability of the isolated block is examined in terms of the minimum amplitude of ground
acceleration required to overturn the block (6 /a >1), by considering the influence of input-
motion characteristics, the geometric parameters of the block, the inertia parameters of the

base/block system, and the constitutive parameters of the isolation system.
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Figure 8-1 plots the normalized minimum overturning ground acceleration as a function of
block size R for different values of ¢, (left), and as a function of the excitation frequency o,
for different values of R (right) for the simple acceleration pulses used in the analysis. A
linear isolation system with & =0.35, 7, =3s is considered in this analysis. As demonstrated
from the left-half of Figure 8-1, for the one-sided (rectangular and half-sine) pulses, the
isolation has a positive effect on the stability of the block for 7, <0.5s or equivalently

excitation period T, <1s. For the two-sided (full-sine) pulse, this holds true for short-period
pulses with 7, <0.25s (7,<0.5s), while the effectiveness of isolation in the range
0.25<t,<0.6s (0.5<T,<1.2s) is conditional on the size of the block R. That is, the

isolation ceases to improve the stability of the block (compared with the non-isolated case)
when subjected to such intermediate-period full-sine pulses with increasing block size.
Nevertheless, the range of R -values for which the isolation is effective increases as the pulse
duration increases. It should be noted however that, regardless of pulse type, the use of
isolation is not practically beneficial (with respect to the stability of the block) for long-period

excitations (i.e. 7, >1s for half-cycle pulses and 7, >1.2s for full-sine pulses). With reference

to the right-half of Figure 8-1, the use of isolation results in enhanced behavior with

decreasing block size, unless the system is subjected to long-period acceleration pulses.
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——= t,=04s t,=1s R=4m
t,=0.5s ——T 1,=2s ——— R=6m

Solid Line: Non-isolated, Dashed Line: Isolated

Figure 8-1: Minimum overturning acceleration as a function of R (left) and o, (right) for

simple ground-acceleration pulses (A =4, p=0.5, & =0.35, T, =3s).

Figures 8-2 through 8-4 illustrate the influence of linear isolation-system parameters (7,, &)

and mass ratio p =m/m, on the stability of the isolated block, for different values of R (left)
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and for different values of ¢, (right) for simple half- and full-cycle horizontal acceleration

pulses. As can be seen from these figures, the most influential parameter on the block stability

is the isolation-system period 7,. That is, the minimum overturning ground acceleration

increases with increasing isolation-system period, regardless of block size R, provided that
the pulse duration does not exceed a certain value (roughly less than 1s). Observe also that the

influence of each parameter on the stability is amplified as the pulse duration decreases.
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Figure 8-5 presents response-regime spectra in the A —R space for non-isolated and isolated
blocks of varying geometric characteristics, for half- and full-cycle pulses with duration

t,=0.2s and 0.5s. A linear isolation system is considered in these analyses with 7, =3s and
&, =0.35. These spectra depict in a clear way the distinct regimes of block response, with the

cyan area indicating “No Uplift”, the green area “Rocking”, and the red area “Overturning” of
the block. A total of 6,000 nonlinear dynamic analyses were performed in constructing each
behavior map. Each dot in these maps represents the outcome of a single analysis. As
illustrated in Figure 8-5, the use of isolation results in an increase in the acceleration required
to initiate rocking. In addition, the spectra plotted in Figure 8-5 elucidate a counterintuitive
trend observed for bilateral excitations (not observed for unilateral excitations), in terms of the
overturning potential of a given input-acceleration amplitude. That is to say, for a given block
size, overturning occurring for certain slenderness does not necessarily imply overturning of
the block with increasing A. In mathematical terms, this is equivalent to stating that the
(stability) curve defining the boundary between rocking and overturning is not single-valued.
By and large, the use of isolation results in better system performance, with respect to the
initiation of rocking and overturning, for short-period pulses. On the contrary, for long-period
pulses, the use of isolation is not beneficial in improving the stability of the block (compared
with the non-isolated case). Nevertheless, the use of isolation results in an increase in the

acceleration required to initiate rocking, regardless the pulse-period.
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Figure 8-5: Response-regime spectra in the 4 —R space for a non-isolated and isolated block
of varying geometric characteristics for simple ground-acceleration pulses with 4,, =0.5¢,

t, =0.2s (left), ¢, =0.5s (right) and mass ratio p =0.5.

Figure 8-6 compares the response of the block when isolated considering a linear viscoelastic
model with 7, =3s and & =0.35, and a bilinear hysteretic model (typified by friction-
pendulum isolator) with parameters x4, =0.11 and R, =2.24s (corresponding to 7, =3s). In
particular, Figure 8-6 plots the normalized minimum overturning ground acceleration as a

function of block size R (left), and as a function of the excitation frequency o, (right). As

can be seen from this figure, the calculated response of the block is comparable for the two
isolation-system models. The small discrepancy observed for large R (>10m), does not affect
(qualitatively or quantitatively) the conclusions drawn above on the basis of a linear isolation

model regarding the stability and the rocking incipient condition of the block.
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Figure 8-6: Minimum overturning acceleration for linear and bilinear hysteretic isolation

model as a function of R (left) and o, (right) for full-cycle sinusoidal pulse.

Figures 8-7 and 8-8 present time histories of the dynamic response of the isolated and non-
isolated rigid blocks under full-sine pulses. Two types of isolation system are considered in
the analysis: (a) a nonlinear isolation system with a bilinear hysteretic model (typified by

friction-pendulum isolator) with parameters g, =0.11 and R, =2.24m (corresponding to
1, =3s), and (b) a linear isolation system with viscoelastic model (7, =3s). These figures

plot the ground acceleration, x_ , the normalized angular displacement, 6/c, (with the

overturning of the block indicated when &/a >1), the angular velocity of the block, 0 and

the horizontal displacement of the isolation system, u .

Figure 8-7 shows the response of a rigid block with size-parameter R =2m and slenderness

ratio A =6 under a short-period pulse (#, =0.2s), with a peak amplitude of 0.5g. The isolated

block oscillates in the system-translation regime only. Using the linear isolation system, the
maximum horizontal system translation is approximately 95mm and using the nonlinear
isolation system it is approximately 70mm. In contrast, the non-isolated block oscillates in the
rocking motion and an impact event between the block and the foundation causes the system
to switch from anti-clockwise (€ < 0) rocking motion to clockwise, (€ > 0).Attention should
also be drawn to the fact that the maximum response of the non-isolated block does not
immediately follow the peak amplitude in the ground acceleration but it happens after the end

of the full-sine pulse, in free vibration.
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The response of the same block using a long-period pulse (¢, =0.5s) is shown in Figure 8-8.

The isolation system ceases to improve the stability of the system and both blocks (isolated
and non-isolated) oscillate with rocking motion and finally overturn. The isolated block
translates horizontally with a maximum displacement of approximately 350mm using both
isolation systems. It appears that the use of isolation system delays the initiation of rocking but
in this case it cannot prevent the overturning of the block. It is worth mentioning, that both
blocks (isolated and non-isolated) overturn after the end of the earthquake record. The
comparison between two figures verifies the observation made from Figure 8-5 that the use of

isolation system is beneficial for short-period pulses.
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Figure 8-7: Response histories for non-isolated and isolated rigid block under full-sine pulse

with 4,,=0.5g and 7, =0.2s (p=0.5, A=6, R=2m).

226



A=6
4 R=2m
rd—UASs

2

x, (m/s")
=]

——— Non-isolated
—— Linear L.S.

0.5

—— Nonlinear [.S.

——— Non-isolated
] 4 = Linear LS.

—_ —— Nonlinear [.S5_— — —_
< 0 ~T—.,_é;ﬁ""'b"‘
g —— —
-1
2
-3
400
—— Lincar L.S.
200 | T Nonlinear .S.
)
E o0y
=
-200
-400

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 8-8: Response histories for non-isolated and isolated rigid block under full-sine pulse
with 4,,=0.5g and 7, =0.5s (p=0.5, 1=6, R=2m).

227



8.2 Response to Earthquake Motions

In this section, the stability of the isolated block is investigated using a wide range of near-
fault seismic ground motions. Near-fault ground motions are typically characterized by intense
velocity and displacement pulses of relatively long periods that clearly distinguish them from
typical far-field ground motions. Table 8-1 lists the characteristics of the motions used for the

dynamic analysis.

Table 8-1: Ground motions used for the dynamic analysis

Earthquake Station / Magnitude  Distance PGA PGV T,
Component M) (km) (2) (m/s) (s)
1966 Parkfield, CA, USA C02/SN 6.20 0.1 048  0.75 2.00
1971 San Fernando, CA, USA PCD/SN 6.55 3.0 1.29 120 1.47
1978 Tabas, Iran TAB/SP 7.11 1.2 0.85 1.22 5.26
1979 Imperial Valley, CA, USA E04/SN 6.50 6.0 036  0.78 4.44
E05/SN 6.50 2.7 038 092 3.92
E06/SN 6.50 0.3 044  1.12 3.85
E07/SN 6.50 1.8 046  1.09 3.64
EMO /SN 6.50 1.2 038 1.15 2.94
1994 Northridge, CA, USA JFA/SN 6.70 5.2 039 1.05 3.03
RRS/SN 6.70 6.0 0.89 1.73 1.25
SCG/SN 6.70 5.1 0.59 134 2.94
SCH/SN 6.70 5.0 089 1.22 3.03
NWS/SN 6.70 53 0.41 1.17 2.70
1995 Aigion, Greece AEG/Long 6.33 6.0 0.50 041 0.71
AEG/Tran 6.33 6.0 0.55 0.52 0.68
1999 Izmit, Turkey ARC/SN 7.40 14.0 0.13 0.44 7.14
SKR/SP 7.40 3.1 041  0.80 9.52
GBZ/SN 7.40 11.0 026 041 4.76
GBZ/SP 7.40 11.0 0.03 0.29 6.06
1977 Bucharest, Romania BRI/ SN 7.3 190 0.21 0.75 2.13
1994 Northridge, CA, USA Pacoima / PKC090 6.7 8.2 030 031 0.61
2004 Parkfield Cholame 3W /360 6.0 8 0.57 0.38 0.52

The stability of the isolated block is examined in terms of the minimum amplitude of ground
acceleration required to overturn the block (6/a >1), by considering the influence of input-
motion characteristics, the geometric parameters of the block, the inertia parameters of the

base/block system, and the constitutive parameters of the isolation system.

Representative results are shown in Figure 8-9 for the SN-component of the BRI record from

the 1977 Bucharest earthquake, and the SN-component of the EMO record from the 1977
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Imperial Valley motion (long-period records with prevailing period 7, =2.13s and 7, = 2.94s

respectively, based on Mavroeidis and Papageorgiou (2003)), as well as the 90-component of
the Pacoima Dam record from the 1994 Northridge earthquake and the 360-component of the
Cholame-3W record from the 2004 Parkfield event (short-period records with prevailing
period T, = 0.61s and T, = 0.52s respectively, based on Bray and Rodriguez-Marek (2004). In

particular, Figure 8-9 plots the minimum ground acceleration needed to overturn the block as a
function of block size R, for both the non-isolated and isolated case (with isolation-system

periods 7, =2s and 7, =3s). As indicated in this figure, for the short-period Parkfield,
Cholame-3W record (with 7, =0.52s), the isolation system has a positive effect on the

stability of the block, regardless of block size R, provided that the isolation system is
designed to have sufficiently large period (case of 7, =3s). Note that for the case of the

Northridge, Pacoima-Dam record (with T, =0.61s), the effectiveness of isolation is

conditional on the size of the block R. On the contrary, for the long-period Bucharest, BRI

record and Imperial Valley, EMO record (T, > 2s ), the use of isolation is not beneficial in

improving the stability of the block (compared with the non-isolated case). It is worthy of
noting that these response trends, with respect to the excitation period, are in line with the

observed trends for the case of simple full-cycle acceleration pulses.
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Figure 8-9: Minimum overturning acceleration for short- and long-period pulse-like

earthquake motions. (1=4, p=0.5, & =0.2).

Figures 8-10 and 8-11 depict response-regime spectra in the 4 —R space for non-isolated and
isolated blocks of varying geometric characteristics, for the considered long- and short-period
earthquake records. These spectra suggest that, for the short-period earthquake motions the use
of isolation results in an increase in the acceleration required to initiate rocking, a benefit that
increases as the isolation period increases. The effectiveness of isolation in increasing the
stability of the block is evident in the case of short- to intermediate-range period excitations,

Le. the Parkfield, Cholame-3W record (with 7, =0.52s), the Aigion, AEG record (with
T, =0.71s), and the Aigion, AEG record (with T, = 0.68s). This is also true for the case of the

Northridge, Pacoima-Dam record (with 7, = 0.61s ), with the exception of very slender blocks
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(large A1) where the effectiveness of isolation depends on the size of the block R. On the
contrary, for long-period excitations, i.e. the Bucharest, BRI record, the Imperial Valley, EMO
record, the Parkfield, C02 record and the Northridge, NWS record (with T, >2s ), the use of

isolation is not beneficial in improving the stability of the block. Similar observations have
been made from analysis results with simple full-cycle acceleration pulses. It is also
interesting to observe that the use of isolation improves the performance of the block, with
respect to the initiation of rocking, regardless of the excitation period. The only exception to

this, was the case of an isolation system with 7, = 2s under Bucharest, BRI record. However,
with an appropriate selection of the isolation-system period (7, > 2.5s), the aforementioned

observation is still valid. Appendix A contains comparisons of experimental and analytical
results for non-isolated and isolated rigid blocks through response-regime spectra in the 4 —R
space. A representative sample of results from Appendix A is presented in Figures 8-10 and

8-11.
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Figure 8-10: Response-regime spectra in the 4 —R space for a non-isolated and isolated block
of varying geometric characteristics under (a) Bucharest, BRI / SN (7}, = 2.13s),
(b) Imperial Valley, EMO / SN (7}, = 2.94s), (c) Parkfield, Cholame 3W / 360 (7}, = 0.52s),
and (d) Northridge, Pacoima / 90 (7, = 0.61s) records.

232



Non-Isolated Isolated, 7, = 2s Isolated, 7, = 3s Isolated, T, = 4s

20
18
16
14
12
(@)~ 10

=R 2]

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
20
18
16
14
12
(b) ~

omESKD

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

() ™ 10

— it i bt [
(=R = ] b = o o
— i b [
SRS oNESNe D
[ —
SREeESEoNESe D

0 2 4 6 8§ 1012 0 2 4 6 8§ 1012 0 2 4 6 8§ 10 12

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
R (m) R (m) R(m) R (m)

© NoUplift ® Rocking ® Overturning

Figure 8-11: Response-regime spectra in the 4 — R space for a non-isolated and isolated block
of varying geometric characteristics under (a) Parkfield, C02 / SN (7, = 2.00s),
(b) Northridge, NWS / SN (T, = 2.70s), (c) Aigion, AEG / Long (7, = 0.71s),
and (d) Aigion, AEG / Tran (7}, = 0.68s) records.

The effect of linear isolation-system parameters on the block behavior is illustrated in Figure
8-12 through response-regime spectra in the 7,-& space for the considered earthquake

records. These spectra specify the values of the constitutive parameters of the isolation system

that provide improved performance of the analyzed block subjected to the specific pulse-type
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ground excitations. As seen from Figure 8-12, the range of 7, & values corresponding to

enhanced system performance are considerably larger for the case of short-period records. The
effect of block size R is shown in the 7,-& spectra of Figures 8-13 and 8-14 for the
Bucharest, BRI and Northridge, Pacoima record, respectively, for a given block slenderness
A . Observe that the boundary between no-uplift and rocking regimes (cyan and green areas,
respectively) is invariant to the change of block size R, justifying that the initiation of rocking
is not dependent on the absolute size of the block (but rather on the height-to-width ratio A, as
Equation (5.73) suggests). Moreover, the unfavourable (red) region in the 7,-& space
entailing overturning of the block is reduced as the block size R increases. Similar
observation has been made from analysis results with simple acceleration pulses (Figure 8-5).

Evidently, the damping ratio, &, has a significant influence on the effectiveness of isolation.

In particular, the effectiveness of isolation is reduced as the damping ratio decreases.
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Figure 8-12: Response-regime spectra in the 7-&, space for isolated block under Bucharest,
BRI/ SN, Imperial Valley, EMO / SN, Parkfield, Cholame 3W / 360 and Northridge, Pacoima
/90 records (=4, p=0.5, R=6m).

235



S

S

0 1

2 3 2 3

T, » (S) T h (S)
© NoUplift ® Rocking ® Overturning

4
[
—_—
=N

Figure 8-13: Response-regime spectra in the 7,-&, space for isolated block of varying size R
under Bucharest, BRI / SN record (7, =2.13s, A =3).

236



Sh

=
—
o
w
=

Sh

0 1

2 3

B
(=]

2 3
T, (5) T, (s)

© NoUplift ® Rocking @ Overturning

=

Figure 8-14: Response-regime spectra in the 7,-&, space for isolated block of varying size R
under Northridge, Pacoima / 90 record (7, = 0.61s, A =3).

Figure 8-15 depicts response-regime spectra in the A —R space for a wide range of rigid

blocks under recorded near-fault ground motions using a bilinear hysteretic model with

parameters 4, =0.11 and R, =2.24s (corresponding to 7, =3s), and a viscoelastic model
with 7, =3s and &, =0.35. As shown in these figures, the dynamic behavior of the block for

the two types of seismic isolation is similar while the initiation of rocking (boundary between
cyan and green areas) is not drastically affected. Appendix B presents comparisons of
experimental and analytical results for isolated rigid blocks using linear and nonlinear
isolation system through response-regime spectra in the 4 —R space. A representative sample

of results from Appendix B is presented in Figure 8-15.
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Figure 8-15: Response-regime spectra in the A —R space for a class of isolated rigid blocks
under (a) the SN component of 1979 Imperial Valley, CA, USA earthquake (EMO station) and
(b) the SN component of 1979 Imperial Valley EO5 earthquake
(p=0.5, 4, =0.11, R, =2.24m, T, =3s).

Figures 8-16 through 8-18 present time histories of the dynamic response of isolated and non-
isolated rigid blocks under the SN component of 1977 Bucharest, Romania earthquake with a
peak amplitude of 0.21g. Two types of isolation systems are considered in the analysis: (a) a
nonlinear isolation system with a bilinear hysteretic model (typified by friction-pendulum
isolator) with parameters x4, =0.11 and R, =2.24m (corresponding to 7, =3s), and (b) a

linear isolation system with viscoelastic model with 7, =3s. These figures plot the ground

acceleration, ¥, , the normalized angular displacement, 6/«, (with the overturning of the

block indicated when 6/a >1), the angular velocity of the block, € and the horizontal

displacement of the isolation system, u .

Figure 8-16 shows the response of a block with size-parameter R =8m, slenderness ratio

A =8, and mass ratio p =0.5. The block (non-isolated or isolated) oscillates in the rocking
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regime. This estimation can also be made from Figure 8-10, but the response history reveals
that the angular velocity and rotation angle of an isolated block using linear-isolation system is
reduced drastically with time (rocking regime ceases) and the system finally oscillates in the
system-translation regime. It is also observed that, the initiation of rocking for isolated and
non-isolated block follows the peak amplitude of the ground acceleration. Using a linear
isolation system the maximum horizontal system translation is approximately 250mm. Finally,
the system comes to rest before the end of the earthquake record. Using the nonlinear isolation
system the maximum horizontal system translation is approximately the same with the

permanent displacement (100mm).

Figure 8-17 shows that both blocks (isolated and non-isolated) with R=2m and A=10,
oscillate with rocking motion and finally overturn. In particular, the non-isolated block
overturns immediately after the initiation of rocking clockwise. The isolated block enters

clockwise rocking regime and after an impact event it finally overturns.

Figure 8-18 depicts response histories of system with R =0.8m and A =5.6. The non-isolated
block initially oscillates with clockwise rocking and upon impact the oscillation pattern
switches to anti-clockwise rocking motion and finally overturns. In contrast, the isolated block
switches between anticlockwise and clockwise rocking motions, and after a few seconds the
system switches to system-translation regime. For further response histories for non-isolated

and isolated rigid blocks under near-fault ground motions, refer to Appendix C.
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Figure 8-16: Response histories for non-isolated and isolated rigid block under the SN
component of 1977 Bucharest, Romania earthquake (p =0.5, 1 =8, R=8m).
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Figure 8-17: Response histories for non-isolated and isolated rigid block under the SN
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8.3 Response to Idealized Pulse-Type Motions

In this section, a comparison between the dynamic response of the system using idealized
pulse-type motions and recorded near-fault ground motions is presented. The aim is to
investigate whether the dynamic response of such systems can be estimated accurately using
the idealized pulse-type motions instead of the actual ground motions. The sophisticated
analytical model of Mavroeidis and Papageorgiou (2003) is used for the representation of

near-fault ground motions as idealized pulse-type motions.

The mathematical representation of ground acceleration for near-fault ground motions, as

proposed by Mavroeidis and Papageorgiou (2003), is

_sin(Z”fp (l‘—l‘o)jcos[Zﬁfp (t=t,)+v]

Arn f, /4

a(t) = 4

t,—L—<t<ty+-L— y>1(8.4)

2f, 27,

-

_+7/ sin[ 27 f, (t=1,)+V | {1 ' Cos[zﬂfp (= )ﬂ_

/4

0

where, T, is the pulse duration, equal to the inverse of the prevailing frequency (f,); 7 is a

parameter that defines the oscillatory character; 4 controls the amplitude of the signal; v is

the phase of the amplitude-modulated harmonic; and #, specifies the epoch of the envelope’s

peak.

Table 8-2 lists the characteristics of the recorded near-fault ground motions, together with the
model input parameters associated with the idealized pulse-type motions, used for the dynamic

analysis.
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Table 8-2: Characteristics of recorded near-fault ground motions and model input parameters

for the idealized pulse-type motions (Mavroeidis and Papageorgiou (2003)).

Earthquake Station / Magnitude  Distance PGA PGV A y W) f(Hz)
Component M) (km) (2) (m/s)

1966 Parkfield, CA, USA C02/SN 6.20 0.1 048  0.75 60.0 1.700 100.0 0.500

1971 San Fernando, CA, USA PCD/SN 6.55 3.0 1.29 120 115.0 1.600 180.0 0.680

1978 Tabas, Iran TAB/SP 7.11 1.2 0.85 122 104.0 2200 180.0 0.190

1979 Imperial Valley, CA, USA E04/SN 6.50 6.0 036  0.78 71.0 1900 305.0 0.225

E05/SN 6.50 2.7 038 0.92 84.0 1900 300.0 0.255

E06/SN 6.50 0.3 044 1.12 96.0 2.100 265.0 0.260

E07/SN 6.50 1.8 046  1.09 79.0 2,100 250 0.275

EMO /SN 6.50 1.2 038 1.15 78.0  2.300 0.0 0.340

1994 Northridge, CA, USA JFA/SN 6.70 52 039 1.05 87.0 2300 100.0 0.330

RRS/SN 6.70 6.0 0.89 1.73 142.0 1.700 20.0 0.800

SCG/SN 6.70 5.1 059 134 93.0 2.500 0.0 0.340

SCH/SN 6.70 5.0 0.89 1.22 80.0  2.300 0.0 0.330

NWS/SN 6.70 53 0.41 1.17 94.0 1.700 200.0 0.370

1995 Aigion, Greece AEG/Long 6.33 6.0 0.50 041 445 1450 75.0 1.400

AEG/Tran 6.33 6.0 0.55 0.52 61.0 1200 205.0 1.480

1999 Izmit, Turkey ARC/SN 7.40 14.0 0.13 044 41.0 1380 2250 0.140

SKR/SP 7.40 3.1 041  0.80 67.0 1.023 5.0 0.105

GBZ/SN 7.40 11.0 026 041 345 2200 220.0 0.210

GBZ/SP 7.40 11.0 0.03  0.29 28.0 1.800 85.0 0.165

1977 Bucharest, Romania BRI/ SN 7.3 190 021  0.75 62.0 2400 200.0 0.470
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Figures 8-19 through 8-24 present results from the dynamic behavior of isolated rigid
blocks under near-fault ground motions and their pulse-type idealization based on
Mavroeidis and Papageorgiou (2003). A linear isolation system is considered in these

analyses with 7, =3s, &, =0.35. The response history, located at the top of each figure,

illustrates the recorded ground motion and its idealized pulse-type motion. The dynamic
response of the system is presented using response-regime spectra in the A—R space,
located at the bottom of each figure. As seen from this figure, the system response when
subjected to the recorded near-field motion and its simulated representation is similar. The
initiation of rocking (boundary between cyan and green areas) is not drastically affected
and the rocking (green area) and overturning areas (red area) are comparable. It is evident,
that the dynamic response of the isolated system can be estimated properly using the
idealized pulse-type motion (Mavroeidis and Papageorgiou (2003)) instead of the actual

ground motion.

Northridge, CA, NWS (1994)

% 6
E 4-
g
= 2 -
5
= 0
3!
< -2
'U .
£ -4 4 ——— Recorded Ground Motion
2 Simulated Ground Motion
U '6 T T T T T T T
0 1 2 3 4 5 6 7 8
Time (sec)
~

20
18
16
14 1
12 4
10 1
8
6
4
2
0

0 2 4 6 8 10 12 0 2 4 6 8 10 12

R (m) R (m)
No Uplift ® Rocking @  Overturning
Figure 8-19: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SN component of 1994 Northridge, CA, NWS

earthquake and (b) its pulse-type representation.
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Bucharest, Romania (1977)

("’IF-\
‘_E{}‘
=
S
e
.2
=
&
2
o
]
9
<
2 N7
S 24 —— Recorded Ground Motion
e Simulated Ground Motion
O -3 T T T T T T
0 1 2 3 4 5 6 7
Time (sec)
(a)
-

No Uplift ® Rocking ®  Overturning

Figure 8-20: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SN component of 1977 Bucharest, Romania

earthquake and (b) its pulse-type representation.
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Tabas, Iran (1978)
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Figure 8-21: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SP component of 1978 Tabas, Iran earthquake and

(b) its pulse-type representation.
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Parkfield, CA, C02 (1966)
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Figure 8-22: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SN component of 1966 Parkfield, CA earthquake

and (b) its pulse-type representation.
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Imperial Valley, CA, EMO (1979)
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Figure 8-23: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SN component of 1979 Imperial Valley, CA, EMO
earthquake and (b) its pulse-type representation.
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Izmit, Turkey, GBZ / SN (1999)
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Figure 8-24: Response-regime spectra in the 4 — R space for an isolated block of varying
geometric characteristics under (a) the SN component of 1999 Izmit, Turkey, GBZ
earthquake and (b) its pulse-type representation.

The effect of isolation-system parameters on the block behavior using the actual ground
motion and the idealized pulse-type motion of Bucharest, BRI record is illustrated in

Figure 8-25 through response-regime spectra in the 7,-&, space. These spectra specify the

values of the constitutive parameters of the isolation system that provide improved
performance of the analyzed block subjected to the specific pulse-type ground excitation.
The analysis has been accomplished for different size, R, of the block. As seen from this
figure, for the idealized pulse-type motion, the boundary between no-uplift and rocking
regime (cyan and green areas, respectively) is different from that of the actual record

especially for 7, <Is. In general, the use of idealized pulse motions yields to more

conservative results, regarding the initiation of rocking (larger cyan area). On the other
hand, the overturning region (red area) is approximately the same using actual and

idealized pulse-type motions.
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Figure 8-25: Response-regime spectra in the 7, -&, space for isolated block of varying size

R under Bucharest, BRI / SN record (first column) and its pulse-type idealization (second
column) (4 =3).
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CHAPTER 9

Multi-Pattern Response to Dynamic Base Excitation

In this chapter, the multi-pattern response of the isolated rigid block subjected to full-cycle
sinusoidal pulses and horizontal near-fault ground motions is investigated, assuming
sliding between the block and the supporting base. The complexity of the problem
increases in comparison with the previous chapter as the system is realized through pure
system translation, sliding, rocking, and slide-rocking oscillation regimes. This
investigation gives a more realistic approximation for the dynamic response of the system

and reveals the general treatment of the problem.

9.1 Response to Simple Acceleration Pulses

The general planar motion response of the isolated and non-isolated rigid block is
investigated first using full-cycle sinusoidal pulses. The horizontal full-cycle sinusoidal

pulse is characterized by amplitude 4, and half-cycle duration ¢, (corresponding to

frequency w, = 7 /t,), expressed mathematically as follows

% (1)= Ay sin(zt/t,), if 0<t<2t,
BN 0, if > 21,

The stability of the isolated block is examined in terms of the minimum amplitude of
ground acceleration required to initiate each oscillation pattern and overturn the block (
@/a>1), by considering the influence of input-motion characteristics, the friction
coefficient between the block and the base, and the constitutive parameters of the isolation

system.

Figures 9-1 through 9-5 present the general response of non-isolated (left) and isolated
(right) rigid blocks with different block size R under full-cycle sinusoidal pulses. These

figures plot the minimum acceleration amplitude, 4,/ g , required for the system to enter
into different oscillation regimes, as a function of the static-friction coefficient, 4 , and
duration of pulse, #,. The isolation-system parameters used in the analysis are elastic
stiffness k, =40kN/m, period 7, =3s, and damping ratio &, =0.35. Each figure is

divided into five areas: (a) S: pure sliding occurs (grey area), (b) R: pure rocking occurs

(green area), (c) SR: slide-rocking occurs (blue area), (d) SA: safe area and (e) CA: critical
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area. It is worth mentioning that pure sliding or pure rocking may preceded the slide-
rocking motion. The safe area indicates that the system is at rest (non-isolated) or at system
translation regime (isolated). The critical area corresponds to system failure through

overturning of the block (when the normalized rotation angle €/a >1).

As seen from Figure 9-1 the sliding motions are more intensive for small values of
coefficient of static friction, while rocking motion predominates for higher values of the
static-friction coefficient. For small values of the coefficient of friction, the block oscillates
in the sliding regime while as the acceleration increases the system undergoes slide-
rocking and finally overturns. As expected, the minimum ground acceleration needed to
initiate sliding is increased linearly with the coefficient of static friction, Equation (5.33).

For pulse duration ¢, =0.3s, the minimum ground acceleration required to initiate pure

sliding or pure rocking is larger in the case of the isolated block. As a result, the safe area
is extended in comparison with the non-isolated block. In addition, the overturning failure
is associated with larger ground accelerations for the isolated block. It is also observed
that, for small values of the coefficient of friction, the minimum overturning ground
acceleration for isolated block is markedly greater than that for large values of friction.
Evidently, the value of the coefficient of friction plays an important role in the
performance of the isolated block. Note that the system is highly nonlinear and very
sensitive to the variation of the parameters; the minimum overturning ground acceleration

differs for each coefficient of static friction.

The effect of pulse duration on the rocking response (green area) of the system is
investigated in detail in Section 8.1. Herein, the investigation focuses mostly on the effect
of pulse duration on sliding (grey area) and slide-rocking (blue area). Figures 9-1 through
9-5 show that the isolation system has a positive effect on the stability of the block in

comparison to the non-isolated block for period pulses with 7, <0.7s or equivalently
excitation period 7, <1.4s. As the pulse duration decreases the safe area increases in

comparison to the non-isolated block. However, it should also be noted that as the pulse
duration increases, the minimum overturning ground acceleration decreases rapidly in
comparison to the non-isolated block. Consequently, the use of isolation may not be

beneficial for excitation periods 7, >1.4s (¢, > 0.7s).

It is also observed that, as the size of the block, R, increases, the minimum ground

acceleration needed to overturn the block (be it non-isolated or isolated) increases. Note
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that the safe area is invariant to the change of the block size R, justifying that the initiation

of rocking and sliding in not dependent on the absolute size of the block (but rather to the

height-to-width ratio A1).
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Figure 9-1: Minimum ground acceleration as a function of coefficient of static friction for
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simple full-sine ground-acceleration pulse (4 =5, R=0.5m, p=0.5).
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Figure 9-2: Minimum ground acceleration as a function of coefficient of static friction for

simple full-sine ground-acceleration pulse (A =5, R=2m, p=0.5).
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Figure 9-3: Minimum ground acceleration as a function of coefficient of static friction for

simple full-sine ground-acceleration pulse (A =5, R=4m, p=0.5).
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Figure 9-5: Minimum ground acceleration as a function of coefficient of static friction for

simple full-sine ground-acceleration pulse (A =5, R=8m, p=0.5).

Figure 9-6 illustrates the influence of the linear isolation-system period, 7,, on the

performance of the isolated block, for different values of the coefficient of static friction,
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u,, for full-cycle sinusoidal pulses. As demonstrated in this figure, the minimum ground

acceleration, for all areas, increases with increasing isolation-system period and the safe
area is extended. Nevertheless, as shown in Figure 8-13 (Section 8.2), the values of

isolation system parameters (&,, 7, ) have a significant influence on the response of the

system.

2.0 2.0
T,=3s T,=4s

1.5 1.5

1)
1.0 - 3, 10

~
0.5 I'IMM M " | 0.5
0.0 L L L 0.0 L L L

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
/13 /IS /IS

Figure 9-6: Minimum ground acceleration as a function of isolation-system period and
coefficient of static friction for full-cycle sinusoidal pulse
(A=6, R=2m, p=0.5,1,=0.5s, & =0.35).

Figure 9-7 presents response-regime spectra in the A—R space for non-isolated and
isolated blocks of varying geometric characteristics, for full-cycle pulses with duration
t,=0.2s and 0.5s. These spectra depict in a clear way the distinct regimes of block
response, with the cyan area indicating “No Uplift/No Sliding”, the grey area ‘“Pure
Sliding”, the green area “Pure Rocking”, the blue area “Slide-rocking” and the red area
“Overturning” of the block. In these figures, the analysis is concentrated in the case where

the coefficient of static friction, g, it equal to 0.20. As illustrated in Figure 9-7, the use of
isolation for pulse duration 7, =0.2s prevents the occurrence of sliding motions and the

response-regime spectrum is the same as that of the pure-rocking block. For pulse duration

t, =0.5s, it is observed that for isolated rigid blocks with slenderness ratio 4 <1/ y , pure

sliding motion is more intensive regardless of block size R. In contrast, rocking motions

predominates for A>1/u and the effect of isolation system is not beneficial to the

dynamic response of the system.

By and large, the use of isolation results in better system performance, with respect to
overturning and initiation of rocking and slide-rocking, for short-period pulses. On the

contrary, for long period pulses, the response does not adhere to an observable trend,
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regarding the stability of the system, inasmuch as there exist combinations of (A, R)

values for which the isolation is either effective or ineffective.

Non-Isolated, 7,=0.2s Isolated, £,= 0.2s Non-Isolated, ¢, = 0.5s Isolated, 1, = 0.5s
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Figure 9-7: Response-regime spectra in the A — R space for non-isolated and isolated block

of varying geometric characteristics for full-sine ground-acceleration pulses with 7, = 0.2s

(left) and ¢, =0.5s (right) (4,,=0.5¢g, p=0.5, 4, =0.2, T, =3s, &, =0.35).

Figure 9-8 presents the response-regime spectra in the 4 —R space for non-isolated and
isolated blocks of varying geometric characteristics, for full-cycle pulse with duration
t, =0.5s using different values of the coefficient of friction g . It is observed that for
small values of the coefficient of friction, the sliding motions are dominating, while as the
coefficient of friction increases the rocking motions predominate. In addition, an isolated

block with 4 <1/ g, has better performance with respect to the initiation of rocking, slide-

rocking and overturning of the block, in comparison with the non-isolated block. Pure
sliding is suppressed for blocks with A >1/ x and slide-rocking and pure rocking motions
occur. The coefficient of static friction appears to improve the stability of the system. Note

that a wrong estimation of the value of the coefficient of friction may result in a

conservative and incorrect solution.
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Figure 9-8: Response-regime spectra in the A — R space for (a) non-isolated and (b)
isolated block of varying geometric characteristics for full-sine ground-acceleration pulses

with ¢, =0.5s for different coefficients of static friction

(4,,=0.5g, p=0.5,1T,=3s, 5 =035).

Figures 9-9 and 9-10 present time histories of the dynamic response of isolated and non-
isolated rigid blocks under full-sine pulses. The general dynamic response is calculated for
specific geometric characteristics of the block and using a linear isolation system with

T, =3s and &, =0.35. The plots illustrate the ground acceleration, X , the horizontal
displacement and velocity of the isolation system, u# and u, the normalized angular
displacement, @/, (with the overturning of the block indicated when 6/« >1), the
angular velocity of the block, @ and the horizontal displacement and velocity of the block

due to sliding, x, and x, . Note that the block enters a slide-rocking regime when sliding
and pivoting on its edges at the same time.

Figure 9-9 shows the response of a rigid block with size-parameter R =4m, slenderness
ratio A =4, mass ratio p =0.5 and coefficient of friction between the block and the base
4, =0.2 under short-period pulse, z, =0.2s with a peak amplitude of 0.5g. The isolated

block oscillates only with system-translation regime. The maximum horizontal

displacement is approximately 100mm and the permanent displacement 50mm. In contrast,
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the non-isolated block oscillates in the slide-rocking regime which leads to several impact
events between the block and the supporting base and permanent displacement due to

sliding x, =40mm . It appears that, the sliding between the block and the base prevented
the initiation of rocking for a small duration of time.

Figure 9-10 depicts response histories of a system with the same characteristics under a
long-period pulse ¢, =0.5s. The isolated block oscillates in the system-translation and

sliding regimes. The isolated block translates horizontally with the isolation system
approximately 350mm. In contrast, the non-isolated block oscillates in the sliding and
slide-rocking regimes. Finally, both blocks (non-isolated/isolated) have a permanent
displacement due to sliding. The non-isolated block has x, =305mm and the isolated

block x, =125mm. Note that non-isolated block faced impact event several times during

rocking motion.
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Figure 9-9: Response histories for non-isolated and isolated rigid block under full-sine

pulse with 4,,=0.5¢g and 7, =0.2s (1=4, R=4m, x4, =02, p=0.5).
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9.2 Response to Earthquake Motions

In this section, the general-planar motion dynamic response of the isolated and non-
isolated rigid block is calculated using near-fault seismic ground motions. Near- fault
ground motions are typically characterized by intense velocity and displacement pulses of
relatively long period that clearly distinguish them from typical far-field ground motions.

Table 8-1 lists the characteristics of the motions used for the dynamic analysis.

Representative results are shown in Figure 9-11 for SN component of 1977 Bucharest,
Romania earthquake, SN component of 1979 Imperial Valley EO5, California, USA
earthquake and SN component of 1966 Parkfield C02, California, USA earthquake. This
figure plots the minimum acceleration amplitude required for the system to enter into
different oscillation regimes, as a function of the static-friction coefficient. The isolation-

system parameters used in the analysis are: elastic stiffness k, = 40kN/m, period 7, =3s,
and damping ratio &, =0.35. Each figure is divided into five areas: (a) S: pure sliding

occurs (grey area), (b) R: pure rocking occurs (green area), (c) SR: slide-rocking occurs
(blue area), (d) SA: safe area and (e) CA: critical area. It is worth mentioning that pure
sliding or pure rocking may have preceded the slide-rocking motion. The safe area
indicates that the system is at rest (non-isolated) or in system translation regime (isolated).

The critical area corresponds to system failure through overturning of the block (8/a >1).

Figure 9-11 reveals that, for a system with geometric characteristics A =5, R=2m, and
o =0.5, the use of isolation results in improved performance in comparison with non-

isolated block. The minimum ground acceleration required to initiate sliding or rocking is
larger in the case of the isolated block. As a result, the safe area is extended in comparison
to the non-isolated block. In addition, overturning (boundary of critical area) is associated
with larger ground accelerations for the isolated block. As expected, sliding motions are
dominating for small values of the coefficient of static friction, while rocking motion
predominates for higher values of the static-friction coefficient. It is also observed that, for
small values of the coefficient of friction the minimum overturning ground acceleration is
noticeably greater than that for large values of friction. Evidently, the value of the
coefficient of friction has a significant impact on the performance of the isolated block.
Using a small for the coefficient of friction, the initiation of slide-rocking regime and the

overturning of the block occur at larger values of ground acceleration.
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Figure 9-11: Minimum ground-acceleration amplitude required for the system to enter into
different oscillation regimes under (a) SN component of 1977 Bucharest, Romania
earthquake, (b) SN component of 1979 Imperial Valley E05, California, USA earthquake
and (c) SN component of 1966 Parkfield C02, California, USA earthquake
(A=5, R=2m, p=0.5).

Figure 9-12 illustrates the influence of isolation-system period, 7, , on the stability of the
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isolated block, for different values of the coefficient of static friction, x , for near-fault

ground motions. The minimum ground acceleration needed to initiate each motion is
extended to larger values with increasing isolation-system period. In addition, overturning
(boundary of critical area) is associated with larger ground accelerations. A similar
observation has been made for the analysis with simple full-cycle acceleration pulses,

Figure 9-6.
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Figure 9-12: Minimum ground acceleration as a function of isolation-system period and
coefficient of static friction under the SN component of 1977 Bucharest, Romania
earthquake (top) and the SN component of 1979 Imperial Valley E05, California, USA
earthquake (bottom) (A =5, R=2m, p=0.5).

Figures 9-13 and 9-14 present response-regime spectra in the 4 —R space for non-isolated
and isolated blocks of varying geometric characteristics, for near-fault ground motions

using different values of the coefficient of friction g . As expected, for small values of the

coefficient of friction, the sliding motions are dominating and as the coefficient of friction
increases the sliding motions are suppressed and the rocking motions occur. The

investigation has shown that an isolated block with A <1/ 4 eliminates the possibility of

failure in comparison with the non-isolated block. The initiation of rocking motion and
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potential overturning of the block appear in blocks with A>1/y . Based on this

observation, knowing the value of the coefficient of friction and the slenderness ratio of the
rigid block, a proper estimation of the effectiveness of isolation can be carried out. Note
that a wrong estimation of the value of the coefficient of friction may result in a
conservative and incorrect solution. Similar observations have been made for the analysis
with simple full-cycle acceleration pulses, Figure 9-8. Appendix D contains comparisons
of experimental and analytical results for non-isolated and isolated rigid blocks through
response-regime spectra in A — R space. A representative sample of results from Appendix

D is presented in Figures 9-13 and 9-14.
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Figure 9-13: Response-regime spectra in the A — R space for (a) non-isolated and (b)
isolated block of varying geometric characteristics under the SN component of 1977

Bucharest, Romania earthquake for different coefficients of static friction

(p=05,T, =3s, & =035).
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Figure 9-14: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)
isolated block of varying geometric characteristics under the SN component of 1979
Imperial Valley EO5, California, USA earthquake for different coefficients of static friction

(p=05,T, =3s, & =035).

Figures 9-15 and 9-16 depict response-regime spectra in the A — R space for a wide range
of rigid blocks under recorded near-fault ground motions using a bilinear hysteretic model

with parameters g, =0.11 and R, =2.24s (corresponding to 7, =3s), and a viscoelastic

model with 7, =3s and &, =0.35. Two different values of coefficient of static friction, s,

, are considered in the analysis 0.2 and 0.3. As can be seen from these figures, the dynamic
response of the system is comparable using either small or large values of the coefficient of
static friction between the block and the base, with the initiation of slide-rocking, rocking
and overturning of the block are not drastically affected. In particular, for small value of

the coefficient of static friction and slenderness ratio 4 <1/, both systems oscillate in

the pure sliding regime. As the slenderness ratio increases, both systems oscillate in the
slide-rocking and pure rocking regimes which may result in overturning failure. For large
values of the coefficient of friction, sliding motions are suppressed and rocking motions
predominate. Appendix E contains comparisons of experimental and analytical results for

isolated rigid blocks using linear and nonlinear isolation system through response-regime
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spectra in the A—R space. A representative sample of results from Appendix E is

presented in Figures 9-15 and 9-16.
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Figure 9-15: Response-regime spectra in the 4 —R space for isolated rigid block of
varying geometric characteristics using (a) Nonlinear I.S. and (b) Linear .S under the SN

component of 1979 Imperial Valley, CA, USA earthquake (EMO station) for different
coefficients of static friction (p =0.5, g, =0.11, R, =2.24m, T, =3s).
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Figure 9-16: Response-regime spectra in the 4 — R space for isolated rigid block of
varying geometric characteristics using (a) Nonlinear I.S. and (b) Linear .S under the SN
component of 1994 Northridge JFA, CA, USA earthquake for different coefficients of
static friction (o =0.5).

Figures 9-17 through 9-19 present time histories of the dynamic response of the isolated
and non-isolated rigid blocks under horizontal ground excitations. The general dynamic
response is calculated for specific geometric characteristics of the block and using a linear

isolation system with 7, =3s and & =0.35. The plots illustrate the ground acceleration,
X, , the horizontal displacement and velocity of the isolation system, u and u, the
normalized angular displacement, 6/, (with the overturning of the block indicated when

0/a=>1), the angular velocity of the block, 0 and the horizontal displacement and

velocity of the block due to sliding, x, and x,. Note that the block enters slide-rocking
regime when sliding and pivoting on its edges at the same time.

Figure 9-17 shows the response of a block with size-parameter R =11m, slenderness ratio
A=11, mass ratio p =0.5, and coefficient of friction between the block and the base
4. =0.1under the SN component of 1977 Bucharest, Romania earthquake. The non-

isolated block oscillates in the rocking and slide-rocking regimes. In contrast, the isolated
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block oscillates in the system translation and rocking regimes. The maximum horizontal
displacement due to system translation is approximately 250mm. For this case, the system-
translation regime prevents sliding of the block on the rigid base. Neither of the blocks
(non-isolated/isolated) overturn, yet the non-isolated block has a small permanent

displacement due to sliding x, ~ 6mm .

Figure 9-18 plots the response of a system with R=2m, A=12, p=0.5, and g =0.1

under the SN component of 1977 Bucharest, Romania earthquake. The block gets though
slide-rocking motion and finally overturns. It appears that, the system-translation response
caused a small delay to the overturning of the block, in comparison with the non-isolated

case. The displacement attained due to sliding is very small for both systems.

Figure 9-19 depicts response histories of a system with R=4m, A=8, p=0.5, and
u,=0.2, under the SN component of 1979 Imperial Valley EO5 earthquake. The block

oscillates in the rocking motion and finally overturns. It is possible that the system-
translation response delayed the initiation of rocking in comparison with the non-isolated

system.
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Figure 9-17: Response histories for non-isolated and isolated rigid block under the SN

component of 1977 Bucharest, Romania earthquake (4 =11, R=1Im, g =0.1, p=0.5).
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CHAPTER 10

Conclusions

10.1 Summary and Conclusions

Most seismic design codes permit heavy damages to buildings in case of large earthquakes,
provided that the building is protected against collapse. Conventional seismic design
practice ties buildings rigidly to their foundations and makes them strong enough to resist
forces produced by earthquakes. But experience has revealed that this approach generates
large forces in structures during a seismic event. Even if the structural system survives,
damage to nonstructural components and contents can affect the operation of the building.
Loss of function is unacceptable for high-importance individual elements, such as high-
value building contents, mechanical or electrical equipment, computer servers, and

irreplaceable museum artifacts.

To minimize these large earthquake forces, seismic engineers have been using a new
technology over the last three decades as a practical method of protecting buildings from
earthquake shaking, known as base or seismic isolation. In contrast with the conventional
design, seismic isolators decouple the structure from the foundation while permitting large
horizontal displacements. In effect, seismic isolation lengthens the natural period of a
structure away from the predominant frequency of the ground motion. The effectiveness of
base-isolation technology in safeguarding engineering structures paved the way for
extending the concept to individual elements of high-importance. The aforementioned
elements often exhibit rigid-body behavior under seismic excitation, and their study should

be performed within the context of rigid-body dynamics.

This dissertation concentrates on the general multi-pattern dynamic response of base-
isolated rigid blocks subjected to ground excitation, through the development of a
comprehensive mathematical formulation, including a rigorous model governing impact.
The study examines in depth the motion of the system with a large-displacement
formulation that combines the exact (nonlinear) equations of motion together with a
rigorous model governing impact. The system considered consists of a symmetric rigid
block standing free on a seismically isolated rigid base. The response of the system is
described in terms of four oscillation regimes: system translation, in which the base-block
system translates as a whole (one-degree-of-freedom response); sliding, in which the block

slides relative to the horizontally-moving base (two-degree-of-freedom response); rocking,
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in which the block pivots on its edges with respect to the horizontally-moving base (two-
degree-of-freedom response); and slide-rocking, in which the block simultaneously slides
and pivots on its edges with respect to the horizontally-moving base (three-degree-of-
freedom response). Two models for the isolation system are considered, a linear model
with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. The
governing equations of motion are obtained for each oscillation regime using the Lagrange
method. The mathematical treatment of the problem is broad in scope in that it is neither

restricted to small rotations nor slender blocks.

The mathematical description of the system dynamics is profoundly complex primarily due
to the inherent nonlinear nature of the impact phenomenon and the potential (alternating)
transition from one oscillation pattern to another, each one governed by a different set of
differential equations. A rigorous mathematical model governing impact from rocking and
slide-rocking regimes has been formulated using classical impact theory. The model
assumes point-impact, perfectly-inelastic impact (i.e. zero coefficient of restitution), and
impulses forces acting only at the impacting corner (i.e. impulses at the rotating corner are

small compared to those at the impacting corner and are neglected).

On the basis of the proposed analytical model, a computer program has been developed to
determine numerically the dynamic response of the system by considering the different
possible oscillation regimes, impact occurrence(s), transition criteria, and arbitrary
excitation. An extensive numerical investigation has been carried out for varying block
geometric characteristics and isolation-system parameters, under idealized base-
acceleration pulses and recorded pulse-type earthquake motions with a wide range of
amplitude and frequency content, with the aim of identifying potential trends in the

response and stability of the system.

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking
response, the investigation has shown that the use of isolation results in better system
performance, with respect to the initiation of rocking and overturning, for short-period
pulses. In particular, the use of isolation improves the stability of blocks with decreasing
block size, provided that the system is not subjected to long-period acceleration pulses. On
the contrary, for long-period pulses, the use of isolation is not beneficial in improving the
stability of the block, in comparison with the non-isolated case. Nevertheless, in general,
the use of isolation results in an increase in the acceleration required to initiate rocking in

comparison with the non-isolated block, regardless of the block size and pulse-period.
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In addition, this investigation has shown that the variance of the isolation-system

parameters (7, ,&,) has a significant impact on the effectiveness of the isolation system.

The isolated block has better performance as the period of the isolation system increases.

In addition, the damping ratio, &,, has significant influence on the effectiveness of the

isolation, with the latter reduced as the damping ratio decreases.

The response of the system has been calculated considering two seismic-isolation models,
a linear model with viscoelastic behavior and a nonlinear model with bilinear hysteretic
behavior. The analysis has demonstrated that the calculated responses on the basis of the

two isolation-system models are in good agreement.

Furthermore, an analysis using idealized pulse-type motions instead of actual ground
motions has revealed that the use of idealized pulse-type motions yields to more
conservative results, regarding the initiation of rocking. On the other hand, the stability of
the isolated system can be estimated relatively accurately using the idealized pulse-type

motions.

Assuming sliding between the block and the supporting base, entailing a multi-pattern
response, the investigation has shown that the value of the coefficient of friction between
the block and the supporting base plays an important role on the performance of the

isolated block. In particular, an isolated block with A <1/ g eliminates the possibility of

failure in comparison with the non-isolated block. The initiation of rocking motion and

potential overturning of the block appear in blocks with A>1/x . Based on this

observation, knowing the value of the coefficient of friction and the slenderness ratio of the
rigid block, a proper estimation of the effectiveness of isolation can be carried out. Note
that a wrong estimation of the value of the coefficient of friction may result in a

conservative and incorrect solution.

It is also observed that, sliding response is dominating for small values of the coefficient of
static friction, while rocking motion predominates for higher values of the static-friction
coefficient. For small values of the coefficient of friction, the block oscillates in the sliding
regime and as the acceleration increases the system undergoes slide-rocking regime and
finally overturns. As expected, the minimum ground acceleration needed to initiate sliding
increases linearly with the coefficient of static friction. In addition, as the size of the block

increases, the minimum ground acceleration needed to overturn the block increases.

Moreover, the analysis has shown that the use of isolation results in better system
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performance, with respect to overturning and initiation of rocking and slide-rocking, for
short-period pulses. On the contrary, for long period pulses, the response does not adhere
to an observable trend, regarding the stability of the system, inasmuch as there exist

combinations of (A, R) values for which the isolation is either effective or ineffective.

In conclusion, the scientific contribution of this dissertation lies in (a) the development of a
comprehensive mathematical formulation, including a rigorous model governing impact,
for calculating the general multi-pattern dynamic response of base-isolated systems that
exhibit rigid-body behavior under seismic excitation; (b) the development of a computer
program to determine numerically the dynamic response of the system; (c) the undertaken
of an extensive numerical investigation under idealized base-acceleration pulses and
recorded pulse-type earthquake motions with the aim of identifying potential trends in the

response and stability of the system.

10.2 Recommendations for Future Research

This work could be extended in a number of ways. In particular, future research could
consider: (a) supporting the system on a different type of foundation; (b) investigating the
response of systems consisting of multiple (stacked) rigid blocks; (c) studying the
possibility of bouncing and diversifying the model governing impact (i.e. uplifting by
rotating about the corner of rotation); (d) examining the effect of vertical ground excitation
on the response of the system; (e) investigating the effect of a non-constant coefficient of
friction between the block and the rigid base (e.g. due to temperature change); and (g)

verifying the findings of this dissertation through experimental investigations.
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APPENDIX A
Rocking Response-Regime Spectra for Non-Isolated and Isolated Blocks

Using Linear Isolation System

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking
response, this appendix presents a numerous response-regime spectra in the A—R space

for a class of non-isolated and isolated rigid blocks under near-fault ground motions.
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Figure A-1: Response-regime spectra in the 4 — R space for a non-isolated and isolated
block of varying geometric characteristics under (a) San Fernando, PCD / SN (7}, = 1.47s),
(b) Tabas, TAB / SP (T, = 5.26s), (c¢) Northridge, SCG / SN (7, = 2.94s), (d) Northridge,
RRS /SN (7, = 1.25s) records.
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APPENDIX B
Rocking Response-Regime Spectra for Non-Isolated and Isolated Blocks

Using Linear and Nonlinear Isolation Systems

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking
response, this appendix presents a numerous response-regime spectra in the A—R space
for a class of non-isolated and isolated rigid blocks under near-fault ground motions . Two

types of isolation system are considered in the analysis: (a) a Nonlinear I.S. with a bilinear

hysteretic model (typified by friction-pendulum isolator) with parameters g, =0.11 and

R, =2.24m (corresponding to 7, =3s) and (b) a Linear I.S. with viscoelastic model with

T, =3s.
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Figure B-1: Response-regime spectra in the 4 — R space for a non-isolated and isolated
block of varying geometric characteristics under (a) the SN component of 1966 Parkfield,
CA, USA earthquake, (b) the SN component of 1971 San Fernando, CA, USA earthquake,

(c) the SP component of 1978 Tabas, Iran earthquake and (d) the SN component of 1979

Imperial Valley, CA, USA earthquake (EMO station).
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Figure B-2: Response-regime spectra in the 4 — R space for a non-isolated and isolated
block of varying geometric characteristics under (a) the SN component of 1994
Northridge, CA, USA earthquake (JFA station), (b) the SN component of 1979 Imperial
Valley, CA, USA earthquake (EO5 station), (c) the SN component of 1994 Northridge, CA,
USA earthquake (SCH station) and (d) the SN component of 1979 Imperial Valley, CA,
USA earthquake (E07 station).
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Figure B-3: Response-regime spectra in the 4 — R space for a non-isolated and isolated
block of varying geometric characteristics under (a) the SN component of 1994
Northridge, CA, USA earthquake (NWS station), (b) the SN component of 1994

Northridge, CA, USA earthquake (SCG station), (c) the SN component of 1979 Imperial

Valley, CA, USA earthquake (E04 station), and (d) the SN component of 1979 Imperial

Valley, CA, USA earthquake (E06 station).
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Figure B-4: Response-regime spectra in the 4 —R space for a non-isolated and isolated
block of varying geometric characteristics under (a) the SN component of 1994
Northridge, CA, USA earthquake (RRS station), (b) the Tran component of 1995 Aigion,
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and (d) the SN component of 1999 Izmit, Turkey earthquake (GBZ station).
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APPENDIX C

Rocking Response Histories

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking
response, this appendix presents response histories for non-isolated and isolated rigid
blocks under recorded ground excitations. Two types of isolation system are considered in

the analysis: (a) a Nonlinear I.S. with a bilinear hysteretic model (typified by friction-

pendulum isolator) with parameters £, =0.11 and R, =2.24m (corresponding to 7, =3s)

and (b) a Linear L.S. with viscoelastic model with 7, =3s.
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Figure C-13: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (EO5 station), CA, USA earthquake
(p=0.5,A=3,R=6m).

306



0.00015
0.00010 -
0.00005 -
0.00000
-0.00005 -
-0.00010 ~
-0.00015 - - . l , r r

——— Non-isolated
—— Linear L.S.
—— Nonlinear L.S.

O
;‘ o — ——

0.003
| ——— Non-isolated
0.002 + —— Linear LS.

0.001 - | ——— Nonlinear LS.

Linear L.S.
——— Nonlinear .S,

N\

-400 - - ' ' '
0 2 4 6 8 10 12 14 16

Time (s)

Figure C-14: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (EO5 station), CA, USA earthquake
(p=0.5,2=3,R=10m).
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Figure C-15: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (EO5 station), CA, USA earthquake
(p=0.5,A=10, R =6m).
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Figure C-16: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (E06 station), CA, USA earthquake
(p=0.5,A=3,R=2m).
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Figure C-17: Response histories for non-isolated and isolated rigid block under the SN

component of 1979 Imperial Valley (E06 station), CA, USA earthquake

(p=0.5, =10, R = 6m).
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Figure C-18: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (E06 station), CA, USA earthquake
(p=0.5,A=6,R=28m).
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Figure C-19: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (E07 station), CA, USA earthquake
(p=0.5,A=4,R=6m).
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Figure C-20: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (E07 station), CA, USA earthquake
(p=0.5,A=12, R=2m).
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Figure C-21: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (E07 station), CA, USA earthquake
(p=0.5,4=5,R=10m).
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Figure C-22: Response histories for non-isolated and isolated rigid block under the SN
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Figure C-23: Response histories for non-isolated and isolated rigid block under the SN
component of 1979 Imperial Valley (EMO station), CA, USA earthquake
(p=0.5,4=3,R=8m).
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Figure C-24: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (JFA station), CA, USA earthquake

(p=0.5,7.=3,R=6m).
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Figure C-25: Response histories for non-isolated and isolated rigid block under the SN

component of 1994 Northridge (JFA station), CA, USA earthquake
(p=05,A=5R=11m).
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Figure C-26: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (JFA station), CA, USA earthquake

(p=0.5,2=10, R = 6m).
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Figure C-27: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (RRS station), CA, USA earthquake
(p=0.5,A=3,R=1m).
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Figure C-28: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (RRS station), CA, USA earthquake

(p=0.5,2=10, R =2m).
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Figure C-29: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (RRS station), CA, USA earthquake
(p=0.5,A=6,R=10m).
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Figure C-30: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (SCG station), CA, USA earthquake

(p=0.5,4=3, R =5m).
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Figure C-31: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (SCG station), CA, USA earthquake
(p=05,1=4,R="Tm).
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Figure C-32: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (SCG station), CA, USA earthquake
(p=0.5,A=3,R=1m).
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Figure C-33: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (SCH station), CA, USA earthquake
(p=0.5,1=3, R=6m).
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Figure C-34: Response histories for non-isolated and isolated rigid block under the SN

component of 1994 Northridge (SCH station), CA, USA earthquake
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Figure C-35: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (SCH station), CA, USA earthquake
(p=0.5,1=6,R=10m).
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Figure C-36: Response histories for non-isolated and isolated rigid block under the SN
component of 1994 Northridge (NWS station), CA, USA earthquake
(p=05,1=3,R=5m).
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Figure C-37: Response histories for non-isolated and isolated rigid block under the SN

component of 1994 Northridge (NWS station), CA, USA earthquake
(p=0.5,4=10, R =4m).
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Figure C-38: Response histories for non-isolated and isolated rigid block under the SN

component of 1994 Northridge (NWS station), CA, USA earthquake

(p=0.5, =4, R=10m).
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Figure C-39: Response histories for non-isolated and isolated rigid block under the Tran
component of 1995 Aigion (AEG station), Greece earthquake (p = 0.5, 4 =10, R = Im).
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Figure C-40: Response histories for non-isolated and isolated rigid block under the Tran
component of 1995 Aigion (AEG station), Greece earthquake (p = 0.5, 4 =12, R = Im).
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Figure C-41: Response histories for non-isolated and isolated rigid block under the Tran
component of 1995 Aigion (AEG station), Greece earthquake (p = 0.5, 4 =16, R = 6m).
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Figure C-42: Response histories for non-isolated and isolated rigid block under the SP
component of 1999 Izmit (SKR station), Turkey earthquake (p = 0.5, 1 =6, R = 1m).
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Figure C-43: Response histories for non-isolated and isolated rigid block under the SP
component of 1999 Izmit (SKR station), Turkey earthquake (p = 0.5, 1 =14, R = 2m).
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Figure C-44: Response histories for non-isolated and isolated rigid block under the SP
component of 1999 Izmit (SKR station), Turkey earthquake (p = 0.5, 1 =14, R = 10m).
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Figure C-45: Response histories for non-isolated and isolated rigid block under the SN
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Figure C-46: Response histories for non-isolated and isolated rigid block under the SN
component of 1999 Izmit (GBZ station), Turkey earthquake (p = 0.5, 4 =16, R = Im).
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Figure C-47: Response histories for non-isolated and isolated rigid block under the SP
component of 1999 Izmit (GBZ station), Turkey earthquake (p = 0.5, 4 = 14, R = 10m).
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APPENDIX D
Multi-Pattern Response-Regime Spectra for Non-Isolated and Isolated

Blocks Using Linear Isolation System

Assuming sliding between the block and the supporting base, entailing a multi-pattern
response, this appendix presents a numerous response-regime spectra in the 4 —R space
for (a) non-isolated and (b) isolated blocks of varying geometric characteristics under

earthquake excitations.
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Figure D-1: Response-regime spectra in the 4 —R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under San Fernando, PCD / SN record

(p=0.5).
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Figure D-2: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Northridge, JFA / SN record

(p=0.5).
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Figure D-3: Response-regime spectra in the 4 —R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Northridge, SCH / SN record
(p=0.5).
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Figure D-4: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Northridge, NWS / SN record

(p=0.5).
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Figure D-5: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Tabas, TAB / SP record (p = 0.5).
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Figure D-6: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Imperial Valley, E04 / SN record

(p=0.5).
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Figure D-7: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Imperial Valley, E0O6 / SN record

(p=0.5).
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Figure D-8: Response-regime spectra in the 4 — R space for (a) non-isolated and (b)

isolated block of varying geometric characteristics under Imperial Valley, EO7 / SN record

(p=0.5).
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APPENDIX E
Multi-Pattern Response-Regime Spectra for Isolated Blocks Using Linear

and Nonlinear Isolation Systems

Assuming sliding between the block and the supporting base, entailing a multi-pattern
response, this appendix presents a numerous response-regime spectra in the A—R space
for isolated rigid blocks of varying geometric characteristics, using different values of the
coefficient of friction x . Two types of isolation system are considered in the analysis: (a)
a Nonlinear I.S. with a bilinear hysteretic model (typified by friction-pendulum isolator)

with parameters x4, =0.11 and R, =2.24m (corresponding to 7, =3s) and (b) a Linear

L.S. with viscoelastic model with 7, =3s.
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Figure E-1: Response-regime spectra in the A —R space for isolated rigid block of varying

geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SP
component of 1978 Tabas, Iran earthquake (p = 0.5).
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Figure E-2: Response-regime spectra in the A —R space for isolated rigid block of varying
geometric characteristics using (a) Nonlinear I.S. and (b) Linear 1.S under the SN
component of 1979 Imperial Valley, CA, USA earthquake (E06 station) (p = 0.5).
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Figure E-3: Response-regime spectra in the 4 — R space for isolated rigid block of varying
geometric characteristics using (a) Nonlinear I.S. and (b) Linear 1.S under the SN
component of 1977 Bucharest, Romania earthquake (p = 0.5).
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Figure E-4: Response-regime spectra in the A — R space for isolated rigid block of varying
geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN
component of 1994 Northridge, CA, USA earthquake (SCH station) (p = 0.5).
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