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Περίληψη 

Η διατριβή αυτή επικεντρώνεται στη διερεύνηση της γενικής πολυμορφικής κίνησης σεισμικά 

μονωμένων άκαμπτων μπλοκ στο επίπεδο, όταν υπόκεινται σε εδαφικές διεγέρσεις. Το 

μοντέλο που αναπτύχθηκε αποτελείται από ένα συμμετρικά άκαμπτο μπλοκ το οποίο 

εδράζεται σε μία σεισμικά μονωμένη άκαμπτη βάση. Κάτω από μία σεισμική διέγερση, το 

σύστημα μπορεί να αποκριθεί δυναμικά με τέσσερις διαφορετικούς τρόπους: (α) απλή 

οριζόντια μετακίνηση, κατά την οποία το σύστημα μετακινείται οριζόντια ως μία οντότητα, 

(β) ολίσθηση, κατά την οποία το μπλοκ ολισθαίνει πάνω στη μετακινούμενη βάση, (γ) 

λικνισμός, κατά τον οποίο το μπλοκ περιστρέφεται γύρω από τις δύο γωνίες καθώς 

μετακινείται η βάση οριζόντια και (δ) ολίσθηση-λικνισμός, κατά την οποία το μπλοκ 

ολισθαίνει και ταυτόχρονα λικνίζεται πάνω στη μετακινούμενη βάση. Οι εξισώσεις κίνησης 

που περιγράφουν την κίνηση του συστήματος μορφώθηκαν με τη βοήθεια της μεθόδου 

Lagrange. Για την ανάλυση του μοντέλου χρησιμοποιήθηκαν δύο τύποι σεισμικής μόνωσης, 

ένα γραμμικό με βισκοελαστική συμπεριφορά και ένα μη-γραμμικό με διγραμμική 

συμπεριφορά. 

Η πολυπλοκότητα του μαθηματικού μοντέλου διέπεται κυρίως από την κρούση που μπορεί να 

συμβεί μεταξύ του λικνιζόμενου μπλοκ και της μετακινούμενης βάσης, όπως επίσης και από 

την πιθανή εναλλασόμενη μετάβαση από τη μία κίνηση σε άλλη, αλλάζοντας έτσι και τους 

βαθμούς ελευθερίας του συστήματος. Συνεπώς, στη διατριβή αυτή αναπτύχθηκε ένα 

αναλυτικό μοντέλο που περιγράφει την κρούση, κατά τη διάρκεια των κινήσεων του 

λικνισμού και της ολίσθησης-λικνισμού, με βάση την κλασική θεωρία. Η έρευνα εξετάζει εις 

βάθος την κίνηση του συστήματος, συνδυάζοντας τις μη-γραμμικές εξισώσεις κίνησης με το 

μοντέλο της κρούσης. Επίσης, στη διατριβή αυτή διατυπώθηκαν και τα κριτήρια τα οποία 

καθορίζουν τις συνθήκες κάτω από τις οποίες μπορεί να γίνει η εναλλαγή της κίνησης. 

Για τη διερεύνηση της δυναμικής συμπεριφοράς του συστήματος, αναπτύχθηκε ένας 

υπολογιστικός κώδικας που προσδιορίζει τη δυναμική απόκριση του σεισμικά μονωμένου ή 

μη-σεισμικά μονωμένου συστήματος, λαμβάνοντας υπόψη τους διαφορετικούς τρόπους 

απόκρισης, την κρούση, τα κριτήρια εναλλαγής της κίνησης και τη σεισμική διέγερση. Έγινε 

μια εκτεταμένη διερεύνηση αλλάζοντας τα γεωμετρικά χαρακτηριστικά του μπλοκ και τις 

παραμέτρους της σεισμικής μόνωσης. Ως σεισμικές διεγέρσεις χρησιμοποιήθηκαν απλοί SPYROULL
A S. O
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τριγωνομετρικοί παλμοί και πραγματικοί σεισμοί που καταγράφηκαν κοντά στο επίκεντρο. 

Στόχος της έρευνας είναι η μελέτη της επίδρασης της σεισμικής μόνωσης στη δυναμική 

συμπεριφορά και στην ευστάθεια του συστήματος.  

Η έρευνα κατέδειξε ότι η σεισμική μόνωση βελτιώνει την ευστάθεια του μπλοκ όταν 

υπόκειται σε παλμούς με μικρή περίοδο. Συγκεκριμένα, η χρήση της σεισμικής μόνωσης 

βελτιώνει την ευστάθεια του μπλοκ καθώς μειώνεται το μέγεθος του, με την προϋπόθεση ότι 

δεν υπόκειται σε παλμούς με μεγάλη περίοδο. Σε αντίθεση, η χρήση της σεισμικής μόνωσης 

δε βελτιώνει την ευστάθεια του μπλοκ, σε σύγκριση με το μη-σεισμικά μονωμένο μπλοκ, όταν 

υπόκειται σε παλμούς με μεγάλη περίοδο. Παρόλα αυτά, για να ανασηκωθεί ένα σεισμικά 

μονωμένο μπλοκ απαιτείται μεγαλύτερη εδαφική επιτάχυνση σε σχέση με ένα μη-σεισμικά 

μονωμένο μπλοκ, ανεξαρτήτως της περιόδου του παλμού. Ο συντελεστής τριβής μεταξύ του 

μπλοκ και της βάσης έχει καθοριστική επίδραση στη δυναμική συμπεριφορά του σεισμικά 

μονωμένου μπλοκ.  
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Abstract 

This dissertation presents a comprehensive investigation on the general planar-motion 

dynamics of base-isolated rigid blocks subjected to ground excitation. The system considered 

consists of a symmetric rigid block standing free on a seismically isolated rigid base. The 

response of the system is described in terms of four distinct oscillation regimes: system 

translation, in which the base-block system translates as a whole; sliding, in which the block 

slides relative to the horizontally-moving base; rocking, in which the block pivots on its edges 

with respect to the horizontally-moving base; and slide-rocking, in which the block 

simultaneously slides and pivots on its edges with respect to the horizontally-moving base. 

The governing equations of motion are obtained for each oscillation regime using the 

Lagrange method. Two models for the isolation system are considered, a linear model with 

viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior.  

The mathematical description of the system dynamics is profoundly complex, primarily due to 

the inherent nonlinear nature of the impact phenomenon and the potential transition from one 

oscillation pattern to another, each one governed by a different set of differential equations. A 

rigorous model governing impact from rocking and slide-rocking regimes is formulated using 

classical impact theory. The study examines in depth the motion of the system with a large-

displacement formulation that combines the nonlinear equations of motion along with the 

developed model governing impact. Moreover, transition criteria that specify the conditions 

under which switching between the various oscillation regimes are established.  

On the basis of the proposed analytical model, a computer program was developed to 

determine numerically the dynamic response of the system, being either isolated or not, by 

considering the different possible oscillation regimes, impact occurrence(s), transition criteria, 

and arbitrary excitation. An extensive numerical investigation was carried out under idealized 

base-acceleration pulses and recorded pulse-type earthquake motions with a wide range of 

amplitude and frequency content, for varying block geometric characteristics and isolation-

system parameters, with the aim of identifying potential trends in the response and stability of 

the system. 

The investigation has shown that the use of isolation results in better system performance, 

with respect to the initiation of rocking and overturning, for short-period pulses. In particular, 
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the use of isolation improves the stability of blocks with decreasing block size, provided that 

the system is not subjected to long-period acceleration pulses. On the contrary, for long-period 

pulses, the use of isolation is not beneficial in improving the stability of the block, compared 

with the non-isolated case. Nevertheless, the use of isolation results in an increase in the 

acceleration required to initiate rocking in comparison with the non-isolated block, regardless 

the pulse-period. In addition, the value of coefficient of friction between the block and the 

supporting base has a significant impact on the performance of the isolated block. 
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CH - Change in the angular momentum about the mass center

rh - Total rubber height

I - Centroid mass moment of inertia

bk - Lateral stiffness of bearing

 b totk - Total lateral stiffness of all elastomeric bearings

effk - Effective stiffness of FPS isolator

vk - Vertical stiffness of an elastomeric bearing

vk   - Sum in series of the vertical stiffness due to the rubber shear strain
without volume change

vVk - Vertical stiffness caused by the volume change of the rubber without
shear 

1k - Elastic stiffness of lead-rubber bearing

2k - Post-yield stiffness of lead-rubber bearing

L - Vector of linear momentum

xL , xL - Pre- and post-impact horizontal linear momentum

zL , zL - Pre- and post-impact vertical linear momentum

 sys x
L


,  sys x

L


 - Pre- and post-impact horizontal linear momentum of the system  SPYROULL
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 x
L ,  z

L - Changes in horizontal and vertical linear momentum

 sys x
L - Change in horizontal linear momentum of the system

M - Total mass above isolation system

m - Mass of symmetric rigid block

bm - Mass of rigid base

CM dt - Angular impulse

overM - Overturning moment

resM - Restoring moment

N - Normal load on FPS bearing

p - Instantaneous bearing pressure

sP - Additional seismic load on FPS isolator due to overturning moments

iQ - Generalized non-conservative forces, 1,2,3...i 

iq - Generalized coordinate, 1,2,3...i 

R - Distance between one corner and the mass center of the rigid block

bR - Radius of curvature

/C Or - Position vector of center-of-mass relative to point O

/ 'C Or - Position vector of center-of-mass relative to point 'O

S - Shape factor of each rubber layer

sgn - Signum function

T - Kinetic energy of the system

bT - Period of isolation system

dt - Pulse half-cycle durationSPYROULL
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pT - Pulse period

rt - Thickness of rubber layers

rotT - Kinetic energy due to the rotation of the block

trT - Kinetic energy due to the translation of the system

u - Horizontal displacement of isolation system

u - Velocity of isolation system

u , u  - Pre- and post impact horizontal velocity of the isolator

V - Potential energy of the system

v - Velocity of the center-of-mass of the block

v , v - Pre- and post-impact translational velocities of center-of mass

elV  Potential energy due to elastic deformation of spring 

grV - Potential energy due to gravity

W - Gravity load

maxW - Maximum allowable vertical load that can be carried by an elastomeric
bearing

totW - Total weight of rigid superstructure

 x t  - Horizontal displacement of the mass center of the block measured from
the original at-rest position of the mass center

X  ,  X  - Absolute pre- and post-impact horizontal velocities of the mass center of
the block

bx - Displacement of the top face of elastomeric bearing

 b allx - Allowable lateral displacement of elastomeric bearing

gx - Horizontal component of ground acceleration

rotx - Horizontal velocity of the mass center of the block due to rocking of the
block.SPYROULL
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sx - Horizontal velocity of the mass center of the block due to sliding between
the block and the supporting base

sx - Horizontal acceleration of the mass center of the block due to sliding
between the block and the supporting base

Y - Yield displacement of FPS isolator

Z - Dimensionless variable describing the rigid-plastic behavior

 z t  - Vertical displacement of the mass center of the block measured from the
original at-rest position of the mass center

 Z ,  Z  - Absolute pre- and post-impact vertical velocities of the mass center of the
block

gz - Vertical component of ground acceleration

rotz - Vertical velocity of the mass center of the block due to rocking of the
block.

Greek Symbols 

  - Angle measured between R  and the vertical when the body is at rest

 ,   - Dimensionless parameters that control the shape of the hysteresis loop

w - Allowable shear strain of an elastomeric bearing under gravity load

  - Angular restitution

v - Short-term failure strain of the rubber in pure tension

 t  - Angular rotation of the block, positive in the clockwise direction

 - Angular velocity of the block

  - Angular acceleration of the block

  ,   - Pre- and post impact angular velocity

b  - Damping ratio of isolation system

r - Compression modulus of rubberSPYROULL
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  - Geometric aspect ratio or slenderness ratio

b  - Coefficient of friction of the FPS isolator

k  - Coefficient of kinetic friction between the block and the foundation 0.8 s

s  - Coefficient of static friction between the block and the foundation

  - Mass ratio / bm m

py - Shear yield strength of the lead

ω , ω - Pre- and post-impact vector angular velocities of the block

p - Pulse half-cycle frequency
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CHAPTER 1 

Introduction 

1.1 Motivation 

Base isolation is worldwide accepted as one of the most effective strategies for seismic 

protection of civil structures. Particular attention has been given to date to the application of 

seismic isolation in earthquake-resistant design to safeguard engineering structures in their 

entirety. The effectiveness of this innovative technology paved the way for extending the 

concept to individual elements of high importance such as high-value building contents, 

mechanical/electrical equipment, computer servers, and irreplaceable museum artifacts. This 

dissertation concentrates on the case of nonstructural components, which behave as rigid 

blocks.  

The aim of this dissertation is to present the two-dimensional nonlinear formulation of the 

general response of base-isolated rigid blocks subjected to ground excitation. The system 

response is described in terms of four distinct oscillation regimes: system translation, sliding, 

rocking, and slide-rocking. Two models of the isolation system is considered; a linear model 

with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. The 

dissertation examines in depth the motion of the system with a large-displacement formulation 

that combines the exact (nonlinear) equations of motion together with a rigorous model 

governing impact. An extensive numerical investigation is carried out for varying block 

geometric characteristics and isolation-system parameters, with the aim of identifying 

potential trends in the response and stability of the system. 

1.2 Objectives 

This dissertation presents a comprehensive mathematical formulation of the general planar-

motion of seismically isolated free-standing rigid blocks to base excitation. The main 

objectives of the dissertation can be summarized as follows: 

 to give a brief description of the literature relevant to the dynamics of a rigid block,

 to develop a comprehensive 2D mathematical model for the general planar nonlinear

response of seismically-isolated free-standing rigid blocks to base excitation,
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 to formulate the equations of motion for each oscillation pattern,

 to formulate a rigorous model governing impact between the block and the supporting

base during rocking motions,

 to calculate the transition criteria which are responsible for the potential transition from

one oscillation regime to another

 to develop a computer program to determine the response of the system considering

the different possible oscillation regimes, impact, transition criteria and arbitrary

excitation, and

 to investigate the system dynamics through an extensive parametric study with the aim

of revealing interrelations among the problem variables and identifying potential trends

in the response and stability of the system.

1.3 Outline 

The dissertation is organized into 10 chapters. The introductory chapter embraces the prime 

motivation, objectives, and organization of the dissertation.  

Chapter 2 describes in brief the main work and findings of the literature relevant to the 

dynamics of a rigid block. The review is focused on studies considering the rigid-body motion 

of free-standing or base-isolated symmetric blocks, on the assumption of rigid foundation and 

perfectly inelastic point impact.  

Chapter 3 highlights the concept of seismic isolation, as an innovative approach aiming to 

mitigate the damaging effects of earthquakes on engineering structures. Typical seismic-

isolation systems are outlined and their mechanical behavior and mathematical modeling is 

presented.  

Chapter 4 presents the dynamics of a single rigid block free-standing on a rigid foundation as 

established in the literature. The review presents the various possible oscillation patterns of a 

rigid block along with their governing equations of motion, the criteria for the initiation of 

motion in each oscillation pattern, and an impact model based on classical impact theory. 

Chapter 5 presents the analytical formulation of the general response of seismically isolated 
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rigid blocks, free-standing on the isolation base, subjected to ground excitation. The response 

of the system is classified into four oscillation regimes: (i) system translation, in which the 

system in its entirety oscillates horizontally; (ii) sliding, in which the block slides relative to 

the supporting base, which translates horizontally; (iii) rocking, in which the rigid block pivots 

on its edges as the supporting base translates horizontally; and (iv) slide-rocking, in which the 

block simultaneously slides and pivots on its edges, as the supporting base translates 

horizontally. Two models for the isolation system are considered; a linear model with 

viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. Equations of 

motion for each oscillation pattern are formulated by using the Lagrange method. Moreover, 

this chapter presents the criteria that govern the potential transition from one oscillation 

regime to another.  

Chapter 6 addresses the impact problem through a rigorous formulation, whereby an analytical 

model governing impact from the rocking and slide-rocking regimes is derived from first 

principles using classical impact theory. This model assumes point-impact of short duration, 

zero coefficient of restitution (perfectly inelastic impact) and impulses acting only at the 

impacting corner. Changes in position and orientation are neglected, and changes in velocity 

are considered instantaneous. 

Chapter 7 describes an ad hoc computational scheme developed to calculate the response of 

the system under ground excitation. The numerical integration of the equations of motion is 

pursued in MATLAB through a state-space formulation. In each time step, close attention is 

paid to the eventuality of transition from one pattern of motion to another due to the 

satisfaction of transition criteria or the impact event and to the accurate evaluation of the 

initial conditions for the next pattern of oscillation. 

Chapter 8 and 9 present numerical results from an extensive numerical investigation of the 

dynamic response of the system under simple base-acceleration pulses and horizontal near-

fault ground motions, aiming to identify potential trends in the response and stability of the 

system. The numerical investigation is carried out based on two assumptions: (a) sufficient 

friction to prevent sliding between the block and the supporting base, entailing rocking 

response, Chapter 8, and (b) insufficient friction to permit sliding between the block and the 

supporting base, entailing multi-pattern response, Chapter 9.   SPYROULL
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Chapter 10 presents a summary and conclusions drawn from this dissertation and a discussion 

on the future work that may follow from this study. 
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CHAPTER 2  

Literature Review 

A review focused on studies considering the rigid-body motion of free-standing non-isolated 

and isolated blocks are presented in this section.  

Housner's landmark study (1963) is perhaps the first systematic work that provided basic 

understanding on the rocking response of a rigid block and motivated further scientific 

interest. Considering a slender rigid block resting upon a rigid foundation he investigated the 

free- and forced-vibration rocking response to a rectangular pulse, a half-sine pulse, and an 

earthquake-type excitation, based on the assumption of a perfectly-inelastic impact and 

sufficient friction to prevent sliding of the block during impact. 

Following Housner, many researchers have dealt with various aspects of the complex 

dynamics of the single rigid block. Yim et al. (1980) adopted a probabilistic approach to 

conducting a numerical study using artificially-generated ground motions. This research 

shows that the rocking response of a block depends on the characteristics of the ground motion 

and the system parameters, namely the coefficient of restitution, the aspect ratio, and the size 

of the block. 

Aslam el al. (1980) performed experimental and analytical studies on slender rigid blocks 

subjected to artificially-generated ground motion. Their work, confirmed that the rocking 

response of rigid bodies is sensitive to system parameters.  

Ishiyama (1982) examined the motions of rigid bodies resting on a rigid foundation and 

subjected to earthquake excitations. His work included classification of the motion of rigid 

bodies (i.e. rest, slide, rotation, slide-rotation, translation jump, and rotation jump), derivation 

of the equations of each type of motion, study of the transition between them, solution of the 

nonlinear equations of motion for different types of ground acceleration and proposition of 

criteria for the overturning of rigid bodies. One of the features of his investigation was the 

introduction of the tangent restitution coefficient in order to estimate the magnitude of the 

tangent impulse at the instant of impact.  

Spanos and Koh (1984) linearized the nonlinear equations of rocking of a slender rigid block, SPYROULL
A S. O
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resting on a rigid foundation harmonically excited in the horizontal direction. Moreover, they 

plotted stability diagrams that can be used to estimate the prospective of topple of a known 

amplitude and frequency rigid-block structure under harmonic excitation. Additionally, they 

detected several possible modes of the steady-state response and developed analytical 

procedures in order to determine the amplitudes of the predominant modes and perform 

stability analyses.  

Shenton III and Jones (1991) formulated the generalized response of free-standing rigid bodies 

to base excitation, assuming rigid body, rigid foundation, and Coulomb friction. Their 

formulation takes into account the five possible modes of response (rest, slide, rock, slide-

rock, and free flight) and the impact between the block and foundation. In their work, Shenton 

III and Jones (1991) derived a model governing impact from a rock, slide-rock or free-flight 

mode based on the classical impact theory, assuming point-impact, nonzero coefficient of 

restitution and finite value of friction.  

Considering cycloidal impulsive excitation, Makris and Roussos (2000) and Zhang and Makris 

(2001) examined in depth the transient rocking response of free-standing rigid blocks. Making 

linear approximations, Makris and Roussos (2000) set up the conditions and the expression for 

the minimum acceleration required for the overturning of a block. Zhang and Makris (2001) 

derived relations for the dynamic horizontal and vertical reactions exerted at the point of 

rotation of a rocking rigid block. They showed that the coefficient of friction needed to 

maintain pure rocking motion generally increases with the acceleration level of the pulse. 

Subsequently, they identified a safe region on the acceleration-frequency plane where the 

block overturns without experiencing any impact and they showed that the shape of this region 

depends on the coefficient of restitution.  

Yang et al. (2000) examined the dynamic response of a rigid block standing unrestrained on a 

rigid foundation which shakes horizontally. Their formulation takes into account four modes 

of motion: rest, slide, rock and slide and rock. A general two-dimensional theory is presented 

for dealing with the various modes of a free-standing rigid block, considering in particular the 

impact occurring during the rocking motion. Numerical examples demonstrate the occurrence 

of each of the four modes and the transition between different modes.  

Taniguchi (2002) investigated the nonlinear seismic response of free-standing rectangular 
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rigid bodies on horizontally and vertically accelerating rigid foundations. Three modes of 

response are considered in his formulation: liftoff, slip, and liftoff-slip. This study concluded 

that the body is sensitive to small changes in the friction coefficient and slenderness, and to 

the wave properties and intensity of ground motions. 

Apostolou et al. (2007) examined the rocking of rigid structures uplifting from their support 

under strong earthquake shaking. The structure is resting on the surface of either a rigid base 

or a linearly elastic continuum. A large-displacement approach is adopted to extract the 

governing equations of motion allowing for a rigorous calculation of the nonlinear response 

even under near-overturning conditions. Directivity affected near-fault ground motions, 

idealized as Ricker wavelets or trigonometric pulses are used as excitation. The conditions, 

under which uplifting leads to large angles of rotation and eventually to overturning, are 

investigated. It is concluded that the practice of estimating ground accelerations from 

overturning observations is rather misleading and meaningless. 

Chatzis and Smyth (2012) studied the rocking motion of a solid block on a moving deformable 

base. Two new models were developed for the simulation of a rigid body experiencing a 2D 

rocking motion on a moving deformable base. The first model, the concentrated springs 

model, simulates the ground as tensionless vertical springs with vertical dampers placed at 

each of the two bottom corners of the body, whereas the second, the Winkler model, simulates 

the ground as a continuous medium of tensionless vertical springs with vertical dampers. Both 

models take into consideration sliding and uplift and both are geometrically nonlinear. The 

behavior of the two models is discussed and compared with the classic theory proposed by 

Housner. 

Dimitrakopoulos and DeJong (2012) investigated the use of viscous damping to limit the 

rocking motion by characterizing the fundamental behavior of damped rocking structures 

through analytical modeling. A rocking block model is used to determine the viscous damping 

characteristics, which exploit the beneficial aspects of the rocking motion, while dissipating 

energy and preventing overturning collapse.  

Voyagaki et al. (2013) examined the classical problem of rocking behavior of a rigid, free-

standing block to earthquake shaking containing significant pulses, as is the case in near-field 

ground motions. A rectangular block resting on a perfectly rigid base is considered, subjected 
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to a suite of idealized acceleration pulses expressed by a generalized function controlled by a 

single shape parameter. The problem is treated analytically in the realm of the linearized 

equations of motion, under the assumption of slender block geometry and rocking without 

slippage. Simple overturning criteria for different earthquake waveforms are presented in the 

form of dimensionless closed-form expressions and graphs that provide insight into the 

physics of the response.  

The studies reported on the dynamics of rigid blocks are not limited to the case of a single 

rigid block but are expanded on the dynamics of rigid-block assemblies. Psycharis (1990) and 

Spanos et al. (2001), for instance, dealt with the dynamics of systems consisting of two blocks, 

one placed on top of the other, free to rock without sliding. Their work has included 

classification of the possible regimes of response, study of the impact either between two 

blocks or between the base block and the ground, and derivation of criteria for the initiation of 

motion and for the transition between modes. Moreover, they derived equations governing the 

rocking response of the system under horizontal and vertical ground accelerations and 

developed an impact model.  

Motivated by the increasing challenge to preserve elements of cultural heritage worldwide, 

which can be modeled as rigid blocks, a great deal of attention is received in recent years. 

One of the earliest studies that explicitly relate to the protection of museum artifacts against 

earthquakes is attributed to Agbabian et al. (1988). This study aimed at the development of 

analytical and experimental procedures for the evaluation of the seismic mitigation of various 

museum objects, at the Jean Paul Getty Museum in Malibu, California. For this purpose they 

created an art object database in which selected art objects of the museum were categorized 

according to their type, their support type, the probable earthquake response mode, and the 

seismic mitigation method (if used). Each art/support system was characterized by applicable 

structural parameters. Using the developed database, generic art/support systems were 

established for which simplified analytical models were formulated. The analytical models 

were verified experimentally and they were parametrically studied in order to evaluate the 

performance of each type of generic system. 

Following the work by Agbabian and coworkers, further research efforts have been made 

toward the protection of the integrity of museum contents from the destructive effects of 
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earthquakes. In their study on the response of rigid art objects subjected to earthquake-induced 

oscillations, Augusti et al. (1992) and (1995) proposed simple rules for the design of the 

display cases in order to mitigate the seismic risk of valuable exhibits. 

Only recently has base-isolation strategy been implemented for the preservation of important 

elements of cultural heritage. In particular, Vestroni and Di Cintio (2000), introduced base-

isolation devices consisting of multi-stage high-damping laminated rubber bearings and 

studied the response of the isolated system, modeled as a single-degree-of-freedom system 

with the isolator characterized by a hysteretic force-displacement law, in the frequency and 

time-domain. In order to identify the influence of the characteristics of the devices and seismic 

forces, they performed a parametric study on the response of an isolated statue.  

Moreover, Myslimaj et al. (2003) proposed the installation of Tuned Configuration Rail 

(TCR), a rolling type base-isolation system, underneath showcases, preservation racks, shelves 

and statues to control their seismic response. 

The protection of art objects was also an issue of interest for Caliò and Marletta (2003), who 

examined the vibrations of art objects modeled as rigid blocks simply supported on a movable 

mass support isolated with viscoelastic devices. In their study, they performed numerical 

investigations under impulsive and seismic excitations and evaluated analytically the 

minimum values of the horizontal support acceleration impulse that cause rocking of the 

object in the cases of damped and undamped systems. Furthermore, Caliò and Marletta (2004) 

studied the seismic vulnerability of isolated and non-isolated ancient Greek vessels and stone 

statues. 

More recently, Di Egidio and Contento (2009) analyzed the behavior of a work of art modeled 

as non-symmetrical rigid block isolated with a viscoelastic device. The model applied was an 

extension of the model studied by Caliò and Marletta (2003), considering eccentricity of the 

mass center of the rigid block and existence of security stops to limit the displacement of the 

oscillating base to a maximum safety value, thus protecting the isolator. The analysis was 

performed considering both impulsive and seismic excitations. 

Roussis et al. (2008) investigates the dynamic response of base-isolated block-like slender 

objects, such as statues, subjected to horizontal ground excitation. The structural model 

employed consists of a rigid block supported on a rigid base, beneath which the isolation 
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system is accommodated. Assuming no sliding of the block relative to the supporting base, 

when subjected to ground excitation the system may exhibit two possible regimes of motion, 

namely pure translation, in which the system in its entirety oscillates horizontally, and rocking, 

in which the rigid block pivots on its edges with respect to the horizontally-moving base. The 

dynamic response of the system is strongly affected by the occurrence of impact between the 

block and the horizontally-moving base, as impact can modify not only the energy but also the 

degrees of freedom of the system by virtue of the discontinuity introduced in the response. A 

model governing impact from the rocking mode is derived from first principles using classical 

impact theory. Numerical results are obtained via an ad hoc computational scheme developed 

to determine the response of the system under horizontal ground excitation.  

Vassiliou and Makris (2012) examines the rocking response and stability of rigid blocks 

standing free on an isolated base supported on linear viscoelastic, single concave and double 

concave spherical sliding bearing. This study concludes that seismic isolation improves the 

stability of small blocks only. It suggests that free-standing ancient classical columns exhibit 

superior stability as they are built rather than if they were seismically isolated.  
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CHAPTER 3  

Seismic Isolation Technique 

3.1 The concept 

In general, most structures have low flexibility and low vibration damping and under typical 

design-level earthquakes, they develop large horizontal forces. The seismic forces can be 

reduced by supporting the structure on systems with high horizontal flexibility and high 

vibration damping. Such system is the seismic isolation which is a developing technology 

aiming at limiting the seismic energy transfer to the structure. The system decouples the 

structure from the foundation by interposing seismic isolators between them. Seismic isolators 

have much lower lateral stiffness than the lateral stiffness of the structure. The low lateral 

stiffness gives the structure a natural period that is much higher than predominant periods of 

typical earthquakes and reduces the spectral demands, Figure 3-1a. The displacement of an 

isolation system increases, as the period is getting larger. Therefore, an isolation system 

should also dissipate energy in order to decrease the induced displacements (Figure 3-1b). 

(a)   (b) 

Figure 3-1: a) Effect of period lengthening on floor accelerations b) Effect of damping on 

displacement. 

3.2 Brief History 

Based on Christopoulos and Filiatrault’s research (2006), John Milne, a British scientist, is the 

inventor of the modern seismic isolation concept in 1885. He built a wood house on 6-mm 

diameter cast-iron shots at the top of the piles, which performed well under real earthquake 
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ground motions. 

In 1909, J.A. Calantarients, an English medical doctor, invented a new method in which 

buildings could be built on lubricated “free joints” on a layer of fine material. Hence, the 

building during an earthquake would slide free reducing the forces transmitted to the structure. 

In the late sixties, the development of modern materials brought to the surface the modern 

application of seismic isolation. Rubber and thin steel sheets were used to make the multi-

layer elastomeric bearings that are very stiff in the vertical direction but are very flexible in the 

horizontal direction.  

In 1969, in Skopje, Yugoslavia, was the first application of rubber isolation system on a three-

storey concrete elementary school structure (Naeim and Kelly (1999)). After this installation, 

seismic isolation technology was spread worldwide. Nowadays, many types of seismic 

isolations are available such as elastomeric bearings, lead-rubber bearings, and friction 

pendulum bearings.  

3.3 Seismic Isolation Systems 

This section gives a description of the main types of seismic isolation systems and their 

mechanical properties.   

3.3.1 Elastomeric bearings 

Elastomeric Bearings or Laminated-rubber bearings were used mostly for bridges to control 

movements and deformations due to changes in temperature. More recently, their use has been 

extended to seismic isolation of buildings and other structures. Based on (Naeim and Kelly 

(1999)), the first use of elastomeric bearing to structure was in 1969 for the Pestalozzi in 

Skopje, Yugoslavia.  

A typical laminated-rubber bearing is composed of elastomeric rubber with internal steel 

reinforcing plates solidly joined together under high pressure and temperature, Figure 3-2. 

Using steel and rubber layers, the gravity load resisting capacity of the bearing is increased by 

reducing the thickness of individual rubber layers. The steel reinforcing plates reduce the 

lateral bulging of the bearings and increase the vertical stiffness.  

The most important parameters of elastomeric bearings are the gravity load carrying capacity, 
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the lateral stiffness and the maximum achievable relative displacement between the top and 

the base of the bearing.  

Based on Christopoulos and Filiatrault (2006), the maximum allowable vertical load that can 

be carried by a bearing maxW  is given by 

max ' r wW A G S (3.1)

where: 'A  is the overlap area between the displaced top and bottom faces of the bearing when 

the top of the bearing is displaced an amount bx  relative to its base as shown in Figure 3-3; rG

is the shear modulus of rubber which is between 0.5 to 1 MPa ; S  is the shape factor of each 

rubber layer, equal to the loaded area of the bearing divided by the load-free area of the 

bearing; w  is the allowable shear strain under gravity load. 

The shape factor, S , for a cylindrical bearing of diameter D  and made of rubber layers of 

thickness rt  is given by 

 2 / 4loaded area

load free area 4r r

D D
S

Dt t




   (3.2)

The shape factor, S , for a rectangular bearing of sides x b d  and made of rubber layers of 

thickness rt  is given by 

 
loaded area

load free area 2 r

bd
S

t b d
 


(3.3)

The allowable shear strain, w , can be estimated as a ratio of the short-term failure strain of 

the rubber in pure tension v  such as: 

0.2

0.4  for design base earthquakes

0.7  for maximum credible earthquakes

w v

w v

w v

 
 
 






(3.4)
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Figure 3-2: Laminated-rubber bearing (elastomeric bearing) (Christopoulos and Filiatrault 

(2006)). 

Figure 3-3: Circular Laminated-rubber bearing under gravity and lateral loads (Christopoulos 

and Filiatrault (2006)). 

The lateral stiffness of a laminated-rubber bearing bk  is given by 

r r
b

r

G A
k

h
 (3.5)

where rG  is the shear modulus of rubber; rA  is the rubber layer area; rh  is the total rubber 

height. 

The period of vibration, bT , of the bearings equals with SPYROULL
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2 tot
b

b tot

W
T

gk
 (3.6)

where totW  is the total weight of the rigid superstructure; b totk  is the total lateral stiffness of all 

bearings that is calculated by summing the individual lateral stiffness of each bearing. 

The vertical stiffness, vk , of an elastomeric bearing is given by 

v vV
v

v vV

k k
k

k k







(3.7)

where vk   is the sum in series of the vertical stiffness due to the rubber shear strain without 

volume change; vVk is the vertical stiffness caused by the volume change of the rubber without 

shear. 

Based on Skinner et al. (1993) the condition vk   is given by 

26 r r
v

r

G S A
k

h  (3.8)

and vVk  is given by 

r r
vV

r

A
k

h


  (3.9) 

where r  is the compression modulus of the rubber ( 2000 MPar   for typical rubber. 

Based on Christopoulos and Filiatrault (2006), the allowable lateral displacement, b allx , is 

given by 

 b all r sx h  (3.10) 

where s  is the allowable seismic shear strain that depends on how much shear strain is 

mobilized be the vertical load, see (3.1).  

In addition, the limit of the overlap factor '/ rA A  is important for the allowable lateral SPYROULL
A S. O
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displacement, b allx . For design basis earthquakes, a limit of about 0.6 is typically used.  

3.3.2 Lead-rubber bearings 

The lead-rubber bearing was invented in New Zealand in 1975 (Robinson and Tucker (1977), 

(1983)) and has been extensively used in New Zealand, Japan and United States. It is 

composed of a laminated-rubber bearing with a cylindrical lead plug inserted in its center, 

Figure 3-4, to increase the damping of the bearing. Based on Skinner et al. (1993), the lead, at 

room temperature, behaves approximately as an elastic-plastic solid and yields in shear at 

relatively low stress of about 10 MPa. In addition, lead has fatigue resistance properties as 

they restored when cycled in the inelastic range and it is commonly available.  

Figure 3-4: Lead-Rubber Bearing (Christopoulos and Filiatrault (2006)). 

Based on Christopoulos and Filiatrault (2006), the lead-rubber bearing has a bilinear behavior 

with elastic stiffness 1k , a post-yield stiffness 2k  and a yield force yF . The elastic stiffness 1k

is given by 

 1

1
10p p r r b

r

k G A G A k
h

   (3.11) 

where rh  is the total rubber height, pA  is the area of the lead plug, rA  is the area of the 

rubber, pG  is the shear modulus of lead 150 MPa  at room temperature, rG  is the shear 

modulus of rubber 0.5 to 1 MPa  and bk  is the lateral stiffness of the laminated-rubber 

bearing (see Equation (3.5)). SPYROULL
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The post-yield stiffness 2k  is equal with the lateral stiffness of the laminated-rubber bearing, 

Equation(3.5).  

The yield force yF  is given by 

1 r r
y py p py p

p p

G A
F A A

G A
 

 
    

 
 (3.12) 

where 10 MPapy  is the shear yield strength of the lead. 

3.3.3  Friction pendulum systems 

Friction Pendulum System (FPS) is a sliding isolator and it is composed of two parts: the 

articulated slider and the concave sliding stainless steel surface (Figure 3-5). The spherical 

surface provides restoring force using gravity and friction to dissipate energy. The FPS 

isolator is manufactured by Earthquake Protection Systems in Richmond California 

(Christopoulos and Filiatrault (2006)). 

Figure 3-5: Friction Pendulum System (Christopoulos and Filiatrault (2006)). 

The FPS bearing is activated when the earthquake forces overcome the static value of friction. 

When set in motion, the slider slides over the concave spherical surface causes the supported 

mass to rise. The component of the gravitational force acting parallel to the spherical surface 

provides the necessary restoring force. Because of the induced rising of the structure along the 
SPYROULL
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spherical surface (Figure 3-6), the bearing develops a lateral force equal to the combination of 

the mobilized frictional force and the restoring force that develops. This restoring force is 

proportional to the displacement and the weight carried by the bearing, and it is inversely 

proportional to the radius of curvature of the spherical surface (Mokha et al. (1990)). The 

stiffness of the FPS isolator is the restoring force during sliding motion. The friction force 

between the articulated slider and the spherical surface generates damping in the isolators (Al-

Hussaini et al. (1994)).   

(a)                                              (b) 

Figure 3-6: Single pendulum bearing (a) center position, (b) maximum credible earthquake. 

The FPS is based on the principles of pendulum motion and the friction force. During sliding 

motion the shear force, 

Figure 3-6, mobilized at each FPS isolator is given by  

b b
b

N
F u Mg

R
  Z (3.13) 

where N  is the normal load on bearing, bR  is the radius of curvature, b  is the coefficient of 

friction of the friction-pendulum (FP) isolators, u  is the bearing displacement and Z  is a 

dimensionless variable describing the rigid-plastic behavior, being governed by the following 

differential equation 

2 0Y u u u       Z Z Z Z (3.14) 

in which Y  is the yield displacement, and  ,   are dimensionless parameters that control the 

shape of the hysteresis loop, with assigned values: 0.1  , 0.9   and 0.3mmY   

(Constantinou et al. (1990)). 

The normal load, N , is defined by SPYROULL
A S. O

DYSSEOS



19 

1 g s
z P

N W
g W

 
   

 


 (3.15) 

in which W  is the gravity load, gz  is the vertical ground acceleration, sP  is the additional 

seismic load due to overturning moments, and g  is the gravitational acceleration.  

In Equation (3.13), the coefficients of u  and Z  represent the second slope of the bilinear 

model and the strength of the system, respectively. This corresponds to an isolator period of  

2 2 b
b

b

RW
T

gk g
    (3.16) 

The second term in Equation (3.1) is the friction force between the slider and sliding surface. 

The single-curvature spherical sliding surface is typically made of PTFE or PTFE-based 

composites in contact with polished stainless steel. The shape of the sliding surface allows 

large contact areas that, depending on the materials used, are loaded to average bearing 

pressures in the range of 7 to 70 MPa.  

For bearings with large contact area, and in the absence of liquid lubricants, the coefficient of 

friction depends on a number of parameters, of which the three most important are the 

composition of the sliding interface, bearing pressure and velocity of sliding. For interfaces 

composed of polished stainless steel in contact with PTFE or PTFE-based composites, the 

coefficient of sliding friction may be described by (Constantinou et al. (1990)) 

   max max min expb f f f a u      (3.17) 

where maxf  is the coefficient of friction at large velocity of sliding and under constant 

pressure, minf  is the coefficient of friction at small velocity of sliding and under constant 

pressure and a  is the parameter that controls the variation of the coefficient of friction with 

velocity  

The variation of the coefficient of friction with velocity is illustrated in Figure 3-7. SPYROULL
A S. O
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Figure 3-7: Variation of coefficient of friction with velocity (Tsopelas et al. (1994)). 

Generally, the parameters maxf , minf  and a  depend on bearing pressure and temperature. 

However, the dependency of minf  and a  is not as significant as the dependency of maxf  and 

can be neglected (Tsopelas et al. (1994)). The variation of parameter maxf  with pressure can be 

expressed by the equation 

   max max 0 max 0 max tanhpf f f f p   (3.18) 

where max0f  is the maximum value of the coefficient of friction at zero pressure, max  pf  is the 

maximum value of the coefficient of friction at very high pressure,   is the constant that 

controls the variation of maxf  between very low and very high pressures and p  is the 

instantaneous bearing pressure, which is equal to the normal load N  (Equation (3.15)) divided 

by the contact area. 

Figure 3-8 presents the assumed variation of friction parameter maxf  with pressure, which is 

typical of the behavior of sliding bearings (Soong and Constantinou (1994)). 
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Contact pressure

m
ax    max max 0 max 0 max tanhpf f f f p    

max 0f

max pf

Figure 3-8: Variation of coefficient of friction with pressure (Soong and Constantinou (1994)). 

Based on Christopoulos and Filiatrault (Christopoulos and Filiatrault (2006)), in reality, 

friction forces are present at the sliding interface and must be overcome before the bearing can 

slide. The energy dissipation occurring in the isolators is represented by the area enclosed by 

the hysteresis loops. Figure 3-9 shows a typical hysteresis response of a FPS bearing where a 

certain amount of friction is present at the sliding interface. The system is near rigid until the 

friction force is overcome. Then the force increase is proportional to the lateral stiffness of the 

FPS, Equation (3.1). The force required to overcome the initial friction is equal to bW . 

Because of the initial breakaway friction, the effective stiffness of the isolator is dependent on 

the friction coefficient of the system b  and the maximum displacement of the isolator maxD . 

This effective stiffness effk , which is larger than /bk W R , is given by: 

max

1 b
effk W

R D

 
  

 
(3.19) 

Figure 3-10 represents an experimentally hysteretic response of an FPS system (Zayas et al. 

(1990)). 

SPYROULL
A S. O

DYSSEOS



22 

Figure 3-9: Hysteresis Loops of FPS (Christopoulos and Filiatrault (2006)).  

Figure 3-10: Experimental Response of FPS (Zayas et al. (1990)). 

3.4 Mechanical Behavior of Isolation Systems 

Generally, the seismic isolation system provides horizontal flexibility and damping to the 

superstructure during an earthquake. There are isolation systems that are composed of linear 

flexibility and linear damping namely as linear isolation systems with viscoelastic behavior. 

However, in most cases, isolation systems have nonlinear behavior, which can be described 

simply as a combination of viscoelastic and hysteretic behavior, Figure 3-11. Referring to 

previous section, the only isolation system with linear restoring force and linear damping is 

the laminated-rubber bearing.  For this dissertation, two types of isolation systems are used for 

the analysis: a) a linear system with viscoelastic behavior Figure 3-12(a) and b) a nonlinear 

system with bilinear behavior Figure 3-12(b).  SPYROULL
A S. O
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Figure 3-11: Idealized force-displacement relation of isolation systems. 

(a)                                                                                    (b) 

Figure 3-12: a) Viscoelastic behavior, b) Bilinear Hysteretic Behavior. 

3.4.1 Linear isolation system  

A linear isolation system is composed of a linear spring with stiffness bk  and a linear viscous 

damper with coefficient bc , Figure 3-13. The behavior of such a linear viscoelastic model, 

Figure 3-12(a), in terms of the lateral force developed in the isolation system is described by 

b b bF k u c u    (3.20) 

where u  and u  is the horizontal displacement and velocity of the isolation system. 

The (isolation) system period bT  and damping ratio b  are given respectively by 

2b
b

M
T

k
 (3.21) SPYROULL
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2
b

b

b

c

k M
  (3.22) 

where M  is the total mass above the isolation system. 

Figure 3-13: Schematic diagram of a linear isolation system. 

3.4.2 Nonlinear isolation system - bilinear 

A bilinear isolation system, Figure 3-12(b), is composed of a linear spring and a slider 

(Coulomb) that provides restoring force and friction force to the system, respectively, Figure 

3-14. For this dissertation, the friction pendulum system (FPS) represents the nonlinear

isolation system, (see Section 3.3.3), with a constant friction coefficient (static), b , based on

Coulomb friction. This type of friction is also called dry friction. Coulomb friction or dry

friction occurs when the un-lubricated surfaces of two solids are in contact under a condition

of sliding or a tendency to slide (Meriam and Kraige (2008)). The principles of Coulomb

friction were developed from the experiments of Coulomb in 1781 and from the work of

Morin from 1831 to 1834. Some typical values of coefficients of friction under normal

working conditions are given in Table 3-1 (Meriam and Kraige (2008)).

Figure 3-14: Schematic diagram of a nonlinear isolation system (FPS). 

u

bk

bc

u

bk

b
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Table 3-1: Typical values of coefficient of Coulomb static friction  

(Meriam and Kraige (2008)). 

Contacting Surface Coefficient of static friction, bμ

Steel on steel (dry) 0.6 

Steel on steel (greasy) 0.1 

Teflon on steel 0.04 

Steel on babbitt (dry) 0.4 

Steel on babbitt (greasy) 0.1 

Brass on steel (dry) 0.5 

Brake lining on cast iron 0.4 

Rubber tures on smooth pavement (dry) 0.9 

Wipe rope on iron pulley (dry) 0.2 

Hemp rope on metal 0.3 
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CHAPTER 4  

Dynamic Analysis of a Free Standing Rigid Block 

4.1 Introduction 

In this section a review of the rocking analysis of a rigid block resting on a rigid ground is 

presented, based on the works done by Housner (1963) and Shenton III and Jones (1991). In 

particular, the work discussed includes classifications of the different oscillation patterns of a 

rigid block and definitions of the criteria for the initiation of motion. Moreover, a model 

governing the impact between the block and the rigid ground during rocking and slide-rocking 

motions is also presented.  

4.2 Model Description 

Consider a symmetric rigid block of mass m  and centroid mass moment of inertia I , 

supported on a horizontal rigid foundation (Figure 4-1). The rigid block of height 2H h  and 

width 2B b  is assumed to rotate about the base corners O  and 'O . The distance between 

one corner of its base and the mass center is denoted by R  and the angle measured between R  

and the vertical when the body is at rest is denoted by  , where  1tan /b h  . 

gx

gz

Figure 4-1: Model at rest. 

The horizontal and vertical absolute displacements of the mass center of the block measured 

from the original at-rest position of the mass center are denoted by  x t  and  z t  

respectively. The angular rotation of the block is denoted by  t , positive in the clockwise SPYROULL
A S. O
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direction. The ground motion is prescribed by a horizontal acceleration, ( )gx t , and vertical 

acceleration, ( )gz t . 

4.3 Oscillation Regimes 

When subjected to ground acceleration with horizontal and vertical components gx  and gz

respectively, the block can be set into sliding, rocking, slide-rocking, or free-flight regime. 

The five possible oscillation regimes are illustrated schematically in Figure 4-2. 

Figure 4-2: Oscillation patterns of a rigid block under ground acceleration. 

At rest (Figure 4-2a), the block is assumed to be in full contact with the foundation at all 

times, with no relative motion between them. The rest mode is characterized by a normal 

reaction force greater than zero ( 0zf  ), a friction force owed to Coulomb friction acting 

between the block and the foundation ( 0xf  ), zero translation relative to the ground, and 

zero rotation.  

During the sliding regime (Figure 4-2b), contact is still made with the foundation but the block 

gx

gz

gx

gz
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translates horizontally with displacement ( )sx t  relative to the ground. The sliding mode is 

characterized by a normal reaction force greater than zero ( 0zf  ), a friction force depent on 

the normal force and the velocity of the center of mass, and zero rotation   0t  .

In the rocking mode the rigid block pivots on its edges with rotation angle ( )t  (Figure 4-2c). 

This is true under the assumption that the block has small legs of negligible size and mass, or a 

slightly concave bottom. 

In the slide-rocking mode (Figure 4-2d) the block rotates about either corner O  or 'O  with 

rotation angle ( )t , and simultaneously slides with displacement ( )sx t  relative to the 

foundation. The friction force acting on the block is a function of the normal reaction and the 

velocity of the corner in contact. 

Free-flight (Figure 4-2e) is characterized by zero normal reaction force, which results in loss 

of contact between the block and the foundation. The rigid block translates horizontally and 

vertically with displacements ( )x t  and ( )z t  relative to the ground, as it rotates with rotation 

angle ( )t .  

4.3.1 Sliding regime 

Assuming that the rigid block is initially at rest, a sliding regime (Figure 4-2b) is initiated once 

the inertia force of the mass exceeds the resistance provided by friction, which yields 

 g s gx z g   (4.1)

where s  is the coefficient of static friction between the block and the foundation, gx  and gz

are the horizontal and vertical components of ground acceleration respectively, and g  is the 

gravitational acceleration. 

The equation of motion during sliding regime can be derived by taking the equilibrium of 

horizontal forces acting on the block, yielding 

   sgns s k g gx x g z x      (4.2)SPYROULL
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in which, sx  and sx  are respectively the horizontal velocity and the acceleration of the center 

of mass of the block relative to the foundation and k  is the coefficient of kinetic friction 

between the block and the foundation.  

4.3.2 Rocking regime 

Rocking of the block on the supporting foundation (Figure 4-2c) is initiated from rest once the 

overturning moment of the horizontal inertia force about one base corner, over gM mx h  , 

exceeds the restoring moment due to the weight of the block and the vertical inertia force, 

res gM mgb mz b   , yielding 

 g g

b
x z g

h
   (4.3)

If the acceleration gx  of the block is positive, then rocking takes place about corner 'O , 

otherwise if it is negative rocking takes place about corner O . 

The equation of motion during rocking mode can be derived by taking the equilibrium of 

moments about the corner being the center of rotation, O  or 'O , yielding 

    cos sgn sinO g gI mR a x mR a z g           (4.4)

where OI  is the mass moment of inertia of the block about the corner O . For rectangular 

blocks, 24

3OI mR , and the equation (4.4) can be expressed as 

     3
cos sgn sin

4
gg

z gxg
a a

R g g
   

 
    

  

 (4.5)

According to Housner (1963), the term 23

4

g
p

R
  can be used as a measure of the dynamic 

characteristics of the block. 

Note that Equation (4.4) holds only in the absence of impact ( 0  ). At that instant, both 

corner points O  and 'O  are in contact with the base, rendering the equation of motion invalid. 
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The impact problem is presented separately in Section 4.4. 

4.3.3 Slide-rocking regime 

The conditions governing the initiation of slide-rocking regime (Figure 4-2d) are not 

altogether clear (Shenton and Jones (1991)). Slide-rocking is perhaps initiated from rest in the 

singular case when 

   ,g s g g

b
x z g z g

h
     

   (4.6)

and thus the sliding and rocking regime conditions are satisfied simultaneously. 

However, a slide-rocking mode may be initiated by transition from another mode of response, 

for example, from rocking mode when friction is not sufficient to sustain pure rocking. 

Once the slide-rocking motion has been initiated, the response is governed by the following 

equations: 

   
    

2

2

cos sgn sin sgn cos sin

sgn( ) sgn cos sin cos sgn sin

s

s k g g

mx m h b m b h

x m g z b h h b mx

       

        

         

             

 

  
 (4.7) 

     
   

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

s

g g

mr I mx h b mg b h

m h b x m b h z

      

     

          

          

 

 
 (4.8) 

where sx  and sx  are respectively the horizontal velocity and the acceleration of the mass 

center of the block relative to the foundation, and k  is the coefficient of kinetic friction 

between the block and the foundation. Equations (4.7) and (4.8) are valid only in the absence 

of impact ( 0  ).  

4.3.4 Free-flight regime 

Free-flight occurs when the normal reaction force equals zero ( 0zf  ). Assuming that the 

block is initially at rest or in a slide mode, free-flight is initiated when 

 gz t g  (4.9)SPYROULL
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If the block is in a rock or slide-rock mode, free-flight is initiated when 

    2sgn sin cosgz R a R a g            (4.10) 

where   and   are the angular velocity and acceleration of the block respectively and sgn  

denotes the signum function in   defined by 

1 0
sgn

1 0







  
(4.11) 

The equations of motion for a block in a free-flight mode are 

  0gm x x   (4.12) 

  0gm z z g    (4.13) 

0I   (4.14) 

where x  and z  are the horizontal and vertical accelerations of the mass center of the block 

relative to the foundation, respectively. Equations (4.12) through (4.14) are valid until an 

impact of the block with the foundation occurs. 

4.4 The Impact Model 

The impact problem is one of the most complicated problems in dynamics and it refers to the 

collision between two bodies. Impact is characterized by the generation of relatively large 

contact forces which act over a very short interval of time. The interrelationship of the transfer 

of energy and momentum, energy dissipation, elastic and plastic deformation, relative impact 

velocity and body geometry is quite complicated. Small changes in the impact conditions may 

cause large changes in the impact process and thus in the conditions immediately following 

the impact. 

During rocking or slide-rocking motions, the block may experience one or more impacts with 

the foundation. At the instant of impact, both corners of the block are in contact with the base, 

rendering the governing equation of motion invalid. The instantaneous change of the block’s SPYROULL
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velocity must be taken into account for the integration of the equation governing the post-

impact motion.  

The formulation of the impact problem presented herein is based on the classical impact 

theory based on the following assumptions:   

(i) Point-impact

(ii) Short duration of impact

(iii) Large impulsive forces relative to the other forces acting on the block

(iv) Negligible impulses at the rotating corner (impulses act only at the impacting corner)

(v) Instantaneous changes in velocity

(vi) Negligible changes in position and orientation of the block

(vii) Perfectly inelastic impact

Under the assumption of perfectly inelastic impact, the coefficient of restitution, e , that relates 

pre- to post-impact translational velocities (normal to the impact surface) of the impacting 

corner is zero  0e  .  

The theoretical background of the classical impact theory is described analytically in Chapter 
6. 

4.4.1 Impact in rocking regime 

Based on the assumption of perfectly inelastic impact, there is only one possible response 

mechanism following the impact: tilting about the impacting corner while the block re-uplifts 

(no bouncing).  

The formulation of impact is divided into three phases: pre-impact, impact, and post-impact as 

illustrated schematically in Figure 4-3 and Figure 4-4. In the following, a superscript “-” refers 

to a pre-impact quantity and a superscript “+” to a post-impact quantity.  

Consider the block at the instant when it hits the foundation from rocking about O  and re-

uplifts pivoting about the impacting corner 'O  (Figure 4-3). Impact is accompanied by an SPYROULL
A S. O

DYSSEOS



33 

instantaneous change in velocities, with the block displacements being unchanged. Therefore, 

the impact analysis is reduced to the computation of the block's post-impact angular velocity, 

  , given its position and pre-impact angular velocity,   . 

Figure 4-3: Impact from rocking about O  followed by re-uplift about 'O . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

directions states that    

   :x x x xx
F dt L L L F dt mX mX            (4.15) 

   :z z z zz
F dt L L L F dt mZ mZ            (4.16) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g rotX x x     ,  g rotX x x      and  g rotZ z z     ,  g rotZ z z      are the absolute pre- and 

post-impact horizontal and vertical velocities of the mass center of the block respectively; rotx , 

rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and vertical velocities of the 

mass center of the block due to the rocking, relative to the foundation; xL , xL , zL  and zL  are 

the pre- and post-impact horizontal and vertical linear momentum, respectively;  x
L  and

 z
L  are the changes in horizontal and vertical linear momentum, respectively.

0
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


xF dt

zF dt
zF dt

xF dt
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 
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Substituting these expressions into Equations (4.15) and (4.16), we obtain 

   x g rot g rot x rot rotF dt m x x m x x F dt mx mx                (4.17) 

     z g rot g rot z rot rotF dt m z z m z z F dt mz mz                (4.18) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (4.19) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (4.17) and (4.18), the pre- and post-impact horizontal and vertical components of 

the relative translational velocity of the mass center can be expressed in terms of the pre- and 

post-impact angular velocity of the block  ,       as follows.

For the pre-impact state, the translational velocity vector of the mass center can be expressed 

as 

/O C O
    v v ω r (4.20) 

where v  is pre-impact translational velocity vector of center-of mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

 ˆ ˆ ˆ ˆ
g rot rotX Z x x z            v i k i k (4.21) 

ˆ
O gx  v i  (4.22) 

ˆ  ω j  (4.23) 
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   /
ˆ ˆsin cosC O r a r a     r i k (4.24) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

the mass center can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.25) 

On substituting Equations (4.21) through (4.25) into Equation (4.20), the pre-impact 

translational velocity becomes  

       ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot gx x z x b h            v i k i j i k  (4.26) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (4.27) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.28) 

rotz b   (4.29) 

For the post-impact state, the translational velocity vector of the mass center is  

´ / ´O C O
    v v ω r (4.30) 

where v  is post-impact translational velocity vector of center-of-mass, 'O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / 'C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

 ˆ ˆ ˆ ˆ
g rot rotX Z x x z            v i k i k (4.31) SPYROULL
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´
ˆ

O gx  v i (4.32) 

ˆ  ω j  (4.33) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (4.34) 

At impact  0   the position vector of the mass center is 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (4.35) 

On substituting Equations (4.31) through (4.35) into Equation (4.30), the post-impact 

translational velocity becomes  

       ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot gx x z x b h           v i k i j i k  (4.36) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (4.37) 

From Equation (4.37), the post-impact horizontal and vertical components of v  can be 

retrieved as 

rotx h   (4.38) 

rotz b    (4.39) 

Substitution of Equations (4.28), (4.29), (4.38) and (4.39) into Equations (4.15) through (4.19) 

yields  

   xF dt m h m h      (4.40) 

   zF dt m b m b       (4.41) 

       z xb F dt h F dt I I        (4.42) SPYROULL
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in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (4.43) 

Equations (4.40) through (4.42) constitutes a set of three equations in three unknowns: xF dt ,

zF dt ,   .

Equivalently, the three equations can be combined in one (by eliminating the two impulses) in 

one unknown: 

      2 2

3

m
b mb mb h mh mh b h                       (4.44) 

which yields the post-impact angular velocity of the block as 

 
 

2 2

2 2

4 2

4 4

h b

h b
  





  (4.45) 

Equation (4.45) can be written in the form 

 
 

2

2

2 1

2 2


  


  


 


    (4.46) 

in which /h b   is the geometric aspect ratio of the block and 
 
 

2

2

2 1

2 2










 is the 

coefficient of angular restitution. 

Following the same procedure, it can be shown that the post-impact velocity for impact from 

rocking about 'O  (Figure 4-4) (realized when 0  ) is identical to that given by Equation 

(4.46), which was derived considering impact from rocking about O  (realized when 0  ). 
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Figure 4-4: Impact from rocking about 'O  followed by re-uplift about O . 

4.4.2 Impact in slide-rocking regime 

Under the assumption of perfectly inelastic impact, there are three possible response 

mechanisms following impact: (a) pure rocking about the impacting corner, when sliding 

motion ceases after impact, Figure 4-5, (c) pure sliding, when rocking ceases after impact, 

Figure 4-6, and (d) simultaneous sliding and rocking about the impacting corner, Figure 4-7. 

As explained earlier, a superscript “-” refers to a pre-impact quantity and a superscript “+” to a 

post-impact quantity. 
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Figure 4-5: Impact from slide-rocking about O followed by pure rocking about O' (sliding 

ceases). 

Figure 4-6: Impact from slide-rocking about O followed by pure sliding (rocking ceases). 
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Figure 4-7: Impact from slide-rocking about O followed by slide-rocking about O'. 

4.4.2.1 Pure rocking occurs after impact 

Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O  

and re-uplifts pivoting about the impacting corner, 'O . As aforementioned, impact is 

accompanied by an instantaneous change in velocities, with the system displacements being 

unchanged. Therefore, the impact analysis is reduced to the computation of the initial 

conditions for the post-impact motion   , given the position and the pre-impact velocities, 

sx , and   . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :x x x xx
F dt L L L F dt mX mX            (4.47) 

   :   z z z zz
F dt L L L F dt mZ mZ            (4.48) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g s rotX x x x        ,   g s rotX x x x        and   rot gZ z z     ,   rot gZ z z      are the 

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 
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respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the foundation; 

sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center of the 

block due to the sliding, relative to the foundation; xL , xL , zL  and zL  are the pre- and post-

impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (4.47) and (4.48), we obtain  

x s rot s rotF dt mx mx mx mx           (4.49) 

 z rot rotF dt mz mz     (4.50) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (4.51) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (4.49) and (4.50), the pre- and post-impact horizontal and vertical components of 

the relative translational velocity of the mass center can be expressed in terms of the pre- and 

post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can 

be expressed as  

/O C O
    v v ω r (4.52) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . SPYROULL
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 g sx x 

 

/C Or

gz

Figure 4-8: Components of pre-impact translational velocity of the non-isolated block for the 

case of impact during slide-rocking about point O. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z x x x z z                 v i k i k (4.53) 

   ˆ ˆ
O g s gx x z   v i k   (4.54) 

ˆ  ω j (4.55) 

   /
ˆ ˆsin cosC O r a r a     r i k (4.56) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of

the mass center relative to point O , /C Or , can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.57) 

in which î  and k̂  are the horizontal and vertical unit vectors, respectively. 

On substituting Equations (4.53) through (4.57) into Equation (4.52), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gx x x z z x x z b h                      v i k i k j i k  (4.58) 

which reduces to SPYROULL
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   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (4.59) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.60) 

rotz b   (4.61) 

For the post-impact state, the translational velocity vector of the mass center (Figure 4-9) can 

be expressed as 

´ / ´O C O
    v v ω r (4.62) 

where v  is post-impact translational velocity vector of center-of-mass, 'O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / 'C Or  is position vector of the mass center relative to point 'O . 

Figure 4-9: Components of post-impact translational velocity of the non-isolated block for the 

case of impact during slide-rocking about point O’. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z x x z z              v i k i k (4.63) 

   ´
ˆ ˆ

O g gx z   v i k (4.64) 

ˆ  ω j  (4.65) 

gx
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gz
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   / ´
ˆ ˆsin cosC O r a r a    r i k (4.66) 

At impact  0   the position vector of the mass center relative to point 'O , / ´C Or , becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (4.67) 

On substituting Equations (4.63) through (4.67) into Equation (4.62), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gx x z z x z b h               v i k i k j i k  (4.68) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (4.69) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.70) 

rotz b    (4.71) 

Substituting Equations (4.60), (4.61), (4.70) and (4.71) into Equations (4.47) through (4.51) 

yields  

   x sF dt mu m h mu mx m h              (4.72) 

   zF dt m b m b       (4.73) 

       z xb F dt h F dt I I        (4.74) 

in which block the centroid mass moment of inertia for the rectangular block is given by SPYROULL
A S. O
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 2 2 2

3 3

m m
I r b h   (4.75) 

Equations (4.72), (4.73) and (4.74) constitute a set of three equations in three unknowns, 

namely xF dt , zF dt ,   .

Equivalently, the three Equations (4.72), (4.73) and (4.74) can be combined in one (by 

eliminating the two impulses) with two unknowns:  

   2 2 2 24 4 4 2 3 sb h h b hx          (4.76) 

which yields the post-impact angular velocity of the block as 

 
 

2 2

2 2

4 2 3

4 4

sh b hx

b h




 


 




  (4.77) 

An identical expression can be derived for the case of impact during rocking about point 'O . 

4.4.2.2 Pure sliding occurs after impact  

When rocking of the block on top of the moving base ceases, the system attains a sliding 

regime. In this case, the impact analysis is reduced to the computation of the post-impact 

translational velocity of the system, sx , given the position and the pre-impact velocities, sx , 

and   . 

Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

directions states that    

   :   x x x xx
F dt L L L F dt mX mX            (4.78) 

   :   z z z zz
F dt L L L F dt mZ mZ            (4.79) SPYROULL

A S. O
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in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g s rotX x x x        ,  g s rotX x x x         and   rot gZ z z     ,   rot gZ z z      are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the foundation; 

sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center of the 

block due to the sliding, relative to the foundation; xL , xL , zL  and zL  are the pre- and post-

impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (4.78) and (4.79), we obtain 

x s rot s rotF dt mx mx mx mx           (4.80) 

 z rot rotF dt mz mz     (4.81) 

In Equations (4.80) and (4.81), the pre- and post-impact horizontal components of the relative 

translational velocity of the mass center can be expressed in terms of the pre-impact angular 

velocity of the block,    as follows  

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can 

be expressed as  

/O C O
    v v ω r (4.82) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity of point O , ω  is pre-impact angular velocity of the block, and  

/C Or  is position vector of center-of-mass relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z x x x z z                 v i k i k (4.83) SPYROULL

A S. O
DYSSEOS



47 

   ˆ ˆ
O g s gx x z     v i k (4.84) 

ˆ  ω j  (4.85) 

   /
ˆ ˆsin cosC O r a r a     r i k (4.86) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

the mass center relative to point O  can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.87) 

On substituting Equations (4.83) through (4.87) into Equation (4.82), the pre-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gx x x z z x x z b h                      v i k i k j i k  (4.88) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (4.89) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.90) 

rotz b   (4.91) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as  

´ / ´O C O
    v v ω r (4.92) 

where v  is post-impact translational velocity vector of center-of-mass, 'O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the SPYROULL
A S. O
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block, and / 'C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z x x x z z                 v i k i k (4.93) 

   ´
ˆ ˆ

O g s gx x z     v i k (4.94) 

ˆ ˆ0  ω j j  (4.95) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (4.96) 

At impact 0  , the position vector of the mass center relative to point 'O  becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (4.97) 

On substituting Equations (4.93) through (4.97) into Equation (4.92), the post-impact 

translational velocity becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot s rot g g s gx x x z z x x z b h                    v i k i k j i k (4.98) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (4.99) 

From Equation (4.98) the post-impact horizontal and vertical components of v  can be 

retrieved as 

0rotx   (4.100) 

0rotz   (4.101) 

Substituting Equations (4.90) through (4.101) into Equations (4.80) and (4.81) yields 

 x s sF dt mx m h mx       (4.102) SPYROULL
A S. O
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zF dt mb    (4.103) 

which constitutes one equation with two unknowns: xF dt , sx .

One additional equation is therefore required to uniquely determine the post-impact velocity 

sx . 

With regard to the block, the principle of frictional impulse in the x  and z  directions states 

that    

 sgnx s k zF dt x F dt   (4.104) 

Substituting Equations (4.102) and (4.103) in Equation (4.104) gives  

   sgns s s kmx m h mx x mb               (4.105) 

Assuming that  sgn 0sx  , Equation (4.105) can be rewritten as 

s k sx b h x             (4.106) 

Once Equation (4.106) is solved and sx  is calculated positive, then the assumption and 

Equation (4.106) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (4.105) can be rewritten as 

s k sx b h x            (4.107) 

The absolute value in Equations (4.106) and (4.107) can be dropped since the impulse in the z 

direction must be positive. 

Derivation for the case of impact during rocking about point 'O

Consider the system at the instant when the block hits the moving base from rocking about 

'O . 

With regard to the block, the principle of linear impulse and momentum in the x  and zSPYROULL
A S. O
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direction states that 

   :   x x x xx
F dt L L L F dt mX mX            (4.108) 

   :   z z z zz
F dt L L L F dt mZ mZ            (4.109) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g s rotX x x x        ,   g s rotX x x x        and   rot gZ z z     ,   rot gZ z z      are the 

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the foundation; 

sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center of the 

block due to the sliding, relative to the foundation; xL , xL , zL  and zL  are the pre- and post-

impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (4.108) and (4.109), we obtain  

x s rot s rotF dt mx mx mx mx           (4.110) 

 z rot rotF dt mz mz     (4.111) 

In Equations (4.110) and (4.111), the pre- and post-impact horizontal components of the 

relative translational velocity of the mass center can be expressed in terms of the pre-impact 

angular velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center can be expressed 

as  

' '/O C O

    v v ω r (4.112) 
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where v  is pre-impact translational velocity vector of center-of-mass, 'O
v  is pre-impact 

translational velocity of point 'O , ω  is pre-impact angular velocity of the block, and 

/ 'C Or  is position vector of center-of-mass relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z x x x z z                 v i k i k (4.113) 

   '
ˆ ˆ

g s gO
x x z     v i k (4.114) 

ˆ  ω j  (4.115) 

   '/
ˆ ˆsin cos

C O
r a r a    r i k (4.116) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

the mass center relative to point 'O  can be rewritten as 

   '/
ˆ ˆ ˆ ˆsin cos

C O
r a r a b h   r i k i k (4.117) 

On substituting Equations (4.113) through (4.117) into Equation (4.112), the pre-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gx x x z z x x z b h                     v i k i k j i k  (4.118) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (4.119) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.120) 

rotz b    (4.121) SPYROULL
A S. O
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For the post-impact state, the translational velocity vector of the mass center can be expressed 

as 

/O C O
    v v ω r (4.122) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z x x x z z                 v i k i k (4.123) 

   ˆ ˆ
O g s gx x z     v i k (4.124) 

ˆ ˆ0  ω j j  (4.125) 

   /
ˆ ˆsin cosC O r a r a     r i k (4.126) 

At impact 0  , the position vector of the mass center relative to point O  becomes 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.127) 

On substituting Equations (4.123) through (4.127) into Equation(4.122), the post-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot s rot g g s gx x x z z x x z b h                     v i k i k j i k (4.128) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (4.129) 

from which the post-impact horizontal and vertical components of v  can be retrieved as SPYROULL
A S. O
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0rotx   (4.130) 

0rotz   (4.131) 

Substitution of Equations (4.120) through (4.131) into Equations (4.110) and (4.111) yields  

 x s sF dt mx m h mx       (4.132) 

 zF dt mb   (4.133) 

which constitutes one equation with two unknowns: xF dt , sx .

One additional equation is therefore required to uniquely determine the post-impact velocity 

sx . 

With regard to the block, the principle of frictional impulse in the x  and z  directions states 

that    

 sgnx s k zF dt x F dt   (4.134) 

Substituting Equations (4.132) and (4.133) in Equation (4.134) gives  

   sgns s s kmx m h mx x mb              (4.135) 

Assuming that  sgn 0sx  , Equation (4.135) can be rewritten as 

s k sx b h x            (4.136) 

Once Equation (4.136) is solved and sx  is calculated positive, then the assumption and 

Equation (4.136) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (4.135) can be rewritten as 

s k sx b h x          (4.137) SPYROULL
A S. O
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The absolute value in Equations (4.136) and (4.137) can be dropped since the impulse in the z 

direction must be positive. 

4.4.2.3 Slide-rocking continues after impact 

In this case, the system continues slide-rocking regime after impact and the impact analysis is 

reduced to the computation of the initial conditions for the post-impact motion, sx , and   ,

given the position and the pre-impact velocities, sx , and   . 

Derivation for the case of impact during rocking about point O   

Consider the system at the instant when the block hits the moving base from rocking about O . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (4.138) 

   :   z z z zz
F dt L L L F dt mZ mZ            (4.139) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g s rotX x x x        ,   g s rotX x x x        and   rot gZ z z     ,   rot gZ z z      are the 

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the foundation; 

sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center of the 

block due to the sliding, relative to the foundation; xL , xL , zL  and zL  are the pre- and post-

impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (4.138) and (4.139), we obtain  

x s rot s rotF dt mx mx mx mx           (4.140) SPYROULL
A S. O
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 z rot rotF dt mz mz     (4.141) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (4.142) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (4.140) and (4.141), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 4-8) can 

be expressed as  

/O C O
    v v ω r (4.143) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z x x x z z                 v i k i k (4.144) 

   ˆ ˆ
O g s gx x z     v i k (4.145) 

ˆ  ω j  (4.146) 

   /
ˆ ˆsin cosC O r a r a     r i k (4.147) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 
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mass center relative to point O , /C Or , can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.148) 

in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (4.144) through (4.148) into Equation (4.143), the pre-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gx x x z z x x z b h                      v i k i k j i k  (4.149) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (4.150) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.151) 

rotz b   (4.152) 

For the post-impact state, the translational velocity vector of the mass center (Figure 4-10) can 

be expressed as 

´ / ´O C O
    v v ω r (4.153) 

where v  is post-impact translational velocity vector of center-of-mass, 'O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / 'C Or  is position vector of the mass center relative to point 'O . 
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Figure 4-10: Components of post-impact translational velocity of the non-isolated block for 

the case of impact during slide-rocking about point O’. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z x x x z z                 v i k i k (4.154) 

   ´
ˆ ˆ

O g s gx x z     v i k (4.155) 

ˆ  ω j  (4.156) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (4.157) 

At impact  0   the position vector of mass center relative to point 'O , / ´C Or , becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (4.158) 

On substituting Equations (4.154) through (4.158) into Equation (4.153), the post-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gx x x z z x x z b h                     v i k i k j i k  (4.159) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (4.160) 

 g sx x 

 

/ 'C Or

gz
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from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.161) 

rotz b    (4.162) 

Substituting Equations (4.151) through (4.162) into Equations (4.140) through (4.142) yields  

   x s sF dt m h mx mx m h           (4.163) 

   zF dt m b m b       (4.164) 

       z xb F dt h F dt I I        (4.165) 

in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (4.166) 

Equations (4.163), (4.164) and (4.165) constitute a set of three equations with four unknowns, 

namely xF dt , zF dt ,   , sx  .

Equivalently, the three Equations (4.163), (4.164) and (4.165) can be combined in one (by 

eliminating the two impulses) with two unknowns:  

   2 2 2 24 4 3 4 2 3s sb h hx h b hx            (4.167) 

which upon rearranging terms becomes 

 
 

2 2

2 2

4 2 3 3

4 4

s sh b hx hx

b h




  


  




   (4.168) 

One additional equation is therefore required to uniquely determine the post-impact velocity 

sx  . SPYROULL
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With regard to the block, the principle of frictional impulse in the x  and z  direction states 

that    

 sgnx s k zF dt x F dt   (4.169) 

Substituting Equations (4.163) and (4.164) in Equation (4.169) gives  

         sgns s s km h mx mx m h x m b m b                       (4.170) 

Assuming that  sgn 0sx  , Equation (4.170) can be rewritten as 

   s k sx b b h x h                     (4.171) 

Once Equation (4.171) is solved and sx  is calculated positive, then the assumption and 

Equation (4.171) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (4.170) can be rewritten as 

   s k sx b b h x h                    (4.172) 

The absolute value in Equations (4.171) and (4.172) can be dropped since the impulse in the z 

direction must be positive. 

Derivation for the case of impact during rocking about point 'O

Consider the system at the instant when the block hits the moving base from rocking about 

'O . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

directions states that    

   :   x x x xx
F dt L L L F dt mX mX            (4.173) 

   :   z z z zz
F dt L L L F dt mZ mZ            (4.174) SPYROULL
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in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

g s rotX x x x        ,  g s rotX x x x         and   rot gZ z z     ,   rot gZ z z      are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the foundation; 

sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center of the 

block due to the sliding, relative to the foundation; xL , xL , zL  and zL  are the pre- and post-

impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (4.173) and (4.174), we obtain  

x s rot s rotF dt mx mx mx mx           (4.175) 

 z rot rotF dt mz mz     (4.176) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I                (4.177) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (4.175) and (4.176), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center can be expressed 

as  

' '/O C O

    v v ω r (4.178) SPYROULL
A S. O
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where v  is pre-impact translational velocity vector of center-of-mass, 'O
v  is pre-impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / 'C Or  is position vector of the mass center relative to point 'O .

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z x x x z z                 v i k i k (4.179) 

   '
ˆ ˆ

g s gO
x x z     v i k (4.180) 

ˆ  ω j  (4.181) 

   '/
ˆ ˆsin cos

C O
r a r a    r i k (4.182) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

the mass center relative to point 'O , '/C O
r , can be rewritten as 

   '/
ˆ ˆ ˆ ˆsin cos

C O
r a r a b h   r i k i k (4.183) 

in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (4.179) through (4.183) into Equation (4.178), the pre-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gx x x z z x x z b h                     v i k i k j i k  (4.184) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (4.185) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.186) SPYROULL
A S. O
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rotz b    (4.187) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as 

/O C O
    v v ω r (4.188) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z x x x z z                 v i k i k (4.189) 

   ˆ ˆ
O g s gx x z     v i k (4.190) 

ˆ  ω j  (4.191) 

   /
ˆ ˆsin cosC O r a r a     r i k (4.192) 

At impact  0   the position vector of the mass center relative to point O , /C Or , becomes 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (4.193) 

On substituting Equations (4.189) through (4.193) into Equation(4.188), the post-impact 

translational velocity therefore becomes 

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gx x x z z x x z b h                      v i k i k j i k  (4.194) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (4.195) SPYROULL
A S. O
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from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (4.196) 

rotz b   (4.197) 

Substituting Equations (4.186), (4.187), (4.196) and (4.197) into Equations (4.175) through 

(4.177) yields  

   x s sF dt m h mx mx m h           (4.198) 

   zF dt m b m b      (4.199) 

       z xb F dt h F dt I I         (4.200) 

in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (4.201) 

Equations (4.198), (4.199) and (4.200) constitute a set of three equations with four unknowns, 

namely xF dt , zF dt ,   , sx  .

Equivalently, the three Equations (4.198), (4.199) and (4.200) can be combined in one (by 

eliminating the two impulses) with two unknowns:  

   2 2 2 24 4 3 4 2 3s sb h hx h b hx            (4.202) 

which upon rearranging terms becomes 

 
 

2 2

2 2

4 2 3 3

4 4

s sh b hx hx

b h




  


  




   (4.203) 

One additional equation is therefore required to uniquely determine the post-impact velocity 

sx  . 
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With regard to the block, the principle of frictional impulse in the x  and z  directions states 

that    

 sgnx s k zF dt x F dt   (4.204) 

Substituting Equations (4.198) and (4.199) in Equation (4.204) gives  

         sgns s s km h mx mx m h x m b m b                      (4.205) 

Assuming that  sgn 0sx  , Equation (4.205) can be rewritten as 

   s k sx b b h x h                    (4.206) 

Once Equation (4.206) is solved and sx  is calculated positive, then the assumption and 

Equation (4.206) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (4.205) can be rewritten as 

   s k sx b b h x h                   (4.207) 

The absolute value in Equations (4.206) and (4.207) can be dropped since the impulse in the z 

direction must be positive. 
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CHAPTER 5  

Dynamic Analysis of Base Isolated Rigid Block 

5.1 Introduction 

This dissertation presents a comprehensive mathematical formulation on the dynamic response 

of base-isolated rigid blocks subjected to horizontal and vertical ground motions. The system 

to be analyzed consists of a free-standing rigid block supported on a seismically-isolated rigid 

base. The dynamic response of the system is realized through four distinct oscillation regimes: 

(a) pure system translation (T), in which the block and base remain in full contact at all time

as the system oscillates horizontally, (b) sliding (S/T), in which the block slides relative to the

supporting base, which translates horizontally, (c) rocking (R/T), in which the rigid block

pivots on its edges as the supporting base translates horizontally and (d) slide-rocking (SR/T),

in which the block simultaneously slides and pivots on its edges, as the supporting base

translates horizontally. Two models for the isolation system are considered; a linear model

with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior.

Despite the apparent geometric simplicity of the problem, the mathematical description of the 

system dynamics is profoundly complex, primarily due to the inherent nonlinear nature of the 

impact phenomenon, which may occur during rocking and slide-rocking response. A rigorous 

formulation of the impact problem is presented in this dissertation based on the classical 

impact theory. Derived from first principles, the impact model assumes point-impact and 

perfectly-inelastic impact (i.e. zero coefficient of restitution). Evidently, apart from the 

nonlinear nature of the governing equations, the dynamic behavior of the system is highly 

complex due to the potential transition from one oscillation regime to another following 

impact. Transition criteria that specify the conditions under which switching between the 

various oscillation regimes are derived. 

5.2 Model Description 

The system considered consists of a symmetric rigid block of mass m  and centroid mass-

moment of inertia CI , standing free on a seismically-isolated rigid base of mass bm  (Figure 

5-1a). The block of height 2H h  and width 2B b  is assumed to rotate about the corners OSPYROULL
A S. O

DYSSEOS
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and 'O . A measure of the size of the block is given by the half-diagonal 2 2R b h  of the 

rectangle, while a measure of its slenderness is given by the characteristic angle 

1tan ( / )b h   or equivalently (but inversely proportionally) by the height-to-width ratio 

/h b  .

Figure 5-1: Model considered and oscillation regimes. 

The dynamic response of the system is realized through four distinct oscillation regimes: (a) 

pure system translation (T), in which the block/base system in its entirety oscillates 

horizontally with displacement ( )u t —1DOF response (Figure 5-1b); (b) sliding (S/T), in 

which the block slides with displacement ( )sx t  relative to the supporting base, which 

translates horizontally with ( )u t —2DOF response (Figure 5-1c); (c) rocking (R/T), in which 

the rigid block pivots on its edges with rotation angle ( )t  as the supporting base translates 

horizontally with ( )u t —2DOF response (Figure 5-1d); and (d) slide-rocking (SR/T), in which 
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the block simultaneously slides with ( )sx t  and pivots on its edges with ( )t , as the supporting 

base translates horizontally with ( )u t —3DOF response (Figure 5-1e). 

The rotation angle of the block is denoted by ( )t , positive in the clockwise direction. The 

horizontal displacement of the base relative to the foundation is denoted by ( )u t , the 

horizontal displacement of the block relative to the base due to sliding is denoted by ( )sx t . 

The ground motion is prescribed by a horizontal acceleration, ( )gx t , and vertical acceleration, 

( )gz t . 

5.3 Formulation of the Equations of Motion 

The governing equations for each regime of motion is formulated by means of the Lagrange 

method, which permits the derivation of the equations of motion from three scalar quantities; 

namely, the kinetic energy, the potential energy, and the virtual work due to non-conservative 

forces. The application of the Lagrange method for the formulation of the equations of motion 

is beneficial compared to the application of the Newtonian method, especially for systems 

composed of a number of components, as it considers the system as a whole rather than the 

individual components of the system separately, a process that excludes the reaction and 

constraint forces (Meirovitch (2001)). Lagrange's equations are derived using the extended 

Hamilton's principle: 

 
2

1

1 20,     =0,  1, 2,3,..., ,     ,
t

nc i

t

T V W dt q i n t t t        (5.1) 

where iq  denotes the generalized coordinate, T  the kinetic energy of the system, V  the 

potential energy of the system, and ncW  the virtual work of the non-conservative forces. 

The generalized coordinates are defined as any set of i  independent quantities that are 

sufficient to completely specify the position of every point within an DOFi   system. The 

kinetic energy of the system, T , can be expressed in terms of the generalized coordinates and 

their first derivatives. That is, 

 1 2 1 2, ,..., , , ,..., ,n nT T q q q q q q t    (5.2) SPYROULL
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so that the variation in the kinetic energy is simply 

1

n

i i
i i i

T T
T q q

q q
  



  
    
 


 (5.3) 

The potential energy, V , can be expressed in terms of the generalized coordinates alone. That 

is, 

 1 2, ,..., ,nV V q q q t (5.4) 

so that the variation in the potential energy is 

1

n

i
i i

V
V q

q
 






 (5.5) 

The virtual work of non-conservative forces, as they act through virtual displacements caused 

by arbitrary variations in the generalized coordinates, is given by 

1

n

nc i i
i

W Q q 


 (5.6) 

where 1 2, ,..., nQ Q Q  are the generalized forces. The symbol   denotes the virtual character of 

the instantaneous variations, as opposed to the symbol d , which denotes actual differentials of 

position coordinates taking place in the time interval dt , during which time interval forces can 

change.  

Substituting Equations (5.3), (5.5) and (5.6) into the extended Hamilton's principle yields 

 
2 2

1 1
1

1 2

0,  

  =0,     1, 2,3,..., ,     ,

t t n

nc i i i
i i i it t

i

T V T
T V W dt Q q q dt

q q q

q i n t t t

    





    
            

 

  


(5.7) 

Then, the integration of the last term is given by 
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22 2 2

1 1 11

2

1

,    1, 2,3,...,

tt t t

i i i i
i i i it t tt

t

i
it

T T d T d t
q dt q dt q q dt

q q dt q dt q

d T
q dt i n

dt q

   



    
        

 
    

  




   



(5.8) 

in which the auxiliary conditions, =0iq  ( 1,2,3,...,i n ), are zero at 1t t  and 2t t . 

Substituting Equation (5.8) into Equation (5.7) yields 

2

1
1

0  
t n

i i
i i i it

T V d T
Q q dt

q q dt q




    
         

 
(5.9) 

Assigning arbitrary values to 1q  while setting 0iq   ( 2,3,...,i n ), Equation (5.9) can be 

satisfied only if the coefficient of 1q is zero. Using the same argument but with 

2 3, ,..., nq q q    playing the role of 1q , the coefficient of every virtual generalized 

displacement iq  ( 1,2,3,...,i n ) must be zero, which yield Lagrange's equations 

,      1, 2,3,...,i
i i i

d T T V
Q i n

dt q q q

   
       

(5.10) 

Equations (5.10) represent the most general form of Lagrange's equations. 

5.3.1 System-translation regime (T) 

The supporting base will oscillate in the horizontal direction with a displacement ( )u t  relative 

to the foundation, "system translation" regime (T), (Figure 5-1b) when 

0gx  (5.11) 

Linear isolation system 

Consider first the block isolated with a linear isolation system composed of a linear spring 

with stiffness bk  and a linear viscous damper with coefficient bc , by interposing a rigid base 

of mass bm , (Section 3.4.1). In the pure-translation regime the system possesses one degree of 

freedom. Using as generalized coordinate the horizontal translation of the base relative to the 

ground, 1q u , Lagrange’s equation takes the form 
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u

d T T V
Q

dt u u u

          
(5.12) 

in which T  denotes the kinetic energy of the system, V  the potential energy of the system, 

and uQ  the generalized non-conservative forces. 

The kinetic energy due to the translation of the system is obtained as 

     2 21

2 b g gT m m u x z      
   (5.13) 

in which  bm m  is the total mass of the system, u  is the horizontal velocity of the base 

relative to the foundation, gx  and gz  is the horizontal and vertical velocity of the ground.  

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations 

are: 

0
T

u





(5.14) 

  b g

T
m m u x

u


  


 


(5.15) 

   b g

d T
m m u x

dt u

      
 


(5.16) 

The potential energy of the system is obtained by 

el grV V V  (5.17) 

where elV  is the potential energy due to elastic deformation of spring given by 

21

2el bV k u (5.18) 

 and grV  is the potential energy due to gravity given by 

0grV mgZ   (5.19) SPYROULL
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so that 

21

2 bV k u (5.20) 

The derivative of the potential-energy function required in formulating Lagrange’s equations 

is: 

b

V
k u

u





(5.21) 

The generalized force uQ  is derived via the virtual work of the non-conservative forces. In 

particular, to find uQ , consider a virtual displacement u  and compute the work done by the 

non-conservative forces of the system, i.e. the damping force Df , Figure 5-2. The latter is 

given by 

nc
u D b uW f u c u u Q u         (5.22) 

so that 

u b

W
Q c u

u




    (5.23) 

Figure 5-2: Displacement u , virtual displacement u  and non-conservative damping force. 

Substituting Equations (5.14), (5.16), (5.21) and (5.23) in Lagrange’s equation (Equation 

(5.12)) yields SPYROULL
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  b g b bm m u x k u c u       (5.24) 

which upon rearranging terms Equation (5.24) becomes 

   b b b b gm m u c u k u m m x        (5.25) 

Equation (5.25) is the classical linear second-order differential equation governing the 

response of a single-degree-of-freedom system to ground excitation (Chopra (2001)). 

Nonlinear isolation system 

Consider now the bilinear hysteretic model which represents the mechanical behavior of 

friction-pendulum-type isolation system, (Section 3.4.2). The kinetic energy of such system is 

given by Equation (5.13), while the potential energy of the system can be obtained by 

  21

2
g

b
b

g z
V m m u

R

 
   

 


(5.26) 

The derivative of the potential-energy function required in formulating Lagrange’s equations 

is: 

  g
b

b

g zV
m m u

u R

 
     


(5.27) 

The generalized force uQ  is derived via the virtual work of the non-conservative forces. In 

particular, to find uQ , consider a virtual displacement u  and compute the work done by the 

non-conservative forces of the system. The latter is given by 

   nc
u D b b g uW f u m m g z u Q u           Z  (5.28) 

so that 

  u b b g

W
Q m m g z

u

 


      Z (5.29) 

where Z  is a dimensionless variable describing the rigid-plastic behavior, being governed by 

the following differential equation SPYROULL
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2 0Y u u u       Z Z Z Z (5.30) 

in which Y  is the yield displacement, and  ,   are dimensionless parameters that control the 

shape of the hysteresis loop, with assigned values: 0.1  , 0.9   and 0.3mmY   

(Constantinou et al. (1990)). 

Substituting Equations (5.14), (5.16), (5.27) and (5.29) in Lagrange’s equation (Equation 

(5.12)) yields 

        g
b g b b b g

b

g z
m m u x m m u m m g z

R


 
        

 


   Z (5.31) 

which upon rearranging terms becomes 

        g
b b b g b b g

b

g z
m m u m m g z m m u m m x

R


 
         

 


  Z (5.32) 

5.3.2 Sliding regime (S/T) 

When subjected to ground acceleration gx , the supporting base will oscillate in the horizontal 

direction with a displacement  u t  relative to the foundation, (Figure 5-1c). The rigid block 

will initiate sliding in the horizontal direction with displacement  sx t  relative to the 

supporting base, once the inertia force of the mass exceeds the resistance provided by friction, 

 f s s gF N m z g    , namely

 g s gu x z g     (5.33) 

in which s  is the coefficient of static friction between the block and the supporting base, gx

and gz  are the horizontal and vertical components of ground acceleration respectively, and g

is the gravitational acceleration. 

Linear isolation system 

Firstly, consider the block isolated with a linear isolation system composed of a linear spring 

with stiffness bk  and a linear viscous damper with coefficient bc , by interposing a rigid base SPYROULL
A S. O
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of mass bm , (Section 3.4.1). In the sliding regime, the system possesses two degrees of 

freedom. Using as generalized coordinates 1q u , the horizontal translation of the base 

relative to the ground, and 2 sq x , the horizontal translation of the block relative to the 

supporting base, Lagrange’s equations take the form 

u

d T T V
Q

dt u u u

          
(5.34) 

sx
s s s

d T T V
Q

dt x x x

   
      

(5.35) 

in which T  denotes the kinetic energy of the system, V  the potential energy of the system, 

and uQ , xQ  the generalized non-conservative forces. 

The kinetic energy due to the translation of the system is obtained as 

       2 2 2 21 1

2 2b g g s g gT m u x z m u x x z               
      (5.36) 

in which m  is the mass of the block, bm is the mass of the supporting base, u  is the horizontal 

velocity of the base relative to the foundation, sx  is the horizontal velocity of the block 

relative to the supporting base, and gx  is the horizontal velocity of the ground. 

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations 

are: 

0
T

u





(5.37) 

0
s

T

x





(5.38) 

  b g s

T
m m u x mx

u


   


  


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 s g
s

T
m u x x

x


  


  


(5.40) 

  b g s

d T
m m u x mx

dt u

       
  


(5.41) 

 s g
s

d T
m u x x

dt x

 
    

  


(5.42) 

The potential energy of the system is obtained as 

el grV V V  (5.43) 

where elV  is the potential energy due to elastic deformation of spring, given by 

21

2el bV k u (5.44) 

and grV  is the potential energy due to gravity, given by 

0grV mgZ   (5.45) 

so that 

21

2 bV k u (5.46) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: 

b

V
k u

u





(5.47) 

0
s

V

x





(5.48) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces. SPYROULL
A S. O
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To find uQ , consider a virtual displacement u  (keeping the other generalized coordinate 

zero, 0sx  ) and compute the work done by the non-conservative forces of the system, 

Figure 5-2. The latter is given by 

nc
u D b uW f u c u u Q u         (5.49) 

so that 

u b

W
Q c u

u




    (5.50) 

To find 
sxQ , consider a virtual displacement sx  (keeping the other generalized coordinate 

zero, 0u  ) and compute the work done by the non-conservative forces of the system. In 

this case 

 
s s

nc
x f s k g s x sW f x m g z x Q x           (5.51) 

so that 

 u k g
s

W
Q m g z

x

 


     (5.52) 

in which k  is the coefficient of kinetic friction between the block and the supporting base. 

Figure 5-3: Displacement sx , virtual displacement sx  and non-conservative friction force. 

Substituting Equations (5.37), (5.38), (5.41), (5.42), (5.47), (5.48), (5.50) and (5.52) in 

Lagrange’s equations (Equations (5.34) and (5.35)) yield 
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  b g s b bm m u x mx k u c u         (5.53) 

   s g k gm u x x m g z        (5.54) 

The specify equations are valid for 0x  . In the case of, 0x   the governing equations of 

motion are similarly derived and written in the form 

   b g s b bm m u x mx k u c u         (5.55) 

   s g k gm u x x m g z       (5.56) 

Combining Equations (5.53) through (5.56) leads to a compact set of equations for the sliding 

regime, namely 

   b s b b b gm m u mx c u k u m m x          (5.57) 

   sgns s k g gmu mx x m g z mx        (5.58) 

where sgn sx  denotes the signum function in sx , defined by 

1 0
sgn

1 0
s

s
s

x
x

x


  




 (5.59) 

Nonlinear isolation system 

Consider now the bilinear hysteretic model which represents the mechanical behavior of 

friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is 

given by Equation (5.36). The potential energy of the system is obtained as 

  21

2
g

b
b

g z
V m m u

R

 
   

 


(5.60) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: SPYROULL
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  g
b

b

g zV
m m u

u R

 
     


 (5.61) 

0
s

V

x





(5.62) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces. To 

find uQ , consider a virtual displacement u  (keeping the other generalized coordinate zero, 

0sx  ) and compute the work done by the non-conservative forces of the system. The latter 

is given by 

   nc
u D b b g uW f u m m g z u Q u           Z  (5.63) 

so that 

  u b b g

W
Q m m g z

u

 


      Z (5.64) 

where Z  is a dimensionless variable describing the rigid-plastic behavior, being governed by 

the differential equation (5.30). 

To find 
sxQ , consider a virtual displacement sx  (keeping the other generalized coordinate 

zero, 0u  ) and compute the work done by the non-conservative forces of the system. In 

this case 

 
s s

nc
x f k g s x sW f x m g z x Q x           (5.65) 

so that 

 u k g

W
Q m g z

x

 


     (5.66) 

in which k  is the coefficient of kinetic friction between the block and the supporting base. 

Substituting Equations (5.37), (5.38), (5.41), (5.42), (5.61), (5.62), (5.64) and (5.66) in 

Lagrange’s equations (Equations (5.34) and (5.35)) yields SPYROULL
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        g
b g s b b b g

b

g z
m m u x mx m m u m m g z

R


 
         

 


    Z (5.67) 

   s g k gm u x x m g z        (5.68) 

The specify equations are valid for 0sx  . In the case of, 0sx   the governing equations of 

motion are similarly derived and written in the form 

        g
b g s b b b g

b

g z
m m u x mx m m u m m g z

R


 
         

 


    Z (5.69) 

   s g k gm u x x m g z       (5.70) 

Combining Equations (5.67) through (5.70) leads to a compact set of equations for the sliding 

regime, namely 

        g
b s b b g b b g

b

g z
m m u mx m m g z m m u m m x

R


 
          

 


   Z (5.71) 

 sgn( )s s k g gmu mx x m g z mx        (5.72) 

5.3.3 Rocking regime (R/T) 

The rigid block is set into rocking on top of the moving base, (Figure 5-1d), when the 

overturning moment due to external loads,  over gM m u x h   , exceeds the available 

resisting moment due to gravity and vertical inertia force,  res gM mb g z   , yielding 

 g g

b
u x g z

h
     (5.73) 

If the acceleration of the block, ( )gu x  , is positive, then rocking takes place about the corner 

'O , or else if it is negative rocking takes place about the corner O . 

Linear isolation system 

Firstly, consider the block isolated with a linear isolation system composed of a linear spring SPYROULL
A S. O
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with stiffness bk  and a linear viscous damper with coefficient bc , by interposing a rigid base 

of mass bm , (Section 3.4.1). In the rocking regime, the system possesses two degrees of 

freedom. Using as generalized coordinates 1q u , the horizontal translation of the base 

relative to the ground, and 2q  , the rotation angle of the block about a base corner, 

Lagrange’s equations take the form 

u

d T T V
Q

dt u u u

          
(5.74) 

d T T V
Q

dt   
          

(5.75) 

in which T  denotes the kinetic energy of the system, V  the potential energy of the system, 

and uQ , Q  the generalized non-conservative forces. 

The kinetic energy due to the translation of the system and rotation of the block is obtained as 

 2 2 2 21 1 1

2 2 2b g gT m u x z mv I       
   (5.76) 

in which m  is the mass of the block, bm  is the mass of the supporting base, I  is the centroid 

mass moment of inertia, u  is the horizontal velocity of the base relative to the foundation, gx

is the horizontal velocity of the ground, gz  is the vertical velocity of the ground, v   is the 

velocity of the center-of-mass of the block, and    is the angular velocity of the block. 

In Equation (5.76), the first term is associated with pure translation of the base, and the second 

and third term are associated with general planar motion of the block (which may be 

considered equivalent of pure translation of the center-of-mass plus pure rotation about the 

center-of-mass). The problem then reduces to computing the (magnitude of) velocity of the 

center-of-mass of the block.  

The magnitude squared of the velocity vector of the block’s center-of-mass, v , is given by 

2 2 2v X Z   (5.77) SPYROULL
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With reference to Figure 5-1d, the position of the center-of-mass of the block is given by 

rotgX u x x   (5.78) 

rotgZ z z  (5.79) 

in which gx  and gz  are the horizontal and vertical ground displacements respectively; rotx  is 

the horizontal relative displacement of the block due to rocking by an angle  , 

   rot 1 2 cos sin sin 1 cosx x x b b h h b            (5.80) 

and rotz  is the vertical relative displacement of the block as it rotates by an angle  , given by 

   rot 1 2 sin cosz z z h b h h        (5.81) 

so that 

 sin 1 cosgX u x h b      (5.82) 

 sin 1 cosgZ z b h      (5.83) 

The quantities 1x , 2x , 1z  and 2z  used in the calculation of rotx  and rotz  are shown in Figure 

5-4.
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u

2x

2z

1z

h

gx

gz

Figure 5-4: Schematic of isolated block in rocking regime. 

The velocity of the center-of-mass is derived by differentiating Equations (5.78) and (5.79) 

with respect to time: 

cos singX u x h b           (5.84) 

cos singZ z b h         (5.85) 

Thus, the kinetic energy of the system takes the form 

   

 

22 2

2 2

1 1
cos sin

2 2
1

  cos sin
2

b g g g

g

T m u x z m u x h b

z b h I

   

    

           

   

    

  
(5.86) 

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations 

are: 

0
T

u





(5.87) 

  
  
    

cos sin cos sin

cos sin sin cos

cos sin sin cos

g

g

g g

T
m u x h b b h

m z b h b h

m u x b h mz b h

       


       

       


    


    

     

    

   

     
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   cos sinb g g

T
m u x m u x h b

u
   

     


    


(5.89) 

  

  
     2

cos sin cos sin

cos sin cos sin

cos sin cos sin

g

g

g g

T
m u x h b h b

m z b h b h I

m u x h b mz b h mR I

     


      

     


    


    

      

  
  

   

(5.90) 

   
      

2 2

2

cos sin sin cos

cos sin cos sin

b g g

b g

d T
m u x m u x h h b b

dt u

m m u x m h b m b h

       

     

           

      

      


  
(5.91) 

     
    2

cos sin sin cos

cos sin sin cos

g g

g g

d T
m u x h b m u x h b

dt

mz b h mz b h mR I

     


       

          

      

    

    
(5.92) 

The potential energy of the system is obtained as 

el grV V V  (5.93) 

where elV  is the potential energy due to elastic deformation of spring, given by 

21

2el bV k u (5.94) 

and grV  is the potential energy due to gravity, given by 

 sin 1 cosgrV mgZ mg b h       (5.95) 

so that 

 21
sin 1 cos

2 bV k u mg b h        (5.96) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: 
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b

V
k u

u





(5.97) 

 cos sin
V

mg b h 



 


(5.98) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces.  

To find uQ , consider a virtual displacement u  (keeping the other generalized coordinate 

zero, 0  ) and compute the work done by the non-conservative forces of the system, Figure 

5-2. The latter is given by

nc
u D b uW f u c u u Q u         (5.99) 

so that 

u b

W
Q c u

u




    (5.100) 

To find Q , consider a virtual rotation   (keeping the other generalized coordinate zero, 

0u  ) and compute the work done by the non-conservative forces of the system. In this case 

0ncW Q     (5.101) 

so that 

0Q  (5.102) 

Figure 5-5: Displacement   and virtual displacement  . 
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Substituting Equations (5.87), (5.88), (5.91), (5.92), (5.97), (5.98), (5.100) and (5.102) in 

Lagrange’s equations (Equations (5.74) and (5.75)) yields 

        2cos sin cos sinb g b bm m u x m h b m b h k u c u                 (5.103) 

     
   
    
 

2

cos sin sin cos

cos sin sin cos

cos sin sin cos

cos sin 0

g g

g g

g g

m u x h b m u x h b

mz b h mz b h mR I

m u x b h mz b h

mg b h

     

       

       

 

     

      

       
  

    

    

     
(5.104) 

which upon rearranging terms become 

       2cos sin cos sinb b b b gm m u c u k u m h b m b h m m x                   (5.105) 

     
   

2 cos sin cos sin

cos sin cos sing g

mR I mu h b mg b h

m h b x m b h z

    

   

    

    

 

 
(5.106) 

The specify equations are valid for 0  , i.e. in the case of rocking about the corner O. In the 

case of 0  , i.e. rocking about the corner 'O , the governing equations of motion are 

similarly derived and written in the form 

     
 

2cos sin cos sinb b b

b g

m m u c u k u m h b m b h

m m x

            

  

  


(5.107) 

     
   

2 cos sin cos sin

cos sin cos sing g

mR I mu h b mg b h

m h b x m b h z

    

   

     

     

 

 
(5.108) 

Combining Equations (5.105) through (5.108) leads to a compact set of equations for the 

rocking regime, namely 

   
   2

cos sgn sin

sgn cos sin

b b b

b g

m m u c u k u m h b

m b h m m x

   

   

      
      

 
 
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      
    

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sing g

mR I mu h b mg b h

m h b x m b h z

      

     

      

      

 

 
(5.110) 

where sgn  denotes the signum function in  , defined by 

1 0
sgn

1 0







  
(5.111) 

Evidently, the mutually coupled equations governing the rocking regime are highly nonlinear 

and not amenable to closed-form solution, even for the simplest form of ground excitation. 

Note that Equations (5.109) and (5.110) are only valid in the absence of impact ( 0  ). At 

that instant, both corner points O  and 'O  are in contact with the base, rendering the above 

formulation invalid. The impact problem is addressed separately in Chapter 6. 

Nonlinear isolation system 

Consider now the bilinear hysteretic model which represents the mechanical behavior of the 

friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is 

given by Equation (5.86). The potential energy of the system is obtained as 

   21
sin 1 cos

2
g

b
b

g z
V m m u mg b h

R
 

 
        

 


 (5.112) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: 

  g
b

b

g zV
m m u

u R

 
     


 (5.113) 

 cos sin
V

mg b h 



 


(5.114) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces.  

To find uQ , consider a virtual displacement u  (keeping the other generalized coordinate 

zero, 0  ) and compute the work done by the non-conservative forces of the system. The 
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latter is given by 

   nc
u D b b g uW f u m m g z u Q u           Z  (5.115) 

so that 

  u b b g

W
Q m m g z

u

 


      Z (5.116) 

where Z  is a dimensionless variable describing the rigid-plastic behavior, being governed by 

the differential equation (5.30). 

To find Q , consider a virtual rotation   (keeping the other generalized coordinate zero, 

0u  ) and compute the work done by the non-conservative forces of the system. In this case 

0ncW Q     (5.117) 

so that 

0Q  (5.118) 

Substituting Equations (5.87), (5.88), (5.91), (5.92), (5.113), (5.114), (5.116) and (5.118) in 

Lagrange’s equations (Equations (5.74) and (5.75)) yields 

       

     

2cos sin cos sinb g

g
b b b g

b

m m u x m h b m b h

g z
m m u m m g z

R

     



     

 
      

 

  


 Z

(5.119) 

which upon rearranging terms become 

        

   2

cos sin

cos sin

g
b b b b g

b

b g

g z
m m u m m u m m g z m h b

R

m b h m m x

   

  

 
        

 
    

  

 

Z
(5.120) 

     
   

2 cos sin cos sin

cos sin cos sing g

mR I mu h b mg b h

m h b x m b h z

    

   

    

    

 

 
(5.121) 

The specify equations are valid for 0  , i.e. in the case of rocking about the corner O. In the 
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case of 0  , i.e. rocking about the corner 'O , the governing equations of motion are 

similarly derived and written in the form 

         

   2

cos sin

cos sin

g
b b b b g

b

b g

g z
m m u m m u m m g z m h b

R

m b h m m x

   

  

 
        

 
     

  

 

Z
(5.122) 

     
   

2 cos sin cos sin

cos sin cos sing g

mR I mu h b mg b h

m h b x m b h z

    

   

     

     

 

 
(5.123) 

Combining Equations (5.105) through (5.108) leads to a compact set of equations for the 

rocking regime, namely 

      

     2cos sgn sin sgn cos sin

g
b b b b g

b

b g

g z
m m u m m u m m g z

R

m h b m b h m m x



       

 
      

 
            


 

  

Z
(5.124) 

      
    

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sing g

mR I mu h b mg b h

m h b x m b h z

      

     

      

      

 

 
(5.125) 

5.3.4 Slide-rocking regime (SR/T) 

Slide-rocking, (Figure 5-1e), is initiated from rest or from the system-translation regime in the 

singular case when the sliding-regime and rocking-regime conditions are satisfied 

simultaneously (Shenton III and Jones (1991)), yielding 

   ,g s g g

b
u x g z g z

h
      

    (5.126) 

Linear isolation system 

Firstly, consider the block isolated with a linear isolation system composed of a linear spring 

with stiffness bk  and a linear viscous damper with coefficient bc , by interposing a rigid base of 

mass bm , (Section 3.4.1). In the slide-rocking regime, the system possesses three degrees of 

freedom. Using as generalized coordinates 1q u , the horizontal translation of the base SPYROULL
A S. O
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relative to the ground, 2 sq x , the horizontal translation of the block relative to the supporting 

base, and 3q  , the rotation angle of the block about a base corner, Lagrange’s equations 

take the form 

u

d T T V
Q

dt u u u

          
(5.127) 

sx
s s s

d T T V
Q

dt x x x

   
      

(5.128) 

d T T V
Q

dt   
          

(5.129) 

in which T  denotes the kinetic energy of the system, V  the potential energy of the system, 

and uQ , xQ  and Q  the generalized non-conservative forces. 

The kinetic energy due to the translation of the system and rotation of the block is obtained as 

 2 2 2 21 1 1

2 2 2b g gT m u x z mv I       
   (5.130) 

in which m  is the mass of the block, bm  is the mass of the supporting base, I  is the centroid 

mass moment of inertia, u  is the horizontal velocity of the base relative to the foundation, x  is 

the horizontal velocity of the block relative to the supporting base, gx  is the horizontal 

velocity of the ground, v  is the velocity of the center-of-mass of the block, and   is the 

angular velocity of the block. 

In Equation (5.76), the first term is associated with the pure translation of the base, while the 

second and third term is associated with general planar motion of the block. The problem then 

reduces to computing the (magnitude of) velocity of the center-of-mass of the block.  

The magnitude squared of the velocity vector of the block’s center-of-mass, v , is given by 

2 2 2v X Z   (5.131) 

With reference to Figure 5-1e, the position of the center-of-mass of the block is given by SPYROULL
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rotg sX u x x x    (5.132) 

rotgZ z z  (5.133) 

in which gx  and gz  are the horizontal and vertical ground displacements respectively; sx  is 

the horizontal relative displacement of the block as it slides on the base, rotx  is the horizontal 

relative displacement of the block as it rotates by an angle  , given by 

   rot 1 2 cos sin sin 1 cosx x x b b h h b            (5.134) 

and rotz  is the vertical relative displacement of the block as it rotates by an angle  , given by 

   rot 1 2 sin cosz z z h b h h        (5.135) 

so that 

 sin 1 cosg sX u x x h b       (5.136) 

 sin 1 cosgZ z b h      (5.137) 

The quantities 1x , 2x , 1z  and 2z  used in the calculation of rotx  and rotz  are shown in Figure 

5-6.
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u

2x

2z

1z

h

gx

gz

Figure 5-6: Schematic of isolated block in slide-rocking regime. 

The velocity of the center-of-mass is derived by differentiating Equations (5.132) and (5.133) 

with respect to time: 

cos sing sX u x x h b             (5.138) 

cos singZ z b h         (5.139) 

Therefore, the squared magnitude of the velocity vector of the block’s center-of-mass can also 

be retrieved as 

2 22 2 2 cos sin cos sing s gv X Z u x x h b z b h                      
          (5.140) 

Thus, the kinetic energy of the system takes the form 

   

 

22

2 2

1 1
cos sin

2 2
1

cos sin
2

b g g s

g

T m u x m u x x h b

z b h I

   

    

      

   

     

  
(5.141) 

The derivatives of the kinetic-energy function required in formulating Lagrange’s equations 

are: 

0
T

u





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0
s

T

x





(5.143) 

  
  
    

cos sin cos sin

cos sin sin cos

cos sin sin cos

g s

g

g s g

T
m u x x h b b h

m z b h b h

m u x x b h mz b h

       


       

       


     


    

      

     

   

      

(5.144) 

   cos sinb g g s

T
m u x m u x x h b

u
   

      


     


(5.145) 

 cos sing s
s

T
m u x x h b

x
   

    


   


(5.146) 

  

  
     2

cos sin cos sin

cos sin cos sin

cos sin cos sin

g s

g

g s g

T
m u x x h b h b

m z b h b h I

m u x x h b mz b h mR I

     


      

     


     


    

       

   
  

    

(5.147) 

 

 
  
   

2 2

2

cos sin sin cos

cos sin cos sin

b g

g s

b g s

d T
m u x

dt u

m u x x h h b b

m m u x mx

m h b m b h

       

     

     

      

   

   

 


     

  
 

(5.148) 

 2 2cos sin sin cosg s
s

d T
m u x x h h b b

dt x
       

 
        

     


(5.149) 
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  

   
 
  2

cos sin

sin cos

cos sin

sin cos

g s

g s

g

g

d T
m u x x h b

dt

m u x x h b

mz b h

mz b h mR I

 


   

 

     

       

    

 

    

  

   


   

 (5.150) 

The potential energy of the system is obtained as 

el grV V V  (5.151) 

where elV  is the potential energy due to elastic deformation of spring, given by 

21

2el bV k u (5.152) 

and grV  is the potential energy due to gravity, given by 

 sin 1 cosgrV mgZ mg b h       (5.153) 

so that 

 21
sin 1 cos

2 bV k u mg b h        (5.154) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: 

b

V
k u

u





(5.155) 

0
s

V

x





(5.156) 

 cos sin
V

mg b h 



 


(5.157) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces.  SPYROULL
A S. O
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To find uQ , consider a virtual displacement u  (keeping the other generalized coordinates 

zero, 0x  , 0  ) and compute the work done by the non-conservative forces of the 

system, Figure 5-2. The latter is given by 

nc
u D b uW f u c u u Q u         (5.158) 

so that 

u b

W
Q c u

u




     (5.159) 

To find xQ , consider a virtual displacement sx  (keeping the other generalized coordinates 

zero, 0u  , 0  ) and compute the work done by the non-conservative forces of the 

system, Figure 5-3. In this case 

 
s s

nc
x f s k s x sW f x m g Z x Q x           (5.160) 

where, 

2 2cos sin sin cosgZ z b b h h                 (5.161) 

so that 

 2 2cos sin sin cos
sx k g

s

W
Q m g z b b h h

x

         


           (5.162) 

in which k  is the coefficient of kinetic friction between the block and the supporting base. 

To find Q , consider a virtual rotation   (keeping the other generalized coordinates zero, 

0u  , 0sx  ) and compute the work done by the non-conservative forces of the system, 

Figure 5-5. In this case 

0ncW  (5.163) 

so that 

0
W

Q



   (5.164) 

Substituting Equations (5.142), (5.143), (5.144), (5.148), (5.149), (5.150), (5.155),  
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(5.156), (5.157), (5.159), (5.162), (5.164) in Lagrange’s equations (Equations (5.127), (5.128) 

and (5.129)) yields 

       2cos sin cos sinb g s b bm m u x mx m h b m b h k u c u                    (5.165) 

 
 

2 2

2 2

cos sin sin cos

sgn( ) cos sin sin cos

g s

s k g

m u x x h h b b

x m g z b b h h

       

        

     

      

     

    
(5.166) 

       
   

2 cos sin cos sin

cos sin cos sin

s
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mR I m u x h b mg b h

m h b x m b h z
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   

     

    

  

 
(5.167) 

which upon rearranging terms become 

     
 

2cos sin cos sinb s b b

b g

m m u mx c u k u m h b m b h

m m x

            

  

   


(5.168) 

.. (5.169) 

      
   

2 cos sin cos sin

cos sin cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z
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   

      

    

  

 
(5.170) 

The specify equations are valid for 0  , i.e. in the case of rocking about the corner O. In the 

case of 0  , i.e. rocking about the corner 'O , the governing equations of motion are 

similarly derived and written in the form 

     
 

2cos sin cos sinb s b b

b g

m m u mx c u k u m h b m b h

m m x

             

  

   


(5.171) 

     
 

2

2 2

cos sin cos sin

sgn( ) cos sin sin cos

s

s k g g

m u x m h b m b h

x m g z b b h h mx

     

        

     

       

  
    

(5.172) 

      
   

2 cos sin cos sin

cos sin cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

    

   

      

     

  

 
(5.173) 

Combining Equations (5.168) through (5.173) leads to a compact set of equations for the SPYROULL
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rocking regime, namely 

   
   2

cos sgn sin

sgn cos sin

b s b b

b g

m m u mx c u k u m h b

m b h m m x

   

   

       
      

  
 

(5.174) 

     
 

  

2

2

cos sgn sin sgn cos sin

sgn( ) sgn cos sin

cos sgn sin

s

s k g

g

m u x m h b m b h

x m g z b h

h b mx

       

    

   

          

     

     

  

 

 

(5.175) 

       
   

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

      

     

           

          

  

 
(5.176) 

where sgn sx  denotes the signum function in sx , defined by Equation (5.59), and sgn  

denotes the signum function in  , defined by Equation (5.111). 

Note that Equations (5.174)-(5.176) hold only in the absence of impact ( 0  ). At that 

instant, both corner points O  and 'O  are in contact with the base, rendering the above 

formulation invalid. The impact problem is addressed separately in Chapter 6. 

Nonlinear isolation system 

Consider now the bilinear hysteretic model which represents the mechanical behavior of 

friction-pendulum-type isolation system, (Section 3.4.2), the kinetic energy of the system is 

given by Equation (5.141). The potential energy of the system is obtained as 

   21
sin 1 cos

2
g

b
b

g z
V m m u mg b h

R
 

 
        

 


 (5.177) 

The derivatives of the potential-energy function required in formulating Lagrange’s equations 

are: 

  g
b

b

g zV
m m u

u R

 
     


 (5.178) 

0
s

V

x





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 cos sin
V

mg b h 



 


(5.180) 

The generalized forces, Q , are derived via the virtual work of the non-conservative forces.  

To find uQ , consider a virtual displacement u  (keeping the other generalized coordinate 

zero, 0  ) and compute the work done by the non-conservative forces of the system. The 

latter is given by 

   nc
u D b b g uW f u m m g z u Q u           Z  (5.181) 

so that 

  u b b g

W
Q m m g z

u

 


      Z (5.182) 

where Z  is a dimensionless variable describing the rigid-plastic behavior, being governed by 

the differential equation (5.30). 

To find xQ , consider a virtual displacement sx  (keeping the other generalized coordinates 

zero, 0u  , 0  ) and compute the work done by the non-conservative forces of the 

system. In this case 

 
s s

nc
x f s k s x sW f x m g Z x Q x           (5.183) 

Where, 

2 2cos sin sin cosgZ z b b h h                 (5.184) 

so that 

 2 2cos sin sin cos
sx k g

s

W
Q m g z b b h h

x

         


           (5.185) 

in which k  is the coefficient of kinetic friction between the block and the supporting base. 

To find Q , consider a virtual rotation   (keeping the other generalized coordinate zero, 

0u  ) and compute the work done by the non-conservative forces of the system. In this case SPYROULL
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0ncW Q     (5.186) 

so that 

0Q  (5.187) 

Substituting Equations (5.142), (5.143), (5.144), (5.148), (5.149), (5.150), (5.178), (5.179), 

(5.180), (5.182), (5.185), (5.187) in Lagrange’s equations (Equations (5.127), (5.128) and 

(5.129)) yields 

      

    

2cos sin cos sinb g s

g
b b b g

b

m m u x mx m h b m b h

g z
m m u m m g z

R

     



      

 
      

 

   


 Z

(5.188) 

 
 

2 2

2 2

cos sin sin cos

sgn( ) cos sin sin cos

g s

s k g

m u x x h h b b

x m g z b b h h

       

        

     

      

     

    
(5.189) 

       
   

2 cos sin cos sin

cos sin cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

    

   

     

    

  

 
(5.190) 

which upon rearranging terms become 

      

     2cos sin cos sin

g
b s b b b g

b

b g

g z
m m u mx m m u m m g z

R

m h b m b h m m x



     

 
       

 
      


  

  

Z
(5.191) 

     
 

2

2 2

cos sin cos sin

sgn( ) cos sin sin cos

s

s k g g

m u x m h b m b h

x m g z b b h h mx

     

        

    

       

  
    

(5.192) 

      
   

2 cos sin cos sin

cos sin cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

    

   

      

    

  

 
(5.193) 

The specify equations are valid for 0  , i.e. in the case of rocking about the corner O. In the 

case of 0  , i.e. rocking about the corner 'O , the governing equations of motion are 

similarly derived and written in the form SPYROULL
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      

     2cos sin cos sin

g
b s b b b g

b

b g

g z
m m u mx m m u m m g z

R

m h b m b h m m x



     

 
       

 
       


  

  

Z
(5.194) 

     
 

2

2 2

cos sin cos sin

sgn( ) cos sin sin cos

s

s k g g

m u x m h b m b h

x m g z b b h h mx

     

        

     

       

  
    

(5.195) 

      
   

2 cos sin cos sin

cos sin cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

    

   

      

     

  

 
(5.196) 

Combining Equations (5.191) through (5.196) leads to a compact set of equations for the 

rocking regime, namely 

      

     2cos sgn sin sgn cos sin

g
b s b b b g
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R

m h b m b h m m x



       

 
       

 
            


  

  

Z
(5.197) 

     
 

  

2cos sgn sin sgn cos sin

sgn( ) sgn cos sin

cos sgn sin

s

s k g

g

m u x m h b m b h

x m g z b h

h b mx

       

    

   

          

     

     

  

 

 

(5.198) 

       
   

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

      

     

           

          

  

 
(5.199) 

5.4 Transition Criteria between Oscillation Regimes 

The dynamic behavior of the system is highly complex primarily due to the potential transition 

from one oscillation regime to another, each one governed by different equations of motion. 

This transition is governed by certain criteria, which are established by balancing the acting 

forces on the system for a specific time and state. A state diagram indicating the different 

response regimes together with the associated transition criteria is shown in Figure 5-7.  
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Figure 5-7: State diagram and transition criteria among different oscillation regimes. 

The transition from the system-translation regime (S1) to other oscillation regimes is governed 

by the following criteria: 

 To sliding regime (S2):

 1 2 :  g s gC u x g z        and   g g

b
u x g z

h
     (5.200) 

 To rocking regime (S3):

 1 3 :   g g

b
C u x g z

h        and   g s gu x g z     (5.201) 

 To slide-rocking regime (S4):

 1 4 :   g g

b
C u x g z

h        and   g s gu x g z     (5.202) 

The criteria (5.200), (5.201) and (5.202) are based on the initiation criteria of each oscillation 

pattern that are given analytically in Section 4.3.  

The transition from the sliding regime (S2) to other oscillation regimes is governed by the 

following criteria: 

 To system-translation regime (S1):

S1: System  
Translation

S2: Sliding

S3: Rocking

S4: Slide-
Rocking 

C1-2

C2-1

C2-3

C3-2

C1-3

C3-1

C4-3

C3-4

C1-4

C4-1

C4-2 C2-4
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2 1 :  0sC x   (5.203) 

 To rocking regime (S3):

2 3 :  0sC x    and   g g

b
u x g z

h
     (5.204) 

 To slide-rocking regime (S4):

 2 4 :  g s k gC u x x g z          and   g s g

b
u x x g z

h
       (5.205) 

The criteria (5.203) and (5.204) state that the transition from sliding regime to system 

translation or rocking regimes will be accomplished when the horizontal translation velocity of 

the block, sx , equals zero (sliding ceases). In addition, the initiation criterion of rocking, 

Section 4.3, must be satisfied. During sliding regime, the slide-rocking will be initiated once 

the inertia force of the mass exceeds the resistance provided by friction, 

 f s s gF N m z g     and at the same time when the overturning moment due to external 

loads,  over g sM m u x x h     , exceeds the available resisting moment due to gravity and 

vertical inertia force,  res gM mb g z   , criterion (5.205). 

The transition from the rocking regime (S3) to other oscillation regimes is governed by the 

following criteria: 

 To system-translation regime (S1):

3 1 :   0C     and  0   (5.206) 

 To sliding regime (S2):

3 2 :   0C     and  0    and   g s gu x g z     (5.207) 

 To slide-rocking regime (S4):

3 4 :   0C     and  0    and  x
s

z

f

f
  (5.208) 

The criteria (5.206) and (5.207) state that the transition from rocking regime to system 
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translation and sliding regimes will be accomplished when the rotational velocity,  , and the 

rotation angle,  , of the block equal zero (rocking ceases). In addition, the initiation criterion 

of sliding, Section 4.3, must be satisfied. During rocking regime, the slide-rocking will be 

initiated once the rotational velocity,  , and rotation angle,  , of the block are nonzero 

(rocking continues) and the absolute ratio of horizontal, xf , and vertical, zf , reactions of the 

base, at points O  or 'O , exceeds the coefficient of static friction, s , criterion (5.208). The 

criterion (5.208) can be expressed as: 

 
 

2
1 2

2
2 1

g

s

g

m u x mA mA

m g z mA mA

 


 

  


  

  
 

(5.209) 

where,  1 cos sgn sinA h b     and  2 sgn cos sinA b h     

Note that if slide-rocking regimes initiates after impact, then xf  and zf  are the horizontal and 

vertical impulses forces acting at the impacting corner, see Section 6.3.1. 

The transition from the slide-rocking regime (S4) to other oscillation regimes is governed by 

the following criteria: 

 To system-translation regime (S1):

4 1 :   0C     and  0    and  0sx  (5.210) 

 To sliding regime (S2):

4 2 :   0C     and  0    and   g s k gu x x g z       (5.211) 

 To rocking regime (S3):

4 3 : x
k

z

f
C

f
    and  0   (5.212) 

The criterion (5.210) states that the transition from slide-rocking regime to system translation 

regime will be accomplished when the rotational velocity,  , the rotation angle,  , and the 

horizontal translation velocity of the block, sx , equal zero (rocking and sliding cease). During 

slide-rocking regime, the rocking will cease and the sliding will continue once the rotational 
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velocity,  , and the rotation angle,  , of the block equal to zero (rocking ceases) and the 

inertia force of the mass continue to exceeds the resistance provided by friction, 

 f s s gF N m z g    , criterion (5.211). The rocking regime will continue when sliding

ceases. This will be accomplished when the ratio of horizontal, xf , and vertical, zf , reactions 

of the base, at points O  or 'O , becomes smaller than the coefficient of static friction, s , and 

the rotational velocity,  , of the block remains nonzero, criterion (5.212). The criterion 

(5.212) can be expressed as: 

 
 

2
1 2

2
2 1

g s

k

g

m u x x mA mA

m g z mA mA

 


 

   


  

   
 

(5.213) 

where,  1 cos sgn sinA h b     and  2 sgn cos sinA b h     

Note that if rocking regime continues after impact, then xf  and zf  are the horizontal and 

vertical impulses forces acting at the impacting corner, see Section 6.4.2. 
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CHAPTER 6  

Formulation of Impact Model  

6.1 Introduction 

The dynamic response of the system is strongly affected by the occurrence of impact(s) 

between the block and the horizontally-moving base, during “rocking” and “slide-rocking” 

oscillation regime. In fact, impact affects the system response on many different levels. On 

one level, it renders the problem highly nonlinear (aside from the nonlinear nature of the 

equations themselves) by virtue of the discontinuity introduced in the response (i.e. the 

governing equations of motion cease to be valid at 0  ). As a result, impact causes the 

system to switch from one oscillation regime to another (potentially modifying the degrees of 

freedom), each one governed by a different set of differential equations. This in turn entails 

that the integration of equations of motion governing the post-impact response must account 

for the ensuing instantaneous change of the system velocity regime. In this regard, the 

dynamic response is critically influenced by impact, in that impact contributes (exclusively) to 

the energy dissipation in the system, manifested through the reduction of the post-impact 

velocities. 

Therefore, the critical role of impact in the dynamics of the system necessitates a rigorous 

formulation of the impact problem. In this dissertation, a model governing impact is derived 

from first principles using classical impact theory. According to the principle of impulse and 

momentum, the duration of impact is assumed short and the impulsive forces are assumed 

large relative to other forces in the system. Changes in position and orientation are neglected, 

and changes in velocity are considered instantaneous. Moreover, this model assumes point-

impact, perfectly inelastic impact (i.e. zero coefficient of restitution) and impulses acting only 

at the impacting corner (i.e. impulses at the rotating corner are small compared to those at the 

impacting corner and are neglected). 

It is worth noting that the coefficient of restitution, e , as defined in classical impact theory, 

relates pre- to post-impact translational velocities normal to the impact surface ( n nv ev   ), 

and hence it must not be confused (as often encountered in the literature) with the coefficient 

of “angular restitution”  , which relates the pre- to post-impact angular velocities of the body 
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(    ). In this dissertation, the coefficient of restitution e  enters in the expression 

' 'O Oz ez     which relates pre- to post-impact vertical relative velocities of the impacting 

corner ( 'O ). According to the classical impact theory, the value 1e   means that the capacity 

of the two particles to recover equals their tendency to deform. This condition is one of elastic 

impact with no energy loss. The value 0e  , on the other hand, describes inelastic or plastic 

impact where the particles cling together after collision and the loss of energy is maximum. In 

this dissertation, under the assumption of perfectly inelastic impact, the coefficient of 

restitution is then justified by considering 0e  .  

6.2 Theoretical Background 

In this section a review of the principles of linear impulse, linear momentum, angular impulse 

and angular momentum are presented, mainly based on Meriam and Kraige (2009).  

6.2.1 Linear impulse and linear momentum 

Based on Newton’s second law, when a particle of mass m  is subjected to the action of 

concurrent forces 1 2 3, , ,...F F F , the vector sum F  equals with 

 d
m m

dt
  F v v (6.1)

where v  and v  is the acceleration and velocity of the particle, respectively. 

The product of mass and velocity, mL v , is defined as the linear momentum of the particle. 

Equation (6.1) states that the resultant of all forces acting on a particle equals its time of 

change of linear momentum. The direction of the resultant force coincides with the direction 

of the rate of change in linear momentum, which is the direction of the rate of change in 

velocity. Equation (6.1) is one of the most useful and important relationships in dynamics, and 

is valid as long as the mass m  of the particle is not changing with time.  

The effect of the resultant force F  on the linear momentum of the particle over a finite 

period of time can be calculated simply by integrating equation (6.1) with respect to the time 

t . Multiplying the equation by dt  gives dt d F L . Integrating equation from time 1t  to time 

2t  yields SPYROULL
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2

1

2 1

t

t

dt   F L L (6.2)

where 2L  is the linear momentum at time 2t , 2 2mL v , and 1L  is the linear momentum at 

time 1t , 1 1mL v . The product of force and time is defined as the linear impulse of the force. 

Equation (6.2) states that the total linear impulse on m  equals the corresponding change in 

linear momentum of m .  

If the resultant force on a particle is zero during an interval of time, then Equation (6.1) 

requires that its linear momentum L  remain constant and can be written as  

1 20      or        L L L (6.3)

In such a case, the linear momentum of the particle is said to be conserved. Linear momentum 

may be conserved in one coordinate direction, such as x , but not necessarily in the -y  or -z  

direction. This relation expresses the principle of conservation of linear momentum. 

6.2.2 Angular impulse and angular momentum 

Analogous to the equations of linear impulse and linear momentum, there exists a parallel set 

of equations for angular impulse and angular momentum. 

Consider a single particle, P , of mass m  travelling along a curve in space with a velocity v , 

Figure 6-1(a). The particle is located by its position vector r  with respect to a convenient 

origin O  of fixed coordinates x-y-z. The linear momentum of the particle is mL v . The 

moment of the linear momentum vector mu  about the origin O  is defined as the angular 

momentum, OH , of P  about O  and is given by the cross-product relation for the moment of 

a vector: 

O m H r v (6.4)

Figure 6-1(b) shows a two-dimensional representation of the vectors involved in Equation 

(6.4).  
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(a)  (b) 

Figure 6-1: Three-dimensional (a) and two-dimensional (b) representation of the angular 

momentum, OH , of P  about O . 

For planar motion, the angular momentum vector has fixed direction (normal to the plane of 

motion), thus vector notation may be dropped. The magnitude of angular momentum is given 

by  

sinOH mvr  (6.5)

Note that angular momentum is defined and measured relative to the origin chosen. This 

choice is arbitrary, and our origin can be chosen to correspond to the most convenient 

calculation.  

Meaningful is that the moment of the forces, F , acting on the particle P , is related to its 

angular momentum. If F  represents the resultant of all forces acting on the particle, P , of 

Figure 6-1, the moment OM  about the origin O  is the product 

O m     M r F r v (6.6)

where Newton’s second law, Equation (6.1), has been substituted. Differentiating Equation 

(6.6) with time, using the rule for the differentiation of cross product we obtain 

O m m m m          H r v r v v v r v (6.7)

The term mv v  is zero since the cross product of parallel vectors is identically zero. 

Substituting Equation (6.7) into Equation (6.6) yields 

O O  M H (6.8)
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Equation (6.8) states that the moment of all forces acting on m  about the fixed point O  equals 

the time rate of change of angular momentum of m  about O . 

In addition, Equation (6.8) gives the instantaneous relation between the moment and the time-

rate of change of angular momentum. The effect of the moment OM  on the angular 

momentum of the particle over a finite period of time, is obtained by integrating Equation 

(6.8) from time 1t  to time 2t . Multiplying this equation by dt , gives 

O Odt d M H (6.9)

which by integrating we obtain 

   
2

1

2 1

t

O O O O

t

dt     M H H H (6.10) 

where   2 22O m H r v  and   1 11O m H r v . The product of moment and time is defined as 

angular impulse. Equation (6.10) states that the total angular impulse on m  about the fixed 

point O  equals the corresponding change in angular momentum of m  about O . 

Similar with the principle of conversation of linear momentum, if the resultant moment about 

a fixed point O  of all forces acting on a particle is zero during a particular interval of time, 

then 

   1 2
0      or       O O O  H H H (6.11) 

This relation expresses the principle of conversation of angular momentum for a general mass 

system in the absence of an angular impulse.   

6.2.3 Impulse-momentum principles on rigid bodies 

In Section 6.2.1 and 6.2.2 the impulse-momentum principles covers any defined system of 

mass particles without restriction as to the connections between the particles of the system. 

These extended relations all apply to the motion of a rigid body, which is merely a special case 

of a general system mass. 
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Linear momentum 

The linear momentum of a mass system is the vector sum of the linear momentum of all its 

particles 

i im L v (6.12) 

With ir  representing the position vector to im  then, i i v r  and Equation (6.12) can be 

rewritten as 

i im  L r (6.13) 

For a system whose total mass is constant, Equation (6.13) can be rewritten as 

  /i id m dt  L r (6.14) 

Substituting the principle of moments, i im m  r r , to locate the mass center, the momentum 

becomes 

  /d m dt m  L r r (6.15) 

where r  is the velocity v  of the mass center, Figure 6-2. Therefore, the linear momentum of 

any mass system, rigid or non-rigid, is 

mL v (6.16) 

Note that it was unnecessary to employ the kinematic condition for a rigid block, Figure 6-2, 

which is 

i i  v v ω ρ (6.17) 

The time derivative of L  is m mv a , where a  is the acceleration of the center of mass of the 

system, is the resultant external force acting on the system. Thus, we have 

  F L  (6.18) 

Integrating Equation (6.18) from time 1t  to time 2t  yields SPYROULL
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2

1

1 2

t

t

dt  L F L (6.19) 

In words, Equation (6.18) states that the resultant force equals the time rate of change of 

momentum and Equation (6.19) states that the initial linear momentum plus the linear impulse 

acting on the body equals the final linear momentum.  

Angular momentum 

Angular momentum is defined as the moment of linear momentum. The angular momentum 

about the mass center, G , of any prescribed system of mass equals with 

G i i im H ρ v (6.20) 

which is the merely the vector sum of the moments about G  of the linear momentum of all 

particles. With ir  representing the position vector to im  then, i i v r  and Equation (6.20) can 

be rewritten as 

G i i im  H ρ r (6.21) 

Referring to Figure 6-2, velocity i
r  can be rewritten as  i r ρ  and Equation (6.21) becomes 

 G i i i i i i i im m m          H ρ r ρ ρ r ρ ρ  (6.22)

The first term on the right side of this equation may be rewritten as i im r ρ , which is zero 

because 0i im ρ  by definition of the mass center. Thus, Equation (6.21) can be rewritten as 

G i i im  H ρ ρ (6.23) 

where iρ  is the velocity of im  with respect to G . 

The relative velocity equals with 

i i ρ ω ρ (6.24) SPYROULL
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Where the angular velocity of the body is ω k . The unit vector k  is directed into the 

expression for the sense of ω  shown. Since iρ , iρ , and ω  are at right angles to one another, 

the magnitude of iρ  is i   and the magnitude of i i im ρ ρ  is 2
i im  . Hence, Equation (6.23) 

can be rewritten as 

2
G i im I   H k k  (6.25) 

where 2
i iI m    is the mass moment of inertia of the body about its mass center. 

For planar motion, the angular-momentum vector is always normal to the plane of motion, 

vector notation is generally unnecessary, and the angular momentum about the mass center 

can be written as 

GH I  (6.26) 

The moment-angular-momentum relation, see Section 6.2.2, which is scalar notation for plane 

motion, equals with 

G GM H   (6.27) 

Integrating Equation (6.27) from time 1t  to time 2t  yields 

   
2

1

1 2

t

G G G

t

H M dt H   (6.28) 

In words, Equation (6.27) states that the sum of the moments about the mass center of all 

forces acting on the body equals the time rate of change of angular momentum about the mass 

center. Equation (6.28) states that the initial angular momentum about the mass center G  plus 

the external angular impulse about G  equals the final angular momentum about G . 
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Figure 6-2: Impulse-momentum principles on rigid block. 

6.3 Impact in Rocking Regime 

This section is based on previous work done by Roussis et al. (2008). During the rocking 

oscillation regime, the dynamic response of the system is strongly affected by the occurrence 

of impact(s) between the block and the horizontally-moving base. Based on the assumption of 

perfectly inelastic impact, the block can exhibit two possible response mechanisms following 

impact: (a) rocking about the impacting corner, when the block re-uplifts (no bouncing), and 

(b) pure translation in full-contact with the base, when the block’s rocking motion ceases after

impact. The formulation of impact is divided into three phases: pre-impact, impact, and post-

impact, as illustrated schematically in Figure 6-3 and Figure 6-6. In the following, a

superscript “-” refers to a pre-impact quantity and a superscript “+” to a post-impact quantity.

6.3.1 Pure rocking continues after impact  

Derivation for the case of impact during rocking about point O 

Consider the system at the instant when the block hits the moving base from rocking about O  

and re-uplifts pivoting about the impacting corner, 'O  (Figure 6-3a). As mentioned before, 

impact is accompanied by an instantaneous change in velocities, with the system 

displacements being unchanged. Therefore, the impact analysis is reduced to the computation 

of the initial conditions for the post-impact motion, u   and   , given the position and the pre-

impact velocities, u   and   . 
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Figure 6-3: Impact from rocking about O  followed by 

(a) re-uplift about 'O  and (b) termination of rocking.

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction requires that    

   :   x x x xx
F dt L L L F dt mX mX            (6.29) 

   :z z z zz
F dt L L L F dt mZ mZ            (6.30) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g rotX u x x        ,  g rotX u x x         and   rot gZ z z     ,   rot gZ z z      are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the rigid base; 

xL , xL , zL  and zL  are the pre- and post-impact horizontal and vertical linear momentum, 

respectively;  x
L  and  z

L  are the changes in horizontal and vertical linear momentum,

respectively.   

Substituting these expressions into Equations (6.29) and (6.30), we obtain  

x rot rotF dt mu mx mu mx           (6.31) 

0, u

, u





 

 


 

 

 

u

 

rotx

rotz

xF dt

zF dt
zF dt

xF dt

0, u u

, u

 



   

 

  
 

 

 

 

rotx

rotz

u

0

0

, u u
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 



   

 

  
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u

gz
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SPYROULL
A S. O

DYSSEOS



114 

 z rot rotF dt mz mz     (6.32)

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (6.33)

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.31) and (6.32), the pre- and post-impact horizontal and vertical components of 

the relative translational velocity of the mass center can be expressed in terms of the pre- and 

post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-4) can 

be expresses as  

/O C O
    v v ω r (6.34)

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Figure 6-4: Components of pre-impact translational velocity of the isolated block for the case 

of impact during rocking about point O. 

Expressions for these vector quantities are given below: 

O  gu x  

 

θ

α/C Or

gz
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   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.35)

   ˆ ˆ
O g gu x z     v i k (6.36)

ˆ  ω j (6.37)

   /
ˆ ˆsin cosC O r a r a     r i k (6.38)

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

the mass center relative to point O , /C Or , can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.39)

in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (6.35) through (6.39) into Equation (6.34), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                      v i k i k j i k  (6.40) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.41)

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.42)

rotz b   (6.43)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-5) can 

be expresses as 

´ / ´O C O
    v v ω r (6.44)SPYROULL
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where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Figure 6-5: Components of post-impact translational velocity of the isolated block for the case 

of impact during rocking about point O. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.45)

   ´
ˆ ˆ

O g gu x z     v i k (6.46)

ˆ  ω j (6.47)

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.48)

At impact the position vector of the mass center relative to point 'O , / ´C Or , becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.49)

On substituting Equations (6.45) through (6.49) into Equation (6.44), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                     v i k i k j i k  (6.50) 

which simplifies to 

 gu x  

 

/ 'C Or

gz
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   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.51)

from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.52)

rotz b    (6.53)

Substitution of Equations (6.42) through (6.53) into Equations (6.31) through (6.33) yields  

   xF dt mu m h mu m h           (6.54)

    zF dt m b m b       (6.55)

       z xb F dt h F dt I I        (6.56)

in which for rectangular block the centroid mass moment of inertia for the rectangular block is 

given by  

 2 2 2

3 3

m m
I r b h   (6.57)

Equations (6.54), (6.55) and (6.56) constitute a set of three equations in four unknowns, 

namely xF dt , zF dt ,   , u  .

Equivalently, the three Equations (6.54), (6.55) and (6.56) can be combined in one (by 

eliminating the two impulses) in two unknowns:  

   2 2 2 24 4 3 4 2 3b h hu h b hu            (6.58)

One additional equation is therefore required to uniquely determine the post-impact velocities 

   and u  . By considering the system in its entirety during the impact, it can be stated that 

the horizontal impulse on the system is zero, resulting in the conservation of the system’s 

linear momentum in the horizontal direction. That is,  SPYROULL
A S. O
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             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g rot b g g rot

L L L L L L L

m u x m u x x m u x m u x x

    

     

                
                        

 (6.59) 

in which  sys x
L


 and  sys x

L

 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L  is the change in horizontal linear momentum of the system.  

Substituting Equations (6.42) and (6.52) in Equation (6.59) gives 

b bm u mu mh m u mu mh               (6.60)

which upon rearranging terms becomes 

 1
b

b

u m m u mh mh
m m

         
   (6.61)

Substituting Equation (6.61) in (6.58) gives 

     2 2 2 23
4 4 4 2 3b

b

h
b h m m u mh mh h b hu

m m
                 
      (6.62) 

which yields the post-impact angular velocity of the block as a function of the pre-impact 

angular velocity as 

 
 

2 2 2 2

2 2 2 2

4 2 2

4 4 4

b b

b b

m h m b mh mb

m h m b mh mb
  

  


  
  (6.63)

Substituting the expression for    in Equation (6.61) gives the post-impact translational 

velocity as a function of the pre-impact translational and angular velocity as 

2

2 2 2 2

6

4 4 4
b

b b b

m mmhb
u u

m m m h m b mh mb
   

       
  (6.64)

Equations (6.63) and (6.64) can be written as SPYROULL
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   
   

2

2

4 2 1

4 4 1

  
  

  
    
 

  
    (6.65)

    12

6

4 4 1

h
u u u

   
  

       
  

    (6.66)

in which /h b   is the geometric aspect ratio and / bm m   is the mass ratio. 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

     x base base basex x x
F dt L L L

      (6.67)

in which  base x
L is the change in horizontal linear momentum of the base; 

   base b gx
L m u x

     and    base b gx
L m u x

    are the pre- and post-impact horizontal 

linear momentum of the base respectively. Equation (6.67) can be rewritten in the form 

x b bF dt m u m u     (6.68)

Substituting Equation (6.68) into Equation (6.54) gives 

b bm u m u mu mu mh mh               (6.69)

which yields 

 1
b

b

u m m u mh mh
m m

         
   (6.70)

Substituting Equation (6.70) in Equation (6.58) gives 

 
 

2 2 2 2

2 2 2 2

4 2 2

4 4 4

b b

b b

m h m b mh mb

m h m b mh mb
  

  


  
  (6.71)SPYROULL
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which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Derivation for the case of impact during rocking about point O΄ 

Consider the system at the instant when the block hits the moving base from rocking about 'O  

and re-uplifts pivoting about the impacting corner, O  (Figure 6-6a). As mentioned before, 

impact is accompanied by an instantaneous change in velocities, with the system 

displacements being unchanged. Therefore, the impact analysis is reduced to the computation 

of the initial conditions for the post-impact motion, u   and   , given the position and the pre-

impact velocities, u   and   . 

Figure 6-6: Impact from rocking about 'O  followed by (a) re-uplift about O  and (b) 

termination of rocking. 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.72)

   :   z z z zz
F dt L L L F dt mZ mZ            (6.73)

xF dt

zF dt
zF dt

xF dt
u

 

rotx

rotz 

rotx

rotz

u u

0, u

, u





 

 


 

 

 

0, u u

, u

 



   

 

  
 

 

 

0

0

, u u

, u

 



   

 

  

 
 

 

gz
gz gz
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in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at O );

 g rotX u x x        ,    g rotX u x x         and   rot gZ z z     ,   rot gZ z z      are the

absolute pre- and post-impact horizontal and vertical velocities of the mass center of the block, 

respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal and 

vertical velocities of the mass center of the block due to the rocking, relative to the rigid base; 

xL , xL , zL  and zL  are the pre- and post-impact horizontal and vertical linear momentum, 

respectively;  x
L  and  z

L  are the changes in horizontal and vertical linear momentum,

respectively.   

Substituting these expressions into Equations (6.72) and (6.73), we obtain  

x rot rotF dt mu mx mu mx           (6.74)

z rot rotF dt mz mz     (6.75)

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I                (6.76)

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.74) and (6.75), the horizontal and vertical components of relative translational 

velocity of the center-of-mass can be expressed in terms of the pre- and post-impact angular 

velocity of the block,    and    as follows.  

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-7) can 

be expressed as  

´ / ´O C O
    v v ω r (6.77)SPYROULL
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where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point 'O . 

Figure 6-7: Components of pre-impact translational velocity of the isolated block for the case 

of impact during rocking about point O΄. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.78)

   ´
ˆ ˆ

O g gu x z     v i k (6.79)

ˆ  ω j (6.80)

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.81)

At impact, the angular rotation of the block is zero  0   and the position vector of the mass 

center relative to point 'O  can be rewritten as 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.82)

On substituting Equations (6.78) through (6.82) into Equation (6.77), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                     v i k i k j i k  (6.83) 

 gu x  

 

/ 'C Or

gz
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which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.84)

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.85)

rotz b    (6.86)

For the post-impact state, the translational velocity vector of the mass center (Figure 6-8) can 

be expressed as  

/O C O
    v v ω r (6.87)

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Figure 6-8: Components of post-impact translational velocity of the isolated block for the case 

of impact during rocking about point O΄. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.88)

   ˆ ˆ
O g gu x z     v i k (6.89)

 gu x  

 

/C Or

gz
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ˆ ω j (6.90)

   /
ˆ ˆsin cosC O r a r a     r i k (6.91)

At impact  0   the position vector of the mass center relative to point O  becomes 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.92)

On substituting Equations (6.88) through (6.92) into Equation (6.87), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                      v i k i k j i k  (6.93) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.94)

from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.95)

rotz b   (6.96)

Substitution of Equations (6.85) through (6.96) into Equations (6.74) through (6.76) yields  

   xF dt mu m h mu m h           (6.97)

   zF dt m b m b       (6.98)

       z xb F dt h F dt I I         (6.99)

in which the centroid mass moment of inertia for the rectangular block is given by Equation  

(6.57). SPYROULL
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Equations (6.97), (6.98) and (6.99) constitute a set of three equations in four unknowns: 

xF dt , zF dt ,   , u  .

Equivalently, the three equations can be combined in one (by eliminating the two impulses) in 

two unknowns: 

   2 2 2 24 4 3 4 2 3b h hu h b hu            (6.100) 

One additional equation is therefore required to uniquely determine the post-impact velocities 

   and u  . By considering the system in its entirety during the impact, it can be stated that 

the horizontal impulse on the system is zero, resulting in the conservation of the system’s 

linear momentum in the horizontal direction. That is,  

             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g rot b g g rot

L L L L L L L

m u x m u x x m u x m u x x

    

     

                
                        

(6.101) 

in which  sys x
L


 and  sys x

L


 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L is the change in horizontal linear momentum of the system.   

Substituting Equations (6.85) and (6.95) in Equation (6.101) 

b bm u mu mh m u mu mh               (6.102) 

which yields 

 1
b

b

u m m u mh mh
m m

         
   (6.103) 

Substituting in (6.100) gives 

     2 2 2 23
4 4 4 2 3b

b

h
b h m m u mh mh h b hu

m m
                 
      (6.104) 

which upon rearranging terms becomes SPYROULL
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 
 

2 2 2 2

2 2 2 2

4 2 2

4 4 4

b b

b b

m h m b mh mb

m h m b mh mb
  

  


  
  (6.105) 

Substituting the expression for    in Equation (6.102) gives 

2

2 2 2 2

6

4 4 4b b

mhb
u u

m h m b mh mb
   

      
  (6.106) 

Equations (6.104) and (6.106) can be written as 

   
   

2

2

4 2 1

4 4 1

  
  

  
    
 

  
    (6.107) 

    12

6

4 4 1

h
u u u

   
  

       
  

    (6.108) 

in which /h b   is the geometric aspect ratio and / bm m   is the mass ratio. 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.109) 

in which  base x
L


 and  base x

L


 are the pre- and post-impact horizontal linear momentum of 

the base respectively;  base x
L is the change in horizontal linear momentum of the base. 

Substitute (6.109) into (6.97): 

b bm u m u mu mu mh mh               (6.110) 
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 1
b

b

u m m u mh mh
m m

         
   (6.111) 

Substituting in (6.100) gives 

 
 

2 2 2 2

2 2 2 2

4 2 2

4 4 4

b b

b b

m h m b mh mb

m h m b mh mb
  

  


  
  (6.112) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Observe that Equations (6.107) and (6.108) giving the post-impact velocities for impact from 

rocking about 'O  (realized when 0  ) are identical to the Equations (6.65) and (6.66) giving 

the post-impact velocities for impact from rocking about O  (realized when 0  ). 

The coefficient of “angular restitution”   in Equation (6.107), associated with the reduction of 

the post-impact angular velocity of the block, is defined by 

   
   

2

2

4 2 1

4 4 1

  


  
  


  

 , (6.113) 

and the coefficient of “linear restitution” 1  in Equation (6.108), associated with the reduction 

of the post-impact linear velocity of the rigid base, is defined by 

   1 2

6

4 4 1

h
  


  

 (6.114) 

Equation (6.113) reveals that the coefficient of angular restitution   depends both on the 

slenderness ratio   and the mass ratio  . An upper bound for the coefficient of angular 

restitution is obtained by taking the limit as   , yielding 

   
   

2

max 2

4 2 1
lim 1

4 4 1

  


  

  
 

  
 (6.115) 
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The value 1  , implying preservation of the magnitude of the angular velocity after impact, 

is associated with an energy-lossless impact. 

For the assumption of no-bouncing to be satisfied, the coefficient of angular restitution   

should have a positive value. In such a case, the angular velocity of the block will maintain 

sign upon impact, implying switching pole of rotation from one corner to the other. This 

requires that 

2( 1)

4








(6.116) 

The variation of the coefficient of restitution   with the slenderness ratio   is shown in 

Figure 6-9a for different values of the mass ratio  . The strong effect of   on the coefficient 

of angular restitution, and hence on the energy dissipated during impact, is evident from this 

figure. This effect is more pronounced in the lower  -range (stocky blocks). Similarly, the 

dependency of coefficient   on the mass ratio   is seen to be weak for very slender blocks, 

practically diminishing for 8  . 

  (a)   (b) 

Figure 6-9: Variation of (a) coefficient of angular restitution  , and (b) coefficient 1  with 

slenderness ratio  . 

The coefficient 1  in Equation (6.114), which is associated with the reduction of the post-
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on the absolute size of the block (in terms of its height). The normalized coefficient 1 1 h   

is plotted against the slenderness ratio   for different values of the mass ratio   in Figure 

6-9b. Observe that the value of the coefficient 1  decays rapidly with the slenderness ratio  .

As follows from the comparison of Figure 6-9a and Figure 6-9b, the influence of the mass

ratio   on the coefficient 1  is much greater than that on the coefficient  .

Equation (6.108) elucidates the character of base-block dynamic interaction realized upon 

impact. In effect, the response of the “structure” (rocking block) modifies the input motion of 

the “foundation” (translating base). This inherent response feature stands in contrast to the 

dynamic behavior of the Housner-type model, in which the foundation mass is infinite. This 

interaction ceases to exist when coefficient 1  becomes zero, which by virtue of Equation 

(6.114) occurs when    or 0  . That is to say, the horizontal velocity of base will 

remain practically unchanged upon impact either in the case of extremely slender block 

(independently of the block size and value of the mass ratio) or in the case of extremely small 

block mass relative to the base mass (independently of the block size and slenderness). This 

observation is demonstrated in Figure 6-10 using different mass ratios, 0.003  , 0.5  , 

2   and 300  . As can be seen, the horizontal velocity of the base remains practically 

unchanged upon impact, / 0    (dot vertical lines), as the mass ratio,  , is getting smaller. 
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Figure 6-10: Influence of mass ratio on base-block dynamic interaction. 
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6.3.2 Pure system translation occurs after impact 

When rocking of the block on top of the moving base ceases, the system will attain a pure-

translation regime (Figure 6-3b and Figure 6-6b). In this case, the impact analysis is reduced 

to the computation of the post-impact translational velocity of the system, u  , given the 

position and the pre-impact velocities, u   and    . 

Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O  

(Figure 6-3b).  

With regard to the block, the principle of linear impulse in the x  direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.117) 

in which xF dt  is the horizontal impulse (assumed to act at 'O );  g rotX u x x         and 

   g rotX u x x         are the absolute pre- and post-impact horizontal velocities of the mass 

center of the block, respectively; rotx  and rotx  are the relative pre- and post-impact horizontal 

velocities of the mass center of the block due to the rocking, relative to the rigid base; xL  and 

xL  are the pre- and post-impact horizontal linear momentum, respectively;  x
L  is the

change in horizontal linear momentum. 

Substituting this expression into Equation (6.117), we obtain  

x rot rotF dt mu mx mu mx           (6.118) 

In Equation (6.118), the pre- and post-impact horizontal components of the relative 

translational velocity of the mass center can be expressed in terms of the pre-impact angular 

velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-4) can 

be expressed as  

/O C O
    v v ω r (6.119) SPYROULL
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where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.120) 

   ˆ ˆ
O g gu x z     v i k (6.121) 

ˆ  ω j (6.122) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.123) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

the mass center relative to point O  can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.124) 

On substituting Equations (6.120) through (6.124) into Equation (6.119), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                      v i k i k j i k  (6.125) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.126) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.127) 

rotz b   (6.128) SPYROULL
A S. O
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For the post-impact state, the translational velocity vector of the mass center can be expressed 

as  

´ / ´O C O
    v v ω r (6.129) 

where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.130) 

   ´
ˆ ˆ

O g gu x z     v i k (6.131) 

ˆ ˆ0  ω j j  (6.132) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.133) 

At impact 0  , the position vector of the mass center relative to point 'O  becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.134) 

On substituting Equations (6.130) through (6.134) into Equation (6.129), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot rot g g gu x x z z u x z b h                    v i k i k j i k (6.135) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (6.136) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.137) SPYROULL
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0rotz    (6.138) 

Substitution of Equations (6.127) through (6.138) into Equation (6.118) yields 

 xF dt mu mu m h       (6.139) 

which constitutes one equation in two unknowns: xF dt , u  .

One additional equation is therefore required to uniquely determine the post-impact velocity 

u  . By considering the system in its entirety during the impact, it can be stated that the 

horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,      

             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g rot b g g rot

L L L L L L L

m u x m u x x m u x m u x x

    

     

                
                        

(6.140) 

Substituting Equations (6.127) and (6.137) in Equation (6.140) gives  

b bm u mu m u mu mh             (6.141) 

which upon rearranging terms becomes 

 1
b

b

u m m u mh
m m

      
  (6.142) 

Equation (6.141) can be written as 

  21

h
u u u

   


       


    (6.143) 

in which / bm m   is the mass ratio. 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that SPYROULL
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         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.144) 

Substitute (6.144) into (6.139): 

 1
b

b

u m m u mh
m m

      
  (6.145) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Derivation for the case of impact during rocking about point O΄  

Consider the system at the instant when the block hits the moving base from rocking about 'O  

(Figure 6-6b).  

With regard to the block, the principle of linear impulse in the x  direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.146) 

in which xF dt  is the horizontal impulse (assumed to act at O );  g rotX u x x         and 

   g rotX u x x         are the absolute pre- and post-impact horizontal velocities of the mass 

center of the block, respectively; rotx  and rotx  are the relative pre- and post-impact horizontal 

velocities of the mass center of the block due to the rocking, relative to the rigid base; xL  and 

xL  are the pre- and post-impact horizontal linear momentum, respectively;  x
L  is the

change in horizontal linear momentum. 

Substituting this expression into Equation(6.146), we obtain  

x rot rotF dt mu mx mu mx           (6.147) 

In Equation (6.147), the horizontal component of relative translational velocity of the center-

of-mass can be expressed in terms of the pre-impact angular velocity of the block,    as 

follows. SPYROULL
A S. O

DYSSEOS



136 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-7) can 

be expressed as 

´ / ´O C O
    v v ω r (6.148) 

where v  is pre-impact translational velocity vector of center-of-mass, ´O
v  is pre-impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.149) 

   ´
ˆ ˆ

O g gu x z     v i k (6.150) 

ˆ  ω j (6.151) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.152) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

center-of-mass relative to point 'O  can be rewritten as 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.153) 

On substituting Equations (6.149) through (6.153) into Equation (6.148), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                     v i k i k j i k   (6.154) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i   (6.155) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as SPYROULL
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rotx h   (6.156) 

rotz b    (6.157) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as  

/O C O
    v v ω r (6.158) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.159) 

   ˆ ˆ
O g gu x z     v i k (6.160) 

ˆ ˆ0  ω j j  (6.161) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.162) 

At impact  0   the position vector of the mass center relative to point O  becomes 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.163) 

On substituting Equations (6.159) through (6.163) into Equation (6.158), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot rot g g gu x x z z u x z b h                     v i k i k j i k (6.164) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (6.165) SPYROULL
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from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.166) 

0rotz   (6.167) 

Substitution of Equations (6.156) through (6.167) into Equation (6.147) yields 

 xF dt mu mu m h       (6.168) 

which constitutes one equation in two unknowns: xF dt , u  .

One additional equation is therefore required to uniquely determine the post-impact velocity 

u  . By considering the system in its entirety during the impact, it can be stated that the 

horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,  

             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g rot b g g rot

L L L L L L L

m u x m u x x m u x m u x x

    

     

                
                        

(6.169) 

Substitution of Equations (6.156) and (6.166) in Equation (6.169) gives 

b bm u mu m u mu mh             (6.170) 

which yields 

 1
b

b

u m m u mh
m m

      
  (6.171) 

Equation (6.170) can be written as 

21

h
u u u

   


       

    (6.172) 

in which / bm m   is the mass ratio. SPYROULL
A S. O

DYSSEOS



139 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.173) 

Substituting Equation (6.173) into Equation (6.168) gives 

 1
b

b

u m m u mh mh
m m

         
   (6.174) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

As it can be seen the Equation (6.174) giving the post-impact horizontal velocity for impact 

from rocking about 'O  (realized when 0  ) is identical to the Equation (6.142) giving the 

post-impact horizontal velocity for impact from rocking about O  (realized when 0  ). 

6.4 Impact in Slide-Rocking Regime 

During slide-rocking regime, the response of the system can be drastically affected by the 

occurrence of impact(s) between the block and the horizontally-moving base. Under the 

assumption of perfectly inelastic impact, there are four possible response mechanisms 

following impact: (a) system translation when rocking and sliding motions cease after impact, 

Figure 6-11, (b) rocking about the impacting corner when the block re-uplifts (no bouncing), 

sliding motion ceases after impact, Figure 6-12, (c) sliding only when the rocking ceases after 

impact, Figure 6-13, or (d) sliding and rocking about the impacting corner when the block re-

uplifts (no bouncing), Figure 6-14. In the following, a superscript “-” refers to a pre-impact 

quantity and a superscript “+” to a post-impact quantity. 
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Figure 6-11: Impact from slide-rocking about O followed by pure system translation. 

Figure 6-12: Impact from slide-rocking about O followed by pure rocking about O' (sliding 

ceases). 
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Figure 6-13: Impact from slide-rocking about O followed by pure sliding (rocking ceases). 

Figure 6-14: Impact from slide-rocking about O followed by slide-rocking about O'. 
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Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O . 

With regard to the block, the principle of linear impulse in the x  direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.175) 

in which xF dt  is the horizontal impulse (assumed to act at 'O );  g rot sX u x x x          

and   g rot sX u x x x            are the absolute pre- and post-impact horizontal velocities of 

the mass center of the block, respectively; rotx  and rotx  are the relative pre- and post-impact 

horizontal velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL  and xL  are the pre- and post-

impact horizontal linear momentum, respectively;  x
L  is the change in horizontal linear

momentum. 

Substituting this expression into Equation (6.175) we obtain 

x rot s rot sF dt mu mx mx mu mx mx                 (6.176) 

In Equation (6.176), the pre- and post-impact horizontal components of the relative 

translational velocity of the mass center can be expressed in terms of the pre-impact angular 

velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can 

be expressed as 

/O C O
    v v ω r (6.177) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . SPYROULL
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Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.178) 

   ˆ ˆ
O g s gu x x z        v i k (6.179) 

ˆ  ω j (6.180) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.181) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

center-of-mass relative to point O  can be written as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.182) 

Figure 6-15: Components of pre-impact translational velocities of the isolated block for the 

case of impact during slide-rocking about point O. 

On substituting Equations (6.178) through (6.182) into Equation (6.177), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.183) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.184) 

 g su x x    

 

/C Or

gz
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from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.185) 

rotz b   (6.186) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as  

´ / ´O C O
    v v ω r (6.187) 

where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.188) 

   ´
ˆ ˆ

O g gu x z     v i k (6.189) 

ˆ ˆ0  ω j j  (6.190) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.191) 

At impact 0  , the position vector of the mass center relative to point 'O  becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.192) 

On substituting Equations (6.188) through (6.192) into Equation (6.187), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot rot g g gu x x z z u x z b h                    v i k i k j i k (6.193) 

which reduces to SPYROULL
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ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (6.194) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.195) 

0rotz   (6.196) 

Substitution of Equations (6.185), (6.186), (6.195), (6.196) into Equation (6.176) yields  

 x sF dt mu mu m h mx          (6.197) 

which constitutes one equation in two unknowns: xF dt , u  .

One additional equation is therefore required to uniquely determine the post-impact velocity 

u  . By considering the system in its entirety during the impact, it can be stated that the 

horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,      

             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g s rot b g g s rot

L L L L L L L

m u x m u x x x m u x m u x x x x

    

        

                
                              

(6.198) 

Substituting Equations (6.185), (6.186), (6.195), (6.196) in Equation (6.198) gives 

b b sm u mu m u mu mh mx              (6.199) 

which upon rearranging terms becomes 

 1
b s

b

u m m u mh mx
m m

        
    (6.200) 

Equation (6.200) can be written as 

   
3

31 1 s s

h
u u x u x

h

   
 

           
 

       (6.201) SPYROULL
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in which / bm m   is the mass ratio. 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.202) 

Substitute (6.197) into (6.202): 

 1
b s

b

u m m u mh mx
m m

        
    (6.203) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Derivation for the case of impact during rocking about point O'  

Consider the system at the instant when the block hits the moving base from rocking about 

'O .  

With regard to the block, the principle of linear impulse in the x  direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.204) 

in which xF dt  is the horizontal impulse (assumed to act at O );  g rot sX u x x x          

and   g rot sX u x x x            are the absolute pre- and post-impact horizontal velocities of 

the mass center of the block, respectively; rotx  and rotx  are the relative pre- and post-impact 

horizontal velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL  and xL  are the pre- and post-

impact horizontal linear momentum, respectively;  x
L  is the change in horizontal linear

momentum. 
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Substituting this expression into Equation (6.204) we obtain 

x rot s rot sF dt mu mx mx mu mx mx                 (6.205) 

In Equation (6.176), the pre- and post-impact horizontal components of the relative 

translational velocity of the mass center can be expressed in terms of the pre-impact angular 

velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can 

be expressed as 

' / 'O C O
    v v ω r (6.206) 

where v  is pre-impact translational velocity vector of center-of-mass, ´O
v  is pre -impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.207) 

   '
ˆ ˆ

O g s gu x x z        v i k (6.208) 

ˆ  ω j (6.209) 

   / '
ˆ ˆsin cosC O r a r a     r i k (6.210) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

the mass center relative to point 'O  can be rewritten as 

   / '
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.211) 
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Figure 6-16: Components of pre-impact translational velocity of the isolated block for the case 

of impact during slide-rocking about point O'. 

On substituting Equations (6.207) through (6.211) into Equation (6.206), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.212) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.213) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.214) 

rotz b   (6.215) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as 

/O C O
    v v ω r (6.216) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

 g su x x    

 

/ 'C Or

gz
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   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.217) 

   ˆ ˆ
O g gu x z     v i k (6.218) 

ˆ ˆ0  ω j j  (6.219) 

   /
ˆ ˆsin cosC O r a r a    r i k (6.220) 

At impact  0  , the position vector of the mass center relative to point O  becomes 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.221) 

On substituting Equations (6.217) through (6.221) into Equation (6.216), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot rot g g gu x x z z u x z b h                    v i k i k j i k (6.222) 

which reduces to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i  (6.223) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.224) 

0rotz   (6.225) 

Substitution of Equations (6.185), (6.186), (6.195), (6.196) into Equation (6.176) yields  

 x sF dt mu mu m h mx          (6.226) 

which constitutes one equation in two unknowns: xF dt , u  .

One additional equation is therefore required to uniquely determine the post-impact velocity 

u  . By considering the system in its entirety during the impact, it can be stated that the 
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horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,      

             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g s rot b g g s rot

L L L L L L L

m u x m u x x x m u x m u x x x x

    

        

                
                              

 (6.227) 

Substituting Equations (6.185), (6.186), (6.195), (6.196) in Equation (6.198) gives 

b b sm u mu m u mu mh mx              (6.228) 

which upon rearranging terms becomes 

 1
b s

b

u m m u mh mx
m m

        
    (6.229) 

Equation (6.200) can be written as 

   
3

31 1 s s

h
u u x u x

h

   
 

           
 

       (6.230) 

in which / bm m   is the mass ratio. 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone,  which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.231) 

Substitute (6.226) into (6.231): 

 1
b s

b

u m m u mh mx
m m

        
    (6.232) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  
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As it can be seen the Equation (6.232) giving the post-impact horizontal velocity for impact 

from slide-rocking about 'O  (realized when 0  ) is identical to the Equation (6.203) giving 

the post-impact horizontal velocity for impact from slide-rocking about O  (realized when 

0  ). 

6.4.2 Pure rocking occurs after impact  

Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O  

and re-uplifts pivoting about the impacting corner, 'O . As mentioned before, impact is 

accompanied by an instantaneous change in velocities, with the system displacements being 

unchanged. Therefore, the impact analysis is reduced to the computation of the initial 

conditions for the post-impact motion, u  , and   , given the position and the pre-impact 

velocities, u   , sx  , and   . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.233) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.234) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   SPYROULL
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Substituting these expressions into Equations (6.233) and (6.234) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.235) 

 z rot rotF dt mz mz     (6.236) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (6.237) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.235) and (6.236), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can 

be expressed as 

/O C O
    v v ω r (6.238) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.239) 

   ˆ ˆ
O g s gu x x z        v i k (6.240) 

ˆ  ω j (6.241) SPYROULL
A S. O
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   /
ˆ ˆsin cosC O r a r a     r i k (6.242) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

center-of-mass relative to point O , /C Or , can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.243) 

in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (6.239) through (6.243) into Equation (6.238), the pre-impact 

translational velocity becomes  

            ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.244) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.245) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.246) 

rotz b   (6.247) 

For the post-impact state, the translational velocity vector of the mass center (Figure 6-17) can 

be expressed as 

´ / ´O C O
    v v ω r (6.248) 

where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . SPYROULL
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Figure 6-17: Components of post-impact translational velocity of the isolated block for the 

case of impact during slide-rocking about point O. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.249) 

   ´
ˆ ˆ

O g gu x z     v i k (6.250) 

ˆ  ω j  (6.251) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.252) 

At impact  0   the position vector of the mass center relative to point 'O , / ´C Or , becomes

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.253) 

On substituting Equations (6.249) through (6.253) into Equation (6.248), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                     v i k i k j i k  (6.254) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.255) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

 

/ 'C Or

gz
 gu x  
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rotx h   (6.256) 

rotz b    (6.257) 

Substitution of Equations (6.246) through (6.257) into Equations (6.235) through (6.237) 

yields  

   x sF dt mu m h mu mx m h              (6.258) 

   zF dt m b m b       (6.259) 

       z xb F dt h F dt I I        (6.260) 

in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (6.261) 

Equations (6.258), (6.259) and (6.260) constitute a set of three equations in four unknowns, 

namely xF dt , zF dt ,   , u  .

Equivalently, the three Equations (6.258), (6.259) and (6.260) can be combined in one (by 

eliminating the two impulses) in two unknowns:  

   2 2 2 24 4 3 4 2 3 3 sb h hu h b hu hx               (6.262) 

One additional equation is therefore required to uniquely determine the post-impact velocities 

  , u  . By considering the system in its entirety during the impact, it can be stated that the 

horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,  

             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g rot b g g s rot

L L L L L L L

m u x m u x x m u x m u x x x

    

      

                
                          
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in which  sys x
L


 and  sys x

L


 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L is the change in horizontal linear momentum of the system.  

Substituting Equations (6.246) and (6.256) in Equation (6.263) gives 

b b sm u mu mh m u mu mx mh                  (6.264) 

which upon rearranging terms becomes 

 1
b s

b

u m m u mx mh mh
m m

           
    (6.265) 

Substituting Equation (6.265) in (6.262) gives 

   

 

2 2

2 2

3
4 4

4 2 3 3

b s
b

s

h
b h m m u mx mh mh

m m

h b hu hx

  



    

  

       

   

   

  
(6.266) 

which yields 

 
 
2 2 2 2

2 2 2 2

4 2 2 3

4 4 4

b b b s

b b

m h m b mh mb hm x

m h m b mh mb




 


   


  

  (6.267) 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.268) 

in which  base x
L


 and  base x

L


  are the pre- and post-impact horizontal linear momentum of 

the base respectively;  base x
L is the change in horizontal linear momentum of the base. 

Substituting Equation (6.268) into Equation (6.258) gives SPYROULL
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   b b sm u m u mu m h mu mx m h                  (6.269) 

which yields 

 1
b s

b

u m m u mx mh mh
m m

           
    (6.270) 

Substituting Equation (6.270) in Equation (6.262) gives 

 
 
2 2 2 2

2 2 2 2

4 2 2 3

4 4 4

b b b s

b b

m h m b mh mb hm x

m h m b mh mb




 


   


  

  (6.271) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Derivation for the case of impact during rocking about point O'  

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.272) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.273) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   SPYROULL
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Substituting these expressions into Equations (6.272) and (6.273) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.274) 

 z rot rotF dt mz mz     (6.275) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I               (6.276) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.235) and (6.236), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can 

be expressed as 

' / 'O C O
    v v ω r (6.277) 

where v  is pre-impact translational velocity vector of center-of-mass, ´O
v  is pre -impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.278) 

   '
ˆ ˆ

O g s gu x x z        v i k (6.279) 

ˆ  ω j (6.280) SPYROULL
A S. O
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   / '
ˆ ˆsin cosC O r a r a     r i k (6.281) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

the mass center relative to point 'O , / 'C Or , can be rewritten as 

   / '
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.282) 

in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (6.278) through (6.282) into Equation (6.277), the pre-impact 

translational velocity becomes  

            ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.283) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.284) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.285) 

rotz b   (6.286) 

For the post-impact state, the translational velocity vector of the mass center (Figure 6-18) can 

be expressed as 

/O C O
    v v ω r (6.287) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . SPYROULL
A S. O
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Figure 6-18: Components of post-impact translational velocity of the isolated block for the 

case of impact during slide-rocking about point O'. 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot rot gX Z u x x z z                 v i k i k (6.288) 

   ˆ ˆ
O g gu x z     v i k (6.289) 

ˆ  ω j  (6.290) 

   /
ˆ ˆsin cosC O r a r a    r i k (6.291) 

At impact  0   the position vector of the mass center relative to point O , /C Or , becomes

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.292) 

On substituting Equations (6.288) through (6.292) into Equation (6.287), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot rot g g gu x x z z u x z b h                     v i k i k j i k  (6.293) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.294) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

 gu x  

 

/C Or

gz
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rotx h   (6.295) 

rotz b    (6.296) 

Substitution of Equations (6.246) through (6.257) into Equations (6.235) through (6.237) 

yields  

   x sF dt mu m h mu mx m h              (6.297) 

   zF dt m b m b       (6.298) 

       z xb F dt h F dt I I        (6.299) 

in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (6.300) 

Equations (6.258), (6.259) and (6.260) constitute a set of three equations in four unknowns, 

namely xF dt , zF dt ,   , u  .

Equivalently, the three Equations (6.258), (6.259) and (6.260) can be combined in one (by 

eliminating the two impulses) in two unknowns:  

   2 2 2 24 4 3 4 2 3 3 sb h hu h b hu hx               (6.301) 

One additional equation is therefore required to uniquely determine the post-impact velocities 

   , u  . By considering the system in its entirety during the impact, it can be stated that the 

horizontal impulse on the system is zero, resulting in the conservation of the system’s linear 

momentum in the horizontal direction. That is,  

             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g rot b g g s rot

L L L L L L L

m u x m u x x m u x m u x x x

    

      

                
                          

(6.302) SPYROULL
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in which  sys x
L


 and  sys x

L


 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L is the change in horizontal linear momentum of the system.  

Substituting Equations (6.246) and (6.256) in Equation (6.263) gives 

b b sm u mu mh m u mu mx mh                  (6.303) 

which upon rearranging terms becomes 

 1
b s

b

u m m u mx mh mh
m m

           
    (6.304) 

Substituting Equation (6.265) in (6.262) gives 

   

 

2 2

2 2

3
4 4

4 2 3 3

b s
b

s

h
b h m m u mx mh mh

m m

h b hu hx

  



    

  

       

   

   

  
(6.305) 

which yields 

 
 
2 2 2 2

2 2 2 2

4 2 2 3

4 4 4

b b b s

b b

m h m b mh mb hm x

m h m b mh mb




 


   


  

  (6.306) 

Alternatively, instead of considering the conservation of the linear momentum (in the 

horizontal direction) of the entire system, one can apply the principle of linear impulse and 

momentum (in the horizontal direction) of the base alone, which states that 

         :   -x base base base x b g b gx x x

x b b

F dt L L L F dt m u x m u x

F dt m u m u

   

 

        

  

 


   

 
(6.307) 

in which  base x
L


 and  base x

L


  are the pre- and post-impact horizontal linear momentum of 

the base respectively;  base x
L is the change in horizontal linear momentum of the base. 

Substituting Equation (6.268) into Equation (6.258) gives SPYROULL
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   b b sm u m u mu m h mu mx m h                  (6.308) 

which yields 

 1
b s

b

u m m u mx mh mh
m m

           
    (6.309) 

Substituting Equation (6.270) in Equation (6.262) gives 

 
 
2 2 2 2

2 2 2 2

4 2 2 3

4 4 4

b b b s

b b

m h m b mh mb hm x

m h m b mh mb




 


   


  

  (6.310) 

which is identical to the result derived by considering the conservation of the system’s linear 

momentum in the horizontal direction.  

Substituting the expression for    in Equation (6.309), Equations (6.309) and (6.311) can be 

written as 

 
       

2

4 12 2

4 6

4 4 1 4 4 1s s

h
u u x u x

      
     

      


     
     

       (6.312) 

   
   
   

2

522

4 2 13

4 4 14 4 1
s sx x

b

     
    

      
   

      
     (6.313) 

where  /h b   and  / bm m  . 

As it can be seen the Equations (6.270) and (6.271) giving the post-impact horizontal velocity 

for impact from slide-rocking about 'O  (realized when 0  ) is identical to the Equations 

(6.309) and (6.310) giving the post-impact horizontal velocity for impact from slide-rocking 

about O  (realized when 0  ). 

The coefficients of “linear restitution” 1  and 4  in Equation (6.312), associated with the 

reduction of the post-impact linear velocity of the rigid base, is defined by 

   1 2

6

4 4 1

h
  


  

 (6.314) SPYROULL
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 
   

2

4 2

4

4 4 1

 


  




  
 (6.315) 

and the coefficients of “angular restitution”   and “linear restitution” 5  in Equation (6.313), 

associated with the reduction of the post-impact angular velocity of the block, is defined by 

   
   

2

2

4 2 1

4 4 1

  


  
  


  

 (6.316) 

   5 2

3

4 4 1b


  


    

 (6.317) 

Equation (6.316) reveals that the coefficient of angular restitution   depends both on the 

slenderness ratio   and the mass ratio  . The coefficient 1  in Equation (6.314), which is 

associated with the reduction of the post-impact linear velocity of the rigid base, depends not 

only on the parameters   and  , but also on the absolute size of the block (in terms of its 

height). The variation of coefficient of angular restitution  , and coefficient 1  with 

slenderness ratio   is shown in Figure 6-9. 

The coefficient 4  in Equation (6.315), which is associated with the reduction of the post-

impact linear velocity of the rigid base, depends on the parameters   and  . The variation of 

the coefficient 4  is plotted against the slenderness ratio   for different values of the mass 

ratio  , Figure 6-19a. Observe that value of the coefficient 4  reduces faster for lower values 

of slenderness ratio   (stocky blocks) in comparison with larger values of   which the 

coefficient 4  is almost steady. In contrast, the coefficient 4  is seen to be dependent on the 

mass ratio  , regardless of slenderness ratio  . As follows from the comparison of Figure 

6-9 and Figure 6-19, the post-impact linear velocity of the rigid base is strongly dependent on

the mass ratio   and on small values of slenderness ratio   (stocky blocks).

The coefficient 5  in Equation (6.317), which is associated with the reduction of the post-

impact angular velocity of the rigid base, depends not only on the parameters   and  , but 

also on the absolute size of the block (in terms of its width). The normalized coefficient SPYROULL
A S. O
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5 5b   is plotted against the slenderness ratio   for different values of the mass ratio   in 

Figure 6-19b. Observe that the value of the coefficient 5  increases rapidly with the 

slenderness ratio  , until 1   and then it decreases more slowly as the slenderness ratio is 

getting larger. Similarly, the dependency of coefficient   on the mass ratio   is seen to be 

weak for very slender blocks, practically diminishing for 8  . As follows from the 

comparison of Figure 6-9 and Figure 6-19, the post-impact angular velocity of the rigid base is 

strongly dependent on the slenderness ratio   and the influence of the mass ratio   on the 

coefficients 1  and 4  is much greater than that on the coefficients   and 5 5b  . 

    (a)                (b) 

Figure 6-19: Variation of (a) coefficient 4 , and (b) coefficient 5  with slenderness ratio  . 

6.4.3 Pure Sliding occurs after impact  

When rocking of the block on top of the moving base ceases, the system will attain a sliding 

regime. In this case, the impact analysis is reduced to the computation of the post-impact 

translational velocity of the system, u  , sx  , given the position and the pre-impact velocities, 

u  , sx  , and   . 

Derivation for the case of impact during rocking about point O  

Consider the system at the instant when the block hits the moving base from rocking about O . 
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With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.318) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.319) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (6.318) and (6.319) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.320) 

 z rot rotF dt mz mz     (6.321) 

In Equations (6.320) and (6.321), the pre- and post-impact horizontal components of the 

relative translational velocity of the mass center can be expressed in terms of the pre-impact 

angular velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can 

be expressed as  

/O C O
    v v ω r (6.322) SPYROULL
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where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.323) 

   ˆ ˆ
O g s gu x x z        v i k (6.324) 

ˆ  ω j (6.325) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.326) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

center-of-mass relative to point O  can be written as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.327) 

On substituting Equations (6.323) through (6.327) into Equation (6.322), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.328) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.329) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.330) 

rotz b   (6.331) SPYROULL
A S. O
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For the post-impact state, the translational velocity vector of the mass center can be expressed 

as 

´ / ´O C O
    v v ω r (6.332) 

where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.333) 

   ´
ˆ ˆ

O g s gu x x z        v i k (6.334) 

ˆ ˆ0  ω j j  (6.335) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.336) 

At impact  0  , the position vector of the mass center relative to point 'O  becomes 

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.337) 

On substituting Equations (6.333) through (6.337) into Equation (6.332), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot s rot g g s gu x x x z z u x x z b h                          v i k i k j i k  (6.338) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i (6.339) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.340) 
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0rotz   (6.341) 

Substitution of Equations (6.330) through (6.341) into Equations (6.320) and (6.321) yields  

 x s sF dt mu mx mu m h mx             (6.342) 

zF dt mb    (6.343) 

which constitutes one equation in three unknowns: xF dt , u  , sx  .

Two additional equation is therefore required to uniquely determine the post-impact velocity 

u   and sx  . 

By considering the system in its entirety during the impact, it can be stated that the horizontal 

impulse on the system is zero, resulting in the conservation of the system’s linear momentum 

in the horizontal direction. That is,  

             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g s b g g s rot

L L L L L L L

m u x m u x x m u x m u x x x x

    

       

                
                            

(6.344) 

Substituting Equations (6.330) and (6.331) in Equation (6.344) gives  

b s b sm u mu mx m u mu mh mx                  (6.345) 

which upon rearranging terms becomes 

 1
b s s

b

u m m u mh mx mx
m m

          
    (6.346) 

With regard to the block, the principle of frictional impulse in the x  and z  direction states that 

 sgnx s k zF dt x F dt   (6.347) 

Substituting Equations (6.342) and (6.343) in Equation (6.347) gives  

   sgns s s kmu mx mu m h mx x mb                     (6.348) SPYROULL
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Assume that  sgn 0sx  , Equation (6.348) can be written as 

s k sx b u h x u                  (6.349) 

Substituting Equations (6.349) in Equation (6.346) gives  

   1
b s k s

b

u m m u mh mx m b u h x u
m m

                       
         (6.350) 

Which upon rearranging terms become 

k
b

m
u u b

m
        (6.351) 

Substituting Equation (6.351) in Equation (6.349) gives 

1s k s
b

m
x b h x

m
      

      
 

   (6.352) 

Once Equation (6.352) is solved and sx   is calculated positive, then the assumption and 

Equation (6.352) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (6.351) can be rewritten as 

s k sx b u h x u                 (6.353) 

Substituting Equations (6.353) in Equation (6.346) gives  

   1
b s k s

b

u m m u mh mx m b u h x u
m m

                      
         (6.354) 

Which upon rearranging terms become 

k
b

m
u u b

m
        (6.355) 

Substituting Equation (6.355) in Equation (6.353) gives SPYROULL
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1s k s
b

m
x b h x

m
      

     
 

   (6.356) 

The absolute value in Equations (6.351), (6.352), (6.355) and (6.356) can be dropped since the 

impulse in the z direction must be positive. 

Equations (6.351), (6.352), (6.355) and (6.356) can be rewritten in the form 

   sgn s k
b

m
u u x b

m
          (6.357) 

   sgn 1s s k s
b

m
x x b h x

m
       

      
 

     (6.358) 

Derivation for the case of impact during rocking about point O'  

Consider the system at the instant when the block hits the moving base from rocking about O . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.359) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.360) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   
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Substituting these expressions into Equations (6.359) and (6.360) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.361) 

 z rot rotF dt mz mz     (6.362) 

In Equations (6.361) and (6.362), the pre- and post-impact horizontal components of the 

relative translational velocity of the mass center can be expressed in terms of the pre-impact 

angular velocity of the block,    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can 

be expressed as  

' / 'O C O
    v v ω r (6.363) 

where v  is pre-impact translational velocity vector of center-of-mass, ´O
v  is pre -impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.364) 

   '
ˆ ˆ

O g s gu x x z        v i k (6.365) 

ˆ  ω j (6.366) 

   / '
ˆ ˆsin cosC O r a r a    r i k (6.367) 

At impact, the angular velocity of the block becomes zero  0   and the position vector of 

the mass center relative to point 'O  can be rewritten as 

   / '
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.368) SPYROULL
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On substituting Equations (6.364) through (6.368) into Equation (6.363), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gu x x x z z u x x z b h                           v i k i k j i k  (6.369) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.370) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.371) 

rotz b    (6.372) 

For the post-impact state, the translational velocity vector of the mass center can be expressed 

as  

/O C O
    v v ω r (6.373) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g rot s rot gX Z u x x x z z                    v i k i k (6.374) 

   ˆ ˆ
O g s gu x x z        v i k (6.375) 

ˆ ˆ0  ω j j  (6.376) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.377) 

At impact  0  , the position vector of the mass center relative to point O  becomes 
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   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.378) 

On substituting Equations (6.374) through (6.378) into Equation (6.373), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ0g rot s rot g g s gu x x x z z u x x z b h                           v i k i k j i k  (6.379) 

which simplifies to 

ˆ ˆ ˆ ˆ0 0rot rotx z    i k k i (6.380) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

0rotx   (6.381) 

0rotz   (6.382) 

Substitution of Equations (6.371), (6.372), (6.381) and (6.382) into Equations (6.361) and 

(6.362) yields  

 x s sF dt mu mx mu m h mx             (6.383) 

zF dt mb   (6.384) 

which constitutes one equation in three unknowns: xF dt , u  , sx  .

Two additional equation is therefore required to uniquely determine the post-impact velocity 

u   and sx  . 

By considering the system in its entirety during the impact, it can be stated that the horizontal 

impulse on the system is zero, resulting in the conservation of the system’s linear momentum 

in the horizontal direction. That is,  
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             
       

0 :   0sys sys sys base obj base objx xx x x x x

b g g s b g g s rot

L L L L L L L

m u x m u x x m u x m u x x x x

    

       

                
                            

(6.385) 

Substituting Equations (6.371) and (6.372) in Equation (6.385) gives  

b s b sm u mu mx m u mu mh mx                  (6.386) 

which upon rearranging terms becomes 

 1
b s s

b

u m m u mh mx mx
m m

          
    (6.387) 

With regard to the block, the principle of frictional impulse in the x  and z  direction states that 

 sgnx s k zF dt x F dt   (6.388) 

Substituting Equations (6.383) and (6.384) in Equation (6.388) gives  

   sgns s s kmu mx mu m h mx x mb                    (6.389) 

Assume that  sgn 0sx  , Equation (6.389) can be written as 

s k sx b u h x u                 (6.390) 

Substituting Equations (6.390) in Equation (6.387) gives  

   1
b s k s

b

u m m u mh mx m b u h x u
m m

                      
         (6.391) 

Which upon rearranging terms become 

k
b

m
u u b

m
       (6.392) 

Substituting Equation (6.392) in Equation (6.390) gives SPYROULL
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1s k s
b

m
x b h x

m
      

     
 

   (6.393) 

Once Equation (6.393) is solved and sx   is calculated positive, then the assumption and 

Equation (6.393) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (6.392) can be rewritten as 

s k sx b u h x u                (6.394) 

Substituting Equations (6.394) in Equation (6.387) gives  

   1
b s k s

b

u m m u mh mx m b u h x u
m m

                     
         (6.395) 

Which upon rearranging terms become 

k
b

m
u u b

m
       (6.396) 

Substituting Equation (6.396) in Equation (6.394) gives 

1s k s
b

m
x b h x

m
      

    
 

   (6.397) 

The absolute value in Equations (6.392), (6.393), (6.396) and (6.397) can be dropped since the 

impulse in the z direction must be positive. 

Equations (6.392), (6.393), (6.396) and (6.397) can be rewritten in the form 

   sgn s k
b

m
u u x b

m
         (6.398) 

   sgn 1s s k s
b

m
x x b h x

m
       

     
 

    (6.399) 

6.4.4 Slide-rocking continues after impact  

Derivation for the case of impact during rocking about point O  
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Consider the system at the instant when the block hits the moving base from rocking about O  

and re-uplifts pivoting about the impacting corner, 'O . As mentioned before, impact is 

accompanied by an instantaneous change in velocities, with the system displacements being 

unchanged. Therefore, the impact analysis is reduced to the computation of the initial 

conditions for the post-impact motion, u   , sx  , and   , given the position and the pre-impact 

velocities, u   , sx  , and    . 

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.400) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.401) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (6.400) and (6.401) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.402) 

 z rot rotF dt mz mz     (6.403) 

In addition, the principle of angular impulse and momentum states that SPYROULL
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   :   C C C C z xM dt H H H b F dt h F dt I I               (6.404) 

in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.400) and (6.401), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-15) can 

be expressed as  

/O C O
    v v ω r (6.405) 

where v  is pre-impact translational velocity vector of center-of-mass, O
v  is pre-impact 

translational velocity vector of point O , ω  is pre-impact angular velocity vector of the block, 

and /C Or  is position vector of the mass center relative to point O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.406) 

   ˆ ˆ
O g s gu x x z        v i k (6.407) 

ˆ  ω j (6.408) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.409) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

center-of-mass relative to point O , /C Or , can be rewritten as 

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.410) SPYROULL
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in which î  and k̂  are the horizontal and vertical unit vectors respectively. 

On substituting Equations (6.406) through (6.410) into Equation (6.405), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gu x x x z z u x x z b h                            v i k i k j i k  (6.411) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h        i k k i  (6.412) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.413) 

rotz b   (6.414) 

For the post-impact state, the translational velocity vector of the mass center (Figure 6-20) can 

be expressed as 

´ / ´O C O
    v v ω r (6.415) 

where v  is post-impact translational velocity vector of center-of-mass, ´O
v  is post-impact 

translational velocity vector of point 'O , ω  is post-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Figure 6-20: Components of post-impact translational velocity of the isolated block for the 

case of impact during slide-rocking about point O. 

 g su x x    

 

/ 'C Or

gz
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Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.416) 

   ´
ˆ ˆ

O g s gu x x z        v i k (6.417) 

ˆ  ω j  (6.418) 

   / ´
ˆ ˆsin cosC O r a r a    r i k (6.419) 

At impact  0   the position vector of center-of-mass relative to point 'O , / ´C Or , becomes

   / ´
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.420) 

On substituting Equations (6.416) through (6.420) into Equation (6.415), the post-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g rot s rot g g s gu x x x z z u x x z b h                           v i k i k j i k  (6.421) 

which simplifies to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.422) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.423) 

rotz b    (6.424) 

Substitution of Equations (6.410), (6.411), (6.420) and (6.421) into Equations (6.402) through 

(6.404) yields  

   x s sF dt mu m h mx mu mx m h                 (6.425) SPYROULL
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   zF dt m b m b       (6.426) 

       z xb F dt h F dt I I        (6.427) 

in which the centroid mass moment of inertia for the rectangular block is given by 

 2 2 2

3 3

m m
I r b h   (6.428) 

Equations (6.425), (6.426) and (6.427) constitute a set of three equations in five unknowns, 

namely xF dt , zF dt ,   , u  , sx   .

Equivalently, the three Equations (6.425), (6.426) and (6.427) can be combined in one (by 

eliminating the two impulses) in three unknowns:  

   2 2 2 24 4 3 3 4 2 3 3s sb h hu hx h b hu hx                  (6.429) 

Three additional equations is therefore required to uniquely determine the post-impact 

velocities   , u  , sx  . By considering the system in its entirety during the impact, it can be 

stated that the horizontal impulse on the system is zero, resulting in the conservation of the 

system’s linear momentum in the horizontal direction. That is,  

             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g s rot b g g s rot

L L L L L L L

m u x m u x x x m u x m u x x x

    

       

                
                            

(6.430) 

in which  sys x
L


and  sys x

L


 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L is the change in horizontal linear momentum of the system.  

Substituting Equations (6.413), (6.414), (6.423) and (6.424) in Equation (6.430) gives 

b s b sm u mu mx mh m u mu mx mh                     (6.431) 

which upon rearranging terms becomes SPYROULL
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 1
b s s

b

u m m u mx mh mx mh
m m

             
     (6.432) 

Substituting Equation (6.432) in (6.429) gives 

   

 

2 2

2 2

3
4 4 3

4 2 3 3

b s s s
b

s

h
b h m m u mx mh mx mh hx

m m

h b hu hx

  



      

  

         

   

     

  
(6.433) 

which yields 

 
 

2 2 2 2

2 2 2 2

4 2 2 3 3

4 4 4

b b b s b s

b b

m h m b mh mb hm x hm x

m h m b mh mb




  


    


  

   (6.434) 

With regard to the block, the principle of frictional impulse in the x  and z  direction states that 

 sgnx s k zF dt x F dt   (6.435) 

Substituting Equations (6.425) and (6.426) in Equation (6.435) gives  

         sgns s s kmu m h mx mu mx m h x m b m b                             (6.436) 

Assume that  sgn 0sx  , Equation (6.436) can be written as 

   s k sx b b u h u x h                           (6.437) 

Once Equation (6.437) is solved and sx   is calculated positive, then the assumption and 

Equation (6.437) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (6.436) can be rewritten as 

   s k sx b b u h u x h                          (6.438) 

The absolute value in Equations (6.437) and (6.438) can be dropped since the impulse in the z 

direction must be positive. SPYROULL
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Equations (6.437) and (6.438) can be rewritten in the form 

     sgns s k sx x b b u h u x h                      
         (6.439) 

Derivation for the case of impact during rocking about point O'  

With regard to the block, the principle of linear impulse and momentum in the x  and z

direction states that    

   :   x x x xx
F dt L L L F dt mX mX            (6.440) 

   :   z z z zz
F dt L L L F dt mZ mZ            (6.441) 

in which xF dt  and zF dt  are the horizontal and vertical impulses (assumed to act at 'O );

 g s rotX u x x x           ,    g s rotX u x x x            and   rot gZ z z     ,   rot gZ z z    

are the absolute pre- and post-impact horizontal and vertical velocities of the mass center of 

the block, respectively; rotx , rotx  and rotz , rotz  are the relative pre- and post-impact horizontal 

and vertical velocities of the mass center of the block due to the rocking, relative to the rigid 

base; sx  and sx  are the relative pre- and post-impact horizontal velocities of the mass center 

of the block due to the sliding, relative to the rigid base; xL , xL , zL  and zL  are the pre- and 

post-impact horizontal and vertical linear momentum, respectively;  x
L  and  z

L  are the

changes in horizontal and vertical linear momentum, respectively.   

Substituting these expressions into Equations (6.440) and (6.441) we obtain 

x s rot s rotF dt mu mx mx mu mx mx                 (6.442) 

 z rot rotF dt mz mz     (6.443) 

In addition, the principle of angular impulse and momentum states that 

   :   C C C C z xM dt H H H b F dt h F dt I I                (6.444) SPYROULL
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in which CM dt  is the angular impulse; CH   and CH   are the pre- and post-impact angular 

momentum about the mass center, respectively; CH  is the change in the angular momentum 

about the mass center. 

In Equations (6.442) and (6.443), the pre- and post-impact horizontal and vertical components 

of the relative translational velocity of the mass center can be expressed in terms of the pre- 

and post-impact angular velocity of the block,    and    as follows. 

For the pre-impact state, the translational velocity vector of the mass center (Figure 6-16) can 

be expressed as 

' / 'O C O
    v v ω r (6.445) 

where v  is pre-impact translational velocity vector of center-of-mass, ´O
v  is pre -impact 

translational velocity vector of point 'O , ω  is pre-impact angular velocity vector of the 

block, and / ´C Or  is position vector of the mass center relative to point 'O . 

Expressions for these vector quantities are given below: 

   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.446) 

   '
ˆ ˆ

O g s gu x x z        v i k (6.447) 

ˆ  ω j (6.448) 

   / '
ˆ ˆsin cosC O r a r a    r i k (6.449) 

At impact, the angular rotation of the block becomes zero  0   and the position vector of 

center-of-mass relative to point 'O , / 'C Or , can be written as 

   / '
ˆ ˆ ˆ ˆsin cosC O r a r a b h   r i k i k (6.450) 

in which î  and k̂  are the horizontal and vertical unit vectors respectively. SPYROULL
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On substituting Equations (6.446) through (6.450) into Equation (6.445), the pre-impact 

translational velocity becomes  

           ˆ ˆ ˆ ˆ ˆ ˆ ˆ
g s rot rot g g s gu x x x z z u x x z b h                           v i k i k j i k  (6.451) 

which reduces to 

   ˆ ˆ ˆ ˆ
rot rotx z b h         i k k i  (6.452) 

from which the pre-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.453) 

rotz b    (6.454) 

For the post-impact state, the translational velocity vector of the mass center (Figure 6-21) can 

be expressed as 

/O C O
    v v ω r (6.455) 

where v  is post-impact translational velocity vector of center-of-mass, O
v  is post-impact 

translational velocity vector of point O , ω  is post-impact angular velocity vector of the 

block, and /C Or  is position vector of the mass center relative to point O . 

Figure 6-21: Components of post-impact translational velocity of the isolated block for the 

case of impact during slide-rocking about point 'O . 

Expressions for these vector quantities are given below: 

 g su x x    

 

/C Or

gz
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   ˆ ˆ ˆ ˆ
g s rot rot gX Z u x x x z z                    v i k i k (6.456) 

   ˆ ˆ
O g s gu x x z        v i k (6.457) 

ˆ  ω j  (6.458) 

   /
ˆ ˆsin cosC O r a r a     r i k (6.459) 

At impact  0   the position vector of the mass center relative to point O , /C Or , becomes

   /
ˆ ˆ ˆ ˆsin cosC O r a r a b h     r i k i k (6.460) 

On substituting Equations (6.456) through (6.460) into Equation(6.455), the post-impact 

translational velocity becomes  

           
   

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

g rot s rot g g s g

rot rot

u x x x z z u x x z b h

x z b h



 

       

   

             

   

        

  

v i k i k j i k

i k k i
 (6.461) 

from which the post-impact horizontal and vertical components of v  can be retrieved as 

rotx h   (6.462) 

rotz b   (6.463) 

Substitution of Equations (6.453), (6.454), (6.462) and (6.463) into Equations (6.442) through 

(6.444) yields  

   x s sF dt mu m h mx mu mx m h                 (6.464) 

   zF dt m b m b       (6.465) 

       z xb F dt h F dt I I         (6.466) 

in which the centroid mass moment of inertia for the rectangular block is given by 
SPYROULL

A S. O
DYSSEOS



187 

 2 2 2

3 3

m m
I r b h   (6.467) 

Equations (6.464), (6.465) and (6.466) constitute a set of three equations in five unknowns, 

namely xF dt , zF dt ,   , u  , sx  .

Equivalently, the three Equations (6.464), (6.465) and (6.466) can be combined in one (by 

eliminating the two impulses) in three unknowns:  

   2 2 2 24 4 3 3 4 2 3 3s sb h hu hx h b hu hx                  (6.468) 

Three additional equations are therefore required to uniquely determine the post-impact 

velocities   , u  , sx  . By considering the system in its entirety during the impact, it can be 

stated that the horizontal impulse on the system is zero, resulting in the conservation of the 

system’s linear momentum in the horizontal direction. That is,  

             
       

0 :  0sys sys sys base obj base objx xx x x x x

b g g s rot b g g s rot

L L L L L L L

m u x m u x x x m u x m u x x x

    

       

                
                            

(6.469) 

in which  sys x
L


 and  sys x

L


 are the pre- and post-impact horizontal linear momentum of the 

system respectively;  sys x
L is the change in horizontal linear momentum of the system.  

Substituting Equations (6.453), (6.454), (6.462) and (6.463) in Equation (6.469) gives 

b s b sm u mu mx mh m u mu mx mh                     (6.470) 

which upon rearranging terms becomes 

 1
b s s

b

u m m u mx mh mx mh
m m

             
     (6.471) 

Substituting Equation (6.471) in (6.468) gives SPYROULL
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   

 

2 2

2 2

3
4 4 3

4 2 3 3

b s s s
b

s

h
b h m m u mx mh mx mh hx

m m

h b hu hx

  



      

  

         

   

     

  
(6.472) 

which yields 

 
 

2 2 2 2

2 2 2 2

4 2 2 3 3

4 4 4

b b b s b s

b b

m h m b mh mb hm x hm x

m h m b mh mb




  


    


  

   (6.473) 

With regard to the block, the principle of frictional impulse in the x  and z  direction states that 

 sgnx s k zF dt x F dt   (6.474) 

Substituting Equations (6.464) and (6.465) in Equation (6.474) gives  

         sgns s s kmu m h mx mu mx m h x m b m b                            (6.475) 

Assume that  sgn 0sx  , Equation (6.475) can be written as 

   s k sx b b u h u x h                          (6.476) 

Once Equation (6.476) is solved and sx   is calculated positive, then the assumption and 

Equation (6.476) are correct, else a second assumption must be computed,  sgn 0sx   and 

Equation (6.475) can be rewritten as 

   s k sx b b u h u x h                         (6.477) 

The absolute value in Equations (6.476) and (6.477) can be dropped since the impulse in the z 

direction must be positive. 

Equations (6.476) and (6.477) can be rewritten in the form 

     sgns s k sx x b b u h u x h                     
         (6.478)SPYROULL
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CHAPTER 7  

Computer Program and Numerical Solution 

7.1 Introduction 

A computer program was developed to numerically determine the response of the system 

under horizontal and vertical ground excitations. The numerical integration of the equations of 

motion is pursued in Matlab (MathWorks 2006) through a state-space formulation. The 

computer program calculates the response of a non-isolated or isolated block subjected to 

ground excitation under general conditions, considering the different possible oscillation 

regimes, impact, transition criteria and arbitrary excitation. In particular, at each time step the 

program determines the correct oscillation regime and integrates the corresponding exact 

nonlinear equations of motion. In addition, close attention is paid to the possibility of 

transition from one regime of motion to another and to the accurate evaluation of the initial 

conditions for the next regime of oscillation. 

By utilizing the developed computer program, an extensive numerical investigation is 

performed to calculate the dynamic response of the system under simple trigonometric, 

idealized ground-acceleration pulses and recorded pulse-type earthquake motions, with the 

aim of revealing interrelations among the problem parameters and identifying potential trends 

in the response and stability of the system.  

7.2 Structure of the Program 

Figure 7-1 presents the main structure of the program through a flowchart. The program is 

versatile and easy to use as it gives the ability to the user to choose different variables:   

 the type of model: rocking rigid block or general rigid block (sliding, rocking, slide-

rocking etc.),

 the type of system: non-isolated or isolated,

 the type of isolation system: linear or nonlinear, and its characteristics,

 the characteristics of the block: mass of the block, mass of the base, block size,

slenderness ratio, coefficient of static friction between the block and the base (for
SPYROULL

A S. O
DYSSEOS



190 

general rigid block), 

 the type of ground excitation: earthquake or pulse-type motion and

 the results: response histories, response-regime spectra etc.

The developed program runs an accurate and highly nonlinear analysis to determine the 

response of the system under horizontal and vertical ground excitations. The system may 

transit from one oscillation pattern to another (potentially modifying the degrees of freedom), 

at any time due to an impact event and when an appropriate transition criterion is satisfied.  

In particular, the run analysis section is composed of a main program that is divided into 

several functions. Each function represents an oscillation pattern and integrates the 

corresponding exact nonlinear equations of motion using an ordinary-differential-equation 

solver. The main program calls for the first time a function when an initiation criterion is 

satisfied. In each time step, the function checks if any appropriate transition criterion is 

satisfied, if an impact event is detected ( 0  ), or if the rigid block has failed (overturning, 

/ 1   ). If any of the aforementioned criteria are detected, the output of the function

includes the exact time that the event happened and the values of the appropriate variables

(degrees-of-freedom) that were calculated using integration until this time.

Then, the main program checks which transition criterion is satisfied, or if an impact event is 

detected, and computes the initial conditions or the post-impact velocities for the next regime 

of oscillation. If the block fails (overturns) then the program stops the analysis and exports the 

appropriate results. The above procedure is accomplished at each time step of the excitation. 

Finally, the program exports the results from the analysis that can be easily processed by the 

user. The main structure of the aforementioned procedure for the general isolated rigid block 

is shown through flowcharts in Figures 7-2 through 7-5.  
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Figure 7-1: Structure of developed program. 
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Figure 7-2: Structure of developed program: links 1 and A. 
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Figure 7-3: Structure of developed program: link B. 
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Figure 7-4: Structure of developed program: link C. 
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Figure 7-5: Structure of developed program: link D. 
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7.3 State-space formulation 

The numerical integration of the governing equations of motion is accomplished using 

Matlab’s ordinary-differential-equation solver ODE45, which is an implementation of 

fourth/fifth-order Runge-Kutta method (Dormand and Prince (1980)). Solving the equations of 

motion applying this function involves re-writing the differential equations as a set of first-

order ordinary differential equations (ODEs). This involves introduction of new variables and 

recasting the original equations in terms of first-order ODEs in the new variables. For this 

reason, a state-space formulation is employed to yield a system of first-order differential 

equations.  

7.3.1 System translation regime 

Linear Isolation System 

For motion in the system translation regime, the governing equation of motion is 

b b gMu c u k u Mx      (7.1)

where 

bM m m  (7.2)

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , and velocity, u , of the linear isolation system equal to the state variables 1z  

and 2z  respectively as   

1z u (7.3)

2z u  (7.4)

The derivatives of the state variables are expressed as 

1 2z u z  (7.5)

 2

1
b b gz u c u k u Mx

M
       (7.6)SPYROULL
A S. O
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Finally, Equation (7.1) can be rewritten as a set of two first-order ODEs, representing the first 

derivative (Equation (7.5)) and the second derivative (Equation (7.6)) of the displacement of 

isolation system as  

 
 

2
1

2 2 1

1
b b g

z
z

z
z c z k z x

M

        
      




 
(7.7)

Nonlinear Isolation System 

For motion in the system translation regime, the governing equation of motion is 

 b g gMu Mg Mg Mz R u Mx       Ζ  (7.8)

where 

bM m m  (7.9)

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , and dimensionless variable, Z , of the nonlinear isolation 

system equal to the state variables 1z , 2z , and 3z  respectively as   

1z u (7.10)

2z u  (7.11)

3z  Z (7.12)

The derivatives of the state variables are expressed as 

1 2z u z  (7.13)

    2

1
b b g g gz u Mg Mz Mg Mz R u Mx

M
             Z (7.14)

2

3

u u Au
z

Y

   
 

  
Z Z Z

Z (7.15)SPYROULL
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Finally, Equation (7.8) can be rewritten as a set of three first-order ODEs, representing the 

first derivative (Equation (7.13)) and the second derivative (Equation (7.14)) of the 

displacement of isolation system and the first derivative (Equation (7.15)) of the 

dimensionless variable as  

      
2

1

2 3 1

23

2 3 3 2 3 2

1
b b g g g

z
z

z z Mg Mz z Mg Mz R z x
M

z
z z z z z Az

Y

 

 

 
 
  
              

   
     

 
 


   


(7.16)

7.3.2 Sliding regime 

Linear Isolation System 

The motion of the system in the sliding regime can be described by the following set of 

equations  

s b b gMu mx c u k u Mx        (7.17)

   sgns s k g gmu mx m x g z mx        (7.18)

where 

bM m m  (7.19)

Adding Equation (7.18) to Equation (7.17) gives 

   sgnb b
g s k g

b b b

c k m
u x u u x g z

m m m
          (7.20)

Multiplying Equation (7.17) by 
m

M
 and adding to Equation (7.18) gives 

   sgn 1b b
s s k g

k u c u m
x x g z

M M M
            

   (7.21)SPYROULL
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The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , of the linear isolation system and the displacement, sx , and 

velocity, sx , of the rigid block due to sliding on the rigid base equal to the state variables 1z , 

2z , 3z , and 4z  respectively as 

1z u (7.22)

2z u  (7.23)

3 sz x (7.24)

4 sz x  (7.25)

The derivatives of the state variables are expressed as 

1 2z u z  (7.26)

2z u  (7.27)

3 4sz x z  (7.28)

4 sz x  (7.29)

Finally, Equations (7.20) and (7.21) can be rewritten as a set of four first-order ODEs, 

representing the first derivative (Equation (7.26)) and the second derivative (Equation (7.27)) 

of the displacement of isolation system and the first derivative (Equation (7.28)) and the 

second derivative (Equation (7.29)) of the displacement of rigid block due to sliding as  

 
   

   

2

1
2 1 4

2

3 4

4 1 2
4

sgn

sgn 1

b b
g k g

b b b

b b
k g

z

z c k m
x z z z g z

m m mz
z

z z

z k z c z m
z g z

M M M





 
                

   
                  


 









(7.30)
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Nonlinear Isolation System 

The motion of the system in the sliding regime is governed by the following set of equations 

     b s b g b gm m u mx Mg Mg Mz R u m m x          Z   (7.31)

 sgn( )s s k g gmu mx x m g z mx        (7.32)

where 

bM m m  (7.33)

Adding Equation (7.32) to Equation (7.31) gives 

       sgnb
g g b s k g

b b

Mg m
u x Mg Mz m R u x g z

m m

         
Z    (7.34)

Multiplying Equation (7.31) by 
m

M
 and adding to Equation (7.32) gives 

       sgn 1b
s g s k g

Mg m
x Mg Mz MR u x g z

M M

                 
Z    (7.35) 

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , dimensionless variable, Z , of the nonlinear isolation system 

and the displacement, sx , and velocity, sx , of the rigid block due to sliding on the rigid base 

equal to the state variables 1z , 2z , 3z , 4z  and 5z  respectively as   

1z u (7.36)

2z u  (7.37)

3z  Z (7.38)

4 sz x (7.39)

5 sz x  (7.40)
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The derivatives of the state variables are expressed as 

1 2z u z  (7.41) 

2z u   (7.42) 

2

3

u u Au
z

Y

   
 

  
Z Z Z

Z (7.43) 

4 5sz x z  (7.44) 

5 sz x  (7.45) 

Finally, Equations (7.34) and (7.35) can be rewritten as a set of five first-order ODEs, 

representing the first (Equation (7.41)) and the second derivative (Equation (7.42)) of the 

displacement of isolation system, the first derivative (Equation (7.43)) of the dimensionless 

variable and the first (Equation (7.44)) and the second derivative (Equation (7.45)) of the 

displacement of rigid block due to sliding as  

 

       

       

2

3
1 51

2 2

2 3 3 2 3 2
3

4
5

5

3
1 5

sgn

sgn 1

b
g g b k g

b b

b
g k g

z

Mgz m
x Mg Mz m R z z g zz

m m
z

z z z z z Azz z
Yz
z

z
Mgz m

Mg Mz MR z z g z
M M

 

 

 

 
 
            
           

   
   
    

                 

  


 



 

 (7.46) 

7.3.3 Rocking regime 

Linear Isolation System 

The motion of the system in the rocking regime is governed by the following set of equations  

    2cos sgn sin sgn cos sinb b

g

Mu c u k u m h b m b h

Mx

                  
 

  


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    
   

cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

o

g g

I mu h b mg b h

m h b x m b h z

      

     

     

          

 

 
(7.48)

where 

bM m m  (7.49)

2
oI mr I  (7.50)

Letting   

   1 1cos sgn sinA h b A       (7.51)

   2 2sgn cos sinA b h A       (7.52)

Equations (7.47) and (7.48) can be rewritten in the form 

2
1 2b b gMu c u k u mA mA Mx          (7.53)

1 2 1 2o g gI mAu mgA mA x mA z         (7.54)

Equations (7.53) and (7.54) can be rewritten as

2
1 2g b bMu mA Mx c u k u mA          (7.55)

1 2 1 2o g gI mAu mgA mA x mA z         (7.56)

Multiplying Equation (7.56) by 1

o

mA

I
  and adding to Equation (7.55) gives 

2 2 2 2 2 2
21 1 1 2 1 2

2g b b g
o o o o

m A m A m gA A m A A
M u M x c u k u mA z

I I I I


   
          

   
     (7.57) 

which upon rearranging terms yields SPYROULL
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 
2

2 1 2
22 2

1

1
g b b g

o

o

m A A
u x c u k u mA g z

Im A
M

I


 

            
 

    (7.58)

Multiplying Equation (7.55) by 1mA

M
  and adding to Equation (7.56) gives 

 
2 2 2

21 11 1 2
2

b b
o g

mAc mA km A m A A
I u u mA g z

M M M M
 

 
      

 
   (7.59)

which upon rearranging terms yields 

 
2

21 1 1 2
22 2

1

1 b b
g

o

mA c mA k m A A
u u mA g z

m A M M M
I

M

 

 
   

       
   

 

   (7.60) 

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , of the linear isolation system and the rotation angle,  , and 

rotation velocity,  , of the rigid block due to rocking on the rigid base equal to the state 

variables 1z , 2z , 3z  and 4z  respectively as 

1z u (7.61) 

2z u  (7.62) 

3z   (7.63) 

4z    (7.64) 

The derivatives of the state variables are expressed as 

1 2z u z   (7.65) 

2z u   (7.66) SPYROULL
A S. O
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3 4z z   (7.67) 

4z    (7.68) 

Finally, Equations (7.58) and (7.60) can be rewritten as a set of four first-order ODEs, 

representing the first (Equation (7.65)) and the second derivative (Equation (7.66)) of the 

displacement of isolation system and the first (Equation (7.67)) and the second derivative 

(Equation (7.68)) of the rotation angle of rigid block due to rocking as  

 

 

 

2

2
2 1 2

2 1 2 42 2
1

1

2

4
3

4 2
21 1 1 2

2 1 4 22 2
1

1

1

g b b g
o

o

b b
g

o

z

m A A
x c z k z mA z g z

Im Az M
Iz

z zz

z
mA c mA k m A A

z z z mA g z
m A M M M

I
M

 
 

                            
   

         
      

       

 









(7.69) 

Nonlinear Isolation System 

The motion of the system in the rocking regime is governed by the following set of equations  

     
  2

cos sgn sin

sgn cos sin

b g g

g

Mu Mg Mz Mg Mz R u m h b

m b h Mx

    

   

         
     

Z   

 
(7.70) 

    
   

cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

o

g g

I mu h b mg b h

m h b x m b h z

      

     

     

          

 

 
(7.71) 

where 

bM m m  (7.72) 

2
oI mr I  (7.73) SPYROULL
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DYSSEOS



205 

Letting   

   1 1cos sgn sinA h b A       (7.74) 

   2 2sgn cos sinA b h A       (7.75) 

Equations (7.70) and (7.71) can be rewritten in the form 

    2
1 2b g g gMu Mg Mz Mg Mz R u mA mA Mx           Z      (7.76) 

1 2 1 2o g gI mAu mgA mA x mA z         (7.77) 

Equations (7.76) and (7.77) can be rewritten as  

    2
1 2g b g gMu mA Mx Mg Mz Mg Mz R u mA           Z      (7.78) 

1 2 1 2o g gI mAu mgA mA x mA z         (7.79) 

Multiplying Equation (7.79) by 1

o

mA

I
  and adding to Equation (7.78) gives 

   
2 2 2 2

1 1

2 2
2 1 2 1 2

2

g b g g
o o

g
o o

m A m A
M u M x Mg Mz Mg Mz R u

I I

m gA A m A A
mA z

I I





                   

  

Z   

 
(7.80) 

which upon rearranging terms yields 

   

 
2

2 2 2 1 2
1 2

1
b g g

g

g
o

o

Mg Mz Mg Mz R u

u x m A Am A mA g zM II





       
    

         

Z 
 

 
 (7.81) 

Multiplying Equation (7.78) by 1mA

M
  and adding to Equation (7.79) gives 
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   

 

2 2
1 1 1

2
21 2

2

o g g

g

m A mA mA
I Mg Mz Mg Mz R u

M M M

m A A
mA g z

M





           

  

  

 

Z

(7.82) 

which upon rearranging terms yields 

   

 

1 1

2 2 2
21 1 2

2

1 g g

o g

mA mA
Mg Mz Mg Mz R u

M M
m A m A AI mA g z

M M




              
         

 


 

Z
(7.83) 

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , dimensionless variable Z  of the nonlinear isolation system and 

the rotation angle,  , and rotation velocity,  , of the rigid block due to rocking on the rigid 

base equal to the state variables 1z , 2z , 3z , 4z  and 5z  respectively as   

1z u (7.84) 

2z u  (7.85) 

3z  Z (7.86) 

4z   (7.87) 

5z    (7.88) 

The derivatives of the state variables are expressed as 

1 2z u z   (7.89) 

2z u   (7.90) 

2

3

u u Au
z

Y

   
 

  
Z Z Z

Z (7.91) 

4 5z z  (7.92) SPYROULL
A S. O
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5z    (7.93) 

Finally, Equations (7.81) and (7.83) can be rewritten as a set of five first-order ODEs, 

representing the first (Equation (7.89)) and the second derivative (Equation (7.90)) of the 

displacement of isolation system, the first derivative (Equation (7.91)) of the dimensionless 

variable and the first (Equation (7.92)) and the second derivative (Equation (7.93)) of the 

rotation angle of rigid block due to rocking as  

 

   

 

   

2

3 1

2
2 2 2 1 2

1 2 5
1

2 2

2 3 3 2 3 2
3

4

5
5

1 1
3 1

2 2
1

1

1

b g g

g

g
o

o

g g

o

z

Mg Mz z Mg Mz R z

x m A Am A mA z g zMz II
z

z z z z z Azz z
Yz
z

z
mA mA

Mg Mz z Mg Mz R z
M M

m A
I

M



 

       
   

            
       
 
 
  

        
 
  
 

 





 



 

 
2

21 2
5 2 g

m A A
z mA g z

M

 
 
 
 
 
 
 
  
 
 
 
 

  
     

        


 (7.94) 

7.3.4 Slide-rocking regime 

Linear Isolation System 

The motion of the system in the slide-rocking regime is governed by the following set of 

equations  

   
   2

cos sgn sin

sgn cos sin

b s b b

b g

m m u mx c u k u m h b

m b h m m x

   

   

       
      

  
 

(7.95) 

     
    

2

2

cos sgn sin sgn cos sin

sgn( ) sgn cos sin cos sgn sin

s

s k g

g

m u x m h b m b h

x m g z b h h b

mx

       

        

          

           
 

  

  



 (7.96) 
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       
   

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

      

     

           

          

  

 
(7.97) 

where 

bM m m  (7.98) 

2
oI mR I  (7.99) 

Letting   

   1 1cos sgn sinA h b A       (7.100) 

   2 2sgn cos sinA b h A       (7.101) 

Equations (7.95), (7.96) and (7.97) can be rewritten in the form 

2
1 2s b b gMu mx c u k u mA mA Mx            (7.102) 

   2 2
1 2 2 1sgn( )s s k g gm u x mA mA x m g z A A mx                   (7.103) 

  1 2 1 2o s g gI m u x A mgA mA x mA z           (7.104) 

Adding Equation (7.103) into Equation (7.104), Equation (7.104) can be rewritten as  

 2 2 2
1 1 2 1 2 1 1

2 1 2

sgn( )o s k g g

g g

I mA mA A x mA g z A A mA x

mgA mA x mA z

           

   

     

 
(7.105) 

which upon rearranging terms yields 

    
2 2 2

1 2 1

2
1 21 1 2

sgn( )1

sgn( )sgn( )

s k

s k go s k

mA A x mA

x mA mA g zI mA x mA A

  




 
  

      

 
 

(7.106) 

Adding Equation (7.103) into Equation (7.102), Equation (7.102) can be rewritten as  SPYROULL
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 2 2
1 2 2 1

2
1 2

sgn( )s k g

g b b g

Mu mu mA mA x m g z A A

mx c u k u mA mA Mx

    

 

      

      

      
   

(7.107) 

which upon rearranging terms yields 

    2
2 1

1
sgn( )g s k g b bu x x m g z A A c u k u

M m
         


      (7.108) 

Equation (7.103) can be rewritten as 

 2 2
1 2 2 1sgn( )s s k g gx u A A x g z A A x                   (7.109) 

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , of the linear isolation system, the rotation angle,  , and 

rotation velocity,  , of the rigid block due to rocking on the rigid base and the displacement, 

sx , and velocity, sx , of the rigid block due to sliding on the rigid base equal to the state 

variables 1z , 2z , 3z , 4z , 5z  and 6z  respectively as  

1z u (7.110) 

2z u  (7.111) 

3z   (7.112) 

4z    (7.113) 

5 sz x (7.114) 

6 sz x  (7.115) 

The derivatives of the state variables are expressed as 

1 2z u z  (7.116) 

2z u   (7.117) 
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3 4z z   (7.118) 

4z    (7.119) 

5 6sz x z  (7.120) 

6 sz x  (7.121) 

Finally, Equations (7.106), (7.108) and (7.109) can be rewritten as a set of six first-order 

ODEs, representing the first (Equation (7.116)) and the second derivative (Equation (7.117)) 

of the displacement of isolation system, the first (Equation (7.118)) and the second derivative 

(Equation (7.119)) of the rotation angle of rigid block due to rocking and the first (Equation 

(7.120)) and the second derivative (Equation (7.121)) of the displacement of rigid block due to 

sliding as  

 

    

    

2

2
1 6 2 4 1 4 2 1

2

4
3

2 2 2
1 2 4 6 1 4

4
2

6 1 21 6 1 25

6 6

2
2 1 4 2 4 6

1
sgn( )

sgn( )1

sgn( )sgn( )

sgn(

g k g b b

k

k go k

z

z x z m g z A z A z c z k z
M m

z
zz

z mA A z z mA zz
z mA mA g zI mA z mA Az

z z

z A z A z z







       
 

 
      
   
         
  

   

   









   2
2 4 1 4) k g gg z A z A z x

 
 
 
 
 
  
 
 
 
 
 
 

      

 (7.122) 

Nonlinear Isolation System 

The motion of the system in the slide-rocking regime is governed by the following set of 

equations  

     
     2cos sgn sin sgn cos sin

b s b g g

b g

m m u mx Mg Mz Mg Mz R u

m h b m b h m m x



       

       
            

   

  

Z
(7.123) 
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       
    

2

2

cos sgn sin sgn cos sin

sgn( ) sgn cos sin cos sgn sin

s

s k g

g

m u x m h b m b h

x m g z b h h b

mx

       

        

    

           
 

  

  



 (7.124) 

       
   

2 cos sgn sin sgn cos sin

cos sgn sin sgn cos sin

s

g g

mR I m u x h b mg b h

m h b x m b h z

      

     

           

          

  

 
(7.125) 

where 

bM m m  (7.126) 

2
oI mR I  (7.127) 

Letting   

   1 1cos sgn sinA h b A       (7.128) 

   2 2sgn cos sinA b h A       (7.129) 

Equations (7.123), (7.124) and (7.125) can be rewritten in the form 

    2
1 2s b g g gMu mx Mg Mz Mg Mz R u mA mA Mx            Z       (7.130) 

   2 2
1 2 2 1sgn( )s s k g gm u x mA mA x m g z A A mx                   (7.131) 

  1 2 1 2o s g gI m u x A mgA mA x mA z           (7.132) 

Adding Equation (7.131) into Equation (7.132), Equation (7.132) can be rewritten as  

 2 2 2
1 1 2 1 2 1 1

2 1 2

sgn( )o s k g g

g g

I mA mA A x mA g z A A mA x

mgA mA x mA z

           

   

     

 
(7.133) 

which upon rearranging terms yields SPYROULL
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    
2 2 2

1 2 1

2
1 21 1 2

sgn( )1

sgn( )sgn( )

s k

s k go s k

mA A x mA

x mA mA g zI mA x mA A

  




 
  

      

 
 

(7.134) 

Adding Equation (7.131) into Equation (7.130), Equation (7.130) can be rewritten as  

 
   

2 2
1 2 2 1

2
1 2

sgn( )s k g

g b g g g

Mu mu mA mA x m g z A A

mx Mg Mz Mg Mz R u mA mA Mx

    

  

      

          Z

      

   
(7.135) 

which upon rearranging terms yields 

 
   

 

2
2 1sgn( )1 s k g g

g

g

x m g z A A Mg Mz
u x

M m Mg Mz R u

                   

   
 



Z
(7.136) 

Equation (7.131) can be rewritten as 

 2 2
1 2 2 1sgn( )s s k g gx u A A x g z A A x                   (7.137) 

The state-space formulation of a second-order differential equations is derived by setting the 

displacement, u , velocity, u , the dimensionless variable, Z , of the nonlinear isolation 

system, the rotation angle,  , and rotation velocity,  , of the rigid block due to rocking on 

the rigid base and the displacement, sx , and velocity, sx , of the rigid block due to sliding on 

the rigid base equal to the state variables 1z , 2z , 3z , 4z , 5z , 6z  and 7z  respectively as  

1z u (7.138) 

2z u  (7.139) 

3z   (7.140) 

4z    (7.141) 

5 sz x (7.142) SPYROULL
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6 sz x  (7.143) 

7z  Z (7.144) 

The derivatives of the state variables are expressed as 

1 2z u z  (7.145) 

2z u   (7.146) 

3 4z z  (7.147) 

4z    (7.148) 

5 6sz x z  (7.149) 

6 sz x  (7.150) 

2

7

u u Au
z

Y

   
 

  
Z Z Z

Z (7.151) 

Finally, Equations (7.134), (7.136) and (7.137) can be rewritten as a set of seven first-order 

ODEs, representing the first (Equation (7.145)) and the second derivative (Equation (7.146)) 

of the displacement of isolation system, the first derivative (Equation (7.151)) of the 

dimensionless variable, the first (Equation (7.147)) and the second derivative (Equation 

(7.148)) of the rotation angle of rigid block due to rocking and the first (Equation (7.149)) and 

the second derivative (Equation (7.150)) of the displacement of rigid block due to sliding as  
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 (7.152) 
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CHAPTER 8  

Rocking Response to Dynamic Base Excitation 

The dynamic response of the system is investigated herein by assuming sufficient friction 

between the block and the supporting base under simple half- and full-cycle horizontal 

acceleration pulses, horizontal near-fault ground motions, and idealized pulse-type motions. 

Under the assumption of sufficient friction to prevent sliding, the response of the isolated 

system can be described in terms of two oscillation regimes: system translation, in which the 

base-block system translates as a whole; and rocking, in which the block pivot on its edges 

with respect to the horizontally-moving base. The investigation aims to identify potential 

trends in the response and stability of the system.  

8.1 Response to Simple Base-Acceleration Pulses 

The response of the system is investigated under simple half- and full-cycle horizontal 

acceleration pulses. In particular, the analysis considers a half-cycle rectangular pulse, a half-

cycle sinusoidal pulse, and a full-cycle sinusoidal pulse, characterized by amplitude 0gA  and 

half-cycle duration dt  (corresponding to frequency /p dt  ), expressed mathematically as 

follows 

  0 if   0,
 half-cycle rectangular pulse

if   0,  
dg

g
d

t tA
x t

t t

 
  

   (8.1) 

   0 if   0sin / ,
 half-cycle sinusoidal pulse

if   0,  
dg d

g
d

t tA t t
x t

t t

  
  

 (8.2)

   0 if   0 2sin / ,
 full-cycle sinusoidal pulse

if   20,  
dg d

g
d

t tA t t
x t

t t

  
  

 (8.3)

The stability of the isolated block is examined in terms of the minimum amplitude of ground 

acceleration required to overturn the block ( / 1   ), by considering the influence of input-

motion characteristics, the geometric parameters of the block, the inertia parameters of the 

base/block system, and the constitutive parameters of the isolation system. SPYROULL
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Figure 8-1 plots the normalized minimum overturning ground acceleration as a function of 

block size R  for different values of dt  (left), and as a function of the excitation frequency p

for different values of R  (right) for the simple acceleration pulses used in the analysis. A 

linear isolation system with 0.35b  , 3sbT   is considered in this analysis. As demonstrated 

from the left-half of Figure 8-1, for the one-sided (rectangular and half-sine) pulses, the 

isolation has a positive effect on the stability of the block for 0.5sdt   or equivalently 

excitation period 1spT  . For the two-sided (full-sine) pulse, this holds true for short-period 

pulses with 0.25sdt   ( 0.5spT  ), while the effectiveness of isolation in the range 

0.25 0.6sdt   ( 0.5 1.2spT  ) is conditional on the size of the block R . That is, the 

isolation ceases to improve the stability of the block (compared with the non-isolated case) 

when subjected to such intermediate-period full-sine pulses with increasing block size. 

Nevertheless, the range of R -values for which the isolation is effective increases as the pulse 

duration increases. It should be noted however that, regardless of pulse type, the use of 

isolation is not practically beneficial (with respect to the stability of the block) for long-period 

excitations (i.e. 1spT   for half-cycle pulses and 1.2spT   for full-sine pulses). With reference 

to the right-half of Figure 8-1, the use of isolation results in enhanced behavior with 

decreasing block size, unless the system is subjected to long-period acceleration pulses.  
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Figure 8-1: Minimum overturning acceleration as a function of R  (left) and p  (right) for 

simple ground-acceleration pulses ( 4  , 0.5  , 0.35b  , 3sbT  ). 

Figures 8-2 through 8-4 illustrate the influence of linear isolation-system parameters ( bT , b ) 

and mass ratio / bm m   on the stability of the isolated block, for different values of R  (left) 

Solid Line: Non-isolated, Dashed Line: Isolated
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and for different values of dt  (right) for simple half- and full-cycle horizontal acceleration 

pulses. As can be seen from these figures, the most influential parameter on the block stability 

is the isolation-system period bT . That is, the minimum overturning ground acceleration 

increases with increasing isolation-system period, regardless of block size R , provided that 

the pulse duration does not exceed a certain value (roughly less than 1s). Observe also that the 

influence of each parameter on the stability is amplified as the pulse duration decreases. 
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Figure 8-2: Minimum overturning acceleration as a function of bT , b  and   for half-cycle 

rectangular pulse. 
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Figure 8-3: Minimum overturning acceleration as a function of bT , b  and   for half-cycle 

sinusoidal pulse. 
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Figure 8-4: Minimum overturning acceleration as a function of bT , b  and   for full-cycle 

sinusoidal pulse. 
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Figure 8-5 presents response-regime spectra in the R   space for non-isolated and isolated 

blocks of varying geometric characteristics, for half- and full-cycle pulses with duration 

0.2sdt   and 0.5s . A linear isolation system is considered in these analyses with 3sbT   and 

0.35b  . These spectra depict in a clear way the distinct regimes of block response, with the 

cyan area indicating “No Uplift”, the green area “Rocking”, and the red area “Overturning” of 

the block. A total of 6,000 nonlinear dynamic analyses were performed in constructing each 

behavior map. Each dot in these maps represents the outcome of a single analysis. As 

illustrated in Figure 8-5, the use of isolation results in an increase in the acceleration required 

to initiate rocking. In addition, the spectra plotted in Figure 8-5 elucidate a counterintuitive 

trend observed for bilateral excitations (not observed for unilateral excitations), in terms of the 

overturning potential of a given input-acceleration amplitude. That is to say, for a given block 

size, overturning occurring for certain slenderness does not necessarily imply overturning of 

the block with increasing  . In mathematical terms, this is equivalent to stating that the 

(stability) curve defining the boundary between rocking and overturning is not single-valued. 

By and large, the use of isolation results in better system performance, with respect to the 

initiation of rocking and overturning, for short-period pulses. On the contrary, for long-period 

pulses, the use of isolation is not beneficial in improving the stability of the block (compared 

with the non-isolated case). Nevertheless, the use of isolation results in an increase in the 

acceleration required to initiate rocking, regardless the pulse-period. 
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Figure 8-5: Response-regime spectra in the R   space for a non-isolated and isolated block 

of varying geometric characteristics for simple ground-acceleration pulses with 0 0.5gA g , 

0.2sdt   (left), 0.5sdt   (right) and mass ratio 0.5  . 

Figure 8-6 compares the response of the block when isolated considering a linear viscoelastic 

model with 3sbT   and 0.35b  , and a bilinear hysteretic model (typified by friction-

pendulum isolator) with parameters 0.11b   and 2.24sbR   (corresponding to 3sbT  ). In 

particular, Figure 8-6 plots the normalized minimum overturning ground acceleration as a 

function of block size R  (left), and as a function of the excitation frequency p  (right). As 

can be seen from this figure, the calculated response of the block is comparable for the two 

isolation-system models. The small discrepancy observed for large R  (>10m), does not affect 

(qualitatively or quantitatively) the conclusions drawn above on the basis of a linear isolation 

model regarding the stability and the rocking incipient condition of the block. 
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Figure 8-6: Minimum overturning acceleration for linear and bilinear hysteretic isolation 

model as a function of R  (left) and p  (right) for full-cycle sinusoidal pulse. 

Figures 8-7 and 8-8 present time histories of the dynamic response of the isolated and non-

isolated rigid blocks under full-sine pulses. Two types of isolation system are considered in 

the analysis: (a) a nonlinear isolation system with a bilinear hysteretic model (typified by 

friction-pendulum isolator) with parameters 0.11b   and 2.24mbR   (corresponding to 

3sbT  ), and (b) a linear isolation system with viscoelastic model ( 3sbT  ). These figures 

plot the ground acceleration, gx , the  normalized angular displacement, /  , (with the 

overturning of the block indicated when / 1   ), the angular velocity of the block,   and

the horizontal displacement of the isolation system, u .  
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The response of the same block using a long-period pulse ( 0.5sdt  ) is shown in Figure 8-8. 

The isolation system ceases to improve the stability of the system and both blocks (isolated 

and non-isolated) oscillate with rocking motion and finally overturn. The isolated block 

translates horizontally with a maximum displacement of approximately 350mm using both 

isolation systems. It appears that the use of isolation system delays the initiation of rocking but 

in this case it cannot prevent the overturning of the block. It is worth mentioning, that both 

blocks (isolated and non-isolated) overturn after the end of the earthquake record. The 

comparison between two figures verifies the observation made from Figure 8-5 that the use of 

isolation system is beneficial for short-period pulses.  
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Figure 8-7: Response histories for non-isolated and isolated rigid block under full-sine pulse 
with 0 0.5gA g  and 0.2sdt   ( 0.5  , 6  , 2mR  ). 
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Figure 8-8: Response histories for non-isolated and isolated rigid block under full-sine pulse 
with 0 0.5gA g  and 0.5sdt   ( 0.5  , 6  , 2mR  ). SPYROULL
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8.2 Response to Earthquake Motions 

In this section, the stability of the isolated block is investigated using a wide range of near-

fault seismic ground motions. Near-fault ground motions are typically characterized by intense 

velocity and displacement pulses of relatively long periods that clearly distinguish them from 

typical far-field ground motions. Table 8-1 lists the characteristics of the motions used for the 

dynamic analysis.  

Table 8-1: Ground motions used for the dynamic analysis 

Earthquake Station / 
Component  

Magnitude
(Mw) 

Distance   
(km) 

PGA   
(g) 

PGV 
(m/s) 

Tp   
(s) 

1966 Parkfield, CA, USA C02/SN 6.20 0.1 0.48 0.75 2.00 
1971 San Fernando, CA, USA PCD/SN 6.55 3.0 1.29 1.20 1.47 

1978 Tabas, Iran TAB/SP 7.11 1.2 0.85 1.22 5.26 

1979 Imperial Valley, CA, USA E04/SN 6.50 6.0 0.36 0.78 4.44 

E05/SN 6.50 2.7 0.38 0.92 3.92 

E06/SN 6.50 0.3 0.44 1.12 3.85 

E07/SN 6.50 1.8 0.46 1.09 3.64 

EMO / SN 6.50 1.2 0.38 1.15 2.94 

1994 Northridge, CA, USA JFA/SN 6.70 5.2 0.39 1.05 3.03 

RRS/SN 6.70 6.0 0.89 1.73 1.25 

SCG/SN 6.70 5.1 0.59 1.34 2.94 

SCH/SN 6.70 5.0 0.89 1.22 3.03 

NWS/SN 6.70 5.3 0.41 1.17 2.70 

1995 Aigion, Greece AEG/Long 6.33 6.0 0.50 0.41 0.71 

AEG/Tran 6.33 6.0 0.55 0.52 0.68 

1999 Izmit, Turkey ARC/SN 7.40 14.0 0.13 0.44 7.14 

SKR/SP 7.40 3.1 0.41 0.80 9.52 

GBZ/SN 7.40 11.0 0.26 0.41 4.76 

GBZ/SP 7.40 11.0 0.03 0.29 6.06 

1977 Bucharest, Romania BRI / SN 7.3 190 0.21 0.75 2.13 

1994 Northridge, CA, USA Pacoima / PKC090 6.7 8.2 0.30 0.31 0.61 

2004 Parkfield Cholame 3W / 360 6.0 8 0.57 0.38 0.52 

The stability of the isolated block is examined in terms of the minimum amplitude of ground 

acceleration required to overturn the block ( / 1   ), by considering the influence of input-

motion characteristics, the geometric parameters of the block, the inertia parameters of the 

base/block system, and the constitutive parameters of the isolation system. 

Representative results are shown in Figure 8-9 for the SN-component of the BRI record from 

the 1977 Bucharest earthquake, and the SN-component of the EMO record from the 1977 
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Imperial Valley motion (long-period records with prevailing period 2.13spT   and 2.94spT 

respectively, based on Mavroeidis and Papageorgiou (2003)), as well as the 90-component of 

the Pacoima Dam record from the 1994 Northridge earthquake and the 360-component of the 

Cholame-3W record from the 2004 Parkfield event (short-period records with prevailing 

period 0.61spT   and 0.52spT   respectively, based on Bray and Rodriguez-Marek (2004). In 

particular, Figure 8-9 plots the minimum ground acceleration needed to overturn the block as a 

function of block size R , for both the non-isolated and isolated case (with isolation-system 

periods 2sbT   and 3sbT  ). As indicated in this figure, for the short-period Parkfield, 

Cholame-3W record (with 0.52spT  ), the isolation system has a positive effect on the 

stability of the block, regardless of block size R , provided that the isolation system is 

designed to have sufficiently large period (case of 3sbT  ). Note that for the case of the 

Northridge, Pacoima-Dam record (with 0.61spT  ), the effectiveness of isolation is 

conditional on the size of the block R . On the contrary, for the long-period Bucharest, BRI 

record and Imperial Valley, EMO record ( 2spT  ), the use of isolation is not beneficial in 

improving the stability of the block (compared with the non-isolated case). It is worthy of 

noting that these response trends, with respect to the excitation period, are in line with the 

observed trends for the case of simple full-cycle acceleration pulses. 
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Figure 8-9: Minimum overturning acceleration for short- and long-period pulse-like 

earthquake motions. ( 4  , 0.5  , 0.2b  ). 

Figures 8-10 and 8-11 depict response-regime spectra in the R   space for non-isolated and 

isolated blocks of varying geometric characteristics, for the considered long- and short-period 

earthquake records. These spectra suggest that, for the short-period earthquake motions the use 

of isolation results in an increase in the acceleration required to initiate rocking, a benefit that 

increases as the isolation period increases. The effectiveness of isolation in increasing the 

stability of the block is evident in the case of short- to intermediate-range period excitations, 

i.e. the Parkfield, Cholame-3W record (with 0.52spT  ), the Aigion, AEG record (with 

0.71spT  ), and the Aigion, AEG record (with 0.68spT  ). This is also true for the case of the 

Northridge, Pacoima-Dam record (with 0.61spT  ), with the exception of very slender blocks 
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(large  ) where the effectiveness of isolation depends on the size of the block R . On the 

contrary, for long-period excitations, i.e. the Bucharest, BRI record, the Imperial Valley, EMO 

record, the Parkfield, C02 record and the Northridge, NWS record (with 2spT  ), the use of 

isolation is not beneficial in improving the stability of the block. Similar observations have 

been made from analysis results with simple full-cycle acceleration pulses. It is also 

interesting to observe that the use of isolation improves the performance of the block, with 

respect to the initiation of rocking, regardless of the excitation period. The only exception to 

this, was the case of an isolation system with 2sbT   under Bucharest, BRI record. However, 

with an appropriate selection of the isolation-system period ( 2.5sbT  ), the aforementioned 

observation is still valid. Appendix A contains comparisons of experimental and analytical 

results for non-isolated and isolated rigid blocks through response-regime spectra in the R   

space. A representative sample of results from Appendix A is presented in Figures 8-10 and 

8-11.
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Figure 8-10: Response-regime spectra in the R   space for a non-isolated and isolated block 

of varying geometric characteristics under (a) Bucharest, BRI / SN (Tp = 2.13s),      

(b) Imperial Valley, EMO / SN (Tp = 2.94s), (c) Parkfield, Cholame 3W / 360 (Tp = 0.52s),

and (d) Northridge, Pacoima / 90 (Tp = 0.61s) records. 
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Figure 8-11: Response-regime spectra in the R   space for a non-isolated and isolated block 

of varying geometric characteristics under (a) Parkfield, C02 / SN (Tp = 2.00s),       

(b) Northridge, NWS / SN (Tp = 2.70s), (c) Aigion, AEG / Long (Tp = 0.71s),

and (d) Aigion, AEG / Tran (Tp = 0.68s) records.  

The effect of linear isolation-system parameters on the block behavior is illustrated in Figure 

8-12 through response-regime spectra in the -b bT   space for the considered earthquake 

records. These spectra specify the values of the constitutive parameters of the isolation system 

that provide improved performance of the analyzed block subjected to the specific pulse-type 
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ground excitations. As seen from Figure 8-12, the range of , b bT   values corresponding to 

enhanced system performance are considerably larger for the case of short-period records. The 

effect of block size R  is shown in the -b bT   spectra of Figures 8-13 and 8-14 for the 

Bucharest, BRI and Northridge, Pacoima record, respectively, for a given block slenderness 

 . Observe that the boundary between no-uplift and rocking regimes (cyan and green areas, 

respectively) is invariant to the change of block size R , justifying that the initiation of rocking 

is not dependent on the absolute size of the block (but rather on the height-to-width ratio  , as 

Equation (5.73) suggests). Moreover, the unfavourable (red) region in the -b bT   space 

entailing overturning of the block is reduced as the block size R  increases. Similar 

observation has been made from analysis results with simple acceleration pulses (Figure 8-5). 

Evidently, the damping ratio, b , has a significant influence on the effectiveness of isolation. 

In particular, the effectiveness of isolation is reduced as the damping ratio decreases.  
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Figure 8-12: Response-regime spectra in the Tb-ξb space for isolated block under Bucharest, 

BRI / SN, Imperial Valley, EMO / SN, Parkfield, Cholame 3W / 360 and Northridge, Pacoima 

/ 90 records ( 4  , 0.5  , 6mR  ). 
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Figure 8-13: Response-regime spectra in the -b bT   space for isolated block of varying size R  

under Bucharest, BRI / SN record (Tp = 2.13s, 3  ). 
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Figure 8-14: Response-regime spectra in the -b bT   space for isolated block of varying size R  

under Northridge, Pacoima / 90 record (Tp = 0.61s, 3  ). 

Figure 8-15 depicts response-regime spectra in the R   space for a wide range of rigid 

blocks under recorded near-fault ground motions using a bilinear hysteretic model with 

parameters 0.11b   and 2.24sbR   (corresponding to 3sbT  ), and a viscoelastic model 

with 3sbT   and 0.35b  . As shown in these figures, the dynamic behavior of the block for 

the two types of seismic isolation is similar while the initiation of rocking (boundary between 

cyan and green areas) is not drastically affected. Appendix B presents comparisons of 

experimental and analytical results for isolated rigid blocks using linear and nonlinear 

isolation system through response-regime spectra in the R   space. A representative sample 

of results from Appendix B is presented in Figure 8-15. SPYROULL
A S. O
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Figure 8-15: Response-regime spectra in the R   space for a class of isolated rigid blocks 

under (a) the SN component of 1979 Imperial Valley, CA, USA earthquake (EMO station) and 

(b) the SN component of 1979 Imperial Valley E05 earthquake

( 0.5  , 0.11b  , 2.24mbR  , 3sbT  ). 

Figures 8-16 through 8-18 present time histories of the dynamic response of isolated and non-

isolated rigid blocks under the SN component of 1977 Bucharest, Romania earthquake with a 

peak amplitude of 0.21g. Two types of isolation systems are considered in the analysis: (a) a 

nonlinear isolation system with a bilinear hysteretic model (typified by friction-pendulum 

isolator) with parameters 0.11b   and 2.24mbR   (corresponding to 3sbT  ), and (b) a 

linear isolation system with viscoelastic model with 3sbT  . These figures plot the ground 

acceleration, gx , the normalized angular displacement, /  , (with the overturning of the 

block indicated when / 1   ), the angular velocity of the block,   and the horizontal

displacement of the isolation system, u . 

Figure 8-16 shows the response of a block with size-parameter 8mR  , slenderness ratio 

8  , and mass ratio 0.5  . The block (non-isolated or isolated) oscillates in the rocking
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regime. This estimation can also be made from Figure 8-10, but the response history reveals 

that the angular velocity and rotation angle of an isolated block using linear-isolation system is 

reduced drastically with time (rocking regime ceases) and the system finally oscillates in the 

system-translation regime. It is also observed that, the initiation of rocking for isolated and 

non-isolated block follows the peak amplitude of the ground acceleration. Using a linear 

isolation system the maximum horizontal system translation is approximately 250mm. Finally, 

the system comes to rest before the end of the earthquake record. Using the nonlinear isolation 

system the maximum horizontal system translation is approximately the same with the 

permanent displacement (100mm). 

Figure 8-17 shows that both blocks (isolated and non-isolated) with 2mR   and 10  , 

oscillate with rocking motion and finally overturn. In particular, the non-isolated block 

overturns immediately after the initiation of rocking clockwise. The isolated block enters 

clockwise rocking regime and after an impact event it finally overturns. 

Figure 8-18 depicts response histories of system with 0.8mR   and 5.6  . The non-isolated 

block initially oscillates with clockwise rocking and upon impact the oscillation pattern 

switches to anti-clockwise rocking motion and finally overturns. In contrast, the isolated block 

switches between anticlockwise and clockwise rocking motions, and after a few seconds the 

system switches to system-translation regime. For further response histories for non-isolated 

and isolated rigid blocks under near-fault ground motions, refer to Appendix C. 
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Figure 8-16: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 0.5  , 8  , 8mR  ). SPYROULL
A S. O
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Figure 8-17: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 0.5  , 10  , 2mR  ). SPYROULL
A S. O
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Figure 8-18: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 0.5  , 5.6  , 0.8mR  ). SPYROULL
A S. O
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8.3 Response to Idealized Pulse-Type Motions 

In this section, a comparison between the dynamic response of the system using idealized 

pulse-type motions and recorded near-fault ground motions is presented. The aim is to 

investigate whether the dynamic response of such systems can be estimated accurately using 

the idealized pulse-type motions instead of the actual ground motions. The sophisticated 

analytical model of Mavroeidis and Papageorgiou (2003) is used for the representation of 

near-fault ground motions as idealized pulse-type motions.  

The mathematical representation of ground acceleration for near-fault ground motions, as 

proposed by Mavroeidis and Papageorgiou (2003), is 
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 (8.4) 

where, pT  is the pulse duration, equal to the inverse of the prevailing frequency ( pf );   is a 

parameter that defines the oscillatory character; A  controls the amplitude of the signal; v  is 

the phase of the amplitude-modulated harmonic; and 0t  specifies the epoch of the envelope’s 

peak. 

Table 8-2 lists the characteristics of the recorded near-fault ground motions, together with the 

model input parameters associated with the idealized pulse-type motions, used for the dynamic 

analysis.  
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Table 8-2: Characteristics of recorded near-fault ground motions and model input parameters  

for the idealized pulse-type motions (Mavroeidis and Papageorgiou (2003)). 

Earthquake Station / 
Component 

Magnitude
(Mw) 

Distance   
(km) 

PGA   
(g) 

PGV 
(m/s) 

A γ ν(ο) fp (Hz) 

1966 Parkfield, CA, USA C02/SN 6.20 0.1 0.48 0.75 60.0 1.700 100.0 0.500 
1971 San Fernando, CA, USA PCD/SN 6.55 3.0 1.29 1.20 115.0 1.600 180.0 0.680 

1978 Tabas, Iran TAB/SP 7.11 1.2 0.85 1.22 104.0 2.200 180.0 0.190 

1979 Imperial Valley, CA, USA E04/SN 6.50 6.0 0.36 0.78 71.0 1.900 305.0 0.225 

E05/SN 6.50 2.7 0.38 0.92 84.0 1.900 300.0 0.255 

E06/SN 6.50 0.3 0.44 1.12 96.0 2.100 265.0 0.260 

E07/SN 6.50 1.8 0.46 1.09 79.0 2.100 25.0 0.275 

EMO / SN 6.50 1.2 0.38 1.15 78.0 2.300 0.0 0.340 

1994 Northridge, CA, USA JFA/SN 6.70 5.2 0.39 1.05 87.0 2.300 100.0 0.330 

RRS/SN 6.70 6.0 0.89 1.73 142.0 1.700 20.0 0.800 

SCG/SN 6.70 5.1 0.59 1.34 93.0 2.500 0.0 0.340 

SCH/SN 6.70 5.0 0.89 1.22 80.0 2.300 0.0 0.330 

NWS/SN 6.70 5.3 0.41 1.17 94.0 1.700 200.0 0.370 

1995 Aigion, Greece AEG/Long 6.33 6.0 0.50 0.41 44.5 1.450 75.0 1.400 

AEG/Tran 6.33 6.0 0.55 0.52 61.0 1.200 205.0 1.480 

1999 Izmit, Turkey ARC/SN 7.40 14.0 0.13 0.44 41.0 1.380 225.0 0.140 

SKR/SP 7.40 3.1 0.41 0.80 67.0 1.023 5.0 0.105 

GBZ/SN 7.40 11.0 0.26 0.41 34.5 2.200 220.0 0.210 

GBZ/SP 7.40 11.0 0.03 0.29 28.0 1.800 85.0 0.165 

1977 Bucharest, Romania BRI / SN 7.3 190 0.21 0.75 62.0 2.400 200.0 0.470 
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Figures 8-19 through 8-24 present results from the dynamic behavior of isolated rigid 

blocks under near-fault ground motions and their pulse-type idealization based on 

Mavroeidis and Papageorgiou (2003). A linear isolation system is considered in these 

analyses with 3sbT  , 0.35b  . The response history, located at the top of each figure, 

illustrates the recorded ground motion and its idealized pulse-type motion. The dynamic 

response of the system is presented using response-regime spectra in the R   space, 

located at the bottom of each figure. As seen from this figure, the system response when 

subjected to the recorded near-field motion and its simulated representation is similar. The 

initiation of rocking (boundary between cyan and green areas) is not drastically affected 

and the rocking (green area) and overturning areas (red area) are comparable. It is evident, 

that the dynamic response of the isolated system can be estimated properly using the 

idealized pulse-type motion (Mavroeidis and Papageorgiou (2003)) instead of the actual 

ground motion. 

Figure 8-19: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SN component of 1994 Northridge, CA, NWS 

earthquake and (b) its pulse-type representation. 
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Figure 8-20: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SN component of 1977 Bucharest, Romania 

earthquake and (b) its pulse-type representation. 
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Figure 8-21: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SP component of 1978 Tabas, Iran earthquake and 

(b) its pulse-type representation.
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Figure 8-22: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SN component of 1966 Parkfield, CA earthquake 

and (b) its pulse-type representation. 
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Figure 8-23: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SN component of 1979 Imperial Valley, CA, EMO 

earthquake and (b) its pulse-type representation. 
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Figure 8-24: Response-regime spectra in the R   space for an isolated block of varying 

geometric characteristics under (a) the SN component of 1999 Izmit, Turkey, GBZ 

earthquake and (b) its pulse-type representation. 

The effect of isolation-system parameters on the block behavior using the actual ground 

motion and the idealized pulse-type motion of Bucharest, BRI record is illustrated in 

Figure 8-25 through response-regime spectra in the -b bT   space. These spectra specify the 

values of the constitutive parameters of the isolation system that provide improved 

performance of the analyzed block subjected to the specific pulse-type ground excitation. 

The analysis has been accomplished for different size, R , of the block. As seen from this 

figure, for the idealized pulse-type motion, the boundary between no-uplift and rocking 

regime (cyan and green areas, respectively) is different from that of the actual record 

especially for 1spT  . In general, the use of idealized pulse motions yields to more 

conservative results, regarding the initiation of rocking (larger cyan area). On the other 

hand, the overturning region (red area) is approximately the same using actual and 

idealized pulse-type motions.  
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Figure 8-25: Response-regime spectra in the -b bT   space for isolated block of varying size 

R  under Bucharest, BRI / SN record (first column) and its pulse-type idealization (second 

column) ( 3  ). 
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CHAPTER 9  

Multi-Pattern Response to Dynamic Base Excitation 

In this chapter, the multi-pattern response of the isolated rigid block subjected to full-cycle 

sinusoidal pulses and horizontal near-fault ground motions is investigated, assuming 

sliding between the block and the supporting base. The complexity of the problem 

increases in comparison with the previous chapter as the system is realized through pure 

system translation, sliding, rocking, and slide-rocking oscillation regimes. This 

investigation gives a more realistic approximation for the dynamic response of the system 

and reveals the general treatment of the problem.  

9.1 Response to Simple Acceleration Pulses 

The general planar motion response of the isolated and non-isolated rigid block is 

investigated first using full-cycle sinusoidal pulses. The horizontal full-cycle sinusoidal 

pulse is characterized by amplitude 0gA  and half-cycle duration dt  (corresponding to 

frequency /p dt  ), expressed mathematically as follows 

   0 if   0 2sin / ,

if   20,  
dg d

g
d

t tA t t
x t

t t

  
  

 (9.1) 

The stability of the isolated block is examined in terms of the minimum amplitude of 

ground acceleration required to initiate each oscillation pattern and overturn the block (

/ 1   ), by considering the influence of input-motion characteristics, the friction 

coefficient between the block and the base, and the constitutive parameters of the isolation 

system. 

Figures 9-1 through 9-5 present the general response of non-isolated (left) and isolated 

(right) rigid blocks with different block size R  under full-cycle sinusoidal pulses. These 

figures plot the minimum acceleration amplitude, 0 /gA g , required for the system to enter 

into different oscillation regimes, as a function of the static-friction coefficient, s , and 

duration of pulse, dt . The isolation-system parameters used in the analysis are elastic 

stiffness 40kN/mbk  , period 3sbT  , and damping ratio 0.35b  . Each figure is 

divided into five areas: (a) S: pure sliding occurs (grey area), (b) R: pure rocking occurs 

(green area), (c) SR: slide-rocking occurs (blue area), (d) SA: safe area and (e) CA: critical 
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area. It is worth mentioning that pure sliding or pure rocking may preceded the slide-

rocking motion. The safe area indicates that the system is at rest (non-isolated) or at system 

translation regime (isolated). The critical area corresponds to system failure through 

overturning of the block (when the normalized rotation angle / 1   ).  

As seen from Figure 9-1 the sliding motions are more intensive for small values of 

coefficient of static friction, while rocking motion predominates for higher values of the 

static-friction coefficient. For small values of the coefficient of friction, the block oscillates 

in the sliding regime while as the acceleration increases the system undergoes slide-

rocking and finally overturns. As expected, the minimum ground acceleration needed to 

initiate sliding is increased linearly with the coefficient of static friction, Equation (5.33). 

For pulse duration 0.3sdt  , the minimum ground acceleration required to initiate pure 

sliding or pure rocking is larger in the case of the isolated block. As a result, the safe area 

is extended in comparison with the non-isolated block. In addition, the overturning failure 

is associated with larger ground accelerations for the isolated block. It is also observed 

that, for small values of the coefficient of friction, the minimum overturning ground 

acceleration for isolated block is markedly greater than that for large values of friction. 

Evidently, the value of the coefficient of friction plays an important role in the 

performance of the isolated block. Note that the system is highly nonlinear and very 

sensitive to the variation of the parameters; the minimum overturning ground acceleration 

differs for each coefficient of static friction. 

The effect of pulse duration on the rocking response (green area) of the system is 

investigated in detail in Section 8.1. Herein, the investigation focuses mostly on the effect 

of pulse duration on sliding (grey area) and slide-rocking (blue area). Figures 9-1 through 

9-5 show that the isolation system has a positive effect on the stability of the block in

comparison to the non-isolated block for period pulses with 0.7sdt   or equivalently 

excitation period 1.4spT  . As the pulse duration decreases the safe area increases in 

comparison to the non-isolated block. However, it should also be noted that as the pulse 

duration increases, the minimum overturning ground acceleration decreases rapidly in 

comparison to the non-isolated block. Consequently, the use of isolation may not be 

beneficial for excitation periods 1.4spT   ( 0.7s)dt  .  

It is also observed that, as the size of the block, R , increases, the minimum ground 

acceleration needed to overturn the block (be it non-isolated or isolated) increases. Note 
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that the safe area is invariant to the change of the block size R , justifying that the initiation 

of rocking and sliding in not dependent on the absolute size of the block (but rather to the 

height-to-width ratio  ).  

Figure 9-1: Minimum ground acceleration as a function of coefficient of static friction for 
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simple full-sine ground-acceleration pulse ( 5  , 0.5mR  , 0.5  ). 

Figure 9-2: Minimum ground acceleration as a function of coefficient of static friction for 

simple full-sine ground-acceleration pulse ( 5  , 2mR  , 0.5  ).  
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Figure 9-3: Minimum ground acceleration as a function of coefficient of static friction for 

simple full-sine ground-acceleration pulse ( 5  , 4mR  , 0.5  ).  SPYROULL
A S. O
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Figure 9-4: Minimum ground acceleration as a function of coefficient of static friction for 

simple full-sine ground-acceleration pulse ( 5  , 6mR  , 0.5  ). SPYROULL
A S. O
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Figure 9-5: Minimum ground acceleration as a function of coefficient of static friction for 

simple full-sine ground-acceleration pulse ( 5  , 8mR  , 0.5  ).  

Figure 9-6 illustrates the influence of the linear isolation-system period, bT , on the 

performance of the isolated block, for different values of the coefficient of static friction,  
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s , for full-cycle sinusoidal pulses. As demonstrated in this figure, the minimum ground 

acceleration, for all areas, increases with increasing isolation-system period and the safe 

area is extended. Nevertheless, as shown in Figure 8-13 (Section 8.2), the values of 

isolation system parameters ( b , bT ) have a significant influence on the response of the 

system. 

Figure 9-6: Minimum ground acceleration as a function of isolation-system period and 

coefficient of static friction for full-cycle sinusoidal pulse 

( 6  , 2mR  , 0.5  , 0.5sdt  , 0.35b  ).  

Figure 9-7 presents response-regime spectra in the R   space for non-isolated and 

isolated blocks of varying geometric characteristics, for full-cycle pulses with duration 

0.2sdt   and . These spectra depict in a clear way the distinct regimes of block 

response, with the cyan area indicating “No Uplift/No Sliding”, the grey area “Pure 

Sliding”, the green area “Pure Rocking”, the blue area “Slide-rocking” and the red area 

“Overturning” of the block. In these figures, the analysis is concentrated in the case where 

the coefficient of static friction, s , it equal to 0.20. As illustrated in Figure 9-7, the use of 

isolation for pulse duration 0.2sdt   prevents the occurrence of sliding motions and the 

response-regime spectrum is the same as that of the pure-rocking block. For pulse duration 

0.5sdt  , it is observed that for isolated rigid blocks with slenderness ratio 1/ s  , pure 

sliding motion is more intensive regardless of block size R . In contrast, rocking motions 

predominates for 1/ s   and the effect of isolation system is not beneficial to the 

dynamic response of the system. 

By and large, the use of isolation results in better system performance, with respect to 

overturning and initiation of rocking and slide-rocking, for short-period pulses. On the 

contrary, for long period pulses, the response does not adhere to an observable trend, 
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regarding the stability of the system, inasmuch as there exist combinations of ( ,  R ) 

values for which the isolation is either effective or ineffective.   

Figure 9-7: Response-regime spectra in the R   space for non-isolated and isolated block 

of varying geometric characteristics for full-sine ground-acceleration pulses with 0.2sdt 

(left) and 0.5sdt   (right) ( 0 0.5gA g , 0.5  , 0.2s  , 3sbT  , 0.35b  ). 

Figure 9-8 presents the response-regime spectra in the R   space for non-isolated and 

isolated blocks of varying geometric characteristics, for full-cycle pulse with duration 

0.5sdt   using different values of the coefficient of friction s . It is observed that for 

small values of the coefficient of friction, the sliding motions are dominating, while as the 

coefficient of friction increases the rocking motions predominate. In addition, an isolated 

block with 1/ s   has better performance with respect to the initiation of rocking, slide-

rocking and overturning of the block, in comparison with the non-isolated block. Pure 

sliding is suppressed for blocks with 1/ s   and slide-rocking and pure rocking motions 

occur. The coefficient of static friction appears to improve the stability of the system. Note 

that a wrong estimation of the value of the coefficient of friction may result in a 

conservative and incorrect solution.  
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Figure 9-8: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics for full-sine ground-acceleration pulses 

with 0.5sdt   for different coefficients of static friction

( 0 0.5gA g , 0.5  , 3sbT  , 0.35b  ). 

Figures 9-9 and 9-10 present time histories of the dynamic response of isolated and non-

isolated rigid blocks under full-sine pulses. The general dynamic response is calculated for 

specific geometric characteristics of the block and using a linear isolation system with 

3sbT   and 0.35b  . The plots illustrate the ground acceleration, gx , the horizontal 

displacement and velocity of the isolation system, u  and u , the normalized angular 

displacement, /  , (with the overturning of the block indicated when / 1   ), the 

angular velocity of the block,   and the horizontal displacement and velocity of the block 

due to sliding, sx   and sx . Note that the block enters a slide-rocking regime when sliding 

and pivoting on its edges at the same time.  

Figure 9-9 shows the response of a rigid block with size-parameter 4mR  , slenderness 

ratio 4  , mass ratio 0.5   and coefficient of friction between the block and the base 

0.2s   under short-period pulse, 0.2sdt   with a peak amplitude of 0.5g. The isolated 

block oscillates only with system-translation regime. The maximum horizontal 

displacement is approximately 100mm and the permanent displacement 50mm. In contrast, 
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the non-isolated block oscillates in the slide-rocking regime which leads to several impact 

events between the block and the supporting base and permanent displacement due to 

sliding 40mmsx  . It appears that, the sliding between the block and the base prevented 

the initiation of rocking for a small duration of time.  

Figure 9-10 depicts response histories of a system with the same characteristics under a 

long-period pulse 0.5sdt  . The isolated block oscillates in the system-translation and 

sliding regimes. The isolated block translates horizontally with the isolation system 

approximately 350mm. In contrast, the non-isolated block oscillates in the sliding and 

slide-rocking regimes. Finally, both blocks (non-isolated/isolated) have a permanent 

displacement due to sliding. The non-isolated block has 305mmsx   and the isolated 

block 125mmsx  . Note that non-isolated block faced impact event several times during 

rocking motion. 
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Figure 9-9: Response histories for non-isolated and isolated rigid block under full-sine 

pulse with 0 0.5gA g  and 0.2sdt   ( 4  , 4mR  , 0.2s  , 0.5  ). SPYROULL
A S. O
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Figure 9-10: Response histories for non-isolated and isolated rigid block under full-sine 

pulse with 0 0.5gA g  and 0.5sdt   ( 4  , 4mR  , 0.2s  , 0.5  ). SPYROULL
A S. O
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9.2 Response to Earthquake Motions 

In this section, the general-planar motion dynamic response of the isolated and non-

isolated rigid block is calculated using near-fault seismic ground motions. Near- fault 

ground motions are typically characterized by intense velocity and displacement pulses of 

relatively long period that clearly distinguish them from typical far-field ground motions. 

Table 8-1 lists the characteristics of the motions used for the dynamic analysis. 

Representative results are shown in Figure 9-11 for SN component of 1977 Bucharest, 

Romania earthquake, SN component of 1979 Imperial Valley E05, California, USA 

earthquake and SN component of 1966 Parkfield C02, California, USA earthquake. This 

figure plots the minimum acceleration amplitude required for the system to enter into 

different oscillation regimes, as a function of the static-friction coefficient. The isolation-

system parameters used in the analysis are: elastic stiffness 40kN/mbk  , period 3sbT  , 

and damping ratio 0.35b  . Each figure is divided into five areas: (a) S: pure sliding 

occurs (grey area), (b) R: pure rocking occurs (green area), (c) SR: slide-rocking occurs 

(blue area), (d) SA: safe area and (e) CA: critical area. It is worth mentioning that pure 

sliding or pure rocking may have preceded the slide-rocking motion. The safe area 

indicates that the system is at rest (non-isolated) or in system translation regime (isolated). 

The critical area corresponds to system failure through overturning of the block ( / 1   ).  

Figure 9-11 reveals that, for a system with geometric characteristics 5  , 2mR  , and 

0.5  , the use of isolation results in improved performance in comparison with non-

isolated block. The minimum ground acceleration required to initiate sliding or rocking is 

larger in the case of the isolated block. As a result, the safe area is extended in comparison 

to the non-isolated block. In addition, overturning (boundary of critical area) is associated 

with larger ground accelerations for the isolated block. As expected, sliding motions are 

dominating for small values of the coefficient of static friction, while rocking motion 

predominates for higher values of the static-friction coefficient. It is also observed that, for 

small values of the coefficient of friction the minimum overturning ground acceleration is 

noticeably greater than that for large values of friction. Evidently, the value of the 

coefficient of friction has a significant impact on the performance of the isolated block. 

Using a small for the coefficient of friction, the initiation of slide-rocking regime and the 

overturning of the block occur at larger values of ground acceleration.  
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Figure 9-11: Minimum ground-acceleration amplitude required for the system to enter into 

different oscillation regimes under (a) SN component of 1977 Bucharest, Romania 

earthquake, (b) SN component of 1979 Imperial Valley E05, California, USA earthquake 

and (c) SN component of 1966 Parkfield C02, California, USA earthquake 

( 5  , 2mR  , 0.5  ).

Figure 9-12 illustrates the influence of isolation-system period, bT , on the stability of the 
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isolated block, for different values of the coefficient of static friction, s , for near-fault 

ground motions. The minimum ground acceleration needed to initiate each motion is 

extended to larger values with increasing isolation-system period. In addition, overturning 

(boundary of critical area) is associated with larger ground accelerations. A similar 

observation has been made for the analysis with simple full-cycle acceleration pulses, 

Figure 9-6.   

Figure 9-12: Minimum ground acceleration as a function of isolation-system period and 

coefficient of static friction under the SN component of 1977 Bucharest, Romania 

earthquake (top) and the SN component of 1979 Imperial Valley E05, California, USA 

earthquake (bottom) ( 5  , 2mR  , 0.5  ). 

Figures 9-13 and 9-14 present response-regime spectra in the R   space for non-isolated 

and isolated blocks of varying geometric characteristics, for near-fault ground motions 

using different values of the coefficient of friction s . As expected, for small values of the 

coefficient of friction, the sliding motions are dominating and as the coefficient of friction 

increases the sliding motions are suppressed and the rocking motions occur. The 

investigation has shown that an isolated block with 1/ s   eliminates the possibility of 

failure in comparison with the non-isolated block. The initiation of rocking motion and 
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potential overturning of the block appear in blocks with 1/ s  . Based on this 

observation, knowing the value of the coefficient of friction and the slenderness ratio of the 

rigid block, a proper estimation of the effectiveness of isolation can be carried out. Note 

that a wrong estimation of the value of the coefficient of friction may result in a 

conservative and incorrect solution. Similar observations have been made for the analysis 

with simple full-cycle acceleration pulses, Figure 9-8. Appendix D contains comparisons 

of experimental and analytical results for non-isolated and isolated rigid blocks through 

response-regime spectra in R   space. A representative sample of results from Appendix 

D is presented in Figures 9-13 and 9-14. 

Figure 9-13: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under the SN component of 1977 

Bucharest, Romania earthquake for different coefficients of static friction

( 0.5  , 3sbT  , 0.35b  ). 
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Figure 9-14: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under the SN component of 1979 

Imperial Valley E05, California, USA earthquake for different coefficients of static friction 

( 0.5  , 3sbT  , 0.35b  ). 

Figures 9-15 and 9-16 depict response-regime spectra in the R   space for a wide range 

of rigid blocks under recorded near-fault ground motions using a bilinear hysteretic model 

with parameters 0.11b   and 2.24sbR   (corresponding to 3sbT  ), and a viscoelastic 

model with 3sbT   and 0.35b  . Two different values of coefficient of static friction, s

, are considered in the analysis 0.2 and 0.3. As can be seen from these figures, the dynamic 

response of the system is comparable using either small or large values of the coefficient of 

static friction between the block and the base, with the initiation of slide-rocking, rocking 

and overturning of the block are not drastically affected. In particular, for small value of 

the coefficient of static friction and slenderness ratio 1/ s  , both systems oscillate in 

the pure sliding regime. As the slenderness ratio increases, both systems oscillate in the 

slide-rocking and pure rocking regimes which may result in overturning failure. For large 

values of the coefficient of friction, sliding motions are suppressed and rocking motions 

predominate. Appendix E contains comparisons of experimental and analytical results for 

isolated rigid blocks using linear and nonlinear isolation system through response-regime 
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spectra in the R   space. A representative sample of results from Appendix E is 

presented in Figures 9-15 and 9-16. 

 

Figure 9-15: Response-regime spectra in the R   space for isolated rigid block of 

varying geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN 

component of 1979 Imperial Valley, CA, USA earthquake (EMO station) for different 

coefficients of static friction ( 0.5  , 0.11b  , 2.24mbR  , 3sbT  ). 

No Uplift/No Sliding Pure Sliding Pure Rocking Slide-rocking Overturning
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Figure 9-16: Response-regime spectra in the R   space for isolated rigid block of 

varying geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN 

component of 1994 Northridge JFA, CA, USA earthquake for different coefficients of 

static friction ( 0.5  ). 

Figures 9-17 through 9-19 present time histories of the dynamic response of the isolated 

and non-isolated rigid blocks under horizontal ground excitations. The general dynamic 

response is calculated for specific geometric characteristics of the block and using a linear 

isolation system with 3sbT   and 0.35b  . The plots illustrate the ground acceleration, 

gx , the horizontal displacement and velocity of the isolation system, u  and u , the 

normalized angular displacement, /  , (with the overturning of the block indicated when 

/ 1   ), the angular velocity of the block,   and the horizontal displacement and 

velocity of the block due to sliding, sx   and sx . Note that the block enters slide-rocking 

regime when sliding and pivoting on its edges at the same time.  

Figure 9-17 shows the response of a block with size-parameter 11mR  , slenderness ratio 

11  , mass ratio 0.5  , and coefficient of friction between the block and the base

0.1s  under the SN component of 1977 Bucharest, Romania earthquake. The non-

isolated block oscillates in the rocking and slide-rocking regimes. In contrast, the isolated 
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block oscillates in the system translation and rocking regimes. The maximum horizontal 

displacement due to system translation is approximately 250mm. For this case, the system-

translation regime prevents sliding of the block on the rigid base. Neither of the blocks 

(non-isolated/isolated) overturn, yet the non-isolated block has a small permanent 

displacement due to sliding 6mmsx  .  

Figure 9-18 plots the response of a system with 2mR  , 12  , 0.5  , and 0.1s   

under the SN component of 1977 Bucharest, Romania earthquake. The block gets though 

slide-rocking motion and finally overturns. It appears that, the system-translation response 

caused a small delay to the overturning of the block, in comparison with the non-isolated 

case. The displacement attained due to sliding is very small for both systems.  

Figure 9-19 depicts response histories of a system with 4mR  , 8  , 0.5  , and  

0.2s  , under the SN component of 1979 Imperial Valley E05 earthquake. The block 

oscillates in the rocking motion and finally overturns. It is possible that the system-

translation response delayed the initiation of rocking in comparison with the non-isolated 

system. 
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Figure 9-17: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 11  , 11mR  , 0.1s  , 0.5  ).  SPYROULL
A S. O
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Figure 9-18: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 12  , 2mR  , 0.1s  , 0.5  ). SPYROULL
A S. O
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Figure 9-19: Response histories for non-isolated and isolated rigid block under the SN 

component of 1977 Bucharest, Romania earthquake ( 8  , 4mR  , 0.2s  , 0.5  ).SPYROULL
A S. O
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CHAPTER 10 

Conclusions 

10.1 Summary and Conclusions 

Most seismic design codes permit heavy damages to buildings in case of large earthquakes, 

provided that the building is protected against collapse. Conventional seismic design 

practice ties buildings rigidly to their foundations and makes them strong enough to resist 

forces produced by earthquakes. But experience has revealed that this approach generates 

large forces in structures during a seismic event. Even if the structural system survives, 

damage to nonstructural components and contents can affect the operation of the building. 

Loss of function is unacceptable for high-importance individual elements, such as high-

value building contents, mechanical or electrical equipment, computer servers, and 

irreplaceable museum artifacts.  

To minimize these large earthquake forces, seismic engineers have been using a new 

technology over the last three decades as a practical method of protecting buildings from 

earthquake shaking, known as base or seismic isolation. In contrast with the conventional 

design, seismic isolators decouple the structure from the foundation while permitting large 

horizontal displacements. In effect, seismic isolation lengthens the natural period of a 

structure away from the predominant frequency of the ground motion. The effectiveness of 

base-isolation technology in safeguarding engineering structures paved the way for 

extending the concept to individual elements of high-importance. The aforementioned 

elements often exhibit rigid-body behavior under seismic excitation, and their study should 

be performed within the context of rigid-body dynamics.  

This dissertation concentrates on the general multi-pattern dynamic response of base-

isolated rigid blocks subjected to ground excitation, through the development of a 

comprehensive mathematical formulation, including a rigorous model governing impact. 

The study examines in depth the motion of the system with a large-displacement 

formulation that combines the exact (nonlinear) equations of motion together with a 

rigorous model governing impact. The system considered consists of a symmetric rigid 

block standing free on a seismically isolated rigid base. The response of the system is 

described in terms of four oscillation regimes: system translation, in which the base-block 

system translates as a whole (one-degree-of-freedom response); sliding, in which the block 

slides relative to the horizontally-moving base (two-degree-of-freedom response); rocking, 

SPYROULL
A S. O

DYSSEOS



277 

in which the block pivots on its edges with respect to the horizontally-moving base (two-

degree-of-freedom response); and slide-rocking, in which the block simultaneously slides 

and pivots on its edges with respect to the horizontally-moving base (three-degree-of-

freedom response). Two models for the isolation system are considered, a linear model 

with viscoelastic behavior and a nonlinear model with bilinear hysteretic behavior. The 

governing equations of motion are obtained for each oscillation regime using the Lagrange 

method. The mathematical treatment of the problem is broad in scope in that it is neither 

restricted to small rotations nor slender blocks. 

The mathematical description of the system dynamics is profoundly complex primarily due 

to the inherent nonlinear nature of the impact phenomenon and the potential (alternating) 

transition from one oscillation pattern to another, each one governed by a different set of 

differential equations. A rigorous mathematical model governing impact from rocking and 

slide-rocking regimes has been formulated using classical impact theory. The model 

assumes point-impact, perfectly-inelastic impact (i.e. zero coefficient of restitution), and 

impulses forces acting only at the impacting corner (i.e. impulses at the rotating corner are 

small compared to those at the impacting corner and are neglected).  

On the basis of the proposed analytical model, a computer program has been developed to 

determine numerically the dynamic response of the system by considering the different 

possible oscillation regimes, impact occurrence(s), transition criteria, and arbitrary 

excitation. An extensive numerical investigation has been carried out for varying block 

geometric characteristics and isolation-system parameters, under idealized base-

acceleration pulses and recorded pulse-type earthquake motions with a wide range of 

amplitude and frequency content, with the aim of identifying potential trends in the 

response and stability of the system. 

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking 

response, the investigation has shown that the use of isolation results in better system 

performance, with respect to the initiation of rocking and overturning, for short-period 

pulses. In particular, the use of isolation improves the stability of blocks with decreasing 

block size, provided that the system is not subjected to long-period acceleration pulses. On 

the contrary, for long-period pulses, the use of isolation is not beneficial in improving the 

stability of the block, in comparison with the non-isolated case. Nevertheless, in general, 

the use of isolation results in an increase in the acceleration required to initiate rocking in 

comparison with the non-isolated block, regardless of the block size and pulse-period. 
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In addition, this investigation has shown that the variance of the isolation-system 

parameters ( bT , b ) has a significant impact on the effectiveness of the isolation system. 

The isolated block has better performance as the period of the isolation system increases. 

In addition, the damping ratio, b , has significant influence on the effectiveness of the 

isolation, with the latter reduced as the damping ratio decreases.   

The response of the system has been calculated considering two seismic-isolation models, 

a linear model with viscoelastic behavior and a nonlinear model with bilinear hysteretic 

behavior. The analysis has demonstrated that the calculated responses on the basis of the 

two isolation-system models are in good agreement.  

Furthermore, an analysis using idealized pulse-type motions instead of actual ground 

motions has revealed that the use of idealized pulse-type motions yields to more 

conservative results, regarding the initiation of rocking. On the other hand, the stability of 

the isolated system can be estimated relatively accurately using the idealized pulse-type 

motions.  

Assuming sliding between the block and the supporting base, entailing a multi-pattern 

response, the investigation has shown that the value of the coefficient of friction between 

the block and the supporting base plays an important role on the performance of the 

isolated block. In particular, an isolated block with 1/ s   eliminates the possibility of 

failure in comparison with the non-isolated block. The initiation of rocking motion and 

potential overturning of the block appear in blocks with 1/ s  . Based on this 

observation, knowing the value of the coefficient of friction and the slenderness ratio of the 

rigid block, a proper estimation of the effectiveness of isolation can be carried out. Note 

that a wrong estimation of the value of the coefficient of friction may result in a 

conservative and incorrect solution.  

It is also observed that, sliding response is dominating for small values of the coefficient of 

static friction, while rocking motion predominates for higher values of the static-friction 

coefficient. For small values of the coefficient of friction, the block oscillates in the sliding 

regime and as the acceleration increases the system undergoes slide-rocking regime and 

finally overturns. As expected, the minimum ground acceleration needed to initiate sliding 

increases linearly with the coefficient of static friction. In addition, as the size of the block 

increases, the minimum ground acceleration needed to overturn the block increases. 

Moreover, the analysis has shown that the use of isolation results in better system 
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performance, with respect to overturning and initiation of rocking and slide-rocking, for 

short-period pulses. On the contrary, for long period pulses, the response does not adhere 

to an observable trend, regarding the stability of the system, inasmuch as there exist 

combinations of ( ,  R ) values for which the isolation is either effective or ineffective.   

In conclusion, the scientific contribution of this dissertation lies in (a) the development of a 

comprehensive mathematical formulation, including a rigorous model governing impact, 

for calculating the general multi-pattern dynamic response of base-isolated systems that 

exhibit rigid-body behavior under seismic excitation; (b) the development of a computer 

program to determine numerically the dynamic response of the system; (c) the undertaken 

of an extensive numerical investigation under idealized base-acceleration pulses and 

recorded pulse-type earthquake motions with the aim of identifying potential trends in the 

response and stability of the system.  

10.2 Recommendations for Future Research 

This work could be extended in a number of ways. In particular, future research could 

consider: (a) supporting the system on a different type of foundation; (b) investigating the 

response of systems consisting of multiple (stacked) rigid blocks; (c) studying the 

possibility of bouncing and diversifying the model governing impact (i.e. uplifting by 

rotating about the corner of rotation); (d) examining the effect of vertical ground excitation 

on the response of the system; (e) investigating the effect of a non-constant coefficient of 

friction between the block and the rigid base (e.g. due to temperature change); and (g) 

verifying the findings of this dissertation through experimental investigations.  
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APPENDIX A 

Rocking Response-Regime Spectra for Non-Isolated and Isolated Blocks 

Using Linear Isolation System 

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking 

response, this appendix presents a numerous response-regime spectra in the  space 

for a class of non-isolated and isolated rigid blocks under near-fault ground motions. 

Figure A-1: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) San Fernando, PCD / SN (Tp = 1.47s), 

(b) Tabas, TAB / SP (Tp = 5.26s), (c) Northridge, SCG / SN (Tp = 2.94s), (d) Northridge,

RRS / SN (Tp = 1.25s) records.  

R 

SPYROULL
A S. O

DYSSEOS



286 

Figure A-2: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) Northridge, JFA / SN (Tp = 3.03s), (b) 

Imperial Valley, E05 / SN (Tp = 3.92s), (c) Northridge, SCH / SN (Tp = 3.03s), (d) Imperial 

Valley, E07 / SN (Tp = 3.64s) records. 
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Figure A-3: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) Imperial Valley, E04 / SN

(Tp = 4.44s), (b) Imperial Valley, E06 / SN (Tp = 3.85s), (c) Izmit, SKR / SP (Tp = 9.52s), 

(d) Izmit, GBZ / SN (Tp = 4.76s) records.

SPYROULL
A S. O

DYSSEOS



288 

APPENDIX B 

Rocking Response-Regime Spectra for Non-Isolated and Isolated Blocks 

Using Linear and Nonlinear Isolation Systems 

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking 

response, this appendix presents a numerous response-regime spectra in the  space 

for a class of non-isolated and isolated rigid blocks under near-fault ground motions . Two 

types of isolation system are considered in the analysis: (a) a Nonlinear I.S. with a bilinear 

hysteretic model (typified by friction-pendulum isolator) with parameters 0.11b   and 

2.24mbR   (corresponding to 3sbT  ) and (b) a Linear I.S. with viscoelastic model with 

3sbT  . 

R 
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Figure B-1: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) the SN component of 1966 Parkfield, 

CA, USA earthquake, (b) the SN component of 1971 San Fernando, CA, USA earthquake, 

(c) the SP component of 1978 Tabas, Iran earthquake and (d) the SN component of 1979

Imperial Valley, CA, USA earthquake (EMO station). 
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Figure B-2: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) the SN component of 1994 

Northridge, CA, USA earthquake (JFA station), (b) the SN component of 1979 Imperial 

Valley, CA, USA earthquake (E05 station), (c) the SN component of 1994 Northridge, CA, 

USA earthquake (SCH station) and (d) the SN component of 1979 Imperial Valley, CA, 

USA earthquake (E07 station). 
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Figure B-3: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) the SN component of 1994 

Northridge, CA, USA earthquake (NWS station), (b) the SN component of 1994 

Northridge, CA, USA earthquake (SCG station), (c) the SN component of 1979 Imperial 

Valley, CA, USA earthquake (E04 station), and (d) the SN component of 1979 Imperial 

Valley, CA, USA earthquake (E06 station). 
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Figure B-4: Response-regime spectra in the R   space for a non-isolated and isolated 

block of varying geometric characteristics under (a) the SN component of 1994 

Northridge, CA, USA earthquake (RRS station), (b) the Tran component of 1995 Aigion, 

Greece earthquake, (c) the SP component of 1999 Izmit, Turkey earthquake (SKR station), 

and (d) the SN component of 1999 Izmit, Turkey earthquake (GBZ station). 
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APPENDIX C 

Rocking Response Histories 

Assuming no sliding of the block relative to the supporting base, entailing a pure rocking 

response, this appendix presents response histories for non-isolated and isolated rigid 

blocks under recorded ground excitations. Two types of isolation system are considered in 

the analysis: (a) a Nonlinear I.S. with a bilinear hysteretic model (typified by friction-

pendulum isolator) with parameters 0.11b   and 2.24mbR   (corresponding to 3sbT  ) 

and (b) a Linear I.S. with viscoelastic model with 3sbT  .  
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Figure C-1: Response histories for non-isolated and isolated rigid block under the SN 

component of 1966 Parkfield, CA, USA earthquake (ρ = 0.5, λ = 4, R = 2m). SPYROULL
A S. O
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Figure C-2: Response histories for non-isolated and isolated rigid block under the SN 

component of 1966 Parkfield, CA, USA earthquake (ρ = 0.5, λ = 5, R = 1m). SPYROULL
A S. O
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Figure C-3: Response histories for non-isolated and isolated rigid block under the SN 

component of 1966 Parkfield, CA, USA earthquake (ρ = 0.5, λ = 12, R = 3m). SPYROULL
A S. O
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Figure C-4: Response histories for non-isolated and isolated rigid block under the SN 

component of 1971 San Fernando, CA, USA earthquake (ρ = 0.5, λ = 3, R = 4m). SPYROULL
A S. O
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Figure C-5: Response histories for non-isolated and isolated rigid block under the SN 

component of 1971 San Fernando, CA, USA earthquake (ρ = 0.5, λ = 4, R = 1m). SPYROULL
A S. O
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Figure C-6: Response histories for non-isolated and isolated rigid block under the SN 

component of 1971 San Fernando, CA, USA earthquake (ρ = 0.5, λ = 8, R = 8m). SPYROULL
A S. O
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Figure C-7: Response histories for non-isolated and isolated rigid block under the SP 

component of 1978 Tabas, Iran earthquake (ρ = 0.5, λ = 2, R = 2m). SPYROULL
A S. O
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Figure C-8: Response histories for non-isolated and isolated rigid block under the SP 

component of 1978 Tabas, Iran earthquake (ρ = 0.5, λ = 8, R = 4m). SPYROULL
A S. O
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Figure C-9: Response histories for non-isolated and isolated rigid block under the SP 

component of 1978 Tabas, Iran earthquake (ρ = 0.5, λ = 6, R = 12m). SPYROULL
A S. O
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Figure C-10: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E04 station), CA, USA earthquake 

(ρ = 0.5, λ = 5, R = 1m). SPYROULL
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Figure C-11: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E04 station), CA, USA earthquake

(ρ = 0.5, λ = 4, R = 5m). SPYROULL
A S. O
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Figure C-12: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E04 station), CA, USA earthquake 

(ρ = 0.5, λ = 10, R = 4m). SPYROULL
A S. O

DYSSEOS



306 

Figure C-13: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E05 station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 6m). SPYROULL
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Figure C-14: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E05 station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 10 m). 
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Figure C-15: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E05 station), CA, USA earthquake

(ρ = 0.5, λ = 10, R = 6m). SPYROULL
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Figure C-16: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E06 station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 2m). SPYROULL
A S. O
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Figure C-17: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E06 station), CA, USA earthquake 

(ρ = 0.5, λ = 10, R = 6m). SPYROULL
A S. O
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Figure C-18: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E06 station), CA, USA earthquake 

(ρ = 0.5, λ = 6, R = 8m). SPYROULL
A S. O
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Figure C-19: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E07 station), CA, USA earthquake 

(ρ = 0.5, λ = 4, R = 6m). SPYROULL
A S. O
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Figure C-20: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E07 station), CA, USA earthquake 

(ρ = 0.5, λ = 12, R = 2m). SPYROULL
A S. O
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Figure C-21: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (E07 station), CA, USA earthquake 

(ρ = 0.5, λ = 5, R = 10m). SPYROULL
A S. O
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Figure C-22: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (EMO station), CA, USA earthquake 

(ρ = 0.5, λ = 8, R = 4m). SPYROULL
A S. O
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Figure C-23: Response histories for non-isolated and isolated rigid block under the SN 

component of 1979 Imperial Valley (EMO station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 8m). SPYROULL
A S. O
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Figure C-24: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (JFA station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 6m). 
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Figure C-25: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (JFA station), CA, USA earthquake 

(ρ = 0.5, λ = 5, R = 11m). SPYROULL
A S. O
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Figure C-26: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (JFA station), CA, USA earthquake 

(ρ = 0.5, λ = 10, R = 6m). 
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Figure C-27: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (RRS station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 1m). 
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Figure C-28: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (RRS station), CA, USA earthquake 

(ρ = 0.5, λ = 10, R = 2m). 
SPYROULL

A S. O
DYSSEOS



322 

Figure C-29: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (RRS station), CA, USA earthquake 

(ρ = 0.5, λ = 6, R = 10m). 
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Figure C-30: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCG station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 5m). 
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Figure C-31: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCG station), CA, USA earthquake 

(ρ = 0.5, λ = 4, R = 7m). 
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Figure C-32: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCG station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 1m). 
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Figure C-33: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCH station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 6m). 
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Figure C-34: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCH station), CA, USA earthquake 

(ρ = 0.5, λ = 8, R = 2m). 
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Figure C-35: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (SCH station), CA, USA earthquake 

(ρ = 0.5, λ = 6, R = 10m). 
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Figure C-36: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (NWS station), CA, USA earthquake 

(ρ = 0.5, λ = 3, R = 5m). SPYROULL
A S. O
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Figure C-37: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (NWS station), CA, USA earthquake 

(ρ = 0.5, λ = 10, R = 4m). SPYROULL
A S. O
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Figure C-38: Response histories for non-isolated and isolated rigid block under the SN 

component of 1994 Northridge (NWS station), CA, USA earthquake 

(ρ = 0.5, λ = 4, R = 10m). SPYROULL
A S. O
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Figure C-39: Response histories for non-isolated and isolated rigid block under the Tran 

component of 1995 Aigion (AEG station), Greece earthquake (ρ = 0.5, λ = 10, R = 1m). SPYROULL
A S. O
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Figure C-40: Response histories for non-isolated and isolated rigid block under the Tran 

component of 1995 Aigion (AEG station), Greece earthquake (ρ = 0.5, λ = 12, R = 1m). SPYROULL
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Figure C-41: Response histories for non-isolated and isolated rigid block under the Tran 

component of 1995 Aigion (AEG station), Greece earthquake (ρ = 0.5, λ = 16, R = 6m). SPYROULL
A S. O
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Figure C-42: Response histories for non-isolated and isolated rigid block under the SP 

component of 1999 Izmit (SKR station), Turkey earthquake (ρ = 0.5, λ = 6, R = 1m). SPYROULL
A S. O
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Figure C-43: Response histories for non-isolated and isolated rigid block under the SP 

component of 1999 Izmit (SKR station), Turkey earthquake (ρ = 0.5, λ = 14, R = 2m). SPYROULL
A S. O
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Figure C-44: Response histories for non-isolated and isolated rigid block under the SP 

component of 1999 Izmit (SKR station), Turkey earthquake (ρ = 0.5, λ = 14, R = 10m). SPYROULL
A S. O
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Figure C-45: Response histories for non-isolated and isolated rigid block under the SN 

component of 1999 Izmit (GBZ station), Turkey earthquake (ρ = 0.5, λ = 8, R = 6m). SPYROULL
A S. O

DYSSEOS



339 

Figure C-46: Response histories for non-isolated and isolated rigid block under the SN 

component of 1999 Izmit (GBZ station), Turkey earthquake (ρ = 0.5, λ = 16, R = 1m). SPYROULL
A S. O
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Figure C-47: Response histories for non-isolated and isolated rigid block under the SP 

component of 1999 Izmit (GBZ station), Turkey earthquake (ρ = 0.5, λ = 14, R = 10m). SPYROULL
A S. O
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APPENDIX D 

Multi-Pattern Response-Regime Spectra for Non-Isolated and Isolated 

Blocks Using Linear Isolation System 

Assuming sliding between the block and the supporting base, entailing a multi-pattern 

response,  this appendix presents a numerous response-regime spectra in the  space 

for (a) non-isolated and (b) isolated blocks of varying geometric characteristics under 

earthquake excitations. 

 

Figure D-1: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under San Fernando, PCD / SN record 

(ρ = 0.5). 

R 

No Uplift/No Sliding Pure Sliding Pure Rocking Slide-rocking Overturning

SPYROULL
A S. O

DYSSEOS



342 

 

Figure D-2: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Northridge, JFA / SN record       

(ρ = 0.5). 

 

Figure D-3: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Northridge, SCH / SN record      

(ρ = 0.5). 
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Figure D-4: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Northridge, NWS / SN record     

(ρ = 0.5). 

 

Figure D-5: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Tabas, TAB / SP record (ρ = 0.5). 
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Figure D-6: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Imperial Valley, E04 / SN record 

(ρ = 0.5). 

 

Figure D-7: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Imperial Valley, E06 / SN record 

(ρ = 0.5). 
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Figure D-8: Response-regime spectra in the R   space for (a) non-isolated and (b) 

isolated block of varying geometric characteristics under Imperial Valley, E07 / SN record 

(ρ = 0.5). 
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APPENDIX E 

Multi-Pattern Response-Regime Spectra for Isolated Blocks Using Linear 

and Nonlinear Isolation Systems 

Assuming sliding between the block and the supporting base, entailing a multi-pattern 

response, this appendix presents a numerous response-regime spectra in the  space 

for isolated rigid blocks of varying geometric characteristics, using different values of the 

coefficient of friction . Two types of isolation system are considered in the analysis: (a) 

a Nonlinear I.S. with a bilinear hysteretic model (typified by friction-pendulum isolator) 

with parameters 0.11b   and 2.24mbR   (corresponding to 3sbT  ) and (b) a Linear 

I.S. with viscoelastic model with 3sbT  .  

 

Figure E-1: Response-regime spectra in the R   space for isolated rigid block of varying 

geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SP 

component of 1978 Tabas, Iran earthquake (ρ = 0.5). 
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Figure E-2: Response-regime spectra in the R   space for isolated rigid block of varying 

geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN 

component of 1979 Imperial Valley, CA, USA earthquake (E06 station) (ρ = 0.5). 
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Figure E-3: Response-regime spectra in the R   space for isolated rigid block of varying 

geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN 

component of 1977 Bucharest, Romania earthquake (ρ = 0.5). 
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Figure E-4: Response-regime spectra in the R   space for isolated rigid block of varying 

geometric characteristics using (a) Nonlinear I.S. and (b) Linear I.S under the SN 

component of 1994 Northridge, CA, USA earthquake (SCH station)  (ρ = 0.5). 
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