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Abstract

In this thesis, we consider modelling and detection of suspiciously high correlation

between malicious Internet users that are collaborating in order to cause a Denial of

Service (DoS) attack or a Distributed Denial of Service (DDoS) attack. The main goal

is to recognise cyber incidents and obtain a method for judging early enough any

collaborative misbehaviour (more specifically, collaboration/dependency between

the requests that are issued by different users) in order to ultimately isolate their

behaviour and overcome the consequences of the DoS attack. The proposed method

relies on the analysis of data traffic across the concerned network (with both in-

coming and outgoing traffic) in an effort to identify correlations between different

users, based on the frequency with which they simultaneously issue requests for

service. The thesis models user behaviour via hidden Markov models and analyses

the performance of the proposed method, using both mathematical reasoning and

simulations. The approach represents a step towards achieving an effective and

proactive defence against DoS/DDoS attacks. Furthermore, we examine the per-

formance and detection time of the proposed method, and its relationship to other

methods and work produced in this direction by other researchers. Our intention is

the implementation of a warning method capable of identifying early enough any

abnormal behaviour, before a minor cyber incident results in a catastrophic failure.
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Περίληψη

Σε αυτή τη διατριβή, εξετάζουμε τη μοντελοποίηση και την ανίχνευση ύποπτα υψηλού

βαθμού συσχέτισης μεταξύ κακόβουλων χρηστών του διαδικτύου που συνεργάζονται για

να προκαλέσουν Επίθεση ΄Αρνησης Εξυπηρέτησης [Denial of Service (DoS) Attack ] ή

Κατανεμημένη Επίθεση ΄Αρνησης Εξυπηρέτησης [Distributed Denial of Service (DDoS)

Attack ]. Ο κύριος στόχος της διατριβής είναι η έγκαιρη αναγνώριση τυχόν κυβερνοπε-

ριστατικών μέσα στον κυβερνοχώρο. Η προτεινόμενη μέθοδος είναι σε θέση να κρίνει

αρκετά έγκαιρα οποιαδήποτε συσχετισμένη επιλήψιμη συμπεριφορά των διαφόρων χρη-

στών (πιο συγκεκριμένα, συνεργασία-εξάρτηση μεταξύ των αιτημάτων που εκδίδονται από

διαφορετικούς χρήστες) προκειμένου να απομονωθούν τελικά οι εν λόγω χρήστες και να

αποφευχθούν οι συνέπειες μιας επίθεσης DDoS . Η προτεινόμενη μέθοδος βασίζεται στην

ανάλυση της κυκλοφορίας δεδομένων στο υπό εξέταση δίκτυο (εισερχόμενη/ εξερχόμενη

κίνηση), προκειμένου να εντοπιστούν οι συσχετισμοί με βάση τη συχνότητα με την οπο-

ία εκδίδονται ταυτόχρονα αιτήματα. Τα μοντέλα της διατριβής εξετάζονται με βάση την

λογική των Κρυφών Μαρκοβιανών Μοντέλλων (Μαρκοβιανά Μοντέλλα που περιέχουν

κρυφές καταστάσεις) [Hidden Markov Models (HMM)] και η ανάλυση για την απόδειξη

της προτεινόμενης μεθόδου χρησιμοποιεί τόσο μαθηματικούς συλλογισμούς όσο και προ-

σομοιώσεις. Η προσέγγιση αυτή αποτελεί ένα βήμα προς την επίτευξη αποτελεσματικής,

έγκυρης και προληπτικής άμυνας κατά των επιθέσεων DoS / DDoS . Επιπλέον, εξετάζεται

η απόδοση της μεθόδου σε σχέση με άλλες μεθόδους αλλά και το έργο που έχει επιτελε-

στεί σε αυτό τον τομέα από άλλους ερευνητές. Με την παρούσα διατριβή, πρόθεση ήταν να

αναπτυχθεί μια αποτελεσματική, έγκυρη μέθοδος, ικανή να εντοπίζει έγκαιρα οποιαδήποτε

μη φυσιολογική συμπεριφορά από μέρους των χρηστών. Στόχος ήταν να αποφευχθεί η

επέκταση κυβερνοπεριστατικού που βρίσκεται σε εξέλιξη στο αρχικό του στάδιο και πριν

αυτό προλάβει να λάβει την τελική του μορφή, που ενδέχεται να είναι μια καταστροφική

DoS/DDoS επίθεση, με ανυπολόγιστες συνέπειες.
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Chapter 1

Introduction

This chapter provides terminology and background information related to cyber

attacks, as well as the motivation, objectives and contributions of this dissertation

and a general overview about its structure.

1.1 General

Classical computer security considers confidentiality, integrity and availability [1].

Integrity and confidentiality are typically achieved through the use of cryptographic

methods or other related procedures. Availability is the property that captures the

ability of a given communication and information system (CIS) to operate normally

and serve its users. In general, CIS is any system, which handles information in

electronic form (stand alone or plugged in a network).

Nowadays CIS are major assets in daily life. Almost everybody has a mobile

phone, a tablet, a PC. Further to our digital devices, we also have our digital identity,

which is determined through the internet applications we use such as, social media,

email, financial services, and other. Taking into account the above, new security

matters arise such as email harvesting, identity hijacking or extortion. In most of

these cases, we are the victims, but there is one special case in which we are the

victim but also the attacker at the same time. This case is when we become part

of a botnet that executes a denial of service (DoS) attack. Once someone is hacked,

its computer becomes a remote robot, connected in a vast network of compromised

computers and all of these computers, are in the control of someone else. The botnet

network has the ability to cause a Denial of Service attack. The main objective of this

1
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dissertation is to recognise cyber incidents and obtain a method for judging early

enough any collaborative misbehaviour. The first part of our work was published

in [2].

1.2 Denial-of-Service (DoS) Attacks

DoS attacks are typically collaborative and target specific victims aiming to exhaust

all of their resources (routers, servers, CIS computational strength, etc.). For ex-

ample, if one CIS is flooded with an overly large number of data requests or/and

input through the network, the CIS will be unable to cope and will eventually stop

functioning and become unavailable for the users. This kind of cyber attack is called

DoS attack. The DoS can be split to those that exhaust the resources of honest par-

ticipants (such as flooding attacks [3], [4] or spam attacks) and to those which are

implemented through malicious activities (target the protocols or/and exploit their

vulnerabilities) [5], [4]. In order to be protected from this kind of cyber attacks,

we need to detect and identify early enough any abnormal traffic in the CIS. This

can be accomplished by assessing indications that may be available, and correctly

identifying them before any damage is caused.

When dealing with security, we need to identify possible security gaps and

built appropriate security procedures. In the case of a DoS attack, in order to be

effective, we need to specify (at the stage of preparation) respective patterns, related

with the attacker’s coordination strategies, the ways in which possible attacks can

be recognized, the main possible steps of the attacker, the overall strategy of the

attacker, appropriate preventive actions (to be taken before the intrusion in order to

avoid it) and necessary improvements in our response during an event (in terms of

operation procedures).

Due to the fact that we lack information about the attacker, our approach relies

solely on an assumption about the user’s behaviour in the network. Specifically, our

method is based on effectively analyzing the user’s behaviour and actions during a

specific period of time, which we call the inspectable period of time. We find that

this approach can help us better understand the strategy of these attacks, in order

to catch them early enough (for example, by inspecting the requests directed to the

possible victim).

To build our approach, we seek information from related work [6] and we take

2
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into account the following:

• How can the coordinated attackers shut down a system (service-request pro-

cedure)?

• How important is data analysis of the network and behaviour analysis of the

users, in order to recognise possible threats (off-line situation)?

• How can continuous traffic monitoring of the network (on-line situations) be

exploited to identify DoS attacks?

DoS attacks have increased dramatically in recent years. It is very hard to defend

against them and, when successful, they manage to misuse mainly resources of the

network and transport layers. In general, the goal of a DoS attack is to consume

the resources of the host and the bandwith of the network. Recent history shows

that it is very difficult to authenticate whether an event comprises normal traffic or a

malicious attempt/attack [7]. In addition, DoS attacks have one special characterestic

which distinguishes them from other network attacks [8]: in order to attack, there is

no need for the intruder to penetrade and exploit the target network.

1.3 Distributed Denial of Service (DDoS) attack

Distributed denial of service (DDoS) attack is a special form of DoS attack where a

large number of infected systems, with malicious software, aim at a specific target

causing a DoS attack. The attacker uses a multitude of computers (often referred

to as zombies and/or bots) to carry out the attack. A typical example of such an

attack is presented in Fig. 4.1. During the attack, the hackers mimick the features of

legitimate network events [9], such as flash crowds [7], [10], in order to act under the

security threshold of the network [11].

The following steps are generally followed by the attackers during a DDoS attack

[12]:

• Exploitation of the used technology of the target network (i.e., protocol vulner-

abilities) and establishing bots among its computers.

• Sending commands to the botnet and launching the attack.

• Finally, causing the entire system to be brought down.

3
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Figure 1.1: Example of a DDoS attack.

Detecting DDoS attacks poses great challenges because the Internet is an open

architecture comprising of many different types of networks. As a consequence, the

countermeasures that we are able to take are limited [10].

DDoS attacks raise challenges that need to be addressed proactively. We live

in a cybernetic world, where behind almost any activity of our daily life there is

a hidden Communication Information System (e.g., smartphones, computers, etc.).

The objective of these Communication Information Systems (CIS) is to serve us. The

availability of CIS is crucial and vital. This issue becomes a major challenge if we

take into account that the majority of these CIS are responsible for functions related

to security, navigation, transportation, communication, financial transactions and

even health issues. For these applications, delay in the provision of services has

great cost and in some of the cases it may even be life-threatening. The contingency

plans that are in effect in the above areas of interests are not enough. In almost all

cases, when something really costly happens during a DDoS attack, the primary

objective of the contingency plans is to minimize any further damages.
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1.4 Thesis Motivation

Taking into account all the above, our motivation for working on the topic was the

rapidly increasing number of zero day attacks in recent past. If we take into account

the realization that all of these CIS devices will become a part of the IoT in the

next years, then we can begin to envision the structure of the possible future robot

network(botnet). The effective defence to this scenario is the identification of the

botnet network early enough, before it gains its full power.

1.5 Thesis Objectives

Since there is no way of knowing the strategy of the botnet or other related informa-

tion and we can only observe its behaviour in the network, our objectives were to

implement a reliable method in order to (1) avoid the consequences of a Distributed

Denial of Service attack, (2) recognise early enough any cyber incidents, and (3) find

any collaboration/dependency among different users and (4) to ultimately isolate

any abnormal behaviour.

1.6 Thesis Contribution

The contribution of this dissertation is a simple and effective methodology for de-

tecting DoS attacks. The proposed methodology can potentially be implemented in

any kind of information system, including anti-DDoS devices or an Intrution Detec-

tion Systems (IDS), or can be used as a second line of defence in relation with other

methods. In order for this method to be implemented, there is no need to have any

related information about the botnet nor its strategy. The method is based on the

theory of hidden Markov models. Furthermore, the method gives a novel approach

in malware analysis, and provides novel ideas for the future research of detection of

malicious internet users.

1.7 Thesis Organization

The remaining parts of the thesis are organized as follows. Chapter 2 provides

background material and presents the state of the art-best practices regarding DDoS
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attacks. In Chapter 3, we provide the definition of a DoS attack, the description

of hidden Markov models and related theory, and the theoretical analysis of the

proposed approach. Chapter 4 describes our enhanced proposed approach, which

includes an improved detection strategy; lessons learnt are also discussed in detail.

Chapter 5 includes simulations, an evaluation of the performance of the proposed

model with real data, and a summary of the main findings regarding our evaluation.

In Chapter 6, we conclude the thesis with a summary of our findings and some

directions for future research in this area.
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Chapter 2

State of the Art

2.1 Background Information

DDoS attacks can be split into categories according to the following criteria:

• Intensity/impact of the attack (typical DDoS and Low-rate DDoS attack) [4];

• Type (direct/indirect) of DDoS attack, such as typical DDoS or Distributed

Reflection DoS (DRDoS) attack [13].

The hosts of the above categories are compromised machines which have been

infected by malicious code. In most cases, the attackers hide their IP trace using

various techniques known as spoofing [10]. In general, the used countermeasures

consist of three components: detection [14], [15], [16], [17], [18], defense (or mitiga-

tion) [7], [19], and IP trace back [20], [21].

A typical DDoS attack is achieved through the use of master zombies and slave

zombies. The attacker coordinates and orders master zombies, which in turn coor-

dinate and trigger slave zombies. Specifically, the attacker sends certain commands

to master zombies in order to activate all the attack processes that are in hibernation,

waiting for the appropriate command. After that, the master zombies send attack

commands to slave zombies, which in turn attack the victim by sending a huge

volume of packets, flooding its system with useless load and exhausting all of its

resources

The difference between DRDoS and the typical DDoS is that the DRDoS attack

is achieved through the use of master zombies, slave zombies, and reflectors. The

attack idea is similar to the typical DDoS, with the main difference being that the
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slave zombies are instructed by master zombies to send a stream of packets with the

victim’s IP address as the source IP address to other uninfected machines, known

as reflectors, exhorting them to connect with the victim. With this technique, the

attacker leads the reflector to send an even greater volume of traffic to the victim,

believing that the victim was the host who asked for the connection [22].

Low-rate DDoS is an intelligent attack [23], [24], [25], [26], [27] where the attacker

sends attack packets to the possible victim, under the threshold traffic, and in that

way deceives the defense mechanism of the network since the traffic appears to be

normal, while the Low-rate DDoS attack manages to consume vital resources of the

network.

Large scale DDoS attacks may use all mechanisms mentioned above (intensity,

propagation) during different attack stages. Furthermore, DDoS attacks based on

protocol vulnerabilities of the TCP/IP can be split into four categories (Application,

Transport, Internet and Network Access [4]).

Unfortunately, until now DDoS attacks (volume attacks) remain a huge threat.

The defense against DDoS attacks becomes a continuous struggle in order to be able

to identify any abnormal events. There is no clear evidence of the time, place and

identity of the intruder, it looks like a catch-me-if-you-can game [22]. Proposed

defense mechanisms for this kind of attacks are split into four basic categories,

namely attack prevention, attack detection, attack source identification, and attack

reaction [4].

A good example of a DDoS attack and the consequences it can have is the 2007

cyber-attack in Estonia. The country experienced a huge DDoS cyber attack where

thousands of PCs acted as zombies and targeted Estonian websites with political,

commercial, govermental, economic and financial value. Until that time, it was the

first experience of such a type of DDoS attack, not only for Estonia. The attack was

conducted in a specific way and had unique characteristics related to the operational

plan, the intensity of the attack, the resources used, and the chosen targets [28], [29],

[30], [31].

2.2 DDoS Attacks in Different Networks

The scope of this subsection, is to indicate types of networks in which DDoS attacks

have been implemented. As it will be shown next, DDoS are implemented in a variety
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of networks, such as Wireless Sensor Networks, Software Defined Networks, Cloud

Computing, Cyber Physical Systems, Internet of Things Networks, and others. The

ability of DDoS attacks to manifest themselves in diverse types of networks is an

indicator of their capability. The above discussions lead to the conclusion that

appropriate security measures need to be taken for DDoS attacks. This is vital

for ensuring the availability of the above mentioned Communication Information

Systems, and for enhancing the resiliency of their services.

2.2.1 DDoS Attacks in Wireless Sensor Networks

According to [32], Wireless Sensor Networks (WSNs) are at high risk of DDoS at-

tack. The objective of this paper is to design a secure routing scheme, which can

effectively protect the wireless sensor network against DDoS attacks. The method-

ology introduced in [32] refers to a secure routing protocol for WSNs, which is

implemented under the following security modules: (1) Propagate DDoS attack on

a normal network; (2) Enable the network to overcome the attack infection. The

methodology is implemented with two algorithms: the first algorithm launches the

DDoS attack in the normal scenario and the second algorithm safeguards the net-

work from the effects of the DDoS attack. The proposed methodology provides a

security module to prevent the network from the DDoS attack, by implementing

their prevention algorithm with the compromised network. The authors set specific

nodes as IPS nodes and then simulate, analyze and compare the performance un-

der three scenarios namely, Normal Ad-hoc On-demand Multipath Distance Vector

(AOMDV), DDoS-AOMDV and Secure-AOMDV (find the nodes which are involved

in unwanted, huge and frequent message passing). The performance comparison

between Normal-AOMDV, DDoS-AOMDV and Secure-AOMDV establishes that the

proposed security mechanism works properly for AOMDV (it manages to prevent

the network from the DDoS attack by blocking the intruder nodes). According to the

proposed approach, the performance is decreasing the number of nodes increases.

More information can be found in [32].

2.2.2 DDoS Attacks in Software Defined Networks

Software Defined Networks (SDN) are also at high risk of DDoS attack [33], [34]. In

SDNs, DDoS attacks become more sophisticated. Specifically, the basic capabilities
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of SDNs, such as software-based traffic analysis, centralized control, global view of

the network and dynamic updating of forwarding rules, make it easier to detect and

react to DDoS attacks. On the other hand, the security of SDN itself remains to be

addressed, and potential DDoS vulnerabilities exist across SDN platforms.

The authors of [34] propose a feasible system called FL-GUARD (Floodlight-

based guard system) to tackle a DDoS attack, taking advantage of the SDN network

architecture. First, the system realizes anti-spoofing of source IP address and ana-

lyzes a variety of amplification attacks to avoid their effect. Then, a support vector

machine algorithm is used to detect attacks. Finally, a flow table can be issued to

block attacks at the source port, taking advantage of the centralized control of SDNs.

The authors also design a detection and defense system under an SDN architecture,

which adds an anti-spoofing module of source IP and sFlow-RT Collector Compo-

nents in the controller layer, and an attack detection module and an attack blocking

module in the application layer. The system adds an anti-spoofing module of source

IP in controllers on the basis of Floodlight, an enterprise-class controller. Based on

the module, the dynamic IP bindings for user access to the network via DHCP service

and the configuration of static IP can be implemented regarding attack detection.

The method classifies whether the flow is abnormal or not via an SVM classification

algorithm, where training samples adopt a normal flow training sample set and an

abnormal one. Normal samples are the records for traffic and source IP entropy

when no attack is present. According to the authors, the SVM classification algo-

rithm achieves a fully automated dynamic binding of source IP address, which could

prevent spoofing. Each protected server can set different alarm thresholds, thus the

method increases flexibility. The blocking of attacks uses a multi-process design,

which can connect multiple attack detection sides. The experimental results show

the FLGUARD system has good detection and defense effect against DDoS attacks.

Further details can be found in [34].

The authors of [33] discuss the new trends and characteristics of DDoS attacks in

Software Defined Networking and DDoS attacks in cloud computing environments,

and provide a comprehensive survey of defense mechanisms against DDoS attacks

using SDN. In addition, the authors review studies about launching DDoS attacks

on the control layer, infrastructure layer and application layer of SDNs, as well as the

methods against DDoS attacks in SDNs. The motivation for presenting this paper

is to indicate that even SDNs are possible targets for a DDoS attack. Further details
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can be found in [33].

2.2.3 DDoS Attacks in Cloud Computing

Cloud computing has become a convenient way of accessing services, resources and

applications over the internet. The authors of [35] review 96 publications on DDoS

attack and defense approaches in cloud computing networks, published between

January 2009 and December 2015; they also discuss existing research trends. A

taxonomy and a conceptual cloud DDoS mitigation framework based on change

point detection are presented and future research directions are also outlined.

The authors of [36] present developments related to DDoS attack mitigation solu-

tions in the cloud. In particular, they present a comprehensive survey with a detailed

insight into the characterization, prevention, detection, and mitigation mechanisms

of DDoS attacks. The paper aims to highlight through the above mentioned complete

survey that cloud networks are one of the main targets of DDoS attacks.

In [35], it is mentioned that the National Institute of Standard and Technology

(NIST) defines the essential characteristics of cloud computing as on-demand self-

service, resource pooling, rapid elasticity and measured service. The service model

can be broadly categorized into

• Software-as-a-service (SaaS). In SaaS, Software is presented to the end users as

services on demand, usually in a browser.

• Platform-as-a-Service (PaaS). PaaS, often referred as cloudware, provides a

development platform with a set of services to assist application design, de-

velopment, testing, deployment, monitoring, hosting on the cloud.

• Infrastructure-as-a-Service (IaaS). Built on top of data centers layer, the IaaS

layer virtualizes computing power, storage and network connectivity of the

data centers, and offers it as provisioned services to consumers.

The service model can be deployed as either a private, public, community or hybrid

cloud. Despite the fact that cloud computing provides various benefits to users, there

are also underlying security and privacy risks that need to be addressed correctly.

According to [35], typical DDoS detection techniques classify packet traffic as

either legitimate or malicious, and can be broadly categorized into signature-based,

anomaly-based and hybrid.

11

Mari
os

 Tho
ma



Furthermore, several DDoS defense solutions have been proposed in the last two

decades. DDoS defenses proposed for cloud services are categorized according to

[35], using the DDoS defense taxonomy outlined below (more detailed descriptions

can be found in [35]).

• Cloud DDoS defense deployment. DDoS defenses for cloud services can be

deployed in four key locations as follows :

– Source-end deployment. The advantages of source-end deployment in-

clude more effective protection of network resources and bandwidth.

– Access point deployment. Access point deployment is usually deployed

in the front-end, back-end or on each virtual machine(VM) in the cloud

computing environment.

– Intermediate-network deployment. These are defenses deployed on net-

work nodes to limit the impact of DDoS attacks on the network before the

attacks affect the intended target.

– Distributed defense. Distributed defense is a hybrid deployment model

comprising source-end, access point and/or intermediate network deploy-

ments.

• DDoS detection. Typical DDoS detection techniques classify packet traffic as

either legitimate or malicious, and can be broadly categorized into signature

based, anomaly based and hybrid.

– Signature based detection. This technique uses a set of rules and known

signature attack patterns stored in a knowledge database. Traffic pat-

terns are monitored and compared against existing signatures to detect

malicious traffic

– Anomaly based detection. Anomaly based or behavioral classification

approach involves the collection of a normal traffic behavioral profile

pattern over a pre-determined period.

∗ Anomaly detection techniques. In categorizing anomaly detection of

cloud DDoS attacks, we group existing techniques into different ring

classes based on the algorithm(s) used.
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· Statistical anomaly detection. The statistical features of a normal

traffic are compiled to generate a normal traffic pattern, which will

be compared with incoming traffic to detect anomaly packets.

· Data mining. The significant increase in Internet traffic compli-

cates efforts to detect DDoS anomaly patterns. To address this,

one can use a map reduce model, which is a parallel processing

model that has been used to expedite batch job operations.

· Artificial Intelligence. It is a soft computing approach, based

on techniques such as Genetic Algorithms, Artificial Neural Net-

works and Fuzzy Sets; it requires a continuous learning process

to effectively detect new anomalies.

· Classifier. These are techniques that learn from a set of labeled

data instances in order to classify a test instance into one of the

classes.

· Machine learning. Deploying machine learning to detect cloud

DDoS attacks encompasses techniques, such as statistics and data

mining, but these techniques have a subtle difference from statis-

tical techniques.

– Hybrid detection. This approach involves the use of both signature-based

and anomaly-based techniques.

– Traceback and IP spoofing detection. This technique can help to locate the

true source of DDoS attacks, as these attacks tend to spoof their addresses

(e.g. launching a reflector attack).

– Other forms of DDoS attack defenses. For example, in solving a DDoS

attack issue in cloud computing, we can consider the scenario where an

individual cloud user is being targeted. In this approach, an intrusion

prevention system (IPS) can be deployed at different access points of the

cloud environment to monitor incoming packets during DDoS attacks.

This is a reactive method that dynamically allocates available resources

during DDoS attacks to compensate for the attacks.

According to [36], the taxonomy of the DDoS solutions are the following (Further

detailed descriptions can be found in [36]):
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• Attack prevention. DDoS prevention in the cloud is a pro-active measure,

where suspected attacker requests are filtered or dropped before these requests

start affecting the server. Prevention methods do not have any presence of

attack state as such, which is usually available to the attack detection and

mitigation methods.

– Challenge Response. Challenge-Response Protocols (CRP) are designed

to identify the presence of real users. Many times, this concept has been

applied in an opposite manner, where the protocol tries to determine if

the user is a bot/attacker machine, especially in the case of crypto-puzzles

or proof-of-work.

– Hidden Servers/Ports. This is an important method to remove a direct

communication link between the client and the server. The objective of

hiding the servers is achieved by keeping an intermediate node/proxy to

work as a forwarding authority. The important jobs of this forwarding

authority may include balancing the load among the servers, monitoring

the incoming traffic for any vulnerability, and fault-tolerance and recovery

of the servers.

– Restrictive Access. These techniques are basically admission control meth-

ods to take preventive action against the service capacity. Some of these

strategies have implemented the prevention by delaying responses/access

to the suspected attackers or even additional clients. In many of the con-

tributions, this delay is introduced by prioritizing the legitimate clients or

selecting clients with good past behaviors.

– Resource Limit. The economic bills generated by a DDoS attack can

be enormous. Resource limits can help in preventing these economic

losses by correct auto-scaling decisions. However, deciding whether the

resource surge has come due to the DDoS attack or due to the real genuine

traffic, is a very difficult task.

• Attack detection. Is achieved in a situation where attack signs are present on

the server in terms of its services and monitored performance metrics. These

attack signs are initial signs, where the attack has just started to take the shape,

or there may be a situation, where the attack has already deteriorated the
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performance. These methods may seem to be similar to attack prevention at

times, and many contributions have provided solutions in the same manner.

– Anomaly Detection. Anomalous patterns are usually identified from

packet traces, established connections, web access logs or request headers.

The specific pattern to identify in the log or the trace is decided by attack

traces and other past historic behaviors.

– Source and Spoof Trace. Multiple trace back algorithms have been pro-

posed in the literature, which identify and stop the spoof attack by tracing

the source. Source traceback schemes are employed to stop/detect the

identity spoofing techniques. These techniques are important as most

of the detection/prevention methods model the user behavior or profile

based on some identity which is mostly an IP address in case of web

access. In the attack cases where IP spoofing is employed, the detection

mechanisms can be defeated very easily

– Count Based Filtering. This specific classification on Count Based Filtering

also fits in few attack prevention mechanisms as well, however, many

times thresholds are used to detect the initialization of attack and later to

identify the presence of the attack. The parameters on which these count

thresholds are applied are basically network resources such as hop-count,

number of connections or number of requests in a unit time from a single

source.

– BotCloud Detection. Any cloud DDoS attacker may also use cloud in-

frastructure for its own nefarious purpose. Cloud infrastructure can be

used for the purpose of installing botnets. These clouds are known as

BotClouds. This subcategory describes the contributions which tries to

find or detect the internal attack VMs in the cloud network. Most of these

BotCloud related solutions are source based or Cloud Service Provider

(CSP) based approaches.

– Resource Usage. Utilization of various resource of the cloud or a physical

server by a VM can also provide important information about the pres-

ence of the DDoS attack or an anticipation of the upcoming DDoS attack.

Cloud environments run Infrastructure as a Service cloud using virtual-

ized servers where hypervisor can monitor the resource usage of each VM
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on physical server. Once these VMs start reaching the decided resource

utilization thresholds, the possibility of an attack can be suspected.

• Attack mitigation. Attack mitigation refers to all methods which would help a

victim server continue serving requests in the presence of an attack.

– Resource Scaling. Dynamic auto-scaling of resources is one of the most

popular features of the clouds. It is also treated as one of best mitigation

methods to counter DDoS attack allowing server availability or continuity

with scaled resources.

– Victim Migration(VM). VM has changed the way the entire running server

is shifted to another physical server without noticeable downtime. Mi-

gration can be used to shift the victim server to a different physical server,

which is isolated from the attack and once the DDoS is detected and

mitigated, the server can again be shifted back to the actual place.

– OS Resource Management (ORM). These OS level resource management

methods argues that DDoS attacks being the resource intensive attacks

may affect the overall mitigation methods running inside the victim VMs.

By minimizing the contention at the level of the operating systems, miti-

gation and recovery can be expedited.

– Software Defined Networking (SDN). SDN is an emerging reconfigurable

network paradigm which may change the whole DDoS mitigation space.

SDN in its core separates data and control planes of switching to support

the network reconfigurability on the fly.

– DDoS Mitigation as a Service (DMaaS). There are multiple cloud based

service/third party services which are capable of providing DDoS protec-

tion. Mostly, DDoS protection is done on a server or an intermediate node

forwarding packets to the server. There are solutions which are hosted in

the cloud and provide DDoS mitigation as a service.

The motivation of presenting [36] is to indicate that cloud networks are possible

targets for a DDoS attack.
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2.2.4 DDoS Attacks in Cyber Physical Systems

According to [37], recent years have witnessed the surge of significant interest in

security issues in cyber-physical systems (CPS). Consider, for example, malicious

cyber attacks in a remote state estimation application where a smart sensor node

transmits data to a remote estimator equipped with a false data detector. The authors

of [37] consider deception attacks in a remote state estimation scenario. They propose

optimal linear deception attacks on the sensor data without being detected by a false

data detector at the remote state estimator. The need for analyzing the consequences

of deception attacks on a dynamic system is important, because, in order to propose

effective countermeasures, one needs to understand what the worst attack might be.

The problems that are answered according to the authors are the following. (1) What

are the possible attack strategies under which the attacker remains undetectable to

the false data detector? (2) What is the corresponding estimation error at the remote

estimator under such an attack? (3) Does there exist an optimal attack strategy that

renders maximum estimation error?

Furthermore, [37] proposes a novel type of linear attack strategy (using Kalman

filters) and presents the corresponding feasibility constraint (which guarantees that

the attacker can successfully inject false data and remain undetected by the false

data detector) and computes the evolution of the estimation error covariance at

the remote estimator (also analyzing the degradation of system performance under

various linear attack strategies).

2.2.5 DDoS Attacks in Internet of Things Environments

Internet of Things (IoT) is a term that refers to the vast network of devices connected

to the Internet. According to [38], IoT is a network of heterogeneous devices. In that

way, it opens extra channels for information transmission and remote control to our

physical world and needs to be highly self-managed and self-secured [38]. For these

reasons, security issues of IoT need to be properly addressed. The authors propose

an IoT DDoS defense algorithm for an IoT end network, for preventive measuring

and avoiding DDoS attack. The design of the defense algorithm is guided by several

research motivations including ways to enable working nodes (which are mostly

data collecting nodes in an IoT network), intelligently detect and avoid a DoS-like

attack, and remain functioning. Also important are ways to make such intelligence
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lightweight and inexpensive and to make a local IoT end network sensitive to a

certain attacker for a long time after the first detection of its malicious behavior.

Following these questions, major types of network elements and their behavior are

designed to meet the above demands in a modeled IoT end sub-network. According

to the authors, in order for a working node to defend itself from DDoS attack, it

should be able to distinguish malicious requests from legitimate ones. Since DDoS

requests usually contain the same meaningless content, the proposed defending al-

gorithm determines a sender is malicious according to the consistency of the content

in the packets it sends. If a sender repeatedly sends request with same content, it will

be flagged as an attacker. Upon the reception of a request from this exact address,

the working node will refuse its request and retain bandwidth for service provid-

ing. In order to implement the above features, a list of records of served requests

is maintained. Each record contains information such as sender address, the most

recent request content, and a flag to mark whether a sender has been determined as

an attacker. Upon the detection of repeated request content or a true flag for being

malicious, service will not be provided. Furthermore, considering the limitation of

the working node devices, the length of record list is maintained short.

To summarise, the authors of [38] propose a lightweight defensive algorithm

for DDoS attack over IoT network environments. As explained above, the idea

is to help working nodes in an IoT network distinguish malicious requests from

legitimate ones, and process them differently.

2.3 Approaches in DDoS Detection

The scope of this section is to record the mathematical /logical approaches that are in

use, in order to detect early enough the DDoS attack. These include neurocomputing,

entropy theory, classification theory, graph theory, correlation analysis and traffic

analysis. The conclusion of the above discussions is that, for the detection of the

DDoS attacks, it is not sufficient to use one approach of detection. Real life scenarios

indicate that the best practice, in order to detect early enough the DDoS attacks, is

to implement multiple defenses.
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2.3.1 Neurocomputing

Artificial neural networks could become a major asset in order to decisively address

the threat of DDoS attacks [39], [40].

The purpose of [40] is to detect and mitigate known and unknown DDoS attacks

in real time environments. The authors choose an Artificial Neural Network (ANN)

algorithm to detect DDoS attacks based on specific characteristic features (patterns)

that separate DDoS attack traffic from genuine traffic. In particular, they used a

trained Artificial Neural Network algorithm to detect TCP, UDP and ICMP DDoS

attacks based on their characteristic patterns (ANN learning process, Java Neural

Network Simulator-JNNS). The objectives of their work is to (1) detect known and

unknown DDoS attacks in real time as opposed to only detect known attacks (2) iden-

tify high volume of genuine traffic as genuine without being dropped (3) prevent

DDoS attacking packets from reaching the target while allowing genuine packets to

get through (4) train, deploy and test the solution in a physical environment as op-

posed to simulators (5) reduce the strength of the attack before it reaches the victim

as opposed to near-by detection systems (6) evaluate their approach using both old

and up-to-date datasets with related work, based on accuracy, sensitivity, specificity

and precision. According to the authors, the detection mechanism is based on a su-

pervised ANN (Feed-forward, Error Back-Propagation with a Sigmoidal activation

function where accuracy primarily relies on how well the algorithm is trained with

relevant data sets. The patterns used for training purposes are instances of packet

headers, which include source addresses, ID and sequence numbers coupled with

source destination port numbers. To summarise, the authors have used a trained

Artificial Neural Network algorithm to detect TCP; UDP and ICMP DDoS attacks

based on characteristic patterns that separate genuine traffic from DDoS attacks. The

ANN learning process was started by reproducing a network environment that is

a mirror image of a real life environment. Furthermore, the detection mechanism

is integrated with Snort-AI1, where it is tested against known and unknown DDoS

attacks.

The authors of [39] use a lightweight method to detect DDoS attacks based on

traffic flow features. According to the authors, the first challenge one should tackle

1Snort-AI is a family of Snort plug-ins based on Artificial Intelligence (AI) technologies (i.e.

Artificial Neural Networks or Fuzzy Logic) to detect different kinds of hostile traffic.
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to successfully detect a DDoS attack is the difficulty arising from packet header

fields being modified to look like normal ones. As a result, distinguishing between

legitimate packets of normal traffic and useless ones sent by compromised hosts to

their victims is a very hard task. Another issue is that of the huge number of packets

to be analyzed. These challenges together make the accuracy of detection difficult

and its response time even worse. This method is implemented over a NOX-based

network2, where OpenFlow (OF) switches keep Flow Tables with statistics about

all active flows. All feature information needed is accessed in an efficient way by

means of a NOX controller and then processed by an intelligent mechanism of attack

detection. The method consists of monitoring NOX registered switches of a network

during predetermined time intervals. During such intervals, they extract existing

features of interest from flow entries of all switches. Each sample is then passed to a

classifier module that will indicate, using the spatial location of the winning neuron

in the topological map, whether this information corresponds to normal traffic or

an attack. Furthermore according to the authors, this method is in direct contrast

to existing approaches, most of which require heavy processing in order to extract

feature information needed for traffic analysis (the technique extracts features of

interest with a low overhead). It is also able to monitor more than one observation

point. The method is also very efficient at detecting DDoS attacks. It uses Self

Organizing Maps, an unsupervised artificial neural network, trained with features

of the traffic flow. The detection rate obtained is remarkably good as it is very close

to other approaches. For this reason, the authors call their method as lightweight.

2.3.2 Entropy Theory

Entropy theory is a major asset against DDoS attacks. References [41], [42], [43], [44],

[45] contribute to this effort with certain implementation methodologies.

The authors of [41] propose a novel mechanism for IP traceback (based on entropy

variations between normal and DDoS attack traffic) using information theoretical

parameters. According to the authors, they propose a novel traceback method

for DDoS attacks that is based on entropy variations between normal and DDoS

attack traffic, which is fundamentally different from commonly used packet marking

techniques. They develop a categorization of packets into flows that are passing

2Software-defined networking (SDN) platform for building network control applications.
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through routers. These flows are defined by the upstream router where a packet came

from and the destination address of the packet. During non-attack periods, routers

are required to observe and record entropy variations of local flows. According to

the authors, the proposed traceback mechanism is effective and efficient compared

with the existing methods. In particular, the proposed strategy is fundamentally

different from the existing PPM or DPM traceback mechanisms, and it outperforms

the available PPM and DPM methods. Because of this essential change, the proposed

strategy overcomes the inherited drawbacks of packet marking methods, such as

limited scalability, huge demands on storage space, and vulnerability to packet

pollutions. The implementation of the proposed method brings no modifications

on current routing software. Both PPM and DPM require update on the existing

routing software, which is extremely hard to achieve on the Internet. On the other

hand, the proposed method can work independently as an additional module on

routers for monitoring and recording flow information, and communicating with its

upstream and downstream routers when the pushback procedure is carried out. It is

independent of traffic patterns and can archive real-time traceback to attackers. Once

the short-term flow information is in place at routers, and the victim notices that it

is under attack, it will start the traceback procedure. The workload of traceback is

distributed, and the overall traceback time mainly depends on the network delays

between the victim and the attackers. According to the authors, the strategy they

proposed can trace back faster than previous works in larger scale attack networks.

The authors of [43] use a combination of unsupervised data mining techniques as

intrusion detection systems. The non-existence of predefined rules to correctly iden-

tify the genuine network flow made the task of DDoS attack detection very difficult.

In this paper, a combination of unsupervised data mining techniques as intrusion

detection system are introduced. The entropy concept in terms of windowing the

incoming packets is applied with a data mining technique using Clustering Using

Representative (CURE) as cluster analysis to detect the DDoS attack in network flow.

According to the authors, the proposed approach has been evaluated and compared

against several existing approaches in terms of accuracy, false alarm rate, detection

rate, F-measure and Phi-coefficient, with the results indicating the superiority of

their proposed approach. An efficient Entropy Method with CURE (EM-CURE) is

introduced. A proactive manner to detect DDoS attacks is implemented in many

steps. In a preprocessing step, the entropy windows are conducted using consec-
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utive packets in a different size. The entropy windows capture the network flow

using the packet information headers and then applies the entropy for each distinct

feature in window size. The entropy concept can be used to represent randomness

in the network flow.

The authors of [44] empirically evaluate several major information metrics,

namely, Hartley entropy, Shannon entropy, Rnyi entropy, generalized entropy, Kull-

backLeibler divergence and generalized information distance measure in their ability

to detect both low-rate and high-rate DDoS attacks. Then, they use the above metrics

to describe characteristics of network traffic data and find an appropriate metric to

facilitate the building of an effective model to detect both low-rate and high-rate

DDoS attacks. For their simulation, they used DDoS data sets from the MIT Lincoln

Laboratory, CAIDA and TUIDS, to illustrate the efficiency and effectiveness of each

metric for DDoS detection. In this paper the authors, evaluate information metric

measures to detect both low-rate and high-rate DDoS attacks in real-life DDoS data

sets. The following are some observations. Information entropy provides better re-

sults when one increases the order of generalized entropy in detecting both low-rate

and high-rate DDoS attacks. The information distance measure also provides better

result than KullbackLeibler when it increases the order of information divergence

measure in detecting both low-rate and high-rate DDoS attacks. An information

metric produces better result in terms of complexity because it uses a minimum

number of parameters during detection. For both generalized entropy and informa-

tion divergence, parameter values can be adjusted easily for better spacing between

normal and attack traffic. According to the author’s observation, the use of an ap-

propriate information metric helps to magnify the spacing between legitimate and

attack traffic for both low-rate and high-rate DDoS attack detection in real world

network traffic. The low computing overhead is another significant advantage of

such a metric in detecting DDoS attacks in near real-time. The outcome is that the

use of an appropriate information metric helps magnify the spacing between legiti-

mate and attack traffic for both low-rate and high-rate DDoS attack detection in real

world network traffic. The motivation of presenting this survey paper, is to indicate

the importance of using entropy theory in DDoS attack.

According to the authors of [45], for anomaly based DoS detection, the detector

uses network traffic statistics, such as the entropy of incoming packet header fields

(e.g. source IP addresses or protocol type). It calculates the observed statistical
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features and triggers an alarm if an extreme deviation occurs. Entropy features

are common in recent DDoS detection publications. They are also one of the most

effective features for detecting these attacks. However, intrusion detection systems

(IDS) using entropy based detection approaches can be a victim of spoofing attacks.

An attacker can sniff the network and calculate background traffic entropy before

a DDoS attack starts and then spoof attack packets to keep the entropy value in

the expected range during the attack. This paper explains the vulnerability of

entropy based network monitoring systems. It also resents a proof of concept entropy

spoofing attack and shows that, by exploiting this vulnerability, the attacker can

avoid detection or degrade detection performance to an unacceptable level. By

exploiting first the vulnerability, intrusion detection systems (IDS) using entropy

based network monitoring can become useless. Specifically, the method to deceive

entropy based DoS detection relies on generating spoofed packets to make the traffic

entropy during the attack indistinguishable from the entropy before the attack.

Entropy based detection is one of the most effective and popular approaches used

in the past decade. According to the authors, the paper presents an important

vulnerability of network monitoring systems using entropy and introduces a proof

of concept spoofing attack showing it is possible. An attacker can deceive entropy

based DDoS attack detection systems by either inserting new packets to the network

to keep the observed entropy value in the expected range or by generating spoofed

attack traffic that is invisible to entropy based detectors using background traffic

entropy distribution. Also the attacker, can generate false positives to make the

detection system unreliable. The motivation of presenting this paper is to highlight

that for DDoS, the appropriate defence mechanism involves multiple solutions.

2.3.3 Classification Theory

The method proposed in [46] tries to detect the entire possible seven layer DDoS

attack or application layer DDoS attacks on a web server, by using the parameters of

the network packet (like http GET, POST request and delta time) in order to compute

the accuracy in finding out the possible attack. The authors of [46] use different

classifiers like Naive Bayes, Naive Bayes Multinomial, Multilayer Perception, RBF

network, Random Forest, and others to classify the attack generated data set. Then,

they compare the accuracy, true positive rate, and false positive rate of each algorithm
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by finding the confusion matrix. According to the authors, DDoS attack is broadly

classified into two categories, network layer attack and application layer attack.

The main aim of layer 3, DDoS attack, is to overwhelm the server and use up the

bandwidth with floods. The motives of the application layer attack are to crash the

server by low and slow connections.

Furthermore, according to the authors, the proposed method tries to detect the

entire possible Layer Seven DDoS attack or application layer DDoS attacks on the web

server, by extracting parameters like http count and delta time of the packet captured.

A layer seven DDoS attack is low volume and acts as a legitimate transaction, thus we

are not able to detect it via a firewall or an IDS system. The early stage of the proposed

method captures all the packets from the attack source thereby enabling us to select

parameters like the number of http GET or POST requests from a single IP address.

The authors also select parameters like delta time, which can be defined as the time

interval between any two consecutive http requests sent by a single IP address. Since

Layer Seven or application layer DDoS attack uses the http protocol to use up the

recourses in the web server, the authors consider the IP addresses having maximum

number of http count towards a single IP destination address. They assume that

a normal human user will not be able to send http requests one after another at

high speed, and they consider the delta time between any two consecutive requests.

The smaller the delta time value, the greater is possibility of carrying out the attack.

According to the authors, Naive Bayes Multinomial achieves better accuracy and a

smaller false positive rate. Specifically, it is not possible to achieve 100 % accuracy

in detecting the DDoS attack in a network or to achieve a complete defense against

these attacks at a single stage. They authors conclude that Naive Bayes Multinomial

achieves 93.67 % accuracy in detecting the attacks and a small false positive rate of

3.10%.

2.3.4 Graph Theory: Clique Community

The Clique community problem is also related to DDoS attack detection [47] and is

crucial to understanding the relation inside the social networks (who is related with

whom).

The authors of [47] propose an efficient algorithm for k-clique community detec-

tion using Formal Concept Analysis (FCA). For its implementation, they use a typical
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computational intelligence technique, namely the FCA-based k-clique community

detection algorithm. First, a formal context is constructed from a given social net-

work using a modified adjacency matrix. Second, the authors define a type of special

concept named k-equiconcept, which has the same k-size of extent and intent in a

formal concept lattice. Then, the paper proves that the k-clique detection problem is

equivalent to finding the k-equiconcepts. Finally, efficient algorithms for detecting

the k-cliques and k-clique communities are devised by virtue of k-equiconcepts and

k-intent concepts, respectively. According to the authors, the paper aims at exploit-

ing the network type of community detection method with a focus on the k-clique

community detection. With the help of FCAs powerful analysis ability on network

topology, this paper studies the FCA-based k-cliques and k-clique community de-

tection. According to the authors, this work is the first to study the k-cliques and

k-clique community detection problems using FCA. First, the transformation from a

social network to a formal context, which is an input of the FCA method, is studied;

then, a formal concept lattice is obtained. Then, they prove that the problem of k-

clique detection is equivalent to the problem of finding the k-equiconcepts. Finally,

efficient algorithms to detect the k-cliques and k-clique communities are devised

with the help of k-equiconcepts and k-intent concepts, respectively. According to

the authors, the major contributions of this paper are (1) Formal Context Construction

provides for a social network by using a modified adjacency matrix (2) the k-clique

detection problem is shown to be equivalent to finding the k-equiconcepts in the

concept lattice of a social network (an interesting conclusion is that extra k-cliques

can be derived from the detected k-equiconcepts; then, an algorithm for detecting

k-cliques with FCA is presented) (3) following k-clique detection, an FCA-based

k-clique community detection approach is devised. They prove that the k-clique

community detection problem is equivalent to finding the k-intent equiconcepts in

the concept lattice of a social network. Experimental results demonstrate that the

algorithm proposed in [47] has a higher F -measure value and significantly reduces

the computational cost compared with previous works. In addition, a correlation

between k and the number of k-clique communities is investigated. According to

the authors the proposed algorithm has a higher F-measure value compared to other

previous works. The proposed approach is described in detail in [47].
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2.3.5 Correlation Analysis

The authors of [48] first analyzed the correlation information of flows in data cen-

ter. They presented an effective detection approach based on CKNN (K-nearest

neighbors traffic classification with correlation analysis) to detect DDoS attacks. The

approach exploits correlation information of training data to improve the classifi-

cation accuracy and reduce the overhead caused by the density of training data.

Aiming to reduce the huge computational cost (minimize the complexity), the au-

thors of [48] also present a grid-based method named r-polling method for reducing

training data involved in the calculation. In correlation analysis, the computational

complexity is a huge problem. According to the authors, the proposed approach

is able to detect attacks by examining flow features only. With correlation analy-

sis, the approach can improve the classification accuracy and is not affected by the

density of training data. According to the authors the major contributions of this

paper are (1) a design to detect DDoS attacks with high efficiency and low cost,

which can quickly and efficiently identify the normal flows and abnormal ones in

the data center (2) a novel approach that uses the correlation in formation and CKNN

classification, which not only improves the classification accuracy, but also reduces

the overhead significantly (3) experimental evaluations that show that correlation

information helps reduce the size of training data, which in turn reduces overhead

significantly and improves the accuracy of classification. Also, the classification of

CKNN with grid mapping can provide fewer response time with low overhead.

According to the authors, their method is based on flows and thus able to detect

existing attacks by examining flow features only. With the correlation analysis, the

authors can find the hidden relations of training data from data center, which can

improve the classification accuracy and is not affected by the density of training

data. To reduce the overhead o fKNN, the authors map the training data into a grid.

The testing samples are only calculated with the training samples in neighboring

cells instead of all the training data by using r-polling method,which can significant

reduce the overhead of CKNN. Furthermore, the CKNN method is affected less by

the density of training data which directly influences the efficiency and precision of

the traditional KNN classifier. Otherwise, to keep the maximum correlation, they

do not make any change to the original density of the training data.
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2.3.6 Traffic Analysis: Flash Crowd

The authors of [49] develop a distributed change-point detection (DCD) architecture

using change aggregation trees (CAT). The idea is to detect abrupt traffic changes

across multiple network domains at the earliest time. A community network often

operates within the same ISP (Internet Service Provider) domain or the network is

administered by a virtual organization spanning across multiple network domains

with an established trust relationship. Early detection of DDoS attacks minimizes

the flooding damages to the victim systems serviced by the provider. The system

is built over attack-transit routers, which work together cooperatively. Each ISP

domain has a CAT server to aggregate the flooding alerts reported by the routers.

CAT domain servers collaborate among themselves to take the final decision. The

methodology is the following: when the flooding traffic starts propagating towards

the victim, routers along the path capture the suspicious patterns. Then each router

generates an alert packet and sends it to the CAT construction server, where an

alert will be raised once a CAT tree is formed. The alert packets report where the

suspicious pattern are captured, from which port(s) abnormal traffic is detected, and

by which port the abnormal traffic is heading. The CAT-based detection scheme

consists of two algorithms. One is the algorithm for attack pattern recognition at

local routers and the others for network-wide attack information fusion at the CAT

server. The CAT scheme is deployed in the core network routers where high data rate

and limited resource routers can share information to perform complicated security

functions. According to the authors, the complexity of DDoS attack patterns grows

fast, as new network vulnerability is identified and more sophisticated attack tools

are available. There is no magic that can handle all types of DDoS attacks. The shared

sources in collaboration Grids and community networks are especially prone to such

attacks. One solution works well in a given network environment but may fail in

other networks. Furthermore, to resolve policy conflicts at different ISP domains,

a new secure infrastructure protocol (SIP) is developed to establish mutual trust

or consensus. The DCD system was simulated up to 16 network domains on the

Cyber Defense Technology Experimental Research (DETER) testbed, a 220-node PC

cluster for Internet emulation experiments at the University of Southern California

(USC) Information Science Institute. Experimental results show that four network

domains are sufficient to yield a 98 percent detection accuracy with only 1 percent
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false-positive alarms. Based on a 2006 Internet report on autonomous system (AS)

domain distribution, the authors prove that this DDoS defense system can scale well

to cover 84 AS domains. This security coverage is wide enough to safeguard most

ISP core networks from real-life DDoS flooding attacks. According to the authors,

their work focuses in detection of DDoS flooding attacks against Grid resource sites

or hotspot servers in community networks. They point out that it is essential to

detect DDoS attacks sufficiently early before harm is done to legitimate applications.

Their contribution is in early detection of (1) DDoS Flooding Wave, (2) Deployment

in ISP Core Networks and (3) Tradeoffs between Detection Rate and False Alarm

Tolerance.

2.4 Synopsis

2.4.1 Categorization

This chapter presented an overview of the state of the art for DDoS attacks. The

proposed approaches can be divided into two main categories. The first category

reiterates the importance of DDoS attacks by describing the volume of the work that

has been done to this direction ( [35] and references within). The second category in-

volves proposed approaches that discuss technical aspects of DDoS attacks, through

various methodologies. The scope of these papers is to present a quantitative critical

evaluation regarding the work that has been done by others researchers, related with

the work discussed in this dissertation.

2.4.2 Main Remarks

In order to ultimately defend against DDoS attacks a lot of methodologies have been

developed. Unfortunately, there is no method in place, until now, capable to face

proactively the DDoS attacks. The growth of IoT in the coming years means that

bots will be much bigger, which can be a lethal weapon in the hands of the attackers.

Regarding the work done by others in relation with the work proposed in this

dissertation, the findings are presented in quantitative analysis in Figure 2.1. The

main point is that our method does not need any further information related to the

attacker. The other important point is that the implementation algorithm is simple

and can be easily applied. Regarding all presented methods, this dissertation is close
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to the methods presented in [46], [47] and [49]. The difference is that our method is

very simple in terms of its implementation, and its complexity with respect to the

number of involved users is low, especially if we use distributive command-control

and processing technics.
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Chapter 3

Baseline Approach

In this chapter, we describe notation and related theory regarding Hidden Markov

Models (HMMs), and use it to develop a baseline approach for detecting collabora-

tive (malicious) user activity.

3.1 Background on Hidden Markov Models

A hidden Markov model (HMM) is a statistical Markov model, whose states are

hidden and cannot be observed directly. The hidden state feature of HMMs gives

them more flexibility in modeling stochastic processes. Some uses of HMMs include

applications to biological sequence analysis, pattern recognition (e.g., in speech),

economic and financial modeling, signature verification and others.

3.2 Motivation for Hidden Markov Models

An HMM consists of a finite set of states, each of which is associated with a (generally

multi-dimensional) probability distribution. Transitions among the states are ruled

by a set of probabilities, called transition probabilities, that are generated according

to a given probability distribution. Each transition is associated with an outcome

(output) that is not necessarily unique (or even deterministic) for that transition.

Only the outcome, but not the state, is visible to an external observer (states are

hidden to the outside and this is how the name hidden Markov model arises).

An HMM can be viewed as a doubly embedded stochastic process with two hier-

archical levels. The upper level is a Markov process whose states are unobservable.
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Observation is typically a probabilistic function of the upper level Markov states.

Different Markov states will have different observation probabilistic functions. The

two level hierarchical structure is the main idea and advantage of an HMM. It can be

used to model stochastic processes that are much more complicated than traditional

Markov models [50].

Typically, HMMs are used as statistical models of sequential data processes. For

instance, one goal is to use the HMM in order to identify the pattern of normal or

abnormal behavior of a given process. The HMM model of the normal profile can

be generated using historical data of the system operating under normal conditions

(i.e., past observed activity of the system can be analysed to infer the parameters of

the HMM model of interest [51], [52]).

In our case, the HMMs of interest are essentially partially observed Markov

chains, which serve as stochastic models that represent the profile of computer

events (transitions), under normal/usual operating conditions in a computer system

or network.

3.3 Mathematical Description of Hidden Markov Mod-

els

3.3.1 General

A discrete time Markov chain can be viewed as a stochastic process Xn with finite

state space θ = {x1, x2, ..., xN} that satisfies the Markovian property, i.e., for all n ≥ 1

and for all xi0 , . . . , xin ∈ θ, we have

Pr(Xn = xin |Xi0 = xi0 , . . . ,Xn−1 = xin−1) = Pr(Xn = xin |Xn−1 = xin−1) (3.1)

where Xk = xik denotes that the process X takes value xik at iteration k.

A time-invariant (or homogeneous) Markov model is described through a tran-

sition probability matrix that captures the transition probabilities Pr(Xn = xin |Xn−1 =

xin−1) (which are time-invariant and do not depend on n. If, for example, we have a

three state model (i.e., θ = {x1, x2, x3}), then the transition probability matrix is a 3× 3
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matrix of the form

P =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,
where pi j = Pr(Xn = xi|Xn−1 = x j) and remains invariant with respect to n. The matrix

P is stochastic, i.e., its columns sum to 1.

3.3.2 Hidden Markov Models

Let the states of the Markov model be

θ = {x1, x2, ..., xN}

(where N is the number of states) and let Xn = xi, denote that the Markov Chain is at

state xi at time step n. At initialization, we have some initial probability distribution

that captures the probability of starting at each state:

π(0) =



Pr(Xo = x1)

Pr(Xo = x2)

. . .

Pr(Xo = xN)


.

For a Markov chain, i.e., when (3.1) is satisfied, the probabilities of being at state x j

at time step k, denoted by

π(k) =



Pr(Xk = x1)

Pr(Xk = x2)

. . .

Pr(Xk = xN)


,

can be obtained iteratively via

π(k + 1) = P(k)π(k) ,

where π(0) are the initial probabilities and P(k) is the transition probability matrix

whose (i, j)th entry is

Pr(Xk+1 = xi|Xk = x j) . (3.2)

If the above probabilities are not a function of k (i.e., we are dealing with a homoge-

neous Markov chain), then we have

π(k + 1) = Pπ(k),
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where

P =



p11 p12 . . . p1N

p21 p22 . . . p2N

. . . . . . . . . . . .

pN1 pN1 . . . pNN


with pi j = Pr(Xk+1 = xi|Xk = x j).

In summary, a homogeneous Markov chain can be defined as a 3-tuple (θ,P,π0),

where

• θ = {x1, x2, ..., xN} is a finite set of states;

• P is the N ×N state transition probability matrix;

• π0 is the N-dimensional initial state probability distribution vector.

A hidden Markov model (HMM) can be defined as a 5-tuple (θ,P,π0,Ω,ψ), where

(θ,P,π0) is a Markov chain, and

• Ω is the set of output symbols, i.e., the symbol values that the output Yk of the

process can take at any time step k (e.g., Ω = {0, 1} in most of the examples we

consider later);

• ψ is the emission probability matrix of symbols in Ω and defines the probability

Pr(Yk = ωl|Xk = x j) of producing (“emitting”) symbol ωl ∈ Ω at a given state

xi ∈ θ at time step k.

3.3.3 Example of a Hidden Markov Model

Modeling the Tossing of Two Different Coins

Consider the tossing of two different coins, Fig. 3.1, one of which is fair but the

other is not (assume that the unfair coin comes out Heads with probability 0.75).

Notice that the outcome (Heads or Tails) does not tell us which coin has been used.

We assume that we start by randomly selecting one of the two coins with equal

probability, and switch coins whenever Heads appears. To model this, we can use

a two state hidden Markov model: state 1 represents the selection of the fair coin,

whereas state 2 represents the selection of the unfair coin (of course, the state is

unknown to somebody who only sees the outcome of the coin toss). The transition

probabilities are p11 = p21 = 0.5 (because of the fair coin), whereas the transition

34

Mari
os

 Tho
ma



probabilities for the unfair coin are p12 = 0.75, p22 = 0.25 whenever Heads appear, we

switch coins. This Markov Model is hidden, because the sequence of observations

(sequence of outcomes, Heads or Tails) is not uniquely associated with a sequence

of states.

1

Two Different Coins

P11 =1/2,Tail

UNFAIR

2

P22 =1/4,Tail

FAIR

P22 =1/2,Heads

P12 =3/4,Heads

Figure 3.1: Two-state hidden Markov model - Tossing of two different coins.

3.3.4 Example of a Markov Model

Modeling the Tossing of One Fair Coin (FCM)

Consider the tossing of a fair coin, Fig. 3.2, which comes out Heads or Tails with

equal probability p=0.5. We can model this as a two-state Markov chain. Each state is

uniquely associated with either Heads or Tail. The transition probabilities of the fair

coin model are p11 = p12 = p21 = p22 = 0.5). The state of the Markov chain is uniquely

associated with the outcome of the toss (thus, knowing the outcome implies that we

know the state of the Markov chain). This Markov model is not hidden, because

the sequence of observations (sequence of outcomes, Heads or Tails) is uniquely

associated with the sequence of states. Note that we could also use this model to

capture the tossing of an unfair coin (e.g., p22 = p21 = 0.75 and p11 = p12 = 0.25 would

correspond to a biased coin that comes out Tail 75% of the times).

3.4 Hidden Markov Models used in the Thesis

Our method relies on being able to reasonably capture the behavior of requests by a

typical user to a particular point of interest by an HMM model (but not-necessarily

knowing the model). As we argued in the previous subsection, an HMM is a

stochastic process with an underlying state sequence that is not directly observable
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1

One Fair Coin

P11 =1/2, Heads

2

P22 =1/2, Tail

P21 =1/2, Tail

P12 =1/2, Heads

Figure 3.2: Two-state Markov model - Tossing of one fair coin.

through a sequence of observed symbols. To explain our approach, we describe two

HMMs below (HMM1 and HMM2), which can be thought as representative of the

typical behavior of two different users (refer to Fig. 3.3 and Fig. 3.5): HMM1 has

three states and it is parameterized by r, 0 < r < 1, whereas HMM2 has four states

and it is parameterized by q and r, 0 < q, r < 1. Both HMMs have outputs in the set

{0, 1}.

HMM1 of Fig. 3.3 has transition probabilities

PHMM1 =


0 0 r

1 0 0

0 1 (1 − r)

 .
HMM2 of Fig. 3.5 has transition probabilities

PHMM2 =



r (2 ∗ q/5) 0 (3 ∗ q/4)

(1 − r) (1 − q) (r/4) 0

0 (3 ∗ q/5) (1 − r) (q/4)

0 0 (3 ∗ r/q) (1 − q)


Figures 3.4 and 3.6 show sample runs of the HMMs in Figures 3.3 and 3.5 respec-

tively.

3.5 Steady State Probability Distribution of a Hidden

Markov Model

The state probabilities at time κ, can be obtained via the iteration π(κ + 1) =

PHMM1π(κ), κ = 0, 1, 2, . . ., where

π(0) = π0.
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HMM 1

1

1

‘’1’’

r

1-r

‘’0’’ ‘’0’’

1

2 3

Figure 3.3: Three-state hidden Markov model.

 

TIME 
STEPS 

HMM1 (r=0.6) 

STATES 
HMM1 

 

HMM1sequence 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

state1 
state2 
state3 
state1 
state2 
state3 
state1 
state2 
state3 
state1 

 

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

 

 

Figure 3.4: One run for HMM1 and corresponding sequence of states and sequence

of outputs (related to Fig. 3.3).

Steady state is reached if

lim
κ→∞

πi(κ) = πi

for

i = 1, 2, . . .N.

In such case, the vector π = [π1, π2, . . . , πN]T is called the steady state probability

vector and satisfies

π = PHMM1π
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HMM 2

‘’0’’

1 2 3

1-r

4

‘’1’’

1-q 1-r 1-qr

2q/5 r/4 q/4

3r/43q/5

‘’0’’‘’1’’

Figure 3.5: Four-state hidden Markov model.

 

TIME STEPS 

HMM2(r=0.6 and q=0.8) 

STATES 
HMM1 

 

HMM2sequence 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

state1 
state1 
state1 
state1 
state2 
state3 
state3 
state4 
state1 
state1 

 

 1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
 

 

 

Figure 3.6: One run for HMM2 and corresponding sequence of states and sequence

of outputs (related to Fig. 3.5).

and

1 = π1 + π2 + π3 . . . πN.
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3.6 Proposed Approach

3.6.1 Theoretical Analysis

Let y1[k] and y2[k] be the output sequences of HMM1 and HMM2 respectively:

y1[k] ∈ {0, 1},∀ k ≥ 0, and y2[k] ∈ {0, 1},∀ k ≥ 0. We assume that “1” denotes a request

from the user, whereas “0” denotes no request from the user. Let n be the number of

terms of the given output sequences y1[k] and y2[k], i.e., n is the total number of time

steps (inspectable period of time). We define the indicator functions I1 and I2 as

I1(y1[k]) =

 0, y1[k] = 0,

1, y1[k] = 1.

and

I2(y2[k]) =

 0, y2[k] = 0,

1, y2[k] = 1.

The empirical frequencies û1 and û2 denote, respectively, the empirically seen per-

centage of time user 1 and user 2 make requests. They are defined as

û1 =
1
n

n∑
k=1

I1(y1[k]) ,

û2 =
1
n

n∑
k=1

I2(y2[k]) .

Similarly, we use

û =
1
n

n∑
k=1

I1(y1[k])I2(y2[k])

to denote the comparable frequency that user 1 and user 2 make a simultaneous request.

If n → ∞, then the empirical frequencies û1 → P1 and û2 → P2, where P1 and

P2 are respectively the steady state probabilities for user 1 and user 2 to send in

requests. These probabilities can be easily obtained by calculating the steady state

probabilities of the underlying Markov chains (assuming that user request models

are known and admit steady state probability vectors) and then taking into account

the emission probabilities from each state (in our examples later on, we illustrate

this process in more detail). Similarly, when n→∞, then the comparable frequency

û→ P, where P is the empirical steady state probability that user 1 and user 2 make

a simultaneous request. For large n, we expect û to approach

û→ P .
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If the above two users are independent, the probability that they make a simul-

taneous request is easily seen to be P = P1P2, which implies that

û→ P1P2 ,

and (since û1 → P1 and û2 → P2) we have û→ û1û2︸︷︷︸
û12

, where û12 is referred to as the

relative frequency.

In fact, if the two users are independent, we expect to have û12 = û as n grows to

infinity. This relationship should hold under mild assumptions on the ergodicity of

the underlying HMM models, which practically means that, during the inspectable

period of time, the tactics and the strategy of the intruder do not change.

3.6.2 Methodology

Analysis of HMM1. Let û1 be the empirical frequency, which indicates the number

of terms with the value “1” in the output sequence y1[k] of n bits, i.e.,

û1 =
number o f terms where y1[k] = 1

n
.

Analysis of HMM2. Let û2 be the empirical frequency, which indicates the number

of terms with the value “1” in the output sequence y2[k] of n bits, i.e.,

û2 =
number o f terms where y2[k] = 1

n
.

Output Sequences. By comparing the output sequences y1[k] and y2[k] of HMM1

and HMM2 respectively, we find the comparable frequency û. The idea is to identify

the specific instants where both sequences (for HMM1 and HMM2) have respective

terms that are equal to “1,” i.e.,

û =
number o f terms where y1[k] = y2[k] = 1

n
.

If the two users are independent, then the relative frequency û12 and the comparable

frequency û, should be close to equal i.e, û12 ' û.

The conclusion of the above analysis, which is our baseline approach, is the

following:

• For independent events (independent users), when n→∞, we have û12 ' û.

• For dependent events (correlated users), when n→∞, we do not have û12 ' û.
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The above is the basic concept of our approach, in order to identify early enough any

abnormal incoming or/and outgoing traffic in the CIS, before any damage is caused.

By examining the correlation between terms with the value “1” among y1[k] and y2[k],

we can characterize the degree of cooperation between the users in the network (for

instance, during the implementation of the ARQ protocol) and subsequently identify

users who deliberately, perhaps in a coordinated manner, flood the network with

useless traffic.

We should point out that knowledge of HMMs that model the user behavior is

not needed to implement the above approach. The key in the above analysis is the

fact that, despite lack of all pertinent information about the users, we are able to use

the only observable to us (i.e., the requests they make in the network) to identify any

abnormal activities, by calculating the difference between the relative frequency and

the comparable frequency; this can essentially be used as an indicator of the degree

of their correlation (whether they are independent or dependent). The study of the

exact degree of the correlation between users (in terms of specific values), is beyond

the scope of this thesis. In practice, one should also try to identify correlations that

extend over time windows (by trying the same approach on shifted versions of one

of the two sequences).

3.7 Computational Considerations

3.7.1 General

As it was already mention in Section 3.6.1 (Theoretical Analysis), for large n, we

expect û12(n) (where û12(n) = û1(n)û2(n)) to approach P12 , i.e.

lim
n→∞

û1(n)û2(n) = û(n).

We refer to û12 as the relative frequency and to û(n) as the comparable frequency.

The above relationship should hold under mild assumptions on the ergodicity of the

underlying HMM models, which practically means that the tactics and the strategy of

the intruder do not change. By examining the correlation between terms with value

“1” among y1[k] and y2[k], we can characterize the degree of cooperation between

users in the network (e.g., as it was already told during the implementation of the

ARQ protocol, etc.) and subsequently identify users who deliberately, perhaps in a
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coordinated manner, flood the network with unnecessary requests and traffic.

Note that the above analysis can only happen in an ideal world, so it can be taken

only as a baseline for further actions. In order to identify any unusual behaviour and

reach safe conclusions about the attackers, we have to deal with several parameters

(e.g continous time scale, finite time windows, and others), which will be discussed

later in this thesis.

3.7.2 Eigenvectors and Eigenvalues

In this section we use eigenvector decomposition to understand how the convergence

to steady state occurs in a given (hidden) Markov model. We assume for simplicity

that ξ1, ..., ξN is a linearly independent set of eigenvectors of PHMM ∈ RNxN, i.e.,

PHMMξi = λiξi, i = 1, ...,N

which can be expressed as

PHMM[ξ1, ..., ξN] = [ξ1, ..., ξN]



λ1 0 . . . 0

0 λ2
. . . 0

. . . . . . . . . . . .

0 0 : λN


= ΞΛ ,

where

Ξ = [ξ1, ..., ξN]

and

Λ =



λ1 0 : 0

0 λ2
. . . 0

. . . . . . . . . . . .

0 0 . . . λN


.

where 1 ≥ |λ|.

We can perform eigenvalue/eigenvector decomposition analysis as described

below. We write

PHMM = ΞΛΞ−1

and replace the term PHMM in the equation

π(k) = Pk
HMMπ(0)

42

Mari
os

 Tho
ma



to obtain

π(k) = (ΞΛΞ−1)kπ(0)

which simplifies to

π(k) = ΞΛkΞ−1π(0).

If we put the term c(k) = Ξ−1π(0) then the above equation takes the form

π(k) = ΞΛkc(k),

which, in turn, results in the equation

π(k) =

n∑
i=1

Ξiciλ
k
i .

Consider the Hidden Markov Models in Fig. 3.3 with

PHMM1 =


0 0 r

1 0 0

0 1 (1 − r)


and in Fig. 3.5 with

PHMM2 =



r (2 ∗ q/5) 0 (3 ∗ q/4)

(1 − r) (1 − q) (r/4) 0

0 (3 ∗ q/5) (1 − r) (q/4)

0 0 (3 ∗ r/q) (1 − q)


.

• For HMM1 (three state model), we have the respective diagonal matrix of

eigenvalues and eigenvectors. If we use the paremeter r = 0.7, then

ΛHMM1 =


1.0000 + 0.0000i 0 0

0 −0.3500 − 0.7599i 0

0 0 −0.3500 − 0.7599i


and

ΞHMM1 =


0.4975 + 0.0000i −0.2130 − 0.4625i −0.2130 − 0.4625i

0.4975 + 0.0000i −0.3956 − 0.4625i −0.3956 − 0.4625i

0.7107 + 0.0000i −0.3956 − 0.4625i −0.3956 − 0.4625i

 .
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• For HMM2 (four state model), we have the respective diagonal matrix of

eigenvalues. If we use the paremeters r = 0.7 and q = 0.9, then

ΛHMM2 =



1.0 + 0.0i 0 0 0

0 −0.4089 + 0.0i 0 0

0 0 0.3045 − 0.2360i 0

0 0 0 0.3045 − 0.2360i


and

ΞHMM2 =



−0.8547 + 0.0i −0.4767 + 0.0i 0.4699 + 0.3757i 0.4699 + 0.3757i

−0.3494 + 0.0i 0.4603 + 0.0i 0.3676 − 0.1048i 0.3676 − 0.1048i

−0.3317 + 0.0i −0.5213 + 0.0i −0.2348 + 0.2709i −0.2348 + 0.2709i

−0.1935 + 0.0i 0.5377 + 0.0i −0.6028 + 0.0i −0.6028 + 0.0i


.

The rate of convergence of û1 → P1 (or û2 → P2) depends on the eigenvalues

λ1, λ2, ..., λN of the transition probability matrix P of the given HMM (here, P is

an N × N matrix with N being the number of states of the HMM). Recall that an

eigenvalue λi is a constant that satisfies Pvi = λivi for some N-dimensional vector vi,

called the eigenvector corresponding to λi. Since matrix P is column stochastic, it

is well known that it has N eigenvalues, one of which is |λ1| = 1 and the remaining

satisfy |λi| ≤ 1.

The rate of convergence of û1 → P1 is governed by the value of |λ2|where λ2 is the

eigenvalue that has the second largest magnitude (|λ1| = 1 has the largest magnitude).

For example, if
∣∣∣λ2,HMM1

∣∣∣ is smaller than
∣∣∣λ2,HMM2

∣∣∣, then HMM1 will (generally) reach

steady state faster than HMM2. As a consequence, for large
∣∣∣λ2,HMM

∣∣∣, we need more

inspectable period of time n, in order to safely reach conclusions about the correlation

between different users.

In general, the larger the values of |λi| (closer to unity) , the more difficult it

becomes, to reach steady-state.This is the direct implication of the equation

π(k) =

n∑
i=1

Ξiciλ
k
i .

3.7.3 Complexity Analysis

The complexity of the proposed method depends on two basic factors: The number

of users (m) and the number of steps (n). According to our method, there are m users
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that have to be formed in pairs, so the possible combinations are(
m
2

)
=

m(m − 1)
2

.

This means that the complexity of our method is O(m2n), where n is the length of

the inspectable window in the baseline approach. If we assume that we have time

shifting constraints, then the complexity gets bigger and it is O(m2nx), where x is the

maximum value of shifting.

3.7.4 Scalability Analysis

The scalability of the proposed method does not get affected by the increase in the

number of the users under investigation. On the contrary, if we have big number

of users (m) and big number of steps (n), the outcome of the method will be more

reliable and stable. This happens because the large number of formed pairs among

the users cover all possible failures (false negative results); furthermore, for a large

number of the steps, more reliable results are obtained because more time is given

for the method to reach steady state.

3.8 Summary

In this chapter we described the usage of HMMs. In our analysis we introduced the

basic concept and theory of HMMs and showed how an HMM can be used to model

stochastic processes that are much more complicated. For our case, HMMs of interest

are essentially partially observed Markov chains, which serve as stochastic models

that represent the profile of computer events (transitions), under normal/usual op-

erating conditions in a computer system or network. To this direction, we quoted

some examples, with respective discusions. We then described our baseline pro-

posed approach and its implementation, taking into account the related theory of

the HMMs. Finally, we also presented the complexity analysis of our method.

45

Mari
os

 Tho
ma



Chapter 4

Enhanced Approach

4.1 Real World Considerations

Cyber attacks in the real world have become very sophisticated, with the attackers

trying to deceive the security measures that are in place. Let us consider, for instance

the strategies illustrated in Fig. 4.1 and Fig. 4.2. The underlying HMMs are not

necessarily governed by time invariant probabilities. As shown in Fig. 4.1, the

attacker (red colored) orders the master zombies (leaders shown in, yellow, light

blue and green) who in turn deliberately change the behaviour of the slave zombies

(teams shown in, yellow, light blue and green) that are members of the attacker

network. In Fig. 4.2, we see how this strategy is implemented at different time steps.

Each user represents a slave zombie, which acts at a different time step.

If we take the above description as our baseline view of this problem, then it

is clear that it is very difficult to identify the respective HMMs of each user (slave

zombie). Furthermore, it is very difficult to understand the botnet’s actual geo-

location and its full structure. The only evidence that is viewable to the network,

is the behaviour of the users (through the inspectable time steps), as manifested in

terms of the traffic of the network (both incoming and outcoming traffic). These new

strategies reshape and complicate the problem. The key question is how we can

identify correlations between these users and categorize them in cliques, keeping in

mind that their behaviour may be implemented via time-varying mechanisms. By

adjusting the method of Chapter 3, in this chapter we partially address the attacker’s

time-varying strategies indirectly.
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Figure 4.1: DDoS attack graph.
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Figure 4.2: User strategy for time-varying schema.
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4.2 Improved Methodology

This chapter updates the prediction strategy that we introduced in the previous

work chapter. The extented method relies on the analysis of data traffic across the

concerned network through the use of fixed time frames, in an effort to identify

correlations between different users (both incoming and outcoming traffic).

4.2.1 Lessons Learned

Real life lessons indicate that we typically have neither a clear view of when some-

thing goes wrong, nor the actual number and the identity of the users that are

involved in the DDoS attack. A recent example of this was the DDoS attack powered

by a new botnet dubbed Leet Botnet, which hit the network of the firm Imperva [53].

The DDoS attack took place in two waves with the first one lasting 20 minutes

and peaking at 400Gbps, and the second one lasting 17 minutes and peaking at

650Gbps. The attack used spoofed IPs, making it impossible to trace the botnet’s

actual geo-location or learn any additional information regarding the devices which

were used [53].

4.2.2 Basic Elements of Enhanced Strategy

Updating our approach in Chapter 3, we notice through simulations that when

FRelative ≥ FComparable (where FRelative is the relative frequency û12 and FComparable is the

comparable frequency û of Chapter 3, the involved users are probably independent.

This new assumption is different from the approach expressed in Chapter 3, where

independent users are those that satisfy û12 ' û.

In order to be more realistic, we separate users into several categories, in order

to cover cases of interest. The main problem in real scenarios is that, we do not

have concrete boundaries about the behavior of users. As a consequence, it is hard

to easily index the users in good and bad guys. Taking the above into account, we

separate users into the following main categories:

• Dependent users: These are users that have similar behavior, based on rela-

tive/comparable frequencies. Users with similar behavior form the dependent

clique (they act as a collaborative clique).
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• Independent users: These users, have no dependency between them (non-

collaborative).

• Users with traffic above normal: This category of users is called flash crowd.

Its activity is above the normal limit of traffic.

• Users with very high traffic: This kind of users are the abnormal users. Their

activity is very high and above the normal limit of traffic, with no logical

reasoning.

• Users with no activity (only when we use historical data): This kind of users

are also categorized as independent (non-collaborative).

The specific criteria for the above categories of users, will be analyzed later in

this chapter.

In order to implement our approach, all users in question are compared pairwise

in specific time frames, which are called the inspectable periods of time, and range

between 103 to 104 time steps. Chapter 3 indicated that HMMs reach the steady

state condition approximately in the range of 103 to 104 time steps (depending on

the complexity of the HMM that governs the user’s behavior). Each time step is

in the time unit of 100ms (their activity is represented with the values ′1′ or ′0′).

User activity/behaviour is examined through criteria related to user independency,

dependency, abnormality, flash crowd behaviour, or absence of any activity.

Chapter 3 established that there is no need to have knowledge of the strategy of

the attacker in order to implement the baseline approach (as long as some nominal

ergodicity conditions are satisfied). As already discussed, the key in the above

analysis is the fact that, despite the lack of all pertinent information about the users,

we are able to use the only observable to us (i.e., the requests they make in the

network for both incoming and outcoming traffic) to identify any abnormal activity

(by calculating the difference between the relative frequency and the comparable

frequency). This can essentially be used as an indicator of the degree of their

correlation (whether they are independent or dependent).

4.2.3 Implemention

This subsection provides the necessary information related to the used methodology,

in order to implement the updated approach. Further to Chapter 3, we enhance our
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method in two main directions.

The first direction is related to the representation and the processing of the users.

Specifically, we represent the dependencies between users, using undirected graphs

Gcomparable(V,E) and Grelative(V,E), where the set of nodes V represents the set of users

and the set of edges, capture the degree of correlation among them. This approach

gives us the chance to create two undirected graphs with the respective square

matrices Mcomparable and Mrelative. Each element of Mcomparable and Mrelative, is related with

a pair of users, such as i and j (where i, j ∈ V). The number of rows and columns of

the above square metrices is equal to the total number of users.

The second direction deals with the way we implement our approach in the real

world. Regarding this, the pseudocode of Fig. 4.3 has been implemented, in order

to identify correlations between pairs of users, by putting additional criteria to the

approach described in Chapter 3. The goal is to identify possible relations between

the users, and establish respective cliques. Specifically, the pseudocode of Fig. 4.3

has been implemented as follows:

• First Criterion: Find Dependent Users1

Fcomparable > Frelative

• Second Criterion: Find Independent Users

Frelative ≥ Fcomparable

• Third Criterion: Find Users with traffic above normal

FObservableRate ≥ FMeanPacketRate

• Fourth Criterion: Find Users with very high traffic

UObservableRate ≥ 0.9

• Fifth Criterion: Find Users with no activity

UObservableRate = 0

The decision tree (Fig. 4.3), which implements the algorithm of the proposed

approach and the respective flowchart of functions, are the following:
1What we know is that Fcomparable = Frelative, if the users are independent. In practice, we need to

pick a small threshold τ (based on empirical evidence) and assume that the users are independent if

Frelative − τ ≤ Fcomparable ≤ Frelative + τ.
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• First Criterion/Find Dependent Users

Further to our analysis in Chapter 3, after evaluating the proposed procedure,

we find that when Fcomparable > Frelative, the involved users y1[k] and y2[k], are more

likely to be dependent. When the empirical frequencies of the users, for in-

stance for ûi and û j, (where i, j ∈ V) are equal with their comparable frequency

(Fcomparable), then they are indicated as dependent with infinite relation.

• Second Criterion/Find Independent Users

Independent users are those users that fulfill the equality Frelative ≥ Fcomparable.

We find that when the above equality is in force, the involved users are more

likely to be independent.

• Third Criterion/Find Users with traffic above the usual

When the empirical frequency of a user is greater than FMeanPacketRate, then that

user is indicated as Flash Crowd. Users that satisfy this criterion are likely

to be dependent and, as a consequence, they are assigned to the clique of

collaborating nodes.

• Fourth Criterion/Find Users with very high traffic

Using the criterion UObservableRate ≥ 0.9, we identify abnormal Users. It is a very

strong criterion and the threshold can change based on empirical data.

• Fifth Criterion/Find Users with no activity

When UObservableRate = 0, we identify users with no activity in the inspectable

time period. This criterion can be applied only if historical data is in use. The

meaning of this criterion is that when we compare different windows of time,

we can find relations between the users in question. Users that present no

activity for the specific time window are essentially inactive for the specific

inspectable period of time (fixed time frame).

The goal of the enhanced approach is to improve the methodology presented in

Chapter 3 in order to deal effectively with scenarios of DDoS attacks in the real world.

The next chapter will provide simulations and describe with the implementation and

performance of the enhanced approach.
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4.3 Summary

In this chapter we described an enhanced approach based on the proposed baseline

approach. We presented the real world considerations regarding DDoS attacks and

lessons learnt from real security events. Based on these observations, we updated

the prediction strategy that we introduced in Chapter 3. The extended method

relies on the analysis of the data across the concerned network through the use

of fixed time frames, in an effort to identify correlations between different users

(both incoming and outcoming traffic). Towards this direction, we presented the

basic elements of an adjusted strategy. The idea is to split users, according to

respective criteria, into Dependent, Independent, Abnormal, Flash Crowd and No

activity users. Furthermore, we quoted the flowchart of the proposed approach and

analysed the used pseudocode.
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Chapter 5

Evaluation of Proposed Method

In this chapter we implement the approach in Chapter 4, and evaluate its perfor-

mance in small and large simulated examples, as well as real data.

5.1 Small Examples with Fixed Botnet Data

In this section we use a small example to illustrate the performance of the proposed

approach. The used paremeters are those described in Chapter 3, namely n, û1, û2,

û, û12, λ2,HMM1, λ2,HMM2, where the models considered are the ones in Fig. 3.3 and

Fig. 3.5 with parameters r = 0.7 and q = 0.9 (the selected values result in significant

difference between λ2,HMM1 and λ2,HMM2).

• For HMM1 (three state model), we have the following transition matrix:

PHMM1 =


0 0 0.7

1 0 0

0 1 0.3

 ,
with the respective matrices of eigenvalues and eigenvectors given by

ΛHMM1 =


1.0000 + 0.0000i 0 0

0 −0.3500 − 0.7599i 0

0 0 −0.3500 − 0.7599i


and

ΞHMM1 =


0.4975 + 0.0000i −0.2130 − 0.4625i −0.2130 − 0.4625i

0.4975 + 0.0000i −0.3956 − 0.4625i −0.3956 − 0.4625i

0.7107 + 0.0000i −0.3956 − 0.4625i −0.3956 − 0.4625i

 ,
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i.e., {|λ1| = 1, |λ2| = 0.8366, |λ3| = 0.8366}.

• For HMM2 (four state model), we have the following transition matrix:

PHMM2 =



0.7 0.36 0 0.675

0.3 0.1 0.175 0

0 0.54 0.3 0.225

0 0 0.525 0.1


with the respective matrices of eigenvalues and eigenvectors given by,

ΛHMM2 =



1.0 + 0.0i 0 0 0

0 −0.4089 + 0.0i 0 0

0 0 0.3045 − 0.2360i 0

0 0 0 0.3045 − 0.2360i


and

ΞHMM2 =



−0.8547 + 0.0i −0.4767 + 0.0i 0.4699 + 0.3757i 0.4699 + 0.3757i

−0.3494 + 0.0i 0.4603 + 0.0i 0.3676 − 0.1048i 0.3676 − 0.1048i

−0.3317 + 0.0i −0.5213 + 0.0i −0.2348 + 0.2709i −0.2348 + 0.2709i

−0.1935 + 0.0i 0.5377 + 0.0i −0.6028 + 0.0i −0.6028 + 0.0i


,

i.e., {|λ1| = 1, |λ2| = 0.4089, |λ3| = 0.3851, |λ4| = 0.3851}.

5.1.1 Normal Behaviour

In this subsection we deal with normal behaviour (refer to Fig. 5.1) among the two

users, whose behaviour is captured by HMM1 and HMM2, based on the theory

described in Chapter 3. The first observation is that after n steps, if we have inde-

pendent users, then û12 = û1û2 (Fig. 5.2).

The second observation is that the model with the smallest |λ2| reaches steady-

state quicker. In our example, due to the fact that |λ2,HMM2| < ‖λ2,HMM1|, HMM2

reaches steady state quicker (Fig. 5.3). Specifically, HMM2 reaches steady-state in

the range of κ = 12 steps instead of HMM1 which needs to approach κ = 50 steps,

where κ is the power of PκHMM1 and PκHMM2.

5.1.2 Abnormal Behaviour

In this subsection we deal with abnormal behaviour (refer to Fig. 5.4). Following

the theory described in Chapter 3, we represent the abnormal behaviour between
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NORMAL TRAFFIC 

n-steps û1 û2 û û12 

100 0.28 0.66 0.2 0.1848 

200 0.295 0.715 0.21 0.210925 

300 0.276667 0.673333 0.19 0.186289 

400 0.2825 0.6725 0.1975 0.189981 

500 0.292 0.67 0.204 0.19564 

600 0.296667 0.675 0.201667 0.20025 

700 0.285714 0.69 0.19 0.197143 

800 0.2875 0.705 0.20625 0.202688 

900 0.288889 0.68 0.193333 0.196444 

1000 0.293 0.694 0.197 0.203342 

1100 0.285455 0.680909 0.198182 0.194369 

1200 0.293333 0.678333 0.200833 0.198978 

1300 0.292308 0.695385 0.19 0.203266 

1400 0.292857 0.694286 0.215 0.203327 

1500 0.288667 0.686 0.196 0.198025 

1600 0.3 0.6775 0.19625 0.20325 

1700 0.289412 0.697059 0.201176 0.201737 

1800 0.295 0.686667 0.19 0.202567 

1900 0.294737 0.694211 0.211579 0.204609 

2000 0.292 0.699 0.202 0.204108 

2500 0.2996 0.6808 0.2044 0.203968 

3000 0.292 0.675333 0.194667 0.197197 

3500 0.291714 0.686571 0.202 0.200283 

4000 0.29125 0.68425 0.20425 0.199288 

4500 0.290667 0.685778 0.200889 0.199333 

5000 0.2916 0.6788 0.1954 0.197938 

5500 0.293091 0.694 0.202545 0.203405 

6000 0.289833 0.689667 0.204667 0.199888 

6500 0.29 0.686923 0.196462 0.199208 

7000 0.291714 0.688571 0.201286 0.200866 

7500 0.2924 0.680933 0.2004 0.199105 

8000 0.292375 0.680625 0.198375 0.198998 

8500 0.290353 0.681765 0.199647 0.197952 

9000 0.293556 0.688222 0.198556 0.202031 

9500 0.292632 0.689158 0.203474 0.201669 

10000 0.2909 0.6808 0.198 0.198045 

20000 0.29075 0.68665 0.20155 0.199643 

30000 0.291633 0.688767 0.201067 0.200867 

40000 0.2917 0.6844 0.19935 0.199639 

50000 0.29174 0.68524 0.20118 0.199912 

60000 0.291317 0.687133 0.200483 0.200173 

70000 0.292243 0.685343 0.200029 0.200287 

80000 0.291938 0.684938 0.198888 0.199959 

90000 0.291778 0.6852 0.200489 0.199926 

100000 0.29109 0.68459 0.19934 0.199277 

 

Figure 5.1: Normal traffic - Values of various parameters of interest after the execu-

tion of a run of 100000 steps in the two HMMs.

the two users. In this example, the second user, behaves just like the first user who

is governed by HMM1. In other words, the second user is mimicking the actions of
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Figure 5.2: Normal traffic - Comparing parameter values during a sample run.

Figure 5.3: Normal traffic - Graph/eigenvalues λ2,HMM1 and λ2,HMM2.

HMM1 and acts as zombie in a DDoS attack (The gap between û12 and û is presented

in Fig. 5.5. Due to the fact that |λ2,HMM2| < ‖lambda2,HMM1|, HMM2 reaches steady

state quicker as can be seen in Fig. 5.6 (it is not affected from the fact that we deal

with abnormal behaviour).

As described above, the output sequence of HMM2 is the same with the output

sequence of HMM1 (Fig. 5.4), i.e.,

yHMM1[k] = yHMM2[k].

As a result of the above, in abnormal traffic (refer to Fig. 5.5), we can identify
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ABNORMAL TRAFFIC 
 

n-steps û1 û2 û û12 

100 0.27 0.27 0.27 0.0729 

200 0.29 0.29 0.29 0.0841 

300 0.293333 0.293333 0.293333 0.086044 

400 0.28 0.28 0.28 0.0784 

500 0.298 0.298 0.298 0.088804 

600 0.295 0.295 0.295 0.087025 

700 0.291429 0.291429 0.291429 0.084931 

800 0.2975 0.2975 0.2975 0.088506 

900 0.29 0.29 0.29 0.0841 

1000 0.289 0.289 0.289 0.083521 

1100 0.285455 0.285455 0.285455 0.081484 

1200 0.291667 0.291667 0.291667 0.085069 

1300 0.286923 0.286923 0.286923 0.082325 

1400 0.295714 0.295714 0.295714 0.087447 

1500 0.294667 0.294667 0.294667 0.086828 

1600 0.289375 0.289375 0.289375 0.083738 

1700 0.282353 0.282353 0.282353 0.079723 

1800 0.294444 0.294444 0.294444 0.086698 

1900 0.286316 0.286316 0.286316 0.081977 

2000 0.29 0.29 0.29 0.0841 

2500 0.2936 0.2936 0.2936 0.086201 

3000 0.289667 0.289667 0.289667 0.083907 

3500 0.293143 0.293143 0.293143 0.085933 

4000 0.2895 0.2895 0.2895 0.08381 

4500 0.293333 0.293333 0.293333 0.086044 

5000 0.2934 0.2934 0.2934 0.086084 

5500 0.290727 0.290727 0.290727 0.084522 

6000 0.294667 0.294667 0.294667 0.086828 

6500 0.293231 0.293231 0.293231 0.085984 

7000 0.293286 0.293286 0.293286 0.086017 

7500 0.291733 0.291733 0.291733 0.085108 

8000 0.291 0.291 0.291 0.084681 

8500 0.293529 0.293529 0.293529 0.08616 

9000 0.291222 0.291222 0.291222 0.08481 

9500 0.290737 0.290737 0.290737 0.084528 

10000 0.2904 0.2904 0.2904 0.084332 

20000 0.29015 0.29015 0.29015 0.084187 

30000 0.2919 0.2919 0.2919 0.085206 

40000 0.2921 0.2921 0.2921 0.085322 

50000 0.29202 0.29202 0.29202 0.085276 

60000 0.291533 0.291533 0.291533 0.084992 

70000 0.292 0.292 0.292 0.085264 

80000 0.291375 0.291375 0.291375 0.084899 

90000 0.2914 0.2914 0.2914 0.084914 

100000 0.29134 0.29134 0.29134 0.084879 
 

Figure 5.4: Abnormal traffic - Values of various parameters of interest after the

execution of a run of 100000 steps in the two HMMs.

that refer to û > û12. This is completely reasonable because û is the multiplication of

the empirical values û1 and û2.
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Figure 5.5: Abnormal traffic - Comparing parameter values during a sample run.

Figure 5.6: Abnormal Traffic - Graph/eigenvalues λ2,HMM1 and λ2,HMM2.

For κ = 50, HMM1 reaches the steady-state since

P50
HMM1 =


0.291 0.291 0.291

0.291 0.291 0.291

0.416 0.416 0.416

 .

5.1.3 Comparing Similar Models

In this subsection we compare HMM1 with HMM1plus and HMM2 with HMM2plus.

In HMM1plus and HMM2plus the measurements are taken at different (shifted)

times (HMM1plus is the same model as HMM1 and HMM2plus is the same model
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as HMM2). The result is shown in Fig. 5.7.

Figure 5.7: HMM1 vs HMM1plus and HMM2 vs HMM2plus

5.1.4 Different Model

In this subsection, we use additional models, HMM3 (Fig. 5.8) and HMM4 (Fig. 5.9),

to represent normal behaviour, as shown below

PHMM11 =


0 0 0.1

1 0 0

0 1 0.9

 ,

PHMM21 =



0.1 0.048 0 0.09

0.9 0.88 0.025 0.202

0 0 0.072 0.9

0.03 0 0.075 0.88


,

PHMM3 =

 0.3 0.7

0.7 0.3

 ,

PHMM4 =


0 0.3 0.7

1 0 0

0 0.7 0.3

 .
The goal of the above is to indicate that the outcome remains the same (Fig. 5.10).
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Figure 5.8: Two-state hidden Markov model.
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Figure 5.9: Three-state hidden Markov model.

Figure 5.10: HMM1 vs HMM2 and HMM3 vs HMM4.

5.2 Enhanced Simulation Study

5.2.1 General Description of Marked Users

For the verification of the proposed methodology, we built networks of 8, 10, 12, 24,

36, and 48 of marked users1.
1Marked users (known parameters): We namely indicate the users as dependent, flash crowd, no

activity, independent and abnormal. This helps us to identify whether our method works properly.
62

Mari
os

 Tho
ma



Note that the users were constructed via simulation in order to fulfil the different

conditions of Dependent Users, Independent Users, Flash Crowd users, Abnormal

Users and No Activity Users. More specifically, their requests at different points in

time (sequence of 0s and 1s) were chosen according to the type of user. A sample

implementation of the above approach (built in Matlab using the random function

where needed) is shown in Fig. 5.14 for the case of 12 users. Furthermore for all

the networks of users, we used the basic parameters2 identified for the network of 8

users (refer to Section 5.2.2).

For the networks of 8, 10 and 12 users, the data was generated through simulation

software, using the indicated parameters. For the network of 12 users, the memo

in Fig. 5.14 displays all the parameters. For the networks of 24, 36 and 48 users

(additional to the above), due to the increased number of users, specifically for the

independent users, we used built probability functions with known parameters.

The reasons for building the networks of 8, 10, 12, 24, 36 and 48 users with

known parameters and simulating them, were (1) to identify that the method works

properly (taking account that all the users are marked), (2) to assess how complexity

increases when the number of users is increased (graphically).

Figure 5.14 is a small snapshot of total frame 4.103 time steps. We constract a net-

work of 12 users. Initially, (1) the five of them were Independent (R3,R4,R5,R6,R11),

(2) the two of them Dependent (R1,R2), (3) the other two of them Flash Crowd

(R7,R8), (4) the other two of them Abnormal (R9,R10) and the rest one of them No

Activity (R12). The outcome is described next.

5.2.2 Simulations with 8 users

For 8 users, we can see in Fig. 5.11, the outcome of the proposed approach for

users 1 to 8, according to criteria 1 to 5 of Fig. 4.3. Each node represents a user

(from 1 to 8), and gets a value which shows how many times it was member of

the respective clique (independent, dependent, abnormal), based on the number of

other users with whom it has high correlation. This additional criterion (not shown

in the pseudocode of Fig. 4.3) gives us an extra way to identify suspicious users.

Note that the threshold τ used to identify the closeness of Fcomparable and Frelative is

2The basic parameters include the steps described in a unit time of 100ms, the mean packet rate is

taken to be equal to 0.6 and τ = 10−4.
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Figure 5.11: Classification of 8 users according to their behaviour.

chosen to be τ = 10−4. This value can be changed if needed (it was chosen based on

empirical trials). With different coloring of the nodes, we can see in Fig. 5.11 the three

different networks which represent the independent (blue), dependent (red nodes)

and abnormal (yellow nodes) cliques. Specifically, users 3, 4, 7, 8 are independent,

users 1, 2 are dependent, and users 5, 6 are abnormal. The edges of the graph of Fig.

5.11, are weighted and indicate the strength of the connection between the above

users (independent, dependent and abnormal cliques). The steps described are in a

unit time of 100ms and the mean packet rate is equal to 0.6.

5.2.3 Simulations with 10 users

For 10 users, we can see in Fig. 5.12, the outcome of the proposed approach for

users 1 to 10.

Also in Figure 5.12 with different coloring of the nodes, we can see the three

different networks which represent the independent (blue), dependent (red nodes)

and abnormal cliques (yellow nodes). Specifically, user 3 is independent, users 1,

2, 4, 5, 6, 7, 8 are dependent, and users 9, 10 are abnormal. The edges of the graph

of Fig. 5.12, are weighted and indicate the strength of the connection between the

above users (independent, dependent and abnormal cliques).
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Figure 5.12: Classification of 10 users according to their behaviour.

5.2.4 Simulations with 12 users

For 12 users, we can see in Fig. 5.13, the outcome of the proposed approach for

users 1 to 12.

Also in Fig. 5.13 with different coloring of the nodes, we can see the three dif-

ferent networks which represent the independent (blue, purple nodes), dependent

(red nodes) and abnormal cliques (yellow nodes). Specifically, users 3, 12 are inde-

pendent, users 1, 2, 4, 5, 6, 7, 8, 11 are dependent, and users 9, 10 are abnormal. The

edges of the graph of Fig. 5.13, are weighted and indicate the strength of the con-

nection between the above users (independent, dependent and abnormal cliques).

Specifically, for dependent users, we can see the three sub-cliques that arise. The

first sub-clique (red edges) involves users (1, 2, 5), the second sub-clique (blue edges)

involves users (4, 6, 7, 8, 11) and the third sub-clique (gray edges) involves users (5,

6, 7, 8, 11). During the various phases of the implementation, the users are split into

sub-cliques and then unified as one clique, for the dependent users. As it turns out,

we do not have flash crowd users (specifically, users 7 and 8 are deemed dependent

by the program). The steps described are in a unit time of 100ms and the mean
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Figure 5.13: Classification of 12 users according to their behaviour (related to

Fig. 5.14).

packet rate is equal to 0.6. The requests shown in Fig. 5.14, is a small snapshot of the

total time frame of 4 × 103 time steps (unit time 100ms per step).

5.2.5 Simulations with 24 users

For 24 users, we can see in Fig. 5.15, the outcome of the proposed approach for

users 1 to 24.

Also in Fig. 5.15 with different coloring of the nodes, we can see the three different

networks which represent the independent (blue, purple nodes), dependent (red

nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,

users 1, 3, 4, 5 are independent and 12, 17, 20, 21, 22, 23, 24 no activity/independent.

Users 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19 are dependent/flash crowd. Users 2, 7 are

abnormal. The edges of the graph in Fig. 5.15 are weighted and indicate the strength

of the connection between the above users (independent, dependent and abnormal

cliques).

5.2.6 Simulations with 36 users

For 36 users, we can see in Fig. 5.16, the outcome of the proposed approach for

users 1 to 36.

Also in Fig. 5.16 with different coloring of the nodes, we can see the three different
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R/tms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

R1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

R2 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

R3 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 

R4 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

R5 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 

R6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 

R7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

R8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

R9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

R11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

R12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Memo  

The first 40 time steps of a repeatable time window, in a total Fixed Time Frame of  4 x 103 ms time steps 

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 , R11, R12  denote users 1 to 12 

Fixed Time Frame : 4 x 103 ms 

Each Time Step has length 100ms 

R3 , R4, R5, R6, R11 : Independent Users. Red colour indicates the positions where there is an indirect 

dependency with R1, R2. 

R7, R8 : Flash Crowd Users   

R9, R10 : Abnormal Users  

R12 : User with No Activity 

Figure 5.14: Requests from users R1,R2, . . . ,R12 (related to Fig. 5.13).

networks which represent the independent (blue, purple nodes), dependent (red

nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,

users 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36 are independent and 5, 11, 17 no

activity/independent. Users 1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 19, 27 are dependent

and 20, 21, 25 dependent/flash crowd. Users 6, 12, 18, 26 are abnormal. The edges

of the graph of Fig. 5.16, are weighted and indicate the strength of the connection

between the above users (independent, dependent and abnormal cliques).

5.2.7 Simulations with 48 users

For 48 users, we can see in Fig. 5.17, the outcome of the proposed approach for

users 1 to 48.

Also in Fig. 5.17 with different coloring of the nodes, we can see the three different

networks which represent the independent (blue, purple nodes), dependent (red

nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,

users 5, 11, 17, 25, 29, 30,31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48 are independent and 5, 11, 17 no activity/independent. Users 1, 2, 3, 4, 7, 8, 9, 10,
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13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28 are dependent and 19, 20, 21, 23, 26, 27,

28 dependent/flash crowd. Users 6, 12, 18, 24 are abnormal. The edges of the graph

of Fig. 5.17, are weighted and indicate the strength of the connection between the

above users (independent, dependent and abnormal cliques).

5.3 Simulations with Real Botnet Data

For better evaluation of the method, further to the built data of the previous chapter,

we use in this chapter real data made available as part of a research project at the

CVUT University of Prague in the Czech Republic [54]. The file includes botnet

traffic (the project only provided data related to botnet traffic). For our simulations,

we used the file botnet − capture − 20110810 − neris.pcap. The data was transformed

(encoded) and loaded in the simulation program. We ran our method in three

scenarios. The first scenario, solely used the data of the above data file. For the

second scenario, we used the above file with additional five, independent users that

were computer generated for simulation purposes. For the third scenario we used

the five additional independent users with verified random behaviour.

Note that in order to process the real data we amended the pseudocode of Chapter

4 (Fig. 4.3), to cover the possibility that some users may send multiple packets, within

the same unit of time (time step, e.g. 100ms, 1s, etc.). If this quantity exceeds the

mean packet rate of normal users, then we have a strong indication that the user in

question may be flash crowd.

The total time window of the above pcap file, has length 4444.097 seconds (relative

time between the first and the last packet for both incoming/outgoing traffic). The

total number of users is 215. The 214 users interact with the user with IP address

147.32.84.165. Each IP address was encoded with a number in order of appearance.

For example, the IP address 147.32.84.165, is represented by the number 4. The other

users are given numbers 1 to 215.

5.3.1 Scenario 1: Verification of Completed Time Window

In Scenario 1, we have the traffic in Fig. 5.18, which consists of all the data of the

file, botnet − capture − 20110810 − neris.pcap. Note that Fig. 5.18 represents both the

incoming/outgoing traffic (we observe the incoming and outgoing traffic from a
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crossroad point when using unit time step 1s). Furthermore, in this figure, we can

see graphically the activity packet rate arrival (the total number of packets which arrive

per unit time - straight dark blue line in Fig. 5.18), the mean packet rate arrival per user

(straight light blue line in Fig. 5.18) and the mean packet rate arrival per time (straight

red line in Fig. 5.18). The activity packet rate arrival gives a graphical representation

of the actual traffic (we can identify any unusual high traffic). The mean packet rate

arrival per user gives the mean packet rate regarding arrival packets per user. The

mean packet rate arrival per time indicates the mean packet arrival rate per unit of

time. In summary, Fig. 5.18 is a statistical representation of the incoming/outgoing

traffic.

Examined time step equal to 1s

In Fig. 5.19, we can see the graphical representation of the resulting classification

of users, according to their behaviour, when using unit time step of 1s. From the

total number of 215 users, we have found 82 independent users, 0 abnormal users, 1

flash crowd user, 132 dependent users, 0 no activity users (13 depedent/flash crowd

users).

Examined time step equal to 100ms

In Fig. 5.20, we can see the graphical representation of resulting classification of

users, according to their behaviour when using unit time step 100ms. From the total

number of 215 users, we have found 180 independent users, 0 abnormal users, 3 flash

crowd users, 32 dependent users, 2 no activity/independent users (9 depedent/flash

crowd users).

Comparing Fig. 5.19 and Fig. 5.20

As we can see, independent users in Fig. 5.19 total 82 and in Fig. 5.20 total 180. This

is reasonable due to the fact that we rely on simultaneous activity between different

users within the same unit time step; thus, if the unit time step has smaller value (i.e.

100ms), then it is more difficult to identify simultaneous activity between different

users. For this reason, we amend the pseudocode of Fig. 4.3, in order to cover the

possibility, for some users, to send additional packets (above the usual), within the

same unit of time.
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5.3.2 Scenario 2: Verification of Completed Time Window with

Additional Independent Users

For Scenario 2, we consider the traffic in Fig. 5.21 (the statistical representation is the

same as in Fig. 5.18). The only difference between Scenario 2 and Scenario 1 is in

the inclusion of five additional independent users. Our purpose is to extract further

results regarding the implementation of our method, by involving users with known

behaviour.

Examined time step equal to 1s

In Fig. 5.22, we can see the graphical representation of the resulting classification

of users, according to their behaviour when using unit time step of 1s. From the

total number of 220 users (additional 5 independent users with fixed behaviour),

we have found as independent users 85, abnormal users 0, flash crowd users 3,

dependent users 132, no activity users 0, and depedent/flash crowd users 13 (2

no activity/independent users, and 13 depedent/flash crowd users). Note that for

the five additional independent users, the result after the execution of our method

showed that three of them are independent and two of them are flash crowd (activity

above the mean packet rate).

Examined time step equal to 100ms

In Fig. 5.23, we can see the graphical representation of the resulting classification of

users, according to their behaviour when using unit time step of 100ms. From the

total number of 220 users (additional 5 independent users with fixed behaviour),

we have found as independent users 191, abnormal users 0, flash crowd users 1,

dependent users 28, no activity users 0 (4 no activity/independent users, and 4

dependent/flash crowd users). Note that, for the five additional independent users,

our method identified, three of them as independent and two of them as flash crowd

(activity above the mean packet rate).

Compairing Fig. 5.22 and Fig. 5.23

As we can see independent users in Fig. 5.22 total 85 and in Fig. 5.23 they total 191.

Again, this is reasonable as explained for Scenario 1.
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5.3.3 Scenario 3: Verification of Completed Time Window with

Additional Independent Users - Random Behaviour

For Scenario 3, we consider the traffic in Fig. 5.24 (the statistical representation is the

same as in Fig. 5.18). The only difference between Scenario 3 and Scenario 2 is that

the five additional independent users act at random and their exact behaviour is not

assumed known by the classification methodology. Their maximum traffic is chosen

to be equal to the maximum historical data of the independent users.

Examined time step equal to 1s

In Fig. 5.25, we can see the graphical representation of the resulting classification

of users, according to their behaviour when using unit time step of 1s. From the

total number of 220 users (additional 5 independent users with random behaviour),

we have found 92 independent users, 1 abnormal users , 0 flash crowd users, 127

dependent users, 0 no activity users (2 no activity/independent users, and 8 depen-

dent/flash crowd users). The five additional users are indicated as independent.

Examined time step equal to 100ms

In Fig. 5.26, we can see the graphical representation of the resulting classification of

users, according to their behaviour when using unit time step of 100ms. From the

total number of 220 users (additional 5 independent users with random behaviour),

we have found 191 independent users, 1 abnormal users, 0 flash crowd users, 28

dependent users, 0 no activity users (4 no activity/independent users, and 5 depen-

dent/flash crowd users). The five additional users are indicated as independent.

As we can see independent users in Fig. 5.25 total 92 and in Fig. 5.26 they total

191. Again, this is reasonable as explained for Scenario 1.

5.4 Summary - Main Remarks

In this chapter we implemented the enhanced approach described in Chapter 4.

First we presented small examples with fixed botnet data, and later proceeded with

a simulation study of our enhanced methodology, which includes more complicated

examples of botnet data. Finally, we presented simulations with real botnet data.

The full analysis is as follows.
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5.4.1 Main Remarks of the 1st stage - Small Examples with Fixed

Botnet Data

The main remarks of this stage are the following.

• After n steps (approximately n = 1000), the comparable frequency is equal to

the relative frequency under normal behaviour.

• In abnormal behaviour, when the users are mimicking each other there is a gap

between the comparable and the relative frequency.

• The rate of convergence is governed by the values of the respective eigenvalues.

This is the reason that the minimum steps required in order to have clear result

is approximately n = 1000 steps.

• The important value is the second largest magnitude of the eigenvalues of the

respective HMM. The smaller it is, the sooner the HMM will reach the steady

steady.

5.4.2 Main Remarks of the 2nd stage - Enhanced Simulation Study

The main remarks of this stage are the following:

• After a total of 4000 steps, we have clear results.

• During the implementation of the method, we found some internal cliques

regarding the dependent and flash crowd users. The results are quoted in

Figures 5.27, 5.28 and 5.29 (different coloring with corresponding explanation

and comments are included within the figures).

• Despite the fact that some users seem to behave normally, it is shown from

Fig. 5.27 that there is an indirect relation among them, which leads us to the

conclusion that perhaps the method can be modified to handle time varying

probabilities (shifted time).

• When the number of users or steps is increased, the elapsed run time is in-

creased accordingly. The justification of complexity is shown in Fig. 5.30 (dif-

ferent coloring with corresponding explanation and comments are included

within the figure).

72

Mari
os

 Tho
ma



5.4.3 Main Remarks of the 3rd stage - Simulations with Real Botnet

Data

This stage represents the main part of our work and illustrates the novel approach

for malware analysis. At this stage, we use our method with real botnet data. The

processing of the data, and how they get transformed from the pcap file format,

in order to be used is shown in Figs. 5.31 3 and 5.32 4 (different coloring with

corresponding explanation and comments are included within the figures).

• When the value of the unit of time is decreased (e.g. from 1s to 100ms), the

accuracy increases, and makes it more difficult to identify any simultaneous

requests among the users in question (for both incoming/outgoing traffic).

One can, of course, consider ways to count requests that occur approximately

simultaneously, but this is something that we did not pursue explicitly.

• Users with very high incoming/outgoing traffic, which are identified as Flash

Crowds only, may be potentially the victims or the attacker.

• When there is an increase in the users or/and the total number of time steps

or/and the samples of unit of time (e.g., when going from 1s to 100ms) the com-

putational complexity increases, due to the increased number of comparisons

that are needed.

• Despite the fact that the file includes only botnet traffic, we identified users

with normal behaviour. The reason for this is that due to the limited traffic

of these users, they do not fulfill the condition Fcomparable > Frelative, and their

behaviour looks normal.

• As already mentioned, the real data consist only with botnet traffic (the project

only provided data related to botnet traffic). In order to have a clear view (safe

results) we added in the traffic five independent users (in each scenario). The

results show that these users are identified correctly as independent.

3Fig. 5.31- Represents the real data loaded in WireShark.
4Fig. 5.32- Represents the way the real data transformed in order to be used according to the

variable time step (1s or 100ms).
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Figure 5.18: Scenario 1: Packet arrival activity graph - unit time step 1s.

Figure 5.19: Scenario 1: Time Step 1s - Traffic identity.

Figure 5.20: Scenario 1: Time Step 100ms - Traffic identity
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Figure 5.21: Scenario 2: Packet arrival activity graph - unit time step 1s.

Figure 5.22: Scenario 2: Time Step 1s - Traffic identity.

Figure 5.23: Scenario 2: Time Step 100ms - Traffic identity.
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Figure 5.24: Scenario 3: Packet arrival activity graph - unit time step 1s.

0%

42%

0%

58%

Scenario3/Time Step 1s - Traffic Identity 

Abnormal

Independent

Flash Crowd

Dependent

Figure 5.25: Scenario 3: Time Step 1s - Traffic identity.

Figure 5.26: Scenario 3: Time Step 100ms - Traffic identity.

79

Mari
os

 Tho
ma



Figure 5.27: Example 1: Enhanced simulation example - Indirect Cliques.

Figure 5.28: Example 1: Graph representation - Indirect Cliques.
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Chapter 6

Conclusions

Communication Information Systems have become a major asset in human society

and economy. Their use in social media, email, financial services, and other applica-

tions, through the internet determines the digital identity of the humans which is in

fact their physical identity. Effectively, humans have become part of the cyberspace.

Taking account all the above, new security matters arise. All of our activities use

and, in fact, rely on the internet.

The availability of these communication information systems, is extremely crucial

to humans. At this point, a new challenge has been developed, threatening the

availability of the Communication Information Systems, namely DDoS attack. Until

now, dozens of different approaches have been proposed to deal proactively with

DDoS attacks. Their main objective is to identify early enough any collaboration

between users. Despite these efforts, DDoS attacks still happen, and are growing in

terms of volume and catastrofic impact. Security experts are not optimistic about the

way ahead; they believe that the worst case scenario is in front of us as the Internet

of Things is on the way, and proactive in-depth solutions have not been found yet.

Taking account all the above, our motivation in order to work to this field we’re the

numerous zero day attacks that happened in recent past years and the security gap

that seems to grow at a rapid pace. If we take account that all of the communication

information systems, will become a part of the Internet of Things in the next years,

then we can figure out easily the size and type of future robot network (botnet).

The effective defense to this scenario is the identification of the botnet network early

enough, before it gains its full power.

The main objective of this dissertation is to fill up the above mentioned secu-
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rity gap by introducing a novel approach regarding malware analysis by establish-

ing a reliable and simple in the implementation method regarding collaboration in

user behaviour in order (1) to avoid the consequences of a Distributed Denial of

Service attack, (2) to recognise early enough any cyber incidents, (3) find any col-

laboration/dependency among different users, (4) ultimately isolate any abnormal

behaviour before a minor cyber incident expands to a catastrophic DDoS attack with

extremely high cost.

The contribution of this dissertation is the proposal of a simple method that can

be implemented in any kind of information system, including anti-DDoS devices

or Intrution Detection Systems (IDS), or can be used as a second line of defense in

relation with other methods. In order to implemented the proposed method, there

is no need to have any related information about the botnet nor its strategy. The

method is based on the theory of hidden Markov models, without using them in

the implementation (only for justification). Furthermore, the method gives a novel

approach in malware analysis and provides a new idea for future research in the

detection of malicious internet users. It is estimated that there are many prospects

of developing the method due to the fact this dissertation only proposed the core

theory without the combinations or variants that can be applied.

To achieve all the above, we organised the dissertation by providing background

material and presented the state-of-the-art best practices in place regarding DDoS

attacks. Next we provide, the definition of a DoS attack, the description of hidden

Markov models and related theory, and the theoretical analysis of the proposed

approach. We also describe our enhanced proposed approach, which includes an

improved detection strategy; lessons learned are also discussed in detail. Finally,

we include simulations, an evaluation of the performance of the proposed model

with real data, and a summary of the main findings regarding our evaluation in real

scenario events.

6.1 Remarks

Our method can be applied to any kind of Communication Information System.

Specifically, it can be part of the main configuration of an Intrusion Detection System

(IDS) and it can be implemented as a pre-processor module, in order to identify early

enough any abnormal events, and establish the appropriate cliques of dependent
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users (which are in collaboration during a DDoS attack).

The complexity of the method should not be seen as an inhibiting factor. Taking

into account that there is no need for additional information about the users (except

for their behaviour during their activity in the network), this becomes very interest-

ing and at the same time extremely valuable. The main asset of the method is that

there is no need to have any additional information related with the attacker. If this

method is implemented in distributive way, then the main complexity factors (which

are the number of the users and the number of the steps), can be minimized. With

this technique, if we assume that we use parallel processing in real time, the pro-

cessing of the data will take place in distributive manner, so that the processed data

may be transmitted to the main processing unit of the implemented device. In this

way, the defender may have the whole picture in a sense of a network tomography

with all related information and all updated critical information in real time.

If we take account the above, it is clear that with the distributive and in depth

implementation of the method which has been described above, is not an inhibiting

factor and not so complicated for practical applications.

Recent cyber-events related to DDoS attacks have taught us that a DDoS attack is

executed in full strength during a time window of approximately 15-20 minutes [53].

Our proposed method can used as a second line of defense, in relation with other

methods. In that way, we believe that appropriate safe and reliable results can be

found in the first 10 minutes and potentially will allow us to to stop a DDoS attack

before it reaches its full strength and consume all of our resources.

6.2 Future Work

As it was already stated above, the proposed approach only refers to the core related

theory. Areas of further development have already been identified in terms of two

pillars. The first pillar refers to proactive measures and the second pillar to reactive

measures. Both measures are critical and contribute to the overall safety, in terms

of overcoming DDoS attacks. The contribution of these measures is critical in terms

of reliability, due to the fact that they can minimize effectively the risk of findings

related to false positive alarms or false negative alarms. The proposed approach can

be explored further in terms of proactive and reactive measures discussed below.
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6.2.1 Proactive Measures

The areas that can be explored further, regarding proactive measures include the

following.

• The mean packet rate can be more precisely identified using Poisson process

analysis and information theory measures (entropy). With this technique, it is

believed that the proposed approach can be upgraded and work independenly.

• Simulate behaviours among the users involving time shifting constraints. With

this technique the proposed approach will be able to identify malicious users,

in direct mode, so that botnets that are activated through time by the same

attacker can be found early enough. This capability will give to defenders

appropriate time to act proactively and even uncover the attacker himself,

who is hiding behind the botnet.

6.2.2 Reactive Measures

• In relation with the techniques used in sandboxes, the revealed challenge is

the decryption of the hidden information related with the bots and specifically

how they implement their command/control channels. This approach can lead

us closer to the identification of the hidden strategy of the attackers, which

means that we can actually identify the geo-location of the botnet and all

related information. This can be accomplished if we can collect early enough

the possible information related to the attacker and specifically the cliques of

the botnet that are on effect using time shifting constraints.

• Parallel HMM composition can be used to predict the needed time to reach

steady-state. This will be an asset when trying to understand in depth time-

varying strategies. With this methodology, the defenders can be able to identify

new signatures of malwares and in practice to identify the different transfor-

mation coding of the attacker, which will give us the capability to understand

how it works, in order to find them. If this is combined with somewhat of a

data base, then the all system can be transformed in an autonomous machine

learning system.
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Appendix A

Acronyms

AOMDV Auto Request Protocol
AI Artificial Inteligence

ANN Artificial Neural Network
ARQ Auto Request Protocol

BOTNET Robot Network
CIS Communication Information System
CPS Cyber Physical System
DoS Denial of Service Attack

DDoS Distributed Denial of Service Attack
DRDoS Distributed Reflection Denial of Service Attack

FCM Fair Coin Markov Model
JNNS Java Neural Network Simulator
NIST National Institute of Standard and Technology
HMM Hidden Markov Model
IDS Intrusion Detection Systems
IoT Internet of Things

ICMP Internet Control Message Protocol
IPS Intrusion Prevention System
IP Internet Protocol

ISP Internet Service Provider
PCs Personal Computers
SDN Software Defined Network
TCP Transmission Control Protocol
WSN Wireless Sensor Network
UDP User Datagram Protocol

94

Mari
os

 Tho
ma



Appendix B

Notation

û1 The requests from User One
û2 The requests from User Two
û Comparable Frequency (Baseline Feature)

û12 Relative Frequency (Baseline Feature)
Frelative Relative Frequency (Enhanced Feature)

Fcomparable Comparable Frequency (Enhanced Feature)
FMeanPacketRate The Frequency Mean Packet Rate (Enhanced Fea-

ture)
UObservablerate Users Activity Rate (Enhanced Feature)
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Appendix C

Definitions

Attacker The top botnet leader
Abnormal User Users with very high traffic
Dependent User Users that appear dependent with other users

Flash Crowd User Users that do not behave normally or/and appear
dependent with other users

Independent User Users that they do not appear dependent with
other users

Master Zombies Users that are member of the botnet and lead
groups of zombies

No Activity User Users that appear inactive
Zombies Simple individual users that are members of the

botnet
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