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Abstract

In this thesis, we consider modelling and detection of suspiciously high correlation
between malicious Internet users that are collaborating in order to cause a Denial of
Service (DoS) attack or a Distributed Denial of Service (DDoS) attack. The main goal
is to recognise cyber incidents and obtain a method for judging early enough any
collaborative misbehaviour (more specifically, collaboration/dependency between
the requests that are issued by different users) in order to ultimately isolate their
behaviour and overcome the consequences of the DoS attack. The proposed method
relies on the analysis of data traffic across the concerned network (with both in-
coming and outgoing traffic) in an effort to identify correlations between different
users, based on the frequency with which they simultaneously issue requests for
service. The thesis models user behaviour via hidden Markov models and analyses
the performance of the proposed method, using both mathematical reasoning and
simulations. The approach represents a step towards achieving an effective and
proactive defence against DoS/DDoS attacks. Furthermore, we examine the per-
formance and detection time of the proposed method, and its relationship to other
methods and work produced in this direction by other researchers. Our intention is
the implementation of a warning method capable of identifying early enough any

abnormal behaviour, before a minor cyber incident results in a catastrophic failure.



[Teplindn

Ye auth) ) StelPr, e€etdloude TN povieAomoinon xa TV aviyveuorn UmomTo uPnAol
Borduol cuoyétiong peTadd xuxOBOVAWY YENOTWY TOU SLUBXTUOL TOU CUVERYALoVTaL Yid
va mpoxohécouy Eniteon ‘Apvnone E€unnpétnone [Denial of Service (DoS) Attack | 1
Kotoveunuévn Entdeon Apvnone E€unneétnong [Distributed Denial of Service (DDoS)
Attack |. O x0ptoc atéy0c e BrotpifBrc elvon 1 Eyxatpn avory vidpton TuyGy XUPEpVoTE-
plotaTiXwy péoa otov xuPepvoyweo. H mpotewduevn pédodog eivan o Véon va xplvel
OEXETE. EYXOUEOL OTOLBNTOTE GUCYETIOUEVY) ETAAPIUN CUUTERLPORE TV Blapdpwy Y-
OTWV (MO CUYXEXPEVA, ouvepyaola-e£dpTNom UETUED TWV ATNUATWY Tou £xBIBovTOL amd
BLOPOPETIXOUC YPNOTES) TEOXEWEVOU Vol AmOUOVWIOUY TEAXS OL €V AOYW YENOTES Kol VoL
amo@eLy o0y oL cuvéneleg Wiag entieone DDoS . H mpotewvduevn uédodoc Baoileton oty
VAo TNG (UXAOPOELIG BEBOUEVLY OTO UTO ECETUOT BIXTUO (aospxépsw]/ eZepyOueEvn
xvnom), TEOXEWEVOU VoL EVTOTLGTOUY Ol GUGYETIOUOL Ue Bdom TN cuyVOTNTOL UE TNV OTo-
foe exdidovTon Tawtdyeova autruota. Ta yovtéha tng datpBrc eéetdlovton ye Bdorn tnv
Aoy v Keupdv Mopxofoavey Moviédov (MopxofBiovd Movtéhha mou neptéyouy
xpupéc xotootdoelc) [Hidden Markov Models (HMM)] xou 1 avéluon yior Ty omddetén
NG TEOTEWOUEYNS HEVOO0U yenowonotel 1660 padnuatixols GUAAOYLOUOUE 6C0 XL TRO-
copowwoelc. H mpocéyyion autrh amotekel éva Briua mpog tnv enfteuln amoteAeoyatinic,
€YXUPNC O TROANTTIXAC dLUVAC Xatd Tev emtdéoewy DoS / DDoS . Emniéov, e€etdleto
1 am6doon NG ueY6doL oE oyEoT UE dAAeS HEVOBOUE GAAG XU TO €QYO TIOU EYEL EMITEAE-
otel o auT6 TOV Topéa amd dhhoug epeuvnTéc. Me v mapoloa dlatelf3n, tedleon ftay va
avomTuy Vel wior amoteheoyatin, £yxuen wédodog, v va eviomilel €yxoupa oToladToTE
U1 QUOLOAOYIXY| CUUTEQLPOPS AT PEPOUS TWYV YPNOTOVY. LTOY0S¢ NTav Vo amogeuyvel 1
enéxtoom xuPepvoreploTotinod mou Beploxetar ot eZEMEN OTO 0Py X0 TOU OTABLO Yo TPV
aUTO TEOAABEL Vo AGBEL TNV TEAXY| TOU UORYT|, TTOU EVOEYETAL VoL EIVOL Lo XATUG TEOPIXY)

DoS/DDoS enideon, ye avuToAOYIOTES CUVETELEC.
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Chapter 1

Introduction

This chapter provides terminology and background information related to cyber
attacks, as well as the motivation, objectives and contributions of this dissertation

and a general overview about its structure.

1.1 General

Classical computer security considers confidentiality, integrity and availability [1].
Integrity and confidentiality are typically achieved through the use of cryptographic
methods or other related procedures. Availability is the property that captures the
ability of a given communication and information system (CIS) to operate normally
and serve its users. In general, CIS is any system, which handles information in
electronic form (stand alone or plugged in a network).

Nowadays CIS are major assets in daily life. Almost everybody has a mobile
phone, a tablet, a PC. Further to our digital devices, we also have our digital identity,
which is determined through the internet applications we use such as, social media,
email, financial services, and other. Taking into account the above, new security
matters arise such as email harvesting, identity hijacking or extortion. In most of
these cases, we are the victims, but there is one special case in which we are the
victim but also the attacker at the same time. This case is when we become part
of a botnet that executes a denial of service (DoS) attack. Once someone is hacked,
its computer becomes a remote robot, connected in a vast network of compromised
computers and all of these computers, are in the control of someone else. The botnet

network has the ability to cause a Denial of Service attack. The main objective of this



dissertation is to recognise cyber incidents and obtain a method for judging early
enough any collaborative misbehaviour. The first part of our work was published

in [2].

1.2 Denial-of-Service (DoS) Attacks

DoS attacks are typically collaborative and target specific victims aiming to exhaust
all of their resources (routers, servers, CIS computational strength, etc.). For ex-
ample, if one CIS is flooded with an overly large number of data requests or/and
input through the network, the CIS will be unable to cope and will eventually stop
functioning and become unavailable for the users. This kind of cyber attack is called
DoS attack. The DoS can be split to those that exhaust the resources of honest par-
ticipants (such as flooding attacks [3], [4] or spam attacks) and to those which are
implemented through malicious activities (target the protocols or/and exploit their
vulnerabilities) [5], [4]. In order to be protected from this kind of cyber attacks,
we need to detect and identify early enough any abnormal traffic in the CIS. This
can be accomplished by assessing indications that may be available, and correctly
identifying them before any damage is caused.

When dealing with security, we need to identify possible security gaps and
built appropriate security procedures. In the case of a DoS attack, in order to be
effective, we need to specify (at the stage of preparation) respective patterns, related
with the attacker’s coordination strategies, the ways in which possible attacks can
be recognized, the main possible steps of the attacker, the overall strategy of the
attacker, appropriate preventive actions (to be taken before the intrusion in order to
avoid it) and necessary improvements in our response during an event (in terms of
operation procedures).

Due to the fact that we lack information about the attacker, our approach relies
solely on an assumption about the user’s behaviour in the network. Specifically, our
method is based on effectively analyzing the user’s behaviour and actions during a
specific period of time, which we call the inspectable period of time. We find that
this approach can help us better understand the strategy of these attacks, in order
to catch them early enough (for example, by inspecting the requests directed to the
possible victim).

To build our approach, we seek information from related work [6] and we take

2



into account the following:

e How can the coordinated attackers shut down a system (service-request pro-

cedure)?

e How important is data analysis of the network and behaviour analysis of the

users, in order to recognise possible threats (off-line situation)?

e How can continuous traffic monitoring of the network (on-line situations) be

exploited to identify DoS attacks?

DoS attacks have increased dramatically in recent years. It is very hard to defend
against them and, when successful, they manage to misuse mainly resources of the
network and transport layers. In general, the goal of a DoS attack is to consume
the resources of the host and the bandwith of the network. Recent history shows
that it is very difficult to authenticate whether an event comprises normal traffic or a
malicious attempt/attack [7]. In addition, DoS attacks have one special characterestic
which distinguishes them from other network attacks [8]: in order to attack, there is

no need for the intruder to penetrade and exploit the target network.

1.3 Distributed Denial of Service (DDoS) attack

Distributed denial of service (DDoS) attack is a special form of DoS attack where a
large number of infected systems, with malicious software, aim at a specific target
causing a DoS attack. The attacker uses a multitude of computers (often referred
to as zombies and/or bots) to carry out the attack. A typical example of such an
attack is presented in Fig. 4.1. During the attack, the hackers mimick the features of
legitimate network events [9], such as flash crowds [7], [10], in order to act under the
security threshold of the network [11].

The following steps are generally followed by the attackers during a DDoS attack
[12]:

e Exploitation of the used technology of the target network (i.e., protocol vulner-

abilities) and establishing bots among its computers.
e Sending commands to the botnet and launching the attack.

e Finally, causing the entire system to be brought down.

3
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Figure 1.1: Example of a DDoS attack.

Detecting DDoS attacks poses great challenges because the Internet is an open
architecture comprising of many different types of networks. As a consequence, the
countermeasures that we are able to take are limited [10].

DDoS attacks raise challenges that need to be addressed proactively. We live
in a cybernetic world, where behind almost any activity of our daily life there is
a hidden Communication Information System (e.g., smartphones, computers, etc.).
The objective of these Communication Information Systems (CIS) is to serve us. The
availability of CIS is crucial and vital. This issue becomes a major challenge if we
take into account that the majority of these CIS are responsible for functions related
to security, navigation, transportation, communication, financial transactions and
even health issues. For these applications, delay in the provision of services has
great cost and in some of the cases it may even be life-threatening. The contingency
plans that are in effect in the above areas of interests are not enough. In almost all
cases, when something really costly happens during a DDoS attack, the primary

objective of the contingency plans is to minimize any further damages.



1.4 Thesis Motivation

Taking into account all the above, our motivation for working on the topic was the
rapidly increasing number of zero day attacks in recent past. If we take into account
the realization that all of these CIS devices will become a part of the IoT in the
next years, then we can begin to envision the structure of the possible future robot
network(botnet). The effective defence to this scenario is the identification of the

botnet network early enough, before it gains its full power.

1.5 Thesis Objectives

Since there is no way of knowing the strategy of the botnet or other related informa-
tion and we can only observe its behaviour in the network, our objectives were to
implement a reliable method in order to (1) avoid the consequences of a Distributed
Denial of Service attack, (2) recognise early enough any cyber incidents, and (3) find
any collaboration/dependency among different users and (4) to ultimately isolate

any abnormal behaviour.

1.6 Thesis Contribution

The contribution of this dissertation is a simple and effective methodology for de-
tecting DoS attacks. The proposed methodology can potentially be implemented in
any kind of information system, including anti-DDoS devices or an Intrution Detec-
tion Systems (IDS), or can be used as a second line of defence in relation with other
methods. In order for this method to be implemented, there is no need to have any
related information about the botnet nor its strategy. The method is based on the
theory of hidden Markov models. Furthermore, the method gives a novel approach
in malware analysis, and provides novel ideas for the future research of detection of

malicious internet users.

1.7 Thesis Organization

The remaining parts of the thesis are organized as follows. Chapter 2 provides

background material and presents the state of the art-best practices regarding DDoS



attacks. In Chapter 3, we provide the definition of a DoS attack, the description
of hidden Markov models and related theory, and the theoretical analysis of the
proposed approach. Chapter 4 describes our enhanced proposed approach, which
includes an improved detection strategy; lessons learnt are also discussed in detail.
Chapter 5 includes simulations, an evaluation of the performance of the proposed
model with real data, and a summary of the main findings regarding our evaluation.
In Chapter 6, we conclude the thesis with a summary of our findings and some

directions for future research in this area.



Chapter 2

State of the Art

2.1 Background Information

DDoS attacks can be split into categories according to the following criteria:
e Intensity/impact of the attack (typical DDoS and Low-rate DDoS attack) [4];

e Type (direct/indirect) of DDoS attack, such as typical DDoS or Distributed
Reflection DoS (DRDoS) attack [13].

The hosts of the above categories are compromised machines which have been
infected by malicious code. In most cases, the attackers hide their IP trace using
various techniques known as spoofing [10]. In general, the used countermeasures
consist of three components: detection [14], [15], [16], [17], [18], defense (or mitiga-
tion) [7], [19], and IP trace back [20], [21].

A typical DDoS attack is achieved through the use of master zombies and slave
zombies. The attacker coordinates and orders master zombies, which in turn coor-
dinate and trigger slave zombies. Specifically, the attacker sends certain commands
to master zombies in order to activate all the attack processes that are in hibernation,
waiting for the appropriate command. After that, the master zombies send attack
commands to slave zombies, which in turn attack the victim by sending a huge
volume of packets, flooding its system with useless load and exhausting all of its
resources

The difference between DRDoS and the typical DDoS is that the DRDoS attack
is achieved through the use of master zombies, slave zombies, and reflectors. The

attack idea is similar to the typical DDoS, with the main difference being that the



slave zombies are instructed by master zombies to send a stream of packets with the
victim’s IP address as the source IP address to other uninfected machines, known
as reflectors, exhorting them to connect with the victim. With this technique, the
attacker leads the reflector to send an even greater volume of traffic to the victim,
believing that the victim was the host who asked for the connection [22].

Low-rate DDoS is an intelligent attack [23], [24], [25], [26], [27] where the attacker
sends attack packets to the possible victim, under the threshold traffic, and in that
way deceives the defense mechanism of the network since the traffic appears to be
normal, while the Low-rate DDoS attack manages to consume vital resources of the
network.

Large scale DDoS attacks may use all mechanisms mentioned above (intensity,
propagation) during different attack stages. Furthermore, DDoS attacks based on
protocol vulnerabilities of the TCP/IP can be split into four categories (Application,
Transport, Internet and Network Access [4]).

Unfortunately, until now DDoS attacks (volume attacks) remain a huge threat.
The defense against DDoS attacks becomes a continuous struggle in order to be able
to identify any abnormal events. There is no clear evidence of the time, place and
identity of the intruder, it looks like a catch-me-if-you-can game [22]. Proposed
defense mechanisms for this kind of attacks are split into four basic categories,
namely attack prevention, attack detection, attack source identification, and attack
reaction [4].

A good example of a DDoS attack and the consequences it can have is the 2007
cyber-attack in Estonia. The country experienced a huge DDoS cyber attack where
thousands of PCs acted as zombies and targeted Estonian websites with political,
commercial, govermental, economic and financial value. Until that time, it was the
tirst experience of such a type of DDoS attack, not only for Estonia. The attack was
conducted in a specific way and had unique characteristics related to the operational
plan, the intensity of the attack, the resources used, and the chosen targets [28], [29],
[30], [31].

2.2 DDoS Attacks in Different Networks

The scope of this subsection, is to indicate types of networks in which DDoS attacks

havebeenimplemented. Asit will be shownnext, DDoS are implemented in a variety
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of networks, such as Wireless Sensor Networks, Software Defined Networks, Cloud
Computing, Cyber Physical Systems, Internet of Things Networks, and others. The
ability of DDoS attacks to manifest themselves in diverse types of networks is an
indicator of their capability. The above discussions lead to the conclusion that
appropriate security measures need to be taken for DDoS attacks. This is vital
for ensuring the availability of the above mentioned Communication Information

Systems, and for enhancing the resiliency of their services.

2.2.1 DDoS Attacks in Wireless Sensor Networks

According to [32], Wireless Sensor Networks (WSNs) are at high risk of DDoS at-
tack. The objective of this paper is to design a secure routing scheme, which can
effectively protect the wireless sensor network against DDoS attacks. The method-
ology introduced in [32] refers to a secure routing protocol for WSNs, which is
implemented under the following security modules: (1) Propagate DDoS attack on
a normal network; (2) Enable the network to overcome the attack infection. The
methodology is implemented with two algorithms: the first algorithm launches the
DDoS attack in the normal scenario and the second algorithm safeguards the net-
work from the effects of the DDoS attack. The proposed methodology provides a
security module to prevent the network from the DDoS attack, by implementing
their prevention algorithm with the compromised network. The authors set specific
nodes as IPS nodes and then simulate, analyze and compare the performance un-
der three scenarios namely, Normal Ad-hoc On-demand Multipath Distance Vector
(AOMDYV), DDoS-AOMDYV and Secure-AOMDV (find the nodes which are involved
in unwanted, huge and frequent message passing). The performance comparison
between Normal-AOMDYV, DDoS-AOMDYV and Secure-AOMDYV establishes that the
proposed security mechanism works properly for AOMDV (it manages to prevent
the network from the DDoS attack by blocking the intruder nodes). According to the
proposed approach, the performance is decreasing the number of nodes increases.

More information can be found in [32].

2.2.2 DDoS Attacks in Software Defined Networks

Software Defined Networks (SDN) are also at high risk of DDoS attack [33], [34]. In
SDNs, DDoS attacks become more sophisticated. Specifically, the basic capabilities
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of SDNSs, such as software-based traffic analysis, centralized control, global view of
the network and dynamic updating of forwarding rules, make it easier to detect and
react to DDoS attacks. On the other hand, the security of SDN itself remains to be
addressed, and potential DDoS vulnerabilities exist across SDN platforms.

The authors of [34] propose a feasible system called FL-GUARD (Floodlight-
based guard system) to tackle a DDoS attack, taking advantage of the SDN network
architecture. First, the system realizes anti-spoofing of source IP address and ana-
lyzes a variety of amplification attacks to avoid their effect. Then, a support vector
machine algorithm is used to detect attacks. Finally, a flow table can be issued to
block attacks at the source port, taking advantage of the centralized control of SDNs.
The authors also design a detection and defense system under an SDN architecture,
which adds an anti-spoofing module of source IP and sFlow-RT Collector Compo-
nents in the controller layer, and an attack detection module and an attack blocking
module in the application layer. The system adds an anti-spoofing module of source
IP in controllers on the basis of Floodlight, an enterprise-class controller. Based on
the module, the dynamic IP bindings for user access to the network via DHCP service
and the configuration of static IP can be implemented regarding attack detection.
The method classifies whether the flow is abnormal or not via an SVM classification
algorithm, where training samples adopt a normal flow training sample set and an
abnormal one. Normal samples are the records for traffic and source IP entropy
when no attack is present. According to the authors, the SVM classification algo-
rithm achieves a fully automated dynamic binding of source IP address, which could
prevent spoofing. Each protected server can set different alarm thresholds, thus the
method increases flexibility. The blocking of attacks uses a multi-process design,
which can connect multiple attack detection sides. The experimental results show
the FLGUARD system has good detection and defense effect against DDoS attacks.
Further details can be found in [34].

The authors of [33] discuss the new trends and characteristics of DDoS attacks in
Software Defined Networking and DDoS attacks in cloud computing environments,
and provide a comprehensive survey of defense mechanisms against DDoS attacks
using SDN. In addition, the authors review studies about launching DDoS attacks
on the control layer, infrastructure layer and application layer of SDNs, as well as the
methods against DDoS attacks in SDNs. The motivation for presenting this paper
is to indicate that even SDNs are possible targets for a DDoS attack. Further details
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can be found in [33].

2.2.3 DDoS Attacks in Cloud Computing

Cloud computing has become a convenient way of accessing services, resources and
applications over the internet. The authors of [35] review 96 publications on DDoS
attack and defense approaches in cloud computing networks, published between
January 2009 and December 2015; they also discuss existing research trends. A
taxonomy and a conceptual cloud DDoS mitigation framework based on change
point detection are presented and future research directions are also outlined.

The authors of [36] present developments related to DDoS attack mitigation solu-
tions in the cloud. In particular, they present a comprehensive survey with a detailed
insight into the characterization, prevention, detection, and mitigation mechanisms
of DDoS attacks. The paper aims to highlight through the above mentioned complete
survey that cloud networks are one of the main targets of DDoS attacks.

In [35], it is mentioned that the National Institute of Standard and Technology
(NIST) defines the essential characteristics of cloud computing as on-demand self-
service, resource pooling, rapid elasticity and measured service. The service model

can be broadly categorized into

e Software-as-a-service (SaaS). In SaaS, Software is presented to the end users as

services on demand, usually in a browser.

e Platform-as-a-Service (PaaS). PaaS, often referred as cloudware, provides a
development platform with a set of services to assist application design, de-

velopment, testing, deployment, monitoring, hosting on the cloud.

e Infrastructure-as-a-Service (IaaS). Built on top of data centers layer, the IaaS
layer virtualizes computing power, storage and network connectivity of the

data centers, and offers it as provisioned services to consumers.

The service model can be deployed as either a private, public, community or hybrid
cloud. Despite the fact that cloud computing provides various benefits to users, there
are also underlying security and privacy risks that need to be addressed correctly.
According to [35], typical DDoS detection techniques classify packet traffic as
either legitimate or malicious, and can be broadly categorized into signature-based,

anomaly-based and hybrid.
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Furthermore, several DDoS defense solutions have been proposed in the last two
decades. DDoS defenses proposed for cloud services are categorized according to
[35], using the DDoS defense taxonomy outlined below (more detailed descriptions

can be found in [35]).

e Cloud DDoS defense deployment. DDoS defenses for cloud services can be

deployed in four key locations as follows :

- Source-end deployment. The advantages of source-end deployment in-

clude more effective protection of network resources and bandwidth.

— Access point deployment. Access point deployment is usually deployed
in the front-end, back-end or on each virtual machine(VM) in the cloud

computing environment.

- Intermediate-network deployment. These are defenses deployed on net-
work nodes to limit the impact of DDoS attacks on the network before the

attacks affect the intended target.

— Distributed defense. Distributed defense is a hybrid deployment model
comprising source-end, access point and/or intermediate network deploy-

ments.

e DDoS detection. Typical DDoS detection techniques classify packet traffic as
either legitimate or malicious, and can be broadly categorized into signature

based, anomaly based and hybrid.

- Signature based detection. This technique uses a set of rules and known
signature attack patterns stored in a knowledge database. Traffic pat-
terns are monitored and compared against existing signatures to detect

malicious traffic

- Anomaly based detection. Anomaly based or behavioral classification
approach involves the collection of a normal traffic behavioral profile

pattern over a pre-determined period.

+ Anomaly detection techniques. In categorizing anomaly detection of
cloud DDoS attacks, we group existing techniques into different ring

classes based on the algorithm(s) used.
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- Statistical anomaly detection. The statistical features of a normal
traffic are compiled to generate a normal traffic pattern, which will

be compared with incoming traffic to detect anomaly packets.

- Data mining. The significant increase in Internet traffic compli-
cates efforts to detect DDoS anomaly patterns. To address this,
one can use a map reduce model, which is a parallel processing

model that has been used to expedite batch job operations.

- Artificial Intelligence. It is a soft computing approach, based
on techniques such as Genetic Algorithms, Artificial Neural Net-
works and Fuzzy Sets; it requires a continuous learning process

to effectively detect new anomalies.

- Classifier. These are techniques that learn from a set of labeled
data instances in order to classify a test instance into one of the

classes.

- Machine learning. Deploying machine learning to detect cloud
DDoS attacks encompasses techniques, such as statistics and data
mining, but these techniques have a subtle difference from statis-

tical techniques.

— Hybrid detection. This approach involves the use of both signature-based

and anomaly-based techniques.

— Traceback and IP spoofing detection. This technique can help to locate the
true source of DDoS attacks, as these attacks tend to spoof their addresses

(e.g. launching a reflector attack).

— Other forms of DDoS attack defenses. For example, in solving a DDoS
attack issue in cloud computing, we can consider the scenario where an
individual cloud user is being targeted. In this approach, an intrusion
prevention system (IPS) can be deployed at different access points of the
cloud environment to monitor incoming packets during DDoS attacks.
This is a reactive method that dynamically allocates available resources

during DDoS attacks to compensate for the attacks.

According to [36], the taxonomy of the DDoS solutions are the following (Further

detailed descriptions can be found in [36]):
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e Attack prevention. DDoS prevention in the cloud is a pro-active measure,
where suspected attacker requests are filtered or dropped before these requests
start affecting the server. Prevention methods do not have any presence of
attack state as such, which is usually available to the attack detection and

mitigation methods.

— Challenge Response. Challenge-Response Protocols (CRP) are designed
to identify the presence of real users. Many times, this concept has been
applied in an opposite manner, where the protocol tries to determine if
the user is a bot/attacker machine, especially in the case of crypto-puzzles

or proof-of-work.

- Hidden Servers/Ports. This is an important method to remove a direct
communication link between the client and the server. The objective of
hiding the servers is achieved by keeping an intermediate node/proxy to
work as a forwarding authority. The important jobs of this forwarding
authority may include balancing the load among the servers, monitoring
the incoming traffic for any vulnerability, and fault-tolerance and recovery

of the servers.

- Restrictive Access. These techniques are basically admission control meth-
ods to take preventive action against the service capacity. Some of these
strategies have implemented the prevention by delaying responses/access
to the suspected attackers or even additional clients. In many of the con-
tributions, this delay is introduced by prioritizing the legitimate clients or

selecting clients with good past behaviors.

— Resource Limit. The economic bills generated by a DDoS attack can
be enormous. Resource limits can help in preventing these economic
losses by correct auto-scaling decisions. However, deciding whether the
resource surge has come due to the DDoS attack or due to the real genuine

traffic, is a very difficult task.

e Attack detection. Is achieved in a situation where attack signs are present on
the server in terms of its services and monitored performance metrics. These
attack signs are initial signs, where the attack has just started to take the shape,

or there may be a situation, where the attack has already deteriorated the

14



performance. These methods may seem to be similar to attack prevention at

times, and many contributions have provided solutions in the same manner.

— Anomaly Detection. Anomalous patterns are usually identified from
packet traces, established connections, web access logs or request headers.
The specific pattern to identify in the log or the trace is decided by attack

traces and other past historic behaviors.

— Source and Spoof Trace. Multiple trace back algorithms have been pro-
posed in the literature, which identify and stop the spoof attack by tracing
the source. Source traceback schemes are employed to stop/detect the
identity spoofing techniques. These techniques are important as most
of the detection/prevention methods model the user behavior or profile
based on some identity which is mostly an IP address in case of web
access. In the attack cases where IP spoofing is employed, the detection

mechanisms can be defeated very easily

— Count Based Filtering. This specific classification on Count Based Filtering
also fits in few attack prevention mechanisms as well, however, many
times thresholds are used to detect the initialization of attack and later to
identify the presence of the attack. The parameters on which these count
thresholds are applied are basically network resources such as hop-count,
number of connections or number of requests in a unit time from a single

source.

— BotCloud Detection. Any cloud DDoS attacker may also use cloud in-
frastructure for its own nefarious purpose. Cloud infrastructure can be
used for the purpose of installing botnets. These clouds are known as
BotClouds. This subcategory describes the contributions which tries to
find or detect the internal attack VMs in the cloud network. Most of these
BotCloud related solutions are source based or Cloud Service Provider

(CSP) based approaches.

— Resource Usage. Utilization of various resource of the cloud or a physical
server by a VM can also provide important information about the pres-
ence of the DDoS attack or an anticipation of the upcoming DDoS attack.
Cloud environments run Infrastructure as a Service cloud using virtual-

ized servers where hypervisor can monitor the resource usage of each VM
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on physical server. Once these VMs start reaching the decided resource

utilization thresholds, the possibility of an attack can be suspected.

e Attack mitigation. Attack mitigation refers to all methods which would help a

victim server continue serving requests in the presence of an attack.

- Resource Scaling. Dynamic auto-scaling of resources is one of the most
popular features of the clouds. It is also treated as one of best mitigation
methods to counter DDoS attack allowing server availability or continuity

with scaled resources.

- Victim Migration(VM). VM has changed the way the entire running server
is shifted to another physical server without noticeable downtime. Mi-
gration can be used to shift the victim server to a different physical server,
which is isolated from the attack and once the DDoS is detected and

mitigated, the server can again be shifted back to the actual place.

— OS Resource Management (ORM). These OS level resource management
methods argues that DDoS attacks being the resource intensive attacks
may affect the overall mitigation methods running inside the victim VMs.
By minimizing the contention at the level of the operating systems, miti-

gation and recovery can be expedited.

- Software Defined Networking (SDN). SDN is an emerging reconfigurable
network paradigm which may change the whole DDoS mitigation space.
SDN in its core separates data and control planes of switching to support

the network reconfigurability on the fly.

— DDoS Mitigation as a Service (DMaaS). There are multiple cloud based
service/third party services which are capable of providing DDoS protec-
tion. Mostly, DDoS protection is done on a server or an intermediate node
forwarding packets to the server. There are solutions which are hosted in

the cloud and provide DDoS mitigation as a service.

The motivation of presenting [36] is to indicate that cloud networks are possible

targets for a DDoS attack.
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2.24 DDoS Attacks in Cyber Physical Systems

According to [37], recent years have witnessed the surge of significant interest in
security issues in cyber-physical systems (CPS). Consider, for example, malicious
cyber attacks in a remote state estimation application where a smart sensor node
transmits data to a remote estimator equipped with a false data detector. The authors
of [37] consider deception attacks in a remote state estimation scenario. They propose
optimal linear deception attacks on the sensor data without being detected by a false
data detector at the remote state estimator. The need for analyzing the consequences
of deception attacks on a dynamic system is important, because, in order to propose
effective countermeasures, one needs to understand what the worst attack might be.
The problems that are answered according to the authors are the following. (1) What
are the possible attack strategies under which the attacker remains undetectable to
the false data detector? (2) What is the corresponding estimation error at the remote
estimator under such an attack? (3) Does there exist an optimal attack strategy that
renders maximum estimation error?

Furthermore, [37] proposes a novel type of linear attack strategy (using Kalman
filters) and presents the corresponding feasibility constraint (which guarantees that
the attacker can successfully inject false data and remain undetected by the false
data detector) and computes the evolution of the estimation error covariance at
the remote estimator (also analyzing the degradation of system performance under

various linear attack strategies).

2.2.5 DDoS Attacks in Internet of Things Environments

Internet of Things (IoT) is a term that refers to the vast network of devices connected
to the Internet. According to [38], IoT is a network of heterogeneous devices. In that
way;, it opens extra channels for information transmission and remote control to our
physical world and needs to be highly self-managed and self-secured [38]. For these
reasons, security issues of IoT need to be properly addressed. The authors propose
an IoT DDoS defense algorithm for an IoT end network, for preventive measuring
and avoiding DDoS attack. The design of the defense algorithm is guided by several
research motivations including ways to enable working nodes (which are mostly
data collecting nodes in an IoT network), intelligently detect and avoid a DoS-like

attack, and remain functioning. Also important are ways to make such intelligence
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lightweight and inexpensive and to make a local IoT end network sensitive to a
certain attacker for a long time after the first detection of its malicious behavior.
Following these questions, major types of network elements and their behavior are
designed to meet the above demands in a modeled IoT end sub-network. According
to the authors, in order for a working node to defend itself from DDoS attack, it
should be able to distinguish malicious requests from legitimate ones. Since DDoS
requests usually contain the same meaningless content, the proposed defending al-
gorithm determines a sender is malicious according to the consistency of the content
in the packets it sends. If a sender repeatedly sends request with same content, it will
be flagged as an attacker. Upon the reception of a request from this exact address,
the working node will refuse its request and retain bandwidth for service provid-
ing. In order to implement the above features, a list of records of served requests
is maintained. Each record contains information such as sender address, the most
recent request content, and a flag to mark whether a sender has been determined as
an attacker. Upon the detection of repeated request content or a true flag for being
malicious, service will not be provided. Furthermore, considering the limitation of
the working node devices, the length of record list is maintained short.

To summarise, the authors of [38] propose a lightweight defensive algorithm
for DDoS attack over IoT network environments. As explained above, the idea
is to help working nodes in an IoT network distinguish malicious requests from

legitimate ones, and process them differently.

2.3 Approaches in DDoS Detection

The scope of this section is to record the mathematical /logical approaches that are in
use, in order to detect early enough the DDoS attack. These include neurocomputing,
entropy theory, classification theory, graph theory, correlation analysis and traffic
analysis. The conclusion of the above discussions is that, for the detection of the
DDoS attacks, it is not sufficient to use one approach of detection. Real life scenarios
indicate that the best practice, in order to detect early enough the DDoS attacks, is

to implement multiple defenses.
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2.3.1 Neurocomputing

Artificial neural networks could become a major asset in order to decisively address
the threat of DDoS attacks [39], [40].

The purpose of [40] is to detect and mitigate known and unknown DDoS attacks
in real time environments. The authors choose an Artificial Neural Network (ANN)
algorithm to detect DDoS attacks based on specific characteristic features (patterns)
that separate DDoS attack traffic from genuine traffic. In particular, they used a
trained Artificial Neural Network algorithm to detect TCP, UDP and ICMP DDoS
attacks based on their characteristic patterns (ANN learning process, Java Neural
Network Simulator-JNNS). The objectives of their work is to (1) detect known and
unknown DDoS attacks in real time as opposed to only detect known attacks (2) iden-
tify high volume of genuine traffic as genuine without being dropped (3) prevent
DDoS attacking packets from reaching the target while allowing genuine packets to
get through (4) train, deploy and test the solution in a physical environment as op-
posed to simulators (5) reduce the strength of the attack before it reaches the victim
as opposed to near-by detection systems (6) evaluate their approach using both old
and up-to-date datasets with related work, based on accuracy, sensitivity, specificity
and precision. According to the authors, the detection mechanism is based on a su-
pervised ANN (Feed-forward, Error Back-Propagation with a Sigmoidal activation
function where accuracy primarily relies on how well the algorithm is trained with
relevant data sets. The patterns used for training purposes are instances of packet
headers, which include source addresses, ID and sequence numbers coupled with
source destination port numbers. To summarise, the authors have used a trained
Artificial Neural Network algorithm to detect TCP; UDP and ICMP DDoS attacks
based on characteristic patterns that separate genuine traffic from DDoS attacks. The
ANN learning process was started by reproducing a network environment that is
a mirror image of a real life environment. Furthermore, the detection mechanism
is integrated with Snort-AI', where it is tested against known and unknown DDoS
attacks.

The authors of [39] use a lightweight method to detect DDoS attacks based on

traffic flow features. According to the authors, the first challenge one should tackle

1Snort-Al is a family of Snort plug-ins based on Artificial Intelligence (Al) technologies (i.e.
Artificial Neural Networks or Fuzzy Logic) to detect different kinds of hostile traffic.
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to successfully detect a DDoS attack is the difficulty arising from packet header
fields being modified to look like normal ones. As a result, distinguishing between
legitimate packets of normal traffic and useless ones sent by compromised hosts to
their victims is a very hard task. Another issue is that of the huge number of packets
to be analyzed. These challenges together make the accuracy of detection difficult
and its response time even worse. This method is implemented over a NOX-based
network?, where OpenFlow (OF) switches keep Flow Tables with statistics about
all active flows. All feature information needed is accessed in an efficient way by
means of a NOX controller and then processed by an intelligent mechanism of attack
detection. The method consists of monitoring NOX registered switches of a network
during predetermined time intervals. During such intervals, they extract existing
features of interest from flow entries of all switches. Each sample is then passed to a
classifier module that will indicate, using the spatial location of the winning neuron
in the topological map, whether this information corresponds to normal traffic or
an attack. Furthermore according to the authors, this method is in direct contrast
to existing approaches, most of which require heavy processing in order to extract
feature information needed for traffic analysis (the technique extracts features of
interest with a low overhead). It is also able to monitor more than one observation
point. The method is also very efficient at detecting DDoS attacks. It uses Self
Organizing Maps, an unsupervised artificial neural network, trained with features
of the traffic flow. The detection rate obtained is remarkably good as it is very close

to other approaches. For this reason, the authors call their method as lightweight.

2.3.2 Entropy Theory

Entropy theory is a major asset against DDoS attacks. References [41], [42], [43], [44],
[45] contribute to this effort with certain implementation methodologies.

The authors of [41] propose a novel mechanism for IP traceback (based on entropy
variations between normal and DDoS attack traffic) using information theoretical
parameters. According to the authors, they propose a novel traceback method
for DDoS attacks that is based on entropy variations between normal and DDoS
attack traffic, which is fundamentally different from commonly used packet marking

techniques. They develop a categorization of packets into flows that are passing

2Software-defined networking (SDN) platform for building network control applications.
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through routers. These flows are defined by the upstream router where a packet came
from and the destination address of the packet. During non-attack periods, routers
are required to observe and record entropy variations of local flows. According to
the authors, the proposed traceback mechanism is effective and efficient compared
with the existing methods. In particular, the proposed strategy is fundamentally
different from the existing PPM or DPM traceback mechanisms, and it outperforms
the available PPM and DPM methods. Because of this essential change, the proposed
strategy overcomes the inherited drawbacks of packet marking methods, such as
limited scalability, huge demands on storage space, and vulnerability to packet
pollutions. The implementation of the proposed method brings no modifications
on current routing software. Both PPM and DPM require update on the existing
routing software, which is extremely hard to achieve on the Internet. On the other
hand, the proposed method can work independently as an additional module on
routers for monitoring and recording flow information, and communicating with its
upstream and downstream routers when the pushback procedure is carried out. Itis
independent of traffic patterns and can archive real-time traceback to attackers. Once
the short-term flow information is in place at routers, and the victim notices that it
is under attack, it will start the traceback procedure. The workload of traceback is
distributed, and the overall traceback time mainly depends on the network delays
between the victim and the attackers. According to the authors, the strategy they
proposed can trace back faster than previous works in larger scale attack networks.

The authors of [43] use a combination of unsupervised data mining techniques as
intrusion detection systems. The non-existence of predefined rules to correctly iden-
tify the genuine network flow made the task of DDoS attack detection very difficult.
In this paper, a combination of unsupervised data mining techniques as intrusion
detection system are introduced. The entropy concept in terms of windowing the
incoming packets is applied with a data mining technique using Clustering Using
Representative (CURE) as cluster analysis to detect the DDoS attack in network flow.
According to the authors, the proposed approach has been evaluated and compared
against several existing approaches in terms of accuracy, false alarm rate, detection
rate, F-measure and Phi-coefficient, with the results indicating the superiority of
their proposed approach. An efficient Entropy Method with CURE (EM-CURE) is
introduced. A proactive manner to detect DDoS attacks is implemented in many

steps. In a preprocessing step, the entropy windows are conducted using consec-
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utive packets in a different size. The entropy windows capture the network flow
using the packet information headers and then applies the entropy for each distinct
feature in window size. The entropy concept can be used to represent randomness
in the network flow.

The authors of [44] empirically evaluate several major information metrics,
namely, Hartley entropy, Shannon entropy, Rnyi entropy, generalized entropy, Kull-
backLeibler divergence and generalized information distance measure in their ability
to detect both low-rate and high-rate DDoS attacks. Then, they use the above metrics
to describe characteristics of network traffic data and find an appropriate metric to
facilitate the building of an effective model to detect both low-rate and high-rate
DDoS attacks. For their simulation, they used DDoS data sets from the MIT Lincoln
Laboratory, CAIDA and TUIDS, to illustrate the efficiency and effectiveness of each
metric for DDoS detection. In this paper the authors, evaluate information metric
measures to detect both low-rate and high-rate DDoS attacks in real-life DDoS data
sets. The following are some observations. Information entropy provides better re-
sults when one increases the order of generalized entropy in detecting both low-rate
and high-rate DDoS attacks. The information distance measure also provides better
result than KullbackLeibler when it increases the order of information divergence
measure in detecting both low-rate and high-rate DDoS attacks. An information
metric produces better result in terms of complexity because it uses a minimum
number of parameters during detection. For both generalized entropy and informa-
tion divergence, parameter values can be adjusted easily for better spacing between
normal and attack traffic. According to the author’s observation, the use of an ap-
propriate information metric helps to magnify the spacing between legitimate and
attack traffic for both low-rate and high-rate DDoS attack detection in real world
network traffic. The low computing overhead is another significant advantage of
such a metric in detecting DDoS attacks in near real-time. The outcome is that the
use of an appropriate information metric helps magnify the spacing between legiti-
mate and attack traffic for both low-rate and high-rate DDoS attack detection in real
world network traffic. The motivation of presenting this survey paper, is to indicate
the importance of using entropy theory in DDoS attack.

According to the authors of [45], for anomaly based DoS detection, the detector
uses network traffic statistics, such as the entropy of incoming packet header fields

(e.g. source IP addresses or protocol type). It calculates the observed statistical
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features and triggers an alarm if an extreme deviation occurs. Entropy features
are common in recent DDoS detection publications. They are also one of the most
effective features for detecting these attacks. However, intrusion detection systems
(IDS) using entropy based detection approaches can be a victim of spoofing attacks.
An attacker can sniff the network and calculate background traffic entropy before
a DDoS attack starts and then spoof attack packets to keep the entropy value in
the expected range during the attack. This paper explains the vulnerability of
entropy based network monitoring systems. It also resents a proof of concept entropy
spoofing attack and shows that, by exploiting this vulnerability, the attacker can
avoid detection or degrade detection performance to an unacceptable level. By
exploiting first the vulnerability, intrusion detection systems (IDS) using entropy
based network monitoring can become useless. Specifically, the method to deceive
entropy based DoS detection relies on generating spoofed packets to make the traffic
entropy during the attack indistinguishable from the entropy before the attack.
Entropy based detection is one of the most effective and popular approaches used
in the past decade. According to the authors, the paper presents an important
vulnerability of network monitoring systems using entropy and introduces a proof
of concept spoofing attack showing it is possible. An attacker can deceive entropy
based DDoS attack detection systems by either inserting new packets to the network
to keep the observed entropy value in the expected range or by generating spoofed
attack traffic that is invisible to entropy based detectors using background traffic
entropy distribution. Also the attacker, can generate false positives to make the
detection system unreliable. The motivation of presenting this paper is to highlight

that for DDoS, the appropriate defence mechanism involves multiple solutions.

2.3.3 Classification Theory

The method proposed in [46] tries to detect the entire possible seven layer DDoS
attack or application layer DDoS attacks on a web server, by using the parameters of
the network packet (like http GET, POST request and delta time) in order to compute
the accuracy in finding out the possible attack. The authors of [46] use different
classifiers like Naive Bayes, Naive Bayes Multinomial, Multilayer Perception, RBF
network, Random Forest, and others to classify the attack generated data set. Then,

they compare the accuracy, true positive rate, and false positive rate of each algorithm
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by finding the confusion matrix. According to the authors, DDoS attack is broadly
classified into two categories, network layer attack and application layer attack.
The main aim of layer 3, DDoS attack, is to overwhelm the server and use up the
bandwidth with floods. The motives of the application layer attack are to crash the
server by low and slow connections.

Furthermore, according to the authors, the proposed method tries to detect the
entire possible Layer Seven DDoS attack or application layer DDoS attacks on the web
server, by extracting parameters like http count and delta time of the packet captured.
Alayer seven DDoS attack is low volume and acts as a legitimate transaction, thus we
arenotable to detectit via a firewall or an IDS system. The early stage of the proposed
method captures all the packets from the attack source thereby enabling us to select
parameters like the number of http GET or POST requests from a single IP address.
The authors also select parameters like delta time, which can be defined as the time
interval between any two consecutive http requests sent by a single IP address. Since
Layer Seven or application layer DDoS attack uses the http protocol to use up the
recourses in the web server, the authors consider the IP addresses having maximum
number of http count towards a single IP destination address. They assume that
a normal human user will not be able to send http requests one after another at
high speed, and they consider the delta time between any two consecutive requests.
The smaller the delta time value, the greater is possibility of carrying out the attack.
According to the authors, Naive Bayes Multinomial achieves better accuracy and a
smaller false positive rate. Specifically, it is not possible to achieve 100 % accuracy
in detecting the DDoS attack in a network or to achieve a complete defense against
these attacks at a single stage. They authors conclude that Naive Bayes Multinomial
achieves 93.67 % accuracy in detecting the attacks and a small false positive rate of

3.10%.

2.3.4 Graph Theory: Clique Community

The Clique community problem is also related to DDoS attack detection [47] and is
crucial to understanding the relation inside the social networks (who is related with
whom).

The authors of [47] propose an efficient algorithm for k-clique community detec-

tion using Formal Concept Analysis (FCA). For its implementation, they use a typical
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computational intelligence technique, namely the FCA-based k-clique community
detection algorithm. First, a formal context is constructed from a given social net-
work using a modified adjacency matrix. Second, the authors define a type of special
concept named k-equiconcept, which has the same k-size of extent and intent in a
formal concept lattice. Then, the paper proves that the k-clique detection problem is
equivalent to finding the k-equiconcepts. Finally, efficient algorithms for detecting
the k-cliques and k-clique communities are devised by virtue of k-equiconcepts and
k-intent concepts, respectively. According to the authors, the paper aims at exploit-
ing the network type of community detection method with a focus on the k-clique
community detection. With the help of FCAs powerful analysis ability on network
topology, this paper studies the FCA-based k-cliques and k-clique community de-
tection. According to the authors, this work is the first to study the k-cliques and
k-clique community detection problems using FCA. First, the transformation from a
social network to a formal context, which is an input of the FCA method, is studied;
then, a formal concept lattice is obtained. Then, they prove that the problem of k-
clique detection is equivalent to the problem of finding the k-equiconcepts. Finally,
efficient algorithms to detect the k-cliques and k-clique communities are devised
with the help of k-equiconcepts and k-intent concepts, respectively. According to
the authors, the major contributions of this paper are (1) Formal Context Construction
provides for a social network by using a modified adjacency matrix (2) the k-clique
detection problem is shown to be equivalent to finding the k-equiconcepts in the
concept lattice of a social network (an interesting conclusion is that extra k-cliques
can be derived from the detected k-equiconcepts; then, an algorithm for detecting
k-cliques with FCA is presented) (3) following k-clique detection, an FCA-based
k-clique community detection approach is devised. They prove that the k-clique
community detection problem is equivalent to finding the k-intent equiconcepts in
the concept lattice of a social network. Experimental results demonstrate that the
algorithm proposed in [47] has a higher F -measure value and significantly reduces
the computational cost compared with previous works. In addition, a correlation
between k and the number of k-clique communities is investigated. According to
the authors the proposed algorithm has a higher F-measure value compared to other

previous works. The proposed approach is described in detail in [47].
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2.3.5 Correlation Analysis

The authors of [48] first analyzed the correlation information of flows in data cen-
ter. They presented an effective detection approach based on CKNN (K-nearest
neighbors traffic classification with correlation analysis) to detect DDoS attacks. The
approach exploits correlation information of training data to improve the classifi-
cation accuracy and reduce the overhead caused by the density of training data.
Aiming to reduce the huge computational cost (minimize the complexity), the au-
thors of [48] also present a grid-based method named r-polling method for reducing
training data involved in the calculation. In correlation analysis, the computational
complexity is a huge problem. According to the authors, the proposed approach
is able to detect attacks by examining flow features only. With correlation analy-
sis, the approach can improve the classification accuracy and is not affected by the
density of training data. According to the authors the major contributions of this
paper are (1) a design to detect DDoS attacks with high efficiency and low cost,
which can quickly and efficiently identify the normal flows and abnormal ones in
the data center (2) a novel approach that uses the correlation in formation and CKNN
classification, which not only improves the classification accuracy, but also reduces
the overhead significantly (3) experimental evaluations that show that correlation
information helps reduce the size of training data, which in turn reduces overhead
significantly and improves the accuracy of classification. Also, the classification of
CKNN with grid mapping can provide fewer response time with low overhead.
According to the authors, their method is based on flows and thus able to detect
existing attacks by examining flow features only. With the correlation analysis, the
authors can find the hidden relations of training data from data center, which can
improve the classification accuracy and is not affected by the density of training
data. To reduce the overhead o fKNN, the authors map the training data into a grid.
The testing samples are only calculated with the training samples in neighboring
cells instead of all the training data by using r-polling method,which can significant
reduce the overhead of CKNN. Furthermore, the CKNNN method is affected less by
the density of training data which directly influences the efficiency and precision of
the traditional KNN classifier. Otherwise, to keep the maximum correlation, they

do not make any change to the original density of the training data.
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2.3.6 Traffic Analysis: Flash Crowd

The authors of [49] develop a distributed change-point detection (DCD) architecture
using change aggregation trees (CAT). The idea is to detect abrupt traffic changes
across multiple network domains at the earliest time. A community network often
operates within the same ISP (Internet Service Provider) domain or the network is
administered by a virtual organization spanning across multiple network domains
with an established trust relationship. Early detection of DDoS attacks minimizes
the flooding damages to the victim systems serviced by the provider. The system
is built over attack-transit routers, which work together cooperatively. Each ISP
domain has a CAT server to aggregate the flooding alerts reported by the routers.
CAT domain servers collaborate among themselves to take the final decision. The
methodology is the following: when the flooding traffic starts propagating towards
the victim, routers along the path capture the suspicious patterns. Then each router
generates an alert packet and sends it to the CAT construction server, where an
alert will be raised once a CAT tree is formed. The alert packets report where the
suspicious pattern are captured, from which port(s) abnormal traffic is detected, and
by which port the abnormal traffic is heading. The CAT-based detection scheme
consists of two algorithms. One is the algorithm for attack pattern recognition at
local routers and the others for network-wide attack information fusion at the CAT
server. The CAT scheme is deployed in the core network routers where high data rate
and limited resource routers can share information to perform complicated security
functions. According to the authors, the complexity of DDoS attack patterns grows
fast, as new network vulnerability is identified and more sophisticated attack tools
are available. There is no magic that can handle all types of DDoS attacks. The shared
sources in collaboration Grids and community networks are especially prone to such
attacks. One solution works well in a given network environment but may fail in
other networks. Furthermore, to resolve policy conflicts at different ISP domains,
a new secure infrastructure protocol (SIP) is developed to establish mutual trust
or consensus. The DCD system was simulated up to 16 network domains on the
Cyber Defense Technology Experimental Research (DETER) testbed, a 220-node PC
cluster for Internet emulation experiments at the University of Southern California
(USC) Information Science Institute. Experimental results show that four network

domains are sufficient to yield a 98 percent detection accuracy with only 1 percent
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false-positive alarms. Based on a 2006 Internet report on autonomous system (AS)
domain distribution, the authors prove that this DDoS defense system can scale well
to cover 84 AS domains. This security coverage is wide enough to safeguard most
ISP core networks from real-life DDoS flooding attacks. According to the authors,
their work focuses in detection of DDoS flooding attacks against Grid resource sites
or hotspot servers in community networks. They point out that it is essential to
detect DDoS attacks sufficiently early before harm is done to legitimate applications.
Their contribution is in early detection of (1) DDoS Flooding Wave, (2) Deployment
in ISP Core Networks and (3) Tradeoffs between Detection Rate and False Alarm

Tolerance.

2.4 Synopsis

2.4.1 Categorization

This chapter presented an overview of the state of the art for DDoS attacks. The
proposed approaches can be divided into two main categories. The first category
reiterates the importance of DDoS attacks by describing the volume of the work that
has been done to this direction ( [35] and references within). The second category in-
volves proposed approaches that discuss technical aspects of DDoS attacks, through
various methodologies. The scope of these papers is to present a quantitative critical
evaluation regarding the work that has been done by others researchers, related with

the work discussed in this dissertation.

2.4.2 Main Remarks

In order to ultimately defend against DDoS attacks a lot of methodologies have been
developed. Unfortunately, there is no method in place, until now, capable to face
proactively the DDoS attacks. The growth of IoT in the coming years means that
bots will be much bigger, which can be a lethal weapon in the hands of the attackers.

Regarding the work done by others in relation with the work proposed in this
dissertation, the findings are presented in quantitative analysis in Figure 2.1. The
main point is that our method does not need any further information related to the
attacker. The other important point is that the implementation algorithm is simple

and can be easily applied. Regarding all presented methods, this dissertation is close
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to the methods presented in [46], [47] and [49]. The difference is that our method is
very simple in terms of its implementation, and its complexity with respect to the
number of involved users is low, especially if we use distributive command-control

and processing technics.
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Chapter 3

Baseline Approach

In this chapter, we describe notation and related theory regarding Hidden Markov
Models (HMMs), and use it to develop a baseline approach for detecting collabora-

tive (malicious) user activity.

3.1 Background on Hidden Markov Models

A hidden Markov model (HMM) is a statistical Markov model, whose states are
hidden and cannot be observed directly. The hidden state feature of HMMs gives
them more flexibility in modeling stochastic processes. Some uses of HMMs include
applications to biological sequence analysis, pattern recognition (e.g., in speech),

economic and financial modeling, signature verification and others.

3.2 Motivation for Hidden Markov Models

An HMM consists of a finite set of states, each of which is associated with a (generally
multi-dimensional) probability distribution. Transitions among the states are ruled
by a set of probabilities, called transition probabilities, that are generated according
to a given probability distribution. Each transition is associated with an outcome
(output) that is not necessarily unique (or even deterministic) for that transition.
Only the outcome, but not the state, is visible to an external observer (states are
hidden to the outside and this is how the name hidden Markov model arises).

An HMM can be viewed as a doubly embedded stochastic process with two hier-

archical levels. The upper level is a Markov process whose states are unobservable.
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Observation is typically a probabilistic function of the upper level Markov states.
Different Markov states will have different observation probabilistic functions. The
two level hierarchical structure is the main idea and advantage of an HMM. It can be
used to model stochastic processes that are much more complicated than traditional
Markov models [50].

Typically, HMMs are used as statistical models of sequential data processes. For
instance, one goal is to use the HMM in order to identify the pattern of normal or
abnormal behavior of a given process. The HMM model of the normal profile can
be generated using historical data of the system operating under normal conditions
(i.e., past observed activity of the system can be analysed to infer the parameters of
the HMM model of interest [51], [52]).

In our case, the HMMs of interest are essentially partially observed Markov
chains, which serve as stochastic models that represent the profile of computer
events (transitions), under normal/usual operating conditions in a computer system

or network.

3.3 Mathematical Description of Hidden Markov Mod-

els

3.3.1 General

A discrete time Markov chain can be viewed as a stochastic process X,, with finite
state space 0 = {x1,x, ..., xn} that satisfies the Markovian property, i.e., foralln > 1

and for all x;, ..., x;, € 6, we have

Pr(Xn = xi | Xiy = Xig, ., X1 = X4, ;) = Pr(Xy = x| X1 = x4, ) (3.1)

where X; = x; denotes that the process X takes value x;, at iteration k.

A time-invariant (or homogeneous) Markov model is described through a tran-
sition probability matrix that captures the transition probabilities Pr(X, = x;,|1X,-1 =
x;,_,) (which are time-invariant and do not depend on n. If, for example, we have a

three state model (i.e., 0 = {x1, x2, x3}), then the transition probability matrixisa 3 X3
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matrix of the form
P11 P12 P13
pP= P21 P22 P23 |-

P31 P32 P33

where p;; = Pr(X,, = xi|X,,_1 = x;) and remains invariant with respect to n. The matrix

P is stochastic, i.e., its columns sum to 1.

3.3.2 Hidden Markov Models
Let the states of the Markov model be
0= {xll X2y eeey xN}

(where N is the number of states) and let X, = x;, denote that the Markov Chain is at
state x; at time step n. At initialization, we have some initial probability distribution

that captures the probability of starting at each state:

Pr(X, = x1)
7-((0) p PT’(XO = XZ)
Pr(Xo = xN)

For a Markov chain, i.e., when (3.1) is satisfied, the probabilities of being at state x;

at time step k, denoted by

Pr(Xyx = x1)
(k) = Pr(Xy = x2) ’
Pr(Xyx = xn)

can be obtained iteratively via
ik + 1) = P(k)ne(k) ,

where 7(0) are the initial probabilities and P(k) is the transition probability matrix
whose (i, j)th entry is
PT’(Xk+1 = inXk = x]‘) . (32)

If the above probabilities are not a function of k (i.e., we are dealing with a homoge-

neous Markov chain), then we have
ni(k + 1) = Pri(k),
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where

P11 P12 --- PIN
p= P21 P22 ... PN
PN1 PN1 ... PNN

with pij = PT’(Xk.,_l = xile = x]-).
In summary, a homogeneous Markov chain can be defined as a 3-tuple (6,P,m),

where
e O ={xq,x,,...,xn} is a finite set of states;
e Pisthe N X N state transition probability matrix;
e 17 is the N-dimensional initial state probability distribution vector.

A hidden Markov model (HMM) can be defined as a 5-tuple (0,P,m(,£2,¢), where

(6,P,my) is a Markov chain, and

e Q) is the set of output symbols, i.e., the symbol values that the output Y of the
process can take at any time step k (e.g., Q2 = {0, 1} in most of the examples we

consider later);

e 1 is the emission probability matrix of symbols in {) and defines the probability
Pr(Yr = w|Xyx = x;) of producing (“emitting”) symbol w; € Q at a given state

x; € O at time step k.

3.3.3 Example of a Hidden Markov Model

Modeling the Tossing of Two Different Coins

Consider the tossing of two different coins, Fig. 3.1, one of which is fair but the
other is not (assume that the unfair coin comes out Heads with probability 0.75).
Notice that the outcome (Heads or Tails) does not tell us which coin has been used.
We assume that we start by randomly selecting one of the two coins with equal
probability, and switch coins whenever Heads appears. To model this, we can use
a two state hidden Markov model: state 1 represents the selection of the fair coin,
whereas state 2 represents the selection of the unfair coin (of course, the state is
unknown to somebody who only sees the outcome of the coin toss). The transition

probabilities are p1; = p» = 0.5 (because of the fair coin), whereas the transition
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probabilities for the unfair coin are p1, = 0.75, p2, = 0.25 whenever Heads appear, we
switch coins. This Markov Model is hidden, because the sequence of observations
(sequence of outcomes, Heads or Tails) is not uniquely associated with a sequence

of states.

Two Different Coins

P, =112,T,, P, =1/4T,

P22 =1/2!Heads

-_—

FAIR P12 =3/4,Heaqs UNFAIR

Figure 3.1: Two-state hidden Markov model - Tossing of two different coins.

3.3.4 Example of a Markov Model

Modeling the Tossing of One Fair Coin (FCM)

Consider the tossing of a fair coin, Fig. 3.2, which comes out Heads or Tails with
equal probability p=0.5. We can model this as a two-state Markov chain. Each state is
uniquely associated with either Heads or Tail. The transition probabilities of the fair
coin model are p11 = p12 = po1 = p2 = 0.5). The state of the Markov chain is uniquely
associated with the outcome of the toss (thus, knowing the outcome implies that we
know the state of the Markov chain). This Markov model is not hidden, because
the sequence of observations (sequence of outcomes, Heads or Tails) is uniquely
associated with the sequence of states. Note that we could also use this model to
capture the tossing of an unfair coin (e.g., p»» = p21 = 0.75 and p1; = p12 = 0.25 would

correspond to a biased coin that comes out Tail 75% of the times).

3.4 Hidden Markov Models used in the Thesis

Our method relies on being able to reasonably capture the behavior of requests by a
typical user to a particular point of interest by an HMM model (but not-necessarily
knowing the model). As we argued in the previous subsection, an HMM is a

stochastic process with an underlying state sequence that is not directly observable
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One Fair Coin

P11 =1/2, Hyngs P, =12, T,y
v Tai

P, =1/2, Ty

P,, =1/2, H

eads

Figure 3.2: Two-state Markov model - Tossing of one fair coin.

through a sequence of observed symbols. To explain our approach, we describe two
HMMs below (HMM1 and HMM2), which can be thought as representative of the
typical behavior of two different users (refer to Fig. 3.3 and Fig. 3.5): HMM1 has
three states and it is parameterized by r, 0 < r < 1, whereas HMM?2 has four states
and it is parameterized by g and r, 0 < g, < 1. Both HMMs have outputs in the set
{0,1}.

HMM1 of Fig. 3.3 has transition probabilities

00 r
Poumi =1 0 0
01 (1-vr)

HMM2 of Fig. 3.5 has transition probabilities

r (2+q/5) 0 (Bxq/4)
1-7r 1-9) (r/4) 0
Puvme =
0 B=*q/5) (1-7) (q/4)
0 0 B=rlg) (1-9q)

Figures 3.4 and 3.6 show sample runs of the HMMs in Figures 3.3 and 3.5 respec-
tively.

3.5 Steady State Probability Distribution of a Hidden
Markov Model

The state probabilities at time x, can be obtained via the iteration m(x + 1) =
Pumanmi(x), k =0,1,2,..., where

71(0) = 0.
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Figure 3.3: Three-state hidden Markov model.

HMM (r=0.6)
TIME STATES
STEPS HMM1 HMMZsequence

state1
state2
state3
state1
state2
state3
state1
state2
state3
state1

Boo~vwourwNr
~00—_200-=00=

Figure 3.4: One run for HMM1 and corresponding sequence of states and sequence

of outputs (related to Fig. 3.3).

Steady state is reached if
lim 7t;(x) = m;
for

i=1,2,...N.

In such case, the vector = [r11, 7, ..., iy]" is called the steady state probability
vector and satisfies

7T = Pupn ™
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HMM 2

Figure 3.5: Four-state hidden Markov model.

HMM2(r=0.6 and q=0.8)

SJRA;IT,\-/IEJ-S HMMZSQQUEI’ICQ

TIME STEPS

state1
state1
state1
state1
state2
state3
state3
state4
state1
state1

Boovouobrwnrk
RO e JE G U o, T QU G G

Figure 3.6: One run for HMM2 and corresponding sequence of states and sequence

of outputs (related to Fig. 3.5).

and

l=m+7m+m3...TIN.
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3.6 Proposed Approach

3.6.1 Theoretical Analysis

Let y1[k] and y»[k] be the output sequences of HMM1 and HMM2 respectively:
yilk] € {0,1},V k > 0, and y[k] € {0,1}, ¥V k > 0. We assume that “1” denotes a request
from the user, whereas “0” denotes no request from the user. Let n be the number of
terms of the given output sequences y;[k] and y[k], i.e., n is the total number of time

steps (inspectable period of time). We define the indicator functions I; and I, as

0, k] =0,
Lpky = O
1, ikl =1.
and
0, k] =0,
Lyalkl) = § O Y2
1, yz[k] =1.

The empirical frequencies i, and 7, denote, respectively, the empirically seen per-

centage of time user 1 and user 2 make requests. They are defined as

1 n
i E;umm,

=
N}
Il

_ 1y
=Y L(ylkD) -
n k=1
Similarly, we use
1 n
0=~ ) (KDLl
k=1

to denote the comparable frequency that user 1 and user 2 make a simultaneous request.

If n — oo, then the empirical frequencies i; — P; and 7, — P,, where P; and
P, are respectively the steady state probabilities for user 1 and user 2 to send in
requests. These probabilities can be easily obtained by calculating the steady state
probabilities of the underlying Markov chains (assuming that user request models
are known and admit steady state probability vectors) and then taking into account
the emission probabilities from each state (in our examples later on, we illustrate
this process in more detail). Similarly, when n — oo, then the comparable frequency
il — P, where P is the empirical steady state probability that user 1 and user 2 make

a simultaneous request. For large 1, we expect #i to approach
h—-P.

39



If the above two users are independent, the probability that they make a simul-

taneous request is easily seen to be P = P1P,, which implies that
il — PPy,

and (since i1; — Py and i1, — P,) we have #i — 111, , where i1y, is referred to as the
——

relative frequency. "

In fact, if the two users are independent, we expect to have 71, = il as n grows to
infinity. This relationship should hold under mild assumptions on the ergodicity of
the underlying HMM models, which practically means that, during the inspectable

period of time, the tactics and the strategy of the intruder do not change.

3.6.2 Methodology

Analysis of HMM1. Let il; be the empirical frequency, which indicates the number

of terms with the value “1” in the output sequence y;[k] of n bits, i.e.,

. number of terms where y[k]=1
U, = .

n

Analysis of HMM2. Let I, be the empirical frequency, which indicates the number

of terms with the value “1” in the output sequence y,[k] of n bits, i.e.,

number of terms where wlkl =1

1222
n

Output Sequences. By comparing the output sequences y;[k] and y»[k] of HMM1
and HMM2 respectively, we find the comparable frequency 7. The idea is to identify
the specific instants where both sequences (for HMM1 and HMM?2) have respective
terms that are equal to “1,” i.e.,

number of terms where [k] = yalk] =1

=
n

If the two users are independent, then the relative frequency 7, and the comparable
frequency i, should be close to equal i.e, i1, =~ il.
The conclusion of the above analysis, which is our baseline approach, is the

following;:
e For independent events (independent users), when n — oo, we have i, ~ il.

e For dependent events (correlated users), when n — oo, we do not have 7y, = .
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The above is the basic concept of our approach, in order to identify early enough any
abnormal incoming or/and outgoing traffic in the CIS, before any damage is caused.
By examining the correlation between terms with the value “1” among y; [k] and y[k],
we can characterize the degree of cooperation between the users in the network (for
instance, during the implementation of the ARQ protocol) and subsequently identify
users who deliberately, perhaps in a coordinated manner, flood the network with
useless traffic.

We should point out that knowledge of HMMs that model the user behavior is
not needed to implement the above approach. The key in the above analysis is the
fact that, despite lack of all pertinent information about the users, we are able to use
the only observable to us (i.e., the requests they make in the network) to identify any
abnormal activities, by calculating the difference between the relative frequency and
the comparable frequency; this can essentially be used as an indicator of the degree
of their correlation (whether they are independent or dependent). The study of the
exact degree of the correlation between users (in terms of specific values), is beyond
the scope of this thesis. In practice, one should also try to identify correlations that
extend over time windows (by trying the same approach on shifted versions of one

of the two sequences).

3.7 Computational Considerations

3.7.1 General

As it was already mention in Section 3.6.1 (Theoretical Analysis), for large n, we

expect il1o(n) (Where 7i15(n) = 111(n)ilx(n)) to approach Py, , i.e.

lim i, (n)z(n) = a(n).

We refer to 13, as the relative frequency and to ii(n) as the comparable frequency.
The above relationship should hold under mild assumptions on the ergodicity of the
underlying HMM models, which practically means that the tactics and the strategy of
the intruder do not change. By examining the correlation between terms with value
“1” among y1[k] and y,[k], we can characterize the degree of cooperation between
users in the network (e.g., as it was already told during the implementation of the

ARQ protocol, etc.) and subsequently identify users who deliberately, perhaps in a
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coordinated manner, flood the network with unnecessary requests and traffic.

Note that the above analysis can only happen in an ideal world, so it can be taken
only as a baseline for further actions. In order to identify any unusual behaviour and
reach safe conclusions about the attackers, we have to deal with several parameters
(e.g continous time scale, finite time windows, and others), which will be discussed

later in this thesis.

3.7.2 Eigenvectors and Eigenvalues

In this section we use eigenvector decomposition to understand how the convergence
to steady state occurs in a given (hidden) Markov model. We assume for simplicity

that &;, ..., &y is a linearly independent set of eigenvectors of Py € RN je.,

Prvméi = Ai&i,i=1,..,N

which can be expressed as

Ar 0 0
0 A 0| _
PHMM[éll"'I EN] = [51/"'/ EN] = :‘A ’
0 O D An
where
== [51/---/ EN]
and
A1 0 . 0
A= 0 /\2 0

where 1 > |A].
We can perform eigenvalue/eigenvector decomposition analysis as described
below. We write

Puym = EAE!

and replace the term Py in the equation

ni(k) = P];IMMT((O)
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to obtain

n(k) = (EAZHr(0)

which simplifies to
n(k) = EAFEn(0).

=-1

If we put the term c(k) = E7'11(0) then the above equation takes the form
n(k) = A c(k),
which, in turn, results in the equation
ni(k) = Zn:Eici/\i.‘.
i=1

Consider the Hidden Markov Models in Fig. 3.3 with

00 r

Pomvn =11 0 0

01 (1-r)

and in Fig. 3.5 with
r (2xq/5) 0 (3xq/4)
1-rn -9 (r/4) 0
Prvive =

0 B=*q/5) (1-7) (q/4)
0 0 Bxr/g) (1—-9)

e For HMM]1 (three state model), we have the respective diagonal matrix of

eigenvalues and eigenvectors. If we use the paremeter r = 0.7, then

1.0000 + 0.0000: 0 0
Ay = 0 -0.3500 - 0.7599: 0
0 0 -0.3500 - 0.7599:

and

0.4975 + 0.0000i —0.2130 — 0.4625: —0.2130 — 0.4625i
Epmm =| 0.4975 + 0.0000i —0.3956 — 0.4625; —0.3956 — 0.4625i
0.7107 + 0.0000: —0.3956 — 0.46251 —0.3956 — 0.4625i
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e For HMM?2 (four state model), we have the respective diagonal matrix of

eigenvalues. If we use the paremeters r = 0.7 and g = 0.9, then

1.0+ 0.01 0 0 0
0 -0.4089 + 0.0i 0 0
Anumme =
0 0 0.3045 - 0.2360i 0
0 0 0 0.3045 - 0.2360i
and
—0.8547 + 0.0i —-0.4767 +0.00 0.4699 + 0.3757i  0.4699 + 0.3757i
_ —-0.3494 + 0.0/ 0.4603 +0.0i 0.3676 —0.1048 0.3676 —0.1048i
SHMM2 =

—-0.3317+ 0.0 —0.5213 + 0.0: -0.2348 + 0.2709: —0.2348 + 0.2709:
-0.1935+0.00  0.5377 + 0.0i —-0.6028 + 0.0: —-0.6028 + 0.0:

The rate of convergence of i; — P; (or 71, — P,) depends on the eigenvalues
A1, Ay, ..., Ay of the transition probability matrix P of the given HMM (here, P is
an N X N matrix with N being the number of states of the HMM). Recall that an
eigenvalue A, is a constant that satisties Pv; = A;v; for some N-dimensional vector v;,
called the eigenvector corresponding to A;. Since matrix P is column stochastic, it
is well known that it has N eigenvalues, one of which is [1;| = 1 and the remaining
satisfy [A;] < 1.

The rate of convergence of i1; — P, is governed by the value of |1,| where A, is the
eigenvalue that has the second largest magnitude (|11| = 1 has the largest magnitude).

, then HMM1 will (generally) reach

For example, if |A2,HMM1| is smaller than |/\2,HMM2

steady state faster than HMM2. As a consequence, for large |A2,HMM , we need more
inspectable period of time 1, in order to safely reach conclusions about the correlation
between different users.

In general, the larger the values of [A; (closer to unity) , the more difficult it

becomes, to reach steady-state.This is the direct implication of the equation

(k) = iEici/\f .
i=1

3.7.3 Complexity Analysis

The complexity of the proposed method depends on two basic factors: The number

of users (m) and the number of steps (). According to our method, there are m users
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that have to be formed in pairs, so the possible combinations are

m\ _ m(m—1)
2] 2
This means that the complexity of our method is O(m?n), where n is the length of
the inspectable window in the baseline approach. If we assume that we have time
shifting constraints, then the complexity gets bigger and it is O(m*nx), where x is the

maximum value of shifting.

3.7.4 Scalability Analysis

The scalability of the proposed method does not get affected by the increase in the
number of the users under investigation. On the contrary, if we have big number
of users (m) and big number of steps (1), the outcome of the method will be more
reliable and stable. This happens because the large number of formed pairs among
the users cover all possible failures (false negative results); furthermore, for a large
number of the steps, more reliable results are obtained because more time is given

for the method to reach steady state.

3.8 Summary

In this chapter we described the usage of HMMs. In our analysis we introduced the
basic concept and theory of HMMs and showed how an HMM can be used to model
stochastic processes that are much more complicated. For our case, HMMs of interest
are essentially partially observed Markov chains, which serve as stochastic models
that represent the profile of computer events (transitions), under normal/usual op-
erating conditions in a computer system or network. To this direction, we quoted
some examples, with respective discusions. We then described our baseline pro-
posed approach and its implementation, taking into account the related theory of

the HMMs. Finally, we also presented the complexity analysis of our method.
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Chapter 4

Enhanced Approach

4.1 Real World Considerations

Cyber attacks in the real world have become very sophisticated, with the attackers
trying to deceive the security measures that are in place. Let us consider, for instance
the strategies illustrated in Fig. 4.1 and Fig. 4.2. The underlying HMMs are not
necessarily governed by time invariant probabilities. As shown in Fig. 4.1, the
attacker (red colored) orders the master zombies (leaders shown in, yellow, light
blue and green) who in turn deliberately change the behaviour of the slave zombies
(teams shown in, yellow, light blue and green) that are members of the attacker
network. In Fig. 4.2, we see how this strategy is implemented at different time steps.
Each user represents a slave zombie, which acts at a different time step.

If we take the above description as our baseline view of this problem, then it
is clear that it is very difficult to identify the respective HMMSs of each user (slave
zombie). Furthermore, it is very difficult to understand the botnet’s actual geo-
location and its full structure. The only evidence that is viewable to the network,
is the behaviour of the users (through the inspectable time steps), as manifested in
terms of the traffic of the network (both incoming and outcoming traffic). These new
strategies reshape and complicate the problem. The key question is how we can
identify correlations between these users and categorize them in cliques, keeping in
mind that their behaviour may be implemented via time-varying mechanisms. By
adjusting the method of Chapter 3, in this chapter we partially address the attacker’s

time-varying strategies indirectly.
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Figure 4.1: DDoS attack graph.
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Request=0)
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User; (Active- Request=1)
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Request=0)

Users (Deactivated-
Request=0)

Users (Active- Request=1)

User; (Active- Request=1)

Figure 4.2: User strategy for time-varying schema.
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4.2 Improved Methodology

This chapter updates the prediction strategy that we introduced in the previous
work chapter. The extented method relies on the analysis of data traffic across the
concerned network through the use of fixed time frames, in an effort to identify

correlations between different users (both incoming and outcoming traffic).

4,21 Lessons Learned

Real life lessons indicate that we typically have neither a clear view of when some-
thing goes wrong, nor the actual number and the identity of the users that are
involved in the DDoS attack. A recent example of this was the DDoS attack powered
by a new botnet dubbed Leet Botnet, which hit the network of the firm Imperva [53].
The DDoS attack took place in two waves with the first one lasting 20 minutes
and peaking at 400Gbps, and the second one lasting 17 minutes and peaking at
650Gbps. The attack used spoofed IPs, making it impossible to trace the botnet’s
actual geo-location or learn any additional information regarding the devices which

were used [53].

4.2.2 Basic Elements of Enhanced Strategy

Updating our approach in Chapter 3, we notice through simulations that when
Freiative = Fcomparavie (Where Frepasie is the relative frequency iy, and Feomparante is the
comparable frequency i of Chapter 3, the involved users are probably independent.
This new assumption is different from the approach expressed in Chapter 3, where
independent users are those that satisfy 1, ~ il.

In order to be more realistic, we separate users into several categories, in order
to cover cases of interest. The main problem in real scenarios is that, we do not
have concrete boundaries about the behavior of users. As a consequence, it is hard
to easily index the users in good and bad guys. Taking the above into account, we

separate users into the following main categories:

e Dependent users: These are users that have similar behavior, based on rela-
tive/comparable frequencies. Users with similar behavior form the dependent

clique (they act as a collaborative clique).
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e Independent users: These users, have no dependency between them (non-

collaborative).

e Users with traffic above normal: This category of users is called flash crowd.

Its activity is above the normal limit of traffic.

e Users with very high traffic: This kind of users are the abnormal users. Their
activity is very high and above the normal limit of traffic, with no logical

reasoning.

e Users with no activity (only when we use historical data): This kind of users

are also categorized as independent (non-collaborative).

The specific criteria for the above categories of users, will be analyzed later in
this chapter.

In order to implement our approach, all users in question are compared pairwise
in specific time frames, which are called the inspectable periods of time, and range
between 10° to 10* time steps. Chapter 3 indicated that HMMs reach the steady
state condition approximately in the range of 10° to 10* time steps (depending on
the complexity of the HMM that governs the user’s behavior). Each time step is
in the time unit of 100ms (their activity is represented with the values 1" or ’0’).
User activity/behaviour is examined through criteria related to user independency,
dependency, abnormality, flash crowd behaviour, or absence of any activity.

Chapter 3 established that there is no need to have knowledge of the strategy of
the attacker in order to implement the baseline approach (as long as some nominal
ergodicity conditions are satisfied). As already discussed, the key in the above
analysis is the fact that, despite the lack of all pertinent information about the users,
we are able to use the only observable to us (i.e., the requests they make in the
network for both incoming and outcoming traffic) to identify any abnormal activity
(by calculating the difference between the relative frequency and the comparable
frequency). This can essentially be used as an indicator of the degree of their

correlation (whether they are independent or dependent).

4.2.3 Implemention

This subsection provides the necessary information related to the used methodology,

in order to implement the updated approach. Further to Chapter 3, we enhance our
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method in two main directions.

The first direction is related to the representation and the processing of the users.
Specifically, we represent the dependencies between users, using undirected graphs
Geomparavie(V, E) and Gyelarive(V, E), where the set of nodes V represents the set of users
and the set of edges, capture the degree of correlation among them. This approach
gives us the chance to create two undirected graphs with the respective square
matrices Mcomparavie AN Myeiative. Each element of Meomparavie and Meigtice, is related with
a pair of users, such as i and j (where i, j € V). The number of rows and columns of
the above square metrices is equal to the total number of users.

The second direction deals with the way we implement our approach in the real
world. Regarding this, the pseudocode of Fig. 4.3 has been implemented, in order
to identify correlations between pairs of users, by putting additional criteria to the
approach described in Chapter 3. The goal is to identify possible relations between
the users, and establish respective cliques. Specifically, the pseudocode of Fig. 4.3

has been implemented as follows:

e First Criterion: Find Dependent Users!

F comparable >F relative

Second Criterion: Find Independent Users
F relative = F comparable

Third Criterion: Find Users with traffic above normal

F Observablegge > F MeanPacketRate

Fourth Criterion: Find Users with very high traffic

uObservahleRutg > 0.9

Fifth Criterion: Find Users with no activity
uObservableRa,e =0

The decision tree (Fig. 4.3), which implements the algorithm of the proposed

approach and the respective flowchart of functions, are the following:

"What we know is that Feomparavle = Frelative, if the users are independent. In practice, we need to
pick a small threshold 7 (based on empirical evidence) and assume that the users are independent if

Frelative = T < Fcompamble < Frelative + T
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e First Criterion/Find Dependent Users

Further to our analysis in Chapter 3, after evaluating the proposed procedure,
we find that when Feomparavte > Fretative, the involved users y,[k] and y,[k], are more
likely to be dependent. When the empirical frequencies of the users, for in-
stance for 11; and ;, (where i, j € V) are equal with their comparable frequency

(Fcomparavie), then they are indicated as dependent with infinite relation.

e Second Criterion/Find Independent Users

Independent users are those users that fulfill the equality Faive = Feomparable-
We find that when the above equality is in force, the involved users are more

likely to be independent.

e Third Criterion/Find Users with traffic above the usual

When the empirical frequency of a user is greater than Feanpacketrate, then that
user is indicated as Flash Crowd. Users that satisfy this criterion are likely
to be dependent and, as a consequence, they are assigned to the clique of

collaborating nodes.

e Fourth Criterion/Find Users with very high traffic

Using the criterion Uopseroabler,, = 0.9, we identify abnormal Users. It is a very

strong criterion and the threshold can change based on empirical data.

e Fifth Criterion/Find Users with no activity

When Uopseroabier,,, = 0, we identify users with no activity in the inspectable
time period. This criterion can be applied only if historical data is in use. The
meaning of this criterion is that when we compare different windows of time,
we can find relations between the users in question. Users that present no
activity for the specific time window are essentially inactive for the specific

inspectable period of time (fixed time frame).

The goal of the enhanced approach is to improve the methodology presented in
Chapter 3 in order to deal effectively with scenarios of DDoS attacks in the real world.
The next chapter will provide simulations and describe with the implementation and

performance of the enhanced approach.
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4.3 Summary

In this chapter we described an enhanced approach based on the proposed baseline
approach. We presented the real world considerations regarding DDoS attacks and
lessons learnt from real security events. Based on these observations, we updated
the prediction strategy that we introduced in Chapter 3. The extended method
relies on the analysis of the data across the concerned network through the use
of fixed time frames, in an effort to identify correlations between different users
(both incoming and outcoming traffic). Towards this direction, we presented the
basic elements of an adjusted strategy. The idea is to split users, according to
respective criteria, into Dependent, Independent, Abnormal, Flash Crowd and No
activity users. Furthermore, we quoted the flowchart of the proposed approach and

analysed the used pseudocode.
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Chapter 5

Evaluation of Proposed Method

In this chapter we implement the approach in Chapter 4, and evaluate its perfor-

mance in small and large simulated examples, as well as real data.

5.1 Small Examples with Fixed Botnet Data

In this section we use a small example to illustrate the performance of the proposed
approach. The used paremeters are those described in Chapter 3, namely n, 13, 1,
il, fho, Aoavm, Azmmmz, Where the models considered are the ones in Fig. 3.3 and
Fig. 3.5 with parameters r = 0.7 and g = 0.9 (the selected values result in significant

difference between A, gayn and As gye).

e For HMM]1 (three state model), we have the following transition matrix:

0 0 0.7
Puomi=11 0 0],
01 03

with the respective matrices of eigenvalues and eigenvectors given by

1.0000 + 0.0000: 0 0
Ay = 0 -0.3500 - 0.7599: 0
0 0 -0.3500 - 0.7599:

and

0.4975 + 0.0000: —-0.2130 — 0.4625i —0.2130 — 0.4625i
Epmmt = | 0.4975 + 0.0000i —0.3956 — 0.4625i —0.3956 — 0.4625i |,
0.7107 + 0.0000i —0.3956 — 0.4625: —0.3956 — 0.4625i
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ie., {|A1] =1,|A,] = 0.8366, |A3] = 0.8366).

e For HMM?2 (four state model), we have the following transition matrix:

0.7 0.36 0 0.675
03 01 0175 0
0 054 03 0.225
0 0 0.525 0.1

p HMM2 =

with the respective matrices of eigenvalues and eigenvectors given by,

1.0 +0.01 0 0 0
0 -0.4089 + 0.01 0 0
Anmme = ,
0 0 0.3045 - 0.23601 0
0 0 0 0.3045 — 0.2360i
and
—0.8547 + 0.0i —-0.4767 +0.00 0.4699 + 0.3757i  0.4699 + 0.3757i
_ —-0.3494 + 0.0/ 0.4603 +0.0i 0.3676 —0.1048; 0.3676 —0.1048i
SHMM2 =

-0.3317+ 0.0 —0.5213 + 0.0: -0.2348 + 0.2709: —0.2348 + 0.2709:
-0.1935+0.0:  0.5377 + 0.0i —-0.6028 + 0.0: —-0.6028 + 0.0:

ie., {[A1] =1,|A;2] = 0.4089, |A3] = 0.3851, |A4] = 0.3851}.

5.1.1 Normal Behaviour

In this subsection we deal with normal behaviour (refer to Fig. 5.1) among the two
users, whose behaviour is captured by HMM1 and HMM2, based on the theory
described in Chapter 3. The first observation is that after n steps, if we have inde-
pendent users, then 71, = 141, (Fig. 5.2).

The second observation is that the model with the smallest |A,| reaches steady-
state quicker. In our example, due to the fact that |A; yavi2| < [IA2,mmnn |, HMM2
reaches steady state quicker (Fig. 5.3). Specifically, HMM2 reaches steady-state in
the range of k¥ = 12 steps instead of HMM1 which needs to approach « = 50 steps,
where « is the power of P} and P

HMM1 HMM?2*

5.1.2 Abnormal Behaviour

In this subsection we deal with abnormal behaviour (refer to Fig. 5.4). Following

the theory described in Chapter 3, we represent the abnormal behaviour between
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NORMAL TRAFFIC

n-steps aq 17} a Q42
100 0.28 0.66 0.2 0.1848
200 0.295 0.715 0.21 0.210925
300 0.276667 0.673333 0.19 0.186289
400 0.2825 0.6725 0.1975 0.189981
500 0.292 0.67 0.204 0.19564
600 0.296667 0.675 0.201667 0.20025
700 0.285714 0.69 0.19 0.197143
800 0.2875 0.705 0.20625 0.202688
900 0.288889 0.68 0.193333 0.196444
1000 0.293 0.694 0.197 0.203342
1100 0.285455 0.680909 0.198182 0.194369
1200 0.293333 0.678333 0.200833 0.198978
1300 0.292308 0.695385 0.19 0.203266
1400 0.292857 0.694286 0.215 0.203327
1500 0.288667 0.686 0.196 0.198025
1600 0.3 0.6775 0.19625 0.20325
1700 0.289412 0.697059 0.201176 0.201737
1800 0.295 0.686667 0.19 0.202567
1900 0.294737 0.694211 0.211579 0.204609
2000 0.292 0.699 0.202 0.204108
2500 0.2996 0.6808 0.2044 0.203968
3000 0.292 0.675333 0.194667 0.197197
3500 0.291714 0.686571 0.202 0.200283
4000 0.29125 0.68425 0.20425 0.199288
4500 0.290667 0.685778 0.200889 0.199333
5000 0.2916 0.6788 0.1954 0.197938
5500 0.293091 0.694 0.202545 0.203405
6000 0.289833 0.689667 0.204667 0.199888
6500 0.29 0.686923 0.196462 0.199208
7000 0.291714 0.688571 0.201286 0.200866
7500 0.2924 0.680933 0.2004 0.199105
8000 0.292375 0.680625 0.198375 0.198998
8500 0.290353 0.681765 0.199647 0.197952
9000 0.293556 0.688222 0.198556 0.202031
9500 0.292632 0.689158 0.203474 0.201669
10000 0.2909 0.6808 0.198 0.198045
20000 0.29075 0.68665 0.20155 0.199643
30000 0.291633 0.688767 0.201067 0.200867
40000 0.2917 0.6844 0.19935 0.199639
50000 0.29174 0.68524 0.20118 0.199912
60000 0.291317 0.687133 0.200483 0.200173
70000 0.292243 0.685343 0.200029 0.200287
80000 0.291938 0.684938 0.198888 0.199959
90000 0.291778 0.6852 0.200489 0.199926
100000 0.29109 0.68459 0.19934 0.199277

Figure 5.1: Normal traffic - Values of various parameters of interest after the execu-

tion of a run of 100000 steps in the two HMMs.

the two users. In this example, the second user, behaves just like the first user who

is governed by HMM1. In other words, the second user is mimicking the actions of
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Figure 5.2: Normal traffic - Comparing parameter values during a sample run.
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Figure 5.3: Normal traffic - Graph/eigenvalues A, gy and Ay pavine.

HMM1 and acts as zombie in a DDoS attack (The gap between il;, and i is presented
in Fig. 5.5. Due to the fact that [A, uvae| < |[lambday pyan|, HMM2 reaches steady
state quicker as can be seen in Fig. 5.6 (it is not affected from the fact that we deal
with abnormal behaviour).

As described above, the output sequence of HMM2 is the same with the output
sequence of HMM1 (Fig. 5.4), i.e.,

YHMM1 [k] = YHMM?2 [k].

As a result of the above, in abnormal traffic (refer to Fig. 5.5), we can identify
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ABNORMAL TRAFFIC

n-steps (1] G2 1] 012
100 0.27 0.27 0.27 0.0729
200 0.29 0.29 0.29 0.0841
300 0.293333 0.293333 | 0.293333 0.086044
400 0.28 0.28 0.28 0.0784
500 0.298 0.298 0.298 0.088804
600 0.295 0.295 0.295 0.087025
700 0.291429 0.291429 | 0.291429 0.084931
800 0.2975 0.2975 0.2975 0.088506
900 0.29 0.29 0.29 0.0841
1000 0.289 0.289 0.289 0.083521
1100 0.285455 0.285455 | 0.285455 0.081484
1200 0.291667 0.291667 | 0.291667 0.085069
1300 0.286923 0.286923 | 0.286923 0.082325
1400 0.295714 0.295714 | 0.295714 0.087447
1500 0.294667 0.294667 | 0.294667 0.086828
1600 0.289375 0.289375 | 0.289375 0.083738
1700 0.282353 0.282353 | 0.282353 0.079723
1800 0.294444 0.294444 | 0.294444 0.086698
1900 0.286316 0.286316 | 0.286316 0.081977
2000 0.29 0.29 0.29 0.0841
2500 0.2936 0.2936 0.2936 0.086201
3000 0.289667 0.289667 | 0.289667 0.083907
3500 0.293143 0.293143 | 0.293143 0.085933
4000 0.2895 0.2895 0.2895 0.08381
4500 0.293333 0.293333 | 0.293333 0.086044
5000 0.2934 0.2934 0.2934 0.086084
5500 0.290727 0.290727 | 0.290727 0.084522
6000 0.294667 0.294667 | 0.294667 0.086828
6500 0.293231 0.293231 | 0.293231 0.085984
7000 0.293286 0.293286 | 0.293286 0.086017
7500 0.291733 0.291733 | 0.291733 0.085108
8000 0.291 0.291 0.291 0.084681
8500 0.293529 0.293529 | 0.293529 0.08616
9000 0.291222 0.291222 0.291222 0.08481
9500 0.290737 0.290737 | 0.290737 0.084528

10000 0.2904 0.2904 0.2904 0.084332
20000 0.29015 0.29015 0.29015 0.084187
30000 0.2919 0.2919 0.2919 0.085206
40000 0.2921 0.2921 0.2921 0.085322
50000 0.29202 0.29202 0.29202 0.085276
60000 0.291533 0.291533 | 0.291533 0.084992
70000 0.292 0.292 0.292 0.085264
80000 0.291375 0.291375 | 0.291375 0.084899
90000 0.2914 0.2914 0.2914 0.084914
100000 0.29134 0.29134 0.29134 0.084879

Figure 5.4: Abnormal traffic - Values of various parameters of interest after the

execution of a run of 100000 steps in the two HMMs.

that refer to 71 > ily,. This is completely reasonable because 7 is the multiplication of

the empirical values 7, and 7.
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Figure 5.5: Abnormal traffic - Comparing parameter values during a sample run.
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Figure 5.6: Abnormal Traffic - Graph/eigenvalues A, gy and Az pvve.

For ¥ = 50, HMM1 reaches the steady-state since

0.291 0.291 0.291
PR =| 0291 0291 0.291
0.416 0.416 0.416

5.1.3 Comparing Similar Models

In this subsection we compare HMM1 with HMM1plus and HMM?2 with HMM2plus.
In HMM1plus and HMM2plus the measurements are taken at different (shifted)
times (HMM1plus is the same model as HMM1 and HMM2plus is the same model
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as HMM?2). The result is shown in Fig. 5.7.

Comparing the behaviour of HMM1 & HMM1plus and HMM2 & HMM2plus - Empirical measurments
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Figure 5.7: HMM1 vs HMM1plus and HMM2 vs HMM2plus

5.1.4 Different Model

In this subsection, we use additional models, HMM3 (Fig. 5.8) and HMM4 (Fig. 5.9),

to represent normal behaviour, as shown below

0 0 01
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0 0 0.072 09
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0.7 03

0 03 07
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The goal of the above is to indicate that the outcome remains the same (Fig. 5.10).
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Figure 5.8: Two-state hidden Markov model.

Figure 5.9: Three-state hidden Markov model.
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Figure 5.10: HMM1 vs HMM?2 and HMM3 vs HMM4.

5.2 Enhanced Simulation Study

5.2.1 General Description of Marked Users

For the verification of the proposed methodology, we built networks of 8, 10, 12, 24,

36, and 48 of marked users'.

IMarked users (known parameters): We namely indicate the users as dependent, flash crowd, no

activity, independent and abnormal. This helps us to identify whether our method works properly.
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Note that the users were constructed via simulation in order to fulfil the different
conditions of Dependent Users, Independent Users, Flash Crowd users, Abnormal
Users and No Activity Users. More specifically, their requests at different points in
time (sequence of Os and 1s) were chosen according to the type of user. A sample
implementation of the above approach (built in Matlab using the random function
where needed) is shown in Fig. 5.14 for the case of 12 users. Furthermore for all
the networks of users, we used the basic parameters? identified for the network of 8
users (refer to Section 5.2.2).

For the networks of 8, 10 and 12 users, the data was generated through simulation
software, using the indicated parameters. For the network of 12 users, the memo
in Fig. 5.14 displays all the parameters. For the networks of 24, 36 and 48 users
(additional to the above), due to the increased number of users, specifically for the
independent users, we used built probability functions with known parameters.

The reasons for building the networks of 8, 10, 12, 24, 36 and 48 users with
known parameters and simulating them, were (1) to identify that the method works
properly (taking account that all the users are marked), (2) to assess how complexity
increases when the number of users is increased (graphically).

Figure 5.14 is a small snapshot of total frame 4.10° time steps. We constract a net-
work of 12 users. Initially, (1) the five of them were Independent (R3, R4, R5, R6,R11),
(2) the two of them Dependent (R1,R2), (3) the other two of them Flash Crowd
(R7,R8), (4) the other two of them Abnormal (R9, R10) and the rest one of them No
Activity (R12). The outcome is described next.

5.2.2 Simulations with 8 users

For 8 users, we can see in Fig. 5.11, the outcome of the proposed approach for
users 1 to 8, according to criteria 1 to 5 of Fig. 4.3. Each node represents a user
(from 1 to 8), and gets a value which shows how many times it was member of
the respective clique (independent, dependent, abnormal), based on the number of
other users with whom it has high correlation. This additional criterion (not shown
in the pseudocode of Fig. 4.3) gives us an extra way to identify suspicious users.

Note that the threshold 7 used to identify the closeness of Feouparavie and Frepative is

2The basic parameters include the steps described in a unit time of 100ms, the mean packet rate is

taken to be equal to 0.6 and T = 107%.
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Figure 5.11: Classification of 8 users according to their behaviour.

chosen to be T = 107*. This value can be changed if needed (it was chosen based on
empirical trials). With different coloring of the nodes, we can see in Fig. 5.11 the three
different networks which represent the independent (blue), dependent (red nodes)
and abnormal (yellow nodes) cliques. Specifically, users 3, 4, 7, 8 are independent,
users 1, 2 are dependent, and users 5, 6 are abnormal. The edges of the graph of Fig.
5.11, are weighted and indicate the strength of the connection between the above
users (independent, dependent and abnormal cliques). The steps described are in a

unit time of 100ms and the mean packet rate is equal to 0.6.

5.2.3 Simulations with 10 users

For 10 users, we can see in Fig. 5.12, the outcome of the proposed approach for
users 1 to 10.

Also in Figure 5.12 with different coloring of the nodes, we can see the three
different networks which represent the independent (blue), dependent (red nodes)
and abnormal cliques (yellow nodes). Specifically, user 3 is independent, users 1,
2,4,5,6,7,8 are dependent, and users 9, 10 are abnormal. The edges of the graph
of Fig. 5.12, are weighted and indicate the strength of the connection between the

above users (independent, dependent and abnormal cliques).
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Figure 5.12: Classification of 10 users according to their behaviour.

5.2.4 Simulations with 12 users

For 12 users, we can see in Fig. 5.13, the outcome of the proposed approach for
users 1 to 12.

Also in Fig. 5.13 with different coloring of the nodes, we can see the three dif-
ferent networks which represent the independent (blue, purple nodes), dependent
(red nodes) and abnormal cliques (yellow nodes). Specifically, users 3, 12 are inde-
pendent, users 1,2, 4,5, 6,7, 8,11 are dependent, and users 9, 10 are abnormal. The
edges of the graph of Fig. 5.13, are weighted and indicate the strength of the con-
nection between the above users (independent, dependent and abnormal cliques).
Specifically, for dependent users, we can see the three sub-cliques that arise. The
tirst sub-clique (red edges) involves users (1, 2, 5), the second sub-clique (blue edges)
involves users (4, 6, 7, 8, 11) and the third sub-clique (gray edges) involves users (5,
6,7,8,11). During the various phases of the implementation, the users are split into
sub-cliques and then unified as one clique, for the dependent users. As it turns out,
we do not have flash crowd users (specifically, users 7 and 8 are deemed dependent

by the program). The steps described are in a unit time of 100ms and the mean
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Figure 5.13: Classification of 12 users according to their behaviour (related to

Fig. 5.14).

packet rate is equal to 0.6. The requests shown in Fig. 5.14, is a small snapshot of the

total time frame of 4 x 10° time steps (unit time 100ms per step).

5.2.5 Simulations with 24 users

For 24 users, we can see in Fig. 5.15, the outcome of the proposed approach for
users 1 to 24.

Also in Fig. 5.15 with different coloring of the nodes, we can see the three different
networks which represent the independent (blue, purple nodes), dependent (red
nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,
users 1, 3, 4, 5 are independent and 12, 17, 20, 21, 22, 23, 24 no activity/independent.
Users 6, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19 are dependent/flash crowd. Users 2, 7 are
abnormal. The edges of the graph in Fig. 5.15 are weighted and indicate the strength
of the connection between the above users (independent, dependent and abnormal

cliques).

5.2.6 Simulations with 36 users

For 36 users, we can see in Fig. 5.16, the outcome of the proposed approach for
users 1 to 36.

Also in Fig. 5.16 with different coloring of the nodes, we can see the three different
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The first 40 time steps of a repeatable time window, in a total Fixed Time Frame of 4 x 10° ms time steps
R1, Rz, Rs, R4, Rs, Re, R7, Rs, Ro, R10, R11, R12 denote users 1 to 12

Fixed Time Frame : 4 x 10° ms

Each Time Step has length 100ms

Rs. R4, Rs, Re, Ri1: Independent Users. Red colour indicates the positions where there is an indirect
dependency with Ry, R,

Rz, Rg: Flash Crowd Users
Ro, R10: Abnormal Users

Ri2 : User with No Activity

Figure 5.14: Requests from users Ry, Ry, ..., Ry (related to Fig. 5.13).

networks which represent the independent (blue, purple nodes), dependent (red
nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,
users 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36 are independent and 5, 11, 17 no
activity/independent. Users 1,2, 3, 4,7, 8,9, 10, 13, 14, 15, 16, 19, 27 are dependent
and 20, 21, 25 dependent/flash crowd. Users 6, 12, 18, 26 are abnormal. The edges
of the graph of Fig. 5.16, are weighted and indicate the strength of the connection

between the above users (independent, dependent and abnormal cliques).

5.2.7 Simulations with 48 users

For 48 users, we can see in Fig. 5.17, the outcome of the proposed approach for
users 1 to 48.

Also in Fig. 5.17 with different coloring of the nodes, we can see the three different
networks which represent the independent (blue, purple nodes), dependent (red
nodes), flash crowd (green nodes) and abnormal (yellow nodes) users. Specifically,
users 5, 11, 17, 25, 29, 30,31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48 are independent and 5, 11, 17 no activity/independent. Users 1,2, 3,4,7, 8,9, 10,
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13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28 are dependent and 19, 20, 21, 23, 26, 27,
28 dependent/flash crowd. Users 6, 12, 18, 24 are abnormal. The edges of the graph
of Fig. 5.17, are weighted and indicate the strength of the connection between the

above users (independent, dependent and abnormal cliques).

5.3 Simulations with Real Botnet Data

For better evaluation of the method, further to the built data of the previous chapter,
we use in this chapter real data made available as part of a research project at the
CVUT University of Prague in the Czech Republic [54]. The file includes botnet
traffic (the project only provided data related to botnet traffic). For our simulations,
we used the file botnet — capture — 20110810 — neris.pcap. The data was transformed
(encoded) and loaded in the simulation program. We ran our method in three
scenarios. The first scenario, solely used the data of the above data file. For the
second scenario, we used the above file with additional five, independent users that
were computer generated for simulation purposes. For the third scenario we used
the five additional independent users with verified random behaviour.

Note thatin order to process the real data we amended the pseudocode of Chapter
4 (Fig. 4.3), to cover the possibility that some users may send multiple packets, within
the same unit of time (time step, e.g. 100ms, 1s, etc.). If this quantity exceeds the
mean packet rate of normal users, then we have a strong indication that the user in
question may be flash crowd.

The total time window of the above pcap file, has length 4444.097 seconds (relative
time between the first and the last packet for both incoming/outgoing traffic). The
total number of users is 215. The 214 users interact with the user with IP address
147.32.84.165. Each IP address was encoded with a number in order of appearance.
For example, the IP address 147.32.84.165, is represented by the number 4. The other

users are given numbers 1 to 215.

5.3.1 Scenario 1: Verification of Completed Time Window

In Scenario 1, we have the traffic in Fig. 5.18, which consists of all the data of the
tile, botnet — capture — 20110810 — neris.pcap. Note that Fig. 5.18 represents both the

incoming/outgoing traffic (we observe the incoming and outgoing traffic from a
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crossroad point when using unit time step 1s). Furthermore, in this figure, we can
see graphically the activity packet rate arrival (the total number of packets which arrive
per unit time - straight dark blue line in Fig. 5.18), the mean packet rate arrival per user
(straight light blue line in Fig. 5.18) and the mean packet rate arrival per time (straight
red line in Fig. 5.18). The activity packet rate arrival gives a graphical representation
of the actual traffic (we can identify any unusual high traffic). The mean packet rate
arrival per user gives the mean packet rate regarding arrival packets per user. The
mean packet rate arrival per time indicates the mean packet arrival rate per unit of
time. In summary, Fig. 5.18 is a statistical representation of the incoming/outgoing

traffic.

Examined time step equal to 1s

In Fig. 5.19, we can see the graphical representation of the resulting classification
of users, according to their behaviour, when using unit time step of 1s. From the
total number of 215 users, we have found 82 independent users, 0 abnormal users, 1
flash crowd user, 132 dependent users, 0 no activity users (13 depedent/flash crowd

users).

Examined time step equal to 100ms

In Fig. 5.20, we can see the graphical representation of resulting classification of
users, according to their behaviour when using unit time step 100ms. From the total
number of 215 users, we have found 180 independent users, 0 abnormal users, 3 flash
crowd users, 32 dependent users, 2 no activity/independent users (9 depedent/flash

crowd users).

Comparing Fig. 5.19 and Fig. 5.20

As we can see, independent users in Fig. 5.19 total 82 and in Fig. 5.20 total 180. This
is reasonable due to the fact that we rely on simultaneous activity between different
users within the same unit time step; thus, if the unit time step has smaller value (i.e.
100ms), then it is more difficult to identify simultaneous activity between different
users. For this reason, we amend the pseudocode of Fig. 4.3, in order to cover the
possibility, for some users, to send additional packets (above the usual), within the

same unit of time.
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5.3.2 Scenario 2: Verification of Completed Time Window with

Additional Independent Users

For Scenario 2, we consider the traffic in Fig. 5.21 (the statistical representation is the
same as in Fig. 5.18). The only difference between Scenario 2 and Scenario 1 is in
the inclusion of five additional independent users. Our purpose is to extract further
results regarding the implementation of our method, by involving users with known

behaviour.

Examined time step equal to 1s

In Fig. 5.22, we can see the graphical representation of the resulting classification
of users, according to their behaviour when using unit time step of 1s. From the
total number of 220 users (additional 5 independent users with fixed behaviour),
we have found as independent users 85, abnormal users 0, flash crowd users 3,
dependent users 132, no activity users 0, and depedent/flash crowd users 13 (2
no activity/independent users, and 13 depedent/flash crowd users). Note that for
the five additional independent users, the result after the execution of our method
showed that three of them are independent and two of them are flash crowd (activity

above the mean packet rate).

Examined time step equal to 100ms

In Fig. 5.23, we can see the graphical representation of the resulting classification of
users, according to their behaviour when using unit time step of 100ms. From the
total number of 220 users (additional 5 independent users with fixed behaviour),
we have found as independent users 191, abnormal users 0, flash crowd users 1,
dependent users 28, no activity users 0 (4 no activity/independent users, and 4
dependent/flash crowd users). Note that, for the five additional independent users,
our method identified, three of them as independent and two of them as flash crowd

(activity above the mean packet rate).

Compairing Fig. 5.22 and Fig. 5.23

As we can see independent users in Fig. 5.22 total 85 and in Fig. 5.23 they total 191.

Again, this is reasonable as explained for Scenario 1.
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5.3.3 Scenario 3: Verification of Completed Time Window with

Additional Independent Users - Random Behaviour

For Scenario 3, we consider the traffic in Fig. 5.24 (the statistical representation is the
same as in Fig. 5.18). The only difference between Scenario 3 and Scenario 2 is that
the five additional independent users act at random and their exact behaviour is not
assumed known by the classification methodology. Their maximum traffic is chosen

to be equal to the maximum historical data of the independent users.

Examined time step equal to 1s

In Fig. 5.25, we can see the graphical representation of the resulting classification
of users, according to their behaviour when using unit time step of 1s. From the
total number of 220 users (additional 5 independent users with random behaviour),
we have found 92 independent users, 1 abnormal users , 0 flash crowd users, 127
dependent users, 0 no activity users (2 no activity/independent users, and 8 depen-

dent/flash crowd users). The five additional users are indicated as independent.

Examined time step equal to 100ms

In Fig. 5.26, we can see the graphical representation of the resulting classification of
users, according to their behaviour when using unit time step of 100ms. From the
total number of 220 users (additional 5 independent users with random behaviour),
we have found 191 independent users, 1 abnormal users, 0 flash crowd users, 28
dependent users, 0 no activity users (4 no activity/independent users, and 5 depen-
dent/flash crowd users). The five additional users are indicated as independent.

As we can see independent users in Fig. 5.25 total 92 and in Fig. 5.26 they total

191. Again, this is reasonable as explained for Scenario 1.

54 Summary - Main Remarks

In this chapter we implemented the enhanced approach described in Chapter 4.
First we presented small examples with fixed botnet data, and later proceeded with
a simulation study of our enhanced methodology, which includes more complicated
examples of botnet data. Finally, we presented simulations with real botnet data.

The full analysis is as follows.
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5.4.1 Main Remarks of the 1st stage - Small Examples with Fixed
Botnet Data

The main remarks of this stage are the following.

e After n steps (approximately n = 1000), the comparable frequency is equal to

the relative frequency under normal behaviour.

e In abnormal behaviour, when the users are mimicking each other there is a gap

between the comparable and the relative frequency.

e Therate of convergence is governed by the values of the respective eigenvalues.
This is the reason that the minimum steps required in order to have clear result

is approximately n = 1000 steps.

e The important value is the second largest magnitude of the eigenvalues of the
respective HMM. The smaller it is, the sooner the HMM will reach the steady
steady.

5.4.2 Main Remarks of the 2nd stage - Enhanced Simulation Study

The main remarks of this stage are the following:

o After a total of 4000 steps, we have clear results.

e During the implementation of the method, we found some internal cliques
regarding the dependent and flash crowd users. The results are quoted in
Figures 5.27, 5.28 and 5.29 (different coloring with corresponding explanation

and comments are included within the figures).

e Despite the fact that some users seem to behave normally, it is shown from
Fig. 5.27 that there is an indirect relation among them, which leads us to the
conclusion that perhaps the method can be modified to handle time varying

probabilities (shifted time).

e When the number of users or steps is increased, the elapsed run time is in-
creased accordingly. The justification of complexity is shown in Fig. 5.30 (dif-
ferent coloring with corresponding explanation and comments are included

within the figure).
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5.4.3 Main Remarks of the 3rd stage - Simulations with Real Botnet
Data

This stage represents the main part of our work and illustrates the novel approach
for malware analysis. At this stage, we use our method with real botnet data. The
processing of the data, and how they get transformed from the pcap file format,
in order to be used is shown in Figs. 5.31 ® and 5.32 * (different coloring with

corresponding explanation and comments are included within the figures).

e When the value of the unit of time is decreased (e.g. from 1s to 100ms), the
accuracy increases, and makes it more difficult to identify any simultaneous
requests among the users in question (for both incoming/outgoing traffic).
One can, of course, consider ways to count requests that occur approximately

simultaneously, but this is something that we did not pursue explicitly.

e Users with very high incoming/outgoing traffic, which are identified as Flash

Crowds only, may be potentially the victims or the attacker.

e When there is an increase in the users or/and the total number of time steps
or/and the samples of unit of time (e.g., when going from 1s to 100ms) the com-
putational complexity increases, due to the increased number of comparisons

that are needed.

e Despite the fact that the file includes only botnet traffic, we identified users
with normal behaviour. The reason for this is that due to the limited traffic
of these users, they do not fulfill the condition Feopparaie > Freiative, and their

behaviour looks normal.

e Asalready mentioned, the real data consist only with botnet traffic (the project
only provided data related to botnet traffic). In order to have a clear view (safe
results) we added in the traffic five independent users (in each scenario). The

results show that these users are identified correctly as independent.

3Fig. 5.31- Represents the real data loaded in WireShark.
4Fig. 5.32- Represents the way the real data transformed in order to be used according to the

variable time step (1s or 100ms).
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Figure 5.17: Classification of 48 users according to their behaviour.
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Figure 5.18: Scenario 1: Packet arrival activity graph - unit time step 1s.
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Figure 5.19: Scenario 1: Time Step 1s - Traffic identity.

Scenario 1:Time Step 100ms - Traffic Identity
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Figure 5.20: Scenario 1: Time Step 100ms - Traffic identity
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Figure 5.21: Scenario 2: Packet arrival activity graph - unit time step 1s.
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Figure 5.22: Scenario 2: Time Step 1s - Traffic identity.
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Figure 5.23: Scenario 2: Time Step 100ms - Traffic identity.
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Figure 5.24: Scenario 3: Packet arrival activity graph - unit time step 1s.
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Figure 5.25: Scenario 3: Time Step 1s - Traffic identity.
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Figure 5.26: Scenario 3: Time Step 100ms - Traffic identity.
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Enhanced Simulation Example
12 USERS (Small snapshot of total frame 4 x 103 time steps)

Ritn, |2 |2 |3 [#[5 |8 |7 (8 |9 |0 |0 2 (13 |8 |15 16 |17 |15 (39 (20|02 (3 ¥ |3 |36 |7 |58 |2 (0|5 2 (3 (M4 35 |36 (37 3 |5 0

R1
R2

R3

R4 oo jo o oflojlo ojo0 ojo 0 ojlofo ojjoj|o ofjlofo ofjofio |1 (0
RS 0 0 0 ono 0 0 0 o0 0|0 |0
Ré 0 1 0 oo o 0 o0 oflo 00 0|0 |0 (0
R7 1 i 1 1 1 1 0|0 |0 (0 |0 |0 (O
RE 1 1 1 1 1 1 0§00 (0 |0 |© O |0 |0
R9 11 111 1)1 11 1)1 (171101 1|1 1 (1 111 1|1 (1 (1|1 |0
R0 |1 (11|11 |23 |11 |1 11 (1 (21 (2|1 |1 |1 101 (1 (1|1 (1|1 (1|1 1 (1 (1 (211 (1 1|1 |0
lll:: i1(o0/0|0|0O|0O|0 |0 DO 0|0 |0 (O |0 |0 |0 |0 |0 ¢ |0 |0 (0|0 |0 |O|D|O 0|0 |0 O |0 (0O O |O (O

Memo
Ri, Ry, R; Ry Rs Rg R; Ry Ry Ry, R4, Ryp denote users 1 to 12
Fixed Time Frame : 4 * 103 ms

Each Time Step has length 100ms :
INITIAL APPROACH!! Rs Rs Rs Re Ryp: Independent Users  Fretaive(l)) 2 Feomparabie (i /)
Dependent Users : Red colour indicates the positions where there is an indirect dependency
with R, R, Feomparaie (5 J) > Fretarive (i, J)

R;, Rg: Flash Crowd Users

R+» : User with No Activity

Figure 5.27: Example 1: Enhanced simulation example - Indirect Cliques.

The Indirect Cliques among the Dependents of the 12 Users

1

I AGNORMAL 9
6
NO_ACTIVITY_12

ABNORMAL_10

000098502

0.00009502 090909

Figure 5.28: Example 1: Graph representation - Indirect Cliques.
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Example of Complexity for 48 USERS in 4096 Steps
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Matrix of Number of Steps/Outcome

Number of Steps
(100ms)
ABNORMAL (#)

82

16.1231) | 17.7814 | |[19.7735 | 30.6639 | 61.3971 | 185.2791

16.0167
Figure 5.30: Example 3: Justification of complexity for 48 Users.
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Chapter 6

Conclusions

Communication Information Systems have become a major asset in human society
and economy. Their use in social media, email, financial services, and other applica-
tions, through the internet determines the digital identity of the humans which is in
fact their physical identity. Effectively, humans have become part of the cyberspace.
Taking account all the above, new security matters arise. All of our activities use
and, in fact, rely on the internet.

The availability of these communication information systems, is extremely crucial
to humans. At this point, a new challenge has been developed, threatening the
availability of the Communication Information Systems, namely DDoS attack. Until
now, dozens of different approaches have been proposed to deal proactively with
DDoS attacks. Their main objective is to identify early enough any collaboration
between users. Despite these efforts, DDoS attacks still happen, and are growing in
terms of volume and catastrofic impact. Security experts are not optimistic about the
way ahead; they believe that the worst case scenario is in front of us as the Internet
of Things is on the way, and proactive in-depth solutions have not been found yet.

Taking account all the above, our motivation in order to work to this field we’re the
numerous zero day attacks that happened in recent past years and the security gap
that seems to grow at a rapid pace. If we take account that all of the communication
information systems, will become a part of the Internet of Things in the next years,
then we can figure out easily the size and type of future robot network (botnet).
The effective defense to this scenario is the identification of the botnet network early
enough, before it gains its full power.

The main objective of this dissertation is to fill up the above mentioned secu-
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rity gap by introducing a novel approach regarding malware analysis by establish-
ing a reliable and simple in the implementation method regarding collaboration in
user behaviour in order (1) to avoid the consequences of a Distributed Denial of
Service attack, (2) to recognise early enough any cyber incidents, (3) find any col-
laboration/dependency among different users, (4) ultimately isolate any abnormal
behaviour before a minor cyber incident expands to a catastrophic DDoS attack with
extremely high cost.

The contribution of this dissertation is the proposal of a simple method that can
be implemented in any kind of information system, including anti-DDoS devices
or Intrution Detection Systems (IDS), or can be used as a second line of defense in
relation with other methods. In order to implemented the proposed method, there
is no need to have any related information about the botnet nor its strategy. The
method is based on the theory of hidden Markov models, without using them in
the implementation (only for justification). Furthermore, the method gives a novel
approach in malware analysis and provides a new idea for future research in the
detection of malicious internet users. It is estimated that there are many prospects
of developing the method due to the fact this dissertation only proposed the core
theory without the combinations or variants that can be applied.

To achieve all the above, we organised the dissertation by providing background
material and presented the state-of-the-art best practices in place regarding DDoS
attacks. Next we provide, the definition of a DoS attack, the description of hidden
Markov models and related theory, and the theoretical analysis of the proposed
approach. We also describe our enhanced proposed approach, which includes an
improved detection strategy; lessons learned are also discussed in detail. Finally,
we include simulations, an evaluation of the performance of the proposed model
with real data, and a summary of the main findings regarding our evaluation in real

scenario events.

6.1 Remarks

Our method can be applied to any kind of Communication Information System.
Specifically, it can be part of the main configuration of an Intrusion Detection System
(IDS) and it can be implemented as a pre-processor module, in order to identify early

enough any abnormal events, and establish the appropriate cliques of dependent
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users (which are in collaboration during a DDoS attack).

The complexity of the method should not be seen as an inhibiting factor. Taking
into account that there is no need for additional information about the users (except
for their behaviour during their activity in the network), this becomes very interest-
ing and at the same time extremely valuable. The main asset of the method is that
there is no need to have any additional information related with the attacker. If this
method is implemented in distributive way, then the main complexity factors (which
are the number of the users and the number of the steps), can be minimized. With
this technique, if we assume that we use parallel processing in real time, the pro-
cessing of the data will take place in distributive manner, so that the processed data
may be transmitted to the main processing unit of the implemented device. In this
way, the defender may have the whole picture in a sense of a network tomography
with all related information and all updated critical information in real time.

If we take account the above, it is clear that with the distributive and in depth
implementation of the method which has been described above, is not an inhibiting
factor and not so complicated for practical applications.

Recent cyber-events related to DDoS attacks have taught us that a DDoS attack is
executed in full strength during a time window of approximately 15-20 minutes [53].
Our proposed method can used as a second line of defense, in relation with other
methods. In that way, we believe that appropriate safe and reliable results can be
found in the first 10 minutes and potentially will allow us to to stop a DDoS attack

before it reaches its full strength and consume all of our resources.

6.2 Future Work

As it was already stated above, the proposed approach only refers to the core related
theory. Areas of further development have already been identified in terms of two
pillars. The first pillar refers to proactive measures and the second pillar to reactive
measures. Both measures are critical and contribute to the overall safety, in terms
of overcoming DDoS attacks. The contribution of these measures is critical in terms
of reliability, due to the fact that they can minimize effectively the risk of findings
related to false positive alarms or false negative alarms. The proposed approach can

be explored further in terms of proactive and reactive measures discussed below.
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6.2.1 Proactive Measures

The areas that can be explored further, regarding proactive measures include the

following.

e The mean packet rate can be more precisely identified using Poisson process
analysis and information theory measures (entropy). With this technique, it is

believed that the proposed approach can be upgraded and work independenly.

e Simulate behaviours among the users involving time shifting constraints. With
this technique the proposed approach will be able to identify malicious users,
in direct mode, so that botnets that are activated through time by the same
attacker can be found early enough. This capability will give to defenders
appropriate time to act proactively and even uncover the attacker himself,

who is hiding behind the botnet.

6.2.2 Reactive Measures

e In relation with the techniques used in sandboxes, the revealed challenge is
the decryption of the hidden information related with the bots and specifically
how they implement their command/control channels. This approach can lead
us closer to the identification of the hidden strategy of the attackers, which
means that we can actually identify the geo-location of the botnet and all
related information. This can be accomplished if we can collect early enough
the possible information related to the attacker and specifically the cliques of

the botnet that are on effect using time shifting constraints.

e Parallel HMM composition can be used to predict the needed time to reach
steady-state. This will be an asset when trying to understand in depth time-
varying strategies. With this methodology, the defenders can be able to identify
new signatures of malwares and in practice to identify the different transfor-
mation coding of the attacker, which will give us the capability to understand
how it works, in order to find them. If this is combined with somewhat of a
data base, then the all system can be transformed in an autonomous machine

learning system.
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Appendix A

Acronyms
AOMDYV  Auto Request Protocol
Al Artificial Inteligence

ANN
ARQ
BOTNET
CIS
CPS
DoS
DDoS
DRDoS
FCM
JNNS
NIST
HMM
IDS
IoT
ICMP
IPS
IP
ISP
PCs
SDN
TCP
WSN
upp

Artificial Neural Network

Auto Request Protocol

Robot Network

Communication Information System
Cyber Physical System

Denial of Service Attack

Distributed Denial of Service Attack
Distributed Reflection Denial of Service Attack
Fair Coin Markov Model

Java Neural Network Simulator
National Institute of Standard and Technology
Hidden Markov Model

Intrusion Detection Systems

Internet of Things

Internet Control Message Protocol
Intrusion Prevention System
Internet Protocol

Internet Service Provider

Personal Computers

Software Defined Network
Transmission Control Protocol
Wireless Sensor Network

User Datagram Protocol
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Appendix B

Notation

I E> §>

ﬁlZ
F relative
F comparable
F MeanPacketRate

uObservable rate

The requests from User One

The requests from User Two

Comparable Frequency (Baseline Feature)
Relative Frequency (Baseline Feature)

Relative Frequency (Enhanced Feature)
Comparable Frequency (Enhanced Feature)

The Frequency Mean Packet Rate (Enhanced Fea-
ture)

Users Activity Rate (Enhanced Feature)
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Appendix C

Definitions

Attacker
Abnormal User
Dependent User

Flash Crowd User

Independent User
Master Zombies

No Activity User
Zombies

The top botnet leader

Users with very high traffic

Users that appear dependent with other users
Users that do not behave normally or/and appear
dependent with other users

Users that they do not appear dependent with
other users

Users that are member of the botnet and lead
groups of zombies

Users that appear inactive

Simple individual users that are members of the
botnet
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