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Περίληψη 

Τις τελευταίες δεκαετίες έχουν δαπανηθεί τεράστια ποσά για τη συντήρηση των 

γηρασκουσών γεφυρών ανά τον κόσμο. Η αξιόπιστη εκτίμηση του ρυθμού φθοράς και της 

διάρκειας ζωής των γεφυρών αποτελούν ουσιώδη στοιχεία για τον καθορισμό βέλτιστων 

προγραμμάτων συντήρησης, αποκατάστασης/ενίσχυσης ή ανακατασκευής. Στην παρούσα 

διατριβή χρησιμοποιήθηκαν δημοσιευμένα δεδομένα από επιθεωρήσεις υφιστάμενων 

γεφυρών από την Ομοσπονδιακή Διοίκηση Αυτοκινητοδρόμων των ΗΠΑ. Κύριος σκοπός 

της διατριβής ήταν η ανάπτυξη μιας νέας μεθόδου για την πρόβλεψη του ρυθμού φθοράς 

των γεφυρών υπό διάφορες συνθήκες, αξιοποιώντας δεδομένα μόνο ενός έτους 

επιθεωρήσεων. Για την επίτευξη αυτού του σκοπού αναπτύχθηκε μια γενική μεθοδολογία 

καθοδηγούμενη από δεδομένα, για να μοντελοποιηθεί μακροσκοπικά και να διερευνηθεί η 

φθορά γεφυρών και να αναδειχθούν οι σημαντικότεροι παράγοντες που επηρεάζουν τη 

δομικής κατάσταση γηρασμένων γεφυρών. 

Αρχικά, η υπάρχουσα βάση δεδομένων εμπλουτίστηκε με επιπρόσθετες πληροφορίες 

για τη συμπερίληψη υποψήφιων παραγόντων σχετικών με το κλίμα και τη σεισμική 

επικινδυνότητα, που θα μπορούσαν να επηρεάσουν τη δομική κατάσταση των γεφυρών. 

Ακολουθήθηκε διαδικασία ανάλυσης δεδομένων, αξιοποιώντας στατιστικές μεθόδους, για 

τον προσδιορισμό των κρίσιμων παραγόντων φθοράς. Παράγοντες που βρέθηκαν να έχουν 

τη μεγαλύτερη επίδραση στη δομική κατάσταση ήταν η ηλικία της γέφυρας, τα δομικά υλικά 

της, ο σεισμικός κίνδυνος της τοποθεσίας, διαβρωτικές συνθήκες που οφείλονται στην 

ύπαρξη νερού κάτω από τη γέφυρα και στη χρήση αλάτων κατά του παγετού. Εστιασμένη 

έρευνα διεξήχθη σε ολόκληρη την παράκτια περιοχή των ΗΠΑ που ανέδειξε ως κρίσιμη 

απόσταση τα 2-3 χιλιόμετρα από την ακτογραμμή προς στην ενδοχώρα, μέχρι την οποία 

διαβρωτικοί παράγοντες από τη θάλασσα δύνανται να επηρεάσουν τη φθορά γεφυρών. 

Αξιοποιώντας τα παραπάνω αποτελέσματα, πραγματοποιήθηκε διεξοδική μελέτη για την 

εξέλιξη της δομικής φθοράς στο χρόνο. Εστιασμένα δείγματα γεφυρών τμηματοποιήθηκαν 

βάσει των χρησιμοποιούμενων δομικών υλικών και των περιβαλλοντικών συνθηκών 

έκθεσης και αναλύθηκαν με γνώμονα την ηλικία και τη φθορά χρησιμοποιώντας 

πιθανότητες μη-ικανοποιητικής-δομικής-κατάστασης. Τα αποτελέσματα έδειξαν ότι ο 

συνδυασμός αλάτων κατά του παγετού, ύπαρξης νερού κάτω από τη γέφυρα, καθώς και 

ύπαρξης κατασκευαστικών αρμών σε μη συνεχή καταστρώματα, έχουν διαφορετική 

επιρροή στα υλικά των διαφορετικών τμημάτων μιας κατασκευής. 

Τα ευρήματα της ανάλυσης έτυχαν επεξεργασίας και συγκρίθηκαν με αντίστοιχα 

αποτελέσματα που αναφέρονται στη βιβλιογραφία σχετική με τη διάβρωση προς αναζήτηση 

FILI
PPOS ALO

GDIANAKIS



iv 

 

πιθανών αιτίων και προελεύσεων, αλλά και προς επικύρωση της διαδικασίας ανάλυσης και 

των αποτελεσμάτων της. 

Η αυξητική τάση των πιθανοτήτων μη-ικανοποιητικής δομικής κατάστασης με την 

αύξηση της ηλικίας μελετήθηκε και αξιοποιήθηκε για την ανάπτυξη μιας μακροσκοπικής 

μεθόδου πρόβλεψης της μελλοντικής φθοράς γεφυρών. Η μέθοδος μετατοπίζει (αντιγράφει) 

πιθανότητες και προσαρμόζει κατάλληλα την κλίμακα του χρόνου λαμβάνοντας υπόψη 

στατιστικές ιδιότητες των μετατοπισμένων δεδομένων. Η τελική κατανομή προκύπτει από 

την παλινδρόμηση κατάλληλης συνάρτησης αθροιστικής κατανομής στα μετατοπισμένα και 

προσαρμοσμένα δεδομένα. Στην εργασία παρέχονται οι ιδιότητες, οι εξαρτήσεις της 

μεθόδου και τα αποτελέσματα της επικύρωσης των προβλέψεών της για όλα τα διαθέσιμα 

δείγματα. Τέλος, παρουσιάζεται μια εφαρμογή της μεθόδου στο πλαίσιο διαχείρισης κύκλου 

ζωής γεφυρών, όπου πραγματοποιείται συγκριτική αξιολόγηση διαφορετικών 

προγραμμάτων αποκατάστασης με βάση το αναμενόμενο κόστος. 

Παρόλο που η παρούσα έρευνα αναφέρεται σε γέφυρες, το αναπτυγμένο πλαίσιο 

μπορεί να επεκταθεί και σε άλλα γηράσκοντα συστήματα και έργα υποδομής που 

επηρεάζονται από φθορά, υπό την προϋπόθεση ύπαρξης αντίστοιχων διαθέσιμων 

δεδομένων. 
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Abstract 

In the last decades, vast budgets have been spent to maintain the aging bridges all 

over the world. Reliably estimating the deterioration rates and the lifetime of bridges are 

essential aspects in determining optimal programs regarding maintenance, rehabilitation or 

reconstruction. Published bridge inspection data from the US Federal Highway 

Administration were utilized to quantitatively treat the high uncertainties governing 

structural deterioration. The main purpose was to derive a novel method for forecasting the 

bridge deterioration rate under various circumstances, utilizing inspection results of only one 

year of published data. To achieve this, a data-driven framework was developed to 

investigate bridge deterioration and result in predominant factors that would allow its 

modelling. 

Initially, the existing database was enriched with information from other reliable 

databases, to include candidate deterioration factors regarding climate and earthquakes. A 

data analysis process, including various statistical methods, was performed and critical 

factors of deterioration were identified. Specifically, the age of a bridge, its structural 

materials, the earthquake hazard at its region, aggressive conditions due to water underneath 

the bridge and use of deicing salts, were found to be the factors affecting structural 

deterioration the most. A closer investigation was performed to the whole coastline region 

of the US. Critical distances from the coast were identified, indicating that corrosive agents 

from the sea can affect deterioration at distances up to 2-3 km inland. Utilizing the above 

results, a thorough study was performed on the progress of structural deterioration with time. 

Focused samples were segmented based on structural materials used and various exposures, 

and were analyzed with respect to age and deterioration using probabilities of non-

satisfactory bridge condition. The results showed that combinations of the factors (deicing 

salts, water under a bridge and the existence of construction joints on non-continuous decks) 

have different effect on the materials of the bridge parts of deck, superstructure and 

substructure. The findings of this work were discussed and compared to corresponding 

results reported in literature on corrosion, in an effort to determine possible justifications 

and origins and provide validation and credibility for the analysis procedure and its 

outcomes. 

The dependency of non-satisfactory condition probabilities to age was studied and 

utilized to develop a macroscopic method to predict future deterioration. The Shifting 

Scaling Data Regression (SSDR) method was developed, according to which the initially 

calculated probabilities are shifted (copied) and then scaled using a consistent factor that 
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accounts for the statistical properties of the shifted data. The final distribution is derived by 

fitting the shifted and scaled data points with an appropriate Cumulative Distribution 

Function. The SSDR’s properties and dependencies were displayed and the predictions of 

the method were validated utilizing all available samples. Furthermore, an application of the 

SSDR was demonstrated in the framework of life cycle management of a bridge, where 

various rehabilitation schedules were comparatively assessed with respect to expected costs. 

Although the research conducted herein refers to bridges, the developed framework 

can be extended to other infrastructure systems and facilities affected by structural 

deterioration, provided that respective data are available. 
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1 Introduction 

1.1 General 

From the dawn of human civilization, man has developed and incorporated various 

infrastructure facilities to promote population, economic growth and evolve technologically 

to today’s civilization. Infrastructure has been recently redefined as ‘the physical 

components of interrelated systems providing commodities and services essential to enable, 

sustain, or enhance societal living conditions’ by (Fulmer, 2009). Apart, though, from 

building new infrastructure facilities, maintaining the already existing ones in functional 

condition is a challenge all modern societies have to face. 

Bridges constitute one of the oldest infrastructure facilities. They are structures built 

to span physical obstacles (water, valley, road), providing passage over them without 

interrupting the way underneath. Bridges have been used for thousands of years and built by 

different materials and designs, which evolved throughout human history. From prehistoric 

time, man would have used the naturally fallen tree logs to surpass an obstacle in a safer and 

less time-consuming way. Although many bridges must have been built in ancient times, not 

many have survived due to their temporal nature and/or the nondurable construction 

materials. This changed during the Roman period (200 BCE- 305 CE), when a vast road 

network (120,000 km) was built to connect the provinces, providing access to the armies to 

preserve and expand the Empire’s territory (Labate , 2016). The introduction of durable 

mortars, as well as the introduction of the arch, revolutionized bridge construction, which 

continued to be used up to the 18th century. In the early industrial revolution, the first cast 

iron bridge was built in England in 1779 (Billington , et al., 2017). During the second 

industrial revolution, in the19th century, the concrete and steel materials were introduced in 

the form of reinforced concrete, structural steel and prestressed concrete, which would ever 

since revolutionize bridge design and construction (Billington , et al., 2017). 

During the past century, a large number of bridges was built throughout the world to 

meet the increased transportation demands of the globalized society, whose ability to 

function efficiently relies on the utilization of multiple infrastructure networks. Among 

them, surface transportations still constitute its backbone and, at the same time, bridges 

compose weak links throughout the road network (Kutz, 2004). Interruptions to a bridge’s 

functionality can cause multiple delays, increased detour lengths accompanied by increases 

in user costs, impacting a nation’s economy. Such interruptions can also be caused from 

repair works or rehabilitations performed to preserve a bridge’s functionality, as well as 

1859 
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promote passenger safety, both of which could be compromised from excessive deterioration 

of a bridge’s structural condition. Structural deterioration can reduce dramatically the 

bridge’s useful lifespan, demanding at the same time vast budgets to be annually allocated 

for necessary interventions to be performed. 

The magnitude of the problem can be understood by considering the case of the US 

(Fig. 1.1), whose bridge stock consists of more than 600,000 bridges, of which 40% are older 

than 50 years (ASCE, 2017). Nine percent of the bridges are considered ‘structurally 

deficient’, a term corresponding to significant defects that require reduced weights or speed 

limits (Golson, 2015). Although not all mentioned bridges comprise a threat to public safety, 

there have been cases where bridge collapses occurred and resulted in human casualties 

(Penn, 2018). The Association of Civil Engineers (ASCE) 2017 report card on infrastructure 

revealed the high number of structurally deficient bridges (Fig. 1.1(b)) and estimated a $123 

billion cost for their rehabilitation (ASCE, 2017). Despite the poor condition ratings of 

infrastructures received from ASCE, the US are placed 11th in the world regarding 

infrastructure within the Global Competitiveness Report of 2016-2017 (World Economic 

Forum, 2016), revealing that even larger problems exist in other countries. 

 

Figure 1.1: Magnitude of the problem in the US (a) Bridge built over highway ,under a highway 

bridge, to protect vehicles from falling debris, image taken from (Kroft, 2012). (b) 

Structurally deficient bridges from ASCE infrastructure report card (ASCE, 2017). (c) 

Book concerned with US failing infrastructure and ways to tackle it (LePatner, 2010). (d) 

Yearly reports at State and national level regarding bridge condition (Transportation for 

America, 2013). (e) Picture showing the equivalent distance of deficient bridge miles on 

the US map (Transportation for America, 2013). (f) Picture revealing the amount of 

passengers affected by deficient bridges daily (Transportation for America, 2013). (g) 

HBO channel’s late-night talk and news satire television program hosted by comedian 

John Oliver on infrastructure. 

(a) (b) 

(c) 

(d) 

(e) (f) 

(g) 
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A key element to effectively managing existing stocks is the reliable estimation of the 

deterioration rate and the lifetime of bridges, which are essential aspects in determining 

optimal maintenance and/or rehabilitation schedules. However, the structural performance 

of bridges in time is governed by high uncertainties, which need to be quantitatively treated, 

in order to be able to make rational decisions regarding maintenance and rehabilitation. 

An important step toward the effective handling of such uncertainties is the gathering 

and exploitation of respective data. Typically, the data collected refer to current bridge 

conditions and are used in conjunction with Bridge Management Systems (BMS) to decide 

on the necessity and degree of priority of any potential intervention and to allocate 

corresponding funds. Frequent inspections ensure that the BMS is up-to-date regarding the 

structural condition of the bridge stock. However, in order to estimate future needs and 

optimally allocate available budgets, models to predict the future stock condition are 

essential. 

Various deterioration models exist, varying from linear regression to much more 

involved Markov-chain models. The basic purpose of all models is to link the recorded 

condition of the infrastructure to influential measurable factors. Existing methods utilize 

bridge condition records, including inspection results, for a number of years. Unfortunately, 

this leaves subjectivity of the inspectors and revisions in inspection standards to influence 

the prediction outcomes. Furthermore, most available models are not sufficiently validated 

to provide reliable bridge service life predictions and changes in evaluating the ‘as is’ 

condition of a bridge can render past evaluations obsolete. 

1.2 Thesis objectives 

The present thesis utilizes existing bridge data from the US to study macroscopically 

the structural deterioration of bridge materials in different environments and estimate the 

time-to-rehabilitation. The US database was chosen in this study due to its plurality and 

consistency, as well as the lack of available, organized, local or other bridge data elsewhere. 

In general, countries in Europe do not allow access to their relevant data, while there are no 

such data maintained in Cyprus (although there are currently efforts to initialize a Cypriot 

bridge inventory). Additionally, the variety of factors affecting deterioration together with 

the uniformity of structural design and inspection standards within the US territory provides 

the advantage of generalizing the results and conclusions regarding the studied deterioration. 

Even if other inventories were available e.g. across Europe, such generalization would not 

be possible due to the variety of the countries’ standards. However, similar exposure factors 
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to the ones in a specific region can be found in the US, so the US experience, as incorporated 

in its bridge inventory data, can be transferred elsewhere. 

Βridge condition data were used in this regard to evaluate bridge deterioration rates, 

while other data concerning types of construction, environmental exposure etc. were also 

employed to capture factors responsible for alarming deterioration. This work’s objectives 

were set and tackled based on the knowledge acquired via a data-driven approach. The 

chapters are also organized in a similar way; starting from the description of the database to 

the development of a novel method for time-to-rehabilitation predictions, to end with a 

demonstration of applying it to a lifecycle example. Furthermore, as different topics are 

investigated, the literature review for each topic is provided within each chapter’s 

introduction. 

The Thesis objectives are:  

• identify factors, which affect bridge deterioration; 

• utilize those factors to study the aging process for various materials and 

environmental exposures; 

• develop a method that can reliably predict deterioration rates for bridges made 

of various materials and are exposed to various environments; 

• show how method predictions can be utilized by other researchers and 

practitioners. 

The approaches used and developed in this work can be adjusted to be applied also to 

infrastructure facilities other than bridges, which are under deterioration of any form, 

provided that condition data are available. Furthermore, this study actually demonstrates the 

benefits gained for a nation’s problem by allowing free access to its databases that are 

relevant to the problem. 

 

1.3 Thesis outline 

In Chapter 2, a literature review of the various methodologies followed to model 

structural deterioration is presented and the research needs addressed in the thesis are 

identified. 

In Chapter 3, information is provided for the National Bridge Inventory (NBI), its 

history, legislative procedures, inspections and standards, oversight of the process and its 

reliability. 

In Chapter 4, the NBI of the year 2016 is read, filtered and processed to track errors. 

Evaluations of structural condition reveal the deterioration of different structural bridge 
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parts. To describe various environmental exposures, data from United States Geological 

Survey (USGS) and the National Oceanic Atmospheric Administration (NOAA) are 

employed. To estimate local environmental exposures for each bridge, spatial interpolation 

methods are utilized. The combined database is then analyzed using data analysis 

procedures, to determine which variables affect the structural condition of a bridge. 

In Chapter 5, the coastline effect on bridge structural parts is studied for the 

conterminous US coast. To perform this task, factors affecting structural condition found in 

Chapter 3 are utilized, along with bridge distances from the coast, as well as additional 

factors from literature. The US coastline is divided based on these factors to delimit the 

critical coastline distance affecting bridges. 

In Chapter 6, the information of Chapters 3 and 4 are used to perform meaningful 

segmentations of the stock of bridges, to determine deterioration with age under different 

environmental exposures. Cumulative condition probability is then introduced to reveal the 

probability of a bridge, of a particular age, to be in a deteriorated condition. Structural 

deterioration and aging are studied using bivariate plots for various bridge parts, 

environmental exposures and materials. The results allow for comparisons among various 

environments and construction materials. 

In Chapter 7, a novel method to probabilistically estimate the time-to-rehabilitation 

of a bridge is presented. The method uses cumulative condition probabilities taken from 

segmented samples of chapter 5 to perform its predictions. Established rules in materials 

accelerated testing are adopted to predict the time-to-rehabilitation, due to similar tendencies 

observed between condition probabilities and factors recorded in such tests. Thus, the so-

called Shifting Scaling Data Regression (SSDR) method was developed, in which recorded 

probabilities are shifted (copied) and then time-scaled, to predict future stock conditions and 

hence time to bridge rehabilitations. The method is compared to other methodologies and 

validated using appropriate bridge samples. 

In Chapter 8, the new method is applied on a hypothetical concrete bridge, to 

demonstrate the method’s utilization for bridge life-cycle costing reduction. Various 

rehabilitation schedules are comparatively assessed with respect to the expected total 

rehabilitation cost, as well as the expected cost due to the possible need for bridge 

replacement, to conclude on optimal bridge interventions in terms of cost. 

Finally, in Chapter 9, an extended summary is presented along with the major 

conclusions of this study. In the same chapter, recommendations for future research are also 

included. 
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2 Literature review - identification of research needs 

In this chapter the uncertainties that govern bridge deterioration are presented along 

with the inherent complexity of the overall phenomenon that limits the applicability of 

mechanistic models. The state-of-the-art deterioration models utilizing inspections are 

reviewed followed by their restrictions. Corresponding research needs are identified, which 

justify the contributions made in this thesis. 

 

2.1 Introduction 

During the past century a huge number of infrastructure facilities was constructed to 

meet societal needs. Despite the incorporation of new materials and the evolution of 

engineering practices in design and construction, structural deterioration threatens the 

functionality of bridges and the safety of users. The huge number of bridges constructed has 

formed stocks, which are aging and deteriorating at various rates due to environmental, 

accidental and man-made factors (Frangopol, et al., 2017). 

Structural deterioration, though, is governed by high uncertainties, as it is affected by 

uncertainties and risks linked to various phases of a structure’s life cycle: design, 

construction, exposure to threats and usage (Adric & Lu, 2016). Bridge structures are 

composite, incorporating different materials. Among them, the most widely applied are 

reinforced concrete, prestressed concrete and steel. As these materials can be used for the 

construction of different structural parts, they can be exposed to different loads and different 

environments. Mechanisms that decrease the load capacity of a structure are fatigue and 

corrosion (Melchers & Beck, 2018). Wet-dry cycles, freeze-thaw cycles, the splash zone, 

high temperatures and humidity may alter the corrosion rates of steel, especially in presence 

of aggressive agents, such as chlorides (Neville, 1995). Additional effects, such as fatigue 

creep and construction errors, can increase the modelling uncertainties (Melchers & Beck, 

2018). 

In the following sections, the common approaches of modeling and predicting 

deterioration are reviewed. First, mechanistic deterioration models that are used in structural 

reliability methods are presented. Then, a general description of inspections performed to 

evaluate bridges is given, followed by the statistical deterioration methods that utilize them. 

Furthermore, issues of the reviewed statistical models are discussed and specific research 

gaps are identified. 
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2.2 Mechanistic models 

To model corrosion, the reduction of material volume due to rust formation is 

described through a time function, which depends on environmental conditions and steel 

type. Similar procedures have been followed to assess the durability of paint systems under 

different environmental exposures (Kallias, et al., 2017). Contrary to structural steel 

corrosion, where rust formation can be noticed and treated at early stages, corrosion of 

reinforcement or tendon steel are linked to cover cracking and cross-section loss, which can 

even lead to failure. Chlorides from aggressive environments are known to affect 

reinforcement and tendon corrosion (Neville, 1995; Balafas & Burgoyne, 2010). Thus, 

research has been focused on the modelling of chloride ingress (Tuuti, 1982; Neville, 1995; 

Stewart & Rosowsky, 1998; Balafas & Burgoyne, 2010; Bertolini, et al., 2013; Liu & 

Weyers,1998) and the definition of a threshold signifying corrosion initiation before cover 

cracking appears. Unfortunately, the predictive capabilities of corrosion initiation models 

are limited due to their sensitivity to the chloride threshold and its large variability (Angst, 

2018). More information regarding corrosion can be found in Chapter 6. 

In addition to corrosion, other deterioration factors may coexist. Efforts to model 

fatigue have been reported (Curtis & Irvine, 2015), however the coupled effect of corrosion 

and fatigue has not been dealt with. Other factors such as creep, temperature, as well as 

atmospheric pollution and environment change (Kumar & Imam, 2013), are also significant 

and can make the task of modelling even more complicated. 

Mechanistic models are widely used for design purposes, but their applicability in 

deterioration modelling is linked with certain disadvantages. Specifically, they can be 

applied only to specific simple scenarios, the available inspection data cannot yet be utilized 

to validate their predictions, while experimental and field data are generally insufficient for 

producing the required model inputs (Nickless & Atadero, 2018). 

 

2.3 Inspections of bridge condition 

To keep infrastructure facilities in functioning and at the same time safe state, 

inspections are performed to evaluate their structural condition. Inspections are carried out 

by specialized personnel following specific standards, which provide rules and processes, to 

assist in performing their task safely and consistently. During an inspection, condition 

ratings are attributed to structural elements or macro-elements (i.e. deck, superstructure, 

substructure, etc.) based on pre-specified rating scales, used to report the extent of structural 

deterioration observed. The inspections are organized in records for each bridge, where, 
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besides condition ratings, additional information such as age, characteristics of the bridge, 

average daily traffic, etc., is provided. 

Inspection results are utilized to estimate infrastructure needs and allocate funds for 

maintenance, rehabilitation or reconstruction purposes. The use of inspection standards 

assists in achieving uniformity among inspection reports and aims at reducing the 

subjectivity of inspectors, as most inspections performed are visual. Thus, the changes in 

inspection standards over years are unavoidable. For the case of the US, changes in 

inspection standards are presented in Chapter 3. 

 

2.4 Statistical models 

Statistical models account for the different factors affecting structural deterioration by 

utilizing inspection records of built infrastructure. In this way, although the distinguished 

effect of each deterioration factor is not clear, the joint contribution of all coexisting factors 

and uncertainties is actually given in a quantified form in the structural evaluation results. 

Statistical models can be categorized to deterministic, stochastic process and artificial 

intelligence ones based on the way predictions are performed. For modelling structural 

deterioration the most apparent influencing factor to be utilized is age. 

 

2.4.1 Deterministic models 

Linear regression models have been initially used to forecast future structural 

condition of bridges in the States of New York (Fitzpatrick et. al, 1981) and Wisconsin 

(Hyman & Hughes, 1983). The models utilized previous inspection years and the only factor 

considered was bridge age. Regression analysis with a third degree polynomial function was 

performed for the bridges of the State of Illinois to derive deterioration models of various 

bridge parts (Bolukbasi et al. 2004). For the State of Indiana, different years of inspections 

from the NBI were utilized along with factors of traffic volume, highway system, bridge 

type and age, which were included in the analysis (Jiang & Sinha, 1988). Among these 

factors, only highway system, bridge type and age were found statistically significant (Jiang 

& Sinha, 1988). The analysis resulted in polynomial functions of age for the condition of 

substructures supporting concrete and steel superstructures of non-interstate bridges.  

Deterministic models have been found inferior to stochastic models for predicting 

future condition ratings (Jiang & Sinha, 1988). This can be attributed to the fact that 

deterioration is a stochastic process and regression analysis provides values corresponding 

to the mean condition in a deterministic way (Jiang & Sinha, 1988). 
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2.4.2 Stochastic process models 

Markov Chains comprise the most common stochastic process utilized for modelling 

deterioration of infrastructure facilities (Madanat et al. 1997;Jiang & Sinha, 1989; Zambon, 

et al., 2017). Markov chain is a case of the Markov process that has a series of discrete 

random states. For the case of bridges, condition ratings represent the different states of 

deterioration and, for each state, the probabilities of transitioning from one state to another 

are estimated. These probabilities are organized in a matrix comprising the transition 

probability matrix. The present state of bridge conditions is represented by a vector and, by 

multiplying it by the transition probability matrix, the future condition can be predicted. 

According to Mauch and Madannat (2001), Markov chain discrete-time models can be 

furtherly categorised to state-based and time-based. State-based models predict probability 

of the condition state that a facility will be at a given time, whereas time-based models 

predict the probability of the time taken by the infrastructure facility to change condition 

state (Mauch & Madannat, 2001). Further, categorization can be made based on the inclusion 

of time dependency: in homogenous Markov chains, transition probabilities are time-

independent (stationary); in inhomogeneous Markov chains, the transition probabilities are 

functions of time (Zambon, et al., 2017). The most frequently used type is the homogenous 

Markov chain models, in which research evolution has been mainly in the estimation of the 

transition probabilities, in order to limit expert judgment by using increased inspection data 

(Thompson & Johnson, 2005). 

In a homogenous state-based model, the transition probabilities of one state to another 

are simply estimated by calculating the frequency of transitions between two inspection 

records (Zambon, et al., 2017). The time step between inspection records used varies 

depending on the condition ratings utilized and the interval inspections are performed. Such 

models do not incorporate the effects of different factors on transition probabilities. Other 

homogenous Markov chains use regression approaches on inspection data to model the effect 

of various factors (e.g. age, average daily traffic, etc.) and the expected value output by the 

model is used to calibrate the transition matrices incorporating the factors’ effects (Jiang & 

Sinha, 1988). Linear regression has been utilized incorporating the effect of average daily 

traffic and age by (Jiang & Sinha, 1988). Poisson and negative binomial regression (Madanat 

& Ibahim, 1995) and probit regression (Madanat et al., 1997) were used on the Indiana NBI 

data set to model effects of age, average daily traffic, climatic regions and materials of bridge 

decks to condition ratings. 
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Disadvantages of utilizing the Markov chain approaches regard their memoryless 

assumption, meaning that a bridge’s future condition is dependent only on the current 

condition. Furthermore, no actual validation of their long-term predictions is available, only 

a kind of partial validation. 

 

2.4.3 Artificial Intelligence models 

Artificial Intelligence models are methodologies, such as Artificial Neural Networks 

(ANN), Case Base Reasoning (CBR) and Bayesian Belief Networks (BBN), which can learn 

from input data and utilize the learnings in making predictions. 

 

2.4.3.1 Artificial Neural Networks 

ANN are computational models with a ‘neural’ term used to represent the brain-

inspired properties they tend to mimic. The neurons are simple units working in parallel 

forming different layers with no central control. Information is placed in the neurons and 

connections are formed during the learning process, where weights are calculated and 

attributed to each connection, in order to produce the end result. (Russel, 1995). Various 

types of Neural Networks have been utilized to predict structural deterioration utilizing past 

inspection records. 

Five individual ANN were utilized by Li & Burgueno (2010) to develop bridge 

damage models based on Michigan NBI data. Specifically, to predict abutment rating, the 

variables of annual temperature difference, average daily truck traffic, approach type and 

structural type were chosen (Li & Burgueno, 2010). Inspection and maintenance records of 

Wisconsin’s bridges were analyzed to model the deterioration of bridge decks (Huang, 

2010). The Backward Prediction Model (BPM) was developed by Lee, et al. (2008) based 

on ANN for generating condition ratings when limited inspection records are available. The 

model utilizes the limited bridge records along with additional datasets such as traffic 

volume, population and climate to predict structural condition. The methodology was 

extended by incorporating Elman Neural Networks, time-based and state-based models, for 

the long term prediction of substructure condition (Bu, et al., 2015). Validation of the short-

term predictions indicate that the method has similar performane with that of Markov chains, 

but differ a lot in their long term prediction results (Bu, et al., 2015). 

Dissadvantages of ANN regard the deterministic nature of their results, thus they share 

the same dissadvantage with regression models (Morcous, et al., 2002). Another limitation 

regards the large number of data needed for reliable training. The most important issue, 
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though, regards the complicated procedures taking place attributing weights that best fit the 

training, rendering the output weights questionable, as it is difficult to understand the way 

they are produced. 

2.4.3.2 Case Base Reasoning 

Computational methods based on CBR are inspired by human reasoning, whose 

function is to solve new problems based on past solutions to similar problems. The 

methodology selects specific previous situation data and reuses results and experience to fit 

a new solution (Avramenko, et al., 2002). Thus, when a new problem is introduced, a cyclic 

process is followed, where the problem is matched with the most similar ones and the stored 

solutions are retrieved. Then, CBR proposes a candidate solution, if it doesn’t meet the 

necessary requirements it adapts it by attributing a new solution, forming a new solution case 

(Avramenko, et al., 2002). 

CBR has been utilized for modelling of bridge elements deterioration utilizing the data 

from Ministry of Transportation in Quebec (Morcous, et al., 2002). Parameters used in the 

model concerned materials, geometry, structure types, etc. and the results were compared to 

a multinomial regression developed for the same data, showing that CBR performs better 

(Morcous, et al., 2002). 

A major disadvantage of CBR are that it may not be able to function when limited data 

exist. Attributing weights requires engineering judgement, thus subjective and domain 

specific knowledge for case adaptation, which makes it a task that is not simple (Morcous, 

et al., 2002). 

 

2.4.3.3 Bayesian Belief Networks 

BBN constitute probabilistic graphical models utilized to represent variables and the 

dependencies among them. The graphs consist of nodes and arcs representing variables and 

their relationships, respectively. The corresponding variable distribution is assigned to each 

node, while conditional probabilities are attributed to each arc. BBN are utilized when 

uncertain information is available for variables or relationships among them. This 

information is used as a prior to update and form the posterior distribution based on Bayes 

theorem. When variable distributions and relationships are time-variant, as is the case in 

structural deterioration, then the term ‘dynamic’ is introduced to signify this change. Rafiq, 

et al. (2015) developed a BBN model to represent deterioration of UK’s railway masonry 

bridges. The model was combined with Markov chains to perform predictions, while, when 

new inspections would be available, the transition probabilities would be updated. 
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2.5 Issues of reviewed methods 

The methods reviewed in this chapter share certain common disadvantages, which are 

presented in this section. These regard the reliability of the data utilized and the validation 

of the models’ prediction results, as well as the factors taken to consideration and the 

interpretation of their effect. 

 

2.5.1 Dependency on the reliability of older inspections 

The statistical deterioration methodologies share a common disadvantage, which is 

linked to their dependency on multiple past inspections. In all reviewed work, a basic step 

before proceeding to probability calculations is the filtering of the inspection data for 

different years for each bridge. In many cases data have been excluded due to errors in 

coding or due to inappropriate evaluations for deterioration modelling. These errors can be 

attributed to human factor, errors performed during inspection procedure or minor 

rehabilitation work that has been performed. Furthermore, a 2001 survey conducted to assess 

the reliability of visual inspections of the NBI revealed that 95% of the examined sample 

was found to vary plus or minus 2 condition ratings (based on the 10-scale evaluation), 68% 

of which were found to vary plus or minus 1 condition rating (Phares et.al, 2004). Such 

observations render information of older inspections dubious and, therefore, filtering of 

untrusted inspections may result in selection biases, which are not traceable afterwards. 

 

2.5.2 Lack of validation of long-term predictions 

The way inspection data are utilized, validation of the different methodologies is only 

limited to verifying that the model fits the data. This is due to the way the different inventory 

years are utilized: either change in condition (state-based models) or duration in certain 

condition (time-based models) is attained by tracking individual bridges in time. As there 

are limited years of inspections that can be utilized, only few condition changes or condition 

durations can be tracked, which are utilized based on the bridge age to model deterioration 

of a single bridge. The validation of the attained model is performed by comparison of its 

output regarding condition or duration with a portion of the initial number of brides, which 

were intentionally not taken to consideration by the model (test sample). 

Validating long-term predictions would require utilizing bridges up to a specific age 

limit, deriving a model and utilizing older bridges to validate the long-term results. Such 
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validation is usually not performed, as the Markov models normally require several bridges 

of all ages at each condition. Leaving out older bridges would reduce the number of bridges 

in bad conditions thus, more optimistic models would be derived. Therefore, only short-term 

validation is performed by utilizing models that have used all relevant data to predict the 

condition of a specific bridge and compare predictions with new inspection results. 

 

2.5.3 Selection of deterioration factors 

All reviewed statistical models make an initial selection of limited candidate factors 

linked to deterioration based on design principles. Factors explicitly taken to consideration 

during design may have a different statistical effect on the condition of the built structure 

compared to other factors arising during the structure’s lifetime, as the structure was 

specifically designed to withstand the former factors. Although hypothesis testing with 

statistical significance is a useful tool, it can be misleading if the number of candidate 

variables is limited. Thus, such approaches may lead to inadequate models due to bias in 

variable selection. As the effect of uncertainties is incorporated in structural condition 

ratings, the selection among candidate factors from more complete lists is necessary. 

Furthermore, filtering of candidate factors should be performed by utilizing data analysis 

processes, such as the ones presented in the study of (Chang, et al., 2017), where initially a 

covariance matrix filters 30 NBI and 3 added candidate factors to eliminate similar effects 

and penalised linear regression is utilized to select among the remaining ones. 

 

2.5.4 Lack of validation between models and literature 

Although factors affecting deterioration are utilized to statistically model it and, in 

many cases, comparisons are made between the derived models, no further effort is made to 

link model results to actual deterioration mechanisms involved, such as corrosion or fatigue. 

Thus, models are statistically validated to reliably represent data, but the models’ output 

cannot be generalized, as the deterioration mechanisms lack validation based on existing 

knowledge and literature. As mentioned above, there is also a necessity for calibrating 

existing mechanistic models or deriving new mechanistic models to describe the process of 

deterioration better. Statistical models can be utilized to assist in this task, as they can reveal 

both the qualitative and quantitative effects of the factors involved. 

Such effort can lead to more suitable statistical models by incorporating additional 

factors and at the same time point out areas where future experimental research can be 
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conducted. The derived results can be utilized to enrich the knowledge of the mechanisms 

taking place and develop new or enhance existing mechanistic models. 

2.6 Research needs 

Based on the review of previous approaches presented in this chapter and their identified 

issues and disadvantages, the following research needs can be stated: 

• Factors of bridge deterioration should be formally identified by studying a much broader 

selection of candidate factors. 

• Validation of the quantitative and qualitative effects of the deterioration factors should 

be performed and linked to the relevant available literature. 

• A method is required that can perform long-term predictions utilizing only limited data 

on past bridge conditions, preferably using just one year of inspection records. A way to 

validate such predictions is desirable. 

This thesis attempts to contribute toward meeting these research needs by utilizing 

inspection records for just one year. It should be mentioned that, although the NBI database 

of the US containing such records is used, the methodologies applied and developed herein 

can be applied also to other inventories/countries and certain research results could be 

generalized. 

FILI
PPOS ALO

GDIANAKIS



15 

 

3 The National Bridge Inventory  

Before ‘delving’ into an analysis of the data of the National Bridge Inventory, details 

about the history of the database, the use of its information, as well as its reliability should 

be presented. In this chapter, such information has been gathered to reveal the reliability, 

but also the shortcomings of this large database. 

3.1 What is the National Bridge Inventory? 

The US Federal Highway Administration (FHWA) is responsible, by law, for the 

maintenance of an organized annual inventory - the National Bridge Inventory (NBI) - that 

includes more than 600,000 highway infrastructures (mostly bridges, culverts and a few 

tunnels) with spans longer than 6.1m located in the US. It is utilized to promote public safety 

by first evaluating the infrastructure needs and then allocating the appropriate funds. To 

accomplish this, each State is obliged to perform a variety of periodical inspections 

according to the National Bridge Inspection Standards (NBIS), to attain certain information 

for the structural and functional condition of each bridge. The collected information is then 

coded and sent to the FHWA, where the budgets for each State are agreed. 

 

3.2 Brief historical note 

The importance of road safety and the need for an organization to manage arising 

issues was well understood since 1893, when the Office of Road Inquiry was established. 

The inclusion of bridges in Federal Aid programs dates back to 1916, when the name of the 

organization was altered to Bureau of Public Roads. After many predecessors, the FHWA 

was created within the Department of Transportation as an agency in 1966 and began its 

action in 1967 (FHWA, 2012). In the same year, the collapse of Silver Bridge in Ohio River 

caused 46 deaths, despite having been inspected (Fig. 3.1). Long forensic investigations 

revealed that the bridge was not thoroughly examined to identify the flaw of the critical 

member (Bullard, et al., 2012; Lichtenstein, 1994). This raised the need for the 

implementation of certain inspection standards and the first National Bridge Inspection 

program was initiated in 1968 (FHWA & DOT, 2014). In 1971, the first NBIS were created 

by the FHWA and the American Association of State Highway and Transportation Officials 

(AASHTO). The following year, the first NBI was composed from the inspections 

performed nationwide in accordance with the NBIS. From 1972 up to present, yearly data 

have been collected for more than 600,000 bridges located in the US, constituting NBI the 
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richest bridge inventory at least nationwide (50 States, District of Columbia and Puerto 

Rico). 

 

Figure 3.1: The silver bridge collapse at Point Pleasant and the structural part responsible for the failure. 

 

3.3 Oversight responsibilities and legislation 

The inspections and Federal aid programs have different levels of oversight. The 

principal statutes establishing the Federal-Aid Highway Program are found in Title 23 of the 

United States Code (23 U.S.C.), while regulatory requirements are generally found in Title 

23, Highways, of the Code of Federal Regulations (CFR), section 650. The Federal-Aid 

funds are authorized by the Congress for Highway bridges. Each State, in accordance with 

106.23.USC, defines the responsibilities of the FHWA and level of cooperation for the 

administration of the program. In order to receive Federal aid funds, each State must perform 

the necessary bridge inspections according to the NBIS for all owners except for the Federal. 

Their compliance is assessed by FHWA in accordance with 23 CFR 650 C, along with the 

composition of the NBI, which is published each year. Biannual reports regarding the 

condition of bridges for the Congress are also prepared by FHWA, as well as reports 

published by FHWA in the Federal Register used to improve the NBIS by permanent 

administrative laws. The funds apportioned to each State are available for a period of three 

years to be used for maintaining, rehabilitating or rebuilding the bridges. The overall 

procedure is oversighted by the Government Accountability Office (GAO), which conducts 

periodical investigations to monitor the procedures, each entity’s level of compliance, as 

well as the overall efficiency of the whole program. The GAO reports problems to the 

responsible agencies and recommends changes to be performed and additional investigations 

to be carried out to track the progress. 

FILI
PPOS ALO

GDIANAKIS



17 

 

3.4 Inspection Procedure 

The NBI includes structures made of various materials, lengths and owners that 

comply with the NBIS. Each State is responsible to carry out inspections, to update the 

structural and functional condition of the bridges under its jurisdiction. The most common 

inspections are the ‘routine’ inspections. Those are usually visual inspections performed at 

least once every two years, during which in-depth inspections may be scheduled or 

recommended by the inspectors. All specifications to qualify the inspection teams and 

procedures are included in the NBIS. The information gathered for each bridge is in specific 

coded form displayed in the FHWA coding guide (FHWA, 1995). This guide also includes 

instructions for the required information, while allowed methods of determining, measuring 

or evaluating different aspects of a bridge can be found along with their appropriate coding. 

All coded reports are sent to the FHWA, where checks for errors and inconsistencies are 

performed. 

3.4.1 Condition ratings 

Different types of inspections exist among the structures included in the NBI, 

depending on the structure type (bridge, culvert or tunnel). Inspectors evaluate each bridge 

following a scale ranging from failed (0) to perfect (9), which must be representative of the 

whole structural component evaluated (Table 3.1). Each condition rating represents specific 

types and extents of failures that can be detected during an inspection. The coding guide 

provides general indications, but a more detailed version for each material type is used to 

attribute a rating. 

Table 3.1: General condition ratings for evaluation of the main bridge components (FHWA, 1995). 

RATING CONDITION Explanation 

9 EXCELLENT  

8 VERY GOOD No problems noted. 

7 GOOD Some minor problems. 

6 SATISFACTORY Structural elements show some minor deterioration. 

5 FAIR All primary structural elements are sound but may have minor section loss, 

cracking, spalling or scour. 

4 POOR Advanced section loss, deterioration, spalling or scour. 

3 SERIOUS Loss of section, deterioration, spalling or scour have seriously affected 

primary structural components. Local failures are possible. Fatigue cracks in 

steel or shear cracks in concrete may be present. 

2 CRITICAL Advanced deterioration of primary structural elements. Fatigue cracks in steel 

or shear cracks in concrete may be present or scour may have removed 

substructure support. Unless closely monitored it may be necessary to close 

the bridge until corrective action is taken. 

1 "IMMINENT" 

FAILURE 
major deterioration or section loss present in critical structural components or 

obvious vertical or horizontal movement affecting structure stability. Bridge 

is closed to traffic but corrective action may put back in light service. 

0 FAILED out of service - beyond corrective action. 
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3.4.2 Evaluated bridge components 

For each bridge, three condition ratings are recorded for its macro-components –deck, 

superstructure and substructure– each of which is evaluated and given a rating corresponding 

to the overall condition of the respective elements. Additional inspections of the foundations 

are performed to evaluate scour for bridges located over waterways. The deck is the 

structural part that carries traffic directly on it, superstructure supports the deck and connects 

the substructure elements together and the substructure is responsible for supporting the 

superstructure and transfers the applied loads to the bridge foundation. The FHWA uses the 

mentioned ratings along with other measurements to attribute a sufficiency rating on a 100 

scale used for prioritization of rehabilitation/reconstruction and, therefore, budget allocation. 

 

3.4.3 Inspection types and frequency 

Five different types of inspections are performed according to AASHTO notation 

(Inventory, Routine, Damage, In-Depth and Interim) that vary in depth and frequency. 

When a newly built bridge is delivered to traffic, an ‘Inventory’ inspection needs to be 

performed within 90 days for State or 180 days for local jurisdiction. Its main purpose is to 

fully document the structure’s details for the NBI and to determine analytically the loading 

capacity of each bridge. Apart from the data required from FHWA and NBIS during this 

inspection along with prior review of the plans, the baseline structural conditions are 

determined and the critical members of each structure are identified. A similar inspection is 

also performed when rehabilitation action has been taken and a bridge has undergone 

changes in structural or/and geometrical configuration. For the last case, additional 

inspections should be included. 

The ‘Routine’ Inspection is regularly scheduled at least once in 24 months. 

Observations and necessary measurements are performed to determine the physical and 

functional condition of the bridge, to identify the progression or development of structural 

problems compared to prior inspections. These inspections are performed from deck, ground 

or water level or by using adequate means to access the evaluated areas of the structure. The 

inspection results are accompanied by the appropriate site photographs and reports regarding 

maintenance/repair recommendations or by a requirement for a further, more in-depth 

inspection. 

Another type of inspection is the ‘Damage’ inspection, whose main purpose is to assess 

structural damage resulting from environmental factors or human actions. The duration of 

this inspection may vary depending on the extent of the damage that has to be evaluated and 
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it may be followed by more thorough inspections. These are also the so-called ‘in-Depth’ 

inspections, which are time consuming and demand specialized personnel (e.g. divers for 

under water inspections) to be performed, whereby deficiencies of structural members that 

cannot be seen by other inspections are evaluated. Nondestructive tests and other techniques 

are used, in order to fully evaluate the bridge. The last type of inspections are the ‘Interim’ 

inspections performed to monitor documented deficiencies. 

3.5 Public disclosure and form of the NBI 

Each year an NBI data file is uploaded to the FHWA website containing all 

information gathered by the States. The information collated regards 116 different 

parameters named as items that are strictly coded according to the guide (FHWA, 1995). 

The files are downloaded in .txt format; every line represents a listed structure and each 

character/number of the coded file has a certain length (columns) based on the item 

described. The total information could be categorized into eight groups  (Radovic, et al., 

2016): general description, functional or operational capacity, design, geometric 

information, waterway and approach data, work recommendations and project costs and 

bridge loading and structural ratings. 

The information of the NBI is publicly accessible. Although this database has been in 

electronic form since 1972, some items have been periodically disclosed to the public (Lwin, 

2007). An example for public disclosure policy was due to the events of 11 September 2001, 

when the FHWA removed the whole NBI file from its website. After a specific study 

regarding government Agency data, FHWA decided that all information would be available 

to interested users, as the information provided could not be used for harm (FHWA, 2012).  

3.6 Reliability of the NBI 

Since 1972, many inspection records have been collected and several revisions have 

been performed due to the mechanisms mentioned above. Over the years both the GAO and 

FHWA revealed flaws that created errors or undermined the level of data accuracy. Their 

importance lies on the fact that Federal Aid funds are apportioned based on the total deficient 

deck area of each State. Thus, the FHWA’s policy is to minimize errors that could affect the 

overall program and jeopardize public safety. 

Since 1988, the GAO has found important inconsistencies regarding items decisive for 

the apportionment of funds. There have been cases, such as in the State of Georgia in 1986, 

where the substructures of wooden structures were arbitrarily given lower ratings (GAO, 

1988). This could be linked to the specific policy of apportioning funds, which has been 

criticized as a counter-incentive for reliable evaluation (House of Representatives, 2010). 
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Hence, FHWA was able to detect such inconsistencies, but was not able to prevent 

inconsistencies of similar nature from happening in the future (GAO, 1988). There were also 

errors of mathematical nature noticed by the same report that led to under-estimation of the 

actual needs of California (GAO, 1988). 

Another source of important errors was the quality of the performed inspections. The 

most common inspections are visual (routine). Despite some State effort to perform such 

investigation on a local scale, the first national scale investigation was firstly conducted by 

FHWA (Moore, et al., 2001). The specific investigation was performed by the Non-

Destructive Validation Center (NDEVC) of FHWA, which tested the reliability of visual 

inspections. Specifically, 10 field inspections were used to evaluate a sample of 49 inspectors 

from 25 States; the investigation included both NBI ratings and element level ratings 

(Phares, et al., 2004). The results revealed significant variations for both types of inspections; 

for NBI ratings specifically, 95% varied within two rating points, while 68% varied within 

one (Phares, et al., 2004). The reasons for these deviations were attributed to the general 

form of the condition ratings from the coding guide, as well as the inspection teams, their 

training and the procedures followed. 

The ability of FHWA to implement and upgrade its level of effectiveness can be 

measured by the overall number of bridges in poor condition, which is shown to have 

decreased from 2002 to 2013. This implies that the bridges should be safe for the public to 

travel with preventive maintenance or corrective work performed based on the actual 

condition. From an investigation of the DOT’s database of New York’s bridges, the U.S. 

projected average bridge failure rate is between 87 and 222 bridges annually, with an 

expected value of 128.55 (Wesley , et al., 2014). Most of these bridge failures are linked to 

hydraulic failures and accidental factors, but few (5%) deal with deterioration and fatigue 

(Wesley , et al., 2014), which can be either avoided or safely planned to be repaired. In 2007 

the collapse of the I-35 steel bridge in Minneapolis triggered a series of investigations from 

GAO and FHWA, but also the implementation of new policies. Specifically, FHWA 

investigation revealed extensive errors for more than one third of bridges of the same type 

as I-35 (FHWA, 2009). In the same report, it is pointed out that, despite tracking these errors, 

there is no time limit for the States to correct them. 

In 2012, the law ‘Moving Ahead to the 21st Century (MAP-21) Act’ was signed 

(Federal register,2014). Its importance lies to the fact that the States would be evaluated 

annually from FHWA for their compliance, while financial penalties for the non-compliant 

States would be imposed. Specifically, FHWA will use 23 inspection criteria, called Metrics, 

to perform the annual compliance review. These metrics directly affect the NBI data 
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reliability, as a random sample of bridges is reevaluated from inspection personnel and the 

new evaluations are compared to those published in NBI (FHWA, 2013). Additionally, there 

is a time frame of 12 months for the non-compliant States, within which they need to provide 

a plan of corrective actions, in order for the financial penalties for corrections not to be 

imposed. Furthermore, since 2014, apart from the three main structural evaluation groups 

(deck, superstructure and substructure), a complementary element-level inspection and 

evaluation is also required (FHWA, 2012). The whole procedure led to a 97% reduction in 

errors from 2008 to 2013 (Fig. 3.2). 

 

Figure 3.2: Errors found from the edit-update program of FHWA for different NBI records. 

 

3.7 Exploitation of NBI for research (literature review) 

Besides the initial purpose of the NBI to monitor the overall program, the inventory 

has been used for research purposes around the world. Reasons for selecting the NBI is the 

free online availability of data, its consistency and the reliability stemming from the fact that 

a monitored continuous process of improving the quality of both inspections and data is 

performed. The ongoing research using the inventory has led to the advancement of 

sophisticated Bridge Management Systems (Enright & Frangopol, 1998). First, in 1982, the 

inventory was used to present infrastructure budgeting needs for the succeeding years 

(National Research Council, 1984). The NBI of the State of Indiana was used to model the 

deterioration of bridge substructures (Jiang & Sinha, 1989). The different bridge types and 

performance patterns using descriptive statistics and the 1988 NBI record were presented by 

Dunker and Rabbat (1990). Using similar methodology, the same authors also used the 

inventory to present the 40 years of prestressed concrete bridges (Dunker & Rabbat, 1992) 

and to assess highway bridge deficiencies (Dunker & Rabbat, 1995). 

In 1991, new bridge inspection strategies were proposed by Hachem et al. (1991), after 

statistically analyzing the NBI and using various deterioration models. Veshosky et al. in 

1994 utilized the NBI to study superstructure deterioration using regression analysis, 

revealing age as the primary factor and ADT following. Οrdered-probit models (Madanat et 
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al., 1995) and Poisson regression models (Madanat & Ibrahim, 1995) were also applied to 

multiple NBI datasets for the estimation of condition transition probabilities and to evaluate 

bridge deterioration. Additional work in deterioration modeling and transition probabilities 

has been presented by Madanat et al. (1997). Probabilistic and semiparametric hazard 

models were used to incorporate random effects of the earlier probit models for the 

estimation of transition probabilities (Mauch & Madanat, 2001; Mishalani & Madanat, 

2002). The results of studies performed by researchers and DOTs that used the NBI were 

presented by Ramey and Wright (1997), to compare the different deterioration rates between 

States. Inventory data were also used to develop a method that calculates annual risks 

associated to scour failures of foundations, with the purpose to prioritize repair of critical 

bridges (Stein et al., 1999). Chase and Gaspar presented a method that linked the reduction 

of load-carrying capacity to bridge deterioration using regression analysis and Markov 

chains for both NBI and Hungary’s database (Chase & Gaspar, 2000). Regression analysis 

was also performed for the bridges of the State of Illinois to derive deterioration models of 

various bridge parts (Bolukbasi et al., 2004). The NBI Florida records from 1992-2005 were 

utilized to study deterioration patterns using hazard functions (Sobanjo et al., 2010). The 

2007 inventory of North Dakota was also analyzed, using GIS regression analysis and 

Pearson correlation, to identify critical sources of deterioration (Kim & Yoon, 2010). A 

number of distributions were used to model the reliability of Wisconsin’s bridge decks using 

the 2005 inventory (Tabatabai et al., 2011). Artificial Neural Networks were used to develop 

a model that generated historical bridge condition ratings, in order to fill-in inspection 

records (Lee et al., 2008). The same method was used to predict the long term bridge 

performance utilizing NBI records (Bu et al., 2014). Various performance measures were 

also developed using descriptive statistics and the NBI records were analyzed to reveal 

deterioration trends and structural performance (Farhey, 2010; 2012; 2013; 2014; 2015, 

2016). In addition, recent research using the NBI includes prediction of structural deficiency 

ratio of bridges (Adarkwa & Attoh-Okine, 2016), detection of concrete dek condition 

deterioration parameters using two step cluster analysis (Radovic et al., 2016), integration 

of bridge management systems and non-destructive evaluations (Hearn & Shim, 1998). 

Apart from the mentioned studies that are linked to deterioration modelling, the NBI 

has been used for other purposes, such as: the automatic detection of logical inconsistencies 

(Din et al., 2016), adaptive optimization on system level management (Liu & Madanat, 

2014), risk assesment of stream modifications (Jones et al. 2015), estimation of load impacts 

on bridges (Weissman et al., 1993), effect of truck weight regulations on US bridge network 

(Ghosn & Moses, 2000). 
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4 Data analysis 

In this chapter, processes of extracting and gathering sample data and their statistical 

analysis are presented. The data of the NBI, as well as of additional sources, are jointly used 

to simulate each bridge’s environment adequately. A number of statistical methods are 

utilized to quantify and summarize the influence of environmental factors on bridge 

condition. The results rank the factors based on the severity of their effect on the structural 

condition of the evaluated bridge components. 

 

4.1 Introduction 

Today’s society relies on data collected from multiple sources, which are then 

combined and processed to produce information that assists decision making at various 

levels, ranging from everyday life to very specialized cases. All these processes can be 

included in the broad term of ‘Data Analysis’, where various tools, such as data visualization, 

hypothesis testing and other statistical methods, are employed to handle samples and select 

the most appropriate variables that should be used to model reality. 

Infrastructures in general encompass various engineering aspects, which can be treated 

effectively when relevant data are available. In this respect, experimental data are important. 

Hence, materials and their application can be tested (e.g. Wan, et al., 2006, Dimitriou, et al., 

2018) and then mechanistic models can be derived to simulate their properties, which are 

subsequently applied in structural design (Zhou, et al., 2004). In such cases, the 

implementation of data analysis procedures is very rare. On the other hand, data analysis is 

often used in the area of project costing (Dimitriou, et al., 2017) and has been utilized for 

managing infrastructure levels of service (Dimitriou & Stathopoulos, 2016; Pereira, et al., 

2018). An additional aspect, which affects users and decision makers regards managing 

infrastructure needs using information gathered by monitoring/inspecting structures. 

Infrastructures and more specifically bridges are exposed to many factors, which could 

worsen their structural condition. When reliable data are available, a data analysis process 

can confirm or challenge building practices and design processes already applied, but also 

assist in modelling deterioration by identifying factors affecting it. 

The NBI has been used by many researchers to investigate structural deterioration and 

material performance for bridges. In the various statistical methods that have been utilized 

for this task, the explanatory variables are usually selected by expert judgement (Mauch & 

Madanat, 2001; Chang, et al., 2017). Such approaches may derive erroneous models due to 
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the lack of other variables, which may be affecting structural deterioration more. Another 

common practice usually employed is the utilization of bridge data of one individual State 

and inclusion in the assessment of additional explanatory variables, such as weather data and 

other data available from GIS (Kim Yail & Yoon, 2010). In these cases, although 

maintenance policies and acquired data can be considered uniform, the limited variation of 

exposure factors can lead to modelling errors. On the other hand, when utilizing the whole 

US bridge sample, many exposures have to be taken to account and not including them in 

the analysis may also lead to misleading results due to averaging. Furthermore, questions 

arise regarding the effect of typical factors suggested by experts, which have already been 

taken to account during the design process. Thus, a process is needed to select the variables, 

which should be incorporated in modelling structural deterioration. Recently, data analysis 

procedures have been utilized to select among factors affecting deterioration. Relevant 

efforts have been made either by including limiting assumptions for the factors considered 

(Radovic, et al., 2016) or by studying an individual State and considering only NBI factors 

(Chang, et al., 2017). 

In this chapter, NBI data for the conterminous US are utilized to study the factors 

affecting the structural condition of bridges. To achieve this, it is assumed that hazard driven 

maintenance/rehabilitation policies are predominant and that the State effect can be 

neglected. Additional reliable sources were used, such as Climatic data from National 

Oceanic and Atmospheric Administration, (NOAA, 2017) and earthquake hazard data from 

United States Geological Survey (USGS, 2017), and were combined with bridge data using 

spatial interpolation methods. Data analysis procedures (fig. 4.1) were utilized to explore 

and attain an appropriate model for the combined dataset, whose main purpose is to reveal 

the predominant factors affecting structural condition. 

 

Figure 4.1: Data analysis processes utilized in this chapter. 
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4.2 Description of analyzed data 

4.2.1 Selection of NBI information 

The ΝΒΙ files processed are the most recent ones, which were released in 2017 and 

refer to 2015-2016 inspections. The information coded in these files, which are freely 

downloadable in .txt format, is associated with 116 primary items for a total of 614,387 

structures. One text file holds the information for all structures of each of the 52 States; each 

structure is represented by a line in the file of the respective State; the data for each item are 

given through one or more characters/digits within the overall 434 specified positions in 

each line, as described in the coding guide (FHWA, 1995). 

Initially, 68 items were selected, for which data were extracted from the NBI files. 

These data items provide information about bridge identification, location, dimensions, 

usage, materials, structural evaluation, inspection details, rehabilitation actions and various 

costs Appendix (A-I.1.1). The selection of the data items was made to serve the basic purpose 

of studying bridge deterioration, as well as to validate data correctness. The data were 

processed to track inconsistent codings, as well as logical errors. Then, a first filtering of the 

data was performed to reduce the number of structures included based on the specific 

interests of this study. Further reductions were also performed at a later stage for combining 

all data available and facilitating their analysis. 

 

4.2.1.1 Information extraction from NBI files and identification of inconsistencies 

The required information was extracted from the NBI text files using a self-developed 

Matlab code implementing three main processes (Appendix A-I.1.1-A-I.1.3). In the initial 

process, Matlab’s scanf function was utilized to read the data for the 68 selected items 

(Appendix A-I.1.2.1). For the case of character inputs, the read information was immediately 

’translated’ to predetermined numeric values, which are easier to handle. For the case of 

numeric inputs, on the other hand, the read digits were combined and the input precision 

(decimal point) was attributed to produce the actual data value. The second process checked 

the numeric data values with respect to the limitations provided in the guide (FHWA, 1995). 

Out-of-range codings were given certain numeric values to indicate the type of error 

identified (Appendix A-I.1.2.2). The third process gathered all extracted information into a 

single matrix, to facilitate data analysis and the search for logical inconsistencies (Appendix 

A-I.1.2.3). 

The total number of inconsistencies (violations of the guide specifications) detected 

was 12,404. The whole process followed was described in a report and sent to FHWA 
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(Appendix, A-I.1.3). A complementary Excel file was also included to help each State 

authorities locate the type of error made for structures located within their territory (not 

contained in this Thesis). Inconsistencies included errors in coding items, the vast majority 

of which was performed in coordinates (items 16 and 17) and in year of future ADT estimate 

(item 30). Inconsistent records of coordinates were processed to include entries that didn’t 

include all the necessary digits of precision. Thus, lower precision records were salvaged, 

reducing exclusions to 2035 bridges, where no value was available. Regarding the year of 

future ADT estimate, as this information would have no impact on the current stage of the 

study, the inconsistent records were kept with appropriate coding. 

As mentioned in chapter 3, there are continuous efforts to limit mistakes and 

inconsistencies, as well as to improve the quality of inspections. To investigate the 

effectiveness of these efforts, older NBI databases were also examined with respect to 

inconsistencies following the aforementioned processes. This investigation was 

concentrated only in identifying wrong bridge coordinates. Figure 4.2 shows the number of 

mistakes found in each year’s NBI database. It can be noticed that most coordinate mistakes 

have been corrected over the last years. 

4.2.1.2 Filtering of extracted data 

Not all structures included in the NBI database are of interest in this study, therefore 

certain criteria were used to exclude these. More specifically, the following structures were 

removed from the assembled matrix: 138,248 culverts, 5,277 filled arch bridges, 1803 

structures built before 1900, 64 structures with logical inconsistencies in their data, 62 

structures with year of reconstruction greater than 2017, 137 structures with year of 

inspection before 2006 corresponding to bridges of lower conditions that have not been 

reevaluated and 2035 structures with missing coordinate. Moreover, 23,555 bridges were 
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Figure 4.2: Number of bridge coordinate mistakes in the NBI databases of various years. Percentages show 

the relative reduction in the number of mistakes from past to recent years. 
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excluded, as they had superstructure materials different from concrete, steel and prestressed 

concrete. In total, the exclusions were 166,750 (the aforementioned exclusion criteria created 

some overlaps), leaving a remaining population of interest of 447,637 bridges. 

 

4.2.2 Climatic normals 

Structures are affected in the long term by local weather conditions, therefore the 

most appropriate respective data to take into account are the ’climatic normals’ (Arguez et 

al. 2012). Although other data sources could be utilized for weather information, only 

NOAA provided the climatic data needed for this study. NOAA sustains a large collection 

of climatic and weather data, manages and maintains a relatively dense network of weather 

stations all over the US and a sparser network over the world. The US climatic normals are 

average values of climatological variables over a 30-year period (1981-2010) 

characterizing the conditions at each location (NOAA, 2017). The data are taken at about 

9500 stations, forming a scattered network of measurement points. This network is reduced 

depending on the availability of specific measuring instruments (e.g. hourly recording 

stations for dew point temperature are only 420). The selection of climatological data for 

the present study was based on the available literature on materials corrosion, as well as on 

other relevant studies that used NBI or other inventories. Hence, the climatic normals 

utilized are: 

 

Annual precipitation/rainfall 

Rainfall could be linked to bridge deterioration due to the leakage of decks to 

superstructure and substructure elements (Radomski, 2002). As the amount of rainwater 

leaked to bridge elements can indicate the intensity of precipitation as a deterioration factor, 

data on the total annual rainfall (in inches) were included in the analyses of the present work. 

 

Days of snow depth above 1 inch in a year 

Snow is taken into account as a load on structures, but operational bridges are not 

really affected by the load associated with the total depth or maximum depth of snowfall 

throughout the year. However, bridges, as part of the roadway network, are subjected to the 

general actions taken to restore driving safety, when a certain snow depth is reached. Frost 

formation can take place even for limited snowfall, which affects the structure through the 

mechanism of freeze thaw cycles (Radomski, 2002). The most serious effect, though, is the 

anti-icing procedures that could damage the deck directly, as well as the deicing chemicals 
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that would be absorbed from the structural elements (Radomski, 2002). To investigate these 

effects, the snow depth of 1 inch was adopted as a threshold, as deicing is applied even on 

few centimeters of snow to prevent the formation of frost (White, et al., 2006). As this 

procedure may be repeated, the duration in days is indicative of the effect of deicing. Thus, 

the map of US regions where deicing is allowed was copied as an image (FHWA, 2017) and, 

using Google Earth, the corresponding coordinates were identified to be included in the 

analysis. 

 

Minimum monthly average temperature 

Corrosion is accelerated by increase of temperature, as its chemical reaction is 

exothermic (Bentur, et al., 1997). Hence, minimum average temperature was taken into 

account, actually the lowest monthly average value in the vicinity of each bridge. 

 

Monthly diurnal temperature range 

The monthly diurnal temperature range is the difference between the monthly 

maximum and minimum temperature. Changes in temperature from low to high on a daily 

basis can affect structures due to freeze and thaw cycles, changes of humidity content inside 

the pores of concrete structures (Bentur, et al., 1997) or changes in time of wetness of steel 

structures (Orchard Ltd., 2004). The diurnal temperature range provided the information 

needed to calculate also maximum temperature, as well as average temperature, if needed. 

 

Hourly dew point temperature and relative humidity 

The dew point temperature is a weather attribute that actually reveals the maximum 

concentration of water that could be present in the air. A higher dew point temperature 

corresponds to a greater amount of water vapor that the air can hold. Relative Humidity (RH) 

is the percentage of water vapor in the air relative to the amount needed for saturation at the 

same temperature, i.e. it is a measure of the concentration of vapor in the air. A smaller 

difference between the air temperature and the dew point temperature corresponds to a 

higher relative humidity, i.e. the atmosphere is closer to the state in which water vapor would 

condense. The hourly observations for dew point temperature taken from NOAA were 

transformed to monthly data for uniformity to other data. Further on, the RH was also 

estimated using the following equation (eq.4.1) linking relative humidity, dew point 

temperature Td and air temperature T with satisfactory accuracy (Lawrence, 2005): 

𝑅𝐻 ≈ 100 − 5 ∙ (𝑇 − 𝑇𝑑) (4.1) 
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The air temperature used in this equation was the maximum temperature, which 

corresponded to the minimum RH. It is worth mentioning that RH calculated by the above 

equation is an abstract measure of the water content in the air, but normally it is also affected 

by the microclimate at the bridge’s surrounding. 

 

Seasonal average of temperature data 

The monthly data cannot be utilized in analysis, but can provide a more appropriate 

seasonal average, avoiding the equating of mild and high extreme areas mentioned earlier. 

Thus, preliminary exploration of the data was performed to categorize monthly temperature 

data (minimum temperature, diurnal temperature and dew-point) in to two groups 

corresponding to warm and cold seasons (Fig. 4.3). Warm months were those with almost 

all temperatures above 0 oC, while cold months were those that lower temperatures could be 

noticed. For the rest of the analysis, the warm months’ data were taken to consideration, as 

most corrosion processes are halted during prolonged low temperatures below 0 oC (Bentur, 

et al., 1997). Additionally, the diurnal temperatures showed greater variation and higher 

values for warmer periods. Between the two seasonal temperature groups, a high Pearson 

correlation was found revealing that lower temperatures of ‘cold’ months are generally 

related to lower temperatures in ‘warm’ months. 

 

Weather station elevation 

The elevation data of each weather station was also taken into consideration for later 

analyses, but not for deterioration. Errors were noticed in some elevations and were corrected 

using Google Earth. 

Figure 4.3: Box plots of temperature observations of the weather stations. Cold months refer to 

November, December, January, February and March; Warm months refer to April, May, June, 

July, September, October. 

FILI
PPOS ALO

GDIANAKIS



  

30 

 

4.2.3 Coastal areas 

The combination of the corrosion factors mentioned earlier, as well as the existence of 

airborne chlorides, render the coastline as an interesting area to analyze. Thus, high precision 

coastline/shoreline coordinates were downloaded from NOAA (NOAA, 2017) and offset to 

certain distances using AutoCAD. The total distance spanned inland was 10 km with one-

kilometer distance categories to be attributed to each bridge. Additional divisions for the 

first kilometer (at 250m and 500m inland) provided adequate categories to study the effect 

of airborne chlorides. This categorization of distances allowed also the determination of the 

critical distance, up to which the coastline affects structures. Further detail is provided in 

Chapter 5, where case studies are presented for different coastal regions of the US. 

 

4.2.4 Earthquake hazard (PGA) 

Earthquake resistance is a crucial attribute for a structure’s service life. Damage to 

bridges results usually from complex effects by various contributing variables that interact 

together. In earthquake design, the soil consistency, the structure’s fundamental period, as 

well as the Peak Ground Acceleration (PGA) and the earthquake duration are indicative for 

the hazard that needs to be taken into account for seismic design and estimating expected 

damage (Chen & Duan, 2017). PGA, usually measured in terms of the acceleration of gravity 

(g), is the main variable typically used to represent the intensity of a ground motion (Chen 

& Duan, 2017), but the seismic effect can be magnified by the other mentioned factors. 

The US has various networks that collect real time seismic data. Specifically, the 

National Seismic System (ANSS), whose aim is to provide situational awareness for 

emergency responses for the whole US, the National Earthquake Information Center (NEIC), 

the National Strong Motion Project and 15 regional USGS networks. Although a vast amount 

of data exists for earthquake incidences within the US territory, a more general 

characterization would be more suitable for the purposes of the analysis to follow. Seismic 

hazard maps are a product of analysis that considers past faults and earthquakes, behavior of 

seismic waves travelling the crust and near-surface site conditions (USGS, 2017). Such maps 

are available from USGS, derived from analyzing data from the whole US network in 

cooperation and under the monitoring of ANSS. The seismic hazard with 2% probability of 

exceedance in 50 years, measured in PGA units (g), was chosen to be incorporated in the 

analysis process. Relevant data were downloaded from USGS for the conterminous US in 

the form of gridded data-points (every 6 km) that formed a dense network of calculated 

hazard points. 
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4.3 Combining the datasets 

The aforementioned datasets provide information with different spatial distributions. 

As an initial step, to avoid sampling errors and to achieve an even greater level of uniformity 

of standards, bridges and weather stations located only in the conterminous US (spatial 

distribution of PGA) were selected. 

Each dataset’s spatial distribution serves a different purpose. Bridges are located where 

needed to provide continuity of transportation network, weather stations to track weather 

changes of certain terrain and PGA data are the products of analysis, gridded to provide 

accurate design parameters for the seismic design. In this section, the spatial distributions of 

the complementary data are used to estimate/predict the values of these attributes in the 

vicinity of each studied bridge. This is achieved by using spatial interpolation, which utilizes 

the main assumption of geography that ‘everything is related to everything else, but near 

things are more related than distant things’ (Tobler, 1970). 

Numerous spatial interpolation methods and respective combinations are available in 

the literature and software packages. A basic step toward deciding on choosing appropriate 

interpolation methods suited for the particular datasets studied herein includes validating the 

different methods for the desired level of precision. Additionally, the type of data plays a 

significant role as well as the network of observation, if it is gridded or scattered and its 

density. The NOAA data are scattered due to weather station locations while the USGS data 

are densely gridded (with respect to bridge size).  

The USGS proposes four different interpolation methods to be used for the earthquake 

hazard data depending on the smoothness of the results to be achieved. Specifically, inverse 

distance weighted (IDW), Kriging, natural neighbor and spline. As this study required PGA 

values at specific points (bridge locations) and not surfaces, smoothness of the results was 

not a priority. Thus, IDW was selected, which provided the simplest proposed interpolation 

method. The values predicted by IDW were validated using an application provided in the 

USGS webpage. On the other hand, the complexity of climatic data and their scatter, 

demanded a more sophisticated approach. Generally, for spatial interpolation of climatic 

data, Kriging interpolation is preferred (Sluiter, 2009) as it takes to account the spatial 

variation of the studied attribute with distance. Additional studies reveal the superiority of 

Kriging to other methods for precipitation data (Mair & Fares, 2011; Hartkamp et. al 1999). 
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4.3.1 Short description of methods used 

As mentioned, IDW is a deterministic method, correlating only distance to the spatial 

distribution of the studied attribute using the formula (eq.4.2) (Longley, et al., 2005). For the 

case of PGA, linear interpolation was performed, using unit exponent in the formula (eq. 

4.2). For the application of IDW to the earthquake data no limitations restricted the method 

since the network was densely gridded.  

𝐹(𝑟) =    ∑ 𝑤𝑖

𝑚

𝑖=1

∙ 𝑧(𝑟𝑖)   =  
∑

𝑧(𝑟𝑖)
|𝑟 − 𝑟𝑖|𝑝

𝑚
𝑖=1

∑
1

|𝑟 − 𝑟𝑗|
𝑝

𝑚
𝑗=1

          (4.2) 

 

 

where, 

F(r): the value of point r where no observation exists; ri, rj: the points of observations; |r-ri 

or j|: distance between observation i or j and point of interest; p: exponent with 0 value 

corresponding to the mean of all observations, 1 to linear and 2, to inverse distance squared. 

 

For Kriging spatial correlation is assumed between locations of certain distance or/and 

direction to explain the variation of the studied attribute. Different kriging estimators exist, 

their difference lies to variations of the basic linear regression estimator Z*(u) defined in 

formula (eq.4.3) (Goovaerts, 1997). To decide which kriging type should be used firstly the 

correlation between elevation and weather attributes was confirmed to be below strong 

(0.75). The certain limit restricts the selections of kriging by excluding the application of 

multiple regression to consider elevation changes (Goovaerts P. 2000). Additionally, the 

assumption that a constant local mean (eq.4.3) exists instead of a constant and known mean 

(eq.4.3) lead to the selection of ordinary Kriging. To determine the weights, the variance of 

the estimator (eq.4.4) is minimized. To see if these assumptions are validated, the histograms 

were plotted showing the distribution of the studied attribute (e.g. temperature data in fig.4.4) 

 

𝑍∗(𝑢) − 𝑚(𝑢) = ∑ 𝜆𝛼

𝑛(𝑢)

𝑎=1

[𝛧(𝑢𝑎) − 𝑚(𝑢𝑎)]    (4.3) 

 

𝜎𝛦
2(𝑢) = 𝑉𝑎𝑟{𝑍∗(𝑢) − 𝑍(𝑢)} (4.4) 

Where, 

General form of 

interpolation 

I

DW 
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u: location vector for estimation point ua: location of the neighboring data points; n(u): 

number of data points in local neighborhood used for estimation of Z*(u); m(u), m(ua): 

expected values (means) of Z(u) and Z(ua); λα: kriging weight assigned to datum z(ua) for 

estimation location u; σΕ
2(u): variance of the estimator 

 

To incorporate spatial correlation, the variation between observations of distance 

groups (h) is calculated in a semivariogram using the formula (eq. 4.5) (Longley, et al., 

2005).  For isotropic data, the semivariogram can be simplified into a radial function 

dependent on h. The data are fitted appropriately using different functions (linear, spherical, 

exponential, Gaussian), for the temperature observations illustrations of the anisotropic 

variogram and isotropic variogram fit are presented in Figure 4.4, the rest fitted models can 

be found in Appendix (A-II.1).  

𝛾(ℎ) =
1

2𝑉𝑎𝑟[{𝑧(𝑟 + ℎ) − 𝑧(𝑟)}]
≈

1

2𝑁ℎ ∑ [𝑧(𝑟𝑖) − 𝑧(𝑟𝑗)]
2𝑁ℎ

(𝑖𝑗)

   (4.5) 

Where, γ(h): the semivariogram; Nh:of pairs of points which are separated by the vector 

h within a small tolerance Δh (size of a histogram bin), z(ri):observations at points ri,.  

 

Figure 4.4: Plots using the matlab code of Wolfgang Schwanghart a) weather stations in the 

US, b) the histogram indicating the distribution of the phomenon studied (in this case the 

minimum average Temperature), c)the isotropic variogram and d)the anisotropic 

variogram for the  distance of 1o. 

a) c) 

c) d) 
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To perform ordinary Kriging interpolation the gstat package in R (R-core team, 2008). 

Cross-validation Krigging contained in the same package was utilized to determine 

restrictions based on minimizing the mean square error (MSE). Specifically, the cross-

validation process temporarily excluded observations and predicted the missing value. The 

residuals of the prediction and the actual value were calculated by the temporarily excluded 

observation that exist in that same location. The MSE was calculated using the residuals and 

was normalized (NRMSE) dividing by the range of each dataset presented in Table 4.1. The 

restriction imposed for ordinary Kriging were: 

• Maximum Euclidean distance selected for kriging interpolation was 1o 

latitude/longitude corresponding to 111.2 km 

• Minimum of two observations and a maximum of 10 

• Maximum of two observations per quadrant 

 

 

Table 4.1: Cross validation results using Weather stations are excluded and their values are predicted. 

 

4.3.2 Results 

The MSE and NRMSE shown in Table 4.1 are very low and even lower errors are 

anticipated as stations are located strategically to capture climatic changes from the 

geographic terrain. Most errors occurred in dew point temperature as the hourly weather 

stations are less.  The results of interpolation are shown briefly in Figure 4.5 while more 

detailed figures can be found in Appendix (A-II.2- A-II.8). Although a GIS package could 

have been utilized for handling, combining and visualizing the datasets, the capabilities of 

Matlab and R-package software’s data extracting, processing and analyzing are adequate, 

provided that respective programming code can be written. 

 

 

Data Observations Method 
Model 

RMSE 
NRMSE Predicted 

Temperature (oC) 7186 Ord. Kriging 0.901 0.0111 441519* 

Diurnal Temp (oC) 7186 Ord. Kriging 1.3050 0.0188 441524* 

Annual Precipitation (in) 8864 Ord. Kriging 3.4216 0.0010 441298 

Snow depth >1in (days) 4970 Ord. Kriging 13.70 0.0005 437027 

Dew Temp (oC) 412 Ord. Kriging 0.6265 0.0133 289466 

Earthquake (g) 611309 IDW - - 443603 

*Differences to the predicted number of bridges are due to singularities that occur within the R package g-stat. 
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4.4 Data analysis of bridge population and main assumption 

The previous processes successfully read and combined the different datasets resulting 

to 443603 bridge records. Before moving to the data analysis process, information that 

assessed the validated prior processes or contained irrelevant information were excluded. 

The mentioned exclusions left 31 items climatic data, PGA and the inclusion or not within 

the deicing region.  

All bridge data combined with the environmental factors are going to be studied 

assuming that bridge maintenance policies are more hazard driven than State-dependent. An 

initial step was to explore the content of the data, through Exploratory Data Analysis (EDA). 

Figure 4.5: Interpolation results, the maps are not colored uniformly, each colored point represents a 

bridge for: a) minimum average temperature; b) diurnal temperature; c) annual precipitation in 

inch; d) annual snow depth in days above one inch e)peak ground acceleration in g(m/s2) and f) 

dew point temperature. 

(a) (b) 

(c) 
(d) 

(e) (f) 
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Then statistical modelling is applied using analysis of variance (ANOVA) and negative 

binomial regression analysis.  

 

 

Figure 4.6:Organising the selected variables in numerical/categorical, response and potential predictor and 

deriving or not from the NBI. 

  

4.4.1 Exploratory data analysis (EDA) 

A basic step to start the EDA process is to categorize the data to dependent and 

independent variables based on whether they were the product of evaluation (structural 

condition ratings, etc.) or offered information for the bridge. Additional categorization was 

performed regarding the content of each variable to numeric or categorical (Fig. 4.6). The 

tools used in EDA are mainly graphical helping the analyst notice unexpected features and 

proceed to decide the appropriate methods that should follow (Tukey, 1977). Descriptive 

statistics were calculated for continuous variables while pie-charts and bar-charts are 
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presented in the Appendix (A-II. 9-12). Additional bar charts were also plotted to investigate 

the consistency in materials of each deck type (item 107) and the consistency in deck type 

of each type of wearing surface (item 108). Such clarifications would be of great use for the 

appropriate selection of items for further analysis as well as for interpretation of results. The 

measure of linear correlation is described by the estimated Pearson coefficients. Their values 

range from 0 to 1 where 0 shows no correlation, 0.65 to 0.75 reveals moderate and strong 

correlations above 0.75. Negative correlations also exist and are presented with negative 

values. The correlation plots utilized corrplot-package in (R-core team, 2008). 

4.4.1.1 EDA results: dependent variables 

Initially, the dependent variables were studied, to track similarities but also to test the 

appropriateness of each dependent variable for the following analysis. All dependent 

variables are numerical, sufficiency rating is continuous on 0-100 scale while the rest 

condition ratings and structural appraisal are categorical ordinal variables with a scale from 

0-9. Also, deficiency status of a bridge is a categorical variable that states if a bridge is 

structurally deficient (SD)1, functionally obsolete (FO)2 or not (good condition). Based on 

the deficiency status the following can be stated from the histograms (Appendix, A-II.9):  

• The deficiency status, reveals that after the 2015-2016 inspection 76% of the bridges 

have no deficiency with a sufficiency rating above 50, functionally obsolete represent 

14% of the population and structurally deficient bridges are the rest 10%. 

• An increase in condition ratings 4 can be noticed in SD histograms, but this increase does 

not affect the lower ratings. This provides the useful information that the critical 

condition of rehabilitation/reconstruction is 4.  

• Replacement and rehabilitation3 can be seen by the corresponding histograms of 

sufficiency rating SD and FO bridges. 

Pearson correlation  

• All response variables are positively correlated (blue colored circles in Figure 4.7).  

• Moderate correlations exist between condition ratings of linked structural elements deck-

superstructure, superstructure-substructure, while the correlation weakens to low 

between more distant elements (deck-substructure).  

                                                 
1 Structurally deficient are rated for the three structural parts (deck, superstructure or substructure) with 

4 or less or/and if the waterway adequacy are rated below or equal to 2. 
2 Functionally obsolete bridges lack geometrical features such as lanes, shoulder widths, or vertical 

clearances that are not adequate to meet traffic demand or under the risk of being flooded. 
3 Sufficiency ratings below or equall to 80 are eligible for rehabilitation while below or equal to 50 are 

eligible for replacement 
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• High correlations exist between appraisal structural evaluation and substructure but also 

superstructure. The stronger correlations show the importance of these elements to the 

description of the overall structural condition, whereas the deck condition has a lower 

link.  

• High correlation exists also between sufficiency rating and that of Appraisal structural 

evaluation. Substructure and superstructure are moderately correlated with sufficiency 

rating while deck has a weak correlation.  

 

Figure 4.7: Correlogram of dependent variables (condition ratings of deck, superstructure and substructure 

appraisal structural condition rating and sufficiency rating), providing both graphical and numerical 

information. 

4.4.1.2  Conclusions for dependent variables 

From this analysis it is evident that each rating is important for a bridge’s structural 

description. The ratings of appraisal structural condition and sufficiency rating combine 

different types of information and reveal an overall categorization of the bridge. The 

continuous scale of sufficiency rating and its sensitivity to structural deficiency can be used 

with the numeric variables to reveal correlations between candidate factors. On the opposite 

side, as this study aims to discover bridge deterioration and their effect in specific structural 

parts, Appraisal rating will not be used further on. 

 

4.4.1.3 EDA results, independent variables NBI 

The figures of the Appendix (A-II.10 - A-II.11) show the distributions of the numeric 

variables selected, their descriptive statistics and the categorical variables. Most bridges are 

above water are of shorter length than 25m have 1 span and 2 lanes to traffic. To summarize 
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the bridge sample the different materials along with the bridges built/rehabilitated per year 

are presented in Figure 4.8. The materials shown represent both continuous and simply 

supported spans for each category. The certain figure provides additional information 

regarding the samples influences: 

Materials 

• Concrete and steel materials are used mostly before 1950. The same year prestressed 

concrete is invented (Sanabra-Loewe & Capellà-Llovera, 2014). Up to 1970 all 

materials are used at the same frequency but after that period prestressed concrete is 

used more. 

Rehabilitations 

• The term rehabilitation is utilized for the year of reconstruction Item 106, 

corresponding to major repair work or rehabilitation (FHWA,1995). There is a rise of 

rehabilitations after 1950’s, while the year 1970 corresponding to the creation of the 

NBIS seems to be coinciding with an increase in reconstructions. The number of 

rehabilitations rises reaching the number of bridges built at the same year of materials 

of concrete or steel. Change of materials when a bridge is reconstructed can be noticed 

as bridges before 1950 appear to be built from prestressed concrete. Additional 

information regarding rehabilitated bridges is provided in Chapter 6 (section 6.2.3).  

Historical 

• The introduction of the US to the World War of the US in 1942 that led to an increase 

in war expenses reducing construction funds which can be noticed.  

Socio-technological 

• There are local maxima within each 4 to 5 years up to 1975. It could be probably linked 

to the custom of “cutting ribbons to new structures” the parties in power to show their 

accomplishments while still in power as a means of advertisement. Another interesting 

notice is the reduction of their magnitude after 1975. The certain notice could be linked 

to the acceptance of televised presidential debates as the acceptable/preferable means 

of candidate competition. Introduced in 1960 when 27milion people watched the 

debate up to 1980 when that number doubled (Holz, et al., 2016).  
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Figure 4.8: Bridges built per year based on construction materials concrete (C) steel (S) and prestressed 

concrete (PC); circled maxima are linked to the “ribbon cutting” custom of politicians to 

advertise the work performed during their service for the nearby elections. 

Pearson correlation  

Pearson correlation was used to analyze the independent variables of the NBI (fig. 

4.9). The results showed that: 

• The strongest correlation was found between minimum vertical clearance over and 

inventory vertical clearance. Both measure the same thing if the inventory route is a 

highway or a railway. Another strong correlation can be noticed between lanes on 

structure and deck width.  

• Moderate correlations were found between deck width and average daily traffic 

(ADT), as well as between ADT and lanes on the structure, which could be anticipated 

from the previous notice.  

• Weaker correlations were noticed between length and number of spans year built and 

year rebuilt as well as between maximum span and Length. 

• Absence of correlation between sufficiency rating and all other variables apart from 

items referring to age of a bridge (Year Built and Year Reconstructed). It is also worth 

mentioning that these two variables are not taken directly to consideration for the 

calculation of the sufficiency rating (FHWA, 1995). 
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Figure 4.9: Correlogram of independent NBI variables providing both graphical and numerical information. 

Variables :Length, number of Spans, Deck Width, Detour Length, min. Vertical Clearance Over 

bridge, min. Vertical Underclearance, min. Lateral clearance, Inventory Route. 

4.4.1.4 EDA results, independent variables environment 

The same procedure was carried on for the environmental data descriptive statistics 

and histograms Appendix (A-II.11).  

Pearson correlation 

• Strong correlations seem to exist among the main temperatures (minimum and 

maximum). The same applies between dew point temperature and minimum 

temperature, while a moderate correlation can be noticed between dew point and 

maximum temperature. Another strong negative anticipated correlation can be noticed 

between temperature data and the days of snow depth above 1inch. This could be also 

noticed from the corresponding maps.  

• Weak negative correlation can be seen among dew point and snow, revealing that in 

colder areas less humidity content can be within the air. On the contrary, the weak 

correlation between dew point and precipitation4. Also, the diurnal range temperature 

                                                 
4 Dew point temperature when reached from the environmental temperature water starts to form. 
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has a weak and negatively linked to precipitation showing that when big difference 

during the day exist lower rainfall is anticipated.  

• Relative humidity appears to be weakly negatively correlated with diurnal range 

temperature, weakly and positively with precipitation. The finding of correlation 

between earthquakes and humidity can be justified from location and no causal effect 

can be attributed. 

• No correlation was found between sufficiency rating and the other variables. The same 

is noticed for coastal areas and other variables. 

 

Figure 4.10: Correlogram of independent environmental variables providing both graphical and numerical 

information. 

Conclusions for independent variables 

• Low correlations with in the NBI reveal that each information is unique on its kind. 

• The most predominant factor for Appraisal rating seems to be age. 

• Climatic regions have moderate to high correlations between them which is anticipated 

as values of temperature max due to the fact that diurnal temperature which is added 

to temperature min has a narrower value range. 

• No climatic variable appears to have correlation with sufficiency rating. 

• Coastline appears to be worth investigating due to the fact that it appears to have no 

correlation with other values. 
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4.4.2 Statistical Modeling 

Analysis in the previous part revealed, the distribution of each numerical variables’ 

values, as well as the strength of linear relationships with the use of correlations. The sample 

used includes also categorical variables which were not included in the EDA. Thus, in this 

part initially EDA, is extended to incorporate categorical variables. For this to be performed 

Analysis of Variance (ANOVA) was utilized, where categorical data can be analyzed. To be 

able to identify the relationships among all variables (categorical and numerical), all 

numerical data was transformed to categorical using the histograms from the EDA, to form 

meaningful categories. After analyzing all variables with ANOVA an oversighted 

dimensionality reduction process was performed using Principal Components Analysis 

(PCA) to exclude unnecessary variables. In the end, regression analysis is utilized to attain 

a model which better describes the data. 

4.4.2.1 ANOVA 

Hypothesis testing helps to notice if differences/similarities can be generalized from 

the categories of the studied sample to the same categories of the population. An initial (null) 

hypothesis is formed for the sample that no significant difference exists among the categories 

being tested, which is accepted or rejected based on the results of the suitable statistical test. 

The results take to account the different types of errors that exist and quantify the difference 

among groups as well as the importance/significance of the finding (Biau, et al., 2009).  

The simplest form of hypothesis test is the t-test, where two groups are compared to 

test if they belong to the same distribution. When more than two groups are present in a 

single independent variable then one-way ANOVA can be performed since the comparisons 

are performed in a way that the errors are not accumulated thus providing a better model 

(Triola, 2015). As the case of the NBI includes multiple groups in different items, ANOVA 

was chosen for the current analysis.  

A critical step before applying any statistical methods, is ensuring that the underlying 

assumptions, are met or approximated (Gaito, 1980), to avoid misleading results. For the 

case of ANOVA the assumptions according to (Gamst, et al., 2008) are: a) the error 

components associated with the scores of dependent variable are independent of one another, 

b) the aforementioned errors are normally distributed, c) the variances across the levels or 

groups of the independent variable are equal.  

Based on Gamst et. al. (2008), the first assumption is the most important and can be 

considered valid only if the observations are independent. For the case of the NBI as each 

bridge is an independent entity and is contained within the inventory, thus this assumption 
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is met. Furthermore, the normality of the distributed error terms, is met if the distribution of 

the independent variable (condition rating) is normally distributed. Despite the bell-shaped 

histogram noticed in Appendix (A-II.9) the ordinal scale of the condition rating, provides a 

violation to this assumption. Such violation can be considered not to affect the analysis, as 

decimal ratings can be interpreted as a scale of deterioration. Moreover, the analysis is robust 

to more extreme violations of this assumption (Schmider, et al., 2010). For the last 

assumption, the group categories cannot be enriched (the sample is the actual population of 

the US) and bridges with in a group may also vary due to many other factors, thus the 

violation of this assumption is treated methodologically. 

4.4.2.2 ANOVA methodology 

The information within the NBI is interconnected as no bridge condition can be 

irrelevant for example to age or material or climate. As ANOVA is used for categorical data, 

to incorporate also the effect of numeric variable types to condition ratings, all numeric data 

were transformed to categorical. Special attention was given to the grouping process so that 

meaningful groups would be formed with adequate sample sizes. In one case, such as the 

year of construction/reconstruction the two items were joined and the groups were formed 

with respect to Figure 4.7. In other cases, such as the case of clearances (vertical, horizontal), 

studies of vehicle impact (Agrawal, et al., 2011) were used to determine the lowest limits to 

form categories which could indicate such effect on bridges. 

Each independent variable considered was analyzed for the dependent variables of 

condition ratings (superstructure, substructure and deck). One-way ANOVA was equipped 

as the multiple levels of all variables could not be performed through a factorial design.  The 

analysis reveals the existence of a significant difference among the studied groups of one 

independent variable, for the considered dependent variable. In all studied cases the 

significance level (α=0.05), was met as the population is sufficient (above 1000) (Gamst, et 

al., 2008). Furthermore, as many factors are related to a bridge condition, significant 

differences are anticipated for each variable analyzed. To assess the importance of the 

differences found for each variable’s groups, ANOVA results were visualized using multiple 

comparisons Tukey-Kramer method (Wilcox, 2009). An illustration of ANOVA analysis is 

performed to study the Chapters main assumption that bridge maintenance/rehabilitation 

policies are hazard driven. 

4.4.2.3 Testing the main assumption using ANOVA 

In this part ANOVA and multiple comparisons, were utilized to test the assumption 

that maintenance/rehabilitation policies of each State are more hazard driven than State 
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dependent. Two hypothesis tests were performed, one to reveal differences in State policies 

and the second to reveal differences within a State. Specifically, in the first hypothesis test, 

two States were selected to have similar environmental conditions. This analysis would 

reveal if these States share common hazard-driven policy or differ due to different individual 

State policies. The second hypothesis test was performed on a State where one 

environmental condition would change within the States territory.  

To select among the whole US, the maps of the environmental variables (fig. 4.5), 

were used. Specifically, to find two States environmentally similar, earthquake hazard (fig. 

4.5e) precipitation (fig. 4.5c), limited the selection of north eastern States of Figure 4.11. 

Then, from minimum temperature map (fig. 4.5a) the snow-depth map (fig. 4.5d) and the 

State boarders map (fig. 4.11), the States of Michigan and Wisconsin were chosen for 

between States analysis. To select the individual State, the maps of Figure 4.5 were utilized 

and a known factor of structural condition deterioration, deicing, was selected. Arkansas was 

selected as the individual State, as all considered environmental factors were similar except 

deicing region (red line in fig. 4.5d) and seismic hazard (fig. 4.5e) which also variated from 

very low levels to some of the highest noticed. Moreover, deck structural condition 

evaluation was selected as it constitutes the bridge part which is more exposed to deicing 

salts and the least affected by earthquakes (Chen & Duan, 2014). 

ANOVA is conducted on each null hypothesis stating that no difference exists among 

the groups studied. Indication of an existing difference rejects the null hypothesis if the 

finding is significant, stating that groups of within the considered variables are significantly 

different. Specifically, the F-value (Table 4.2), reveals the existence of a difference while 

“Prob > F”, (Table 4.2) indicates a significant finding, if a value lower than the significance 

Wisconsin  

Michigan 

Arkansas 

Figure 4.11: States selected to study the State effect; with green the two States with very similar 

environmental conditions; with orange the individual State where all other environmental factors are 

similar except deicing region.   
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level (a=0.05) is achieved. These values are calculated based on the different sum of swuares 

calculated for the different groups of each variable. Specifically, total sum of squares value 

is calculated by subtracting the value of the dependent variable (deck condition) of each 

observation (bridge), from the whole samples’ mean and summing the squared differences 

found. The error term or within group sum of squares is calculated by subtracting the value 

of the dependent variable (deck condition) of each observation, from the corresponding 

groups’ (State or deicing category) mean and summing the squared differences found. By 

subtracting the sum of squares corresponding to the error from the total sum of squares, the 

between groups of the selected variable, sum of squares is calculated.  

The mean sum of squares of Table 4.2 is calculated by dividing each sum of squares 

category by the corresponding degrees of freedom. For State variable the degrees of freedom 

indicate the number of States reduced by one, thus as two States are analyzed value one is 

found. The total degrees of freedom correspond to the sample size reduced by one 

observation and the degrees of freedom for the error term, correspond to the total degrees of 

freedom, reduced by the variables’ degrees of freedom.  

The F-value is calculated by dividing the variables mean sum of squares with the mean 

sum of squares of the error. Then using the calculated F-statistic and the degrees of freedom 

the p-value is calculated. Although, not shown here larger F-values correspond to smaller p-

values indicating significant findings (Sawyer, 2009). Additionally, to reveal the descriptive 

strength of each variables effect to the dependent variable studied the coefficient of 

determination (R2) or eta squared η2 (Gamst, et al., 2008) given by the formula (eq.4.6), was 

used. 

𝑅2 =
𝑆𝑆𝐴

𝑆𝑆𝑡𝑜𝑡
  (4.6) 

Where: SSA=, refers to the sum of squares of the variable; SStot: the total sum of 

squares of the sample; 

Table 4.2: ANOVA results for the two hypothesis tests conducted,  

Hypothesis test Sum of 

Squares 

(SS) 

Degrees 

of 

Freedom 

Mean 

SS 

F-

statistic 

Prob>F R2 

I. Between States effect 58.4 1 58 44 3E-11 0.0002 

Error 26,732.1 20168 1 - - - 

Total 267,904.7 20169 - - - - 

II. Within  State deicing 

effect 
216.3 1 216 192 4E-43 0.020 

Error 10,462.0 9264 1.1 - - - 

Total 10,678.3 9265 - - - - 
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The results in Table 4.2, both reject the null hypothesis and indicate significant 

differences. A direct comparison between the F-statistics indicates that the difference within 

an individual State where different hazards exist, is larger than differences between States 

where all environmental hazards are similar. Furthermore, the same is indicated by R2 value 

which shows that 0.02% of the variance can be explained by the State –variable while 0.2% 

of the variance can be explained within a State by a change of an environmental variable. 

Since significant differences were found, Tukey-Kramer multiple comparison test was used 

to visualize the results of Table 4.2 (fig. 4.12). In the same figure, each circle represents the 

mean of the studied group, while the line indicates the standard error of its estimation. 

Additionally, the mean year of construction was estimated, as it was noticed from section 

4.4.1.3 to have the highest correlation to sufficiency rating, which is also correlated with the 

deck’s structural condition. Although both differences are significant the larger deviation of 

the group means Figure 4.12a and the smaller difference between the years of construction 

of the same groups, indicate that variation of a hazard, in this case earthquake and deicing 

region, within a State affect more the condition of a bridge than a change in State. Thus, the 

assumption that maintenance policy is hazard driven appears to be plausible.  

4.4.2.4 ANOVA results  

From the selected 41 variables (Figure 4.6), 38 (excluding sufficiency rating, bridge 

status and Appraisal condition rating) were analyzed using ANOVA. Three different 

response variables were used for the three different condition ratings. For each response 

variable related independent variables were chosen for its analysis. An additional variable 

was formed using the super structure material to separate among continuous or simple spans 

to indicate structural joints, and their effect on condition ratings of  deck and substructure. 

a

) 

b

) 

1980 

1974 1979 

1970 

(a) (b) 

Figure 4.12: ANOVA results for a) individual State and b) for between States analysis. The numbers above 

each circle indicate the mean year built of each group which showed a high correlation with sufficiency 

rating and is anticipated to have an effect on condition. FILI
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The analysis included only the effect of each independent variable to the condition rating, 

the summary of its’ results were included in each Table (4.3, 4.4 and 4.5). For each variable 

analyzed multiple comparisons have been used to visualize the differences among the 

groups. In the last column of each table a reference to the Appendix has been included. 

 

Table 4.3: ANOVA ranked results for variables relative to superstructure condition (Appendix A-II.13). 

Variabbles Total Sum 

of  

Squares 

Degrees 

of 

Freedom 

Sum  

of  

Squares 

F-statistic Prob>F R2 Ref. 

Year (Re) constructed 578606.10 6 172338.08 28787.98 0E+00 0.2979 A 

Main Material 641831.01 5 73130.62 11408.65 0E+00 0.1139 B 

Deck Width 641738.55 3 44141.09 10921.13 0E+00 0.0688 C 

Length of Max. Span 641393.13 4 23546.35 4223.73 0E+00 0.0367 E 

Length 641831.01 5 15103.42 2138.04 0E+00 0.0235 D 

Lanes On 641687.95 3 14509.44 3420.77 0E+00 0.0226 J 

Min Lateral 

Clearance 

200708.70 3 2891.42 830.80 0E+00 0.0144 M 

Snow depth above 1 

inch 

641191.36 4 6948.30 1213.82 0E+00 0.0108 Y 

Max.Temperature 638353.36 4 6754.94 1179.45 0E+00 0.0106 S 

Deicing Region 641831.01 1 5637.74 3931.05 0E+00 0.0088 Z 

Annual Precipitation 637614.41 7 5310.18 529.43 0E+00 0.0083 X 

Peak Ground 

Acceleration 

641808.61 7 5312.98 528.96 0E+00 0.0083 AB 

Navigation Control 641831.01 2 4856.03 1690.91 0E+00 0.0076 R 

Relative humidity 419404.63 5 3134.28 429.03 0E+00 0.0075 W 

Min. Vertical 

Clearance Under  
641831.01 3 4672.17 1084.28 0E+00 0.0073 K 

Distance from Coast 

line 

23031.85 11 158.54 12.10 5E-23 0.0069 AA 

Min. Temperature 638793.31 4 3873.51 673.40 0E+00 0.0061 T 

Inventory Route 

Clearance 

641212.65 7 3884.07 1350.72 0E+00 0.0061 L 

Dew point 

Temperature 

641831.01 6 3875.13 449.09 0.00E+

00 

0.0060 V 

Average Daily 

Traffic 

641831.01 7 1832.85 181.48 1E-269 0.0029 O 

Lanes Under 641831.01 4 1756.55 304.34 6E-262 0.0027 I 

Diurnal Temperature 

Range 

638888.80 4 1620.02 280.60 2E-241 0.0025 U 

Reference feature for 

Clearances 

641831.01 2 1466.23 507.85 5E-221 0.0023 N 

Number of Spans 641520.63 3 1304.80 301.25 2E-195 0.0020 F 

Detour Length 641831.01 6 1104.27 127.42 1E-161 0.0017 Q 

Truck traffic 641831.01 4 486.43 84.11 2E-71 0.0008 P 

Owner 641831.01 5 378.82 52.39 2E-54 0.0006 G 

Federal Lands 

Highway 

641829.35 7 305.22 30.15 5E-42 0.0005 H 
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Table 4.4: ANOVA ranked results for variables relative to deck condition (Appendix, A-II.14). 

Variabbles Total Sum 

of 

Squares 

Degrees 

of 

Freedom 

Sum 

 of 

Squares 

F-

statistic 

Prob>F R2 Ref. 

Year (Re) constructed 511544.08 6 130624.14 23271.93 0E+00 0.2554 A 

Wearing Surface 568997.40 10 26514.73 2168.13 0E+00 0.0466 E 

Deck Width 568929.47 3 18825.95 5059.94 0E+00 0.0331 D 

Deck Type 555572.95 8 13279.36 1330.65 0E+00 0.0239 C 

Length of Max. Span 568572.99 4 7873.43 1556.28 0E+00 0.0138 F 

Max.Temperature 565568.87 4 5002.04 984.05 0E+00 0.0088 Q 

Lanes On 568857.78 3 4903.09 1285.55 0E+00 0.0086 K 

Dew point Temparature 364258.85 5 3138.47 495.21 0E+00 0.0086 S 

Length 568.997,40 5 904,33 710,68 6E+05 0,0079 P 

Snow depth above 1 inch 568417.89 4 4377.84 859.96 0E+00 0.0077 W 

Deicing Region 568997.40 1 3691.30 2896.59 0E+00 0.0065 X 

Min. Temperature 566017.08 4 3309.30 649.14 0E+00 0.0058 R 

Peak Ground 

Acceleration 

568977.33 7 1870.52 209.01 3E-297 0.0033 Z 

Annual Precipitation 565141.54 7 1775.29 198.66 1E-295 0.0031 V 

Relative humidity 364258.85 5 789.67 123.79 2E-131 0.0022 U 

Min.Vertical Clearance  568997.34 3 1197.66 311.90 3E-202 0.0021 G 

Owner 568997.40 5 953.20 148.87 2E-158 0.0017 I 

Navigation Control 568997.40 2 944.94 368.96 8E-161 0.0017 AA 

Distance from Coast line 19704.78 11 31.10 2.76 1E-03 0.0016 Y 

Detour Length 568997.40 6 698.01 90.81 2E-114 0.0012 O 

Diurnal Temperature 566154.97 4 389.60 76.01 2E-64 0.0007 T 

Truck traffic  568997.40 4 236.82 46.18 7E-39 0.0004 N 

Lanes Under 568997.40 4 206.41 40.24 9E-34 0.0004 L 

Average Daily Traffic 568997.40 7 188.43 20.99 2E-28 0.0003 M 

Ref. feature Clearance 568997.40 2 175.47 68.42 2E-30 0.0003 H 

Span Type 568997.40 1 172.10 134.21 5E-31 0.0003 B 

Federal Lands Highway 568995.55 1 71.15 55.47 9E-14 0.0001 J 
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Table 4.5: ANOVA ranked results for variables relative to substructure condition (Appendix, A-II.15). 

 

4.4.2.5 Conclusions for ANOVA 

ANOVA was performed to investigate the impact of each independent variable to the 

dependent variables (condition ratings). The analysis’s limitations regard the relationship 

among variables which all together describe a bridge and are responsible for its current 

condition rating. Since, not more than one variables have been studied at once, the results of 

the analysis provide indications of the group means, of the single variable studied. Despite 

that, certain conclusions can be made regarding distinctive patterns noticed from the ranked 

results and their multiple comparisons: 

• The year of construction and reconstruction appear to be the most affecting factor for 

condition ratings. They are ranked 1st in each Table of the results describing most of 

the variance (26-30%). Additionally, they appear to have big differences among their 

group means in the multiple comparisons. 

Variabbles Total Sum 

Squares 

Degrees of 

Freedom 

Sum of 

Squares 

F-

statistic 

Prob>F R2 Ref. 

Year (Re) constructed 586954.69 6 171129.41 27927.01 0E+00 0.2916 A 

Deck Width 650919.78 3 18374.64 13678.53 0E+00 0.0847 F 

Length of Max. Span 650493.75 4 37198.76 6721.66 0E+00 0.0572 E 

Length 650997,42 5 4255,05 2997,15 0E+00 0,0327 B 

Min. Lateral Clearance 184242,43 3 1598,60 1518,96 0E+00 0,0260 G 

Span Type  650997.42 1 9844.06 6810.34 0E+00 0.0151 C 

Navigation Control 650997.42 2 7910.92 2728.24 0E+00 0.0122 I 

Peak Ground 

Acceleration 

650984.72 7 6281.13 617.33 0E+00 0.0096 W 

Average Daily Traffic 650997.42 7 5755.05 565.17 0E+00 0.0088 K 

Relative humidity 408112.32 5 3326.68 468.24 0E+00 0.0082 T 

Distance from Coast 

line 

20559.76 11 163.79 14.02 3E-27 0.0080 X 

Snow depth above 1 

inch 

650369.32 4 4803.83 824.41 0E+00 0.0074 U 

Annual Precipitation 647542.34 7 4300.26 421.42 0E+00 0.0066 S 

Ref. feat. Clearance 650997,42 2 3204,80 1097,21 0E+00 0,0049 H 

Max. Temperature 647667.49 4 2914.70 498.50 0E+00 0.0045 P 

Dew Point 

Temperature 

408112,32  354,22 248,34 1E-265 0,0043 R 

Diurnal Temperature 648184.10 4 2336.57 399.30 0E+00 0.0036 Q 

Owner 650997.42 5 2311.03 316.05 0E+00 0.0035 M 

Deicing Region 650997.42 1 2207.12 1508.96 0E+00 0.0034 V 

Detour Length 650997.42 6 2171.96 247.47 4E-317 0.0033 J 

Min. Temperature 648114.78 4 1832.75 312.99 2E-269 0.0028 O 

Number of Spans 650637.70 3 1636.40 372.66 9E-242 0.0025 D 

Truck traffic 650997.42 4 1526.37 260.61 4E-224 0.0023 L 

Federal Lands 

Highway 

650995.51 1 625.29 426.46 1E-94 0.0010 N 
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• Materials appear to have the next most important effect for condition ratings of 

superstructure and deck, where information is provided from the NBI. Deriving from 

superstructure material main type, the span type appears to affect also substructure 

condition. In general, materials of concrete seem to have a better rating than other 

materials. Furthermore, continuous spans can be noticed to have better condition 

ratings than simple spans. Thus, among superstructure materials prestressed concrete 

in continuous spans has the highest condition rating. Also, steel continuous spans have 

a higher condition rating than concrete continuous spans and a lower condition rating 

than simple spans of prestressed concrete. 

• The design of a bridge appears to have an effect on all condition rating, with more 

demanding designs having better ratings. These include increased deck width (and 

lanes on structure), length, maximum span and peak ground acceleration. Specifically, 

for peak ground acceleration a pattern is evident in the multiple comparisons for all 

condition ratings where increase in earthquake hazard decreases condition rating while 

a further increase above 0.2g is accompanied with increase in condition ratings (fig. 

4.13). A possible explanation to this notice can be attributed to a seismic design 

demand coinciding with that specific limit.  Also, from Figure 4.13, it can be noticed 

that peak ground acceleration affects mostly the condition ratings of superstructures 

and substructures, than of decks.  

• Average daily traffic as well as truck traffic appear to have a very limited effect among 

condition ratings (fig 4.14). A possible explanation could be attributed to the existence 

of adequate standards and their good application and/or an organized and oversighted 

process of bridge posting accompanying bridge inspections. Despite the mentioned 

notices an effect similar to peak ground acceleration but of lower intensity, appears for 

Figure 4.13: ANOVA results for groups of: Peak ground acceleration in g=9.81m/s2 and its effect on condition 

rating of superstructure, deck and substructure. The blue line indicates a possible limit of application for 

seismic design demands. 
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super structure and substructure condition, which could also be attributed to adequate 

design standards both for average daily traffic (fig. 4.13a) and truck traffic (fig. 4.13b). 

The same cannot be observed for the condition rating of deck where all groups of either 

variables appear to variate within small limits. 

• Owner as well as Federal Lands Highway designation appear to have a very small 

effect to all condition ratings. 

• Minimum clearances, vertical, lateral and inventory route appear to affect more 

superstructure and substructure conditions only for the smallest distance group. 

Specifically, inventory route minimum vertical clearance (corresponds to minimum 

vertical clearance from the road’s surface to a structure above), appears to affect the 

condition rating of superstructure, while substructure is affected more by minimum 

lateral clearance. A possible explanation could be attributed to the vehicle collisions 

and accidental actions. On the other hand, despite the increased difference and high 

rank attributed for the case of inventory route clearance, the sample size of the smallest 

distance group corresponds only to 0.58% of the all groups analyzed. Thus, the lower 

condition rating could be attributed to other confounding variables such as year of 

construction and/or material. 

• Regarding the effect of weather and environment, maximum temperature, snow depth 

in days, minimum temperature and being within the deicing region appear to affect 

more than other environmental effects. Specifically, warmer climates have higher 

condition ratings for the different structural parts considered. This applies for both 

maximum and minimum temperature. Despite the strong correlation indicated in 

section 4.4.1.4, snow depth above 1 inch appears to have a slightly different pattern 

compared to temperatures, with the first group (corresponding to less than half a day), 

Figure 4.14: ANOVA results for groups of ADT  (a) and truck traffic (b) for the condition rating of 

superstructure, deck and substructure.  

(a) (b) 
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being in higher condition. On the other hand, while an increase in snow days from half 

a day to 7.4, has a lower condition, no further reduction in condition follows the 

increase in snow days (fig. 4.15a). The same can be noticed from the inclusion or not 

within the deicing region (fig. 4.15b). It should be mentioned, that for the case of deck 

condition rating there is a very slight reduction noticed for increased days of snow 

depth above 1 inch. Thus, from these results it appears that the amount of deicing 

applied affects has a minor effect in structural condition ratings, in comparison to the 

absence of deicing. 

 

• Among the rest of the weather variables annual precipitation appears to have an effect 

on structural condition ratings but there is no clear pattern indicating a reduction of 

condition with increase in precipitation.  

• Similar patterns noticed for peak ground acceleration can be noticed for diurnal range 

temperature, which could be explained by the similarity among the maps of each 

variable (fig. 4.5 b and e). As increased thermal loads could be anticipated for 

increased diurnal temperature ranges thus lower condition ratings, this is not noticed. 

Superstructure and substructure which are less exposed to thermal loads than deck 

Figure 4.15: ANOVA results for groups of: a) snow depth above 1 inch in days and b) being 

in deicing region where deicing is allowed or not, for superstructure, deck and 

substructure condition. 

(a) 

(b) 
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have a similar pattern to that of peak ground acceleration. On the other hand, deck 

condition appears not to have a similar pattern indicating that, although peak ground 

acceleration increases, deck condition remains the same. An observation that cannot 

be made for diurnal temperature range, where all condition ratings appear to be equal 

except for the first category, which corresponds to coastal areas. 

• Dew point temperature appears to have an effect similar to temperature on the other 

hand, relative humidity (where dew point has been utilized) shows a pattern where 

increase in relative humidity corresponds to lower condition ratings. 

• From the variable navigation control it can be noticed that bridges located over water 

have a lower condition rating. Water underneath the bridge appears to effect 

substructure condition more than superstructure and deck. 

• Smaller distances from the coast appear also to have an effect, more on condition 

ratings of substructure and superstructure and less on deck’s condition.  

4.4.3 Dimensionality reduction using PCA 

A basic step before performing statistical modelling is reducing the dimensions 

(variables) of a high dimensional data set. Usually dimensionality reduction processes are 

applied in EDA (Martinez & Martinez, 2005), where variables for further analysis are 

selected and explored, as methods such as PCA reduce the dimensions based on variable 

variances and not their effect on dependent variables. PCA performs transformations to the 

data resulting to a change in coordinates (dimensions/variables). Linear combinations of the 

original variables are formed based on their variances, resulting to uncorrelated variable 

groups, principal components (Jolliffe, 2010). All principal components describe the total 

variability of the dataset, while only the few first describe most of the sample’s variability. 

The number of the principal components to be incorporated can be decided by the cumulative 

percentage of variance explained.  

In this study, the process is performed after all variables were studied for their effect 

on the dependent variable. Thus, an oversighted exclusion of variables would be performed. 

PCA results of the numeric variables were utilized to reduce their dimensions and ANOVA 

results to reduce categorical variables. Initially, small manipulations were performed to the 

dataset regarding outliers and extreme variances noticed, to avoid misleading results 

deriving from PCA’s sensitivity to variance. Hence, ADT instead of vehicles was 

transformed to thousand vehicles. Additionally, as different types of numeric variables are 

incorporated, two PCA’s were performed (fig. 4.16), one to reduce bridge related data from 

the NBI and the second to reduce weather, environmental data. Furthermore, variables with 

FILI
PPOS ALO

GDIANAKIS



  

55 

 

increased missing values were not included either in PCA or in regression analysis. These 

variables were: dew point temperature and relative humidity (73% missing values), 

clearances (minimum vertical clearance with 77% missing values, distance from the coast 

with 96%, lateral clearance with 78% and lateral clearance with 83%) the last exclusion was 

performed to year of reconstruction where 85% of the bridges have not been reconstructed. 

 

Figure 4.16: Principal components analysis of a) NBI variables and b) weather and peak 

ground acceleration variables. 

(a) 

(b) 
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A variability above 95% was utilized to incorporate variables of each dataset. Thus, 

for the NBI variables the first five principal components (fig. 4.16a) were chosen, explaining 

99.54% of the data’s variability. These included the variables: length; ADT; length of 

maximum span; deck width; detour length; year of construction and year of reconstruction. 

From the environment dataset first two principal components included variables of snow 

depth above 1 inch and annual precipitation describing 99.2% of the dataset’s variability. 

Despite, PCA’s results the variable of peak ground acceleration was also included as it was 

noticed to affect all condition rating in the ANOVA results also truck traffic was included 

as additional information for ADT. Regarding categorical variables, main material would be 

used for superstructure condition ratings, span type (generated from main material) for deck 

and substructure. Type of deck and type of wearing surface would also be included for deck 

condition ratings. Furthermore, navigation control and deicing region would be introduced 

to model all condition ratings. 

4.4.4 Regression analysis 

Regression analysis is a statistical process for estimating the relationship among 

variables. Specifically, many techniques are utilized to modelling and further analysis of a 

dependent variable and its relationship with one or more independent variables. It is 

commonly used for prediction and forecasting but it has also been utilized in achieving a 

better understanding of the importance of each independent variable, utilizing the attained 

model.  The regression process leads to a function that models the change in the dependent 

when any of the independent variables is varied and the rest are kept fixed. As the estimates 

of the dependent variable comprise the conditional expectation, special attention should be 

given in the distribution of the dependent variable.   

4.4.4.1 Negative binomial distribution 

In section 4.4.2.1 the normality assumption for performing ANOVA was mentioned 

to be violated due to the non-continuity of condition ratings as well as the non-negative 

values. Structural condition ratings can be regarded as count data, as observations (bridges) 

can only take non-negative integer values and they are product of counting. To model such 

data binomial, Poisson or negative binomial distributions can be used due to the fact that 

condition ratings are not dichotomous (Hosmer, et al., 2013). The negative binomial 

distribution (eq.4.6) was selected as it provided the additional capability to model over 

dispersed data in contrast to the Poisson (Hilbe, 2011). 

For negative binomial regression to be performed, no violations to the negative 

binomial distribution should exist. Specifically, according to Hilbe (2011), these violations 
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include: (a) no zero in data, (b) excess zeros in data, (c) data separated in to two distributions, 

(d) censored observations, (e) truncated data, (f) data structured as panels clustered or 

longitudinal data (g) some responses occur based on the value of another variable and (h) 

endogenous variable in the model. Violation (g) refers to cases where an event does not 

begin until a certain value is reached from another variable, for the case of NBI this has not 

been noticed. Violation (h) refers to cases of omitted variables or not incorporated in the 

model increasing its errors.  

𝑃{𝑋 = 𝑘} = (
𝑘 + 𝑟 − 1

𝑟
) 𝑝𝑘(1 − 𝑝)𝑟   (4.6) 

Where, 

X: discrete random variable, k: non-negative integer values representing number of 

successes, r: number of failures (r>0) and p: the probability of success (0<p<1). 

 

4.4.4.2 Regression analysis methodology 

To model the effect of the reduced independent variables of section 4.4.3 negative 

binomial regression analysis was utilized. Three different regression functions would be 

derived, one for each structural condition rating. For each condition rating a selection of the 

categorical variables was performed based on the ANOVA results to include material 

variables for each condition rating. Additionally, groups of categorical variables were 

merged to form a larger group due to limited sample size, such were the variables of type of 

deck and type of wearing surface. 

An additive, generalized linear model fit was calculated using MASS library in R (R-

core team, 2008). An initial regression was performed to fit a model using all independent 

variables corresponding to each dependent variable. Then each initial model was refined by 

omitting variables that were found to be insignificant. To achieve this, a stepwise regression 

process was utilized, where independent variables would be added (forward) or removed 

(backward) and the Akaike Information Criterion (AIC) was used to indicate if a better 

model was achieved. This process was performed both ways, forward regression where 

variables are added and backwards where variables are removed. The results of the initial 

regression were compared to the refined model and unnecessary variables would be omitted. 

Despite that, from the process of omitting variables ADT was deliberately excluded, as all 

bridges carry highway traffic and a better understanding of the variables effect was needed. 
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4.4.4.3 Regression results 

The regression analysis results are displayed with the regression function of each 

structural condition rating while, coefficients, errors and model’s details are presented in 

Tables. Thus, Equation 4.7 and Table 4.6 correspond to superstructure condition, Equation 

(4.8) and Table 4.7 to deck condition and Equation (4.9) and Table 4.8 to substructure 

condition. the coefficient shows the effect of each variable to the condition. In each 

regression function (eq.4.6, 4.7 and 4.8) the logarithm of the corresponding condition rating 

is equated to an intercept term and the added independent variables multiplied by each 

variable’s coefficient. The intercept term is a grand average of the dependent variable, while 

the effect of the different variables is revealed from the coefficients estimated, provided in 

each Table. Categorical variables can be noticed to have no values for their first group and 

values for the other groups this is due to the ‘dummy’ (fake) variables generated to model 

them. Specifically, for each group of a categorical variable (with more than two groups) one 

dummy variable is generated. Dummy variables in contrast to numerical variables can take 

only value 1 to indicate to specialize the model for the specific group or 0 to exclude it. Thus, 

despite the fact that it is a coefficient estimate, it is a value that changes the model similar to 

the intercept. 

Positive coefficients indicate increase in the logarithm of the condition rating while, 

negative indicate decrease. The coefficients’ magnitude is related to the variation each 

variable includes, thus ADT may take values from 0 to 100000, while peak ground 

acceleration varies from 0 to 2.5. The error term, next to each estimated coefficient, reveals 

the standard error of the estimated coefficient. The magnitude of the error is presented as the 

z-value where the coefficient estimated is divided by the error term, with larger z-values 

indicating smaller errors. The calculated z-values are utilized to calculate the p-values which 

are compared to the different significant levels and each variables’ significance is 

determined. Significance, levels are denoted by symbols, with (***) indicating high 

significance and no stars no significance. In the last rows of each table, the regression details 

are given. Null and residual deviance indicate the remaining variance of the model, before 

the models variables were included using only the intercept term (null deviance) and after 

the inclusion of the variables (residual deviance). Inclusion of the variables is also denoted 

by reduction of degrees of freedom. In the end two AIC values, AICo corresponding to the 

initial regression and AIC after the stepwise process to omit the unnecessary variables, lower 

AIC values corresponding to a better fit of the model. AIC values can only be used as a 
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goodness for a specific model (i.e. superstructure condition) and not for comparing two 

different models.  

To interpret the results the significance of each variable has to be taken to account. 

Non-significant variables are variables which include larger errors in the estimation of their 

coefficient, thus their use as predictors is limited. From the significant variables, the sign of 

their estimated coefficient is the first indication of the effect of the predictor to the 

independent variable. Then the magnitude of the coefficient can be also considered although 

as previously mentioned it depends on the predictors’ variance. 

 

 

  (4.7) 

 

Table 4.6: Regression analysis results for superstructure condition rating 

Variables 

Coefficient 

Estimates Std. Error z-value Pr(>|z|) Sig. 

(Intercept)               -5.3E+00 5.53E-02 -95.74 < 2E-16 *** 

Length (m)                   -4.8E-05 4.66E-06 -10.37 < 2E-16 *** 

Maximum Span  (m)                 omitted 

Deck width (m)        7.16E-04 1.09E-04 6.55 5.7E-11 *** 

Year Constructed (date/Year)               3.66E-03 2.80E-05 130.78 < 2E-16 *** 

Detour length (km)             1.45E-04 2.54E-05 5.72 1.1E-08 *** 

ADT (vehicles)             2.7E-08 3.55E-08 0.75 4.5E-1 
 

Truck traffic (% ADT) omitted 

Peak Ground Acceleration (g) 4.9E-02 3.31E-03 14.82 < 2E-16 *** 

Precipitation (inches)                -5.6E-04 5.42E-05 -10.29 < 2E-16 *** 

Snow depth above 1 inch (days)                 1.6E-04 2.50E-05 6.21 5.17E-10 *** 

Deicing Region Not allowed 
     

 
Allowed -2.53E-02 1.75E-03 -14 < 2E-16 *** 

Material Concrete continuous      
     

 
Concrete simple      -9.69E-03 2.49E-03 -3.90 9.8E-05 *** 

 
Prestressed  

Concrete continuous     

2.10E-02 3.09E-03 6.80 1.1E-11 *** 

 
Prestresssed Concrete 

 simple   

1.82E-02 2.27E-03 8.00 1.2E-15 *** 

 
Steel Continuous 9.75E-04 2.71E-03 0.36 7.2E-1 

 

 
Steel Simple         -4.61E-02 2.36E-03 -19.51 < 2E-16 *** 

Water 

Underneath 

No 
     

Yes -7.31E-03 1.51E-03 -4.84 1.3E-6 *** 

Significance codes:  0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1  ‘ ’ 1 

Regression information: 

Null deviance: 91352  on 391443  degrees of freedom 

Residual deviance: 63276  on 391428  degrees of freedom 

AICo = 1529806,  AIC: 1529804 

 

ln (Superstructure Condition) = Intercept+ C1*Length + C2* Deck width + C3* Year of construction + C4*Detour 

Length  + C5*ADT + C6*PGA +C7*Precipitation + C8*Snow depth + 

C9*Deicing region + C10*Material + C11*Water underneath   
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  (4.8) 

 

  

Table 4.7: Regression analysis results for deck condition rating 

Variables 

Coefficient 

Estimates  

Std. 

Error   z- value  Pr(>|z|) Sig. 

(Intercept)                        -4.60E+00 5.73E-02 -80.235 < 2E-16 *** 

Length (m)                   
 

-3.31E-05 5.09E-06 -6.505 7.75E-11 *** 

Maximum Span  (m)                 -1.47E-04 5.27E-05 -2.799 5.13E-03 ** 

Deck Width(m)        -2.95E-04 1.18E-04 -2.508 1.21E-02 * 

Year Constructed (date/Year)               3.30E-03 2.92E-05 112.911 < 2E-16 *** 

Detour Length (m)             omitted 
 

ADT (vehicles)             1.04E-07 3.67E-08 2.827 4.70E-03 ** 

Truck traffic (% ADT) omitted 
 

Peak Ground Acceleration (g) 2.40E-02 3.39E-03 7.075 1.50E-12 *** 

Precipitation (inches)                -1.41E-04 5.52E-05 -2.557 1.06E-02 * 

Snow depth above 1 inch (days)                 -1.23E-04 2.59E-05 -4.745 2.09E-06 *** 

Deicing 

Region 

Not allowed 
     

Allowed -1.31E-02 1.78E-03 -7.333 2.25E-13 *** 

Type of 

Wearing 

Surface              

Bituminous 
     

Epoxy Overlay   -6.19E-03 5.50E-03 -1.125 2.60E-01 
 

Gravel     -3.13E-02 3.80E-03 -8.245 < 2E-16 *** 

Integral Concrete    6.67E-02 3.32E-03 20.076 < 2E-16 *** 
 

Latex Concrete         -2.96E-02 3.84E-03 -7.698 1.38E-14 *** 
 

Low Slump Concrete  -3.39E-03 4.78E-03 -0.71 4.77E-01 
 

 
Monolithic Concrete  -7.83E-03 1.67E-03 -4.681 2.85E-06 *** 

 
None  8.94E-03 2.18E-03 4.109 3.97E-05 *** 

 
Other  1.82E-02 4.49E-03 4.054 5.03E-05 *** 

Type of deck Concrete Cast-in-Place   
     

Concrete Precast Panels -5.36E-03 2.01E-03 -2.673 7.51E-03 ** 

Open/Closed  Steel Grating -3.79E-02 3.95E-03 -9.615 < 2E-16 *** 
 

Other   -1.55E-02 3.12E-03 -4.978 6.43E-07 *** 

Water 

underneath 

No 
     

Yes 3.69E-03 1.59E-03 2.317 2.05E-02 * 

Span type Continuous      

Simple 9.06E-03 1.52E-03 5.955 2.60E-09 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Regression information: 

Null deviance: 79666  on 382617  degrees of freedom 

Residual deviance: 61553  on 382594  degrees of freedom 

AICo: 1490967  AIC: 1490963 

 

 

 

 

ln(Deck Condition) = Intercept+ C1*Length + C2* Max. Span+ C3*Deck width + C4* Year of construction + 

C5*ADT + C6*PGA +C7*Precipitation + C8*Snow depth + C9*Deicing 

region + C10*Type of wearing surface + C11*Type of deck + C12*Water 

underneath + C13* Span type 
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  (4.9) 

 

  

Table 4.8: Regression analysis results for substructure condition rating 

Variables Coefficient 

Estimate 

Std. 

Error 

z-value Pr(>|z|) Sig. 

(Intercept)               -6.20E+00 5.17E-02 -120.08 < 2E-16 *** 

Length (m)                   -4.72E-05 4.63E-06 -10.21 < 2E-16 *** 

Maximum Span  (m)                 omitted 

Deck Width (m)        1.04E-03 1.08E-04 9.55 < 2E-16 *** 

Year Constructed (date/Year)               4.11E-03 2.61E-05 157.88 < 2E-16 *** 

Detour Length (km)             7.90E-05 2.56E-05 3.082 0.00206 ** 

ADT (vehicles)             2.67E-08 3.55E-08 0.75 0.451 
 

Truck traffic (% ADT) 2.68E-04 7.33E-05 3.663 0.00025 *** 

Peak Ground Acceleration (g) 6.72E-02 3.29E-03 20.44 < 2e-16 *** 

Precipitation (inches)                -3.62E-04 5.40E-05 -6.703 2.04E-11 *** 

Snow depth above 1 inch (days)                 1.47E-04 2.52E-05 5.835 5.39E-09 *** 

Deicing Region Not allowed 
    

 
Allowed -1.71E-02 1.73E-03 -10 < 2e-16 *** 

Span type Continuous 
   

 
Simple      -2.96E-02 1.44E-03 -20.567 < 2e-16 *** 

Water underneath No 
     

 
Yes -1.13E-02 1.54E-03 -7.369 1.71E-13 *** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Regression information: 

Null deviance: 92938  on 391415  degrees of freedom 

Residual deviance: 64088  on 391403  degrees of freedom 

AICo : 1525368  AIC: 1525368 no change in AIC despite the omitted variable 

 

 

4.4.4.4 Regression analysis conclusions 

• All condition ratings are affected mostly by year of construction, with increase in year 

of construction corresponding to increase in condition.  

• Average daily traffic is not significant for superstructure and substructure condition, 

while it is significant for deck condition.  

• For all condition ratings, increase in ADT has a positive contribution. On the other 

hand truck traffic is a significant predictor for substructure condition with a positive 

effect, while it has been omitted for the other condition ratings.  

• The effects of peak ground acceleration have a significant positive effect to all 

condition ratings, with increased contribution for superstructure and substructure, 

validating ANOVA’s conclusions (4.3.2.5).  

ln(Substructure Condition) = Intercept+ C1*Length + C2* Deck width+ C3*Year of construction + C4* Detour 

length + C5*ADT + C7*Truck traffic+ C8*PGA +C9*Precipitation + 

C10*Snow depth + C11*Deicing region +  C12* Span type + C13* Water 

underneath 
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• Annual precipitation, has a significant negative effect to all condition ratings which 

mostly seems to affect superstructures. 

• Deicing reduces all condition ratings with an increased negative coefficient for 

superstructures, indicating that they are affected most. On the other hand, increase of 

days of snow depth above one inch, affects positively superstructures and 

substructures, and negatively deck. Thus, the conclusions of ANOVA that although 

deicing salts do affect superstructures and substructures, their quantity does not. On 

the contrary, for deck increased days of days above one inch, corresponding to more 

direct application of deicing and ice removal processes reduce its condition rating. 

• Superstructure materials, continuous spans have increased condition ratings compared 

to simple spans. Thus, if materials were to be ordered from higher to lower condition 

ratings, this order would be: continuous spans of prestressed concrete, simple spans of 

prestressed concrete, continuous spans of steel or continuous spans of concrete, simple 

spans of concrete, simple spans of steel. 

• Continuous spans also affect positively substructure condition ratings while deck 

condition ratings are negatively affected. 

• Water underneath the structure has an increased negative contribution to the condition 

rating of substructures, while it affects in a much less negative way superstructures 

and in a positive way deck condition rating. 

• Length appears to have a minor negative effect for all condition rating. 

• Maximum span has a minor negative and less significant effect for deck rating while 

it has been omitted by the stepwise process for superstructure an substructure. 

• Deck width has a positive effect for superstructure and substructure while, a negative 

for deck condition rating. 

• Detour length has a small positive effect for condition ratings of superstructure and 

substructure, it is less significant for substructure and has been omitted for deck 

condition. 

• For deck, the wearing surfaces ordered from higher to lower condition are: integral 

concrete, other, none, bituminous, monolithic concrete, epoxy overlay, low slump 

concrete, latex concrete, gravel. 

• For deck, the deck types ordered from higher to lower condition ratings are: concrete 

cast in place, concrete precast panels, other, open/closed steel grating. 
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4.5 Conclusions 

In this Chapter, factors affecting structural condition of bridges, were studied using 

data from existing bridges. To achieve this, inspection data of more than 600,000 bridges 

located in the US were utilized from the National Bridge Inventory (NBI). Since, the US 

territory contains a large variety of environmental exposures, databases such as the United 

States Geological Survey (USGS) and the National Oceanic Atmospheric Administration 

(NOAA), were used to introduce additional variables regarding climate and earthquake 

hazard. To estimate their values for each bridge location, spatial interpolation methods were 

utilized. The combined dataset was then analyzed using data analysis procedures, to 

determine which variables affect the structural condition of a bridge. 

The exploratory data analysis showed that, the selected NBI variables had low 

correlations among them in contrast to weather variables which were moderately to highly 

correlated. ANOVA and multiple comparisons revealed useful patterns, which indicated the 

effect of each variable to structural condition rating. More over the analysis showed the 

existence of certain thresholds after which variables had a different effect to the condition 

ratings such were:  

• Deicing region and snow depth above one inch in days, where although deicing region 

coincided with more than 0.5 days of snowfall above one inch, further increase in days 

did not affect superstructure and substructure condition and slightly reduced deck’s 

condition rating. 

• Peak ground acceleration affected most substructure and superstructure condition and 

less deck. A distinct similar pattern among all condition ratings reveals that, increase 

in peak ground acceleration more than 0.2g has a meliorating effect. 

Furthermore, from the regression analysis the structural conditions of deck 

superstructure and substructures were confirmed to be mostly affected by: 

• The year of construction, where recently built bridges corresponded to higher 

condition ratings for either structural parts.  

• The materials of deck and superstructure, where highest ratings for deck condition 

corresponded to cast in place deck with wearing surfaces of integral concrete. For 

superstructures, higher condition rating corresponded to prestressed concrete.  

• Span type affected all condition ratings, for superstructures and substructures 

continuous spans had higher condition ratings than simple spans, while for deck they 

corresponded to lower condition ratings. 
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• Peak ground acceleration, whose increase, increased the condition ratings all structural 

parts. 

• Being located within the US deicing region. Superstructures and substructures were 

affected more by the presence of deicing than by the amount of deicing applied. On 

the other hand, deck showed the same dependency to other structural parts regarding 

deicing with the additional dependency to the amount of deicing applied. 

• Precipitation with increase in precipitation corresponding to lower condition ratings. 

• Water underneath the structure affected mostly substructure’s condition rating and less 

the condition rating of the deck’s. 

Less important factors for the structural condition ratings were: 

• Average daily traffic, truck traffic and detour length, whose increase was corresponded 

to small increase in condition ratings. 

• Length, maximum span, and deck width also had a very small effect in the condition 

ratings.  
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5 Coastline effect on bridges 

The analysis of the previous chapter revealed the most important factors affecting 

bridge condition ratings. Among these, the distance from coastline was found to have a 

significant effect and that it should be studied separately, as no correlation was noted with 

other environmental factors. The methodology followed in the present chapter examines the 

effects of coexisting factors, in order to select consistent samples, where the primary 

differentiator is the distance from the seacoast. The main aim is to find the critical distance, 

within which coastline effects are observed on bridge deterioration. The procedures 

followed herein test the reliability of the NBI, the sensitivity of the recorded ratings and the 

consistency of the gathered data and the final findings. 

5.1 Introduction 

Marine and coastal environments are considered to be highly corrosive to structures 

built from common materials, such as concrete, prestressed concrete and structural steel. 

Their effect can be mostly attributed to the high concentration of chloride ions contained in 

sodium chloride (sea-salt) in seawater (Brown, et al., 1995), which causes corrosion to 

various forms and types of steel (embedded or structural). Specifically, in the case of steel, 

chlorides attack the passive layer formed at the outer steel surfaces that protects the inner 

parts from further corrosion (Schweitzer, 2010); in the case of concrete, chlorides cause a 

drop in the concrete’s pH and hence result in reduced cover protection capacity for the 

embedded steel (Bentur, et al., 1997). The chlorides’ aggressiveness stems from the fact that 

the electrochemical reactions taking place do not consume the chlorides. 

Chlorides can reach a structure’s surface either through direct contact of seawater 

(marine structures) or through seawater droplets carried by wind (Cole, et al., 2003a). The 

latter are also known as airborne chlorides and are the predominant natural way for chlorides 

to reach a distant from the coast structure (Neville, 1995). Travel distances can exceed 2km 

or can be much less depending on terrain and wind regime, making the coastal zone’s limits 

affected by chlorides difficult to determine (Neville, 1995). A complete study needs to 

consider the procedures of airborne salt production, travelling and deposition, as well as the 

consequent deterioration mechanisms and intensity of their effects on structures. Airborne 

salt results primarily from droplets produced by breaking bubbles in the whitecaps on the 

sea surface (Blanchard & Woodcock, 1980). Their concentration depends on the percentage 

area of whitecaps formed on the sea surface, the bubble sizes generated, as well as the wind 
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(intensity, direction, etc.). The produced particles become airborne and exhibit an attenuating 

concentration with height, with maximum concentration observed just above sea level 

(Blanchard & Woodcock, 1980). Then, the airborne salts are transported inland by wind and 

deposited on the structures’ surfaces. 

Various methods exist to measure the concentration of deposited chlorides, see e.g. 

(Ambler & Bain, 1955), with the wet-candle method being the most popular one. This 

method consists of an experimental setup placed in predetermined locations, in accordance 

with specific national standards. After a preset duration, the content of each setup is collected 

and analyzed with various methods (e.g. chromatography), in order to determine the 

concentration of the deposited chlorides. Other experimental methods include the Japanese 

salt sampler (Mishikawa & Tanaka, 1993) and the advanced Japanese salt sampler that can 

also measure the wash-off from precipitation (Chen, et al., 2013). In all cases, chloride 

deposition is assessed in combination with the specific characteristics of specimens made of 

materials such as metals, concrete or mortars, in order to measure surface chloride as well 

as ingress. In general, the experimental setup is placed at various distances or/and heights 

(Mustafa & Yusof, 1994), in order to measure the attenuation of deposited chlorides with 

distance. The deposition can be measured in monthly intervals, while the specimens are 

analyzed in larger intervals to measure chloride ingress. 

In general, the attenuation of chloride deposition with distance can be fitted by an 

exponential function (Feliu, et al., 1999), but, as can be expected, the deposition rates vary 

significantly mostly due to seasonal or local changes. For example, an average reduction of 

the initial chloride deposition exceeding 90% was observed after about 200m distance from 

the coast in studies conducted in Brazil (Meira, et al., 2010) (Pontes, et al., 2009) and 

Bangladesh (Hosain, et al., 2009). In another study conducted in Taiwan (Chen, et al., 2013), 

the seasonal average was calculated and results showed a seasonal percentage of about 88% 

reduction of the initial deposition at distances exceeding 1km for autumn and winter. In the 

same study, the critical height of monthly precipitation above 100mm was found to reduce 

the adhesive airborne salt, provided the wind has direction from sea to inland. The critical 

speed of such winds, categorized as ‘saline’, was estimated to be above 3m/s using the wet-

candle method in Spain (Morcillo, et al., 2000). Moreover, the effect of elevation has an 

important effect on the deposition rates. A 60% difference was noticed between the initial 

setup placed at 5m height and a second at 15m height, both located at 30m from the coast 

(Mustafa & Yusof, 1994). Blanchard and Woodcock (1980) also noticed an inversion layer 

for speeds between 3m/s and 8m/s that causes a sudden increase in sea salt concentration at 
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altitudes of 500m and 600m above sea level. Additional factors, such as terrain topography 

and obstacles or channeling effects, can alter the deposition rates significantly. Further 

information on these factors can be found in an Australian study regarding atmospheric 

corrosion (Cole, et al.; 2003a; 2003b; 2003c; 2004a ; 2004b). 

The atmospheric deposition of chlorides is of major importance also because its effect 

on materials provides useful information on durability of steel and concrete structures. 

Ambler and Bain (1955) observed that the amount of corrosion in steel varies linearly with 

the deposition of chlorides. The effects of atmospheric deposition of chlorides on concrete 

are more complicated than steel. Surface chlorides reach the steel bars through water 

absorption and chloride diffusion (Neville, 1995). Thus, properties of concrete, such as water 

binder ratio and curing, affect diffusion and surface chloride content (Song et al. (2008). 

Mortars with high cement content, lower absorption capacity and lower porosity were found 

to be more resistant to sea salts (Hosain, et al., 2009). Environmental properties like 

temperature and humidity levels also greatly affect chloride transport through concrete. 

Laboratory tests performed by Alhozaimy, et al. (2012) on reinforced concrete specimen 

with varying temperatures and chloride content at high relative humidity (85%) showed that 

there is a limit to the increase in temperature (at 40oC), after which corrosion is reduced. 

Extrapolating results from experimental tests to real structures may be problematic. 

Test specimens have controlled material quality and exposure (regarding position and 

duration); such characteristics may vary significantly in structures due to prolonged 

exposure, as well as the coexistence of other factors. Thus, measurements of the deterioration 

in actual areas of chloride deposition could be utilized for delimiting the coastal effect due 

to longer exposures. Chen et al. (2013), in their study on airborne chlorides, instead of using 

specimens, measured the surface chloride content on real structures and found a linear 

correlation to the measurements of their experimental setup. Medeiros et al. (2013) studied 

the chloride content of a 40-year old concrete building’s exposed columns; despite the lower 

depositions of chlorides due to the 700m distance from the coast, their accumulation was 

noticed to cause major differences compared to the core sample at different position as well 

as height. Similar conclusions were drawn for concrete bridge structures by McGee (2000) 

in his study on Tasmanian bridges and by Tanaka et al. (2006) for prestressed concrete 

bridges located in the first 500m inland from the coast of Japan. 

In this work, the effect of airborne chlorides to a sample of almost 20,000 bridge 

structures is studied using NBI data, with the purpose of macroscopically delimiting the 

coastline effect on deteriorating bridges. To perform this, high accuracy coastline 
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coordinates were combined with bridge coordinates to form 12 distance groups up to 10km 

inland from the coast. 

5.2 Analyzed bridge sample and coastal distance zones 

The US coastline has a total length of about 95,000 km hosting more than 9,300 km of 

highway (Qin, et al., 2007) with several bridges. In addition to the deterioration factors 

addressed in Chapter 4, bridges in coastal areas are exposed to airborne chlorides from 

seawater, as well as to other factors that may interact to intensify or reduce the chlorides’ 

corrosive effect. In this section, these factors are noted and the procedure followed to 

determine the distances of bridges from the seacoast for the dataset under study are 

presented. The bridges are then grouped into zones according to their coastal distances to 

facilitate the subsequent analysis. 

In Chapter 4, the most important factors affecting bridge condition ratings were 

derived: (i) year of construction, (ii) year of reconstruction, (iii) structural material, (iv) 

location (correspondingly specifying the earthquake hazard and the potential for deicing at 

each region), (v) water presence underneath the bridge and (vi) yearly precipitation. 

Moreover, the ground elevation for each bridge was determined using ordinary Kriging 

interpolation between known elevations of weather stations. The wind data provided by 

NOAA (2017b) could not be included in the analysis for coastal bridges. This was due to the 

fact that wind data regarded only 56 weather stations in all US territory, which could not 

provide a dense network to interpolate wind. Furthermore, the wind information regarded 

hourly records of predominant wind magnitude and direction. Although average speed and 

directions were calculated from the data and verified from older studies (Klink, 1999) to 

observe irregularities, studying such variating factor with average speed and direction could 

be misleading. It is also worth mentioning that additional variables should be added to take 

wind data to account, such as direction of the structure and information regarding the terrain. 

Attaining and incorporating such information would induce a large degree of complexity of 

the study and change its macroscopic nature, which is based on condition ratings. It should 

finally be mentioned that the US coast is also exposed to the accidental effects of tsunamis 

(Ghobarah, et al., 2006) and hurricanes (Padgett, et al., 2008), which could cause severe 

damage to bridges. In fact, the East coast is vulnerable to hurricanes (ASCE, 2010), see map 

in Appendix A-III.1 taken from this source) and the West coast to tsunamis (USGS (2017), 

see map in Appendix A-III.2 taken from this source). It can be macroscopically deduced 

from these maps that, for the tsunami and hurricane hazards, certain geographic uniformity 

exists. 
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Figure 5.1 provides a visualization of the whole dataset of US bridges using their 

interpolated elevations, as well as the designation of the deicing and high earthquake hazard 

regions (found in Chapter 4 to affect bridge condition). A more detailed figure with 

additional elevation categories is given in the Appendix (A-III.3). Regarding earthquake 

hazard and precipitation, detailed maps are provided in the Appendix of Chapter 4 (A-II.2, 

A-II.6). Figure 5.1 indicates differences between the east and west coasts in ground elevation 

and earthquake hazard. 

 

Figure 5.1: Information for elevation, deicing, and earthquake hazard (peak ground acceleration) for the 

bridges located in conterminous US. 

Τhe bridge distances from the coast were estimated using the bridge and coastline 

coordinates provided by NBI and NOAA (NOAA, 2017a), respectively. The US coastline 

includes various geographic details, such as cuspate forelands, tombolos, spits, bays, lagoons 

and barrier islands, creating a complicated pattern for distances to be calculated (Fig. 5.2). 

Additionally, the presence of many rivers, which flow into the sea and exhibit varying 

salinity levels throughout the year, create the need to define a reference coastline to study 

the effects of airborne chlorides. This was achieved by smoothening or eliminating certain 

geographical details, making this way the coastline profile simpler. Hence, the NOAA 

coordinates were imported into AutoCAD software and, by visualizing also the surrounding 

terrain form using satellite images of Google maps, the reference coastline coordinates were 

determined. Moreover, wide rivers directly linked to the sea, bays, lagoons and barrier 

islands were considered to have seacoast limits, after their periodical salinity levels were 
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checked from sites of local agencies. A characteristic example is the case of Florida’s 

Caloosahatchee River, which is displayed in Fig. 5.2; salinity levels for this case were taken 

from Charlotte Harbor Wateratlas (CHNEP, 2017) web page. Other geographical details, 

such as small rivers and streams, which only created unnecessary complications, were 

ignored. 

To facilitate the analysis regarding bridge distances from the seacoast, a number of 

distance zones were specified. Thus, using AutoCAD’s ‘offset’ command, the reference 

coastline was copied inland at equal distances: a new ‘parallel’ line was drawn every 1km 

and up to 10km from the original coastline. According to the referenced literature, the overall 

coastal region included by the 10km border inland should be enough for changes in airborne 

chlorides effects to be noticeable. Additional offset lines were generated within the first 

kilometer at distances of 250m and 500m from the coastline, in order to be able to observe 

the gradual attenuation of airborne chlorides effects very near the seacoast. To make sure 

that all bridges over seawater (marine bridges) would be included in the analysis, a wider 

(extended) shape was formed for the first distance zone (from seacoast to 250m inland) 

surrounding the islands (Fig. 5.2). Thus, the first distance zone was defined as a polygon 

using the coastline (together with the extension to include islands) and its ‘parallel’ line at 

250m inland. Similarly, the other distance zones were defined as polygons using consecutive 

lines at the aforementioned distances up to 10km from the coast. To make sure that bridges 

Figure 5.2: Accuracy of drawn distance zones: a) the coastline width of 10km of the state of Florida, b) a zoom in to 

the certain region where some of the mentioned details existed c) the roadmap and the precision of the coordinates of 

the NBI as well as the precision of the overall procedure and d) a zoom in, in an area where bridges are located over 

water parallel to the highway. 

(c) 

(d) (b) 

(a) 
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on islands are properly handled, the defined mainland polygons were linked with the islands’ 

distance zones by drawing thin connecting polygons (see red lines in Fig. 5.2(c)). 

In order to assign bridges to corresponding distance zones, the coordinates of the 

polygon vertices were imported into Matlab software. The accuracy level achieved by the 

overall procedure is demonstrated in Fig. 5.2(c) and d, where satellite and roadmap images 

of Google maps are shown in the background. Inevitably, due to the coastline simplifications 

made at regions with complex landscapes, some errors in the assignment of bridges to 

distance zones should be expected, which are however very few to noticeably affect the 

results of this study. 

Before presenting the main analyses of this chapter, an exploratory data analysis was 

performed to gain some insight into the coastline bridge sample assessed (see A-III.4, A-

III.5 at the Appendix). The basic characteristics of the sample (comprising of all bridges with 

distance <10km from the coastline) can be summarized as follows: 

• The overall population of the sample is 19,214 bridges with an average year built 

of 1973. 

• The reconstructed bridges are about 20% of the overall population. 

• Regarding the bridges’ spatial distribution, most of these are located within areas 

where: deicing is allowed (76%), the seismic hazard corresponds to PGA<0.2g 

(71%), the elevation is <50m (90%) and the annual precipitation is >40in (84%). 

• More than half (58%) of the sample’s bridges are over water. 

• The superstructure of the sample’s bridges is made of either concrete (25%), 

prestressed concrete (36%) or steel (38%). 

• Concrete is the dominant material for the decks of the sample’s bridges (95%). 

• As no categorization for substructure’s material is provided in the NBI, concrete is 

assumed for all bridges. 

5.3 Analysis of interactions of factors affecting bridge deterioration 

In the previous chapter, lower condition ratings were noticed closer to the coast, but, 

to delimit the coastline effect, a closer examination should be performed. A first step to 

distinguish the main effects is to explore the interactions between potentially influencing 

factors. 

5.3.1 Interaction plots 

As the aim of this work is to study bridge deterioration, the dependent variable in all 

analysis cases considered is the condition rating of basic bridge components (deck, 
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superstructure, substructure), while independent variables correspond to factors potentially 

affecting the dependent variable value. The interactions considered in this study are two-

way, meaning that two independent variables are studied simultaneously with regard to their 

effect on the dependent variable. Although the bridge sample size was adequate, continuous 

variables, such as bridge age, precipitation or elevation, could create misleading results due 

to their non-uniform spatial distributions. Thus, the following meaningful categorizations of 

independent variable values were made based on the results of the previous chapter: 

• year of construction and year of reconstruction were grouped into one independent 

variable with values organized in 7 age-levels (4 for the year of construction and 3 for 

the year of reconstruction); 

• seismic hazard was considered through a dichotomous variable indicating bridge 

locations with PGA<0.2g or PGA≥0.2g; 

• the effect of deicing was also included through a dichotomous variable indicating 

bridge locations where deicing is allowed or not; 

• the presence of water underneath the bridge was also taken into account through 

another dichotomous variable indicating presence or no presence; 

• for precipitation and elevation, dichotomous variables were specified based on the 

corresponding sample means, as there were no easily evident patterns and due to their 

complicated spatial distributions. 

A convenient way to visually present and analyze two-way interactions is by using an 

interaction plot for categorical data. To facilitate its explanation, a distinction can be made 

between the two independent variables examined at any time: the focal variable represents 

the main variable of focus and the moderator points to the various levels/groups of values 

for the other variable (Baron & Kenny, 1986). For each pair of independent variables, two 

plots are created by interchanging the aforementioned roles. The focal variable’s levels are 

displayed through different lines in the plot, while the moderator’s levels are displayed on 

the horizontal axis of the plot. The effect of each interacting pair of independent variables is 

studied by computing the average value for the dependent variable (Simonoff, 2003). For 

each level of a focal factor, the computed means are connected with lines between 

consecutive levels of the moderator, creating a continuous graph for each focal level. All 

interaction plots are organized together in an n×n table, where n corresponds to the number 

of considered variables. In this table, each column displays one moderator variable, while 

each row one focal variable. The interaction plots for superstructure condition are presented 

in Fig. 5.3; the interaction plots for deck and substructure conditions can be found in the 
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Appendix (A-III.6 and A-III.7). To index the interaction pairs in these figures, capital letters 

have been used for the focal variables (rows) and Latin numbers for the moderating ones 

(columns). 

5.3.2 Interpretation of interactions 

The key to interpreting interactions is the tracking of slope changes between the lines 

of the focal variable levels. Crossings or high slope differences of the lines of a focal variable 

indicate that significant interactions exist, while there are no significant interactions for small 

differences in slope or parallel lines. Significant interactions reveal that the two factors 

analyzed (focal and moderating) are not as important as their interaction. Thus, their effects 

on the dependent variable should be studied together. Additionally, for the case of non-

significant interactions, the visualization assists in confirming the combined effect of two 

variables by comparing the means among the different levels of the focal variable. 

In this study, more emphasis was appointed to the explanation of the main effects of 

distance from the coast and year of construction/reconstruction, thus they were placed in the 

first two columns/rows of the plots-tables. This placement assisted in showing the effect and 

interactions of the other variables on distance from coast as a moderator variable (column I), 

while column II reveals each variable’s effect for the different age groups. 

Using all mentioned indications for the interaction plots the following remarks can be 

made regarding the plots-table of Fig. 5.3. The predominant factors affecting bridge 

superstructures near the coastline appear to be: (a) year of construction/reconstruction, (b) 

seismic hazard and (c) allowing or not deicing procedures. These conclusions are based on 

plots B-I, C-I, D-I, A-II, A-III and A-IV. The magnitude of effects can be noticed in column 

I of the plots-table and can be confirmed for different years of construction/reconstruction 

in column II. Plots C-IV and D-III show the combined effect of seismic hazard and deicing 

policy, which reveals difference regarding the mean condition rating as well as similar slopes 

of interaction lines. Analogous effects were observed also for substructure condition in 

Appendix (A-III.7), while the remark that deck condition is not affected by high seismic 

hazard is confirmed in Appendix (A-III.6). Furthermore, from interaction plot B-I, a pattern 

of lower condition ratings near the coast can be noticed for different years of 

construction/reconstruction. This does not apply for the case of bridges reconstructed before 

1960 and bridges constructed before 1940, but this inconsistency could be attributed to the 

small sample sizes within the first distance zones. Additionally, the interaction plot B-I 

displays more inclined interaction line slopes for older bridges, probably due to their 

prolonged exposure. Also, the similar line slopes and differences in mean values of plot A-
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II reveal small but constant changes due to distance from coast. On the contrary, the large 

differences noticed in line slopes of C-II reveal better condition ratings for all years of 

construction/reconstruction for higher seismic hazard, which implies better standards, 

practices etc. utilized for higher PGA. Although changes in the line slopes can also be 

noticed in plot D-II, this effect could be attributed to the spatial distribution of seismic hazard 

areas (Fig. 5.1). 
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The presence of water underneath the bridge appears to affect condition ratings only 

for the first coastal distance zone (see plots E-I and A-V), probably due to the fact that there 

are bridges over seawater in this zone. Referring to water underneath the bridge as a focal 

variable (row E), only small differences can be seen for the other moderating variables. 

Precipitation level does not seem to have any special significant effect on coastal bridges 

either (see plot F-I). A difference can be noticed, however, in plot F-II for the factor of ‘year 

of construction’, but this could be attributed to a combination of effects from deicing policy 

and seismic hazard. For instance, plots F-III and C-VI indicate similar condition ratings for 

the two precipitation levels in regions with lower PGAs, while the combination of higher 

PGAs with higher precipitation level yields worse bridge conditions. Also, notice the similar 

patterns of interactions with elevation (see plot F-VII). Furthermore, interaction lines with 

similar slopes are shown in plots F-IV and D-VI, but there are differences in the condition 

means when the deicing policy and the precipitation level are varied. As regards elevation 

(see plot G-I), the most interesting observation is that coastal bridges at higher elevations 

are in a little better condition. 

5.4 Main analysis 

The most significant factors affecting coastal bridge condition have been identified in 

the previous section. The acquired information will be used to properly segment the overall 

bridge sample and study the coastline effect with an approach different to ANOVA, focusing 

on deterioration for each coastal distance zone. 

5.4.1 Sample segmentation 

The analysis of interactions of the previous section showed that the main effects 

considered alter the bridge condition ratings without interacting with each other. This finding 

was utilized to perform a more focused examination of the overall sample, by separating it 

in segments based on the factors of earthquake hazard and deicing policy. Thus, four 

segments of coastline bridges were created in total: the overall sample was divided in two 

segments corresponding to lower (PGA<0.2g) and higher (PGA≥0.2g) earthquake hazards 

and then each of these two segments was subdivided in two more segments to distinguish 

between areas where deicing is allowed or not. The geographical locations of the 4 segments 

allow a simplification in the way they can be referenced: a segment is either at the West 

(higher seismic hazard) or the East (lower seismic hazard) and either at the North (within 

deicing region) or the South (deicing not allowed) of the US. 
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Apart from earthquake hazard and deicing policy, ground elevation was also more 

closely examined for the first coastal distance zone (up to 250m inland) and for the 4 sample 

segments defined above (see Appendix A-III.8). Although some patterns of increase in mean 

condition with increase in elevation were noticed, they showed some inconsistencies and 

therefore could not be generalized. These results do not lead to the conclusion that the effect 

of elevation should not be considered, but probably that it should be combined with terrain 

information. As such information was not taken into account, no exclusion or separation was 

made for the factor of elevation. It should be acknowledged that elevation, terrain 

topography as well as water underneath the bridge, can affect the structural condition of 

bridges, especially within close distance from the sea. 

5.4.2 Analysis procedure 

The segmented coastline provided an appropriate sample for more detailed analysis. 

The effect of airborne chlorides will be studied for each sample segment using the 

predetermined coastal distance zones. A different approach to ANOVA will be followed to 

highlight the effect of bridge deterioration on structural condition. Although ANOVA 

revealed in Chapter 4 condition differences for various distances near the coast, the 

calculated condition means and standard errors due to the sample’s variability within each 

distance zone were not easy to interpret. Due to the range of condition ratings (0-9), if bridges 

with high ratings existed within a distance zone, increased ratings would be noticed in 

ANOVA, concealing the effect of those with lower ratings and also creating larger standard 

errors. Thus, to highlight lower ratings, an alternative analysis approach should be employed 

to utilize the proportion of bridges below or equal a critical rating for each distance zone. 

Condition rating 5 was specified as such, as it can be regarded as a threshold indicating both 

significant bridge deterioration (Chapter 3) and need for rehabilitation (Chapter 4). The 

proportions of significantly deteriorated bridges were estimated for each distance zone and 

structural component (deck, superstructure and substructure) and expressed as percentages. 

Each structural component’s percentage was connected with lines between consecutive 

distance zones to form continuous graphs. It should be mentioned that the scale of the 

distance axis in all figures of this section is qualitative and the 3 first distance zones 

correspond to the first 1km. 

The condition rating provides an indication of the deterioration state but, as previously 

stated, it is linked with several factors affecting it. Thus, for example, if more newly built 

bridges exist in a certain coastal distance zone, a lower percentage of deteriorated bridges 

would be anticipated. To take into account the effect of year of construction/reconstruction 
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and of the utilized materials to the ratings, a way to ensure that consistent samples are 

comparatively assessed should be provided. Therefore, the presented results include sample 

sizes for all distance zones, while the consistency of the zones’ samples can be verified 

through the stacked bar plots given for year of construction/reconstruction and for utilized 

materials. Using such information, one can first check the homogeneity of samples with 

respect to year of construction/reconstruction and materials and then, if the samples are 

approved, interpret variations in condition ratings. 

The main results are provided in two parts for East and West coasts distinguishing the 

two seismic hazard levels considered; for each part, the results are given separately for North 

and South coasts distinguishing the locations in or out of the deicing region. An additional 

analysis has been included for Florida state due to its low elevations and its Peninsula shape; 

this combination of characteristics leads to increased travelling length of airborne chlorides. 

Moreover, an extra analysis is given referring to an older inventory (2009) for the same 

coastal distance zones, in order to compare results with respect to the ones of past 

inspections. Such a comparison provides useful information regarding the validity of the 

findings of the whole procedure followed. 

5.4.3 Results for low seismic hazard (East coast) 

The results of the analysis for the East coast are displayed in Figs 5.4 (North) and 5.5 

(South). The East coast generally comprises of lower elevations and is also prone to 

hurricanes, thus, the effect of airborne chlorides can be expected to be more evident than in 

the West coast. The North part is expected to have increased percentages of lower condition 

ratings due to deicing practices implemented; the South part should be more representative 

for the airborne chloride effects due to the warmer weather and the absence of chlorides from 

deicing. Certain notes can be made regarding year of construction/reconstruction as well as 

superstructure materials. Specifically, the North part has older bridges, it has more 

reconstructed bridges and in most cases the superstructure material is steel. The South is 

comprised of younger bridges, there is a low percentage of reconstructions, while the most 

common superstructure materials are concrete and prestressed concrete. In both North and 

South parts, the simple spans are more common than continuous spans. Also, for each 

separate sample (North/South), the chart of years of construction/reconstruction (Figs 5.4(b) 

and 5.5(b)) as well as of superstructure material (Figs 5.4(c) and 5.5(c)) presents a roughly 

uniform pattern across the different distance zones, facilitating the interpretation of the 

results in Figs 5.4(a) and 5.5(a). 
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Similar patterns can be observed in Figs 5.4 (a) and 5.5(a) for the percentage of bridges 

below or equal condition 5. In both figures, increased percentages can be noticed near the 

coast. Additionally, the expectation of increased percentages in the North due to deicing is 

confirmed. In both North and South parts, superstructure and substructure condition ratings 

seem to be affected more than the deck’s. This observation could be attributed to the fact 

that decks are generally more protected by the surrounding superstructures or non-structural 

obstacles, on whose surfaces airborne chlorides settle. It is also interesting to note the 

interchanging relative position of the lines for substructure and superstructure in Figs 5.4(a) 

and 5.5(a), which indicates higher deterioration of substructures in warmer areas (South) and 

of superstructures in colder areas (North). This note could be linked to the effect of wet-dry 

cycles, which can be expected to be more frequent in the South due to increased evaporation 

and temperatures. 

For the coastal part within the deicing region, increased percentages can be noticed at 

distances 4-8km from the coast for both superstructure and substructure (Fig. 5.4 (a)). Since 

small differences can be noticed in the years of construction/reconstruction in these distance 

zones (Fig. 5.4 (b)), only part of this increase could be attributed to the small increase in old 

bridges corresponding to the distances of 6-8km. The increased percentage of deteriorated 

superstructures and substructures at distances 4-8km could be linked to leakages from bridge 

joints commonly encountered in simple spans. This is justified by the increased percentages 

of simple span bridges in these distance zones (Fig. 5.4 (c)) combined with the fact that 

deicing salts are used in the North. A lower intensity of the same effect can be noticed for 

the deck. Thus, based on the increased percentages of deteriorated bridges observed in the 

distance zones closer to the coast, airborne chlorides seem to affect structures that are within 

the first 1km inland. For larger distances from the coast, the deicing practices implemented 

are mainly responsible for the still high concentration of chlorides deposited, while sea 

chlorides carried through the atmosphere do not have a noticeable effect. 

For the South East coast, the results are more straightforward to interpret, as the graphs 

are noticeably smoother (Fig. 5.5). Based on the increased percentages of conditions ≤5 

closer to the coast (Fig. 5.5 (a)), superstructures and substructures appear to be affected by 

airborne chlorides within the first 2-3km inland. Decks appear to be affected only within the 

first 250m from the coast. It is pointed out that the source of chlorides on bridges of the 

South coast is only the sea. Thus, the smooth attenuation of deteriorated bridge percentages 

within the first distance zones can be regarded as the pure effect of airborne chloride 

deposition. In conclusion, although differences in materials and years of 
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construction/reconstruction in the North and South parts of the East coast (Figs 5.4 (b,c)) 

and 5.5 (b,c)) do not permit direct comparisons, it can be stated that deicing exhibits a more 

uniform and dominant effect at the North, while airborne sea chlorides have a more 

significant contribution to the deterioration of bridges near the coast in the South where 

deicing is not implemented. 

 

 

Figure 5.5: Bridges within regions of low earthquake 

hazard and deicing is not allowed for the different distances 

from coast, (a) percentage of bridges below or equal 

condition 5, (b) stacked column chart for years of 

construction and (c) stacked column chart for materials of 

superstructure. 

Figure 5.4: Bridges within regions of low earthquake hazard and 

deicing for the different distances from coast, (a) percentage of 

bridges below or equal condition 5, (b) stacked column chart for 

years of construction and (c) stacked column chart for materials 

of superstructure. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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5.4.4 Results for high seismic hazard (West coast) 

The results of the analysis for the West coast are displayed in Figs 5.6 (North) and 5.7 

(South). In contrast to the East coast, the materials and years of construction/reconstruction 

for the West coast bridges have a clearly non-uniform pattern across the different distance 

zones (Figs 5.6(b,c) and 5.7(b,c)). This does not assist in interpreting results, thus only 

general remarks can be made. Hence, according to Figs 5.6(c) and 5.7(c), there are more 

continuous and less steel bridges in the West compared to the East coast. Furthermore, it is 

Figure 5.6: Bridges within regions of high 

earthquake hazard and deicing for the different 

distances from coast, (a) percentage of bridges below 

or equal condition 5, (b) stacked column chart for 

years of construction and (c) stacked column chart 

for materials of superstructure. 

Figure 5.7: Bridges within regions of high 

earthquake hazard and deicing is not allowed for the 

different distances from coast, (a) percentage of 

bridges below or equal condition 5, (b) stacked 

column chart for years of construction and (c) 

stacked column chart for materials of superstructure. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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evident in Figs 5.6(a) and 5.7(a) that the decks are generally in worse condition than other 

seismically designed structural components for both North and South parts. It appears that 

the seismic design requirements for substructures and superstructures in high earthquake 

hazard areas not only lead to higher strength and better quality structural components, but 

also implicitly increase their resistance to deterioration. In any case, no airborne chlorides 

effect can be deduced from Figs 5.6(a) and 5.7(a), as the distance from the coast does not 

seem to play any noticeable role in the condition of deteriorating bridges. 

5.4.5 Results for Florida’s coastal bridges and comparison with older inventory 

Florida state was chosen for a separate analysis due to its peninsula shape with long 

coastline, its low elevations, as well as the adequate sample of bridges available within the 

coastal distance zones. Moreover, an additional analysis using the older NBI database of 

year 2009 was performed, in order to provide a comparison of results between the different 

years of evaluation and offer the capability to confirm the existence of a critical distance 

from the sea coast for the effect of airborne chlorides. 

Before assessing the results of the two datasets, certain remarks should be made 

regarding their properties. Hence, there is a reduction in the 2016 sample size for the first 

250m from the coast, as well as for distances of 4-5km. This could be an indication of either 

abandoned/demolished/replaced bridges or modifications in location coordinates. Note that 

for the replacement of bridges new entries are made in the inventory, while the old ones are 

simply deleted. The explanation of replacements could be also supported by the fact that 

more recently constructed bridges appear in the 2016 inventory (see Figs 5.8 (b) and 5.9(b)) 

and by the small change in superstructure materials for the same distance zones. 

Despite the uncertainty induced by the fact that certain bridges have been 

reconstructed/rehabilitated between 2009 and 2016 (see also relevant discussion in Chapter 

4), some remarks can be made regarding utilized superstructure materials based on Figs 5.8 

(b,c) and 5.9 (b,c). Specifically, for the first 250m from the coast, older bridges built in 1940-

1970 with concrete superstructures and simple spans (2009 inventory) seem to have been 

replaced by bridges with prestressed concrete superstructures and simple spans (2016 

inventory). For the other distance zones, concrete superstructures with simple spans appear 

to have been replaced by continuous spans using the same material. 

As regards condition ratings, these seem to be better in 2016 than in 2009 (Figs 5.8 (a) 

and 5.9(a)). This is justified by the evident increase in recent reconstructions in all coastal 

distance zones. Finally, a critical distance of 3km from the coast can be noticed in both 

figures for the deterioration effect from airborne chlorides. 
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Figure 5.8: Florida’s bridges as in the NBI of the year 2016, 

for the different distances from coast, (a) percentage of 

bridges below or equal condition 5, (b) stacked column chart 

for years of construction and (c) stacked column chart for 

materials of superstructure. 

Figure 5.9: Florida’s bridges as in the NBI of the year 2009, 

for the different distances from coast, (a) percentage of 

bridges below or equal condition 5, (b) stacked column chart 

for years of construction and (c) stacked column chart for 

materials of superstructure. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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5.5 Conclusions 

In this chapter the effect of airborne chlorides on the deterioration of coastal US 

bridges was studied using the NBI dataset. Other coexisting factors affecting bridges along 

or near to the coastline were also considered, in order to separate the studied coast bridges 

in homogenous samples and be able to distinguish the effect of airborne chlorides. The 

predominant other effects were confirmed to be the potential for deicing and the earthquake 

hazard. 

The separated samples’ analysis focused on the deteriorated bridges located within 

designated distances from the seacoast. The distribution of utilized superstructure materials 

in each studied area appears to be related to the factors affecting condition ratings in that 

area. Specifically, for the case of higher earthquake hazard (PGA>0.2g) and for either 

deicing or non-deicing regions, superstructures with continuous spans using concrete and 

prestressed concrete seem to be generally preferred to simple spans and structural steel. On 

the other hand, simple bridge types (with non-continuous spans) are most often built in areas 

with lower earthquake hazard (PGA≤0.2g) using any of the two concrete types, especially in 

non-deicing regions. For the areas where deicing is used, mostly steel superstructures are 

encountered, but this could be attributed to the larger number of older bridges included in 

the bridge stock. 

The inventories ratings for structural condition provided the information needed to 

study the effect of airborne chlorides in increments of distance inland from the sea coast. 

Specifically, for the locations of low earthquake hazard and no deicing, distances up to 2-

3km inland showed to be affected, which was confirmed by the separate analysis for Florida 

state. On the other hand, in areas where deicing is applied, the airborne chlorides appear to 

affect distances only up to 1km inland from the coast. The smaller affected distance suggests 

that chloride deposition beyond 1km is dominated by deicing salts, which conceal the effect 

of airborne chlorides. For the locations of higher earthquake hazard, the results obtained do 

not show noticeable effect from airborne chlorides. 

It is worth mentioning that the derived maximum distances inland from the seacoast 

affected by airborne chlorides correspond to the ‘snapshot’ of NBI-data for a particular year. 

The bridges included in NBI are continuously aging, while some are eventually 

reconstructed or replaced. Hence, larger or smaller maximum distances from the coast may 

be identified using a future NBI dataset, as the conclusions drawn depend to some degree on 

the composition of the bridge stock analyzed at any time. Despite the dynamic evolution of 

the studied sample with time, the general conclusions of the present work are not expected 
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to change, at least from a qualitative viewpoint. The conclusions are based on trends 

representing stock properties, therefore the effect of small sample changes are smoothened 

out. 
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6 Environmental effects on the structural deterioration of bridges 

The Chapter focuses on bridge deterioration, due to corrosion, for environments defined 

in Chapter 4. Age and probabilities of deterioration, along with probabilities of rehabilitation 

are utilized to perform the analysis. The interpretation of results assists in validating the effects 

of the environmental exposures considered. In addition, comparison to older inventory results 

test the methodology’s sensitivity, setting the ground for next chapter’s predictions of future 

conditions to be performed. 

6.1   Introduction 

Structural deterioration is the main reason the service life of built infrastructure is 

suppressed and vast budgets are spent to extend it. Different parts and materials of a bridge can 

be susceptible to various environmental exposures, depending on the years of service. All 

common bridge materials (structural steel, concrete and prestressed concrete) utilize the 

benefits of carbon steel but are also affected by its susceptibility to corrosion. Thus, to study 

deterioration, apart from the prerequisites of corrosion, evaluations of built infrastructure 

should be taken to consideration for different materials and environments. Results from such 

studies can lead to optimal allocation of materials already in use but also motivate the market 

to develop more durable – but also more expensive – materials, such as fibre reinforced 

polymers. 

Industrial steel corrodes to form electrochemically stable products. For corrosion to 

occur, an anode, a cathode and an electrolyte (such as water), which provides the medium, is 

needed. The main ingredient consumed during this process is iron, which bonds with oxygen, 

producing soluble and porous oxides at the anode (Davis, 2000). Although corrosion products 

have a passivating effect to the underlying steel surface, they can be easily removed if wetted 

or attacked by aggressive agents, such as chlorides, initiating corrosion (Davis, 2000). Different 

types of corrosion exist and can be categorized by environmental exposure, such as aqueous 

and atmospheric (Chapters 4 and 5), while other categorization refers to corrosion effect on 

steel and actions involved, such as uniform, pitting, crevice, stray-current etc. (Davis, 2000). 

Differences among them are due to variations in the ratio of anodic to cathodic area, presence 

of aggressive agents (pitting) or stray current, relative movement of surfaces under pressure etc. 

(Podolny, 1992). 

Steel passivity is a desirable condition as corrosion rates drop close to zero, preventing 

further corrosion (Davis, 2000). Among the corrosion types mentioned, only in uniform 

corrosion the underlying surface can be passivated, if oxides are not removed or attacked. To 
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limit corrosion type variability, different passivating procedures are followed depending on 

steel’s exposure. Thus, for steel superstructures, passivity is achieved by using materials that 

form more dense and durable oxides. This is performed by either selecting paint systems, whose 

main ingredient is zinc (Davis, 2000), or by selecting other steel types, such as weathering steel 

(Schweitzer, 2010; Kogler, 2015). Concrete on the other hand, provides different levels of 

protection to the reinforcing steel. For corrosion, protective cover provides physical protection, 

not only from direct exposures but also from its complex pore system and alkaline properties, 

which also provide chemical protection to the reinforcing steel (Jackson & Dhir, 1996). Another 

level of protection concerns a protective layer of dense impenetrable oxides formed at concrete 

steel interface, known as “passive” film (Broomfield, 2007). Its protections attributes depend 

on the preservation of the alkaline environment in its vicinity, providing electro-chemical 

protection (Jackson & Dhir, 1996). 

Disruptions of the protection mechanisms in either structural steel or reinforcement 

promote corrosion initiation. Corrosion of structural steel has been studied for many years due 

its wide industrial applications. To model corrosion, the reduction of material volume due to 

rust formation is described through a time function, which depends on environmental conditions 

and steel types. Similar procedures have been followed to assess the durability of paint systems 

under different environmental exposures (Kallias, et al., 2017). Furthermore, corrosion of 

structural steel members can be visually detected and can be treated if noticed in early stages.  

The same does not apply for concrete, which is the most commonly applied material of 

the different bridge parts. The major concern for bridges came with the use of deicing salts and 

their effect on concrete’s and prestressed concrete’s durability (Balafas & Burgoyne, 2010). 

Chlorides destroy the electrochemical protection of high pH environment and its ability to bond 

with aggressive chemicals, preventing them from reaching the reinforcing steel (Broomfield, 

2007). Furthermore, no early notices are given until cracking of concrete’s cover caused by 

inner pressures rising from volumetric increase of corrosion products (Balafas & Burgoyne, 

2010). Although collapses of reinforced concrete structures due to corrosion are rare, the effect 

on safety of the users is not rare, because of the possibility of falling parts due to spalling 

(Broomfield, 2007). The main concern regards prestressed concrete, as tendon area reduction 

due to corrosion reduces prestressing, which is needed for the equilibrium of the structure. In 

addition, corrosion in prestressed structures may not give signs of distress. This is because 

corrosion products possess low volumes and this is due to low oxygen concentrations at the 

tendons depth. High strength and low permeability concrete used in such structures in 

combination to high cover depths limits the oxygen availability while corrosion unfolds. 

Evidence of corrosion in prestressed structures is sudden, limiting reaction time and leading to 
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disastrous collapses (Broomfield, 2007; Woodward & Williams, 1988). Corrosion 

consequences have led to a wide research interest to derive models for predicting the time to 

corrosion initiation. 

Corrosion of steel in concrete is separated in to two main stages, corrosion initiation and 

corrosion propagation (Tuuti, 1982). The first is governed by mechanisms of transport through 

concrete. Chronologically, it begins from the exposure to a chloride solution and ends when the 

chlorides have reached the vicinity of reinforcement and surpassed a certain threshold 

concentration. The ingress of chlorides is usually modelled by Fick’s second law of diffusion, 

under the assumptions that diffusion coefficient and surface chloride content are constant and 

concrete pores are fully saturated (Bertolini, et al., 2013). The constant variables of Fick’s 

formula take values based on the fitting of experimental data from specimens or core-samples. 

Although based on several assumptions, the modelling of chloride transport through concrete 

has progressed during the past decades (Angst, 2018). On the other hand, the prediction 

capabilities for estimating the time to corrosion initiation of the mechanistic models are limited 

due to their sensitivity in chloride threshold and its variability (Angst, 2018). The problem 

mainly relates to the nature of the passive film (Angst, 2018; Hussain, 2014). Additional 

complications arise with the use of environmentally friendlier concrete with lower clinker 

consistencies, which are more prone to carbonation (Stefanoni, et al., 2018). The same applies 

for the propagation stage, where cracking and spalling occurs, which is generally accepted to 

last 4-6 years (Bentur, et al., 1997). The former duration could be prolonged to 20 years 

depending on environmental exposure and rust production (Balafas & Burgoyne, 2010). These 

limitations restrict mechanistic models of concrete materials from performing useful 

comparisons with steel materials regarding durability to corrosion. 

Bridge parts may be exposed to various environments and, even for the same element, 

structural deterioration may vary due to type and duration of exposure. Wet dry cycles, freeze 

thaw cycles, the splash zone, high temperatures and humidity may alter the corrosion rates of 

steel especially in presence of aggressive agents, such as chlorides (Neville, 1995). Additional 

effects, such as fatigue creep and construction errors, can increase the modelling uncertainties 

(Melchers & Beck, 2018). To account for the variating effects taking place, studies have utilized 

inspection records of built infrastructure to statistically model deterioration.  

Statistical deterioration models range from bridge element level to macro-elements, such 

as the case of NBI. Bridge Management Systems (BMS) utilize element level to assist owners 

in planning repairs, inspections and rehabilitations (Ryall, 2001). Their main purpose is to 

predict the future condition of a bridge element utilizing records of its previous conditions. 
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More information regarding the prediction of future conditions and methodologies used are 

provided in Chapter 7.  

Statistical models could be utilized to address differences in structural deterioration 

between materials and/or environments. For the US, most studies are performed for individual 

States  (Kim & Yoon 2010; Sobanjo et al. 2010; Bolukbasi et al. 2006; Turner, et al., 1991; 

Yanev & Xiaoming, 1993;Chang, et al., 2017), where most variations occur due to average 

daily traffic, therefore performance can be measured. In addition, the fact that different 

methodologies of sample selection and analysis have been used at different States forbids direct 

comparisons between their models. On the other hand, studies incorporating bridges of all 

States (Dunker & Rabbat, 1990; 1992; 1993; 1995; Farhey, 2010; 2012; 2014; 2015; Lee, 2012) 

show material performance that varies significantly, but alterations for environmental factors 

have not been taken to consideration. Furthermore, when condition data for individual states 

from North and South were compared (Veshosky et al. 1994), similar durability performance 

was observed between construction materials. 

In this work the NBI database, in combination with the additional factors introduced in 

Chapter 4, is utilized to reveal the structural deterioration of bridge parts and materials for the 

conterminous US. The analysis involves comparisons between environmental exposures for the 

main materials of superstructure, substructure and deck. The results are furtherly interpreted 

based on corrosion, validating older findings and showing areas where additional research could 

be performed.   

6.2 Methodology 

The US include a variety of factors that affect structural condition. In this subsection the 

performed analysis and the procedures to manage the sample are presented. As seen from 

Chapters 4 and 5, factors that predominantly affect the structural condition of bridges are related 

to ‘external’ factors, i.e. earthquake hazard, deicing salts, water underneath, precipitation, as 

well as ‘internal’ factors, such as year of construction, year of rehabilitation, material types etc. 

Also, some factors contribute in condition melioration, such as the case of earthquakes due to 

strict design standards, while most of the other factors are related to corrosion of steel or 

degradation of mechanisms protecting it. This work aims to seek links between environments 

and corrosion. Variables that could reveal and validate the extent of deterioration are linked to 

the bridge age, as well as the condition rating of the examined structural part. To perform such 

analysis, bivariate plots were used with age in the horizontal axis and an appropriate measure 

was adopted to describe the deterioration at each age, representing the vertical axis. Each bridge 

part for each environmental factor could be analyzed in a type of time-series analysis. Thus, 
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meaningful segmentation should be made to the whole sample, first regarding the 

environmental factors and then the materials contained in each part. 

6.2.1 Sample segmentation 

As seen in Chapter 5, meaningful segmentations based on the condition ratings limit the 

averaging effect of bridges that differ in exposure. To prioritize the variables, for which the 

segmentations are performed, the magnitude of the most predominant variables and their 

interactions, similarly to Chapter 5, were utilized. The factors of peak ground acceleration, 

deicing water underneath and precipitation were used for the whole sample of 443,603 bridges 

(A-IV.1-3). Furthermore, an additional analysis of the spatial distribution of materials was 

carried out (A-IV.4), to investigate irregularities caused by design preferences (i.e. continuity 

and materials). 

The results showed that the most affecting factor was peak ground acceleration, which 

increased condition ratings validating the results of Chapters 4 and 5. Additionally, the 

observations of Chapter 5 regarding preferences for continuous bridges of concrete and 

prestressed concrete and less steel in high seismic hazard areas (≥0.2g) were confirmed. Thus, 

the high seismic hazard areas were excluded from the analysis, as they should be analyzed with 

additional criteria, possibly with further segmentations to peak ground acceleration. 

The first segmentation included bridges within the deicing region, which appeared to be 

the second most influencing factor. For the second segmentation, the factor of water underneath 

was selected due to the significant differences it created for substructure. Although precipitation 

was not selected for main segmentation, it is considered among the factors used in further 

analysis and/or in explanation of results. 

To achieve better sample uniformity, some exclusion were performed regarding the 

coastline effects of Chapter 5 and material types of decks. Specifically, bridges located within 

2km from the south-east coast, where no deicing is used, and 1km for the North east coast, 

where deicing is used, were excluded. No further exclusions were performed for the West coast 

as all bridges were excluded due to high seismic hazard. It was observed that decks made of 

wood have poor condition ratings; due to the correlations among condition ratings found in 

Chapter 4, the whole bridge record and not only deck condition was excluded from the analysis 

for these bridges. 

For the two segmentations performed, four environmental exposures were defined (Fig. 

6.1) that include bridges: 

• ‘no deicing, no water’: out of deicing region, not over water, 

• ‘no deicing, water’: out of deicing region, built over water, 
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• ‘deicing, no water’: within the deicing region, not over water, 

• ‘deicing, water’: within the deicing region, over water. 

Confounding factors that could affect deterioration are high temperatures and 

precipitations for non-deicing regions. Although carbonation has not been studied herein, 

bridges not over water can be regarded to be more exposed. This can be also noticed from the 

map of carbon dioxide emissions provided in the Appendix (A-IV.5), showing that increased 

CO2 emissions coincide with no water environments of Fig. 6.1 (a). Thus, air polluting chemical 

agents and environmental changes, although not included, can increase deterioration (Kumar & 

Imam, 2013). Other sources that could alter deterioration are mentioned in the main analysis 

(section 6.3). 

 

 

 

Figure 6.1: Segmentations of the sample based on the exposure of deicing salts (red line (a) and 

(b)) and on the existence of water underneath the bridge to no water underneath (a) and water 

underneath (b). 

a) 

b) 
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6.2.2 Non-satisfactory condition 

The condition ratings of deck, superstructure and substructure were used to indicate 

deterioration. Condition ratings below or equal 5 were selected for the analysis, as 5 

corresponds to ‘fair’ condition. In this condition all primary structural elements of a bridge part 

are sound but may have minor section loss, cracking, spalling or scour (FHWA, 1995). Lower 

conditions were also included as they indicated more advanced damage. Thus, bridge parts with 

ratings below or equal 5 were considered as being in non-satisfactory condition. 

6.2.3 Bridge age and the issue of rehabilitated bridges 

The NBI provides three time references: year of construction, reconstruction and 

inspection. Those can be utilized to determine the age and deal with rehabilitation issues. Year 

of construction and year of reconstruction correspond to the initial construction of a bridge and 

the last major repair work or rehabilitation that took place (FHWA, 1995). As seen in Chapters 

4 and 5, both affect the condition ratings in a different way. For non-rehabilitated bridges, the 

year of construction signifies the years of service of each bridge. On the other hand, 

rehabilitated bridges are generally in better condition, but, apart from the year of reconstruction, 

no information has been provided in NBI regarding the repaired/rehabilitated part. The year of 

inspection corresponds to the last inspection constituting a reference time as to when the current 

condition ratings were assigned. Thus, the age of a non-rehabilitated bridge was estimated by 

subtracting the year of construction from the year of inspection. For rehabilitated bridges, two 

different ages were utilized, one to define the age of a bridge from its initial construction and 

the second the age from its rehabilitation. The first age was estimated similarly to non-

rehabilitated bridges, while, for the second age, the year of reconstruction was subtracted from 

the year of inspection. 

For each segmented bridge sample, an exploratory analysis of the age contents was 

carried out for non-rehabilitated bridges and for rehabilitated bridges utilizing both ages 

computed (A-IV.6-13). The results presented in the Appendix for each environmental exposure 

are given for continuous and simple types (based on the material categorization of 

superstructure). Deck and substructure results are presented together, as no segmentations are 

made based on material for these bridge parts and no condition ratings are used in the analysis. 

Segmentations are performed, however, for superstructure materials. 

The analysis revealed that the vast majority of not-over-water-bridges, has been built after 

1956 (age 60 in Appendix-IV. 6-13), and their locations (Fig.6.1 (a)) relate with the interstate 

network, whose main construction started at that same year (Weingroff, 1996). Additionally, 

the same category of bridges appeared to have more rehabilitations when compared to the 
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bridges over water. Also, attention was specifically given to prestressed concrete bridges, as 

this material was not used prior to the 1950s. Prestressed concrete bridges durability 

performance in different environments can be observed in the Appendix (A-IV.10-13), while 

Fig. 6.2 shows rehabilitated and non-rehabilitated prestressed bridges located in all 

environments. The age of rehabilitated bridges listed is computed also according to the year of 

initial construction and shows prestressed bridges built before 1950, when prestressing 

technology was not available. The same bridges, when listed by age of reconstruction, all appear 

to have ages younger than 60, signifying a switch in the superstructure material to prestressing 

during rehabilitation. 

Bridges’ material switching during rehabilitation, along with lack of information 

regarding parts rehabilitated, conditions prior to rehabilitation and reason of rehabilitation, led 

to the definition of a separate sample for rehabilitated bridges. Hence, rehabilitated bridges 

were excluded from the main analysis. On one hand, their incorporation would lead to erroneous 

results, on the other hand, their exclusion from the main analysis could bring rise to sample 

selection bias, a topic that is discussed in the following subsection. 

 

Figure 6.2: Aggregation of prestressed concrete bridges. Rehabilitated bridges (green line) that appear to have 

been built from prestressed concrete, when listed with regard to the age from reconstruction (red line) 

reveal changes in material. Also, minor variations (0.2% of the non-rehabilitated sample) noticed for 

non-rehabilitated bridges (black line) after 66 years are due to coding errors of year of reconstruction 

or material-type. 
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6.2.4 Cumulative Condition Probability (CCP) 

The selection of a specific year’s NBI dataset to study deterioration provides static 

information regarding the age of a bridge and its condition at the year of inspection. Thus, each 

bridge condition rating can be regarded as the result of the years of exposure equivalent to its 

age. To compare deterioration among different strata, cumulative frequency below or equal 

condition 5 was inappropriate due to its dependency on the size of each age group. For the same 

reason, Kaplan Meier estimator (Kaplan & Meier, 1958) should not be used, as the purpose of 

the study is not to identify the stock’s problematic bridges, but to determine bridge deterioration 

caused by various environmental factors. Other studies have used the mean age or the mean 

condition rating of each age; the effects of mean condition rating for the NBI sample handled 

herein have already been presented in Chapter 4. Hence, the proportion of bridges being in the 

conditions of interest (rating ≤5) for each age was adopted as the measure analyzed, similarly 

to the studies of Dunker and Rabbat (1990; 1992; 1993; 1995) and Farhey (2014; 2015). 

The segmented samples of the four different aforementioned environmental exposures 

were grouped according to their construction material and were sorted by age. For each age, the 

number of bridges at a particular condition (rating 0-9) varies due to its dependency on the 

sample of that age. Herein we are particularly interested in referring to all bridges in a condition 

characterized with a rating below or equal a particular threshold value. Following the 

frequentistic definition of probability (Faber, 2012), the proportion of bridges below or equal a 

threshold value at a particular age is referred to as Cumulative Condition Probability (CCP). It 

is computed independently for each age as follows: 

𝐶𝐶𝑃𝑖(𝑡) =
𝑁𝑐,𝑖(𝑡)

𝑁𝑐,𝑡𝑜𝑡(𝑡)
=

∑ 𝑁𝑗(𝑡)𝑖
𝑗=0

∑ 𝑁𝑗(𝑡)9
𝑗=0

=
𝑁0(𝑡) + ⋯ + 𝑁𝑖(𝑡)

𝑁0(𝑡) + ⋯ + 𝑁9(𝑡)
   (6.1) 

where: CCPi(t) is the CCP for structural condition ≤i of the bridges at age t; Nc,i(t) is the total 

number of bridges at condition ≤i at age t; Nc,tot(t) is the total number of bridges at age t (at any 

condition 0-9); Ni(t) is the total number of bridges at condition i at age t. 

In this chapter, CCP5 corresponding to the probability of a bridge being in non-

satisfactory condition is utilized. CCPs for other condition thresholds are presented in Chapter 

6. The graphs shown in this chapter present CCP5-values calculated at various bridge ages. For 

each studied sample, an increasing trend of CCP5 with time is anticipated due to aging linked 

with environmental exposure. The results are presented for bridge age up to 60 years, in order 

to have some uniformity among the effects of environmental factors (no water or water 

underneath) and structural materials (especially for reliably handling prestressed concrete). 
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Note that variations should be expected in the graphs, as CCP5 is separately calculated for each 

independent age group, while the sizes of these groups are generally different. 

6.3 Results and discussion 

Table 6.1 provides information regarding the sample population in terms of structural 

materials utilized for each environmental exposure considered for the 60-year analysis. The 

most popular bridge material under all environmental exposures is prestressed concrete with 

simple (non-continuous) spans, with the exception of ‘no deicing, water’, in which simple-span 

concrete is mostly used. Moreover, there is a lower preference to continuous spans for 

prestressed concrete bridges in all environments, for steel in environment ‘no deicing, no water’ 

and ‘deicing, water’, and for concrete in environment ‘no deicing, no water’. Smaller sample 

sizes indicate that higher variations in the results should be expected, which can be furtherly 

justified by the sample for each individual age (Appendix A-IV.6-9). For decks and 

substructures, since there is no material categorizations, sample segmentations were performed 

for the existence of construction joints, which were seen to affect substructure and 

superstructure condition in Chapter 5. Thus, all samples including bridges with simple spans 

are aggregated to form the overall sample signifying construction joint presence and, similarly, 

continuous spans for construction joint absence. 

Table 6.1: Sample size for each environmental exposure analyzed. 

Material/Environment 

Deicing, 

no 

water 

Deicing, 

water 

No 

deicing, 

no water 

No 

deicing, 

water 

Concrete simple 7% 11% 7% 42% 

Concrete continuous 9% 12% 7% 4% 

Steel simple 23% 25% 13% 10% 

Steel continuous 25% 9% 17% 4% 

Prestressed concrete simple 26% 37% 48% 36% 

Prestressed concrete 

continuous 
9% 6% 9% 4% 

Sample size 50,376 144,688 18,490 52,036 

 

In the remainder of this section, the sample selection bias is first addressed. Then, the 

main analysis results are given separately for bridge decks, superstructures and substructures. 

An additional analysis to compare the current prestressed concrete superstructures to those of 

an older inventory is reported. 
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6.3.1 Sample selection bias 

This section addresses the issue of bias imposed during the selection of the samples 

analyzed. Since bridge materials after rehabilitation may have been changed and there is no 

clarification in NBI regarding materials in the bridge’s initial state (before rehabilitation), 

rehabilitated bridges are categorized only according to the environmental exposures. Most 

rehabilitations performed are related to bridges exposed to ‘deicing, no water’ (20% of the 

overall sample for this environmental exposure), followed by ‘no deicing, no water’ (11%), 

‘deicing, water’ (8%) and ‘no deicing, water’ (6%). The mean age of rehabilitated bridges 

shows small variations around 50 years for all environments (A-IV.6-13). 

In this work, the CCPs were computed for non-rehabilitated bridges. The fact that 

rehabilitated bridges have been removed from the main samples analyzed may impose a 

selection bias producing misleading results. If there was information to keep rehabilitated 

bridges in the samples, it is expected that higher CCP-values would be obtained than the ones 

computed herein. Since segmentations based on structural material cannot be performed, an 

indication of the magnitude of the selection bias can only regard environmental factors. To 

account for this bias, rehabilitated bridges were listed by their age corresponding to the year of 

construction and aligned with the non-rehabilitated bridges. Then, following the frequentistic 

approach, the number of reconstructed bridges for each age group was divided with the total 

sample population for that age, which included non-rehabilitated and rehabilitated bridges, in 

order to calculate the corresponding Rehabilitation Probability (PR): 

𝑃𝑅(𝑡) =
𝑁𝑅 (𝑡)

𝑁𝑁𝑅(𝑡) + 𝑁𝑅(𝑡)
         (6.2) 

In the above equation, PR is the probability of rehabilitation for a bridge of age t, NNR is number 

of non-rehabilitated bridges at age t and NR  is the number of rehabilitated bridges at age t. The 

PR-values shown herein provide information regarding the magnitude of the bias introduced by 

removing rehabilitated bridges from the samples analyzed. 

The selection bias is examined through the PR-plot of Fig. 6.3. In this figure, the 

probabilities of rehabilitation have an increasing tendency with age, as expected. Similar 

probabilities of rehabilitation for different environmental exposures indicate similar biases 

introduced in the corresponding samples. This appears to be the case for ‘no deicing, water’, 

‘deicing, water’ and ‘no deicing, no water’. The higher variations of the graph noticed for ‘no 

deicing, no water’ can be attributed to the smaller sample size available (see Table 6.1). The 

percentage of rehabilitated bridges removed from the 3 aforementioned samples and the 

FILI
PPOS ALO

GDIANAKIS



96 

 

corresponding bias introduced are deemed acceptable for the age range of 0-60 years considered 

herein. 

 

Figure 6.3: Probability of rehabilitation for each age of the corresponding environments 

(Figures 6.4 to 6.7) 

 

Regarding ‘deicing, no water’, the probabilities of rehabilitation obtained are higher than 

in the other environments. Specifically, there is an increase after the age of 40 years, which 

induces higher uncertainties in the interpretation of results. To resolve this issue in a ‘fair’ way, 

comparisons of results among ‘deicing, no water’ and the other 3 samples were limited to the 

age range 0-40 years. 

 

6.3.2 Concrete decks 

The deck surface comprises of a large area exposed to thermal loads, traffic, as well as 

the effects of aggressive factors, such as deicing salts, to ensure traffic safety. Inspection ratings 

in NBI do not refer to the wearing surface, but to the main structure of the deck (FHWA, 1995). 

Deicing chemicals sprayed in winter months on the deck surface can affect the main structure, 

the effect on which can be increased by damages imposed to the wearing surface by deicers and 

disruptions of protective membranes. Additionally, construction joints could be another source 

of chlorides, as they provide easier access to the underlying concrete. Furthermore, deicing salts 

can become airborne by splashing from traveling vehicles and can find their way either to the 

structure’s sides or below the deck, driven by wind or turbulence generated from passing 
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vehicles underneath the bridge (Radomski, 2002). Freeze thaw cycles and wet dry cycles can 

affect the condition of a deck, especially when drainage details are of poor design (Azizinamini, 

et al., 2014). 

 

 

Figure 6.4: Probability of non-satisfactory condition for concrete decks of simple (a) and continuous (b) spans 

for a 60-year analysis. 

 

The results of the 60-year analysis show two different deterioration patterns for simple 

(Fig. 6.4(a)) and continuous spans (Fig. 6.4(b)). In Fig. 6.4(a), deterioration for simple-span 

decks appears to be greater in deicing than in non-deicing regions. The largest variations in 

CCP-values appear for areas of ‘no deicing, no water’ and ‘deicing, no water’ due to the smaller 

sample sizes. Specifically, for the case of ‘no deicing, no water’, a sudden increase in 

probabilities for ages of 55-60 years can be seen, which can be attributed again to the smaller 

sample size at these ages (Appendix A-IV.10-13). Furthermore, a rise can be noticed in the in 

CCP-values for environment ‘deicing, water’ from young ages up to 16 years. After 18 years 

of age, other exposures also reach the same probabilities and all environments can be considered 

to have equal effect up to 22 years. Then, the difference between two groups increases, with the 

probabilities of non-satisfactory condition for deicing environments being about double than 

those of non-deicing ones. For continuous spans, there is no actual difference in effects among 

the different environmental exposures. Thus, it can be concluded that deicing salts affect 

slightly less decks with continuous than with simple spans, while the probabilities for no deicing 

environments are elevated in comparison to simple spans. 

Hence, the presence of deicing salts appears to affect more bridges with simple spans 

(presence of structural joints) due to the concrete’s vulnerability and increased exposed deck 

area. An explanation for the increased probabilities for ‘deicing, water’ environment in the first 

16 years could be linked to the presence of increased humidity due to water presence. Increased 

humidity at the pores fuels reinforcement corrosion due to higher chloride transports and causes 
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damage through freeze-thaw cycles. This was not noticed for continuous spans, as structural 

continuity eliminates joints and hence reduces surface chlorides concentrations due to joint 

leakages. After the age of 22 years, the ‘deicing, water’ and ‘deicing, no water’ environments 

appear to have similar tendencies regarding deterioration rates, although the ‘deicing, no water’ 

environment shows slightly lower probabilities. Such generalization cannot be made after the 

age of 40 years due to increased selection bias for this environment. 

For decks with continuous spans, high probabilities of non-satisfactory condition can be 

noticed also where no deicing is used. This can be attributed to the higher temperatures in these 

environments, which may cause cracks due to joint absence. An additional effect that could also 

play a significant role is the increased annual precipitation at those areas, which, after cracking, 

could increase humidity content in the pores and, along with effects of carbonation, lead to 

depassivation of the embedded steel. Also, the absence of structural joints may be responsible 

for the decrease in deterioration when deicing is used.  

To conclude, decks are mostly affected by the presence of deicing salts and an increase 

of deterioration is expected, when structural joints are present. On the other hand, continuous 

bridges could be more effective in colder regions, where deicing is used, while in warmer areas, 

absence of joints could lead to increased deterioration. 

6.3.3 Substructures 

The substructure consists of a wider range of materials that have to be rated, such as piers, 

abutments, piles, footings, among others (FHWA, 1995). Through the segmentation performed, 

substructures can be in direct contact with the water underneath the structures. Thus, wet-dry 

cycles affect both regions with use of deicing and no deicing. Problems related to wet-dry cycles 

include the accumulation of contaminants from the surrounding water on the substructure’s 

surface, where absorption can promote adequate transport, combined with oxygen and 

temperature adequacy, which can accelerate corrosion. Also, in deicing regions, chlorides can 

reach the substructures’ surfaces through leakages of structural joints and washing out of the 

chloride contaminated surface during rainy seasons. Accumulation of chlorides can also occur 

from the airborne chlorides generated from deck vehicles, leakages from deck draining systems, 

as well as water with chloride content due to deicing activity. Furthermore, freeze-thaw cycles 

can generate cracks, assisting chlorides to penetrate in deeper concrete depths, especially in 

deicing regions. 

For the cases of no deicing and no water presence underneath the structure, only rainwater 

can cause wet-dry cycles. Also, since coastal regions have been excluded from the analysis, 

only contaminants within rainwater or deck surface can reach the substructure. On the other 
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hand, in the deicing region, chlorides may reach the substructure surfaces as airborne, while 

larger quantities could be applied through direct splashing either from travelling vehicles or 

from deicers. Extensive damage has been observed for cases where snow has been piled in 

contact to substructures’ surfaces from deicers clearing the road surface (Ainge,2012). The 

packed snow is contaminated with chlorides from the road surface and prolonged saturated 

conditions can promote chloride transfer. Additionally, damage can be caused from freeze thaw 

cycles and wet-dry cycles during the warmer months, similarly as above. 

The results of the 60-year analysis in Fig. 6.5 show reduced probabilities of non-

satisfactory condition for substructures supporting continuous spans (Fig. 6.5(b)) in comparison 

to simple spans (Fig. 6.5(a)) for all environmental exposures. For both types of substructure, 

‘no deicing, water’ appears to give the highest probabilities for all environmental exposures. 

Quite similar probabilities can be observed for deicing environments. For simple spans, 

substructures appear to be affected slightly more during the first 20 years in ‘deicing, water’, 

while, after that age range, ‘no deicing, water’ seems to be worse. Moreover, higher differences 

in probabilities can be noticed for substructures of bridges with continuous spans (Fig. 6.5(b)) 

among the ‘no deicing, water’ and ‘deicing, water’ environments, if compared to the 

substructures of simple-span bridges. The environment that appears to affect the substructure 

rating the least in both cases is ‘no deicing, no water’ for all ages (except after 50 years due to 

small sample size). 

 

Figure 6.5: Probability of non-satisfactory condition for substructures of bridges with simple (a) and continuous 

(b) spans for a 60-year analysis. 

 

For simple spans (Fig. 6.5(a)), leaking joints in combination with wet-dry and freeze-

thaw cycles may cause increased deteriorations in the ‘deicing, water’ environment for early 

bridge ages. Afterwards, any environmental exposure that includes deicing appears to affect the 

substructure similarly. Also, the exposure ‘no deicing, water’ appears to affect both substructure 

types similarly. Regarding the presence of water, a possible explanation for its corrosive effect 
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lies in the increased humidity it creates; additional effects may include alkali-silica reactions or 

bio-deterioration, which are expected to be higher in those areas. Overall, the differences 

observed for continuous and simple span bridges could be attributed to problems arising by the 

leakages in construction joints of simple spans. 

Wet-dry cycles and extra chlorides from leaking joints appear to affect structures from 

early ages. Occasional splashing and leaking joints effects appear to increase probabilities after 

the first 10 years. Older ages appear to have similar probabilities of non-satisfactory condition, 

for both environments where deicing is used. On the other hand, for continuous spans (Fig. 

6.5(b)), deicing environments have similar deterioration effects for all ages. Such notice could 

be an indication that wet-dry and freeze-thaw cycles are comparable to the occasional splashing 

of chloride contaminated water, from traffic. This could mean an equal chloride deposition for 

the two environments. 

In conclusion, bridges over water in more temperate areas and lack of deicing salts appear 

to be equally or even more susceptible to deterioration than areas where deicing is used. 

Interpretations only due to corrosion were taken into consideration herein, however scour 

hazard may be more critical not only for substructure condition, but also for structural integrity 

of the whole bridge (Imam & Chrysanthopoulos, 2012; Kallias & Imam, 2015). The presence 

of deicing salts with or without the presence of water appears to have a similar effect when 

structural joints are not present. In simple-span bridges, accelerated corrosion appears at early 

ages, when both deicing and water are present. 

6.3.4 Superstructures 

Superstructures are affected by the presence of joints through leakages, whose effect can 

be more aggressive when contaminants, such as deicing salts, are present. Additionally, 

airborne chlorides can reach their surface at the deck or below the bridge traffic. Similarly, the 

effect of wet-dry and freeze-thaw cycles can enhance chloride transport. In the Appendix (A-

IV.14), graphs comparing structural material performance for each environmental exposure are 

provided separately for simple and continuous-span superstructures. These graphs show similar 

probabilities of non-satisfactory condition among all environmental exposures for the different 

materials and span types. This does not apply for exposure ‘no deicing, water’, for which steel 

superstructures with both simple and continuous spans show increased deterioration rates. In 

general, it could be stated that, among the structural materials studied, small differences in 

probabilities of non-satisfactory superstructure condition are observed. Macroscopically, 

prestressed concrete gave the best performance among them, followed by concrete and steel. 
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To assess superstructure performance for various structural materials, separate 

comparisons for the different environmental exposures are shown in Fig. 6.6. Increased 

variations can be noticed in certain cases due to small sample size (Table 1). Because of these 

variations, only trends of deterioration rates should be observed in Fig. 6.6 rather than numbers. 

In cases of very high variations, not even trends can be observed, therefore transparent lines 

have been used, in order not to eliminate these lines from the graphs and provide complete 

results. 

 

 

Figure 6.6: Probability of non-satisfactory condition for superstructures of concrete, steel or prestressed concrete 

materials of bridges with simple or continuous spans. Transparent lines have been used for results with 

high variations. 
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6.3.4.1 Concrete superstructures 

For the 60-year analysis of concrete superstructures with simple spans (Fig. 6.6(a)), 

increased probabilities of non-satisfactory condition appear in deicing environments. The 

presence of water underneath appears to increase the probabilities at younger ages. Despite the 

occasional large variations due to small sample size, the environments of ‘no deicing, water’ 

and ‘no deicing, no water’ seem to have similar effect on concrete superstructures, lower than 

environments where deicing is used. Similar observations can be made for continuous spans 

(Fig. 6.6(b)), although smaller differences are observed when deicing is used or not. Also, at 

young ages, concrete superstructures appear to be more affected by presence of traffic 

underneath than by water. 

Simple-span bridges exposed to deicing salts are greatly affected by chlorides due to 

leakages occurring at the construction joints. For continuous bridges, the small difference 

observed in probabilities among deicing and no deicing environments could be attributed to 

airborne chlorides generated from the deck area or/and traffic underneath the bridge. Simple-

span superstructures at younger ages are significantly affected when in a ‘deicing, water’ 

environment, probably due to high humidity and structural joints, however this is not noticed 

for continuous spans. On the contrary, bridges of older ages seem to be affected more by the 

presence of traffic underneath (Fig. 6.6(b)). As such observation was not made in the analysis 

regarding decks (Fig. 6.4(b)), this may be attributed to the superstructure geometry. Concrete 

I-section beams are normally used; the web plus the top and bottom flanges form a barrier that 

captures and accommodates airborne chlorides. Thus, chlorides generated from both deck and 

road (under the bridge) surfaces land on the beams of the bridge’s superstructure due to the 

generated air flows from traffic vehicles, especially from taller vehicles, such as trucks. Also, 

the smaller differences between probabilities for simple and continuous bridges in no-deicing 

environments show that the absence of structural joints in warmer environments does not affect 

concrete superstructures as much as it affects decks. This could be explained by the increased 

surface of the deck exposed to thermal deformation, in comparison to the smaller exposed 

surface area of superstructures. 

In conclusion, deicing salts are more corrosive for the case of simple spans. Increased 

humidity can lead to earlier superstructure deterioration, provided that chlorides and joints are 

present. Continuous superstructures have lower deterioration rates in deicing environments, and 

similar ones to simple spans in no-deicing conditions. 
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6.3.4.2 Steel superstructures 

Steel superstructures are formed in various geometries and shapes, as they can be located 

either over or under the decks in the form of beams or trusses. Also, their detailing may be 

complex regarding connections (fixed or pinned connections among beams or with decks, 

stiffeners, etc.) or cross-sectional shapes. The main issues affecting steel are the time of wetness 

and contaminants that could activate pitting corrosion where discontinuities of the paint exist 

(Davis, 2000). Crevice and fretting corrosion can also take place depending on structural details, 

especially in the areas of connections, and along with fatigue they can impose a very destructive 

combination. Additionally, since the deck is typically made of concrete, condensation of 

humidity has been documented to be generated at the interface of the steel superstructure and 

the deck’s concrete (Azizinamini, et al., 2014). 

For the 60-year analysis for both simple (Fig. 6.6(c)) and continuous spans (Fig. 6.6(d)), 

higher probabilities of non-satisfactory superstructure condition are noticed when water is 

present underneath the bridge and no deicing is used. Lower probabilities are generally noticed 

for continuous rather than simple span bridges. Simple-span bridges at younger ages are more 

affected when water is underneath the structure irrespective of the presence or absence of 

deicing salts. This effect is also evident at a lower degree for young continuous bridges. Deicing 

environments appear to be the second most corrosive conditions, while the least affected bridges 

were those exposed to ‘no deicing, no water’ conditions. 

An inclination change of the probability lines is observed for bridges older than 46 years 

of age (Figs 6.6(c) and (d)). This could be attributed to a modification of design standards for 

brittle connections in bridges before the 1970’s (Azizinamini, et al., 2014). Thus, the 

probabilities of non-satisfactory condition for superstructures older than 46 years correspond to 

bridges with brittle joints and show another case of selection bias due to rehabilitation. 

Consequently, for the case of steel superstructures, all comparisons are made up to the age of 

46 years. 

The higher probabilities in ‘no deicing, water’ environments (Figs 6.6(c) and (d)) could 

be attributed to the increased humidity levels generated by water presence. Also, this effect in 

warmer areas can be due to the higher temperatures that correspond to higher dew point 

temperatures, which govern the volume of water that can be retained in the atmosphere. Thus, 

increased condensation occurring at the superstructure-deck interface could be expected in 

southern regions. Moreover, structural joints appear to increase the probabilities in all studied 

environments. An additional confounding variable linked to water corrosivity is the increased 

population of birds and animals in warmer areas, where no deicing is allowed. Additionally, 
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higher temperatures combined with increased rainfall and no deicing induce also wet-dry 

cycles, which affect corrosion (Stratmann, 1990). 

The presence of joints appears to affect in all cases, which can be attributed, as for other 

bridge components, to joint leakages due to water from rainfall or melting ice contaminated 

with chlorides (deicing regions). The difference between ‘no deicing, water’ and ‘no deicing, 

no water’ environments for both span types, could be attributed to decrease in humidity levels 

due to absence of water underneath the bridge. Although the results for steel superstructures 

have larger variations due to smaller sample sizes, certain variations for continuous spans could 

also be linked to the increased probabilities of non-satisfactory deck condition noticed for 

continuous spans in subsection 6.3.2. Specifically, in that subsection, probabilities for 

continuous decks increase for ‘no deicing, water’ and ‘no deicing, no water’ environments to 

reach similar levels to those observed for simple-span decks. 

In conclusion, steel bridges seem to be affected more by humidity levels, either with the 

presence of structural joints and direct water contact or by condensation of water due to changes 

in dew point temperatures. Although the presence of aggressive agents is considered to be very 

corrosive, lower temperatures appear to decrease the agents’ effect. On the other hand, other 

confounding variables such as rainwater, scour etc., of ‘no deicing, water’ environment, should 

also be furtherly investigated. 

6.3.4.3 Prestressed concrete superstructures 

Prestressed concrete bridges can be posttensioned (tendons are placed in ducts) or 

pretensioned (tendons bonded directly with concrete), with the latter performing better under 

corrosive conditions than the former (Wallbank,, 1989). High concrete strength is normally 

used to avoid loss of prestress due to creep. Lack of cracks in service and concrete’s low 

permeability prevent chlorides to drive through cover and cause reinforcing steel corrosion. 

However, low permeability and thick cover delimit oxygen presence, therefore low volume 

corrosion products are generated, which cannot crack the cover and hence prevent visual 

detection. This can have severe consequences and lead to catastrophic collapses without 

warning (Woodward & Williams, 1988). 

For the 60-year analysis of prestressed concrete superstructures, simple spans (Fig. 6.6(e)) 

appear to induce a similar deterioration rate pattern with concrete superstructures and decks, 

with a more distinct difference between deicing and no deicing environments. Signs of early 

deterioration cannot be noticed, as is the case in other concrete structural parts. This can be 

noticed also when comparing continuous prestressed concrete bridges (Fig. 6.6(f)) and 

continuous concrete bridges (Fig. 6.6(b)), despite the increased variations in probabilities due 
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to small sample sizes. Bridges built just after the introduction of prestressed technology (mid 

1950s) show today rather high probabilities of non-satisfactory superstructure condition. This 

can be attributed to lack of knowledge in design and construction of prestressing in the early 

applications of this technology, as well as to problems that were addressed in later years 

(Podolny, 1992; Schupack, 1982; Szilard 1969). 

As in reinforced concrete bridges, simple-span prestressed concrete superstructures gave 

higher levels of deterioration compared to continuous ones. The absence of early deterioration 

could be attributed to the adequate standards of prestressed concrete mix design, to achieve the 

high compressive strengths needed, which can also provide enhanced chloride protection, as 

seen in Chapter 5. In conclusion, deterioration in simple span prestressed bridges is increased 

when deicing salts are used under high humidity conditions. The deterioration rates are halved 

for continuous prestressed bridges. 

6.3.4.4 Comparisons between NBIs of different years 

To test the consistency of the analysis procedure used in this chapter, the reliability of 

NBI ratings and the sensitivity of results, a comparative assessment was performed for two 

inventory databases: the one of 2016 and an older, the one of 2009. The samples of prestressed 

concrete superstructures were chosen to validate the results, with both simple and continuous-

span bridges included in the analyses. 

Clearly, the 60-year analyses for the data of the two inventories correspond to different 

time periods. The analysis for the inventory of 2016 refers to the period 1956-2016, while for 

the inventory of 2009 to the period 1949-2009. Thus, the bridges of a certain age are represented 

by different year-samples in the two sets of results obtained. Moreover, to examine the 

deterioration rate of the same bridges in time, a 7-year difference in bridge age has to be taken 

into account between the two inventories. E.g., the 30-years old bridges of the 2016-database 

are actually the 23-years old bridges of the 2009-database; the corresponding sample sizes of 

the two inventories are not necessarily the same. 

The results for the 60-year analyses providing probabilities of non-satisfactory 

superstructure condition are illustrated in Fig. 6.7. In the time axes, instead of bridge age, the 

equivalent year of construction was used. This was determined by subtracting each bridge age 

from the inventory year. This way, the different bridge stock years could be traced between 

both inventories. Small differences observed in the year of construction can be attributed to the 

24-month inspection interval, which can affect the age calculated. Certain points have been 

marked in the graphs to show the progression of deterioration for individual year-samples. 
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Hence, samples corresponding to ages of 30, 40, 45 and 50 years have been marked to facilitate 

comparisons of probabilities among inventories. 

 

 

Figure 6.7: Comparison between inventories of different years for prestressed concrete superstructures. 

Figure 6.7 shows that both inventories lead to similar probabilities of non-satisfactory 

condition for ages up to 45 years. Hence, observations made regarding environmental factors 

affecting superstructures of prestressed concrete are confirmed also for the case of 2009 

inventory. On the other hand, in the 2009 inventory an increase in probabilities is observed for 

years of construction between 1950 and 1960 (after 45 years of age), which cannot be noticed 

in the 2016 inventory for the same equivalent years of construction. This increase could be 

attributed to the first ten years of the newly applied material in the US and the flaws commented 

in section 6.3.4.3. While, differences among inventories, indicate that rehabilitations have taken 

place (after 2009), leaving only well performing bridges, corresponding to lower probabilities 

(in the 2016 inventory).  
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In conclusion utilizing NBI data with the methodology followed appears to be 

independent of the year collected. Furthermore, robustness of the results can be assumed, 

provided no major changes in construction standards have been made. 

6.4 Conclusions 

A sample of US bridges was used to study bridge deterioration under various conditions. 

Meaningful sample segmentations were performed to distinguish environmental exposures 

affecting differently various bridge parts. The analysis results indicated that: 

• For concrete decks, deicing appears to be the most corrosive factor. The presence of 

water increases probabilities of non-satisfactory condition when chlorides are present 

due to deicing. For the case of structural joints, the mentioned environment affects the 

structural condition of the deck in younger ages, while the same does not apply for the 

case of continuous spans. Absence of structural joints, on the other hand, lowers 

probabilities for deicing environments, but increases probabilities for warmer 

environments. 

• For substructures, environments, in which no deicing is used and water is present, have 

the highest probabilities of non-satisfactory condition, followed by environments, in 

which deicing is used regardless of water presence. The presence of structural joints in 

simple-span bridges increases the probabilities for all environmental exposures, while 

deicing affects younger ages. 

• For simple spans, concrete superstructures are affected more by deicing in young ages, 

when also water is underneath the bridge. For continuous spans, lower probabilities of 

non-satisfactory condition are obtained, however, concrete superstructures are again 

affected more by deicing salts, but younger bridges are affected more by traffic presence 

in areas where deicing is used. 

• Steel superstructures deteriorate substantially in humid environments without deicing. 

Lower probabilities of non-satisfactory condition were noticed at deicing environments 

regardless of water presence. Structural joints to form simple spans increase the 

probabilities forall environmental exposures. Especially young, simple-span bridges are 

vulnerable under humid and deicing conditions. 

• Prestressed concrete superstructures in deicing environments are affected similarly to 

concrete ones. The main difference is the lack of early deterioration for simple-span 

bridges in the simultaneous presence of water underneath the bridge and deicing. 

However, early deterioration was noticed, similarly to reinforced concrete bridges in 

areas where deicing is used and traffic exists under the bridge. 
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Similar deterioration rates were observed between all studied superstructure materials 

under the same environmental exposures and span types (simple or continuous). An exception 

is the case of steel in ‘no deicing, water’ environment for both span types, where increased 

deterioration can be observed. A closer look at the results indicated a better performance of 

prestressed concrete, followed by concrete and steel.  

The absence of structural joints in integral bridges leads to better performance for 

superstructures, but may be problematic for decks (Chen & Duan, 1999). As shown in Chapter 

5, bridges located at costal California, where the vast majority of superstructures are continuous, 

appear to have their decks in worse condition under deicing (North) and no-deicing conditions 

(South). 

The analysis methodology using probabilities showed a robustness regarding the year of 

inventory used, from which the above conclusions were made.  
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7 A method to probabilistically estimate the deterioration rate of aging 

bridges 

The processes performed in previous chapters have led to segmented samples of 

bridges for various environmental factors and materials, with cumulative condition 

probabilities to reveal deterioration within the age range of the different bridge stocks. In 

this chapter, these probabilities are utilized and a novel method is developed to estimate the 

time-to-rehabilitation where no data are available. The method adjusts techniques applied 

for accelerated experiments and exploits properties of the cumulative condition probabilities 

to calibrate the process. The method is validated using various samples of bridges under 

various environments. 

 

7.1 Introduction 

During the last decades vast budgets have been spent to maintain aging infrastructures 

all over the world. The 20th century’s increased construction activity has led, in particular, 

to the accumulation of bridges, forming stocks, which are deteriorating with age. Aging 

bridges need continuous interventions either in the form of maintenance or major 

rehabilitation. Reliably estimating the deterioration rate and the lifetime of bridges are 

essential aspects in determining optimal programs regarding maintenance and/or 

rehabilitation. This could assist decision makers in both elongating the useful life of bridges 

and controlling their structural safety in a cost-effective manner. However, the structural 

performance of bridges in time is governed by high uncertainties, which need to be 

quantitatively treated in order to enable rational decision-making regarding maintenance and 

rehabilitation. 

An essential step toward the effective handling of such uncertainties is the gathering 

and exploitation of respective data. Typically, the data collected refer to current bridge 

conditions and are used in conjunction with Bridge Management Systems (BMS) to decide 

on the necessity and degree of priority of any potential intervention and to allocate 

corresponding funds (Ryall 2001). Frequent inspections ensure that the BMS is up-to-date 

regarding the structural condition of the stock. However, in order to estimate future needs 

and optimally allocate available budgets, models to predict the future stock condition are 

essential. 

Various deterioration models exist and can be categorized based on the 

information/knowledge used to mechanistic (Stewart & Rosowsky, 1998) or to statistical 

FILI
PPOS ALO

GDIANAKIS



110 

 

models, where only inspection data are utilized. Hybrid models have been proposed, which 

use both statistical and mechanistic approaches to model deterioration from the macroscopic 

to microscopic level (Lounis & Madanat, 2002). As mechanistic models and their 

shortcomings to modelling time to corrosion initiation in concrete were already discussed in 

the previous chapter, this chapter emphasises more in statistical deterioration modelling. 

Relevant techniques vary from regression models (Fitzpatrick et al. 1981; Veshosky et al, 

1994) to stochastic approaches, such as Markov Chains, and their purpose is to link the 

evaluated condition of infrastructure to affecting surrounding measurable factors. 

Stochastic models can be divided into discrete-time state based and discrete-time time 

based (Mauch & Madannat, 2001). The state based models predict the probability that a 

facility will undergo a change in condition at a given time (Mauch & Madannat, 2001), 

whereas, time based models predict the probability distribution of the time taken by 

infrastructure facility to change condition state (Mauch & Madannat, 2001). Thus, both types 

of models utilize different inspection years to track changes in condition. 

The most frequently used, discrete-time state based models are Markov and semi-

Markov processes (Wu, et al., 2016). The appropriateness of the Markovian process to model 

bridge deterioration has been shown by Madanat & Ibrahim, 1995. These deterioration 

models use previous years’ structural condition data to trace condition changes and estimate 

the probability of transition from one condition rating to another. The evolution of the 

models include the estimation of the transition probabilities. Some of the methods used 

include regression-based approaches (Ceasare, 1994), Poisson regression (Madanat & 

Ibahim, 1995), multinomial (Morcous, 2001), probit logit models (Madanat et.al 1997), 

Kaplan and Meier methods (De Stefano & Grivas, 2001), as well as hidden Markov models 

(Kobayashi, et al., 2012). 

Other methods used to model deterioration, include Weibull sojourn times (Sobanjo, 

2010), Artificial Neural Networks (Huang, 2010) and Dynamic Bayesian Belief Networks 

(Rafiq et al., 2015), Weibull analysis (Agrawal et.al, 2010; Nasrollahi, 2015) and duration 

models (Mauch and Madanat, 2001). All mentioned methods are dependent on many years 

of previous inspection records whose reliability can be questionable. Furthermore, the way 

the data is used can only provide partial validation, as mentioned in Chapter 2. Thus, actually 

only short-term validation can be achieved by future inspection results that will be available. 

In the present work, a novel macroscopic method is presented to probabilistically 

estimate the future structural condition of a bridge. For this purpose, real data maintained by 

the Federal Highway Administration (FHWA) for USA bridges are exploited. The method 

utilizes the database of a single year’s evaluation to calibrate a probabilistic model for 
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predicting the structural condition of a bridge over time. Thus, all bridges in the data-stock 

processed are used, based on their ages, to represent the condition of a single bridge during 

its lifetime. This way, curves relating bridge age with cumulative probability for each 

structural condition can be assembled. Certain time-shifts and scalings are then applied to 

achieve predictions for bridge ages not covered by available data. 

The proposed method is illustrated on a sample of 26,764 concrete bridges of various 

ages exposed to ‘deicing, water’ environmental conditions. The predictions derived from the 

method are presented and compared to corresponding existing data, which span a century 

for the illustrated sample and additional test cases, offering insight for its long-term 

validation results. 

7.2 Deterioration modelling perspectives and the new method’s main assumption 

Bridges age at various rates, depending on internal and external factors. Internal factors 

include structural materials and the overall quality embodied through the construction 

process. External factors, such as deicing salts, humidity, earthquakes etc., can cause bridge 

condition to deteriorate. The effects of both internal and external factors are functions of 

time. Bridges age and deteriorate due to the duration of exposure to those factors. On the 

other hand, maintenance can decelerate deterioration. As the scope of a deterioration model 

is to describe a generalized aging-deterioration relation, the selection of a proper sample is 

crucial. 

To visualise the perspectives of deterioration modelling, a three-dimensional graph is 

presented in Fig. 7.1. Two axes of time are used to indicate the year of completion and the 

year of inspection for each bridge stock. Bridge stocks are placed on the plane created from 

these axes as spheres according to their year of completion (year built) and their first year of 

inspection. The spheres of the figure vary in size to indicate differences in total number of 

bridges built in that year or a year’s bridge stock. The z-axis indicates the number of bridges 

below or equal a certain condition; frequency is actually used to achieve uniformity between 

the different bridge stocks. The frequency has a tendency to increase over the years if no 

corrective action is performed on the different bridge stocks. 

A bridge is built following certain constructional characteristics depending on age. 

Performed inspections evaluate the condition of the structure to present criteria. 

Hypothetically, if inspection data existed since 1900, then bridge deterioration evolution 

with age could be described by condition distributions of bridges with similar age. 

Additionally, the duration of a bridge being at a certain condition could be estimated and 

transition distributions could then be described. Unfortunately, inspection standards in NBIS 
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(FHWA 1995) change throughout the years. Additionally, no records can be found before 

the establishment of the NBI in 1978. Both reasons reveal the necessity of certain 

assumptions to be made for the study of deterioration. 

 

Figure 7.1: Bridge deterioration modeling and the two perspectives used to tackle it. In this study the snapshot 

view is proposed, where bridge deterioration data of one year of the latest inspections is used today 

(2016). The snapshot reveals how bridges of each stock are performing today. The CCPs observed 

show a mirror view of the ones seen in the previous chapter, as year of construction is used instead 

of age. 

The most common perspective of analysis is the ‘individual stock view’ (Fig. 7.1), 

where condition changes from all inspection years are used for both time-based and state-

based approaches. Thus, if a region was studied where N bridges had been inspected for L 

years, the maximum sample size would derive from the number of the different inspections 

(N x L). The advantage of such assumption lies in the enrichment of the sample due to 

multiple inspections. The disadvantage of this approach is the reliability of the inadequate 

data used, as well as assumptions regarding the way a bridge transitions from one condition 

to the other. 

As seen in Chapter 3, changes in NBIS may mean change in the inspection procedures, 

as well as in the evaluations derived. In all reviewed work, a basic step before proceeding to 

probability calculations is filtering among the inspection data of different years for each 

bridge. In many cases data have been excluded due to errors in coding or due to inappropriate 

evaluations for deterioration modelling. Specifically, in many cases condition ratings of non-
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rehabilitated bridges have been noticed to rise from year to year (Agrawal et.al, 2010). These 

errors can be attributed to human factor, errors performed during inspection procedure or 

minor rehabilitation work that has been performed. Furthermore, a 2001 survey conducted 

to assess the reliability of visual inspections of the NBI revealed that 95% of the examined 

sample was found to vary plus or minus 2 condition ratings (in the 10-scale evaluation 

program), 68% of which were found to vary plus or minus 1 condition rating (Phares et.al, 

2004). Such observations render information of older inspections dubious and, therefore, 

filtering of untrusted inspections may result in selection biases, which are not traceable 

afterwards. 

In the present work, it is assumed that the NBIS are kept frozen, leaving only the 

inspectors’ subjectivity and minor repair work to create data anomalies. This is achieved by 

using a single reliable annual inspection database that reveals the snapshot view (Fig. 7.1). 

Although this perspective has been used by studies investigating deterioration or material 

performance mentioned in chapter 4, the difference of the present study lies in the 

probabilities, which are used under the main assumption that all bridges in the processed 

data-stock are used, based on their ages, to represent the condition of a single bridge during 

its lifetime. The validity of such assumption was illustrated for the case of prestressed 

concrete (chapter 6), where different years of inspections were compared. The ‘snapshot 

view’ provides the advantage of utilizing the latest most advanced and accurate inspections, 

while its disadvantage regards data limitations caused by segmentations performed to 

achieve sample uniformity. As seen in chapter 6, small sample sizes increase probability 

variations between different ages, while for certain ages no sample is available. 

7.3 The proposed method 

To probabilistically predict the time to a future condition, the proposed methodology 

utilizes Cumulative Condition Probabilities (CCPs) of segmented samples of bridges. 

Sample segmentations regarding materials and environments are required to achieve sample 

uniformity, which is necessary for the main assumption to hold. To both describe and 

validate a method a specific segmented sample is used, whose purpose is to increase the 

accuracy of the CDF, when only limited data are available. Thus, only part of the available 

data are utilized to describe the method, while the rest of the data are used to validate the 

method’s predictions. The validation process of the method is extended by varying the 

number of available data used. The same procedure is followed for other samples to provide 

additional validation results. 
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7.3.1 Selection of segmented samples 

Segmentation of a sample would include a data analysis processes similar to chapter 

4, to identify predominant sources of deterioration. As the purpose of this chapter is to 

illustrate and later validate the method, an ‘ideal’ segmented sample was sought among the 

ones used in chapter 6. An ‘ideal’ sample should include low variations among computed 

CCPs for different ages, thus the first criterion was based on the number of bridges in each 

age. Second, it should include an age range wide enough to provide adequate data for 

validating the method’s predictions. Thirdly, the imposed selection bias due to 

rehabilitations should be kept to a low level, in order to avoid misleading lower probabilities  

affecting the method’s validation. 

Based on these criteria, bridge superstructures with simple spans in ‘deicing, water’ 

environment (chapter 6) were selected, as they had the highest sample populations, both 

regarding the number of bridges built per year, as well as after the age of 60 years (Appendix 

Chapter 6 A-IV. 10). Among the structural materials of the category, prestressed concrete 

did not contain data after 66 years of age and, thus, the selection was based on the material 

with the least rehabilitated bridges, which was concrete. Hence, simple-span concrete 

superstructures in ‘deicing, water’ environment are used for the method’s illustration in this 

section. Additional validations for the method have been included in section 7.6 for the 

samples of concrete superstructures with continuous spans in ‘deicing, water’ environment 

and concrete superstructures with simple spans in ‘no deicing, water, environment. 

7.3.2 Calculation of cumulative condition probabilities based on NBI data 

The CCPs of the stratified sample used in this section are calculated using Eq. (7.1). 

The calculated value reveals the probability of a bridge at a certain age to be in a condition 

equal or below a certain threshold. In Fig. 7.2, CCPs for conditions 8, 7, 6 and 5 are only 

displayed, as CCP9 is always equal to 1 and CCPs for conditions below 5 (i.e. 4, 3, 2, 1, 0) 

correspond to conditions signifying the need for rehabilitation. As noticed from chapter 6, 

the CCPs calculated are not monotonic, but vary within a range, which tends to widen as the 

bridge sub-stock becomes older. This can be attributed to the smaller samples of constructed 

bridges available for older years (Fig. 7.2). Also, an overall tendency of the probabilities to 

rise and reach the value of one can be noticed. 
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Figure 7.2: Calculated CCPs for concrete superstructures exposed to ‘deicing, water’ environment. 

 

7.3.2.1 Bridge aging process within the scope of CCPs 

In chapter 6, CCPs were initially introduced to express the probability of bridges in 

deteriorated condition at each particular age (defined by the bridge stock). As seen from 

chapter 6, but also from Fig. 7.2, the differences among the different bridge stocks for each 

age are responsible for variations of CCPs. Rehabilitations performed tend to remove bridges 

in worse condition, leaving in the samples only bridges that are performing well. Thus, 

despite the fact that rehabilitated bridges are not taken to consideration, the selection bias 

increases with increase in rehabilitations. 

Hypothetically, if each age sample was rich enough, variations noticed in chapter 6 

would be radically reduced. Moreover, if no corrective action was allowed, but instead 

bridges were left to deteriorate until failure (condition 0), the cumulative condition ratings 

could be qualitatively presented by a figure of the form of Fig. 7.2. Then, the Condition 

Probabilities (CPs) for any age can be calculated by: 

𝐶𝑃𝑖(𝑡) =
𝑁𝑖(𝑡)

𝑁𝑐,𝑡𝑜𝑡(𝑡)
=

𝑁𝑖(𝑡)

𝑁0(𝑡) + ⋯ + 𝑁9(𝑡)
   (7.1) 

where CPi(t) is the CP for structural condition =i of the bridges at age t; Ni(t) is the total 

number of bridges at condition =i at age t. Thus, CPs reveal information about the probability 

of a bridge at certain age to be in a specific condition. 
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Figure 7.3: The aging process from the scope of CCPs (a) and CPs (b) under the hypothesis that no corrective 

action (maintenance or rehabilitation) is performed. 

 

Figure 7.3 provides the probability of one bridge to be in each condition throughout 

its lifetime. The CPs of Fig. 7.3 appear to have a shape similar to a probability density 

function, while failed condition (=0) appears to have a shape of a cumulative distribution 

function. 

The shape of CPs can be explained by the dynamic process of aging, where lower 

structural condition ratings are more likely, as a bridge gets older. Furthermore, as lower 

conditions than failure (=0) have not been assigned, the bridge will eventually reach failure 

and thus a cumulative effect is evident. Another useful observation from Eq. (6.1), but also 

from Fig. 7.3, is that for each age the sum of the different CPs is equal to the certain event 

(probability=1). Thus, CCPs, which are the sum of all CPs below or equal a particular 

condition, present all information included in the dynamic aging process in compact form, 

which can be modelled by using CDFs. 

In reality, bridges are rehabilitated and rarely left to fail, also each age has a limited 

sample, which, as seen in chapter 4, depends on various socioeconomic, as well as 

technological aspects. Furthermore, for certain environments or materials (such as 

prestressed concrete), data are not available for all ages. All mentioned reasons limit the 

hypothetical bridge’s probabilities to a certain age. As the NBI database for only one year 

has been utilized herein, Markov chains or survival analysis procedures cannot be used to 

predict the hypothetical bridge’s future conditions. Moreover, since explanatory variables 

have already been used to segment samples, resulting in a bridge aging process that can be 

described by a CDF, the appropriate fits to the data have to be found. 
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7.3.3 Finding an appropriate fit to the data 

A necessary procedure for predicting the time to rehabilitation, but also assist the 

validation process, is to have an objectively trusted original sample. This means ruling out 

the objectively untrusted probabilities, by noticing the tendency and variations of Fig. 7.3. It 

is evident that after 98 years of age all calculated CCPs usually have increased variations 

and a tendency to achieve lower values. Both can be linked to the very low sample sizes for 

the corresponding years of construction Appendix (A-IV). It is worth mentioning that 

attention should be given in selecting the trusted sample by considering outliers in the 

probabilities calculated. To do so, additional information should be sought regarding 

rehabilitations, sample sizes, as well as changes in construction standards. 

Most commonly used lifetime distributions for reliability analysis are the exponential, 

Weibull, gamma, log-normal, logistic, Pareto and extreme value (Pham, 2006). For each 

CCP-curve, a regression was performed to determine each distribution’s parameters and 

produce a non-linear-least-squares fit for each of these candidate CDF. The purpose of this 

step is to achieve a fit that best describes the data for the range of the trusted sample. The 

selection was based on three different goodness of fit tests. The first is the two sample 

Kolmogorov-Smirnov (KS) test (Pratt & Gibbons , 1981) at a 5% level of confidence, where 

the maximum distance between samples is measured and is more effective around the mean. 

Also, two general goodness of fit measures based on residuals were used: the Mean Square 

Error (MSE) (Hyndman & Koehler, 2006) and the coefficient of determination R2. 

Table 7.1 reports results for the goodness of fit tests. Regarding the p-values of the KS 

test given, higher values reveal higher confidence of the null Hypothesis (no significant 

difference among CCPs and candidate distribution). Larger MSE reveals increased 

differences among the fit and the data, while higher R2 values indicate better fits. Based on 

the results of Table 7.1, the three parameter Weibull distribution was chosen. Its CDF and 

PDF are (Johnson et.al., 1994): 

𝐹(𝑡) = 1 − 𝑒−(
𝑡−𝑡0

𝑎
)

𝛽

, 𝑡 ≥ 0               (7.2) 

𝑓(𝑡) =
𝛽

𝛼
∙ (

𝑡−𝑡𝑜

𝑎
)

𝛽−1

∙ 𝑒−(
𝑡−𝑡𝑜

𝑎
)

𝛽

, 𝑡 ≥ 0                        (7.3) 

where α>0 is the scale parameter (or according to (Abernethy, 2000), a product’s 

characteristic life), which has the same unit as t, to is the time free of failures, which has the 

same unit as t, while β>0 is the unit-less shape parameter (according to (Abernethy, 2000), 

β<1 indicates infant mortality, β=1 random failure and β>1 wear out failure). 
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Table 7.1: Results of goodness of fit tests for the estimated parameters for each distribution examined. 

The parameters are named based on Matlab’s notation. All hypothesis tests were performed on the 0.05 

significant level failing to reject the Ho (no significant difference among CCP and the candidate distribution), 

apart from cases noted with (*). 

 Results for CCP8 

Distribution 

name 
Estimates of parameterers 

 KS 

p-value 
MSE R2 

Log-Normal μ = 0.29 σ = 1.86 
 

 0.109 0.0068 0.70 

Gamma a = 0.29 b = 17.02 
 

 0.537 0.0063 0.72 

Weibull to = -1.53 α = 4.35 β = 0.65  0.537 0.0012 0.95 

Logistic μ = -0.01 σ = 6.26 
 

 0.936 0.0019 0.92 

Pareto σ = 1.11 θ = 1.36 
 

 0.055 0.0071 0.69 

Extreme Value μ = 3.29 σ = 12.91 
 

 0.342 0.0025 0.89 

Exponential μ = 3.69 
  

 * 0.005 0.0137 0.41 

 Results for CCP7 data 

Distribution 

name 
Estimates of parameterers 

 KS 

p-value 
MSE R2 

Log-Normal μ = 2.59 σ = 0.97 
 

 *0.020 0.0030 0.96 

Gamma a = 1.04 b = 18.95 
 

 0.540 0.0013 0.98 

Weibull to = -6.09 α = 27.12 β = 1.42  1.000 0.0006 0.99 

Logistic μ = 16.10 σ = 11.02 
 

 0.937 0.0011 0.98 

Pareto σ = -0.13 θ = 21.79 
 

 0.989 0.0011 0.98 

Extreme Value μ = 23.47 σ = 17.59 
 

 *0.020 0.0022 0.97 

Exponential μ = 19.73 
  

 0.405 0.0013 0.98 

 Results for CCP6 data 

Distribution 

name 
Estimates of parameterers 

 KS 

pvalue 
MSE R2 

Log-Normal μ = 3.76 σ = 0.70 
 

 0.356 0.0021 0.98 

Gamma a = 2.22 b = 23.22 
 

 0.804 0.0014 0.98 

Weibull to = 0 α = 56.38 β = 1.61  0.964 0.0012 0.99 

Logistic μ = 47.32 σ = 18.80 
 

 0.804 0.0018 0.98 

Pareto σ = -0.83 θ = 87.67 
 

 0.964 0.0017 0.98 

Extreme Value μ = 60.14 σ =28.15 
 

 0.202 0.0036 0.96 

Exponential μ = 57.50 
  

 * 0.015 0.0073 0.92 

 Results for CCP5 data 

Distribution 

name 
Estimates of parameterers 

 KS 

p-value 
MSE R2 

Log-Normal μ = 4.36 σ = 0.574 
 

 0.148 0.0022 0.96 

Gamma a = 3.75 b = 22.98 
 

 0.456 0.0018 0.97 

Weibull to = 0 α = 92.04 β = 2.33  0.804 0.0011 0.97 

Logistic μ = 79.59 σ = 21.33 
 

 0.271 0.0014 0.97 

Pareto σ = -2.43 θ = 249.53 
 

 0.202 0.0023 0.96 

Extreme Value μ = 90.65 σ = 27.01 
 

 * 0.022 0.0017 0.97 

Exponential μ =135.56 
  

 * 0.022 0.0107 0.8 
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The fitted Weibull CDFs are presented in Fig. 7.4. Negative values of age implied in 

the figure, but also from Table 7.1, indicate that the deterioration process of newly built 

bridges did not start from the perfect condition 9. 

 

 

Figure 7.4: Trusted and untrusted sample regions based on the maximum trusted sample (98 years) 

and fitted Weibull CDFs for each CCP-curve. 

 

7.3.4 Method development preliminaries 

To illustrate the proposed method, the NBI data of concrete bridges in ‘deicing, water’ 

environment are used. Although a total spectrum of 98 years would be normally used as 

input to derive predictions, to describe and validate a prediction outcome of the method, only 

part of the known data are used, while the rest are used to validate the prediction outcome. 

Thus, an age limit defined as ‘cutting age’ (tcut) is imposed, separating the data to a ‘known 

range’ and an ‘unknown range’ (Fig. 7.5). Only data from the ‘known range’ would be 

utilized to predict the data within the considered as ‘unknown range’, which would be then 

checked in the validation process (subsection 7.3.7). 
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Figure 7.5: Definition of tcut as the limit of the ‘known’data to be used, which are then validated using 

the supposedly ‘unknown’ data. 

 

The prediction of the failure of a bridge with deterioration rate following an 

appropriate CDF could produce realistic results (i.e. approaching the original data) provided 

that few data are missing, corresponding to older cutting ages, where increased probability 

values are also anticipated. For the case of a Weibull CDF, more accurate predictions can be 

anticipated for tcut greater than the characteristic life (parameter α), corresponding to 

probabilities greater than 0.632 (Abernethy, 2000). As this could not be the case for CCP6 

and CCP5 for this particular sample’s whole range of 98 years, greater errors are anticipated 

for low cutting ages, such as tcut=40 years of Fig. 7.5. Thus, the method developed aims in 

generating additional data points to assist the selected distribution in achieving better 

predictions. 

7.3.5 Accelerated Creep Tests and the concept of data shifting 

Accelerated tests are generally carried out when the actual testing time of a product 

would be impractical or even impossible. The basic idea of these methods is to carry out 

experiments with calibrated increments of severity to derive accelerated fracture or wear-out 

models. The generated models are then scaled based on material properties to represent the 

lifetime of the product under normal use (Bagdonavicius & Nikulin, 2002).  

A good example of accelerated tests concerns polymer materials, known to be prone 

to creep-rupture under long-term, low-stress loading. Although their creep-rupture behavior 
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has to be experimentally studied for their application in the construction industry, 

conventional creep tests require many years to complete. Hence, accelerated creep tests are 

performed. 

Creep is accelerated as the polymer is exposed to increased temperature, humidity or 

stress. When the acceleration factor is chosen, e.g. temperature, then a number of specimens 

are tested at constant but increased temperatures (Fig. 7.6). Care is taken for other 

acceleration factors not to interfere, i.e. if temperature is to be accelerating creep, all tests 

are performed at constant levels of humidity and stress. The creep rupture curves have 

similar shapes; the increase of temperature has the effect of displacing the creep curve to the 

left, or else contracting the time scale, hence creep accelerates (Markovitz, 1975). 

 

 

Figure 7.6: Creep curves for tests performed on specimens at various temperatures; horizontal shifting 

is applied to assemble the creep master curve and the acceleration factors to perform 

shifting. Figure taken from (Alwis, 2006). 

The recorded creep data can then be used to predict the ‘creep master curve’, or else 

the complete creep curve, at a given temperature level. As creep is a thermally activated 

process, a kinetic rate theory can be assumed to be followed, i.e. Arrhenius equation (for 

temperatures below glass transition). If temperature is the only mechanism to accelerate 

creep, then they can be shifted horizontally to the right by using appropriate shifting factors, 

for the assumed kinetic theory to be followed by the deterioration mechanisms. In other 

words, the time scale is increased, obeying the assumed deterioration law, and horizontal 

shifting can then be performed.  

If two acceleration mechanisms occur simultaneously, a replacement to the Arrhenius 

law needs to be formed for horizontal shifting to take place. If such a law is not available, 
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and Arrhenius is to be used, then vertical shifting needs to be performed as well as horizontal, 

which reduces credibility in the predictions. 

If temperature is the acceleration factor, then the horizontal shifting is performed on a 

logarithmic time scale. Such a horizontal shifting is shown in Fig. 7.6 with the appropriate 

shifting factors. The data refer to accelerated creep tests performed at aramid yarns at 

elevated temperatures, which are shifted horizontally to complete a smooth master curve at 

25° (Alwis, 2006). 

 

7.3.6 The Shifting Scaling Data Regression (SSDR) method 

7.3.6.1 Analogies between SSDR and accelerated creep tests 

A bridge is expected herein to be reconstructed when its condition is below 5, a case 

in which CCPs are typically not completed. The concept of shifting is shown in Fig. 7.6, 

where an incomplete creep curve at a typical average annual environmental temperature 

(≈25°C) is completed by shifting data from other creep curves at elevated temperatures (40°-

100°C). Similarly, in the case of bridge condition prediction, the CCPs for conditions 8, 7 

and 6 may be used to complete the incomplete CCP5. This could be performed under the 

main assumption that the CCPs represent the lifetime of a single bridge. Furthermore, as 

temperature was used as the acceleration factor for aramid fibres, condition evaluation can 

be used for bridges. Specifically, as seen in 6.3.3, the higher a condition rating is, the less 

likely it is for a bridge to be in that condition in the future and the smaller is the corresponding 

age range. In other words, higher CCP’s could be considered as accelerated data, from which 

lower CCPs can be produced. 

Although the concept of shifting is simple, complications arise regarding the axis, on 

which horizontal shifting is to be performed. Such axis would be linked to the deterioration 

mechanism, which could be described by a law. The practical use of that law would give the 

time scale factor for condition data to be spread in the future. In the case of a bridge 

deteriorating due to aging, many factors contribute, i.e. increased temperature, humidity, 

loading, among others, which occur simultaneously. It is considered difficult to derive such 

a deterioration law under so many deterioration mechanisms. Despite that, it should be 

mentioned that shifting and superposition are methodologies whose outcomes cannot be 

proven (Markovitz, 1975) even for cases where they are extensively used, such as the case 

of creep testing. On the other hand, for the case of the method developed, despite the absence 

of a controlled physical means, such as temperature, to derive an acceleration factor for 

shifting to be applied, enough data exists to validate for the CCPs considered. 
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7.3.6.2 Shifting of the data 

The concept of shifting is used to complete the missing data of CCP-curves by copying 

data from the previous, completed CCP-curve to the next, incomplete one. Fig. 7.7 

demonstrates the shifting process as applied to CCP7 that is completed with CCP8-data 

beyond the threshold age tcut. A preliminary CDF is fitted (Faux) to the incomplete CCP-

curves to assist in reducing the variations of the data and facilitate the shifting procedure. 

For the case of the particular sample studied, auxiliary Weibull CDFs have been fitted, in 

order to determine data points A and B that are then used instead of the original data points 

of CCP7 and CCP8, respectively (Fig. 7.7). Hence, point A corresponds to the fitted CDF 

value for CCP7 at age t=tcut (Faux_7 (tcut)) and by drawing a line parallel to the age axis from 

point A toward the higher CCP-curve, point B is determined. Point B has probability F8(te8)= 

Faux_7 (tcut) at age t=te8, thus the age te8 can be calculated (obviously, te8<tcut). Then, the actual 

points of the higher CCP-curve from point B and beyond are horizontally shifted to the lower 

CCP-curve at point A, i.e. the aforementioned part of the higher CCP-curve is copied toward 

the lower CCP-curve by tcut-te8, as shown by the arrows in Fig. 7.7. After performing the 

required shift, the incomplete curve must have reached probability value of one. 

 

Figure 7.7: Data of CCP8 are coppied from point B and tranfered to point A of CCP7 (shifted from B to A); 

points A and B are determined using the auxiliary Weibull fits. 
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7.3.6.3 Scaling of the data 

As can be verified from Figs 7.4 and 7.5, the inclinations of different CCP-curves 

cannot be the same, because they describe bridge deterioration at different conditions. 

Normally, lower inclinations are generally expected for lower CCP-curves than for higher 

CCP-curves. However, with the shifting of the previous subsection, curve-parts with the 

same inclination are generated for different CCP-curves. Shifting without scaling the age 

axis, as performed in the study of Balafas (2003), led to pessimistic results (i.e. prediction 

for unrealistically fast deterioration) due to the accelerated form of the copied, higher CCPs. 

On the other hand, changing the age axis to logarithmic and then performing similar shifts 

would lead to optimistic scalings (i.e. excessive stretching predicting unrealistically slow 

deterioration). Hence, the shifting procedure was decided to be performed with the age axis 

as is; the shifted data are then adjusted using an appropriate coefficient to achieve the 

appropriate spread (Fig. 7.8). 

 

Figure 7.8: Shifted data are spread using the scaling coefficient ci, the data are spread at equal distances 

so that the initial shifted data length (lo) is transformed to the shifted and scaled data length 

(l’). 

To find an appropriate scaling coefficient, a number of attempts have been made to 

utilize properties of the auxiliary CDF fits. These attempts included slopes, hazard functions 
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or combinations of various geometric properties, which did not lead to adequate predictions. 

The best performing scaling procedure included a scaling coefficient (ci) estimated using the 

Coefficients of Variation (CoV) of two successive CCP-curves: 

𝑐𝑖 =
𝐶𝑜𝑉𝑖+1

𝐶𝑜𝑉𝑖
 (7.4) 

where ci is the scaling coefficient for CCPi data, CoVi+1 and CoVi are the coefficients of 

variation for CCPi+1 (complete) and CCPi (incomplete) curved, respectively. In general, the 

coefficients of variation can be calculated as follows: 

𝐶𝑜𝑉 =
𝜎

𝜇
    (6.5) 

𝜎 = √(∫ 𝑡2 ∙ 𝑓(𝑡)𝑑𝑡 − 𝜇2)
∞

0
   (7.6) 

𝜇 = ∫ 𝑡 ∙ 𝑓(𝑡)𝑑𝑡
∞

0
                    (7.7) 

where σ is the standard deviation, μ is the mean time to failure and f is the probability density 

function of the corresponding CDF (Eq. (7.3)). 

For cases where the 2-parameter Weibull distribution (to=0 in Eqs (7.3) and (7.4)) is 

used for two CCP-curves, the coefficients of variation can be directly calculated as: 

𝐶𝑜𝑉 = √
𝛤(1+

2

𝛽
)

𝛤(1+
1

𝛽
)2

− 1                                   (7.8) 

where Γ is the gamma function and β is the Weibull scale parameter. As parameter β is 

directly linked to the dispersion of data, greater β values correspond to higher age failure 

and lower CoV (Jiang & Murthy, 2011). Furthermore, if the 2-parameter Weibull CDF is 

used, good prediction results can be also anticipated by using directly the fraction of the 

shape parameters to obtain the scaling coefficient: 

𝑐𝑖 =  𝛽𝑖/𝛽𝑖+1      (7.9) 

where βi is the shape parameter of the CDF fitted to CCPi data and βi+1 is the shape parameter 

of the CDF fitted to CCPi+1 data. 

Apart from its good performance, the CoV-based coefficient of Eq. (7.4) was 

preferred, as it provides a dimensionless comparison of dispersion between sets of data that 

vary in magnitude, provided three requirements (Shechtman, 2013) are met: 

• Data describe continuous variables of a ratio scale.  

• Data compared should vary in magnitudes.  

• The mean and standard deviation change proportionally. 

Scales are rules of measurement, assisting in assigning numerals to properties of 

objects or events (Stevens, 1951) and specifying relationships between empirical relational 
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structures and numerical relational structures (Musvoto & Gouws, 2010). A ratio scale has 

quantitative nature, incorporating attributes of classification (nominal scale), extent of the 

property measured (ordinal scale), equality reflected between successive intervals (interval 

scale) and a meaningful starting point at 0. The data for each CCP curve correspond to bridge 

age, which is defined as a ratio scale variable. Moreover, to avoid the violation of the ratio 

scale requirement regarding the existence of a meaningful zero value, Eqs. (7.5) and (7.6) 

are integrated from age t=0. The selection of this limit was based on the fact that no negative 

ages of a bridge exist and the first inspection/evaluation is performed when a bridge is 

delivered at age t=0.  

Regarding differences in magnitudes between the fitted curves to be compared, each 

CDF has a different mean and a different standard deviation, as can be observed from the 

form of the curves of Figure 7.5. Additionally, different age values are always anticipated 

between different CCP curves, because each curve corresponds to different condition states. 

Thus, more bridges of younger ages are anticipated to be in ‘perfect’ condition, 

corresponding to lower mean age and a smaller standard deviation. On the other hand, lower 

ratings correspond to older mean ages and greater standard deviations. Furthermore, an 

indication of proportionality can be given by linearly regressing the data points defined by 

the computed mean and standard deviation of each CCP curve. This is illustrated in Fig. 7.9 

for the CCPs of the sample studied herein, for which an R2 value of 0.97 suggests a strong 

linear relationship. As all three aforementioned requirements were met, COVs could be 

utilized to provide meaningful comparisons between the CCP curves. 

 

Figure 7.9: Results of linear regression of mean and standard deviation for each CCP curve. 
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7.3.6.4 Fitting a CDF to complete data and iterating to complete lower CCPs 

After having completed the CCP7 data using shifting and scaling, the appropriate 3-

parameter Weibull is fitted. Similarly, the data of lower CCPs are completed by repeating 

the steps of subsections 7.3.6.2 to 7.3.6.4. When the CCP-data for the prespecified condition 

of interest are completed (in this case, when CCP5 data are complete), then all CCP-data can 

be replaced by the corresponding fitted Weibull curves, as shown in Fig. 7.10. 

 

Figure 7.10: Results of the SSDR method after perfroming shifting, scaling and fitting for successive 

CCPs. 

For the cutting age adopted, Table 7.2 presents the Weibull parameter values 

calculated, as well as the coefficient of determination R2 attained by applying the fitting 

procedure to the properly completed CCP-data for bridge conditions ≤7, ≤6 and ≤5. The very 

high R2-values reported indicate that a very good fit has been achieved between Eq. (7.3) 

and the available data (see also Fig. 7.10). The CDFs in Fig. 7.10 are graphical 

representations of Eq. (7.3) using the Weibull parameter values of Table 7.1. These 

successful CDF-fits are due to the adequate size of the utilized sample, which exhibits low 

variation of the available data. In other cases employing lower-quality data, lower R2-values 

were observed. 

Table 7.2: Weibull parameter values for tcut=40 years. 

CCP to (years) α (years) Β R2 

8 -1.92 4.84 0.70 0.957 

7 -3.60 26.14 1.18 0.992 

6 0 55.01 1.61 0.994 
5 0 87.79 2.19 0.996 
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7.3.7 Statistical validation of the proposed method for tcut=40 years 

The SSDR method uses recorded, trusted data to predict future condition probabilities. 

The selection of a cutting age tcut is a subjective decision, which specifies the ‘known’ part 

of the available data (t ≤ tcut), but also creates the need to predict the condition probabilities 

for t>tcut. In this subsection, the effectiveness of the proposed method is assessed with respect 

to the selected value of tcut, to illustrate the validation process. In section 7.4, various tcut -

values are used. 

To validate the method proposed, the final fits of subsection 7.3.6.4 have to be 

compared with the original data known also beyond the age tcut. In this method, when a tcut-

value is chosen, the data recorded for t>tcut are excluded from the analysis. Thus, age tcut 

represents the ‘new’ present and the excluded data represent the ‘unknown’ future. The 

method’s CCP-predictions for t>tcut can then be compared with the respective original data, 

which were excluded from the analysis. Hence, for each tcut-value considered, the SSDR 

method is applied to obtain a Weibull CDF for each of bridge conditions ≤7, ≤6 and ≤5. The 

CDF attained for all initial data (ages 0-tcut) is provided as a supplemental comparative 

prediction. As this fit corresponds to the fitted auxiliary CDF (section 7.3.6.2), the same 

notation is used (Faux). 

To assess the performance of both SSDR and Faux, two validation tests are carried out, 

one regarding the overall fit of the produced CDF (either SSDR or Faux) to the whole data 

range (ignoring tcut) and a second regarding the consistency of the produced predictions. It 

is important to bear in mind, when comparing results of the two methods, that SSDR has the 

inherent advantage of incorporating also newly generated data points, in contrast to Faux that 

utilizes only existing ones. The effect of this uneven situation concerning data input can be 

better observed for lower conditions (≤6, ≤5) where the data utilized by Faux correspond to 

lower probabilities. 

7.3.7.1 Goodness of fit tests 

Goodness of fit tests reveal how appropriate a fit is for the available data. The 

coefficient of determination reported herein is a common way to evaluate the goodness of a 

fit. It’s values range from 0 to 1, with 0 revealing no fit to the data and 1 a perfect fit. Two 

coefficients of determination are calculated to evaluate the goodness-of-fit achieved. The 

first coefficient of determination, R2, compares the attained Weibull CDF with the original 

data for t≤tcut and the shifted/scaled data for t>tcut; such R2-value for tcut=40 years was 

reported in Table 7.2 and calculated as follows: 

FILI
PPOS ALO

GDIANAKIS



129 

 

             𝑅2 = 1 −
∑ (𝑦𝑖−𝐹𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅𝑖)2
𝑖

           (7.10) 

where i is indicator of the data of a sample of size n; yi is the CCP-value of the data and Fi 

is the value of the fitted Weibull CDF for indicator i; y  is the mean for all values yi, 

i=1,2,…,n. 

As the first coefficient of determination of Eq. (7.10) is actually utilized as an objective 

function by the estimator (in this case nonlinear least squares) to achieve the fit, it is not 

appropriate for assessing the new method’s performance. Thus, a modified coefficient of 

determination 2
mR  is introduced to compare the attained Weibull CDF (for the tcut-value 

considered) with all original data (before shifting/scaling) for t≤98 years (i.e. for tcut→∞). 

Hence, for yi in Eq. (7.10), the original data of all 98 years (99 points including the one for 

age 0) are used instead of the shifted and calibrated data. This way, the comparison with the 

method’s attained Weibull CDF is performed using: (a) the shifted/scaled data actually used 

to calculate the fitted Weibull parameter values (coefficient R2) or (b) the original 

unshifted/unscaled data (coefficient 2
mR ). In general, higher values for R2 than for 2

mR  are 

expected. The same applies for the simple regression prediction Faux. 

Under real circumstances, there is no meaning in calculating 2
mR , because all trusted 

data should be exploited by the SSDR method, therefore 2
mR =R2. The sample processed in 

this section includes rich data that are of acceptable quality over the whole range of bridge 

ages. Thus, by selecting various values for tcut, we can compare the resulting CDFs with 

original trusted data for bridge ages up to 98 years. In other words, although predictions of 

bridge condition probabilities are derived for ages from tcut up to 98 years, we have actual 

trusted data beyond the age tcut to compare against and can therefore calculate a meaningful 

coefficient 2
mR , as reported in Fig. 7.11. This allows an objective assessment of the method 

proposed in the present chapter. 

7.3.7.2 Consistency test 

The SSDR method and the simple regression Faux can be evaluated also with respect 

to the consistency of their results by focusing on a specific probability value F(t) to reach a 

bridge condition. In Fig. 7.11, the attained CDFs (Faux, FSSDR and the red line representing a 

fit to the whole range of data) are illustrated for tcut=40 years. The consistency tests illustrated 

regard values for F(t)=95% and F(t)=70%; at these CCP-values, the corresponding age is 

found for the 3 different CDFs. The value of the fitted CDF corresponding to all known data 

can be considered as the most accurate one, thus all other values found are compared with it 
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(Fig. 7.11). Hence, for the case of F(t)=95%, Faux appears to produce a conservative 

prediction (t=109 years) in comparison to the ‘actual’ value (t=149 years), while the attained 

value of FSSDR appears to be more optimistic (t=178 years). Thus, FSSDR is closer to the actual 

prediction and this is confirmed by the modified goodness of fit test. 

 

 

Figure 7.11: Illustration of the validation process on CCP5 performed for the indicative tcut value selected 

(tcut=40 years). 

In the same figure, the attained predictions (Faux, FSSDR) can be graphically compared 

to the fit using the whole range of the data (red line). For FSSDR, R2=0.97 (see Table 7.1); the 

R2
m values corresponding to SSDR and Faux are 0.924 and 0.521, respectively. These results 

indicate that the prediction of SSDR performs much better than simple regression for tcut=40 

years. The same process is performed for various tcut values in the next section, where the 

results for all corresponding R2
m values and consistency tests are displayed. 

7.4 Results and discussion 

In this section, the results for various tcut values are presented starting from an initial 

age of tcut=34 years and successively adding one year of age data to complete the whole 

range of the trusted sample (up to tcut=98 years). First, the new method’s parameters are 

assessed for each tcut value and then follows the validation process. 
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7.4.1 SSDR’s parameters estimation 

For each tcut value, data are initially shifted from CCP8 to CCP7, a scaling coefficient 

c7 is calculated, the shifted CCP8-data are scaled and a new Weibull fit is obtained. The same 

process is successively performed for lower CCPs. In Fig. 7.12(a), the numbers of data points 

(CCPs) copied from higher CCPs to the immediate lower ones are presented for the different 

tcut values. Also, for each tcut value, the calculated scaling coefficients (c7, c6, c5) are provided 

in Fig 7.12(b). In both figures, the number of CCP8 points shifted to CCP7, as well as the 

corresponding scaling coefficient c7, stop at tcut=69 years, because CCP7 is completed after 

that age, thus the new method is not used. 

 

Figure 7.12: Shifted data points from higher to lower CCPs (a) and scaling coefficients of the SSDR 

method for increasing tcut values (b). 

The values of Fig. 7.12 calculated for a selected tcut can be used to present a calibrated 

(scaled) age axis, where data from higher CCPs can be shifted. Such axis would indicate an 

equivalent ‘law’ mentioned in subsection 7.3.6.1, as to how the data should be shifted. The 

new method proposed performs successive shifts and scalings from higher to lower CCPs. 

a) 

b) 
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Specifically, shifted data from curve CCP8 to CCP7 (Fig. 7.12(a)) are scaled by multiplying 

bridge age with c7 (Fig. 7.12(b)), then the same data as part of the completed CCP7 curve are 

shifted to curve CCP6 and scaled again using c6, while in the end they are shifted to curve 

CCP5 and scaled again using c5. Thus, the initial data shifted from curve CCP8 to CCP5 are 

overall scaled using a coefficient equal to the product of the successive scaling coefficients 

used (i.e. c7 ∙ c6 ∙ c5). Similar overall coefficients can be calculated for shifting CCP7 and 

CCP6 data to complete the CCP5 curve. These overall coefficients actually specify the 

shifting ‘law’ to appropriately copy data from a CCP curve to another for different tcut values. 

Hence, the equivalent age axes for shifting to CCP6 and CCP5 curves are presented for 3 

different tcut values in Figs 7.13 (a) and (b), respectively. As can be seen from these figures, 

shifts originating from higher CCPs have slopes deflecting more from the ‘no scaling line’ 

in comparison to shifts from the immediately previous CCP, which do not deflect as much. 

The peaks of each line for a different tcut, where slope changes, are points separating data 

shifted from different CCP curves. The slope changes are due to different overall coefficients 

applied for the scaling of corresponding data. For example, for completing curve CCP5 in 

the case of tcut=35 years (Fig. 7.13(b)), the shifted data originate from CCP8 (overall scaling 

coefficient c7 ∙ c6 ∙ c5), CCP7 (overall scaling coefficient c6 ∙ c5) and CCP6 (overall scaling 

coefficient c5), justifying the 3 different slopes observed. 

 

 

Figure 7.13: Scaling performed to axis on the shifted data for (a) CCP6 and (b) CCP5. 

 

7.4.2 Validation results 

The SSDR method is based on the concept of shifting and scaling of successive CCPs. 

Hence, the errors from the whole process are anticipated to be accumulated in the smaller 

a) b) 
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CCP (CCP5 for this chapter’s case). On the other hand, simple regression utilizes all 

available data points to fit a CCP curve. Thus, the process of validation, apart from testing 

the SSDR method’s effectiveness, can also reveal when simple regression (based on Weibull 

for this case) using all available data points should be preferred. 

The results are presented in Figs 7.14-7.16 for each CCP curve obtained. In each 

figure, first the R2
m values are plotted for the tcut values considered; then, two consistency 

tests are performed for F(t)=95% and F(t)=70%. The good effectiveness of either method 

(SSDR and simple regression) is indicated in the results, when increasing R2
m and smaller 

variations of age values in consistency tests are observed for increasing tcut values. 

In each consistency test the ‘actual’ value (from the fit achieved utilizing all data, i.e. 

tcut=98 years) is provided to compare against each prediction. Furthermore, as the results of 

only two F-values are presented (95% and 70%), results for additional F-values are given to 

compare the overall consistency of both methodologies. The results of consistency tests, 

ranging from a low probability (10%) to an extreme (99.9%), are organized using boxplots 

for each CCP curve in Fig. 7.17. 

Regarding CCP7, Fig. 7.14 shows that both SSDR and simple Weibull regression 

perform very well, as both methods, for tcut≥50 years, reach a high 2
mR  (>0.99) and the 

‘actual’ age corresponding to the two F-values of 95% and 70%. In the consistency tests 

(Fig. 7.14(b, c)), the SSDR method appears to have slightly increased variations, especially 

for the case of F(t)=70%. This can be attributed to the fact that CCP7 is anyway close to 

being completed (trusted points reach CCP values higher than 0.632, see Fig. 7.2), which 

means that the available data are adequate for a successful fit using simple regression. For 

the lower tcut values, the SSDR method slightly distorts the results with the additional data 

generated. Nevertheless, the results show that both approaches can be used for cases with 

data that are near to being complete. 

Regarding CCP6, Fig. 7.15(a) shows much better R2
m results for SSDR in comparison 

to simple regression for the lower tcut values (≤50 years). Similar observation is made for the 

consistency tests (Figs 7.15(b, c)), where simple regression (Faux) produces unrealistically 

conservative predictions for both F-levels examined, while the SSDR method produces age 

results that vary within a range of only 15 years. For tcut>50 years, the performance of simple 

regression is enhanced due to the high CCP values available in the input data. Although for 

these higher tcut values both methods appear to be performing equally well, the SSDR method 

can be considered more robust for the whole range of tcut values and thus more preferable to 

simple regression (especially for tcut≤50).  
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Figure 7.14: Validation results for CCP7: modified goodness of fit test (a), consistency tests for 

F(t)=95% (b) and F(t)=70% (c).  

a) 

b) 

c) 
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Figure 7.15: Validation results for CCP6: modified goodness of fit test (a), consistency tests for 

F(t)=95% (b) and F(t)=70% (c).  

 

a) 

b) 

c) 
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Figure 7.16:Validation results for CCP5: modified goodness of fit test (a), consistency tests for 

F(t)=95% (b) and F(t)=70% (c). 

 

The SSDR method was mainly developed to predict CCP5 (and even lower CCP 

curves), where the simple regression would not have adequate data to perform reliable 

predictions. According to Fig. 7.16(a), both predictions do not perform well for tcut =34 years. 

This is due to the fact that, for certain age values, the CCP5 values are similar with a slight 

decreasing tendency (Fig. 7.2), creating over-dispersed predictions for the simple regression 

(Faux). As described in the steps of the SSDR method, the regression values are used to 

Impossible values CCP5>CCP6 

Impossible values CCP5>CCP6 

a) 

b) 

c) 
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calculate the scaling coefficient of Eq. (7.4), which leads to unrealistic results (concentration 

of data instead of spreading). 

The results attained can be further evaluated for their validity by utilizing the definition 

of CCPs, which forbids the case of a CCP curve including a higher CCP value than its a 

higher CCP for the same age (i.e. CCP curves cannot intersect). This restriction prohibits a 

bridge to deteriorate until it is first in a lower condition rating and then to a higher one, which 

is not possible without rehabilitation. This led to the definition of ‘impossible values’, which 

indicate that a result in the consistency test is erroneous due to intersecting CCP curves. 

Furthermore, due to their sigmoid shape, CCP curves that are close to intersecting indicate 

unrealistic results. 

According to Fig. 7.16(a), for tcut >34 years, the SSDR method appears to achieve very 

good fits for CCP5. The same is not observed for Faux for cutting ages up to 50 years. 

Although from the consistency tests (Figs. 7.16(b, c)) the variations of both methods appear 

to be comparable, simple regression leads to unrealistic or even impossible results for several 

tcut values up to 50 years. Furthermore, for tcut>43 years, SSDR appears to have a very robust 

performance with a maximum variation of 22 years around the ‘actual’ value. For simple 

regression, the variation of age results exceeds 50 years (even for tcut>70 years). 

Figure 7.17 presents analogous consistency test results in the form of boxplots for 

various F(t)-values (from 10% to 99.9%). Hence, for each F(t)-value and for all tcut-values 

considered, the variation of the bridge age to reach condition ≤7, ≤6 or ≤5 is illustrated. It is 

interesting to note that a non-symmetric distribution of age predictions is yielded for each 

F(t)-value. In general, a higher prediction variation is associated with a higher probability 

F(t). Nevertheless, the selected tcut-value does not seem to excessively influence the 

calculated age predictions for F(t)-values of practical interest (e.g. up to 90%). A direct 

comparison with the simple Weibull regression reveals that the SSDR method is more robust 

and leads to lower variation of results (especially to less distant outliers) with respect to tcut 

values.  
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Figure 7.17: Multiple consistency tests for different values of probability F(t) for CCPs using the SSDR 

method (FSSDR) and simple regression (Faux). 

 

7.5 Additional validation cases 

In this section, two additional samples of concrete superstructures are used to validate 

the SSDR method. The first case refers to concrete continuous bridges in ‘deicing, water’ 

environment and the second concrete simple bridges in ‘no deicing, water’ environment. As 

noticed from the results of the first sample used for validation in the previous section 

(concrete simple bridges in ‘deicing, water’ environment), to be able to validate the 

predictions of the SSDR method, trusted data points have to exist above probability value 

0.632, as the Weibull function produces more accurate results. Thus, for the case of concrete 

continuous bridges in ‘deicing, water’ environment, CCPs for conditions ≤7, ≤6 and ≤5 are 

presented (Figs. 7.18-20). For concrete simple bridges in ‘no deicing, water’ environment, 

only CCPs for conditions ≤7 and ≤6 are presented (Figs. 7.21 and 7.22), as probability values 

of CCP5 did not reach the mentioned limit (0.632). 
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Figure 7.18: Validation results for CCP7 for concrete continuous spans in ‘deicing, water’” 

environment: modified goodness of fit test (a), consistency tests for F(t)=95% 

(b) and F(t)=70% (c).  
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Figure 7.19: Validation results for CCP6 for concrete continuous spans in ‘deicing, water’ environment: 

modified goodness of fit test (a), consistency tests for F(t)=95% (b) and F(t)=70% (c).  
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b) 
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Figure 7.20: Validation results for CCP5 for concrete continuous spans in ‘deicing, water’ 

environment: modified goodness of fit test (a), consistency tests for F(t)=95% (b) and 

F(t)=70% (c). 

a) 
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Figure 7.21: Validation results for CCP7 for concrete simple spans in ‘no deicing, water’” 

environment: modified goodness of fit test (a), consistency tests for F(t)=95% (b) 

and F(t)=70% (c). FILI
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Figure 7.22: Validation results for CCP6 for concrete simple spans in ‘no deicing, water’ environment: 

modified goodness of fit test (a), consistency tests for F(t)=95% (b) and F(t)=70% (c). 

 

From the additional cases presented, analogous observations as in the previous section 

can be made regarding the performance of the SSDR method. Hence, when probability 

values above 0.632 have been reached, a simple Weibull regression (if this is the CDF 

followed by the data) is adequate; this is typically the case for CCP7. If, however, lower 

probability values are reached due to unavailable data, the SSDR method is much more 

accurate and consistent than a simple regression. 
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7.6 Application of the SSDR method to other samples 

The validated SSDR method was applied to other data samples for superstructures of 

various materials in ‘deicing, water’ environment and the results are presented in Table 7.3. 

For each case considered, the attained Weibull parameters of the CCP curves are given. The 

tcut value denoted in each case indicates the size of the trusted sample utilized by the method. 

The separation of the probabilities of trusted years from those of untrusted years was 

determined where increased variations were observed. Attention was given to which data 

points are handled as outliers. Information that assisted in selecting tcut values were: 

i) the sample size at each particular age (increased variations were observed for 

low sample sizes); 

ii) the probabilities of rehabilitation (PR) (see Chapter 6); increased probabilities 

of rehabilitation intensify the selection bias and produce misleadingly lower 

CCP-values due to the sample bridges in better condition that are kept for 

analysis; 

iii) knowledge regarding changes to construction standards or practices for the 

material studied that could have affected its deterioration (see steel 

superstructures, Chapter 6). 

Table 7.3: Attained Weibull fits utilizing the SSDR method for environmental exposure ‘deicing, water’. 

Materials & data used 

from sample (tcut) 
CCP curve 

Weibull Parameters 

to α Β 

Steel Continuous 

Spans, tcut=39 years 

8 -0.59 1.89 0.52 

7 -0.80 20.10 1.06 

6 0 55.43 1.75 

5 0 103.2 2.05 

Steel Simple Spans, 

tcut=49 years 

8 -2.28 3.03 0.66 

7 -4.49 21.67 1.00 

6 0 55.78 1.41 

5 0 100.66 1.87 

Concrete Simple Spans, 

tcut=98 years 

8 -1.53 4.35 0.65 

7 -6.09 27.12 1.42 

6 0 55.40 1.55 

5 0 97.61 2.09 

Concrete Continuous 

Spans, tcut=89 years 

8 -0.80 2.35 0.61 

7 -6.14 29.65 1.59 

6 0 57.80 1.90 

5 0 99.72 2.48 

Prestressed concrete 

Simple Spans, tcut=43 

years 

8 -1.26 2.37 0.53 

7 -3.96 30.44 1.14 

6 0 76.53 1.89 

5 0 105.30 2.53 

Prestressed Concrete 

Continuous Spans, 

tcut=41 years 

8 -1,78 4.37 0.77 

7 -10.20 37.23 1.90 

6 0 55.44 1.92 

5 0 96.01 1.97 
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7.7 Probabilistic estimation of the time-to-rehabilitation 

Using the SSDR method’s final fit to the set of trusted CCP-points available for bridge 

condition ≤5, the time-to- rehabilitation can be probabilistically estimated. That is, any time-

to-critical-condition given is accompanied by a probability for the bridge considered to have 

reached condition ≤5, which is assumed to induce the need for rehabilitation. 

The Weibull CDF for bridge condition ≤5 (Table 7.2, Fig. 7.10) provides the sought 

probabilistic information for the time-to-rehabilitation of a concrete bridge exposed to 

deicing salts and humidity due to the presence of water underneath: by selecting a probability 

of reaching bridge condition ≤5, the respective time-to-critical-condition for the bridge is 

determined. Figure 7.23 and Table 7.4 give the time-to-rehabilitation for selected 

probability-values. Note that, as the term ‘time-to- rehabilitation’ is used herein, it counts 

from the year a bridge is built, i.e. this is the ‘age-to-rehabilitation’. The actual time-to-

critical-condition is easily calculated by subtracting the current age of a bridge from its ‘age-

to-rehabilitation’. Using such information, a decision maker can make a rational schedule 

for bridge rehabilitations, which takes into account not only available or anticipated funds, 

but also risks associated with the uncertain deterioration rate of bridges. 

 

 

Figure 7.23: Estimation of age to rehabilitation for different levels of probability. 

 

Table 7.4: Estimation of age-to-rehabilitation, values corresponding to Figure 7.22. 

Probability 90% 50% 20% 10% 

Age to rehabilitation 132 79 49 35 
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7.8 Conclusions 

In this chapter, real condition data from the NBI database of USA’ FHWA were 

utilized for predicting the deterioration rate of bridges. Specifically, probabilistic results 

were obtained for concrete bridges exposed to deicing salts and humidity that allow the 

quantitative estimation of the time-to-rehabilitation. To accomplish this task, a new method 

was presented for identifying a reliable probabilistic description of bridge deterioration over 

time. In general, small deviations between actual data and data predicted with the new 

method were observed for a large number of test configurations considered. 

The new method utilizes only one year of inspection results to perform probabilistic 

predictions, whereas other methodologies utilize inspection results of many past years, 

which in many cases were proven to be unreliable. In contrast to other methodologies, a 

validation process was followed for the long-term prediction results of the SSDR, showing 

that the new method is robust. This was possible due to the use of one year of inspection 

results, the ‘snapshot view’ of deterioration and the new method’s main assumption.  

The procedure followed herein can be applied also to other types of bridges exposed 

to different environmental effects, provided that respective trusted data are available. 
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8 Scheduling bridge rehabilitations based on probabilistic structural 

condition model, risk attitude and life cycle cost 

Being able to reliably assess and select among rehabilitation schedules for an aging 

bridge is a major issue in cost-effectively maintaining it in safe and operational condition. 

This task is seriously hindered by the high uncertainties that govern the deterioration rate 

over the lifetime of bridges. Work of previous chapters regarding segmented samples 

(chapter 6) and the method developed (chapter 6) are utilized in this chapter to provide a 

case study. Specifically, a simple-span concrete bridge in ‘deicing, water’ environment with 

certain life-cycle costs is supposed. The SSDR method is used to attain and extend the 

Weibull distributions that provide structural condition probabilities over the bridges 

lifetime. Based on these distributions, the risk attitude and preference of the decision maker, 

the time-to-rehabilitation can be probabilistically estimated and a respective rehabilitation 

schedule can be specified. In the framework of life cycle management of a bridge, various 

rehabilitation schedules are comparatively assessed with respect to the expected total 

rehabilitation cost induced, as well as the expected cost due to the possible need for bridge 

replacement. 

8.1 Introduction 

Aging bridges need continuous interventions either in the form of maintenance or 

major rehabilitation demanding vast budgets. Estimating the deterioration rate and the 

lifetime of bridges are essential aspects in determining optimal schedules, regarding 

maintenance and/or rehabilitation. Such information can greatly assist decision makers in 

both elongating the useful life of bridges and controlling their structural safety in a cost-

effective manner. However, the structural performance of bridges in time is governed by 

high uncertainties, which need to be quantitatively treated, in order to be able to make 

rational predictions and decisions regarding any intervention. In this respect, various 

reliability and risk-based approaches have been developed, to effectively handle the process 

of deciding, under uncertainty, when to maintain/rehabilitate individual bridges or bridge 

components, bridge stocks/networks and infrastructure assets in general (e.g. Kleiner, 2001; 

Liu & Frangopol, 2006; Lounis & Daigle, 2008; Orcesi & Cremona, 2010; Orabi & El-

Rayes, 2012; Frangopol & Bocchini, 2012; Salem et al., 2013; Saad et al., 2016; Tamvakis 

& Xenidis,2013; Xenidis & Angelides,2005; Xenidis & Stavrakas,2013;). 

In the present chapter, the SSDR method is employed to estimate the future structural 

condition of a bridge taking into account uncertainty in its deterioration with time. Hence, 
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using real data maintained by the Federal Highway Administration (FHWA) for USA 

bridges, a macroscopic probabilistic model for the structural performance of an aging 

concrete bridge of simple spans exposed to deicing salts and elevated humidity is calibrated. 

This model is then exploited in the framework of life cycle management of the bridge. In 

particular, the required rehabilitations of the bridge within a span of 150 years are scheduled 

based on various attitudes of the decision maker toward risk. Following the risk preferences 

of the decision maker, risk-based cost estimations of the specified rehabilitation schedules 

are determined, which allow for objective comparative assessments. 

8.2 Probabilistic model for life cycle structural condition of bridges 

The focus herein is on concrete bridges deteriorating with age, e.g. due to corrosion. 

Deicing salts are known to accelerate deterioration, especially in combination with humidity 

(chapter 6). Thus, the segmented sample of chapter 6 containing 26,764 concrete bridges 

was utilized, which included age and structural condition data for all bridges at a particular 

inspection year. 

The SSDR method uses NBI data of a single year to calibrate a probabilistic model for 

predicting the structural condition of a bridge over time. Thus, all bridges in the data-stock 

processed are used, based on their ages, to represent the condition of a single bridge during 

its lifetime. Hence, the portion of bridges being in a certain age and condition represent the 

probability of the bridge under study to be in the same condition at that age. This way, curves 

relating bridge age with cumulative probability for each structural condition can be 

assembled. Certain time-shifts and scalings are then applied to achieve predictions for bridge 

ages not covered by available data. By fitting Weibull distribution functions to the original 

and shifted data and specifying some criteria for deciding bridge rehabilitation, the time left 

for a bridge until it reaches a structural condition, that induces a need for rehabilitation, can 

be probabilistically evaluated. 

The application of this method to the above described sample of 26,764 concrete 

bridges yields the macroscopic probabilistic deterioration model of Fig. 8.1. In this figure, 

Weibull curves relating bridge age with Cumulative Condition Probability (CCP) are 

provided. As an example of using the probabilistic model of Fig. 8.1, the age of a bridge 

with probability P(Condition≤4)=0.2 can be estimated from CCP4 as 85.4 years. 
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Figure 8.1: Probabilistic model for life cycle structural condition of concrete bridges exposed to deicing salts 

and elevated humidity: Cumulative Condition Probability (CCP) versus bridge age for structural 

conditions ≤i, i=8,7,6,5,4. 

 

8.3  Life cycle management: scheduling bridge rehabilitations based on risk 

preference 

The CCP-curves of Fig. 8.1 reveal the probabilistic deterioration rate of a bridge, as 

they provide the probability and the corresponding duration needed to reach each structural 

condition ≤8 to ≤4. This probability is a measure of uncertainty that can be taken into account 

when scheduling bridge rehabilitations. An example is given in this section to illustrate the 

exploitation of the probabilistic model of the previous section in life cycle management of 

bridges under uncertainty. 

In this regard, certain assumptions are made. The initial structural condition of a 

bridge, from which it starts to deteriorate with time, is a crucial input information for a life 

cycle analysis. Bridges of the same age or era delivered may have a very different life cycle 

cost due to different initial structural conditions. To facilitate the demonstration of this 

section, an initial condition 9 (‘excellent’) is assumed for a hypothetical concrete bridge 

considered as an example. Moreover, a rehabilitation is assumed to fully restore the bridge 

in its initial state, i.e. condition 9 is reestablished. Hence, contractors and constructors 

perform any construction/rehabilitation phase with no flaws, while the duration of bridge 

construction/rehabilitation is ignored. Once the bridge is constructed/rehabilitated, 

successive condition drops occur as time passes: condition 8 succeeds 9, 7 succeeds 8, etc. 

Three different CCP-levels (20%, 50% and 80%) are considered, which are assumed 

to represent the risk preferences resulting from the attitudes of 3 different decision makers 

toward risk (Hillson & Murray-Webster, 2005): from a risk-averse (CCP-level of 20%) to a 

risk-seeking (or risk-loving) preference (CCP-level of 80%). Table 8.1 presents 6 different 
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rehabilitation schedules based on these risk preferences. The time-to-rehabilitation reported 

is the duration for a bridge starting from condition 9 to reach structural conditions ≤5 or ≤4 

for the 3 aforementioned CCP-levels and is easily determined from the Weibull curves of 

Figure 8.1. Hence, revisiting the example of the previous section for Figure 8.1, a bridge 

needs to be rehabilitated at the age of 85.4 years for a CCP-level of 20%. 

 

Table 8.1: Time-to-rehabilitation and number of required rehabilitations within a span of 150 years for 6 

different rehabilitation schedules corresponding to various probability (CCP) levels. 

Rehabilitation 

schedule 
Probability-level 

Time-to-rehabilitation 

(years) 

Required 

rehabilitations 

1 P(Condition≤4)=0.2 85.4 1 

2 P(Condition≤5)=0.2 47.6 3 

3 P(Condition≤4)=0.5 129.8 1 

4 P(Condition≤5)=0.5 81.9 1 

5 P(Condition≤4)=0.8 177.1 0 

6 P(Condition≤5)=0.8 122.6 1 

 

 

Table 8.1 provides valuable for a decision maker probabilistic information regarding 

bridge deterioration with time. Hence, assuming that condition ≤5 (i.e. bridge condition is 

‘fair’ or worse) signifies the need for rehabilitation, a risk averser would schedule an early 

intervention, at about 48 years after the construction of the bridge (although the probability 

that the bridge will actually reach condition ≤5 is only 20%). A risk seeker, on the other 

hand, would schedule a late upgrade, at about 123 years after construction, when the 

probability that the bridge will actually reach condition ≤5 is 80% and also the probability 

to reach condition ≤4 is relatively high (>40%). A decision maker with a more balanced 

attitude toward risk (CCP-level of 50%) would schedule an upgrade at about 82 years after 

bridge construction. If it is assumed that condition ≤4 (i.e. bridge condition is ‘poor’ or 

worse) induces the need for rehabilitation, longer times can be tolerated before any 

intervention takes place. Thus, rehabilitation would be scheduled at the bridge age of about 

85 years by a risk averser, 177 years by a risk seeker and 130 years by a decision maker 

exhibiting an intermediate risk tolerance. 
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Probability-level P(Condition≤i) = 0.2 

 

 

Probability-level P(Condition≤i) = 0.5 

 

 

Probability-level P(Condition≤i) = 0.8 

 

Figure 8.2: Life cycle management for a bridge considering 3 different risk attitudes corresponding to 

probability-levels P(Condition≤i) = 20%, 50% and 80% (i=8,7,6,5 or 4). Rehabilitation takes place 

when the bridge is expected to reach condition ≤4 (solid lines) or ≤5 (dashed lines) for each probability-

level considered. 

 

 

Figure 8.2 illustrates the effect of the 3 risk attitudes in the context of life cycle 

management for maintaining a bridge in good and operational condition by scheduling 

regular interventions. In this figure, we consider a newly constructed bridge that is delivered 

at age 0 in excellent condition (code 9) and starts deteriorating. Depending on the CCP-level 

adopted, successive condition drops are predicted at certain bridge ages determined through 
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the CCP-curves of Fig. 8.1. A rehabilitation is scheduled at the age the bridge is predicted to 

reach condition ≤5 or ≤4 for the particular CCP-level (Table 8.1). It is assumed that a 

rehabilitation fully restores the bridge condition to code 9. Then, deterioration starts again, 

which causes once more successive condition drops that may lead to a new rehabilitation 

according to the respective time of Table 8.1 and so on. The same risk preference of the 

decision maker is presumed for the life cycle of the bridge, i.e. the adopted CCP-level 

remains unaltered. 

According to the life cycle setting specified above, a series of bridge rehabilitations 

need to be scheduled within a certain time frame (indicatively taken herein as 150 years), 

depending on the CCP-level adopted. This results in the 6 aforementioned schedules with 

required rehabilitations that are evident in Fig. 8.2 and summed up in Table 8.1. 

Hence, assuming that any interventions are decided by monitoring the event of the 

bridge condition being ≤5, a risk averser (CCP-level of 20%) would schedule 3 

rehabilitations within 150 years, because a rehabilitation is required every about 48 years. 

Accordingly, a risk seeker (CCP-level of 80%) would schedule just one rehabilitation at the 

age of about 123 years, while the intermediate risk preference (CCP-level of 50%) induces 

the need for 1 rehabilitations within 150 years (every about 82 years). If the event of the 

bridge condition being ≤4 would shape the decision for rehabilitation, a risk seeker would 

not schedule any intervention within 150 years. A risk averser, however, would still schedule 

1 rehabilitations within this time frame (every about 85.4 years), while the intermediate risk 

preference would lead to a single rehabilitation at the age of about 114 years. 

A small number of upgrades over the life cycle of the bridge translates to a low overall 

anticipated rehabilitation cost, but also to a high risk associated with the bridge condition 

reaching code 5 or 4 earlier than expected or even dropping below it. This could induce 

additional, non-scheduled direct and indirect costs, compromise the safety and operational 

availability of the bridge and possibly force decision makers to partially or even fully replace 

it. Such issues are further investigated in the next section. 

 

8.4 Expected life cycle cost estimation and comparative assessment of rehabilitation 

schedules 

 

In order to be able to make a rational decision regarding the most favourable 

rehabilitation schedule of a bridge, the expected total cost over the time frame of study needs 

to be estimated for every choice identified. Thus, an overall rehabilitation cost is calculated 
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for each schedule specified in Table 8.1 by taking into account the number of interventions 

planned and the bridge ages, at which they are intended to take place (Fig. 8.2). Moreover, 

an overall expected cost for bridge replacement is determined, which refers to the risk of the 

bridge dropping to such a condition that rehabilitation is not a suitable choice anymore. 

Replacement of the bridge may be dictated by extensive failure that renders uneconomical 

the repairs required, partial/full collapse, dropping of the safety level provided below an 

acceptable/tolerable threshold, etc. 

The initial cost to construct at time t=0 the hypothetical concrete bridge studied in the 

present work is designated as C0. All costs given in this section are expressed with respect 

to the initial cost C0. Using the study of (Ehlen, 1997), the fraction of rehabilitation cost of 

superstructure elements was estimated and attributed to the cost of restoring to condition 9 

from condition 5 (CR5=0.4C0). As this cost included both construction and user costs (due to 

delays, increased travel expenses, increased accident rates, inconvenience, etc.), the 

corresponding cost allocations were estimated from the same study (Ehlen, 1997). Thus, 

lower construction costs would be anticipated for restoring from higher condition ratings 

and user costs would be assumed negligible, while for lower conditions increased user and 

construction costs would be assumed. Moreover, regarding higher superstructure conditions, 

rational fractions were estimated for restoring to condition 9 by considering the unit cost 

estimates of Pontis BMS studies (Adams & Juni, 2003; Milligan, et al., 2006). Hence, the 

cost of rehabilitation (i.e. of restoring condition 9) from condition 8 is taken herein as 

CR8=0.005C0. Accordingly, the rehabilitation costs from conditions 7, 6, 5, ≤4 are set to 

CR7=0.01C0, CR6=0.03C0, CR5=0.1C0, CR4=0.4C0, respectively. It is assumed that a 

rehabilitation from conditions 5 and ≤4 is also associated with user costs because of works 

needing the bridge to be closed for 0.1 and 0.5 months, respectively. User costs during 

rehabilitation are taken as 3C0 per month of bridge closure. Thus, the costs for rehabilitation 

from conditions 5 and ≤4 are increased to CR5=0.4C0 and CR4=1.9C0, respectively. The 

expected rehabilitation cost of the bridge at time t is then given by: 

 

 CReh(t)=Σi [P(Condition=i)CRi]+P(Condition≤4)CR4, i=8,7,6,5. (8.1) 

 

The probabilities P(Condition=i) with time are given in Fig. 8.3. These are easily calculated 

from the probabilities P(Condition≤i) of Figure 8.1, e.g. P(Condition=7)=P(Condition≤7)-

P(Condition≤6) at any age t. 
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Figure 8.3: Probabilities P(Condition=i), i=9,8,7,6,5, and P(Condition≤4) versus bridge age. 

 
 

The bridge replacement cost at any time t is taken as 1.2C0. This includes the amount 

of 0.2C0 for the removal of the old bridge (Ehlen, 1997), as well as the amount of C0 for the 

construction of the new one. It is assumed that all replacement actions (removal of old 

bridge, establishment of detour, design/bidding/construction of new bridge, etc.) are carried 

out within 12 months, during which the bridge is closed. User costs during replacement 

works are taken as 5C0 per month of bridge closure. This results in a total replacement cost 

at time t of 61.2C0. Due to lack of data, it is simply assumed that the replacement probability 

at any time t is PRep=0.2P(Condition≤4). Then, the expected replacement cost of the bridge 

at time t is given by CRep(t)=PRep61.2C0. 

The above-mentioned costs CReh(t) and CRep(t) refer to Future Values (FV), since these 

are costs to be paid at various instances t within the period of study (150 years). Any FV at 

time t can be transferred to time t=0 by discounting it to the corresponding Present Value 

(PV) according to the formula: PV=FV/(1+r)t, where r is the discount rate adopted (assumed 

to remain constant over the period of study). 
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Assuming 4 different discount rates, Fig. 8.4 presents the total expected cost of each 

of the 6 rehabilitation schedules for the period of 150 years. This cost includes the total 

expected rehabilitation cost of each schedule, which is calculated as 

PV[CReh(t1)]+PV[CReh(t2)]+… for the planned rehabilitations at bridge ages t1,t2,… 

according to this schedule. The total expected cost includes also the expected replacement 

cost, which is set as the average over all years 0≤t≤150 of the costs PV[CRep(t)]. 

 

Figure 8.4: Total expected cost and its allocation to expected rehabilitation and replacement costs for the 6 

bridge rehabilitation schedules, considering a discount rate of a) r=2%, b) r=4%, c) r=6% and d) r=8% 

(bottom). 

 
 

Figure 8.4 demonstrates the interplay between the contributions of the rehabilitation 

and replacement costs in the total life cycle cost. The overall cost resulting from a schedule 

with frequent rehabilitations (e.g. schedule 2), which is typically adopted by a risk averser, 

is clearly governed by rehabilitation costs. On the other hand, expected replacement costs 

are the major concern in case of infrequent or no rehabilitations (e.g. schedules 5, 6) in the 

framework of risk seeking decisions regarding the life cycle management of the bridge. The 

discount rate considered decisively influences the cost-effectiveness and the comparative 

assessment of the rehabilitation schedules and actually dictates the choice to make. 

a) b) 

c) d) 
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8.5 Conclusions 

Scheduling rehabilitations for an aging bridge within a highly uncertain deterioration 

setting in a cost-effective manner is a great challenge. Rational decisions can be made by, 

first of all, acquiring probabilistic data regarding the deterioration rate and the failure 

potential of the bridge. Then, any rehabilitation schedule can be quantitatively assessed with 

respect to the expected life cycle cost it induces. In this respect, the gathering and estimation 

of reliable economic data (mainly including rehabilitation, replacement and user costs, as 

well as the discount rate) and the risk preference of the decision maker are crucial aspects. 

Hence, the process of life cycle cost assessment and management of a deteriorating bridge 

may be cumbersome and demanding, but it is an essential step toward the effective handling 

of highly important bridge stocks and networks. 
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9 Concluding remarks and future work 

This chapter presents the Thesis’s main contribution to research and discusses its 

transferability. The main assumptions adopted in the study are summarized, as well as the 

concluding remarks of each Chapter. In the end, suggestions for future work and research 

plans are presented. 

 

9.1 Main contribution to research 

In this thesis, a data-driven approach was developed exploiting bridge inspection data, 

through which the following main contributions were made: 

• the predominant deterioration factors for bridge components were identified, 

• the qualitative and quantitative effects of bridge deterioration factors were determined 

and 

• a novel method for probabilistic prediction of bridge deterioration with time was 

developed and validated. 

9.2 Transferability 

The US inventory was utilized for achieving the Thesis objectives due to its public 

disclosure and the unavailability of similar inventories from other countries. Additionally, 

utilizing bridges located in the US provided adequate data to model deterioration for 

different types of exposures. This is due to the large sample of bridges available, as well as 

the variety of the deterioration factors existing in the US territory. This section presents the 

transferability of the study’s framework and results for cases, where many bridges exist with 

inspection records containing similar information, as well as for cases with small number of 

bridges and inadequate or even no data. 

9.2.1 Application to other inventories 

The SSDR method can be applied to inventories of other countries, which also use 

condition ratings, even in different scales. To do so, the whole framework of the study should 

be followed, identifying the predominant factors of deterioration and then calculating the 

probabilities corresponding to bridge ages. 

Although a large initial sample was used in this study, many different factors existed 

within the US territory, which lead to certain segmentations. Hence, due to segmentations 

performed, the initial 615.000 records could not be used as one sample, therefore the method 

was developed and validated using 4% of the initial sample (25500 bridges with age range 
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of 116 years). The validation process showed that robust predictions can be achieved 

utilizing much smaller age ranges (minimum 0-35 years), corresponding to only 1.2% of the 

whole sample (7500). Furthermore, it is not essential to utilize successive ages, if the 

probabilities calculated have large variations among them due to low sample sizes. 

9.2.2 Application of deterioration curves to countries with small samples 

This work’s framework utilizes independent probabilities calculated for each age, 

disengaging deterioration from the number of bridges existing at that particular age (stock). 

Thus, the CDFs derived for various environments and materials are transferable. Hence, in 

cases where only a small number of bridges with similar exposures exist in a country, the 

corresponding deterioration curve derived from the US inventory can be utilized. It is worth 

mentioning that such application should be performed after considering differences 

regarding design standards and material properties. 

9.3 Main assumptions of the study 

The National Bridge Inventory of the US was utilized to conduct a macroscopic study 

of bridge deterioration within different environmental exposures. The Thesis was conducted 

in a number stages, starting with a data analysis process to determine the predominant 

environmental effects, then probabilities were utilized to compare the performance of 

different environments and a novel method was developed to utilize the former probabilities 

and perform predictions for future years. To meet these objectives, certain assumptions had 

to be made, specifically: 

• Bridge condition evaluations are regarded as being hazard-driven rather than State-

dependent (chapter 4). 

• Rehabilitated bridges had to be excluded due to missing information regarding 

material switch and condition rating prior to rehabilitation (Chapter 6). 

• The calculated probabilities of the bridge stock studied, arranged based on the age of 

each bridge, represent the probabilities of one bridge to be in a specific condition at 

various ages (Chapter 7). 

Each of these assumptions is adopted in the mentioned chapter and applies for the rest 

of the study. 

It is also important to bear in mind that an updated database should be used to 

incorporate important technological and/or constructional changes or significant changes in 

inspection standards that could affect the condition ratings. Such updates are not expected 

to be required every few years, as the methodologies applied combined with the type and 
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amount of exploited data produced results that were found to be relatively insensitive to data 

changes with time. 

9.4 Summary of conclusions 

Based on the analyses performed and the results obtained, the following macroscopic 

remarks can be made: 

• The NBI, which included the 2016 inspection recordings, was used, as it provided 

the most recent and most accurate inventory of the US. In the study, results of 2016 

inspections were checked for their consistency to earlier years and were found to 

have small differences. Thus, studying one inventory using the ‘snapshot view’ can 

be regarded as a robust way of analysis to attain macroscopic information for the 

bridge sample. 

• The data analysis process revealed that the most significant factor linked to 

structural condition and deterioration is the age of the structure. The structural 

material of superstructures and decks significantly affect the corresponding 

condition ratings, while geometric variables, such as length, maximum span and 

deck width, seem to play a less significant role. Average daily traffic and average 

daily truck traffic also appeared to have a small effect on all condition ratings. 

• Using the bridge coordinates provided in NBI and information from the weather 

stations and from the US geological survey, weather and earthquake variables were 

introduced. Among them, peak ground acceleration appeared to have a predominant 

meliorating effect on all structural condition ratings, mostly for superstructures and 

substructures. The deicing region, water underneath the bridge and annual 

precipitation also appear to have a significant decreasing effect in condition ratings. 

• The effect of airborne chlorides was studied utilizing increments of bridge distance 

away from the coast. Sample segmentations were performed based on the 

predominant effects within the coastline. For the locations of low earthquake hazard 

and no deicing, distances up to 2km showed to be affected. This effect was noticed 

to be extended up to 1km inland for the case of low elevations and the formation of 

a peninsula (Florida). On the other hand, the places where deicing policies are used, 

the airborne chlorides appear to affect distances up to 1km away from the coast. This 

difference could be attributed to the fact that chloride deposition in north areas is 

more affected by the deicing procedures. High earthquake hazard areas could not be 

analyzed due to variations in year of construction/reconstruction content, but similar 

limits of the coastline can be anticipated. 
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• Segmentations of the initial sample were performed and probabilities were calculated 

to compare the performance of decks, superstructures and substructures in different 

environments. 

• For Concrete decks, deicing appeared to be the most corrosive factor. The existence 

of joints in deicing environment affected more the structural condition of the deck 

in younger ages, while the same did not apply for the case of continuous spans. 

Absence of structural joints lowered probabilities of deterioration for deicing 

environments, but increased the probability of deterioration for warmer 

environments. 

• For substructures, environments, where no deicing is used and water is present, 

have the highest deterioration probabilities, followed by environments where 

deicing is used regardless of water presence. The presence of structural joints in 

simple spans increases the probabilities of deterioration for all environments, while 

deicing environments affect younger ages. 

• For superstructure materials, similar probabilities were noticed for the same 

environmental exposures and span types (simple or continuous). A closer look at 

the results indicated a better performance of prestressed concrete, followed by 

concrete and steel. An exception is the case of steel in environment of water and no 

deicing for both span types, where increased deterioration can be observed. 

• Concrete superstructures are affected more by deicing environments in young ages, 

when also water is underneath for simple spans. Although continuous spans have 

lower probabilities of deterioration and are affected more by deicing salts, younger 

ages are affected more by traffic presence in areas where deicing are used. 

• Steel superstructures are substantially deteriorating at humid environments without 

deicing sources. Lower deterioration probabilities were noticed at deicing 

environments regardless of water presence. The presence of structural joints to form 

simple spans increased the probabilities of deterioration compared to the other 

environmental exposures. Especially young simple span bridges are vulnerable 

under humid and deicing conditions. 

• Prestressed concrete superstructures are affected by deicing environments similarly 

to concrete. The main difference is the lack of early deterioration for simple span 

bridges in the simultaneous presence of water underneath and deicing. But early 

deterioration was noticed, similarly to RC-bridges, in areas where deicing is used 

and traffic exists under the bridge. 
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• Absence of structural joints in integral bridges performs well in the superstructure, 

but may be problematic for the decks. 

• A novel method was developed and validated appropriately to probabilistically 

estimate the deterioration rate and the time-to-rehabilitation of aging bridges. The 

method utilized cumulative condition probabilities of segmented samples and 

techniques used in accelerated experiments were modified to perform forecasts. The 

method was found to have small prediction errors and performed well, even under 

rather limited data availability. 

• The method was applied for different materials on a selected environmental 

exposure and was utilized in a decision-making process regarding scheduling 

rehabilitation for a concrete bridge. 

9.5 Future research 

This work included a variety of factors which could affect structural deterioration of 

superstructures, substructures and decks. Additional sources of deterioration could be also 

investigated, such as drought, CO2/SO2 and other emissions related to atmospheric pollution 

for the structural parts studied. Furthermore, other segmentations could be performed to 

investigate the probabilities of non-satisfactory condition, such as the case of annual 

precipitation.  

Additional data analysis processes such as Cox Regression can be utilized to analyze 

the factors affecting deterioration and cluster analysis could be performed to investigate the 

State effect. Also, following the same framework, other available ratings, such as the ones 

concerning scour, could be utilized to identify their predominant deterioration factors, 

segment samples and perform predictions. 

The new SSDR method can be applied to the rest of the segmented samples of this 

work. Additional effort may be required to tackle extremely low sample sizes for specific 

ages, such as the case of the coastline. Moreover, the method can be applied to a generalized 

local level, where no organized inventory existed and efforts are currently made to do so. 

Such is the case of the East Mediterranean area, including Cyprus. On the other hand, the 

method can be applied at a European level, where inspection records existed, but 

homogenization of inspections is currently on the verge and the goal of COST action TU-

1406, which is funded by the European Union. 

The SSDR method could be applied to accelerated creep experiments instead of 

utilizing the log-shifting of the Arhenius model, which may render more optimistic results. 

This model is applicable also in other applications of deteriorating infrastructure, like in 

FILI
PPOS ALO

GDIANAKIS



162 

 

pavements, water/gas supply networks, etc. Furthermore, the method could also be utilized 

to complete cumulative condition probabilities and calibrate a Markov chain, which could 

be used for comparisons with other models. An additional application of such model could 

be the use of the derived distribution as a prior, which is to be updated with the additional 

collected data. 
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A-I.1 Appendix Chapter 4: Database handling 

A-I.1 Introduction 

The NBI database contains 116 Items some of which are subdivided depending on the 

type of information provided. Each bridge record corresponds to a line while the Item 

information are placed in columns. The content of the Items may vary from location to 

structural condition, the name of the main route or the km point of the inventory route, thus 

both numeric and letter inputs can be found. The length of each information is provided by 

the guide (FHWA, 1995) and is registered starting from a specific column. Information 

regarding the columns and lengths of Items can be found in FHWA’s website 

(www.fhwa.dot.gov/bridge/nbi/format.cfm), where additional Items or change in Item 

lengths can be found. 

The NBI has certain peculiarities in contrast to other databases. Specifically, the coded 

form dictated by the guide allows blank records, and some numeric values may correspond 

to maximums or may be indications of lack of information. Furthermore, combinations of 

coded values of different Items included in the database may correspond to specific 

structures such as culverts or arch bridges. Thus, the Items to be incorporated should be 

carefully selected after advising the guide to seek dependencies that may alter the individual 

Item information.  

For this study, code was written in Matlab R2014b to retrieve, combine and check the 

provided information. In this part the main functions of the code are presented. To run the 

code for a different inventory, changes in the positions of the items should be taken to 

account from FHWA’s website. 

 

A-I.1.1 Item selection  

A total number of 68 Items and sub-Items (indicated with capital letters) were selected (Table 

A1) based on the information provided in the coding guide (FHWA, 1995). This selection 

was based on dependencies mentioned in the guide which would allow the identification of 

errors, cleaning of the data, and correcting the data. Examples of such dependencies 

regarded: 

• Condition Ratings of Culverts (62), Deck (58), Superstructure (59) and Substructure 

(60). Culverts should have numeric item for item 62 while all other condition ratings 

should be coded with (N) corresponding to not applicable. On the other hand arched 

bridges should be coded with (N) for Item 62 as they are not culverts and (N) for 
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Item (58) as they do not include a separate deck according to the guide, while 

condition ratings of superstructure and substructure should have a numeric value. 

 

Table AI.1. Selected Items: the number of each items is indicated in the parenthesis, capital letters indicate 

sub-Items 

CATEGORY ITEM NAME & (code) from the coding guide 

Bridge ID Record Type  (5A) Structure Number (8) 

Location 
State Code  (1) 

Longitude (17) 
Latitude (16)  

Water 
Underneath 

Navigation Control (38) Scour Critical Bridges (113) 

Dimensions 
& 

Clearances 

Number of Spans in Main Unit (45) 

Structure Length (49) 

NBIS Bridge Length (112) 

Minimum Vertical Underclear. Ref. feature (54A) 

Minimum Lateral Undercl. Ref. feature t ( 55A)  

Minimum Lateral Undercl. on Left  (56) 

Length of Maximum Span (48) 

Deck Width, Out-to-Out (52) 

Minimum Vertical Clear. Over Bridge Roadway (53) 

Minimum Vertical Undercl. (54B) 

Minimum Lateral Undercl on Right (55B) 

Inventory Route, Minimum Vertical Clear. (10) 

Information of 
usage and 
ownership 

Designated Level of Service (5C) 

Toll (20) 

Owner (22) 

Base Highway Network (12) 

Maintenance Responsibility (21) 

 

Classification 
Functional Classification of Inventory Route (26) 

STRAHNET Highway Designation (100) 

Historical Significance (37) 

Federal Lands Highway (105) 

Traffic 

Lanes on the structure (28A)  

Average Daily Traffic (29) 

Design load (31) 

Type of service on the bridge (42A) 

Direction of Traffic (102) 

Average Daily Truck Traffic (109)  

Year of Future Average Daily Traffic (115) 

Lanes under the structure (28B)  

Year of Average Daily Traffic (30) 

Structure Open, Posted or Closed to Traffic (41) 

Type of service under the bridge (42B) 

Temporary Structure Designation(103) 

Future Average Daily Traffic (114) 

 

Materials 

Kind of material, Main (43A) 

Deck Structure Type (107) 

Type of Membrane (108B) 

Type of Design, Main (43B) 

Type of Wearing Surface (108A) 

Deck Protection (108C) 

Structural 
Condition 
Ratings 

CR  Deck (58) 

CR Substructure (60) 

Appraisal structural rating (67) 

CR Superstructure (59)  

CR Culverts (62)  

Sufficiency rating (-) 

Age Year Built (27) Year Reconstructed  (106) 

Inspection 
Information 

Inspection Date (90) Designated Inspection Frequency (61)  

Cost 

Bypass, Detour Length (19) 

Length of Structure Improvement (76)  

Roadway Improvement Cost (95) 

Total Project Cost (97) 

Type of Work (75A)  

Bridge Improvement Cost (94) 

Total Project Cost (96) 
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• Water underneath is indicated if Navigation control (38) is coded with 0 or 1 while 

at the same time Scour critical (113) coded with numeric value and Type of service 

under the bridge (42) with value 5. 

• Coordinates, Longitude (17) and Latitude (16) in combination with State code (1), 

which would reveal if each bridges coordinates are located within the respective 

State’s territory. 

Additional Items were also considered to extend the study for rehabilitation costs presented 

in the category of Cost (Table AI.1).  

A-I.1.2 Matlab code 

The basic concept of the code written in Matlab was to assist in extracting the 

different data types of the inventory and processing them to identify blanks and errors based 

on the guide (FHWA, 1995). The code read separately the characters of each considered 

Item, translated the extracted information to digits, recombined the digits to provide the Item 

information and checked it for errors (fig A1). The information was saved in a specific 

column of one Total matrix containing all Items considered (fig A1). In the end all Items 

were placed in the Total Matrix and a data cleaning process would be performed to check 

the errors of the combined information (fig A1). In the next part the basic functions utilized 

in Matlab are presented with indicative examples of specific Items.   

 

 

 

 

Figure A-I.1: Processes performed by the written code starting from Item level and reading of the NBI file to 

the formation of an error free Final Total Matrix to be used for analysis purposes. 

A-I.1.2.1 Reading process 

The initial data are in .txt format (Figure A-I.2) with lines corresponding to bridges 

and columns to items. As can be seen from the figure the different Items are not separated 

instead all 434 characters are placed next to each other. To be able to identify errors within 
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each Item, characters of each Item were read separately. Each Item’s number of characters 

and their column position within the NBI .txt file was found from FHWA’s web page 

http://nationalbridges.com/nbiDesc.html, where changes in record format are updated every 

time a new inventory is uploaded. In Matab the fscanf function was utilized to read the .txt 

characters. The function’s option of printing to characters is preferred to the option of digits 

as in the latter option if characters are read the function terminates. This preference lead also 

the reading of one character at a time as each character would be easier to be reassigned to 

a digit. For each character the number of characters to skip from the start should be defined, 

the number of characters to read and the number of characters to skip to read the next record. 

An exception to this procedure regarded Item 1 corresponding to the State code where all 3 

digits are read as such, to provide the needed dimensions of the fscanf function to all the 

following Items. The Matlab code regarding State code (Item 1) and Owner (Item 22) are 

Figure A-I.2: NBI .txt file format 

fprintf('ITEM 1 – State code \n') %Print the phrase within ‘’ on Matlab’s 

command window  

 

fid = fopen('2013_all.txt'); %opening txt file 

I_1=fscanf(fid,'%3d%*432c\n'); %reading txt file and saving it in a 

matrix I_1 

fclose(fid); %closing txt file 

  

%Defining the matrix number of lines 

M=length(I_1); 

 

fprintf('ITEM 22 - Owner \n') %Print the phrase within ‘’ on Matlab’s 

command window  

 

fid = fopen('2013_all.txt'); %opening txt file  

C1=fscanf(fid,'%*152c%1c%*282c\n',[M 1]); %reading txt file and saving 

it in a matrix C1 of 1 

column and M number of 

lines  

fclose(fid); %closing txt file 

fid = fopen('2013_all.txt'); %opening txt file 

C1(:,2)=fscanf(fid,'%*153c%1c%*281c\n',[M 1]); %reading txt file and 

saving it in C1 Matrix’s 

of 2nd column and M number 

of lines 

fclose(fid); %closing txt file 

 

Translator; %Translation function 

I_22; %Item function 

  

Figure A-I.3: Matlab code for reading the .txt file; the green letters beginning with % sign correspond to 

comments explaining what each line of code performs. The last two lines show the other two functions that 

are used for translating and forming the data for each Item as shown in fig. AI.2 
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provided in Figure AI.3. Also, the two last lines provided call the two next functions for 

Owner (Item 22) that needs to be translated and checked. 

A-I.1.2.2 Translation Function 

 This function reads the characters of the matrix C (Fig. AI.3) and assigns them 

numeric values. Its name, “Translation”, refers to the way it works, as each character of the 

database is read from the txt file and translated to a mat file. Mat-files can be further used 

for analyses as they contain all the translated data. If the character read is numeric then the 

corresponding numeric character. If on the other hand, the character read is a letter or a sign, 

then decimal values smaller than 1 are assigned, for example ‘A’ is 0.01, ‘B’ is 0.02, ‘Z’ is 

0.26, ‘-‘ is 0.27, ‘.‘ is 0.28, ‘&‘ is 0.29 and ‘*’ is 0.30.  Blank characters are assigned with 

value -2000 while other characters with value -1000. This way distinction can be for the 

information provided.  

 

 

A-I.1.2.3 Item function 

This function uses one or more translated columns and manipulates them according to 

the guide (FHWA, 1995) to form an individual Item. This means that in case a certain 

precision is denoted by the coding guide the corresponding digits are multiplied by powers 

of ten and added accordingly. It also checks the data for errors and plots them on Matlab’s 

for i=1:1:M;% loop repeated from 1 with step 1 to M (number of records) 

if C1(i,1)=='0'; %If C1 is character 0   

   D1(i,1)=0; %Assign value0 to D1 

        elseif C1(i,1)=='1'; 

        D1(i,1)=1; 

. 

. 

. 

        elseif C1(i,1)=='9'; 

        D1(i,1)=9 

        elseif C1(i,1)=='A'; 

        D1(i,1)=0.01 

. 

. 

. 

elseif C1(i,1)=='*'; 

        D1(i,1)=0.30 

elseif C1(i,1)==''; 

        D1(i,1)=-2000 

else D1(i,1)=-1000 

end % end of if else command 

end % end of for loop after M records have been processed 
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command window (Fig. A-I.5). In the end it creates a matrix with the manipulated data 

named after the Item number.  

 

The item function was very useful as corrections could made regarding mistakes in the 

codes and tracking errors or missing records for all Items. Among all Items Longitude (Item 

17) and Latitude (Item 16) had many errors due to lower precision adopted.  Specifically, 

although the precision required by the guide was 9 and 8 digits respectively lower precision 

records were registered beginning with 0 value. This created blank areas within certain States 

(fig. A-I.6 a). The pattern of such errors was identified and was taken to account to the Item 

function of the coordinate Items. Thus, corrections were performed by neglecting 0 values 

in the beginning of either Longitude or Latitude (fig.  AI.6 b). 

 

 

 

 

 

 

 

 

A-I.1.3 Data Cleaning of the Total matrix 

After all individual Items were placed in the Total matrix tabulate function of Matlab 

was used to count the total numbers of errors for each Item. Furthermore, additional code 

was written to perform logical error checks utilizing different Items for each bridge record 

%Item 22 corresponds to 2digit number 

for i=1:M; ; %loop repeated from 1 with step 1 to M (number of records) 
 

    if (D(i,1)>=1||D(i,1)==0) &&(D(i,2)>=1||D(i,2)==0)%If the values 

are not 

character inputs 

or blanks 

        D(i,3)=D(i,1)*10+D(i,2); )%Multiply with 10 and sum 

    else 

        fprintf('Problem in line %d \n',i)%print on the command window 

the line of error 

    end% end of if command 

end% end of loop after M records have been processed 
 

         

I_22=D(:,3); %Assign the value to matrix I_22 

Figure A-I.6: Item function for Owner (Item 22)    

(a) (b) 

Figure A-I.7: NBI coordinates a) before corrections and b) after corrections 
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(A-I.1.1). Results and description of the process were reported to FHWA followed by an 

Excel file to locate every inconsistent record. 

 

A-I.1.3.1 Report to FHWA 

 

Inconsistencies found in NBI 2016 file 

 

 Abstract: The NBI 2016 file that included all State information was used and 68 items were 

checked for inconsistencies with the actual NBI form from blanks, typos and different types 

of logical errors. This brief report explains the main errors that are listed in the Excel file 

that includes the line within the NBI .txt file of each error found, the State code (item 1) and 

the type of error.  

Errors in the .txt format 

Regarding the format of the NBI, a repeated error pattern was found in the lines 78840, 

240965, 243224, 288628, 288671, 302081, 307308, 406967, 409114, 614387and 611845 as 

shown in Figure A-I.7.  

 

FigureA-I. 8: Extra spaces in columns 402 and 429.  

Errors and inconsistencies within items 

The items checked for inconsistencies were 68 in number (1, 5A, 8, 16, 17, 49, 112, 45, 48, 

52, 53, 54A, 54B, 55A,55B, 56, 10, 5C, 12, 20, 22, 21, 26, 37, 100, 105, 29, 30, 109, 114, 

115, 28A, 28B, 42A, 42B, 102, 41, 103, 38, 113, 43A, 43B, 31, 107, 108A, 108B, 108C, 58, 

59, 60, 62, 67, 10 year rule, without 10 year rule, 27, 106, 90, 91, 19, 75A, 76, 94, 95, 96, 

97, SR). In this report eight types of errors were found that are explained and presented in 

Table A-I. 2.  

All Blank: refers to the error of absence of any character within the limits of each item. 
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• Blank_1: corresponds to the existence of 1 blank space within the item. It is mostly 

found in items 16, 17 (Latitude, Longitude) and 30 (ADT). Accordingly for Blank_2, 

Blank_3, Blank_4.  

• Typo: Typographical error has been tracked in item 41 (structure open or posted to 

traffic) line 550191 where a lower case p exists instead of “P”. 

• Logical errors: such as year of future ADT estimate (item 115) greater than 2040; Year 

reconstructed values such as 1, 2, 7 or greater than 2017; Inspection dates greater than 

January 2017 etc.  

• Mixed type blank: an error that includes the use of both “-” dash and blanks within a 

coding. 

 

Table A-I.2.All inconsistencies found in the inventory categorized in Items and Types of Errors. Last column 

sums the columns of each line; Last line sums the lines of each column. 

  

NBI ITEM 

Error Types Total 
errors 
(Item) All 

Blank 
Blank_1 Blank_2 Blank_3 Blank_4 

Logic 
errors 

Mixed type 
blank 

Typo 

10 2 0 0 0 0 0 0 0 2 

16 1934 33 1921 18 1 0 0 0 3907 

17 2013 10 41 1915 22 0 4 0 4005 

20 1 0 0 0 0 0 0 0 1 

26 1 0 0 0 0 0 0 0 1 

28A 5 0 0 0 0 19 0 0 24 

30 2 13 16 2898 0 0 2 0 2931 

31 1 0 0 0 0 0 0 0 1 

41 1 0 0 0 0 0 0 1 2 

52 3 0 0 0 0 0 0 0 3 

54A 1 0 0 0 0 0 0 0 1 

54B 1 0 0 0 0 0 0 0 1 

55 1 0 0 0 0 0 0 0 1 

62 3 0 0 0 0 0 0 0 3 

90 19 0 0 0 0 3 0 0 22 

91 21 0 0 0 0 0 0 0 21 

105 1 0 0 0 0 0 0 0 1 

106 0 0 0 0 0 63 0 0 63 

107 1 0 0 0 0 0 0 0 1 

108A 1 0 0 0 0 0 0 0 1 

108B 2 0 0 0 0 0 0 0 2 

108C 3 0 0 0 0 0 0 0 3 

115 0 6 122 1113 0 166 0 0 1407 

Total errors  
( Type ) 

4017 62 2100 5944 23 251 6 1 12404 
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Other logical errors 

Another type of logical errors relates to the combination of coded items of condition ratings 

(Deck (item 59), Superstructure (item 60), Substructure (item 61) and Culverts (item 62)) 

were found. Specifically based on the coding guide (FHWA, 1995) a Superstructure 

condition rating is to be coded as N-not applicable when a Culvert is coded. Similarly, Deck 

is to be coded with N-not applicable when culvert or if referring to a filled arch bridge. Using 

these restrictions, 364 logical errors were found. The lines and States codes of the mentioned 

errors can be found in the excel file in the worksheet named “Logical Errors from 

Conditions”. Additionally year of improvement cost estimate (item 97), has been found to 

contain 1941 cases of years greater than 2016.  

Errors not listed in the excel 

A notable count of blanks were also counted for other items listed in Table A-I.3. A strange 

coding also appeared within the Appraisal rating (item 67) with a star symbol “*”, which 

was not found in the guide (FHWA, 1995). Further details for these errors have not been 

provided within the excel since an alternative explanation may exist.  

Table A-I. 3: Items with blanks or  unknown coding. 

Not listed  

Item Explanation count 

12 Base Highway Network 54373 

114 Average Daily Truck Traffic 61560 

115 Year of Future Average Daily Traffic 1119 

106 Year Reconstructed  48061 

67 Appraisal rating (coded as "*") 4368 

 

Reference: 

FHWA, Federal Highway Administration, 1995. Recording and coding guide for the structure inventory and 

appraisal of the nation's bridges, Washington D.C.: Department of Transportation. 
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 Appendix Chapter 4: Data Analysis 

A-II.1 Kriging semivariogram models 

 

The models used for Kriging interpolation are presented in Table A1. Three additional models were 

used to chose among for the best fit solution. The selected models provided the best fit solution. In 

the same table the annotation of a semivariogram is presented. 

 

 

A-II.2 Peak ground acceleration 

 

 

NOAA data 
Variogram model 

selected 

Parameters 

R2 Nugget 
(N) 

Sill  
(h) 

Range  
(a) 

Min. Temperature S  (o C) Exponential 0.25 305.825 0.5883 0.883 

Diurnal Temp. range S (o C) Exponential 0.3 2.05 0.085 0.81 

Snow depth greater than 1 inch (days) Exponential 0 261 0.55 0.59 

Precipitation (in) Exponential 0.1 35.9 0.5 0.94 

Dew point temp.(oC) Gaussian 0 17.17 2.323 0.64 

 

𝑍𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝛾) = 𝑁 + ℎ ∙ (1 − 𝑒−
𝛾
𝛼) 

𝛧𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝛾)𝑁 + ℎ ∙ (1 − 𝑒
−
𝛾2

𝛼2) 
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A-II.3 Average minimum Temperature 

 

A-II.4 Diurnal temperature range 
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A-II.5 Snow depth days above 1inch & deicing regions 

 

 

 

A-II.6  Precipitation 
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A-II.7 Dew point temperature 

 

A-II.8 Humidity 
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A-II.9 EDA Response Variables 

 

Structural Deficiency (SD) status  
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Functionally Obsolete status 

 

Bridges with No Deficiency (ND) 

 

FILI
PPOS ALO

GDIANAKIS



196 
 

A-II.10 Dependent variables numeric 

1 The outliers were ruled out only for plotting the histograms but were included in the analysis. 

All histograms were created without outliers apart from the ones with (*). 

Variable Min Max Mean Median Skew 
Standard 

Variation 

Length (m) 6,10 38421,6 56,33 30,50 73,56 178,90 

Number of spans () 0,00 771 2,78 2,00 57,14 5,28 

Length of max. span 

(m) 

0,00 999,9* 18,50 14,90 9,69 14,97 

Deck Width out to out 

(m) 

0,80 388.4** 11,75 9,80 15,01 7,58 

Detour Length (km) 0,00 199*** 21,14 5,00 9,67 63,39 

Min. Vert. Clear. over 

(m) 

0,30 30 5,90 5,03 4,89 3,89 

Min.Vert. Cl. Under 

(m) 

0,02 30 5,54 5,08 5,30 1,65 

Min. Lateral Clearance 

left and Right (m) 

0,10 30 3,79 3,00 2,11 2,82 

Inventory Route min. 

Vertical clearance (m) 

0,28 30 5,70 5,18 4,47 2,25 

Average daily traffic 

(vehilces) 

0,00 806650 8279,23 942 6,19 21831,45 

Average daily truck 

traffic (%) 

0,00 99 8,14 6,00 2,42 8,63 

Lanes on  (-) 1,00 82 2,24 2,0 6,19 1,11 

Lanes under (-) 0,00 99 0,91 0,0 6,28 2,42 

Year Built  1900 2016 1973,76 1974 -0,49 25,01 

Year Reconstructed 1911 2016 1989,91 1992 -0,82 16,51 

Sufficiency Rating (%) 0,00 100 81,13 87 -1,42 19,03 

*the value was left as is, as there are bridges grater 

**value for dead end roads NaN was used for that value so that it didn’t get mixed. Not 

for the case of ANOVA where a category was used for this coding.  

*** The value 999.9 was found the value presented has been verified using coordinates. 
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A-II.11 Environmental variables 

Variable Min Max Mean Median Skew 
Standard 

Variation 

Peak ground acceleration g 

(m/s2) 
0,011 2,07 0,14 0,074 3,64 0,20 

Precipitation (inch) 2,61 125,81 40,02 41,32 -0,40 12,62 

Snow (days above 1 inch) 0 197,02 27,03 15,96 1,26 31,09 

min.Temp.(oC) -6,31 23,22 8,18 7,62 0,36 4,11 

Max. Temp.(oC) 7,87 34,82 21,06 20,55 0,30 3,83 

Diurnal Range Temp.(oC) 5,28 23,86 12,88 12,65 0,99 1,75 

Dew Point Temp. (oC) -4,46 22,77 12,90 12,39 -0,033 3,66 

Humidity (%) 0,014 98,25 59,25 62,09 -2,61 12,43 

 

 

 

 

FILI
PPOS ALO

GDIANAKIS



199 
 

 

FILI
PPOS ALO

GDIANAKIS



200 
 

 

A-II.12 Categorical variables 
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A-II.13 ANOVA Superstructure condition 

 

(A) (B) 

(C) (D) 

(E) 
(F) 

(G) (H) 
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(I) (J) 

(K) (L) 

(M) 
(N) 

(O) (P) 
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(Q) (R) 

(S) (T) 

(U) (V) 

(W) (X) 
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A-II.14 ANOVA Deck condition 

 

(Y) (Z) 

(AA) (AB) 

(A) (B) 
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A-II.15 ANOVA Substructure condition 
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A-III. Appendix Chapter 5: Coastline effect on bridges 

 

A-III.1. Hurricane prone areas of the coastline according to ASCE 7-10 (ASCE, 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-III. 2.Tsunami prone areas in the US (USGS, 2007). 
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 A-III.3. Ground elevation of bridges in the US by Kriging interpolation. Ordinary Kriging was 

used with the same parameters mentioned in Chapter 3 section 3.2.1. Furthermore, an 

exponential variogram was utilized exponential with parameters of: sill 4.86x104
, range 0.443 and 

nugget:0. 

 

 

A-III.4.Descriptive statistics of continuous variables 
 

Min Max Mean Median St.d Skew 

Precipitation 9,85 112,18 47,11 48,49 14,29 -0,10 

Elevation -7,93 430,20 22,14 14,66 26,56 0,28 

Pga 0,011 1,39 0,21 0,11 0,28 0,37 

Not 
Reconstructed 

1900 2016 1977,696 48,49373 20,81 92,70 

Year 
Recostructed 

1913 2016 1991,337 48,49373 15,49 125,42 
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A-III.5. Histograms for the variables of the coastline (vertical axis refers to number of bridges) 
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A-III.6. Interaction plots for structural condition of deck 
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A-III.7. Interaction plots for structural condition of substructure 
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A-III.8. ANOVA for bridge elevations located within 250m inland from coastline 
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A-IV. Appendix Chapter 6 

A-IV.1 Deck condition interaction plot 
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A-IV.2 Superstructure condition interaction plot 
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A-IV.3 Substructure condition interaction plot 
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A-IV.4. Map distribution of superstructure materials 

A-IV.5. Carbon dioxide emissions in the US from http://vulcan.project.asu.edu/ 
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A-IV.6. Deck and Substructure age distributions for deicing water environment   
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A-IV.7 Deck and Substructure age distributions for deicing no water environment  
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A-IV.8. Deck and Substructure age distributions for no deicing water environment 
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A-IV.9. Deck and Substructure age distributions for no deicing no water environment 
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 A-IV.10. Superstructure age distributions for deicing water environment 
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A-IV.11. Superstructure age distributions for deicing no water environment 
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A-IV.12. Superstructure age distributions for no deicing water environment 
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A-IV.13. Superstructure age distributions for no deicing no water environment 
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A-IV.14. Comparisons of individual environmental exposures for superstructure materials. 
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