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ABSTRACT [in Greek language] 

Η κατανόηση του τρόπου με τον οποίο οι άνθρωποι μετακινούνται μέσα στον αστικό χώρο 

μαζί με τις αλληλεπιδράσεις που αναπτύσσονται σε αυτό απασχόλησε έντονα πλήθος 

ερευνητών σε διάφορους επιστημονικούς τομείς όπως, η συγκοινωνιολογία, ο πολεοδομικός 

σχεδιασμός και η επιδημιολογία. Εντούτοις, η μοντελοποίηση και προσομοίωση της αστικής 

κινητικότητας παραμένει ένα δύσκολο εγχείρημα καθώς απαιτεί πληθώρα δεδομένων που 

σχετίζονται με τις μετακινήσεις των ανθρώπων μέσα στον αστικό ιστό. Αρχικά, η συλλογή 

αυτών των δεδομένων γινόταν κυρίως μέσα από χρονοβόρες και δαπανηρές έρευνες. Τις 

τελευταίες δεκαετίες όμως, οι "αναδυόμενες τεχνολογίες" και η πρόσβαση σε ανοιχτά 

δεδομένα αύξησαν το φάσμα των δυνατοτήτων για την μοντελοποίηση και την 

χαρτογράφηση της. Σε αυτή τη νέα πηγή πληροφοριών συγκαταλέγονται δεδομένα από 

κινητά τηλεφώνα, έξυπνες κάρτες και από τα μέσα κοινωνικής δικτύωσης, τα οποία 

προσφέρουν άπειρες ψηφιακές εγγραφές μετακινήσεων, επιτρέποντας στους ερευνητές να 

κατανοήσουν καλύτερα τους νόμους που διέπουν την κινητικότητα των ανθρώπων στις 

αστικές περιοχές. Ωστόσο, οι νέες αυτές πηγές δεδομένων κινητικότητας παρουσιάζουν 

ορισμένα μειονεκτήματα καθώς μπορεί να μην ανταποκρίνονται σε αντιπροσωπευτικά 

δείγματα  του πληθυσμού ή η πρόσβαση σε αυτά είναι να είναι περιορισμένη. 

 Στην παρούσα διατριβή χρησιμοποιείται για πρώτη φορά μια εναλλακτική πηγή 

δεδομένων για την εκτίμηση και την ερμηνεία της αστικής κινητικότητας και συγκεκριμένα  

οι διαδικτυακοί χάρτες κυκλοφορίας, οι οποίοι παρέχουν πληροφορίες για την οδική 

κυκλοφορία σε πραγματικό χρόνο. Στα πλεονεκτήματα των διαδικτυακών χαρτών 

κυκλοφορίας συγκαταλέγονται η διάχυτη παρουσία τους καθώς και η διαδραστικότητα και 

η ελεύθερη πρόσβαση που προσφέρουν σε σύγκριση με άλλες πηγές. Συνεπώς, είναι 

σημαντικό να διερευνηθεί η αξία τους για περαιτέρω εφαρμογές πέρα από τις πληροφορίες 

κυκλοφορίας σε πραγματικό χρόνο και τους χρόνους διαδρομής. 

 Βασικός στόχος είναι η διερεύνηση της αξίας της πληροφορίας που απεικονίζεται 

στους διαδικτυακούς χάρτες κυκλοφορίας πέρα από την πρώτη οπτική ερμηνεία και το όριο 

που θέτει η ανθρώπινη όραση. Σημειώνεται ότι, η δημιουργία των  διαδικτυακών χαρτών 

κυκλοφορίας απαιτεί τη συλλογή τεράστιου όγκου λεπτομερών δεδομένων κινητικότητας 

σε πραγματικό χρόνο, τα οποία συμπυκνώνονται για σκοπούς αναγνωσιμότητας. Με την 

εξαγωγή αυτής της συμπυκνωμένης πληροφορίας, χρησιμοποιώντας τεχνικές επεξεργασίας 

εικόνας δίνεται η δυνατότητα για την διακριτοποίηση του αστικού χώρου σε μικρότερα 

στοιχεία απεικόνισης (pixels), στα οποία καταγράφεται η κατάσταση της κυκλοφορίας με 
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βάση κάποιο συγκεκριμένο χρωματικό κώδικα, σε μια κατάλληλη δομή δεδομένων 

πολύτιμη για μετα-ανάλυση και ερμηνεία των μοτίβων αστικής κινητικότητας.  

 Το πρώτο μέρος της διατριβής εστιάζει στον έλεγχο της εγκυρότητας των δεδομένων 

που αντλούνται από την επεξεργασία των διαδικτυακών χαρτών κυκλοφορίας, μέσα από την 

εκτίμηση θεμελιωδών σχέσεων κυκλοφορίας, όπως τα Μακροσκοπικά Θεμελιώδη 

Διαγράμματα της Κυκλοφορίας ή τον εντοπισμό άλλων δυναμικών φαινόμενων, όπως η 

κυκλοφοριακή υστέρηση σε επίπεδο δικτύου.  

 Σε δεύτερο στάδιο, διερευνάται η χρονική και χωρική διάσταση της αστικής 

κινητικότητας με βάση τα δεδομένα που λήφθηκαν από την επεξεργασία των διαδικτυακών 

χαρτών κυκλοφορίας. Το προτεινόμενο μεθοδολογικό πλαίσιο βασίζεται σε αλγόριθμους 

μηχανικής όρασης, στην εκτίμηση διαγραμμάτων πυκνότητας και σε διάφορες τεχνικές 

ομαδοποίησης. Μέσα από την εφαρμογή στην περιοχή μελέτης, η οποία αποτελείται από 

δεκαοκτώ διαφορετικές πόλεις σε όλο τον κόσμο, αποκαλύπτονται κανονικότητες και 

επαναλαμβανόμενα μοτίβα καθώς και χρήσιμες πληροφορίες σχετικά με τη δυναμικά 

χαρακτηριστικά της αστικής κινητικότητας, συμβάλλοντας στην ευρύτερη κατανόηση του 

πολύπλοκου και πολυπαραγοντικού αυτού φαινομένου.  

 Εν κατακλείδι, η περαιτέρω ανάπτυξη της προτεινόμενης μεθόδου μπορεί να 

οδηγήσει σε ένα νέο χρήσιμο εργαλείο, χαμηλού κόστους για την αντιμετώπιση σύνθετων 

αστικών ζητημάτων, πολύτιμο για τους πολεοδόμους, τους υπεύθυνους χάραξης πολιτικής 

αλλά και για τα κέντρα διαχείρισης της κυκλοφορίας. 
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ABSTRACT  

The understanding of how people move along with the relationship between urban forms has 

been a vivid research topic in several scientific fields such as transportation engineering, 

urban planning, and epidemiology. Hence, urban mobility modeling remains a challenging 

task as it requires a plethora of mobility data. In the early years, this data was derived from 

costly manual surveys but recently the emerging technologies and the data availability 

enhanced the spectrum of possibilities in mobility modeling and mapping. This new source 

of information such as mobile phone data, smart card data, floating car data, and web-based 

sources services that create digital records enabled researchers to better understand the 

governing laws in human mobility within urban areas. Although, these new sources of 

mobility data can also be significantly biased or have other drawbacks such as limited access. 

In this thesis, an alternative source of data, namely aggregated traffic information, 

broadcasted by online traffic maps are utilized for the first time to interpret urban mobility 

dynamics. The merits of online traffic maps lie on the ubiquitous and low-cost characteristics 

of this type of opensource data compared to other sources and thus it is crucial to explore 

their value for further applications beyond real-time traffic information and travel times. The 

main objective is to investigate the value of traffic information that is depicted at online 

traffic maps beyond the bounds of information that a human eye can perceive. Online traffic 

maps facilitate the collection of the vast amount of extremely detailed mobility data in real 

time that is aggregated for the sake of readability. The extraction of this aggregated 

information using image processing techniques enables to perform discretization of the 

urban space in seamless pixels, capturing the traffic state in each pixel based on the colour 

code in a suitable data structure valuable for meta-analysis and patterns interpretation.  

Initially, the validity of the simplified/coded information that dynamic traffic maps 

provide in terms of traffic operational characteristics is investigated. The results revealed 

that fundamental traffic relationships, such as the Macroscopic Fundamental Diagrams 

(MFDs), hold even in the case of the abstracted information broadcasted from online traffic 

maps while in a meta-analysis stage it was able to capture spatio-temporal phenomena of 

urban mobility, like concentration and homogeneity.  

As a second challenge the temporal and spatial dimension of urban mobility is explored 

based on the information retrieved from online traffic maps. The proposed methodological 

framework to estimate and interpret the spatiotemporal mobility patterns is built on 

Computer Vision algorithms, Kernel Density estimation, and clustering techniques. The 
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application of the method on over fifteen cities around the world revealed regularities and 

useful insights regarding the urban mobility dynamics, enhancing our understanding in the 

particularly complex and multifaceted world of human mobility in urban areas.  

 Last, further development of the proposed method can lead to a new useful and low-cost 

tool to confront complex urban issues valuable for urban planners, policy makers and traffic 

management’ authorities. 
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Chapter 1 : Introduction 

1.1 Motivation 

Maps as mediators between an inner mental world and an outer physical world are 

fundamental tools helping the human mind make sense of its universe at various scales. 

Thus, the use of map is both extremely ancient and extremely widespread. It could be said 

that, maps constitute a specialized graphic language, an instrument of communication that 

has influenced behavioral characteristics and the social life of humanity (Freundlich, 2011). 

The widespread use of maps lies on the immediacy about the message in a map that makes 

it more readily perceived than knowledge encoded in other ways. The most significant 

attribute of a map is that it can be taken in quickly by the eye, contributing to the potency of 

cartographic images. Thus maps have been associated with cultures that differ widely in 

social or technological development while an early psychological research has shown that 

children can derive meaning from maps (and indeed draw them) from young age (Piaget and 

Inhelder, 1967). The variety of its occurrences is vast as anything that can be spatially 

conceived can be mapped. There are political maps, physical maps, topographic maps, 

climate maps, economic or resource maps, road maps, thematic maps etc. A road map is one 

of the most widely used map types. 

 In the 20th century the use of aerial photography changed the types of data that could 

be used to create maps. Furthermore, the use of satellite imagery aided in showing large 

areas in detail. Over and above, GIS technology introduced a new era in cartography by 

allowing the creation of many different types of maps using various types of data. Likewise, 

the digital revolution of the last decades has seen a major shift from paper to electronic maps 

with the rise of mobile technology. MapQuest (MapQuest, 2020) was the first well-known 

online mapping service launched on the Internet on February 5, 1996 and changed the way 

people obtain street maps and directions forever. Since then, several other Internet 

companies, including Google, Yahoo and Bing have come online with mapping and routing 

services.  

 Online traffic maps provide the means for augmenting valuable traffic information 

including the spatial element, resulting to an important instrument to organize, observe and 

communicate valuable (but complex) information for making decisions, in a relevant and 

comprehensible manner. The recent technological developments in the traffic sensor and 

surveillance systems and especially in information and communication technologies, 
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facilitate the collection of vast amounts of extremely detailed mobility data in real-time, 

making possible the development of dynamic traffic and mobility maps, able to be 

broadcasted online to authorities and–up to a certain degree-to interested other users 

(professionals and individual travellers). This type of products and services has become 

extremely valuable in everyday life and thus reasonably massively popular.  

The standard that is used for depicting traffic in roadmaps makes use of a colour 

coding scheme representing alternative traffic states in links, while in some cases the links’ 

line width is also used for classifying road type or provide additional information (e.g. traffic 

volume). By this manner, it can compose a valuable message about the network conditions, 

communicated in the form of visual signal (image) and easily comprehended by both experts 

and ordinary travellers. Although traffic maps have become an important tool for monitoring 

first and then manage and control of traffic systems, a question raises about the value of the 

information that is broadcasted in terms of traffic operational characteristics and if the 

information reduction that is performed in the colour-coding process still possess valid 

traffic characteristics, especially in the scale of large and complex urban areas. This thesis 

addresses these questions through a thorough investigation of the traffic information that is 

broadcasted in online traffic maps.  

At first, online traffic maps are processed as raster images, providing a way to 

discretize the urban space (and the road network therein) in seamless micro-segments 

(pixels), capture the traffic states in each pixel based on the colour-code of each of them and 

come up with a suitable data structure able to organize the spatio-temporal information of 

urban traffic networks for meta-analysis. The theoretical foundations used for the meta-

analysis are based on the fundamental relationships of traffic flow, both at the microscopic 

as well as at its generalization on the macroscopic scale, especially with the well-defined 

Macroscopic Fundamental Diagram-(MFD). The estimation and the investigation of the 

MFD properties are performed on commercial freely available online traffic maps that offer 

global coverage across many cities.  

As a second challenge the temporal and spatial dimension of urban mobility is 

explored based on the information retrieved from online traffic maps. The proposed 

methodological framework to estimate and interpret the spatiotemporal mobility patterns is 

built on Computer Vision algorithms, Kernel Density estimation, and clustering techniques. 

The application of the method on over fifteen cities around the world revealed regularities 
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and useful insights regarding the urban mobility dynamics, enhancing our understanding in 

the particularly complex and multifaceted world of human mobility in urban areas. 

Together the proposed techniques enable both monitoring and control of urban road 

networks while a concrete connection between human mobility research and real-time traffic 

information is established.  

1.2 Scope and Contribution 

 The scope of this thesis is two-fold. Firstly, it attempts to investigate the validity of 

the simplified/coded information that dynamic traffic maps provide in terms of traffic 

operational characteristics. Secondly, it intends to apply the retrieved information for the 

estimation of spatiotemporal mobility patterns. Towards the research scope, the following 

questions were formulated:  

1. What type of information can be retrieved from online traffic maps that the human 

eye cannot perceive? 

2. Is there a connection between the real urban space and the seamless micro-segments 

(pixels) of the traffic maps images? 

3. Do fundamental traffic relationships such as the MFD or traffic hysteresis 

phenomena hold even in the case of abstracted information broadcasted in online 

traffic maps? 

4. How this type of information can be further applied on urban mobility modeling for 

cities that have online traffic coverage? 

The contribution of the thesis lies on the thorough investigation of the traffic information 

displayed on traffic maps both on the micro and the macro level along with the deep 

understanding of urban mobility dynamics at a high level using quantified indices and 

mesmerizing visualization tools and models. Specifically, in Chapter 5 the capacity of 

online traffic maps is investigated in terms of traffic operational characteristics. Here, a 

connection between the average network flow, the average network speed, the average 

network density, and the number of pixels that belong to distinctive operating class of online 

traffic maps is established exploiting the fundamental linear speed-density relation proposed 

by Greenshields. Moreover, Chapter 6 introduces alternative and innovative methods in 

understanding movement within the urban fabric at a macroscopic level, based on suitably 

developed quantified indices that may be applied to any city that has online traffic coverage. 
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 Ultimately, this work introduces a new perspective on tackling urban mobility 

challenges, utilizing the ubiquitous aggregated data from online traffic maps. 

1.2  Research Objectives 

The research objectives of the thesis can be summarized into the following topics:  

a. To gain a deep understanding of online traffic maps by investigating fundamental 

traffic flow characteristics and relationships that can be extracted by the aggregated 

type of traffic information used in them, 

b. To form the mathematical connection between the discretized/digitized map images 

on seamless pixels and the aggregated traffic variables across entire urban areas,  

c. To describe urban mobility through quantified indices and models that can be applied 

to every city that has online traffic coverage, 

d. To establish a concrete connection between human mobility research and real-time 

traffic information. 

Towards these objectives, data in the form of raster images were collected for one-week 

period for over fifteen cities around the world from different online providers/sources. 

Additional data from loop detectors were collected, for validation testing for the city of 

Nicosia, Cyprus. 

1.3  Organization of the Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 provides an extent review of related work into two main categories following 

the two-fold scope of the thesis. Firstly, a review among network-level traffic relationships 

and models is provided, that focuses on earlier works with empirical data and landmark 

studies on the concept of the macroscopic traffic flow analysis. In the current thesis, the 

feasibility of using online traffic maps information for capturing network traffic phenomena 

(e.g. MFD estimation) is investigated as a validation tool for further meta-analysis and urban 

mobility modeling. Thus, recent empirical studies on urban MFD and their application are 

further discussed. The rest of the literature review is devoted on the human mobility and 

mapping studies. The motive of this review is to give a short resume of the status of our 

knowledge and understanding in human mobility, and the way it is visualized. Mobility 

mapping areas and milestones are initially introduced while significant human mobility 

studies are presented based on the data source. 
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Chapter 3 introduces the fundamental characteristics of traffic flow and the relationships 

between these parameters. To figure out the exact relationship between the traffic 

parameters, a great deal of research has been done over the past several decades. Most 

important among them is the relation between speed and density. The results of this research 

yielded many mathematical models. Thus, emphasis is given on the most known models 

such as the single regime models of Greenshields, Greenberg, and Underwood, that 

dominated for many years, Afterwards, Macroscopic Fundamental Diagrams that are 

employed in Chapter 5 as a validation tool are further discussed.  

 Chapter 4 is devoted on the experimental setup. Starting with the presentation of the 

study area, the spatial distribution of the cities under investigation is provided along with the 

basic characteristics such as population, land, population density. After the selection of the 

study area, the description of the data collection follows. Then the data processing section 

presents the steps followed for the traffic information extraction while a preliminary analysis 

in the form of timeseries is provided at the end of the chapter. 

 In Chapter 5 the validity of the simplified/coded information that dynamic traffic 

maps provide is investigated in terms of traffic operational characteristics. Particularly, the 

estimation and the investigation of the Macroscopic Fundamental Diagram-MFD properties 

are performed utilizing the captured pixels properties for the selected study area. The validity 

of the method is tested by comparing the estimated MFDs to ground-truth MFD obtained 

using empirical data from loop detectors. Further, other macroscopic models are 

demonstrated for comparative reasons. 

 Chapter 6 extends the work in chapter 4, starting with a closer look to urban 

morphology of the cities in the study area while estimation of the temporal and spatio-

temporal patterns follow. The chapter ends with the dynamic clustering and propagation of 

congestion analysis, providing dynamic congestion patterns for the selected urban areas. 

 Chapter 7 ends the thesis by offering some concluding remarks and emphasizing the 

original contribution of the dissertation. Several issues that were not investigated in this work 

are included in this chapter as future work. The list of future directions presented in this 

chapter is not exhaustive, but it is meant to serve as a guide towards some interesting 

directions that warrant investigation.  
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Chapter 2 : Literature Review 

The work described in this thesis ultimately has two intertwined goals: (1) to investigate the 

validity of traffic information that is broadcasted in dynamic online maps through 

fundamental network-traffic relationships, and (2) to apply this extracted traffic information 

in a meta-analysis stage on human mobility modeling and mapping for urban areas. In this 

Section a review of related work is provided both for network-level traffic relationships 

(subsection 2.1) and for human mobility modeling and mapping (subsection 2.2).  

2.1  Network-Level Traffic Relationships  

The starting point for observing and modeling road traffic at networks started at the 

case of specific locations/cross-sections and date back to the seminal work of Greenshields 

(Greenshields et al., 1934, Greenshields 1935), who carried out tests to measure traffic flow, 

traffic density and speed using photographic measurement methods for the first time. The 

conversion from single-entity level characteristics of traffic flow to comparable system-level 

characteristics was first introduced by Lighthill and Whitham (Lighthill and Whitham, 1955) 

and Richards (Richards, 1956) who independently proposed a simple continuum model to 

describe the characteristics of traffic flow, known as the LWR model. Their study attracted 

attention as essential features of traffic flow, such as wave formation and propagation, could 

be qualitatively well reproduced with the LWR model (Transportation Research Board, 

2011). 

2.1.1 Earlier works with empirical observations 

  Moving to the network-wide traffic modeling, in the 1960s several landmark studies 

appeared exploring network-level traffic flow relationships. (Smeed 1966&1968, Thomson, 

1967, Wardrop, 1968, Godfrey, 1969).  Later Zahavi (Zahavi, 1972) worked on the 

relationship between network-level parameters of traffic intensity, road density, and the 

weighted space mean speed using data from England and the United States.  

 In the late 1970s, Prigogine and Herman (Herman and Prigogine, 1979) proposed the 

two-fluid theory in order to characterize the flow of vehicles in the urban network. The two-

fluid model assumes that vehicular traffic in an urban network can be distinguished into 

stopped vehicles and running vehicles. The model is based on two assumptions: first, the 

average speed in a road network is proportional to the fraction of vehicles that are moving 

and second the fractional stop time of a test vehicle circulating in a network is equal to the 

average fraction of the vehicles stopped during the same period (Gartner et al., 2001). 

VANA G
KANIA



7 

 

Empirical validation of the two-fluid theory appeared in the 1980s utilizing data obtained 

using chase-car techniques, supplemented by aerial photography (Herman and Ardekani, 

1984, Ardekani et al., 1985, Ardekani and Herman, 1987). Mahmassani et al. (1984a) and 

Williams et al. (1985) during their study of the two fluid models related the three 

fundamental traffic variables speed-flow-concentration at a network level based on data from 

simulation and indicated that they were similar to those on individual road facilities. A 

comprehensive review of these macroscopic flow models is included in the Traffic Flow 

Theory monograph revised in 2001 (Gartner et al., 2001). 

2.1.2 Recent empirical studies on urban MFD 

More than a decade later, Daganzo (Daganzo, 2007) revisited the concept of the 

macroscopic traffic flow analysis as part of an urban traffic dynamics model for improving 

city mobility through gridlock control. Traditionally, a fundamental diagram reveals the 

traffic condition on a short road section, relating traffic variables such as flow, density and 

speed. Although, Geroliminis and Dagazo (Geroliminis and Daganzo, 2008) in a field 

experiment in Yokohama, Japan,  expanded the concept of the fundamental diagram and  

proved that average flow and density are indeed related by a reproducible curve for a 

complete network, which has come to be known as the Network or Macroscopic 

Fundamental Diagram (NFD or MFD). The data on the network level are easily generated 

by averaging the link data while a sufficient number of observations under various traffic 

conditions is required to ensure all states in the MFD can be demonstrated. 

So far, many researchers have examined several different applications of the MFD for 

improving traffic control. For instance studies including gating strategies (Keyvan-Ekbatani 

et al., 2012), pricing strategies (Geroliminis and Levinson, 2009, Amirgholy and Gao, 2017) 

or routing strategies (Knoop, Hoogendoorn and Van Lint, 2012; Yildirimoglu, Ramezani 

and Geroliminis, 2015) that are sensitive to the functional form of the MFD. The factors that 

influence the shape of an MFD also drew research attention. Geroliminis and Sun 

(Geroliminis and Sun, 2011) explored the effect of the spatial variability of vehicle density 

on the shape and the scatter of a well-defined MFD. In (Ji and Geroliminis, 2012) a 

partitioning mechanism based on the criteria of a well-defined MFD in the urban 

transportation networks was designed. The effects of adaptive driving on network capacity 

and traffic instability in a simulated network model was examined in (Saberi, Mahmassani 

and Zockaie, 2014). The impacts of locally adaptive traffic signals on network stability and 

the MFD were studied by (Gayah et al., 2014). Furthermore, a connection between network-
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wide travel time reliability and the MFD concepts have been investigated by (Mahmassani 

et al., 2013, Gayah et al., 2014, Yildirimoglu et al., 2015). Geroliminis et al. (Geroliminis et 

al., 2014) extended the modeling and the application of the single-model MFD to a bi-modal 

(bus and cars) one, with the consideration of passenger flows and traffic performance of each 

mode. Thus, a three-dimensional Macroscopic Fundamental Diagram (3D-MFD) for mixed 

bi-modal urban networks was investigated based on simulation data while the first empirical 

estimate of the 3D-MFD can be found in (Loder et al., 2017). Last, another recent study 

explores the existence and the characteristics of the pedestrian MFD (Hoogendoorn et al., 

2017).  

2.1.3 An alternative source of empirical data for the MFD estimation 

While it is convenient to use an MFD to describe the traffic status across a network 

and design traffic control strategies the data needed to plot the MFD are not always readily 

available. Up to now, there are typically two empirical data sources considered as viable for 

the estimation of the MFD: Loop Detector Data (LDD) and Floating Car Data (FCD) or 

fusing both data sources to estimate a more accurate MFD. Specifically, a combination of 

LDD flows and FCD speeds partly eliminates key drawbacks of the two data sources.  A 

preliminary study (Ambühl and Menendez, 2016) has shown that applying a data fusion 

algorithm increases the accuracy of the MFD estimation. 

 Throughout the literature, empirical studies on urban MFD estimation were 

conducted for the city of Toulouse, France (Buisson and Ladier, 2009), Rome, Italy (Bazzani 

et al., 2011), Brisbane, Australia (Tsubota et al., 2014), Shenzhen, China (Ji et al., 2014), 

Sendai, Japan (Wang et al., 2015), Chania, Greece (Ampountolas and Kouvelas, 2015), 

Changsha, China (Beibei et al., 2016) and Zurich, Switzerland (Ambühl et al., 2016) utilizing 

either LDD or FCD.                                                                                                                                                                                       

In (Guenan, 2014) the limitations of each data source are pointed out while a 

combination of them is proposed following an approach by Leclercq et al. (Leclercq, 

Chiabaut and Trinquier, 2014) that leads to a well- defined MFD, reducing key drawbacks 

of each data source. Loop detectors are usually installed close to traffic signals and on links 

with greater congestion probability while for a reliable MFD, loop detectors must be 

positioned uniformly within the links across the network. This implies that density and 

congestion levels are more likely to be overestimated. FCD, on the other hand, is more 

reliable for average traffic states during daytime and on main roads with good coverage of 

probe vehicles. Although, probe vehicles may have specific behaviour that can also 
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introduce additional bias, e.g. taxis. To eliminate this bias, in a recent study (Knoop et al., 

2018), authors utilised floating car data of private vehicles from Google for the empirical 

estimation of MFD for the city of Amsterdam. Although, Google shares aggregate data, after 

applying some “noise”, and only shares that information with few institutions in the world 

(university, institutes or transportation centre’s) (García-Ramírez, 2020). On the other hand, 

Google codes the numerical information using four colours and gives it for free in the form 

of online traffic maps through its platforms (web and mobile app) and this colour-coded 

traffic (live and typical) is available in several cities worldwide. Thus, it is crucial to 

investigate, the feasibility of using this free online traffic information broadcasted through 

maps for capturing network traffic phenomena (e.g. MFD estimation) for several cities and 

from different platforms. 

Compared to several studies that utilize crowdsourcing data, in this thesis, the 

acquisition of the vital traffic information is achieved by performing a back-engineering 

approach based on image processing and using fundamental microscopic traffic relationships 

to estimate macroscopic phenomena. The main difference is that the free and condensed 

information form online traffic maps is utilized instead of the raw/numerical data. In the 

light of other data sources limitation (access, cost, bias, coverage) to provide a network-level 

perspective, the capturing of macroscopic phenomena utilizing online traffic maps’ 

information worldwide has great value especially in the era of Big Data, both for traffic 

monitoring and control. 

In the next section, a thorough review in human mobility research follows, presenting 

mobility mapping eras and milestones and recent remarkable studies and findings. 

2.2  Human Mobility Modeling and Mapping 

2.2.1 Terms and motivation 

 The term "mobility" has multiple connotations, as it can refer to the movement of 

human, goods, and ideas depending on the approach of each academic community. 

Regarding the human mobility term, it can be said that it refers to the movement of human 

beings (individuals as well as groups) in space and time. In space dimension, human mobility 

can occur over a large variety of distances, within the city, among cities, within a country or 

among continents while in terms of time it can be short-term or long-term depending on the 

mode of transport. Regarding the level of human mobility, it can be either individual or 

aggregated to flows of people leading to a variety of models for reproducing and forecasting. 
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Human mobility can be further studied based on the mode of transfer (e.g. sea mobility, air 

mobility) or within the whole city (urban mobility). 

Considering all these aspects of human mobility, the depiction of mobility patterns 

becomes a challenging task, as huge spatiotemporal information at different scales should 

be conveyed in a human friendly and understandable way. Arguably, the science of 

cartography was the first to explore mobility data and gave answers to human questions 

through maps in an efficient way. Despite the difficulties in producing these mobility maps 

due to the time-consuming data collection methods and the lack of computation means, 

pioneer scientist produced the first flow maps during the early 1800s. Since then, the 

emerging technologies and the data availability enhanced the spectrum of possibilities in 

mobility mapping.  

In the years to come, where future mobility may be completely different compared to the 

traditional scheme of car ownership, new challenges will arise both in understanding, 

modeling and visualizing urban mobility dynamics. Thus, the motive of the current review 

is to give a short resume of the status of our knowledge and understanding in human 

mobility, and the way it is visualized. 

2.2.2 Mobility mapping eras and milestones 

 In this sub-section, the mobility mapping eras unfold as a timeline that includes 

selected milestones, which paved the way for a better understanding of human movements. 

As a starting point, the twenty-year period 1835-1855 is chosen, where almost every know 

technique for representing population numbers, distribution, density and movements came 

into being. The earliest visualization of traffic flows was constructed in 1837 by Henry 

Harness for the British Army prior to the decision to build a railway in Ireland. The Harness’ 

Passenger Conveyance Map (Figure 2.1) showed the relative number of passengers in 

different direction throughout Ireland by regular public conveyances. Interestingly, for a map 

prepared a long time ago, the flow lines were drawn between connecting points, without 

showing the actual route, as contemporary origin-destination lines, while the varying widths 

are properly proportional to the numbers that appear along them (Robinson, 1955). Another 

early pioneer of data-centric mapping is Charles Joseph Minard, best known for his 

acclaimed depiction of Napoleon’s ill-fated invasion of Russia (Figure 2.1) that incorporates 

six types of data (the number of Napoleon's troops; distance; temperature; the latitude and 

longitude; direction of travel; and location relative to specific dates) (Claudel, Nagel and 

Ratti, 2016). Minard created several flow maps, from passenger traffic on European railroads 
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to the overseas movement of French wines and paved the way in thematic cartography in the 

sense that he had almost no pattern to follow. The width of flow lines on a Minard map was 

strictly proportional to the magnitude it represents while the scales of the geographical 

features on his maps were forced to fit the data being portrayed (Robinson, 1967). Scales 

and shapes for maps were also transformed for a variety of purposes. For instance, in the 

anamorphic map by Émile Cheysson, (Figure 2.1) deformations of spatial size were used to 

show a quantitative variable (e.g. the decrease in time to travel from Paris to various places 

in France), (Friendly, 1975). Harry Beck’s original Tube map designed in 1933 also didn’t 

give emphasis on geographical accuracy. Although, his clear and comprehensible chart 

became an essential guide and a template for transport maps all over the world (Beck, 2016). 

The first attempt not only to visualize but more to explain and predict mobility 

patterns in terms of migration is dated at 1885, known as the Laws of Migration by Ernst 

Georg Ravenstein. Ravenstein considered not only the effect of distance but also the gender 

and the age of people as explanatory variables based on data from birth tables published in 

the British Censuses (Grigg, 1977). Ravenstein’s 1885 paper (Ravenstein, 1885) also 

includes a map named "Currents of Migration", which illustrates migration patterns around 

the British Isles, shown in Figure 2.1. Although today, we are all familiar with such 

representation of mobility (radial or network flow map), it is still surprising how these 

pioneer geographers produced these maps considering the scarcity of data and the lack of 

computational means.  

Moving towards the twentieth century one encounters breakthrough developments 

that shaped the map history. In that era, we can trace the origins of web mapping and 

advances including the global positioning system (GIS) and the use of satellite imagery in 

creating maps with greater accuracy and richness of detail. The advent of online mapping 

enabled users to retrieve and share mapping data while Web.2.0 interactive mapping allowed 

users’ active contribution to the maps and the knowledge it was shared (Veenendaal, 2016). 

The user interaction was further enhanced by two waves of web map design revolution. The 

first regards the virtual globes development begging with the release of Goggle Earth by 

Google in 2005 while the second was the mobile mapping on smart phones that incorporates 

Global Positioning System (GPS) location tracking. (Tsou, 2011).  

The continuous blend of improvements in technologies, growth of data and users’ 

interaction enabled contemporary visualizations of flow maps in a faster and more accurate 

way. Examples of these representations are illustrated in Figure 2.2. Starting from the left, 
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the first image is an outgoing migration map from Colorado based on the US Census data 

for 1995-2000 records from all the county to county migrations. Here, the authors’ goal is to 

produce flow maps to visualize networks and other kinds of flow data, by using a flow map 

layout that allows a user to see the differences in magnitude among the flows with a 

minimum of clutter (Phan et al., 2005). The next image shows running routes around London 

based on data from the application "RunKeeper"(Yau, 2007). These mobile fitness apps and 

online fitness networks use the built-in GPS capabilities of smartphones to track distance 

and speed of activities of the smartphone owner such as running sessions, bike rides and 

walks (Stragier and Mechant, 2013). Although the data from such source does not represent 

all the runners in the city, useful insights can be gained by exploring their mapping. Mobile 

data were also used to show the distribution of users around Rome’s Termini station (Ratti 

et al., 2006), in the third image. In the fourth image, a mesmerizing dynamic map of global 

refuges flows for year 2014 is shown. The red dot is equal to seventeen refugees arriving in 

a country, while yellow dots represent refugees leaving their home country behind. The data 

source, behind this map is the United Nations High Commissioner for Refugees 

(UNHCR)(Weller, 2017). The last map in Figure 2.2, is inspired from interactive wind maps 

and shows movement in Manhattan based on tweets. Here, tweets sent by the same person 

within a 4-hour time-window were used as samples of speed and direction. The average flow 

of people within the area and total tweet density over the space were used to simulate the 

movement of people (Clark, 2012). Other contemporary visualizations of mobility can be 

found in (Andrienko et al., 2017) that provides a survey of literature from the visual analytics 

domain with respect to the different types of transportation data, movement and its 

relationship to infrastructure and behaviour. 
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Figure 2.1:Milestones in human mobility mapping during the 19th century. 

 

  Figure 2.2:Contemporary visualizations of human mobility based on different source of data. 
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2.2.3 Categorizing human mobility studies based on data source 

 The historical availability of empirical data has been vital to both aggregate and 

individual mobility research. The main sources of data are outlined in this section and used 

as a key parameter to cluster the relevant research endeavors. Following a chronological 

order, the first cluster encapsulates mobility studies based on census data, the yesterday's big 

data. The second data source and perhaps the most used in human mobility investigation is 

the mobile phone Call Detail Records (CDRs). The GPS and smart card data follow while 

the section ends with studies based on online data from Online Social Network (OSN) or 

Location-Based Social Network (LBSN) services. Although, the empirical data for mobility 

studies are not limited to these four categories, the frequency of data used was the main 

criterion for selection. Another criterion that was applied is the existence of visualization of 

human mobility through maps or infographics.  

In the following sub-sections each data source is described while four summarized 

tables with the selected studies are given at the end (Table 2.1,Table 2.2, Table 2.3 and Table 

2.4). Each column of the table refers to certain characteristics of the study. The first column 

groups the studies according to the data source used. In many cases, multiple sources were 

used and thus one study may belong to more than one category. The second column provides 

the authors names and the year of the study. In the third column each study is characterized 

by the mobility level that can be either population or individual level according to the 

analysis. In the same column the movement analysis task is provided borrowed from the 

taxonomy techniques described in (Andrienko et al., 2011), where according to the 

fundamental constituents of movement (space, time, object) three different foci are possible. 

The first type refers to studies that focus on object (movers, events, trajectories), 

characteristics of objects in terms of space and time and relation to location, times and other 

objects. The second type focus on space and the third foci focus on time respectively. The 

fourth column outlines the data and the study area while the fifth describes the visualization 

method used to illustrate human mobility. The last column highlights the main findings or 

applications of each study in terms of human mobility. 

Census Data & Surveys  

Census data derive from periodical national surveys in which householders are questioned 

regarding the socio-demographic and economic status of the household members. 

Commuting flows or internal migration flows within a country can be estimated through 
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questions in census related to the place of birth, the place of previous residence, and the 

location of workplace. Usually, national censuses are held in most countries typically every 

ten years, as they have been singled out as the most elaborate, complex and costly data 

collection activity. Although, population census is in fact one of the earliest systematic 

catalogue of data produced on a continuous basis and it is broadly used in mobility studies 

from the nineteenth century till now. One the other hand, travel surveys investigate the 

individual travel behaviour and thus travel trajectories data can be extracted such as origin 

and destination and departure and arrive time. Both type of sources was primarily used in 

migration and human mobility research. 

As previously mentioned, E.G. Ravenstein in his spermatic work the Laws of 

Regression, used birth tables published in the British Censuses of 1871 and 1881 in order to 

explain the migration patterns within and between countries (Ravenstein, 1885). Considering 

the effect of distance from place of birth to place of enumeration, as well as the gender and 

the age of a migrant as primary factors, he posited the seven laws of migration that paved 

the way for subsequent research. A map titled "Currents of Migration" accompanied his 

paper but was not mentioned in the text. In this map, arrows were used to illustrate migration 

from country to country while some cities were named and shown as circles. The map 

conveyed the migration patterns in a simple and clear way. A similar visualization technique 

is used in (Bell and Ward, 1998) where flow maps were used to illustrate the temporary 

population movements in both coastal and inland locations. Here, the size of the arrows is 

proportional to the number of movers while movements are explored by comparing the data 

on place of usual residence with place of enumeration at the time of the Census. In a more 

recent study (Verhetsel and Vanelslander, 2010), the authors took full advantage of the last 

census in Belgium to get a geographically complete image of commuting in Flanders and 

Brussels. Data from nearly 1.2 million Flemish commuters that were available from the 

processing of the 2001 census were aggregated to the level of neighbourhood. This data 

entailed information regarding: the neighbourhood of the workplace and the place of 

departure, the distance and frequency of the movements, the means of transportation 

generally used for commuting, the times of departure and arrival for the outward journey 

and the return journey and last the number of cars that the household had at its disposal. The 

resulting clusters based on characteristics of commuters are depicted on a map that gives a 

geographically complete image of commuting in Flanders and Brussels. 

In contemporary research, census and survey data are mainly used for evaluation and 

comparison. For instance, in (Guo and Zhu, 2014), authors used data from the US census 
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2000 to evaluate a universal model for mobility and migration patterns, the so-called 

radiation model. A mapping of mobility fluxes is included based on these data while the 

study focuses on movers in terms of movement analysis. In another study (Csáji et al., 2013) 

home and office locations were identified by using communication data and the results 

compared with official census data. In that case the movement analysis focuses on space 

while a map showing commuters patterns between home and office positions is provided. 

Respectively, in (Steiger et al., 2015) tweet patterns were correlated with official census data 

for the case study of London, showing an overall strong positive correlation in comparison 

with workplace population census data. Here a weighted graph was used to visualize the 

frequency between home and workplaces. Likewise taxi data was combined with U.S 

migration data set from the 2000 census in (Guo and Zhu, 2014) to demonstrate a new 

method for origin-destination flow density estimation and for flow map generalization. The 

study includes visually legible flow maps that faithfully represent the major flow patterns. 

Last, traffic census data were also used for validation in (Kashiyama, Pang and Sekimoto, 

2017) that proposes a novel dataset creation approach (called Open PFLOW) that 

continuously reports the spatiotemporal positions of all individual’s in urban areas based on 

open data. Noteworthy animated maps, representing time series population distributions are 

included in the study.  

Overall, both census data and traffic surveys are a valuable source for further 

research especially in case of mobility and migration patterns. The merit of these source lies 

on the scale that is equal to population rather than a sample and thus a complete picture of 

mobility can be achieved. Although, the cost and time limitations led researchers and 

practitioners to seek new data sources, as the following. 

Mobile Phones Data 

The advent of mobile telecommunications and the huge amount of data derived both from 

network operator and smartphone sensors played a critical role in inferring human mobility, 

especially at the individual level. As mobile phones are (typically) personal devices and are 

mostly carried by a single person, one’s trajectories can be matched to the company’s cell 

tower location that routing the communication. Thus, an immerse dataset is produced that 

includes individual human movement in an urban area, valuable for microscopic research. 

Although, CDRs provide an unpresented spatio-temporal resolution compared to traditional 

census and surveys, it is still a sample of population (mobile phone holders) and usually 

restricted due to privacy concerns. An a overview of the Mobile Data Challenge can be found 
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in (Laurila et al., 2013) where a thorough review is provided for the Lausanne Data 

Collection Campaign, an initiative to collect unique longitudinal smartphone dataset. 

Early endeavours to employ such data can be found in projects of the MIT Senseable 

City Lab (MIT Senseable City Lab, 2020), such as the Mobile Landscape Graz (2005), Real 

Time Rome (2006), Real Time Copenhagen (2007), A Tale of Many Cities (2014), and 

Friendly Cities (2018). In the first project, telecommunication data were used to produce 

three real-time maps of Graz that display cell phone traffic intensity, traffic migration 

(handovers) and traces of registered users as they move through the city (Ratti et al., 2007). 

Accordingly, the second project presented real-time urban monitoring for the city of Rome, 

based on the use of anonymous real-time data collected from cellular phone and locational 

data from the public transportation system in the city (Calabrese et al., 2011). A similar 

approach to understand city’s dynamic pulse and get insight in individual movement traces 

followed for the city of Copenhagen that combined mobile phone records and GPS data from 

volunteers (Outram, Ratti and Biderman, 2010). The "Tale of many cities" project presented 

a technique and a visualization tool to gain information in human activity across four global 

cities that was based on aggregated activity measures of mobile networks (Kondor et al., 

2015). The last project investigates spatiotemporal patterns of share urban space between 

friends while the proposed framework is applied to a CDR dataset collected in Singapore 

(Xu et al., 2017). All the above projects are mainly visualization projects and have 

introduced a variety of prototypes in urban data visualization. 

As mobile phone data can provide information for human trajectories, in many 

studies it was applied for research on individual level. For instance in (González, Hidalgo 

and Barabási, 2008), the authors studied trajectories of 100,000 anonymous mobile phone 

users and concluded that the human trajectories show a high degree of temporal and spatial 

regularity. In another studied human trajectories from mobile phone records used to relate 

human mobility with two factors the city shape and size (Kang et al., 2012). To validate the 

representativeness of mobile phone users, authors in (Calabrese et al., 2013) compared 

mobility measures generated from mobile phone traces with mobility measures computed 

using odometer readings. The results showed that mobile-phone-based mobility measures 

have similar spatial distribution patterns as the odometer-reading-based mobility measures 

and thus mobile phone traces represent a reasonable proxy for individual mobility. A 

relevant study investigated the error between real human trajectory and the one obtained 

through mobile phone data using different interpolation methods (linear, cubic, nearest 

interpolations) taking into consideration mobility parameters (Hoteit et al., 2014). From the 
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same data authors extracted real hotspot positions and compare them with the estimated 

positions that one can get by applying the interpolation methods. Decomposing the state of 

Massachusetts into census blocks, they computed the real load of each block in the region 

and visualized the results on a heat map. Using both mobile phone and GPS data, authors in 

(Pappalardo et al., 2015) discovered the existence of two distinct classes of individuals: 

returners and explorers. Also, a visualization of the complexity of the explored mobility 

patterns is provide in the study.  

Mobility information gathered at the individual level can be aggregated to study the 

flows of individuals moving from one region to another at different spatio-temporal scales. 

A vast body in the literature focus on human mobility on a population level. As in (Bayir, 

Demirbas and Eagle, 2010) where authors designed a complete framework the Mobility 

Profiler for discovering mobility profiles based on cell phone log data. A map on end 

locations and top mobility paths for one user is given in the study. The space-time structure 

of human mobility is explored in (Sun et al., 2011). Here, the original data were collected 

from cellular networks in a southern city of China, recording the population distribution by 

dividing the city into thousands of pixels. Also, the population distribution is illustrated on 

map divided into pixels. Results of the study indicated four underlying rules of urban 

dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of 

periodic trends, and temporal stability. A methodology to extract Origin-Destinations (OD) 

trips by purpose and time of day from CDR data is presented in (Alexander et al., 2015). 

Trips reported in local and national surveys are used for validation while home-work flow 

maps illustrate the extracted trips (CTPP, 2018). OD travel flows are also estimated by 

massive cellular signalling data in (Ni, Wang and Chen, 2018) and combined  with other 

explanatory features of urban regions in a spatial econometric model. A map that illustrates 

travel flows between the 51 Traffic Analysis Zones (TAZs) of the study area is also provided. 

Although this review does not cover all the human mobility studies that employed 

mobile phone data, a representative view is given regarding its utility in movement analysis 

and visualization projects. Another valuable source that enables human tracing with a high 

degree of accuracy is data from GPS enabled devices and records of smart cards transactions 

in public transport that follows in the next sub-section. 

GPS and Smart Card Data 

GPS technology has been widely used in transportation science as it provides highly accurate 

trajectories data. Initially, GPS devices has been utilized in travel surveys to improve the 
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accuracy of travel data (Shen and Stopher, 2014). The potential use of GPS increased rapidly 

with the light GPS devices, cellular phones with GPS-device, and GPS-enabled PDA 

(Personal Digital Assistant) (Wachowicz, 2010). Many research projects emerged that used 

GPS data to understand individual human movement. For instance in (Giannotti et al., 2011) 

a project on mobility data mining is presented called M-Atlas. The authors conducted a large-

scale experiment, based on the detailed trajectories of tens of thousands private cars with on-

board GPS receivers to unveil the complexity of human mobility. Various visualization 

techniques were used to depict the mobility patterns of the study area. 

GPS trajectories from taxis was also widely used in literature as they also encode 

information about movement. A taxi trip is associated with pickup and drop-off locations, 

travel times. Also, it contains other attributes such as the taxi id, the distance travelled, fare 

and tip amount, which further enable, for example, the study of the economics of fare 

structure and optimal fleet size. In human mobility studies, taxi GPS data was used for 

exploring both individual and population level of mobility. For instance in (Jiang, Yin and 

Zhao, 2009), researchers illustrated that the human mobility pattern, or the Lévy flight is 

mainly attributed to the underlying street network by using 72000 peoples’ moving 

trajectories, obtained from 50 taxicabs during a six-month period. A heat map visualizing 

the density of the Origins and Destinations (O/D), as a possible mechanism behind the power 

law behaviour of trail length is also provided in the study.  

For a better personalization recommendation in geographic information service, the 

authors in (Yuan et al., 2014) proposed a method to mine interesting locations and the 

frequent travel sequences in a given geo-spatial region by taking the users' historic travel 

experiences into account as well as the correlation between locations. Two real GPS 

trajectories dataset were used in their study, namely CD consisted of a series of regular car 

routes generated from July to September 2012 in Chengdu city of China and the BJ dataset 

that contained 17,621 trajectories with a total distance of about 1.2 million km and a total 

duration of 48,000 hours. 

Regarding mobility on the population-level, taxi trips from New York City were 

utilized in many research endeavours. As an example, (Ferreira et al., 2013) presents a new 

system that supports visual exploration of  big origin-destination and spatio-temporal data 

by using a large data set consisting of over 520 million taxi trips in NYC.  Taxi data from 

29 million district trip records was used for validation of their proposed methodology for the 

prediction of spatial-temporal activities as human mobility in (Guo and Karimi, 2017). 
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Another study (Dimitriou et al., 2016) presents dynamic demand patterns in New York City 

along with the identifications of taxi operators characteristics that optimize fleet 

performance. The study provides also a mapping of pickup and drop-off locations per taxi 

vendor. A similar mapping of clusters of pickup and drop-off locations collected from more 

than 1100 drivers is illustrated in (Tang et al., 2015) but for the city of Harbin, China. With 

a view of spatial interactions represented by taxi trips, another study (Liu et al., 2015) 

revealed a two-level, hierarchical, polycentric structure of Shanghai based on GPS 

trajectories of more than 6600 taxis. A mapping of the estimated travel patterns was also 

included in the study. 

In some cases taxi trips were combined with other source of data to explore human 

mobility, as in (Jiang et al., 2017) that innovatively merged the displacement data of taxi 

GPS trajectories and smart card transaction from subway and bus from Beijing, China. 

Another study (Ma et al., 2017) combined transit smart card data and survey of travel 

behaviour to identify transit commuters as well as to extract individual-level residence and 

workplace. The study also provided visualization of the commuting spatial patterns of transit 

commuters in a map-based platform. 

Smart card data usually derived from public transport systems was widely used on 

human mobility studies. Research endeavours that exploit smart card data mainly focus on 

time or space in terms of movement analysis. As an example in (Sun and Axhausen, 2016) 

a probabilistic factorization framework on multi-way transit trip records was applied to 

reveal the spatial-temporal patterns of urban mobility. The transit trip records were derived 

from a large-scale public transport smart card transactions dataset (14 million transit 

journeys) collected in Singapore, which included both bus and metro modes. In terms of 

mapping, the study provides illustrations of spatial interaction (O/D) for different temporal 

patterns.  

In (Zhong et al., 2016) a comparative study for three megacities revealed that 

variability of temporal patterns increases with increased temporal resolution following a 

negative exponential function rather than a random distribution based on one-week smart 

card data. A relevant study based on Singapore Public Transaction data revealed that human 

daily movements with public transportation can be mostly described with twelve frequent 

movement rhythms. The study also offers an interactive visual interface that presented 

frequent human movement rhythms.  
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Although both GPS trajectories data and smart card data have been widely used in 

human mobility studies due to their high accuracy, they lack in coverage as they represent a 

biased sample of a city’s population. Particularly, compared to mobile phone data which can 

provide information on the mobility of millions of users GPS and smart card datasets 

typically feature a smaller number of individual users. Thus, the last decade researchers 

turned to data from Online Social Network (OSN) or Location-Based Social Network 

(LBSN) services that attract hundreds of millions of users worldwide. Selected studies that 

have used such data along with their visualization methods follows on the next sub-section. 

Online Social Network data 

The advent of the Online Social Network (OSN) and their Location-Based Social Network 

(LBSN) services provided a unique opportunity to study the social and temporal 

characteristics of how people use these services and to model patterns of human mobility. 

Indeed, services such as Twitter, Facebook, Foursquare and Flickr collect geotagged data 

every time a user enables localization for the content being posted and thus fine granularity 

data about human movements is becoming available. Moreover, the worldwide adoption of 

these tools implies that the scale of the datasets is global, and this enable to focus on human 

mobility patterns in many cities across the world. On the other hand, the scientist had to face 

the challenge of these huge datasets in terms of mapping and visualization. Selected studies 

that have utilized this source of data follow along with their visualization methods used for 

human mobility mapping. 

To begin with studies that utilize global datasets, in (Cheng et al., 2011) authors used 

22 million check-ins across 220,000 users from Foursquare, Twitter, Gowalla, Echofon, and 

Gravity to assess global human mobility patterns. The study also provides maps representing 

these check-ins across the globe, the United States and the New York City along with a 

venue cloud of check-ins. Another research endeavour that utilize global datasets can be 

found in (Hawelka et al., 2014). In this case, almost one billion tweets were used to uncover 

global mobility patterns and compare mobility characteristics of different nations. The 

results showed that increased mobility (measured in terms of the probability of travel, 

diversity of destinations, and geographical spread of travels) is characteristic of West 

European and other developed countries. The study provides multiple infographics while a 

visualization tool called Circos is used to depict the Top 30 country-to-country estimated 

flows of visitors. In another large-scale experiment (Noulas et al., 2012), authors studied the 

movements of  Foursquare users across 5 million places in 34 metropolitan cities that span 
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four continents and eleven countries to perform an empirical validation of past theories on 

the driving factors of human movements. Thermal maps of the density of places within cities 

was used as a visualization method in the same study. 

Twitter data dominates compared to data from other social media services. This 

social media tool enables users to post short messages up to 140 characters, called “Tweets” 

in Twitter and when permissions are given by the users, each of their tweets are attached 

with a corresponding geo-location. Furthermore, Twitter allows its users to post statuses 

from third-party “check-in” services (e.g. Foursquare). Thus, this combined information 

makes Twitter a promising proxy for understanding the social dynamics in geographic 

spaces. In a relevant study (Hasan, Zhan and Ukkusuri, 2013), urban human mobility and 

activity patterns are analysed using location-based data collected from Foursquare and 

Twitter. The authors first characterize aggregate activity patterns by finding the distributions 

of different activity categories over a city geography and then determine the purpose-specific 

activity distribution maps. In (Luo et al., 2016) urban mobility for the city of Chicago was 

investigated at the individual level, utilizing 300 million records from Twitter. Similar as 

previous findings based on other sources of data (e.g., cell phone calling logs) the human 

mobility measures generally follow the power law distribution. The study further grouped 

Twitters users based on three demographic factors (race/ethnicity, gender and age) by 

analysing the names provided in their profiles. By comparing the human mobility across 

different demographic groups, they found that the human mobility measures of each group 

still generally follow the power law distribution but demonstrating obvious differences 

across demographic groups. The results were illustrated on maps showing the spatial 

distribution of activity centers in the Chicago area for different demographic groups. A 

similar study demonstrates (Jurdak et al., 2015) that Twitter is a suitable proxy for studying 

human mobility and further identifies two types of Twitter users in terms of the predictability 

of tweeting locations, a group that is highly persistent and predicable and another group that 

is much more diverse and less predictable. The study utilizes a Twitter dataset with more 

than six million geotagged tweets posted in Australia and maps differences in tweet spatial 

distributions as the radius of gyration varies. 

In (Manca et al., 2017) a workflow to mine urban mobility patterns from social media 

is presented that uses geolocated tweets from the city of Barcelona as a case-study. The 

authors make use of maps to plot users’ paths and to highlight the different mobility 

behaviour between tourists and locals. The study also focuses on the research challenges that 
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still exist on social media data in terms of low frequency of data sharing, data sampling, data 

collection from third parties, privacy issues, and Big data issues. 

To confront the distinct characteristics of location-based social media data, that pose 

computational challenges to spatiotemporal analysis, authors in (Cao et al., 2015) presented 

a framework that transforms the massive, dynamic and unstructured location-based social 

media data into flexible geospatial datasets. The system architectures and implementation 

details were presented based on a public Twitter feed collection of the United States. The 

authors also developed an online interactive visual analytical interface where a flow mapping 

service is provided based on the spatiotemporal data cube for visual exploration of 

movement dynamics at multiple spatiotemporal scales.  

Another location-based data type, not a typical example of movement data in the 

research literature, refers to the georeferenced photos made publicly available on the photo-

sharing web site Flickr. In (Andrienko et al., 2011) authors proposed a conceptual 

framework that describes in a systematic and comprehensive way the possible types of 

information that can be extracted from movement data and on this basis defines the 

respective types of analytical tasks. To illustrate their framework, they use a dataset from 

the Flickr photo-sharing web site referring to the territory of Switzerland and the period from 

January 1, 2005 to September 30, 2009.  In terms of their general framework, the Flickr users 

that publish georeferenced photos are the movers. The sequence of the photo taking events 

of one mover makes the trajectory of this mover. The locations are the spatial positions of 

the events, which are originally specified as points. As a next step they describe the types of 

tasks for which the Flickr photos data can be used (e.g. to explore the spatio-temporal 

distribution of a set of photos or the variety of spatial characteristics of trajectories). 

Remarkably visualization methods are used to illustrate their movement analysis such as a 

Growth Ring Map showing the spatio-temporal distribution of the Flickr photos and flow 

map showing the clusters of trajectories by route similarity. 

Overall, it can be said that location-based social media data provide a new set of 

lenses and tremendous opportunities to examine urban mobility dynamics and complex 

social activity. Thus, location-based data has received increasing attention in the research 

community compared to the conventional spatiotemporal data, as this new modality of data 

is dynamic, massive and provides the whereabouts of daily activities. 
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Table 2.1:Related Studies based on Census Data and Surveys. 

Data Source Author(s) 

(Year)  

Level of Mobility/ 

Movement analysis 

tasks 

Data /Study Area Visualization method 

description 

Main finding(s) or applications 

Census Data 

and Surveys 

1. Ravenstein 

(1985) 

Population-level/focus 

on objects (movers, 

events, trajectories) 

Birth tables published in the 

British Censuses of 1871 and 

1881/ British Isles 

Flow Map The laws or principles of migration considering 

the age and the gender of a migrant as primary 

factors 

2. Bell and Ward 

(1998) 

Population-level/focus 

on time 

Data from 1991 Australian 

Census/Australia 

Flow Map Temporary mobility is selective of certain groups 

and there are substantial concentrations of 

temporary movers in both coastal and inland 

locations 

3. Verhetsel A. 

and 

Vanelslander T. 

(2010) 

Neighborhood-level/ 

focus on objects 

(movers, events, 

trajectories) 

Individual census data from 

nearly all 1,2 million 

Flemish commuters 

/Brussels and Flanders, 

Belgium 

Map of clusters based 

on characteristics of 

commuters 

People working and/or living in areas near 

railway stations, public transport junctions, 

urban areas and areas with a high economic 

density travel less distance, especially by car, 

and make more use of public transport and slow 

modes 

4. Simini et al. 

(2012)                  

Population-level/focus 

on objects (movers, 

events, trajectories) 

 

Census, mobile phones, tax 

documents/America, Europe 

Mapping of mobility 

fluxes  

A radiation model that predicts mobility patterns 

in good agreement with mobility and transport 

patterns 
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Table 2.1 (continued) 

Census Data 

and Surveys 

5. Csáji B. et al. 

(2013)  

Population-

level/focus on space 

Data from the Portuguese 

National Institute of 

Statistics (INE) and a 

sample of 100,000 mobile 

phone customers /Portugal 

Commute map for the 

sample of users 

Identification of home and office locations and 

comparing the results with official census data 

6. Guo D. and 

Zhu X. (2014) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

U.S. migration data set 

from the 2000 Census and a 

taxi data set for millions of 

taxi riders / United States 

Net Migration Flow 

Map and Stratified 

Migration Maps 

An innovative approach for the computational 

analysis and flow mapping of large spatial 

mobility data 

7. Steiger E. et 

al. (2015) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

UK census data and data 

from 476,071 individual 

users of twitter /London 

Frequencies of work 

and home topics as a 

weighted graph 

network  

Investigated the correlation between tweet 

activity clusters and census population 

densities 

8. Kashiyama T. 

et al. (2017) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

Open data and census 

data/Tokyo metropolitan 

area and Chukyo area, 

Japan 

Map of human flow in 

time series trips 

Creation and evaluation of an open dataset for 

typical people mass movement in urban areas 
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Table 2.2: Related Studies based on Mobile Phone Data 

Data Source Author(s) 

(Year)  

Level of Mobility/ 

Movement analysis 

tasks 

Data /Study Area Visualization method 

description 

Main finding(s) or applications 

Mobile Phone 

Data 

1. Ratti C. et 

al. (2007)  

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

Cellphone data and user 

movement sample data/ 

Graz, Austria 

Mapping of   cellphone 

traffic intensity, traffic 

migration and traces of 

registered users as they 

move through the city 

Three different real-time maps of Graz produced: 

cellphone traffic intensity, traffic migration 

(handovers) and traces of registered users as they 

move through the city 

2. González 

M. et al. 

(2008) 

Individual-level/ focus 

on objects (movers, 

events, trajectories) 

Trajectory of 100,000 

anonymized mobile phone 

users 

Figure of basic human 

mobility patterns 

Human trajectories show a high degree of 

temporal and spatial regularity. Human 

movement is characterized by a time-

independent characteristic travel distance and a 

significant probability to return to a few highly 

frequented locations 

3. Bayir M. et 

al. (2010) 

Population-level/focus 

on time and space 

Cell phone log data/Boston Mapping of time spend 

on end-locations and 

top mobility paths for 

one user 

Design of a complete framework, the Mobility 

Profiler, for discovering mobility profiles from 

raw cell tower connection data 

4. Calabrese 

F. et al. 

(2011) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

Data from mobile cellular 

networks and GPS data from 

buses and taxis/Rome 

Various visualizations 

of the data on maps 

A visualization tool for urban monitoring for the 

city of Rome 
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Table 2.2 (continued) 

Mobile Phone 

Data 

5. Sun J. et al. 

(2011) 

Population-level/ 

focus on space and 

time 

Data from cellular networks/ 

Shenzhen, China 

Map of the area divided in 

pixels and heat maps for 

mobility visualization 

Resulting into four underlying rules of urban 

dynamics: low intrinsic dimensionality, three 

categories of common patterns, dominance of 

periodic trends, and temporal stability 

6. Kang C. et 

al. (2012) 

Individual-level/focus 

on space 

Basic geographical dataset 

and the MPRs (mobile phone 

records) dataset /Eight cities 

in Northeast China 

Plot of the radius of 

gyration (ROG) of a 

mobile user’s trajectory  

Results showed that the city size and shape 

are two important factors affecting intra-

urban human mobility 

7. Calabrese 

F. et al. 

(2013) 

Individual-level/ focus 

on objects (movers, 

events, trajectories) 

Mobile phone trace data and 

vehicle safety inspection 

data /Boston Metropolitan 

Area 

Spatial distribution of 

daily mobility at block 

group level on a map  

Results showed that mobile phone traces 

represent a reasonable proxy for individual 

mobility 
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Table 2.3: Related Studies based on GPS and Smart Card Data 

Data Source Author(s) 

(Year) 

Level of Mobility/ 

Movement analysis 

tasks 

Data /Study Area Visualization method 

description 

Main finding(s) or applications 

GPS Data and 

Smart Card 

Data 

1. Jiang B. et 

al. (2008) 

Individual-level /focus 

on objects (movers, 

events, trajectories) 

72000 people’s moving 

trajectories, obtained from 

50 taxicabs/ Gävle, 

Sandviken, 

Storvik, and Hofors, Sweden 

Heat map visualizing 

the density of the origins 

and destinations (O/D) 

The human mobility pattern, or the Lévy flight 

behavior, is mainly attributed to the underlying 

street network 

2. Giannotti F. 

et al. (2011) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

GPS data sets obtained from 

private vehicles and survey 

data (Milano Survey) 

collected in 2005-2006 / 

Milan and Pisa 

Mapping of trajectories A querying and mining language and system M-

Atlas, that provides the mechanisms to master 

the complexity of transforming raw GPS tracks 

into mobility knowledge 

3. Ferreira N. 

et al. (2013) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

540 million taxi trips 

providedby Taxi and 

Limousine Commission of 

New York City/ New York 

Visual query model for 

taxi trips  

A system that supports visual exploration of big 

origin-destination and spatio-temporal data. 

 4. Yuan H. et 

al. (2014) 

Individual-level/ focus 

on objects (movers, 

events, trajectories) 

Two real GPS trajectory 

datasets, namely CD and BJ 

datasets/ Chengdu and 

Beijing city of China 

Mapping of experiment 

trajectories in the 

Google earth system 

The proposed method can be used to detect a 

traveler's frequent paths as well as fixed 

territories for better personalized geographic 

recommendation 
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Table 2.3 (continued) 

GPS Data and 

Smart Card 

Data 

5. Tang J. et 

al. (2015) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

Taxi GPS data collected 

from more than 1100 

drivers/Harbin, China 

Mapping the clusters 

of Pickup and Drop-off 

locations 

The distribution of taxi trips in occupied status 

include two patterns: ascending part and 

descending part while in non-occupied status, 

there only exists a monotonically pattern 

6. Liu X. et al. 

(2015) 

Population-level/focus 

on space and time 

GPS trajectories of more 

than 6600 taxis/Shanghai 

Mapping of travel 

patterns  

The study revealed a two-level, hierarchical, 

polycentric structure of Shanghai with a view of 

spatial interactions represented by taxi trips. 

7. Sun L. and 

Axhausen 

K. (2016) 

Population-level/focus 

on space and time 

14 million transit journeys 

extracted from smart card 

transactions / Singapore 

Figure of Spatial 

interaction (origin × 

destination) for 

different temporal 

patterns 

Insights for spatial-temporal urban dynamics 

through collective transit mobility 

8. Zhong C. et 

al. (2016) 

Population-level/ 

focus on time 

One-week of smart-card data 

/London, Singapore and 

Beijing 

Mapping of regularity 

ranking for the three 

cities 

In all cities, variability of temporal patterns 

increases with increased temporal resolution 

following a negative exponential function rather 

than a random distribution. 

9. Dimitriou L 

et al. (2016) 

Population-level/focus 

on time and space 

GPS dataset for 401856 taxi 

trips/ New York, USA 

Mapping of Pickup 

and Drop-off locations 

per taxi vendor for one 

day 

Dynamic demand patterns in Mega-cities as this 

is exposed in taxi operations and identification of 

taxi operations characteristics that optimize fleet 

performance 
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Table 2.3 (continued) 

GPS Data and 

Smart Card 

Data 

10. Zeng W. et 

al. (2017) 

Population-level/focus 

on time 

Singapore Public 

Transportation data and the 

MIT reality mining dataset / 

Singapore 

An interactive visual 

interface that presents 

frequent human 

movement rhythms 

Human daily movements with public 

transportation can be mostly described with 12 

frequent movement rhythms 

11. Ma X. et al. 

(2017) 

Population-level/focus 

on time and space 

One-month transit smart card 

data and survey of travel 

behavior via social media / 

Beijing 

Visualization of the 

commuting spatial 

patterns of transit 

commuters in a map-

based platform 

The proposed framework can identify transit 

commuters by mining spatiotemporal travel 

regularities over continuous long-term 

observation, as well as extract individual-level 

residence and workplace 

12. Guo Q. and 

Karimi H. 

(2017) 

Population-level/ 

focus on objects 

(movers, events, 

trajectories) 

Taxi data from 29 million 

distinct trip records/New 

York 

Mapping of clustered 

neighborhoods with 

similar spatial latent 

features. 

A new methodology for the prediction of spatial-

temporal activities as human mobility 

13. Jiang S. et 

al. (2017) 

Individual-level/ focus 

on objects (movers, 

events, trajectories) 

Taxi GPS trajectories, smart 

card transaction data of 

subway and bus from 

Beijing, China 

Figures fitting 

distributions on the 

empirical data 

The study innovatively merges the displacement 

data from different modes together to explore 

human mobility 
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Table 2.4: Related Studies based on Online Social Network Data 

Data Source Author(s) 

(Year) 

Level of Mobility/ 

Movement analysis 

tasks 

Data /Study Area Visualization method 

description 

Main finding(s) or applications 

Online Social 

Network Data 

1. Cheng Z. et 

al. (2011) 

Individual-level/ focus 

on objects (movers, 

events, trajectories) 

22 million check-ins across 

220,000 users from 

Foursquare, Twitter, 

Gowalla, Echofon, and 

Gravity/ across the globe 

Mapping of Global 

Distribution of Check-

ins and a Venue Cloud 

for Check-ins 

Location sharing services (LSS) users follow 

simple reproducible patterns; Social status, in 

addition to geographic and economic factors, is 

coupled with mobility; and Content and 

sentiment-based analysis of posts can reveal 

heretofore unobserved context between people 

and locations 

2. Adriano G. 

et al. (2011) 

Population- level/ 

focus on objects 

(movers, events, 

trajectories) 

Geographically referenced 

photos from the Flickr photo-

sharing Web site/ 

Switzerland 

Growth Ring Map 

showing the spatio-

temporal distribution 

of the Flickr photos, 

Flow map showing the 

clusters of trajectories 

by route similarity  

A conceptual framework describing in a 

systematic and comprehensive way the possible 

types of information that can be extracted from 

movement data and the respective types of 

analytical tasks. An example of movement data is 

given based on images from the Flickr photo-

sharing Web site 
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Table 2.4 (continued) 

Online Social 

Network Data 

3. Noulas A. et 

al. (2012) 

Population- level/ 

focus on objects 

(movers, events, 

trajectories) 

35,289,629 movements 

of 925,030 users of 

Foursquare/ 34 cities 

Thermal maps of the 

density of places within 

cities 

A universal law for human mobility is identified, 

which isolates as a key component the rank-distance, 

factoring in the number of places between origin and 

destination, rather than pure physical distance 

4. Hasan S. et 

al. (2013) 

Aggregate and 

individual mobility/ 

focus on objects 

(movers, events, 

trajectories) 

A large-scale check-in 

data from Twitter and 

Foursquare/ New York, 

Chicago and Los 

Angeles 

Mapping of Check-in 

Density for Different 

Activity Categories 

Spatio-temporal patterns of aggregate and individual 

mobility in a city using online social media data 

5. Hawelka B. 

et al. (2014) 

Population- 

level/focus on time and 

space 

A billion tweets 

recorded in 2012/ 

Global 

A visualization tool 

called Circos depicts the 

Top 30 country-to-

country estimated flows 

of visitors 

Increased mobility (measured in terms of the 

probability of travel, diversity of destinations, and 

geographical spread of travels) is characteristic of 

West European and other developed countries 

6. Cao G. et al. 

(2015) 

Population- level/ 

focus on objects 

(movers, events, 

trajectories) 

Public data stream of 

Twitter feeds /North 

America 

Multiple-source flow 

maps of the travel flows 

between major cities in 

North America 

An online interactive flow mapping service based on 

the spatiotemporal data cube model to effectively 

represent the movement dynamics of groups of 

social media users 
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Table 2.4 (continued) 

Online Social 

Network Data 

7. Jurdak R. et 

al. (2015) 

 

Individual- level/ 

focus on objects 

(movers, events, 

trajectories 

Twitter dataset with 

more than six million 

geotagged tweets/ 

Australia 

Mapping of tweet spatial 

distributions for various 

radius of gyration  

The study demonstrates that Twitter is a suitable 

proxy for studying human mobility and identified 

two types of Twitter users in terms of the 

predictability of tweeting locations, a group that is 

highly persistent and predicable and another group 

that is much more diverse and less predictable 

8. Luo F. et al. 

(2016) 

Individual- level/ 

focus on objects 

(movers, events, 

trajectories) 

300 million records 

from Twitter/ Chicago 

Mapping of the spatial 

distribution of the radius 

of gyration of Chicago 

Twitter users 

Spatiotemporal characteristics of urban human 

mobility were explored using Twitter posts. Similar 

as previous findings the human mobility measures 

generally follow the power law distribution. 

Race/ethnicity has the largest and gender has the 

least impact on human mobility, in the three 

demographic factors of study 

9. Manca M. 

et al. (2017) 

Population- level/ 

focus on objects 

(movers, events, 

trajectories) 

1, 225, 199 geolocated 

tweets/Barcelona 

Maps of Barcelona 

displaying mobility 

patterns of tourists and 

locals 

The authors explore how social media data can be 

used to infer knowledge about urban dynamics and 

mobility patterns by presenting a survey of the state 

of the art and a case-study based on the city of 

Barcelona 
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Overall, it can be said that flow maps dominate as a visualization technique in the 

previous studies, especially on the population level category. Although, beyond flow maps, 

a variety of visualization techniques were developed in the recent years. An overview of 

methods and tools for analysis of movement data can be found in (Andrienko and Andrienko, 

2013). Here, authors present an illustrated structured survey of the state of the art in visual 

analytics concerning the analysis of movement data. Another survey describes the recent 

developments in visual analytics that are related to the study of movement and transportation 

systems (Andrienko et al., 2017). Here, authors highlight the need for gaining better 

understanding of the new or changed problems, which is leading to new opportunities that 

arise due to the availability of large amounts of data that did not exist or were scarce in the 

past. This includes not only data that describe the movement of people, but also data referring 

to population mobility activities and lifestyle.  

2.3  Chapter Summary 

Through the literature overview, it was revealed that the availability of new source of 

empirical data shaped the future research directions both in the network-wide traffic studies 

and in the urban mobility field. While researchers have explored a wide variety of different 

mobility data, most of the studies focus on disaggregated data from traffic surveillance 

systems or mobile phones that are not available or free to all interested parties. To bridge 

this gap, this thesis explores for the first time the potentiality to employ aggregated 

information from traffic maps for understanding urban mobility dynamics. As, online traffic 

maps display condensed traffic information for the sake of readability, open research 

questions remain to be answered regarding the reduction of information that is performed in 

this display process. If valid traffic characteristics still possess, that means that the data 

retrieved from online maps can be further utilised in urban mobility modeling worldwide, 

especially in the scale of large and complex urban areas. The merits of online traffic maps 

lie on the ubiquitous and low-cost characteristics of this type of opensource data compared 

to other sources and thus it is crucial to explore their value for further applications beyond 

real-time traffic information and travel times. 
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PART I 

Chapter 3 : Traffic Flow Fundamentals 

As discussed in the scope of the thesis in Chapter 1, the validity of the simplified/coded 

information that dynamic traffic maps provide will be investigated in terms of traffic 

operational characteristics. Thus, in this chapter the fundamental characteristics of traffic 

flow and the relationships between these parameters will be presented while Macroscopic 

Fundamental Diagrams (MFD) that are employed in Chapter 5 as a validation tool will be 

further discussed. 

3.1 Fundamental Characteristics of Traffic Flow 

Traffic flow represents the traffic load on the transportation systems while the interaction 

between these "loadings" and the facility capacity determines the operational performance 

of the system. The fundamental characteristics of traffic flow are flow, speed, and density 

which can be observed and studied either at the microscopic or at the macroscopic level. The 

microscopic approach focuses on the movement of each individual vehicle and on the vehicle 

behaviour with respect to others. On the other hand, the macroscopic analysis refers to the 

study of the behaviour of groups of units. A framework for these characteristics is presented 

in the following Table 3.1 (May, 1990).  

Table 3.1:Framework for Fundamental Characteristics of Traffic Flow 

Traffic Characteristics Microscopic 

(Individual Units) 

Macroscopic 

(Groups of Units) 

Flow Time headways Flow rates 

Speed Individual speeds Average speeds 

Density Distance headways Density rates 

 

 Flow rate is an important macroscopic flow characteristic and is defined as the 

number of vehicles passing a point in each period usually expressed as an hourly flow rate. 

Flow rate is related to the microscopic flow characteristic in the following manner: 

                                        𝑞60 =
3600

ℎ̅
                                                          ( 3.1) 
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Where 𝑞60  is the hourly flow rate 

            3600 is the number of seconds per hour 

            ℎ̅     is the average time headway (seconds per vehicle) 

The measurement of traffic flow has many uses in the planning, design and operation of road 

facilities. In planning, flow measurements are used in the classification of streets, in origin-

destination studies, and in revenue predictions while the design of new facilities and the re-

design of the existing ones require traffic flow information. Traffic flow rates vary over time 

(monthly, daily, hourly, and within-hour) and over space (linear, network, directional, and 

lane use when several lanes are available). It could be said that, traffic flow along urban 

radial routes is analogous to water flow along a river (May, 1990). 

 Macroscopic speed characteristics refer to the vehicle groups passing a point or short 

segment during a specified of time or travelling over longer sections of roads. In the 

literature, the distinction has frequently been made between different ways of calculating the 

average speed of a set of vehicles. The first way of calculating speeds, namely taking the 

arithmetic mean of the observation is termed the time mean speed, because it is an average 

of observations taken over time: 

                                                     �̅�𝑡 =
1

𝑁
∑ 𝑢𝑖

𝑁
𝑖=1                                                          ( 3.2) 

The second term that is used in the literature is space mean speed, but there are a variety of 

definitions for it, not all of which are equivalent. There appear to be two main types of 

definition. One definition is the speed based on the average time taken to cross a given 

distance, or space, D: 

                                                      �̅�𝑠 =
𝐷

1

𝑁
∑ 𝑡𝑖𝑖

                                                                (3.3 ) 

where  𝑡𝑖 is the time for vehicle 𝑖 to cross distance 𝐷 

                                                     𝑡𝑖 =
𝐷

𝑢𝑖
                                                                   (3.4) 

The second principal type of definition of space mean speed involves taking the average of 

the speeds of all the vehicles on a section of road at one instant of time. Under conditions of 

stop-and-go traffic, as along a signalized street or a badly congested freeway, it is important 

to distinguish between these two mean speeds.  For freely flowing freeway traffic, however, 

there will not be any significant difference between the two ( �̅�𝑡 , �̅�𝑠 ) (Gartner N., Messer 

C., Rathi A., 2001). 
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 Last, traffic density is a fundamental macroscopic characteristic of traffic flow. 

Traffic density is defined as the number of vehicles occupying a length of road-way. The 

length is usually specified as 1 mile or 1 Km and normally a single lane is considered. The 

easiest way to visualize traffic density is to consider an aerial photograph of a section of a 

road and to count the number of vehicles in a single lane having a length of 1 mile or 1 Km. 

Traffic densities vary from zero (the absence of vehicles) to values representing vehicles 

bumper to bumper which are completely stopped. This upper limit, called jam density, is 

normally on the order of 185 to 250 vehicles per lane-mile, depending on the length of 

vehicles and the distance gaps between vehicles. The relationship between traffic density 

and average distance headway can easily be obtained from the following equation: 

                                                       𝑘 =
5280

�̅�
                                                                                (3.5) 

Where 𝑘 is density (vehicles per lane-mile) 

            �̅� is the average distance headway (feet per vehicle) 

Optimum density is defined as the density level that exists when the lane of traffic is flowing 

at capacity (May, 1990). 

 The relationship between these fundamental variables of traffic flow, (namely speed, 

flow, and density) is called the fundamental relation of traffic flow and can be derived by a 

simple concept. Let there be a road with length v km and assume all the vehicles are moving 

with v km/hr (Figure 3.1). 

 

 Figure 3.1:Illustration of relation between fundamental parameters of traffic flow 

Let the number of vehicles counted by an observer at A for one hour be n1. The number of 

vehicles counted in one hour is flow(q). Therefore, 

𝑛1 = 𝑞                                 (3.6) 

Similarly, by definition, density is the number of vehicles in unit distance. Therefore, number 

of vehicles n2 in a road stretch of distance v1 will be density × distance. Therefore, 

𝑛2 = 𝑞 × 𝑣                         (3.7) 
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Since all the vehicles have speed v, the number of vehicles counted in 1 hour and the number 

of vehicles in the stretch of distance v will also be same. (i.e. n1 = n2). Therefore, 

𝑞 = 𝑘 × 𝑢                         ( 3.8) 

This is the fundamental equation of traffic flow. It is important to note that, speed in the 

above equation refers to the space mean speed (Mathew and Rao, 2006). 

3.2 Macroscopic Stream Models 

 Macroscopic stream models represent how the behavior of one parameter of traffic 

flow changes with respect to another. To figure out the exact relationship between the traffic 

parameters, a great deal of research has been done over the past several decades. Most 

important among them is the relation between speed and density. The results of these 

researches yielded many mathematical models. The first and most simple relation between 

them is proposed by Greenshields, who assumed a linear speed-density relationship as shown 

in Figure 3.2. The equation for this relationship is shown below: 

u = uf − (
uf

kj
) k                  ( 3.9) 

This equation is often referred as the Grieenshields’ model and indicates that when density 

becomes zero, speed approaches free-flow speed. 

The three flow characteristic presented in the same figure are defined as follow: 

Flow (q) is the number of vehicles passing a specifying point or short section in each period 

in a single lane. Flow is expressed a s an hourly rate on a per lane basis (veh/hr/lane). One 

unique flow parameter is maximum flow or capacity (𝑞𝑚). Speed (𝑢) is defined as the 

average rate of motion and is expressed in miles per hour (mi/hr) or kilometer per hour 

(km/hr). From a theoretical perspective, space mean speed rather than time-mean-speed 

should be employed. The two unique speed parameters are free-flow speed (𝑢𝑓 ) which exists 

when flow approach zero under free flow conditions while the second is optimum speed 

(𝑢𝑜) which exists under maximum flow conditions. Density (𝑘) is defined as the number of 

vehicles occupying a section of roadway in a single lane. Density is expressed on a per mile 

and a per lane basis, as previously mentioned. The two unique density parameters are jam 

density (𝑘𝑗) that occurs when both flow and speed approach zero and optimum density  𝑘𝑜 

that occurs under maximum flow conditions. 
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Figure 3.2: Basic Stream Flow Diagrams 

 Once the relation between speed and flow is established, the relation with flow can 

be derived. This relation between flow and density is parabolic in shape and is shown in 

Figure 3.2. Also, we know that  

                                                    𝑞 = 𝑘 × 𝑢                  (3.10) 

Now substituting equation  (3.9) in equation (3.10) we get 

q = uf k − (
uf

kj
) 𝑘2      ( 3.11)             

Similarly, we can find the relation between speed and flow. By substituting 𝑘 = 𝑞/𝑢 in 

equation  (3.9) and solving we get: 

q = kj u − (
kj

uf
) 𝑢2      (3.12 )             

This relationship is again parabolic and is shown in Figure 3.2. Once the relationship 

between the fundamental variables of traffic flow is established, the boundary conditions can 

be derived. The boundary conditions that are of interest are jam density, free flow speed, and 
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maximum flow. To find density at maximum flow, differentiate equation (3.11) with respect 

to 𝑘 and equate it to zero: 

𝑘 =
𝑘𝑗

2
 

Denoting the density corresponding to maximum flow as 𝑘0, 

𝑘0 =
𝑘𝑗

2
    (3.13) 

Therefore, density corresponding to maximum flow is half the jam density. Once we got 𝑘0, 

we can derive for maximum flow, 𝑞𝑚𝑎𝑥. Substituting equation (3.13) in equation (3.11): 

𝑞𝑚𝑎𝑥 =
𝑢𝑓 𝑘𝑗

4
    (3.14) 

Thus, the maximum flow is one fourth of the product of free flow and jam density. Last, we 

get the speed at maximum flow, 𝑢0, by substituting equation (3.13) in equation (3.9) and 

solving: 

𝑢0 =
𝑢𝑓

2
    (3.15) 

Therefore, speed at maximum flow is half of the free speed. At that point, it is important to 

remember that the last three equations are all based on a linear speed-density relationship. 

 The three diagrams shown in Figure 3.2 are redundant, as it is obvious that if one 

relationship is known, the other two are uniquely defined. However, each relationship has a 

particular purpose and use. For instance, the speed-density relationship is used in more 

theoretical work as there is a single-valued speed for each single-valued density, which is 

not true in the other two relationships. Moving to the flow-density relationship, this one is 

used as the basis for freeway control systems. Under low-density conditions no control is 

needed because all the demand is being satisfied at a high level of service. As density is 

observed to increase, control is required to maintain densities below the optimum density 

value. On the other hand, the speed-flow relationship is used in design to identify the trade-

off between level of service (speed) and the level of productivity (flow) (May, 1990).  

 

3.2.1 Calibration of the Greenshields’s model 

 In order to use the Greenshields’s model for any traffic stream, the boundary values, 

especially free flow speed (𝑢f) and jam density (𝑘j) should be known. This can be obtained 

VANA G
KANIA



41 

 

by field survey and this is called calibration process. Although it is difficult to determine 

exact free flow speed and jam density directly from the field, approximate values can be 

obtained from several speed and density observations and then fitting a linear equation 

between them (Rao and Mathew, 2007). Let the linear equation be 𝑦 = 𝑎 + 𝑏𝑥 such that 𝑦 

is density 𝑘 and 𝑥 denotes the speed 𝑢. Using regression method, coefficients 𝑎 and 𝑏 can 

be solved as: 

𝑎 = �̅� − 𝑏�̅�                  (3.16) 

 

𝑏 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖

     ( 3.17) 

Where 𝑥𝑖 and 𝑦𝑖  are the samples, 𝑛 is the number of samples, and �̅� and �̅� are the mean of 

𝑥i and 𝑦i respectively. 

 A novel calibration approach for single-regime models was recently proposed in (Qu, 

Wang and Zhang, 2015). Seeing that existing single-regime models calibrated by the least 

square method (LSM) could not fit the empirical data consistently well (both in light-

traffic/free-flow conditions and congested/jam conditions), the authors point out that the 

inaccuracy of single-regime models is not caused solely by their functional forms, but also 

by the sample selection bias. As a solution they proposed the application of a weighted least 

square method (WLSM) that addresses the sample selection bias problem. 

 At that point is crucial to mention the importance of field location to obtain 

meaningful speed-flow-density measurements. This issue can be explained more easily with 

an example.  Considering the simple representation of the speed-flow curve as shown in 

Figure 3.3, for three distinct sections of roadway. The underlying curve is assumed to be the 

same at all three locations. Between locations A and B, a major entrance ramp adds 

considerable traffic to the road.  If location B reaches capacity due to this entrance ramp 

volume, there will be a backup of traffic on the mainstream, resulting in stop-and-go traffic 

at location A. These vehicles can be in a queue, waiting their turn to be served by the 

bottleneck section immediately downstream of the entrance ramp. The data superimposed 

on graph A reflect the situation whereby traffic at A had not reached capacity before the 

added ramp volume caused the backup. There is a good range of uncongested data (on the 

top part of the curve), and congested data concentrated in one area of the lower part of the 

curve.  The volumes for that portion reflect the capacity flow at B less the entering ramp 

flows. 
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 At location B, the full range of uncongested flows is observed, right out to capacity, 

but the location never becomes congested, in the sense of experiencing stop-and-go traffic. 

It does, however, experience congestion in the sense that speeds are below those observed 

in the absence of the upstream congestion. Drivers arrive at the front end of the queue 

moving very slowly, and accelerate away from that point, increasing speed as they move 

through the bottleneck section. Consequently, the only data that will be observed at B are on 

the top portion of the curve, and at some speed in the queue discharge segment. 

 If the exit ramp between B and C removes a significant portion of the traffic that was 

observed at B, flows at C will not reach the levels they did at B.  If there is no downstream 

situation like that between A and B, then C will not experience congested operations, and 

the data observable there will be as shown in Figure 3.3. None of these locations taken alone 

can provide the data to identify the full speed-flow curve.  Location C can help to identify 

the uncongested portion, but cannot deal with capacity, or with congestion.  Location B can 

provide information on the uncongested portion and on capacity (Hall, 1992). 

 

 

Figure 3.3: Effect of measurement location on data obtained. 

 From the previous example, it is possible that the apparent need for several different 

models, or for different parameters for the same model at different locations, or even for 

discontinuous models instead of continuous ones, result because of the nature (location) of 
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the data each was using. The second important point is that in validating traffic stream 

models, the data sets used may influence the results and the comparison between models. 

3.2.2 Other macroscopic stream models 

 Over the years many traffic stream models have been proposed. These can be 

distinguished into two broad categories the single-regime models that assumed a single 

regime phenomenon over the complete range of flow conditions (free-flow and congestion) 

and the two regime models that separate free-flow regime and congested-flow regime.  

 The first single regime model was developed by Greenshields who concluded that 

speed was a linear function of density according to equation (3.9). The Greenberg model 

was the second single-regime model that was proposed. Greenberg concluded that a 

nonlinear model might be more appropriate and using a hydrodynamic analogy he combined 

the equations of motion and continuity for one-dimensional compressible flow and derived 

the following equation: 

𝑢 = 𝑢𝑜 ln (
𝑘𝑗

𝑘
)     (3.18) 

The Greenberg model (graphically expressed in Figure 3.4a) requires knowledge of the 

optimum speed and jam density parameters. Like the Greenshields model, jam density is 

difficult to observe in the field, and estimating optimum speed is even more difficult than 

estimating free-flow speed. A crude estimation is that the optimum speed is approximately 

one-half the design speed. Another drawback of this model is that free-flow speed is infinity. 

Thus later, Edie (Edie, 1961) recognizing this disadvantage, proposed a two-regime 

modeling approach with the Greenberg model being used for the congested regime. 

 Trying to overcome the limitation of Greenberg’s model, Underwood put forward an 

exponential model as shown below: 

𝑢 = 𝑢𝑓 𝑒−𝑘 𝑘0⁄    (3.19) 

This formulation (graphically expressed in Figure 3.4 b) requires knowledge of the free-flow 

speed, which is fairly easy to observe, and the optimum density, which is difficult to observe 

and varies depending on the road environment. Another disadvantage of this model is that 

speed never reaches zero and jam density is infinity. Again Edie, recognizing this drawback, 

proposed a two-regime modeling approach with the Underwood model being used for the 

free-flow regime (May, 1990). 
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Figure 3.4: (a) Greenberg’s logarithmic model; (b) Underwood’s exponential model 

 The preceding single-regime speed-density models that dominated for many years 

will be also applied on data retrieved from online traffic maps while field observation from 

loop detectors will be used for their calibration, in order to link the microscopic traffic flow 

mechanics with the macroscopic phenomena, in Chapter 5. 

3.3 Traffic Flow Dynamics  

So far, the main macroscopic characteristics of traffic flow were investigated, mainly 

focusing on the static characteristics. However, there are different characteristics, which are 

dynamic in nature or have to do with the dynamic properties of traffic flow, such as the 

capacity drop and traffic hysteresis. 

  Starting with the capacity drop that describes the fact that, once congestion has 

formed, drivers are not maintaining a headway that is as close as it was before the speed 

breakdown. Therefore, the road capacity is lower. The capacity drop hypothesis was 

confirmed for the first time in 1991(Banks, 1991; Hall and Agyemang-Duah, 1991). Since 

then, a large amount of empirical observations of capacity drop can be found in the literature. 

The magnitude of capacity drop varies over a wide range depending on the local traffic 

conditions. The effect of the capacity drop is illustrated in Figure 3.5(Hoogendoorn and 

Knoop, 2012). 
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Figure 3.5: The capacity drop in the flow-density diagram. 

  From real-life observations of traffic flow, it can be observed that several data points 

collected are not on the fundamental diagram. While some of these points can be explained 

by stochastic fluctuations (e.g. vehicles have different sizes, drivers have different desired 

speeds and following distances), some can be structural, and stem from the dynamic 

properties of traffic flow. That is, they reflect so-called transient states, that is, changes from 

congestion to free flow (acceleration phase) or from free flow to congestion (deceleration 

phase) in traffic flow. 

 In other words, if we consider the average behavior of drivers (assuming stationary 

traffic conditions), observed mean speeds will generally not be equal to the ‘equilibrium’ 

speed. The term ‘equilibrium’ reflects the fact that the observed speeds in time will converge 

to the equilibrium speed, if the average conditions remain the same. That is, the average 

speed does not adapt instantaneously to the average or equilibrium speed. This introduces 

traffic hysteresis, which means that for the same distance headway drivers choose a different 

speed during acceleration from that chosen during deceleration (Hoogendoorn and Knoop, 

2012). 

 Traffic hysteresis was first observed by Newell (Newell, 1962). He conjectured the 

existence of two different congested branches in the fundamental diagram as shown in Figure 

3.6. When the acceleration branch stays above the deceleration branch in a flow-density 
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diagram, it is known as a positive hysteresis, and the opposite is termed as a negative 

hysteresis (Laval, 2011).  

 

Figure 3.6: Hysteresis loop observed by Newell (Newell, 1962) from volume-density plot. 

3.4 Macroscopic or Network Fundamental Diagrams (MFD-NFD) 

In the preceding sections, some of the main traffic flow characteristics have been presented. 

Using the microscopic and macroscopic models discussed, flow operations on simple 

infrastructure elements can be explained and predicted. Predicting flow operations in a 

network is, obviously, more elaborate. A remarkable simple relation that can describe the 

overall dynamics of a traffic network, referred to as the macroscopic or network fundamental 

diagram (MFD or NFD), that was initially introduced in Chapter 2 (Section 2.1 Network-

Level Traffic Relationships).  

 The MFD provides a relationship between network-wide averages of flow and 

density, both of which can be used to describe operating conditions within a network, in 

contrast to the Fundamental Diagrams (FD) (see Figure 3.2) that refer to specific road 

sections (links). Similarly, to a conventional link fundamental diagram, relating the local 

flow and density, three states are demonstrated on an MFD/NFD. When only a few vehicles 

use the network, the network is in the free flow condition and the outflow is low. With an 

increase in the number of vehicles, the outflow rises to the maximum. Like the critical 

density in a link fundamental diagram, the value of the corresponding accumulation when 

maximum outflow is reached is also an important parameter (Hoogendoorn and Knoop, 

2012).  

 The network wide averages of speed, flow and density can be estimated according to 

the pioneer work of (Mahmassani, Williams and Herman, 1984) as following:  
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 For a given period of observation, 𝑡 average speed, �̅�, can be taken as the ratio of 

total vehicle-miles to total vehicle-hours over the network during period 𝑡 (yielding an 

average speed in miles per hour or Km per hour). This average is taken both over time and 

over all vehicles in the network.  

The average concentration, �̅�, for the same period, 𝑡 is the time average of the number of 

vehicles per unit lane length. Letting 𝑁(𝑡) denote the number of vehicles at time 𝑡, and 𝐿 the 

lane-miles of roadway, the average concentration �̅� , can be expressed as: 

�̅� = (1
𝑡⁄ ) ∫ [

𝑁(𝑡)

𝐿
]

𝑡+𝑡0

𝑡0
 𝑑𝑡                            (3.20) 

where 𝑡0 is the beginning of the observation period.. 

The definition of an average flow variable, �̅�, is somewhat less obvious; the one 

pursued here considers average network flow to be the average number of vehicles per unit 

time that passes through an "average" point of the network. Letting 𝑞𝑖 and  𝑙𝑖 , respectively, 

denote the average flow �̅� over the observation period and the length of link 𝑖, 𝑖 = 1,2, … . 𝑀, 

where denotes the total number of links, 

�̅� = (∑ 𝑙𝑖
𝑀
𝑖=1 𝑞

𝑖
)/(∑ 𝑙𝑖

𝑀
𝑖=1 )                            (3.21) 

 Authors examined also, the principal relationship between these three variables as: 

�̅� = �̅��̅�                                                                 (3.22) 

 which is fundamental for arterials but unverified at the network level. According to the 

simulation results, for properly defined averages of the three quantities, the fundamental 

relationship could be expected to hold.  

 A similar approach is followed in Chapter 5, to estimate network wide averages of 

flow and density, by extrapolating Greenshields model from links to network and utilizing 

the network average speed retrieved from online traffic maps. 

3.5 Chapter Summary 

Traffic flow theory and modeling are important in order to design comfortable and safe 

roads, to solve road congestion problems and to design traffic management measures. Traffic 

flow theory entails knowledge of the fundamental characteristics of traffic flows. In traffic 

flow theory a basic distinction is made between microscopic and macroscopic traffic flow 

variables. Microscopic traffic flow variables focus on individual drivers. Macroscopic traffic 

flow variables reflect the average state of the traffic flow. The fundamental diagram in traffic 
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flow theory describes a statistical relation between the macroscopic flow variables of flow, 

density and speed. The basic premise underlying the fundamental diagram is that under 

similar traffic conditions drivers will behave in a similar way. Traffic flow models can be 

used to simulate traffic, for instance to evaluate in advance the use of a new part of the 

infrastructure. Models can be categorized based on the representation of the traffic flow, in 

terms of flows (macroscopic), groups of drivers (macroscopic) or individual drivers 

(microscopic). Single regime speed-density models dominated for many years due to their 

mathematical elegance. 

 The overall dynamics of a traffic network can be described using a remarkably simple 

relation, referred to as the macroscopic or network fundamental diagram (MFD-NFD). This 

relation shows one of the most important properties of network traffic operations, namely 

that their performance decreases when the number of vehicles becomes greater. Through the 

literature review in Chapter 2, we saw that the empirical existence of the MFD (in small 

networks) was recently proved by Geroliminis and Daganzo (Geroliminis and Daganzo, 

2008) , revealing the relation between the outflow and accumulation in the network.  

 In Chapter 5, the empirical estimation of MFD for different urban networks around 

the word, will be demonstrated for the first time, based on aggregated information from 

online traffic maps. Prior to that, in Chapter 4, the experimental setup for collecting this 

information from online traffic maps along with the traffic data acquisition procedure will 

be presented and analyzed. 
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Chapter 4 : Experimental Setup 

This chapter is devoted to the experimental setup of the thesis. Initially the selected study 

area is introduced. Then, the data collection and processing are described. Last, in the data 

analysis section, a preliminary analysis of the extracted traffic information from maps is 

provided. In the following chapters, the extracted traffic information in the form of structured 

database is applied both for MFD estimation and mobility patterns identification. 

4.1 Study Area Characteristics 

To collect a representative dataset from online traffic maps, eighteen geographically and 

culturally different cities were chosen. Regarding the spatial and cultural distribution of the 

cities under investigation (Figure 4.1), five cities were chosen from Europe (Paris, London, 

Berlin, Moscow, Nicosia), three from North America (New York, Los Angeles, Toronto), 

two from Latin America (Sao Paulo, Buenos Aires), five from Asia (New Delhi, Singapore, 

Beijing, Riyadh, Tokyo), one from Africa (Johannesburg), one from Australia (Sydney) and 

last Istanbul that one part of  the city lies in Europe and the other part lies in Asia. 

 

Figure 4.1: Spatial distribution of the selected cities. 

For consistency, the basic characteristics of the selected cities such as population, 

land, population density (Cox, 2019) and Gross Domestic Product (GDP) of the country 

(IMF: World Economic Outlook (WEO), October 2019 - knoema.com, 2019) are 
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summarized in Table 4.1. The population, land area, and population density data refer to the 

metropolitan area and thus, significantly differs from the main city’s municipal boundaries, 

as the metropolitan area includes not only the principal built-up urban area but also the 

economically and infrastructurally connected suburbs and rural areas. According to the data 

from Table 4.1, Tokyo (including Yokohama) ranks first with estimated population over 38 

million while, New York, New Delhi, Moscow and Sao Paulo follow with populations over 

19 million. Los Angeles, Buenos Aires, Istanbul, Paris, Johannesburg’ s population range 

between 10 and 16 million people while the rest of the cities’ populations are under 6 million 

people. Last, follows the city of Nicosia in Cyprus which has a smaller number of residences 

compared to the rest of the cities. Nicosia was added in the dataset, at a later stage as both 

traffic data from online traffic maps and loop detectors were available for comparative 

reasons and calibration purposes. 

In terms of population density (rounded to the nearest 100 per square kilometre) the 

cities’ ranking varies. Singapore, Istanbul and New Delhi rank first with densities of over 

10,000 persons per square kilometre, while Sao Paulo, Beijing, Buenos Aires, Paris, 

Johannesburg, Riyadh, Berlin range between 3,000 to 7,000 persons per square kilometre. 

The remaining cities follow with much more lower densities under of 3,000 people per 

square kilometre. The population density is strongly connected with the road network and 

the mobility patterns in a city, especially with the public transport, as none-public 

transport system can efficiently cope with low density. 

 Moving to the GDP per country, the United States is the world's largest economy, 

while Japan and European countries follow. Last, the Asian countries and Brazil present the 

lowest GDP, according to the same table.  

Regardless of their apparent differences in terms of road network morphology, 

climate conditions, physical distances, population densities and economic output, one may 

expect similarities between these cities in terms of traffic and mobility profiles and thus 

‘universal’ mobility patterns may be identified, facilitating comparative analysis across 

geographically and culturally diverse locations. 
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Table 4.1:Cities characteristics 

Country City Population 

Estimation 

Land 

(Km2) 

Population Density 

(per Km2) 

GDP (Country) 

(Billion USD) 

Japan Tokyo 38,505,000 8,223 4,700 5,154.5 

India New Delhi 28,125,000 2,240 12,600 2,935.6 

United States New York 21,045,000 11,875 1,700 21,439.5 

Brazil Sao Paulo 20,935,000 3,043 6,900 1,847.0 

China Beijing 19,430,000 4,144 4,700 14,140.2 

Russia Moscow 16,555,000 5,698 2,900 1,637.9 

United States Los Angeles 15,440,000 6,299 2,300 21,439.5 

Argentina Buenos Aires 15,130,000 3,212 4,700 445.5 

Turkey Istanbul 13,860,000 1,360 10,200 743.7 

France Paris 10,960,000 2,845 3,700 2,707.1 

United Kingdom London 10,470,000 1,378 5,600 2,743.59 
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Table 4.2: Cities characteristics (continued) 

South Africa Johannesburg 9,335,000 2,590 3,600 358.8 

Canada Toronto 6,630,000 2,300 2,800 1,730.9 

Saudi Arabia Riyadh 6,050,000 1,658 3,600 779.3 

Singapore Singapore 5,670,000 518 10,900 362.8 

Australia Sydney 4,515,000 2,179 2,000 1,376.3 

Germany Berlin 4,060,000 1,347 3,000 3,863.3 

Cyprus Nicosia 300,000 122 2,500 24.3 
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4.2 Data Collection 

After the selection of the study area, traffic maps in the form of raster images for all the 

eighteen cities were collected every five minutes, using screen capture software, for the 

period of one week, the last week of May 2017. This period (end of spring semester) the 

computer laboratory of the Department of Civil and Enviromental Enginnering at Strovolos 

(Arsalidou Building) was available for data collection, as shown in Figure 4.2. Online traffic 

coverage for the city of  Nicosia was not available at this period, so map images for Nicosia 

were collected at a later stage (February 2019). In total, around 50 desktop computers were 

required to capture map images from all the different providers (Google, Bing, Here, Baidu, 

Yandex) for the study area. As the available desktop computers in the laboratory were less 

than the required, an algorithm (Algorothm 1 Appendix A) was developed, that enables to 

open a specific map for each city in the browser and then capture and save the map image. 

To secure the update of the displayed online traffic maps, an extension of the browser that 

refresh pages after a set number of seconds was also enabled. The computers sprcificication 

used for the data collection are the following: Xeon E-2124G, 3.4GHz-4.50GHZ, 4 Cores, 

32GB (2 X 16GB), 2.5’’ SΑΤΑ SSD, SSD SATA III 512GB, DVD SuperMulti SATA slim, 

Intel I219LM, 10/100/1,000 MBit/s, RJ45, NVIDIA Quadro P1000 4GB, Display Port / 

DVI-D adapter cable, Windows 10 Pro 64. 

                

Figure 4.2: Data collection  
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Table 4.3: Data summary collection 

No City Google maps Bing Maps Here Maps Yandex Maps Baidu Maps 

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) 

1 Paris 2016 1939 96.18 2016 1973 97.87 2016 1792 88.88 2016 1967 97.56 - - - 

2 London 2016 1939 96.18 2016 1951 96.78 2016 1785 88.54 - - - - - - 

3 Istanbul 2016 1939 96.18 2016 1957 97.07 2016 1778 86.19 2016 1981 98.26 - - - 

4 New Delhi 2016 1939 96.18 2016 1961 97.27 2016 1771 87.84 - - - - - - 

5 Moscow 2016 1932 95.83 2016 1965 97.47 2016 1764 87.50 2016 1988 98.61 - - - 

6 Tokyo 2016 1967 97.56 - - - - - - - - - - - - 

7 New York 2016 1932 95.83 2016 1956 97.02 2016 1792 88.88 - - - - - - 

8 Los Angeles 2016 1939 96.18 2016 1950 96.73 2016 1841 91.31 - - - - - - 

9 Sao Paulo 2016 1925 95.48 2016 1955 96.97 2016 1778 88.19 - - - - - - 

10 Singapore 2016 1643 81.50 2016 1983 98.36 2016 1925 95.48 - - - - - - 

11 Sydney 2016 1932 95.83 2016 2002 99.30 2016 1932 95.83 - - - - - - 

12 Johannesburg 2016 1440 71.43 2016 1795 89.04 2016 1932 95.83 - - - - - - 

13 Toronto 2016 1385 68,70 2016 1974 97.91 2016 1932 95.83 - - - - - - 

14 Berlin 2016 1179 58.48 2016 1961 97.27 2016 1938 96,13 - - - - - - 

15 Buenos Aires 2016 869 43.10 2016 1906 94.54 2016 1932 95.83 - - - - - - 

16 Beijing - - - 2016 1928 95.63 - - - - - - 2016 2014 99.99 

17 Riyadh 2016 882 43.35 2016 1979 98.16 2016 1933 95,88 - - - - - - 

18 Nicosia 2016 1964 97,42 - - - - - - - - - - - - 

(1) Pre-Cleaning Images  
(2) Post Cleaning Images 
(3) Data Retained %  
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In Table 4.3 a summary of the data collection is given. The first column refers to the selected 

cities of the study area. The rest columns refer to the five different providers. For 

comparative reasons providers that have online traffic coverage for most of the cities in the 

study area were selected. For three cities, named Paris, Moscow, Istanbul data from four 

different providers were available (Google, Bing, Here and Yandex). Google maps is the 

only one that provides traffic information for Tokyo and Nicosia. Traffic data were available 

for the city of Beijing from Baidu and Bing maps. The rest of the cities have online traffic 

coverage from three different providers (Google, Bing and Here maps). Under each online 

traffic provider, there are three separate columns labelled with numbers (1,2,3) that provide 

information regarding the pre-cleaning images collected, the total number of remained 

images after filtering and the percentage of the data retained, accordingly. In total, over 

103,000 images were included in the original dataset while the filtering process, used to 

diminish web page disturbances, resulted in 92% valid images. For three cities from Google 

maps (Buenos Aires, Riyadh and Berlin) almost 50 percent of the dataset was invalid (black 

images) due to refresh problems during the collection procedure.  

4.3 Data Processing  

This section presents the steps followed for the traffic information extraction. Prior to that, 

some basic characteristic of the raster images/graphics are introduced.  

4.3.1 Raster Images 

 Digital images can be stored either as a raster image or as a vector image. By default, 

a digital image usually refers to a raster image only. Raster image are composed of a set of 

digital values called picture elements or pixels. Pixels form the smallest building block of a 

digital image that can be processed. Each pixel stores information regarding the intensity of 

a given colour at any specific point in the image. The whole image is stored as a two-

dimensional array, consisting of rows and columns of these pixels. Such a method of storing 

a colour picture in a digital computer is known as bitmap representation of an image. Bitmap 

images can be classified based on the colour values of these pixels as: binary, grayscale and 

colour. Binary images consist of only two colours (like only black and white). Grayscale 

images consist of shades of grey from pure white to pure black while colour images consist 

of multi-colour information (Bhattacharya, 2016). Colours in a raster image are represented 

by a colour model. Common colour models include RGB (red, green, blue) and CMYK 

(cyan, magenta, yellow, black). Using an RGB model, each pixel of the image has a colour 
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that is described by the amount of red, green and blue in it. Such an image is a composition 

of three matrices; representing the red, green and blue values for each pixel (Figure 4.3). 

 

Figure 4.3: Decomposition of a raster image of size 394×394 pixels, to the pixels’ intensities in a 

small area and the RGB intensities for the three planes of one pixel. 

 A raster image can be stored in a variety of formats, such as JPEG, PNG, TIFF, GIV 

etc. Some formats are created by a process that compresses the amount of data found in the 

file. This compression leaves only the data that describes the actual colour of each pixel and 

thus enable a faster transfer of the data. For the selected dataset the PNG (Portable Network 

Graphics) format was chosen as the PNG format comes close to TIFF in quality and is ideal 

for complex images. Unlike JPEG, PNG uses a lossless compression algorithm in order to 

preserve as much quality in the image. Last, PNG provides better compression because it 

works in a way that acknowledges the two-dimensional structure of the image, rather than 

treating it simply as a one-dimensional sequence of bytes (Lina J., 2009). 

4.3.2 Image Processing  

 After the filtering of the dataset the number of valid images was equal to 97676 (total 

size approximately 537 GB). As the original image was captured from a screen capture 

software the redundant information was removed by cropping the images at the same size. 

An algorithm (Algorithm 2 Appendix A) was developed that crops the original image into a 

smaller one, as it can be seen in Figure 4.3(b).   

 Moving to the traffic information acquisition, the first step to extract traffic 

information from map images here relies on distinguishing and then capturing the traffic 

layers from the rest of the map. The approach followed for achieving this is based on raster 

image processing of online traffic maps and make use of some important image features: 

i. The discretization of areas into seamless sections/digits (pixels, in raster images),  
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ii. Each pixel has selected dimensions (length and width) representing an area at a 

specific location, and 

iii. Each pixel captures-in a seamless manner- the traffic characteristics of the area 

it represents.  

 There are many ways for extracting color layers from raster images (Hai and Bao, 

2008; Chiang and Knoblock, 2009; Petrovska and Stevanovic, 2015). Here the most 

straightforward and reliable way was preferred, which is based on identifying the colors 

codes that are used for traffic depiction, in a color mode. In the current application the Red-

Green-Blue/RGB color model is used, while four colors (green, orange, red, and dark red) 

used for coloring the traffic layers according to the legend of the online map. Then, the 

extraction of the traffic layers was performed, by selecting and extracting the pixels 

belonging to one of those colors. The following Algorithm summarizes the steps followed 

to process one map image.  

Algorithm: Map Image Processing for Traffic Layer Extraction 

Load image matrix img (r, c, 3)  

Create B (r, c,3) (empty matrix) same size as image 

for i=1: r 

     for j=1:c 

        if img(i,j,1)>R1min and img(i,j,1)>R1max or img(i,j,2)<G1min and 

img(i,j,2)>G1max  or img(i,j,3)<B1min and img(i,j,3)>B1max 

                img=B 

            end 

        elseif img(i,j,1)>R2min and img(i,j,1)>R2max or img(i,j,2)<G2min 

and img(i,j,2)>G2max  or img(i,j,3)<B2min and img(i,j,3)>B2max 

               img=B 

           end 

      elseif img(i,j,1)>R3min and img(i,j,1)>R3max or img(i,j,2)<G3min 

and img(i,j,2)>G3max or img(i,j,3)<B3min and img(i,j,3)>B3max 

               img=B 

          end 

     elseif img(i,j,1)>R4min and img(i,j,1)>R4max or img(i,j,2)<G4min 

and img(i,j,2)>G4max  or img(i,j,3)<B4min and img(i,j,3)>B4max 

            img=B 

          end 

  end 

 end 
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Where r is the number of image rows, c is the number of image columns and 3 

corresponds to the number of color planes for the RGB color model. In order to isolate each 

traffic layer that represents a certain class of traffic state, different range of values for the 

[R1min-R1max, B1min-B1max, G1min-G1max], [R2min-R2max, B2min-B2max, G2min-

G2max], [R3min-R3max, B3min-B3max, G3min-G3max], and [R4min-R4max, B4min-

B4max, G4min-G4max] were set. Consecutively, the isolated colored road network was 

achieved by adding the four separated images, one for each traffic layer as is shown in Figure 

4.3 (c).   

 

    

Figure 4.4: (a) Original image size (width x height) 1920 x 1080; (b) Cropped image size (width x 

height) 873 x 639; c) Final image size (width x height) 873 x 639  

 It should be noted that when collecting online images, depending on the PC 

configuration and the graphics card there could be differences (or even discrepancies) in 

selecting the colour layers. For selecting each colour, a range of RGB format is used (see 

(a) 

(b) (c) 
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Algorithm 3 Appendix A), ensuring that all pixels belonging to the same colour layer are 

identified and selected. The total number of pixels per traffic layer and per time interval is 

also calculated during this step in a separate matrix.  

 Noted that traffic maps provide additional information (names, locations, labels, 

points of interest etc.) and thus the selection of the colour layers in pixels could have slight 

discontinuities. Since these discontinuities appear in the same places in the maps, the overall 

selection of the pixels can be regarded as consistent.   

4.4 Data Analysis 

As a result of the above data processing, a matrix containing the characteristic values of the 

depicted traffic variables is produced, where each non-empty entry (pixel) of the matrix can 

be viewed as a notional ‘detector’ of traffic states across the map’s space, while the network 

properties are retained since each pixel contain the traffic information of a specific link’s 

lane part/stretch. Subsequently, a typical map which is processed as an image, provides a 

discretized version of the network with many thousands of notional detectors created with a 

complete system coverage (at least in all locations that traffic information is broadcasted), 

offering a large dataset of abstracted (but dynamic) traffic information. 

4.4.1 Urban coverage  

 Initially a connection between the number of pixels depicted in a raster image for the 

same zoom level, and the corresponding real linear distance on the road network, was 

achieved by using the following equation: 

 S =Distance on the maps/ Real Distance=Number of Pixels / 1km                             ( 4.1) 

Where 𝑆  represents the scale of the map while the number of pixels corresponds to the total 

number of pixels of the scale bar of the map. In raster images, the distance displayed on the 

scale bar of the maps is equal to the number of pixels between two points on the image, thus 

the scale of the image is actual the analogy between the number of pixels and the real 

distance in kilometres. By applying the above equation on the dataset, the urban coverage 

can be quantified by estimating the total road length in kilometres (Km) for each city.  It is 

crucial to mention here that this coverage relates strictly to the traffic coverage of each online 

provider, which usually includes main and secondary roads in an urban area (see Figure 4.5, 

Figure 4.6).  In the following Table the scale, the total road length and the relationship 

between pixels and real distance per city and provider is given. According to Table 4.4 and 

for the same city, Yandex maps provide greater urban coverage while Google maps and Bing 
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maps follow. Here maps provide significantly lower urban coverage,  as it is also observed 

from Figure 4.5 and Figure 4.6. 

  

Figure 4.5:Traffic coverage for the city of Paris from Google maps (left) and Bing maps (right). 

  

Figure 4.6: Traffic coverage for the city of Paris from Here maps (left) and Yandex maps (right).      

Paris 

 According to the same table, network traffic coverage from Google maps appeared 

higher for the city of Paris, Tokyo, Istanbul, Los Angeles, New York, Johannesburg, and 

Sao Paulo (over 500Km) compared to the rest of the cities. Notably, Nicosia differs as the 

business center of the city was chosen. Regarding Bing maps, greater network coverage 

(over 800Km) appeared for the city of Beijing, Istanbul, Johannesburg, New Delhi, Riyadh, 

Los Angeles, and New York. Last, Yandex maps, gave significantly higher values of 

estimated road length from pixels (over 1000Km) while Here maps the lowest (below 500 

Km) for most of the cities. The estimated road length is indicative as the width of lines is 

quite different for each provider.                      
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Table 4.4: Urban coverage per city and provider. 

No City Google maps Bing Maps  Here Maps     Yandex Maps Baidu Maps 

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) 

1 Paris 0.011 707 1km=88p 0.012 588 1km=81p 0.012 322 1km=83p 0.04 1,193 1km= 83p - - - 

2 London 0.011 446 1km=91p 0.012 494 1km=85p 0.011 103 1km=88p - - - - - - 

3 Istanbul 0.013 685 1km=76p 0.014 1353 1km=71p 0.014 257 1km=73p 0.04 1,819 1km=70p - - - 

4 New Delhi 0.015 472 1km=65p 0.016 917 1km=61p 0.016 382 1km=63p - - - - - - 

5 Moscow 0.010 494 1km=101p 0.010 779 1km=94p 0.010 175 1km=97p 0.04 765 1km=95 - - - 

6 Tokyo 0.014 962 1km=70p - - - - - - - - - - - - 

7 New York 0.013 566 1km=75p 0.014 816 1km=71p 0.014 272 1km=73p - - - - - - 

8 Los Angeles 0.014 665 1km=69p 0.015 828 1km=65p 0.015 242 1km=67p - - - - - - 

9 Sao Paulo 0.010 505 1km=104p 0.017 772 1km=59p 0.010 180 1km=118p - - - - - - 

10 Singapore 0.010 305 1km=113p 0.010 361 1km=54p 0.010 168 1km=108p - - - - - - 

11 Sydney 0.014 496 1km=69p 0.015 667 1km=65p 0.015 304 1km=67p - - - - - - 

12 Johannesburg 0.015 551 1km=64p 0.017 1180 1km=60p 0.016 404 1km=62p - - - - - - 

13 Toronto 0.012 435 1km=79p 0.013 419 1km=74p 0.013 93 1km=76p - - - - - - 

14 Berlin 0.010 372 1km=102p 0.011 689 1km=87p 0.011 277 1km=90p - - - - - - 

15 Buenos Aires 0.014 462 1km=69p 0.015 645 1km=65p 0.015 339 1km=67p - - - - - - 

16 Beijing - - - 0.050 2209 1km=36p - - - - - - 0.047 1,821 
1km=21

p 

17 Riyadh 0.013 292 1km=75p 0.017 886 1km=59p 0.016 214 1km=61p - - - - - - 

18 Nicosia 0.038 48 1km=265p - - - - - - - - - - - - 

(1)  Scale of the map (S)  
(2)  Estimated road length from pixels (km) 
(3)  Relationship between real distance and pixels (1 km = number of pixels)
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4.4.2 Timeseries of traffic through pixels 

 As a second step, the correlation of the coloured traffic layers, that represent different 

traffic states during the diurnal cycle for all the selected cities, was investigated. In the 

following figures, the percentage of pixels for each traffic layer is plotted for one typical 

weekday using 5-minute intervals along with the boxplot of each traffic layer for 

comparative purposes. The right corner of the figures depicts the isolated traffic layers for 

each city. Regarding the number of traffic layers, four different traffic layers are used from 

Google, Bing, Yandex and Baidu maps to display urban traffic (light, moderate, heavy traffic 

and congestion) while Here maps use only three, omitting a separate layer for congestion. 

Slightly different colours are used from each provider. For instance, green colour is used for 

light traffic and red or dark red for congestion, while moderate traffic is displayed either with 

yellow (Bing, Here and Yandex maps) or orange colour (Google and Baidu maps). 

 For most of the cities, traffic coverage is provided from three different online traffic 

maps, Google, Bing and Here maps, according to Table 4.4. In Figures 4.7-4.11, the 

timeseries of pixels per traffic layer is depicted for Paris, London, Istanbul, New Delhi, 

Moscow, New York, Los Angeles, Sao Paulo, Singapore, Sydney, Johannesburg, Toronto, 

Berlin, Buenos Aires and Riyadh based on information retrieved from Google maps. 

Respectively, timeseries of pixels for the same cities from Bing maps (Appendix B) and 

Here maps (Appendix C) were also estimated for the same day. Traffic coverage for Paris, 

Istanbul, and Moscow is further provided from Yandex maps, (Figure 4.14), with greater 

urban coverage, as it can be seen from the image in the right corner of the same figure. On 

the other hand, the traffic state for the city of Tokyo is given only from Google maps while 

Baidu maps provide traffic information for the city of Beijing (Figure 4.12).  

 A clear correlation between the traffic layers of all the cities is evident; when the 

percentage of green pixels (Light traffic) drops rapidly during the morning and evening peak 

hours, a rise in the percentages of the remaining layers appears, as expected, at the same 

time. The same applies to all cities; however, interestingly in Tokyo and in Johannesburg 

the drop in the percentage of green pixels is significantly less compared to the rest cities (less 

than 50%).  Regarding the dark red traffic layer (congestion), Moscow and Los Angeles 

record the greatest percentage during the day (over 10%). Sharp peaks of red and dark traffic 

layers can be identified in both cities in the United States while the cities of Paris and Istanbul 

follow. Comparing morning and evening peak hours, Paris presented higher percentage of 

red pixels (heavy traffic) during the morning peak hours while New York, Istanbul, Delhi, 
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Sao Paulo, Singapore and Berlin during the evening peak hours. A quite different pattern is 

observed for the city of London and Moscow where approximately the same percentage of 

red pixels remains from morning till evening peaks hours. 

A quick view of the variation of each traffic layer for the same day is given by the 

accompanied boxplots in the same figures. Again, Moscow score highest since red and dark 

red traffic layers vary the most compared to other cities, while Los Angeles follows. Tokyo 

shows the least variation for all the traffic layers during the day, which suggests a more 

stable temporal mobility pattern. Comparing the median values of each traffic layer per city, 

the first three depicted in Figure 4.7 share the same value (less than 60%) for the green traffic 

layer in contrast to the city of Singapore and Johannesburg where median values are over 

80% while the rest cities range between 60-80%.  A higher median value for the green traffic 

layer implies that a greater part of the network within the city remains uncongested during 

the day. Regarding the minimum values for the same layer, Paris, Moscow, Los Angeles and 

Sao Paulo presented values less than 40%. Moderate traffic (orange traffic layer) rises over 

30% (median value) in Paris and in New Delhi while the remaining cities follow with smaller 

values around 25%. Median values less than 20% are observed for three cities, named 

Singapore, Sydney and Johannesburg. Regarding the maximum values for the same layer, 

Sao Paulo and New Delhi rank first (over 40%). Last, maximum values for heavy traffic (red 

traffic layer) during the same weekday appeared for the city of Paris, London, Moscow, New 

York Los Angeles, Sao Paulo and Berlin (over 20%). Here, it should be noted that 

disturbances appearing in the time-series of New York, Los Angeles, and Sao Paulo are due 

to data filtering, as already stated. 

 For the city of Nicosia, a different scale of the urban area was chosen for the analysis. 

The selected area focuses on the Business District Area (BDA) and Figure 4.13 presents the 

daily traffic pattern both for a typical weekday (Tuesday) and Saturday and further for a 

whole week. Morning peak appears at 8:00 a.m. and evening peak at 18:00 p.m. with the 

percentage of red pixels to reach 15%. On Saturday the city centre remains uncongested as 

the percentage of red pixels is lower than 10% and the average value of light traffic is 75% 

according to the boxplot. Last, the weekly traffic pattern of the city clearly shows the 

defences between weekday and the weekend. 
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Figure 4.7: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Paris; (b) 

London; (c) Istanbul from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.8: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) New Delhi; (b) 

Moscow; (c) New York from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.9: Timeseries of pixels and boxplot per traffic layer for one weekday for Los Angeles from 

(a) Los Angeles; (b) Sao Paulo; (c) Singapore from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.10: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Sydney; (b) 

Johannesburg; (c) Toronto from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.11: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Berlin; (b) 

Buenos Aires; (c) Riyadh from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.12: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Tokyo form 

Google maps and (b) Beijing  from Baidu maps. 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 4.13: Timeseries of pixels and boxplot per traffic layer for Nicosia for (a) Tuesday; (b) 

Saturday; (c) whole week from Google maps. 

(a) 

(b) 

(c) 
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Figure 4.14: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Paris; (b) 
Istanbul; (c) Moscow from Yandex maps. 

(a) 

(b) 

(c) 
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 This first analysis provides good insights on the temporal dimension of mobility 

within the city besides the total percentage of space that remains uncongested across the 

cities. The alternation of the percentage of pixels for each traffic layer reveals the proportion 

of the road network that remains congested through the day. Final, it was proved that the 

estimated timeseries of traffic through raster images resembles known traffic timeseries 

estimated from traffic surveillance systems. 

 

4.5 Chapter Summary 

In this chapter the experimental setup for collecting aggregated traffic information from 

online traffic maps along with the traffic data acquisition procedure was presented and 

analyzed. Initially the study area and the basic characteristics of the selected cities were 

introduced. The data collection and processing followed, while through the preliminary 

analysis of the data, insights regarding the urban coverage and the pattern of traffic state 

through pixels were given. A thorough examination of the extracted data follows in the next 

chapter. 
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Chapter 5 : Validation of class-type Information from Online 

Traffic Maps  

In the current chapter, the estimation and the investigation of the Macroscopic Fundamental 

Diagram-MFD properties are performed utilizing the captured pixels properties for the 

selected study area. The validity of the method is tested by comparing the estimated MFDs 

to ground-truth MFD obtained using empirical data from loop detectors. Further, other 

macroscopic models are demonstrated for comparative reasons. 

5.1 Methodological Framework 

The MFD provides a relationship between network-wide average values of traffic flow, 

speed, and density, as was previously mentioned in Chapter 3 and thus it is claimed that it 

represents the capacity of a road network in terms of vehicle density. The remainder of this 

section describes how the MFD can be estimated using class-type information from online 

traffic maps along with the assumptions of the proposed method. Table 5.1 summarizes the 

notation of all the symbols and variables used in this chapter 

Table 5.1: Nomenclature 

Symbol  Description Unit 

𝑺 Scale of the thematic map  - 

𝒑𝒄 Pixels colored with specific color 𝑐 - 

𝑼𝒄 Representative value of average speed according to color 𝑐 from 

the speed map legend 

Km/h 

𝒄 Color index (i.e.  𝑔 for green, 𝑦 for yellow, 𝑜 for orange and 𝑟 

for red) 

- 

𝒋 Link index - 

𝒊 Pixel index - 

𝒎 Total number of links in one image - 

𝒏 Total number of pixels in one image - 

𝒍𝒋 Length of link 𝑗 Km 

𝒕 time interval  - 

𝑼𝒕 Average network speed across all the links of a given network  Km/h at time 

interval t 
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𝑸𝒕 Average network flow across all the links of the network Veh/h at 

time interval 

t 

𝑲𝒕 Average network density across all the links of the network, in  Veh/km at 

time interval 

t 

 𝑨𝒕 Total number of vehicles (accumulation) on the network at time 

interval 𝑡 

Veh at time 

interval t 

 𝑼𝒇 Free-flow speed of a network Km/h 

 𝑼𝒐 Optimum speed of a network Km/h 

𝑲𝒋𝒂𝒎 Jam Density of a network Veh/km 

 

5.1.1 Assumptions 

 Prior the estimation of the fundamental variables (average network speed, flow and 

density) based on data from traffic maps, the following assumptions of the proposed method 

are introduced: 

1) The length of each road network link (𝑗) on the map is estimated by using the total 

number (𝑛) of colored pixels 𝑝𝑐𝑖 (where 𝑐 represented one of the four colour codes 

and pixel 𝑝𝑐𝑖 where 𝑖 ∈ 𝑗) based on the following  equation: 

𝑙𝑗 = ∑ ∑(𝑝𝑐𝑖 × 𝑆 )

4

𝑐=1

𝑛

𝑖=1

                                              ( 5.1) 

2) Although, a pixel has both horizontal and vertical dimensions, for the proposed 

application the pixel dimensions are strictly related to the length of a link and not to 

its width. 

 

3) Each pixel is also related to the spatial dimension of traffic and can be regarded as a 

virtual loop detector providing information about traffic conditions at each location. 

 

 At that point, it is important to mention also the methodology that online providers 

follow to depict current traffic conditions in a city. Starting with the Yandex maps, where 

data are collected through the Yandex.Maps app or the Yandex.Navigator app. After 

activating the app’s “Send traffic information” option, the user starts sending every few 

seconds their geographic coordinates, direction and speed to the automated analytical system 
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of the Yandex.Traffic service. All information sent from each mobile device is non-personal. 

Yandex.Traffic’s automated analyzer then integrates the speed and coordinate information 

from all participating vehicles driving along the same route into unified traffic patterns – 

tracks. In addition to contributions from private users, Yandex.Traffic also receives 

information from companies that have fleets of vehicles operating in the city’s streets on a 

regular basis. 

 To make a track for a moving car, Yandex.Traffic uses a number of geographic 

coordinates, which are delivered by the driver’s GPS device and sent to the service through 

the Yandex.Maps app. The GPS accuracy, however, has the error margin from one to ten 

meters in all directions, which may result in positioning a car on a sidewalk or rooftop of the 

nearest building. To solve this problem, GPS coordinates are mapped to the digital map of 

the city, which accurately displays roads and streets with all the markings, buildings, parks, 

and other urban facilities. This detailed mapping allows the system correct the course of a 

car based on the real physical layout even if the GPS coordinates say that the car is on the 

wrong side of the road or has cut through a building instead of following road markings and 

turning around the corner. Another important issue is to understand how useful the speed 

information received from the driver is, as it may or may not truthfully reflect the real 

situation on the road. If all other cars sending information to Yandex.Traffic proceed as 

normal on the same route, the system ignores the rogue track and this data isn’t considered 

for the general traffic evaluation. This is exactly why the number of Yandex.Traffic users 

matters. The more drivers send information to Yandex.Traffic via Yandex.Maps, the more 

accurate the picture of the real-time traffic situation is. After combining the tested tracks, the 

algorithm analyzes them and sets “green”, “yellow” and “red” ratings to the corresponding 

sections of roads. Next comes aggregation - the process of combining information. Every 

two minutes, Yandex.Maps aggregates, like a jigsaw puzzle, all information from all users 

of the Yandex.Maps app and maps the results on the Traffic Jams layer, both in the mobile 

application and on the desktop service (Yandex, 2014).  

 Similarly, Google utilize crowdsourcing to improve the accuracy of its traffic 

predictions. When Android phone users turn on their Google Maps app with GPS location 

enabled, the phone sends back bits of data, anonymously, to Google that let the company 

know how fast their cars are moving. Google Maps continuously combines the data coming 

in from all the cars on the road and sends it back by way of those colored lines on the traffic 

layers (Barth, 2009). 
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5.1.2 Estimation of MFD based on traffic maps data  

 To explore the capacity of online traffic maps for estimating network-wide 

phenomena (e.g. in the detail that MFDs are offering), fundamental traffic variables were 

first estimated utilizing measurements from the whole network. For achieving that, a 

connection between the average network flow, the average network speed, the average 

network density, and the number of pixels that belong to distinctive operating class of online 

traffic maps was established. The mathematical expressions used for achieving this follow. 

Firstly, by considering that typical online maps offer information about links’ average 

speed per coloured segment (complete links or link’s stretches), we can estimate the network 

average speed  𝑈𝑡 at time interval  𝑡 as: 

𝑈𝑡 =
∑ (𝑙𝑗 × 𝑈𝑐𝑖

𝑡 )𝑚
𝑗=1

∑ 𝑙𝑗
𝑚
𝑗=1

=
∑ (𝑝𝑐𝑖

𝑡 × 𝑆 × 𝑈𝑐𝑖
𝑡 )𝑛

𝑖=1

∑ (𝑛
𝑖=1 𝑝𝑐𝑖

𝑡 × 𝑆)
                                             (5.2) 

Where 𝑙𝑗 is estimated using equation (5.1) as the scale of the map (𝑆) is known, while the 

number of pixels pc coloured with specific colour c is calculated based on the proposed 

image processing techniques (presented in Chapter 4). Regarding the representative value of 

average speed  (𝑈𝑐𝑖) according to colour c, rational assumptions for each threshold can be 

used as green refers to free-flow, orange to moderate traffic, red to heavy traffic and dark 

red to congestion based on the map’s legend. Usually, online traffic maps’ providers do not 

give precise ranges for the color-coding scheme that has been adopted and as so ground truth 

data form loop detectors were used to assign representative values of average speed through 

empirical calibration, as described in the following section. 

Then to estimate the average network density  𝐾𝑡 that is defined as the average number 

of the vehicles per unit length at time interval 𝑡 , a parametric approach was followed based 

on the fundamental linear speed-density relation proposed by Greenshields (Greenshields, 

1935), that follows: 

𝑈𝑡 = 𝑈𝑓 − (
𝑈𝑓

𝐾𝑗𝑎𝑚
) 𝐾𝑡                                                                                        (5.3) 

where 𝑈𝑓  stands for the free-flow speed and 𝐾𝑗𝑎𝑚 is the jam density of the network.  

 The free-flow speed is relatively easy to estimate, as it generally lies between the 

speed limit and the design speed of the roadway. On the other hand, a reliable estimation of 

jam density, being representative enough of the vehicles using the network of each given 

time, is much more difficult. In our analysis the representative values both for free-flow 

VANA G
KANIA



77 

 

speed and density jam of the network were estimated through a calibration process utilizing 

empirical data from loop detectors for the selected road network. 

 As the variable   𝑈𝑡  is also known from online traffic maps (see Eq. (5.2)) an 

estimation of average network density (𝐾𝑡) can be achieved for known free-flow speed and 

jam density by substituting 𝑈𝑡 into Eq. (5.3) and solving for 𝐾𝑡:  

𝐾𝑡 = 𝐾𝑗 − (
𝐾𝑗𝑎𝑚

𝑈𝑓
) 𝑈𝑡                                                                                 (5.4) 

The equation of flow-density relationship can be derived by substituting 
𝑄

𝐾
  for 𝑈 

(based on the fundamental traffic relationship), into Eq. (5.3) and solving for 𝑄, as: 

𝑄𝑡 = 𝑈𝑓𝐾𝑡 − (
𝑈𝑓

𝐾𝑗𝑎𝑚
) (𝐾𝑡)2                                                                       (5.5) 

Additionally, the total number of vehicles (accumulation) on the network 𝐴𝑡 at time 

interval 𝑡, can be estimated by multiplying the average network density with the total length 

of the links in the network using Eq. (5.6). 

𝐴𝑡 = ∑ 𝑙𝑗

𝑚

𝑗=1

× 𝐾𝑡 =  ∑(

𝑛

𝑖=1

𝑝𝑐𝑖
𝑡 × 𝑆) × 𝐾𝑡                                                     (5.6) 

As it can be noticed by the above equations, a relationship between microscopic 

traffic information (captured in each pixel) with macroscopic (network-wide) metrics has 

been established. This interplay between microscopic and macroscopic variables will be 

extended, enhanced and used in the later sections. It is explicitly noted here that the 

fundamental formula Q=K×U used for integrating pixels/locations traffic variables can be 

regarded as simplified, reflecting the assumption that in the complete functional form where 

E(Q)=E(K)×E(U)+COV(K,U) the term COV(K,U)=0 (E standing for expected value). 

Though, the implementation made here reflects an average functional among the three 

fundamental traffic variables, adequate for the purposes of the current analysis. 

5.2 Calibration with Empirical Data 

To evaluate the proposed method, traffic data from online traffic maps for the city of Nicosia 

(see Figure 4.24) and empirical data from available loop detectors for the same network were 

used. Through this process the values of jam density and free flow of the network as well as 

the representative values of speed per coloured traffic layer were selected and applied on the 

Eqs. (5.2), (5.4), (5.5), and (5.6). 

VANA G
KANIA



78 

 

 As a first step, traffic data for the city of Nicosia were collected for the same week 

(11-17 February 2019), from four available loop detectors, named 1004, 1005, 1006, 1010, 

located mainly in bidirectional cross-sections of major arteries in Nicosia. as Figure 5.1 

shows. These loop detectors provide observations of average speed and traffic flow for 5-

minute intervals. The observations of the loop detectors were used to calibrate the proposed 

models through optimization process. Particularly, the objective was to minimize the Sum 

Absolute Error (SAE) between the estimated values from Eqs. (5.2) and (5.5) and the 

empirical observations, at the location of the detectors. The constraints that were set for the 

six variables, 𝑈𝑔, 𝑈𝑜, 𝑈𝑟,𝑈𝑑𝑟, 𝐾𝑗𝑎𝑚,𝑈𝑓 follow: 

• 0 ≤ 𝑈𝑔 ≤ 60 𝐾𝑚/ℎ, 0 ≤ 𝑈𝑜 ≤ 50 𝐾𝑚/ℎ, 0 ≤ 𝑈𝑟 ≤ 40
𝐾𝑚

ℎ
, 0 ≤ 𝑈𝑑𝑟 ≤ 20 𝐾𝑚/ℎ 

• 100 ≤ 𝐾𝑗𝑎𝑚 ≤ 180 𝑣𝑒ℎ/𝑘𝑚 

• 40 ≤ 𝑈𝑓 ≤ 90 𝑘𝑚/ℎ 

 

Figure 5.1: Location of the loop detectors in Nicosia, Cyprus 

 A summary of the calibration results is provided in Table 5.2. At each location of the 

four loop detectors (1010, 1005, 1004 bidirectional) five different models were tested. In the 

first model the objective function was to minimize the SAE both for average flow and speed 

at each location by searching the best fit for all the six variables. In the second model the 

same objective function was used while values for jam density and free flow remained 

constant, as in the third model but for different value of free-flow speed. In the fourth model 

the objective function was to minimize SAE only for average speed while in the fifth model 

only for flow, respectively.  
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Table 5.2: Calibration Results 

 

 Model 

Row Ug(km/h) Uo(km/h) Ur(km/h) Udr(km/h) Kjam(veh/km) Uf(km/h) SAE 

 Location:1010 Westbound   

1 45 35 31 20 105 56 54,357(1) 

2 43 37 37 19 150 50 55,192(2) 

3 52 48 40 20 150 60 65,562(3) 

4 51 42 40 20 100 63 58,756(4) 

5 45 36 32 20 100 80 146,748(5) 

 Location: 1010 Eastbound   

7 45 41 40 20 100 57 48,142(1) 

8 43 41 40 20 150 50 48,897(2) 

9 52 50 40 11 150 60 62,857(3) 

10 45 41 40 20 100 57 48,156(4) 

11 45 41 38 16 100 80 150,292(5) 

 Location: 1006 Southbound 

12 42 41 40 20 100 45 12,115(1) 

13 48 47 40 20 150 50 27,049(2) 

14 58 50 40 3 150 60 58,387(3) 

15 42 41 40 20 100 45 12,136(4) 

16 45 43 40 20 100 80 116,518(5) 

 Location: 1005 Northbound 

17 45 43 40 20 100 51 25,012(1) 

18 46 45 40 20 150 50 26,127(2) 

19 56 50 40 5 150 60 37,053(3) 

20 42 40 40 20 100 48 25,888(4) 

21 45 42 33 20 100 80 149,022(5) 

 Location: 1005 Southbound 

22 46 42 40 20 100 51 20,501(1) 

23 47 45 40 20 150 50 22,604(2) 

24 57 50 40 20 150 60 53,130(3) 

25 45 42 40 20 100 50 20,569(4) 

26 48 42 38 20 100 80 142,911(5) 

 Location: 1004 Northbound 

27 43 42 40 20 100 47 18,612(1) 

28 47 47 40 19 150 50 28,616(2) 

29 57 50 40 20 150 60 67,675(3) 

30 42 41 40 20 100 46 19,060(4) 

31 50 48 40 0 100 80 122,231(5) 

 Location: 1004 Southbound 

32 48 46 40 20 101 56 23,285(1) 

33 45 44 40 20 150 50 24,176(2) 

34 55 50 40 20 150 60 31,755(3) 

35 42 40 40 20 100 50 25,834(4) 

 48 47 40 20 100 80 96,913(5) 

 Location: 1010, 1006, 1005, 1004 

36 44 42 40 20 100 51 272,267(1) 

37 46 45 40 4 150 50 283,342(2) 

38 55 50 40 20 150 60 410,927(3) 

39 40 38 40 20 100 47 282,949(4) 

40 46 43 40 20 100 80 933,457(5) 

Note 

(1) Minimize SAE (flow and speed) by changing values in all variables 

(2) Minimize SAE (flow and speed) by changing values in speed variables, Kjam=150veh/h and Uf=50vkm/h. 

(3) Minimize SAE (flow and speed) by changing values in speed varιables, Kjam=150veh/h and Uf=60vkm/h. 

(4) Minimize SAE (flow) by changing values in all variables 

(5) Minimize SAE (speed) by changing values in all variables 
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 At the location 1004, both for southbound and northbound direction the best fit was 

given for the first model (minimum SAE in bold). Thus, the values from row 27 and 32 of  

Table 5.2 were used to estimate average speed and flow from Eqs. (5.2) and (5.5) illustrated 

in Figure 5.2 (a) (black and red triangles). To better visualize the validity of the proposed 

method, data from the loop detector 1004 (red color for southbound and black color for 

northbound) are plotted at the same figure, as well. The small number of observations from 

the model for the two direction is due to the small number of pixels in the image that 

corresponds to the location of the detector. As a result, the pixels had only one color at each 

time interval and according to Eq. (5.2) the value of average speed was determined for 

example only from the value of 𝑈𝑔.  

  

 
 

 

Figure 5.2: Comparison between the proposed model and the empirical data from the loop detectors 

at each location 1004(a), 1005(b), 1006(c), and 1010(d) for one week (11-17 February 2019). 

 

 Regarding the rest locations in the network, the first model also gave better fitting 

results. Thus, the values of rows 22, 17, 12, 7, 1 (see Table 5.2) were used to estimated 

(a) 

(c) 

(b) 

(d) 
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average speed and flow at the rest locations, depicted on Figure 5.2. (b), 5.2 (c), 5.2 (d,) 

respectively. For a consistent comparison between the estimated values and empirical data, 

average speed and flow from the loop detectors (red and black circles) are also depicted in 

the same figures. 

 So far, the optimization process was applied at one location of the network at each 

time. At the last part of Table 5.2 all the available locations of the detectors were utilized in 

the calibration process. In that case, the target was to minimize SAE both for average flow 

and speed and for all the four locations (in all the five models). Figure 5.3 illustrates 

estimated values (triangles) from all models (1,2,3,4,5) and the loop detectors’ data(circles) 

for the same week, for comparative purposes. According to Table 5.2 the first model (row 

36) presented a slight lower SAE compared to the second one (row 37), but the shape of the 

model two (blue color, Figure 5.3) is much closer to the theoretical one. It is of interest, how 

well the second model fits to the empirical data (almost in the middle). Thus, values from 

row 37 (Table 5.2) were chosen for the estimation of the MFDs for the whole network that 

follows in the next section. 

 

Figure 5.3: Comparison between the proposed models and the empirical data from the all the 

available loop detectors and for the whole network for one week (11-17 February 2019). 

5.3 MFD based on the Greenshields model for the city center of Nicosia 

MFD is an instrument that encompasses the most (if not all) the important network-wide 

information related to traffic operations. As so, the estimation of the MFD based on the 

earlier described image-processing technique and its macroscopic traffic flow interpretation 

are presented in this section.  
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 For the city of Nicosia, the reference method is implemented, and results are shown 

in Figure 5.4. The plotted data set was calculated from traffic maps’ images, utilizing solely 

pixels’ information for the selected week in February 2019, using a 5-minutes time interval 𝑡. 

After the empirical calibration described in the previous section, the following values were 

selected and applied in Eqs.  (5.2), (5.4), (5.5),  (5.6) to estimate   𝑈𝑡, 𝐾𝑡,  𝑄𝑡 and 𝐴𝑡, 

respectively: 

• 𝐾𝑗  = 150 veh/km and 𝑈𝑓  = 50Km/h 

• Applied values for each color code are: 𝑈𝑔 =46Km/h, 𝑈𝑦 =45Km/h, 𝑈𝑟 =40Km/h, 

𝑈𝑑𝑟 =4Km/h 

• 𝑆=0.038 according to Table 4.3 

  

 

Figure 5.4: Nicosia’s MFDs, for the selected week, (5-minute intervals): (a) average speed-average 

density diagram; (b) average flow-average density diagram; (c) average speed-average flow diagram. 

 The results of the Nicosia network shown in Figure 5.4, follow the theoretical shape 

of MFDs, although, the congested portion of the curve is not fully developed. Consequently, 

it can be concluded that the selected network remains practically uncongested for the 

examined time period, an element that is valid for the city of Nicosia. 

(b) (a) 

(c) 
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 Next, for the same city, the investigation of the relationship between the total vehicles 

𝐴𝑡 in the network and the average network speed 𝑈𝑡 has been performed and presented in 

Figure 5.5 (a). Accordingly, Figure 5.5 (b) presents the relationship between accumulation 

and the average network flow. A connection among selected data (a-h) on the diagrams and 

the network’s traffic state for the same intervals is highlighted on the same figures, 

illustrating the different network operating conditions as these are reflected in typical color-

coding schemes. 

 

 

Figure 5.5: The relationship between average network speed(a); flow(b) versus the total number of 

vehicles, and network’s traffic state for selected values of average accumulation during February 

11th, 2019 (5-minute intervals). 

 Starting with point (a) in Figure 5.5 (a) that corresponds to 00:00 a.m. (time interval), 

higher average speed is observed for low accumulation, as probably drivers tend to drive 

faster in the almost empty network. During the morning peak hours, points (b) and (c), the 

number of vehicles that enter the network start to increase and as a result average speed start 

to decrease. At 10:25 a.m. (d) the network starts to improve the average network speed while 

the situation deteriorates again during the evening peak hour (g) at 18:30 p.m. After 21:00 

(a) 

(b) 
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p.m. (h) the number of the vehicles in the network present a significant reduction, and 

average speed is increased as it was expected. 

 Looking at the same points in Figure 5.5 (b), we can see that till 08:00 a.m. average 

flow of the network increases as more vehicles enter in the previous empty network while a 

steep incline appears at 13:00 a.m. point (e), where some links in the network start to phase 

congestion. During the evening peak hour at point (g), the city center seems to reach a 

maximum level of concentration where average traffic flow reaches 950 vehicles per hour 

and then phenomena of hysteresis loops seem to emerge. 

5.4 Case Studies for the Different Urban Networks and Insights for 

Generalization 

The previous section revealed that the fundamental macroscopic properties still hold even in 

cases of significant information reduction like the representation scheme adopted in online 

traffic maps. Thus, in this section, an extension of the analysis made so far is made for the 

rest cities of the selected study area, starting with the city of Paris, Istanbul, and Moscow 

using raster images from Yandex maps (see Figure 4.14) and then expanding the application 

to the rest dataset. Following the proposed analytical framework, the macroscopic 

phenomena that can be observed from the class-type information broadcasted by online 

traffic maps will be based on the MFD estimation and macroscopic traffic flow interpretation 

that can be performed based on it. 

5.4.1 Application based on traffic information from Yandex maps 

 Following the proposed methodological framework, the MFDs (shown in Figure 5.6) 

has been prepared for the city of Paris, Moscow and Istanbul based on the following 

assumptions regarding the application of the Eq. (5.2): 

• Jam density 𝐾𝑗= 150 veh/km and average free-flow speed  𝑈𝑓= 80Km/h 

• Representative values for each color code are 𝑈𝑔=55Km/h, 𝑈𝑦=30Km/h, 

𝑈𝑟=10Km/h, 𝑈𝑑𝑟=5Km/h, and 

• 𝑆=0.04 according to Table 4.3 

Compared to Google maps, Yandex maps used to provide numerical values of average speed 

per colored link with a click on the link on the map when accessed. As, so representative 

values were chosen based on these values provided from Yandex maps. 
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Figure 5.6: MFDs (average flow-average density diagram) for one typical weekday (5-minute 

intervals): (a) Paris; (b) Moscow; (c) Istanbul. 

 As it can be seen in Figure 5.6 the hourly weighted average capacity of the network 

for all the three cities is almost 3000 vehicles. It is also apparent that the capacity point at 

which the network operates at the maximum value is in the range of 73 to 75 vehicles per 

kilometer. The congested portion of the curve is more developed for the city of Paris and 

Istanbul (see Figure 5.6 (a, c). 

 At that point, it should be highlighted the importance of the assumptions used 

regarding the representative/average network values have in the form of the MFD. For 

gaining some insights on the sensitivity of the MFD with respect to these average values 

used, in Figure 5.7 two alternative MFDs have been estimated for the city of Moscow. In 

Figure 5.7 (a), the values for jam density is taken as 𝐾𝑗= 150 veh/km and for average free-

flow as 𝑈𝑓= 80Km/h, while at Figure 5.7 (b) the respective values are 𝐾𝑗= 150 veh/km 

and 𝑈𝑓= 90Km/h.  

(a) (b) 

(c) 
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Figure 5.7: The relationship between average network flow and accumulation for (a), 𝐾𝑗= 150 veh/km 

and 𝑈𝑓= 80Km/h, and (b) 𝐾𝑗= 150 veh/km and 𝑈𝑓= 90Km/h (5-minute intervals) for the city of 

Moscow. 

 This slight modification of these gross values results to completely different shapes 

of the network MFD, an element exhibiting the sensitivity (and importance) of the MFD 

with respect to these network coefficients. 

5.4.2 Network Operations and Performance – Phenomena of Traffic Hysteresis 

 In this section, we analyze the relationships between the total vehicles 

(accumulation) in the network and the average network flow and speed for the three cities 

(Figure 5.8 till Figure 5.10). A connection among selected data (a-h) on the diagrams and 

the network’s traffic state for the same intervals is highlighted on the same figures, where it 

can be observed the different network operating conditions as these are reflected in typical 

color-coding schemes. Starting with the city of Paris (see Figure 5.8), points (a) and (b) 

correspond to low values of average network flow accumulation at 4:00 a.m. and 6:00 a.m., 

respectively, where the network’s load is still rather empty. A steep incline occurs in the 

morning peak-hours (c-d) where many users have entered the network. Then at 8:35 a.m. 

(point e) the system seems to reach a maximum level of concentration (or maybe total 

network capacity) where average network traffic flow reaches 3,000 vehicles per hour and 

then phenomena of hysteresis loops seem to emerge (see Figure 5.8 (b)). 

(a) (b) 
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Figure 5.8: The relationship between average network flow (a), speed (b) versus the total number of 

vehicles, and network’s traffic state for selected values of average accumulation during a weekday 

(5-minute intervals) for the city of Paris. 

 Moving to the city of Moscow (see Figure 5.9), a different shape of MFD appears 

while phenomena of hysteresis loops does not seem to emerge for this type of network. Here 

the system seems to reach a maximum level of concentration (or maybe total network 

capacity) where average network traffic flow reaches 3,000 vehicles per hour during the 

evening peak-hour (point g). That is also visible through the map image at the same interval 

where several links of the network are colored red that indicates congestion (see Figure 5.9 

(b)). 

(a) 

(b) 
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Figure 5.9: The relationship between average network flow (a), speed (b) versus the total number of 

vehicles, and network’s traffic state for selected values of average accumulation during a weekday 

(5-minute intervals) for the city of Moscow. 

 In the next figure we see the results for the city of  Istanbul. Again, point (b) 

corresponds to low values of average network flow accumulation at 6:00 a.m., respectively, 

where the network’s load is still rather empty. A steep incline occurs in the morning peak-

hours (c-d) where many users have entered the network. Then at 11:00 a.m. the system seems 

to reach a maximum level of concentration (or maybe total network capacity) where average 

network traffic flow reaches 3,000 vehicles per hour and then phenomena of hysteresis loops 

seem to emerge for the city of Istanbul, too. 

 

(a) 

(b) 
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Figure 5.10: The relationship between average network flow (a), speed (b) versus the total number 

of vehicles, and network’s traffic state for selected values of average accumulation during a weekday 

(5-minute intervals) for the city of Istanbul. 

 Focusing on the hysteresis phenomena observed in Figure 5.8, and Figure 5.10, it 

would be valuable to further investigate the temporal dimension of this phenomenon. In the 

case of Paris two distinctive hysteresis patterns can be observed. The first is an anti-

clockwise between 8:35 a.m. and 13:00 p.m., where vehicles accumulation increases, but 

average flow drops at first and then improves gradually from 10:00 until 13:00 (see Figure 

5.11(a)). This type of network recovery may reflect the response of the network users and 

operators towards a dynamic equilibrium (Geroliminis and Daganzo, 2008) that optimize 

network performance as this is related to the average traffic flow for the same level of 

vehicles accumulation in the network. The dominant phenomenon here is that network is 

improving its performance by improving average network flow. Then, a different type of 

(a) 

(b) 
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network hysteresis phenomenon has been captured, between 16:00 and 20:30. In this 

instance, average traffic flow deteriorates from 16:00 until 18:30 and recovers again at 20:30 

p.m. (Figure 5.11 (b)), but this time in a clockwise manner. This means that the dominant 

phenomenon in this period is that the vehicles accumulation in the network is reduced 

(vehicles are exiting the network, which is reasonable for this time of the day), improving 

its performance. These macroscopic phenomena, although delicate and difficult to observe 

can be captured by online traffic maps, providing very important information valuable for 

managing large-scale urban road systems.  

 

 

  

Figure 5.11: Average traffic flow vs. the total number of vehicles diagram during a weekday (5-

minute intervals) for Paris: (a) anti-clockwise hysteresis; (b) clockwise hysteresis and for Istanbul; 

(c) clockwise hysteresis; (d) anti-clockwise hysteresis. 

 

(a) (b) 

(c) (d) 
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 On the other hand, for the case of Istanbul (see Figure 5.11 (c), (d)) the shape of the 

estimated MFD suggests different network operating characteristics. As it can be observed 

by Figure 5.11 (c), in the hyper-congested (right) part of the MFD no hysteresis phenomenon 

occurs, which may reflect the rapid, severe and extensive (in time and space) network 

deterioration typically occurring in Istanbul road network. Though, the network loading and 

unloading process in Istanbul’s network occurs in different manner; the loading phase 

(starting from empty network conditions) occurs rapidly and with better average network 

flow (upper branch of MFD’s left side), while the traffic dissipation occurs with a slightly 

reduced network performance (lower average traffic flow) since it starts from congested 

network conditions (lower branch MFD’s left side). Such characteristics require a more 

thorough investigation, since may provide important information to traffic management 

authorities. 

5.4.3 Application based on traffic information from Google, Bing, and Here 

maps 

 In this section, the proposed methodological framework, is applied to the rest cities 

of the study area. Furthermore, the MFDs are estimated based on traffic information from 

Google, Bing and Here maps, for comparative reasons. The assumptions regarding the 

application of the Eq. (5.2) follow: 

• Jam density 𝐾𝑗= 150 veh/km and average free-flow speed  𝑈𝑓= 80Km/h 

• Representative values for each colour code are: 

𝑈𝑔=55Km/h, 𝑈𝑜=30Km/h, 𝑈𝑟=10Km/h, 𝑈𝑑𝑟=5Km/h, for Google, and Baidu, 

𝑈𝑔=55Km/h, 𝑈𝑦=30Km/h, 𝑈𝑜=10Km/h, 𝑈𝑟=5Km/h for Bing, 𝑈𝑔=55Km/h, 

𝑈𝑦=30Km/h, 𝑈𝑟=10Km/h for Here maps, and  

• 𝑆 according to Table 4.3 

The representative values for each colour code was selected based on representative values 

of average speed that are provided from Yandex and Here maps for each traffic layer when 

accessed. A calibration process as described in Section 5.2 is proposed for accurate results 

for the exact shape of MFD. Although, by using logical assumptions, a clear view of the 

shape of the MFDs for the selected cities is feasible. As it can be seen from Figure 5.12 till  

Figure 5.14, that provides results for the city of Paris, Moscow and Istanbul, the hourly 

weighted average capacity of the network for all the  cities is around 3000 vehicles. It is also 

apparent that the capacity point at which the network operates at the maximum value is in 

the range of 70  to 80 vehicles per kilometer. 
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Figure 5.12: Paris’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 

(a) 

(b) 

(c) 
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Figure 5.13: Istanbul’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 

(a) 

(b) 

(c) 
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Figure 5.14: Moscow’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 

 In the previous sections, the MFDs for the city of Nicosia based on traffic information 

from Google maps and the MFDs for the city of Paris, Moscow, and Istanbul from Yandex 

(a) 

(b) 

(c) 
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maps were presented. For consistency reasons, in Figures 5.12-5.14 the same cities were 

selected to illustrate the MFDs from the rest online traffic providers such as Google (red), 

Bing (blue) and Here maps (green). Results for the rest cities of the study area can be found 

in Appendix D. 

 Regarding the columns in these figures, the left one refers to the average speed-

average density diagram, the middle column refers to the average speed-average flow 

diagram and last the right column corresponds to the average flow-average density diagram. 

The average speed-average-density diagram reflects the linear relationship between speed 

and density, as the Greenshields model was utilized in Eq. (5.4). The maximum value of 

average density ranges between 55-100 veh/Km. Note that, Paris and New Delhi presented 

the highest values almost 100 veh/Km while Beijing and  Berlin the smallest less than 65 

veh/Km. Regarding the average speed values, the range is between 25-55 Km/h for most of 

the cities. This range is strictly related to the assumptions of average speed for each traffic 

layer (e.g. 55Km/h for the green traffic layer). For instance, during the late-night hours where 

the green colour dominates in the online traffic maps, the average speed for the whole 

network is equal to the value of the average speed that corresponds to the green traffic layer. 

 Moving to the average speed-average flow diagram and to the average flow-average 

density diagram, a parabolic and a semi-parabolic curve is observed for most of the cities. 

Although, the congestion part of the curve in some cases is more developed for the same city 

depending on the online traffic provider. This can be observed for the city of Paris where the 

congestion part is more developed on the diagrams for Bing maps compare to Google and 

Here maps. The same applies for the city of New Delhi and Sao Paulo. On the contrary for 

the city of Moscow, Istanbul, New York, Los Angeles and Riyadh the congestion part of the 

curve is more developed in the red diagrams estimated based on data from Google maps.  

For the city of Sydney and Johannesburg, similar curves developed regardless the type of 

traffic maps used for estimation. For the city of Beijing the pattern of the diagrams is quite 

different form the rest of the cities, as the network remains uncongested and does not reach 

the hourly weighted average capacity (at that point the congested part of the curve starts to 

shape).  

 As a next step, the relationships between the total vehicles (accumulation) in the 

network and the average network flow for the rest cities were investigated in Figure 5.15 till 

Figure 5.20. Each raw on these figures refers to a different city of the dataset, while the left 

column corresponds to data from Google maps (red colour), the middle one to Bing maps 
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(blue colour)  and last the right column to Here maps(green colour). The same colors per 

provider were used for consistency reasons. In the last Figure 5.20, the left column refers to 

the city of Tokyo using data form Google maps (red colour), while the rest two corresponds 

to the city of Beijing utilizing data from Bing (blue colour) and Baidu maps (green colour), 

respectively.  Interestingly, mainly three different shapes can be observed from these 

figures, a parabolic one (e.g. Figure 5.16b(left)), a semi-parabolic (e.g. Figure 5.16a(right)) 

and an S-shape (e.g. Figure 5.16c (middle). Note that, similar patterns occurred for the city 

of Paris, Moscow, and Istanbul from Yandex maps (see Figure 5.8b, Figure 5.9b, and Figure 

5.10b). 

 Furthermore, a clear view, of the network’s operating conditions for the selected 

cities is provided from these figures. Starting with the city of Paris (see Figure 5.15a), low 

values of average network flow accumulation are observed when the network’s load is still 

rather empty. A steep incline occurs where many users have entered the network. Then the 

system seems to reach a maximum level of concentration (or maybe total network capacity) 

where average network traffic flow reaches 3,000 vehicles per hour and then phenomena of 

hysteresis loops seem to emerge. For the same city (Figure 5.15a), but based on Bing 

maps(middle column)  the maximum level of accumulation is quite lower (equal to 35000 

veh) compare to 50000 veh  from Google maps  and even lower from Here maps (right 

column) that is equal to 25000veh. The same applies for most of the cities as the maximum 

level of accumulation from Here maps is quite lower compared to the other two providers. 

This can be explained due to the low urban coverage from Here maps according to Table 

4.4.  

 Regarding the phenomena of traffic hysteresis, these seem to emerge for most of the 

cities based on information retrieved from Google maps (left column: Figure 5.15(a ,b, c), 

Figure 5.16(b, c), Figure 5.17(a ,b), Figure 5.18(a ,b, c), Figure 5.19(a ,b, c)). For the same 

cities but from Here maps a semi parabolic shape is observed without traffic hysteresis loops. 

Interestingly, that does not apply for the city of Sao Paulo that appears an S-shape curve 

(Figure 5.17b(right)). The S-shape curve is frequently observed for most of the cities based 

on estimation from Bing maps. This can be explained due to the urban coverage that Bing 

maps provide during the late night hours where the network is almost empty but still many 

links remained colored with the green traffic layer. 
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Figure 5.15: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Paris; (b) London; (c) Istanbul (5-minute intervals): (left column) from Google; (middle column) 

from Bing; and (right column) from Here maps. 
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Figure 5.16: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

New Delhi; (b) Moscow; (c) New York (5-minute intervals): (left column) from Google; (middle 

column) from Bing; and (right column) from Here maps. 
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Figure 5.17: Average network flow versus accumulation(total number of vehicles) for the city of  Los 

Angeles; (b) Sao Paulo; (c) Singapore (5-minute intervals): (left column) from Google; (middle 

column) from Bing; and (right column) from Here maps. 
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Figure 5.18: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Sydney; (b) Johannesburg; (c) Toronto (5-minute intervals): (left column) from Google; (middle 

column) from Bing; and (right column) from Here maps. 
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Figure 5.19: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Berlin; (b) Buenos Aires; (c) Riyadh (5-minute intervals): (left column) from Google; (middle 

column) from Bing; and (right column) from Here maps. 
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Figure 5.20: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Tokyo from Google; (b) Beijing from Bing and (c) Beijing from Baidu maps. 

 Last, in Figure 5.20 for the city of Tokyo a similar pattern with other cities is 

observed, where average network traffic flow reaches 3,000 vehicles/hour when the 

maximum level of concentration is equal to 60000veh in the network. On the contrary, for 

the city of Beijing in the same figure, a completely different pattern is observed from Bing 

and Baidu maps between average network flow and accumulation.   

5.5 MFD estimation based on the Greenberg Model 

In this section an alternative model is used to estimate the MFDs based on traffic maps 

information. Specifically, the same  Eq. (5.2) is used to estimate the network average speed 

 𝑈𝑡 at time interval  𝑡 , while a nonlinear speed-density relationship based on Greenberg 

model (see  Eq. (3.18) )  is used to estimate the average network density 𝐾𝑡 as: 

𝐾𝑡 = 𝐾𝑗𝑎𝑚exp (−
𝑈𝑡

𝑈0
)                                                    (5.7) 

where 𝑈𝑜  stands for the optimum average speed, that is equal to the half of the free speed 

(see Eq.  (3.15))  and 𝐾𝑗𝑎𝑚 is the jam density of the network.  

The equation of average flow-density relationship can be derived based on the fundamental 

traffic relationship, see Eq.  (3.22) as: 

𝑄𝑡 = 𝐾𝑡𝑈𝑡                                                                  (5.8) 

The total number of vehicles (accumulation) on the network 𝐴𝑡 at time interval 𝑡, can be 

estimated by multiplying the average network density with the total length of the links in the 

network using Eq. (5.6). 

 In the next figures, the MFDs for the three cities (Paris, Moscow, and Istanbul) from 

Yandex maps are estimated based on a linear speed-density relationship (Greenshields 

(a) (b) (c) 
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model) and on a logarithmic one (Greenberg model) for comparative reasons. One main 

difference between the two models is that the first requires knowledge of the free-flow speed 

and jam density parameters while the second requires the optimum speed and jam density 

parameters. The assumptions regarding the estimation of MFDs in this section follow: 

• Jam density 𝐾𝑗= 150 veh/km, average free-flow speed  𝑈𝑓= 80Km/h, and optimum 

average  speed  𝑈𝑜= 40Km/h 

• Representative values for each colour code are: 

𝑈𝑔=55Km/h, 𝑈𝑜=30Km/h, 𝑈𝑟=10Km/h, 𝑈𝑑𝑟=5Km/h, for Google, and Baidu, 

𝑈𝑔=55Km/h, 𝑈𝑦=30Km/h, 𝑈𝑜=10Km/h, 𝑈𝑟=5Km/h for Bing and Yandex, 

𝑈𝑔=55Km/h, 𝑈𝑦=30Km/h, 𝑈𝑟=10Km/h for Here maps, and  

• 𝑆 according to Table 4.3 

 

 

Figure 5.21: Paris’s MFDs, for a typical weekday, (5-minute intervals) from Yandex maps based on 

(a) Greenshields model and (b) Greenberg model; (left column) average speed-average density 

diagram; (middle column) average speed-average flow diagram; (right column) average flow-

average density diagram. 

(a) 

(b) 
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Figure 5.22: Moscow’s MFDs, for a typical weekday, (5-minute intervals) from Yandex maps based 

on (a) Greenshields model and (b) Greenberg model; (left column) average speed-average density 

diagram; (middle column) average speed-average flow diagram; (right column) average flow-

average density diagram. 

 Starting with the MFDs for the city of Paris (see Figure 5.21) similar patterns are 

observed for the average speed-average flow diagram and the average flow-average density 

diagram. Although, higher values of average flow and average density are observed based 

on the Greenshields model (Figure 5.21a). This can be explained due to the optimum speed 

parameter used that is equal to the half of the free speed. The same applies for the rest two 

cities (Figure 5.22, Figure 5.23). Regarding the average speed-average density diagrams 

based on Greenberg model, a non-linear pattern is observed as expected. 

 The last two figures of the section illustrate the relationship between average network 

flow versus accumulation based on the two models. Obviously, Figure 5.24a, Figure 5.24b, 

and Figure 5.24c are the same as Figure 5.8b, Figure 5.9b, Figure 5.10b, respectively. 

Concerning the same diagrams estimated based on the Greenberg model (Figure 5.25) the 

shame curves (S-shape and semi-parabolic) appeared but with significantly lower values of 

accumulation. 

(a) 

(b) 
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Figure 5.23: Istanbul’s MFDs, for a typical weekday, (5-minute intervals) from Yandex maps based 

on (a) Greenshields model and (b) Greenberg model; (left column) average speed-average density 

diagram; (middle column) average speed-average flow diagram; (right column) average flow-

average density diagram. 

 

Figure 5.24: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Paris; (b) Moscow and (c) Istanbul (5-minute intervals) from Yandex maps based on Greenshields 

model. 

(a) 

(b) 

(b) (a) (c) 
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Figure 5.25: Average network flow versus accumulation(total number of vehicles) for the city of (a) 

Paris; (b) Moscow and (c) Istanbul (5-minute intervals) from Yandex maps based on Greenberg 

model. 

 

5.6 Chapter Summary  

In the current chapter the properties of traffic depiction and the feasibility of using online 

traffic maps information for capturing network-level traffic phenomena have been 

investigated. The proposed analysis is based on a traffic information extraction module for 

realistic networks, where traffic layers are captured by straightforward image processing 

techniques and processed as categorical type of data. Fundamental traffic relationships are 

then used, connecting microscopic information to macroscopic phenomena. To investigate 

the quality of traffic information depicted in online dynamic traffic maps, the estimation and 

the properties of MFD were used. The application of the proposed methodological 

framework is tested on commercial freely available online maps for different urban road 

networks. A thorough investigation about the value of spatiotemporal information that it is 

retained in the abstracted depiction of traffic conditions has been conducted, revealing that 

the fundamental macroscopic properties still hold even in cases of significant information 

reduction like the representation scheme adopted in online traffic maps. Not only the shapes 

and the magnitude of scale among the traffic variables are consistent but also valuable 

additional information can be extracted from traffic maps (like vehicles concentration, 

network heterogeneity, etc.) and delicate phenomena can be captured (like traffic hysteresis).  

In the next chapter this valuable information in the form of structured database after the 

proposed method is applied to estimate human mobility patterns across multiple cities. 
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PART II 

Chapter 6 : Human Mobility Patterns based on Information 

from Online Traffic Maps 

The current chapter introduces alternative and innovative methods in understanding 

movement within the urban fabric at the macroscopic level based on suitably developed 

quantified indices that may be applied to any city that has online traffic coverage. For 

illustration purposes, results are presented for multiple cities with different network 

structures and traffic characteristics (introduced in chapter 4), to reveal regularities/patterns 

and useful insights regarding the temporal and spatial dimension of urban mobility patterns.  

6.1 Urban Morphology  

Prior to the estimation of mobility patterns for the cities of the study area, a closer look to 

the urban morphology of these cities is provided. In Section 4.1, the spatial and cultural 

distribution along with the basic characteristics (land, population, and Gross Domestic 

Product) of the cities were presented. Here, emphasis is placed on the spatial correlation 

between the street connectivity and urban density that contributes to the modeling of a city’s 

spatial structure. Starting with the European cities of the study area, we introduce the city 

outline for London.   

6.1.1 London 

 London’s complicated topography can be made simple by means of three basic 

patterns. First, there is the undulating line of the Thames separating northern from southern 

London. For historical reasons, most important destinations lie north of the river. The south 

is essentially an intricate patchwork of residential districts joined by miles of conventional 

through streets. At the centre is the area familiar to visitors—the City of London, the 

municipal corporation and borough of London, with its offices, shops, and public buildings. 

The first ring surrounding that area, the suburban belt—known for statistical purposes as 

Inner London—developed from the late 18th century until the beginning of World War I. 

The third zone—Outer London—consists of 20th-century suburban housing, chiefly created 

in a short, intensive building boom in 1925–39. The Metropolitan Green Belt forms a final 

concentric ring, defining the shape of the whole capital (Clout, 2019). 
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6.1.2 Paris 

 Moving to the city of Paris, that is positioned at the centre of the Île-de-France region, 

which is crossed by the Seine, Oise, and Marne rivers. The city proper is small; no corner is 

farther than about 6 miles (10 km) from the square in front of Notre-Dame Cathedral. It 

occupies a depression hollowed out by the Seine, and the surrounding heights have been 

respected as the limits of the city. Paris comprises 20 arrondissements (municipal districts), 

each of which has its own mayor and town hall. The numbering begins in the heart of Paris 

and continues in the spiralling shape of a snail shell, ending to the far east. The Seine flows 

for about 8 miles (13 km) through the centre of the city and 10 of the 20 arrondissements. It 

enters the city at the southeast corner, flows northwest, and turns gradually southwest, 

eventually leaving Paris at the southwest corner. As a result, what starts out as the stream’s 

east bank becomes its north bank and ends as the west bank, and the Parisians therefore 

adopted the simple, unchanging designation of Right Bank and Left Bank (when facing 

downstream) (Ehrlich, 2019). 

6.1.3 Berlin 

 Berlin is the capital and chief urban centre of Germany. The city lies at the heart of 

the North German Plain and is by far the largest city in Germany. Divided into several 

distinct areas, Berlin is a sprawling city, with the main districts being Charlottenburg, 

Kreuzberg, Mitte and Tiergarten. Berlin has always been a surprisingly green city, with 

luxuriant trees softening the effect of the stone apartment blocks in many streets. Water is 

even more prevalent, with the Spree River running through the city’s centre, a broad belt of 

lakes spreading out east and west, and canals running through much of the city. 

 Until the "peaceful revolution" of 1989, the most notorious feature of the city’s 

topography was the Berlin Wall, erected by the East German communist government in 1961 

to stop free movement between East Berlin and West Berlin. The boundary between East 

and West Berlin and the boundary between West Berlin and East Germany, for a combined 

length of 103 miles (166 km), were closed until 1989 by a solid ring of barriers, consisting 

mostly of prefabricated concrete slabs. The political and physical division of Berlin had a 

profound and pervasive influence on urban planning. During the 1990s, massive construction 

projects transformed central Berlin. High-rise commercial construction in the Potsdamer 

Platz, on the site of the former wall, restored its role as a bustling urban centre. The central 

area of Berlin acquired broad north-south avenues, such as Wilhelm Strasse and 
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Friedrichstrasse, and its characteristic east-west road axis. Supplementing this main axis are 

several exit roads that now serve as major traffic arteries (Reuter, 2020). 

6.1.4 Moscow 

 Moscow city is the capital of Russia, located in the far western part of the country. 

A map of Moscow presents a pattern of concentric rings that circle the rough triangle of the 

Kremlin and its rectangular extension, the Kitay-gorod, with outwardly radiating spokes 

connecting the rings; the whole pattern is modified by the twisting, northwest–southeast-

trending Moscow River. These rings and radials mark the historical stages of the city’s 

growth: successive epochs of development are traced by the Boulevard Ring and the Garden 

Ring, the Moscow Little Ring Railway (built in part along the line of the former Kamer-

Kollezhsky customs barrier), and the Moscow Ring Road. Inner Moscow functions like a 

typical central business district. In this area are concentrated most of the government offices 

and administrative headquarters of state bodies, most of the hotels and larger shops, and the 

principal theatres, museums, and art galleries (French, 2019). 

6.1.5 Nicosia 

  Nicosia, known locally as "Lefkosia" in Greek, is the centrally located capital of 

Cyprus. As a result of the Turkish intervention in 1974, part of the northern section of 

Nicosia, including the former international airport, has remained within the United Nations 

Forces in Cyprus buffer zone that separates the Republic of Cyprus (south) from the 

occupied areas (north). Nowadays, the city centre can be divided into two distinct areas: (a) 

the old city within the Venetian Walls and (b) the new city centre that includes the Central 

Business District. The circular core of the city centre has imposed a radial development of 

road systems over the years. Furthermore, Nicosia has the burden of the dividing line, halting 

its network to dead ends towards the north. 

6.1.6 New York 

 New York City is a collection of many neighbourhoods scattered among the city’s 

five boroughs—Manhattan, Brooklyn, the Bronx, Queens, and Staten Island—each 

exhibiting its own lifestyle. New York is the most populous and the most international city 

in the country. Its urban area extends into adjoining parts of New York, New Jersey, and 

Connecticut. Located where the Hudson and East rivers empty into one of the world’s 

premier harbours, New York is both the gateway to the North American continent and its 

preferred exit to the oceans of the globe. 
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 The city’s ancient bedrock provides the immovable foundation for hundreds of 

modern skyscrapers. New York has more of these awesome structures than any other world 

city. Although often modified in specific cases, the rectilinear patterns imposed upon 

Manhattan in its infancy have determined its developmental patterns. In the 20th century, 

parkways were incorporated into the traffic patterns of all boroughs, as Eastern and Ocean 

parkways in Brooklyn, Riverside Drive (Manhattan), the Grand Concourse (the Bronx), and 

Queens Boulevard attest. Regardless of all its efforts, the modern city is infamous for the 

volume of traffic that clogs its well-laid-out street system (Lankevich, 2020). 

6.1.7 Los Angeles 

 Los Angeles is the second most populous city and metropolitan area (after New York 

City) in the United States. The city sprawls across a broad coastal plain situated between 

mountains and the Pacific Ocean. The huge, sprawling, and tortuously shaped city of Los 

Angeles occupies a sizable portion of the southern part of the county. The city of Los 

Angeles is composed of a series of widely dispersed settlements loosely connected to 

downtown. It certainly does not conform to the popular Chicago school of urban theory of 

the 1920s and later, which held that a downtown was the main focus of community life, with 

its influence unfolding in a series of concentric circles out into the hinterlands. Among the 

outlying districts that lie within the city limits are Hollywood, located northwest of 

downtown; Encino, Van Nuys, and North Hollywood in the San Fernando Valley; Century 

City, Westwood, and Venice on the West Side; San Pedro and Wilmington in the harbour 

area; and Boyle Heights just east of the river. The main links connecting downtown and the 

suburbs are the famed Los Angeles freeways, which spread throughout the region in a vast 

network of concrete ribbons (Pitt, 2020). 

6.1.8 Toronto 

 Toronto, city, is the capital of the province of Ontario, south-eastern Canada. It is the 

most populous city in Canada, a multicultural city, and the country’s financial and 

commercial centre. Its location on the north-western shore of Lake Ontario, which forms 

part of the border between Canada and the United States, and its access to Atlantic shipping 

via the St. Lawrence Seaway and to major U.S. industrial centres via the Great Lakes, have 

enabled Toronto to become an important international trading centre. The city also features 

an extensive system of underground tunnels and concourses lined with shops, restaurants, 

and theatres. Through the construction of new housing and mixed-use projects, together with 
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the restoration and rehabilitation of heritage buildings, an extraordinary vitality has been 

brought to the urban core (McGillivray, 2020). 

6.1.9 Sao Paulo 

 Sao Paulo, city, capital of Sao Paulo estate (state), south eastern Brazil, is the 

foremost industrial centre in Latin America. The city is located on a plateau of the Brazilian 

Highlands extending inland from the Serra do Mar, which rises as part of the Great 

Escarpment only a short distance inland from the Atlantic Ocean. In sharp contrast to Rio de 

Janeiro, where the ocean and mountains determine the city’s configuration, dauntingly vast 

Sao Paulo sprawls virtually unrestrained in all directions. Although its nicer residential areas 

are to the southwest and west of the commercial centre, where elevations are generally 

higher, the spatial distribution of socioeconomic differences is not as distinct as it is in Rio. 

The lack of mountains or even significant hillsides means that Sao Paulo’s favelas, or 

shantytowns, are horizontal, not vertical. The new favelas that are rising are well removed 

from the centre and disconnected from city services. As they grow, only some are integrated 

into the city; most still suffer substandard conditions. Sao Paulo’s centre is marked by 

squares and parks, all within walking distance of one another. The vibrant commercial centre 

of Sao Paulo revolves around the famous "Triangle", the city’s original centre. (Leite, 2020). 

6.1.10 Buenos Aires 

 Buenos Aires, city is the capital of Argentina. Buenos Aires is one of Latin America’s 

most important ports and most populous cities, as well as the national centre of commerce, 

industry, politics, culture, and technology. The metropolitan area is divided into the Federal 

District, established in 1880, and the surrounding suburbs. The Federal District contains less 

than one-fourth of the population of the metropolitan area, a proportion that shrinks as the 

suburbs continue to attract industry and residential communities. The city is divided into 

sections that coincide mostly with the traditional barrios (neighbourhoods). The city centre 

is built on the original colonial foundation. It has narrow streets laid out at right angles to 

form a grid pattern. This rectilinear pattern holds for more than 20 square blocks, an area 

that defined the limits of the city until the late 19th century. Since that time, expansion has 

been less planned, and the pattern of streets is less regular. The centre is the site of most 

major financial institutions and corporate headquarters (Bonilla, 2019) 
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6.1.11 New Delhi 

 The city of Delhi consists of two components: Old Delhi, in the north, the historic 

city; and New Delhi, in the south, since 1947 the capital of India, built in the first part of the 

20th century as the capital of British India. One of the country’s largest urban 

agglomerations, Delhi sits astride (but primarily on the west bank of) the Yamuna River, a 

tributary of the Ganges (Ganga) River, about 100 miles (160 km) south of the Himalayas. 

The national capital territory embraces Old and New Delhi and the surrounding metropolitan 

region, as well as adjacent rural areas. The city plan of Delhi is a mixture of old and new 

road patterns. The street network of Old Delhi reflects the defence needs of an earlier era, 

with a few transverse streets leading from one major gate to another. Occasionally a street 

from a subsidiary gate leads directly to the main axes, but most Old Delhi streets tend to be 

irregular in direction, length, and width. Narrow and winding paths, culs-de-sac, alleys, and 

byways form an intricate matrix that renders much of Old Delhi accessible only to pedestrian 

traffic. Conversely, the Civil Lines (residential areas originally built by the British for senior 

officers) in the north and New Delhi in the south embody an element of relative openness, 

characterized by green grass, trees, and a sense of order (Rao, 2018). 

6.1.12 Riyadh 

 Riyadh itself is an amorphous expanse of neighbourhoods and subdivisions bounded 

by wide roads lined with commercial strip development. There are thousands of miles of 

paved roads in Riyadh, including the King Fahd (running north-south) and Mecca (Makkah; 

running east-west) highways, which constitute the two main axes of the city. With its grid 

system of wide thoroughfares and expressways, modern Riyadh was designed as an 

automobile-oriented city. The form and structure of the city has been reinforced by a number 

of large-scale construction projects undertaken in the latter half of the 20th century and in 

the early 21st century, including the establishment of the Diplomatic Quarter, where 

embassies and the offices of international organizations are located, and the redevelopment 

of the Qaṣr Al-Ḥukm (“Justice Palace”) district, which houses most of the central shops 

(Kim, 2018). 

6.1.13 Singapore 

 The city of Singapore is situated in the southern portion of the main island. Over 

time, urbanization has blurred the differences between city and country. Built-up areas now 

cover a large part of the city-state. The older parts of the city have been substantially 

refurbished, especially along the Singapore River but elsewhere as well. The once-common 
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Chinese shop-house, consisting of living quarters above a commercial establishment, 

gradually has been disappearing from the city. Instead, the government’s Housing and 

Development Board (HDB) has relocated commerce into separate districts and has created 

integrated residential communities inhabited by people with a mixture of incomes. Singapore 

has one of the world’s busiest ports in terms of shipping tonnage. The Port of Singapore 

Authority oversees all shipping activity and operates several terminals on the island. The 

island has a well-developed network of roads and highways, but traffic congestion frequently 

is a serious problem (Leinbach, 2020). 

6.1.14 Beijing 

 The traditional core of Beijing essentially consisted of two walled cities (the walls 

no longer stand), the northern inner city and the southern outer city. Beijing has an 

increasingly dense network of highways radiating from the city, which are used by a growing 

number of privately-owned automobiles as well as by trucks and long-distance bus services. 

Beijing’s road transport system, though improving rapidly, is still inadequate and cannot 

keep up with the rapid increase in vehicles, and traffic congestion is often severe. The once-

ubiquitous bicycles and three-wheeled cycle carts continue to be heavily used for short-

distance transport, despite the proliferation of automobiles (Bonavia, 2020). 

6.1.15 Tokyo 

 Tokyo formerly (until 1868) Edo, is a metropolitan complex along the northern and 

western shores of Tokyo Bay, on the Pacific coast of the island of Honshu, central Japan. At 

its centre is the metropolitan prefecture, or metropolis of Tokyo, Japan’s capital and largest 

city. Three prefectures (ken) bordering it—Saitama on the north, Chiba on the east, and 

Kanagawa on the south—may be said to make up the remainder of the complex, but there is 

more than one definition of Greater Tokyo, and large numbers of people live beyond the four 

prefectures and commute to work in the region. 

 Tokyo metropolis is one of three prefecture-level urban administrative units in Japan, 

the other two being Ōsaka and Kyōto. In addition to Tokyo city, the metropolis includes 

numerous industrial and residential suburbs and a large mountainous rural area to the west. 

Tokyo metropolis is a major component of the Tokyo-Yokohama Metropolitan Area as well 

as of the Keihin Industrial Zone. Tokyo is the chief transportation hub for Japan, as well as 

an important international traffic centre. It is served by a dense network of electric railways, 

subways, bus lines, and highways. Tokyo station is the central railroad terminal for all of 

VANA G
KANIA



114 

 

Japan, including the high-speed Shinkansen bullet trains from western Japan (Seidensticker, 

2016). 

6.1.16 Johannesburg 

 One of the youngest of the world’s major cities, Johannesburg was founded in 1886, 

following the discovery of gold. Central Johannesburg, the commercial and financial heart 

of South Africa, is laid out in a rectangular grid pattern that is unchanged from the first city 

survey in 1886. Streets are narrow and cast into shadow by high-rise concrete blocks, 

creating an almost tunnel like effect. Architecturally, the city is a hodgepodge, reflecting 

decades of rapid growth and a singular indifference to historic preservation. Johannesburg 

is a hub for local, national, and international travel. Railroads and multilane freeways 

crisscross the metropolitan area, carrying hundreds of thousands of daily commuters to and 

from outlying suburbs and townships (Campbell, 2020). 

6.1.17 Sydney 

 Located on Australia’s south-eastern coast, Sydney is the country’s largest city and, 

with its magnificent harbour and strategic position, is one of the most important ports in the 

South Pacific. Greater Sydney is spread over a vast area that stretches from the Blue 

Mountains in the west to the Pacific Ocean in the east and from the southern shore of Lake 

Macquarie in the north to south of Botany Bay. Only about one-third of this region is 

classified as urban, but the great bulk of the region’s population lives in the urban area. A 

pattern of suburban sprawl, caused partly by the cheapness of land in earlier days and by the 

determination of ordinary Australians to own their own houses and gardens, has caused 

problems for the authorities responsible for sewerage and transport. The sprawl is also in 

marked contrast to the comparatively small and compact central business district, which is 

crammed into a narrow rocky peninsula between two arms of the harbour within the City of 

Sydney proper (Pringle, 2020) 

6.1.18 Istanbul  

 Last, Istanbul, is the largest city and principal seaport of Turkey. The old walled city 

of Istanbul stands on a triangular peninsula between Europe and Asia. The old city contains 

about 9 square miles (23 square km), but the present municipal boundaries stretch a great 

deal beyond. By long tradition, the waters washing the peninsula are called “the three seas”: 

they are the Golden Horn, the Bosporus, and the Sea of Marmara. The Bosporus is the 

channel connecting the Black Sea to the Mediterranean by way of the Sea of Marmara and 
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the straits of the Dardanelles. The narrow Golden Horn separates old Istanbul to the south 

from the “new” city of Beyoğlu to the north; the broader Bosporus divides European Istanbul 

from the city’s districts on the Asian shore. The Galata and Atatürk bridges cross the Golden 

Horn to Beyoğlu. The separated geographical condition of Istanbul together with insufficient 

road network capacity and narrow access roads have generated constraints of transportation 

system (Ehrlich, 2020). 

6.2 Methodological Approach and Outcomes 

This section introduces the methodological framework, developed to estimate human 

mobility patterns for large urban areas, based on traffic maps. Starting with the three 

fundamental constituents of movement (space, time, and objects), three different foci are 

possible in analysing movement: the first focus on objects (movers, trajectories), the second 

on space (characteristics of location) and the third on time (characteristics of time units in 

terms of objects and space (Andrienko et al., 2011). Here, the analysis concentrates not only 

on objects (human movements depicted through traffic maps) but also on space by pointing 

out locations within the city that appear congestion and further on time through the traffic 

state variation during the day. Specifically, two indicators named as Structural Similarity 

Index (SSIM), SSIM1 and SSIM2, that quantify traffic state alternation for the whole urban 

area were used to produce temporal mobilities patterns while Kernel Density estimation was 

applied for spatio-temporal patterns. Another clustering algorithm is utilized for the 

estimation of congestion patterns. Further elaboration on the terms and their use is provided 

in the dedicated sub-sections following next.  

6.2.1 Quantification of variability in human mobility 

 To capture and monitor the daily variations across cities, image processing 

techniques were applied, as mentioned above. Specifically, a method for measuring the 

similarity between two images, known as the Structural Similarity Index (SSIM), was 

implemented. The SSIM is based on the computation of three terms, namely the luminance 

term l, the contrast term c and the structural term s between two nonnegative image signals 

x, y as follows (Wang et al., 2004). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝑎 ∙ [𝑐(𝑥, 𝑦)]𝛽 ∙ [𝑠(𝑥, 𝑦)]𝛾                                                                           (6.1)                                                    

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1

                                                                                                                       (6.2) 
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𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

                                                                                                                     (6.3) 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
                                                                                                                                 (6.4)                                                                                            

where α>0, β>0 and γ>0 are parameters used to adjust the relative importance of the three 

components, where  𝜇𝑥, 𝜇𝑦, 𝜎𝑥 , 𝜎𝑦  and 𝜎𝑥𝑦  are the local means, standard deviations, and the 

cross-covariance for images  𝑥, 𝑦. The parameters 𝐶1𝐶2, 𝐶3 are included to avoid instability 

when the denominator is very close to zero. The default value for exponents (α, β, γ) is equal 

to one. 

In the case of map images, the similarity measure between two sequential images can 

capture and quantify the variation on mobility for the next time interval, for large urban 

areas. Furthermore, if an initial image is chosen as a baseline (i.e. off-peak hour state of the 

network) the network-wide propagation of traffic states can be monitored and compared 

within the day and across different cities. Thus, two different SSIM indices were used. The 

first named SSIM1 compares image  𝑥 to image  𝑦, according to Eq. (6.5). In that case, 𝑥 

corresponds to the image taken on time interval 𝑡𝑘 and 𝑦 correspond to the image taken on 

time interval 𝑡0 .The 𝑘 variable lay in the range [1 288] for a day’s images while, time 

interval 𝑡0 refers to off-peak hour state of the network. 

SSIM1(imgtk
, imgto

) = [l(imgtk
, imgto

)] ⋅ [c(imgtk
, imgto

)] ⋅ [s(imgtk
, imgto

)]                  ( 6.5)   

 Calculating the SSIM1 index (see Algorithm 4, Appendix A) for all the selected cities 

the dynamic monitor of mobility patterns’ variation, compared to the off-peak hour state of 

the network, can be captured and compared in a quantified way. In this respect, urban 

planners and traffic operators can explore the mobility profile of a city and measure the 

impacts on human mobility due to traffic congestion. By using, an initial image during off-

peak hour as a baseline, the SSIM1 index at each time interval measures the difference on 

the level of mobility, compared to a stable traffic state in a city. Obviously, if image 𝑥 is 

identical to image 𝑦 the index is equal to 1, while if image x differs from y the index is closer 

to 0.  

 Figure 6.1 shows the daily variation of the SSIM1 index across the first nine cities 

of the study area, based on images from Google maps. By definition, a sharp drop in SSIM1 

indicates a completely different traffic state of the network compared to off-peak hours, such 

as in case of a traffic jam, or during peak-hour traffic. Thus, initially, the index values are 

equal to 1 or close to 1, as activity drops at night and the sequential images resemble the 
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baseline image. A decline is observed in the morning peak hours for all the cities ranging 

from 0.95 to 0.7. Paris, Moscow and Istanbul exhibit a more abrupt drop (from 1 to 0.7-0.85) 

compared to the rest cities. Exceptionally, Singapore records the smallest variation at the 

morning peak (SSIM1 equal to 0.94) and a more stable pattern overall. The same stable 

pattern applies to Tokyo, London and Sao Paulo. During the rest of the day, variation 

becomes more stable. A second drop is observed in the evening peak-hours for all the cities 

followed by a rise, while activity drops again during the night hours.  

 Figure 6.2 shows the daily variation of the SSIM1 index across the rest cities of the 

study area. Again, images from Google maps were utilized for the same weekday.  For the 

city of Beijing, images form Baidu maps were used, as Google does not provide online traffic 

coverage for this city. A more stable pattern is observed for the city of Beijing and for 

Singapore where a significant drop is noticed only during the morning and evening peak 

hours. Johannesburg, Buenos Aires and Sydney appear a steeper drop (from 1 to 0.85) 

compared to the other six. A steep incline after the morning peak is observed for the city of 

Toronto (from 0.87 to 0.95, that implies a fast transition of the network to the free-flow 

conditions. Sharp inclines after the morning peak is also detected for the city of Berlin, 

Sydney, Johannesburg, and Buenos Aires. Morning peak for the city of Riyadh is smoother 

compared to other cities but persists more hours. 
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Figure 6.1: SSIM index for the city of (a) Paris, London, Istanbul; (b) Istanbul, New Delhi, Sao 

Paulo; (c) New York, Los Angeles, Tokyo. 

(a) 

(b) 

(c) 
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Figure 6.2: SSIM1 index for the city of (a) Singapore, Sydney, Johannesburg ; (b) Toronto, Berlin, 

Buenos Aires ; (c) Riyadh, Nicosia, Beijing. 

 

(a) 

(b) 

(c) 
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 For comparative reasons, Figure 6.3 and Figure 6.4   show the SSIM1 index for Paris, 

Moscow and Istanbul, estimated based on images from four different online traffic providers 

(Google, Bing, Here, and Yandex), for the same day. A quite different pattern for SSIM1 is 

observed for the same city across the four providers. This can be explained due to the 

different traffic coverage of the network for each provider. Starting with the estimation of 

the SSIM1 based on images from Google maps (Figure 6.3) a similar pattern can be seen for 

the three cities. A sharp drop during the morning peak (from 1 to 0.7) is noticed and then the 

network presents a more stable state for the rest of the day. A second drop is observed in the 

evening peak-hours for all the cities followed by a rise, while activity drops again during the 

night hours.  

 On the contrary, for the rest providers, SSIM1 values for each city presents a different 

rhythm per time interval, especially for Bing maps (Figure 6.4a). Except form morning and 

evening peak hours, smaller peak and drops can be further seen between 09:00 to 18:00. On 

the other hand, Here maps (Figure 6.4b) presents a stable pattern till 5:00 that implies that 

the sequential images are like the base image. Then a steeper drop is observed for the city of 

Paris between 8:00 and 9:00 in the morning. In contrast, Moscow and Istanbul present a 

smoother pattern during the day. Last, according to Yandex maps (Figure 6.4c), congestion 

starts earlier for the city of Paris and Istanbul as a steep drop (from 1 to 0.6) is observed till 

5:00 in the morning. 

Figure 6.3: SSIM1 index for the city of Paris, Moscow and Istanbul from Google maps. 
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Figure 6.4: SSIM1 index for the city of  Paris, Moscow and Istanbul from (a) Bing; (b) Here and 

(c)Yandex maps. 

(a) 

(b) 

(c) 
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To directly compare the selected cities, we plotted the variability of SSIM1 in Figure 6.5.  

 

 

Figure 6.5: Variability of SSIM1 for the selected cities a) Boxplot graph; b) Violin graph 

 Starting with the boxplot (Figure 6.5a) cities can be grouped into three different 

clusters based on the median values. First cluster includes Singapore with the higher median 

value (0.94) while in the second cluster median values range between 0.85-0.95. In the third 

cluster, that contains Paris, Moscow, Tokyo, and Istanbul, median values are lower than 

0.85. As far as the minimum values is concerned Paris, Moscow and Istanbul presented the 

(a) 

(b) 
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lower values. Besides boxplots, we can see a violin graph for the same data (Figure 6.5b). 

The unquestionable advantage of the violin plot over the box plot is that aside from showing 

the basic metrics (median, first and third quartile etc.) it also shows the entire distribution of 

the data. Wider sections of the violin plot represent a higher probability of observations 

taking a given value while the thinner sections correspond to a lower probability. 

Based on the shape of the distributions, we can distinguish two main clusters of cities. 

First cluster includes cities where only one wider symmetric section is observed such as in 

Johannesburg, Moscow, Paris and Tokyo. The second cluster contains cities that appeared 

two or more wider sections such as the city of Nicosia, New Delhi and Sao Paulo. Regarding 

the number of outliers, there are more in the case of Paris, Istanbul and Moscow. 

Next, to quantify human mobility alternation in the diurnal cycle, as reflected in the 

sequence of traffic maps images, a second SSIM2 index was estimated, as follows: 

SSIM2(imgtk+1
, imgtk

) = [l(imgtk+1
, imgtk

)] ⋅ [c(imgtk+1
, imgtk

)] ⋅ [s(imgtk+1
, imgtk

)](6.6)      

The SSIM2 index compares image 𝑥 to image  𝑦, where 𝑥 corresponds to the image taken 

on time interval 𝑡𝑘+1 and 𝑦 to the image taken on time interval  𝑡𝑘  , while k ranges between 

[1 288]. This index can be developed into an enhanced tool for monitoring and understanding 

the mobility profile of any city with online traffic coverage. Historical profiles of this index 

can be used to compare traffic anomalies (steep drops or peaks of the index) and their impact 

on human mobility for the entire city. Figure 6.6 and Figure 6.7 plots the SSIM2 index 

(Algorithm 5, Appendix A) for a typical weekday and for the eighteen cities of the study 

area. It can be said that all cities display a broadly comparable rhythm, common to all 

components of activity, based on the second index. Interestingly, Tokyo seems to differ, as 

a systematic alternation is observed in the sequence of images. Steep drops or peaks in these 

time-series suggest a sharp transition between the mobility patterns at the next time interval, 

thus SSIM2 could detect irregular operations or traffic anomalies. Different timeframes 

(hour, week, month) can be used to compare these temporal mobility patterns among cities. VANA G
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Figure 6.6: SSIM2 index for the city of (a) Paris, London, Istanbul; (b) Istanbul, New Delhi  Sao 

Paulo; (c) New York, Los Angeles, Tokyo. 

(a) 

(b) 

(c) 
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Figure 6.7: SSIM2 index for the city of (a) Singapore, Sydney, Johannesburg ; (b) Toronto, Berlin, 

Buenos Aires ; (c) Riyadh, Nicosia, Beijing. 

 

(a) 

(b) 

(c) 
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To compare the values of SSIM2 estimated from map images from different providers, again 

three cities that have online traffic coverage from Google, Bing, Here, and Yandex were 

utilized, as shown Figure 6.8 and Figure 6.9. Greater alternation between sequential images 

can be seen for Bing and Yandex maps. 

 
 

 
 

Figure 6.8: SSIM2 index for the city of  Paris, Moscow and Istanbul from (a) Google and (b) Bing 

maps. 

(a) 

(b) 
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Figure 6.9: SSIM2 index for the city of  Paris, Moscow and  Istanbul from (a) Here and (b) Yandex 

maps. 

 For comparative analysis, the variability of SSIM2 data for the selected cities is 

illustrated in Figure 6.10 using boxplot and violin plots. Based on the first plot (Figure 6.10a) 

Singapore, Johannesburg and Sydney presented higher median values (over 0.96) while Paris 

the lowest (0.9). Regarding the shape of distribution in Figure 6.10b, regularities are 

observed for all cities, except from the city of Johannesburg. All cities appeared to have two 

(a) 

(b) 
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wider symmetric sections, that contains observations of the SSIM2 during the morning and 

evening peak-hours, accordingly. Paris and Los Angeles presented greater variability for the 

SSIM2, indicating multiple different traffic states of the network during the day. 

 

 

Figure 6.10: Variability of SSIM2 for the selected cities a) Boxplot graph; b) Violin graph 

So far, the temporal dimension of mobility patterns was investigated across cities by 

monitoring the variation of pixels’ percentages per traffic layer and by utilizing the SSIM 

indices. A common rhythm of mobility was observed across the cities during the day while 

(a) 

(b) 
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a closer look at the SSIM2 index revealed a dissimilar pattern for the city of Tokyo. In the 

next sub-section, emphasis will be given on the spatial dimension of mobility. 

6.2.2 Spatio-temporal visualization of human mobility 

 Trying to explore the spatial dimension of human mobility, a method based on Kernel 

Density estimation function was applied. The particular method allows one to estimate the 

intensity of a point pattern and to represent it by means of a smoothed continuous surface 

that represents the variation of density of point events across the study region (Borruso, 

2008). 

The general form of a kernel estimator is given as 

𝑓ℎ̂(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

                                                                                                       (6.7) 

where  𝑥1 , 𝑥2 … … . . 𝑥𝑛  are random samples from an unknown distribution, 𝑛 is the sample 

size, 𝐾(∙) is the kernel smoothing function, and ℎ  is the bandwidth (Bowman and Azzalini, 

1997). 

For each city, Kernel Density estimation was used to plot the intensity of each traffic 

layer, using five-minute time intervals, leading to mesmerized visualization of human 

mobility in the following figures. For easy comparison the corresponding colours of traffic 

layers were also used in the Kernel Density plots while two divergent time intervals were 

chosen, peak and off-peak hour to demonstrate the variation of mobility patterns on the urban 

grid. On the same figures, the peaks of the distributions reveal the inhomogeneity of activity 

in the urban space for a specific time interval while the number of peaks both in x and y axis 

indicates the homogenous centers of activity/mobility. A clear correlation between the four 

Kernel density plots for each city can be identified that resembles the relationship among 

traffic layers as shown in Figure 6.11 till Figure 6.16. For instance, when the percentage of 

green pixels (Light traffic) drops rapidly during the peak hours, a rise of the percentages of 

the rest layers appears at the same time. The vital information that the following figures 

provide stands for the exact location where this phenomenon takes place within the urban 

area. 

 Starting with the spatio-temporal patterns for the city of Paris, London and Moscow 

in Figure 6.11, the shape and the number of peaks for each traffic layer differs between the 

selected intervals and among cities. Although Paris and Moscow have similar road network 

geometry the total peaks of the distributions related to congestion (red and dark red colour) 
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differs, as in Moscow we observe more congested locations. On the other hand, in London, 

we can see one big center of activity (peak of dark red distribution on y-axis) the City of 

London while secondary centers can be found as one moves away from the City.  

Moving to Figure 6.12 it is easy to locate the congested areas within the city of New 

York, Los Angeles, and Tokyo during the peak hour (images on the right). In New York, the 

Kernel Density plots(red-dark) indicate the Business District Center in Manhattan as the 

most congested one and the same applies for the center district of Los Angeles. From the 

other hand, in Tokyo, the area near the port appears a strong activity during the peak hour 

that spreads towards the inner urban area while the shape of peaks for each traffic layer is 

smoothest compared to the rest of the cities.  

Next, results for the cities of Istanbul, New Delhi and Sao Paulo are presented in 

Figure 6.13. Here two distinguished congested locations are observed for the city of Istanbul 

and one for New Delhi. In Sao Paulo, multiple peaks of the Kernel distribution indicate a 

much more congested location apart from the city center. At that point, we should mention 

that the sharp peak of the dark-red Kernel Density plot, on the left images (off-peak interval) 

of the figures appears due to the map’s legend. 

 Afterwards, the spatio-temporal patterns for the city of Singapore, Sydney and 

Johannesburg are presented in Figure 6.14. Starting with the city of Singapore, the peaks of 

the distributions related to congestion (red and dark red colour) on y-axis indicate that the 

north part of the city is the most congested one during the peak hours. On the other hand, in 

Sydney we can see two big centers of activity (peak of dark red distribution on y-axis), one 

on the south part of the city and the other in the centre of the map image. In Johannesburg, 

one distinguished congested location is observed based on the peak of red and dark red 

distribution on x-axis. 

 Moving to Figure 6.15, the shape and the number of peaks for each traffic layer 

differs between the selected intervals and among cities.  For the city of Toronto, different 

parts of the rectangular urban grid face congestion problems during the peak hours. In Berlin, 

the Kernel Density plots (red-dark) indicate the Business District Center as the most 

congested one. On the other hand, in Buenos Aires, multiple peaks of the Kernel distribution 

indicate a much more congested location apart from the city center. 
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(a) 

  

 (b) 

  

(c) 

Figure 6.11:Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) Paris; (b) London; (c) Moscow. 
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(a) 

  

(b) 

   

 (c) 

Figure 6.12:Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) New York; (b) Los Angeles; (c) Tokyo. 
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(a) 

  

(b) 

  

 (c) 

Figure 6.13: Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) Istanbul; (b) New Delhi; (c) Sao Paulo.  
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(a) 

   

(b) 

   

 (c) 

Figure 6.14: Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) Singapore; (b) Sydney; (c) Johannesburg  

VANA G
KANIA



135 

 

  

(a) 

                                                                 

(b) 

    

 (c) 

Figure 6.15: Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) Toronto; (b) Berlin; (c) Buenos Aires 
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(a) 

    

(b)  

    

 (c) 

Figure 6.16: Traffic layers’ spatial distribution during off-peak hours (left) and peak hours (right) for 

(a) Riyadh; (b) Nicosia; (c) Beijing 
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 Closing the Kernel Density plots, results for the cities of Riyadh, Nicosia and Beijing 

are presented in Figure 5.16. Here, several distinguished congested locations are observed 

for the city of Riyadh and two for the city of Beijing, respectively. Regarding the city of 

Nicosia, the selected road network represents the Business District Center outside of the 

Venetian Walls, where both horizontal and vertical streets exceeding their capacity during 

the morning and evening peak hours. 

Previously, from the traffic information analysis (Section 4.4), we retrieved the urban 

space that remained uncongested across the cities through the estimation of the percentage 

of green pixels (light traffic). In this section, we further investigated the spatio-temporal 

dimension of mobility, by applying a spatial separation of the total requested activity and 

using the total pixels’ marginal distributions per traffic layer based on Kernel Density 

estimation. The dynamic monitoring of these marginal distributions enabled a deeper 

understanding of the urban mobility patterns both in time and space, besides the two 

quantified indices (SSIM1 and SSIM2). 

6.3 Dynamic Clustering and Propagation of Congestion 

As a next step, clustering analysis is used to identify propagation of congestion and areas 

with similar congestion patterns within the city. Based on our approach these clusters emerge 

through image segmentation into perceptually meaningful atomic regions, known as 

superpixels (Achanta et al., 2012). The superpixels algorithm applied in the dataset is the 

Simple Linear Iterative Clustering (SLIC). By default, the only parameter of the algorithm 

is the desired number of approximately equally sized superpixels. In our case, this number 

was set to 3500, resulting in a 14x14 pixels grid that corresponds to an urban area equal to 

150m by 150m.  

Figure 6.17 shows the steps followed to produce congestion patterns. The first step 

is the extraction of traffic information as previously described. Here only red and dark red 

traffic layers were used as they indicate heavy traffic and congestion. In the second step, the 

SLIC algorithm (see Algorithm 7, Appendix A) is applied and the initial image (step1) is 

divided into several regions. Although, two main clusters can be easily observed. The first 

one contains grid shape regions while the second consists of uniform regions in both size 

and shape. The grid shape area emerges due to the lack of traffic information (black pixels) 

while the shape changes in areas that pixels or their adjacent pixels are colored. In the next 

step, the color of each superpixel region is chosen according to pixel’s maximum RGB value. 

Thus, the existence of dark red and red color dominates over black pixels and colors the 
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superpixel respectively. Last, in step 4, a combination of images in steps 2 and 3 gives a 

better visualization of the congestion patterns. 

 

Figure 6.17: Steps followed to create congestion patterns: (Step 1) Heavy traffic layers isolation; 

(Step 2) Image segmentation to meaningful atomic regions by clustering pixels; (Step 3) Setting the 

color of each superpixel region; (Step 4) Congestion patterns visualization. 

This transition from the linear perspective to regions/clusters with a similar level of 

congestion provides useful insights regarding the propagation of congestion both in space 

and time. In the following figures, we can see the variation of these patterns during the 

morning peak hours. Figure 6.18 and Figure 6.19 show the spatiotemporal variation of 

congestion for the city of Moscow(left) and Los Angeles(right), respectively. By comparing 

the two cities we can see the differences in propagation of congestion in space. In Moscow, 

the red clusters are scattered, and their number rapidly increases as we move to the next time 

interval whereas in Los Angeles congestion starts from the center and spread to the periphery 

during the morning peak hour.  
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Figure 6.18: Spatio-temporal congestion patterns for Moscow (left) and  Istanbul (right) during 

morning peak hours (07:00-08:00 a.m.). 
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Figure 6.19: Spatio-temporal congestion patterns for New York (left) and Los Angeles (right) during 

morning peak hours (07:00-08:00 a.m.). 

  

VANA G
KANIA



141 

 

Regarding the rest of the cities (Appendix E), the monitoring of the sequential images (Step 

4) revealed similar congestion patterns to Los Angeles for the city of London and Tokyo 

where congestion starts from the city of London and Tokyo port, respectively and moves in 

the inner of the city. Paris’ congestion pattern resembles Moscow’s as congestion clusters 

were scattered in space. On the contrary, in New York, the congestion spread from the 

borough of Queens, Bronx, and Brooklyn towards the core of New York, Manhattan for the 

same time intervals. 

6.4 Chapter Summary 

In the current chapter the temporal variation of mobility patterns was firstly analysed 

revealing a broadly comparable rhythm across the cities. As a next step, emphasis was given 

to the spatiotemporal patterns. Kernel density plots were applied to investigate the 

homogeneity of activity within the city. Results showed that the selected cities share a 

common rhythm of mobility during the day while a closer look at the proposed indices 

revealed a dissimilar pattern for the city of Tokyo. The spatial repartition of mobility among 

the eighteen cities revealed a concentric organization, with strong activity level in the city 

center for most of the selected cities. Furthermore, clustering analysis was employed to 

identify propagation of congestion and areas with similar congestion patterns within the city. 

The transition from the linear perspective to regions/clusters with a similar level of 

congestion provided useful insights regarding the propagation of congestion both in space 

and time. Comparing the cities, Moscow and Paris congestion patterns were scattered and 

their number rapidly increased as moving to the next time interval whereas in Los Angeles, 

London and Tokyo the congestion started from the center and spread to the periphery during 

the morning peak hour. On the other hand, New York appeared a differential congestion 

pattern as strong activity was moving from the periphery boroughs to the core of New York, 

Manhattan. 
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Chapter 7 : Conclusions and Future Directions 

7.1 Conclusions 

This thesis has presented a new method to analyse and visualize urban dynamics, utilizing 

aggregated information from online traffic maps. As, it was mentioned in the literature 

overview in Chapter 2, while researchers have explored a wide variety of different mobility 

data, most of the studies focus on disaggregated data from traffic surveillance systems or 

mobile phones that are not available or free to all interested parties. In the light of other data 

sources limitation (access, cost, bias, coverage) to provide a network-level perspective, the 

capturing of macroscopic phenomena utilizing online traffic maps’ information worldwide 

has great value especially in the era of Big Data, both for traffic monitoring, control and 

management of urban resources. The significance of this method can be summarized in the 

synthetic nature of mobility data that online maps depict, and in the extension of the 

application from one limited spatial entity (in general a city) to global coverage, given its 

widespread availability. 

 As, online traffic maps display condensed traffic information for the sake of 

readability, open research questions remain to be answered regarding the reduction of 

information that is performed in this display process. As it was demonstrated in Chapter 5, 

valid traffic characteristics, such as the MFD properties, still possess, that means that the 

data retrieved from online maps can be further utilised in urban mobility modeling especially 

in the scale of large and complex urban areas.  

 Specifically, the proposed method was based on a traffic information extraction 

module for realistic networks, where traffic layers are captured by straightforward image 

processing techniques and processed as categorical type of data, through a back-engineering 

approach. Fundamental traffic relationships are then used, connecting microscopic 

information to macroscopic phenomena. To investigate the quality of traffic information 

depicted in online dynamic traffic maps, the estimation and the properties of MFD were 

used. The application of the proposed methodological framework was tested on commercial 

freely available online maps from different providers and for different urban road networks. 

As a next step, in Chapter 6 data retained from maps were used to analyse and visualize 

human mobility patterns (temporal, Spatio-temporal) for the selected cities. 

 Ultimately, this work makes the following specific contributions related to the 

research objectives formulated in Chapter 1: 
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a. To gain a deep understanding of online traffic maps by investigating fundamental 

traffic flow characteristics and relationships that can be extracted by the aggregated 

type of traffic information used in them 

Initially, a deeper understanding of aggregated network traffic displayed on online dynamic 

traffic maps was achieved by investigating fundamental traffic flow characteristics and 

relationships that can be extracted by the aggregated type of traffic information used in them. 

To accomplish that, a representative study area and a vast dataset of numerous raster images 

of maps was utilised, presented in Chapter 4 while fundamental characteristics of traffic 

flow and the relationships between these parameters were introduced in Chapter 3. In 

Chapter 5 a  thorough investigation about the value of spatiotemporal information that it is 

retained in the abstracted depiction of traffic conditions has been conducted, revealing that 

the fundamental macroscopic properties still hold even in cases of significant information 

reduction like the representation scheme adopted in online traffic maps. Not only the shapes 

and the magnitude of scale among the traffic variables are consistent but also valuable 

additional information can be extracted from traffic maps (like vehicles concentration, 

network heterogeneity, etc.) and delicate phenomena can be captured (like traffic hysteresis). 

b. To form the mathematical connection between the discretized/digitized map images 

on seamless pixels and the aggregated traffic variables across entire urban areas,  

Initially, in Chapter 4 a connection between the number of pixels depicted in a raster image 

for the same zoom level, and the corresponding real linear distance on the road network, was 

achieved by forming an equation among the scale of the map, the number of pixels 

corresponding to the total number of pixels of the scale bar of the map and the real distance. 

Then this equation was applied on the dataset, and the urban coverage through maps was 

quantified by estimating the total road length in kilometres (Km) for each road network. In 

Chapter 5 a mathematical connection between the average network flow, the average 

network speed, the average network density, and the number of pixels that belong to 

distinctive operating class of online traffic maps was established. Considering that, typical 

online maps offer information about links’ average speed per coloured segment (complete 

links or link’s stretches), the estimation of the network average speed  𝑈𝑡 at time interval  𝑡 

was feasible by calculating the average speed form all the coloured links in the network at 

each time interval. Regarding the representative value of average speed  (𝑈𝑐𝑖) according to 

colour c, ground truth data form loop detectors were used to assign representative values of 

average speed per traffic layer through empirical calibration, as described in Chapter 5. 
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Then a parametric approach was followed based on the fundamental linear speed-density 

relation proposed by Greenshields (Greenshields, 1935), to estimate the network’s average 

density. A nonlinear speed-density relationship based on Greenberg model was also used for 

comparison, resulting to significantly lower values of accumulation for the same networks. 

c. To describe urban mobility through quantified indices and models that can be 

applied to every city that has online traffic coverage, 

In order to capture and monitor the daily time variations of mobility across cities, image 

processing techniques were applied and demonstrated for the whole dataset as presented in 

Chapter 6. Specifically, a method for measuring the similarity between two images, known 

as the Structural Similarity Index (SSIM), was implemented utilizing two different indices 

SSIM1 and SSIM2. The SSIM1 index at each time interval measures the difference on the 

level of mobility, compared to a stable traffic state in a city and enables the dynamic monitor 

of mobility patterns’ variation, compared to the off-peak hour state of the network. In this 

respect, urban planners and traffic operators can explore the mobility profile of a city and 

measure the impacts on human mobility due to traffic congestion. By using, an initial image 

during off-peak hour as a baseline, the SSIM1 index at each time interval measures the 

difference on the level of mobility, compared to a stable traffic state in a city. The second 

index, SSIM2 compares image 𝑥 to image  𝑦, where 𝑥 corresponds to the image taken on 

time interval 𝑡𝑘+1 and 𝑦 to the image taken on time interval  𝑡𝑘  . This index can be developed 

into an enhanced tool for monitoring as historical profiles of this index can be used to 

compare traffic anomalies (steep drops or peaks of the index) and their impact on human 

mobility for the entire city. 

Emphasis was also given to the spatiotemporal patterns. Kernel density plots were 

applied to investigate the homogeneity of activity within the city. Results showed that the 

selected cities share a common rhythm of mobility during the day while a closer look at the 

proposed indices revealed a dissimilar pattern for the city of Tokyo. Furthermore, clustering 

analysis was employed to identify propagation of congestion and areas with similar 

congestion patterns within the city. The transition from the linear perspective to 

regions/clusters with a similar level of congestion provided useful insights regarding the 

propagation of congestion both in space and time. 

d. To establish a concrete connection between human mobility research and real-time 

traffic information. 
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Endeavours to analyse human mobility are mired by their volume, structure, completeness, 

noise and other pitfalls associated with the use of big data sets. As such, high levels of 

aggregation are generally required to support planning and decision-making. Thus, online 

traffic maps that wrangle raw data into meaningful information are a valuable source that 

should be further utilised and explored in human mobility research. The proposed method in 

this thesis paved the way towards this respect. 

7.2 Future Directions 

This work is just a first step towards a goal of creating a new set of tools for urban operators, 

transport planners and policy makers to monitor complex urban issues based on information 

retrieved from online traffic maps. 

 Regarding the validity of the proposed method, this was tested by comparing the 

estimated MFDs to ground truth MFD obtained using empirical data from loop detectors at 

a small scale and only for one city. Thus, it is crucial, as future work to expand the validation 

testing both at different levels of scales and for different urban networks, utilizing available 

empirical data or measurements. 

 Overall, directions for further research can be organised into three main categories: 

i. Acquisition and evaluation of the rest information that online maps offer 

In Chapter 4 we presented a method to extract dynamic traffic information from map images 

by distinguishing and then capturing the traffic layers from the rest of the map. Although, 

online traffic maps, provide further information regarding typical traffic state per day. The 

acquisition of this information for investigation is highly recommended for comparative 

reasons, as it can be used as a baseline to identify non-recurring incidents or shock-events 

that temporarily reduce road capacity in an urban area. Another valuable information that 

online traffic maps offers, stands for travel time between a predefined set of Origin-

Destinations (O-D) locations. These travel times could be used as input data in order to 

determine travel time distributions (not individual values/predictions) on a rolling horizon, 

based on a method presented in (Dimitriou and Gkania, 2016) for large urban-scale 

networks. 

ii. Connection of visual analytics of human mobility with traffic phenomena 

In Chapter 5 the validity of the simplified/coded information that dynamic traffic maps 

provide was investigated in terms of traffic operational characteristics. Particularly, the 

estimation and the investigation of the Macroscopic Fundamental Diagram-MFD properties 
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were performed utilizing the Greenshields and Greenberg model. Although, different 

macroscopic models could also be tested, such as the Two-fluid model, that quantifies traffic 

performance on a network by studying the interaction between moving and stopped vehicles 

in the traffic stream. 

 In Chapter 6 the daily variation of mobility was quantified using computer vision 

and image processing techniques. The estimated indices and the spatio-temporal patterns of 

mobility could be further connected with specific traffic phenomena such as traffic 

breakdown, hysteresis, stop-and-go traffic and synchronized flow. 

iii. Application of machine learning methods  

As machine learning is a class of methods for automatically creating models from data, 

images from online traffic maps could be utilized for classification of mobility patterns in 

an urban area and for prediction of congested areas within the cities. 

 Last, it could be said that, online traffic maps constitute a new set of lenses, providing 

tremendous opportunities to examine urban mobility dynamics. Numerous visualizations 

tools and models could be used apart from Kernel Densities diagrams or the SSIM indices, 

and SLIC algorithm proposed in this thesis for classification, prediction or monitoring of 

urban dynamics. 
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Algorithm 1: Screen capture  1 

% % Google maps -screen-capture for one city  2 

 3 

for k=1:288 4 

% %  1.Paris    5 

% Define a particular map in your browser (copy the link): 6 

url = 7 
'https://www.google.com/maps/place/Paris,+France/@48.8529646,2.3024943,118 
316m/data=!3m1!1e3!4m5!3m4!1s0x47e66e1f06e2b70f:0x40b82c3688c9460!8m2!3d49 
8.856614!4d2.3522219!5m1!1e1'; 10 

% Open that map from MATLAB 11 

web(url,'-browser'); 12 

% Hold on 20 seconds, in order to be sure that it has been loaded properly 13 

pause(20) 14 

% Make a screen-capture as an image (img) 15 

img = screencapture(0, 'Position', [0 0 1920 1080]); 16 

filename='C:\Users\vagkania01\Documents\MATLAB\screen_capture_google\Pari17 
s_google'; 18 

NewImage1 = sprintf('Paris_G_%03d.png', k); 19 

fullFileName = fullfile(filename, NewImage1); 20 

imwrite(img,fullFileName); 21 

 22 

end 23 

 24 

Algorithm 2: Crop image  25 

 26 

% % Crop image  27 

% Specify the folder where the files live. 28 

myFolder = 'E:\MATLAB\TRB_2017_Paper2\Google\01.Paris\2017-05-31'; 29 

% Check to make sure that folder actually exists.  Warn user if it doesn't. 30 

if ~isdir(myFolder) 31 

  errorMessage = sprintf('Error: The following folder does not exist:\n%s', 32 
myFolder); 33 

  uiwait(warndlg(errorMessage)); 34 

  return; 35 

end 36 

  37 

% Get a list of all files in the folder with the desired file name pattern. 38 

filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 39 
you need. 40 

theFiles = dir(filePattern); 41 

for k = 1 :length(theFiles) 42 
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  baseFileName = theFiles(k).name; 43 

  fullFileName = fullfile(myFolder, baseFileName); 44 

  fprintf(1, 'Now reading %s\n', fullFileName); 45 

  % Now do whatever you want with this file name, 46 

  % such as reading it in as an image array with imread() 47 

   48 

imageArray= imread(fullFileName);  49 

croppedImage= imcrop(imageArray,[448 70 1756-448 1027-70]); 50 

imshow(croppedImage); 51 

% drawnow; % Force display to update immediately. 52 

filename2='E:\MATLAB\TRB_2017_Paper2\Google\01.Paris\C_G'; 53 

croppedImage= sprintf('P_G_%03d.png', k); 54 

fullFileName2 = fullfile(filename2, croppedImage); 55 

  56 

set(gcf,'PaperPositionMode','auto') 57 

print(fullFileName2,'-dpng','-r0') 58 

  59 

end 60 

  61 

 62 

Algorithm 3: Separate network and count pixels per traffic layer per imag 63 

%% Seperate road network 64 

% % Specify the folder where the files live. 65 

myFolder = 'E:\MATLAB\TRB_2017_Paper2\Google\01.Paris\C_G'; 66 

% Check to make sure that folder actually exists.  Warn user if it doesn't. 67 

if ~isdir(myFolder) 68 

  errorMessage = sprintf('Error: The following folder does not exist:\n%s', 69 
myFolder); 70 

  uiwait(warndlg(errorMessage)); 71 

  return; 72 

end 73 

% Get a list of all files in the folder with the desired file name pattern. 74 

filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 75 
you need. 76 

theFiles = dir(filePattern); 77 

for k = 1:length(theFiles) 78 

  baseFileName = theFiles(k).name; 79 

  fullFileName = fullfile(myFolder, baseFileName); 80 

  fprintf(1, 'Now reading %s\n', fullFileName);  81 

  % Read an image 82 

pic1= imread(fullFileName);  83 
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% % green 84 

% Define thresholds for channel 1 based on histogram settings 85 

channel1Min = 118.000; 86 

channel1Max = 132.000; 87 

  88 

% Define thresholds for channel 2 based on histogram settings 89 

channel2Min = 153.000; 90 

channel2Max = 202.000; 91 

  92 

% Define thresholds for channel 3 based on histogram settings 93 

channel3Min = 80.000; 94 

channel3Max = 86.000; 95 

  96 

  97 

for mm=1:size(pic1,1) 98 

    99 

    for nn=1:size(pic1,2) 100 

        if pic1(mm,nn,1)<channel1Min || pic1(mm,nn,1)>channel1Max || 101 
pic1(mm,nn,2)<channel2Min || pic1(mm,nn,2)>channel2Max || 102 
pic1(mm,nn,3)<channel3Min  || pic1(mm,nn,3)>channel3Max 103 

            gsc=0*pic1(mm,nn,1)+0*pic1(mm,nn,2)+0*pic1(mm,nn,3); 104 

            pic1(mm,nn,:)=[gsc gsc gsc]; 105 

             106 

        end 107 

    end 108 

end 109 

% % Count green pixels 110 

A=pic1; 111 

[sz1 sz2 sz3]=size(A) 112 

N=256; 113 

ColorList={'Green' 'Yellow' 'Red'}; 114 

gr=0:1/(N-1):1;    115 

% checking how many different values pixels take in this picture 116 

P=unique(impixel(A,sz2,sz1)); 117 

% filtering reds 118 

cMap=zeros(N,3);cMap(:,1)=gr; 119 

figure(2);hr=imshow(ind2rgb(A(:,:,1),cMap));title(ColorList{1}); 120 

% accessing pixel values in field CData of image handle hr, for black 121 

R=hr.CData; 122 

R1=R(:,:,1);R2=R(:,:,2);R3=R(:,:,3); 123 

amount_black_pixels=numel(find(R1==0 & R2==0 & R3==0)); 124 

fprintf('\n amount black pixels: %s \n', num2str(amount_black_pixels)); 125 
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amount_green_pixels=(sz1*sz2)-amount_black_pixels; 126 

fprintf('\n amount green pixels: %s \n', num2str(amount_green_pixels)); 127 

amount_green_pixels_all(k,1)=amount_green_pixels(1,1); 128 

% % yellow 129 

pic2= imread(fullFileName);  130 

% Define thresholds for channel 1 based on histogram settings 131 

channel1Min = 187.000; 132 

channel1Max = 240.000; 133 

  134 

% Define thresholds for channel 2 based on histogram settings 135 

channel2Min = 110.000; 136 

channel2Max = 143.000; 137 

  138 

% Define thresholds for channel 3 based on histogram settings 139 

channel3Min = 0.000; 140 

channel3Max = 67.000; 141 

  142 

for mm=1:size(pic2,1) 143 

    144 

    for nn=1:size(pic2,2) 145 

        if pic2(mm,nn,1)<channel1Min || pic2(mm,nn,1)>channel1Max || 146 
pic2(mm,nn,2)<channel2Min || pic2(mm,nn,2)>channel2Max || 147 
pic2(mm,nn,3)<channel3Min  || pic2(mm,nn,3)>channel3Max 148 

            gsc=0*pic1(mm,nn,1)+0*pic1(mm,nn,2)+0*pic1(mm,nn,3); 149 

            pic2(mm,nn,:)=[gsc gsc gsc]; 150 

             151 

        end 152 

    end 153 

end 154 

% % Count yellow pixels 155 

A=pic2; 156 

[sz1 sz2 sz3]=size(A) 157 

N=256; 158 

ColorList={'Green' 'Yellow' 'Red'}; 159 

gr=0:1/(N-1):1;    160 

% checking how many different values pixels take in this picture 161 

P=unique(impixel(A,sz2,sz1)); 162 

% filtering reds 163 

cMap=zeros(N,3);cMap(:,1)=gr; 164 

figure(2);hr=imshow(ind2rgb(A(:,:,1),cMap));title(ColorList{2}); 165 

% accessing pixel values in field CData of image handle hr, for black 166 

R=hr.CData; 167 
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R1=R(:,:,1);R2=R(:,:,2);R3=R(:,:,3); 168 

amount_black_pixels=numel(find(R1==0 & R2==0 & R3==0)); 169 

fprintf('\n amount black pixels: %s \n', num2str(amount_black_pixels)); 170 

amount_yellow_pixels=(sz1*sz2)-amount_black_pixels; 171 

fprintf('\n amount yellow pixels: %s \n', num2str(amount_yellow_pixels)); 172 

amount_yellow_pixels_all(k,1)=amount_yellow_pixels(1,1); 173 

% % orange 174 

pic3= imread(fullFileName);  175 

% Define thresholds for channel 1 based on histogram settings 176 

channel1Min = 163.000; 177 

channel1Max = 255.000; 178 

  179 

% Define thresholds for channel 2 based on histogram settings 180 

channel2Min = 0.000; 181 

channel2Max = 45.000; 182 

  183 

% Define thresholds for channel 3 based on histogram settings 184 

channel3Min = 0.000; 185 

channel3Max = 255.000; 186 

  187 

for mm=1:size(pic3,1) 188 

    189 

    for nn=1:size(pic3,2) 190 

        if pic3(mm,nn,1)<channel1Min || pic3(mm,nn,1)>channel1Max || 191 
pic3(mm,nn,2)<channel2Min || pic3(mm,nn,2)>channel2Max || 192 
pic3(mm,nn,3)<channel3Min  || pic3(mm,nn,3)>channel3Max 193 

           gsc=0*pic1(mm,nn,1)+0*pic1(mm,nn,2)+0*pic1(mm,nn,3); 194 

            pic3(mm,nn,:)=[gsc gsc gsc]; 195 

             196 

        end 197 

    end 198 

end 199 

% % Count orange pixels 200 

A=pic3; 201 

[sz1 sz2 sz3]=size(A) 202 

N=256; 203 

ColorList={'Red' 'Green' 'Blue'}; 204 

gr=0:1/(N-1):1;    205 

% checking how many different values pixels take in this picture 206 

P=unique(impixel(A,sz2,sz1)); 207 

% filtering reds 208 

cMap=zeros(N,3);cMap(:,1)=gr; 209 
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figure(2);hr=imshow(ind2rgb(A(:,:,1),cMap));title(ColorList{1}); 210 

% accessing pixel values in field CData of image handle hr, for black 211 

R=hr.CData; 212 

R1=R(:,:,1);R2=R(:,:,2);R3=R(:,:,3); 213 

amount_black_pixels=numel(find(R1==0 & R2==0 & R3==0)); 214 

fprintf('\n amount black pixels: %s \n', num2str(amount_black_pixels)); 215 

amount_orange_pixels=(sz1*sz2)-amount_black_pixels; 216 

fprintf('\n amount orange pixels: %s \n', num2str(amount_orange_pixels)); 217 

amount_orange_pixels_all(k,1)=amount_orange_pixels(1,1); 218 

% % red 219 

pic4= imread(fullFileName);  220 

% Define thresholds for channel 1 based on histogram settings 221 

channel1Min = 136.000; 222 

channel1Max = 158.000; 223 

  224 

% Define thresholds for channel 2 based on histogram settings 225 

channel2Min = 19.000; 226 

channel2Max = 35.000; 227 

  228 

% Define thresholds for channel 3 based on histogram settings 229 

channel3Min = 19.000; 230 

channel3Max = 36.000; 231 

  232 

for mm=1:size(pic4,1) 233 

    234 

    for nn=1:size(pic4,2) 235 

        if pic4(mm,nn,1)<channel1Min || pic4(mm,nn,1)>channel1Max || 236 
pic4(mm,nn,2)<channel2Min || pic4(mm,nn,2)>channel2Max || 237 
pic4(mm,nn,3)<channel3Min  || pic4(mm,nn,3)>channel3Max 238 

           gsc=255*pic1(mm,nn,1)+255*pic1(mm,nn,2)+255*pic1(mm,nn,3); 239 

            pic4(mm,nn,:)=[gsc gsc gsc]; 240 

             241 

        end 242 

    end 243 

end 244 

% % Count red pixels 245 

A=pic4; 246 

[sz1 sz2 sz3]=size(A) 247 

N=256; 248 

ColorList={'Green' 'Yellow' 'Red'}; 249 

gr=0:1/(N-1):1;    250 

% checking how many different values pixels take in this picture 251 
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P=unique(impixel(A,sz2,sz1)); 252 

% filtering reds 253 

cMap=zeros(N,3);cMap(:,1)=gr; 254 

figure(2);hr=imshow(ind2rgb(A(:,:,1),cMap));title(ColorList{2}); 255 

% accessing pixel values in field CData of image handle hr, for black 256 

R=hr.CData; 257 

R1=R(:,:,1);R2=R(:,:,2);R3=R(:,:,3); 258 

amount_black_pixels=numel(find(R1==0 & R2==0 & R3==0)); 259 

fprintf('\n amount black pixels: %s \n', num2str(amount_black_pixels)); 260 

amount_red_pixels=(sz1*sz2)-amount_black_pixels; 261 

fprintf('\n amount red pixels: %s \n', num2str(amount_red_pixels)); 262 

amount_red_pixels_all(k,1)=amount_red_pixels(1,1); 263 

  264 

pic=[pic1+pic2+pic3+pic4]; 265 

imshow(pic); 266 

drawnow; % Force display to update immediately. 267 

filename2='E:\MATLAB\TRB_2017_Paper2\Google\01.Paris\N_G'; 268 

pic = sprintf('N_G_01_%03d.png', k); 269 

fullFileName2 = fullfile(filename2,pic); 270 

set(gcf,'PaperPositionMode','auto') 271 

print(fullFileName2,'-dpng','-r0') 272 

end 273 

Pixels_01=[amount_green_pixels_all amount_yellow_pixels_all 274 
amount_orange_pixels_all amount_red_pixels_all]; 275 

save('Pixels_01.mat', 'Pixels_01'); 276 

close all 277 

clear all 278 

 279 

Algorithm 4: SSIM1 for one city 280 

%% Specify the folder where the files live. 281 
myFolder = 'E:\Google\01.Paris\N_G'; 282 
% Check to make sure that folder actually exists.  Warn user if it doesn't. 283 
if ~isdir(myFolder) 284 
  errorMessage = sprintf('Error: The following folder does not exist:\n%s', 285 
myFolder); 286 
  uiwait(warndlg(errorMessage)); 287 
  return; 288 
end 289 
% Get a list of all files in the folder with the desired file name pattern. 290 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 291 
you need. 292 
theFiles = dir(filePattern); 293 
pic0=N_G_01_001; 294 
Ast01= zeros(300,1); 295 
for k = 1: length(theFiles) 296 
  baseFileName = theFiles(k).name; 297 
  fullFileName = fullfile(myFolder, baseFileName); 298 
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  fprintf(1, 'Now reading %s\n', fullFileName);  299 
  % Read an image 300 
pic1= imread(fullFileName);  301 
% Me ref tin prwti eikona  302 
  303 
Ast01(k,1) = ssim(pic1,pic0); 304 
  305 
 end 306 

Algorithm 5: SSIM2 for one city 307 

%% Specify the folder where the files live. 308 
myFolder = 'E:\Google\01.Paris\N_G'; 309 
% Check to make sure that folder actually exists.  Warn user if it 310 
doesn't. 311 
if ~isdir(myFolder) 312 
  errorMessage = sprintf('Error: The following folder does not 313 
exist:\n%s', myFolder); 314 
  uiwait(warndlg(errorMessage)); 315 
  return; 316 
end 317 
% Get a list of all files in the folder with the desired file name 318 
pattern. 319 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 320 
you need. 321 
theFiles = dir(filePattern); 322 
Ast01=zeros(300,1); 323 
for k = 2:length(theFiles) 324 
  baseFileName = theFiles(k-1).name; 325 
  fullFileName = fullfile(myFolder, baseFileName); 326 
  fprintf(1, 'Now reading %s\n', fullFileName);  327 
  pic0=imread(fullFileName);  328 
  baseFileName = theFiles(k).name; 329 
  fullFileName = fullfile(myFolder, baseFileName); 330 
  fprintf(1, 'Now reading %s\n', fullFileName); 331 
  pic1= imread(fullFileName);  332 
% Me ref tin proigoumeni eikona  333 
  334 
Ast01(k-1,1)=ssim(pic1,pic0); 335 
 end 336 

 337 

Algorithm 6: Kernel density estimation for one city 338 

 339 
% Google Scatter Hist 340 
  341 
%%  Green 342 
% Specify the folder where the files live. 343 
myFolder = 'E:\TRB_2017_Paper2\Google\01.Paris\N_G'; 344 
% Check to make sure that folder actually exists.  Warn user if it 345 
doesn't. 346 
if ~isdir(myFolder) 347 
  errorMessage = sprintf('Error: The following folder does not 348 
exist:\n%s', myFolder); 349 
  uiwait(warndlg(errorMessage)); 350 
  return; 351 
end 352 
% Get a list of all files in the folder with the desired file name 353 
pattern. 354 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 355 
you need. 356 
theFiles = dir(filePattern); 357 
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  358 
for r = 1:length(theFiles) 359 
  baseFileName = theFiles(r).name; 360 
  fullFileName = fullfile(myFolder, baseFileName); 361 
  fprintf(1, 'Now reading %s\n', fullFileName); 362 
  % Now do whatever you want with this file name, 363 
  % such as reading it in as an image array with imread() 364 
  365 
pic2= imread(fullFileName);  366 
% Define thresholds for channel 1 based on histogram settings 367 
channel1Min = 118.000; 368 
channel1Max = 132.000; 369 
  370 
% Define thresholds for channel 2 based on histogram settings 371 
channel2Min = 153.000; 372 
channel2Max = 202.000; 373 
  374 
% Define thresholds for channel 3 based on histogram settings 375 
channel3Min = 80.000; 376 
channel3Max = 86.000; 377 
  378 
Fsh=zeros(10,2); 379 
k=0; 380 
  381 
for i=1:size(pic2,1) 382 
    for j=1:size(pic2,2)   383 
     384 
  385 
if pic2(i,j,1)>=channel1Min && pic2(i,j,1)<=channel1Max && 386 
pic2(i,j,2)>=channel2Min && pic2(i,j,2)<=channel2Max && 387 
pic2(i,j,3)>=channel3Min  && pic2(i,j,3)<=channel3Max         388 
            k=k+1; 389 
            Fsh(k,:)=[i,j]; 390 
     391 
end 392 
    end 393 
end 394 
  395 
  396 
  397 
% Create scatterhist 398 
scatterhist(Fsh(:,2),Fsh(:,1),'Location','NorthEast', 399 
'LineWidth',[1.5,1.5,1.5],'Kernel','on','Color',[0.52 0.79 400 
0.31],'Marker','.','MarkerSize',[0.01,0.01,0.01]) 401 
  402 
xlim([0 873]) 403 
ylim([0 639]) 404 
  405 
set(gca,'FontName', 'Times New Roman') 406 
set(gca,'FontSize',1) 407 
set(gcf,'color','k'); %%% change 408 
set(gca,'color','none') 409 
set(gca,'xtick',[],'ytick',[]) 410 
  411 
% Save new image 412 
filename2='E:\TRB_2017_Paper2\Google\01.Paris\N_G_SG'; 413 
Image= sprintf('N_G_SG_01_%03d.png',r); 414 
fullFileName2 = fullfile(filename2, Image); 415 
set(gcf,'inverthardcopy','off'); %%% change 416 
set(gcf,'color','k')  %%% change 417 
saveas(gcf,fullFileName2); %%% change 418 
  419 
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end 420 
  421 
%% Orange 422 
  423 
% Specify the folder where the files live. 424 
myFolder = 'E:\TRB_2017_Paper2\Google\01.Paris\N_G'; 425 
% Check to make sure that folder actually exists.  Warn user if it 426 
doesn't. 427 
if ~isdir(myFolder) 428 
  errorMessage = sprintf('Error: The following folder does not 429 
exist:\n%s', myFolder); 430 
  uiwait(warndlg(errorMessage)); 431 
  return; 432 
end 433 
% Get a list of all files in the folder with the desired file name 434 
pattern. 435 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 436 
you need. 437 
theFiles = dir(filePattern); 438 
  439 
for r = 1:length(theFiles) 440 
  baseFileName = theFiles(r).name; 441 
  fullFileName = fullfile(myFolder, baseFileName); 442 
  fprintf(1, 'Now reading %s\n', fullFileName); 443 
  % Now do whatever you want with this file name, 444 
  % such as reading it in as an image array with imread() 445 
  446 
pic2= imread(fullFileName);  447 
% Define thresholds for channel 1 based on histogram settings 448 
channel1Min = 187.000; 449 
channel1Max = 240.000; 450 
  451 
% Define thresholds for channel 2 based on histogram settings 452 
channel2Min = 110.000; 453 
channel2Max = 143.000; 454 
  455 
% Define thresholds for channel 3 based on histogram settings 456 
channel3Min = 0.000; 457 
channel3Max = 67.000; 458 
Fsh=zeros(10,2); 459 
k=0; 460 
  461 
for i=1:639 462 
    for j=1:873    463 
     464 
  465 
if pic2(i,j,1)>=channel1Min && pic2(i,j,1)<=channel1Max && 466 
pic2(i,j,2)>=channel2Min && pic2(i,j,2)<=channel2Max && 467 
pic2(i,j,3)>=channel3Min  && pic2(i,j,3)<=channel3Max         468 
            k=k+1; 469 
            Fsh(k,:)=[i,j]; 470 
             471 
end 472 
    end 473 
end 474 
  475 
% Create scatterhist 476 
scatterhist(Fsh(:,2),Fsh(:,1),'Location','NorthEast','LineWidth',[1.5,1.5477 
,1.5],'Kernel','on','Color',[0.94  0.49 478 
0.01],'Marker','.','MarkerSize',[0.01,0.01,0.01]) 479 
 480 
xlim([0 873]) 481 
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ylim([0 639]) 482 
  483 
set(gca,'FontName', 'Times New Roman') 484 
set(gca,'FontSize', 1) 485 
set(gcf,'color','k'); 486 
set(gca,'color','none') 487 
set(gca,'xtick',[],'ytick',[]) 488 
  489 
% Save new image 490 
filename2='E:\TRB_2017_Paper2\Google\01.Paris\N_G_SO'; 491 
Image= sprintf('N_G_SO_01_%03d.png',r); 492 
fullFileName2 = fullfile(filename2, Image); 493 
set(gcf,'inverthardcopy','off');  494 
set(gcf,'color','k') 495 
saveas(gcf,fullFileName2); 496 
end 497 
  498 
%% Red 499 
  500 
% Specify the folder where the files live. 501 
myFolder = 'E:\TRB_2017_Paper2\Google\01.Paris\N_G'; 502 
% Check to make sure that folder actually exists.  Warn user if it 503 
doesn't. 504 
if ~isdir(myFolder) 505 
  errorMessage = sprintf('Error: The following folder does not 506 
exist:\n%s', myFolder); 507 
  uiwait(warndlg(errorMessage)); 508 
  return; 509 
end 510 
% Get a list of all files in the folder with the desired file name 511 
pattern. 512 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 513 
you need. 514 
theFiles = dir(filePattern); 515 
for r = 1:length(theFiles) 516 
  baseFileName = theFiles(r).name; 517 
  fullFileName = fullfile(myFolder, baseFileName); 518 
  fprintf(1, 'Now reading %s\n', fullFileName); 519 
  % Now do whatever you want with this file name, 520 
  % such as reading it in as an image array with imread() 521 
  522 
pic2= imread(fullFileName);  523 
  524 
% Define thresholds for channel 1 based on histogram settings 525 
channel1Min = 163.000; 526 
channel1Max = 255.000; 527 
  528 
% Define thresholds for channel 2 based on histogram settings 529 
channel2Min = 0.000; 530 
channel2Max = 45.000; 531 
  532 
% Define thresholds for channel 3 based on histogram settings 533 
channel3Min = 0.000; 534 
channel3Max = 255.000; 535 
  536 
  537 
Fsh=zeros(10,2); 538 
k=0; 539 
  540 
for i=1:639 541 
    for j=1:873    542 
     543 
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  544 
if pic2(i,j,1)>=channel1Min && pic2(i,j,1)<=channel1Max && 545 
pic2(i,j,2)>=channel2Min && pic2(i,j,2)<=channel2Max && 546 
pic2(i,j,3)>=channel3Min  && pic2(i,j,3)<=channel3Max         547 
            k=k+1; 548 
            Fsh(k,:)=[i,j]; 549 
end 550 
    end 551 
end 552 
  553 
% Create scatterhist 554 
scatterhist(Fsh(:,2),Fsh(:,1),'Location','NorthEast','LineWidth',[1.5,1.5555 
,1.5],'Kernel','on','Color',[0.90  0.00 556 
0.00],'Marker','.','MarkerSize',[0.01,0.01,0.01]) 557 
  558 
xlim([0 873]) 559 
ylim([0 639]) 560 
  561 
set(gca,'FontName', 'Times New Roman') 562 
set(gca,'FontSize', 1) 563 
set(gcf,'color','k'); 564 
set(gca,'color','none') 565 
set(gca,'xtick',[],'ytick',[]) 566 
  567 
% Save new image 568 
filename2='E:\TRB_2017_Paper2\Google\%  orange\N_G_SR'; 569 
Image=sprintf('N_G_SR_01_%03d.png',r); 570 
fullFileName2 = fullfile(filename2, Image); 571 
set(gcf,'inverthardcopy','off');  572 
set(gcf,'color','k') 573 
saveas(gcf,fullFileName2); 574 
  575 
  576 
end 577 
%% Dark red 578 
  579 
% Specify the folder where the files live. 580 
myFolder = 'E:\TRB_2017_Paper2\Google\01.Paris\N_G'; 581 
% Check to make sure that folder actually exists.  Warn user if it 582 
doesn't. 583 
if ~isdir(myFolder) 584 
  errorMessage = sprintf('Error: The following folder does not 585 
exist:\n%s', myFolder); 586 
  uiwait(warndlg(errorMessage)); 587 
  return; 588 
end 589 
% Get a list of all files in the folder with the desired file name 590 
pattern. 591 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 592 
you need. 593 
theFiles = dir(filePattern); 594 
for r =1:length(theFiles) 595 
  baseFileName = theFiles(r).name; 596 
  fullFileName = fullfile(myFolder, baseFileName); 597 
  fprintf(1, 'Now reading %s\n', fullFileName); 598 
  % Now do whatever you want with this file name, 599 
  % such as reading it in as an image array with imread() 600 
  601 
pic2= imread(fullFileName);  602 
  603 
% Define thresholds for channel 1 based on histogram settings 604 
channel1Min = 136.000; 605 
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channel1Max = 158.000; 606 
  607 
% Define thresholds for channel 2 based on histogram settings 608 
channel2Min = 19.000; 609 
channel2Max = 35.000; 610 
  611 
% Define thresholds for channel 3 based on histogram settings 612 
channel3Min = 19.000; 613 
channel3Max = 36.000; 614 
  615 
  616 
Fsh=zeros(10,2); 617 
k=0; 618 
  619 
for i=1:639 620 
    for j=1:873    621 
     622 
  623 
if pic2(i,j,1)>=channel1Min && pic2(i,j,1)<=channel1Max && 624 
pic2(i,j,2)>=channel2Min && pic2(i,j,2)<=channel2Max && 625 
pic2(i,j,3)>=channel3Min  && pic2(i,j,3)<=channel3Max         626 
            k=k+1; 627 
            Fsh(k,:)=[i,j]; 628 
end 629 
    end 630 
end 631 
  632 
% Create scatterhist 633 
scatterhist(Fsh(:,2),Fsh(:,1),'Location','NorthEast','LineWidth',[1.5,1.5634 
,1.5],'Kernel','on','Color',[0.60  0.07 635 
0.07],'Marker','.','MarkerSize',[0.01,0.01,0.01]) 636 
 637 
xlim([0 873]) 638 
ylim([0 639]) 639 
  640 
set(gca,'FontName', 'Times New Roman') 641 
set(gca,'FontSize', 1) 642 
set(gcf,'color','k'); 643 
set(gca,'color','none') 644 
set(gca,'xtick',[],'ytick',[]) 645 
  646 
  647 
% Save new image 648 
filename2='E:\TRB_2017_Paper2\Google\01.Paris\N_G_SDR'; 649 
Image= sprintf('N_G_SDR_01_%03d.png',r); 650 
fullFileName2 = fullfile(filename2, Image); 651 
set(gcf,'inverthardcopy','off');  652 
set(gcf,'color','k') 653 
saveas(gcf,fullFileName2); 654 
end 655 
 656 
% Add images 657 
 658 
for k = 1:288 659 
    % % Specify the folder where the files live. 660 
myFolder = 'E:\TRB_2017_Paper2\Google\01. Paris\N_G_SG'; 661 
% Check to make sure that folder actually exists.  Warn user if it 662 
doesn't. 663 
if ~isdir(myFolder) 664 
  errorMessage = sprintf('Error: The following folder does not 665 
exist:\n%s', myFolder); 666 
  uiwait(warndlg(errorMessage)); 667 
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  return; 668 
end 669 
% Get a list of all files in the folder with the desired file name 670 
pattern. 671 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 672 
you need. 673 
theFiles = dir(filePattern); 674 
  675 
%     length(theFiles) 676 
  baseFileName = theFiles(k).name; 677 
  fullFileName = fullfile(myFolder, baseFileName); 678 
  fprintf(1, 'Now reading %s\n', fullFileName);  679 
  % Read an image 680 
pic1= imread(fullFileName);  681 
  682 
% % Specify the folder where the files live. 683 
myFolder = 'E:\TRB_2017_Paper2\Google\01. Paris\N_G_SO'; 684 
% Check to make sure that folder actually exists.  Warn user if it 685 
doesn't. 686 
if ~isdir(myFolder) 687 
  errorMessage = sprintf('Error: The following folder does not 688 
exist:\n%s', myFolder); 689 
  uiwait(warndlg(errorMessage)); 690 
  return; 691 
end 692 
% Get a list of all files in the folder with the desired file name 693 
pattern. 694 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 695 
you need. 696 
theFiles = dir(filePattern); 697 
% for k = 1:length(theFiles) 698 
  baseFileName = theFiles(k).name; 699 
  fullFileName = fullfile(myFolder, baseFileName); 700 
  fprintf(1, 'Now reading %s\n', fullFileName);  701 
  % Read an image 702 
pic2= imread(fullFileName);  703 
  704 
% % Specify the folder where the files live. 705 
myFolder = 'E:\TRB_2017_Paper2\Google\01. Paris\N_G_SR'; 706 
% Check to make sure that folder actually exists.  Warn user if it 707 
doesn't. 708 
if ~isdir(myFolder) 709 
  errorMessage = sprintf('Error: The following folder does not 710 
exist:\n%s', myFolder); 711 
  uiwait(warndlg(errorMessage)); 712 
  return; 713 
end 714 
% Get a list of all files in the folder with the desired file name 715 
pattern. 716 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 717 
you need. 718 
theFiles = dir(filePattern); 719 
% for k = 1:length(theFiles) 720 
  baseFileName = theFiles(k).name; 721 
  fullFileName = fullfile(myFolder, baseFileName); 722 
  fprintf(1, 'Now reading %s\n', fullFileName);  723 
  % Read an image 724 
pic3= imread(fullFileName);  725 
  726 
  727 
% % Specify the folder where the files live. 728 
myFolder = 'E:\TRB_2017_Paper2\Google\01. Paris\N_G_SDR'; 729 
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% Check to make sure that folder actually exists.  Warn user if it 730 
doesn't. 731 
if ~isdir(myFolder) 732 
  errorMessage = sprintf('Error: The following folder does not 733 
exist:\n%s', myFolder); 734 
  uiwait(warndlg(errorMessage)); 735 
  return; 736 
end 737 
% Get a list of all files in the folder with the desired file name 738 
pattern. 739 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 740 
you need. 741 
theFiles = dir(filePattern); 742 
% for k = 1:length(theFiles) 743 
  baseFileName = theFiles(k).name; 744 
  fullFileName = fullfile(myFolder, baseFileName); 745 
  fprintf(1, 'Now reading %s\n', fullFileName);  746 
  % Read an image 747 
pic4= imread(fullFileName);  748 
% I3=pic1; 749 
% I4=pic2; 750 
% halphablend = vision.AlphaBlender; 751 
% pic = step(halphablend,I3,I4); 752 
pic=[pic1+pic2+pic3+pic4]; 753 
imshow(pic); 754 
filename2='E:\TRB_2017_Paper2\Google\01. Paris\N_G_K'; 755 
pic = sprintf('N_G_K_%03d.png', k); 756 
fullFileName2 = fullfile(filename2,pic); 757 
set(gcf,'inverthardcopy','off');  758 
set(gcf,'color','k') 759 
saveas(gcf,fullFileName2); 760 
  761 
  762 
end 763 

 764 

Algorithm 7: SLIC Algorithm 765 

 766 
% % Specify the folder where the files live. 767 
myFolder = 'I:\Vana Ucy\Conference\Chapter\Google\06.Moscow\N_G_C'; 768 
% Check to make sure that folder actually exists.  Warn user if it 769 
doesn't. 770 
if ~isdir(myFolder) 771 
  errorMessage = sprintf('Error: The following folder does not 772 
exist:\n%s', myFolder); 773 
  uiwait(warndlg(errorMessage));     774 
  775 
  return; 776 
end 777 
% Get a list of all files in the folder with the desired file name 778 
pattern. 779 
filePattern = fullfile(myFolder, '*.png'); % Change to whatever pattern 780 
you need. 781 
theFiles = dir(filePattern); 782 
for k = 1:length(theFiles) 783 
  baseFileName = theFiles(k).name; 784 
  fullFileName = fullfile(myFolder, baseFileName); 785 
  fprintf(1, 'Now reading %s\n', fullFileName);  786 
  % Read an image 787 
A= imread(fullFileName);  788 
% % Calculate superpixels of the image. 789 

VANA G
KANIA



175 

 

[L,N] = superpixels(A,3500); 790 
% % Display the superpixel boundaries overlaid on the original image. 791 
  792 
BW = boundarymask(L); 793 
 794 
% % Set the color of each pixel in the output image to the max RGB color 795 
of the superpixel region. 796 
outputImage = zeros(size(A),'like',A); 797 
idx = label2idx(L); 798 
numRows = size(A,1); 799 
numCols = size(A,2); 800 
for labelVal = 1:N 801 
    redIdx = idx{labelVal}; 802 
    greenIdx = idx{labelVal}+numRows*numCols; 803 
    blueIdx = idx{labelVal}+2*numRows*numCols; 804 
    outputImage(redIdx) = max(A(redIdx)); 805 
    outputImage(greenIdx) = min(A(greenIdx)); 806 
    outputImage(blueIdx) = min(A(blueIdx)); 807 
end     808 
  809 
  810 
drawnow; % Force display to update immediately.drawnow;  811 
iptsetpref('ImshowBorder','tight'); 812 
C=imshow(outputImage,'InitialMagnification',67) 813 
filename2='I:\Vana Ucy\Conference\Chapter\Google\06.Moscow\N_G_S_V'; 814 
Image=sprintf('N_G_S_C_%03d.png',k); 815 
fullFileName2 = fullfile(filename2, Image); 816 
saveas(gcf,fullFileName2); 817 
  818 
end 819 
close all 820 
clear al821 
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Bing Maps 

 

 

 

Figure B. 1: Timeseries of pixels and boxplot per traffic layer for one weekday for  (a) Paris; (b) 

London; (c) Istanbul 
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Figure B. 2: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) New Delhi; 

(b) Moscow; (c) New York  
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Figure B. 3: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Los Angeles; 

(b) Sao Paulo; (c) Singapore 
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Figure B. 4: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Sydney; (b) 

Johannesburg; (c) Toronto 
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Figure B. 5: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Berlin; (b) 

Buenos Aires; (c) Riyadh. 
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Figure B. 6: Timeseries of pixels and boxplot per traffic layer for one weekday for Beijing   
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Here Maps 

 

 

 

Figure C. 1: Timeseries of pixels and boxplot per traffic layer for one weekday for  (a) Paris; (b) 

London; (c) Istanbul 
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Figure C. 2: Timeseries of pixels and boxplot per traffic layer for one weekday  for (a) New Delhi; 

(b) Moscow; (c) New York  
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Figure C. 3: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Los Angeles; 

(b) Sao Paulo; (c) Singapore 
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Figure C. 4: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Sydney; (b) 

Johannesburg; (c) Toronto 
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Figure C. 5: Timeseries of pixels and boxplot per traffic layer for one weekday for (a) Berlin; (b) 

Buenos Aires; (c) Riyadh. 
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Figure D. 1: London’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 2:  New Delhi’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 3:  New York’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 4: Los Angeles’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 5: Sao Paulo’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 6: Singapore’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 7: Sydney’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 8: Johannesburg’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 9: Toronto’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 10: Berlin’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 11: Buenos Aires’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) 

Bing; (c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 12: Riyadh’s MFDs, for a typical weekday, (5-minute intervals) from (a) Google; (b) Bing; 

(c) Here maps: (left column) average speed-average density diagram; (middle column) average 

speed-average flow diagram; (right column) average flow-average density diagram. 
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Figure D. 13: (a) Tokyo’s MFDs, for a typical weekday, (5-minute intervals) from Google; (b) 

Beijing’s MFDs, for a typical weekday, (5-minute intervals) from Bing; (c) Beijing’s MFDs, for a 

typical weekday, (5-minute intervals) from Baidu maps: (left column) average speed-average density 

diagram; (middle column) average speed-average flow diagram; (right column) average flow-

average density diagram. 
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Figure E. 1: Spatio-temporal congestion patterns for Paris (left) and London (right) during morning 

peak hours (07:00-08:00 a.m.). 
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Figure E. 2: Spatio-temporal congestion patterns for Tokyo (left) and Sao Paulo (right) during 

morning peak hours (07:00-08:00 a.m.). 
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Figure E. 3: Spatio-temporal congestion patterns for Berlin (left) and Riyadh (right) during morning 

peak hours (07:00-08:00 a.m.). 
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Figure E. 4: Spatio-temporal congestion patterns for Sydney (left) and Johannesburg (right) during 

morning peak hours (07:00-08:00 a.m.). 
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Figure E. 5: Spatio-temporal congestion patterns for Toronto (left) and Buenos Aires (right) during 

morning peak hours (07:00-08:00 a.m.). 
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Figure E. 6: Spatio-temporal congestion patterns for Beijing (left) and Nicosia (right) during morning 

peak hours (07:00-08:00 a.m.) 
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