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ABSTRACT 

Ontological queries are queries evaluated against a database and an ontology, i.e. a set of logic 

rules and constraints from which new knowledge can be derived from. Ontological database 

systems can thus be more powerful than traditional database systems. A smooth transition 

between the two requires their connection which comes in the form of rewriting ontological 

queries into equivalent ones for traditional databases, thus leading to the creation of algorithms 

that do that. Using the ontology is an iterative process and as such the termination of these 

rewrite algorithms comes into question. We focus on one such algorithm, firstly going through 

its basics and workings, and then exploring the cases that will lead to its termination, by 

applying restrictions to the form of the ontology the algorithm accepts as input. In particular, we 

find the size of the obtained rewriting in case of non-recursive ontology and provide proof of 

termination for a less restrictive case of ontology. 
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  Chapter 1  

 

Introduction 

1.1 Motivation 

Ontology, i.e. the conceptualization of a subject area showing the properties and relations 

between instances of these conceptualizations, has been adopted for use in data repositories and 

models, which can sometimes be distributed and heterogeneous. As ontologies can offer high 

expressive power they are starting to replace traditional data and conceptual models such as 

UML class diagrams and Entity Relationship schemata.  

The use of ontologies in database technology created the ontological database management 

system. Using advanced reasoning and query processing mechanics, a database is combined 

with an ontology that is used to produce additional information from the database that is not 

explicitly contained in it. This automated production of data via reasoning provides certain 

flexibility to the information in the database while the ontology and the information it represent 

can easily be extended while also being easier for user to navigate due to thinking in terms of 

concepts.  

As such ontological databases are a reasonable next step to database usage, if only restrained by 

the transition from traditional databases to ontological databases, how they can interconnect and 

the complexity of applying queries to every model created by the ontology. A way to introduce 

ontology to traditional database systems is to implement the higher levels of ontology as a 

façade and leave the execution of the queries to the traditional databases. This will require the 

translation of ontological queries into ones compatible for use in these traditional databases, 

thus leading to the creation of ontological query rewriting algorithms.  
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An ontological query rewriting algorithm will take ontological queries and rewrite them into 

equivalent first-order queries. This is assisted by the fact that a way to model the ontology is 

through the use of tuple-generating dependencies (TGDs), a type of traditional database 

constraints. These TGDs are of the form:       (   )      (   ), where   and   are a 

conjunction of atoms over a relational schema. In essence these TGDs are rules from which 

additional knowledge can be derived from, so a query   combined with an ontology may 

contain more information than what it states in itself.  As shown in Figure 1, the rewriting 

algorithm will take such query  , compile it with the ontology  , essentially get all the 

information hidden in it and produce an equivalent first-order query   , that contains all that 

information in itself. These first-order queries can then be used in the current more widespread 

databases.  

 

Example 1: Consider set   consisting of TGD: 

            (   )       (   )            (     ) 

asserting that for every two individuals if they are related and one of them is the parent of the 

other, then there exists another individual that also created that individual. We can ask for who 

created Bob by posing the query              (       ) but at the same time we also have to 

𝑞 

conjunctive query 

𝛴 

ontology 

𝑞𝛴 

first-order query 

compile 

Figure 1. Ontological query rewriting process 
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check for individuals that are related and a parent to Bob as per the TGD above that means they 

created him. So query   becomes query    : 

(          (       ))   (       (     )⋀      (     )), with the term not included 

in query   being knowledge derived from the ontology. 

The existence of these rewriting algorithms can be of great help as they can help with the 

transition to ontological database systems and provide the advantages of ontology to existing 

databases systems by allowing them to be slowly changed while continuing their normal 

operation. The main algorithm that we focus on is a rewriting algorithm called XRewrite. 

1.2 Objective 

Our objective in this thesis concerns an algorithm for ontological query rewriting, called 

XRewrite and introduced in the paper “Query Rewriting and Optimization for Ontological 

Databases” [1]. More specifically, we focus on its ability to terminate. 

The algorithm XRewrite presented in the aforementioned paper is an algorithm that translates 

queries for ontological databases into equivalent ones to be used with conventional databases. 

Due to certain attributes in the rewriting process, there are cases in which the termination of the 

algorithm is not always guaranteed. We will detail the cases in which we know that the 

algorithm terminates but also explore additional cases in which we intuitively know that the 

algorithm terminates but have no concrete proof to that fact, with the intent to provide proof that 

they do. 

1.3 Methodology and Contributions 

With the introduction to the topic of query rewriting for ontological databases and the algorithm 

of XRewrite, firstly we go through the basic terms and ideas used in these concepts. Then we 

will go through an overview of the algorithm and present how it works and the problems that 

occur with its termination, or lack thereof. Following that we will present four syntactic classes 

under which the algorithm terminates along with proof of termination for each class. These 
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syntactic classes limit the form that the TGDs and thus the ontology can take but help with 

guaranteeing the termination of the algorithm. These classes are Non-Recursiveness, Linearity 

and a Multi-linearity Special Case, and Stickiness. Termination under these classes guarantees 

the translation and thus successful execution of an ontological query on any ontology that can 

be described using only TGDs of that class. Under the Non-Recursive class of TGDs, the 

successful execution of an ontological query on any non-recursive ontology is guaranteed. 

Linear TGDs are more expressive than the description logic DL-LiteR [2], which forms the 

OWL 2 QL profile of W3C’s standard ontology language for the Semantic Web, as well as 

being useful in modelling hierarchies. With Linearity being a subclass of Multi-linearity, Multi-

linear TGDs are more expressive than linear TGDs. Multi-linearity has the goal of defining a 

natural formalism strictly more expressive than DL-LiteR,⊓, the extended version of DL-LiteR 

which allows for concept conjunction [3]. Stickiness allows joins to appear in rule-bodies not 

expressible with linear TGDs or DL(R)-Lite assertions, and can be used to encode the Cartesian 

product of two tables, thus being able to describe knowledge whose underlying relation 

structure is not treelike [1]. 

1.4 Document Structure 

The remainder of the paper is organized as follows. In Chapter 2 we present the background of 

the subject of our study. At first, basic terms and terminology we need to know in order to 

understand the algorithm and the problem are defined. In Chapter 3 we go through an overview 

and explanation of how the algorithm XRewrite works. Chapters 4 to 6, are an analysis of the 

syntactic classes under which the algorithm terminates. Chapter 4 is for Non-Recursiveness, 

Chapter 5 for Linearity and the Multi-linear Special Case, and Chapter 6 for Stickiness. Lastly, 

Chapter 7 is the conclusion, summing up our findings and mentioning further work that can be 

done on the subject. 
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1.5 Related Work 

Research done on the topic of query rewriting algorithms includes an early algorithm for DL-

lite family of Description Logics [2] and implemented in the QuOnto system. This algorithm 

also translates the query into a union of conjunctive queries but, as a result of the redundant 

application of the factorization step, the resulting queries are unnecessarily large. A fix to this 

problem is introduced by a resolution-based rewriting for DL-liteR implemented in the Requiem 

system [4], solving the problem by directly handling existential quantification through proper 

functional terms. A more efficient algorithm, called Rapid, uses selective and stratified 

applications of resolution rules, taking advantage of the query’s structure to reduce redundant 

rewritings [5]. These algorithms use specifics of DLs so they do not easily extend to TGD-based 

languages. A more general approach using a backward-chaining rewriting algorithm is able to 

deal with arbitrary TGDs, as long as the language used satisfies suitable syntactic restrictions 

that guarantee the algorithm’s termination [6], [7], [8]. 
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  Chapter 2  

 

Background 

Our study is based on the paper “Query Rewriting and Optimization for Ontological Databases” 

by Georg Gottlob, Giorgio Orsi, and Andreas Pieris [1]. The paper introduces an algorithm, 

called XRewrite, which can translate queries for ontological databases into a union of 

conjunctive queries, a fragment of SQL, for their evaluation and in order to exploit the 

widespread existing database technology. 

In order to understand the algorithm XRewrite we need to be familiar with some basics of the 

field of relational databases, relational queries, tuple-generating dependencies, and the chase 

procedure relative to such dependencies [1]. 

Alphabets: We consider the following disjoint sets of symbols:  

  : A set of constants, the normal domain of a database, each one represents a different 

value. 

   : A set of labeled nulls, placeholders for unknown values and viewed as globally 

existentially quantified variables, different nulls may represent the same value. 

   : A set of regular variables, used in queries and dependencies. 

  

Relational Model: A Relational schema    (or schema), is a set of relational symbols, or 

predicates, each with its associated arity. With     we denote predicate    which has arity  . By 

     ( ) we refer to maximum arity of all predicates of  . A position   , - in   is identified by 

predicate     and its  -th argument. A term    is a constant, null or variable. An atomic 

formula, or atom, has the form  (       ), where     is a relation and         are terms. For 

atom  ,      ( ) and    ( ) are the set of its terms and the set of its variables, respectively, 
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with the notations also extending to sets of atoms. Conjunctions of atoms are often identified by 

the sets of their atoms. An instance   for schema   is a possibly infinite set of atoms of the form 

 ( ) , where        and     (      ) . A database    is a finite instance such that 

     ( )   . 

Substitutions: A substitution from a set of symbols   to set of symbols    is a function        

defined as follows:   is an empty substitution and, if   is a substitution, then    *    + is a 

substitution, where     and      ; if       , then we write  ( )    . An assertion of the 

form      is called mapping. The restriction of   to    , represented as    , is the 

substitution    *   ( )      +. A homomorphism from a set of atoms   to set of atoms    

is a substitution 

                   such that if    , then  ( )    and if  (       )   , then 

 ( (       ))   ( (  )    (  ))    . A set of atoms   *       + , where    , 

unifies if there is a substitution  , called unifier for  , such that, 

  (  )     (  ). A most general unifier (MGU) for   is a unifier for A,   , such that for 

each other unifier for A, there is a substitution    such that        . If a set of atoms unify, a 

MGU exists and the MGU for a set is always unique, up to variable renaming. 

 

Queries: An n-ary first-order query   is an expression  (       ), where         are exactly 

the free variables of first-order formula  . An answer to   over instance   is a tuple (       ) 

of constants such that    (             ) , i.e.   satisfies  (             ) , where 

 (             ) is   with each free    replaced by   . A conjunctive query (CQ)   of arity   

over schema   is an assertion of the form  ( )   (   ) , where         ,   is a 

conjunction of atoms over  , with   also known as     ( ), and   is an  -ary predicate not 

occurring in  .  

Tuple Generating Dependencies: A tuple generating dependency (TGD)   over schema   is a 

first-order formula       (   )        (   ), where           and where     are 
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conjunctions of atoms over  , e.g.         ( )           (   ) , 

        ( )      (   )             (     ) .   is the body of  ,     ( ), while   

is the head of  ,     ( ). For brevity, universal quantifiers in front of TGDs will be omitted 

and commas will be used for the conjunction.   is satisfied by instance   for  , written    , if 

the following is true: whenever there exists a homomorphism   such that  ( (   ))   , then 

there exists homomorphism       , called extension of     such that   ( (   ))   . 

Instance   satisfies set of TGDs, written    , if     for every    .   

Conjunctive Query Answering under TGDs: Given database   for schema   and set of TGDs 

  over  , the answers we consider are those that are true in all models of   w.r.t.  . The models 

of   w.r.t.  , denoted     (   ), is the set of all instances   such that     and    . The 

answer to an  -ary CQ   w.r.t.   and  , denoted    (     ), is the set of  -tuples *      

 ( )                (   )+. 

The TGD Chase Procedure: The chase procedure or chase is a fundamental algorithmic tool 

for checking implication of dependencies [9] and checking query containment [10]. The chase 

procedure is an iterative application of the so-called TGD chase rule. 

 TGD chase rule: Consider instance   for schema  , and TGD  :  (   )   

     (   ) over  .   is applicable to   if there exists a homomorphism   such that 

 ( (   ))   . The result of applying   to   with   is        ( (   )) and we 

write  〈   〉  , where    is an extension of     such that   ( ) is a new labeled null of 

   not occurring in  , and following lexicographically all those in  , for each    . 

 〈   〉   defines a single TGD chase step.  

In short, the chase procedure draws conclusions. A TGD   of the form:    , can essentially 

be thought of as a rule that says: if   is true, then   is true as well. So given a set of statements, 

i.e. instance  , the chase will check whether any conclusions can be derived from applying the 

rules to the statements. For example, if our statements say that   is true, we can conclude that   
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will be true as well and so part of our statements as well. This process of drawing conclusions 

will be repeated using all statements and all rules that are given. This repetition may be finite or 

continue infinitely; depending on the rules it is given.   

Formally, a chase sequence of database   w.r.t. set of TGDs   is a sequence of chase steps 

  〈     〉    , where    ,      and     . The chase of   w.r.t.  , denoted      (   ), is 

defines as follows: 

 A finite chase of   w.r.t.   is a finite chase sequence   〈     〉    , where       

and there is no     applicable to   , where         (   ). 

 An infinite chase sequence   〈     〉    , where    , is fair if whenever a TGD  : 

 (   )        (   )  is applicable to    with homomorphism  , there exists 

extension    of     and     such that   (    ( ))    . An infinite chase of   w.r.t. 

  is a fair infinite chase sequence   〈     〉    , where    ; let      (   )  ⋃   
 
   . 

Example 2: Consider instance   * (   )+ for schema  , and set of TGDs   *    (   )  

    (   )     (   )      (   )  over    There exists homomorphism    

*       + where   ( (   ))   (   )    and as such    is applicable to  . Applying 

   to   with  , a.k.a.〈     〉, gives us        ( (   ))    * (    )+ where    is a new 

labeled null. Then there exists    *        + where   ( (   ))   (    )     and 

thus 〈     〉  gives us         ( (   ))     * (    )+    * (    )  (    )+ . As 

there is no     applicable to    then      (   )     * (   )  (    )  (    )+ where    

is a null of   .    

The chase of   w.r.t.   is a universal model of   w.r.t.  , i.e. for each       (   ) there 

exists homomorphism    such that   (     (   ))   , [11], [12]. With this property the 

chase becomes a formal algorithmic tool for answering queries under TGDs, as the answer to 

CQ   w.r.t. database   and set of TGDs   corresponds with the answer to   over chase of   

w.r.t.  , that is    (     )   (     (   )).  
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Note that the TGD chase rule given above is oblivious, i.e. it does not check whether the TGD 

under consideration is already satisfied and adds atoms in the instance even if not needed. There 

also exists a version of the rule with stricter criteria, called restricted, with the aim of adding 

only the atoms necessary, which is considered the standard, [11], [12]. 

Normal Form: A TGD   is in normal form if its head has only one atom, i.e.      ( )   , 

and its head contains only one occurrence of an existential quantifier variable. A set of TGDs   

is in normal form if each TGD    , is in normal form. Every set   of TGDs over schema   

can be transformed into a normal form set of  ( ) over schema   ( ), such that   and  ( ) 

are equivalent w.r.t. query answering. For a TGD    , if   is in normal form then  ( )  

* + , else assuming *       +      ( ) , *       +     (    ( ))     (    ( )) , 

and         are the existential quantified variables of  , let  ( ) be the set: 

    ( )        
 (          ) 

  
 (          )        

 (             ) 

  

  
   (                 )        

 (               ) 

    
 (               )     

  

  
 (               )     

where   
  is an (   ) -ary auxiliary predicate not occurring in  , for each   , - . Let 

 ( )   ⋃  ( )    and   ( ) be the schema obtained by adding to   the auxiliary predicates 

in  ( ).     

As such, the algorithm XRewrite assumes that the TGDs it is given are in normal form. 
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Example 3: Consider TGD:    (   )      (   )  (   ), which is not in normal form.   

can be transformed into set  ( ) in normal form such that   and  ( ) are equivalent w.r.t. 

query answering.  ( )  will be the set: ( (   )      (     )) ( (     )   (   )) 

and ( (     )   (   )). 

  

Fred
eri

ko
s L

ea
nd

rou



 

12 

 

  Chapter 3  

 

Rewriting Algorithm XRewrite 

With the basics covered, the algorithm XRewrite will follow. As previously mentioned, the goal 

of this algorithm is to accept as input a CQ   over a schema   and a set   of TGDs over  , and 

rewrite this query into equivalent ones    for use in standard query language, in particular as a 

union of conjunctive queries, a fragment of SQL. The    produced will be called a perfect 

rewriting, that is evaluating    over database   yields the same result as   evaluated over 

ontological database    . 

The algorithm will use two new terms, applicable and factorizable, as part of its workings. 

Applicable concerns its applicability condition, in short, whether or not the algorithm can be 

used or not on that particular part of the query. Factorizable concerns the factorizability 

condition, in short, whether or not a set of atoms can be reduced to their MGU. The algorithm in 

essence consists of two sections, the rewriting step and the factorization step. The rewriting step 

is used if the applicability condition is satisfied and the factorization step is used if the 

factorizability condition is satisfied. 

3.1 Applicability Condition of XRewrite 

For the algorithm we assume without loss of generality that the variable occurring in queries 

and the variables appearing in TGDs are two distinct disjointed sets. Also, given CQ  , a 

variable is called shared in   if it appears in more than once in  . Note that distinguished 

variables of   are shared since they appear in both the body and head of  . With this the 

Applicability Condition follows: 
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Definition 1 (Applicability): Considering CQ   and TGD   and given set of atoms   

    ( ), it is said that   is applicable to   if the following are true: 

1. The set   *    ( )+ unifies. 

2. For each    , if the term at position   in   is either a constant or a shared variable in 

 , then     ( ). 

In short, for   to be applicable to  ,   and head of   unify, and for every atom of  , terms that 

are either constants or shared variables are not in the same position as the position of the 

existential quantified variable of  . 

Example 4: Consider TGD     ( )      (   ) and query    (   )  (   )⏟          
  

  (   )⏟    
  

.  

For    we can see that   is applicable to it, as    *    ( )+ unifies using *       +, 

thus fulfilling the first condition above. The second condition is also fulfilled as while   appears 

in other atoms as well and thus is a shared variable, its position in this particular atom is not the 

same position as the position of the existential variable   in  . 

For atoms   ,   will not be applicable. While they fulfill the first condition,   is a shared 

variable and appears in them in the same position as the position of existential variable   in  , 

thus violating the second condition. 

3.2 Factorizability Condition of XRewrtite 

Expanding on the applicability condition is the concept of factorizability, upon which the 

factorization step of the algorithm is based. In short, its goal is to convert some shared variables 

into non-shared ones for the above applicability condition to apply to them. This is done by 

continuously unifying all atoms that unify in the query’s body. In some cases this process does 

not help and produces redundant queries, thus requiring a restricted version of factorization that 

produces only the essential queries needed. This Factorizability Condition follows: 
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Definition 2 (Factorizability): Considering CQ   and TGD   and given a set of atoms   

    ( ), where      , it is said that   is factorizable w.r.t.   if the following are true: 

1.   unifies. 

2.   ( )   . 

3. There exists variable      (    ( )  ) that occurs in every atom of   only at 

position   ( ). 

Example 5: Consider TGD     ( )  (   )      (     )  and CQs 

    (     )  (     )⏟            
  

,     ( )  (     )  (     )⏟            
  

 and     (     )  (     )⏟            
  

, where 

   .  

Checking the factorizability of this example, we see that the second condition is true as   has an 

existential quantifier. So we will check the CQs for the first and third conditions.  

For   , the first condition is true, as it unifies w.r.t.   using the substitution *       +. 

The third condition is also true as   appears in all atoms of    at the same position as the 

position of existential variable   in  . 

For    and   , the third condition is violated, as for    the variable C also appears in    but 

outside of   , and for    the variable   appears in two different positions, not only at the 

position of existential variable   in  .    
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3.2.1 Algorithm XRewrite 

Following the above definitions, we can now present the algorithm: 

Algorithm 1 The algorithm XRewrite 

Input: a CQ   over a schema   and a set   of TGDs over   

Output: the perfect rewriting of   w.r.t.   

    ; 

     *〈     〉+; 

repeat 

           ; 

 foreach  〈     〉          where   *   + do 

  foreach     do 

   // rewriting step 

   foreach       ( ) such that   is applicable to   do 

         ; 

            ( [      (  )]); 

    if there is no 〈       〉 such that        then 

               *〈      〉+; 

    end 

   end 

   // factorization step 

   foreach       ( ) which is factorizable w.r.t   do 

         ( ); 

    if there is no 〈       〉        such that        then 

               *〈      〉+;  

    end 

   end 

  end 

  // query q is now explored 

       (     *〈     〉+)  *〈     〉+; 

 end 

until            ; 

     *    〈     〉      +; 

return     ;  

 

The algorithm consists of a number of loops but in short is an iterative application of two central 

steps, the rewriting step and the factorization step. These steps will be applied to every atom of 

every query in set of queries     .      consists of both the initial CQ   and the rewritten 

queries produced by the two steps, noted as   and   for the queries produced by the rewriting 

step and factorization step respectively. This process is repeated exhaustively, until no further 
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changes can be observed in     . This is done by comparing the      of the previous loop, 

now called      , with the      produced in the current loop. To avoid redundancy,   and   

are used to note which queries have already been explored or unexplored respectively. Once no 

further changes are observed in     , and with all its queries being marked as explored, this 

means that the initial CQ   has been fully explored, with      being a set of all queries 

produced by this exploration. This set will be   , the result of running XRewrite with CQ   and 

  set of TGDs. 

The essence of the algorithm can be thought of as running the chase procedure in reverse. 

Given a conclusion and a set of rules that arrive at said conclusion, we try to find what set of 

statements can be used with these rules to arrive at the given conclusion. This can be seen in the 

rewriting step, which looks like it runs the implication of the TGDs in reverse.  

3.2.2 Rewriting Step 

In the rewriting step of the algorithm, in simple terms, for every atom(s) of the query, if that 

atom(s) exists in the head of a TGD, it substitutes it with the body of that TGD. To do that 

however, the atom(s) must satisfy the applicability condition. 

In the case of Example 4 above,    does not satisfy the condition and will not be rewritten.    

does satisfy the condition and so it goes through the rewriting step giving us 

    (   )  (   )  ( ). The correlation with the chase procedure in reverse can be seen as 

given atoms that unify with the head of a TGD, i.e. the conclusion, we substitute them with the 

body of a TGD, i.e. the statements that are used to arrive at that conclusion.  

Formally, for each       ( ) where   applicable to  , the  -th application of the rewriting 

step creates query         ( ,      (  )-), with     being the TGD obtained from   by 

replacing every variable   with   ,       being the MGU for set   *    (  )+ , and  ,  

    (  )- being obtained from   by replacing   with     (  ). Using integer  , such in   , we 

can rename the variables of  , with the renaming avoiding produced clutter. In the end of the 
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rewriting step there exists an    condition that checks whether the query produced is an 

isomorphism, i.e. equivalently the same, of one that already exists in our set of queries     . If 

there is no equivalent query then that means there has been a change and so this new query is 

added to our set, as it is new data. 

3.2.3 Factorization Step 

In the factorization step, the algorithm, in essence, checks every query in the set of queries and 

replaces the atoms in each query with its most general unifier, in essence getting rid of 

redundant atoms and reducing the size of the queries. To do so however the atoms must satisfy 

the factorizability condition. 

In the case of Example 5,    satisfies the factorizability condition and goes through the 

factorization step giving us        (     ). 

Formally, for each       ( ) that is factorizable w.r.t.  , the factorization step creates query 

     ( ), with    being the MGU for  . In the end, similarly with the rewriting step, there is 

an    condition that checks whether the query produced has an isomorphic one and if not, stores 

it in the set of queries before terminating the factorization loop.  

3.3 Termination of XRewrite 

For the algorithm XRewrite to terminate it is necessary to apply some restrictions on our TGDs 

and divide them into syntactic classes. This is due to the fact that the algorithm must be 

database independent, i.e. it must apply to every database possible and not depend on certain 

characteristics a database may have. As it stands, with no restrictions, there are cases in which 

the algorithm will not terminate. 

Example 6: Consider TGDs    ( )  (   )   ( ) , CQ     (  )  and database 

   * (  )  (     )  (     )    (       )+, where *       + are constants.  
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In this example, intuitively, the chase procedure will start with  (  ) and  (     ), and using 

  will produce  (  ). Then similarly, using  (  ) with  (     ) will produce  (  ), et cetera 

until it produces  (  ).  

The algorithm however will work in reverse. Assuming  (  ), using  , the algorithm will 

produce the statement     ( )⋀ (    ) . Then similarly, using  ( )  and  , will produce 

       (  )⋀ (    ), that using  (  ) produces          (   )⋀ (      ), ad infinitum. In this 

case, the algorithm does not use information from database  . This makes it database 

independent but at the same time making it unable to know when to stop. 

While a rewrite algorithm that is database independent and has no restrictions can exist, it will 

require the use of a recursive query language. However our aim is to rewrite to a simple form of 

a union of CQs, which is a fragment of SQL. And since SQL cannot support recursiveness this 

necessitates the use of syntactic classes.  
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  Chapter 4  

 

Non-Recursiveness 

The first syntactic class of TGDs we use to guarantee the termination of XRewrite is non-

recursiveness, that is, TGDs whose use will not lead to the production of the same information 

repeatedly. Proving that the algorithm terminates under the Non-Recursive class of TGDs 

means the successful execution of an ontological query on any non-recursive ontology. 

Definition 3 (Non-Recursiveness): A set of TGDs   is non-recursive when the dependency 

graph of   is acyclic.  

Recursive TGDs are the TGDs whose dependency graph does have cycles, i.e. a predicate can 

lead to itself. The problem with recursiveness is that it creates a loop that the reasoning of our 

ontology can get caught in and never terminate. In non-recursive TGDs, such a loop does not 

exist and as both our ontology and database are finite, intuitively our reasoning terminates.  

Example 7: Consider set of TGDs    *( ( )   ( )) ( ( )   ( )) ( ( )   ( ))+ and 

   *( ( )   ( )) ( ( )   ( )) ( ( )   ( ))+. As shown in Figure 2,    is recursive 

as A is replaced by B, B by C and C by A, creating a loop.    has no such loop and thus is non-

recursive.  

 

 

 

  

While termination under non-recursive TGDs is widely accepted as true due to the nature of the 

class, no detailed analysis has been presented, which we will give.  

𝐴 

𝐶 

𝐵 𝐷 

𝐹 

𝐸 

𝐺 

Figure 2. Dependency graph of recursive and non-recursive TGD sets 
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In simple terms, we can prove that the algorithm terminates by finding an upper bound to the 

number of different CQs that can be constructed. By finding a finite number of resulting CQs 

we can conclude that the algorithm terminates. In our proof of termination we will use the 

stratification of the set of TGDs, a way to characterize non-recursive TGDs. 

Definition 4 (Stratification): A stratification of a set of existential rules   is a sequence of 

       such that for some function      ( )  *     +: 

 *       + is a partition of   

 For each predicate      ( ), all the rules with   in the head are in   ( ), i.e. in the 

same set of the partition 

 If       ( ⋀ (   ) ⋀      ( ⋀ (   ) ⋀ ))   , then  ( )   ( ) 

In other words, stratification will create a number of numbered partitions of our set of TGDs  , 

these partitions are also called strata levels. The partition a TGD will belong to depends on the 

predicate   that appears in its head, with all the TGDs that have   in their head belonging to the 

same partition. If predicate   appears in body of a TGD that has predicate   in its head, then the 

number assigned to the partition of TGDs that have   in their head, will be lower than the 

number assigned to the partition of TGDs that have   in their head. For our rewriting, this 

means that an atom with predicate   can be substituted by atom with predicate  , iff   is 

assigned a higher number than  . Consequently, atoms with predicate   in body of TGD of the 

lowest number cannot be substituted at all.  

Example 8: Consider set of TGDs   *     ( )   ( )      ( )   ( )      ( )   ( )+. 

As   appears in     (  ) and body(  ),    is given a lower strata number than   . Similarly,   

appears in     (  ) and     (  ) and thus    is given a lower strata number than   . This 

results in creating a stratification of   *   *  +    *  +    *  ++. Note that the predicate in 

the body of the TGD in the lowest strata level, i.e.  , does not appear in the head of a TGD and 

thus will never be replaced by another predicate.  
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Theorem 1: Consider CQ   over a schema   and set of TGDs   over  . If       

         , then         (   ) terminates. 

Proof: If set of TGDs                 then there exists stratification of  , 

*             +. Then consider atom   that unifies with a TGD in strata   , e.g.  ( )   (x). 

This substitution is one step of the algorithm.  

Due to the stratification, the predicate in the body of a TGD in strata    will appear in the head 

of a TGD in strata     , e.g.  ( )   ( ). This means that   can and will be substituted by  , 

counting as another step. Similarly, the predicate in the body of a TGD in strata      will 

appear in the head of a TGD in strata     , leading to another substitution. This phenomenon 

will be repeated up to and until the TGD in the lowest strata level and atom   is fully explored.  

A graphical representation of an example of the above substitutions follows, as Figure 3, with 

nodes being the atoms and edges being the substitutions, with each level representing a strata 

level: 

 

 

 

 

 

 

However, to fully explore an atom we need to also explore all of its substitution options. In the 

above case, atom   was substituted by atom   as per TGD ( )   ( ) , but what happens if 

there was also TGD  ( )   ( ), thus giving an option to   to be substituted by  .  

This is where strata cardinality, i.e. the cardinality of a strata level, comes in. The cardinality of 

each strata level is the number of TGDs that belong to that level, as multiple TGDs can belong 

to the same strata level. This means that a predicate of the body of TGD in strata    may not 

𝒂 

𝒃 

𝒄 

  

● 

Figure 3. Representation example of substitution process 

Fred
eri

ko
s L

ea
nd

rou



22 

 

 

 

only appear in the head of a single TGD but a number of TGDs in strata     , and in the worst 

case scenario it may appear in all of them.  

When this is true, the substitution representation takes a tree-like form, as depicted in Figure 4. 

 

 

 

 

 

 

 

Like Figure 3, the nodes are atoms, the edges are substitutions and the levels are the strata 

levels. In this case though, an atom can branch out by selecting different substitution options.  

The number of possible substitutions for each atom is the cardinality of each strata level below 

it. More clearly, the number of substitution choices for an atom   whose predicate appears in 

the head of a TGD in strata   , is equal to the cardinality of the strata level directly below it, 

      . In the worst case scenario, the cardinality of each strata level is the maximum that it can 

be, that is, equal to the cardinality of the whole set  . 

Lastly, there is the fact that an atom can be substituted by a number of atoms, e.g.  ( )  ( )  

 ( ). This will result in more steps to fully explore the atom but the logic does not change. 

Finally, let us combine all of the above to find a formula for the upper bound: 

Consider CQ  :   ⋀  ⋀ ⋀   over schema   and a set of TGDs                 

over  .  

  

● ●   

  

● ●   

𝒄   ●   

𝒃 𝒅   ● 

𝒂 

Figure 4. Representation example of substitution process with multiple substitution options 
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Since                 there exists stratification of  , *             +. As such we use 

the logic shown above to rewrite  . The representation will take the form shown in Figure 5 

after a single step:  

 

Note that each 〈 〉 of the leaf nodes in the above figure may either be either a single atom or a 

conjunction of atoms. In the worst case scenario, as to maximize the amount of substitutions, 

〈 〉 will be a conjunction of atoms, with their predicates being in the head of a TGD in the 

strata level directly below the strata level of the TGD whose head was the predicate of the atom 

that was substituted. So an atom   would be substituted by a conjunction of atoms, 

   ⋀   ⋀ ⋀   . 

As such, in the case of CQ   above, when an atom is substituted, e.g.   , it will be substituted 

by a conjunction of atoms as above, giving a query    of the following form: 

(   
 ⋀   

 ⋀ ⋀   
 )⋀  ⋀ ⋀  . 

To calculate the size of query    we have to follow the substitutions made. Starting with an 

initial length of   atoms, the 0
th
 level so to speak, an atom was removed due to the substitution, 

giving    a length of    . However, the atom that was removed was substituted in by a 

conjunction of atoms with length  , creating a query with length      . 

Do note that   is not a constant as it is the length of the conjunction of atoms that substitute an 

atom and thus varies based on the size of the body of the TGD that leads to the substitution of 

that particular atom. In the worst case scenario, in order to maximize the number of atoms in the 

𝛼 ⋀𝛼 ⋀ ⋀𝛼𝑘  

〈 〉⋀𝛼 ⋀ ⋀𝛼𝑘  𝛼 ⋀〈 〉⋀ ⋀𝛼𝑘  𝛼 ⋀𝛼 ⋀ ⋀〈 〉  … 

Figure 5. Representation of the substitution process for a CQ after one step 
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query and thus the amount of possible substitutions and steps in the algorithm,   will be equal to 

the length of the body of the TGD with the biggest body,            . With   defined, each 

substitution will now produce a query of length            . So the leaf nodes in Figure 

5 have a length of            . 

However, do not forget that there are substitution options for each atom, equal to the strata 

cardinality of the strata level below it. In the worst case scenario, each atom has     options to 

choose from. Thus the representation will look like Figure 6: 

 

Each 〈 〉 is still a conjunction of atoms but now an atom has     options to choose from, e.g. 

{〈 〉    〈 〉   }. So each atom of our initial CQ   produces     queries   , and since the 

number of atoms is equal to       ( )   , a total of      queries are produced of length 

           . 

Similarly at the next level, the 1
st
, each atom of    will produce     queries    , for a total of 

(           )    queries     produced by one   . With the number of    being     , a 

grand total of      (           )    queries     will be produced. The length of these 

    will follow the formula:            . The initial length of   however will now be 

equal to their own length of            , giving a length of (           )    

                       . 

〈 〉 ⋀ ⋀𝛼𝑘  𝛼 ⋀ ⋀〈 〉   …    〈 〉 𝛴 ⋀ ⋀𝛼𝑘  𝛼 ⋀ ⋀〈 〉 𝛴   … 

𝛼 ⋀ ⋀𝛼𝑘  

Figure 6. Representation of the substitution process with substitution options for a CQ after one step 
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As above, at the next level, the 2
nd

, each atom of     will produce     queries      for a total of 

(            )    per    . With (           )         number of    , that 

makes a total of      (           )    (            )    queries     . The 

length of      will be ((           )           )                  

        .  

So at level  , the queries will have a length of    (         ) and each query produces an 

amount of queries equal to (   (         ))     . With the total number queries 

produced being at that level being ∏ (   (         ))      
 . 

 

Calculating the total amount of queries produced will be the sum of queries produced at each 

level. With   levels, i.e. the total number of strata levels, we have a total amount of ∑ ∏ (   
 

 
 

 (         ))     .  

So for a CQ   with   atoms over  , and set of TGDs   over  , if                 then 

the maximum number of queries produced, i.e. the size of rewriting, will be ∑ ∏ (   (   
 

 
 

       ))     . Since this is a finite number and the algorithm does not drop queries it has 

generated then the algorithm terminates and the claim follows. 
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  Chapter 5  

 

 (Multi)Linearity 

In this chapter we will take a look at two syntactic classes that are closely related, Linearity and 

Multi-linearity, with Linearity itself being a subclass of Multi-linearity. As for Multi-linearity, 

we will take a look at a special case of it, using multi-linear TGDs along with an additional 

restriction.  

5.1 Linearity 

Linearity is a basic syntactic class of TGDs. A TGD   is linear when its body consists of a 

single atom, i.e.      ( )   . A set of TGDs   is linear when all of the TGDs     are 

linear. Linearity is incredibly simple yet forms a robust language, more expressive than DL-

LiteR [2], and with a variety of advantages and applications, such as modeling hierarchies. It is 

known that the algorithm XRewrite terminates under linear TGDs, as it takes advantage of the 

simple format of linearity. The fact that the algorithm assumes TGDs to be in normal form does 

not affect us as the normalization procedure preserves linearity. 

The proof of termination of the algorithm under linear TGDs is based on the following 

statement:  

Lemma 1: Consider CQ   over schema  , and set of TGDs   over  . For each      , if 

         then         . 

Proof: We can see how this statement is true because of how linear TGDs are. Since each linear 

TGD has only one body atom, during the rewriting step each body atom of CQ   is replaced by 

a single atom. During the factorization step atoms are unified, and thus reduced, resulting in CQ 

   with a fewer number of atoms than  , i.e.         .  
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Theorem 2: Consider CQ q over schema  , and set of TGDs   over  . If          then 

        (   ) terminates. 

Proof: Considering CQ   over schema  , and set of TGDs   over   if          then we get 

that         , as per Lemma 1. The statement          implies that each       can be 

rewritten into an equivalent CQ with at most            ( ) variables. Thus    contains 

(modulo variable renaming) at most   variables. With the number of CQs that can be 

constructed using   variables and     predicates being finite, and since the algorithm does not 

drop generated queries, the algorithm will terminate. 

As for the time needed for the algorithm to terminate in case of linear TGDs, in case of non-

recursive linear TGDs we can derive it from the formulae presented in the chapter above. 

5.2 Multi-linearity Special Case 

Related to the class of linear TGDs is the class of multi-linear TGDs. Multi-linearity is a 

generalization of linearity, with linear TGDs being a particular instance of multi-linear TGDs. 

As such Multi-linearity is more expressive than Linearity and thus DL-LiteR, and DL-LiteR,⊓, the 

extended version of DL-LiteR,  [3]. 

Definition 5 (Multi-linearity): A TGD   is multi-linear if and only if all the variables that 

appear in     ( ) appear in every atom of     ( ), [13].  

With linear TGDs only having one atom in their body, they satisfy the condition for multi-

linearity.  

As multi-linearity is a more general case than linearity, multi-linear TGDs are more expressive 

than linear ones. While, in the case of non-recursive TGDs, that may be insignificant because of 

guaranteed termination of the algorithm, in case of recursive TGDs where the termination is not 

always guaranteed, a more expressive class of TGDs  than linearity is more useful and a step 

forward to guaranteeing termination in case of recursiveness, with no restrictions for our TGDs. 
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However, in order to guarantee termination we use a special case of multi-linear TGDs, the case 

where our TGDs are multi-linear and the length of the body of each TGD is the same.  

To prove the termination of the algorithm, we use a property derived from the definition of 

multi-linearity. If a TGD σ is multi-linear then all the variables that appear in     ( ) appear 

in every atom of     ( ). This means that when a TGD is multi-linear then all variables 

appearing in the body of a TGD are shared variables in it. Using this fact we can take advantage 

of the factorization process of the algorithm and limit the size of the produced query. 

At first, we will apply the above reasoning to an atomic query which results in formulating the 

following theorem, with its proof following:  

Definition 6 (Initial rewrite): Considering CQ   over schema   and set of TGDs   over  ,    is 

the query produced by an initial rewrite, by substituting all atoms of initial query   once. 

Theorem 3: Consider an atomic query q over a schema R, and a set Σ of multi-linear TGDs 

over R, where        of all TGDs in   is the same. For each         ,        

    . 

Proof: Consider atomic query  . After one step of the algorithm, query   will be rewritten into 

a query    with a number of atoms,   (for the minimum case    ), as shown in Figure 7.  

 

 

 

 

This initial rewrite gives an upper limit that the length of the query must not exceed, the      that 

appears in Theorem 3, which is equal to  . If in every query produced afterwards the length 

stays the same, we will have successfully limited the size of the query.  

𝑎 

𝑎   ∧  𝑎   

Figure 7. Atomic query q after initial rewrite into q' with two atoms Fred
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At first we will try to limit the length of the query produced by the rewrite step. This is done by 

replacing our TGDs  , whose     ( )   , with ones that have a shorter body of the same 

length. To limit the length of the rewrite step as much as possible every new TGD    will only 

have two atoms in its body, i.e.      (  )   . 

Example 9: Consider query  :  , and TGD            , that leads to atom   being 

substituted by atoms  ,  ,   and  . Using   to rewrite   will result in            . Now let us 

replace TGD   by a set of TGDs    *(     ) (     ) (     )+. Using the set of 

TGDs    to rewrite   will result in        ,           and finally             , thus making the 

result of these two rewrites the same. The second rewrite will take more steps to do but each 

length of each substitution is limited to  .  

Figure 8 shows a representation of the substitution when limiting the length of each substitution 

to  . 

 

This may seem counterintuitive as each atom would turn into   atoms and thus still end up 

increasing the length of the query to greater than  . This is where the factorization step of the 

algorithm will come in. Turning our TGDs into sets of equivalent ones with same shorter length 

will help us generalize the following procedure. Remember that, in short, the factorization step 

will take a set of atoms of the query that have a shared variable, and are essentially redundant 

information, and replace then by a single atom. Because of multi-linearity, every variable that 

𝑎     ∧  𝑎     ∧  𝑎   𝑎   ∧  𝑎     ∧  𝑎     

𝑎 

𝑎   ∧  𝑎   

Figure 8. Every atom of query q’ is substituted by a conjunction of atoms with length equal to n, where n=2. 
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appears in the body of TGD   will appear in every atom of     ( ). That means that once we 

use   to rewrite atom  , all the atoms that substitute it, a conjunction of atoms 

                   , will have all their variables be shared. The matter of number and position of 

variables in an atom does not matter as we can substitute it with an equivalent atom so that the 

position and number of variables match in the atoms produced. As the variable are shared, that 

means that the result of the rewrite step is factorizable, with the atoms being merged and 

replaced into a single atom of   . The only case in which the factorization step does not work is 

when      ( )   , i.e.     ( )   . This means that if an atom is rewritten, it is either 

substituted by a single atom, or by a conjunction of atoms that are factorizable and thus merged 

into a single atom. So no matter what, the end result will be that it is substituted by a single 

atom. 

In the end, an atom has two choices, either it cannot be rewritten and stays a single atom, or it 

can be rewritten and is ultimately substituted by a single atom, as shown in Figure 9.  

 

That means than after our initial rewrite that results in   , the length of the query will not 

increase in size, i.e.           , and thus satisfying the assumption presented in Theorem 3. In 

fact, the length of the query may decrease as the atoms produced by different substitutions but 

𝑎     ∧  𝑎   𝑎   ∧   𝑎     

𝑎     ∧  𝑎     ∧  𝑎   𝑎   ∧  𝑎     ∧  𝑎     

𝑎 

𝑎   ∧  𝑎   

Figure 9. Due to the above property, the product of rewritten atoms is factorizable and merges into a single atom. Fred
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in the same level of substitutions may be factorizable with each other, reducing the number of 

atoms even further. 

So, considering an atomic query   over a schema  , and a set   of multi-linear TGDs over  , 

where the body of all TGDs in   is the same size, after an initial rewrite that creates query   , 

for each          ,            .  

In fact, we can also refine the above conclusion even further by defining the value of     . As 

     becomes equal to the body of a TGD in  , in the worst case scenario it will become equal to 

       ( ), the size of the largest body of TGD in  . Adding this to Theorem 3 proves the 

following theorem:  

Theorem 4: Consider an atomic query q over a schema R, and a set Σ of multi-linear TGDs 

over R, where        of all TGDs in   is the same. For each          ,  

             ( ). 

Theorem 3 will finally give us the proof of termination. It follows the same logic as the logic 

used for the proof of termination for linearity. After an initial rewrite that produces   , all 

following rewrites will be of an equal or smaller length than   . 

             ( )  implies that each           can be rewritten into an equivalent 

conjunctive query with at most          ( )       ( )  variables. Thus     contains 

(modulo variable renaming) at most   variables. With the number of conjunctive queries that 

can be constructed using   variables and     predicates being finite, and since the algorithm 

does not drop generated queries, the algorithm will terminate. 

 

This proof of termination of the algorithm for multi-linear TGDs and atomic queries will form 

the basis for proof of termination and in the more general case of non-atomic queries and multi-

linear TGDs. 
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Theorem 5: Consider a conjunctive query q over a schema R, and a set Σ of multi-linear TGDs 

over R, where        of all TGDs in   is the same. For each          ,        

     . 

Proof: Consider conjunctive query   that is made up from a number of atoms        . It can 

also be said that   is made up from a number of atomic queries. The idea is that if Theorem 3 

applies for each atom in   then it will also similarly apply collectively to  . 

As per Definition 6,    is the query that results after each atom in   is substituted once. In more 

detail, each atom of   will go through the process described in the section above, with each 

atom    undergoing an initial rewrite that will result in a conjunction of atoms    . This results 

in   , a conjunctive query made up of          .  

Per the description above, each     will have a limit, giving us a bound that its size cannot 

exceed as the results of any further substitutions to it, i.e.      , will never be of a larger size than 

that bound of      . As             , then also ∑       
 
    ∑      

 
   . As       ∑       

 
    and 

     ∑      
 
   , the above gives us           . 

We can also refine the above by defining the value of     . In the worst case scenario,       

       ( )  and as      ∑      
 
   , this results in      ∑        ( ) 

      

       ( ). With   being the number of atoms in q this results in             ( )      

and proves the following theorem: 

Theorem 6: Consider a conjunctive query q over a schema R, and a set Σ of multi-linear TGDs 

over R, where        of all TGDs in   is the same. For each          ,  

             ( )      . 

 

So now we have given a bound and limited the size of the query which leads to the following 

theorem of the termination of the algorithm XRewrite: 
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Theorem 7: For every conjunctive query q over a schema R, and a set Σ of multi-linear TGDs 

over R, where        of all TGDs in   is the same, then         (   ) 

terminates. 

Proof: By Theorem 4.1 we get that after an initial rewrite for every initial atom of  , that creates 

query   , for each          ,               ( )     . That initial rewrite for every initial 

atom of   consists of a finite amount of substitutions, equal to the number of atoms of  , with 

substitution options also being finite. Additionally,              ( )      for each      

    , implies that each           can be equivalently rewritten as a conjunctive query with at 

most          ( )           ( )  variables. Therefore     contains (modulo variables 

remaining) at most   variables. With the maximum number of conjunctive queries that can be 

constructed using   variables and     predicates being finite and since the algorithm does not 

drop queries it has generated, the claim of the above theorem holds true. 
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  Chapter 6  

 

Stickiness 

Another syntactic class of TGDs is called stickiness. The idea of stickiness is to create a class 

that allows for meaningful joins in rule bodies [14]. Stickiness allows joins to appear in rule-

bodies not expressible with linear TGDs or DL(R)-Lite assertions [1]. This is done by ensuring 

that during the chase procedure, terms associated with body variables appearing more than once 

are always propagated. To do that we use a procedure called SMarking. With  , a set of TGDs 

as input, SMarking returns the same set after marking some of its body variables.  

In more detail, the SMarking procedure consists of two steps, the marking step and the 

propagation step. In the marking step, every variable of a TGD, which appears in its body but 

not in its head, is marked. After all variables that can be marked by the marking step are 

marked, the propagation step is exhaustively applied. The propagation step checks pairs of 

TGDs in the following way. If an atom   in the head of a TGD   has the same predicate as an 

atom    in the body of TGD   , if    has a marked variable in some position, the variables of   

in the same position will be marked in all its occurrences in the body of  . Repeating this until 

no further changes are observed will give us the SMarking of  . 

Formally, consider Σ set of TGDs, TGD     and variable       ( ) . We recursively 

define when   is marked in  : 

1. If   in not in     ( ), then   is marked. 

2. Assuming that     ( )   ( ̅) and    ̅, if there is      with  ( ̅) in     (  ), 

and each variable in  ( ̅) at a position    ( ( ̅)  ) is marked in   , then   is marked 

in     ( ). 
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As for stickiness,  a set of TGDs Σ is called sticky if, for every           ( ), each marked 

variable appears only once. Stickiness guarantees the first-order rewritability of CQ answering 

[13]. Additionally, the normalization procedure also preserves stickiness so the algorithm 

assuming normal form TGDs does not affect the stickiness. 

Example 10: Consider   set of TGDs:     (   )      (   ) ,     (   )   ( ) , 

    ( )  ( )   (   ) and      (   )  (   )   ( ). The SMarking of   will start with 

the above first condition, the initial marking step. This will mark variables with a cap(^), 

resulting in   looking like this: 

    ( ̂  )      (   ) ,     (   ̂)   ( ) ,     ( )  ( )   (   )  and 

    (   ̂)  ( ̂  )   ( ). 

Following the initial step, the second condition will be used, the propagation step. This will 

mark variables with a double cap, resulting in   looking like this: 

     . ̂  ̂̂/      (   ) ,     (   ̂)   ( ) ,     ( )  ( )   (   )  and 

    (   ̂)  ( ̂  )   ( ).  

One of the reasons that   is marked in    is because the atom in     (  ) appears in     (  ) 

with a marked variable in it. The marked variable in the atom of     (  ) is the first one, so 

the first variable in the atom of     (  ), i.e.  , will be marked in all of its occurrences in 

    (  ).  

The termination of XRewrite hinges on the above property that each marked variable appears 

only once. That property will lead to the following statement: 

Lemma 2: Consider CQ   over schema   and set of TGDs   over  , for each      , if 

        , then every variable of    (  )    ( ) occurs only once in   . 

The above statement can be proven true following an induction on the rewriting and 

factorization steps of the algorithm [1].  
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Theorem 8: Consider CQ q over a schema R, and a set Σ of multi-linear TGDs over R. If 

        , then         (   ) terminates. 

Proof: Assume that         , and given CQ     , let    be the query obtained from   by 

replacing every variable of    ( )    ( ) with symbol  . 

The set    ( )    ( ) will contain all variables that appear in  , except all the variables that 

appear in the initial query  . So all variables except those of the initial query are now replaced 

by  . Normally, this would be a problem but per the statement above, every variable of    ( ) 

   ( ) appears only once in   as         . Since these variables appear only once, that 

means that they are not used for any joins, so their name can be freely changed with the 

meaning of the query staying the same.  

 

Example 11: Let there be TGD  :  (   )  (   )   (   ) and CQ  :  (   ). 

Consider   :  (    )  (    )  and   :  (     )  (     )  where         . Normally, 

              all refer to a different variable but since they appear only once, they can freely 

be renamed without changing the meaning of    or   . With    (  )    ( )  *     + and 

   (  )    ( )  *  
    

 +  we get that   
    (   )  (   )  and   

 :  (   )  (   ) . 

Following the   renaming, we can see that   
    

  , and thus      . 

 

So, for each pair of CQs         , if   
    

  then    and    are the same modulo bijective 

variable renaming, aka      . This check of isomorphism is implemented in the algorithm, 

meaning that it will not explore queries when it has already explored a query with the same 

meaning. Since the algorithm will not do redundant explorations of queries, we only have to 

calculate the amount of non-isomorphic queries that the algorithm can explore. Following the   

renaming, the terms that can used in queries will be the terms used in the initial query q and the 

  variable, i.e.      ( )  * +. These terms are a finite amount. With the number of predicates 

in   also being finite, the amount of unique queries that can be produced is finite. Since the 
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amount of queries the algorithm can explore is finite and it does not drop queries it has 

explored, the algorithm will terminate. 
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  Chapter 7  

 

Conclusion 

This thesis presents a brief introduction to the field of ontological databases and query rewriting 

for ontological databases, centered on the algorithm XRewrite. With the results of query 

rewriting and the algorithm being in the form used in widespread databases, this can be an 

easier point of introduction to the above fields. Presented as an analysis of XRewrite we go 

through the basics of ontological databases and commonly used terminology and procedures. 

Beyond an introduction, XRewrite is a quite powerful solution to the problem of query rewriting 

for ontological databases. Our analysis goes through a simple presentation of the logic behind it, 

how and why it works, and the problem of its termination. With the termination not being 

guaranteed we present various syntactic classes of TGDs in which the algorithm is proven to 

terminate: non-recursive, linear, a multi-linear special case, and sticky. Despite termination in 

the case of non-recursive TGDs being intuitively known as a fact, we provide new information 

in how exactly the algorithm works in these cases and provide the size of the rewriting. 

Additional new results is the proof of termination under a special case of multi-linear TGDs, 

especially in the case of recursive TGDs. Being more general than linear TGDs, this expands 

the scope of cases in which XRewrite terminates. As for the efficiency of XRewrite, the 

algorithm has a low data complexity as it uses only the query and ontology which are typically 

of a size that can be productively assumed to be fixed and is usually much smaller than the 

relational database, with an implementation and evaluation of the algorithm being available [1]. 

Further research to be done on XRewrite includes finding proof of its termination under multi-

linearity with no further restrictions applied as well as trying to find a more general and 

expressive class of TGDs under which the algorithm will terminate, like bounded dependencies.
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Ontological databases are an area with active and ongoing research, with properties we have not 

discussed on this paper. Any contribution is welcome as ontological databases are aimed to 

replace present conventional databases in the near future and ontologies see more use.

Fred
eri

ko
s L

ea
nd

rou



 

 

40 

 

Bibliography

[1] Giorgio Orsi, and Andreas Pieris Georg Gottlob, "Query Rewriting and Optimization for 

Ontological Databases," ACM Trans. Datab. Syst. 39, 3, Article 25, p. 46, 2014. 

[2] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati Diego 

Calvanese, "Tractable reasoning and efficient query answering in description logics: The 

DL-Lite family," J. Autom. Reason, vol. 39, no. 3, pp. 385-429, 2007. 

[3] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati Diego 

Calvanese, "Data Complexity of Query Answering in Description Logics," Artificial 

Intelligence, vol. 195, pp. 335–360, 2013. 

[4] Boris Motik, and Ian Horrocks Hector Perez-Urbina, "Tractable query answering and 

rewriting under description logic constraints," J. Appl. Logic, vol. 8, no. 2, pp. 186-209, 

2010. 

[5] Despoina Trivela, and Giorgos B. Stamou Alexandros Chortaras, "Optimized query 

rewriting for owl 2 ql," in Proceedings of the 23rd International Conference on Automated 

Deduction, 2011, pp. 192-206. 

[6] Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris Andrea Cali, "A logical toolbox 

for ontological reasoning," SIGMOD Rec, vol. 40, no. 3, pp. 5-14, 2011. 

[7] Michel LeClere, Marie-Laure Mugnier, and Michael Thomazo Melanie Konig, "A sound 

and complete backward chaining algorithm for existential rules," in Proceedings of the 6th 

International Conference on Web Reasoning and Rule Systems, 2012, pp. 122-138. 

[8] Michel LeClere, Marie-Laure Mugnier, and Michael Thomazo Melanie Konig, "On the 

exploration of the query rewriting space with existential rules," in Proceedings of the 7th 

International Conference on Web Reasoning and Rule Systems, 2013, pp. 123-137. 

[9] Alberto O. Mendelzon, and Yehoshua Sagiv David Maier, "Testing implications of data 

dependencies," ACM Trans. Database Syst., vol. 4, no. 4, pp. 455-469, 1979. 

[10] David S. Johnson and Anthony C. Klug, "Testing containment of conjunctive queries under 

functional," J. Comput. Syst. Sci, vol. 28, no. 1, pp. 167–189, 1984. 

 

Fred
eri

ko
s L

ea
nd

rou



41 

 

 

[11] Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa Ronald Fagin, "Data exchange: 

Semantics and query answering," Theor. Comput. Sci, vol. 336, no. 1, pp. 89-124, 2005. 

[12] Alan Nash, and Jeff B. Remmel Alin Deutsch, "The chase revisisted," in Proceedings of 

the 27th ACM Symposium on Principles of Database Systems, pp. 149-158. 

[13] Georg Gottlob and Thomas Lukasiewicz Andrea Cali, "A GENERAL DATALOG-BASED 

FRAMEWORK FOR TRACTABLE," Oxford, 2010. 

[14] Georg Gottlob, and Andreas Pieris Andrea Cal`ı, "Towards More Expressive Ontology 

Languages: The Query Answering Problem," Artificial Intelligence, vol. 193, pp. 87-128, 

2012. 

 

 

Fred
eri

ko
s L

ea
nd

rou




