
Master Thesis

Ontological Query Rewriting: Termination Criteria

Frederikos Leandrou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

December 2022 Fred
eri

ko
s L

ea
nd

rou

ABSTRACT

Ontological queries are queries evaluated against a database and an ontology, i.e. a set of logic

rules and constraints from which new knowledge can be derived from. Ontological database

systems can thus be more powerful than traditional database systems. A smooth transition

between the two requires their connection which comes in the form of rewriting ontological

queries into equivalent ones for traditional databases, thus leading to the creation of algorithms

that do that. Using the ontology is an iterative process and as such the termination of these

rewrite algorithms comes into question. We focus on one such algorithm, firstly going through

its basics and workings, and then exploring the cases that will lead to its termination, by

applying restrictions to the form of the ontology the algorithm accepts as input. In particular, we

find the size of the obtained rewriting in case of non-recursive ontology and provide proof of

termination for a less restrictive case of ontology.

Fred
eri

ko
s L

ea
nd

rou

i

UNIVERSITY OF CYPRUS

DEPARΤMENT OF COMPUTER SCIENCE

ONTOLOGICAL QUERY REWRITING: TERMINATION CRITERIA

Frederikos Leandrou

Supervisor

Andreas Pieris

This Master Thesis was submitted as part of the requirements needed for obtaining a Master’s

degree in Computer Science from the Department of Computer Science of the University of

Cyprus

December 2022

Fred
eri

ko
s L

ea
nd

rou

ii

APPROVAL PAGE

Master of Computer Science Thesis

ONTOLOGICAL QUERY REWRITING: TERMINATION CRITERIA

Presented by

Frederikos Leandrou

Research Supervisor

 Research Supervisor’s Name

Committee Member

 Committee Member’s Name

Committee Member

 Committee Member’s Name

University of Cyprus

December, 2022

Fred
eri

ko
s L

ea
nd

rou

iii

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor Andreas Pieris for the

opportunity to work with him and introducing me to this subject. Without their knowledge,

experience and great patience, I would not have been able to complete this thesis.

Fred
eri

ko
s L

ea
nd

rou

iv

Table of Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVE .. 3

1.3 METHODOLOGY AND CONTRIBUTIONS .. 3

1.4 DOCUMENT STRUCTURE .. 4

1.5 RELATED WORK ... 5

CHAPTER 2 BACKGROUND ... 6

CHAPTER 3 REWRITING ALGORITHM XREWRITE .. 12

3.1 APPLICABILITY CONDITION OF XREWRITE .. 12

3.2 FACTORIZABILITY CONDITION OF XREWRTITE ... 13

3.2.1 Algorithm XRewrite .. 15

3.2.2 Rewriting Step ... 16

3.2.3 Factorization Step .. 17

3.3 TERMINATION OF XREWRITE ... 17

CHAPTER 4 NON-RECURSIVENESS .. 19

CHAPTER 5 (MULTI)LINEARITY ... 26

5.1 LINEARITY .. 26

5.2 MULTI-LINEARITY SPECIAL CASE .. 27

CHAPTER 6 STICKINESS .. 34

CHAPTER 7 CONCLUSION ... 38

BIBLIOGRAPHY ... 40

Fred
eri

ko
s L

ea
nd

rou

v

LIST OF FIGURES

Figure 1. Ontological query rewriting process .. 2

Figure 2. Dependency graph of recursive and non-recursive TGD sets 19

Figure 3. Representation example of substitution process .. 21

Figure 4. Representation example of substitution process with multiple substitution options ... 22

Figure 5. Representation of the substitution process for a CQ after one step 23

Figure 6. Representation of the substitution process with substitution options for a CQ after one

step .. 24

Figure 7. Atomic query q after initial rewrite into q' with two atoms ... 28

Figure 8. Every atom of query q’ is substituted by a conjunction of atoms with length equal to n,

where n=2. ... 29

Figure 9. Due to the above property, the product of rewritten atoms is factorizable and merges

into a single atom. ... 30

Fred
eri

ko
s L

ea
nd

rou

1

 Chapter 1

Introduction

1.1 Motivation

Ontology, i.e. the conceptualization of a subject area showing the properties and relations

between instances of these conceptualizations, has been adopted for use in data repositories and

models, which can sometimes be distributed and heterogeneous. As ontologies can offer high

expressive power they are starting to replace traditional data and conceptual models such as

UML class diagrams and Entity Relationship schemata.

The use of ontologies in database technology created the ontological database management

system. Using advanced reasoning and query processing mechanics, a database is combined

with an ontology that is used to produce additional information from the database that is not

explicitly contained in it. This automated production of data via reasoning provides certain

flexibility to the information in the database while the ontology and the information it represent

can easily be extended while also being easier for user to navigate due to thinking in terms of

concepts.

As such ontological databases are a reasonable next step to database usage, if only restrained by

the transition from traditional databases to ontological databases, how they can interconnect and

the complexity of applying queries to every model created by the ontology. A way to introduce

ontology to traditional database systems is to implement the higher levels of ontology as a

façade and leave the execution of the queries to the traditional databases. This will require the

translation of ontological queries into ones compatible for use in these traditional databases,

thus leading to the creation of ontological query rewriting algorithms.

Fred
eri

ko
s L

ea
nd

rou

2

An ontological query rewriting algorithm will take ontological queries and rewrite them into

equivalent first-order queries. This is assisted by the fact that a way to model the ontology is

through the use of tuple-generating dependencies (TGDs), a type of traditional database

constraints. These TGDs are of the form: () (), where and are a

conjunction of atoms over a relational schema. In essence these TGDs are rules from which

additional knowledge can be derived from, so a query combined with an ontology may

contain more information than what it states in itself. As shown in Figure 1, the rewriting

algorithm will take such query , compile it with the ontology , essentially get all the

information hidden in it and produce an equivalent first-order query , that contains all that

information in itself. These first-order queries can then be used in the current more widespread

databases.

Example 1: Consider set consisting of TGD:

 () () ()

asserting that for every two individuals if they are related and one of them is the parent of the

other, then there exists another individual that also created that individual. We can ask for who

created Bob by posing the query () but at the same time we also have to

𝑞

conjunctive query

𝛴

ontology

𝑞𝛴

first-order query

compile

Figure 1. Ontological query rewriting process

Fred
eri

ko
s L

ea
nd

rou

3

check for individuals that are related and a parent to Bob as per the TGD above that means they

created him. So query becomes query :

(()) (()⋀ ()), with the term not included

in query being knowledge derived from the ontology.

The existence of these rewriting algorithms can be of great help as they can help with the

transition to ontological database systems and provide the advantages of ontology to existing

databases systems by allowing them to be slowly changed while continuing their normal

operation. The main algorithm that we focus on is a rewriting algorithm called XRewrite.

1.2 Objective

Our objective in this thesis concerns an algorithm for ontological query rewriting, called

XRewrite and introduced in the paper “Query Rewriting and Optimization for Ontological

Databases” [1]. More specifically, we focus on its ability to terminate.

The algorithm XRewrite presented in the aforementioned paper is an algorithm that translates

queries for ontological databases into equivalent ones to be used with conventional databases.

Due to certain attributes in the rewriting process, there are cases in which the termination of the

algorithm is not always guaranteed. We will detail the cases in which we know that the

algorithm terminates but also explore additional cases in which we intuitively know that the

algorithm terminates but have no concrete proof to that fact, with the intent to provide proof that

they do.

1.3 Methodology and Contributions

With the introduction to the topic of query rewriting for ontological databases and the algorithm

of XRewrite, firstly we go through the basic terms and ideas used in these concepts. Then we

will go through an overview of the algorithm and present how it works and the problems that

occur with its termination, or lack thereof. Following that we will present four syntactic classes

under which the algorithm terminates along with proof of termination for each class. These

Fred
eri

ko
s L

ea
nd

rou

4

syntactic classes limit the form that the TGDs and thus the ontology can take but help with

guaranteeing the termination of the algorithm. These classes are Non-Recursiveness, Linearity

and a Multi-linearity Special Case, and Stickiness. Termination under these classes guarantees

the translation and thus successful execution of an ontological query on any ontology that can

be described using only TGDs of that class. Under the Non-Recursive class of TGDs, the

successful execution of an ontological query on any non-recursive ontology is guaranteed.

Linear TGDs are more expressive than the description logic DL-LiteR [2], which forms the

OWL 2 QL profile of W3C’s standard ontology language for the Semantic Web, as well as

being useful in modelling hierarchies. With Linearity being a subclass of Multi-linearity, Multi-

linear TGDs are more expressive than linear TGDs. Multi-linearity has the goal of defining a

natural formalism strictly more expressive than DL-LiteR,⊓, the extended version of DL-LiteR

which allows for concept conjunction [3]. Stickiness allows joins to appear in rule-bodies not

expressible with linear TGDs or DL(R)-Lite assertions, and can be used to encode the Cartesian

product of two tables, thus being able to describe knowledge whose underlying relation

structure is not treelike [1].

1.4 Document Structure

The remainder of the paper is organized as follows. In Chapter 2 we present the background of

the subject of our study. At first, basic terms and terminology we need to know in order to

understand the algorithm and the problem are defined. In Chapter 3 we go through an overview

and explanation of how the algorithm XRewrite works. Chapters 4 to 6, are an analysis of the

syntactic classes under which the algorithm terminates. Chapter 4 is for Non-Recursiveness,

Chapter 5 for Linearity and the Multi-linear Special Case, and Chapter 6 for Stickiness. Lastly,

Chapter 7 is the conclusion, summing up our findings and mentioning further work that can be

done on the subject.
Fred

eri
ko

s L
ea

nd
rou

5

1.5 Related Work

Research done on the topic of query rewriting algorithms includes an early algorithm for DL-

lite family of Description Logics [2] and implemented in the QuOnto system. This algorithm

also translates the query into a union of conjunctive queries but, as a result of the redundant

application of the factorization step, the resulting queries are unnecessarily large. A fix to this

problem is introduced by a resolution-based rewriting for DL-liteR implemented in the Requiem

system [4], solving the problem by directly handling existential quantification through proper

functional terms. A more efficient algorithm, called Rapid, uses selective and stratified

applications of resolution rules, taking advantage of the query’s structure to reduce redundant

rewritings [5]. These algorithms use specifics of DLs so they do not easily extend to TGD-based

languages. A more general approach using a backward-chaining rewriting algorithm is able to

deal with arbitrary TGDs, as long as the language used satisfies suitable syntactic restrictions

that guarantee the algorithm’s termination [6], [7], [8].

Fred
eri

ko
s L

ea
nd

rou

6

6

 Chapter 2

Background

Our study is based on the paper “Query Rewriting and Optimization for Ontological Databases”

by Georg Gottlob, Giorgio Orsi, and Andreas Pieris [1]. The paper introduces an algorithm,

called XRewrite, which can translate queries for ontological databases into a union of

conjunctive queries, a fragment of SQL, for their evaluation and in order to exploit the

widespread existing database technology.

In order to understand the algorithm XRewrite we need to be familiar with some basics of the

field of relational databases, relational queries, tuple-generating dependencies, and the chase

procedure relative to such dependencies [1].

Alphabets: We consider the following disjoint sets of symbols:

 : A set of constants, the normal domain of a database, each one represents a different

value.

 : A set of labeled nulls, placeholders for unknown values and viewed as globally

existentially quantified variables, different nulls may represent the same value.

 : A set of regular variables, used in queries and dependencies.

Relational Model: A Relational schema (or schema), is a set of relational symbols, or

predicates, each with its associated arity. With we denote predicate which has arity . By

 () we refer to maximum arity of all predicates of . A position , - in is identified by

predicate and its -th argument. A term is a constant, null or variable. An atomic

formula, or atom, has the form (), where is a relation and are terms. For

atom , () and () are the set of its terms and the set of its variables, respectively,

Fred
eri

ko
s L

ea
nd

rou

7

with the notations also extending to sets of atoms. Conjunctions of atoms are often identified by

the sets of their atoms. An instance for schema is a possibly infinite set of atoms of the form

 () , where and () . A database is a finite instance such that

 () .

Substitutions: A substitution from a set of symbols to set of symbols is a function

defined as follows: is an empty substitution and, if is a substitution, then * + is a

substitution, where and ; if , then we write () . An assertion of the

form is called mapping. The restriction of to , represented as , is the

substitution * () +. A homomorphism from a set of atoms to set of atoms

is a substitution

 such that if , then () and if () , then

 (()) (() ()) . A set of atoms * + , where ,

unifies if there is a substitution , called unifier for , such that,

 () (). A most general unifier (MGU) for is a unifier for A, , such that for

each other unifier for A, there is a substitution such that . If a set of atoms unify, a

MGU exists and the MGU for a set is always unique, up to variable renaming.

Queries: An n-ary first-order query is an expression (), where are exactly

the free variables of first-order formula . An answer to over instance is a tuple ()

of constants such that () , i.e. satisfies () , where

 () is with each free replaced by . A conjunctive query (CQ) of arity

over schema is an assertion of the form () () , where , is a

conjunction of atoms over , with also known as (), and is an -ary predicate not

occurring in .

Tuple Generating Dependencies: A tuple generating dependency (TGD) over schema is a

first-order formula () (), where and where are

Fred
eri

ko
s L

ea
nd

rou

8

conjunctions of atoms over , e.g. () () ,

 () () () . is the body of , (), while

is the head of , (). For brevity, universal quantifiers in front of TGDs will be omitted

and commas will be used for the conjunction. is satisfied by instance for , written , if

the following is true: whenever there exists a homomorphism such that (()) , then

there exists homomorphism , called extension of such that (()) .

Instance satisfies set of TGDs, written , if for every .

Conjunctive Query Answering under TGDs: Given database for schema and set of TGDs

 over , the answers we consider are those that are true in all models of w.r.t. . The models

of w.r.t. , denoted (), is the set of all instances such that and . The

answer to an -ary CQ w.r.t. and , denoted (), is the set of -tuples *

 () ()+.

The TGD Chase Procedure: The chase procedure or chase is a fundamental algorithmic tool

for checking implication of dependencies [9] and checking query containment [10]. The chase

procedure is an iterative application of the so-called TGD chase rule.

 TGD chase rule: Consider instance for schema , and TGD : ()

 () over . is applicable to if there exists a homomorphism such that

 (()) . The result of applying to with is (()) and we

write 〈 〉 , where is an extension of such that () is a new labeled null of

 not occurring in , and following lexicographically all those in , for each .

 〈 〉 defines a single TGD chase step.

In short, the chase procedure draws conclusions. A TGD of the form: , can essentially

be thought of as a rule that says: if is true, then is true as well. So given a set of statements,

i.e. instance , the chase will check whether any conclusions can be derived from applying the

rules to the statements. For example, if our statements say that is true, we can conclude that

Fred
eri

ko
s L

ea
nd

rou

9

will be true as well and so part of our statements as well. This process of drawing conclusions

will be repeated using all statements and all rules that are given. This repetition may be finite or

continue infinitely; depending on the rules it is given.

Formally, a chase sequence of database w.r.t. set of TGDs is a sequence of chase steps

 〈 〉 , where , and . The chase of w.r.t. , denoted (), is

defines as follows:

 A finite chase of w.r.t. is a finite chase sequence 〈 〉 , where

and there is no applicable to , where ().

 An infinite chase sequence 〈 〉 , where , is fair if whenever a TGD :

 () () is applicable to with homomorphism , there exists

extension of and such that (()) . An infinite chase of w.r.t.

 is a fair infinite chase sequence 〈 〉 , where ; let () ⋃

 .

Example 2: Consider instance * ()+ for schema , and set of TGDs * ()

 () () () over There exists homomorphism

* + where (()) () and as such is applicable to . Applying

 to with , a.k.a.〈 〉, gives us (()) * ()+ where is a new

labeled null. Then there exists * + where (()) () and

thus 〈 〉 gives us (()) * ()+ * () ()+ . As

there is no applicable to then () * () () ()+ where

is a null of .

The chase of w.r.t. is a universal model of w.r.t. , i.e. for each () there

exists homomorphism such that (()) , [11], [12]. With this property the

chase becomes a formal algorithmic tool for answering queries under TGDs, as the answer to

CQ w.r.t. database and set of TGDs corresponds with the answer to over chase of

w.r.t. , that is () (()).

Fred
eri

ko
s L

ea
nd

rou

10

Note that the TGD chase rule given above is oblivious, i.e. it does not check whether the TGD

under consideration is already satisfied and adds atoms in the instance even if not needed. There

also exists a version of the rule with stricter criteria, called restricted, with the aim of adding

only the atoms necessary, which is considered the standard, [11], [12].

Normal Form: A TGD is in normal form if its head has only one atom, i.e. () ,

and its head contains only one occurrence of an existential quantifier variable. A set of TGDs

is in normal form if each TGD , is in normal form. Every set of TGDs over schema

can be transformed into a normal form set of () over schema (), such that and ()

are equivalent w.r.t. query answering. For a TGD , if is in normal form then ()

* + , else assuming * + () , * + (()) (()) ,

and are the existential quantified variables of , let () be the set:

 ()
 ()

 ()

 ()

 ()

 ()

 ()

 ()

where
 is an () -ary auxiliary predicate not occurring in , for each , - . Let

 () ⋃ () and () be the schema obtained by adding to the auxiliary predicates

in ().

As such, the algorithm XRewrite assumes that the TGDs it is given are in normal form.

Fred
eri

ko
s L

ea
nd

rou

11

Example 3: Consider TGD: () () (), which is not in normal form.

can be transformed into set () in normal form such that and () are equivalent w.r.t.

query answering. () will be the set: (() ()) (() ())

and (() ()).

Fred
eri

ko
s L

ea
nd

rou

12

 Chapter 3

Rewriting Algorithm XRewrite

With the basics covered, the algorithm XRewrite will follow. As previously mentioned, the goal

of this algorithm is to accept as input a CQ over a schema and a set of TGDs over , and

rewrite this query into equivalent ones for use in standard query language, in particular as a

union of conjunctive queries, a fragment of SQL. The produced will be called a perfect

rewriting, that is evaluating over database yields the same result as evaluated over

ontological database .

The algorithm will use two new terms, applicable and factorizable, as part of its workings.

Applicable concerns its applicability condition, in short, whether or not the algorithm can be

used or not on that particular part of the query. Factorizable concerns the factorizability

condition, in short, whether or not a set of atoms can be reduced to their MGU. The algorithm in

essence consists of two sections, the rewriting step and the factorization step. The rewriting step

is used if the applicability condition is satisfied and the factorization step is used if the

factorizability condition is satisfied.

3.1 Applicability Condition of XRewrite

For the algorithm we assume without loss of generality that the variable occurring in queries

and the variables appearing in TGDs are two distinct disjointed sets. Also, given CQ , a

variable is called shared in if it appears in more than once in . Note that distinguished

variables of are shared since they appear in both the body and head of . With this the

Applicability Condition follows:

Fred
eri

ko
s L

ea
nd

rou

13

Definition 1 (Applicability): Considering CQ and TGD and given set of atoms

 (), it is said that is applicable to if the following are true:

1. The set * ()+ unifies.

2. For each , if the term at position in is either a constant or a shared variable in

 , then ().

In short, for to be applicable to , and head of unify, and for every atom of , terms that

are either constants or shared variables are not in the same position as the position of the

existential quantified variable of .

Example 4: Consider TGD () () and query () ()⏟

 ()⏟

.

For we can see that is applicable to it, as * ()+ unifies using * +,

thus fulfilling the first condition above. The second condition is also fulfilled as while appears

in other atoms as well and thus is a shared variable, its position in this particular atom is not the

same position as the position of the existential variable in .

For atoms , will not be applicable. While they fulfill the first condition, is a shared

variable and appears in them in the same position as the position of existential variable in ,

thus violating the second condition.

3.2 Factorizability Condition of XRewrtite

Expanding on the applicability condition is the concept of factorizability, upon which the

factorization step of the algorithm is based. In short, its goal is to convert some shared variables

into non-shared ones for the above applicability condition to apply to them. This is done by

continuously unifying all atoms that unify in the query’s body. In some cases this process does

not help and produces redundant queries, thus requiring a restricted version of factorization that

produces only the essential queries needed. This Factorizability Condition follows:

Fred
eri

ko
s L

ea
nd

rou

14

Definition 2 (Factorizability): Considering CQ and TGD and given a set of atoms

 (), where , it is said that is factorizable w.r.t. if the following are true:

1. unifies.

2. () .

3. There exists variable (()) that occurs in every atom of only at

position ().

Example 5: Consider TGD () () () and CQs

 () ()⏟

, () () ()⏟

 and () ()⏟

, where

 .

Checking the factorizability of this example, we see that the second condition is true as has an

existential quantifier. So we will check the CQs for the first and third conditions.

For , the first condition is true, as it unifies w.r.t. using the substitution * +.

The third condition is also true as appears in all atoms of at the same position as the

position of existential variable in .

For and , the third condition is violated, as for the variable C also appears in but

outside of , and for the variable appears in two different positions, not only at the

position of existential variable in .

Fred
eri

ko
s L

ea
nd

rou

15

3.2.1 Algorithm XRewrite

Following the above definitions, we can now present the algorithm:

Algorithm 1 The algorithm XRewrite

Input: a CQ over a schema and a set of TGDs over

Output: the perfect rewriting of w.r.t.

 ;

 *〈 〉+;

repeat

 ;

 foreach 〈 〉 where * + do

 foreach do

 // rewriting step

 foreach () such that is applicable to do

 ;

 ([()]);

 if there is no 〈 〉 such that then

 *〈 〉+;

 end

 end

 // factorization step

 foreach () which is factorizable w.r.t do

 ();

 if there is no 〈 〉 such that then

 *〈 〉+;

 end

 end

 end

 // query q is now explored

 (*〈 〉+) *〈 〉+;

 end

until ;

 * 〈 〉 +;

return ;

The algorithm consists of a number of loops but in short is an iterative application of two central

steps, the rewriting step and the factorization step. These steps will be applied to every atom of

every query in set of queries . consists of both the initial CQ and the rewritten

queries produced by the two steps, noted as and for the queries produced by the rewriting

step and factorization step respectively. This process is repeated exhaustively, until no further

Fred
eri

ko
s L

ea
nd

rou

16

changes can be observed in . This is done by comparing the of the previous loop,

now called , with the produced in the current loop. To avoid redundancy, and

are used to note which queries have already been explored or unexplored respectively. Once no

further changes are observed in , and with all its queries being marked as explored, this

means that the initial CQ has been fully explored, with being a set of all queries

produced by this exploration. This set will be , the result of running XRewrite with CQ and

 set of TGDs.

The essence of the algorithm can be thought of as running the chase procedure in reverse.

Given a conclusion and a set of rules that arrive at said conclusion, we try to find what set of

statements can be used with these rules to arrive at the given conclusion. This can be seen in the

rewriting step, which looks like it runs the implication of the TGDs in reverse.

3.2.2 Rewriting Step

In the rewriting step of the algorithm, in simple terms, for every atom(s) of the query, if that

atom(s) exists in the head of a TGD, it substitutes it with the body of that TGD. To do that

however, the atom(s) must satisfy the applicability condition.

In the case of Example 4 above, does not satisfy the condition and will not be rewritten.

does satisfy the condition and so it goes through the rewriting step giving us

 () () (). The correlation with the chase procedure in reverse can be seen as

given atoms that unify with the head of a TGD, i.e. the conclusion, we substitute them with the

body of a TGD, i.e. the statements that are used to arrive at that conclusion.

Formally, for each () where applicable to , the -th application of the rewriting

step creates query (, ()-), with being the TGD obtained from by

replacing every variable with , being the MGU for set * ()+ , and ,

 ()- being obtained from by replacing with (). Using integer , such in , we

can rename the variables of , with the renaming avoiding produced clutter. In the end of the

Fred
eri

ko
s L

ea
nd

rou

17

rewriting step there exists an condition that checks whether the query produced is an

isomorphism, i.e. equivalently the same, of one that already exists in our set of queries . If

there is no equivalent query then that means there has been a change and so this new query is

added to our set, as it is new data.

3.2.3 Factorization Step

In the factorization step, the algorithm, in essence, checks every query in the set of queries and

replaces the atoms in each query with its most general unifier, in essence getting rid of

redundant atoms and reducing the size of the queries. To do so however the atoms must satisfy

the factorizability condition.

In the case of Example 5, satisfies the factorizability condition and goes through the

factorization step giving us ().

Formally, for each () that is factorizable w.r.t. , the factorization step creates query

 (), with being the MGU for . In the end, similarly with the rewriting step, there is

an condition that checks whether the query produced has an isomorphic one and if not, stores

it in the set of queries before terminating the factorization loop.

3.3 Termination of XRewrite

For the algorithm XRewrite to terminate it is necessary to apply some restrictions on our TGDs

and divide them into syntactic classes. This is due to the fact that the algorithm must be

database independent, i.e. it must apply to every database possible and not depend on certain

characteristics a database may have. As it stands, with no restrictions, there are cases in which

the algorithm will not terminate.

Example 6: Consider TGDs () () () , CQ () and database

 * () () () ()+, where * + are constants.

Fred
eri

ko
s L

ea
nd

rou

18

In this example, intuitively, the chase procedure will start with () and (), and using

 will produce (). Then similarly, using () with () will produce (), et cetera

until it produces ().

The algorithm however will work in reverse. Assuming (), using , the algorithm will

produce the statement ()⋀ () . Then similarly, using () and , will produce

 ()⋀ (), that using () produces ()⋀ (), ad infinitum. In this

case, the algorithm does not use information from database . This makes it database

independent but at the same time making it unable to know when to stop.

While a rewrite algorithm that is database independent and has no restrictions can exist, it will

require the use of a recursive query language. However our aim is to rewrite to a simple form of

a union of CQs, which is a fragment of SQL. And since SQL cannot support recursiveness this

necessitates the use of syntactic classes.

Fred
eri

ko
s L

ea
nd

rou

19

 Chapter 4

Non-Recursiveness

The first syntactic class of TGDs we use to guarantee the termination of XRewrite is non-

recursiveness, that is, TGDs whose use will not lead to the production of the same information

repeatedly. Proving that the algorithm terminates under the Non-Recursive class of TGDs

means the successful execution of an ontological query on any non-recursive ontology.

Definition 3 (Non-Recursiveness): A set of TGDs is non-recursive when the dependency

graph of is acyclic.

Recursive TGDs are the TGDs whose dependency graph does have cycles, i.e. a predicate can

lead to itself. The problem with recursiveness is that it creates a loop that the reasoning of our

ontology can get caught in and never terminate. In non-recursive TGDs, such a loop does not

exist and as both our ontology and database are finite, intuitively our reasoning terminates.

Example 7: Consider set of TGDs *(() ()) (() ()) (() ())+ and

 *(() ()) (() ()) (() ())+. As shown in Figure 2, is recursive

as A is replaced by B, B by C and C by A, creating a loop. has no such loop and thus is non-

recursive.

While termination under non-recursive TGDs is widely accepted as true due to the nature of the

class, no detailed analysis has been presented, which we will give.

𝐴

𝐶

𝐵 𝐷

𝐹

𝐸

𝐺

Figure 2. Dependency graph of recursive and non-recursive TGD sets

Fred
eri

ko
s L

ea
nd

rou

20

In simple terms, we can prove that the algorithm terminates by finding an upper bound to the

number of different CQs that can be constructed. By finding a finite number of resulting CQs

we can conclude that the algorithm terminates. In our proof of termination we will use the

stratification of the set of TGDs, a way to characterize non-recursive TGDs.

Definition 4 (Stratification): A stratification of a set of existential rules is a sequence of

 such that for some function () * +:

 * + is a partition of

 For each predicate (), all the rules with in the head are in (), i.e. in the

same set of the partition

 If (⋀ () ⋀ (⋀ () ⋀)) , then () ()

In other words, stratification will create a number of numbered partitions of our set of TGDs ,

these partitions are also called strata levels. The partition a TGD will belong to depends on the

predicate that appears in its head, with all the TGDs that have in their head belonging to the

same partition. If predicate appears in body of a TGD that has predicate in its head, then the

number assigned to the partition of TGDs that have in their head, will be lower than the

number assigned to the partition of TGDs that have in their head. For our rewriting, this

means that an atom with predicate can be substituted by atom with predicate , iff is

assigned a higher number than . Consequently, atoms with predicate in body of TGD of the

lowest number cannot be substituted at all.

Example 8: Consider set of TGDs * () () () () () ()+.

As appears in () and body(), is given a lower strata number than . Similarly,

appears in () and () and thus is given a lower strata number than . This

results in creating a stratification of * * + * + * ++. Note that the predicate in

the body of the TGD in the lowest strata level, i.e. , does not appear in the head of a TGD and

thus will never be replaced by another predicate.

Fred
eri

ko
s L

ea
nd

rou

21

Theorem 1: Consider CQ over a schema and set of TGDs over . If

 , then () terminates.

Proof: If set of TGDs then there exists stratification of ,

* +. Then consider atom that unifies with a TGD in strata , e.g. () (x).

This substitution is one step of the algorithm.

Due to the stratification, the predicate in the body of a TGD in strata will appear in the head

of a TGD in strata , e.g. () (). This means that can and will be substituted by ,

counting as another step. Similarly, the predicate in the body of a TGD in strata will

appear in the head of a TGD in strata , leading to another substitution. This phenomenon

will be repeated up to and until the TGD in the lowest strata level and atom is fully explored.

A graphical representation of an example of the above substitutions follows, as Figure 3, with

nodes being the atoms and edges being the substitutions, with each level representing a strata

level:

However, to fully explore an atom we need to also explore all of its substitution options. In the

above case, atom was substituted by atom as per TGD () () , but what happens if

there was also TGD () (), thus giving an option to to be substituted by .

This is where strata cardinality, i.e. the cardinality of a strata level, comes in. The cardinality of

each strata level is the number of TGDs that belong to that level, as multiple TGDs can belong

to the same strata level. This means that a predicate of the body of TGD in strata may not

𝒂

𝒃

𝒄

●

Figure 3. Representation example of substitution process

Fred
eri

ko
s L

ea
nd

rou

22

only appear in the head of a single TGD but a number of TGDs in strata , and in the worst

case scenario it may appear in all of them.

When this is true, the substitution representation takes a tree-like form, as depicted in Figure 4.

Like Figure 3, the nodes are atoms, the edges are substitutions and the levels are the strata

levels. In this case though, an atom can branch out by selecting different substitution options.

The number of possible substitutions for each atom is the cardinality of each strata level below

it. More clearly, the number of substitution choices for an atom whose predicate appears in

the head of a TGD in strata , is equal to the cardinality of the strata level directly below it,

 . In the worst case scenario, the cardinality of each strata level is the maximum that it can

be, that is, equal to the cardinality of the whole set .

Lastly, there is the fact that an atom can be substituted by a number of atoms, e.g. () ()

 (). This will result in more steps to fully explore the atom but the logic does not change.

Finally, let us combine all of the above to find a formula for the upper bound:

Consider CQ : ⋀ ⋀ ⋀ over schema and a set of TGDs

over .

● ●

● ●

𝒄 ●

𝒃 𝒅 ●

𝒂

Figure 4. Representation example of substitution process with multiple substitution options

Fred
eri

ko
s L

ea
nd

rou

23

Since there exists stratification of , * +. As such we use

the logic shown above to rewrite . The representation will take the form shown in Figure 5

after a single step:

Note that each 〈 〉 of the leaf nodes in the above figure may either be either a single atom or a

conjunction of atoms. In the worst case scenario, as to maximize the amount of substitutions,

〈 〉 will be a conjunction of atoms, with their predicates being in the head of a TGD in the

strata level directly below the strata level of the TGD whose head was the predicate of the atom

that was substituted. So an atom would be substituted by a conjunction of atoms,

 ⋀ ⋀ ⋀ .

As such, in the case of CQ above, when an atom is substituted, e.g. , it will be substituted

by a conjunction of atoms as above, giving a query of the following form:

(
 ⋀

 ⋀ ⋀
)⋀ ⋀ ⋀ .

To calculate the size of query we have to follow the substitutions made. Starting with an

initial length of atoms, the 0
th
 level so to speak, an atom was removed due to the substitution,

giving a length of . However, the atom that was removed was substituted in by a

conjunction of atoms with length , creating a query with length .

Do note that is not a constant as it is the length of the conjunction of atoms that substitute an

atom and thus varies based on the size of the body of the TGD that leads to the substitution of

that particular atom. In the worst case scenario, in order to maximize the number of atoms in the

𝛼 ⋀𝛼 ⋀ ⋀𝛼𝑘

〈 〉⋀𝛼 ⋀ ⋀𝛼𝑘 𝛼 ⋀〈 〉⋀ ⋀𝛼𝑘 𝛼 ⋀𝛼 ⋀ ⋀〈 〉 …

Figure 5. Representation of the substitution process for a CQ after one step

Fred
eri

ko
s L

ea
nd

rou

24

query and thus the amount of possible substitutions and steps in the algorithm, will be equal to

the length of the body of the TGD with the biggest body, . With defined, each

substitution will now produce a query of length . So the leaf nodes in Figure

5 have a length of .

However, do not forget that there are substitution options for each atom, equal to the strata

cardinality of the strata level below it. In the worst case scenario, each atom has options to

choose from. Thus the representation will look like Figure 6:

Each 〈 〉 is still a conjunction of atoms but now an atom has options to choose from, e.g.

{〈 〉 〈 〉 }. So each atom of our initial CQ produces queries , and since the

number of atoms is equal to () , a total of queries are produced of length

 .

Similarly at the next level, the 1
st
, each atom of will produce queries , for a total of

() queries produced by one . With the number of being , a

grand total of () queries will be produced. The length of these

 will follow the formula: . The initial length of however will now be

equal to their own length of , giving a length of ()

 .

〈 〉 ⋀ ⋀𝛼𝑘 𝛼 ⋀ ⋀〈 〉 … 〈 〉 𝛴 ⋀ ⋀𝛼𝑘 𝛼 ⋀ ⋀〈 〉 𝛴 …

𝛼 ⋀ ⋀𝛼𝑘

Figure 6. Representation of the substitution process with substitution options for a CQ after one step

Fred
eri

ko
s L

ea
nd

rou

25

As above, at the next level, the 2
nd

, each atom of will produce queries for a total of

() per . With () number of , that

makes a total of () () queries . The

length of will be (())

 .

So at level , the queries will have a length of () and each query produces an

amount of queries equal to (()) . With the total number queries

produced being at that level being ∏ (())
 .

Calculating the total amount of queries produced will be the sum of queries produced at each

level. With levels, i.e. the total number of strata levels, we have a total amount of ∑ ∏ (

 ()) .

So for a CQ with atoms over , and set of TGDs over , if then

the maximum number of queries produced, i.e. the size of rewriting, will be ∑ ∏ ((

)) . Since this is a finite number and the algorithm does not drop queries it has

generated then the algorithm terminates and the claim follows.

Fred
eri

ko
s L

ea
nd

rou

26

 Chapter 5

 (Multi)Linearity

In this chapter we will take a look at two syntactic classes that are closely related, Linearity and

Multi-linearity, with Linearity itself being a subclass of Multi-linearity. As for Multi-linearity,

we will take a look at a special case of it, using multi-linear TGDs along with an additional

restriction.

5.1 Linearity

Linearity is a basic syntactic class of TGDs. A TGD is linear when its body consists of a

single atom, i.e. () . A set of TGDs is linear when all of the TGDs are

linear. Linearity is incredibly simple yet forms a robust language, more expressive than DL-

LiteR [2], and with a variety of advantages and applications, such as modeling hierarchies. It is

known that the algorithm XRewrite terminates under linear TGDs, as it takes advantage of the

simple format of linearity. The fact that the algorithm assumes TGDs to be in normal form does

not affect us as the normalization procedure preserves linearity.

The proof of termination of the algorithm under linear TGDs is based on the following

statement:

Lemma 1: Consider CQ over schema , and set of TGDs over . For each , if

 then .

Proof: We can see how this statement is true because of how linear TGDs are. Since each linear

TGD has only one body atom, during the rewriting step each body atom of CQ is replaced by

a single atom. During the factorization step atoms are unified, and thus reduced, resulting in CQ

 with a fewer number of atoms than , i.e. .

Fred
eri

ko
s L

ea
nd

rou

27

Theorem 2: Consider CQ q over schema , and set of TGDs over . If then

 () terminates.

Proof: Considering CQ over schema , and set of TGDs over if then we get

that , as per Lemma 1. The statement implies that each can be

rewritten into an equivalent CQ with at most () variables. Thus contains

(modulo variable renaming) at most variables. With the number of CQs that can be

constructed using variables and predicates being finite, and since the algorithm does not

drop generated queries, the algorithm will terminate.

As for the time needed for the algorithm to terminate in case of linear TGDs, in case of non-

recursive linear TGDs we can derive it from the formulae presented in the chapter above.

5.2 Multi-linearity Special Case

Related to the class of linear TGDs is the class of multi-linear TGDs. Multi-linearity is a

generalization of linearity, with linear TGDs being a particular instance of multi-linear TGDs.

As such Multi-linearity is more expressive than Linearity and thus DL-LiteR, and DL-LiteR,⊓, the

extended version of DL-LiteR, [3].

Definition 5 (Multi-linearity): A TGD is multi-linear if and only if all the variables that

appear in () appear in every atom of (), [13].

With linear TGDs only having one atom in their body, they satisfy the condition for multi-

linearity.

As multi-linearity is a more general case than linearity, multi-linear TGDs are more expressive

than linear ones. While, in the case of non-recursive TGDs, that may be insignificant because of

guaranteed termination of the algorithm, in case of recursive TGDs where the termination is not

always guaranteed, a more expressive class of TGDs than linearity is more useful and a step

forward to guaranteeing termination in case of recursiveness, with no restrictions for our TGDs.

Fred
eri

ko
s L

ea
nd

rou

28

However, in order to guarantee termination we use a special case of multi-linear TGDs, the case

where our TGDs are multi-linear and the length of the body of each TGD is the same.

To prove the termination of the algorithm, we use a property derived from the definition of

multi-linearity. If a TGD σ is multi-linear then all the variables that appear in () appear

in every atom of (). This means that when a TGD is multi-linear then all variables

appearing in the body of a TGD are shared variables in it. Using this fact we can take advantage

of the factorization process of the algorithm and limit the size of the produced query.

At first, we will apply the above reasoning to an atomic query which results in formulating the

following theorem, with its proof following:

Definition 6 (Initial rewrite): Considering CQ over schema and set of TGDs over , is

the query produced by an initial rewrite, by substituting all atoms of initial query once.

Theorem 3: Consider an atomic query q over a schema R, and a set Σ of multi-linear TGDs

over R, where of all TGDs in is the same. For each ,

 .

Proof: Consider atomic query . After one step of the algorithm, query will be rewritten into

a query with a number of atoms, (for the minimum case), as shown in Figure 7.

This initial rewrite gives an upper limit that the length of the query must not exceed, the that

appears in Theorem 3, which is equal to . If in every query produced afterwards the length

stays the same, we will have successfully limited the size of the query.

𝑎

𝑎 ∧ 𝑎

Figure 7. Atomic query q after initial rewrite into q' with two atoms Fred
eri

ko
s L

ea
nd

rou

29

At first we will try to limit the length of the query produced by the rewrite step. This is done by

replacing our TGDs , whose () , with ones that have a shorter body of the same

length. To limit the length of the rewrite step as much as possible every new TGD will only

have two atoms in its body, i.e. () .

Example 9: Consider query : , and TGD , that leads to atom being

substituted by atoms , , and . Using to rewrite will result in . Now let us

replace TGD by a set of TGDs *() () ()+. Using the set of

TGDs to rewrite will result in , and finally , thus making the

result of these two rewrites the same. The second rewrite will take more steps to do but each

length of each substitution is limited to .

Figure 8 shows a representation of the substitution when limiting the length of each substitution

to .

This may seem counterintuitive as each atom would turn into atoms and thus still end up

increasing the length of the query to greater than . This is where the factorization step of the

algorithm will come in. Turning our TGDs into sets of equivalent ones with same shorter length

will help us generalize the following procedure. Remember that, in short, the factorization step

will take a set of atoms of the query that have a shared variable, and are essentially redundant

information, and replace then by a single atom. Because of multi-linearity, every variable that

𝑎 ∧ 𝑎 ∧ 𝑎 𝑎 ∧ 𝑎 ∧ 𝑎

𝑎

𝑎 ∧ 𝑎

Figure 8. Every atom of query q’ is substituted by a conjunction of atoms with length equal to n, where n=2.

Fred
eri

ko
s L

ea
nd

rou

30

appears in the body of TGD will appear in every atom of (). That means that once we

use to rewrite atom , all the atoms that substitute it, a conjunction of atoms

 , will have all their variables be shared. The matter of number and position of

variables in an atom does not matter as we can substitute it with an equivalent atom so that the

position and number of variables match in the atoms produced. As the variable are shared, that

means that the result of the rewrite step is factorizable, with the atoms being merged and

replaced into a single atom of . The only case in which the factorization step does not work is

when () , i.e. () . This means that if an atom is rewritten, it is either

substituted by a single atom, or by a conjunction of atoms that are factorizable and thus merged

into a single atom. So no matter what, the end result will be that it is substituted by a single

atom.

In the end, an atom has two choices, either it cannot be rewritten and stays a single atom, or it

can be rewritten and is ultimately substituted by a single atom, as shown in Figure 9.

That means than after our initial rewrite that results in , the length of the query will not

increase in size, i.e. , and thus satisfying the assumption presented in Theorem 3. In

fact, the length of the query may decrease as the atoms produced by different substitutions but

𝑎 ∧ 𝑎 𝑎 ∧ 𝑎

𝑎 ∧ 𝑎 ∧ 𝑎 𝑎 ∧ 𝑎 ∧ 𝑎

𝑎

𝑎 ∧ 𝑎

Figure 9. Due to the above property, the product of rewritten atoms is factorizable and merges into a single atom. Fred
eri

ko
s L

ea
nd

rou

31

in the same level of substitutions may be factorizable with each other, reducing the number of

atoms even further.

So, considering an atomic query over a schema , and a set of multi-linear TGDs over ,

where the body of all TGDs in is the same size, after an initial rewrite that creates query ,

for each , .

In fact, we can also refine the above conclusion even further by defining the value of . As

 becomes equal to the body of a TGD in , in the worst case scenario it will become equal to

 (), the size of the largest body of TGD in . Adding this to Theorem 3 proves the

following theorem:

Theorem 4: Consider an atomic query q over a schema R, and a set Σ of multi-linear TGDs

over R, where of all TGDs in is the same. For each ,

 ().

Theorem 3 will finally give us the proof of termination. It follows the same logic as the logic

used for the proof of termination for linearity. After an initial rewrite that produces , all

following rewrites will be of an equal or smaller length than .

 () implies that each can be rewritten into an equivalent

conjunctive query with at most () () variables. Thus contains

(modulo variable renaming) at most variables. With the number of conjunctive queries that

can be constructed using variables and predicates being finite, and since the algorithm

does not drop generated queries, the algorithm will terminate.

This proof of termination of the algorithm for multi-linear TGDs and atomic queries will form

the basis for proof of termination and in the more general case of non-atomic queries and multi-

linear TGDs.

Fred
eri

ko
s L

ea
nd

rou

32

Theorem 5: Consider a conjunctive query q over a schema R, and a set Σ of multi-linear TGDs

over R, where of all TGDs in is the same. For each ,

 .

Proof: Consider conjunctive query that is made up from a number of atoms . It can

also be said that is made up from a number of atomic queries. The idea is that if Theorem 3

applies for each atom in then it will also similarly apply collectively to .

As per Definition 6, is the query that results after each atom in is substituted once. In more

detail, each atom of will go through the process described in the section above, with each

atom undergoing an initial rewrite that will result in a conjunction of atoms . This results

in , a conjunctive query made up of .

Per the description above, each will have a limit, giving us a bound that its size cannot

exceed as the results of any further substitutions to it, i.e. , will never be of a larger size than

that bound of . As , then also ∑

 ∑

 . As ∑

 and

 ∑

 , the above gives us .

We can also refine the above by defining the value of . In the worst case scenario,

 () and as ∑

 , this results in ∑ ()

 (). With being the number of atoms in q this results in ()

and proves the following theorem:

Theorem 6: Consider a conjunctive query q over a schema R, and a set Σ of multi-linear TGDs

over R, where of all TGDs in is the same. For each ,

 () .

So now we have given a bound and limited the size of the query which leads to the following

theorem of the termination of the algorithm XRewrite:

Fred
eri

ko
s L

ea
nd

rou

33

Theorem 7: For every conjunctive query q over a schema R, and a set Σ of multi-linear TGDs

over R, where of all TGDs in is the same, then ()

terminates.

Proof: By Theorem 4.1 we get that after an initial rewrite for every initial atom of , that creates

query , for each , () . That initial rewrite for every initial

atom of consists of a finite amount of substitutions, equal to the number of atoms of , with

substitution options also being finite. Additionally, () for each

 , implies that each can be equivalently rewritten as a conjunctive query with at

most () () variables. Therefore contains (modulo variables

remaining) at most variables. With the maximum number of conjunctive queries that can be

constructed using variables and predicates being finite and since the algorithm does not

drop queries it has generated, the claim of the above theorem holds true.

Fred
eri

ko
s L

ea
nd

rou

34

 Chapter 6

Stickiness

Another syntactic class of TGDs is called stickiness. The idea of stickiness is to create a class

that allows for meaningful joins in rule bodies [14]. Stickiness allows joins to appear in rule-

bodies not expressible with linear TGDs or DL(R)-Lite assertions [1]. This is done by ensuring

that during the chase procedure, terms associated with body variables appearing more than once

are always propagated. To do that we use a procedure called SMarking. With , a set of TGDs

as input, SMarking returns the same set after marking some of its body variables.

In more detail, the SMarking procedure consists of two steps, the marking step and the

propagation step. In the marking step, every variable of a TGD, which appears in its body but

not in its head, is marked. After all variables that can be marked by the marking step are

marked, the propagation step is exhaustively applied. The propagation step checks pairs of

TGDs in the following way. If an atom in the head of a TGD has the same predicate as an

atom in the body of TGD , if has a marked variable in some position, the variables of

in the same position will be marked in all its occurrences in the body of . Repeating this until

no further changes are observed will give us the SMarking of .

Formally, consider Σ set of TGDs, TGD and variable () . We recursively

define when is marked in :

1. If in not in (), then is marked.

2. Assuming that () (̅) and ̅, if there is with (̅) in (),

and each variable in (̅) at a position ((̅)) is marked in , then is marked

in ().

Fred
eri

ko
s L

ea
nd

rou

35

As for stickiness, a set of TGDs Σ is called sticky if, for every (), each marked

variable appears only once. Stickiness guarantees the first-order rewritability of CQ answering

[13]. Additionally, the normalization procedure also preserves stickiness so the algorithm

assuming normal form TGDs does not affect the stickiness.

Example 10: Consider set of TGDs: () () , () () ,

 () () () and () () (). The SMarking of will start with

the above first condition, the initial marking step. This will mark variables with a cap(^),

resulting in looking like this:

 (̂) () , (̂) () , () () () and

 (̂) (̂) ().

Following the initial step, the second condition will be used, the propagation step. This will

mark variables with a double cap, resulting in looking like this:

 . ̂ ̂̂/ () , (̂) () , () () () and

 (̂) (̂) ().

One of the reasons that is marked in is because the atom in () appears in ()

with a marked variable in it. The marked variable in the atom of () is the first one, so

the first variable in the atom of (), i.e. , will be marked in all of its occurrences in

 ().

The termination of XRewrite hinges on the above property that each marked variable appears

only once. That property will lead to the following statement:

Lemma 2: Consider CQ over schema and set of TGDs over , for each , if

 , then every variable of () () occurs only once in .

The above statement can be proven true following an induction on the rewriting and

factorization steps of the algorithm [1].

Fred
eri

ko
s L

ea
nd

rou

36

Theorem 8: Consider CQ q over a schema R, and a set Σ of multi-linear TGDs over R. If

 , then () terminates.

Proof: Assume that , and given CQ , let be the query obtained from by

replacing every variable of () () with symbol .

The set () () will contain all variables that appear in , except all the variables that

appear in the initial query . So all variables except those of the initial query are now replaced

by . Normally, this would be a problem but per the statement above, every variable of ()

 () appears only once in as . Since these variables appear only once, that

means that they are not used for any joins, so their name can be freely changed with the

meaning of the query staying the same.

Example 11: Let there be TGD : () () () and CQ : ().

Consider : () () and : () () where . Normally,

 all refer to a different variable but since they appear only once, they can freely

be renamed without changing the meaning of or . With () () * + and

 () () *

 + we get that
 () () and

 : () () .

Following the renaming, we can see that

 , and thus .

So, for each pair of CQs , if

 then and are the same modulo bijective

variable renaming, aka . This check of isomorphism is implemented in the algorithm,

meaning that it will not explore queries when it has already explored a query with the same

meaning. Since the algorithm will not do redundant explorations of queries, we only have to

calculate the amount of non-isomorphic queries that the algorithm can explore. Following the

renaming, the terms that can used in queries will be the terms used in the initial query q and the

 variable, i.e. () * +. These terms are a finite amount. With the number of predicates

in also being finite, the amount of unique queries that can be produced is finite. Since the

Fred
eri

ko
s L

ea
nd

rou

37

amount of queries the algorithm can explore is finite and it does not drop queries it has

explored, the algorithm will terminate.

Fred
eri

ko
s L

ea
nd

rou

38

 Chapter 7

Conclusion

This thesis presents a brief introduction to the field of ontological databases and query rewriting

for ontological databases, centered on the algorithm XRewrite. With the results of query

rewriting and the algorithm being in the form used in widespread databases, this can be an

easier point of introduction to the above fields. Presented as an analysis of XRewrite we go

through the basics of ontological databases and commonly used terminology and procedures.

Beyond an introduction, XRewrite is a quite powerful solution to the problem of query rewriting

for ontological databases. Our analysis goes through a simple presentation of the logic behind it,

how and why it works, and the problem of its termination. With the termination not being

guaranteed we present various syntactic classes of TGDs in which the algorithm is proven to

terminate: non-recursive, linear, a multi-linear special case, and sticky. Despite termination in

the case of non-recursive TGDs being intuitively known as a fact, we provide new information

in how exactly the algorithm works in these cases and provide the size of the rewriting.

Additional new results is the proof of termination under a special case of multi-linear TGDs,

especially in the case of recursive TGDs. Being more general than linear TGDs, this expands

the scope of cases in which XRewrite terminates. As for the efficiency of XRewrite, the

algorithm has a low data complexity as it uses only the query and ontology which are typically

of a size that can be productively assumed to be fixed and is usually much smaller than the

relational database, with an implementation and evaluation of the algorithm being available [1].

Further research to be done on XRewrite includes finding proof of its termination under multi-

linearity with no further restrictions applied as well as trying to find a more general and

expressive class of TGDs under which the algorithm will terminate, like bounded dependencies.

Fred
eri

ko
s L

ea
nd

rou

39

Ontological databases are an area with active and ongoing research, with properties we have not

discussed on this paper. Any contribution is welcome as ontological databases are aimed to

replace present conventional databases in the near future and ontologies see more use.

Fred
eri

ko
s L

ea
nd

rou

40

Bibliography

[1] Giorgio Orsi, and Andreas Pieris Georg Gottlob, "Query Rewriting and Optimization for

Ontological Databases," ACM Trans. Datab. Syst. 39, 3, Article 25, p. 46, 2014.

[2] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati Diego

Calvanese, "Tractable reasoning and efficient query answering in description logics: The

DL-Lite family," J. Autom. Reason, vol. 39, no. 3, pp. 385-429, 2007.

[3] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati Diego

Calvanese, "Data Complexity of Query Answering in Description Logics," Artificial

Intelligence, vol. 195, pp. 335–360, 2013.

[4] Boris Motik, and Ian Horrocks Hector Perez-Urbina, "Tractable query answering and

rewriting under description logic constraints," J. Appl. Logic, vol. 8, no. 2, pp. 186-209,

2010.

[5] Despoina Trivela, and Giorgos B. Stamou Alexandros Chortaras, "Optimized query

rewriting for owl 2 ql," in Proceedings of the 23rd International Conference on Automated

Deduction, 2011, pp. 192-206.

[6] Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris Andrea Cali, "A logical toolbox

for ontological reasoning," SIGMOD Rec, vol. 40, no. 3, pp. 5-14, 2011.

[7] Michel LeClere, Marie-Laure Mugnier, and Michael Thomazo Melanie Konig, "A sound

and complete backward chaining algorithm for existential rules," in Proceedings of the 6th

International Conference on Web Reasoning and Rule Systems, 2012, pp. 122-138.

[8] Michel LeClere, Marie-Laure Mugnier, and Michael Thomazo Melanie Konig, "On the

exploration of the query rewriting space with existential rules," in Proceedings of the 7th

International Conference on Web Reasoning and Rule Systems, 2013, pp. 123-137.

[9] Alberto O. Mendelzon, and Yehoshua Sagiv David Maier, "Testing implications of data

dependencies," ACM Trans. Database Syst., vol. 4, no. 4, pp. 455-469, 1979.

[10] David S. Johnson and Anthony C. Klug, "Testing containment of conjunctive queries under

functional," J. Comput. Syst. Sci, vol. 28, no. 1, pp. 167–189, 1984.

Fred
eri

ko
s L

ea
nd

rou

41

[11] Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa Ronald Fagin, "Data exchange:

Semantics and query answering," Theor. Comput. Sci, vol. 336, no. 1, pp. 89-124, 2005.

[12] Alan Nash, and Jeff B. Remmel Alin Deutsch, "The chase revisisted," in Proceedings of

the 27th ACM Symposium on Principles of Database Systems, pp. 149-158.

[13] Georg Gottlob and Thomas Lukasiewicz Andrea Cali, "A GENERAL DATALOG-BASED

FRAMEWORK FOR TRACTABLE," Oxford, 2010.

[14] Georg Gottlob, and Andreas Pieris Andrea Cal`ı, "Towards More Expressive Ontology

Languages: The Query Answering Problem," Artificial Intelligence, vol. 193, pp. 87-128,

2012.

Fred
eri

ko
s L

ea
nd

rou

