Show simple item record

dc.contributor.authorBarocas, V. Ηel
dc.contributor.authorChandran, P. L.en
dc.contributor.authorStylianopoulos, T.en
dc.creatorBarocas, V. Ηel
dc.creatorChandran, P. L.en
dc.creatorStylianopoulos, T.en
dc.date.accessioned2019-05-06T12:23:27Z
dc.date.available2019-05-06T12:23:27Z
dc.date.issued2008
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48275
dc.description.abstractA multiscale formulation is derived for the mechanics of a dilute fiber network microstructure, as occurs in in vitro reconstituted collagen gels, to accommodate the deterministic solution of a uniform-stress condition in the fiber network. The macroscale two-phase equations are derived based on the integral volume-averaging approach of the spatial averaging theorem, modified for the averaging volume to deform materially in the solid phase and thereby ensuring consistent network mass conservation. For low-Reynolds-number fiber-fluid interaction with no hydrodynamic interaction between fibers, the macroscale Darcy law arises naturally as a function of average fiber orientation and volume fraction, with no additional empirical specification. The macroscale equations are solved using finite element analysis with the averaging volumes centered at Gauss points of integration. The macroscale solid stress and fluid velocity are obtained by microscale deterministic solution of network and Stokesian mechanics within the averaging volume at each Gauss point, whereas the macroscale displacements and fluid pressure are solved as interpolated finite element field variables. The theory when applied to describe confined compression of collagen gels reproduced the strain-rate dependent behavior observed in poroelastic materials. The deformation of the averaging region and the reorientation of the collagen network in response to strain are also discussed. © 2008 Society for Industrial and applied Mathematics.en
dc.language.isoengen
dc.sourceMultiscale Modeling and Simulationen
dc.subjectCollagenen
dc.subjectMechanicsen
dc.subjectTheorem provingen
dc.subjectColloidsen
dc.subjectFabricsen
dc.subjectFinite element methoden
dc.subjectStressesen
dc.subjectFiber optic networksen
dc.subjectFibersen
dc.subjectMicrostructureen
dc.subjectFinite elementsen
dc.subjectFluid dynamicsen
dc.subjectStrain rateen
dc.subjectPoroelastic materialsen
dc.subjectCollagen gelsen
dc.subjectConfined compressionsen
dc.subjectConsistent networksen
dc.subjectDarcy lawsen
dc.subjectFiber networksen
dc.subjectFiber orientationsen
dc.subjectFibrous mediumen
dc.subjectField variablesen
dc.subjectFinite element analysisen
dc.subjectFlow interactionsen
dc.subjectFluid interactionsen
dc.subjectFluid pressuresen
dc.subjectFluid velocitiesen
dc.subjectGauss pointsen
dc.subjectGelationen
dc.subjectGelsen
dc.subjectHydratesen
dc.subjectHydrodynamic interactionsen
dc.subjectIn vitroen
dc.subjectMass conservationsen
dc.subjectMechanical behaviorsen
dc.subjectMultiscale formulationsen
dc.subjectMultiscale modelingen
dc.subjectPhase equationsen
dc.subjectRate dependentsen
dc.subjectReconstituted collagensen
dc.subjectReynoldsen
dc.subjectSolid stressesen
dc.subjectSpatial averagingen
dc.subjectStokes flowen
dc.subjectStress conditionsen
dc.subjectTissue engineeringen
dc.subjectVolume-averaging methoden
dc.titleMicrostructure-based, multiscale modeling for the mechanical behavior of hydrated fiber networksen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1137/07068504
dc.description.volume7
dc.description.startingpage22
dc.description.endingpage43
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages22-43
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record