Show simple item record

dc.contributor.authorTzitzios, V.en
dc.contributor.authorKostoglou, N.en
dc.contributor.authorGiannouri, M.en
dc.contributor.authorBasina, G.en
dc.contributor.authorTampaxis, C.en
dc.contributor.authorCharalambopoulou, Georgiaen
dc.contributor.authorSteriotis, T.en
dc.contributor.authorPolychronopoulou, K.en
dc.contributor.authorDoumanidis, C. C.en
dc.contributor.authorMitterer, C.en
dc.contributor.authorRebholz, Clausen
dc.creatorTzitzios, V.en
dc.creatorKostoglou, N.en
dc.creatorGiannouri, M.en
dc.creatorBasina, G.en
dc.creatorTampaxis, C.en
dc.creatorCharalambopoulou, Georgiaen
dc.creatorSteriotis, T.en
dc.creatorPolychronopoulou, K.en
dc.creatorDoumanidis, C. C.en
dc.creatorMitterer, C.en
dc.creatorRebholz, Clausen
dc.date.accessioned2019-05-06T12:24:46Z
dc.date.available2019-05-06T12:24:46Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48909
dc.description.abstractA nanoporous metal–organic framework material, exhibiting an IRMOF-1 type crystalline structure, was prepared by following a direct solvothermal synthesis approach, using zinc nitrate and terephthalic acid as precursors and dimethylformamide as solvent, combined with supercritical CO2 activation and vacuum outgassing procedures. A series of advanced characterization methods were employed, including scanning electron microscopy, Fourier-transform infrared radiation spectroscopy and X-ray diffraction, in order to study the morphology, surface chemistry and structure of the IRMOF-1 material directly upon its synthesis. Porosity properties, such as Brunauer–Emmet–Teller (BET) specific area (∼520 m2/g) and micropore volume (∼0.2 cm3/g), were calculated for the activated sample based on N2 gas sorption data collected at 77 K. The H2 storage performance was preliminary assessed by low-pressure (0–1 bar) H2 gas adsorption and desorption measurements at 77 K. The activated IRMOF-1 material of this study demonstrated a fully reversible H2 sorption behavior combined with an adequate gravimetric H2 uptake relative to its BET specific area, thus achieving a value of ∼1 wt.% under close-to-atmospheric pressure conditions. © 2017 Hydrogen Energy Publications LLCen
dc.language.isoengen
dc.sourceInternational Journal of Hydrogen Energyen
dc.subjectCarbon dioxideen
dc.subjectStructureen
dc.subjectCharacterizationen
dc.subjectFourier seriesen
dc.subjectX ray diffractionen
dc.subjectCrystalline materialsen
dc.subjectScanning electron microscopyen
dc.subjectAdsorptionen
dc.subjectPorosityen
dc.subjectDigital storageen
dc.subjectGas adsorptionen
dc.subjectHydrogen storageen
dc.subjectStructure (composition)en
dc.subjectFourier transform infra redsen
dc.subjectSurface chemistryen
dc.subjectAtmospheric pressureen
dc.subjectAdsorption and desorptionsen
dc.subjectBrunauer emmet tellersen
dc.subjectCharacterization methodsen
dc.subjectInfrared radiationen
dc.subjectIRMOF-1en
dc.subjectMetal organic frameworken
dc.subjectOrganometallicsen
dc.subjectSolvothermal synthesisen
dc.subjectSurface chemistry and structuresen
dc.titleSolvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal–organic framework (IRMOF-1) materialen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.ijhydene.2017.04.059
dc.description.volume42
dc.description.startingpage23899
dc.description.endingpage23907
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidCharalambopoulou, Georgia [0000-0001-5236-1500]
dc.description.totalnumpages23899-23907
dc.gnosis.orcid0000-0001-5236-1500


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record