Show simple item record

dc.contributor.authorOkamoto, N.en
dc.contributor.authorKurebayashi, H.en
dc.contributor.authorTrypiniotis, Theodossisen
dc.contributor.authorFarrer, I.en
dc.contributor.authorRitchie, D. A.en
dc.contributor.authorSaitoh, E.en
dc.contributor.authorSinova, J.en
dc.contributor.authorMašek, J.en
dc.contributor.authorJungwirth, T.en
dc.contributor.authorBarnes, C. H. W.en
dc.creatorOkamoto, N.en
dc.creatorKurebayashi, H.en
dc.creatorTrypiniotis, Theodossisen
dc.creatorFarrer, I.en
dc.creatorRitchie, D. A.en
dc.creatorSaitoh, E.en
dc.creatorSinova, J.en
dc.creatorMašek, J.en
dc.creatorJungwirth, T.en
dc.creatorBarnes, C. H. W.en
dc.date.accessioned2019-12-02T15:32:05Z
dc.date.available2019-12-02T15:32:05Z
dc.date.issued2014
dc.identifier.issn1476-1122
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/58918
dc.description.abstractControlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by means of an electrical intervalley transition induced in the conduction band. The spin Hall angle was determined by measuring an electromotive force driven by photoexcited spin-polarized electrons drifting through GaAs Hall bars. By controlling electron populations in different ( " and L) valleys, we manipulated the angle from 0.0005 to 0.02. This change by a factor of 40 is unprecedented in GaAs and the highest value achieved is comparable to that of the heavy metal Pt. © 2015 Macmillan Publishers Limited.en
dc.sourceNature Materialsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907991678&doi=10.1038%2fnmat4059&partnerID=40&md5=dbd6197433f3a1be5c2f649c99d7652e
dc.subjectRoom temperatureen
dc.subjectElectronic structureen
dc.subjectCrystal symmetryen
dc.subjectHeavy metalsen
dc.subjectGallium arsenideen
dc.subjectSemiconducting galliumen
dc.subjectStrength of materialsen
dc.subjectMaterial systemsen
dc.subjectSpin currentsen
dc.subjectSpin Hall effecten
dc.subjectSpin-polarized electronsen
dc.subjectElectric controlen
dc.subjectElectron populationen
dc.subjectIntervalley transitionen
dc.subjectSpin-orbit couplingsen
dc.titleElectric control of the spin Hall effect by intervalley transitionsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/nmat4059
dc.description.volume13
dc.description.issue10
dc.description.startingpage932
dc.description.endingpage937
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :15</p>en
dc.source.abbreviationNat.Mater.en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record