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ABSTRACT 

The use of Evolutionary Algorithms (EAs) in difficult problems, where the search space is 

unknown, urges researches to find ways to exploit their parallel aspect. Multi-objective 

Evolutionary Algorithms (MOEAs) have features that can be exploited to harness the 

processing power offered by modern multi-core CPUs. Modern programming languages offer 

the ability to use threads and processes in order to achieve parallelism that is inherent in 

multi-core CPUs. This thesis presents a parallel implementation of a MOEA algorithm and its 

application to the de novo drug design problem. Drug discovery and De novo Drug design is a 

complex task that has to satisfy a number of conflicting objectives, where a MOEA finds a 

suitable problem to be used on. Further more such a task needs high amount of execution 

time. The aim is to minimize this time by the use of a parallel MOEA. The results indicate 

that using multiple processes that execute independent tasks of a MOEA can reduce 

significantly the execution time required and maintain comparable solution quality thereby 

achieving improved performance. 
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Chapter 1 

 

Introduction 

 

 

Parallel and distributed computing are key technologies in the present days. During the 

last few years we have been experiencing a technological paradigm shift in the field of 

processor design, exemplified by multi- and many-core Central Processing Units (CPUs) and 

the introduction of General Programming (GP) on Graphical Processing Units (GPUs).  

The majority of software programs are written for serial computation. This kind of 

computation does not take advantage of the multi-/many-core technology available in current 

CPUs. Parallel computing, on the other hand, is a form of computation in which many 

calculations are carried out in parallel, simultaneously. Following the paradigm of parallel 

computing, software programs can take advantage of current and future CPU architecture to 

speed-up the execution of an algorithm. The speedup of an algorithm as a result of 

parallelization is a topic that has attracted considerable research. An overview of Amdahl‟s 

Law, which governs algorithm speedup, is given in section 2.7. 

Writing a parallel software program is more difficult than writing a sequential one, 

because concurrency introduces several new categories of software issues. Among them, 

communication and synchronization of the execution of different concurrent tasks are some of 

the biggest obstacles to getting good parallel program performance. 

In general, parallel programs are very dependent on the specific hardware architecture for 

which they were developed. General parallel programming turns out to be extremely difficult 

to implement due to the existence of different hardware architectures and to the limitations of 

current programming paradigms and languages. Despite this, many important problems are 

sufficiently regular in their space and time dimensions as to be suitable for parallel or 
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distributed computing and evolutionary algorithms, with which the present research is dealing, 

are certainly among those [1]. 

Evolutionary Algorithms (EAs) are stochastic search and optimization techniques which 

were inspired by natural evolution and population genetics. Evolutionary Algorithms are an 

interdisciplinary research field with relationships to biology, artificial intelligence, numerical 

optimization and applications for decision support in almost any engineering discipline [2].  

Evolutionary Algorithms are based on models of organic evolution, so they mimic what 

happens in nature. In its struggle to survive, a population of individuals functioning in a 

specific environment needs to appropriately adapt; therefore reproduction is promoted by the 

elimination of useless and harmful traits and by the rewarding of useful behaviour [1]. EAs 

maintain a population of individuals that evolves, by the use of mutations, crossover and 

selection, over time and ultimately converges to a commonly unique solution. Each individual 

represents not only a search point in the space of potential solutions to a given problem, but 

may also be a temporal container of current knowledge about the “laws” of the environment 

[2]. 

Parallel Evolutionary Algorithms (PEAs) emerged for two main reasons: one is the need 

to achieve time-savings by distributing the computational effort and the second is to benefit 

from a parallel environment from an algorithmic point of view. 

There are many ways for an algorithm to take advantage of a parallel environment. The 

most trivial one is to use the parallel resources to run independent problems, as there is no 

communication between the different problems/processes. This does not add something new 

to the nature of the algorithm but it can provide large savings in time. The most challenging 

way is to change the algorithm in order to use those parallel resources. This can be achieved 

by parallelizing the algorithm at several possible levels. 

Parallelization of EAs is achieved at three possible levels, the fitness level which does not 

require any major change to the standard EA since the fitness evaluation of an individual is 

independent of the other operations of the algorithm, the individual level where every 

individual evolves independent of the rest of the population, and the population level where 
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the population is distributed into several subpopulations that evolve independently for periods 

of time. 

The goals of this thesis are to: 

 Explore the possibility of using a Parallel Evolutionary Algorithm on a multi-

/many-core CPU environment. 

 Implement a Parallel Evolutionary Algorithm that exploits multi-/many-core 

architectures, so as to produce solutions of the same quality as an ordinary 

Evolutionary Algorithm in much less time. 

 Learn more about parallel programming in multi-/many-core environment with 

the use of high level programming languages, such as Python. 

 Gain experiences in Parallel Evolutionary Algorithms, their strengths, weakness 

and potential applications. 

The remainder of this thesis consists of 6 sections. Section 2 reviews related literature and 

provides some background to the problem. Section 3 describes two algorithms, the one that 

served as the base algorithm and the one that was implemented for the purposes of the thesis. 

Section 4 describes in detail the implementation of the algorithm, while section 5 presents the 

experimental results obtained. Section 6 provides a discussion on the results obtained through 

the experiments and finally section 7 summarizes the conclusions and outlines possible future 

work.  



 

 70 

Chapter 2 

 

Literature Review 

 

 

In mathematics and computer science, optimization refers to choosing the best element 

from some set of available alternatives. In the simplest case, this means solving problems in 

which one seeks to minimize or maximize a real function by systematically choosing the 

values of real or integer variables from within an allowed set. This formulation, using a scalar, 

real-valued objective function, is probably the simplest example; the generalization of 

optimization theory and techniques to other formulations comprises a large area of applied 

mathematics. More generally, it means finding "best available" values of some objective 

function given a defined domain, including a variety of different types of objective functions 

and different types of domains [3]. 

In order to find the optimal solution(s) for a problem, optimization techniques are used. 

Typically, optimization techniques are classified based on their characteristics, such as the 

methodology used to generate solutions, the method used for evaluating the quality of the 

solutions, the strategy used for exploring the search space, the number of objective functions 

used, etc. [3]. 

The optimal solution to an optimization problem is the best possible solution that can be 

found given the problem constraints, by finding the minimum (minimization problem) or 

maximum (maximization problem) solution of an objective function. 

According to the number of objective functions considered, optimization techniques can 

also be classified into two large categories, Single Objective OPtimization (SOOP) methods 

and Multiple Objective OPtimization (MOOP). 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Applied_mathematics
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2.1 Optimization 

In mathematics and computer science, optimization refers to choosing the best element 

from some set of available alternatives. In the simplest case, this means solving problems in 

which one seeks to minimize or maximize a real function by systematically choosing the 

values of real or integer variables from within an allowed set. This formulation, using a scalar, 

real-valued objective function, is probably the simplest example; the generalization of 

optimization theory and techniques to other formulations comprises a large area of applied 

mathematics. More generally, it means finding "best available" values of some objective 

function given a defined domain, including a variety of different types of objective functions 

and different types of domains [3]. 

In order to find the optimal solution(s) for a problem, optimization techniques are used. 

Typically, optimization techniques are classified based on their characteristics, such as the 

methodology used to generate solutions, the method used for evaluating the quality of the 

solutions, the strategy used for exploring the search space, the number of objective functions 

used, etc. [3]. 

The optimal solution to an optimization problem is the best possible solution that can be 

found given the problem constraints, by finding the minimum (minimization problem) or 

maximum (maximization problem) solution of an objective function. 

According to the number of objective functions considered, optimization techniques can 

also be classified into two large categories, Single Objective OPtimization (SOOP) methods 

and Multiple Objective OPtimization (MOOP). 

2.2 Single Objective Optimization 

Single Objective Optimization techniques are techniques aiming to solve problems where 

solutions need to satisfy only one objective function. Since these problems try to find the 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Applied_mathematics
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optimum of a one objective function they typically have only one optimal solution. In these 

problems Single Objective Optimization techniques are most commonly used. 

Single Objective Optimization Problem is defined as: 

 

With an objective function , which must be minimized, a number of constrains 

, a vector  of  decision variables, , and  that represents a 

feasible region. 

SOOP techniques try to satisfy, by minimization or maximization, the single objective 

related to a problem. However, the majority of the problems in the real world do not have only 

one objective to satisfy, but a number of objectives. Often, these techniques are used in 

problems which need to satisfy many objective functions, by mapping those objective 

functions to one composite objective function. 

Such a problem can be defined as: 

 

Where the composite objective function  is the weighed sum of all objective 

functions  and  a weight constant for each objective function, with . 

2.3 Multi-Objective Optimization 

Multi-Objective Optimization techniques are used to solve problems which need to satisfy 

a number of objective functions which, in most cases, are conflicting between them. As a 

result there exists a set of equally optimal solutions instead of a single optimal one. This set of 

optimal solutions is called the Pareto Front. The solutions which form the Pareto Front are 

also called nondominated solutions, because of the absence of any solution that is better than 
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them in all objectives. An example of such solutions is shown in Figure 1, where solutions 

noted with label „0‟ are considered nondominated solutions, and solutions with labels „1‟ to 

„4‟ are considered dominated solutions. The number of their labels indicates the number of 

solutions that dominates them. 

 
Figure 1: A Multi-Objective Problem with two minimization objectives and a set of 

solutions (circles). Non-dominated solutions are labeled ‘0’. The curved line represents 

the Pareto Front. 

2.4 From Darwinian Theory to Evolutionary Algorithms 

Evolutionary Algorithms are based on a model of natural, biological evolution, which was 

formulated for the first time by Charles Darwin [4]. Darwin‟s “Theory of Evolution” explains 

the adaptive change of species by the principle of natural selection, which favours those 

species for survival and further evolution that are best adapted to their environmental 

conditions. In addition to selection, Darwin recognized the occurrence of small, apparently 

random and undirected variations between the phenotypes (any observable characteristic or 

trait of an organism). These mutations prevail through selection, if they prove their worth in 

the light of the current environment, otherwise they perish. The basic driving force for 

selection is given by the natural phenomenon of production of offspring. Under advantageous 

environment conditions, population size grows exponentially, a process which is generally 
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limited by finite resources. When resources are no longer sufficient to support all the 

individuals of a population, those organisms are at a selective advantage which exploit 

resources most effectively [5]. 

Modern biochemistry and genetics has extended the Darwinian Theory by microscopic 

findings concerning the mechanisms of heredity, the resulting theory is called the “Synthetic 

Theory of Evolution” [6]. This theory is based on genes as transfer units of heredity. Genes 

are occasionally changed by mutations. Selection acts on the individual, which expresses in its 

phenotype the complex interactions within its genotype, its total genetic information, as well 

as the interaction of the genotype with the environment in determining the phenotype. The 

evolving unit is the population which consists of a common gene pool included in the 

genotypes of the individuals. 

In the evolutionary framework, the fitness of the individual is measured only indirectly by 

its growth rate in comparison to others. Furthermore, natural selection is no active driving 

force, but differential survival and reproduction within a population makes up selection. 

Selection is simply a name for the ability of those individuals that have outlasted the struggle 

for existence to bring their genetic information to the next generation. This point of view 

however, reflects just our missing knowledge about the mapping from genotype to phenotype, 

a mapping which, if it were known, would allow us to evaluate fitness in terms of a variety of 

physical properties [2]. 

2.5 Drug Discovery and De Novo Drug Design 

This section introduces the problems of Drug Discovery and De Novo Drug Design 

largely in line with [7]. Drug discovery and development is a complex, lengthy process, where 

failure of a candidate molecule can occur as a result of a combination of reasons, such as poor 

pharmacokinetics, lack of efficacy, or toxicity. Successful drug candidates necessarily 

represent a compromise between the numerous, sometimes competing objectives so that the 

benefits to patients outweigh potential drawbacks and risks. De novo drug design involves 
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searching an immense space of feasible, druglike molecules to select those with the highest 

chances of becoming drugs using computational technology [7].  

Traditionally, de novo design has focused on designing molecules satisfying a single 

objective, such as similarity to a known ligand or an interaction score, and ignored the 

presence of the multiple objectives required for druglike behaviour. The process of drug 

discovery focuses on identifying molecules that selectively bind and interact with specific 

biological receptors and cause a certain desired behaviour. The ability to interact is controlled 

by the molecular structure of the drug and namely by its complementarity to the targeted 

receptor site. However, not all potent binding molecules are suitable as drugs. In order to be 

truly effective within a living organism a molecule must satisfy several additional properties. 

These properties depend on the way a drug behaves “in vivo” (i.e., in the living organism to 

be treated) and how well it reaches the region of the target without binding nonselectively to 

other receptors [8]. An additional equally important requirement drugs need to satisfy is 

synthetic feasibility. The presence of these requirements turn drug discovery into a 

multiobjective problem in which any candidate solution needs to fulfil multiple objectives 

concurrently. Computational de novo drug design involves searching an immense space of 

feasible, druglike molecules to select those with the highest chances of becoming drugs [9]. 

Modelled after traditional experimental procedures, which typically follow a sequential 

optimization paradigm, most de novo design research has been ignoring the multiobjective 

nature of the problem and focused on the optimization of one molecular property at a time 

[10]. Typically the property serving as the primary objective has been similar to a known 

ligand or an interaction score with a target receptor.  

MOOP methods introduce a new approach for optimization that is founded on 

compromises and tradeoffs among the various, potentially conflicting objectives. In a 

multiobjective problem setting multiple equivalent solutions representing different 

compromises among the objectives are possible. Although in many applications the presence 

of multiple solutions may be considered a problem, and therefore methods for selecting a 

priori the single „best‟ solution are often employed, in drug discovery the availability of 
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several diverse solutions that can serve as leads is generally preferred. Based on this 

requirement a truly multiobjective de novo design system must be able to produce multiple, 

diverse solutions and enable users to choose a posteriori from a variety of candidates. 

Considering the combinatorial nature of the problem, the system must also employ a powerful 

search strategy in order to detect the best possible solutions within a reasonable amount of 

time. The strategy must be able to handle complex, non uniform search spaces since the 

presence of multiple conflicting objectives point to the potential presence of multiple 

solutions at different regions of the space. The system must also be able to take advantage of 

existing pharmaceutically relevant knowledge to streamline the search process and achieve 

better performance. Such knowledge may be supplied in the form of implemented objective 

functions or rules to be used for rejecting low quality candidates. Not only to facilitate human 

expert understanding of the internal operations but also to avoid information loss and 

misleading results the system must represent candidate solutions using a molecular graph data 

structure. Special emphasis must also be placed on system flexibility, to enable easy choice of 

objectives, and on performance and scalability issues to ensure practical usefulness [7]. 

De novo drug design methods face the task of effectively exploring a chemical search 

space estimated to be on the order of 1060-10100 [11]. Such space cannot possibly be fully 

enumerated, and so powerful search methods need to be applied to detect the best possible 

solutions in a limited amount of time. 

 

2.6 Evolutionary Algorithms Family 

Evolutionary Algorithms apply principles of biological evolution with the aid of computer 

algorithms to solve problems in various sciences. Evolutionary Algorithms is a big family of 

algorithms that uses evolution, as described above, as their primary search mechanism. The 

members of this family are, Genetic Algorithms (GA), Genetic Programming (GP), 

Evolutionary Strategies (ES) and Evolutionary Programming (EP). 

Every algorithm uses a different representation for its individuals. GA represents each 

individual with a chromosome string, more often a bit string. GP represents each individual 
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with a tree data structure. ES represents each individual with natural problem dependent 

representation with the aid of real value vectors. EP represents each individual with a finite 

state machine. 

However, all EAs have a common approach; this involves the main steps of the algorithm 

shown in Figure 2. 

  

 

Where EAs differ among them is, as stated above, the representation of their individuals, 

the way reproduction is achieved, which is directly related to the problem and to the 

representation of their individuals, and also the evaluation method used, which is derived 

directly from the objectives of the problem. 

The initial population can be selected randomly or use individuals selected by the use of 

another algorithm or provided by a human expert. Once the initial population is prepared the 

algorithm enters a loop. At the end of the iteration of the loop, a new population is created 

which follows the same algorithmic steps. 

The first operation applied on the population is fitness evaluation. The next operation that 

is applied on the population is the selection of a number of parents. This set of parents is 

selected based on their fitness values. The reproduction operation is applied on the set of 

parents to create a new set of individuals. In a next step, this new set of individuals has their 

fitness evaluated. After that the new population is selected. There are two approaches that are 

used to select the new population. The first approach, often referred to as the elitist approach, 

selects the new population from the merger of the set of the parents and the set of the evolved 

Population 

Fitness 

Evaluation 
Parent 

Selection 
Reproduction 

Figure 2: The basic steps of all EAs. 



 

 

12 

individuals. The second approach selects the new population only from the set of the evolved 

individuals. 

2.7 Parallel Evolutionary Algorithms Family 

Parallel Evolutionary Algorithms (PEAs) are a next step in the development of EAs. Due 

to the nature of EAs, i.e. each individual can be evolved and evaluated independently, 

researchers have been able to implement parallel EAs by exploiting this feature. In a PEA 

model the entire population available needs to be in a distributed or shared form. Two major 

models of PEAs exist, coarse-grained or distributed, and fine grained. In coarse-grained 

PEAs, there exist multiple independent or interacting subpopulations, while in fine-grained 

there is only one population and each population member is processed in parallel.  

2.7.1 Coarse-grained PEAs 

In a coarse-grained PEA, the populations are divided into several subpopulations. These 

subpopulations evolve independently of each other for a certain number of generations 

(isolation time). Upon completion of the isolation time a number of the resulting individuals is 

distributed between the subpopulations, a process often referred to as migration. The number 

of exchanged individuals (migration rate), the selection method of the individuals for 

migration and the scheme of migration determines how much genetic diversity can occur in 

the subpopulation as well as the exchange of information between subpopulations.  

The selection of the individuals for migration typically takes place using one of the 

following two methods: 

 Uniformly at random, e.g. pick individuals for migration in a random manner 

 Fitness-based, e.g. select the best individuals for migration.  

 Several possibilities exist for the migration scheme of individuals among 

subpopulations. Common migration schemes include: 

 Complete, unrestricted net topology, which exchanges individuals among all 

subpopulations, (see Figure 3), 
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 Ring topology, where exchange of individuals is allowed only to a specific 

subpopulation, (see Figure 4), 

 Neighborhood topology which exchanges individuals across a “neighborhood” 

(see Figure 5). 

 
 

 

 

 
 

 

 
 

Subpop 1 

Subpop 2 

Subpop 3 

Subpop 4 Subpop 6 

Subpop 5 

Subpop 1 

Subpop 2 Subpop 3 

Subpop 4 Subpop 5 

Subpop 1 

Subpop 2 Subpop 3 

Subpop 4 Subpop 5 

Figure 3: Subpopulations Model for a coarse-grained PEA with unrestricted migration 

topology [12]. 

Figure 4: Subpopulations Model for a coarse-grained PEA with ring migration topology 

[12]. 

Figure 5: Subpopulations Model for a coarse-grained PEA with neighborhood migration 

topology [12]. 
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2.7.2 Fine-grained PEAs 

In a fine-grained PEA, also known as Global Model or Master/Slave, the population is not 

divided. Instead, the global model employs the inherent parallelism of evolutionary algorithms 

i.e. the presence of a population of individuals, and features of the classical evolutionary 

algorithm. During the calculations where the whole population is needed, Pareto-ranking and 

selection are performed by the master. All remaining calculations, which are performed for 

one or two individuals at a time, are distributed to a number of slaves. The slaves perform 

recombination, mutation and the evaluation of the objective function separately. This is 

known as synchronous master-slave-structure, (see Figure 6) [12], [1], and [13]. 

 
 

 

2.8 What is Speedup and Efficiency? 

In parallel computing, speedup [14] refers to how much faster a parallel algorithm is than 

a corresponding sequential algorithm.  

Speedup is defined by the formula [14]: 

 

Where: 

  is the number of processors used,   

  is the time a sequential algorithm takes to execute a given problem,  

MASTER 
Fitness 

Assignment 
 

SLAVE 1 
Reproduction 

Fitness 
Evaluation 

 

SLAVE 2 
Reproduction 

Fitness 
Evaluation 

 

SLAVE N 
Reproduction 

Fitness 
Evaluation 

 

Figure 6: Global Model – Master/Slave for a fine-grained PEA [12]. 

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Algorithm
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  is the time a parallel algorithm takes to execute the same problem u  

processors.  

 
Figure 7: Chart that shows basic speedup categories. The reference speedup is the 

Linear Speedup, which is the ideal speedup. Super linear speedup is the category where 

the algorithm’s speedup is higher than the ideal one. Speedup is the category where the 

majority of algorithm’s speedup exists. The speedup is this category is lower than the 

ideal one. 

Linear speedup or ideal speedup is obtained when . When running an algorithm 

with linear speedup, doubling the number of processors doubles its speed of execution. As this 

is ideal, it is typically considered for speedup evaluation purposes. Linear speedup is 

impossible to achieve in most algorithms due to the fact that in almost every algorithm there is 

a part that cannot be run in parallel (see below Amdahl‟s Law). In some cases algorithms may 

achieve speedup greater than the linear speedup, known as super-linear speedup however, this 

occurs due to other factors, such as locating the whole problem data in the CPU‟s cache [14]. 

The speedup is called absolute speedup when  is the execution time of the best 

sequential algorithm, and relative speedup when  is the execution time of the same parallel 

algorithm on one processor. Relative speedup is usually implied if the type of speedup is not 

specified, because it doesn't require implementation of the sequential algorithm. 
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Figure 8: Example of how execution time is reduced, when having (a) Super Linear 

Speedup, (b) Linear Speedup and (c) a normal Speedup scheme. 

Efficiency [14] is a performance metric defined as: 

 

Efficiency is a value, typically ranging between zero and one, estimating how well-

utilized the processors are in solving the problem, compared to how much effort is wasted in 

communication and synchronization. Algorithms with linear speedup and algorithms running 

on a single processor have an efficiency of 1, while many difficult-to-parallelize algorithms 

have efficiency such as  that approaches zero as the number of processors increases [14]. 

2.9 Parallelization and Amdahl’s Law 

In reality things are not so simple, since in most cases several factors contribute to reduce 

significantly the theoretical performance improvement expectations. Amdahl‟s [15] law is 

used to find the maximum expected improvement to an overall system when only part of the 

system is improved. It is often used in parallel computing to predict the theoretical maximum 

speedup using multiple processors.  

Amdahl's law is a model for the relationship between the expected speedup of parallelized 

implementations of an algorithm relative to the serial algorithm, under the assumption that the 

http://en.wikipedia.org/wiki/Parallel_computing
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problem size remains the same when parallelized. More technically, the law is concerned with 

the speedup achievable from an improvement to a computation that affects a proportion P of 

that computation where the improvement has a speedup of S [16]. Amdahl's law states that the 

overall speedup of applying the improvement will be: 

 

To see how this formula was derived, assume that the running time of the old, original 

computation was 1, for some unit of time. The running time of the new computation will be 

the length of time the unimproved fraction takes, (which is 1 − P), plus the length of time the 

improved fraction takes. The length of time for the improved part of the computation is the 

length of the improved part's former running time divided by the speedup, making the length 

of time of the improved part P/S. The final speedup is computed by dividing the old running 

time by the new running time, which is what the above formula does. 

In the case of parallelization, Amdahl's law states that if P is the proportion of a program 

that can be made parallel (i.e. benefit from parallelization), and (1 − P) is the proportion that 

cannot be parallelized (remains serial), then the maximum speedup that can be achieved by 

using N processors is 

 

In the limit, as N tends to infinity, the maximum speedup tends to 1 / (1 − P). In practice, 

performance to price ratio falls rapidly as N is increased once there is even a small component 

of (1 − P). As an example, if P is 90%, then (1 − P) is 10%, and the problem can be speed up 

by a maximum of a factor of 10, no matter how large the value of N used. For this reason, 

parallel computing is only useful for either small numbers of processors, or problems with 

very high values of P: so-called embarrassingly parallel problems. A great part of the craft of 

parallel programming consists of attempting to reduce the component (1 – P) to the smallest 

possible value. 

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Parallel_programming
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P can be estimated by using the measured speedup S on a specific number of processors N 

using: 

 

 in this way can then be used in Amdahl's law to predict speedup for a different 

number of processors [16]. 

 
Figure 9: The speedup of a program using multiple processors in parallel computing is 

limited by the sequential fraction of the program. For example, if 95% of the program 

can be parallelized, the theoretical maximum speedup using parallel computing would 

be 20× as shown in the diagram, no matter how many processors are used [16]. 
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Chapter 3 

 

Algorithms 

 

 

 
Recently, the Multi-objective Evolutionary Graph Algorithm (MEGA), was proposed, that 

combines evolutionary techniques with graph data structures to directly manipulate graphs 

and perform a global search for promising solutions [7]. MEGA has been designed to enable 

the use of problem-specific knowledge and local search techniques, to improve performance 

and scalability. Parallel Multi-objective Evolutionary Graph Algorithm (PMEGA) is an 

extension of MEGA that exploits parallelism in order to reduce execution time. MEGA and 

PMEGA have been developed primarily for the design of optimal graphs satisfying multiple 

objectives. Special emphasis has been placed to the problem of designing small molecular 

graphs with therapeutic properties commonly known as de novo drug design [7]. This section 

briefly describes the MEGA algorithm and elaborates on the parallel features implemented for 

PMEGA. 

3.1 The MEGA algorithm 

The standard version of the MEGA algorithm operates on one population set, referred to 

as the working population. The population of a single generation consists of the individuals 

subjected to objective performance calculation and obtained through evolution in a single 

iteration. Note that solution chromosomes are represented as graphs. 

The first phase of the algorithm applies the objectives on the working population to obtain 

a list of scores for each individual. The list of scores may be used for the elimination of 

solutions with values outside the range allowed by the corresponding active hard filters. In the 

next step, the individuals‟ list of scores is subjected to a Pareto-ranking procedure to set the 
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rank of each individual. Non-dominated individuals are assigned rank order 1, similar to [17]. 

The algorithm then proceeds to calculate the efficiency score for each individual, which is 

used to select a subset of parents via a roulette-like method [18] that favours individuals with 

high efficiency score, i.e. low domination rank and high chromosome graph diversity [7]. 

The parents are then subjected to graph-specific mutation and crossover according to the 

probabilities indicated by the user. The new working population is formed by merging the 

original working population and the newly produced offspring. The process iterates as shown 

in Figure 10. The execution of the algorithm completes when the user defined termination 

conditions, typically a maximum number of iterations, are fulfilled. A more detailed 

description of MEGA algorithm can be found in [7]. 

 

 

Figure 10: A diagram of the MEGA Algorithm. 

3.2 The PMEGA Algorithm 

This section describes the PMEGA algorithm. As noted above PMEGA is the parallel 

version of MEGA. At section 2.4 a brief description of the available parallelization methods 

was explained. From those methods one was selected to parallelize MEGA. The decision was 

taken after a thorough investigation of pros and cons of each method and the limitations that 

the implementation platform has, which are explained in section 4. 

The aims for the parallel version of MEGA are: 

a) Produce solutions of at least equal quality solutions to MEGA. 

b) Exploit multi-core CPUs. 

Working Population 

Calculate Fitness 

Hard Filter 

Pareto Ranking 

Calculate Efficiency 

Select Parents 

Evolve Parents 
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c) Reduce execution time to obtain results in less time. 

d) Explore algorithmic enhancements to produce better quality solutions than 

MEGA in the future. 

 Points (a) to (c) can be achieved using any parallelization method, though point (d) needs 

to be a topic of further research; a promising approach may be through algorithmic 

enhancements such as the manipulation of the population using some available knowledge. 

The only methods that provide the ability to manipulate population are the ones based on 

population level parallelism. This is achieved by distributing the population into 

subpopulations and thus enables the researcher to use some knowledge factors when, for 

example, distributing the population. Based on our desire to explore variations of the 

algorithm with the aim of producing better solution sets the decision to use population level 

parallelism was taken. Consequently, PMEGA uses population level parallelism, and 

distributes the population into several smaller subpopulations to be evolved concurrently. 

PMEGA operates on one population set referred to as the working population. The 

algorithm randomly splits the working population to several subpopulations and uses a 

predefined pool of processes to which it assigns tasks for execution. An example of a task is 

the independent evolution of a subpopulation set. The number of subpopulations must be 

greater or equal to the number of the processes, in order to take full advantage of the processes 

that will handle the tasks. 

Subpopulations are evolved independently for a specific number of iterations defined by a 

user-supplied epoch_counter, which is set to a percentage of the total iterations the algorithm 

has to run. The default setting of PMEGA is set to 10% of total iterations. The independent 

evolution of each subpopulation is a scaled-down execution of MEGA algorithm as shown in 

Figure 10. Specifically, during execution time a pre-constructed process from the pool of 

processes is assigned a task i.e. to execute a scaled-down MEGA. The working population of 

the process/task is set to a subpopulation set and the number of iterations is set to the 

epoch_counter. During the evolution of subpopulations, migrations are not permitted between 
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the subpopulations.  Upon completion of the task, the process returns the results produced and 

gets assigned a new task, if one is pending. 

When all subpopulations complete their evolution, their results are gathered and merged. 

The new working population is created from the merger of the resulting populations, provided 

by the set of task executions. The new working population passes a stage where the dominated 

individuals are removed from it, so that the working population to be a Pareto approximation 

of the solutions. 

Following PMEGA checks for the termination conditions; if satisfied the process 

terminates. However, if this is not the case the process moves to repeat the previous steps. A 

diagram of PMEGA is shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: A diagram of the PMEGA algorithm. 

 

The pseudo-code of PMEGA is given below: 

Working Population 

Subpopulation 1 

Subpopulation 2 

 

Subpopulation X 

 

 

Pool of processes, N processes for an N core CPU. 

Each process is assigned a task to evolve a subpopulation, using 

MEGA algorithm. 

P
ro

cess 1
 

P
ro

cess 2
 

P
ro

cess N
 

Processes return their results. 

Merge the results. 
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Figure 12: The PMEGA algorithm pseudo-code. 

 

# Pseudo-Code for PMEGA. 

create pool_of_processes; 

initialize working_population: 

 do while iteration_counter < max_iterations: 

 split working_population into several subpopulations; 

 create tasks_list; # Each task is to evolve a given subpopulation. 

 assign tasks to pool_of_processes; 

 wait for results; 

  gather results; 

  post processing on results; 

  create new working_population; 

 end do while; 

 

# Process 

receive task; 

evolve subpopulation for epoch_counter iterations; 

prepare results; 

send results; 
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Chapter 4 

 

Implementation 

 

 

Our parallel MEGA implementation uses the Python programming language [19]. Python, 

a high level scripting language, has been chosen for its ease of use, extensive set of 3rd party 

add-ons that speed up development, and, inherent object oriented structure. Python‟s extend-

ability through 3rd party add-ons enables it to be used along with C/C++ for parallel 

programming and thus makes it promising for high performance computing applications. 

Currently, there exist several add-ons in the area of parallel programming, including Parallel 

Python [20] which uses the threads and processes mechanism of Python itself, and MPI4PY 

[21] which implements a Message Passing Interface (MPI). There are also add-ons building 

on CUDA [22] and OpenCL [23] for General Purpose GPU (GPGPU) programming such as 

PyCUDA [24], and PyOpenCL [25]. 

The best way to achieve parallelism for an algorithm that is to be used in multi-core 

environment with Python is with the use of processes. This occurs due to the limitations 

resulting from the manner with which Python manages threads. More specifically, Python has 

a mechanism called Global Interpreter Lock (GIL) which is a mutual exclusion lock held by 

Python interpreter to avoid sharing of non thread safe code [26]. This mechanism allows only 

one thread at a time to access an object. Python can spawn processes in a similar way as is 

done in Linux with fork. Various 3rd party modules exist, which can aid in multi-processing 

coding. The new versions of Python, 2.6 and 3.x, are shipped with a multiprocessing module 

[27]. Users of older versions of Python like 2.5 used here, need to download and install it 

separately. 
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4.1 Using Processes 

Our experiments exploited multi-processing as offered by Python. Python, through the 

multiprocessing module [27] offers a very user-friendly API for using processes to achieve 

parallelism. The API is similar to the one used by the threading module [28]. We decided to 

use a subpopulations model similar to Figure 10. 

The benefit of using processes is due to their ability to execute a large portion of code or 

even another program separately from the parent process. The subpopulations model provides 

the flexibility to decide how and when the subpopulations exchange information among them. 

To fully utilize an N-core CPU a program needs to spawn at least N processes. Python 

allows having a pool of processes to which execution tasks can be assigned. According to the 

subpopulations model, the initial population has to be split into several subpopulation sets. 

Since we have N processes we must have at least N subpopulations [29].  

Python through its multiprocessing module provides us two ways to create a pool of 

processes. The first one is by using the Pool class to create a new pool object as is defined by 

the multiprocessing module. The second one is to use the various components, classes and 

submodules provided by the module to create our own pool implementation. Experimentation 

was performed with both ways. 

4.1.1 Python managed Pool of Processes 

Using the implemented Pool class we get an object that creates and manages a defined 

number of processes, by default equal to the number of cores of the CPU, also called Pool-

Workers. This object has a hidden layer of synchronization and communication for the 

processes created.  

The execution model is based on task assignment to the processes of the pool, i.e. tasks 

for execution are given to the pool and the underlining synchronization mechanism assigns a 

task to an available process. A task is a function, given for execution, along with the 

appropriate arguments. The tasks assigned can be different among them. In our case the tasks 

were executing MEGA but with different arguments each time. 
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Upon the completion of a task from a Pool-Worker the results of it are sent back to the 

main process and a new task, if available, gets assigned to the Pool-Worker. This is repeated 

until all tasks are handled. 

After a task is completed the results are collected by the main process, where they are 

stored for further processing. When all tasks are completed the collected results pass through a 

processing step from which the following is derived:  

 The new working population and  

 An updated chromosome cache which keeps track of the molecules created in past 

generations. 

This scheme is repeated for a defined number of iterations. 

When using this approach the programmer does not have any responsibility about the 

processes communication and synchronization. The responsibility focuses on the function(s) 

to be executed in parallel, their arguments and possible shared resources, which are best to be 

avoided due to their non-trivial way of handling. This approach has many limitations, but 

ensures good behaviour, when following the right steps. 

4.1.2 Programmer managed Pool of Processes 

The other way to create a pool of processes is by using classes, components and 

submodules of the multiprocessing module to create a “system” of multiple Processes that 

communicate through queues and are synchronized through the use of locks and events. 

In this approach we create a number of processes, by default equal to the number of the 

cores of the CPU, which execute a function that waits for a task to execute. The task is a set of 

data which the function waits as input for the evolution algorithm. The function executes the 

MEGA in a repeated fashion. 

The communication between the main process and the child processes is achieved with 

the use of queues. One queue, called taskQueue, is used to submit the tasks to the child 

processes from the main process and one queue, called doneQueue, is used to submit the 

results from child processes to main process. Queues are protected by locks. 
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An Event is used to signal all child processes that initialization has completed so that they 

can start their repeated evolutionary part. At this stage the child processes wait for a set of 

input data, the task, from the taskQueue. With the completion of the task the results are 

inserted in the doneQueue, from where the main process retrieves them. The processes then 

proceed to the next available task. 

The main process retrieves results from doneQueue and stores them to its local variables 

for further processing after the completion of all tasks. This processing gives: 

 The new working population and  

 An updated chromosome cache  

This scheme is repeated for a defined number of iterations. 

When using this approach the programmer has responsibility over the whole “system”, 

starting from the spawning and starting of the processes, the handling of the communication 

between main and child processes, the data collections sent throughout the execution, the 

synchronization of tasks and, ending with the normal completion of the spawned processes to 

avoid zombie processes in the system. This approach gives the programmer a lot of control 

ability, has fewer limitations on things to use, but encapsulates high risk in creating faults. 
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Chapter 5 

 

Results 

 

 

Some of the experiments held for the purpose of this thesis are shown below. The 

experiments were designed and executed in order to investigate the behaviour of the proposed 

PMEGA algorithm versus the established MEGA. 

Two features of PMEGA that change its behaviour are: 

 Number of subpopulations: for a fixed population size the more subpopulations 

we have the smaller they get. 

 Isolation time (epoch_counter): defines the period of time/iterations for which the 

subpopulations evolve independently.  

In the current implementation of PMEGA both of these variables can be controlled by the 

user. For the purposes of this thesis, we decided to study the effect of the number and the size 

of subpopulations on the behaviour of the algorithm. The isolation time remained the same for 

all experiments and was set to a default value of 10% of maximum iterations, which were set 

to 200. 

The quality measures used to compare the proposed solutions across algorithms are based 

on clustering. More specific, diversity analysis on objective and parameter space makes use of 

agglomerative clustering [30]. In objective space the clustering is based on the objective 

values of the proposed solutions while in parameter space the clustering is based on the 

molecular characteristics of the proposed solutions. 
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5.1 MEGA versus PMEGA on 2-core CPU 

This section summarizes the experimental results from the execution of MEGA versus the 

process-enabled version of PMEGA using a two core CPU machine. 

The specifications of our testing machine are: 

 Machine 1: 

 CPU: Intel Core 2 Duo E8400 @ 3.0 GHz (2 Physical Cores) 

 Memory: 4 Gbytes 

5.1.1 Trial Experiment – MEGA vs. PMEGA (2 subpopulations) 

The results shown below have also been reported during the ITAB 2009 Conference [31]. 

The purpose of this experiment was to compare the quality of the solutions of MEGA with 

PMEGA. This experiment was among the first we be executed, and its role was to give as an 

indication for the speedup and efficiency of the parallel algorithm. 

The experiment had two objectives, a population of 100 and executed for 200 iterations. 

The objectives were based on similarity on three ligands that are known to be selective to the 

Estrogen Receptor-beta and dissimilarity on two ligands known to be selective to the Estrogen 

Receptor-alpha. Dissimilarity is calculated using the Tanimoto coefficient [32] in order to 

represent the problem as bi-objective minimization problem while similarity is calculated 

using the Soergel measure, which is the complement of Tanimoto coefficient. All the datasets 

used by the experiment were taken from PubChem‟s [33] compound library. The initial 

population was taken from the compounds in Bioassay 713.  A set of 3662 building blocks 

was used, which were obtained via fragmentation of the compounds in Bioassay 1211 using 

the NSisToolkit0.9 package [34]. This setup ran for five times for each of the two algorithm 

versions using different initial population each time. The specific problem examined is that of 

de novo design. In this setting, PMEGA chromosomes represent molecular graphs where 

vertices correspond to atoms and edges correspond to bonds. An explanation of the DND 

problem can be found in section 2.3. 
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Table 1 presents the execution times collected from the experiment. The timing results 

show a speedup of almost 1.6 on a dual core CPU. This is satisfactory considering that parts 

of the PMEGA algorithm are executed serially.  

Figure 13 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 14 is a graphical demonstration of the solutions of a run of the PMEGA algorithm 

on the same problem. Same as in figure 7 the X and Y axis represent the two objectives. Note 

that both objectives need to be minimized. The blue dots on the blue dashed line represent the 

individuals of the starting working population. The red spots represent the individuals of the 

working populations over a period of iterations. 

Figure 15 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed. The first graph shows the spacing between the solutions, where spacing describes 

the uniformity of the spread of the solutions of the Pareto-approximation produced [18]. 

Bigger values indicate a larger spread of solutions. The second graph represents the diversity 

of the solutions in parameter/genotype space, which is based on the similarity distance of the 

graph chromosomes. The bigger the value is, the more diverse the individuals are. The third 

graph describes the diversity of the solutions in objective/phenotype space, which reflects the 

similarity of individuals with respect to objective values. The bigger the value is, the more 

distant the solutions are. 

High values of diversity, both in parameter and objective space are desirable since they 

indicate a wealth of equivalent solutions structurally different for the user to evaluate. The 

comparisons demonstrate the similar quality of the results produced by MEGA and PMEGA. 
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Figure 13: A graph of Pareto fronts taken from one of the runs for MEGA. The X and Y 

axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 

 

 

Figure 14: A graph of Pareto fronts taken from one of the runs for PMEGA. The X and 

Y axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

population. The red dots represent the individuals of the Pareto Fronts over a period of 

iterations. 
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Figure 15: A comparison of MEGA and PMEGA Pareto fronts. The first graph shows 

how dense the solutions are. The second graph shows how spread are the solutions in 

parameter space. The third graph shows how spread are the solutions in objective space. 
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Table 1 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA PMEGA 

Run 0 00:16:26 00:11:32 

Run 1 00:17:02 00:10:20 

Run 2 00:18:07 00:11:02 

Run 3 00:18:13 00:11:27 

Run 4 00:17:32 00:10:53 

Total 1:27:20 0:55:14 

Max 00:18:13 00:11:32 

Min 00:16:26 00:10:20 

Average 00:17:34 00:11:07 

Speedup  1.5789211 

Efficiency  0.7894605 

 

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

 

5.1.2 1st Experiment – MEGA vs. PMEGA (2 Subpopulations) vs. PMEGA (4 

Subpopulations) 

This second set of experiments took place with an improved version of the algorithm. The 

improvements of the algorithm are focused on the selection of nondominated solutions after 

the merger, so that the working population is guaranteed to be a Pareto approximation of the 

solutions. In these set of experiment we would like to see the behaviour of the algorithm with 

larger data sets and with more subpopulations. The objectives were slightly different this time.  
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The experiment had two objectives, a population of 100 which executed for 200 iterations. 

For PMEGA the subpopulations variable number was set to 2 and 4 subpopulations. The 

purpose of the experiment was to study the effect of the number and the size of the 

subpopulations on the quality of the solutions and on the execution time. 

The objectives were based on similarity on two ligands known to be selective to the 

Estrogen Receptor-alpha and dissimilarity on three ligands that are known to be selective to 

the Estrogen Receptor-beta. Dissimilarity is calculated using the Tanimoto coefficient [32] in 

order to represent the problem as bi-objective minimization problem while similarity is 

calculated using the Soergel measure, which is the complement of Tanimoto coefficient. All 

the datasets used by the experiment were taken from PubChem‟s [33]. The initial population 

was taken from the compounds in Bioassay 1211.  A set of 3662 building blocks was used, 

which were obtained via fragmentation of the compounds in Bioassay 1211 using the 

NSisToolkit0.9 package [34]. This setup ran for five times for each of the two algorithm 

versions using different initial population each time. The specific problem examined is that of 

chemical structure design, also known as de novo design (DND). In this setting, PMEGA 

chromosomes represent molecular graphs where vertices correspond to atoms and edges 

correspond to bonds. An explanation of the DND problem can be found in section 2.3. 

Table 2 shows the execution time of the experiment. We should note here that the 

algorithm used had some improvements at the direction of the quality of solutions obtained, so 

some post processing after the parallel section was added in order to select a Pareto 

approximation of the solutions. This post processing lowers the parallel percentage of the 

algorithm by a small factor, which as shown by the execution timings has a minor effect on 

speedup and efficiency. Speedup measured is 1.7 and efficiency of 0.86. The other important 

result seen in Table 2 is the time results of PMEGA using 4 subpopulations handled by 2 

processes which is slightly slower than the one using 2 subpopulations. These subpopulations 

have a size of 25 individuals compared to the 50 individuals when using 2 subpopulations.  

Figure 16 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 
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minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 17 is a graphical demonstration of the solutions of a run of the PMEGA with 2 

Subpopulations algorithm on the same problem.  

Figure 18 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem. 

Figure 19 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed. 

The comparisons demonstrate the similar quality of the results produced by MEGA and 

PMEGA. The number of subpopulations used has a minor affect on the quality of the 

solutions. The second graph shows that PMEGA with 2 Subpopulations (PMEGA_2) has the 

same diversity with PMEGA with 4 Subpopulations (PMEGA_4) in parameter space. The 

third graph shows that PMEGA_2 has more diverse solutions than PMEGA_4 in objective 

space. The reason for this is probably that for each subpopulation the algorithm scans a 

specific part of the search space. When having a global population it scans the entire search 

space, when having two subpopulations, each subpopulation focuses on a different part of the 

search space, which is depended on the nature of the individuals of the subpopulation, this is 

why the solutions produced will be more diverse between them. When having more than two 

subpopulations it seems that somehow that the subpopulations spread in such manner that 

their solutions create a denser Pareto front.  



 

 

36 

 
Figure 16: A graph of Pareto fronts taken from one of the runs for MEGA. The X and Y 

axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 

 

Figure 17: A graph of Pareto fronts taken from one of the runs for PMEGA with 2 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 18: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 

 

 
Figure 19: A comparison of MEGA, PMEGA with 2 Subpopulations and PMEGA with 4 

Subpopulations Pareto fronts. 
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Table 2 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 2 

Subpop 

PMEGA 4 

Subpop 

Run 0 0:40:23 0:22:53 0:25:32 

Run 1 0:36:05 0:24:40 0:23:40 

Run 2 0:38:58 0:22:41 0:28:05 

Run 3 0:45:38 0:22:37 0:27:27 

Run 4 0:38:25 0:22:28 0:24:32 

Total 3:19:29 1:55:19 2:09:16 

Max 0:45:38 0:24:40 0:28:05 

Min 0:36:05 0:22:28 0:23:40 

Average 0:39:15 0:22:44 0:25:50 

Speedup  1.727206062 1.519243174 

Efficiency  0.863603031 0.759621587 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

 

5.1.3 2nd Experiment – MEGA vs. PMEGA (2 Subpopulations) vs. PMEGA (4 

Subpopulations) 

Continuing with the experiments about the effect of subpopulation size on the quality of 

the results, this experiment increased the size of the population to 150. By doing so the size of 

the subpopulations was 75 when the algorithm used 2 subpopulations and 37-38 when it used 

4 subpopulations. 



 

 

39 

The experiment had two objectives, a population of 150 which executed for 200 iterations. 

Also for PMEGA another variable is the subpopulations number, which was set to 2 and 4 

subpopulations. The purpose of the experiment was to study the effect of the number and the 

size of the subpopulations on the quality of the solutions and on the execution time. 

This experiment had the same objectives and datasets as the experiment described in 

section 5.1.2. 

Table 3 shows the execution time of the experiment and the speedup gained. As with the 

previous experiment, Table 3 is showing, the time results of PMEGA using 4 subpopulations 

with 37-38 individuals and with 2 subpopulations having 75 individuals. 

Figure 20 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 21 is a graphical demonstration of the solutions of a run of the PMEGA with 2 

Subpopulations algorithm on the same problem.  

Figure 22 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem. 

Figure 23 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed.  

The comparisons demonstrate the similar quality of the results produced by MEGA and 

PMEGA. Here the observations are the same as at the 1st experiment, in parameter space the 

solutions are similar, and in objective space using two subpopulations gives more diverse 

solutions. 
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Figure 20: A graph of Pareto fronts taken from one of the runs for MEGA. The X and Y 

axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 

 

 

Figure 21: A graph of Pareto fronts taken from one of the runs for PMEGA with 2 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 22: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 

 

Figure 23: A comparison of MEGA, PMEGA with 2 Subpopulations and PMEGA with 4 

Subpopulations Pareto fronts. 
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Table 3 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 2 

Subpop 

PMEGA 4 

Subpop 

Run 0 1:02:38 0:36:32 0:37:19 

Run 1 1:09:36 0:33:58 0:42:04 

Run 2 1:13:26 0:35:37 0:45:51 

Run 3 1:01:57 0:34:48 0:39:47 

Run 4 1:01:42 0:34:00 0:39:47 

Total 5:29:19 2:54:55 3:24:48 

Max 1:13:26 0:36:32 0:45:51 

Min 1:01:42 0:33:58 0:37:19 

Average 1:04:44 0:34:48 0:40:33 

Speedup  1.859696728 1.596464785 

Efficiency  0.929848364 0.798232392 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

 

5.1.4 3rd Experiment – MEGA vs. PMEGA (2 Subpopulations) vs. PMEGA (4 

Subpopulations) 

Continuing with the experiments about the effect of subpopulation size on the quality of 

the results, this experiment increased the size of the population to 200. By doing so the size of 

the subpopulations was 100 when the algorithm used 2 subpopulations and 50 when it used 4 

subpopulations. 
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The experiment had two objectives, a population of 200 which executed for 200 iterations. 

Also for PMEGA another variable is the subpopulations number, which was set to 2 and 4 

subpopulations. The purpose of the experiment was to study the effect of the number and the 

size of the subpopulations on the quality of the solutions and on the execution time. 

This experiment had the same objectives and datasets as the experiment described in 

section 5.1.2. 

Table 4 shows the execution time of the experiment and the speedup gained. As on the 

previous experiment, Table 4 is showing, the time results of PMEGA using 4 subpopulations 

with 50 individuals and with 2 subpopulations having 100 individuals. 

Figure 24 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 25 is a graphical demonstration of the solutions of a run of the PMEGA with 2 

Subpopulations algorithm on the same problem.  

Figure 26 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem. 

Figure 27 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed.  

The comparisons demonstrate the similar quality of the results produced by MEGA and 

PMEGA. Here the observations are the same as at the 1st and 2nd experiment, in parameter 

space the solutions are similar, and in objective space using two subpopulations gives more 

diverse solutions. 
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Figure 24:  A graph of Pareto fronts taken from one of the runs for MEGA. The X and 

Y axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 

 

 
Figure 25: A graph of Pareto fronts taken from one of the runs for PMEGA with 2 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 26: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 

 

Figure 27: A comparison of MEGA, PMEGA with 2 Subpopulations and PMEGA with 4 

Subpopulations Pareto fronts. 
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Table 4 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 2 

Subpop 

PMEGA 4 

Subpop 

Run 0 1:23:17 0:50:44 0:57:39 

Run 1 1:21:08 0:46:22 0:53:57 

Run 2 1:25:46 0:48:13 0:52:53 

Run 3 1:20:19 0:52:44 0:54:21 

Run 4 1:22:35 0:49:10 0:54:49 

Total 6:53:05 4:07:13 4:33:39 

Max 1:25:46 0:52:44 0:57:39 

Min 1:20:19 0:46:22 0:52:53 

Average 1:22:20 0:49:22 0:54:22 

Speedup  1.667604366 1.514253602 

Efficiency  0.833802183 0.757126801 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

5.1.5 Summary 

This section summarizes the results from the experiments that were executed on the two 

cores CPU. A summary of the quality of the solutions is shown, comparing a random sample 

of the proposed solutions with the requested objectives. Also a summary of the gained 

speedup is shown. 

The graphs displayed in the experiments sections show a general trend of the solutions, 

but choosing a random sample of the proposed solutions and comparing them with the 
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requested objectives gives a more detailed view of how well the algorithms work. The 2D 

representations of the molecules were obtained using the online tools of MolInspiration [35]. 

Table 5 shows the ligands that are known to be active with ER-a, which are used for the 

similarity objective. Table 6 shows the ligands that are known to be active with ER-b, which 

are used for the dissimilarity objective.  

Table 7 shows a random sample of the algorithm‟s proposed compounds. The solutions 

displayed are grouped by the algorithm used to produce them. Using the solutions provided by 

MEGA as a reference to compare with the solutions provided by PMEGA, the following 

observations are reported: 

 Some solutions of PMEGA are similar to solutions of MEGA. 

 Some solutions provided by the same algorithm are similar between them. 

Table 8 shows a summary of the experiments executed on the two cores CPU. From 

measured speedup on all the experiments the average speedup is calculated to be used with 

Amdahl‟s Law for the calculation of the maximum expected speedup of the parallel algorithm. 

From this set of experiments the average measured speedup is 1.8 and the efficiency obtained 

with this speedup is 0.9.  

Table 5 

Compounds that algorithm‟s resulting compounds must be similar to. These compounds 

are known to be active with ER-a. 

Oc3ccc(c2oc(=O)c1cc(O)ccc1c2P)

cc3 

CCCc3c(c1ccc(O)cc1)nn(c2ccc(

O)cc2)c3c4ccc(O)cc4NO 
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Table 6 

Compounds that algorithm‟s resulting compounds must not be similar to. These 

compounds are known to be active with ER-b. 

Oc3cccc(c2coc1cc(O)cc(O)c1c2=O

)c3 

CC[C@H]2Cc1cc(O)ccc1C4=C

2c3ccc(O)cc3C[C@@H]4CC 

CCC(Cc1ccc(O)cc1)c2ccc(O)cc2 

 

 

 

Table 7 

Random sample of proposed solutions taken from MEGA and PMEGA. 

MEGA PMEGA with 2 Subpopulations 
PMEGA with 4 

Subpopulations 

C1(-c2:c:c:c(:c:c:2)-O)=N-N(-

C(-c3:c:c:c(:c:c:3)-O)(-C-1-C-

C(-N)(-C)-C)-C)-O-C(-C-C-O)-

C 

(MP_72_M_70) 

 
c1(:c(:c(:c2:c(:c:1)-C(-N-C(-C(-

C)-C)-C-2)-C-c3:c(:c(:c(:c:c:3-C)-O)-

C)-N)-C)-O)-O-C-O 

(SP_0_192_M_9) 

c1(:c(:c:c(:c:c:1)-O)-C)-C2(-N(-

N=C(-c3:c:c:c(:c:c:3)-O)-C-2)-

C-c4:c:c(:c(:n:c:4)-O)-O)-C-C(-

C)(-C)-C 

(SP_2_177_M_11) 

c1(-C2=N-N(-C(-

c3:c(:c:c:c:c:3)-C-C)-C-2-C-C(-

c12:c(-C3=C(-C-O-1)-C-C-C-

3):c:c:c:c:2-C-N(-N(-C-C(-C-C)-C)-

c12:c(-C3(-C(=C-C-C-3-C(-

c4:c:c:c(:c:c:4)-C)-N-1-C(-
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C-C)(-C-C)-C)-C-

c4:c(:n:c:c:c:4-C)-

C):c(:c:c:c:c:1-C)-C  

(MP_189_M_35) 

C-C-C(-C)(-C)-C)-C-C(-C-C-C-O)-

C-C-C 

(SP_1_187_M_7) 

c5:c:c:c:c:c:5)-C)-C)-C-

C):c:c:c:c:2-C-c6:c:c:c:c:c:6 

(SP_0_180_M_2) 

C1(-c2:c:c(:c:c(:c:2)-O)-O)=N-

N(-C(-c3:c(:c:c:c(:c:3)-C)-C-C)-

C-1-C-C(-C)(-C)-C)-C-

c4:c(:n:c:c:c:4-C)-C 

(MP_196_M_6) 

 c1(:c(:c(:c(:c:c:1-C)-O)-N)-C)-C(-

C2-c3:c(:c:c(:c(-O-C-O):c:3)-O)-C-

C(-N-2)(-C)-C)-C(-C-C(-C)-C)-C-C-

C-C 

(SP_0_172_M_14) 

c1(-C2=N-N(-C(-

c3:c:c:c(:c:c:3)-O)(-C-2)-C-C(-

C(-C)-C)-C(-C)-C)-C-

c4:c(:n:c:c:c:4)-C):c(:c:c:c:c:1-

C)-C-C 

(SP_1_194_M_1) 

c1(-C2=N-N(-C(-

c3:c(:c:c(:c:c:3-C)-O)-C)-C-2-C-

C(-C)-C)-C-c4:c(:n:c:c:c:4-C)-

C):c(:c:c:c(:c:1)-O)-O 

(MP_179_M_66) 

 c12:c(-C3=C(-C-O-1)-C-C-C-

3):c:c:c:c:2-C-N(-N(-C-C(-C)(-C)-

C)-C-C-C(-C)-C)-C-C(-C(-O)(-C)-

C)-C(-C)-C 

(SP_0_157_M_44) 

c12:c(-C3(-C=C-C-C-3-C(-

c4:c:c:c:c:c:4)-N-1-C(-

c5:c:c:c:c:c:5)-C-C)-

C):c:c:c:c:2-C-c6:c(:c:c:c:c:6)-O 

(SP_3_188_M_16) 

c1(-C2=N-N(-C(-

c3:c(:c:c:c:c:3)-C-C)-C-2-C-C(-

C-C)(-C-C)-C)-C-

c4:c(:n:c:c:c:4-C)-

C):c(:c:c:c:c:1)-C 

(MP_162_M_69) 

 c1(:c(:c:c(:c:c:1)-O)-C)-C(-C2-

c3:c(:c:c(:c(-O-C-O):c:3)-O)-C-C-N-

2-C-C)(-C-C(-C(-C-C)(-C)-C)-C)-N 

(SP_1_199_M_4) 

c12:c(-C3(-C=C-C-C-3-C(-

c4:c:c:c:c:c:4)-N-1-C(-

c5:c:c:c:c:c:5)-C-C)-C-

C):c:c:c:c:2-C-c6:c:c:c:c:c:6 

(SP_2_164_M_22) 
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c1(-C2=N-N(-C(-

c3:c:c(:c:c:c:3)-C)-C-2-C-C-C-

C(-C)-C)-C-c4:c(:n:c:c(:c:4)-C)-

C-C):c(:c:c:c:c:1-C)-C  

(MP_198_M_71) 

c1(:c(:c:c2:c(:c:1)-C(-C(-

c3:c(:c(:c(:c(:c:3)-C)-O)-N)-C)-C(-C-

C(-C)-C)-C)-N-C-C-2)-O)-O-C-O  

(SP_1_190_M_48) 

c12:c(:c(:c:c:c:1-C3-C=C(-C(-

C-3-C(-c4:c(:c:c:c:c:4)-C)-N-2-

C-c5:c(:c:c:c:c:5)-C)-C)-N)-C)-

C-c6:c:c:c:c:c:6  

(SP_1_53_M_0) 

 

 

Table 8 

Summary table for the experiments held on the two cores CPU. 

  MEGA 
PMEGA 2 

Subpopulations 

PMEGA 4 

Subpopulations 

1st 

Experiment 

(population 100, 

iterations 200) 

Average 

Execution Time 
0:39:15 0:22:44 0:25:50 

Speedup  1.727206062 1.519243174 

Efficiency  0.863603031 0.759621587 

2nd 

Experiment 

(population 150, 

iterations 200) 

Average 

Execution Time 
1:04:44 0:34:48 0:40:33 

Speedup  1.859696728 1.596464785 

Efficiency  0.929848364 0.798232392 

3rd 

Experiment 

(population 200, 

iterations 200) 

Average 

Execution Time 
1:22:20 0:49:22 0:54:22 

Speedup  1.667604366 1.514253602 

Efficiency  0.833802183 0.757126801 

Summary 

Average 

Speedup 
 1.8  

Average 

Efficiency 
 0.9  

 

5.2 MEGA versus PMEGA on 4 core CPU 

This section summarizes the experimental results from the execution of MEGA versus the 

process-enabled version of PMEGA using a four core CPU machine. 

The specification of our testing machine is: 

 Machine 2: 

 CPU: Inter Core 2 Duo Quad Q6600 @ 2.4 GHz (4 Physical Cores) 

 Memory: 4 Gbytes 

 



 

 

51 

The experiments in this section follow the same pattern as the previous experiments. The 

population sets used was 100, 150 and 200 individuals. The algorithms run for 200 iterations 

and 5 runs per experiment. The main purpose of these experiments was to compare the gained 

speedup with four cores with the one gained using 2 cores, also to check the effect of smaller 

subpopulations on the resulting solutions. These experiments have the double subpopulation 

number, than before, resulting into smaller size subpopulations. 

5.2.1 1st Experiment – MEGA vs. PMEGA (4 Subpopulations) vs. PMEGA (8 

Subpopulations) 

The first experiment contacted on the four core CPU had a population of 100 distributed 

into four and eight subpopulations, 200 iterations and executed for 5 runs.  

As on previous experiments, the objectives and datasets are the same used at the 

experiment described in section 5.1.2. 

Table 9 shows the execution time of the experiment. As on the previous experiment, 

Table 9 is showing, the time results of PMEGA using 4 subpopulations with 25 individuals 

and with 8 subpopulations having 12-13 individuals. 

Figure 28 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 29 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem.  

Figure 30 is a graphical demonstration of the solutions of a run of the PMEGA with 8 

Subpopulations algorithm on the same problem. 

Figure 31 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed.  
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The graphs show a very nice distribution of the proposed solutions regardless the 

algorithm used. From graph in Figure 31 is easy to notice that the solutions have very similar 

diversity across algorithms, both in parameter and objective space. 

 
Figure 28:  A graph of Pareto fronts taken from one of the runs for MEGA. The X and 

Y axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 

 
Figure 29: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 30: A graph of Pareto fronts taken from one of the runs for PMEGA with 8 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 

 

Figure 31: A comparison of MEGA, PMEGA with 4 Subpopulations and PMEGA with 8 

Subpopulations Pareto fronts. 



 

 

54 

Table 9 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 4 

Subpop 

PMEGA 8 

Subpop 

Run 0 00:57:29 00:19:37 00:21:50 

Run 1 00:55:22 00:19:09 00:18:41 

Run 2 00:57:26 00:23:06 00:22:25 

Run 3 00:53:18 00:22:44 00:21:58 

Run 4 00:55:02 00:20:19 00:20:32 

Total 04:38:37 01:44:55 01:45:26 

Max 00:57:29 00:23:06 00:22:25 

Min 00:53:18 00:19:09 00:18:41 

Average 00:55:57 00:20:53 00:21:27 

Speedup  2.678191489 2.60880829 

Efficiency  0.669547872 0.652202073 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

5.2.2 2nd Experiment – MEGA vs. PMEGA (4 Subpopulations) vs. PMEGA (8 

Subpopulations) 

The second experiment contacted on the four core CPU had a population of 150 

distributed into four and eight subpopulations, 200 iterations and executed for 5 runs.  

As on previous experiments, the objectives and datasets are the same used at the 

experiment described in section 5.1.2. 
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Table 10 shows the execution time of the experiment. As on the previous experiment, 

Table 10 is showing, the time results of PMEGA using 4 subpopulations with 37-38 

individuals and with 8 subpopulations having 18-19 individuals. 

Figure 32 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 33 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem.  

Figure 34 is a graphical demonstration of the solutions of a run of the PMEGA with 8 

Subpopulations algorithm on the same problem. 

Figure 35 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed.  

The graphs show a very nice distribution of the proposed solutions regardless the 

algorithm used. Also from graph in Figure 35 is easy to notice that the solutions have very 

similar diversity across algorithms, both in parameter and objective space. 

 
Figure 32:  A graph of Pareto fronts taken from one of the runs for MEGA. The X and 

Y axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 
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Figure 33: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 

 

Figure 34: A graph of Pareto fronts taken from one of the runs for PMEGA with 8 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 35: A comparison of MEGA, PMEGA with 4 Subpopulations and PMEGA with 8 

Subpopulations Pareto fronts. 
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Table 10 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 4 

Subpop 

PMEGA 8 

Subpop 

Run 0 01:26:52 00:30:41 00:32:48 

Run 1 01:22:54 00:31:49 00:30:25 

Run 2 01:26:33 00:39:17 00:34:03 

Run 3 01:27:47 00:32:20 00:33:20 

Run 4 01:25:28 00:31:57 00:30:29 

Total 07:09:34 02:46:04 02:41:05 

Max 01:27:47 00:39:17 00:34:03 

Min 01:22:54 00:30:41 00:30:25 

Average 01:26:18 00:32:02 00:32:12 

Speedup  2.693895248 2.679489391 

Efficiency  0.673473812 0.669872348 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

5.2.3 3rd Experiment – MEGA vs. PMEGA (4 Subpopulations) vs. PMEGA (8 

Subpopulations) 

The 3rd, and last, experiment contacted on the four core CPU had a population of 200 

distributed into four and eight subpopulations, 200 iterations and executed for 5 runs.  

As on previous experiments, the objectives and datasets are the same used at the 

experiment described in section 5.1.2. 
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Table 11 shows the execution time of the experiment. As on the previous experiment, 

Table 11 is showing, the time results of PMEGA using 4 subpopulations with 50 individuals 

and with 8 subpopulations having 25 individuals. 

Figure 36 is a graphical demonstration of the solutions of a run of the MEGA algorithm. 

The X and Y axis represent the two objectives. Note that both objectives need to be 

minimized. The blue dots on the blue dashed line represent the individuals of the starting 

working population. The red spots represent the individuals of the working populations over a 

period of iterations. 

Figure 37 is a graphical demonstration of the solutions of a run of the PMEGA with 4 

Subpopulations algorithm on the same problem.  

Figure 38 is a graphical demonstration of the solutions of a run of the PMEGA with 8 

Subpopulations algorithm on the same problem. 

Figure 39 compares all Pareto fronts of the MEGA and PMEGA algorithms from all runs 

performed.  

The graphs show a very nice distribution of the proposed solutions regardless the 

algorithm used. Also from graph in Figure 39 is easy to notice that the solutions have very 

similar diversity across algorithms, both in parameter and objective space. This is very nice 

since is cross validated in all three experiments of section 5.2. 

 
Figure 36:  A graph of Pareto fronts taken from one of the runs for MEGA. The X and 

Y axis represent the two objectives. Note that both objectives need to be minimized. The 

blue dots on the blue dashed line represent the individuals of the starting working 

populations over a period of iterations. The red dots represent the individuals of the 

Pareto Fronts over a period of iterations. 
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Figure 37: A graph of Pareto fronts taken from one of the runs for PMEGA with 4 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations.  

 

 

 

Figure 38: A graph of Pareto fronts taken from one of the runs for PMEGA with 8 

subpopulations. The X and Y axis represent the two objectives. Note that both objectives 

need to be minimized. The blue dots on the blue dashed line represent the individuals of 

the starting working population. The red dots represent the individuals of the Pareto 

Fronts over a period of iterations. 
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Figure 39: A comparison of MEGA, PMEGA with 4 Subpopulations and PMEGA with 8 

Subpopulations Pareto fronts. 
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Table 11 

Time results from the experiment, calculations for Average execution time, Speedup and 

Efficiency. 

 MEGA 
PMEGA 4 

Subpop 

PMEGA 8 

Subpop 

Run 0 02:00:38 00:45:49 00:42:13 

Run 1 01:50:20 00:35:38 00:42:17 

Run 2 01:55:42 00:48:17 00:42:43 

Run 3 01:57:31 00:42:06 00:40:45 

Run 4 01:57:03 00:40:02 00:40:22 

Total 09:41:14 03:31:52 03:28:20 

Max 02:00:38 00:48:17 00:42:43 

Min 01:50:20 00:35:38 00:40:22 

Average 01:56:45 00:42:39 00:41:45 

Speedup  2.73752768 2.796540253 

Efficiency  0.68438192 0.699135063 

    

Time measured is Wall Clock Time (Total Execution Time). 

Time format is HH:MM:SS. 

Average is calculated as (Total – Max – Min) / (5 - 2). 

Speedup is calculated as Time of serial / Time of parallel. 

Efficiency is calculated as Speedup / Number of processes. 

5.2.4 Summary 

This section summarizes the results from the experiments that were executed on the four 

cores CPU. A summary of the quality of the solutions is shown, comparing a random sample 

of the proposed solutions with the requested objectives. Also a summary of the gained 

speedup is shown. 

The graphs displayed in the experiments sections show a general trend of the solutions, 

but choosing a random sample of the proposed solutions and comparing them with the 
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requested objectives gives a more detailed view of how well the algorithms work. Molecules 

2D representations were designed by the online tools of MolInspiration [MOLINSP]. 

Table 12 shows the ligands that are known to be active with ER-a, which are used for the 

similarity objective. Table 13 shows the ligands that are known to be active with ER-b, which 

are used for the dissimilarity objective.  

Table 14 shows a random sample of the algorithm‟s proposed compounds. By just a look 

at the compounds displayed in this table is easy to find similar compounds in different 

algorithms. This shows that MEGA and PMEGA can produce similar solutions. 

Table 15 shows a summary of the experiments executed on the four cores CPU. From 

measured speedup on all the experiments the average speedup is calculated to be used with 

Amdahl‟s Law for the calculation of the maximum expected speedup of the parallel algorithm. 

The average measured speedup for this set of experiments is 2.7 and the efficiency 0.6. 

Table 12 

Compounds that algorithm‟s resulting compounds must be similar to. These compounds 

are known to be active with ER-a. 

Oc3ccc(c2oc(=O)c1cc(O)ccc1c2P)

cc3 

CCCc3c(c1ccc(O)cc1)nn(c2ccc(

O)cc2)c3c4ccc(O)cc4NO 

 

Table 13 

Compounds that algorithm‟s resulting compounds must not be similar to. These 

compounds are known to be active with ER-b. 

Oc3cccc(c2coc1cc(O)cc(O)c1c2=O

)c3 

CC[C@H]2Cc1cc(O)ccc1C4=C

2c3ccc(O)cc3C[C@@H]4CC 
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CCC(Cc1ccc(O)cc1)c2ccc(O)cc2 

 

 

 

Table 14 

Random sample of proposed solutions taken from MEGA and PMEGA. 

MEGA PMEGA with 4 Subpopulations 
PMEGA with 8 

Subpopulations 

c1(-C2=N-N(-C(-

c3:c(:c:c(:c(:c:3)-O)-O)-N)-C-C(-

C-O)-C)-C(-c4:c:c:c(:c:c:4)-O)-C-

2):c:c:c:c:c:1  

(MP_174_M_183) 

c1(:c(:c(:c:c:c:1-C-C)-C)-C)-N(-

c2:c:c:c:c:c:2)-N(-c3:c:c:c(:c:c:3)-

O)-N(-c4:c(:c:o:n:4)-C)-C(-C-C-C)-

C  

(SP_3_190_M_24) 

c1(-C2=N-N(-C(-

c3:c(:c:c:c:c:3)-C)-C-2-C(-C-C-

C)-C)-C(-c4:c:n:c:c:c:4)-C-C-

C):c(:c:c(:c(:c:1)-O)-O)-O  

(SP_2_147_M_6) 

c1(-C2=N-N(-N(-C-

c3:c(:c:c:c:c:3)-C)-C-

c4:c(:c:c:c:c:4)-C)-C(-

c5:c(:c:c:c:c:5)-C)-C-

2):c(:c:c:c:c:1)-C  

(MP_161_M_191) 

c1(:c(:c:c:c:c:1)-C-C)-N(-

c2:c(:c:c:c:c:2)-C)-C-C(-

c3:c:c(:c:c:c:3)-C)(-C(-C(-C)-C)-

C)-N-c4:c:c:c:c:c:4  

(SP_2_164_M_13) 

c1(-C2=N-N(-C(-c3:c(:c:c:c:c:3-

C)-C)-C-2-C-C-C-C)-C(-

c4:c:n:c:c:c:4)-C(-C-C)-

C):c(:c:c(:c:c:1)-O)-C  

(SP_1_174_M_18) 
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c1(-C2=N-N(-N(-C-

c3:c(:c:c:c:c:3)-C)-C-

c4:c:c(:c:c:c:4)-O)-C(-

c5:c(:c:c:c:c:5-C)-C)-C-

2):c(:c:c:c:c:1)-O  

(MP_192_M_8) 

c1(:c(:c(:c:c:c:1-C-C)-C)-C)-N(-

c2:c:c:c:c:c:2)-N(-c3:c:c(:c(:c:c:3)-

O)-C)-N(-c4:c(:c:o:n:4)-C)-C-C-C  

(SP_1_172_M_27) 

c1(:c(:n:c:c:c:1-C)-C)-C(-N2-

N=C(-c3:c:c:c(:c:c:3)-O)-C(-C-

2-c4:c(:c:c:c:c:4)-C)-C(-C(-O)-

C)-C-C)-C-C-C  

(SP_3_173_M_6) 

c1(-C2=N-N(-C(-c3:c(:c:c(:c:c:3)-

O)-N)-C-C(-C(-O)-C)-C)-C(-

c4:c:c:c(:c:c:4)-O)-C-

2):c(:c:c:c(:c:1)-O)-C  

(MP_162_M_119) 

c1(:c(:c:c:c(:c:1)-C)-C-C)-N(-

c2:c:c:c(:c:c:2)-O)-N(-

c3:c(:c:c(:c(:c:3)-C)-O)-C)-N-

c4:c(:c:o:n:4)-C-C  

(SP_0_160_M_15) 

C1(-c2:c:c(:c(:c:c:2)-O)-O)=N-

N(-C(-c3:c:c:c(:c:c:3)-O)-C-1-

C-C(-O)-C)-C(-c4:c:n:c:c:c:4)-C  

(SP_5_173_M_19) 

c1(-C2=N-N(-C(-c3:c(:c:c(:c:c:3)-

O)-C)-C-2)-C(-c4:c(:c:c(:c:c:4)-

O)-N)-C-C(-C(-O)-C)-C-

O):c:c:c:c:c:1  

(MP_132_M_74) 

c1(:c(:c:c:c:c:1)-C)-N(-c2:c:c(:c(-O-

O):c:c:2)-C-C)-N(-c3:c(:c:c(:c:c:3)-

O)-C-C)-N-c4:n:o:c:c:4  

(SP_3_177_M_2) 

c1(-C2=N-N(-C(-

c3:c:n:c(:c:c:3)-O)-C(-C)(-C)-

C)-C(-c4:c(:c:c(:c:c:4-C)-O)-C-

O)-C-2-C):c(:c:c:c:c:1-C)-O  

(SP_7_199_M_1) 

c1(:c(:c(:c:c:c:1-C)-O)-C)-C-N(- c1(:c(:c:c:c:c:1)-C)-N(-c2:c:c(:c(-O-
C1(-c2:c:c:c:c:c:2)=N-N(-C(-

c3:c(:c:c(:c:c:3)-O)-C-C-C)-C-
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N2-N=C(-c3:c:c:c:c:c:3)-C-C-2-

c4:c(:c:c:c:c:4)-C)-C-

c5:c:c:c:c:c:5  

(MP_187_M_100) 

O):c:c:2)-C-C)-N(-c3:c(:c:c(:c:c:3)-

O)-C-C)-N-c4:n:o:c:c:4  

(SP_3_177_M_2) 

1-C-C(-C-C)-C)-C(-

c4:c(:n:c:c:c:4)-C)-C(-C)-C  

(SP_1_166_M_0) 

 

Table 15 

Summary table for the experiments held on the four cores CPU. 

  MEGA 
PMEGA 4 

Subpopulations 

PMEGA 8 

Subpopulations 

1st 

Experiment 

(population 100, 

iterations 200) 

Average 

Execution Time 
0:55:57 0:20:53 0:21:27 

Speedup  2.678191489 2.60880829 

Efficiency  0.669547872 0.652202073 

2nd 

Experiment 

(population 150, 

iterations 200) 

Average 

Execution Time 
1:26:18 0:32:02 0:32:12 

Speedup  2.693895248 2.679489391 

Efficiency  0.673473812 0.669872348 

3rd 

Experiment 

(population 200, 

iterations 200) 

Average 

Execution Time 
1:56:45 0:42:39 0:41:45 

Speedup  2.73752768 2.796540253 

Efficiency  0.68438192 0.699135063 

Summary 

Average 

Speedup 
 2.7  

Average 

Efficiency 
 0.7  
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Chapter 6 

 

Discussion 

 

 

From the collected and calculated results about the measured speedup of the experiments 

we can use the Amdahl‟s Law to calculate the estimated percentage of the parallelism on the 

algorithm we use and further on the estimated speedup using more CPUs. 

The average Speedup measured is . 

Using  with  and  the  equals to , 

meaning that 86% of the algorithm is executed in parallel. 

Using the  in Amdahl‟s Law we can estimate the speedup of the algorithm 

using more CPUs.  

Using Amdahl‟s Law for parallelization , replacing  with  calculated 

before and  with 4, 8, 16, 32, etc, shown in Table 16. Table 17 acts as a cross-reference to 

Table 16, using as reference the four cores CPU. 
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Table 16 

Calculate Estimated Speedup and Efficiency using more cores. Reference used is the two 

cores CPU. 

   
2 1.8 0.9 

4 2.8 0.7 

8 4.0 0.5 

16 5.1 0.3 

32 5.9 0.2 

64 6.4 0.1 

 

  
0.86 

Estimated 

parallel 

percentage of the 

algorithm. 

 

 

Estimated 

Speedup 

 
 

Number of 

cores 

  Efficiency 

 

 7.0 

 

 

 

Table 17 

Calculate Estimated Speedup and Efficiency using more cores. Reference used is the four 

cores CPU. 

   
4 2.7 0.7 

8 3.8 0.5 

16 4.7 0.3 

32 5.4 0.2 

64 5.8 0.1 

 

  
0.84 

Estimated 

parallel 

percentage of the 

algorithm. 

 

 

Estimated 

Speedup 

 
 

Number of 

cores 

  Efficiency 

 

 6.3 

 
From these estimations we can conclude that the algorithm can have a maximum Speedup 

around 6.6 (average maximum Speedup). Something very important to notice is the Efficiency 
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shown in Tables 16 and 17, as we add more cores the efficiency drops to very low numbers 

since the algorithm gets allocated more resources than those it really needs.  

From all these we conclude to the fact that using more than eight cores to run the current 

algorithm (PMEGA) is inefficiently due to low efficiency and small speedup from that point 

and further on. This is also supported by Amdahl‟s Law, which states that if an algorithm can 

be parallelized at a degree of 90% then the maximum speedup it can achieve regardless of the 

number of CPUs is 10, shown in figure 9. And in this case the estimated parallelized part of 

the algorithm is 85% so by applying Amdahl‟s Law and setting the number of CPUs to 

infinite, then the maximum estimated speedup is 6.6. 

When comparing PMEGA with itself, using different number of subpopulations at the 

same problem, a minor reduction to the speedup gained is observed. This happens due to the 

fact that after the independent evolution o a subpopulation, the child process responsible for 

the evolution reports the results back to the main process, which in its turn gathers them and 

merges them with other results that were delivered. This action of gathering and merging 

requires some computation for the main process, thus delaying for a small amount of time the 

child process to get assigned a new task. 

Regarding the quality of the solutions of PMEGA compared with MEGA, from the 

visualization of the sample of proposed solutions and the graphs showing the quality of the 

solutions for each experiment, was clearly shown that: 

 PMEGA can provide similar solutions with MEGA. 

 PMEGA‟s subpopulations can provide solutions that are different among 

subpopulations. Despite the fact that subpopulations were selected at random without 

the use of any knowledge. 

Regarding the programming experience, Python helps the programmer by having an 

already implemented class for creating a pool of processes and a well defined API. Also gives 

the programmer the freedom to make his/her own experiments with the various classes and 

components provided. Despite the fact that Python limits the use of real multithreading with 

the use of GIL, there are ways to overcome this obstacle by the use of multiprocessing.
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Chapter 7 

 

Concluding Remarks and Future Work 

 

 

The experimental results produced lead to the following conclusions: 

 With respect to the quality of the solutions produced, MEGA and PMEGA behave 

comparably. The differences observed between the final Pareto-front approximations 

produced, are partly due to the way PMEGA splits the working population into 

subpopulations. The current PMEGA implementation splits the population in a 

random fashion without using any knowledge related to the morphology of the Pareto-

approximation and the density of solutions at any region of the search space. A 

potentially better way to split the population we are planning to explore will use 

clustering methodologies. 

 From the experiments and the use of Amdahl‟s Law is clearly shown that the PMEGA 

can achieve a maximum speedup of 6.6. This does not seems good if we consider that 

is achieved when the number of CPUs used reaches infinite. But on the other hand is 

stated clearly that when using a two cores CPU, PMEGA completes in the half time 

that MEGA needs and when using a four cores CPU, PMEGA completes almost in 

one third of the time that MEGA needs. 

 Number of subpopulations has an effect on the quality of the results obtained. With 

more subpopulations the more uniform the resulting solutions are, at least in objective 

space. In parameter space this has little to no effect since similar solutions are located 

in the same cluster group, thus the more similar solutions does not change the 

diversity of the cluster groups, it only changes the size of the cluster groups. 
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The above conclusions show that using PMEGA, a modified PEA version of MEGA, can 

provide us with equivalent solution sets in substantially less time.  

Future work on PMEGA will focus on: 

 Algorithmic improvements in the way subpopulations are selected with the aid of 

knowledge-driven approaches in order to improve the quality of the optimization 

search and reduce the number of iterations needed for convergence.  

 Also an investigation if further parallelization is possible in order to achieve a better 

maximum speedup. 
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