
 

 

ABSTRACT 

 

 

Today scientists are working in e-Science environments and carry out in silico experiments. A 

powerful approach, with proven capabilities to facilitate the design process of computational 

experiments is based on Scientific Workflows, which are receiving considerable interest in 

recent years. This thesis thoroughly reviews the Scientific Workflows Management Systems 

field and investigates in detail popular open source workflow systems from a scientific 

applicability perspective. Moreover, a complex computational experiment from the life 

sciences field is implemented using current workflow technology in order to better assess their 

strengths and weaknesses. Emphasis is placed on features which make these systems attractive 

for scientific use, e.g. user friendliness, use of distributed resources, reusability, provenance, 

collaboration, data integration, etc. Our conclusions indicate that although Scientific 

Workflow Management Systems have open issues, discussed in detail in the context of this 

thesis, their strong momentum clearly suggests that is only a matter of time before they are 

adopted by even more scientific fields.  
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Chapter 1 

 

Introduction 

 
“e-Science is all about furthering technology in order to advance the scientific discipline”1 

 

 

Today scientists are working in e-Science environments and carry out in silico experiments. In 

other words scientists use environments that support global collaboration, involve 

multidisciplinary science and utilize modern technology infrastructure
2
 to carry out their 

experiments in silico.
3
 A powerful approach, with proven capabilities to facilitate the design 

process of computational experiments is based on Scientific Workflows (SW). This approach 

enables scientists to plug together problem solving computational components [1] and 

implement complex in-silico experiments such as the analysis of datasets of multi-Terabyte 

magnitude that arise from sensors or computer simulations, and, the design and execution of 

complicated algorithms requiring numerous computationally intensive steps. Scientific 

workflow management systems (SWMS) can potentially accelerate scientific discovery by 

incorporating data management, analysis, simulation, and visualization tools. They provide an 

interactive visual interface that facilitates the design, execution and management of 

workflows.  Moreover, scientific workflow management systems enable remote access as well 

as data and services sharing, making possible collaborations among geographically distributed 

researchers.  

 

                                                
1 http://www.escience-grid.org.uk/ 
2 http://www.lesc.ic.ac.uk/admin/escience.html 
3  In silico, i.e. via computer simulations; not in-vivo (in living organisms) or in-vitro (in glass tubes). 

http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
http://www.escience-grid.org.uk/
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Traditionally, many scientists have been using batch files, shell scripts, and programs written 

in general-purpose scripting languages (e.g., Perl, Python) to automate their tool-integration 

tasks [2]. This approach provides high flexibility, and is therefore appealing, to expert users 

but makes it difficult for the average user to implement scientific tasks requiring the 

integration of multiple computational components and data resources. Scientific workflows 

provide a promising alternative to all scientific users facing the above problem because of 

several inherent advantages [3]. Two main advantages of the SW approach are visual 

representation of the task flow and visual channeling of data as opposed to lines of code 

directing the flow in the case of scripts. Provenance
4
 information, which is very important for 

the reproducibility of the experiments as well as for backtracking and resolution of errors, is 

an additional characteristic of workflows not present in scripting tools. Reusability and 

transparency is easily achieved by the reuse of a workflow or the use of a workflow inside a 

workflow. Finally complex implementation details such as parallelism, pipelining and High 

Performance Computing (HPC) are handled transparently by SWMS systems in order to 

achieve maximum efficiency for execution time [22]. 

 

Fundamentally, a scientific workflow is a tool that automates the execution of an experiment. 

As such it can offer multiple benefits for all the phases of an experiment’s lifecycle. During 

the composition phase, a repository of tried and tested workflows is available to the scientists 

to choose from. During the execution phase, as experimenting is by definition a repeatable 

process, workflows can relieve the scientists of repetitive tasks but at the same time keep track 

of all the intermediary steps and data. These traces can be used at a later stage to enable the 

reproducibility of the experiment. Provenance information[25] is also useful during the 

analysis phase to assess the evolution of the research effort, trace the origin of an error or go 

back to a previous stage and change the direction of investigation. Visualization tools are 

provided for this phase as well for assisting in the evaluation of the results [25]. 

                                                
4 In the scientific workflow research community, the information that describes the details of data processing 
history is referred to as “provenance” (also “lineage” or “pedigree”) (Simmhan et al., 2005). 
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Moreover, being a promising tool for End-to-End scientific data management, scientific 

workflows enable scientists to cope with big data as petabytes of data are produced either by 

sensors or by simulations executing scientific algorithms. Grid technologies allow workflows 

to implement parallel executions enabling large scale data processing. In this case, workflows 

are used as a parallel programming model for data-parallel applications. Web services allow 

ease of access to local and distributed data sources as well as data aggregation from highly 

heterogeneous environments. Even HPC technology can be made available to scientists who 

may have limited or no computing resources. Finally, collaboration between scientists is 

encouraged and achieved both within and across disciplines. Implemented similarly to the 

trend of social networks, scientists share workflows and their corresponding services. All of 

the above can optimize the implementation of experiments in a transparent way for the 

domain scientist.  

 

Currently over 50 different representatives of scientific workflow management systems exist 

[4]. The most popular in scientific literature being Taverna [5],[6],[7], Triana [8], Kepler [9], 

Pegasus[10] and KNIME [11],[12] which are open source software and Pipeline Pilot [13], 

InforSense KDE [14] and Microsoft Trident [15] which are commercial products. On the other 

hand, Galaxy [16], is a more recent Web based SWMS dedicated to biomedical research that 

is increasingly gaining popularity. 

 

As in the case of many other tools, SWMS quickly found application in a great number of 

diverse scientific domains, although they were originally developed with a specialized domain 

application in mind. Figure 1.1 illustrates some of the main application domains of SWMS. 

This domain independence is mainly owed to the abstraction that characterizes the workflow 

paradigm. 
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Recent advances do not yet match the expectations of scientists, as noted in [2]. However they 

are a step towards a future where we can imagine a doctor preparing a checkup workflow of a 

patient containing complicated DNA analysis, statistical prediction models, image analysis 

algorithms, inference rules engines and database search all from his tablet pc only to be 

executed somewhere in the cloud. Or a computer programmer selecting from a pool of cross 

platform resources created by other computer programmers that read a simple file, scan a 

database, search the web, send email, calculate formulas, build statistical models, implement 

complicated algorithms, or executed built-in workflows to create a work-flowed application 

that can enrich the resources of the initial pool. 

 

 

SWMS 

Biology 

•Genome 
Analysis Chemistry 

• Drug 
Discovery 

Geology 

• Seismology 

Ecology 

Oceano-
graphy 

Astronomy 

Music 

Linguistics 

Economics 

Physics 

Computer 
Science 

• Image Analysis 

• Text Mining 

Bio-
informatics 

Figure 1.1 – Application domains of SWMS 

Figure 1.2 – Applying future Healthcare workflow technology on the cloud 
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1.1 Aims of this study 

A main goal of this thesis is to thoroughly review the SWMS field and investigate in detail 

popular open source workflow systems from a scientific applicability perspective. To achieve 

this goal a general overview of the field is prepared as well as a more detailed review of 

representative systems. A second goal is to design a scientific workflow addressing the needs 

of complex in silico experiments from the life sciences field, specifically, the 

chemoprevention domain. The designed workflow will also be implemented using two of the 

most promising open source SWMS available. This task involves the preparation of 

appropriate nodes/tools for each of the SWMS, the implementation and execution of the 

workflows and the analysis and presentation of the results obtained. The third main goal of the 

work presented in this thesis is to assess progress in the SWMS field. We will concentrate on 

what workflow technology offers currently, how we can benefit from it, how it can be 

improved and what difficulties arise when in use.  Further assessment will take place through 

the evaluation and discussion of the experiences and results obtained from the workflows 

developed with respect to the features which make SWMS’s attractive, e.g. user friendliness, 

use of distributed resources, reusability, provenance, etc.  

 

1.2 Guide to Thesis contents 

The rest of thesis paper is structured as follows: Chapter 2 focuses on the scientific workflow 

paradigm, its main categories and introduces some of the main SWMS representatives in the 

scientific literature as well as example use cases. Chapter 3 presents in detail three open 

source SWMS and discusses their components and functionality. In Chapter 4 a test case 

workflow is developed which the next chapter, Chapter 5, implements and applies as a test 

case on two separate platforms. In Chapter 6 the results are discussed while Chapter 7 sums 

up this thesis by presenting the conclusions and future work.  
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Chapter 2 

 

Scientific Workflow Technology Review 

 

2.1 Scientific workflow paradigm 

2.2 Types and subcategories 

2.3 Scientific workflow management systems 

2.4 Scientific workflow life cycle 

 

2.5 SWMS’s architecture 

2.6 SWMS Review 

2.7 Scientific workflow collaboration 

2.8 Current projects 

 

Scientific workflows help tackle the problem of excessive complexity of in silico experimentation by 

helping scientists model what an experiment is set to achieve, while abstracting out how it will be 

executed5 

 

2.1 Scientific workflow paradigm 

A workflow (WF) is a general, widely used term used to describe the actions that need to be 

taken in order to complete a complex task. An abstract scientific workflow is represented as a 

directed graph where each node represents a step
6
 implemented by a software component. 

This component can be either the execution of a local program or a remote web service (e.g. a 

query to a database). The edges of the graph represent either data flow or execution 

dependencies between nodes [55]. The links coordinate the inputs and outputs of the 

individual steps, forming the data flow. Control flow links occur when two tasks have no data 

dependencies and therefore the order must be explicitly defined. 

In Figure 2.1 a sample workflow, designed using the KNIME platform, is depicted. The 

sample workflow reads a file, interchanges rows with columns, executes a local script and 

                                                
5 http://www.taverna.org.uk/ 
6 Synonyms: activities, components, processors 

http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
http://www.taverna.org.uk/introduction/why-use-workflows/
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saves the results in a file in the .csv
7
 format. Each step is represented by a node which is 

clearly named. The links symbolize the flow of the data from one node to the next. The order 

of execution is determined by the data dependencies. 

 

 

Figure 2.1 – Sample workflow in KNIME platform 

 

A second example from the Taverna 

workbench is shown in Figure 2.2. The 

workflow writes to a text file a value and 

then it reads the value from the file and 

presents it as output. The nodes in purple 

color are the tasks or services to be 

executed. In this case both services are 

local programs. The pointed arrows 

represent the data flow while the 

rounded ones are control flow links 

necessary to define the order so that 

writing the file proceeds reading it. 

 

        Figure 2.2 – Sample workflow in Taverna workbench 

                                                
7 csv is a comma separated value plain text file format 

Control link: 

Run after 

Input 

Constant 

Output: File 

contents 

Local 

Service 

Data link 

Data link Node 
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A third more useful example from the chemistry domain is given in Figure 2.3.1.  This WF 

has also been designed in the Taverna environment. The workflow converts a file containing 

chemical substances from one format to another. Three inputs must be specified: input-format, 

output-format, and the file containing the chemical substance. Next, the format conversion is 

taking place and the result is passed to the output port. The conversion task this time is not a 

local program but a network service. More specifically it is a WSDL service. WSDL is an 

XML format for describing network services as a set of endpoints operating on messages 

containing either document-oriented or procedure-oriented information
8
.   In Figure 2.3.2. the 

details of this service are given as displayed by the Taverna environment. 

 

Figure 2.3.1 – Remote service call workflow in Taverna 

 

Figure 2.3.2 – Remote service details as displayed by the Taverna workbench 

                                                
8 http://www.w3.org 

Remote 

Service 

Shim 

Service 

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/
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Usually, real life scientific workflows are more complex with calls to more services, usage of 

shim services to convert between inputs and additional parameters for sequence of execution, 

looping and error handling.  

Abstract workflows are sometimes described using special languages or XML schemas e.g. 

BPEL[19][21] in the Trident system, DAG[20]  in Pegasus, t2flow[52] in Taverna or even 

simple database values as in Galaxy [16],[55]. Once the abstract workflows are translated into 

machine readable language they can be fed into workflow execution engines.       

 

2.2 Types and subcategories 

Workflow technology is not new. It has long been adopted by the business community. 

Business workflow management and business process modeling are mature research areas, 

whose roots go far back to the early days of office automation systems [22]. However, the 

term “Scientific Workflow” became popular after the year 2000, as the existing technology 

could not support the special characteristics of scientific 

processes which are data and computationally intensive, 

highly repetitive and reproducible. In the Workflow 

Reference Model (WFRM), published in 1995 by the 

Workflow Management Coalition industry consortium 

[23], there is a clear definition for the term workflow. 

 

 In the case of scientific workflow however, experts in the field like Ludascher et al. [22] 

point out that “there seems to be no single set of characteristic features that would uniquely 

define what a scientific workflow is and isn’t.” 

Flow control can be considered the most important classification characteristic of scientific 

workflows. A workflow is either data-flow or control-flow oriented. In control-driven 

workflows the connections between the tasks represent a transfer of control from one task to 

the next one. In data-driven workflows connections represent the flow of data from one task to 

the next one. The workflow representation is centered on data products. As mentioned in [1] 

“A workflow is defined as the 

computerized facilitation of 

automation of a business 

process, in whole or part.” 
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most of the current scientific workflows are data-flow oriented as opposed to their 

predecessors and business workflows which are control-flow. According to [24], the reason is 

that data-flow modeling is the natural way of composing scientific workflows, because they 

often comprise numerous data transformation steps applying massive parallelism. 

Another important distinguishing feature of workflows is pipeline parallel processing. A 

pipeline consists of a collection of steps. Parallelism is achieved by executing these steps 

simultaneously on different input data sets.  The tasks are executed in separate threads, 

processing input immediately and not waiting for the previous task to complete. The 

drawback is that pipelined workflows are harder to restart in the case of unforeseen events as 

the current state of the executed workflow is not as easy to describe and restore [25]. 

 

A popular categorization is based on the distinction between high level scientific oriented 

workflows and lower-level engineering resource oriented (or “plumbing”) workflows [1]. The 

first are an implementation of an experimental protocol or a data analysis method where each 

task corresponds to the high level tasks of the scientific method. The latter are concerned 

mostly with the “plumbing tasks” such as data movement and replication and job 

management. 

 

A Workflow Model (also called workflow specification) defines a workflow including its task 

definition and structure definition. There are two types of workflow models, namely abstract 

and concrete [28]. The abstract model defines a workflow in an abstract form without 

referring to any resources for task execution. On the contrary in the concrete model the 

workflow tasks are bound to the designated resources. The user creates the abstract workflow 

in the workflow modeler component. Mapping the resources is done transparently by the 

enactment engine to create a concrete executable workflow.  

 

Scientific workflows can also be differentiated based on the design focus. In the initial 

discovery stages of a scientific method, a non-mature workflow is constantly changing while 
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the designer is trying out different approaches and solutions. The design considerations are 

ease of change and reusability. Later on, as the workflow becomes mature, it obtains a steady 

form and can then be used as a production workflow executed on a regular basis. At this point 

the design considerations shift to speed and efficiency. 

 

2.3 Scientific workflow management systems 

In theory a SWMS is a combination of a workflow modeling component using an abstract 

language and a workflow enacting component empowered by an execution engine. In practice 

a SWMS enables a user to create and then monitor the execution of a workflow by providing 

the necessary infrastructure. The modeling component enables the user to design, reuse and 

store workflow models while the enacting component invokes, executes and monitors 

workflow instances [4] deploying them either on a local desktop computer, a web server, or a 

distributed computing environment. Embedded in the workflow design, is the order of the 

tasks to be executed.   The coordination process of this execution is known as orchestration. 

The execution engine adds the transparency required to allow the domain scientist to model a 

solution without any concerns of how the solution will be carried through.   

 

This architecture is applied in the Trident SWMS [26]. This Microsoft system allows for 

independent components for workflow modeling and for execution. Firstly the scientist 

creates the workflow in an independent workflow composer. Then the workflow is executed 

in Trident. This is known as centralized execution architecture. Other systems follow a less 

strict decentralized architecture. For example, in Taverna 2 [5], each processor independently 

starts its own execution as soon as the input data are available. This allows for inter-processor 

parallelism as the tasks are executed in separate threads. The need for coordination however 

exists, so the system offers a façade pattern that relays messages to and from the central 

monitor. As SWMS are software environments created specifically for workflows, they 

encompass a number of functionalities for their management including workflow design, re-

engineering, allocation of resources, task scheduling, data movement, data formats, 
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optimizations, execution, monitoring, fault management, analysis, provenance data, storage, 

collaboration, reuse. Moreover, SWMS is typically run over middleware that provides 

infrastructure for accessing the applications or resources consumed by the workflow, and 

facilities like security and access control [4].  

 

2.4 Scientific workflow life cycle 

The main design goal of SWMS is to support the workflow lifecycle. Detailed analysis of how 

each step of the lifecycle can be supported provides an improved understanding of the 

functionalities that any SWMS must accommodate. The lifecycle of a scientific workflow 

begins with the Design phase where a new workflow is created either from scratch or from 

existing workflows. During the following Planning phase the workflow is validated and 

optimized to user requirements. This phase also includes resource allocation and task 

scheduling if required. The Execution phase involves invoking and monitoring the workflow, 

retrieving the data, error handling and keeping measurements. The results of the execution are 

visualized and tagged in the Analysis phase. Finally, in the Storage phase the workflow is 

stored along with its provenance data and enabled for sharing [4]. Slightly different scientific 

workflow life cycles were proposed by experts in the field in [4], [22], [26], [25], [27]. In 

Figure 2.4 the scientific workflow life cycle is given as presented in [4].   
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Figure 2.4 – Scientific workflow life cycle as proposed by [4] 
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2.5 SWMS’s architecture 

A simplified architecture of the SWMS high level components is presented in Figure 2.5. It is 

a merger of proposed architectures in [4], [22], [27], [26], [44], [45], [46]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – SWMS high level components interaction 
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An SWMS is generally considered to be a combination of two main constituent parts. The 

Workflow Design Interface and the Enactment Engine. The Workflow Design Interface is 

usually a client application or a web portal that enables a user to model workflows (workflow 

modeler), execute them (execution monitor) and share them (collaboration manager). The 

workflow modeler enables the user to create workflows from the software components 

catalogue available and validates the workflow in terms of data type consistency or service 

availability. The Enactment Engine is responsible for executing the workflow (execution 

engine), allocating resources and keeping track or provenance data. Scheduling, monitoring, 

logging the workflow’s execution details and any security issues are handled by the Execution 

Engine. 

 

 

2.6 SWMS Review 

The field of SWMS has been receiving considerable interest in recent years. Consequently, a 

number of implementations have been reported and several reviews of such systems have 

been published. Early on, in 2005, Yu and Buyya [28] presented a taxonomy of grid workflow 

systems. In 2006, Taylor et al. [29] published a book on E-Science workflows, presenting 

several systems and defining research questions. Tiwari and Sekhar [30] surveyed workflow 

systems for life sciences. Τhe research questions set down at the National Science Foundation 

Workshop on ScientificWorkflows of 2006 were recorded by Gil et al. [31]. In 2008, Barker 

and van Hemert [1], presented a concise survey of existing workflow technology from the 

business and scientific domain and made a number of key suggestions.  At the same year V. 

Curcin and M. Ghanem [44] reviewed six systems considered state of the art in the field. 

McPhillips et al.[2] prepared a list of Desiderata for scientific workflow systems for scientists. 

Finally, C. Goble et al. [4] presented the challenges to be met by the advancing workflow 

technology.  In 2009, Ludascher et al. [22] in his survey compared Scientific Workflows to 

the well-established Business Workflows. At the same year, the same author provides an 

overview of the characteristic features of scientific workflows and outlines their life cycle[25]. 
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Deelman et al. [27] extracts a taxonomy of features from the end users view for the current 

scientific workflow systems. Sonntag et al. in their work in 2011 [26], after reviewing 

contemporary systems, proposed a conceptual architecture for scientific workflow systems 

based on business workflow systems, an approach encouraged by the Sixth International 

Workshop on Scientific Workflows (SWF 2011). This section provides an updated review of 

the main, most popular SWMS in order to present the current state of the art in the field. 

 

The list of different workflow management tools used routinely is considerably large, 

exceeding 50 items[4]. This list includes popular SWMS like Taverna, Triana, Kepler, 

Pegasus, KNIME, Galaxy, Pipeline Pilot, InforSense KDE and Microsoft Trident but also 

BioWBI [32], GridBus [33], ICENI [34], and Magenta [35], GridNexus [36], ASKALON [37] 

and others. Table 2.1 presents a snapshot of the main popular representatives of workflow 

management tools and their main characteristics. A short informative description follows. 

 Taverna[5][6][7] 

Taverna is an open-source, Grid-aware workflow management system. It is used primarily by 

the bioinformatics, computational chemistry, medical imaging, social science and astronomy 

communities Taverna is actually domain independent. It is comprised of the Taverna 

Workbench graphical workflow authoring client, together with a workflow representation 

language, and an appropriate enactment engine. Taverna is implemented as a service-oriented 

architecture, based on Web service standards. Provenance plays an integral part in Taverna, 

allowing users to capture and inspect details such as who conducted the experiment, what 

services were used, and what the results of services provided. Taverna has been created by the 

myGrid [51] team.  

 Galaxy[16][17][18] 

Galaxy is a Web-based platform for data intensive biomedical research. It provides a 

framework for integrating computational tools and the environment for interactive data 

analysis, reuse, sharing and other. It allows nearly any tool that can be run from the command- 
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Table 2.1 – List of popular Workflow applications 

 

line to be wrapped in a structured well defined interface. It is open source and specially 

designed for the needs of bioinformaticians supporting sequence manipulation with built in 

libraries. It does not support any control flow operations or remote services. Additionally it 

does not use a workflow language but rather a relational database.  The Galaxy workflow 

system allows for analysis using multiple tools incorporated to the system through WF that 

may be built and run or extracted from past runs, and rerun. All of Galaxy’s operations can be 

performed using nothing more than a web browser. A recent Taverna-Galaxy integration 

allows the automatic generation of Galaxy tools from Taverna 2 workflows. The tools can 

List of Scientific Workflow Applications 

 

 

 

O 

P 

E 

N      

 

S 

O 

U 

R 

C 

E  

Application URL 
TECHNOLOGY/ 

PARADIGM 
SCIENTIFIC FIELD 

Last 

updated 

version 

Taverna [5][6][7] 

http://www.taverna.org.uk/ 
Java based 

 

Bioinformatics, chemistry, as

tronomy, data and text 

mining, music,  

May - 12 

Galaxy [16]  
http://galaxy.psu.edu/ 

 
Python based Life Sciences, Bioinformatics 

May - 12 

Pegasus [10] 

http://pegasus.isi.edu/ 

Java based 

DAX 

Condor DAGMan 

Bioinformatics, Astronomy, 

Botany, Chemistry, Physics, 

Ocean science, Neuroscience, 

Limnology, Genome 

analysis, Earthquake science, 

Climate modeling, Computer 

science, Helioseismology 

Feb - 12 

Triana [8] 

http://www.trianacode.org/ Java based 

WSFL 

TrianaService 

Signal, text and image 

processing 

Oct - 11 

Kepler [9] 

https://kepler-project.org/ Java based 

MoML 

Ptolemy 

Ecology and Geology 

Jun - 11 

Knime [11][12] 

http://www.knime.org/ 

Java based 

Life Sciences, Chemo- and 

Bioinformatics, but also high 

performance data analysis 

Mar-12 

 

C 

O 

M 

E 

R 

C 

I 

A 

L 

Discovery Net , 

Inforsence, IDBS 

[14] 

http://www.idbs.com/ 

-- 

life sciences, healthcare, 

financial services, sales & 

marketing analytics 

Life Science, Environmental 

monitoring, geo-hazard 

modeling 

-- 

Pipeline Pilot, 

Accelrys [13] 

http://accelrys.com/product

s/pipeline-pilot/ 
-- 

Biology, Chemistry, Material 

Science 

-- 

Microsoft  

Trident [15] 

http://research.microsoft.c

om /en-

us/collaboration/tools 

/trident.aspx 

Microsoft Workflows Engine 

XOML 
Oceanography, Astronomy 

-- 
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then be installed in a Galaxy server and become part of a Galaxy pipeline. Galaxy can also be 

instantiated on cloud computing infrastructures or can be interfaced with grid clusters.  

 Pegasus [10] 

Pegasus is a framework for mapping scientific workflows onto distributed resources including 

Grid and Cloud-based systems. It has found application in a number of fields such as 

Bioinformatics, Astronomy, Botany, Chemistry, Physics, Ocean Science, Neuroscience and 

others.  The user defines an abstract workflow and then Pegasus maps and executes it onto 

available distributed computer resources through the use of Artificial Intelligence scheduling 

techniques. The mapping is done automatically concealing any technical and middleware 

details. Pegasus [10] is rather a workflow compiler than a SWMS. It uses a proprietary 

language at the abstract level which is the execution independent XML representation of a 

directed acyclic graph. 

 KNIME [11][12] 

KNIME (Konstanz Information Miner) is an open-source platform that supports data 

integration from various sources, processing, modeling, analysis and mining, as well as 

parallel execution. The user can create data flows visually, then execute the analysis steps and 

study the results. KNIME is primarily used in pharmaceutical research with some applications 

reported in other areas like customer resource management and data analysis (CRM), business 

intelligence and financial data analysis. KNIME is based on the Eclipse open source platform 

and is developed at the University of Konstanz, Germany. 

 TRIANA [8] 

Triana is an open source visual workflow-based problem solving environment that focuses on 

supporting services and workflow execution in distributed environments. It is designed to 

define, process, analyse, manage, execute and monitor workflows. For workflow and service 

execution Triana supports peer-to-peer systems and Grid environments that enable dynamic 

resource allocation. The environment has been used in a range of tasks, such as signal, text 

and image processing. Once designed, Triana workflows can be imported from or saved in a 
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variety of forms. Triana supports multiple abstract workflow languages by allowing different 

workflow readers/writers to be plugged in. Triana  is developed at Cardiff University. 

 KEPLER [9] 

Kepler is an open-source scientific workflow engine used primarily in geology and ecology 

projects. Kepler provides an intuitive graphical user interface and an execution engine to help 

scientists edit and manage scientific workflows, collect provenance information related to the 

developed workflows, and generate reports on their executions over time. The execution 

engine is separated from the graphical user interface enabling the execution of workflows in 

batch, centralized or distributed mode. Kepler provides a large variety of computational 

models inherited from the Ptolemy II [49] system based at the University of California at 

Berkeley and uses a proprietary language. Kepler is developed by a cross-project 

collaboration to serve scientists from different disciplines and is based upon work supported 

by the US National Science Foundation.  

 DiscoveryNet [14] 

DiscoveryNet is a visual component integration-based workflow system that provides a 

graphical user interface to build workflows out of existing third-party tools and services. It 

also allows for service providers to publish their software components for data analysis and 

mining. The developed workflows are saved in an XML-based format called Discovery 

Markup Language (DPML). The DiscoveryNet technology and system was later 

commercialized as a series of products through InforSense4. 

 Pipeline pilot [13] 

Pipeline Pilot (PP)  is a commercial package implementing a scientific workflow management 

system [13]. A limited version of it is provided free to academic communities. PP was built by 

Accelrys to automate scientific data management, analysis and reporting processes powered 

by a data pipelining engine. Pipeline Pilot provides a large set of domain-specific component 

libraries with an emphasis on bioinformatics and computational chemistry and so it is largely 

used as a data pipelining framework and reporting platform in these scientific domains. 
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 TRIDENT [15] 

Trident, implemented on top of the Windows Workflow Foundation[50], uses a control flow-

oriented modeling language based on the Extensible Orchestration Markup Language 

(XOML). The Microsoft system consists of independent components for workflow modeling 

and execution. It provides a workflow modeling tool like a text editor, a graphical composer 

and domain-specific workflow packages for astronomy, biology, meteorology or 

oceanography. The workflow is executed in Trident, but can also be executed by compiling it 

into a usual application and run on Microsoft .Net platforms. Trident is part of a collaborative 

project between The University of Washington, Monterey Bay Aquarium Research Institute 

and Microsoft. 

 

2.7 Scientific workflow collaboration 

As previously mentioned, one of the main advantages of these tools is their ability to promote 

scientific collaboration through sharing of workflows. An example of such initiatives is 

myExperiment [38]. myExperiment is a social networking site for researchers providing a 

Virtual Research Environment (VRE) designed for users to share, discover and reuse 

workflows [52].   

 

Experts stress that workflows “encapsulate scientific intellectual property”. As such they 

must be stored, organized and easily retrieved. myExperiment aims to be an online scientific 

workflow repository for organizing, sharing and discovering analogous to online research 

paper management applications. Similar to the method used by an author to publish and 

distribute a paper, a researcher can publish the workflow to be easily accessed by interested 

scientists through myExperiment.  Furthermore, users can tag and comment workflows and, 

create and join groups and exchange messages. Initially, myExperiment was built as part of 

the myGrid and Taverna projects for supporting bioinformaticians but, just like Taverna, it is 
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now used by a wider range of disciplines and supports different types of workflows for 

various scientific domains. 

 

Figure 2.6 – myExperiment’s interface on http://www.myexperiment.org/ 

 

Currently myExperiment has over 5000 members, 250 groups, and 2000 workflows
9
. The 

main users of myExperiment are Taverna users, as the two systems are tightly integrated. 

However, myExperiment now stores workflows of other SWMSs like KNIME, KEPLER and 

Pipeline Pilot and more recently Galaxy. 

 

2.8 Sample Current Projects   

The following are some examples to illustrate the wide applicability and strength of the tools: 

 

 Pan-STARRS Sky Survey [39] 

The Panoramic Survey Telescope and Rapid Response 

System (Pan-STARRS) is an example of a project utilizing 

workflow technology. The workflows are being built on the 

Trident workflow workbench. The project uses workflows to 

ingest multiple terabytes of data that come out of a panoramic 

                                                
9 Source: www.myexperiment.org on 12/05/2012 

 

http://www.myexperiment.org/
http://www.myexperiment.org/
http://www.myexperiment.org/
http://www.myexperiment.org/
http://www.myexperiment.org/
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survey telescope at Hawaii into a SQL Server database. The survey is building a time series of 

detections of five billion astronomical objects by scanning the entire visible sky in four nights, 

producing about 1 TB of data per week, after initial processing to extract object-specific data 

from the raw images.  

 

 NEPTUNE oceanography project[39] 

North East Pacific Time-integrated Undersea Networked 

Experiments (NEPTUNE) is a Regional Cabled 

Observatory on the Juan de Fuca plate that extends a 1500 

Km long fiber optic cable to a network of sensors widely 

distributed across, above, and below the seafloor. The 

sensors are continuously streaming data back to shore for 

analysis by oceanographers. Trident, is  NEPTUNE’s scientific workflow workbench enabling 

scientists to explore and visualize oceanographic data in real-time while providing an 

environment to compose, run and catalog workflows.  

 

 Biomedical Informatics Grid (caBIG)[40] 

caBIG, sponsored by the US National Cancer Institute 

(NCI)[47], is an information network enabling cancer 

researchers and physicians to share data and knowledge, 

and thus accelerate the discovery of new cancer treatment 

methods. Cancer Grid (caGrid)[48], the underlying 

infrastructure of caBIG,  is an extension to the Taverna workflow system designed and 

implemented to ease building and running caGrid workflows.  
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 BioVel – Biodiversity Virtual e-Laboratory [41] 

BioVeL is a virtual e-laboratory that supports research on biodiversity 

issues using large amounts of data from cross-disciplinary sources. 

BioVeL uses Taverna workflows for data processing and 

myExperiment for workflow sharing and collaboration. The 

BioCatalogue (an online registry of biological Web Services) [42] is 

also used. The project is led by the School of Computer Science and Informatics at Cardiff 

University.  

 

 Galaxy – Huttenhower Lab [43]  

The Galaxy platform is used to provide 

access to metagenomic and functional 

genomic analyses, intended for research 

and academic use. The LDA Effect Size 

(LEfSe) project (Segata et. al 2011)-aiming 

to enable high-dimensional biomarker discovery is implemented using the Galaxy 

SWMS.  The Galaxy server is maintained by the HuttenHower Lab, led by Dr. Huttenhower 

at the Department of Biostatistics, Harvard School of Public Health.  
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Chapter 3 

 

Open Source Scientific Workflow Systems 

3.1 KNIME 

3.2 Taverna 

3.3 Galaxy  

3.4 Summary  

 

 
“...One of the hottest technology areas out there: making sense of data!”10 

 

 

3.1 KNIME   

KNIME  was developed by the Chair for Bioinformatics and Information Mining at the 

University of Konstanz, Germany. It is a modular, expandable and highly scalable platform 

encompassing various data loading, transformation, analysis and visual exploration models. 

KNIME has found application in  life sciences, pharmaceutical industry, financial services, 

publishers, Retailers and E-tailers, manufacturing consulting firms, government and 

research
10

. 

 

The platform enables the user to visually create data flows, execute selected analysis steps, 

and later investigate the results through interactive views on data and models. At the same 

time it serves as an integration platform enabling scientists to use different projects in a single 

environment and facilitating developers design and implement new tools. 

 

                                                
10www.knime.org 



 

 

25 

KNIME is written in Java and its graphical workflow editor is implemented as an Eclipse[54] 

plug-in. 

As KNIME is based on the Eclipse platform it is easily extensible. KNIME functionality is 

enriched by integrating the functionality of different open source projects that essentially 

cover all major areas of data analysis such as WEKA (Witten and Frank (2005)) for machine 

learning and data mining, the R environment (R Development core team (2007)) for statistical 

computations and graphics, JFreeChart (Gilbert (2005)) for visualization (various line, pie and 

histogram charts), CDK -Chemistry Development kit and other.  

 

KNIME is an open source software available as a desktop version to all users. It is also 

possible to set a KNIME server for executing workflows through a portal interface and for 

maintaining an online workflow repository for workflow sharing. There is also support for 

cluster execution of the workflows. However the latter are part of a professional package.  

 

One highlight of KNIME’s latest additions is the ability to support PMML. The Predictive 

Model Markup Language (PMML) is an XML-based markup language that enables 

applications to define models related to predictive analytics and data mining and to share 

those models between PMML-compliant applications.
11

 As a result a model developed by 

KNIME can be exported and then used in another data mining engine.   Another characteristic 

is the addition of database ports that are JDBC-compliant that work directly in the database 

enabling even preview of the actual data inside the database tables. JDBC is a Java-based data 

access technology that provides methods for querying and updating data in a database. 

Although written in Java, KNIME, permits running Python, Perl and other code fragments 

through the use of special scripting nodes. This is extremely useful as a lot of scientific work 

is currently under the form of Python or Perl scripts.  

 

 

                                                
11 Data Mining Group http://www.dmg.org  
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3.1.1 KNIME ENVIRONMENT  

 
Figure 3.1 below describes the section of the KNIME workspace (image from 

www.knime.org). 

 

 

Figure 3.1 – KNIME workspace from www.knime.org 

 

The user can work on several workflow projects. Each workflow can be edited in the 

Workflow Editor area. The user can create a workflow by dragging nodes into the Editor area 

either from the Node Repository or from the Favorites Nodes section. When a node is selected 

the Node Description displays relevant information about the node. Large workflows can be 

navigated by using the Outline panel. Finally the Console displays valuable information like 



 

 

27 

warning and error messages on node configuration and execution. Figure 3.2 shows the 

KNIME workspaces when a project is loaded.  

 

Figure 3.2 – KNIME workspace with project details 

 

3.1.2 COMPONENTS OF A KNIME WORKFLOW 
 

A workflow in KNIME consists of nodes and directed edges forming a directed acyclic graph 

(DAG). Each node is a processing unit with one or more input and/or output ports. It 

processes data or data models. The type of processing varies from basic data operations to 

reporting to computationally intensive data modeling e.g. Decision Trees. All the categories of 

nodes available are listed in the Node Repository. Along the directed edges data or models are 

transferred from an out-port to the in-port of another node. 
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The type of ports supported is shown in Table 3.1. The data ports of each node are also 

marked differently according to the type supported. The editor allows the connection only 

between ports of the same type. 

Sometimes, to maintain, a workflow design simple, or to wrap a functionality in one node, 

sub-workflows can be declared. These are known as Meta nodes. Meta nodes are nodes that 

are actually a workflow of nodes. 

 

Port Types 

Description / Data 

type 

image Description / Data 

Type 

image 

White triangle / 

flat data tables 

 

Dark Cyan square / 

General purpose 

port for structured 

data 

 

Blue square  / 

PMML Data model 

 

Grey square / 

Unknown type 

 

Brown square / 
Database port 

 

  

 

Table 3.1 – Port types for KNIME nodes 

 

3.1.3 BUILDING A WORKFLOW 

 

In order to build a workflow you simply drag a node from the Node Repository to the 

Workflow Editor space. Once placed, a user can click on it to get its description in the node 

description section. Using right click, a list of selected options appears which enable the user 
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to configure the parameters of the node and execute it among other things. Each node can be 

executed on its own, once the data are loaded. 

When a node is dragged in the workflow editor its status is set to red color meaning it needs to 

configure. After making the necessary configurations the status is turned to yellow. Green is 

the color stating that a successful execution has already taken place (Table 3.2).  

 

 

Node status 

 
  

needs to be configured ready to be executed successfully executed 

 
Table 3.2 – Node’s Status in KNIME 

 

 

Figure 3.3 – Sample workflow in KNIME  
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In the sample workflow in Figure 3.3 a file is read, passed through a k-mean modeler and then 

colored so that the scatter plot can show comprehensive results.  

 

KNIME also has a KNIME Example Flow Server window panel that gives access to an online 

public database of example workflows that can be directly downloaded into the workbench. 

(Fig. 3.4) 

 

Figure 3.4 – KNIME’s Example Flow Server workspace 

 

3.1.4 RUNNING A WORKFLOW 

 

In KNIME the workflow is executed either node by node or as a pipeline. In order for a node 

to pass the data to the successor node it must process all the input and finish execution.  By 

design each node stores its workflow structure, its settings and result data. Therefore is 

possible to add a new node without the need for preceding nodes to be executed again.  

Also, every time the workflow is restored in the workflow editor, its previous execution 

status, its results data and settings are loaded as well. If the workflow is exported again (if 

selected) then all this information is exported as well. So, when imported to another KNIME 

workbench the workflow maintains its previous execution information. 
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3.1.5 VIEWING THE RESULTS  

 

The results can be in any possible data form. KNIME provides a data table view for each node 

displayed in Figure 3.5. Dedicated Data view nodes can plot line plots, pie charts, histograms 

etc (Fig. 3.6). Moreover, it is possible to create reports with embedded chart images.  

 

 

 

 

 

 

 

Figure 3.5 - Table view of a k-means prediction algorithm run on a sample file 

 

 

 

 

 

 

 

Figure 3.6 - Scatter Plot of the same file 

 

3.1.6 ARCHITECTURE  
 

In KNIME, a flow starts with a node that imports data from an input source such as a text file 

or a database. The data is stored in an internal table-based format consisting of columns with a 

certain data type (integer, string, image, molecule, etc.) and an arbitrary number of rows 

conforming to the column specifications. These data tables are sent along the connections 

to other nodes that modify, transform, model, or visualize the data [12]. Figure 3.7 

summarizes data flow between nodes. 
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Figure 3.7 – Nodes data input and output 

Dedicated special node types enable control flow operations such as iterations, if and case 

statements. (Fig. 3.8) 

  

Figure 3.8 – Control flow nodes 

 

Unlike, other SWMS, e.g. Taverna described in section 3.2 of this chapter, nodes in KNIME 

first process the entire input table and then forward the results to successor nodes. The 

advantages that arise from having each node store its results permanently are numerous. 

Workflow execution can be stopped and resumed later on at any node and any intermediate 

results are available for viewing. Any modifications, e.g. new nodes, can make use of 
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previous data runs and therefore re-running the entire workflow is not necessary. Also, by 

keeping track of the status of nodes (configured or executed) the workload can be distributed 

accordingly to threads, clusters or the grid to achieve parallelism. 

 

3.2 Taverna  

The Taverna  SWMS is a more general tool than KNIME, aiming in supporting the 

automation of  service-based and data-intensive processes as explained in the white paper 

“Taverna: a tool for building and running workflows of services” [6]. Being more general also 

makes it more difficult to accomplish specialized tasks. By design, Taverna has a distinct web 

flavor.  

 

Taverna is an open source domain-independent Workflow Management System. It was 

developed as part of the myGrid consortium with the Life Sciences field in mind but it has 

found application in numerous domains including Arts, Astronomy, Bioinformatics, 

Chemistry, Data and text mining, Education, Engineering, Geoinformatics, Music, Social 

Sciences, Physics [52]. Taverna is usually deployed as a Standalone Workbench. However it 

can also be deployed as a server, on a grid, on a cloud and behind a portal to be used by a 

number of projects.  

 

From the advent of its design Taverna was an application that applied Web Services 

technology to workflow design. That meant that tools created using different programming 

languages (e.g. Java, PERL, Python, etc) or platforms (Unix, Windows, etc) could now be 

accessed via a web service interface eliminating any need for integration. The same applied 

for the databases available on the web. As a result, researchers could now design and execute 

a pipeline of web services, without any programmatic knowledge.  
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In the new release of Taverna (2010) important new features have been included.  Parallelism, 

both intra-process and inter-process, asynchronous service support and separation of data and 

process spaces to support scaling to arbitrary data volumes. 

 

The Taverna suite is written in Java. It includes the Taverna Engine (used for enacting 

workflows) that powers both the Taverna Workbench (the desktop client application) and the 

Taverna Server (which allows remote execution of workflows). Taverna is also available as a 

Command Line Tool for a quick execution of workflows from a terminal.
12

 

 

A vital component of Taverna’s open architecture is the plug-in functionality.  Various 

plugins for Taverna have been developed including the XPath plugin, REST plugin, 

BioCatalogue plugin, PBS plugin, SADI plugin, CDK plugin, Opal plugin, caGrid plugin, 

XWS plugin, gLite plugin. 

 
 

3.2.1 TAVERNA ENVIRONMENT  

 
To create a workflow a user must use the Design perspective of the workbench. There one can 

select a service from the Service panel, and then drop it on the Workflow diagram area. Each 

service can be either a remote or local service.  The Details pane displays information about 

the service, while the Validation pane displays the validation results of all the services. Figure 

3.9 displays the design view of the workbench.  

 

Workflow Explorer is unique is Taverna. It provides an alternative view of the entire 

workflow that allows certain actions to be taken on the services but at the same time it serves 

as a navigation tool. The input and output parameters of each service are clearly shown. By 

right clicking on an input port for example, one can define the input port’s constant value. 

Remember that KNIME has the Outline View used for navigating large workflows. 

 

                                                
12 www.taverna.org 

http://www.taverna.org.uk/download/workbench/
http://www.taverna.org.uk/download/workbench/
http://www.taverna.org.uk/download/workbench/
http://www.taverna.org.uk/download/server/
http://www.taverna.org.uk/download/server/
http://www.taverna.org.uk/download/server/
http://www.taverna.org.uk/download/command-line-tool/
http://www.taverna.org.uk/download/command-line-tool/
http://www.taverna.org.uk/download/command-line-tool/
http://www.taverna.org.uk/download/command-line-tool/
http://www.taverna.org.uk/download/command-line-tool/
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Figure 3.9 – Taverna workbench  

One feature of Taverna, also present in the KNIME desktop, is workflow sharing. The user 

can have direct access to an online repository of workflows and directly open them inside the 

Workflow diagram, by selecting the myExperiment perspective (Fig. 3.10). Unlike, KNIME’s 

repository, myExperiment is a social collaboration site, where the example workflows are 

uploaded by the users themselves.  

 

 

 

 

 

 

 

 

Figure 3.10 – myExperiment perspective 
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Service catalogue functionality can be accessed from within the Taverna Workbench by 

selecting the Service Catalogue Perspective [53]. 

 

3.2.2 COMPONENTS OF A TAVERNA WORKFLOW  
 

The nodes in a Taverna workflow are called processors. They represent software components, 

usually local or remote services. Each processor has its input and output ports. Each edge 

between two processors is either a data link or a control link. The workflow computation 

proceeds by passing data from one processor to the next through the data links. The 

processors can have a data dependency, and the output of the first processor is fed in the input 

port of its dependents. The processors have a preset order of execution denoting that the 

second can only be executed after the first is finished.  Special links called control flow links 

can also be defined, setting order of execution when no data dependency exists between two 

processes. To encourage reuse and modular design, nested workflows can be added to a 

workflow, having input and output ports just as any other service. This feature resembles the 

KNIME Meta nodes discussed previously.   

In Figure 3.11a sample workflow in the Taverna workbench is displayed. The workflow can 

be downloaded from the myExperiment website. It has 3 input ports, one output port and it 

converts chemical identifiers from one format to another.  

 

 

 

 

 

 

Figure 3.11 – Sample Workflow in Taverna workbench 
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3.2.3 BUILDING A WORKFLOW 

 

In order to build a workflow you simply drag a processor/service from the Service Panel 

either to the Workflow diagram area or to the Workflow explorer area. For every service 

added both areas are updated. The user can use both areas as he pleases. A disappointing 

difference to the KNIME editor is that the placement of the processors is done automatically 

and no manual configuration is possible. Instead a set of tools are available for setting 

horizontal or vertical alignment.  

 

Each service type has a distinct color. For example, a standard SOAP service is green, and 

local Java class operation is purple. When a service is clicked upon, its details appear in the 

Details pane. Compared to KNIME, the level of detail about the processor in concern is lower. 

For example, for most services the details displayed are the input and output ports, the path of 

the service and the service provider while for other no details are visible. In Fig 3.12 such 

details are shown for the SOAP WSDL type service of shown previously in Fig 3.11. 

 

Figure 3.12 – Processor Details in Taverna 

 

The links of the workflow can be either drawn using the mouse or placed using right clicks.  

Depending on the kind of service, a set of options are available when using right click 

including Validate, Configure Running (creates loops and adds parallelism), Configure 
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security (where applicable handles user authentication for accessing online tools), Run after 

(creates control flow links), Show/ Hide ports, Link to and Link from (setting the data flow 

links). 

 

Prior to running the workflow, validating the services is an option to make sure the workflow 

is in proper order and to identify possible problems. Taverna can check the validity of data 

types, input and output ports, scripts which are involved in services, and whether invoked 

external Web services are online. Any issues detected are reported in the validation window.  

In Fig 3.13 a random “Validation report” is presented.  

 

Figure 3.13 – Validation report in Taverna 

 

 

3.2.4 RUNNINGAWORKFLOW  

 
By pressing the run button the workbench switches to the Results perspective (Fig. 3.14). If 

the workflow has any inputs defined then the Run Dialog pops up to enable the user to specify 

values for the input ports of the workflow. All of the details concerning the execution of a 

workflow are shown on the results view of the workbench. Firstly, the progress of the current 

run can be monitored. Secondly, for each service called the execution details, e.g. the 

execution time, are shown on the progress report tab. Moreover, the user can select and 

preview any of the previous runs. At the bottom of the window the workflow results are 

displayed. Input, output and result data can be previewed. 
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Figure 3.14 – Results perspective in Taverna 

 

 

 

 

3.2.5 VIEWING RESULTS 
 

In the example above in Figure 3.14 the results are shown as text. Taverna, also displays 

images, graph plots, graph diagrams and several chemical data formats. Taverna is able to do 

this by applying a renderer to the output. 
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3.2.6 ARCHITECTURE 

 

When the user designs a workflow, a workflow specification is created. For this specification 

to be executed it is subsequently translated into a Taverna object model. In this model the 

processors of the workflow are represented by objects and the data links by method 

invocations. Each processor object can implement one or more activities where an activity is 

an executable component. Each component can be as simple as a local service call or it may 

be a workflow itself. A simplified view of Taverna processors activities is given in Figure 

3.15. 

 

 
Figure 3.15 – A simplified view of Taverna processors activities 

 

A processor independently starts its own execution as soon as all of its input ports are 

populated by a data item. Upon completing the execution the new data produced at the output 

ports are propagated to the next processor.  
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Taverna uses a Reference Service that proxies the actual data by references to them. During a 

workflow run, instead of moving the actual data, the references are passed along the data 

links. To access the data the Reference service is called. When two processors have no data 

dependencies they can begin parallel execution as soon as their input data is received. This 

achieves inter-processor parallelism. Intra-process parallelism is achieved by the feature of 

Taverna called the implicit iteration framework. If you connect a set of data objects to a 

process that expects a single data item at a time, the process will iterate over each sequence. 

Each iteration can be considered independent and thus is processed independently. 

Additionally, pipelining is supported when there is a chain of processors iterating and 

forwarding the output as soon as it is created. 

 

In KNIME, each node stores its results permanently. In Taverna, this is true for each 

workflow. Each time a workflow is executed provenance information is generated by the 

Taverna Engine. The information is kept in memory for the current session. By having the 

appropriate options enabled this information can be saved in a database to be available for any 

further sessions. Taverna provenance data contains information about the workflow run, such 

as date and time of the run, intermediate values generated by services in the workflow during 

the run, as well as the final results
13

. 

 

3.3 Galaxy  

In order to use Galaxy  all you need is a web browser and of course a sound knowledge 

of bioinformatics.  Galaxy was built to simplify the process of genomic analysis by providing 

a set of easy to use tools for the retrieval and analysis of large amounts of data. Actually the 

main server is instantiated with genomic dedicated tools. It is however possible to extend the 

set of tools for other tasks as well. And this is done easily, in a straightforward way.  

 

                                                
13 www.taverna.org 
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Galaxy, as stated in [16],[18] is an open, web based platform. Its primary design 

considerations were accessibility, reproducibility and transparency. Galaxy is accessible by 

scientists with no programming knowledge through the use of galaxy tools. It produces 

reproducible computational analysis by generating metadata for each analysis step through the 

automated production of Galaxy History items. It promotes transparency by enabling sharing 

of data, tools, workflows, results and report documents.  

 

Galaxy is set up as a free, public, internet accessible resource at UseGalaxy.org. It can even be 

used using a guest account. Creating an account is a simple process and allows a user to run a 

maximum of 8 concurrent jobs and use a total of 250GB for storage. In the top right corner of 

the Galaxy interface the percent of quota limit used by a user account is noted within a bar 

icon. Data transfer and data storage are not encrypted. There are also other Galaxy servers 

installed by institutions either public or semi-public. Alternatively local Galaxy servers can be 

set up by downloading and customizing the Galaxy application. Galaxy is available as a 

standalone package only for Linux environments. It includes an embedded web server and an 

SQL database. It is also possible to instantiate Galaxy instances on the cloud.   

 

The Python programming language is the primary implementation language of the Galaxy 

framework. Galaxy was developed with the cooperation of the Center for Comparative 

Genomics and Bioinformatics at Penn State, and the Biology and Mathematics and Computer 

Science departments at Emory University.
14

 

 

3.3.1 GALAXY ENVIRONMENT 

 

The Galaxy portal consists of the analysis workspace, the workflow editor, the public 

repositories and the visualization environment. The user can navigate from one to the other 

using the navigation bar at the top of the Galaxy window. Through this portal the user can 

                                                
14 http://galaxy.psu.edu/ 
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create, share and view Galaxy objects: Histories, Workflows, Datasets, Pages and 

Visualizations. 

 

The analysis workspace (Fig. 3.16) enables the user to run individual tools and workflows. On 

the left, the tool panel lists all the possible tools the user can select just by clicking. The list of 

tools contains specialized genome processes which are either data retrieval or data analysis 

tasks. On the right hand side of the window the history panel, displays the most recent history 

items. Every tool run by the user generates a new history item. Every history item can be re-

executed, used in subsequent analyses, visualized, downloaded and annotated. Moreover, the 

sequence of the history items is used to automatically create workflows through the option 

Extract workflow.  The middle column is the details pane that displays the tool’s interfaces. 

When a workflow is run, the details panel displays the workflows details. 

  

 

 Figure 3.16 - Galaxy’s Analyze Data Interface 

 

The analysis workspace is also used to create datasets, so that, later on these datasets will be 

used as input to other tools or workflows. Support for retrieval of data from online data 

libraries is an important feature of Galaxy. In Figure 3.17 the tool Table browser is used to 

query the UCSC genome library. UCSC is a library hosted by the University of California, 
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Santa Cruz which contains the reference sequence and working draft assemblies for a large 

collection of genomes
15

. 

 

Figure 3.17 - UCSC Table Browser 

 

On the Navigation Bar other useful links are the Shared Data and the User menu. The Shared 

Data menu gives access to public Data Libraries, and Published Histories, Workflows, 

Visualizations and Pages of other galaxy users. On the other hand, the User menu gives access 

to the user’s Histories, Datasets and Pages. (Fig. 3.18) 

 

Figure 3.18 - Options Dialog in Shared Data and User menu 

Workflows are accessible through the Workflow editor. The workflow editor is the graphical 

interface for creating and editing workflows. Running workflows is done through the analysis 

workspace. The Visualization menu is Galaxy’s visualization and visual analysis 

                                                
15 http://genome.ucsc.edu 



 

 

45 

environment. It supports genome specific datasets from within Galaxy. This feature is enabled 

on the server but not by default on local instances.   

 

Pages are a feature unique to Galaxy. They are online documents used to describe the analysis 

performed but also to provide links to the Galaxy objects Histories, Workflows, Datasets that 

were used in the analysis. This enables the reader of the document to have direct access to the 

dataset used, to import the workflow and reproduce the experiment himself. And it makes it 

even easier for another scientist to continue and build upon a previous work.  In Figure 3.19 a 

sample page shared by a user is shown. 

 

Figure 3.19 - A shared Galaxy page 

 

3.3.2 COMPONENTS OF A GALAXY WORKFLOW 

 

A Galaxy workflow consists of tools. Each tool has its own distinct interface to set and 

manage its parameters for execution, input and output. A link associates two tools, and can be 

set only if the corresponding data types agree. A sample workflow is presented in Figure 3.20 

that converts a dataset from one format into another. 
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Figure 3.20 - A sample workflow 

A list of available workflows appears when the Workflow menu option is selected. Each of 

the workflows can be edited, run, downloaded, deleted etc.(Fig. 3.21) Or even a new 

workflow can be created or imported. 

 

Figure 3.21 - Options in Workflow panel 

 

3.3.3 BUILDING A WORKFLOW 

 

In order to create a workflow the user must go to the workflow editor and select the option of 

creating a new workflow. The workflow editor has the tool panel on the left, the same as in 

the analysis workspace except for the Get Data tools (Fig. 3.22). This group of tools is 

available only in the analysis workspace. 



 

 

47 

To insert a tool the user clicks on it from the list of tools. Automatically, the tool appears on 

the canvas area where the user can place it where he wants. When a tool is selected the 

interface details of the tool are displayed on the right hand side panel. The interface details are 

different for every tool. One of the possible actions is to “Rename Dataset”, which renames 

the output data set. Another useful action is the email notification which sends an email to the 

user when this step is finished as shown in Figure 3.23.  

 

Figure 3.22 - Galaxy’s Workflow editor space 

 

 

Figure 3.23 - Galaxy’s email notification 
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User annotations are a property of each tool that helps to indicate the intended purpose of the 

analysis step, something extremely useful when sharing workflows. To connect two tools, the 

user simply connects the output of first task to the input of another. Galaxy does not allow 

connection of incompatible formats.  The input to the first tool is set up at run time in the 

analyze workbench by selecting data from a list of compatible data from the users saved 

datasets. These can be datasets prepared in previous steps in the analyze workbench or in 

previous runs of workflows.  

 

Another, way to create a workflow is to extract one from a list of history items. Galaxy 

automatically creates a workflow by selecting which history items to include and it determines 

the links based on the input/output data sets. Also, it is possible to import a shared workflow 

and make the desired changes. 

 

3.3.4 RUNNING A WORKFLOW 

 

Invoking the execution of workflow is done in the workflow editor (Fig. 3.24). 

 

Figure 3.24 – Invoking execution in Galaxy  

 

The execution, however, takes place from within the analysis workspace (Fig. 3.25). Prior to 

running the workflow, Step 1 which is selecting the input dataset or datasets, must be 

completed. The input datasets available for selection are the ones in the user's dataset space 

that have the appropriate format.  
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Figure 3.25 - Running a workflow in Galaxy  

 

The History details of each run are shown on the right hand side panel (Fig. 3.26). In 

example below, the first two tools are executed and the third is currently running.  

 

Figure 3.26 – History records in Galaxy  

 

As mentioned in the previous paragraphs, Galaxy automatically creates a history log for each 

tool of the workflow that executes. The history of each run can be given a name, and retrieved 

as pleased (Fig. 3.27). Each history contains one or more execution of tools. 
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Figure 3.27 - Saved Histories in Galaxy 

 

 

 

3.3.5 VIEWING RESULTS 

 
Directly through the history panel or through the User menu the datasets are available for 

viewing in their text format or in the format created by online genome browsers when this is 

supported. In Figure 3.28 a text view of the result dataset and in Figure 3.29 a visualization by 

the online genome browser Ensembl
16

. 

 

Figure 3.28 - Text view of dataset provided by Galaxy 

 

                                                
16 http://www.ensembl.org 
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Figure 3.29 - Visualization by the online Genome browser Ensembl 

 

For visualization and visual analysis the user can go to the Visualization menu where more 

sophisticated visual tools are supported as shown in Figure 3.30 where a chrX is visualized in 

Galaxy’s native Trackster environment. Trackster is not available on the local instances, only 

on the main server. 

    

 

Figure 3.30 - Visualization on chrX from Trackster, Galaxy’s visualization environment 
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3.3.6 ARCHITECTURE 

 

Galaxy was designed as a framework for integrating computational tools. Any scripting tool 

that runs from the command line or has a web interface can be wrapped up to run from inside 

Galaxy. The tool can be in any programming language other than Python e.g. Perl. The details 

of each execution are kept and handled as history items along with the datasets used and 

created. Workflows can be designed for repeating an execution of a series of tools on different 

datasets. Pages can provide state of the art documentation with live links that can reproduce 

the analysis. On top of these, collaboration is promoted through the sharing option available 

for all of the above items. 

 

The Galaxy objects supported by the Galaxy environment are Histories, Workflows, Datasets, 

Pages and Visualizations. Each of these objects is an accessible named entity within Galaxy.   

 

Figure 3.31 – A simplified view of the objects in Galaxy  

 

Provenance information for each workflow and tool executed is automatically generated and 

stored in history items. A set of history items make up a History. Each History can be given a 

name, retrieved and re-executed. In this context, a workflow is just a graphical representation 

of a History.  There is no data flow language in Galaxy. The properties of each node and link 

are simply values in database. That is why there are no control flow operations supported.  
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Datasets are files that are either uploaded or are the output of a tool. All data sets created by 

tools are automatically saved and whenever an input dataset to a tool must be selected only the 

data sets of matching are displayed for selection.  Visualizations are graphical representations 

of datasets. Finally, Pages, as previously mentioned, are online documentation document 

containing links to other Galaxy objects i.e. Histories, Workflows, Datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 – Galaxy objects in action  
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3.3.7 TAVERNA AND GALAXY INTEROPERABILITY 

 

Taverna workflows can be invoked from the Galaxy environment. They can be downloaded 

from myExperiment site and embedded in the Galaxy server instance just like all other custom 

Galaxy tools.  Technically speaking, Taverna workflows are translated in Galaxy as Ruby  

scripts. Running the Ruby script tool initiates a connection to a remote Taverna server, where 

the workflow is executed. Results are then returned back through to Galaxy via Ruby. One of 

the reasons for enabling this integration is that Galaxy does not support control flow 

operations and remote services invocation while Taverna does. [55]  

 

Figure 3.33- Sample Taverna workflows embedded as tools 

 in the Galaxy server instance at http://galaxy.nbic.nl/galaxy/ 
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3.4 Summary                                                   

A summary of SWMS characteristics can be found on Table 3.3 

 

Table comparison on common SWMS characteristics 

SWMS 

Characteristics 

Galaxy 

 

Taverna 

 

KNIME 

 

Naming of software 

components 

Tool process node 

Data Flow or Control 

Flow operations 

DF only both both 

Web portal Yes no but possible 

(done by projects) 

yes, for corporate deployment 

of KNIME 

Web server Yes yes yes 

Parallelism Yes yes 

intra - process 

inter - process 

pipeline 

yes 

node level 

HPC scheduling Yes separately separately 

Web services No yes yes 

Plug in Tools for genomic research 

designed by 

researchers 

CDK, R, 

BIOMOBY 

WEKA, R, CDK, JFree Chart 

Integration framework Yes yes yes 

data representation 

plots, graphs, images 

online genome 

browsers 

yes, in result pane yes, dedicated nodes 

cloud Yes possible n/a 

grid yes, though the 

instance deployment 

possible yes, for corporate deployment 

of KNIME 

nested workflows No yes, named nested 

workflows 

yes, named meta nodes 

interoperability Integrates Taverna 

workflows as tools 

no Invokes Pipeline pilot web 

services 

command line no, but it wraps 

command line scripts 

into tools 

yes no, only experimental in older 

version 

workflow sharing yes,  

portal access 

myExperiment 

yes 

myExperiment 

yes, for corporate deployment 

of KNIME 

myExperiment 
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reproducibility 

(provenance) 

yes, history items 

workflow, tool level 

yes, workflow 

level 

yes, node level 

documentation of 

Tool/Node/Service 

usage 

high level of detail low level of detail high level of detail 

Chemistry related 

 plug ins 

CADD Suite[85] RDKit[82], 

CDK[81] 

RDKit[82], CDK[81], Erl 

Wood Cheminformatics[83], 
Indigo[84]  

Community 

involvement / size 
(04-12 mail list entries) 

(aprox. projects running) 

Active 

 
(188) 
(20) 

Moderate 

 
(22)  
(60) 

Moderate 

 
(34) 

(n/a, mostly commercial) 

 
Table 3.3 – Comparing SWMSs 
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Chapter 4 

 

Problem Description 

 

4.1 Chemoinformatics Background 

4.2 Problem Description 

4.3 GRANATUM 

 

 
"A problem well-defined is half-solved." 17 

 

As discussed in Chapter 1 this thesis has three main objectives. The first is the investigation 

and review of the SWMS field. The second is the design of a specific scientific workflow 

implementing a complex in silico experiment from the chemoprevention field and its 

implementation using two of the most promising SWMS. This involves the preparation of 

nodes/tools for each of the systems, the design, implementation and execution of workflows 

and the analysis and presentation of the results obtained. The third main objective is to assess 

progress in the open source SWMS field. This will be done through the evaluation and 

discussion of the experiences and results obtained from the developed workflows with respect 

to the features which make SWMS’s attractive. This chapter will focus on the description of 

the experimental problem of this thesis, the presentation of necessary background to the 

problem and the general design of the solution implemented.    

 

 

 

                                                
17 Albert Einstein 
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4.1 Chemoinformatics background  

 

Chemoinformatics can be defined as the interdisciplinary field that combines elements from 

chemistry, biology, statistics, mathematics and computer science to solve chemical and 

biological problems [56]. It implements and employs tools for representing, processing and 

using chemical information on the computer in order to assist scientists to manage chemical 

data, explore the chemical space and identify solutions to chemical and biological problems 

[57]. One of its main applications is in Drug Design where scientists use in silico models to 

expedite the drug discovery process [56]. 

 

In chemoinformatics, molecules are represented by a special category of graphs called 

molecular graphs [58] where nodes and edges represent the atoms and bonds respectively.  

Graph theory techniques are then successfully applied for the algorithmic analysis of 

molecular structures (e.g. similarity searching, molecular alignment and superposition, 

docking). For statistical analysis molecular vectors are typically calculated. These vectors may 

consist of physicochemical descriptors (e.g. molecular weight, number of hydrogen bond 

donors, etc) and/or structural descriptors (e.g. presence or absence of specific molecular 

fragments or other structural features). Once molecules are represented in vector format, 

statistical methods and machine learning algorithms are used for the analysis of molecular 

collections, for example, the development of predictive models correlating chemical structure 

to biological property (e.g. activity). The knowledge extracted can be used for predicting the 

biological characteristics of new, untested molecules, for selecting promising compounds to 

test in the lab, for designing new molecules, etc. 

 

Among the methods frequently used is docking, which is based on the presence of detailed 

knowledge of the protein target structure, and similarity searching using 1D - descriptors 

(compound properties) and 2D - Binary Descriptors (molecular fingerprints) which is based 

on the availability of known ligands [59].  
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Docking is the process by which two molecular structures (e.g. a protein and a small 

molecule-drug) are in silico predicted to bind together. Typically, the method works as 

follows: it uses the known protein target structure, defines a set of the most likely low energy 

conformations of the small molecules to test and then attempts to place each small molecule 

conformation into the protein receptor. Each docking attempt is the scored and the value 

obtained is used as an indication of the experimental binding affinity of the small molecule to 

the receptor [66]. 

 

1-D descriptors calculate whole molecule properties like the molecular weight, molecular 

surface, number of bond donors, log P and others. Popular rules use such descriptors for the 

characterization of the molecules. An example is Lipinski's Rule of 5 [60] which uses a subset 

of these descriptors to identify molecules likely to have poor oral absorption by humans.  

 

In 2-D descriptors, like the so called molecular fingerprints, the presence of structural 

properties for each position of a molecule is narrated by means of a Boolean bit set to ‘one’ 

otherwise to ‘zero’ [59]. This methodology allows the definition of elaborate molecule bit 

vectors capturing detailed information on the molecular structure.  

 

Any combination of the above methods, when applied in conjunction with machine learning 

techniques on a single molecule or a set of molecules, may be used as part of a Virtual 

Screening (VS) process. VS is the computational analog of biological screening performed in 

laboratories. It scores, ranks and filters compounds using computational procedures. Its goal is 

to decrease the number of compounds physically screened by identifying small subsets of 

large molecular databases that have increased probability to be active against a specific 

biological target [61]. VS methods are widely used in Drug Design and have great potential 

for use in new fields such as chemoprevention.   
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Chemoprevention, is the field of biology that studies the use of chemical substances, either 

natural or laboratory made, in the prevention of diseases such as diabetes, cancer etc [62]. 

Cancer Chemoprevention specifically focuses on chemopreventive agents that prevent cancer 

i.e. block, inhibit or reverse its development [63]. Cancer Chemoprevention is considered one 

of the most promising areas in current cancer research [63].  

 

4.2 Problem Description   

 

So far a review of scientific workflow tools available for the implementation of in silico 

experiments has been presented. Among them, three (3) representatives from the open source 

category were selected and discussed in detail. The work described in the remainder of this 

thesis focuses on the implementation of an in silico chemoprevention experiment using the 

available workflow tools to investigate any weaknesses but more importantly the tool’s strong 

points. The experiences and results obtained will subsequently be used to critically assess the 

progress of open source SWMS and their ability to be used in production mode by researchers 

and professionals in a variety of scientific fields. 

The experiment chosen comes from the Cancer Chemoprevention field, and is part of the 

work of the EU FP7 funded GRANATUM project [64]. Details of the GRANATUM project 

follow in the next section. 

 

 

4.2.1 Virtual Screening Experiment Description 

 

Virtual screening, as explained in the previous section, is a computerized process that aids in 

the categorization of chemical compounds. The VS experiment, as designed by GRANATUM 

team experts, is looking for compounds with cancer chemoprevention characteristics. The 

successful candidates must have the 3 properties as shown in Figure 4.1. 

The candidate molecules will be filtered by 3 VS filters. The first filter, named 

OralDruglikeness filter, filters out molecules that according to the Lipinski’s rule[60] have 

poor oral absorption and therefore are not suitable for administration to patients in the form of 

a pill. The second filter, designed for toxicity prediction, eliminates potentially active/toxic 
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candidates based on a trained prediction Model. The last filter, named Binding Affinity 

Prediction, scores the molecule’s binding affinity through a docking process with an Estrogen 

Receptor (ER) protein involved in the emergence of breast cancer in women. The result of the 

experiment will be a list with prioritized compounds according to the filters above. 

 

Figure 4.1 – Properties of a candidate breast cancer chemo preventive compound 

 

4.2.2 Virtual Screening Experiment Workflow 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 - The chemoprevention virtual screening workflow to be implemented 
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Details of each process in the workflow of Figure 4.2 are given in table 4.1 that follows. 

Name of filter Chemical Method Description 

Oral 

Druglikeness 

Filter 

1-D descriptors Calculated 

(Molecular weight, logP, 

Hydrogen Bonds Donors, 

Hydrogen Bond Acceptors) 

According to Lipinski’s rule the ligand must have 

certain molecular properties. The molecular properties 

of each molecule are calculated and the successful 

candidates continue to the next filter.  

According to Lipinski’s rule poor oral absorption or 

permeation is more likely when: MW > 500, LogP>5, 

more than 5 H-bond donors (sum of OH and NH 

groups), more than 10 H-bond acceptors (sum of N 

and O atoms).  

 

Toxicity 

Prediction 

2-D Descriptors (molecular 

fingerprints) 

Each molecule is characterized by a predictive model 

either as Toxic (active) or Non-toxic (inactive) based 

on the molecular fingerprint calculated. Candidates 

predicted to be toxic are rejected. 

Binding 

Affinity 

prediction 

Docking and Scoring Each successful candidate is scored by a Docking 

model for a specific protein involved in the emergence 

of breast cancer. The likeness of binding of the 

specific molecule to the target receptor is measured. 

Molecules are prioritized based on the predicted 

binding affinity. 

 
Table 4.1 – Details of each process in the VS workflow 

 
 

The above VS workflow has been implemented within the framework of this thesis using 

open source scientific workflow systems. Chapter 5 will elaborate on the datasets used, the 

experimental design and the implementation details. The results obtained are discussed in 

Chapter 6. 

 

 

4.3 Granatum 
 

 The Granatum Vision as stated in the projects webpage: www.granatum.org 

“The vision of the GRANATUM project is to bridge the information, knowledge and 

collaboration gap among biomedical researchers in Europe (at least) ensuring that the 
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biomedical scientific community has homogenized, integrated access to the globally available 

information and data resources needed to perform complex cancer chemoprevention 

experiments and conduct studies on large-scale datasets.”  

GRANATUM is a project led by Fraunhofer FIT. The GRANATUM consortium consists of 

eight partners, from five EU member states, i.e. Ireland, Italy, Germany, Cyprus and Greece 

including the University of Cyprus.  

 

SWMS are the key element necessary to implement this bridge that will bring together 

researchers in Europe. As already discussed in Chapter 2, SWMSs offer a number of 

advantages. They enable sharing and exchange of data, information and methods. They 

contribute towards the reproducibility of any experiment. Moreover, they can integrate 

different applications into a single one and provide a common interface and point of access. 

They also enable scientists without any informatics expertise to easily, transparently use 

computational resources. Finally, they support alternative processing solutions such as the use 

of HPC, the Grid and now the Cloud.  

 

Specifically, the GRANATUM project will develop a “Scientific Workflow Management 

System” for chemoprevention experts to aid in the discovery of new chemical agents with 

promising chemopreventive characteristics. The system developed will be web-based and will 

enable scientists to create, update, store and share virtual screening workflows and predictive 

models. The tool will provide a pool of methods or software components implemented as 

nodes that may be combined to achieve complex analysis experiments. It will also provide all 

the necessary data management and processing utilities for reading, cleaning and formatting 

of data to be used by the processing components as well as writing and storing the analysis 

results.   
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Chapter 5 

 

Experimental Design and Implementation 

 

5.1 Experimental design 

5.1.1 Data 

5.1.2 Overview Diagram 

5.2 KNIME implementation 

5.3 Galaxy implementation  

"Where there is a will, there’s a way " 18 

 

5.1 Experimental Design                
 

This chapter describes the algorithmic implementation carried out and the computational 

experiments performed for the purpose of this thesis. The VS process was implemented in 

both the KNIME and Galaxy platforms. An important decision was the selection among a 

KNIME or a Taverna implementation. Since both use the exact same chemical function 

libraries the effect was bound to be similar. Subsequently there was no gain in doing both 

implementations. KNIME was selected over Taverna due to its powerful data visualization 

tools, friendlier environment and superior documentation and error reporting. It also is the 

most popular open source SWMS in the chemo informatics field. The advantages of 

Taverna’s online services support were not required for this specific implementation. 

Another important consideration in favor of KNIME is that it has integrated 4 different 

chemical libraries and therefore has a plethora of tools to select from. Moreover it has 

incorporated Weka[80], a Machine Learning Tool, that gives access to several machine 

                                                
18 English proverb http://en.wikiquote.org/wiki/English_proverbs 
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learning algorithms. Galaxy, on the other hand, was selected with no competitor as it is the 

only online SWMS available. Galaxy however does not have the tools required for the 

planned experiment. Its tools are mainly for genetic and general bioinformatics processing. 

The CADD suite present in the Galaxy platform only has a few of the required 

chemoinformatics processes. This drawback is in fact irrelevant for the purposes of this thesis, 

and GRANATUM at large, since our focus is on integrating the GRANATUM tools into 

Galaxy and to making them available on line.   

 

The data used for the VS process is described in section 5.1.1 whereas in section 5.1.2 a 

diagram depicting the actual VS process performed is presented. Section 5.2 and 5.3 describe 

the specific implementations on KNIME and Galaxy respectively. 

 

5.1.1 Data     

The experiment uses three datasets as described below in table 5.1. 

Details Dataset A Dataset B Dataset C 

Purpose Predictive Model Training Protein Target Model VS process testing 

Reference 
PubChem with AID 464 

[94] 
PDB database, ID 

Indofine data [95] 

 

Contains 
706 molecules: 

331 active/375 inactive 

ER-alpha protein 

structure (1xpc); co-

crystallized with the 

drug Tamoxifen  

2536 molecules 

 

Description 

Contains molecular 

structures labeled as 

active/toxic or non-active 

according to laboratory 

tests. The dataset will be 

used to train a Toxixity 

predictive model. 

The structure will be 

used to create a 

Binding Affinity 

model for scoring 

fitness to an ER-

receptor 

It contains a list of 

molecules to be 

passed through the 

VS process. 

 

Table 5.1 - VS Datasets details 

5.1.2 Overview Diagram  

The main goal of the experiment is to guide the selection of molecules from the Indofine 

dataset, a commercially available collection of compounds, for acquisition and biological 
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screening in the lab. The in silico experiment will profile all external compounds and 

highlight those with predicted favorable characteristics based on the filters/models used. In 

this manner savings both in time and costs will be achieved as the alternative would require 

that all Indofine compounds are bought and tested experimentally. The diagram in Figure 5.1 

presents the VS experiment performed. It is similar to diagram 4.2 in chapter 4. However, in 

this case the processes were not used as filters in sequence; rather they were executed in 

parallel. As a result predictions on all input data are included in the final report and, therefore, 

more detailed analysis can be performed.  The functionality of each VS process is explained in 

table 5.2. 

Process Name Functionality 

Load 

Compounds 

Converts the data from a text file format into internal binary representation of 

molecules. 

Calculate 

fingerprints 

For each molecule a set of binary descriptors (fingerprints) is calculated.  Morgan 

type fingerprints were selected [56] 

Predict 

cytotoxicity 

Each of the molecules is passed through a predictive model that predicts a value 

signifying the molecule’s likeness to be cytotoxic. 

Calculate 

Descriptors 

For each molecule a set of descriptors is calculated. There is a large set of descriptors 

to choose from. In our case we are interested in only 4 descriptors values (Molecular 

weight, logP, Hydrogen Bonds Donors, Hydrogen Bond Acceptors) necessary for the 

calculation of the Rule-Of-Five. 

Oral Drug 

Likeness Filter 

For each molecule the widely used Rule-of-Five also known as the Lipinski rule [60] 

is applied. The result is a value indicating the number of rules the molecule failed. 

Calculating 

Docking 

values 

Each of the molecules is passed through a model that predicts the binding affinity to 

an ER receptor [66] 

Merge Values The results of all of the previous steps are summed up in a report. The columns in the 
report are: molecule, Toxicity (Active/Inactive), Rule-of-five value pass/fail , 

Docking value. The 4 descriptor values calculated for the purposes of the Rule-of-five 

are shown next (Molecular weight, logP, Hydrogen Bonds Donors, Hydrogen Bond 

Acceptors) 

Model Calculation 

Predictive 

model 

A Support Vector Machine model[90], build with PubChem AID 464 data. 

Docking 

model 
A Binding Affinity scoring  model, build for the ER-alpha protein structure (1xpc) 

 
Table 5.2 - VS workflow process functionality   
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5.2 KNIME implementation     

 

The  KNIME implementation was performed on a personal desktop computer operating on 

Windows 7 Home Premium edition with the following hardware characteristics:   Intel® 

Core™  i5-2430M @ 2.40GHz 64Bit, 4GB RAM and 1TB hard drive. The main application 

used was KNIME 2.5.3. The secondary applications were Python 2.7[78], Weka 3.7.5[80], 

Java Eclipse 3.6.1[79], RDKit[82], CDK[81]. A short description of the software applications 

used is given in table 5.3. 

Application Website Short Description (source Wikipedia) 

Python  pyhton.org Programming Language 
Python is a general-purpose, high-level programming, cross platform 
language whose design philosophy emphasizes code readability. The 

reference implementation of Python (CPython) is free and open source 

software.  Python supports multiple programming paradigms:  object-

oriented, imperative and functional programming. It features a fully 

dynamic type system and automatic memory management. Like other 

dynamic languages, Python is often used as a scripting language.  

 

Weka www.cs.wa

ikato.ac.nz/
ml/weka/ 

Data Mining Tool 
The Weka workbench contains a collection of visualization tools and 
algorithms for data analysis and predictive modeling, together with 

graphical user interfaces for easy access to this functionality. Weka 

supports several standard data mining tasks, more specifically, data 

preprocessing, clustering, classification, regression, visualization, and 

feature selection. Weka uses the text format Attribute Relationship File 

Format (ARFF).  

 

Java 

Eclipse 
SDK 

http://www.

eclipse.org/ 
The Eclipse Platform is a multi-language software development 

environment comprising an integrated development environment (IDE) 
and an extensible plug-in system. It is written mostly in Java. By means of 

various plug-ins, it can be used to develop applications in various 

programming languages. The Eclipse SDK (which includes the Java 

development tools) is meant for Java developers. Users can extend its 

abilities by installing plug-ins written for the Eclipse Platform, such as 

development toolkits for other programming languages, and can write and 

contribute their own plug-in modules. Eclipse SDK is a free and open 

source software.  
 

RDKit http://www.

rdkit.org/ 
A collection of chemoinformatics and machine-learning software written 

in C++ and Python. 

CDK http://tech.

knime.org/

community/

cdk 

The Chemistry Development Kit (CDK) is a Java library for structural 

chemo- and bioinformatics. It is an open source and open development 

chemoinformatics package. The CDK KNIME integration was  developed 

in collaboration with the KNIME group. 

Table 5.3 – Short descriptions of secondary applications in the KNIME implementation 
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Based on the experimental design diagram in Figure 5.1, the experiment can be separated into 

4 distinct steps. The first step, STEP1, will build the prediction model to be used later in step 

3. Similarly STEP2 will build the docking model. In STEP3, a workflow executing the 2 

models and the filter will be constructed and run. During STEP4, the workflow is exported 

and shared in a global collaboration platform. The same workflow is then imported into 

another machine for testing.   

STEP 1:  Prepare the Predictive Model 

 

The predictive model is constructed by the workflow in Figure 5.4. The input file is dataset A, 

described in section 5.1. Dataset A, shown in Figure 5.2, contains molecule structures and 

their known toxicity value.  For each molecule in the file, its molecular descriptors will be 

calculated and then used to train the prediction model.  When the model is build, it will be 

saved in a suitable format for input in a prediction type node later in STEP3.  

 

Figure 5.2 - Dataset A containing molecule structures and their toxicity values as displayed by KNIME 

 

The workflow in Figure 5.4, consists of 11 preprocessing nodes, responsible for reading the 

data and transforming it into the suitable type for insertion into the model builders. Two 

different models are build, an SVM model and a Bayesian. The actual inputs to the classifiers 

were 1024 columns of bit strings (the fingerprints) and 1 column with the string 

Active/Inactive property which indicated the classification classes. KNIME provides a model  
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type format, thus enabling models to be saved. In Figure 5.4 the models prepared and saved 

are shown. A detailed description of each Node in the workflow follows in table 5.4. 

 

Name Type /Category Description 

Read cytotoxicity 
Data 

File Reader/Read/ IO Read the cytotoxicity data provided 
The data consists on a SMILES’s Molecule and a column 
indicating Active, Inactive toxicity property. 

Create Molecule 
Column 

Molecule Type Cast / 
Translators / Chemistry 

Converts the column containing the Molecule string to molecule 
format 

Convert to RDKit Molecule to RDKit / 
RDKit / Community 
Nodes 

Generates RDKit molecule column from a string representation 
(SDF or Smiles). An advantage of this Node is that is removes 
any Molecules that are incorrect.  

Split Molecule from 
other Data 

Splitter/ Column / Data 
Manipulation 

Splits the Molecule column from the rest of the data in order to 
be processed for fingerprint calculation. 

Remove Salts RDKit Salt Stripper/ 
RDKit / Community 
Nodes 

This node is used for cleaning the representation of molecules, 
i.e. removing salts 

Calculate 
Fingerprints 

RDKit Fingerprints/ 
RDKit / Community 

Nodes 

Generates fingerprints for an input RDKit Mol column. Type 
chosen: Morgan Fingerprints 

Data Casting for 
fingerprints 

Meta Node ( collection 
of Nodes )  

Currently in KNIME fingerprints are available in bitvector 
format which cannot be set as input to the Classifiers. This 
Meta Node takes care of the formatting issues 

Add IC50 column Joiner / Column/ Data 
Manipulation 

Add IC50 column which is needed for classification. 

Row index creation Math Formula / 
Miscellaneous  

A simple math formula to create a row with index values that 
can be used for joining the data together. 

Joining Molecule 
and Fingerprints 

Joiner / Column/ Data 
Manipulation 

Joining the Molecule, its toxicity value and the fingerprints. 

 

Table 5.4 – Detailed description of nodes in the prediction model construction workflow 

 

 

Figure 5.4 - Models build and saved by KNIME 

 

An important decision is selecting the suitable classification algorithm for the experiment. 

KNIME has a number of build-in suitable classifiers but it also has integrated some of the 
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methods provided by WEKA. However, classifiers incorporated into Knime are essentially 

using black boxes to the user. Therefore, in order to access all the capabilities of a data mining 

dedicated software, I changed workbench. In the WEKA [86] workbench one can easily test 

different classification algorithms, adjust their parameters but also perform preprocessing 

functions that are valuable to classification. Also, the results of the classifier are available in a 

more comprehensible way. 

 

Testing in WEKA 

 

A. Selecting the Algorithms to evaluate 

As the number of combinations of different classifiers and parameters is almost infinite, I 

selected algorithms as recommended in the literature [56]. 

B. Data Mining Basic concepts necessary for evaluating training results 

The confusion matrix  

The following table shows the confusion matrix [87] for a two class classifier.  

CLASS A B 

A TN FN 

B FP TP 

Table 5.5 – Confusion matrix 

A confusion matrix contains information about actual and predicted classifications done by a 

classification system. The following definitions can be used to clarify any attempt to evaluate 

the results in the case of classifiers built for the purposes of our VS experiment. 

True Negative: An Inactive molecule that was correctly classified as Inactive. 

True Positive: An Active molecule that was detected successfully. 

False Negative: An Active molecule that was not detected successfully. 

False Positive: An Inactive molecule that was wrongly classified as Active. 
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The performance of each classifier is evaluated using 

the F-measure metric, using the data described in the 

previous table. 

F -measure =2*TP/(2*TP+FN+FP) 

The F measure is a balanced average of the Precision 

and the Recall where the optimum score is 1 and the 

lowest is 0. It gives a measure of the correctness of the 

classifier. 

For an Active filter to be successful it must classify 

Active molecules with high accuracy, i.e. the FN value 

must be as low as possible. This is measured using 

recall or sensitivity.  

Recall = Sensitivity = TP/(TP+FN) 

If FN=0 then Recall=1 (All Active molecules are 

identified and classified as Active) 

On the other hand, it must not classify Inactive 

molecules as Active, so FP must be as low as possible. 

This is measured in precision.  

Precision = TP/P = TP/(TP+FP) 

If FP=0 then Precision=1 (No Inactive molecule is 

classified as Active) 

 

C. Validation Techniques 

All the experiments have been carried out using   a stratified 10-fold cross-validation [88], a 

technique for estimating the performance of a predictive model, in order to increase the 

confidence level of results obtained. Research has shown that k = 10 is a satisfactory total 

(Breiman & Spector 1992) and (Kohavi1995). 

 

It must be stressed that there 

is asymmetry in 

misclassification costs.   

In our case, Recall has a 

higher negative cost as it is 

not desirable for Active 

molecules to be classified as 

Inactive, but it’s no harm 

done if some Inactive 

molecules are misclassified 

as Actives since they will be 

detected as such in later 

stages of the process during 

experimental validation 
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D. Learning Methods 

Weka 

implementation / 

Reference 

 

Description of Learning Methods 

Naive Bayes A Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong 

(naive) independence assumptions. 
 

In simple terms, a naive Bayes classifier assumes that the presence (or absence) of a particular feature of a 

class is unrelated to the presence (or absence) of any other feature. Even if these features depend on each 

other or upon the existence of the other features, a naive Bayes classifier considers all of these properties to 

independently contribute to any other probability. 

 

 George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh 

Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995. 

 
k-NN  
 

WEKA : IbK 

The k-Nearest-Neighbour  algorithm  (k-NN)  is  a  an ‘instance-based’ machine  learning method [89]. 

This approach does not seek to develop a model that describes the structure of the underlying data; rather, 

all training examples are stored, and test instances are classified by estimating their similarity to the stored 

examples.  The instances are assigned the majority class of the k closest instances.  The underlying 

inductive bias of the algorithm assumes instances that are close in the attribute space are of the same class.  

 

 D. Aha, D. Kibler (1991). Instance-based learning algorithms. Machine Learning. 6:37-66. 

 
Support Vector 

Machine  
WEKA:  SMO 

Support vector machines (SVMs) map training instances into a higher dimensional feature space by some 

nonlinear function, and then calculate the optimal hyperplane which maximizes the margin between the 

data points in the positive class and the data points in the negative class [90]. The Sequential Minimal 

Optimization (SMO) algorithm implemented in WEKA was used. SMO is a fast method of training SVMs.  

It breaks a large quadratic programming problem down into a series of the smallest possible sub-problems, 

minimizing processor and memory demands.  The inductive bias of the algorithm is largely dependent on 

the kernel adopted; different kernels will lead to different models. 
Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.  

 J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. 

Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, 

1998. 
 

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improvements to Platt's SMO 

Algorithm for SVM Classifier Design. Neural Computation. 13(3):637-649. 

 

Trevor Hastie, Robert Tibshirani: Classification by Pairwise Coupling. In: Advances in Neural Information 

Processing Systems, 1998. 

 

Decision Tree 

C4.5 -  
 

WEKA: J48 

Ensembles of classifiers can often perform better than any individual classifier. 
 

Boosting classifiers, manipulates training examples to generate a set of hypotheses. Instead of dividing the 

training set, it attaches weights to each of the training instances, and on each iteration attempts to minimize 

the weighted error on  the training  set.   Misclassified instances have their weight increased and correctly 

classified instances have their weight decreased.  

 

AdaBoostM1 method was used with a decision tree as a base classifier. 

 

Decision trees use tests on one or more attributes to classify a particular instance. A typical tree has several 

internal nodes, which represent tests, and several child nodes, which represent all potential classification 

outcomes; the tree can effectively be described as a series of if-else rules. 

 

J48 is an open source Java implementation of the C4.5 algorithm in the weka data mining tool. 

 Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International 

Conference on Machine Learning, San Francisco, 148-156, 1996. 
 

Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, 

CA. 

 

 

Table 5.6 – Learning Methods used 

 

 

http://independence/
http://independence/
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Weka_(machine_learning)
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
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E. Start mining 

In the table that follows, the testing results confirm that: 

●  the best 2 options for the Prediction Model are SMO and Naive Bayes 

● that attribute selection must be applied as it improves the results by a factor of 10% 

 

Table 5.7 - Results of testing prediction models depicting F-measure  

 

STEP 2: Prepare the Binding Affinity Model 

 

At the time this experiment was implemented no open source docking model was available to 

be used in a KNIME workflow. It was therefore decided to run the docking model 

independently and feed its results into the final report.  The docking model run is explained in 

detail in the Galaxy implementation as it was developed by the GRANATUM team.  

 

 

STEP 3: Implement the VS experiment workflow 

 

The main workflow of the experiment has 3 input nodes. The main input node reads the file to 

be screened which is dataset C shown in Figure 5.6.  The second input node reads the toxicity 

prediction model constructed in STEP1 and the third the results of the docking model 

constructed in STEP2. As in the case of the prediction model workflow, a number of 
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preprocessing nodes need to be run before the input data (molecules) is put in the right format 

for filtering through the predictive model. Upon completion of the filtering through the 

predictive model a new column I appended. This column is labeled winner and can have only 

two possible values: Active meaning toxic and Inactive meaning non-toxic.  

The next nodes to be executed are the ones implementing the oral drug likeness filter. Here 

the molecules change type as a different software component will be used from the CDK 

group. Executing the Lipinski’s filter node appends a new numeric column that counts the 

failures of the filter. Number 0 indicates a molecule with 0 failures. The actual values of the 4 

descriptors are also calculated by a separate node to be included in the final report as 

reference. Reading the results from the docking score file requires executing data retrieval and 

data transformation nodes as the data are is customized for use by KNIME nodes. At the final 

steps of the workflow the results are merged in the final report. As noted in the experimental 

design, the nodes are run in parallel and not as sequential filters. As a result the final report 

contains all the molecules. The entire workflow implemented is shown in Figure 5.5 
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Figure 5.6 - Input File as displayed by KNIME 

 

The final report is constructed by merging 3 KNIME tables. The columns selected are the 

molecule, the Winner column indicating the prediction Active/ Inactive, each of the four 

descriptors of the Lipinski’s rule, a column indicating the number of filters they fail and 

finally the predicted binding affinity score. The output table constructed is shown in Figure 

5.7. The report is written out in a text file (tab delimited) by an output node to match the 

Galaxy implementation and in an xls format for Excel for easy processing.  

 

Figure 5.7 - Output File as displayed by KNIME 
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A detailed description of each Node of the VS workflow in Figure 5.5 follows in table 5.8. 

Name Type /Category Description 

Read input data 
for screening 

SDF Reader /  IO / 
Chemistry 

Reads input file to be screened which is in SDF file form. 

Row Index 

Creation 

Math Formula / 

Miscellaneous  

Creates a unique row index to be used for joining the docking data 

with the Molecule 

Convert to RDKit Molecule to RDKit 
/ RDKit / 
Community Nodes 

 Generates RDKit molecule column from a string representation 
(SDF or Smiles) 
It also removes from the list any non valid molecules 

Remove Salts RDKit Salt 
Stripper/ RDKit / 
Community Nodes 

This node is used for removing salts from RDKit molecules. 

Read Prediction 
Model 

Model Reader / 
Read / IO 

Reads the model created in the previous step from file. 

Read Docking 
Data 

File Reader/ Read/ 
IO 

For now, the data is calculated outside KNIME and are fed into the 
report 

Calculate 
Fingerprints 

RDKit 
Fingerprints/ 

RDKit / Community 
Nodes 

Generates fingerprints for an input RDKit Mol column. Type chosen: 
Morgan 

Row Index 
Creation 

Math Formula / 
Miscellaneous  

Creates a unique row index to be used for joining the modeling  data 
back with the Molecule 

Splits fingerprint 
from other Data 

Splitter / Column/ 
Data Manipulation 

Splits fingerprint from other data in order to be fed into the Predictor. 

Datacasting for 
fingerprints 

Meta node ( a 
collection of nodes) 

As defined above. 
Converts the fingerprint bitvector into 1 bit strings. 

Data conversion String to Number It converts the bits to numbers in order to be accepted by the SVM 
prediction model. 

Predictor Weka prediction /  Takes as input a previously saved Model and performs a 
classification. It appends a new column Winner on the data 

Row Index 
creation 

Math Formula / 
Miscellaneous  

Creates a unique row index to be used for joining the modeling  data 
back with the Molecule 

Append prediction 
to Molecule 

Joiner / Column/ 
Data Manipulation  

Joins the Molecule with its prediction value as returned by the Model 

Convert to CDK 
Molecule 

Molecule to CDK The Lipinski’s Rule of five is implemented in the CDK module. So we 
must convert the molecules to CDK format. 

Calculate 

Descriptors 

Molecular 

properties /  

Calculates descriptor for the molecule, of which five are chosen: 

lopP, Molecular weight, Hydrogen Bond Acceptors, Hydrogen Bond 
Donors 

Apply Lipinski’s 
Rule of five 

Lipinski’s Rule of 5 
/ CDK / Community 
Nodes 

Applies Lipinski’s Rule of 5 and adds one additional column 
containing the count of failures of the rule of five 

Get row id of 

Molecule 

MetaNode ( a 

collection of 
Nodes)  

A series of transformations are required to get the id of the Molecule 

in order to be matched for the report 

Get Id and Fitting 
Value 

Splitter / Column/ 
Data Manipulation 

The required columns are split from the rest of the data 

Append value to 
molecules 

Joiner / Column/ 
Data Manipulation  

 This node joins the Molecule with its docking value 

Add Lipnski’s 

Filter 

Joiner / Column/ 

Data Manipulation  

Adds Lipinski’s Filter and descriptors to final output. Join based on 

Molecule 

Add Docking Joiner / Column/ 
Data Manipulation  

Adds docking value to final output. Join based on Molecule. 

Write csv file CSV Writer / Write 
/ IO 

Write the data into a csv type file. 

 
Table 5.8 – Detailed Description of each node in the workflow of Figure 5.5. 
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Figure 5.8 - Experiment’s Report in a spreadsheet sorted as pleased 

This output can now easily be sorted by users/ domain scientists using a spreadsheet 

application to select the top candidate molecules indicated by the VS experiment (Fig. 5.8). 

 

 

STEP 3: Sharing & Collaboration 

 

Saving a KNIME workflow automatically saves provenance data which in KNIME are saved 

for each individual node separately. Using the Export workflow option, the workflow is 

exported in a zip format. The file was then uploaded in myExperiment (Fig. 5.19), along with 

its data. It was later downloaded on another workstation and imported in KNIME for further 

processing and demonstration. 

 

5.3 Galaxy implementation     

 
The Galaxy workflow was designed and executed on a Galaxy server instance running Ubuntu 

Desktop 12.04 LTS (Linux version) with the following hardware characteristics:   Intel®  

Pentium® 4 CPU 3.20GHz (1 core - HT enabled 32bit), 1GB ram and 80GB hard disk. The 

additional applications required were Python 2.7, SciKit-Learn 0.10, RDKit 2011_12_1, Chil2 

GlamDock 0.5. In table 5.9 a short description of the additional applications is given. 
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Application Website Short Description (source Wikipedia) 

Python  pyhton.org Programming Language 

Python is a general-purpose, high-level programming, 

cross platform language whose design philosophy 

emphasizes code readability. The reference 

implementation of Python (CPython) is free and open 

source software.  Python supports multiple 

programming paradigms:  object-oriented, imperative 

and functional programming. It features a fully dynamic 

type system and automatic memory management. Like 

other dynamic languages, Python is often used as a 

scripting language.  

RDKit www.rdkit.org/ A collection of chemoinformatics and machine-learning 

software written in C++ and Python. 

Scikit-learn scikit-learn.org/ A Python open-source module integrating classic 

machine learning algorithms.  

Chil2 

GlamDock 

www.chil2.de/Glamdock.html The Chil2 platform consists of components used for 

molecular modeling and screening focusing mainly on 

structural- and ligand based docking. 

Table 5.9 – Short descriptions of additional applications for the Galaxy workflow implementation 

 

Three steps were required in order to perform the VS experiment in Galaxy. Firstly, new tools 

had to be prepared and inserted in the platform. Secondly the workflow had to be created and 

then executed. The third and final step was to perform workflow sharing. 

 

STEP 1:  Integrate the necessary tools 

 

The GRANATUM team has implemented command line python modules. The task was to 

create new tools in the Galaxy platform that would call these command line scripts. Creating 

tools in Galaxy requires the use of xml wrappers around functionalities and their insertion into 

the Galaxy tool collection. An xml file defines the tools interface which in this 

implementation calls a python script. Another xml handles the tool’s listing in the Tools 
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panel. Figure 5.9 displays menu configuration of the new set of tools in the Galaxy’s Tools 

panel while the tools required for the experiment are listed in table 5.10.   

 

Tool’s List Description Granatum Module 

 Input / Output  

Load 
Compounds 

Input: molecule file in sdf form 
Output: molecule file in binary form 

Description: Creates a binary molecule file from 

the input file 

load_compounds.py 

Merge Report Input: 3 different binary molecule files  

Output: a tab delimited text file 

Description: Merges 3 files into a single file with 
columns as follows: Molecule, ID, 

Oral_Drug_Like_Result,  

Oral_Drug_Like_Result_Reason, Prediction,  

Margin_Distance, Docking_Score 

getPrediction.py 

 Filters  

OralDruglikess 
Filter 

Input: Molecule binary file 
Output: Molecule binary file with appended the 

filter’s result values 

Description: Calculates the molecular descriptors 
and appends two new columns. 

Oral_Drug_Like_Result and 

Oral_Drug_Like_Result_Reason 

oralDrugLikeFilter.py 

Clean 

Molecules 

Input: Molecule binary file 

Output: Molecule binary file 

Description: Cleans molecules by removing salts. 

cleanMols.py 

 Descriptors Calculation  

Morgan 

Fingerprints 

Input: Molecule binary file 

Output: Molecule binary file with fingerprints 
values 

Description: Appends new columns for the 

fingerprints  

calcMorganDesc.py 

 Models  

SVM Model Input: Molecule binary file 
Output: Molecule binary file with prediction values 

Description: Executes the SVM model on the input 

file and appends two new columns: Prediction and 

Margin_Distance  

convDataPM.py 
main_predictSVM.py 

 
Table 5.10 – Detailed Description of each Tool of Figure 5.11 
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Figure 5.9 – New tools in the Galaxy’s Tool panel 

 

 

New Definition types 

New data types (table 5.11) were defined in order to enable the use of the output of a set of 

tools as input into another set of tools. This was very important for avoiding unnecessary 

mistakes in the tools interface by selecting inappropriate datasets. The restrictions as enforced 

are shown in Figure 5.10. 

New definitions types for GRANATUM Tools 

gpkl binary python data dictionary (g –GRANATUM, pkl - from python data dictionary) 

gpklm as above with appended columns binary Morgan fingerprints (m – morgan) 

gpklp as above with appended column the prediction of the model ( p-prediction) 

gpklf as above with appended columns the results of the Oral Drug like filter’s execution 
(f-filter) 

 

Table 5.11 – New Definition types in Galaxy 
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Figure 5.10 – Data types and restrictions enforced among the tools defined 

 

Important Implementation Notes 

1. Because the GRANATUM modules were designed to be used as command line scripts, 

they could not be called directly. Firstly, to conform to Galaxy requirements they needed to 

have at least one input file and at least one output file for input to the next tool. Therefore the 

first wrapper reads the files created by the program and feeds them into the output. A second 

wrapper was required to catch the “stdout” and “stderr” messages produced by the scripts. 

This second wrapper was provided by the Galaxy community and amended appropriately to 

accommodate the needs of the present work. 

2. Unlike the case of KNIME, where the SWMS was used to build the predictive model, the 

functionality of creating such model was intentionally not implemented. The model was build 

outside Galaxy and used for prediction as required. The decision was based on GRANATUM 

specifications which note that ordinary users will not be allowed to create models. The SVM 
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prediction Model was prepared using DATASET A, described in section 5.1. The Nu-Support 

Vector Classification (Nu-SVC) was selected to build the model using 10-fold cross 

validation using the Scikit-learn[96] module.  

3. The Docking scores, similarly to the case of the KNIME implementation, were calculated 

outside of Galaxy and fed into the final report.(Add info for docking program) 

 

STEP 2: Design and Execute the VS workflow 

 

The implemented Galaxy VS workflow is shown in Figure 5.11. The experiment consists of 7 

steps executed by 7 different tools. In the beginning of the process, before executing the 

workflow, all initial datasets must be imported into the workflow history. Two files are 

required. The first is the parameter file required by the GRANATUM Load Molecules module 

where the user sets the location of file to be read and other log files. The second is the file 

containing the docking results. 

 

Figure 5.11 - The workflow as created in GALAXY 
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Figure 5.12 - Input parameter file as displayed in Galaxy 

In the first execution step, the Load Compounds command is executed (Fig. 5.12) which reads 

the parameters file and returns a file containing molecules. The next step is to execute clean 

molecules so that salts are removed and molecular validity is confirmed. This is an important 

procedure as it cleans the molecules preventing subsequent processes from failing because of 

inappropriate molecule format. Following, the cleaned molecules serve as input to 2 tools: 

Oral Drug like filter and Calculate Morgan fingerprints. As in the case of KNIME, the 

predictor model takes as input fingerprint descriptors that must be calculated first. Therefore 

the predictor model is called with the output of the Calculate Morgan fingerprints tool. The 

results of the predictor model and the Oral filter along with the docking scores are merged into 

a report (Fig. 5.14). The report is written out in a tab delimited file (Fig. 5.13). 

  

 

 

 

 

 

Figure 5.13 – Results of the experiment in an Excel worksheet 
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Figure 5.14 - Output File as displayed in Galaxy 

 

STEP 3: Sharing and Collaboration 

 

Sharing in Galaxy is easy. The workflow can be shared naturally among Galaxy users (fig. 

5.15) and a default detailed panel showing the author, rating, tags and other related workflows 

is created. If a user wants to test the workflow all he has to do to is import the workflow and 

run it. Alternatively it is possible to send the workflow directly to myExperiment for 

publishing (Fig. 5.16). It is worth stressing that the latter approach is the only one feasible for 

sharing workflows implemented in SWMS systems like Knime. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 – Published Chemoprevention Workflow in the Galaxy server instance at UCY  
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Figure 5.16 – Published Chemoprevention Workflows in myExperiment 
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Chapter 6 

 

Results / Discussion 

 

 

However beautiful the strategy, you should occasionally look at the results.19 

 

 
In the preceding chapter, Chapter 5, the second goal, of the thesis was realized. The 

chemoprevention workflow successfully run in both systems and produced results potentially 

useful to domain scientists in this case chemoprevention experts. The collection of molecules 

was virtually screened and prioritized, and a subset of molecules was identified as potential 

candidates for biological screening. Both implementations produced tab delimited files 

containing all the necessary information for the domain scientist to make the inferences 

required. Consequently in both cases, savings in time and costs were achieved. The third goal 

of this thesis aims to identify differences, similarities and open issues of SWMS through the 

experiences gained from implementing the above workflows. 

 

Comparison of results from both implementations 

Table 6.1 summarizes the results as obtained by the implementations presented in Chapter 5. 

The results from the two workflow executions are highly similar. The Oral Drug Like filter 

manages to eliminate unsuitable molecules in the rate of 11% in KNIME’s case and 16% in 

Galaxy’s as presented in figures 6.1 and 6.2.The Oral Drug Like filter was implemented using 

different software libraries. CDK in KNIME and RDKit in the Galaxy implementation. This 

can explain the small 8% difference seen in Fig 6.5. As far as the Toxicity model is concerned 

                                                
19 Winston Churchill 
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the overlap is at 72% shown in Figure 6.6. Again, different software libraries were used and 

therefore different models were created. The toxicity model manages to single out more than 

half of the initial molecules as possible candidates. These figures are presented in figures 6.3 

and 6.4. A number of 707 out of 2435 had satisfactory binding affinity prediction results 

(docking score values <-15) shown in Figure 6.7. As previously noted the docking results are 

identical in both runs as the exact same model implementation was used.  

 

Overall as seen from the Table 6.1 2163 molecules are Drug Like (Fig. 6.1). Of them 1183 are 

Inactive (Fig. 6.8) and a final of 315 pass all 3 filters (Fig. 6.9) in the KNIME workflow run. 

The VS process successfully identifies only a 12% of the initial dataset as possible candidates 

for biological evaluation. Figure 6.10 summarizes these results in a Venn diagram. 

 

 

Table 6.1 - Results table 

 

 

 

Results Table 

 KNIME Galaxy - 

GRANATUM 

Initial no of molecules 2536 2536 

Minus rejected 2514 Stage 1- Reading  

2451 Stage 2 - RDKit  

2451 

Pass Oral Drug Like 2163 /2438 

(rejected 13) 

(37 not scored  included in 

fail) 

2049 / 2451 

Inactive 1386 /2451 

(1183 Pass oral) 

1367 /2451  

(1145 Pass Oral) 

Docking  (<-15) <-15 706 / 2435 

(93 not scored, 76 not matched) 

(315 (>-15) Inactive, Pass Oral) 
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One striking difference between the two implementations is the complexity associated with 

each of them. In total, the Galaxy implementation has 7 tools versus the KNIME workflow 

that contains more than 30 nodes. This is an advantage of developing custom tools. A general 

tool/node, as in the case of KNIME, requires more data transformation between nodes, 

especially if the nodes are from different libraries. These data transformations are referred to 

as shim services by workflow experts. At least half of the nodes created in the VS workflow 

implemented in KNIME are data transformation nodes.   

 

Another important difference is the lack of any visualization tools between intermediate steps 

in the case of the Galaxy implementation. Building custom tools has some negative 

consequences, one of which is that accessibility to common functionalities, e.g. visualization 

nodes is no longer available. These too must be customized. In contrast, all KNIME nodes 
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enable the visualization of their output results in each step which is very useful in assessing 

quality and correctness, especially when first developing and testing the workflow. 

  

The runtime environment is also different. The KNIME workflow ran on a personal desktop 

computer while the other ran on an online Galaxy server. Having a server implementation 

offers benefits for resource management that were not explored in the context of this thesis. 

However, it is well understood that an online implementation enables the centralized 

management of the workflow system and its tools/nodes and thus facilitates maintenance by 

administrators. It also allows users to focus on the design and implementation of their in silico 

experiments and leave technical matters to SWMS administrators. In turn, a well-supported 

and documented online system can facilitate the adoption of such technology by users not 

comfortable with software administration, for example, biologists and chemists. On the other 

hand, the KNIME approach may be more appropriate for users more comfortable with 

managing computational tools as it allows more control of the SWMS system and the nodes 

and workflows that the user may develop. In the case of the GRANATUM project it is 

obvious that a system such as Galaxy would better fit its purpose. 

  

As far as execution time is concerned, it is not safe to make any conclusions. The heaviest 

processes were the ones involved in building and executing the SVM model in both systems. 

Indicatively, the KNIME workflow required 3 min and the GALAXY required 3.5 min. 

However, GALAXY was run on a test server of older technology where other users had 

concurrent access while KNIME was run on a dedicated high-end personal computer. On the 

other hand, the KNIME workflow had a lot of data transformations nodes as opposed to 

custom designed function modules.  
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A summary of the advantages and disadvantages of each implementation is given in the table 

6.2 

KNIME Galaxy 

 Built in chemistry support and 

Multiple chemistry plug in to choose 

from 
 

 

 Limited chemo informatics tools 

 

 Data visualization in each step 

 

 Limited data visualization 

 

 Built-in Machine learning models 

and plug-in  
 

 No machine learning integration 

 

 Adequate Documentation of Nodes 

 

 Adequate Documentation of Nodes 

 

 Easy installation 

 

 No installation by end user; handled 

by server administrator 

 Sharing in my Experiment 

 

 Direct sharing with myExperiment 

 

 Need manually configured updates 

 

 Updates by the server administrator 

 

 Need of data transformation 

processes (known as shim) 

 

 Custom development 

 Limited functionality for 

collaboration 
 

 Built in sharing and collaboration 

 

 Local resources  Online environment 

 

 Available locally  Available from anywhere 

 

 

Table 6.2 – Comparing KNIME and Galaxy implementations 

 

 

Critical Review of Open Source SWMS 

 

User-friendliness: One of the strong selling points of SWMS technology is the promise to 

allow and trivialize the implementation of complex scientific experiments by non-expert 

users. Ideally, users with little background in databases and algorithm implementation will be 

able to design in silico experiments that make use of data with varying formats from 

distributed resources and analyze it using methods executed on computational resources as 



 

 

95 

required. Currently, this is clearly not the general case. Most modern SWMS have made 

significant steps in this direction but still remain sophisticated tools which may be 

intimidating to the non-computational user. However, a middle solution is using current 

technology and based on user requirements implement customized solutions with not too 

much effort. This custom solution will hide all unnecessary complex details from the end user 

while at the same time provide equal functionality. This is the approach that the 

GRANATUM team is currently following.   

 

Support mechanisms: The support mechanisms of open source software are typically the 

wiki pages and mailing lists administered by expert users (Fig. 6.11). As such it is up to the 

community of each tool to adequately support new users and guide them through their initial 

usages of the tool. Personally, I have resorted to online resources and support by the 

community of KNIME and GALAXY and found that both communities were quick to assist 

although it usually took several iterations of email exchanges to solve the problem. In all 

SWMS examined, more can be done in the form of tutorials, videos, better documentation of 

common errors, etc.  

 

Figure 6.11 – 4135 Topics in Galaxy Development list and 188 only in April 2012 from 

http://dev.list.galaxyproject.org 

 

Error handling: The error messages should be meaningful, as the intended users are not 

gurus but rather beginners in most cases. KNIME has an excellent error mechanism. It 

prevents errors from happening by using the configuration menu on the nodes and by setting 



 

 

96 

the status of node. If something is wrong the node status stays red and cannot be executed. If 

the data is not readable then it cannot be executed and so on. In Galaxy’s case, it depends on 

the tool’s configuration what kind of error it produces. As is the case with KNIME, Galaxy 

prevents errors by carefully checking the data type of the input into the next tool. 

In particular, adequate documentation is a must for the prevention of errors. Not only to 

describe what each component or tool does but also what are its inputs, outputs and notably 

common errors and how to deal with them. Both tools are well documented. 

 

Integration of heterogeneous resources: SWMS’s have great potential in implementing 

complex in silico experiments integrating computational and data resources from varying 

sources. Currently, this feature is supported by GALAXY. Support of retrieval of data from 

online data libraries is an important feature of that tool as is visualizing through online 

browsers. KNIME, as a desktop tool lacks support in this very important feature. Expert users 

may be able to prepare KNIME nodes that communicate with e.g. web services to access and 

use distributed resources and data repositories but this is not a feature KNIME was designed 

to address or emphasizes. 

 

Inter-operability: The number of open source SWMS is not small, as some SWMS are 

domain specific while others are domain independent, others are configured for the grid, 

others for remote services calls etc. It is also obvious that this number will evidently grow. 

That is not worrying but rather expected, as new technology offers more functional solutions, 

enabling for more efficient architectures. As noted in [4] the aim is not to reduce the number 

of SWMS but rather to make sure that these systems can interact. The only feasible way to do 

this is by the use of standards. In fact, some experts have argued in favor of using the 

standardized successful business workflow language currently in use. Others have argued 

against it, as scientific workflows are not a subcategory of business workflows but  have 

distinctive differences such as data flow control rather than control flow, massive 
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heterogeneous data volumes requiring integration,  intensive computation and demanding user 

interaction and visualization. 

If seen from a user perspective, a workflow should be platform independent. This is not 

feasible without standardization. The way Taverna and Galaxy interact is by creating an 

executable “black box” that encompasses the functionality of the Taverna workflow. The 

black box is then executed in the Galaxy platform. KNIME does not address this issue at all. 

Perhaps, the most attractive model for succeeding interoperability is the one the internet is 

based upon. The workflows packaged as services themselves. This is the case now for the 

software components.   

 

Workflow Sharing: The primary example of well thought workflow sharing can be found in 

myExperiment, an online collaboration environment, designed specifically for the sharing of 

workflows prepared using the Taverna SWMS. Eventually, myExperiment usage is spreading 

to other open source workflow systems; currently KNIME workflows can be shared through 

this platform by an import operation. In the case of Galaxy users can share workflows both 

within the workbench through the sharing option and by exporting their workflow directly 

into the myExperiment environment.  

 

 



 

98 

 

Chapter 7 

 

Conclusions / Future Work 

 

 

Learning without thought is labor lost; thought without learning is perilous.20 

 

 

Scientific workflows and Scientific Workflow 

Management Systems have changed the 

dynamics of many scientific disciplines and 

have accelerated scientific discoveries. They 

enabled domain scientists to explore, visualize, 

process, transform, store and model huge 

volumes of heterogeneous data by the use of 

functional cross platform software components 

utilizing enormous processing power as 

offered by grid or cloud technology (Fig. 7.1)  

 

The main benefit of the SWMS approach is the transparency it offers for Data and Resource 

management. Domain scientists are not interested in the actual form of the data (binary, text, 

stream or not) nor where the actual processing will occur (locally or remotely). She/he is 

interested in the results and the form they will be presented. The second most important 

benefit is provenance capture. The information gathered by the SWMS during the execution 

of a workflow enables the reproducibility of the experiment. Additionally, the use of online 

                                                
20 Confucius 

Scientific 
Workflow 

Software 
Components 

Resources Data 

Figure 7.1 – SW and its constituent parts 
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repositories of scientific workflows is documented, knowledge flow is promoted and 

collaboration encouraged. All together can support and accelerate scientific work and 

discovery. Finally, current SWMS provide a friendlier, usable and visual working 

environment supporting easy reuse. As a direct result SWMS are gaining ground and are 

rapidly accepted and used in the daily work routine of numerous research fields.  

 

Online SWMS offer additional benefits. There is no need to set up installations on local 

machines or remote servers, no downloads, no conflicts, no updates to worry about. Secondly, 

the tools are available at any personal computer from anywhere in the world provided that 

they are connected to the internet. The same applies to data. A scientist can import and use 

their data in the system available along with the workflow. Moreover the data and work are 

secure and can be backed up and protected depending always to the system’s specifications. 

Provenance information collected by the system can also serve for documentation purposes 

and for future reference. Importantly, all data and work can be shared with other collaborators 

in real time. Some online SWMS even offer more advanced features such as transparent 

access to HPC, to grid services or the cloud, thus, offering speed and efficiency for scientific 

processes that are computationally expensive and/or data intensive. 

 

Summing up the results discussed in Chapter 6 the two systems presented are not rivals. 

KNIME has an attractive interface, it is easily installed, it has built-in chemistry support, 

multiple chemoinformatics plug-in tools to choose from, it provides data visualization tools, 

machine learning models and it has adequate documentation.  On the other hand, Galaxy’s 

support of chemoinformatics processes is minimal and its interface is not so attractive. 

However, it is its inner beauty that counts. Galaxy’s online environment, except from the fact 

that it follows the modern trend of online presence, has numerous advantages such as no need 

for local system support, constant and global availability, built-in sharing and collaboration 

features. Moreover, Galaxy’s architecture enables easy integration of scripting tools. KNIME 

is considered among the top open source software for chemoinformatics. Galaxy is a 
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promising platform that is gaining supporters every day. Evidence submitted are the Galaxy-

Taverna integration in 2011, the myExperiment integration expected around mid of 2012 and 

the number of Galaxy servers currently running. 

Galaxy is not ready to support chemo-informatics experiments as is. It needs the development 

and contribution of further tools. It is however ready to support custom code as tools. Its 

platform offers all the requirements for supporting a scientific workflow experiment: 

provenance, data and resource transparency, sharing and collaboration, user friendly 

environment and documentation. KNIME, is ready to support a number of chemo-informatics 

experiments as it has built in support but also it has contributions of third party tools. It too, 

can integrate in house code as nodes. However, features such as online interface along with 

built-in collaboration and sharing required by the large, interdisciplinary projects such as 

GRANATUM, are not provided by the open source version, and are restricted to the KNIME 

server which is a commercial product.  

 
 

My development work is far from complete. One limitation of the GRANATUM tools current 

implementation is the lack of any visualization tools. Currently, there is no visualization for 

the intermediate step results. That should be one priority. Another should be to integrate open 

source molecular visualization tools, so that molecules can be seen also in their structural 

form. The second important implementation concern, already mentioned in chapter 5, is that 

the collection of tools implemented is fairly limited and custom to the implementation of a 

relatively simple proof of concept. Consequently additional tool development needs to be 

done. The docking module needs to be further developed and properly integrated and 

additional predictive models and filters need to be implemented for use by chemoprevention 

experts.  

 

Going beyond the current implementation, I would say that Galaxy has proven itself as a 

promising platform for supporting scientific experiments. As such I would suggest enabling 

full functionality of the server as a Galaxy server in the University of Cyprus and listing it in 
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Galaxy’s List of Galaxy servers available all over the globe. Also important is giving access 

to the Galaxy server to other researchers and organizing a training course to promote its use. 

Since using Galaxy as a tool integration platform was proven to be a straightforward task, 

more tools should be integrated either from GRANATUM or from other project and domains. 

We expect that such development and further integration of tools into Galaxy and similar 

SWMS systems will surely continue in the immediate future and will conquer even more 

scientific fields in the coming years. 
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