
ABSTRACT

Software retrieval is concerned with locating and identifying appropriate software re-

sources to satisfy users requirements. It is considered to be one of the key technical issues in

software reuse since “You must find it before you can reuse it”. In this thesis, we investigate

the problem of supporting keyword-based searching for the discovery of software resources

that are installed on the nodes of large-scale, federated Grid and Cloud computing in-

frastructures. We address a number of challenges that arise from the unstructured nature

of software and the unavailability of software-related metadata on large-scale networked

environments. We present Minersoft, a harvester that visits Grid/Cloud infrastructures,

crawls their file-systems, identifies and classifies software resources, and discovers implicit

associations between them. The results of Minersoft harvesting are encoded in a weighted,

typed graph, named the Software Graph. A number of IR algorithms are used to enrich

this graph with structural and content associations, to annotate software resources with

keywords, and build inverted indexes to support keyword-based searching for software. Us-

ing a real testbed, we present an evaluation study of our approach, using data extracted

from production-quality Grid and Cloud computing infrastructures. Experimental results

show that Minersoft is a powerful tool for software retrieval.

Asterios Katsifodimos, University of Cyprus, September 2009
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Chapter 1

Introduction

A growing number of large-scale Grid and Cloud infrastructures are in operation

around the world, providing production-quality computing and storage services to many

thousands of users from a wide range of scientific and business fields. The emergence

of Grid and Cloud computing infrastructures has definitely opened new perspectives in

software engineering community; software developers should exploit the hardware capa-

bilities and services that offer these large-scale distributed computing environments. One

of the main goals of these infrastructures is to make their software resources and services

easily accessible and attractive for end-users [14]. To achieve this goal, it is important to

establish advanced, user-friendly tools for software search and discovery, in order to help

end-users locate application software suitable to their needs and encourage software reuse

[16, 46], software investigation [49], clone detection [26] and computational resources

selection.

1
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1.1 Motivation

Adopting a keyword-based search paradigm for locating software seems like an obvi-

ous choice, given that keyword search is currently the dominant paradigm for information

discovery [37]. Keyword-based search traditionally relies on Information Retrieval (IR) al-

gorithms that explore the occurrence of words in documents. To motivate the importance

of such a tool, let us consider a software developer who is searching for graph mining soft-

ware deployed on a Grid/Cloud infrastructure. Although informative tags about installed

software can be published through Grid information systems, Grid system administrators

seldom follow such a practice [23]. Unfortunately, the manual discovery of such software is

a daunting, nearly impossible task: taking the case of EGEE [3], one of the largest produc-

tion Grids currently in operation, the software developer would have to search among 300

sites with several sites hosting well over 1 million software-related files. The situation is

not better in emerging Cloud infrastructures: a user of the Amazon Elastic Cloud service

can choose among 2.100 Amazon Machine Images (AMIs), with each AMI hosting at least

14.000 files, including installed software. Existing Grid/Cloud providers do not support

any tool that would help developers to select computational resources so as to run their

applications. The only service which is supported by some Cloud providers is an interface

where the user can search only the names of their computational resources (i.e. AMIs).

Envisioning the existence of a software search engine, the software developer would

submit a query to the search engine using some keywords (e.g. “statistical analysis soft-

ware,” or “ffmpeg video processing”). In response to this query, the engine would return

a list of software matching the query’s keywords, along with computational resources

where this software is located. Thus, the software developer would be able to identify the
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providers hosting an application suitable to his/her needs, and would accordingly prepare

and submit jobs to these ones. Figure 1 shows a mockup of the first page of results for

the query “protein docking software”. Consequently, this would save considerable time

since the searching of offered services is time-consuming task. In case of Clouds, where

the user pays with respect to the time he/she uses the underlying Cloud services, such a

tool would also provide economic benefits. The cost of running an application on a Cloud

provider depends on the compute, storage and communication resources it will provision

and consume. The less time a user spends for searching Cloud services and instantiates

the machines, the less money a user spends in Cloud providers.
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Figure 1: Minersoft’s result page showing the results for the query “protein docking soft-

ware”(mockup).

Following this motivation, we developed the Minersoft software search engine. To the

best of our knowledge, Minersoft provides the first full-text search facility for locating

software resources installed in large-scale Grid and Cloud infrastructures. Minersoft visits

a computational resource, crawls its file-system, identifies software resources of interest

(binaries, libraries, documentations etc.), assigns type information to these resources, and

discovers implicit associations between them. Also, Minersoft extracts a number of terms

by exploiting the path within file-system and the filename of software resources.
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To achieve these tasks, Minersoft invokes file-system utilities and object-code analyzers,

implements heuristics for file-type identification and filename normalization, and performs

document analysis algorithms on software documentation files and source-code comments.

The results of Minersoft harvesting are encoded in the Software Graph, which is used to

represent the context of discovered software resources. We process the Software Graph

to annotate software resources with metadata and keywords, and use these to build an

inverted index of software. Indexes from different computational resource providers in the

Grid and Cloud are retrieved and merged into a central inverted index, which is used to

support full-text searching for software installed on the nodes of a Grid infrastructure.

The present work continues and improves upon the authors preliminary efforts in [47, 33].

Specifically, we extend Minersoft so as to support efficient search on Grid and Cloud

computing infrastructures.

1.2 Challenges

Existing Web search engines cannot be used for software retrieval. In the context of

Web, harvesting is a well-studied research problem [24]; crawlers traverse the directed

graph of the World Wide Web following edges of the graph, which correspond to hy-

perlinks that connect together its nodes, i.e., the Web pages. However, the situation is

fundamentally different on the context of Grids and Clouds. In terms of harvesting and

indexing in a Grid and Cloud setting, there are several limitations (e.g., time, pricing

etc.) that should be addressed and do not exist in the context of Web. Thus, we should

take advantage of various parallelization techniques. In terms of information retrieval,

the software usually resides in file systems, together with numerous other files of differ-

ent kinds. Traditional file systems do not maintain metadata representing file semantics
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and distinguishing between different file types. Also, there are not hyperlinks between

software files. Furthermore, the registries of distributed computing infrastructures rarely

publish little, if any information about installed software [23]. Also, many software pack-

ages in such infrastructures cannot be installed using package management systems (e.g.

RPMs). Finally, software files usually come with few or no free-text descriptors. Conse-

quently, the software-search problem cannot be addressed by traditional IR approaches.

Instead, we need a new methodology that will: i) discover automatically software-related

resources installed in file systems that host a great number of files and a large variety of

file types; ii) extract structure and meaning from those resources, capturing their context,

and iii) discover implicit relationships among them. Also, we need to develop methods for

effective querying and for deriving insight from query results. The provision of full-text

search over large, distributed collections of unstructured data has been identified among

the main open research challenges in data management that are expected to bring a high

impact in the future [10]. Searching for software falls under this general problem since

file-systems treat software resources as unstructured data and maintain very little if any

metadata about installed software.

1.3 Contributions

The main contributions of this work can be summarized as follows:

• We present the design, the architecture, and implementation of the Minersoft har-

vester.

• We introduce the Software Graph, a typed, weighted graph that captures the types

and properties of software resources found in a file system, along with structural and
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content associations between them (e.g. directory containment, library dependen-

cies, documentation of software).

• We present the Software Graph construction algorithm. This algorithm comprises

techniques for discovering structural and content associations between software re-

sources that are installed on the file systems of large-scale distributed computing

environments.

• We provide a study about the installed software resources in i) Grid resource provider

(EGEE [3], one of the largest Grid production services currently in operation)

and ii) in two commercial Cloud providers (Amazon EC2 Cloud [1] and Rackspace

Cloud [9]).

• We provide a test dataset for evaluating software retrieval systems. Specifically, our

dataset collection contains software files, installed in Grid/Cloud infrastructures,

and their relevance judgments for a set of keyword queries. The dataset is available

to the software engineering community.

• We conduct an experimental evaluation of Minersoft, on real, large-scale Grid and

Cloud testbeds, exploring performance issues of the proposed scheme. We also

demonstrate the effectiveness of the Software Graph as a structure for annotat-

ing software resources with descriptive keywords, and for supporting full-text search

for software. Results show that Minersoft achieves high search efficiency.

The remainder of this thesis is organized as follows. Chapter 2 presents an overview

of related work. In Chapter 3, we introduce the concepts of Grid and Cloud model and

we provide the definitions for software resources, software package and Software Graph.
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Chapter 4 describes the architecture of Minersoft. Chapter 5 describes the proposed al-

gorithm to create a Software Graph annotated with keyword-based metadata. Chapter 6

presents various implementation details of Minersoft. In Chapter 7 we present an experi-

mental assessment of our work. We conclude in Chapter 8.



Chapter 2

Related Work

A number of research efforts [38, 56] have investigated the problem of software-component

retrieval in the context of language-specific software repositories and CASE tools (a sur-

vey of recent work can be found in [41]). One of the key distinguishing traits of these

approaches is the corpus upon which the search is conducted:

2.1 Searching in a software repository

In [42], Maarek et. al. presented GURU, possibly the first effort to establish a keyword-

based paradigm for the retrieval of source code residing in software repositories. The cosine

similarity metric is used between queries and documented software resources. GURU

uses probabilistic models (quantity of information) to map documents to terms providing

results that include both full and partial matches. Similar approaches have also been

proposed in [13, 44, 40]. All these works exploit source-code comments and documentation

files, representing them as term-vectors and using similarity metrics from Information

Retrieval (IR) to identify the associations between software resources. Results showed that

such schemes work well in practice and are able to discover links between documentation

9
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files and source codes. Except of using IR techniques, authors presented Suade [49], a tool

which identifies the associations between software resources by exploiting the topology of

a graph of structural dependencies for a software system.

The use of folksonomy concepts has been investigated in the context of the Maracatu

system [54]. Folksonomy is a cooperative classification scheme where the users assign

keywords (called tags) to software resources. A drawback of this approach is that it

requires user intervention to manually tag software resources. Finally, the use of ontologies

is proposed in [34]; however, this work provides little evidence on the applicability and

effectiveness of its solution.

The search for software can also benefit from extended file systems that capture file-

related metadata and/or semantics, such as the Semantic File System [27], the Linking File

System (LiFS) [12], or from file systems that provide extensions to support search through

facets [35], contextualization [52], desktop search (e.g., Confluence [28], Wumpus [55]), etc.

Although Minersoft could easily take advantage of the above file systems offering this kind

of support, in our current design we assume that the file system provides the metadata

found in traditional Unix and Linux systems, which are common in most Grid and Cloud

infrastructures.

2.2 Searching over the Internet

In [29], authors described an approach for harvesting software components from the

Web. The basic idea is to use the Web as the underlying repository, and to utilize standard

search engines, such as Google, as the means of discovering appropriate software assets.

Other researchers have crawled through Internet publicly available CVS repositories to

build their own source code search engines (e.g., SPARS-J) [45]. In [38], authors developed
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a keyword-based paradigm, called Sourcerer, for searching repositories of source code which

are available over the Internet. Finally, Google Code [5] and Koders [7] are two well-known

source code search engines which are also available through the Internet. Google Code

Search is for developers interested in Google-related/open-source development. The user

can search for open source-code and a list of Google services which support public APIs.

On the other hand, Koders is a search engine for open source code. It enables software

developers to easily search and browse source code in thousands of projects posted at

hundreds of open source repositories.

2.3 Searching in the Grid

In the Grid context, a recent work has proposed a software search service, called

GRIDLE [50]; this scheme allows users to specify a high-level workflow plan including

the requirements of each software file. Then, GRIDLE presents a ranked list of files that

match partially or totally user requirements. However, GRIDLE cannot be used as a

keyword-based paradigm for locating software resources in the Grid since neither crawls

the Grid sites, nor searches installed software files.

2.4 Minersoft vs. existing approaches

Although we are not aware of any work that proposes a keyword-based paradigm for

locating software resources on large-scale Grid/Cloud infrastructures, our work overlaps

with prior work on software resources retrieval [13, 42, 44, 54]. These works mostly

focus on developing schemes that facilitate the retrieval of software source files using the

keyword-based paradigm. Minersoft is different from all the above works in a number of

key aspects:
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• Minersoft supports searching in Grid, Cloud, cluster infrastructures as well as repos-

itories;

• Minersoft supports searching not only for source codes but also for executables and

libraries stored in binary format;

• Minersoft does not presume that file-systems maintain metadata (tags etc.) to sup-

port software search; instead, the Minersoft harvester generates such metadata au-

tomatically by invoking standard file-system utilities and tools and by exploiting the

hierarchical organization of file-systems;

• Minersoft introduces the concept of the Software Graph, a weighted, typed graph.

The Software Graph is used to represent software resources and associations under

a single data structure, amenable to further processing.

• Minersoft addresses a number of additional implementation challenges that are spe-

cific to Grid and Cloud infrastructures:

– Software management is a decentralized activity; different machines in Grids/-

Clouds may follow different policies about software installation, directory nam-

ing etc. Also, software entities on such infrastructures often come in a wide

variety of packaging configurations and formats. Therefore, solutions that are

language-specific or tailored to some specific software-component architecture

are not applicable.

– Harvesting the software resources in Grid and Cloud infrastructures is a de-

manding task for computational, storage, and communication resources. Also,
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most Grid systems do not support interactive computation. Therefore, software

harvesting needs to be performed in a distributed, non-interactive manner.

– The users of a Grid/Cloud infrastructure do not have direct access to servers.

Therefore, a harvester has to be either part of middleware services (something

that would require the intervention to the middleware) or to be submitted for

execution as a normal job, through the middleware. In the Minersoft architec-

ture and implementation we adopt the latter approach, which facilitates the

deployment of the system on different Grid and Cloud infrastructures.

Approach Searching paradigm Corpus
GURU keyword-based Repository
Suade software elements (fields and methods) Repository

Marakatu keyword-based Repository
SEC keyword-based Repository

Wumpus keyword-based Repository
Extreme Harvesting keyword-based Web

SPARS-J keyword-based Internet repositories
Sourcerer keyword-based Internet repositories
Koders keyword-based Internet open-source repositories

Google Code Search keyword-based Web
Minersoft keyword-based Grid, Cloud, Cluster, Repository

Table 1: Minersoft VS other approaches (search paradigm & corpus)

Approach binaries/scripts source code libraries Software-description documents Binary libraries
GURU X X
Suade X

Marakatu X
SEC X

Wumpus X
Extreme Harvesting X

SPARS-J X
Sourcerer X
Koders X X

Google Code Search X X
Minersoft X X X X

Table 2: Minersoft VS other approaches(search objects)



Chapter 3

Overview

In this chapter we provide some background for the system model of Grid and Cloud.

Then, we define software resource, software package and Software Graph, which are the

main focus of this thesis.

3.1 Grid System Model

A Grid is a large-scale network computing system that scales to Internet size envi-

ronments with thousands of machines distributed across multiple organizations and ad-

ministrative domains. Machines in a Grid, called workernodes are typically grouped into

autonomous administrative domains, called Grid sites, which communicate via high-speed

communication links.

The system elements that comprise a Grid are: processing, network and storage ele-

ments. Processing elements are the CPUs which can be classified into uniprocessor, mul-

tiprocessor, cluster, and parallel processing elements. Network elements are the routers,

switches, gateways, virtual private network devices and firewalls. Storage elements are

the network attached storage devices, such as RAID devices, database machines etc. The

14
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jobs which run in a Grid site are terminated by site’s batch system if they exceed a time

threshold. The jobs are submitted to Grid site via a Grid middleware.

The Grid architecture consists of four layers: fabric, core middleware, user-level mid-

dleware and Grid applications. The Grid fabric layers consists of the system elements. The

core Grid middleware provides services which abstract the complexity and heterogeneity

of the fabric layer (i.e., remote process management, storage access, information registra-

tion and discovery etc.). The user-level Grid middleware utilizes the interfaces provided

by the low level middleware so as to provide higher abstractions and services, such as pro-

gramming tools, resource brokers for managing resources and scheduling application tasks

for execution on global resources. Finally, the Grid applications layer utilizes the services

provided by user-level middleware so as to offer engineering and scientific applications and

software toolkits to Grid users.

3.1.1 The EGEE Grid

The Enabling Grids for E-scienceE (EGEE) grid infrastructure consists of a set of

middleware services deployed on a worldwide collection of computational and storage

resources, plus the services and support structures put in place to operate them. EGEE

is a large, multi-science Grid infrastructure, federating some 270 resource centres world-

wide, providing around 140.000 CPUs and 20 Petabytes of storage. This infrastructure

is used on a daily basis by several thousands of scientists federated in over 200 Virtual

Organizations on a daily basis. EGEE is a stable, well-supported infrastructure, running

the latest released versions of the gLite middleware [4].

gLite comprises a variety of job and data management services that are described

below:
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• Computing Element : A Computing Element (CE), in Grid terminology, is a set of

computing resources localized at a site (i.e. a cluster, a computing farm). A CE

includes a Grid Gate (GG), which acts as a generic interface to the cluster; a Local

Resource Management System (LRMS) (sometimes called batch system), and the

cluster itself, a collection of Worker Nodes (WNs), the nodes where the jobs actually

run.

• Workload Management System: The purpose of the Workload Management System

(WMS) is to accept user jobs, to assign them to the most appropriate Computing

Element, to record their status and retrieve their output. The Resource Broker (RB)

is the machine where the WMS services run. Jobs to be submitted are described

using the Job Description Language (JDL), which specifies, for example, which ex-

ecutable to run and its parameters, files to be moved to and from the Workernode

on which the job is run, input Grid files needed, and any requirements on the CE

and the Worker Node.

• Storage Element : The Storage Element (SE) provides uniform access to data storage

resources. The Storage Element may control simple disk servers, large disk arrays or

tape-based Mass Storage Systems (MSS). Most EGEE sites provide at least one SE.

Storage Elements can support different data access protocols and interfaces. The ,

GSIFTP (a GSI-secure FTP) is the protocol for whole-file transfers, while local and

remote file access is performed using RFIO or gsidcap. Most storage resources are

managed by a Storage Resource Manager (SRM), a middleware service providing

capabilities like transparent file migration from disk to tape, file pinning, space
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reservation, etc. However, different SEs may support different versions of the SRM

protocol and the capabilities can vary.

Other storage services include: the Logical File Catalog, which holds information about

the location of files and replicas held at different Storage Elements, the File Transfer

Service, which is responsible for replicating files across different Storage Elements, the

Metadata Grid Application (AMGA), which manages metadata and the Encryption Data

Service, which manages the encryption of data stored in Storage Elements.

An EGEE site is a group of a number of the aforementioned services. Most Grid sites

are consisted from a Computing Element, a Storage Element and a set of Workernodes.

Each EGEE site is maintained by a Resource Provider. Resource Providers are legal

entities like research/academic institutions or companies.

Users that want to access the EGEE Grid infrastructure and make use of its services

need to join a Virtual Organization (VO) supported by the infrastructure and its Re-

source Providers. A Virtual Organization is a dynamic collection of individuals and/or

institutions that share resources in a controlled and mutually agreed fashion [25]. More

specifically, EGEE users registered within a particular Virtual Organization obtain se-

curity credentials for single Grid sign-on that enable them to obtain controlled access

to resources belonging to that particular VO, despite the fact that such resources span

different EGEE sites across different countries.

3.2 Cloud System Model

Cloud Computing describes a recent trend in Information Technology (IT) that moves

computing and data away from desktop and portable PCs into large data centers that pro-

vide on-demand services through the Internet on a “pay as you go” basis. The computing



18

nodes of a Cloud, called Cloud Virtual Servers, are managed by a single administra-

tive domain. Typically, the service offerings of Cloud service providers (Cloud providers)

comprise access to computing and storage capacity, to software platforms for developing

and deploying applications, and to actual applications. User access to Cloud services is

achieved via SSH calls, Web services or batch systems. The Cloud architecture consists

of three abstract layers: infrastructure, platform and application. Infrastructure is the

lowest layer and is a means of delivering basic storage and computing capabilities as stan-

dardized services over the network. Servers, storage systems, switches, routers, and other

systems handle specific types of workloads, batch processing to server/storage augmen-

tation during peak loads. The middle layer provides higher abstractions and services to

develop, test, deploy, host and maintain applications in the same integrated development

environment. Application layer is the highest layer and features a complete application

offered as a service.

The main technical underpinnings of Cloud Computing infrastructures and services

include virtualization, service-oriented software, Grid Computing technologies, manage-

ment of large facilities, power efficiency etc. Cloud service consumers purchase Cloud

services in the form of Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) or

Software-as-a-Service (SaaS) and sell value-added services (e.g. utility services) to end-

users. Within the Cloud, the laws of probability give the service provider great leverage

through statistical multiplexing of varying workloads and easier management - since a

single software installation can cover many users’ needs.

Minersoft focuses on Cloud infrastructures that provide IaaS. Minersoft can be very

useful in that context since Virtualized Server instances are provided without any facilities
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that support searching for software installed in them. However, investigation of providing

searching in PaaS or SaaS can be done in a future version of Minersoft.

Below, we provide the architectural principles of the Amazon Compute Cloud and

the Rackspace Cloud. We chose those two Cloud providers because they are the leading

companies on the Cloud market (as of the date of writing this thesis) and they both

provide IaaS services.

Computat-
ional Re-
source
Provider

Computat-
ional Re-
source

Architec-
ture

Jobs Sub-
mission

Time
CPU
Con-
straints

Grid Com-
puting

Grid Re-
source
Provider

Grid Site Distributed Grid Mid-
dleware

Yes

Cloud Com-
puting

Cloud
Provider

Cloud Vir-
tual Server

Centralized SSH calls,
Web ser-
vices, batch
systems

No

Table 3: Features: Grid computing vs. Cloud Computing

3.2.1 The Amazon Elastic Compute Cloud

The Amazon EC2 (Amazon Elastic Compute Cloud) [1], is a collection of web services

that provide resizable compute capacity in the cloud. It provides users with complete

control of their computing resources and let them run on Amazons computing environ-

ment. Amazon EC2 allows users, to scale capacity, both up and down, as their computing

requirements change. EC2 allows users to pay only for capacity that they actually use.

Use of Amazon servers is paid by the hour in a pay-as-you-go manner.

Amazon provides server instances in the form of machine images, named Amazon

Machine Images(AMIs). Each AMI is a disk image that contains an operating system
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and a set of softwares installed. Instantiated AMIs are called server instances. Amazon

does not provide any means of job management services to their clients. Each client is

responsible of installing the software required in order to satisfy his needs. Users can store

their own AMIs and share them with other users.

Amazon S3 (Amazon Simple Storage Service): Amazon S3 provides a simple web

services interface that can be used to store and retrieve any amount of data, at any time,

from anywhere on the web. It gives any user access to the same highly scalable, reliable,

and fast data storage infrastructure that Amazon uses to run its own global network of

web sites. Amazon S3 provides web service based protocols in order to perform operations

on data stored in the Amazon infrastructure.

Amazon server instances have the ability to mount the Amazon S3 data buckets using

the Elastic Block Store service. Using the combination of the Elastic Compute Cloud and

the S3 storage services, users can process data stored on S3 as if they were local data.

3.2.2 The Rackspace Cloud

Rackspace Cloud is a Rackspace-owned company who specializes in cloud hosting

services. It provides very similar services to that os Amazon, but in a much simpler way.

Rackspace provides three main cloud services.

• Cloud Sites: Cloud Sites concentrate on hosting web applications with the potential

to scale. Cloud Sites are capable of scaling automatically whenever needed without

users’ asking for it. In cloud sites, servers are preconfigured with a range of software

options and are fully managed similar to a shared hosting environment. Keeping

their hosting platform standardized is what allows Rackspace Cloud to easily monitor

and scale the service as needed. Users simply install web applications (in a language
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like Ruby, PHP etc) and Cloud Sites scale as needed whenever more bandwidth

and/or server capacity needed.

• Cloud Servers: Just like Amazon Elastic Compute Cloud, Rackspace provides its

users the ability to choose from a list of preconfigured server images that can be

launched. Users launch instances on demand and pay in a pay-as-you-go manner.

More specifically users pay by the instance hours and the bandwidth used.

• Cloud Files: Cloud Files is a reliable, scalable and affordable web-based storage

for backing up and archiving static content. Similar to Amazon S3, volumes can

be mounted in cloud servers and provide more storage capacity. The difference

from Amazon S3 is that with cloud files, users can use the LimeLight CDN [8]

automatically, in order to provide high bandwidth and low latency file download to

web users.

3.3 Minersoft’s Abstract System Model

Working on top of both Grid and Cloud infrastructures, requires that Minersoft treats

them in a uniform way. In order to do that, access to different types of storage and

computational resources has to be abstracted in a way that accessing them is easy and

infrastructure-agnostic. For Minersoft to achieve that abstraction, we had to identify the

common things that infrastructures provide. It is very easy to see that all of the cloud

and Grid infrastructures that Minersoft supports, have some common characteristics (see

Figure 2):
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Figure 2: Minersoft Abstraction Layer over different underlying Infrastructures.

1. Storage Services: All the infrastructures provide storage services; Amazon pro-

vides Amazon S3, Rackspace provides Cloud files and the EGEE Grid provides the

Storage Element.

2. Computational Services: Amazon provides the Amazon Machine Images, Rackspace

provides the Cloud Servers and EGEE provides Workernodes (grouped in Grid

Sites).

3. Access protocols: For the storage/computational resources to be accessible by

their users each infrastructure provides (different) access protocols.

Computational Resources access protcols:

• In the case of Cloud (Amazon and Rackspace), access to computational re-

sources (Virtual Servers) is being done through SSH.

• In the case of the EGEE Grid, the protocol to access computational resources

is the API of the gLite Workload Management System.

Storage Resources access protcols:
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• In the case of Cloud (Amazon and Rackspace), access to storage resources is

being done through the Amazon S3 API and the Cloud Files API respectively.

• In the case of the EGEE Grid, the protocol to access storage resources is the

SRM (Storage Resource Management) Protocol.

3.4 Definitions

Definition 1 Software Resource. A software resource is a file that is installed on a

machine and belongs to one of the following categories: i) executables (binary or script),

ii) software libraries, iii) source codes written in some programming language, iv) con-

figuration files required for the compilation and/or installation of code (e.g. makefiles),

v) unstructured or semi-structured software-description documents, which provide human-

readable information about the software, its installation, operation, and maintenance

(manuals, readme files, etc).

The identification of a software resource and its classification into one of these cate-

gories can be done by heuristic approaches which have been invented by human experts

(system administrators, software engineers, advanced users).

Definition 2 Software Package. A software package consists of one or more content

or/and structurally associated software resources that function as a single entity to ac-

complish a task, or group of related tasks.

Human experts can recognize the associations that establish the grouping of software

resources into a software package. Normally, these associations are not represented through

some common, explicit metadata format maintained in the file-system. Instead, they are

expressed implicitly by location and naming conventions or hidden inside configuration files
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(e.g., makefiles, software libraries). Therefore, the automation of software-file classification

and grouping is a non-trivial task. To represent the software resources found in a file-

system and the associations between them we introduce the concept of the Software Graph.

Definition 3 Software Graph. Software Graph is a weighted, metadata-rich, typed

graph G(V,E). The vertex-set V of the graph comprises: i) vertices representing software

resources found on the file-system of a computing node (file-vertices), and ii) vertices

representing directories of the file-system (directory-vertices). The edges E of the graph

represent structural and content associations between vertices.

Structural associations correspond to relationships between software resources and

file-system directories. These relationships are derived from library dependencies, file-

system structure according to various conventions (e.g., about the location and naming of

documentation files) or from configuration files that describe the structuring of software

packages (RPMs, tar files, etc). Content associations correspond to relationships between

software resources derived by text similarity.

The Software Graph is “typed” because its vertices and edges are assigned to different

types (classes). Each vertex v of the Software Graph G(V,E) is annotated with a number

of associated metadata attributes, describing its content and context:

• name(v) is the normalized name of the software resource represented by v. Nor-

malization is being done with a set of heuristics that come from the linux filesystem

hierarchy standard [39] and the domain knowledge about naming conventions of

various file types. More specifically, the heuristics used detect the type of file and

according to that they remove either the suffix or the prefix of the filename:
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– Man pages: The linux manual pages are named according to the naming

conventions of the linux filesystem standard. Manual page filenames end with

a number (1-9) that denote the manual page section (1-Commands available to

users, 2-Unix and C system calls, 3-C library routines for C programs etc). In

order to normalize the filename of a manual page, the suffix must be removed.

If the manual page is compressed the filename ends with an extra “.gz”. If not,

the filename’s suffix is just a number (1-9), thus only the number is removed.

for example the manual for gcc, “gcc.1.gz” or “gcc.1” is normalized to “gcc”.

– Linux library files: Linux library filenames are prefixed with “lib” and suf-

fixed with “.so.number” where the number denotes the library release number

(e.g.“libgcc.so.1”). In order to normalize the filename of a library both the

prefix (lib) and the suffix (.so.∗) are removed.

– Other files: Except from the aforementioned heuristics for normalization,

almost all kinds of files use a suffix to denote their type. In order to normalize

those files, their filename suffix (also known as extension) is removed.

• tags(v) is a set of tags of the software resource v; tags of a software resource are

words that describe its content. Tags can be zero or more of the following software

resource “characteristics”: man page, binary executable, text, source code, script,

readme, library. Heuristics based on the output of the linux file command and the

filename’s extension of the file (software resource), are used to extract tags from

files. See Chapter 6 for details on how the tagging is done.

• type(v) denotes the type of v; a vertex can be classified into one of a finite number

of types (more details on how this is done, are given in the next sections). In order
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to decide the type of the file and store it in the vertex, the tags above are used. The

type of a software resource v can be one of the following: Binary Executable (linux

executables with the tag “Binary Executable”), Binary Library (linux libraries with

the tag “Binary Library”), Documentation (readme files, man pages and all other

text files that are not source code), Source (source code files and scripts), Garbage

(anything that does not belong to any of the aforementioned types).

• site(v) denotes the computing site where file v is located.

• path(v) is a set of terms that are derived from the tokenization of the path-name of

software resource v in the file system of site(v).

• original path(v) is the original path (untokenized) in which the software resource v

is located in the file system of site(v).

• file size(v) is the file-size (in bytes) of the software resource v.

• zonel(v), l = 1, . . . , zv is a set of zones assigned to vertex v. Each zone contains terms

extracted from a software resource that is associated to v and which contains textual

content. In particular, zone1(v) stores the terms extracted from v’s own contents,

whereas zone2(v), . . . , zonezv(v) store terms extracted from software documentation

files associated to v. The number (zv − 1) of these files depends on the file-system

organization of site(v) and on the algorithm that discovers such associations (see

subsequent section). Each term of a zone is assigned an associated weight wi, 0 <

wi ≤ 1 equal to the term’s TF/IDF value in the corpus. Furthermore, each zonel(v)

is assigned a weight gl so that
∑zv

l=1 gl = 1. Zone weights are introduced to support

weighted zone scoring in the resolution of end-user queries.
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Each edge e of the graph has two attributes: e = (type, w), where type denotes the

association represented by e and w is a real-valued weight (0 < w ≤ 1) expressing the

degree of correlation between the edge’s vertices.

The Software Packages are coherent clusters of “correlated” software resources in Soft-

ware Graph. Next, we focus on presenting the architecture of Minersoft (Chapter 4), how

the Software Graph can be constructed (Chapter 5), some implementation details (Chap-

ter 6) and we evaluate its contribution (Chapter 7).



Chapter 4

Minersoft Architecture

Creating an information retrieval system for software resources that can cope with

the scale of emerging distributed computing infrastructures (Grids and Clouds) presents

several challenges. Fast crawling technology is required to gather the software resources

and keep them up to date. Storage space must be used efficiently to store indices and

metadata. The indexing system must process hundreds of gigabytes of data efficiently.

In this section, we provide a description of how the Minersoft architecture, depicted in

Figure 3.

28
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Figure 3: Minersoft Architecture.

For the efficient implementation of Minersoft in a Grid and Cloud setting, we take

advantage of various parallelization techniques in order to:

• Distribute parts of the Minersoft computation to Grid and Cloud resource providers.

Thus, we take advantage of their computation and storage power, to speedup the file

retrieval and indexing processes, to reduce the communication exchange between the

Minersoft system and resource-provider sites, and to achieve Minersoft’s scalability
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in the context of an increasing number of resource-provider sites. Minersoft tasks

are wrapped as jobs that are submitted for execution to Grid and Cloud systems.

• Avoid overloading resource-provider sites by applying load-balancing techniques

when deploying Minersoft jobs.

• Improve the performance of Minersoft jobs by employing multi-threading to overlap

local computation with Input/Output (I/O).

• Adapt to the policies put in place by different Grid and Cloud computing resource

providers regarding their limitations, such as the number of jobs that can be accepted

by their queuing systems, the total time that each of these jobs is allowed to run on

a given Grid site, etc.

4.1 Overview

Minersoft has a MapReduce-like architecture [22]; the crawling and indexing is done

by several distributed multi-threaded crawler and indexer jobs, which run in parallel for

improved performance and efficiency. Each crawler and indexer is assigned for processing

a number of splits, with each split comprising a different set of files. The key components

of the Minersoft architecture are (see Figure 3):

1. The Job manipulator, which manages crawler and indexer jobs and their outputs.

The manipulator comprises three modules: the Job manager, the Job submitter, and

the Data retriever. The Job manager undertakes the allocation of files into splits

and the scheduling of crawler and indexer jobs. The Job submitter handles the job

submission and the Data retriever retrieves the output of crawler and indexer jobs

from the infrastructure.
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2. The Monitor module, which maintains the overall supervision of Minersoft jobs. To

this end, the monitor communicates with the job manager, the data-store and the

underlying infrastructure.

3. The Datastore module stores the resulting Software Graphs and the full-text inverted

indexes.

4. The Query engine module, which is responsible for providing quality search re-

sults in response to user searches. The query engine module comprises the Query

processor and the Ranker. The former receives search queries and matches them

against the inverted indexes of Minersoft. The latter ranks query results in order

to improve user-perceived accuracy and relevance of replies. Ranking is especially

important when queries result to large numbers of “relevant” software resources.

Ranker uses the Lucene relevance ranking algorithms [2]. The default scoring algo-

rithms of Lucene take into account factors such as the frequencies of a particular

query-term’s appearance in the zones of a software resource and in the zones of all

the software resources inside the Software Graph.

4.2 Minersoft Crawler

The crawler is a multi-threaded program that performs FST construction, classifi-

cation and pruning, and structural dependency mining. To this end, the crawler scans

the file-system of a computing site and constructs the FST, identifies software-related files

and classifies them into the categories described earlier (binaries, libraries, documentation,
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etc), drops irrelevant files, and applies the structural dependency mining rules and algo-

rithms described in Chapter 5. The crawler terminates after finishing with the processing

of all splits assigned to it by the job manager.

Crawling of a computational resource is being done in two phases. In the first phase,

a single crawler per Grid Site/Cloud Virtual Server, is sent to construct the FST. In the

second phase, the files of the FST have to be classified and structural dependencies between

them must be found. The process of classifying the FST files and detecting structural

dependencies is computationally intensive. To this end, the FST files are separated into

splits. Each split contains a set of files of the FST. Multiple crawlers per Grid Site/Cloud

Virtual Server are submitted and the splits are assigned to them.

The output of the two-phase crawler is the first version of the SG that corresponds to

the site assigned to the crawler. This output is saved as a metadata store file comprising

the file-id, name, type, path, size, and structural dependencies for all identified software

resources. The metadata store files are saved at the storage services associated with the

computing site visited by the crawler, that is, at the local Storage Element of a Grid site

or at the Storage Service of a Cloud service.

4.3 Duplicates reduction Policy

Typically, popular software applications and packages are installed on multiple sites of

distributed computing infrastructures. If we identify duplicates, we will be able to avoid

indexing them multiple times. Consequently, the performance of indexing is improved.

After the files of all the Grid Sites/Cloud Virtual Servers have been classified into

categories, Minersoft has obtained enough information to be able to detect duplicates
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(e.g. path, filename, size). Files with the same name, path and size that belong to

different Grid Sites/Cloud Server are considered to be duplicates.

To address the duplication issue, the job manager uses a duplicate reduction policy

to identify the exact duplicate files. According to our policy, a duplicate file is assigned

to the Grid site/Cloud Virtual Server which has the minimum number of assigned files

that should be indexed. The key idea behind this policy is to avoid multiple indexing

of duplicate software resources in Grid sites/Cloud Virtual Servers so as to prevent their

overloading. In this context, for each Grid site/Cloud Virtual Server, the following steps

take place:

1. The file index is sorted in ascending order with respect to the count of Grid sites/-

Cloud Virtual Servers that a file exists.

2. The files which do not have duplicates are directly assigned to the corresponding

Grid site/Cloud Virtual Server.

3. If a file belongs to more than one Grid sites or Cloud Virtual Servers, the file is

assigned to the site with the minimum number of assigned files.

By reducing the duplicates, splits that are going to be assigned to indexers are reduced,

thus the indexing phase takes less time than it would be needed if the duplicates were not

reduced. Note that the splits assigned to indexers, are not the same with the splits assigned

to crawlers. The number of files that have to be indexed is much smaller than the number

of files that have to be crawled. This happens because after the classification process

(crawling) software-irrelevant files are dropped and also because the files are distributed

according to the aforementioned file-assignment policy.
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4.4 Minersoft Indexer

The Minersoft indexer is a multi-threaded program that reads the files captured in the

metadata store files and creates full-text inverted indexes (see Chapter 5). To this end,

the indexer performs first keyword scraping, keyword flow and content association mining,

in order to enrich the vertices of its assigned SG with keywords mined from associated

documentation-related vertices. This results in enriching the terms and posting lists of

inverted indexes with extra keywords. At the end of indexing process, for each computing

site (Grid site or Cloud Virtual Server) there is an inverted index containing a set of terms,

with each term associated to a posting list of pointers to the software files containing the

term. The terms are extracted from the zones of SG vertices.

4.5 Distributed Crawling and Indexing Process

The crawling and indexing of distributed computing infrastructures requires the re-

trieval and processing of large parts of the file systems of numerous sites. Therefore, this

task needs to address various performance, reliability and policy issues.

In the Grid context, a challenge for crawler and indexer jobs is to process all the soft-

ware resources residing within a Grid site without exceeding the time constraints imposed

by site policies. Jobs which exceed the maximum allowed execution time are terminated

by the site’s batch system. The maximum wall-clock time usually ranges between 2 and

72 hours. Similarly, in the Cloud context, the challenge is to accomplish the crawling

and indexing computation with the least possible cost spend on computing, storing, and

transferring data.
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To allow for the more flexible management of its tasks, Minersoft decomposes the file

system of each site into a number of splits, with the size of each split chosen so that the

crawling can be distributed evenly and efficiently within the constraints of the underlying

computing infrastructure. The splits are assigned to crawler/indexer jobs on a continuous

basis: When a Grid site or Cloud Virtual Server finishes with its assigned splits, the

monitor informs the job manager in order to send more splits for processing. If a site

becomes laggard, the monitor sends an alert message to the job manager, which cancels

the running jobs and reschedules them to run when the workload of the site is reduced.

Furthermore, if the batch system queue of a Grid site is full and does not accept new jobs,

the monitor sends an alert signal and the job submitter suspends the submission of new

crawler/indexer jobs to that site until the batch system becomes ready to accept more.

When the crawling completes, Minersoft’s data retriever module fetches the metadata

store files from all machines, and merges them into a file index. The file index comprises

information about each software resource and is temporally stored in the Datastore. The

file index will be used in order to identify the duplicate files during the indexing process;

the duplication reduction policy is described in the following subsection. When the in-

dexing has been completed, the file index is deleted. Then, the data retriever fetches the

resulted inverted indexes the individual SGs from all sites. Both the full-text inverted

indexes and the SGs are stored in the Datastore.

4.6 Minersoft Implementation and Deployment

The implementation of the job manager and monitor rely upon the Ganga system [18],

which is used to create and submit jobs as well as to resubmit them in case of failure. We

adopted Ganga in order to have full control of the jobs and their respective arguments
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and input files. We have also implemented a Ganga plugin so as to support SSH job

submissions for Cloud computing infrastructures. In this context, the monitor (through

Ganga scripts) monitors the status of jobs after their submission and keeps a list of Grid

sites/Cloud Virtual Servers and their failure rate. If there are Grid sites/Cloud Virtual

Servers with a very high failure rate, the monitor eventually puts them in a black list and

notifies job manager so as to stop submitting jobs to them.

The crawler is written in Python. The Python code scripts are put in a tar file and

copied on a storage element before job submission starts. The tar file is being downloaded

and untarred to the target Grid site/Cloud Virtual Server before the crawler execution

starts. By doing that, the size of the jobs input sandbox is reduced, thus job submission

is accelerated because the Workload Management System has to deal with much less files

per job.

The indexer is written in Java and Bash and uses an open-source high performance,

full-text index and search library (Apache Lucene [2]). In order to execute the indexer

jobs, we follow the same code-deployment scenario as with crawlers.

The job manager has to distribute the crawling and indexing workload before the job

submission starts. This is done by creating splits for each Grid site/Cloud Virtual Server

that Minersoft has to crawl. The input file for each split is uploaded on the storage element

and registered to a file catalog. The split input is then downloaded from a storage element

and used to start the processing of files. The split input is a text file containing the list

of files that have to be crawled or indexed. After execution, the jobs upload their outputs

on storage elements and register the output files to a file catalog. The logical file names

and the directories containing them in the file catalog are properly named so that they

implicitly state the split number and the site that they came from or going to.
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4.6.1 Minersoft Crawler/Indexer Job’s lifecycle

Minersoft indexer and crawler jobs follow the same file-staging and execution principles.

Their lifecycle is depicted in Figure 4. The lifecycle of a job starts by copying the job’s

input files to a Storage Element and end by downloading it’s outputs to the centralized

Minersoft infrastructure. The details of each of the individual steps are described below:

Minersoft

Data Services

Storage
Elements

LCG File 
Catalogs

Workload Management
Service

Computing Element

1. Store & register executables

2. Submit Jobs

Workernodes

5. Store & register outputs

6. Retrieve Outputs

3. Retrieve executables

4. Jobs Running

Figure 4: Minersoft crawler/indexer job’s lifecycle.
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1. Store & register executables: In order to submit and run crawler and indexer jobs

efficiently, input and output files are copied into Storage Elements(SEs) and regis-

tered to LCG File Catalogs(LFCs). By utilizing the Storage Elements, the Work-

load Management System (WMS) and Minersoft itself don’t have to cope with

many(sometimes big) files, as they are downloaded directly from the Storage El-

ements before a job starts it’s execution into a Workernode.

2. Submit Jobs: After the executables are copied to the storage elements, Minersoft

submits the Indexer/Crawler jobs using the Workload Management Systems. The

WMS moves the jobs to the target Computing Elements for the execution to start.

3. Retrieve Job executables: After a job is moved from the Computing Element into

the target Workernode, the crawler/indexer jobs start to run. The executable files

are downloaded from the Storage Elements just before the actual execution.

4. Jobs running : After the executables are downloaded the jobs start its’ execution.

5. Store & register outputs: After the jobs have successful finished their execution,

outputs are stored in the SE’s and registered to the LFCs making them available to

Minersoft for further processing.

6. Retrieve outputs: Minersoft retrieves the outputs from the SEs and keeps them to

it’s centralized infrastructure.



Chapter 5

Software Graph Construction and Indexing

Web search engines rely on Web crawlers for the retrieval of resources from the World

Wide Web. Collected resources are stored in repositories and processed to extract indices

used for answering user queries. Typically, crawlers start from a carefully selected set of

Web pages (a seed list) and try to “visit” the largest possible subset of the Web in a given

time-frame crossing administrative domains, retrieving and indexing interesting/useful

resources. To this end, they traverse the directed graph of the World Wide Web following

edges of the graph, which correspond to hyperlinks that connect together its nodes, i.e.,

the Web pages. During such a traversal (crawl), a crawler employs the HTTP protocol

to discover and retrieve Web resources and rudimentary metadata from Web server hosts.

Additionally, crawlers use the Domain Name Service (DNS) for domain name resolution.

Due to the absence of hyperlinks in software resources, the situation is fundamentally

different for software searching on the context of Grids and Clouds. A key responsibility

of the Minersoft harvester is to construct a Software Graph (SG) for each computing site,

starting from the contents of its file system. Figure 5 depicts an example of a filesystem

that contains binary executables, libraries, text files, source codes, readme files and manual
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pages. As you see in the figure, binary executables are connected with readme files and

manual pages, libraries are connected with binary executables and readme files etc.

D R

D

T S

D

D B B B

D

/

DD

S D SL D L

M MMB

D: Directory
B: Binary Executable
M: Manual Page
T: Text File
S: Source Code
L: Library File
/: Filesystem Tree Root

Initial FST edge

Minersoft SG edge

Figure 5: An example of a filesystem tree converted to a Software Graph

Below we describe the steps that we propose in order to build the filesystem tree of a

computational node and then convert it into a Software Graph:

FST construction: Initially, Minersoft scans the file system of a site and creates a

file-system tree (FST) data structure. The internal vertices of the tree correspond to

directories of the file system; its leaves correspond to files. Edges represent containment

relationships between directories and sub-directories or files. All FST edges are assigned a

weight equal to one. During the scan, Minersoft ignores a stop list of files and directories

that do not contain information of interest to software search (e.g., /tmp, /proc).
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Classification and pruning: Names and pathnames play an important role in file classi-

fication and in the discovery of associations between files. Accordingly, Minersoft normal-

izes filenames and pathnames of FST vertices, by identifying and removing suffixes and

prefixes. The normalized names are stored as metadata annotations in the FST vertices.

Subsequently, Minersoft applies a combination of system utilities and heuristics to classify

each FST file-vertex into one of the following categories: binary executables, source code1

(e.g. Java, C++), libraries, software-description documents (e.g. man-pages, readme

files, html files) and irrelevant files.

Minersoft prunes all FST leaves found to be irrelevant to software search, dropping also

all internal FST vertices that are left with no descendants. This step results to a pruned

version of the FST that contains only software-related file-vertices and the corresponding

directory-vertices.

Structural dependency mining: Subsequently, Minersoft searches for “structural”

relationships between software-related files (leaves of the file-system tree). Discovered

relationships are inserted as edges that connect leaves of the FST, transforming the tree

into a graph. Structural relationships can be identified by: i) Rules that represent expert

knowledge about file-system organization, such as naming and location conventions. For

instance, a set of rules link files that contain man-pages to the corresponding executables.

Readme files are linked to related software files. ii) Dynamic dependencies that exist

between libraries and binary executables. Binary executables and libraries usually depend

on other libraries that need to be dynamically linked during runtime. These dependencies

are mined from the headers of libraries and executables and the corresponding edges are
1Executable scripts (e.g. python, perl, bash) are also source code.
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inserted in the graph; each of these edges is assigned a weight of 1, as there exists a direct

association of files.

The structural dependency mining step produces the first version of the SG, which

captures software resources and their structural relationships. Subsequently, Minersoft

seeks to enrich file-vertex annotation with additional metadata and to add more edges

into the SG, in order to better express content associations between software resources.

Keyword scraping: In this step, Minersoft performs deep content analysis for each

file-vertex of the SG, in order to extract its descriptive keywords. This is a resource-

demanding computation that requires the transfer of all file contents from disk to memory,

to perform content parsing, stop-word elimination, stemming and keyword extraction.

Different keyword-scraping techniques are used for different types of files: for instance, in

the case of source code, we extract keywords only from the comments inside the source,

since the actual code lines would create unnecessary noise without producing descriptive

features. Details on how the scraping and content analysis was implemented, can be found

in Chapter 6.

Binary executable files and libraries contain strings that are used for printing out

messages to the users, debugging information, logging etc. All this information can be

used in order to get useful features from these resources. Minersoft parses the binary

files byte by byte and captures the printable character sequences that are at least four

characters long and are followed by an unprintable character.

The extracted keywords are saved in the zones of the file-vertices of the SG.

Keyword flow: Software files (executables, libraries, source code) usually contain lit-

tle or no free-text descriptions. Therefore, content analysis typically discovers very few

keywords inside such files. To enrich the keyword sets of software-related file-vertices,
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Minersoft identifies edges that connect software-documentation file-vertices with software

file-vertices, and copies selected keywords from the former into the zones of the latter.

Content association mining: Similar to [13] and [44], we further improve the density

of SG by calculating the cosine similarity between the SG vertices of source files. To

implement this calculation, we represent each source-file vertex as a weighted term-vector

derived from its source-code comments. To improve the performance of content association

mining, we apply a feature extraction technique to estimate the quantity of information of

individual terms and to disregard keywords of low value. Source codes that exhibit a high

cosine-similarity value are joined through an edge that denotes the existence of a content

relationship between them.

Inverted index construction: To support full-text search for software resources, Min-

ersoft creates an inverted index of software-related file-vertices of the SG. The inverted

index has a set of terms, with each term being associated to a “posting” list of pointers

to the software files containing the term. The terms are extracted from the zones of SG

vertices.

In the subsequent sections, we provide more details on the algorithms for finding

relationships between documentation and software-related files (Section 5.1), keyword ex-

traction and keyword flow (Section 5.2), and content association mining (Section 5.3).

5.1 Context Enrichment

During the structural dependency mining phase, Minersoft seeks to discover asso-

ciations between i) documentation (text files) and software leaves (binary executables,
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libraries and scripts) ii) library dependencies between binary executables and binary li-

braries iii) interlibrary dependencies between binary libraries. These associations are rep-

resented as edges in the SG and contribute to the enrichment of the context of software

resources. As we have mentioned before, the edges are “typed”. In this context, the type

of the edges denotes the semantic relationship between two connected files.

Man pages and other text files: The discovery of such associations is relatively

straightforward in the case of Unix/Javadoc online manuals since, by convention, the

normalized name of a file storing a manual is identical to the normalized file name of

the corresponding executable. In the same manner, other text files (like html and .txt)

can be associated with binaries, libraries and scripts. Minersoft can easily detect such a

connection and insert an edge joining the associated leaves of the file-system tree. The

association represented by this edge is considered strong and the edge is assigned a weight

equal to 1. The type of the edge for this kind of associations is called “describes” because,

manual pages and text files describe binary executables, libraries and scripts.

Readme files: In the case of readme files, however, the association between docu-

mentation and software is not obvious: software engineers do not follow a common, un-

ambiguous convention when creating and placing readme files inside the directory of some

software package. Therefore, we introduce a heuristic to identify the software-files that

are potentially described by a readme, and to calculate their degree of association. The

key idea behind this heuristic is that a readme file describes its siblings in the file-system

tree; if a sibling is a directory, then the readme-file’s “influence” flows to the directory’s

descendants so that equidistant vertices receive the same amount of influence and vertices

that are farther away receive a diminishing influence. If, for example, a readme-file leaf

vr has a vertex-set V r of siblings in the file-system tree, then:
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• Each leaf vri ∈ V r receives from vr an “influence” of 1.

• Each leaf f that is a descendant of an internal node vrk ∈ V r, receives from vr an

“influence” of 1/(d− 1), where d is the length of the FST path from vr to f .

The association between software-file and readme-file vertices can be computed easily

with a simple linear-time breadth-first search traversal of the FST, which maintains a stack

to keep track of discovered readme files during the FST traversal. For each discovered

association we insert a corresponding edge in the SG; the weight of the edge is equal to

the association degree. The type for this kind of edges is also, “describes”.

Library dependency mining: Binary executables require libraries in order to run

(binary to library dependencies). Libraries require other libraries in order to provide their

functionality (inter-library dependencies). Minersoft detects those dependencies using the

operating system’s dynamic linker (ldd). For every dependency that is found, an edge is

added to the graph. Dependencies between libraries and executables are considered very

strong so the edges representing them, have a weight of 1. The type of these edges is

“depends on” because binaries and libraries depend on other libraries.

5.2 Content Enrichment

Minersoft performs the “keyword-flow” step, which enriches software-related vertices

of the SG with keywords mined from associated documentation-related vertices. The

keyword-flow algorithm is simple: for all software-related vertices v, we find all adjacent

edges ed = (v, y) in the SG, where y is a documentation vertex. For each such edge ed,

we attach a documentation zone to v.
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As we referred in the previous section, each software file is described by a number of

zones. A zone includes a set of keywords. If there is an edge in G between a software-

description document (i.e., readme, manual) and a software file (i.e., executable file, li-

brary, source code), then we enrich the content of the software file by adding a new zone.

Such an action improves keyword-based searching since software files contain little or no

free-text descriptions. So, the software files are represented by a number of zones. How-

ever, each zone has a different degree of importance in terms of describing the content of

a software file. For instance, the zone of a vertex v is more important for the description

of v than the other zones which are derived from software documentation files associated

to v. Thus, each zonel(v) is assigned a weight gl so that Z =
∑zv

l=1 gl = 1, where zv is

the total number of zones for a software file v. The weight of each zone is computed as

follows: the weight of zone which includes the textual content of v takes the value α. The

weights of the other zones of each file are determined by the edge weights of the SG G that

has been occurred by exploiting the file-system tree, multiplied by α. The value of α is

a normalization constant calculated so that the sum of the weights of the zones attached

to each vertex equals 1. Recall that a software file is enriched by a zone if there already

exists an edge between this file and a software-description document. Each zone includes

the selected terms of the underlying software-description document.

5.3 Content Association

Minersoft enriches the SG with edges that capture content association between source-

code files in order to support, later on, the automatic identification of software packages

in the SG. This kind of edges is called “isSimillarTo” edges, because they denote the

similarity between two documents.
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To this end, we represent each source file s as a weighted term-vector −→V (s) in the

Vector Space Model (VSM). We estimate the similarity between any two source-code files

si and sj as the cosine similarity of their respective term-vectors: −→V (si) ·
−→
V (sj). If the

similarity score is larger than a specific threshold (for our experiments we have set the

threshold ≥ 0, 05), we add a new typed, weighted edge to the SG, connecting si to sj .

The weight w of the new edge equals the calculated similarity score.

The components of the term-vectors correspond to terms of our dictionary. These

terms are derived from comments found inside source-code files and their weights are

calculated using a TF-IDF weighing scheme. To reduce the dimensionality of the vectors

and noise, we apply a feature selection technique in order to choose the most important

terms among the keywords assigned to the content zones source files. Feature selection

is based on the quantity of information Q(t) metric that a term t has within a corpus,

and is defined by the following equation: Q(t) = −log2(P (t)), where P (t) is the observed

probability of occurrence of term t inside a corpus [42]. In our case, the corpus is the union

of all content zones of SG vertices of source files. To estimate the probability P (t), we

measure the percentage of content zones of SG vertices of source files wherein t appears;

we do not count the frequency of appearance of t in a content zone, as this would create

noise.

Subsequently, we drop terms which their quantity of information values from the con-

tent zones of SG vertices of source files are lower than a specific threshold (for our experi-

ments we remove the terms where Q(t) < 3, 5). The reason is that low-Q terms would be

useful for identifying different classes of vertices. In our case, however, we already know

the class where each vertex belongs to (this corresponds to the type of the respective file).
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Therefore, by dropping terms that are frequent inside the source-code class, we maintain

terms that can be useful for discriminating between files inside a source-code class.



Chapter 6

Implementation Details

In this Chapter we are presenting details about Minersoft’s most critical components.

Open Source tools are presented with details on how they were used while building Min-

ersoft. More specifically, we are going to present the Job Management, Graph processing

& storage and indexing & text processing.

Minersoft is implemented using many Open Source tools, each for a specific reason.

Grid/Cloud job management is being done with Ganga [18], full text indexing and search-

ing is being done with Apache Lucene [2]. In-memory Graph processing is being done with

JUNG [6]. Python and Bash are used for general-purpose scripting and “gluing” different

subsystems together.

6.1 Job Management with Ganga

Job Management is one of the most critical elements of any system that is working

over a distributed Grid/Cloud infrastructure. Job creation and submission can be very

tricky in the presence of failures. In the case of Minersoft, thousands of jobs have to be

sent and their outputs to be retrieved, thus an automated system that will take over these
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actions is needed. Ganga is an easy-to-use framework for job definition and management,

implemented in Python. The Ganga API can be used to write scripts in Python to support

customized job creation and management.

A job in Ganga is constructed from a set of building blocks. All jobs must specify the

software to be run (application) and the processing system (backend) to be used. The

backends used by Minersoft is the gLite middleware backend (for Grid infrastructures) and

the SSH shell backend (for the cloud infrastructures). Jobs can specify an input dataset

to be read and/or an output dataset to be produced. Ganga provides a framework for

handling different types of application, backend, dataset, splitter and merger, implemented

as plugin classes.

Ganga’s Job object is used to create a job and submit it. The following example

(Listing 1) is used to create crawler jobs with a number of environmental variables

(job.applcation.env). The code is very simple and uses only the basic functionality

of Ganga.

1 def prepareCrawlers ( ) :

2 c on f i g = ConfigObj ( ” . . / c on f i g / mine r so f t . i n i ” )

3

4 #Get the s i t e s l i s t

5 s i t e s = open ( c on f i g [ ’ c rawle r ’ ] [ ’ s i t e s t o v i s i t f i l e ’ ] , ” r ” )

6 i f not s i t e s :

7 print ”Could not read the s i t e s l i s t f i l e ( ”

8 + con f i g [ ’ c rawle r ’ ] [ ’ s i t e s t o v i s i t f i l e ’ ] + ” ) . . . ”

9

10 return False ;

11

12 s i t e = s i t e s . r e ad l i n e ( ) [ : −1 ]

13 while s i t e :

14 print ’ Prepar ing a Job f o r : ’ + s i t e

15 job = Job ( )

16 job . app l i c a t i on =
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17 Executable ( exe=F i l e ( c on f i g [ ’ c rawle r ’ ] [ ’ c od e d i r ’ ]

18 +’ Crawler . sh ’ ) , a rgs =[ ’ ’ ] )

19 job . name = s i t e . s p l i t ( ’ : ’ ) [ 0 ]

20 + ’ c r aw l e r ’

21

22 job . app l i c a t i on . env = {

23 ’MINERSOFT SITE NAME ’ : s i t e . s p l i t ( ’ : ’ ) [ 0 ] ,

24 ’MINERSOFT STORAGE URL ’ :

25 c on f i g [ ’ c rawle r ’ ] [ ’ s t o r a g e d i r ’ ]

26 + ’ / ’ + s i t e . s p l i t ( ’ : ’ ) [ 0 ] + ’ / crawls ’ ,

27 ’LFC HOST ’ : ’ l f c . phy . bg . ac . yu ’

28 }

29

30 job . backend .CE = s i t e

31

32 print ’ done ’

33 s i t e = s i t e s . r e ad l i n e ( ) [ : −1 ]

34 return True

Listing 1: Crawler jobs preparation for a list of Grid sites

Failure management: Failures are very common in a Grid infrastructure like EGEE.

There are many reasons for a job to fail. Network errors, expired certificates, hardware

failures and site misconfigurations are the most common reasons. Ganga can detect job

failures and set a job’s status to failed. In order to decide which jobs have to be re-

submitted, a script has to be created to check the jobs’ status and resubmit the failed

ones. It is very simple to do that with Ganga. A single line of code can take over this

task jobs.select(status=’failed’).resubmit(). Jobs that keep failing are dropped

and the site that is responsible to run those jobs is put into a blacklist in order to avoid

sending future jobs that are very likely to fail.
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6.2 Software Resource Tagging & Categorization

As we have mentioned in Chapter 3, each Software Graph vertex v is characterized

by a set of tags that describe its content. Heuristics based on the output of the linux file

command and the filename of the software resource, are used to extract tags. Before we

continue on how this is done, we present the Linux file command and the way that we

use it to extract information about files.

The Linux file command: Linux file command tests a file in an attempt to classify it.

There are three sets of tests performed in this order: filesystem tests, magic number tests,

and language tests. The first test that succeeds causes the file description to be printed.

The description printed will usually contain one of the words: text (the file contains only

printing characters and a few common control characters and is probably safe to read on

an ASCII terminal), executable (the file contains the result of compiling a program in a

form understandable to some UNIX kernel or another), or data meaning anything else

(data is usually ‘binary’ or non-printable). Exceptions are well-known file formats ( tar

archives, shell scripts, binary linux executables, libraries etc) that are known to contain

specific data. By parsing the output of the file command, one can extract useful tags of

a file and use them to categorize it. Note that the file command is not 100% accurate.

It works in a best effort manner as it uses heuristics.

In order to tag a file, we use both the file’s filename and the file command. However,

if the filename’s extension denotes the file’s type then checking with the file command

is not necessary. Avoiding the use of the file command, the processing effort (needed in

order to classify a file) is reduced. Note that checking a filename with a regular expression

is much “cheaper” (in terms of processing) than executing a linux command.
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Below we present the details of each of the heuristics used to extract tags.

• Binary Executable: Binary executables are described by the file as ‘‘ELF, LSB

executable’’. Binary executables cannot be recognized by their filename because

there is no naming convention (like in Windows, where binary executables are called

.exe files).

• Binary Library: Binary libraries are recognized by their filename suffix (.so, .la,

.a, etc). More information about the man page filename conventions were covered

in Chapter 3, in Definitions section.

• Man page: Man pages are files contained in directories named man1 to man9. Files

inside those directories are considered man pages only if the file describes them as

“troff input text”. More information about the man page filename conventions were

covered in Chapter 3, in Definitions section.

• Text: Text files are files that contain text in any language. file describes them as

“text”. Source code files, readme files and man pages are also considered text.

• Source Code: Source code files are files written in any of the Minersoft-recognized

programming languages (see Chapter 6 for details). The extension of the filename

itself denotes the language that the source is written in.

• Readme: Readme files are named “readme” followed by a filename extension. For

example “readme.txt” or “readme.en.txt”.

• Script: Scripts written in languages recognized by Minersoft have a file extension

that denotes the language in which the script is written in. Also, Scripts are de-

scribed by file as “text, script”. There are cases where the script does not denote
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its source language by the filename’s extension. In that case, the file command is

used.

In Listing 2 we present the regular expressions that were used to assign tags to files.

1 man fi lename = ” .∗man[0 −9 ]∗\/ .∗ (\ . [ 0 −9 ] ? .∗ ) ? ( \ . gz ) ?”

2 l i b f i l e n ame = ” . ∗ \ . so$ | . ∗ \ . so \ . . ∗ $ | . ∗ \ . l a$ | . ∗ \ . l a \ . . ∗ $ | . ∗ \ . a$”

3 s c r i p t f i l e n ame = ” . ∗ \ . ( py | sh |pm | pl | rb | tc sh | csh | bash | zsh | ksh | j s | php) $”

4 s ou r c e f i l e name = ” . ∗ \ . ( java | c | cpp | h | hpp) $”

5 readme f i lename = ” .∗ readme .∗ ”

6 t e x t f i l e n ame = ” . ∗ \ . txt$ ”

7 s c r i p t d e s c r i p t i o n = ” .∗ s c r i p t .∗ ”

8 t e x t d e s c r i p t i o n = ” .∗ t ex t .∗ ”

9 b i n d e s c r i p t i o n = ” .∗ELF . ∗ | . ∗LSB . ∗ | . ∗ 8 0 [ 2 − 6 ] 8 6 . ∗ | . ∗ x86 64 .∗ ”

Listing 2: Regular Expressions used to assign tags to files

In Listing 3, we show the function used to test each file’s filename and description (the

output of the file command) against the aforementioned regular expressions. If a regular

expression matches, then the tag is assigned. In the end, the function returns the whole

set of tags that is later used for file categorization.

1 def a s s i g n t a g s ( s e l f , f i l ename , d e s c r i p t i o n=None ) :

2 text ,man , bin , source , s c r i p t , readme , l i b = 0 ,0 , 0 , 0 , 0 , 0 , 0 , 0

3 i f s e l f . l i b f i l e n ame . match ( f i l ename ) :

4 l i b = 1

5 s e l f . l i b f i l e s +=1

6 i f s e l f . man fi lename . match ( f i l ename ) :

7 man = 1

8 s e l f . man f i l e s +=1

9 i f s e l f . b i n d e s c r i p t i o n . match ( d e s c r i p t i o n ) and not l i b ==1:

10 bin = 1

11 s e l f . b i n f i l e s +=1

12 i f s e l f . readme f i lename . match ( f i l ename ) :

13 readme = 1

14 s e l f . r e a dme f i l e s +=1
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15 i f s e l f . s c r i p t f i l e n ame . match ( f i l ename ) or s e l f . s c r i p t d e s c r i p t i o n . match (

d e s c r i p t i o n ) :

16 s c r i p t = 1

17 s e l f . s c r i p t f i l e s +=1

18 i f s e l f . s ou r c e f i l e name . match ( f i l ename ) or s c r i p t ==1:

19 source = 1

20 s e l f . s o u r c e f i l e s +=1

21 i f s e l f . t e x t f i l e n ame . match ( f i l ename ) or s e l f . t e x t d e s c r i p t i o n . match (

d e s c r i p t i o n ) or readme==1 or source==1 or man==1:

22 text = 1

23 s e l f . t e x t f i l e s +=1

24 return text ,man , bin , source , s c r i p t , readme , l i b

Listing 3: Use of regular expressions in order to assign tags

6.3 Software Graph Storage & Processing

During the process of implementing Minersoft, it has been proven very difficult to

build a single, uniform data structure to store all of the SG’s vertices, attributes, edges

and inverted indexes. A very important problem is the fact that the Software Graph itself

cannot fit in main memory. The SG (including full text indexes, vertices and edges) for

20 computational nodes (Chapter 7) reaches 400GBs in size. External memory has to be

used to store a graph of that size. Instead of keeping the graph in a single data structure,

we separate the SG of each site in many files, each containing a specific part of it. Inverted

indexes are kept in Lucene indexes. Edges and vertices are kept in separate compressed

text files.
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6.3.1 Storage in External Memory

Graph Edges: The edges are kept in tab-separated text files named according to the type

of the edges contained. Minersoft keeps track of 4 types of edges: isSimilarTo, dependsOn,

describes and contains. Each file contains data in the following format:

File 1 File 2 edge weight

/path/to/file1 /path/to/file2 0.34

/path/to/file2 /path/to/file4 1

... ... ...

Graph Vertices: The vertices are kept in a similar way. Each site has a tab-separated

compressed text file that contains the following columns:

full path isText isMan isBin isSource isScript isReadme isLibrary file size

/bin/bash 0 0 1 0 0 0 0 325.321

Tags (text, manual page, binary executable etc) are represented as boolean values and the

file size is represented in bytes.

6.3.2 In-memory Processing

Before any kind of processing, the graph has to be loaded in main memory in order to

be easily and fast accessible. Algorithms such as Breadth or Depth First Traversal (used

in calculating the relationships between Readme files and binaries), use the metadata of

vertices as well as the edges between them. In order to be able to annotate vertices with

metadata and represent typed edges, the in-memory graph implementation is based on

the graph library named JUNG [6]. JUNG supports a variety of representations of entities
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and their relations, such as directed and undirected graphs, multi-modal graphs, graphs

with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs,

entities, and relations with metadata. Only basic functionality of JUNG was used.

6.4 Inverted Indexes

6.4.1 Lucene

Minersoft uses inverted indexes to search in the Software Graph. The inverted indexes

are built using the Lucene [2] full-text search library. Lucene is high-performance, scalable,

full-featured, open-source text indexing/searching library. Lucene makes it easy to create

inverted indexes of massive text repositories and search them quickly, with little program-

ming effort. In Lucene, every text file is represented as a Document and the zone inside a

Document is called Field. Every field in Lucene can have a different weight, resulting to

changes in scoring. The weight of each field in Lucene is called a boost factor.

Field (zone) boosting in Lucene: The default boost factor in Lucene is 1. A field

can be “boosted” in order to change the default scoring of Lucene. Numbers less than 1

result to lower score and more than 1 result to higher score during ranking. The weights

of the edges in the SG, have been used to set the boost factor of the documentation fields.

6.4.2 Content Parsers & Analyzers

During the indexing process, the text of the various data types that are being indexed

(like source code and manual pages) have to be parsed in order to extract their text. In

order to do that, a number of parsers had to be implemented. The parsers are used before

text is passed to Lucene for indexing. The first step towards parsing a file is to extract
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it’s meaningful text (source code comments, html text without tags etc.). Afterwards, the

text has to be analyzed, according to some heuristics. Analysis of text includes:

• Stemming: Terms are stemmed using the porter stemmer algorithm, in order to

achieve higher recall.

• Stop words elimination: Stop words are very common english words that exist in

almost every english text. Searching for so many common words affects the precision

of an IR system. For example searching for the word “the”, too many results would

be returned that the user is not interested in. Therefore, during the analysis of text,

stop words are eliminated, thus reducing the risk of returning irrelative results on

user queries.

• Lower-case Word Conversion: It is very common to capitalize words in text.

Sometimes, words are capitalized because of grammar rules and other times in order

to highlight some of the letters of words. In Minersoft, terms are converted to lower-

case in order to avoid misspellings in the case of users submitting queries with the

wrong capitalization. For example, if a dataset contains the words “LONDON” and

“London” and a user is searching for “LonDon” no results will be returned.

HTML Parser

A very simple example of a Minersoft parser is the html parser. The HTML parser,

filters out all html tags keeping the actual HTML text. HTML tags are considered noise

in Software search and that is the reason that they are filtered out. Below is the code

used to do the text extraction:

1 package ucy . cs . hpc l . minerSoft . u t i l ;
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2 import java . u t i l . regex . ∗ ;

3

4 public class HTML2Text {

5 public stat ic Pattern pattern =

6 Pattern . compi le ( ” < [ˆ> ]∗> |\\&[ˆ; ]∗ ; ” ) ;

7

8 public stat ic St r ing htmlToText ( S t r ing html ) {

9 return pattern . matcher ( html ) . r e p l a c eA l l ( ” ” ) ;

10 }

11 }

Listing 4: HTML2Text.java

Comments Extractor Parser

For each source code file, Minersoft, indexes only its comments. Every programming

language has its own grammar, thus, in order to extract comments from many different

languages, a parser for each of the languages has to be implemented. Most of the times, a

simple regular expression is enough to extract comments from source code. However there

are some cases that regular expressions are not enough and parsing has to be done with

language-grammars. One example of an imperfect comment extraction is the following

(Listing 5):

1 p r i n t f ( ” /∗ ” ) ;

2 for ( i = 0 ; i < 100 ; i++) {

3 a += i ;

4 }

5 p r i n t f ( ” ∗/ ” ) ;

Listing 5: Imperfect comment matching

In Minersoft, we implemented the parsing with regular expressions as writing grammars

for many programming languages would take a lot of effort.
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The languages that Minersoft was designed to get comments from, are listed in Table 4.

Every language has its own syntax for inserting comments into source code. Every source

code file states the language in which it is written (by the suffix of its filename). For

example in C the suffix of the source filename is “.c” or “.h”. In Python the suffix is

“.py”. However, in many cases, scripts do not state their language by their suffix. In

Bash and many other shell scripting languages like Tcsh, the first line of the file states the

interpreter that will be needed to run the file. For example a Bash script starts like this:

1 #/bin /env bash

2 . . .

Listing 6: Bash file header

Programming Language Types of comments

Java, C, C++, Javascript //, /**/

PHP // , /**/ , #

Python #, “”

Ruby # , begin ... end

Awk, Perl, Tcsh, Bash #

Table 4: Programming languages and their comment types

Below (Listing 7) is part of the code that contains the regular expressions used to

identify and extract source code comments.

1 class CommentsExtractor :

2

3 def i n i t ( s e l f ) :

4 s e l f . re lang mapping = { ’ ’ : ’ ’ }

5
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6 slash comments = ” // .∗ ”

7 hash comments = ”#.∗”

8 s la sh star comments = ” / \ ∗ ( ? : . | [ \ r \n ] ) ∗?\∗/”

9 begin end comments = ”=begin ( ? : . | [ \ r \n ] ) ∗=end”

10 quote comments = ” ’ ’ ’ ( ? : . | [ \ r \n ] ) ∗? ’ ’ ’ ”

11 . . .

12 . . .

13 def ex t r a c t ( s e l f , f i l ename ) :

14 ext = os . path . s p l i t e x t ( f i l ename ) [ 1 ]

15 f i l e = open ( f i l ename , ’ r ’ )

16 tex t = f i l e . read ( )

17

18 i f s e l f . re lang mapping [ ext ] :

19 regexp = s e l f . re lang mapping [ ext ]

20 else :

21 regexp = s e l f . scr ipt comments

22

23 for match in regexp . f i n d a l l ( t ex t ) :

24 print match

25

26 i f name == ’ ma in ’ :

27 ex t r a c t o r = CommentsExtractor ( )

28 ex t r a c t o r . e x t r a c t ( sys . argv [ 1 ] )

Listing 7: CommentsExtractor.py



Chapter 7

Evaluation

7.1 Testbed

The usefulness of the findings of any study depends on the realism of the data upon

which the study operates. For this purpose, the experiments are conducted on a) 10

Grid sites of EGEE, one of the largest Grid production services currently in operation

and b) 10 Virtual Servers in 2 commercial Cloud providers (6 Virtual Servers of Amazon

Elastic Computing Cloud provider, and 4 Virtual Servers of Rackspace Cloud provider).

Tables 5, 6 present the Grid and Cloud sites that have been crawled and indexed by

Minersoft respectively.

7.2 Crawling and Indexing Evaluation

In this section, we elaborate on the performance evaluation of the crawling and indexing

tasks of Minersoft. Our objective is to show that Minersoft works sufficiently on the

examined real, large-scale Grid and Cloud testbed.

62
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Grid Site # of Files Size (GB)

ce01.kallisto.hellasgrid.gr 3.541.403 247,9107344
ce301.intercol.edu 97.906 3,53996803
grid-ce.ii.edu.mk 194.556 3,731716045
paugrid1.pamukkale.edu.tr 132.645 10,34736117
ce01.grid.info.uvt.ro 270.445 2,693567113
grid-lab-ce.ii.edu.mk 109.286 18,63437903
ce01.mosigrid.utcluj.ro 70.419 61,88081632
ce101.grid.ucy.ac.cy 1.278.851 6,375885554
ce64.phy.bg.ac.yu 150.661 6,787445784
testbed001.grid.ici.ro 125.028 7.117.152,75

Total 5.971.200 366,6529735

Table 5: Grid Testbed.

7.2.1 Examined metrics

To assess the crawling and indexing in Minersoft, we investigate the performance of

crawler and indexer jobs; recall that each job is responsible for a number of files (called

splits) that exist on a Grid site/Cloud Virtual Server. In this context, we use the following

metrics:

• Run time: the average time that a crawler/indexer job spends on a Grid site/-

Cloud Virtual Server, including processing and I/O; this metric measures the average

elapsed time that Minersoft needs to process (crawl or index) a split.

• CPU time: the average CPU time in seconds spent by a crawler/indexer job while

processing a split on a Grid site/Cloud Virtual Server.

• File rate: the number of files that Minersoft crawls/indexes per second on a Grid

site/Cloud Virtual Server.
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Cloud Virtual Server # of Files Size (GB)
Amazon1 35.362 0,644329774
Amazon2 29.980 0,656549389
Amazon3 25.906 1,020230504
Amazon4 31.049 1,327836617
Amazon5 83.256 2,102089881
Amazon6 33.522 0,789997322
Rackspace1 24.035 1,109502204
Rackspace2 17.266 0,661989137
Rackspace3 13.589 0,537499689
Rackspace4 47.156 2,306268435
Total 341.121 11,15629295

Table 6: Cloud Testbed.

• Size rate: the size of files in bytes that Minersoft crawls/indexes per second on a

Grid site/Cloud Virtual Server.

In our experiments, each crawler and indexer job was configured to run with five

threads. We also ran experiments with different numbers of threads (from 1, 5, 9 to 13)

and concluded that 5 threads per crawler/indexer job provide a good trade-off between

crawling/indexing performance and server workload. Smaller or larger numbers of threads

per crawler/indexer job usually result to significantly higher run times, due to poor CPU

utilization or I/O contention, respectively. Recall, that the crawler and indexer jobs

process a specific number of files, called splits. In our experiments, each split processes

from 1 to 100.000 files.

7.2.2 Crawling Evaluation

Figures 6, 7 depict the per-job average run-time and per-job average CPU-time for

crawling the Grid sites/Cloud Virtual Servers. The per-job CPU time takes into account

the total time that all the job’s threads spend in the CPU. The run-time values are
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significantly larger than the CPU times due to the system calls and Input/Output that

each crawler performs while processing its file split. I/O is much more expensive in the

case of Grid sites with shared file systems. Another observation is that the run-time and

CPU-time of crawler jobs vary significantly across different Grid sites. This imbalance

is due to several factors, including the hardware heterogeneity of the infrastructure, the

dynamic workload conditions of shared sites, and the dependence of the crawler processing

on site-dependent aspects. For example, the crawler performs expensive “deep” processing

of binary and library files to deduce their type and extract dependencies. This is not

required for text files. Consequently, the percentage of binaries/libraries found in each

site determines to some extent the corresponding crawling computation. In the case of

Cloud providers, we observe that the performance of Cloud Virtual Servers of the same

Cloud providers vary significantly. At a first sight, this is quite surprising since Cloud

providers do not have hardware heterogeneity among their Cloud Virtual Servers. These

changes in run-time and CPU-time of crawler jobs of Cloud Virtual Servers are mainly due

to the dependence of the crawler processing on sever-dependent aspects (i.e., file types).

Tables 9, 10 depict the throughput achieved by the Minersoft crawler on different Grid

sites and Cloud Virtual Servers respectively, expressed in terms of the number of files and

the number of bytes processed. Both Grid sites and Cloud Virtual Servers achieve high

performance. However, the crawling of a Grid site, in general, takes longer time than the

crawling of a Cloud Virtual Server. This is explained by the fact that the number of files

in a Cloud Virtual Server is much smaller than a Grid site.

The files found by the crawlers to be irrelevant to software search are pruned from

subsequent processing. Figures 8, 9 present the percentage of files that have been dropped

in Grid sites and Cloud Virtual Servers respectively. We observe that a large percentage of
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content in most Grid sites/Cloud Virtual Servers includes software resources. Specifically,

on average 75% (75% of total files’ size) and 70% (77% of total files’ size) of total files that

exist in Grid sites and Cloud Virtual Servers have been categorized as software resources.

These findings confirm the need to establish advanced software discovery services in Grid

and Cloud infrastructures. The software-related files are categorized with respect to their

type. From Tables 7, 8, we can see that most software-related files in the Grid/Cloud

infrastructure are documentation files (man-pages, readme files, html files) and sources.

Sources are files written in any programming language. Executable scripts (e.g. python,

perl, bash) are also considered as sources (e.g. Java, C++). Finally, each crawler stores

within the storage element of its site a metadata store file capturing the file-id, name, type,

path, size and structural dependencies of the identified software resources. Tables 16, 17

present the number of splits that have been created in order to crawl the files.
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Figure 6: Average times for jobs in Grid Infrastructure.
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Figure 7: Average times for jobs in Cloud Infrastructure.

7.2.3 Indexing Evaluation

Figures 6, 7 depict the per-job average run-time and the per-job CPU time for in-

dexing Grid sites/Cloud Virtual Servers. As expected, we observe that indexing is more

computationally-intensive than crawling, since we need to conduct “deep” parsing inside

the content of all files.

Removing the duplicate files via the duplicate reduction policy leads to reducing either

the number of splits or the number of files within splits since we found that in our data

set about 11% of files belong to more than one Grid sites. In case of Clouds, we observe

that replication is larger than Grids. Our findings showed that 32% of files belong to more

than one Cloud Virtual Servers. Note that the percentage of duplicate files depends on

the examined testbed. For instance, in a previous study [33] we observed that 33% of

files belongs to more than one Grid sites. So, the main observation of these findings is

that there is a large number of duplicate files in EGEE. So, the main observation of these
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Grid Site Binaries Sources Libraries Docs Irrelevant
ce01.kallisto.hellasgrid.gr 41.990 1.407.701 142.873 1.672.246 276.593
ce301.intercol.edu 34.134 8.972 3.724 23.536 27.540
grid-ce.ii.edu.mk 16.869 69.915 8.080 61.469 38.223
paugrid1.pamukkale.edu.tr 7.383 47.388 7.935 43.861 26.078
ce01.grid.info.uvt.ro 8.999 40.442 3.778 42.652 174.574
grid-lab-ce.ii.edu.mk 7.703 46.116 2.983 37.333 15.151
ce01.mosigrid.utcluj.ro 17.828 12.475 2.310 18.091 19.715
ce101.grid.ucy.ac.cy 26.377 433.115 37.463 672.211 109.685
ce64.phy.bg.ac.yu 6.047 31.889 7.672 67.388 37.665
testbed001.grid.ici.ro 29.261 22.961 6.120 28.239 38.447
Total 196.591 2.120.974 222.938 2.667.026 763.671

Table 7: Files Categories in Grid sites of EGEE.

findings is that there is a large number of duplicate files in Grid and Cloud infrastructures.

Tables 16, 17 present the number of splits and the size of inverted file indexes in each Grid

site and Cloud Virtual Server respectively. In order to study the benefits of duplicate

reduction policy, we also present the number of splits without performing duplication.

From this table we observe that ce01.kallisto.hellasgrid.gr has 31 splits instead of 33 splits

(including duplicate files). Moreover, even if the number of splits is not reduced, the

number of files that have been assigned in a split is reduced . Consequently, the total

indexing time is significantly reduced. Comparing with the crawling, we observe that less

number of splits are required for indexing than crawling since the irrelevant files have been

deleted. Regarding the size of inverted indexes, we present the size of inverted indexes with

and without performing stemming. Details about the tradeoffs of stemming are presented

in the next section, where we evaluate the software retrieval of Minersoft.

Finally, Tables 13, 14 depict the throughput of the indexer expressed in terms of the

number of files and the number of bytes processed per second in each Grid site/Cloud

Virtual server. In case of Grids, the performance of indexing is affected by the hardware
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Cloud Virtual Server Binaries Sources Libraries Docs Irrelevant
Amazon1 2.442 6.358 1.000 19.546 6.016
Amazon2 2.328 7.351 1.075 12.474 6.752
Amazon3 2.344 5.708 1.259 8.066 8.529
Amazon4 3.229 3.534 1.480 11.925 10.881
Amazon5 5.098 25.076 1.458 27.777 23.847
Amazon6 1.562 11.348 1.087 13.216 6.309
Rackspace1 2.900 2.859 963 4.488 12.825
Rackspace2 2.498 1.880 798 4.134 7.956
Rackspace3 2.347 2.047 684 3.491 5.020
Rackspace4 2.963 10.425 1.950 19.997 11.821
Total 27.711 76.586 11.754 125.114 99.956

Table 8: Files Categories in Amazon and Rackspace Cloud Providers.

Grid Site File rate (files/sec) Size rate(MB/sec)
ce01.kallisto.hellasgrid.gr 59,287 4,067
ce301.intercol.edu 335,773 6,085
grid-ce.ii.edu.mk 255,395 4,141
paugrid1.pamukkale.edu.tr 372,467 4,744
ce01.grid.info.uvt.ro 557,289 14,762
grid-lab-ce.ii.edu.mk 300,905 2,766
ce01.mosigrid.utcluj.ro 245,074 23,382
ce101.grid.ucy.ac.cy 211,604 9,577
ce64.phy.bg.ac.yu 417,031 9,075
testbed001.grid.ici.ro 134,300 3,111

Table 9: Crawling rates in Grid sites.

(disk seek, CPU/memory performance), file types, and the workload of each site. In case

of Clouds, the indexing is mainly affected by file types.

To sum up, our experimentations concluded to the following empirical observations:

• Minersoft successfully crawled about 6.3 million valid files (378 GB size) and sus-

tained high crawling rates.

• A large percentage of duplicate files exists in Grid sites/Cloud Virtual Servers. Iden-

tifying these files, the performance of indexing is significantly improved.
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Cloud Virtual Server File rate (files/sec) Size rate(MB/sec)
Amazon1 277,436 1,830
Amazon2 207,258 1,393
Amazon3 228,307 2,385
Amazon4 299,209 4,068
Amazon5 156,699 3,373
Amazon6 152,020 1,229
Rackspace1 915,270 10,398
Rackspace2 824,152 5,586
Rackspace3 882,402 4,856
Rackspace4 774,318 18,286

Table 10: Crawling rates in Cloud Virtual Servers.

• The crawling and indexing in Grid infrastructures is significantly affected by the

hardware (local disk, shared file system), file types and the current workload of Grid

sites. In case of Clouds, the crawling and indexing is mainly affected by file types.

• It is important to establish advanced software discovery services in the Grid/Cloud

since, in most cases, more than 70% of files that exist in the Workernodes file systems

of Grid sites/Cloud Virtual Servers are software files.

7.2.4 Discussion

The experimental results showed that Minersoft crawls and indexes Grid sites/Cloud

Virtual Servers in an efficient way. Despite this fact, the crawling and indexing rates of

Minersoft can further be improved by investigating novel efficient policies in terms of:

• Determining the size of splits: As we referred above, the files of each Grid site/Cloud

Virtual Server are split into a number of splits where the size of the split is chosen

to ensure that the crawling and indexing can be distributed evenly and efficiently.

Considering that in such an infrastructure the execution time and workload cannot



71

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

ce
01

.k
al

lis
to

.h
el

la
sg

rid
.g

r 
ce

30
1.

in
te

rc
ol

.e
du

 
gr

id
-c

e.
ii.e

du
.m

k 
pa

ug
rid

1.
pa

m
uk

ka
le

.e
du

.tr
 

ce
01

.g
rid

.in
fo

.u
vt

.ro
 

gr
id

-la
b-

ce
.ii.

ed
u.

m
k 

ce
01

.m
os

ig
rid

.u
tc

lu
j.r

o 
ce

10
1.

gr
id

.u
cy

.a
c.

cy
 

ce
64

.p
hy

.b
g.

ac
.y

u 
te

st
be

d0
01

.g
rid

.ic
i.r

o 

Pe
rc

en
ta

ge
 

Grid Sites 

Irrelevant Files Irrelevant Files Size  

Figure 8: Percentage of irrelevant files in Grid Sites.

be determined in advance using historical data, the size of splits should be adapted

to the working environment. To meet this challenge, the monitor should have a

global view of the system’s workload so as to dynamically rearrange the size of splits

as well as schedule them to Grid sites/Cloud Virtual Servers.

• Determining the number of threads per crawler/indexer jobs: To improve the effi-

ciency of crawling and indexing, Minersoft should enhance self-adaptive mechanisms

in order to assign a sufficient number of threads to Grid/Cloud resources. Grid/-

Cloud monitoring systems provide information about resource utilization (CPU uti-

lization, memory utilization, disk utilization, etc.) and network connectivity in Grid

sites/Cloud Virtual Servers. Thus, if the current status of a Grid site/Cloud Virtual

Server has changed, the job manipulator should modify the number of threads per

crawler/indexer jobs in this site.
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Figure 9: Percentage of irrelevant files in Cloud Virtual Servers.

• Detecting duplicate software files: Files that are exact duplicates of each other can

be identified by either heuristic techniques or checksumming techniques. In order to

prevent duplicate files, crawler jobs need to periodically communicate to coordinate

with each other. However, this communication may result in overhead. Can we

minimize this communication overhead while maintaining the effectiveness of the

crawler job? Authors in [19] dealt with this problem in the context of the Web.

Another issue is the identification of near-duplicate files. If we could successfully

identify these files, we could improve the performance of indexing, since a percentage

of files will be deleted. Manber [43] has developed algorithms for near-duplicate

detection to reduce storage in large-scale file systems.

• Determining politeness: Minersoft jobs should not obstruct the normal operation of

Grid sites. Minersoft should adhere to strict rate-limiting policies when accessing

poorly provisioned (in terms of workload) Grid sites. To address this issue, Minersoft
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Grid Sites Crawling Statistics Indexing Statistics
# of splits # of splits # of splits

including
duplicates

Inverted
Index size
with stem-
ming (MB)

Inverted
Index size
w/o stem-
ming (MB)

ce01.kallisto.hellasgrid.gr 37 31 33 58.129,359 60.988,246
ce301.intercol.edu 2 1 1 358,0312 395,089
grid-ce.ii.edu.mk 1 1 2 702,796 778,972
paugrid1.pamukkale.edu.tr3 1 2 632,035 702,296
ce01.grid.info.uvt.ro 4 1 1 1152,386 1258,464
grid-lab-ce.ii.edu.mk 3 1 1 57,414 62,863
ce01.mosigrid.utcluj.ro 2 1 1 257,984 288,214
ce101.grid.ucy.ac.cy 14 10 12 13588,468 14073,417
ce64.phy.bg.ac.yu 3 1 2 871,449 964,621
testbed001.grid.ici.ro 3 1 1 646,671 715,148

Table 11: Crawling & Indexing statistics in Grid sites.

should implement a flexible policy that would avoid running multiple crawler jobs

to overloaded Grid sites.

7.3 Software Graph Evaluation

In this section, we evaluate the effectiveness of the Minersoft search engine for locating

software on the Grid/Cloud infrastructures. A difficulty in the evaluation of such a system

is that there are not widely accepted any benchmark data collections dedicated to software

(e.g., TREC, OHSUMED etc). In this context, we use the following methodology in order

to evaluate the performance of Minersoft:

• Data collection: Our dataset consists of the software installed in 10 Grid sites of

EGEE infrastructure (Table 5) and 10 Cloud Virtual Servers from Amazon Elastic

Computing and Rackspace Cloud providers (Table 6). From the data collection, we

exclude a stop list of files and directories that do not contain information of interest
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Cloud Virtual Servers Crawling Statistics Indexing Statistics
# of splits # of splits # of splits

including
duplicates

Inverted
Index size
with stem-
ming (MB)

Inverted
Index size
w/o stem-
ming (MB)

Amazon1 1 1 1 133,113 148,062
Amazon2 1 1 1 162,558 177,042
Amazon3 1 1 1 134,777 149,710
Amazon4 1 1 1 180,570 202,433
Amazon5 1 1 1 299,585 338,593
Amazon6 1 1 1 162,160 180,417
Rackspace1 1 1 1 78,136 87,085
Rackspace2 1 1 1 84,335 94,851
Rackspace3 1 1 1 60,574 66,332
Rackspace4 1 1 1 221,902 245,011

Table 12: Crawling & Indexing statistics in Cloud Virtual Servers.

to software search (e.g., /tmp, /proc). Tables 7, 8 present the software resources

that have been identified by Minersoft on those Grid sites/Cloud Virtual Servers.

• Queries: We use a collection of 28 keyword queries, which were extracted by EGEE

users and by the recent submissions to the Sourcerer system [38]. These queries com-

prise either single- or multiple-keywords. Each query has an average of 2 keywords;

this is comparable to values reported in the literature for Web search engines [53].

To further investigate the sensitivity of Minersoft, we have classified the queries into

two categories: general-content and software-specific (see Table 15).

• Relevance judgment : A software resource is considered relevant if it addresses the

stated information need and not because it just happens to contain all the keywords

in the query. A software resource returned by Minersoft in response to some query

is given a binary classification as either relevant or non-relevant with respect to

the user information need behind the query. In addition, the result of each query

has been rated at three levels of user satisfaction: “not satisfied”, “satisfied”, “very
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Grid Site File rate (files/sec) Size rate(MB/sec)
ce01.kallisto.hellasgrid.gr 25,359 1,363
ce301.intercol.edu 84,620 1,238
grid-ce.ii.edu.mk 93,297 1,211
paugrid1.pamukkale.edu.tr 106,283 1,135
ce01.grid.info.uvt.ro 39,143 0,618
grid-lab-ce.ii.edu.mk 45,387 0,323
ce01.mosigrid.utcluj.ro 55,363 2,850
ce101.grid.ucy.ac.cy 31,231 1,149
ce64.phy.bg.ac.yu 106,818 1,760
testbed001.grid.ici.ro 51,127 0,827

Table 13: Indexing rates in Grid sites.

Cloud Virtual Server File rate (files/sec) Size rate(MB/sec)
Amazon1 36,793 0,209
Amazon2 19,609 0,116
Amazon3 17,242 0,141
Amazon4 21,483 0,221
Amazon5 14,840 0,227
Amazon6 16,136 0,116
Rackspace1 28,753 0,211
Rackspace2 26,314 0,131
Rackspace3 37,689 0,154
Rackspace4 17,874 0,287

Table 14: Indexing rates in Cloud Virtual Servers.

satisfied”. These classifications have been done manually by EGEE administrators

and experienced users and are referred to as the gold standard for our experiments.

7.3.1 Performance Measures

The effectiveness of Minersoft should be evaluated on the basis of how much it helps

users achieve their software searches efficiently and effectively. In this context, we used

the following performance measures:
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Software-specific queries General-content queries
imagemagick; octave numerical computa-
tions; lapack library; gsl library; boost
c++ library; glite data management;
xerces xml; subversion client; gcc fortran;
thrudb; lucene; jboss; rails ruby; mpich;
autodock docking; atlas software

linear algebra package; fftw library; earth-
quake analysis; java virtual machine; sta-
tistical analysis software; ftp client; reg-
ular expression; sigmoid function; his-
togram plot; binary tree; zip deflater; pdf
reader

Table 15: Queries.

• Precision@10 reports the fraction of software resources ranked in the top 10 results

that are labeled as relevant. The relevance of the retrieved results is determined

by the gold standard. The results are ranked with respect to the ranking function

of Lucene [2], which is based on the TF-IDF metric and has been used extensively

in the literature for the ranking of Web-search results [15, 21]. In our case, the

TF-IDF calculation is based on the zones associated by Minersoft to software files.

The maximum Precision@10 value that can be achieved is 1.

• NDCG (Normalized Discounted Cumulative Gain) is a retrieval measure devised

specifically for evaluating user satisfaction [30]. For a given query q, the top − K

ranked results are examined in decreasing order of rank, and the NDCG value is

computed as: NDCGq = Mq ·
∑K=10

j=1
2r(j)−1

log2(1+j) , where each r(j) is an integer relevance

label (0=“not satisfied”, 1=“satisfied”, 2=“very satisfied”) of the result returned at

position j and Mq is a normalization constant calculated so that a perfect ordering

would obtain NDCG of 1.

• NCG (Normalized Cumulative Gain) is the predecessor of NDCG and its main dif-

ference is that it does not take into account the position of the results. For a given
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query q, the NCG is computed as: NCGq = Mq ·
∑K=10

j=1 r(j). A perfect ordering

would obtain NCG of 1.

Cumulative gain measures (NDCG, NCG) and precision complement each other when

evaluating the effectiveness of IR systems [11, 20]. In our evaluation metrics we do not

consider the recall metric (the percentage of the number of relevant results). Such a metric

requires to have full knowledge about all the relevant software resources with respect to a

query. However, such a knowledge is not feasible in a large-scale networked environment.
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7.3.2 Evaluation Scenarios

We calculate the metrics mentioned above for the queries of Table 15, when the searches

are performed against a set of different indexes representing alternative optimizations

implemented inside Minersoft. In particular, we estimate the effectiveness of Minersoft in

the following scenarios:

• Full-text search: Inverted index terms are extracted only from the full-text content

of discovered files in the examined testbed infrastructure without any preprocess-

ing. This approach is relevant to the desktop search systems (e.g., Confluence [28],

Wumpus [55]). Full-text search is used as a baseline for our experiments.
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• Path-enhanced search: The terms of the inverted index are extracted from the con-

tent and path zones of SG vertices. This scenario is used to evaluate the contribution

of paths in software retrieval process.

• Software-files-only search: The files have been categorized into file categories. Software-

description documents and irrelevant files (files which do not belong to any category)

are discarded from the posting lists. The terms of the inverted index are extracted

from the content and path of SG vertices.

• Software-description-enriched search: The terms of inverted index are extracted

from the content of SG vertices as well as from the zones of documentation files (i.e.,

man-pages and readme files) and the path of SG vertices.

• Text-files-enriched search: The terms of the inverted index are extracted from the

content, the path and the zones from the other text files of SG vertices with the same

normalized filename. Recall that Minersoft normalizes filenames and pathnames of

SG vertices, by identifying and removing suffixes and prefixes.

7.3.3 Evaluation

Figures 10, 11, and 12 present the results of the examined approaches with respect

to the query types for Precision@10, NDCG and NCG. Each approach is a step towards

the construction of the inverted index that is implemented in Minersoft (section 5). We

conduct two set of experiments (stemming/no stemming) in order to study the effects

of stemming in software retrieval. For completeness of presentation, we also present the

median values of the examined metrics (Figures 13, 14, and 15). The general observation
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is that Minersoft improves significantly both the Precision@10 and the examined cumu-

lative gain measures compared with the baseline approach - full-text search - for both

types of queries. Specifically, Minersoft improves the Precision@10 about 160% and the

cumulative gain measures (NDCG, NCG) about 173% for NDCG and 163% for NCG with

respect to the baseline approach.

Regarding the intermediate steps for the construction of SG, the highest improvement

is observed at Software-files-only search. This is explained by the fact that documentation

and irrelevant files have been removed and the searching is done only in the remaining

software files. Our findings show also that the addition of metadata attribute of path in
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Figure 13: Precision@10 results (median values).

software resources makes Minersoft more effective. In particular, Path-enhanced search

improves both the Precision@10 and the cumulative gain measures (NDCG, NCG) about

28% with respect to the baseline approach. This is an indication that the paths of soft-

ware files include descriptive keywords for software resources (e.g. /usr/include/magick-

/shear.h, /usr/bin/svn).

The enrichment of software-description documents increases the precision as well as

user satisfaction. Specifically, Software-description-enriched search achieves higher Precision@10

(about 3%) and higher cumulative gain measures (on average about 7% for NDCG and
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Figure 14: NDCG results (median values).

5% for NCG) than the Software-files-only search. The improvements during the Software-

description-enriched search step are affected by the number of the executables and software

libraries that exist in the data set. Recall that this step enriches the executables and soft-

ware libraries with extra keywords. Thus, the larger the number of these types of files,

the better results are obtained. We also observe that the Software-description-enriched

search step slightly decreases the median values of total queries. In general, Software-

description-enriched search increases the recall since the terms of inverted index are also

extracted from the documentation files. Consequently, this results in lower median values
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Figure 15: NCG results (median values).

for general-content queries. Another interesting observation is that most of the software-

specific queries indicate Precision@10 and cumulative gain measures (NDCG, NCG) close

to 1 (see median values), whereas the average Precision@10, NDCG and NCG values for

all the software-specific queries are about 0.84, 0.78, 0.76 respectively.

Regarding the text-files-enriched search, we observe that this approach does not im-

prove the general system’s performance. This is explained by the fact the software de-

velopers use similar filenames in their software packages. However, taking a deeper look

at the results, we observe text-files-enriched search improves user satisfaction about 5%
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Grid Sites Size with stemming (MB) Size w/o stemming (MB)
ce01.kallisto.hellasgrid.gr 58.129,359 60.988,246
ce301.intercol.edu 358,0312 395,089
grid-ce.ii.edu.mk 702,796 778,972
paugrid1.pamukkale.edu.tr 632,035 702,296
ce01.grid.info.uvt.ro 1.152,386 1.258,464
grid-lab-ce.ii.edu.mk 57,414 62,863
ce01.mosigrid.utcluj.ro 257,984 288,214
ce101.grid.ucy.ac.cy 13.588,468 14.073,417
ce64.phy.bg.ac.yu 871,449 964,621
testbed001.grid.ici.ro 646,671 715,148

Table 16: Inverted Indexes Size in Grid sites.

for general-content queries since more results are returned to users than the previous

examined approach.

Finally, we study the effects of stemming in software resources. As far as the stemming

is concerned, Minersoft processes the terms of posting lists using the Porter stemming

algorithm1 . In general stemming decreases the size of inverted indexes since the number

of terms is reduced. However, a side effect of stemming is that it results in decreasing

precision and user satisfaction. Which is the trade-off between stemming and no stemming

in software retrieval? In general, we observe that stemming sacrifices precision in order to

decrease the inverted index sizes and improve the recall. Specifically, our findings showed

that stemming deteriorates Minersoft’s performance about 4%. On the other hand, in

terms of storage, we observe that stemming decreases the size of inverted indexes about

10%. Tables 16 and 17 present the size of inverted indexes in Grid sites and Cloud Virtual

Servers respectively.
1Porter stemming algorithm. http://tartarus.org/martin/PorterStemmer/
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Cloud Virtual Servers Size with stemming (MB) Size w/o stemming (MB)
Amazon1 133,113 148,062
Amazon2 162,558 177,042
Amazon3 134,777 149,710
Amazon4 180,570 202,433
Amazon5 299,585 338,593
Amazon6 162,160 180,417
Rackspace1 78,136 87,085
Rackspace2 84,335 94,851
Rackspace3 60,574 66,332
Rackspace4 221,902 245,011

Table 17: Inverted Indexes Size in Cloud Virtual Servers.

To sum up, the results show that Minersoft is a powerful tool since it achieves high

effectiveness for both types of queries. Focusing on the query types, we observe that Min-

ersoft presents high efficiency for both types of queries, achieving very high performance

for software-specific queries. Specifically, our experimentations concluded to the following

empirical observations:

• Minersoft improves the Precision@10 about 160% and Cumulative gain measures

(NDCG, NCG) over 163% with respect to the baseline approach.

• The paths of software files in file-systems include descriptive keywords for software

resources.

• Stemming deteriorates about 4% the system’s performance. On the other hand, it

decreases the size of inverted indexes about 10%.

• Software developers use similar filenames for their software packages.
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7.3.4 Software Graph Statistics

Tables 18, 19 presents the statistics of the resulted SGs. Recall that Minersoft harvester

constructs a SG in each Grid site/Virtual Cloud Server. We do not present further analysis

of the SGs since this is out of the scope of this work. Of course, a thorough study of the

structure and evolution of SGs would lead to insightful conclusions in software engineering

community. In the literature, a large number of dynamic large-scale networks have been

extensively studied [36] in order to identify their latent characteristics.

Here, we briefly present the main characteristics of these graphs. Tables 18, 19 present

the edges that have been added due to structure dependency (ESD) and content associa-

tions (ECA). For completeness of presentation, the index size of each graph is presented.

Based on these statistics, a general observation is that the SGs are not sparse. Specif-

ically, we found that in case of Grids most of them follow the relation E = V α, where

1.1 < α < 1.36, whereas, in case of Clouds most of Cloud Virtual Servers follow the

relation E = V α, where 1.1 < α < 1.31; note that α = 2 corresponds to an extremely

dense graph where each node has, on average, edges to a constant fraction of all nodes.

Another interesting observation is that most of the edges are due to content associations.

However, most of these edges have lower weights (0, 05 ≤ w < 0, 2) than the edges which

are due to structure dependency associations.
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Grid Sites V E (total edges) ESD ECA

ce01.kallisto.hellasgrid.gr 3.264.810 1.291.884.123 9.540.597 1.282.343.526
ce301.intercol.edu 70.366 150.033 96.922 53.111
grid-ce.ii.edu.mk 156.333 1.659.309 322.495 1.336.814
paugrid1.pamukkale.edu.tr 106.567 1.195.702 223.529 972.173
ce01.grid.info.uvt.ro 95.871 1.465.779 199.537 1.266.242
grid-lab-ce.ii.edu.mk 94.135 179.127 158.733 20.394
ce01.mosigrid.utcluj.ro 50.704 158.451 86.249 72.202
ce101.grid.ucy.ac.cy 1.169.166 97.967.442 2.117.300 95.850.142
ce64.phy.bg.ac.yu 112.996 987.759 201.950 785.809
testbed001.grid.ici.ro 86.581 772.005 225.591 546.414
Total 5.207.529 1.396.419.730 13.172.903 1.383.246.827

Table 18: Software Graphs Statistics in Grid Sites.

Cloud Virtual Servers V E (total edges) ESD ECA

Amazon1 29.346 79.636 49.368 30.268
Amazon2 23.228 74.180 41.107 33.073
Amazon3 17.377 62.032 34.919 27.113
Amazon4 20.168 61.688 45.811 15.877
Amazon5 59.409 583.198 102.534 480.664
Amazon6 27.213 96.513 47.484 49.029
Rackspace1 11.210 30.236 24.221 6.015
Rackspace2 9.310 23.959 20.714 3.245
Rackspace3 8.569 21.181 17.968 3.213
Rackspace4 35.335 157.574 68.185 89.389
Total 241.165 1.190.197 452.311 737.886

Table 19: Software Graphs Statistics in Cloud Virtual Servers.



Chapter 8

Conclusions & future work

8.1 Minersoft in Practice

Minersoft can be used for keyword-based searching software resources in large-scale

network infrastructures. Its environment allows researchers and software practitioners

to locate software resources suitable to their needs and encourage software investigation,

software reuse, clone detection and computational resources selection.

• Software investigation: Software projects include a number of resources which

often go through several modifications. As part of most modification tasks, a de-

veloper must investigate the software resources associated with the project prior to

modifying it. The investigation of software resources in an efficient way is a chal-

lenging problem for software engineering because it is an inherently human activity,

whose success depends on several unpredictable factors, such as developer intuition

and luck [49]. Minersoft can help software developers quickly identify the software

resources that are likely to be associated with the underlying project. Through the

88
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content and structural associations of SG, Minersoft indicates software resources

worthy of investigation, independently of the semantics of the source codes.

• Software reuse: Software reuse is the systematic use of existing software resources

to construct new resources or products. Software reuse has been recognized as one

of most realistic and promising ways to improve software productivity, quality and

reliability, shorten the time required to release software for client use and reduce

maintenance costs [46]. To achieve these goals, software reuse needs effective retrieval

techniques to make development with the reusable components more convenient

than development from scratch. Although software reuse has been promoted as an

effective means to develop software products, in practice it has proved to be hard

to achieve and of limited use [46]. Minersoft encourages software reuse by providing

keyword-based searching techniques for software packages which are installed on

large-scale network infrastructures.

• Clone detection: Clone detection techniques aim at finding duplicated code, which

may have been adapted slightly from the original. These techniques arise because

duplication does exist for several reasons such as time pressure, inexperienced devel-

opers or even the use of similar mathematic formulas [26]. Detecting clones would

also be used for studying the evolution of a software system. Various research on

finding software similarities has been performed [26], where most studies focused on

detecting program plagiarism. Through the exploitation of SG, Minersoft can be

used for detecting such clones.
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• Computational resources selection: A challenge for software developers in Grid

and Cloud computing infrastructures is to select the appropriate computational re-

sources in order to build new applications. Up to now, existing Grid/Cloud providers

do not support any tool that would help developers to select computational resources

so as to run their applications. Minersoft covers this gap through the keyword-based

searching on installed software in Grid sites/Cloud Virtual Servers.

8.2 Open Issues

We are currently exploring a number of open issues that require further analysis:

• Determining the size of splits: As we referred above, the files of each Grid site are

split into a number of splits where the size of the split is chosen to ensure that

the crawling and indexing can be distributed evenly and efficiently within the time

constraints of the underlying site. Considering that in a Grid infrastructure the

execution time and workload cannot be determined in advance using historical data,

the size of splits should be adapted to the working environment. To meet this

challenge, the Grid job manager should have a global view of the system’s workload

so as to dynamically rearrange the size of splits as well as schedule them to Grid

sites.

• Determining the number of threads per crawler/indexer jobs: From our experiments

it is obvious that the number of threads per crawler/indexer job affects significantly

the performance of Minersoft. To improve the efficiency of crawling and indexing,

Minersoft should enhance self-adaptive mechanisms in order to assign a sufficient

number of threads to Grid resources (CPUs in Grid sites). Grid monitoring systems
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provide information about resource utilization (CPU utilization, memory utilization,

disk utilization, etc.) and network connectivity in Grid sites. Thus, if the current

status of a Grid site has changed, the Grid job manager should modify the number

of threads per crawler/indexer jobs in this site.

• Detecting duplicate software files: Files that are exact duplicates of each other can

be identified by either heuristic techniques or checksumming techniques. In order to

prevent duplicate files, crawler jobs need to periodically communicate to coordinate

with each other. However, this communication may result in overhead. Can we

minimize this communication overhead while maintaining the effectiveness of the

crawler job? Authors in [19] dealt with this problem in the context of the Web.

Another issue is the identification of near-duplicate files. If we could successfully

identify these files, we could improve the performance of indexing, since a percentage

of files will be deleted. Manber [43] has developed algorithms for near-duplicate

detection to reduce storage in large-scale file systems.

• Determining politeness: Minersoft jobs should not obstruct the normal operation of

Grid sites. Minersoft should adhere to strict rate-limiting policies when accessing

poorly provisioned (in terms of workload) Grid sites. To address this issue, Minersoft

should implement a flexible policy that would avoid running multiple crawler jobs

to overloaded Grid sites.

• Exploiting the Software Graph, we could identify coherent clusters. In the literature,

a wide range of algorithms have been proposed towards to this goal [32]. From

the IR perspective, it has been observed that the clusters identification increases

the diversity in search results [51]. Diversity is the extent to which the results
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returned by a search engine pertain to different information needs. If a user query is

broad (i.e., a query that covers a variety of topics), a search engine can assume that

software resources from different clusters represent different topics. Thus, a search

engine which returns results from many clusters is likely to have greater diversity.

Identifying of coherent clusters of software resources is also beneficial in terms of

locating relevant individual softwares, classifying and labeling them with a set of

tags [48]. Last but not least, the SG may contribute in improving the ranking of

query results [31]. Ranking is an integral component of any information retrieval

system. In the case of software search in large-scale network environments the role

of ranking the results becomes critical. To this end, the SG may offer a rich context

of information which is expressed through its edges. A ranking function can be built

by analyzing these edges. Kleinberg, and Brin and Page have built upon this idea by

introducing the area of link analysis ranking on the Web, where hyperlink structures

are used to rank Web pages [17].
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[42] Yoëlle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval
approach for automatically constructing software libraries. IEEE Trans. Softw. Eng.,
17(8):800–813, 1991. 9, 11, 47

[43] Udi Manber. Finding similar files in a large file system. In WTEC’94: Proceedings of
the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, pages 2–2, Berkeley, CA, USA, 1994. USENIX Association. 72, 91

[44] Andrian Marcus and Jonathan Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In ICSE 2003, pages 125–135, May
2003. 9, 11, 43

[45] Makoto Matsushita. Ranking significance of software components based on use rela-
tions. IEEE Trans. Softw. Eng., 31(3):213–225, 2005. 10

[46] Parastoo Mohagheghi and Reidar Conradi. An empirical investigation of software
reuse benefits in a large telecom product. ACM Trans. Softw. Eng. Methodol.,
17(3):1–31, 2008. 1, 89

[47] G. Pallis, A. Katsifodimos, and D. M. Dikaiakos. Effective keyword search for soft-
ware resources installed in large-scale grid infrastructures. In 2009 IEEE/WIC/ACM
International Conference on Web Intelligence, Milano, Italy, 2009. 5

[48] Daniel Ramage, Paul Heymann, Christopher D. Manning, and Hector Garcia-Molina.
Clustering the tagged web. In WSDM ’09, pages 54–63, New York, NY, USA, 2009.
ACM. 92

[49] Martin P. Robillard. Topology analysis of software dependencies. ACM Trans. Softw.
Eng. Methodol., 17(4):1–36, 2008. 1, 10, 88

[50] Fabrizio Silvestri, Diego Puppin, Domenico Laforenza, and Salvatore Orlando. A
search architecture for grid software components. In WI ’04, pages 495–498, Wash-
ington, DC, USA, 2004. IEEE Computer Society. 11

[51] Kai Song, Yonghong Tian, Wen Gao, and Tiejun Huang. Diversifying the image
retrieval results. In MULTIMEDIA ’06, pages 707–710, New York, NY, USA, 2006.
ACM. 91

[52] Craig A. N. Soules and Gregory R. Ganger. Connections: using context to enhance
file search. SIGOPS Oper. Syst. Rev., 39(5):119–132, 2005. 10

[53] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. Information re-
retrieval: repeat queries in yahoo’s logs. In SIGIR ’07, pages 151–158, New York,
NY, USA, 2007. ACM. 74

[54] Taciana Vanderlei and et. al. A cooperative classification mechanism for search and
retrieval software components. In SAC ’07, pages 866–871, New York, NY, USA,
2007. ACM. 10, 11



97

[55] Peter C.K. Yeung, Luanne Freund, and Charles L.A. Clarke. X-site: a workplace
search tool for software engineers. In SIGIR ’07, New York, NY, USA, 2007. ACM.
10, 78

[56] Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of software
components. ACM Trans. Softw. Eng. Methodol., 6(4):333–369, 1997. 9


	 Introduction 
	Motivation
	Challenges
	Contributions

	 Related Work 
	Searching in a software repository
	Searching over the Internet
	Searching in the Grid
	Minersoft vs. existing approaches

	 Overview 
	Grid System Model
	The EGEE Grid

	Cloud System Model
	The Amazon Elastic Compute Cloud
	The Rackspace Cloud

	Minersoft's Abstract System Model
	Definitions

	 Minersoft Architecture 
	Overview
	Minersoft Crawler
	Duplicates reduction Policy
	Minersoft Indexer
	Distributed Crawling and Indexing Process
	Minersoft Implementation and Deployment
	Minersoft Crawler/Indexer Job's lifecycle


	 Software Graph Construction and Indexing 
	Context Enrichment
	Content Enrichment
	Content Association

	 Implementation Details 
	Job Management with Ganga
	Software Resource Tagging & Categorization
	Software Graph Storage & Processing
	Storage in External Memory
	In-memory Processing

	Inverted Indexes
	Lucene
	Content Parsers & Analyzers


	 Evaluation 
	Testbed
	Crawling and Indexing Evaluation
	Examined metrics
	Crawling Evaluation
	Indexing Evaluation
	Discussion

	Software Graph Evaluation
	Performance Measures
	Evaluation Scenarios
	Evaluation
	Software Graph Statistics


	 Conclusions & future work 
	Minersoft in Practice
	Open Issues

	Bibliography

