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Iepidnyn

O ayyeloyelpovpyiés emepfaoelg dSvvavTol vo mapovcsldcovy Ppayurpdfeces (AUECHC
LETE TNV OMOKATAGTOOT TNG PONG TOV aipatog) Kot pakporpdbeopeg (Boopddeg PeTd Tnv
emépuPaon) emmAlokéc, mov oyeTilovtal Le TN GVPPAPT OVOPOTIVOV 0pTNPIOV PETOED TOVGC
N He pooyevporta. Katd ovvémeln, M texvikn TNHG CLPPOPNG Kol TO VAIKG 7OV
YPTOULOTOLOVVIOL GTNV AYYEIOYEPOVPYIKY Eival LVYIoTNG onpaciog Yo Tn Oepaneio TV

YYEWKOV TOONGEWDV, OTMOC 1) ABNPOGKANP®OGCT] KO TO AVEVPVUGLLOTOL.,

H dwrtpf] ooty emkevipoverolr otn  HaONUATIK]  HOVIEAOTOINGCT  OPTNPLOKOV
OVOGTOUMOEMY KL GTNV OTOKPICT TNG YPOUUNG GVPPAPNS TOVS, £V SIETIGTNUOVIKO Bpa
g SoUOGTATIKNG Ko Prolatpikng punyovikne. H pabnpatikn statdnmon tov TpofAipuotoc
yivetal ot Bdon dvvoukng avédivong, OAANAETIOpAoNG TOL PAUUATOC IE TNV apTNpio Kot
YPNONG SPOP®V KOTAGTATIKMY VOH®V. XKOTOG TG datpiPng elvarl 1 depedvion g
OTOKPIONG OLOPOPETIKAOV TEYVIKAOV OPTIPIOKAOV AVICSTOUMGEMY (KOTA TPOTO YEVIKELGILO),
n &oywyn Acewv kAeotng popeng (6mov eivor duvatdv), kot 1 eEaymyn ypMo®V
GUUTEPOCUATOV OCOV 0(pOopd To PEATIOTO YOPOKTINPIOTIKA TNGg OCLPPOENS KOL TOL

HOGYEVLOTOC Y10 TV OTOPLYT UETEYYEPNTIKOV ETUTAOKOV.

H oandkpion poxpid amd v TEPLOYn TG OVOSTOUMONG HEAETATAL BE@PMVTAG YPOLLUIKT,
VIEPEANOTIKN Kol PIOKOEANGTIKY] GUUTEPLPOPE TOV apTnplokol 16100. H amdkpion tng
YPOUUNG GUPPAPNG, VIO TIG OLOPOPETIKEG TEYVIKEG AVOCTOUMONG, OlEPELVATUL UECM: (1)
evOC UOVTEAOVL TOV TEPLYPAQPEL TN OUVOUIKY OTOKPIOT TNG TEMKO-TEAKNG TEXVIKNG
avootopmong, (B) &vog HoOVIEAOL TOL TEPLYPAQPEL TNV OAMOKPION 1TNG TEAIKO-TANYLOC
TEYVIKNG AVUCTOU®ONG, Kol (Y) VOGS EEI00VIKEDUEVOD KUAMVIPIKOD HOVTELOL OVAGTOUMONG
pe ovo apbpmaoelc, dote vo diepeuvn el 1 emidpaon g ELAGTIKNG UN-CLUPATOTNTAG OTNV
OmOKPION  OVOOTOUMCE®V TOL  OYETICOVTOL HE  TANYO-TAAY  OVOOTOU®ON, Kot
epuporopatog oe aptnpio. EmmAéov, kabopilovior kpurhipia actoyiog mov Aopfdvouvv

VoY Ppayurpodecia Kot LoKpompdOEso GEVAPLO 0CTOYING.

H ondkpion omv meployn Kou HOKPIEL omd TNV TEPLOYN TNG YPUUUNG GLPPOUPNG
vroloyileTol o€ OPOVLE KLPIWV HETOTOTICE®V, TAGEWV, KAV TUKVOTNTOG EVEPYELNG-
Tapopopemons. To amoTeAEoUATA GLYKPIVOVTOL UE TEIPOUUATIKES Kot aplOUNTIKEG HEAETEC
dwbéoeg ot Piploypaeia, ®cote vo o&lodoynbel to eminedo TPOCEYYIONG TGV

TPOTEWVOLEV®V OVOAVTIKOV LOVTEAWMV.

Meydiog aplOuds poppHdToV, aLENUEVO TTAXOG PAULOTOC/XEPOVPYIKOD KAIT, KOl HETPO

EMIOTIKOTITOG TOV PHOGYEVUATOG 160 pE EKEIVO NG apTnpiag, sival HePIKES amd TIC POoIKEC

il



TOPOUETPOVG TOV OTOSEIYONKE OTL LELOVOLV TNV OTOKPLOT TNG YPOLLUNG GUPPAPNG. AAAOL
TOPAYOVTEG TOV UELDVOLV TNV OTOKPLIoT| TG YPOUUNG CLUPPAPNS EIVOL GYETIKA JUKPEG TILES
mg yoviag évoong Meta&d C optnpiog Kot TOL  HOGYELHOTOS  (TEAMKO-TAGYLO
aVOOTOU®MOT)), OKTIVOL HOGYEVUOTOC WIKPOTEPT amd TNV aktive g aptnpioc (Teltko-
TAQY10. OVOGTOU®OT), ¥PNoT EmBepdtov Le pKkpod mAdtog (ppdiopa og aptnpia), K.AT.
Emumiéov, péoa amd ta poviéha mov avartoydnkav, o akpiPpng UnNyovicHog e ToV OToio

K&0e TapAUeETPOG EXNPEALEL TNV OTOKPLOT TOV GLUGTILOTOG YIVETOL KOTAUVOTTOG.

H xoplo emotnuovikny cuvels@opd g StatpiPiic ouTng £YKeLTol oty avantuén Pacikmv
OVOAVTIKOV HOVTEA®V 7OV 00MyoLV otV TPOPAEYN NG CLUTEPLPOPAS OPTNPLOUKDV
OVOGTOUMOEMY OTIV TEPLOYN KOl HOKPLE Ao TV TEPOYN TS cvppapns. H avaivtikn
OlTOTTOoT  amokoAVTTEL YpNoleg aAAnieEoptioslg UeTAEd TOV  TOPOUETP®OV  TOL
TPOPAUATOC, KOOGTOVTOG ETOL TO TPOTEWVOUEVO HOVIEAO £V TOADTIHO €PYAAEIO Yol TN
BEATIOTN EMAOYN TOV VAIKOV KOl TN PEATIOUEVT] AELTOVPYIO TOV POUUUATOV. AVVALEL TNG
YEVIKOTNTOG KOl TNG OUESOTNTOC TNG EQPUPUOYNG TOVG, TO EVPNUATA TNG OTPIPg Umopel
va amoteAécouvy T Pdomn yio TV avamrTuEn Katevbuvtnplov Ypouuomy tov oyetiloviol pe

TNV TPOANYT] UETEYYELPNTIKOV EMTAOKDY GE OPTNPLUKEG AVOCGTOLUMDCELS.
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Abstract

Vascular surgeries potentially suffer from short-term (immediately after the blood flow is
restored) and long-term (weeks after the operation) post-surgery complications, related to
the stitching of human arteries with themselves or with grafts. Accordingly, stitching
techniques and related suture materials are of utmost importance in the surgical treatment

of vascular disorders, such as atherosclerosis and aneurysms.

This dissertation focuses on the mathematical modeling of arterial anastomoses and their
suture-line response, an interdisciplinary topic in structural and biomedical engineering.
The mathematical formulation of the problem is carried out on the basis of dynamic
analysis, suture-artery interaction, and different material constitutive laws. The aim of this
research is to investigate the response of different arterial anastomosis techniques in a
general manner, develop closed-form expressions for the problem solution (wherever
possible), and provide useful conclusions about the optimum suturing details and graft

properties to prevent post-surgery complications.

The far-field arterial response is studied by considering linear, hyperelastic, and
viscoelastic material behavior. The suture-line response for different anastomosis
techniques is investigated through: (a) a model governing the dynamic response of the end-
to-end anastomosis technique; (b) a model describing the response of the end-to-side
anastomosis technique; and (c) an idealized two-hinged anastomosis model, aiming to
investigate the effect of elastic mismatch on the response of side-to-side related
anastomoses and arterial patching. In addition, comprehensive failure criteria that account

for short- and long-term failure scenarios are established.

The suture-line and far-field response is calculated in terms of principal displacements,
stresses, and/or strain-energy density. Results are compared with experimental and
numerical studies available in the literature to evaluate the level of approximation of the

developed analytical models.

High number of utilized stitches, increased suture/clip thickness, and graft elasticity
modulus equal to that of the host artery, are some of the key parameters found to reduce
the suture-line response of arterial anastomoses. Other factors that reduce the suture-line
response are low values of the intersecting angle between the artery and the graft (end-to-
side anastomosis), graft radius smaller than the artery radius (end-to-side anastomosis), use
of patches with small width (artery patching), etc. Moreover, the exact mechanism by

which each problem parameter affects the system response is revealed.



The main contribution of this thesis lies in the development of fundamental analytical
models to predict the far-field and suture-line behavior of arterial anastomoses. The
analytical formulation reveals useful interrelations among the problem parameters, thus
making the proposed model a valuable tool for the optimal selection of materials and
improved functionality of the sutures. By virtue of their generality and directness of
application, the findings of this study can ultimately form the basis for the development of

vascular anastomosis guidelines pertaining to the prevention of post-surgery complications.
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- Circumferential Green strain tensor

€po
e - Longitudinal Green strain tensor
F - Deformation gradient matrix
F, - Tensile force of isocompliant arterial segments, in the longitudinal direction
F, - Tensile force of arterial segment, in the longitudinal direction
FLg - Tensile force of graft segment, in the longitudinal direction
Fy - Force along the y-axis of a pin-loaded plate
/. - Tensile force of suture
fem - Tensile force of suture (continuous stitching technique)
N
£ - Ultimate tensile force of suture/knot
f0 - Pre-tension force of suture
N
G - Constants to be obtained through boundary conditions (i =1, 2, 3, 4)
G, - Shear modulus (orthotropic)
H - Undeformed artery thickness
H, - Thickness of host artery at undeformed state
H . - Thickness of graft at undeformed state
H p - Thickness of isocompliant arteries at pre-stressed state
H e - Thickness of host artery at pre-stressed state
Hpg - Thickness of graft at pre-stressed state
h - Deformed artery thickness
h(t—7) - Unit-impulse response function
| - Unit matrix
1 - Alternative form of first strain invariant
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Alternative form of second strain invariant

First strain invariant
Second strain invariant
Fourth strain invariant

Moment of inertia of element i of the two-hinged anastomosis model (i =1,11)
Determinant of the deformation gradient matrix

Parameter of dynamic pinned circular arch model

0,/0,
A,/ 4,
Length of undeformed artery

Differential terms of dynamic pinned circular arch i =1, 2, 3, 4

Length of isocompliant arterial segments at pre-stressed state
Length of host artery segment at pre-stressed state
Length of graft segment at pre-stressed state

Length of deformed artery

Stitch length

Unrestrained length of isocompliant segments under applied blood pressure
Unrestrained length of arterial segment under applied blood pressure
Unrestrained length of graft segment under applied blood pressure

Tensile deformation due to stitching stiffness (isocomplaint arterial segments)
Tensile deformation due to stitching stiffness (arterial segment)

Tensile deformation due to stitching stiffness (graft segment)

Gap between the two blood vessels of an end-to-side anastomosis with

rigid/interrupted stitching
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Gap between the two blood vessels of an end-to-side anastomosis with

continuous stitching
Axial force along the circumferential direction

Minimum number of stitches in order to prevent suture/knot failure
Minimum number of stitches in order to prevent arterial tissue failure
Minimum number of stitches in order to prevent blood leak
Longitudinal residual axial force

Number of stitches

Number of mode (frequency curves analysis)

Internal moment of circular element
Mass of the unit-length arterial element

Parameter of frequency curves analysis

Hydrostatic pressure matrix
Hydrostatic pressure

Product of four dimensionless parameters

Blood pressure

Blood pressure at cross-section 7 (i=1, 2, 3)
Diastolic pressure
Systolic pressure

Internal shear force of circular element

Average flow rate at cross-section 7 (i =1, 2, 3)
Non-equilibrium stresses for one relaxation process

Radius of undeformed artery (Chapters 5 and 6), or radius of two-hinged

anastomosis model (Chapter 9)

Radius of pin-loaded hole
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Outer radius of undeformed host artery

Mean radius of undeformed graft

Outer radius of undeformed graft

Radius of isocompliant artery at pre-stressed state

Radius of host artery at pre-stressed state

Radius of graft at pre-stressed state

Far-field force along the x direction
Far-field force along the z direction
Tensile far-field force along the graft axis

Radius of deformed artery

Radius of gyration

Radius of suture

Suture-line length

Parameter of frequency curves analysis

Incision length

Second Piola-Kirchhoff circumferential strain

Distance between sequential stitches

Natural period of linear arterial model

Longitudinal Cauchy stress multiplied by current thickness

Circumferential Cauchy stress multiplied by current thickness

Time

Time instant of step »

Time instant corresponding to the maximum response of the diastolic phase



Duration of cardiac pulse

Duration of systolic phase

Characteristic time of response of Hariton arterial model
Characteristic time of response of Mooney-Rivlin arterial model
Characteristic time of response of Skalak et al. arterial model

Thickness of element i of the two-hinged anastomosis model (i =1,1I)
Time step duration

Normal function of #"

Radial displacement, of isocompliant arterial segments, from pre-stress state

Initial radial displacement, velocity, and acceleration
Radial displacement, of arterial segment, from pre-stress state

Radial displacement, of graft segment, from pre-stress state

Response to free vibration (radial displacement)

Response to pulse loading (radial displacement)

Static radial displacement
Maximum radial displacement
Radial displacement from undeformed state

Radial displacement of element i of the two-hinged anastomosis model (

i=1,11)

Displacement of element i of the two-hinged anastomosis model along the x-

axis (i=L1II)

Displacement of element i of the two-hinged anastomosis model along the y-

axis (i=11II)

Normalized radial displacement corrector
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Greek symbols

Phase velocity
Average flow velocity at cross-section i (i=1, 2, 3)

Volume of restrained arterial segment at-rest state
Volume of unrestrained arterial segment at deformed state

Strain-energy density matrix
Strain-energy density
Normal function of w"

Tangential displacement of element i of the two-hinged anastomosis model (

i=LI)
Longitudinal distance along the anastomosis (end-to-end anastomosis)

Distance between the edges of two anastomosed segments at unrestrained

deformed state (end-to-end anastomosis)

Distance between the edges of two anastomosed segments at restrained

deformed state (end-to-end anastomosis)

State variables

Stitching technique participation factor

Dimensionless material parameter of Mooney-Rivlin strain-energy function

(Chapter 6), or graft-to-artery radii ratio = R / R, (Chapter 8)
Constant of Newmark's constant-acceleration method, equal to 0.25
Dimensionless free-energy factor constant

Viscosity coefficient

Ratio of artery radius to artery thickness y =R, / H,,

Constant of Newmark's constant-acceleration method, equal to 0.5
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Arterial segment longitudinal strain
Suture strain

Circumferential strain of the artery at systolic phase, in respect to the strain

of the diastolic phase

Strain of element i of the two-hinged anastomosis model (i =1,11)

Radial displacement as a function of the distance from the anastomotic

interface

Far-field radial displacement of the artery

Modified radial displacement as a function of the distance from the

anastomotic interface

Shear stress at the stitching region

Angle along the arterial ring (Chapters 4 through 6), or anastomosis angle

(Chapter 8)

Angle defining the stitches placement for the artery patch model

Angle along the circular element i of the two-hinged anastomosis model (

i=1,11)

J12/(H,R,)

Parameter of dynamic pinned circular arch model

Circumferential elongation
Radial elongation
Longitudinal elongation
Longitudinal pre-stretch

Shear modulus material parameter of Mooney-Rivlin strain-energy

function

Stress-like material parameters of Holzapfel et al. strain-energy function

Dimensionless material parameters of Holzapfel et al. strain-energy

XXXV1



function

Poisson's ratio of the arterial tissue

Arterial-wall density at deformed state

Arterial-wall density at undeformed state

Blood density

Density of element II of the two-hinged anastomosis model
Tensile stress along the graft axis

Circumferential Cauchy stress

Radial Cauchy stress

Longitudinal Cauchy stress

Embedding stresses at the stitching hole

Embedding stresses at the stitching hole of interrupted rigid suturing
Embedding stresses at the stitching hole of continuous stitching technique
Ultimate tensile strength of arterial tissue

Ultimate tensile strength of arterial segment

Ultimate tensile strength of graft segment

Local stresses at the stitching zone of the artery side

Local stresses at the stitching zone of the graft side

Misses effective stress

Stress of element i of the two-hinged anastomosis model (i =1,11)

Time of unit-impulse response function (Chapter 4), or graft-to-artery

thicknesses ratio 7= H < / H, (Chapter 8)

Relaxation time
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Polar angle of intersection plane of an end-to-side anastomosis

Orientation angle of collagen fiber reinforcement

Cross-section rotation of element i of the two-hinged anastomosis model (

i=1,11)

Shear flexibility factor

Circular frequency of linear arterial model

Circular frequency of Skalak et al. “zero-order nonlinear” model

Circular frequency of Mooney-Rivlin equivalent linear arterial model

Circular frequency of element I of the two-hinged anastomosis model
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CHAPTER 1

Introduction

1.1 Motivation

Cardiovascular diseases continue to be the leading cause of mortality and premature death
in the Western world. Vascular surgeries treat vascular diseases, such as atherosclerosis

and aneurysms, and traffic or other serious injuries that lead to violent artery fractures.

Vascular surgeries potentially suffer from short-term and long-term post-surgery
complications, related to the successful stitching of human arteries with themselves, or
with grafts (venous or artificial). Short-term complications, involving the tearing of the
arterial wall after the stitching is complete, suture-line bleeding, or failure of the suture or
the knot that is tied by the surgeon, increase the total time of the operation. Long-term
post-surgery complications, involving restenosis of the blood vessel due to the
development of intimal hyperplasia, thrombosis due to blood leakage, or failure of the
suture due to deterioration of the suture material, may lead to revision surgery if diagnosed
in time. Evidently, stitching techniques and related suture and graft materials are of great

importance for the short-term and long-term success of vascular surgeries.

In fact, little work has been published on the dynamic behavior of anastomosed arteries,
and particularly on the stress concentration detail at the stitching holes. Related materials
are characterized by large uncertainties and their material parameters depend on many
factors. For example, the mechanical behavior of arterial tissues varies with topology,
disease, age, and other physiological states of the blood vessel. Moreover, graft and
suturing characteristics may change over time, as is the case of the mechanical properties
of a Dacron-graft, which before use are different than those after five years in the human
body. Thus, there is a need of investigating the general mechanical behavior of arterial

anastomoses by taking into account all important parameters.

1.2 Objectives

The purpose of this research is to investigate the response of different arterial anastomosis
techniques in a general manner and provide useful conclusions about the optimum graft
properties and stitching details in order to avoid short-term or long-term post-surgery
complications. To investigate the mechanics of the suture line, it is necessary to first

examine the dynamic radial response of arteries with different material behaviors. Due to



the fact that arterial tissues and biological activities have a considerable complexity and
their material parameters depend on many factors, we aim to develop basic models that are

characterized by generality, and provide closed-form solutions (where it is feasible).

In particular, the following models are investigated in this thesis:

a. Linear arterial model under dynamic loading
b. Hyperelastic arterial model under dynamic loading
c. Viscoelastic arterial model under dynamic loading
d. End-to-end anastomosis model by using displacement-based analysis
End-to-side anastomosis model by using stress-based analysis
f. Two-hinged circular model identifying the role of elastic mismatch for end-to-side

anastomosis, side-to-side anastomosis, and artery patching

The development of fundamental design-oriented methodologies can offer new and better-
substantiated understanding of the mechanics of arterial stitching, and form the basis for
the development of vascular anastomosis guidelines related to the prevention of post-
surgery complications. We also expect through this research to interpret medical practices
known to the medical society through patency rates but have not been justified by

mathematical models.

Our investigation focuses on the analysis of the solid arterial part of the vascular system in
terms of principal displacements, stresses, and/or energy density. The models are compared
with experimental and finite-element studies available in the literature in order to evaluate
the level of approximation of each approach. Constructive feedback and suggestions

provided by cardiovascular surgeons are taken into account.

Note that, this thesis does not take place against the final medical decisions taken by the
surgeons. Medical practice involves a larger amount of factors and higher complexity than

those considered in the present study.

1.3 Outline

This thesis is organized into twelve chapters. Chapters 1 through 3 constitute an
introduction on the topic of interest. Chapter 1 describes the motivation that led to this
study and its objectives. Chapter 2 presents a comprehensive literature review on the
analytical, computational, and experimental studies that examined the response of vascular
anastomoses, as well as a review on theoretical studies concerning the elastic and

viscoelastic arterial response. Furthermore, Chapter 3 reports important information
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regarding topics of the cardiovascular engineering field, such as the induced blood
pressures along the arterial tree, characteristics of the arterial system, vascular diseases,

types of vascular anastomoses, etc.

Chapters 4 through 6 investigate the dynamic far-field response of the anastomotic region.
In particular, Chapter 4 presents a review of a previous work regarding a recently proposed
linear-elastic arterial model and its respective closed-form solution. Moreover, the
response of the linear-elastic model under different pressure time-profile approximations is
investigated for the first time. Chapter 5 examines the response of three hyperelastic
arterial models, representing the hardening behavior of healthy arteries, the hardening
behavior of atherosclerotic arteries, and the softening behavior of aneurysmatic arteries,
respectively. Chapter 6 extents the model of the healthy hyperelastic artery, derived in
Chapter 5, into a viscoelastic arterial model by adopting a generalized Maxwell model and

the Bonet-Holzapfel approach.

The bulk of this thesis (Chapters 7 through 9) focuses on the suture-line response of
different arterial anastomosis techniques. Numerical examples, and comparison against
studies available in the literature are presented. In particular, Chapter 7 proposes a
mathematical model governing the dynamic response of an end-to-end anastomosis. The
proposed displacement-based methodology accounts for all the important problem
parameters. In addition, a mathematical model describing the para-anastomotic
hypercompliant zone (PHZ) phenomenon is introduced. Chapter 8 studies the response of
the end-to-side anastomosis technique, by utilizing a stress-based analysis. The proposed
methodology is based on the general stress-concentration-factor (SCF) results obtained
from the analysis of pipe connections. Chapter 9 proposes a mathematical model aiming to
investigate the effect of elastic mismatch on the response of side-to-side related
anastomoses and artery patching. An idealized circular cylindrical anastomosis model
consisting of two parts, interconnected by two hinges, is formulated. Finally, Chapter 10

elaborates on the complex topic of the stress concentration at the stitching hole.

The present thesis ends with a summary of all the important conclusions of this dissertation

and with a discussion on the future work that may follow from this study, in Chapter 11.



CHAPTER 2

Literature Review

2.1 Previous work on the response of arterial anastomosis

Several studies have examined the response of vascular anastomoses by using analytical,
computational, or experimental methods. However, related studies limit their research to
specific arterial geometries or ignore the stress concentrations due to suture-artery
interaction. For the problem solution, is often utilized finite-element analysis instead of
analytical models. Moreover, little work has been published on the dynamic analysis of the
stitched anastomotic region. In their review article, Migliavacca and Dubini [1], clearly

point out the lack of such analyses.

Note that, many studies focus on the hemodynamic aspect of the problem, the induced wall
shear stresses, and the fluid patterns. This study does not deal with the hemodynamic
analysis of the problem. It focuses primarily on the arterial-wall mechanics and the
suturing detail of different anastomosis techniques (end-to-end anastomosis, end-to-side

anastomosis, side-to-side anastomosis).

Review articles on the computational [2, 1, 3, 4] and the experimental analysis of vascular
anastomoses [2, 5] are available in the literature. The following sections describe the most

representative published studies in the field of arterial suturing.

2.1.1 Analytical studies

Among the vascular anastomosis studies, analytical studies are the most limited.
Representative analytical works are those of Paasche at al., Melbin and Ho, and Rachev et

al. [6-8].

Paasche et al. [6] solved analytically a boundary-value problem describing the response of
an end-to-end anastomosis. The graft behavior was assumed to be rigid. They calculated
the radial displacements and the induced wall stresses, along the longitudinal axis of the
host-artery, for different graft-to-artery radii ratios. They found that the optimum graft-to-

artery radii ratio, minimizing the axial and shear stresses, is in the range of 1.4 to 1.5.

Melbin and Ho [7] investigated the effect of three different end-to-end anastomotic shapes
(transverse sectioned, bias sectioned, graft with elliptic-end connected to a bias sectioned

artery) on the peak stresses. The authors did not provide a complete solution of the



deformation at the anastomotic region. They assumed a range of peak circumferential

elongation values in order to calculate the peak stresses.

Rachev et al. [8] proposed an analytical model to investigate the stress-induced thickening
for the case of an artery/graft end-to-end anastomosis and for the case of an implanted
stent. The mathematical model considered wall remodeling (thickening) and clamped
conditions between the graft (or stent) and the host artery. The derived equations were

solved numerically.

2.1.2 Computational studies

Most computational studies rely exclusively on finite-element analyses and their results
concern the response of specific arterial geometries. The main advantage of using
computational tools is that problems with complex geometries and irregular flow

conditions can be analyzed.

In particular, in a finite-element study, Hofer et al. [9] investigated the case of end-to-side
anastomosis, without modeling the response of individual stitches. They studied the effect
of compliance mismatch on the anastomosis response and on the development of intimal
hyperplasia. In order to correlate intimal hyperplasia to the calculated response, the
computational results were compared to a pre-existing experimental study. The
development of intimal hyperplasia at the suture line was found to be mainly affected by

the induced stresses and strains at the blood-vessels wall.

Ballyk et al. [10] studied an end-to-end and an end-to-side anastomosis by use of finite-
element analysis, aiming to examine if compliance mismatch promotes intimal hyperplasia.
The sutures were modeled as discrete points along the suture line, resulting in excessive
stress concentration values at the stitching area due to the point-like modeling approach as
such. They concluded that elevated compliance mismatch increases the suture-line

mechanical stresses and consequently the development of intimal hyperplasia.

Leuprecht et al. [11] and Perktold et al. [12] utilized three end-to-side anastomosis models,
each one concerning a different technique (conventional anastomosis, Taylor-patch
anastomosis, and Miller-cuff anastomosis). Their finite-element analysis yielded the wall
shear stresses and maximum principal stresses for each case. In particular, the latter study
modeled the stitches in detail using three-dimensional elements for the junction. They
suggested that the Taylor-patch, and Miller-cuff anastomosis techniques may reduce the

stress concentrations at the suture line, and therefore the generation of intimal hyperplasia.



In another finite-element study, Cacho et al. [13] investigated the effect of the insertion
angle (insertion angles between 20° and 40°) and incision length of coronary arterial
bypass models, though without modeling explicitly the response of individual stitches.
Lower insertion angles require longer incisions, influencing the graft shape and the
induced graft-wall stresses. They observed that with increasing insertion angles the peak

stresses were slightly lower and more restricted.

Schiller et al. [14] studied an artery/vein-graft and an artery/synthetic-graft end-to-end
anastomosis by using a fluid-structure coupling algorithm. The sutures were simulated as a
two-dimensional anastomotic interface. The artery to vein-graft anastomosis (for which the
artery was stiffer than the vein graft) caused increased stenosis at the stitching region,
compared to the artery to synthetic-graft anastomosis (for which the artery was softer than

the synthetic-graft).

More recently, Ngoepe et al. [15] examined the case of arterio-venous access grafts
forming end-to-side anastomosis with intersecting angles of 45°, 90°, and 135°. Such
anastomoses are performed in the case of patients undergoing hemodialysis. Ngoepe et al.
used a fluid-structure interaction algorithm, coupling computational fluid dynamics with
structural finite-elements models. They calculated, among others, the principal stresses and
deformations of the blood-vessels walls, and found that the 90° end-to-side configuration

shows slightly better performance than other configurations.

2.1.3 Experimental studies

Experimental studies carried out over the years have examined primarily the anastomosis

compliance and the development of intimal hyperplasia at the anastomotic region.

Along with their computational studies, Ballyk et al. [10] and Leupretch et al. [11] carried
out experimental investigations, aiming to correlate the development of intimal hyperplasia
to the system's response (obtained from computational results). They both suggested that
increased stress concentration at the suture line promotes the development of intimal

hyperplasia.

In an end-to-end anastomosis study, Lyman et al. [16] implanted synthetic-grafts, with
compliance approximately equal to that of the host artery, in dogs. They found that
compliant vascular grafts exhibit better behavior than noncompliant grafts, and that
compliance of synthetic grafts may decrease with time. Lyman et al. also observed that

thin-walled grafts are more compliant, but easier to tear during the suturing process.



Hasson et al. [17] investigated an end-to-end anastomosis between isocompliant arterial
grafts from dogs and found that a para-anastomotic hypercompliant zone (PHZ), which
promotes subintimal hyperplasia (SIH), exists near the suturing region. The compliance at
this region increases up to 50% compared to the compliance away from the stitching
region. In a later study, Hasson et al. [18] suggested that the suture technique affects
significantly the compliance of the anastomotic region. In particular, they showed that the
PHZ phenomenon occurs more frequently for anastomosis of the continuous-stitching
technique than that of the interrupted-stitching technique. In addition, they observed that
increased longitudinal stress of the arterial vessel reduce the compliance. This phenomenon
can be justified by the fact that longitudinal pre-stress affects the mechanical properties of
dog arteries [19].

Abbott et al. [20] studied the response of end-to-end anastomosis by implanting compliant
and stiff grafts in dogs. The longitudinal profiles of compliance differed considerably for
the two cases, with the compliance values of the later case (stiff graft) being lower. A PHZ
existed at the host artery side, either when using compliant or stiff grafts, whereas graft

patency rates were significantly increased when using compliant instead of stiff grafts.

Moreover, Ulrich et al. [21] experimentally investigated an end-to-end anastomosis
between pig aortic grafts and found that a PHZ does not exist in this case. They also

suggested that the main factor affecting the anastomotic response is the suture line itself.

In a later end-to-end anastomosis study, Baguneid et al. [22] examined the effect of
different suturing techniques on the para-anastomotic profile. They performed anastomoses
between isocompliant goat arteries by wusing continuous polypropylene stitching,
interrupted polypropylene stitching, and nonpenetrating clips. A PHZ existed for all cases.
For the case of nonpenetrating clips, the PHZ phenomenon and the development of intimal

hyperplasia were reduced.

In an end-to-side anastomosis study, Bassiouny et al. [23] found that the development of
intimal hyperplasia at the suture line of conventional end-to-side anastomosis is promoted
by healing mechanisms, compliance mismatch, and triangulation of the anastomotic
junction that may result in complex hemodynamic patterns. They also suggested that
intimal hyperplasia on the artery floor is developed due to low wall shear stresses and

hemodynamic factors that generate stagnation points at that region.

Noberto et al. [24] experimentally investigated the effect of the expansibility of vein cuffs

(end-to-side anastomosis technique) by jacketing the cuff with an artificial material. They



concluded that the good patency rates of Miller-cuff technique are not correlated to the

mechanical properties of the cuffs.

Moreover, Noori et al. [25] studied the flow patterns of different end-to-side techniques
and found that only the Miller-cuff technique appears to have better flow patterns due to its

wider anastomotic cavity.

Limited investigations have been performed on side-to-side anastomoses. Clinical studies
on side-to-side anastomoses showed that this technique has larger patency rates and better
fluid dynamics [26-28].

2.2 Previous work on the elastic and viscoelastic response of arteries

An extensive part of this study deals with the dynamic response of the arterial model away
from the anastomotic region. A number of elastic and viscoelastic arterial models have
been investigated over the years. This section describes in brief the most representative

elastic and viscoelastic theoretical studies available in the literature.

Previous analytical works on the dynamic radial response of elastic arterial models are
quite limited. The most representative studies are the works of Demiray and Vito [29] and
Humphrey and Na [30]. Demiray and Vito [29] investigated the dynamic response of
arteries by assuming a simplified sinusoidal solution for the deformation field. They found
that the dynamic loading increases the diastolic wall-pressures and decreases the systolic
wall-pressures, compared to the static loading, and that under certain conditions negative
wall-pressures may exist, implying artery collapse. Humphrey and Na [30] studied the
arterial-wall stress and strain response of healthy and diseased arteries. In order to solve
the problem they assumed that the motion (square of the inner radius) is described by a

Fourier series. Their model constitutes an extension of the Demiray and Vito model.

Due to the fact that the viscoelastic response of arteries cannot be modeled adequately by a
simple Maxwell or Voight element, several other models are proposed in the literature.
Kalita and Schaefer indicate in their review article [31] the different kinds of mechanical

systems that can simulate the viscoelastic behavior of arteries.

For example, Westerhof and Noordergaaf [32] proposed a five-parameter model consisting
of two Maxwell elements and a spring placed in parallel. Cox [33] suggested a model
consisting of a spring in series with a Voigt element, and Papageorgiou and Jones [34]

proposed a mathematical model with a number of Voigt elements in series. Holzapfel and



Gasser [35] and Holzapfel et al. [36] adopted a generalized Maxwell model, i.e. a model

that consists of a single spring on one end and a number of Maxwell devices set in parallel.

Haslach Jr [37] proposed a generalized model that describes the behavior of nonlinear
thermoviscoelastic soft tissues, including all time-depended behavior types. The model
consists of a system of evolution differential equations. He presented a number of
numerical examples on the viscoelastic response of soft tissues, by adopting different

constitutive laws, available in the literature, and their respective material data.

Moreover, Cani¢ et al. [38] developed a theoretical “reduced” model by considering
axially-symmetric geometry of the artery, viscoelastic arterial walls, and axially-symmetric
viscous blood flow. They calculated the viscoelastic response of arteries by conducting
numerical simulations and verified their method by comparing the numerical values to

experimental results.



CHAPTER 3
Background

3.1 Introduction

Predictive medicine and therapeutic decision-making necessitates comprehensive
understanding of the human biological activities in order to develop a suitable
mathematical model that describes the problem of interest and obtain the respective
optimal solution. In the field of cardiovascular engineering, the researcher or the interested
reader should be familiar with topics such as the histology and mechanical properties of
biological tissues, the blood pressure profile, cardiovascular diseases, cardiovascular

surgery techniques, etc.

This chapter provides a basic background regarding the cardiac cycle and the induced
blood pressures along the arterial tree, the characteristics of the arterial system, vascular
diseases that may lead to vascular operations, and types of vascular anastomoses.
Moreover, related topics concerning large part of the literature, such as the compliance of

blood-vessels and the phenomenon of intimal hyperplasia, are described.

3.2 The cardiac cycle and the induced blood pressure

The human heart constitutes the pumping station of the body. The heart vibrates due to
electric pulses applied to its surface, inflating periodically the various heart chambers. In
one single day, the heart beats about one hundred thousand times and it is able to pump

about 10 000 liters of blood through the circulatory system.

The cardiac cycle consists of two major functional periods: systolic and diastolic. The
systolic period occurs when the left and right ventricles contract, ejecting blood into the
aorta and pulmonary artery. As a result, the aortic pressure increases and the arteries dilate.
During the diastolic period, the aortic and pulmonary valves close, blocking further blood
ejection into the arteries; the ventricles of the heart are relaxed, and the right and left

atrium are filled with blood that passes to the ventricles.

Figure 3-1 shows the heart chambers, the adjacent blood vessels, and the direction of blood
flow through them. The circulation from the right ventricle through the pulmonary artery,
the lungs, and the pulmonary veins to the left atrium is called pulmonary circulation. It
carries deoxygenated blood to the lungs and returns oxygenated blood to the heart. The

circulation from the left ventricle through the aorta, to the entire body, back to the vena
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cava veins, the right atrium, and the right ventricle is called systemic circulation. The
systemic circulation carries oxygenated blood through the entire body and returns

deoxygenated blood to the heart.

Left common carotid artery

Left subclavian artery
Ligamentum arteriosum

Brachiocephalic
trunk

Superior —. Pulmonary trunk
vena cava .y

Right - g
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Figure 3-1: The human heart, adjacent blood vessels and blood flow circulation (from
http://www.wyeriverupperschool.org/houserwrus/Anatomy%?20Physiology/May52011/ind
ex.html).

During each cardiac cycle, the arterial system is subjected to intraluminal pressures (blood
pressure) similar to the time-profile shown in Figure 3-2. Arterial blood pressure is the
intraluminal pressure that the arterial walls have to sustain due to the action of the heart in

pumbing blood to the entire body.
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Figure 3-2: Aortic pressure-time profile (after Zhong et al. [39]).
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Zhong et al. [39] presented an approximation of the aortic pressure-time profile, as a
function of two exponential equations. Figure 3-2 shows a typical example of the aortic
pressure-time profile approximation proposed by Zhong et al. The systolic-phase duration

in this case is equal to ¢, =0.35 sec. The time interval 0<¢<¢ represents the systolic

phase, during which the blood is pumped into the aorta and the aortic walls inflate due to

the maximum overstress pressure, whereas the time interval 7 <t <1 represents the

diastolic phase, during which the aortic valve closes and the aortic blood pressure
decreases. The pressure at the start of the systolic phase (and at the end of diastolic phase)
is called diastolic pressure, while the maximum pressure during the systolic phase is called

systolic pressure.

The pressure time-profile of Figure 3-2 corresponds to the case of an aorta under normal
conditions. Blood pressure profiles may vary with topology along the human body or
pathological conditions such as hypertension and hypotension. Figure 3-3 shows blood
pressure profiles of different large-size arteries. It can be noticed that the descending aorta

and the right subclavian artery exhibit the maximum systolic and diastolic pressures.

nght subclavian artery innominate artery
pressure pressure
{mm Hg) {mm Hg)
12 110
60 60
eloc velocity
t:m l“"i 70] {ems ')
0
ascending aorta descending lo-ml T.7

pressure l m Hg)
12

rang]
i~ Lf\\ m
velocity velocity
{cms-") , l ‘l (ems~')
oL

. 50 right renal artery descending IBPI;II.'I.E“
valoshy [ mm Hg)
{ems=") o
pressure 20 valocity
{mm Hg) [NJKH (ems=")
45
right common iliac artery abdominal aorta L. 1
velocity nnlunr.
{fems ") 0 mm Hg}
IDO welocity
i.'rlm Hn] {ems—)
—
0-2s

Figure 3-3: Blood pressure and velocity time-profiles of large-size arteries (after Mills et

al. [40]).

Figure 3-4(a) reports the average blood pressure of veins and arteries along the human

body. For regions located above the heart level (arms, neck, head), the mean arterial
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pressure is decreased with increasing distance from the heart, whereas for the rest of the
body the arterial or venous pressure is increased with increasing distance from the heart.
The blood pressure profile is also affected by the position of the human body, as in the case
of a person in the supine position. For a person in the supine position, the systolic pressure

increases gradually along the arterial tree (Figure 3-4(b)).
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Figure 3-4: (a) Average blood pressure along the human body (after Rushmer [41]), (b)
Pressure time-profiles of a supine healthy person along the arterial tree (from

http://www.zuniv.net/physiology/book/chapter9.html).

People that suffer from hypertension exhibit increased blood pressure values. According to
the latest guidelines of the European Society of Hypertension (ESH) and of the European
Society of Cardiology (ESC) for the management of arterial hypertension [42], the optimal
values of the systolic and diastolic blood pressure is less than 120 mmHg and less than 80
mmHg, respectively. At optimal pressure values the cardiovascular system exhibits
relatively low stresses and strains, delaying the aging and fatigue of the heart and the
blood-vessels. Hypertension is categorized in three stages, namely Grade-1 hypertension,
for systolic and diastolic pressure values 140-149 mmHg and 90-99 mmHg, respectively;
Grade-2 hypertension, for systolic and diastolic pressure values 160-179 mmHg and 100-
109 mmHg, respectively; and Grade-3 hypertension, for systolic and diastolic pressure
values greater than 180 mmHg and 110 mmHg, respectively. Table 3-1 lists the blood

pressure definitions and classifications for adults.

Note that, during the first critical hours after a major vascular operation (e.g. coronary

artery bypass operation) the patient should not experience high blood pressures. Therefore,
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the patient remains in repression (“sleep”) for some hours following the operation. If the
patient is already hypertensive, he takes the appropriate pharmaceutical treatment to

maintain his blood pressure at optimal levels.

Observe that all pressure time-profiles can be approximated by the profile given in Figure
3-2 by varying the values of systolic pressure, diastolic pressure, systolic-phase duration,
and cardiac cycle duration. A time-varying pressure profile (such as that of Figure 3-2)
should be utilized in performing a dynamic analysis, as opposed to the (constant) systolic-

pressure value utilized in performing a static analysis.

Table 3-1: Definitions and classification of blood pressure for adults (after [42]).

Category Systolic (mmHg) Diastolic (mmHg)

Optimal <120 and <80
Normal 120-129 and/or 80-84

High normal 130-139 and/or 85-89
Grade-1 hypertension 140-159 and/or 90-99
Grade-2 hypertension 160-179 and/or 100-109
Grade-3 hypertension =180 and/or 2110
Isolated systolic hypertension 2140 and <90

3.3 The arterial system

3.3.1 Structure and histology

Arteries are characterized by complexity both at macroscopic and microscopic scale. They
are inhomogeneous, anisotropic and their structure varies with age, topology along the
arterial tree, and disease. Figure 3-5 shows a cross section of a typical artery.
Macroscopically, the arterial wall is composed by three layers. Staring from the inside of

the artery, these layers are the intimal, the media, and the adventitia.

The intimal consists of an endothelial and subendothelial layer and is separated from the
media by the internal elastin lamina. In healthy arteries the intimal layer is very thin and
has insignificant mechanical properties, whereas aged and atherosclerotic arteries have

stiffer and thicker intimal, resulting in a significant contribution to the artery mechanical

14



behavior. The media consists of smooth muscle cells, elastin and collagen fibrils. At low
blood pressures, the media has high strength compared to the other two layers and can
resist circumferential and longitudinal loadings. The adventitia layer is separated from the
media layer by the external elastin lamina. It consists mainly of fibroblasts, fibrocytes, and
collagen fibrils. At high blood pressures, the adventitia stiffens and strengthens, behaving
as a protective mechanism for the other layers. Furthermore, its thickness varies depending

on the blood-vessel type, physiological function, and topology along the arterial tree.
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Figure 3-5: Cross section of a typical artery (after Humphrey [43]).

Arteries can be categorized in two types: elastic and muscular arteries. Elastic arteries are
large-size arteries that are located close to the heart (e.g. aorta, iliac artery) and muscular
arteries are medium-size arteries that consist mainly of muscular cells and are located at
the peripheral circulation (e.g. cerebral arteries, femoral arteries) (Figure 3-6). Moreover,
the media layer of medium- and small-size arteries is thicker than the adventitia layer and
in some cases the adventitia is nonexistent (e.g. cerebral arteries). Figure 3-6 shows the

diameter and histology of arteries and veins along the circulatory system.

Typical values of the radius of large- and medium-size arteries vary between 0.1 cm (e.g.
coronary arteries) and 1.6 cm (aorta). Typical values of their wall thickness vary between
0.01 cm and 0.12 cm. Table 3-2 reports the geometric properties ranges of large- and

medium-size arteries.

3.3.2 Mechanical behavior

The mechanical properties of arterial tissues depend on the artery location, age, disease,

and other physiological states [44, 45]. In general, their mechanical behavior does not obey
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Hooke’s law [46, 47], exhibiting anisotropic nonlinear behavior for finite deformations.
The arterial tissue is a hyperelastic material and its stress-strain relationship derives from a
strain-energy function. Furthermore, it is an incompressible material, meaning that it does

not change its volume under applied elongations [48].
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Figure 3-6: Variation of vessel diameter and histology along the circulatory system (after

Rhodin [49]).

Table 3-2: Geometric properties of large- and medium-size arteries.

Parameter Value
Radius 0.1-1.6 cm
Wall thickness 0.01-0.12 cm
Length 0.5-15 cm

Note that, muscular arteries often exhibit viscoelastic behavior, since they demonstrate
hysteresis under cyclic loading, creep under constant loading, and stress relaxation under
constant displacement. Their relatively low-energy loss in each cardiac cycle prevents

reflected pressure waves from resonating in the arterial systems [50].
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Typical hyperelastic constitutive laws that describe the mechanical behavior of biological
tissues are the Mooney-Rivlin [51, 52], Fung [53], Gent [54], the strain-energy function of
Skalak et al. [55], and the constitutive law proposed by Delfino et al. [56].

The stress-strain relationship of arterial tissues depends mainly on its elastin and collagen
content (Figure 3-7(a)). At low blood pressures, the mechanical behavior depends on the
elastin and smooth muscle content of the media. In this case, the elasticity modulus is
relatively low. At higher blood pressures, the strength of the adventitia collagen fibers is
activated, since the wavy collagen fibers are stretched and rearranged circumferentially.
Thus, the elasticity modulus of the arterial tissue is increased and the stress-strain curve
becomes steeper. Under physiological pressures (80-120 mmHg) the mechanical behavior

of arterial tissues can be considered to be linear elastic.
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Figure 3-7: (a) Induced blood pressure versus strain of the artery, collagen, and elastin; (b)
Arterial tissue stress-strain relationship, of a 25 year old man, under dynamic and quasi-

static loading (after Mohan and Melvin [47]).

Based on the biaxial dynamic tests of Mohan and Melbin [47], the ultimate strength of
human arterial tissues varies between 1 and 3 MPa. Figure 3-7(b) shows the longitudinal
and transverse stress-strain relationships of a human arterial tissue (conducted by Mohan
and Melvin) under dynamic and quasi-static loading. Observe that the artery exhibits
higher ultimate strength and lower ultimate elongations (point F) when subjected to

dynamic loading, rather than quasi-static loading.
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3.3.3 Residual stresses

The load-free configuration of an artery is not stress-free. Residual stresses pre-exist in the
arterial tissue. These stresses exist due to delayed growth of arteries compared to the rest of
the body, remodeling, injury, or viscoplastic strains, and have significant impact on the
response of arteries to external loads [57]. Residual stresses are evident once an unloaded
in vivo artery is cut transversally or longitudinally. When an artery is cut transversally it
contracts along the longitudinal direction, releasing longitudinal stresses; and when an

artery is cut longitudinally, the cylindrical sector opens, releasing circumferential stresses.

Consequently, residual stresses should be taken into account in the development of the
arterial mathematical model. Longitudinal residual stresses are frequently accounted for by
setting an initial pre-stretch to the artery [10], whereas circumferential residual stresses can
be accounted for by the “opening-angle” method [57]. The “opening-angle” method
assumes that the stress-free configuration of the artery is an open cylindrical sector. Thus,
in order to obtain the initial cylindrical configuration, a bending moment is applied to the
open sector. Once the axial pre-stretching and bending are applied to the model, the load-

free (but not stress-free) initial configuration of the artery is obtained.

3.4 Vascular diseases

Among the vascular disorders, atherosclerosis and aneurysms are the most frequently
encountered. Both diseases require surgical treatment when exhibiting critical

characteristics, defined by medical regulations.

An aneurysm is a disorder of the arterial tissue, in which the wall of an artery section
becomes weak and soft. While the blood pressure pushes outward this soft tissue, the artery
dilates in a balloon-like shape, as shown in Figure 3-8(a). It most commonly occurs in
people that are 60 years old or older. If the aneurysm is not diagnosed in time, it may
rupture and uncontrolled bleeding will occur. In this case, the patient has low chances of
survival (10-20%). On the other hand, if the aneurysm is diagnosed in time, the problem is
treated by a vascular operation in which the diseased part is removed and a graft is sutured

in that place (open repair), or by an endovascular repair [58, 59].

Atherosclerosis is the formation of a plaque on the inner surface of the artery, resulting in
hardening of the arterial wall and narrowing of the arterial lumen. The plaque is formed by
fatty substances, cellular waste products, fibrin cholesterol, calcium, and collagen fibers

that are transferred by blood. Its development begins from an early age and is negatively
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affected by high cholesterol and triglyceride levels, high blood pressure, and smoking. In
early stages, only the inner layer (intimal) of the artery is affected, whereas in later stages
the second layer (media) is also affected. When the arterial lumen is completely blocked by
a blood clot or a smaller artery is blocked by a piece of the plaque that broke off, the
affected area is not oxygenated and the adjacent tissue is destroyed. When arteries that
oxygenate vital organs are blocked, as is the case of heart attack or stroke, the
consequences may be fatal. Figure 3-8(b) shows the formation of an atherosclerotic plaque,
the narrowing of the artery lumen, and the complete blocking by a blood clot. An artery
with atherosclerotic stenosis is treated by bypass surgery or angioplasty [60, 61].
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Figure 3-8: (a) Aortic aneurysm (From http://www.ncbi.nlm.nih.gov/pubmedhealth
/PMH0002109/), (b) Formation of atherosclerotic plaque (From http://www.nlm.nih.gov/
medlineplus/ency/imagepages/18020.htm).

3.5 Types of anastomosis

Vascular surgery operations treat vascular diseases, traffic-related and other serious
injuries that lead to violent artery fracture. Arterial anastomosis may be categorized in
three types: end-to-end anastomosis, end-to-side anastomosis, and side-to-side anastomosis

(Figure 3-9).

An end-to-end anastomosis is performed when the diseased artery segment is removed, and
the healthy segments are stitched together, either directly or through the insertion of an
artificial graft. This technique is often applied in cases of aortic aneurysms, femoral
aneurysms, etc. In addition, end-to-end anastomosis is applied when an artery is

transversely cut after a violent incident.
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Figure 3-9: Different types of anastomosis (a) end-to-end anastomosis; (b) conventional

end-to-side anastomosis; (c) side-to-side anastomosis (after Migliavacca and Dubini [1]).

The end-to-side and side-to-side techniques can bypass an arterial stenosis by utilizing an
arterial, a vein, or an artificial graft. An end-to-side anastomosis uses a graft to bypass the
diseased segment and provide oxygenated blood from the proximal to the distal
anastomosis (e.g. coronary artery bypass), or uses an artery that was not removed from the
blood circulation to provide oxygenated blood through a distal anastomosis (e.g. bypassing
by using the internal mammary artery). In both, cases the graft is sutured laterally at a
longitudinal incision of the host artery. On the other hand, for a side-to-side anastomosis,
both the host artery and the graft are connected and stitched together through longitudinal

incisions, as shown in Figure 3-9(c).

In the case of end-to-side anastomosis, several techniques have been proposed in an effort
to reduce the development of intimal hyperplasia and increase graft patency rates of distal
anastomoses. These techniques are relatively recent and are known mainly to the academic
community rather than the medical community. Some of these conduits show promising
patency rates. The most known techniques are the Miller-cuff (Figure 3-10(d)) and the
Taylor-patch anastomosis (Figure 3-10(c)). Other end-to-side anastomosis techniques are
the Linton-patch, the vein boot, and the arteriovenous fistula anastomosis (Figure

3-10(d,e,f)).
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Figure 3-10: Different end-to-side techniques: (a) conventional technique; (b) Linton-
patch; (c) Taylor-patch; (d) Miller-cuff; (e) vein boot; (f) arteriovenous fistula (after
Kapadia et al. [62]).

3.6 Post-surgery complications

Vascular-operations suffer from short-term and long-term post-surgery complications.
Short-term complications, including the tearing of the arterial wall after the stitching is
complete, suture-line bleeding, or failure of the knot that is tied by the surgeon, increase
the total time of the operation. Long-term complications involve restenosis of the blood
vessel due to development of intimal hyperplasia, thrombosis due to blood leakage, or
failure of the suture due to gradual deterioration of the suture material [63]. If a long-term

post-surgery complication is diagnosed in time, it may lead to a revision surgery.

3.6.1 Intimal hyperplasia

Among the long-term post-surgery complications, the development of intimal hyperplasia
(or neointimal hyperplasia) is the most widely-studied. It is considered to be the main
cause of graft failure. Intimal hyperplasia is a physiologic healing response of the arterial-
wall to injury. This response causes a decrease of the arterial lumen and re-stenosis of the
blood vessel. If the stenosis is detected in time, the vascular operation is repeated and the

graft is replaced.
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Arterial-wall injury may be caused by a vascular anastomosis operation, angioplasty, stent
insertion, or around long-term venous catheters. The injured endothelium releases
inflammatory mediators that trigger platelet, fibrin, and leukocyte aggregation to the area.
Smooth muscle cells migrate from the media to the intimal, where they multiply and
deposit extracellular matrix. As a result, a neo-intima is formed and intimal hyperplasia

(thickening) is developed.

All types of anastomosis suffer from intimal thickening at the suture line. Figure 3-11
shows that the development of intimal hyperplasia for the case of end-to-side anastomosis
occurs at two characteristic regions: the suture line and the artery floor opposite of the

distal anastomosis [23].

Several factors are identified to influence the problem, such as irregular flow conditions,
low wall shear stresses, irregular mass transportation into the blood-vessel wall,
compliance mismatch, increased mechanical stresses of the sutures and the blood-vessels,
etc. Yet, it is not completely clear in what specific way and how important the influence of

each factor is on the development of intimal hyperplasia.

Suture line IT

Artery floor IT

Figure 3-11: Development of intimal hyperplasia at an end-to-side anastomosis; IT: Intimal

Thickening (after Bassiouny et al. [23]).

3.7 Compliance

The blood-vessels and anastomotic region response is frequently calculated in terms of
compliance [17, 18, 20-22]. Compliance is the ability of a blood-vessel to distend and
increase its diameter under applied intraluminal pressures. It is mathematically defined as

the circumferential strain of the systolic phase in respect to the strain of the diastolic phase,

€., , divided by the pressure difference:

D __ f (3.1)
D,(p,=ps) (P,—Ps)

s

Compliance =
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where D, and D, are the blood vessel diameters under systolic and diastolic pressure,

respectively, and p and p, are the systolic and diastolic pressures, respectively.

A graft that has equal compliance to that of the host artery is considered to be the optimal
choice, to favor the decreased thickening of the intimal and the increased patency of the

graft.

Researchers who studied the compliance of end-to-end anastomosis observed that, for
some cases, a para-anastomotic hypercompliant zone (PHZ) exists. The PHZ phenomenon
was observed for the first time by Hasson et al. [17]. Since then, several other researchers

investigated the phenomenon [18, 20-22, 64].

A PHZ exists when the compliance of the host artery or the graft is increased to a
maximum before falling to a minimum at the suture line. Figure 3-12 shows an
experimental-response profile of an end-to-end anastomosis. The diameter profile along
the anastomotic region (Figure 3-12(a)) does not reveal the PHZ phenomenon, whereas the
compliance profile along the anastomotic region (Figure 3-12(b)) does reveal the PHZ
existence close to the suture line (point 0 mm). Away from the suture line (6-10 mm) the

compliance is constant.
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Figure 3-12: Response profiles of an end-to-end anastomosis along the anastomotic region:
(a) Diameter of anastomosis measured by pulsed ultrasound instrument, (b) Compliance

measured as % radial change/mmHg, x 10 (after Hasson et al. [17]).
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CHAPTER 4

Arterial Dynamic Response: Linear Model

4.1 Introduction

From the mechanics point of view, the human arterial system can be idealized as a system
of cylindrical elastic pipes that transport blood under pressure provided from the heart [65].
As discussed in Section 3.3, the arterial tissue is heterogeneous, consisting of three
inhomogeneous layers. Its mechanical properties depend on the artery location, age,
disease, and other physiological states [44, 45]. In general, the mechanical behavior of the
arterial tissue does not obey Hooke’s law [46, 47], exhibiting anisotropic nonlinear
behavior for finite deformations. Moreover, the response of biological tissues is affected by

the existence of residual stresses [57].

Herein the blood vessel is modeled as a cylindrical pipe which assumes that the elastic
properties (elasticity modulus) of the model incorporate in an average sense the tangential
stiffness, the anisotropy, the inhomogeneity, and the residual stresses of the artery walls.
Therefore, the arterial wall is assumed to be homogeneous and the mechanical response

linear elastic.

This chapter investigates the dynamic response of a linear-elastic artery in terms of the
radial displacement away from the anastomotic region. The proposed linear arterial model
and the derived closed-form solution described herein have been recently proposed by
Demetriou [66]. The model is comprehensive, analytical and adopts the worst-case
scenario of blood pressure loading (conservative case). Furthermore, this chapter studies
the dynamic response of the linear-elastic artery under different pressure time-profile
approximations, for the first time. Pressure time-profile approximations simulating the first

loading cycle (after the blood flow is restored) and the long-term loading are considered.

The formulated linear arterial model is a single-degree-of-freedom system. By assuming a
pulse-type loading approximation the system response can be analytically derived by
means of Duhamel's integral. In this way, is obtained a general closed-form solution for the
far-field response of the anastomosis. When considering more complex loading

approximations, the response is derived through numerical methods.

Note that, the aforementioned model constitutes the basis of the hyperelastic and
viscoelastic models proposed in Chapters 5 and 6 respectively. In addition, the derived

maximum radial displacement is adopted by the displacement-based methodology
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proposed in Chapter 7, in order to account for the arterial axial-circumferential

deformation coupling and suture-artery interaction of end-to-end anastomosis.

4.2 Review of previous work

This section describes the dynamic response of the linear-elastic artery, away from the
anastomotic region, based on the work of Demetriou [66]. Furthermore, the derived closed-

form solution is presented.

4.2.1 Mathematical model

Figure 4-1(a) shows the configuration of the arterial model considered in this chapter. The

artery is modeled as an elastic cylindrical pipe with wall thickness /H, and radius R, . Note

that, the thickness and radius are measured at zero blood pressure and in vivo length,
implying that the artery is in its pre-stressed state. The mathematical formulation is based
on the following assumptions: (a) the centerline of the ring in the undeformed state forms a

full circle with radius R ; (b) the arterial wall thickness is small compared to the radius of

the centerline of the ring therefore the radial stresses are not considered; (c) the cross-
section is axially symmetric and constant around the circle, implying that the arterial wall
has constant thickness; (d) the arterial tissue consists of a single homogeneous layer; (e)
the arterial tissue behaves as a simple orthotropic linear-clastic material (i.e. the
mechanical properties in the radial and circumferential directions are the same and differ
from those in the longitudinal direction, ignoring the Poisson effect in the orthotropy
constitutive law); (f) no boundary constraints are applied on the ring; (g) the effects of

rotary inertia and shear deformation are neglected; and (h) viscous effects are ignored.
Note that, the simplified orthotropic model utilizes two elastic constants, £, and £,

representing the plane-strain elastic moduli in the circumferential and the longitudinal

directions respectively [64].

4.2.1.1 Response to general dynamic loading

The axially-symmetric arterial model undergoes in-plane extensional vibration due to a
uniformly-distributed wall pressure p(z). The flow-induced wall shear stresses are
ignored. Their contribution to the response of the structural system is insignificant, since
the flow-induced wall shear stresses values are very low (of the order of 100 Pa) compared

to the principal stresses of the arterial walls (of the order of 100 kPa).
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Figure 4-1: (a) Configuration of the linear arterial model considered in this chapter, (b)

free-body diagram of a typical element of arterial ring.

The differential equation governing the radial displacement u(z) of the vibrating arterial

ring can be derived by considering the forces acting on the infinitesimal element of unit

length shown in Figure 4-1(b). Equilibrium of forces in the radial direction requires that:
do d’u(t)

P(OR,dO—N(¢)sin (%) — N(#)sin (7) =m=3 (4.1)

where m=p,R,H,d@ is the mass of the unit-length arterial element, p, is the density of the

arterial tissue, and N is the unit-length axial force.

From Hooke's law, the axial force is given by

N(t)=EH, %t) (4.2)

On substituting the above expression in Equation (4.1), and by assuming small angles (so

that sin(d@/2)~d@/2), we obtain

d*u(t)
dt’

(o)
R

P

p(OR,d0-E,H ,——=d0 = p,R H ,dO (4.3)

By dividing Equation (4.3) by R,d¢ we obtain the equation governing the radial

displacement response as

Zu(t)=p(1) (4.4)
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This second-order differential equation is similar to the classical equation of motion of an
undamped single-degree-of-freedom system to arbitrary excitation. The first term
represents the radial inertia force acting on element abcd of the arterial ring, while the
second term represents the circumferential tensile force developed on the element cross-

section. The circular frequency of the system can be readily derived as

o - B 4.5)
Rp 2o

Equation (4.4) can be solved analytically by means of Duhamel's integral.

4.2.1.2 Response to pulse-type loading

Figure 4-2 shows a typical aortic blood pressure profile (left) along with the arterial pulse

time-profile approximation adopted in the calculations (right). The time interval 0 <7<t
represents the aortic systolic phase, whereas the time interval ¢ <7<t represents the

aortic diastolic phase.
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Figure 4-2: (a) Typical aortic pressure-time profile following Zhong et al. [39], (b) arterial
pulse time-profile approximation. (100mmHg=13.33kPa)

During a vascular surgery operation the blood flow is interrupted. The first loading cycle,
immediately after the flow is restored, is approximated by the loading shown in Figure
4-2(b). This analysis adopts the worst-case scenario of blood pressure loading
(conservative case) in which the internal pressure is abruptly increased from zero to the

maximum systolic pressure. The assumed loading is expressed as
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(4.6)

where p, is the maximum systolic pressure, p, the diastolic pressure, Z; the systolic-phase

duration, and /,, the total duration of the cardiac pulse.

The radius R, is measured at zero blood pressure and in vivo length, implying the artery is

in its pre-stressed state. During surgery the following procedure takes place: (a) the
diseased blood vessel is cut transversely and longitudinal residual stresses are released,
forcing the artery to decrease its length and increase its diameter; (b) When subsequently
the stitching takes place, the arterial diameter and length return to their prior condition. The

residual-stress effect is taken into account by considering an initial displacement u(0) =u,,

equal to the difference of the increased radius (relieved from axial residual stresses) and

radius R, and initial velocity #(0)=0; and (¢) The blood flow is restored and the

anastomosis is subjected to dynamic blood pressure.

The total response of the system is the sum of the response to the pulse loading u,(7) u,(?)

and the response to free vibration u () due to initial conditions.

The response to free vibration with initial displacement u,(0)=u, and initial velocity

i,(0) =0 is obtained by standard methods as
u, () =u,cosa,t, 0<t<t, 4.7

The dynamic response of a linear single-degree-of-freedom system to arbitrary external

force p(¢r) can be determined by means of the convolution (Duhamel) integral. A
convolution integral is the sum of the all unit-impulse response functions %(z —7) times the

respective magnitude p(r)dz up to time #, yielding
t 1 t
u ()= T)h(t—7)dt =——| p(7)sin|w, (t —7)|dT 4.8
S {p()( M mwﬂ!p() [0,t-D} (438)

The systolic-phase response, in which the system is subjected to constant force p(r)=p,, is

obtained as
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1 ¢ <R2
u, ()= Ejpé sin[o,(t—7)|dr =

(1 cosw,t), t<t, 4.9)

P

whereas the diastolic-phase response, in which the system is subjected to force

p(t)=p,—(p, —Pd)(T—IS)/( t,,—t,), is derived from

u," (1) ——j‘{ t—fd(r t )}sm[a) (t—7)dr+u,’ (t,)cos w, (t—t,)

o (4.10)
L‘t 1

t
+-2£ (S)sina)n(t—tg), t,<t<t,
. . .

in which the first term represents the force-vibration response associated with the diastolic-

phase loading, and the last two terms concern the free-vibration response due to initial

.. I T . . .
conditions u," (#,) and u, (,) induced at the end of the systolic phase. On carrying out
the calculations, Equation (4.10) reduces to

2 .
11 PR | p.—p, sina, (1—1,)
u (¢ 2 t. —t+————2|+p (l-cosmt);, t <t<t 4.11

y 0= E,H { -t |’ w ps( ") ' a )

s n

The complete solution is equal to the sum of the pulse-loading response () and the free-

vibration response uf(t). The total response of the system as a function of time is obtained

as

2
uy cos,t +——=—(1-cosw,t), 0<r<t
[
R*>|p - sinw, (11,
u(t)=<u cosa t+ L | P Pa t—t+¢ +p,(1-cosm,t) (4.12)
0 n H ¢ —t s ) K n
0" p cp K n
(1, <1<t

The first term of Equation (4.12) (free-vibration response) is related with the residual-
stress effect and the second term of Equation (4.12) is related with the response to the

assumed pulse-type loading.

The static displacement of the system due to the maximum pressure pP,, is identified as
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R’
u, =25 (4.13)
E,H,

Of particular interest is the maximum arterial displacement, which is associated with the
critical response of the anastomotic region. The maximum displacement of the arterial
system may occur either during the systolic phase (0 <7 <¢ ) or during the diastolic phase
(¢, <t=t,), depending on the system circular frequency and the characteristics of the
pulse loading.

The maximum displacement of the systolic phase (for |u, | /u, <1) occurs for cosaw,t =—1.
Therefore, by substituting this expression into the first part of Equation (4.12) the
maximum displacement of the systolic phase ufm is expressed as

_2n.R/

ul = —-u 4.14
max EQH 0 ( )

4

To calculate the time instant ¢, corresponding to the maximum response of the diastolic

phase, the derivative of the displacement with respect to time is set equal to zero:

2 2 2 .
du(t)z pSRP (p.v_pd}+sina)t|:pSRP + RP p.v_pd SIHwnts —u :|
n’1 0

o wo,E,H, | 1,-t, E,H, EH, t,-t o, “.15)
R 2 ) . P
+cosa)ntl[ p_ Py~ Py SN, S}:O
EH, t,-t, o,
which can be recast in the following form
B
B =B’ +B’ cos(a)ntl —tan™ —Zj (4.16)
3
in which
R} -
Blz_ p3 P ps pd (417)
o,EH, | t,—t
pR’ R’ p —p sinwt
5 s=p + P s d n’s _MO (418)

E,H, EH, t,~t o,
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_ RPZ ps _pd Sina)nts

= 4.19
UEH, t,-t o, (4.19)
On solving for #, we get
1 -1 1 -1 BZ
t,=—1| cos ————=+tan  |—= (4.20)
1 a)n [ ’BZZ +B32 4

The maximum displacement of the diastolic phase u., is calculated at 7 = t, as

R’ - sinw, (t, —t,
u =u,cosmt, +—= b= Py ts—tl+M +p,(1-cosw,t,)| (4.21)
Eng —1, w

tcp n

The maximum response is then obtained through the overall maximum of expressions

(4.14) and (4.21) as

2p.R,’
_uo’
E,H,
Uy, = MAX ) (4.22)
R — sinw, (1, —1,
uycosw t, +—2—| L Paly g +M +p,(1-coso,1,)
EH, | t,—t, ,

Figure 4-3 plots the normalized maximum deformation u,_, /u, as a function of the ratio
t,/T for different values of initial displacement, and for typical values of diastolic
pressure ( p, =80 mmHg ), maximum systolic pressure ( p, =120 mmHg), and cardiac
pulse duration (7, =1 sec). In particular, Figure 4-3(a) plots the normalized response for a
typical cardiac pulse with fixed systolic-phase duration, 7, =0.35 sec, and systems with
different natural period 7, =27 /®,. In this case, the response exhibits an ascending
curved profile for low values of ¢ /T, reaching a plateau for high values of ¢, /T . The
threshold value of ¢ /T, that defines the boundary between the ascending part and the

plateau depends on the loading characteristics. For the parameters used in Figure 4-3(a),

the threshold value of ¢ /T is approximately 0.4. Figure 4-3(b) plots the normalized
response for a system with high value of natural period (7, = 0.9 sec), implying that the

system has severely damaged artery walls, with the artery elasticity modulus tending to

zero, and different systolic-phase durations # . For high values of 7 /T the response is
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equal to that of Figure 4-3(a), whereas for low values of ¢ /T this case exhibits higher

response values.
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Figure 4-3: Normalized maximum displacement as a function of the ratio ¢ /T, for

n?o

different values of the initial displacement u, /u_,, and for (a) ¢, =0.35 sec, (b)

st 2

T =0.9 sec.

4.3 Response to different loading approximations

The loading approximation used in the previous section concerns the first loading cycle,
immediately after the flow is restored. The internal pressure was abruptly increased from
zero to the maximum systolic pressure. To the best of our knowledge, there is no other
study that simulates the first loading cycle immediately after the blood flow is restored.
Other studies consider that the vascular anastomosis is already under diastolic pressure,

and subjected dynamically only to the overpressure p —p, .

In order to study the effect of different loading approximations on the maximum response,
six different blood pressure profiles are considered. All profiles assume typical parameter

values: p ~120 mmHg, p,~80 mmHg, 7 =0.35sec, ¢, =1sec. The pressure time-

profiles of Figure 4-4(a)-(d) simulate the first loading cycle, immediately after the blood
flow is restored, whereas the pressure time-profiles of Figure 4-4(e) and (f) simulate the
long-term loading, implying that the artery was incrementally subjected to the diastolic
pressure and then inflated due to the overpressure p — p,. In particular, the six pressure

time-profiles of Figure 4-4 stand for: (a) the aortic pressure proposed by Zhong et al. [39],

simulating the first loading cycle; (b) constant-ramp pressure, simulating the first loading
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cycle; (c) step pressure, simulating the first loading cycle; (d) smoothly increased pressure,
simulating the first loading cycle; (e) long-term aortic pressure; and (f) long-term periodic

aortic pressure.
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Figure 4-4: First loading cycle and long-term loading approximations. First loading cycle
loadings: (a) Aortic pressure proposed by Zhong et al. [39]; (b) Constant-ramp pressure;
(c) Step pressure; (d) Smoothly increased pressure. Long-term loadings: (e) Aortic

pressure; (f) Periodic aortic pressure.

For typical values of the mechanical and geometrical characteristics of arteries the system
natural period is in the range of 0.001-0.015 sec. The displacement spectrum of Figure 4-5
plots the normalized maximum radial displacement for arteries with natural periods 0-0.1
sec. All differential equations were solved numerically by using the ode23s function in

MATLAB [67].
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Figure 4-5: Spectrum of normalized maximum radial displacement for different blood

pressure approximations (u, =0).

As expected, cases simulating the first loading cycle exhibit higher normalized response
values compared to the overpressure (long-term) loadings. In particular, cases B and C
have equal response values and are the most conservative cases. Their maximum
displacement is equal to two times the static displacement. The maximum displacement of
case A is about 1.4-1.7 times the static displacement, whereas the maximum displacement
of the smoothly increased pressure-profile of case D is about 1-1.1 times the static
displacement. The maximum displacement under applied long-term loadings (case E and
F) is approximately equal to the static displacement. Note that, under periodic loading
(Case F of Figure 4-5) some systems with natural period values higher than 0.04 sec
exhibit increased amplitude (spikes), indicating resonance and possible failure. As
mentioned previously, typical arterial systems have natural period values lower than 0.04
sec, meaning that these systems may correspond to soft aneurysmatic arteries prone to

rupture.

4.4 Concluding remarks

This Chapter investigates the response of the linear-elastic arterial model. An analytical
time-dependent solution for the radial displacement of arteries (Equation (4.12)) is
presented. For typical values of the geometric and mechanical properties of arteries the
derived natural-frequency expression (Equation (4.5)) is of the order of 100-1000 Hz
(natural period values of the order of 0.001-0.01 sec). We can say that under dynamic

blood pressure the maximum response of a typical artery is equal to the maximum response
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of the systolic phase (Equation (4.14)) and does not depend on the systolic-phase duration,
the cardiac pulse duration, or the value of systolic pressure. It does depend on the systolic
pressure value, the geometric and mechanical properties of the artery, and the initial

displacement .

By investigating different pressure time-profile approximations, it is observed that the
worst-case scenario (first cardiac cycle) of the linear-elastic response is equal to two times
the static (linear-elastic) response. The smoother the pressure increase from zero to the
peak systolic pressure is, the lower the maximum displacement is (tending to become equal
to the static displacement, Figure 4-4). In the case of long-term loading (case E and F of
Figure 4-4), the maximum displacement is approximately equal to the static displacement,
since the ratio of the cardiac pulse duration to the natural period of the artery is of the order

of 100-1000.

The findings of this chapter constitute the basis of the hyperelastic and viscoelastic arterial
models proposed in Chapters 5 and 6, respectively, and of the end-to-end anastomosis
analysis presented in Chapter 7. Thus, these general closed-form expressions can form the
basis for the development of vascular anastomosis guidelines, aiming to the prevention of

post-surgery complications.

35



CHAPTER 5
Arterial Dynamic Response: Hyperelastic Model

5.1 Introduction

When human arteries are subjected to time-dependent arterial blood pressure they
demonstrate large deformations, exhibiting mainly nonlinear hyperelastic type of response.
Their stiffness depends on strain [68], since it is monotonically increasing with increasing
strain. In this way, the artery is protected from aneurysms and other instabilities under
increasing pressure. Typically, healthy arteries demonstrate convex strain hardening under
tensile loading, atheromatic arteries demonstrate stiffer response, whereas aneurysmatic

arteries demonstrate softening response.

The stress-strain relationship of hyperelastic materials derives from a strain-energy density
function. The strain-energy density functions are usually expressed as a function of the

principal invariants:
w=f(1,1,,.) (5.1)

Several simple constitutive laws describing the mechanical behavior of biological tissues
[51-56] exist in the literature. More sophisticated constitutive laws have been developed in
recent years, such as the multi-parameter hyperelastic law proposed by Holzapfel et al.
[69], which accounts for the material anisotropy and two families of collagen fibers
arranged in symmetrical spirals. However, complex multi-parameter constitutive laws

require many material parameters that cannot be easily obtained.

This chapter examines the effect of strain hardening in the dynamic response of human
arteries, and compares the hyperelastic arterial response to the respective linear response.
In particular, three material behaviors are investigated: (a) the hardening behavior of
healthy arteries, (b) the hardening behavior of atherosclerotic arteries, and (¢) the softening

behavior of aneurysmatic arteries.

In general, arteries are anisotropic however, we are mainly concerned with the deformation
of the artery cross-section and the hardening effect. Accordingly, the following isotropic
hyperelastic models are adopted for each case respectively: (a) the constitutive law
proposed by Skalak et al. [55], (b) the constitutive law of Delfino et al. [56], as modified
by Hariton [70], and (c) the Mooney-Rivlin hyperelastic material [51, 52].
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Figure 5-1 plots the stress-strain relationships of the linear and nonlinear constitutive laws
for typical values of their material parameters, and in the absence of longitudinal pre-

stretch (1 =1). By o, is denoted the circumferential Cauchy stress. We can observe that

under increased strain the stress-strain relationship of Skalak et al. exhibits hardening, the
Hariton model exhibits exponential hardening, and the Mooney-Rivlin model exhibits

softening.
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Figure 5-1: Circumferential stress-strain diagrams of hyperelastic incompressible models.

No pre-stretch is applied to the models (1" =1).

The cross-section of the artery is modeled as a circular ring, consisting of a single
homogenized layer. The arterial ring is subjected to dynamic intraluminal pressure,
resulting in the formulation of a single-degree-of-freedom system. Note that, the worst-
case loading approximation scenario (first loading cycle after the blood flow is restored) is

considered.

By adopting the aforementioned hyperelastic strain-energy density functions the physical
problem is described by nonlinear differential equations that require numerical methods to
be solved. The results of the following analyses are characterized by generality and are

presented in pictorial and tabular form.

5.2 Mathematical model

In formulating the mathematical model of the hyperelastic artery the following
assumptions are considered: (a) the arterial wall thickness is small compared to the radius

of the vessel; (b) the vessel cross-section in the undeformed state forms a full circle with
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thickness-averaged radius R ; (c) the arterial wall has constant thickness along the circle;
(d) no boundary constraints are applied on the ring; (e) the effects of rotary inertia and
shear deformation are neglected; (f) the arterial tissue consists of a single (homogeneous)
layer; and (g) viscous effects are ignored. Note that arteries exhibit longitudinal and
circumferential residual stresses. The longitudinal pre-stress will be accounted for by a
constant longitudinal pre-stretch value, whereas other pre-stress effects will be assumed to

be incorporated into the material constants of the constitutive law.

Herein, R, H, and L denote respectively the radius, thickness, and length of the initial
configuration; and r, &, [ denote respectively the radius, thickness, and length of the

deformed configuration.

The deformed artery exhibits circumferential (o,, ), longitudinal (o), and radial (o, )

Cauchy stresses as shown in Figure 5-1. Note that, based on the thin-wall assumption and

in the absence of pressure on the outer wall, the radial stresses are almost zero.

Figure 5-2: Stresses of thin-walled cylinder.

By considering the force equilibrium along the radial direction of the infinitesimal element
shown in Figure 5-3(b), the equation of motion of the deformed model (Figure 5-3(a)) is

obtained as

d*u (t)

rO)p(t) = N(1) = ph(0)r(7) e

(5.2)

in which p, is the density of the arterial tissue, p(¢) is the uniform intraluminal pressure,

N(¢) is the axial circumferential force that can be derived from a proper hyperelastic
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constitutive law, and u (¢) is the radial displacement. Due to the mass conservation and
incompressibility of the arterial tissue the initial density of the artery p, is equal to the

density of the artery at the deformed state p . The deformed radius is expressed as

r(t)=R+u (t) (5.3)

Figure 5-3: (a) Hyperelastic arterial model at deformed state, (b) Typical element of

arterial ring at deformed state.

For incompressible materials, such as the arterial walls and many artificial grafts, the

determinant of the deformation gradient is equal to one and is expressed as
IFl=J= 2,040 =1 (5.4)

where A4,(#)=r(t)/ R is the elongation in the circumferential direction, A, =1 =//L is
the elongation in the axial direction, and A (¢) =h(¢)/ H is the elongation in the radial

direction. On substituting these expressions in Equation (5.4), the deformed radius times

the deformed thickness can be expressed as

r(Oh(t) = ;ﬂ (5.5)

0
z

The general expressions of the strain and stress tensors can be found in Appendix A.

The following sections elaborate on the mathematical formulation of three arterial models,

each one adopting one of the aforementioned hyperelastic constitutive laws.
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5.2.1 Arterial model based on the strain-energy function of Skalak et al.

By adopting the isotropic, two-dimensional strain-energy function of Skalak et al. [55] we
aim to investigate the response of healthy arteries or problematic arteries of which the
deceased part was removed after surgery. This strain-energy function, originally developed

for red blood cell membranes, demonstrates hardening behavior.

The strain-energy function proposed by Skalak et al. [55] is
W(t)= g(% @) +1(t)- II(t)j +%(Il(t))2 (5.6)

where B and C are the material parameters of the artery, having units of elastic modulus
multiplied by artery thickness [N/m], and satisfying the condition C>B2>0. The

alternative forms of the strain invariants 7(z) and /() are expressed as
1(6)=2(e,(t)+e ()= (4, +(L (1)) -2 (5.7)

(1) = 41,(1) = ey (e (1) + 2(e (1) + e (1) = (4, (1)) (AL (1)) =1 (5.8)

in which e,,(¢) and e_(¢) are the Green strain tensors given by
1
e (0 =>((4 () -1) (5.9)

e.(t) =%((ﬂé’(t))2 -1) (5.10)

The circumferential and longitudinal Cauchy stress-strain relationships, multiplied by the

current artery thickness, are expressed respectively as [55]

Ag(t) OW _ Ay(1)
2 e, A

4

Ty =

E((ﬂg(r»z—1)+§<ﬁf>2(mg<z>)2mf>2—l)} (5.11)

A aw X [B
2

0y2 ¢ 2 2, 2042
=0 ol 2 B ) GOr (AOF &) —1)} (5.12)

Figure 5-4 shows the Cauchy stresses acting along the circumferential and longitudinal
directions of the arterial model, and Figure 5-5 plots the Skalak et al. circumferential

stress-strain relationship for different values of the ratio B/C. By increasing the ratio
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B/ C the hardening behavior of the material is increased, whereas for negative strains the
model demonstrates softening. Note that, for B/ C =0 the circumferential and longitudinal

stresses are equal.

Figure 5-4: Circumferential stresses 7, and axial stresses 7, multiplied by the current

artery thickness.

Normalize d circumferential stress T,/ C

T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Circumferential Green strain e,

Figure 5-5: Normalized circumferential stress-strain diagram of Skalak et al. [55]

hyperelastic model for different values of the ratio B/C, and for A’ =1.

The circumferential stress, multiplied by the current artery thickness 7,(f) is identical to
the force acting along the circumferential direction N(¢). Thus, on substituting equations

(5.3), (5.5), (5.11) in Equation (5.2) we obtain the normalized equation of motion of the

arterial model as
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_(H ur(r)]{ B 0[2u,<r> N ur(rf} ) 1©) oys w07 (A
R 2CA; R R 2 R - R 2 2
u, (1

+(1 +ij(1)

£_ pORzH Lir(t)
cC CA R (5.13)

The equation of motion can be expressed in polynomial form of the normalized radial

displacement as

w0 B 3 A _[u,mf 3B 3(A) _(u,mf B_ ()],
R | CA 2 2 R 2CA° 2 R 2020 2

(1+u,,(t)jp(t)£_(,1§)3 +/1_f :PORZH”?_(I)
2 2 cix R

(5.14)

The physical problem is reduced to six dimensionless quantities: B/C, ZZO , p(OR/C,
u (1)/ R, tg i (f)/ R, and ¢/t , where ty =+ P,R*H /CA? is the characteristic time of

the response. The initial tangent circumferential Young's modulus ES can be expressed in

terms of the material parameters B and C as

0
Eg:d%e| - d (Ej :i M _£+2£MZO)4_£(,120)2 (5.15)
di,| . di,\h d,\ H H H H
Jg—1 Aol g1

in which o, is the Cauchy stress in the circumferential direction. For known values of the

circumferential Young's modulus Eg and ratio B/C, the two material parameters can be

obtained respectively as

C E)
£ . C2B>0 (5.16)
H (BIC)+2(A) (1)
0
B_B £y (5.17)
H C(BIC)+20°) —(A°)

The polynomial equation of motion (Equation (5.14)) can be solved for four complexity
levels, each one having a different order of nonlinearity (zero-, first-, second-, and third-
order). To obtain the “zero-order nonlinear” equation we neglect the second- and third-

power terms of radial displacement and the term p(#)u,(¢)/ R of Equation (5.14). The
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resulting second-order linear non-homogeneous differential equation with constant

coefficients equation is a expressed as

{()R (293 i_f}ur(f){cioﬁ(ﬂff_i_f}:ﬂﬁr_(’) (5.18)

22 R 2 2 CA R

For A’ =1 this equation is identical to the equation of motion of the linear model. The

equivalent circular frequency of the “zero-order nonlinear” model is given by

0

A

. Ve 2 2
o = (5.19)

tSk

The “first-order nonlinear” equation is a second-order linear non-homogeneous differential
equation with non-constant coefficients. It is obtained by neglecting the second- and third-

power terms of the radial displacement in Equation (5.14) as

The “second-order nonlinear” equation is a second-order nonlinear non-homogeneous
differential equation with non-constant coefficients, and it is obtained by neglecting the

third-power terms of the radial displacement in Equation (5.14) as

(150t 7 ] w2

_(u,a)jz 38 3 |_ pRCH i, (1)
R )20 2 cA R

(5.21)

Finally, the “third-order nonlinear” equation stands for the fully nonlinear problem

described by Equation (5.14).

We are particularly interested in the response of the system in terms of circumferential
elongation, variation of thickness, circumferential stresses, longitudinal stresses, and
energy-density values. The normalized functions for these response quantities can be

obtained respectively as
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2, =1+ (t) (5.22)

My _ 1 (5.23)

H 40K
50 A0 :ic(ue 1)+ EX G or @y —1): (5.24)
TZTU)Z%_%(MO) 1)+ %((%(f))z(ﬂf)z—l): (5:25)
@ ( (@) +1() - l](t)j oy (5.26)

Equation (5.23) is derived by solving Equation (5.4) for A(¢)/ H , and Equations (5.24)
through (5.26) are derived by dividing Equations (5.11), (5.12), and (5.6) respectively, by

the material parameter C .

5.2.2 Arterial model based on the strain-energy function of Hariton

Atheromatic arteries exhibit stiffer (exponential-like) behavior than healthy arteries. In
order to study the response of atheromatic arteries we adopt the isotropic, three-
dimensional strain-energy function proposed by Hariton [70], which is a modification of
the strain-energy function proposed by Delfino et al. [56]. The strain-energy function

proposed by Hariton is expressed as

W) = {expB (1, (r)—3)2}—1} (5.27)

where a>0 is a stress-like parameter, and b>0 is a non-dimensional material parameter.
Typical values of the material parameters are a =44.2 kPa and »=16.7 [56]. The first

strain invariant /, is expressed as

1

IO =D +(1°) 4
(D) =(4D)" +(4) +(/120/1€(t))2

(5.28)

By adopting the average theory for the composite arterial structure (i.e. the artery acts as a

homogeneous-one layer model) and the thin-wall assumption, the hydrostatic pressure P
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(from incompressibility) of a stress-free outer surface can be neglected ( P =0). Therefore,
the Cauchy stress-strain relationships of the circumferential and longitudinal directions are

equal to

ow 2 1 b 2
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Figure 5-6: Normalized circumferential stress-strain diagram of Hariton [70] hyperelastic

model for different values of the parameter 4, and for A’ =1.

Figure 5-6 shows the normalized circumferential stress-strain diagram of the constitutive

law proposed by Hariton, in the absence of longitudinal pre-stretch (A” =1). By increasing

the material parameter » the hardening behavior of the material is increased.

The axial force acting along the circumferential direction is equal to N(t)=o,,(¢)h(t).

The normalized equation of motion of the arterial model is obtained by substituting

Equations (5.3), (5.5), (5.29) in Equation (5.2):
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AR i@ 2 [1+”"(t)]+ ! [1+”"(”J A — 3

all R A R ol w@®Y R ool tOY
(4.) [1+Rj (4.) [1+Rj
X (5.31)
i, @Y op L u(®) R
expy > (HTJ +(A0) + 3 +[1+ 2 Jp(t)aH

In this case, the six dimensionless quantities of this model are b, A, p(t)R/(aH),
u,(t)/ R, t,ii (f)/ R, and t/t,. The term ¢, =\[p,R* /aA" is the characteristic time of

the response. The correlation between the initial circumferential Young's modulus Eg and

the material parameters a and b is

P 2
do 2 3 2 L ’ 1
B G A | (B

Finally, on normalizing Equations (5.29), (5.30), and (5.27) by the material parameter a
the normalized functions of circumferential stress, longitudinal stress, and strain-energy are

expressed respectively as

o0 2 1 {b 2}

—00°2 22| (A, () ———— |(L,(1) -3 —(I,()-3 5.33
» (4(®) hr) (£,(1)=3)exp 2( (1)-3) (5.33)
o..(t) 0)2 1 {b 2}
=2 22| () ———— |(1,(©)-3 —(I,(t)-3 5.34

o ) ey [(HO- e 50 (539
W 1 b ]
; —b{exp[z(ll(t) 3) } 1} (5.35)
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5.2.3 Arterial model based on the strain-energy function of Mooney-
Rivlin

The third constitutive law adopted in this chapter is the isotropic three-dimensional strain-

energy function of Mooney-Rivlin [51, 52]. The Mooney-Rivlin strain-energy function

exhibits softening under applied elongations and can be parallelized with the behavior of

aneurysmatic arteries. The strain-energy function suitable to incompressible materials is

[52]

1

o -1 ;{[? ﬁj(]l(t)—3)+(5— ﬁj(lz(t)—3)}, us0, - (536)

N | =

<p<

N | —

in which x is the shear modulus of the material under infinitesimal deformation of the
initial undeformed configuration, g is a dimensionless material constant, and /, is the

second strain invariant for incompressible materials expressed as

1 1
o2 T 2
(4" (4(0)

L) = (A0 () +
(5.37)

For p=1/2 the strain-energy function of Equation (5.36) corresponds to the Neo-

Hookean model.

The Cauchy stress-strain relationships of the circumferential and longitudinal directions
can be obtained by adopting the equations of Chadwick [52] (when setting the parameter x
equal to 1). Based on the thin-wall assumption and in the absence of pressure on the outer

wall, the radial stress is almost zero (o, =0). The stress-strain relations of the

circumferential and longitudinal directions are respectively approximated by

u 1—@(%@))2@3)2—

1 j ( 1
— |+
(A, (A7) 2

(%)’

Oy (1) zugw)[(/lg(t))z - } (5.38)

1 0N2 1 1 1 2 0N2
ozz(t)~y(5+ﬁ]((ﬁz) —m}rﬂ(i—ﬂ)((&w—(%@) (4) j (5.39)

The Mooney-Rivlin circumferential stress-strain relationship exhibits increased softening

for increasing values of the material parameter S (Figure 5-7). Note that, on the absence
of longitudinal pre-stretch, the material parameter A has no effect on the stress-strain

behavior.
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Figure 5-7: Normalized circumferential stress-strain diagram of Mooney-Rivlin [51, 52]

hyperelastic model, for different values of the material parameter 2, and longitudinal pre-

stretch ..

The normalized equation of motion of the artery, based on the Mooney-Rivlin [51, 52]

material law, is obtained as

5 +0 | 1+ = |+ L1+ 1) 3
A \2 R % [1 +”f]§t)J 2 K [1 +“f}§”) (5.40)

z

. [1 L (t)j Rp(1) _ pyR’ i, (t)

R ) uH u2’ R

The six dimensionless quantities of this problem are g, /120 , pP(OR/(uH), u(t)/R,

Ly i, (f)/ R, and t/1t,,, where the term ¢, = /p,R? / uA" is the characteristic time of

the response of the Mooney-Rivlin arterial model. The natural frequency of the equivalent

linear equation is given by

/10
L P + = _ B 5.41
7y Ty T A G4

b =

a)MR—l\/z 2 3 38,

tMR

The initial tangential circumferential Young's modulus E§ in terms of the material

parameters 4 and g, for the thin-wall model and o, =0, is expressed as
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_ do,,

EO
©da,

vy ij 1+® +(%—ﬂj(l+(/lf)2) (5.42)

Ag—1 z

The normalized circumferential stress, normalized longitudinal stress, and normalized
strain-energy functions are obtained by dividing Equations (5.38), (5.39), and (5.36)

respectively by the material parameter y yielding

T (1 SO S I O 20002 __ 1
u N(fﬂ j[u”(’)) (ﬂg(r>>2(z£)2]+(2 ¢ j((%(t» (%) (%)2} N

Uga(t)~ l 2 1 l_ 2090N2 1
p ~(2+ﬂ j((%(”) (%(t»z(z:’)sz ¢ J[%(’)) (%) (%(z))z} G4

o 11 SOV P4 S
Nz(zw j(%(”) A Oy 3}

1(1 2(A0) 4 -
*3 (E‘ﬂ j[%m) Gy Gy 3j

(5.45)

5.3 Numerical solution

The nonlinear dynamic equations that describe the physical problem can be characterized,
from the numerical point of view, as “stiff”’, hence their solution demands special methods.
An ordinary differential equation is “stiff”’, when there are computational efficiency issues
(large computational time) and the numerical method must reduce the time step to obtain
satisfactory results of the solution. In our case, the efficiency issues are caused due to the
large differences in the orders of magnitude of the ordinary differential equation

coefficients.

The formulated ordinary differential equations can be solved numerically through the
appropriate ode solvers in MATLAB [67, 71]. In particular, the problem is solved by using
the state-space analysis, according to which the second-order ordinary differential equation
is transformed into two first-order ordinary differential equations [72].

In general, the state-space formulation of a second-order differential equation is derived by

setting the displacement and velocity of the system equal to the state variables z, and z,

respectively as

(5.46)

zZ,=u
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zZ, =1 (5.47)

The state variables describe the future response of a system, given the initial conditions,
the excitation input, and the dynamic equation of motion.

The derivatives of the state variables are expressed as

(5.48)
(5.49)

The term z,, in Equation (5.49), is obtained by solving the second-order differential

equation for i, .

Finally, the state-input matrix consists of two first-order differential equations,
representing the first derivative (Equation (5.48)) and the second derivative (Equation

(5.49)) of the radial displacement:
{2} :{?l} (5.50)

The final solution is obtained through the following output matrix, which lists the radial

displacements and the radial velocities of the system as

Zl T " T
{ } :{ "} (5‘51)
ZZ ur

In the following, the state-space formulation for each of the hyperelastic arterial models
considered in this chapter, is presented. Note that, the problem has been investigated by

proper normalization of the involved material parameters and of the pressure time-profile.

In the case of the Skalak et al. arterial model, the normalized pressure time-profile is
obtained by multiplying the pressure values p(z) by R/C and the time values by
1/t . The normalized state-space formulation is derived by multiplying Equations

(5.48) and (5.49) by 1/ R and ¢, / R respectively, yielding

~ u,
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. ut
Z E'TS" (5.53)

Thus, the derivatives of the state variables can be expressed as

L ut -
Sk =z (5.54)

"R

L dity”
z, =—'1§" (5.55)

On substituting Equation (5.52) in Equation (5.14), and solving for the normalized radial

acceleration iirts,cz / R, we obtain the state term Z, as

(B ey 2] e[ 38 3] e[ B @y
ZZZ_Z'LW’ 5 _7}(21) LC&O +%}(zl) LC@O 5 }

) i © T (556)
+[(1+51)p(t)§—('122) +42}

The normalized state-input matrix consists of the two normalized first-order differential

equations (5.54) and (5.56), resulting in the following expression:

Z

O A O A - 720 W IRV BT 710 ) ST B 710
{z}‘{gz}‘ 1{c/15+ 5 2} (%) Lc&“ 5 } (1){2%“ : } (5.57)

+{(1+Zl)p(t)§—%+%}

The derived output matrix lists the normalized radial displacements and the normalized

radial velocities of the system as

T
u,
20 | R
{f} =1, (5.58)
2, ulg
R

By following the same procedure, the normalized state variables of the arterial model

based on the strain-energy function of Hariton et al. are obtained by letting
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.o u,

Z1 = E (559)
and

. ut

Z,= RH (5.60)

L ut -

4= };1 =2 (5.61)
L it
2 = ”r; (5.62)

in which the state term Z, is obtained on substituting Equation (5.59) in Equation (5.32),

and on solving for the normalized radial acceleration i ¢,° / R :

. 2 | 2 1
=g (48t — = [[(1+5) +(A) +—— 53
{( ) (A (1+2) M( ) (A (1+%) }
: (5.63)
b 5 ) 042 1 i R
CXP{E[(I‘FZ]) +(ﬂ,z) +m—3:| }"r(l-l—zl)p(t)a_H

The resulting state-input matrix is formulated as

2 1 2 042 1
g =+t ——— |1+ 5) + () +—— -3
(3= /120[( + 1)+(/120)2(1+51)3]{( +5) +(A) +(/120)2(1+21)2 } (5.64)

b -\2 082 1 3 : : i
exp{ali(l'FZl) +(ﬂz) +m 3:| }4‘(1*‘ l)p(t)a[—[

Similarly, for the Mooney-Rivlin arterial model (Equation (5.40)), the normalized state

variables are obtained by multiplying Equations (5.48) and (5.49) by 1/R and ¢,,/R

respectively, yielding

(5.65)

~ u,
Z1 E
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, = R (5.66)
The derivatives of the state variables are expressed as
L ut -
z, = % =z, (5.67)
= i’irtMRz
Z, = R (5.68)

The state term Z, is obtained on substituting Equation (5.65) in Equation (5.40), and on

solving for the normalized radial acceleration ii ¢,,,” / R :

22:VLB{G*ﬂj{(m‘)_m}(%_ﬂjl(l+Z]Mo)z_(1+1fl)3 }} (5.69)

-\ Rp()
+(1+%) P

The state-input matrix of the Mooney-Rivlin arterial model is expressed as

Zy

()= %{[%ﬂjl(nz})—m}[%ﬂ]{(uzl)uff— (1+121)3 H (5.70)

+(1+21)R5}(;)

Two ode solvers have been utilized in MATLAB to solve numerically the ordinary
differential equations. The ordinary differential equations of the Skalak et al. case
(Equations (5.14), (5.18), (5.20), and (5.21)) and of the Mooney-Rivlin case (Equation
(5.40)) are solved numerically by using the ode23s function in MATLAB. This function
uses a one-step solver based on the modified Rosenbrock method of order 2 [73, 74]. On
the other hand, the “stiffer” ordinary differential equation of the Hariton case (Equation
(5.32)) is solved numerically by using the ode23tb function in MATLAB. The ode23tb

solver uses an implicit Runge-Kutta method [75], suitable for very stiff problems.
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5.4 Results

This section presents response spectra for the three models adopted in this study. In
particular, the maximum normalized radial displacement of the arterial model, and
response spectra of the circumferential elongation, variation of thickness, circumferential
stress, longitudinal stress, and strain-energy density are investigated by varying the

problem parameters.

The hyperelastic models are compared to the equivalent linear arterial model. For each
analysis, the Young's modulus of the linear model is taken to be equal to the initial tangent
Young's modulus E‘,? of the hyperelastic model. The linear equation of motion is of the

type of Equation (4.4) and is expressed as

0

ot 1) = p) =225, 1) (5.71)

The aortic pressure-time profile adopted in this study is the first loading cycle
approximation of Figure 4-2(b), having values of maximum systolic pressure

p,=120 mmHg=16 kPa, diastolic pressure p,=80 mmHg=10.66 kPa, systolic-phase

duration #, =0.35 sec, and total duration of the cardiac pulse 7, =1 sec.

The solution of the linear arterial model, subjected to this pulse-type loading, can be
expressed in closed-form expressions (see Section 4.2). The longitudinal pre-tension of the

linear model is taken into account through the initial displacement u,. We assume that
u, = R(/izo —1). For all cases the pre-stretch value is taken to be larger or equal to one (

A0 >1).

5.4.1 Response of healthy arteries

The nonlinear response of healthy arteries is calculated by solving the arterial model based
on the strain-energy function of Skalak et al. (Equation (5.13)). The exact solution of this
case is represented by the solution of the fully (“third-order””) nonlinear model. Numerical
examples of arterial systems are presented in order to demonstrate values of their
maximum response and typical response time-histories. Furthermore, a comparison
between the four models (zero-, first-, second-, and third-order nonlinear models) and the
linear model is shown through radial-displacement spectra. Response spectra of other

important response quantities are also plotted.
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5.4.1.1 Examples of typical arterial systems

Table 5-1 reports the parameters for the three arterial systems investigated in this section

and their calculated maximum normalized radial displacements and velocities.

Table 5-1: Parameters of each example, and calculated maximum normalized radial

displacements and velocities.

Example 1 (soft) Example 2 (medium Example 3 (stiff)

stiffness)
Parameters
B/C 0.5 0.5 1
AL 1.1 1 1
u, 0.1 0 0
t [tg 166.67 1000 2000
pR/C 0.80 0.16 0.16
) (1/sec) 230 1000 2828

Maximum normalized displacement

u, (1) R| (%)

Linear case 62.07 21.32 15.99
Zero-order 71.94 21.32 15.99
First-order 124.15 23.86 17.37
Second-order 62.00 19.58 14.95
Third-order 59.19 19.44 14.89

Maximum normalized velocity i, (1)t / R|

Linear case 0.3882 0.1305 0.1130
Zero-order 0.4960 0.1305 0.1130
First-order 0.6803 0.1380 0.1179
Second-order 0.5192 0.1305 0.1129
Third-order 0.5116 0.1304 0.1130

Example 1 represents a problematic (soft) artery, with a smaller circular frequency
compared to other models. The normalized pressure profile used in this case is shown in
Figure 5-8. The system exhibits large radial displacements. In particular, the “first-order
nonlinear” case exhibits the largest radial displacements, whereas the fully nonlinear case

(“third-order”) exhibits the lower radial displacements. By observing the response
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functions of the fully nonlinear problem shown in Figure 5-9, we can say that the envelope

of the radial response vibrations is identical to the shape of the pressure time-profile.

pOR/C |

-

0.80

0.53

. -
58.33 166.67 t/tg;

Figure 5-8: Normalized pressure time-profile used in Example 1.

Furthermore, the applied longitudinal pre-stretch A”=1.1 shifts the normalized

displacements of the model towards the negative values of the u, / R-axis.

Examples 2 and 3 represent stiff arterial systems. Their response values are relatively low,
and the range of the calculated response values of the five models is limited, compared to

the first example.
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Figure 5-9: Normalized response of the “third-order nonlinear” model versus time: (a)

radial displacement u, / R, (b) radial velocity u,ty, /R, (c) arterial thickness 4/ H , (d)

circumferential stress 7, / C , (e) longitudinal stress 7, / C, and (f) strain-energy density

wicC.
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5.4.1.2 Maximum radial displacement

The response spectra of Figures 5-10 and 5-11 reveal th

arterial model (and order of nonlinearity) against the exa

e level of approximation of each

ct solution (“third-order” model).

They also reveal how is the peak radial response affected when varying the problem

parameters.
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Figure 5-10: (a) Displacement spectrum for pre-stretch values A’ ={1+1.3} and B/C =0,

p,R/IC=0.16, t /ty =2000, (b) Displacement spectrum for ratios B/C ={0+1} and

A'=1, pRIC=0.16, 1, /15 =2000.

In general, the “first-order nonlinear” model gives the largest response values, whereas the

fully nonlinear model gives the lower response values. The ‘“second-order nonlinear”
y

model approximates well the fully nonlinear problem, me

aning that the second-power term

of radial displacement (u, / R)* dominates. The peak response value of the linear model is

always positive (due to the initial displacement u, >

0), making the linear model

conservative under large pre-stretch values (Figure 5-10(a)). For 1° =1 the linear and the

“zero-order nonlinear” models have identical response.
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Figure 5-11: (a) Displacement spectrum for p R/C={0.16+1.28} and B/C =0, =1,

t,, /' tg =2000. (b) Displacement spectrum for normalized characteristic time values

/1 ={1000+10000} and B/C=0, pR/C=0.16, 2° =1.

Figure 5-10 shows that an increase of the longitudinal pre-stretch 1° or the ratio B/C,

stiffens the system and decreases the radial displacement. For pre-stretch values between

1.1-1.15, the absolute value of the radial deformation is minimized (for p.R/C =0.16).

On the other hand, Figure 5-11 shows that an increase in the normalized pressure p R/C,

yields increased radial deformation response (Figure 5-11(a)), whereas the parameter

t,, /tg do not affect the problem (Figure 5-11(b)).

An increase of the normalized pressure p R/C implies either an increase of the arterial

pressure (hypertension) or a decrease of the elasticity modulus. In cases of hypertension,

the systolic pressure p, can be 5/3 times higher than the normal systolic pressure (120

mmHg). For example, according to Figure 5-11(a), if the normal value of normalized
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systolic pressure is p R/C=0.16, in case of hypertension it would reach a value of
p,R/C=0.27 and the normalized radial displacement would increase from 28% to 42%.
Similarly, in the case that the elasticity modulus (E, = (B +2C (1)) -C(A*)*)/ H),

and consequently the material parameter C/ H of the artery are decreased, the normalized

systolic pressure p R/C is increased. The material parameter C/H has typical values
between 0.1 and 1 MPa. Thus, the normalized systolic pressure p R/C is potentially

increased by a factor of 10 for soft arteries, resulting in a radial response over 100%, as

shown in Figure 5-11(a).

5.4.1.3 Response spectra

Based on the results of the previous section, we can say that the most important parameters
influencing the problem are the pre-stretch value /120 , the ratio B/C, and the normalized
pressure p(¢)R /C . Accordingly, the spectra of the response quantities of Equations
(5.22) through (5.26) are investigated for different values of these parameters.

Figure 5-12 present spectra for different longitudinal pre-stretch values, for three values of

the ratio B/C, and for p R/C=0.16. The circumferential elongation decreases with

increasing values of the longitudinal pre-stretch A?, while the normalized strain-energy

and normalized stresses exhibit an optimized minimum value for /120 between 1.1 and 1.15.
When 4’ is increased over this optimized value, the normalized strain-energy is increased

rapidly, indicating possible failure for pre-stretch values close to 1.3. For increasing values
of the ratio B/C, the response decreases for pre-stretch values up to 1.1-1.15, and

increases for higher pre-stretch values.
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Figure 5-12: Response spectra for 4. = {1+1.3} , B/C=[0, 0.5, 1], pR/C=0.16,
t,,/tg =2000: (a) circumferential elongation A,, (b) normalized thickness & / H , (c)

normalized strain energy W / C , (d) normalized circumferential stress 7,/ C, (e)

normalized longitudinal stress 7, / C .

Figure 5-13 presents response spectra as a function of the ratio B/C and for three different

values of parameter p R/C . It can be observed that the maximum response of the system

is decreased with increasing values of B/C or with decreasing values of the normalized

pressure p R/C . Moreover, the “zero-order nonlinear” model is conservative compared to

the “third-order nonlinear” model.
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Figure 5-13: Response spectra for B/ C={0+1}, p,R/C=[0.16, 0.19, 0.22], A’ =1,
t,, /tg = 2000 : (a) circumferential elongation 4,, (b) normalized thickness i/ H, (c)
normalized strain-energy W /C, (d) normalized circumferential stress 7,/ C, (e)

normalized longitudinal stress 7./ C .

Tables 5-2 and 5-3 list the peak value of normalized strain-energy W /C for the “third-
order nonlinear” models of Figures 5-12 and 5-13 respectively, along with the time of its

occurrence. In most cases, the peak strain-energy value occurs during the systolic phase.
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Table 5-2: Maximum normalized strain-energy W /C and exact occurrence time for range

of 2! and B/C values,and p,R/C =0.16 (case of Figure 5-12).

B/C
0 0.5 1
Maximum | Time Maximum Time Maximum Time
/120 wiC (sec) wicC (sec) w/C (sec)
1 0.051184 | 0.001383 | 0.034112 | 0.001174 | 0.025579 | 0.00104
1.05 0.0321 | 0.001349 | 0.02378 | 0.001163 | 0.019512 | 0.001038
1.1 0.017248 | 0.001319 | 0.017016 | 0.001154 | 0.017996 | 0.001039
1.15 0.013001 0 0.019501 0 0.026002 0
1.2 0.0242 0 0.0363 0 0.0484 0
1.25 0.041494 | 0.35078 | 0.060049 | 0.35011 0.079324 | 0.34928
1.3 0.097124 | 0.99934 0.10226 0.99997 0.12222 0.35024

Table 5-3: Maximum normalized strain energy # /C and exact occurrence time for range

of B/C and p,R/C values,and A’ =1 (case of Figure 5-13).

pR/C
0.16 0.19 0.22

Maximum | Time | Maximum | Time | Maximum | Time

B/C wiC (sec) wicC (sec) wicC (sec)
0| 0.0512 |0.001383 | 0.0737 |0.001359 | 0.1004 |0.001337
0.2 | 0.0426 |0.001286 | 0.0614 |0.001265 | 0.0836 |0.001247
04| 0.0366 |0.001207 | 0.0526 |0.001189 | 0.0717 |0.001173
0.6 0.032 0.001142 | 0.0461 |0.001126 | 0.0627 |0.001111
0.8 0.0284 |0.001087 | 0.0409 |0.001073 | 0.0557 |0.001059
1| 0.0256 0.00104 0.0368 | 0.001027 | 0.0501 |0.001014
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5.4.2 Response of atheromatic arteries

5.4.2.1 Maximum radial deformation

This section presents the peak normalized radial deformations of atheromatic arterial

systems (arterial model based on the strain-energy function of Hariton) for different values

of the non-dimensional parameters 1°, b, p.R/(aH),and /1.

3.0

2.5 ——=—— Linear model

— —+ —  Hariton model
2.0

(a)

Normalized radial displacement u,/R

b=16.7, Rp/aH=3.20, 1,/t;/=(1/3)e+4

1.0 1

0.5 ’h—ﬂ_‘w—ﬂ‘—vﬁ_v*\*

0.0 T T T T T

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Longitudinal elongation 2,°
& 30
3&
E 2.5 1
=
g
3 2.0
&
b Z 15 2,°=1.25, Rp /aH=3.20, Lo/t (1/3)et+4
<
=
<
—~ 1'0 B
3
S
o r~
= 0594 "~
g V\\v“v_—v__v_—v—-v-——a
2 0.0 T T T T T
2 6 10 14 18 22 26

Material parameter b

Figure 5-14: (a) Displacement spectrum for pre-stretch values 4. = {1 +1.3} and »=16.7,
p,R/(aH)=32,1,/t,=1/3E-4, (b) Displacement spectrum for material parameter

values b={2+26} and 2’ =1.25, pR/(aH)=32,1,/t,=1/3E-4.

> bep

As can be seen from Figure 5-14, the system becomes stiffer exhibiting reduced radial
displacement as the longitudinal pre-stretch (Figure 5-14(a)) or the material parameter b
(Figure 5-14(b)) is increased. Figure 5-15 shows that the normalized radial displacement

increases slightly with increasing values of the normalized pressure p R/(aH) (Figure

5-15(a)), whereas the characteristic time #,, seems to not affect the problem (Figure
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5-15(b)). The linear case yields conservative values of the normalized radial displacement
compared to the hyperelastic model, except for large pre-stretch values and low values of
the normalized pressure. In addition, the maximum deformation occurs at the beginning of

the loading while the system has not entered the exponential hardening region yet.

= 1.0

:F\

‘g ———— Linear model
g 0.8 1 — — —  Hariton model
Q

<

& 0.6 -

@ = 0_ _ _
s A,=1.25,b=16.7, t.,/ty=(1/3)e+4
'"g: 0.4 A '

o

8 o T YT VT T T
= 024 o—~—"""

£

5

Z 0.0 T T T T T

0.5 0.8 1.1 1.4 1.7 2.0 2.3
Normalized pressure Rp /aH

2.5

(b) 2,°=1.25, b=16.7, Rp/aH=3.20

Normalized radial displacement u,/R

0.0 T T T T
1000 2000 3000 4000 5000

byt

Figure 5-15: (a) Displacement spectrum for normalized pressure values
pSR/aH:{0.5+2.3} and b=16.7, 2’ =125, 1, /t,=1/3E—4 (b) Displacement

spectrum for normalized characteristic time values ¢, /¢, = {500 +5000} and b=16.7,

p.R/aH =32, 2} =125.

5.4.2.2 Response spectra

Equations (5.33)-(5.35) are investigated by varying the pre-stretch value /120 , the material

parameter 5 and the normalized pressure p R/aH .

65



1.8

Longitudinal elongation /120

I I S e SN Rp/aH=3.2,1,/t;~(1/3)e+4
s 14 F‘M:
g < 12 —
Ry e
E gn 08 - _—— b=15
EE ¢ — b=25
E (5] .
E 04
= 021 (@
0.0 ; . . . .
100 1.05 110 115 120 125 130 _
< 10 23.0
N =
— Q
EZ 08 525
o] (=]
g 2 . I 's2
B2 06t T o] £20
I Tt ———e——4 e}
22 g1s
< =
S5 0.4 - <
R g 1.0
E5 021 05 4
3 ®) E O
0.0 : ; ; ; ; 0.0 ; . ; ; .
1.00 1.05 1.10 115 120 125 130 = 100 1.05 1.0 1.5 120 125 130
g 80 s 80
5 . 2
S 601 g 601
RS 3 S
S =0
= 40 A = 40 A
s 3 S8
g 20 A E 20 T
=
£
g (d - 0
g 0 ; . . . . g
S b= 0 T T T T T
1.00 1.05 110 115 120 125 130 1.00 1.05 1.10 1.15 120 125 130

Longitudinal elongation /120

Figure 5-16: Response spectra for 4. = {1 +1.3} ,b=5,15,25, pR/(aH)=3.2,
t,,/t,; =1/3E—4: (a) circumferential elongation 4,, (b) normalized thickness h/H, (c)

normalized strain energy W/a, (d) normalized circumferential stress o,/ a, (€)

normalized longitudinal stress o_ /a.

Figure 5-16 plots response spectra as a function of the longitudinal pre-stretch, for three

values of the material parameter b, and for p R/aH =3.2. The normalized strain-energy
W/a, the circumferential elongation 4,, and the normalized circumferential stress o, / a
are decreased with increasing values of the longitudinal pre-stretch 1°. We can observe

that the normalized longitudinal stress exhibits peak values for pre-stretch values between
1.1-1.2. For increasing values of the material parameter » the circumferential elongation

and the strain-energy are decreased, whereas for the different values of material parameter
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b the calculated stresses present intersection points (Figure 5-16 (d,e)). Consequently, the

hoop stress is not a representative criterion to obtain the response limits of different arterial

systems. On the contrary, the strain-energy function and the displacements of different

arterial systems appear distinctive.
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Figure 5-17: Response spectra for 4. = {1+1.3} , p,R/aH =08, 2.4, 40, b=15,

t,, /'ty =1/3E—4: (a) circumferential elongation 4, , (b) normalized thickness 4/ H, (c)

normalized strain energy W /a , (d) normalized circumferential stress o, / a , (€)

normalized longitudinal stress o_ /a.

The response spectra were investigated for different cases of longitudinal pre-stretch, three

values of the normalized pressure Rp /aH , and b=15 (Figure 5-17). The normalized

strain-energy, the circumferential elongation, and the normalized circumferential stress are
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decreased with increasing values of longitudinal pre-stretch 1’. We can observe that, the

normalized longitudinal curves exhibit peak values for pre-stretch values between 1.05-

1.15. For increasing pressure values Rp, /aH the response in increased.
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Figure 5-18: Response spectra for b={5+25}, p R/aH =08, 2.4, 4.0, A} =1,

t,, /'ty =1/3E —4: (a) circumferential elongation A, , (b) normalized thickness h/ H , (c)

normalized strain-energy W / a , (d) normalized circumferential stress o,,/a, (e)

normalized longitudinal stress o_ /a.

Figure 5-18 presents response spectra for different values of the material parameter b , for

three different values of the normalized pressure Rp, /aH , and A’ =1. An increase of the

material parameter b results in a decrease of the circumferential elongation and
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normalized strain-energy, and an increase of the normalized circumferential and

longitudinal stresses.

Table 5-4: Maximum normalized strain-energy W /a and exact occurrence time for range

of A’ and b values, and for Rp, /aH =32 (case of Figure 5-16).

b
5 15 25

Maximum | Time Maximum Time Maximum Time

/120 W /la (sec) W/ia (sec) W /la (sec)
1 2.6255 0.00020 1.9443 0.00017 1.69 0.00016
1.05 2.6272 | 0.00019 1.913 0.00017 1.6495 0.00016
1.1 2.5968 0.00019 1.8488 0.00016 1.5688 0.00015
1.15 2.5317 ] 0.00019 1.747 0.00016 1.4549 0.00015
1.2 24317 ]0.00019 1.6072 0.00016 1.2991 0.00014
1.25 2.2964 | 0.00018 1.4287 0.00015 1.0992 0.00014
1.3 2.1241 0.00018 1.2076 0.00015 0.85387 0.00013

Table 5-5: Maximum normalized strain-energy W /a and exact occurrence time for range

of ﬂ.zo and Rp_ /aH values, and for b=15 (case of Figure 5-17).

Rp, aH
0.8 24 4

Maximum | Time Maximum Time Maximum Time

/LO Wia (sec) W/a (sec) Wia (sec)
1 0.40285 | 0.00033 1.4107 0.00020 2.4879 0.00015
1.05 0.39027 | 0.00032 1.3863 0.00019 2.4441 0.00015
1.1 0.36872 | 0.00032 1.3341 0.00019 2.374 0.00019
1.15 0.33763 | 0.00031 1.2558 0.00018 2.2506 0.00014
1.2 0.29761 | 0.00030 1.1483 0.00018 2.0825 0.00014
1.25 0.2494 | 0.00030 1.0106 0.00017 1.8603 0.00013
1.3 0.19548 | 0.00029 | 0.84355 0.00017 1.5873 0.00013
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Reported in Tables 5-4 through 5-6 are the peak values of normalized strain-energy and the

time instant that it occurs. For all cases, the peak value occurs at the beginning of the

loading.

Table 5-6: Maximum normalized strain-energy W /a and exact occurrence for range of

Rp,/aH and b values, and for A =1 (case of Figure 5-18).

Rp, /aH
0.8 24 4

Maximum | Time | Maximum | Time | Maximum | Time

b Wia (sec) Wia (sec) Wia (sec)
5] 0.50448 | 0.000374 | 1.8847 |0.000224 | 3.3855 | 0.000176
7.5 0.46631 | 0.000358 | 1.6958 | 0.000214 | 3.0219 | 0.000168
10 | 0.43967 |0.000347 | 1.5721 |0.000207 | 2.7875 | 0.000162
12.5| 0.41922 | 0.000338 | 1.4818 | 0.000201 | 2.6183 | 0.000158
15| 0.40285 |0.000331 | 1.4107 |0.000196 | 2.4879 | 0.000154
17.5| 03893 | 0.000325| 1.3548 | 0.000193 | 2.3827 |0.000151
20| 0.37778 | 0.00032 1.3074 0.00019 2.2938 | 0.000149
22.5| 03678 |0.000316 | 1.2669 |0.000187 | 2.2218 |0.000147
25| 0.35903 |0.000312 | 1.2317 |0.000185 | 2.1548 |0.000145

5.4.3 Response of aneurysmatic arteries

5.4.3.1 Maximum radial deformation

This section compares the radial displacement of the Mooney-Rivlin arterial model with
that of the equivalent linear model. All models in the analysis assume the same initial
tangent elasticity modulus Ej. In particular, Figures 5-19 and 5-20 plot the peak radial

displacement as a function of the longitudinal pre-stretch A°, the material parameter g,

the normalized pressure p(#)R /(uH ), and the normalized characteristic time ¢,, /¢, .

0 .
A, results in a decrease

z

It can be observed that an increase of the longitudinal pre-stretch

of the radial displacement and in stiffer arterial systems (Figure 5-19(a)). On the other

hand, by increasing the material parameter g (Figure 5-19(b)), the normalized pressure

p(OR/(uH) (Figure 5-20(a)) or the normalized characteristic time ¢, /t,, (Figure
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5-20(b)), the normalized radial displacement is increased. The linear model yields lower
radial displacements than the Mooney-Rivlin arterial model, especially for low pre-stretch

values or high normalized pressure values. Note that, when the material parameter S is

increased the effect of the second invariant is reduced, resulting in softer systems, and that

when /120 =1 there is no effect of parameter B on the response of the system.
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Figure 5-19: (a) Displacement spectrum for pre-stretch values A’ ={1+1.3} and =0,

PR/ (uH)=0.64, ¢, /t,, =1000, (b) Displacement spectrum for material parameters

f={-0.5+0.5} and 2° =1.1, p,R/(uH)=0.64, 1, /1,, =1000.
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Figure 5-20: (a) Displacement spectrum for normalized pressure values

¢t /t,, =1000, (b) Displacement spectrum for

b cp

PR/ (uH)={0.08+0.8) and 2° =1, =0

characteristic time values £, /f,, = {1000+5000} and =1, f=0, p,R/(uH)=0.64.

5.4.3.2 Response spectra

Spectra of the response quantities (Equations (5.22), (5.23) and (5.43)-(5.45)) are plotted

for different values of the non-dimensional parameters A’, £ ,and p R/(uH) .

Figure 5-21 plots response spectra for different values of longitudinal pre-stretch and for

three values of the material parameter B . It can be observed that the circumferential

elongation is reduced with increasing values of longitudinal pre-stretch 1°, and that the

normalized strain-energy has an optimized (minimum) point corresponding to a particular

pre-stretch value. This is more noticeable for the case of normalized systolic pressure

p,R/ puH =0.32. On the other hand, the response quantities are increased with increasing

values of the material parameter S .
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Figure 5-21: Response spectra for A° = {1 +1.3} , for different values of the material
parameter £ and the normalized systolic pressure p R/ uH ,and ¢, /t,, =1000: (a)
circumferential elongation A4,, (b) normalized thickness 4/ H , (c) normalized strain energy

W | u, (d) normalized circumferential stress o, / 1, (€) normalized longitudinal stress

o./u.

Response spectra were also investigated for different longitudinal pre-stretch values, for

three values of normalized pressure p R/uH, and g =0 (Figure 5-22). By increasing
p, R/ uH (case of hypertension or low elasticity modulus) the response is increased.

Furthermore, for each case of normalized pressure, the normalized strain-energy exhibits

an optimized (minimum) point for a particular pre-stretch value.
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Figure 5-22: Response spectra for 4. = {1 +1.3} , three values of the normalized systolic

pressure p R/(uH), f=0,and t,/t,, =2000: (a) circumferential elongation A,, (b)
normalized thickness 4/ H, (c) normalized strain energy W / u, (d) normalized

circumferential stress o, / 1, (¢) normalized longitudinal stress o_ / .

Figure 5-23 presents response spectra as a function of the material parameter g, for three
values of the parameter p R/uH and for A =1.1. The response parameters A,, W / u,
and o,/ u are increased for increasing values of the material parameter S, whereas all

response quantities are increased for increasing values of the normalized pressure

p.R/uH .
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Figure 5-23: Response spectra for g ={-0.5+0.5}, for three values of the normalized

systolic pressure p R/ (uH) and for /120 =11, ¢, /1,, =1000: (a) circumferential
elongation A,, (b) normalized thickness 4/ H , (c) normalized strain-energy W / u, (d)

normalized circumferential stress o, / 1, (¢) normalized longitudinal stress o_ / 4.

Finally, Tables 5-7 through 5-9 report the time instant at which the peak value of
normalized strain-energy occurs. In all cases, the peak value occurs during the systolic

phase.
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Table 5-7: Maximum normalized strain-energy W/ u and exact occurrence time for range

of /120 and g values, and for p R/ uH =0.32 (case of Figure 5-21).

B
-0.5 0 0.5

Maximum | Time | Maximum | Time Maximum Time

x Wi (sec) Win (sec) Win (sec)
1 0.0757 0.34535 0.0757 0.34535 0.0757 0.34535
1.05 0.0558 | 0.001836 | 0.0606 | 0.001897 0.0662 0.31852
1.1 0.0473 | 0.001788 | 0.0556 | 0.001902 0.0666 0.002042
1.15 0.048 0.001739 | 0.0589 | 0.001902 0.0754 0.002115
1.2 0.0672 0 0.0697 | 0.005671 0.0916 0.002191
1.25 0.1013 0 0.1013 0 0.1145 0.002283
1.3 0.1409 0 0.1409 0 0.1435 0.002305

Table 5-8: Maximum normalized strain-energy W/ u and occurrence time for range of ZZO

and p R/ uH values, and for =0 (case of Figure 5-22).

p R/ uH
0.16 0.32 0.48

Maximum | Time Maximum Time Maximum Time

A Win (sec) Wip (sec) Win (sec)
1 0.0152 | 0.001724 0.0757 0.34535 0.2298 0.35121
1.05 0.0114 | 0.005146 0.0606 0.001897 0.1958 0.35078
1.1 0.0182 0 0.0556 0.001902 0.1735 0.34967
1.15 0.0393 0 0.0589 0.001902 0.1612 0.34799
1.2 0.0672 0 0.0697 0.005671 0.1578 0.002133
1.25 0.1013 0 0.1013 0 0.1621 0.002123
1.3 0.1409 0 0.1409 0 0.173 0.002116
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Table 5-9: Maximum normalized strain-energy W/ u and exact occurrence time for g and

p,R/ uH values, and for A =1.1 (case of Figure 5-23).

PR/ uH
0.16 0.32 0.48

maximum Time maximum | Time | maximum | Time

B Win (sec) Win (sec) Win (sec)
-0.5| 0.0182 0 0.0473 | 0.001788 | 0.1418 | 0.34565
-0.4 | 0.0182 0 0.0488 | 0.001809 | 0.1473 | 0.34704
-0.3 | 0.0182 0 0.0503 |0.001831 | 0.1531 | 0.34857
-0.2 | 0.0182 0 0.052 0.001854 | 0.1595 | 0.35023
-0.1 | 0.0182 0 0.0537 [0.001877 | 0.1663 | 0.34776
0| 0.0182 0 0.0556 |0.001902 | 0.1735 | 0.34967
0.1 0.0182 0 0.0575 |0.001928 | 0.1814 | 0.34737
0.2 0.0182 0 0.0596 | 0.001955| 0.1897 | 0.34966
03| 0.0182 0 0.0618 |0.001983 | 0.1989 | 0.33365
04| 0.0182 0 0.0641 |0.002012 | 0.2091 | 0.35008
0.5| 0.0185 | 0.009085 | 0.0666 | 0.002042 0.22 0.34816

5.4.4 Comparison of the proposed hyperelastic arterial models through

response spectra

This section presents a comparison of the three proposed hyperelastic models. Each model
is characterized by different material constants. Therefore, we choose to run two sets of
analysis for the specific stress-strain curves shown in Figure 5-24. We can say that the
models of Figure 5-24(a) correspond to arteries with large elasticity modulus (stiff
models), whereas the models of Figure 5-24(b) correspond to arteries with low elasticity
modulus (soft models). Note that, the models used in each analysis are not characterized by

the same initial circumferential tangent modulus.

Figures 5-25 and 5-26 plot the response spectra of the three hyperelastic models as a
function of the longitudinal pre-stretch. In addition, the circumferential elongation of the
linear case is calculated. In the first case (stiff systems) the Hariton arterial model
demonstrates large circumferential elongations compared to the other models. For low and

medium pre-stretch values, it also demonstrates the higher strain-energy values and
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stresses. On the other hand, the response of the Skalak et al. and the Mooney-Rivlin arterial
models is similar. The linear case is conservative compared to the Skalak et al. and
Mooney-Rivlin model, whereas for pre-stretch values up to 1.15 it demonstrates lower
circumferential elongation than the Hariton case. The behavior of these models does not
correspond to the strain hardening effect of each material, due to the fact that the models
are stiff and the resulting strain is low (circumferential strains up to 30%). At low strains,

the constitutive laws have not entered their hardening or softening regions yet.
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Figure 5-24: Selected stress-strain relationships of the hyperelastic models (4! =1): (a)

systems with large elasticity modulus, (b) systems with low elasticity modulus.

In the second case (soft models) we can observe that the Mooney-Rivlin model
demonstrates the largest elongations, it follows the linear model, the Skalak et al. model,
and very last the Hariton arterial model. Furthermore, the Hariton case gives low strain-
energy values and high stresses compared to the other two hyperelastic laws. These results

clearly show the effect of material strain hardening on the dynamic arterial response, since
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the models exhibited large strains (circumferential strains higher than 30%) and the

constitutive laws have entered their characteristic hardening or softening regions.

Maximum change of normalized Maximum circumferential

Maximum normalized cirumferential

elongation Ay

arterial thickness h/H

force oy, (MPa)

1.4 4

0 o -
1.2 1 B S S
~ ﬂ-o\o\a
1.0 A ~o
- A S

0.8 ~])
0.6
04 -
021 (@
0.0 T T T T T
1.00 1.05 1.10 1.15 120 1.25 1.30
12
.,J
w M—::’—:—’:—/ E)
08 45
[~©—0 0—~0-0—0 0—0—0—0 0— 0—0— E
o
0.6 g
g
0.4 g
k5
0.2 - >
(b)
0.0 . . . . .
1.00 1.05 1.10 1.15 120 125 1.30
3.0 Té
(d) 3
2.5 T N Eﬂ
2.0 o ke
e 3
15 - \\ =S
N <
. =
1.0 - g
g
bty - 3
05 3%~ \ *’*;\b« E
0.0 T T T T T §
1.00 1.05 1.10 1.15 120 125 1.30

Longitudinal elongation lzo

———e——— Skalak et al. C/H=1 MPa , B/C=0.5
. RpJC=0.16, 1,,,/t5=14680
— — —  Hariton =200 kPa, b=35, Rp /aH=0.8
1, /1;76565
——— MR x=0.6 MPa =0, Rp /uuH=0.27
L/ tyr=11370
—————— Linear E’=1MPa, Rp /E,’H=0.16
0.10
£0.08
=)
& 0.06
>
20
20.04
Q
£
£0.02
0.00 . . . . .
1.00 1.05 1.10 1.15 120 125 1.30
3.0
€
2.5 4 (©
=
& 2.0 1
=)
CREE
5] —0’0’0—0' - o—o_
2104 Ry
*/
0.5 — o
~e— —
0.0 ; . . . .
1.00 1.05 1.10 1.15 120 125 1.30

Longitudinal elongation AZO

Figure 5-25: Response spectra of the three (stiff) hyperelastic arterial models for

10

{1+1.3} and for the material laws shown in Figure 5-24(a): (a) circumferential

elongation 4,, (b) normalized thickness 4/ H , (c) strain-energy density W, (d)

circumferential stress o, , (¢) longitudinal stress o, .
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Figure 5-26: Response spectra of the three (soft) hyperelastic arterial models for

2! ={1+1.3} and for the material laws shown in Figure 5-24(b): (a) circumferential
elongation 4,, (b) normalized thickness //H, (c) strain-energy density W, (d)

circumferential stress o, , (¢) longitudinal stress o .

5.5 Numerical examples

To illustrate the applicability of the proposed analytical models, numerical examples are
presented and compared against analytical studies available in the literature. Such studies
are the works of Demiray and Vito [29] and Humphrey and Na [30], which both

investigated the case of an exponential hyperelastic constitutive law.

Demiray and Vito [29] studied the radial deformations of arteries subjected to dynamic

inner pressure. Their model was assumed to be isotropic, homogeneous, and
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incompressible. They presented a numerical example based on data corresponding to a
dog's abdominal aorta, simulated by the exponential strain-energy density function of Blatz
et al. [76]. The dog's abdominal aorta has inner radius 3.12 mm, outer radius 3.80 mm, and
longitudinal pre-stretch equal to 1.53 and is subjected to dynamic loading with systolic and
diastolic pressures 9.892 kPa and 3.466 kPa, respectively. The resulting circumferential
stress at the artery centerline, at the beginning of the systolic phase, is calculated by

Demiray and Vito as 395.7 kPa.
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Figure 5-27: Circumferential stress-strain curves of the linear and hyperelastic constitutive

laws used for the case of (a) Demiray and Vito [29], (b) Humphrey and Na [30].

The data used by Demiray and Vito [29] in their example, are utilized to calculate the
arterial response for the proposed Skalak et al. and the Hariton arterial models (the
Mooney-Rivlin arterial model is not suitable for the data of this example, due to the large
pre-stretch value). The selected material parameters of each case have about the same

initial tangent modulus and adequate curve fitting compared to the circumferential stress-
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strain curve of the analysis of Demiray and Vito (Figure 5-27(a)). Table 5-10 reports the
data used for each model and the corresponding response values. The case that
approximates better the peak circumferential stress calculated by Demiray and Vito (395.7
kPa) is the arterial model that adopts the strain-energy function of Hariton (446.69 kPa).
The linear model and the Skalak et al. arterial model yield lower values of circumferential
stress. Note that, the peak strain-energy density value of the Skalak et al. and Hariton
arterial model are comparable, whereas the linear arterial model yields larger strain-energy

density values.

In another study, Humphrey and Na [30] investigated the dynamic response of an artery
and the resultant wall stresses. They assumed that the artery is anisotropic, homogeneous,
incompressible and obeys the exponential hyperelastic law of Chuong and Fung [77]. In a
numerical example they investigated the passive response of an artery subjected to two
cardiac cycles with systolic and diastolic pressures of 105 mmHg and 91 mmHg,
respectively. The artery has inner radius 1.39 mm, outer radius 1.99 mm and longitudinal
pre-stretch 1.832. The model also accounted for residual circumferential stresses by using
the approximate “opened-up” stress-free configuration [77]. The peak circumferential and
axial stresses of the inner surface were calculated by Humphrey and Na as 212.8 kPa and
177 kPa respectively (in general the inner surface has lower stress values than the outer
surface). The maximum radial displacement of the outer surface was computed to be 0.72

mm (mean strain 42%).

We utilize the data used by Humphrey and Na [30] to investigated the arterial response for
the hyperelastic functions considered in this study. Figure 5-27(b) shows the
circumferential stress-strain curves of our analysis and of the analysis of Humphrey and
Na. The material parameters of each case were selected to have about the same initial
tangent modulus and adequate curve fitting to the Humphrey and Na model. To account for
the residual circumferential stresses, we assume that a compressive pressure equal to 50
mmHg is applied to the arterial wall. Table 5-11 reports the data used for the linear,
Skalak, and Hariton arterial model and the corresponding response values. The Mooney-
Rivlin hyperelastic function is not suitable for the data (large pre-stretch value) of this

example.

The calculated values of the arterial model of Skalak (strain 55% and circumferential stress
153.22 kPa) approach better the results of Humphrey and Na. Note that our calculations are

based on the average stress assumption, whereas the values reported by Humphrey and Na
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concern the stresses of the inner surface. In addition, we can observe that there is a

variation of the peak values of strain-energy for the different material constitutive laws.

Table 5-10: Data used in the analysis (based on Demiray and Vito [29]) and response

values for each case.

Data

R (mm) 3.46
H (mm) 0.68
AL 1.53
Po (kg/m3) 1160
p, (mmHg) /(Pa) 74.2/9892
1, (sec) 0.35
t, (sec) 1

Linear arterial model

Parameters Peak response values

E;’ (kPa) 417 u. /R 0.53

u, (mm) 1.83 o,, (kPa) 221

o .. (kPa) 221

w (kPa) 117

Skalak et al. arterial model

Dimensionless parameters Peak response values

B/C 1 u, /R 0.06
pR/IC 1.16 o,, (kPa) 96.68
t, /ty 2187 o .. (kPa) 161.75
w (kPa) 39.56

Hariton arterial model

Dimensionless parameters Peak response values

b 1.5 u, /R 0.42
p.R/aH 4.19 o,, (kPa) 446.69
t,/ty 1143 o .. (kPa) 523.77
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‘ W (kPa) ‘ 43.90

Table 5-11: Data used in the analysis (based on Humphrey and Na [30]) and response

values for each case.

Data
R (mm) 1.69
H (mm) 0.6
A0 1.832
Po (kg/m3) 1160
p, (mmHg) /(Pa) 55/17.333
Pa (mmHg) /(Pa) 41/5.466
t. (sec) 0.3
t,, (sec) 0.8
Linear arterial model
Parameters Peak response values
E! (kPa) 53.9 u, /R 0.83
u, (mm) 1.406 o,, (kPa) 44.85
o .. (kPa) 44.85
w (kPa) 37.31
Skalak et al. arterial model
Dimensionless parameters Peak response values
B/C 0.5 u, /R 0.55
pR/IC 4.04 c,, (kPa) 153.22
t, g 1679 o .. (kPa) 164.83
w (kPa) 103.43
Hariton arterial model
Dimensionless parameters Peak response values
b 1.5 u, /R 0.46
p.R/aH 111.9 c,, (kPa) 354.27
t, !ty 319 o .. (kPa) 569.67
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‘ W (kPa) ‘ 22.28

5.6 Concluding remarks

This chapter investigates the macroscopic arterial dynamic response caused by three
different material behaviors associated with arterial diseases. Each material behavior is
described by a proper constitutive law. Important metrics that can be useful to vascular
surgery were investigated, such as the radial deformation and the maximum energy

density.

It should be noted that the study presented in this chapter is limited by the model
assumptions (i.e. one homogenized layer, isotropic material). Indeed, several hyperelastic
constitutive laws that consider more detailed and complex arterial structure are available in
the literature. These models depend on many material parameters which cannot be easily
obtained, nor are they available in the literature. The arterial material parameters are
characterized by large uncertainties and vary with topology, age, gender, and disease of the
artery. For this reason, at this point, it may not be useful to study detailed multi-parameter
hyperelastic laws. Thus, we chose to investigate isotropic models which contained only
two material parameters. If the material parameters of the complex/multi-parameter
constitutive laws were definitely obtainable, the problem could be methodically solved by

following the procedure presented in this chapter.

A good example of a more complex multi-parameter hyperelastic law is the constitutive
model proposed by Holzapfel et al. [69]. This model accounts for the material anisotropy
and two families of collagen fibers (arranged in symmetrical spirals) of non atherosclerotic
thick-wall coronary arteries. Their proposed strain-energy function is a five-parameter

equation expressed as

W= (I, _3)+&{exp[y3 (1= 1) (1, =3) + o, (1, _1)2}_1} (5.72)

3

where 4, >0 and 4 >0 are stress like parameters, 4 >0 and g, =[0+1] are
dimensionless parameters, and [, =4, + A’ +(4,A2)” and I, = A} cos® @, + A2 sin’ ¢, are
the first and fourth invariants, respectively. By ¢, is denoted the orientation angle of the

collagen fiber reinforcement.

References in the literature suggest that the use of complex hyperelastic laws may not be

very useful and could hide the generality of results or the most important aspects of the
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problem. Humphrey and Na [30] observed that the more complex the arterial model, the
less complex the stress field appears to be. Moreover, Hariton [70] modeled the realistic
orientation of collagen fibers of the arterial tissue and observed that there is no significant

difference between the macroscopic response of the simplified and the complex model.

Based on the finding of this chapter, we can conclude that the response of arterial models
based on any other constitutive law (e.g. the constitutive laws proposed by Fung [53] or
Gent [54]) depends on the increased hardening or softening behavior of the stress-strain
relationship. For instance, the exponential strain-energy function of Hariton exhibits
increased hardening compared to the strain-energy function of Skalak et al., implying that
the radial deformation based on the Hariton arterial model is expected to be lower than

what we calculated for the Skalak et al. arterial model.

The level of approximation of the linear-elastic model against the proposed hyperelastic
models was investigated throught radial displacement spectra. For each analysis the models
had the same initial tangent Young's modulus in the circumferential direction. It appears
that for most cases the solution of the linear model constitutes a good approximation
(conservative approximation) of the Skalak et al. solution (Figures 5-10 and 5-11). The
Mooney-Rivlin case yields higher radial displacements compared to the linear case
(Figures 5-19 and 5-20). On the other hand, for the Hariton model the approximation is not
good, especially at low pre-stretch values, due to the fact that the initial tangent modulus
approaches zero (the slope of the stress-strain curve becomes steeper at higher strains,

Figures 5-14 and 5-15). The use of a tangent Young's modulus corresponding to
circumferential elongations 10%-20% (instead of using the initial young modulus E‘;

corresponding to zero -circumferential elongations) is expected to yield better

approximations.

In general the most important factors influencing the peak response of the hyperelastic

models are found to be the longitudinal pre-stretch 1° and the normalized pressure. The

normalized radial displacement decreases with increasing values of pre-stretch. Figure
5-28 offers an explanation as to what this means for the human health along the years for
the case that the material law is not significantly altered over the years. The longitudinal
pre-stretch is caused due to the delayed growth of arteries compared to the rest of the body.
Therefore, human arteries exhibit increasing longitudinal pre-stretch with aging. The
gradual arterial stress softening, caused by aging, can be balanced by the longitudinal pre-
stretch and the decreased radial response. On the other hand, at old age the human body

exhibits small shrinkage causing the longitudinal pre-stretch to decrease. Combined with
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the continuing loss of strength, the arterial response cannot be easily balanced, thus the

human vascular system becomes vulnerable.

u /R Young age:

large strain and

high strength Adults: small

strain and
medium strength

Old age: large
strain and low
strength

20
Figure 5-28: Explanatory diagram for the longitudinal pre-stretch and radial deformation

the arterial response of different age groups. It is assumed that the material law is not

significantly changed over the years.

An increase of the normalized pressure parameter implies increased intraluminal pressures
(hypertension) and/or decrease of the elasticity modulus of the arterial tissue. The
normalized pressure is increased by a factor of 5/3 or 10 in cases of hypertension or soft
arterial tissue, respectively. Under the effect of large normalized pressures the system

response is increased, especially for the Mooney-Rivlin case (Figure 5-20(a)).

The strain-energy density is an important metric for the response of arterial systems. The

normalized strain-energy is increased with increasing values of the absolute normalized

displacement |u, / R|. In some cases, the stress value is not an appropriate criterion for

distinguishing the limit values of different systems. On the contrary, the corresponding
strain-energies and displacements are distinctive. Zafiropoulou [78] was the first to prove
that the strain-energy density constitutes a trustworthy criterion for the arterial response.
The energy criterion of the arterial tissue is consistent with the failure criterion, i.e. if the
energy of the system reaches the limit value the system will fail. In contrast, in the case of
artificial grafts the material properties are well known, thus a stress failure criterion would

be more relevant.

In addition, numerical examples were demonstrated based on the data used in the analytical
studies of Humphrey and Na [30] and Demiray and Vito [29]. The calculated response
presented in these studies can be adequately approximated by the arterial models proposed
herein, if the proposed circumferential stress-strain curves have sufficient curve fitting over

the stress-strain curves used in the examples available in the literature.
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In summary, this chapter proposes a theoretical method to investigate the effect of
nonlinear hyperelastic constitutive laws and their strain-hardening characteristics on the
dynamic behavior of human arteries. Important metrics, such as the radial deformation and
the maximum energy density, are found to be influenced heavily by the strain-hardening
characteristics of the model, as well as the longitudinal pre-stressing. The system response
was calculated through numerical methods, and the results are presented through response

spectra, revealing useful interrelations among the problem parameters.
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CHAPTER 6

Arterial Dynamic Response: Viscoelastic Model

6.1 Introduction

Arterial tissue viscoelasticity is a characteristic of muscular arteries. Muscular arteries are
medium-size arteries consisting mainly of muscular cells and located at the peripheral
circulation (e.g. cerebral, celiac, and femoral arteries). They exhibit small hysteresis due to
creep or relaxation process, which accounts for a relatively low-energy loss in each
inflation-deflation cycle and prevents reflected pressure waves from resonating in the
arterial systems [50]. Their viscosity is increased as the smooth muscle cells content,
which exists mostly in the media layer, is increased. In addition, the viscoelastic
characteristics of arterial tissues are affected by changes in temperature or by the presence
of drugs [79]. Shah and Humphrey [80], who investigated the case of an elastic saccular
aneurysm, noted that the elastic approach provides an upper bound on the dynamic
response, and that the viscoelastic approach would probably describe a more stable system

(i.e. provide a more refined solution to the problem).

Wall viscosity is a material characteristic and should be implemented in the constitutive
law. Several studies investigated the viscoelastic behavior of arteries [32-34, 36]. It was
concluded that a simple Maxwell or Voigt element cannot adequately model the
viscoelastic response of such biological tissues. Kallita and Schaefer, in their review article
[31], identify the different kinds of mechanical models that simulate the viscoelastic
behavior of arteries. Westerhof and Noordergraaf [32] suggested a five-parametermodel
consisting of two Maxwell elements and a spring, placed in parallel. In another study, Cox
[33] proposed a spring in series with one or two Voigt elements, and Papageorgiou and
Jones [34] proposed a model with a number of Voigt elements in series. Holzapfel et al.
[36] adopted a model consisting of a single spring on one end and five Maxwell devices set

in parallel (generalized Maxwell model).

Haslach Jr [37] recognized that the relatively recent approach proposed by Holzapfel et al.
[36] adequately describes the viscoelastic behavior of arteries and that it requires many
time-depended material constants. He proposed a nonlinear viscoelastic model that
describes the long-term behavior of biological soft tissues, consisting of a system of

evolution equations with time-independed material constants.

Herein, to simulate the viscoelastic behavior of arteries we adopt the sophisticated

approach descriped by Holzapfel et al. [36] and the hyperelastic two-parameter constitutive
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law proposed by Skalak et al. [55]. The proposed model is an extension of the hyperelastic
arterial model developed in Chapter 5. The purpose of this investigation is to study the
effect of each problem parameter on the macroscopic arterial response. Furthermore, it
aims to examine if the proposed analytical model approximates well experimental and

numerical data available in the literature.

The viscoelastic arterial model accounts explicitly for the longitudinal pre-stress, whereas
other pre-stress effects are assumed to be incorporated in the constitutive law. Finally,
although arteries are anisotropic, we are mainly concerned with the effect of viscosity in

the dynamic response of the artery cross-section.

6.2 Mathematical model

The mathematical model developed (Figure 6-1(a)) is based on the following assumptions:
(a) the arterial tissue consists of a single layer (homogenized media and adventitia); (b) the
artery is a thin-walled structure (i.e. the arterial wall thickness is small compared to the
internal radius of the vessel); (c) the vessel cross-section in the undeformed state forms a
full circle with thickness-averaged radius R ; (d) the arterial wall has constant thickness
along the circle; (e) no boundary constrains are applied on the ring; and (f) the effects of

rotary inertia and shear deformation are neglected.

q 1}1/132

(b)

Figure 6-1: (a) Configuration of viscoelastic arterial model at undeformed state, (b) Free-

body diagram of a typical element of viscoelastic arterial ring.

Note that, by R, H, and L are denoted the radius, thickness, and length of the initial
configuration respectively; and by », &, [ are denoted the radius, thickness, and length of

the deformed configuration respectively.
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The arterial wall viscosity is simulated by adopting the generalized Maxwell model, which
consists of a single spring on one end and a number of Maxwell devices set in parallel
(Figure 6-2). Furthermore, the adopted model separates the total stresses to elastic long-
term stress and viscoelastic stresses. This model was developed by Bonet [81] for the
general case of large strain viscoelastic models. Holzapfel and Gasser [35] extended the
Bonet approach to the case of fiber-reinforced composites, and in a later study Holzapfel et

al. [36] extended the model to the case of arteries.

Elastic spring

——WWW—
IWWW_ Applied

Maxwell element 1 . forlce

' L~
: u,(t)
i—

Maxwell element i

Figure 6-2: Generallized Maxwell model, consisting of a single spring and a number of i

Maxwell elements set in parallel.

In terms of strains, the adopted model utilizes the total strain of the system (sum of elastic
and viscoelastic strains) [82, 81, 35]. Note that, it would be more appropriate to use a
model that separates the elastic from the viscoelastic strains, but the material parameters of

such arterial models are not available in the existing literature.

The Bonet-Holzapfel viscoelastic model is based on the internal variable theory. The

internal dissipation is described through the non-equilibrium stresses ¢,(¢), which could be

taken into account as body forces as shown in Figure 6-1(b). The non-equilibrium second
Piola-Kirchhoff stresses, for one relaxation process, are expressed through the convolution
integral [36]:

t—t,

4,(t) = exp (;—tj 4,0+, exp[ } B8 (t,)dt, (6.1)

1
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where S is a non-dimensional free-energy factor constant, 7, is the respective relaxation
time, ¢, is the time instant of step n, and S‘j is the second Piola-Kirchhoff circumferential
stress rate. The material parameters B” and 7; can be obtained through experimental
procedures. Typical values of these material parameters are f°=0.2-0.4 and
7, =0.001-10 sec [36].

The equation of motion of the arterial ring is formulated by considering the deformed state
of the model. In particular, it is obtained by considering the force equilibrium along the
radial direction of the infinitesimal element abcd, shown in Figure 6-1(b). Thus, the

resulting equation of motion of the arterial segment, for one relaxation process, is

expressed as

F(0)p(1) = N() = g, (1) (2, (1)) h(t) = poh(f)r(t)% (6.2)

Evidently, when the non-equilibrium stresses ¢,(t) are equal to zero, Equation (6.2)
becomes identical to the equation of motion of the hyperelastic arterial model proposed in
Chapter 5 (Equation (5.2)).

More relaxation processes can be taken into account, by adding to Equation (6.2) more
time integrals ¢,(#), with different free-energy factor constants and corresponding

relaxation times.

6.2.1 Viscoelastic arterial model based on the strain-energy function of
Skalak et al.

The model requires a proper hyperelastic constitutive law to describe the elastic stresses of

the problem. The strain-energy function of Skalak et al. [55], was originally developed for

red blood cell membranes. It is an isotropic, two-dimensional strain-energy function,

demonstrating hardening behavior similar to that of arteries. The strain-energy function

proposed by Skalak et al. is expressed as
W(t) =§(%(1(z))2 +I(t)—1[(t)j+%(ll(t))2 (6.3)

in which B and C are the material parameters of the artery, having units of elastic

modulus multiplied by artery thickness [N/m], and satisfying the condition C > B> 0. The
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alternative forms of the strain invariants /(z) and 1/(¢) are expressed by Equations (5.7)
and (5.8), respectively.

The axial force N(¢) acting along the circumferential direction of the arterial segment is
identical to the distributed force 7,(¢) (Equation (5.11)). On substituting Equations (5.3),

(5.5), and (5.11) in Equation (6.2) the equation of motion of the viscoelastic arterial model

can be expressed in normalized polynomial form as

@ B 3 A _(u,m]z 3B, 3(A) _(u,(z)T B, (&)
R | CA 2 2 R 2CA! 2 R 2CA! 2 (6.4)

+K1+wj SR G A }_ 4,(0h(1) (H u,(r)jz _ARH i 0
R c 2 2 C R cA’ R

The problem description is reduced to seven dimensionless quantities: B/C, 1!, pR/C,
q,(Oh(t)/C, u (t)/ R, t,%i (t)/ R, and ¢/t , in which the term ty, =+ p,R*H / CA’ is
the characteristic time of the response.

The tangent circumferential Young's modulus E, can be expressed as a function of the

circumferential and radial elongations, as

E

_do,, d (AQAZOT(,

B C
=—(24," =2, )+—(24,(A))* = 2, (A}’ 6.5
9 dﬂa dﬂ(g H J ( (4 &9) H( 9( z) g( z)) ( )

H
Furthermore, the normalized functions of the circumferential elongation, circumferential

Cauchy stress, longitudinal Cauchy stress, and strain-energy density are expressed

respectively as (Equations (5.22), (5.24), (5.25), and (5.26))

2,() =1 +“"Tft) (6.6)

~ ﬂ;—g”:%(um))z ) B ey —1): 6.7)
TZT(” =%:%((ﬂf>2 —1)+%((m»2(ﬂff —1): (6.8)
WTU) = %(%(1@))2 +1(t) —U(t)j +% (6.9)

93



The normalized kinetic-energy density E, /C of the system and the normalized total-
energy density E /C (equal to the sum of the kinetic-energy density E, and the strain-

energy density W) are expressed respectively as

Ec() _h(t) po(i,) _ 1 (ut) (6.10)
c ¢ 2  223,UR '
E@_E@® W (6.11)

c C C
6.2.2 A simple Kelvin-Voigt model
The Kelvin-Voigt element is a common device in modeling viscous effects [31]. We aim to

investigate if the sophisticated Bonet-Holzapfel model can be approximated by a simple

Kelvin-Voigt element. The respective equation of motion of the arterial segment becomes

du(t)

r(@)p(t) - N (1)~ (6.12)

Poh(t)r (1)

I du, (t)
dt

where T'/ R is the viscosity coefficient of the arterial wall, having units of Pa-s. The
viscosity coefficient can be parallelized (however is different) to the relaxation time of the
Bonet-Holzapfel model as T = 7;°C . By adopting the hyperelastic function of Skalak et al.,
and by following the procedure described in Section 6.2.1, the normalized equation of

motion of the viscoelastic arterial model in polynomial form is:

_w(] B 3A) A _(u,m)z 3B 3(A) _(u,mf B ()
R |CA 2 2 R 2CA° 2 R 24 2

+K ”mj k- @ +_f}_£u,(t>:poR20H i, (1)
2 2| c R cA R

}(6.13)

The Kelvin-Voigt viscoelastic arterial model is described by seven dimensionless

quantities: B/C, 1°, pR/C, Tu (t)/CR, u(t)/ R, ty%i (t)/ R, and ¢/t,,.

6.3 Numerical solution

The problem is highly nonlinear and requires numerical methods to be solved. In addition,
in order to calculate the non-equilibrium stresses an iterative method is required. Two
different solution strategies are implemented: (a) an iterative algorithm that utilizes

Newmark's constant-acceleration method [83, 84]; and (b) an iterative algorithm that
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utilizes Rosenbrock's method [73, 74] through the ode23s function in MATLAB. Both
algorithms are developed in the MATLAB environment [67].

The two algorithms have the same accuracy but different efficiency. The first algorithm is
the most efficient, since it requires computational time up to twenty times lower than the
second algorithm. This occurs due to the fact that the second algorithm utilizes the ode23s
function in MATLAB in each time step. If Rosenbrock's method was originally
programmed, in the same manner as Newmark's method, it would have about the same

efficiency as the first algorithm.

In Chapter 5, the hyperelastic arterial response of three arterial models was investigated.
The ode23s and ode23tb solvers in MATLAB were utilized. The solvers were efficient
against the hyperelastic problem, for the reason that it was not required an iterative
procedure for the calculation of the elastic stresses. Thus, for solving complex problems

such as the viscoelastic response of systems, it is more correct to develop the proper solver.

In this chapter, the presented results are calculated by utilizing the first algorithm

(Newmark's constant-acceleration method for nonlinear systems).

6.3.1 Based on Newmark's constant-acceleration method

The solution of the differential equation governing the system response (Equation (6.4)),
and the numerical integration of the convolution integral of Equation (6.1) can be obtained
by utilizing Newmark's constant-acceleration method for nonlinear systems [84] through

the following iterative procedure:

1. A constant time step Az is set, and the total time interval [0, T] is divided into n—1

sub-intervals.

2. The initial displacement, initial velocity, and initial non-equilibrium stresses (at time
t=0) are set equal to zero. The initial acceleration i, is obtained by solving Equation

(6.4) for i, .
3. The predictors of the radial response at time ¢ ,, are obtained by utilizing the formulas

of Newmark's constant-acceleration method. The displacement, velocity, and

acceleration predictors are expressed respectively, as

)0 = (), +At(u,), + Aztz (=2p)i,), (6.14)
(i), = @), + (= 7,)Adli), (6.15)
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()0 =0 (6.16)

where S, and y, are constants equal to 0.25 and 0.5, respectively.

The circumferential elongation and the current thickness are equal to
(A =14 (6.17)

H
hn+l =70,
A2 (2y)

n+l

(6.18)

4. The normalized distributed non-equilibrium force multiplied by the current thickness

(¢,h),.,/ C is calculated as [35]

_ _ S>h - S>h
(g,h),., =exp( Atj[exp( At](%h)n _Ibm( 0 )n]+ﬂlw exp(z;‘tJ% (6.19)

C 27 27, ) C e 7, C

in which S, denotes the second Piola-Kirchhoff circumferential stress. Note that, the
normalized second Piola-Kirchhoff elastic stress (multiplied by the current thickness)
at each time step is

(A)

((4),° —1)+T(ug>mf>2 —1)} (6.20)

(S:h), @y, _ 1 [B
C  C(A),> (4),A°]2C

n z

5. The calculated values must satisfy the equilibrium of Equation (6.4). The residual
value (4,)

res /n+l

is calculated as

(Ares )n+1 =

u| B30 A H 38_ 3¢ H B (A
R|CAL 2 2 R) |2CA 2 R)|2c1" 2 (6.21)

043 0 2 2 .
. 1+u_rjp£_(ﬂz> S| _ah 1+u_rJ _pRH i,
R)’c 2 2] cU R CcA’' R

n+l

6. If |(A,ag)n+1|<toleranoe the solution is acceptable. If not, then the normalized corrector

Au, is calculated as
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AM — (Ares )n+1 (622)

r (Eﬁ)n-HH + tSkz
C BuAE

where (E,),,, is the tangent elasticity modulus for (4,),,, and 1° (Equation (6.5)). Note

n+l n+l

that, if the problem was not characterized by axisymmetric geometry and axisymmetric

loading, the tangent elasticity term should be replaced by the tangent stiffness.

7. The corrected normalized response is obtained as

(ur)n+l — (ur)nH + Au (623)
R R ’
Ly (1) _ L (), 74N Au, (6.24)
R R BAt
t” (i, 0 _ t” (10, n to Au (6.25)
R R BAE

8. Steps (5) through (7) are repeated until the tolerance is satisfied.

9. Steps (3) through (8) are repeated for all time intervals.

10. The normalized time-profiles of the circumferential Cauchy stress 7,(z)/C,
longitudinal Cauchy stress 7, (¢)/C, strain-energy density W (z)/C , kinetic-energy
density E,(¢)/C, and total-energy density E,(¢)/C are calculated.

Figure 6-3 shows the flow diagram of the general algorithm, based on Newmark's constant-

acceleration method for nonlinear systems, calculating the time-profiles of the radial

displacement, radial velocity, and radial acceleration.

6.3.2 Based on the modified Rosenbrock method

A second algorithm was also implemented for solving the differential equation governing
the response of the viscoelastic arterial model (Equation (6.4)). This algorithm utilizes the
ode23s function in MATLAB [67, 71], a one-step solver based on the modified

Rosenbrock method [73, 74]. The problem is solved in the following manner:

1. The total time interval [0, 7] is divided into n—1 sub-intervals, of constant time step

At .
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Model parameters: Calculation of initial

acceleration ii,
C/H,BIC, 2 ty,Rp,/C,

7, B :> (solving Eq. (6.4) for ii,)

Initial required parameters: J\L

Uy, Uy

t

=1, +At | 4

U

Calculation of response at time ¢, : (4,), (Eq. (6.17)), (S, h), (Eq. (6.20))

il

Predictors at time instant 7 __ :

(W) =), +At(m,.), + AT{ (1=-28,)i,),

(1), =), +(1-y A ),
(ii,),, =0

Calculation of prediction values at #,,,: (4,),.,» (Sy4),..,(q,h),., (Eq.(6.19)),
(Ey), (Eq.(6.5))

U

Calculation of residual term (4,,.),,, (Eq. (6.21)) YES

res _u..Q

_ o (A,.),.| <tolerance
Correction of response at time instant 7 __, : ‘ ' ll
()1 = (0,0 + ROW, ., (3, = (2., + 22— R, NO
/B\ At v
(i), = (i), + I ~RAu, Calculation of corrector

N

(’2'{.1 }u+l * (S:‘: h)n+| ’ (q]h)ml * (E{! )rr+'|

<: Au, (Eq. (6.22))

Figure 6-3: Flow diagram of Newmark's constant-acceleration method for nonlinear

systems.

2. The initial displacement, initial velocity, and initial non-equilibrium stresses (at time

t=0) are set equal to zero.
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3.

in which the current acceleration (i, )

The radial displacement predictor at time ¢, 1is obtained by using Newmark's

constant-acceleration method for f, =0.25 and y, =0.5, as

() = (), 480G, ), + (1= 2,0, (6.26)

where the acceleration (ii,), is obtained by solving Equation (6.4) for i, .The corrector

of the displacement is

) = (W), + ByAL i), (6.27)

is obtained by considering the predictor

n+l

(L~tr)n+1 and the respective predictor of the non-equilibrium stress (Equation (6.19)).

The circumferential elongation (4,),., (Equation (6.17)), the normalized 2™ PK

elastic stress (S, h),,,/C (Equation (6.20)), and the normalized distributed non-

n+l

equilibrium force (g,4),,, / C (Equation (6.19)) are calculated.

n+l

The radial displacement (u,),., and radial velocity (u,),,, are recalculated by solving

n+l n+l

the ordinary differential equation in the time interval [¢, ¢ ], and for initial conditions
(u,), and (u,),, by using the ode23s function in MATLAB. Based on these results, the
/ C are also recalculated.

response values (4,),.,, (S, h),, /C,and (g,h)

n+l n+l

Steps (3) through (5) are repeated for all time intervals.

The normalized time-profiles of all the response values (7,(¢)/C, T.(t)/C, W (¢)/ C

, Ex(t)/C, E (t)/C) are obtained.

6.4 Results

The problem is characterized by high complexity, involving many parameters. In order to

investigate the influence of each problem parameter on the response of the system, we

conducted a large number of numerical investigations. In particular, the problem is

investigated for different values of the dimensionless parameters B/C, A, p,R/C,

t,

Ity B, and 7, /g (where ¢, is the total duration of the cardiac pulse). The time step
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of the iterative procedure is taken to be ten times lower than the characteristic time of the

arterial model (zy, /At =10).

The intraluminal pressure is approximated by two different pressure-time profiles. In the
first case, the pressure is abruptly increased from zero to the maximum systolic pressure
p,=120 mmHg, as shown in Figure 6-4(a). The value of the diastolic pressure is
p,=80 mmHg, the systolic-phase duration is ¢, =0.35 sec, and the total duration of the
cardiac pulse is 7, =1 sec. In the second case, the pressure is gradually increased (quasi-
statically) from zero up to the initial diastolic pressure value of the dynamic pressure-time

profile shown in Figure 6-4(b). Figure 6-4(b) shows the pressure-time profile of an aorta as

proposed by Zhong et al. [39].

§20) A 140
120 -
Ds gﬁ 100 /\
g l
pa ‘ e
: O 60
| —
! 3
i S 40 A
| L
| A~ 20 4
L ) 2 fep
Is lp 0.0 0.2 0.4 0.6 0.8 1.0
time (sec)
(a) (b)

Figure 6-4: (a) Arterial pulse time-profile approximation, (b) typical aortic pressure-time

profile following Zhong et al. [39].

6.4.1 Response of the Bonet-Holzapfel model

After conducting a large number of numerical investigations the interrelation among the
problem parameters is revealed. We can say that the viscoelastic problem is mainly
affected by the normalized relaxation time 7, /¢, . An increase of the material parameter
B monotonically decreases the response of the system, whereas problem parameters A’ ,
B/C, and p.R/C affect the response of the viscoelastic model in the same manner that
affect the response of the elastic model (see Section 5.4.1). In particular, an increase of the
longitudinal pre-stretch A , or the material parameter B/C stiffens the system and

z

decreases the radial displacement. An increase of the normalized pressure p R/C,

100



implying either an increase of the arterial pressure (hypertension) or a decrease of the

elasticity modulus, increases the radial displacement.

Systems with increased normalized pulse duration ¢,, /¢, , exhibit increased dissipation

Sk >
when subjected to the first loading approximation, whereas they exhibit decreased
dissipation when subjected to the second loading approximation. In addition, systems with

larger normalized pulse duration ¢, / 75, require longer computational time.

Since the problem is mainly affected by the relaxation time 7;, we choose to present graphs

for different values of the aforementioned material parameter. The presented results
concern the case of a large artery (e.g. aorta) having radius 8 mm, wall thickness 1.2 mm,
Young's modulus 1 MPa, and wall density 1160 Kg/m’. Figures 6-5 through 6-9 show
typical response time-histories of the elastic and viscoelastic models, by applying the
pressure time-profile approximation of Figure 6-4(a), and for different values of the

normalized relaxation time 7, /¢, . The response of the elastic model can be obtained either
through the mathematical model proposed in this chapter (for S =0), or through the

mathematical model introduced in Section 5.2.1.

The normalized relaxation time values 7, /¢ , utilized in Figures 6-5 through 6-8, are equal

to 1, 10, 100, and 1000, respectively. As follows from these figures, a decrease of the
normalized relaxation time decreases the response time-history values, whereas slightly
increases the peak circumferential elongation, which usually occurs at the beginning of the
systolic phase. Moreover, it can be observed that the resulting circumferential elongation
and the induced pressure time-profiles present the same morphology and are characterized

by high-frequency vibrations. This is more evident in the case of the elastic model.
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— Elastic model
Viscoelastic model
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Figure 6-5: Response time-histories for 7, /¢, =1, *=0.3, ' =1, B/C =1,
pR/IC=021,1, /t, =2597: (a) circumferential elongation 4,, (b) normalized strain-
energy density W /C , (c) normalized circumferential stress 7,/ C, (d) normalized
longitudinal stress 7, / C, (e) normalized kinetic-energy density E, / C, (f) normalized

total-energy density £, /C.
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—— Elastic model
Viscoelastic model
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Figure 6-6: Response time-histories for 7, /7, =10, g°=0.3, A’ =1, B/C=1,
pR/IC=021,1, /1ty =2597: (a) circumferential elongation 4,, (b) normalized strain-
energy density W / C , (c) normalized circumferential stress 7,/ C, (d) normalized
longitudinal stress 7, / C, (e) normalized kinetic-energy density E, / C, (f) normalized

total-energy density £, /C.
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- Elastic model
Viscoelastic model
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Figure 6-7: Response time-histories for 7, /t, =100, 8” =03, A’ =1, B/C =1,
pR/IC=021,1, /t, =2597: (a) circumferential elongation 4,, (b) normalized strain-
energy density W /C, (c) normalized circumferential stress 7,/ C, (d) normalized
longitudinal stress 7, / C, (e) normalized kinetic-energy density E, / C, (f) normalized

total-energy density E, /C.
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——— Elastic model
Viscoelastic model
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Figure 6-8: Response time-histories for 7, /¢, =1000, 8* =0.3, A’ =1, B/C =1,
pR/IC=021,1, /ty =2597: (a) circumferential elongation 4,, (b) normalized strain-
energy density W /C, (c) normalized circumferential stress 7,/ C, (d) normalized
longitudinal stress 7, / C, (e) normalized kinetic-energy density E, / C, (f) normalized

total-energy density £, /C.

As follows from Figures 6-5 through 6-8, for increasing values of the normalized
relaxation time, the loss of energy is decreased. The loss of total energy, by comparing the
“response areas” of the elastic and viscoelastic models, is found to be about 98.5%, 96%,
72.8%, and 43.3%, for the cases of Figures 6-5 through 6-8 respectively. Figure 6-9 plots

the respective normalized non-equilibrium stresses ¢,/ C. We can observe that, for low
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values of the normalized relaxation time, the normalized non-equilibrium stresses exhibit

lower values and nearly symmetric morphology along the time-axis.

0.10 0.10

@ 08 | o= | ® /t.=10
) T, /ty= 0.08 T /ty=
0.06 - 0.06

O 0.04 O 0.04

=. 0.02 - <. 0.02

S S
0.00 0.00
-0.02 - -0.02
-0.04 : . . . . -0.04 - . : : . -

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

0.10 0.10

(c) _ (d)
0.08 7,/t,=100 0.08 7,/1,=1000
0.06 0.06

% 0.04 O 0.04

= 0.02 =

Re < 0.02
0.00 0.00
-0.02 -0.02
-0.04 + ; : . : ; -0.04 A . , . : :

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t/tSk 1t

Sk
Figure 6-9: Normalized non-equilibrium stresses ¢4/ C for (a) 7, /¢, =1, (b) 7, /t, =10,

(c) 7,/ty =100, (d) 7,/t, =1000 (cases of Figures 6-5 through 6-8, respectively).

In addition, we performed numerical analyses of arterial systems under periodic excitation,
by repeating the profile of Figure 6-4(a). Figure 6-10 shows a typical time-profile of a
system under periodic excitation. The conclusions obtained from this investigation are the
same to that obtained by the non-periodic excitation. Furthermore, it is evident that the

viscoelastic model has higher stability compared to the respective hyperelastic model.

In the case that the pressure is quasi-statically applied up to the diastolic pressure of the
pressure time-profile shown in Figure 6-4(b), the viscoelastic system is not always
characterized by high-frequency vibrations. Figure 6-11 shows the response of the elastic
and viscoelastic models for different values of the normalized relaxation time, under this
loading approximation. The model demonstrates viscous behavior, for normalized
relaxation time values over 1000. In general, an increase of the normalized relaxation time

or the free-energy parameter reduces the circumferential elongations.
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—— Elastic model
Viscoelastic model
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Figure 6-10: Arterial response under periodic loading for 7, /¢, =1, g =0.3, 2} =1,
B/C=1, pR/C=0.21, ¢, /t, =2597: (a) circumferential elongation 4,, (b)
normalized strain-energy density W /C, (c) normalized circumferential stress 7,/ C, (d)
normalized longitudinal stress 7, / C, (¢) normalized kinetic-energy density E, / C, (f)

normalized total-energy density £, /C.

Finally, by adding two relaxation processes to the problem (g, +¢, instead of ¢g,), we

found that the arterial model responds differently to each loading scenario. For two

relaxation processses, the non-equilibrium forces are calculated as
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4,(0)+ 4,(0) = exp [;—tJ g0+ exp{—t;—ﬂ B85 ),

(6.28)

+ exp[;—z’]qz )+, exp[—t;’" }ﬂ;ss ),
For the first loading approximation (Figure 6-4(a)), the response is dominated by the
relaxation time that is closer to the characteristic time of the response. This occurs due to
the fact that the problem is characterized by high-frequency vibrations and that there are
not high loading frequencies involved in our problem (normal heart beat frequency of 1
Hz). For the second loading approximation (Figure 6-4(b)), the response is mainly affected
by the higher relaxation time. In this case, by adding more relaxation processes to the

problem the dissipation is increased (the arterial response is decreased).
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Figure 6-11: Circumferential elongation of elastic and viscoelastic arterial models by
applying the second loading approximation (Figure 6-4(b)), and for 3° =0.3, 2’ =1,
B/C=1, pRIC=021,1¢,/t, =2597,and (a) 7, /15 =10, (b) 7, /1, =100, (c)

7, /15, =1000, (d) 7, /ty, =10000 .
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6.4.2 Response of the Kelvin-Voigt model

After investigating typical arterial systems of the Kelvin-Voigt nonlinear model, for the
pressure time-profile approximation of Figure 6-4(a), we can conclude that this model
cannot adequately approximate the viscoelastic behavior of arteries. In particular, an

increase of the viscosity term I'/ C =7, results in a decrease of the values of the response

time-profile, in contrast to the generalized Maxwell model (Bonet-Holzapfel model) for

which an increase of the relaxation time 7, increases the values of the response time-

profile. In general the mean response values of the two models are comparable.

Under applied periodic excitation, the response showed similar behavior to that of the non-

periodic excitation.

6.5 Numerical examples and comparison with existing studies

The applicability of the proposed theoretical model and the respective algorithm are
demonstrated through characteristic numerical examples and comparison with existing
studies. In particular, the inflation of a rubber tube, of a canine aorta, and of a porcine

coronary artery are investigated.

6.5.1 Inflation of a rubber tube

Holzapfel and Gasser [35] presented a numerical example of an inflation of a three-
dimensional fiber-reinforced rubber tube, under cyclic (sinusoidal) loading. The structure
of the tube consists of three layers, has average radius 109 mm and thickness 18 mm. The
sinusoidal loading has period 10 sec, peak value 10 MPa and minimum value 4 MPa. By
utilizing finite-element analysis, they found that after five loading cycles the system
reaches its steady state response, with the circumferential stretch of the rubber tube varying
between 1.0547 and 1.1047, and the phase shift (time delay) with respect to the pressure

time-profile being about 0.1 sec.

By utilizing the data used by Holzapfel and Gasser [35] in their example, we calculate the
response of the rubber tube for the algorithm proposed in this chapter. We adopt the two-
dimensional homogenized approximation of the walls. Their material constitutive law is

expressed as
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in which d,, d,, and d, are positive stress-like material parameters, d, is a non-
dimensional material parameter, and ¢, is the angle of the fibers with respect to the
circumferential direction. Table 6-1 reports the material parameters used in our analysis.

Note that, to properly approximate the viscoelastic response of the anisotropic, three layer
model of Holzapfel and Gasser, the elasticity modulus must to be scaled in order to match
the maximum steady state response (circumferential elongation) calculated by Holzapfel
and Gasser to the steady state response calculated by this study. Thus, the material

parameter d, is increased by a factor of ten, because we utilized a two-dimensional

Table 6-1: Data used in the analysis of an inflation of a rubber tube.

Parameter Value
R (mm) 109
H (mm) 18
A? 1
d, (kPa) 260.4
d, (kPa) 65.11
d, (MPa) 115 (scaled)
d, 0.5
o, (degrees) 33.1
4 (sec) 3.5
B’ 0.35
At (sec) 0.0001
Characteristic time (sec) | 0.001
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Figure 6-12 shows the input pressure profile and the resulting response of the viscoelastic
and elastic models as calculated by this study. Note that, the tube is statically inflated up to
the beginning of the sinusoidal loading. The response profile agrees with the profile given
in the literature. The phase shift, caused by viscous and inertial effects, is 0.2 sec. The
circumferential elongation varies between 1.109 and 1.063, at the steady state response.
Moreover, the elastic model is characterized by high-frequency vibrations and increased

response values, compared to the viscoelastic model.

Table 6-2 lists the results of the proposed methodology against the results calculated by

Holzapfel and Gasser.
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Figure 6-12: Circumferential elongation time-profile of rubber tube as calculated by this

study. The dashed line represents the applied internal pressure time-profile.

Table 6-2: Comparison of our study to the study of Holzapfel and Gasser [35].

Results

This study Holzapfel and Gasser

Phase shift (sec) 0.2 0.1
Maximum 4, (steady state) 1.109 1.1046
Minimum A, (steady state) 1.063 1.0547
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6.5.2 Inflation of a canine aorta

Armentano et al. [85] experimentally investigated the inflation of a canine aorta. The
induced blood pressure has systolic and diastolic values 87mmHg and 126mmHg
respectively, and the radius of the aorta is 8 mm. Armentano et al. found that the maximum
radial displacement of the canine aorta, under dynamic applied pressure, is 0.9 mm (strain
11.25%) and has a small phase shift compared to the pressure profile (0.02 sec). Canié et
al. [38] investigated the example of Armentano et al. for aortic wall thickness 1.4 mm. In
particular, they developed a theoretical model to calculate the viscoelastic response of
arteries loaded by viscous blood flow. Their calculations showed a response with similar

time-profile to that of Armentano et al. and a phase shift equal to 0.05 sec.

Table 6-3: Data used in the analysis of an inflation of a canine aorta.

Data

R (mm) 8
H (mm) 1.4
Po (kg/m®) 1100
Py (mmHg) 126
Pi (mmHg) ¥
£y (sec) 0.2
l, &t 0.6
E, (kPa) 1000
% (sec) 0.008
Dimensionless parameters

B/C 1
pR/C 0.19
t, /g 2667
T, /tg 21.4
B’ 0.3
28 1
ty | At 10
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Table 6-3 lists the problem parameters and the dimensionless parameters used in our
analysis. Figure 6-13 shows the response of the canine aorta as calculated by this study,
under dynamic overpressure excitation (i.e. the system is statically inflated up to the
diastolic pressure and then dynamically inflated due to the overpressure). Our analysis
resulted in maximum strain equal to 9.2%, for both the elastic and viscoelastic models,
whereas there is not a phase shift of the circumferential elongation time-profile with
respect to the pressure time-profile. Table 6-4 lists the results of our calculations as well as

the results of the other studies.
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Figure 6-13: Circumferential elongation time-profile of canine aorta, and applied pressure

time-profile.

Table 6-4: Comparison between our study, Armentano et al. study [85], and Cani¢ et al.

study [38].
Results
This study Armentano et al. Canic et al.
Phase shift (sec) 0.0 0.02 0.05
Maximum strain (%) 9.2 11.25 (N/A)

113



6.5.3 Inflation of a porcine coronary artery

In another experimental study, Veress et al. [86] performed inflation creep tests on
porcine left arterior descending coronary arteries and monitored their response. During the
creep test the pressure was abruptly increased (over a time period of 0.15-0.25 sec) from 0
to 104-145 mmHg, and held for 15 sec. The time constant (relaxation time) was calculated
to be 1.67 sec. The stress-strain relationship of the artery was experimentally obtained,
revealing the hardening behavior of the porcine artery with increasing strain. As calculated

by the analysis of Veress et al., the maximum circumferential strain is equal to 72%.

Table 6-5: Data used in the analysis of an inflation of a porcine coronary artery.

Data

H (mm) 0.32
P (kg/m’) 1160
Applied pressure (mmHg) 145
E, (kPa) 112.5
T, (sec) 1.67
ty (sec) 0.0002
Dimensionless parameters

B/C 1
pR/C 1.54
7, /tg 8350
B’ 0.3
A! 1
ty At 10

We performed an analysis based on the data provided by Veress et al. The mechanical
behavior of the porcine artery is simulated by setting the material parameters of the Skalak
et al. strain-energy function equal to B/C =1 and C/H =56 KPa (based on the tangent
elasticity modulus value in the circumferential direction that is equal to 112.5 kPa, under
applied circumferential strain about 0.3). The geometric data of the artery were not
reported by Veress et al. Thus, we adopt typical values of porcine left arterior descending

coronary arteries ( R =1.43 mm, H=0.32 mm) [87]. Table 6-5 list the parameters used in
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our analysis. The calculated circumferential strain time-profile approximates well the
circumferential strain time-profile of the analysis of Veress et al. The maximum strain is

calculated by this study to be 59% (Figure 6-14).
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Figure 6-14: Circumferential strain time-profile of porcine coronary artery.

6.6 Concluding remarks

This chapter deals with the complex problem of the viscoelastic arterial behavior. The
arterial wall viscosity is simulated by adopting a generalized Maxwell model and the
internal variables approach, as suggested by Bonet [81] and Holzapfel et al. [36]. The
proposed analytical model investigates the macroscopic response of viscoelastic arteries
and the effect of each problem parameter on the macroscopic arterial response. An iterative
algorithm, based on Newmark's constant-acceleration method for nonlinear systems, is

developed, in order to obtain the numerical solution of the problem.

Two different loading approximations are considered. The first arterial pulse time-profile
approximation adopted in this study (Figure 6-4(a)) constitutes a conservative scenario.
The pressure is rapidly increased from zero to the maximum systolic pressure, as is the
case of the restoration of the blood flow after a surgery. We can say that the resulting
maximum radial displacements are two times higher than the respective radial
displacements under a smoothly increased pressure time-profile. Furthermore, the problem

is characterized by high-frequency vibrations, due to the pulse-type loading.

For the aforementioned loading scenario, the viscoelastic response is mainly affected by

the relaxation time 7; and the material parameter S . An increase of the relaxation time
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increases the non-equilibrium stresses g4/ C but may not increase the dissipation of the
system over time. In particular, for extremely small relaxation time values 7, the

exponential term of Equation (6.19) is zeroed and the system becomes completely elastic.

For intermediate relaxation time values 7, the time-profile of the non-equilibrium stresses

is almost symmetric about the time-axis and the response exhibits large dissipation
(Figures 6-5 and 6-6). For higher relaxation time values, the non-equilibrium stresses
exhibit higher values, that are non-symmetric about the time-axis and the response exhibits
moderate dissipation (Figure 6-7), whereas for even higher values of the relaxation time,
the exponential term of Equation (6.19) becomes equal to one and the dissipation of the

response depends mainly on the material parameter S (Figure 6-8).

Rapid dissipation of the radial displacement time-response (and circumferential
elongation) implies rapid dissipation of all the response quantities (circumferential stress,
longitudinal stress, strain-energy density, kinetic-energy density, and total-energy density).
Note that, the normalized strain-energy density dominates compared to the normalized
kinetic-energy density of the system. The maximum strain-energy density occurs at the
time instant that the respective kinetic-energy density is equal to zero. Therefore, the total-

energy density has peak values equal to the peak values of the strain-energy density.

We are particularly interested in the maximum circumferential elongation of the
conservative loading scenario. We can say that the elastic model adequately approximates
the maximum response of the viscoelastic model, which frequently occurs at the beginning
of the loading. The maximum circumferential elongation depends on the free-energy

parameter f3,”, rather than the normalized relaxation time 7, /g, .

In the case that the pressure is quasi-statically applied up to the diastolic pressure, the
system is not always characterized by high-frequency vibrations. An increase of the

normalized relaxation time 7, /g, or the free-energy parameter g results in a decrease of

the response.

Under both loading scenarios, most of the problem parameters affect the system response
in the same manner. From Equation (6.1), we can observe that a decrease of the material

parameter f,” decreases the non-equilibrium forces and subsequently increases the
normalized radial displacement. Note that, for g~ =0 the system is completely elastic. In
addition, response parameters 1’, B/C, p,R/C affect the viscoelastic artery in the same

manner that affect the hyperelastic artery: an increase of the longitudinal pre-stretch A,
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the ratio B/C, or a decrease of the normalized pressure p R/C yields a decrease of the

radial displacement (and circumferential elongation).

By adding two relaxation processes to the problem, we found that for the first loading case
the response is dominated by the relaxation time that is closer to the characteristic time of
the response, whereas for the second loading case by adding more relaxation processes the

dissipation is increased.

Of particular interest is the correlation of the arterial wall viscosity to the fatigue of the
cardiovascular system. Increased viscoelastic arterial behavior corresponds to increased
energy loss during each cardiac cycle, meaning that a large amount of blood will be
accumulated in the heart. Thus, the heart is forced to work harder (to pump a larger amount
of blood each time), causing the muscle content of the heart to increase, and its chambers

volume to decrease, making the problem even worse.

In conclusion, this chapter proposes an analytical model describing the response of
viscoelastic arteries. By choosing the proper viscoelastic material parameters the response
of the system can be approximated with low computational cost. The present investigation
revealed the strong influence of the ratio of relaxation time to characteristic time of the
response, and of the pressure time-profile approximation on the response of viscoelastic

arteries.
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CHAPTER 7

Suture-line Response of End-to-end Anastomosis

7.1 Introduction

During a typical arterial reconstruction, the diseased artery segment is removed, and the
healthy segments are stitched together, either directly or through the insertion of an
artificial graft (end-to-end anastomosis). Modern grafts tend to exhibit similar geometric
and stiffness characteristics with those of arteries. Thus, in any case, the mechanical

behavior of the anastomotic region is comparable.

Limited investigations have been performed on the mathematical or computational
modeling of end-to-end anastomosis [6, 10, 8, 14]. Moreover, most of the published studies
rely solely on finite-element analyses rather than on analytical models, and often ignore the
stress concentrations due to suture-artery interaction, or the axial-circumferential

deformation coupling in the artery response.

A comprehensive (dynamic) analytical end-to-end anastomosis model between
isocompliant arteries was recently proposed [66]. The model accounted for the geometric
and mechanical properties of artery and sutures, the number of sutures, loading
characteristics, and longitudinal residual stresses. The cross-section of the artery was
assumed to be homogeneous and its mechanical response linear elastic, incorporating in an
average sense the tangential stiffness, the anisotropy, the inhomogeneity and the residual

stresses of the artery walls.

Herein, we propose an extension of the aforementioned model, to account for the suture
pre-tensioning and the capability of the stitching on receiving forces along the axial
direction of the end-to-end anastomosis model. A displacement-based method, considering
the conservation of the blood volume and the suture-artery interaction, is utilized for the
problem solution. Furthermore, a dynamic mathematical model of an artery/graft end-to-
end anastomosis and a static mathematical model investigating the para-anastomotic
hypercompliant zone (PHZ) phenomenon, are proposed in this chapter. The latter model is

solved as a boundary value problem.

The present study aims to investigate the behavior of the stitched anastomotic region of
end-to-end anastomosis through the development of analytical mathematical models,
which account for all the important parameters. In addition, it aims to provide closed-form

expressions for the problem solution, in order to extend current knowledge and offer useful
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suggestions for the optimal selection of materials and improved functionality of the sutures

in vascular surgery operations.

7.2 Mathematical model

Figure 7-1(a) shows a shematic of the end-to-end anastomosis model between isocompliant
blood vessels. Note that, the artery cross-section is characterized by the assumptions
described in Section 4.2.1. The arterial tissue is considered to be an orthotropic linear-
elastic material, and the suture material is legitimately considered to be linear elastic for

elongations up to 20% [88].
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Figure 7-1: End-to-end anastomosis analysis between isocompliant blood vessels: (a)

Anastomosis model (at-rest state), (b) unrestrained deformed state of artery (without

sutures), (c) deformed state of anastomotic region due to dynamic loading, (d) forces
acting on end-element of artery segment, (e) interrupted stitching scheme, (f) continuous

stitching scheme.

The two blood vessels (proximal and distal) are connected together with a total of N,

stitches. Each blood vessel has length L , radius R, (the initial configuration is
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considered to be under zero blood pressure and in vivo length, implying that the blood

vessel is in its pre-stressed state), and Young’s modulus in the longitudinal direction E, .
The stitches have radius r,, cross-sectional area A4, = 7z, and Young’s modulus E, . The

distance between stitching holes that are symmetrically located across the separation plane

is denoted by /; (with the assumption that 2L >>1)).

Two different stitching techniques are considered, resulting in different suture loading.
Figure 7-1(e) shows the interrupted stitching technique, whereas Figure 7-1(f) shows the
continuous (running) stitching technique. The particular loading condition associated with
each stitching scheme is accounted for in the analysis by means of a participation factor «
. The participation factor is derived from the local equilibrium of forces at the suture line
that passes without friction through the stitch hole, indicating the alignment of the stitches
along the longitudinal direction (the remaining part (2 — « ) indicates that the system is in
torsion with limited relevance to the present problem). In particular, the interrupted
stitching scheme corresponds to a maximum participation factor « =2, whereas the
continuous stitching scheme (with diagonal at 45° angle), corresponds to participation
factor a =1.707 . Moreover, the stitching holes and the suture are considered to have
almost equal diameters. Therefore, the suture segment penetrating the arterial wall is
almost undeformable, due to friction forces developed between the arterial wall and the

suture. Finally, the model also considers the pre-tensioning of stitches f.” [89], that is the

force exerted by the surgeon in tying the knot of the suture.

7.2.1 Objective functionalities

Vascular operations may exhibit post-surgery complications, caused by the interaction of
sutures with the arterial tissue. The undesirable conditions can be described by three failure
scenarios: (a) suture failure; (b) arterial-wall tearing; and (c) blood leaking at the suture

line. Suture failure is caused when the maximum tensile force of the suture, f,, exceeds

the suture strength or leads to slip or relaxation of the knots that bind the stitches together
[90]. Note that it is possible that suture failure may occur due to suture gradual
deterioration with time [63]. Arterial-wall rupture or injury may be caused when the

embedding stresses, o, due to suture-artery contact interaction (at the stitching holes)

exceed the limit value of artery-wall shear strength. Thrombosis may be caused if the

distance between the edges of the two anastomosed artery segments, x,  , exceeds the

net °

typical size of a few red blood cells, leading to internal bleeding.
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In order to avoid failure altogether, the following objective functionalities must be

satisfied:
max f, < ultimate axial strength of suture/knot ( f ’u) (7.1)
max o, < ultimate shear strength of arterial tissue (O'W / 2) (7.2)
max x,,, < 3 x red blood cell diameter (3d,,,.) (7.3)

In addition to the above objective functionalities, the following geometric constraint must

be satisfied to assure adequate stitching spacing:

7R, 24Nr, (7.4)

The case report of Seltmann et al. [91] on the development of post-surgery artery stenosis,
due to a high number of utilized stitches, confirms the importance of adequate stitching

spacing.

Furthermore, the mechanical and geometric properties of the blood vessels and the sutures
may change over a time span of several weeks after surgery, implying that long-term
complications may occur. In particular, the wall thickness of the sutured artery may
decrease with time, as is the case of the inflammatory response after surgery. Moreover,
the elastic properties and strength of the artery may change with time due to chemical
change of the suture and its interaction with the arteries [63]. Such long-term
complications lead to lower values of the elastic and strength properties of the arterial

walls and suture materials.

7.2.2 Suture-line response

The proposed model accounts for the suture-artery interaction, and the axial-
circumferential deformation coupling in the artery response. On account of the fact that
blood is an incompressible fluid, the radial and longitudinal modes of arterial response are
coupled. In particular, the solution is derived by first calculating the longitudinal
displacement of the unrestrained model (Figure 7-1(b)), and secondly calculating the

resulting longitudinal displacement of the restrained model (Figure 7-1(c)).

Under the applied blood pressure, the artery distends radially by u(z), and, in order for the

blood volume to be maintained, its axial length is decreased from £ to /,, resulting in the
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formation of a gap x, of the unrestrained model (Figure 7-1(b)). Conservation of the blood
volume means that the cylindrical volume ¥, =V, (Figure 7-1(a,b)). Then, the decreased

anastomosis length at any time ¢ is given by

L=t (1.5)
(R, +u(»)

The decreased artery length / (¢) given by Equation (7.5) implies the following solid-fluid

interaction procedure: (a) the blood volume fills the two parts of the anastomosis after
completing the stitching, and (b) pressure is applied leading to contraction along the length

of the initially emptied artery. Note that, the radial displacement u(¢) is the radial

displacement of the linear-elastic arterial model introduced in Chapter 4.

By considering the unrestrained (without sutures) state of the artery (Figure 7-1(b)), the
gap developed in this state can be determined as the difference between the initial length of

the artery (2L, ) and the length of the unrestrained deformed state (2/, ):

x,(=2L, 1—R—1’2 (7.6)
(Rp+ua»

The resulting net gap developed in the restrained (with sutures) anastomotic region (Figure

7-1(c)) can be derived from
x, () =xg(t) —2Al(¢) (7.7)

where Al is the tensile deformation due to the stitching stiffness.

The tensile forces developed in the suture and arterial tissue (Figure 7-1(d)) are given

respectively by

0= AE& @+ =2 0+ 17 (18)

s

Al

F,(t)=E, A4, (0),(t)=27H E, (R, +u(?)) 0

(7.9)
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where ¢ is the suture strain, ¢, is the strain of one artery segment, and A4, is the cross-

sectional area of the artery. The tensile deformation A/ can be derived from equilibrium of

forces in the axial direction, requiring that
E@)=aN£ () (7.10)

Substituting Equations (7.8) and (7.9) into Equation (7.10), the equilibrium of forces in the

axial direction yields

27H E, (R, +u (z))?l((’)) aNS(ASZ Sx (04 fJ (7.11)

s

By combining Equations (7.6) and (7.7), the net gap between the anastomosed artery

segments is derived as

(H)=2L, —R—f’z —2AI(1) (7.12)
(R, +u()

net

Substituting Equation (7.12) into Equation (7.11), the equilibrium equation is expressed in

terms of Al(¢) as

AE R’
MO g AEop |-

27H E
B (R, ) Gy =N T2 | )

—2MI() |+ £0F (7.13)

which can be readily solved for the tensile deformation:

2 0
aNstsz AsEst l_Ripz + ]FS Zs
(R, +u(n) | 2
Al(t) = (7.14)
7EH, (R, +u(t)) +aN,AELR’

s s pThp

Substituting Equations (7.6) and (7.14) into Equation (7.7), we obtain the net gap between

the anastomosed artery segments as
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2L, EH, (R, +u®) (R, +u(0) =R} |- flaN.L,R ",

sTpttp s

#E,H, (R, +u(t)) +aN,AELR

s s s pThp

_ 7.15
X, () ,for F,(t)>aN, f’ (7.15)

0 ,for F,(t)y<aN_f

Note that a gap across the anastomotic interface will be formed only if the tension

developed in the arterial tissue exceeds the total suture pre-tension.

Combining Equations (7.8) and (7.15), the total tensile force developed in a single suture is

expressed as

J;jo L(R, +u())

#E,LH, (R, +u(t)) +aN,AELR’

s s pp

f@)= (7.16)
, for F,(¢)> astSO

L,AE, [(Rp +u(t))2 _szJ "

27E,H, (R, +u(t))

f° , for F, (1)< OINSf‘,O

In addition, embedding stresses o, are developed because of suture-artery contact

interaction at the stitching holes. The embedding stress induced on the arterial wall is

approximated [92] by

a/.(t) 7.17
20H (7.17)

o ()=

This is a well-known result used in the analysis of riveting of steel structures. Inserting

Equation (7.15) into Equation (7.17) yields

2 f:’ 2
axE, (R, +u(t)) | LAE, [(Rp +u(h)) —R,f} + 5L (R, +u()
r, rELH, (R + u(t))3 +aN,AELR®
o, ()= ,for F,(t)>aN_f’ (7.18)
af’ 0
5 ,for F,(t)<aN _f.
2’,;Hp L( ) ,x.f,s

Although based on a linear-elastic model, the system response depends on a considerable

number of parameters. In particular, the solution contains as many as seventeen input
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[

parameters (L,, R,, N, H,, E,, E,, p,, s>t t,, P> U, L, E, 71,5 a, £7) related

to the geometric and mechanical properties of sutures and arterial walls, the number of
sutures, the loading characteristics, the longitudinal residual stresses, and suture pre-

tensioning.

For completeness, the general solution of an artery/graft end-to-end anastomosis is

presented in Appendix B.

7.3 Results

This section investigates the effect of each material parameter on the three response

quantities of interest: the anastomotic gap x

net

the suture tensile force f,, and the

embedding stress o, . On normalizing by 2L,, E,H,* and E; respectively, Equations

p,

(7.15), (7.16) and (7.18) become

2 0
PLIOR (| FICICN R A/ S Y
R, R, 27E,;rH, °R,
X0 _ 5 % , for F,(t)>aN. f’ (7.19)
2L, 1440 +a£N§ 4%
R, E, ‘zRH, I
0 , for F()<aN,f}
E 2 0 l 3
2ﬂa7si 1+M 1+@ -1 +Lis 1_,_@
E H, R, R, EnrH, L R,
3
u(r) l E . r
I+— | 2=+ s s
L) _ ({ Rp] n L CE Rp] (7.20)
2
EH, ,for F,(t)>aN,f*
afo s 0
SN | ,for F,({)<aN
o)) o
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2 0 3
me‘ [1+u(t) [1+M(Z) —1{+ af, ”ZS(HM]
L P Rp EL’;H]J rs Lp Rp
3
H
1+@ P ls +aEsN5r\
o.(t) _ R ) r L E 'R, (7.21)
E
t ,for F,(t1)>aN f°
af’
. for F,(t)y<aN. f’
ELHp’..v

From Equations (7.19) to (7.21), we observe that the seventeen input parameters of the

problem can be reduced into five dimensionless parameters, namely «E /E,, L, /1,

Nr /R, r/H,, af’/rHE, . Figures 7-2 through 7-6 plot the normalized response

quantities for parameter values varied within the physiological range.
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Figure 7-2: Normalized anastomotic gap versus normalized radial displacement for

E A L
different values of product P, =a—-N,—————% and for f’=0.
. ﬂRpH » [ ‘

From Equation (7.19) the normalized anastomotic gap x,,, /2L, depends on the product of
four dimensionless parameters, namely «E /E,, L, /I, Nr /R,, r,/H,, abbreviated
herein as £}, and suture pre-tension parameter a f/rH ,E, . However, utilizing typical
parameter values, we observe that the contribution of 7, / H,, is relatively small. Figure 7-2

plots the normalized gap as a function of the normalized radial displacement u /R, , for

different values of the product P,, and for zero suture pre-tension.
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Furthermore, Figures 7-3 and 7-4 plot the normalized gap as a function of the normalized

radial displacement » /R, in a more elaborate manner, in terms of the design parameters
aE /E, , L, /1, A /H,R,, N, in order to provide simpler and useful graphs for the

optimal selection of materials and improved functionality of sutures. In particular, Figures
7-3 and 7-4 highlight the influence of the variation of the suture stiffness (Figure 7-3(a,b)),
the stitch length (Figure 7-3(c,d)), the suture cross-section area (Figure 7-4(a,b)), and the
number of stitches (Figure 7-4(c,d)) on the anastomotic gap, for two different sets of
parameters. The results suggest that increasing the value of any of the design parameters
yields a decreased anastomotic gap. In particular, the most influential parameter in

drastically reducing the anastomotic gap is the number of utilized stitches, N, as can be

seen from Figure 7-4(c,d).
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Figure 7-3: Normalized anastomotic gap versus normalized radial displacement for

different values of parameters o £ /E, and 2L, /1.

The normalized tensile force in each stitch as a function of the normalized radial

displacement for different values of parameters 2L, /[, ¢E /E,, N, and by assuming

/=0 is presented graphically in Figure 7-5. It can be observed that the normalized
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Figure 7-4: Normalized anastomotic gap versus normalized radial displacement for

different values of parameters 4, / H R, and N,.
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Figure 7-5: Normalized tensile force in each stitch versus normalized radial displacement

for £ =0, for different values of parameters N, and (a) 2L , /1, (b) aE /E, .

suture tensile force is decreased as the number of stitches is increased, whereas the ratio of

suture-to-artery elastic modulus and the normalized stitch length do not affect significantly
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the tensile force developed in each stitch. The latter is also true for the suture radius as

suggested by Equation (7.20).

Finally, Figure 7-6 plots the normalized embedding stress due to suture-artery contact
interaction as a function of the normalized radial displacement, and for different values of

parameters oE /E, and N_. It can be seen from Figure 7-6 that in order to reduce the

embedding stress, the number of stitches must be increased, whereas the parameter

aE_ |/ E, plays an insignificant role. Moreover, the embedding stress becomes smaller with

increasing suture radius, as can be seen from Equation (7.21).
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Figure 7-6: Normalized embedding stress versus normalized radial displacement for

different values of parameter £,/ E,, N, and for " =0.

It should be noted that, for a typical anastomosis scheme (with parameters within the

physiological range) and for F, (1)< aN,f.”, when the value of pre-tension f,” exceeds a
certain value (derived from af.’/ 2rH,>o,,/2) the arterial wall is likely to fail. On the

other hand, for lower values of pre-tension and for F,(¢)>aN_f., the application of

suture pre-tension can result in reducing the anastomotic gap (Equation (7.19)), while not
affecting considerably the embedding stress (Equation (7.20)) and suture tensile force
(Equation (7.21)).
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7.4 Design considerations

For design purposes the maximum radial displacement of artery u_, (Equation (4.22)) is
considered. The failure scenarios described by the inequalities (7.1), (7.2), (7.3), for the
general case where F, () >aN, f., can be prevented by calculating the minimum number

of stitches required to prevent suture failure, arterial-wall tearing, and development of

excessive gap, respectively as:

_ 0
. wE H, (R, +u,,) {sz [(Rp fu, )2 —RPZ}—M(R;? fu, )2} =N, (7.22)

: afS,uLpsz AE
0
27E, (R +u_) I{Hpa”—afs j
V4 u 2 ’ 7 2
N > T gy [R U —Rz]— (R, +up, ) =N, (7.23)
" ao, LR} | (R, + ) =R, 271,E, N

ﬂ.ELles (R + Z'tmax){ZLP |:(RP + Mmax )2 N RPZ} _3drb5 (RP + umax )2}
N, > - . =N, (7.24)
3d,,aAdELR "+ f al RSI

s=sTpTtp

in which d,, is the red blood cell diameter (approximately equal to 7 um), and fs’u O,

are known from the suture strength and the tensile strength of the arterial wall,

respectively. Obviously, the final selection will be the maximum of N,, N,, N,.

The maximum number of utilized stitches is calculated by recasting the geometric

constraint of Equation (7.4) in the form:
N, <—%2=N, (7.25)

Therefore, the final selection of number of stitches should be bounded by
max{]\’l,Nz,N3}<NSSN4 (7.26)

Failure to satisfy inequality (7.26) means that the material selection and geometric
parameter must be rethought. Typical values related to suture materials indicate that

N, <N, or N,, although deteriorated stitches as well as the presence of sutures knots can

change this.
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Note that, for the case where F,(t)<aN, f., the derived inequalities (7.22) to (7.24) are

not valid. In this case, the potential failure is not dependent on the number of sutures V,,

but rather on whether the pre-tension exceeds either the suture strength or artery strength.

When the suture strength is larger than the knot strength, the stitches will fail on the knot
region, otherwise the failure will occur elsewhere. Experiments on the mechanical
properties of different suture materials were performed by Brouwers et al. [90]. Table 7-1
reports values for the tensile strength of plain sutures, the tensile strength range for seven
knots under dynamic loading, and the deteriorated tensile strength of plain sutures some
weeks after the surgery. Moreover, the arterial longitudinal strength was found to be

between 1-3 MPa, based on dynamic biaxial tension tests on human aortic tissues [47].

Table 7-1: Tensile strength of untied and tied fiber.

Suture Material Diameter*  Tensile suture  Tensile knot Tensile suture
(mm) strength®* (N) strength* (N) strength after n
weeks (%/n)
Plain catgut 0.36 25.5 23.7-29.6 0%/1
Maxon 3-0 0.31 34.5 22.1-46.1 50%/3
PDS 3-0 0.3 27.2 12.4-36.5 50%/4
Prolene 0.26 16.7 6.2-26.7 (N/A)
Dexon 4-0 0.24 29.1 24.1-39.4 57%/2; 0%/4
Mersilene 4-0 0.26 28.3 20.5-37.8 (N/A)
Vicryl 3-0 0.29 34.6 14.1-38.8 55%/2

* Based on the results of Brouwers et al.[90]

7.5 Numerical example

A design example of the proposed model is presented, in which the minimum number of
stitches required to prevent suture failure, arterial-wall tearing, and development of

excessive anastomotic gap, is calculated.

We consider an arterial end-to-end anastomosis having length L =3 cm, radius
R,=0.6 cm, wall thickness H,=0.11cm, arterial wall density p, =1160 kg/m’, and
radial displacement due to residual stresses u, = (2/3)u,, = 0.499 mm . The circumferential

and longitudinal Young’s Modulus are E,=700kN/m’ and E, =400 kN/m’,
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respectively. More values for the mechanical properties of human ascending thoracic aorta
can be found in the study of Gozna et al. [93]. Furthermore, we assume continuous

suturing using a Prolene (polypropylene) suture having Young’s Modulus E =1.5 GPa,
radius 7, =0.13 mm, and stitch length /. =0.2 cm. Table 7-2 lists all the parameters used

in this example.

Table 7-2: Parameters used in numerical example of end-to-end arterial anastomosis.

Parameter Value
Artery

Length, L, (cm) 3
Radius, R (cm) 0.6
Thickness, H, (cm) 0.11
Arterial tissue density, p, (kg m'3) 1160
Initial displacement, u, =(2/3)u, (mm) 0.499
Circumferential Young’s modulus, £, (kPa) 700
Longitudinal Young’s modulus, E, (kPa) 400
Tissue strength, o, (MPa) 3
Red blood cell diameter, d,,, (um) 7

Suturing (Continuous, Prolene)

Length, [ (cm) 0.2
Radius, r, (mm) 0.13
Young’s modulus, £, (GPa) 1.5
Participation factor, a 1.7
Suture pre-tension, f.” (N) 0

Suture strength, f, » (N) 16.7

Loading

Systolic pressure, p, (mmHg) 120
Diastolic pressure, p, (mmHg) 80
Systolic duration, #, (sec) 0.35
Cardiac pulse duration, z,, (sec) 1
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Based on these parameter values, the maximum arterial response, occurring during the

systolic phase, is calculated as u_, =0.997 mm. The maximum circumferential strain
Upex / R, =16.6% 1is within the validity range of the small-deformation assumption. Based

on inequality (7.26), the optimal selection of the number of stitches for this example is

N, =17. For the selected value of the design parameter N, the response quantities of

interest are derived as: suture force f, =0.24 N (<16.7 N=f, ), embedding stress
o,=l43MPa(<15MPa=0/2), and anastomotic gap x,,=6.02um (

<21lum=3d, ). As expected, by virtue of satisfying simultaneously the objective

functionalities given by Equations (7.1) through (7.3), all response quantities fall within
the accepted range of values, preventing any of the aforementioned failure scenarios.
Nevertheless, the calculated embedding stress is marginally acceptable, and the slightest
increase of its value may lead to arterial-wall tearing. That is, despite the fact that the
suture can withstand tensile force up to 16.7 N, any suture pre-tension

f'>H, ro, , /a=024N applied by the surgeon in tying the knot may cause arterial

injury.

7.6 Validation of the model

The present model is fully analytic and has been conceived to be simple with minimum
computational costs, and hence suitable for potential clinical application. The model
incorporates a plethora of the most important-to-the-surgeon parameters for the first time,
at the expense however of strong simplifying hypotheses. One main simplification is the
linearization of the mechanical response of the anastomosis walls. Moreover, anisotropy in
the circumferential and longitudinal direction has been retained also in an approximate
way, ignoring Poisson effects. In addition, failure criteria based on octahedral equivalent
stresses may not be completely appropriate for describing the strength of the arterial tissue.
Finally, a limit-state analysis has been adopted for the failure mechanism of arterial tissues

subject to the loading condition imposed by the stitches.

The aforementioned issues, important by themselves, do not change the holistic view of the
study presented in this chapter. The linearization of all presented responses gives
consistent strains of the order of 20%. The use of more elaborate hyperelastic constitutive
laws does not appreciably change the central results of our work, since linear-elastic
estimates can adequately simulate hyperelastic stress-strain relationships by adopting the

appropriate tangent elastic moduli (see Figure 3-7(a)). Poisson effects can reduce the
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stitching results by about 30%, thus ignoring the Poisson effects is not against safety.
Failure of the arterial walls is still an uncharted topic. It is most probable that failure
depends on energy criteria, and in this respect the shear stress used in this work
corresponds to a critical deviatoric energy. Finally, the limit-state analysis based on a
critical shear stress can be easily recast into a tearing criterion based on the almost-uniaxial
state of stress on the sides of the stitches (the linear-elasticity local model predicts a stress-

concentration factor of about two).

Although the literature contains several experimental studies dealing with the compliance
of the anastomotic region [16-18, 20, 21], we found that many parameters that seem to

affect the suture stressing are not reported (e.g. the number of stitches N ). Our present

work indicates that more details regarding the suture material and suturing technique
should be reported, especially if the para-anastomotic hypercompliant zone (PHZ)
phenomenon needs to be addressed. Previous experimental studies of end-to-end
anastomosis between isocompliant arteries or grafts investigate the compliance of the

anastomotic region, whereas the main response quantities calculated in this study (x,,, f,,
o, ) are not reported in experimental studies. Nevertheless, it is shown that the present

study provides a good estimation of the compliance value (Equation (3.1)) of the

anastomotic region with respect to the published experimental results.

Hasson et al. [17, 18] calculated the compliance of dog arterial grafts under dynamic
loading. The compliance away from the PHZ was 0.06% mmHg™" for the first study of
Hasson et al. [17] and 0.05% mmHg'1 for the later study of Hasson et al. [18]. Ulrich et al.
[21] calculated the compliance of pig arterial grafts under dynamic loading as 0.075%
mmHg™". The calculated compliance in our numerical example is 0.12% mmHg™". Given
that the mechanical data and pressure time-profile data were not available for most of the
experimental studies, and that our model is subjected to pulse loading of the first loading
cycle (meaning that the calculated displacements may be up to two times larger than the
static or long-term dynamic loading - see Section 4.3), our model constitutes a good

approximation of the experimental results.

Of particular interest is the PHZ phenomenon. Hasson et al. [18] found that the PHZ
phenomenon occurs more frequently for anastomosis of the continuous stitching technique
than the interrupted stitching technique. Figure 7-7(a) shows the schematic compliance
along the anastomotic region. The PHZ phenomenon (region 2) is pronounced in the case

of continuous stitches, whereas away from the anastomosis zone the compliance is
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constant (region 1). From our study, the net gap x,, is increased by 15% in the case of

continuous stitching compared to the case of interrupted stitching. This may justify the

decreased longitudinal stretch A// L, and lower tangent elastic modulus E, > E,, (Figure

7-7(b)) of the continuous stitching case. The decrease of tangent elastic modulus results to

a higher compliance at the PHZ.

Compliance

Continuous
— - — Interrupted

Circumferential
stress ogp
\

A\

L J

Distance from anastomosis Lon gitu dinal strain

() (b)

Figure 7-7: Schematic correlation of PHZ phenomenon to the stiffness of the arterial tissue
(and the stitching technique): (a) Compliance of the anastomotic region for continuous and
interrupted techniques, (b) Circumferential stress-longitudinal strain relationship of a

nonlinear hyperelastic material.

The experimental results suggest a decrease of stiffness by about 29% (at the PHZ) for the
continuous stitching technique [18]. From the numerical example presented in our study,
the total longitudinal stretch away from the suture line is 1.36. The longitudinal stretch at
the PHZ is reduced by 29% compared to the longitudinal stretch away from the
anastomotic region. By considering a nonlinear stress-strain relationship according to
Skalak et al. [55] (Equation (5.11)), the continuous stitching (stretch 1.27) decreases the
tangent modulus by 24% in comparison to the interrupted stitching (stretch 1.36),
indicating that the increase of compliance at the PHZ can be correlated to the decrease of

stiffness, as Hasson et al. [18] suggest.

In conclusion, the present model, even though simple and approximate, captures
adequately the essence of the phenomenon. More complex models can be important in
refining the present results, but on the other hand will require more material data that may

be difficult to obtain or assess their direct contribution.
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7.7 An analytical investigation of the PHZ phenomenon

The para-anastomotic hypercompliant zone (PHZ) is a zone of increased compliance (and
increased radial displacements) that occurs near the anastomotic region. To analytically
investigate the PHZ phenomenon, a mathematical model considering that the radial
displacement of the artery is a function of the distance along the longitudinal direction of
the arterial anastomosis, is formulated. Paasche et al. [6] solved analytically the static
boundary-value problem describing the response of an end-to-end anastomosis. Herein, we
also investigate the static problem, by considering different boundary conditions than that

adopted by Paasche et al. [6].

7.77.1 Mathematical model and static solution

Figure 7-8 shows the configuration of the proposed model. The mathematical model
assumes that the radial displacement of the arterial wall 7 is a function of the axial
distance x from the stitching region. The equation of motion of the cylindrical tube, under

applied intraluminal pressure, is expressed as [6]:

! 12 12(1-v°
Onen 12 1200
o' HJR, E,H

14

p(t) (7.27)

where R, denotes the radius of the artery, H , the thickness of the arterial wall, E, the

circumferential elasticity modulus of the artery, v the Poisson's ratio of the arterial tissue

(equal to 0.5 for incompressible materials), and p(¢) the internal pressure of the blood

vessel.

Stitching region Far field region
x=0 x=1L,

]Zf ————— T‘;{(}él 1)2}317 _____ % >
= .
| .

L 7

Figure 7-8: Configuration of the end-to-end anastomosis model for investigating the PHZ

phenomenon.
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On multiplying Equation (7.27) by E,/(12p(t)(1-v*)), the pressure term can be

eliminated. In particular, Equation (7.27) reduces to

d'n, 12 1
it +H2R277s:H3
X p p

(7.28)

where 7 (x,t)=n(x,t)E, /(12 p(t)(1-v*)). The reduced problem of Equation (7.28) does

not depend on time, describing the static response of the system. The derived differential

equation is solved as a boundary-value problem. The four boundary conditions are

dn d’n d’n,
s (L) =0, s0y=0, L 0)= 7.29
iy (L,) P 0) P (0)=mn, (7.29)

n,(L,)=n,

in which 7, :sz /(12H ) is the far-field radial displacement of the artery, and 7" is the

shear stress at the stitching region, caused by the sutures. The general solution of Equation

(7.28) is of the following form

7,(x) = pl +Ge {cos(%j+sm[j§ﬂ+G e i {cos[%}—sm(%ﬂ
26 o 3 ol e oo 5 o on( )

where G,, G,, G,, G, are constants that can be obtained by utilizing the boundary

(7.30)

conditions, and |K‘| =12/ (H R ) . By solving the boundary-value problem, the resulting

radial displacement is analytically expressed as

st o o5 {5
o [COS(%}SIH(\/—H{IUW +2G, J{fﬂ 2KLFGJtan(KLP ]] (7.31)

+G, +e
2 \/5
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in which the constant G, is equal to

2xL
" = 2xL 2xL
—1-¢ + COS - +S1n -
\/520 1 J2 2 P . P
20 7 N

4xL 2xL
» v 2xL
l+e Y2 +2e V2 [2+cos(”ﬂ

2

G, - (7.32)

The normalized response of the system is obtained by multiplying Equation (7.31) by

3. 4.,
HpK‘.

KX 2xx
= 5 kx) . [ xx
n(kx)H *k* =1+e e G,H ** cos(—}—sm[—j
’ T 2 V2
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Observe that, the normalized radial displacement 77, (xx)H p3K‘4 depends on three

dimensionless quantities: the normalized shear stress 7, H p31( , the normalized length of the

blood vessel kL,, and the normalized distance from the anastomotic region xx. Note that,

that the normalized radial displacement 77, (kx)H p3K‘4 is equal to 77, (kx) /7, .

The radial displacement at the stitching region can be obtained by setting xx=0 in

Equation (7.31), yielding
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Equation (7.34), reveals the linear dependency of the radial displacement 7 (0) on the

shear stress value.
The effect of the normalized artery length xZ, on the stitching-region response can be

investigated by differentiating Equation (7.34) as

TS )
%)

(7.35)

d(N2p1x) F 2KL

7.7.2 Results

The radial displacement profile along the anastomosis length, for different values of
normalized length xZ, and normalized shear stress 770H *k, is investigated. As follows
from Figures 7-9 and 7-10, the radial displacement profile strongly depends on the shear-
stress value at the stitching region. In particular, a decrease of the normalized shear-stress
nyH Kk value decreases the lumen diameter at the anastomotic interface (x=0). The
radial displacements are slightly larger than the far-filed displacement (normalized radial
displacement larger than 1) at a region away from the anastomotic interface between

xkx=2.2 and xx =35 (PHZ region). The peak radial displacement occurs at a normalized

distance about xx ~ 3 away from the anastomotic interface. Note that, for zero shear-stress

n

values 77y the artery is inflated uniformly, implying that the stitching perfectly simulates

the behavior of the healthy arterial tissue. In regard to the normalized length of the

anastomosis, it is observed that for L, =10 (Figure 7-10), the system always reaches its

far-field displacement value 77, =Rp2 /(12H,) away from the PHZ region (i.e. xx>5

region).
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Figure 7-9: Normalized radial displacement of artery as a function of distance from the

anastomotic interface, for normalized length «Z, = 5 and normalized shear stress: (a)

neH i =—0.2, (b) niH 'k = —0.4.
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Figure 7-10: Normalized radial displacement of artery as a function of distance from the

anastomotic interface, for normalized length «Z, =10 and normalized shear stress: (a)

noH i =-0.2, (b) nyH 'k =-0.4.

Figure 7-11 plots the response quantity d7,(0)/d (\En: /K3) (at the stitching region) as a

function of the normalized artery length xZ,. For normalized length values lower than 5,

an increase of the normalized length yields a decrease of the normalized length effect on
the stitching-region response, whereas for normalized length values higher than 5 the

response of the stitching region is not affected by the normalized length value.
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Figure 7-11: Response quantity dn, (0)/d (\/577(;” / /(3) as a function of the normalized artery

length «L,.

7.8 Concluding remarks

Proposed in this chapter are mathematical models governing the response of end-to-end
arterial anastomoses. An extension of the model of Demetriou [66] that considers the
suture pre-tensioning and the stitching technique participation factor, as well as a
mathematical model investigating the para-anastomotic hypercompliant zone (PHZ)
phenomenon, were formulated. The respective problem solutions were expressed by

closed-form expressions.

In particular, for the dynamic end-to-end anastomosis model between isocompliant
arteries, the time-depended response of the problem is derived in terms of the anastomotic
gap (Equation (7.15)), the suture tensile force (Equation (7.8)), and the embedding stress
due to suture-artery contact interaction (Equation (7.17)). The model, although linear
elastic, is comprehensive in that it captures the effects of all pertinent parameters
(geometric and mechanical properties of artery and sutures, number of sutures, loading
characteristics, longitudinal residual stresses, suture pre-tensioning, and stitching technique
participation factor). The resulting response is a function of seventeen input parameters.
Nevertheless, on normalizing appropriately the response quantities, the problem can be

described by only five dimensionless parameters («E,/E,, L, /I, Nr/R,, L, /1L,

af’/rH,E,).

141



It is worth noting that end-to-end anastomoses with vertical-end cuts may exhibit stenosis
(decreased diameter lumen) at the anastomotic interface. Thus, the interconnected blood
vessels frequently have beveled ends, i.e. the edge of the blood vessel is inclined rather
than vertical. In this way, the suture line is increased and allows a higher number of
utilized stitches. Even though our model assumes a vertical incision at the anastomotic
interface, the mathematical model and the results of this chapter are applicable in the case
of a beveled incision. This modification only affects inequality (7.25), implying that it can

be relaxed in order to allow a higher number of utilized stitches.

The suture-tissue interaction analysis reveals the nonlinear dependency of the system
response on the radial extension of the artery and highlights useful interrelations among the
problem parameters. In regard to the normalized anastomotic gap, the results suggest that

increasing the value of any of the design parameters, excluding £, yields a decreased

anastomotic gap. The most influential parameter in drastically reducing the anastomotic

gap is the number of utilized stitches, N, as can be seen from Figure 7-4(c,d). The

normalized suture tensile force is instead affected only by the number of stitches. A higher
number of utilized stitches results in a smaller tensile force developed in each stitch
(Figure 7-5). It has also been shown that the normalized embedding stress is decreased as
the number of stitches is increased, whereas the influence of the ratio of suture-to-artery

elastic modulus on the embedding stress is insignificant (Figure 7-6).

It should be noted that, among the failure modes discussed in Section 7.2.1, arterial wall
failure is the most frequently encountered. For a typical anastomosis scheme and for
F,(t)y<aN, f, when the value of pre-tension f’ exceeds a certain value (derived from

af'/2rH,>o,,/2) the arterial wall is likely to fail. On the other hand, for lower values
of pre-tension and for F,(¢t)>aN,f., the application of suture pre-tension can result in

reducing the anastomotic gap (Equation (7.19)), while not affecting considerably the
embedding stress (Equation (7.20)), which constitutes the critical response parameter, or

the suture tensile force (Equation (7.21)).

In regard to the proposed mathematical model that investigates the PHZ phenomenon, a
closed-form solution describing the static radial displacements as a function of the distance
along the longitudinal direction of the arterial anastomosis is derived (Equation (7.33)).

The solution adequately captures the PHZ phenomenon for normalized length values «Z,

higher that 5 and normalized shear-stress values 7, # *«c lower than -0.05.
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In summary, the most important outcome of the study presented in this chapter is the
development of a fundamental analytical model that predicts the dynamic behavior of end-
to-end arterial anastomosis and the establishment of failure criteria that can ultimately form
the basis for the development of vascular anastomosis guidelines pertaining to the
prevention of post-surgery complications. The mathematical formulation reveals useful
interrelations among the problem parameters, thus making the proposed model a valuable

tool for the optimal selection of materials and improved functionality of sutures.
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CHAPTER 8

Suture-line Response of End-to-side Anastomosis

8.1 Introduction

End-to-side vascular anastomosis has a considerable complexity concerning the suturing of
the juncture line between the artery and the graft. The problem is influenced by a number
of parameters: the blood vessels and the suturing geometrical and mechanical properties,
the intersecting angle between the artery and the graft, the blood flow rate, and the blood
pressure. Note that, this type of vascular anastomosis is utilized extensively in bypassing
arterial diseases and restoring normal blood supply to arteries through a vein or artificial

graft.

There are several studies carried out in this field driven by the need to assess and prevent
post-surgery complications. Marble et al. [94] calculated analytically the tensile force in
the direction of the graft, away from the anastomosis junction. In their work, the suture-
blood vessels interaction was ignored, as well as the stress concentration at different
locations of the intersection area. Although studies that utilize numerical methods can
simulate asymmetrical geometries, dynamically-applied blood flow and biological
activities, they inevitably sacrifice generality due to the limited number of investigated

models [9, 10, 12, 13, 15].

The main objective of this chapter is to derive an analytical model and provide closed-form
expressions for the response of end-to-side anastomosis, in order to improve the end-to-
side anastomosis technique through improved functionality of the sutures and optimal

selection of materials and anastomosis angle.

The two blood vessels are assumed to have comparable elastic properties, and their cross-
sections are modeled as axis-symmetric cylinders, consisting by a single homogeneous
layer. The proposed methodology is based on general results obtained from the analysis of
pipe connections, a topic that has been investigated in recent years in the field of offshore
structural engineering [95, 96]. A key aspect for implementing the stress-concentration-
factor (SCF) approach is the recognition that the axial load due to pressure and flow
dynamics exerted along the graft axis controls the “hot spots” on the juncture line, which in
turn affects the mechanical response of the sutures. The analysis accounts explicitly for
three possible failure modes directly associated with the suture-blood vessels interaction:

suture failure, blood-vessel tearing, and suture-line blood leaking.
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8.2 Model configuration

The human arterial system can be idealized as a system of interconnected cylindrical pipes
that transport blood. An end-to-side anastomosis configuration can be parallelized with
pipe junctions, called K- or Y-joints. The analysis of stress concentration at the junction
line of the cylindrical pipes is a well-known and well-studied subject in the field of

offshore structural engineering.

Yv

Figure 8-1: Configuration of the three-dimensional end-to-side anastomosis model: (a) X-Z

view, (b) Y-Z view, (¢) X-Y view (CT: crown toe, CH: crown heel, S: saddle).

Figure 8-1 shows the three-dimensional configuration of the proposed end-to-side vascular

anastomosis model. The host-artery has outer radius R! and wall thickness A, , while the
vein or artificial graft that is connected to the artery side has outer radius Rg” and wall

thickness H,. In Figure 8-1, angle ¢ denotes the polar angle of the intersection plane,

measured from the crown heel (CH), and & denotes the angle of the graft axis with respect
to the artery axis. The intersecting angle assumes values in the range 0°< 6 <90°. Note
that, the origin of the X-Y-Z coordinate system lies on the artery axis, beneath the

intersection point between the artery surface and the graft axis.

The mathematical model developed herein is based on the following assumptions: (a) the

cross-sectional dimensions of the artery and graft are circular and small compared to the
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radius of their centerline; (b) the vessels wall thicknesses are constant along the centerline;
(c) the arterial tissue and the graft consist of a single (homogeneous) layer; (d) the artery
and the graft have comparable elastic properties; and (e) viscous effects are ignored.
According to the study of Thubrikar et al. [97], increased thickness of the junction line and
nonlinear elastic properties of the blood vessels have secondary effect on the induced
stresses. In particular, they proved that the local stress concentration of an arterial branch is
primarily affected by the geometry of the end-to-side junction and is secondarily affected

by factors like the elastic properties of the blood vessel or thickening of the junction line.

The three-dimensional curve of the intersection of the two blood-vessels can be expressed

parametrically (with parameter ¢e[0,27]) in the X-Y-Z coordinate system by the

normalized equations [98]:

X . Ry

— =cos|sin” | —=sin , 0527 8.1

e o
L:—gsin(o 0<@p<2n (8.2)
R R T '

Z _ R—;cosq)— 1—cos| sin™" R—;singo cosd 1 0<p<L2rx (8.3)
R |R° R’ sing” '

Figures 8-2 and 8-3 plot the normalized intersection curve of the artery-graft junction on
the Y-Z and X-Z plane respectively (Equations (8.1) and (8.2)), for different values of the
intersecting angle ¢ and radii ratio R?/R;. It can be observed that the length of the

intersection curve is increased as the intersecting angle € between the artery and the graft

is decreased and/or the ratio R;/R; is increased. Thus, the intersection curve becomes
longer as R? /R] approaches 1 and as ¢ approaches zero, leading to longer suture lines.
For R} /R; =1, the intersection curve becomes largest and sharp-edged with two corner-
like points (4, B in Figure 8-2). On the other hand, for R;/R; <1 the curves become

smooth.
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Figure 8-2: Normalized intersection curve of the artery-graft junction on the Y-Z plane for

different values of the intersecting angle 6 and for (a) R; / R; =1, (b) R; /R =0.8 (c)

R;/R;=0.6,(d) R, /R; =0.4 (CT: crown toe, CH: crown heel).

The normalized length of the suture line is equal to the normalized length of the

intersection curve, calculated as
S xY (rY (zY
2z
= + + d 8.4
R j‘) (RZJ [Ra”] (RZ] 4 &
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Figure 8-3: Normalized intersection curve of the artery-graft junction on the X-Z plane for

different values of the intersecting angle ¢ and for (a) R, /R, =1, (b) R,/ R} =0.8, (c)

RI/R?=0.6,(d) R /R =04

Table 8-1 lists the values of the normalized length S /R’ for different intersecting angles

¢ and radii ratios R;/R;. The total suture length has low bound the value 2S/R/

(interrupted stitching case with stitch length equal to the distance between two sequential

stitches). For the case of running stitching with diagonal at 45° angle the normalized suture

length is (S/R?)(v2+1).

In vascular surgery the incision length is frequently equal to two times the graft diameter.
The normalized incision length (length of the line connecting the crown heel to the crown

toe) can be calculated as

- = - =— (8.5)
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Table 8-1: Values of normalized suture length S/ R’ for different values of the

intersecting angle ¢ and radii ratios R; / R; .

0 15 30° 4% 60° 75 90°
R/R

1 2050 1178 925 822 777  7.64

0.8 1535 963 810 751 726  7.19

0.6 1194 825 733 700 685 618

0.4 920 721 677 661 654 653

On multiplying Equation (8.5) by R; / R_, the normalized incision length can be expressed

as

S. 2
£ = 8.6
R; sin @ (8.6)

To perform an incision length equal to two times the graft diameter, the normalized

incision length S, / R; must be equal to 4. Thus, in vascular surgery, the intersection angle

6 is frequently equal to 30" (Equation (8.6)).

8.3 Far-field forces of the anastomosis model

The blood flow and the longitudinal pre-stress of the artery result in far-field forces on the
artery-graft junction. In particular, the blood flow induces global forces along the z and x
directions of the flow domain, as shown in Figure 8-4. The three cross-sections of Figure

8-4(a) have average flow rates Q,, Q,, O, corresponding to the cross-sections 4,, 4,, 4;.
The average flow velocities are V,, V,, V, (derived from O, =4}V;) and the blood
pressures are p,, p,, p,, respectively. It is assumed that the artery cross-section is
constant along the artery axis ( 4, = 4, ). The far-field forces acting along the x-axis, y-axis,

and the graft axis are expressed as [94]:

R =—-p A+ p,A,cos0+ p, 4, — prlel + przzA2 cos @ + pr;A3 (8.7)

R, = p,A,sin@+ p,V; 4, cos 6 (8.8)
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R, =R cos@+R, sinb (8.9)

distal proximal

Nres
—>

Figure 8-4: (a) Flow domain of an end-to side anastomosis. (b) Forces acting on the

anastomosis junction.

By utilizing Bernoulli's momentum and continuity equation (Q, = Q, +Q,), the far-field

forces along the z and x directions may be simplified as follows [94]:

2 2 2
R, =COSH|:M{£+/€2J+]€2A1PI:|+%kl(kl—2) (8.10)

1 2 1

2 2
R, =sin6’{%[%+kzj+kzz41pl} (8.11)

1 2

in which k,=Q,/Q,, k, =4,/ 4,,and p, is the density of the blood. The tensile far-field

force in the direction of the graft is

PO [ K’ JeXes
R, = ZbAll [k_12+k2 +hy A p + 2bA11 kl(k1—2)0059 (8.12)

On normalizing the tensile far-field force in the direction of the graft by p,0%/24,,

Equation (8.12) takes the form
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2 2
%:%%ﬁ/@ 2A1Q€1+k1(k1—2)cose (8.13)
a5 Pt

24,

The dimensionless ratio &, typically varies between 0 and 1, and the dimensionless ratio
k, varies between 0.2 and 1. For large- and medium-size arteries under pressure, the
expression 24°p, / p,0,> typically varies between 340 and 3400. Therefore, R, can be

approximated by

Ry = 4, p, (8.14)

In the case of veins, in which the blood pressure is low, R, may be approximated by

pr12 k12
R ~= L vk +k(k —2)cos@ 8.15
¢ 24, | k, g 1( ! ) ( )

In addition, longitudinal residual stresses may exist along the host-artery. The longitudinal

residual force N,  (Figure 8-4(b)) is usually taken into account as a strain percentage,

res

which is about 10-30% of the unstressed artery length. In this chapter, the effect of the

residual force N, is ignored, since it does not affect considerably the suture-line response

s
of an end-to-side anastomosis and has not been taken into consideration in relatively recent

investigations [12].

8.4 Stress-concentration factors (SCF)

The local stresses of the junction can be obtained from the stress-concentration
methodology, utilized in the analysis of K- and Y-joints of circular hollow pipe sections.
Specifically, the local stress acting at any point of the artery-graft intersection zone is

calculated from the axial tensile stress (of the applied load R, ) and the SCF. The SCF

applies on the tensile force (due to pressure and hydrodynamic effects) in the direction of
the graft, which in turn affects the loading of the sutures. The axial tensile stress along the

graft is

R,

=— (8.16)
27zRgHg

Op
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in which R is the mean radius of the graft. Therefore, the local stresses at the stitching

zone of the artery and graft side are expressed respectively as
o =SCF,0,, (8.17)

alocal SCFgO_ZZ (8 1 8)

< =

where SCF, and SCF, are the stress-concentration factors corresponding to the artery and
graft side, respectively.

The most representative SCF prediction studies in the literature are: (1) the method
adopted by the American Welding Society [96] and American Petroleum Institute [95]; (2)
the work of Shao et al. [99]; and (3) the work of Karamanos et al. [100]. The SCF
equations were obtained from parametric investigations based on a large number of finite-
element analyses and experiments, for specific ranges of the normalized geometric

parameters
ﬂ:R;/R;’,y:R;’/Ha, r:Hg/Ha (8.19)

Herein, we adopt the parametric SCF equations of the first two methodologies. The
American Welding Society and the American Petroleum Institute SCFs for the artery and

graft are expressed respectively as

SCF" =2.167sin 0.fy (8.20)
(1) _ (1)
SCE" =1.375+0.375\/r/ SSCF| (8.21)

Shao et al. proposed a SCF solution for all values of @ €[0,27] along the juncture line

(Figure 8-1(b)). According to their solution, the general parametric SCF equations for the

artery and graft are expressed respectively as
SCF? =C, +C,cosp+C, cos(2p), 0<p<2rx (8.22)
SCFg(Z) =C,+C,cosp+C,cos(2¢)+ C,cos(3p)+ C,cos(4p), 0< o <27 (8.23)

in which the coefficients C, are functions of parameters z, £, y, 6. The reader is

referred to the original paper of Shao et al. [99] for the complete forms of C,'s. To obtain
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the SCF value for the crown toe (CT in Figure 8-1), ¢ must be set equal to 7, and for the
crown heel (CH in Figure 8-1), ¢ must be set equal to zero. Shao et al. found that the
maximum SCFs, for axial loading in the direction of the graft are usually located at the

crown toe.

Figures 8-5 through 8-7 plot the SCF curves according to Equations (8.20) through (8.23),
for ¢ =7 (crown toe) and for different values of the dimensionless ratios 7, £, y. Observe
that the SCFs for the artery side are frequently higher than the SCFs for the graft side.
Furthermore, for low values of anastomosis angle (8 <20°) the SCF is always lower than
2.7, whereas for large anastomosis angles (8 > 60°) the SCF is larger than 3, regardless of
the adopted prediction. The points marked by dots in Figures 8-5 through 8-7 indicate the
intersecting angle @ for which the artery and graft SCFs are equal, for the pair of equations
of the American Welding Society and the pair of equations of Shao et al. The artery and
graft SCFs are equal for intersecting angle & in the range 10° to 30°. This result implies
equal stress amplifications for the graft and the artery side, which could lead to evenly-

distributed hyperplasia.

B=1, y=12, 1=0.8 B=0.5, y=12, =0.8
8 1 8 1 —Scr W
..... SCg
6 1 61 —— SCF®
&
3 4 4 - SCF,®

0 10 20 30 40 50 60 0 10 20 30 40 50 60

inclination angle & (degrees) inclination angle € (degrees)

Figure 8-5: Stress-concentration factors for the artery and graft for different values of the

graft-to-artery radii ratio: (a) f=1, (b) f#=0.5.

8.5 Suture-line response

As discussed in Section 7.2.1, for the case of end-to-end anastomosis, the interaction of
sutures with the blood vessels may lead to post-surgery complications in a number of
ways. Correspondingly, post-surgery complications may occur in the case of end-to side

anastomosis. The suture may fail when its maximum tensile force f, exceeds its tensile

strength, or lead to slip or relaxation of the knots that bind the stitches together. Note that,
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sutures may creep and gradually deteriorate with time and potentially fail some weeks after
the operation. Furthermore, the blood vessel wall may rupture and injury may be caused

when the embedding stresses o, due to suture-wall contact interaction (at the stitching

holes) exceed the limit value of wall shear strength. High-stress values is one of many
factors that promote the generation of intimal hyperplasia and cause the arterial wall to
increase its cross-section [10]. Yet another complication may be caused due to large
deformations at the suture line, which in turn may cause blood leak or reduction of the

artery-graft intersecting angle at the anastomosis area.

B=0.75, y=12, r=0.8 B=0.75, y=10, r=0.8

6 1 6 1
<3
3 41 4
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0 0

0 10 20 30 40 50 60 0 10 20 30 40 50 60
inclination angle € (degrees) inclination angle & (degrees)
(a) (b)

Figure 8-6: Stress-concentration factors for the artery and graft for different values of the

artery radius to artery thickness ratio: (a) y =12, (b) y =10.
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Figure 8-7: Stress-concentration factors for the artery and graft for different values of

graft-to-artery thicknesses ratio: (a) r = 0.8, (b) r=1.
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For the suture-line analysis we consider two different models. The interrupted stitching or
interrupted vascular clips model (Figure 8-8(a)), and the continuous (running) stitching

with diagonal at 45° angle model (Figure 8-8(b)).
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Figure 8-8: (a) Interrupted stitching or clips model of an end-to-side anastomosis. The

insert on the right shows a detail of the suture-line opening, A/, and stress distribution,
O':'" ; (b) Continuous stitching model of end-to-side anastomosis. The insert on the right

shows a detail of the suture-line opening, A/ .

In the case of interrupted stitches or clips, the suture is assumed to be rigid and the suture
line can be approximated as a solid surface with cracks (microslits). The cracks are located

between the sutures or clips. Figure 8-8(a) shows the approximate stress distribution of o™

along the clip thickness, which is distributed parabolically according to the smooth contact

solution of Hertz [101], with the maximum embedding stress obtained as
max o!" =1.5" (8.24)

in which & is the peak average embedding stress at the stitching hole of an interrupted

stitch or vascular clip. The peak average embedding stress is calculated as
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o o"“'sH, o sH,
" —max{dy min{Hg,Hg} 7 mi;{Hg,éHg}} (8.25)

where d, denotes the suture diameter or the clip thickness and s denotes the distance
between two sequential stitches. When dividing with the artery thickness H, we get the
average embedding stress at the artery, whereas by dividing with the graft thickness H, we

get the average embedding stress at the graft.

For systems with considerable stiffness (i.e. artery-artificial graft anastomosis), the fracture
mechanics theory [102] can be applied to calculate the maximum opening of the

anastomosis interface as a crack opening problem, leading to the approximation

Aljim ~ Max Uéowl(s—d’,) L+L , O_lacal(s_dr) L_,_L (826)
Ea Eg ¢ Ea Eg

in which E, and E, are the Young's modulus of the artery and graft, respectively.

In the case of continuous stitching with diagonal at 45° angle (Figure 8-8(b)), the uniform

tensile force of the suture depends on the maximum local stress of the artery or graft side:

local

local o H
ﬁ""’:max{%l;*’uﬁ, e g+f;’} (8:27)

1.7

where s is the distance between two sequential stitches, and £ is the suture pre-tensioning

exerted by the surgeon in tying the suture knot. The peak embedding stress, due to suture-

wall contact interaction at the stitching holes, takes the form

o VGl SH 1.7 £
o =max{6" sH, +1.7, £ £ J: (8.28)

* dsmin{H Hg}’ dsmin{Ha,Hg}

a’

in which d is the suture diameter. By dividing with the artery thickness /, we obtain the
peak embedding stress at the artery, whereas by dividing with the graft thickness H, we

obtain the peak embedding stress at the graft. The gap created between the two blood

vessels, according to Hooke's law, is obtained as
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local local
o, sH . O sH <

A& = , for max{ , == }>fs0 (8.29)

1.7 1.7

1.7 1.7

local local
Ga SH a O-g SHg } < fO
—Js

in which / denotes the stitch length and £, denotes the Young's modulus of the suture. A

gap between the two blood vessels will be formed only if the suture tensile force caused by

the blood pressure exceeds the pre-tension value.

Note that, this analysis investigates the conservative scenario of the typical stitches/clips
technique. Parameters that may decrease the suture-line response are ignored. For example,
days, weeks, and months after the anastomosis is carried out, tissue is formed around the
suture line, resulting in increased local curvature/intersecting angle of the junction (Figure
8-9). The decrease of the sharpness of the suture line results to smaller stress concentration
and increased strength of the anastomosis. In addition, reinforcement of the suture line by
pledgeted sutures or other techniques decreases the risk of post-surgery complications

because the tearing stresses from the tension of the sutures are decreased.

Figure 8-9: The formation of tissue around the suture line (black areas), weeks and months
after the anastomosis is carried out, results in increased local curvature/intersecting angle 6

of the junction.

8.6 Comparison with finite-element studies

The proposed methodology is compared against the finite-element studies of Ballyk et al.
[10], Perktold et al. [12] and Thubrikar et al. [97]. In order to obtain comparable response
values for the first two studies, we calculated the normalized mean stress and the principal

stress concentration based on the proposed SCFs, respectively.
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Ballyk et al. [10] simulated an end-to-side artery-Dacron graft anastomosis with identical
geometric properties (Table 8-2). Their model clearly shows that the three-dimensional line
formed by the intersection of the two blood vessels has sharp edges, as indicated also in

Figures 8-2 and 8-3 (for H,/H,6 =1). The sutures were modeled as points along the

intersection curve resulting in excessive stress concentrations. The hoop stress at the graft,

derived from Laplace's law, is o, = p\R, / H, . In their work, Ballyk et al. calculated the

normalized mean stress as (o, +0,)/(2p,), and found that the maximum mean stresses

for the artery and graft, just away from the suture, are 8 and 6 respectively. Table 8-3
reports values for the far-field stress and the SCF based on the model proposed in this
chapter, and compares the calculated normalized mean stress with that reported in Ballyk
et al. Our calculations of the normalized mean stress are in good agreement with their

results.

Table 8-2: Parameters of end-to-side model of Ballyk et al.

Parameter Value
p, (kPa) 13.3
0 (degrees) 45
R! (mm) 2.75
R; (mm) 2.75
H, (mm) 0.5
H, (mm) 0.5
B=R;/R] 1
y=R;/H, 5.5
t=H,/H, 1
E,/E, 3.14-1.33
N oo (N) 0.19
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Table 8-3: Results of the proposed methodology against the Ballyk et al. analysis.

Results
This study  Ballyk et al.

R, = 4,p, (N) 0.26 (NA)
o, (kPa) 33.32 (NA)
o, (kPa) 66.65 (NA)
SCE,” 3.58 (NA)
SCE,” 272 (NA)
SCE,” 4.23 (NA)
SCE;” 3.50 (NA)
Normalized mean stress

(SCFVo,, +0,)/(2p)) 6.97 8
(SCE"oy, +04)/ (2p)) 5.90 6
(SCF%c,, +07,,)/(2p,) 7.79 8
(SCFg(z) 0, +0,) 2p) 6.87 6

In another finite-element study, Perktold et al. [12] modeled an end-to-side artery/ePTFE
conventional anastomosis and a Taylor-patch anastomosis with the parameters reported in
Table 8-4. Perktold et al. calculated the principal stress concentration normalized by the

average principal stress of the artery as ¢"““ /o, , =0"“2H,/p, (R’ —H,/2). For the

conventional and the Taylor-patch anastomosis, the normalized maximum and minimum
principal stress concentration were calculated as 4.7 and 0.7, respectively. Table 8-5
presents the far-field stress and the SCFs as proposed by this study, the principal stress-
concentration calculations, as well as the suture-line response. By using the SCF of Shao et
al., we obtain a realistic maximum response corresponding to the principal stress
concentration of the artery equal to 4.55, which compares well with the respective result of
Perktold et al. (=4.7). The minimum SCF for the artery, according to the plots presented
by Shao et al., occurs at the crown heel and can be found by scaling the maximum SCF by
a factor of 1/6. Therefore, the scaled principal stress concentration is 0.76, which is a good
approximation of the finite-element result (=0.7). It should be noted that Perktold et al.

found that the stress concentration of these models does not occur at the toe, due to the
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irregular geometries of the blood vessels. However, the SCFs as proposed by this study

constitute a good approximation of the maximum and minimum values.

Table 8-4: Parameters of end-to-side model of Perktold et al.

Parameter Value Parameter Value
Artery/graft Interrupted clips

p, (kPa) 13.3 d, (mm) 0.34
6 (degrees) 25 s (mm) 1.02
R’ (mm) 2.15-2.25 Continuous stitches
R, (mm) 2.075-2.175 d, (mm) 0.093
H, (mm) 0.5 s (mm) 1
H, (mm) 0.35 I, (mm) |
B=R,R] 0.97 E, (GPa) 1.44
y=R;/H, 4.5
T= Hg /Ha 07
E, (kPa) 410
E, (kPa) 7500
NI‘ES (N) O

Perktold et al. [12] also studied the individual suture response of two different models: a
model with interrupted vascular clips and a model with continuous stitching. The
clips/stitch properties are reported in Table 8-4, and the suture-line response of the
proposed methodology against the Perktold et al. analysis is listed in Table 8-5. In the case
of the interrupted-clips model, the maximum embedding stress is calculated by the present
study as 760 kPa (Equation (8.24)) and the opening created between the two vessels is
calculated as 206 um (Equation (8.26)). The opening is considered to be excessive and
blood leakage is induced (the opening is larger than the sum of diameters of three red
blood cells: 206 pm > 21 pum). In the case of the continuous-stitching model, the suture
tensile force, by assuming zero suture pre-tension, is derived from the maximum SCF of
Shao et al. as 0.034 N (Equation (8.27)). As expected, this value does not compare well
with the corresponding value obtained in the work of Perktold et al. since they modeled the
stitching of the saddle region only. In order to obtain a better approximation against their

work, we calculated a hypothetical value of the tensile force by using the SCF for the

160



saddle. The hypothetical tensile force is 0.005 N. Additionally, the gap between the two
blood vessels, for the continuous stitching case, is calculated as 3.51 pm in the present
study (Equation (8.29)). According to these calculations, we can conclude that the finite-
element results (related to the interrupted-model embedding stress and the continuous-
model suture force) compare well with the formulas suggested in this chapter based on the

SCFs (Table 8-5).

Table 8-5: Results of the proposed methodology against the Perktold et al. analysis.

This study Perktold et al.
R, = 4,p, (N) 0.16 (NA)
oy, (kPa) 37.31 (NA)
o, (kPa) 26.00 (NA)
SCF" 1.35 (NA)
SCE." 1.81 (NA)
SCE? 3.17 (NA)
SCE?” 2.11 (NA)
Principal stress concentration

SCF%,, /o,, 1.94 4.7

SCFo,,/0,, 2.60 (NA)
SCF%¢,, /0, 4.55 4.7

SCF0,, /o, 3.03 (NA)

Suture-line response (Interrupted clips)

max o™ (kPa) 760 700

AI™ (um) 206 (NA)

Suture-line response (Continuous stitches)

0.034 (realistic), 0.005
(hypothetical)

£ (N) 0.008-0.017 (saddle)

AL (um) 351 (NA)

The proposed stress-concentration methodology can be as well utilized to easily obtain the
maximum stress of arterial branches. Thubrikar et al. [97] studied the stress concentrations
of a bovine coronary arterial branch with inclination angle 70°. The parameters of the

arterial branch are reported in Table 8-6.
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Table 8-7 lists the stress-concentration results of our study and of the study of Thubricar et

al. The SCFs, as calculated by this study, are 5.36 and 3.78 for the main artery and branch,

respectively, resulting in maximum stresses o> =116 kPa and Gi,”“’l =82 kPa at the

artery and branch side, respectively. Our stress-concentration results compare well with the
finite-element results of Thubrikar et al. (113 kPa and 90 kPa for the artery and branch

side, respectively).

Table 8-6: Parameters of arterial branch model of Thubrikar et al.

Parameter Value
p, (kPa) 5.33
6 (degrees) 70
R! (mm) 4.46
R; (mm) 2.33
H, (mm) 0.36
H, (mm) 0.27
B=R./R! 0.5224
y=R’/H, 12.39
r=H,/H, 0.75
N, (N) 0

Table 8-7: Results of the proposed methodology against the Thubrikar et al. analysis.

Results
This study ~ Thubrikar et al.
o, (kPa) 21.67 (NA)
SCF,” 5.36 (NA)
SCE,” 3.78 (NA)
o (kPa) 32 90
o (kPa) 116 113
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8.7 Numerical example related to PTFE venous access graft

Ngoepe et al. [15] studied the case of arterio-venous access grafts, by utilizing finite-
element analysis. Such anastomoses are performed in the case of patients undergoing
hemodialysis. Herein, we investigate the response of vein/PTFE access grafts, forming
end-to-side anastomosis configurations with 45° and 90° intersection angles. Ngoepe et al.
found that the maximum structural wall stress at the junction of the venous anastomosis is
equal to 3.36 kPa, and that the 90° configuration shows slightly better performance than

the 45° configuration.

The parameters used in our analysis are listed in Table 8-8. For the calculation of the far-
field forces Equations (8.7) through (8.9) are utilized. Note that, the inertia terms (flow
velocity terms) are insignificant compared to the pressure terms, and therefore are

neglected.

Table 8-8: Parameters of Vein/PTFE access graft models of Ngoepe et al.

Parameter Value

0=90 0=45
p, (kPa) 242 14.4
p, (kPa) 21.8 6.48
p; (kPa) 1.21 0.72
V, (m/s) 0.06 0.07
V, (m/s) 0.02 0.025
V; (m/s) 0.0886 0.0847
R; (mm) 3 3
R; (mm) 3 3
H, (mm) 1 1
H, (mm) 1 1
p, (Kg/m’) 1050 1050
B=R;/R] 1 1
y=R’/H, 1 1
t=H,/H, 2 2
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Table 8-9: Results of the proposed methodology for the access graft models of Ngoepe et

al.
Value

0=90 0=45
R, (N) -0.180 -0.325
R, (N) 0.357 0.154
R, (N) 0.125 0.154
0, (kPa) 66.55 39.6
O, (kPa) 59.95 17.82
0,9, (kPa) 3.33 1.98
o,, (kPa) 7.27 8.91
SCF! 2.64 3.74
SCF," 2.37 2.78
o (kPa) 19.18 33.32
gfg“"”’ (kPa) 17.22 24.77

8.8 Concluding Remarks

This chapter proposes a systematic stress-concentration methodology for the prediction of
the stress distribution at the junction line of the end-to-side anastomosis and end-to-side
arterial branches. Closed-form expressions were derived for calculating the embedding
stress (Equations (8.24) and (8.28)), the gap formed between the two blood vessels
(Equations (8.26) and (8.29)), and the suture tensile force for the continuous stitching
model (Equation (8.27)). Furthermore, expressions for the calculation of the suture-line

length S (Equation (8.4)) and the approximate suture length ( S (\/5 + 1) ) are introduced.

Although the proposed model constitutes an idealized approach of the end-to-side
anastomosis problem, the results of the proposed methodology are a good approximation
of the response of more complex models. For example, the results of finite-element studies
with geometrical asymmetries and irregular flow conditions, such as the study of Perktold
et al. [12], are approximated well by our model (which assumes that the cross-sectional

dimensions of the artery and graft are circular and that the blood flow is steady). On the
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other hand, the elastic modulus of the graft must not be much lower than the elastic
modulus of the artery. The reason is that the less stiff graft will be excessively deformed at
the junction, rendering the proposed model invalid. This has been shown by Hofer et al.
[9]. For the case of a stiff graft (10 times stiffer than the artery), their finite-element
solution close to the artery-graft junction shows a maximum stress of 300 kPa at the artery
side. Our model predicts a maximum local stress of 282 kPa. However, for a graft that is

less stiff than the artery, the stress is significantly reduced to 80 kPa.

The problem is mainly affected by the intersecting angle between the artery and the graft,
the radii and thicknesses of the artery and graft, the blood pressure, and the suturing
characteristics. The SCF investigation demonstrated that lower values of the graft-to-artery

radii ratio R;/R;, the graft-to-artery thicknesses ratio H,/H,, and the ratio of artery

radius to artery thickness R’/ H, frequently decrease the SCFs (Figures 8-5 through 8-7).

Moreover, the range of anastomosis angle 6 for which the artery and graft SCFs are equal
lies between 10° and 30°. Although low values of anastomosis angle € typically reduce the
SCF (and consequently reduce the suture-line opening, the embedding stress, and the
suture force), they require longer suture lines and larger number of stitches, which is a

potential source of fluid disturbance [103].

The suture-line response is calculated by Equations (8.24) through (8.29). These
expressions highlight the influence of the suturing parameters on the suture-line response.
For a given end-to-side anastomosis configuration, when the distance between two
sequential stitches is decreased (meaning that the number of stitches is increased) or the
stitch diameter/thickness is increased, the embedding stress and the gap created between
the two blood vessels are decreased, regardless of the adopted stitching technique. In the
case of the continuous stitching technique, it can be observed that when stronger sutures
are used the gap developed between the two blood vessels is decreased. In regard to the
suture tensile force, it can be shown that it is increased as the distance between two
sequential stitches is increased. Furthermore, the interrupted-stitching technique is more
compliant at the anastomosis than the continuous-stitching technique, as suggested by the

literature [104].

In the case that pre-tension is applied to the suture, the knot strength, the suture tensile
force, and the embedding stress are increased. Note that a gap between the two blood
vessels will be formed only if the suture tensile force due to blood pressure exceeds the

pre-tension value.
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Accordingly, this chapter suggests the following practical techniques to minimize the risk
of post-surgery complications: (a) longer suture lines (low values of anastomosis angle 6);
(b) suture/clip thickness as large as possible; (¢) number of stitches as high as possible (i.e.
distance between sequential stitches as low as possible); (d) graft radius smaller than the
artery radius; and (e) pre-tension of the suture as low as possible (merely to secure the

strength of the knot).

The proposed methodology, as a design-oriented approach, can be synopsized in the

following steps:

a) The tensile far-field force in the direction of the graft R, and the axial tensile stress
along the graft o,, are calculated from Equations (8.14) and (8.16), respectively.

b) The local stresses at the stitching zone of the artery and graft side (Equations (8.17)
and (8.18)) are obtained by using the parametric SCF Equations of Shao et al. for
@=r (Equations (8.22) and (8.23)).

¢) The individual suture response in terms of embedding stress, the gap created
between the two blood vessels and the suture tensile force, is calculated from
Equations (8.24) through (8.29).

d) The individual suture response results must be compared to the respective limit
values as specified in Section 7.2.1. In the case that the limit values are exceeded,
the intersecting angle 8 and/or the stitching parameters must be reconsidered and

steps (a) through (d) must be repeated.

Note that, in order to predict the stress concentration of arterial branches only steps (a) and

(b) are required.

By utilizing the aforementioned design-oriented approach, the optimum suturing

parameters and anastomosis angle can be selected.
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CHAPTER9

Response of Side-to-side Related Anastomosis and Artery Patching

9.1 Introduction

The long-term complications of side-to-side related anastomoses (i.e. end-to-side and side-
to-side anastomosis) and artery patching, primarily involve the development of intimal
hyperplasia that results in stenosis of the blood-vessel lumen. Several factors, such as
arterial wall mechanics, hemodynamics effects, biological activities and compliance
between the host artery and the graft are identified to influence the problem. Yet, it is not
completely clear which are the factors that influence most the long-term complications and

in what specific way.

Special attention has been given to the effect of elastic (compliance) mismatch between the
graft and the host artery. Better compliance may be obtained by using grafts with similar
mechanical properties to the host artery or by anastomosis techniques that utilize vein
patches and cuffs. Recent end-to-side anastomosis techniques that use “compliant” patches
or cuffs, are the Taylor-patch anastomosis and Miller-cuff anastomosis. Studies suggest
that these techniques may reduce the stress concentrations at the suture line, and therefore

the generation of intimal hyperplasia [11, 12].

An end-to-side anastomosis develops intimal hyperplasia at two regions of the
anastomosis: the suture line and the artery floor opposite of the distal anastomosis [10, 23].
Bassiouny et al. [23] found that the development of intimal hyperplasia at the suture line of
conventional end-to-side anastomosis is promoted by healing mechanisms, compliance
mismatch and triangulation of the anastomotic junction that may result in complex
hemodynamic patterns. They also suggested that intimal hyperplasia on the artery floor is
developed due to low wall shear stresses and hemodynamic factors that generate stagnation
points at that region. Note that, our study does not deal with the hemodynamic analysis and
flow patterns of side-to-side related anastomosis. It focuses on the suture-line behavior in

terms of displacements, strains, and stress concentration.

To identify the problem of side-to-side related anastomosis by means of stress
concentration, it must be noted that the local stress concentration of an arterial branch
(referring to a branch that was not surgically formed) is primarily affected by the geometry
of the junction [97]. In the case of anastomosis, the junction is additionally stressed due to
the suture-arterial tissue contact at the stitching holes. As concluded in Chapter 8, the

average embedding stresses, at the stitching holes, increase when the distance between
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sequential stitches is increased and/or the suture diameter is decreased. The study
presented in this chapter aims to investigate if the elastic mismatch constitutes a third
factor for further stress concentration at the suture line, thus influencing the development

of intimal hyperplasia.

An idealized circular cylindrical anastomosis model consisting of two semi-cylinders,
interconnected by two hinges is considered, in order to study the influence of elastic
mismatch on the problem. The solution is obtained by solving a boundary value problem.
The resulting system response is described in terms of internal forces, radial and tangential
displacements, strains of the blood vessels, and the rotation angle of each cross-section.
The dynamic response of the model is also examined in order to evaluate if the effect of

the dynamic component is significant and must be taken into consideration.

9.2 Mathematical model

Figure 9-1 shows the three end-to-side anastomoses and the side-to-side anastomosis
techniques that can be analyzed by the proposed method. End-to-side anastomosis
techniques include the conventional anastomosis, the Taylor-patch anastomosis, and the

Miller-cuff anastomosis [12, 11, 23, 10, 24, 25, 105].

By considering a vertical plane section in the end-to-side or side-to-side anastomosis of
Figure 9-1, the resulting system can be approximated by a two-hinged circular model,
consisting of two semicircles with different elasticity modulus, cross-sectional areas and
moments of inertia. The proposed mathematical model consists of element I representing

the graft that is connected to the artery side, and element II representing the host artery
(Figure 9-2(a)). Element I has thickness ', cross-sectional area A' (per unit-length),
Young's modulus E£', and moment of inertia /' (per unit-length), whereas element II has
thickness ¢, cross-sectional area 4" (per unit-length), Young's modulus E", and moment

of inertia /" (per unit-length). The unloaded centerline of the two elements is assumed to
form a circle with radius R, and the sutures are modeled by two hinges that separate the

centerline into two semicircles. The origin of the varying angles of each element are shown
in Figure 9-2(a). The varying angles fall in the range 0<@' <7z and —7/2<6"<x/2

for the graft and artery, respectively. When subjected to uniform internal pressure p, the
system is deformed in the radial direction by u'(6') and in the tangential direction by

w'(6"). Note that, notation i takes the form I or II when referring to elements I and 11

respectively.

168



@ ( artery

(b)

©

(d)

Figure 9-1: Vertical plane sections of different anastomosis techniques that can be modeled
as two-hinged circular systems: (a) conventional end-to-side anastomosis; (b) Taylor-patch

anastomosis; (c) Miller-cuff anastomosis; (d) side-to-side anastomosis.

9.2.1 Response to static loading

The problem can be solved as a boundary-value problem of continuous curved beams [106,
107]. The differential equations governing the static response of the system are derived by

considering the equilibrium of forces acting on an infinitesimal element of the circular ring
shown in Figure 9-2(b), where N'(8') is the unit-length tangential tensile force, Q'(8') is
the unit-length shear force, and M'(#") is the unit-length in-plane bending moment. The

equilibrium of forces along the radial and tangential directions result in the following

expressions, respectively
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do'(9)

— g —~N'(6)=-pR O.1)
dN'(0) | i
7 +0'(0)=0 9.2)

Moreover, the moment equilibrium of the infinitesimal element of Figure 9-2(b) requires

that:

dM' (0
do'

—RO'(6)=0 (9.3)

N X

A”,E”,I”

@ (b)

Figure 9-2: (a) Two-hinged anastomosis model, (b) Free-body diagram of a typical element

of circular sector under static loading.

By assuming extensibility of the centerline, the tangential force N'(¢') and moment

M '(6") can be expressed in terms of displacements as

M) = Eif (dwi(‘?i) - dz”i(_fi)j (9.4)
R do' do'
i i _ﬂ i/ pi dwi(ai)
N0 == (u 0+ ] (9.5)

The symmetric boundary conditions of elements I and II are respectively
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M'(0)=0, w(0)=0, wl(ngO, %Gj:o’ Ql[’—zf)zo

M“(gj:o, w“@:o, W' (0) =0, ‘;L;(o)zo, 0"(0)=0

and the continuity equations between the two elements are expressed as

o {g oo-e(g) o[

(9.6)

(9.7)

(9.8)

By combining Equations (9.1) through (9.8), the response of the two elements in terms of

axial forces, shear forces, moments, radial and tangential displacements can be derived.

For element I (0< &' < 7) the normalized response is given by

1/l
&g)z Asin @' +1 (9.9)
p
1/l
LZ)z—Acos@I (9.10)
p
1/l
M;g )z—Asiné?I (9.11)
p
”1(01)_ 1 I 1 R’ . 1_2Bl I I I 912
R =B ApRCOSg + m—m ApRS]l’le TAPRH COS@ +C pR ( . )
1l I
W) ~B'ApRsin ' 2B ApRO'sin ' (9.13)
R V4
in which
Cll _Cl
“E B O-19
2
5 21[%+%J 9.15)
A4\ AE E'I
Vd 1 R’
B! =Z£AIIEII + Enlnj (©.16)
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I 1

o L (9.18)
AIIEII :

Parameter A indicates the elastic and geometric mismatch between the host artery and the

graft.

Moreover, the strain of the middle-wall surface and the rotation of the cross-section at any

point along the circular arch are given respectively by

£@=" f )+%dvrié?):pRCl(AsinH‘+l) (9.19)
oy L[ du'@) o 9.20
@ (0) R( FrL W(e)) (9.20)

The response of the artery (element II) can be easily obtained from Equations (9.9) through

(9.18) by assuming that the artery represents element I and the graft represents element II.
We are particularly interested in calculating the response of the suture line in terms of
suture force f,, displacements, strains, and rotation of the cross-section at the junction.

The suture force is the resultant force of the tangential and radial forces at the junction (

¢ =0). The normalized suture tensile force f, / pR constitutes a stress-concentration factor

due to the artery/graft compliance mismatch and is calculated from

E - PR PR

Js —\/(NI(O)] +(QI(O)} =1+ 4 (9.21)

The normalized radial displacement at the junction (&' =0) is obtained from Equation

(9.12) and expressed as

u'(0) (B"/B')+(C"/C")
pRC' 1+B" /B

(9.22)

Furthermore, the normalized rotation of the cross-section at the junction, for C' <<B', can

be derived from Equation (9.20) as
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p'(0) 41-C"/C
pRC' 7 1+B"/B'

(9.23)

For typical values of geometric and mechanical properties of the two blood vessels,
parameter A ranges from 0 to *0.01. Thus, the stress concentration at the suture is
insignificant. Furthermore, as can be seen from Equations (9.9) through (9.11), for low
values of parameter A, the solution is dominated by almost uniform axial hoop stress

N = pR, and the moments and shear forces acting along the blood vessel wall are almost
zero. Upon this, the strain of a blood vessel is approximated by &'(8') = pRC', depending

mainly on the elasticity modulus of that blood vessel.

Figure 9-3 plots the normalized radial displacement and approximate normalized rotation
at the junction for a range of the ratios B"/B' and C"/C'. From Equation (9.22) and
Figure 9-3(a), the radial displacement at the junction is minimized for values B" /B' lower
than 1. The radial displacement will never be equal to zero, due to the fact that B" / B' will
always have nonzero positive values. Equation (9.23) and Figure 9-3(b) indicate that the
rotation of the cross-section is minimized for large values of the ratio B" /B', and is equal

to zero when C"/C' is equal to unity, meaning that the term A'E' is equal to 4"E".

The maximum rotation of the artery is developed when the graft is rigid (applies when
A"E" - and E"[" — ). In this case, the cross-section of the graft will not rotate, whereas

the cross-section of the artery will undergo large rotation approximated by

4 pR

¢” (7[ / 2) ~ 7Z'AHEH

(9.24)
For typical values of anastomosis properties the resultant maximum value of rotation

(derived from Equation (9.24)) is about 10°.

9.3 The case of artery patching

The problem of patching with longitudinal graft materials can be solved by developing a
similar model in which the graft occupies a smaller part of the model. Longitudinal patches
are frequently used for carotid endarterectomies [108]. The main post-surgery
complications of this technique are the development of intimal hyperplasia, suture-line

bleeding, and patch infection.
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Figure 9-3: Normalized response as a function of the ratio C" /C', and for different values
of the ratio B" / B': (a) Normalized displacement at the junction, (b) Normalized rotation

of the cross-section at the junction.

Figure 9-4(a) shows a patched carotid artery and the vertical plane section that can be
approximated by two circular parts connected by two hinges (Figure 9-4(b)). The hinge
locations correspond to the suturing position. To appropriately model this system we
solved the general problem in which the hinges can be placed at the edges of any chord of
the centerline. The origin of the varying angles of each part are shown in Figure 9-4(b).
The varying angles have range 0<6'<rz-26, and -7/2-6,<0" <z /2+86,, for the

patch and artery, respectively.

The differential equations governing the static response of the system are expressed by
Equations (9.1) through (9.5), with the symmetric boundary conditions of parts I and II

given respectively

du'
M'(0) = Lov=0 4| Z—g l=0. —[Z_p |= 7 _p |-
(0)=0, 4 (0)=0, u‘(z eoj 0 dﬁ(z eoj 0 Q[Z 6]-0 (925

174



dull

(2 J-0 (2 )0 0)=0. So0)=0. 200 926)

where ! and u, are the global horizontal and vertical displacements, respectively (i =1

for patch and i=1I for artery).

suture line

\

|
}
y |

L, .
z

carotid artery

(@ (b)

Figure 9-4: (a) Carotid endrarterectomy with longitudinal patch, (b) Two-hinged
anastomosis model with the hinges placed at the ends of any chord of the centerline. (I:

patch, II: artery)

The continuity equations between the two parts are
N'(0)=N" (%woj, 0'(0)=0" (%woj, u' (0)=u" (%woj 9.27)

The global displacements u’ (0) and u; (6) can be expressed as

u' (0)=w'sin(8") ~u' cos(8") (9.28)
u' () =w' cos(6") +u' sin(0") (9.29)
u"(6) = —w" cos(0") —u" sin(0") (9.30)
u"(0) = w" sin(0") —u" cos(0") (9.31)
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By combining Equations (9.1) through (9.5) and Equations (9.25) through (9.27) the
response of the two elements in terms of axial forces, shear forces, moments, radial and

tangential displacements of the artery/element I (-z/2-6,<6" <z /2+86,) are obtained

respectively as

N"(0")=D/"cos0" + pR (9.32)
0"(6") = D" sin §" (9.33)
M"(0")=-RD) (sin6, +cos ") (9.34)

" R R’ R R’
u"(0")=D) cos@" + D' [%smHH[AHEu + L + sin 6), +Ap— (9.35)

R R ).
(2AIIEII - HEI T jsm 6"

w'(6") = —D" sin 8" + D" (9.36)
2 1 911 R R3 R3
11 m_.
+7COSH (AIIEII +EHIHJ_EH[H 0 Slﬂ@o
in which
2 S S
. PR COSQO(AIEI AIIEIIJ
| sinfcosf( R R R R +(£_&j R, R {L&j R R
2 A]E] EI[[ A[IEI[ E“l“ 4 2 A[E] E[[] 4 2 AI]E][ E[]]I[
(9.37)
...+sin90{}f{sineo(”—eoj—coseo}+{fu{sinﬁo(”+ﬁoj+cos@)}
E'l 2 E'T 2
and
PR*sin@ R R . R | . V4
DZH ZWHO-FDIH {COS2 90 [W—W +SIHQOW SIHHO—COSQO 54—90 (938)

Furthermore, the strain of the middle wall surface and the rotation of the cross-section at

any point along the circular arch are respectively

ull(ell) 1 dwll(all) pR DHCOSQH
= 11 =—nount 1 I - 11 (939)
R R do A E A FE

gll(gll) —
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Ip2

0" (0") = ?—R(sin 0" +6"sind, ) (9.40)

II[H

The resulting strain and rotation at the junction (8" = 7 /2 + 8, ) are

/s pR  D/'sing
g (5""%}2 AU ED - ;IIIEII : (9.41)
D'R’ :
o" (% + Hoj = W[cos 6, +sin 6, (% +6, H (9.42)

The response of the graft (element I) can be easily obtained from Equations (9.32) through

(9.42), by assuming that element II represents the graft and element I represents the artery.

The normalized suture tensile force f, / pR, which constitutes a stress-concentration factor

due to the artery/graft compliance mismatch, can be calculated as

2 2
T T
N”(5+6’o) Q"(5+90) N oo 2
2= pr + pr =\/(D1) —2D/'pRsin@, +(pR)"  (9.43)

9.4 Effect of dynamic excitation

The static response of the two-hinged circular model was derived in Sections 9.2 and 9.3.
To answer the question if the dynamic vibration of the artery is significant and must be
taken into consideration, the long-term dynamic response of element II has to be evaluated.
The graft is assumed to be rigid and the artery is modeled as a pinned circular arch (Figure
9-5(a)). This model constitutes the most unfavorable case of elevated elastic mismatch.

The evaluation is performed in terms of dispersion graphs and the frequency coefficient.

The analysis assumes extensibility of the centerline of the arch and rotary inertia, whereas
shear deformations are ignored. The dynamic equations of motion of the system are
obtained by considering the equilibrium of forces acting on the infinitesimal element of
Figure 9-5(b). The resulting in-plane dynamic response is described by the following

equations

aQII (HII , t)

aZuH (HH , t)
aell R 2

—N"6", )= p" 4" - p(6", HR (9.44)
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Figure 9-5: (a) Two-hinged artery segment under the assumption of rigid graft, (b) Free-

body diagram of a typical element of arterial sector under dynamic loading.

aNH (HII , t)
aell

aZWII (011 , t)

+0"(@", )= p"A"R
0@ ,n=p pve

(9.45)

aMII (011’ t)
aell

62(011 (QH , t)

_RQII (gll’ t) - pHRIH atz

(9.46)

where p" is the artery density and ¢" (8", ) is the rotation of the artery cross-section.

The rotation is expressed in terms of displacements as

11 11
0"(0". 1) = %[—a Do, t)j 9.47)

The moment M"(6", t) and tangential force N'"(8", t) are expressed in terms of

displacements as

EHIH aWH (911 , t) aZuH (ell , t)
M“ (0113 t) = RZ ( aell - 60112 (948)
I 40 I 1I
NH(QH’ t): ERA (un(ell’ t)+aW a(gua t)] (949)

By solving Equation (9.46) for 0"(8", t) and using Equations (9.47) and (9.48), the

resulting shear force is obtained as
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QII(QH t): Eulu[azwu(gn, t)_a3u11(911’ t)]

R3 aellz 60”3
pll]ll 62 au Il(ell t) (950)
+ — Ha —WH(QH, t)
R Ot o6

By substituting Equations (9.48) through (9.50) into Equations (9.44) and (9.45), and by
assuming free-vibration conditions ( p(6",#)=0), we obtain two equations that include

only displacements terms:

Eu]u(aswu(eu’ t)_a4u11(011, t)j+p111116_2(62u11(011’ t)_&w“(@“, t))

R3 80“3 69114 R at2 69112 agll
EM 4" ow" (911 t) 02" (011 t) (9'51)
_ uII (911, t)+ : 5 —pHAHR . > h_ O
R 00 ot
EHAH auﬂ(ellj t) a2WH(9H’ t) EH]H aZWH(eH’ t) 031/[[1(01[’ t)
R agll + 69112 + R3 89112 > 89113 +
2 2 (9.52)
I yII 11 I I 11
pRI %[au a(z D Wi, t)J_pHAHRa wa(;? 0

These partial differential equations are coupled through the radial and tangential

displacement. By assuming a harmonic solution (with frequency ") of the form
ul gll’t) " (Hll)eim“z (9.53)
WH(QH,I‘) _ Wll(all)eia)”t (9.54)

Equations (9.51) and (9.52) become

ot ¢ 1 & 01
(_W—Wki'Fk—szu —|:—W+W(z—kl):|Wll ELIUH —LZWH =0 (955)

3 2
_5_m+iu(l_k/1) Ut - a—m(—l—lj—kl—k w
6™ 06"\ A 00 A (9.56)

in which k=p"A"R*&@" /(E"I"), A=1"/(4"R*), and U" and W" are the normal

1

functions of »" and w". The system of equations can be decoupled as
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(LL,—-L,L)U"=0 (9.57)
(LL,—L,L,)W" =0 (9.58)

Thereby, the decoupled differential equations of the radial and tangential displacements are

identical and are expressed respectively as

"+ U (242k2)+ U (1-k+kA+ KA )+ U" (k+ kA=K A=K A7) =0 (9.59)
O L (24 2k2) + W (1= k+ kA+ 22 )+ W (k+ kA=K A—K*2*) =0 (9.60)

in which U"™ and W"™ denote the nth partial derivative of U" and w" with respect to

& .

To the authors' best knowledge, this is the first time that the decoupled equations of free
vibration of an extensible circular arch with rotary inertia (by ignoring shear deformation)
are correctly derived. The usual practice is to either include or ignore both rotary inertia
and shear deformation. In this study we deal with the problem of thin rings in which the

effect of shear deformation is insignificant.

9.4.1 Dispersion curves

The dynamic response of the system can be evaluated through dynamic dispersion curves
[109], based on the wave propagation theory. We assume that the radial and tangential

displacements are expressed by waves of the type

i(bWHHR—wHt)

u"(@",1)y=U"e (9.61)

i(6,0"R-0")

w'(@",t)=W"e (9.62)

where b, denotes the wave number. The wave equations along the circular ring are
. |
UII (ell) — UIIelbwﬂ R (963)

Wll (ell) — Wlleibwg”R (964)

The expression ¥, = " /b, denotes the phase velocity of the system. The differential

equations of the radial and tangential displacement are identical, therefore by substituting

180



Equation (9.63) in Equation (9.59) and solving for the normalized phase velocity

V,/(JE"/p"), one obtains the dispersion relations of the circular ring as

2p2
2b,'R* + bR _ bR+ L
A A

E' bR’ (bszz +/11+1j

(9.65)

2p2 2
T [PV SR S SR —4b,2R2(b,2R2—1)2(b,2R2+1+1j
V ﬂ, w 2’ W W » 2’

b R’ (bsz2 L lj
A

In the case where the centerline of the ring is inextensible, the dispersion relation is given
by

V, 7 1-b’R’ ©.66)
E" J1+b *R? '
,0”

Figure 9-6 plots the dispersion curves of the system. All the curves decrease with increased
wave number, indicating that the system is dispersive and its energy attenuates. Therefore,

there is no concern of exhibiting abnormal increase of amplitude under dynamic loading.

10
—— Eq. (9-66), 1/4=1
— - Eq. (9-65), sgn(+), 1/1=1

Y 81 —a— Eq. (9-65), sgn(+), 1/4=100
. = —o—- Eq. (9-65), sgn(-), 1/4=1
g gn. 6 \ —4— Eq. (9-65), sgn(-), 1/4=100
N

S 4 -

S S
Z 0 \%
2 2 1 Vg:v.\-\%* —a
| BEai=rts

&S
0 A
0.0 0.2 0.4 0.6 0.8 1.0
b R
w

Figure 9-6: Dispersion curves of the normalized phase velocity of the system as a function

of b R, by considering extensible and inextensible centerline of the ring, and for different

values of parameter 4.
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9.4.2 Frequency curves

The system is also evaluated by investigating the natural frequencies of the system. The
problem of a pinned rigid semi-circle can be parallelized to the pinned structural arch
problem. The free vibration of circular arches has been studied thoroughly by many
researchers [15-20]. Veletsos et al. [110] and Austin and Veletsos [111] proposed
approximate formulas to calculate the frequency coefficient spectrum of pinned circular
arches. These formulas have proven to have adequate accuracy and are suitable for

calculating easily the natural frequencies of such systems.

The final frequency curves are a combination of the bending and extensional frequency
coefficient curves. The bending (including rotary inertia) antisymmetric and symmetric

frequency coefficients are expressed respectively as

1 2
mf m, ;wr
, :mf4 4 1 : . 1y —, m,=2n, (9.67)
— S m,r
1+3(m J ( ! j +Q,+ 1+Q{ / fJ
! mzry ' ” !
P 2
1—(1] S;
4 4 mf mfm’f
n =My 2 0
1 1 S 2 2 (9.68)
I+—+2| — s mzry
m. m +Q, +|1+Q,
{ 4 m,7cry Sy
, my,=2n,+1

where 7, is the number of mode, S, is equal to 7R, and r, is the radius of gyration

VI"/ A" . In order to neglect shear deformation, the shear flexibility factor Q, is set equal

to 10.

The extensional frequency coefficients are expressed as

(9.69)

Odd values of m, represent antisymmetric modes, whereas even values of m, represent
symmetric modes of vibration.
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Note that, the mathematical relation of the natural circular frequency " to the frequency

coefficient C, is w" =C, / (R*z*)\E"I" / (p" 4").

As shown in Figure 9-7 the resultant frequency curve and subsequently the free-vibration
characteristics of the system are dominated by the first antisymmetric bending mode. It is
clear that the natural frequency of a two-hinged artery is much larger than the frequency of
the applied force (the frequency of a typical cardiac pulse is about 7 rad/sec). Therefore,

the dynamic response of the system can be adequately approximated by the static response.

In conclusion, the dynamic investigation revealed that the dynamic effect is not significant
for the long-term behavior of the two-hinged model. The first natural frequency of the two-
hinged circular arch appears to be large compared to the loading frequency (at least ten
times larger). Additionally, the system is dispersive. Therefore, the static analysis

constitutes an adequate approach of the anastomosis response.

200
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-extentional
— — — 1" symmetric mode
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&}
= — — —— 1" antisymmetric mode
5 -bending with rotary inertia
% —————— 1*' symmetric mode
g 100 1 -bending with rotary inertia
2
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(]
o 50 A
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Figure 9-7: Frequency curves of first antisymmetric and symmetric modes.

9.5 Numerical example related to end-to-side anastomosis

The applicability of the proposed analytical model, simulating the end-to-side anastomosis
problem, is demonstrated through a numerical example in which the geometric and
mechanical properties of the models of Perktold et al. [12] are used. The far-field stress

values of this study are verified against the finite-element calculations of Perktold et al.
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Table 9-1 lists the problem parameters of a conventional anastomosis (artery/ePTFE graft)

and a Taylor-patch anastomosis (artery/vein-patch/ePTFE-graft).
Table 9-1: Parameters of end-to-side anastomosis models of Perktold et al.

Artery (1) /vein (1) Artery (II) /ePTFE graft (1)

Parameters

p=13.33 kPa, R=2mm, E" =410 kPa, ' =0.5 mm

E! (kPa) 820 7500

I (mm) 0.5 0.35

Table 9-2 lists the calculated response values. The radial displacement of the junction
appears to be larger in the case of artery/vein anastomosis than in the case of artery/ePTFE
anastomosis, whereas the stiffer the blood vessel or graft, the lower the developed strain is.
The far-field stresses are approximated according to Hooke's law (o' = E'¢"). It can be
observed that the stresses are not affected by the mechanical properties of the blood
vessels, due to the fact that a stiffer graft (large elasticity modulus) will develop lower
strains than a soft blood vessel (low elasticity modulus). The far-field stress of the graft
would be exactly equal to the far-field stress of the artery if they had the same thicknesses.
For the artery and vein the far-field stress as calculated in this study is 53 kPa and for the
ePTFE graft the far-field stress is 75 kPa. The finite-element results of Perktold et al. are

50 kPa and 60 kPa respectively, which they compare well with our results.

Of particular interest is the rotation of each cross-section at the junction. Table 9-3 reports
the rotation of each cross-section, as calculated by Equation (9.20). In both cases, element I
is stiffer than the host artery, causing larger rotations angles for the host artery than the
graft or vein. When the ePTFE graft is used, instead of the vein, the rotation angle of the
artery is increased, creating larger incompatible angles that may cause injury of the arterial
tissue and may promote the development of intimal hyperplasia. Figure 9-8 shows the
incompatible angles at the junction of the artery/vein anastomosis and the artery/ePTFE

graft anastomosis.
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Table 9-2: Results of the proposed methodology for the end-to-side anastomosis models of

Perktold et al.

Artery (1) /vein (1)

Artery (Il) /ePTFFE graft (1)

Response Values

B! (m/N) 0.3678 0.1175
B (m/N) 0.7356 0.7356
C' (m/N) 2.439¢-3 3.809¢-4
Cn(m/N) 4.878e-3 4.878e-3
A 0.00221 0.005271
£'(0)/ &' (x/2) 0.0650/0.0652 0.0101/0.0102
£/ 2) 0.13 0.13
u'(0) /' (x/2) (mm) 0.173/0.092 0.053/-0.0006
o' (kPa) 53.33 75.00
o (kPa) 53.32 53.32

Table 9-3: Rotation angles at the anastomosis junction as proposed by this study.

Artery(Il) /vein(l) Artery(Il) /ePTFE graft(l)
¢'(0) (degrees) -1.58 -1.20
@" (7 /2) (degrees) -3.16 -7.52

Figure 9-8: Rotation of the cross-sections at the junction of (a) artery/vein anastomosis,

(b) artery/ePTFE anastomosis.
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9.6 Numerical examples related to artery patching

The behavior of the patched artery is investigated through numerical examples, based on
typical data. Furthermore, the peak far-field stress and strain values calculated by the

proposed methodology are compared against the results of Kamenskiy et al. [108].

9.6.1 Typical examples of patched arteries

In this section, four numerical examples are investigated, considering different values of
the mechanical and geometrical parameters of the two elements, the intraluminal pressure,

and the angle 6. Table 9-4 lists the parameters of each example.

Table 9-4: Parameters of typical patched arteries examples.

Example A Example B Example C Example D
Parameters
p (kPa) 13.33 13.332 13.332 15.99
R (mm) 2 2 2 2
¢' (mm) 0.5 0.35 0.35 1
! (mm) 0.5 0.5 0.5 1
E' (kPa) 820 7500 7500 7500
E" (kPa) 410 410 410 410
6, (degrees) 25 25 45 25

As follows from the calculated response values, reported in Table 9-5, the hinges

placement (angle 6,) or the elastic mismatch between the two blood vessels do not
promote elevated stress concentration at the suture line ( f, /(pR)). Increased elastic

mismatch results in a decrease of the displacements and rotation of the graft, whereas the
strain and far-field stresses depend on the mechanical and geometric properties of each
individual blood vessel. Furthermore, from examples B and C, it can be observed that by

increasing angle ¢, the relative rotation angle of the cross-sections at the junction is

decreased.

It can be concluded that the behavior of the patched artery model exhibits similar behavior

to that of the side-to-side related anastomosis model. To elaborate on the effect of angle 6,

on the system response we investigate the rotation angle at the junction for different values
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of the parameter 6,. Figure 9-9(a) plots the relative rotation at the junction, and Figure

9-9(b) plots the rotation of the artery and graft cross sections at the junction, for each

numerical example. Observe that an increase of the absolute value of angle 6, frequently

decreases the relative and individual cross-sections rotations at the junction. Additionally,
the rotation of the graft, in most cases, is lower than the rotation of the artery due to the

fact that the graft is stiffer than the artery (Figure 9-9(b)).

Table 9-5: Results of the proposed methodology for typical patched arteries examples.

Example A Example B Example C Example D
Response Values

D' (N/m) -0.0308 -0.0588 -0.0290 -0.2907
D;' (m) 1.68E-04 2.20E-04 2.34E-04 1.34E-04
/,/(pR) 1.0005 1.0009 1.0008 1.0039
£'(0) 0.0651 0.0102 0.0102 0.0043
g (7/2+6,) 0.1301 0.1302 0.1302 0.0783
u,(0) (mm) -0.1236 -0.0219 -0.0147 -0.0085
[t | (i) 0.1121 0.0198 0.0104 0.0077
3| () 0.4034 0.4336 0.4560 0.2608
Winay| (M) 0.0523 0.0092 0.0104 0.0036
Wina | () 0.1128 0.1236 0.1594 0.0750
¢'(0) (degrees) -0.3532 -0.2148 -0.0377 -0.0455
Z;;Zez; &) -2.9039 -5.5394 -3.6989 -3.4207
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Figure 9-9: Rotation at the junction as a function of angle 6, : (a) Relative rotation at the

junction, (b) Rotation of the artery and graft cross-section.

9.6.2 Patched carodit artery example based on the data of Kamenskiy et al.

Kamenskiy et al. [108] studied a finite-element model of a patched carotid artery. They
used an exponential hyperelastic material law and modeled the stitches as fixed rigid
contacts. Table 9-6 lists the properties used in the analysis. The geometric data of the
model of Kamenskiy et al. were not given explicitly, therefore we used their figures and
typical values for carotid arteries from the literature [56, 112]. The patch width was taken
from Kamenskiy et al. [108] to be about 2.7 mm. For our calculations the elasticity
modulus is taken to be equal to the tangent elasticity modulus under applied longitudinal

pre-stretch equal to 1.08.

Figure 9-10 plots the total displacements along the PTFE patch and the artery, for equal
scales of the undeformed and deformed configurations. It can be observed that the artery
response is much larger than the patch response and that the most significant response

value appear to be the relative rotation, ¢"(z/2+6,)-¢'(0) between the artery and the

patch at the junction. Table 9-7 lists the response values derived from our analysis. Note
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also that, the forces and strains are found to be almost uniform along the patch and the

carotid.

Table 9-6: Parameters of patched carotid model of Kamenskiy et al. [108].

Parameter Value
p (kPa) 17.332
R (mm) 55
¢ (mm) 0.3
7' (mm) 0.6
E' (kPa) 8000
E" (kPa) 845
0, (degrees) 76

patch
carotid

Figure 9-10: Global deformation distribution in of patched carotid model.

Kamenskiy et al. calculated the cyclic strain (the difference of Von Misses strain between

systole and diastole) and the Misses effective stress o,, values. Table 9-8 lists a

1
comparison of results obtained by Kamenskiy et al. and by this study, in terms of the
maximum cyclic strain and the far-field stresses. Evidently, our calculations are in good
agreement with the finite-element calculations of Kamenskiy et al. Note that, Kamenskiy et
al. modeled the stitches as rigid contacts, resulting in stress concentrations at the suture
line. The model proposed in this study incorporates hinges that result in relative rotations

of the connected parts.
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Table 9-7: Results of the proposed methodology for the patched carotid model of

Kamenskiy et al.

Response values

Dy (N/m) -0.00398
D, (m) 0.000993
fi [ (pR) 1
£'(0) 0.0397
g (m12+6,) 0.188
o' (0) (kPa) 317.76
o''(7/2+86,) (kPa) 158.88
uy(0) (mm) -0.0529
gy | (M) 0.0128
[t | () 1.985
[ | (mm) 0.0513
[y | (mm) 0.908
¢'(0) (degrees) -0.00185
@' (r/2+8,) (degrees) -1.386
9" —¢' (degrees) -1.384

If the size of the patch is increased, and therefore the angle 6, is decreased, the relative
rotation of the carotid and the patch at the junction would be increased (Figure 9-11). The
largest relative rotation at the stitched junction is developed when 6, ~30°. Therefore,
thinner strips of patches seem to be more appropriate in order to prevent post-surgery

complications.

9.7 Concluding remarks

This chapter investigated the problem of side-to-side related anastomosis and artery
patching by examining the correlation of elastic (compliance) mismatch on the suture
stress concentration and development of intimal hyperplasia at the suture line. The static

analysis of the system under internal pressure appears to give an adequate estimation of the
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long-term response, compared to the dynamic analysis, and is utilized to calculate the
displacement at the junction (Equation (9.22)), the strains developed at each blood vessel
(Equation (9.19)), and the incompatible angles at the junction (Equation (9.20)). It should
be noted that the applicability of this study is limited to the analysis of anastomosis regions
that can be approximated by the idealized two-hinged circular model of Figure 9-2(a).

Table 9-8: Comparison between results of Kamenskiy et al. [108] and this study.

Kamenskiy et al. This study
Patch maximum cyclic strain 0.02 0.0214
Carotid maximum cyclic strain 0.1 0.1012
Patch far-field stress log,,(o,,) (Pa) 5.5 5.502
Carotid far-field stress log (o, ) (Pa) 5.4 5.201

¢"—4 (degrees)
()

Relative rotation at the junction

-90 -60 -30 0 30 60 90
6, (degrees)

Figure 9-11: Relative rotation of the cross-section of the PTFE patch and the carotid artery

at the junction as a function of angle g, . Large values of ¢, correspond to thinner patches.

Results of this study suggest that elevated elastic mismatch between the artery and graft
does not affect the internal forces of the blood vessels and that the system is dominated by

almost uniform axial hoop stress NV = pR . Furthermore, elevated elastic mismatch reduces

the radial displacements and strains of the graft and the radial displacement at the junction,
whereas the far-field stresses are of the same magnitude regardless of the material used.
For typical geometrical and mechanical properties of the artery, parameter 4 has very low
values. This favors the suture response by indicating insignificant stress concentration at

the suture line in the presence of elastic mismatch (Equation (9.21)).
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The response parameter that is primarily affected by the difference between the mechanical
properties of the two blood vessels, appears to be the incompatible angle of the junction
(Figures 9-3(b) and 9-8). Whenever blood flow creates almost zero shear stresses at the
artery wall (e.g. stagnation points, low fluid velocities, reverse flows etc.), conditions for
hyperplasia set in. At such cases, the compliance mismatch between the prosthetic graft
and the host artery plays an important role in the development of intimal hyperplasia in the
following sense: the higher the compliance mismatch, the higher the incompatible angle at
the junction between the graft and the artery, implying that the blood flow at the suture line
is disturbed even more. In order to minimize the rotation of the arterial cross-section and
avoid elevated intimal thickening, the term A'E' must be equal to 4"E". Frequently, the
graft is stiffer than the host artery. Therefore, in order to obtain zero rotation the graft

thickness has to be decreased to satisfy the equality 4'E' = A"E".

In regard to the geometric mismatch (i.e. when the thicknesses of the two blood vessels
differ), the far-field stresses, and therefore the embedding stresses, of the host artery and
the graft are not equal. Their values are of the same magnitude as long as thicknesses are
also of the same magnitude. Additionally, increased graft thickness yields an increase of

the compliance parameter 4.

For the case that the hinges are placed at the edges of any chord of the full circle, the
response value that is significantly affected is the rotation at the junction. By increasing the

absolute value of angle 6, the relative rotation at the junction is decreased (Figure 9-11).

In the case of the patched artery, the arterial part exhibits large displacements that may lead
to softening of the tissue and development of aneurysm after a long time period.
Additionally, it is likely that the large rotation angle at the junction promotes (along with
other parameters) the development of intimal hyperplasia, injury of the arterial tissue, and

infection of the patched region.

Through the proposed model and analysis the optimal graft characteristics can be obtained
to minimize the incompatible angle at the anastomosis junction and the development of
intimal hyperplasia. In order to minimize the post-surgery complications of end-to-side
anastomosis, side-to-side anastomosis or artery patching the following practical techniques
are proposed for surgical application: (a) Ideally, the graft and the host artery should have
the same elasticity modulus and same thickness; (b) If the graft is stiffer than the host
artery, the graft thickness should be smaller than the artery thickness (aiming to satisfy the
equality 4'E' = 4"E"); and (c) In the case of artery patching, given that the patch is stiffer
than the artery, the patch width should be as small as possible.
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CHAPTER 10

Stress Concentration at the Stitching Hole

10.1 Introduction

The stress concentration at the stitching hole due to suture-artery interaction is a complex

phenomenon. In Section 7.2.1 we calculated the peak embedding stress o, based on the
approximation that the total force of each stitch af, is applied over an area 2r /4, resulting
in the approximation o, =« f, /(2r,h) (Equation (7.17)). When the embedding stresses

due to suture-artery contact interaction exceed the limit value of the artery-wall shear

strength, arterial-wall rupture or injury may occur.

The anastomosis is more likely to fail due to tissue tearing than suture failure, since the
suture strength is frequently much larger than the induced suture force. A simple
experimental setup to determine the suture force required to tear the arterial tissue, could
be a suture loop that permeates a thin strip of arterial tissue through a hole that is close to
the strip’s edge. The loop and the arterial tissue can be axially loaded until tissue failure is
observed, in the form of tearing of the hole. If the suture breaks, then we repeat the test by
increasing the number of loops (sufficiently apart from each other), or by selecting a

thicker suture.

Figure 10-1 shows two possible failure modes, caused by the suture-artery contact
interaction. The first failure mode concerns the tearing towards the artery edge, in the
longitudinal direction (direction that the suture is loaded) (Figure 10-1(a)). This is the most
frequently-encountered failure mode [113]. The second failure mode concerns the tearing
of the arterial wall in the circumferential direction, due to interaction of the embedding

stresses of stitches arranged in a row (Figure 10-1(b)) [114].

artery

(a) (b)

Figure 10-1: Failure modes due to suture-artery interaction. Arterial-wall tearing: (a) in the

longitudinal direction, (b) in the circumferential direction.
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The problem of stress concentration at the stitching hole can be parallelized with
mechanics problems investigated thoroughly in the literature, such as the problem of
pinned-loaded holes in plates [115—120] or the problem of internal indentation between
two cylindrical surfaces [121, 122]. Such studies provide more sophisticated and accurate

expressions than the approximation utilized in Chapters 7 and 8.

The following section presents closed-form solutions to the problem of the stress

concentration around a pinned loaded hole [119].

10.2 Closed-form solution proposed by Echavarria et al.

In their study, Echavarria et al. [119] investigated the stress concentration around a pin-
loaded hole in elastic orthotropic plates. They developed analytical closed-form
expressions for the peak perpendicular and longitudinal stresses along the edge of the hole.
Their formulas provide sufficient accuracy compared to other analytical studies that may
require numerical methods for the problem solution. Figure 10-2 shows the geometry and

considered loading of the problem. A force F, is applied to one side of the plate, in the

longitudinal direction (y-axis), resulting in a sinusoidal load distribution at the hole. The
radius of the hole is denoted by R, , and the distance from the center of the hole to the edge

of the plate is denoted by e. Note that, the stitching holes and the suture have almost equal

diameters.

e

2R,
artery
v l l l l l va/bx
A bx A

Figure 10-2: Geometry and loading of the pin-loaded hole problem [119].
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The derived equations for the peak perpendicular and longitudinal stresses are expressed

respectively as

1/2
4+ mF F 3F F
0x=( )Zy of [y B E| (A D55 VIE B R g
2R, E, TE | G, 2b, 2R7 )\E, T E, 2R~x

1/2
Fy 2F, E E E
—+—5 |2 L Vi L4
2b. R,z Ey Ey ny F
o, = +—L (10.2)
E. 2b,
E

y

in which v_ is the Poisson's ratio of the arterial tissue (0.5 for incompressible materials),

G,, 1s the shear modulus of elasticity, £, and E are the perpendicular and longitudinal

xy

Young's modulus, respectively, and b, is the width of the plate.

The problem parameters of the aforementioned expressions can be parallelized to the
problem parameters of Chapters 7 and 8, according to Table 10-1, in order to be applied to

the problem of end-to-end or end-to-side anastomosis, respectively.

Table 10-1: Parallelization of parameters of Echavarria et al. model to the parameters of

end-to-end and end-to-side anastomosis models.

Echavarria et al. End-to-end anastomosis End-to-side anastomosis
model model model
R, 7 d /2,d /2
E, E, circumferential Young's
modulus
E, E, longitudinal Young's modulus
b, distance between sequential s
stitches
F, F, /N, o “'sH , o{f"“lng

In conclusion, the use of Equations (10.1) and (10.2) provides a more refined solution to
the stress-concentration problem at the stitching hole (embedding stresses), caused by the

suture-artery interaction.
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CHAPTER 11

Conclusions

11.1 Summary and conclusions

This dissertation focuses on the mathematical modeling of arterial anastomoses and their
suture-line response. The mathematical formulation of the problem is carried out on the
basis of dynamic analysis, suture-artery interaction, and different material constitutive
laws. The aim of this dissertation is to investigate the response of different arterial
anastomosis techniques in a general manner, develop closed-form expressions for the
problem solution (wherever possible), and provide useful conclusions about the optimum

suturing details and graft properties to prevent post-surgery complications.

Comprehensive failure criteria that account for short-term (immediately after the blood
flow is restored) and long-term (weeks after the operation) anastomosis failure scenarios
have been established. In particular, the suture may fail when its maximum tensile force

f, exceeds its tensile strength or the tensile strength of the deteriorated suture.

Furthermore, the knots that bind the stitches together may fail (slip or relaxation of the
knot) when the maximum tensile force of the suture exceeds the strength of the knot.
Another failure mode is the rupture or injury of the blood vessel wall, caused when the

embedding stresses o, due to suture-wall contact interaction (at the stitching holes),

exceed the limit value of wall shear strength. Moreover, high stress values promote the
development of intimal hyperplasia at the suture line and cause the arterial wall to increase
its cross-section. Another complication may be caused if the distance between the edges of
the two anastomosed blood-vessels exceeds the typical size of a few red blood cells,
leading to internal bleeding. Short-term blood leaking (immediately after the restoration of
the blood flow) can be repaired by the surgeon, whereas long-term blood leaking may lead
to thrombosis, weeks after the surgery. The established failure criteria can be utilized for

the development of guidelines for vascular-anastomosis practice.

The far-field arterial response has been studied by assuming linear, hyperelastic, and
viscoelastic material behaviors. The analysis of the linear arterial model demonstrated that
arterial systems are characterized by high natural frequencies and that the smoother the
pressure increase from zero to the peak systolic pressure is, the lower the peak radial

displacement is, tending to become equal to the static displacement. By considering the
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worst-case loading scenario (first cardiac cycle), the resulting response values have been

found to be up to two times the static response values.

In regard to the hyperelastic arterial response, three different strain-energy functions
corresponding to healthy (hardening behavior), atheromatic (exponential hardening
behavior), and aneurysmatic (softening behavior) arteries, have been studied. In this way,
the material strain-hardening effect on the dynamic response of arteries was revealed. The
linear-elastic model appears to be a good approximation of the healthy artery response.
Moreover, the linear-elastic model yields lower radial displacements than the aneurysmatic
artery, whereas it does not approximate well the behavior of the atheromatic artery, due to
the fact that the slope of its stress-strain curve is almost zero at low strains and becomes
steeper at higher strains. We expect that a linear model with elasticity modulus equal to the
tangent Young's modulus (of the nonlinear material law) corresponding to circumferential
elongations 10%-20% will yield better approximations. As follows from this investigation,
the arterial response depends on the increased hardening or softening behavior of the

respective material stress-strain relationship.

The most important factors influencing the peak response of the hyperelastic models are

found to be the longitudinal pre-stretch A° and the normalized pressure. The normalized

radial displacement decreases with increasing values of pre-stretch, implying that the
gradual decrease of arterial strength, caused by aging, can be balanced by the decreased
radial response (caused by the longitudinal pre-stretch). On the other hand, in old age the
longitudinal pre-stretch is slightly decreased, causing an increase of the radial
displacement, which cannot easily balance the low strength of the (aged) artery (Figure
5-28). Increased normalized pressure implies the existence of hypertension or soft
(aneurysmatic) arterial tissue. In each case, the normalized pressure value is increased by a

factor of 5/3 or 10, respectively, resulting in increased arterial response.

Important metrics, such as the radial deformation and the maximum energy density, are
found to be influenced heavily by the strain-hardening characteristics of the model, as well
as the longitudinal pre-stressing. It is worth noting that in some cases, the stress value is
not an appropriate criterion for distinguishing the limit values of different systems, as
opposed to the corresponding strain-energy density and displacement response, which are
distinctive. Moreover, the normalized strain energy increases with increasing values of the

absolute normalized displacement |u, /R|.
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The analysis of the viscoelastic arterial model refined the results obtained from the analysis
of the hyperelastic arterial model. Increased viscoelasticity burdens the cardiovascular
system, due to increased energy loss during each cardiac cycle. The viscoelastic behavior
was simulated by adopting a generalized Maxwell model and the sophisticated Bonet-

Holzapfel approach. The resulting response is mainly affected by the relaxation time z,
and the free-energy parameter A”. Furthermore, two different loading approximations

were considered, revealing the strong influence of the pressure time-profile approximation

on the system response.

The first arterial pulse time-profile approximation analysis (Figure 6-4(b)), which
constitutes a conservative scenario, showed that the system is characterized by high-

frequency vibrations, and that an increase of the relaxation time 7, increases the values of

the response time-histories. The second loading approximation analysis, in which the
pressure is quasi-statically applied up to the diastolic pressure, demonstrated that the
response is not always characterized by high-frequency vibrations, and that an increase of

the relaxation time 7, results in a decrease of the response. In general, a decrease of the

material parameter ” monotonically increases the normalized radial displacement.

Findings obtained from the suture-tissue interaction (displacement-based) analysis of the
end-to-end anastomosis model demonstrated that the most influential parameter in
drastically reducing the anastomotic gap, the (embedding) stresses at the arterial tissue, and
the suture force, is the number of utilized stitches. Increased suture diameter reduces the
embedding stress, whereas the influence of the ratio of suture-to-artery elastic modulus on
the embedding stress and suture force is insignificant. Furthermore, the use of stiffer
suturing material, larger suture diameter, and smaller stitch length reduce the anastomotic

gap. In regard to the pre-tension of the suture, when the total pre-tension force is higher
than the induced tensile arterial force (7, (r)<aN, f°) and when the value of pre-tension ff
exceeds a certain value (derived from «f;’/2r,H, > o,,/2) the arterial wall is likely to fail.
On the other hand, for lower values of pre-tension and for F, (r)>aN, f°, the application of

suture pre-tension can result in reducing the anastomotic gap, while not affecting
considerably the embedding stress (which constitutes the critical response parameter), or

the suture tensile force.

The end-to-side anastomosis stress-based analysis revealed that lower values of the graft-

to-artery radii ratio R; /R;, the graft-to-artery thicknesses ratio H, / H,, and the ratio of
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artery radius to artery thickness R’ /H,, frequently decrease the stress-concentration

factors (SCFs) at the junction. Furthermore, low values of anastomosis angle 6 typically
reduce the SCF. In general, for the suture-line response, when the distance between two
sequential stitches is decreased (implying that the number of stitches is increased), or the
stitch diameter/thickness is increased, the embedding stress and the gap created between
the two blood vessels are decreased. In the case of the continuous stitching technique,
when stronger sutures are used, the gap developed between the two blood vessels is
decreased, and when the distance between two sequential stitches is increased, the suture
tensile force is increased. In the case that pre-tension is applied to the suture, the knot
strength, the suture tensile force, and the embedding stress are increased, whereas a gap
between the two blood vessels will be formed only if the suture tensile force due to blood

pressure exceeds the pre-tension value.

Finally, the effect of elastic mismatch on the response of end-to-side anastomosis, side-to-
side anastomosis and artery patching has been investigated. By analyzing an idealized two-
hinged circular model, it has been found that the elastic mismatch does not cause stress
concentration at the anastomotic region. Elevated elastic mismatch reduces the radial
displacements and strains of the graft, reduces the radial displacement at the junction, and
causes large rotation angles at the junction. The incompatible angle at the junction may
disturb the blood flow at the suture line, and thus promote the development of intimal
hyperplasia. In order to minimize the rotation of the arterial cross-section, given that the
graft is stiffer than the host artery, the graft thickness has to be decreased aiming to satisfy
the equality A'E' = A"E". Furthermore, the far-field stresses of the host artery and the
graft are mainly affected by the thickness of each blood vessel. The far-field stresses of the
two blood vessels are of the same magnitude as long as thicknesses are also of the same

magnitude.

In the case of the patched artery, thinner patches demonstrate better behavior (smaller
relative rotations at the junction). Increased elastic mismatch, causes large displacements
of the arterial part that may lead to softening of the tissue and development of aneurysm
after a long time period. Moreover, it is likely that the large rotation angle at the junction
promotes (along with other parameters) the development of intimal hyperplasia, injury of

the arterial tissue, and infection of the patched region.

In summary, the following practical techniques, leading to reduced displacements,

rotations, and/or stresses at the suture line, are proposed for surgical application:
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b)

d)

g)

h)

The number of stitches should be as high as possible (distance between sequential
stitches as low as possible), minimizing the response values of Equations (7.15),
(7.16), and (7.18) for the case of end-to-end anastomosis, or the response values of
Equations (8.25) through (8.29) for the case of end-to-side anastomosis.

The suture or clip thickness should be as large as possible, minimizing the response
values of Equations (7.15), and (7.18) for the case of end-to-end anastomosis, or
the response values of Equations (8.25), (8.28), and (8.29) for the case of end-to-
side anastomosis.

The pre-tension of the suture should be as low as possible, merely to secure the
strength of the knot, reducing the response values of Equations (7.16) and (7.18) for
the case of end-to-end anastomosis, or the response values of Equations (8.27) and
(8.28) for the case of end-to-side anastomosis.

The stitch length should not be very long, minimizing the gap created between the
two blood vessels as calculated by Equations (7.15) and (8.29) for the end-to-end
anastomosis and the end-to-side anastomosis techniques, respectively.

The suture should have high elasticity modulus, when it is necessary to reduce the
gap between the edges of the two blood vessels (Equations (7.15) and (8.29) for the
end-to-end anastomosis and the end-to-side anastomosis techniques, respectively).
Ideally, the graft and the host artery should have the same elasticity modulus and
the same thickness (side-to-side related anastomosis). If the graft is stiffer than the
host artery, the graft thickness should be smaller than the artery thickness,
minimizing the rotation at the junction as calculated by Equation (9.20).

In the case of end-to-side anastomosis, the anastomosis angle should be relatively
low, reducing the SCFs of Equations (8.20) through (8.23).

For the end-to-side anastomosis technique, the graft radius should be smaller than
the artery radius, reducing the SCFs of Equations (8.20) through (8.23), and the
tensile force along the graft axis, calculated by Equation (8.16).

In the case of artery patching, given that the patch is stiffer than the artery, the
patch width should be as small as possible, minimizing the rotation at the stitching

region (Equation (9.42)).

In conclusion, the principal contribution of this dissertation lies in the development of

fundamental analytical models to predict the far-field and suture-line behavior of arterial

anastomoses. The mathematical formulation, together with the derived closed-form

solutions for the suture-line response, reveals useful interrelations among the problem

parameters, thus making the proposed model a valuable tool for the optimal selection of
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materials and improved functionality of the sutures. By virtue of their generality and
directness of application, the findings of this study can ultimately form the basis for the
development of vascular anastomosis guidelines pertaining to the prevention of post-

surgery complications.

11.2 Recommendations for future research

This dissertation studied the mechanics of arterial suturing by using strong simplifications,
aiming to investigate the macroscopic response of the anastomotic region. The possibilities
for further research through more enhanced models related to the arterial suturing problem
are indeed great. Nevertheless, the researcher should keep in mind that for some problems

simplicity is often better than sophistication.

Future research directions could potentially include the development of more sophisticated
models in order to refine the results of the present study. Such models may consider the
following: (a) elliptic geometry of the artery cross-section; (b) inhomogeneous arterial
wall, by considering two (adventitia, media) or three arterial layers (adventitia, media,
intimal); (c) anisotropic arterial tissue; (d) viscous blood flow; and (e) cardiac arrhythmia

pressure time-profile.
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Appendix A: Stress and strain tensors

The arterial tissue is an incompressible material. In this study the deformation and loading
conditions are considered to be axis-symmetric and therefore only the principal stresses

and strains exist. The deformation gradient is equal to

. 0
A0 0) | A

F=/0 4 0|=| 0 4 0 (A.1)
0 0 A 0o o0 A

The right Cauchy-Green strain C and left Cauchy-Green strain B are identical because of

the symmetry of the deformation gradient:

1

(4]
C=F'F=FF'=B=| 0 4) 0 (A.2)
0 0 ()

and the Green deformation is

e=—(C-I)= 0 %[(40)2 1] 0 (A3)

L o2
0 0 E[(zvz) ~1]

The strain-energy density functions are usually expressed as a function of the principal

invariants
W= f(I,1,.) (A.4)
and the Cauchy principal stresses are frequently expressed as

o= —p1+2F NV pr (A.5)
oC
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Appendix B: Solution of artery/graft end-to-end anastomosis

This section presents the general solution of an end-to-end anastomosis between a host
artery and a graft, each one having different geometrical and mechanical properties. The

artery segment has length L, , radius R, thickness A, , and Young’s modulus in the
longitudinal direction and circumferential direction E,, and E, , respectively, whereas the
graft has length 7 , radius R , thickness / ,,, and Young’s modulus in the longitudinal
direction and circumferential direction £, and E, , respectively (Figure (a)). Note that, if

one or both blood vessels are not longitudinally pre-stressed, their geometric parameters

will be equal to the that of the underformed state (e.g #,, =H, and 7, = H ).
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i i
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Figure B-1: Artery-graft end-to-end anastomosis analysis. (a) Anastomosis model (at-rest
state); the artery and graft are clamped at the far ends and no pressure is transmitted at this
stage since the artery is emptied from the blood, (b) unrestrained deformed state (without
sutures); the blood volume is conserved, (c) deformed state of anastomotic region due to
dynamic loading, (d) forces acting on end-element of artery segment, (¢) forces acting on

end-element of graft segment.

The conservation of the blood volume requires that the artery initial length ljm decrease to

l,, and the graft initial length 1 decrease to /,, (Figure (b)) according to:
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2
ua -t 5 (B.1)

2
Ly =Ll - (B.2)
(R, +u, (1)

where u, and u, are the radial deformations of the artery and graft, respectively. Note that

the graft has not initial radial displacement due to residual stresses. The gap developed in
the unrestrained (without sutures) state of the artery is determined as
L.R. L.R’

x, =L +L -1 ()= ()=L +L - pa__pa _ pg’ " pg B3
g() pa rg ua() ug() pa pg (Rpa+ua(t))2 (Rpg+ug(t))2 ( )

Therefore, the resulting net gap developed in the restrained (with sutures) anastomotic

region can be derived from

X, (1) = X, (1) = AL (1) = AL () (B.4)

where Al, is the tensile deformation due to the artery/stitches interaction, and A/, is the

tensile deformation due to the graft/stitches interaction (Figure (c)).

The tensile forces developed in the suture, arterial tissue, and graft are given respectively

by

0= AE& 0+ £ =250 0+ f° ®.5)
AL (1)

F,(t)=27H,E, (R, +u, (z))m (B.6)
AL (1)

F,()=2zH E, (R, +u, () (B.7)

L (1)

The unknown tensile deformations A/, and A/, can be derived from equilibrium of forces

in the axial direction, F, (1) = F,,(t) and F,, (t) = aN, f,(¢) (Figure (d,¢)), yielding
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2 2
R R,

aN,f'+aN AEJL, |1-—"— |+ |1-——2%
(R, +u,()) (R, +u (1))
AL (1) = 2~ (B.)
27nE. H H E L R *(R +u /(¢
. LI; Zpa (Rpa+ua([))3+aN}ASEj 1+ pa~La™pg pgz( pa a( ))3
pallpa s H,E, LR, (Rpg +u, (t))

3

H,E,L,R,(R,+u,)
P pPg pg P 3Ala(t) (B9)

H,E, LR, (R, +u/(t)

Lg™~pa” " pa

Al (1) =

Substituting Equations (B.3), (B.8) and (B.9) into Equation (B.4), we obtain the net gap

between the anastomosed artery segments as

’ R,’ R
22E, H,, (R, +u,(0)) {L,,|1- " |+ L |1-
(Rpa +u, (t)) (Rpg +u, (t))
3
aNAEL,R,’ | H,ELR./’(R,+u,t
27[ELquu(Rpa+u”(l))3+ s sls pa’ipa |1 TP La*pg pgz( . ())3
s HngLngaRpa (Rpg+ug(t)) (BIO)
H,E,L,Rz(R,+u (t))3
pa pa a

La™"pg” "pg

H,E,L.R R, +u,))

pg T Lg " pa”"pa

xnet (t) =

aN_f°L R *|1+

‘pa” “pa

3
s aNAEL R * H,EL R *(R, +u,U
2”ELaHpa(Rpa+ua(t))3+ et B pa"Larg pg( L4 ())

2 3
Ly H,E, LR, (R, +u,(0)

Lg™~pa”"pa

Note that a gap across the anastomotic interface will be formed only if the tension
developed in the arterial tissue exceeds the total suture pre-tension. The suture tensile force

f. developed in each stitch can be obtained from Equation (7.8). The embedding stresses

induced on the arterial wall o, and graft wall &  must be compared to the strength of the

artery o, and strength of the graft o, , , respectively:
o )=2LD 5 s (B.11)
‘ 27.'sHpa o
o ty=20D 5 (B.12)
g 2"}Hpg g,
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