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Περίληψη 

Οι αγγειοχειρουργικές επεμβάσεις δύνανται να παρουσιάσουν βραχυπρόθεσμες (αμέσως 

μετά την αποκατάσταση της ροής τού αίματος) και μακροπρόθεσμες (βδομάδες μετά την 

επέμβαση) επιπλοκές, που σχετίζονται με τη συρραφή ανθρώπινων αρτηριών μεταξύ τους 

ή με μοσχεύματα. Κατά συνέπεια, η τεχνική τής συρραφής και τα υλικά που 

χρησιμοποιούνται στην αγγειοχειρουργική είναι υψίστης σημασίας για τη θεραπεία των 

αγγειακών παθήσεων, όπως η αθηροσκλήρωση και τα ανευρύσματα. 

Η διατριβή αυτή επικεντρώνεται στη μαθηματική μοντελοποίηση αρτηριακών 

αναστομώσεων και στην απόκριση της γραμμής συρραφής τους, ένα διεπιστημονικό θέμα 

της δομοστατικής και βιοϊατρικής μηχανικής. Η μαθηματική διατύπωση του προβλήματος 

γίνεται στη βάση δυναμικής ανάλυσης, αλληλεπίδρασης του ράμματος με την αρτηρία και 

χρήσης διαφόρων καταστατικών νόμων. Σκοπός τής διατριβής είναι η διερεύνηση της 

απόκρισης διαφορετικών τεχνικών αρτηριακών αναστομώσεων (κατά τρόπο γενικεύσιμο), 

η εξαγωγή λύσεων κλειστής μορφής (όπου είναι δυνατόν), και η εξαγωγή χρήσιμων 

συμπερασμάτων όσον αφορά τα βέλτιστα χαρακτηριστικά της συρραφής και του 

μοσχεύματος για την αποφυγή μετεγχειρητικών επιπλοκών. 

Η απόκριση μακριά από την περιοχή της αναστόμωσης μελετάται θεωρώντας γραμμική, 

υπερελαστική και βισκοελαστική συμπεριφορά τού αρτηριακού ιστού. Η απόκριση της 

γραμμής συρραφής, για τις διαφορετικές τεχνικές αναστόμωσης, διερευνάται μέσω: (α) 

ενός μοντέλου που περιγράφει τη δυναμική απόκριση της τελικο-τελικής τεχνικής 

αναστόμωσης, (β) ενός μοντέλου που περιγράφει την απόκριση της τελικο-πλάγιας 

τεχνικής αναστόμωσης, και (γ) ενός εξιδανικευμένου κυλινδρικού μοντέλου αναστόμωσης 

με δύο αρθρώσεις, ώστε να διερευνηθεί η επίδραση της ελαστικής μη-συμβατότητας στην 

απόκριση αναστομώσεων που σχετίζονται με πλαγιο-πλάγια αναστόμωση, και 

εμβαλώματος σε αρτηρία. Επιπλέον, καθορίζονται κριτήρια αστοχίας που λαμβάνουν 

υπόψη βραχυπρόθεσμα και μακροπρόθεσμα σενάρια αστοχίας. 

Η απόκριση στην περιοχή και μακριά από την περιοχή της γραμμής συρραφής 

υπολογίζεται σε όρους κύριων μετατοπίσεων, τάσεων, και/ή πυκνότητας ενέργειας-

παραμόρφωσης. Τα αποτελέσματα συγκρίνονται με πειραματικές και αριθμητικές μελέτες 

διαθέσιμες στη βιβλιογραφία, ώστε να αξιολογηθεί το επίπεδο προσέγγισης των 

προτεινόμενων αναλυτικών μοντέλων. 

Μεγάλος αριθμός ραμμάτων, αυξημένο πάχος ράμματος/χειρουργικού κλιπ, και μέτρο 

ελαστικότητας του μοσχεύματος ίσο με εκείνο της αρτηρίας, είναι μερικές από τις βασικές 
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παραμέτρους που αποδείχθηκε ότι μειώνουν την απόκριση της γραμμής συρραφής. Άλλοι 

παράγοντες που μειώνουν την απόκριση της γραμμής συρραφής είναι σχετικά μικρές τιμές 

της γωνίας ένωσης μεταξύ της αρτηρίας και του μοσχεύματος (τελικο-πλάγια 

αναστόμωση), ακτίνα μοσχεύματος μικρότερη από την ακτίνα της αρτηρίας (τελικο-

πλάγια αναστόμωση), χρήση επιθεμάτων με μικρό πλάτος (εμβάλωμα σε αρτηρία), κ.λπ. 

Επιπλέον, μέσα από τα μοντέλα που αναπτύχθηκαν, ο ακριβής μηχανισμός με τον οποίο 

κάθε παράμετρος επηρεάζει την απόκριση του συστήματος γίνεται κατανοητός. 

Η κύρια επιστημονική συνεισφορά της διατριβής αυτής έγκειται στην ανάπτυξη βασικών 

αναλυτικών μοντέλων που οδηγούν στην πρόβλεψη της συμπεριφοράς αρτηριακών 

αναστομώσεων στην περιοχή και μακριά από την περιοχή της συρραφής. Η αναλυτική 

διατύπωση αποκαλύπτει χρήσιμες αλληλεξαρτήσεις μεταξύ των παραμέτρων του 

προβλήματος, καθιστώντας έτσι το προτεινόμενο μοντέλο ένα πολύτιμο εργαλείο για τη 

βέλτιστη επιλογή των υλικών και τη βελτιωμένη λειτουργία των ραμμάτων. Δυνάμει της 

γενικότητας και της αμεσότητας της εφαρμογής τους, τα ευρήματα της διατριβής μπορεί 

να αποτελέσουν τη βάση για την ανάπτυξη κατευθυντήριων γραμμών που σχετίζονται με 

την πρόληψη μετεγχειρητικών επιπλοκών σε αρτηριακές αναστομώσεις. 
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Abstract 

Vascular surgeries potentially suffer from short-term (immediately after the blood flow is 

restored) and long-term (weeks after the operation) post-surgery complications, related to 

the stitching of human arteries with themselves or with grafts. Accordingly, stitching 

techniques and related suture materials are of utmost importance in the surgical treatment 

of vascular disorders, such as atherosclerosis and aneurysms. 

This dissertation focuses on the mathematical modeling of arterial anastomoses and their 

suture-line response, an interdisciplinary topic in structural and biomedical engineering. 

The mathematical formulation of the problem is carried out on the basis of dynamic 

analysis, suture-artery interaction, and different material constitutive laws. The aim of this 

research is to investigate the response of different arterial anastomosis techniques in a 

general manner, develop closed-form expressions for the problem solution (wherever 

possible), and provide useful conclusions about the optimum suturing details and graft 

properties to prevent post-surgery complications.  

Τhe far-field arterial response is studied by considering linear, hyperelastic, and 

viscoelastic material behavior. The suture-line response for different anastomosis 

techniques is investigated through: (a) a model governing the dynamic response of the end-

to-end anastomosis technique; (b) a model describing the response of the end-to-side 

anastomosis technique; and (c) an idealized two-hinged anastomosis model, aiming to 

investigate the effect of elastic mismatch on the response of side-to-side related 

anastomoses and arterial patching. In addition, comprehensive failure criteria that account 

for short- and long-term failure scenarios are established. 

The suture-line and far-field response is calculated in terms of principal displacements, 

stresses, and/or strain-energy density. Results are compared with experimental and 

numerical studies available in the literature to evaluate the level of approximation of the 

developed analytical models.  

High number of utilized stitches, increased suture/clip thickness, and graft elasticity 

modulus equal to that of the host artery, are some of the key parameters found to reduce 

the suture-line response of arterial anastomoses. Other factors that reduce the suture-line 

response are low values of the intersecting angle between the artery and the graft (end-to-

side anastomosis), graft radius smaller than the artery radius (end-to-side anastomosis), use 

of patches with small width (artery patching), etc. Moreover, the exact mechanism by 

which each problem parameter affects the system response is revealed. 

Hara
lam

bia
 C

ha
ral

am
bo

us



vi 

The main contribution of this thesis lies in the development of fundamental analytical 

models to predict the far-field and suture-line behavior of arterial anastomoses. The 

analytical formulation reveals useful interrelations among the problem parameters, thus 

making the proposed model a valuable tool for the optimal selection of materials and 

improved functionality of the sutures. By virtue of their generality and directness of 

application, the findings of this study can ultimately form the basis for the development of 

vascular anastomosis guidelines pertaining to the prevention of post-surgery complications. 
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yE  - Young's modulus in the direction of y-axis  

KE  - Kinetic energy density 

tE  - Total energy density 

sE  - Young's modulus of the suture 

iE  - Young's modulus of element i  of the two-hinged anastomosis model ( ,i    ) 

e  - Green strain matrix 

e  - Distance from the center of the hole to the edge of the pin-loaded plate Hara
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e  - Circumferential Green strain tensor 

zze  - Longitudinal Green strain tensor 

F - Deformation gradient matrix 

LF  - Tensile force of isocompliant arterial segments, in the longitudinal direction 

LaF  - Tensile force of arterial segment, in the longitudinal direction 

LgF  - Tensile force of graft segment, in the longitudinal direction 

yF  - Force along the y-axis of a pin-loaded plate 

sf  - Tensile force of suture 

cont
sf  - Tensile force of suture (continuous stitching technique) 

,s uf  - Ultimate tensile force of suture/knot 

0
sf  - Pre-tension force of suture 

iG  - Constants to be obtained through boundary conditions ( 1,  2,  3,  4i  ) 

xyG  - Shear modulus (orthotropic) 

H  - Undeformed artery thickness 

aH  - Thickness of host artery at undeformed state 

gH  - Thickness of graft at undeformed state 

pH  - Thickness of isocompliant arteries at pre-stressed state 

paH  - Thickness of host artery at pre-stressed state 

pgH  - Thickness of graft at pre-stressed state 

h  - Deformed artery thickness 

( )h t   - Unit-impulse response function 

I  - Unit matrix 

I  - Alternative form of first strain invariant 
Hara

lam
bia

 C
ha

ral
am

bo
us



 

xxxi 

 

II  - Alternative form of second strain invariant 

1I  - First strain invariant 

2I  - Second strain invariant 

4I  - Fourth strain invariant 

iI  - Moment of inertia of element i  of the two-hinged anastomosis model ( ,i    ) 

J  - Determinant of the deformation gradient matrix 

k  -  Parameter of dynamic pinned circular arch model 

1k  - 
2 1/Q Q  

2k  - 
2 1/A A  

L  - Length of undeformed artery  

iL  - Differential terms of dynamic pinned circular arch 1,  2,  3,  4i   

pL  - Length of isocompliant arterial segments at pre-stressed state 

paL  - Length of host artery segment at pre-stressed state 

pgL  - Length of graft segment at pre-stressed state 

l  - Length of deformed artery  

sl  - Stitch length 

ul  - Unrestrained length of isocompliant segments under applied blood pressure 

ual  - Unrestrained length of arterial segment under applied blood pressure 

ugl  - Unrestrained length of graft segment under applied blood pressure 

l  - Tensile deformation due to stitching stiffness (isocomplaint arterial segments) 

al  - Tensile deformation due to stitching stiffness (arterial segment) 

gl  - Tensile deformation due to stitching stiffness (graft segment) 

int
sl  - Gap between the two blood vessels of an end-to-side anastomosis with 

rigid/interrupted stitching 
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cont
sl  - Gap between the two blood vessels of an end-to-side anastomosis with 

continuous stitching 

N  - Axial force along the circumferential direction 

1N  - Minimum number of stitches in order to prevent suture/knot failure 

2N  - Minimum number of stitches in order to prevent arterial tissue failure 

3N  - Minimum number of stitches in order to prevent blood leak 

resN  - Longitudinal residual axial force 

sN  - Number of stitches 

fn  - Number of mode (frequency curves analysis) 

M  - Internal moment of circular element 

m  - Mass of the unit-length arterial element 

fm  - Parameter of frequency curves analysis  

P - Hydrostatic pressure matrix 

P  - Hydrostatic pressure 

4P  - Product of four dimensionless parameters  

p  - Blood pressure 

ip  - Blood pressure at cross-section i  ( 1,  2,  3i  ) 

dp  - Diastolic pressure 

sp  - Systolic pressure 

Q  - Internal shear force of circular element 

iQ  - Average flow rate at cross-section i  ( 1,  2,  3i  ) 

1q  - Non-equilibrium stresses for one relaxation process 

R  - Radius of undeformed artery (Chapters 5 and 6), or radius of two-hinged 

anastomosis model (Chapter 9) 

hR  - Radius of pin-loaded hole 
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o
aR  - Outer radius of undeformed host artery 

gR  - Mean radius of undeformed graft 

o
gR  - Outer radius of undeformed graft 

pR  - Radius of isocompliant artery at pre-stressed state 

paR  - Radius of host artery at pre-stressed state 

pgR  - Radius of graft at pre-stressed state 

xR  - Far-field force along the x direction 

zR  - Far-field force along the z direction 

R  - Tensile far-field force along the graft axis 

r  - Radius of deformed artery 

fr  - Radius of gyration 

sr  - Radius of suture 

S  - Suture-line length 

fS  - Parameter of frequency curves analysis  

inS  - Incision length 

S
  - Second Piola-Kirchhoff circumferential strain 

 s - Distance between sequential stitches 

nT  - Natural period of linear arterial model 

zT  - Longitudinal Cauchy stress multiplied by current thickness 

T  - Circumferential Cauchy stress multiplied by current thickness 

t  - Time 

nt  - Time instant of step n 

1t  - Time instant corresponding to the maximum response of the diastolic phase 
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cpt  - Duration of cardiac pulse 

st  - Duration of systolic phase 

Ht  - Characteristic time of response of Hariton arterial model 

MRt  - Characteristic time of response of Mooney-Rivlin arterial model 

Skt  - Characteristic time of response of Skalak et al. arterial model 

it  - Thickness of element i  of the two-hinged anastomosis model ( ,i    ) 

t  - Time step duration 

U   - Normal function of u   

u  - Radial displacement, of isocompliant arterial segments, from pre-stress state  

0u , 0u , 0u  - Initial radial displacement, velocity, and acceleration 

au  - Radial displacement, of arterial segment, from pre-stress state 

gu  - Radial displacement, of graft segment, from pre-stress state 

fu  - Response to free vibration (radial displacement) 

pu  - Response to pulse loading (radial displacement)  

stu  - Static radial displacement 

maxu  - Maximum radial displacement 

ru  - Radial displacement from undeformed state 

iu  - Radial displacement of element i  of the two-hinged anastomosis model (

,i    ) 

i
xu  - Displacement of element i  of the two-hinged anastomosis model along the x-

axis ( ,i    ) 

i
yu  - Displacement of element i  of the two-hinged anastomosis model along the y-

axis ( ,i    ) 

ru  - Normalized radial displacement corrector Hara
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PV  - Phase velocity 

iV  - Average flow velocity at cross-section i  ( 1,  2,  3i  ) 

( )aV  - Volume of restrained arterial segment at-rest state 

( )bV  - Volume of unrestrained arterial segment at deformed state 

W  - Strain-energy density matrix 

W  - Strain-energy density 

W   - Normal function of w  

iw  - Tangential displacement of element i  of the two-hinged anastomosis model (

,i    ) 

x  - Longitudinal distance along the anastomosis (end-to-end anastomosis) 

gx  - Distance between the edges of two anastomosed segments at unrestrained 

deformed state (end-to-end anastomosis) 

netx  - Distance between the edges of two anastomosed segments at restrained 

deformed state (end-to-end anastomosis) 

1 2,z z  - State variables 

 

Greek symbols 

  - Stitching technique participation factor 

  - Dimensionless material parameter of Mooney-Rivlin strain-energy function 

(Chapter 6), or graft-to-artery radii ratio /o o
g aR R   (Chapter 8) 

N  - Constant of Newmark's constant-acceleration method, equal to 0.25 

1
  - Dimensionless free-energy factor constant 

  - Viscosity coefficient 

  - Ratio of artery radius to artery thickness /o
a aR H   

N  - Constant of Newmark's constant-acceleration method, equal to 0.5 Hara
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L  - Arterial segment longitudinal strain 

s  - Suture strain 

sd  - Circumferential strain of the artery at systolic phase, in respect to the strain 

of the diastolic phase 

i  - Strain of element i  of the two-hinged anastomosis model ( ,i    ) 

  - Radial displacement as a function of the distance from the anastomotic 

interface  

L  - Far-field radial displacement of the artery 

s  - Modified radial displacement as a function of the distance from the 

anastomotic interface  

0  - Shear stress at the stitching region 

  - Angle along the arterial ring (Chapters 4 through 6), or anastomosis angle 

(Chapter 8) 

0  - Angle defining the stitches placement for the artery patch model 

i  - Angle along the circular element i  of the two-hinged anastomosis model (

,i    ) 

  - 212 / ( )p pH R  

  -  Parameter of dynamic pinned circular arch model 

  - Circumferential elongation 

r  - Radial elongation 

z  - Longitudinal elongation 

0
z  - Longitudinal pre-stretch 

  - Shear modulus material parameter of Mooney-Rivlin strain-energy 

function 

1 2,   - Stress-like material parameters of Holzapfel et al. strain-energy function 

3 4,   - Dimensionless material parameters of Holzapfel et al. strain-energy 
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function 

 ,  xy  - Poisson's ratio of the arterial tissue 

  - Arterial-wall density at deformed state 

0  - Arterial-wall density at undeformed state 

b  - Blood density 

   - Density of element II of the two-hinged anastomosis model 

22  - Tensile stress along the graft axis 

  - Circumferential Cauchy stress 

rr  - Radial Cauchy stress 

zz  - Longitudinal Cauchy stress 

s  - Embedding stresses at the stitching hole 

int
s  - Embedding stresses at the stitching hole of interrupted rigid suturing 

cont
s  - Embedding stresses at the stitching hole of continuous stitching technique 

,s u  - Ultimate tensile strength of arterial tissue 

,sa u  - Ultimate tensile strength of arterial segment 

,sg u  - Ultimate tensile strength of graft segment 

local
a  - Local stresses at the stitching zone of the artery side 

local
g  - Local stresses at the stitching zone of the graft side 

eff  - Misses effective stress 

i  - Stress of element i  of the two-hinged anastomosis model ( ,i    ) 

  - Time of unit-impulse response function (Chapter 4), or graft-to-artery 

thicknesses ratio /g aH H   (Chapter 8) 

1  - Relaxation time 
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  - Polar angle of intersection plane of an end-to-side anastomosis 

1  - Orientation angle of collagen fiber reinforcement 

i  - Cross-section rotation of element i  of the two-hinged anastomosis model (

,i    ) 

f  - Shear flexibility factor 

n  - Circular frequency of linear arterial model 

0
Sk  - Circular frequency of Skalak et al. “zero-order nonlinear” model 

0
MR  - Circular frequency of Mooney-Rivlin equivalent linear arterial model 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Cardiovascular diseases continue to be the leading cause of mortality and premature death 

in the Western world. Vascular surgeries treat vascular diseases, such as atherosclerosis 

and aneurysms, and traffic or other serious injuries that lead to violent artery fractures.  

Vascular surgeries potentially suffer from short-term and long-term post-surgery 

complications, related to the successful stitching of human arteries with themselves, or 

with grafts (venous or artificial). Short-term complications, involving the tearing of the 

arterial wall after the stitching is complete, suture-line bleeding, or failure of the suture or 

the knot that is tied by the surgeon, increase the total time of the operation. Long-term 

post-surgery complications, involving restenosis of the blood vessel due to the 

development of intimal hyperplasia, thrombosis due to blood leakage, or failure of the 

suture due to deterioration of the suture material, may lead to revision surgery if diagnosed 

in time. Evidently, stitching techniques and related suture and graft materials are of great 

importance for the short-term and long-term success of vascular surgeries.  

In fact, little work has been published on the dynamic behavior of anastomosed arteries, 

and particularly on the stress concentration detail at the stitching holes. Related materials 

are characterized by large uncertainties and their material parameters depend on many 

factors. For example, the mechanical behavior of arterial tissues varies with topology, 

disease, age, and other physiological states of the blood vessel. Moreover, graft and 

suturing characteristics may change over time, as is the case of the mechanical properties 

of a Dacron-graft, which before use are different than those after five years in the human 

body. Thus, there is a need of investigating the general mechanical behavior of arterial 

anastomoses by taking into account all important parameters. 

1.2 Objectives 

The purpose of this research is to investigate the response of different arterial anastomosis 

techniques in a general manner and provide useful conclusions about the optimum graft 

properties and stitching details in order to avoid short-term or long-term post-surgery 

complications. To investigate the mechanics of the suture line, it is necessary to first 

examine the dynamic radial response of arteries with different material behaviors. Due to 
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the fact that arterial tissues and biological activities have a considerable complexity and 

their material parameters depend on many factors, we aim to develop basic models that are 

characterized by generality, and provide closed-form solutions (where it is feasible). 

In particular, the following models are investigated in this thesis: 

a. Linear arterial model under dynamic loading 

b. Hyperelastic arterial model under dynamic loading 

c. Viscoelastic arterial model under dynamic loading 

d. End-to-end anastomosis model by using displacement-based analysis 

e. End-to-side anastomosis model by using stress-based analysis 

f. Two-hinged circular model identifying the role of elastic mismatch for end-to-side 

anastomosis, side-to-side anastomosis, and artery patching 

The development of fundamental design-oriented methodologies can offer new and better-

substantiated understanding of the mechanics of arterial stitching, and form the basis for 

the development of vascular anastomosis guidelines related to the prevention of post-

surgery complications. We also expect through this research to interpret medical practices 

known to the medical society through patency rates but have not been justified by 

mathematical models. 

Our investigation focuses on the analysis of the solid arterial part of the vascular system in 

terms of principal displacements, stresses, and/or energy density. The models are compared 

with experimental and finite-element studies available in the literature in order to evaluate 

the level of approximation of each approach. Constructive feedback and suggestions 

provided by cardiovascular surgeons are taken into account. 

Note that, this thesis does not take place against the final medical decisions taken by the 

surgeons. Medical practice involves a larger amount of factors and higher complexity than 

those considered in the present study. 

1.3 Outline 

This thesis is organized into twelve chapters. Chapters 1 through 3 constitute an 

introduction on the topic of interest. Chapter 1 describes the motivation that led to this 

study and its objectives. Chapter 2 presents a comprehensive literature review on the 

analytical, computational, and experimental studies that examined the response of vascular 

anastomoses, as well as a review on theoretical studies concerning the elastic and 

viscoelastic arterial response. Furthermore, Chapter 3 reports important information 
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regarding topics of the cardiovascular engineering field, such as the induced blood 

pressures along the arterial tree, characteristics of the arterial system, vascular diseases, 

types of vascular anastomoses, etc. 

Chapters 4 through 6 investigate the dynamic far-field response of the anastomotic region. 

In particular, Chapter 4 presents a review of a previous work regarding a recently proposed 

linear-elastic arterial model and its respective closed-form solution. Moreover, the 

response of the linear-elastic model under different pressure time-profile approximations is 

investigated for the first time. Chapter 5 examines the response of three hyperelastic 

arterial models, representing the hardening behavior of healthy arteries, the hardening 

behavior of atherosclerotic arteries, and the softening behavior of aneurysmatic arteries, 

respectively. Chapter 6 extents the model of the healthy hyperelastic artery, derived in 

Chapter 5, into a viscoelastic arterial model by adopting a generalized Maxwell model and 

the Bonet-Holzapfel approach. 

The bulk of this thesis (Chapters 7 through 9) focuses on the suture-line response of 

different arterial anastomosis techniques. Numerical examples, and comparison against 

studies available in the literature are presented. In particular, Chapter 7 proposes a 

mathematical model governing the dynamic response of an end-to-end anastomosis. The 

proposed displacement-based methodology accounts for all the important problem 

parameters. In addition, a mathematical model describing the para-anastomotic 

hypercompliant zone (PHZ) phenomenon is introduced. Chapter 8 studies the response of 

the end-to-side anastomosis technique, by utilizing a stress-based analysis. The proposed 

methodology is based on the general stress-concentration-factor (SCF) results obtained 

from the analysis of pipe connections. Chapter 9 proposes a mathematical model aiming to 

investigate the effect of elastic mismatch on the response of side-to-side related 

anastomoses and artery patching. An idealized circular cylindrical anastomosis model 

consisting of two parts, interconnected by two hinges, is formulated. Finally, Chapter 10 

elaborates on the complex topic of the stress concentration at the stitching hole. 

The present thesis ends with a summary of all the important conclusions of this dissertation 

and with a discussion on the future work that may follow from this study, in Chapter 11. 
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CHAPTER 2 

Literature Review 

2.1 Previous work on the response of arterial anastomosis 

Several studies have examined the response of vascular anastomoses by using analytical, 

computational, or experimental methods. However, related studies limit their research to 

specific arterial geometries or ignore the stress concentrations due to suture-artery 

interaction. For the problem solution, is often utilized finite-element analysis instead of 

analytical models. Moreover, little work has been published on the dynamic analysis of the 

stitched anastomotic region. In their review article, Migliavacca and Dubini [1], clearly 

point out the lack of such analyses.  

Note that, many studies focus on the hemodynamic aspect of the problem, the induced wall 

shear stresses, and the fluid patterns. This study does not deal with the hemodynamic 

analysis of the problem. It focuses primarily on the arterial-wall mechanics and the 

suturing detail of different anastomosis techniques (end-to-end anastomosis, end-to-side 

anastomosis, side-to-side anastomosis). 

Review articles on the computational [2, 1, 3, 4] and the experimental analysis of vascular 

anastomoses [2, 5] are available in the literature. The following sections describe the most 

representative published studies in the field of arterial suturing. 

2.1.1 Analytical studies 

Among the vascular anastomosis studies, analytical studies are the most limited. 

Representative analytical works are those of Paasche at al., Melbin and Ho, and Rachev et 

al. [6–8]. 

Paasche et al. [6] solved analytically a boundary-value problem describing the response of 

an end-to-end anastomosis. The graft behavior was assumed to be rigid. They calculated 

the radial displacements and the induced wall stresses, along the longitudinal axis of the 

host-artery, for different graft-to-artery radii ratios. They found that the optimum graft-to-

artery radii ratio, minimizing the axial and shear stresses, is in the range of 1.4 to 1.5. 

Melbin and Ho [7] investigated the effect of three different end-to-end anastomotic shapes 

(transverse sectioned, bias sectioned, graft with elliptic-end connected to a bias sectioned 

artery) on the peak stresses. The authors did not provide a complete solution of the Hara
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deformation at the anastomotic region. They assumed a range of peak circumferential 

elongation values in order to calculate the peak stresses.  

Rachev et al. [8] proposed an analytical model to investigate the stress-induced thickening 

for the case of an artery/graft end-to-end anastomosis and for the case of an implanted 

stent. The mathematical model considered wall remodeling (thickening) and clamped 

conditions between the graft (or stent) and the host artery. The derived equations were 

solved numerically. 

2.1.2 Computational studies 

Most computational studies rely exclusively on finite-element analyses and their results 

concern the response of specific arterial geometries. The main advantage of using 

computational tools is that problems with complex geometries and irregular flow 

conditions can be analyzed. 

In particular, in a finite-element study, Hofer et al. [9] investigated the case of end-to-side 

anastomosis, without modeling the response of individual stitches. They studied the effect 

of compliance mismatch on the anastomosis response and on the development of intimal 

hyperplasia. In order to correlate intimal hyperplasia to the calculated response, the 

computational results were compared to a pre-existing experimental study. The 

development of intimal hyperplasia at the suture line was found to be mainly affected by 

the induced stresses and strains at the blood-vessels wall. 

Ballyk et al. [10] studied an end-to-end and an end-to-side anastomosis by use of finite-

element analysis, aiming to examine if compliance mismatch promotes intimal hyperplasia. 

The sutures were modeled as discrete points along the suture line, resulting in excessive 

stress concentration values at the stitching area due to the point-like modeling approach as 

such. They concluded that elevated compliance mismatch increases the suture-line 

mechanical stresses and consequently the development of intimal hyperplasia. 

Leuprecht et al. [11] and Perktold et al. [12] utilized three end-to-side anastomosis models, 

each one concerning a different technique (conventional anastomosis, Taylor-patch 

anastomosis, and Miller-cuff anastomosis). Their finite-element analysis yielded the wall 

shear stresses and maximum principal stresses for each case. In particular, the latter study 

modeled the stitches in detail using three-dimensional elements for the junction. They 

suggested that the Taylor-patch, and Miller-cuff anastomosis techniques may reduce the 

stress concentrations at the suture line, and therefore the generation of intimal hyperplasia. Hara
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In another finite-element study, Cacho et al. [13] investigated the effect of the insertion 

angle (insertion angles between 20 and 40) and incision length of coronary arterial 

bypass models, though without modeling explicitly the response of individual stitches. 

Lower insertion angles require longer incisions, influencing the graft shape and the 

induced graft-wall stresses. They observed that with increasing insertion angles the peak 

stresses were slightly lower and more restricted. 

Schiller et al. [14] studied an artery/vein-graft and an artery/synthetic-graft end-to-end 

anastomosis by using a fluid-structure coupling algorithm. The sutures were simulated as a 

two-dimensional anastomotic interface. The artery to vein-graft anastomosis (for which the 

artery was stiffer than the vein graft) caused increased stenosis at the stitching region, 

compared to the artery to synthetic-graft anastomosis (for which the artery was softer than 

the synthetic-graft). 

More recently, Ngoepe et al. [15] examined the case of arterio-venous access grafts 

forming end-to-side anastomosis with intersecting angles of 45, 90, and 135. Such 

anastomoses are performed in the case of patients undergoing hemodialysis. Ngoepe et al. 

used a fluid-structure interaction algorithm, coupling computational fluid dynamics with 

structural finite-elements models. They calculated, among others, the principal stresses and 

deformations of the blood-vessels walls, and found that the 90 end-to-side configuration 

shows slightly better performance than other configurations. 

2.1.3 Experimental studies 

Experimental studies carried out over the years have examined primarily the anastomosis 

compliance and the development of intimal hyperplasia at the anastomotic region. 

Along with their computational studies, Ballyk et al. [10] and Leupretch et al. [11] carried 

out experimental investigations, aiming to correlate the development of intimal hyperplasia 

to the system's response (obtained from computational results). They both suggested that 

increased stress concentration at the suture line promotes the development of intimal 

hyperplasia. 

In an end-to-end anastomosis study, Lyman et al. [16] implanted synthetic-grafts, with 

compliance approximately equal to that of the host artery, in dogs. They found that 

compliant vascular grafts exhibit better behavior than noncompliant grafts, and that 

compliance of synthetic grafts may decrease with time. Lyman et al. also observed that 

thin-walled grafts are more compliant, but easier to tear during the suturing process. 
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Hasson et al. [17] investigated an end-to-end anastomosis between isocompliant arterial 

grafts from dogs and found that a para-anastomotic hypercompliant zone (PHZ), which 

promotes subintimal hyperplasia (SIH), exists near the suturing region. The compliance at 

this region increases up to 50% compared to the compliance away from the stitching 

region. In a later study, Hasson et al. [18] suggested that the suture technique affects 

significantly the compliance of the anastomotic region. In particular, they showed that the 

PHZ phenomenon occurs more frequently for anastomosis of the continuous-stitching 

technique than that of the interrupted-stitching technique. In addition, they observed that 

increased longitudinal stress of the arterial vessel reduce the compliance. This phenomenon 

can be justified by the fact that longitudinal pre-stress affects the mechanical properties of 

dog arteries [19]. 

Abbott et al. [20] studied the response of end-to-end anastomosis by implanting compliant 

and stiff grafts in dogs. The longitudinal profiles of compliance differed considerably for 

the two cases, with the compliance values of the later case (stiff graft) being lower. A PHZ 

existed at the host artery side, either when using compliant or stiff grafts, whereas graft 

patency rates were significantly increased when using compliant instead of stiff grafts. 

Moreover, Ulrich et al. [21] experimentally investigated an end-to-end anastomosis 

between pig aortic grafts and found that a PHZ does not exist in this case. They also 

suggested that the main factor affecting the anastomotic response is the suture line itself. 

In a later end-to-end anastomosis study, Baguneid et al. [22] examined the effect of 

different suturing techniques on the para-anastomotic profile. They performed anastomoses 

between isocompliant goat arteries by using continuous polypropylene stitching, 

interrupted polypropylene stitching, and nonpenetrating clips. A PHZ existed for all cases. 

For the case of nonpenetrating clips, the PHZ phenomenon and the development of intimal 

hyperplasia were reduced. 

In an end-to-side anastomosis study, Bassiouny et al. [23] found that the development of 

intimal hyperplasia at the suture line of conventional end-to-side anastomosis is promoted 

by healing mechanisms, compliance mismatch, and triangulation of the anastomotic 

junction that may result in complex hemodynamic patterns. They also suggested that 

intimal hyperplasia on the artery floor is developed due to low wall shear stresses and 

hemodynamic factors that generate stagnation points at that region. 

Noberto et al. [24] experimentally investigated the effect of the expansibility of vein cuffs 

(end-to-side anastomosis technique) by jacketing the cuff with an artificial material. They 
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concluded that the good patency rates of Miller-cuff technique are not correlated to the 

mechanical properties of the cuffs. 

Moreover, Noori et al. [25] studied the flow patterns of different end-to-side techniques 

and found that only the Miller-cuff technique appears to have better flow patterns due to its 

wider anastomotic cavity. 

Limited investigations have been performed on side-to-side anastomoses. Clinical studies 

on side-to-side anastomoses showed that this technique has larger patency rates and better 

fluid dynamics [26–28]. 

2.2 Previous work on the elastic and viscoelastic response of arteries 

An extensive part of this study deals with the dynamic response of the arterial model away 

from the anastomotic region. A number of elastic and viscoelastic arterial models have 

been investigated over the years. This section describes in brief the most representative 

elastic and viscoelastic theoretical studies available in the literature. 

Previous analytical works on the dynamic radial response of elastic arterial models are 

quite limited. The most representative studies are the works of Demiray and Vito [29] and 

Humphrey and Na [30]. Demiray and Vito [29] investigated the dynamic response of 

arteries by assuming a simplified sinusoidal solution for the deformation field. They found 

that the dynamic loading increases the diastolic wall-pressures and decreases the systolic 

wall-pressures, compared to the static loading, and that under certain conditions negative 

wall-pressures may exist, implying artery collapse. Humphrey and Na [30] studied the 

arterial-wall stress and strain response of healthy and diseased arteries. In order to solve 

the problem they assumed that the motion (square of the inner radius) is described by a 

Fourier series. Their model constitutes an extension of the Demiray and Vito model. 

Due to the fact that the viscoelastic response of arteries cannot be modeled adequately by a 

simple Maxwell or Voight element, several other models are proposed in the literature. 

Kalita and Schaefer indicate in their review article [31] the different kinds of mechanical 

systems that can simulate the viscoelastic behavior of arteries. 

For example, Westerhof and Noordergaaf [32] proposed a five-parameter model consisting 

of two Maxwell elements and a spring placed in parallel. Cox [33] suggested a model 

consisting of a spring in series with a Voigt element, and Papageorgiou and Jones [34] 

proposed a mathematical model with a number of Voigt elements in series. Holzapfel and Hara
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Gasser [35] and Holzapfel et al. [36] adopted a generalized Maxwell model, i.e. a model 

that consists of a single spring on one end and a number of Maxwell devices set in parallel. 

Haslach Jr [37] proposed a generalized model that describes the behavior of nonlinear 

thermoviscoelastic soft tissues, including all time-depended behavior types. The model 

consists of a system of evolution differential equations. He presented a number of 

numerical examples on the viscoelastic response of soft tissues, by adopting different 

constitutive laws, available in the literature, and their respective material data.  

Moreover, Čanić et al. [38] developed a theoretical “reduced” model by considering 

axially-symmetric geometry of the artery, viscoelastic arterial walls, and axially-symmetric 

viscous blood flow. They calculated the viscoelastic response of arteries by conducting 

numerical simulations and verified their method by comparing the numerical values to 

experimental results. 
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CHAPTER 3 

Background 

3.1  Introduction 

Predictive medicine and therapeutic decision-making necessitates comprehensive 

understanding of the human biological activities in order to develop a suitable 

mathematical model that describes the problem of interest and obtain the respective 

optimal solution. In the field of cardiovascular engineering, the researcher or the interested 

reader should be familiar with topics such as the histology and mechanical properties of 

biological tissues, the blood pressure profile, cardiovascular diseases, cardiovascular 

surgery techniques, etc. 

This chapter provides a basic background regarding the cardiac cycle and the induced 

blood pressures along the arterial tree, the characteristics of the arterial system, vascular 

diseases that may lead to vascular operations, and types of vascular anastomoses. 

Moreover, related topics concerning large part of the literature, such as the compliance of 

blood-vessels and the phenomenon of intimal hyperplasia, are described. 

3.2 The cardiac cycle and the induced blood pressure 

The human heart constitutes the pumping station of the body. The heart vibrates due to 

electric pulses applied to its surface, inflating periodically the various heart chambers. In 

one single day, the heart beats about one hundred thousand times and it is able to pump 

about 10 000 liters of blood through the circulatory system. 

The cardiac cycle consists of two major functional periods: systolic and diastolic. The 

systolic period occurs when the left and right ventricles contract, ejecting blood into the 

aorta and pulmonary artery. As a result, the aortic pressure increases and the arteries dilate. 

During the diastolic period, the aortic and pulmonary valves close, blocking further blood 

ejection into the arteries; the ventricles of the heart are relaxed, and the right and left 

atrium are filled with blood that passes to the ventricles. 

Figure 3-1 shows the heart chambers, the adjacent blood vessels, and the direction of blood 

flow through them. The circulation from the right ventricle through the pulmonary artery, 

the lungs, and the pulmonary veins to the left atrium is called pulmonary circulation. It 

carries deoxygenated blood to the lungs and returns oxygenated blood to the heart. The 

circulation from the left ventricle through the aorta, to the entire body, back to the vena 
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cava veins, the right atrium, and the right ventricle is called systemic circulation. The 

systemic circulation carries oxygenated blood through the entire body and returns 

deoxygenated blood to the heart. 

  

Figure 3-1: The human heart, adjacent blood vessels and blood flow circulation (from 

http://www.wyeriverupperschool.org/houserwrus/Anatomy%20Physiology/May52011/ind

ex.html). 

During each cardiac cycle, the arterial system is subjected to intraluminal pressures (blood 

pressure) similar to the time-profile shown in Figure 3-2. Arterial blood pressure is the 

intraluminal pressure that the arterial walls have to sustain due to the action of the heart in 

pumbing blood to the entire body. 
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Figure 3-2: Aortic pressure-time profile (after Zhong et al. [39]). 
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Zhong et al. [39] presented an approximation of the aortic pressure-time profile, as a 

function of two exponential equations. Figure 3-2 shows a typical example of the aortic 

pressure-time profile approximation proposed by Zhong et al. The systolic-phase duration 

in this case is equal to 0.35 secst  . The time interval 0 st t   represents the systolic 

phase, during which the blood is pumped into the aorta and the aortic walls inflate due to 

the maximum overstress pressure, whereas the time interval 1st t   represents the 

diastolic phase, during which the aortic valve closes and the aortic blood pressure 

decreases. The pressure at the start of the systolic phase (and at the end of diastolic phase) 

is called diastolic pressure, while the maximum pressure during the systolic phase is called 

systolic pressure. 

The pressure time-profile of Figure 3-2 corresponds to the case of an aorta under normal 

conditions. Blood pressure profiles may vary with topology along the human body or 

pathological conditions such as hypertension and hypotension. Figure 3-3 shows blood 

pressure profiles of different large-size arteries. It can be noticed that the descending aorta 

and the right subclavian artery exhibit the maximum systolic and diastolic pressures.  

 

Figure 3-3: Blood pressure and velocity time-profiles of large-size arteries (after Mills et 

al. [40]). 

Figure 3-4(a) reports the average blood pressure of veins and arteries along the human 

body. For regions located above the heart level (arms, neck, head), the mean arterial 
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pressure is decreased with increasing distance from the heart, whereas for the rest of the 

body the arterial or venous pressure is increased with increasing distance from the heart. 

The blood pressure profile is also affected by the position of the human body, as in the case 

of a person in the supine position. For a person in the supine position, the systolic pressure 

increases gradually along the arterial tree (Figure 3-4(b)). 

 

                       (a)                                                                     (b) 

Figure 3-4: (a) Average blood pressure along the human body (after Rushmer [41]), (b) 

Pressure time-profiles of a supine healthy person along the arterial tree (from 

http://www.zuniv.net/physiology/book/chapter9.html). 

People that suffer from hypertension exhibit increased blood pressure values. According to 

the latest guidelines of the European Society of Hypertension (ESH) and of the European 

Society of Cardiology (ESC) for the management of arterial hypertension [42], the optimal 

values of the systolic and diastolic blood pressure is less than 120 mmHg and less than 80 

mmHg, respectively. At optimal pressure values the cardiovascular system exhibits 

relatively low stresses and strains, delaying the aging and fatigue of the heart and the 

blood-vessels. Hypertension is categorized in three stages, namely Grade-1 hypertension, 

for systolic and diastolic pressure values 140-149 mmHg and 90-99 mmHg, respectively; 

Grade-2 hypertension, for systolic and diastolic pressure values 160-179 mmHg and 100-

109 mmHg, respectively; and Grade-3 hypertension, for systolic and diastolic pressure 

values greater than 180 mmHg and 110 mmHg, respectively. Table 3-1 lists the blood 

pressure definitions and classifications for adults. 

Note that, during the first critical hours after a major vascular operation (e.g. coronary 

artery bypass operation) the patient should not experience high blood pressures. Therefore, 
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the patient remains in repression (“sleep”) for some hours following the operation. If the 

patient is already hypertensive, he takes the appropriate pharmaceutical treatment to 

maintain his blood pressure at optimal levels. 

Observe that all pressure time-profiles can be approximated by the profile given in Figure 

3-2 by varying the values of systolic pressure, diastolic pressure, systolic-phase duration, 

and cardiac cycle duration. A time-varying pressure profile (such as that of Figure 3-2) 

should be utilized in performing a dynamic analysis, as opposed to the (constant) systolic-

pressure value utilized in performing a static analysis. 

Table 3-1: Definitions and classification of blood pressure for adults (after [42]). 

Category  Systolic (mmHg)  Diastolic (mmHg) 

Optimal <120 and <80 

Normal 120-129 and/or 80-84 

High normal 130-139 and/or 85-89 

Grade-1 hypertension 140-159 and/or 90-99 

Grade-2 hypertension 160-179 and/or 100-109 

Grade-3 hypertension 180 and/or 110 

Isolated systolic hypertension 140 and <90 

3.3 The arterial system 

3.3.1 Structure and histology 

Arteries are characterized by complexity both at macroscopic and microscopic scale. They 

are inhomogeneous, anisotropic and their structure varies with age, topology along the 

arterial tree, and disease. Figure 3-5 shows a cross section of a typical artery. 

Macroscopically, the arterial wall is composed by three layers. Staring from the inside of 

the artery, these layers are the intimal, the media, and the adventitia. 

The intimal consists of an endothelial and subendothelial layer and is separated from the 

media by the internal elastin lamina. In healthy arteries the intimal layer is very thin and 

has insignificant mechanical properties, whereas aged and atherosclerotic arteries have 

stiffer and thicker intimal, resulting in a significant contribution to the artery mechanical 
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behavior. The media consists of smooth muscle cells, elastin and collagen fibrils. At low 

blood pressures, the media has high strength compared to the other two layers and can 

resist circumferential and longitudinal loadings. The adventitia layer is separated from the 

media layer by the external elastin lamina. It consists mainly of fibroblasts, fibrocytes, and 

collagen fibrils. At high blood pressures, the adventitia stiffens and strengthens, behaving 

as a protective mechanism for the other layers. Furthermore, its thickness varies depending 

on the blood-vessel type, physiological function, and topology along the arterial tree. 

 

Figure 3-5: Cross section of a typical artery (after Humphrey [43]). 

Arteries can be categorized in two types: elastic and muscular arteries. Elastic arteries are 

large-size arteries that are located close to the heart (e.g. aorta, iliac artery) and muscular 

arteries are medium-size arteries that consist mainly of muscular cells and are located at 

the peripheral circulation (e.g. cerebral arteries, femoral arteries) (Figure 3-6). Moreover, 

the media layer of medium- and small-size arteries is thicker than the adventitia layer and 

in some cases the adventitia is nonexistent (e.g. cerebral arteries). Figure 3-6 shows the 

diameter and histology of arteries and veins along the circulatory system. 

Typical values of the radius of large- and medium-size arteries vary between 0.1 cm (e.g. 

coronary arteries) and 1.6 cm (aorta). Typical values of their wall thickness vary between 

0.01 cm and 0.12 cm. Table 3-2 reports the geometric properties ranges of large- and 

medium-size arteries. 

3.3.2 Mechanical behavior 

The mechanical properties of arterial tissues depend on the artery location, age, disease, 

and other physiological states [44, 45]. In general, their mechanical behavior does not obey 
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Hooke’s law [46, 47], exhibiting anisotropic nonlinear behavior for finite deformations. 

The arterial tissue is a hyperelastic material and its stress-strain relationship derives from a 

strain-energy function. Furthermore, it is an incompressible material, meaning that it does 

not change its volume under applied elongations [48].  

 

Figure 3-6: Variation of vessel diameter and histology along the circulatory system (after 

Rhodin [49]). 

Table 3-2: Geometric properties of large- and medium-size arteries. 

Parameter Value 

Radius 0.1-1.6 cm 

Wall thickness 0.01-0.12 cm 

Length 0.5-15 cm 

 

Note that, muscular arteries often exhibit viscoelastic behavior, since they demonstrate 

hysteresis under cyclic loading, creep under constant loading, and stress relaxation under 

constant displacement. Their relatively low-energy loss in each cardiac cycle prevents 

reflected pressure waves from resonating in the arterial systems [50]. Hara
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Typical hyperelastic constitutive laws that describe the mechanical behavior of biological 

tissues are the Mooney-Rivlin [51, 52], Fung [53], Gent [54], the strain-energy function of 

Skalak et al. [55], and the constitutive law proposed by Delfino et al. [56]. 

The stress-strain relationship of arterial tissues depends mainly on its elastin and collagen 

content (Figure 3-7(a)). At low blood pressures, the mechanical behavior depends on the 

elastin and smooth muscle content of the media. In this case, the elasticity modulus is 

relatively low. At higher blood pressures, the strength of the adventitia collagen fibers is 

activated, since the wavy collagen fibers are stretched and rearranged circumferentially. 

Thus, the elasticity modulus of the arterial tissue is increased and the stress-strain curve 

becomes steeper. Under physiological pressures (80-120 mmHg) the mechanical behavior 

of arterial tissues can be considered to be linear elastic. 

                    

                (a)                                    (b) 

Figure 3-7: (a) Induced blood pressure versus strain of the artery, collagen, and elastin; (b) 

Arterial tissue stress-strain relationship, of a 25 year old man, under dynamic and quasi-

static loading (after Mohan and Melvin [47]). 

Based on the biaxial dynamic tests of Mohan and Melbin [47], the ultimate strength of 

human arterial tissues varies between 1 and 3 MPa. Figure 3-7(b) shows the longitudinal 

and transverse stress-strain relationships of a human arterial tissue (conducted by Mohan 

and Melvin) under dynamic and quasi-static loading. Observe that the artery exhibits 

higher ultimate strength and lower ultimate elongations (point F) when subjected to 

dynamic loading, rather than quasi-static loading. 
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3.3.3 Residual stresses  

The load-free configuration of an artery is not stress-free. Residual stresses pre-exist in the 

arterial tissue. These stresses exist due to delayed growth of arteries compared to the rest of 

the body, remodeling, injury, or viscoplastic strains, and have significant impact on the 

response of arteries to external loads [57]. Residual stresses are evident once an unloaded 

in vivo artery is cut transversally or longitudinally. When an artery is cut transversally it 

contracts along the longitudinal direction, releasing longitudinal stresses; and when an 

artery is cut longitudinally, the cylindrical sector opens, releasing circumferential stresses. 

Consequently, residual stresses should be taken into account in the development of the 

arterial mathematical model. Longitudinal residual stresses are frequently accounted for by 

setting an initial pre-stretch to the artery [10], whereas circumferential residual stresses can 

be accounted for by the “opening-angle” method [57]. The “opening-angle” method 

assumes that the stress-free configuration of the artery is an open cylindrical sector. Thus, 

in order to obtain the initial cylindrical configuration, a bending moment is applied to the 

open sector. Once the axial pre-stretching and bending are applied to the model, the load-

free (but not stress-free) initial configuration of the artery is obtained. 

3.4 Vascular diseases  

Among the vascular disorders, atherosclerosis and aneurysms are the most frequently 

encountered. Both diseases require surgical treatment when exhibiting critical 

characteristics, defined by medical regulations. 

An aneurysm is a disorder of the arterial tissue, in which the wall of an artery section 

becomes weak and soft. While the blood pressure pushes outward this soft tissue, the artery 

dilates in a balloon-like shape, as shown in Figure 3-8(a). It most commonly occurs in 

people that are 60 years old or older. If the aneurysm is not diagnosed in time, it may 

rupture and uncontrolled bleeding will occur. In this case, the patient has low chances of 

survival (10-20%). On the other hand, if the aneurysm is diagnosed in time, the problem is 

treated by a vascular operation in which the diseased part is removed and a graft is sutured 

in that place (open repair), or by an endovascular repair [58, 59].  

Atherosclerosis is the formation of a plaque on the inner surface of the artery, resulting in 

hardening of the arterial wall and narrowing of the arterial lumen. The plaque is formed by 

fatty substances, cellular waste products, fibrin cholesterol, calcium, and collagen fibers 

that are transferred by blood. Its development begins from an early age and is negatively 
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affected by high cholesterol and triglyceride levels, high blood pressure, and smoking. In 

early stages, only the inner layer (intimal) of the artery is affected, whereas in later stages 

the second layer (media) is also affected. When the arterial lumen is completely blocked by 

a blood clot or a smaller artery is blocked by a piece of the plaque that broke off, the 

affected area is not oxygenated and the adjacent tissue is destroyed. When arteries that 

oxygenate vital organs are blocked, as is the case of heart attack or stroke, the 

consequences may be fatal. Figure 3-8(b) shows the formation of an atherosclerotic plaque, 

the narrowing of the artery lumen, and the complete blocking by a blood clot. An artery 

with atherosclerotic stenosis is treated by bypass surgery or angioplasty [60, 61]. 

          

(a)             (b) 

Figure 3-8: (a) Aortic aneurysm (From http://www.ncbi.nlm.nih.gov/pubmedhealth 

/PMH0002109/), (b) Formation of atherosclerotic plaque (From http://www.nlm.nih.gov/ 

medlineplus/ency/imagepages/18020.htm). 

3.5 Types of anastomosis 

Vascular surgery operations treat vascular diseases, traffic-related and other serious 

injuries that lead to violent artery fracture. Arterial anastomosis may be categorized in 

three types: end-to-end anastomosis, end-to-side anastomosis, and side-to-side anastomosis 

(Figure 3-9). 

An end-to-end anastomosis is performed when the diseased artery segment is removed, and 

the healthy segments are stitched together, either directly or through the insertion of an 

artificial graft. This technique is often applied in cases of aortic aneurysms, femoral 

aneurysms, etc. In addition, end-to-end anastomosis is applied when an artery is 

transversely cut after a violent incident. Hara
lam

bia
 C

ha
ral

am
bo

us



 

20 

 

 

            (a)            (b)       (c) 

Figure 3-9: Different types of anastomosis (a) end-to-end anastomosis; (b) conventional 

end-to-side anastomosis; (c) side-to-side anastomosis (after Migliavacca and Dubini [1]). 

The end-to-side and side-to-side techniques can bypass an arterial stenosis by utilizing an 

arterial, a vein, or an artificial graft. An end-to-side anastomosis uses a graft to bypass the 

diseased segment and provide oxygenated blood from the proximal to the distal 

anastomosis (e.g. coronary artery bypass), or uses an artery that was not removed from the 

blood circulation to provide oxygenated blood through a distal anastomosis (e.g. bypassing 

by using the internal mammary artery). In both, cases the graft is sutured laterally at a 

longitudinal incision of the host artery. On the other hand, for a side-to-side anastomosis, 

both the host artery and the graft are connected and stitched together through longitudinal 

incisions, as shown in Figure 3-9(c). 

In the case of end-to-side anastomosis, several techniques have been proposed in an effort 

to reduce the development of intimal hyperplasia and increase graft patency rates of distal 

anastomoses. These techniques are relatively recent and are known mainly to the academic 

community rather than the medical community. Some of these conduits show promising 

patency rates. The most known techniques are the Miller-cuff (Figure 3-10(d)) and the 

Taylor-patch anastomosis (Figure 3-10(c)). Other end-to-side anastomosis techniques are 

the Linton-patch, the vein boot, and the arteriovenous fistula anastomosis (Figure 

3-10(d,e,f)). 
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Figure 3-10: Different end-to-side techniques: (a) conventional technique; (b) Linton-

patch; (c) Taylor-patch; (d) Miller-cuff; (e) vein boot; (f) arteriovenous fistula (after 

Kapadia et al. [62]). 

3.6 Post-surgery complications 

Vascular-operations suffer from short-term and long-term post-surgery complications. 

Short-term complications, including the tearing of the arterial wall after the stitching is 

complete, suture-line bleeding, or failure of the knot that is tied by the surgeon, increase 

the total time of the operation. Long-term complications involve restenosis of the blood 

vessel due to development of intimal hyperplasia, thrombosis due to blood leakage, or 

failure of the suture due to gradual deterioration of the suture material [63]. If a long-term 

post-surgery complication is diagnosed in time, it may lead to a revision surgery. 

3.6.1 Intimal hyperplasia 

Among the long-term post-surgery complications, the development of intimal hyperplasia 

(or neointimal hyperplasia) is the most widely-studied. It is considered to be the main 

cause of graft failure. Intimal hyperplasia is a physiologic healing response of the arterial-

wall to injury. This response causes a decrease of the arterial lumen and re-stenosis of the 

blood vessel. If the stenosis is detected in time, the vascular operation is repeated and the 

graft is replaced. Hara
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Arterial-wall injury may be caused by a vascular anastomosis operation, angioplasty, stent 

insertion, or around long-term venous catheters. The injured endothelium releases 

inflammatory mediators that trigger platelet, fibrin, and leukocyte aggregation to the area. 

Smooth muscle cells migrate from the media to the intimal, where they multiply and 

deposit extracellular matrix. As a result, a neo-intima is formed and intimal hyperplasia 

(thickening) is developed. 

All types of anastomosis suffer from intimal thickening at the suture line. Figure 3-11 

shows that the development of intimal hyperplasia for the case of end-to-side anastomosis 

occurs at two characteristic regions: the suture line and the artery floor opposite of the 

distal anastomosis [23]. 

Several factors are identified to influence the problem, such as irregular flow conditions, 

low wall shear stresses, irregular mass transportation into the blood-vessel wall, 

compliance mismatch, increased mechanical stresses of the sutures and the blood-vessels, 

etc. Yet, it is not completely clear in what specific way and how important the influence of 

each factor is on the development of intimal hyperplasia. 

 

Figure 3-11: Development of intimal hyperplasia at an end-to-side anastomosis; IT: Intimal 

Thickening (after Bassiouny et al. [23]). 

3.7 Compliance 

The blood-vessels and anastomotic region response is frequently calculated in terms of 

compliance [17, 18, 20–22]. Compliance is the ability of a blood-vessel to distend and 

increase its diameter under applied intraluminal pressures. It is mathematically defined as 

the circumferential strain of the systolic phase in respect to the strain of the diastolic phase, 

sd , divided by the pressure difference: 

 Compliance
( ) ( )
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where sD  and dD  are the blood vessel diameters under systolic and diastolic pressure, 

respectively, and sp  and dp  are the systolic and diastolic pressures, respectively. 

A graft that has equal compliance to that of the host artery is considered to be the optimal 

choice, to favor the decreased thickening of the intimal and the increased patency of the 

graft. 

Researchers who studied the compliance of end-to-end anastomosis observed that, for 

some cases, a para-anastomotic hypercompliant zone (PHZ) exists. The PHZ phenomenon 

was observed for the first time by Hasson et al. [17]. Since then, several other researchers 

investigated the phenomenon [18, 20–22, 64]. 

A PHZ exists when the compliance of the host artery or the graft is increased to a 

maximum before falling to a minimum at the suture line. Figure 3-12 shows an 

experimental-response profile of an end-to-end anastomosis. The diameter profile along 

the anastomotic region (Figure 3-12(a)) does not reveal the PHZ phenomenon, whereas the 

compliance profile along the anastomotic region (Figure 3-12(b)) does reveal the PHZ 

existence close to the suture line (point 0 mm). Away from the suture line (6-10 mm) the 

compliance is constant. 

   

Figure 3-12: Response profiles of an end-to-end anastomosis along the anastomotic region: 

(a) Diameter of anastomosis measured by pulsed ultrasound instrument, (b) Compliance 

measured as % radial change/mmHg, × 10-2 (after Hasson et al. [17]). Hara
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CHAPTER 4 

Arterial Dynamic Response: Linear Model 

4.1 Introduction 

From the mechanics point of view, the human arterial system can be idealized as a system 

of cylindrical elastic pipes that transport blood under pressure provided from the heart [65]. 

As discussed in Section 3.3, the arterial tissue is heterogeneous, consisting of three 

inhomogeneous layers. Its mechanical properties depend on the artery location, age, 

disease, and other physiological states [44, 45]. In general, the mechanical behavior of the 

arterial tissue does not obey Hooke’s law [46, 47], exhibiting anisotropic nonlinear 

behavior for finite deformations. Moreover, the response of biological tissues is affected by 

the existence of residual stresses [57]. 

Herein the blood vessel is modeled as a cylindrical pipe which assumes that the elastic 

properties (elasticity modulus) of the model incorporate in an average sense the tangential 

stiffness, the anisotropy, the inhomogeneity, and the residual stresses of the artery walls. 

Therefore, the arterial wall is assumed to be homogeneous and the mechanical response 

linear elastic.  

This chapter investigates the dynamic response of a linear-elastic artery in terms of the 

radial displacement away from the anastomotic region. The proposed linear arterial model 

and the derived closed-form solution described herein have been recently proposed by 

Demetriou [66]. The model is comprehensive, analytical and adopts the worst-case 

scenario of blood pressure loading (conservative case). Furthermore, this chapter studies 

the dynamic response of the linear-elastic artery under different pressure time-profile 

approximations, for the first time. Pressure time-profile approximations simulating the first 

loading cycle (after the blood flow is restored) and the long-term loading are considered.  

The formulated linear arterial model is a single-degree-of-freedom system. By assuming a 

pulse-type loading approximation the system response can be analytically derived by 

means of Duhamel's integral. In this way, is obtained a general closed-form solution for the 

far-field response of the anastomosis. When considering more complex loading 

approximations, the response is derived through numerical methods. 

Note that, the aforementioned model constitutes the basis of the hyperelastic and 

viscoelastic models proposed in Chapters 5 and 6 respectively. In addition, the derived 

maximum radial displacement is adopted by the displacement-based methodology 
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proposed in Chapter 7, in order to account for the arterial axial-circumferential 

deformation coupling and suture-artery interaction of end-to-end anastomosis. 

4.2 Review of previous work 

This section describes the dynamic response of the linear-elastic artery, away from the 

anastomotic region, based on the work of Demetriou [66]. Furthermore, the derived closed-

form solution is presented. 

4.2.1 Mathematical model 

Figure 4-1(a) shows the configuration of the arterial model considered in this chapter. The 

artery is modeled as an elastic cylindrical pipe with wall thickness pH  and radius pR . Note 

that, the thickness and radius are measured at zero blood pressure and in vivo length, 

implying that the artery is in its pre-stressed state. The mathematical formulation is based 

on the following assumptions: (a) the centerline of the ring in the undeformed state forms a 

full circle with radius pR ; (b) the arterial wall thickness is small compared to the radius of 

the centerline of the ring therefore the radial stresses are not considered; (c) the cross-

section is axially symmetric and constant around the circle, implying that the arterial wall 

has constant thickness; (d) the arterial tissue consists of a single homogeneous layer; (e) 

the arterial tissue behaves as a simple orthotropic linear-elastic material (i.e. the 

mechanical properties in the radial and circumferential directions are the same and differ 

from those in the longitudinal direction, ignoring the Poisson effect in the orthotropy 

constitutive law); (f) no boundary constraints are applied on the ring; (g) the effects of 

rotary inertia and shear deformation are neglected; and (h) viscous effects are ignored. 

Note that, the simplified orthotropic model utilizes two elastic constants, E  and LE , 

representing the plane-strain elastic moduli in the circumferential and the longitudinal 

directions respectively [64]. 

4.2.1.1 Response to general dynamic loading 

The axially-symmetric arterial model undergoes in-plane extensional vibration due to a 

uniformly-distributed wall pressure ( )p t . The flow-induced wall shear stresses are 

ignored. Their contribution to the response of the structural system is insignificant, since 

the flow-induced wall shear stresses values are very low (of the order of 100 Pa) compared 

to the principal stresses of the arterial walls (of the order of 100 kPa). Hara
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Figure 4-1: (a) Configuration of the linear arterial model considered in this chapter, (b) 

free-body diagram of a typical element of arterial ring.  

The differential equation governing the radial displacement ( )u t  of the vibrating arterial 

ring can be derived by considering the forces acting on the infinitesimal element of unit 

length shown in Figure 4-1(b). Equilibrium of forces in the radial direction requires that: 

 
2

2

( )
( ) ( )sin ( )sin

2 2p

d d d u t
p t R d N t N t m

dt

          
   

 (4.1) 

where 0 p pm R H d   is the mass of the unit-length arterial element, 0  is the density of the 

arterial tissue, and N  is the unit-length axial force. 

From Hooke's law, the axial force is given by  

 
( )

( ) p
p

u t
N t E H

R  (4.2) 

On substituting the above expression in Equation (4.1), and by assuming small angles (so 

that sin( / 2) / 2d d  ), we obtain 

 
2

0 2

( ) ( )
( ) p p p p

p

u t d u t
p t R d E H d R H d

R dt      (4.3) 

By dividing Equation (4.3) by pR d  we obtain the equation governing the radial 

displacement response as 

                                             
     

2

0 2

p
p

p

E Hd u t
H u t p t

dt R
                                          (4.4) 
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This second-order differential equation is similar to the classical equation of motion of an 

undamped single-degree-of-freedom system to arbitrary excitation. The first term 

represents the radial inertia force acting on element abcd of the arterial ring, while the 

second term represents the circumferential tensile force developed on the element cross-

section. The circular frequency of the system can be readily derived as 

 
0

1
n

p

E

R



  (4.5) 

Equation (4.4) can be solved analytically by means of Duhamel's integral. 

4.2.1.2 Response to pulse-type loading 

Figure 4-2 shows a typical aortic blood pressure profile (left) along with the arterial pulse 

time-profile approximation adopted in the calculations (right). The time interval 0 st t   

represents the aortic systolic phase, whereas the time interval s cpt t t   represents the 

aortic diastolic phase.  
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Figure 4-2: (a) Typical aortic pressure-time profile following Zhong et al. [39], (b) arterial 

pulse time-profile approximation. (100mmHg=13.33kPa) 

During a vascular surgery operation the blood flow is interrupted. The first loading cycle, 

immediately after the flow is restored, is approximated by the loading shown in Figure 

4-2(b). This analysis adopts the worst-case scenario of blood pressure loading 

(conservative case) in which the internal pressure is abruptly increased from zero to the 

maximum systolic pressure. The assumed loading is expressed as Hara
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  

                                ,  0   

( )       
    ,  t t  

 

s s

s d
s s s cp

cp s

p t t

p pp t
p t t t

t t

 
       

 (4.6) 

where sp  is the maximum systolic pressure, dp  the diastolic pressure, st  the systolic-phase 

duration, and cpt  the total duration of the cardiac pulse.  

The radius pR  is measured at zero blood pressure and in vivo length, implying the artery is 

in its pre-stressed state. During surgery the following procedure takes place: (a) the 

diseased blood vessel is cut transversely and longitudinal residual stresses are released, 

forcing the artery to decrease its length and increase its diameter; (b) When subsequently 

the stitching takes place, the arterial diameter and length return to their prior condition. The 

residual-stress effect is taken into account by considering an initial displacement 0(0)u u , 

equal to the difference of the increased radius (relieved from axial residual stresses) and 

radius pR , and initial velocity (0) 0u  ; and (c) The blood flow is restored and the 

anastomosis is subjected to dynamic blood pressure. 

The total response of the system is the sum of the response to the pulse loading ( )pu t ( )pu t  

and the response to free vibration ( )fu t  due to initial conditions.  

The response to free vibration with initial displacement 0(0)fu u  and initial velocity 

(0) 0fu   is obtained by standard methods as 

 0( ) cos ,           0f n cpu t u t t t    (4.7) 

The dynamic response of a linear single-degree-of-freedom system to arbitrary external 

force ( )p t  can be determined by means of the convolution (Duhamel) integral. A 

convolution integral is the sum of the all unit-impulse response functions ( )h t   times the 

respective magnitude ( )p d  	up to time t , yielding 

  
0 0

1
( ) ( ) ( ) ( )sin ( )

t t

p n
n

u t p h t d p t d
m

      


      (4.8) 

The systolic-phase response, in which the system is subjected to constant force ( ) sp p  , is 

obtained as Hara
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    
2

0

1
( ) sin ( ) 1 cos ,           

t
s pI

p s n n s
n p

p R
u t p t d t t t

m E H

   


       (4.9) 

whereas the diastolic-phase response, in which the system is subjected to force 

 ( ) ( ) /( )s s d s cp sp p p p t t t      , is derived from 

     

 1
( ) ( ) sin ( ) ( )cos ( )

( )
                                                                 sin ( ),     <

s

t
II Is d

p s s n p s n s
n cp st

I
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n s s cp
n

p p
u t p t t d u t t t

m t t

u t
t t t t t

    





 
      

  

  




 (4.10) 

in which the first term represents the force-vibration response associated with the diastolic-

phase loading, and the last two terms concern the free-vibration response due to initial 

conditions ( )I
p su t  and ( )I

p su t  induced at the end of the systolic phase. On carrying out 

the calculations, Equation (4.10) reduces to 

     
   

2 sin
( ) 1 cos ,s p n sII s d

p s s n s cp
p cp s n

p R t tp p
u t t t p t t t t

E H t t





              

    (4.11) 

The complete solution is equal to the sum of the pulse-loading response ( )pu t  and the free-

vibration response ( )fu t . The total response of the system as a function of time is obtained 

as  

     
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   
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                                                                                     , 
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
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
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
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





 


      (4.12) 

The first term of Equation (4.12) (free-vibration response) is related with the residual-

stress effect and the second term of Equation (4.12) is related with the response to the 

assumed pulse-type loading. 

The static displacement of the system due to the maximum pressure sp , is identified as Hara
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2

s p
st

p

p R
u

E H
                                                 (4.13) 

Of particular interest is the maximum arterial displacement, which is associated with the 

critical response of the anastomotic region. The maximum displacement of the arterial 

system may occur either during the systolic phase ( 0 st t  ) or during the diastolic phase 

( s cpt t t  ), depending on the system circular frequency and the characteristics of the 

pulse loading.  

The maximum displacement of the systolic phase (for 0| | / 1stu u  ) occurs for cos 1nt   . 

Therefore, by substituting this expression into the first part of Equation (4.12) the 

maximum displacement of the systolic phase max
Iu  is expressed as 

 
2

max 0

2 s pI

p

p R
u u

E H

      (4.14) 

To calculate the time instant 1t  corresponding to the maximum response of the diastolic 

phase, the derivative of the displacement with respect to time is set equal to zero: 

         

2 2 2

1 0

2

1

sin( )
sin

sin
       cos 0

s p s p ps d s d n s
n

n p cp s p p cp s n

p s d n s
n

p cp s n

p R p R Rp p p p tdu t
t u

dt E H t t E H E H t t

R p p t
t

E H t t

  




 




    
            

 
  

  

  (4.15) 

which can be recast in the following form 

 2 2 1 2
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 (4.16) 

in which 
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 (4.19) 

On solving for 1t  we get 

 1 11 2
1 2 2

32 3

1
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B B
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BB B
 

 
  
  

  (4.20) 

The maximum displacement of the diastolic phase max
IIu  is calculated at 1t t  as 

      
   
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    (4.21) 

The maximum response is then obtained through the overall maximum of expressions 

(4.14) and (4.21) as 
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 (4.22) 

Figure 4-3 plots the normalized maximum deformation max / stu u  as a function of the ratio 

/s nt T  for different values of initial displacement, and for typical values of diastolic 

pressure ( 80 mmHgdp  ), maximum systolic pressure ( 120 mmHgsp  ), and cardiac 

pulse duration ( 1 seccpt  ). In particular, Figure 4-3(a) plots the normalized response for a 

typical cardiac pulse with fixed systolic-phase duration, 0.35 secst  , and systems with 

different natural period 2 /n nT   . In this case, the response exhibits an ascending 

curved profile for low values of /s nt T , reaching a plateau for high values of /s nt T . Τhe 

threshold value of /s nt T  that defines the boundary between the ascending part and the 

plateau depends on the loading characteristics. For the parameters used in Figure 4-3(a), 

the threshold value of /s nt T  is approximately 0.4. Figure 4-3(b) plots the normalized 

response for a system with high value of natural period ( 0.9 secnT  ), implying that the 

system has severely damaged artery walls, with the artery elasticity modulus tending to 

zero, and different systolic-phase durations st . For high values of /s nt T  the response is 
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equal to that of Figure 4-3(a), whereas for low values of /s nt T  this case exhibits higher 

response values. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t 
u m

ax
/u

st

0.0

0.5

1.0

1.5

2.0

u0/ust=2/3

u0/ust=1/3

u0/ust=0 ts= 0.35 sec

Normalized systolic duration ts/Tn

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t 
u m

ax
/u

st

0.0

0.5

1.0

1.5

2.0

u0/ust=2/3

u0/ust=1/3

u0/ust=0 Tn= 0.9 sec

Normalized systolic duration ts/Tn

(a) (b)
 

Figure 4-3: Normalized maximum displacement as a function of the ratio /s nt T , for 

different values of the initial displacement 0 / stu u , and for (a) 0.35 secst  , (b) 

0.9 secnT  . 

4.3 Response to different loading approximations 

The loading approximation used in the previous section concerns the first loading cycle, 

immediately after the flow is restored. The internal pressure was abruptly increased from 

zero to the maximum systolic pressure. To the best of our knowledge, there is no other 

study that simulates the first loading cycle immediately after the blood flow is restored. 

Other studies consider that the vascular anastomosis is already under diastolic pressure, 

and subjected dynamically only to the overpressure s dp p . 

In order to study the effect of different loading approximations on the maximum response, 

six different blood pressure profiles are considered. All profiles assume typical parameter 

values: 120 mmHgsp  , 80 mmHgdp  , 0.35 secst  , 1 seccpt  . The pressure time-

profiles of Figure 4-4(a)-(d) simulate the first loading cycle, immediately after the blood 

flow is restored, whereas the pressure time-profiles of Figure 4-4(e) and (f) simulate the 

long-term loading, implying that the artery was incrementally subjected to the diastolic 

pressure and then inflated due to the overpressure s dp p . In particular, the six pressure 

time-profiles of Figure 4-4 stand for: (a) the aortic pressure proposed by Zhong et al. [39], 

simulating the first loading cycle; (b) constant-ramp pressure, simulating the first loading 
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cycle; (c) step pressure, simulating the first loading cycle; (d) smoothly increased pressure, 

simulating the first loading cycle; (e) long-term aortic pressure; and (f) long-term periodic 

aortic pressure. 

 

Figure 4-4: First loading cycle and long-term loading approximations. First loading cycle 

loadings: (a) Aortic pressure proposed by Zhong et al. [39]; (b) Constant-ramp pressure; 

(c) Step pressure; (d) Smoothly increased pressure. Long-term loadings: (e) Aortic 

pressure; (f) Periodic aortic pressure. 

For typical values of the mechanical and geometrical characteristics of arteries the system 

natural period is in the range of 0.001-0.015 sec. The displacement spectrum of Figure 4-5 

plots the normalized maximum radial displacement for arteries with natural periods 0-0.1 

sec. All differential equations were solved numerically by using the ode23s function in 

MATLAB [67]. Hara
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Figure 4-5: Spectrum of normalized maximum radial displacement for different blood 

pressure approximations ( 0 0u  ). 

As expected, cases simulating the first loading cycle exhibit higher normalized response 

values compared to the overpressure (long-term) loadings. In particular, cases B and C 

have equal response values and are the most conservative cases. Their maximum 

displacement is equal to two times the static displacement. The maximum displacement of 

case A is about 1.4-1.7 times the static displacement, whereas the maximum displacement 

of the smoothly increased pressure-profile of case D is about 1-1.1 times the static 

displacement. The maximum displacement under applied long-term loadings (case E and 

F) is approximately equal to the static displacement. Note that, under periodic loading 

(Case F of Figure 4-5) some systems with natural period values higher than 0.04 sec 

exhibit increased amplitude (spikes), indicating resonance and possible failure. As 

mentioned previously, typical arterial systems have natural period values lower than 0.04 

sec, meaning that these systems may correspond to soft aneurysmatic arteries prone to 

rupture. 

4.4 Concluding remarks 

This Chapter investigates the response of the linear-elastic arterial model. An analytical 

time-dependent solution for the radial displacement of arteries (Equation (4.12)) is 

presented. For typical values of the geometric and mechanical properties of arteries the 

derived natural-frequency expression (Equation (4.5)) is of the order of 100-1000 Hz 

(natural period values of the order of 0.001-0.01 sec). We can say that under dynamic 

blood pressure the maximum response of a typical artery is equal to the maximum response 
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of the systolic phase (Equation (4.14)) and does not depend on the systolic-phase duration, 

the cardiac pulse duration, or the value of systolic pressure. It does depend on the systolic 

pressure value, the geometric and mechanical properties of the artery, and the initial 

displacement 0u . 

By investigating different pressure time-profile approximations, it is observed that the 

worst-case scenario (first cardiac cycle) of the linear-elastic response is equal to two times 

the static (linear-elastic) response. The smoother the pressure increase from zero to the 

peak systolic pressure is, the lower the maximum displacement is (tending to become equal 

to the static displacement, Figure 4-4). In the case of long-term loading (case E and F of 

Figure 4-4), the maximum displacement is approximately equal to the static displacement, 

since the ratio of the cardiac pulse duration to the natural period of the artery is of the order 

of 100-1000. 

The findings of this chapter constitute the basis of the hyperelastic and viscoelastic arterial 

models proposed in Chapters 5 and 6, respectively, and of the end-to-end anastomosis 

analysis presented in Chapter 7. Thus, these general closed-form expressions can form the 

basis for the development of vascular anastomosis guidelines, aiming to the prevention of 

post-surgery complications. 
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CHAPTER 5 

Arterial Dynamic Response: Hyperelastic Model  

5.1 Introduction 

When human arteries are subjected to time-dependent arterial blood pressure they 

demonstrate large deformations, exhibiting mainly nonlinear hyperelastic type of response. 

Their stiffness depends on strain [68], since it is monotonically increasing with increasing 

strain. In this way, the artery is protected from aneurysms and other instabilities under 

increasing pressure. Typically, healthy arteries demonstrate convex strain hardening under 

tensile loading, atheromatic arteries demonstrate stiffer response, whereas aneurysmatic 

arteries demonstrate softening response. 

The stress-strain relationship of hyperelastic materials derives from a strain-energy density 

function. The strain-energy density functions are usually expressed as a function of the 

principal invariants: 

  1 2, ,..W f I I  (5.1) 

Several simple constitutive laws describing the mechanical behavior of biological tissues 

[51–56] exist in the literature. More sophisticated constitutive laws have been developed in 

recent years, such as the multi-parameter hyperelastic law proposed by Holzapfel et al. 

[69], which accounts for the material anisotropy and two families of collagen fibers 

arranged in symmetrical spirals. However, complex multi-parameter constitutive laws 

require many material parameters that cannot be easily obtained. 

This chapter examines the effect of strain hardening in the dynamic response of human 

arteries, and compares the hyperelastic arterial response to the respective linear response. 

In particular, three material behaviors are investigated: (a) the hardening behavior of 

healthy arteries, (b) the hardening behavior of atherosclerotic arteries, and (c) the softening 

behavior of aneurysmatic arteries.  

In general, arteries are anisotropic however, we are mainly concerned with the deformation 

of the artery cross-section and the hardening effect. Accordingly, the following isotropic 

hyperelastic models are adopted for each case respectively: (a) the constitutive law 

proposed by Skalak et al. [55], (b) the constitutive law of Delfino et al. [56], as modified 

by Hariton [70], and (c) the Mooney-Rivlin hyperelastic material [51, 52]. 
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Figure 5-1 plots the stress-strain relationships of the linear and nonlinear constitutive laws 

for typical values of their material parameters, and in the absence of longitudinal pre-

stretch ( 0 1z  ). By   is denoted the circumferential Cauchy stress. We can observe that 

under increased strain the stress-strain relationship of Skalak et al. exhibits hardening, the 

Hariton model exhibits exponential hardening, and the Mooney-Rivlin model exhibits 

softening. 
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Figure 5-1: Circumferential stress-strain diagrams of hyperelastic incompressible models. 

No pre-stretch is applied to the models ( 0 1z  ).  

The cross-section of the artery is modeled as a circular ring, consisting of a single 

homogenized layer. The arterial ring is subjected to dynamic intraluminal pressure, 

resulting in the formulation of a single-degree-of-freedom system. Note that, the worst-

case loading approximation scenario (first loading cycle after the blood flow is restored) is 

considered.  

By adopting the aforementioned hyperelastic strain-energy density functions the physical 

problem is described by nonlinear differential equations that require numerical methods to 

be solved. The results of the following analyses are characterized by generality and are 

presented in pictorial and tabular form.  

5.2 Mathematical model 

In formulating the mathematical model of the hyperelastic artery the following 

assumptions are considered: (a) the arterial wall thickness is small compared to the radius 

of the vessel; (b) the vessel cross-section in the undeformed state forms a full circle with 
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thickness-averaged radius R ; (c) the arterial wall has constant thickness along the circle; 

(d) no boundary constraints are applied on the ring; (e) the effects of rotary inertia and 

shear deformation are neglected; (f) the arterial tissue consists of a single (homogeneous) 

layer; and (g) viscous effects are ignored. Note that arteries exhibit longitudinal and 

circumferential residual stresses. The longitudinal pre-stress will be accounted for by a 

constant longitudinal pre-stretch value, whereas other pre-stress effects will be assumed to 

be incorporated into the material constants of the constitutive law. 

Herein, R , H , and L  denote respectively the radius, thickness, and length of the initial 

configuration; and r , h , l  denote respectively the radius, thickness, and length of the 

deformed configuration.  

The deformed artery exhibits circumferential (  ), longitudinal ( zz ), and radial ( rr ) 

Cauchy stresses as shown in Figure 5-1. Note that, based on the thin-wall assumption and 

in the absence of pressure on the outer wall, the radial stresses are almost zero. 

 

Figure 5-2: Stresses of thin-walled cylinder.  

By considering the force equilibrium along the radial direction of the infinitesimal element 

shown in Figure 5-3(b), the equation of motion of the deformed model (Figure 5-3(a)) is 

obtained as 

 
2

0 2

( )
( ) ( ) ( ) ( ) ( ) rd u t

r t p t N t h t r t
dt

   (5.2) 

in which 0  is the density of the arterial tissue, ( )p t  is the uniform intraluminal pressure, 

( )N t  is the axial circumferential force that can be derived from a proper hyperelastic Hara
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constitutive law, and ( )ru t  is the radial displacement. Due to the mass conservation and 

incompressibility of the arterial tissue the initial density of the artery 0  is equal to the 

density of the artery at the deformed state  . The deformed radius is expressed as  

 ( ) ( )rr t R u t   (5.3) 

 

Figure 5-3: (a) Hyperelastic arterial model at deformed state, (b) Typical element of 

arterial ring at deformed state. 

For incompressible materials, such as the arterial walls and many artificial grafts, the 

determinant of the deformation gradient is equal to one and is expressed as 

 | |= = ( ) ( ) =1r zJ t t  F  (5.4) 

where ( ) ( ) /t r t R   is the elongation in the circumferential direction, 0 /z z l L    is 

the elongation in the axial direction, and ( ) ( ) /r t h t H   is the elongation in the radial 

direction. On substituting these expressions in Equation (5.4), the deformed radius times 

the deformed thickness can be expressed as 

 0
( ) ( )

z

RH
r t h t


  (5.5) 

The general expressions of the strain and stress tensors can be found in Appendix A.  

The following sections elaborate on the mathematical formulation of three arterial models, 

each one adopting one of the aforementioned hyperelastic constitutive laws.  Hara
lam

bia
 C

ha
ral

am
bo

us



 

40 

 

5.2.1 Arterial model based on the strain-energy function of Skalak et al.  

By adopting the isotropic, two-dimensional strain-energy function of Skalak et al. [55] we 

aim to investigate the response of healthy arteries or problematic arteries of which the 

deceased part was removed after surgery. This strain-energy function, originally developed 

for red blood cell membranes, demonstrates hardening behavior.  

The strain-energy function proposed by Skalak et al. [55] is 

 2 21
( ) ( ( )) ( ) ( ) ( ( ))

4 2 8

B C
W t I t I t II t II t     

 
 (5.6) 

where B  and C  are the material parameters of the artery, having units of elastic modulus 

multiplied by artery thickness [N/m], and satisfying the condition 0C B  . The 

alternative forms of the strain invariants ( )I t  and ( )II t  are expressed as 

 2 0 2( ) 2( ( ) ( )) ( ( )) ( ( )) 2zz zI t e t e t t t        (5.7) 

 2 0 2
1( ) 4 ( ) 4 ( ) ( ) 2( ( ) ( )) ( ( )) ( ( )) 1zz zz zII t I t e t e t e t e t t t          (5.8) 

in which ( )e t  and ( )zze t  are the Green strain tensors given by 

  21
( ) ( ( )) 1

2
e t t    (5.9) 

  0 21
( ) ( ( )) 1

2zz ze t t   (5.10) 

The circumferential and longitudinal Cauchy stress-strain relationships, multiplied by the 

current artery thickness, are expressed respectively as [55] 

    2 0 2 2 0 2
0 0

( ) ( )
( ) ( ( )) 1 ( ) ( ( )) ( ) 1

2 2 z z
z z

t tW B C
T t t t

e
 

  


     
 

         
 (5.11) 

    
0 0

0 2 2 2 0 2( ) 1 ( ( )) ( ( )) ( ) 1
( ) ( ) 2 2
z z

z z z
zz

W B C
T t t

t e t  
 

     
 

         
 (5.12) 

Figure 5-4 shows the Cauchy stresses acting along the circumferential and longitudinal 

directions of the arterial model, and Figure 5-5 plots the Skalak et al. circumferential 

stress-strain relationship for different values of the ratio /B C . By increasing the ratio 
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/B C  the hardening behavior of the material is increased, whereas for negative strains the 

model demonstrates softening. Note that, for / 0B C   the circumferential and longitudinal 

stresses are equal. 

 

Figure 5-4: Circumferential stresses T  and axial stresses zT  multiplied by the current 

artery thickness. 

 

Figure 5-5: Normalized circumferential stress-strain diagram of Skalak et al. [55] 

hyperelastic model for different values of the ratio /B C , and for 0 1z  . 

The circumferential stress, multiplied by the current artery thickness ( )T t  is identical to 

the force acting along the circumferential direction ( )N t . Thus, on substituting equations 

(5.3), (5.5), (5.11) in Equation (5.2) we obtain the normalized equation of motion of the 

arterial model as Hara
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2 0 3 2 0 3 0
0 3

0 2 2

2
0

0

( ) 2 ( ) ( ) ( ) ( ) ( ) ( )
1 ( )

2 2 2 2

( ) ( )
                                                                       + 1 ( )

r r r z r r z z
z

z

r r

z

u t u t u t u t u tB

R C R R R R

R Hu t u tR
p t

R C C

  





            
    

   
 


R  (5.13) 

The equation of motion can be expressed in polynomial form of the normalized radial 

displacement as 

  

2 30 3 0 0 3 0 3

0 0 0

0 3 0

( ) 3( ) ( ) 3( ) ( ) ( )3

2 2 2 2 2 2

( ) ( )
                                                              1 ( )

2 2
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z

R H u t

C R





 





   (5.14) 

The physical problem is reduced to six dimensionless quantities: /B C , 0
z , ( ) /p t R C , 

( ) /ru t R , 2 ( ) /Sk rt u t R , and / Skt t , where 2 0
0 /Sk zt R H C   is the characteristic time of 

the response. The initial tangent circumferential Young's modulus 0E  can be expressed in 

terms of the material parameters B  and C  as 

   
0

0 0 4 0 2

11 1

2 ( ) ( )z
z z

d T Td d B C C
E

d d h d H H H H
 

   


   

    
   

         
   

 (5.15) 

in which   is the Cauchy stress in the circumferential direction. For known values of the 

circumferential Young's modulus 0E  and ratio /B C , the two material parameters can be 

obtained respectively as 

 
0

0 4 0 2
,           0

( / ) 2( ) ( )z z

EC
C B

H B C


 
  

 
 (5.16) 

 
0

0 4 0 2( / ) 2( ) ( )z z

EB B

H C B C


 


 
 (5.17) 

The polynomial equation of motion (Equation (5.14)) can be solved for four complexity 

levels, each one having a different order of nonlinearity (zero-, first-, second-, and third-

order). To obtain the “zero-order nonlinear” equation we neglect the second- and third-

power terms of radial displacement and the term ( ) ( ) /rp t u t R  of Equation (5.14). The Hara
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resulting second-order linear non-homogeneous differential equation with constant 

coefficients equation is a expressed as 

 
20 3 0 0 3 0

0
0 0

( ) ( ) 3( ) ( )
( )

2 2 2 2
z z r z z r

z z

R Hu t u tR B
p t

C R C C R

   
 

  
       

   


 (5.18) 

For 0 1z   this equation is identical to the equation of motion of the linear model. The 

equivalent circular frequency of the “zero-order nonlinear” model is given by 

 

0
0 3

0

0

3
( )

2 2
z

z
zSk

Sk

B
C

t





 

  (5.19) 

The “first-order nonlinear” equation is a second-order linear non-homogeneous differential 

equation with non-constant coefficients. It is obtained by neglecting the second- and third-

power terms of the radial displacement in Equation (5.14) as 

 
20 3 0 0 3 0

0
0 0

( ) ( ) ( ) 3( ) ( )
1 ( )   

2 2 2 2
r z z r z z r

z z

R Hu t u t u tR B
p t

R C R C C R

   
 

            
    


(5.20) 

The “second-order nonlinear” equation is a second-order nonlinear non-homogeneous 

differential equation with non-constant coefficients, and it is obtained by neglecting the 

third-power terms of the radial displacement in Equation (5.14) as 

                        

0 3 0 0 3 0

0

2 20 3
0

0 0

( ) ( ) ( ) 3( )
1 ( )

2 2 2 2

( ) 3( ) ( )3
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R C C R
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
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 
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    

      
   



                         (5.21) 

Finally, the “third-order nonlinear” equation stands for the fully nonlinear problem 

described by Equation (5.14).  

We are particularly interested in the response of the system in terms of circumferential 

elongation, variation of thickness, circumferential stresses, longitudinal stresses, and 

energy-density values. The normalized functions for these response quantities can be 

obtained respectively as Hara
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( )

( ) 1 ru t
t

R    (5.22) 

 0

( ) 1

( ) z

h t

H t 
  (5.23) 
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0 2

2 2 0 2
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( ( )) 1 ( ( )) ( ) 1

2 2
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T t t B
t t

C C
 

 
   
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 
    

 
 (5.24) 

    
20

0 2 2 0 2( ( ))( )
( ) 1 ( ( )) ( ) 1

( ) 2 2
z z
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tT t B
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C t C

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   


 
    

 
 (5.25) 

 
2

2( ) 1 ( ( ))
( ( )) ( ) ( )

4 2 8

W t B II t
I t I t II t

C C
     
 

 (5.26) 

Equation (5.23) is derived by solving Equation (5.4) for ( ) /h t H , and Equations (5.24) 

through (5.26) are derived by dividing Equations (5.11), (5.12), and (5.6) respectively, by 

the material parameter C . 

5.2.2 Arterial model based on the strain-energy function of Hariton  

Atheromatic arteries exhibit stiffer (exponential-like) behavior than healthy arteries. In 

order to study the response of atheromatic arteries we adopt the isotropic, three-

dimensional strain-energy function proposed by Hariton [70], which is a modification of 

the strain-energy function proposed by Delfino et al. [56]. The strain-energy function 

proposed by Hariton is expressed as 

  2

1( ) exp ( ) 3 1
2

a b
W t I t

b

        
 (5.27) 

where 0a  is a stress-like parameter, and 0b  is a non-dimensional material parameter. 

Typical values of the material parameters are 44.2 kPaa   and 16.7b   [56]. The first 

strain invariant 1I  is expressed as 

 2 0 2
1 0 2

1
( ) ( ( )) ( )

( ( ))z
z

I t t
t



 
 

    (5.28) 

By adopting the average theory for the composite arterial structure (i.e. the artery acts as a 

homogeneous-one layer model) and the thin-wall assumption, the hydrostatic pressure P  
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(from incompressibility) of a stress-free outer surface can be neglected ( 0P  ). Therefore, 

the Cauchy stress-strain relationships of the circumferential and longitudinal directions are 

equal to 

  

 
 

   2 2

1 120

1
( ) ( ) 2 ( ) ( ) 3 exp ( ) 3

( ) 2( ) z
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 

   
  

             
  (5.29) 

       
 
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1
( ) 2 ( ) 3 exp ( ) 3
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z z

W b
t P I t I t

t

   
  

             
 

      (5.30) 

 

Figure 5-6: Normalized circumferential stress-strain diagram of Hariton [70] hyperelastic 

model for different values of the parameter b , and for 0 1z  .  

Figure 5-6 shows the normalized circumferential stress-strain diagram of the constitutive 

law proposed by Hariton, in the absence of longitudinal pre-stretch ( 0 1z  ). By increasing 

the material parameter b  the hardening behavior of the material is increased.  

Τhe axial force acting along the circumferential direction is equal to ( ) ( ) ( )N t t h t . 

The normalized equation of motion of the arterial model is obtained by substituting 

Equations (5.3), (5.5), (5.29) in Equation (5.2): 
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(5.31) 

In this case, the six dimensionless quantities of this model are b , 0
z , ( ) / ( )p t R aH , 

( ) /ru t R , 2 ( ) /H rt u t R , and / Ht t . The term 2 0
0 /H zt R a   is the characteristic time of 

the response. The correlation between the initial circumferential Young's modulus 0E  and 

the material parameters a  and b  is 
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 (5.32) 

Finally, on normalizing Equations (5.29), (5.30), and (5.27) by the material parameter a 

the normalized functions of circumferential stress, longitudinal stress, and strain-energy are 

expressed respectively as 
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 (5.35) 
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5.2.3 Arterial model based on the strain-energy function of Mooney-

Rivlin 

The third constitutive law adopted in this chapter is the isotropic three-dimensional strain-

energy function of Mooney-Rivlin [51, 52]. The Mooney-Rivlin strain-energy function 

exhibits softening under applied elongations and can be parallelized with the behavior of 

aneurysmatic arteries. The strain-energy function suitable to incompressible materials is 

[52] 

       1 2

1 1 1 1 1
( ) ( ) 3 ( ) 3 ,        0,       

2 2 2 2 2
W t I t I t                         

 (5.36) 

in which   is the shear modulus of the material under infinitesimal deformation of the 

initial undeformed configuration,   is a dimensionless material constant, and 2I  is the 

second strain invariant for incompressible materials expressed as 
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 (5.37) 

For 1 / 2   the strain-energy function of Equation (5.36) corresponds to the Neo-

Hookean model. 

The Cauchy stress-strain relationships of the circumferential and longitudinal directions 

can be obtained by adopting the equations of Chadwick [52] (when setting the parameter x  

equal to 1). Based on the thin-wall assumption and in the absence of pressure on the outer 

wall, the radial stress is almost zero ( 0rr  ). The stress-strain relations of the 

circumferential and longitudinal directions are respectively approximated by 

       2 2 0 2
2 0 2 2

1 1 1 1
( ) ( ( )) ( ( )) ( )

2 ( ( )) ( ) 2 ( )z
z

t t t
t  

 

       
  

                 
      

 (5.38) 

         0 2 2 0 2
2 0 2 0 2

1 1 1 1
( ) ( ) ( ( )) ( )

2 ( ( )) ( ) 2 ( )zz z z
z z

t t
t 



       
  

                 
     

 (5.39) 

The Mooney-Rivlin circumferential stress-strain relationship exhibits increased softening 

for increasing values of the material parameter   (Figure 5-7). Note that, on the absence 

of longitudinal pre-stretch, the material parameter   has no effect on the stress-strain 

behavior. 
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Figure 5-7: Normalized circumferential stress-strain diagram of Mooney-Rivlin [51, 52] 

hyperelastic model, for different values of the material parameter  , and longitudinal pre-

stretch 0
z . 

The normalized equation of motion of the artery, based on the Mooney-Rivlin [51, 52] 

material law, is obtained as 
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3 30

0 2
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                                                    

2
0

0

( ) ( )( )
                             1 r r

z

Ru t u tRp t

R H R


 

    
 



   (5.40) 

The six dimensionless quantities of this problem are  , 0
z , ( ) / ( )p t R H , ( ) /ru t R , 

2 ( ) /MR rt u t R , and / MRt t , where the term 2 0
0 /MR zt R   is the characteristic time of 

the response of the Mooney-Rivlin arterial model. The natural frequency of the equivalent 

linear equation is given by 

 
0

0
0 0 0 0 3 0 3

1 2 2 3 3

2( ) ( ) 2
MR z

z
MR z z z zt

  
   

       (5.41) 

The initial tangential circumferential Young's modulus 0E  in terms of the material 

parameters   and  , for the thin-wall model and 0rr  , is expressed as Hara
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 

  20 0
20

1

1 1 1
2 1 1

2 2 z

z

d
E

d





 

    
 

  
                   

  

 (5.42) 

The normalized circumferential stress, normalized longitudinal stress, and normalized 

strain-energy functions are obtained by dividing Equations (5.38), (5.39), and (5.36) 

respectively by the material parameter   yielding 

     2 2 0 2
2 0 2 2

( ) 1 1 1 1
( ( )) ( ( )) ( )

2 ( ( )) ( ) 2 ( )z
z

t
t t

t


 
 

     
   

                 
      

 (5.43) 
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      

 (5.44) 
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        
  

 (5.45) 

5.3 Numerical solution 

The nonlinear dynamic equations that describe the physical problem can be characterized, 

from the numerical point of view, as “stiff”, hence their solution demands special methods. 

An ordinary differential equation is “stiff”, when there are computational efficiency issues 

(large computational time) and the numerical method must reduce the time step to obtain 

satisfactory results of the solution. In our case, the efficiency issues are caused due to the 

large differences in the orders of magnitude of the ordinary differential equation 

coefficients.  

The formulated ordinary differential equations can be solved numerically through the 

appropriate ode solvers in MATLAB [67, 71]. In particular, the problem is solved by using 

the state-space analysis, according to which the second-order ordinary differential equation 

is transformed into two first-order ordinary differential equations [72].  

In general, the state-space formulation of a second-order differential equation is derived by 

setting the displacement and velocity of the system equal to the state variables 1z  and 2z  

respectively as 

 1 rz u  (5.46) 
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 2 rz u   (5.47) 

The state variables describe the future response of a system, given the initial conditions, 

the excitation input, and the dynamic equation of motion. 

The derivatives of the state variables are expressed as 

 1 2rz u z   (5.48) 

 2 rz u   (5.49) 

The term 2z , in Equation (5.49), is obtained by solving the second-order differential 

equation for ru . 

Finally, the state-input matrix consists of two first-order differential equations, 

representing the first derivative (Equation (5.48)) and the second derivative (Equation 

(5.49)) of the radial displacement: 

                                                                 1

2

z
z

z

 
  
 





                               (5.50) 

The final solution is obtained through the following output matrix, which lists the radial 

displacements and the radial velocities of the system as 

 
1

2

r

r

z u

z u

 
   

   
   

 (5.51) 

In the following, the state-space formulation for each of the hyperelastic arterial models 

considered in this chapter, is presented. Note that, the problem has been investigated by 

proper normalization of the involved material parameters and of the pressure time-profile.  

In the case of the Skalak et al. arterial model, the normalized pressure time-profile is 

obtained by multiplying the pressure values ( )p t  by /R C  and the time values by 

1/ Skt . The normalized state-space formulation is derived by multiplying Equations 

(5.48) and (5.49) by 1/ R and /Skt R  respectively, yielding 

 1
ru

z
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  (5.52) Hara
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 2
r Sku t

z
R


  (5.53) 

Thus, the derivatives of the state variables can be expressed as 

 1 2
r Sku t

z z
R

 
   (5.54) 

 
2

2
r Sku t

z
R


  (5.55) 

On substituting Equation (5.52) in Equation (5.14), and solving for the normalized radial 

acceleration 2 /r Sku t R , we obtain the state term 2z  as 
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   


 (5.56) 

The normalized state-input matrix consists of the two normalized first-order differential 

equations (5.54) and (5.56), resulting in the following expression: 
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

 (5.57) 

The derived output matrix lists the normalized radial displacements and the normalized 

radial velocities of the system as 
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By following the same procedure, the normalized state variables of the arterial model 

based on the strain-energy function of Hariton et al. are obtained by letting Hara
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 1
ru

z
R

  (5.59) 

and 

 2
r Hu t

z
R


  (5.60) 

The derivatives of the state variables are expressed as 
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z z
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 
   (5.61) 
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2
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z
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
  (5.62) 

in which the state term 2z  is obtained on substituting Equation (5.59) in Equation (5.32), 

and on solving for the normalized radial acceleration 2 /r Hu t R : 
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 (5.63) 

The resulting state-input matrix is formulated as 
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 (5.64) 

Similarly, for the Mooney-Rivlin arterial model (Equation (5.40)), the normalized state 

variables are obtained by multiplying Equations (5.48) and (5.49) by 1/ R and /MRt R  

respectively, yielding 

 1
ru

z
R

  (5.65) 
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 2
r MRu t

z
R


  (5.66) 

The derivatives of the state variables are expressed as 

 1 2
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z z
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 
   (5.67) 

 
2

2
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z
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
  (5.68) 

The state term 2z  is obtained on substituting Equation (5.65) in Equation (5.40), and on 

solving for the normalized radial acceleration 2 /r MRu t R : 
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 (5.69) 

The state-input matrix of the Mooney-Rivlin arterial model is expressed as 
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 (5.70) 

Two ode solvers have been utilized in MATLAB to solve numerically the ordinary 

differential equations. The ordinary differential equations of the Skalak et al. case 

(Equations (5.14), (5.18), (5.20), and (5.21)) and of the Mooney-Rivlin case (Equation 

(5.40)) are solved numerically by using the ode23s function in MATLAB. This function 

uses a one-step solver based on the modified Rosenbrock method of order 2 [73, 74]. On 

the other hand, the “stiffer” ordinary differential equation of the Hariton case (Equation 

(5.32)) is solved numerically by using the ode23tb function in MATLAB. The ode23tb 

solver uses an implicit Runge-Kutta method [75], suitable for very stiff problems.  Hara
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5.4 Results 

This section presents response spectra for the three models adopted in this study. In 

particular, the maximum normalized radial displacement of the arterial model, and 

response spectra of the circumferential elongation, variation of thickness, circumferential 

stress, longitudinal stress, and strain-energy density are investigated by varying the 

problem parameters. 

The hyperelastic models are compared to the equivalent linear arterial model. For each 

analysis, the Young's modulus of the linear model is taken to be equal to the initial tangent 

Young's modulus 0E  of the hyperelastic model. The linear equation of motion is of the 

type of Equation (4.4) and is expressed as 

 
0

0 2
( ) ( ) ( )r r

E H
Hu t p t u t

R
    (5.71) 

The aortic pressure-time profile adopted in this study is the first loading cycle 

approximation of Figure 4-2(b), having values of maximum systolic pressure 

=120 mmHg=16 kPasp , diastolic pressure =80 mmHg=10.66 kPadp , systolic-phase 

duration 0.35 secst  , and total duration of the cardiac pulse 1 seccpt  . 

The solution of the linear arterial model, subjected to this pulse-type loading, can be 

expressed in closed-form expressions (see Section 4.2). The longitudinal pre-tension of the 

linear model is taken into account through the initial displacement 0u . We assume that 

 0
0 1zu R   . For all cases the pre-stretch value is taken to be larger or equal to one (

0 1z  ). 

5.4.1 Response of healthy arteries 

The nonlinear response of healthy arteries is calculated by solving the arterial model based 

on the strain-energy function of Skalak et al. (Equation (5.13)). The exact solution of this 

case is represented by the solution of the fully (“third-order”) nonlinear model. Numerical 

examples of arterial systems are presented in order to demonstrate values of their 

maximum response and typical response time-histories. Furthermore, a comparison 

between the four models (zero-, first-, second-, and third-order nonlinear models) and the 

linear model is shown through radial-displacement spectra. Response spectra of other 

important response quantities are also plotted. 
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5.4.1.1 Examples of typical arterial systems 

Table 5-1 reports the parameters for the three arterial systems investigated in this section 

and their calculated maximum normalized radial displacements and velocities.  

Table 5-1: Parameters of each example, and calculated maximum normalized radial 

displacements and velocities. 

 Example 1 (soft) Example 2 (medium 
stiffness) 

Example 3 (stiff) 

Parameters 

/B C  0.5 0.5 1 
0
z  1.1 1 1 

0u  0.1 0 0 

/cp Skt t   166.67 1000 2000 

/sp R C  0.80 0.16 0.16 

0
Sk  (1/sec) 230 1000 2828 

Maximum normalized displacement ( ) /ru t R  (%) 

Linear case 62.07 21.32 15.99 

Zero-order 71.94 21.32 15.99 

First-order 124.15 23.86 17.37 

Second-order 62.00 19.58 14.95 

Third-order 59.19 19.44 14.89 

Maximum normalized velocity ( ) /r Sku t t R  

Linear case 0.3882 0.1305 0.1130 

Zero-order 0.4960 0.1305 0.1130 

First-order 0.6803 0.1380 0.1179 

Second-order 0.5192 0.1305 0.1129 

Third-order 0.5116 0.1304 0.1130 
 

Example 1 represents a problematic (soft) artery, with a smaller circular frequency 

compared to other models. The normalized pressure profile used in this case is shown in 

Figure 5-8. The system exhibits large radial displacements. In particular, the “first-order 

nonlinear” case exhibits the largest radial displacements, whereas the fully nonlinear case 

(“third-order”) exhibits the lower radial displacements. By observing the response Hara
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functions of the fully nonlinear problem shown in Figure 5-9, we can say that the envelope 

of the radial response vibrations is identical to the shape of the pressure time-profile.  

  

Figure 5-8: Normalized pressure time-profile used in Example 1. 

Furthermore, the applied longitudinal pre-stretch 0 1.1z   shifts the normalized 

displacements of the model towards the negative values of the /ru R -axis. 

Examples 2 and 3 represent stiff arterial systems. Their response values are relatively low, 

and the range of the calculated response values of the five models is limited, compared to 

the first example. 
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Figure 5-9: Normalized response of the “third-order nonlinear” model versus time: (a) 

radial displacement /ru R , (b) radial velocity /r Sku t R , (c) arterial thickness /h H , (d) 

circumferential stress /T C , (e) longitudinal stress /zT C , and (f) strain-energy density 

/W C . Hara
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5.4.1.2 Maximum radial displacement 

The response spectra of Figures 5-10 and 5-11 reveal the level of approximation of each 

arterial model (and order of nonlinearity) against the exact solution (“third-order” model). 

They also reveal how is the peak radial response affected when varying the problem 

parameters. 
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Figure 5-10: (a) Displacement spectrum for pre-stretch values  0 1 1.3z    and / 0B C  , 

/ 0.16sp R C  , / 2000cp Skt t  , (b) Displacement spectrum for ratios  / 0 1B C    and 

0 1z  , / 0.16sp R C  , / 2000cp Skt t  .  

In general, the “first-order nonlinear” model gives the largest response values, whereas the 

fully nonlinear model gives the lower response values. The “second-order nonlinear” 

model approximates well the fully nonlinear problem, meaning that the second-power term 

of radial displacement 2( / )ru R  dominates. The peak response value of the linear model is  

always positive (due to the initial displacement 0 0u  ), making the linear model 

conservative under large pre-stretch values (Figure 5-10(a)). For 0 1z   the linear and the 

“zero-order nonlinear” models have identical response.  
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Figure 5-11: (a) Displacement spectrum for  / 0.16 1.28sp R C    and / 0B C  , 0 1z  , 

/ 2000cp Skt t  . (b) Displacement spectrum for normalized characteristic time values 

 / 1000 10000cp Skt t    and / 0B C  , / 0.16sp R C  , 0 1z  . 

Figure 5-10 shows that an increase of the longitudinal pre-stretch 0
z  or the ratio /B C , 

stiffens the system and decreases the radial displacement. For pre-stretch values between 

1.1-1.15, the absolute value of the radial deformation is minimized (for / 0.16sp R C  ).  

On the other hand, Figure 5-11 shows that an increase in the normalized pressure /sp R C , 

yields increased radial deformation response (Figure 5-11(a)), whereas the parameter 

/cp Skt t  do not affect the problem (Figure 5-11(b)).  

An increase of the normalized pressure /sp R C  implies either an increase of the arterial 

pressure (hypertension) or a decrease of the elasticity modulus. In cases of hypertension, 

the systolic pressure sp  can be 5/3 times higher than the normal systolic pressure (120 

mmHg). For example, according to Figure 5-11(a), if the normal value of normalized 
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systolic pressure is / 0.16sp R C  , in case of hypertension it would reach a value of 

/ 0.27sp R C   and the normalized radial displacement would increase from 28% to 42%. 

Similarly, in the case that the elasticity modulus ( 0 4 0 2( 2 ( ) ( ) ) /z zE B C C H     ), 

and consequently the material parameter /C H  of the artery are decreased, the normalized 

systolic pressure /sp R C  is increased. The material parameter /C H  has typical values 

between 0.1 and 1 MPa. Thus, the normalized systolic pressure /sp R C  is potentially 

increased by a factor of 10 for soft arteries, resulting in a radial response over 100%, as 

shown in Figure 5-11(a). 

5.4.1.3 Response spectra 

Based on the results of the previous section, we can say that the most important parameters 

influencing the problem are the pre-stretch value 0
z , the ratio /B C , and the normalized 

pressure ( ) /p t R C . Accordingly, the spectra of the response quantities of Equations 

(5.22) through (5.26) are investigated for different values of these parameters. 

Figure 5-12 present spectra for different longitudinal pre-stretch values, for three values of 

the ratio /B C , and for / 0.16sp R C  . The circumferential elongation decreases with 

increasing values of the longitudinal pre-stretch 0
z , while the normalized strain-energy 

and normalized stresses exhibit an optimized minimum value for 0
z  between 1.1 and 1.15. 

When 0
z  is increased over this optimized value, the normalized strain-energy is increased 

rapidly, indicating possible failure for pre-stretch values close to 1.3. For increasing values 

of the ratio /B C , the response decreases for pre-stretch values up to 1.1-1.15, and 

increases for higher pre-stretch values. 
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Figure 5-12: Response spectra for  0 1 1.3z   , / [0,  0.5,  1]B C  , / 0.16sp R C  , 

/ 2000cp Skt t  : (a) circumferential elongation  , (b) normalized thickness /h H , (c) 

normalized strain energy /W C , (d) normalized circumferential stress /T C , (e) 

normalized longitudinal stress /zT C .  

Figure 5-13 presents response spectra as a function of the ratio /B C  and for three different 

values of parameter /sp R C . It can be observed that the maximum response of the system 

is decreased with increasing values of /B C  or with decreasing values of the normalized 

pressure /sp R C . Moreover, the “zero-order nonlinear” model is conservative compared to 

the “third-order nonlinear” model. Hara
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Figure 5-13: Response spectra for  / 0 1B C   ,  / 0.16,  0.19,  0.22sp R C  , 0 1z  , 

/ 2000cp Skt t  : (a) circumferential elongation  , (b) normalized thickness /h H , (c) 

normalized strain-energy /W C , (d) normalized circumferential stress /T C , (e) 

normalized longitudinal stress /zT C . 

Tables 5-2 and 5-3 list the peak value of normalized strain-energy /W C  for the “third-

order nonlinear” models of Figures 5-12 and 5-13 respectively, along with the time of its 

occurrence. In most cases, the peak strain-energy value occurs during the systolic phase.  

 

 

Hara
lam

bia
 C

ha
ral

am
bo

us



 

63 

 

Table 5-2: Maximum normalized strain-energy /W C  and exact occurrence time for range 

of 0
z  and /B C  values, and / 0.16sp R C   (case of Figure 5-12). 

0
z  

/B C  

0 0.5 1 

Maximum 
/W C  

Time 
(sec) 

Maximum 
/W C

Time 
(sec) 

Maximum 
/W C  

Time 
(sec) 

1 0.051184 0.001383 0.034112 0.001174 0.025579 0.00104 

1.05 0.0321 0.001349 0.02378 0.001163 0.019512 0.001038

1.1 0.017248 0.001319 0.017016 0.001154 0.017996 0.001039

1.15 0.013001 0 0.019501 0 0.026002 0 

1.2 0.0242 0 0.0363 0 0.0484 0 

1.25 0.041494 0.35078 0.060049 0.35011 0.079324 0.34928 

1.3 0.097124 0.99934 0.10226 0.99997 0.12222 0.35024 

 

Table 5-3: Maximum normalized strain energy /W C  and exact occurrence time for range 

of /B C  and /sp R C  values, and 0 1z   (case of Figure 5-13). 

/B C  

/sp R C  

0.16 0.19  0.22  

Maximum
/W C   

Time 
(sec) 

Maximum
/W C   

Time 
(sec) 

Maximum
/W C   

Time 
(sec) 

0 0.0512 0.001383 0.0737 0.001359 0.1004 0.001337

0.2 0.0426 0.001286 0.0614 0.001265 0.0836 0.001247

0.4 0.0366 0.001207 0.0526 0.001189 0.0717 0.001173

0.6 0.032 0.001142 0.0461 0.001126 0.0627 0.001111

0.8 0.0284 0.001087 0.0409 0.001073 0.0557 0.001059

1 0.0256 0.00104 0.0368 0.001027 0.0501 0.001014
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5.4.2 Response of atheromatic arteries 

5.4.2.1 Maximum radial deformation 

This section presents the peak normalized radial deformations of atheromatic arterial 

systems (arterial model based on the strain-energy function of Hariton) for different values 

of the non-dimensional parameters 0
z , b , / ( )sp R aH , and /cp Ht t .  

b=16.7, Rps/aH=3.20, tcp/tH=(1/3)e+4 
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Figure 5-14: (a) Displacement spectrum for pre-stretch values  0 1 1.3z    and 16.7b  , 

/ ( ) 3.2sp R aH  , / 1 / 3E 4cp Ht t   , (b) Displacement spectrum for material parameter 

values  2 26b    and 0 1.25z  , / ( ) 3.2sp R aH  , / 1 / 3E 4cp Ht t   . 

As can be seen from Figure 5-14, the system becomes stiffer exhibiting reduced radial 

displacement as the longitudinal pre-stretch (Figure 5-14(a)) or the material parameter b

(Figure 5-14(b)) is increased. Figure 5-15 shows that the normalized radial displacement 

increases slightly with increasing values of the normalized pressure / ( )sp R aH  (Figure 

5-15(a)), whereas the characteristic time Ht  seems to not affect the problem (Figure 
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5-15(b)). The linear case yields conservative values of the normalized radial displacement 

compared to the hyperelastic model, except for large pre-stretch values and low values of 

the normalized pressure. In addition, the maximum deformation occurs at the beginning of 

the loading while the system has not entered the exponential hardening region yet. 
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Figure 5-15: (a) Displacement spectrum for normalized pressure values 

 / 0.5 2.3sp R aH    and 16.7b  , 0 1.25z  , / 1/3E 4cp Ht t   , (b) Displacement 

spectrum for normalized characteristic time values  / 500 5000cp Ht t    and 16.7b , 

/ 3.2sp R aH  , 0 1.25z  . 

5.4.2.2 Response spectra 

Equations (5.33)-(5.35) are investigated by varying the pre-stretch value 0
z , the material 

parameter b  and the normalized pressure /sp R aH .  
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Figure 5-16: Response spectra for  0 1 1.3z   , 5,  15,  25b  , / ( ) 3.2sp R aH  , 

/ 1/ 3E 4cp Ht t   : (a) circumferential elongation  , (b) normalized thickness /h H , (c) 

normalized strain energy /W a , (d) normalized circumferential stress / a , (e) 

normalized longitudinal stress /zz a .  

Figure 5-16 plots response spectra as a function of the longitudinal pre-stretch, for three 

values of the material parameter b , and for / 3.2sp R aH  . The normalized strain-energy 

/W a , the circumferential elongation  , and the normalized circumferential stress / a  

are decreased with increasing values of the longitudinal pre-stretch 0
z . We can observe 

that the normalized longitudinal stress exhibits peak values for pre-stretch values between 

1.1-1.2. For increasing values of the material parameter b  the circumferential elongation 

and the strain-energy are decreased, whereas for the different values of material parameter 
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b  the calculated stresses present intersection points (Figure 5-16 (d,e)). Consequently, the 

hoop stress is not a representative criterion to obtain the response limits of different arterial 

systems. On the contrary, the strain-energy function and the displacements of different 

arterial systems appear distinctive. 
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Figure 5-17: Response spectra for  0 1 1.3z   , / 0.8,  2.4,  4.0sp R aH  , 15b  , 

/ 1 / 3E 4cp Ht t   : (a) circumferential elongation  , (b) normalized thickness /h H , (c) 

normalized strain energy /W a , (d) normalized circumferential stress / a , (e) 

normalized longitudinal stress /zz a .  

The response spectra were investigated for different cases of longitudinal pre-stretch, three 

values of the normalized pressure /sRp aH , and 15b   (Figure 5-17). The normalized 

strain-energy, the circumferential elongation, and the normalized circumferential stress are 
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decreased with increasing values of longitudinal pre-stretch 0
z . We can observe that, the 

normalized longitudinal curves exhibit peak values for pre-stretch values between 1.05-

1.15. For increasing pressure values /sRp aH  the response in increased. 
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Figure 5-18: Response spectra for  5 25b   , / 0.8,  2.4,  4.0sp R aH  , 0 1z  , 

/ 1 / 3E 4cp Ht t   : (a) circumferential elongation  , (b) normalized thickness /h H , (c) 

normalized strain-energy /W a , (d) normalized circumferential stress / a , (e) 

normalized longitudinal stress /zz a . 

Figure 5-18 presents response spectra for different values of the material parameter b , for 

three different values of the normalized pressure /sRp aH , and 0 1z  . An increase of the 

material parameter b  results in a decrease of the circumferential elongation and 
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normalized strain-energy, and an increase of the normalized circumferential and 

longitudinal stresses. 

 Table 5-4: Maximum normalized strain-energy /W a  and exact occurrence time for range 

of 0
z  and b  values, and for / 3.2sRp aH   (case of Figure 5-16). 

0
z  

b  

5 15 25 

Maximum 
/W a  

Time 
(sec) 

Maximum 
/W a

Time 
(sec) 

Maximum 
/W a  

Time 
(sec) 

1 2.6255 0.00020 1.9443 0.00017 1.69 0.00016

1.05 2.6272 0.00019 1.913 0.00017 1.6495 0.00016

1.1 2.5968 0.00019 1.8488 0.00016 1.5688 0.00015

1.15 2.5317 0.00019 1.747 0.00016 1.4549 0.00015

1.2 2.4317 0.00019 1.6072 0.00016 1.2991 0.00014

1.25 2.2964 0.00018 1.4287 0.00015 1.0992 0.00014

1.3 2.1241 0.00018 1.2076 0.00015 0.85387 0.00013

 

Table 5-5: Maximum normalized strain-energy /W a  and exact occurrence time for range 

of 0
z  and /sRp aH  values, and for 15b   (case of Figure 5-17).  

0
z  

/sRp aH  

0.8 2.4 4 

Maximum 
/W a  

Time 
(sec) 

Maximum 
/W a

Time 
(sec) 

Maximum 
/W a  

Time 
(sec) 

1 0.40285 0.00033 1.4107 0.00020 2.4879 0.00015 

1.05 0.39027 0.00032 1.3863 0.00019 2.4441 0.00015 

1.1 0.36872 0.00032 1.3341 0.00019 2.374 0.00019 

1.15 0.33763 0.00031 1.2558 0.00018 2.2506 0.00014 

1.2 0.29761 0.00030 1.1483 0.00018 2.0825 0.00014 

1.25 0.2494 0.00030 1.0106 0.00017 1.8603 0.00013 

1.3 0.19548 0.00029 0.84355 0.00017 1.5873 0.00013 Hara
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Reported in Tables 5-4 through 5-6 are the peak values of normalized strain-energy and the 

time instant that it occurs. For all cases, the peak value occurs at the beginning of the 

loading. 

Table 5-6: Maximum normalized strain-energy /W a  and exact occurrence for range of 

/sRp aH  and b  values, and for 0 1z   (case of Figure 5-18).  

b  

/sRp aH  

0.8 2.4  4  

Maximum
/W a   

Time 
(sec) 

Maximum
/W a   

Time 
(sec) 

Maximum
/W a   

Time 
(sec) 

5 0.50448 0.000374 1.8847 0.000224 3.3855 0.000176

7.5 0.46631 0.000358 1.6958 0.000214 3.0219 0.000168

10 0.43967 0.000347 1.5721 0.000207 2.7875 0.000162

12.5 0.41922 0.000338 1.4818 0.000201 2.6183 0.000158

15 0.40285 0.000331 1.4107 0.000196 2.4879 0.000154

17.5 0.3893 0.000325 1.3548 0.000193 2.3827 0.000151

20 0.37778 0.00032 1.3074 0.00019 2.2938 0.000149

22.5 0.3678 0.000316 1.2669 0.000187 2.2218 0.000147

25 0.35903 0.000312 1.2317 0.000185 2.1548 0.000145

5.4.3 Response of aneurysmatic arteries 

5.4.3.1 Maximum radial deformation 

This section compares the radial displacement of the Mooney-Rivlin arterial model with 

that of the equivalent linear model. All models in the analysis assume the same initial 

tangent elasticity modulus 0E . In particular, Figures 5-19 and 5-20 plot the peak radial 

displacement as a function of the longitudinal pre-stretch 0
z , the material parameter  , 

the normalized pressure ( ) / ( )p t R H , and the normalized characteristic time /cp MRt t . 

It can be observed that an increase of the longitudinal pre-stretch 0
z , results in a decrease 

of the radial displacement and in stiffer arterial systems (Figure 5-19(a)). On the other 

hand, by increasing the material parameter   (Figure 5-19(b)), the normalized pressure 

( ) / ( )p t R H  (Figure 5-20(a)) or the normalized characteristic time /cp MRt t  (Figure 
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5-20(b)), the normalized radial displacement is increased. The linear model yields lower 

radial displacements than the Mooney-Rivlin arterial model, especially for low pre-stretch 

values or high normalized pressure values. Note that, when the material parameter   is 

increased the effect of the second invariant is reduced, resulting in softer systems, and that 

when 0 1z   there is no effect of parameter   on the response of the system. 
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Figure 5-19: (a) Displacement spectrum for pre-stretch values  0 1 1.3z    and 0  , 

/ ( ) 0.64sp R H  , / 1000cp MRt t  , (b) Displacement spectrum for material parameters 

 0.5 0.5     and 0 1.1z  , / ( ) 0.64sp R H  , / 1000cp MRt t  . 
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Figure 5-20: (a) Displacement spectrum for normalized pressure values 

 / ( ) 0.08 0.8sp R H    and 0 1z  , 0  , / 1000cp MRt t  , (b) Displacement spectrum for 

characteristic time values  / 1000 5000cp MRt t    and 0 1z  , 0  , / ( ) 0.64sp R H  . 

5.4.3.2 Response spectra 

Spectra of the response quantities (Equations (5.22), (5.23) and (5.43)-(5.45)) are plotted 

for different values of the non-dimensional parameters 0
z ,  , and / ( )sp R H . 

Figure 5-21 plots response spectra for different values of longitudinal pre-stretch and for 

three values of the material parameter  . It can be observed that the circumferential 

elongation is reduced with increasing values of longitudinal pre-stretch 0
z , and that the  

normalized strain-energy has an optimized (minimum) point corresponding to a particular 

pre-stretch value. This is more noticeable for the case of normalized systolic pressure  

/ 0.32sp R H  . On the other hand, the response quantities are increased with increasing 

values of the material parameter  .  
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Figure 5-21: Response spectra for  0 1 1.3z   , for different values of the material 

parameter   and the normalized systolic pressure /sp R H , and / 1000cp MRt t  : (a) 

circumferential elongation  , (b) normalized thickness /h H , (c) normalized strain energy 

/W  , (d) normalized circumferential stress /  , (e) normalized longitudinal stress 

/zz  . 

Response spectra were also investigated for different longitudinal pre-stretch values, for 

three values of normalized pressure /sp R H , and 0   (Figure 5-22). By increasing 

/sp R H  (case of hypertension or low elasticity modulus) the response is increased. 

Furthermore, for each case of normalized pressure, the normalized strain-energy exhibits 

an optimized (minimum) point for a particular pre-stretch value. 
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Figure 5-22: Response spectra for  0 1 1.3z   , three values of the normalized systolic 

pressure / ( )sp R H , 0  , and / 2000cp MRt t  : (a) circumferential elongation  , (b) 

normalized thickness /h H , (c) normalized strain energy /W  , (d) normalized 

circumferential stress /  , (e) normalized longitudinal stress /zz  . 

Figure 5-23 presents response spectra as a function of the material parameter  , for three 

values of the parameter /sp R H  and for 0 1.1z  . The response parameters  , /W  , 

and /   are increased for increasing values of the material parameter  , whereas all 

response quantities are increased for increasing values of the normalized pressure 

/sp R H . 
Hara

lam
bia

 C
ha

ral
am

bo
us



 

75 

 

-0.4 -0.2 0.0 0.2 0.4M
ax

im
um

 n
or

m
al

iz
ed

 c
ir

um
fe

re
nt

ia
l 

fo
rc

e 
 z

z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z
0=1.1, tcp/tMR=1000

-0.4 -0.2 0.0 0.2 0.4

M
ax

im
um

 r
ad

ia
l e

lo
ng

at
io

n 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Rps/H=0.16

Rps/H=0.32

Rps/H=0.48

-0.4 -0.2 0.0 0.2 0.4

M
ax

im
um

 c
ha

ng
e 

of
 n

or
m

al
iz

ed
 a

rt
er

ia
l t

hi
ck

ne
ss

 h
/H

0.0

0.2

0.4

0.6

0.8

1.0

-0.4 -0.2 0.0 0.2 0.4M
ax

im
um

 n
or

m
al

iz
ed

 s
tr

ai
n 

en
er

gy
 W

/

0.00

0.05

0.10

0.15

0.20

0.25

Material parameter 
-0.4 -0.2 0.0 0.2 0.4M

ax
im

um
 n

or
m

al
iz

ed
 c

ir
um

fe
re

nt
ia

l 
fo

rc
e 
 




0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)

(b)

(c)

(d) (e)

Material parameter 

 

Figure 5-23: Response spectra for  0.5 0.5    , for three values of the normalized 

systolic pressure / ( )sp R H  and for 0 1.1z  , / 1000cp MRt t  : (a) circumferential 

elongation  , (b) normalized thickness /h H , (c) normalized strain-energy /W  , (d) 

normalized circumferential stress /  , (e) normalized longitudinal stress /zz  . 

Finally, Tables 5-7 through 5-9 report the time instant at which the peak value of 

normalized strain-energy occurs. In all cases, the peak value occurs during the systolic 

phase. 
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Table 5-7: Maximum normalized strain-energy /W   and exact occurrence time for range 

of 0
z  and   values, and for / 0.32sp R H   (case of Figure 5-21). 

0
z  



-0.5 0 0.5 

Maximum 
/W   

Time 
(sec) 

Maximum 
/W 

Time 
(sec) 

Maximum 
/W   

Time 
(sec) 

1 0.0757 0.34535 0.0757 0.34535 0.0757 0.34535 

1.05 0.0558 0.001836 0.0606 0.001897 0.0662 0.31852 

1.1 0.0473 0.001788 0.0556 0.001902 0.0666 0.002042

1.15 0.048 0.001739 0.0589 0.001902 0.0754 0.002115

1.2 0.0672 0 0.0697 0.005671 0.0916 0.002191

1.25 0.1013 0 0.1013 0 0.1145 0.002283

1.3 0.1409 0 0.1409 0 0.1435 0.002305

 

Table 5-8: Maximum normalized strain-energy /W   and occurrence time for range of 0
z  

and /sp R H  values, and for 0   (case of Figure 5-22). 

0
z  

/sp R H  

0.16 0.32 0.48 

Maximum 
/W   

Time 
(sec) 

Maximum 
/W 

Time 
(sec) 

Maximum 
/W   

Time 
(sec) 

1 0.0152 0.001724 0.0757 0.34535 0.2298 0.35121 

1.05 0.0114 0.005146 0.0606 0.001897 0.1958 0.35078 

1.1 0.0182 0 0.0556 0.001902 0.1735 0.34967 

1.15 0.0393 0 0.0589 0.001902 0.1612 0.34799 

1.2 0.0672 0 0.0697 0.005671 0.1578 0.002133

1.25 0.1013 0 0.1013 0 0.1621 0.002123

1.3 0.1409 0 0.1409 0 0.173 0.002116
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Table 5-9: Maximum normalized strain-energy /W   and exact occurrence time for   and 

/sp R H  values, and for 0 1.1z   (case of Figure 5-23). 

  

/sp R H  

0.16 0.32  0.48  

maximum
/W    

Time 
(sec) 

maximum
/W 

Time 
(sec) 

maximum
/W    

Time 
(sec) 

-0.5 0.0182 0 0.0473 0.001788 0.1418 0.34565 

-0.4 0.0182 0 0.0488 0.001809 0.1473 0.34704 

-0.3 0.0182 0 0.0503 0.001831 0.1531 0.34857 

-0.2 0.0182 0 0.052 0.001854 0.1595 0.35023 

-0.1 0.0182 0 0.0537 0.001877 0.1663 0.34776 

0 0.0182 0 0.0556 0.001902 0.1735 0.34967 

0.1 0.0182 0 0.0575 0.001928 0.1814 0.34737 

0.2 0.0182 0 0.0596 0.001955 0.1897 0.34966 

0.3 0.0182 0 0.0618 0.001983 0.1989 0.33365 

0.4 0.0182 0 0.0641 0.002012 0.2091 0.35008 

0.5 0.0185 0.009085 0.0666 0.002042 0.22 0.34816 

 

5.4.4 Comparison of the proposed hyperelastic arterial models through 

response spectra 

This section presents a comparison of the three proposed hyperelastic models. Each model 

is characterized by different material constants. Therefore, we choose to run two sets of 

analysis for the specific stress-strain curves shown in Figure 5-24. We can say that the 

models of Figure 5-24(a) correspond to arteries with large elasticity modulus (stiff 

models), whereas the models of Figure 5-24(b) correspond to arteries with low elasticity 

modulus (soft models). Note that, the models used in each analysis are not characterized by 

the same initial circumferential tangent modulus. 

Figures 5-25 and 5-26 plot the response spectra of the three hyperelastic models as a 

function of the longitudinal pre-stretch. In addition, the circumferential elongation of the 

linear case is calculated. In the first case (stiff systems) the Hariton arterial model 

demonstrates large circumferential elongations compared to the other models. For low and 

medium pre-stretch values, it also demonstrates the higher strain-energy values and 
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stresses. On the other hand, the response of the Skalak et al. and the Mooney-Rivlin arterial 

models is similar. The linear case is conservative compared to the Skalak et al. and 

Mooney-Rivlin model, whereas for pre-stretch values up to 1.15 it demonstrates lower 

circumferential elongation than the Hariton case. The behavior of these models does not 

correspond to the strain hardening effect of each material, due to the fact that the models 

are stiff and the resulting strain is low (circumferential strains up to 30%). At low strains, 

the constitutive laws have not entered their hardening or softening regions yet. 
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Figure 5-24: Selected stress-strain relationships of the hyperelastic models ( 0 1z  ): (a) 

systems with large elasticity modulus, (b) systems with low elasticity modulus. 

In the second case (soft models) we can observe that the Mooney-Rivlin model 

demonstrates the largest elongations, it follows the linear model, the Skalak et al. model, 

and very last the Hariton arterial model. Furthermore, the Hariton case gives low strain-

energy values and high stresses compared to the other two hyperelastic laws. These results 

clearly show the effect of material strain hardening on the dynamic arterial response, since 

Hara
lam

bia
 C

ha
ral

am
bo

us



 

79 

 

the models exhibited large strains (circumferential strains higher than 30%) and the 

constitutive laws have entered their characteristic hardening or softening regions. 
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Figure 5-25: Response spectra of the three (stiff) hyperelastic arterial models for 

 0 1 1.3z    and for the material laws shown in Figure 5-24(a): (a) circumferential 

elongation  , (b) normalized thickness /h H , (c) strain-energy density W , (d) 

circumferential stress  , (e) longitudinal stress zz .  
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Figure 5-26: Response spectra of the three (soft) hyperelastic arterial models for 

 0 1 1.3z    and for the material laws shown in Figure 5-24(b): (a) circumferential 

elongation  , (b) normalized thickness /h H , (c) strain-energy density W , (d) 

circumferential stress  , (e) longitudinal stress zz .  

5.5 Numerical examples 

To illustrate the applicability of the proposed analytical models, numerical examples are 

presented and compared against analytical studies available in the literature. Such studies 

are the works of Demiray and Vito [29] and Humphrey and Na [30], which both 

investigated the case of an exponential hyperelastic constitutive law. 

Demiray and Vito [29] studied the radial deformations of arteries subjected to dynamic 

inner pressure. Their model was assumed to be isotropic, homogeneous, and 
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incompressible. They presented a numerical example based on data corresponding to a 

dog's abdominal aorta, simulated by the exponential strain-energy density function of Blatz 

et al. [76]. The dog's abdominal aorta has inner radius 3.12 mm, outer radius 3.80 mm, and 

longitudinal pre-stretch equal to 1.53 and is subjected to dynamic loading with systolic and 

diastolic pressures 9.892 kPa and 3.466 kPa, respectively. The resulting circumferential 

stress at the artery centerline, at the beginning of the systolic phase, is calculated by 

Demiray and Vito as 395.7 kPa. 
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Figure 5-27: Circumferential stress-strain curves of the linear and hyperelastic constitutive 

laws used for the case of (a) Demiray and Vito [29], (b) Humphrey and Na [30]. 

The data used by Demiray and Vito [29] in their example, are utilized to calculate the 

arterial response for the proposed Skalak et al. and the Hariton arterial models (the 

Mooney-Rivlin arterial model is not suitable for the data of this example, due to the large 

pre-stretch value). The selected material parameters of each case have about the same 

initial tangent modulus and adequate curve fitting compared to the circumferential stress-
Hara

lam
bia

 C
ha

ral
am

bo
us



 

82 

 

strain curve of the analysis of Demiray and Vito (Figure 5-27(a)). Table 5-10 reports the 

data used for each model and the corresponding response values. The case that 

approximates better the peak circumferential stress calculated by Demiray and Vito (395.7 

kPa) is the arterial model that adopts the strain-energy function of Hariton (446.69 kPa). 

The linear model and the Skalak et al. arterial model yield lower values of circumferential 

stress. Note that, the peak strain-energy density value of the Skalak et al. and Hariton 

arterial model are comparable, whereas the linear arterial model yields larger strain-energy 

density values. 

In another study, Humphrey and Na [30] investigated the dynamic response of an artery 

and the resultant wall stresses. They assumed that the artery is anisotropic, homogeneous, 

incompressible and obeys the exponential hyperelastic law of Chuong and Fung [77]. In a 

numerical example they investigated the passive response of an artery subjected to two 

cardiac cycles with systolic and diastolic pressures of 105 mmHg and 91 mmHg, 

respectively. The artery has inner radius 1.39 mm, outer radius 1.99 mm and longitudinal 

pre-stretch 1.832. The model also accounted for residual circumferential stresses by using 

the approximate “opened-up” stress-free configuration [77]. The peak circumferential and 

axial stresses of the inner surface were calculated by Humphrey and Na as 212.8 kPa and 

177 kPa respectively (in general the inner surface has lower stress values than the outer 

surface). The maximum radial displacement of the outer surface was computed to be 0.72 

mm (mean strain 42%).  

We utilize the data used by Humphrey and Na [30] to investigated the arterial response for 

the hyperelastic functions considered in this study. Figure 5-27(b) shows the 

circumferential stress-strain curves of our analysis and of the analysis of Humphrey and 

Na. The material parameters of each case were selected to have about the same initial 

tangent modulus and adequate curve fitting to the Humphrey and Na model. To account for 

the residual circumferential stresses, we assume that a compressive pressure equal to 50 

mmHg is applied to the arterial wall. Table 5-11 reports the data used for the linear, 

Skalak, and Hariton arterial model and the corresponding response values. The Mooney-

Rivlin hyperelastic function is not suitable for the data (large pre-stretch value) of this 

example. 

The calculated values of the arterial model of Skalak (strain 55% and circumferential stress 

153.22 kPa) approach better the results of Humphrey and Na. Note that our calculations are 

based on the average stress assumption, whereas the values reported by Humphrey and Na Hara
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concern the stresses of the inner surface. In addition, we can observe that there is a 

variation of the peak values of strain-energy for the different material constitutive laws. 

Table 5-10: Data used in the analysis (based on Demiray and Vito [29]) and response 

values for each case. 

Data   

R (mm) 3.46   

H  (mm) 0.68   

0
z  1.53   

0  (kg/m3) 1160   

sp  (mmHg) /(Pa) 74.2/9892   

dp  (mmHg) /(Pa) 26.0/3466   

st  (sec) 0.35   

cpt  (sec) 1   

Linear arterial model 

Parameters Peak response values 

0E  (kPa) 417 /ru R  0.53 

0u  (mm) 1.83    (kPa) 221 

  
z z  (kPa) 221 

  W  (kPa) 117 

Skalak et al. arterial model 

Dimensionless parameters Peak response values 

/B C  1 /ru R  0.06 

/sp R C  1.16    (kPa) 96.68 

/cp Skt t  2187 
z z  (kPa) 161.75 

  W  (kPa) 39.56 

Hariton arterial model 

Dimensionless parameters Peak response values 

b  1.5 /ru R  0.42 

/sp R aH  4.19    (kPa) 446.69 

/cp Ht t  1143 
z z  (kPa) 523.77 
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  W  (kPa) 43.90 

Table 5-11: Data used in the analysis (based on Humphrey and Na [30]) and response 

values for each case. 

Data   

R (mm) 1.69   

H  (mm) 0.6   

0
z  1.832   

0  (kg/m3) 1160   

sp  (mmHg) /(Pa) 55/ 7.333   

dp  (mmHg) /(Pa) 41/5.466   

st  (sec) 0.3   

cpt  (sec) 0.8   

Linear arterial model 

Parameters Peak response values 

0E
 (kPa) 53.9 /ru R  0.83 

0u  (mm) 1.406    (kPa) 44.85 

  
z z  (kPa) 44.85 

  W  (kPa) 37.31 

Skalak et al. arterial model 

Dimensionless parameters Peak response values 

/B C  0.5 /ru R  0.55 

/sp R C  4.04    (kPa) 153.22 

/cp Skt t  1679 
z z  (kPa) 164.83 

  W  (kPa) 103.43 

Hariton arterial model 

Dimensionless parameters Peak response values 

b  1.5 /ru R  0.46 

/sp R aH  111.9    (kPa) 354.27 

/cp Ht t  319 
z z  (kPa) 569.67 
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  W  (kPa) 22.28 

5.6 Concluding remarks 

This chapter investigates the macroscopic arterial dynamic response caused by three 

different material behaviors associated with arterial diseases. Each material behavior is 

described by a proper constitutive law. Important metrics that can be useful to vascular 

surgery were investigated, such as the radial deformation and the maximum energy 

density.  

It should be noted that the study presented in this chapter is limited by the model 

assumptions (i.e. one homogenized layer, isotropic material). Indeed, several hyperelastic 

constitutive laws that consider more detailed and complex arterial structure are available in 

the literature. These models depend on many material parameters which cannot be easily 

obtained, nor are they available in the literature. The arterial material parameters are 

characterized by large uncertainties and vary with topology, age, gender, and disease of the 

artery. For this reason, at this point, it may not be useful to study detailed multi-parameter 

hyperelastic laws. Thus, we chose to investigate isotropic models which contained only 

two material parameters. If the material parameters of the complex/multi-parameter 

constitutive laws were definitely obtainable, the problem could be methodically solved by 

following the procedure presented in this chapter.  

A good example of a more complex multi-parameter hyperelastic law is the constitutive 

model proposed by Holzapfel et al. [69]. This model accounts for the material anisotropy 

and two families of collagen fibers (arranged in symmetrical spirals) of non atherosclerotic 

thick-wall coronary arteries. Their proposed strain-energy function is a five-parameter 

equation expressed as 

        2 22
1 1 3 4 1 3 4 4

3

3 exp 1 3 1 1W I I I
    


         
 (5.72) 

where 1 0   and 2 0   are stress like parameters, 3 0   and  4 0 1    are 

dimensionless parameters, and 2 2 2 2 2
1 ( )z zI          and 2 2 2 2

4 1 1cos sinzI       are 

the first and fourth invariants, respectively. By 1  is denoted the orientation angle of the 

collagen fiber reinforcement. 

References in the literature suggest that the use of complex hyperelastic laws may not be 

very useful and could hide the generality of results or the most important aspects of the 
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problem. Humphrey and Na [30] observed that the more complex the arterial model, the 

less complex the stress field appears to be. Moreover, Hariton [70] modeled the realistic 

orientation of collagen fibers of the arterial tissue and observed that there is no significant 

difference between the macroscopic response of the simplified and the complex model. 

Based on the finding of this chapter, we can conclude that the response of arterial models 

based on any other constitutive law (e.g. the constitutive laws proposed by Fung [53] or 

Gent [54]) depends on the increased hardening or softening behavior of the stress-strain 

relationship. For instance, the exponential strain-energy function of Hariton exhibits 

increased hardening compared to the strain-energy function of Skalak et al., implying that 

the radial deformation based on the Hariton arterial model is expected to be lower than 

what we calculated for the Skalak et al. arterial model. 

The level of approximation of the linear-elastic model against the proposed hyperelastic 

models was investigated throught radial displacement spectra. For each analysis the models 

had the same initial tangent Young's modulus in the circumferential direction. It appears 

that for most cases the solution of the linear model constitutes a good approximation 

(conservative approximation) of the Skalak et al. solution (Figures 5-10 and 5-11). The 

Mooney-Rivlin case yields higher radial displacements compared to the linear case 

(Figures 5-19 and 5-20). On the other hand, for the Hariton model the approximation is not 

good, especially at low pre-stretch values, due to the fact that the initial tangent modulus 

approaches zero (the slope of the stress-strain curve becomes steeper at higher strains, 

Figures 5-14 and 5-15). The use of a tangent Young's modulus corresponding to 

circumferential elongations 10%-20% (instead of using the initial young modulus 0E  

corresponding to zero circumferential elongations) is expected to yield better 

approximations. 

In general the most important factors influencing the peak response of the hyperelastic 

models are found to be the longitudinal pre-stretch 0
z  and the normalized pressure. The 

normalized radial displacement decreases with increasing values of pre-stretch. Figure 

5-28 offers an explanation as to what this means for the human health along the years for 

the case that the material law is not significantly altered over the years. The longitudinal 

pre-stretch is caused due to the delayed growth of arteries compared to the rest of the body. 

Therefore, human arteries exhibit increasing longitudinal pre-stretch with aging. The 

gradual arterial stress softening, caused by aging, can be balanced by the longitudinal pre-

stretch and the decreased radial response. On the other hand, at old age the human body 

exhibits small shrinkage causing the longitudinal pre-stretch to decrease. Combined with 
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the continuing loss of strength, the arterial response cannot be easily balanced, thus the 

human vascular system becomes vulnerable. 

 

Figure 5-28: Explanatory diagram for the longitudinal pre-stretch and radial deformation 

the arterial response of different age groups. It is assumed that the material law is not 

significantly changed over the years. 

An increase of the normalized pressure parameter implies increased intraluminal pressures 

(hypertension) and/or decrease of the elasticity modulus of the arterial tissue. The 

normalized pressure is increased by a factor of 5/3 or 10 in cases of hypertension or soft 

arterial tissue, respectively. Under the effect of large normalized pressures the system 

response is increased, especially for the Mooney-Rivlin case (Figure 5-20(a)). 

The strain-energy density is an important metric for the response of arterial systems. The 

normalized strain-energy is increased with increasing values of the absolute normalized 

displacement /ru R . In some cases, the stress value is not an appropriate criterion for 

distinguishing the limit values of different systems. On the contrary, the corresponding 

strain-energies and displacements are distinctive. Zafiropoulou [78] was the first to prove 

that the strain-energy density constitutes a trustworthy criterion for the arterial response. 

The energy criterion of the arterial tissue is consistent with the failure criterion, i.e. if the 

energy of the system reaches the limit value the system will fail. In contrast, in the case of 

artificial grafts the material properties are well known, thus a stress failure criterion would 

be more relevant. 

In addition, numerical examples were demonstrated based on the data used in the analytical 

studies of Humphrey and Na [30] and Demiray and Vito [29]. The calculated response 

presented in these studies can be adequately approximated by the arterial models proposed 

herein, if the proposed circumferential stress-strain curves have sufficient curve fitting over 

the stress-strain curves used in the examples available in the literature. 
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In summary, this chapter proposes a theoretical method to investigate the effect of 

nonlinear hyperelastic constitutive laws and their strain-hardening characteristics on the 

dynamic behavior of human arteries. Important metrics, such as the radial deformation and 

the maximum energy density, are found to be influenced heavily by the strain-hardening 

characteristics of the model, as well as the longitudinal pre-stressing. The system response 

was calculated through numerical methods, and the results are presented through response 

spectra, revealing useful interrelations among the problem parameters. 
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CHAPTER 6 

Arterial Dynamic Response: Viscoelastic Model 

6.1 Introduction 

Arterial tissue viscoelasticity is a characteristic of muscular arteries. Muscular arteries are 

medium-size arteries consisting mainly of muscular cells and located at the peripheral 

circulation (e.g. cerebral, celiac, and femoral arteries).They exhibit small hysteresis due to 

creep or relaxation process, which accounts for a relatively low-energy loss in each 

inflation-deflation cycle and prevents reflected pressure waves from resonating in the 

arterial systems [50]. Their viscosity is increased as the smooth muscle cells content, 

which exists mostly in the media layer, is increased. In addition, the viscoelastic 

characteristics of arterial tissues are affected by changes in temperature or by the presence 

of drugs [79]. Shah and Humphrey [80], who investigated the case of an elastic saccular 

aneurysm, noted that the elastic approach provides an upper bound on the dynamic 

response, and that the viscoelastic approach would probably describe a more stable system 

(i.e. provide a more refined solution to the problem). 

Wall viscosity is a material characteristic and should be implemented in the constitutive 

law. Several studies investigated the viscoelastic behavior of arteries [32–34, 36]. It was 

concluded that a simple Maxwell or Voigt element cannot adequately model the 

viscoelastic response of such biological tissues. Kallita and Schaefer, in their review article 

[31], identify the different kinds of mechanical models that simulate the viscoelastic 

behavior of arteries. Westerhof and Noordergraaf [32] suggested a five-parametermodel 

consisting of two Maxwell elements and a spring, placed in parallel. In another study, Cox 

[33] proposed a spring in series with one or two Voigt elements, and Papageorgiou and 

Jones [34] proposed a model with a number of Voigt elements in series. Holzapfel et al. 

[36] adopted a model consisting of a single spring on one end and five Maxwell devices set 

in parallel (generalized Maxwell model).  

Haslach Jr [37] recognized that the relatively recent approach proposed by Holzapfel et al. 

[36] adequately describes the viscoelastic behavior of arteries and that it requires many 

time-depended material constants. He proposed a nonlinear viscoelastic model that 

describes the long-term behavior of biological soft tissues, consisting of a system of 

evolution equations with time-independed material constants.  

Herein, to simulate the viscoelastic behavior of arteries we adopt the sophisticated 

approach descriped by Holzapfel et al. [36] and the hyperelastic two-parameter constitutive 
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law proposed by Skalak et al. [55]. The proposed model is an extension of the hyperelastic 

arterial model developed in Chapter 5. The purpose of this investigation is to study the 

effect of each problem parameter on the macroscopic arterial response. Furthermore, it 

aims to examine if the proposed analytical model approximates well experimental and 

numerical data available in the literature. 

The viscoelastic arterial model accounts explicitly for the longitudinal pre-stress, whereas 

other pre-stress effects are assumed to be incorporated in the constitutive law. Finally, 

although arteries are anisotropic, we are mainly concerned with the effect of viscosity in 

the dynamic response of the artery cross-section. 

6.2 Mathematical model 

The mathematical model developed (Figure 6-1(a)) is based on the following assumptions: 

(a) the arterial tissue consists of a single layer (homogenized media and adventitia); (b) the 

artery is a thin-walled structure (i.e. the arterial wall thickness is small compared to the 

internal radius of the vessel); (c) the vessel cross-section in the undeformed state forms a 

full circle with thickness-averaged radius R ; (d) the arterial wall has constant thickness 

along the circle; (e) no boundary constrains are applied on the ring; and (f) the effects of 

rotary inertia and shear deformation are neglected. 

 

Figure 6-1: (a) Configuration of viscoelastic arterial model at undeformed state, (b) Free-

body diagram of a typical element of viscoelastic arterial ring. 

Note that, by R , H , and L are denoted the radius, thickness, and length of the initial 

configuration respectively; and by r , h , l  are denoted the radius, thickness, and length of 

the deformed configuration respectively. 
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The arterial wall viscosity is simulated by adopting the generalized Maxwell model, which 

consists of a single spring on one end and a number of Maxwell devices set in parallel 

(Figure 6-2). Furthermore, the adopted model separates the total stresses to elastic long-

term stress and viscoelastic stresses. This model was developed by Bonet [81] for the 

general case of large strain viscoelastic models. Holzapfel and Gasser [35] extended the 

Bonet approach to the case of fiber-reinforced composites, and in a later study Holzapfel et 

al. [36] extended the model to the case of arteries. 

 

Figure 6-2: Generallized Maxwell model, consisting of a single spring and a number of i  

Maxwell elements set in parallel. 

In terms of strains, the adopted model utilizes the total strain of the system (sum of elastic 

and viscoelastic strains) [82, 81, 35]. Note that, it would be more appropriate to use a 

model that separates the elastic from the viscoelastic strains, but the material parameters of 

such arterial models are not available in the existing literature. 

The Bonet-Holzapfel viscoelastic model is based on the internal variable theory. The 

internal dissipation is described through the non-equilibrium stresses ( )iq t , which could be 

taken into account as body forces as shown in Figure 6-1(b). The non-equilibrium second 

Piola-Kirchhoff stresses, for one relaxation process, are expressed through the convolution 

integral [36]: 

 1 1 10
1 1

( ) exp (0 ) exp ( )
t

n
n n

t tt
q t q S t dt

 

     
     

   
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where 1
  is a non-dimensional free-energy factor constant, 1  is the respective relaxation 

time, nt  is the time instant of step n, and S
  is the second Piola-Kirchhoff circumferential 

stress rate. The material parameters 1
  and 1  can be obtained through experimental 

procedures. Typical values of these material parameters are 1 0.2 0.4     and 

1 0.001 10 sec    [36].  

The equation of motion of the arterial ring is formulated by considering the deformed state 

of the model. In particular, it is obtained by considering the force equilibrium along the 

radial direction of the infinitesimal element abcd, shown in Figure 6-1(b). Thus, the 

resulting equation of motion of the arterial segment, for one relaxation process, is 

expressed as 

  
2

2

1 0 2

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) rd u t

r t p t N t q t t h t h t r t
dt     (6.2) 

Evidently, when the non-equilibrium stresses 1( )q t  are equal to zero, Equation (6.2) 

becomes identical to the equation of motion of the hyperelastic arterial model proposed in 

Chapter 5 (Equation (5.2)). 

More relaxation processes can be taken into account, by adding to Equation (6.2) more 

time integrals ( )iq t , with different free-energy factor constants and corresponding 

relaxation times. 

6.2.1  Viscoelastic arterial model based on the strain-energy function of 

Skalak et al. 

The model requires a proper hyperelastic constitutive law to describe the elastic stresses of 

the problem. The strain-energy function of Skalak et al. [55], was originally developed for 

red blood cell membranes. It is an isotropic, two-dimensional strain-energy function, 

demonstrating hardening behavior similar to that of arteries. The strain-energy function 

proposed by Skalak et al. is expressed as 

 2 21
( ) ( ( )) ( ) ( ) ( ( ))

4 2 8

B C
W t I t I t II t II t     

 
 (6.3) 

in which B  and C  are the material parameters of the artery, having units of elastic 

modulus multiplied by artery thickness [N/m], and satisfying the condition 0C B  . The 
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alternative forms of the strain invariants ( )I t  and ( )II t  are expressed by Equations (5.7) 

and (5.8), respectively. 

Τhe axial force ( )N t  acting along the circumferential direction of the arterial segment is 

identical to the distributed force ( )T t  (Equation (5.11)). On substituting Equations (5.3), 

(5.5), and (5.11) in Equation (6.2) the equation of motion of the viscoelastic arterial model 

can be expressed in normalized polynomial form as 

2 30 3 0 0 3 0 3

0 0 0

2 20 3 0
01

0

( ) 3( ) ( ) 3( ) ( ) ( )3

2 2 2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )
               + 1 ( ) 1

2 2

r z z r z r z

z z z

r z z r r

z

u t u t u tB B B

R C R C R C

R Hu t q t h t u t u tR
p t

R C C R C

   
  

 


                      
        

             
    


R

 (6.4) 

The problem description is reduced to seven dimensionless quantities: /B C , 0
z , /pR C , 

1( ) ( ) /q t h t C , ( ) /ru t R , 2 ( ) /Sk rt u t R , and / Skt t , in which the term 2 0
0 /Sk zt R H C   is 

the characteristic time of the response. 

The tangent circumferential Young's modulus E  can be expressed as a function of the 

circumferential and radial elongations, as 

    
0

3 3 0 4 0 22 2 ( ) ( )z
z z

d Td B C
E

d d H H H
  

    
 

        
 

 
      

 
 (6.5)  

Furthermore, the normalized functions of the circumferential elongation, circumferential 

Cauchy stress, longitudinal Cauchy stress, and strain-energy density are expressed 

respectively as (Equations (5.22), (5.24), (5.25), and (5.26)) 

 
( )

( ) 1 ru t
t

R    (6.6) 

    
0 2

2 2 0 2
0

( ) ( ) ( )
( ( )) 1 ( ( )) ( ) 1

2 2
z

z
z

T t t B
t t

C C
 

 
   


 
    

 
 (6.7) 

    
20

0 2 2 0 2( ( ))( )
( ) 1 ( ( )) ( ) 1

( ) 2 2
z z

z z

tT t B
t

C t C





   


 
    

 
 (6.8) 
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The normalized kinetic-energy density /KE C  of the system and the normalized total-

energy density /tE C  (equal to the sum of the kinetic-energy density KE  and the strain-

energy density W ) are expressed respectively as 

 
 2 2

0( ) ( ) 1

2 2
r r SkK

u u tE t h t

C C R




    
 

 
 (6.10) 

 ( ) ( ) ( )t KE t E t W t

C C C
   (6.11) 

6.2.2 A simple Kelvin-Voigt model 

The Kelvin-Voigt element is a common device in modeling viscous effects [31]. We aim to 

investigate if the sophisticated Bonet-Holzapfel model can be approximated by a simple 

Kelvin-Voigt element. The respective equation of motion of the arterial segment becomes 

 
2

0 2

( ) ( )
( ) ( ) ( ) ( ) ( )r rdu t d u t

r t p t N t h t r t
R dt dt


    (6.12) 

where / R  is the viscosity coefficient of the arterial wall, having units of Pa s . The 

viscosity coefficient can be parallelized (however is different) to the relaxation time of the 

Bonet-Holzapfel model as 1 C   . By adopting the hyperelastic function of Skalak et al., 

and by following the procedure described in Section 6.2.1, the normalized equation of 

motion of the viscoelastic arterial model in polynomial form is: 

2 30 3 0 0 3 0 3

0 0 0

20 3 0
0

0

( ) 3( ) ( ) 3( ) ( ) ( )3

2 2 2 2 2 2

( ) ( ) ( ) ( )
                           + 1 ( )

2 2

r z z r z r z

z z z

r z z r r

z

u t u t u tB B B

R C R C R C

R Hu t u t u tR
p t

R C C R C R

   
  

 


                      
        

         
  

 
(6.13) 

The Kelvin-Voigt viscoelastic arterial model is described by seven dimensionless 

quantities: /B C , 0
z , /pR C , ( ) /ru t CR  , ( ) /ru t R , 2 ( ) /Sk rt u t R , and / Skt t .  

6.3  Numerical solution 

The problem is highly nonlinear and requires numerical methods to be solved. In addition, 

in order to calculate the non-equilibrium stresses an iterative method is required. Two 

different solution strategies are implemented: (a) an iterative algorithm that utilizes 

Newmark's constant-acceleration method [83, 84]; and (b) an iterative algorithm that 
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utilizes Rosenbrock's method [73, 74] through the ode23s function in MATLAB. Both 

algorithms are developed in the MATLAB environment [67]. 

The two algorithms have the same accuracy but different efficiency. The first algorithm is 

the most efficient, since it requires computational time up to twenty times lower than the 

second algorithm. This occurs due to the fact that the second algorithm utilizes the ode23s 

function in MATLAB in each time step. If Rosenbrock's method was originally 

programmed, in the same manner as Newmark's method, it would have about the same 

efficiency as the first algorithm.  

In Chapter 5, the hyperelastic arterial response of three arterial models was investigated. 

The ode23s and ode23tb solvers in MATLAB were utilized. The solvers were efficient 

against the hyperelastic problem, for the reason that it was not required an iterative 

procedure for the calculation of the elastic stresses. Thus, for solving complex problems 

such as the viscoelastic response of systems, it is more correct to develop the proper solver. 

In this chapter, the presented results are calculated by utilizing the first algorithm 

(Newmark's constant-acceleration method for nonlinear systems). 

6.3.1  Based on Newmark's constant-acceleration method 

The solution of the differential equation governing the system response (Equation (6.4)), 

and the numerical integration of the convolution integral of Equation (6.1) can be obtained 

by utilizing Newmark's constant-acceleration method for nonlinear systems [84] through 

the following iterative procedure: 

1. A constant time step t  is set, and the total time interval [0,  ]T  is divided into 1n  

sub-intervals.  

2. The initial displacement, initial velocity, and initial non-equilibrium stresses (at time 

t=0) are set equal to zero. The initial acceleration 0u  is obtained by solving Equation 

(6.4) for ru . 

3. The predictors of the radial response at time 1nt   are obtained by utilizing the formulas 

of Newmark's constant-acceleration method. The displacement, velocity, and 

acceleration predictors are expressed respectively, as 

 
2

1( ) ( ) ( ) (1 2 )( )
2r n Nr n r n r n

t
u u t u u


       (6.14) 

 1( ) ( ) (1 ) ( )r n r n r nNu u t u       (6.15) 
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 1( ) 0r nu    (6.16) 

where N  and N  are constants equal to 0.25 and 0.5, respectively. 

The circumferential elongation and the current thickness are equal to 

 1
1( 1

( )
) r n

n

u

R 
    (6.17) 

 
01

1( )n
nz

H
h

 


  (6.18) 

4. The normalized distributed non-equilibrium force multiplied by the current thickness 

1 1( ) /nq h C  is calculated as [35] 

   
1 1 1 1

1 1
1 1 1

( ) ( )
exp exp exp

2 2 2
n n n n

S h S hq h q ht t t

C C C C

  
  

 

  
                
       

 (6.19) 

in which S
  denotes the second Piola-Kirchhoff circumferential stress. Note that, the 

normalized second Piola-Kirchhoff elastic stress (multiplied by the current thickness) 

at each time step is 

 
     
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 (6.20) 

5. The calculated values must satisfy the equilibrium of Equation (6.4). The residual 

value 1( )res nA   is calculated as 
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0 0 0
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01
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 (6.21) 

6. If 1( ) <toleranceres nA   the solution is acceptable. If not, then the normalized corrector 

ru  is calculated as Hara
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 (6.22) 

where 1( )nE   is the tangent elasticity modulus for 1( )n   and 0
z  (Equation (6.5)). Note 

that, if the problem was not characterized by axisymmetric geometry and axisymmetric 

loading, the tangent elasticity term should be replaced by the tangent stiffness.  

7. The corrected normalized response is obtained as 

 1 1( ) ( )r
r

r n nu u
u

R R
     (6.23) 

 1 1( ) ( )Sk r n Sk r n N
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S u
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 
 (6.24) 
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N

Sk u
t

t u t u t

R R 
   


 

 (6.25) 

8. Steps (5) through (7) are repeated until the tolerance is satisfied. 

9. Steps (3) through (8) are repeated for all time intervals. 

10. The normalized time-profiles of the circumferential Cauchy stress ( ) /T t C , 

longitudinal Cauchy stress ( ) /zT t C , strain-energy density ( ) /W t C , kinetic-energy 

density ( ) /KE t C , and total-energy density ( ) /tE t C  are calculated. 

Figure 6-3 shows the flow diagram of the general algorithm, based on Newmark's constant-

acceleration method for nonlinear systems, calculating the time-profiles of the radial 

displacement, radial velocity, and radial acceleration. 

6.3.2  Based on the modified Rosenbrock method 

A second algorithm was also implemented for solving the differential equation governing 

the response of the viscoelastic arterial model (Equation (6.4)). This algorithm utilizes the 

ode23s function in MATLAB [67, 71], a one-step solver based on the modified 

Rosenbrock method [73, 74]. The problem is solved in the following manner: 

1. The total time interval [0,  ]T  is divided into 1n  sub-intervals, of constant time step 

t .  
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Figure 6-3: Flow diagram of Newmark's constant-acceleration method for nonlinear 

systems. 

2. The initial displacement, initial velocity, and initial non-equilibrium stresses (at time 

t=0) are set equal to zero.  Hara
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3. The radial displacement predictor at time 1nt   is obtained by using Newmark's 

constant-acceleration method for 0.25N   and 0.5N  , as 

 
2

1( ) ( ) ( ) (1 2 )( )
2

r n Nr n r n r n

t
u u t u u


       (6.26) 

where the acceleration ( )r nu  is obtained by solving Equation (6.4) for ru .The corrector 

of the displacement is 

  2
1 1 1( ) ( ) ( )rr n n r nNu u t u       (6.27) 

in which the current acceleration 1( )r nu   is obtained by considering the predictor 


1( )r nu   and the respective predictor of the non-equilibrium stress (Εquation (6.19)).  

4. The circumferential elongation 1( )n   (Εquation (6.17)), the normalized 2nd PK 

elastic stress 1( ) /nS h C


  (Εquation (6.20)), and the normalized distributed non-

equilibrium force 1 1( ) /nq h C  (Εquation (6.19)) are calculated. 

5. The radial displacement 1( )r nu   and radial velocity 1( )r nu   are recalculated by solving 

the ordinary differential equation in the time interval 1[  ]n nt t  , and for initial conditions 

( )r nu  and ( )r nu , by using the ode23s function in MATLAB. Based on these results, the 

response values 1( )n  , 1( ) /nS h C


 , and 1 1( ) /nq h C  are also recalculated. 

6. Steps (3) through (5) are repeated for all time intervals. 

7. The normalized time-profiles of all the response values ( ( ) /T t C , ( ) /zT t C , ( ) /W t C

, ( ) /KE t C , ( ) /tE t C ) are obtained. 

6.4 Results 

The problem is characterized by high complexity, involving many parameters. In order to 

investigate the influence of each problem parameter on the response of the system, we 

conducted a large number of numerical investigations. In particular, the problem is 

investigated for different values of the dimensionless parameters /B C , 0
z , /sp R C , 

/cp Skt t , 1
 , and 1 / Skt  (where cpt  is the total duration of the cardiac pulse). The time step Hara
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of the iterative procedure is taken to be ten times lower than the characteristic time of the 

arterial model ( / 10Skt t  ). 

The intraluminal pressure is approximated by two different pressure-time profiles. In the 

first case, the pressure is abruptly increased from zero to the maximum systolic pressure 

=120 mmHgsp , as shown in Figure 6-4(a). The value of the diastolic pressure is 

=80 mmHgdp , the systolic-phase duration is 0.35 secst  , and the total duration of the 

cardiac pulse is 1 seccpt  . In the second case, the pressure is gradually increased (quasi-

statically) from zero up to the initial diastolic pressure value of the dynamic pressure-time 

profile shown in Figure 6-4(b). Figure 6-4(b) shows the pressure-time profile of an aorta as 

proposed by Zhong et al. [39].  
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 Figure 6-4: (a) Arterial pulse time-profile approximation, (b) typical aortic pressure-time 

profile following Zhong et al. [39]. 

6.4.1  Response of the Bonet-Holzapfel model 

After conducting a large number of numerical investigations the interrelation among the 

problem parameters is revealed. We can say that the viscoelastic problem is mainly 

affected by the normalized relaxation time 1 / Skt . An increase of the material parameter 

1
  monotonically decreases the response of the system, whereas problem parameters 0

z , 

/B C , and /sp R C  affect the response of the viscoelastic model in the same manner that 

affect the response of the elastic model (see Section 5.4.1). In particular, an increase of the 

longitudinal pre-stretch 0
z , or the material parameter /B C  stiffens the system and 

decreases the radial displacement. An increase of the normalized pressure /sp R C , 
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implying either an increase of the arterial pressure (hypertension) or a decrease of the 

elasticity modulus, increases the radial displacement. 

Systems with increased normalized pulse duration /cp Skt t , exhibit increased dissipation 

when subjected to the first loading approximation, whereas they exhibit decreased 

dissipation when subjected to the second loading approximation. In addition, systems with 

larger normalized pulse duration /cp Skt t  require longer computational time. 

Since the problem is mainly affected by the relaxation time 1 , we choose to present graphs 

for different values of the aforementioned material parameter. The presented results 

concern the case of a large artery (e.g. aorta) having radius 8 mm, wall thickness 1.2 mm, 

Young's modulus 1 MPa, and wall density 1160 Kg/m3. Figures 6-5 through 6-9 show 

typical response time-histories of the elastic and viscoelastic models, by applying the 

pressure time-profile approximation of Figure 6-4(a), and for different values of the 

normalized relaxation time 1 / Skt . The response of the elastic model can be obtained either 

through the mathematical model proposed in this chapter (for 1 0   ), or through the 

mathematical model introduced in Section 5.2.1. 

The normalized relaxation time values 1 / Skt , utilized in Figures 6-5 through 6-8, are equal 

to 1, 10, 100, and 1000, respectively. As follows from these figures, a decrease of the 

normalized relaxation time decreases the response time-history values, whereas slightly 

increases the peak circumferential elongation, which usually occurs at the beginning of the 

systolic phase. Moreover, it can be observed that the resulting circumferential elongation 

and the induced pressure time-profiles present the same morphology and are characterized 

by high-frequency vibrations. This is more evident in the case of the elastic model.  
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Figure 6-5: Response time-histories for 1 / 1Skt  , 1 0.3   , 0 1z  , / 1B C  , 

/ 0.21sp R C  , / 2597cp Skt t  : (a) circumferential elongation  , (b) normalized strain-

energy density /W C , (c) normalized circumferential stress /T C , (d) normalized 

longitudinal stress /zT C , (e) normalized kinetic-energy density /KE C , (f) normalized 

total-energy density /tE C . 
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Figure 6-6: Response time-histories for 1 / 10Skt  , 1 0.3   , 0 1z  , / 1B C  , 

/ 0.21sp R C  , / 2597cp Skt t  : (a) circumferential elongation  , (b) normalized strain-

energy density /W C , (c) normalized circumferential stress /T C , (d) normalized 

longitudinal stress /zT C , (e) normalized kinetic-energy density /KE C , (f) normalized 

total-energy density /tE C . 
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Figure 6-7: Response time-histories for 1 / 100Skt  , 1 0.3   , 0 1z  , / 1B C  , 

/ 0.21sp R C  , / 2597cp Skt t  : (a) circumferential elongation  , (b) normalized strain-

energy density /W C , (c) normalized circumferential stress /T C , (d) normalized 

longitudinal stress /zT C , (e) normalized kinetic-energy density /KE C , (f) normalized 

total-energy density /tE C . 
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Figure 6-8: Response time-histories for 1 / 1000Skt  , 1 0.3   , 0 1z  , / 1B C  , 

/ 0.21sp R C  , / 2597cp Skt t  : (a) circumferential elongation  , (b) normalized strain-

energy density /W C , (c) normalized circumferential stress /T C , (d) normalized 

longitudinal stress /zT C , (e) normalized kinetic-energy density /KE C , (f) normalized 

total-energy density /tE C . 

As follows from Figures 6-5 through 6-8, for increasing values of the normalized 

relaxation time, the loss of energy is decreased. The loss of total energy, by comparing the 

“response areas” of the elastic and viscoelastic models, is found to be about 98.5%, 96%, 

72.8%, and 43.3%, for the cases of Figures 6-5 through 6-8 respectively. Figure 6-9 plots 

the respective normalized non-equilibrium stresses 1 /q h C . We can observe that, for low Hara
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values of the normalized relaxation time, the normalized non-equilibrium stresses exhibit 

lower values and nearly symmetric morphology along the time-axis. 

 

Figure 6-9: Normalized non-equilibrium stresses 1 /q h C  for (a) 1 / 1Skt  , (b) 1 / 10Skt  , 

(c) 1 / 100Skt  , (d) 1 / 1000Skt   (cases of Figures 6-5 through 6-8, respectively). 

In addition, we performed numerical analyses of arterial systems under periodic excitation, 

by repeating the profile of Figure 6-4(a). Figure 6-10 shows a typical time-profile of a 

system under periodic excitation. The conclusions obtained from this investigation are the 

same to that obtained by the non-periodic excitation. Furthermore, it is evident that the 

viscoelastic model has higher stability compared to the respective hyperelastic model. 

In the case that the pressure is quasi-statically applied up to the diastolic pressure of the 

pressure time-profile shown in Figure 6-4(b), the viscoelastic system is not always 

characterized by high-frequency vibrations. Figure 6-11 shows the response of the elastic 

and viscoelastic models for different values of the normalized relaxation time, under this 

loading approximation. The model demonstrates viscous behavior, for normalized 

relaxation time values over 1000. In general, an increase of the normalized relaxation time 

or the free-energy parameter reduces the circumferential elongations.  Hara
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Figure 6-10: Arterial response under periodic loading for 1 / 1Skt  , 1 0.3   , 0 1z  , 

/ 1B C  , / 0.21sp R C  , / 2597cp Skt t  : (a) circumferential elongation  , (b) 

normalized strain-energy density /W C , (c) normalized circumferential stress /T C , (d) 

normalized longitudinal stress /zT C , (e) normalized kinetic-energy density /KE C , (f) 

normalized total-energy density /tE C . 

Finally, by adding two relaxation processes to the problem ( 1 2q q  instead of 1q ), we 

found that the arterial model responds differently to each loading scenario. For two 

relaxation processses, the non-equilibrium forces are calculated as 
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For the first loading approximation (Figure 6-4(a)), the response is dominated by the 

relaxation time that is closer to the characteristic time of the response. This occurs due to 

the fact that the problem is characterized by high-frequency vibrations and that there are 

not high loading frequencies involved in our problem (normal heart beat frequency of 1 

Hz). For the second loading approximation (Figure 6-4(b)), the response is mainly affected 

by the higher relaxation time. In this case, by adding more relaxation processes to the 

problem the dissipation is increased (the arterial response is decreased). 
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Figure 6-11: Circumferential elongation of elastic and viscoelastic arterial models by 

applying the second loading approximation (Figure 6-4(b)), and for 1 0.3   , 0 1z  , 

/ 1B C  , / 0.21sp R C  , / 2597cp Skt t  , and (a) 1 / 10Skt  , (b) 1 / 100Skt  , (c) 

1 / 1000Skt  , (d) 1 / 10000Skt  . Hara
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6.4.2  Response of the Kelvin-Voigt model 

After investigating typical arterial systems of the Kelvin-Voigt nonlinear model, for the 

pressure time-profile approximation of Figure 6-4(a), we can conclude that this model 

cannot adequately approximate the viscoelastic behavior of arteries. In particular, an 

increase of the viscosity term 1/ C    results in a decrease of the values of the response 

time-profile, in contrast to the generalized Maxwell model (Bonet-Holzapfel model) for 

which an increase of the relaxation time 1  increases the values of the response time-

profile. In general the mean response values of the two models are comparable. 

Under applied periodic excitation, the response showed similar behavior to that of the non-

periodic excitation. 

6.5 Numerical examples and comparison with existing studies 

The applicability of the proposed theoretical model and the respective algorithm are 

demonstrated through characteristic numerical examples and comparison with existing 

studies. In particular, the inflation of a rubber tube, of a canine aorta, and of a porcine 

coronary artery are investigated. 

6.5.1  Inflation of a rubber tube 

Holzapfel and Gasser [35] presented a numerical example of an inflation of a three-

dimensional fiber-reinforced rubber tube, under cyclic (sinusoidal) loading. The structure 

of the tube consists of three layers, has average radius 109 mm and thickness 18 mm. The 

sinusoidal loading has period 10 sec, peak value 10 MPa and minimum value 4 MPa. By 

utilizing finite-element analysis, they found that after five loading cycles the system 

reaches its steady state response, with the circumferential stretch of the rubber tube varying 

between 1.0547 and 1.1047, and the phase shift (time delay) with respect to the pressure 

time-profile being about 0.1 sec. 

By utilizing the data used by Holzapfel and Gasser [35] in their example, we calculate the 

response of the rubber tube for the algorithm proposed in this chapter. We adopt the two-

dimensional homogenized approximation of the walls. Their material constitutive law is 

expressed as Hara
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 (6.29) 

in which 1d , 2d , and 3d  are positive stress-like material parameters, 4d  is a non-

dimensional material parameter, and 1  is the angle of the fibers with respect to the 

circumferential direction. Table 6-1 reports the material parameters used in our analysis. 

Note that, to properly approximate the viscoelastic response of the anisotropic, three layer 

model of Holzapfel and Gasser, the elasticity modulus must to be scaled in order to match 

the maximum steady state response (circumferential elongation) calculated by Holzapfel 

and Gasser to the steady state response calculated by this study. Thus, the material 

parameter 3d  is increased by a factor of ten, because we utilized a two-dimensional 

homogenization of the wall layers. 

Table 6-1: Data used in the analysis of an inflation of a rubber tube. 

Parameter Value 

R  (mm) 109 

H  (mm) 18 

0
z  1 

1d (kPa) 260.4 

2d (kPa) 65.11 

3d  (MPa)  115 (scaled) 

4d  0.5 

1  (degrees) 33.1 

1  (sec) 3.5 

1
  0.35 

t  (sec) 0.0001 

Characteristic time (sec) 0.001 
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Figure 6-12 shows the input pressure profile and the resulting response of the viscoelastic 

and elastic models as calculated by this study. Note that, the tube is statically inflated up to 

the beginning of the sinusoidal loading. The response profile agrees with the profile given 

in the literature. The phase shift, caused by viscous and inertial effects, is 0.2 sec. The 

circumferential elongation varies between 1.109 and 1.063, at the steady state response. 

Moreover, the elastic model is characterized by high-frequency vibrations and increased 

response values, compared to the viscoelastic model.  

Table 6-2 lists the results of the proposed methodology against the results calculated by 

Holzapfel and Gasser. 

 

Figure 6-12: Circumferential elongation time-profile of rubber tube as calculated by this 

study. The dashed line represents the applied internal pressure time-profile. 

Table 6-2: Comparison of our study to the study of Holzapfel and Gasser [35]. 

Results 

 This study Holzapfel and Gasser 

Phase shift (sec) 0.2 0.1 

Maximum   (steady state) 1.109 1.1046 

Minimum   (steady state) 1.063 1.0547 Hara
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6.5.2  Inflation of a canine aorta 

Armentano et al. [85] experimentally investigated the inflation of a canine aorta. The 

induced blood pressure has systolic and diastolic values 87mmHg and 126mmHg 

respectively, and the radius of the aorta is 8 mm. Armentano et al. found that the maximum 

radial displacement of the canine aorta, under dynamic applied pressure, is 0.9 mm (strain 

11.25%) and has a small phase shift compared to the pressure profile (0.02 sec). Čanić et 

al. [38] investigated the example of Armentano et al. for aortic wall thickness 1.4 mm. In 

particular, they developed a theoretical model to calculate the viscoelastic response of 

arteries loaded by viscous blood flow. Their calculations showed a response with similar 

time-profile to that of Armentano et al. and a phase shift equal to 0.05 sec. 

Table 6-3: Data used in the analysis of an inflation of a canine aorta. 

Data 

R  (mm) 8 

H  (mm) 1.4 

0  (kg/m3)
1100 

sp  (mmHg)  
126 

dp  (mmHg)  
87 

st  (sec) 
0.2 

cpt  (sec)
0.6 

E  (kPa) 
1000 

1  (sec) 
0.008 

Dimensionless parameters 

/B C  1 

/sp R C  0.19 

/cp Skt t  2667 

1 / Skt  21.4 

1
  0.3 

0
z  1 

/Skt t  10 Hara
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Table 6-3 lists the problem parameters and the dimensionless parameters used in our 

analysis. Figure 6-13 shows the response of the canine aorta as calculated by this study, 

under dynamic overpressure excitation (i.e. the system is statically inflated up to the 

diastolic pressure and then dynamically inflated due to the overpressure). Our analysis 

resulted in maximum strain equal to 9.2%, for both the elastic and viscoelastic models, 

whereas there is not a phase shift of the circumferential elongation time-profile with 

respect to the pressure time-profile. Table 6-4 lists the results of our calculations as well as 

the results of the other studies. 

Time (sec)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

C
ir

cu
m

fe
re

nt
ia

l e
lo

ng
at

io
n 

 


1.00

1.02

1.04

1.06

1.08

1.10

1.12

Viscoelastic model
Elastic model
Pressure profile

P
ressure (m

m
H

g)

126

87

 

Figure 6-13: Circumferential elongation time-profile of canine aorta, and applied pressure 

time-profile.  

Table 6-4: Comparison between our study, Armentano et al. study [85], and Čanić et al. 

study [38]. 

Results 

 This study Armentano et al. Čanić et al. 

Phase shift (sec) 0.0 0.02 0.05 

Maximum strain (%) 9.2 11.25 (N/A) 
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6.5.3 Inflation of a porcine coronary artery 

In another experimental study, Veress et al. [86] performed inflation creep tests on 

porcine left arterior descending coronary arteries and monitored their response. During the 

creep test the pressure was abruptly increased (over a time period of 0.15-0.25 sec) from 0 

to 104-145 mmHg, and held for 15 sec. The time constant (relaxation time) was calculated 

to be 1.67 sec. The stress-strain relationship of the artery was experimentally obtained, 

revealing the hardening behavior of the porcine artery with increasing strain. As calculated 

by the analysis of Veress et al., the maximum circumferential strain is equal to 72%. 

Table 6-5: Data used in the analysis of an inflation of a porcine coronary artery. 

Data 

R  (mm) 1.43 

H  (mm) 0.32 

0  (kg/m3)
1160 

Applied pressure (mmHg) 145 

E  (kPa) 
112.5 

1  (sec)
1.67 

Skt  (sec) 
0.0002 

Dimensionless parameters 

/B C  1 

/sp R C  1.54 

1 / Skt  8350 

1


 
0.3 

0
z  

1 

/Skt t 10 

 

We performed an analysis based on the data provided by Veress et al. The mechanical 

behavior of the porcine artery is simulated by setting the material parameters of the Skalak 

et al. strain-energy function equal to / 1B C   and / 56 KPaC H   (based on the tangent 

elasticity modulus value in the circumferential direction that is equal to 112.5 kPa, under 

applied circumferential strain about 0.3). The geometric data of the artery were not 

reported by Veress et al. Thus, we adopt typical values of porcine left arterior descending 

coronary arteries ( R =1.43 mm, H =0.32 mm) [87]. Table 6-5 list the parameters used in 
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our analysis. The calculated circumferential strain time-profile approximates well the 

circumferential strain time-profile of the analysis of Veress et al. The maximum strain is 

calculated by this study to be 59% (Figure 6-14).  
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Figure 6-14: Circumferential strain time-profile of porcine coronary artery.  

6.6 Concluding remarks 

This chapter deals with the complex problem of the viscoelastic arterial behavior. The 

arterial wall viscosity is simulated by adopting a generalized Maxwell model and the 

internal variables approach, as suggested by Bonet [81] and Holzapfel et al. [36]. The 

proposed analytical model investigates the macroscopic response of viscoelastic arteries 

and the effect of each problem parameter on the macroscopic arterial response. An iterative 

algorithm, based on Newmark's constant-acceleration method for nonlinear systems, is 

developed, in order to obtain the numerical solution of the problem. 

Two different loading approximations are considered. The first arterial pulse time-profile 

approximation adopted in this study (Figure 6-4(a)) constitutes a conservative scenario. 

The pressure is rapidly increased from zero to the maximum systolic pressure, as is the 

case of the restoration of the blood flow after a surgery. We can say that the resulting 

maximum radial displacements are two times higher than the respective radial 

displacements under a smoothly increased pressure time-profile. Furthermore, the problem 

is characterized by high-frequency vibrations, due to the pulse-type loading.  

For the aforementioned loading scenario, the viscoelastic response is mainly affected by 

the relaxation time 1  and the material parameter 1
 . An increase of the relaxation time 1  
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increases the non-equilibrium stresses 1 /q h C  but may not increase the dissipation of the 

system over time. In particular, for extremely small relaxation time values 1 , the 

exponential term of Equation (6.19) is zeroed and the system becomes completely elastic. 

For intermediate relaxation time values 1 , the time-profile of the non-equilibrium stresses 

is almost symmetric about the time-axis and the response exhibits large dissipation 

(Figures 6-5 and 6-6). For higher relaxation time values, the non-equilibrium stresses 

exhibit higher values, that are non-symmetric about the time-axis and the response exhibits 

moderate dissipation (Figure 6-7), whereas for even higher values of the relaxation time, 

the exponential term of Equation (6.19) becomes equal to one and the dissipation of the 

response depends mainly on the material parameter 1
  (Figure 6-8). 

Rapid dissipation of the radial displacement time-response (and circumferential 

elongation) implies rapid dissipation of all the response quantities (circumferential stress, 

longitudinal stress, strain-energy density, kinetic-energy density, and total-energy density). 

Note that, the normalized strain-energy density dominates compared to the normalized 

kinetic-energy density of the system. The maximum strain-energy density occurs at the 

time instant that the respective kinetic-energy density is equal to zero. Therefore, the total-

energy density has peak values equal to the peak values of the strain-energy density.  

We are particularly interested in the maximum circumferential elongation of the 

conservative loading scenario. We can say that the elastic model adequately approximates 

the maximum response of the viscoelastic model, which frequently occurs at the beginning 

of the loading. The maximum circumferential elongation depends on the free-energy 

parameter 1
 , rather than the normalized relaxation time 1 / Skt . 

In the case that the pressure is quasi-statically applied up to the diastolic pressure, the 

system is not always characterized by high-frequency vibrations. An increase of the 

normalized relaxation time 1 / Skt  or the free-energy parameter 1
  results in a decrease of 

the response.  

Under both loading scenarios, most of the problem parameters affect the system response 

in the same manner. From Equation (6.1), we can observe that a decrease of the material 

parameter 1
  decreases the non-equilibrium forces and subsequently increases the 

normalized radial displacement. Note that, for 1 0    the system is completely elastic. In 

addition, response parameters 0
z , /B C , /sp R C  affect the viscoelastic artery in the same 

manner that affect the hyperelastic artery: an increase of the longitudinal pre-stretch 0
z , 
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the ratio /B C , or a decrease of the normalized pressure /sp R C  yields a decrease of the 

radial displacement (and circumferential elongation).  

By adding two relaxation processes to the problem, we found that for the first loading case 

the response is dominated by the relaxation time that is closer to the characteristic time of 

the response, whereas for the second loading case by adding more relaxation processes the 

dissipation is increased. 

Of particular interest is the correlation of the arterial wall viscosity to the fatigue of the 

cardiovascular system. Increased viscoelastic arterial behavior corresponds to increased 

energy loss during each cardiac cycle, meaning that a large amount of blood will be 

accumulated in the heart. Thus, the heart is forced to work harder (to pump a larger amount 

of blood each time), causing the muscle content of the heart to increase, and its chambers 

volume to decrease, making the problem even worse. 

In conclusion, this chapter proposes an analytical model describing the response of 

viscoelastic arteries. By choosing the proper viscoelastic material parameters the response 

of the system can be approximated with low computational cost. The present investigation 

revealed the strong influence of the ratio of relaxation time to characteristic time of the 

response, and of the pressure time-profile approximation on the response of viscoelastic 

arteries. 
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CHAPTER 7 

Suture-line Response of End-to-end Anastomosis 

7.1 Introduction 

During a typical arterial reconstruction, the diseased artery segment is removed, and the 

healthy segments are stitched together, either directly or through the insertion of an 

artificial graft (end-to-end anastomosis). Modern grafts tend to exhibit similar geometric 

and stiffness characteristics with those of arteries. Thus, in any case, the mechanical 

behavior of the anastomotic region is comparable. 

Limited investigations have been performed on the mathematical or computational 

modeling of end-to-end anastomosis [6, 10, 8, 14]. Moreover, most of the published studies 

rely solely on finite-element analyses rather than on analytical models, and often ignore the 

stress concentrations due to suture-artery interaction, or the axial-circumferential 

deformation coupling in the artery response. 

A comprehensive (dynamic) analytical end-to-end anastomosis model between 

isocompliant arteries was recently proposed [66]. The model accounted for the geometric 

and mechanical properties of artery and sutures, the number of sutures, loading 

characteristics, and longitudinal residual stresses. The cross-section of the artery was 

assumed to be homogeneous and its mechanical response linear elastic, incorporating in an 

average sense the tangential stiffness, the anisotropy, the inhomogeneity and the residual 

stresses of the artery walls. 

Herein, we propose an extension of the aforementioned model, to account for the suture 

pre-tensioning and the capability of the stitching on receiving forces along the axial 

direction of the end-to-end anastomosis model. A displacement-based method, considering 

the conservation of the blood volume and the suture-artery interaction, is utilized for the 

problem solution. Furthermore, a dynamic mathematical model of an artery/graft end-to-

end anastomosis and a static mathematical model investigating the para-anastomotic 

hypercompliant zone (PHZ) phenomenon, are proposed in this chapter. The latter model is 

solved as a boundary value problem. 

The present study aims to investigate the behavior of the stitched anastomotic region of 

end-to-end anastomosis through the development of analytical mathematical models, 

which account for all the important parameters. In addition, it aims to provide closed-form 

expressions for the problem solution, in order to extend current knowledge and offer useful 
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suggestions for the optimal selection of materials and improved functionality of the sutures 

in vascular surgery operations. 

7.2 Mathematical model 

Figure 7-1(a) shows a shematic of the end-to-end anastomosis model between isocompliant 

blood vessels. Note that, the artery cross-section is characterized by the assumptions 

described in Section 4.2.1. The arterial tissue is considered to be an orthotropic linear-

elastic material, and the suture material is legitimately considered to be linear elastic for 

elongations up to 20% [88].  

 

Figure 7-1: End-to-end anastomosis analysis between isocompliant blood vessels: (a) 

Anastomosis model (at-rest state), (b) unrestrained deformed state of artery (without 

sutures), (c) deformed state of anastomotic region due to dynamic loading, (d) forces 

acting on end-element of artery segment, (e) interrupted stitching scheme, (f) continuous 

stitching scheme. 

The two blood vessels (proximal and distal) are connected together with a total of sN  

stitches. Each blood vessel has length pL , radius pR  (the initial configuration is 
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considered to be under zero blood pressure and in vivo length, implying that the blood 

vessel is in its pre-stressed state), and Young’s modulus in the longitudinal direction LE . 

The stitches have radius sr , cross-sectional area 2
s sA r , and Young’s modulus sE . The 

distance between stitching holes that are symmetrically located across the separation plane 

is denoted by sl  (with the assumption that 2 p sL l ). 

Two different stitching techniques are considered, resulting in different suture loading. 

Figure 7-1(e) shows the interrupted stitching technique, whereas Figure 7-1(f) shows the 

continuous (running) stitching technique. The particular loading condition associated with 

each stitching scheme is accounted for in the analysis by means of a participation factor 

. The participation factor is derived from the local equilibrium of forces at the suture line 

that passes without friction through the stitch hole, indicating the alignment of the stitches 

along the longitudinal direction (the remaining part ( 2  ) indicates that the system is in 

torsion with limited relevance to the present problem). In particular, the interrupted 

stitching scheme corresponds to a maximum participation factor 2  , whereas the 

continuous stitching scheme (with diagonal at 45⁰ angle), corresponds to participation 

factor 1.707  . Moreover, the stitching holes and the suture are considered to have 

almost equal diameters. Therefore, the suture segment penetrating the arterial wall is 

almost undeformable, due to friction forces developed between the arterial wall and the 

suture. Finally, the model also considers the pre-tensioning of stitches 0
sf  [89], that is the 

force exerted by the surgeon in tying the knot of the suture. 

7.2.1 Objective functionalities 

Vascular operations may exhibit post-surgery complications, caused by the interaction of 

sutures with the arterial tissue. The undesirable conditions can be described by three failure 

scenarios: (a) suture failure; (b) arterial-wall tearing; and (c) blood leaking at the suture 

line. Suture failure is caused when the maximum tensile force of the suture, sf , exceeds 

the suture strength or leads to slip or relaxation of the knots that bind the stitches together 

[90]. Note that it is possible that suture failure may occur due to suture gradual 

deterioration with time [63]. Arterial-wall rupture or injury may be caused when the 

embedding stresses, s , due to suture-artery contact interaction (at the stitching holes) 

exceed the limit value of artery-wall shear strength. Thrombosis may be caused if the 

distance between the edges of the two anastomosed artery segments, netx , exceeds the 

typical size of a few red blood cells, leading to internal bleeding.  
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In order to avoid failure altogether, the following objective functionalities must be 

satisfied: 

                          ,max  ultimate axial strength of suture/knot  s s uf f  (7.1) 

                     ,max  ultimate shear strength of arterial tissue / 2s s u   (7.2) 

                                max   3 x red blood cell diameter 3net rbcx d   (7.3) 

In addition to the above objective functionalities, the following geometric constraint must 

be satisfied to assure adequate stitching spacing: 

                                                            4p s sR N r                                                         (7.4) 

The case report of Seltmann et al. [91] on the development of post-surgery artery stenosis, 

due to a high number of utilized stitches, confirms the importance of adequate stitching 

spacing. 

Furthermore, the mechanical and geometric properties of the blood vessels and the sutures 

may change over a time span of several weeks after surgery, implying that long-term 

complications may occur. In particular, the wall thickness of the sutured artery may 

decrease with time, as is the case of the inflammatory response after surgery. Moreover, 

the elastic properties and strength of the artery may change with time due to chemical 

change of the suture and its interaction with the arteries [63]. Such long-term 

complications lead to lower values of the elastic and strength properties of the arterial 

walls and suture materials. 

7.2.2 Suture-line response 

The proposed model accounts for the suture-artery interaction, and the axial-

circumferential deformation coupling in the artery response. On account of the fact that 

blood is an incompressible fluid, the radial and longitudinal modes of arterial response are 

coupled. In particular, the solution is derived by first calculating the longitudinal 

displacement of the unrestrained model (Figure 7-1(b)), and secondly calculating the 

resulting longitudinal displacement of the restrained model (Figure 7-1(c)).  

Under the applied blood pressure, the artery distends radially by ( )u t , and, in order for the 

blood volume to be maintained, its axial length is decreased from 
pL  to ul , resulting in the 
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formation of a gap gx  of the unrestrained model (Figure 7-1(b)). Conservation of the blood 

volume means that the cylindrical volume ( ) ( )a bV V  (Figure 7-1(a,b)). Then, the decreased 

anastomosis length at any time t  is given by  

                                                         
 

2

2( )
( )

p p
u

p

L R
l t

R u t



  (7.5) 

The decreased artery length ( )ul t  given by Equation (7.5) implies the following solid-fluid 

interaction procedure: (a) the blood volume fills the two parts of the anastomosis after 

completing the stitching, and (b) pressure is applied leading to contraction along the length 

of the initially emptied artery. Note that, the radial displacement ( )u t  is the radial 

displacement of the linear-elastic arterial model introduced in Chapter 4.  

By considering the unrestrained (without sutures) state of the artery (Figure 7-1(b)), the 

gap developed in this state can be determined as the difference between the initial length of 

the artery ( 2 pL ) and the length of the unrestrained deformed state ( 2 ul ): 

                                             
 

2

2( ) 2 1
( )

p
g p

p

R
x t L

R u t

 
  
  

 (7.6) 

The resulting net gap developed in the restrained (with sutures) anastomotic region (Figure 

7-1(c)) can be derived from 

                                                   ( ) ( ) 2 ( )net gx t x t l t    (7.7) 

where l  is the tensile deformation due to the stitching stiffness.  

The tensile forces developed in the suture and arterial tissue (Figure 7-1(d)) are given 

respectively by 

                                     0 0( ) ( ) ( )s s
s s s s s net s

s

A E
f t A E t f x t f

l
     (7.8) 

                                ( )
( ) ( ) ( ) 2 ( )

( )L L L L p L p
u

l t
F t E A t t H E R u t

l t
  

    (7.9) Hara
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where s  is the suture strain, L  is the strain of one artery segment, and LA  is the cross-

sectional area of the artery. The tensile deformation l  can be derived from equilibrium of 

forces in the axial direction, requiring that 

 ( ) ( )L s sF t N f t  (7.10) 

Substituting Equations (7.8) and (7.9) into Equation (7.10), the equilibrium of forces in the 

axial direction yields 

   0( )
2 ( ) ( )

( )
s s

p L p s net s
u s

A El t
H E R u t N x t f

l t l
 

 
   

 
 (7.11) 

By combining Equations (7.6) and (7.7), the net gap between the anastomosed artery 

segments is derived as 

                                         
 

2

2( ) 2 1 2 ( )
( )

p
net p

p

R
x t L l t

R u t

 
    
  

                        (7.12) 

Substituting Equation (7.12) into Equation (7.11), the equilibrium equation is expressed in 

terms of ( )l t  as 

      
 

2
0

2

( )
2 ( ) 2 1 2 ( )

( ) ( )

ps s
p L p s p s

u s p

RA El t
H E R u t N L l t f

l t l R u t
 

                   

    (7.13) 

which can be readily solved for the tensile deformation: 

                           
 

 

2 0
2

2

3 2

1
2( )

( )
( )

p s
s p p s s p s

p

L s p p s s s p p

R f
N L R A E L l

R u t
l t

E l H R u t N A E L R



 

           
 

 (7.14) 

Substituting Equations (7.6) and (7.14) into Equation (7.7), we obtain the net gap between 

the anastomosed artery segments as 

Hara
lam

bia
 C

ha
ral

am
bo

us



 

124 

 

   
 

2 2 0 2

3 2

0

2 ( ) ( )
 

( )
( )

                                                                                    , for  ( )

0          

p L s p p p p s s p p s

L s p p s s s p p

net
L s s

L E l H R u t R u t R f N L R l

E l H R u t N A E L R
x t

F t N f

 

 



      
 




0                                                                        , for  ( )L s sF t N f












  (7.15) 

Note that a gap across the anastomotic interface will be formed only if the tension 

developed in the arterial tissue exceeds the total suture pre-tension. 

Combining Equations (7.8) and (7.15), the total tensile force developed in a single suture is 

expressed as      

 
   

 

0
2 22

3 2

( ) ( )
22 ( )

( )
( )

                                                                                                  , 

s
p s s p p s p

L p p

L s p p s s s p p

s

f
L A E R u t R l R u t

E H R u t
E l H R u t N A E L R

f t


 

           
  

  
0

0 0

 for  ( )

                                                                                             ,  for  ( )

L s s

s L s s

F t N f

f F t N f











 


 

    (7.16) 

In addition, embedding stresses s
 

are developed because of suture-artery contact 

interaction at the stitching holes. The embedding stress induced on the arterial wall is 

approximated [92] by 

                                                           ( )
( )

2
s

s
s p

f t
t

r H

            (7.17) 

This is a well-known result used in the analysis of riveting of steel structures. Inserting 

Equation (7.15) into Equation (7.17) yields 

     
 

0
2 22

3 2

( ) ( )( ) 2

( )

( )                                                                                                   , 

s
p s s p p s pL p

s L s p p s s s p p

s

f
L A E R u t R l R u tE R u t

r E l H R u t N A E L R

t



 



          
 

  
  

 0

0
0

for  ( )

                                                                                        , for  ( )
2

L s s

s
L s s

s p

F t N f

f
F t N f

r H












 



 


(7.18) 

Although based on a linear-elastic model, the system response depends on a considerable 

number of parameters. In particular, the solution contains as many as seventeen input 
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parameters ( pL , pR , sN , pH , E , LE , sp , dp , st , cpt ,  , ou , sl , sE , sr ,  , 0
sf ) related 

to the geometric and mechanical properties of sutures and arterial walls, the number of 

sutures, the loading characteristics, the longitudinal residual stresses, and suture pre-

tensioning. 

For completeness, the general solution of an artery/graft end-to-end anastomosis is 

presented in Appendix B. 

7.3  Results 

This section investigates the effect of each material parameter on the three response 

quantities of interest: the anastomotic gap netx , the suture tensile force sf , and the 

embedding stress s . On normalizing by 2 pL , 2
L pE H  and LE  respectively, Equations 

(7.15), (7.16) and (7.18) become 

      

2
0

0
3

( ) ( )
1 1 1

2
,    for  ( )( )

( )2 1

0                                                                    

s s
s

p p L s p p

L s snet

ps sp
s

p L p p s

f ru t u t
N

R R E r H R
F t N fx t

LE Au tL N
R E R H l









    
                

  
   

 
0   ,    for  ( )L s sF t N f












   (7.19) 

2 3
0
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2

( ) ( ) ( )
2 1 1 1 1  

( )
1

( )

                                                        

s s s s

L p p p L s p p p

p s s s
s

p s p L ps

L p

E r f lu t u t u t
E H R R E r H L R

H l E ru t
N

R r L E Rf t

E H



 

      
                      

  
       

0

0
0

                                      , for  ( )

 

                                                                 , for  ( )  

L s s

s s
L s s

L p s p

F t N f

f r
F t N f

E H r H



 










 



       
  

(7.20) 
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s
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L p s

F t N f
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E H r



 









 


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

(7.21) 

From Equations (7.19) to (7.21), we observe that the seventeen input parameters of the 

problem can be reduced into five dimensionless parameters, namely /s LE E , /p sL l , 

/s s pN r R , /s pr H , 0 /s s p Lf r H E . Figures 7-2 through 7-6 plot the normalized response 

quantities for parameter values varied within the physiological range.  
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Figure 7-2: Normalized anastomotic gap versus normalized radial displacement for 

different values of product 4
ps s

s
L p p s

LE A
P N

E R H l



  and for 0 0sf  . 

From Equation (7.19) the normalized anastomotic gap / 2net px L  depends on the product of 

four dimensionless parameters, namely /s LE E , /p sL l , /s s pN r R , /s pr H , abbreviated 

herein as 4P , and suture pre-tension parameter 0 /s s p Lf r H E . However, utilizing typical 

parameter values, we observe that the contribution of /s pr H  is relatively small. Figure 7-2 

plots the normalized gap as a function of the normalized radial displacement / pu R , for 

different values of the product 4P , and for zero suture pre-tension. 
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Furthermore, Figures 7-3 and 7-4 plot the normalized gap as a function of the normalized 

radial displacement / pu R , in a more elaborate manner, in terms of the design parameters 

/s LE E , /p sL l , /s p pA H R , sN , in order to provide simpler and useful graphs for the 

optimal selection of materials and improved functionality of sutures. In particular, Figures 

7-3 and 7-4 highlight the influence of the variation of the suture stiffness (Figure 7-3(a,b)), 

the stitch length (Figure 7-3(c,d)), the suture cross-section area (Figure 7-4(a,b)), and the 

number of stitches (Figure 7-4(c,d)) on the anastomotic gap, for two different sets of 

parameters. The results suggest that increasing the value of any of the design parameters 

yields a decreased anastomotic gap. In particular, the most influential parameter in 

drastically reducing the anastomotic gap is the number of utilized stitches, sN , as can be 

seen from Figure 7-4(c,d). 
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Figure 7-3: Normalized anastomotic gap versus normalized radial displacement for 

different values of parameters /s LE E  and 2 /p sL l . 

The normalized tensile force in each stitch as a function of the normalized radial 

displacement for different values of parameters 2 /p sL l , /s LE E , sN , and by assuming 

0 0sf   is presented graphically in Figure 7-5. It can be observed that the normalized  Hara
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Figure 7-4: Normalized anastomotic gap versus normalized radial displacement for 

different values of parameters /s p pA H R  and sN . 
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Figure 7-5: Normalized tensile force in each stitch versus normalized radial displacement 

for 0 0sf  , for different values of parameters sN  and (a) 2 /p sL l , (b) /s LE E . 

suture tensile force is decreased as the number of stitches is increased, whereas the ratio of 

suture-to-artery elastic modulus and the normalized stitch length do not affect significantly 
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the tensile force developed in each stitch. The latter is also true for the suture radius as 

suggested by Equation (7.20). 

Finally, Figure 7-6 plots the normalized embedding stress due to suture-artery contact 

interaction as a function of the normalized radial displacement, and for different values of 

parameters /s LE E  and sN . It can be seen from Figure 7-6 that in order to reduce the 

embedding stress, the number of stitches must be increased, whereas the parameter 

/s LE E  plays an insignificant role. Moreover, the embedding stress becomes smaller with 

increasing suture radius, as can be seen from Equation (7.21). 
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Figure 7-6: Normalized embedding stress versus normalized radial displacement for 

different values of parameter /s LE E , sN  and for 0 0sf  .  

It should be noted that, for a typical anastomosis scheme (with parameters within the 

physiological range) and for 0( )L s sF t N f , when the value of pre-tension 0
sf  exceeds a 

certain value (derived from 0
./ 2 / 2s s p s uf r H  ) the arterial wall is likely to fail. On the 

other hand, for lower values of pre-tension and for 0( )L s sF t N f , the application of 

suture pre-tension can result in reducing the anastomotic gap (Equation (7.19)), while not 

affecting considerably the embedding stress (Equation (7.20)) and suture tensile force 

(Equation (7.21)). 
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7.4 Design considerations 

For design purposes the maximum radial displacement of artery maxu  (Equation (4.22)) is 

considered. The failure scenarios described by the inequalities (7.1), (7.2), (7.3), for the 

general case where 0( )L s sF t N f , can be prevented by calculating the minimum number 

of stitches required to prevent suture failure, arterial-wall tearing, and development of 

excessive gap, respectively as: 

     
0

2 2,max 2
max max 12

,

( )
2

s s u sL p p
s p p p p

s u p p s s

l f fE H R u
N L R u R R u N

f L R A E




              
(7.22) 
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   (7.24) 

in which rbcd  is the red blood cell diameter (approximately equal to 7 μm), and ,s uf , ,s u  

are known from the suture strength and the tensile strength of the arterial wall, 

respectively. Obviously, the final selection will be the maximum of 1N , 2N , 3N .  

The maximum number of utilized stitches is calculated by recasting the geometric 

constraint of Equation (7.4) in the form: 

                                                          44
p

s
s

R
N N

r


                                           (7.25) 

Therefore, the final selection of number of stitches should be bounded by 

                                                   1 2 3 4max , , sN N N N N   (7.26) 

Failure to satisfy inequality (7.26) means that the material selection and geometric 

parameter must be rethought. Typical values related to suture materials indicate that 

1 2N N  or 3N , although deteriorated stitches as well as the presence of sutures knots can 

change this.  
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Note that, for the case where 0( )L s sF t N f , the derived inequalities (7.22) to (7.24) are 

not valid. In this case, the potential failure is not dependent on the number of sutures sN , 

but rather on whether the pre-tension exceeds either the suture strength or artery strength. 

When the suture strength is larger than the knot strength, the stitches will fail on the knot 

region, otherwise the failure will occur elsewhere. Experiments on the mechanical 

properties of different suture materials were performed by Brouwers et al. [90]. Table 7-1 

reports values for the tensile strength of plain sutures, the tensile strength range for seven 

knots under dynamic loading, and the deteriorated tensile strength of plain sutures some 

weeks after the surgery. Moreover, the arterial longitudinal strength was found to be 

between 1-3 MPa, based on dynamic biaxial tension tests on human aortic tissues [47].  

Table 7-1: Tensile strength of untied and tied fiber. 

Suture Material Diameter* 
(mm) 

Tensile suture 
strength* (N) 

Tensile knot 
strength* (N) 

Tensile suture 
strength after n 

weeks (%/n) 

Plain catgut 0.36 25.5 23.7-29.6 0%/1 

Maxon 3-0 0.31 34.5 22.1-46.1 50%/3 

PDS 3-0 0.3 27.2 12.4-36.5 50%/4 

Prolene  0.26 16.7 6.2-26.7 (N/Α) 

Dexon 4-0 0.24 29.1 24.1-39.4 57%/2; 0%/4 

Mersilene 4-0 0.26 28.3 20.5-37.8 (N/Α) 

Vicryl 3-0 0.29 34.6 14.1-38.8 55%/2 

* Based on the results of Brouwers et al.[90] 

7.5 Numerical example 

A design example of the proposed model is presented, in which the minimum number of 

stitches required to prevent suture failure, arterial-wall tearing, and development of 

excessive anastomotic gap, is calculated.  

We consider an arterial end-to-end anastomosis having length 3 cmpL  , radius 

0.6 cmpR  , wall thickness 0.11 cmpH  , arterial wall density 3
0 1160  kg/m  , and 

radial displacement due to residual stresses 0 (2 / 3) 0.499 mmstu u  . The circumferential 

and longitudinal Young’s Modulus are 2700 kN/mE   and 2400 kN/mLE  , 
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respectively. More values for the mechanical properties of human ascending thoracic aorta 

can be found in the study of Gozna et al. [93]. Furthermore, we assume continuous 

suturing using a Prolene (polypropylene) suture having Young’s Modulus 1.5 GPasE  , 

radius 0.13 mmsr  , and stitch length 0.2 cmsl  . Table 7-2 lists all the parameters used 

in this example.  

Table 7-2: Parameters used in numerical example of end-to-end arterial anastomosis. 

Parameter Value 

Artery 

Length, 
pL  (cm) 3 

Radius, 
pR  (cm) 0.6 

Thickness, pH  (cm) 0.11 

Arterial tissue density, 0  (kg m-3) 1160 

Initial displacement, 0 (2/3) stu u  (mm) 0.499 

Circumferential Young’s modulus, E  (kPa) 700 

Longitudinal Young’s modulus, LE  (kPa) 400 

Tissue strength, ,s u  (MPa) 3 

Red blood cell diameter, rbcd  (μm) 7 

Suturing (Continuous, Prolene) 

Length, sl  (cm) 0.2 

Radius, sr  (mm) 0.13 

Young’s modulus, sE  (GPa) 1.5 

Participation factor, a  1.7 

Suture pre-tension, 0
sf  (N) 0 

Suture strength, ,s uf  (N) 16.7 

Loading 

Systolic pressure, sp  (mmHg) 120 

Diastolic pressure, dp  (mmHg) 80 

Systolic duration, st  (sec) 0.35 

Cardiac pulse duration, cpt  (sec) 1 
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Based on these parameter values, the maximum arterial response, occurring during the 

systolic phase, is calculated as max 0.997 mmu  . The maximum circumferential strain 

max / 16.6%pu R   is within the validity range of the small-deformation assumption. Based 

on inequality (7.26), the optimal selection of the number of stitches for this example is 

17sN  . For the selected value of the design parameter sN , the response quantities of 

interest are derived as: suture force ,0.24 N (< 16.7 N )s s uf f  , embedding stress 

1.43 MPas  ( ,< 1.5 MPa 2s u ), and anastomotic gap 6.02 μmnetx   (

21 μm 3 rbcd  ). As expected, by virtue of satisfying simultaneously the objective 

functionalities given by Equations (7.1) through (7.3), all response quantities fall within 

the accepted range of values, preventing any of the aforementioned failure scenarios. 

Nevertheless, the calculated embedding stress is marginally acceptable, and the slightest 

increase of its value may lead to arterial-wall tearing. That is, despite the fact that the 

suture can withstand tensile force up to 16.7 N, any suture pre-tension 

0
, / 0.24 Ns p s s uf H r     applied by the surgeon in tying the knot may cause arterial 

injury. 

7.6 Validation of the model 

The present model is fully analytic and has been conceived to be simple with minimum 

computational costs, and hence suitable for potential clinical application. The model 

incorporates a plethora of the most important-to-the-surgeon parameters for the first time, 

at the expense however of strong simplifying hypotheses. One main simplification is the 

linearization of the mechanical response of the anastomosis walls. Moreover, anisotropy in 

the circumferential and longitudinal direction has been retained also in an approximate 

way, ignoring Poisson effects. In addition, failure criteria based on octahedral equivalent 

stresses may not be completely appropriate for describing the strength of the arterial tissue. 

Finally, a limit-state analysis has been adopted for the failure mechanism of arterial tissues 

subject to the loading condition imposed by the stitches. 

The aforementioned issues, important by themselves, do not change the holistic view of the 

study presented in this chapter. The linearization of all presented responses gives 

consistent strains of the order of 20%. The use of more elaborate hyperelastic constitutive 

laws does not appreciably change the central results of our work, since linear-elastic 

estimates can adequately simulate hyperelastic stress-strain relationships by adopting the 

appropriate tangent elastic moduli (see Figure 3-7(a)). Poisson effects can reduce the 
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stitching results by about 30%, thus ignoring the Poisson effects is not against safety. 

Failure of the arterial walls is still an uncharted topic. It is most probable that failure 

depends on energy criteria, and in this respect the shear stress used in this work 

corresponds to a critical deviatoric energy. Finally, the limit-state analysis based on a 

critical shear stress can be easily recast into a tearing criterion based on the almost-uniaxial 

state of stress on the sides of the stitches (the linear-elasticity local model predicts a stress-

concentration factor of about two). 

Although the literature contains several experimental studies dealing with the compliance 

of the anastomotic region [16–18, 20, 21], we found that many parameters that seem to 

affect the suture stressing are not reported (e.g. the number of stitches sN ). Our present 

work indicates that more details regarding the suture material and suturing technique 

should be reported, especially if the para-anastomotic hypercompliant zone (PHZ) 

phenomenon needs to be addressed. Previous experimental studies of end-to-end 

anastomosis between isocompliant arteries or grafts investigate the compliance of the 

anastomotic region, whereas the main response quantities calculated in this study ( netx , sf , 

s ) are not reported in experimental studies. Nevertheless, it is shown that the present 

study provides a good estimation of the compliance value (Equation (3.1)) of the 

anastomotic region with respect to the published experimental results. 

Hasson et al. [17, 18] calculated the compliance of dog arterial grafts under dynamic 

loading. The compliance away from the PHZ was 0.06% mmHg-1 for the first study of 

Hasson et al. [17] and 0.05% mmHg-1 for the later study of Hasson et al. [18]. Ulrich et al. 

[21] calculated the compliance of pig arterial grafts under dynamic loading as 0.075% 

mmHg-1. The calculated compliance in our numerical example is 0.12% mmHg-1. Given 

that the mechanical data and pressure time-profile data were not available for most of the 

experimental studies, and that our model is subjected to pulse loading of the first loading 

cycle (meaning that the calculated displacements may be up to two times larger than the 

static or long-term dynamic loading - see Section 4.3), our model constitutes a good 

approximation of the experimental results. 

Of particular interest is the PHZ phenomenon. Hasson et al. [18] found that the PHZ 

phenomenon occurs more frequently for anastomosis of the continuous stitching technique 

than the interrupted stitching technique. Figure 7-7(a) shows the schematic compliance 

along the anastomotic region. The PHZ phenomenon (region 2) is pronounced in the case 

of continuous stitches, whereas away from the anastomosis zone the compliance is 
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constant (region 1). From our study, the net gap netx  is increased by 15% in the case of 

continuous stitching compared to the case of interrupted stitching. This may justify the 

decreased longitudinal stretch / pl L  and lower tangent elastic modulus 1 2E E   (Figure 

7-7(b)) of the continuous stitching case. The decrease of tangent elastic modulus results to 

a higher compliance at the PHZ. 

 

Figure 7-7: Schematic correlation of PHZ phenomenon to the stiffness of the arterial tissue 

(and the stitching technique): (a) Compliance of the anastomotic region for continuous and 

interrupted techniques, (b) Circumferential stress-longitudinal strain relationship of a 

nonlinear hyperelastic material. 

The experimental results suggest a decrease of stiffness by about 29% (at the PHZ) for the 

continuous stitching technique [18]. From the numerical example presented in our study, 

the total longitudinal stretch away from the suture line is 1.36. The longitudinal stretch at 

the PHZ is reduced by 29% compared to the longitudinal stretch away from the 

anastomotic region. By considering a nonlinear stress-strain relationship according to 

Skalak et al. [55] (Equation (5.11)), the continuous stitching (stretch 1.27) decreases the 

tangent modulus by 24% in comparison to the interrupted stitching (stretch 1.36), 

indicating that the increase of compliance at the PHZ can be correlated to the decrease of 

stiffness, as Hasson et al. [18] suggest. 

In conclusion, the present model, even though simple and approximate, captures 

adequately the essence of the phenomenon. More complex models can be important in 

refining the present results, but on the other hand will require more material data that may 

be difficult to obtain or assess their direct contribution.  Hara
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7.7 An analytical investigation of the PHZ phenomenon 

The para-anastomotic hypercompliant zone (PHZ) is a zone of increased compliance (and 

increased radial displacements) that occurs near the anastomotic region. To analytically 

investigate the PHZ phenomenon, a mathematical model considering that the radial 

displacement of the artery is a function of the distance along the longitudinal direction of 

the arterial anastomosis, is formulated. Paasche et al. [6] solved analytically the static 

boundary-value problem describing the response of an end-to-end anastomosis. Herein, we 

also investigate the static problem, by considering different boundary conditions than that 

adopted by Paasche et al. [6]. 

7.7.1 Mathematical model and static solution 

Figure 7-8 shows the configuration of the proposed model. The mathematical model 

assumes that the radial displacement of the arterial wall   is a function of the axial 

distance x  from the stitching region. The equation of motion of the cylindrical tube, under 

applied intraluminal pressure, is expressed as [6]: 

 
4 2

4 2 2 3

( , ) 12 12(1 )
( , ) ( )

p p p

x t v
x t p t

x H R E H

  
 


 (7.27) 

where pR  denotes the radius of the artery, pH  the thickness of the arterial wall, E  the 

circumferential elasticity modulus of the artery,   the Poisson's ratio of the arterial tissue 

(equal to 0.5 for incompressible materials), and ( )p t  the internal pressure of the blood 

vessel. 

 

Figure 7-8: Configuration of the end-to-end anastomosis model for investigating the PHZ 

phenomenon. Hara
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On multiplying Equation (7.27) by 2/ (12 ( )(1 ))E p t v  , the pressure term can be 

eliminated. In particular, Equation (7.27) reduces to 

 
4

4 2 2 3

12 1s
s

p p p

d

dx H R H

    (7.28) 

where 2( , ) ( , ) / (12 ( )(1 ))s x t x t E p t v   . The reduced problem of Equation (7.28) does 

not depend on time, describing the static response of the system. The derived differential 

equation is solved as a boundary-value problem. The four boundary conditions are 
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in which 2 / (12 )L p pR H   is the far-field radial displacement of the artery, and 0  is the 

shear stress at the stitching region, caused by the sutures. The general solution of Equation 

(7.28) is of the following form 
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where 1G , 2G , 3G , 4G  are constants that can be obtained by utilizing the boundary 

conditions, and 24 12 / ( )p pH R  . By solving the boundary-value problem, the resulting 

radial displacement is analytically expressed as 
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(7.31) 
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in which the constant 3G  is equal to 
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 (7.32) 

The normalized response of the system is obtained by multiplying Equation (7.31) by 

3 4
pH  :              
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(7.33) 

Observe that, the normalized radial displacement 3 4( )s px H    depends on three 

dimensionless quantities: the normalized shear stress 3
0 pH  , the normalized length of the 

blood vessel pL , and the normalized distance from the anastomotic region x . Note that, 

that the normalized radial displacement 3 4( )s px H    is equal to ( ) /s Lx   . 

The radial displacement at the stitching region can be obtained by setting 0x   in 

Equation (7.31), yielding Hara
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      (7.34) 

Equation (7.34),  reveals the linear dependency of the radial displacement (0)s  on the 

shear stress value. 

The effect of the normalized artery length pL  on the stitching-region response can be 

investigated by differentiating Equation (7.34) as 
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              (7.35) 

7.7.2 Results 

The radial displacement profile along the anastomosis length, for different values of 

normalized length pL  and normalized shear stress 3
0 pH  , is investigated. As follows 

from Figures 7-9 and 7-10, the radial displacement profile strongly depends on the shear-

stress value at the stitching region. In particular, a decrease of the normalized shear-stress 

3
0 pH   value decreases the lumen diameter at the anastomotic interface ( 0x  ).  The 

radial displacements are slightly larger than the far-filed displacement (normalized radial 

displacement larger than 1) at a region away from the anastomotic interface between 

2.2x   and 5x   (PHZ region). The peak radial displacement occurs at a normalized 

distance about 3x   away from the anastomotic interface. Note that, for zero shear-stress 

values 0  the artery is inflated uniformly, implying that the stitching perfectly simulates 

the behavior of the healthy arterial tissue. In regard to the normalized length of the 

anastomosis, it is observed that for 10pL   (Figure 7-10), the system always reaches its 

far-field displacement value 2 / (12 )L p pR H   away from the PHZ region (i.e. 5x   

region). Hara
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Figure 7-9: Normalized radial displacement of artery as a function of distance from the 

anastomotic interface, for normalized length 5pL   and normalized shear stress: (a) 

3
0 0.2pH    , (b) 3

0 0.4pH    . 

 

Figure 7-10: Normalized radial displacement of artery as a function of distance from the 

anastomotic interface, for normalized length 10pL   and normalized shear stress: (a) 

3
0 0.2pH    , (b) 3

0 0.4pH    . 

Figure 7-11 plots the response quantity  3
0(0)  / 2 /s dd     (at the stitching region) as a 

function of the normalized artery length pL . For normalized length values lower than 5, 

an increase of the normalized length yields a decrease of the normalized length effect on 

the stitching-region response, whereas for normalized length values higher than 5 the 

response of the stitching region is not affected by the normalized length value. 
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Figure 7-11: Response quantity  3
0(0)  / 2 /s dd     as a function of the normalized artery 

length pL . 

7.8 Concluding remarks 

Proposed in this chapter are mathematical models governing the response of end-to-end 

arterial anastomoses. An extension of the model of Demetriou [66] that considers the 

suture pre-tensioning and the stitching technique participation factor, as well as a 

mathematical model investigating the para-anastomotic hypercompliant zone (PHZ) 

phenomenon, were formulated. The respective problem solutions were expressed by 

closed-form expressions. 

In particular, for the dynamic end-to-end anastomosis model between isocompliant 

arteries, the time-depended response of the problem is derived in terms of the anastomotic 

gap (Equation (7.15)), the suture tensile force (Equation (7.8)), and the embedding stress 

due to suture-artery contact interaction (Equation (7.17)). The model, although linear 

elastic, is comprehensive in that it captures the effects of all pertinent parameters 

(geometric and mechanical properties of artery and sutures, number of sutures, loading 

characteristics, longitudinal residual stresses, suture pre-tensioning, and stitching technique 

participation factor). The resulting response is a function of seventeen input parameters. 

Nevertheless, on normalizing appropriately the response quantities, the problem can be 

described by only five dimensionless parameters ( /s LE E , /p sL l , /s s pN r R , /p sL l , 

0 /s s p Lf r H E ).  Hara
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It is worth noting that end-to-end anastomoses with vertical-end cuts may exhibit stenosis 

(decreased diameter lumen) at the anastomotic interface. Thus, the interconnected blood 

vessels frequently have beveled ends, i.e. the edge of the blood vessel is inclined rather 

than vertical. In this way, the suture line is increased and allows a higher number of 

utilized stitches. Even though our model assumes a vertical incision at the anastomotic 

interface, the mathematical model and the results of this chapter are applicable in the case 

of a beveled incision. This modification only affects inequality (7.25), implying that it can 

be relaxed in order to allow a higher number of utilized stitches. 

The suture-tissue interaction analysis reveals the nonlinear dependency of the system 

response on the radial extension of the artery and highlights useful interrelations among the 

problem parameters. In regard to the normalized anastomotic gap, the results suggest that 

increasing the value of any of the design parameters, excluding 0
sf , yields a decreased 

anastomotic gap. The most influential parameter in drastically reducing the anastomotic 

gap is the number of utilized stitches, sN , as can be seen from Figure 7-4(c,d). The 

normalized suture tensile force is instead affected only by the number of stitches. A higher 

number of utilized stitches results in a smaller tensile force developed in each stitch 

(Figure 7-5). It has also been shown that the normalized embedding stress is decreased as 

the number of stitches is increased, whereas the influence of the ratio of suture-to-artery 

elastic modulus on the embedding stress is insignificant (Figure 7-6).  

It should be noted that, among the failure modes discussed in Section 7.2.1, arterial wall 

failure is the most frequently encountered. For a typical anastomosis scheme and for 

0( )L s sF t N f , when the value of pre-tension 0
sf  exceeds a certain value (derived from 

0
./ 2 / 2s s p s uf r H  ) the arterial wall is likely to fail. On the other hand, for lower values 

of pre-tension and for 0( )L s sF t N f , the application of suture pre-tension can result in 

reducing the anastomotic gap (Equation (7.19)), while not affecting considerably the 

embedding stress (Equation (7.20)), which constitutes the critical response parameter, or 

the suture tensile force (Equation (7.21)). 

In regard to the proposed mathematical model that investigates the PHZ phenomenon, a 

closed-form solution describing the static radial displacements as a function of the distance 

along the longitudinal direction of the arterial anastomosis is derived (Equation (7.33)). 

The solution adequately captures the PHZ phenomenon for normalized length values pL  

higher that 5 and normalized shear-stress values ''' 3
o pH   lower than -0.05. Hara
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In summary, the most important outcome of the study presented in this chapter is the 

development of a fundamental analytical model that predicts the dynamic behavior of end-

to-end arterial anastomosis and the establishment of failure criteria that can ultimately form 

the basis for the development of vascular anastomosis guidelines pertaining to the 

prevention of post-surgery complications. The mathematical formulation reveals useful 

interrelations among the problem parameters, thus making the proposed model a valuable 

tool for the optimal selection of materials and improved functionality of sutures.  
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CHAPTER 8 

Suture-line Response of End-to-side Anastomosis 

8.1 Introduction 

End-to-side vascular anastomosis has a considerable complexity concerning the suturing of 

the juncture line between the artery and the graft. The problem is influenced by a number 

of parameters: the blood vessels and the suturing geometrical and mechanical properties, 

the intersecting angle between the artery and the graft, the blood flow rate, and the blood 

pressure. Note that, this type of vascular anastomosis is utilized extensively in bypassing 

arterial diseases and restoring normal blood supply to arteries through a vein or artificial 

graft. 

There are several studies carried out in this field driven by the need to assess and prevent 

post-surgery complications. Marble et al. [94] calculated analytically the tensile force in 

the direction of the graft, away from the anastomosis junction. In their work, the suture-

blood vessels interaction was ignored, as well as the stress concentration at different 

locations of the intersection area. Although studies that utilize numerical methods can 

simulate asymmetrical geometries, dynamically-applied blood flow and biological 

activities, they inevitably sacrifice generality due to the limited number of investigated 

models [9, 10, 12, 13, 15].  

The main objective of this chapter is to derive an analytical model and provide closed-form 

expressions for the response of end-to-side anastomosis, in order to improve the end-to-

side anastomosis technique through improved functionality of the sutures and optimal 

selection of materials and anastomosis angle.  

The two blood vessels are assumed to have comparable elastic properties, and their cross-

sections are modeled as axis-symmetric cylinders, consisting by a single homogeneous 

layer. The proposed methodology is based on general results obtained from the analysis of 

pipe connections, a topic that has been investigated in recent years in the field of offshore 

structural engineering [95, 96]. A key aspect for implementing the stress-concentration-

factor (SCF) approach is the recognition that the axial load due to pressure and flow 

dynamics exerted along the graft axis controls the “hot spots” on the juncture line, which in 

turn affects the mechanical response of the sutures. The analysis accounts explicitly for 

three possible failure modes directly associated with the suture-blood vessels interaction: 

suture failure, blood-vessel tearing, and suture-line blood leaking.  
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8.2 Model configuration 

The human arterial system can be idealized as a system of interconnected cylindrical pipes 

that transport blood. An end-to-side anastomosis configuration can be parallelized with 

pipe junctions, called K- or Y-joints. The analysis of stress concentration at the junction 

line of the cylindrical pipes is a well-known and well-studied subject in the field of 

offshore structural engineering. 

 

Figure 8-1: Configuration of the three-dimensional end-to-side anastomosis model: (a) X-Z 

view, (b) Y-Z view, (c) X-Y view (CT: crown toe, CH: crown heel, S: saddle). 

Figure 8-1 shows the three-dimensional configuration of the proposed end-to-side vascular 

anastomosis model. The host-artery has outer radius o
aR  and wall thickness aH , while the 

vein or artificial graft that is connected to the artery side has outer radius o
gR  and wall 

thickness gH . In Figure 8-1, angle   denotes the polar angle of the intersection plane, 

measured from the crown heel (CH), and   denotes the angle of the graft axis with respect 

to the artery axis. The intersecting angle assumes values in the range 0 90    . Note 

that, the origin of the X-Y-Z coordinate system lies on the artery axis, beneath the 

intersection point between the artery surface and the graft axis. 

The mathematical model developed herein is based on the following assumptions: (a) the 

cross-sectional dimensions of the artery and graft are circular and small compared to the 
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radius of their centerline; (b) the vessels wall thicknesses are constant along the centerline; 

(c) the arterial tissue and the graft consist of a single (homogeneous) layer; (d) the artery 

and the graft have comparable elastic properties; and (e) viscous effects are ignored. 

According to the study of Thubrikar et al. [97], increased thickness of the junction line and 

nonlinear elastic properties of the blood vessels have secondary effect on the induced 

stresses. In particular, they proved that the local stress concentration of an arterial branch is 

primarily affected by the geometry of the end-to-side junction and is secondarily affected 

by factors like the elastic properties of the blood vessel or thickening of the junction line. 

The three-dimensional curve of the intersection of the two blood-vessels can be expressed 

parametrically (with parameter [0,2 ]  ) in the X-Y-Z coordinate system by the 

normalized equations [98]: 

 1cos sin sin ,     0 2
o
g

o o
a a

RX

R R
  

  
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 (8.1) 
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


                     
 (8.3) 

Figures 8-2 and 8-3 plot the normalized intersection curve of the artery-graft junction on 

the Y-Z and X-Z plane respectively (Equations (8.1) and (8.2)), for different values of the 

intersecting angle   and radii ratio /o o
g aR R . It can be observed that the length of the 

intersection curve is increased as the intersecting angle   between the artery and the graft 

is decreased and/or the ratio /o o
g aR R  is increased. Thus, the intersection curve becomes 

longer as /o o
g aR R  approaches 1 and as   approaches zero, leading to longer suture lines. 

For / 1o o
g aR R  , the intersection curve becomes largest and sharp-edged with two corner-

like points (A, B in Figure 8-2). On the other hand, for / 1o o
g aR R   the curves become 

smooth.  

Hara
lam

bia
 C

ha
ral

am
bo

us



 

147 

 

-4 -2 0 2 4
-2

-1

0

1

2

=15°
=30°
=45°
=60°
=75°
=90°

Z/Ra
o

-3 -2 -1 0 1 2 3
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-4 -2 0 2 4

Y /
R

ao

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

Y /
R

ao

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(a)

(c)

(d)

Rg
o/Ra

o=1

Rg
o/Ra

o=0.6

Rg
o/Ra

o=0.4

Rg
o/Ra

o=0.8

(b)

A

B

CH

CT

CTCH

CTCH

CTCH

Y /
R

ao
Y /

R
ao

 

Figure 8-2: Normalized intersection curve of the artery-graft junction on the Y-Z plane for 

different values of the intersecting angle θ and for (a) / 1o o
g aR R  , (b) / 0.8o o

g aR R   (c) 

/ 0.6o o
g aR R  , (d) / 0.4o o

g aR R   (CT: crown toe, CH: crown heel). 

The normalized length of the suture line is equal to the normalized length of the 

intersection curve, calculated as 
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Figure 8-3: Normalized intersection curve of the artery-graft junction on the X-Z plane for 

different values of the intersecting angle θ and for (a) / 1o o
g aR R  , (b) / 0.8o o

g aR R  , (c) 

/ 0.6o o
g aR R  , (d) / 0.4o o

g aR R  . 

Table 8-1 lists the values of the normalized length / o
aS R  for different intersecting angles 

  and radii ratios /o o
g aR R . The total suture length has low bound the value 2 / o

aS R  

(interrupted stitching case with stitch length equal to the distance between two sequential 

stitches). For the case of running stitching with diagonal at 45° angle the normalized suture 

length is   / 2 1o
aS R  . 

In vascular surgery the incision length is frequently equal to two times the graft diameter. 

The normalized incision length (length of the line connecting the crown heel to the crown 

toe) can be calculated as 

 
    20

sin

o
gin

o o o o
a a a a

RZ ZS

R R R R

  


 
    (8.5) 
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Table 8-1: Values of normalized suture length / o
aS R  for different values of the 

intersecting angle θ and radii ratios /o o
g aR R . 

              

/o o
g aR R   

15⁰ 30⁰ 45⁰ 60⁰ 75⁰ 90⁰ 

1 20.50 11.78 9.25 8.22 7.77 7.64 

0.8 15.35 9.63 8.10 7.51 7.26 7.19 

0.6 11.94 8.25 7.33 7.00 6.85 6.18 

0.4 9.20 7.21 6.77 6.61 6.54 6.53 
 

 

On multiplying Equation (8.5) by /o o
a gR R , the normalized incision length can be expressed 

as 

 
2

sin
in
o
g

S

R 
  (8.6) 

To perform an incision length equal to two times the graft diameter, the normalized 

incision length / o
in gS R  must be equal to 4. Thus, in vascular surgery, the intersection angle 

  is frequently equal to 30  (Equation (8.6)).  

8.3 Far-field forces of the anastomosis model 

The blood flow and the longitudinal pre-stress of the artery result in far-field forces on the 

artery-graft junction. In particular, the blood flow induces global forces along the z and x 

directions of the flow domain, as shown in Figure 8-4. The three cross-sections of Figure 

8-4(a) have average flow rates 1Q , 2Q , 3Q  corresponding to the cross-sections 1A , 2A , 3A . 

The average flow velocities are 1V , 2V , 3V  (derived from i i iQ AV ) and the blood 

pressures are 1p , 2p , 3p , respectively. It is assumed that the artery cross-section is 

constant along the artery axis ( 1 3A A ). The far-field forces acting along the x-axis, y-axis, 

and the graft axis are expressed as [94]: 

 2 2 2
1 1 2 2 3 3 1 1 2 2 3 3cos cosx b b bR p A p A p A V A V A V A            (8.7) 

 2
2 2 2 2sin cosy bR p A V A     (8.8) Hara
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 cos sinx yR R R     (8.9) 

 

Figure 8-4: (a) Flow domain of an end-to side anastomosis. (b) Forces acting on the 

anastomosis junction. 

 By utilizing Bernoulli's momentum and continuity equation ( 1 2 3Q Q Q  ), the far-field 

forces along the z and x directions may be simplified as follows [94]: 

  
2 22

1 11
2 2 1 1 1 1

1 2 1

cos 2
2 2
b b

z

Q Qk
R k k A p k k

A k A

 

  

      
  

 (8.10) 

 
2 2

1 1
2 2 1 1

1 2

sin
2
b

x

Q k
R k k A p

A k



  

    
  

 (8.11) 

in which 1 2 1/k Q Q , 2 2 1/k A A , and b  is the density of the blood. The tensile far-field 

force in the direction of the graft is 

  
2 22

1 11
2 2 1 1 1 1

1 2 1

2 cos
2 2
b bQ Qk

R k k A p k k
A k A

 


 
     

 
 (8.12) 

On normalizing the tensile far-field force in the direction of the graft by 2
1 1/ 2bQ A , 

Equation (8.12) takes the form 
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  
2 2

1 1 1
2 2 1 12 2

1 2 1

1

2
2 cos

2
b b

R k A p
k k k k

Q k Q

A

 
 

      (8.13) 

The dimensionless ratio 1k  typically varies between 0 and 1, and the dimensionless ratio 

2k  varies between 0.2 and 1. For large- and medium-size arteries under pressure, the 

expression 2 2
1 1 12 / bA p Q  typically varies between 340 and 3400. Therefore, R  can be 

approximated by  

 2 1R A p   (8.14) 

In the case of veins, in which the blood pressure is low, R  may be approximated by 

  
2 2

1 1
2 1 1

1 2

2 cos
2
bQ k

R k k k
A k




 
    

 
 (8.15) 

In addition, longitudinal residual stresses may exist along the host-artery. The longitudinal 

residual force resN  (Figure 8-4(b)) is usually taken into account as a strain percentage, 

which is about 10-30% of the unstressed artery length. In this chapter, the effect of the 

residual force resN  is ignored, since it does not affect considerably the suture-line response 

of an end-to-side anastomosis and has not been taken into consideration in relatively recent 

investigations [12]. 

8.4 Stress-concentration factors (SCF) 

The local stresses of the junction can be obtained from the stress-concentration 

methodology, utilized in the analysis of K- and Y-joints of circular hollow pipe sections. 

Specifically, the local stress acting at any point of the artery-graft intersection zone is 

calculated from the axial tensile stress (of the applied load R ) and the SCF. The SCF 

applies on the tensile force (due to pressure and hydrodynamic effects) in the direction of 

the graft, which in turn affects the loading of the sutures. The axial tensile stress along the 

graft is 

 22 2 g g

R

R H



  (8.16) Hara
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in which 
gR  is the mean radius of the graft. Therefore, the local stresses at the stitching 

zone of the artery and graft side are expressed respectively as 

 22SCFlocal
a a   (8.17) 

 
22SCFlocal

g g   (8.18) 

where SCFa  and SCFg
 are the stress-concentration factors corresponding to the artery and 

graft side, respectively. 

The most representative SCF prediction studies in the literature are: (1) the method 

adopted by the American Welding Society [96] and American Petroleum Institute [95]; (2) 

the work of Shao et al. [99]; and (3) the work of Karamanos et al. [100]. The SCF 

equations were obtained from parametric investigations based on a large number of finite-

element analyses and experiments, for specific ranges of the normalized geometric 

parameters 

 / ,  / ,  /o o o
g a a a g aR R R H H H      (8.19) 

Herein, we adopt the parametric SCF equations of the first two methodologies. The 

American Welding Society and the American Petroleum Institute SCFs for the artery and 

graft are expressed respectively as 

 (1)SCF 2.16 sina     (8.20) 

 (1) (1)SCF 1.375 0.375 / SCFg a    (8.21) 

Shao et al. proposed a SCF solution for all values of [0,2 ]   along the juncture line 

(Figure 8-1(b)). According to their solution, the general parametric SCF equations for the 

artery and graft are expressed respectively as 

 (2)
0 1 2SCF cos cos(2 ),     0 2a C C C         (8.22) 

( 2 )
0 1 2 3 4SCF cos cos(2 ) cos(3 ) cos(4 ),  0 2g C C C C C             (8.23) 

in which the coefficients iC  are functions of parameters  ,  ,  ,  . The reader is 

referred to the original paper of Shao et al. [99] for the complete forms of iC 's. To obtain 
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the SCF value for the crown toe (CT in Figure 8-1), φ must be set equal to  , and for the 

crown heel (CH in Figure 8-1), φ must be set equal to zero. Shao et al. found that the 

maximum SCFs, for axial loading in the direction of the graft are usually located at the 

crown toe. 

Figures 8-5 through 8-7 plot the SCF curves according to Equations (8.20) through (8.23), 

for    (crown toe) and for different values of the dimensionless ratios  ,  ,  . Observe 

that the SCFs for the artery side are frequently higher than the SCFs for the graft side. 

Furthermore, for low values of anastomosis angle ( 20   ) the SCF is always lower than 

2.7, whereas for large anastomosis angles ( 60   ) the SCF is larger than 3, regardless of 

the adopted prediction. The points marked by dots in Figures 8-5 through 8-7 indicate the 

intersecting angle   for which the artery and graft SCFs are equal, for the pair of equations 

of the American Welding Society and the pair of equations of Shao et al. The artery and 

graft SCFs are equal for intersecting angle   in the range 10° to 30°. This result implies 

equal stress amplifications for the graft and the artery side, which could lead to evenly-

distributed hyperplasia. 
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Figure 8-5: Stress-concentration factors for the artery and graft for different values of the 

graft-to-artery radii ratio: (a) 1  , (b) 0.5  . 

8.5 Suture-line response 

As discussed in Section 7.2.1, for the case of end-to-end anastomosis, the interaction of 

sutures with the blood vessels may lead to post-surgery complications in a number of 

ways. Correspondingly, post-surgery complications may occur in the case of end-to side 

anastomosis. The suture may fail when its maximum tensile force sf  exceeds its tensile 

strength, or lead to slip or relaxation of the knots that bind the stitches together. Note that, 
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sutures may creep and gradually deteriorate with time and potentially fail some weeks after 

the operation. Furthermore, the blood vessel wall may rupture and injury may be caused 

when the embedding stresses s  due to suture-wall contact interaction (at the stitching 

holes) exceed the limit value of wall shear strength. High-stress values is one of many 

factors that promote the generation of intimal hyperplasia and cause the arterial wall to 

increase its cross-section [10]. Yet another complication may be caused due to large 

deformations at the suture line, which in turn may cause blood leak or reduction of the 

artery-graft intersecting angle at the anastomosis area.  
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Figure 8-6: Stress-concentration factors for the artery and graft for different values of the 

artery radius to artery thickness ratio: (a) 12  , (b) 10  . 
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Figure 8-7: Stress-concentration factors for the artery and graft for different values of 

graft-to-artery thicknesses ratio: (a) 0.8  , (b) 1  . Hara
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For the suture-line analysis we consider two different models. The interrupted stitching or 

interrupted vascular clips model (Figure 8-8(a)), and the continuous (running) stitching 

with diagonal at 45° angle model (Figure 8-8(b)).  

 

Figure 8-8: (a) Interrupted stitching or clips model of an end-to-side anastomosis. The 

insert on the right shows a detail of the suture-line opening, int
sl , and stress distribution, 

s

int ; (b) Continuous stitching model of end-to-side anastomosis. The insert on the right 

shows a detail of the suture-line opening, cont
sl . 

In the case of interrupted stitches or clips, the suture is assumed to be rigid and the suture 

line can be approximated as a solid surface with cracks (microslits). The cracks are located 

between the sutures or clips. Figure 8-8(a) shows the approximate stress distribution of int
s  

along the clip thickness, which is distributed parabolically according to the smooth contact 

solution of Hertz [101], with the maximum embedding stress obtained as 

 max 1.5int int
s s   (8.24) 

in which int
s  is the peak average embedding stress at the stitching hole of an interrupted 

stitch or vascular clip. The peak average embedding stress is calculated as Hara
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    
max ,  

min , min ,

locallocal
g gint a a

s

r a g r a g

sHsH

d H H d H H




    
  

 (8.25) 

where rd  denotes the suture diameter or the clip thickness and s  denotes the distance 

between two sequential stitches. When dividing with the artery thickness aH  we get the 

average embedding stress at the artery, whereas by dividing with the graft thickness gH  we 

get the average embedding stress at the graft.  

For systems with considerable stiffness (i.e. artery-artificial graft anastomosis), the fracture 

mechanics theory [102] can be applied to calculate the maximum opening of the 

anastomosis interface as a crack opening problem, leading to the approximation 

 
1 1 1 1

max ( ) ,  ( )int local local
s a r g r

a g a g

l s d s d
E E E E

 
                      

 (8.26) 

in which aE  and gE  are the Young's modulus of the artery and graft, respectively. 

In the case of continuous stitching with diagonal at 45° angle (Figure 8-8(b)), the uniform 

tensile force of the suture depends on the maximum local stress of the artery or graft side: 

 0 0max ,  
1.7 1.7

locallocal
g gcont a a

s s s

sHsH
f f f

     
  

 (8.27) 

where s is the distance between two sequential stitches, and 0
sf  is the suture pre-tensioning 

exerted by the surgeon in tying the suture knot. The peak embedding stress, due to suture-

wall contact interaction at the stitching holes, takes the form 

    
00 1.71.7

max ,  
min , min ,

locallocal
g g scont a a s

s

s a g s a g

sH fsH f

d H H d H H




    
  

 (8.28) 

in which sd  is the suture diameter. By dividing with the artery thickness aH  we obtain the 

peak embedding stress at the artery, whereas by dividing with the graft thickness gH  we 

obtain the peak embedding stress at the graft. The gap created between the two blood 

vessels, according to Hooke's law, is obtained as Hara
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

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        

 (8.29) 

in which sl  denotes the stitch length and sE  denotes the Young's modulus of the suture. A 

gap between the two blood vessels will be formed only if the suture tensile force caused by 

the blood pressure exceeds the pre-tension value. 

Note that, this analysis investigates the conservative scenario of the typical stitches/clips 

technique. Parameters that may decrease the suture-line response are ignored. For example, 

days, weeks, and months after the anastomosis is carried out, tissue is formed around the 

suture line, resulting in increased local curvature/intersecting angle of the junction (Figure 

8-9). The decrease of the sharpness of the suture line results to smaller stress concentration 

and increased strength of the anastomosis. In addition, reinforcement of the suture line by 

pledgeted sutures or other techniques decreases the risk of post-surgery complications 

because the tearing stresses from the tension of the sutures are decreased. 

 

Figure 8-9: The formation of tissue around the suture line (black areas), weeks and months 

after the anastomosis is carried out, results in increased local curvature/intersecting angle θ 

of the junction. 

8.6 Comparison with finite-element studies 

The proposed methodology is compared against the finite-element studies of Ballyk et al. 

[10], Perktold et al. [12] and Thubrikar et al. [97]. In order to obtain comparable response 

values for the first two studies, we calculated the normalized mean stress and the principal 

stress concentration based on the proposed SCFs, respectively. Hara
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Ballyk et al. [10] simulated an end-to-side artery-Dacron graft anastomosis with identical 

geometric properties (Table 8-2). Their model clearly shows that the three-dimensional line 

formed by the intersection of the two blood vessels has sharp edges, as indicated also in 

Figures 8-2 and 8-3 (for / 1g aH H  ). The sutures were modeled as points along the 

intersection curve resulting in excessive stress concentrations. The hoop stress at the graft, 

derived from Laplace's law, is 1 /g gp R H  . In their work, Ballyk et al. calculated the 

normalized mean stress as 1( ) / (2 )local p  , and found that the maximum mean stresses 

for the artery and graft, just away from the suture, are 8 and 6 respectively. Table 8-3 

reports values for the far-field stress and the SCF based on the model proposed in this 

chapter, and compares the calculated normalized mean stress with that reported in Ballyk 

et al. Our calculations of the normalized mean stress are in good agreement with their 

results. 

Table 8-2: Parameters of end-to-side model of Ballyk et al. 

Parameter Value 

1p  (kPa) 13.3 

θ (degrees) 45 
o
aR  (mm) 2.75 

o
gR  (mm) 2.75 

aH  (mm) 0.5 

gH  (mm) 0.5 

/o o
g aR R   1 

/o
a aR H   5.5 

/g aH H   1 

/a gE E  3.14-1.33 

resN  (N) 0.19 
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Table 8-3: Results of the proposed methodology against the Ballyk et al. analysis. 

Results 

This study Ballyk et al. 

2 1R A p   (Ν) 0.26 (NA) 

22  (kPa) 33.32 (NA) 

  (kPa) 66.65 (NA) 

(1)SCF  3.58 (NA) 

(1)SCFg  2.72 (NA) 

(2)SCF  4.23 (NA) 

(2)SCFg  3.50 (NA) 

Normalized mean stress  

(1)
22 1(SCF ) / (2 )a p   6.97 8 

(1)
22 1(SCF ) / (2 )g p   5.90 6 

(2)
22 1(SCF ) / (2 )a p   7.79 8 

(2)
22 1(SCF ) / (2 )g p   6.87 6 

 

In another finite-element study, Perktold et al. [12] modeled an end-to-side artery/ePTFE 

conventional anastomosis and a Taylor-patch anastomosis with the parameters reported in 

Table 8-4. Perktold et al. calculated the principal stress concentration normalized by the 

average principal stress of the artery as 1/ 2 / ( / 2)local local
ave a aH p R

     . For the 

conventional and the Taylor-patch anastomosis, the normalized maximum and minimum 

principal stress concentration were calculated as 4.7 and 0.7, respectively. Table 8-5 

presents the far-field stress and the SCFs as proposed by this study, the principal stress-

concentration calculations, as well as the suture-line response. By using the SCF of Shao et 

al., we obtain a realistic maximum response corresponding to the principal stress 

concentration of the artery equal to 4.55, which compares well with the respective result of 

Perktold et al. ( 4.7 ). The minimum SCF for the artery, according to the plots presented 

by Shao et al., occurs at the crown heel and can be found by scaling the maximum SCF by 

a factor of 1/6. Therefore, the scaled principal stress concentration is 0.76, which is a good 

approximation of the finite-element result ( 0.7 ). It should be noted that Perktold et al. 

found that the stress concentration of these models does not occur at the toe, due to the Hara
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irregular geometries of the blood vessels. However, the SCFs as proposed by this study 

constitute a good approximation of the maximum and minimum values. 

Table 8-4: Parameters of end-to-side model of Perktold et al. 

Parameter Value Parameter Value 

Artery/graft Interrupted clips 

1p  (kPa) 13.3 rd  (mm) 0.34 

θ (degrees) 25 s  (mm) 1.02 
o
aR  (mm) 2.15-2.25 Continuous stitches  

o
gR  (mm) 2.075-2.175 sd  (mm) 0.093 

aH  (mm) 0.5 s  (mm) 1 

gH  (mm) 0.35 sl  (mm) 1 

/o o
g aR R   0.97 sE (GPa) 1.44 

/o
a aR H   4.5   

/g aH H   0.7   

aE  (kPa) 410   

gE  (kPa) 7500   

resN  (N) 0   

 

Perktold et al. [12] also studied the individual suture response of two different models: a 

model with interrupted vascular clips and a model with continuous stitching. The 

clips/stitch properties are reported in Table 8-4, and the suture-line response of the 

proposed methodology against the Perktold et al. analysis is listed in Table 8-5. In the case 

of the interrupted-clips model, the maximum embedding stress is calculated by the present 

study as 760 kPa (Equation (8.24)) and the opening created between the two vessels is 

calculated as 206 μm (Equation (8.26)). The opening is considered to be excessive and 

blood leakage is induced (the opening is larger than the sum of diameters of three red 

blood cells: 206 μm > 21 μm). In the case of the continuous-stitching model, the suture 

tensile force, by assuming zero suture pre-tension, is derived from the maximum SCF of 

Shao et al. as 0.034 N (Equation (8.27)). As expected, this value does not compare well 

with the corresponding value obtained in the work of Perktold et al. since they modeled the 

stitching of the saddle region only. In order to obtain a better approximation against their 

work, we calculated a hypothetical value of the tensile force by using the SCF for the 
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saddle. The hypothetical tensile force is 0.005 N. Additionally, the gap between the two 

blood vessels, for the continuous stitching case, is calculated as 3.51 μm in the present 

study (Equation (8.29)). According to these calculations, we can conclude that the finite-

element results (related to the interrupted-model embedding stress and the continuous-

model suture force) compare well with the formulas suggested in this chapter based on the 

SCFs (Table 8-5). 

Table 8-5: Results of the proposed methodology against the Perktold et al. analysis. 

This study Perktold et al. 

2 1R A p   (Ν) 0.16 (NA) 

22  (kPa) 37.31 (NA) 

  (kPa) 26.00 (NA) 

(1)SCF  1.35 (NA) 

(1)SCFg  1.81 (NA) 

(2)SCF  3.17 (NA) 

(2)SCFg  2.11 (NA) 

Principal stress concentration 
(1)

22SCF /a ave   1.94 4.7 

(1)
22SCF /g ave   2.60 (NA) 

( 2)
22SCF /a ave   4.55 4.7 

(2)
22SCF /g ave   3.03 (NA) 

Suture-line response (Interrupted clips) 
intmax s  (kPa) 760 700 

int
sl (μm) 206 (NA) 

Suture-line response (Continuous stitches) 

cont
sf  (N) 0.034 (realistic), 0.005 

(hypothetical) 
0.008-0.017 (saddle) 

cont
sl (μm) 3.51 (NA) 

 

The proposed stress-concentration methodology can be as well utilized to easily obtain the 

maximum stress of arterial branches. Thubrikar et al. [97] studied the stress concentrations 

of a bovine coronary arterial branch with inclination angle 70°. The parameters of the 

arterial branch are reported in Table 8-6.  
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Table 8-7 lists the stress-concentration results of our study and of the study of Thubricar et 

al. The SCFs, as calculated by this study, are 5.36 and 3.78 for the main artery and branch, 

respectively, resulting in maximum stresses 116 kPalocal
a   and 82 kPalocal

g   at the 

artery and branch side, respectively. Our stress-concentration results compare well with the 

finite-element results of Thubrikar et al. (113 kPa and 90 kPa for the artery and branch 

side, respectively). 

Table 8-6: Parameters of arterial branch model of Thubrikar et al. 

Parameter Value 

1p  (kPa) 5.33 

θ (degrees) 70 

o
aR  (mm) 4.46 

o
gR  (mm) 2.33 

aH  (mm) 0.36 

gH  (mm) 0.27 

/o o
g aR R   0.5224 

/o
a aR H   12.39 

/g aH H   0.75 

resN  (N) 0 

 

Table 8-7: Results of the proposed methodology against the Thubrikar et al. analysis. 

Results 

This study Thubrikar et al. 

22  (kPa) 21.67 (NA) 

(1)SCFa
 5.36 (NA) 

(1)SCFg  3.78 (NA) 

local
a  (kPa) 82 90 

local
g  (kPa) 116 113 Hara
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8.7 Numerical example related to PTFE venous access graft 

Ngoepe et al. [15] studied the case of arterio-venous access grafts, by utilizing finite-

element analysis. Such anastomoses are performed in the case of patients undergoing 

hemodialysis. Herein, we investigate the response of vein/PTFE access grafts, forming 

end-to-side anastomosis configurations with 45 and 90 intersection angles. Ngoepe et al. 

found that the maximum structural wall stress at the junction of the venous anastomosis is 

equal to 3.36 kPa, and that the 90 configuration shows slightly better performance than 

the 45 configuration. 

The parameters used in our analysis are listed in Table 8-8. For the calculation of the far-

field forces Equations (8.7) through (8.9) are utilized. Note that, the inertia terms (flow 

velocity terms) are insignificant compared to the pressure terms, and therefore are 

neglected.  

Table 8-8: Parameters of Vein/PTFE access graft models of Ngoepe et al. 

Parameter Value 

 90     45    

1p  (kPa) 24.2 14.4 

2p  (kPa) 21.8 6.48 

3p  (kPa) 1.21 0.72 

1V  (m/s) 0.06 0.07 

2V  (m/s) 0.02 0.025 

3V  (m/s) 0.0886 0.0847 

o
aR  (mm) 3 3 

o
gR  (mm) 3 3 

aH  (mm) 1 1 

gH  (mm) 1 1 

b  (Kg/m3) 1050 1050 

/o o
g aR R   1 1 

/o
a aR H   1 1 

/g aH H   2 2 
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Table 8-9: Results of the proposed methodology for the access graft models of Ngoepe et 

al. 

Value 

90     45    

xR  (Ν) -0.180 -0.325 

yR  (Ν) 0.357 0.154 

R  (Ν) 0.125 0.154 

1  (kPa) 66.55 39.6 

2  (kPa) 59.95 17.82 

3  (kPa) 3.33 1.98 

22  (kPa) 7.27 8.91 

(1)SCFa  2.64 3.74 

(1)SCFg  2.37 2.78 

local
a  (kPa) 19.18 33.32 

local
g  (kPa) 17.22 24.77 

8.8 Concluding Remarks 

This chapter proposes a systematic stress-concentration methodology for the prediction of 

the stress distribution at the junction line of the end-to-side anastomosis and end-to-side 

arterial branches. Closed-form expressions were derived for calculating the embedding 

stress (Equations (8.24) and (8.28)), the gap formed between the two blood vessels 

(Equations (8.26) and (8.29)), and the suture tensile force for the continuous stitching 

model (Equation (8.27)). Furthermore, expressions for the calculation of the suture-line 

length S (Equation (8.4)) and the approximate suture length (  2 1S  ) are introduced. 

Although the proposed model constitutes an idealized approach of the end-to-side 

anastomosis problem, the results of the proposed methodology are a good approximation 

of the response of more complex models. For example, the results of finite-element studies 

with geometrical asymmetries and irregular flow conditions, such as the study of Perktold 

et al. [12], are approximated well by our model (which assumes that the cross-sectional 

dimensions of the artery and graft are circular and that the blood flow is steady). On the 
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other hand, the elastic modulus of the graft must not be much lower than the elastic 

modulus of the artery. The reason is that the less stiff graft will be excessively deformed at 

the junction, rendering the proposed model invalid. This has been shown by Hofer et al. 

[9]. For the case of a stiff graft (10 times stiffer than the artery), their finite-element 

solution close to the artery-graft junction shows a maximum stress of 300 kPa at the artery 

side. Our model predicts a maximum local stress of 282 kPa. However, for a graft that is 

less stiff than the artery, the stress is significantly reduced to 80 kPa.  

The problem is mainly affected by the intersecting angle between the artery and the graft, 

the radii and thicknesses of the artery and graft, the blood pressure, and the suturing 

characteristics. The SCF investigation demonstrated that lower values of the graft-to-artery 

radii ratio /o o
g aR R , the graft-to-artery thicknesses ratio /g aH H , and the ratio of artery 

radius to artery thickness /o
a aR H  frequently decrease the SCFs (Figures 8-5 through 8-7). 

Moreover, the range of anastomosis angle θ for which the artery and graft SCFs are equal 

lies between 10° and 30°. Although low values of anastomosis angle θ typically reduce the 

SCF (and consequently reduce the suture-line opening, the embedding stress, and the 

suture force), they require longer suture lines and larger number of stitches, which is a 

potential source of fluid disturbance [103]. 

The suture-line response is calculated by Equations (8.24) through (8.29). These 

expressions highlight the influence of the suturing parameters on the suture-line response. 

For a given end-to-side anastomosis configuration, when the distance between two 

sequential stitches is decreased (meaning that the number of stitches is increased) or the 

stitch diameter/thickness is increased, the embedding stress and the gap created between 

the two blood vessels are decreased, regardless of the adopted stitching technique. In the 

case of the continuous stitching technique, it can be observed that when stronger sutures 

are used the gap developed between the two blood vessels is decreased. In regard to the 

suture tensile force, it can be shown that it is increased as the distance between two 

sequential stitches is increased. Furthermore, the interrupted-stitching technique is more 

compliant at the anastomosis than the continuous-stitching technique, as suggested by the 

literature [104]. 

In the case that pre-tension is applied to the suture, the knot strength, the suture tensile 

force, and the embedding stress are increased. Note that a gap between the two blood 

vessels will be formed only if the suture tensile force due to blood pressure exceeds the 

pre-tension value. Hara
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Accordingly, this chapter suggests the following practical techniques to minimize the risk 

of post-surgery complications: (a) longer suture lines (low values of anastomosis angle θ); 

(b) suture/clip thickness as large as possible; (c) number of stitches as high as possible (i.e. 

distance between sequential stitches as low as possible); (d) graft radius smaller than the 

artery radius; and (e) pre-tension of the suture as low as possible (merely to secure the 

strength of the knot). 

The proposed methodology, as a design-oriented approach, can be synopsized in the 

following steps: 

a) The tensile far-field force in the direction of the graft R  and the axial tensile stress 

along the graft 22  are calculated from Equations (8.14) and (8.16), respectively. 

b) The local stresses at the stitching zone of the artery and graft side (Equations (8.17) 

and (8.18)) are obtained by using the parametric SCF Equations of Shao et al. for 

   (Equations (8.22) and (8.23)). 

c) The individual suture response in terms of embedding stress, the gap created 

between the two blood vessels and the suture tensile force, is calculated from 

Equations (8.24) through (8.29). 

d) The individual suture response results must be compared to the respective limit 

values as specified in Section 7.2.1. In the case that the limit values are exceeded, 

the intersecting angle θ and/or the stitching parameters must be reconsidered and 

steps (a) through (d) must be repeated. 

 Note that, in order to predict the stress concentration of arterial branches only steps (a) and 

(b) are required.  

By utilizing the aforementioned design-oriented approach, the optimum suturing 

parameters and anastomosis angle can be selected. 
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CHAPTER 9 

Response of Side-to-side Related Anastomosis and Artery Patching 

9.1 Introduction 

The long-term complications of side-to-side related anastomoses (i.e. end-to-side and side-

to-side anastomosis) and artery patching, primarily involve the development of intimal 

hyperplasia that results in stenosis of the blood-vessel lumen. Several factors, such as 

arterial wall mechanics, hemodynamics effects, biological activities and compliance 

between the host artery and the graft are identified to influence the problem. Yet, it is not 

completely clear which are the factors that influence most the long-term complications and 

in what specific way. 

Special attention has been given to the effect of elastic (compliance) mismatch between the 

graft and the host artery. Better compliance may be obtained by using grafts with similar 

mechanical properties to the host artery or by anastomosis techniques that utilize vein 

patches and cuffs. Recent end-to-side anastomosis techniques that use “compliant” patches 

or cuffs, are the Taylor-patch anastomosis and Miller-cuff anastomosis. Studies suggest 

that these techniques may reduce the stress concentrations at the suture line, and therefore 

the generation of intimal hyperplasia [11, 12]. 

An end-to-side anastomosis develops intimal hyperplasia at two regions of the 

anastomosis: the suture line and the artery floor opposite of the distal anastomosis [10, 23]. 

Bassiouny et al. [23] found that the development of intimal hyperplasia at the suture line of 

conventional end-to-side anastomosis is promoted by healing mechanisms, compliance 

mismatch and triangulation of the anastomotic junction that may result in complex 

hemodynamic patterns. They also suggested that intimal hyperplasia on the artery floor is 

developed due to low wall shear stresses and hemodynamic factors that generate stagnation 

points at that region. Note that, our study does not deal with the hemodynamic analysis and 

flow patterns of side-to-side related anastomosis. It focuses on the suture-line behavior in 

terms of displacements, strains, and stress concentration. 

To identify the problem of side-to-side related anastomosis by means of stress 

concentration, it must be noted that the local stress concentration of an arterial branch 

(referring to a branch that was not surgically formed) is primarily affected by the geometry 

of the junction [97]. In the case of anastomosis, the junction is additionally stressed due to 

the suture-arterial tissue contact at the stitching holes. As concluded in Chapter 8, the 

average embedding stresses, at the stitching holes, increase when the distance between 
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sequential stitches is increased and/or the suture diameter is decreased. The study 

presented in this chapter aims to investigate if the elastic mismatch constitutes a third 

factor for further stress concentration at the suture line, thus influencing the development 

of intimal hyperplasia. 

An idealized circular cylindrical anastomosis model consisting of two semi-cylinders, 

interconnected by two hinges is considered, in order to study the influence of elastic 

mismatch on the problem. The solution is obtained by solving a boundary value problem. 

The resulting system response is described in terms of internal forces, radial and tangential 

displacements, strains of the blood vessels, and the rotation angle of each cross-section. 

The dynamic response of the model is also examined in order to evaluate if the effect of 

the dynamic component is significant and must be taken into consideration.  

9.2 Mathematical model  

Figure 9-1 shows the three end-to-side anastomoses and the side-to-side anastomosis 

techniques that can be analyzed by the proposed method. End-to-side anastomosis 

techniques include the conventional anastomosis, the Taylor-patch anastomosis, and the 

Miller-cuff anastomosis [12, 11, 23, 10, 24, 25, 105]. 

By considering a vertical plane section in the end-to-side or side-to-side anastomosis of 

Figure 9-1, the resulting system can be approximated by a two-hinged circular model, 

consisting of two semicircles with different elasticity modulus, cross-sectional areas and 

moments of inertia. The proposed mathematical model consists of element I representing 

the graft that is connected to the artery side, and element II representing the host artery 

(Figure 9-2(a)). Element I has thickness It , cross-sectional area IA  (per unit-length), 

Young's modulus IE , and moment of inertia II  (per unit-length), whereas element II has 

thickness IIt , cross-sectional area IIA  (per unit-length), Young's modulus IIE , and moment 

of inertia III  (per unit-length). The unloaded centerline of the two elements is assumed to 

form a circle with radius R, and the sutures are modeled by two hinges that separate the 

centerline into two semicircles. The origin of the varying angles of each element are shown 

in Figure 9-2(a). The varying angles fall in the range 0     and / 2 / 2      

for the graft and artery, respectively. When subjected to uniform internal pressure p, the 

system is deformed in the radial direction by ( )i iu   and in the tangential direction by 

( )i iw  . Note that, notation i  takes the form I or II when referring to elements I and II 

respectively. 
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Figure 9-1: Vertical plane sections of different anastomosis techniques that can be modeled 

as two-hinged circular systems: (a) conventional end-to-side anastomosis; (b) Taylor-patch 

anastomosis; (c) Miller-cuff anastomosis; (d) side-to-side anastomosis. 

9.2.1 Response to static loading 

The problem can be solved as a boundary-value problem of continuous curved beams [106, 

107]. The differential equations governing the static response of the system are derived by 

considering the equilibrium of forces acting on an infinitesimal element of the circular ring 

shown in Figure 9-2(b), where ( )i iN   is the unit-length tangential tensile force, ( )i iQ   is 

the unit-length shear force, and ( )i iM   is the unit-length in-plane bending moment. The 

equilibrium of forces along the radial and tangential directions result in the following 

expressions, respectively Hara
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( )

( )
i i

i i
i

dQ
N pR

d

 


                                    (9.1) 

 
( )

( ) 0
i i

i i
i

dN
Q

d

 


                                    (9.2) 

Moreover, the moment equilibrium of the infinitesimal element of Figure 9-2(b) requires 

that: 

 
( )

( ) 0
i i

i i
i

dM
RQ

d

 


                                    (9.3) 

 

Figure 9-2: (a) Two-hinged anastomosis model, (b) Free-body diagram of a typical element 

of circular sector under static loading. 

By assuming extensibility of the centerline, the tangential force ( )i iN   and moment 

( )i iM   can be expressed in terms of displacements as 

 
2

2 2

( ) ( )
( )

i i i i i i
i i

i i

E I dw d u
M

R d d

 
 

 
  

 
                             (9.4) 

 
( )

( ) ( )
i i i i

i i i i
i

E A dw
N u

R d

 


 
  

 
                             (9.5) 
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    
I

I I I0 0,   0 0,  0,   0,   0
2 2 2

du
M w w Q

d

  


              
     

                  (9.6) 

      0,  0,   0 0,  0 0,  0 0
2 2

du
M w w Q

d

 



             
   

                  (9.7) 

and the continuity equations between the two elements are expressed as 

      0 ,   0 ,   0
2 2 2

N N Q Q u u
                   
     

                      (9.8) 

By combining Equations (9.1) through (9.8), the response of the two elements in terms of 

axial forces, shear forces, moments, radial and tangential displacements can be derived. 

For element I ( 0    ) the normalized response is given by 

 
( )

sin 1
N

A
pR

 
 

                                      (9.9) 

 
( )

cos
Q

A
pR

 
 

                                      (9.10) 

 
2
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M
A
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 
 
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   
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     

 
  (9.12) 
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B ApR ApR
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
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in which 
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1

C
A E


                                       (9.17) 

  
1

C
A E


                                       (9.18) 

Parameter A indicates the elastic and geometric mismatch between the host artery and the 

graft.  

Moreover, the strain of the middle-wall surface and the rotation of the cross-section at any 

point along the circular arch are given respectively by 

                               
I I

I I( ) 1 ( )
( ) sin 1

u dw
pRC A

R R d

   


 


                            (9.19) 

                                              
I

I I1 ( )
( ) ( )

du
w

R d

  



 



 
  

 
                                 (9.20) 

The response of the artery (element II) can be easily obtained from Equations (9.9) through 

(9.18) by assuming that the artery represents element I and the graft represents element II.  

We are particularly interested in calculating the response of the suture line in terms of 

suture force sf , displacements, strains, and rotation of the cross-section at the junction. 

The suture force is the resultant force of the tangential and radial forces at the junction (
I 0  ). The normalized suture tensile force /sf pR  constitutes a stress-concentration factor 

due to the artery/graft compliance mismatch and is calculated from 

 

2 2

2(0) (0)
1sf N Q

A
pR pR pR

    
      

   
                          (9.21) 

The normalized radial displacement at the junction ( 0  ) is obtained from Equation 

(9.12) and expressed as 

 
     
2

/ /0

1 /

B B C Cu

pR C B B

   

  





                              (9.22) 

Furthermore, the normalized rotation of the cross-section at the junction, for C B  , can 

be derived from Equation (9.20) as Hara
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I
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(0) 4 1 /

1 /

C C

pRC B B




 
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



                                  (9.23) 

For typical values of geometric and mechanical properties of the two blood vessels, 

parameter A  ranges from 0 to 0.01 . Thus, the stress concentration at the suture is 

insignificant. Furthermore, as can be seen from Equations (9.9) through (9.11), for low 

values of parameter A , the solution is dominated by almost uniform axial hoop stress 

N pR , and the moments and shear forces acting along the blood vessel wall are almost 

zero. Upon this, the strain of a blood vessel is approximated by ( )i i ipRC   , depending 

mainly on the elasticity modulus of that blood vessel. 

Figure 9-3 plots the normalized radial displacement and approximate normalized rotation 

at the junction for a range of the ratios II I/B B  and II I/C C . From Equation (9.22) and 

Figure 9-3(a), the radial displacement at the junction is minimized for values II I/B B  lower 

than 1. The radial displacement will never be equal to zero, due to the fact that II I/B B  will 

always have nonzero positive values. Equation (9.23) and Figure 9-3(b) indicate that the 

rotation of the cross-section is minimized for large values of the ratio II I/B B , and is equal 

to zero when II I/C C  is equal to unity, meaning that the term I IA E  is equal to II IIA E . 

The maximum rotation of the artery is developed when the graft is rigid (applies when 
II IIA E   and II IIE I ). In this case, the cross-section of the graft will not rotate, whereas 

the cross-section of the artery will undergo large rotation approximated by 

 II
IΙ ΙI

4
( / 2)

pR

A E
 


                                               (9.24) 

For typical values of anastomosis properties the resultant maximum value of rotation 

(derived from Equation (9.24)) is about 10°. 

9.3 The case of artery patching 

The problem of patching with longitudinal graft materials can be solved by developing a 

similar model in which the graft occupies a smaller part of the model. Longitudinal patches 

are frequently used for carotid endarterectomies [108]. The main post-surgery 

complications of this technique are the development of intimal hyperplasia, suture-line 

bleeding, and patch infection. 
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Figure 9-3: Normalized response as a function of the ratio II I/C C , and for different values 

of the ratio II I/B B : (a) Normalized displacement at the junction, (b) Normalized rotation 

of the cross-section at the junction. 

Figure 9-4(a) shows a patched carotid artery and the vertical plane section that can be 

approximated by two circular parts connected by two hinges (Figure 9-4(b)). The hinge 

locations correspond to the suturing position. To appropriately model this system we 

solved the general problem in which the hinges can be placed at the edges of any chord of 

the centerline. The origin of the varying angles of each part are shown in Figure 9-4(b). 

The varying angles have range 00 2      and 0 0/ 2 / 2         , for the 

patch and artery, respectively. 

The differential equations governing the static response of the system are expressed by 

Equations (9.1) through (9.5), with the symmetric boundary conditions of parts I and II 

given respectively 

    I
0 0 00 0,   0 0,  0,   0,   0

2 2 2
y

y x

du
M u u Q

d

    




                   
     

          (9.25) 
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      0 00,   0,   0 0,   0 0,   0 0
2 2

y

y x

du
M u u Q

d

  




               
   

           (9.26) 

where i
xu  and i

yu  are the global horizontal and vertical displacements, respectively ( Ii   

for patch and IIi   for artery). 

 

Figure 9-4: (a) Carotid endrarterectomy with longitudinal patch, (b) Two-hinged 

anastomosis model with the hinges placed at the ends of any chord of the centerline. (I: 

patch, II: artery) 

 The continuity equations between the two parts are 

                     IΙ
0 0 00 ,   0 ,   0

2 2 2x x
N N Q Q u u

                       
     

        (9.27) 

The global displacements ( )
x

iu   and ( )i
yu   can be expressed as 

 I I I I I( ) sin( ) cos( )
x

u w u     (9.28) 

 I I I I I( ) cos( ) sin( )
y

u w u     (9.29) 

 II II II II II( ) cos( ) sin( )
x

u w u      (9.30) 

 II II II II II( ) sin( ) cos( )
y

u w u     (9.31) Hara
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By combining Equations (9.1) through (9.5) and Equations (9.25) through (9.27) the 

response of the two elements in terms of axial forces, shear forces, moments, radial and 

tangential displacements of the artery/element II (
0 0/ 2 / 2         ) are obtained 

respectively as 

 ΙI ΙI II ΙI
1( ) cosN D pR                           (9.32) 

 ΙI ΙI II ΙI
1( ) sinQ D                             (9.33) 

  ΙI ΙI II ΙI
1 0( ) sin cosM RD                           (9.34) 

       
ΙI 3 3 2

ΙI ΙI II ΙI II ΙI
2 1 0II II II II II II II II

( ) cos sin sin
2

R R R pR
u D D

A E E I E I A E

   
  

      
  

      (9.35) 

        

3
ΙI

II II II II

ΙI ΙI II ΙI II
2 1 ΙI 3 3

ΙI ΙI
0II II II II II II

sin
2 2

( ) sin

cos sin
2

R R

A E E I
w D D

R R R

A E E I E I


 

   

  
  

              

 (9.36) 

in which 

 

2
0 I I II II

II
1 3 3 3 3

0 0 0 0
I I I I II II II II I I I I II II II II

1 1
cos

sin cos
...

2 4 2 4 2

                                                

     

pR
A E A E

D
R R R R R R R R

A E E I A E E I A E E I A E E I



     

  
 

                        
        

3 3

0 0 0 0 0 0 0I I II II

                                           

... sin sin cos sin cos
2 2

R R

E I E I

       
                          

(9.37) 

and 

2 3 3
II II 20
2 1 0 0 0 0 0II II II II II II II II

sin
cos sin sin cos

2 2 2

pR R R R
D D

A E A E E I E I

     
                     

 (9.38) 

Furthermore, the strain of the middle wall surface and the rotation of the cross-section at 

any point along the circular arch are respectively 

 
II IIII II II II

II II 1
II II II II II

cos( ) 1 ( )
( )

Du dw pR

R R d A E A E

  


                     (9.39) Hara
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  
II 2

II II II II1
0II II

( ) sin sin
D R

E I
                           (9.40) 

The resulting strain and rotation at the junction ( II
0/ 2    ) are 

 
II

II 1 0
0 II II II II

sin

2

DpR

A E A E

     
 

                      (9.41) 

 
II 2

II 1
0 0 0 0II II

cos sin
2 2

D R

E I

                    
               (9.42) 

The response of the graft (element I) can be easily obtained from Equations (9.32) through 

(9.42), by assuming that element II represents the graft and element I represents the artery. 

The normalized suture tensile force /sf pR , which constitutes a stress-concentration factor 

due to the artery/graft compliance mismatch, can be calculated as 

    

2 2
ΙI ΙI

0 0 2 2II II
1 1 0

( ) ( )
2 2 2 sins

N Qf
D D pR pR

pR pR pR

  


       
       

   
   

    (9.43) 

9.4 Effect of dynamic excitation  

The static response of the two-hinged circular model was derived in Sections 9.2 and 9.3. 

To answer the question if the dynamic vibration of the artery is significant and must be 

taken into consideration, the long-term dynamic response of element II has to be evaluated. 

The graft is assumed to be rigid and the artery is modeled as a pinned circular arch (Figure 

9-5(a)). This model constitutes the most unfavorable case of elevated elastic mismatch. 

The evaluation is performed in terms of dispersion graphs and the frequency coefficient.  

The analysis assumes extensibility of the centerline of the arch and rotary inertia, whereas 

shear deformations are ignored. The dynamic equations of motion of the system are 

obtained by considering the equilibrium of forces acting on the infinitesimal element of 

Figure 9-5(b). The resulting in-plane dynamic response is described by the following 

equations 

                      
II II 2 II II

II II II II II
II 2

( ,  ) ( ,  )
( ,  ) ( ,  )

Q t u t
N t A R p t R

t

   


 
  

 
                (9.44) Hara
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Figure 9-5: (a) Two-hinged artery segment under the assumption of rigid graft, (b) Free-

body diagram of a typical element of arterial sector under dynamic loading. 

 
II II 2 II II

II II II II
II 2

( ,  ) ( ,  )
( ,  )

N t w t
Q t A R

t

  


 
 

 
                       (9.45) 

 
II II 2 II II

II II II II
II 2

( ,  ) ( ,  )
( ,  )

M t t
RQ t RI

t

   


 
 

 
                     (9.46) 

where   is the artery density and II II( ,  )t   is the rotation of the artery cross-section. 

The rotation is expressed in terms of displacements as 

 
II II

II II II II
II

1 ( ,  )
( ,  ) ( ,  )

u t
t w t

R

  


 
   

                          (9.47) 

The moment II II( ,  )M t  and tangential force II II( ,  )N t  are expressed in terms of 

displacements as 

 
II II II II 2 II II

II II
2 II II2

( ,  ) ( ,  )
( ,  )

E I w t u t
M t

R

 
 

  
    

                      (9.48) 

 
II II II II

II II II II
II

( ,  )
( ,  ) ( ,  )

E A w t
N t u t

R

 


 
   

                    (9.49) 

By solving Equation (9.46) for II II( ,  )Q t  and using Equations (9.47) and (9.48), the 

resulting shear force is obtained as Hara
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II II 2 II II 3 II II
II II

3 II2 II3

II II 2 II II
II II

2 II

( ,  ) ( ,  )
( ,  )

( , )
                ( ,  )

E I w t u t
Q t

R

I u t
w t

R t

 
 

  


  
    

  
    

                   (9.50) 

By substituting Equations (9.48) through (9.50) into Equations (9.44) and (9.45), and by 

assuming free-vibration conditions ( II( , ) 0p t  ), we obtain two equations that include 

only displacements terms: 

          

II II 3 II II 4 II II II II 2 2 II II II II

3 II3 II4 2 II2 II

II II II II 2 II II
II II II II

II 2

( ,  ) ( ,  ) ( ,  ) ( ,  )

( ,  ) ( ,  )
                  ( ,  ) 0

E I w t u t I u t w t

R R t

E A w t u t
u t A R

R t

    
   

  


       
            
  

      

 (9.51) 

         

II II II II 2 II II II II 2 II II 3 II II

II II2 3 II2 II3

II II 2 II II 2 II II
II II II II

2 II 2

( ,  ) ( ,  ) ( ,  ) ( ,  )

( ,  ) ( ,  )
                   ( ,  ) 0

E A u t w t E I w t u t

R R

I u t w t
w t A R

R t t

   
   

   


      
            

   
      

    (9.52) 

These partial differential equations are coupled through the radial and tangential 

displacement. By assuming a harmonic solution (with frequency II ) of the form 

 
IIII II II II( , ) ( ) i tu t U e                                     (9.53) 

 
IIII II II II( , ) ( ) i tw t W e                                      (9.54) 

Equations (9.51) and (9.52) become 

4 2 3
II II II II

1 2II4 II2 II3 II

1 1
0k k U k W LU L W 

     
                              

 (9.55) 

         

3 2
II II

II3 II II2

II II
3 4

1 1
1

                                                                             0

k U k k W

L U L W

 
    

                             
  

           (9.56) 

in which II II 4 II2 II II/ ( )k A R E I  , , and  and  are the normal 

functions of  and . The system of equations can be decoupled as 

II II 2/ ( )I A R  IIU IIW
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   II
1 4 2 3 0L L L L U                                    (9.57) 

   II
1 4 2 3 0L L L L W                                    (9.58) 

Thereby, the decoupled differential equations of the radial and tangential displacements are 

identical and are expressed respectively as 

              6 4 2II II II 2 2 II 2 2 22 2 1 0U U k U k k k U k k k k                    (9.59) 

             6 4 2II II II 2 2 II 2 2 22 2 1 0W W k W k k k W k k k k                   (9.60) 

in which (n)U    and (n)W   denote the nth partial derivative of IIU  and IIW  with respect to 

II . 

To the authors' best knowledge, this is the first time that the decoupled equations of free 

vibration of an extensible circular arch with rotary inertia (by ignoring shear deformation) 

are correctly derived. The usual practice is to either include or ignore both rotary inertia 

and shear deformation. In this study we deal with the problem of thin rings in which the 

effect of shear deformation is insignificant. 

9.4.1 Dispersion curves 

The dynamic response of the system can be evaluated through dynamic dispersion curves 

[109], based on the wave propagation theory. We assume that the radial and tangential 

displacements are expressed by waves of the type 

 
 ΙI ΙI

ΙI ΙI ΙI( , ) wi b R t
u t U e

  
  (9.61) 

 
 ΙI ΙI

ΙI ΙI ΙI( , ) wi b R t
w t W e

  
  (9.62) 

where wb  denotes the wave number. The wave equations along the circular ring are 

 
ΙIΙI ΙI ΙI( ) wib RU U e    (9.63) 

 
ΙIΙI ΙI ΙI( ) wib RW W e    (9.64) 

The expression II /P wV b  denotes the phase velocity of the system. The differential 

equations of the radial and tangential displacement are identical, therefore by substituting 
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Equation (9.63) in Equation (9.59) and solving for the normalized phase velocity 

II II/ ( / )pV E  , one obtains the dispersion relations of the circular ring as 

 

 
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 
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  

   
 

 (9.65) 

In the case where the centerline of the ring is inextensible, the dispersion relation is given 

by 

 
2 2

II 2 2

II

1

1
wP

w

b RV

E b R








                                  (9.66) 

Figure 9-6 plots the dispersion curves of the system. All the curves decrease with increased 

wave number, indicating that the system is dispersive and its energy attenuates. Therefore, 

there is no concern of exhibiting abnormal increase of amplitude under dynamic loading. 
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Figure 9-6: Dispersion curves of the normalized phase velocity of the system as a function 

of wb R , by considering extensible and inextensible centerline of the ring, and for different 

values of parameter λ. 
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9.4.2 Frequency curves 

The system is also evaluated by investigating the natural frequencies of the system. The 

problem of a pinned rigid semi-circle can be parallelized to the pinned structural arch 

problem. The free vibration of circular arches has been studied thoroughly by many 

researchers [15–20]. Veletsos et al. [110] and Austin and Veletsos [111] proposed 

approximate formulas to calculate the frequency coefficient spectrum of pinned circular 

arches. These formulas have proven to have adequate accuracy and are suitable for 

calculating easily the natural frequencies of such systems. 

The final frequency curves are a combination of the bending and extensional frequency 

coefficient curves. The bending (including rotary inertia) antisymmetric and symmetric 

frequency coefficients are expressed respectively as 
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  (9.67) 

         

22

4 4
2 12 2

2

1
1

1 1
1 2 1

                                                                                          ,

f

f

f
f f

n f

f f f
f ff f

f f f

S
m m r

C m

S m r
m m m r S









  
       

                            
 2 1f fm n 

      (9.68) 

where fn  is the number of mode, fS  is equal to R , and fr   is the radius of gyration 

II II/I A . In order to neglect shear deformation, the shear flexibility factor f  is set equal 

to 10.  

The extensional frequency coefficients are expressed as 

 

2

1
1

f

f
m f

f f

S
C m

r m


 
   

 
                                 (9.69) 

Odd values of fm  represent antisymmetric modes, whereas even values of fm  represent 

symmetric modes of vibration. 
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Note that, the mathematical relation of the natural circular frequency  to the frequency 

coefficient nC  is 2 2/ ( ) / ( )nC R E I A           .  

As shown in Figure 9-7 the resultant frequency curve and subsequently the free-vibration 

characteristics of the system are dominated by the first antisymmetric bending mode. It is 

clear that the natural frequency of a two-hinged artery is much larger than the frequency of 

the applied force (the frequency of a typical cardiac pulse is about 7 rad/sec). Therefore, 

the dynamic response of the system can be adequately approximated by the static response. 

In conclusion, the dynamic investigation revealed that the dynamic effect is not significant 

for the long-term behavior of the two-hinged model. The first natural frequency of the two-

hinged circular arch appears to be large compared to the loading frequency (at least ten 

times larger). Additionally, the system is dispersive. Therefore, the static analysis 

constitutes an adequate approach of the anastomosis response. 
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Figure 9-7: Frequency curves of first antisymmetric and symmetric modes. 

9.5 Numerical example related to end-to-side anastomosis 

The applicability of the proposed analytical model, simulating the end-to-side anastomosis 

problem, is demonstrated through a numerical example in which the geometric and 

mechanical properties of the models of Perktold et al. [12] are used. The far-field stress 

values of this study are verified against the finite-element calculations of Perktold et al. 
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Table 9-1 lists the problem parameters of a conventional anastomosis (artery/ePTFE graft) 

and a Taylor-patch anastomosis (artery/vein-patch/ePTFE-graft).  

Table 9-1: Parameters of end-to-side anastomosis models of Perktold et al. 

 Artery (II) /vein (I) Artery (II) /ePTFE graft (I) 

Parameters 

 13.33 kPap   , 2 mmR  , 410 kPaE    , 0.5 mmt     

IE  (kPa) 820 7500 

It  (mm) 0.5 0.35 

 

Table 9-2 lists the calculated response values. The radial displacement of the junction 

appears to be larger in the case of artery/vein anastomosis than in the case of artery/ePTFE 

anastomosis, whereas the stiffer the blood vessel or graft, the lower the developed strain is. 

The far-field stresses are approximated according to Hooke's law ( ). It can be 

observed that the stresses are not affected by the mechanical properties of the blood 

vessels, due to the fact that a stiffer graft (large elasticity modulus) will develop lower 

strains than a soft blood vessel (low elasticity modulus). The far-field stress of the graft 

would be exactly equal to the far-field stress of the artery if they had the same thicknesses. 

For the artery and vein the far-field stress as calculated in this study is 53 kPa and for the 

ePTFE graft the far-field stress is 75 kPa. The finite-element results of Perktold et al. are 

50 kPa and 60 kPa respectively, which they compare well with our results. 

Of particular interest is the rotation of each cross-section at the junction. Table 9-3 reports 

the rotation of each cross-section, as calculated by Equation (9.20). In both cases, element I 

is stiffer than the host artery, causing larger rotations angles for the host artery than the 

graft or vein. When the ePTFE graft is used, instead of the vein, the rotation angle of the 

artery is increased, creating larger incompatible angles that may cause injury of the arterial 

tissue and may promote the development of intimal hyperplasia. Figure 9-8 shows the 

incompatible angles at the junction of the artery/vein anastomosis and the artery/ePTFE 

graft anastomosis. 
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Table 9-2: Results of the proposed methodology for the end-to-side anastomosis models of 

Perktold et al. 

 Artery (II) /vein (I) Artery (II) /ePTFE graft (I) 

Response Values 

 (m/N) 0.3678 0.1175 

(m/N) 0.7356 0.7356 

 (m/N) 2.439e-3 3.809e-4 

(m/N) 4.878e-3 4.878e-3 

A 0.00221 0.005271 

 0.0650/0.0652 0.0101/0.0102 

 0.13 0.13 

(0) / ( / 2)u u    (mm) 0.173/0.092 0.053/-0.0006 

 (kPa) 53.33 75.00 

 (kPa) 53.32 53.32 

 

Table 9-3: Rotation angles at the anastomosis junction as proposed by this study. 

 Artery(II) /vein(I) Artery(II) /ePTFE graft(I) 

(0)  (degrees) -1.58 -1.20 

( / 2)   (degrees) -3.16 -7.52 

 

 

 Figure 9-8: Rotation of the cross-sections at the junction of (a) artery/vein anastomosis, 

(b) artery/ePTFE anastomosis. 

IB
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9.6 Numerical examples related to artery patching 

The behavior of the patched artery is investigated through numerical examples, based on 

typical data. Furthermore, the peak far-field stress and strain values calculated by the 

proposed methodology are compared against the results of Kamenskiy et al. [108]. 

9.6.1 Typical examples of patched arteries 

In this section, four numerical examples are investigated, considering different values of 

the mechanical and geometrical parameters of the two elements, the intraluminal pressure, 

and the angle . Table 9-4 lists the parameters of each example. 

Table 9-4: Parameters of typical patched arteries examples. 

 Example A Example B Example C Example D 

Parameters 

p  (kPa) 13.33 13.332 13.332 15.99 

R  (mm) 2 2 2 2 

It  (mm) 0.5 0.35 0.35 1 

IIt  (mm) 0.5 0.5 0.5 1 

IE  (kPa) 820 7500 7500 7500 

IIE  (kPa) 410 410 410 410 

0  (degrees) 25 25 45 25 

 

As follows from the calculated response values, reported in Table 9-5, the hinges 

placement (angle ) or the elastic mismatch between the two blood vessels do not 

promote elevated stress concentration at the suture line ( ). Increased elastic 

mismatch results in a decrease of the displacements and rotation of the graft, whereas the 

strain and far-field stresses depend on the mechanical and geometric properties of each 

individual blood vessel. Furthermore, from examples B and C, it can be observed that by 

increasing angle  the relative rotation angle of the cross-sections at the junction is 

decreased.  

It can be concluded that the behavior of the patched artery model exhibits similar behavior 

to that of the side-to-side related anastomosis model. To elaborate on the effect of angle 0  

on the system response we investigate the rotation angle at the junction for different values 

0

0

/ ( )sf pR

0
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of the parameter 0 . Figure 9-9(a) plots the relative rotation at the junction, and Figure 

9-9(b) plots the rotation of the artery and graft cross sections at the junction, for each 

numerical example. Observe that an increase of the absolute value of angle 0  frequently 

decreases the relative and individual cross-sections rotations at the junction. Additionally, 

the rotation of the graft, in most cases, is lower than the rotation of the artery due to the 

fact that the graft is stiffer than the artery (Figure 9-9(b)). 

Table 9-5: Results of the proposed methodology for typical patched arteries examples. 

 Example A Example B Example C Example D 

Response Values 

1D   (N/m) -0.0308 -0.0588 -0.0290 -0.2907 

2D   (m) 1.68E-04 2.20E-04 2.34E-04 1.34E-04 

/ ( )sf pR   1.0005 1.0009 1.0008 1.0039 

(0)   0.0651 0.0102 0.0102 0.0043 

0( / 2 )     0.1301 0.1302 0.1302 0.0783 

(0)xu   (mm) -0.1236 -0.0219 -0.0147 -0.0085 

maxu 

 
(mm) 0.1121 0.0198 0.0104 0.0077 

maxu    (mm) 0.4034 0.4336 0.4560 0.2608 

maxw  (mm) 0.0523 0.0092 0.0104 0.0036 

maxw 

 
(mm) 0.1128 0.1236 0.1594 0.0750 

(0)   (degrees) -0.3532 -0.2148 -0.0377 -0.0455 

0( / 2 )     
(degrees) 

-2.9039 -5.5394 -3.6989 -3.4207 
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Figure 9-9: Rotation at the junction as a function of angle : (a) Relative rotation at the 

junction, (b) Rotation of the artery and graft cross-section. 

9.6.2 Patched carodit artery example based on the data of Kamenskiy et al. 

Kamenskiy et al. [108] studied a finite-element model of a patched carotid artery. They 

used an exponential hyperelastic material law and modeled the stitches as fixed rigid 

contacts. Table 9-6 lists the properties used in the analysis. The geometric data of the 

model of Kamenskiy et al. were not given explicitly, therefore we used their figures and 

typical values for carotid arteries from the literature [56, 112]. The patch width was taken 

from Kamenskiy et al. [108] to be about 2.7 mm. For our calculations the elasticity 

modulus is taken to be equal to the tangent elasticity modulus under applied longitudinal 

pre-stretch equal to 1.08. 

Figure 9-10 plots the total displacements along the PTFE patch and the artery, for equal 

scales of the undeformed and deformed configurations. It can be observed that the artery 

response is much larger than the patch response and that the most significant response 

value appear to be the relative rotation,  between the artery and the 

patch at the junction. Table 9-7 lists the response values derived from our analysis. Note 

0
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also that, the forces and strains are found to be almost uniform along the patch and the 

carotid.  

Table 9-6: Parameters of patched carotid model of Kamenskiy et al. [108]. 

Parameter Value 

p  (kPa) 17.332 

R  (mm) 5.5 
It  (mm) 0.3 
IIt  (mm) 0.6 

IE  (kPa) 8000 
IIE  (kPa) 845 

0  (degrees) 76 
 

 

 

Figure 9-10: Global deformation distribution in of patched carotid model. 

Kamenskiy et al. calculated the cyclic strain (the difference of Von Misses strain between 

systole and diastole) and the Misses effective stress  values. Table 9-8 lists a 

comparison of results obtained by Kamenskiy et al. and by this study, in terms of the 

maximum cyclic strain and the far-field stresses. Evidently, our calculations are in good 

agreement with the finite-element calculations of Kamenskiy et al. Note that, Kamenskiy et 

al. modeled the stitches as rigid contacts, resulting in stress concentrations at the suture 

line. The model proposed in this study incorporates hinges that result in relative rotations 

of the connected parts. 
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Table 9-7: Results of the proposed methodology for the patched carotid model of 

Kamenskiy et al. 

Response values 

1D   (N/m) -0.00398 

2D   (m) 0.000993 

/ ( )sf pR   1 

(0)   0.0397 

0( / 2 )     0.188 

(0)   (kPa) 317.76 

0( / 2 )     (kPa) 158.88 

(0)xu   (mm) -0.0529 

maxu 

 
(mm) 

0.0128 

maxu    (mm) 
1.985 

maxw  (mm) 
0.0513 

maxw 

 
(mm) 

0.908 

(0)   (degrees) -0.00185 

0( / 2 )     (degrees) -1.386 

    (degrees) -1.384 
 

If the size of the patch is increased, and therefore the angle 0  is decreased, the relative 

rotation of the carotid and the patch at the junction would be increased (Figure 9-11). The 

largest relative rotation at the stitched junction is developed when 0 30   . Therefore, 

thinner strips of patches seem to be more appropriate in order to prevent post-surgery 

complications. 

9.7 Concluding remarks 

This chapter investigated the problem of side-to-side related anastomosis and artery 

patching by examining the correlation of elastic (compliance) mismatch on the suture 

stress concentration and development of intimal hyperplasia at the suture line. The static 

analysis of the system under internal pressure appears to give an adequate estimation of the 
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long-term response, compared to the dynamic analysis, and is utilized to calculate the 

displacement at the junction (Equation (9.22)), the strains developed at each blood vessel 

(Equation (9.19)), and the incompatible angles at the junction (Equation (9.20)). It should 

be noted that the applicability of this study is limited to the analysis of anastomosis regions 

that can be approximated by the idealized two-hinged circular model of Figure 9-2(a).  

Table 9-8: Comparison between results of Kamenskiy et al. [108] and this study. 

 Kamenskiy et al. This study 

Patch maximum cyclic strain 0.02 0.0214 

Carotid maximum cyclic strain 0.1 0.1012 

Patch far-field stress 10lo g ( )e f f  (Pa) 5.5 5.502 

Carotid far-field stress 1 0lo g ( )e f f  (Pa) 5.4 5.201 

 

 

Figure 9-11: Relative rotation of the cross-section of the PTFE patch and the carotid artery 

at the junction as a function of angle . Large values of  correspond to thinner patches. 

Results of this study suggest that elevated elastic mismatch between the artery and graft 

does not affect the internal forces of the blood vessels and that the system is dominated by 

almost uniform axial hoop stress N pR . Furthermore, elevated elastic mismatch reduces 

the radial displacements and strains of the graft and the radial displacement at the junction, 

whereas the far-field stresses are of the same magnitude regardless of the material used. 

For typical geometrical and mechanical properties of the artery, parameter A has very low 

values. This favors the suture response by indicating insignificant stress concentration at 

the suture line in the presence of elastic mismatch (Equation (9.21)). 

0 (degrees)

-90 -60 -30 0 30 60 90

R
el

at
iv

e 
ro

ta
ti

on
 a

t 
th

e 
ju

nc
ti

on
 


 


 (d
eg

re
es

)

-6

-4

-2

0

2

4

6

0 0

Hara
lam

bia
 C

ha
ral

am
bo

us



 

192 

 

The response parameter that is primarily affected by the difference between the mechanical 

properties of the two blood vessels, appears to be the incompatible angle of the junction 

(Figures 9-3(b) and 9-8). Whenever blood flow creates almost zero shear stresses at the 

artery wall (e.g. stagnation points, low fluid velocities, reverse flows etc.), conditions for 

hyperplasia set in. At such cases, the compliance mismatch between the prosthetic graft 

and the host artery plays an important role in the development of intimal hyperplasia in the 

following sense: the higher the compliance mismatch, the higher the incompatible angle at 

the junction between the graft and the artery, implying that the blood flow at the suture line 

is disturbed even more. In order to minimize the rotation of the arterial cross-section and 

avoid elevated intimal thickening, the term I IA E  must be equal to II IIA E . Frequently, the 

graft is stiffer than the host artery. Therefore, in order to obtain zero rotation the graft 

thickness has to be decreased to satisfy the equality I I II IIA E A E . 

In regard to the geometric mismatch (i.e. when the thicknesses of the two blood vessels 

differ), the far-field stresses, and therefore the embedding stresses, of the host artery and 

the graft are not equal. Their values are of the same magnitude as long as thicknesses are 

also of the same magnitude. Additionally, increased graft thickness yields an increase of 

the compliance parameter A. 

For the case that the hinges are placed at the edges of any chord of the full circle, the 

response value that is significantly affected is the rotation at the junction. By increasing the 

absolute value of angle 0 , the relative rotation at the junction is decreased (Figure 9-11). 

In the case of the patched artery, the arterial part exhibits large displacements that may lead 

to softening of the tissue and development of aneurysm after a long time period. 

Additionally, it is likely that the large rotation angle at the junction promotes (along with 

other parameters) the development of intimal hyperplasia, injury of the arterial tissue, and 

infection of the patched region. 

Through the proposed model and analysis the optimal graft characteristics can be obtained 

to minimize the incompatible angle at the anastomosis junction and the development of 

intimal hyperplasia. In order to minimize the post-surgery complications of end-to-side 

anastomosis, side-to-side anastomosis or artery patching the following practical techniques 

are proposed for surgical application: (a) Ideally, the graft and the host artery should have 

the same elasticity modulus and same thickness; (b) If the graft is stiffer than the host 

artery, the graft thickness should be smaller than the artery thickness (aiming to satisfy the 

equality I I II IIA E A E ); and (c) In the case of artery patching, given that the patch is stiffer 

than the artery, the patch width should be as small as possible. 
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CHAPTER 10 

Stress Concentration at the Stitching Hole  

10.1 Introduction 

The stress concentration at the stitching hole due to suture-artery interaction is a complex 

phenomenon. In Section 7.2.1 we calculated the peak embedding stress s  based on the 

approximation that the total force of each stitch sa f  is applied over an area 2 sr h , resulting 

in the approximation / (2 )s s sf r h   (Equation (7.17)). When the embedding stresses 

due to suture-artery contact interaction exceed the limit value of the artery-wall shear 

strength, arterial-wall rupture or injury may occur. 

The anastomosis is more likely to fail due to tissue tearing than suture failure, since the 

suture strength is frequently much larger than the induced suture force. A simple 

experimental setup to determine the suture force required to tear the arterial tissue, could 

be a suture loop that permeates a thin strip of arterial tissue through a hole that is close to 

the strip’s edge. The loop and the arterial tissue can be axially loaded until tissue failure is 

observed, in the form of tearing of the hole. If the suture breaks, then we repeat the test by 

increasing the number of loops (sufficiently apart from each other), or by selecting a 

thicker suture. 

Figure 10-1 shows two possible failure modes, caused by the suture-artery contact 

interaction. The first failure mode concerns the tearing towards the artery edge, in the 

longitudinal direction (direction that the suture is loaded) (Figure 10-1(a)). This is the most 

frequently-encountered failure mode [113]. The second failure mode concerns the tearing 

of the arterial wall in the circumferential direction, due to interaction of the embedding 

stresses of stitches arranged in a row (Figure 10-1(b)) [114]. 

 

Figure 10-1: Failure modes due to suture-artery interaction. Arterial-wall tearing: (a) in the 

longitudinal direction, (b) in the circumferential direction. 
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The problem of stress concentration at the stitching hole can be parallelized with 

mechanics problems investigated thoroughly in the literature, such as the problem of 

pinned-loaded holes in plates [115–120] or the problem of internal indentation between 

two cylindrical surfaces [121, 122]. Such studies provide more sophisticated and accurate 

expressions than the approximation utilized in Chapters 7 and 8. 

The following section presents closed-form solutions to the problem of the stress 

concentration around a pinned loaded hole [119]. 

10.2 Closed-form solution proposed by Echavarría et al. 

In their study, Echavarría et al. [119] investigated the stress concentration around a pin-

loaded hole in elastic orthotropic plates. They developed analytical closed-form 

expressions for the peak perpendicular and longitudinal stresses along the edge of the hole. 

Their formulas provide sufficient accuracy compared to other analytical studies that may 

require numerical methods for the problem solution. Figure 10-2 shows the geometry and 

considered loading of the problem. A force yF  is applied to one side of the plate, in the 

longitudinal direction (y-axis), resulting in a sinusoidal load distribution at the hole. The 

radius of the hole is denoted by hR , and the distance from the center of the hole to the edge 

of the plate is denoted by e . Note that, the stitching holes and the suture have almost equal 

diameters. 

 

Figure 10-2: Geometry and loading of the pin-loaded hole problem [119]. Hara
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The derived equations for the peak perpendicular and longitudinal stresses are expressed 

respectively as 

     

1/2

2

(4 ) 3
2

2 2 2 2
y y y yx x x x x

x yx yx
h y y xy x h y y h

F F F FE E E E E
v v

R E E G b R E E R


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  
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 (10.1) 
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               (10.2) 

in which x yv  is the Poisson's ratio of the arterial tissue (0.5 for incompressible materials), 

xyG  is the shear modulus of elasticity, xE  and yE  are the perpendicular and longitudinal 

Young's modulus, respectively, and xb  is the width of the plate. 

The problem parameters of the aforementioned expressions can be parallelized to the 

problem parameters of Chapters 7 and 8, according to Table 10-1, in order to be applied to 

the problem of end-to-end or end-to-side anastomosis, respectively. 

Table 10-1: Parallelization of parameters of Echavarría et al. model to the parameters of 

end-to-end and end-to-side anastomosis models. 

Echavarría et al. 
model 

End-to-end anastomosis 
model 

End-to-side anastomosis 
model 

hR  sr  / 2rd , / 2sd   

xE  E  circumferential Young's 
modulus 

yE  
LE  longitudinal Young's modulus 

xb  distance between sequential 
stitches 

s 

yF  /L sF N  ,local local
a a a gsH sH   

 

In conclusion, the use of Equations (10.1) and (10.2) provides a more refined solution to 

the stress-concentration problem at the stitching hole (embedding stresses), caused by the 

suture-artery interaction. 
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CHAPTER 11 

Conclusions 

11.1 Summary and conclusions 

This dissertation focuses on the mathematical modeling of arterial anastomoses and their 

suture-line response. The mathematical formulation of the problem is carried out on the 

basis of dynamic analysis, suture-artery interaction, and different material constitutive 

laws. The aim of this dissertation is to investigate the response of different arterial 

anastomosis techniques in a general manner, develop closed-form expressions for the 

problem solution (wherever possible), and provide useful conclusions about the optimum 

suturing details and graft properties to prevent post-surgery complications.  

Comprehensive failure criteria that account for short-term (immediately after the blood 

flow is restored) and long-term (weeks after the operation) anastomosis failure scenarios 

have been established. In particular, the suture may fail when its maximum tensile force 

sf  exceeds its tensile strength or the tensile strength of the deteriorated suture. 

Furthermore, the knots that bind the stitches together may fail (slip or relaxation of the 

knot) when the maximum tensile force of the suture exceeds the strength of the knot. 

Another failure mode is the rupture or injury of the blood vessel wall, caused when the 

embedding stresses s , due to suture-wall contact interaction (at the stitching holes), 

exceed the limit value of wall shear strength. Moreover, high stress values promote the 

development of intimal hyperplasia at the suture line and cause the arterial wall to increase 

its cross-section. Another complication may be caused if the distance between the edges of 

the two anastomosed blood-vessels exceeds the typical size of a few red blood cells, 

leading to internal bleeding. Short-term blood leaking (immediately after the restoration of 

the blood flow) can be repaired by the surgeon, whereas long-term blood leaking may lead 

to thrombosis, weeks after the surgery. The established failure criteria can be utilized for 

the development of guidelines for vascular-anastomosis practice.  

The far-field arterial response has been studied by assuming linear, hyperelastic, and 

viscoelastic material behaviors. The analysis of the linear arterial model demonstrated that 

arterial systems are characterized by high natural frequencies and that the smoother the 

pressure increase from zero to the peak systolic pressure is, the lower the peak radial 

displacement is, tending to become equal to the static displacement. By considering the Hara
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worst-case loading scenario (first cardiac cycle), the resulting response values have been 

found to be up to two times the static response values.  

In regard to the hyperelastic arterial response, three different strain-energy functions 

corresponding to healthy (hardening behavior), atheromatic (exponential hardening 

behavior), and aneurysmatic (softening behavior) arteries, have been studied. In this way, 

the material strain-hardening effect on the dynamic response of arteries was revealed. The 

linear-elastic model appears to be a good approximation of the healthy artery response. 

Moreover, the linear-elastic model yields lower radial displacements than the aneurysmatic 

artery, whereas it does not approximate well the behavior of the atheromatic artery, due to 

the fact that the slope of its stress-strain curve is almost zero at low strains and becomes 

steeper at higher strains. We expect that a linear model with elasticity modulus equal to the 

tangent Young's modulus (of the nonlinear material law) corresponding to circumferential 

elongations 10%-20% will yield better approximations. As follows from this investigation, 

the arterial response depends on the increased hardening or softening behavior of the 

respective material stress-strain relationship.  

The most important factors influencing the peak response of the hyperelastic models are 

found to be the longitudinal pre-stretch 0
z  and the normalized pressure. The normalized 

radial displacement decreases with increasing values of pre-stretch, implying that the 

gradual decrease of arterial strength, caused by aging, can be balanced by the decreased 

radial response (caused by the longitudinal pre-stretch). On the other hand, in old age the 

longitudinal pre-stretch is slightly decreased, causing an increase of the radial 

displacement, which cannot easily balance the low strength of the (aged) artery (Figure 

5-28). Increased normalized pressure implies the existence of hypertension or soft 

(aneurysmatic) arterial tissue. In each case, the normalized pressure value is increased by a 

factor of 5/3 or 10, respectively, resulting in increased arterial response. 

Important metrics, such as the radial deformation and the maximum energy density, are 

found to be influenced heavily by the strain-hardening characteristics of the model, as well 

as the longitudinal pre-stressing. It is worth noting that in some cases, the stress value is 

not an appropriate criterion for distinguishing the limit values of different systems, as 

opposed to the corresponding strain-energy density and displacement response, which are 

distinctive. Moreover, the normalized strain energy increases with increasing values of the 

absolute normalized displacement / Rru . Hara
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The analysis of the viscoelastic arterial model refined the results obtained from the analysis 

of the hyperelastic arterial model. Increased viscoelasticity burdens the cardiovascular 

system, due to increased energy loss during each cardiac cycle. The viscoelastic behavior 

was simulated by adopting a generalized Maxwell model and the sophisticated Bonet-

Holzapfel approach. The resulting response is mainly affected by the relaxation time 1  

and the free-energy parameter 1
 . Furthermore, two different loading approximations 

were considered, revealing the strong influence of the pressure time-profile approximation 

on the system response.  

The first arterial pulse time-profile approximation analysis (Figure 6-4(b)), which 

constitutes a conservative scenario, showed that the system is characterized by high-

frequency vibrations, and that an increase of the relaxation time 1  increases the values of 

the response time-histories. The second loading approximation analysis, in which the 

pressure is quasi-statically applied up to the diastolic pressure, demonstrated that the 

response is not always characterized by high-frequency vibrations, and that an increase of 

the relaxation time 1  results in a decrease of the response. In general, a decrease of the 

material parameter 1
  monotonically increases the normalized radial displacement. 

Findings obtained from the suture-tissue interaction (displacement-based) analysis of the 

end-to-end anastomosis model demonstrated that the most influential parameter in 

drastically reducing the anastomotic gap, the (embedding) stresses at the arterial tissue, and 

the suture force, is the number of utilized stitches. Increased suture diameter reduces the 

embedding stress, whereas the influence of the ratio of suture-to-artery elastic modulus on 

the embedding stress and suture force is insignificant. Furthermore, the use of stiffer 

suturing material, larger suture diameter, and smaller stitch length reduce the anastomotic 

gap. In regard to the pre-tension of the suture, when the total pre-tension force is higher 

than the induced tensile arterial force ( 0( )L s sF t N f ) and when the value of pre-tension 
0

sf  

exceeds a certain value (derived from 0
./ 2 / 2s s p s uf r H  ) the arterial wall is likely to fail. 

On the other hand, for lower values of pre-tension and for 0( )L s sF t N f , the application of 

suture pre-tension can result in reducing the anastomotic gap, while not affecting 

considerably the embedding stress (which constitutes the critical response parameter), or 

the suture tensile force. 

The end-to-side anastomosis stress-based analysis revealed that lower values of the graft-

to-artery radii ratio /o o
g aR R , the graft-to-artery thicknesses ratio /g aH H , and the ratio of 
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artery radius to artery thickness /o
a aR H , frequently decrease the stress-concentration 

factors (SCFs) at the junction. Furthermore, low values of anastomosis angle θ typically 

reduce the SCF. In general, for the suture-line response, when the distance between two 

sequential stitches is decreased (implying that the number of stitches is increased), or the 

stitch diameter/thickness is increased, the embedding stress and the gap created between 

the two blood vessels are decreased. In the case of the continuous stitching technique, 

when stronger sutures are used, the gap developed between the two blood vessels is 

decreased, and when the distance between two sequential stitches is increased, the suture 

tensile force is increased. In the case that pre-tension is applied to the suture, the knot 

strength, the suture tensile force, and the embedding stress are increased, whereas a gap 

between the two blood vessels will be formed only if the suture tensile force due to blood 

pressure exceeds the pre-tension value. 

Finally, the effect of elastic mismatch on the response of end-to-side anastomosis, side-to-

side anastomosis and artery patching has been investigated. By analyzing an idealized two-

hinged circular model, it has been found that the elastic mismatch does not cause stress 

concentration at the anastomotic region. Elevated elastic mismatch reduces the radial 

displacements and strains of the graft, reduces the radial displacement at the junction, and 

causes large rotation angles at the junction. The incompatible angle at the junction may 

disturb the blood flow at the suture line, and thus promote the development of intimal 

hyperplasia. In order to minimize the rotation of the arterial cross-section, given that the 

graft is stiffer than the host artery, the graft thickness has to be decreased aiming to satisfy 

the equality . Furthermore, the far-field stresses of the host artery and the 

graft are mainly affected by the thickness of each blood vessel. The far-field stresses of the 

two blood vessels are of the same magnitude as long as thicknesses are also of the same 

magnitude. 

In the case of the patched artery, thinner patches demonstrate better behavior (smaller 

relative rotations at the junction). Increased elastic mismatch, causes large displacements 

of the arterial part that may lead to softening of the tissue and development of aneurysm 

after a long time period. Moreover, it is likely that the large rotation angle at the junction 

promotes (along with other parameters) the development of intimal hyperplasia, injury of 

the arterial tissue, and infection of the patched region. 

In summary, the following practical techniques, leading to reduced displacements, 

rotations, and/or stresses at the suture line, are proposed for surgical application: 

I I II IIA E A E
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a) The number of stitches should be as high as possible (distance between sequential 

stitches as low as possible), minimizing the response values of Equations (7.15), 

(7.16), and (7.18) for the case of end-to-end anastomosis, or the response values of 

Equations (8.25) through (8.29) for the case of end-to-side anastomosis. 

b) The suture or clip thickness should be as large as possible, minimizing the response 

values of Equations (7.15), and (7.18) for the case of end-to-end anastomosis, or 

the response values of Equations (8.25), (8.28), and (8.29) for the case of end-to-

side anastomosis. 

c) The pre-tension of the suture should be as low as possible, merely to secure the 

strength of the knot, reducing the response values of Equations (7.16) and (7.18) for 

the case of end-to-end anastomosis, or the response values of Equations (8.27) and 

(8.28) for the case of end-to-side anastomosis. 

d) The stitch length should not be very long, minimizing the gap created between the 

two blood vessels as calculated by Equations (7.15) and (8.29) for the end-to-end 

anastomosis and the end-to-side anastomosis techniques, respectively. 

e) The suture should have high elasticity modulus, when it is necessary to reduce the 

gap between the edges of the two blood vessels (Equations (7.15) and (8.29) for the 

end-to-end anastomosis and the end-to-side anastomosis techniques, respectively). 

f) Ideally, the graft and the host artery should have the same elasticity modulus and 

the same thickness (side-to-side related anastomosis). If the graft is stiffer than the 

host artery, the graft thickness should be smaller than the artery thickness, 

minimizing the rotation at the junction as calculated by Equation (9.20). 

g) In the case of end-to-side anastomosis, the anastomosis angle should be relatively 

low, reducing the SCFs of Equations (8.20) through (8.23). 

h) For the end-to-side anastomosis technique, the graft radius should be smaller than 

the artery radius, reducing the SCFs of Equations (8.20) through (8.23), and the 

tensile force along the graft axis, calculated by Equation (8.16). 

i) In the case of artery patching, given that the patch is stiffer than the artery, the 

patch width should be as small as possible, minimizing the rotation at the stitching 

region (Equation (9.42)). 

In conclusion, the principal contribution of this dissertation lies in the development of 

fundamental analytical models to predict the far-field and suture-line behavior of arterial 

anastomoses. The mathematical formulation, together with the derived closed-form 

solutions for the suture-line response, reveals useful interrelations among the problem 

parameters, thus making the proposed model a valuable tool for the optimal selection of 
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materials and improved functionality of the sutures. By virtue of their generality and 

directness of application, the findings of this study can ultimately form the basis for the 

development of vascular anastomosis guidelines pertaining to the prevention of post-

surgery complications. 

11.2 Recommendations for future research 

This dissertation studied the mechanics of arterial suturing by using strong simplifications, 

aiming to investigate the macroscopic response of the anastomotic region. The possibilities 

for further research through more enhanced models related to the arterial suturing problem 

are indeed great. Nevertheless, the researcher should keep in mind that for some problems 

simplicity is often better than sophistication. 

Future research directions could potentially include the development of more sophisticated 

models in order to refine the results of the present study. Such models may consider the 

following: (a) elliptic geometry of the artery cross-section; (b) inhomogeneous arterial 

wall, by considering two (adventitia, media) or three arterial layers (adventitia, media, 

intimal); (c) anisotropic arterial tissue; (d) viscous blood flow; and (e) cardiac arrhythmia 

pressure time-profile. 
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Appendix A: Stress and strain tensors 

The arterial tissue is an incompressible material. In this study the deformation and loading 

conditions are considered to be axis-symmetric and therefore only the principal stresses 

and strains exist. The deformation gradient is equal to 

  (A.1) 

The right Cauchy-Green strain  and left Cauchy-Green strain  are identical because of 

the symmetry of the deformation gradient: 

  (A.2) 

and the Green deformation is 

  (A.3) 

The strain-energy density functions are usually expressed as a function of the principal 

invariants 

  (A.4) 

and the Cauchy principal stresses are frequently expressed as 

  (A.5) 
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Appendix B: Solution of artery/graft end-to-end anastomosis 

This section presents the general solution of an end-to-end anastomosis between a host 

artery and a graft, each one having different geometrical and mechanical properties. The 

artery segment has length paL , radius paR , thickness paH , and Young’s modulus in the 

longitudinal direction and circumferential direction LaE  and aE , respectively, whereas the 

graft has length 
pgL , radius 

pgR , thickness pgH , and Young’s modulus in the longitudinal 

direction and circumferential direction 
LgE  and 

gE , respectively (Figure (a)). Note that, if 

one or both blood vessels are not longitudinally pre-stressed, their geometric parameters 

will be equal to the that of the underformed state (e.g 
pa aH H  and 

pg gH H ). 

 

Figure B-1: Artery-graft end-to-end anastomosis analysis. (a) Anastomosis model (at-rest 

state); the artery and graft are clamped at the far ends and no pressure is transmitted at this 

stage since the artery is emptied from the blood, (b) unrestrained deformed state (without 

sutures); the blood volume is conserved, (c) deformed state of anastomotic region due to 

dynamic loading, (d) forces acting on end-element of artery segment, (e) forces acting on 

end-element of graft segment. 

The conservation of the blood volume requires that the artery initial length paL  decrease to 

ual  and the graft initial length 
pgL  decrease to 

ugl  (Figure (b)) according to: 
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where au  and gu  are the radial deformations of the artery and graft, respectively. Note that 

the graft has not initial radial displacement due to residual stresses. The gap developed in 

the unrestrained (without sutures) state of the artery is determined as  

         
2 2

2 2
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Therefore, the resulting net gap developed in the restrained (with sutures) anastomotic 

region can be derived from 

                                                ( ) ( ) ( ) ( )net g a gx t x t l t l t      (B.4) 

where al  is the tensile deformation due to the artery/stitches interaction, and gl  is the 

tensile deformation due to the graft/stitches interaction (Figure (c)). 

The tensile forces developed in the suture, arterial tissue, and graft are given respectively 

by 

                                       0 0( ) ( ) ( )s s
s s s s s net s

s

A E
f t A E t f x t f

l
     (B.5) 

                                             ( )
( ) 2 ( )

( )a

a
La pa L pa a

ua

l t
F t H E R u t

l t
 

   (B.6) 

       ( )
( ) 2 ( )

( )
g

Lg pg Lg pg g
ug

l t
F t H E R u t

l t



             (B.7) 

The unknown tensile deformations al  and gl  can be derived from equilibrium of forces 

in the axial direction, ( ) ( )La LgF t F t  and ( ) ( )La s sF t N f t  (Figure (d,e)), yielding  Hara
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Substituting Equations (B.3), (B.8) and (B.9) into Equation (B.4), we obtain the net gap 

between the anastomosed artery segments as 
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Note that a gap across the anastomotic interface will be formed only if the tension 

developed in the arterial tissue exceeds the total suture pre-tension. The suture tensile force 

sf  developed in each stitch can be obtained from Equation (7.8). The embedding stresses 

induced on the arterial wall sa  and graft wall 
sg  must be compared to the strength of the 

artery 
,sa u  and strength of the graft ,sg u , respectively:  
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