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Abstract (In Greek) 

 

Στα διάφορα είδη οργανισμών που υπάρχουν παρουσιάζονται ειδικές προτιμήσεις στη 

χρήση κωδικονίων που κωδικοποιούν το ίδιο αμινοξύ και αυτό αντανακλάται στη 

συχνότητα εμφάνισης των συνώνυμων κωδικονίων στο γονιδιωματικό DNA. Στους 

μονοκύτταρους οργανισμούς, είναι γενικά αποδεκτό, ότι η προτίμηση των κωδικονίων 

αντικατοπτρίζει την ισορροπία μεταξύ μεταλλάξεων και φυσικής επιλογής που 

μεγιστοποιεί την μετάφραση (Sharp και Li 1986). Πιο ειδικά, στην Escherichia coli έχει 

αποδειχθεί ότι η μη τυχαία επιλογή κωδικονίων, ως επί το πλείστο, οφείλεται στην 

διαθεσιμότητα του μεταφορικού RNA (tRNA) εντός του κυττάρου (Ikemura 1981a, 

Ikemura 1981b). Πρόσφατα, έχουν γίνει πειραματικές και υπολογιστικές μελέτες για να 

μπορέσει να ποσοτικοποιηθεί η μεταφραστική παύση που προκαλείται από ομάδες 

σπάνιων κωδικονίων (που ονομάζουμε Rare Codon Clusters–RCCs), επιδεικνύοντας μια 

πιθανή σχέση με τo συν-μεταφραστικό δίπλωμα των πρωτεϊνών (Zhang, Hubalewska, 

Ignatova 2009). Η αποτελεσματικότητα της μετάφρασης μπορεί να μεγιστοποιείται σε 

τοπικό επίπεδο (ελαχιστοποιείται, αντίστοιχα), όταν κωδικόνια με άφθονα (ή σπάνια 

αντίστοιχα) συγγενή tRNAs βρίσκονται συγκεντρωμένα κατά μήκος των αντίστοιχων 

μορίων πληροφοριακού RNA (mRNA). 

Η διαδικασία ανίχνευσης των RCCs ορίζεται ως ο προσδιορισμός των ομάδων 

κωδικονίων που αντιστοιχεί σε σπάνια tRNA ή σπάνια κωδικόνια κατά μήκος του mRNA. 

Βασικός στόχος της έρευνάς μας ήταν να ανακαλύψουμε και να περιγράψουμε το 

βιολογικό ρόλο της ύπαρξης των RCCs χρησιμοποιώντας πλήρη στοιχεία του 

γονιδιώματος της E. coli σε συνδυασμό με τις λειτουργικές και δομικές πληροφορίες που 

είναι διαθέσιμες. Εν συντομία, αναπτύξαμε νέες μεθόδους και εργαλεία λογισμικού για 

την ανίχνευση των RCCs και στη συνέχεια διερευνήσαμε τα πιθανά πρότυπα συσχετισμού 

των RCCs (για παράδειγμα παρουσία, απουσία, θέση) με δομικά και λειτουργικά 

χαρακτηριστικά των γονιδίων και των αντίστοιχων πρωτεϊνών. 

Αναπτύξαμε ένα νέο και ευέλικτο διαδικτυακό διακομιστή (LaTcOm; Theodosiou and 

Promponas, 2012) μαζί με μια αυτόνομη έκδοση του λογισμικού, με στόχο να 

αντιμετωπίσουμε ελλείψεις των υφιστάμενων μεθόδων και να παρέχουμε επίσης νέα 

εργαλεία και δυνατότητες για την ανίχνευση των RCCs. Η συγκριτική ανάλυση που 

εφαρμόστηκε στο σύνολο των κωδικών γονιδίων της E. coli αποκάλυψε ότι δεν υπάρχει 

καμία σαφής συμφωνία μεταξύ των διαφόρων προσεγγίσεων. Παρόλα αυτά, η καλύτερη 
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θετική συσχέτιση βρέθηκε μεταξύ των εργαλείων %MinMax και MSS. Για να 

αποφευχθούν προβλήματα που σχετίζονται με τη χρήση κυλιόμενου παραθύρου, 

προτείνουμε πως το MSS μπορεί να χρησιμοποιηθεί εναλλακτικά για την ανίχνευση των 

RCCs. 

Στην ανάλυση σχετικά με την κατανομή των RCCs επιβεβαιώσαμε πως υπάρχει 

προτίμηση στις περιοχές αυτές να βρίσκονται στα 5’ και 3’ άκρα των γονιδίων και 

επιπρόσθετα υπάρχει στατιστικά σημαντική διαφορά της κατανομής της απόστασης των 

πρώτων RCCs από το 5’ άκρο με την κατανομή των τελευταίων RCCs από το 3’ άκρο. 

Αυτό υποδεικνύει πιθανότατα πως υπάρχει διαφορετικός λειτουργικός ρόλος της ύπαρξης 

των RCCs στα δύο άκρα. 

Επιπρόσθετα, βρήκαμε πως η παρουσία των RCCs σχετίζεται κυρίως με εκκρινόμενες 

πρωτεΐνες, με πρωτεΐνες που αλληλεπιδρούν με την κυτταρική μεμβράνη ή με το 

εξωτερικό κυτταρικό τοίχωμα (διαμεμβρανικές εσωτερικής μεμβράνης, διαμεμβρανικές 

εξωτερικού τοιχώματος (β-βαρέλια)). Από την άλλη, η απουσία των RCCs σχετίζεται 

κυρίως με κυτταροπλασματικές πρωτεΐνες, με πρωτεΐνες που σχετίζονται με το ριβόσωμα 

και με τον μεταβολισμό. Ακόμη, δείξαμε πως τα RCCs σχετίζονται με τις πρωτεΐνες με 

πολλαπλά αυτοτελή δομικά στοιχεία (domains) και προτείνουμε πως μπορούν να 

χρησιμοποιηθούν σαν ένδειξη των ορίων τους. Πιθανόν η καθυστέρηση της μετάφρασης 

σε αυτές τις θέσεις να είναι αναγκαία για το σωστό δίπλωμα αυτών των πρωτεϊνών.  

Ακόμη μια κύρια πρωτότυπη προσπάθεια της εργασίας αυτής ήταν η συσχέτιση των 

RCCs με τοπολογικά και δομικά χαρακτηριστικά των διαμεμβρανικών α-ελικοειδών 

πρωτεϊνών (αHTMP) με πειραματικά επιβεβαιωμένες τρισδιάστατες δομές. Βρήκαμε πως 

τα RCCs βρίσκονται κατά προτίμηση σε περιπλασματικές περιοχές των αHTMP 

δείχνοντας πως υπάρχει μια σύνδεση μεταξύ της επιβράδυνσης τους ριβοσώματος και τις 

βιογένεσης των αHTMP. Προτείνουμε πως το σήμα αυτό σχετίζεται με τον μηχανισμό 

εισαγωγής και τοπολογίας των πρωτεϊνών αυτών στην μεμβράνη. 

Τα αποτελέσματά μας τονίζουν την σημαντικότητα των RCCs σε συγκεκριμένες περιοχές 

των κωδικών γονιδίων της E. coli. Αναμένουμε πως θα αποτελέσουν πηγή έμπνευσης για 

περαιτέρω αναλύσεις βασικής έρευνας για την κατανόηση αυτών των μηχανισμών και θα 

προτείνουν προβλέψεις που θα αξιοποιηθούν στο μέλλον σε εφαρμογές βιοτεχνολογίας, 

όπως για παράδειγμα στο σχεδιασμό γονιδίων για έκφραση σε ετερόλογους οργανισμούς. 
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Abstract (In English) 

 

The various species that exist show specific preferences for codons encoding the same 

amino acid (codon bias), reflected in the frequency of occurrence of synonymous codons 

in genomic DNA. In unicellular organisms, it is generally accepted that the preference of 

codons reflects a balance between mutational biases and natural selection for translational 

optimization (Sharp and Li 1986). In Escherichia coli it has been shown that the non-

random choice of codons is mostly attributable to the availability of transfer RNA within a 

cell (Ikemura 1981a; Ikemura 1981b). Recently, experimental and computational advances 

have been made in quantifying translational pausing caused by rare codon clusters 

(RCCs), demonstrating a possible relation to co-translational protein folding (Zhang, 

Hubalewska, Ignatova 2009). Translational efficiency can be locally maximized 

(minimized, respectively) when codons with highly abundant (rare) cognate tRNAs are 

clustered along the respective mRNA molecules.  

The RCC detection process is the identification of codon clusters corresponding to rare 

tRNA species or rare codons along mRNAs. Within this project our main research goal 

was to unravel possible roles for RCCs in E. coli using complete genome data combined 

with functional and structural information available in disparate resources. Briefly, we 

developed novel methods and tools for RCC detection and consequently investigate 

patterns correlating RCCs (presence/absence, position etc.) in E. coli genes/proteins with 

their structural and functional features. 

We have implemented a novel flexible web server (LaTcOm; Theodosiou and Promponas 

2012) along with a standalone version, aiming to address shortcomings of existing 

methods and to also provide new tools and features for RCC detection. The benchmarking 

we applied on the E. coli set revealed that there is no clear evidence of concordance 

between the different approaches. Nevertheless, the best positive correlation was found 

between %MinMax and MSS. To avoid window bias issues, we propose that MSS can be 

alternatively used for detecting rare codon clusters. 

We confirm previous findings that RCCs are preferentially located at the 5’ and 3’ terminal 

sites and additionally demonstrate a statistically significant difference between the 

distribution of distances of the first RCCs from 5’ terminals and the last RCCs from the 3’ 

terminal site. RCCs were found to lay closer to the 5’ terminal, than to the 3’ terminal site 

possibly indicating a different functional role for their existence at the two sites. 
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Moreover, we analysed the RCC detection results for the complement of genes encoded in 

the E. coli genome and identified that the existence of RCCs is related with secreted, inner 

and outer membrane proteins (inner transmembrane and outer membrane β-barrels). 

Interestingly, we reveal that most of the sequences with no detected RCCs are found in the 

cytoplasm, are involved with the ribosome or with metabolic processes. In addition, we 

demonstrated that RCCs and multidomain proteins are associated well and we propose 

that RCC coordinates can be used as indicators for domain boundaries. We suggest that 

translation slowdown at these sites is necessary for correct protein folding. 

Another main innovation of our project was our effort to correlate RCCs to topological 

and structural features of E. coli α-helical transmembrane proteins (αHTMP) with 

experimentally derived atomic structures. We demonstrate the preferential position of 

RCCs in periplasmic loops of αHTMPs, indicating that a coupling exists between RCC-

mediated ribosomal attenuation and biogenesis of αHTMPs. We propose that the signal at 

the periplasmic region may be related to the insertion mechanism and topology of the 

transmembrane protein in the membrane. 

Our results highlight the importance of RCCs at specific locations of coding genes in E. 

coli. We anticipate that these results will inspire further basic research towards 

understanding the fine details of these mechanisms and provide predictions that may be 

exploited in future biotechnological applications, as for example for rationally designing 

heterologous gene expression studies. 
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 1  Introduction 

 

One of the fundamental and most important discoveries in biological sciences, is the 

known central dogma of molecular biology (DNA↔RNA→protein), which describes the 

flow of information in a biological system (Crick, 1958; Crick, 1970). The ingredients for 

‘baking’ DNA or RNA are the four nucleotides, which are combined in triplets to form 

codons, and then translated into the amino acids, the chemical building blocks of proteins. 

Does this simple letter code hide more information than we already know? 

With an excitement for the potential and power of this ‘simple’ three letter code, we 

started this project seeking to explore the impact and specific role that this code has on the 

biology of genes and proteins, following a bioinformatics approach. In this introductory 

section, state of art knowledge will be explored, followed by our motivation and 

hypothesis, in an effort to include all the fundamental information regarding the impact of 

‘rare’ codons in coding sequences.  

 

 1.1  Existing knowledge 

 

 1.1.1  Is the genetic code “degenerate”? 

 

The beauty and at the same time mystery in all living organisms, prokaryotes and 

eukaryotes, is the fact that they share the same genetic code, despite some limited 

variations that exist. The ‘standard’ (or ‘universal’) genetic code (Figure 1) consists of 64 

triplets of nucleotides referred to as codons and is known to be degenerate, meaning that 

each amino acid is represented by more than one synonymous codon. Even single silent 

substitutions that lead to synonymous codons can have a significant impact in the proteins’ 

activity, expression, folding and function indicating that they are essential for the 

organism (reviewed in Chamary and Hurst, (2009)). 

Each codon, with the exception of the three stop codons, encodes one of the 20 standard 
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amino acids that are used to synthesize proteins. However, there are two rare amino acids, 

the so called 21
st
 and 22

nd
,  selenocysteine (Sel, U) (Zinoni et al., 1986) and pyrrolysine 

(Pyl, O) (Srinivasan et al., 2002) respectively. These two amino acids are encoded by the 

triplets UGA and UAG which are stop codons in the standard genetic code.  

 

 

Figure 1: The standard genetic code. Taken from (Alberts et al., 2007). 

A number of alterations to the standard genetic code have been discovered for various 

prokaryotic and eukaryotic genomes, as well as for mitochondrial genomes. In 

mitochondrial systems, both ‘sense’ and ‘non-sense’ codons can change identity; on the 

other hand in prokaryotic and eukaryotic systems, only stop codons change identity with 

the exception of decoding of the leucine–CUG codon as serine in Candida species (Silva 

et al., 2004). How these codons are used (also referred as codon usage) in an organism has 

been an open issue for decades and is discussed further on. 

 

 1.1.2  Codon usage (Codon bias) 

 

Different organisms show specific preferences for codons that encode the same amino 

acid. The choice among synonymous codons in both prokaryotic and eukaryotic genes is 

distinctly non-random (reviewed in (Ikemura, 1981a)). This is known as “codon bias”, 

referring to the differences in frequency of occurrence of synonymous codons in genomic 

DNA. Patterns and degrees of codon usage bias differ between organisms (Grantham et 

al., 1980) but also between genes from the same genome (Sharp and Li, 1986). It is 

generally accepted that the preference of codons reflects a balance between mutational 

biases and natural selection for translational optimization (Sharp and Li, 1986). Some 

codons from each set of synonymous codons are more frequently used and tend to occur 

in highly expressed genes (Ikemura, 1981a; Bennetzen and Hall, 1982; Gouy and Gautier, 

Athi
na

 The
od

os
iou



3 

 

1982; Ikemura, 1985; Sharp and Li, 1986; Bulmer, 1991; Kanaya et al., 1999). It has been 

shown that codon choice influences heterologous expression in a host and Itakura et al., 

(1977) managed to express for the first time a human protein in a bacterium (somatostatin 

in E. coli). A strategy that is commonly used to increase heterologous expression is to alter 

the rare codons in the target gene, in order to reflect closely the respective usage in the 

respective host. Techniques to achieve this, range from site-directed mutagenesis steps to 

re-synthesizing of the entire gene (reviewed in Kink et al., (1991) and Gustafsson et al., 

(2004)). However, this can also lead to abnormal protein folding and decrease protein 

solubility (Cortazzo et al., 2002) and activity (Crombie et al., 1992; Komar et al., 1999). 

Assuming that rare codons correspond to under-expressed tRNA species, a strategy that 

has been adapted by biotechnological companies is the improvement of expression by 

expanding the tRNA pool of the host. This can be achieved by overexpressing rare tRNAs. 

There are commercially available E. coli strains overexpressing these tRNAs, from 

companies such as Stratagene (www.stratagene.com) and Novagen 

(www.emdbiosciences.com) (reviewed in (Gustafsson et al., 2004). Nevertheless, recent 

studies suggest that rare codons are essential for the proper folding of the protein 

(Makhoul and Trifonov, 2002; Zhang et al., 2009) and irrationally altering the translational 

kinetics may cause mis-folding.  

  

 1.1.3  Factors that contribute to synonymous preferences 

 

Extensive studies have shown that there are many biological factors that shape codon bias 

including translational selection, tRNA abundance, gene expression level, gene length, GC 

composition, strand specific mutational bias, amino acid conservation, protein hydropathy, 

transcriptional selection and RNA stability (reviewed in Ermolaeva (2001)).  

As indicated before, in unicellular organisms like Saccharomyces cerevisiae and E. coli, 

the synonymous codon preference is related to the relative tRNA abundance (the 

proportion of tRNA isoacceptors) and this correlation is stronger in highly expressed 

genes (Ikemura, 1981a; Bennetzen and Hall, 1982; Gouy and Gautier, 1982; Ikemura, 

1985; Sharp and Li, 1986; Bulmer, 1991; Kanaya et al., 1999).  

Multicellular organisms like Drosophila melanogaster and Caenorhabditis elegans 

demonstrate variation in codon usage and the balance between mutational biases and 
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translational selection has been described as the main driving factor (Akashi, 1994; Carulli 

et al., 1993; Moriyama and Powell, 1997; Sharp and Li, 1989; Shields et al., 1988). Codon 

usage in Xenopus, although determined mainly by compositional constraints,  was also 

shown to be influenced by translational selection (Musto et al., 2001). 

It has been generally accepted that GC composition is related to codon usage (Ermolaeva, 

2001) and affects expression efficiency (Ikemura and Wada, 1991; Kanaya et al., 2001). 

Very low or very high GC content is associated with large codon bias. Indeed in mammals, 

the codon usage bias is found to be influenced by the variation in isochores (GC content) 

(Bernardi and Bernardi, 1985) whereas Knight et al., (2001) showed that it is the GC 

content that drives codon amino acid usage within and across genomes. Moreover, Lynn et 

al., (2002) have shown this correlation while studying 32 bacterial and 8 archaeal 

genomes. Nevertheless, more recently Dittmar et al., (2006) suggested that codon usage in 

mammals is influenced by the tissue specific tRNA pool of the cell. Therefore, what is 

ultimately shaping codon usage may be a combination of different factors each one 

contributing to the best fitness of an organism. Concluding, any information encoded in 

the sequences of information-carrying biological macromolecules (DNA, RNA, mRNA) 

could pose a constraint on the codon choice (Trifonov, 2011) and should be taken into 

consideration. 

 

 1.1.4  Methods for quantifying codon bias 

 

Several statistical methods have been proposed to analyze the codon usage bias (reviewed 

in (Cannarozzi and Schneider, 2012)). The first measure proposed was     (Ikemura, 

1981a, 1985), which made use of tRNA abundance data of E. coli and S. cerevisiae. Since 

then, several other measures have been proposed and revised (summarized in Table 1).  

Table 1: Codon usage indices and methods for codon usage analysis. 

Codon usage indices Reference 
Frequency of Optimal codons (Fop) (Ikemura, 1981a, 1985)  

Codon Bias Index (CBI) (Bennetzen and Hall, 1982)  

Codon usage preference bias measure (CPS), x2 and 

scaled x2 

(McLachlan et al., 1984; Shields and Sharp, 

1987)  

Codon Adaptation indices (CAI) (Sharp and Li, 1987)  

The effective number of codons (NC) (Wright, 1990)) 

CODONs (Lloyd and Sharp, 1992) 

Codon bias (CB) (Karlin et al., 1998)  

Application of Shannon theory to compute synonymous 

coding bias in the Human and mouse genomes 

(Zeeberg, 2002)  
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Nevertheless, one of the most popular measures remains the Codon Adaptation Index 

(CAI) (Sharp and Li, 1987). The authors of CAI examined codon usage in E. coli and 

proposed this measure of directional synonymous codon usage bias. They suggested that 

in unicellular organisms, there is a preference for high bias in highly expressed genes 

where the selective force is strong, and low bias in lowly expressed genes as was 

previously proposed elsewhere (Bennetzen and Hall, 1982; Gouy and Gautier, 1982). In 

order for the data to be comparable with data sets of different sizes, the codon usage 

numbers were converted into relative synonymous codon usage values (RSCU). The 

RSCU, as described by the authors, represents the ratio of codon frequency divided by the 

frequency expected under the assumption of equal usage of the synonymous codons of an 

amino acid: 

 

        
   

 
  

     
  
    

 

 

where the     is the number of occurrences for the j codon for the i-th amino acid and    

the number of alternative codons for the specific amino acid. The relative adaptiveness of 

a codon    , is the frequency of use of that codon compared with the frequency of the 

optimal codon for that amino acid: 

     
      

        
 

 

Therefore, the CAI for a gene is calculated as the geometric mean of the     values 

corresponding to each codon used in that gene: 

         

 

   

 
 

   

In this definition, L is the number of codons and    is the relative adaptiveness value for 

the k-th codon in the gene. In conclusion, the CAI number is a very simple measure for 

the codon usage bias especially for bias seen in highly expressed genes. CAI was applied 

as a measure for predicting gene expression levels, since this figure reflects the level of 

expression and for comparing codon usage bias in different organisms (Sharp and Li, 

1987). 
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 1.1.5  Other measures correlated with codon usage 

 

In E. coli it has been shown that the non-random choice of codons is mostly attributable to 

the availability of transfer RNA molecules within a cell (Ikemura, 1981a, 1981b). 

Synonymous codon choice has been shown in many studies to be affected by and 

correlated with tRNA abundance. Quantifications of cellular concentrations of tRNA 

species in E. coli were initially made by Ikemura (1981) who quantified 26 tRNA species. 

The amounts were measured and expressed as ratios to amounts of tRNA
leu 

(CUG). 

(Emilsson and Kurland, 1990) as well as (Emilsson et al., 1993) calculated the relative 

abundance of a set of 18 tRNA species in E. coli. Moreover, Dong et al., (1996) made 

systematic measurements of the cellular concentrations of 46 tRNA species in E. coli and 

these were calculated for each individual tRNA isoacceptor at different growth rates. They 

showed that there is a biased distribution of tRNA abundance at all growth rates.  

Positive correlations were demonstrated between codon usage and tRNA levels for E. coli 

(Ikemura, 1981a, 1981b; Dong et al., 1996), S. cerevisiae (Ikemura, 1982) and Bacillus 

subtilis (Kanaya et al., 1999). Figure 2 demonstrates these linear correlations between 

tRNA levels of E. coli and codon usage as calculated in (Theodosiou and Promponas, 

2012). 
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Figure 2: Correlations of RCC detection scales for E. coli available in LaTcOm. 
Figure taken from Supplementary Data in (Theodosiou and Promponas, 2012). Displayed are 
pairwise scatterplots of E. coli codon usage from CUTG database (`kazusa'), from Table 4 of 
(Dong et al., 1996) (`cu dong') and tRNA-abundance based scales as calculated in-house (`tRNA 
values') or from (Zhang et al., 2009; Zhang and Ignatova, 2009) (`zhang from paper'). On the 
upper right part of the matrix the Pearson product moment correlation coefficients are displayed (p 
< 0.05). Plot generated using the ggcorplot function in the R statistical environment (R 
Development Core Team, 2008). 
 (http://groups.google.com/group/ggplot2/attach/6bf632a9718dddd6/ggcorplot.R?part=2 )  

 

Furthermore, the individual cellular levels of tRNAs were also shown to be approximately 

proportional to the copy number of the respective tRNA genes (Dong et al., 1996; 

Percudani et al., 1997; Kanaya et al., 1999; Tuller et al., 2010a). This strategy was 

successfully applied to determine optimal codons in species with no tRNA concentrations 

available (Kanaya et al., 2001). Moreover, the tRNA adaptation index (tAI) (dos Reis et 

al., 2003) was developed which is a measure that follows the mathematical model of CAI 

(Sharp and Li, 1987), but estimates the adaptiveness of a gene based in tRNA gene copy 

numbers. 

 

 1.1.6  Codon usage and rare codon clusters 

 

The codon usage statistical measures described above were used, in most cases, to predict 
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gene expression levels or to estimate codon usage evenness. Nevertheless, none of them 

was able to detect the position of local prevalence of codons with rare cognate tRNAs. 

These regions were recently described (Makhoul and Trifonov, 2002; Clarke and Clark, 

2008) and we refer to them, from this point on, as rare codon clusters (RCCs). These 

regions are thought to be important for translational speed control (Makhoul and Trifonov, 

2002; Tuller et al., 2010a; Cannarozzi et al., 2010) and can slow down translational 

elongation (Pedersen, 1984). It has be known for some time that the ribosome slows down 

in areas that correspond to low abundance tRNAs and recently we have more experimental 

evidence on this fact (Zhang et al., 2009). Nevertheless, more factors seem to be 

implicated in the translational regulation. 

 

 1.1.7  Translation tuning factors  

 

Protein synthesis by the ribosome is a well described process in prokaryotes and 

eukaryotes that varies in speed. The translation process is not uniform along an mRNA 

sequence and this is essential for the proper function of a protein product. The speed of 

translation can be controlled and several mechanisms have been proposed to cause the so-

called translational pausing or ribosome stall. Figure 3 taken from (Gloge et al., 2014) 

shows some of the up to date proposed mechanisms of translational control. 

Recent research efforts have often provided conflicting evidence regarding the factors that 

determine translation elongation rates. It is widely accepted that rare codons and their 

clusters are associated with translational pausing (Pedersen, 1984; Guisez et al., 1993; 

Goldman et al., 1995; Komar and Jaenicke, 1995; Thanaraj and Argos, 1996a; Zhang et 

al., 2009; Tuller et al., 2011). Sequence-dependent translational rates are reported in 

previous studies and tRNA abundance is documented as an important determinant of 

elongation rate, causing variation in the translational rate for each codon (Pedersen, 1984; 

Varenne et al., 1984; Zhang et al., 2009; Tuller et al., 2011).  
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Figure 3: Proposed mechanisms of translational control.  

Translational speed can be reduced by the existence of rare codon clusters, secondary structural 

elements, Shine-Dalgarno–like sequences in the mRNA and interaction of the assembled chain 

with the ribosomal exit tunnel. Figure from (Gloge et al., 2014). 

 

On the other hand, early studies have indicated that base-pairing of mRNA at the initiation 

site was a major determinant for translational efficiency in prokaryotes (Schauder and 

McCarthy, 1989). Similarly, in eukaryotes, secondary structures located at close regions at 

initiation ATG sites were shown to reduce translation efficiency (Wang and Wessler, 

2001). More recently, while investigating the determinants of gene expression of 154 

synthetic GFP genes in E. coli, (Kudla et al., 2009) showed that mRNA folding stability 

could explain 10-fold more variation in expression/levels than codon bias or any other 

determinant. The authors of this work concluded that codon synonymous substitutions at 

the beginning of the sequence that reduced mRNA stability were correlated with GFP 

protein abundance and they suggested that this effect is caused by local nucleotide 

composition and not by codon usage (reviewed in (Angov, 2011)). Nevertheless, (Supek 

and Smuc, 2010) argued that Kudla et al., 2009 wrongly used a nonlinear regression 

analysis. Moreover, they argued that the effect of codon usage was masked by the inherent 

strong mRNA structure that exists in GFP. Additionally, (Tuller et al., 2010b) while 

investigating the determinants of translational efficiency for E. coli and S. cerevisiae, they 

identified a correlation between codon bias and protein abundance, showing that codon 

bias is an important determinant of translational efficiency.  
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Recent work, based on RNA-seq for revealing ribosome occupancy on complete 

transcriptomes, provided genome wide ribosomal profiling data both for eukaryotic 

(Ingolia, 2010; Ingolia et al., 2009) and bacterial (Oh et al., 2011) species. Ribosomal 

profiling is the sequencing of short ribosome protected fragments of mRNAs unravelling 

the positions where ribosomes stall more often, thus offering an (indirect) quantitative 

measure of translational speed. In a follow up work, the same group revealed that Shine-

Dalgarno-like features within coding sequences are a primary drive for translational 

pausing possibly due to their hybridization to 3’ region of the 16S ribosomal RNA in E. 

coli (Li et al., 2012). The initially described Shine-Dalgarno sequence is a purine rich 

region upstream the initiation site in prokaryotes (Shine and Dalgarno, 1974) that binds to 

the ribosome at the 3’ end of 16S rRNA (Steitz and Jakes, 1975; Jacob et al., 1987).  

Another recent analysis using ribosomal profiling data from (Ingolia et al., 2009), 

proposed that the mechanism of translational tuning is mainly determined by the 

positively charged residues on the nascent polypeptide (Charneski and Hurst, 2013). These 

residues have been proposed to stall ribosomes by interacting with the negatively charged 

ribosomal exit tunnel. However, the same authors on a follow up work (Charneski and 

Hurst, 2014) argue that positively charged amino acids are known to orient membrane 

proteins into the membrane with the positive-inside rule. Therefore, they suggested that 

the increased frequency of positive amino acids at the N-terminal is mostly due to 

membrane topology. 

Nevertheless, a very recent study has challenged previous discussed determinants (Artieri 

and Fraser, 2014). This work proposed that although ribosomal profiling data present a 

great opportunity to study the determinants of elongation rate, the results of such efforts 

gave controversial results. Moreover, they suggest that ribosomal profiling data reported 

in (Ingolia et al., 2009) suffered from technical sequence bias not taken into account in 

that study. After incorporating these biases in their analysis Artieri and Fraser suggested 

that none of the aforementioned factors are implicated in ribosomal pausing but it is the 

proline amino acid, which has a unique side chain that stalls the ribosome (Artieri and 

Fraser, 2014). The addition of proline residues in the nascent polypeptide is a slow process 

due to the unusual cyclic nature of proline as previously shown (Pavlov et al., 2009). 

Screening for codon sequences that stall the ribosome Tanner et al., (2009) identified 

amino acid sequences with di-proline codons that cause ribosomal stalling in vivo and this 

effect has been also confirmed by (Chevance et al., 2014). 
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All the aforementioned orthogonal approaches try to shed light on the effect of different 

parameters on translation elongation rates. It is important to remember that each step of 

translation, initiation-elongation-termination, may be regulated differently. All these 

factors described above may contribute to ribosomal pausing, showing that the 

translational mechanism is more complex than previously believed. Nevertheless, the 

exact level of contribution of all these factors on how the ribosomal stalling is performed 

still remains unclear.  

Having all this in mind, our study is only focused on the effect of rare codons clusters 

(RCCs) and what follows is evidence showing the correlation of RCCs not only as 

determinants of translational rate, but consequently as determinants of co-translational 

folding. 

 

 1.1.8  RCCs implicated in co-translational folding 

 

How proteins are finally folded into their 3D structure is a process not yet fully 

understood. It was previously suggested that the protein sequence was enough to 

determine the 3D structure of a protein (Anfinsen, 1972). However, the exact code on how 

a protein finds its final conformation still remains unclear (Komar, 2009). More recent 

evidence exists showing that additional information lays on the mRNA sequence. For 

example two identical protein sequences, but with differences in their mRNA synonymous 

sites, may produce different tertiary structures due to the alterations in translational 

kinetics at the synonymous sites (Komar, 2009).  

It is believed that rare codons within a coding sequence encode the instructions for 

regulation of protein synthesis and the formation of some secondary and tertiary structures 

(Purvis et al., 1987; Marin, 2008). In the late 80s, two groups have shown that sequential 

co-translational folding events can be separated by translational pauses located at domain 

boundaries (Purvis et al., 1987; Krasheninnikov et al., 1988). Later on, several groups 

have demonstrated evidence on this issue (Krasheninnikov et al., 1991; Guisez et al., 

1993; Komar and Jaenicke, 1995; Thanaraj and Argos, 1996a; Komar et al., 1999; 

Makhoul and Trifonov, 2002). A computational analysis on the E. coli genome, has 

demonstrated that highly abundant codons are preferentially associated with α-helical 
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secondary structures, whereas RCCs are more often related with β-strands, random coils 

and domain boundaries (Thanaraj and Argos, 1996b). Nevertheless, recent computational 

work on large datasets found no evidence of enrichment in slow codons around domain 

boundaries in E. coli, human and yeast (Saunders and Deane, 2010). However, Saunders 

and Deane (2010) identified a signal of decreased translation in the transition into helix or 

strand. 

Recently, it has been demonstrated by in vitro and in vivo experiments, that the folding 

efficiency of the E. coli protein SufI is altered, when the translational rate is affected with 

synonymous codon substitutions or alteration in tRNA concentrations (Zhang et al., 2009). 

Zhang and co-workers used a bioinformatics approach in which they built a simple 

algorithm to identify putative regions of slow translation described in (Zhang and 

Ignatova, 2009). They studied the expression patterns of several proteins, demonstrating 

that mRNAs with several slow translated regions gave rise to respective translation 

product intermediates, whereas proteins with no detected slow translated regions gave rise 

to full length proteins. To study this in more detail, they identified four slow translated 

patterns in SufI and three of them indeed matched with translation intermediates. They 

showed experimentally that synonymous changes of rare codons at these sites or increase 

of tRNAs for these codons lead the protein to degradation and also affected the 

translocation of the protein, demonstrating that the function of the protein is also affected. 

Taking these into consideration the authors suggested that slow-translating clusters control 

the folding process. Several other experimental evidence exist and are nicely reviewed in 

(Angov, 2011). 

 1.1.9  Folding of α-helical transmembrane proteins (αHTMPs) - are RCCs implicated in 

their biogenesis? 

 

Almost all αHTMPs are co-translationally integrated into the membrane lipid bilayer 

through the translocon channels (SecYEG in prokaryotes and Sec61 in eukaryotes) 

(Rehling et al., 2003; Osborne et al., 2005). However, how the transmembrane (TM) 

helices are inserted and finally folded in the membrane still remains unclear. Codon usage 

in membrane proteins differs from that of soluble proteins (Nørholm et al., 2012) mainly 

reflecting the hydrophobic nature of many amino acids in membrane sequences (Hessa et 
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al., 2005). Surprisingly, there is U-bias (Uracil bias) in codons of membrane mRNAs 

(Prilusky and Bibi, 2009) but their role remains unclear. Interestingly, RCCs have been 

detected in mRNAs encoding membrane proteins for many species, e.g. in yeast (Képès, 

1996), Emericella nidulans (Dessen and Képès, 2000), E. coli and B. subtililis (Zhang et 

al., 2009). Chartier et al., (2012), in a large scale analysis of conserved rare codons 

identified in Pfam domains, noted that the longest rare codon clusters are found in 

membrane sequences. In the work of Képès (1996) the author identified that rare codon 

clusters often occur at 45 or 70 codons downstream of the TM helix in S. cerevisiae and 

made the hypothesis that a translational pause may occur as the helix is leaving the 

ribosomal exit tunnel or the translocon. Many hypotheses may rise from this issue and one 

would be that translational pauses might occur as a part of the insertion mechanisms to 

facilitate the proper interaction of TM helices within the membrane for the protein to get 

its final confirmation. This issue is raised in the current work and detailed analysis is 

discussed further on. While our work was in its final stages before completion, two related 

works suggested that pause of translation at specific sites in mRNAs can cause local pause 

of translation elongation thus facilitating the co-translational targeting of membrane 

proteins to the translocon (Fluman et al., 2014; Pechmann et al., 2014). We discuss these 

works in more detail in the next section.  

  

 1.1.10 Rare codon distribution along mRNA sequences and functional implications 

 

In the absence of any selection, RCCs would appear randomly in the coding genome. 

However, rare codons have been shown to be enriched at the terminal regions of 

sequences (Clarke and Clark, 2010). An early study (Ikemura, 1981a) showed that rare 

codons exist near the start sites of some E. coli genes. Clarke and Clark (Clarke and Clark, 

2010) studied the distribution of rare codon clusters and showed that rare codons are 

enriched at both 5' and 3' termini in genes not only in E. coli but also in other prokaryotic 

coding genomes. Nørholm et al., (2012) have also shown the preference or rare codons at 

the 5’ site. A ramp at the first 30-50 codons of 5’ termini was also demonstrated by 

ribosomal profiling (Tuller et al., 2011). Several other studies have also reported the 

enrichment at 5’ termini in different organisms (Allert et al., 2010; Goodman et al., 2013; 
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Pechmann and Frydman, 2013). A possible explanation of the enrichment of RCCs at the 

gene start is for keeping the ribosome binding site free from stable mRNA structures 

(Bentele et al., 2013), whereas another suggestion is a functional role in secretion of 

secretory sequences (Burns and Beacham, 1985; Power et al., 2004) and/or to allow 

correct folding of pre-secretory proteins (Zalucki and Jennings, 2007). In eukaryotes, the 

signal recognition particle (SRP) can pause translation of secreted proteins though its 

binding to SRP Alu domains to facilitate their translocation to the endoplasmic reticulum 

(Regalia et al., 2002; Lakkaraju et al., 2008). Nevertheless, an analogous mechanism is 

unclear to exist in E. coli due to the absence of Alu domain (Raine et al., 2003). Clarke 

and Clark (2010) suggested that rare codons at the 5’ terminal in prokaryotes are present to 

serve the same purpose. Two recently published studies, provided experimental evidence 

regarding the local slowdown of translation at specific positions of mRNA elements 

downstream the SRP binding elements in yeast (Pechmann et al., 2014) and immediately 

before or after the first TM helices in many E. coli proteins (Fluman et al., 2014). 

Pechmann and colleagues analyzed a previously assembled experimental dataset of co-

translational interactions of the SRP with nascent polypeptides and identified elements 

downstream the SRP binding site that might slow translational elongation. Ribosomal 

profiling data demonstrated increased ribosomal occupancy at these sites and the 

experimental removal of such a site resulted in inefficient translocation of the proteins 

through the translocon. Fluman and colleagues analyzed ribosomal profiling data in E. coli 

(Li et al., 2012), identifying Shine-Dalgarno-like elements that slow the elongation before 

or after the first TM helix. They showed experimentally that insertion of a Shine-Dalgarno 

element within the segment coding for a TM helix reduces the protein’s aggregation. Both 

studies provide interesting insights for the role of non-optimal codons in co-translational 

targeting and consequently their involvement in the biogenesis of membrane proteins.  

The importance of rare codons at the 5’ site was additionally highlighted in a recent study, 

in which Mahlab and Linial (2014) suggested that only secreted and membrane proteins 

with a signal peptide (SP) have a rare codon region at the 5’ terminal in the human coding 

genome. 

As far as the enrichment at the 3’ terminal is concerned, little information exists; Clarke 

and Clark, (2010) suggested that the mechanism of translation is very different in 

prokaryotes compared to eukaryotes, therefore the signal in 3’ sites that they detected in 
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their research may be specific to prokaryotes. However, 3’ end rare codons were also 

identified in human (McKown et al., 2013). Moreover, they discussed that ribosome 

stalling at the 3’ termini may allow chaperones or other co-factors to interact with the 

newly synthesized polypeptide. The computational methods used in all the aforementioned 

studies to detect RCCs differ in their definition for scales and detection algorithms. These 

alternative approaches are described further on. 

 

 1.1.11 RCC detection methods 

 

In principle, the RCC detection process is the identification of codon clusters 

corresponding to rare tRNA species along mRNAs, as quantified using scales of 

experimental tRNA levels. A complete dataset of this type is available for E. coli (Dong et 

al., 1996) and since there is an approximate linear correlation with codon usage (Figure 2) 

–even though some authors argue against this view (Saunders and Deane, 2010)– 

approaches based on codon usage scales may and have been alternatively used. 

A number of different definitions and algorithms have been proposed for identifying 

RCCs in coding sequences. These definitions are based on identifying clusters of codons 

corresponding to rare tRNA species along mRNAs, as quantified using (i) experimental 

cellular tRNA level data, or (ii) inferred from codon usage based on data from complete 

genomes or highly expressed genes, and iii) more recently from tRNA gene copy 

numbers. In the following, we briefly present three recently described methods for RCC 

identification that make use tRNA concentration or codon usage data. 

 

The %MinMax algorithm (Clarke and Clark, 2008) 

 

The %MinMax algorithm (Clarke and Clark, 2008), a freely available web server at 

http://www.codons.org, relies on codon usage scales and scans a query sequence with 

overlapping sliding windows of fixed size of 18 codons. For each such window, the 

following codon usage frequency-related mean values are computed: (i) actual: the actual 

codon usage, (ii) Max/Min: the maximum/minimum possible codon usage values for a 

nucleotide sequence encoding the same peptide, and (iii) average: the average codon usage 
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value for synonymous codons at each codon in the window. Then, two new quantities 

(%Max and %Min) are computed, reflecting the deviation of actual from average codon 

usage, as compared to the maximum (or minimum respectively) possible deviation. 

Depending on whether the difference between actual and average is positive or negative, 

the algorithm reports either the %Max or the %Min value, respectively. An important 

feature of the %MinMax web server, is the option to compute a measure for validating 

RCC significance. This is based on an empirical estimation of the expected score, i.e. the 

average %MinMax score for randomly generated coding sequences based on the relative 

codon usage at synonymous sites to the sequence analyzed. Even though this approach 

provides invaluable information for the detected RCCs, it poses significant computational 

limitations: for validating a single sequence a large number of simulated randomly reverse 

translated sequences (200 in the current implementation) should be also analyzed. 

Moreover, neither the text nor the graphical output list the exact locations of RCCs which 

should be deduced by the user. 

 

The RiboTempo method (Zhang et al., 2009; Zhang and Ignatova, 2009) 

 

In an effort to quantify translational elongation rate, Zhang and colleagues (Zhang et al., 

2009; Zhang and Ignatova, 2009) described a tRNA abundance-based scale. The 

translational rate is calculated as a reciprocal value of the cognate tRNA concentration. 

For the tRNAs with overlapping codon specificity, the parameters for the tRNA fraction 

that pairs to each codon were set according to the experimentally determined specificities 

of the ternary complexes (Bonekamp et al., 1989; Curran and Yarus, 1989; Krüger et al., 

1998; Sørensen and Pedersen, 1998) or to the codon-usage index. They went on to 

develop a window-based approach (RiboTempo), where a moving average for the 

translational rate is calculated along a query sequence using a window with a fixed size of 

19 codons (available at http://hxapp.hexun.com/RiboTempo/Default.aspx). In the current 

implementation of the RiboTempo web server only graphical output is provided (without 

explicitly defining RCC locations), and no option is available for statistical RCC 

validation. 

 

Athi
na

 The
od

os
iou

http://hxapp.hexun.com/RiboTempo/Default.aspx


17 

 

Sliding window issue 

 

Both web servers (%MinMax and RiboTempo) offer different features, e.g. scale options 

and output formats and they use a simple sliding window approach, with fixed window 

size w equal to 18 and 19, respectively. These w values correspond to the optimal window 

size 18 proposed for the problem of identifying translational pause sites by (Makhoul and 

Trifonov, 2002). An obvious limitation of window-based methods is the detection of RCCs 

with length at least equal to the applied window size, which probably generates artifacts. 

In our analysis we demonstrate that with both methods the length of the detected RCCs is 

dictated by the length of the window applied in the detection process. 

 

Spatial scan statistics approach (Ponnala, 2010) 

 

Recently, another algorithm was proposed (Ponnala, 2010) that applies the spatial statistic 

to detect rare codons clusters. Ponnala used the tRNA abundance set of E. coli as in 

(Zhang and Ignatova, 2009) to estimate a “waiting time” for each codon. For the 

corresponding tRNA available for each codon       the waiting time is the inverse:    
 

  
. 

Moreover, he used the spatial scan statistic approach as proposed in (Huang et al., 2007) 

for detecting rare codon clusters. The software code is written in MATLAB
*
 

(http://sites.google.com/site/jbrpaper/). In this implementation of spatial statistics, the 

likelihood of zones is estimated on codons that have estimated time more than 0.1. 

Significant clusters are found by taking the top 100 most-likely highest λ zones and 

filtering the smallest and most dense clusters of slow translating codons. However, no 

statistical significance is given for the clusters. 

 

 1.2  Motivation, biological hypothesis and specific aims of this work 

 

Taking all this knowledge into consideration, it is here appropriate to introduce the reasons 

                                                
* Even though the code is freely distributed, the MATLAB platform is available under paid license, so this 

method was no further validated in this work. 
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that inspired and finally made me implement this PhD thesis. When I started this research, 

I was motivated by the work of Zhang and co-workers (Zhang et al., 2009), who as 

previously discussed, presented experimental evidence regarding the fundamental role of 

rare codon clusters (RCCs) in regulating the kinetics of proteins synthesis (translation). 

Previous studies suggested that translational pauses are necessary, to give the appropriate 

time for the right interactions of the newly synthesized domain to occur, while being 

correctly folded into the three dimensional conformation (Purvis et al., 1987; 

Krasheninnikov et al., 1988).  

Our working biological hypothesis is that the location of RCCs in coding genes correlates 

well with other topological and structural characteristics/properties, while their existence 

may reveal higher level functional features. Proteins with disordered regions, mutlidomain 

proteins, outer membrane β-barrels, secreted and transmembrane proteins may have a 

distinct pattern of RCC preference and is very interesting to unravel potential correlations. 

Moreover, it was intriguing to clarify whether a coupling exists between rare codon-

mediated ribosomal attenuation and the biogenesis of αHTMPs, since most of them are 

integrated into the bilayer co-translationally (Rehling et al., 2003; Osborne et al., 2005). 

We would expect a different pattern in comparison with transmembrane β-barrel (TMβb) 

proteins, since folding and insertion mechanism differs from the two-stage insertion model 

proposed for αHTMPs. TMβb proteins are proposed to fold post-translationally 

(Kleinschmidt and Tamm, 2002; Tamm et al., 2004). 

From what is already known, there is scarce evidence regarding the ideal method or scale 

to use in order to identify computationally the exact position of translational pauses. There 

is a need to address shortcomings of the existing RCC detection methods, benchmark 

existing ones and to also provide new tools and features for RCC detection. Moreover, the 

evidence regarding any possible roles of RCCs in the function and structure (including the 

membrane topology of TM proteins) remain unclear. We hypothesize that there are 

functional and structural implications of the existence of RCCs and in this work we follow 

a computational approach in order to address these issues. We introduced and explored the 

concepts and state of the art knowledge regarding codon usage, rare codons, rare codon 

clusters (RCCs) and what has been demonstrated to date regarding their fundamental role 

in translational regulation and folding, along with other translation regulation 

determinants that were described so far. In the next sections of this work, the 
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implementation of the LaTcOm web server is described in detail (Theodosiou and 

Promponas, 2012); to the best of our knowledge LaTcOm is the first flexible web 

application offering alternative methods for detecting RCCs. Furthermore, we present in 

silico experiments on genes encoded in the E. coli genome, initially to compare the 

different methods available in the LaTcOm package and then unravel the general 

characteristics of RCCs in the coding genome. Moreover, we explore possible correlations 

of biologically significant positions of RCCs along the sequences. In the last section we 

present and discuss results related with the co-occurrence of RCCs with several structural 

and functional characteristics of E. coli sequences i.e. potential correlation of RCCs with 

the distance of genes that belong to operons, relation of RCCs with disordered, 

transmembrane, secreted, peripheral inner membrane, multidomain, and outer membrane 

TMβb proteins. Finally, we focused on a correlation analysis regarding the position of 

RCCs in αHTMP sequences along with topological and structural features. We chose E. 

coli for our study, since for this species there is a wealth of data available: complete 

genome (for a number of strains), tRNA abundance concentration measurements, highly 

reliable functional annotation for a significant fraction of genes/proteins, protein 

localization data, protein 3D structures and topology of transmembrane proteins. 
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 2  Detection of rare codon clusters (RCCs) 

 

 2.1  Background 

 

While searching for the methods available and published to detect RCC regions, we came 

across the limitations of currently existing methodologies. Two of the existing methods, 

namely RiboTempo (Zhang and Ignatova, 2009) and MinMax (Clarke and Clark, 2010) 

are sliding window based approaches that are based on an optimal predefined window size 

(Makhoul and Trifonov, 2002). To overcome this limitation we developed another 

window-less RCC detection approach, based on the linear time Maximal Scoring 

Subsequences algorithm (Ruzzo and Tompa, 1999). As described by its authors, this 

approach could be applied to detect transmembrane regions, DNA binding domains or 

highly charged residues.  

Along with the MSS method, we re-implemented %MinMax and RiboTempo, and 

provided all these tools freely to the research community under the LaTcOm web server 

(Theodosiou and Promponas, 2012). In addition, for executing batch analyses we have 

also developed a standalone version of the suite of tools (unpublished work). Several 

parameters are supported for tuning the analysis, such as tRNA-abundance and codon 

usage scales, including the option for users to enter their own scales, and a selection of 

novel transformations that may prove useful for RCC analyses and research on the field. 

Moreover, the ability to choose different values of w for window-based RCC detection 

schemes, the explicit report of RCC coordinates and simulation-based p-values as a 

measure for statistical RCC validation, enables more sophisticated analyses of RCCs. 

 

 2.2  Data and Methods 

 

We developed in Perl a generic sliding window algorithm, for implementing the two 

recently published RCC identification methods: the %MinMax algorithm (Clarke and 

Clark, 2008) and the RiboTempo proposed by (Zhang and Ignatova, 2009). These were 

integrated in a novel modular software package the lowAbundanceMethods.pm. 

Information regarding the individual algorithms was described in the introduction and 
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more details can be found in the original publications. Contrary to the initial 

implementations, the sliding window in LaTcOm is purposely of decreasing size when 

approaching sequence extremities for enabling computing biologically relevant values 

near the 5’ and 3’ termini. In addition to implementations of the aforementioned published 

algorithms, LaTcOm offers access to a novel RCC identification scheme, based on 

tailoring the linear time Maximal Scoring Subsequences algorithm (Ruzzo and Tompa, 

1999). Briefly, this window-less scheme is introduced to overcome the inherent limitation 

of window-based algorithms, i.e. detected RCCs are technically restricted to have at least 

the size of the window. The MSS algorithm was made available by the original authors as 

the source code of a C++ library and was used in this form with a specialized Perl wrapper 

module. 

 

 2.2.1  The choice of w in sliding window approaches 

 

The window size choices by both the aforementioned algorithms (w: 18, 19 respectively) 

are based on the optimal window size (18 codons) proposed in (Makhoul and Trifonov, 

2002). By varying the window size between 2-32 codons, these authors identified a broad 

maximum within a range of 16 to 25 codons with 18 being the local maximum (Makhoul 

and Trifonov, 2002). However, their estimation was based on a rather small collection of 

sequences (491 mRNAs) from different bacterial species. Additionally, they mention that 

for a more accurate estimate of optimal w values, larger datasets would be required and 

more work would be necessary in order to conclude whether there exists “a fine structure 

in the clusters of rare triplets”. Moreover, it is not clear that this optimum is valid in other 

settings (e.g. eukaryotic coding sequences). Thus, providing in LaTcOm the option for 

changing w enables addressing those important questions. 

 

 2.2.2  Tailoring the Maximal Scoring Subsequences (MSS) algorithm for RCC 

identification (Ruzzo and Tompa, 1999) 

 

Assuming a sequence (x1,x2,...,xn) of real numbers (“scores”), the score Si,j of subsequence 

(xi ,xi+1,..., xj) is defined as Si,j =         . A candidate maximal scoring subsequence is 
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simply the subsequence (xi ,xi+1,..., xj) that locally maximizes Si,j, i.e. a subsequence which 

cannot be extended or shortened from either end without reducing its score. MSS was 

introduced as a practical algorithm, capable of finding in linear time all mutually disjoint 

(non-overlapping), contiguous subsequences with greatest total scores given a sequence of 

numeric scores (Ruzzo and Tompa, 1999). The authors describe some practicalities of 

implementing the algorithm in software, and also provide source code for a C++ library at 

http://bio.cs.washington.edu/software. The MSS algorithm is generic, and may be used for 

solving other interesting biological problems (in addition to RCC identification), however 

it is not trivial for an average molecular biology researcher to utilize it in the form 

provided by the authors. We interfaced this library to the LaTcOm web server with 

modifying the C++ source (with the help of Ioanna Kalvari, University of Cyprus) through 

a specialized Perl module, which generates numerical arrays based on the scale values (see 

next section) that are the input to the MSS algorithm. RCCs can then be detected in a 

sequence as the set of Maximal Scoring Subsequences detected by MSS based on the 

selected scale and transformation. An inherent feature of MSS is that the exact extents of 

RCCs are reported. In our implementation, we report those RCCs accompanied with the 

respective average scale value.  

 

 2.2.3  Available scales for RCC detection 

 

Naturally, when interested for detecting slowly translating regions in coding sequences, 

users are expected to rely on tRNA abundance scales as demonstrated in (Zhang et al., 

2009). However, since a complete dataset of this type is currently available only for E. 

coli, codon usage tables may also be used based on the observation that codon usage 

correlates well with tRNA abundance (see for example Figure 2) Thus, in the current 

LaTcOm implementation we provide options for using tRNA abundance-based scales, pre-

compiled codon usage tables, or user-supplied codon usage tables in GCG format. 

 Scales currently provided through the LaTcOm web interface are: 

i. E. coli tRNA abundance values, based on data from (Dong et al., 1996), as 

calculated in (Zhang et al., 2009), and our own in-house calculated variant (see 

following section). 
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ii. (Weighted) codon usage from a subset of highly expressed E. coli genes, taken 

from Table 4 of (Dong et al., 1996) for a growth rate of 0.4 doublings/hour. 

iii. Codon usage tables available from the CUTG online database (available at 

http://www.kazusa.or.jp/codon/; (Nakamura et al., 2000). Currently, tables for 

Homo sapiens, Mus musculus musculus, Saccharomyces cerevisiae, Bacillus 

subtilis, and E. coli are programmatically accessed from our package with a 

modified version of the Bio::DB::CUTG.pm BioPerl module which we named 

CUTG2.pm
†
. 

iv.  User-defined tRNA abundance or codon usage scales can be copied and pasted or 

uploaded on the server. These scales should follow the GCG tabular format, with 

four columns of data, namely: 

  – AmAcid: The amino acid code in three letter format. 

  – Codon: The specific codon for the respective amino acid. 

  – Number: The actual frequency of the codon in the dataset from   

   which the respective codon usage has been calculated. 

  – /1000: Frequencies as a fraction of 1000. 

  – Fraction: The relative synonymous codon usage. 

An example of this format may be found at the CUTG web server at 

http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=37011&aa=1&style=GCG. 

The multiple scales available to LaTcOm users for E. coli are positively correlated; 

however, subtle differences do exist (see Figure 2 in introduction for details). 

 

 2.2.4  A custom E. coli tRNA abundance-based scale 

 

In addition to using tRNA concentration measurements for E. coli calculated in (Zhang et 

al., 2009; Zhang and Ignatova, 2009) (kindly provided by Dr. Zhang and Professor 

Ignatova) we also compiled a similar scale with a simplified procedure. More specifically, 

                                                
† In the initial version of the module CUTG.pm if multiple codon usage table exists in the html search i.e. when 

searching for ‘Mus musculus musculus’ the first table is the mitochondrion Mus musculus musculus table and this is 
selected from CUTG by default. Therefore we modified the subroutine get _request in order to get the correct table. 
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we used as a starting point the experimentally determined intracellular concentrations of 

tRNA species in slowly growing E. coli (see (Dong et al., 1996); Table 5, growth rate of 

0.4 doublings/hour). To calculate a unique value for each codon, we take into account the 

different isoacceptor tRNA species present in E. coli along with the (weighted) codon 

usage from gene subsets, (see (Dong et al., 1996); Table 4, growth rate of 0.4 

doublings/hour). In more detail, we calculate the scale value for codon i as: 

 

          
   

 

where 

     
  

      
 

 

is the fraction of the abundance of tRNA species j that contributes to       . 

   is the tRNA abundance of tRNA species j (taken from Table 5 of (Dong et al., 

1996)), 

 K represents the set of indices for codons recognized by tRNA species j , 

 ci represents the weighted codon usage of codon i (taken from Table 4 of (Dong et 

al., 1996)). 

This scale was implemented in a new  Perl module named CodonUsageScale.pm. 

 2.2.5  Available scale transformations 

 

A number of scale transformations are available to LaTcOm users (see below and Figure 4 

for details): 

 ‘Linear shift’ (         , where the scale-average    is subtracted from each 

given value, followed by reversing the sign. The motivation for introducing this 

transformation is for obtaining scales with both positive and negative values in 

order to identify Maximal Scoring Sub-sequences with the MSS algorithm. 

Therefore, with the linear transformation applied to scales typically used for 

quantifying ribosomal attenuation or translational rates, positive numbers in the 

graphs correspond to “slowly” translating clusters irrespective of the identification 

method used. With the MSS identification algorithm a linear transformation is 
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necessary for such scales in order to be able to estimate clusters based on the 

definition of the algorithm. 

 ‘Multiplicative inverse’ (  
 

 
 ), where each scale value   is substituted by 

 

 
. This 

transformation may be used when users want to interpret their results as 

translational rates, starting from a codon/tRNA relative quantity scale. Using this 

transformation enables the use of the %MinMax algorithm in a translational-rate 

setting. 

 

 ‘Sigmoid’ applied to linearly shifted scale (  
 

            ), which facilitates 

smoothing the contribution of extremely rare or frequent codons/tRNAs, and 

 

 A combination of the multiplicative inverse and linear transformations (  
  

 
 

 

 
). 

Using this transformation on a tRNA-abundance based scale with the ‘sliding 

window’ algorithm, practically implements the RiboTempo method as presented in 

(Zhang et al., 2009; Zhang and Ignatova, 2009). 

 

In addition, when a codon usage scale (with no transformation) is combined with the 

‘%MinMax’ option of the LaTcOm web server the resulting output is in principle 

equivalent to the ‘%MinMax’ method
‡
 as presented in (Clarke and Clark, 2008). It is 

worth mentioning that after ‘linear’ shift the transformed scales are approximately zero-

centered, thus we naturally choose zero as the threshold value for RCC detection. By 

definition, zero is the threshold using the %MinMax algorithm. The transformations are 

implemented in a new  Perl module named TrCodonUsageScales.pm. 

                                                
‡ In LaTcOm, sliding windows are implemented with gradually decreasing width when approaching the sequence 

termini. Thus, at least at the sequence extremities, our implementation may differ to the original RiboTempo and 

%MinMax algorithms, even when all other parameters have been appropriately set. 
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Figure 4: Available scale transformations. 
The original values of the E. coli tRNA abundance-based scale introduced in (Zhang et al., 2009; 
Zhang and Ignatova, 2009) (`zhang from paper') are compared pairwise to its all possible 
transformations from the LaTcOm web server. Plots were generated in the R statistical 
environment (R Development Core Team, 2008). Figure taken from (Theodosiou and Promponas, 
2012). 

 

 2.2.6  Reporting RCC ranges 

 

The extents of RCCs are explicitly detected and reported only using the MSS algorithm; 

the original implementations of %MinMax and RiboTempo do not offer this option. 

However, it is important for users to know the exact cluster locations. Moreover, for 

performing RCC validation (see next section) knowing the exact range of a cluster is 
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necessary. In LaTcOm, we follow a simple procedure to compute the start and end 

positions of RCCs when using ‘%MinMax’ and ‘sliding window’, based on the window 

size and those window centers (i.e. codon positions along the sequence) which correspond 

to values indicating a RCC (termed `cluster centers'). Starting from each cluster center, we 

initiate a RCC and extend it up- and down-stream according to the window size. 

Following this approach, RCCs corresponding to cluster centers located less than  
 

 
  § 

codons apart in the sequence are merged to a larger RCC. 

 

 2.2.7  Statistical validation 

 

In order to provide a measure for validating RCC significance, (Clarke and Clark, 2008) 

proposed a simulation based approach. More specifically, an option is provided to 

%MinMax users to compute as control the %MinMax scores for n = 200 randomly reverse 

translated sequences, i.e. artificial coding sequences translating to the same amino acid 

sequence to the complete sequence analyzed. These sequences are generated based on the 

selected relative codon usage. Then, the average %MinMax score obtained per window on 

the random sequences is reported along the original sequence for validating cluster scores 

against the random dataset. Clearly, this approach provides a rough estimate of the 

expected score of analyzed windows, and is time consuming, since 200 (unnecessary) 

%MinMax computations are performed for the complete length random sequences. 

 

Calculating the exact expected score value for each RCC 

 

Let assume that for a set of synonymous codons, the scale (score) value is a discrete 

random variable observed with probability which can be estimated by the frequency of 

occurrence for this specific codon. This frequency can be obtained by the specific dataset 

(e.g. genome, gene set) to which the respective scale refers. Then, we can simply compute 

for each amino acid type aa the exact expected score for the scale of interest, based on the 

analytical formula: 

                                                
§
 [x] denotes the floor function, i.e. the largest integer value not exceeding x. 
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where 

 codons(aa) is the set of synonymous codons encoding aa, 

       is the relative frequency of codon j, and 

        is the (potentially transformed) scale value for codon j. 

Apparently, for any set of synonymous codons we can assign the    values computed for 

the respective amino acid. This computation is enabled by using the codon usage scale 

(pre-defined or provided by the user) for obtaining       values and the selected RCC 

detection scale for obtaining       values. Then, we populate a hash table keyed by the 

respective codons and cluster validation can be performed very fast, by simply averaging 

   values for codons within a RCC. Actually, this is equivalent to computing the expected 

score of the sum of scores, normalized by cluster length. This is a valid estimate for the 

expected value for the sum even in the case that the variables are dependent. The result we 

obtain with our approach is theoretically equivalent to the result which would be obtained 

by the simulation procedure adopted for validating %MinMax results for     randomly 

reverse translated sequences for the cluster in question. 

 

Computing simulation-based p-values 

 

Unfortunately, even though, RCC detection is a problem where we try to locally maximize 

the segment score, the well-known Karlin-Altschul limit distribution for the maximal 

segment scores (also known as Karlin-Altschul statistics; equations 1 and 2 in (Karlin and 

Altschul, 1990) cannot be applied directly to this problem. Therefore, an analytical 

formula for computing p-values is not available at the moment and further work would be 

necessary for achieving a solution (even approximate) to analytically tackle this task. It is 

worth mentioning, that by generating a few sets of simulation data (data not shown; see 

below) we observe that scores of maximal RCCs may not follow an extreme value 

distribution (not even approximately); however, more experimentation would be necessary 

to study this specific empirical distribution in more detail, e.g. to determine the score 

distributions of RCCs detected using different algorithms or parameter settings. 

In order to statistically validate candidate RCCs detected by LaTcOm, we generate 500 
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artificial sequences by randomly reverse translating the corresponding amino acid 

sequence based on synonymous codon frequencies. A ‘simulation’ based p-value (termed: 

simulated p-value, psim) is reported, based on the fraction of times the observed score was 

detected to be more extreme compared to the simulation scores. Importantly, constraining 

the simulation only within the candidate RCCs reduces computational resources, enabling 

a larger number of simulations for more accurate psim calculations. The analytically 

computed expected value is still reported in the text output, along with psim. Two levels of 

significance are included for assisting the users decide of the suggested RCCs: psim < 

0.01 (denoted as ‘**’), and 0.01 ≤ psim < 0.05 (denoted as ‘*’); RCCs are also marked on 

the graphical output accordingly. 

 

 2.2.8  Web server architecture 

 

Input to the LaTcOm server is enabled through an HTML page (latcom.html), with 

enhanced functionalities provided by JavaScript code. More specifically, custom 

JavaScript code was developed for initially screening and validating input form data. 

Moreover, the overlibmws library (http://www.macridesweb.com/oltest/) provides pop-up 

menu display and control for providing useful messages to the users. 

 Any submitted sequence is validated for 

• FASTA format 

• upload file size and type 

• unknown/ambiguous nucleotides (only standard nucleotides A, C, G, T, U 

 permitted), 

• in-frame stop codons, and 

• compliance to a coding sequence, i.e. sequence length is a multiple of three, reporting 

meaningful error messages to users. Nucleotide sequences may be presented to 

LaTcOm in upper or lower-case, as all sequence characters are converted to upper-

case. Additional validation is performed for user defined scales (e.g. valid GCG 

format) and file uploads (e.g. only ASCII files permitted). 
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On the LaTcOm back-end, the core CGI program written in Perl (latcom.cgi) utilizes the 

CPAN CGI.pm module, BioPerl modules for handling sequence data, and the 

Chart::Graph::Gnuplot Perl package for interfacing the Gnuplot
**

 plotting utility for 

generating graphical output. A number of custom-made Perl subroutines and modules have 

also been developed for handling codon usage and tRNA abundance-based scales 

(uploading, parsing, transforming) and for implementing the different RCC detection 

algorithms. The MSS algorithm was made available by the original authors as the source 

code of a C++ library and was used with modifications for acquiring input in form 

compatible to the problem of RCC detection, interfaced with the main LaTcOm 

application with a specialized Perl wrapper module. The binary file implementing the 

MSS algorithm was compiled using the GNU g++ compiler, version 4.3.3. LaTcOm has 

been developed on a Linux workstation, running Ubuntu server 9.0, with Perl version 

5.10.0 and the Apache 2.0 HTTP server and was tested on most of the common web 

browsers (Firefox, Chrome, Safari and Opera). Web server architecture is illustrated in 

Figure 5. 

 

                                                
**

 Available at http://www.gnuplot.info/ 
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Figure 5: LaTcOm web server architecture as described in the text. 

 

 2.3  Results and Discussion 

 

We developed LaTcOm (Theodosiou and Promponas, 2012), which is to the best of our 

knowledge the first flexible web application offering alternative methods for detecting 

RCCs, and we introduce a new window-less RCC identification algorithm. RCC detection 

can be performed from a single and simple graphical user interface. In the current version, 

three RCC detection schemes are implemented: the recently described %MinMax 

algorithm (Clarke and Clark, 2008) and a simplified sliding window approach (Zhang and 

Ignatova, 2009), along with a novel modification of a linear-time algorithm MSS (Ruzzo 

and Tompa, 1999) for the detection of maximally scoring subsequences tailored to the 

RCC detection problem. Among a number of user tunable parameters, several codon-

based scales relevant for RCC detection are available, including tRNA abundance values 

from E. coli and several codon usage tables from a selection of genomes. Furthermore, 

useful scale transformations may be performed upon user request (e.g. linear, sigmoid). 

Users may choose to visualize RCC positions within the submitted sequences either with 
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graphical representations or in textual form for further processing. Moreover, the ability to 

choose different values of w for window-based RCC detection schemes, the explicit report 

of RCC coordinates and simulation-based P-values as a measure for statistical RCC 

validation enable more sophisticated analyses of RCCs. 

It is worth mentioning that when the LaTcOm web server was being developed, another 

window-less RCC- detection approach, based on the spatial scan method [introduced by 

(Huang et al., 2007) was published (Ponnala, 2010) and this it is scheduled to be 

implemented in a the next version of LaTcOm (LaTcOm++). 

A detailed comparison of the features offered by different RCC-detection algorithms is 

available at Table 2. 
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Table 2: Comparison of features available by different RCC detection methods.  

Taken from (Theodosiou and Promponas 2012). 
 

 Method 

Feature %MinMax  

(Clarke and Clark, 2008) 

RiboTempo 

 (Zhang and Ignatova, 2009) 

Ponnala 2010 

(Ponnala, 2010)* 

LaTcOm**  

(Theodosiou and Promponas, 2012) 

Availability Online Online Matlab code Online 

Window-less No No Yes Optional*** 

User defined scales Yes No N/A Yes 

Scale transformations No No N/A Yes 

Graphical output Yes Yes N/A Yes 

Text output Yes No N/A Yes 

Experimental RCC validation No Yes† No No 

Statistical RCC validation Yes(optional) No Yes Yes 

Explicit RCC location‡ No No N/A Yes 

Multi-FASTA input Yes No N/A Yes 

Maximum Input Size 25Kbytes N/A N/A 500Kbytes 

File upload No No N/A Yes 

Maximum Upload Size N/A N/A N/A 1Mbyte 

∗ Features reported on this table are based on information available in the published work only. 

∗∗ [This work] With window-based methods, LaTcOm leaves the window size selection to the user, rather than relying on previously optimal values (as for example the 18 window length reported 

in(Makhoul and Trifonov, 2002). This feature enables users to experiment with different values of this parameter. 

∗∗∗ LaTcOm enables window-less RCC detection by the MSS algorithm. 

† RiboTempo was extensively validated by experimental methods for the correlation of RCCs with ribosomal attenuation for several E. coli protein coding genes (Zhang et al., 2009) and screened 

against E. coli proteins of known three dimensional structure (Zhang and Ignatova, 2009). 

‡ The original implementations of %MinMax and RiboTempo do not explicitly report RCC locations. In our implementation, RCC coordinates are deduced for “RCC centers”, as described in the 

Supplementary Methods section. For MSS, RCC coordinate deduction is inherent in the detection scheme. Athi
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 2.3.1  LaTcOm Input/Output 

 

Input form 

 

A simple input form enables users to load their sequence data in a text area or upload a file 

from a local drive. Users may copy/paste one or more cDNA or mRNA sequences in the 

text area provided in FASTA format (maximum limit 50 sequences with up to 50000 

characters). Alternatively, a FASTA formatted file may be uploaded to the server for 

analysis (maximum file upload size 1Mbytes, unlimited number of sequences). 

Furthermore, the form provides control elements for selecting the RCC detection method 

to be applied and all related tunable parameters. The ‘Example’ button loads the form with 

the sequence encoding the E. coli SufI (FtsP) protein and pre-selects suitable parameters 

for an example LaTcOm run. Moreover, the ‘Pre-run queries’ link opens a new page with 

results computed on the same example sequence using different algorithms and 

parameters. The LaTcOm input page is displayed in Figure 6. 

                       

LaTcOm Output 

 

When LaTcOm is invoked the submitted sequence data are validated and then passed to 

the core module. Based on the parameters selected by the user the relevant scales and 

transformations are applied and are passed to the chosen RCC method for identifying 

putative clusters and their significance. An intermediate results page is displayed linking 

to the results page and to a compressed archive with all relevant files (graphics, text or 

both) In those cases where multiple sequences are submitted, this archives contains 

separate files for each sequence. In any case, results are retained on the LaTcOm server for 

one week. Examples of the LaTcOm output with the different detection methods are 

illustrated in Figure 7,8 and 9. 
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Figure 6: LaTcOm web interface input form. 
 

Graphical output 

 

Graphical output is displayed in png formatted image files, and the data plotted may differ 

based on the RCC detection algorithm and the selected parameters. For the ‘%MinMax’ 

(Figure 7) and ‘sliding window’ (Figure 8) methods, RCCs are plotted using consistently 

red color in the graphical output and a legend provides a key for users to interpret the 

different components of the plots, while the parameters used for each run are summarized 

in a HTML text table below the graphical output. For the MSS algorithm (Figure 9), the 

raw scale values are plotted for each codon in the background, and alternating clusters and 
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‘non-clusters’ are represented on the graph by the average scale values for the respective 

range. For all methods, putative RCCs are depicted as green horizontal lines in the bottom 

of the plot (for easily deducing positional coordinates without referring to the detailed text 

output), and clusters found to be significant are denoted by the ‘**’ and ‘*’ symbols (see 

Methods on statistical validation). 

 

Text output 

 

Text output in LaTcOm (Figure 10) is designed to be simple and machine readable, and is 

intended to aid downstream analyses by third party software. The following data/results 

are included: 

 • initial values: the scale values per codon position, possibly after transformation. 

 • processed values: the values computed by the RCC detection algorithm, or (in the 

 case of MSS) the average scale value for a cluster/non-cluster. 

 • RCC information: a tab-delimited table containing information for all detected 

 RCCs. This table lists: 

  – the RCC coordinates (start and end position, designated as “Position of  

  clusters”), 

  – the average value for the RCC computed on the initial values normalized  

 according to RCC length (designated as “Score (per position)”),  

  – the expected value for the specific RCC, computed as described in the  

  Methods section, and 

  – a statistical significance indicator (‘**’, ‘*’) and the psim value. 

Initial and processed values are available as space delimited lists for easy parsing and 

processing with other third party software. 
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Figure 7: LaTcOm output example of %MinMax. 
Graphical output for the coding sequence of E. coli SufI by the %MinMax algorithm. E. coli tRNA abundance based scale (Zhang et al., 2009) with 

transformation set to `None' and a window size w = 18. 
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Figure 8: LaTcOm output example of RiboTempo. 

Graphical output for the coding sequence of E. coli SufI by the RiboTempo algorithm. E. coli tRNA abundance based scale (Zhang et al., 2009) with 
transformation set to `Inverse+Linear and a window size w = 19. Athi
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Figure 9: LaTcOm output example of MSS. 
Graphical output for the coding sequence of E. coli SufI by the MSS algorithm. E. coli tRNA abundance based scale (Zhang et al., 2009) with 

transformation set to `Linear' and a clusterlength = 7. 
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Figure 10: An example of text output in LaTcOm. 

This figure is illustrating the results of MSS on SufI (RCCs longer than 11 reported, transformation: `Linear+Sigmoid'). Notice that the text output has 

been wrapped and truncated for illustration purposes. 
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 2.3.2  Performance of the LaTcOm web server 

 

The current version of the server provides users with the option to perform RCC analysis 

by copying-pasting one or more input coding sequences or uploading a local file. The 

LaTcOm server supports “multi-FASTA” submissions through a text-area for up to 50 

sequences, with a total maximum of 50000 nucleotides. For larger submissions, the 

“upload” feature enables “multi-FASTA” ASCII text files up to 1Mbyte without any 

limitation on the number of sequences. In all cases, users have the option to view the 

results online through their web browser, or download them locally for inspection (for 

further analysis in the case of textual output) in compressed .tar.gz format. For a coding 

sequence of moderate size (between 1000 and 2000 codons), it takes only a few moments 

for the computation to complete using any combination of RCC detection algorithm and 

chosen parameters. This compares well with the time needed to get results from the 

%MinMax and the RiboTempo web server. When turning on the random reverse 

translation option on the %MinMax server, LaTcOm execution (with cluster validation 

executed by default) for the same sequences is clearly faster. In an extreme case, when the 

coding sequence of the human titin gene was used (>80000bps; EMBL- Bank: X90568.1) 

computing RCCs took something more than five minutes. The above mentioned figures 

refer to submitting works to a non-dedicated web server over a network connection and 

include web server and communication overhead. 

As far as the usability of the tool is concerned, LaTcOm has been extensively used from 

the time of its publication until today (30/03/2015). More specifically, there were 2432 

unique submissions (some of them possibly with more than one query sequence) from 78 

unique IP addresses in total. 

Last, a standalone version of LaTcOm, (batch_latcom.pl) is available and enables batch 

runs, as a main reasons of implementation this software suite was to facilitate large scale 

analyses of RCCs in the E. coli genome. 
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 2.3.3  Translational profile of SufI 

 

We compared the translational profile of SufI studied in (Zhang et al., 2009) with 

RiboTempo, with the translational profile of SufI with MSS along with the transient 

ribosomal arrest at the autoradiograms they provide. By visualizing the results from MSS 

we demonstrate that even if some of the reporting results are not statistically significant 

(those without an asterisk symbol) the multiple bands or even single bands can be better 

described by the MSS method. An arrest at: “full length (FL)>band>46kDa” is shown in 

the autoradiogram (Figure 11 b); this possibly corresponds to an RCC not making the 77 

threshold set by RiboTempo (Figure 11 a) and therefore missed, but identified by MSS 

(Figure 11 c) at position 433-452, although not statistically significant. The three arrest 

fragments at 33-40kDa are not that clear with the RiboTempo-derived profile but can be 

seen in Figure 12 with MSS, when we lowered the threshold, in order to include smaller 

stretches of RCCs in the analysis. Arrest at 25-28kDa can be seen in both analyses. 
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Figure 11: Translational profiles for SufI.  
Figure (a) is the translational profile computed with RiboTempo in Zhang et al., 2009 and (b) is an 

autoradiogram also taken from (Zhang et al., 2009). Figure (c) is the graphical output for the 

coding sequence by the MSS algorithm in LaTcOm. E. coli tRNA abundance based scale (Zhang 
et al., 2009) was used with transformation set to `Linear' and a clusterlength of c =15. 

 

 

Figure 12: Graphical output for the coding sequence of E. coli SufI by the MSS algorithm.  

E. coli tRNA abundance based scale (Zhang et al., 2009) with transformation set to `Linear' and a 

clusterlength c =7. 
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 2.3.4  Use case: RCCs and protein domain structure 

 

One potential use of RCC identification methods is using RCCs as indicators of protein 

domain organization, due to the proposed impact of slowly translating regions in protein 

folding. To illustrate such a scenario, we have applied the LaTcOm server on the coding 

sequences of two E. coli proteins with experimentally determined three dimensional 

structure, previously analyzed with the RiboTempo algorithm in (Zhang and Ignatova, 

2009). More specifically, we demonstrate results in Figure 13 on: 

• endonucelase III (PDB ID: 2ABK, chain A; GI:16129591), and 

• blue copper oxidase CueO (PDB ID: 1KV7, chain A; GI:16128116). 

For these proteins, we report the results of three different RCC detection schemes – 

%MinMax, MSS and the RiboTempo), and cross-reference the detected clusters with 

structural domain information, as available in the CATH database (Cuff et al., 2011). 

 

It is obvious that, even though the different methods do not agree in the detected RCCs, in 

several cases the RCCs detected are in proximity to domain boundaries. From these two 

examples it is evident that MSS detects the RCCs in proximity to domain boundaries. 

However, more work is necessary, in order to evaluate in detail the performance of 

different RCC detection schemes with regards to protein folding. This is addressed in the 

following chapters, in which we benchmark the performance of the different detection 

methods and we study in more detail the correlation of RCCs and domain boundaries.  
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Figure 13: LaTcOm use case: RCCs and protein domain organization.  
Results of the (a, d) Sliding window, (b,e) %MinMax, and (c, f) MSS methods for the E. coli 

endonuclease III (left panel; PDB ID:2ABK A) and blue copper oxidase CueO (right panel; PDB 

ID: 1KV7 A), where we have overlaid structural domain information from the CATH database 

(Cuff et al., 2011). The different methods were invoked with the following parameters: Sliding 
window: `Inverse+Linear' transform on the E. coli tRNA abundance based scale (Zhang et al., 

2009), w = 19, %MinMax: E. coli codon usage from the CUTG database (transformation `None'), 

w = 19, MSS: `Linear' transform on the E. coli tRNA abundance based scale (Zhang et al., 2009), 
with least cluster length selected to 7. 

 

We anticipate that the availability of a versatile online tool for RCC identification will 

enable a number of analyses to be performed. For example, when optimizing coding 

sequences for heterologous gene expression experiments, LaTcOm results could be 

indicative of codon choices that may interfere with proper folding of the polypeptide 

chain. More specifically, RCCs according to the host organism’s tRNA abundance/codon 
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usage may have to be preserved for expressing functional proteins. In addition, LaTcOm 

may be used to study patterns of translational rate within diverged protein families, or the 

correlation of translational rate with protein structural and functional features, such as 

protein disorder, aggregation and co-translational folding. Such applications may trigger 

extensions of the current methods, as for example for the analysis of multiple sequence 

alignments (Widmann et al., 2008) and the study of the mechanics of translation (Tuller et 

al., 2011). 

In this analysis we demonstrated that the flexibility of changing window thresholds or 

cluster length thresholds may provide more biologically significant results since we don’t 

really know what the optimal window size to use is. The choice of window can be 

searched further and other thresholds may be applied. 

 While performing an ‘omics’ analysis, it is logical and significant to keep as much of the 

false positives out and one option would be to keep only the long stretches of RCCs. But 

do we really know if the bigger the stretch the longer the pause or the more significant for 

proper folding? A single nucleotide change to a synonymous codon can change the 

translational kinetics and provide a non-functional protein. Motivated from single 

nucleotide polymorphisms, another potential application of LaTcOm is to be used as a 

functional annotation tool for next generation sequencing (NGS) analysis. A major 

challenge in NGS is predicting, among thousands of discovered variants, which are 

candidates to cause a disease. A typical exome sequencing pipeline analysis, includes as a 

last step the annotation of possible functional consequences of potential SNPs and indels 

in most cases for non-synonymous changes. Two widely used functional annotation tools 

of this type are SIFT (Ng and Henikoff, 2003) and Polyphen (Adzhubei et al., 2010). SIFT 

is based on sequence homology, whereas Polyphen relies on structural evidence. 

Nevertheless, there is no method dealing with synonymous changes that may be causing 

disease. A change in the normal translational profile of a protein would possibly be an 

indication that the protein is not functional. The demand of computational predictions for 

the impact of variants is still growing and we believe LaTcOm can serve as a potential tool 

for that purpose. 

A possible extension of LaTcOm in the near future would be the implementation or 

inclusion of other detection methods such as spatial statistics approach (Ponala 2010), the 
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inclusion of tAi measure as an alternative scale, the availability of codon usage of more 

species, the report of domain boundaries along with position of rare codon clusters and 

many more functional and structural annotation e.g. ribosomal profiles, Shine-Dalgarno 

putative sites, in order to compare different attributes along with RCCs graphically. 
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 3  Rare codon cluster analysis in the E. coli coding genome 

 

 3.1  Background 

 

In the following analysis we used the standalone LaTcOm tool in order to benchmark the 

RCC detection methods and then analyze the RCC positions in the coding genome of E. 

coli. As far as we know this is the first effort to benchmark methods for RCC detection. 

Analysis on the distribution of RCCs in the E. coli genome have already been described 

elsewhere using different approaches and methodologies (Clarke and Clark, 2010; Zhang 

et al., 2009). Nevertheless, here we describe the application and results using LaTcOm 

methods. Additionally, we take this analysis a step further and demonstrate our effort to 

analyze the correlation of the distance of genes in operons with the existence of RCCs at 

3’ or 5’ terminals.  

 

 3.2  Data and Methods 

 

 3.2.1  Collection of Data and RCC detection 

 

Taking as dataset the whole coding genome of E. coli, RCCs were detected with LaTcOm, 

using the three RCC identification methods that are available (%MinMax, RiboTempo and 

MSS). Sequence and annotation data of E. coli K12 strain MG1655 were downloaded 

from NCBI GenBank
†
 (4141 protein coding sequences). Relevant file formats are 

presented in Appendix 1 (Figure 37, Figure 38, Figure 39). The GI numbers (column PID 

in the U00096.ptt file) may differ based on the date of retrieval of the datasets
*
. All coding 

genes available in the U00096.ffn file were used for RCC detection. Each gene in this file 

is discriminated based on the position on the genome. These coordinates are available also 

in the U00096.ptt file as first column from which we can get the GI number ids. In order 

                                                
†
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779 – 19/11/2013). 

*
Current release is NC_000913.ptt at : 

 ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779. 

We have made a cross matching between the different GIs (data not shown) based on the synonym column. 
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to map and get the proper GI for each gene in U00096.ffn, the script get_unique_ids.pl 

was developed. Finally, a FASTA formatted file of the coding genes was generated. 

RCCs of the genes encoded in the E. coli genome were identified with the standalone 

version of LaTcOm (package batch_latcom.pl). RCC detection was performed with the 

three methods %MinMax, RiboTempo and MSS using selected parameters (Table 3). The 

number of sequences analysed with each method and duration of each run can be seen in 

Appendix 1 -Table 35. Some sequences were discarded due to window size parameter 

limitation on sliding window depended methods (Appendix 1 -Table 36). The LaTcOm 

tool filters out sequences with length smaller than the window threshold, because 

technically the sequence has to be at least equal to the window for the sliding window 

procedure to be estimated properly. Moreover, there are sequences with in-frame stop 

codons, which are known to encode selenocysteine in vivo as described in the 

introduction. Such cases are not handled by the current version of LaTcOm, therefore 

these sequences were discarded (Appendix 1 -Table 37). 

 

Table 3 : Parameters used for LaTcOm cluster analysis of the E. coli coding genome 

Method MSS RiboTempo %MinMax (z) %MinMax (cu) 

Cluster length/ 

window size 

15 19 19 19 

Scale E. coli tRNA  
(Zhang et al., 2009) 

E. coli tRNA  
 (Zhang et al., 2009) 

E. coli tRNA  
(Zhang et al., 2009) 

E. coli codon usage  
Codon Usage database6  

Transformation Linear Linear+inverse None None 

Output Text Text Text Text 

 

 3.2.2  Module for reading LaTcOm results 

 

LaTcOm results are generated and reading these results was made possible with the 

development of the read_LaTcOm.pm module in Perl. Through this module, the 

subroutines get_clusters and read_ptt are used in several scripts developed further for the 

analysis. After careful consideration, it was decided that RCCs that were found on w/2 

extremities (see Methods in Chapter 2 for detailed explanation) may bias the results, 

therefore these clusters were excluded from the analysis. (This exclusion is optionally 

made possible in the get_clusters function). Initial screening (not shown), revealed that 

there are artifacts with window based methods found on these sites, therefore this might be 

                                                
6 http://www.kazusa.or.jp/codon/ 
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affecting the benchmarking of the results. In order to be consistent we excluded 

extremities from MSS results as well, even though this is not a window based approach. 

Another option is the selection of only statistically significant clusters (see Statistical 

validation in Chapter 2) for further analysis. Having the data set, in-house software tools 

were developed (unless mentioned otherwise) for analysing statistically the detected RCCs 

from E. coli sequences. 

 

 3.2.3  Benchmark approaches for LaTcOm methods 

 

Quantifying correlations with Mathews correlation coefficient (Matthews, 1975) 

 

Initially, we compared the output results of the RCC detection methods using the 

Matthews correlation coefficient (MCC) (Matthews, 1975). To achieve this, the 

transform_files_for_SOV_MCC.pl  Perl script was developed that reads the text output 

result from LaTcOm (as in Figure 10 of Chapter 2) and transforms the RCC positions to a 

FASTA format file of sequences with strings of Cs and Hs (Cs are for the clusters, Hs are 

for the non-cluster positions). An example of the format of this transformed file is shown 

at Appendix 1 - Figure 40.  
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Moreover, the MCC_caclulator.pl  Perl script reads the transformed file from two RCC 

analyses - a reference file and a compared file. For example, as a reference we used the 

RiboTempo results and as a compared the results i) from MSS and ii) from %MinMax. 

Sequences reported in both files were used further in the analysis. The program calculates 

five values. The true positive value (TP), the true negative (TN), the false positive (FP), 

the false negative (FN) and finally the Mathews correlation coefficient (MCC). The 

criteria for the assignments are described in Figure 14. 

 

These values are used to estimate the MCC directly from the confusion matrix using the 

formula: 

    
               

                                
 

 

If TP=0, FN=0 and FP=0 (that means that there are no cluster positions “C” in the 

compared sequences) then we assign MCC=1. This is explained by the fact that both 

methods did not detect any clusters in the sequences, therefore they correlate perfectly. 

Moreover, if any of the four sums in the denominator equals to 0, then we assign the 

denominator value equal to 1 by definition and the MCC is set to zero.  

 
 
 

 

Figure 14: Calculation of MCC.  
Graphical representation for true positive (TP), false negative (FN), false positive (FP) and true 

negative (TN) values calculated in MCC analysis. 
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The first measure was the calculation of the MCC per gene and then averaged. Secondly, 

the overall MCC is calculated taking the sequences as a single string. If the output value of 

a MCC comparison equals to 1, this is interpreted as perfect (positive) correlation. If the 

output equals to -1, then this is a perfect (negative) anticorrelation whereas if MCC equals 

to 0, then this is random (no-correlation).  

The MCC analysis was further divided in two sections. The first analysis was done as 

described above and is referred as MCC_v1. In the second analysis (MCC_v2), with 

MCC_calculator_v2.pl, the following genes were excluded: 

a) Genes where none of the compared methods detected any clusters. That is the case 

described above where TP=0, FP=0 and FN=0 avoiding the over-representation of MCC 

=1 

b) Genes where the compared methods detected clusters only in the reference or only in 

compared gene. With this we avoid the over-representation of MCC=0 for these cases. 

For the analysis where MCC was calculated for each gene, the functions summary () and 

sd() for standard deviation in the R statistical environment (R Development Core Team, 

2008) were used in order to obtain descriptive statistics regarding the distributions of 

MCC values.  

In order to evaluate the MCC distributions, random MCC distributions were generated 

with the script generate_random_sequences.pl. The script reads the FASTA files of the 

reference and compared files (as described above) (Appendix 1 - Figure 40) and creates 

shuffled FASTA files with the same composition. The random pair sets were then given to 

MCC_calculator_v2.pl in order to create the distributions. The statistics with summary() 

and sd() functions in R statistical environment (R Development Core Team, 2008) were 

also calculated for these random distributions. 

Ultimately, we compared the MCC distributions with random MCC distributions using the 

wilcoxon rank test in the R statistical environment (R Development Core Team, 2008) 

with the function wilcox.test(). 
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Quantifying correlations with segment overlap measure (SOV) (Zemla et al., 1999) 

 

An alternative benchmarking approach was the comparison with a program designed 

initially to compare secondary structure elements named segment overlap measure (SOV) 

(Zemla et al., 1999). The SOV program was downloaded from: 

(http://proteinmodel.org/AS2TS/download_area/) and a scipt sov.pl was developed in 

order to create the input for SOV program. For the input creation, the transformed files 

were used as described in the previous section (Appendix 1 - Figure 40). Moreover, two 

analyses were performed as described in the previous section: SOV version 1 in which all 

sequences are included and SOV version 2, were sequences in comparison which are both 

either all 'Hs' or all 'Cs' are excluded. The shuffled FASTA format files created in the 

previous section were also used in order to generate random SOV distributions. The 

statistics with summary() and sd() functions in the R statistical environment (R 

Development Core Team, 2008) were generated for random and non-random distributions 

and the wilcox.test() was used to compare distributions. 

 3.2.4  Methodology to analyze LaTcOm results 

 

In order to estimate the statistical properties of the RCCs detected, the script 

statistical_RCC.pl was developed. The script reads the LaTcOm results and gives as 

output a table with measurements described below (i-x) as well as data files to be used for 

downstream Gene Ontology enrichment analysis (see following section): 

i) Number of sequences (NS) analysed (those that passed the control thresholds) 

ii) NS with no clusters 

iii) NS and percentage of sequences from total with at least one cluster 

iv) Average coverage of codons in RCCs per gene (“Codon coverage”) 

v) “Overall codon coverage” which is computed as the fraction of the total codons in the 

dataset that is detected in RCCs 

vi) The average number of RCCs per sequence 

vii) The percentage of sequences (with length >=200 codons) that have RCCs at 5’ and 3’ 

termini. Regarding 5' sites, if the start of an RCC was within the bin limits (<=20, 

<=40, <=60 <=100 codons), then the sequence was considered to have a cluster. For 
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3' termini, if the end of the RCC was within the bin limits, then the sequence was 

considered to have a cluster at the appropriate bin. 

viii) The distribution of RCCs at the 5' and 3' terminals of the sequences. 

ix) The percentage of sequences that have none, exactly one, two or three and greater or 

equal to four RCCs. 

x) The length distribution of RCCs keeping in mind the threshold of RCC length and 

window size that might bias the results. 

 

Next, the script get_distributions.pl was developed, in order to estimate the following: 

a) Detailed RCC length distribution. 

b) Distance distribution of RCCs from the 5' and 3' termini. 

c) Distance distribution of first or last RCC from 5' and 3' termini. 

d) The distribution of distances between adjacent RCCs for sequences with 2 or more 

clusters. 

The distributions b and c are estimated for sequences with >=200 codons. Wilcoxon rank 

tests in the R statistical environment (R Development Core Team, 2008) using the  

wilcox.test() function were used to compare statistically the distributions (b-d) with the 

different methods and between the two termini. A distance threshold for visualization 

purposes was set for the closest RCC to 5' or 3' terminal to 300 codons for b-c. 

 

 3.2.5  RCC analysis in multigene operons of E. coli 

 

For this analysis the distance in base pairs (bp) of neighbouring genes that belong to 

operons was extracted. To achieve this, the following procedure was designed and is 

described in Figure 15, 16 and 17.  
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Figure 15 shows the pipeline and Figure 16 defines graphically the way the software 

estimates the distance in mutlicystronic genes. Firstly, a merged file is created with sorted 

coordinate position information for coding genes and RNAs. Then, the distances from the 

upstream and downstream neighboring genes are calculated taking into account the coding 

strand information. This information along with the existence of RCCs at the termini is 

reported in Distance_table.txt. 

In order to limit our search for genes in operons, the OperonSet.txt was downloaded for the E. coli 

from RegulonDB (version 8.0 : http://regulondb.ccg.unam.mx/) (Salgado et al., 2013). This file 

has information for the genes belonging to known operons. The software read_operon.pl was 

developed to extract operons with more than one gene (847 operons). An issue raised from this set, 

is that it uses the gene name to identify each gene in the operons. However, gene names are not 

 

 

 
 

Figure 15: Pipeline for counting distances between of neighboring genes in E. coli. 

Upstream and downstream distances of neighboring genes were estimated for each gene in E. coli. 
This is the methodological procedure to create an E. coli dataset with information regarding 

existence or not of RCCs at the 5' and 3' terminal sites and distances from neighboring genes. This 

dataset is created for all E. coli genes. Distance_table.txt produced represents a comma delimited 

file with six columns (1= gid number, 2= x for cluster at 5’; 0 for no clusters at 5’, 3= x for cluster 
at 3’; 0 for no clusters at 3’, 4=distance in bp from the next gene, 5=distance in bp from the 

previous gene, 6=strand). 
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unique within the U00096.ptt dataset. We identified that the non unique gene names correspond to 

transposase genes (their gene name starts with “ins”), therefore we excluded all these from further 

analysis. Moreover, in case of a gene name in Operonset.txt that is not present in the U00096.ptt 

file, the whole operon was not taken into account. Additionally, computationally predicted operons 

in the set (that is computationally inferred evidence that support the existence of the operon), are 

also not taken into account and whole operons are discarded. Only genes that match a gene name 

in U00096.ptt and belong to operons with 2 or more genes are further analysed (884 genes in 725 

operons). The above filtering was achieved with get_distance_table.pl. 

 

Figure 16: Gene organization in operons and illustration of the distances calculated. 
The figure shows a hypothetical scenario of 4 genes on the – strand (A, B, C, D) and 4 genes on 
the + strand (E, F, G, H). On both strands it is demonstrated how the distances are calculated on 

genes A and B and on genes E and F. The symbol * is placed on 5' or 3' termini or both when the 

gene has at least one RCC at these sites. The name “5RCC3” is for genes that have RCC on both 

sites; “no5RCC3” is for genes that have RCC at the 3' but not at 5' site; “5RCCno3” if for genes 
that have RCC at the 5' but not at 3' and “no5RCCno3” is for genes that have no RCC on both 

sites. 5' or 3' termini are defined as the first or last 100 codons respectively. 

 

Furthermore, taking into account the RCCs detected at 5' and 3' termini with LaTcOm 

(<=100 bp from either end is considered terminal), six gene datasets were generated with 

get_distance_table.pl and read_distance_table.pl (pipeline and datasets are shown in 
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Figure 17): 

a) with RCCs at the 5' (dataset 1)  

b) with RCCs at the 3' (dataset 2) 

c) RCCs on both 5' and 3' (dataset 3) 

d) without RCCs at the 5' (dataset 4) 

e) without RCCs at the 3' (dataset 5) 

f) RCCs in none of 5 'and 3' (dataset 6) 

 

The Wilcoxon Rank Test with function wilcox.test() was used in the R statistical 

environment (R Development Core Team, 2008) for comparing the distribution of 

distances between neighboring multicystronic genes. 

The following strand-specific distance distributions were compared with the Wilcoxon 

Rank Test (Figure 17 shows the datasets):  

a) upstream genes, for genes in operons with dataset 1 versus 4 

b) downstream genes, for genes in operons with dataset 1 versus 4 

c) upstream genes, for genes in operons with dataset 2 versus 5 

d) downstream genes, for genes in operons with dataset 2 versus 5 

e) upstream genes, for genes in operons with dataset 3 versus 6 

f) downstream genes, for genes in operons with dataset 3 versus 6 

 

An additional analysis was performed to compare the distribution of distances between 

genes in the following classes: 

i) An RCC exist on the 3’ terminal of gene and no RCC exists on the 5’ of the next gene 

ii) An RCC exist on the 3’ of a gene and an RCC on the 5’ of the next 

iii) No RCC exists on the 3’ but an RCC exists on the 5’ of the next and 

iv) No RCCs on the 3’ of the gene and no RCC on the 5’ of the next. 
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Figure 17: Calculation of distance between neighboring genes of the operons. 

A) Schematic representation of procedure in order to get the input tables with distance from 
upstream or downstream genes and the existence or not of RCCs at 5' and 3' terminal sites in 

multi-operon E.coli genes. B) Description of dataset names C) Schematic representation of 

datasets.  
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 3.3  Results and discussion 

 3.3.1  Benchmarking RCC detection methods in LaTcOm 

 

Searching for possible biological roles of the hidden code of rare codons, RCCs were 

detected with LaTcOm in the coding genome of E. coli K12. In this study, we analyzed the 

RCCs with the three detection methods implemented in LaTcOm. Initially, we followed a 

comparative analysis of the methods by applying two measures, the Mathews correlation 

coefficient (Matthews, 1975) and the segment overlap score (SOV) approach (Zemla et al., 

1999). We run two versions of MCC and SOV analysis as already described in Methods. 

The results of the first version v1 MCC analysis (shown in Table 4 and Figure 18) do not 

reveal any strong correlation between the RCC detections methods of LaTcOm (all mean 

MCC values are below 0.5). Nevertheless, taking into consideration all statistical 

properties we show a mild correlation of MSS and %MinMax (considering both scales 

used). In the distribution histograms (shown in Figure 18) we identify two strong peeks, 

the first at MCC=0 and the second at MCC =1. A random MCC distribution creation (from 

randomly shuffled sequences) which is shown in Appendix 1 - Figure 41 and  

demonstrates that MCC random values are distributed near these two peeks (0 and 1), 

showing that these may be affecting the distribution of the results. Moreover, the 

distribution between MCC v1 values and randomly generated MCC v1 values are not the 

same with Wilcoxon Rank Test significance p < 0.01 (Table 5) discriminating the MCC 

values from random. The MCC results (v2) in which some genes were excluded (as 

described in methods) can be seen in Table 6 and Figure 19. In this alternative analysis the 

median MCC values as well as the overall MCC are higher than in version 1. %MinMax 

and MSS have a mean 0.448 and overall mean 0.458. The RiboTempo and MSS 

correlations in this test are the worst showing that the peaks seen in Figure 18 were 

affecting the results. Again the distributions differ from random distributions of MCC v2 

(Appendix 1 - Figure 42 and Table 39).  
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Table 4: MCC distribution analysis (v1). 
%MinMax was used with two different scales: Codon usage from Codon usage database 
(www.kazusa.or.jp/codon) and the tRNA concentrations from (Zhang et al., 2009). Mean, median 
and standard deviation were calculated on the distribution of MCC values for each set. The 
rightmost column represents the overall MCC values as described in Methods. Statistical 
properties were estimated with R the statistical environment (R Development Core Team, 2008). 
 
Reference Compared Mean Median SD Overall MCC  

RiboTempo %MinMax(cu) 0.257 0.000 0.406 0.146 

RiboTempo %MinMax(z) 0.220 0.018 0.363 0.173 

RiboTempo MSS 0.422 0.204 0.479 0.133 

%MinMax(cu) MSS 0.404 0.351 0.408 0.366 

%MinMax(z) MSS 0.385 0.371 0.374 0.422 

 

 

 
Figure 18: Distribution of MCC values (v1). 

MCC values are calculated in the comparisons of reference and predicted set of genes. 

Analysis was made with all genes as described in the Methods section. The x axis shows 
the MCC value that can range from -1 to 1, the y axis shows the frequency from N 

compared MCC values. Graphs were generated with the R statistical environment (R 

Development Core Team, 2008). 
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Table 5: Wilcoxon rank test for MCC v1. 

P-values of MCC distributions (v1) and random MCC distributions from shuffled sequences. The 

wilcox.test() function was used from the R statistical environment (R Development Core Team, 

2008).  

 

Reference Compared p-value 

RiboTempo %MinMax(cu) <0.00000002355 

RiboTempo %MinMax(z) <2.2e-16 

RiboTempo MSS 0.05686 

%MinMax(cu) MSS <2.2e-16 

%MinMax(z) MSS <2.2e-16 

 

Table 6: MCC distribution analysis (v2).  

Version 2 excludes the comparison of some gene sets as described in Methods. See Table 4 for 

description.  

 

Reference Predicted Mean Median SD Overall MCC mean 

RiboTempo %MinMax(cu) 0.144 0.118 0.268 0.156 

RiboTempo %MinMax(z) 0.176 0.182 0.269 0.179 

RiboTempo MSS 0.118 0.080 0.254 0.136 

%MinMax(cu) MSS 0.351 0.387 0.277 0.391 

%MinMax(z) MSS 0.448 0.465 0.230 0.458 
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Figure 19: Distribution of MCC values (v2). 
Description can be seen in Figure 18.  

 

Table 7 shows the comparison of MCC distributions v2 with random MCC distributions 

from shuffled sequences using the Wilcoxon rank test, indicating, that the distributions are 

not the same with significance of p-value < 0.01. 

Table 7: Wilcoxon rank test for MCC v2. 
P-values for distribution of MCC distributions (v2) and random MCC distributions from shuffled 
sequences. The wilcox.test() function was used from the R statistical environment (R Development 
Core Team, 2008).  

Reference  Compared   p-value 

RiboTempo %MinMax(cu) < 2.2e-16 

RiboTempo %MinMax(z) < 2.2e-16 

RiboTempo MSS 1.09e-7 

%MinMax(cu) MSS < 2.2e-16 

%MinMax(z) MSS < 2.2e-16 
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The SOV analysis gave similar results with MCC. From SOV v1 (Table 8 and Figure 20) 

we demonstrate that %MinMax (cu) and MSS have higher segmental overlap than any 

other method comparison (Figure 21 and Table 9 for SOV version 2 analysis). Random 

distributions of SOV from shuffled sequences are differently distributed (Appendix 1 - 

Figure 43 and Table 40 for SOV v1 and Figure 44 and Table 41 for SOV v2) with 

Wilcoxon test significance of p < 0.01(as shown in Table 10).  

Table 8: Statistical properties for SOV v1 distributions. 
Distribution of SOV values (v1) calculated in the comparison of reference and predicted set of 
genes. Analysis was made with all genes as described in Methods. Statistical properties were 
estimated with R statistical environment (R Development Core Team, 2008).  

 

Reference Predicted Mean Median SD 

RiboTempo %MinMax(cu) 59.990 55.800 25.089 

RiboTempo %MinMax(z) 54.310 50.100 24.485 

RiboTempo MSS 69.910 67.700 27.245 

%MinMax(cu) MSS 69.300 70.340 23.100 

%MinMax(z) MSS 66.450 65.400 23.728 

 
 
 
 
 
 
 
 
 
 
Table 9: Statistical properties for SOV v2 distributions. 
Distribution of SOVvalues (v2) calculated in the comparison of reference and predicted set of 
genes. Analysis was made by excluding some compared genes as described in Methods. Statistical 
properties were estimated with the R statistical environment (R Development Core Team, 2008). 
 

Reference Predicted Mean Median SD 

RiboTempo %MinMax(cu) 50.960 49.700 18.126 

RiboTempo %MinMax(z) 47.920 45.900 18.721 

RiboTempo MSS 51.490 49.400 17.398 

%MinMax(cu) MSS 61.370 61.600 18.663 

%MinMax(z) MSS 59.950 59.900 20.293 
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Figure 20: Distribution of SOV values (v1). 

Values were calculated from the comparison of reference and predicted set of genes. Analysis was 
performed with all genes as described in the Methods section. The x axis shows the SOV values 

for each comparison and the y axis the frequency in data of N comparisons for each histogram. 

Graphs were generated with R statistical environment (R Development Core Team, 2008). 
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Figure 21 : Distribution of SOV values (v2). 
Analysis was made with some compared genes excluded as described in Methods. Description can 
be seen in Figure 20. 

Table 10: Wilcoxon rank test for SOV v1 with shuffled sequences. 
P values were estimated for distribution of SOV distributions (v1) and random SOV distributions 
from shuffled sequences. The wilcox.test() function was used from the R statistical environment 
(R Development Core Team, 2008). The SOV v2 test showed identical results (data not shown). 

Reference Predicted p-value 

RiboTempo %MinMax(cu) < 2.2e-16 

RiboTempo %MinMax(z) < 2.2e-16 

RiboTempo MSS < 2.2e-16 

%MinMax(cu) MSS < 2.2e-16 

%MinMax(z) MSS < 2.2e-16 

 

As far as we know, this is the first effort to compare new and existing methods for RCC 

detection. We identified some correlations in the methods but our analysis reveals that 

there is no clear consistency between the different approaches. We expected RiboTempo 

and %MinMax to detect similar RCCs since they are both sliding window approaches but 

surprisingly from our results, %MinMax and MSS seem to have a better segmental 

overlap than any other comparison. As we clearly see in our results %MinMax (z) over 
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predicts RCCs, therefore when a number of these were excluded from the comparison 

(some of the MCC=0) the comparisons were better. Finally, we conclude that the best 

correlation can be assumed from the overall MCC value and median when extreme cases 

are discarded (no RCCs identified on both or RCCs identified in only one set) and 

%MinMax and MSS have the greatest correlation. 

 

 3.3.2  General characteristics of RCCs in the E. coli coding genome  

 

In order to characterize the results of RCC detection some general statistical properties are 

provided below. Table 11 shows the actual number of sequences analyzed taking into 

account the restrictions of each method. When %MinMax is used with the tRNA Zhang et 

al., (2009) scale, at least one cluster is found in approximately 76% of the sequences. The 

number of sequences with at least one cluster is reduced to 60% when codon usage is used 

as in the actual implementation of the method (Clarke and Clark, 2008). RiboTempo and 

MSS detected at least one cluster in half of the genes analyzed. Although the numbers are 

similar, this does not mean that the detected RCCs were found in the same sequences. 

Overlapping IDs with at least one RCC and with no RCCs are shown in the Venn diagrams 

Figure 22 and Figure 23 respectively.  

Table 11: Information for RCCs in E. coli analyzed. 
Column “All seq” shows the number of sequences that passed the control in LaTcOm and are 
analyzed further. “Seq_no_RCC” are the number of sequences with no detected RCCs. 
“Least_one_RCC” shows the number of sequences that have at least one cluster detected. 
“Seq>=200withRCC” shows the number of sequences with length >=200 and with at least one 
cluster (total number of sequences with length >=200 is 2834). 

Method All_seq Seq_no_RCC Least_one_RCC Seq length >=200 & RCCs 

%MinMax (cu*) 4128 1616 2512 2016 

%MinMax (z*) 4128 991 3137 2508 

RiboTempo 4128 2044 2084 1795 

MSS 4136 2051 2085 1694 
* z: scale from (Zhang et al., 2009) cu: Codon usage from Codon usage database(www.kazusa.or.jp/codon/‎) 

 

Athi
na

 The
od

os
iou



67 

 

 

Figure 22: Venn diagram for sequences with at least one RCC. 
The diagram illustrates the number of overlapping sequences with at least one RCC detected with 
the three methods implemented in LaTcOm. Results of %MinMax with the codon usage scale is 
shown. All sequences were used in this analysis. Diagrams were constructed in the R statistical 
environment (R Development Core Team, 2008) using the ‘Vennerable’ package. 

 

Figure 23: Venn diagram for sequences with no RCCs. 
The diagram illustrates the number of overlapping sequences with no RCC detected with the three 

methods of LaTcOm. Results of %MinMax with the codon usage scale is shown. All sequences 

were used in the analysis. Diagrams were constructed in the R statistical environment (R 

Development Core Team, 2008) using the ‘Vennerable’ package. 
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All three methods detected at least one RCC in 1178 sequences (Figure 22) and no RCC in 

900 sequences (Figure 23). There seems to be a concordance only between half of the 

genes in E. coli. These results were used in the Gene ontology analysis described in a 

following section.  

Furthermore, Figure 24 demonstrates the codon coverage within the RCCs. In this plot it is 

demonstrated once more that the %MinMax over detects RCCs compared to the other 

methods when the Zhang et al., 2009 scale is used. %MinMax with codon usage has more 

comparable results with the other two methods as far as this analysis illustrates. Finally, 

we propose that when using %MinMax in LaTcOm, the tRNA abundance scale described 

in Zhang et al., 2009 should be avoided. 

 

Figure 24: Illustration for sequences with at least one RCC and codon coverage. 

The plot demonstrates the percentage of sequences with at least one RCC (in blue- N=4128 for 
both sliding window methods and N=4136 for MSS), 2). The codon cluster coverage (in green) 

and 3) the overall codon coverage (in pink). Total codons=1307919 analyzed for sliding window 

methods and total codons=1308046 for MSS. 
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In Figure 25 we present graphically informative data regarding the number of clusters 

found in sequences. For approximately half of the sequences no clusters were detected 

using MSS and RiboTempo, whereas ~40% of the sequences do not have any RCCs 

detected with %MinMax. All methods detect approx.. 20-30% sequences with one cluster. 

All methods detect 15-25% two or three clusters with the exception %MinMax (z) which 

has more the 30%. Last, 5-10% of the sequences have four or more clusters detected. 

 

 

Figure 25: Percentage of sequences with different number of clusters. 

Informative illustration for the percentage of E. coli sequences with no clusters, with one cluster, 
with two or three clusters and last with equal to four or more clusters. N=4128 for sliding window 

methods and N=4136 for MSS. 

 

From this plot it is shown that RiboTempo and MSS are correlated when numbers are 

concerned. Moreover, once again it is demonstrated that %MinMax with tRNA Zhang et 

al., 2009 scale, over detects RCCs with approximately half of the sequences detected with 

>=2 RCCs. The results are closer to the other detection methods when codon usage is used 

in %MinMax. 

 

 3.3.3  Cluster lengths of detected RCCs  
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With the RCC detection results available from LaTcOm, it was interesting to see if there 

was a cluster length preference for the different RCC detection methods. In the sliding 

window approaches (%MinMax and RiboTempo) we had set the window=19 and for MSS 

we set cluster length=15. For MSS this is the minimum length of reported clusters. It was 

expected that the thresholds would be preferred among the RCCs. Due to the fact that 

LaTcOm joins RCCs if they are identified in close regions (see Methods in Chapter 2) we 

expected also higher lengths to be detected. Indeed as shown in Figure 26 in MSS ~ 56% 

of clusters have cluster length between 15-20, with 15 being the top percentage. 

%MinMax detected of 25-29% of cluster at cluster length 19 and 20 whereas 43-44% of 

clusters are detected with clusterlengths 21-30.  

 

Figure 26: Cluster length distributions.  

Percentage of clusters wiith length 10<=length<20; 20<=length<30; 30<= length<40 and length 

>= 40. Total number of RCCs: N = 5332 for %MinMax (cu), N=8380 for %MinMax (z), N= 3545 
for RiboTempo, N =3764 for MSS. 
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With the exception of RiboTempo, all other detecting schemes show the same length 

distribution, i.e. monotonically decreasing frequency with increasing length (Figure 27 and 

Table 12). Interestingly, RiboTempo detected most of clusters at cluster lengths 30-40. In 

more detail, nearly 71% of the RCCs detected with RiboTempo have cluster length 37. 

This is most probably caused by two parameters, the window size, which in this case was 

19, and the fact that overlapping windows are merged into one by our methodology. 

Nevertheless, this is not the case with %MinMax which is also a sliding window approach 

and overlapping windows are also merged. In order to check this we run the sliding 

window algorithms RiboTempo and %MinMax with different window sizes (see in 

Appendix 1 - Figure 45 and 46 respectively). These graphs also confirm that with 

RiboTempo detection, most clusters have cluster length = (2 x window)-1, which means 

that the algorithm, or the combination of the algorithm and the merging of nearby clusters 

by LaTcOm is introducing bias. However, %MinMax which is also a window based 

approach, is only influenced by window size.  

The monotone decline in frequency of MSS clusters with cluster length possibly indicates 

fortuitous clustering of “slow codons” as a major source of RCCs. In the absence of 

selection, the chance of finding K consecutive slow codons declines exponentially with K. 

Table 12: Statistical properties for cluster length distributions 
Distributions of Figure 27 are displayed rounded to two decimals. Mean, median and standard 
deviations are displayed. 
 

Method Mean Median Standard deviation 

%MinMax (cu) 28.38 24.00 14.34 

RiboTempo 39.17 37.00 12.02 

MSS 23.58 19.00 13.86 

Athi
na

 The
od

os
iou



72 

 

 

 

Figure 27: Detailed cluster length distribution.  
Histograms show for all methods the frequency of clusters along with specific cluster length. The 
clusterlength values were truncated to maximum length 50 for visualization purposes; n represents 
all the clusters analyzed 
. 

 3.3.4  RCCs at the 5' and 3' termini of E. coli sequences 

 

The general enrichment of RCCs at the 3' and 5' terminal sites was shown in previous 

studies. Zhang and coworkers (Zhang et al., 2009) observed a “local minimum” at the 5' 

end site of sequences in E. coli. Moreover, in a more detailed analysis regarding the 5' and 
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3' end sites”, Clarke and Clark (Clarke and Clark, 2010) showed an enrichment of RCCs at 

the 5' and 3' gene termini of genes from E. coli with the %MinMax tool (Clarke and Clark, 

2008). In their study, the reported that nearly half of the genes (with more than 268 

codons) have a cluster at the first 50 windows. In our study, we considered sequences 

greater or equal to 200 codons (that is 1694 sequences with at least one cluster in MSS). 

Considering all RCC detection methods, we confirm previous observations, that 5’ and 3’ 

termini are enriched in RCCs (Figure 28). We demonstrate that in 45% of sequences 

analyzed, with at least a cluster detected, there is a RCC at the first 100 codons (Figure 28 

A) and 40% of the sequences have a cluster at the last 100 codons (Figure 28 B). From the 

total clusters predicted ~35% of the clusters are predicted at the first 100 codons (Figure 

28 C) and ~25% at the last 100 codons (Figure 28 D). 
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Figure 28: RCCs at the 5’ and 3’ termini. 
Bar charts demonstrate the existence of RCCs at the 5' and 3' end sites of sequences in the E. coli 
genome detected with the different methods of LaTcOm. A) Percentage of sequences with RCCs at 
the 5' end site B) Percentage of sequences with RCCs at the 3' end site C) Distribution of clusters 
at the 5' end D) distribution of clusters at the 3' end. For all charts only sequences with more or 
equal than 200 codons were taken into account. Total sequences are sequences with at least one 
cluster detected. %MinMax(cu) N=2016, %MinMax(z) N=2508, RiboTempo N=1795 and MSS 
N=1694. Total numbers of detected clusters are: %MinMax(cu) N=4689, %MinMax(z) N=7523, 
RiboTempo N=3220 and MSS N=3273. 

 

Next, we analyzed the positions of RCCs in sequences with respect to the distance from 5' 

and 3' terminals of the coding sequence. Figure 29 demonstrates the distribution of the 

distance of RCCs from the 5’ terminal with MSS method. The distributions with the other 

methods are similar (data not shown).  

The distance is estimated in codons from the start position of an RCC back to the 5' end. 
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The median distance is estimated to be 230 codons with a higher increase at the first 100 

codons.  

 

Figure 29: RCC distance distribution from 5' terminal.  

The distance is measured in codons from the start point of each RCC. RCCs on the extremities* 
were excluded. The sequences within the analysis have length more than 200 residues and have at 

least one cluster detected. Total number of clusters detected for MSS was n=3273 (Median=225.2, 

Mean=291, and standard deviation=228.82). Total number of clusters with distance 300 or less was 

n=2492. A) Distribution of clustelength B) Normalized distribution with sequence length. Graphs 
were generated in R statistical environment (R Development Core Team, 2008).  
*see Methods in Chapter 2 

 

We know that the distribution may be biased due to the fact the some coding genes have 

small length (201-250 since we only take into account sequence greater than 200 codons), 

therefore for these sequences an RCC that is at 150, may be closer to the 3’ and vice versa. 

Therefore we normalized the distance with sequence length in order to get more accurate 

distributions. 

In Table 13 we see the comparison of the distributions by the different methodologies to 

identify any potential deviation. From Wilcoxon rank test p-values, none of the 

comparisons produced significant results (p < 0.01) therefore the distributions cannot be 

considered different. From this point on we choose not to present data from %MinMax 

Athi
na

 The
od

os
iou



76 

 

using the scale described in Zhang et al., 2009 due to over detection of RCCs. 

Table 13: Wilcoxon rank test for comparing the distance distributions of RCCs with the different 
methods from 5’ terminal. 
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 
 

Method Method p-value 

%Minmax (cu) MSS 0.8954 

%Minmax (cu) Ribotempo 0.8456 

Ribotempo MSS 0.9628 

 

The distribution of RCC distances with MSS from the 3’ termini can be seen in Figure 30. 

The distributions between methods cannot be considered different (Table 14). 
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Figure 30: RCC distance distribution from 3' gene terminal.  
The distance is measured in codons from the end point of each RCC. RCCs on the extremities* 
were excluded. The sequences within the analysis have length more than 200 residues and have at 
least one cluster detected. Total number of clusters detected are n=3273 (Median=252.8, 
Mean=328, standard deviation=230.97). Total number of clusters with distance from 3’ terminal 
with 300 or less was n=2315. A) The distance distribution B) normalized distance distribution of 
sequence length. 
*see Methods in Chapter 2 

 
Table 14: Wilcoxon rank test for comparing the distance distributions of RCCs from 3’ terminal 
with the different methods. 
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 

 

Method Method p-value 

%Minmax (cu) MSS 0.982 

%Minmax (cu) Ribotempo 0.912 

Ribotempo MSS 0.888 

 

The distribution median seems to be slightly higher for 3’ than for 5’ termini placing the 

RCCs closer to the 5’ compared to the 3’ termini. To investigate whether there is a 

different pattern of the distributions between the two termini the Wilcoxon Rank test was 

applied, but no significant difference was detected (see Appendix 1 - Table 42). 
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Furthermore, we analyzed the distribution of distances of the first and last RCCs from the 

terminals as seen in Figure 31 and Figure 32 respectively. The median distance of the first 

RCCs is estimated at 130 codons from the 5 ‘end and the median distance of the last is 

estimated at 170 from the 3’ end. The distributions of the methods cannot be considered 

different based on significance measures (Table 15 and Table 16).  

 

Figure 31: Distance distribution of the first RCCs detected with MSS from 5' terminal. 

Total number of clusters detected using MSS N=1694 (Median=130.7, mean=185.8, standard 

deviation=127.13). Graphs were generated with the R statistical environment (R Development 
Core Team, 2008). 

 

Table 15: Wilcoxon rank test for comparing the distance distributions of first RCCs from 5’ 
terminal  
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 

 

Method Method p-value 

%Minmax (cu) MSS 0.767 

%Minmax (cu) Ribotempo 0.382 
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Ribotempo MSS 0.243 

 

 

 

Figure 32: Distance distribution of the last RCCs detected with MSS from 3' terminal.  
Total number of clusters detected using MSS N=1694 (Median=169.5; mean=231.8, standard 
deviation=156.19). 

 

 

Table 16: Wilcoxon rank test for comparing the distance distribution of last RCC from 3’ terminal 
of the different methods. 
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 

 

Method Method  p-value 

%Minmax (cu) MSS 0.193 

%Minmax (cu) Ribotempo 0.686 

Ribotempo MSS 0.088 

 

Athi
na

 The
od

os
iou



80 

 

Moreover, distributions for first RCCs from 5’ were compared with distributions from last 

RCCs at 3’ and significant results were retrieved for MSS with Wilcoxon test p-value < 

0.01 (Table 17). The fact that the first and last median values differ and the difference in 

distribution for MSS shows that there is a difference in preference regarding the distance 

from the two termini. 

Table 17: P-values from Wilcoxon rank test for the RCC distance distribution between first RCCs 
at 5' and last RCCS at 3' terminus. 
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 
 

Method p-value 

%Minmax (cu) 0.080 

Ribotempo 0.020 

MSS 0.006 

 

 

In order to evaluate a possible trend towards a specific distance between adjacent RCCs 

we also analyzed the distribution of these distances. Figure 33 shows the distribution of 

distance for adjacent RCCs detected with MSS. Most RCC distances are less than 200 

codons apart and the median distance was estimated at 59 codons. Moreover, the 

Wilcoxon rank test showed that the distributions are different between methods with 

significance at p<0.01 (Table 18). 
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Figure 33: Distribution of distances between adjacent RCCs. 
A) Distributions with MSS detections. Total in between distances detected are n=1679. Sequences 

with less than two clusters detected were discarded (Median=59, mean=92.12, standard 
deviation=102.76) B) Zooming distribution for illustration purposes. 
 
Table 18: Wilcoxon rank test for comparing the distance distribution of adjacent RCCs as shown in 
Figure 33.  
The wilcox.test () function was used from the R statistical environment (R Development Core 
Team, 2008). 

Method Method  p-value 

%Minmax (cu) MSS <2.2e-16 

%Minmax (cu) Ribotempo <2.2e-16 

Ribotempo MSS 0.039 

 

From the aforementioned results we reveal a trend for RCCs to lie on both termini. Our 

results show that the first or last RCC prefer to be located closer to the 5’ terminal than in 

3’ terminal. Nevertheless, the presence of RCCs at 5' and 3' ends of genes may reveal a 

universal functional role of RCCs or more specific to each site. As previously described, 

Clarke and Clark (Clarke and Clark, 2010) showed that rare codons are enriched at both 5' 

and 3' termini of genes. Another recent study has demonstrated with ribosomal profiling a 

“ramp” at the first 30-50 codons translated with low efficiency (Tuller et al., 2011). 

Several other studies also reported an enrichment of rare codons at the 5’ site in different 

organisms (Allert et al., 2010; Fluman et al., 2014; Goodman et al., 2013; Pechmann et al., 
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2014; Pechmann and Frydman, 2013). (Chartier et al., 2012) performed a large scale 

analysis on Pfam domains and identified rare codon clusters mainly in the 5’ terminal of 

Pfam domains and not in the 3’ terminal. As (Clarke and Clark, 2010) suggested the 

mechanism of translation is very different in prokaryotes versus eukaryotes therefore the 

signal in 3’ may be prokaryotic specific.  

 A possible explanation of the enrichment of RCCs at the gene start is to keep the 

ribosome binding site free from stable mRNA structures (Bentele et al., 2013). Another 

possible suggestion is a functional role in secretion of secretory sequences (Burns and 

Beacham, 1985; Power et al., 2004), to allow correct folding of pre-secretory proteins 

(Zalucki and Jennings, 2007). Recent experimental evidence shed light in the strategies 

that prokaryotes and eukaryotes used to cause the arrest of the ribosome at the initiation 

site in order to correctly target membrane proteins to the translocon (Fluman et al., 2014; 

Pechmann et al., 2014). Nevertheless, we find this pattern not only in secretory sequences. 

We suggest that there is an additional biological role for the existence of RCCs at the gene 

start. It may serve as a regulator for possible attraction of other regulating factors specific 

for each protein. 

Although the role of 3' RCCs is less discussed as also indicated in (Clarke and Clark, 

2010), it has been suggested that RCCs at this side may pause the ribosome to allow 

further associations of the newly synthesized polypeptide with interacting molecules such 

as chaperones or factors involved in targeting and degradation (Hayes et al., 2002). 

Our results possibly demonstrate that, the position of RCCs concerning the two termini 

have similar distributions. Nevertheless the distances of the first RCC from 5’ and the last 

RCC from 3’ have different distributions, indicating that RCCs at the gene termini may 

serve different purposes, at least as far as E. coli is concerned. The existence of RCCs at 

the 3’ terminal may be preferred in multicystronic operons and since these are transcribed 

and translated together there might be a correlation of the RCC at the 3’ termini and 

distance to the next genes. This hypothesis was addressed in the next experiments. 

An alternative model might involve the existence of overlapping codes at the two 

terminals. In particular, such a model could account for extra transcriptional instructions 

coded in the DNA. In this case, it constrains the choice of codons and may lead to the 

choice of slow codons. Such a ‘secondary message’ may work from a small distance and 
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may be needed at the locus between genes (but may end up falling on one side but not the 

other). 

 

 3.3.5  RCCs in mutlicystronic E.coli operons 

 

A hypothesis stemming from the previous analysis is that the existence of RCCs at the 3' 

site may be preferred in multicystronic E. coli operons and may be related to the distance 

of the next neighboring gene. Overlapping genes are common in prokaryotes (Normark et 

al., 1983) and have been proposed as a “shrinking” mechanism in order to fit maximum 

information in the minimum possible space. In the classical operon model, multiple genes 

are transcribed into a single polycistronic mRNA (Jacob and Monod, 1961). However, 

recent evidence supports internal transcription initiation or termination sites (Koide et al., 

2009). In this work, we searched for a potential regulatory mechanism by examining the 

correlation of the existence of RCCs at terminal sites and the intergenic distance of genes 

within the same operon. Table 19 shows the number of genes in total and in operons that 

have RCCs at their terminal sites. 

Table 19: Number of genes from total genes passing filtering and from operon genes that passed 
filtering that have a) RCC at 3’ and b) RCCs at 5’ according to MSS detections. 

 
 Genes with RCC at 3’ Genes with RCC at 5’ 

Total genes (1694) 704 892 

Operon genes (884) 352 447 

 

Furthermore, we tested the differences of distributions with the Wilcoxon rank test 

regarding distances from upstream or downstream genes with respect to the existence of 

RCCs at the terminal. Nevertheless no significant correlation could be detected at p < 0.01 

as shown in Table 20. 
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Table 20: Wicloxon Rank test p-values for comparison of the intergenic distance distribution. 
The different datasets are detailed described in Methods (Figure 17). Datasets compared: 1: 
Distance of next gene between genes with RCC at 3’ and between genes with no RCCs at 3’; 2: 
Distance of previous gene between genes with RCC at 3’ and between genes with no RCC at 3’; 3: 
Distance of next gene between genes with RCC at 5’ and between genes with no RCCs at 5’; 4: 
Distance of previous gene between genes with RCC at 5’ and between genes with no RCCs at 5.’ 

 

  Datasets   

Method 1 2 3 4 

%MinMax(cu) 0.55 0.12 0.18 0.55 

RiboTempo 0.70 0.13 0.61 0.06 

MSS 0.89 0.03 0.88 0.99 

 

Furthermore we searched for a correlation between neighboring genes in operons. The 

question in search was what if a gene has an RCC at 3’ terminal what does happen at the 5’ 

site of the next gene? In Table 21 we demonstrate the number of the different cases. We 

applied Fisher exact test on the data but no significant correlation (<p 0.01) could be 

identified (p=0.21 for first column in Table 21 and p=0.03 for the operons in the second 

column).  

Table 21: Number of distances comparisons calculated. 

Comparison data with RCCs 

detected with MSS 

Comparisons 

In all genes (1137) Only in multi-gene  

operons (710) 

RCC at 3’ and RCC at 5’ of the 

next gene 

128 84 

RCC at 3’ and not RCC at the 5’ 

of the next gene 

354 196 

No RCC at 3’ but RCC at 5’ of 

the next gene 

152 98 

No RCC at 3’ and no RCC at 5’ 

of the next 

503 332 
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We also searched for correlations between the distances of the genes and the distance 

distribution of these datasets are given in Appendix 1 - Figure 47. Wilcoxon rank test was 

applied to compare the four distributions but no significant difference was discovered 

demonstrating that distance of genes is not related with RCCs at the terminals. A recent 

work by (Quax et al., 2013) showed with comparative genomics analysis that differential 

translation is key determinant for gene expression of genes in operons and that codon bias 

shows the unequal protein production. We mapped RCCs detected with MSS, with the 3 

model operon complexes of Quax et al., 2013 as shown in the publications Figure 1. 

Nevertheless, we could not reveal any correlation of the positions of RCCs in the operons  

(Appendix -Figure 48).  

We additionally tested the correlation of strand and existence of RCCs in E. coli with no 

significant outcome (data not shown). 

Based on our results regarding genes in multicystronic operons, our initial hypothesis is 

rejected. The RCCs found at the 3’ terminal sites do not correlate with the distance to the 

next or previous gene. Nevertheless, an interesting finding was that in most cases at the 

absence of an RCC at the 3’ site of a gene, then an RCC is also absent at the 5’ site of the 

next gene. In fact, this observation holds not only for operon genes but also for all genes 

under study. In the cases where we find RCCs at the 3’ site we hypothesize that the role of 

RCCs may be more general for the translational regulation of genes as the ones suggested 

by (Clarke and Clark, 2010) that translational pauses occur at the 3’ termini to assist 

potential interaction with chaperones or other factors. 

Additionally, it is important to notice that in prokaryotic organisms transcription and 

translation are coupled, thus the one process affects the other. One hypothesis could be 

that RCCs at the 3’ terminal site may serve as a sign for the joined regulation of 

transcription and translation since both procedures are combined, although we cannot rule 

out that this potential signal may also be 5’ terminal specific. Mechanistically, the 3’ signal 

may be more easily associated with chaperone interaction, or preparing the ribosome to 

release the current synthesized polypeptide and continue with the next one in line. 

Nevertheless, more work needs to be done to unravel possible functional implications of 

RCCs at the 3’ terminal site. 

 

Athi
na

 The
od

os
iou



86 

 

 4  Correlating functional and structural properties with RCCs 

 

 4.1  Background 

Our initial hypothesis is that the location of RCCs in coding genes correlates well with 

topological and structural characteristics/properties, while their existence may reveal 

higher level functional features. Moreover, it is intriguing to clarify whether a coupling 

exists between rare codon-mediated ribosomal attenuation and the biogenesis of αHTMPs, 

since most of them are integrated into the bilayer co-translationally (Osborne et al., 2005; 

Rehling et al., 2003). To explore these correlations we analyzed the positions of RCCs 

with respect to different topological, structural and functional groups for coding genes in 

E. coli. 

 

 4.2  Data and Methods 

 

 4.2.1  Collection of functional and structural data and correlation with RCCs 

 

In order to ascertain whether E. coli RCCs are associated with specific features of the 

respective proteins, we examined the co-occurrence of a multitude of characteristics with 

RCCs. For this purpose, a number of gene sets were defined and the procedure to do so is 

described separately for each data set below. 

 

Disordered proteins 

 

Firstly, we downloaded all disordered proteins from the DisProt database ((Vucetic et al., 

2005); http://www.dabi.temple.edu/disprot/index.php) (04/02/2013). This dataset is a 

FASTA formatted file with experimentally verified disordered regions mapped to protein 

sequences from different species. An example of the file is shown in Appendix 2 - Figure 

49. With a custom script (map_dis_uni.pl.), we extracted only the UniProt Accession 

numbers from E. coli that are available in each sequences' header in the DisProt FASTA 

file. Moreover, we mapped the UniProt Accession numbers with the corresponding GI 
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numbers with the ID mapping tool in UniProt (http://www.uniprot.org/). The 

mapping_table_uniprot_gi.tab was downloaded, which is a tab delimited table with the 

UniProt Accesion numbers as first column and the mapping GI number as second column. 

There are multiple GI numbers for a single accession in UniProt. Therefore, the GI 

number selected was the one that is available in U00096.ptt file (with the map_back.pl 

script). The final datasets were two lists of GI numbers, the disordered sequences in E. coli 

(41 genes) and the ordered (4099 genes). Here we make the simplified assumption that 

proteins with no characterized disordered regions are ordered. A pipeline implementing the 

aforementioned procedure is schematically depicted in Figure 34. 

 

Figure 34: Pipeline to extract disordered IDs. 

Extract genes with experimentally determined disordered regions (disordered genes) and IDs 

corresponding to genes with no experimentally determined regions (ordered genes) from the E. 
coli K12 MG1655 dataset. 

 

2 x 2 contingency tables were created to display the number of disordered genes that have 

an RCC, the number of disordered genes that do not have an RCC, the number of ordered 

genes that have an RCC and the number of ordered genes that do not have an RCC. The 
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datasets disordered.txt (41 genes), not_disordered_genes.txt (4099 genes) along with 

datasets least_one.txt and no_RCC.txt were used to construct the tables with script 

input_for_Fisher-test.pl. The last two text files are datasets produced by 

statistical_RCC.pl (described in Chapter 3 for the measurement of statistical properties) 

and have the GI number IDs for sequences with at least one RCC (least_one.txt) and 

sequences with no RCCs (no_RCCs.txt). These two datasets were produced separately for 

each LaTcOm method (%Minmax (cu), %MinMax (Z), RiboTempo and MSS). Ultimately, 

four 2 x 2 contingency tables were created, one for each method. 

A validation test on the disordered sequences was the creation of contingency tables for 41 

randomly selected ordered genes. In more detail, ten datasets were created, each composed 

of 41 randomly picked genes from the not_disordered_genes.txt set with the script 

get_random_IDs.pl. The GI number that was picked randomly from the ordered set, had to 

be included in the least_one.txt or non_RCC.txt file data. If a sequence was excluded from 

LaTcOm analyses for not satisfying the minimum length criterion, another GI number was 

chosen. Contingency tables were then created with the input_for_Fisher-test.pl script. 

From the ten contingency tables created, a contingency table with mean values was 

created with mean_estimation.pl script. 

All contingency tables described above were given as input to fisher.test() in the R 

statistical environment (R Development Core Team, 2008), with default parameters and p- 

values were estimated. 

 

Spatial correlation of RCCs and disordered regions 

 

The positions of RCCs were placed on sequence strings with the mapped_on_seq.pl script. 

The script reads LaTcOm results and creates a FASTA formatted file in which the 

sequences are created with the letters “X” and “M”. The X is placed at positions of RCCs 

whereas the M at non RCC positions of the sequences. The information regarding the 

exact position of disordered regions in sequences was extracted from 

disprot_fasta_v6_01.txt file (Appendix 2 - Figure 49) from header information (positions 

marked with “#” symbol) with map_disordered.pl and a transformed FASTA file was 

created (mapped_disordered.txt), similar to the one with RCCs described previously. Last, 

the overlapping codons of disordered regions and RCCs were calculated with 

final_correlations.pl. 
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α-Helical Transmembrane proteins 

 

Transmembrane protein data was extracted from Table S1 in Supplementary data of 

(Daley et al., 2005). The table is a summary of the experimentally determined topologies 

of 738 membrane proteins of E. coli. These sequences encode proteins longer than 100 

residues and with at least two predicted transmembrane helices. The gene names of this 

table (column 1) are from the Colibri database (Medigue et al., 1993) and some entries are 

clones from (White, 2004). After filtering those gene names that do not exist in the 

U00096.ptt dataset (there are 150 gene names missing from the U00096.ptt file possibly 

because they refer to different strains) - the final dataset included 588 inner membrane 

proteins of E. coli K12 (with the script get_IDs.pl ) (membrane_IDs_corrected.txt). In 

order to create 2x2 contingency tables (as described in disorder section above), the non 

transmembrane dataset was extracted (3510 genes) (non-membrane_IDS.txt) and tables 

were created with input_for_Fisher-test.pl using again least_one.txt and no_RCCs.txt 

which hold information regarding the detection of RCCs. Additionally, 10 randomly 

selected datasets of 588 non transmembrane sequences were created (with 

get_random_ID.pl) from which a mean contingency table (with mean_estimation.pl) was 

computed as described with disordered genes using the same scripts. As with disorder, all 

contingency tables were given as input to fisher.test function in the R statistical 

environment (R Development Core Team, 2008), with default parameters and p-values 

were estimated. 

Taking the data from (Daley et al., 2005), regarding the number of transmembrane helices 

predicted, we divided the data into sequences with less than 6 helices (191), sequences 

with more or equal to 6 helices (305) and those not defined (92) with get_tm_helices.pl 

script. Moreover, we applied the Fisher Exact test regarding the existence or not of RCCs.  

 

Sequences with signal peptides 

 

The standalone version of signalP 4.1 ((Petersen et al., 2011); 

http://www.cbs.dtu.dk/services/SignalP/) was used in order to predict signal peptides in the E. 

coli K12 proteome. The NC_000913.faa file, which has all E. coli protein coding 

sequences, was used as input to the signalP tool. Example of output is available in 
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Appendix 2 - Figure 50). The split_IDs.pl script is used to divide data into two files the 

sequences with signal peptide (426) and the sequence with no signal peptide (3676). 

As described in disordered and transmembrane sections, 10 randomly selected datasets of 

426 gene IDS encoding proteins without a predicted signal peptide. Contingency tables 

were created with the tools previously described and the Fisher test in R was performed. 

 

Transmembrane and sequences with signal peptides 

 

With script get_seq_and_tm.pl we combined the transmembrane and signal peptide sets. 

In more detail, the first file created (TM_and_secreted_IDS.txt) included proteins that are 

either transmembrane or have a signal peptide (998 proteins). The second file 

(nonTM_and_nonSec_IDS.txt), included proteins that are neither transmembrane nor 

secreted (3100 proteins). We did not perform random sets for this group (since the results 

are not affected by unequal data sets in Fisher test), but used directly the sets to create the 

contingency tables for Fisher test. 

  

Peripheral inner membrane proteome 

 

Papanastasiou and colleagues defined the peripheral membrane proteins (i.e. non integral 

to the membrane) that face the cytoplasmic layer of the E. coli plasma membrane 

(Papanastasiou et al., 2013). Table S1 (Table 1A) from the supplementary material of this 

work gives the annotation for 278 peripheral inner membrane proteins for E. coli K12. All 

UniProt accession numbers were given to the UniProt mapping tool 

(www.uniprot.org/uploadlists) in order to retrieve GIs. Nevertheless, only 247 UniProt 

accession numbers were successfully mapped to a GI, due to the fact that some UniProt 

IDs were repeated in that list because it was also referring to a different entry names for E. 

coli BL21. A further reduction was made for three genes that did not have a match in 

E.coli K12. EcoGene (www.ecogene.org) classifies these three as pseudogenes (Appendix 

1 - Table 43). Ultimately 244 genes were retrieved. Along with LaTcOm results, we used 

this set to create the contingency tables for Fisher test as previously described. 
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Single- versus multi-domain proteins 

 

In order to get sequences that have a known 3D structure, we searched UniProt for all E. 

coli K12 proteins that are cross referenced in PDB (http://www.rcsb.org) and identified all 

the proteins (1310) (date of retrieval - 01/04/14). The corresponding sequences were 

downloaded in FASTA format. We also mapped UniProt IDs to the respective GenBank GI 

numbers with the UniProt mapping tool. Next, we downloaded the complete mapping of 

PDB chains to UniProt entries from the PDBSWS server ((Martin, 2005); 

www.bioinf.org.uk/pdbsws/). 

The annotation regarding domain boundaries was taken from the dir.cla.scope.2.03-

stable.txt within the SCOP database ((Fox et al., 2013);http://scop.berkeley.edu-SCOPe 

extended 2.03 release). This is a tab-delimited file with information on the domain 

coordinates and an example can be seen in Appendix 2 - Figure 51. With the script 

get_s_m_domains.pl that was developed, the E. coli single and multi-domain proteins 

were separately retrieved, along with the annotation on domain boundaries for 

multidomain proteins and mapping of PDB chains to GIs. We identified in total 213 

multidomain and 714 single domain proteins. The pipeline described above in order to 

retrieve these datasets is shown in Figure 35. Contingency tables were constructed with 

input_for_Fisher-test.pl and Fisher exact test was performed as described above for single 

and multidomains along with RCCs. 
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Figure 35: Pipeline to retrieve multidomain proteins of E. coli K12. 

 

Mapping domain coordinates to RCCs 

 

The following pipeline describes the procedure in order to get the exact matching cDNA 

for the mutlidomain chains extracted from PDB (http://www.rcsb.org). The protein 

sequences of chains were downloaded from the PDB database (www.rcsb.org) in FASTA 

format. All chains for a single PDB entry are extracted with this procedure therefore, the 

exact chain in search was selected with get_correct_fasta.pl script. The chains were then 

given as query to standalone BLAST (Altschul et al., 1990) (blastall version 2.2.25 - 

blastp). The database in search used was the protein sequences in E. coli K12 MG1655. 

The database was formatted with formatdb and blastp was run with no filtering option on. 
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The output was then parsed with script parse_blast.pl. in order to get the top hits with 

>85% identity matches. The last file was used in get_dna.pl in order to extract the whole 

length cDNA and the corresponding whole length proteins. Next, the 

1_parse_blast_3_updated.pl script read the blast output and created the exact matching 

cDNA file that corresponds to the PBD chain. This was then given to standlone LaTcOm 

and RCCs were detected with the parameters and methods described in Table 3. Two 

multidomain chains were rejected (with GI 3868712 and 3868719 - see Appendix 1- Table 

37), since they contain in-frame ‘stop codons’, which are actually translated in 

selenocysteine. As previously discussed, this is not handled by LaTcOm yet. Ultimately, 

RCCs were detected for 211 multidomain chains. 

In order to map RCC positions with domain boundaries, the map_RCC_domains.pl script 

was developed. The cDNA described before was identified based on the recent version of 

NC000913.ptt, therefore, LaTcOm prediction were done based on the GI numbers of this 

file. However, the domain coordinates were predicted based on U00096.ptt. In order to get 

correct mapping of the genes we compared (map_GI_numbers.pl) the two files based on 

the synonymous code in ptt files. The genes that did not have a matching in the two files 

are shown in Appendix 2 -  and . Nevertheless, these genes do not encode multidomain 

proteins.  

Ultimately, we redefined domain boundaries as the middle of the distance between the end 

and the start of two successive domains (+/- 10) and last, calculated the distance of RCCs 

(the middle of the coordinates) from the closest domain boundary 

(RCCs_dis_from_boundaries.txt) for each LaTcOm result. Overlapping RCC and 

boundaries are assigned with 0 distance, RCCs downstream the boundary are assigned 

with negative distance whereas RCCs upstream the domain boundary are assigned positive 

distance. 

The distance distributions were analysed with the R statistical environment (R 

Development Core Team, 2008) and the summary () and sd() functions were applied for 

estimating the descriptive statistics of the data. 

 

Outer membrane β-barrel sequences 

 

243 β-barrel outer membrane proteins of E. coli K12 MG1655 were downloaded from the 

TMBB-DB database ((Freeman and Wimley, 2012); http://beta-barrel.tulane.edu/). Two 
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genes in the above dataset (145698324 and 16129928) are not referenced in 

NC_000913.ptt and were excluded. With the script get_bbarrels_and_not_bbarrels.pl 241 

β-barrel proteins were identified and 3899 not β-barrels. Contingency tables were 

constructed with input_for_Fisher-test.pl and Fisher exact test was performed as described 

before, for β-barrels membrane proteins and not β-barrels along with RCCs.  

 

Dataset summary 

 

Summarising, for all the contingency tables that were created for each functional or 

structural group as described above, we employed the Fisher's exact test (function 

fisher.test ()) as implemented in the R statistical environment (R Development Core Team, 

2008). This was done in order to determine if there are non-random associations between 

the two categorical variables under study. The null hypothesis for all cases in Fisher exact 

test is that there is no association between a functional or structural category and the 

existence of RCCs. The following groups for associations were estimated between 

RCC/non-/rcc vs: 

(i) discorded/non-disordered  

(ii) membrane/non-membrane 

(iii) secreted/nonsecreted  

(iv) secreted or membrane/non secreted and non membrane  

(v) cytoplasmic inner membrane peripheral proteins  

(vi) single/multidomain  

(vii)  β-barrels/non β barrel  

 

 4.2.2  Gene ontology (GO) enrichment analysis 

 

As mentioned before, the script statistical_RCC.pl described in Chapter 3, generated 

several data files for the GO analysis and for each detection method of LaTcOm. The files 

contain GIs of E. coli K12 proteins and were divided based on the following 

characteristics related to the detection of RCCs: 

i. No RCCs 

ii. At least one RCC 
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iii. Only one RCC 

iv. More than four RCCs 

v. with RCCs at the 5' terminus 

vi. with RCCs at the 3' terminus 

vii. with RCCs on both 5' and 3' terminals 

viii. Based on cluster length distributions 

An in-house  Perl script (E-term_finder.pl) was used and adjusted to our results (E-

term_finder_pdb.pl) that makes use of several modules for GO analysis in order to 

determine whether these sets of sequences share any over-represented GO-term. The E-

term_finder.pl was developed by Vasilis J. Promponas and Eleni Mytilineou and uses the 

TermFinder module among others ((Boyle et al., 2004); module version 0.86: 

http://search.cpan.org/dist/GOTermFinder/lib/GO/TermFinder.pm). This module is a group 

of object-oriented Perl modules that can be used to determine the significance of a GO 

annotation to a list of genes. Bonferroni correction was used to correct for multiple testing. 

For the analysis the following files were downloaded: 

 

i. gene_association.ecocyc (www.geneontology.org/GO.downloads.annotation.shtml-

27.06.14) which is a filtered annotation file and 

ii. gene_ontology.obo (http://www.geneontology.org/ontology/gene_ontology.obo-

27.06.14 format-version: 1.0 / version: releases/2014-05-27) which contains the ontology 

structure. 

 

GIs were converted to gene names (convert_gi_to_geneneame.pl) in order to be associated 

with the gene_association.ecocyc file and a threshold of p<0.01 was set for extracting the 

statistically significant results. The script read_GO_output.pl was developed to produce a 

user-friendly output of the results. 

 

 4.2.3  E. coli integral inner-membrane proteins with experimentally determined atomic 

structures 

 

In this section, we focused our research in a more detailed structural analysis of αΗTMP 
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sequences with experimentally determined structures and their correlation with RCCs. TM 

sequences were reported to frequently contain RCCs (Zhang et al., 2009) and their 

possible impact of RCC location in TM protein folding and topology has not been 

investigated so far. In Chapter 3 we identified that RCC existence is enriched within TM 

proteins of E. coli, therefore it was of great importance to investigate in more depth 

whether there exists an important pattern connecting RCCs and TM helical topology. We 

designed and implemented a number of computational tools to facilitate mapping and 

correlating RCCs to TM protein topology (including cytoplasmic - periplasmic regions) 

and TM helical packing patterns (for polytopic subunits). 

 

α-helical chain retrieval 

 

Initially, a simple text search was performed in the UniProt/SwissProt database 

(http://www.uniprot.org/; (Magrane and Consortium, 2011)), which currently contains the 

most thoroughly annotated protein sequence dataset available. We searched for E. coli 

proteins (OS : Escherichia coli (strain K12) ) which are characterized in the sequence 

annotation as TM (FT : transmembrane) and are cross referenced to the PDB database 

(121 entries were identified with this search). Next, we mapped these UniProt entries to 

PDB identifiers in order to prepare a structural dataset (553 structures matched). It is 

important to know that there may be several structures available that represent the same 

protein e.g. several mutated forms of the same polypeptide, or the same subunit in 

different complexes/stoichiometries may exist in structural database. 

 

Retrieval of non-redundant cDNA chains and RCCs 

 

In order to create a non-redundant dataset, the PISCES standalone program was used 

(http://dunbrack.fccc.edu/Guoli/pisces_download.php#BLASTDB; Wang and Dunbrack, 

2003). The program removes redundancy according to a threshold and ultimately leaves 

only one representative from each protein chain. From the PISCES package we used the 

Cull_for_UserSEQ.pl script for filtering with a 40% sequence identity threshold. 

Ultimately, 46 TM chains were identified (The list with the pdb chain IDs is provided in 

Appendix 2 -. Next, we identified the cDNA for each TM chain. The procedure is not 

straightforward, since the protein chains may not be the full length protein sequences. The 
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description of the procedure on how we extracted the matching cDNA sequence has 

already been described in a previous section (in Data and Methods of Chapter 3 (section: 

Mapping multidomain coordinates with RCCs)). The pdb chain '3udca' was rejected from 

further analysis because it belongs to a different strain (E. coli strain C43) and it was not 

identified within the E. coli K12 protein sequences. Therefore, RCCs were detected with 

the LaTcOm standalone tool in 45 PDB chains with all methods with the parameters 

described in Table 3.  

 

Mapping TM helices 

 

A complete list of the TM proteins is difficult to extract from PDB because the annotation 

is not reliable (Tusnády et al., 2004). Moreover, TM annotations in UniProt are sometimes 

inferred from homology relationships. For these reasons, we decided it is more appropriate 

to use the PDBTM database (http://pdbtm.enzim.hu/; (Tusnády et al., 2004)), which is a 

comprehensive database collection of TM proteins extracted from PDB. The database 

relies on the structure-based computational identification of TM regions within protein 

structures. Each chain record from the PDBTM database contains one or more topological 

region records, which locates the chain segment in the space relative to the membrane. In 

αHTMPs we are interested in “side1”/”side2”, TM helices and dipping loops (re-entrant 

regions). Suitable transformations, with regard to sequence position, were performed, to 

bring all annotations to a common “coordinate” system. This step is necessary to 

overcome several peculiarities observed in PDB data. For each chain we had mapping 

information stored for further analysis. Additional work was performed to analyse 

geometrical features of TM helices such as their pairwise distances. For this, PDB 

structures (39 available; 1y8s structure is a theoretical model and, therefore, was not used 

for further analysis) were downloaded from PDB (http://www.rcsb.org). 

 

Assigning enriched topological information 

 

Unfortunately, no annotation exists for the cytoplasmic or periplasmic regions within PDB 

or PDBTM. Knowing that the environment surrounding TM proteins is highly 

asymmetric, it is possible that topological information may be of importance in our 
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analysis. We firstly used the information, from reliable experimentally derived data 

(ExToPoDB.flat) deposited in the ExTopoDB database 

(http://bioinformatics.biol.uoa.gr/ExTopoDB/; (Tsaousis et al., 2010)), which is the most 

comprehensive, manually curated and recently updated database (G. Tsaousis, personal 

communication). An example of the format of this file can be seen in Appendix 2 - Figure 

52. Topological information exists for only 30 PDB chains (from total 44 analyzed
7
) in 

ExTopoDB. We also explored information based on high throughput experimental 

mapping of C-terminal regions made by (Daley et al., 2005) in order to map the topology 

for sequences that we did not find evidence in ExToPoDB. The authors in this paper have 

established the periplasmic or cytoplasmic locations of C-termini for 601 inner membrane 

proteins with appropriate reporter fusion constructs. We used this information to manually 

crosscheck the topological placement for all non-TM regions predicted in ExTopoDB (The 

topology between the two sets was the same for 27 from 30 chains - the remaining three 

chains did not have a topological assignment in (Daley et al., 2005)). From the same data 

we additionally identified the C-terminal topology for 9 more chains. Nevertheless, for the 

remaining (14) chains that their topology was not found in ExTopoDB we followed a 

semi-automatic procedure and performed consensus topology predictions based on 

TOPCONS single (Bernsel et al., 2009). The authors of this web service suggest that their 

method performs better than any of the other topology prediction methods tested. We 

identified topological information for 13 PDB chains
8
. These chains were again 

crosschecked with (Daley et al., 2005) data and topology agreed. Finally, we gathered 

information of cytoplasmic and periplasmic locations for 43 chains. 

In this activity our first attempt was to correlate the topological features (including 

cytoplasmic - periplasmic regions) and structural features of each chain with RCCs. 

Therefore, we designed and implemented software 

(parseXMLpdbtm_helices_or_loops.pl) that correlated the RCC coordinates, taking as 

input the files of TM topology, cytoplasmic-periplasmic information and structural 

information (TM interactions from 3D structures) for each sequence. A distinct module 

was designed to include correlations with pairwise distances for interaction between 

successive in sequence TM helices (parseXMLpdbtm_tm_interactions.pl). We used a 

                                                
7 1y8s is a theoretical model and was not found in ExToPoDB and pdbsws; 3udca chain originates from a 

different E. coli strain  
8 4iffa does not have TM helices, therefore it was rejected for topological predictions with TOPCONS 
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distance threshold of 5.5Å to define interacting pairs of adjacent in sequence TMHs, with 

the additional condition that more than 5 residue contacts should be present for any TMH 

pair to be considered as interacting.  

All these aimed to: 

 Estimate the correlation of the position of independent RCCs with TM/nonTM 

regions (irrespective of their cytoplasmic or periplasmic topology). 

 With the topology data for noTM regions available, we designed and implemented 

a methodology in order to correlate the relevant information regarding the 

topology of transmembrane segments, C-terminus, N-terminus and the detected 

RCCs. We aligned the topology of each protein against its codon rareness/non-

rareness cluster and 

 We also expanded the already implemented script for the estimation of interactions 

between transmembrane helices in order to correlate interaction between 

transmembrane segments and position of RCCs in loop regions. 

 

For validating the presence of rare codon clusters in helices or loops and in cytoplasmic or 

periplasmic loops we used the measures of Positive Predictive Value (PPV), Negative 

Predictive Value (NPV), Accuracy, Sensitivity and Specificity (Guggenmoos-Holzmann 

and van Houwelingen, 2000): 

 

Sensitivity: Sensitivity measures the fraction of the actual positives which are correctly 

predicted:  

 

             
  

     
 

 

Specificity: Specificity denotes the fraction of the actual negatives which are correctly 

predicted:  
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PPV: The positive predictive value (PPV) is the fraction of the predicted positives which 

are correct:  

 

    
  

     
 

. 

NPV: The negative predictive value (NPV) stands for the fraction of the negative 

predictions which are correct:  

 

    
  

     
 

 

For the purposes of the former analysis, true positives are regions with identified RCCs 

and general loops. False positives are regions with RCCs and TM helices. False negatives 

are regions with no RCCs and loops whereas true negatives are regions with no RCCs and 

TM helices. For the latter analysis regarding the topology of loops, true positives are 

periplasmic loops with RCCs, false positives are regions of cytoplasmic loops and RCCs. 

False negatives are regions of periplasmic loops and no clusters whereas true negatives are 

cytoplasmic loops with no RCCs.  

For the third analysis, in which we took into account connecting loops and interacting 

helices, true positives are connecting loops with non-interacting helices and RCCs. False 

positives are connecting loops with interacting helices and RCCs. False negatives are 

connecting loops with non-interacting helices and no RCCs whereas true negatives are 

connecting loops with helices that interact and no RCCs. An additional parameter taken 

into account was the strength of the length of the loop connecting the successive helices. 
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 4.3  Results and discussion 

 

 4.3.1  Correlation of RCCs with functional and structural features 

 

An increased amount of evidence demonstrated recently that the existence of RCCs has a 

functional impact in proteins. We have previously discussed the presence of rare codons in 

secretory sequences that was shown to exist in E. coli and Salmonella typhimurium (Burns 

and Beacham, 1985; Power et al., 2004; Zalucki and Jennings, 2007). These slowly 

translated regions were also shown to be preferred in β-strands and coils than in α-helices 

(Thanaraj and Argos, 1996b). Additionally, positive correlation between hydrophobic 

stretches and RCCs was shown in membrane sequences suggesting a functional role in 

membrane targeting or insertion (Dessen and Képès, 2000). Moreover, the correlation 

between RCCs and domain boundaries was observed in many studies (Komar and 

Jaenicke, 1995; Krasheninnikov et al., 1991; Purvis et al., 1987; Thanaraj and Argos, 

1996b) although debated in more recent publications (Brunak and Engelbrecht, 1996; 

Saunders and Deane, 2010). Recently, in a single case study Zhang et al., 2009 showed 

experimentally that slow codons found in domain boundaries are actually necessary for 

proper protein folding. 

In this work, we applied a bioinformatics analysis and we investigated the association of 

RCCs detected by LaTcOm with functional and structural features of E. coli sequences.  

 

E. coli proteins with structural disorder regions and RCCs 

 

Firstly, we searched for correlations between intrinsically disordered proteins or regions 

along with the existence of RCCs. However, there are few annotated proteins as 

disordered in E. coli and our data set is imbalanced. In general, disordered proteins are 

more prevalent in eukaryotic than in bacterial proteomes (Pancsa and Tompa, 2012). In 

another study of the E. coli K12 proteome, 5% of the proteins were shown to be mostly 

disordered, whereas 20% had at least one disordered segment longer than 30 residues 

(Oldfield et al., 2005). Nevertheless, the study relied on a consensus of predictions based 

on charge−hydropathy distribution and disorder prediction score distribution. In our 

analysis, we used only experimentally verified disordered segments or regions, thus we 
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gathered only 41 E. coli sequences. We have not identified any significant correlation 

between disordered proteins and the existence of RCCs in these sequences. Table 22 gives 

the p-values (notably all > than 0.01) of the Fischer Exact Test for disordered and RCCs 

and Table 47 in Appendix 2 the p-values using random sequence datasets of non 

disordered proteins. 

 

Table 22: P-values from Fisher Exact Test with contingency table for disordered genes and 
existence of RCCs. 

Method p-value 

%MinMax (cu) 0.8725 

RiboTempo 0.04 

MSS 1 

 

The number of overlapping disorder codons and RCCs can be seen in Table 23. These 

results additionally demonstrate that no correlations exists in E. coli K12 between these 

two properties as far as this analysis is concerned. However, is important to clarify that we 

had few sequences to analyse (only 41 experimentally verified disordered sequences). 

Further analyses based on predictions or analysis in other organisms with higher 

percentages of disorder regions may be more appropriate to reveal if there is a real 

connection of disordered property with RCCs. 

 

Table 23: Number of codons in RCC mapping to disordered regions 
First row demonstrates the number of disordered codons found in RCCs and the second row the 
total codons in RCCs detected with each method. 
 
Codons %MinMax (cu) RiboTempo MSS 

Disordered mapped RCCs 409 242 200 

Total_RCC: 1307 895 735 

 

RCCs are correlated with TM and secreted sequences 

Previous analyses demonstrated a relationship between TM proteins and RCCs (Zhang et 

al., 2009). We confirm these findings by showing that the structural membrane property 

correlates well with the existence of RCCs with all methods with statistical significance (p 

< 0.01) (Table 24). Exclusion of RCCs that lay at the 5’ sites (<100) did not alter the 

results (Fisher exact test p=0.001) with MSS. 
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Table 24: P-values of Fisher Exact Test for membrane/non membrane genes versus RCCs/non 
RCCs. Random data are described in Data and Methods. 

Method p-value p-value (from random data) 

%MinMax (cu) 0.001 0.011 

RiboTempo <2.2e-016 1.14e-010 

MSS 0.003 0.012 

 

In order to check if the correlation differs based on the number of TM helices we 

performed a correlation analysis with membrane sequences with less than 6 helices and 

membrane sequences with 6 and more helices. Fisher Extact test p-values can be seen in 

Table 25. The RCCs seem to correlate better with TM sequences with greater number of 

helices. 

Table 25: P-values of Fisher Exact Test for membrane with less than 6 helices /membrane with 
more than 6 versus RCCs/non RCCs. 

Method p-value 

%MinMax (cu) 0.003 

RiboTempo 2.995e-05 

MSS 0.01 

 

Next, we searched for correlation of secreted sequences with RCCs (Table 26). The p-

values are significant, demonstrating a correlation of secreted proteins and RCCs. 

Exclusion of RCCs that lay at the 5’ sites (<100) altered the results with higher p-value but 

the relationship still remains significant (Fisher exact test p=0.001 with MSS). 

The same analysis on the combined TM/secreted dataset resulted in smaller p-values 

(Table 27). 
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Table 26: Fisher Exact Test for secreted/non secreted genes versus RCCs/non RCCs. 

Method p-value p-value (random data) 

%MinMax (cu) 0.004 0.026 

RiboTempo 0.011 0.032 

MSS 1.985e-07 0.00004 

 

Table 27: P-values for Fisher Exact Test for secreted or TM/non secreted and not TM genes versus 
RCCs/non RCCs. 

Method P-value 

%MinMax (cu) 4.482e-06 

RiboTempo 7.159e-07 

MSS 1.15e-09 

 

The peripheral inner membrane proteome did not show any significant correlation to 

existence of RCCs for p < 0.01. (Table 28). 

Table 28: P-values for Fisher Exact Test for peripheral (cytoplasmic) inner membrane proteome 
and the rest of the proteins of E. coli K 12 versus RCCs/non RCCs. 

Method P-value 

%MinMax (cu) 0.46 

RiboTempo 0.04 

MSS 0.03 

 

Multidomain proteins showed interestingly a high significant association with RCCs with 

two out of the three methods. (Table 29). 

Table 29: P-values for Fisher Exact Test for multidomain/single domain versus RCCs/non RCCs. 

Method P-value 

%MinMax (cu) 4.163e-05 

RiboTempo 4.785e-07 

MSS 0.199 
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RCCs are preferentially located near domain boundaries of E. coli multidomain proteins 

 

Previous studies have demonstrated that there is a substantial correlation between domain 

boundaries and positions of rare codon clusters on mRNA (Komar and Jaenicke, 1995; 

Krasheninnikov et al., 1988; Purvis et al., 1987; Thanaraj and Argos, 1996a; Zhang et al., 

2009). Nevertheless, (Saunders and Deane, 2010) as well as (Brunak and Engelbrecht, 

1996) did not show such correlation in their findings, while correlating rare codons and 

domain boundaries on a larger scale. Herein we confirm, that at least for multidomain 

protein of E. coli, RCCs identified with LaTcOm methods are correlated well with domain 

boundaries.  summarizes the distributions of distances of RCCs from domains boundaries 

of mutlidomain proteins with all methods and demonstrates this signal. The mean 

distances with all methods are located upstream of domain boundaries. 

 

 

 
Figure 36: Distance distribution of RCCs detected with each method from domain 
boundaries. 
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RCCs correlated with β-barrel outer membrane proteins 

(Thanaraj and Argos, 1996b) observed that rare codons preferentially code for β-strands. 

Additionally a more recent study on global Pfam domains showed that the three top 

topologies with rare codons included β-strands and β-barrel outer membrane proteins 

(Chartier et al., 2012). However, rare codons were suggested to be necessary for α-helices 

to fold (Zalucki and Jennings, 2007). 

Table 30: P-values for Fisher Exact Test for β-barrel/non β-barrels versus RCCs/non RCCs. 

Method P-value 

%MinMax (cu) 3.629e-13 

RiboTempo 2.512e-08 

MSS <2.2e-16 

 

β-barrel proteins are found exclusively on the outer membrane of gram-negative bacteria 

and in the outer membranes of mitochondria and chloroplasts (Cavalier-Smith and 

Cavalier-Smith, 2000; Elofsson and Heijne, 2007; Gray et al., 1999). In this study we 

demonstrate that there is a statistically significant correlation of β-barrel outer membrane 

proteins of E. coli and RCCs as highlighted in Table 30. Exclusion of 5’ terminal RCCs 

(those below position 100) did not alter the results with MSS (Fisher test p-value <2.2e-

16).  

Gene ontology (GO) enrichment analysis 

The GO analysis revealed several interesting signals. In Table 31 we provide the results 

with MSS detections and the rest of the analysis with other methods is provided in 

Appendix 2 -Table 48 and Table 49. Observing the results from MSS, many of the 

sequences with no RCCs are cytoplasmic, involved in RNA or protein binding and 

correlated with ribosome activity. Sequences that have RCCs at the 5’ and 3’ termini are 

shown to be involved in signaling and related with the membrane. We further investigated 

the gene ontology enrichment of sequences that are found to have RCCs or not in all 

methods (1319 sequence with at least one RCC as shown in Venn diagram of Figure 22 

and 900 sequences with no RCC shown in Figure 23). The results (not shown) come into 

agreement with the above observations. 
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Table 31: Gene ontology enrichment analysis results filtered for p<0.01.  
Bonferroni correction was used to correct multiple testing p-values. Column “Data” describes the dataset that was used for the analysis. “P” is for process, “C” is for 
cellular component and “F” is molecular function. For example “P_end_80” dataset represents genes that have an RCC at the last 80 codons and have a process 
related described in column “Term”. 
 
Data Term P-value Num_annotations 

P_end_80 signal transduction 0.000372831 32 of 466 in the list, versus 105 of 4141 in the genome 

P_end_80 Signaling 0.000473251 32 of 466 in the list, versus 106 of 4141 in the genome 

P_end_80 single organism signaling 0.000473251 32 of 466 in the list, versus 106 of 4141 in the genome 

C_end_80 external encapsulating structure 0.000378754 51 of 466 in the list, versus 225 of 4141 in the genome 

C_end_80 cell envelope 0.000433483 50 of 466 in the list, versus 220 of 4141 in the genome 

C_end_80 Envelope 0.000496612 50 of 466 in the list, versus 221 of 4141 in the genome 

C_end_80 external encapsulating structure part 0.000646482 47 of 466 in the list, versus 205 of 4141 in the genome 

F_no_RCC structural constituent of ribosome 3.14171857099062e-13 54 of 1755 in the list, versus 56 of 4141 in the genome 

F_no_RCC structural molecule activity 3.52980228377893e-09 65 of 1755 in the list, versus 77 of 4141 in the genome 

F_no_RCC rRNA binding 5.72042321061098e-07 42 of 1755 in the list, versus 47 of 4141 in the genome 

F_no_RCC RNA binding 8.99308375857488e-05 107 of 1755 in the list, versus 160 of 4141 in the genome 

F_no_RCC protein binding 0.000138146 352 of 1755 in the list, versus 628 of 4141 in the genome 

C_no_RCC Intracellular 1.09981506652571e-21 615 of 1755 in the list, versus 1024 of 4141 in the genome 

C_no_RCC intracellular part 2.38611289633266e-20 593 of 1755 in the list, versus 989 of 4141 in the genome 

C_no_RCC Cytoplasm 5.44952143946664e-18 542 of 1755 in the list, versus 904 of 4141 in the genome 

C_no_RCC cytoplasmic part 4.18036104582858e-17 202 of 1755 in the list, versus 280 of 4141 in the genome 

C_no_RCC intracellular non-membrane-bounded organelle 3.22387559259071e-15 82 of 1755 in the list, versus 93 of 4141 in the genome 

C_no_RCC intracellular organelle 1.5478828204672e-14 84 of 1755 in the list, versus 97 of 4141 in the genome Athi
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C_no_RCC Cytosol 6.92302458229666e-14 175 of 1755 in the list, versus 245 of 4141 in the genome 

C_no_RCC cytosolic part 2.86857350610084e-13 55 of 1755 in the list, versus 58 of 4141 in the genome 

C_no_RCC ribonucleoprotein complex 5.61805493846237e-13 57 of 1755 in the list, versus 61 of 4141 in the genome 

C_no_RCC non-membrane-bounded organelle 2.2621269889335e-12 97 of 1755 in the list, versus 121 of 4141 in the genome 

C_no_RCC Ribosome 2.32186943382099e-12 55 of 1755 in the list, versus 59 of 4141 in the genome 

C_no_RCC Organelle 5.21920264038167e-12 99 of 1755 in the list, versus 125 of 4141 in the genome 

C_no_RCC cytosolic ribosome 1.0592342213317e-11 50 of 1755 in the list, versus 53 of 4141 in the genome 

C_no_RCC ribosomal subunit 1.0592342213317e-11 50 of 1755 in the list, versus 53 of 4141 in the genome 

C_no_RCC intracellular organelle part 6.97908715494093e-11 60 of 1755 in the list, versus 68 of 4141 in the genome 

C_no_RCC organelle part 1.99244736919464e-08 72 of 1755 in the list, versus 91 of 4141 in the genome 

C_no_RCC large ribosomal subunit 2.41356885562577e-07 30 of 1755 in the list, versus 31 of 4141 in the genome 

C_no_RCC cytosolic large ribosomal subunit 2.41356885562577e-07 30 of 1755 in the list, versus 31 of 4141 in the genome 

C_no_RCC macromolecular complex 2.76058207677343e-05 189 of 1755 in the list, versus 312 of 4141 in the genome 

F_end_20 integrase activity 0.000254665 4 of 98 in the list, versus 5 of 4141 in the genome 

F_end_100 

sequence-specific DNA binding transcription factor 

activity 0.000166038 60 of 598 in the list, versus 204 of 4141 in the genome 

F_end_100 signal transducer activity 0.000288814 32 of 598 in the list, versus 85 of 4141 in the genome 

F_end_100 nucleic acid binding transcription factor activity 0.000414579 60 of 598 in the list, versus 209 of 4141 in the genome 

F_end_100 molecular transducer activity 0.000707735 32 of 598 in the list, versus 88 of 4141 in the genome 

P_end_100 signal transduction 0.000188926 38 of 598 in the list, versus 105 of 4141 in the genome 

P_end_100 Signaling 0.000250974 38 of 598 in the list, versus 106 of 4141 in the genome 

P_end_100 single organism signaling 0.000250974 38 of 598 in the list, versus 106 of 4141 in the genome 
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F_end_80 signal transducer activity 0.000535866 27 of 466 in the list, versus 85 of 4141 in the genome 

P_no_RCC Translation 3.26477843283877e-10 89 of 1755 in the list, versus 111 of 4141 in the genome 

P_no_RCC cellular protein metabolic process 0.000148823 179 of 1755 in the list, versus 291 of 4141 in the genome 

P_no_RCC protein metabolic process 0.000816375 221 of 1755 in the list, versus 376 of 4141 in the genome 
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 4.3.2  RCCs in αHTMPs with solved 3D structure 

 

Among the initial drives for designing and implementing this project was to elucidate 

whether RCCs have a fundamental role in the biogenesis of α-helical proteins. As already 

discussed in the introduction, the exact mechanisms of co-translational insertion and 

folding of αHTMPs still remain unclear. Nevertheless, while our work was in its final 

stages, two recent works have provided evidence of local pause of translational elongation 

at distinct sites to facilitate targeting membrane proteins to the translocon (Fluman et al., 

2014; Pechmann et al., 2014). The two studies used ribosomal profiling data to estimate 

the translational rates and found that these non-optimal sites to be an additional parameter 

for the SRP arrest. On top of this we believe that RCCs play also an important role in the 

disposition of the proteins in the membrane bilayer, and their packing and assembly into 

the final 3D structure.  

In our work, using topology data from experimentally determined structures of E. coli 

αHTMPs, we demonstrate that statistically significant RCCs detected with LaTcOm 

methods, are preferentially located in loops compared to TM helices. Moreover, the loops 

mapping to detected RCCs, are mostly periplasmic, a finding demonstrated with almost all 

tested RCC detection methods of LaTcOm (Table 32, 33 and 34). From these results we 

show that the RCCs detected, are preferentially located in loops (TP) than in helices (FP) 

and positive predictive values reach 71% (the highest among the methods found for 

%MinMax (cu)). Moreover, the second row in all tables shows that the RCCs, among 

those located in loops, prefer to be located in the periplasmic region with positive 

predictive value reaching 72% (again the highest found in %MinMax (cu)). 

 

Table 32: Correlations regarding the positions of RCCs detected with %MinMax (cu) in TM 
helices or in loops. 
TP are loops with detected RCCs, FN are loops with no detected RCCs, FP are helices with RCCs 
and TN are helices with no RCCs. RCCs which span both helices and loops were discarded from 
further analysis.  

 

Analysis PPV NPV ACC SEN SPE TP FP FN TN 

loops/helices 70.97 47.49 48.68 6.77 96.82 22 9 303 274 

periplasmic/cytoplasmic 72.73 55.78 56.92 10.67 96.57 16 6 134 169 
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Table 33: Correlations regarding the positions of RCCs detected with RiboTempo in TM helices or 
in loops. 
For description see Table 32 above. 

 

Analysis PPV NPV ACC SEN SPE TP FP FN TN 

loops/helices 54.55 46.55 47.13 7.36 92.93 24 20 302 263 

periplasmic/cytoplasmic 70.83 55.63 56.75 11.26 96 17 7 134 168 

 

Table 34: Correlations regarding the positions of RCCs detected with MSS in TM helices or in 
loops. 
For description see Table 32 above. 

 
Analysis PPV NPV ACC SEN SPE TP FP FN TN 

loops/helices 68.18 47.02 47.78 4.6 97.53 15 7 311 276 

periplasmic/cytoplasmic 60 54.34 54.6 5.96 96.57 9 6 142 169 

 

Moreover, we explored an additional feature, the interaction between successive in 

sequence TM helices. Nevertheless, this parameter reduced the number of available data 

points, thus no statistical significant results could be obtained (Appendix 2 - Table 51-56). 

However, we notice that in the case were RCCs were detected in connecting loops there is 

a small preference for successive helices that interact. Such a preference could be 

substantiated with ribosomal attenuation-driven synchronization of exit into the lipid 

bilayer of successive TM helices that need to be tightly packed in the membrane.
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 5  Conclusions 

 

Recently, different procedures for identifying RCCs (as a proxy for estimating a measure 

of the translational elongation rate) have been proposed. However, no direct comparison of 

these methods has been systematically conducted. To address this, we implemented 

existing algorithms, the %MinMax and RiboTempo along with the MSS algorithm in order 

to have a consistent and reliable way of comparing the results of different methods, as well 

as providing a user interface for external users. The LaTcOm web server (Theodosiou and 

Promponas, 2012), as well as the standalone tool, were implemented for carrying out 

several analyses. The way RCCs are identified, as shown in several publications, is not 

uniform in the biological community. Different scales are used such as codon usage, tRNA 

experimental measurements (when available) and tRNA gene copy numbers which is also 

gaining ground because of its simplicity. All these different algorithms and scales make it 

difficult for comparisons to be made between studies. The uncertainty of which tool and 

which scale to use made us implement the existing algorithms and an additional, window-

less approach, in order to identify RCCs in an unbiased manner.  

As far as we know this is the first effort to benchmark existing methodologies for RCC 

detection and no similar work has been reported elsewhere. The LaTcOm standalone tool 

was applied to benchmark the methodologies using the well-annotated complement of 

protein coding genes in the complete genome of E. coli K12. The benchmarking we 

applied on the E. coli set revealed that there is no clear consistency between the different 

approaches. Nevertheless, the best positive correlation was found between %MinMax and 

MSS. There is clear bias in window-based methods to predict RCCs with least the length 

of the window. To avoid window bias issues, we propose that MSS can be alternatively 

used for detecting rare codon clusters. Nevertheless, if %MinMax is preferentially used in 

LaTcOm, codon usage should be applied as scale, as in the original publication (Clarke 

and Clark, 2008). When we experimented with tRNA values, the algorithm %MinMax 

dramatically over predicted RCCs. Nevertheless, it was initially designed to work with 

codon usage and fairly fails with other scales. 

Our analysis concerning the existence of RCCs at the terminal sites revealed a tendency 
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for RCCs to be located in the 5' terminal as well as at the 3' terminal. RCCs are found 

closer to the 5’ terminal than in the 3’ terminal and there were statistical significant 

differences in their distributions, at least when the MSS method was used in the detection 

of RCCs. This triggered us to investigate the relation of RCCs at the 3’ terminal of 

multicystronic operons and the distance to the next gene. Nevertheless, no significant 

finding was identified.  

Furthermore, we revealed that most of the sequences without RCCs are found in the 

cytoplasm, are involved with the ribosome or with metabolic processes. They are not 

involved with the membrane, whereas sequences with RCCs are found to be related with 

secretory proteins, involved with the membrane or the cell envelope. Conducting a 

detailed analysis on α-helical TM sequences we reveal a small preference for RCCs to be 

located in connecting loops and not in helices, especially in loops located in the 

periplasmic regions. For this analysis we relied only in experimentally derived annotations 

(i.e. mainly 3D structures and topology experiments with reporter fusions). Our work is 

straightforward to be extended to take into account predicted TM topologies. Such an 

approach may prove important, especially for non-model species, where experimental 

evidence is scarce. 

In addition, we demonstrated a positive relation between RCCs and multidomain proteins, 

and revealed a preference for RCCs to be located in domain boundaries. This finding 

confirms and strengthens previous hypotheses on this matter. We, as others suggest that 

the slowdown of translation at these sites is most probably necessary for the correct 

protein folding of the nascent peptide domain. 

What we finally conclude is that there is a preference for RCCs to be located in sequences 

that are somehow involved with the membrane, whether these are transmembrane that are 

co-translationally folded or just pass the membrane to be translocated to the cell wall such 

as TMβbs. The obvious connection would be that many TMβb proteins carry at 5’ terminal 

the secretory signal peptide. Nevertheless, exclusion of 5’ terminal RCCs from the 

correlation analysis of TMβbs and αHTMPs, did not alter the results. It would be very 

interesting to explore further, and in more detail, the position of RCCs in TMβb proteins 

and compare it with soluble β-barrel proteins. 
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Last, we propose that LaTcOm can have many applications both in basic and applied 

research. An interesting follow up would be the study of evolutionary conserved patterns 

of RCCs in various species, having in mind the different codon usage of each organism. 

Moreover, it can be used to rationally design heterologous gene expression studies, since 

translational profiles of proteins may reveal positions of RCCs that should not be altered 

for successfully folded proteins. Another potential application would be the explorations 

of applying LaTcOm in annotating studies for next generation sequencing experiments, 

since synonymous changes may lead to malfunction of proteins that cause diseases. 

Further on, an extension of LaTcOm should include tAi measurements from various 

species, information about domain boundaries, ribosomal profiling data, positions of 

Shine-Dalgarno sequences, annotation about the sequences under study and inclusion of 

codon usage for more model species or tRNA concentrations from different species. 

The complex biological role of RCCs as a signal for translational pause in the mRNA sites 

has now started to be appreciated. We anticipate that our results will inspire and guide 

further research towards understanding the fine details of this mechanism and unravel the 

potential coupling with co-translational folding. 

Athi
na

 The
od

os
iou



115 

 

 6  References 

 

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., 

Kondrashov, A.S., Sunyaev, S.R., 2010. A method and server for predicting 

damaging missense mutations. Nat. Methods 7, 248–249. 

Akashi, H., 1994. Synonymous Codon Usage in Drosophila Melanogaster: Natural 

Selection and Translational Accuracy. Genetics 136, 927–935. 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2007. Molecular 

Biology of the Cell, 5 edition. ed. Garland Science, New York. 

Allert, M., Cox, J.C., Hellinga, H.W., 2010. Multifactorial Determinants of Protein 

Expression in Prokaryotic Open Reading Frames. J. Mol. Biol. 402, 905–918. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local 

alignment search tool. J. Mol. Biol. 215, 403–410. 

Anfinsen, C.B., 1972. The formation and stabilization of protein structure. Biochem. J. 

128, 737–749. 

Angov, E., 2011. Codon usage: Nature’s roadmap to expression and folding of proteins. 

Biotechnol. J. 6, 650–659. 

Artieri, C.G., Fraser, H.B., 2014. Accounting for biases in riboprofiling data indicates a 

major role for proline in stalling translation. Genome Res. gr.175893.114. 

Bennetzen, J.L., Hall, B.D., 1982. Codon selection in yeast. J. Biol. Chem. 257, 3026–

3031. 

Bentele, K., Saffert, P., Rauscher, R., Ignatova, Z., Blüthgen, N., 2013. Efficient 

translation initiation dictates codon usage at gene start. Mol. Syst. Biol. 9, n/a–n/a. 

Bernardi, G., Bernardi, G., 1985. Codon usage and genome composition. J. Mol. Evol. 22, 

363–365. 

Bernsel, A., Viklund, H., Hennerdal, A., Elofsson, A., 2009. TOPCONS: consensus 

prediction of membrane protein topology. Nucleic Acids Res. 37, W465–W468. 

Bonekamp, F., Dalb?ge, H., Christensen, T., Jensen, K.F., 1989. Translation rates of 

individual codons are not correlated with tRNA abundances or with frequencies of 

utilization in Escherichia coli. J. Bacteriol. 171, 5812–5816. 

Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G., 2004. 

GO::TermFinder--open source software for accessing Gene Ontology information 

and finding significantly enriched Gene Ontology terms associated with a list of 

genes. Bioinforma. Oxf. Engl. 20, 3710–3715. 

Brunak, S., Engelbrecht, J., 1996. Protein structure and the sequential structure of mRNA: 

α-Helix and β-sheet signals at the nucleotide level. Proteins Struct. Funct. 

Bioinforma. 25, 237–252. 

Bulmer, M., 1991. The Selection-Mutation-Drift Theory of Synonymous Codon Usage. 

Genetics 129, 897–907. 

Burns, D.M., Beacham, I.R., 1985. Rare codons in E. coli and S. typhimurium signal 

sequences. FEBS Lett. 189, 318–324. 

Cannarozzi, G.M., Schneider, A., 2012. Codon Evolution: Mechanisms and Models. 

Oxford University Press. 

Cannarozzi, G., Schraudolph, N.N., Faty, M., von Rohr, P., Friberg, M.T., Roth, A.C., 

Gonnet, P., Gonnet, G., Barral, Y., 2010. A Role for Codon Order in Translation 

Athi
na

 The
od

os
iou



116 

 

Dynamics. Cell 141, 355–367. 

Carulli, J.P., Krane, D.E., Hartl, D.L., Ochman, H., 1993. Compositional heterogeneity 

and patterns of molecular evolution in the Drosophila genome. Genetics 134, 837–

845. 

Cavalier-Smith, T., Cavalier-Smith, T., 2000. Membrane heredity and early chloroplast 

evolution. Trends Plant Sci. 5, 174–182. 

Chamary, J.V., Hurst, L.D., 2009. The Price of Silent Mutations. Sci. Am. 300, 46–53. 

Charneski, C.A., Hurst, L.D., 2014. Positive Charge Loading at Protein Termini Is Due to 

Membrane Protein Topology, Not a Translational Ramp. Mol. Biol. Evol. 31, 70–

84. 

Charneski, C.A., Hurst, L.D., 2013. Positively Charged Residues Are the Major 

Determinants of Ribosomal Velocity. PLoS Biol 11, e1001508. 

Chartier, M., Gaudreault, F., Najmanovich, R., 2012. Large-scale analysis of conserved 

rare codon clusters suggests an involvement in co-translational molecular 

recognition events. Bioinforma. Oxf. Engl. 28, 1438–1445. 

Chevance, F.F.V., Le Guyon, S., Hughes, K.T., 2014. The Effects of Codon Context on In 

Vivo Translation Speed. PLoS Genet 10, e1004392. 

Clarke, T.F., Clark, P.L., 2010. Increased incidence of rare codon clusters at 5’ and 3’ gene 

termini: implications for function. BMC Genomics 11, 118. 

Clarke, T.F., IV, Clark, P.L., 2008. Rare Codons Cluster. PLoS ONE 3, e3412. 

Cortazzo, P., Cerve ansky, C., Mar  n, M., Reiss, C., Ehrlich, R., Deana, A., 2002. Silent 

mutations affect in vivo protein folding in Escherichia coli. Biochem. Biophys. 

Res. Commun. 293, 537–541. 

Crick, F.H., 1958. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163. 

Crick, F.H., 1970. Central dogma of molecular biology. Nature 227, 561–563. 

Crombie, T., Swaffield, J.C., Brown, A.J.P., 1992. Protein folding within the cell is 

influenced by controlled rates of polypeptide elongation. J. Mol. Biol. 228, 7–12. 

Cuff, A.L., Sillitoe, I., Lewis, T., Clegg, A.B., Rentzsch, R., Furnham, N., Pellegrini-

Calace, M., Jones, D., Thornton, J., Orengo, C.A., 2011. Extending CATH: 

increasing coverage of the protein structure universe and linking structure with 

function. Nucleic Acids Res. 39, D420–D426. 

Curran, J.F., Yarus, M., 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in 

vivo. J. Mol. Biol. 209, 65–77. 

Daley, D.O., Rapp, M., Granseth, E., Melén, K., Drew, D., Heijne, G. von, 2005. Global 

Topology Analysis of the Escherichia coli Inner Membrane Proteome. Science 308, 

1321–1323. 

Dessen, P., Képès, F., 2000. The PAUSE software for analysis of translational control over 

protein targeting: Application to E. nidulans membrane proteins. Gene 244, 89–96. 

Dittmar, K.A., Goodenbour, J.M., Pan, T., 2006. Tissue-Specific Differences in Human 

Transfer RNA Expression. PLoS Genet 2, e221. 

Dong, H., Nilsson, L., Kurland, C.G., 1996. Co-variation of tRNA abundance and codon 

usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663. 

Dos Reis, M., Wernisch, L., Savva, R., 2003. Unexpected correlations between gene 

expression and codon usage bias from microarray data for the whole Escherichia 

coli K-12 genome. Nucleic Acids Res. 31, 6976–6985. 

Elofsson, A., Heijne, G. von, 2007. Membrane Protein Structure: Prediction versus 

Reality. Annu. Rev. Biochem. 76, 125–140. 

Emilsson, V., Kurland, C.G., 1990. Growth rate dependence of transfer RNA abundance in 

Escherichia coli. EMBO J. 9, 4359–4366. 

Athi
na

 The
od

os
iou



117 

 

Emilsson, V., Näslund, A.K., Kurland, C.G., 1993. Growth-rate-dependent Accumulation 

of Twelve tRNA Species in Escherichia coli. J. Mol. Biol. 230, 483–491. 

Ermolaeva, M.D., 2001. Synonymous codon usage in bacteria. Curr. Issues Mol. Biol. 3, 

91–97. 

Fluman, N., Navon, S., Bibi, E., Pilpel, Y., 2014. mRNA-programmed translation pauses 

in the targeting of E. coli membrane proteins. eLife e03440. 

Fox, N.K., Brenner, S.E., Chandonia, J.-M., 2013. SCOPe: Structural Classification of 

Proteins—extended, integrating SCOP and ASTRAL data and classification of new 

structures. Nucleic Acids Res. gkt1240. 

Freeman, T.C., Jr, Wimley, W.C., 2012. TMBB-DB: a transmembrane β-barrel proteome 

database. Bioinforma. Oxf. Engl. 28, 2425–2430. 

Gloge, F., Becker, A.H., Kramer, G., Bukau, B., 2014. Co-translational mechanisms of 

protein maturation. Curr. Opin. Struct. Biol., Folding and binding / Nucleic acids 

and their protein complexes 24, 24–33. 

Goldman, E., Rosenberg, A.H., Zubay, G., Studier, W.F., 1995. Consecutive Low-usage 

Leucine Codons Block Translation Only When Near the 5′ End of a Message 

inEscherichia coli. J. Mol. Biol. 245, 467–473. 

Goodman, D.B., Church, G.M., Kosuri, S., 2013. Causes and Effects of N-Terminal Codon 

Bias in Bacterial Genes. Science 342, 475–479. 

Gouy, M., Gautier, C., 1982. Codon usage in bacteria: correlation with gene expressivity. 

Nucleic Acids Res. 10, 7055–7074. 

Grantham, R., Gautier, C., Gouy, M., Mercier, R., Pave, A., 1980. Codon catalog usage 

and the genome hypothesis. Nucleic Acids Res. 8, r49–r62. 

Gray, M.W., Burger, G., Lang, B.F., 1999. Mitochondrial Evolution. Science 283, 1476–

1481. 

Guggenmoos-Holzmann, I., van Houwelingen, H.C., 2000. The (in)validity of sensitivity 

and specificity. Stat. Med. 19, 1783–1792. 

Guisez, Y., Robbens, J., Remaut, E., Fiers, W., 1993. Folding of the MS2 Coat Protein in 

Escherichia coli is Modulated by Translational Pauses Resulting from mRNA 

Secondary Structure and Codon Usage: A Hypothesis. J. Theor. Biol. 162, 243–

252. 

Gustafsson, C., Govindarajan, S., Minshull, J., 2004. Codon bias and heterologous protein 

expression. Trends Biotechnol. 22, 346–353. 

Hayes, C.S., Bose, B., Sauer, R.T., 2002. Stop codons preceded by rare arginine codons 

are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. 

Sci. U. S. A. 99, 3440–3445. 

Hessa, T., Kim, H., Bihlmaier, K., Lundin, C., Boekel, J., Andersson, H., Nilsson, I., 

White, S.H., von Heijne, G., 2005. Recognition of transmembrane helices by the 

endoplasmic reticulum translocon. Nature 433, 377–381. 

Huang, L., Kulldorff, M., Gregorio, D., 2007. A Spatial Scan Statistic for Survival Data. 

Biometrics 63, 109–118. 

Ikemura, T., 1985. Codon usage and tRNA content in unicellular and multicellular 

organisms. Mol. Biol. Evol. 2, 13–34. 

Ikemura, T., 1982. Correlation between the abundance of yeast transfer RNAs and the 

occurrence of the respective codons in protein genes: Differences in synonymous 

codon choice patterns of yeast and Escherichia coli with reference to the 

abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158, 573–597. 

Ikemura, T., 1981a. Correlation between the abundance of Escherichia coli transfer RNAs 

and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146, 

Athi
na

 The
od

os
iou



118 

 

1–21. 

Ikemura, T., 1981b. Correlation between the abundance of Escherichia coli transfer RNAs 

and the occurrence of the respective codons in its protein genes: A proposal for a 

synonymous codon choice that is optimal for the E. coli translational system. J. 

Mol. Biol. 151, 389–409. 

Ikemura, T., Wada, K., 1991. Evident diversity of codon usage patterns of human genes 

with respect to chromosome banding patterns and chromosome numbers; relation 

between nucleotide sequence data and cytogenetic data. Nucleic Acids Res. 19, 

4333–4339. 

Ingolia, N.T., 2010. Chapter 6 - Genome-Wide Translational Profiling by Ribosome 

Footprinting, in: Jonathan Weissman; Christine Guthrie and Gerald R. Fink (Ed.), 

Methods in Enzymology, Guide to Yeast Genetics: Functional Genomics, 

Proteomics, and Other Systems Analysis. Academic Press, pp. 119–142. 

Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S., Weissman, J.S., 2009. Genome-Wide 

Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome 

Profiling. Science 324, 218–223. 

Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F., Boyer, H.W., 

1977. Expression in Escherichia coli of a chemically synthesized gene for the 

hormone somatostatin. Science 198, 1056–1063. 

Jacob, F., Monod, J., 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. 

Mol. Biol. 3, 318–356. 

Jacob, W.F., Santer, M., Dahlberg, A.E., 1987. A single base change in the Shine-Dalgarno 

region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc. 

Natl. Acad. Sci. 84, 4757–4761. 

Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y., Ikemura, T., 2001. Codon usage and 

tRNA genes in eukaryotes: correlation of codon usage diversity with translation 

efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J. 

Mol. Evol. 53, 290–298. 

Kanaya, S., Yamada, Y., Kudo, Y., Ikemura, T., 1999. Studies of codon usage and tRNA 

genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: 

gene expression level and species-specific diversity of codon usage based on 

multivariate analysis. Gene 238, 143–155. 

Karlin, S., Altschul, S.F., 1990. Methods for assessing the statistical significance of 

molecular sequence features by using general scoring schemes. Proc. Natl. Acad. 

Sci. U. S. A. 87, 2264–2268. 

Karlin, S., Mrázek, J., Campbell, A.M., 1998. Codon usages in different gene classes of 

the Escherichia coli genome. Mol. Microbiol. 29, 1341–1355. 

Képès, F., 1996. The “+70 pause”: Hypothesis of a translational control of membrane 

protein assembly. J. Mol. Biol. 262, 77–86. 

Kink, J.A., Maley, M.E., Ling, K.-Y., Kanabrocki, J.A., Kung, C., 1991. Efficient 

Expression of the Paramecium Calmodulin Gene in Escherichia coli after Four 

TAA-to-CAA Changes through a Series of Polymerase Chain Reactions. J. 

Protozool. 38, 441–447. 

Kleinschmidt, J.H., Tamm, L.K., 2002. Secondary and Tertiary Structure Formation of the 

β-Barrel Membrane Protein OmpA is Synchronized and Depends on Membrane 

Thickness. J. Mol. Biol. 324, 319–330. 

Knight, R.D., Freeland, S.J., Landweber, L.F., 2001. Rewiring the keyboard: evolvability 

of the genetic code. Nat. Rev. Genet. 2, 49–58. 

Koide, T., Reiss, D.J., Bare, J.C., Pang, W.L., Facciotti, M.T., Schmid, A.K., Pan, M., 

Athi
na

 The
od

os
iou



119 

 

Marzolf, B., Van, P.T., Lo, F.-Y., Pratap, A., Deutsch, E.W., Peterson, A., Martin, 

D., Baliga, N.S., 2009. Prevalence of transcription promoters within archaeal 

operons and coding sequences. Mol. Syst. Biol. 5, 285. 

Komar, A.A., 2009. A pause for thought along the co-translational folding pathway. Trends 

Biochem. Sci. 34, 16–24. 

Komar, A.A., Jaenicke, R., 1995. Kinetics of translation of γB crystallin and its circularly 

permutated variant in an in vitro cell-free system: possible relations to codon 

distribution and protein folding. FEBS Lett. 376, 195–198. 

Komar, A.A., Lesnik, T., Reiss, C., 1999. Synonymous codon substitutions affect ribosome 

traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391. 

Krasheninnikov, I.A., Komar, A.A., Adzhubei, I.A., 1991. Nonuniform size distribution of 

nascent globin peptides, evidence for pause localization sites, and a 

contranslational protein-folding model. J. Protein Chem. 10, 445–453. 

Krasheninnikov, I.A., Komar, A.A., Adzhubeĭ, I.A., 1988. [Role of the rare codon clusters 

in defining the boundaries of polypeptide chain regions with identical secondary 

structures in the process of co-translational folding of proteins]. Dokl. Akad. Nauk 

SSSR 303, 995–999. 

Krüger, M.K., Pedersen, S., Hagervall, T.G., Sørensen, M.A., 1998. The modification of 

the wobble base of tRNAGlu modulates the translation rate of glutamic acid 

codons in vivo. J. Mol. Biol. 284, 621–631. 

Kudla, G., Murray, A.W., Tollervey, D., Plotkin, J.B., 2009. Coding-sequence determinants 

of gene expression in Escherichia coli. Science 324, 255–258. 

Lakkaraju, A.K.K., Mary, C., Scherrer, A., Johnson, A.E., Strub, K., 2008. SRP maintains 

nascent chains translocation-competent by slowing translation rates to match 

limiting numbers of targeting sites. Cell 133, 440–451. 

Li, G.-W., Oh, E., Weissman, J.S., 2012. The anti-Shine-Dalgarno sequence drives 

translational pausing and codon choice in bacteria. Nature 484, 538–541. 

Lloyd, A.T., Sharp, P.M., 1992. Evolution of codon usage patterns: the extent and nature of 

divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic 

Acids Res. 20, 5289–5295. 

Lynn, D.J., Singer, G.A.C., Hickey, D.A., 2002. Synonymous codon usage is subject to 

selection in thermophilic bacteria. Nucleic Acids Res. 30, 4272–4277. 

Magrane, M., Consortium, U., 2011. UniProt Knowledgebase: a hub of integrated protein 

data. Database J. Biol. Databases Curation 2011. 

Mahlab, S., Linial, M., 2014. Speed Controls in Translating Secretory Proteins in 

Eukaryotes - an Evolutionary Perspective. PLoS Comput. Biol. 10. 

Makhoul, C.H., Trifonov, E.N., 2002. Distribution of Rare Triplets Along mRNA and 

Their Relation to Protein Folding. J. Biomol. Struct. Dyn. 20, 413–420. 

Marin, M., 2008. Folding at the rhythm of the rare codon beat. Biotechnol. J. 3, 1047–

1057. 

Martin, A.C.R., 2005. Mapping PDB chains to UniProtKB entries. Bioinformatics 21, 

4297–4301. 

Matthews, B.W., 1975. Comparison of the predicted and observed secondary structure of 

T4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451. 

McKown, R.L., Raab, R.W., Kachelries, P., Caldwell, S., Laurie, G.W., 2013. Conserved 

Regional 3? Grouping of Rare Codons in the Coding Sequence of Ocular 

Prosecretory Mitogen Lacritin. Invest. Ophthalmol. Vis. Sci. 54, 1979–1987. 

McLachlan, A.D., Staden, R., Boswell, D.R., 1984. A method for measuring the non-

random bias of a codon usage table. Nucleic Acids Res. 12, 9567–9575. 

Athi
na

 The
od

os
iou



120 

 

Medigue, C., Viari, A., Henaut, A., Danchin, A., 1993. Colibri: a functional data base for 

the Escherichia coli genome. Microbiol. Rev. 57, 623–654. 

Moriyama, E.N., Powell, J.R., 1997. Codon usage bias and tRNA abundance in 

Drosophila. J. Mol. Evol. 45, 514–523. 

Musto, H., Cruveiller, S., D’Onofrio, G., Romero, H., Bernardi, G., 2001. Translational 

Selection on Codon Usage in Xenopus laevis. Mol. Biol. Evol. 18, 1703–1707. 

Nakamura, Y., Gojobori, T., Ikemura, T., 2000. Codon usage tabulated from international 

DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292. 

Ng, P.C., Henikoff, S., 2003. SIFT: predicting amino acid changes that affect protein 

function. Nucleic Acids Res. 31, 3812–3814. 

Nørholm, M.H.H., Light, S., Virkki, M.T.I., Elofsson, A., von Heijne, G., Daley, D.O., 

2012. Manipulating the genetic code for membrane protein production: What have 

we learnt so far? Biochim. Biophys. Acta BBA - Biomembr., Protein Folding in 

Membranes 1818, 1091–1096. 

Normark, S., Bergstrom, S., Edlund, T., Grundstrom, T., Jaurin, B., Lindberg, F.P., Olsson, 

O., 1983. Overlapping Genes. Annu. Rev. Genet. 17, 499–525. 

Oh, E., Becker, A.H., Sandikci, A., Huber, D., Chaba, R., Gloge, F., Nichols, R.J., Typas, 

A., Gross, C.A., Kramer, G., Weissman, J.S., Bukau, B., 2011. Selective ribosome 

profiling reveals the co-translational chaperone action of trigger factor in vivo. Cell 

147, 1295–1308. 

Oldfield, C.J., Cheng, Y., Cortese, M.S., Brown, C.J., Uversky, V.N., Dunker, A.K., 2005. 

Comparing and Combining Predictors of Mostly Disordered Proteins†. 

Biochemistry (Mosc.) 44, 1989–2000. 

Osborne, A.R., Rapoport, T.A., van den Berg, B., 2005. Protein Translocation by the 

Sec61/Secy Channel. Annu. Rev. Cell Dev. Biol. 21, 529–550. 

Pancsa, R., Tompa, P., 2012. Structural Disorder in Eukaryotes. PLoS ONE 7, e34687. 

Papanastasiou, M., Orfanoudaki, G., Koukaki, M., Kountourakis, N., Sardis, M.F., 

Aivaliotis, M., Karamanou, S., Economou, A., 2013. The Escherichia coli 

peripheral inner membrane proteome. Mol. Cell. Proteomics MCP 12, 599–610. 

Pavlov, M.Y., Watts, R.E., Tan, Z., Cornish, V.W., Ehrenberg, M., Forster, A.C., 2009. 

Slow peptide bond formation by proline and other N-alkylamino acids in 

translation. Proc. Natl. Acad. Sci. U. S. A. 106, 50–54. 

Pechmann, S., Chartron, J.W., Frydman, J., 2014. Local slowdown of translation by 

nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. 

Struct. Mol. Biol. 21, 1100–1105. 

Pechmann, S., Frydman, J., 2013. Evolutionary conservation of codon optimality reveals 

hidden signatures of co-translational folding. Nat. Struct. Mol. Biol. 20, 237–243. 

Pedersen, S., 1984. Escherichia coli ribosomes translate in vivo with variable rate. EMBO 

J. 3, 2895–2898. 

Percudani, R., Pavesi, A., Ottonello, S., 1997. Transfer RNA gene redundancy and 

translational selection in Saccharomyces cerevisiae. J. Mol. Biol. 268, 322–330. 

Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating 

signal peptides from transmembrane regions. Nat. Methods 8, 785–786. 

Ponnala, L., 2010. Detecting slow-translating regions in E.coli. Int. J. Bioinforma. Res. 

Appl. 6, 522–530. 

Power, P.M., Jones, R.A., Beacham, I.R., Bucholtz, C., Jennings, M.P., 2004. Whole 

genome analysis reveals a high incidence of non-optimal codons in secretory signal 

sequences of Escherichia coli. Biochem. Biophys. Res. Commun. 322, 1038–1044. 

Prilusky, J., Bibi, E., 2009. Studying membrane proteins through the eyes of the genetic 

Athi
na

 The
od

os
iou



121 

 

code revealed a strong uracil bias in their coding mRNAs. Proc. Natl. Acad. Sci. 

106, 6662–6666. 

Purvis, I.J., Bettany, A.J.E., Santiago, T.C., Coggins, J.R., Duncan, K., Eason, R., Brown, 

A.J.P., 1987. The efficiency of folding of some proteins is increased by controlled 

rates of translation in vivo: A hypothesis. J. Mol. Biol. 193, 413–417. 

Quax, T.E.F., Wolf, Y.I., Koehorst, J.J., Wurtzel, O., van der Oost, R., Ran, W., Blombach, 

F., Makarova, K.S., Brouns, S.J.J., Forster, A.C., Wagner, E.G.H., Sorek, R., 

Koonin, E.V., van der Oost, J., 2013. Differential Translation Tunes Uneven 

Production of Operon-Encoded Proteins. Cell Rep. 4, 938–944. 

Raine, A., Ullers, R., Pavlov, M., Luirink, J., Wikberg, J.E.S., Ehrenberg, M., 2003. 

Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie 

85, 659–668. 

R Development Core Team, 2008. R : A language and environment for statistical 

computing. R Foundation for Statistical Computing. 

Regalia, M., Rosenblad, M.A., Samuelsson, T., 2002. Prediction of signal recognition 

particle RNA genes. Nucleic Acids Res. 30, 3368–3377. 

Rehling, P., Pfanner, N., Meisinger, C., 2003. Insertion of Hydrophobic Membrane 

Proteins into the Inner Mitochondrial Membrane—A Guided Tour. J. Mol. Biol. 

326, 639–657. 

Ruzzo, W.L., Tompa, M., 1999. A linear time algorithm for finding all maximal scoring 

subsequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. ISMB Int. Conf. Intell. Syst. 

Mol. Biol. 234–241. 

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Mu iz-Rascado, L., 

García-Sotelo, J.S., Weiss, V., Solano-Lira, H., Martínez-Flores, I., Medina-Rivera, 

A., Salgado-Osorio, G., Alquicira-Hernández, S., Alquicira-Hernández, K., López-

Fuentes, A., Porrón-Sotelo, L., Huerta, A.M., Bonavides-Martínez, C., Balderas-

Martínez, Y.I., Pannier, L., Olvera, M., Labastida, A., Jiménez-Jacinto, V., Vega-

Alvarado, L., Del Moral-Chávez, V., Hernández-Alvarez, A., Morett, E., Collado-

Vides, J., 2013. RegulonDB v8.0: omics data sets, evolutionary conservation, 

regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 

41, D203–213. 

Saunders, R., Deane, C.M., 2010. Synonymous codon usage influences the local protein 

structure observed. Nucleic Acids Res. 38, 6719–6728. 

Schauder, B., McCarthy, J.E.G., 1989. The role of bases upstream of the Shine-Dalgarno 

region and in the coding sequence in the control of gene expression in Escherichia 

coli: Translation and stability of mRNAs in vivo. Gene 78, 59–72. 

Sharp, P.M., Li, W.H., 1989. On the rate of DNA sequence evolution in Drosophila. J. 

Mol. Evol. 28, 398–402. 

Sharp, P.M., Li, W.H., 1987. The codon Adaptation Index--a measure of directional 

synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 

15, 1281–1295. 

Sharp, P.M., Li, W.H., 1986. An evolutionary perspective on synonymous codon usage in 

unicellular organisms. J. Mol. Evol. 24, 28–38. 

Shields, D.C., Sharp, P.M., 1987. Synonymous codon usage in Bacillus subtilis reflects 

both translational selection and mutational biases. Nucleic Acids Res. 15, 8023–

8040. 

Shields, D.C., Sharp, P.M., Higgins, D.G., Wright, F., 1988. “Silent” sites in Drosophila 

genes are not neutral: evidence of selection among synonymous codons. Mol. Biol. 

Evol. 5, 704–716. 

Athi
na

 The
od

os
iou



122 

 

Shine, J., Dalgarno, L., 1974. The 3?-Terminal Sequence of Escherichia coli 16S 

Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding 

Sites. Proc. Natl. Acad. Sci. U. S. A. 71, 1342–1346. 

Silva, R.M., Miranda, I., Moura, G., Santos, M.A.S., 2004. Yeast as a model organism for 

studying the evolution of nonstandard genetic codes. Brief. Funct. Genomic. 

Proteomic. 3, 35–46. 

Sørensen, M.A., Pedersen, S., 1998. Determination of the Peptide Elongation Rate In 

Vivo, in: Martin, R. (Ed.), Protein Synthesis, Methods in Molecular Biology. 

Springer New York, pp. 129–142. 

Srinivasan, G., James, C.M., Krzycki, J.A., 2002. Pyrrolysine encoded by UAG in 

Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–

1462. 

Steitz, J.A., Jakes, K., 1975. How ribosomes select initiator regions in mRNA: base pair 

formation between the 3’ terminus of 16S rRNA and the mRNA during initiation of 

protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. 72, 4734–4738. 

Supek, F., Smuc, T., 2010. On Relevance of Codon Usage to Expression of Synthetic and 

Natural Genes in Escherichia coli. Genetics 185, 1129–1134. 

Tamm, L.K., Hong, H., Liang, B., 2004. Folding and assembly of ?-barrel membrane 

proteins. Biochim. Biophys. Acta BBA - Biomembr., Lipid-Protein Interactions 

1666, 250–263. 

Tanner, D.R., Cariello, D.A., Woolstenhulme, C.J., Broadbent, M.A., Buskirk, A.R., 2009. 

Genetic Identification of Nascent Peptides That Induce Ribosome Stalling. J. Biol. 

Chem. 284, 34809–34818. 

Thanaraj, T.A., Argos, P., 1996a. Ribosome-mediated translational pause and protein 

domain organization. Protein Sci. Publ. Protein Soc. 5, 1594–1612. 

Thanaraj, T.A., Argos, P., 1996b. Protein secondary structural types are differentially 

coded on messenger RNA. Protein Sci. Publ. Protein Soc. 5, 1973–1983. 

Theodosiou, A., Promponas, V.J., 2012. LaTcOm: a web server for visualizing rare codon 

clusters in coding sequences. Bioinformatics 28, 591–592. 

Trifonov, E.N., 2011. Thirty Years of Multiple Sequence Codes. Genomics Proteomics 

Bioinformatics 9, 1–6. 

Tsaousis, G.N., Tsirigos, K.D., Andrianou, X.D., Liakopoulos, T.D., Bagos, P.G., 

Hamodrakas, S.J., 2010. ExTopoDB: a database of experimentally derived 

topological models of transmembrane proteins. Bioinforma. Oxf. Engl. 26, 2490–

2492. 

Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, 

O., Furman, I., Pilpel, Y., 2010a. An Evolutionarily Conserved Mechanism for 

Controlling the Efficiency of Protein Translation. Cell 141, 344–354. 

Tuller, T., Veksler-Lublinsky, I., Gazit, N., Kupiec, M., Ruppin, E., Ziv-Ukelson, M., 2011. 

Composite effects of gene determinants on the translation speed and density of 

ribosomes. Genome Biol. 12, R110. 

Tuller, T., Waldman, Y.Y., Kupiec, M., Ruppin, E., 2010b. Translation efficiency is 

determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. 107, 

3645–3650. 

Tusnády, G.E., Dosztányi, Z., Simon, I., 2004. Transmembrane proteins in the Protein 

Data Bank: identification and classification. Bioinformatics 20, 2964–2972. 

Varenne, S., Buc, J., Lloubes, R., Lazdunski, C., 1984. Translation is a non-uniform 

process: Effect of tRNA availability on the rate of elongation of nascent 

polypeptide chains. J. Mol. Biol. 180, 549–576. 

Athi
na

 The
od

os
iou



123 

 

Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L.M., Cortese, 

M.S., Lawson, J.D., Brown, C.J., Sikes, J.G., Newton, C.D., Dunker, A.K., 2005. 

DisProt: a database of protein disorder. Bioinforma. Oxf. Engl. 21, 137–140. 

Wang, G., Dunbrack, R.L., 2003. PISCES: a protein sequence culling server. 

Bioinformatics 19, 1589–1591. 

Wang, L., Wessler, S.R., 2001. Role of mRNA Secondary Structure in Translational 

Repression of the Maize Transcriptional ActivatorLc. Plant Physiol. 125, 1380–

1387. 

White, S.H., 2004. The progress of membrane protein structure determination. Protein Sci. 

13, 1948–1949. 

Widmann, M., Clairo, M., Dippon, J., Pleiss, J., 2008. Analysis of the distribution of 

functionally relevant rare codons. BMC Genomics 9, 207. 

Wright, F., 1990. The “effective number of codons” used in a gene. Gene 87, 23–29. 

Zalucki, Y.M., Jennings, M.P., 2007. Experimental confirmation of a key role for non-

optimal codons in protein export. Biochem. Biophys. Res. Commun. 355, 143–

148. 

Zeeberg, B., 2002. Shannon Information Theoretic Computation of Synonymous Codon 

Usage Biases in Coding Regions of Human and Mouse Genomes. Genome Res. 

12, 944–955. 

Zemla, A., Venclovas, C., Fidelis, K., Rost, B., 1999. A modified definition of Sov, a 

segment-based measure for protein secondary structure prediction assessment. 

Proteins 34, 220–223. 

Zhang, G., Hubalewska, M., Ignatova, Z., 2009. Transient ribosomal attenuation 

coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 

16, 274–280. 

Zhang, G., Ignatova, Z., 2009. Generic algorithm to predict the speed of translational 

elongation: implications for protein biogenesis. PloS One 4, e5036. 

Zinoni, F., Birkmann, A., Stadtman, T.C., Bock, A., 1986. Nucleotide sequence and 

expression of the selenocysteine-containing polypeptide of formate dehydrogenase 

(formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. U. S. 

A. 83, 4650–4654. 

 

  

Athi
na

 The
od

os
iou



124 

 

Appendix 1 

 

 

Figure 37: Part of the content of file U00096.fnn downloaded from GenBank.  

DNA coding genes in FASTA format for E. coli K12 MG1655 strain. 

 (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/). 

 

 

 

 

 

 

 

 

 

 

Figure 39: Part of the content of file U00096.rnt downloaded from GenBank.  

Information regarding the RNA genes of E. coli K12 MG1655 strain.  

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/). 

Figure 38: Part of content of file U00096.ptt downloaded from GenBank.  

Information regarding the coding genes of E. coli K12 MG1655 strain. 
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Table 35: Number of sequence analyzed and duration of RCC detection with each method of 

LaTcOm for a single run. 

 

Method No of sequences analyzed Duration in sec 

MSS 4136 403 

%MinMax 4128 1323 

RiboTempo 4128 732 

 
 
 
 
Table 36: Discarded sequences from LaTcOm analysis. 
Sequences in which window size exceeded number of codons with window based methods of 
LaTcOm: %MinMax and RiboTempo. 

 

GI Annotation UniProt accesion Length 

226510957 Small toxic protein IbsB (inferred from homology in UniProt) C1P608 18 

1788329 his operon leader peptide (inferred from homology in UniProt) P60995 17 

308199521 regulatory leader peptide for mgtA (inferred from homology in UniProt) E2JKY7 18 

226510989 Uncharacterized protein YjeV (evidence at the protein level) C1P621 18 

1788950 Phe operon leader peptide (predicted) P0AD72 16 

226510987 Uncharacterized protein IlvX (evidence at the protein level) C1P619 17 

1787519 trp operon leader peptide (evidence at the protein level) P0AD92 15 

1788008 phenylalanyl-tRNA synthetase operon leader peptide (predicted) P0AD74 15 

 
 

Table 37: Sequences that were discarded due to “in-frame stop codons”. 

In-frame stop codons:GI number ID Gene name Annotation from Ecogene (http://www.ecogene.org) 

3868721 

 

fdhF Formate dehydrogenase H (The UGA stop codon 140 is 

translated as selenocysteine in vivo-) 

3868720 fdoG formate dehydrogenase-O, large subunit (The UGA stop 

codon 196 is translated as selenocysteine in vivo 

3868719 fdnG formate dehydrogenase-N, alpha subunit, nitrate-inducible 

(he UGA stop codon 196 is translated as selenocysteine in 

vivo ) 
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Figure 41: Distribution of MCC v1 values from shuffled sequences.  
MCC values are calculated in the comparisons of reference and predicted set of genes. 
Analysis was made with all shuffled genes as described in the Methods of Chapter 3section. 
The x axis shows the MCC value that can range from -1 to 1, the y axis shows the frequency 
from N compared MCC values. Graphs were generated in R statistical environment (R 
Development Core Team, 2008). 

 

 

>Ec_3081 

HHHHCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCC

CCCCCCCCCCCCC 

> 

>Ec_3609 

HHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCC

CCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 

 

>Ec_2457 

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 

 

>Ec_3028 

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHH 

 

Figure 40: Example of output format of the file created by transform_files_for_SOV_MCC.pl.  
“C” strings are position of clusters and “H” strings are positions of non-detected clusters 
. 
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Table 38: Random MCC v1 distribution analysis from shuffled sequences.  
Statistical properties were computed in R statistical environment (R Development Core Team, 
2008). 
 
Reference  Predicted  Mean Median SD Overall MCC mean 

RiboTempo %MinMax(cu) -0.001 -0.001 0.065 0.000 

RiboTempo %MinMax(z) 0.000 0.000 0.065 0.000 

RiboTempo MSS -0.001 -0.001 0.071 -0.002 

%MinMax(cu) MSS 0.001 0.000 0.066 0.001 

%MinMax(z) MSS -0.001 -0.001 0.065 -0.001 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 
 

 

 

 

 
Figure 42: MCC v2 distribution values from shuffled sequences. 
Description shown in Figure 41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Athi
na

 The
od

os
iou



128 

 

 
Table 39: Random MCC v2 distribution analysis from shuffled sequences.  
Statistical properties were computed in R statistical environment (R Development Core Team, 
2008). 

 

Reference  Predicted  Mean Median SD Overall MCC mean 

RiboTempo %MinMax(cu) 0.001 -0.002 0.054 0.032 

RiboTempo %MinMax(z) 0.001 0.000 0.055 0.029 

RiboTempo MSS 0.002 0.001 0.052 0.034 

%MinMax(cu) MSS 0.000 -0.003 0.056 0.085 

%MinMax(z) MSS 0.001 0.000 0.056 0.072 

 

 
Table 40: Random SOV v1 distribution analysis from shuffled sequences. 
Statistical properties were computed in R statistical environment (R Development Core Team, 
2008). 
 

Reference Predicted Mean Median SD 

RiboTempo %MinMax(cu) 36.700 32.400 33.211 

RiboTempo %MinMax(z) 31.710 30.700 29.353 

RiboTempo MSS 51.380 38.300 40.080 

%MinMax(cu) MSS 42.610 35.500 34.104 

%MinMax(z) MSS 34.950 30.800 31.573 

 

 

Table 41: Random SOV v2 distribution analysis from shuffled sequences. 
Statistical properties were computed in R statistical environment (R Development Core Team, 
2008). 

 

Reference Predicted Mean Median SD 

RiboTempo %MinMax(cu) 22.4200 27.3500 15.5950 

RiboTempo %MinMax(z) 22.2000 26.8500 15.5300 

RiboTempo MSS 21.6100 26.3000 15.9840 

%MinMax(cu) MSS 25.2500 31.1000 14.7090 

%MinMax(z) MSS 22.4300 26.5000 14.7400 

 

 
Athi

na
 The

od
os

iou



129 

 

 

Figure 43: Distribution of SOV v1 values from shuffled sequences.  
SOV values are calculated in the comparisons of reference and predicted set of genes. Analysis 
was made with all shuffled genes as described in the Methods section. The x axis shows the SOV 
value that can range from 0 to 100 and the y axis shows the frequency from N compared SOV 
values. Graphs were generated with R statistical environment (R Development Core Team, 2008). 
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Figure 44: Distribution of SOV v2 values from shuffled sequences. 
Read description shown in Figure 43. 

 

 

 

Athi
na

 The
od

os
iou



131 

 

 

Figure 45: Detailed distribution of clusterlength of RCCs detected with RiboTempo with different 
window thresholds.  
In this analysis window thresholds 11,13,15,17 and 21 were applied. Graphs were produced in the 
R statistical environment (R Development Core Team, 2008). 
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Figure 46: Detailed distribution of clusterlength of RCCs detected with %MinMax with different 
window thresholds. 
In this analysis window thresholds 11,13,15,17 and 21 were applied. Graphs were produced in the 
R statistical environment (R Development Core Team, 2008). 

 

Table 42: P-values from Wilcoxon rank test of all RCCs distance distribution from 3' compared 
with distributions from the 5' terminus.  
The wilcox.test() function was used from the R statistical environment (R Development Core 
Team, 2008). 

 

Method p-value 

%Minmax (cu) 0.968 

Ribotempo 0.904 

MSS 0.837 
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Figure 47: Distribution of the distance in bp between adjacent gene in operons. 
 A) Cases were the first gene has RCCs at the 3’ terminal and the next gene has RCCs at the 5’ 
terminal. B) Cases were the first gene has RCCs at the 3’ terminal and the next gene does not have 
RCC at the 5’ terminal. C) Cases were the first gene does not have RCC at the 3’ terminal but the 
next gene has RCCs at the 5’ terminal and D) Cases were neither the first has RCC at the 3’ 
terminal nor the next gene has RCCs at the 5’. 
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Figure 48: Presence of RCCs in operons. 
Figure is adapted from (Quax et al., 2013) and is demonstrating the codon bias in three operon 
complexes the ribosomal protein operon L7/L12; the F-type ATPase and type I-E Cascade 
complex. We demonstrate with red asterisk the existence of RCC detected with MSS for the genes 
of the three operon complexes. The symbol “?” was placed for the gene that could not be identified 
in our dataset. 
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Appendix 2 

 

 

Figure 49: Part of file disprot_fasta_v6_01.txt. 
The file was downloaded from DisProt database (Vucetic et al., 2005); 
http://www.dabi.temple.edu/disprot/index.php) (4/02/2013) and includes information on 
disorder regions from several species. 

 

 

 

Figure 50: SignalP output file taking as input the E. coli K12 proteins. 

 

 

Table 43: Proteins from Papanstasiou et al., 2013 in which the E. coli K 12 UniProt accession 
numbers did not map with GIs that are available in U00096.ptt. 

 

UniProt accession Gene name Existence in U00096.ptt EcoGene description 

P75684 yagP no Pseudogene 

P77481 ycjV no Pseudogene 

P31450 glvG no Pseudogene 
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Figure 51: Part of parsable file from SCOP with domain coordinate annotation. 

 
Table 44: GI numbers from the NC00093.ptt file that do not have a synonymous code in 
U00093.ptt file. 

 

16131297 157783152 16128784 

16129429 16128226 145698234 

16130030 145698286 145698305 

16128261 16129331 

  

Table 45: GI numbers in U00096.ptt that did not have a synonymous code in NC00096.ptt. 

 

545778207 

308199521 

345297179 

545778206 

 

Table 46: List with the 46 TM chains identified with PISCES standalone program. 
 (http://dunbrack.fccc.edu/Guoli/pisces_download.php#BLASTDB). 
 

2kea 1q16c 2ksfa 4gbya 1kf6d 4djia 1pw4a 3fwla 4iffa 

1kqfc 2nmra 3udca 1y8sa 3o7pa 2o9da 2oaua 1kqfb 2gfpa 

3ze3a 2r6gg 4njna 3k07a 4dbla 2gifa 2k73a 2r6gf ifx8a 

4gd3a 4atva 1nekc 2ksda 1nekd 3qe7a 4iu8a 1kf6c 

 
1a91a 1kpka 2qfia 3dhwa 2wsxa 1b9ua 2y5ya 4gd3q   
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Figure 52: Illustration of file format of ExToPoDB.flat file. 
Downloaded from (http://bioinformatics.biol.uoa.gr/ExTopoDB/; (Tsaousis et al., 2010)). 

 

Table 47: P-values from Fisher Exact Test with contingency table for disordered genes and 
existence of RCCs using the random dataset of 41 genes for non disordered identifiers. 

 

Method P-value 

%MinMax (cu) 1 

RiboTempo 0.3679 

MSS 1 Athi
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Table 48: Gene ontology enrichment analysis results with RCCs detected with RiboTempo filtered for p<0.01. 
Bonferroni correction was to correct multiple testing p-values. 
 

Data Term P-value Num_annotations 

C_between_2_3 plasma membrane 2.14311066547357e-08 273 of 694 in the list, versus 1104 of 4141 in the genome 

C_between_2_3 integral component of membrane 2.00958273668402e-07 248 of 694 in the list, versus 1000 of 4141 in the genome 

C_between_2_3 intrinsic component of membrane 3.87564696975815e-07 248 of 694 in the list, versus 1006 of 4141 in the genome 

C_between_2_3 membrane part 1.71382553107749e-06 252 of 694 in the list, versus 1040 of 4141 in the genome 

C_between_2_3 cell periphery 6.14721076282356e-05 293 of 694 in the list, versus 1287 of 4141 in the genome 

F_between_2_3 phosphorelay sensor kinase activity 1.33526623341393e-06 22 of 694 in the list, versus 34 of 4141 in the genome 

F_between_2_3 protein histidine kinase activity 1.33526623341393e-06 22 of 694 in the list, versus 34 of 4141 in the genome 

F_between_2_3 phosphotransferase activity, nitrogenous group as acceptor 2.31790345647959e-06 24 of 694 in the list, versus 40 of 4141 in the genome 

F_between_2_3 signal transducer activity 7.05669795090002e-06 38 of 694 in the list, versus 85 of 4141 in the genome 

F_between_2_3 signaling receptor activity 7.7545598427894e-06 23 of 694 in the list, versus 39 of 4141 in the genome 

F_between_2_3 molecular transducer activity 2.23774624437778e-05 38 of 694 in the list, versus 88 of 4141 in the genome 

F_between_2_3 ATP binding 3.61527890433384e-05 125 of 694 in the list, versus 446 of 4141 in the genome 

F_between_2_3 adenyl ribonucleotide binding 4.8081725709482e-05 125 of 694 in the list, versus 448 of 4141 in the genome 

F_between_2_3 adenyl nucleotide binding 7.82731819897238e-05 126 of 694 in the list, versus 456 of 4141 in the genome 

F_between_2_3 purine ribonucleoside triphosphate binding 8.02836310243538e-05 133 of 694 in the list, versus 488 of 4141 in the genome 

F_between_2_3 purine ribonucleoside binding 9.16768220859626e-05 133 of 694 in the list, versus 489 of 4141 in the genome 

F_between_2_3 purine ribonucleotide binding 9.69871714248268e-05 134 of 694 in the list, versus 494 of 4141 in the genome 

F_between_2_3 purine nucleoside binding 0.000104602 133 of 694 in the list, versus 490 of 4141 in the genome 

F_between_2_3 ribonucleoside binding 0.000104602 133 of 694 in the list, versus 490 of 4141 in the genome 

F_between_2_3 purine nucleotide binding 0.000150994 135 of 694 in the list, versus 502 of 4141 in the genome 

F_between_2_3 nucleoside binding 0.000226945 133 of 694 in the list, versus 496 of 4141 in the genome 

F_between_2_3 protein kinase activity 0.000273234 23 of 694 in the list, versus 45 of 4141 in the genome 

F_between_2_3 anion binding 0.000393769 178 of 694 in the list, versus 713 of 4141 in the genome 

F_no_RCC structural constituent of ribosome 1.14999757139735e-17 56 of 1680 in the list, versus 56 of 4141 in the genome 

F_no_RCC structural molecule activity 3.88027043310777e-16 71 of 1680 in the list, versus 77 of 4141 in the genome 

F_no_RCC rRNA binding 9.26144114519854e-09 43 of 1680 in the list, versus 47 of 4141 in the genome 
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F_no_RCC RNA binding 2.65385830226206e-08 112 of 1680 in the list, versus 160 of 4141 in the genome 

P_start_100 single-organism cellular process 0.000141977 488 of 788 in the list, versus 2020 of 4141 in the genome 

P_start_100 Transport 0.000570069 206 of 788 in the list, versus 743 of 4141 in the genome 

C_no_RCC Intracellular 1.2908829180807e-20 591 of 1680 in the list, versus 1024 of 4141 in the genome 

C_no_RCC intracellular part 2.1676806969923e-19 570 of 1680 in the list, versus 989 of 4141 in the genome 

C_no_RCC ribonucleoprotein complex 2.70502482404139e-18 60 of 1680 in the list, versus 61 of 4141 in the genome 

C_no_RCC Ribosome 1.35956186529051e-17 58 of 1680 in the list, versus 59 of 4141 in the genome 

C_no_RCC Cytoplasm 1.91204373765015e-17 522 of 1680 in the list, versus 904 of 4141 in the genome 

C_no_RCC cytosolic part 1.12404843383932e-15 56 of 1680 in the list, versus 58 of 4141 in the genome 

C_no_RCC cytosolic ribosome 1.69991061321921e-15 52 of 1680 in the list, versus 53 of 4141 in the genome 

C_no_RCC ribosomal subunit 1.69991061321921e-15 52 of 1680 in the list, versus 53 of 4141 in the genome 

C_no_RCC cytoplasmic part 1.64371689479613e-13 189 of 1680 in the list, versus 280 of 4141 in the genome 

C_no_RCC Cytosol 8.6680953236444e-10 161 of 1680 in the list, versus 245 of 4141 in the genome 

C_no_RCC organelle part 1.55042082163675e-09 72 of 1680 in the list, versus 91 of 4141 in the genome 

C_no_RCC large ribosomal subunit 1.62883057339307e-09 31 of 1680 in the list, versus 31 of 4141 in the genome 

C_no_RCC cytosolic large ribosomal subunit 1.62883057339307e-09 31 of 1680 in the list, versus 31 of 4141 in the genome 

C_no_RCC non-membrane-bounded organelle 2.15818533746871e-09 90 of 1680 in the list, versus 121 of 4141 in the genome 

C_no_RCC intracellular non-membrane-bounded organelle 2.25972442182411e-09 73 of 1680 in the list, versus 93 of 4141 in the genome 

C_no_RCC intracellular organelle part 2.84515466449351e-09 57 of 1680 in the list, versus 68 of 4141 in the genome 

C_no_RCC Organelle 1.23344728965074e-08 91 of 1680 in the list, versus 125 of 4141 in the genome 

C_no_RCC intracellular organelle 1.92141602270566e-08 74 of 1680 in the list, versus 97 of 4141 in the genome 

C_no_RCC macromolecular complex 2.04824086019386e-07 190 of 1680 in the list, versus 312 of 4141 in the genome 

C_no_RCC small ribosomal subunit 6.99019069337628e-05 21 of 1680 in the list, versus 22 of 4141 in the genome 

C_no_RCC cytosolic small ribosomal subunit 6.99019069337628e-05 21 of 1680 in the list, versus 22 of 4141 in the genome 

C_start_80 plasma membrane 2.87933421886493e-08 254 of 638 in the list, versus 1104 of 4141 in the genome 

C_start_80 cell periphery 9.02135102528147e-07 281 of 638 in the list, versus 1287 of 4141 in the genome 

C_start_80 Membrane 7.41145898102118e-06 288 of 638 in the list, versus 1350 of 4141 in the genome 

C_start_80 integral component of membrane 9.62375483524683e-06 224 of 638 in the list, versus 1000 of 4141 in the genome 

C_start_80 membrane part 1.16708387318954e-05 231 of 638 in the list, versus 1040 of 4141 in the genome 

C_start_80 intrinsic component of membrane 1.67284558396561e-05 224 of 638 in the list, versus 1006 of 4141 in the genome Athi
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P_between_2_3 signal transduction 7.15433153730498e-08 48 of 694 in the list, versus 105 of 4141 in the genome 

P_between_2_3 Signaling 1.08238188005449e-07 48 of 694 in the list, versus 106 of 4141 in the genome 

P_between_2_3 single organism signaling 1.08238188005449e-07 48 of 694 in the list, versus 106 of 4141 in the genome 

P_between_2_3 phosphorelay signal transduction system 4.34621032436087e-07 39 of 694 in the list, versus 80 of 4141 in the genome 

P_between_2_3 peptidyl-histidine phosphorylation 8.08569488878223e-07 23 of 694 in the list, versus 35 of 4141 in the genome 

P_between_2_3 peptidyl-histidine modification 8.08569488878223e-07 23 of 694 in the list, versus 35 of 4141 in the genome 

P_between_2_3 cell communication 1.06996102601049e-06 62 of 694 in the list, versus 162 of 4141 in the genome 

P_between_2_3 signal transduction by phosphorylation 2.95802998119928e-06 22 of 694 in the list, versus 34 of 4141 in the genome 

P_between_2_3 single-organism process 0.000108891 490 of 694 in the list, versus 2330 of 4141 in the genome 

P_between_2_3 cellular response to stimulus 0.000197051 128 of 694 in the list, versus 466 of 4141 in the genome 

P_between_2_3 single-organism cellular process 0.000380661 432 of 694 in the list, versus 2020 of 4141 in the genome 

P_between_2_3 protein phosphorylation 0.000549385 25 of 694 in the list, versus 51 of 4141 in the genome 

P_between_2_3 Transport 0.000969398 184 of 694 in the list, versus 743 of 4141 in the genome 

C_start_100 plasma membrane 2.35553973602955e-09 308 of 788 in the list, versus 1104 of 4141 in the genome 

C_start_100 integral component of membrane 3.62699288865021e-07 275 of 788 in the list, versus 1000 of 4141 in the genome 

C_start_100 cell periphery 4.52444935050398e-07 339 of 788 in the list, versus 1287 of 4141 in the genome 

C_start_100 intrinsic component of membrane 7.30299813767784e-07 275 of 788 in the list, versus 1006 of 4141 in the genome 

C_start_100 membrane part 1.05365141022087e-06 282 of 788 in the list, versus 1040 of 4141 in the genome 

C_start_100 Membrane 2.77691814948825e-06 349 of 788 in the list, versus 1350 of 4141 in the genome 

P_start_60 single-organism cellular process 0.000143626 302 of 466 in the list, versus 2020 of 4141 in the genome 

C_start_60 plasma membrane 4.75713854228445e-07 191 of 466 in the list, versus 1104 of 4141 in the genome 

C_start_60 Membrane 7.11081180043872e-06 219 of 466 in the list, versus 1350 of 4141 in the genome 

C_start_60 cell periphery 1.80144678061232e-05 209 of 466 in the list, versus 1287 of 4141 in the genome 

C_start_60 integral component of membrane 0.000118666 167 of 466 in the list, versus 1000 of 4141 in the genome 

C_start_60 membrane part 0.000147145 172 of 466 in the list, versus 1040 of 4141 in the genome 

C_start_60 intrinsic component of membrane 0.000179876 167 of 466 in the list, versus 1006 of 4141 in the genome 

P_no_RCC Translation 1.60129601319406e-15 94 of 1680 in the list, versus 111 of 4141 in the genome 

P_no_RCC nucleoside monophosphate biosynthetic process 2.63381617469943e-05 41 of 1680 in the list, versus 49 of 4141 in the genome 

P_no_RCC ribose phosphate biosynthetic process 2.74984213192458e-05 48 of 1680 in the list, versus 60 of 4141 in the genome 

P_no_RCC ribonucleoside monophosphate biosynthetic process 0.000104029 37 of 1680 in the list, versus 44 of 4141 in the genome Athi
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P_no_RCC Unannotated 0.000122126 199 of 1680 in the list, versus 341 of 4141 in the genome 

P_no_RCC ribonucleotide biosynthetic process 0.000163453 45 of 1680 in the list, versus 57 of 4141 in the genome 

F_start_100 hydrolase activity 0.000534685 198 of 788 in the list, versus 715 of 4141 in the genome 
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Table 49: Gene ontology enrichment analysis results with RCCs detected with %MinMax (cu) filtered for p<0.01. 
Bonferroni correction was to correct multiple testing p-values. 

 

Data Term P-value Num_annotations 

    P_start_end signal transduction 0.000410218 30 of 420 in the list, versus 105 of 4141 in the genome 

P_start_end Signaling 0.000513743 30 of 420 in the list, versus 106 of 4141 in the genome 

P_start_end single organism signaling 0.000513743 30 of 420 in the list, versus 106 of 4141 in the genome 

F_start_end signal transducer activity 0.000228646 26 of 420 in the list, versus 85 of 4141 in the genome 

F_start_end molecular transducer activity 0.000480309 26 of 420 in the list, versus 88 of 4141 in the genome 

F_start_end porin activity 0.000784966 13 of 420 in the list, versus 28 of 4141 in the genome 

F_start_end wide pore channel activity 0.000784966 13 of 420 in the list, versus 28 of 4141 in the genome 

F_no_RCC structural constituent of ribosome 5.56175902482921e-09 45 of 1351 in the list, versus 56 of 4141 in the genome 

F_no_RCC structural molecule activity 1.96848828998567e-06 53 of 1351 in the list, versus 77 of 4141 in the genome 

P_start_100 signal transduction 0.000236203 53 of 1017 in the list, versus 105 of 4141 in the genome 

P_start_100 signaling 0.000351104 53 of 1017 in the list, versus 106 of 4141 in the genome 

P_start_100 single organism signaling 0.000351104 53 of 1017 in the list, versus 106 of 4141 in the genome 

C_no_RCC intracellular part 7.77584199715446e-12 453 of 1351 in the list, versus 989 of 4141 in the genome 

C_no_RCC intracellular 1.10110450404268e-11 466 of 1351 in the list, versus 1024 of 4141 in the genome 

C_no_RCC cytoplasm 1.14711454593131e-10 415 of 1351 in the list, versus 904 of 4141 in the genome 

C_no_RCC ribonucleoprotein complex 8.34704720191129e-10 48 of 1351 in the list, versus 61 of 4141 in the genome 

C_no_RCC ribosome 4.15884138055891e-09 46 of 1351 in the list, versus 59 of 4141 in the genome 

C_no_RCC cytosolic part 5.51766525335649e-08 44 of 1351 in the list, versus 58 of 4141 in the genome 

C_no_RCC cytosolic ribosome 7.72001385049827e-08 41 of 1351 in the list, versus 53 of 4141 in the genome 

C_no_RCC ribosomal subunit 7.72001385049827e-08 41 of 1351 in the list, versus 53 of 4141 in the genome 

C_no_RCC organelle part 4.37652452803528e-07 60 of 1351 in the list, versus 91 of 4141 in the genome 

C_no_RCC organelle 9.04373399486398e-07 76 of 1351 in the list, versus 125 of 4141 in the genome 

C_no_RCC non-membrane-bounded organelle 9.95513913232091e-07 74 of 1351 in the list, versus 121 of 4141 in the genome 

C_no_RCC intracellular organelle part 2.31912897755348e-06 47 of 1351 in the list, versus 68 of 4141 in the genome 

C_no_RCC cytoplasmic part 3.05437475644993e-06 144 of 1351 in the list, versus 280 of 4141 in the genome Athi
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C_no_RCC intracellular organelle 4.78351275873119e-06 61 of 1351 in the list, versus 97 of 4141 in the genome 

C_no_RCC intracellular non-membrane-bounded organelle 5.03242427689803e-06 59 of 1351 in the list, versus 93 of 4141 in the genome 

C_no_RCC cytosol 2.45850629416427e-05 126 of 1351 in the list, versus 245 of 4141 in the genome 

C_start_end cell envelope 0.000297789 47 of 420 in the list, versus 220 of 4141 in the genome 

C_start_end envelope 0.000339756 47 of 420 in the list, versus 221 of 4141 in the genome 

C_start_end external encapsulating structure 0.000568736 47 of 420 in the list, versus 225 of 4141 in the genome 

F_end_100 sequence-specific DNA binding transcription factor activity 1.3228063523303e-05 80 of 848 in the list, versus 204 of 4141 in the genome 

F_end_100 nucleic acid binding transcription factor activity 2.0070926464523e-05 81 of 848 in the list, versus 209 of 4141 in the genome 

F_end_100 molecular transducer activity 0.000611848 40 of 848 in the list, versus 88 of 4141 in the genome 

F_end_100 signal transducer activity 0.000620539 39 of 848 in the list, versus 85 of 4141 in the genome 

P_end_100 signal transduction 0.00027083 47 of 848 in the list, versus 105 of 4141 in the genome 

P_end_100 signaling 0.000383102 47 of 848 in the list, versus 106 of 4141 in the genome 

P_end_100 single organism signaling 0.000383102 47 of 848 in the list, versus 106 of 4141 in the genome 

P_no_RCC translation 1.48742607545599e-05 69 of 1351 in the list, versus 111 of 4141 in the genome 
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Table 50: P-values form Fisher Exact Test for β-barrel TM/non TM and the existence of RCCs. 

 
Method P-value 

%MinMax (cu) 0.737 

RiboTempo 0.09 

MSS 1 
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Table 51: Correlations regarding the presence of RCCs detected with %MinMax (cu) in loops of TM helices that interact or not. 
TP are loops with no interacting helices and detected RCCs, FN are loops with no interacting helices and no detected RCCs, FP are loops with interacting helices 
and detected RCC and TN are loops with interacting TM helices with no detected RCCs.  
 

DISTANCE LOOPLENGTH PPV NPV ACC SEN SPE TP TN FP FN 

5.5 10 16.67 76.83 72.73 5 92.65 1 63 5 19 

5.5 15 33.33 73.68 70.73 9.09 93.33 3 84 6 30 

5.5 20 41.67 66.43 64.47 9.62 93 5 93 7 47 

5.5 25 41.67 63.86 62.36 7.69 93.81 5 106 7 60 

5.5 30 41.67 61.45 60.21 6.76 94.02 5 110 7 69 

 

 

Table 52: Correlations of Table 51 divided to cytoplasmic and periplasmic loops. 

Cytoplasmic Periplasmic 

PPV NPV ACC SEN SPE TP TN FP FN PPV NPV ACC SEN SPE TP TN FP FN 

0 76.32 74.36 0 96.67 0 29 1 9 20 77.27 71.43 9.09 89.47 1 34 4 10 

50 69.23 68.52 5.88 97.3 1 36 1 16 28.57 77.42 72.46 12.5 90.57 2 48 5 14 

66.67 60 60.29 7.14 97.5 2 39 1 26 33.33 72 67.86 12.5 90 3 54 6 21 

66.67 56.96 57.32 5.56 97.83 2 45 1 34 33.33 70.11 66.67 10.34 91.04 3 61 6 26 

66.67 54.88 55.29 5.13 97.83 2 45 1 37 33.33 67.01 64.15 8.57 91.55 3 65 6 32 
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Table 53: Correlations regarding the presence of RCCs detected with RiboTempo in loops of TM helices that interact or not. 
TP are loops with no interacting helices and detected RCCs, FN are loops with no interacting helices and no detected RCCs, FP are loops with interacting helices 
and detected RCC and TN are loops with interacting TM helices with no detected RCCs.  
 

DISTANCE LOOPLENGTH PPV NPV ACC SEN SPE TP TN FP FN 

5.5 10 22.22 80.7 72.73 15.38 86.79 2 46 7 11 

5.5 15 23.08 75.68 67.82 14.29 84.85 3 56 10 18 

5.5 20 26.67 67.39 61.68 11.76 84.93 4 62 11 30 

5.5 25 29.41 65.35 60.17 12.5 84.62 5 66 12 35 

5.5 30 29.41 62.96 58.4 11.11 85 5 68 12 40 

 

 

Table 54: Correlations of Table 53 divided to cytoplasmic and periplasmic loop regions. 

Cytoplasmic Periplasmic 

PPV NPV ACC SEN SPE TP TN FP FN PPV NPV ACC SEN SPE TP TN FP FN 

0 84 77.78 0 91.3 0 21 2 4 28.57 78.12 69.23 22.22 83.33 2 25 5 7 

25 74.19 68.57 11.11 88.46 1 23 3 8 22.22 76.74 67.31 16.67 82.5 2 33 7 10 

25 60 56.82 5.88 88.89 1 24 3 16 27.27 73.08 65.08 17.65 82.61 3 38 8 14 

40 56.52 54.9 9.09 89.66 2 26 3 20 25 72.73 64.18 16.67 81.63 3 40 9 15 

40 54.17 52.83 8.33 89.66 2 26 3 22 25 70 62.5 14.29 82.35 3 42 9 18 
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Table 55: Correlations regarding the presence of RCCs detected with MSS (cl=7) in loops of TM helices that interact or not. 
TP are loops with no interacting helices and detected RCCs, FN are loops with no interacting helices and no detected RCCs, FP are loops with interacting helices 
and detected RCC and TN are loops with interacting TM helices with no detected RCCs.  
 

DISTANCE LOOPLENGTH PPV NPV ACC SEN SPE TP TN FP FN 

5.5 10 37.5 76.71 72.84 15 91.8 3 56 5 17 

5.5 15 33.33 72 68.81 9.68 92.31 3 72 6 28 

5.5 20 35.71 64.75 61.76 10.42 89.77 5 79 9 43 

5.5 25 40 62.5 59.62 13.56 87.63 8 85 12 51 

5.5 30 43.48 60 57.74 14.71 87 10 87 13 58 

 

 

Table 56: Correlations of Table 55 divided into cytoplasmic and periplasmic loops. 

Cytoplasmic Periplasmic 

PPV NPV ACC SEN SPE TP TN FP FN PPV NPV ACC SEN SPE TP TN FP FN 

0 72.73 70.6 0 96 0 24 1 9 42.86 80 74.47 27.27 88.89 3 32 4 8 

0 66.67 65.2 0 96.77 0 30 1 15 37.5 76.36 71.43 18.75 89.36 3 42 5 13 

50 58.18 57.6 8 94.12 2 32 2 23 30 70.15 64.94 13.04 87.04 3 47 7 20 

57.14 56.25 56.3 12.5 92.31 4 36 3 28 30.77 68.06 62.35 14.81 84.48 4 49 9 23 

57.14 53.73 54.1 11.43 92.31 4 36 3 31 37.5 65.38 60.64 18.18 83.61 6 51 10 27 
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