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IIepiAnyn AwSaktopirig MeAstng

H nmapouoa 6idaktopikr) diatpfr) anaptidetal anod teooapa dokipla. X1o
PWTO SOKIP10 CUYKPIVOURE Ta TIAPAPETPIKA Povigda TipoAdynong Evpenaikov
apAy®ymv TPoioviov TIpodlpetikrg e§doknong (call options) twv Black kat
Scholes (1973) xat Corrado xkat Su (1996) pe ta Pn-napaperpikda povieda
Texvniov Nevpovikov Aiktuev. Ia 1ig ouykpioelg xpnotpornolovpe 81d@opoug
ouvbuaopoug petaPAntav  swoaywyrg/eSayoyrng oupniepldapfavopévou  Kat
UBpdkov poviedwv (orou 1 eSaptnpévn PeTtaPAnt) AVIUTIPOOXIEVUEL TNV
dtapopda petaly g ayopaiag TPMG KAl NG eKUPNONg €vog IAapAPETPIKOU
poviedou). 'Evag and toug ermpépoug otoXoUg g OUYKERPIIEVNS PeALng eivat
ertiong n diepevivnon SUVANIKQOV OTPATNYIKGOV aviliotabpiong Kivouveov xkabwg
Kd1l OTPATNYIKGOV earopiag Kivniov adlov Kal mapayndyedVv KAT® Ao PeAA10TIKEG
ouvOnkeg Sanpaypdtevong (ouprneplAapavopévou Kat KOOToug cuvadAayng).

To deutepo Gokipto efetalel €k’ VEOU Ta ONPAVIIKOTEPA aAItotedéopata
T0U mpatou dokpiou xpnoworowwviag Texvnrd Neupovika Aiktua ta omoia
EKTIPQVIAL Y€ TNV OUVAPTINOon Tou Tpotdbnke amo tov Huber to 1981. Bdon
auvty g pPeBoboldoyiag, 1n emidpaon anopakpev KaAOMG KAl  AAA®V
MAPATNPIOE®V TTOU UItopei va dnpioupyolv avepaldieg ota XpnpAaTtoo1KOVOHIKA
6ebopeva edaxiotoroteitat. To Baoiko cupnépaopa and autdo 1o dokiplo eivat
oul napatnpeitat onpavukr Pedtioon ota pérpa axpiPelag yua véa dedopéva
EKTOG TOU Jelypatog eKTiPNONg ya ta Pn-rapaperpika PovieAd Iou eKTIHOVIAl
pe v ouvdaptnon tou Huber oe oxéorn pPe eKeiva MOU EKTIPQOVIAL HE
OoUVaPTIOElG TTOU €AAXIOTOITOI0UV T0 AOPO10A TOV TETPAYOVIK®OV ATTOKAIOERDV.

Zto tpito dokipto Siveral onpavikrn IPOCoXr) OtV AvAartudn evog veou
NP-TIAPAPETIPIKOU POVIEAOU TO OIT0i0 0UOlaoTIKA CUPPAAEl OTOV €PNIMAOUTIONO

TOU TEPIEXOPEVOU KAl TNG ITO0TNTAS TOV MIAPAPETPRV TIOU XPIOTH0II00UVIAl O



dedopéva eloaywyng ota rmapaperpika  povieda. H o mpotewvopevn npt-
napaperpiry)  pebodoAoyia  arotedel  ouclaoTIKA TNV EMEKTACT] TQV
Nteteppivioukev Zuvaptrjoeav Extipnong g MetaPAntotntag (6evtepn porr))
twv Dumas et al. (1998). H mpotewvopevn nui-tapaperpikn pebodoloyia
propel va XprnowporoinBel yia v ektipnon Tevikeupévov Xuvaptrocwv
Extipnong Mapaperpov 60Xt kat’ avaykn povo yua v petafAntotta (deutepn
portr)). ZuyKekplpeva, os autd to Hokiplo, Heixvoupe tov TPOMo He Tov ortoio
propouv va agloroinBouv otnv nepinmeorn tou poviedou twv Corrado kat Su
(1996) avagopikda pe Vv eKTipnon g tPitng Kat t€taping poru)g (skewness
rat kurtosis). Xe autd 1o Ookiplo yivetatr evOedexng oOUYKPION NG
nipotetvopevng peBodoAoyiag pe 1o eSeAtypéva mapaperpikda  urnodeiypata
TIPOAOYNONG TPOAIPETIKAOV HKAIOPATOV. XZUYKEKPIPEVA XPIOTHOITOI0UHE TO
MAPAPETIPIKO Poviedo 1mou 1mpotddnke 1o 1996 ard tov Bates to omoio
ETTPEMEL OTNV PETAPANTOTNTA TOU UTTOKEIPEVOU OEIKTN va €ival OTOXAOTIKY Kal
EMITAEOV EIMTIPETEL AOUVEXEES (jumps) otlg 81a80X1KEG TIHEG TV ATIOO00E®V
tou deiktn. To yeviko oupnépaopa eivatl OTt 11 IIPOTEWVOUEVT NUL-TTIAPAPETPIKD
peBobodoyla ouykpivetat ToAU euvoikd ot oxéon pe ta 10 eeAtypéva
MAPAPEIPIKA  POVIEAa 0Og Tepurtwoslg  véwv  Oedopéveov 1ou  dev
XpropononOnkav Katd v eKtipnon v poviedov. Emmiéov ta didgpopa
povieda Xxprnowporo)dnKkav  yia  UAoroinon — oIpdinylkov — avtlotabpiong
Kwouvev. Edd axkoloubrOnkav 8U0 eVvAAAAKTIKEG OTPATNYIKEG yla TA NUL-
MAPAPEIPIKA PoviEAa: i) pla KRata v oroia Ta NUEI-IIAPAPEIPIKA HOoVIEAd
EKTIPOVIAlL ®OTE VA €AAXIOTOIOOUV  €va KPP0  AITOTEAEOPATIKOTTAG
ouvdedepevo pe v akpifela Tpodoynong v napdynyev npoioviev, ii) pla
GAAn KRata v oroia Ta NEI-MIAPAPEIPIKA HPOVIEAd EKTIPAOVIAL GOTE vd
€AAX10TOIIOI0UV  €va KPP0  drotedeopaukomntag ouvdedepévo pe v

akpifela avuordBpiong kwvduvou. To yevikd ouprnépaopa eivatr ot n deutepn
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otpatnyikr) SouAevel TTOAU KaAUTepa Katl Iapdyel aroteAéopata rmou dtagepouv
aro v nponyoupevn BiAoypapia.

TéAlog, 1o ermikevipo TOU T€taptou Odoxipiou eivatr va elepeuvriost TG
duvatdtnieg e@appoyrng oto avukeipevo g  Tpodoynong  piag  veag
peBodolroyiag yvwotr] wg Support Vector Machines. Autr] n peBodoloyia exet
avarttuxBel oto mAaiolo g otatoukng Bewpiag padnong (statistical learning
theory) xait péxpt ouypng Oev  €xel TUXel €upeiag  eQAPHOYNS  OTg
XPNUATOTUOIOTIKEG  OIKOVOUEIPIKEG TEPUITWOELG. X& autd 1o  Hokiplo
doxpaloupe v apxikr) pebododoyia Onwg auvty rpotddnke arno tov Vapnik to
1995 kat n oroia Bswpeital 1daviK yla epAPHOYEG OTOU TO OTATIOTIKO o@dAApa
6ev akolouBel v Kavovikn katavourn. EmumAéov, Oswmpoupe pia veodtepn
napaddayn avtrg g pebodoloyiag n omoia Paocifetal oe kpirjplo eAAXIOTOV
TEPAYyOVEOV Kal 1 oroia Bswpeitar mo 18avikr] yia IEPUITWOEL OrouU TO
otatiotikd o@AApa axkoloubel Kavoviki) katavopr). AuUtég ot véeg pEBodot
ouykpivovtal pe ta Texvnua Neupovikd Alktua onwg autd avartuxbnrav ota
6vo mpata doxkipla. H epmelpikr) avaduon autoU 1ou Hok1pioU Katadelkvuel

eArudopopa anotedeopata yua 11§ véeg pebodoAoyieg.
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Exordium

The current thesis is composed by four essays. In the first essay we
compare the options pricing performance of the parametric Black and Scholes
(1973) and Corrado and Su (1996) models with the nonparametric feedforward
Artificial Neural Networks. We do this by using a battery of historical and implied
parameter measures as well as market and hybrid target functions (desired
output) resulting to a significant number of input-outputs combinations. In this
essay we investigate the dynamic performance of the models by using hedging
strategies and their economic significance by using trading strategies.

The second essay re-examines the most important key results from the
first essay by using Robust Artificial Neural Networks. The Huber (1981) loss
function is used in this case in order to estimate the nonparametric models. The
main conclusion from this essay is that the out of sample pricing accuracy of the
nonparametric models can be improved under the robust estimation scheme
considered.

In the third essay the major contribution regards the development of a
novel semi-parametric approach were an enhancement of the implied parameter
values is used in the parametric option pricing models. The proposed semi-
parametric methodology is basically extending the Deterministic Volatility
Functions approach of Dumas et al. (1998) that perform a smoothing in the
Black and Scholes implied volatilities across strike prices and maturities. Our
semi-parametric methodology is much more generic though since it can be
utilized to estimate Generalized Parameter Functions with other parametric
models. Specifically, in this essay we show how it can be utilized in the case of
Corrado and Su model and how it can enhance the implied volatility, skewness
and kurtosis. We also extend the Deterministic Volatility Functions approach for
the Corrado and Su model. The proposed semi-parametric methodology is also
compared with more sophisticated options pricing models like the Stochastic
Volatility and Stochastic Volatility and Jump models of Bates (1996). The overall
result from the out of sample pricing tests is that our methodology is robust and
performs exceptionally well. Furthermore we test the hedging performance of all
models developed and we distinguish between models selected based on a pricing

criterion and models selected based on a hedging criterion. Our results are



different from previous literature since we find that better out of sample hedging
performance can be obtained when optimization is based on a hedging criterion.
Finally, the focus of the fourth essay is to explore the pricing performance
of Support Vector Machines in options pricing. This is a novel nonparametric
methodology that has been developed in the context of statistical learning theory
and until now is has been practically neglected in financial econometric
applications. In this essay we consider the original methodology as proposed by
Vapnik (1995) which is relying on a robust loss function. In addition, we consider
a later variant of this methodology that relies on a least squares loss function
(called the Least Squares Support Vector Machines). The new methods are
compared with feedforward Artificial Neural Networks and also with parametric
options pricing models using standard implied parameters and parameters
derived via Deterministic Volatility Functions. The empirical analysis of this

essay reveals promising results for the new methodologies.



Preface

Black and Scholes introduced in 1973 a milestone options pricing model
for pricing European options. This model was a breakthrough in the pricing of
options and still has a tremendous influence on the way that academics and
practitioners evaluate and trade alternative derivatives products. Nevertheless,
empirical research has shown that the formula suffers from systematic biases
when compared to options market prices giving birth to the well known volatility
smile anomaly (also known as volatility smirk or sneer). This comes from the fact
that the model has been developed using a set the simplifying assumptions
resulting to a lognormal distribution with constant variance for the underlying
asset price. This assumption is not flexible enough to approximate the (unknown)
market options’ pricing function since it is empirically true that the implicit stock
returns distributions are negatively skewed with higher kurtosis than allowable
in the Black and Scholes lognormal distribution. For this reason the use of this
model with historical or overall average implied parameters (one per day) results
in biased prices that translate into poor pricing performance. Nevertheless in this
thesis it is shown that simple methodologies that mitigate the anomaly by
allowing the application of this model with maturity or contract specific implied
parameters can improve significantly its performance making it a tougher
benchmark for more complex and sophisticated alternative models. In the quest
for the best performing parametric model other parametric models are considered
as well. Attention is also given to the Corrado and Su (1996) model, which is an
extension of the Black and Scholes formula that can easily handle nonnormal
skewness and kurtosis. In addition, other more advent parametric models are
considered, like for instance the Stochastic Volatility and the Stochastic Volatility
& Jump (Bates, 1996), which are probably the most widely referenced models
from the parametric family. All these parametric models are based on a set of
assumptions like continuous time trading and completeness of the markets
(which can hold in the presence of many trading options contacts — in addition
we note also the recent addition of trading contracts on the volatility). The most
significant novelty of this thesis regards the investigation of nonparametric
methods that can offer noticeable pricing improvements compared to the

benchmark parametric models. Specifically the gist of our attention in the first



three essays of this thesis is concentrated in the application of feedforward
Artificial Neural Networks. This nonparametric technique has gained
considerable popularity in financial and economic applications for (at least) three
reasons. First, there are theoretical foundations showing that Artificial Neural
Networks can be used for multidimensional nonlinear regression since they are
universal approximators able to approximate any nonlinear function and its
derivatives arbitrarily well. Second, they learn the empirical input/output
relationships inductively using historical or implied input variables and
transactions data. Third, they can become more accurate and computationally
more efficient alternatives when the underlying asset’s price dynamics are
unknown, a property very important for the problem we investigate.

In the first essay we compare the ability of the parametric Black and
Scholes, Corrado and Su models, and feedforward Artificial Neural Networks to
price European call options on the S&P 500 index. We use several historical and
implied parameter measures. Beyond the standard neural networks employed to
directly approximate the unknown empirical options pricing function, in our
analysis we include hybrid networks that incorporate information from the
parametric models. Specifically in the hybrid models the target function is the
residual between the actual call market price and the parametric option price
estimate. In this essay our results are significant and differ from previous
literature. We show that the Black and Scholes based hybrid artificial neural
network models outperform both the standard neural networks estimated on the
market target function and the parametric ones. We also investigate the
economic significance of the best models using trading strategies (extended with
the Chen and Johnson, 1985, modified hedging approach). We find that there
exist profitable opportunities even in the presence of transaction costs.

In the second essay the significant difference compared to the first essay is
that we develop Robust Artificial Neural Networks optimized with the Huber
(1981) function. In the first essay Artificial Neural Networks have been optimized
based on the least squares norm. This norm though is susceptible to the
influence of large errors since some abnormal datapoints (or few outlier
observations) can deliver non-reliable networks. On the contrary, robust
optimization methods that exploit the least absolute norm are unaffected by large
(or catastrophic) errors but are doomed to fail when dealing with small variation

errors. The Huber function is an ideal candidate to be used since it utilizes the



robustness of least absolute and the unbiasedness of least squares norm and
has proved to be an efficient tool for robust optimization problems for various
tasks. The analysis here is augmented again with the use of several historical
and implied volatility measures. It is shown that the Artificial Neural Network
models with the use of the Huber function outperform the ones optimized with
least squares.

In the third essay we extend the Deterministic Volatility Functions of
Dumas et al. (1998) to derive a semi-parametric approach that provides an
enhancement of the implied parameter values that are used with the parametric
option pricing models. With this new semi-parametric methodology we are able to
enhance not only volatility but also skewness and kurtosis. Overall this
methodology is proposed as a way to alleviate deficiencies of the modern
parametric options models and standard nonparametric approaches. In addition,
it utilizes information from the parametric models and preserves some very
important properties which do not hold for the nonparametric models employed
in the first two essays. The results obtained in this essay strongly support the
proposed approach which compares very favorably to the more sophisticated
parametric options pricing models considered, like the Stochastic Volatility and
Jump model of Bates (1996). The out of sample results are shown to be robust
under alternative dataset choices and model complexity. In addition, the
economic significance of the approach is tested in terms of hedging where the
evaluation and estimation loss functions are aligned: hedging results when
enhancing skewness and kurtosis parameters are significantly improved.

Finally in the fourth essay we explore the pricing performance of Support
Vector Machines for pricing S&P 500 index call options. This is a novel
nonparametric (function approximation) methodology that has been developed in
the context of statistical learning theory and until now its applications on
financial econometric purposes are limited. Support Vector Machines employ the
so called VC theory (developed by Vapnik and Chervonenkis in 1974), which is
defined in a strictly statistical framework, that controls in specific ways the
model’s estimation and parameterization to preclude overfitting so as ensure
good out of sample (generalization) results; this is a crucial property of
paramount importance. Another significant characteristic of this methodology is
that the estimation of its free parameters results from the solution of a convex

optimization problem with a unique global (and sparse) solution. Compared to



feedforward Artificial Neural Networks this methodology can be considered as an
improvement due to its well defined regularization and optimization properties. In
the fourth essay we consider both the traditional support vector machines
originally developed by Vapnik (1995) as well as the Least Squares Support
Vector Machines which are a subsequent variant of the original methodology.
These new methods are compared with feedforward Artificial Neural Networks
and also with parametric options pricing models considered in the third essay.
The empirical results using three years of data indicate that this new
methodology is promising enough since it can produce pricing results that are
comparable to the benchmark models.

The reader of this thesis should be aware of three things. The first remark
is that it was never attempted to downgrade the importance of existing
parametric models and to exaggerate about the attractive characteristics and
applicability of the nonparametric models. A vivid message from reading this
thesis is that every approach has its own merits and limitations and that the best
result can be obtained when they are handled them as complementary
methodologies. Thus, most of the times the best performing models combine the
two methodologies resulting in this way in semi-parametric models. Furthermore,
a considerable effort has been spent in developing the methodologies in order to
be implementable for real world applications. For example, beyond pricing
performance tests this thesis also includes hedging results and economic
significance tests.

The second remark is that each essay is almost practically independent in
the sense that the reader can read it without having to know exactly the content
of the rest essays since each essay it’s aiming to an independent publication. In
addition, the effort was to use the same nomenclature and symbolization in all
essays yet in some cases minor differences might be observed.

The third remark is that the performance statistics (e.g. out of sample
pricing, hedging and trading strategies, robustness, etc.) reported in each essay
may be different. This occurs because the scope of each essay is different. For
example in the first essay the effort is to provide a comprehensive comparison
between the parametric models considered and the feedforward Artificial Neural
Networks. For this reason extensive hedging simulations and trading strategies
results are also reported. A similar extensive set of results is reported in the third

essay in which a novel semi-parametric options pricing methodology is proposed



and tested. On the contrary in the second essay where the focus is on the use of
a robust loss function with Artificial Neural Networks, the battery of results is
confined to those statistics needed to show the difference in performance
between the alternative models. In the same spirit we create and report the

statistics for the fourth essay.
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I. Introduction — Overview of the Thesis

I.1. General Discussion

Black and Scholes introduced in 1973 their milestone Parametric Options
Pricing Model (POPM) that is nowadays known as the Black-Scholes Formula
(BS). This model was a breakthrough in the pricing of options and still has a
tremendous influence on the way that practitioners price various derivative
securities. Despite the fact that in the last three decades the BS model and its
later variants/extensions (i.e. Bakshi et al., 1997) are considered as the most
prominent achievements in financial theory, empirical research has shown that
the formula suffers from systematic biases when compared to options market
prices (see Rubinstein, 1985 and 1994, Black and Scholes, 1975, MacBeth and
Merville, 1980, Gultekin et al., 1982, Bakshi et al., 1997, Cont and Fonseca,
2002, and Andersen et al., 2002). The BS bias steams from the fact that the

model has been developed using a set of unrealistic simplified assumptions.

The post-BS financial engineering research came up with a variety of
POPMs that made it possible to mitigate the bias associated with the original
model. Nevertheless, none of the modern models has managed to generalize all
BS assumptions, and provide results fully consistent with the observed market
data.

After including in the analysis more realistic POPMs like the Corrado and
Su (1996) formula and models that allow for stochastic volatility and jump
discontinuities to the diffusion process (see Bates 1996 and 2000), it is found
that the BS is still relevant either with the use of a contract specific implied
volatility or with the use of statistical smoothing techniques that produce one
volatility per contract (see Dumas et al., 1998).

In 1995, Fisher Black declared in his article “The holes in the Black and
Scholes” that “it is rare that the value of an option comes out exactly equal to the
price at which it trades on the exchange”. This evidence forces us to accept the
hypothesis that the market is pricing the options correctly and that the models
are incorrect due to their mis-specifications. So, in answering the previous posed

question, researchers can address their attention to market-data driven models
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which can be promising alternatives, in respect to unbiasedness and pricing
accuracy, relative to the existing POPMs.

Nonparametric techniques and especially feedforward Artificial Neural
Networks (ANNs) that is the main focus of the current thesis, comprise an
empirically practical option-pricing approach since they involve no financial
theory whatsoever since the option’s price is estimated inductively using
historical or implied input variables and option transactions data. In addition,
option pricing functions are multivariate and highly nonlinear. ANNs are
appropriate tools for approximating the unknown empirical option pricing function
since they can be used for non-linear regression!.

Empirical research (see Bakshi, et al., 1997) reports that modern
parametric models are sometimes characterized by poor-out-of sample
performance and by overwhelming complexity. Research on the ANN option
pricing capabilities (see Hutchison et al., 1994, Qi and Maddala, 1996, Lajbcygier
et al., 1997, Lajbcygier and Connor, 1997, Hanke, 1999a, Hanke, 1999b, Yao et
al., 2000, Lajbcygier, 2001 and Anders et al., 1998) has reported excellent out of
sample performance whilst in many cases, ANNs can outperform the
conventional parametric models.

The scope of this thesis is in developing option pricing models by
combining the use of feedforward Artificial Neural Networks with information
provided by POPMs (the BS and the CS model). For the empirical tests we use
European call options on the S&P 500 Index. In the first chapter of the thesis, we
develop simple ANNs (with input supplemented by historical or implied
parameters specific either to BS or the CS model), and hybrid ANNs that in
addition use pricing information derived by any of the two parametric models.
These specifications are compared with BS and CS with various historical and
implied parameters (most of them are considered for the first time). In order to
check the robustness of the results, in addition to a full dataset we repeat the
analysis using a reduced dataset (following Hutchison et al., 1994). The economic

significance of the models is investigated through hedging and trading strategies.

1 Even in the case where option market prices evolve based on a known diffusion process
that can be parametrized, then the ANNs are expected to be as accurate and robust as
the parametric models. Research by Hutchison et al. (1994) and Hanke (1997) has
revealed that feedforward Neural Networks can approximate arbitrarily well the
traditional Black and Scholes Formula and other analytically intractable models like the
GARCH (1,1).
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Instead of naive trading strategies we implement improved (dynamic and cost-
effective) ones. Furthermore, we also refine these strategies with the Chen and
Johnson (1985) modified hedging approach.

In the second chapter we compare models from the first chapter of the
thesis which are estimated based on the least squares loss function with robust
ANNSs that use the Huber loss function. In this chapter the gist of the attention is
to develop ANNs based on the Huber loss function (Huber, 1981) so that the
estimation of the standard and hybrid ANNs is robust in the presence of data-
point peculiarities.

In the third chapter, we propose and examine nonparametric options
pricing models which are dedicated to the pricing and hedging of European
options. Specifically, we extend the Deterministic Volatility Functions (DVF) of
Dumas? et al. (1998) to provide a nonparametric enhancement of the implied
parameter values to be used in the parametric option pricing models. We
estimate not only volatility but also skewness and kurtosis. The resulting
enhanced structure is compared to parametric models with both standard
implied parameters and parameters derived via DVF. The models developed are
compared to the benchmark Stochastic Volatility (SV) and Stochastic Volatility
and Jump (SVJ) models (Bates, 1996). The economic significance of the approach
is also considered in terms of hedging retaining the intuition in Christoffersen
and Jacobs (2004) that the estimation loss function should be aligned with the
evaluation loss function.

Finally, in the last chapter of the thesis, we are examining the application
of Support Vector Machines (SVM) to the pricing of European options extending
in this way the results of the first two chapters (for details see Vapnik, 1995).
This methodology is used for robust nonlinear regression problems based on a
well defined statistical framework that predicts better out of sample

generalization ability compared to other alternative methodologies.

2 The DVF approach relaxes the BS assumption of having a single volatility per day.
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I.2. Parametric models and the deterministic volatility functions

The parametric models used in this thesis are explained very briefly below.
Specifically the following models as proposed in the literature are considered: the
Black and Scholes (1973) model (which is used in all chapters), the Corrado and
Su (1996) model (which is used in all chapters except the second one) and also
the Stochastic Volatility and Stochastic Volatility and Jump models of Bates
(1996) (used for the needs of the third and fourth chapters). Moreover, it is
explained the application of the DVF for the case of BS, as originally proposed by
Dumas et al. (1998), as well as the extensions made in this thesis concerning the
use of DVF with the CS and SVJ models. The DVF models are used for the needs
of the third and fourth chapters. The parametric models are used as benchmark
models but in addition they are also used as part of the non parametric models

that are proposed and developed.
I.2.1. Parametric models used

I.2.1.1. Black and Scholes model

The first model examined is the Black and Scholes (1973) since it is a
benchmark and widely referenced model. The BS formula for European call
options modified for a dividend-paying (see also Merton, 1973) underlying asset

is:

eBS = se " N(d)- Xe T N(d - oT) (I.1)

) In(S / X)+(r - dy)T + (oJT)? /2
_ —=

(I1.1.1)

BS

where ¢~ is premium paid for the European call option, S is the spot price of

the underlying asset, X is the exercise price of the call option, ris the

continuously compounded risk free interest rate, d, is the continuous dividend
yield paid by the underlying asset, T is the time left until the option expiration

date, o2 is the yearly variance rate of return for the underlying asset and N(.)
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stands for the standard normal cumulative distribution. The BS model is based
on the following assumptions:

The stock (underlying asset) price follows a Geometric Brownian Motion in
continuous time with a constant drift and volatility rate. Thus the distribution of
possible stock prices at the end of any finite interval is lognormal. In addition,
short-term risk free interest rate is known and is constant through time.

The stock pays no dividends3 or other cash distributions.

The option is “European,” that is, it can only be exercised at maturity.

There are no transaction costs in buying or selling the stock or the
options.

It is possible to borrow any fraction of the price of a security to buy it or to
hold it, at the short-term risk-free interest rate.

There are no penalties for short selling. A seller who does not own a
security will simply accept the price of the security from a buyer, and will agree
to settle with the buyer on some future date by paying an amount equal to the
price of the security at that date.

In addition, the BS formula has been derived under conditions that allow
a continuous and costless hedging of a risk less portfolio that is short one call
option against a long position in the associated stock (underlying asset). In this
word the markets are complete and the options are redundant securities. To this,
the underlying and the derivatives markets are assumed to be efficient and that
it would be impossible to make sure profits by creating such perfectly hedged
risk less portfolios which can only earn the risk-free rate. An implicit assumption
of the model is that its option estimates are independent of the characteristics of
other securities and the preferences of investors (Rubinstein, 1976).

Most of the above assumptions are violated in the financial markets
(Constantinides et al, 2008). For instance, Rubinstein (1976) has shown that the
BS model does not hold under discrete trading conditions and risk aversion
unless certain assumptions hold (e.g. no dividends, all investors agree upon a
single value of the volatility, consumption and underlying asset are jointly
lognormally distributed etc). In addition, the parametric models considered in
this thesis have been developed under the assumption of no transaction costs. As

shown in Leland (1985) and Bensaid et al. (1992), the existence of transaction

3 Merton (1973) has relaxed this assumption.
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costs would have produced bounds in which option prices should lie. In addition,
some other assumptions are causing severe misspecification in the model.
Specifically, the literature documents that BS model suffers from systematically
biases because the Geometric Brownian Motion is a poor approximation of the
unknown diffusion process that prevails in the market because, for example, it
precludes the possibility for stochastic volatility and jumps. In other words, the
BS assumption of a log-normal distribution is too limited since in practice
implicit stock returns’ distributions are negatively skewed with excess kurtosis
(Bakshi et al., 1997). This creates the well known volatility smile anomaly (also
known as volatility smirk or sneer anomaly) according to which the contract
specific volatilities implied by the BS model exhibit certain patterns across
moneyness (the ratio of the underlying asset to strike price) and maturity levels.
In response to this, additional parametric option pricing models are also
considered in this thesis. These models can be considered as generalizations of
the BS formula because they generalize the Geometric Brownian Motion with
more complex diffusion processes that imply more flexible and realistic
distributions for the stock returns and can approximate better the unknown
market diffusion process. Yet most of the other assumptions mentioned above
hold also for these models. In this thesis the Stochastic Volatility as well as the
Stochastic Volatility and Jump models of Bates (1996) are considered to be the
most widely referenced generalizations of the BS model (see Bakshi et al., 1997).
In addition, to the above two parametric models, in this thesis we also consider
some heuristic extensions of the BS model like the Corrado and Su (1996) model
as well as the Deterministic Volatility Functions approach proposed by Dumas et
al. (1996).

Here we must note two things. First, that the BS, CS and the associated
DVF models are based on the assumption of complete markets that rule out any
arbitrage opportunities. Under such assumptions, the implied risk neutral
parameters need no adjustment in order to reflect the ones obtained under the
subjective diffusion process (the only adjustment is to add the market risk
premium to the risk free rate). On the other hand, the SV and SVJ models are
developed based on the incomplete markets where option pricing becomes
tractable only under the assumption of a representative agent that has state
independent utility of wealth. In other words, these models account for a

premium induced by the risk of a jump and of randomly changing volatility.
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According to these models, an adjustment based on a utility function is needed
in order to go from the implied risk-neutral parameters to the subjective ones.
For SV and SVJ, the implied risk neutral parameters need an adjustment in
order to reflect the ones obtained under the subjective diffusion process (adding
only the risk premium to the risk-free rate is not enough). Second, it is also
important to note that our nonparametric models are developed under
assumptions that also hold for the aforementioned parametric models (e.g.
continuous trading, complete/incomplete and frictionless markets, etc).

The rest of the parametric models and methods used in this thesis are

briefly explained below.

I.2.1.2. Corrado and Su model

The CS model constitutes an extension of the BS formula that accounts
for additional skewness and kurtosis in stock returns in a heuristic manner.
Corrado and Su base their extension on a methodology employed earlier by
Jarrow and Rudd (1982). Using a Gram-Charlier series expansion of a normal
density function they define their model as (see also the correction in Brown and
Robinson, 2002; for further discussions see Jondeau and Rockinger, 2001, and

Jurczenko et al., 2004):

¢ =P 4 1305 + (s —3)Q4 (I.2)

where ¢P° is the BS value for the European call option given in Eq. (I.1) and,

Q3 = %Se‘dy%ﬁ((zoﬁ — d)n(d) + (cvT)? N(d)) (I.2.1)
Q4 = %Se_dmi/T((dQ ~1-30T(d - oJT))n(d) + (cVT)° N(d)) (1.2.2)
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In Eq. (I.2) Q3 and Q4 represent the marginal effect of non-normal skewness and
kurtosis, respectively in the option price whereas u; and p, correspond to

coefficients of skewness and kurtosis. In the above expressions,

n(z) = exp(-z2 /2) (1.2.3)

1
N2

refers to the standard normal probability density function.

I.2.1.3. Stochastic volatility and stochastic volatility & jump models

Bakshi et al. (1997) found that the SVJ exhibited satisfactory out of
sample performance for the S&P 500 index options when compared to other
parametric option pricing models since it offers a quite flexible distributional
structure. Specifically the correlation between the volatility and the returns of the
underlying asset controls the level of skewness whilst the variability of volatility
allows for non-normal kurtosis. Moreover, the addition of a jump component
enhances the distributional flexibility and allows for more accurate pricing
performance of the short term options. In this thesis the SVJ model of Bates

(1996) is employed. In this model the instantaneous conditional variance V,

follows a mean-reverting square root process:

dS—S=(ﬂ—zE)dt+\/VdZ+qu (I.3)
dv = (a - AV)dt + o, JVdZ, (I.4)

with

cov(dZ,dZ,) = pdt

In(1 + «) ~ N(In(1 + ) - 0.562,6?)

prob(dg =1) = Adt
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where u is the instantaneous drift of the underlying asset, A4 is the annual
frequency of jumps, xis the random percentage jump conditional on a jump
occurring, q is a Poison counter with intensity A, 62 is the jump variance, and
p is the correlation coefficient between the volatility shocks and the underlying
asset movements. Moreover, £ is the rate of mean reversion and «/f is the

variance steady-state level (long run mean).
The value of a European call option is given as a function of state variables

and parameters:

cSW = e T[T, - XT1,] (1.5)

with F=E(Sy)=Se" %"

the forward price of the underlying asset, E(.) the
expectation with respect to the risk-neutral probability measure and Sy the price
of S at option’s maturity. Evaluation of I1; and I, is done by using the moment

generating functions of In(S;/S). The following expressions are needed to

compute I1; and I1,:

. . —_#i+0.5
F;(@ |V,T) = exp{(C;(T;®)+ D (T; @)V + AT(1 + )" o)
2. 2 :
[+ )2 e” WP PTI2 _qp j=12
) d _ aT
Cj(T,¢)=(r— y—ﬂl(')@T——z(pO'U@—BJ—GJ)
v
| (1.7)
2a1 1-e%"
——2 n 1+05(pO'U¢—BJ—GJ)G—
Oy J
Dj(T; @) = -2 — (1.7.1)
+ e
pJU@_BJ—FGJiGJT
l1-e
G, = (0o, @~ B;)? ~202 (1;® +0.50?) (1.7.2)
H 20.5, y2%) =-0.5 , B]_ =ﬂ—pO'U, B2 :ﬂ (1.7.3)
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and the resulting probabilities I1; and II, are derived by numerically evaluating

the imaginary part of the Fourier inversion:

% imag|F; (iD)e '] ;
14)]

prob(STe(rfdy)

T>X|Fj)=o.5+l o (1.8)
T

0

with y=1In(X/S) and the integrals to be evaluated with an adaptive Lobatto

quadrature. By constraining the jump component values to equal zero someone

can get European call prices for the SV model.

I.2.2. Deterministic volatility functions

I.2.2.1. Black and Scholes deterministic volatility functions

Dumas et al. (1998) estimate DVF of quadratic forms that provide unique
per contract volatility estimates. According to Dumas et al. (1998), this approach
of smoothing the BS implied volatilities across strike prices and maturities
exhibits superior in and out of sample performance for pricing European options.
According to Christoffersen and Jacobs (2004) the DVF approach does not
constitute a proper and fully specified alternative to other structural option
pricing models but is a convenient way to mitigate the BS deficiencies. In
addition, Berkowitz (2004) has demonstrated theoretically that the DVF
constitutes a reduced-form approximation to an unknown structural model
which under frequent re-estimation can exhibit exceptional pricing performance.
Christoffersen and Jacobs (2004) demonstrate that Ordinary Least Squares (OLS)
estimates of the DVF parameters yield biased predictions of the observed option
prices. They emphasize the importance of deriving the DVF by optimizing in
respect to the option pricing function via Nonlinear Least Squares (NLS). For the
analysis three different DVF model versions as in the thesis of Dumas et al.

(1998) are considered:

DVF#1: o = max(0.01,ay + a; X +a,X?) (1.9)

DVF#2:0 =max(0.01,ay +a; X + (JLQX2 +azT +a,XT) (I.10)
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DVF#3: 0 = max(0.01,ay + a; X + a,X? + azT + a, XT + asT?) (1.11)

I.2.2.1. Extending the deterministic volatility functions

DVF is implemented not only for BS but also for a first time in this thesis
for the CS (CS-DVF) and the SVJ (SVJ-DVF) models. We estimate the coefficients
for the three different DVF models each day using OLS (Lc) and also using NLS
(NLc). For the latter several initializations are used in order to minimize the risk

of estimating coefficients based on a local minimum of the optimization function.

I.3. Nonparametric models

Researchers have drawn attention to the use of nonparametric techniques
like feedforward artificial neural networks that can be used for nonlinear
regression. The key power provided by this type of methods is that they rely on
fairly simple algorithms and the underlying nonlinearity can be learned from
transactions data (see Duda et al., 2001, for further details). In addition, they are
universal function approximators with good out of sample generalization abilities
(see Cybenko, 1989; for a general discussion of neural networks in financial
econometrics see Tsay, 2002). Below there is a brief explanation about the

different approaches developed and used in this thesis®*.

I1.3.1. Standard and hybrid feedforward artificial neural networks

A feedforward artificial neural network is a collection of interconnected
simple processing elements structured in successive layers and can be depicted

as a network of arcs/connections and nodes/neurons (refer to Figure 1.1 of first

4 All nonparametric models presented in this study can be also used for deriving the
implied risk neutral density function from the cross section of option prices. This can be
performed after estimating the nonparametric functional forms and taking twice the
partial derivative of the option value with respect to the option’s strike price. The
methodology behind this idea has been suggested by Breeden and Litzenberger (1978)
and has been recently employed with nonparametric techniques by Ait-Sahalia and Lo
(1998).
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essay). The traditional networks used in this thesis have three layers: an input

layer with N input variables, a hidden layer with H neurons, and a single neuron

output layer. Each connection is associated with a weight, w,,, and a bias, by, in

the hidden layer and a weight, v,, and a bias, v,, for the output layer (k =
1,2,...,H, i = 1,2,...,N). A particular neuron node is composed of: i) the vector of
input signals, ii) the vector weights and the associated bias, iii) the neuron itself
that sums the product of the input signal with the corresponding weights and
bias, and finally, iv) the neuron transfer function. In addition, the outputs of the
hidden layer (y",yY...y") are the inputs for the output layer. Inputs are set up
in feature vectors, X, =[x,,,Xy,...,Xy,| for which there is an associated and

known target, Y =t , with g=1,2,...,P, where P is the number of the available

sample features. The operation carried out for estimating outputy, is the

following:
H N
Y = folvg + 2 U fu (b + 2 wiyx;)] (I.12)
k=1 i=1

For the purpose of this thesis ANN architectures with only one hidden
layer are considered since they can operate as a nonlinear regression tool and
can be trained to approximate most functions arbitrarily well (Cybenko, 1989).
High accuracy can be obtained by including enough processing nodes in the
hidden layer.

The training of ANNs is a non-linear optimization process in which the
network’s weights are modified according to an error loss function. The error

function between the estimated response y, and the actual response t, is

defined as:
e, (w)=y,(w)-t, (1.13)

where, w is an n-dimensional column vector containing the weights and biases

given by: W =[Wig..., W0, W)1se-» Wiy »Vose+>V )" . The modified Levenberg-

31



Marquardt (LM) algorithm is utilized for estimating the ANNs. According to LM,
the weights and the biases of the network are updated in such a way so as to

minimize the following sum of squares performance function:

L 2 P 2
Fw) =Y e2 = Yy, (w) -ty (w)) (1.14)
gq=1 q=1

Then, at each iteration t of the estimation algorithm, the weights vector w is

updated as follows:
Wy =w, —[J (W (w, )+ p I T (w, )e(w,) (I.15)

where I is an nXn identity matrix, J(w) is the PXn Jacobian matrix of the P-
dimensional output error column vector e(w), and p, is like a learning parameter
that is adjusted in each iteration in order to secure convergence. Further
technical details about the implementation of Levenberg-Marquardt algorithm
can be found in Hagan and Menhaj (1994) and Hagan et al. (1996).

For the needs of this thesis, ANNs are implemented by using two different target
(desired) function. The first one that is called the standard target function given

by:

t=c™* /X (1.16)

where ¢™" is the market price for a call option. In addition, the so called hybrid
target function is also used. This target function is comprised by the residual
between the actual call market price and call option estimate given by a

parametric model:

ek /X -c? /X (1.17)

~
1l
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with Q defines inputs from the specific parametric models (usually from BS and

CS models) .

I1.3.2. Robust feedforward artificial neural networks

To get robust estimates for the ANNs’ vector parameter w, the Huber

function can be considered (i.e. Huber, 1981, Bandler et al., 1993):

E(w) = Y. pile, ()

(I.18)
where p, is the Huber function specified as:
0.5e° if le| <k
pr(e)= 5 (I.19)
kle| - 0.5k? if |e| >k

and k is a positive constant. It is obvious that when |e| >k the Huber function

treats the error in the [; (least absolute) sense and in the [, (least square) sense

only if |e| <k depending on the value of threshold parameter k. The Huber
function has a smooth transition between the two norms at |e|=k, so that the
first derivative of p, is continuous everywhere.

The choice of k defines the threshold between large and small errors.
Different values of k determine the proportion of the errors to be treated in the I;
or the I norm. As seen, when k is sufficiently large the Huber function
encompasses the widely used and conventional least squares (lo) training of the
ANNSs. As the k parameter approaches zero, the Huber function approaches the [;
function and the errors are penalized in the least absolute sense. The Huber
function should be more robust to abnormal data since it penalizes them less

compared to the Iz norm.
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I.3.3. Nonparametric generalized parameter functions

In this thesis in order to develop the Generalized Parameter Functions
(GPFs) a more general network structure is used. In this case the proposed
network model under scrutiny has four layers. The first three are typical layers of
an ANN as explained before with the exception that more than one neurons can
exist at the output layer. The addition of a fourth layer, which is called the
enhanced layer, makes possible for a chosen POPM to be an inseparable part of
the network’s structure (obtaining in this sense the enhanced Parametric Options
Pricing Models, ePOPMs). Under this setting it can be hypothesized that the
network structure embeds knowledge from the parametric model during training.

If we let Xg to denote the set of all input variables that are necessary for the

parametric model to price options, then (refer to Figure 3.1, of the third essay)

Xgo <€ Xg corresponds to the enhanced variables coming from the network’s
output layer and Xg3 < Xg those variables that are passed to the parametric
model directly, Xg3 = Xg - Xg,. Moreover, Xg represents inputs to the
nonparametric model with Xg, < Xg; < X5.

Under this approach, the operation carried out for computing the final

estimated output, y, is the following:

y=rpm,Xs2) (I.20)

and,

U=[v;,Vg,...,Uy] (I.21)

where v represented the enhanced variable vector that is given by:

H N
2 2 1 1
v, = fu [wio)yo + Z w{i)fH (wEO)xso + Z wl(n)xn )]
i=1 n=1

(1.22)

H N
2 2 1 1
Uy = fu [w}v[)oyo + Z w](\/h?fH(wz(O)st + z wl(n)xn )]
i=1 n=1
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The above expression follows the functional form of a typical three-layer

network with fjs(.) and fy(.) to be smooth monotonically increasing transfer

functions (like log-sigmoid and tangent sigmoid) associated with the output and

n=1,2,...,N, to be the inputs to the network, w(.l)

hidden layer respectively, x in

n?’

w%) (=1,2,....,H, n=1,2,...N) to be the weights of the input layer and wg), w%)

(F1,2,...,M) to be the weights of the hidden layer. The M elements of Eq. (I.22) are
estimated simultaneously. The vector defined by the right hand side of Eq. (I.22)
is the called generalized parameter function which produces the enhanced
variables. To let the network learn the underlying relationship, its weights are
adjusted in order to minimize a sum of squares loss function of the error between

the network output and the desire target values.

I.3.4. Support vector machines for function approximation

All methodologies employed in the first three chapters were estimated by

minimizing an empirical risk functional of the form:

arg min Ry [ f] =~ Lixi, yi, £(x))) (1.23)
feC nia

where L(x;,y;, f(x;)) represents a general loss function determining how
estimation errors are penalized and c; represents a general class of continuous
functions. As mentioned before, depending on the application, L(x;,y;,f(x;))

could be the sum-of-squared-errors or even the Huber (1981) function that can
be used for robust estimation.

However if ¢; has very high capacity/flexibility and someone is dealing
with few data in high-dimensional spaces then to avoid over-fitting and secure
good generalization properties then it might be better to minimize a regularized

risk functional of the form (see Vapnik, 1995 and Smola et al., 1998):

arg rélinRreg[ f1= Repp f1+ Clw)? (1.24)
&4
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where C > O is the so called regularization constant that controls for the capacity

and smoothens of the estimated approximation and ||w||2 defines the complexity

of the model. Support Vector Machines (SVMs) is one promising candidate
methodology that builds on this idea and is widely used in electrical engineering,
bioinformatics, pattern recognition, text analysis, computer vision and widely
neglected in financial econometrics. SVM can be implemented using the so called

¢ —insensitive loss function:

|y~ flx), = max{0,|y ~ f(x)- |} (I.25)

which does not penalize errors below some ¢ > 0. SVM can be used for function
approximation via linear and nonlinear regression and is has been evolved in the
framework of statistical learning theory of Vapnik and Chervonenkis (1974) (so
called VC theory) for learning machines (see Vapnik, 1995, for extensive details).
The main advantage of SVMs over other nonparametric techniques is that they
encompass statistical properties that enables them to generalize satisfactorily
well to unseen data. One significant characteristic is that under SVMs someone
solves a convex optimization problem with a unique global (and sparse) solution
while other nonparametric methods can have non-convex error functions which
entail the risk of having multiple local minima solutions. Another one significant
feature is that SVMs employ VC theory to select function approximations based
on the (out of sample) upper bound of the model’s generalization error, which is
defined in a strictly statistical framework without restricting the form of the data
generating mechanism, and controlling in specific ways the model’s

parameterization to preclude overfitting.

I.4. Data and parameter estimates

The data for this research come from two dominant world markets, the
New York Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago
Board of Options Exchange (CBOE) for call option contracts. The S&P 500 Index
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call options are considered because this option market is extremely liquid and
one of the most popular index options traded on the CBOE. This market is the
closest to the theoretical setting of the parametric models (see also
Constantinides et al., 2008).

In the first two essays we use data for the period 1998 to 2001 while for
the third and fourth essays we use data for the period 2002-2004. We implement
filtering rules like in Bakshi et al. (1997). The following summarizes the filtering
rules adopted in each essay (the superscript indicates the essay for which essay
the filtering rule is effective) according to which certain observations are
discarded:

Eliminate all zero volume transactions #3. #4

Eliminate an observation if call price at day t-1 is equal to call price at day
t and if the open interest for these days stays unchanged and if the underlying
asset has changed #1. #2

Eliminate call option prices less than 1 index point #1, #2, #3, #4

Eliminate all call option values that violate the upper and lower arbitrage

bounds #1. #2, #3, #4

Eliminate observations based on the following moneyness criterions:

No eliminations based on a moneyness criterion #1, #2

Keep only observations with S/X € [0.85, 1.35] (and also with less than
180 trading days to maturity) #!

Keep only observations with S/X e [0.80, 1.20] #3. #4

Eliminate option transactions with less (more) than 6 (260) trading days
until expiration #1,#2, #3, #4

Discard maturity with less than four option contracts #1. #2, #3, #4

Option transactions with implied volatility outside [5%, 70%] #3.#4

The following summarizes the most important characteristics of the data

used in the four essays.
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Essay Period S/X T Oimp

all available & [5, 260] &
#1 1998 - 2001 All available
[0.85, 1.35] [5, 180]
#2 1998 - 2001 all available [5, 260] All available
#3 2002 - 2004  [0.80, 1.20] [5, 260] [5%, 70%]
# 4 2002 - 2004 [0.80, 1.20] [5, 260] [5%, 70%]

Studies like Rubinstein (1994) and Jackwerth (2004) also filter options
data for butterfly spread violations. We do not check our data for this type of
arbitrage violation since the main literature we follow has ignored it (e.g. Bakshi
et al., 1997, Bates 1996, 2000, etc). This filtering rule should be most significant
for studies that estimate the implied risk neutral density function directly from
options data. Nevertheless, we have run some checks on our data for this type of
filtering rule for the dataset we used in the third and fourth essays. We found
that butterfly spreads are violated for about 4% of the total sample but with an
insignificant mean violation value of 0.083 (approximately equal to 0.1% of the
call prices involved in the violations). We firmly believe that these violations
would not affect the quality of the reported results.

Compared to the existing literature, this thesis examines more explanatory
variables including historical, weighted average implied and pure implied
parameters. Also, instead of constant maturity risk-less interest rate, nonlinear
interpolation is used for extracting a continuous rate according to each option’s

time to maturity.

I.4.1. Observed and historically estimated parameters

Below follows an explanation for the relevant input and output variables
used for fulfilling the current thesis. Some of these are used in all different

chapters whilst other are used only in some of the different parts of the thesis.
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I1.4.1.1. Observed variables and parameters measures

Moneyness Ratio (S/X): The moneyness ratio may explicitly allow the
nonparametric methods to better learn the moneyness bias associated with the

BS (see also Garcia and Gencay, 2000). The dividend adjusted moneyness ratio
(Se )/ X is used in this thesis with ANNs and SVMs because it is more

informative since dividends affect the options pricing mechanism.

Time to maturity (T ): For each option contract, trading days are computed
assuming 252 days in a year.

Risk-less interest rate (r): Most of the studies use 90-day T-bill rates (or
similar when this is unavailable) as approximation of the interest rate. In this
thesis nonlinear cubic spline interpolation is used for matching each option
contract with a continuous interest rate that corresponds to the option’s
maturity. This is done by utilizing T-bill rates collected from the U.S. Federal
Reserve Bank Statistical Releases.

Historical Volatilities (0): The 60-day historical volatility is calculated
using all the past 60 index log-returns.

CBOE VIX Volatility Index: It was developed by CBOE in 1993 and is a
measure of the volatility of the S&P 500 Index. VIX is calculated by taking the
weighted average of the implied volatilities of eight S&P 500 Index call and put
options with an average time to maturity of 30 days.

Skewness and Kurtosis: The 60-day skewness and kurtosis needed for the
CS model are approximated from the sixty most recent log-returns of the S&P
500.

I.4.1.2. Implied parameters

For extracting the implied parameters for the POPMs, the Whaley’s (1982)
simultaneous equation procedure is considered in this thesis. This methodology
minimizes a price deviation function with respect to the unobserved parameters.
The market option prices (c¢™*) are assumed to be the corresponding model prices
(ck, k defining input from a parametric model - e.g. BS, CS, SVJ, SV) plus a
random additive disturbance term. For any option set of size NV; (it refers to the
number of different call option transaction datapoints available on a specific

day), the difference:
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(1.26)

between the market and the model value of a certain option is a function of the
values taken by the unknown parameters. To find implied parameter values the

following unconstrained optimization problem is considered:

Ny
SSE(t) = m;l;nZ(glk)z (1.27)
0" 1=

where t represents the time instance, and 6* the unknown parameters

associated with a specific POPM. To minimize the possibility of obtaining implied
parameters that correspond to a local minimum of the error surface (see also
Bates, 1991, and Bakshi et al., 1997), several starting values are used for the
parameters of each model. This methodology is implemented under various
schemes in order to derive daily implied parameter values for the POPMs

considered.

I.4.1.3. Validation, testing and pricing performance measures

In order to estimate the nonparametric model, the available data points
are divided/splitted into training, validation and testing sub-datasets in a
chronological manner via a rolling-forward procedure. Depending on the case
considered, the available dataset is divided into a number of different overlapping
training (7r) and validation (Vd) sets, each followed by separate and non-
overlapping testing (Ts). Since a practitioner is faced with time-series data, it was
decided to partition the available data based on this rationale since it allows
frequent re-estimation of the nonparametric models so as to keep a reasonable
track of the time-variation of the option valuation relationships between the
input/output variable combinations. All testing sub-sets are pooled forming in
this way an aggregate dataset (AggTs). For this aggregate dataset various error
metrics are reported in order to determine the pricing accuracy of each model

considered. The Root Mean Square Error (RMSE) is considered to be the most
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important error measure of this thesis since most of the parametric and
nonparametric methodologies are effectively calibrated with respect to a sum-of-
squares loss function. This treatment is in line with the intuition behind the
study of Christoffersen and Jacobs (2004) that suggest that better estimation
results can be obtained when the estimation and evaluation loss functions are
aligned. Nevertheless, we also report the Mean Absolute Error (MAE) since for
nonlinear models or data that exhibit nonlinearities MAE is sometimes
considered as a better criterion given that it is more robust to extreme

observations.

I.5. Four Essays on Empirical Options Pricing: Descriptions and

Results

Below, a brief description of the methodologies developed and the results

obtained in each of the four essays is provided.

I.5.1. Summarizing Essay #1: Pricing and Trading European Options by
Combining Artificial Neural Networks and Parametric Models with Implied

Parameters

In this essay the BS and CS models are compared with several ANN
configurations with respect to pricing the S&P 500 European call options. The
standard and hybrid function are implemented with ANNs. In previous studies
the standard steepest descent backpropagation algorithm was (mostly) used for
training the feedforward ANNs. As it is shown in Charalambous (1992) this
learning algorithm is often unable to converge rapidly to the optimal solution.
Thus in this essay the modified Levenberg-Marquardt algorithm is utilized which
is much more sophisticated and efficient in terms of time capacity and accuracy
(Hagan and Menhaj, 1994). In contrast to most previous studies, a different
network configuration is used per period based on the early stopping technique
and a thorough cross-validation strategy.

Although previous researchers have exploited BS or ANNs, little has been
reported for the case of CS and nothing for the hybrid ANNs that use information
derived by CS. To investigate the economic significance of the alternative option

pricing approaches, trading strategies without and with the inclusion of
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transaction costs are utilized. These trading strategies are implemented with the
standard single instrument delta-hedging values implied by each model, but also
with the corrected values according to the (widely neglected) Chen and Johnson
(1985) methodology. In order to check the robustness of the results, in addition
to the full dataset that considers broad range of strike prices and time to
maturity options, the whole analysis is repeated by using a reduced dataset that
has been considered in previous studies (i.e. Hutchison et al., 1994).

Regarding the in sample pricing, CS performs better than the BS model
(with the exception of the case of the contract specific implied parameters that
practically eliminate the pricing error). Regarding the out of sample pricing, CS
outperforms BS with the use of overall average (one per day) implied parameters,
but BS is still a better model when the contract specific (one per contract)
implied parameters are used; in general, implied parameters lead to better
performance than the historical ones or the VIX volatility proxy; it is found that
ANNs estimated based on the standard target function cannot outperform the
parametric models in the full range of data, but this result does not necessarily
holds for the reduced data set; hybrid neural networks that combine both neural
network technology and the parametric models provide the best performance,
especially when contract specific implied parameters are used. The BS based
hybrid ANN (with contract specific parameters) is the overall best performer, and
the equivalent CS hybrid often a good alternative.

In trading and before transaction costs, models using contract specific
implied parameters provide the best performance. But they also lead to the
highest number of trades. In trading when transaction costs are accounted for in
a naive manner, profits practically in all cases disappear. On the contrary when
dynamic cost-efficient strategies are implemented profits are present at
reasonable levels of transaction costs hinting thus to potential market
inefficiencies. The parametric BS with contract specific volatility is the best
among the parametric models. The hybrid ANN based on BS with contract
specific volatility is again the overall best.

In this essay it is also shown that by implementing the widely neglected
Chen and Johnson (1985) modified hedging approach the profitability of trading
strategies can be improved considerably for parametric models that use overall
average (one per day) implied parameters (the models more consistent with the

assumptions behind the modified hedging approach). This approach did not
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affect the choice of the overall best model in terms of trading with transaction
costs. But it did demonstrate that reasonable alternatives for trading do exist

without the need to resort to the extra sophistication of the ANNs technology.

I.5.2. Summarizing Essay #2: Robust Artificial Neural Networks for Pricing

of European Options

The scope of this chapter is to compare alternative standard and robust
ANN configurations with respect to pricing the S&P 500 European call options.
Robust ANNs that use the Huber (1981) function are developed, and
configurations that are optimized based solely on the least squares norm are
compared with robust configurations that are closer to the least absolute norm.
Like in the first essay, the standard and hybrid ANN target functions with
historical and implied parameter measures are employed.

In previous empirical research on option pricing, ANNs have been
optimized based on the I, (the least squares) norm. The Iz norm is a convenient
way to train ANNs. Of course, the least squares optimization is highly susceptible
to the influence of large errors since some abnormal datapoints (or few outlier
observations) can deliver non-reliable networks. On the contrary, robust
optimization methods that exploit the [; (the least absolute) norm are unaffected
by large (or catastrophic) errors but are doomed to fail when dealing with small
variation errors.

In this essay the Huber function (Huber, 1981) is used as the loss function
during the ANNs optimization process. The Huber function utilizes the
robustness of [; and the unbiasedness of > and has proved to be an efficient tool
for robust optimization problems for various tasks (i.e. Bandler et al., 1993),
albeit it does not constitute the mainstream. The Huber function has been
considered because it is widely referenced on robust estimation (Bishop, 1995), it
provides a simple generalization of the least squares approach; it avoids the need
for any probabilistic assumptions, and does not lead to complex mathematical
expressions when used with ANNs.

Regarding the out of sample pricing, the hybrid models outperform both
the standard ANNs and the parametric ones. Huber optimization improves
significantly the performance of both the standard and the hybrid ANNs. The

non-hybrid ANNs are affected more by large errors. The overall best models are
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the Huber based hybrid ANNs. In general, within each class, the best performing
Huber model has considerably smaller probability of large mispricing compared
to the least squares counterpart. Regarding the economic significance of the

models, the Huber models are the overall best models.

I.5.3. Summarizing Essay #3: Generalizing the Deterministic Volatility

Functions for Enhanced Options Pricing

The broader scope of this essay is to propose a nonparametric
enhancement of the implied parameter values used in the POPMs, generalizing
thus the DVF method of Dumas et al. (1998) (see also Christoffersen and Jacobs,
2004). The proposed approach results in Generalized Parameter Functions
(GPFs) that allow an enhancement of parameters without specifying a
deterministic functional form. The nonparametric parameter enhancement
provides the volatility to the BS and CS models. In addition, skewness or
skewness and kurtosis can be enhanced for the CS model. A significant feature
of the methodology is that it allows a set of the input variables to the parametric
model to be jointly determined by the generalized parameter functions. The
proposed approach has the following important features. First, it retains the
theoretical properties of the parametric model being enhanced concerning the
desire for: i) nonnegative option values (thus expecting satisfactory pricing
performance at the boundary of option pricing areas, in both dense and sparse
input areas), ii) theory consistent Greek letters, and ii) nonnegative implied state
price densities. Second, as conjectured by Bandler et al. (1999), nonparametric
techniques that incorporate knowledge regarding the nature of the problem
should need a smaller amount of training samples and also reduce the number
of free parameters needed for estimation to exhibit a satisfactory performance in
out of sample testing as opposed to the case of standard nonparametric
approaches. Third, the approach compared to the DVF and Whaley (1982)
combines two important characteristics (see discussions in Christoffersen and
Jacobs, 2004, p. 313). It has enhanced precision in parameter estimates due to
long term estimation of the GPF and at the same time captures the time-variation
of the option valuation relationship since input to the nonparametric structure is

calibrated daily.
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In this essay ePOPMs are developed for the case of BS and of CS models.
These are then compared with their parametric alternatives using the overall
average implied parameters and their DVF versions in pricing S&P 500 index call
options. Part of the contribution is to apply the DVF approach to the CS model.
Moreover, the SVJ model of Bates (1996) is used as benchmark since it is an
effective remedy to the BS biases (see Bakshi et al., 1997, and Bates, 1996);
results for the SV sub-model are also reported.

Regarding the results it is first shown that daily calibration of either SVJ
or the DVF based BS and CS models requires careful search. In the sample, SVJ
has the best fit while SV is inferior to the best DVF models. The out of sample
results strongly support the proposed methodology. The first important finding is
that the DVF approach when applied to CS provides results superior to CS (with
overall average parameter estimates) and also to BS (with either overall average
or DVF estimates). The second is that the SVJ model is the best model among the
parametric models whilst the SV is inferior to DVF based BS and CS models. The
third is that the increase in the pricing accuracy of the enhanced BS and CS
models over the best performing BS and CS parametric ones is considerable and
statistically significant. In general, the best enhanced models estimated monthly
are comparable to the daily estimated SVJ model. In addition, it is shown that
the enhanced methodology is robust both to the complexity of the generalized
parameter functions, and to the pricing of contracts not used during estimation.
Consistently with the recommendation in Christoffersen and Jacobs (2004) it is
observed that hedging results using ePOPMs chosen using a hedging criterion
outperform both the parametric models and the ePOPMs chosen using a pricing

criterion.

I.5.4. Summarizing Essay #4: Functional Estimation for Options Pricing Via

Support Vector Machines

The focus of this essay is to investigate the pricing performance of Support
Vector Machines (SVMs) for pricing S&P 500 index call options. SVMs comprise
is a novel nonparametric methodology that has been evolved in the framework of
statistical learning theory (see Vapnik, 1995, for extensive details) and can be
utilized for problems involving linear or nonlinear function approximations.

Unlike ANNs, SVMs have not gained yet any significant popularity in financial
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econometric applications although they are widely used in electrical engineering,
bioinformatics, pattern recognition, text analysis, computer vision etc. The main
advantage of SVMs over other nonparametric techniques is that they encompass
statistical properties that enables them to generalize satisfactorily well to unseen
data. SVMs employ the so called VC theory (see Vapnik and Chervonenkis,
1974), which is defined in a strictly statistical framework, that controls in
specific ways the model’s estimation and parameterization to preclude overfitting
so that to ensure good out of sample (generalization) results.

Based on the theory that underlies SVM, their superiority over ANNs
should be more obvious in datasets of small and moderate size (see Vojislav,
2001). In addition, their estimation is much more efficient in terms of time spent
on the training/optimization for small datasets. For this reason in this essay the
SVMs are estimated with short-time span data sets.

The main contribution of this essay regards the application of SVM for
options pricing and their comparison with other alternative pricing approaches.
Two types of SVMs are considered. The first is the traditional SVMs that were
originally developed by Vapnik and are based on the ¢ -insensitive loss function
(see Vapnik, 1995) which are considered to be more robust when noise is non
Gaussian. The second is the Least Squares Support Vector Machines (LS-SVM)
which is a subsequent variant of the original SVMs methodology originally
proposed by Suykens and co-workers (see Suykens et al., 2002). Compared to
SVMs, LS-SVMs are more robust when noise is Gaussian and they rely on fewer
tuning hyper-parameters. Most importantly LS-SVMs minimize a least squares
loss function which is most common in empirical options pricing studies (see
Christoffersen and Jacobs, 2004). Another contribution of this essay regards the
application of ANNs in small datasets. Most previous studies reviewed in the first
three essays employ ANNs with rather large datasets.

The dataset, the alternative POPMs and the methodology to derive the
implied parameters are the same as the one used in the previous (third) essay.
SVMs and LS-SVMs are developed by using the standard and the hybrid target
functions and are compared with standard and hybrid ANNs (based on the
estimation methods employed in the first essay). The empirical results show that
SVMs can produce pricing results that are comparable to the more sophisticated
parametric models like the SVJ model. In addition, it is found that the ANNS,

especially the ones developed with the hybrid target function, perform
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exceptionally well with small datasets. This is a new observation since up to this
moment ANNs have been tested using rather large datasets. Overall the
performance of SVMs and ANNs seems to be comparable. As explained by Smola
and Scholkoph (1998), it is possible for ANNs to achieve similar performance with
SVMs. Nevertheless, as there are only two to three critical parameters in SVMs
(compared to usually few dozens for ANNSs), it may be more convenient and easier
to use SVMs.
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Four Essays on Empirical

Options Pricing
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1. Pricing and Trading European Options by
Combining Artificial Neural Networks and
Parametric Models with Implied Parameters

Abstract

We compare the ability of the parametric Black and Scholes, Corrado and
Su models, and Artificial Neural Networks to price European call options on the
S&P 500 using daily data for the period January 1998 to August 2001. We use
several historical and implied parameter measures. Beyond the standard neural
networks, in our analysis we include hybrid networks that incorporate
information from the parametric models.

Our results are significant and differ from previous literature. We show
that the Black and Scholes based hybrid artificial neural network models
outperform the standard neural networks and the parametric ones. We also
investigate the economic significance of the best models using trading strategies
(extended with the Chen and Johnson modified hedging approach). We find that
there exist profitable opportunities even in the presence of transaction costs.

The existing chapter had been submitted for publication in the European
Journal of Operational Research and it is forthcoming in volume 185, issue 3,

16 March 2008, pg. 1415-1433.
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1.1. Introduction

In this essay we compare parametric option pricing models (POPMs) --

Black and Scholes (1973) (BS) and the semi-parametric Corrado and Su (1996)
(CS) -- with several artificial neural network (ANN) configurations. We compare
them with respect to pricing the S&P 500 European call options, and trading
strategies are implemented in the presence of transaction costs.
Black and Scholes introduced in 1973 their milestone POPM. Despite the fact
that BS and its variants are considered as the most prominent achievements in
financial theory in the last three decades, empirical research has shown that the
formula suffers from systematic biases (see Black and Scholes, 1975, MacBeth
and Merville, 1980, Gultekin et al., 1982, Rubinstein, 1994, Bates, 1991 and
2003, Bakshi et al., 1997, Andersen et al., 2002, and Cont and Fonseca, 2002).
The BS bias stems from the fact that the model has been developed under a set
of simplified assumptions such as geometric Brownian motion of stock price
movements, constant variance of the underlying returns, continuous trading on
the underlying asset, constant interest rates, etc.

Post-BS research (e.g. stochastic volatility, jump-diffusion, stochastic
interest rates, etc.) has not managed to either generalize all the assumptions of
BS or provide results truly consistent with the observed market data. These
models are often too complex to implement, have poor out of sample pricing
performance and have implausible and sometimes inconsistent implied
parameters (see Bakshi et al., 1997). This justifies the severe time endurance of
BSS. Together with the BS model, we also consider the semi-parametric CS model
that allows for excess skewness and kurtosis, as a model that can proxy for other
more complex parametric ones.

Nonparametric techniques such as Artificial Neural Networks are promising
alternatives to the parametric OPMs. ANNs do not necessarily involve directly any
financial theory because the option’s price is estimated inductively using
historical or implied input variables and option transactions data. Option-pricing
functions are multivariate and highly nonlinear, so ANNs are desirable

approximators of the empirical option pricing function. Parametric models describe

5 According to Andersen et al., (2002), “the option pricing formula associated with the
Black and Scholes diffusion is routinely used to price European options, although it is
known to produce systematic biases”.
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a stationary nonlinear relationship between a theoretical option price and various
variables. Since it is known that market participants change their option pricing
attitudes from time to time (i.e. Rubinstein, 1994) a stationary model may fail to
adjust to such rapidly changing market behavior (see also Cont and Fonseca,
2002, for evidence of noticeable variation in daily implied parameters). ANNs if
frequently trained can adapt to changing market conditions, and can potentially
correct the aforementioned BS bias (Hutchison et al., 1994, Lajbcygier et al.,
1996, Garcia and Gencay, 2000, Yao and Tan, 2000).

Beyond the standard ANN target function we further examine the hybrid
ANN target function suggested by Watson and Gupta (1996) and used for pricing
options with ANNs in Lajbcygier et al. (1997). In the hybrid models the target
function is the residual between the actual call market price and the parametric
option price estimate. In previous studies the standard steepest descent
backpropagation algorithm is (mostly) used for training the feedforward ANNSs. It
is shown in Charalambous (1992) that this learning algorithm is often unable to
converge rapidly to the optimal solution. Here we utilize the modified Levenberg-
Marquardt (LM) algorithm which is much more sophisticated and efficient in
terms of time capacity and accuracy (Hagan and Menhaj, 1994). In contrast to
most previous studies, thorough cross-validation allows us to use a different
network configuration in different testing periods.

The data for this research come from two dominant world markets, the
New York Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago
Board of Options Exchange (CBOE) for call option contracts, spanning a period
from January 1998 to August 2001. To our knowledge, the resulting dataset is
larger than the ones used in other published ANN studies. We also (similarly to
Rubinstein, 1994, Bates, 1996, Bakshi et al., 1997; see discussion in Bates,
2003) reserve option datapoints that in several ANN studies were dropped out of
the analysis. Note that in order to check the robustness of the results we
repeated the analysis using a reduced dataset following Hutchison et al. (1994).
We examine more explanatory variables including historical, weighted average
implied and pure implied parameters. Also, instead of constant maturity riskless
interest rate, we use nonlinear interpolation for extracting a continuous rate

according to each option’s time to maturity.
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Lastly, although previous researchers have exploited BS or ANNs, little has
been reported for the case of CS6 and nothing for the hybrid ANNs that use
information derived by CS. To investigate the economic significance of the
alternative option pricing approaches, trading strategies without and with the
inclusion of transaction costs are utilized. These trading strategies are
implemented with the standard delta-hedging values implied by each model, but
also with the corrected values according to the (widely neglected) Chen and
Johnson (1985) methodology.

In the following we first review the BS and CS models, and the standard
and hybrid ANN model configuration. Then we discuss the dataset, the historical
and implied parameter estimates we derive, and we define the parametric and
ANN models according to the parameters used. Subsequently we review the
numerical results with respect to the in- and out of sample pricing errors; and we
discuss the economic significance of dynamic trading strategies both in the
absence and in the presence of transaction costs. The final section concludes. In
general, our results are novel and significant. We identify the best hybrid ANN
models, and we provide evidence that (even in the presence of transaction costs),

profitable trading opportunities still exist.

1.2. The parametric models

The Black Scholes formula for European call options modified for

dividend-paying underlying asset is:

cBS = 5e T N(dy) - Xe T N(d,) (1.1)
In(S/X)+(r-6)T +(0NT)? /2

dy = 1.1.1

1 O\/T ( )

d, =d, —oT (1.1.2)

6 An exception is the paper by Sami Vahamaa (2003) that examined the hedging
performance of the CS model without including transaction costs.
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where, c? =premium paid for the European call option; S =spot price of the
underlying asset; X =exercise price of the option; r =continuously compounded

riskless interest rate; 6 =continuous dividend yield paid by the underlying asset;

T =time left until the option expiration; o =yearly variance rate of return for the

underlying asset; N(.)=the standard normal cumulative distribution.

The standard deviation of continuous returns (o?) is the only variable in
Egs. (1.1.1) and (1.1.2) that cannot be directly observed in the market. For this
study, we use both historical and implied volatility forecasts. For the Historical

Volatility we use the past 60 days. The Implied Volatility (IVL) calculation

involves solving Eq. (1.1) iteratively for o given the values of the observable ¢™*

(the most recently observed market price of a call option), and the relevant values

of S, X, T, rand 9. Contrary to historical volatility, IVL has desirable properties
that make it attractive to practitioners: it is forward looking, and avoids the
assumption that past volatility will be repeated.

If BS is a well-specified model, then all IVLs on the same underlying asset
should be the same, or at least deterministic functions of time. Unfortunately,
many researchers have reported systematic biases. For example, Rubinstein
(1994) has shown that IVL derived via BS as a function of the moneyness ratio
(S/X) and time to expiration (7) often exhibits a U shape, the well known volatility
smile. Bakshi et al. (1997) report that implicit stock returns’ distributions are
negatively skewed with more excess kurtosis than allowable in the BS lognormal
distribution. This is why we usually refer to BS as being a misspecified model
with an inherent source of bias (see also Latane and Rendleman, 1976, Bates,
1991, Canica and Figlewski, 1993, Bakshi et al., 2000, and Andersen et al.,
2002). For the aforementioned reason we include in our analysis the Corrado and
Su (1996) (see also the correction in Brown and Robinson, 2002) model that
explicitly allows for excess skewness and kurtosis. The CS model is a semi-
parametric model since it does not rely on specific assumptions about the

underlying stochastic process. Corrado and Su define their model as:

c® =P 1+ 1403 + (u4 - 3)04 (1.2)
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05 :%Se‘aToﬁ((Qoﬁ—dl)n(dl)—ozTN(dl)) (1.2.1)

Qs = Se T NT((d? ~1-30VT(d, - Vi) + o° T/ N(ch )
(1.2.2)

1 2
n(z)zmexp(—z /2) (1.2.3)

where cBS is the BS value for the European call option adjusted for dividends,

and u; and u, are the coefficients of skewness and kurtosis of the returns.

1.3. Artificial neural networks

A Feedforward Artificial Neural Network is a collection of interconnected
simple processing elements structured in successive layers and can be depicted
as a network of arcs/connections and nodes/neurons. Fig. 1 depicts a fully-
connected ANN architecture similar to the one applied in this study. This
network has three layers: an input layer with N input variables, a hidden layer

with H neurons, and a single neuron output layer. Each connection is associated

with a weight, w,,, and a bias, by, in the hidden layer and a weight, v, , and a
bias, v,, for the output layer (k= 1,2,...,H, i= 1,2,...,N). A particular neuron node

is composed of: i) the vector of input signals, ii) the vector weights and the
associated bias, iii) the neuron itself that sums the product of the input signal

with the corresponding weights and bias, and finally, iv) the neuron transfer
function. In addition, the outputs of the hidden layer (y\",yY...y!") are the inputs

for the output layer. Since we want to approximate the market options pricing

function, ANNs operate as a non-linear regression tool:

Y = G(X)+ € 4ny (1.3)

that maps the unknown relation, G(.), between the input variable vector,

X =[x, %, Xy] , the target function, Y, and the error term, Eann Inputs are set
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)~cq :[xlq,xgq...,qu]

up in feature vectors, for which there is an associated and

t c mrk

known target, Y=t (in our case, 4 4 / 1), with 4% 1’2""’P, where P is the

number of the available sample features. According to Fig. 1, the operation

y, = CANN /X
carried out for estimating output Y (in our case, 79 ¢ 1), is the following:
H N
y=folvo + X vk fu by + D wiix;)] (1.4)
k=1 i=1

For the purpose of this study, the hidden layer always uses the hyperbolic
tangent sigmoid transfer function, while the output layer uses a linear transfer
function. In addition, ANN architectures with only one hidden Ilayer are
considered since they operate as a nonlinear regression tool and can be trained
to approximate most functions arbitrarily well. This is based on the universal
approximation theorem provided by Cybenko (1989) (for further details see also
Haykin, 1999):

Sul.)
Y
Sul-) Jol) —*
Sul.)
Input Layer Hidden Layer Output Layer

Figure 1.1. A single hidden layer feedforward neural network
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Let f4(.) be a non-constant, bounded and monotone-increasing

continuous function. Let I, denote the N-dimensional unit hypercube [0,1]" . The
space of continuous functions on [, is denoted by C(ly). Then, given any
function g e C(ly) and &>0, there exist an integer number H and sets of real

constants, w;,, Wy, Vx, k=1,2,...,H, 1=12,...,N such that we may define,

ylx) = zkaH(ka + Z Wy X;)
k=1 i=1

as an approximate realization of the function g(.); that is, |y(x)—g(x)|< e for all

vectors x that lie in the input space. High accuracy can be obtained by including
enough processing nodes in the hidden layer.

To train the ANNs, we utilized the modified LM algorithm. According to
LM, the weights and the biases of the network are updated in such a way so as to

minimize the following sum of squares performance function:

FW)= Zes = Z(yq - tq)2 = Z(fo[vo + kafH(bk + zwkixiq)] - tq)2
g=1 g=1 g=1 k=1 i=1

(1.5)

where, W is an n-dimensional column vector containing the weights and biases:
W =1[b,...,by, W, ..., Wy »Vg,--,Vy ] - Then, at each iteration t of LM, the weights

vector W is updated as follows:

T -1 ;T
Wi =W;—[J° (W;)JW;)+p;Il " J" (W;le(W;) (1.6)
where [ is an nXn identity matrix, J(W) is the PXn Jacobian matrix of the P-
dimensional output error column vector e(#), and u, is like a learning

parameter that is adjusted in each iteration in order to secure convergence.
Further technical details about the implementation of LM can be found in Hagan

and Menhaj (1994) and Hagan et al. (1996). In addition, to the standard use of
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_ i . . . . .
ANNs where t, =c;"™ /X, we also try hybrid ANNs in which the target function is

the residual between the actual call market price and the BS or CS call option

estimation:

ty=cl™ /X, -ck/x, (1.7)

with k defining inputs from a parametric model. To avoid neuron saturation, we
scale input variables using the mean-variance transformation (z-score) defined as

follows:

z; = (X — )/ s; (1.8)

where Xx; is the vector containing all of the available observations related to a
certain input/output variable for a specific training period, y; is the mean and s;

the standard deviation of this vector. Moreover, we also utilize the network
initialization technique proposed by Nguyen and Windrow (see Hagan et al.,
1996) that generates initial weights and bias values for a nonlinear transfer
function so that the active regions of the layer’s neurons are distributed roughly
evenly over the input space.

In this study for each input variable set of each training sample, all the
available networks having two to ten hidden neurons are cross-validated (in total
nine). Moreover, since the initial network weights affect the final network
performance, for a specific number of hidden neurons the network is initialized,
trained and validated many times. Each network is estimated and optimized
using the Mean Square Error (MSE) criterion shown in Eq. (1.5) for no more than
two-hundred iterations. The dataset is divided into three sub-sets. The first is the
training (estimation) set. The second is the validation set where the ANN model’s
error is monitored and the optimal number of hidden neurons and their weights
are defined, via an early stopping procedure (MSE fails to decrease in 10
consecutive iterations). Given the optimal ANN structure, its pricing capability is

tested in a third separate testing dataset.
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1.4. Data, parameter estimates and model implementation

Our dataset covers the period January 1998 to August 2001. To our
knowledge, the resulting dataset is larger than the one used in other published
studies and reserves option data points that in most of the previous studies were
dropped out of the analysis. After implementing the filtering rules, our dataset
consists of 76,401 data points, with an average of 35,000 data points per
(overlapping rolling training-validation-testing) sub-period (see Fig. 2). Hutchison
et al. (1994) have an average of 6,246 data points per sub-period. Lajbcygier et
al. (1996) include 3,308 data points, Yao et al. (2000) include 17,790 data points,
and Schittenkopf and Dorffner (2001) include 33,633 data points. The S&P 500
Index call options are considered because this option market is extremely liquid
and one of the most popular index options traded on the CBOE. This market is
the closest to the theoretical setting of the parametric models. Along with the
index, we have collected a daily dividend yield, &, provided online by

Datastream.

1.4.1. Observed and historically estimated parameters

Moneyness Ratio (S/X): The moneyness ratio may explicitly allow the

ANNs to learn the moneyness bias associated with the BS (see also Garcia and

-oT
(Se ™)/ X is used in this

Gencay, 2000). The dividend adjusted moneyness ratio
study with ANNs because it is more informative. The simple moneyness ratio S/X
is used in order to tabulate results as in Hutchison et al. (1994). We adopt the
following terminology: very deep out of the money (VDOTM) when S/X<0.85, deep
out the money (DOTM) when 0.85<S/X<0.90, out the money (OTM) when
0.90<S/X<0.95, just out the money (JOTM) when 0.95<S/X<0.99, at the money
(ATM) when 0.99<S/X<1.01, just in the money (JITM) when 1.01< S/X <1.05, in
the money (ITM) when 1.05<S/X<1.10, deep in the money (DITM) when
1.10<S/X<1.35, and very deep in the money (VDITM) when S/X>1.35.

Time to maturity (T): For each option contract, trading days are computed
assuming 252 days in a year. In terms of time length, an option contract is
classified as short term maturity when its maturity is less than 60 days, as
medium term maturity when its maturity is between 60 and 180 days and as long

term maturity when it has maturity longer than (or equal to) 180 days.

58



Riskless interest rate (r): Most of the studies use 90-day T-bill rates (or
similar when this is unavailable) as approximation of the interest rate. We use
nonlinear cubic spline interpolation for matching each option contract with a
continuous interest rate, r, that corresponds to the option’s maturity, by
utilizing the 3-month, 6-month and one-year T-bill rates collected from the U.S.
Federal Reserve Bank Statistical Releases.

Historical Volatilities (0): The 60-day historical volatility is calculated

using all the past 60 log-relative index returns and is symbolized as ogg -

CBOE VIX Volatility Index: It was developed by CBOE in 1993 and is a measure of
the volatility of the S&P 100 Index?. VIX is calculated by taking the weighted
average of the implied volatilities of eight S&P 100 Index call and put options

with an average time to maturity of 30 days. This volatility measure can only be

used with BS and is symbolized as o5 .

Skewness and Kurtosis: The 60-day skewness (u,¢,) and kurtosis (g

needed for the CS model are approximated from the sixty most recent log-returns

of the S&P 500.

1.4.2. Implied parameters

We adopt the Whaley’s (1982) simultaneous equation procedure to
minimize a price deviation function with respect to the unobserved parameters.
As with Bates (1991), market option prices (cmk) are assumed to be the
corresponding model prices (ck, k defining input from a parametric model) plus a
random additive disturbance term. For any option set of size N; (N; refers to the
number of different call option transaction datapoints available on a specific

day), the difference:

k Kk k
ey =Cn - —Ch (1.9)

between the market and the model value of a certain option is a function of the

values taken by the unknown parameters. To find optimal implied parameter

7 The S&P 100 Index and S&P 500 Index exhibit 30 day log-return average correlations
for the period January 1998 to August 2002 of about 0.98.
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values we solve an unconstrained optimization problem that has the following

form:

N
SSE(t) = min )" (¢))* (1.10)
o

n=1

where t represents the time instance, and 6% the unknown parameters

associated with a specific POPM (GBS ={o} ,GCS ={o,uz,mu4}). The SSE is

minimized via a non-linear least squares optimization based on the LM
algorithm. To minimize the possibility of obtaining implied parameters that
correspond to a local minimum of the error surface (see also Bates, 1991, and
Bakshi et al., 1997), with each model we use three different starting values for
the unknown parameters based on reported average values in Corrado and Su
(1996).

A difference of our approach compared to previous studies is that the
above minimization procedure is used daily to derive four different sets of implied
parameters for each parametric model. The first optimization is performed by
including all available options transaction data in a day to obtain daily average
implied structural parameters. Alternatively, for a certain day we minimize the
SSE of Eq. (1.10) by fitting the BS and CS for options that share the same
maturity date as long as four different available call options exist. We thus get
daily average per maturity parameters. In a third step, for every maturity each
available option contract is grouped with its three nearest options in terms of the
moneyness ratio in order to minimize the above SSE function, deriving thus
parameters average per the 4 closest contracts; such estimates are ignored in
previous research. We finally calibrate the implied structural parameters, by
focusing on the Brownian volatility for each contract so as to drive the residual
error to zero or to a negligible value. In the case of BS this is quite simple and we
can easily obtain a contract specific volatility estimate. For CS we need three
structural parameters, so for each call option we minimize Eq. (1.10) with respect
to the Brownian volatility after fixing the skewness and kurtosis coefficients to
the values obtained from the previous procedure that gave the average per the 4

closest implied parameters. Two kinds of constraints are included in the
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optimization process for practical reasons: nonnegative implied volatility
parameters are obtained by using an exponential transformation; and the
skewness of CS8 is permitted to vary in the range [-10, 5] whereas kurtosis is
constrained to be less than 30. Unlike previous studies, we include contract
specific implied parameters since these are widely used by market practitioners
(i.e. Bakshi et al., 1997, pg. 2019).

For notational reasons, implied parameters obtained from the first step are
denoted by the subscript av, from the second step by the subscript avT, from the
third step by the subscript avT4, and from the fourth step by the subscript con.

BS

The four different implied BS volatility estimates are symbolized as: o;”,

j={av,avT,avT4,con}, whilst the four different sets of CS parameters as:
{ajcs,/!g,Jc-S #453}. For pricing and trading reasons at time instant ¢, the implied

structural parameters derived at day t-1 are used together with all other needed
information (S, T, X, r, and ).

It is known that ANN input variables should be presented in a way that
maximizes their information content. When we price options, the POPM formulas
adjust those values to represent the appropriate value that corresponds to an
option’s expiration period. According to this rationale, volatility measures for use

with the ANNs are transformed by multiplying each of the yearly volatility

forecast with the square root of each option’s time to maturity (5; = O'J-\/T , where

S

J=160, vix, av, avT, avT4, con}). We denote these volatility measures as 6'}3 and

5¢°; and we name them as maturity (or expiration) adjusted volatilities.

Additionally, for the case of CS, skewness ,u3’JC-S, j =1{60,av,avT,avT4,con}, is
transformed by multiplication with Qs that represents the marginal effect of

nonnormal skewness. Similarly, ,u4,JC.S is multiplied with Q4+ We denote these

adjusted parameters as i, ; (adjusted skewness), and 4, (adjusted kurtosis).

8 If not somehow constrained, skewness and kurtosis can take implausible values (i.e.
Bates, 1991) due to model overfitting that will lead to enormous pricing errors on the
next day (especially for deep in the money options). In our case these constraints were
binding in less than 2% of the whole dataset.

61



1.4.3. Output variables, filtering and processing

The BS (cfs) and CS (cf;s) outputs, are used as an estimate for the
market call option, cg"k. For training ANNs, the call standardized by the striking

price, c;"’k / X, , is used as the target function to be approximated. In addition, we

implement the hybrid structure where the target function represents the pricing

error between the option’s market price and the parametric models estimate,

c;"rk/Xq—cf;/Xq.

VDOTM DOTM OTM JOTM ATM JITM ITM DITM VDITM
S/X <085 USC  Dos 009 1oi 105 140 145 2135
Short Term Options <60 Days
call 3.61 1.63 5.15 15,70 32.40 56.58 99.55 199.77 470.38
volatility 0.36 0.21 0.19 0.19 0.20 0.22 0.27 0.38 0.99
it obs 399 1,361 4,815 7,483 3,964 6,548 4,970 7,990 2,103
Medium Term Options 60-180 Days
Call 4.38 8.20 23,58 46.06 64.51 90.35 131.10 227.41 493.18
volatility 0.22 0.18 0.20 0.21 0.21 0.23 0.25 0.30 0.54
i obs 1,412 1,727 2,578 3,147 1,780 2,901 3,038 8,100 3,999
Long Term Options = 180 Days
Call 9.65 42.09  74.03 106.24 126.03 150.99 185.87 267.12 495.82
Volatility 0.18 0.21 0.22 0.23 0.24 0.25 0.26 0.28 0.40
# obs 332 333 575 603 343 660 812 2,605 1,733

Table 1.1. Sample descriptive statistics

Sample characteristics for the period January 5, 1998 to August 24, 2001 concerning
the average call option value, the average Black and Scholes contract specific implied
volatility and the number of observations in each moneyness/maturity class.

Before filtering, more than 100,000 observations were included for the

period January 1998 — August 2001. The filtering rules we adopt are: i) eliminate

mrk

an observation if the call contract price, c,’;, m defining each traded contract, is

greater than the underlying asset value, S,; ii) exclude an observation if the call

mrk

moneyness ratio is larger than unity, S/ Xm>1, and the call price, ¢,/ , is less than

its lower bound, Stefg’”’tTm" —Xmefrm’tT’"’t ; i) eliminate all the options observations
with time to maturity less than 6 trading days. The latter filtering rule is adopted
to avoid extreme option prices that are observed due to potential illiquidity
problems; iv) price quotes lower than 0.5 index points are not included; v)

maturities with less than four call option observations are also eliminated, vi) in
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addition, to remove impact from thin trading we eliminate observations according

mrk

. mrk .
me 1S equal to c and if

to the following rule: eliminate an observation if the c ]
the open interest for these days stays unchanged and if the underlying asset S
has changed.

Our final dataset consists of 76,401 datapoints. Table 1.1 exhibits some of
the properties of our sample tabulated according to moneyness ratio and time to

maturity forming 27 different moneyness/maturity classes. We provide the

BS
Ocon »

average values for cmk and and the number of observations within each

moneyness and maturity class. The implied volatility, 2>

o » bresents a non-flat
moneyness structure when fixing the time to maturity and vice versa revealing
the bias associated with BS. Moreover, we should notice that DITM and VDITM
options dominate in number of datapoints all other classes, so unlike studies
that ignore these options we choose to include them in the dataset. For the
training sub-periods, the observations vary between: 19,852-22,545; for the
validation sub-periods between: 10,372-10,916; and for the testing sub-periods
between: 3,797-4,264.

In order to check the robustness of the results, in addition to the full
dataset just described, we repeat the analysis using a reduced dataset. In this
reduced dataset we follow Hutchison et al. (1994), and we neither use long
maturity (longer than 180 trading days) options, nor the VDOTM (S/X<0.85) or
the VDITM (S/X>1.35) options. The excluded observations (because of
considerations of thin trading) comprise about 21% of the full dataset resulting
in a total of 60,402 observations. The training-validation-testing splitting dates
are the same as in the original dataset. For the training sub-periods, the
observations vary between: 15,851-18,053; for the validation sub-periods: 7,728-
9,638; and for the testing sub-periods: 2,689-3,983. To be consistent with
Hutchison et al. (1994), in using the reduced dataset we retrain the ANNs. Our
discussion will focus on the full dataset. In order to save space, we will only show

selected results using the reduced dataset.
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1.4.4. Validation, testing and pricing performance measures

Since a practitioner is faced with time-series data, it was decided to
partition the available data into training, validation and testing datasets using a
chronological manner, and via a rolling-forward procedure. Our dataset is
divided into ten different overlapping training (7r) and validation (Vd) sets, each
followed by separate and non-overlapping testing (7s) sets as exhibited by Fig. 2.

The ten sequential testing sub-periods cover the last 25 months of the complete

dataset.
| Trl | vd1
| Tr2 |  wvd2
Trl0 Vdlo0 Ts10
Training set Validation set Testing set
v L L - ;

Period under examination

Figure 1.2. The rolling-over training-validation-testing procedure

There are M available call option contracts, for each of which there exist

= observations taken in consecutive time instances t, resulting in a total of P

m

M
(P= ) E, ) available call option datapoints. To determine the pricing accuracy of
m=1

each model’s estimates c* (k defining the model), we examine the Root Mean

Square Error (RMSE) and the Mean Absolute Error (MAE):

RMSE:\/(1/p)§(c{,’"k—él’f)2 (1.11)
v=1
D
MAE =(1/ p)Y|e™* —¢k|, (1.12)
v=1

where p indicates the number of observations. The error measures are computed
for an aggregate testing period (AggTs) with 39,831 datapoints by pooling

together the pricing estimates of all ten testing periods. For AggTs we also
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compute the Median of the Absolute Error (MeAE). Of course, since ANNs are
effectively optimized with respect to the mean square error, the out of sample
pricing performance should be similarly based on RMSE and in a lesser degree

on MAE and MeAE.

1.4.5. The set of alternative BS, CS and ANN models

With the BS models we use as input S, X, T, r, 6, and any of the six

BS BS BS BS

O Oaor> O

BS
av avT O

con *

different volatility measures: o,,, o0,

g 4 and Using P in

the superscript to denote the parametric version of BS, the six different models

are symbolized as: BS.,, BS. , BS. 6 BS’

F . BSL , BSL ., BSL .., and BS? .In a similar way

there are five different CS models according to the kind of parameters used:

csk, ¢Sk, cs?

av avT »

CS. ., and CS?

con *

With ANNs, we also use three standard input variables/parameters:
(Se®’)/X, T and r. Additional input parameters depend on the parametric

model considered. There are six ANN models that use as an additional input the
above BS volatility measures to map the standard target function cvk/X. There
are six more versions that utilize the maturity adjusted parameters. Each of the
previous input parameter sets is also used with the hybrid target function. The
ANNs that use the untransformed BS volatility forecast are denoted by N in the

superscript, the transformed versions by N* while the corresponding hybrid

versions by Nh and Nh* respectively. For instance, BS" (BS™) is the ANN

con con

BS
Ocon

model that uses as additional input and maps the standard (hybrid) target

(BSY"") the ANN model that uses as additional input &2°

con con

function, whilst BSY"

and maps the standard (hybrid) target function. In total there are 24 different
versions of ANNSs related to the BS and 20 related to the CS model.

1.5. Pricing results and discussion

We briefly review the observed in sample fit of the parametric models as
well as the in sample characteristics of the various implied parameters. Then we
discuss the out of sample performance of the alternative OPMs. When we do not

explicitly refer to the dataset, we imply the full one. The insights derived were not
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affected by the choice of dataset. When noteworthy differences exist, we state

them explicitly.

1.5.1. BS and CS in sample fitting performance and implied parameters

Based on our (not reported in detail for brevity) statistics for the whole
period (1998-2001) we have observed that CS is producing smaller fitting errors
than the BS. The contract specific fitting procedure reduces the fitting errors so
as to almost eliminate the residuals and obtain fully calibrated implied
parameters. The in sample RMSE measures using the overall average set of
implied parameters (av), the average per maturity (avT), and the closest four
contracts (avT4), are: 11.63, 11.31, and 7.00 for the BS model; and 9.52, 8.52,

and 5.35 for the CS model®. From unreported statistics we can also attest that
the S&P 500 average ogi in 1998 was about 33%, in 1999 about 30%, in 2000

about 26% and in 2001 about 27%. It seems that the in sample fitting error of
the models (diminishing in time) is positively correlated with the market volatility.

We can also provide some statistics about the implied parameter values
for the whole period. The Brownian volatility varies between 22% and 30% in BS

and between 27% and 31% in CS. For the BS model, the average implied

volatility (o) estimates are smaller in magnitude (both in mean and in median

values) from the contract specific implied volatility, 25

o s although similar
volatility estimates do not necessarily lead to similar pricing and hedging values
(Bakshi et al., 1997). Regarding implied skewness and kurtosis, the implicit
distributions are negatively skewed with excess kurtosis in almost all days,
something that is probably attributed to the crash fears of the market
participants after the Black Monday of 1987. Implied average skewness does not
change significantly (from -1.19 to -1.20) if we move from {av} to {avT} but there is

a shift in implied average kurtosis (from 6.91 to 6.19).

9 The RMSE for CS in the fourth step (con) is 1.82 (caused by a tiny part of the dataset
less than 0.1%) due to binding constraints on skewness and kurtosis. For this step, the
MeAE is more appropriate, and is effectively zero. The RMSE and the MeAE for BS in the
fourth step are effectively zero.
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1.5.2. Out of sample pricing results

Table 1.2, exhibits the performance of all parametric and ANN models
considered in this study in terms of RMSE, MAE and MeAE for the AggTs
(aggregate) period. In Table 1.3 we tabulate statistics for a pairwise comparison of
the (statistical significance of) pricing performance of a selection of models. Since
the ten testing periods are disjoint and because we have pricing estimates
coming from different OPMs we can assume (similarly to Hutchison et al, 1994
and Schittenkopf and Dorffner, 2001) that the pricing errors are independent and
standard t-test can be applied. Similarly to the previous authors we need to
report that these tests should be interpreted with caution. The upper diagonal of
Table 1.3 reports the t-values taken by a two-tail matched-pair test about the
MAE of the alternative models whilst the lower diagonal exhibits the two-tail
matched-pair t-test values about the MSE of the compared OPMs. Table 1.4
provides (as a robustness check) the performance of the models when using the
reduced dataset.

By looking at Tables 1.2 and 1.4 we can see that the use of implied
instead of historical parameters improves performance, both for parametric and
ANN models (in both datasets). Note that the 60-day historical volatility
performed better than VIX with the parametric BS model, but the VIX volatility
measure performed better with the ANN models. Using time adjusted parameters
in the ANNs or using contract specific parameters {avT4, con} usually improves
performance. The combination of time adjusted parameters and contract specific
parameters always provided the best model within each class of ANNs (standard
or hybrid, BS or CS based) in both datasets.

In comparing the parametric models and again looking at Tables 1.2 and
1.4, it is noteworthy that CS outperforms BS when average implied parameters
are used. BS still works better with contract specific parameters. The overall best
among the parametric models is the contract specific BS model. In other more
complex parametric models that include jumps and stochastic volatility
components (i.e. Bakshi et al., 1997), deriving implied parameters may lead to
model overfitting. The contract specific approach we adopt in this study seems
not to lead to model overfitting, retaining thus good out of sample properties. For
the ANN models, the CS based may outperform the BS based in some cases, but

when the best combinations are used (time adjusted parameters and contract
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specific parameters), the best model always is BS based in both the standard and

hybrid networks.

Bs§  Bsh,  Bsh,  Bshy  Bshra  Bsh. | csh CSkh,  CSkyr  CSiyra  CShn

RMSE | 11.18 12.57 9.72 9.47 3.03 7.04 11.25 8.89 8.87 8.11 7.71
MAE 6.83 8.60 5.32 5.00 3.10 2.70 6.89 3.86 3.72 3.27 3.10
MeAE 4.48 6.38 3.74 3.37 1.52 1.43 4.61 2.26 1.94 1.69 1.68
B3 BsY Bsl BsN Bsy BsY Bsi  BsM’ BsM* Bsh . BsN” Bs¥:

9] v av avl auT4 comn &0 Vi Ay avl avTd oo

RMSE | 13.06 12.65 10.97 12.48 10.74 9.06 14.68 12.76 12.30 11.69 9.33 7.86
MAE 7.58 6.65 5.91 7.04 6.04 4.68 7.68 6.70 6.67 6.55 5.04 3.81
MeAE 5.13 3.83 3.65 4.11 3.69 2.88 4.71 3.65 3.99 3.94 2.94 2.44
csio CSum  CSwr  CShra  CSh. | €S CS;,  CSmr  CSmra  CSLn

RMSE | 15.22 11.28 11.59 9.87 11.83 | 14.35 11.42 11.96 9.47 9.76
MAE 9.13 5.80 6.14 5.73 5.81 7.71 5.39 5.56 4.67 4.87
MeAE 6.43 3.48 3.96 3.65 3.65 4.27 3.26 3.15 2.93 3.03
Bsff Bt msiy  BsQy  Bsiya  BSI | BsEY  msiY  BsiY  Bsly  Bsiya  BSIY

RMSE 9.05 8.35 8.57 8.29 7.9 6.38 9.03 8.27 8.87 7.84 7.68 6.01
MAE 5.40 4.55 4.35 4.09 3.30 2.68 5.46 4.53 4.35 3.91 3.17 2.61
MeAE | 3.73 298 283  2.51 1.80  1.60 | 3.98 3.00 269 253 167 158
csit csiy  oshy  csira  osln | csif csj  oshy  csiya oSl

RMSE | 10.33 8.68 863  7.97 7.60 | 9.68 8.85  8.66  7.60  7.39
MAE 6.38 4.12 3.84 3.42 3.14 6.20 3.95 3.94 3.39 3.11
MeAE | 4.46 242 2.17 1.93 177 | 4.56 2.33  2.35 196  1.82

Table 1.2. Pricing error measures in the aggregate testing period (AggTs)
RMSE is the Root Mean Square Error, MAE the Mean Absolute Deviation and MeAE
the Median of the Absolute Error. The superscripts refer to the kind of the model: P
refers to parametric models, N to the simple neural networks and Nh to the hybrid
neural networks. The asterisk (*) refers to neural network models that use
transformed variables. The subscripts refer to the kind of historical/implied
parameters used.

In comparing the parametric models with the standard ANNs, in the full

dataset the ANNs never outperform the equivalent parametric ones. Apparently,
the standard ANNs cannot perform well in the extreme data regions. In the
reduced dataset (see Table 1.4), we observe the opposite since the standard ANNs
always outperform the equivalent parametric ones.
In comparing the hybrid with the standard ANNSs, in the full dataset the hybrid
are always better. In the reduced dataset this may not always be the case, but
the best combinations (time adjusted parameters and contract specific
parameters) give as the best model always a hybrid one.

In both the full and the reduced dataset, the hybrid always outperform the
equivalent parametric ones. Finally, in both the full and the reduced dataset, the
overall best model is the BS based hybrid with time adjusted and contract

specific volatility.
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From Table 1.3, we can confirm the statistical significance of the best
models. The comparative results we discuss with tests using the full dataset, and

they also hold for the reduced dataset (statistics not reported for brevity). We can

see that BSY" outperforms all other models. Specifically, BSY" is producing a

RMSE equal to 6.01 and a MAE equal to 2.61, pricing measures that are smaller

that any other model at the 5% significance level.

Bsf, Bsh. Bsk, csf csk, Bsly cslf BSEYY Bs;y  msi oSl s
Bsgc -27.74 75.12 -0.94 65.72 -11.07  -11.72 23.90 40.83 81.22 10.80 66.92
leix 7.7 104.84 26.74 94.84 11.84 11.71 53.72 T0.71 112.32 40.52 96.53
Bs:;n -16.13 -25.08 -75.91 -8.43 -70.51 -72.82 -56.94 -38.56 2.12 -70.87 -8.76
ngn 0.34 -6.72 16.31 66.53 -10.28 -10.91 24 .85 41.74 82.02 11.78 67.74
CSE;;n -13.38 -21.60 2.14 -13.58 -63.58 -65.63 -46.76 -28.85 11.11 -60.38 -0.10
B’Sgg 7.24 4.64 13.37 7.09 12.48 -0.34 30.64 43.94 T4.23 20.23 64.28
Csé‘g T.7T 4.67 15.19 7.59 14.09 -0.62 31.84 45.50 T6.80 21.15 66.39
BSQ‘S‘" -9.55 -18.30 7.57 -9.81 495 -10.83 -12.15 18.64 63.30 -14.28 47.82
Bsiﬁp -12.54 -21.61 4.48 -12.75 2.02 -11.91 -13.46 -3.25 43.70 -32.87 29.50
BS&’?" -21.16 -32.03 -3.45 -21.26 -5.62 -14.63 -16.83 -12.27 -8.78 -78.03 -11.58
ngg‘* -6.86 -15.36 10.42 -7.15 7.65 -9.84 -10.96 2.97 6.24 15.52 61.73
CSQE;: -14.98 -23.78 1.15 -15.16 -1.04 -12.95 -14.69 -6.34 -3.26 4.73 -9.18

Table 1.3. Matched-pair student t-tests for square and absolute
differences

Reported matched-pair t-tests concerning the absolute differences are in the upper
diagonal, whilst the matched-pair t-tests concerning the square differences in the
lower diagonal. Both tests compare the MAE and MSE between models in the vertical
heading versus models in the horizontal heading. In general, a positive t-value larger
than 1.645 (2.325) means that the model in the vertical heading has a larger MAE or
MSE than the model in the horizontal heading at 5% (1%) significance level.

The BS based hybrid ANNs even with historical or the VIX volatility

measure are considerably better than the equivalent parametric alternatives at a

statistically significant level. Specifically, BSé\gl* is producing 1.23 (1.25) times
smaller MSE (MAE) compared to BS[,. Also BSj\gj* produces 1.52 (1.90) times
smaller MSE (MAE) compared to BS/, .

Comparing the out of sample pricing performance of BSéXZ* to ng,ﬁ* we

observe that the extra ANN f{flexibility of the latter due to the two additional input

parameters does not lead to increased accuracy. The BSM' is better than the

CSM™" model at 1% significance level.

We can similarly see the statistical significance of the superiority of the BS
based models with contract specific volatility versus the equivalent CS based

models (both parametric and hybrid); and the superiority of the models using the
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implied volatility versus the equivalent ones using the historical volatility

measures.

Bsf,  Bsh.  Bsh,  Bshr  Bshr. Bsh. | osh CSk,  CSky  CSiyra  CShn
RMSE | 9.83 11.82 841  8.25 7.08  7.06 | 9.74 7.56  7.55  7.55  7.52
MAE | 635 843 482  4.54 265 265 | 6.32 3.38  3.12 299  3.04
McAE | 450 657 3.63  3.27 1.48 146 | 4.59 2.17  1.83 1.69 1.71

Bsl,  Bsk, Bsl, BsY ;- Bsr. Bs¥, | Bsfy BsK BslY Bs¥.  BsY., BsY.
RMSE | 8.05 6.56 7.34  6.94 6.64 6.69 | 7.14 660 682 691 625  6.12
MAE | 5.07 3.34 402  3.72 342 337 | 411 343 346  3.59  3.01  3.00
MeAE | 3.80 232 299  2.56 233 224 | 3.09 241 244 256 199  2.02

csty Cs¥,  CSir  CShra  CSky | CSB Csy,  CSmr  CSiyra  CSiw
RMSE | 9.05 7.18  6.93 6.94  6.88 | 8.35 697 659 650  6.77
MAE | 5.74 3.95  3.61 373 3.62 | 4.04 3.68  3.26 3.23  3.45
MeAE | 4.25 274  2.41 260 255 | 3.43 2062 222 225  2.36

Bsly  mspy  Bsk'  BsMy  Bswy.  Bshn | BSEY  msi  msNT msNY  asiy,  Bshn
RMSE | 845 6.70 7.29  7.01 658 678 | 7.35 640 705 683 504 564
MAE | 5.11 358 362  3.38 262 269 | 427 321 332 330 245 244
MeAE | 344 2559 255  2.35 1.55 165 | 313 226 230 233 1.51 1.54

csil Csl  Csiy  Csiirq sl | csiy csk’  Cshy  CsNE.  csky
RMSE | 7.80 729  6.83 731 7.35 | 7.69 6.90  6.80  6.51 6.46
MAE | 4.65 320  3.08 303 303 | 458 313 292 283 287
MeAE | 3.41 213  2.02 1.82 1.80 | 3.23 2.03 1.80 1.79 1.81

Table 1.4. Pricing error measures in the aggregate period (AggTs) for the
reduced dataset

RMSE is the Root Mean Square Error, MAE the Mean Absolute Error and MeAE the
Median of the Absolute Error. The superscripts refer to the kind of the model: P refers
to parametric models, N to the simple neural networks and Nh to the hybrid neural
networks. The asterisk (*) refers to neural network models that use the transformed
variables. The subscripts refer to the kind of historical/implied parameters used.

1.5.3. Other statistics

We tabulate in Table 1.5 the MSE of a selective (but representative) choice
of models, according to the various moneyness and maturity classes for the

aggregate (AggTs) period. We demonstrate results for the two best performing

parametric models which serve as benchmark (BS’. , CS”

con ?

) and the two best

performing (in their respective class) hybrid ANN models (BSY", cSM"). We also

con ? con

demonstrate results for the reduced dataset (BSY, CS™'). The relevant

con ? con
information for the parametric models in the reduced dataset can be taken from

the information concerning the full if we ignore the long maturities, and the

VDOTM and the VDITM classes. Very briefly, what can be seen is that BS® has
a smaller RMSE in all data classes compared to CS’ . The same holds for BSY"'

over CSM" . If we compare the BS and CS based hybrid models with the
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equivalent parametric ones, the hybrid ANN models rarely underperform the
parametric ones, and they do so only in some classes far away from ATM. This
we attribute to the scarcity of such call option datapoints in the training samples

compared to other moneyness and maturity classes.

Short Medium Long | short Medium Long
Results for the full dataset
Bsa.;‘?t Cs(.;;?i
VDOTM 3.60 491 0.26 8.34 10.61 0.66
DOTM 2.27 4.50 2.82 3.02 5.24 4.47
OTM 5.78 8.37 3.97 6.29 9.68 5.08
JOTM 7.81 6.68 6.15 3.13 7.64 7.65
ATNM 6.67 9.46 5.86 7.30 10.14 7.29
JITM 6.71 9.41 4.34 7.29 9.21 2.97
ITM 7.70 7.13 4.43 8.24 7.99 3.18
DITM 7.07 7.93 T.27 7.20 8.50 7.50
VDITM 8.26 9.46 8.74 3.20 10.05 9.05
Bsily cs2t
VDOTM 3.60 4.97 1.15 6.13 10.22 6.04
DOTM 2.46 4.83 2.32 2.96 5.28 5.03
OTM 3.30 T7.753 3.98 6.19 9.41 5.36
JOTM 5.80 5.36 5.78 7.83 7.30 T.66
ATM 4,73 B.18 5.38 6.94 9.86 7.13
JITM 5.09 7.39 4,10 6.89 8.68 6.64
ITM 6.24 6.05 3.95 7.58 7.16 5.69
DITM 3.80 7.15 6.74 6.64 8.04 717
VDITM 8.03 9.29 8.46 8.96 10.33 9.26
Results for the reduced dataset
Bsily =
VDOTM n.a. n.a. n.a. n.a. 1.a. n.a.
DOTM 2.36 4.07 f1.A. 2.54 5.22 f.a8.
OTM 5.08 T.25 f.a. 5.69 8.74 n.a.
JOTM 5.82 5.99 n.a. 6.76 7.09 n.a.
ATM 4.6 8.37 n.a. 5.68 9.53 n.a.
JITM 5.50 7.68 n.a. 6.20 8.16 n.a.
ITM 5.98 5.84 f1.A. 6.73 6.73 f.a8.
DITM 5.43 6.59 n.a. 3.95 7.67 n.a.
VDITM 1.4a. 11.4. 1.a. 1.4a. 1.4a. n.a.

Table 1.5. Root Mean Square Errors for selected models (clustered by
moneyness and maturity)

We should finally comment on the complexity of each neural network
configuration. Since we have a constant number of inputs within each model
class, the larger the number of hidden neurons the more complex the ANN model
architecture, and the more complex the target function to be approximated.
Firstly, we observe that the number of hidden neurons changes significantly
between sub-periods. This contradicts many previous studies that employ the
assumption that the market’s options pricing mechanism is the same for all

periods examined and that a constant ANN structure is sufficient. Secondly, the
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standard target function is more complex compared to the hybrid one, hence this

hybrid category of networks can perform better in out of sample pricing. Thus, it

Nh*
Scon ’

is not surprising that the best performing ANN model, B demonstrates the

simplest structure with an average of 3.2 hidden layer neurons, compared to the

8 hidden layer neurons in the case of the equivalent standard ANN (BSY ).

Similarly for the CS-based ANNs, we have 4.9 (for CSY") and 7.7 (for csil)

hidden layer neurons respectively. Similar network complexities (not reported)

were observed in the reduced dataset.

1.6. Delta neutral trading strategies

We now investigate the economic significance of the best performing
models in options trading. In order to save space we discuss the parametric
versions of BS and CS which are usually the benchmark, and the hybrid ANN
models which provided the overall best performance. Other studies usually
restrict their analysis only to a hedging investigation of various alternative POPM
models (i.e. Hutchison et al., 1994, Garcia and Gencay, 2000, Schittenkopf and
Dorffner, 2001) and avoid exploiting trading strategies. It is known from previous
studies that the best POPM in terms of out of sample pricing performance does
not always prove to be the best solution when we consider delta hedging, since
ANNs are optimized based on a pricing error criterion. Instead, and following the
spirit of Black and Scholes (1972), Galai (1977), and Whaley (1982), we
investigate the economic significance of the OPMs by implementing trading
strategies. “A model that consistently achieves to identify mispriced options and
within a time period produces an amount of trading profits will always be
preferred by a practitioner” (Black and Scholes, 1972). The trading profitability
that we will document, indirectly also hints to potential option market
inefficiencies, although testing market efficiency is beyond the scope of our
study. We implement trading strategies based on single instrument hedging, as
for example in Bakshi et al. (1997). In addition, we consider various levels of
transaction costs, and we focus on dynamic strategies that are cost-effective. We
later extend the analysis by implementing a modified approach for trading using

hedging ratios obtained via the (widely neglected) Chen and Johnson (1985)
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method. To our knowledge, this is the first effort to validate this modified trading
strategy using both parametric and ANN OPMs.

In the trading strategy we implement, we create portfolios by buying
(selling) options undervalued (overvalued) relative to a model’s prediction and
taking a delta hedging position in the underlying asset. This (single-instrument)
delta hedging follows the no-arbitrage strategy of Black and Scholes (1973),
where a portfolio including a short (long) position in a call is hedged via a long
(short) position in the underlying asset, and the hedged portfolio rebalancing
takes place in discrete time intervals (in an optimal manner, not necessarily

daily). At time t, if according to the model the mt call option contract is

mrk

overvalued (undervalued) relative to its market value, ¢'", we go short (long) in
this contract and we go long (short) in Afn,t “index shares!9”, where k denotes the

relevant model. Then we invest the residual, B in a riskless bond. Note that

m,t ?

Afn,t is the partial derivative of the option price with respect to the underlying

ANN
m,t

asset, ac,’;,t/ 0S,, depending on the POPM under consideration. A can be

calculated by differentiating Eq. (1.4) via the chain rule. The expression for A},
is e*"N(d,) and is derived from Eq. (1.2). The expression for A5, includes AL
and is:

ASS, = MBS, + u3ds + (ud - 3)dy, (1.13)

m,t =

003

where @3 =35 and @4 _ 094

are given below:

@, =~ e (ONT)  N(dy) + nldy BT ) - e T +(d )2 ~1)
(1.13.1)

10 Similarly to Bakshi et al. (1997) we assume that the spot S&P 500 index is a traded
security.
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@, =€ T (ONT) Nidy) + 4n(d) (o T)* - 6(d o T 2 — 4n(d)(oNT) +

4d, )2 n(d, )(0'\/?) +3(dy)n(d;) - (d; )3 n(d,))
(1.13.2)

In general we avoid a naive (expensive) trading strategy with daily
rebalancing, since in the presence of transaction costs this would become
prohibitively expensive. Instead, the position is held as long as the call is
undervalued (overvalued) without necessarily daily rebalancing. Then the
position is liquidated and the profit or loss is computed, tabulated separately and
a new position is generated according to the prevailing conditions in the options
market. This procedure is carried out for all contracts included in the dataset.

We rebalance our position in the underlying asset to keep the appropriate hedge

ratio. Rebalanced positions in the index, V, ..., and the bond, B, ., , are

according to:

Vm,t+At = istmr (Am,t+At - Am,t) (1.14)

B . = Bm)temt + Vi eat> (1.15)

m,t+A

where the positive sign is considered when we treat undervalued and the
negative sign when we treat overvalued options. Note that in all trading
strategies, when we need to invest money we borrow and pay the riskless rate;
similarly we do for as long as a strategy provides losses. Thus, when we present
profits they are always above the dollar return on the riskless rate.

Computed statistics include the total profit or loss (P&L), the number of
trades (# Trades), the total profit or loss at 0.2% transaction costs, P&L (0.2%),
and 0.4% transaction costs, P&L (0.4%). The (proportional) transaction costs are
paid for both positions (in the call option and in the “index shares”)!l. We also

implement strategies with enhanced cost-effectiveness by ignoring trades that

11 For example, assume that the index is at 1300 and a call option has a market price
equal to 25 index points and a delta value of 0.60. Under 0.4% transaction costs the total
commissions paid (for a single trade) will be 3.22 index points. In the AggTs period the
S&P 500 was in a range from about 1100 to 1500. This level of transaction costs is low
but attainable by professional traders and market makers.
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involve call options whose absolute percentage mispricing error, |c* —c™ | /c*,
is less than a mispricing margin d = 15%, found as P&L (d = 15%). In addition,
for these strategies, we also calculate P&L under aggregate transaction costs for

the “index shares”. With such aggregation, transactions in the underlying assets
are paid on the net (aggregate) exposure of V, .., and not on each position
individually. Under this strategy, we expect additional cost savings that may
provide profits even at rather high transaction cost levels. We use the prefix Agg.

in front of P&L to indicate this strategy. The following observations refer to the

full dataset, but they also hold for the reduced one (unreported due to brevity

considerations).
BsE, BsE, BsE, BsEr BSh s BsL,
Panel A: Black and Scholes trading strategy with standard delta values

P&L 7,447 13,518 14,088 13,069 32,040 35,026

# Trades 3,361 3,878 4,858 5,477 13,539 15,644

P&L 0.2% (d=0%) -6,829 -6,847 -5,348 -7,512 -17,911 -23,307
Agg P&L 0.2% (d=0%) -1,861 -266 737 -1,394 -5,638 -8,437
P&L 0.2% (d=15%) 3,320 4,134 7,527 6,341 7,907 7,369
Agg P&L 0.2% (d=15%) 5,003 5,019 8,344 7,657 8,384 7,873

Pé&L 0.4% (d=0%) -21,105 -27,211 -24,785 -28,093 -67,863 -81,640

Agg P&L 0.4% (d=0%) -11,170 -14,049 -12,614 -15.858 -43,316 -51,899
P&L 0.4% (d=15%) -1,468 -508 3,241 2,269 4,691 4,212
_Ag P&L 0.4% (d=15%) 1,897 1,262 4,875 3,901 5,645 5,221

Panel B: Black and Scholes trading strategy with modified delta values

P&L 7,916 14,367 14,232 13,441 32,281 35,229

# Trades 3,361 3,878 4,858 5,477 13,539 15,644

P&L 0.2% (d=0%) -6,169 -5,599 -4,958 -6,946 -17,788 -23,080

Agg P&L 0.2% (d=0%) -1,392 1,342 1,225 -778 -5,534 -8,259
P&L 0.2% (d=15%) 4,044 5,534 8,182 7,546 8,306 7,713
Agg P&L 0.2% (d=15%]) 5,515 6,558 9,115 8,524 8,815 8,198

Pé&L 0.4% (d=0%) -20,254 -25,564 -24,148 -27,334 -67,858 -81,390

Agg P&L 0.4% (d=0%) -10,700 -11,682 -11,782 -14.998 -43,348 -51,748
P&L 0.4% (d=15%) -685 1,284 4,143 3,180 4. 883 4,339
_Agg P&L 0.4% (d=15%) 2,257 3,333 6,007 5,137 5,900 5,308

Table 1.6. Trading strategies for the Black and Scholes models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs
when we ignore trades whose absolute percentage of mispricing error between model
estimates and market values is at least 0% and 15% respectively. Agg. refers to
aggregating the position on the underlying asset to reduce transaction costs. Panel A
tabulates results with standard delta values whilst Panel B tabulates results with
Chen and Johnson modified delta values.

The results for the parametric BS and CS models are tabulated in Panel A
of Tables 1.6 and 1.7 respectively. We observe that all models before transaction
costs produce significant profits, implying that both BS and CS can successfully
identify mispriced options. Within BS models the magnitude of P&L is larger for
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BS? ~that employs a more sophisticated implied volatility forecast. Note though

that the more sophisticated volatility forecast that is used with BS, the larger the

number of trades. So, when 0.2% transaction costs are taken into consideration,
all models produce significant losses and the previous profit dominance of BS’

over BS{, reverts because the latter model incurs less transaction costs (since it

engages in a smaller number of trades).

csk Csh CSkr CSguta cskn
Panel A: Corrado and Su trading strategy with standard delta values
P&sL 7.603 28,816 32,803 37,072 36,777
# Trades 3.430 11,178 13.306 14,911 15,219
Pé&L 0.2% (d=0%) -7,658 -15,867 -19,045 -22,750 -24.414
Agg P&L 0.2% (d=0%) -2,532 -4,495 -5,641 -6,685 -6,909
P&L 0.2% (d=15%) 2.868 7.960 6.791 6,606 6,422
Agg P&L 0.2% (d=15%) 4.533 8.739 7.483 7.418 7.311
P&L 0.4% (d=0%) -22,919 -60,550 -70,894 -82,572 -85,604
Agg P&L 0.4% (d=0%) -12,667 -37,805 -44,085 -50.441 -50,595
P&L 0.4% (d=15%]) -1,949 2,797 1,935 1,371 1,124
AEE P&L 0.4% (d=15%) 1.383 4,355 3.319 2,993 2,901
Panel B: Corrado and Su trading strategy with modified delta values
P&L 7,837 29,208 33,219 37,044 37,097
# Trades 3.430 11,178 13.306 14,911 15,219
Pé&L 0.2% (d=0%) -7,209 -15,317 -18.610 -22,828 -24,203
Agg P&L 0.2% (d=0%) -2,332 -3,843 -5,186 -6,708 -6,615
P&L 0.2% (d=15%) 3.512 8,685 7,322 6,740 6,778
Agg P&L 0.2% (d=15%) 4,943 9,539 3,024 7,594 7,720
P&L 0.4% (d=0%) -22,255 -59,841 -70,439 -82,700 -85,503
Agg P&L 0.4% (d=0%) -12,501 -36,893 -43,590 -50.460 -50,328
P&L 0.4% (d=15%) -1,218 3,521 2,303 1,172 1,074
Agg P&L 0.4% (d=15%) 1.646 5,229 3,707 2,881 2,958

Table 1.7. Trading strategies for the Corrado and Su models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs
when we ignore trades whose absolute percentage of mispricing error between model
estimates and market values is at least 0% and 15% respectively. Agg. refers to
aggregating the position on the underlying asset to reduce transaction costs. Panel A
tabulates results with standard delta values whilst Panel B tabulates results with
Chen and Johnson modified delta values

Similar results hold for the CS models although CS. ., generates slightly

higher profits compared to CS’ . Realizing that our simpler trading strategy does

not discriminate between high or low expected trading profits, we compute P&L
when trades occur only when an expected profit of at least d = 15% is expected.
Now we observe that all models can be profitable even under 0.4% transaction
costs. Overall we may conclude the following. First, without transaction costs,
the CS models produce higher P&L than their counterpart BS models. This is

expected since the delta values generated by CS models are consistently higher

than those of BS models (for example the median delta values of BS/, for AggTs
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is 0.632 whilst for CS/ is 0.697), making CS based trading more aggressive.

Moreover, CS with {av} and {avT} volatility measures, outperforms significantly
the equivalent BS models since it generates more than twice the number of
trades; this may happen because unlike the BS models whose implied volatility
changes more smoothly, CS models implied skewness and kurtosis can change
more erratically. Secondly, and for the same reason, CS models under 0.2% or
0.4% transaction costs become inferior to their BS counterparts. Thirdly, from
unreported calculations we have seen that as d increases we generally observe
P&L to increase in a diminishing fashion indicating that there is an optimal d for
maximizing trading profits. Finally, trading “in aggregate” positions leads to

significant further savings on transaction costs.

Bl BS BSi" BS&T BSita BSI.
Panel A: Black and Scholes based hybrid ANNs
PéL 27,024 29,529 32,908 33.514 35,774 37,281
# Trades 5,675 8.246 8,907 9,457 11,995 12,650
P&L 0.2% (d=0%]) 1.604 -4,193 -2,435 -4,134 -11.484 -12,939
Agg P&L 0.2% (d=0%) 10,552 6.053 7,871 7,086 837 1,066
P&L 0.2% (d=15%) 6.593 5.147 8,162 8,579 7,910 8,427
Agg P&L 0.2% (d=15%) 8.247 6.977 9,890 9,957 8,689 9,237
P&L 0.4% (d=0%) -23,637 -37,914 -37,778 -41,782 -58,741 -63,158
Agg P&L 0.4% (d=0%) -5,920 -17,424 -17,166 -19,343 -34,100 -35,148
P&L 0.4% (d=15%) 1.804 -277 2,232 3,156 4,364 4,812
Aﬁﬁ Pé&L 0.4% (d=15%) 5,112 3.382 5,687 5,911 5,922 6,432
csig” csay” CSaot CSavra csiiy
Panel B: Corrado and Su based hybrid ANNs
P&L 26,601 32,915 31,943 34,907 37,975
# Trades 5,140 10,043 10,377 12,537 12,947
P&L 0.2% (d=0%) 3,590 -8,721 -12,019 -17,527 -16,084
Agg P&l 0.2% (d=0%) 11,032 3.734 598 -1,586 735
Pd&L 0.2% (d=15%]) 7,337 6,653 5,601 6,052 7.826
Agg P&L 0.2% (d=15%) 8,861 8,231 7.114 7,439 8,960
P&L 0.4% (d=0%) -19.511 -50,356 -55,980 -69,962 -70,143
Agg P&l 0.4% (d=0%]) -4,626 -25,446 -20,146 -38,078 -36,505
PéL 0.4% (d=15%) 2,433 724 457 612 2.605
Agg P&L 0.4% (d=15%) 5,481 3,879 3,484 3,387 4,873

Table 1.8. Trading strategies for the hybrid ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs
when we ignore trades whose absolute percentage of mispricing error between model
estimates and market values is at least 0% and 15% respectively. Agg. refers to
aggregating the position on the underlying asset to reduce transaction costs. Panel A
tabulates results for the hybrid BS based ANN model whilst Panel B tabulates results
for the hybrid CS based ANN models.

In Table 1.8 we present results for the trading strategies based on ANNs
(only for the hybrid models with time adjusted parameters). In general we observe

similar results to those of the parametric models. Contrary though to the
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parametric OPMs, the ANNs offer significant improvement in the cases of less

sophisticated parameter estimates. For example, BS)"" produces a P&L equal to

32,908 compared to a P&L equal to 14,088 in the case of BS. . The best models

provide profits in 77%-82% of transactions (detailed figures not reported for
brevity) using both the full and the reduced dataset. Finally, in the presence of
transaction costs the BS based hybrid model with contract specific volatility is
not only the best performing ANN model, but also the overall best. A final
observation is that the ability to generate profits even under a considerable level
of transaction costs (we do not report here, but the best strategies retained
profitability even up to a level of 0.5% of transaction costs) provides some
evidence of inefficiency in these options markets. Our study however is not

intended to be a test of market efficiency.

1.6.1. Improving trading with the Chen and Johnson approach

We now extend the trading strategies by utilizing with all models the
improved hedging scheme suggested by Chen and Johnson (1985). This is a
widely neglected (see Roon et al., 1998 for a rare exception in the use of
parametric models) approach that deals with deriving hedge parameters under

the assumption of mispriced options. According to this hedging scheme and

when an option is mispriced, the delta hedge parameter, Aﬁm, should be derived

in a different way. If a mispriced option has been identified, then the riskless
hedge will not earn r, the riskless rate, but some other rate, r* Chen and
Johnson obtain the expression for a European call option that is the same as BS
presented in Eqgs (1, 1.a) and (1.1.b), by replacing r with r*. In order to derive the
correct hedge ratio, Equation 1 must be solved numerically for r* using the
observed market price of cm* (like retrieving the implied interest rate). We
implement this approach with the parametric BS and CS models, and the ANNs.
Finding the implied interest rate, r* for the case of BS or CS is a simple
numerical task and we employ the repeated cubic interpolation technique
according to Charalambous (1992). Finding the implied interest rate, r¥ for ANNs
is a more involved task, since in the case of hybrid models we need to jointly
optimize with respect to the interest rate input to the neural networks and to the
interest rate in the parametric model that is used to create the hybrid target

function; this introduces many jagged ridge regions in the optimization surface.
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Thus, in the case of hybrid ANNs we adopt a more computationally intensive
methodology according to which we again use the cubic interpolation technique
with ten different initial starting points.

After finding r* for all models considered we rerun the trading strategies.
Results for the parametric BS and CS models appear in Panel B of Tables 1.6
and 1.7. The most important observation is that before transaction costs are
accounted for, in all BS models under consideration there is a slight (only)

improvement in their profitability (P&L). Under aggregate 0.4% transaction costs
and for d = 15%, the improvement in BSY, is about 19%, in BS/,_ is surprisingly
about 164% and for the more sophisticated BS” model only 1.67%. We remind

that BS/_  exhibited both, the poorest out of sample pricing performance and

only a modest profitability (under 0.4% transaction costs) among the BS models.
Under the adjusted deltas, this seems to be partly alleviated. Somewhat similar
results we observe for the semi-parametric CS model. For both parametric
models, the modified hedging approach under transaction costs gave the best
results when using the average (not contract specific) parameters. In the case of
ANNs (results unreported for brevity) and under no transaction costs, we also
observe a slight tendency for increased performance, but the results are mixed.
With transaction costs the technique was unable to improve the profitability of
ANNs. The above observations refer to the full dataset, but they also hold for the
reduced one (again not reported due to brevity).

A general observation for the use of the modified hedging approach in
trading strategies is that it significantly improves trading performance when it is
applied with POPM models under assumptions consistent with the assumptions
under which this approach was developed. Thus, it performs well with the
parametric models when either historical, or average implied parameters are
used. The use of this approach did not reverse our previous findings about the
best performing models when trading in the presence of transaction costs. Still, it
demonstrated that simple models can be efficient alternatives to the more

sophisticated and computationally intensive hybrid ANN methods.
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1.6.2. Delta hedging

We have also considered hedging as a testing tool. Our results here
coincide with previous literature — model ranking may differ if testing is based on
hedging instead of pricing. Bakshi et al. (1997) compare alternative parametric
models and state that the hedging-based ranking of the models is in sharp
contrast with that obtained based on out of sample pricing. They also state that
(delta-hedging) performance is virtually indistinguishable among models. Quite
similar results are reported in papers where non-parametric methods were used,
like Garcia and Gencay (2000), and Gencay and Qi (2001). Schittenkopf and
Dorffner (2001) find the results (marginally) better for the parametric models, but
practically indistinguishable. Hutchison et al. (1994) also report that the learning
networks they use have a better hedging performance compared to BS but they
find it difficult to infer which network type performs best. We attribute this
difference of model ranking to the fact that models are usually optimized with
respect to pricing. An exception is Carverhill and Cheuk (2003) who focus more
on hedging performance by optimizing with respect to the hedge parameters.
Optimizing the “hedging performance” is beyond the scope of this essay.
Furthermore, hedging performance is not a substitute for trading performance,
since hedging tests fail to account for the difference between overpriced and
underpriced options.

We have calculated the mean hedging error (MHE) and the mean absolute
hedging error (MAHE) of a standard hedging strategy with daily rebalancing. For
brevity we do not report the full results here, but we have found according to

MHE that the best parametric model is the ¢S? . Among the ANN models the

con *

best performing one is ¢s™, with an identical error for the parametric CS model
(equal for both models to 0.26). In addition, the error equals 0.30 for both the

BS? and the BSY’ models. In general, from the MHE we cannot tell which

con con
POPM is the best since their difference in this measure is practically
indistinguishable. Continuing with the MAHE we have the same picture, and we

find it hard to observe a certain POPM that dominates in this measure since

many models have “almost identical” MAHE values. It is true that Bséfm and

BsP?

ra are the overall best models (with MAHE equal to 2.57 for both) and
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perform relatively better than the ANN models (their hybrid ANN counterparts
both having an error equal to 2.63).
In general, we can conclude that the hedging error performance is not in

line with the models’ pricing performance. That is, our best model in pricing

accuracy, BSM" does not produce the smallest hedging errors. But again, it is

truly hard to differentiate among models. The above discussion pertains to the
full dataset, but we have observed that ranking models using hedging

performance is not affected by the choice of dataset.

1.7. Conclusions

Our effort has focused in developing European option pricing and trading
tools by combining the use of ANN methodology and information provided by
parametric OPMs (the BS and the CS model). For our empirical tests we have
used European call options on the S&P 500 Index from January 1998 to August
2001. In our analysis we have included historical parameters, a VIX volatility
proxy derived by weighting implied volatilities (for the case of BS only), and
implied parameters (an overall average, an average per maturity, the 4-point
closest in moneyness, and a contract-specific parameter set). Neural networks
are optimized using a modified Levenberg-Marquardt training algorithm. We
include in the analysis simple ANNs (with input supplemented by historical or
implied parameters specific either to BS or the CS model), and hybrid ANNs that
in addition use pricing information derived by any of the two parametric models.
In order to check the robustness of the results, in addition to our full dataset we
repeat the analysis using a reduced dataset (following Hutchison et al., 1994).
The economic significance of the models is investigated through trading
strategies with transaction costs. Instead of naive trading strategies we
implement improved (dynamic and cost-effective) ones. Furthermore, we also
refine these strategies with the Chen and Johnson (1985) modified hedging
approach. Our results can be synopsized as follows:

Regarding the in sample pricing, CS performs better than the BS model
(with the exception of the case of the contract specific implied parameters that

practically eliminate the pricing error).
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Regarding out of sample pricing, CS outperforms BS with the use of
average implied parameters, but BS is still a better model when the contract
specific implied parameters are used; in general, implied parameters lead to
better performance than the historical ones or the VIX volatility proxy; the simple
neural networks cannot outperform the parametric models in the full range of
data, but we verified allegations to the contrary found in the literature with the
use of a reduced data set; hybrid neural networks that combine both neural
network technology and the parametric models provide the best performance,
especially when contract specific and adjusted parameters are used. The BS
based hybrid ANN (with contract specific parameters) is the overall best
performer, and the equivalent CS hybrid often a good alternative.

In trading and before transaction costs, models using contract specific
implied parameters provide the best performance. But they also lead to the
highest number of trades. In trading when transaction costs are accounted for in
a naive manner, profits practically in all cases disappear. In trading and even
with 0.4% transaction costs, when dynamic -cost-efficient strategies are
implemented, profits are still feasible hinting thus to potential market
inefficiencies. The parametric BS with contract specific volatility is the best
among the parametric models. The hybrid ANN based on BS with contract
specific volatility is the overall best.

Implementing the widely neglected Chen and Johnson (1985) modified
hedging approach, improves significantly the profitability of trading strategies
that are based on the parametric models with average implied parameters (the
models more consistent with the assumptions behind the modified hedging
approach). This approach did not affect the choice of the overall best model in
terms of trading with transaction costs. But it did demonstrate that reasonable
alternatives for trading do exist without the need to resort to the extra

sophistication of ANN technology.
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1.A. Appendix with full dataset results

VDOTM DOTM OTM JOTM ATM JITM ITM DITM VDITM
8/x 085 Gos 095 69 101  1os 1o  1ss >3
Short Term Options <60 Days
Call 3.61 1.63 5.15 1570 3240 56.58 99.55 199.77 470.38
Ocon 0.36 021 019 019 020 022 027  0.38 0.99
# obs 399 1,361 4,815 7,483 3,964 6,548 4,970 7,990 2,103
Medium Term Options 60-180 Days
Call 4.38 8.29  23.58 46.06 64.51 90.35 131.10 227.41 493.18
on 0.22 0.18 0.20 0.21 0.21 0.23 0.25 0.30 0.54
# obs 1,412 1,727 2,578 3,147 1,780 2,901 3,038 8,100 3,999
Long Term Options > 180 Days
Call 9.65 42.09 74.03 106.24 126.03 150.99 185.87 267.12 495.82
on 0.18 0.21 0.22 0.23 0.24 0.25 0.26 0.28 0.40
# obs 332 333 575 603 343 660 812 2,695 1,733

Table F1: Sample descriptive statistics

Sample characteristics for the period January 5, 1998 to August 24, 2001 concerning the
average call option value, the average Black and Scholes implied volatility and the number of
observations in each moneyness/maturity class.

Set I Starting Ending # obs Set I Starting Ending # obs
Trl | 5-Jan-98 8-Mar-99 22,545 Tr6é | 9-Mar-99 20-Jan-00 20,637
Vvdl | 9-Mar-99 12-Jul-99 10,916 Vdé | 21-Jan-00 17-May-00 10,511
Tsl | 13-Jul-99 24-Sep-99 4,092 Ts6 | 18-May-00 17-Jul-00 3,959
Tr2 | 24-Apr-98 16-Apr-99 22,038 Tr7 | 20-Apr-99 28-Feb-00 20,050
vd2 |, 19-Apr-99 23-Sep-99 10,579 vd7 | 29-Feb-00 17-Jul-00 10,589
Ts2 , 24-Sep-99 5-Jan-00 4,122 Ts7 , 18-Jul-00 10-Oct-00 4,264
Tr3 | 23-Jun-98 3-Jun-99 21,304 Tr8 | 7-Jun-99 11-Apr-00 20,037
vd3 | 4-Jun-99 5-Jan-00 10,660 vds | 12-Apr-00 6-Oct-00 10,711
Ts3 . 6-Jan-00 10-Feb-00 3,963 Ts8 ., 9-Oct-00 24-Jan-01 3,797
Tr4 | 3-Sep-98 24-Aug-99 20,950 Tr9 | 26-Aug-99 5-Jun-00 19,852
Vd4 ' 25-Aug-99 11-Feb-00 10,616 vdo 6-Jun-00 24-Jan-01 10,504
Ts4 | 14-Feb-00 27-Mar-00 3,813 Ts9 ' 25Jan-01 29-Mar-01 3,945
Tr5 ' 29-Jan-99 18-Oct-99 20,631 Tr10 ' 21-Oct-99 11-Aug-00 20,042
vds ! 19-Oct-99 24-Mar-00 10,405 vdio ! 14-Aug-00 30-Mar-01 10,372
Ts5 | 28-Mar-00 16-May-00 4,037 Ts10 | 2-Apr-01 24-Aug-01 3,839

Table F2: Training (Tr), validation (Vd) and testing (Ts) dates
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BSuw  BSaur BSion | CSay  CSiwr  CSara  CSion
In sample descriptive statistics for 1998
RMSE 18.85 18.71 0.00 16.33 15.06 9.34 3.20
MAE 7.48 6.96 0.00 7.39 5.51 2.89 0.29
RMeSE 3.61 2.92 0.00 3.26 1.12 0.24 0.00
In sample descriptive statistics for 1999
RMSE 9.16 8.61 0.00 6.44 5.20 2.99 0.63
MAE 6.51 5.87 0.00 3.59 2.01 0.85 0.03
RMeSE 5.30 4.26 0.00 2.53 0.82 0.11 0.00
In sample descriptive statistics for 2000
RMSE 8.55 8.10 0.04 6.90 5.93 4.19 1.64
MAE 5.05 4.53 0.00 2.61 1.84 0.84 0.07
RMeSE 3.74 3.18 0.00 1.42 0.58 0.12 0.00
In sample descriptive statistics for 2001
RMSE 4.83 4.46 0.00 2.49 1.97 1.06 0.25
MAE 3.46 3.12 0.00 1.41 0.99 0.43 0.01
RMeSE 2.68 2.37 0.00 0.85 0.53 0.16 0.00
Total in sample descriptive statistics (1998-2001)
RMSE 11.63 11.31 0.02 9.52 8.52 5.35 1.82
MAE 5.86 5.33 0.00 3.87 2.63 1.26 0.10
RMeSE 3.95 3.24 0.00 1.89 0.74 0.14 0.00

Table F3: Parametric models in sample fitting errors
Fitting errors for all versions of the Black-Scholes and Corrado and Su models. RMSE
is the Root Mean Square Error, MAE the Mean Absolute Deviation and RMeSE the

Root Median Square Error.
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gy Ogr ot Ozon o 3ay wa ogor
Min 0.10 0.05 0.05 0.02 0.12 -9.70 0.00 0.06
5th Perc 0.18 0.17 0.16 0.16 0.19 -1.73 3.31 0.18
Mean 0.23 0.22 0.28 0.29 0.30 -1.19 6.91 0.27
Median 0.22 0.22 0.24 0.24 0.26 -1.21 5.20 0.24
95th Perc 0.29 0.29 0.52 0.56 0.56 -0.39 18.02 0.55
Max 0.71 1.11 4.58 5.34 1.85 1.33 30.00 1.85
W3aor _ MAGr  ogra _ M3Gra  MAGra  Ogon K3eon Mo
Min -9.70 0.00 0.00 -10.00 0.00 0.00 -10.00 0.00
5th Perc -2.30 2.84 0.14 -3.71 0.00 0.14 -3.71 0.00
Mean -1.20 6.19 0.30 -0.79 7.14 0.31 -0.79 7.14
Median -1.21 5.20 0.26 -0.98 5.74 0.26 -0.98 5.74
95tk Perc -0.17 13.81 0.57 2.90 25.25 0.71 2.90 25.25
Max 5.00 30.00 2.00 5.00 30.00 2.50 5.00 30.00
Table F4: Implied parameters descriptive statistics

Descriptive statistics for the parametric models implied parameters for the period
January 5, 1998 to August 24, 2001. For each model it is tabulated the minimum,
the 5Sth percentile, the mean and median, the 95t percentile and the maximum
values. Brownian volatility is symbolized with o, skewness with u3, whilst kurtosis
with u4. The superscripts refer to the kind of the parametric model whilst the

subscripts refer to the kind of implied parameter.
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B Sgo lef’ix Bsgv BngT BngT4 Bsgm CSgO ngv CngT CngT4 ng:m

RMSE 11.18 12.57 9.72 9.47 8.03 7.04 11.25 8.89 8.87 8.11 7.71
MAE 6.83 8.60 5.32 5.00 3.10 2.70 6.89 3.86 3.72 3.27 3.10
RMeSE 4.48 6.38 3.74 3.37 1.52 1.43 4.61 2.26 1.94 1.69 1.68
BsY, BS, BsY BSY r BSN 14 BsN . BsY BsN: BsYr BsM.  BsN'., BsY"

RMSE 13.06 12.65 10.97 12.48 10.74 9.06 14.68 12.76 12.30 11.69 9.33 7.86
MAE 7.58 6.65 5.91 7.04 6.04 4.68 7.68 6.70 6.67 6.55 5.04 3.81
RMeSE 5.13 3.83 3.65 4.11 3.69 2.88 4.71 3.65 3.99 3.94 2.94 2.44
csh, csl) cslr Sl ra csl, csiy csi> s cslra sl

RMSE 15.22 11.28 11.59 9.87 11.83 14.35 11.42 11.96 9.47 9.76
MAE 9.13 5.80 6.14 5.73 5.81 7.71 5.39 5.56 4.67 4.87
RMeSE 6.43 3.48 3.96 3.65 3.65 4.27 3.26 3.15 2.93 3.03
Bsi Bshh BsMh BSMh, BsM:., BsM BsM  Bsi BSMh BsMy  Bshv,  Bsi

RMSE 9.05 8.35 8.57 8.29 7.79 6.38 9.03 8.27 8.87 7.84 7.68 6.01
MAE 5.40 4.55 4.35 4.09 3.30 2.68 5.46 4.53 4.35 3.91 3.17 2.61
RMeSE 3.73 2.98 2.83 2.51 1.80 1.60 3.98 3.00 2.69 2.53 1.67 1.58
csih cshh cshh. csih., csih csip cshh csimt csimy, cshn

RMSE 10.33 8.68 8.63 7.97 7.60 9.68 8.83 8.66 7.60 7.39
MAE 6.38 4.12 3.84 3.42 3.14 6.20 3.95 3.94 3.39 3.11
RMeSE 4.46 2.42 2.17 1.93 1.77 4.56 2.33 2.35 1.96 1.82

Table F5: Error pricing measures for all models in the aggregate testing period (AggT's)

RMSE is the Root Mean Square Error, MAE the Mean Absolute Deviation and RMeSE the Root Median
Square Error. The superscripts refer to the kind of the model: P refers to parametric models, N to the
simple neural networks and Nh to the hybrid neural networks. The asterisk (*) refers to neural network
models that use transformed variables. The subscripts refer to kind of historical/implied parameters
used to each model per se.
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P P P P P P P P P P P
B, S60 Bsuix Bsav BsauT BSauT4 Bscon CS6O Csav CSavT CSauT4 Cscon

MHE 0.24 0.27 0.25 0.24 0.25 0.25 0.24 0.24 0.24 0.23 0.22
MAHE 2.74 2.89 2.74 2.72 2.62 2.61 2.74 2.90 2.88 2.91 2.91
MPE 5.93 5.99 5.93 5.92 5.86 5.86 5.95 6.08 6.08 6.13 6.14
MD 0.592 0.597 0.594 0.592 0.571 0.569 0.592 0.616 0.613 0.610 0.607

BsY Bsk. BsY, BSY ;- BSN 14 BsY,  BSY BsN” Bsl* BsN.  BSN., Bs,

MHE 0.35 0.31 0.29 0.29 0.28 0.27 0.34 0.29 0.26 0.30 0.31 0.28
MAHE 3.45 3.28 3.29 3.09 2.92 2.88 3.27 3.16 3.01 3.18 2.98 2.86
MPE 6.67 6.52 6.52 6.27 6.17 6.12 6.52 6.39 6.20 6.40 6.21 6.13
MD 0.647 0.637 0.640 0.622 0.598 0.594 0.635 0.626 0.617 0.627 0.601 0.593

csy csy csi s ra csl, csdy csir sy csira sl

MHE 0.30 0.30 0.31 0.24 0.25 0.31 0.31 0.28 0.27 0.25
MAHE 3.42 3.17 3.19 2.98 3.01 3.23 3.20 3.04 2.98 2.94
MPE 6.62 6.40 6.43 6.19 6.23 6.46 6.40 6.24 6.20 6.14
MD 0.64 0.632 0.630 0.612 0.616 0.630 0.624 0.611 0.607 0.602

Bsi Bshh BsM BSMh, BSM., BsM  BsM  Bsi BSMh BsM  Bshv,  Bs

MHE 0.25 0.26 0.25 0.25 0.26 0.25 0.26 0.28 0.25 0.25 0.26 0.26
MAHE 2.96 2.97 2.95 2.94 2.66 2.64 2.96 3.00 2.93 2.93 2.66 2.69
MPE 6.12 6.12 6.12 6.09 5.89 5.89 6.11 6.17 6.09 6.08 5.90 5.94
MD 0.621 0.621 0.623 0.621 0.582 0.580 0.617 0.626 0.621 0.619 0.583 0.586

csih cshh cshh. cshit., csih csip cshh cshiny csim, cshn

MHE 0.25 0.24 0.24 0.23 0.23 0.24 0.25 0.24 0.23 0.22
MAHE 2.87 2.94 2.91 2.92 2.92 2.87 2.99 2.94 2.95 2.96
MPE 6.07 6.12 6.11 6.14 6.15 6.07 6.16 6.12 6.17 6.20
MD 0.612 0.623 0.619 0.613 0.609 0.613 0.629 0.621 0.618 0.616

Table F6: Hedging error measures for all models in the aggregate testing period (AggTs)
MHE is the Mean Hedging Error, MAHE the Mean Absolute Hedging Error, MPE the Mean Prediction
Error and MD the Mean Delta of each model. The superscripts refer to the kind of the model: P refers to
parametric models, N to the simple neural networks and Nh to the hybrid neural networks. The asterisk
(*) refers to neural network models that use the transformed variables. The subscripts refer to kind of
historical/implied parameters used to each model per se.
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Bsk, Bsk. | Bsk, cséy csk, | Bsk csdy | BsM | BsNM | BsMY | csih | cshhr
BSgo 27.74 | 75.12 | -0.94 | 6572 | -11.07 | -11.72 | 23.90 | 40.83 | 81.22 | 10.80 | 66.92
BShe | 7.17 104.84 | 26.74 | 94.84 | 11.84 | 11.71 | 53.72 | 70.71 | 112.32 | 40.52 | 96.53
BShn | -16.13 | -25.08 7591 | -8.43 | -70.51 | -72.82 | -56.94 | -38.56 | 2.12 | -70.87 | -8.76
csép | 034 | -6.72 | 16.31 66.53 | -10.28 | -10.91 | 24.85 | 41.74 | 82.02 | 11.78 | 67.74
CSfon | -13.38 | -21.60 | 2.14 | -13.58 -63.58 | -65.63 | -46.76 | -28.85 | 11.11 | -60.38 | -0.10
BSy, | 7024 | 464 | 1337 | 7.09 | 12.48 0.34 | 30.64 | 43.94 | 74.23 | 20.23 | 64.28
csdy | 777 | 467 | 1519 | 759 | 14.09 | -0.62 31.84 | 4550 | 76.80 | 21.15 | 66.39
BS§" | 955 | -18.30 | 7.57 | 9.81 | 4.95 | -10.83 | -12.15 18.64 | 63.30 | -14.28 | 47.82
BsN" | -12.54 | 2161 | 448 | -12.75 | 2.02 | -11.91 | -13.46 | -3.25 43.70 | -32.87 | 29.50
Bs¥ | 21.16 | -32.03 | -3.45 | 21.26 | -5.62 | -14.65 | -16.83 | -12.27 | -8.78 78.03 | -11.58
csy” | -6.86 | -15.36 | 10.42 | -7.15 | 7.65 | 9.84 | -1096 | 2.97 | 6.24 | 1552 61.73
CSeon | -14.98 | 23.78 | 1.15 | -15.16 | -1.04 | -12.95 | -14.60 | -6.34 | -3.26 | 473 | -9.18

Table F7a: Matched pair student-t tests for square and absolute differences
Matched pair t-tests concerning the absolute differences are reported in the upper diagonal whilst
on the lower diagonal the matched pair t-tests concerning the square differences are tabulated.
Both tests compare the MAE and MSE between models in the vertical heading versus models in
the horizontal heading. In general, a positive t-value larger than 1.645 (2.325) means that the
model in the vertical heading has a larger MAE or MSE than the model in the horizontal heading at
5% (1%) significance level.
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BsE, Bsk. | BsE, cséy csk, | BsY csdy | BsMy | BsNM | BsMY | oSt | cshhr
BSgo -21.23 | 23.69 | -437 | 19.79 | -7.72 | -857 | 36.11 | 50.44 | 37.08 | 29.37 | 23.50
BShy 7.17 35.66 | 18.88 | 30.60 | -4.88 | -5.04 | 53.19 | 69.94 | 55.02 | 47.51 | 35.68
BSion | -16.13 | -25.08 -23.68 | -6.03 | -13.84 | -16.00 | -11.56 | -6.77 | 7.47 | -15.91 | -3.41
cséo 034 | -6.72 | 16.31 19.80 | -7.57 | -8.40 | 35.16 | 48.95 | 36.36 | 27.77 | 23.48
CSfon | -13.38 | 21.60 | 2.14 | -13.58 -12.97 | -14.90 | -7.52 | -3.02 | 10.22 | -11.61 | 8.22
BSg, | 7.04 464 | 13.37 | 7.09 | 12.48 2.15 | 11.50 | 12.60 | 15.19 | 10.45 | 13.46
CSgo 7.77 467 | 15.19 | 7.59 | 14.09 | -0.62 13.31 | 1469 | 17.79 | 11.98 | 15.56
BSi" | 955 | -1830 | 757 | -9.81 | 4.95 | -10.83 | -12.15 18.82 | 25.05 | -19.39 [ 10.42
Byt | -12.54 | -21.61 | 4.48 | -12.75 | 2.02 | -11.91 | -13.46 | -3.25 17.48 | -42.22 | 5.27
Bshw | -21.16 | -32.03 | -3.45 | -21.26 | -5.62 | -14.65 | -16.83 | -12.27 | -8.78 -31.61 | -9.62
csey” | -6.86 | -15.36 | 10.42 | 7.15 | 7.65 | -9.84 | -10.96 | 2.97 6.24 | 15.52 15.05
csin | -14.98 | -23.78 1.15 -15.16 | -1.04 [ -12.95 | -14.69 | -6.34 -3.26 4.73 -9.18

Table F6b: Matched pair student-t and Johnson t-tests for the square differences

Matched pair student-t (lower diagonal) and Johnson modified t (upper diagonal) tests concerning
square differences are tabulated. Both tests compare the MSE between models in the vertical
heading versus models in the horizontal heading. In general, a positive t-value larger than 1.645
(2.325) means that the model in the vertical heading has a larger MSE than the model in the
horizontal heading at 5% (1%) significance level.
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Bsgo Bszf’ix Bsgu BSgUT BStI;UT4 Bsgm CSgO ngu ngl}T CS£UT4 ng:m
Tsl 16.69 14.71 18.06 17.99 17.16 17.15 16.68 17.78 17.99 18.33 18.25
Ts2 10.95 11.50 9.80 9.76 8.00 4.52 11.17 9.38 9.60 6.90 5.99
Ts3 13.87 13.28 9.94 9.25 5.92 4.07 15.24 7.91 7.72 6.07 5.10
Ts4 14.18 14.86 12.93 12.37 9.67 5.77 14.46 11.89 11.85 9.45 7.53
Ts5 10.09 16.97 7.65 7.39 5.25 4.73 8.53 6.01 5.94 5.49 5.31
Ts6 11.95 10.71 7.97 7.64 6.18 4.14 9.82 6.58 5.66 4.81 4.25
Ts7 7.59 8.09 5.69 5.46 4.62 2.77 7.61 4.66 4.30 3.38 3.47
Ts8 8.21 12.66 6.15 6.09 5.23 5.98 9.34 5.52 5.52 5.74 5.39
Ts9 6.97 11.25 6.00 5.73 4.45 4.73 8.33 4.97 5.07 4.85 5.05
Ts1l0 6.12 9.13 4.96 4.72 4.18 4.48 6.17 4.74 4.91 4.60 4.80

Bsiy  BsMM Bsh BSM BsMy,  BsiR csf s cshin cshn, cshin
Tsl 14.06 13.51 17.21 14.50 16.00 13.70 13.98 18.82 17.35 15.74 17.49
Ts2 9.14 8.42 8.55 8.07 7.61 4.12 9.08 8.71 9.51 7.38 5.69
Ts3 10.45 9.62 10.89 7.35 5.74 3.77 12.04 7.51 7.71 7.06 5.09
Ts4 11.51 11.81 10.81 11.01 9.46 5.75 12.74 10.80 11.39 9.30 7.50
Ts5 8.85 7.71 6.34 5.83 5.17 4.53 9.93 6.01 5.73 5.51 5.07
Ts6 8.02 6.68 6.32 6.53 6.43 4.01 8.37 6.08 5.96 4.80 4.21
Ts7 6.45 4.91 4.97 4.70 4.48 2.62 6.97 5.22 5.12 3.47 3.35
Ts8 6.84 5.87 5.45 5.07 4.98 5.34 6.78 5.22 5.05 5.48 5.12
Ts9 5.48 4.37 4.80 4.44 4.38 4.38 6.26 4.61 4.85 4.58 4.37
Ts10 5.47 4.01 4.43 4.25 4.07 3.92 7.03 4.45 4.54 4.29 4.43

Table F7: Testing periods RMSE for the best performing models
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BsL, BSY. BsY BSN + BsYy,  BSY, BsSN  BsN Bsk~ BsN'.  BsN'.,  Bsl.
Min 2 4 2 5 6 3 2 4 3 4 4 2
Mean 6.7 6.4 6.7 8.3 8.5 7.7 6.4 6.3 6.7 7.3 7.4 8
Max 10 10 10 10 10 10 10 9 10 10 10 10
csh, csy csl o, cSN 4 csy. csdy cshx csl  csi, csy
Min 2 2 2 5 6 3 3 4 3 4
Mean 6.1 6.5 7.7 8.2 8.6 6.9 5 7.1 7.2 7.9
Max 9 10 10 10 10 9 9 10 10 10
Bsi Bshh Bshh BSMh, BsN., Bsih sty BshM BSNh Bsh pshn,  psh
Min 2 3 2 2 2 2 2 2 2 2 2 2
Mean 4.7 5.3 4.1 3.5 4 4.5 4.5 5 4.2 4 4.1 3.2
Max 9 9 9 6 7 7 10 8 8 7 7 6
csih cshh cshh. csiih., csih csi cshh csint csiiy, cshin
Min 3 2 2 2 2 4 2 2 2 2
Mean 6.5 5 4.7 6.2 4.8 7.4 4.5 4.8 5.3 4.9
Max 10 10 9 10 7 10 10 9 8 10

Table F8: ANNs complexity
Minimum, mean and maximum number of the hidden layer neurons for the ten different training
periods.
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BsE, csP .,
Short Medium Long Short Medium Long
VDOTM 3.60 491 0.56 8.34 10.61 0.66
DOTM 2.27 4.50 2.82 3.02 5.24 4.47
OTM 5.78 8.37 3.97 6.29 9.68 5.08
JOTM 7.81 6.68 6.15 8.13 7.64 7.65
ATM 6.67 9.46 5.86 7.30 10.14 7.29
JITM 6.71 9.41 4.34 7.29 9.21 5.97
ITM 7.70 7.13 4.43 8.24 7.59 5.18
DITM 7.07 7.93 7.27 7.20 8.50 7.50
VDITM 8.26 9.46 8.74 8.29 10.05 9.05
BSNh cshne
VDOTM 3.60 4.97 1.15 6.13 10.22 6.04
DOTM 2.46 4.83 2.32 2.96 5.28 5.03
OTM 5.50 7.75 3.98 6.19 9.41 5.36
JOTM 5.89 5.36 5.78 7.83 7.30 7.66
ATM 4.73 8.18 5.38 6.94 9.86 7.13
JITM 5.59 7.39 4.10 6.89 8.68 6.64
ITM 6.24 6.05 3.95 7.58 7.16 5.69
DITM 5.80 7.15 6.74 6.64 8.04 7.17
VDITM 8.03 9.29 8.46 8.96 10.33 9.26

Table F9: Root Mean Square Errors for the four best models
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Bsgo lejpix Bscl;u BSgUT BStI;UT4 Bsg:m
P&L 7,447 13,518 14,088 13,069 32,040 35,026
# Trades 3,361 3,878 4,858 5,477 13,539 15,644
P&L 0.2% (d=0%) -6,829 -6,847 -5,348 -7,512 -17,911 -23,307
Agg P&L 0.2% (d=0%) -1,861 -266 737 -1,394 -5,638 -8,437
P&L 0.2% (d=5%) -153 3,587 4,206 1,731 5,971 5,716
Agg P&L 0.2% (d=5%) 2,717 5,756 7,217 4,693 8,319 8,304
P&L 0.2% (d=10%) 1,349 3,723 7,478 5,879 7,334 7,206
Agg P&L 0.2% (d=10%) 3,433 4,924 8,928 7,373 8,251 8,201
P&L 0.2% (d=15%) 3,320 4,134 7,527 6,841 7,907 7,369
Agg P&L 0.2% (d=15%) 5,003 5,019 8,344 7,657 8,384 7,873
P&L 0.4% (d=0%) -21,105 -27,211 -24,785 -28,093 -67,863 -81,640
Agg P&L 0.4% (d=0%) -11,170 -14,049 -12,614 -15,858 -43,316 -51,899
P&L 0.4% (d=5%) -8,636 -5,025 -9,117 -12,571 -9,059 -9,177
Agg P&L 0.4% (d=5%) -2,897 -688 -3,093 -6,647 -4,364 -4,001
P&L 0.4% (d=10%) -4,748 -1,988 455 -2,141 1,070 995
Agg P&L 0.4% (d=10%) -580 414 3,354 848 2,903 2,986
P&L 0.4% (d=15%) -1,468 -508 3,241 2,269 4,691 4,212
_Agg P&L 0.4% (d=15%) 1,897 1,262 4,875 3,901 5,645 5,221

Table F10: Trading strategies for Black and Scholes models

P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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BS§, BSh, BSh, BShyr BShyra BSh,,

P&L 7,916 14,367 14,232 13,441 32,281 35,229

# Trades 3,361 3,878 4,858 5,477 13,539 15,644

P&L 0.2% (d=0%) -6,169 -5,599 -4,958 -6,946 -17,788 -23,080
Agg P&L 0.2% (d=0%) -1,392 1,342 1,225 =778 -5,534 -8,259
P&L 0.2% (d=5%) 492 4,867 4,642 2,293 6,271 6,088
Agg P&L 0.2% (d=5%) 3,044 7,352 7,758 5,278 8,653 8,625
P&L 0.2% (d=10%) 2,069 5,060 8,044 6,453 7,673 7,522
Agg P&L 0.2% (d=10%) 3,863 6,457 9,622 8,086 8,615 8,477
P&L 0.2% (d=15%) 4,044 5,534 8,182 7,546 8,306 7,713
Agg P&L 0.2% (d=15%) 5,515 6,558 9,115 8,524 8,815 8,198

P&L 0.4% (d=0%) 20,254 25,564 24,148 27,334 67,858 81,390

Agg P&L 0.4% (d=0%) | -10,700 11,682 11,782 14,998 43,348 51,748
P&L 0.4% (d=5%) -7,807 -3,352 -8,451 -11,817 -8,924 -8,883
Agg P&L 0.4% (d=5%) -2,702 1,617 -2,219 -5,847 -4,160 -3,808
P&L 0.4% (d=10%) -3,891 -246 1,287 -1,365 1,262 1,177

_ Agg P&L 0.4% (d=10%) -304 2,549 4,444 1,901 3,147 3,087
P&L 0.4% (d=15%) 685 1,284 4,143 3,180 4,883 4,339
_Agg P&L 0.4% (d=15%) 2,257 3,333 6,007 5,137 5,900 5,308

Table F11: Chen and Johnson trading strategies for Black and Scholes models

P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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cséo CSky CShur CShura CSon
P&L 7,603 28,816 32,803 37,072 36,777
# Trades 3,430 11,178 13,306 14,911 15,219
P&L 0.2% (d=0%) -7,658 -15,867 -19,045 -22,750 -24,414
Agg P&L 0.2% (d=0%) -2,532 -4,495 -5,641 -6,685 -6,909
P&L 0.2% (d=5%) -468 4,150 3,604 3,871 3,612
Agg P&L 0.2% (d=5%) 2,351 6,795 6,096 6,815 7,151
P&L 0.2% (d=10%) 776 7,497 6,660 5,959 5,827
Agg P&L 0.2% (d=10%) 2,934 8,752 7,810 7,268 7,345
P&L 0.2% (d=15%) 2,868 7,960 6,791 6,606 6,422
Agg P&L 0.2% (d=15%) 4,533 8,739 7,483 7,418 7,311
P&L 0.4% (d=0%) -22,919 -60,550 70,894 82,572 -85,604
Agg P&L 0.4% (d=0%) -12,667 -37,805 44,085 50,441 50,595
P&L 0.4% (d=5%) -9,026 -14,215 -15,549 15,088 15,701
Agg P&L 0.4% (d=5%) -3,388 -8,924 -10,566 -9,200 -8,622
P&L 0.4% (d=10%) -5,271 -1,324 -2,135 -3,175 -3,570
_ Agg P&L 0.4% (d=10%) 955 1,186 165 -557 534
P&L 0.4% (d=15%) -1,949 2,797 1,935 1,371 1,124
_Agg P&L 0.4% (d=15%) 1,383 4,355 3,319 2,993 2,901

Table F12: Trading strategies for Corrado and Su models
P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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cséo CSky CShur CShura CSon
P&L 7,837 29,208 33,219 37,044 37,097
# Trades 3,430 11,178 13,306 14,911 15,219
P&L 0.2% (d=0%) -7,209 -15,317 -18,610 -22,828 -24,203
Agg P&L 0.2% (d=0%) -2,332 -3,843 -5,186 -6,708 -6,615
P&L 0.2% (d=5%) -42 4,787 4,174 3,968 3,999
Agg P&L 0.2% (d=5%) 2,417 7,515 6,680 6,979 7,595
P&L 0.2% (d=10%) 1,276 8,138 7,202 6,098 6,170
Agg P&L 0.2% (d=10%) 3,112 9,475 8,353 7,432 7,728
P&L 0.2% (d=15%) 3,512 8,685 7,322 6,740 6,778
Agg P&L 0.2% (d=15%) 4,943 9,539 8,024 7,594 7,720
P&L 0.4% (d=0%) -22,255 59,841 70,439 -82,700 -85,503
Agg P&L 0.4% (d=0%) -12,501 -36,893 43,590 50,460 50,328
P&L 0.4% (d=5%) -8,404 13,462 -15,087 15,231 15,601
Agg P&L 0.4% (d=5%) -3,486 -8,006 -10,074 -9,211 -8,409
P&L 0.4% (d=10%) -4,603 -597 -1,689 -3,301 -3,549
_ Agg P&L 0.4% (d=10%) 931 2,076 613 632 433
P&L 0.4% (d=15%) -1,218 3,521 2,303 1,172 1,074
_Agg P&L 0.4% (d=15%) 1,646 5,229 3,707 2,881 2,958

Table F13: Chen and Johnson trading strategies for Corrado and Su models

P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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BSY, BSH, BSh, BSpr BShr4 BSaon
P&L 25,759 25,627 28,829 24,290 25,980 30,421
# Trades 4,790 6,159 7,097 6,151 6,777 8,016
P&L 0.2% 3,825 -721 -2,079 -2,769 -3,017 -4,754
Agg P&L 0.2% 11,911 7,957 8,150 6,769 7,471 7,381
P&L 0.2% (d=5%) 10,084 6,187 6,513 4,528 6,353 8,668
Agg P&L 0.2% (d=5%) 14,093 9,853 11,019 8,629 11,028 12,745
P&L 0.2% (d=10%) 9,911 6,822 7,280 5,690 6,782 8,465
Agg P&L 0.2% (d=10%) 12,707 9,060 10,345 8,286 9,470 10,755
P&L 0.2% (d=15%) 9,139 7,394 7,324 5,630 7,023 8,006
Agg P&L 0.2% (d=15%) 11,257 9,070 9,740 7,586 8,983 9,571
P&L 0.4% -18,108 -27,070 -32,987 -29,828 -32,015 -39,929
Agg P&L 0.4% 1,936 9,714 12,528 -10,753 _ -11,039 __ -15,659
P&L 0.4% (d=5%) -2,108 -7,610 -9,055 -8,627 -7,465 -5,130
Agg P&L 0.4% (d=5%) 5,909 -278 -41 -425 1,884 3,023
P&L 0.4% (d=10%) 1,721 -1,469 -2,202 -2,246 -569 1,021
Agg P&L 0.4% (d=10%) 7,313 3,008 3,927 2,946 4,807 5,600
P&L 0.4% (d=15%) 2,704 1,737 452 -172 1,963 3,227
Agg P&L 0.4% (d=15%) 6,939 5,090 5,284 3,740 5,884 6,356

Table F14.1: Trading strategies for standard BS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their market
value is less than 0%, 5%, 10% and 15% respectively. The abbreviation Agg.
refers to trading strategy results with aggregate transaction costs of the
underlying asset.



BSgy BS}i. BSp, BSjr BSgyr4 BSk,
P&L 21,829 26,992 25,975 28,890 26,762 31,164
# Trades 4,683 6,151 6,024 6,088 7,598 8,793
P&L 0.2% 334 808 -158 1,980 -4,336 -6,229
Agg P&L 0.2% 9,399 9,796 8,726 11,299 5,971 5,699
P&L 0.2% (d=5%) 6,710 8,263 8,675 9,035 4,663 7,322
Agg P&L 0.2% (d=5%) 11,084 12,017 12,785 13,237 8,653 11,305
P&L 0.2% (d=10%) 8,231 7,301 8,413 8,886 6,364 8,017
Agg P&L 0.2% (d=10%) 11,078 9,474 10,941 11,506 8,782 10,249
P&L 0.2% (d=15%) 7,685 6,796 8,181 8,144 6,704 8,125
Agg P&L 0.2% (d=15%) 9,994 8,464 10,052 10,075 8,361 9,663
P&L 0.4% -21,160 -25,376 -26,290 -24,930 -35,433 -43,622
Agg P&L 0.4% -3,030 -7,400 -8,523 -6,292 -14,820 -19,766
P&L 0.4% (d=5%) 4,956 -5,489 -4,705 -4,929 -9,232 -6,375
Agg P&L 0.4% (d=5%) 3,793 2,020 3,513 3,475 -1,252 1,590
P&L 0.4% (d=10%) 474 -489 222 695 -1,239 581
Agg P&L 0.4% (d=10%) 6,168 3,856 5,277 5,935 3,596 5,043
P&L 0.4% (d=15%) 1,660 1,568 2,250 2,137 1,615 3,436
Agg P&L 0.4% (d=15%) 6,277 4,904 5,992 6,000 4,928 6,514

Table F14.2: Trading strategies for standard BS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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csh csy cshr SN ra csk .
P&L 21,244 31,526 27,045 29,141 28,387
# Trades 4,158 6,833 6,354 7,338 7,093
P&L 0.2% 2,293 2,298 -1,036 -3,602 -3,063
Agg P&L 0.2% 9,413 12,590 9,032 10,290 10,525
P&L 0.2% (d=5%) 6,570 10,917 7,307 7,589 6,728
Agg P&L 0.2% (d=5%) 10,676 15,307 11,750 13,226 12,558
P&L 0.2% (d=10%) 7,536 11,081 8,576 8,466 7,619
Agg P&L 0.2% (d=10%) 10,482 13,716 11,382 11,878 11,137
P&L 0.2% (d=15%) 7,146 10,018 7,621 8,557 7,716
Agg P&L 0.2% (d=15%) 9,393 12,053 9,682 10,966 10,200
P&L 0.4% -16,659 -26,929 -29,116 -36,345 -34,513
Agg P&L 0.4% -2,418 -6,345 -8,980 -8,561 -7,337
P&L 0.4% (d=5%) -5,672 -3,648 -6,394 -7,107 -8,106
Agg P&L 0.4% (d=5%) 2,540 5,132 2,493 4,168 3,554
P&L 0.4% (d=10%) -1,108 2,197 156 -224 -929
Agg P&L 0.4% (d=10%) | 4,783 7,468 5,768 6,601 6,106
P&L 0.4% (d=15%) 701 3,760 1,498 2,521 1,769
__Agg P&L 0.4% (d=15%) 5,196 7,830 5,621 7,340 6,737

Table F15.1: Trading strategies for standard CS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the

underlying asset.
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csly csy csiy csNra csi
P&L 27,632 29,837 30,074 30,433 28,721
# Trades 5,224 7,451 8,415 8,502 8,150
P&L 0.2% 3,771 -2,324 -4,684 -5,330 -5,180
Agg P&L 0.2% 13,371 9,248 7,181 8,518 7,892
P&L 0.2% (d=5%) 10,194 7,904 6,118 7,788 6,052
Agg P&L 0.2% (d=5%) 14,997 12,374 10,643 12,666 11,031
P&L 0.2% (d=10%) 9,963 8,225 8,127 8,687 7,092
Agg P&L 0.2% (d=10%) 13,079 11,170 10,595 11,490 10,057
P&L 0.2% (d=15%) 9,563 8,007 8,104 8,715 6,607
Agg P&L 0.2% (d=15%) 12,101 10,199 9,756 10,924 8,855
P&L 0.4% -20,091 -34,486 -39,441 -41,093 -39,080
Agg P&L 0.4% -890 -11,341  -15,712  -13,396  -12,937
P&L 0.4% (d=5%) -2,409 -6,442 -10,254 -6,965 -8,346
Agg P&L 0.4% (d=5%) 7,196 2,498 -1,205 2,792 1,613
P&L 0.4% (d=10%) 1,569 -630 -680 471 -1,056
Agg P&L 0.4% (d=10%) 7,801 5,260 4,255 6,076 4,874
P&L 0.4% (d=15%) 3,265 1,571 2,471 2,811 846
__Agg P&L 0.4% (d=15%) 8,341 5,956 5,776 7,229 5,343

Table F15.2: Trading strategies for standard CS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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BSit BsMh BsMh BsN. BSM., BsNh

P&L 29,466 29,731 33,402 33,314 34,564 36,881

# Trades 6,193 8,058 8,722 9,169 11,714 12,953

P&L 0.2% 2,663 4,411 -2,528 -2,397 -11,896 -14,050
Agg P&L 0.2% 11,447 6,292 8,487 8,511 187 439
P&L 0.2% (d=5%) 9,499 4,506 7,511 7,004 6,067 8,222

Agg P&L 0.2% (d=5%) 12,753 8,060 11,089 10,314 8,509 10,810
P&L 0.2% (d=10%) 8,735 4,974 7,945 7,654 6,890 9,230

Agg P&L 0.2% (d=10%) 10,894 7,261 10,268 9,807 8,060 10,342
P&L 0.2% (d=15%) 7,976 4,597 7,752 7,726 6,946 8,929
Agg P&L 0.2% (d=15%) 9,661 6,363 9,478 9,285 7,701 9,595

P&L 0.4% -24,139 -38,553 -38,459 -38,108 -58,356 -64,981

Agg P&L 0.4% -6,572 -17,148 -16,427 -16,291 -34,939 -37,759
P&L 0.4% (d=5%) -1,868 -8,959 -7,101 -8,253 -8,090 -5,910
Agg P&L 0.4% (d=5%) 4641  -1,851 54 1,633 -3,205 734
P&L 0.4% (d=10%) 1,912 -2,924 -535 -842 625 3,171
Agg P&L 0.4% (d=10%) 6,231 1,649 4,109 3,463 2,965 5,394
P&L 0.4% (d=15%) 2,916 -978 2,079 2,323 3,437 5,624
Agg P&L 0.4% (d=15%) 6,288 2,554 5,531 5,442 4,946 6,956

Table F16.1: Trading strategies for hybrid BS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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BSi BSH* BSMh BSMh BsNe, BsM

P&L 27,024 29,529 32,908 33,514 35,774 37,281

# Trades 5,675 8,246 8,907 9,457 11,995 12,650

P&L 0.2% 1,694 -4,193 -2,435 -4,134 -11,484 -12,939

Agg P&L 0.2% 10,552 6,053 7,871 7,086 837 1,066
P&L 0.2% (d=5%) 8,620 5,446 7,439 7,101 6,488 7,054
Agg P&L 0.2% (d=5%) 11,948 8,816 10,872 10,344 9,020 9,897
P&L 0.2% (d=10%) 7,587 5,034 7,532 8,837 7,572 8,764
Agg P&L 0.2% (d=10%) 9,718 7,254 9,841 10,740 8,764 10,107
P&L 0.2% (d=15%) 6,593 5,147 8,162 8,579 7,910 8,427
Agg P&L 0.2% (d=15%) 8,247 6,977 9,890 9,957 8,689 9,237

P&L 0.4% -23,637 -37,914 -37,778 -41,782 -58,741 -63,158

Agg P&L 0.4% -5,920 -17,424 -17,166 -19,343 -34,100 -35,148
P&L 0.4% (d=5%) -2,339 -8,601 -7,626 -8,667 -8,087 -7,131
Agg P&L 0.4% (d=5%) 4,319 -1,861 -760 -2,180 -3,023 -1,443
P&L 0.4% (d=10%) 1,079 -3,096 -1,479 476 1,225 2,297
Agg P&L 0.4% (d=10%) 5,340 1,343 3,139 4,280 3,609 4,983
P&L 0.4% (d=15%) 1,804 =277 2,232 3,156 4,364 4,812
Agg P&L 0.4% (d=15%) 5,112 3,382 5,687 5,911 5,922 6,432

Table F16.2: Trading strategies for hybrid BS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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csbl cshh cshh. csit., cshn
P&L 24,205 28,938 36,057 35,097 36,718
# Trades 5117 9,529 11,513 13,042 14,082
P&L 0.2% 2,068 -9,244 -10,716 -18,188 -21,211
Agg P&L 0.2% 9,791 2,572 3,118 -1,952 -3,139
P&L 0.2% (d=5%) 8,919 4,457 5,975 2,658 3,883
Agg P&L 0.2% (d=5%) 12,359 8,168 9,550 6,440 7,731
P&L 0.2% (d=10%) 8,518 6,136 6,937 5,173 6,111
Agg P&L 0.2% (d=10%) | 10,835 8,300 8,775 7,154 8,011
P&L 0.2% (d=15%) 7,515 6,267 7,613 5,888 6,359
Agg P&L 0.2% (d=15%) 9,272 7,825 8,839 7,185 7,519
P&L 0.4% -20,068 -47,426 -57,489 -71,472 -79,140
Agg P&L 0.4% -4,622 -23,793 -29,822 -39,001 -42,996
P&L 0.4% (d=5%) -2,649 -12,290 -12,275 -16,135 -14,934
Agg P&L 0.4% (d=5%) 4,230 4868 5,125 8,570 7,239
P&L 0.4% (d=10%) 1,139 2,722  -1,734  -4,201  -3,184
Agg P&L 0.4% (d=10%) | 5,774 1,606 1,943 239 615
P&L 0.4% (d=15%) 2,148 801 2,492 242 936
Agg P&L 0.4% (d=15%) 5,662 3,918 4,943 2,836 3,256

Table F17.1: Trading strategies for hybrid CS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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csbi cshh cshm csim, cshns
P&L 26,691 32,915 31,943 34,907 37,975
# Trades 5,140 10,043 10,377 12,537 12,947
P&L 0.2% 3,590 -8,721 -12,019 -17,527 -16,084
Agg P&L 0.2% 11,032 3,734 898 -1,586 735
P&L 0.2% (d=5%) 9,328 5,059 3,188 3,854 5,017
Agg P&L 0.2% (d=5%) 12,243 8,188 6,783 7,447 8,732
P&L 0.2% (d=10%) 8,398 6,611 4,664 5,718 7,480
Agg P&L 0.2% (d=10%) 10,353 8,644 6,734 7,752 9,236
P&L 0.2% (d=15%) 7,337 6,653 5,601 6,052 7,826
Agg P&L 0.2% (d=15%) 8,861 8,231 7,114 7,439 8,960
P&L 0.4% -19,511 -50,356 -55,980 -69,962 -70,143
Agg P&L 0.4% -4,626 -25,446 -30,146 -38,078 -36,505
P&L 0.4% (d=5%) -1,215 -11,691 -14,095 -14,040 -12,799
Agg P&L 0.4% (d=5%) 4,615 -5,433 -6,906 -6,852 -5,369
P&L 0.4% (d=10%) 1,570 -2,378 -3,918 -3,252 -1,363
Agg P&L 0.4% (d=10%) 5,479 1,688 220 816 2,149
P&L 0.4% (d=15%) 2,433 724 457 612 2,605
Agg P&L 0.4% (d=15%) 5,481 3,879 3,484 3,387 4,873

Table F17.2: Trading strategies for hybrid CS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate

transaction costs of the underlying asset.
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1.B. Appendix with reduced dataset results

Set I Starting Ending # obs Set I Starting Ending # obs
Trl | 5-Jan-98 8-Mar-99 18,053 Tr6 | 9-Mar-99 20-Jan-00 17,352
vdl | 9-Mar-99 12-Jul-99 9,146 Vd6 | 21-Jan-00 17-May-00 8,003
Tsl ; 13-Jul-99 24-Sep-99 3,174 Ts6 , 18-May-00 17-Jul-00 3,543
Tr2 | 24-Apr-98 16-Apr-99 17,313 Tr7 | 20-Apr-99 28-Feb-00 16,947
vd2 | 19-Apr-99 23-Sep-99 9,638 vd7 | 29-Feb-00 17-Jul-00 8,781
Ts2 , 24-Sep-99 5-Jan-00 3,223 Ts7 , 18-Jul-00 10-Oct-00 3,982
Tr3 | 23-Jun-98 3-Jun-99 16,945 Tr8 | 7-Jun-99 11-Apr-00 16,247
vd3 4-Jun-99 5-Jan-00 9,474 vds 12-Apr-00 6-Oct-00 9,644
Ts3 ' 6-Jan-00 10-Feb-00 2,835 Ts8 ' 9-Oct-00 24-Jan-01 3,418
Tr4 = 3-Sep-98 24-Aug-99 16,782 Tr9 = 26-Aug-99 5-Jun-00 15,851
vd4 ' 25-Aug-99 11-Feb-00 8,600 vas ' 6-Jun-00 24-Jan-01 9,615
Ts4 | 14-Feb-00 27-Mar-00 2,689 Ts9 ! 25.Jan-01 29-Mar-01 3,486
Tr5 | 29-Jan-99 18-Oct-99 17,015 Tr10 ! 21-Oct-99 11-Aug-00 16,165
vds | 19-Oct-99 24-Mar-00 7,728 vd1lo ! 14-Aug-00 30-Mar-01 9,349
Ts5 | 28-Mar-00 16-May-00 3,370 Tsl0 | 2-Apr-01 24-Aug-01 3,594

Table R1: Training (Tr), validation (Vd) and testing (T's) dates
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BS§,  BSh.  BSh,  BShy  BShy.  BSh, cs CShy CShyr  CSiyra  CSton

RMSE 9.83 11.82 8.41 8.25 7.08 7.06 9.74 7.56 7.55 7.55 7.52
MAE 6.35 8.43 4.82 4.54 2.65 2.65 6.32 3.38 3.12 2.99 3.04
RMeSE 4.50 6.57 3.63 3.27 1.48 1.46 4.59 2.17 1.83 1.69 1.71
BsY Bsk, BsY, BSYr BSNrs  BSN,  BSY BsN" BsY: BsV. BsSN'.,  Bsk.

RMSE 8.05 6.56 7.34 6.94 6.64 6.69 7.14 6.60 6.82 6.91 6.25 6.12
MAE 5.07 3.34 4.02 3.72 3.42 3.37 4.11 3.43 3.46 3.59 3.01 3.00
RMeSE 3.80 2.32 2.99 2.56 2.33 2.24 3.09 2.41 2.44 2.56 1.99 2.02
csk, csl csi oy SN ra csi, csdy csir csli s csi

RMSE 9.05 7.18 6.93 6.94 6.88 8.35 6.97 6.59 6.50 6.77
MAE 5.74 3.95 3.61 3.73 3.62 4.94 3.68 3.26 3.23 3.45
RMeSE 4.25 2.74 2.41 2.60 2.55 3.43 2.62 2.22 2.25 2.36
BSi Bshh BSMh BsM. BSM., Bsih sttt Bsi” BsM* BsMy Bshh,  BsM¥

RMSE 8.45 6.70 7.29 7.01 6.58 6.78 7.35 6.40 7.05 6.83 5.94 5.64
MAE 5.11 3.58 3.62 3.38 2.62 2.69 4.27 3.21 3.32 3.30 2.45 2.44
RMeSE 3.44 2.59 2.55 2.35 1.55 1.65 3.13 2.26 2.30 2.33 1.51 1.54
csht cshh cshh. csih, cshh csip cshn cshm cshn, cshn

RMSE 7.80 7.29 6.83 7.31 7.35 7.69 6.90 6.80 6.51 6.46
MAE 4.65 3.20 3.08 3.03 3.03 4.58 3.13 2.92 2.83 2.87
RMeSE 3.41 2.13 2.02 1.82 1.80 3.23 2.03 1.80 1.79 1.81

Table R2: Pricing error measures for all models in the aggregate testing period (AggTs)

RMSE is the Root Mean Square Error, MAE the Mean Absolute Error and RMeSE the Root Median
Square Error. The superscripts refer to the kind of the model: P refers to parametric models, N to the
simple neural networks and Nh to the hybrid neural networks. The asterisk (*) refers to neural network
models that use the transformed variables. The subscripts refer to kind of historical/implied parameters
used to each model per se.
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P
BS;,  BSh.  BSsh, BShyr BShra  BShn  CSk csh, csbyr  csbhra  csh,

MHE 0.28 0.32 0.29 0.29 0.29 0.30 0.29 0.28 0.28 0.27 0.26
MAHE 2.68 2.82 2.68 2.66 2.57 2.57 2.68 2.86 2.83 2.87 2.88
MPE 5.80 5.86 5.80 5.80 5.74 5.75 5.83 5.97 5.97 6.03 6.04
MD 0.581 0.585 0.584 0.582 0.561 0.558 0.580 0.609 0.606 0.605 0.602
BsY Bsk, BsY, BSY ;- BSN 14 BsY, BSY BsN” BsY: BsV. BsN'., BsN.

MHE 0.33 0.30 0.28 0.29 0.28 0.30 0.29 0.29 0.28 0.28 0.29 0.29
MAHE 3.00 2.92 2.93 2.91 2.71 2.77 2.91 2.89 2.88 2.86 2.68 2.71

MPE 6.08 6.04 6.08 6.04 5.88 5.91 6.03 6.02 6.02 6.00 5.84 5.86
MD 0.618 0.614 0.615 0.610 0.578 0.581 0.606 0.611 0.610 0.608 0.579 0.582

csk, csl csi oy SN ra csl, csdy csir s cslira csi

MHE 0.30 0.29 0.29 0.27 0.27 0.31 0.32 0.30 0.30 0.29
MAHE 3.07 2.90 2.92 2.84 2.86 2.97 2.97 2.81 2.78 2.81
MPE 6.14 6.04 6.05 6.00 5.99 6.06 6.09 5.93 5.91 5.94
MD 0.615 0.611 0.613 0.602 0.605 0.609 0.607 0.593 0.592 0.596
BSi Bs)t BSMh BsM. BSM., BsM  BsM BsNM BsSM* BsMy Bsih,  BsMV

MHE 0.30 0.29 0.28 0.30 0.29 0.29 0.31 0.29 0.28 0.29 0.30 0.30
MAHE 2.94 2.88 2.88 2.91 2.63 2.61 2.93 2.90 2.89 2.90 2.63 2.63

MPE 6.03 6.00 5.99 5.99 5.79 5.78 6.02 6.01 6.00 6.00 5.79 5.80
MD 0.616 0.610 0.614 0.614 0.574 0.570 0.615 0.613 0.615 0.615 0.574 0.574

csih cshh cshh. csih, csih csiy cshn cshin cshin, cshin

MHE 0.30 0.28 0.28 0.27 0.26 0.29 0.29 0.29 0.26 0.26
MAHE 2.85 2.90 2.85 2.87 2.88 2.83 2.95 2.91 2.95 2.96
MPE 5.98 6.00 5.98 6.03 6.04 5.95 6.05 6.03 6.11 6.12
MD 0.605 0.613 0.609 0.605 0.602 0.606 0.621 0.616 0.617 0.615

Table R3: Hedging error measures for all models in the aggregate testing period (AggTs)
MHE is the Mean Hedging Error, MAHE the Mean Absolute Hedging Error, MPE the Mean Prediction
Error and MD the Mean Delta of each model. The superscripts refer to the kind of the model: P refers to
parametric models, N to the simple neural networks and Nh to the hybrid neural networks. The asterisk
(*) refers to neural network models that use the transformed variables. The subscripts refer to kind of
historical/implied parameters used to each model per se.
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BsE, Bsk, | BsE, cséy csh, | BsYy | cs&o | BSER | BsiE | BsMA | sl | cshE
BSgO -33.91 67.72 0.56 59.35 42.88 25.46 39.53 61.45 78.64 33.14 66.94
BSjh. | 9.23 99.72 | 34.63 | 91.26 | 77.59 | 59.53 | 74.19 | 95.49 | 112.26 [ 67.82 | 100.24
Bng -9.26 -18.95 -67.60 -7.35 -30.38 | -44.47 | -33.27 | -11.78 4.67 -39.12 -4.59
csé | -0.36 | -9.58 | 8.87 59.17 | 42.59 | 25.05 | 39.21 [ 61.31 | 78.66 | 32.78 | 66.84
Cszm -7.79 -17.20 1.30 -7.42 -21.78 | -36.11 | -24.68 -3.53 12.68 -30.51 3.31
BSY, | 9.60 | 20.05 | 024 | 9.19 | -1.14 -16.95 | -3.40 | 20.55 | 39.41 | -10.06 | 27.55
CSgo | -5.54 | -15.46 | 4.05 | -5.15 | 2.63 4.07 13.61 | 36.30 | 54.07 | 7.16 | 42.53
BS{” | 9.06 | -19.60 | 0.87 | 865 | 054 | 0.67 | -3.46 23.78 | 42.50 | -6.64 | 30.64
BSH" -12.00 | -22.94 -1.89 -11.56 -3.26 -2.29 -6.41 -3.00 18.58 -30.25 7.61
BShn | -14.73 | -26.67 | -4.03 | -14.26 | -5.43 | -4.65 | -8.94 | -544 | -2.29 -48.82 | -10.24
CSé\g‘* -7.95 -18.38 1.95 -7.53 0.53 1.83 -2.31 1.18 4.19 6.69 36.87
cston | -11.08 | 23.07 | -1.76 | -11.54 | -3.15 | 2.16 | -6.33 | 2.88 | 0.16 2.50 | -4.08

Table R4a: Matched pair student-t tests for square and absolute differences
Matched pair t-tests concerning the absolute differences are reported in the upper diagonal whilst
on the lower diagonal the matched pair t-tests concerning the square differences are tabulated.
Both tests compare the MAE and MSE between models in the vertical heading versus models in
the horizontal heading. In general, a positive t-value larger than 1.645 (2.325) means that the
model in the vertical heading has a larger MAE or MSE than the model in the horizontal heading at
5% (1%) significance level.
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BsE, Bsk, | BsE, cséy csh, | BsYy | cs&o | BSER | BsiE | BsMA | sl | cshE
Bsgo -27.29 15.19 5.00 13.66 56.05 25.49 52.42 59.33 38.80 49.71 35.26
BSji 9.23 28.88 | 27.42 | 27.37 | 60.81 | 44.58 | 62.12 | 78.15 | 60.32 | 59.53 | 53.50
BSlon | -9.26 | -18.95 -14.53 | -5.43 -0.40 -6.42 -1.42 3.08 7.61 -3.19 4.02
csé | -0.36 | -9.58 | 8.87 12.99 | 54.57 | 23.86 | 50.11 | 57.84 | 37.25 | 45.03 | 33.67
CSme -7.79 -17.20 1.30 -7.42 1.96 -4.40 0.94 5.62 10.18 -0.92 8.32
BSY, | 9.60 | 20.05 | 024 | 9.19 | -1.14 27.71 | -7.51 | 23.55 | 13.25 | -18.57 | 6.63
CSgo | -5.54 | -15.46 | 4.05 | -5.15 | 2.63 4.07 19.90 | 36.18 | 22.35 [ 12.84 | 16.92
BS{” | 9.06 | -19.60 | 0.87 | 865 | 054 | 0.67 | -3.46 30.72 | 16.80 | -13.27 | 9.53
BSH" -12.00 | -22.94 -1.89 -11.56 -3.26 -2.29 -6.41 -3.00 7.04 -37.74 -0.52
BShn | -14.73 | -26.67 | -4.03 | -14.26 | -5.43 | -4.65 | -8.94 | -544 | -2.29 -19.94 [ -10.44
CSé\g‘* -7.95 -18.38 1.95 -7.53 0.53 1.83 -2.31 1.18 4.19 6.69 13.08
cston | -11.08 | 23.07 | -1.76 | -11.54 | -3.15 | 2.16 | -6.33 | 2.88 | 0.16 2.50 | -4.08

Table R4b: Matched pair student-t and Johnson t-tests for the square differences

Matched pair student-t (lower diagonal) and Johnson modified t (upper diagonal) tests concerning
square differences are tabulated. Both tests compare the MSE between models in the vertical
heading versus models in the horizontal heading. In general, a positive t-value larger than 1.645
(2.325) means that the model in the vertical heading has a larger MSE than the model in the
horizontal heading at 5% (1%) significance level.
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BsE, BsN. BsY BsY .. BsYrs  BSY, BSY  BsN BsY” BsN" BsN'.,  BsU.
Min 5 6 3 3 5 5 3 4 3 3 4 3
Mean 5.7 7.8 6.7 7.3 6.8 7.5 6.2 6.7 5.6 6.9 6.4 6.1
Max 8 10 10 10 10 10 10 9 7 9 10 10
cséh csy, sy cSY 4 csy. csty csh csy csNra csi
Min 3 4 3 4 4 3 5 4 3 3
Mean 5.9 7.3 7 7.4 6.9 4.8 7.1 6.8 5.4 6.7
Max 9 10 10 10 10 10 9 10 9 10
BSM BsNh BShh BsN. BSN., Bsih stk Bsh Bsh* BsMy Bshv,  BsMv
Min 3 4 4 2 3 2 3 4 3 2 2 2
Mean 5.6 6.9 5.7 6 3.7 5.7 4.9 6.7 5 52 3.8 3.9
Max 10 10 8 10 6 10 9 10 6 9 6 6
csbl cshh cshh. csih, cshh csiy cshhe cshmt cshn, cshne
Min 2 2 2 2 2 2 2 2 2 2
Mean 5 4.1 4.4 4.2 4.4 5.2 4.6 4.7 3.9 4
Max 10 7 8 7 7 9 10 9 7 10

Table R5: ANNs Complexity

Minimum, mean and maximum number of the hidden layer

periods.

neurons for the ten different training
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BsE, csk .,
Short Medium Long Short Medium Long
VDOTM n.a. n.a. n.a. n.a. n.a. n.a.
DOTM 2.27 4.50 n.a. 3.02 5.24 n.a.
OTM 5.78 8.37 n.a. 6.29 9.68 n.a.
JOTM 7.81 6.68 n.a. 8.13 7.64 n.a.
ATM 6.67 9.46 n.a. 7.30 10.14 n.a.
JITM 6.71 9.41 n.a. 7.29 9.21 n.a.
ITM 7.70 7.13 n.a. 8.24 7.59 n.a.
DITM 7.07 7.93 n.a. 7.20 8.50 n.a.
VDITM n.a. n.a. n.a. n.a. n.a. n.a.
BsM cshn
VDOTM n.a. n.a. n.a. n.a. n.a. n.a.
DOTM 2.36 4.07 n.a. 2.54 5.22 n.a.
OTM 5.08 7.25 n.a. 5.69 8.74 n.a.
JOTM 5.82 5.59 n.a. 6.76 7.09 n.a.
ATM 4.65 8.37 n.a. 5.68 9.53 n.a.
JITM 5.50 7.68 n.a. 6.20 8.16 n.a.
ITM 5.98 5.84 n.a. 6.73 6.75 n.a.
DITM 5.45 6.59 n.a. 5.95 7.67 n.a.
VDITM n.a. n.a. n.a. n.a. n.a. n.a.

Table R6: Root Mean Square Errors for the four best models for the

full dataset
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BS§, BSh, BSh, BShyr BShyra BShy,

P&L 6,617 11,502 12,852 11,398 27,418 29,784

# Trades 3,128 3,481 4,584 5,130 11,944 13,255

P&L 0.2% (d=0%) 6,826 26,744 75,483 7,698 15,038 17,010
Agg P&L 0.2% (d=0%) -2,195 -733 320 -1,957 -5,267 -5,467
P&L 0.2% (d=5%) -1,481 1,774 2,672 -66 4,045 4,276
Agg P&L 0.2% (d=5%) 1,143 3,743 5,460 2,721 6,009 6,506
P&L 0.2% (d=10%) 245 2,081 5,896 4,376 6,102 6,229
Agg P&L 0.2% (d=10%) 2,153 3,116 7,182 5,727 6,834 7,049
P&L 0.2% (d=15%) 2,552 2,863 6,400 5,741 7,023 6,675
Agg P&L 0.2% (d=15%) 4,127 3,642 7,144 6,484 7,396 7,075

P&L 0.4% (d=0%) -20,270 -24,989 -23,819 -26,793 -57,494 -63,805

Agg P&L 0.4% (d=0%) -11,006 -12,967 -12,211 -15,311 -37,953 -40,717
P&L 0.4% (d=5%) 9,559 6,229 10,067 13,797 710,120 9,779
Agg P&L 0.4% (d=5%) 4,310 2,291 4,490 ~8,200 6,191 75,320

P&L 0.4% (d=10%) -5,534 -3,254 -807 -3,352 184 372

Agg P&L 0.4% (d=10%) -1,717 -1,185 1,764 -651 1,649 2,012
P&L 0.4% (d=15%) 2,012 1,535 2,275 1,332 3,998 3,696
1,137 24 3,763 2,819 4,743 4,496

Agg P&L 0.4% (d=15%)

Table R7: Trading strategies for Black and Scholes models

P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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BS§, BSh, BSh, BShyr BShyra BShy,

P&L 7,110 12,486 13,068 11,800 27,591 29,886

# Trades 3,128 3,481 4,584 5,130 11,944 13,255

P&L 0.2% (d=0%) 6,132 75,394 5,017 7,097 14,951 16,884
Agg P&L 0.2% (d=0%) -1,671 989 885 -1,331 -5,237 -5,387
P&L 0.2% (d=5%) -798 3,156 3,179 538 4,308 4,596
Agg P&L 0.2% (d=5%) 1,528 5,413 6,066 3,315 6,253 6,778
P&L 0.2% (d=10%) 1,010 3,529 6,556 4,992 6,409 6,509
Agg P&L 0.2% (d=10%) 2,644 4,738 7,951 6,473 7,121 7,289
P&L 0.2% (d=15%) 3,330 4,400 7,165 6,525 7,379 6,982
Agg P&L 0.2% (d=15%) 4,689 5,312 7,997 7,403 7,743 7,367

P&L 0.4% (d=0%) -19,373 -23,274 -23,102 -25,995 -57,494 -63,655

Agg P&L 0.4% (d=0%) | -10,453 10,509 11,297 14,462 38,066 240,661
P&L 0.4% (d=5%) ~8,680 4,491 9,329 712,998 29,989 9,528
Agg P&L 0.4% (d=5%) 4,028 23 3,555 7,444 ~6,099 5,164
P&L 0.4% (d=10%) -4,621 -1,440 110 -2,536 375 527
Agg P&L 0.4% (d=10%) -1,353 978 2,900 426 1,800 2,086
P&L 0.4% (d=15%) 1,163 357 3,275 2,315 4,188 3,803
1,555 2,181 4,939 4,072 4916 4,572

Agg P&L 0.4% (d=15%)

Table R8: Chen and Johnson modified trading strategies for Black and Scholes
P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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cséo CSay CShur CShyra CSfon
P&L 6,575 26,969 29,811 31,291 30,886
# Trades 3,160 10,136 11,967 12,796 12,893
P&L 0.2% (d=0%) -7,494 -13,607 -16,185 18,062 ~18,632
Agg P&L 0.2% (d=0%) -2,708 -3,537 4,955 _5,645 5,178
P&L 0.2% (d=5%) -1,879 2,811 2,038 2,061 2,033
Agg P&L 0.2% (d=5%) 697 5,077 4,066 4,567 5,160
P&L 0.2% (d=10%) -369 6,426 5,503 4,754 4,622
Agg P&L 0.2% (d=10%) 1,625 7,454 6,378 5,893 5,968
P&L 0.2% (d=15%) 2,020 7,223 6,180 5,708 5,537
Agg P&L 0.2% (d=15%) 3,609 7,845 6,693 6,400 6,329
P&L 0.4% (d=0%) -21,563 -54,183 -62,182 -67,415 -68,150
Agg P&L 0.4% (d=0%) 11,990 34,042 39,721 42,580 41,241
P&L 0.4% (d=5%) 10,032 -14,585 -16,016 15,830 -16,196
Agg P&L 0.4% (d=5%) 4,882 10,054 -11,960 -10,817 29,941
P&L 0.4% (d=10%) -6,108 -1,969 -2,776 -3,921 -4,292
Agg P&L 0.4% (d=10%) -2,118 88 -1,027 -1,644 -1,600
P&L 0.4% (d=15%) -2,578 2,328 1,626 741 483
600 3,573 2,653 2,126 2,068

Agg P&L 0.4% (d=15%)

Table R9: Trading strategies for Corrado and Su models
P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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cséo CSay CShur CShyra CSfon
P&L 6,920 27,251 30,031 31,279 31,025
# Trades 3,160 10,136 11,967 12,796 12,893
P&L 0.2% (d=0%) 6,914 -13,122 -15,867 18,090 ~18,570
Agg P&L 0.2% (d=0%) -2,369 -2,965 -4,662 -5,633 -5,060
P&L 0.2% (d=5%) -1,315 3,385 2,497 2,230 2,285
Agg P&L 0.2% (d=5%) 909 5,701 4,492 4,755 5,435
P&L 0.2% (d=10%) 222 6,987 5,928 4,950 4,844
Agg P&L 0.2% (d=10%) 1,902 8,056 6,766 6,075 6,204
P&L 0.2% (d=15%) 2,741 7,877 6,602 5,867 5,759
Agg P&L 0.2% (d=15%) 4,076 8,528 7,087 6,576 6,582
P&L 0.4% (d=0%) -20,747 -53,496 -61,765 -67,459 -68,165
Agg P&L 0.4% (d=0%) 11,658 -33,181 -39,355 42,545 41,145
P&L 0.4% (d=5%) 9,252 -13,850 -15,597 -15,855 16,192
Agg P&L 0.4% (d=5%) -4,803 29,219 -11,606 -10,803 9,892
P&L 0.4% (d=10%) -5,332 -1,277 -2,386 -3,945 -4,355
Agg P&L 0.4% (d=10%) -1,973 859 -710 -1,694 -1,637
P&L 0.4% (d=15%) -1,754 3,025 1,946 610 344
916 4,328 2,916 2,029 1,989

Agg P&L 0.4% (d=15%)

Table R10: Chen and Johnson modified trading for Corrado and Su models
P&L is the total profit and loss without transaction costs; # Trades is the number of trades
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4%
transaction costs when trading strategies are implemented by ignoring trades that involve
call options whose absolute percentage of mispricing error between their models estimates
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the underlying

asset.
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BSE, BsN, BSY BSN ¢ BSN 14 BsN,
P&L 22,992 29,737 25,424 27,340 26,012 26,687
# Trades 4,836 7,615 6,168 7,069 7,770 8,128
P&L 0.2% 1,604 -2,031 -440 -1,779 -5,467 -5,414
Agg P&L 0.2% 8,560 6,343 7,812 6,824 4,266 4,686
P&L 0.2% (d=5%) 8,375 7,155 6,829 7,142 5,866 5,912
Agg P&L 0.2% (d=5%) 11,289 9,721 10,303 10,385 8,963 9,379
P&L 0.2% (d=10%) 8,781 6,388 6,030 7,532 6,447 7,221
Agg P&L 0.2% (d=10%) 10,744 7,774 8,468 9,550 8,278 9,121
P&L 0.2% (d=15%) 7,985 6,870 7,454 7,482 7,166 7,253
Agg P&L 0.2% (d=15%) 9,502 7,855 9,347 8,980 8,372 8,553
P&L 0.4% -19,784 -33,798 -26,305 -30,899 -36,946 -37,516
Agg P&L 0.4% -5,872 -17,052 -9,800 -13,692 -17,480 -17,315
P&L 0.4% (d=5%) -2,369 -6,249 -5,494 -6,151 -6,619 -7,032
Agg P&L 0.4% (d=5%) 3,459 -1,116 1,454 335 -425 -96
P&L 0.4% (d=10%) 1,817 -319 -1,087 -154 175 457
Agg P&L 0.4% (d=10%) 5,744 2,452 2,889 3,883 3,836 4,257
P&L 0.4% (d=15%) 2,764 2,439 1,551 2,318 3,150 3,098
__Agg P&L 0.4% (d=15%) 5,797 4,408 5,337 5,314 5,563 5,700

Table R11.1: Trading strategies for standard BS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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BSgo BS,}, BSy, BS BSgyr4 BSly,
P&L 25,747 28,401 27,359 26,910 27,547 28,591
# Trades 5,398 7,058 7,096 7,077 8,502 8,663
P&L 0.2% 576 -1,847 2,388 2,923 -5,325 5,531
Agg P&L 0.2% 8,570 6,338 6,078 6,061 3,879 4,767
P&L 0.2% (d=5%) 8,771 7,142 6,300 6,013 6,252 6,660
Agg P&L 0.2% (d=5%) 11,503 9,740 9,238 8,768 8,854 9,834
P&L 0.2% (d=10%) 7,945 7,205 5,082 5,751 7,222 6,581
Agg P&L 0.2% (d=10%) 9,609 8,747 7,909 7,459 8,615 8,082
P&L 0.2% (d=15%) 7,088 7,634 6,343 6,450 7,292 7,172
Agg P&L 0.2% (d=15%) 8,358 8,721 7,778 7,702 8,218 8,099
P&L 0.4% 24,594 32,096 32,135 -32,757 38,196 -39,653
Agg P&L 0.4% ~8,607 15,725 _ -15,204 _ -14,788 _ -19,788 _ -19,057
P&L 0.4% (d=5%) 1,515 -5,588 -6,407 7,159 6,587 ~6,740
Agg P&L 0.4% (d=5%) 3,950 -394 530 -1,649 -1,381 -393
P&L 0.4% (d=10%) 2,094 549 1,178 1,592 1,227 550
Agg P&L 0.4% (d=10%) 5,423 3,634 2,677 1,822 4,014 3,552
P&L 0.4% (d=15%) 2,765 3,383 1,432 1,578 3,732 3,571
5,306 5,557 4,302 4,081 5,582 5,424

Agg P&L 0.4% (d=15%)

Table R11.2: Trading strategies for standard BS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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csy, csy cshr SN ra csk .,
P&L 20,675 26,166 27,584 27,124 26,776
# Trades 4,513 6,514 7,362 6,979 6,964
P&L 0.2% 673 -560 -2,697 -2,459 -2,680
Agg P&L 0.2% 8,516 8,386 6,766 8,191 8,130
P&L 0.2% (d=5%) 6,106 7,415 6,517 7,030 6,978
Agg P&L 0.2% (d=5%) 9,972 10,848 10,186 10,953 10,904
P&L 0.2% (d=10%) 6,916 7,353 6,747 7,299 7,783
Agg P&L 0.2% (d=10%) | 9,461 9,575 8,808 9,812 10,259
P&L 0.2% (d=15%) 6,875 7,229 6,722 7,164 7,585
Agg P&L 0.2% (d=15%) 8,865 8,847 8,197 9,082 9,445
P&L 0.4% -19,329 -27,287 -32,978 -32,043 -32,137
Agg P&L 0.4% -3,643 -9,395 -14,053 -10,743 -10,517
P&L 0.4% (d=5%) -4,802 -4,985 -7,526 -5,222 -5,349
Agg P&L 0.4% (d=5%) 2,930 1,882 -188 2,625 2,503
P&L 0.4% (d=10%) -557 -479 -838 50 546
Agg P&L 0.4% (d=10%) | 4,533 3,965 3,284 5,075 5,498
P&L 0.4% (d=15%) 1,286 1,582 1,709 2,154 2,598
__Agg P&L 0.4% (d=15%) 5,266 4,819 4,660 5,988 6,318

Table R12.1: Trading strategies for standard CS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation

Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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csly csy csiy csNra csi
P&L 22,739 27,299 30,079 26,912 26,703
# Trades 5,173 7,133 8,531 8,106 8,030
P&L 0.2% -492 -1,118 -3,802 -5,609 -4,992
Agg P&L 0.2% 7,689 7,923 6,227 4,973 5,413
P&L 0.2% (d=5%) 7,138 6,880 6,460 6,036 5,479
Agg P&L 0.2% (d=5%) 10,397 10,163 9,662 9,348 9,427
P&L 0.2% (d=10%) 7,517 7,117 6,671 7,211 6,405
Agg P&L 0.2% (d=10%) 9,556 9,178 8,341 9,176 8,807
P&L 0.2% (d=15%) 6,978 7,048 7,416 7,374 6,379
Agg P&L 0.2% (d=15%) 8,433 8,659 8,566 8,774 8,212
P&L 0.4% -23,723 -29,535 -37,683 -38,129 -36,687
Agg P&L 0.4% -7,360 -11,453 -17,624 -16,965 -15,878
P&L 0.4% (d=5%) -3,137 -6,142 -7,934 -7,264 -8,493
Agg P&L 0.4% (d=5%) 3,383 425 -1,530 -640 -599
P&L 0.4% (d=10%) 1,139 -428 -264 -133 -1,312
Agg P&L 0.4% (d=10%) 5,218 3,695 3,076 3,796 3,492
P&L 0.4% (d=15%) 2,490 1,700 3,024 2,729 1,373
__Agg P&L 0.4% (d=15%) 5,402 4,924 5,325 5,528 5,040

Table R12.2: Trading strategies for standard CS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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BSiE Bshh BsMh BsNh. BSM., BsNh

P&L 21,946 28,851 25,382 28,451 29,642 29,127

# Trades 5,090 7,507 7,821 8,162 10,747 10,429

P&L 0.2% 347 -1,714 -6,099 -4,333 -10,412 -11,602
Agg P&L 0.2% 7,186 6,659 3,041 4,287 -188 -545
P&L 0.2% (d=5%) 6,747 7,576 3,233 4,837 5,216 5,376
Agg P&L 0.2% (d=5%) 9,406 10,228 6,042 7,569 7,318 7,797
P&L 0.2% (d=10%) 6,213 6,778 4,464 5,560 6,736 6,577
Agg P&L 0.2% (d=10%) 8,060 8,442 6,547 7,245 7,664 7,763
P&L 0.2% (d=15%) 6,084 6,404 5,524 6,555 7,608 6,818
Agg P&L 0.2% (d=15%) 7,557 7,674 7,129 7,774 8,191 7,543

P&L 0.4% -21,252 -32,279 -37,579 -37,117 -50,467 -52,331

Agg P&L 0.4% -7,573 -15,532 -19,301 -19,876 -30,018 -30,217
P&L 0.4% (d=5%) -3,615 -5,370 -10,392 -9,957 -8,608 -7,940
Agg P&L 0.4% (d=5%) 1,702 -65 4774  -4,492  -4404  -3,097

P&L 0.4% (d=10%) -401 -255 -3,769 -2,524 705 513

Agg P&L 0.4% (d=10%) 3,293 3,072 399 847 2,560 2,884
P&L 0.4% (d=15%) 1,245 1,711 -150 1,259 4,328 3,464
Agg P&L 0.4% (d=15%) 4,191 4,252 3,060 3,697 5,494 4,915

Table R13.1: Trading strategies for hybrid BS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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BSi BSh* BSMh BsMh BsN, BsN

P&L 24,143 30,438 29,540 29,053 31,567 31,379

# Trades 5,621 8,469 8,338 8,337 10,965 10,758

P&L 0.2% 460 -3,910 -3,697 -3,775 -10,122 -9,717
Agg P&L 0.2% 7,793 5,211 5,808 4,700 513 1,216
P&L 0.2% (d=5%) 7,060 5,085 5,735 6,350 5,621 5,209
Agg P&L 0.2% (d=5%) 9,819 7,635 8,324 9,081 7,702 7,729
P&L 0.2% (d=10%) 6,537 5,801 6,202 6,123 6,844 6,461
Agg P&L 0.2% (d=10%) 8,401 7,352 8,012 7,915 7,796 7,607
P&L 0.2% (d=15%) 6,383 5,488 6,786 6,738 7,564 7,027
Agg P&L 0.2% (d=15%) 7,817 6,641 8,165 8,096 8,154 7,728

P&L 0.4% -23,223 -38,258 -36,933 -36,603 -51,812 -50,812

Agg P&L 0.4% -8,557 -20,016 -17,923 -19,652 -30,541 -28,947
P&L 0.4% (d=5%) -3,115 -8,607 -8,606 -8,095 -7,613 -8,019
Agg P&L 0.4% (d=5%) 2,403 -3,507 -3,429 -2,633 -3,452 -2,980

P&L 0.4% (d=10%) 316 -1,318 -1,989 -1,772 1,126 563

Agg P&L 0.4% (d=10%) 4,045 1,783 1,633 1,811 3,031 2,853
P&L 0.4% (d=15%) 1,779 945 1,372 1,557 4,411 3,715
Agg P&L 0.4% (d=15%) 4,648 3,250 4,131 4,272 5,591 5,117

Table R13.2: Trading strategies for hybrid BS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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csbl cshh cshh. csit., cshn

P&L 20,002 29,247 28,793 30,691 31,231

# Trades 5,202 9,157 9,604 11,678 11,871

P&L 0.2% -1,869 -7,909 -10,106 -15,394 -15,064

Agg P&L 0.2% 5,336 2,981 1,305 -2,108 -1,449
P&L 0.2% (d=5%) 5,784 5,846 3,699 2,441 2,884
Agg P&L 0.2% (d=5%) 8,594 8,882 6,637 5,426 6,367
P&L 0.2% (d=10%) 5,694 7,401 5,762 5,118 5,023
Agg P&L 0.2% (d=10%) | 7,601 9,184 7,293 6,704 6,625
P&L 0.2% (d=15%) 5,407 7,448 6,385 5,606 6,073
Agg P&L 0.2% (d=15%) 6,913 8,732 7,399 6,691 7,033

P&L 0.4% -23,741 -45,066 -49,004 -61,479 -61,358

Agg P&L 0.4% -9,329 -23,285 -26,182 -34,907 -34,129

P&L 0.4% (d=5%) -4, 775 -9,338 -12,195 -14,870 -14,853
Agg P&L 0.4% (d=5%) 844 -3,265 -6,319 -8,901 -7,886
P&L 0.4% (d=10%) -555 -397 -1,785 -3,370 -3,597
Agg P&L 0.4% (d=10%) 3,258 3,170 1,276 -198 -393
P&L 0.4% (d=15%) 818 2,340 1,826 587 1,056
Agg P&L 0.4% (d=15%) | 3,829 4,907 3,855 2,756 2,976

Table R14.2: Trading strategies for hybrid CS-based ANN models
P&L is the total profit and loss without transaction costs; # Trades is the
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are
implemented by ignoring trades that involve call options whose absolute
percentage of mispricing error between their models estimates and their
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation
Agg. refers to trading strategy results with aggregate transaction costs of the
underlying asset.
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csb cshh cshm csin, cshn
P&L 22,708 28,886 31,663 32,810 32,718
# Trades 5,358 8,898 10,463 10,927 11,098
P&L 0.2% -1,162 -7,138 -10,387 -10,983 -11,897
Agg P&L 0.2% 6,521 3,451 1,658 1,490 1,836
P&L 0.2% (d=5%) 6,317 6,143 4,316 4,713 4,041
Agg P&L 0.2% (d=5%) 9,012 8,849 7,219 7,633 7,401
P&L 0.2% (d=10%) 6,681 6,737 6,378 6,503 6,091
Agg P&L 0.2% (d=10%) 8,364 8,435 7,984 8,017 7,757
P&L 0.2% (d=15%) 6,688 7,560 7,230 6,814 6,972
Agg P&L 0.2% (d=15%) 8,045 8,847 8,379 7,862 8,040
P&L 0.4% -25,031 -43,163 -52,437 -54,776 -56,511
Agg P&L 0.4% -9,666 -21,984 -28,347 -29,829 -29,047
P&L 0.4% (d=5%) -4,141 -8,962 -11,909 -11,765 -12,765
Agg P&L 0.4% (d=5%) 1,248 -3,550 -6,102 -5,923 -6,046
P&L 0.4% (d=10%) 617 -1,176 -1,401 -1,762 -2,165
Agg P&L 0.4% (d=10%) 3,084 2,220 1,811 1,267 1,168
P&L 0.4% (d=15%) 2,141 2,633 2,717 1,863 2,128
Agg P&L 0.4% (d=15%) 4,855 5,208 5,017 3,959 4,266

Table R14.2: Trading strategies for hybrid CS-based ANN models

P&L is the total profit and loss without transaction costs; # Trades is the number of
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring
trades that involve call options whose absolute percentage of mispricing error between
their models estimates and their market value is less than 0%, 5%, 10% and 15%
respectively. The abbreviation Agg. refers to trading strategy results with aggregate
transaction costs of the underlying asset.
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* N* * * * *

BsE, Bsh. BsY BsN . BSNre  BSN.,  BSY BsN” BsY BsN.  BsN'.,  Bsl.

t (Sq) 7.03 9.13 2.40 8.87 6.68 1.75 9.54 7.22 6.24 5.97 3.88 1.32
John. t(Sq) | 38.80 46.00 16.72 25.24 16.36 7.77  3l1.41  46.76 22.61 34.83 27.90 6.36
t (abs) 27.57  43.07 13.62 35.36 31.42 11.66 37.80 35.54 34.84 30.71 24.80 9.00
csy csy csir SN ra csl, csdy csi~ cs sl csli

t (Sq) 9.19 2.40 4.30 3.44 2.72 5.95 2.98 4.89 2.70 2.31
John. t (Sq) | 34.09 16.16 25.07 23.91 18.10  25.53 16.79 18.45 17.81 14.94
t (abs) 36.20 11.44 25.99 20.96 21.44  19.87 14.97 21.53 16.24 15.22
BSi Bshh BsMh BsMh. BsM:., BsM BsM  Bsi” BSMh BsMy  Bshh,  BsM

t (Sq) -2.89 0.92 -0.08 0.44 0.96 -1.35 1.19 1.35 1.93 -0.88 2.41 0.68
John. t (Sq) | -21.80 11.09  -1.01 4.07 8.47 -6.21  17.43  20.50 16.81 -5.73 8.87 3.98
t (abs) -9.13 4.96 0.66 -0.17 4.78 -1.81  10.27  11.71 7.57 -1.41 5.81 1.61
csih cshh cshh. csih, cshh csh cshh cshnt cshhy,  csh

t (Sq) 2.85 0.53 1.84 0.07 0.15 3.18 2.65 1.78 0.98 2.06
John. t (Sq) | 26.62 7.46 9.91 1.51 5.79 31.41 8.43 9.77 6.20 6.54
t (abs) 16.92 7.00 3.29 1.88 0.54  20.86 4.74 9.27 4.93 1.33

Table R15: Test statistics that compare the pricing accuracy between the reduced datasets
without and with retraining of the ANNs
The t(Sq) compares the MSE of the ANNs trained with the full dataset but examined on the reduced region
with the MSE of the ANNs trained on the reduced region. John. (Sq) does the same but with the Johnson
modified t-test; t(abs) compares the MAE of the ANNs trained with the full dataset but examined on the
reduced region with the MAE of the ANNs trained on the reduced region. In general, a positive value larger
than 1.645 (2.325) means that the ANN model that was trained in the full dataset and examined in the
reduced region has a larger MSE or MAE than the ANN model that was trained and examined in the reduced

region.
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2. Robust Artificial Neural Networks for Pricing of
European Options

Abstract

The option pricing ability of Robust Artificial Neural Networks
optimized with the Huber function is compared against those optimized with
Least Squares. Comparison is in respect to pricing European call options on
the S&P 500 using daily data for the period April 1998 to August 2001. The
analysis is augmented with the use of several historical and implied volatility
measures. Implied volatilities are the overall average, and the average per
maturity. Beyond the standard neural networks, hybrid networks that directly
incorporate information from the parametric model are included in the
analysis. It is shown that the artificial neural network models with the use of
the Huber function outperform the ones optimized with least squares.

The existing essay had been published in the Computational
Economics, volume 27, issues 2-3, April-May 2006, pg. 329-351.
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2.1. Introduction

The scope of this work is to compare alternative feed-forward Artificial
Neural Network (ANN) configurations in respect to pricing the S&P 500
European call options. Robust ANNs that use the Huber function are
developed, and configurations that are optimized based solely on the least
squares norm are compared with robust!2 configurations that are closer to the
least absolute norm. The data for this research come from the New York
Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago Board
of Options Exchange (CBOE) for call option contracts, spanning a period from
April 1998 to August 2001.

Black and Scholes introduced in 1973 their milestone (BS) formula
which is still a most prominent conventional Parametric Options Pricing
Model (POPM). The options we price are on the S&P 500 index, which is
extremely liquid and is the closest to the theoretical setting of the Black and
Scholes model (Garcia and Gencay, 2000). Empirical research in the last
three decades has shown that the formula suffers from systematic biases for
various reasons (for details see Black and Scholes, 1975, Rubinstein, 1994,
Bates, 1991 and 2003, Bakshi et al., 1997, Andersen et al., 2002, and Cont
and Fonseca, 2002). Despite this, BS is frequently used to price European
options!3 mainly because alternative parametric models (e.g. stochastic
volatility, jump-diffusion, stochastic interest rates, etc.) have drastically failed
to provide results truly consistent with the observed market data.
Additionally, these models are often too complex to implement and be used for
real trading (see Bakshi et al., 1997). On the other hand, artificial neural
networks are promising alternatives to the parametric OPMs; they do not

necessarily rely on any financial theory and are trained inductively using

12 Huber (1981) and Hampel et al. (1986) offer an overview for the tools and concepts
of the theory of robust statistics. As pointed out for example by Franses et al. (1999),
parametric estimators that are derived under the assumption of normally distributed
errors are very sensitive to outliers and other departures from the normality
assumption (see also Krishnakumar and Ronchetti, 1997, and Ortelli and Trojani,
2005). They show that the results obtained under a robust analysis can differ
significantly from the ones obtained under similar techniques that are based on the
Gaussian analysis. Chang (2005) has found that the use of the Huber estimation can
significantly reduce the influence of outliers for the estimation of block-angular linear
regression model.

13 According to Andersen et al., (2002), “the option pricing formula associated with the
Black and Scholes diffusion is routinely used to price European options”.
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historical or implied input variables and option transactions data. Their
popularity is constantly increasing, and contemporary financial econometric
textbooks (e.g. Tsay, 2002) dedicate special sections or even whole chapters to
this topic.

It is well known that market participants change their option pricing
attitudes from time to time (i.e. Rubinstein, 1994), so a parametric model
might fail to adjust to such rapidly changing market behavior. ANNs can
potentially correct the aforementioned BS bias (Hutchison et al., 1994,
Lajbcygier et al., 1996, Garcia and Gencay, 2000, Yao and Tan, 2000). Neural
networks trained on the least squares error criterion are highly influenced by
outliers, especially in the presence of non-Gaussian noise (Bishop, 1995).
Options data are known to be heavily influenced at least by noise due either
to thin trading or to abnormal volume trading (Long and Officer, 1997, and
Ederington and Guan, 2005) and exhibit a strong time-varying element
(Dumas et al., 1995, and Cont and Fonseca, 2002). Consecutively, robust
estimation is expected to improve out of sample pricing of options.

In previous empirical research on option pricing, ANNs have been
optimized based on the b (the least squares) norm. The lznorm is a convenient
way to train ANNSs, since ready to use statistical packages are widely available
for this purpose. Of course, the least squares optimization is highly
susceptible to the influence of large errors since some abnormal datapoints
(or few outlier observations) can deliver non-reliable networks. On the
contrary, robust optimization methods that exploit the [; (the least absolute)
norm are unaffected by large (or catastrophic) errors but are doomed to fail
when dealing with small variation errors (e.g. Bandler et al., 1993, and
Devabhaktuni et al., 2001, for applications in the electrical engineering field).
Here the Huber function (Huber, 1981) is used as the error penalty criterion
during the ANNs optimization process to immunize the adaptable weights in
the presence of data-point peculiarities. The Huber function utilizes the
robustness of [; and the unbiasedness of I and has proved to be an efficient
tool for robust optimization problems for various tasks (Bandler et al., 1993,
Jabr, 2004, Chang, 2005), albeit it does not constitute the mainstream. The
training of ANNs with the Huber technique has recently gained attention in
electrical engineering (i.e. Devabhaktuni et al., 2001, Xi et al., 1999), but to

our knowledge has not gained attention in options pricing, where it is possible
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to observe both small and large errors for a variety of reasons (e.g. Bakshi et
al., 1997). Our choice of the Huber function is because it is widely
referenced on robust estimation (Bishop, 1995), it provides a simple
generalization of the least squares approach, it avoids the need for any
probabilistic assumptions, and it is not difficult to implement with neural
networks. Comparison with other estimators, like the MM estimators (Yohai,
1987), the S estimators (Rousseeuw and Yohai, 1984), and the redescenting
estimators (Morgenthaler, 1990), is beyond the scope of this work, but can be
part of future research.

The standard ANN target functions are employed that are comprised by
the market value of the call option standardized with the strike price.
Furthermore, the hybrid ANN target function suggested by Watson and Gupta
(1996) and used for pricing options with ANNs in Lajbcygier et al. (1997) are
examined. In the hybrid models the target function is the residual between
the actual call market price and the parametric option price estimate
standardized with the strike price. It can capture the potential
misspecification of the BS assumptions of geometric Brownian motion (see for
example, Lim et al., 1997). Unlike Hutchison et al. (1994), in the parametric
as well as in the nonparametric models both historical and implied volatility
measures are used. To train the ANNs, the modified Levenberg-Marquardt (LM)
algorithm which is efficient in terms of time capacity and accuracy (Hagan
and Menhaj, 1994) is utilized. In contrast to many previous studies, thorough
cross-validation allows the use of a different network configuration in different
testing periods.

In the following, first the parametric BS model, and the standard and
hybrid ANN model configuration with the Huber function and with least
squares (mean square error to be precise) are reviewed. Then, the dataset, and
the historical and implied parameter estimates are discussed, and the
parametric and ANN models are defined according to the parameters used.
Subsequently, the numerical results are reviewed with respect to the in- and
out of sample pricing errors; the economic significance of dynamic trading
strategies both in the absence and in the presence of transaction costs is also
discussed. The final section concludes. It is demonstrated that with the use
of the Huber function, ANNs outperform their counterparts optimized with

least squares. The best (hybrid and standard) ANN models with the Huber
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function are identified, and evidence is provided that, even in the presence of

transaction costs, profitable trading opportunities still exist.

2.2. Option pricing models: the parametric BS and ANNs

2.2.1. The Black and Scholes option pricing model

The Black Scholes formula for European call options modified for

dividend-paying underlying asset is:

c® =Se"N(d,)- Xe " N(d,) (2.1)

_In(S/X)+(r-8)T +(oNT) /2
d, = T (2.1.1)

d,=d, —o\T (2.1.2)

In the above, ¢ = estimated premium for the European call option;
S = spot price of the underlying asset; X = exercise price of the option; r =
continuously compounded riskless interest rate; ¢ = continuous dividend

yield paid by the underlying asset; T = time left until the option expiration;

o? = yearly variance rate of return for the underlying asset; N(.)= the

standard normal cumulative distribution.

The standard deviation of continuous returns (o) is not observed and
an appropriate forecast should be used. The literature has used both
historical and implied volatility forecasts. Contrary to the historical estimates,
the implied volatility forecasts have desirable properties that make them
attractive to practitioners: they are forward looking and avoid the assumption
that past volatility will be repeated. In this study, similarly with Hutchison et
al. (1994) and in addition to the other volatility measures, the 60 days
historical volatility which is a widely used historical volatility benchmark is

also employed.
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If BS is a well-specified model, then all implied volatilities of the same
underlying asset should be the same or at least some deterministic functions
of time. Unfortunately, this is far from being empirically true. For example,
Rubinstein (1994) has shown that the implied volatilities derived via BS as a
function of the moneyness ratio (S/X) and time to expiration (7) often exhibit a
U shape, known as the volatility smile. This is why BS is usually referred to as
being a misspecified model with an inherent source of bias (see also Latane
and Jr., 1976, Bates, 1991, Canica and Figlewski, 1993, Bakshi et al., 2000,
and Andersen et al.,, 2002). Under the existence of this anomaly, any
historical volatility measure is doomed to fail, while measures (like the implied

ones) that mitigate this bias could perform better.

2.2.2. Neural networks

A neural network is a collection of interconnected simple processing
elements structured in successive layers and can be depicted as a network of
arcs/connections and nodes/neurons. The network has the input layer, one
or more hidden layers and an output layer. Each interconnection corresponds
to a numerical value named weight, which is modified according to the faced
problem via an optimization algorithm. The particularity of ANNs relies on the
fact that the neurons on each layer operate collectively and in a parallel
manner on all input data and that each neuron behaves as a summing vessel
that works, under certain conditions, as a non-linear mapping junction for
the forward layer.

Figure 2.1 depicts an ANN architecture similar to the one applied for
the purposes of this study. This network has three layers: an input layer with
N input variables, a hidden layer with H neurons, and a single neuron output
layer. Each neuron is connected with all neurons in the previous and the

forward layer. Each connection is associated with a weight, w,;, and a bias,
Wyo , in the hidden layer and a weight, v, , and a bias, v,, in the output layer
(k=1,2,...,H, =1,2,...N). In addition, the outputs of the hidden Ilayer
(", yY...yW) are the inputs for the output layer.

Inputs are set up in feature vectors, Xy =[x14,X2q4-.,Xng| for which

there is an associated and known target, t,, q=12,...,P, where P is the
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number of the available sample feature vectors for a particular training
sample. According to Figure 2.1, the operation carried out for computing the

final estimated output, y, is the following:
H N
yzfo[v0+zkaH(wk0+Zwkixi)] (2.2)
k=1 i=1

where f, and f,, are the transfer functions associated with the output and

hidden layers respectively.

(1)
U;

JH(.)

JHl.) Jol-)] [—*
JHl.)
Input Layer Hidden Layer Output Layer

Figure 2.1. A single hidden layer feedforward neural network

For the purpose of this study, the hidden layer always uses the
hyperbolic tangent sigmoid transfer function, while the output layer uses a
linear transfer function. In addition, ANN architectures with only one hidden
layer are considered since research has shown that this is adequate in order
to approximate most functions arbitrarily well. This is based on the universal
approximation theorem provided by Cybenko (1989) (theorem can be fund in

section 1.3., for further details see also Haykin, 1999):
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Training ANNs is a non-linear optimization process in which the
network’s weights are modified according to an error function. For the case
that the ANN model has only one output neuron, the error function between

the estimated response y, and the actual response t, is defined as:

e, (W) =y, (W)~ t, (2.3)

where, w is an n-dimensional column vector containing the weights and
biases given by: w =[W;g...; Wy W, seee, Wy ,Vps--sVy | - The Huber function

that is used to optimize the trainable parameters w is defined as (i.e. Huber,

1981, Bandler et al., 1993):

Ew) =Y, pile, (w)) (2.4)
q=1

where p, is the Huber function defined as:

2 .
pk(e)={o'5€ fle| <k (2.5)

kle|-0.5k? if le|>k

where k is a positive constant. It is obvious that when |e| >k the Huber

function treats the error in the [; sense and in the Il sense only if |e| <k

depending on the value of threshold parameter k. Figure 2.2 depicts the
Huber function along with the least absolute (l;) and least squares (lo) error
functions. The Huber function has a smooth transition between the two

norms at | e |= k, so that the first derivative of p, is continuous everywhere.

The choice of k defines the threshold between large and small errors.
Different values of k determine the proportion of the errors to be treated in the
l; or the o norm. As seen, when k is sufficiently large the Huber function
encompasses the widely used and conventional least squares (l) training of

the ANNs. As the k parameter approaches zero, the Huber function
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approaches the [; function and the errors are penalized in the least absolute
sense. Figure 2.2 makes obvious that the Huber function should be more

robust to abnormal data since it penalizes them less compared to the > norm.

N ple) N

L4 k
L ]
® -0.5k7

m—Huher & least squares @& least absolute

Figure 2.2. The Huber, the least absolute (1;) and the least squares (12)
error functions

The nice properties of the Huber function compared to the I norm are
more distinct when they are compared according to their gradient vector. The

gradient vector of the least squares error function is:

VE,, (w) = iqueq(w) (2.6)
q=1

whilst the gradient for the Huber function is:

VEwW) =Y 7, Ve, (w) (2.7)
q=1

where,
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= dprley) ¥ ‘eq‘gk

(== ik e, <k (2.8)
B +k if e, >k

The PXn Jacobian matrix, J(w), of the P-dimensional output error column

vector is given by:

Ve[ (w)
Jw)=| : (2.9)

Ve, (w)

Using this notation, (2.7) can be written in the form:

VE(w) = J(w) ¢ (w) (2.10)

where ¢ is a P-dimensional column vector with elements the ¢, values.

Quantity Ve (w) is the gradient vector of e (w) with respect to the
trainable parameter vector w. The difference between (2.6) and (2.7) depends
on the weighting factor of the Ve, (w). The weighting factor of Ve, (w) for the
Huber gradient is the same with the least squares gradient only when
‘eq‘ < k. In all other cases the weighing factor for the Huber gradient is held
constant at the value of the threshold k unlike in the [, case that gives more
weight to large errors. This is how the Huber function immunizes against the
influence of large errors.

Moreover, the Hessian matrix in the case of the Huber function is given
by:

V?E(w) = i d,Ve (wVe, (w) + igqv%q (w) (2.11)
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where

d =

q

62pk(eq)={1 if e <k 212

aeq2 0 if‘eq‘ >k

The quantity Ve (w) is computed based on the back-propagation algorithm

that is commonly used in the context of feed-forward ANNs. Based on the
neural network depicted in Figure 2.1, the partial derivative of the error

function (2.3) with respect to the weight v, at the hidden layer is:

aeq (1) £
6_:ykf0(l/)) (2.13)
U

where f,(y) is the differential of the output neuron transfer function at point
w . Since a linear transfer function is used at the output neuron, the f,(y) is

equal to unity. Furthermore, the partial derivative of the error function (3)

with respect to the weight w,; at the input layer is:

aeq — . F! (1) ’ 2.14
P X [y Wi folw) (2.14)
Wi

where f}, (") is the differential of the transfer function associated with the

kth hidden neuron at point p!”. For our case, we always use the hyperbolic

tangent as a transfer function:

fH(a)=L_2a—1 =tanh(a) (2.15)
l1+e
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The differential of this function with respect to a can be expressed in a

particularly simple form:
ful@)=1-(fyla))® (2.16)

To optimize the weights, the modified Levenberg-Marquardt (LM) algorithm is
employed. According to LM, the weights and the biases of the network are

updated in order to minimize E(w). At each iteration t of the LM, the weights
vector w is updated as follows:
=w, —[G, + p I J(w,) {(w,) (2.17)

w

7+1

where G is an approximation of the nX n Hessian matrix defined as:

G= iqueq(w)Veq(w)T (2.18)

g=1

and d, is defined in (2.12). The matrix G is obtained from the Hessian matrix

by deleting its second term which is usually considered small. Moreover, [ is

an nXn identity matrix, J(w,) is the Jacobian matrix at the * iteration, and
K, is like a learning parameter that is automatically adjusted in each iteration
in order to secure convergence. Large values of u, lead to directions that

approach the steepest descent, while small values lead to directions that
approach the Gauss-Newton algorithm. Further technical details about the
implementation of LM can be found in Hagan and Menhaj (1994) and Hagan
et al. (1996). Based on (2.17), weights and biases update takes place in a
batch mode manner where update occurs only when all input vectors have

been presented to the network.

In addition to the standard ANNs with t =c™" /X (call market values

standardized with their strike price), hybrid ANNs according to which the
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target function is the residual between the actual call market price and the

BS call option estimation t=c™* /X -¢® /X (again standardized with the

strike price) are also investigated, where ¢® should define a pricing estimate
taken by the BS under a certain volatility forecast (this is explained further in
the following section). For effective training, the input/output variables are

scaled using the z-score transformation z = (X—u)/s, where X is the vector of
an input/output variable, u is the mean and s the standard deviation of this

vector. Moreover, the network initialization technique proposed by Nguyen
and Windrow (see Hagan et al., 1996) is utilized that generates initial weights
and bias values for a nonlinear transfer function so that the active regions of
the layer’s neurons are distributed roughly evenly over the input space.

For a given set of training data and for a given value of the Huber k
value, the optimal number of hidden neurons is chosen via a cross-validation
procedure. ANN structures with 2 to 10 hidden neurons are trained, and the
one that performs the best in the validation period is selected. Since the initial
network weights affect the final network performance, for a specific number of
hidden neurons and Huber k value, the network is initialized, trained and
validated five separate times. Huber (1981) gives a formula for deriving the
optimal k value, but this formula was not derived with applications of neural
networks in mind. Most importantly, restrictive probabilistic assumptions (of
symmetrically contaminated Gaussian distributions) are made. In addition,
(as pointed out also in Koenker, 1982, p. 232), we need to know the degree of
contamination (i.e., the percent of abnormal observations). With neural
networks we neither make any probabilistic assumptions, nor we know a
priori the degree of contamination. Thus, we follow an empirical approach.
The optimal k value is shown from the data after investigating a wide range of
potential values. Different networks are developed for the following Huber k-
values: 0.1, 0.2, 0.30, 0.40, 0.5, 0.60, 0.70, 0.80, 0.90, 1, 1.5, 2 and Inf (that
corresponds to the optimization of the ANNs based on the > norm). After
defining the optimal ANN structure, its weights are frozen and its pricing
capability is tested (out of sample) in a third separate testing dataset in order

to verify the ANNs ability to generalize to unseen data.
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2.3. Data, parameter estimates and model implementation

The dataset covers the period from April 1998 to August 2001. The S&P
500 Index call options are considered because the CBOE option market is
extremely liquid and these index options among the most popular. This
market is the closest to the theoretical setting of the parametric models
(Garcia and Gencay, 2000). Our prices are closing quotes. The majority
(around 75%) of our call options lies in the +/-15% moneyness area. As
suggested by Day and Lewis (1988), because trading volume tends to
concentrate in the options that are around at-the-money and just in-the-
money, any lack of synchronization between closing index level and the
closing option price will be minimized for these options (pg. 107). Of course, it
is not the first time that non intra-day option and index prices are used in
analysis (see for example, Day and Lewis, 1988, Hutchison et al., 1994,
Ackert and Tian, 2001, and Ederington and Guan, 2005). Specifically, Ackert
and Tian (2001) argue that closing prices, which are non-synchronous,
constitute the best alternative solution to examine the options arbitrage
violations for the S&P index. Kamara and Miller (1995) compare intraday and
closing option pricing results for market efficiency tests and argue that closing
option prices are appropriate for analysis because they are representative of
the transaction prices that prevailed during the day. This suggests that it is
not unreasonable to use closing data in empirical options research. In our
case, the Huber function is helpful in treating the options data according to
the noise level.

Along with the index, a daily dividend yield, ¢, is collected (provided
online by Datastream). After applying various filtering rules, the dataset
consists of 64,627 data points, with an approximate average of 35,000 data
points per sub-period. Hutchison et al. (1994) have an average of 6,246 data
points per sub-period. Lajbcygier et al. (1996) include in total 3,308 data
points, Yao et al. (2000) include in total 17,790 data points, and Schittenkopf
and Dorffner (2001) include 33,633 data points.

2.3.1. Observed and historically estimated parameters

The moneyness ratio, S/X, is the basic input to be used with ANNs
since it is highly related with the pricing bias associated with the BS. The
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moneyness ratio S/X is calculated and used with ANNs like in Hutchison et

al. (1994) (see also Garcia and Gencay, 2000). The dividend adjusted
moneyness ratio (Se™°’)/X is preferred here since dividends are relevant. In

addition, the time to maturity (T') is computed assuming 252 days in a year.
Previous studies have used 90-day T-bill rates as approximation of the
interest rate. In this study we use nonlinear cubic spline interpolation for
matching each option contract with a continuous interest rate, r, that
corresponds to the option’s maturity. For this purpose, the 3-month, 6-month
and one-year T-bill rates collected from the U.S. Federal Reserve Bank
Statistical Releases are used.

Moreover, the 60-days volatility is a widely used historical estimate (see
Hutchison et al., 1994, and Lajbcygier et al., 1997). This estimate is

calculated using all the past 60 log-relative index returns and is symbolized
as 04, . In addition, the VIX Volatility Index is an estimate that can be directly

observed from the CBOE. It was developed by CBOE in 1993 and is a measure
of the volatility of the S&P 100 Index and is frequently used to approximate
the volatility of the S&P 500 as well. In our dataset the 30-day returns of the
two indexes were strongly correlated (with Pearson correlation coefficient
between 0.94 and 0.99). VIX is calculated as a weighted average of S&P 100

option with an average time to maturity of 30 days and emphasis on at-the-

money options. This volatility measure is symbolized as o, .

2.3.2. Implied parameters

The Whaley’s (1982) simultaneous equation procedure is adopted to
minimize a price deviation function with respect to the wunobserved
parameters. For a given day the optimal implied parameter values correspond
to the solution of an unconstrained optimization problem that minimizes the
sum of squares residuals between the actual call option market values and
the BS estimates. The optimization is done via a non-linear least squares
optimization based on the Levenberg-Marquardt algorithm. His approach is
an alternative to using the methodology proposed by Chiras and Manaster
(1978) (CM), or Latane and Rendleman (1976) (LR). His reasoning is that:
“rather than explicitly weighting the implied standard deviations of a

particular stock where the weights are assigned in an ad-hoc fashion, the call
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prices are allowed to provide an implicit weighting scheme that yields an
estimate of standard deviation which has little prediction error as is possible”
(pg. 39). Bates remarks that the Whaley’s (1982) least squares weighting
scheme effectively assigns heavier weights on the near the money options
than CM and LR. His approach is widely applied even in more recent
research; for instance Bakshi et al. (1997). Nevertheless, we tried these two
weighting schemes (the CM and the modified LR as recommended by CM),
and at least in our dataset the results are inferior to those of the overall
average approach (or its per-maturity variant). The per-maturity versions
worked even better since they can capture time-varying volatility effects
(Bakshi, 1997, and Bates, 2003).

Similarly to Bakshi et al. (1997), two different implied volatility
measures are taken from the above procedure. The first optimization is

performed by including all available options transaction data in a day to

obtain daily average implied parameters (o,,). Second, daily average per

maturity parameters (0_,,) can be obtained by fitting the BS to all options that

share the same maturity date as long as four different available call options
exist.
For pricing and trading reasons at time instant ¢, the implied structural

parameters derived at day t-1 are used together with all other needed

information (S, 7T, 6, X and r). The same reasoning holds for the historical (o,)

and the weighted implied average (o, ) estimates.

It is known that ANN input variables should be presented in a way that
maximizes their information content (Garcia and Gencay, 2000). When
options are priced, the POPM formulas adjust those values to represent the
appropriate value that corresponds to an option’s expiration period. According
to this rationale, for use with the ANNs, the volatility measures are

transformed by multiplying each of the yearly volatility forecast with the
square root of each option’s maturity (&; = aj@ , Where j={60, vix, av, avT}).
They are named maturity (or expiration) adjusted volatilities. Also, and
following the advice by a referee, we have constructed tables (not included for
brevity) for all nine sub-periods (in several moneyness and maturity ranges) in

order to compare between the volatilities of the training and the volatilities of

the testing sub-periods. If these estimates differ considerably, this may imply
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saturation of the neural network with poor performance as a consequence.
On average, we have observed no volatility jumps. Furthermore, the superior
out of sample performance of the neural networks (see section 4) is additional
evidence that the saturation problem mentioned by the referee does not seem

to be present.

2.3.3. Output variables, filtering and processing

For training ANNs, the call standardized by the striking price, c;’”k /Xy

is used as one target function to be approximated. In addition, the hybrid
structure is implemented, where the target function represents the pricing

error between the option’s market price and the parametric models estimate,

c"* | X -¢° /X, where ® is one of BS,,, BS,,, BS,,, andBS,,. In both

vix ? av ’
cases, target residuals are standardized using the mean-variance scaling;
hence the output neuron transfer function is linear.

Before filtering, more than 90,000 observations were included for the
period April 1998 — August 2001. The final dataset consists of 64,627
datapoints. The filtering rules adopted are: i) eliminate an observation if the
call contract price is greater than the underlying asset value; ii) exclude an
observation if the call moneyness ratio is larger than unity and the call price is
less than its dividend adjusted lower bound; iii) eliminate all the options
observations with time to maturity less than 6 trading days (adopted to avoid
extreme option prices that are observed due to potential illiquidity problems);
iv) price quotes lower than 0.5 index points are not included; v) maturities with
less than four call option observations are also eliminated; vi) in addition, to
remove impact from thin trading observations are eliminated according to the
rule: eliminate an observation if the call option price at day t is the same as
with day t-1 and if the open interest for these days stays unchanged and if the
underlying asset has changed. We filter data when we believe that they are
“bad data” (filtering rules i, ii, iv, vi), or that they come from a different “data
generating process” (filtering rule iii, following Bakshi et al., 1997). Filtering
rule v was perceived as necessary in order to get an average volatility per

maturity (Bakshi et al., 1997, recommend no less than two observations).
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2.3.4. Validation, testing and pricing performance measures

The available data are partitioned into training, validation and testing
datasets using a chronological splitting, and via a rolling-forward procedure.
Our dataset is divided into nine overlapping sub-periods in chronological
order. Each sub-period is divided into a training (7Tr), a validation (Vd) and a
testing (Ts) set, again in chronological sequence. In each sub-period the
training, validation and testing sets are non-overlapping. The nine testing sets
are non-overlapping and they cover completely the last 20 months of the
dataset.

There are M available call option contracts, for each of which there
exist E, observations taken in consecutive time instances t, resulting in a
total of P (P = % =, ) available call option datapoints (P is the total number of

m=1
call option transactions that cover the whole period and is equal to 64,627).
To determine the pricing accuracy of each model’s estimates, ¢, the Root

Mean Square Error (RMSE) and the Mean Absolute Error (MAE) are examined:

RMSE = \/z/pf(c{;fk —,)° (2.19)

p
MAE =1/p)’|ci"™ ¢ (2.20)

q=1

q

where p<P indicates the number of observations used per case. These error
measures are computed for an aggregate testing period (AggTs) with 35,734
(so p is equal to 35,734) datapoints by simply pooling together the pricing
estimates of all nine testing periods. For AggTs, the Median Absolute Error
(MdAE) as well as the 5th (5th APE) and 95th (95th APE) percentile Absolute
Pricing Error values derived from the whole pricing error distribution are also
computed and tabulated. Since ANNs are not optimized solely based on the
mean square error and there are cases that the ANNs are optimized with the

Huber function, it is wise to take into consideration various error measures.
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2.3.5. The parametric and nonparametric models used

With the BS models input includes S, X, T, 6, r, and any of the four

different volatility measures: o4,, 0,, 0,,,and o the four different models

vix av >’ avT »

are symbolized as: BS,,, BS,,, BS,,, and BS_ ;.

vix » av

To train ANNs inputs of the parametric BS model are also used. These
include the three standard input variables/parameters: (Se®’)/X, T and r.

The various versions of the ANNs also depend on the BS volatility estimate
considered, the kind of the target function, and the k value of the Huber
function.

As mentioned before, ANNs are trained based on twelve different values
of the Huber function (k € [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2]).
Additionally, ANN structures trained with the use of the mean square error (l»
norm) which is equivalent to the case where the Huber k value is set to a very
large value that approaches infinity (k = Inf) are included.

Specifically, for each of the four different BS volatility measures, there
are thirteen ANN models that are trained to map the standard target function

cmk/ X (fifty-two models). Furthermore, each of the previous ANN structures is
rebuild based on the hybrid target function, ¢™* /X —¢® /X where © is one

of BS,,, BS BS andBS, ;. In total, there are 104 different ANN

versions.
The standard ANNs are denoted by Ns, and the hybrid versions by Nh.
To distinguish between various Huber function versions, the corresponding

value of the k parameter is used in the superscript and the BS volatility

reference is used in the subscript. For instance, Ns'/. (Nh'™) is the ANN

model that uses as fourth input the (maturity adjusted) volatility, &,,,, maps
the standard (hybrid) target function and is trained based on the mean square

€rror.

2.4. Pricing results and discussion

Table 2.1 exhibits the out-of sample pricing performance of BS and

ANN models with alternative volatility measures. As mentioned before, the
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various models are compared in terms of RMSE, MAE, MdAE and the 5t and
95th  Absolute Pricing Errors. All statistics are reported for the AggTs
(aggregate) period; for the neural networks the aggregate results are created
by selecting the optimal Huber k-value in the RMSE measure for each sub-

period, aggregating, and then comparing with least squares (inf] estimation.

Parametric Models

BSE.C BSuix BSaw BSaur

RMSE 10.360 12.302 8.266 7.952
MAE 6.620 8.631 4.989 4.646
MJAE 4.458 6.386 3.630 3.274
5th APE 0.302 0.4382 0.323 0.256
O5th APE 19.448 23.732 12.399 11.672

Standard Neural Networks (Optimal k, Injf)

Nseo NSwix NSav NSavT
RMSE 10.52, 15.38 10.08, 12.70 11.25,11.92 10.76, 12.07
MAE 5.73, 9.51 4.67, 6.44 5.18, 6.62 5.42, 5.90
MdJAE 4.06, 6.58 2.99, 3.98 3.35, 4.28 3.40, 3.53

5th APE 0.44, 0.50 0.30, 0.41 0.34, 0.44 0.33, 0.36
O5th APE | 14.90, 26.54 12.71, 18.92 13.29,20.20 15.10, 17.39

Hybrid Neural Networks (Optimal k, Inf)

Nheo Nhyix Nhay Nhavr
RMSE 8.16, 8.58 7.88, 7.79 7.21,7.73 6.83,7.15
MAE 5.053, 3.59 3.95, 4.60 4.13, 4.52 3.56, 4.02
MJAE 3.54, 4.02 2.50, 3.07 2.87, 3.03 2.38, 2.58

5th APE 0.29, 0.30 0.22, 0.29 0.24, 0.26 0.20, 0.20
95th APE | 13.84, 15.21 10.32, 13.40 10.91, 12.65 9.13, 11.37

Table 2.1. Pricing results with standard and robust ANNS

RMSE is the Root Mean Square Error, MAE the Mean Absolute Error, MdAE the
Median Absolute Error, 5t APE is the fifth percentile Absolute Pricing Error and 95th
APE the 95t percentile Absolute Pricing Error. The right hand side subscripts refer to
the kind of historical/implied parameters used. For the neural networks, the
information provided is first under optimal k-value in each sub-period, and then
under least squares estimation.

It is obvious that the implied volatility measures lead to lower pricing
errors in the case of BS. Looking at the parametric models and similarly to
Bakshi et al. (1997), the overall best BS model is the one that utilizes the

implied average per maturity volatility, BS followed by BS,, that utilizes

auvT »

the overall average. The BS,,,; model outperforms significantly all others in all

error measures. Specifically, BS, , has RMSE equal to 7.952, MAE equal to

avT
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4.646 and MdAE equal to 3.274. In addition, this model has a higher chance
for small pricing errors and considerably smaller chance for large pricing

errors compared to the other models (see the Sth and 95th APE statistics).

Je6o Tpix Tav TavT
ANN RMSE 0.1-0.3, 0.1-0.1, 0.1-0.2, 0.1-0.2,
MAE 0.1-0.3 0.1-0.1 0.1-0.2 0.1-0.2
Hybrid RMSE 0.2-0.4, 0.1-0.5, 0.1-0.8, 0.5-0.9,
MAE 0.2-0.5 0.1-0.3 0.1-0.7 0.2-0.6

Table 2.2. Range of observed optimal k values

The above figures include at least the 66.66% of observed optimal k values for the 9
testing sub-periods, after the 3 out of the 9 were removed. The first range is for the
RMSE and the second for the MAE error measures.

In comparing the parametric models with the standard (non-hybrid)
ANNs that were trained based on the mean square error criterion, it is true
that in general, the standard ANN models underperform the equivalent
parametric ones (see also Lajbcygier et al, 1996). But Huber standard ANN
models perform better than the equivalent least squares ones. The
significance of the improvement provided by the Huber approach is obvious
from the APE error measures. In some cases (Ns,x) the improvement provides
a model better than the equivalent parametric one.

Before considering the impact of the Huber approach, it is evident that
the hybrid least squares ANNs outperform significantly both the respective
parametric ones, and the standard ANNs, in all measures considered in
practically all cases. Similarly to the parametric OPMs, the out of sample

pricing accuracy of ANNs seems to be highly dependent on the implied

parameters used; that is, as we move from Nh!Y to Nh[/ the pricing

accuracy improves significantly. The hybrid least squares ANNs even with
historical or weighted average input parameters are considerably better than
the equivalent parametric alternatives. Furthermore, it can be observed that
Nh! outperforms all other parametric and least squares ANN models.

The Huber optimized hybrid ANN models outperform significantly all
equivalent standard ANNs (Huber and least squares) in all error measures

considered. The Huber optimized hybrid ANN models outperform significantly
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all equivalent least squares hybrid ANNs, in all measures considered in
practically all cases. The only exception is when vix volatility is used and in a
small difference among the RMSE measures; in all other measures, this model
with the Huber approach proved to be superior to the least squares one.
Again, the Huber optimized hybrid ANN model with avT volatility is the overall
best, with RMSE equal to 6.83, MAE equal to 3.56, MdAE equal to 2.38, and
5th APE equal to 0.20. We should feel confident in selecting this model, since
its 95th APE is equal to 9.13, compared to 11.37 of the equivalent least
squares ANN.

Since in each testing sub-period we used the optimal Huber k-value
determined from the validation set, Table 2.2 demonstrates a clustering
summary for standard and hybrid ANNs, in the RMSE and the MAE error
measure. It shows the range that includes the majority of observed optimal k
values (six out of the nine). For the standard ANNs we have a strong
clustering around 0.1 and 0.2, and for the hybrid ANNs values around 0.3

and 0.6 are the most likely ones.

S/X <0.85 0.85- 0.95- 0.99- 1.01- 1.05- 1.15- >1.35
0.95 0.99 1.01 1.05 1.15 1.35
Ns60
<60 Days 1.13 0.76 0.27 0.09 0.13 0.18 0.32 9.30
60-180 Days 0.48 0.20 0.15 0.17 0.34 0.18 0.51 11.48
z 180 Days 0.00 0.06 2.14 4.17 1.56 0.08 0.89 1.62
Nsvix
<60 Days 0.56 0.22 0.27 0.09 0.15 0.17 0.24 7.57
60-180 Days 0.14 0.10 0.17 0.21 0.40 0.29 0.55 13.59
z 180 Days 1.25 0.06 2.31 4.33 1.47 0.20 1.14 1.48
Nsav
<60 Days 0.71 0.00 0.00 0.00 0.01 0.07 0.06 8.03
60-180 Days 0.07 0.05 0.06 0.13 0.24 0.06 0.37 14.73
=z 180 Days 0.16 0.13 2.82 4.98 1.91 0.20 1.46 1.96
NsavT
<60 Days 1.69 0.73 0.28 0.11 0.17 0.18 0.26 9.10
60-180 Days 0.95 0.22 0.15 0.17 0.32 0.22 0.41 10.79
z 180 Days 0.00 0.06 2.14 3.69 1.04 0.16 0.76 1.35

Table 2.3. Percentage of outliers for standard robust ANNs

In each cell tabulated (per maturity and degree of moneyness) the percentage of
observations that behave as outliers when the RMSE is used as error measure in the
standard robust neural network. The information is grouped vertically for the four
volatility measures, starting with the 60 days maturity, then the VIX, the overall
average (av), and finally the average per maturity (avT).
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S/X <0.85 0.85- 0.95- 0.99- 1.01- 1.05- 1.15- 21.35

0.95 0.99 1.01 1.05 1.15 1.35
Ns60
<60 Days 53.7 13.2 16.8 21.0 19.8 21.0 19.5 28.7
60-180 Days 40.8 22.0 27.3 30.1 31.6 32.9 22.1 40.4
z 180 Days 47.3 43.7 55.4 37.6 56.0 55.1 48.7 61.5
Nsvix
<60 Days 21.0 7.8 13.8 16.3 16.7 16.6 14.3 27.9
60-180 Days 16.2 10.9 22.1 22.3 22.6 24.2 21.9 37.1
= 180 Days 8.6 22.0 31.0 33.5 31.9 30.5 28.9 34.5
Nsav
<60 Days 44.8 14.1 17.2 18.3 17.8 16.2 17.4 30.7
60-180 Days 29.2 13.7 21.6 20.7 21.3 24.0 25.4 39.0
=z 180 Days 33.2 25.9 30.3 29.7 28.2 26.0 33.4 41.3
NsavT
<60 Days 25.3 2.0 1.7 3.4 3.3 3.1 2.5 18.8
60-180 Days 13.0 1.5 4.3 5.4 6.2 6.4 6.5 23.3
= 180 Days 16.1 3.4 9.8 11.4 8.8 7.0 9.8 10.4

Table 2.4. Percentage of outliers for hybrid robust ANNs

In each cell tabulated (per maturity and degree of moneyness) the percentage of
observations that behave as outliers when the RMSE is used as error measure in the
hybrid (robust) neural network. The information is grouped vertically for the four
volatility measures, starting with the 60 days maturity, then the VIX, the overall
average (av), and finally the average per maturity (avT).

Tables 2.3 (for the standard ANN) and 2.4 (for the hybrid ANN) present
information about the percent of observations treated as outliers by the use of
the Huber function (using the RMSE as the error measure). Each cell is for a
maturity and degree of moneyness classification the following line the percent
of those observations treated as outliers. For the standard neural networks
we observe outliers heavily concentrated in the in-the-money observations of
short and medium maturity options. There is also evidence of outliers present
in at-the-money long maturity options. Drawing on Long and Officer (1997)
the long-maturity at-the-money outliers instead, may be attributed to
microstructure effects. As Long and Officer show, excessive demand for
certain options may also induce the presence of outliers. For the hybrid
neural networks we observe that the Huber technique is even more important
since outliers are heavily concentrated not only in in-the-money but also in
out-of-the-money observations; furthermore, other cells also often show
significant evidence of outliers. The wide range of outliers in the hybrid model
is a hint that the misspecification of the BS model is in general rather
significant in all ranges of moneyness and maturity. Heavily out-of-money

outliers may also be due to thin (non-synchronous) trading effects (Day and
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Lewis, 1988). For the hybrid model, the choice of volatility used with BS
seems to be more important than for the standard neural network.

In the spirit of Black and Scholes (1972), Galai (1977), and Whaley
(1982), the economic significance of the OPMs has also been investigated by
implementing trading strategies. Trading strategies are implemented based on
single instrument hedging as for example in Bakshi et al. (1997), and in
addition, transaction costs and cost-effective heuristics are incorporated (see
results in Essay #1). Portfolios are created by buying (selling) options
undervalued (overvalued) relative to a model’s prediction and taking a delta
hedging position in the underlying asset. This (single-instrument) delta
hedging follows the no-arbitrage strategy of Black and Scholes (1973), where a
portfolio including a short (long) position in a call is hedged via a long (short)
position in the underlying asset, and the hedged portfolio rebalancing takes
place in discrete time intervals. Rebalancing is done in an optimal manner,
not necessarily daily; the position is held as long as the call is undervalued
(overvalued) without necessarily daily rebalancing. Proportional transaction
costs of 0.2% are also paid for both positions (in the call option and in the
“index shares”). Strategies with enhanced cost-effectiveness are also
implemented by ignoring trades that involve call options whose absolute
percentage mispricing error is less than a mispricing margin of 15%. Even
with transaction costs, there still exist opportunities for profitable trading.
Again, the hybrid neural networks outperform all other models, and when
estimated via the Huber approach they outperform the ones estimated via

least squares.

2.5. Conclusions

The option pricing ability of Robust ANNs optimized with the Huber
function is compared with that of ANNs optimized with Least Squares.
Comparison is in respect to pricing European call options on the S&P 500
Index from April 1998 to August 2001. In the analysis, a historical parameter,
a VIX volatility proxy derived by a weighted implied, and implied parameters
(an overall average, and an average per maturity) are used. Simple ANNs (with

input supplemented by historical or implied parameters), and hybrid ANNs
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that in addition use pricing information directly derived by the parametric
model are considered. The economic significance of the models is investigated
through trading strategies with transaction costs. Instead of naive trading
strategies, improved (dynamic and cost-effective) ones are implemented. The
use of the robust Huber technique has delivered better ANN structures. The
results can be synopsized as follows:

Regarding out of sample pricing, the hybrid models outperform both
the standard ANNs and the parametric ones. Huber optimization improves
significantly the performance of both the standard and the hybrid ANNs. The
non-hybrid ANNs are affected more by large errors, and thus require smaller
Huber k-value. The overall best models were the Huber based hybrid ANNs. In
general, within each class, the best performing Huber model has considerably
smaller probability of large mispricing compared to the least squares
counterpart. Lye and Martin (1993) identify the importance of the generalized
exponential distributions for the error function, in the presence of skewed fat-
tailed error distribution. Future work could consider option pricing with
robust ANNs that explicitly account for such error distributions. Regarding
the economic significance of the models, the Huber models are the overall best
models. We have also found that profitable opportunities still exist with
single-instrument cost-effective trading strategies and 0.2% proportional

transaction costs.
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3. Generalizing the Deterministic Volatility
Functions for Enhanced Options Pricing

Abstract

We extend the Deterministic Volatility Functions of Dumas et al. (1998)
to provide a semi-parametric approach where an enhancement of the implied
parameter values is used in the parametric option pricing models. We
enhance not only volatility but also skewness and kurtosis. Empirical results
using three years of S&P 500 index call option prices strongly support our
approach and compares very favorably to stochastic volatility and jump
models. The economic significance of the approach is tested in terms of
hedging where the evaluation and estimation loss functions are aligned:
hedging results when enhancing skewness and kurtosis parameters are

significantly improved.
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3.1. Introduction

In this essay we price S&P 500 index call options by extending the
Deterministic Volatility Functions!4 (DVF) of Dumas et al. (1998) to provide a
nonparametric enhancement of the implied parameter values to be used in
Parametric Option Pricing Models (POPMs). The proposed method allows us to
estimate generalized parameter functions in the sense that not only volatility
but other parameters (like skewness and kurtosis) can also be estimated. The
resulting semi-parametric models, which we call the enhanced Parametric
Option Pricing Models (ePOPMs), outperform (in respect to out of sample
pricing) by a large margin the counterpart DVF based parametric ones. With
respect to hedging, our results confirm the intuition in Christoffersen and
Jacobs (2004) that better out of sample performance can be obtained when
optimization is based on a hedging criterion.

The Black and Scholes (1973) (BS) model is an options pricing formula
that is built on a set of unrealistic assumptions and exhibits systematic
biases like the volatility smile (i.e. Black and Scholes, 1975, Rubinstein, 1994,
Bakshi et al., 1997, Bates, 2000). Recent POPMs that incorporate Stochastic
Volatility (SV) or Stochastic Volatility and Jump (SVJ) risk factors (e.g.
Andersen et al., 2002, Bakshi et al., 1997, Bates, 1991, 1996 and 2000,
Heston, 1993, Eraker, 2004), mitigate much of the bias associated with the
original BS. A similar effect is achieved indirectly with the Corrado and Su
(1996, 1997) (CS) model, an important alternative due to its ease of usels.
According to Bakshi et al. (1997), SV and SVJ parametric models offer flexible
distributional structures with adequate ability to capture negative skewness
and excess kurtosis in option market prices. This results to better out of
sample pricing performance compared to the simple BS model, with SVJ being

superior to SV; yet both models are clearly misspecified (p.g. 2026) with SV

14 The DVF approach relaxes the BS assumption of having a single volatility per day.
15 The CS model is an extension of BS using a Gram-Charlier (Type A) series
expansion that allows for non-normal skewness and kurtosis. Backus et al. (1997)
conjecture that the CS formula exhibits good performance for pricing options when
the underlying asset follows a jump-diffusion process (see also Jurczenko et al.,
1997).
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producing implied parameters that can be statistically inconsistent with those
implied by historical time series. According to Dumas et al. (1998) and Hull
and Suo (2002) both models are difficult to be estimated on a daily basis. BS
has shown severe time endurance!® and is still widely used by practitioners
since it generates reasonable prices for a wide spectrum of European financial
options.

Dumas et al. (1998) estimate DVF of quadratic forms that provide
unique per contract volatility estimates (in contrast to the overall average
volatility estimates of Whaley, 1982) and examine how well they predict option
prices. This methodological framework is conceptually similar to the one
developed with the Space Mapping techniques in Bandler et al. (1994) and
Bandler et al. (1999) where several parameter values to an imperfect model
are adjusted so as to make the imperfect model (for example a simple POPM)
approximate the performance of a finer but more expensive or inaccessible
one to use (for example the market prices). Berkowitz (2004) demonstrates
theoretically that the DVF constitutes a reduced-form approximation to an
unknown structural model which under frequent re-estimation can exhibit
exceptional pricing performance. Dumas et al. (1998) conclude by suggesting
that the DVF approach should be extended and generalized. Our approach
extends DVF by also retaining the intuition in Christoffersen and Jacobs
(2004) that while calculating implied parameters optimization should be in
respect to the option pricing function.

Researchers have also addressed attention to the use of nonparametric
techniques like artificial neural networks that can be used for nonlinear
regression. The key power provided by this type of methods is that they rely
on fairly simple algorithms and the underlying nonlinearity can be learned
from transactions data (see Duda et al., 2001, for further details). Standard
applications of artificial neural networks do not involve any financial theory
and can be used to estimate directly the empirical options pricing function
(thereinafter termed as the standard/traditional neural network approach).

Evidence concerning their out of sample pricing performance is mixed.

16 According to Andersen et al., (2002), “the option pricing formula associated with the
Black and Scholes diffusion is routinely used to price European options, although it is

known to produce systematic biases”.
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Hutchinson et al. (1994) apply them on market transactions of the S&P 500
futures call options from 1987 to 1991 to conclude that although the
networks do not constitute a substitute for the more traditional BS formula,
they can be more accurate and computationally more efficient alternatives
when the underlying asset’s price dynamics are unknown. Garcia and Gencay
(2000) find that the BS with historical volatility underperforms significantly
the standard artificial neural networks. Of course, the application of standard
artificial neural networks for pricing of options has also its limitations. First of
all, standard neural networks are usually applied in cases where there is lack
of knowledge about an adequate functional form; so they are commonly
interpreted as “black boxes” since they learn the empirical functions
inductively from transactions data without embedding any information related
to the problem under scrutiny. Second, standard artificial neural networks
are very sensitive to time-varying input variables and this problem is
exaggerated in option pricing since key variables, such as (implied) volatility,
can be very volatile. Finally, the use of standard neural networks can deliver
options prices that violate fundamental financial principles; for instance they
might return negative option values or irrational Greek letters (these are the
partial derivatives of the option with respect to a parametric model’s
structural parameters). Herrmann and Narr (1997) show that standard neural
networks return negative implied state price densities in regions that available
options data is scarce and non informative.

The scope of this essay is to propose a nonparametric enhancement of
the parameter values used in the POPMs, generalizing thus Dumas et al.
(1998) DVF (see also Christoffersen and Jacobs, 2004). With our approach we
estimate Generalized Parameter Functions (GPF) that allow enhancement of
parameters beyond volatility without specifying a-priori a deterministic
parametric functional form. In our case, the parameter enhancement provides
the volatility to the BS and CS models. In addition, skewness or skewness and
kurtosis can be enhanced for the CS model. A significant feature of the
methodology is that it allows a set of the input variables to the parametric
model to be jointly determined by the GPF. Thus, the neural networks are not
used in the standard (black box) approach but they incorporate existing
theoretical knowledge arising from parametric models. The proposed semi-

parametric approach has the following important features. First, it retains the
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theoretical properties!?” of the parametric model being enhanced concerning
the desire for: i) nonnegative option values (we thus expect satisfactory pricing
performance at the boundary of option pricing areas, in both dense and
sparse input areas), i) theory consistent Greek letters, and ii) nonnegative
implied state price densities. Second, as conjectured by Bandler et al. (1999),
semi-parametric techniques that incorporate knowledge regarding the nature
of the problem should need a smaller amount of estimation samples and also
reduce the number of free parameters needed for estimation to exhibit
satisfactory out of sample performance as opposed to the case of standard
nonparametric approaches (a similar conjecture is also made by Ait-Sahalia
and Lo, 1998, pg. 510). Third, compared to the DVF and Whaley (1982) (see
also discussions in Christoffersen and Jacobs, 2004, p. 313) we use long term
estimation (twelve months) of the GPF. At the same time though, we capture
the time-variation of the option valuation relationship since both in the
estimation of the GPF and for the out of sample application we use daily
implied parameters. This is in the same spirit with Christoffersen et al. (2007)
where they use long term (twelve months) for the estimation of most
parameters but with frequent reestimation of implied spot volatilities.

We build ePOPMs for both the BS and the CS model. We compare them
with their parametric alternatives using the overall average implied
parameters and their DVF versions in pricing S&P 500 index call options. Part
of our contribution is to apply the DVF approach to the CS model. Moreover,
we include in the comparison the SVJ model of Bates (1996) since it is an
effective remedy to the BS biases (see Bakshi et al., 1997, and Bates, 1996)
but we also report results for the SV sub-model. We first show that daily
calibration of either SVJ or the DVF based BS and CS models requires careful
daily parameter search. In the sample, SVJ has the best fit while SV is inferior

to the best DVF models. Concerning the out of sample pricing performance we

17 In the case of Corrado and Su in some extreme regions of skewness and kurtosis
the model may give negative option values and/or negative sensitivity of the call to the
underlying asset (see also Jondeau and Rockinger, 2001). In our sample this was
extremely rare (the worst case was 0.1% of the sample where the negative values were
slightly only below zero). Furthermore, our methodology could easily constrain

skewness and kurtosis to prohibit such inconsistencies.
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find that extending the DVF approach to the case of CS can significantly
improve the model’s performance, yet SVJ dominates in the family of
parametric models. We find that all semi-parametric models (ePOPMs) have
excellent performance and outperform their DVF parametric counterparts.
The enhanced CS model is the overall best ePOPM and is competitive in
performance to SVJ since it is found to have a rich distributional flexibility in
generating skewness and kurtosis patterns across time to maturity and strike
prices. Our results show that ePOPMs exhibit superior out of sample
robustness, and the enhanced models can significantly outperform SVJ in
moneyness regions not used in estimation. The hedging performance of all
models is in line with previous literature when models are optimized with a
pricing criterion. Better out of sample results are obtained when optimization
is based on a hedging criterion, where the resulting enhanced parameters
differ significantly from those used in pricing. Parameters enhanced for
hedging exhibit positive skewness and high kurtosis hedging against the
prospect of extreme (negative) returns.

In the following we review the parametric models and we explain the
implementation of the ePOPM structure via the GPF. We then discuss the
data, filtering and the alternative versions of the models under comparison.
Finally we discuss the pricing results, we provide various pricing robustness
checks, we implement a single instrument hedging strategy for the best
models considered and then we conclude. The Appendix shows the necessary

Greeks for the POPMs used during calibration and hedging.

3.2. Parametric models used

Below we briefly discuss the different POPMs we employ in this study.
The first model examined is the Black and Scholes (1973) since it is a
benchmark and widely referenced model. The BS formula for European call
options modified for dividend-paying (see also Merton, 1973) underlying asset

is:

¢BS = se™" N(d)- Xe T N(d - oNT) (3.1)
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In(S/X)+(r - dy)T +(oNT)* /2

d=
o\T

(3.1.1)

where ¢P°

is the price of the European call option, S is the spot price of the
underlying asset, X is the exercise price of the call option, r is the

continuously compounded risk free interest rate, d, is the continuous

dividend yield paid by the underlying asset, T is the time left until the option

expiration date, o2 is the yearly variance of the rate of return for the

underlying asset and N(.) stands for the standard normal cumulative
distribution. Vega, which is the partial derivative of the BS call options with

respect to the volatility will be necessary for our application of the ePOPMs:

2eBS
oo

= Se” " yTn(d) (3.1.2)

In addition for hedging purposes the BS delta value is also needed:

BS
ags — e %" N(q) (3.1.3)

The abundant empirical evidence regarding the smile/ smirk behavior of
the BS implied volatility is indicative of implied return distributions that are
negatively skewed with higher kurtosis than what the BS log-normal
distribution allows (see Bakshi et al., 1997 and Bates, 2000). For this reason
we include in the parametric analysis more general option pricing models. We
use the Corrado and Su (1996) model which is an extension of the BS model
able to capture non-normal skewness and kurtosis for the underlying returns’
distribution. Corrado and Su derived an extension of the BS model based on a
methodology employed earlier by Jarrow and Rudd (1982). Using a Gram-

Charlier series expansion of a normal density function they define their model
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as (see also the correction in Brown and Robinson, 2002; for further

discussions see Jondeau and Rockinger, 2001, and Jurczenko et al., 2004):

¢ =P + 4305 + (14 —3)Q4 (3.2)

B

where ¢?° is the BS value for the European call option given in Eq. (3.1) and,

05 = 5S¢ ¥ VT (20T - dnid) + (03T N(d) 3.2.1)
0, = %Se_dyTaﬁ((dQ ~1-30VT(d - oNT)n(d) +(cVT)®N(d)  (3.2.2)

In Eq. (3.2) Q3 and Q, represent the marginal effect of non-normal skewness
and kurtosis respectively in the option price whereas u; and u, correspond
to coefficients of skewness and kurtosis. In the above expressions,

n(z) = exp(-z2 /2) (3.2.3)

1
N2

refers to the standard normal probability density function. The following
partial derivatves (Greek letters) are necessary for our application of ePOPMs.

The CS Vega is given by:

cs BS P P
& afoc™ dyT(l &+%(,u4—3) Q“] (3.2.4)

oo oo 3! Hs oo oo

where,

0Q3 :Sn(d)o'\/T[SdO'\/T-i-3d2 +O'\/T+3]—
oo (3.2.5)

SVTd® n(d) + 3Sa%T3/%N(d)
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% -s/Td n(d)[— 2d + d® - 46T d? + 6d(oVT | - 4(5\/7)3} -

SVT n(d) +6Sa2T3/? n(d) + 4Sc> T2 N(d) + S n(d)o * T3/?
(3.2.6)

The CS partial derivative of call with respect to skewness is given by:

aCCS

= Q3 (3.2.7)
Ou3

The CS partial derivative of call with respect to kurtosis is given by:

aCCS
ou4

= Q4 (3.2.8)

In addition, for hedging purposes the CS delta value is also needed:

N(d)+ % " ((aﬁ F n(a)+ (3(aﬁ P - 3doT +a? - 1)n(d)) .

s th Nt (oNT ) N(d) + 4loNT | nid) - 6d(onT  nia) + 4d2o\Tnid) +
N 3dn(d) - 4oJTn(d) - d>n(d)

41

(3.2.9)

Motivated by empirical evidence (Bakshi et al., 1997, Das and
Sundaram, 1999, Bates 2000), and unlike Christoffersen and Jacobs (2004)
that concentrate on the SV model, we consider SVJ as the benchmark model
(but we also report results for SV). Bakshi et al. (1997) found that the SVJ
exhibited better out of sample pricing performance for the S&P 500 index
options when compared to the SV and BS models. Here we must note that SV

and SVJ models are not widely used by traders for pricing options (see Hull
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and Suo, 2002, p. 300). Traders usually rely on simpler models and more
intuitive methodologies that are closer to DVF (see also Brandt and Wu,

2002). We employ the SVJ model of Bates (1996) where the instantaneous

conditional variance V, follows a mean-reverting square root process:

é—sz(y—ﬂf)dt+ﬁd2+xdq (3.3)
dv = (a - AV)dt + o, JVdZ, (3.4)

with

cov(dZ,dZ,) = pdt
In(l+«) ~ N(In(l + ©) - 0.562,62)

prob(dg =1) = Adt

Here u is the instantaneous drift of the underlying asset, A is the annual
frequency of jumps, x is the random percentage jump conditional on a jump
occurring, g is a Poison counter with intensity 4, 62 is the jump variance,
and p is the correlation coefficient between the volatility shocks and the
underlying asset movements. Moreover, f is the rate of mean reversion and
a /p is the variance steady-state level (long run mean). In the above diffusion

specification the correlation between the volatility and the returns of the
underlying asset controls the level of skewness whilst the variability of
volatility allows for non-normal kurtosis. Moreover, the addition of a jump
component enhances the distributional flexibility and allows for more
accurate pricing performance especially for the short term options.

The value of the European call option is given as a function of state

variables and parameters:

cSW = e FI1, - XI1,] (3.5)

159



with F :E(ST):Se(r_dy " the forward price of the underlying asset, E(.) the
expectation with respect to the risk-neutral probability measure and S; the
price of S at option’s maturity. Evaluation of the probabilities I1; and II, is
done by using the moment generating functions of In(Sy /S). The following

expressions are needed to compute I1; and I1,:

. . .\ 4i+0.5
F(@ |V,T) = exp{(C;(T;®)+ D;(T; @)V + AT(L + 5)" N,
2. 2 ’
<[+ &)2e” WP I2 j=1,2
_ aT
C,(T;®) = (r - d, - AK)OT -5 (po, @ - B, - G)
v
. (3.7)
2a1 1-e%"
——2 n| 1+05(p0v$_B]_G])—
oy j
ﬂjdj+0.5@2
D,(T; @) = -2 o (3.7.1)
pov®-Bj+G; —r
1-e/
G, = (po,® ~B})> ~202 (u;® +0.50°) (3.7.2)
/,11:0.5, ﬂ2=_0.5, Bl=,3—p0'v, Bzzﬂ (3.7.3)

and II; and II, are derived by numerically evaluating the imaginary part of

the Fourier inversion:

0 7 . )
r—dy)T imag|F;(i®)e™ Z]d

prob(STe( > X|Fj):O.5+iJ.
7Ty D

® (3.8)
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with y =In(X/S) and the integrals to be evaluated with an adaptive Lobatto

quadrature. By constraining the jump component values equal to zero we get
European call prices for the SV model.

In this work, we fit the POPMs to obtain daily the implied parameters
that minimize the sum of squared pricing deviations from daily market prices,
so these (risk-neutral) parameters indirectly account for any pricing of jump
and volatility risk. The proposed methodology should be compared to the DVF
based BS and CS alternatives!8, but for completeness we also provide results

for SVJ.

3.2.1. Deterministic volatility functions for BS and CS

According to Dumas et al. (1998), this approach of smoothing the BS
implied volatilities across strike prices and maturities exhibits superior in and
out of sample performance for pricing European options. For our analysis we

estimate the three different DVF models:

DVF#1: o = max(0.01,aq +a; X +a,X?)
DVF#2: ¢ = max(0.01,aq + ;X + a, X? + a3 T + a4 XT)

DVF#3:0 =max(0.01,ay +a; X + a2X2 +asT +a, XT + a5T2)

As in Dumas et al. (1998), parameters can be estimated using either Ordinary
Least Squares (OLS) where the loss function is the difference between the
estimated volatility and the contract specific implied volatility or Nonlinear
Least Squares where the loss function is the difference between the estimated

and the actual option price. Ait-Sahalia and Lo (1998, Eq. 12 in pg. 511)

18 Christoffersen and Jacobs (2004) conclude that the DVF based BS model, which
does not require additional assumptions about investors’ preferences for risk,
represents a new and tougher benchmark against which the performance of future

structural models can be measured.
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examine a semi-parametric!® approach where they use the BS volatility loss
function but estimation is through a nonparametric kernel regression instead
of OLS. Christoffersen and Jacobs (2004) demonstrate that the OLS estimates
of the DVF parameters yield biased option pricing and that a price loss
function should be used.

In this essay we implement the DVF not only for BS but also for the
first time for the CS model, using both loss functions. For CS this is done in
two steps. We first fit daily the CS model to market option prices to obtain
overall average implied parameters values (similarly to the Whaley, 1982
method). Then we fix the skewness and kurtosis values to those obtained
earlier (in contrast to the BS where these parameters are always fixed to the
values of zero and three respectively) and further calibrate the model’s
volatility parameter in order to obtain a daily contract specific implied
volatility value. Subsequently, for both BS and CS, we estimate the
coefficients for the three different DVF models each day using OLS (L¢) and
also using Nonlinear Least Squares (NLc). For the latter we use several
initializations to minimize the risk of estimating coefficients based on a local

minimum of the optimization function.

3.3. ePOPM structure

In order to estimate the enhanced parameters nonparametrically we
employ artificial neural networks. They are universal function approximators
with good out of sample generalization abilities (see Cybenko, 1989; for a
general discussion of neural networks in financial econometrics see Tsay,
2002). An artificial neural network is a collection of interconnected simple
processing elements structured in successive layers and can be depicted as a
network of links (termed as synapses) and nodes (termed as neurons) between

layers. A typical feedforward neural network has an input layer, one or more

19 Qur approach (and similarly DVF and Ait-Sahalia and Lo, 1998) should be
considered as semi-parametric since a parametric option pricing model is involved in
the process but estimation implies deviations from the theoretical model, when for

example volatility is assumed to be a function of moneyness, etc.
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hidden layers and an output layer. Each interconnection corresponds to a
modifiable weight, which is adjusted according to the faced problem via
optimization (the training algorithm).

Figure 3.1 depicts the general idea of the ePOPM structure we propose
while Figure 3.2 depicts the exact network structure developed for the
purposes of this study. For our analysis, inputs are set up in feature vectors,

)~cp =[X1p,X0p--sXpyp] for which there is an associated and known target
characterizing our problem, tp,, p=L12,..,P, where P is the number of the

available sample feature vectors for a particular estimation sample and N the
number of input variables. The network’s outputs are obtained when the data
are presented to the input layer and after evaluating the signals at each node.
To let the network learn the underlying relationship, its weights are adjusted
in order to minimize a loss function of the error between the network output
and the desired target values.

The proposed network model has four layers. The first three are typical
layers of a feedforward artificial neural network: an input layer with N input
variables, a hidden layer with H neurons, and a layer with M output neurons.
For these three layers, each node is connected with all neurons in the

previous and the forward layer. Each connection is associated with a weight,

wgl), and a bias, w%), in the input layer (=1,2,...,H, n=1,2,...N) and a weight,

W)

i and a bias, w(z)

J0° in the hidden layer (=1,2,...,M). Each neuron behaves
as a summing vessel that computes the weighted sum of its inputs to form a
scalar term and with the use of the transfer/activation function it eventually
works as a non-linear mapping junction for the forward layer. The part of the
network that is outside the bold-dotted line in Figure 3.2 is a typical three-
layer feedforward artificial neural network with a single output that under
proper treatment can be used for nonlinear regression (Hutchinson et al.,
1994 discuss the approach for option pricing).

The fourth layer, which hereafter will be termed as the enhanced layer, allows
a certain POPM to be part of the network’s structure. In this setting the
network structure embeds knowledge from the parametric model during

estimation (resulting thus to a semi-parametric options pricing methodology).

If we let X; =XpuXp denote the set of all input parameters that are
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necessary for the parametric model, then (see Figure 3.1) Xy c X;
corresponds to the enhanced parameters provided non-parametrically and
Xp c X; those that are passed to the parametric model directly. The
enhanced parameter set X is basically a choice of the researcher and
effectively manifests the number of neurons at the output layer and the type
of activation function to be used at the enhanced layer. In addition, Xg
represents the set of inputs to the nonparametric model.

According to Figure 3.2, the operation carried out for computing the

final estimated output, y, is the following:

Yy=femw,Xp) (3.9)
and,

v=I[fq,(d1), fa,(d2),--- fa,, (dm)] (3.10)
where fpps(.,.) refers to the functional form of the parametric options pricing

model, fdj(-) are smooth monotonically increasing activation functions and

dj are simply the descaled values of yg.g), where j=1,2,....,M. We use the

term enhanced for the v; variables (see enhanced layer in Figure 3.2) that are

determined by the Generalized Parameter Function (GPF) mechanism. In our
application, v= Xg.

(2)

The elements of vector [y, ﬁ)]T follow the functional form of a

typical three-layer network:

N

y? = fuwy, + Zw(z’fH (Wyxso + Y wxe,)l
i=1 n=1

(3.11)

2 2 2 1 1
() fM[w()yO+Zw( )fH(w() +Zw()
i=1
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where fjr(.) and fp(.) are smooth monotonically increasing activation
functions associated with the output and hidden layer respectively and xgp,
(represented by Xg in Figure 3.1), n=1,2,...,N, is just the scaled value of the
input x,. The M elements of Eq. (3.11) are estimated simultaneously using
information propagated by the POPMs. The vector defined by the right hand
side of Eq. (3.11) is the GPF which (with the appropriate descaling and the
transformation depicted in Table 3.1 Panel A) produces the enhanced
variables.

As shown in Figure 3.2, the proposed network structure can
accommodate a scaling scheme for both the inputs and the enhanced
variables. This can be essential since it increases the effectiveness of the
optimization algorithm and minimizes the significance of differing dimensions
of the input/output signals (see Haykin, 1999). In the current study we

choose to apply a standard z-score scaling for the input signals: z =(x-m)/ s,

where X is the vector of an input, m is the mean and s the standard
deviation of this vector.
In our case, the smooth monotonically increasing activation functions

are among the hyperbolic tangent sigmoid,

ebn _ b1
f(ﬂ)=a[m} (3.12)

the logistic,

(2

= 3.13
fo=—", (3.13)

or the linear one,
fl)=n (3.14)
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In the above expressions, with a,be R, a controls the output range and b the

slope of the activation function20. In the hidden layer we always use the
standard hyperbolic tangent sigmoid activation function (with a and b equal

unity) for fg(.), while in the output layer we use a linear activation function
for fur(.). The choice of the activation function at the enhanced layer is

dictated by the type of the parametric model we use and the kind of enhanced

variable(s) we choose; thus it is possible for fg (), fa,(),..-; fa, () to be

different depending on the case considered. This set of activation functions
are necessary during the implementation of the method in order to ensure
that the values of each of the enhanced variables are within an acceptable
range for use with the parametric model?!l. Table 3.1 (Panel A) describes the
different activation functions we use at the enhanced level for all cases
considered. We use activation functions that truncate the enhanced variable
value range. For instance in the case of BS and CS we do not allow volatility
to be larger than 70%, and for the case of CS, skewness is confined in the

[-15,15] range and kurtosis is set to smaller than 30. The choice of the

truncation point is not crucial for the implementation of the models as long as
we allow each enhanced variable to vary within a plausible value range. This
choice can be guided by empirical investigation. For example we rarely
observe volatility to be above 70% or skewness to be below -15 or above 15
and kurtosis to be above 30 (e.g. Christoffersen and Jacobs, 2004, Ait-Sahalia
and Lo, 1998, Corrado and Su, 1997, Bates, 1991).

20 As in Duda et al. (2001, pg. 308), the overall range and slope are not important
because it is their relationship to parameters such as the learning rate and
magnitudes of the inputs and targets that affect learning. According to Haykin (1999)
these transfer functions work well with feedforward artificial neural networks.

21 For instance, if BS is the chosen parametric model and volatility is the enhanced
variable, then our activation function should be a logistic that allows only positive
values whilst if the enhanced variable is the skewness of CS then the activation
function should be a hyperbolic tangent one that allows both positive and negative

values.
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In the proposed semi-parametric methodology the call option value is provided by a parametric model. Let X; = Xy U X, denote the set of
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The estimation of any type of network model is formulated as a highly
non-linear optimization process in which the network’s weights are modified

according to a loss function. The loss function (discrepancy between the

estimated response y, and the actual response t,) is defined as:

ep(w):yp(w)_tp

(3.15)

where w is an v -dimensional column vector with the weights and biases

given by:

0 )

w:[w(l) w(l) w w
HO» ™ HN’"10

102 WiN -

(2) (2)

sy W Wiy

.,LUMH

@ T

Model Enhanced Activation Parameter Values
Variable Function (a, b)
BS Volatility Logistic (0.70,1)
Cs Volatility Logistic (0.70,1)
CcSs Skewness Tangent (15,0.15)
CS Kurtosis Logistic (30,0.15)
Panel A: Activation functions used with enhanced variables
Input Variables to GPF Enhanced
Model .
(Xs) Variables (X )
E?BSG[,U [SE?_CLHT]/;X , T, 5aB§ T 14
_a - Volatility
eBSyry  (Se V' )/X, T, o,
ecsl, (e )x, T, 5 o
) iy Volatility
eCSyra  (Se” V' )/X, T, o5,
0, —dyT\ < , . -
eCSa  (Se™ ™V )/X, T, 0% , Uz Volatility and
eCShs  (5eV)/X, T, 05,, iy skewness
eCS2, [SQ_C‘T’HT)/X, T, og» M3, M Volatility,
5 ar cs skewness and
eCSyrz  (Se ¥ )/X, T, oxta, M3, Ma kurtosis

Panel B: Description of all enhanced parametric models (ePOPMs)

Table 3.1. Structure characteristics for the Enhanced Parametric Option

Pricing Models (ePOPMs)
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The traditional backpropagation algorithm which is based on the
gradient descent vector is the most popular method for estimating feedforward
artificial neural networks. It is shown in Charalambous (1992) that this
algorithm is often unable to converge rapidly to the optimal solution. So, in
this essay we rely on the Levenberg-Marquardt algorithm which is much more
efficient estimation method in terms of time and convergence rate. The
weights and the biases of the network are updated in such a way so as to

minimize the following sum of squares error performance function22:

P P
Fw)= Y ep(w)= Yy, ~tp)* (3.16)
p=1 p=1

Then, at each iteration t of the algorithm, the weights vector w is updated as

follows:
_ T -1 7
W, = w, + T W, )Tw,)+ L1 I (w, e(w,) (3.17)

where, J(w,) is the PXv Jacobian matrix of the P-dimensional output error

column vector at " iteration, and is given by:

Ve{(w)
Jw)=|: (3.18)
Velj;(w)

In the above, I'is v xv identity matrix, and [, is a learning parameter that is

automatically adjusted at each iteration in order to secure convergence. Large

values of [, lead to directions that approximate the steepest descent, while

small values lead to directions that approximate the Gauss-Newton algorithm.

22 The use of Sum of Squared Errors (SSE) is common in empirical option pricing

studies since Whaley (1982) and is supported by Christoffersen and Jacobs (2004).
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Further technical details about the implementation of the Levenberg-
Marquardt algorithm can be found in Hagan and Menhaj (1994) and Hagan et
al. (1996). Based on Eq. (3.17), the weights and biases update takes place in a
batch mode and only when all input vectors have been presented to the
network.

The quantity Ve ,(w) is the gradient vector of e,(w) with respect to the
optimized parameter vector w. The partial derivative of the error function in

Eq. (3.15) with respect to the weight w(2) at the hidden layer is:

Ji
%p__ 51,0 (3.19)
awﬁ) S
and,
5@ =@6%‘?faj (d)s; Fir ') (3.20)

where f}, (gz/ﬁ.z)) and fc'lj (d;) are the differentials at points 1//3-2) and d;

respectively, and s j the standard deviation of the enhanced variable given

that a z-score scaling has also been applied at the enhanced layer.

The quantity agﬂ is the partial derivative of the parametric model
"
J

with respect to input v; creating a semi-parametric method dedicated to

pricing European call options. This quantity is very important during the
estimation because it incorporates theoretical knowledge from a parametric

model. The partial derivative of the error function in Eq. (3.15) with respect to

1y

the weight w; ' at the input layer is:
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oe

5@:5}%“ (3.21)
where,

sV =eM ) (3.22)

e = 5 w'Ds?) (3.23)

and xgp is simply the z-score scaled value of x,, .

The optimal number of hidden neurons is chosen via a cross-validation
procedure. All ePOPM structures with 1 to 10 hidden neurons are estimated,
and the one that performs the best in the validation period is selected. The
model is initialized, estimated and cross-validated with twenty different
initializations (trying thirty initializations did not improve results). We employ
the network initialization technique proposed by Nguyen and Windrow (see
Hagan et al., 1996) that generates initial weights and bias values for a
nonlinear activation function so that the active regions of the layer’s neurons
are distributed roughly evenly over the input space. After defining the optimal
network structure, its weights are frozen and its pricing capability is tested

(out of sample) in a third separate testing dataset.

3.4. Data and methodology

Our dataset covers the period January 2002 to August 2004 for a total
of 671 trading days. The S&P 500 index call options are used because this
option market is extremely liquid. They are the most popular index options
traded in the CBOE and the closest to the theoretical setting of the parametric

models (see Garcia and Gencay, 2000). For each trading day we have the last
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bid and ask call price for all available contracts, along with the strike price?23,
X, date of expiration?4, volume and open interest. We have collected a daily

dividend yield?’, d,, provided online by Datastream. In our analysis we use

the midpoint of the call option bid-ask spread since as noted by Dumas et al.
(1998), using bid-ask midpoints rather that trade prices reduces noise in the

cross sectional estimation of implied parameters. Each day the midpoint of

® is matched

the call option bid ask spread at the close of the market, ¢™
with the closing value of S&P 500 index?2¢.

We used a chronological data partitioning via a rolling-forward
procedure in order to have a better simulation of the actual options trading
conditions. The data is divided into eighteen different overlapping
training/estimation (trn) and validation (vld) sets, each followed by separate
and non-overlapping testing (tst) set. Each trn, vid and tst period has 12, 2 and

1 month spanning period respectively27.28. For instance, the first trn set covers

23 For the purposes of this study we use the following moneyness categories: deep out
the money (DOTM) when S/X<0.90, out the money (OTM) when 0.90<S/X<0.95, just
out the money (JOTM) when 0.95<S/X<0.99, at the money (ATM) when
0.99<S/X<1.01, just in the money (JITM) when 1.01<S/X<1.05, in the money (ITM)
when 1.05<S/X<1.10, deep in the money (DITM) when S/X>1.10.

24 In terms of time length, an option contract is classified as short term maturity (when
maturity < 60 calendar days), as medium term maturity (when maturity is between 61
and 180 calendar days) and as long term maturity (when maturity > 180 calendar
days).

25 Jackwerth (2000) also assumes that the present value of expected future dividends
for the S&P 500 index can be approximated by a dividend yield. In addition, Chernov
and Ghysels (2000) use a constant dividend yield for the whole period they examine.

26 Data synchronicity is a minimal issue for this highly active market (see also Garcia
and Gencay, 2000, and Ait-Sahalia and Lo, 1998). Among others, Christoffersen and
Jacobs (2004) and Chernov and Ghysels (2000) use daily closing prices of European
call options written on the S&P 500 index.

27 In contrast to the implied trees methodology and the daily calibrated DVF models
where data from a single day are used, using a training set of twelve months should
alleviate overfitting concerns.

28 Keeping the model’s weights the same for one month period is consistent with the

reasoning of Bates (2000, pg. 184). Daily recalibration of the weights would imply that
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the period January to December 2002, the first vid set covers the period
January to February 2003, the first tst set covers the period March 2003, etc.
The eighteen testing (out of sample) monthly periods are non-overlapping. For
the needs of the analysis, we created (after the use of filtering rules explained
below) an aggregate testing period (AggTs) with 21644 data points by simply
pooling together the pricing estimates of all eighteen tst periods. For AggTs we
compute and tabulate: the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), the Median Absolute Error (MdAE) and the 5th
Percentile of Absolute Error (PsAE) and 95th Percentile of Absolute Error
(PosAE). The main analysis is based on the RMSE measure. As pointed by
Christoffersen and Jacobs (2004) estimation and evaluation of a model should
be based on the same error measure. In addition, they conclude that RMSE
estimates perform the best among different loss functions. Finally, Bates
(2000, p. 202) points out that the RMSE is a relatively intuitive error measure

and is useful for comparison purposes.

3.4.1. Observed structural parameters

The moneyness ratio, S/X, is a common input to non-parametric models since
it is highly related to the pricing bias associated with the POPMs (see
Hutchinson et al., 1994, and Garcia and Gencay, 2000). The dividend

adjusted moneyness ratio (Se_dyT)/X is preferred here since dividends are

relevant. Finally, time to maturity (T) is computed assuming 252 days per
year. Previous studies have used 90-day T-bill rates as an approximation of
the interest rate. In this study we use nonlinear cubic spline interpolation for
matching each option contract with a continuous interest rate, r, that
corresponds to the option’s maturity. For this purpose, 1, 3, 6, and 12
months constant maturity T-bills rates (collected daily from the U.S. Federal

Reserve Bank Statistical Releases) were considered.

the enhanced models are never to be taken seriously as a genuine data generating

mechanism.

174



3.4.2. Data and filtering rules

To create our dataset we rely on the following filtering rules (see also
Bakshi et al., 1997): We first eliminate all observations that have zero trading
volume since they do not represent actual trades. Second, we eliminate
observations that violate either the lower or the upper arbitrage options
bounds. Third, we eliminate all options with less than six or more than 260
days to expiration to avoid extreme option prices where an illiquidity
problem?2® may be present. Similarly, option price quotes of less than 1.0
index points are not included. Finally, we demand at least four datapoints per
maturity to secure that during the implied parameters extraction process,
every maturity period is satisfactorily represented. The final dataset has a
total of 37202 observations (from which 21644 are used out of sample) and
compares favourably with previous studies that test nonparametric methods.
For instance Hutchinson et al. (1994) have an average of 6246 data points per
sub-period; Ait-Sahalia and Lo (1988) have a total of 14431 data points;
Schittenkopf and Dorffner (2001) include a total of 33633 data points. Sample
characteristics for the dataset can be found in Table 3.2 where the average
implied parameters are also reported (see explanations in section 5). The

volatility anomaly is obvious both for the BS and the CS model.

3.4.3. Implied parameters

The methodology employed here for the extraction of daily overall
average implied parameters is similar to that in previous studies (Bates, 1991,
Bakshi et al., 1997, Christoffersen et al., 2006) that adopt the Whaley’s (1982)

simultaneous equation procedure to minimize a price deviation function with

mrk

respect to the unobserved parameters3. Market option prices (c¢"'") are

29 Dumas et al. (1998) drop observations with more than 100 days, and Bates (2000)
and Christoffersen et al. (2006) choose to drop observations with more than 180 days.
We choose to keep them since these options are not necessarily illiquid and comprise
a significant part of the total number of observations.

30 As noted by Das and Sundaram (1999), Chernov and Ghysels (2000) and

Christoffersen et al. (2006) for the purpose of option valuation, parameters estimated
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assumed to be the corresponding POPM prices (¢*) plus a random additive

disturbance term (gk ), k=BS, CS, or SVJ:

™k =k oy gk (3.24)
DOTM OTM JOTM ATM JITM ITM DITM
0.00- 0.95- 0.99- 1.01- 1.05-
8/X <0.90 0.95 0.99 1.01 1.05 1.10 pip
Short Term Options <60 Days
Call 2,749 4.742 9.589 20.483 38.920 72.966 119.305
BS Implied Volatility 0.258 0.212 0.179 0.184 0.206 0.254 0.339
CS Implied Volatility 0.429 0.290 0.214 0.200 0.202 0.219 0.266
# total sample obs 633 2525 5338 3080 4070 2172 1088
# out of sample obs 87 926 3308 2111 2745 1400 573
Medium Term Options 60-180 Days
Call 5.913 12.585 26.234 40,451 57.604 87.608 132.080
BS Implied Volatility 0.206 0.183 0.190 0.198 0.214 0.229 0.259
CS Implied Volatility 0.304 0.233 0.223 0.219 0.229 0.226 0.233
# total sample obs 2100 2802 2618 1474 1628 1014 701
# out of sample obs 684 1580 1569 927 1021 710 524
Long Term Options 2= 180 Days
Cail 14,034 21.002 50.150 64.452 80.207 105.852 147.541
BS Implied Volatility 0.183 0.185 0.193 0.196 0.209 0.217 0.234
CS Implied Volatility 0.252 0.231 0.230 0.225 0.236 0.233 0.246
# total sample obs 1606 1273 1114 633 630 375 328
# out of sample obs 76l 743 667 429 391 259 229

Table 3.2. Sample characteristics

Figures refer to average market values of call options (first line), Black and Scholes
implied volatility (second line), Corrado and Su implied volatility (third line), the total
number of observations for the (whole) period 2 January 2002 to 31 August 2004
(fourth line) and the total observations used in the out of sample period (aggregate —
AggTs) for the period 03 March 2003 to 31 August 2004 (fifth line).

To find optimal implied parameter values per model k we solve an

optimization problem that has the following form:

P
SSE(t):m}iant:(g}c)z (3.25)
& j=1

from option prices are preferable to parameters estimated from the underlying

returns. See also Pan (2002) for such kind of applications.
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where P, refers to the number of different call option transaction datapoints

available in day t, and é‘k to the unknown parameters associated with a

specific POPM (k = BS, CS and SVJ). The SSE is minimized via Nonlinear
Least Squares with a subspace trust region method based on the Newton
approach offered by the MATLAB® Optimization Toolbox. To minimize the
possibility to obtain implied parameters that correspond to a local minimum
of the error surface with each model we use several starting values for the
unknown parameters based on daily average values reported by previous
literature (see section S for details).

From the above we obtain the following sets of daily overall average (av)

implied (risk-neutral) parameters:

Daily overall average implied BS volatility estimates & 85 = fl;g }

Daily overall average implied CS estimates & N {O'gvs > 13, y4}.
Gau ) ﬂ'} E, 9, a,

Daily overall average implied SVJ estimates3! &

ﬁ: Oy > p}'

SVJ _ { SVJ

In order to have a pure unconstrained optimization problem and avoid
implausible implied values we enforce certain transformations to each model

parameters via smooth, strictly increasing and differentiable functions.
Specifically: i) via log transformations we constrain o52>, 655 and o5’ to be
positive, u4 to be smaller than 30, 1 to be smaller than 10, ¢, ¢ and o, to
be smaller than 2, and g to be smaller than 20, and i) via the hyperbolic
tangent sigmoid functions we constrain u; to lie between -15 and +15, k¥ to
lie between -0.99 and 0.99 and p to be between -1 and +1. For similar

treatments of the optimization phase see Bates (1991 and 2000) and Jondeau

and Rockinger (2001).

31 Similarly with the SVJ we also calibrate the SV model. In addition, like Bakshi et al.
(1997) and Christoffersen and Jacobs (2004) we also calibrate the instantaneous

conditional variance V, daily (where its square root for consistency is also denoted as

o)
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We also estimate the three DVF models (DVF#1, DVF#2, and DVF#3)
defined earlier. For BS this is straightforward; for CS we first estimate the
overall average implied parameters and then we fix skewness and kurtosis to

compute the contract specific implied volatility. We differentiate among the

DVF models by using appropriate subscripts GJI\C,LI, a]’f,LQ and o{fm for the

Nonlinear Least Squares estimation and a,’-fl , oJ,-fQ and 0153 for OLS estimation

(k € {BS, CS}). In addition, the DVF parameter estimates obtained via the

Nonlinear Least Squares based on initial values obtained from the OLS are32:

O-II%LLD O-JI\CILL2 and O-JI\CILL?)-

For pricing and hedging reasons at time instant ¢ the implied
structural parameters derived33 at day t -1 are used together with all other
needed information. Daily recalibration of the implied parameters (DVF and
overall average) for POPMs is also adopted by Bakshi et al. (1997) and
Christoffersen and Jacobs (2004) (see also discussions in Hull and Suo, 2002,

and Berkowitz, 2004).

3.4.4. The set of alternative models

With the BS I models we use as input S, X, T, d,, r, and any of the

y}

following ten volatility estimates: 0}35 where j € {av, L1, L2, L3, NLI1, NL2,

NL3, NLL1, NLL2, NLL3}. Similarly we denote the ten parametric CS
alternatives. Finally note that for the SV and SVJ models we use the overall
average parameter estimates.

The notation for the enhanced models depends on the parametric

model considered. We use eBS i with j € {av, NL2}, to denote the two

32 It is quite tedious to find starting values for the nonlinear estimation of the DVF.
Possible candidates for this are, among others, the estimates of the DVF coefficients
obtained from OLS.

33 Following the results in Christoffersen and Jacobs (2004) we use estimation with ¢ -
1 day information; these authors have also used larger estimation period for their
models in order to increase precision in the parameters estimation but they observed

inferior out of sample results.
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enhanced models where the BS volatilities o2 and o%7, are being enhanced.

Likewise we use eCS!

i, with j € {av, NL2}, to denote the two ePOPMs where

the CS volatilities o-gvs and o;, are being enhanced. We also use eCS?, with

j € {av, NL2}, to denote the two ePOPMs where the CS parameters (055 , H3)

and (Gﬁfg , M3) are being enhanced. Finally, we use eCSj’ , with j € {av, NL2},

to denote the two enhanced models where the CS parameters (agvs s U3, Hg)

and (O']%EQ , U3, H4) are being enhanced. In addition to these parameters, the

dividend adjusted moneyness ratio (SeidyT)/ X and the time to maturity (7T)

are also used as inputs to estimate the GPF. When we make reference to an
enhanced model and we drop the subscript we refer to any model using daily
either the av or NL2 volatility inputs. All enhanced models examined are

exhibited in Panel B of Table 3.1.

3.5. Model calibration and analysis of pricing results

3.5.1. Model calibration

To obtain the best daily overall average implied parameters for each
model we use five different starting values in each case. For BS we choose five
starting volatility values in the 6%-70% range. For CS we choose five starting
sets of parameter values from the Corrado and Su (1996, 1997) studies. For
SVJ we use five starting sets of parameter values (using more initializations
for daily estimation of the SVJ model would be impractical). Three are based
on the results reported in Bakshi et al. (1997, pg. 2018, Table III):
initialization #1 is their average SVJ implied parameters taken by using all
available options, initialization #2 is their average SV implied parameters
taken by using all available options and initialization #3 is their average SVJ
implied parameters taken by using all available at the money options.
Moreover, two additional initializations are used: initializations #4 and #5 are

created by adding noise from a uniform distribution to each of the average
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implied parameters values of the initializations #1 and #3. A similar approach
is adopted for the case of SV.

Table 3.3 presents results from the daily optimization process for SVJ.
We present the in and the out of sample pricing performance for each
initialization and the number of cases where it produces the smallest daily
RMSE. There is a variation in their out of sample pricing performance despite
that four out of five initializations have similar in sample fitting. Initialization
#2 is less successful indicating that calibrating properly the jump component
is crucial. It is notable that initialization #3 which produces the least in
sample RMSE in 178 out of 671 days is not the best model. The results
indicate the existence of many local minima where different implied
parameters reach the same in sample RMSE but result to significantly
different out of sample RMSE. As noted by Bates in many of his works the
complex parametric option pricing models appear to suffer from a nonlinear
identification problem in that quite different parameter values can yield
virtually identical in sample option prices. Finally, although initialization #1
seems to perform well in and out of sample, still it is not safe to conjecture
that this will always be the case. Our calibrating results for SVJ indicate that
it is better to try various initializations and choose the one with the smallest
daily (in sample) RMSE. Calibrating either BS or CS is much easier; in each
model, the different starting values result in almost the same final parameter

values (results not shown due to brevity).

Init. #1 Init. #2 Init. #3 Init. #4 Init. #5

In the sample RMSE 0.454 0.673 0.455 0.464 0.461
Out the sample RMSE 1.523 2.792 1.915 1.887 1.545
# times optimal 126 38 178 161 168

Table 3.3. Summary statistics for SVJ optimization

Daily in sample Root Mean Square Error (RMSE) pricing performance with the
corresponding out of sample performance regarding the stochastic volatility and jump
(SVJ) options pricing model. The first three initializations (Init. #1, #2 and #3) are
accordingly three sets of overall average implied parameters reported in Bakshi et al.
(1997) while Init. #4 (Init. #5) is taken by Init. #1 (Init. #3) after adding noise from a
uniform distribution to each of the parameters. The last line reports the number of
times/days that each of the five initializations has been the optimal one (has returned
the lowest RMSE).
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Black & Scholes Corrado & Su
Type of Times In sample Times In sample

Initialization Optimal RMSE Optimal RMSE
Le 18 1.331 2 1.021
0.2Lc 20 1.614 58 0.863
0.5Lc 207 1.149 409 0.876
0.8Lc 191 1.079 130 0.901
0.9Lc 75 1.189 & 0.955

Rest 160 - 63 -

Table 3.4. Summary statistics for DVF optimization

Daily in sample Root Mean Square Error (RMSE) pricing performance is reported for
the optimization process regarding the Deterministic Volatility Functions (DVF) used
with Black and Scholes and the Corrado and Su models for the period 2 January
2002 to 31 August 2004. Only 5 out of 21 initializations used are reported here. The
first and third columns of numerical results report the number of days that each of
the 21 initializations used has been the optimal one (has resulted in the lowest
RMSE). The results reported concern the DVF#2 specification according to which the
volatility is linear in strike price, the squared of strike price, time to maturity and the
cross product of strike price with time to maturity. Lcis the coefficient vector taken by
OLS after regressing implied volatility on the variables included in DVF#2.

To obtain the daily optimal values for the DVF based BS and CS
coefficients (OLS ones, Lc, and Nonlinear Least Squares, NLc) we similarly rely
on a thorough optimization search regarding starting values. Although not
reported in previous literature, finding “proper” starting values and optimizing
the DVF models is not a trivial task. For each DVF model we try twenty-one
different initial starting values. The first initialization is by using the Lc
values. Another eight initializations are created by multiplying each of the
elements of Lc by a value in the range 0.1 to 2 (specifically 0.1, 0.2, 0.5, 0.8,
0.9, 1.2, 1.5, 2). Additional three initializations are created by random
numbers coming out of the normal distribution N(0,0.1) and three more from
N(0,0.01). Finally, six initializations are created by wusing Lc + Lc x
(random_sign) where random_sign is a vector of randomly chosen numbers
(0.2, £0.5 or £1 with equal probability between plus or minus sign).

In Table 3.4 we present partial results regarding the in sample
performance of the most successful initializations for the DVF#2 based BS
and CS (the optimization results for DVF#1 and DVF#3 are similar). The
second and fourth columns present the number of days where a certain
initialization produces the smallest RMSE for BS and CS respectively, while
the third and fifth columns exhibit the in sample RMSE obtained by using

every day the same starting values. As can be seen the most successful
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initializations are the ones using the Lc multiplied by 0.2, 0.5 and 0.8. This
kind of initialization is supported by the results of Christoffersen and Jacobs
(2004, figures in p. 310) who find that in their sample, non-linear DVF

coefficients (INLc) are smaller than the linear ones (Lc) by a constant.

o g fla A K & o £ Ty P
0.198
[0.182]
cs 0.232 -1.089 4.179
(0.003)  (0.013) (0.048)
0.212 0.186 3.274 0.809 -0.639
sV [0.003) (0.003) (0.067) (0.011) (0.003)
[0.187] [0.04] [1.15] [0.39] [-0.64]
0.183 0.679 -0.149 0.192 0.057 2.762 0.400 -0.614
svJ (0.003) (0.018) (0.008) (0.013) (0.002) (0.083) (0.013) (0.013)
[0.194] [0.59] [0.05] [0.07] [0.04] [2.03] [0.38] [-0.57]

Table 3.5. Daily average implied parameters for the parametric models

Daily average implied parameter values obtained by jointly minimizing the sum of
squared pricing deviations between a parametric model’s estimates and the actual
market value of the call options for the period 2 January 2002 to 31 August 2004.
Standard error of each parameter is reported in parenthesis. Bold figures in square
brackets are the corresponding values reported by Bakshi et al. (1997). The structural

parameter o is the Brownian volatility, u3; and w4 the skewness and kurtosis
coefficients for CS. [ is the rate of mean reversion, & / f is long run mean, o, is
the volatility of volatility and p is the correlation coefficient between the volatility

shocks and the underlying asset movements for the stochastic volatility process. A is
the frequency of jumps per year, k the mean jump size and @ the volatility of the
logarithm of 1+ x for the jump process.

Despite the fact that some initializations often produce the smallest
daily RMSE, yet their in sample fitting performance is by far worst compared
to the case where each day we select the initialization with the lowest RMSE.
Using 0.5Lc to obtain the NLc for BS and CS proves to produce the smallest
RMSE in 207 and 409 days respectively. DVF initializations created from
random values were almost never the optimal choice. Finally, Lc very rarely
provided the optimal choice. The conclusion again is that a thorough

initialization for the DVF models is important34.

34 In sample fitting of Dumas et al. (1998) models for call options is 0.651, 0.300,
0.222 and 0.218 for the BS using the overall average volatility and nonlinear DVF#1,
DVF#2 and DVF#3 respectively. The ratios of their overall average RMSE divided by
their RMSE obtained for the three DVF models are 2.17, 2.93 and 2.99. The
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3.5.2. Implied parameter estimates

In Table 3.5 we report the mean daily estimates for the overall average
parameter values of the POPMs along with their standard errors in
parentheses. In addition the bold figures in the square brackets report the
associated values found in the study of Bakshi et al. (1997). The results for
CS demonstrate that the implied index return distributions are negatively
skewed with higher kurtosis than permitted by the BS assumptions. Thus,
the BS model with av volatility is expected to perform poorly compared to
other models that allow for more flexible distributions (see also Bakshi et al.,
1997). Regarding the volatility process parameters, similarly to Bakshi et al.
(1997) we observe implied volatilities of BS, SV and SVJ extremely close to

each other, and we find that the implied long run mean volatility a /g for

SV equals 0.238 and is higher to 0.144 of SVJ. In addition, we similarly find

the volatility of volatility o, and the magnitude of the correlation coefficient p

in SV to be higher relative to SVJ indicating that SVJ captures part of the
excess kurtosis and negative skewness with the jump component. In contrast

though, the variation coefficient o, for SV is almost double compared to the

one obtained for SVJ (a similar finding is also obtained in Bates, 2000, p.
203). According to Bates (2000, p. 226, see also Bates, 1996 and 2003), the
negative correlation coefficient in SV is not enough to generate sufficiently
negative implicit skewness, so a very high volatility of volatility (implausibly
high compared to the time series properties of asset prices) might be
necessary to match the observed option values3S (similar conclusions are
obtained by Bakshi et al., 1997, pg. 2043). Regarding the jump components of
SVJ, we find that the average yearly frequency of jumps is 0.678, the average

jump size is -14.9% and the jump size volatility is 19.2%. The jump size

respective ratios for our sample are 1.89, 3.91 and 4.88 indicating a successful
optimization search for the DVF models coefficients (at least for DVF#2 and DVF#3;
the ratio for our DVF#1 appears inferior since in our dataset we have also included
long maturities).

35 Bates (2000) favours SVJ by arguing that in the presence of a jump component, the
model provides option prices more compatible with market prices and generates more

plausible implied stochastic volatility parameter values.
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parameter values are higher compared to those of Bakshi3¢ et al. (1997) and

closer to those of Bates (2000).

Intercept X x2 T XT
Black and Scholes
Lo _2.105 —0.003_ 1.307E-06 -0.372 3.668E-04
(60.921) (-53.965) (49.310) (-18.200) (19.411)
NLe 1.4—[34 -0.002 T451E-07 -0.228 2.304E-04
(79.634) (-61.423) (49.912) (-19.056) (20.649)
Corrado and Su
Le 1.081 -0.002 8.312E-07 O_.4OS -3.917E-04
25.984 -21.527 24414 25.037 -22.795
NLe 0.571 -0.001 3.3@6]—:—07 0:24_9 -2.331E-04
24.906 -14.728 16.332 26.957 -23.436

Table 3.6. Summary statistics of coefficient estimates for DVF#2 model
Daily average coefficients obtained from fitting DVF#2 for the Black and Scholes and
for the Corrado and Su model for the period January 2, 2002 to August 31, 2004. The
t-statistics of each average coefficient value (computed from the daily values of the
estimated coefficients) are reported below in parenthesis. Lc (NL¢) is the ordinary least
squares (nonlinear least squares) coefficient vector taken by regressing implied
volatility on the variables included in DVF#2 specifications.

Table 3.6 tabulates the in sample coefficient estimates for the DVF#2
model of BS and CS (means and below in parenthesis the t-statistic). The first
observation is that the sign of the average coefficient values for BS coincides
with the ones obtained by Dumas et al. (1998) and Christoffersen and Jacobs

(2004): negative for strike price (X) and time to maturity (T) and positive for

X? and XT. Interestingly, the sign of the coefficients of X2 and XT for CS are
opposite to those for BS. This is evident also from Table 3.1 where we see that
CS implied volatility is larger for out of the money options and smaller for in
the money (the opposite pattern compared to BS). Second, similarly with
Christoffersen and Jacobs (2004) we observe for all DVF#2 parameters (both

for BS and CS) that the average coefficient values of NLc are significantly

36 S&P 500 in the case of Bakshi et al. (1997) exhibited a major uptrend move in the
whole period they examine while in our case, the market experienced a major down-

trend move in the first 15 months and a steady upward movement afterwards.
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smaller compared to Lc and more importantly less volatile3? (as implied by
larger t-statistic values for NLc). According to Christoffersen and Jacobs
(2004) this manifests their better out of sample performance (as we also show
below). Finally, by comparing BS with CS we can see that for both Lc and NLc
models, BS coefficient values and t-values are larger. This indicates that the
volatility smile is generally “flatter” for CS after controlling for skewness and

kurtosis.

3.5.3. Pricing results

Table 3.7A provides the in sample RMSE and Table 3.7B demonstrates
out of sample the pricing performance of all models considered in terms of
RMSE, MAE, RMeSE, PsAE and P9sAE for the aggregate period (AggTs). Before
we compare the in and out of sample pricing performance of the alternative
models we should note that the comparison can be biased against our semi-
parametric approach since unlike the daily parameter (re-)calibration for the

POPMs, GPFs are estimated only once a month.

BS,, BSp1 BSyp BSpyrin BSpa BSyro BSwrrp BSpz BSypz BSprrs

RMSE 3.363 2.964 1.783 2.139 1.492 0.861 1.331 1.305 0.690 1.219

CSay CSp1 CSnpy CSyrny CSpo CSwiz CSpriz CSpz CSnrz CSnirs

RMSE 1.572 2.098 1.467 1.585 1.119 0.782 1.025 0.954 0.636 0.897

SsVJ SV

RMSE 0.437 0.6596

Table 3.7A. In sample pricing performance of the parametric models

Root Mean Square Error (RMSE) values regarding the in the sample pricing
performance for all parametric (overall average and DVF) models obtained by
minimizing the sum of squared pricing deviations between a model’s estimates and
the actual market value of the call options for the period January 2, 2002 to August
31, 2004.

37 In general we have verified that the DVF#2 BS coefficient values plotted across the
671 days in our sample closely resemble (for the common coefficients) the plots

presented in Christoffersen and Jacobs (2004, p. 310).
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We first concentrate our attention to Table 3.7A (in sample) for the
parametric BS, CS, SV and SVJ models. Before the alternative DVF versions
are considered, the more complex parametric models with daily overall
average values (av) exhibit superior performance, and thus SVJ is the best,
followed by SV. The DVF approach improves the pricing performance of the
BS and CS models considerably, with the nonlinear DVF#3 being superior; yet

the SVJ is the overall best model in sample.

BS, BSLI B’SNLI BSNLLL BSLE BSNLQ BSNLLQ BSLS BSNLS BSNLLS

RMSE 3.285 3.128 1.984 2508 2921 2.008 2,800 3.260 2.382 3.174
MAE 2,579 1908 1.509 l1.e64 1.530 1.186 1.437 1.468 1.139 1.412
MeAE 2.172 1.164 1.213 1.242 0.962 0.833 0923 0.834 0.739 0.826
P:AE 0.242 0.091 0.115 0.124 0.082 0.078 0.085 0.072 0.067 0.073
PssAE  6.396 6440 3.796 4.375 4.364 3.100 3.944 4.161 2.983 3.931

av

CSey CSp CSmp CSmin CSpp CSwro CSypra ©Spz CSnz CSwurs

RMSE 2.245 2.794 2.110 2.262 2248 1.766 2,136 2.667 2.189 2.627
MAE 1.709 1.890 1.609 1.679 1.451 1.257 1.390 1.438 1.252 1.411
MeAE 1.358 1.233 1.276 1.299 1.002 0.929 0972 0.945 0.881 0.929
P:AE 0.118 0.106 0.115 0.112 0.085 0.085 0.088 0.085 0.085 0.084
PssAE  4.370 6.107 4.144 4470 3997 3.422 3.835 3.879 3.328 3.794

o

svJ  SV# SV
RMSE 1.498 4,541 2.488
MAE 1.071 1.551 1.318
MeAE 0.796 0.900 0.904
PsAE 0.065 0.077 0.078
PssAE 2,996 3.413 3.362

Table 3.7B. Out of sample pricing performance of the parametric models
Error performance results (out of sample pricing) for all parametric models for the
aggregate period March 3, 2003 to August 31, 2004. SV* results are the original ones
before replacing extreme mispricing observations. SV results are obtained after
replacing, with BSy;,, SV* values that differ by more than 50% compared to BSy; .
In total, 747 observations are replaced. RMSE is the Root Mean Square Error, MAE is
the Mean Absolute Error, MeAE is the Median Absolute Error and PsAE (PgsAE) is the
Sth (95th) Percentile of Absolute Errors.

We then concentrate on Table 3.7B (out of sample performance of the

parametric models)38. We see that the DVF based CS models provide better

38 OQur RMSE results are larger compared for instance to the ones of Bakshi et al.

(1997) and Dumas et al., (1998) since for the period we examine the average index
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performance than the corresponding DVF based BS ones. The best model is

CSpnro which improves RMSE performance over BSy;, by 14%. The nonlinear

DVF#2 model provides the best out of sample performance for both BS (this is
consistent with the results in Dumas et al., 1998) and CS (although for the
BS case the nonlinear DVF#1 was equally good in terms of the RMSE but
inferior by far in terms of the other measures). The inferior performance of the
nonlinear DVF#3 model is not surprising since as Bates (2000) notes, over-
parameterized models entail the risk of overfitting the options data and start
explaining white noise (see also Dumas et al., 1998 who argue in favor of the
greater parsimony in the volatility function provided by DVF#2). Note that an
overfitting problem does not appear to be present in the enhanced models
where a large dataset is used for estimation. Similarly with Christoffersen and

Jacobs (2004) we find that SV3° underperforms BSy;,. Still, among

parametric models, the SVJ model is the top performer in all metrics.
We then look at Table 3.8 with the out of sample performance for the ePOPMs.
We see that all enhanced models have excellent performance. The best BS

version is eBSy;, which is the enhancement of BS with nonlinear DVF#2

input and 16% RMSE improvement. The best CS version is eCS3z, that
enhances two parameters of CS (volatility and skewness) and improves RMSE
by 19%. eCS]%LQ is also the overall best ePOPM in terms of the RMSE metric.

The eCS?2, model is the second best ePOPM. Models eCS?> and eCSf\’,LQ are

also good performers. We must make the comment that the enhanced models

option prices are most of the time double or triple than theirs (compare our Table 2
with Table I of Bakshi et al., 1997).

39 We noticed that the stochastic volatility model produced large out of sample
mispricings for many cases. The problematic observations include options with
maturities longer than 180 days. Table 7B presents two sets of pricing results for the

stochastic volatility model. SV* results are the original ones before replacing extreme

mispricing observations. SV results are obtained after replacing, with BSp;,, SV*

values that differ by more than 50% compared to BSy;,. In total, 747 observations

are replaced for the out of sample period. Christoffersen and Jacobs (2004, p. 307)
mention that they have removed from their out of sample results certain problematic

SV pricing observations.
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using as input the overall average parameters show performance slightly only
inferior but practically comparable to the enhanced models with DVF#2
volatility input; and they outperform by far the equivalent parametric models
with overall average parameters. A final comment is that the best enhanced
models*© are also competitive to the SVJ model which is too expensive to

properly calibrate daily.

eBS,, eBSyo eCSl, eCSk, eCS2, eCS%, eCSJ, eCSi,

RMSE 1.754 1.732 1.646 1.601 1.532 1.489 1.568 1.535
MAE 1.327 1.157 1.243 1.176 1.167 1.087 1.176 1.131
MeAE 1.046 0.834 0.957 0.886 0.925 0.813 0.908 0.856
PsAE 0.097 0.069 0.084 0.078 0.079 0.075 0.079 0.072
PssAE 3.473 3.190 3.345 3.220 3.081 2,955 3.169 3.075

Table 3.8. Out of sample pricing performance of the non-parametrically

enhanced models (ePOPMs)

Error performance results (out of sample pricing) for selected enhanced parametric
models for the aggregate period March 3, 2003 to August 31, 2004. RMSE is the Root
Mean Square Error, MAE is the Mean Absolute Error, MeAE is the Median Absolute
Error and PsAE (PosAE) is the 5t (95th) Percentile of Absolute Errors.

We see using both statistics that the ePOPMs outperform the equivalent
POPMs (both with overall average and DVF parameter estimates), and the
difference is statistically significant at the 1% level. The best ePOPM model is

eCSJ%LZ and is competitive to SVJ (any difference in performance is not

statistically significant). Our second best ePOPM is eCwa which although

appears marginally inferior to the SVJ is much easier to estimate.

40 We have also checked the performance of standard neural networks like the ones
used in previous studies (i.e. Hutchinson et al., 1994, Garcia and Gencay, 2000). The
optimization/training methodology setup is similar to the one employed for the
enhanced models. The results for standard feedforward artificial neural networks are
always inferior to that of the enhanced models. Specifically their RMSE is between
2.013 and 2.743 which is quite large compared to the enhanced models whose RMSE

is consistently below 1.754.
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BSya CSpyp  SVJ  eBS,, eBSpys eCS2, eCS%, eCS., eCSiy,

BSpyio 3.18 6.02 3.40 3.45 6.03 6.47 5.62 5.98
CSpyro -3.68 6.85 0.52 0.91 9.90 10.96 8.29 9.32

SVJ -6.26 -7.25 -7.38 -4.92 -0.96 0.24 -1.97 -1.01
eBS _, -3.43 -0.57 7.61 0.66 14.68 15.28 11.83 12.97
eBSypo | -4.62 -1.17 5.22 -0.71 5.65 6.61 4.62 5.45
eCSfU -6.07 -10.77 0.98 -23.49 -5.87 2.71 -2.60 -0.18
ecs?wg -6.85 -18.10 -0.25 -18.12 -7.92 -3.41 -4.80 -2.57
eCSS’U -5.65 9.02 2.03 -19.99 -4.90 5.26 5.97 2.09
ecsig -6.32 -13.51 1.04 -15.51 -6.68 0.23 6.04 -2.60

Table 3.9. t-tests for out of sample model performance comparison

Values in the upper (lower) diagonal report the Student t-value (Johnson, 1978,
modified t-value) regarding the comparison of means of the squared residuals between
models in the vertical heading versus models in the horizontal heading. In general, a
positive (negative) t-value larger (smaller) than 1.96 (-1.96) indicates that the model in
the vertical (horizontal) heading has a larger MSE than the model in the horizontal
(vertical) heading at 5% significance level (for 1% significance level use 2.325 and -
2.325 respectively).

In Tables 3.10 and 3.11 we analyze the RMSE of the best performing
models in terms of moneyness and time to maturity (7x3=21 classes). In
addition, the bottom panel of each table reports RMSE per moneyness class
(aggregating time to maturity) while the last column reports RMSE per time to
maturity (aggregating moneyness). First, we concentrate on the best
performing parametric models (Table 3.10). Comparing moneyness class
performance (bottom panel) we see that SVJ is superior in five out of seven
moneyness classes while BSy;, exhibits the best performance in JITM and

ITM options. BSy;, is superior to SV in all moneyness classes (a similar

conclusion is reached by Christoffersen and Jacobs, 2004) except for DOTM.

In addition, we see that CSy;, which produces the overall best RMSE among
DVF models is not superior to BSy;, in all moneyness classes. Specifically, it
is performing well in out-of-the-money options while BS;, is superior in at-

and in-the-money options. In terms of time to maturity only (last column) we

see that SVJ (BSy;,) is the first (second) best performing in short term
options, BSy;, (SVJ) is the first (second) best performing in medium term
options and SVJ (CSy;,) is the first (second) best performing in long term

options. Concluding on parametric models’ results, although SVJ has the
overall best performance on aggregate in terms of RMSE still it does not

produce the least RMSE in all moneyness and time to maturity classes.
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CSpypo dominance over BSy;, is coming from long term, out-of-the-money

options. Finally note that SV fails over DVF models because it exhibits poor
performance for long term options.

In Table 3.11 we see the results for the ePOPMs. In general the CS ones
produce the best results. By comparing eCS2, with eCS2, we see that the

enhancement of kurtosis in the latter model helps to improve the DOTM and

DITM options but does not offer any improvement in the other cases. This

result is very intuitive since kurtosis affects the tails. In comparing eCS2,

with eCS3;, we see that the latter model has better performance for JOTM,

ATM and JITM options. Another significant observation is that enhanced
models with DVF input perform better in short and medium term options
while enhanced models with overall average implied parameters as input have

significantly better performance in long term options. Lastly if we compare

SVJ with eCS3;, (eCS2,) we can see that in many cases the proposed semi-

parametric methodology is better. Specifically eCS3;, (eCS2,) has lower

RMSE in eleven (six) out of twenty-one classes.

To investigate whether our semi-parametric approach imposes any
discipline on the models and to preclude the possibility that the enhanced
parameters are just moving around excessively through time we used
graphical diagnostics (plots are not displayed due to brevity). Specifically, for
each of the 379 out of sample days of the period 3 March 2003 to 31 August
2004 we use the already estimated GPF and DVF and get predictions for the
daily volatility values for moneyness equal to S/X = 0.90, 1.00 and 1.10 and
time to maturity equal to T = 21, 63, 126, 189 and 252 trading days (in total
15 combinations per day per model). The conclusion is that the enhanced
volatility estimates derived by the GPF are in general less volatile compared to
the DVF volatility estimates for the out of sample period and track better the
evolution of the actual daily implied volatility*!. A representative summary of

the graphical diagnostics is exhibited in Table 3.12, where we report the

41 The actual implied volatility is extracted daily from market option prices that are

closest to each combination of moneyness and time to maturity.
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RMSE between the daily actual contract specific volatility implied by market
option prices and the volatility estimates obtained by the DVF based BSy;,

DOTM OTM JOTM ATM JITM ITM DITM

Maturity
0.90- 0.95- 0.99- 1.01- 1.05- . 1
SIX <050 495 0.99 1.01 1.05 1.0 110 | classes
Model Short term options - = 60 days

BS,, 0.682 1.793  2.5387  2.180 1.779 2.629 2.911 2,289
BSy2 0607 0.309 1.057 1.465 1.438 1.561 1.773 1.219
CSau 1.331 0.976 1.955 2.832  2.395 1.842 1.904 2.136

CS5pz2 0913 0.753 1.050 1.581 1.768 1.750 1.858 1.478

SV 0.5323 0.606 1.080 1.6359 1.697 1.566 1.729 1.435
SWT 0.410 0.556 0.985 1.355 1.524 1.604 1.417 1.289

Medium term options - 60-180 days
BS,.. 2.5333 2.9564 2.518 2.087 3.349 3.554 3.991 3.4649
BSy2  1.199 1.018 1.213 1.514 1.726 2.082 2.149 1.488
CS 0.844 1.026 1.754 1.034 2.133 2.499 2.733 1.828
CSppn  0.833 1.040 1.452 1.764 1.979 2.211 2.166 1.615

SV 1.184 1.133 1.484 1.884 2,034 2,187  2.043 1.673
SWT 0.365  0.935 1.430 1.686 1.880  2.012 1.830 1.495

Long term options — = 180 days
B,  4.633 3.762 3.057 3.879 5293 8317 9.862 5.105
BS,;, 5491 3.816 3.130 2.770 1.912 2,921 4.741 3.880
CS.. 1.476 2,092 3,177 3738 3876 4.688 4.9494 3.163
CSpp, 2.014 2,288 2.820 20933 2.382 2957 4.737 2.674

SV 5.352  4.572 4,485 4994 4,779 6.221 6.948 5.127
ST 1.040 l.eas  2.208 1.982 2,183 3.837 1.924 2,030

Moneyness classes (aggregating maturity)
BS,, 3.681 2,203 2.629 2433 2735 4571  5.886
BSy;-  3.855  1.977 1.504 1.694 1.562 1.209  2.658
OS5 1.225 1.336  2.0892 2.635 2514 2506 2,957
CSpz- 1340 1.373 1.442 1.849 1.887  2.057  2.687

SV 3.856  2.347 1.934  2.381 2.255 2.e67  3.358
SWT 0.830 1.071 1.221 1.538 1.688  2.084 1.883

Table 3.10. Tabulation (moneyness vs. maturity) of out of sample pricing
RMSE for selected parametric models

Root Mean Square Error (RMSE) values regarding the out of sample pricing
performance for selected parametric models for the aggregate period March 3, 2003 to
August 31, 2004. RMSE is tabulated into moneyness and time to maturity. The
bottom panel reports RMSE per moneyness classes (aggregating time to maturity)
while the last column reports RMSE per time to maturity (aggregating moneyness).
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DOTM OTM JOTM ATM JITM ITM DITM Maturity
/X 090 go¢ Gy der  tos  iap 2110 | classes

Model Short term options (£ 60)

E’BSM, 0.656 0.808 1.452 1.732 1.591 1.553 1.593 1.51%
eBSyz. 0467 057 1.108 1474 1452 1503  1.338 1.216
engu 0.334 0.743 1281 1.611 1.570 1.456 1.532% 1.416
eCSZ,, 0440  0.652 1000 1337 1421 1435  1.442 1.239
ECSju 0.357 0.723 1.172 1.309 1.58% 1.478 1.411 1.375
eCS3;, 0664 0676 1021 1367 1480 1434  1.313 1.261

Medinm term options (60-180]
eBS ., 0.684  1.186  1.780 1928 1858 1941  1.710 1.652
eBS,;, 1.0862 1010 1237 1484 1646 1921  1.979 1.423
ECS:_EU 0.700 0.992 1.498 1.719 1.730 1.662 1.63% 1.441
ECS_;:}L2 0.746 1.018 1372 1.6802 1.675 1.709 1.811 1.413
-E‘CS?U 0627 0.888 1.4886 1.721 1.5871 1.768 1.55% 1.466
eCS3;, 0757 1028 1460 1726 1797 1778  1.737 1.476
Long term options — (= 180)

eBS ., 1488 2371 2786 2874 3005 2722 2721 2.499
eBSy;>  3.523  3.002 2672 2541 2410 2869  3.791 3.003
engu 1.437 1.838 2.158 2.224 2.331 2.303 2.167 1.998
eCSZ,, 1728 2045 2178 2336  2.146 2422  3.396 2.200
.E-C,S'gu 1.1596 1.836 2467 2664 2731 2722 2.355 2218
eCS3,, 1985 2070 2192 2373 2312 2506  3.270 2.273

Meneyness classes (aggrepating maturity)

eBS,, ~ 1155 1488 1760 1360  1.861 1835  1.879
eBSy;, 2585 1.629 1423 1.641 1614 1828 2254
eCS2, 1123 1186 1464 1727 1695 1631  1.698
eCSy;» 1320 1257 1304 1565 1567  1.654  2.046
eCS2 0951 1216 1475 1748  1.803 1743  1.667

eCS3;, 1496 1274 1343 1622 1656 1688  1.943

Table 3.11. Tabulation (moneyness vs. maturity) of out of sample pricing
RMSE for selected non-parametrically enhanced models (ePOPMs)

Root Mean Square Error (RMSE) values regarding the out of sample pricing
performance for selected enhanced parametric models (ePOPMs) for the aggregate
period March 3, 2003 to August 31, 2004. RMSE is tabulated into moneyness and
time to maturity. The bottom panel reports RMSE per moneyness classes (aggregating
time to maturity) while the last column reports RMSE per time to maturity
(aggregating moneyness).
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and CSy;, models and the enhanced models: eBS,,, eBSy.,, eCS.,,

eCSh;,. The first three rows of numerical results report RMSE for three
specific moneyness cases (always aggregating time to maturity) while the last
row of numerical results exhibits the aggregate RMSE values. The general

conclusion is that the enhanced models provide more accurate predictions of

the implied volatility surface compared to the DVF counterparts.

BSyio eBS,, eBS ;5 CSpzz eCS éy eCS 1'-H:

EMSE accuracy across specific moneyness cases
S/X=09 0021389 0009734 0.015801 0020387 0.018049 0.018725
S/X=1.0 0010938 0010813 000983 0020244 0.017309 0.018067
5/X=1.1 0.02933 0.026033 002701 0026925 0.020244 0.021972

RMSE accuracy (aggregate)
0.0z1% 0.0172 0.018% 0.0228 0.0186 0.0200

Table 3.12. Out of sample RMSE of volatility predicted by selected
models

Root Mean Square Error (RMSE) values regarding the out of sample volatility
prediction for selected models for the period March 3, 2003 to August 31, 2004.
Volatility estimates for each day for specific moneyness (for five representative
maturities) cases are compared with contract specific implied volatility taken using
the market call option prices closest to each moneyness/maturity combination.
Contract specific implied volatility for the Corrado and Su model is computed after
fixing the skewness and kurtosis coefficients to their daily overall average values
taken with the Whaley (1982) method.

Table 3.13 shows for the aggregate testing period the mean values of

the enhanced parameters (volatility, skewness and kurtosis) for the eBS,,,

eCSl, , eCS2, and eCS2, models for different maturity and moneyness

classes. These parameters are provided by the GPF (see v; variables in the

enhanced layer in Figure 2). We concentrate on enhancement created using
overall average parameters as input since these are the models that have

shown superior robustness (see next section for robustness analysis). For
eCS>  the enhanced volatilities preserve a smile effect in the short and

medium term options, the enhanced skewness is increasing in moneyness

and decreasing in maturity, and the enhanced kurtosis exhibits a hump
shape in moneyness. For eCSiU enhanced volatilities preserve a similar smile

effect in the short and medium term options, and skewness exhibits a hump
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shape in moneyness for short and medium maturity options and similarly
decreasing in maturity. Das and Sundaram (1999) compare the stochastic
volatility model with jump-diffusion and conclude that “it is less obvious
whether the theoretical predictions of either class of models are — or can be
made — consistent with the observed term structures of these deviations” (see
also Andersen et al., 2002). The authors wonder whether SV and Jump
models can fit the data well by capturing the level of skewness and kurtosis
implied by the data for all maturities. They state that (compared with
empirical observations) Jump models allow too rapid decay in skewness and
kurtosis, and stochastic volatility models exhibit a hump shape overly
pronounced for intermediate maturities. In contrast, the results for the
enhanced CS model show that is allows more flexibility in all estimated

parameters, not only in terms of maturity but also in terms of moneyness.

3.6. Robustness analysis for pricing results

We check the robustness of the performance of the enhanced models in
several ways. First, we check in terms of the complexity of the nonparametric
GPF. Then we check in terms of pricing data not used in the estimation.
Finally we compare the performance of the enhanced models (which are
estimated monthly) with parametric benchmarks estimated weekly instead of
daily. These robustness tests can also be seen as tests of overfitting. We check
the robustness of the enhanced models in out of sample performance by using
fewer hidden neurons in the validation phase (results not reported for brevity).
We use one-to-eight and one-to-six hidden neurons and the results show
significant robustness to the case of one-to-ten hidden neurons used in the
analysis. Specifically, with one-to-eight hidden neurons the out of sample
RMSE deteriorates at most 3.8% for eBSy;, and less than 1% for the other
models while for one-to-six hidden neurons RMSE deteriorates around 6% for
eBS 1, and less than 4% for the other models. Enhanced models that employ
an overall average implied parameter input exhibit the greatest robustness.
We also calculated (not reported for brevity) out of sample RMSE by fixing the
number of hidden neurons during estimation across periods. BS based

enhanced models exhibit similar performance for seven to ten hidden neurons
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with RMSE deterioration around 3.7%-6.7% while between three and seven
hidden neurons RMSE is below 1.90. CS based enhanced models with five or
more hidden neurons exhibit quite similar out of sample RMSEs which are

close to the optimal ones as in Table 3.8

DOTM OTM JOTM ATM JITM ITM DITM
ox s S om am ia dm
Short Term Options - <60 Days
EBSEIJ volatility 0.220 0.171 0.138 0167 0.180 0.207 0.254
ECS;B volatility 0.214 0211 0177 0175 0.177 0.188 0211
ECSE;.- volatility 0.236 0.182 0166 0172 0.181 0.198 0.228
QCSGED skewness -0.550 -0.374 -0.347 -0.3968 -0.432 -0.489 -0.498
ECSSB volatility 0.2532 0.123 0.179 0186 0.194 0.212 0.237
ECSQE:.- skewness -0.784 -0.851 -0.511 -0.391 -0.287 -0.194 -0.105
ECS;; kurtosis 5.008 3517 5089 6.030 5.554 5.742 5.635
Medium Term Options - 60-180 Days
EBSEIJ volatility 0.173 0.1558 0166 0176 0.187 0.204 0.234
ECS;F volatility 0.226 0.120 0187 0120 0.193 0.19% 0.206
ECSE;- volatility 0.187 0170 0177 0.185 0.192 0.200 0.215
QCSGED skewness -0.499 -0.449 -0.487 -0.532 -0.347 -0.604 -0.626
ECSSF volatility 0.202 0.185 0.193 0.202 0.207 0.216 0.231
ECSGEL' skewness -0.849 -0.747 -0.623 -0.522 -0.475 -0.260 -0.208
ECS;. kurtosis 5.488 5.894 5.933 5.873 5.694 5.711 5722
Long Term Options - 2 180 Days

EBSEIJ volatility 0,164 0165 0.174 0181 0.192 0.201 0.220
ECS;B volatility 0.210 0199 0.197 0.200 0.206 0.207 0.217
ECSE;.- volatility 0.185 0187 0.190 0.125 0.201 0.203 0.214
ECSGE[J shewness -0.827 -0.855 -0.710 -0.758 -0.685 -0.717 -0.757
ECSSF volatility 0.195 0199 0.203 0.207 0.214 0.218 0.229
eCSju skewness -0.881 -0.801 -0.741 -0.675 -0.645 -0.543 -0.4353
eCS2, kurtosis  5.451 5586 5.622 5.557  5.475 5.433 5.429

Table 3.13. Summary statistics regarding the enhanced parameters for
models (ePOPMs) optimized and selected using a pricing criterion
Moneyness and time to maturity tabulation of enhanced parameters implied by some
of the enhanced models for the aggregate period March 3, 2003 to August 31, 2004.

The next test was to disaggregate each model RMSE into two
components: the RMSE of observations (in total 16609) that are common both

in day t-1 (day used to extract the implied parameters) and in day t (out of
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sample day) and the RMSE of observations (in total 5035) that can be thought
of as unseen data (exist in t but not in ¢1). Results are presented in Table
3.14 (columns 2-3 with numerical results). The first column reports again the
RMSE for the AggTs dataset for comparison purposes. It is important to see
whether the models’ performance in the unseen data is close to the
performance in the common data or if it deviates significantly. As expected,
the RMSE for the common observations (unseen) is always lower (higher) than
the RMSE in AggTs. We can see that DVF models loose more accuracy when
used to price unseen observations compared to the BS and CS with overall
average implied parameters. We also confirm that SV is highly inaccurate

when used to price unseen data (especially of long maturity) compared to SVJ.

AggTs Cm;:lr::‘in:-:di:;t-] Unseen in £1 OEI:: terfv::ie:ﬂs
BSa 3.285 2.825 4.478 5.967
BSyo 2.008 1.298 3.432 4.802
CS., 2.245 2.056 2.77 2.660
CS iz 1.766 1.482 2.483 3.089
SV 2.438 1.451 4.436 7.112
SWJ 1.498 1.348 1.910 1.709
eBS,_, 1.754 1.680 1.978 1.838
eBSy;, 1732 1.393 2.548 3.203
eCS2, 1.532 1.480 1.693 1.836
eCSyp, 1489 1.316 1.953 2.327
eCSZ, 1.568 1.497 1.785 1.341
eCS3;- 1535 1.377 1.969 2.803
#obs 16609 5035 1237

Table 3.14. Robustness analysis - RMSE for common/unseen and totally
new observations

The results in the second and third numerical columns disaggregate each model Root
Mean Square Error (RMSE) into two components: i) the RMSE of observations (in total
16609) that are common both in day t1 (day used to extract the implied parameters)
and in day t (out of sample day), and ii) the RMSE of observations (in total 5035) that
can be thought of as unseen data (exist in t but not in t1). The RMSE in the last
column refers to the out of sample pricing performance of each model for 1237 totally
unseen observations (outside the moneyness range used in estimation). The first
column of results repeats RMSE for the aggregate dataset (AggTs) for comparison
purposes.

As can been seen, the enhanced models with overall average implied

parameters as input (eBS eCS2, and eCS2)) are very robust with unseen

av ’

data and some even outperform the SVJ model (for example, the RMSE of
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eCS?2, in the unseen dataset is 1.693, quite smaller than 1.910 for SVJ). The

robustness of our proposed enhanced models is very important since unseen
data comprise a considerable part of the contracts traded every day (about
23% of out of sample observations in our dataset were contracts not traded
the day before).

We also examine the models’ performance to price totally unseen
contracts (outside the moneyness range used in estimation). Specifically for
the period January 2002 - August 2004 there are 784 observations with
moneyness in the range of 0.70-0.80 and 453 observations with moneyness in
the range of 1.20-1.30 (in total 1237 new observations). Results are reported
in the last column of Table 3.14. First, we note that CS based parametric
models significantly outperform the equivalent BS ones. The SV model (in
contrast to SVJ) performs very poorly (again we have verified that large errors
are mostly produced from long maturity options). The enhanced models with

overall average implied parameters are the best performers. Actually, the
RMSE of eCSé’U is 1.341 outperforming by far that of SVJ (1.709) and as we

have verified this performance is consistent in all moneyness and maturity
ranges of the new observations.

As a final check we calculate the RMSE of the parametric models five
days ahead. Remember that the enhanced models are estimated and then
used for a whole month, whereas the parametric ones (overall average and
DVF) are estimated every day. In that comparison there is obviously a bias
against the proposed semi-parametric methodology, since some models and
especially the SVJ are very computationally expensive to calibrate daily. As
shown in Table 3.15, the RMSE deteriorates for BS,, by 7.7%, for BSy;, by
34.5%, for CS,, 19.2%, for CSp;, by 30.9%, for SV by 23.4%, and for SVJ by
43.3%. We see that the RMSE for five days ahead deteriorates so that the
enhanced models are far superior to the parametric ones (now they
outperform SVJ considerably). RMSE for ten or more days ahead (not shown
for brevity) deteriorates even further for the parametric models. These results
are consistent with the arguments in Christoffersen and Jacobs (2004), Bollen
and Whaley (2004), and Hull and Suo (2002) that implied volatility functions

are not persistent.
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BS BS,, CS CSpza SV SVJ

i av

RMSE 3.538 2.700 2.677 2.311 3.070 2.147
Deterioration | .- 1.345 1.192 1.300 1.234 1.433
Ratio

Table 3.15. Robustness analysis - 5-days ahead (out of sample) pricing

performance for selected parametric models

Root Mean Square Error (RMSE) regarding the out of sample pricing performance for
selective parametric models for the aggregate period March 3, 2003 to August 31,
2004. The models are used to price call options on day t with implied parameters
computed on day t - 5. The second row reports the Deterioration Ratio which is the
RMSE of each model in this table divided by the RMSE obtained for out of sample
performance one day ahead.

3.7. Single instrument hedging analysis

We now investigate the hedging performance of the best (with respect to
out of sample pricing) models. We follow a single instrument hedging strategy
similar to the one conducted by Bakshi et al. (1997). Based on previous
research (i.e. Hutchinson et al., 1994, Bakshi et al., 1997, Garcia and
Gencay, 2000, Chernov and Ghyssels, 2000), the best model (parametric or
nonparametric) in terms of out of sample pricing accuracy does not always
prove to be the best performing one with respect to hedging performance.
Bollen and Whaley (2004) find that the slope of the daily implied volatility
functions in terms of moneyness is very erratic which may explain the poor
performance of pricing models when used for hedging. As suggested by
Christoffersen and Jacobs (2004) the above ambiguity may be due to the
inappropriate choice of the loss function. They suggest that “the best possible
parameter estimates for a hedging exercise will likely be obtained using a
hedging based loss function” (p. 316). For the enhanced models, in order to
align the estimation and evaluation loss functions we employ the following
methodology (see also Garcia and Gencay, 2000): enhanced models
parameters are estimated by minimizing the pricing RMSE but monitoring the
hedging RMSE in the validation sample so that for each period the model with
the lowest hedging error is chosen. The results are compared to hedging
results obtained by the parametric models and to those obtained by enhanced

models optimized and chosen based on a pricing loss function.

198



The single-instrument hedging mitigates the no-arbitrage strategy followed by
Black and Scholes (1973), where a portfolio including a short position in a call
with a certain exercise price and time to expiration is hedged via a long
position in the underlying asset. For such a hedging strategy and for each

model, at time instance t we short the mt call option contract with market

value, ¢”"* | go long in 4, “index shares” and invest the residual, B in the

m,t
risk-free bond. Next, at time t+At we liquidate the position by buying the call

and selling the index and calculate each hedging error H(At) as follows:

H(A) = A oS¢y ar + B ™ =il o (3.26)

B, =clt —An .S, (3.27)

m,t

Each trading day the hedged portfolio is rebalanced. The hedging error is

mrk

mk and ¢k ,, are available. For each model

calculated when both prices, ¢,y

we calculate the hedging RMSE for the AggTs period. The expression 45, for

—-dyT

BS is equal to acfft/ast = e N(d), for SVJ is equal to 80,?1Y;J/88t =

e_dyTl'Il (see also Appendix in Bakshi et al., 1997) and for CS are given in
section 3.2. The theoretical delta value 4, ., for a long call always lies between

zero and unity (for a positive dividend yield) but for the CS model, these
bounds may be violated. In our sample this occurred in very few instances in
which cases the delta values were set equal to their theoretical bound. As can
be deduced from the results in Hutchinson et al. (1994) (see their Figure 5
and also discussions in Ait-Sahalia and Lo, 1998, pg. 512) there are cases
where standard feedforward artificial neural networks fail to produce
theoretically consistent delta values. In contrast, our semi-parametric method
has the advantage of being consistent with the parametric model being
enhanced. In the following tables we discuss the RMSE measure that was
used in estimation but for completeness we also report the MAE and MeAE

measures.
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Single instrument hedging results are reported in Table 3.16 for the
parametric models. The single instrument analysis is most appropriate for the
parametric BS and CS and the respective enhanced models and we will focus
in the comparison of those models. We see that the BS models are the best
performers among the parametric ones with respect to hedging, in contrast to
pricing where the CS models are superior, confirming thus Bakshi et al.
(1997) who also find that model ranking differs between pricing and hedging.
We also confirm Dumas et al. (1998) since the several DVF based BS models
are indistinguishable with respect to hedging. Similarly indistinguishable
among themselves are the parametric CS based models. Among all parametric

models, the BS based ones are the best42,

B‘Sav BSL] BS_-‘\"L] BSNLLI BSLQ BSNLQ BS_-'\"LL.? BSLS BS_-'-TLS BSNLLS

EMSE 1.180 1.116 1.135 1.132 1.114 1.118 1.115 1.114 1.116 1.113
MAE 0.200 0.835 0.857 0.855 0.829 0.835 0.831 0.828 0.831 0.827
MeAE 0.710 0.635 0.663 0.663 0.621 0.633 0.627 0.620 0.624 0.618

CS,, CSpy CSypy CSppp CSpo CSpypo CSpypro CSp3 CSyps CSpprs

Lol

EMSE 1.369 1.355 1.363 1.362 1.356 1.354 1.357 1.356 1.352 1.355
MAE 1.038 1.021 1.033 1.032 1.019 1.018 1.023 1.018 1.014 1.017
MeAE 0.805 0.779 0.800 0.799 0.77 0.778 0.783 0.774 0.771 0.773

SVJ SV
RMSE 1.35% 1.378

MAE 1.010 1.020
MeAE 0730 0.738

Table 3.16. Out of sample hedging performance of parametric models
Error measures (out of sample) for single instrument hedging performance of all
parametric models (aggregate period March 3, 2003 to August 31, 2004). RMSE is the
Root Mean Square Error, MAE is the Mean Absolute Error and MeAE is the Median
Absolute Error.

The hedging performance of the enhanced models in Table 3.17 is given

first for models chosen for pricing and then for models chosen explicitly for

42 Evidence that parametric models which can handle negative skewness and excess
kurtosis can underperform BS for single instrument hedging is also documented in

Capelle-Blancard et al. (2001), Vah&maa (2003) and Jurczenko et al., (2004).
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hedging. In the first case we see that results compare with those of the

parametric models, with only the CS based ones (eCS2,, eCS% ,. eCS>,,

eCS,?,LQ) demonstrating an improvement over the respective parametric ones.

The improvement is present when skewness (eCSQ) and both skewness and

kurtosis (eCS®) are enhanced, but not when only volatility (eCS!) is

enhanced. When models are estimated besed on a hedging criterion, we see

that eCS2,, eCS%.,. eCS> and eCSy,, improve hedging performance

considerably, confirming the conjecture in Christoffersen and Jacobs (2004).
Finally we note that the benchmark model SVJ (and SV) in a single
instrument hedging analysis underperforms the parametric BS and the

enhanced models.

eBS,, eBSy, eCSl, eCSj, eCS2, eCSi, eCS2, eCSi

Hedging performance for enhanced parametric models selected using a
pricing criterion

RMSE 1.123 1.119 1.353 1.355 1.222 1.212 1.192 1.199
MAE 0.843 0.839 1.020 1.021 0.203 0.899 0.869 Q.873
MeAE 0.643 0.638 0.783 0.781 0.671 0.6635 0.622 0.627

Hedging performance for enhanced parametric models selected using a
hedging criterion

RMSE 1.117 1.110 1.301 1.294 1.093 1.117 1.080 1.087
MAE 0.826 0.819 0.960 0.949 0.815 0.832 0.800 0.803
MeAE 0.613 0.598 0.701 0.681 0.615 0.630 0.583 0.591

Table 3.17. Out of sample hedging performance of non-parametrically
enhanced models (ePOPMs)

Error measures (out of sample) for single instrument hedging performance of selected
enhanced parametric models (ePOPMs) for the aggregate period March 3, 2003 to
August 31, 2004. The upper panel of results presents the single instrument hedging
performance of enhanced models optimized and selected using a pricing criterion
while the lower panel presents the single instrument hedging performance of
enhanced models selected using a hedging criterion. RMSE is the Root Mean Square
Error, MAE is the Mean Absolute Error and MeAE is the Median Absolute Error.

We remark that Bakshi et al. (1997) (see also Dumas et al., 1998, and
Chernov and Ghysels, 2000) find that their models’ hedging performance is
virtually indistinguishable and that the hedging based rankings of the models
are in sharp contrast with their out of sample pricing performance. We reach

similar conclusions for the case of the parametric models. As a significant
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variation from previous literature we see that this is not the case for the

enhanced models, especially the CS based ones.

DOTM OTM JOTM ATM JITM ITM DITM
” o g0 oo s tob it L
Short Term Options - <60 Days
eBS_, volatility 0.191 0.162 0.154 0.169 0.191 0.228 0.269
{._-_{‘_',‘Séu volatility 0.189 0.165 0.161 0.176 0.193 0.227 0.272
{._-_{‘_',‘Sij volatility 0.217 0.170 0.163 0.178 0.196 0.224 0.266
ETCS;,. skewness -0.287 0.447 0.658 0.581 0.489 0.326 0.119
t—-_(_'jgiy volatility 0.270 0.265 0.295 0.304 0.311 0.320 0.339
E.’CS:E skewness -1.047 -0.136 0.204 0.286 0.371 0.442 0.450
E‘.CS;’_ Kurtosis 7.493 8.436 9.739 9.722 9.502 9.020 8.279
Medium Term Options - 60-180 Days
eBS5_ volatility — 0.155 0.141 0.149 0.165 0.186 0.217 0.255
E‘-CS;E volatility 0.167 0.149 0.162 0.178 0.193 0.223 0.265
E.C'Si, volatility 0,160 0.151 0.167 0.184 0.197 0.219 0.251
gcsjy skewness 0.444 0.717 0.731 0.694 0.638 0.559 0.374
{._-_(_',‘Siy volatility 0.225 0.262 0.278 0.293 0.304 0.314 0.318
E.‘CS;E skewness -0.145 0.092 0.257 0.335 0.382 0.466 0.520
eCS_ kurtosis 7.181 8.771 8.958 9.093 S9.043 8.961 8.053
Long Term Options - = 180 Days

eBS_, volatility  0.146 0.144 0.14% 0.158 0.175 0.198 0.240
E'.CSEW volatility 0.164 0.159 0.167 0.185 0.205 0.223 0.263
ECSE:.- volatility 0.153 0.161 0.173 0.185 0.199 0.213 0.240
ErCSjy skewness 0.700 0.796 0.795 0.737 0.672 0.569 0.526
E(_‘,‘Siﬂ volatility 0.243 0.268 0.286 0.288 0.293 0.294 0.305
eCS;, skewness 0.159 0.271 0.316 0.380 0.482 0.489 0.671
2C5°  kurtosis 8.370 8.921 9.438 g.102 8,660 8,293 7.930

Table 3.18: Summary statistics regarding the enhanced parameters for
models (ePOPMs) optimized on a pricing criterion and selected using a
hedging criterion

Moneyness and time to maturity tabulation of enhanced parameters implied by some
of the enhanced models for the aggregate period March 3, 2003 to August 31, 2004.

Finally we notice that the enhanced models chosen for hedging had a very
poor performance in pricing (results not reported for brevity). We examine
their enhanced parameter values as provided by the GPF (Table 3.18),
especially for eCSS’U that conveys information for skewness and kurtosis. In
contrast to Table 3.13, skewness is now positive for 18 out of 21

moneyness/maturity classes with an average value of 0.25 whilst kurtosis
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bounces between 7.18 and 9.74. These values differ by far from those in Table
3.13 and fully explain the poor pricing performance. This might be attributed
to movements in deltas not directly linked to asset price movements (see
Capelle-Blancard et al., 2001). The inappropriate choice of the loss function
results in parameter estimation not suitable for such a different use. Under
this setting we try to find the best delta values, not the best call price. The
obtained enhanced parameters for models chosen on the hedging criterion
capture efforts to hedge against exposures to the risks of the underlying asset.
The hedged positions seem to have two properties: skewness is positive
immunizing in this way the downsize risk and kurtosis is excessively high
immunizing against the prospect of extreme returns (fat tails). Effectively both

effects help reduce the impact of volatility.

3.8. Summary and conclusions

In this study we extend the Dumas et al. (1998) DVF for option pricing,
with a nonparametric approach to estimate generalized parameter functions
(GPF). The resulting enhanced parametric models have many desirable
properties compared to the standard implementation of artificial neural
networks like theory consistent option values and Greek letters. In general,
this semi-parametric methodology is proposed as a way to alleviate
deficiencies of the modern parametric options models and standard
nonparametric approaches. For pricing and hedging performance analysis we
use the S&P 500 index call options for the period January 2002 to August
2004. We compare the GPF approach with parametric models using both daily
overall average implied parameters (for all parametric models considered) and
daily contract specific implied parameters derived by the DVF approach (for
the BS and CS models). The SVJ and SV models have also been included in
the analysis for comparison.

We discuss the calibration of the parametric models, first for the overall
average implied parameters of BS, CS, SV and SVJ, and then for the DVF
based BS and CS models. We show that a careful estimation/optimization

search is needed to obtain good implied parameters. The results obtained out
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of sample strongly support the proposed methodology. The first important
finding is that the DVF approach when applied to CS provides results superior
to CS (with overall average parameter estimates) and also to BS (with either
overall average or DVF estimates). The second is that the SVJ model is the
best model among the parametric models whilst SV is inferior to DVF based
BS and CS models. The third is that the increase in the pricing accuracy of
the enhanced BS and CS models over the best performing BS and CS
parametric ones is considerable and statistically significant. In general, the
best enhanced models (with daily implied parameters but monthly estimation
of the GPF) are comparable to the daily estimated SVJ.

In addition, we find that the enhanced methodology is robust to the

complexity of the GPF. It is also robust to the pricing of contracts not used
during estimation, where eCSSU significantly outperforms SVJ.

Consistently with the recommendation in Christoffersen and Jacobs (2004) we
observe that single instrument hedging results using ePOPMs chosen using a
hedging criterion outperform all the parametric models and the ePOPMs
chosen using a pricing criterion.

The proposed approach can also be used in other studies like Brandt and Wu
(2002) where option parameters are estimated from liquid European options
and then applied to price less liquid and exotic derivatives. In addition, it
allows estimation of term and moneyness structure in skewness and kurtosis
which is essential for value-at-risk analysis (see Das and Sundaram, 1991, p.
212).
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4. Functional Estimation for Options Pricing Via
Support Vector Machines

Abstract

The focus of this essay is to explore the pricing performance of Support
Vector Machines for pricing S&P 500 index call options. SVM is a novel
nonparametric methodology that has been developed in the context of
statistical learning theory and until now it has been practically neglected in
financial econometric applications. This new method is compared with
feedforward Artificial Neural Networks and also with Parametric Options
Pricing Models using standard implied parameters and parameters derived via
Deterministic Volatility Functions. The empirical analysis has shown

promising results for the SVMs.
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4.1. Introduction

The Black and Scholes (BS) (1973) model is considered as the most
prominent achievement in the options pricing theory. Empirical research has
shown that the formula suffers from systematic biases known as the volatility
smile/smirk anomaly, which is the result of the simplistic assumptions that
underlie its pricing dynamics (see Black and Scholes, 1975, Rubinstein, 1994,
Bates, 2003, Bakshi et al., 1997, Andersen et al., 2002). More elaborate
POPMs that allow for stochastic volatility and jumps in their diffusion process
have been introduced in an attempt to eliminate most of the BS biases (for a
review see Bakshi et al., 1997). Although these models seem to produce more
accurate pricing results compared to the BS model, yet they are quite
challenging and complex when used for real time applications and none is so
flexible enough to provide results fully consistent with the observed market
data (Bates, 1996 and 2000, and 2003, Bakshi et al., 1997, Dumas et al.,
1998, Hull and Suo, 2002, Eraker, 2004). This is why BS has shown severe
time endurance and is still widely used by practitioners. In addition,
simplistic extensions of BS like the Corrado and Su (CS) (1996) model and the
use of BS in the context of Deterministic Volatility Functions (Dumas et al.,
1998) generate quite accurate prices for a wide spectrum of European
financial options (see also Hull and Suo, 2002).

Financial markets are complex and characterized by a stochastic (time
interchanging) behavior resulting to multivariate and highly nonlinear option
pricing functions. There is evidence indicating that market participants
change their option pricing attitudes from time to time (i.e. Rubinstein, 1994).
POPMs may fail to adjust to such rapidly changing market behavior (see also
Cont and Fonseca, 2002, for evidence of noticeable variation in daily implied
parameters) since they are relying on static dynamics regarding their diffusion
process. There is a great quest for nonparametric techniques that can
potentially alleviate the limitations of POPMs. In addition to this, market
practitioners have always a need for more accurate option pricing models that
can be utilized in real-world applications. Under such cases, nonparametric
data driven models like SVM and ANNs are powerful candidates to be applied
for options pricing.

ANNs are very popular for applications in financial and economic

applications (see Tsay, 2002) at least for four reasons. First, there are
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theoretical foundations showing that ANNs can be used for multidimensional
nonlinear regression since they are universal approximators able to
approximate any nonlinear function and its derivatives arbitrarily well (see
Cybenko, 1989, and Haykin, 1999). Second, they do not necessarily rely on
any financial assumptions and can learn the empirical input/output
relationships inductively using historical or implied input variables and
transactions data. Third, they rely on fairly simple training algorithms.
Fourth, their out of sample generalization performance is adequate as long as
a large datasets are being used and nowadays this is feasible due to the
abundance of historical transactions data provided by numerous vendors.
Under these conditions, unavoidably ANNs have also found extensive
applications in the options pricing area. The vast amount of empirical
evidence from these applications show that ANNs can outperform the most
widely used POPMs (like the BS for example), and that they can be more
accurate and computationally more efficient alternatives when the underlying
asset’s price dynamics are unknown (see Hutchinson et al., 1994, Garcia and
Gencay, 2000, refer also to results from the first essay).

Unlike ANNs, SVMs have not gained yet any significant popularity in
financial econometric applications although they are widely used in electrical
engineering, bioinformatics, pattern recognition, text analysis, computer
vision etc (see Smola and Schélkoph, 1998, and references therein). SVMs
have evolved in the framework of statistical learning theory (see Vapnik, 1995,
for extensive details) and can be utilized for problems involving linear or
nonlinear regression. The main advantage of SVMs over other nonparametric
techniques is that they encompass statistical properties that enable them to
generalize satisfactorily well to unseen data. Another significant characteristic
is that under SVMs someone solves a convex optimization problem with a
unique global (and sparse) solution while other nonparametric methods
usually have non-convex error functions which entail the risk of having
multiple local minima solutions. Another one significant feature is that SVMs
employ the so called VC theory (see Vapnik and Chervonenkis, 1974), which
is defined in a strictly statistical framework, that controls in specific ways the
model’s estimation and parameterization to preclude overfitting so as to
ensure good out of sample (generalization) results. Based on the theory that

underlies SVM, their potential superiority over ANNs should be more obvious
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in datasets of small and moderate size (see Vojislav, 2001). For this reason we
employ SVM with training data sets that have short time spans.

In this study our main contribution is to develop SVM for pricing
European options and to compare it with other alternative pricing approaches
like ANNs and POPMs. The methodological framework can also be beneficial to
practitioners for real time trading. We consider the traditional SVM for
function approximation as originally developed by Vapnik based on the ¢-
insensitive loss function (see Vapnik, 1995) which is considered to be more
robust when noise is non Gaussian. In addition, we consider the Least
Squares Support Vector Machines (LS-SVM) which is a subsequent variant of
the original SVM methodology, originally proposed by Suykens and co-
workers (see Suykens et al., 2002). Compared to SVMs, LS-SVMs can be more
robust when noise is Gaussian, they rely on fewer tuning hyper-parameters
that can expedite the estimation process and minimize a least squares loss
function which is most common in empirical options pricing studies (see
Christoffersen and Jacobs, 2004).

To our knowledge this is the first time that such a comprehensive
application is considered*3 for options pricing. In this study we estimate ANNs
and SVM using two different target functions (desired output). One that
approximates the unknown empirical options pricing function explicitly by
modeling the market prices of the call options (called the market target
function) and one implicitly by modeling the residual between the actual call
market price and the parametric option price estimate (called the hybrid
target function). These target functions have been also considered in the first
two essays of this thesis. We compare them with the parametric BS and CS
models using overall average implied parameters and contract specific implied
volatility versions derived by the DVF method. Moreover, as an additional
benchmark model we use the Stochastic Volatility and Jump (SVJ) model of
Bates (1996) since literature documents that it can be an effective remedy to

the BS biases (see Bakshi et al., 1997 and Bates, 1996) and can provide

43 There are some studies that apply the SVM in financial time series. Muller et al.
(1999) apply the SVM for approximating the noisy Mackey-Glass system and the
Santa Fe Times Series Competition (set D). Gestel et al. (2001) apply LS-SVM for one-
step ahead prediction of the weekly 90-day T-bill rate and the daily DAX30 closing
prices. Cao and Tay (2003) apply SVM to forecast the five day relative difference in
percentage of price for five futures contracts.
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significantly better pricing results compared to the stochastic volatility model
of Heston (1993).

In the following we first review the parametric models, and the
standard and hybrid ANN, SVM and LS-SVM models. Then we discuss the
dataset and the methodologies employed to get the implied parameter

estimates. Subsequently we review the numerical results.

4.2. The parametric models used

Below we briefly discuss the different POPMs that we employ in this
study. The first model examined is the Black and Scholes (1973) since is a
benchmark and widely referenced model. The Black Scholes formula for
European call options modified for dividend-paying (see also Merton, 1973)

underlying asset is:

dyT

cBS = 8e™' N(d)- Xe ™" N(d - oIT) (4.1)

In(S/ X)+(r-d,)T +(ovT)? /2
d =
oNT

(4.1.1)

BS is premium paid for the European call option, Sis the spot price of

where ¢
the underlying asset, X is the exercise price of the call option, ris the

continuously compounded risk free interest rate, d, is the continuous

dividend yield paid by the underlying asset, Tis the time left until the option

2

expiration date, o“ is the yearly variance rate of return for the underlying

asset and N(.) stands for the standard normal cumulative distribution .
The Corrado and Su (1996) model is an extension of the BS model that
accounts for additional skewness and kurtosis in stock returns and is used as

a benchmark in this essay. Using a Gram-Charlier series expansion of a
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normal density function Corrado and Su defined their model as (see also the

correction in Brown and Robinson, 2002):

c® =¢P% + 1304 + (g —3)Q4 (4.2)

B

where ¢?° is the BS value for the European call option given in Eq. (4.1) and,

0, - %s{dy%ﬁ(@aﬁ —dn(d) + (0VT)? N(d)) (4.2.1)
Qs = -8 W T (@* ~1-30VT(d - o\ T)n(d) + (oNT)* N(@)

(4.2.2)

In Eq. (4.2) Q3 and Q, represent the marginal effect of non-normal skewness
and kurtosis, respectively in the option price whereas u; and u, correspond

to coefficients of skewness and kurtosis. In the above expressions,

n(z) =

exp(—z2 /2) (4.2.3)

1
N2

refers to the standard normal probability density function.

In addition to the above models, we also employ as a benchmark the
SVJ model of Bates (1996). In their study Bakshi et al. (1997) found that the
SVJ exhibited satisfactory out of sample pricing performance for the S&P 500
index options when compared to other parametric option pricing models since
it offers a quite flexible distributional structure able to capture the negative
skewness and excess kurtosis implicit in the market returns. Under this
model the underlying asset follows geometric jump diffusion with the

instantaneous conditional variance V, to follow a mean-reverting square root

process:
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as

?z(y—ﬂf)dtJM/VdZJrqu (4.3)
dv = (a - AV)dt + 0,JVdZ, (4.4)

with

cov(dZ,dZ,) = pdt
In(1 + «) ~ N(In(l + ¥) - 0.562,62)

prob(dg =1) = Adt

where p is the instantaneous drift of the underlying asset, 1 is the annual
frequency of jumps, xis the random percentage jump conditional on a jump
occurring, g is a Poison counter with intensity 4, 62 is the jump variance,
and p is the correlation coefficient between the volatility shocks and the
underlying asset movements. Moreover, £ is the rate of mean reversion and
a / B is the variance steady-state level (long run mean).

The value of a European call option is given as a function of state

variables and parameters:

cSW = e T [FIT, - X11,] (4.5)

with F = E(Sy) = Se"" %) to be the forward price of the underlying asset, with
E(.) to be the expectation with respect to the risk-neutral probability measure
and S the price of S at option’s maturity. Evaluation of I1; and II, is done

under the distributional assumptions embedded in the risk-neutral

probability measures by using the moment generating functions of In(S; /S).

The following expressions are needed to compute I1; and I1,:
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. . .\ 4i+0.5
F(@|V,T) = exp{(C;(T;®)+ D;(T; @)V + AT(L + 5)"

02 (uj0+@2 /2 (4.6)
<[+ &)2e” WP /2 j=12
_ aT
C;(T;@)=(r-dy - Ax)@T ——(po,®@ - B; - Gj)
v
. (4.7)
2a1 1-e%"
——2 n 1+05(p0v@—BJ _G])—
Oy J
/uj®+0‘5@2
D;(T; @)= -2 o0 (4.7.1)
pov® =B+ G —¢r
l1-e’/
G, = (po,® ~B})> ~202 (u;® +0.50°) (4.7.2)
M :0.5, Ho :_0.5, Bl =ﬂ—pay, BQ :ﬂ (4.7.3)
and the resulting probabilities I and M2 are derived by numerically

evaluating the imaginary part of the Fourier inversion:

_ ©imag|F: (i®)e %
"L X Fj)=0.54— giF; (e 71,
7Ty ()]

prob(Sye' @ (4.8)

with y =In(X/S) and the integrals to be evaluated with an adaptive Lobatto

quadrature.

Here we must note that such complicated models are not widely used
by traders for pricing options (see Hull and Suo, 2002, p. 300). Traders
usually rely on simpler models and more intuitive methodologies that are
closer to BS model used under the DVF approach which are able to handle
contract specific implied parameters (see also Brandt and Wu, 2002).

In conjunction to the above, the DVF approach which was proposed by
Dumas et al. (1998) for deriving per contract volatility for the BS model
comprises a practical approach in order to mitigate the volatility smile
anomaly of the BS model. Berkowitz (2004) demonstrates theoretically that

the DVF constitutes a reduced-form approximation to an unknown structural
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model which under frequent re-estimation can exhibit exceptional pricing

performance. For our analysis we estimate the following DVF specification:

DVF: o =max(0.01,ay +a; X + a2X2 +a3T + a4 XT) (4.9)

Empirical results from the third essay have shown that the above
specification seems to work well for the data under consideration. We also
implement the DVF for deriving a per contract volatility estimate for the CS
model since it can produce even more accurate results compared to the BS

based DVF version (refer to third essay for empirical results).

4.3. The nonparametric approaches: ANNs, SVM and LS-SVM

ANNs comprise a popular methodology for handling function estimation
problems for many reasons. First of all, theoretical proofs exist showing that
under certain conditions, ANNs are universal approximators able to
approximate any nonlinear function arbitrarily well (Cybenko, 1989). In
addition, they perform well in situations where there is lack of knowledge for
the relationship that underpins a set of variables and they are robust on the
presence of noisy data. Nevertheless, they are potentially prone to some
practical merits and limitations. First, there are no theoretical foundations on
how to select the network type and structure and on how to implement the
optimization procedure. For this reason the model structure (number of
neuron layers and number of hidden neurons in each of the layers) should be
defined a-priori which is not necessarily the best strategy in choosing the
optimal network architecture for the faced problem. This task is rather an art
instead of science and can be better tackled by experts with experience on
how to apply the ANNs methodology having at the same time considerable
knowledge on the problem under investigation. Second, estimating ANNs
involves the optimization of a highly non-convex error function and frequently
enough optimization algorithms get stuck to local minima solutions resulting

to suboptimal solutions for the network free parameters (weights and

213



biases)*. Given this peculiarity, regularization techniques that are employed
in an attempt to control the capacity of the ANNs, like cross validation
strategies*S and early stopping*¢, are only partial remedies potentially
resulting to structures that do not maximize their generalization performance
to unseen data. Finally ANNs learn the empirical functions inductively from
transactions data without embedding any information related to the problem
under investigation. Under this setting, the estimated weights do not convey
any meaningful interpretation to help understand better the input-output
relationship. In a nutshell, significant expertise is needed in order to develop
ANNSs that can be trusted regarding their out of sample pricing estimates.

In contrast, SVM are not confined by the above issues (Smola and
Schoélkoph, 1998). First of all, the model complexity does not need to be
determined a-priori. It is determined endogenously as part of the optimization
problem in such a way that maximizes the generalization capability of the
model. More importantly, a unique solution is found after estimation as a
solution of a (convex) Quadratic Programming (QP) problem with linear
constraints, which depends on the estimating data and the selection of few
tuning hyper-parameters. In addition, the solution to the QP problem provides
the necessary information for choosing the most important datapoints, known

as support vectors, among all the data; based on the SVM formulation,

44 One way to circumvent this is to estimate a predetermined network structure
several times always starting with different initial weights and biases and selecting
the model with the least error.

45 Cross-validation is a classical statistical tool for resolving the trade-off between the
performance on training data and the complexity of a model. The basic idea of the
cross-validation is founded on the fact that good-results taken from the data used for
estimation does not necessarily ensure good performance to a testing set with unseen
data. To implement the cross validation, a particular dataset is divided in training and
validation subsets of data. A set of alternative models is estimated using the training
dataset by exploring a meaningful grid of possible parameter combinations in the case
of SVM and LS-SVM or by varying the number of hidden neurons in the case of ANNs.
Then the model that produces the least error (based on a predefined norm) in the
validation subset is considered as the one that can perform the best out of sample
using unseen data.

46 Early stopping is another regularization technique used to control the capacity of
an ANN. During the nonlinear optimization of an ANN the error in the estimating
(training) data is generally monotonically decreasing as a function of the number of
iterations of the algorithm employed. This does guarantees that the error to the
validation dataset will also decrease. What usually happens is that the error in the
validation dataset is decreasing at the start and then it starts increasing since the
ANN tends to memorize (overfit) the estimating data. Early stopping is employed to
stop training an ANN at the point with the lowest error in the validation sample with
the hope of maximizing the network generalization ability in the testing dataset.
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support vectors uniquely define the estimated regression function so in this
manner the estimated coefficients are informative. Furthermore, input data of
any arbitrary dimensionality can be treated with only linear cost in the
number of input dimensions. This property in conjunction with the good
inherent regularization properties allows SVM to work particularly well when
data is sparse (see Mtller et al., 1999, Smola and Scholkoph, 1998). Yet, the
performance of the SVM technique, like ANNs, depends crucially by the choice
of the loss function which is inextricably connected with the noise in the data
(Gaussian or not) and by other data regularities (e.g. non-stationary financial
data). In the Appenidx that appears at the end of this essay, we discuss in
detail the theory behind the SVMs and we demonstrate the programming
formulations for estimating the SVMs and LS-SVMs (main refernces for this
are Vapnik, 1995, Smola and Scholkoph, 1998 and Suykens et al., 2002). In
the following section, we briefly demonstrate only the essensial programming

formulations for the methodologies used in this essay.

4.3.1. Feedforward artificial neural networks

A feedforward artificial neural network is a collection of interconnected
processing elements structured in successive layers and is usually depicted
as a network of links (termed as synapses) and nodes (termed as neurons)
between layers. A typical feedforward neural network has an input layer, one
or more hidden layers and an output layer. The ANNs used in this study have
three layers: an input layer with N input variables, a hidden layer with H
neurons, and an output layer with a single neuron. A particular neuron is
composed of: i) the vector of input signals, ii) the vector weights and the
associated bias, iii) the neuron itself that sums the product of the input signal
with the corresponding weights and bias, and finally, iv) the neuron transfer
function (commonly known also as activation function). Each connection is

associated with a weight, w,,, and a bias, b, in the hidden layer and a
weight, v, , and a bias, v, for the output layer (k= 1,2,...,H, 1= 1,2,...,N). In

addition, the outputs of the hidden layer are the inputs for the output layer
(thus the term feedforward). The operation carried out for estimating

outputy, is the following:
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H N
y= fo{vo + ZUij[bj + Zwﬁxij] (4.10)
=1

i=1

The weights and biases are adjusted according to the faced problem via
optimization (the training algorithm). Their particularity relies on the fact that
the neurons on each layer operate collectively and in a parallel manner on all
input data.

For the purpose of this study, the hidden layer always uses the
hyperbolic tangent sigmoid transfer function, while the output layer uses a
linear transfer function. In addition, ANN architectures with only one hidden
layer are considered since they operate as a nonlinear regression tool and can
be trained to approximate most functions arbitrarily well (Cybenko, 1989).
High accuracy can be obtained by including enough processing nodes in the
hidden layer. Moreover, we also utilize the network initialization technique
proposed by Nguyen and Windrow (see Hagan et al., 1996) that generates
initial weights and bias values for a nonlinear transfer function so that the
active regions of the layer’s neurons are distributed roughly evenly over the
input space.

Estimating the networks free parameters is done by minimizing the

following sum of squares loss function:
2
&, 2 H N
arg min Zek = Z Yq —f({vo + Zvij[bj +ZwﬁxiJJ (4.11)
k=1 '

where, w is a v -dimensional column vector with the weights and biases given
T
by: w=1[by,....,by, Wy1s...,Wyy,Vo,---s Vg ]| -

Optimization of the loss function in Eq. (4.11) is done with the
Levenberg-Marquardt algorithm (further technical details about the
implementation of this algorithm for ANNs can be found in the first three

essays of this thesis and also in Hagan et al., 1996).
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4.3.2. e-insensitive support vector machines for function approximation

The application of SVM for regression was initially developed only for
performing linear regression. The technique has been extended to handle
nonlinear regression applications based on a very intuitive idea (see Vapnik,

1995, 1998). First, apply a mapping ¢(x) (chosen a-priori) of the input data x

into an arbitrarily high dimensional feature space which can be (possibly)
infinite dimensional. This transformation is usually called the kernel trick.
Second, the linear SVM regression can be applied to create an approximate
linear function in this arbitrarily high dimensional feature space. In this way,
doing linear regression in a high dimensional feature space corresponds to
nonlinear regression in the (low dimensional) input space (Mtller et al., 1999).

The idea behind the SVM for function approximation (Support Vector
Regression) is to estimate the coefficient values w (called the weights) and b
(called the bias) that optimize the generalization ability of our regressor by

minimizing the following regularized loss function:

w,b

mlnéw w+CZL ( f(xj)) (4.12)

where f (x) is the form of the SVM function approximation and is given by:
flx)=w'o(x)+b (4.13)

and L, (t, f (x) is the so-called Vapnik’s ¢ -insensitive loss functions defined

as:

if [t - flx) <&

L,(t, f(x) =t - f(x), {|t flx)-¢  otherwise

(4.14)
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In the above formulations ¢(x): RY 5 RV represents a nonlinear mapping
(transformation) of the input space to an arbitrarily high-dimensional feature
space which can be infinite dimensional (in such case the weights vector w
will also become infinite dimensional). The constant C >0 determines the
trade-off between the amount up to which deviations larger than & are
tolerated and the flatness (complexity) of the estimated model. In the case
where ¢ is chosen to be small and some datapoints do not lay within the tube
of ¢ accuracy the estimation of the w and b is done by formulating the

following optimization problem in the primal weight space of the unknown

coefficients:
min LP(w,f,5*):lew+Ci(§j+§;) (4.15)
w,b, &, & 2 =

subject to
ti-—wipx))-b<e+&;, j=1..,P (4.15.1)
whe(x;)-t;+b<e+&;, j=1,..,P (4.15.2)
£,£;20, j=1,..,P (4.15.3)

where &; and é:; are defined in the prime space, that need to be introduced in

order to make the solution of the optimization of the optimization problem
feasible for all datapoints that are outside the ¢ -tube.
Transforming the above into its dual formulation*’” and after applying the

kernel trick results to the following quadratic programming problem that

depends only by the dual variables o and o  (see the Appendix for details):

47 In nonlinear regression problems the primal weights vector w can become infinite
dimensional due to the applied transformation ¢(x). For this reason the solution of

the problem is better derived via its dual formulation.
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P
max  Lp(a, 0‘*)=_% Z(aj —a})(ai —a;)K(xj’xi)
“a jri=1
. . (4.16)
—52(%' +aj)+ th(aj _aj)
Jj=1 j=1
subject to
P
Z(aj—a;)=0 (4.16.1)
j=1
0<a;a;<C (4.16.2)

with:

P
f(x):Z(aj—a;)K(x,xj)+b (4.17)

and:

b :%(ti & i(aj —a;)K(xj,xi)+ 8sign(ai —a;) for aj,a; S (O,C)

(4.18)

To successfully apply the SVMs for nonlinear regression problems it is

necessary to apply the kernel trick by choosing a proper kernel function:
_ T
K(xj’xi)—(D(xj) o(x;) (4.19)

A function that is symmetric, continuous and satisfies Mercer’s condition (see
Vapnik, 1995 for details) is an admissible kernel function that represent a

scalar product in the (mapped) featured space as expressed in Eq. (4.19). The
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Gaussian kernel is a widespread kernel function that is admissible for use

with SVM for function approximation:

2
-

K(xj,xi)zexp - (4.20)

2
QO-K

2

where Hx — X;| measures the distance between two datapoints and 612{ is

j i

called the kernel width parameter and is used as a normalizing factor. It can

be shown that when the Gaussian kernel function is considered, the

nonlinear mapping ¢@(x ;) is infinite dimensional and also that SVM are

universal approximators (see Vapnik, 1995 and 1998 for details), an
implication of paramount importance that is contributing to a growing
popularity of SVM for regression applications.

The application of SVMs in general preserves some very helpful
characteristics compared to other learning techniques (e.g. feedforward
artificial neural networks,). The system of equations defined by Eqgs. (4.16),
(4.16.1) and (4.16.2) given a positive definite kernel translates to the
optimization of a convex QP problem subject to linear constraints that results
in a global and unique solution. On the contrary, feedforward artificial neural
networks suffer from existence of multiple local minima solutions*® since the

optimization function is not convex with respect to the network weights and
biases*9. Second, after selecting the SVM tuning parameters (C ,5,0'12{), the

model complexity is implicitly defined by the number of support vectors as

48 Among others, Cybenko (1989) has shown that ANNs with one hidden layer of
neurons can be universal function approximators that provide adequate robustness
and convergence with good out of sample generalization abilities. However, this
property can be of limited use in practice when the optimization algorithm gets stuck
in local minima resulting to a suboptimal solution because of the non-convexity of the
optimized error/loss function. In this study ANNs are implemented under certain
strategies like early stopping and use of cross-validation techniques that try to
eliminate the effect of local minima solutions and overfitting of the data.

49 For ANNs one would have a convex problem if one would fix a number of hidden
layer weights and one would compute the output layer’s weights (with linear
characteristic at the output) from a sum of square error cost function (Suykens et al.,
2002).
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part if the solution to the convex problem, whilst for the case of the ANNs the
number of hidden neurons should be defined a-priori. Third, the solution to
the problem is characterized by a sparse representation of the solution. As
explained earlier, the final solution is defined solely by the support vectors
which represent only a part of the datapoints used initially for the estimation
of the model. Another important issue is that the function’s representation is
independent of the dimensionality of the input space and depends only on the
number of support vectors; in other words the size of the QP problem does not
depend on the dimensionality of the input space. This is a significant remedy
for the curse of dimensionality issue. On the contrary, ANNs are prone to the
effects of the curse of dimensionality. In this case, early stopping and cross
validation techniques should be very carefully applied by an expert in an
attempt to overcome the curse of dimensionality by preventing the networks
from memorizing the data used for estimation and to result to a limited or a

poor generalization performance (Vojislav, 2001, Suykens et al., 2002).

4.3.3. Least squares support vector machines

The Least Squares Support Vector Machines method is a variant of the
original SVM methodology originally proposed and developed by Suykens and
co-workers (see Suykens et al., 2002). According to this approach the model

estimated is given by the following optimization problem in the primal weight

space:
min Lp(w e)—lew+ liez (4.21)
b, P ’ _2 7/2j=1 j .
subject to
ti=w'p(x;)+b+e;, j=1..P (4.21.1)

The above formulation is nothing else but a ridge regression cost function

formulated in the featured space defined by the mapping ¢(x). Parameter y

determines again the trade-off between the model complexity and goodness of
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fit to the estimation data. As in the case of SVM (see Suykens et al., 2002, pg.
98), after applying the kernel trick we obtain the following linear KKT system
in a and b (see the Appendix for details):

P a .

Z(ajK(xj,x))+b+7J:tj, j=1,...,P (4.22)
j=1

P

da;=0 (4.23)
j=1

where the resulting LS-SVM model that characterizes the estimated regression

function is given by:

P
f(x):ZajK(x,xj)+b (4.24)
=

Compared to the SVMs case, LS-SVMs preserve the following characteristics.
First, the Gaussian kernel function given by Eq. (4.20) can be used in this
case too. Second, the dual problem above corresponds to solving a linear KKT
system which is a square system with a unique (global) solution when the

matrix has full rank. Third, the error variable e j is used to control deviations

from the regression function instead of the slack variables %,f} and a

squared loss function is used for this error variable instead of the &-
insensitive loss function. This has two implications regarding the solution of
the problem: i) lack of sparseness since every data point will now be a support

vector, something that can be considered as a drawback compared to the
SVM, ii) only two parameters y and 0'12( are needed to be tuned compared to

three for SVM which is an advantage since it reduces the possible parameters
combinations (2-D grid instead of 3-D) and at the same time reduces the risk

of selecting a suboptimal parameter combination. Due to the reasons
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explained above, optimizing a set of LS-SVM models can be potentially faster
compared to standard SVMs.

Regarding the estimation process, for SVMs we use the support vector
training algorithm proposed by Vishwanathan et al., (2003) while for the LS-
SVMs we use a MATLAB® toolbox prepared by Suykens and co-authros (see
Suykens et al., 2002 for details). Finally we note that a z-score (mean-
standard deviation) scaling was applied to all input and output variables

during the estimation of all nonparametric models.

4.4. Data and methodology

4.4.1. Data and filtering rules

Our dataset covers the period January 2002 to August 2004 for a total
of 671 trading days. The S&P 500 index call options are used because this
option market is extremely liquid. They are the most popular index options
traded in the CBOE and the closest to the theoretical setting of the parametric
models (see Garcia and Gencay, 2000 and Constantinides et al, 2008). Each
trading day we have the last available bid and ask call price, along with the
strike priceS0, date of expirations!, volume and open interest. In our analysis
we use the midpoint of the call option bid-ask spread since as noted by
Dumas et al. (1998), using bid-ask midpoints rather that trade prices reduces

noise in the cross sectional estimation of implied parameters. Each day the

midpoint of the call option bid ask spread at the close of the market, c™* s

matched with the closing value of S&P 500 index52.

50 For the purposes of this study we use the following moneyness categories: deep out
the money (DOTM) when S/X<0.90, out the money (OTM) when 0.90<S/X<0.95, just
out the money (JOTM) when 0.95<S/X<0.99, at the money (ATM) when
0.99<S/X=<1.01, just in the money (JITM) when 1.01<S/X<1.05, in the money (ITM)
when 1.05<S/X<1.10, deep in the money (DITM) when S/X>1.10.

51 In terms of time length, an option contract is classified as short term maturity (when
maturity < 60 calendar days), as medium term maturity (when maturity is between 61
and 180 calendar days) and as long term maturity (when maturity > 180 calendar
days).

52 Data synchronicity should be minimal issue for this highly active market (see also
Garcia and Gencay, 2000). Among others, Christoffersen and Jacobs (2004) and
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To create an informative dataset we rely on the following filtering rules
(see also Bakshi et al., 1997): We first eliminate all observations that have
zero trading volume since they do not represent actual trades. Second, we
eliminate observations that violate either the lower or the upper arbitrage
options bounds. Third, we eliminate all options with less than six or more
than 260 days to expiration to avoid extreme option prices that are observed
due to potential illiquidity problems. Similarly, price quotes of less than 1.0
index points are not included. Finally, we demand at least four datapoints per
maturity to secure that during the implied parameters extraction process,
every maturity period is satisfactorily represented. The final dataset has a
total of 37202 which 21644 are used in the testing dataset. The data used in
this essay are similar to those used in the third one; thus sample

characteristics and other descriptives can be found in Table 3.2.

4.4.2. Splitting the data

We must first consider two issues; one regarding which dataset to use
for estimating our nonparametric models and one regarding the use of a cross
validation method when selecting our models. Regarding the first issue, until
now previous studies that apply ANNs for options pricing use long data
periods that result in large datasets. This is imperative to properly estimate
and select the best ANN models when high out of sample pricing accuracy is
requested (see Hutchinson et al., 1994, Garcia and Gencay, 2000, and
references therein). Contrary to this, for reasons explained earlier, SVM are
potentially more powerful when used with small datasets. They can be
estimated very fast when the dataset is small. Moreover, using shorter time
horizons might be beneficial in capturing the fast changing market conditions
which are probably missed with long time horizons. Using shorter time
horizons makes the estimation of SVM more competitive to POPMs which are
usually calibrated on a daily basis. For these reasons we use a chronological
data partitioning via a rolling-forward procedure.

Regarding the second issue, using cross validation is almost always

needed since this is an effective, yet heuristic, way of controlling the capacity

Chernov and Ghysels (2000) use daily closing prices of European call options written
on the S&P 500 index.
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of ANNs. Model capacity for SVM is part of the optimization problem but
cross-validation may be needed so as to properly select the tuning hyper-
parameters to ensure high out of sample accuracy. On the other hand when
the grid of possible tuning hyper-parameters is selected based on prior
knowledge then it may be possible to have good out of sample performance
without using a validation dataset.

For the case of SVM and LS-SVM we have conducted a pilot study
using data from 2002 in order to determine areas of the tuning parameters
values that result to models which performed well out of sample. For SVM we
restrict our attention to the following hyper-parameter values resulting in a
total of 40 possible combinations per training sample:

C €(10,50,100,200)

¢ €(0.025,0.05)

ok €(1.00,2.50,5.00,7.50,10.00) (4.25)

For LS-SVM we restrict our attention to the following hyper-parameter values
resulting to a total of 30 possible combinations per training sample:

y € (10, 100,250,500, 750,1000)
ok €(10,20,30,40,50) (4.26)

The above allows us to limit the possible number of hyper-parameter
combinations for the (testing) data in 2003-2004. We must note though that
the above naive selection does not guarantee that our SVM and LS-SVMs will
be optimized in the best possible way and that will result to the overall best
out of sample pricing estimates. There are other more sophisticated and
structured methodologies for hyper-parameter selection (Cherkassky and Ma,
2004). Such methodologies will be considered in future work.

For ANNs all networks having two to ten hidden neurons (in total nine)
are examined per training case. Moreover, for a certain number of hidden
neurons the network is (re)initialized and (re)trained 10 separate times in an
attempt to minimize the potential problems of obtaining weights and
parameters that result from a local minimum (in total 9x10=90 different

model/parameter estimations per input/output variable combination and per
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period). In addition, for a certain number of hidden neurons an early-stopping
strategy is also adopted as a second measure in avoiding overfitting.

Regarding the data splitting we estimate SVM and LS-SVMs, our
estimating (training) sample is always by using one month of data (around 23
trading days) and our validation sample is always 5 trading days. After
estimating all possible model combinations using the hyper-parameter
combinations in Eq. (4.25) and (4.26) the model with the least Root Mean
Squared Error (RMSE) in the validation dataset is chosen and used for out of
sample pricing for the 5 trading days following the validation sample.

For ANNs we follow two different ways for splitting the data. In the first
case we comply with previous studies that use rather long periods for training
and validation. As like in the third essay of this thesis we use twelve months
of data for training and two months for validation. After estimating all possible
model combinations the model with the least RMSE in the validation dataset
is chosen and used for out of sample pricing for the following one month of
data. In the second data splitting we use much less data points to be
compatible with the first splitting used for SVM and LS-SVM, that is one
month for training and 5 days for validation.

In this essay the period March 2003 to August 2004 is a period where
we can get out of sample pricing estimates from all models. For this period we
have 21644 datapoints for which we compute and tabulate: the Root Mean
Square Error (RMSE), the Mean Absolute Error (MAE), the Median Absolute
Error (MdAE) and the 5th Percentile of Absolute Error (PsAE) and 95th
Percentile of Absolute Error (PosAE). The focus of our analysis will be based on
the RMSE measure since Bates (2000, p. 202) points out that RMSE is a
relatively intuitive error measure and is useful for comparison with other

work.

4.4.3. Implied parameters

The methodology employed here for the estimation of the overall
average implied parameters is similar to that in previous studies (Bakshi et
al., 1997, Christoffersen et al., 2006) that adopt the Whaley (1982)
simultaneous equation procedure to minimize a price deviation function with

mrk )

respect to the unobserved parameters. Market option prices (c are
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assumed to be the corresponding POPM prices (¢*) plus a random additive

disturbance term (gk ), k=BS, CS, or SVJ:
c™k — k4 gk (4.27)

To find optimal implied parameter values per model k we solve an

optimization problem that has the following form:

P
SSE(t) = min zt(gj?)Q (4.28)
& oj=1

where P, refers to the number of different call option transaction datapoints

available in day ¢ §k the unknown parameters associated with a specific

POPM (k = BS, CS, and SVJ). The SSE is minimized via a Nonlinear Least
Squares optimization based again on the Levenberg-Marquardt algorithm. To
minimize the possibility of obtaining implied parameters that correspond to a
local minimum of the error surface with each model we use a variety of
starting values for the unknown parameters based on daily average values
reported in previous literature (for further technical details and numerical
results refer to the third essay of this thesis).

In addition to the above daily overall average (av) implied parameters,
we also estimate the DVF volatility estimates using a similar optimization
process. For BS this is straightforward; for CS we first estimate the overall
average implied parameters and then we fix skewness and kurtosis to
compute the contract specific implied volatility based on the volatility
structure given in Eq. (4.9). Finally we
note that for pricing at time instant ¢, the implied structural parameters
derived at day t -1 are used together with all other needed information based
on day t. Daily recalibration of the implied parameters (DVF and overall
average) for POPMs is also adopted by Bakshi et al. (1997) and Christoffersen
and Jacobs (2004) (see also Hull and Suo, 2002 and Berkowitz, 2004).
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4.4.4. The set of alternative models

With the BS models we use as input S, X, T3, dy 54, r55, and any of the

following ten volatility estimates: afs where j = {av, DVF } with BS ; denoting

the alternative BS parametric models. Similarly we denote the parametric CS

alternatives (CS j ). Finally note that for the SVJ model we only use the overall

average parameter estimates (SVJ). All these POPMs are used as benchmark

models.

The dividend adjusted moneyness ratio (Se_dyT) /X and time to

maturity (T) are always inputs to the nonparametric models. For
nonparametric models we have two different target functions. The market
target function which represents actual market prices of call options and the
hybrid one represents the residual between the actual call market price and
the parametric option price estimate.

The notation here depends on the additional inputs that are used from
the parametric models. We use SVM®, with j{av, DVF} to denote the SVM

that use as additional input variable the BS volatilities: 2> and O'g{?F. In

addition, we use ={M, H} for subscript for denoting the nonparametric models

that are estimated based on Market and the Hybrid target function. In a
similar fashion we use LSSVM} and ANNJi- for the LS-SVM and ANNs

models. In total we examine four SVM models and four LS-SVMs. In addition,
we have four ANN models that are estimated with the twelve-two-one months
data-plitting and another four ANN models that are estimated with the same

short data splitting as with the SVMs and LS-SVMs.

53 Time to maturity is computed assuming 252 days in a year.

54 We have collected a daily dividend yield provided by Thomson Datastream.
Jackwerth (2000) also assumes that the future dividends for the S&P 500 index can
be approximated by a dividend yield.

55 Previous studies have used 90-day T-bill rates as approximation of the interest rate.
In this study we use nonlinear cubic spline interpolation for matching each option
contract with a continuous interest rate, r, that corresponds to the option’s maturity.
For this purpose, 1, 3, 6, and 12 months constant maturity T-bills rates (collected
from the U.S. Federal Reserve Bank Statistical Releases) were considered.
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4.5. Analysis of pricing results

Extensive details and numerical results regarding the calibration of the
parametric models in obtaining the best daily overall average (av) and DVF
implied parameters are given in the third essay of this thesis. Moreover, in the
same essay we can find details regarding the in sample implied mean values
of their parameters as well as their in sample pricing performance.

We start our analysis with Table 4.1 that exhibits the out of sample
performance of the parametric models. We see that the DVF based CS models
provide better performance than the corresponding DVF based BS ones with
about 14% improvement in the RMSE. Overall though, the SVJ model is the

top performer in all metrics.

BS,, BSys CS.., CSpyra SVJ
RMSE  3.285 2.008 2.245 1.766 1.498
MAE 2.579 1.186 1.709 1.257 1.071
MeAE  2.172 0.833 1.358 0.929 0.796
PsAE 0.242 0.078 0.118 0.085 0.065
PosAE  6.396 3.100 4.370 3.422 2.996

Table 4.1. Out of sample pricing performance of the parametric models
Error performance results (out of sample pricing) for all parametric models for the
aggregate period March 3, 2003 to August 31, 2004.

We then look at the nonparametric models’ results. We first
concentrate our attention to Table 4.2 which exhibits the out of sample
pricing for ANNs using the short (top panel) and the long (lower panel) data-
splitting. The first observation is that the pricing performance with the short
data-splitting is much better in the three out of the four models considered.
Using so short data splittings is not the mainstream for financial applications
of ANNSs; thus this observation is rather new evidence indicating that under
proper development ANNs can have good pricing performance in small
datasets most probably because they can better capture the fast changing
market conditions. Another important observation from this table is that
always the hybrid models perform better than the ANNs estimated with the
market target function; the hybrid ANNs (with the short data splitting) are
competitive with the best POPMs. In addition, as expected, the models with

O'E{EF always perform better than the models with afvs . Specifically, ANN
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is much better that any of the BS and CS DVF based models and its RMSE is
also statistically non different to the RMSE of SVJ (see statitscs of Table 4.5
that tabulates standard two-tail t-tests and Johnson’s, 1978, modified t-tests).

ANNM ANNE ANNY - ANNE,.
Tr: 1 month, Vd: 5 days, Ts: 5 days
RMSE 1.922 1.859 1.784 1.517
MAE 1.425 1.379 1.281 1.071
MeAE 1.088 1.089 0.929 0.799
PsAE 0.096 0.099 0.083 0.070
PssAE 3.970 3.57 3.634 2.900

Tr: 12 months, Vd: 2 months, Ts: 1 month

RMSE 2.201 1.756 2.036 1.684
MAE 1.626 1.340 1.350 1.056
MeAE 1.271 1.086 1.003 0.745
P;AE 0.120 0.095 0.091 0.067
PosAE 4.391 3.446 3.581 2.924

Table 4.2: Out of sample pricing performance for ANNs

Error performance results (out of sample pricing) for all Artificial Neural Network
models for the aggregate period March 3, 2003 to August 31, 2004. The symbol “N’ is
used to indicate that the ANN is estimated based on the market target function while
“H” is used to indicate the hybrid target function. Morover the subscript “av”’ indicates
that the Black and Scholes overall average implied volatility is used as an extra input
to the ANNs while “DVF” indicates that the the Black and Scholes overall average
implied volatility is used as an extra input. RMSE is the Root Mean Square Error,
MAE is the Mean Absolute Error, MeAE is the Median Absolute Error and P5AE
(P9SAE) is the 5th (95th) Percentile of Absolute Errors.

The out of sample results for SVMs (Table 4.3) and for LS-SVMs (Table
4.4) follow the same pattern as with ANNs. First, we always observe the hybrid

models to perform considerably better than the models estimated with the

market target function. Second, the models estimated with ag%; as input

perform better than the models estimated with aégos . At a first glance the

RMSE results of these models are for most of the cases above 2.00 meaning

that they are not competitive enough to the POPM results shown in Table 4.1;
this happens for six out of eight cases. Only SVM },» and LS —SVM [}, have
RMSE substantially lower than 2.00. Specifically the RMSE for SVM {;’VF is

equal to 1.623 and for LS - SVM {;’VF is equal to 1.594; these are statistically
lower than the RMSE’s of BSy;, and CSy;, but statistically higher than the
RMSE’s of SVJ .
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SsvM™ SVME SVMY . SVME -
Tr: 1 month, Vd: 5 days, Ts: 5 days

RMSE 5.944 2.656 2.361 1.623
MAE 2.519 1.684 1.467 1.119
MeAE 1.358 1.166 1.036 0.802
PsAE 0.125 0.106 0.090 0.067
PysAE 6.574 4.854 4.219 3.200

Table 4.3: Out of sample pricing performance for SVM

Error performance results (out of sample pricing) for all Support Vector Machines for
the aggregate period March 3, 2003 to August 31, 2004. The symbol “N” is used to
indicate that the ANN is estimated based on the market target function while “H” is
used to indicate the hybrid target function. Morover the subscript “av” indicates that
the Black and Scholes overall average implied volatility is used as an extra input to
the ANNs while “DVF” indicates the Black and Scholes overall average implied
volatility is used as an extra input. RMSE is the Root Mean Square Error, MAE is the
Mean Absolute Error, MeAE is the Median Absolute Error and P5SAE (P95AE) is the
Sth (95th) Percentile of Absolute Errors.

LS -svmX LS -SvME LS-SVMY,. LS-SVMZ.
Tr: 1 month, Vd: 5 days, Ts: 5 days
RMSE 4.899 3.756 2.107 1.594
MAE 2.362 1.912 1.429 1.120
MeAE 1.348 1.163 1.010 0.801
P;AE 0.122 0.104 0.088 0.072
PosAE 6.942 5.158 4.180 3.243

Table 4.4: Out of sample pricing performance for LS-SVM

Error performance results (out of sample pricing) for all Least Squares Support Vector
Machines for the aggregate period March 3, 2003 to August 31, 2004. The symbol “N’
is used to indicate that the ANN is estimated based on the market target function
while “H” is used to indicate the hybrid target function. Morover the subscript “av”
indicates that the Black and Scholes overall average implied volatility is used as an
extra input to the ANNs while “DVF” indicates the Black and Scholes overall average
implied volatility is used as an extra input. RMSE is the Root Mean Square Error,
MAE is the Mean Absolute Error, MeAE is the Median Absolute Error and P5AE
(P95SAE) is the 5th (95th) Percentile of Absolute Errors.

231



1 2 3 4 S 6 7 8 9

1 3.176 6.020 2.998 6.090 -2.319 4.812 -1.214 5.257
2 -3.673 6.851 -0.702 8.744 -4,039 4.334 -6.583 6.234
3 -6.256 -7.253 -7.950 -0.491 -5.441 -2.870 -10.242 -2.464
4 -3.042 0.751 8.100 11.051 -3.947 5.441 -6.460 8.126
5 -7.166 -11.210 0.547 -12.383 -5.400 -3.179 -10.914 -2.867
6 2,502 4.088 5.452 4.041 5.435 4.828 1.795 5.008
T -6.134 -5.308 3.107 -5.869 5.224 -4.973 -8.790 0.900
3 1.797 7.259 10.332 7.008 12.364 -2.098 13.528 9.711
9 -6.077 -8.202 2.809 -9.566 4.912 -5.170 -2.045 -12.569

Table 4.5. t-tests for out of sample model performance comparison

Values in the upper (lower) diagonal report the Student t-value (Johnson, 1978,
modified t-value) regarding the comparison of means of the squared residuals between
models in the vertical heading versus models in the horizontal heading. In general, a
positive (negative) t-value larger (smaller) than 1.96 (-1.96) indicates that the model in
the vertical (horizontal) heading has a larger MSE than the model in the horizontal
(vertical) heading at 5% significance level (for 1% significance level use 2.325 and -
2.325 respectively). The models compared are:

1: BSpo

: CSppo

: SWJ

: ANN D

: ANNG .

: SVM Y .

: SVM 5

: LS —SVM
: LS -SVM },,

o 00 N O a1 A WN

There are two additional observations we can make from these tables.
First, we should note that in three out of the four cases, the performance of

the LS-SVM models is better compared to the SVM models. The only exception
is SVM [ with RMSE equal to 2.656 compared to the 3.756 of LS — SVM [ .

In addition, it is obvious that the RMSE out of sample results for ANNs are
lower compared to the counterpart SVMs and LS-SVMs models. This does not
necessarily imply that LS-SVMs are superior to SVMs and that ANNs are
superior to the other nonparametric models. One explanation for this regards
the naive hyper-parameter selection process we follow which as noted earlier
might not be the best strategy to adopt. Furthermore, someone should notice
that ANNs and SVMs (and LS-SVMs) employ different forms to model the
problem under investigation and they use different loss functions to measure

performance. If the data are contaminated with pure Gaussian noise then
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may observe ANNs and LS-SVM that are optimized based on a sum of squares
loss function to perform better than SVMs; also SVMs with the ¢ -insensitive
loss function can potentially perform better than non-Gaussian noise (Muller
et al., 1999). In addition, SVMs that use inappropriate large values for & may
introduce systematic bias to the estimation and considerably underfit the

relationship (Muller et al., 1999).

4.6. Conclusions

In this essay we investigate the options pricing performance of ANNs,
AVMs and LS-SVMs for the period 2002-2004. With these models we use
implied volatility inputs obtained by the Black and Scholes model and we
estimated them using the market and the hybrid target functions. All results
obtained for the nonparametric models are compared with the Black and
Scholes, the Corrado and Su and the Stochastic Volatility and Jumps
parametric models. The results suggest that LS-SVMs perform better than
SVMs but the ANNs performance is the overall best among the nonparametric
models. In addition, there is a hybrid ANN model that has comparable
performance with SVJ which is the best performing POPM.

In our view, the results obtained for SVMs and LS-SVMs are promising
enough for the problem under insvestigation. We feel that the out of sample
results for ANNs might look better than the ones obtained with SVMs and LS-
SVMs because our level of expertise with ANNs is significantly higher. We can
expect that under more careful and sophisticated strategies of hyper-
paramete selection SVM and LS-SVM can improve their out of sample
performance. Further research is needed here to also investigate the
performance of SVMs and LS-SVMs combined with other inputs/outputs from
the POPMs. Ideally the most advanced extension of this analysis is to manage
to combine the methodologies of the third and fourth essays in order to derive

generalized parameter functions with SVMs and LS-SVMs.

233



4.A. Appendix

Below we present an extensive overview regarding the nonparametric
methodologies employed in this essay. A shorter version of the following has

been included in the main content of the essay.

4.A.1 The nonparametric approaches: ANNs, SVM and LS-SVM

ANNs comprise a popular methodology for handling function estimation
problems for many reasons. First, of all theoretical proofs exist showing that
under certain conditions, ANNs are universal approximators able to
approximate any nonlinear function arbitrarily well (Cybenko, 1989). In
addition, they perform good in situations where there is lack of knowledge for
the relationship that underpins a set of variables and they are robust on the
presence of noisy data. Nevertheless, they are prone also to some practical
merits and limitations. First, there are no theoretical foundations on how to
select the network type and structure and on how to implement the
optimization procedure. For this reason the model structure (number of
neuron layers and number of hidden neurons in each of the layers) should be
defined a-priori which is not necessarily the best strategy in choosing the
optimal network architecture for the faced problem. This task is rather an art
instead of science and can be better tackled by experts with experience on
how to apply the ANNs methodology having at the same time considerable
knowledge on the problem under investigation. Second, estimating ANNs
involves the optimization of a highly non-convex error function and frequently
enough optimization algorithms get stuck to local minima solutions resulting
to suboptimal solutions for the network free parameters (weights and biases).
Given this peculiarity, regularization techniques that are employed in an
attempt to control the capacity of the ANNSs, like cross validation strategies
and early stopping, are only partial remedies potentially resulting to
structures that do not maximize their generalization performance to unseen
data. Finally ANNs learn the empirical functions inductively from transactions
data without embedding any information related to the problem under
investigation. Under this setting, the estimated weights do not convey any
meaningful interpretation to help wunderstand better the input-output

relationship.
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In contrast, SVMs are not confined by the above issues (Smola and
Scholkoph, 1998). First of all, the model complexity does not need to be
determined a-priori. It is determined endogenously as part of the optimization
problem in such a way that maximizes the generalization capability of the
model. More importantly, a unique solution is found after estimation as a
solution of a (convex) Quadratic Programming (QP) problem with linear
constraints, which depends on the estimating data and the selection of few
tuning hyper-parameters. In addition, the solution to the QP problem provides
the necessary information for choosing the most important datapoints, known
as support vectors, among all the data; based on the SVM formulation,
support vectors uniquely define the estimated regression function so in this
manner the estimated coefficients are informative. Furthermore, input data of
any arbitrary dimensionality can be treated with only linear cost in the
number of input dimensions. This property in conjunction with the good
inherent regularization properties allows SVMs to work particularly well when
data is sparse (see Mtller et al., 1999, Smola and Schoélkoph, 1998). Yet, the
performance of the SVM technique, like ANNs, depends crucially by the choice
of the loss function which is inextricable connected with the noise in the data

(Gaussian or not) and by data regularities (e.g. non-stationary financial data).

4.A.2 About the empirical and structural risk minimization

When we apply ANNs our ultimate purpose is for a given finite set of

input patterns x to define a set of adjustable parameters @ resulting to the
estimating function f(x,®) that describes the known target patterns (desired

output) t. To achieve this we minimize the following error measure which is

called the empirical risk:

. 1<
argmin R, [f]=— E L( j,t]-,f(x]-,a))) (4.A.1)
feH, szl

where L( it flx J-,a))) represents a general loss function determining how

estimation errors are penalize and H; represents a general class of
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continuous function from which the approximating function f(x,®) can be
selected.

By minimizing the empirical risk with the finite sample data we assume
that we will manage to identify the best function f(x,®) that also minimizes

generalization error (also termed as the expected risk) of the estimator given
by:

Ryen (f) = [ Ll t, £ (x, @))p(x, t)dxdt (4.11)

which expresses the level of error obtained by the data generating mechanism

under the joint probability distribution p(x,t) that governs all input-output
data. The fact is that the joint probability distribution p(x,t) is most of the

time unknown for real-life applications and the model must be estimated
using only the observed datapoints by minimizing the empirical risk. In the
context of statistical learning theory, Vapnik has shown that the following

probabilistic bound can be derived for the generalization error:

Ryen(f)S Repy (f)+ VC(P, R, 1) (4.A.2)

where in the above bound the second term is a confidence term, called the

Vapnik — Chervonenkis confidence, that holds with probability 1-7 for a

sample size of P. The VC confidence also depends crucially on h which
characterizes the model complexity known as the VC dimension (see Vapnik,
1995 for further technical details); in general it is an increasing function in
the number of free parameters5¢ and decreasing in the number of datapoints.
The expression in Eq. (4.A.2) is analogous to the bias-variance trade-off.
Simple models that have too few adjustable parameters do not have enough

representational power and they typically result in high bias (high empirical

56 There can be cases where a model with more free parameters does not necessarily
has a higher VC dimension compared to one with fewer free parameters (Vapnik,
1995).
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risk). However, they are rather robust and not so sensitive to the data used for
estimation resulting to low variance (low VC bound). On the contrary, a high
capacity model with a large number of adjustable parameters will result in
higher accuracy on the given training set with low bias (low empirical risk).
Large capacity models because of high approximating power are able to overfit
(memorize) the data by also modelling the noise inherent in the data. Such
models are data sensitive meaning that each particular dataset will give rise
to a different model meaning that their variance (VC bound) will be high
(Vojislav, 2001, pg. 136). Thus for a given finite sample of data points the best
generalization performance will be achieved if the right balance is identified
between the accuracy obtained on that particular training set, and the
capacity of the model.

Thus the informational content behind Eq. (4.A.2) is that we can define
an upper bound for this kind of risk that can eventually help us to select
among alternative models. Furthermore, in the context of VC theory it can be
shown that for bounded loss functions the empirical risk minimization
principle is consistent if and only if empirical risk converges (in probability)

uniformly to the expected risk in the following sense:
;im p{sup(R(f)—Remp(f))> 8:|=O, Ve >0 (4.A.3)
—® a)

The above expression imposes the necessary conditions so that the function
that minimizes the empirical risk converges to the best function that
minimizes the expected risk. An important insight of the VC theory is that a
necessary and sufficient condition for a fast rate of convergence of the
empirical risk minimization is that the VC dimension of a set of approximating
functions be finite (Vapnik, 1995). In other words, without restricting the set
of admissible functions, empirical risk minimization is not consistent when
trying to estimate a model with a finite number of datapoints. The so called
structural risk minimization can be employed to circumvent this peculiarity
(see Vapnik, 1995) especially when dealing with small samples (Vojislav,

2001). One considers a set H of approximating functions:
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..H, , c H < H,, .. (4.A.4)

which consists of nested sets of functions of increasing complexity (increasing
VC dimension). The larger the VC dimension the smaller the empirical risk
can become but the VC confidence term in Eq. (4.A.2) will grow. Structural
risk minimization is an effective way of controlling the VC confidence so as to
control the generalization risk. SVM can be a promising alternative compared
to ANNs since there are theoretical foundations showing that they actually
minimize the generalization error by simultaneously minimizing the VC
confidence interval and the empirical risk, resulting in models with potentially
superior generalization ability (not asymptotically but when using a finite data
sample). The most intriguing feature is that this process is part of the
formulated optimization problem. On the contrary, heuristic techniques like
early stopping and cross validation are used with ANNs in order to select from
a possibly infinite pool of candidate models the best model with the smallest
possible generalization error.

Below we explain the mathematical framework that underpins the
nonparametric methodologies we employ in this study. For this we assume

that we have a given dataset with features points (x,,t,), (X,,t,), ---, (Xp,tp)
were X; € RY are the input features, t; €N are the known target values

(desired output), N is the number of input variables and j=1, 2, ..., P with

P to represent the sample size.

4.A.3. s-insensitive support vector machines for function approximation

The application of SVM for regression was initially developed only for
performing linear regression. The technique has been extended to handle
nonlinear regression applications based on a very intuitive idea (see Vapnik,
1995, 1998). Firstly, to apply a mapping ¢(x) (chosen a-priori) of the input
data x into an arbitrarily high dimensional feature space which can be
(possibly) infinite dimensional. This transformation is usually called the kernel
trick. Secondly, the linear SVM regression can be applied to create an
approximate linear function in this arbitrarily high dimensional feature space.

In this way, doing linear regression in a high dimensional feature space
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corresponds to nonlinear regression in the (low dimensional) input space
(Mtller et al., 1999).

The idea behind the SVM for function approximation (Support Vector
Regression) is to estimate the coefficient values w (called the weights) and b
(called the bias) that optimize the generalization ability of our repressor by

minimize the following regularized loss function:

min %w w+CZL ( f(xj)) (4.A.5)

w,b i

where f (x) is the form of the SVM function approximation and is given by:
flx)=w'plx) + b (4.A.6)

and L, (t, f (x) is the so-called Vapnik’s ¢ -insensitive loss functions defined

as:

0 if |t - flx) <&

AT
|t f(x)|— otherwise (4.4.7)

L,(t f(x) =]t - f(x), {

In the above formulations go(x):iRN — RV represents a nonlinear
mapping (transformation) of the input space to an arbitrarily high-
dimensional feature space which can be infinite dimensional (in such case the
weights vector w will also become infinite dimensional). Under this Eq.
(4.A.6) can be seen as a set of linear functions that are defined in a high
dimensional space, thus allowing us to solve nonlinear regression problems

with the use of SVM that perform linear regression. Minimizing the norm of

the weights vector, wlw in Eq. (4.A.5), allows us to control the complexity
(called flatness or capacity) of the estimated function. The empirical risk

minimization is achieved by minimizing the Vapnik’s ¢ -insensitive loss
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function, L,(t, f(x)), that allows us to control the accuracy of the estimated

function that is defined by the value ¢ (called the tube size). Finally, the
constant C >0 determines the trade-off between the amount up to which
deviations larger than & are tolerated and the flatness (complexity) of the
estimated model.

In the case where ¢ is chosen to be small and some datapoints do not
lay within the tube of & accuracy the estimation of the w and b is done by
formulating the following optimization problem in the primal weight space of

the unknown coefficients:

P
min_ Lp(w, £, 5*):%wTw+CZ(§j+§;) (4.A.8)
w,b, ¢, j=1
subject to
ti-—wipx;)-b<e+&;, j=1..,P (4.A.8.1)
who(x;)-t;+b<e+&;, j=1,..,P (4.A.8.2)
£,6,20, j=1..,P (4.A.8.3)

where &, and /f]* are positive slack variables, defined in the prime space, that

need to be introduced in order to make the solution of the optimization of the
optimization problem feasible for all datapoints that are outside of the ¢ -tube.

The above formulation is better solved by introducing positive Lagrange

multipliers o, 05;, N 77; > 0 (called the dual variables) 57:

57 In nonlinear regression problems the primal weights vector w can become infinite
dimensional due to the applied transformation ¢(x). For this reason the solution of

the problem is better derived via its dual formulation.
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A(w,b,f,f*,a,a*,n,n*):

%wTw+CZ(§ +r§) i (e +& -t +wiop(x; )+b)

=1

P . P
—Zaj(g +& -t +wo(x; )+b) Z(njf + 1 )

Jj=1 Jj=1

(4.A.9)

The saddle point of the Lagrangian formulation should be maximized with

respect to the dual variables and minimized with respect to the primal

variables:

max min A(wa,f aa,n,n) (4.A.10)
a, e nn" w,b, & E

It follows from the saddle point condition that the partial derivatives of A

with respect to the primal variables (w, b, ¢, 5* ) have to vanish for optimality:

oA P n

-0= w=Y (e, -a o) (4.A.11)
P

Ly YN Z(aj—a;)zo (4.A.12)

o¢,

4 o= n;=C-a; (4.A.14)

o0&

Substituting Eq. (4.A.11) through X(4.A.14) into Eq. (4.A.9) results to a

quadratic programming problem that depends only by the dual variables «

and o (called the dual problem):
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P
max Lp(a, a*):—é Z( —-a; Xa ~a; )K
a,a* _
Pl (4.A.15)
P P
eyl +aj)+ Ytjla; - aj)
j=1 j=1
subject to
P *
(aj —aj):O (4.A.15.1)
j=1
0O<aj,a;<C (4.A.15.2)
Using Eq. (4.A.11), the dual representation of the model becomes:
P *
fl(x)= z<aj —aj)K(x,xj)+b (4.A.16)
j=1

In the above setting the kernel trick has been applied with
K(x J,x) (p(xj)T @(x;). It enables us to work in huge dimensional feature

spaces ¢(x) without actually having to do explicit computations in this space.
Also note that in this setting, the optimization problem corresponds to finding
the flattest function in the feature space, not in the input space (Smola and
Schoélkoph, 1998). It is also important to note that we do not need to compute
explicitly the value of w to evaluate the function that results from the
estimation of the SVMs since f(x) can be easily evaluated via Eq. (4.A.16)
with the use of the kernel trick.

Someone can use the complementary Karush-Kuhn-Tucker (KKT)
conditions for the computation of the coefficient b. KKT state that product
between dual variables and constraints should be zero at the optimal

solution. Based on the aforementioned this results to:
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aj(g+§j—tj+wT¢(xj)+b):O (4.A.17)

o (e +&~t; + wTp(x;)+ b)=0 (4.A.18)
(C-a;)=0 (4.A.19)
(c-a;)=0 (4.A.20)

The above expressions allow us to make several useful conclusions (see Smola

and Scholkoph, 1998). Firstly, only samples (xj,tj) with corresponding

aj, a; = C lay outside the ¢ -insensitive tube around the estimated function.

Secondly, for the same data point obviously there can never be a set of dual
variables a;,a’

j»@j which are simultaneously nonzero (« ja; =0). Thirdly for

o -

J,a;- € (O, C) it holds that fj,gg; =0 thus the second factor in Eq. (4.A.17)

and (4.A.18) should equal zero respectively. Hence, b can be computed as

follows:

b:tj—wT(p(xj)—e for aje(O,C) (4.A.21)

T *
b=t;-w'p(x;)+¢& for a; e(0,C) (4.A.22)

From the above, one data point should be in principle sufficient to compute

the bias b but for stability purposes it is recommended to take the average

over all points that hold aj,a; e(O, C) (Muller et al., 1999). Then the

estimation of bis given by:
1 N * * *
b= F(ti - Z(aj —aj)K(xj,xi)+ esign(ai ~a; ) for a;,a; €(0,C)
j=1
(4.A.23)
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From Eq. (4.A.17) and (4.A.18) it follows that for datapoints that lay inside the

& -insensitive tube, o ja; =0 so that the KKT conditions are satisfied. With

this and in conjunction with Eq. (4.A.11) it is true we have a sparse expansion

of w in terms of the datapoints x;. In other words after estimating the SVM

model we do not need all x; to describe w. The examples that come with no

vanishing coefficient values for w are called support vectors (see also Vapnik,
1995). Support Vectors can depict the distributional features of all data
according to the nature of SVMs, removing some trivial data from the whole
training set will not greatly affect the generalization performance but speed
the training process effectively (Suykens et al., 2002).

To successfully apply the SVMs for nonlinear regression problems it is

necessary to apply the kernel trick by choosing a proper kernel function:

K(x;, %) = p(x,)" plx;) (4.A.24)

such that we do not need to explicitly define the nonlinear mapping function

¢(x) since Eq. (4.A.24) is a function in input space. A function that is

symmetric, continuous and satisfies Mercer’s condition (see Vapnik, 1995 for
details) is an admissible kernel function that represent a scalar product in the
(mapped) featured space as expressed in Eq. (4.A.24). The Gaussian kernel is
a widespread kernel function that is admissible for use with SVM for function

approximation:

2
fo ~Xi

K(xj,xi)zexp - (4.A.25)

2
20-K

2

where Hx — X;| measures the distance between two datapoints and 0;2{ is

J 1

called the kernel width parameter and is used as a normalizing factor. It can

be shown that when the Gaussian kernel function is considered, the
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nonlinear mapping ¢@(x J-) is infinite dimensional and also that SVM are

universal approximators (see Vapnik, 1995 and 1998 for details), an
implication of paramount importance that is contributing in a growing
popularity of SVM for regression applications. It is notable that although
implicitly the mapping corresponds to dot products in an infinite dimensional
feature space, the complexity of computing the kernel function can be much
smaller resulting to tractable computations.

The application of SVMs in general preserve some very helpful
characteristics compared to other learning techniques (e.g. feedforward
artificial neural networks, etc). The first important characteristic regards their
optimization aspect. The system of equations defined Egs. (4.A.15), (4.A.15.1)
and (4.A.15.2) given a positive definite kernel translates to the optimization of
a convex QP problem subject to linear constraints that results to a global and
unique solution. On the contrary, feedforward artificial neural networks suffer
from existence of multiple local minima solutionsS® since the optimization

function is not convex with respect to the network weights and biases.
Second, after selecting the SVM tuning parameters (C ,5,012{), the model

complexity is implicitly defined by the number of support vectors as part if
the solution to the convex problem, whilst for the case of the ANNs the
number of hidden neurons should be defined a-priori. Third, the solution to
the problem is characterized by a sparse representation of the solution. As
explained earlier, the final solution is defined solely by the support vectors
which represent only a part of the datapoints used initially for the estimation
of the model. Another important issue is that the function’s representation is
independent of the dimensionality of the input space and depends only on the
number of support vectors; in other words the size of the QP problem does not
depend on the dimensionality of the input space. This is a significant remedy

for the curse of dimensionality issue. On the contrary, ANNs are prone to the

58 Among others, Cybenko (1989) has shown that ANNs with one hidden layer of
neurons can be universal function approximators that provide adequate robustness
and convergence with good out of sample generalization abilities. However this
property can be of limited use in practice when the optimization algorithm gets stuck
in local minima resulting to a suboptimal solution because of the non-convexity of the
optimized error/loss function. In this study ANNs are implemented under certain
strategies like early stopping and use of cross-validation techniques that try to
eliminate the effect of local minima solutions and overfitting of the data.
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effects of the curse of dimensionality. In this case, early stopping and cross
validation techniques should be very carefully applied by an expert in an
attempt to overcome the curse of dimensionality by preventing the networks
to memorize the data used for estimation and to result to a limited or a poor

generalization performance (Vojislav, 2001, Suykens et al., 2002).

4.A.4. Least squares support vector machines

The Least Squares Support Vector Machines (LS-SVM) method is a
variant of the SVMs methodology originally proposed and developed by
Suykens and co-workers (see Suykens et al., 2002). According to this
approach the model estimated is given by the following optimization problem

in the primal weight space:

: 1 r 1&

min Lp(w,e):5w w+y§j§ej (4.A.26)
subject to

ti=w'p(x;)+b+e;, j=1,..,P (4.A.26.1)

The above formulation is nothing else but a ridge regression cost function

formulated in the featured space defined by the mapping ¢(x). Parameter y

determines again the trade-off between the model complexity and goodness of
fit to the estimation data. Like in the case of SVM (see Suykens et al., 2002,

pg. 98), the resulting Lagrangian formulation is:

P P
A(w, b, e, a)=%wTw+y%ZeJ2. —Zaj(wT(p(xj)+b+ej —tj)
= =

(4.A.27)

246



where «; are the Lagrange multipliers which in contrast to the SVM case can

be both positive or negative due to the equality constraints. Again, the

conditions for optimality are given by:

a—A—O:> w—ia(p(x) (4.A.28)
ow s J J
P

A _o Sa; =0 (4.A.29)
ob a
aa_A=O:> 0{J =}/6J, j=1,...,P (4.A.30)
€j
oA T .
E:O: w px;)+tb+e; -t; =0, j=1,...,P (4.A.31)

J

Substituting the expressions for w and e back to Eq. (4.A.27) result to the

following linear KKT system in a and b:

a.

Z(ajK(xj,x))+b+7J:tj, j=1..,P (4.A.32)
j=1

P

Y a;=0 (4.A.33)
im1

where the resulting LS-SVM model that characterizes the estimated regression

function is given by:

f(x):iajK(x,xj)+b (4.A.34)

j=1
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Someone can observe that the kernel trick as given by Eq. (4.A.32) is also
applied here and that the size of the KKT system is not influenced by the
dimension of the input space but is only determined by the sample size.
Compared to the SVMs case, LS-SVMs preserve the following
characteristics. First, kernel functions that are admissible for the SVMs can
also be used in the formulation of the LS-SVMs so the use of Gaussian kernel
function given by Eq. (4.A.25) can be used in this case too. Second, the dual
problem above corresponds to solving a linear KKT system which is a square
system with a unique (global) solution when the matrix has full rank. In
addition, for moderate sample sizes there are algorithms that can efficiently
(in terms of time and computer’s memory capacity) solve the above system.
For instance the Hestenes - Stiefel conjugate gradient algorithm can be
applied to solve the above system of equations after transforming it into a

positive definite system (see Suykens et al., 2002, for further details). Third,

the error variable e; is used to control deviations from the regression

function instead of the slack variables & j,é; and a squared loss function is

used for this error variable instead of the ¢ -insensitive loss function. This has
two implications regarding the solution of the problem: i) lack of sparseness
since Eq. (4.A.30) implies that every data point will be now a support vector

since no langrage multiplier «; will be exactly zero which it can be considered

as a drawback compared to the SVM, ii) only two parameters y and 012{ are

needed to be tuned compared to three for SVM which is an advantage since it
reduces the possible parameters combinations (2-D grid instead of 3-D grid)
and at the same time reduces the risk of selecting a suboptimal parameter
combination. Due to the reasons explained above, optimizing a set of LS-

SVMs model can be faster compared to standard SVMs.
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II. Concluding Remarks

The research interest of this thesis is on the empirical performance of

alternative, parametric and nonparametric, options pricing models that are
more realistic and can result in more accurate option estimates.
First, a lot of consideration is given to parametric formulas that are based on
more flexible distributional assumptions able to model negative skewness and
excess kurtosis. Specifically, we consider as benchmarks the Stochastic
Volatility and Stochastic Volatility and Jump models proposed by Bates
(1996) which are developed based on a specific parameterized diffusion
process that allows for discontinuities and randomly changing variance of the
underlying asset. Although these models are known to be more accurate
compared to the Black and Scholes formula, they are less intuitive and
sometimes exceedingly complex to be applied in practice. For this reason, in
the first three essays we incorporate the use of the Corrado and Su (1996)
model in the framework we develop. This model is an extension of the Black
and Scholes model that can easily handle nonnormal skewness and kurtosis.
In addition, to the above we also consider the Deterministic Volatility
Functions approach proposed by Dumas, Fleming and Whaley (1998) which is
an intuitive approach that relaxes the Black and Scholes assumption of
having a constant volatility per options contract. This methodology is very
intriguing since there are theoretical proofs showing that it constitutes a
reduced-form approximation to an unknown structural model which under
frequent re-estimation can exhibit exceptional pricing performance.

The most significant contributions of this thesis regard the
development and applications of nonparametric methodologies. The first essay
includes comparisons with respect to pricing and trading performance
between parametric models and several alternative artificial neural network
specifications by using a large amount of input-output combinations. This
essay considers in depth significant issues not examined before and
reconciles partial evidence reported previously. The second essay uses only
the key results of the first essay in order to show that better options pricing
performance can be achieved with robust artificial neural networks.

All nonparametric models examined in the first two essays are able to learn to

approximate the empirical options pricing function inductively from
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transactions data. Yet their estimation algorithms do not embed directly
theoretical information related to the specific problem under investigation.
The third essay improves this by proposing a novel semi-parametric approach
that allows a set of the input variables to a parametric model to be determined
by systems of equations that are estimated with the use of artificial neural
networks. As a result the proposed semi-parametric approach preserves
important features concerning the desire for nonnegative option values, theory
consistent Greek letters, rational pricing behavior at the boundary of option
pricing areas etc. It also presents a very extensive set of pricing and hedging
results testing all models considered for robustness under alternative data
choices and model complexity.

Finally the last essay is an attempt to examine the applicability of
support vector machines in the empirical options pricing research field. This
essay reconsiders robust and least squares optimization techniques and
elaborates further on issues examined by the first two essays regarding the
application of nonparametric methods by using as benchmark models the
most sophisticated ones that have been used in the third essay. The results
obtained here indicate that this is a very promising methodology and we
believe that there is a lot of room for improvement.

To summarize, the best POPM was the SVJ model (far outperforming
the SV model). The hybrid structures we develop are superior to the standard
ANNs. Among the ones we develop, we believe that the GPF structure is the
most promising one and has a value of its one because it extends the DVF
methodology (which is a standard benchmark). There seems to be fertile
ground for future research in directions that will combine aspects of the third
essay with the support vector machines of the fourth. Specifically, in these
essays we find that a number of competing models can fit a particular set of
data resulting in a range of alternative option pricing and hedging estimates.
Since we always choose the model with the best out of sample pricing
performance, all other estimated models are frequently ignored. One way to
combine estimates from different models is to rely on the Bayesian Model

Averaging (see Rafteri et al., 1997 and Hansen, 2007).
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