
Parametric and Nonparametric Functional Estimation for 

Options Pricing with Applications in  

Hedging and Trading 

 
 

 

Panayiotis C. Andreou © 

 
 

 

 

A dissertation submitted to the Department of Business 

and Public Administration of the University of Cyprus in 

partial fulfilment of the requirements for the degree of 

Doctor of Philosophy in Finance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lefkosia 

March, 2008 

Pan
ay

iot
is 

C. A
nd

reo
u



Pan
ay

iot
is 

C. A
nd

reo
u



 i 

Περίληψη Διδακτορικής Μελέτης 
 

Η παρούσα διδακτορική διατριβή απαρτίζεται από τέσσαρα δοκίμια. Στο 

πρώτο δοκίμιο συγκρίνουμε τα παραμετρικά μοντέλα τιμολόγησης Ευρωπαϊκών 

παράγωγων προϊόντων προαιρετικής εξάσκησης (call options) των Black και 

Scholes (1973) και Corrado και Su (1996) με τα μη-παραμετρικά μοντέλα 

Τεχνητών Νευρωνικών Δικτύων. Για τις συγκρίσεις χρησιμοποιούμε διάφορους 

συνδυασμούς μεταβλητών εισαγωγής/εξαγωγής συμπεριλαμβανομένου και 

υβριδικών μοντέλων (όπου η εξαρτημένη μεταβλητή αντιπροσωπεύει την 

διαφορά μεταξύ της αγοραίας τιμής και της εκτίμησης ενός παραμετρικού 

μοντέλου). Ένας από τους επιμέρους στόχους της συγκεκριμένης μελέτης είναι 

επίσης η διερεύνηση δυναμικών στρατηγικών αντιστάθμισης κίνδυνων καθώς 

και στρατηγικών εμπορίας κινητών αξιών και παραγώγων κάτω από ρεαλιστικές 

συνθήκες διαπραγμάτευσης (συμπεριλαμβανομένου και κόστους συναλλαγής). 

Το δεύτερο δοκίμιο εξετάζει εκ’ νέου τα σημαντικότερα αποτελέσματα 

του πρώτου δοκιμίου χρησιμοποιώντας Τεχνητά Νευρωνικά Δίκτυα τα οποία 

εκτιμώνται με την συνάρτηση που προτάθηκε από τον Huber το 1981.  Βάση 

αυτή της μεθοδολογίας, η επίδραση απόμακρων καθώς και άλλων 

παρατηρήσεων που μπορεί να δημιουργούν ανωμαλίες στα χρηματοοικονομικά 

δεδομένα ελαχιστοποιείται. Το βασικό συμπέρασμα από αυτό το δοκίμιο είναι 

ότι παρατηρείται σημαντική βελτίωση στα μέτρα άκριβειας για νέα δεδομένα 

εκτός του δείγματος εκτίμησης για τα μη-παραμετρικά μοντέλα που εκτιμώνται 

με την συνάρτηση του Huber σε σχέση με εκείνα που εκτιμώνται με 

συναρτήσεις που ελαχιστοποιούν το άθροισμα των τετραγωνικών αποκλίσεων.  

Στο τρίτο δοκίμιο δίνεται σημαντική προσοχή στην ανάπτυξη ενός νέου 

ημι-παραμετρικού μοντέλου το οποίο ουσιαστικά συμβάλει στον εμπλουτισμό 

του περιεχομένου και της ποιότητας των παραμέτρων που χρησιμοποιούνται ως 
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δεδομένα εισαγωγής στα παραμετρικά μοντέλα. Η προτεινόμενη ημι-

παραμετρική μεθοδολογία αποτελεί ουσιαστικά την επέκταση των 

Ντετερμινιστικών Συναρτήσεων Εκτίμησης της Μεταβλητότητας (δεύτερη ροπή) 

των Dumas et al. (1998). Η προτεινόμενη ημι-παραμετρική μεθοδολογία 

μπορεί να χρησιμοποιηθεί για την εκτίμηση Γενικευμένων Συναρτήσεων 

Εκτίμησης Παραμέτρων όχι κατ’ ανάγκη μόνο για την μεταβλητότητα (δεύτερη 

ροπή). Συγκεκριμένα, σε αυτό το δοκίμιο, δείχνουμε τον τρόπο με τον οποίο 

μπορούν να αξιοποιηθούν στην περίπτωση του μοντέλου των Corrado και Su 

(1996) αναφορικά με την εκτίμηση της τρίτης και τέταρτης ροπής (skewness 

και kurtosis). Σε αυτό το δοκίμιο γίνεται ενδελεχής σύγκριση της 

προτεινόμενης μεθοδολογίας με πιο εξελιγμένα παραμετρικά υποδείγματα 

τιμολόγησης προαιρετικών δικαιωμάτων. Συγκεκριμένα χρησιμοποιούμε το 

παραμετρικό μοντέλο που προτάθηκε το 1996 από τον Bates το οποίο 

επιτρέπει στην μεταβλητότητα του υποκείμενου δείκτη να είναι στοχαστική και 

επιπλέον επιτρέπει ασυνέχειες (jumps) στις διαδοχικές τιμές των αποδόσεων 

του δείκτη. Το γενικό συμπέρασμα είναι ότι η προτεινόμενη ημι-παραμετρική 

μεθοδολογία συγκρίνεται πολύ ευνοϊκά σε σχέση με τα πιο εξελιγμένα 

παραμετρικά μοντέλα σε περιπτώσεις νέων δεδομένων που δεν 

χρησιμοποιηθήκαν κατά την εκτίμηση των μοντέλων. Επιπλέον τα διάφορα 

μοντέλα χρησιμοποιήθηκαν για υλοποίηση στρατηγικών αντιστάθμισης 

κινδύνων. Εδώ ακολουθήθηκαν δύο εναλλακτικές στρατηγικές για τα ημι-

παραμετρικά μοντέλα: i) μια κατά την οποία τα ημι-παραμετρικά μοντέλα 

εκτιμώνται ώστε να ελαχιστοποιούν ένα κριτήριο αποτελεσματικότητας 

συνδεδεμένο με την ακρίβεια τιμολόγησης των παράγωγων προϊόντων, ii) μια 

άλλη κατά την οποία τα ημι-παραμετρικά μοντέλα εκτιμώνται ώστε να 

ελαχιστοποιούν ένα κριτήριο αποτελεσματικότητας συνδεδεμένο με την 

ακρίβεια αντιστάθμισης κινδύνου. Το γενικό συμπέρασμα είναι ότι η δεύτερη 
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στρατηγική δουλεύει πολύ καλύτερα και παράγει αποτελέσματα που διαφέρουν 

από την προηγούμενη βιβλιογραφία.  

Τέλος, το επίκεντρο του τέταρτου δοκιμίου είναι να εξερευνήσει τις 

δυνατότητες εφαρμογής στο αντικείμενο της τιμολόγησης μίας νέας 

μεθοδολογίας γνωστή ως Support Vector Machines. Αυτή η μεθοδολογία έχει 

αναπτυχθεί στο πλαίσιο της στατιστικής θεωρίας μάθησης (statistical learning 

theory) και μέχρι στιγμής δεν έχει τύχει ευρείας εφαρμογής στις 

χρηματοπιστωτικές οικονομετρικές περιπτώσεις. Σε αυτό το δοκίμιο 

δοκιμάζουμε την αρχική μεθοδολογία όπως αυτή προτάθηκε από τον Vapnik το 

1995 και η οποία θεωρείται ιδανική για εφαρμογές όπου το στατιστικό σφάλμα 

δεν ακολουθεί την κανονική κατανομή. Επιπλέον, θεωρούμε μια νεότερη 

παραλλαγή αυτής της μεθοδολογίας η οποία βασίζεται σε κριτήριο ελάχιστων 

τετραγώνων και η οποία θεωρείται πιο ιδανική για περιπτώσεις όπου το 

στατιστικό σφάλμα ακολουθεί κανονική κατανομή. Αυτές οι νέες μέθοδοι 

συγκρίνονται με τα Τεχνητά Νευρωνικά Δίκτυα όπως αυτά αναπτύχθηκαν στα 

δύο πρώτα δοκίμια. Η εμπειρική ανάλυση αυτού του δοκιμιού καταδεικνύει 

ελπιδοφόρα αποτελέσματα για τις νέες μεθοδολογίες.  
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Exordium 
 

 The current thesis is composed by four essays. In the first essay we 

compare the options pricing performance of the parametric Black and Scholes 

(1973) and Corrado and Su (1996) models with the nonparametric feedforward 

Artificial Neural Networks. We do this by using a battery of historical and implied 

parameter measures as well as market and hybrid target functions (desired 

output) resulting to a significant number of input-outputs combinations. In this 

essay we investigate the dynamic performance of the models by using hedging 

strategies and their economic significance by using trading strategies.  

 The second essay re-examines the most important key results from the 

first essay by using Robust Artificial Neural Networks. The Huber (1981) loss 

function is used in this case in order to estimate the nonparametric models. The 

main conclusion from this essay is that the out of sample pricing accuracy of the 

nonparametric models can be improved under the robust estimation scheme 

considered.  

 In the third essay the major contribution regards the development of a 

novel semi-parametric approach were an enhancement of the implied parameter 

values is used in the parametric option pricing models. The proposed semi-

parametric methodology is basically extending the Deterministic Volatility 

Functions approach of Dumas et al. (1998) that perform a smoothing in the 

Black and Scholes implied volatilities across strike prices and maturities. Our 

semi-parametric methodology is much more generic though since it can be 

utilized to estimate Generalized Parameter Functions with other parametric 

models. Specifically, in this essay we show how it can be utilized in the case of 

Corrado and Su model and how it can enhance the implied volatility, skewness 

and kurtosis.  We also extend the Deterministic Volatility Functions approach for 

the Corrado and Su model. The proposed semi-parametric methodology is also 

compared with more sophisticated options pricing models like the Stochastic 

Volatility and Stochastic Volatility and Jump models of Bates (1996). The overall 

result from the out of sample pricing tests is that our methodology is robust and 

performs exceptionally well. Furthermore we test the hedging performance of all 

models developed and we distinguish between models selected based on a pricing 

criterion and models selected based on a hedging criterion. Our results are 
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different from previous literature since we find that better out of sample hedging 

performance can be obtained when optimization is based on a hedging criterion. 

 Finally, the focus of the fourth essay is to explore the pricing performance 

of Support Vector Machines in options pricing. This is a novel nonparametric 

methodology that has been developed in the context of statistical learning theory 

and until now is has been practically neglected in financial econometric 

applications. In this essay we consider the original methodology as proposed by 

Vapnik (1995) which is relying on a robust loss function. In addition, we consider 

a later variant of this methodology that relies on a least squares loss function 

(called the Least Squares Support Vector Machines). The new methods are 

compared with feedforward Artificial Neural Networks and also with parametric 

options pricing models using standard implied parameters and parameters 

derived via Deterministic Volatility Functions. The empirical analysis of this 

essay reveals promising results for the new methodologies.  
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Preface 
 

 Black and Scholes introduced in 1973 a milestone options pricing model 

for pricing European options. This model was a breakthrough in the pricing of 

options and still has a tremendous influence on the way that academics and 

practitioners evaluate and trade alternative derivatives products. Nevertheless, 

empirical research has shown that the formula suffers from systematic biases 

when compared to options market prices giving birth to the well known volatility 

smile anomaly (also known as volatility smirk or sneer). This comes from the fact 

that the model has been developed using a set the simplifying assumptions 

resulting to a lognormal distribution with constant variance for the underlying 

asset price. This assumption is not flexible enough to approximate the (unknown) 

market options’ pricing function since it is empirically true that the implicit stock 

returns distributions are negatively skewed with higher kurtosis than allowable 

in the Black and Scholes lognormal distribution. For this reason the use of this 

model with historical or overall average implied parameters (one per day) results 

in biased prices that translate into poor pricing performance. Nevertheless in this 

thesis it is shown that simple methodologies that mitigate the anomaly by 

allowing the application of this model with maturity or contract specific implied 

parameters can improve significantly its performance making it a tougher 

benchmark for more complex and sophisticated alternative models. In the quest 

for the best performing parametric model other parametric models are considered 

as well. Attention is also given to the Corrado and Su (1996) model, which is an 

extension of the Black and Scholes formula that can easily handle nonnormal 

skewness and kurtosis. In addition, other more advent parametric models are 

considered, like for instance the Stochastic Volatility and the Stochastic Volatility 

& Jump (Bates, 1996), which are probably the most widely referenced models 

from the parametric family. All these parametric models are based on a set of 

assumptions like continuous time trading and completeness of the markets 

(which can hold in the presence of many trading options contacts – in addition 

we note also the recent addition of trading contracts on the volatility). The most 

significant novelty of this thesis regards the investigation of nonparametric 

methods that can offer noticeable pricing improvements compared to the 

benchmark parametric models. Specifically the gist of our attention in the first 
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5

three essays of this thesis is concentrated in the application of feedforward 

Artificial Neural Networks. This nonparametric technique has gained 

considerable popularity in financial and economic applications for (at least) three 

reasons. First, there are theoretical foundations showing that Artificial Neural 

Networks can be used for multidimensional nonlinear regression since they are 

universal approximators able to approximate any nonlinear function and its 

derivatives arbitrarily well. Second, they learn the empirical input/output 

relationships inductively using historical or implied input variables and 

transactions data. Third, they can become more accurate and computationally 

more efficient alternatives when the underlying asset’s price dynamics are 

unknown, a property very important for the problem we investigate.  

 In the first essay we compare the ability of the parametric Black and 

Scholes, Corrado and Su models, and feedforward Artificial Neural Networks to 

price European call options on the S&P 500 index. We use several historical and 

implied parameter measures. Beyond the standard neural networks employed to 

directly approximate the unknown empirical options pricing function, in our 

analysis we include hybrid networks that incorporate information from the 

parametric models. Specifically in the hybrid models the target function is the 

residual between the actual call market price and the parametric option price 

estimate. In this essay our results are significant and differ from previous 

literature. We show that the Black and Scholes based hybrid artificial neural 

network models outperform both the standard neural networks estimated on the 

market target function and the parametric ones. We also investigate the 

economic significance of the best models using trading strategies (extended with 

the Chen and Johnson, 1985, modified hedging approach). We find that there 

exist profitable opportunities even in the presence of transaction costs.    

 In the second essay the significant difference compared to the first essay is 

that we develop Robust Artificial Neural Networks optimized with the Huber 

(1981) function. In the first essay Artificial Neural Networks have been optimized 

based on the least squares norm. This norm though is susceptible to the 

influence of large errors since some abnormal datapoints (or few outlier 

observations) can deliver non-reliable networks. On the contrary, robust 

optimization methods that exploit the least absolute norm are unaffected by large 

(or catastrophic) errors but are doomed to fail when dealing with small variation 

errors. The Huber function is an ideal candidate to be used since it utilizes the 
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robustness of least absolute and the unbiasedness of least squares norm and 

has proved to be an efficient tool for robust optimization problems for various 

tasks. The analysis here is augmented again with the use of several historical 

and implied volatility measures. It is shown that the Artificial Neural Network 

models with the use of the Huber function outperform the ones optimized with 

least squares.  

 In the third essay we extend the Deterministic Volatility Functions of 

Dumas et al. (1998) to derive a semi-parametric approach that provides an 

enhancement of the implied parameter values that are used with the parametric 

option pricing models. With this new semi-parametric methodology we are able to 

enhance not only volatility but also skewness and kurtosis. Overall this 

methodology is proposed as a way to alleviate deficiencies of the modern 

parametric options models and standard nonparametric approaches. In addition, 

it utilizes information from the parametric models and preserves some very 

important properties which do not hold for the nonparametric models employed 

in the first two essays. The results obtained in this essay strongly support the 

proposed approach which compares very favorably to the more sophisticated 

parametric options pricing models considered, like the Stochastic Volatility and 

Jump model of Bates (1996). The out of sample results are shown to be robust 

under alternative dataset choices and model complexity. In addition, the 

economic significance of the approach is tested in terms of hedging where the 

evaluation and estimation loss functions are aligned: hedging results when 

enhancing skewness and kurtosis parameters are significantly improved.      

 Finally in the fourth essay we explore the pricing performance of Support 

Vector Machines for pricing S&P 500 index call options. This is a novel 

nonparametric (function approximation) methodology that has been developed in 

the context of statistical learning theory and until now its applications on 

financial econometric purposes are limited. Support Vector Machines employ the 

so called VC theory (developed by Vapnik and Chervonenkis in 1974), which is 

defined in a strictly statistical framework, that controls in specific ways the 

model’s estimation and parameterization to preclude overfitting so as ensure 

good out of sample (generalization) results; this is a crucial property of 

paramount importance. Another significant characteristic of this methodology is 

that the estimation of its free parameters results from the solution of a convex 

optimization problem with a unique global (and sparse) solution. Compared to 
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feedforward Artificial Neural Networks this methodology can be considered as an 

improvement due to its well defined regularization and optimization properties. In 

the fourth essay we consider both the traditional support vector machines 

originally developed by Vapnik (1995) as well as the Least Squares Support 

Vector Machines which are a subsequent variant of the original methodology. 

These new methods are compared with feedforward Artificial Neural Networks 

and also with parametric options pricing models considered in the third essay. 

The empirical results using three years of data indicate that this new 

methodology is promising enough since it can produce pricing results that are 

comparable to the benchmark models. 

 The reader of this thesis should be aware of three things. The first remark 

is that it was never attempted to downgrade the importance of existing 

parametric models and to exaggerate about the attractive characteristics and 

applicability of the nonparametric models. A vivid message from reading this 

thesis is that every approach has its own merits and limitations and that the best 

result can be obtained when they are handled them as complementary 

methodologies. Thus, most of the times the best performing models combine the 

two methodologies resulting in this way in semi-parametric models. Furthermore, 

a considerable effort has been spent in developing the methodologies in order to 

be implementable for real world applications. For example, beyond pricing 

performance tests this thesis also includes hedging results and economic 

significance tests. 

 The second remark is that each essay is almost practically independent in 

the sense that the reader can read it without having to know exactly the content 

of the rest essays since each essay it’s aiming to an independent publication. In 

addition, the effort was to use the same nomenclature and symbolization in all 

essays yet in some cases minor differences might be observed. 

 The third remark is that the performance statistics (e.g. out of sample 

pricing, hedging and trading strategies, robustness, etc.) reported in each essay 

may be different. This occurs because the scope of each essay is different. For 

example in the first essay the effort is to provide a comprehensive comparison 

between the parametric models considered and the feedforward Artificial Neural 

Networks. For this reason extensive hedging simulations and trading strategies 

results are also reported. A similar extensive set of results is reported in the third 

essay in which a novel semi-parametric options pricing methodology is proposed 
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and tested. On the contrary in the second essay where the focus is on the use of 

a robust loss function with Artificial Neural Networks, the battery of results is 

confined to those statistics needed to show the difference in performance 

between the alternative models. In the same spirit we create and report the 

statistics for the fourth essay. 
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I. Introduction – Overview of the Thesis 
 

I.1. General Discussion 

 Black and Scholes introduced in 1973 their milestone Parametric Options 

Pricing Model (POPM) that is nowadays known as the Black-Scholes Formula 

(BS). This model was a breakthrough in the pricing of options and still has a 

tremendous influence on the way that practitioners price various derivative 

securities. Despite the fact that in the last three decades the BS model and its 

later variants/extensions (i.e. Bakshi et al., 1997) are considered as the most 

prominent achievements in financial theory, empirical research has shown that 

the formula suffers from systematic biases when compared to options market 

prices (see Rubinstein, 1985 and 1994, Black and Scholes, 1975, MacBeth and 

Merville, 1980, Gultekin et al., 1982, Bakshi et al., 1997, Cont and Fonseca, 

2002, and Andersen et al., 2002). The BS bias steams from the fact that the 

model has been developed using a set of unrealistic simplified assumptions.  

 The post-BS financial engineering research came up with a variety of 

POPMs that made it possible to mitigate the bias associated with the original 

model. Nevertheless, none of the modern models has managed to generalize all 

BS assumptions, and provide results fully consistent with the observed market 

data.  

 After including in the analysis more realistic POPMs like the Corrado and 

Su (1996) formula and models that allow for stochastic volatility and jump 

discontinuities to the diffusion process (see Bates 1996 and 2000), it is found 

that the BS is still relevant either with the use of a contract specific implied 

volatility or with the use of statistical smoothing techniques that produce one 

volatility per contract (see Dumas et al., 1998).  

 In 1995, Fisher Black declared in his article “The holes in the Black and 

Scholes” that “it is rare that the value of an option comes out exactly equal to the 

price at which it trades on the exchange”. This evidence forces us to accept the 

hypothesis that the market is pricing the options correctly and that the models 

are incorrect due to their mis-specifications. So, in answering the previous posed 

question, researchers can address their attention to market-data driven models 
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which can be promising alternatives, in respect to unbiasedness and pricing 

accuracy, relative to the existing POPMs.  

 Nonparametric techniques and especially feedforward Artificial Neural 

Networks (ANNs) that is the main focus of the current thesis, comprise an 

empirically practical option-pricing approach since they involve no financial 

theory whatsoever since the option’s price is estimated inductively using 

historical or implied input variables and option transactions data. In addition, 

option pricing functions are multivariate and highly nonlinear. ANNs are 

appropriate tools for approximating the unknown empirical option pricing function 

since they can be used for non-linear regression1.  

 Empirical research (see Bakshi, et al., 1997) reports that modern 

parametric models are sometimes characterized by poor-out-of sample 

performance and by overwhelming complexity. Research on the ANN option 

pricing capabilities (see Hutchison et al., 1994, Qi and Maddala, 1996, Lajbcygier 

et al., 1997, Lajbcygier and Connor, 1997, Hanke, 1999a, Hanke, 1999b, Yao et 

al., 2000, Lajbcygier, 2001 and Anders et al., 1998) has reported excellent out of 

sample performance whilst in many cases, ANNs can outperform the 

conventional parametric models.  

 The scope of this thesis is in developing option pricing models by 

combining the use of feedforward Artificial Neural Networks with information 

provided by POPMs (the BS and the CS model). For the empirical tests we use 

European call options on the S&P 500 Index. In the first chapter of the thesis, we 

develop simple ANNs (with input supplemented by historical or implied 

parameters specific either to BS or the CS model), and hybrid ANNs that in 

addition use pricing information derived by any of the two parametric models. 

These specifications are compared with BS and CS with various historical and 

implied parameters (most of them are considered for the first time). In order to 

check the robustness of the results, in addition to a full dataset we repeat the 

analysis using a reduced dataset (following Hutchison et al., 1994). The economic 

significance of the models is investigated through hedging and trading strategies. 

                                                 
 
1 Even in the case where option market prices evolve based on a known diffusion process 
that can be parametrized, then the ANNs are expected to be as accurate and robust as 
the parametric models. Research by Hutchison et al. (1994) and Hanke (1997) has 
revealed that feedforward Neural Networks can approximate arbitrarily well the 
traditional Black and Scholes Formula and other analytically intractable models like the 
GARCH (1,1).    
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Instead of naive trading strategies we implement improved (dynamic and cost-

effective) ones. Furthermore, we also refine these strategies with the Chen and 

Johnson (1985) modified hedging approach.  

 In the second chapter we compare models from the first chapter of the 

thesis which are estimated based on the least squares loss function with robust 

ANNs that use the Huber loss function. In this chapter the gist of the attention is 

to develop ANNs based on the Huber loss function (Huber, 1981) so that the 

estimation of the standard and hybrid ANNs is robust in the presence of data-

point peculiarities.  

 In the third chapter, we propose and examine nonparametric options 

pricing models which are dedicated to the pricing and hedging of European 

options. Specifically, we extend the Deterministic Volatility Functions (DVF) of 

Dumas2 et al. (1998) to provide a nonparametric enhancement of the implied 

parameter values to be used in the parametric option pricing models. We 

estimate not only volatility but also skewness and kurtosis. The resulting 

enhanced structure is compared to parametric models with both standard 

implied parameters and parameters derived via DVF. The models developed are 

compared to the benchmark Stochastic Volatility (SV) and Stochastic Volatility 

and Jump (SVJ) models (Bates, 1996). The economic significance of the approach 

is also considered in terms of hedging retaining the intuition in Christoffersen 

and Jacobs (2004) that the estimation loss function should be aligned with the 

evaluation loss function.  

 Finally, in the last chapter of the thesis, we are examining the application 

of Support Vector Machines (SVM) to the pricing of European options extending 

in this way the results of the first two chapters (for details see Vapnik, 1995). 

This methodology is used for robust nonlinear regression problems based on a 

well defined statistical framework that predicts better out of sample 

generalization ability compared to other alternative methodologies. 

      

 

 

                                                 
 
2 The DVF approach relaxes the BS assumption of having a single volatility per day. 
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I.2. Parametric models and the deterministic volatility functions 

 The parametric models used in this thesis are explained very briefly below. 

Specifically the following models as proposed in the literature are considered: the 

Black and Scholes (1973) model (which is used in all chapters), the Corrado and 

Su (1996) model (which is used in all chapters except the second one) and also 

the Stochastic Volatility and Stochastic Volatility and Jump models of Bates 

(1996) (used for the needs of the third and fourth chapters). Moreover, it is 

explained the application of the DVF for the case of BS, as originally proposed by 

Dumas et al. (1998), as well as the extensions made in this thesis concerning the 

use of DVF with the CS and SVJ models. The DVF models are used for the needs 

of the third and fourth chapters. The parametric models are used as benchmark 

models but in addition they are also used as part of the non parametric models 

that are proposed and developed. 

 

I.2.1. Parametric models used 

 

I.2.1.1. Black and Scholes model 

 The first model examined is the Black and Scholes (1973) since it is a 

benchmark and widely referenced model. The BS formula for European call 

options modified for a dividend-paying (see also Merton, 1973) underlying asset 

is: 

 

)()( TdNXedNSec rTTdBS y σ−−= −−        (I .1) 

Τσ

σ 2/)()()/ln( 2TTdrXS
d y ++
=

-
  (I.1.1) 

 

where BSc  is premium paid for the European call option, S  is the spot price of 

the underlying asset, X  is the exercise price of the call option, r is the 

continuously compounded risk free interest rate, yd  is the continuous dividend 

yield paid by the underlying asset, T  is the time left until the option expiration 

date, 2σ  is the yearly variance rate of return for the underlying asset and (.)N  
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stands for the standard normal cumulative  distribution. The BS model is based 

on the following assumptions:  

 The stock (underlying asset) price follows a Geometric Brownian Motion in 

continuous time with a constant drift and volatility rate. Thus the distribution of 

possible stock prices at the end of any finite interval is lognormal. In addition, 

short-term risk free interest rate is known and is constant through time. 

 The stock pays no dividends3 or other cash distributions. 

 The option is “European,” that is, it can only be exercised at maturity. 

 There are no transaction costs in buying or selling the stock or the 

options. 

 It is possible to borrow any fraction of the price of a security to buy it or to 

hold it, at the short-term risk-free interest rate. 

 There are no penalties for short selling. A seller who does not own a 

security will simply accept the price of the security from a buyer, and will agree 

to settle with the buyer on some future date by paying an amount equal to the 

price of the security at that date. 

 In addition, the BS formula has been derived under conditions that allow 

a continuous and costless hedging of a risk less portfolio that is short one call 

option against a long position in the associated stock (underlying asset). In this 

word the markets are complete and the options are redundant securities. To this, 

the underlying and the derivatives markets are assumed to be efficient and that 

it would be impossible to make sure profits by creating such perfectly hedged 

risk less portfolios which can only earn the risk-free rate. An implicit assumption 

of the model is that its option estimates are independent of the characteristics of 

other securities and the preferences of investors (Rubinstein, 1976).  

 Most of the above assumptions are violated in the financial markets 

(Constantinides et al, 2008). For instance, Rubinstein (1976) has shown that the 

BS model does not hold under discrete trading conditions and risk aversion 

unless certain assumptions hold (e.g. no dividends, all investors agree upon a 

single value of the volatility, consumption and underlying asset are jointly 

lognormally distributed etc).  In addition, the parametric models considered in 

this thesis have been developed under the assumption of no transaction costs. As 

shown in Leland (1985) and Bensaid et al. (1992), the existence of transaction 

                                                 
 
3 Merton (1973) has relaxed this assumption.  
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costs would have produced bounds in which option prices should lie. In addition, 

some other assumptions are causing severe misspecification in the model. 

Specifically, the literature documents that BS model suffers from systematically 

biases because the Geometric Brownian Motion is a poor approximation of the 

unknown diffusion process that prevails in the market because, for example, it 

precludes the possibility for stochastic volatility and jumps. In other words, the 

BS assumption of a log-normal distribution is too limited since in practice 

implicit stock returns’ distributions are negatively skewed with excess kurtosis 

(Bakshi et al., 1997). This creates the well known volatility smile anomaly (also 

known as volatility smirk or sneer anomaly) according to which the contract 

specific volatilities implied by the BS model exhibit certain patterns across 

moneyness (the ratio of the underlying asset to strike price) and maturity levels. 

In response to this, additional parametric option pricing models are also 

considered in this thesis. These models can be considered as generalizations of 

the BS formula because they generalize the Geometric Brownian Motion with 

more complex diffusion processes that imply more flexible and realistic 

distributions for the stock returns and can approximate better the unknown 

market diffusion process. Yet most of the other assumptions mentioned above 

hold also for these models. In this thesis the Stochastic Volatility as well as the 

Stochastic Volatility and Jump models of Bates (1996) are considered to be the 

most widely referenced generalizations of the BS model (see Bakshi et al., 1997).  

In addition, to the above two parametric models, in this thesis we also consider 

some heuristic extensions of the BS model like the Corrado and Su (1996) model 

as well as the Deterministic Volatility Functions approach proposed by Dumas et 

al. (1996).  

 Here we must note two things. First, that the BS, CS and the associated 

DVF models are based on the assumption of complete markets that rule out any 

arbitrage opportunities. Under such assumptions, the implied risk neutral 

parameters need no adjustment in order to reflect the ones obtained under the 

subjective diffusion process (the only adjustment is to add the market risk 

premium to the risk free rate). On the other hand, the SV and SVJ models are 

developed based on the incomplete markets where option pricing becomes 

tractable only under the assumption of a representative agent that has state 

independent utility of wealth. In other words, these models account for a 

premium induced by the risk of a jump and of randomly changing volatility. 
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According to these models, an adjustment based on a utility function is needed 

in order to go from the implied risk-neutral parameters to the subjective ones. 

For SV and SVJ, the implied risk neutral parameters need an adjustment in 

order to reflect the ones obtained under the subjective diffusion process (adding 

only the risk premium to the risk-free rate is not enough). Second, it is also 

important to note that our nonparametric models are developed under 

assumptions that also hold for the aforementioned parametric models (e.g. 

continuous trading, complete/incomplete and frictionless markets, etc). 

 The rest of the parametric models and methods used in this thesis are 

briefly explained below.  

 

 

I.2.1.2. Corrado and Su model 

 The CS model constitutes an extension of the BS formula that accounts 

for additional skewness and kurtosis in stock returns in a heuristic manner. 

Corrado and Su base their extension on a methodology employed earlier by 

Jarrow and Rudd (1982). Using a Gram-Charlier series expansion of a normal 

density function they define their model as (see also the correction in Brown and 

Robinson, 2002; for further discussions see Jondeau and Rockinger, 2001, and 

Jurczenko et al., 2004):  

 

4433 )3( QQcc BSCS −++= µµ   (I.2) 

 

where BSc  is the BS value for the European call option given in Eq. (I.1) and, 

 

))()()()2((
!3

1 2
3 dNTdndTTSeQ Tyd σσσ +−=

−  (I.2.1) 

))()()())(31((
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1 32
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In Eq. (I.2) 3Q  and 4Q  represent the marginal effect of non-normal skewness and 

kurtosis, respectively in the option price whereas 3µ  and 4µ  correspond to 

coefficients of skewness and kurtosis. In the above expressions,  

 

)2/exp(
2
1)( 2zzn −=
π

 (I .2.3) 

 

refers to the standard normal probability density function.  

 

 

I.2.1.3. Stochastic volatility and stochastic volatility & jump models 

 Bakshi et al. (1997) found that the SVJ exhibited satisfactory out of 

sample performance for the S&P 500 index options when compared to other 

parametric option pricing models since it offers a quite flexible distributional 

structure. Specifically the correlation between the volatility and the returns of the 

underlying asset controls the level of skewness whilst the variability of volatility 

allows for non-normal kurtosis. Moreover, the addition of a jump component 

enhances the distributional flexibility and allows for more accurate pricing 

performance of the short term options. In this thesis the SVJ model of Bates 

(1996) is employed. In this model the instantaneous conditional variance tV  

follows a mean-reverting square root process: 

 

dqdZVdt
S

dS κκλµ ++−= )(   (I .3) 

vv dZVdtVdV σβα +−= )(  (I .4) 

 

with 

dtdZdZ v ρ=),cov(   

),5.0)1(ln(~)1ln( 22 θθκκ −++ N   

dtdqprob λ== )1(   
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where µ  is the instantaneous drift of the underlying asset, λ  is the annual 

frequency of jumps, κ is the random percentage jump conditional on a jump 

occurring, q  is a Poison counter with intensity λ , 2θ  is the jump variance, and 

ρ  is the correlation coefficient between the volatility shocks and the underlying 

asset movements. Moreover, β  is the rate of mean reversion and βα /  is the 

variance steady-state level (long run mean).  

 The value of a European call option is given as a function of state variables 

and parameters: 

 

][ 21 Π−Π= − XFec rTSVJ  (I.5) 

 

with Τ)()( ydr
T SeSEF −

==  the forward price of the underlying asset, (.)E  the 

expectation with respect to the risk-neutral probability measure and TS  the price 

of S  at option’s maturity. Evaluation of 1Π  and 2Π  is done by using the moment 

generating functions of )/ln( SST . The following expressions are needed to 

compute 1Π  and 2Π : 
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and the resulting probabilities 1Π  and 2Π  are derived by numerically evaluating 

the imaginary part of the Fourier inversion: 

∫
∞ −
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+=>

0

)( ])([15.0)|( Φ
Φ

Φ

π
Χ

χΦ

d
eiFimag

FeSprob
i

j
j

Tydr
T  (I.8) 

 

with )/ln( SX≡χ  and the integrals to be evaluated with an adaptive Lobatto 

quadrature. By constraining the jump component values to equal zero someone 

can get European call prices for the SV model.   

 

 

I.2.2. Deterministic volatility functions 

 

I.2.2.1. Black and Scholes deterministic volatility functions 

 Dumas et al. (1998) estimate DVF of quadratic forms that provide unique 

per contract volatility estimates. According to Dumas et al. (1998), this approach 

of smoothing the BS implied volatilities across strike prices and maturities 

exhibits superior in and out of sample performance for pricing European options. 

According to Christoffersen and Jacobs (2004) the DVF approach does not 

constitute a proper and fully specified alternative to other structural option 

pricing models but is a convenient way to mitigate the BS deficiencies. In 

addition, Berkowitz (2004) has demonstrated theoretically that the DVF 

constitutes a reduced-form approximation to an unknown structural model 

which under frequent re-estimation can exhibit exceptional pricing performance. 

Christoffersen and Jacobs (2004) demonstrate that Ordinary Least Squares (OLS) 

estimates of the DVF parameters yield biased predictions of the observed option 

prices. They emphasize the importance of deriving the DVF by optimizing in 

respect to the option pricing function via Nonlinear Least Squares (NLS). For the 

analysis three different DVF model versions as in the thesis of Dumas et al. 

(1998) are considered: 

 

 DVF#1: ),01.0max( 2
210 XaXaa ++=σ   (I.9) 

 DVF#2: ),01.0max( 43
2

210 XTaTaXaXaa ++++=σ  (I.10) 
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 DVF#3: ),01.0max( 2
543

2
210 TaXTaTaXaXaa +++++=σ  (I.11) 

 

 

I.2.2.1. Extending the deterministic volatility functions 

 DVF is implemented not only for BS but also for a first time in this thesis 

for the CS (CS-DVF) and the SVJ (SVJ-DVF) models. We estimate the coefficients 

for the three different DVF models each day using OLS (Lc) and also using NLS 

(NLc). For the latter several initializations are used in order to minimize the risk 

of estimating coefficients based on a local minimum of the optimization function.  

 

 

I.3. Nonparametric models  

 Researchers have drawn attention to the use of nonparametric techniques 

like feedforward artificial neural networks that can be used for nonlinear 

regression. The key power provided by this type of methods is that they rely on 

fairly simple algorithms and the underlying nonlinearity can be learned from 

transactions data (see Duda et al., 2001, for further details). In addition, they are 

universal function approximators with good out of sample generalization abilities 

(see Cybenko, 1989; for a general discussion of neural networks in financial 

econometrics see Tsay, 2002). Below there is a brief explanation about the 

different approaches developed and used in this thesis4.     

 

 

I.3.1. Standard and hybrid feedforward artificial neural networks  

 A feedforward artificial neural network is a collection of interconnected 

simple processing elements structured in successive layers and can be depicted 

as a network of arcs/connections and nodes/neurons (refer to Figure 1.1 of first 
                                                 
 
4 All nonparametric models presented in this study can be also used for deriving the 
implied risk neutral density function from the cross section of option prices. This can be 
performed after estimating the nonparametric functional forms and taking twice the 
partial derivative of the option value with respect to the option’s strike price. The 
methodology behind this idea has been suggested by Breeden and Litzenberger (1978) 
and has been recently employed with nonparametric techniques by Ait-Sahalia and Lo 
(1998).      
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essay). The traditional networks used in this thesis have three layers: an input 

layer with N input variables, a hidden layer with H neurons, and a single neuron 

output layer. Each connection is associated with a weight, kiw , and a bias, kb , in 

the hidden layer and a weight, kv , and a bias, 0v , for the output layer (k = 

1,2,…,H, i = 1,2,…,N). A particular neuron node is composed of: i) the vector of 

input signals, ii) the vector weights and the associated bias, iii) the neuron itself 

that sums the product of the input signal with the corresponding weights and 

bias, and finally, iv) the neuron transfer function. In addition, the outputs of the 

hidden layer ( (1) (1) (1)
1 2, ... Hy y y ) are the inputs for the output layer. Inputs are set up 

in feature vectors, 1 2[ , ..., ]q q q Nqx x x x=%  for which there is an associated and 

known target, qY t≡ , with 1,2,...,q P≡ , where P is the number of the available 

sample features. The operation carried out for estimating outputy , is the 

following: 

 

0 0
1 1

[ ( )]
H N

k H k ki i
k i

y f v v f b w x
= =

= + +∑ ∑  (I .12) 

 

 For the purpose of this thesis ANN architectures with only one hidden 

layer are considered since they can operate as a nonlinear regression tool and 

can be trained to approximate most functions arbitrarily well (Cybenko, 1989). 

High accuracy can be obtained by including enough processing nodes in the 

hidden layer.  

 The training of ANNs is a non-linear optimization process in which the 

network’s weights are modified according to an error loss function. The error 

function between the estimated response qy  and the actual response qt  is 

defined as: 

 

( ) ( )q q qe w y w t= −  (I .13) 

 

where, w  is an n-dimensional column vector containing the weights and biases 

given by: T
HHNH vvwwwww ]...,,,,...,,...,[ 011010= . The modified Levenberg-
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Marquardt (LM) algorithm is utilized for estimating the ANNs. According to LM, 

the weights and the biases of the network are updated in such a way so as to 

minimize the following sum of squares performance function: 

 

( )∑∑
==

−≡=
P

q
qq

P

q
q wtwyewF

1

2

1

2 )()()(  (I .14)                         

 

Then, at each iteration τ of the estimation algorithm, the weights vector w  is 

updated as follows: 

 

)()(])()([ 1
1 τττττττ µ wewJIwJwJww TT −
+ +−=  (I .15) 

 

where I  is an n n identity matrix, )(wJ  is the P n Jacobian matrix of the P-

dimensional output error column vector )(we , and τµ  is like a learning parameter 

that is adjusted in each iteration in order to secure convergence. Further 

technical details about the implementation of Levenberg-Marquardt algorithm 

can be found in Hagan and Menhaj (1994) and Hagan et al. (1996). 

For the needs of this thesis, ANNs are implemented by using two different target 

(desired) function. The first one that is called the standard target function given 

by:  

 

Xct mrk /=  (I .16) 

 

where mrkc  is the market price for a call option. In addition, the so called hybrid 

target function is also used. This target function is comprised by the residual 

between the actual call market price and call option estimate given by a 

parametric model:  

 

XcXct mrk // Ω−≡  (I .17) 
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with Ω defines inputs from the specific parametric models (usually from BS and 

CS models) .  

 

 

 

I.3.2. Robust feedforward artificial neural networks 

 To get robust estimates for the ANNs’ vector parameter w , the Huber 

function can be considered (i.e. Huber, 1981, Bandler et al., 1993): 

 

))(()( ∑
=

=
P

1q
qk weρwE

 (I.18) 

 

where kρ  is the Huber function specified as: 

 

keif
keif

k50ek

e50
eρ

2

2

k >
≤







−
=

.

.
)(  (I.19) 

 

and k is a positive constant. It is obvious that when ke >  the Huber function 

treats the error in the l1 (least absolute) sense and in the l2 (least square) sense 

only if ke ≤  depending on the value of threshold parameter k. The Huber 

function has a smooth transition between the two norms at ke =|| , so that the 

first derivative of kρ  is continuous everywhere.   

 The choice of k defines the threshold between large and small errors. 

Different values of k determine the proportion of the errors to be treated in the l1 

or the l2 norm. As seen, when k is sufficiently large the Huber function 

encompasses the widely used and conventional least squares (l2) training of the 

ANNs. As the k parameter approaches zero, the Huber function approaches the l1 

function and the errors are penalized in the least absolute sense. The Huber 

function should be more robust to abnormal data since it penalizes them less 

compared to the l2 norm.  
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I.3.3. Nonparametric generalized parameter functions  

 In this thesis in order to develop the Generalized Parameter Functions 

(GPFs) a more general network structure is used. In this case the proposed 

network model under scrutiny has four layers. The first three are typical layers of 

an ANN as explained before with the exception that more than one neurons can 

exist at the output layer. The addition of a fourth layer, which is called the 

enhanced layer, makes possible for a chosen POPM to be an inseparable part of 

the network’s structure (obtaining in this sense the enhanced Parametric Options 

Pricing Models, ePOPMs). Under this setting it can be hypothesized that the 

network structure embeds knowledge from the parametric model during training. 

If we let SX  to denote the set of all input variables that are necessary for the 

parametric model to price options, then (refer to Figure 3.1, of the third essay) 

SS XX ⊆2  corresponds to the enhanced variables coming from the network’s 

output layer and SS XX ⊂3  those variables that are passed to the parametric 

model directly, 23 SSS XXX −= . Moreover, 1SX  represents inputs to the 

nonparametric model with SSS XXX ⊆⊆ 12 .  

 Under this approach, the operation carried out for computing the final 

estimated output, y, is the following:  

 

),( 2SPM Xvfy =  (I .20) 

and, 

],...,,[ 21 Mvvvv =  (I .21) 

 

where v  represented the enhanced variable vector that is given by:    
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 The above expression follows the functional form of a typical three-layer 

network with (.)Mf  and (.)Hf  to be smooth monotonically increasing transfer 

functions (like log-sigmoid and tangent sigmoid) associated with the output and 

hidden layer respectively, nx , n=1,2,…,N, to be the inputs to the network, )1(
inw ,  

)1(
0iw  (i=1,2,…,H, n=1,2,…N) to be the weights of the input layer and )2(

jiw , )2(
0jw  

(j=1,2,…,M) to be the weights of the hidden layer. The M elements of Eq. (I.22) are 

estimated simultaneously. The vector defined by the right hand side of Eq. (I.22) 

is the called generalized parameter function which produces the enhanced 

variables. To let the network learn the underlying relationship, its weights are 

adjusted in order to minimize a sum of squares loss function of the error between 

the network output and the desire target values.      

 

  

I.3.4. Support vector machines for function approximation 

 All methodologies employed in the first three chapters were estimated by 

minimizing an empirical risk functional of the form: 

 

∑
=∈

=
n

i
iiiemp

lCf
xfyxL

n
fR

1
))(,,(1][minarg  (I.23) 

 

where ))(,,( iii xfyxL  represents a general loss function determining how 

estimation errors are penalized and lC  represents a general class of continuous 

functions. As mentioned before, depending on the application, ))(,,( iii xfyxL  

could be the sum-of-squared-errors or even the Huber (1981) function that can 

be used for robust estimation.  

 However if lC  has very high capacity/flexibility and someone is dealing 

with few data in high-dimensional spaces then to avoid over-fitting and secure 

good generalization properties then it might be better to minimize a regularized 

risk functional of the form (see Vapnik, 1995 and Smola et al., 1998):      

 

2][][minarg wCfRfR empreg
Cf l

+=
∈

 (I .24) 
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where 0>C  is the so called regularization constant that controls for the capacity 

and smoothens of the estimated approximation and 2w  defines the complexity 

of the model. Support Vector Machines (SVMs) is one promising candidate 

methodology that builds on this idea and is widely used in electrical engineering, 

bioinformatics, pattern recognition, text analysis, computer vision and widely 

neglected in financial econometrics. SVM can be implemented using the so called 

−ε insensitive loss function: 

 

})(,0max{)( εε −−=− xfyxfy  (I .25) 

 

which does not penalize errors below some 0>ε . SVM can be used for function 

approximation via linear and nonlinear regression and is has been evolved in the 

framework of statistical learning theory of Vapnik and Chervonenkis (1974) (so 

called VC theory) for learning machines (see Vapnik, 1995, for extensive details). 

The main advantage of SVMs over other nonparametric techniques is that they 

encompass statistical properties that enables them to generalize satisfactorily 

well to unseen data. One significant characteristic is that under SVMs someone 

solves a convex optimization problem with a unique global (and sparse) solution 

while other nonparametric methods can have non-convex error functions which 

entail the risk of having multiple local minima solutions. Another one significant 

feature is that SVMs employ VC theory to select function approximations based 

on the (out of sample) upper bound of the model’s generalization error, which is 

defined in a strictly statistical framework without restricting the form of the data 

generating mechanism, and controlling in specific ways the model’s 

parameterization to preclude overfitting.  

    

 

I.4. Data and parameter estimates  

 The data for this research come from two dominant world markets, the 

New York Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago 

Board of Options Exchange (CBOE) for call option contracts. The S&P 500 Index 
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call options are considered because this option market is extremely liquid and 

one of the most popular index options traded on the CBOE. This market is the 

closest to the theoretical setting of the parametric models (see also 

Constantinides et al., 2008).  

 In the first two essays we use data for the period 1998 to 2001 while for 

the third and fourth essays we use data for the period 2002-2004. We implement 

filtering rules like in Bakshi et al. (1997). The following summarizes the filtering 

rules adopted in each essay (the superscript indicates the essay for which essay 

the filtering rule is effective) according to which certain observations are 

discarded: 

 Eliminate all zero volume transactions #3, #4 

 Eliminate an observation if call price at day t-1 is equal to call price at day 

t and if the open interest for these days stays unchanged and if the underlying 

asset has changed #1, #2 

 Eliminate call option prices less than 1 index point #1, #2, #3, #4 

 Eliminate all call option values that violate the upper and lower arbitrage 

bounds #1, #2, #3, #4 

  

Eliminate observations based on the following moneyness criterions: 

 No eliminations based on a moneyness criterion #1, #2    

 Keep only observations with S/X ∈ [0.85, 1.35] (and also with less than 

180 trading days to maturity) #1 

 Keep only observations with S/X ∈ [0.80, 1.20] #3, #4 

 Eliminate option transactions with less (more) than 6 (260) trading days 

until expiration  #1, #2, #3, #4 

 Discard maturity with less than four option contracts #1, #2, #3, #4 

 Option transactions with implied volatility outside [5%, 70%]  #3, #4 

 

 The following summarizes the most important characteristics of the data 

used in the four essays. 
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Essay Period S/X T σimp 

# 1 1998 – 2001 
all available & 

[0.85, 1.35] 

[5, 260] & 

[5, 180] 
All available 

# 2 1998 – 2001 all available [5, 260] All available 

# 3 2002 – 2004 [0.80, 1.20] [5, 260] [5%, 70%] 

# 4 2002 - 2004 [0.80, 1.20] [5, 260] [5%, 70%] 

 

 

 Studies like Rubinstein (1994) and Jackwerth (2004) also filter options 

data for butterfly spread violations. We do not check our data for this type of 

arbitrage violation since the main literature we follow has ignored it (e.g. Bakshi 

et al., 1997, Bates 1996, 2000, etc). This filtering rule should be most significant 

for studies that estimate the implied risk neutral density function directly from 

options data. Nevertheless, we have run some checks on our data for this type of 

filtering rule for the dataset we used in the third and fourth essays. We found 

that butterfly spreads are violated for about 4% of the total sample but with an 

insignificant mean violation value of 0.083 (approximately equal to 0.1% of the 

call prices involved in the violations). We firmly believe that these violations 

would not affect the quality of the reported results.   

 Compared to the existing literature, this thesis examines more explanatory 

variables including historical, weighted average implied and pure implied 

parameters. Also, instead of constant maturity risk-less interest rate, nonlinear 

interpolation is used for extracting a continuous rate according to each option’s 

time to maturity. 

 

 

I.4.1. Observed and historically estimated parameters 

 Below follows an explanation for the relevant input and output variables 

used for fulfilling the current thesis. Some of these are used in all different 

chapters whilst other are used only in some of the different parts of the thesis.  
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I.4.1.1. Observed variables and parameters measures  

 Moneyness Ratio (S/X): The moneyness ratio may explicitly allow the 

nonparametric methods to better learn the moneyness bias associated with the 

BS (see also Garcia and Gencay, 2000). The dividend adjusted moneyness ratio 

( )/TSe Xδ−  is used in this thesis with ANNs and SVMs because it is more 

informative since dividends affect the options pricing mechanism.  

 Time to maturity (T ): For each option contract, trading days are computed 

assuming 252 days in a year.  

 Risk-less interest rate (r ):  Most of the studies use 90-day T-bill rates (or 

similar when this is unavailable) as approximation of the interest rate. In this 

thesis nonlinear cubic spline interpolation is used for matching each option 

contract with a continuous interest rate that corresponds to the option’s 

maturity. This is done by utilizing T-bill rates collected from the U.S. Federal 

Reserve Bank Statistical Releases. 

 Historical Volatilities (σ ): The 60-day historical volatility is calculated 

using all the past 60 index log-returns.  

 CBOE VIX Volatility Index: It was developed by CBOE in 1993 and is a 

measure of the volatility of the S&P 500 Index. VIX is calculated by taking the 

weighted average of the implied volatilities of eight S&P 500 Index call and put 

options with an average time to maturity of 30 days.  

 Skewness and Kurtosis: The 60-day skewness and kurtosis needed for the 

CS model are approximated from the sixty most recent log-returns of the S&P 

500.      

 

 

I.4.1.2. Implied parameters 

 For extracting the implied parameters for the POPMs, the Whaley’s (1982) 

simultaneous equation procedure is considered in this thesis. This methodology 

minimizes a price deviation function with respect to the unobserved parameters. 

The market option prices (cmrk) are assumed to be the corresponding model prices 

(ck, k defining input from a parametric model – e.g. BS, CS, SVJ, SV) plus a 

random additive disturbance term. For any option set of size Nt (it refers to the 

number of different call option transaction datapoints available on a specific 

day), the difference: 
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k
N

mrk
N

k
N ttt

cc −=ε  (I.26) 

 

between the market and the model value of a certain option is a function of the 

values taken by the unknown parameters. To find implied parameter values the 

following unconstrained optimization problem is considered: 

 

∑
=

=
t

k

N

l

k
l )(min)t(SSE

1

2ε
θ

 (I.27) 

where t represents the time instance, and kθ  the unknown parameters 

associated with a specific POPM. To minimize the possibility of obtaining implied 

parameters that correspond to a local minimum of the error surface (see also 

Bates, 1991, and Bakshi et al., 1997), several starting values are used for the 

parameters of each model. This methodology is implemented under various 

schemes in order to derive daily implied parameter values for the POPMs 

considered.  

 

 

I.4.1.3. Validation, testing and pricing performance measures 

 In order to estimate the nonparametric model, the available data points 

are divided/splitted into training, validation and testing sub-datasets in a 

chronological manner via a rolling-forward procedure. Depending on the case 

considered, the available dataset is divided into a number of different overlapping 

training (Tr) and validation (Vd) sets, each followed by separate and non-

overlapping testing (Ts). Since a practitioner is faced with time-series data, it was 

decided to partition the available data based on this rationale since it allows 

frequent re-estimation of the nonparametric models so as to keep a reasonable 

track of the time-variation of the option valuation relationships between the 

input/output variable combinations. All testing sub-sets are pooled forming in 

this way an aggregate dataset (AggTs). For this aggregate dataset various error 

metrics are reported in order to determine the pricing accuracy of each model 

considered. The Root Mean Square Error (RMSE) is considered to be the most 
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important error measure of this thesis since most of the parametric and 

nonparametric methodologies are effectively calibrated with respect to a sum-of-

squares loss function. This treatment is in line with the intuition behind the 

study of Christoffersen and Jacobs (2004) that suggest that better estimation 

results can be obtained when the estimation and evaluation loss functions are 

aligned. Nevertheless, we also report the Mean Absolute Error (MAE) since for 

nonlinear models or data that exhibit nonlinearities MAE is sometimes 

considered as a better criterion given that it is more robust to extreme 

observations. 

 

I.5. Four Essays on Empirical Options Pricing: Descriptions and 

Results 

 Below, a brief description of the methodologies developed and the results 

obtained in each of the four essays is provided. 

 

 

I.5.1. Summarizing Essay #1: Pricing and Trading European Options by 

Combining Artificial Neural Networks and Parametric Models with Implied 

Parameters 

 In this essay the BS and CS models are compared with several ANN 

configurations with respect to pricing the S&P 500 European call options. The 

standard and hybrid function are implemented with ANNs. In previous studies 

the standard steepest descent backpropagation algorithm was (mostly) used for 

training the feedforward ANNs. As it is shown in Charalambous (1992) this 

learning algorithm is often unable to converge rapidly to the optimal solution. 

Thus in this essay the modified Levenberg-Marquardt algorithm is utilized which 

is much more sophisticated and efficient in terms of time capacity and accuracy 

(Hagan and Menhaj, 1994). In contrast to most previous studies, a different 

network configuration is used per period based on the early stopping technique 

and a thorough cross-validation strategy.  

 Although previous researchers have exploited BS or ANNs, little has been 

reported for the case of CS and nothing for the hybrid ANNs that use information 

derived by CS. To investigate the economic significance of the alternative option 

pricing approaches, trading strategies without and with the inclusion of 
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transaction costs are utilized. These trading strategies are implemented with the 

standard single instrument delta-hedging values implied by each model, but also 

with the corrected values according to the (widely neglected) Chen and Johnson 

(1985) methodology. In order to check the robustness of the results, in addition 

to the full dataset that considers broad range of strike prices and time to 

maturity options, the whole analysis is repeated by using a reduced dataset that 

has been considered in previous studies (i.e. Hutchison et al., 1994).   

 Regarding the in sample pricing, CS performs better than the BS model 

(with the exception of the case of the contract specific implied parameters that 

practically eliminate the pricing error). Regarding the out of sample pricing, CS 

outperforms BS with the use of overall average (one per day) implied parameters, 

but BS is still a better model when the contract specific (one per contract) 

implied parameters are used; in general, implied parameters lead to better 

performance than the historical ones or the VIX volatility proxy; it is found that 

ANNs estimated based on the standard target function cannot outperform the 

parametric models in the full range of data, but this result does not necessarily 

holds for the reduced data set; hybrid neural networks that combine both neural 

network technology and the parametric models provide the best performance, 

especially when contract specific implied parameters are used.  The BS based 

hybrid ANN (with contract specific parameters) is the overall best performer, and 

the equivalent CS hybrid often a good alternative. 

 In trading and before transaction costs, models using contract specific 

implied parameters provide the best performance. But they also lead to the 

highest number of trades. In trading when transaction costs are accounted for in 

a naive manner, profits practically in all cases disappear. On the contrary when 

dynamic cost-efficient strategies are implemented profits are present at 

reasonable levels of transaction costs hinting thus to potential market 

inefficiencies. The parametric BS with contract specific volatility is the best 

among the parametric models. The hybrid ANN based on BS with contract 

specific volatility is again the overall best. 

 In this essay it is also shown that by implementing the widely neglected 

Chen and Johnson (1985) modified hedging approach the profitability of trading 

strategies can be improved considerably for parametric models that use overall 

average (one per day) implied parameters (the models more consistent with the 

assumptions behind the modified hedging approach). This approach did not 
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affect the choice of the overall best model in terms of trading with transaction 

costs. But it did demonstrate that reasonable alternatives for trading do exist 

without the need to resort to the extra sophistication of the ANNs technology. 

 

 

I.5.2. Summarizing Essay #2: Robust Artificial Neural Networks for Pricing 

of European Options 

 The scope of this chapter is to compare alternative standard and robust 

ANN configurations with respect to pricing the S&P 500 European call options. 

Robust ANNs that use the Huber (1981) function are developed, and 

configurations that are optimized based solely on the least squares norm are 

compared with robust configurations that are closer to the least absolute norm. 

Like in the first essay, the standard and hybrid ANN target functions with 

historical and implied parameter measures are employed.   

 In previous empirical research on option pricing, ANNs have been 

optimized based on the l2 (the least squares) norm. The l2 norm is a convenient 

way to train ANNs. Of course, the least squares optimization is highly susceptible 

to the influence of large errors since some abnormal datapoints (or few outlier 

observations) can deliver non-reliable networks. On the contrary, robust 

optimization methods that exploit the l1 (the least absolute) norm are unaffected 

by large (or catastrophic) errors but are doomed to fail when dealing with small 

variation errors.  

 In this essay the Huber function (Huber, 1981) is used as the loss function 

during the ANNs optimization process. The Huber function utilizes the 

robustness of l1 and the unbiasedness of l2 and has proved to be an efficient tool 

for robust optimization problems for various tasks (i.e. Bandler et al., 1993), 

albeit it does not constitute the mainstream. The Huber function has been 

considered because it is widely referenced on robust estimation (Bishop, 1995), it 

provides a simple generalization of the least squares approach; it avoids the need 

for any probabilistic assumptions, and does not lead to complex mathematical 

expressions when used with ANNs.  

 Regarding the out of sample pricing, the hybrid models outperform both 

the standard ANNs and the parametric ones. Huber optimization improves 

significantly the performance of both the standard and the hybrid ANNs. The 

non-hybrid ANNs are affected more by large errors. The overall best models are 
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the Huber based hybrid ANNs. In general, within each class, the best performing 

Huber model has considerably smaller probability of large mispricing compared 

to the least squares counterpart. Regarding the economic significance of the 

models, the Huber models are the overall best models.   

 

 

I.5.3. Summarizing Essay #3: Generalizing the Deterministic Volatility 

Functions for Enhanced Options Pricing 

 The broader scope of this essay is to propose a nonparametric 

enhancement of the implied parameter values used in the POPMs, generalizing 

thus the DVF method of Dumas et al. (1998) (see also Christoffersen and Jacobs, 

2004). The proposed approach results in Generalized Parameter Functions 

(GPFs) that allow an enhancement of parameters without specifying a 

deterministic functional form. The nonparametric parameter enhancement 

provides the volatility to the BS and CS models. In addition, skewness or 

skewness and kurtosis can be enhanced for the CS model. A significant feature 

of the methodology is that it allows a set of the input variables to the parametric 

model to be jointly determined by the generalized parameter functions. The 

proposed approach has the following important features. First, it retains the 

theoretical properties of the parametric model being enhanced concerning the 

desire for: i) nonnegative option values (thus expecting satisfactory pricing 

performance at the boundary of option pricing areas, in both dense and sparse 

input areas), ii) theory consistent Greek letters, and iii) nonnegative implied state 

price densities. Second, as conjectured by Bandler et al. (1999), nonparametric 

techniques that incorporate knowledge regarding the nature of the problem 

should need a smaller amount of training samples and also reduce the number 

of free parameters needed for estimation to exhibit a satisfactory performance in 

out of sample testing as opposed to the case of standard nonparametric 

approaches. Third, the approach compared to the DVF and Whaley (1982) 

combines two important characteristics (see discussions in Christoffersen and 

Jacobs, 2004, p. 313). It has enhanced precision in parameter estimates due to 

long term estimation of the GPF and at the same time captures the time-variation 

of the option valuation relationship since input to the nonparametric structure is 

calibrated daily.   
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 In this essay ePOPMs are developed for the case of BS and of CS models. 

These are then compared with their parametric alternatives using the overall 

average implied parameters and their DVF versions in pricing S&P 500 index call 

options. Part of the contribution is to apply the DVF approach to the CS model. 

Moreover, the SVJ model of Bates (1996) is used as benchmark since it is an 

effective remedy to the BS biases (see Bakshi et al., 1997, and Bates, 1996); 

results for the SV sub-model are also reported.  

 Regarding the results it is first shown that daily calibration of either SVJ 

or the DVF based BS and CS models requires careful search. In the sample, SVJ 

has the best fit while SV is inferior to the best DVF models. The out of sample 

results strongly support the proposed methodology. The first important finding is 

that the DVF approach when applied to CS provides results superior to CS (with 

overall average parameter estimates) and also to BS (with either overall average 

or DVF estimates). The second is that the SVJ model is the best model among the 

parametric models whilst the SV is inferior to DVF based BS and CS models. The 

third is that the increase in the pricing accuracy of the enhanced BS and CS 

models over the best performing BS and CS parametric ones is considerable and 

statistically significant. In general, the best enhanced models estimated monthly 

are comparable to the daily estimated SVJ model. In addition, it is shown that 

the enhanced methodology is robust both to the complexity of the generalized 

parameter functions, and to the pricing of contracts not used during estimation. 

Consistently with the recommendation in Christoffersen and Jacobs (2004) it is 

observed that hedging results using ePOPMs chosen using a hedging criterion 

outperform both the parametric models and the ePOPMs chosen using a pricing 

criterion.  

 

 

I.5.4. Summarizing Essay #4: Functional Estimation for Options Pricing Via 

Support Vector Machines  

The focus of this essay is to investigate the pricing performance of Support 

Vector Machines (SVMs) for pricing S&P 500 index call options. SVMs comprise 

is a novel nonparametric methodology that has been evolved in the framework of 

statistical learning theory (see Vapnik, 1995, for extensive details) and can be 

utilized for problems involving linear or nonlinear function approximations. 

Unlike ANNs, SVMs have not gained yet any significant popularity in financial 
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econometric applications although they are widely used in electrical engineering, 

bioinformatics, pattern recognition, text analysis, computer vision etc. The main 

advantage of SVMs over other nonparametric techniques is that they encompass 

statistical properties that enables them to generalize satisfactorily well to unseen 

data. SVMs employ the so called VC theory (see Vapnik and Chervonenkis, 

1974), which is defined in a strictly statistical framework, that controls in 

specific ways the model’s estimation and parameterization to preclude overfitting 

so that to ensure good out of sample (generalization) results.  

Based on the theory that underlies SVM, their superiority over ANNs 

should be more obvious in datasets of small and moderate size (see Vojislav, 

2001). In addition, their estimation is much more efficient in terms of time spent 

on the training/optimization for small datasets. For this reason in this essay the 

SVMs are estimated with short-time span data sets.    

The main contribution of this essay regards the application of SVM for 

options pricing and their comparison with other alternative pricing approaches. 

Two types of SVMs are considered. The first is the traditional SVMs that were 

originally developed by Vapnik and are based on the ε -insensitive loss function 

(see Vapnik, 1995) which are considered to be more robust when noise is non 

Gaussian. The second is the Least Squares Support Vector Machines (LS-SVM) 

which is a subsequent variant of the original SVMs methodology originally 

proposed by Suykens and co-workers (see Suykens et al., 2002). Compared to 

SVMs, LS-SVMs are more robust when noise is Gaussian and they rely on fewer 

tuning hyper-parameters. Most importantly LS-SVMs minimize a least squares 

loss function which is most common in empirical options pricing studies (see 

Christoffersen and Jacobs, 2004). Another contribution of this essay regards the 

application of ANNs in small datasets. Most previous studies reviewed in the first 

three essays employ ANNs with rather large datasets.      

The dataset, the alternative POPMs and the methodology to derive the 

implied parameters are the same as the one used in the previous (third) essay. 

SVMs and LS-SVMs are developed by using the standard and the hybrid target 

functions and are compared with standard and hybrid ANNs (based on the 

estimation methods employed in the first essay). The empirical results show that 

SVMs can produce pricing results that are comparable to the more sophisticated 

parametric models like the SVJ model. In addition, it is found that the ANNs, 

especially the ones developed with the hybrid target function, perform 
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exceptionally well with small datasets. This is a new observation since up to this 

moment ANNs have been tested using rather large datasets. Overall the 

performance of SVMs and ANNs seems to be comparable. As explained by Smola 

and Schölkoph (1998), it is possible for ANNs to achieve similar performance with 

SVMs. Nevertheless, as there are only two to three critical parameters in SVMs 

(compared to usually few dozens for ANNs), it may be more convenient and easier 

to use SVMs. 
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1.  Pricing and Trading European Options by 
Combining Artificial Neural Networks and 
Parametric Models with Implied Parameters 

 

Abstract 

 We compare the ability of the parametric Black and Scholes, Corrado and 

Su models, and Artificial Neural Networks to price European call options on the 

S&P 500 using daily data for the period January 1998 to August 2001. We use 

several historical and implied parameter measures. Beyond the standard neural 

networks, in our analysis we include hybrid networks that incorporate 

information from the parametric models.  

 Our results are significant and differ from previous literature. We show 

that the Black and Scholes based hybrid artificial neural network models 

outperform the standard neural networks and the parametric ones. We also 

investigate the economic significance of the best models using trading strategies 

(extended with the Chen and Johnson modified hedging approach). We find that 

there exist profitable opportunities even in the presence of transaction costs.    

 The existing chapter had been submitted for publication in the European 

Journal of Operational Research and it is forthcoming in volume 185, issue 3, 

16 March 2008, pg. 1415-1433.   
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1.1. Introduction 

 In this essay we compare parametric option pricing models (POPMs) -- 

Black and Scholes (1973) (BS) and the semi-parametric Corrado and Su (1996) 

(CS) -- with several artificial neural network (ANN) configurations. We compare 

them with respect to pricing the S&P 500 European call options, and trading 

strategies are implemented in the presence of transaction costs. 

Black and Scholes introduced in 1973 their milestone POPM. Despite the fact 

that BS and its variants are considered as the most prominent achievements in 

financial theory in the last three decades, empirical research has shown that the 

formula suffers from systematic biases (see Black and Scholes, 1975, MacBeth 

and Merville, 1980, Gultekin et al., 1982, Rubinstein, 1994, Bates, 1991 and 

2003, Bakshi et al., 1997, Andersen et al., 2002, and Cont and Fonseca, 2002). 

The BS bias stems from the fact that the model has been developed under a set 

of simplified assumptions such as geometric Brownian motion of stock price 

movements, constant variance of the underlying returns, continuous trading on 

the underlying asset, constant interest rates, etc.  

 Post-BS research (e.g. stochastic volatility, jump-diffusion, stochastic 

interest rates, etc.) has not managed to either generalize all the assumptions of 

BS or provide results truly consistent with the observed market data. These 

models are often too complex to implement, have poor out of sample pricing 

performance and have implausible and sometimes inconsistent implied 

parameters (see Bakshi et al., 1997). This justifies the severe time endurance of 

BS5. Together with the BS model, we also consider the semi-parametric CS model 

that allows for excess skewness and kurtosis, as a model that can proxy for other 

more complex parametric ones.  

 Nonparametric techniques such as Artificial Neural Networks are promising 

alternatives to the parametric OPMs. ANNs do not necessarily involve directly any 

financial theory because the option’s price is estimated inductively using 

historical or implied input variables and option transactions data. Option-pricing 

functions are multivariate and highly nonlinear, so ANNs are desirable 

approximators of the empirical option pricing function. Parametric models describe 

                                                 
 
5 According to Andersen et al., (2002), “the option pricing formula associated with the 
Black and Scholes diffusion is routinely used to price European options, although it is 
known to produce systematic biases”. 
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a stationary nonlinear relationship between a theoretical option price and various 

variables. Since it is known that market participants change their option pricing 

attitudes from time to time (i.e. Rubinstein, 1994) a stationary model may fail to 

adjust to such rapidly changing market behavior (see also Cont and Fonseca, 

2002, for evidence of noticeable variation in daily implied parameters). ANNs if 

frequently trained can adapt to changing market conditions, and can potentially 

correct the aforementioned BS bias (Hutchison et al., 1994, Lajbcygier et al., 

1996, Garcia and Gencay, 2000, Yao and Tan, 2000).  

 Beyond the standard ANN target function we further examine the hybrid 

ANN target function suggested by Watson and Gupta (1996) and used for pricing 

options with ANNs in Lajbcygier et al. (1997). In the hybrid models the target 

function is the residual between the actual call market price and the parametric 

option price estimate. In previous studies the standard steepest descent 

backpropagation algorithm is (mostly) used for training the feedforward ANNs. It 

is shown in Charalambous (1992) that this learning algorithm is often unable to 

converge rapidly to the optimal solution. Here we utilize the modified Levenberg-

Marquardt (LM) algorithm which is much more sophisticated and efficient in 

terms of time capacity and accuracy (Hagan and Menhaj, 1994). In contrast to 

most previous studies, thorough cross-validation allows us to use a different 

network configuration in different testing periods.  

 The data for this research come from two dominant world markets, the 

New York Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago 

Board of Options Exchange (CBOE) for call option contracts, spanning a period 

from January 1998 to August 2001. To our knowledge, the resulting dataset is 

larger than the ones used in other published ANN studies. We also (similarly to 

Rubinstein, 1994, Bates, 1996, Bakshi et al., 1997; see discussion in Bates, 

2003) reserve option datapoints that in several ANN studies were dropped out of 

the analysis. Note that in order to check the robustness of the results we 

repeated the analysis using a reduced dataset following Hutchison et al. (1994). 

We examine more explanatory variables including historical, weighted average 

implied and pure implied parameters. Also, instead of constant maturity riskless 

interest rate, we use nonlinear interpolation for extracting a continuous rate 

according to each option’s time to maturity.   
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 Lastly, although previous researchers have exploited BS or ANNs, little has 

been reported for the case of CS6 and nothing for the hybrid ANNs that use 

information derived by CS. To investigate the economic significance of the 

alternative option pricing approaches, trading strategies without and with the 

inclusion of transaction costs are utilized. These trading strategies are 

implemented with the standard delta-hedging values implied by each model, but 

also with the corrected values according to the (widely neglected) Chen and 

Johnson (1985) methodology.   

 In the following we first review the BS and CS models, and the standard 

and hybrid ANN model configuration. Then we discuss the dataset, the historical 

and implied parameter estimates we derive, and we define the parametric and 

ANN models according to the parameters used. Subsequently we review the 

numerical results with respect to the in- and out of sample pricing errors; and we 

discuss the economic significance of dynamic trading strategies both in the 

absence and in the presence of transaction costs.  The final section concludes. In 

general, our results are novel and significant. We identify the best hybrid ANN 

models, and we provide evidence that (even in the presence of transaction costs), 

profitable trading opportunities still exist. 

 

 

1.2. The parametric models 

The Black Scholes formula for European call options modified for 

dividend-paying underlying asset is: 

 

)()( 21 dNXedNSec rTTδBS −− −=  (1.1)     

Τσ
TσTδrXSd 2/)()()/ln( 2

1
++

=
-  (1.1.1)   

Tdd σ−= 12  (1.1.2) 

                                                 
 
6 An exception is the paper by Sami Vahamaa (2003) that examined the hedging 
performance of the CS model without including transaction costs.  
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where, BSc ≡premium paid for the European call option; S ≡ spot price of the 

underlying asset; X ≡ exercise price of the option; r ≡ continuously compounded 

riskless interest rate; δ ≡ continuous dividend yield paid by the underlying asset; 

T ≡ time left until the option expiration; 2σ ≡ yearly variance rate of return for the 

underlying asset; (.)N ≡ the standard normal cumulative distribution. 

 The standard deviation of continuous returns ( 2σ ) is the only variable in 

Eqs. (1.1.1) and (1.1.2) that cannot be directly observed in the market. For this 

study, we use both historical and implied volatility forecasts. For the Historical 

Volatility we use the past 60 days. The Implied Volatility (IVL) calculation 

involves solving Eq. (1.1) iteratively for σ  given the values of the observable mrkc  

(the most recently observed market price of a call option), and the relevant values 

of S, X, T, r and δ . Contrary to historical volatility, IVL has desirable properties 

that make it attractive to practitioners: it is forward looking, and avoids the 

assumption that past volatility will be repeated.  

 If BS is a well-specified model, then all IVLs on the same underlying asset 

should be the same, or at least deterministic functions of time. Unfortunately, 

many researchers have reported systematic biases. For example, Rubinstein 

(1994) has shown that IVL derived via BS as a function of the moneyness ratio 

(S/X) and time to expiration (T) often exhibits a U shape, the well known volatility 

smile. Bakshi et al. (1997) report that implicit stock returns’ distributions are 

negatively skewed with more excess kurtosis than allowable in the BS lognormal 

distribution. This is why we usually refer to BS as being a misspecified model 

with an inherent source of bias (see also Latane and Rendleman, 1976, Bates, 

1991, Canica and Figlewski, 1993, Bakshi et al., 2000, and Andersen et al., 

2002). For the aforementioned reason we include in our analysis the Corrado and 

Su (1996) (see also the correction in Brown and Robinson, 2002) model that 

explicitly allows for excess skewness and kurtosis. The CS model is a semi-

parametric model since it does not rely on specific assumptions about the 

underlying stochastic process. Corrado and Su define their model as: 

 

 43 )34(4 QµQµcc BScs −++=   (1.2) 
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))()()2((
!3

1
1
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113 dΝTσdndTσTσSeQ Tδ −−= −  (1.2.1) 
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1
1

2/33
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2
14 dNTdnTdTdTSeQ T σσσσδ +−−−= −  

 (1.2.2) 

)2/exp(
2
1)( 2z
π

zn −=  (1.2.3) 

 

where cBS is the BS value for the European call option adjusted for dividends, 

and 3µ  and 4µ  are the coefficients of skewness and kurtosis of the returns.  

 

1.3. Artificial neural networks 

 A Feedforward Artificial Neural Network is a collection of interconnected 

simple processing elements structured in successive layers and can be depicted 

as a network of arcs/connections and nodes/neurons. Fig. 1 depicts a fully-

connected ANN architecture similar to the one applied in this study. This 

network has three layers: an input layer with N input variables, a hidden layer 

with H neurons, and a single neuron output layer. Each connection is associated 

with a weight, kiw , and a bias, kb , in the hidden layer and a weight, kv , and a 

bias, 0v , for the output layer (k = 1,2,…,H, i = 1,2,…,N). A particular neuron node 

is composed of: i) the vector of input signals, ii) the vector weights and the 

associated bias, iii) the neuron itself that sums the product of the input signal 

with the corresponding weights and bias, and finally, iv) the neuron transfer 

function. In addition, the outputs of the hidden layer ( (1) (1) (1)
1 2, ... Hy y y ) are the inputs 

for the output layer. Since we want to approximate the market options pricing 

function, ANNs operate as a non-linear regression tool: 

 

ANNxGY ε+= )~(  (1.3) 

 

that maps the unknown relation, G(.), between the input variable vector, 

1 2[ , ,..., ]Nx x x x=% , the target function, Y , and the error term, ANNε . Inputs are set 
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up in feature vectors, 1 2[ , ..., ]q q q Nqx x x x=%
 for which there is an associated and 

known target, qY t≡  (in our case, /mrk
q q qt c X≡ ), with 1,2,...,q P≡ , where P is the 

number of the available sample features. According to Fig. 1, the operation 

carried out for estimating output y  (in our case, 
/q

ANN
q qy c X≡

), is the following: 

 

∑ ∑
= =

++=
H

k

N

i
ikikHk xwbfvvfy

1 1
00 )]([  (1.4) 

 

 For the purpose of this study, the hidden layer always uses the hyperbolic 

tangent sigmoid transfer function, while the output layer uses a linear transfer 

function. In addition, ANN architectures with only one hidden layer are 

considered since they operate as a nonlinear regression tool and can be trained 

to approximate most functions arbitrarily well. This is based on the universal 

approximation theorem provided by Cybenko (1989) (for further details see also 

Haykin, 1999): 

 

Figure 1.1. A single hidden layer feedforward neural network 
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 Let (.)Hf  be a non-constant, bounded and monotone-increasing 

continuous function. Let Nl  denote the N-dimensional unit hypercube N10 ],[ . The 

space of continuous functions on Nl  is denoted by )( NlC . Then, given any 

function )( NlCg ∈  and  0ε > , there exist an integer number H and sets of real 

constants, N21iH21kvww kki0k ,...,,,,...,,,,, == such that we may define,  

 

)()( ∑∑
==

+=
N

1i
iki0kH

H

1k
k xwwfvxy

  

 

as an approximate realization of the function (.)g ; that is, εxgxy <− |)()(|  for all 

vectors x  that lie in the input space. High accuracy can be obtained by including 

enough processing nodes in the hidden layer. 

 To train the ANNs, we utilized the modified LM algorithm. According to 

LM, the weights and the biases of the network are updated in such a way so as to 

minimize the following sum of squares performance function: 

 

∑ ∑ ∑ ∑∑
= = = ==

−++≡−≡=
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q
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1 1

2

1 1
00
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22 ))]([()()(  

 (1.5) 

 

where, W  is an n-dimensional column vector containing the weights and biases: 

1 11 0[ ,..., , ,..., , ,..., ]TH HN HW b b w w v v= . Then, at each iteration τ of LM, the weights 

vector W is updated as follows: 

 

)()(])()([ 1
1 jj

T
jjj

T
jj WeWJIµWJWJWW −

+ +−=  (1.6) 

 

where I is an n n identity matrix, ( )J W  is the P n Jacobian matrix of the P-

dimensional output error column vector ( )e W , and τµ  is like a learning 

parameter that is adjusted in each iteration in order to secure convergence. 

Further technical details about the implementation of LM can be found in Hagan 

and Menhaj (1994) and Hagan et al. (1996). In addition, to the standard use of 
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ANNs where /mrk
q q qt c X≡ , we also try hybrid ANNs in which the target function is 

the residual between the actual call market price and the BS or CS call option 

estimation:  

 

q
k
qq

mrk
qq XcXct // −≡  (1.7) 

 

with k defining inputs from a parametric model. To avoid neuron saturation, we 

scale input variables using the mean-variance transformation (z-score) defined as 

follows: 

 

( )/i i i iz x sµ= −% %  (1.8) 

 

where ix%  is the vector containing all of the available observations related to a 

certain input/output variable for a specific training period, iµ  is the mean and is  

the standard deviation of this vector. Moreover, we also utilize the network 

initialization technique proposed by Nguyen and Windrow (see Hagan et al., 

1996) that generates initial weights and bias values for a nonlinear transfer 

function so that the active regions of the layer’s neurons are distributed roughly 

evenly over the input space.  

 In this study for each input variable set of each training sample, all the 

available networks having two to ten hidden neurons are cross-validated (in total 

nine). Moreover, since the initial network weights affect the final network 

performance, for a specific number of hidden neurons the network is initialized, 

trained and validated many times. Each network is estimated and optimized 

using the Mean Square Error (MSE) criterion shown in Eq. (1.5) for no more than 

two-hundred iterations. The dataset is divided into three sub-sets. The first is the 

training (estimation) set. The second is the validation set where the ANN model’s 

error is monitored and the optimal number of hidden neurons and their weights 

are defined, via an early stopping procedure (MSE fails to decrease in 10 

consecutive iterations). Given the optimal ANN structure, its pricing capability is 

tested in a third separate testing dataset.  
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1.4. Data, parameter estimates and model implementation 

 Our dataset covers the period January 1998 to August 2001. To our 

knowledge, the resulting dataset is larger than the one used in other published 

studies and reserves option data points that in most of the previous studies were 

dropped out of the analysis. After implementing the filtering rules, our dataset 

consists of 76,401 data points, with an average of 35,000 data points per 

(overlapping rolling training-validation-testing) sub-period (see Fig. 2). Hutchison 

et al. (1994) have an average of 6,246 data points per sub-period. Lajbcygier et 

al. (1996) include 3,308 data points, Yao et al. (2000) include 17,790 data points, 

and Schittenkopf and Dorffner (2001) include 33,633 data points. The S&P 500 

Index call options are considered because this option market is extremely liquid 

and one of the most popular index options traded on the CBOE. This market is 

the closest to the theoretical setting of the parametric models. Along with the 

index, we have collected a daily dividend yield, δ , provided online by 

Datastream.  

 

1.4.1. Observed and historically estimated parameters 

 Moneyness Ratio (S/X): The moneyness ratio may explicitly allow the 

ANNs to learn the moneyness bias associated with the BS (see also Garcia and 

Gencay, 2000). The dividend adjusted moneyness ratio ( )/TSe Xδ−
 is used in this 

study with ANNs because it is more informative. The simple moneyness ratio S/X 

is used in order to tabulate results as in Hutchison et al. (1994). We adopt the 

following terminology: very deep out of the money (VDOTM) when S/X<0.85, deep 

out the money (DOTM) when 0.85≤S/X<0.90, out the money (OTM) when 

0.90≤S/X<0.95, just out the money (JOTM) when 0.95≤S/X<0.99, at the money 

(ATM) when 0.99≤S/X<1.01, just in the money (JITM) when 1.01≤ S/X <1.05, in 

the money (ITM) when 1.05≤S/X<1.10, deep in the money (DITM) when 

1.10≤S/X<1.35, and very deep in the money (VDITM) when S/X≥1.35.   

 Time to maturity (T ): For each option contract, trading days are computed 

assuming 252 days in a year. In terms of time length, an option contract is 

classified as short term maturity when its maturity is less than 60 days, as 

medium term maturity when its maturity is between 60 and 180 days and as long 

term maturity when it has maturity longer than (or equal to) 180 days.   
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 Riskless interest rate (r ):  Most of the studies use 90-day T-bill rates (or 

similar when this is unavailable) as approximation of the interest rate. We use 

nonlinear cubic spline interpolation for matching each option contract with a 

continuous interest rate, r , that corresponds to the option’s maturity, by 

utilizing the 3-month, 6-month and one-year T-bill rates collected from the U.S. 

Federal Reserve Bank Statistical Releases. 

 Historical Volatilities (σ ): The 60-day historical volatility is calculated 

using all the past 60 log-relative index returns and is symbolized as 60σ . 

CBOE VIX Volatility Index: It was developed by CBOE in 1993 and is a measure of 

the volatility of the S&P 100 Index7. VIX is calculated by taking the weighted 

average of the implied volatilities of eight S&P 100 Index call and put options 

with an average time to maturity of 30 days. This volatility measure can only be 

used with BS and is symbolized as BS
vixσ .  

 Skewness and Kurtosis: The 60-day skewness ( 3,60
CSµ ) and kurtosis ( 4,60

CSµ ) 

needed for the CS model are approximated from the sixty most recent log-returns 

of the S&P 500.      

 

1.4.2. Implied parameters 

 We adopt the Whaley’s (1982) simultaneous equation procedure to 

minimize a price deviation function with respect to the unobserved parameters. 

As with Bates (1991), market option prices (cmrk) are assumed to be the 

corresponding model prices (ck, k defining input from a parametric model) plus a 

random additive disturbance term. For any option set of size Nt (Nt refers to the 

number of different call option transaction datapoints available on a specific 

day), the difference: 

 

k
N

mrk
N

k
N ccε −=  (1.9) 

 

between the market and the model value of a certain option is a function of the 

values taken by the unknown parameters. To find optimal implied parameter 

                                                 
 
7 The S&P 100 Index and S&P 500 Index exhibit 30 day log-return average correlations 
for the period January 1998 to August 2002 of about 0.98. 
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values we solve an unconstrained optimization problem that has the following 

form: 

 

∑
=

=
N

n

k
nk

tSSE
1

2)(min)( ε
θ

 (1.10) 

 

where t represents the time instance, and kθ  the unknown parameters 

associated with a specific POPM ( }{σθBS = , },,{ 43 µµσθCS = ). The SSE is 

minimized via a non-linear least squares optimization based on the LM 

algorithm. To minimize the possibility of obtaining implied parameters that 

correspond to a local minimum of the error surface (see also Bates, 1991, and 

Bakshi et al., 1997), with each model we use three different starting values for 

the unknown parameters based on reported average values in Corrado and Su 

(1996).       

 A difference of our approach compared to previous studies is that the 

above minimization procedure is used daily to derive four different sets of implied 

parameters for each parametric model. The first optimization is performed by 

including all available options transaction data in a day to obtain daily average 

implied structural parameters. Alternatively, for a certain day we minimize the 

SSE of Eq. (1.10) by fitting the BS and CS for options that share the same 

maturity date as long as four different available call options exist. We thus get 

daily average per maturity parameters. In a third step, for every maturity each 

available option contract is grouped with its three nearest options in terms of the 

moneyness ratio in order to minimize the above SSE function, deriving thus 

parameters average per the 4 closest contracts; such estimates are ignored in 

previous research. We finally calibrate the implied structural parameters, by 

focusing on the Brownian volatility for each contract so as to drive the residual 

error to zero or to a negligible value. In the case of BS this is quite simple and we 

can easily obtain a contract specific volatility estimate. For CS we need three 

structural parameters, so for each call option we minimize Eq. (1.10) with respect 

to the Brownian volatility after fixing the skewness and kurtosis coefficients to 

the values obtained from the previous procedure that gave the average per the 4 

closest implied parameters. Two kinds of constraints are included in the 
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optimization process for practical reasons: nonnegative implied volatility 

parameters are obtained by using an exponential transformation; and the 

skewness of CS8 is permitted to vary in the range [–10, 5] whereas kurtosis is 

constrained to be less than 30. Unlike previous studies, we include contract 

specific implied parameters since these are widely used by market practitioners 

(i.e. Bakshi et al., 1997, pg. 2019).   

 For notational reasons, implied parameters obtained from the first step are 

denoted by the subscript av, from the second step by the subscript avT, from the 

third step by the subscript avT4, and from the fourth step by the subscript con. 

The four different implied BS volatility estimates are symbolized as: BS
jσ , 

},4,,{ conavTavTavj = , whilst the four different sets of CS parameters as: 

3, 4,{ , }CS CS CS
j j jσ µ µ . For pricing and trading reasons at time instant t, the implied 

structural parameters derived at day t-1 are used together with all other needed 

information (S, T, X, r, and δ ).  

 It is known that ANN input variables should be presented in a way that 

maximizes their information content. When we price options, the POPM formulas 

adjust those values to represent the appropriate value that corresponds to an 

option’s expiration period. According to this rationale, volatility measures for use 

with the ANNs are transformed by multiplying each of the yearly volatility 

forecast with the square root of each option’s time to maturity ( j j Tσ σ=% , where 

j={60, vix, av, avT, avT4, con}). We denote these volatility measures as BS
jσ%  and 

CS
jσ% ; and we name them as maturity (or expiration) adjusted volatilities. 

Additionally, for the case of CS, skewness 3,
CS
jµ , {60, , , 4, }j av avT avT con= , is 

transformed by multiplication with Q3 that represents the marginal effect of 

nonnormal skewness. Similarly, 4,
CS
jµ  is multiplied with Q4. We denote these 

adjusted parameters as 3,
CS

jµ%  (adjusted skewness), and 4,
CS

jµ%  (adjusted kurtosis).  

 

 

                                                 
 
8 If not somehow constrained, skewness and kurtosis can take implausible values (i.e. 
Bates, 1991) due to model overfitting that will lead to enormous pricing errors on the 
next day (especially for deep in the money options). In our case these constraints were 
binding in less than 2% of the whole dataset. 
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1.4.3. Output variables, filtering and processing 

  The BS ( BS
qc ) and CS ( CS

qc ) outputs, are used as an estimate for the 

market call option, mrk
qc . For training ANNs, the call standardized by the striking 

price, /mrk
q qc X , is used as the target function to be approximated. In addition, we 

implement the hybrid structure where the target function represents the pricing 

error between the option’s market price and the parametric models estimate, 

/ /mrk k
q q q qc X c X− .  

 
 

 

Table 1.1. Sample descriptive statistics  
Sample characteristics for the period January 5, 1998 to August 24, 2001 concerning 
the average call option value, the average Black and Scholes contract specific implied 
volatility and the number of observations in each moneyness/maturity class. 

 
 
 

 Before filtering, more than 100,000 observations were included for the 

period January 1998 – August 2001. The filtering rules we adopt are: i) eliminate 

an observation if the call contract price, mrk
t,mc , m defining each traded contract, is 

greater than the underlying asset value, tS ; ii) exclude an observation if the call 

moneyness ratio is larger than unity, St/Xm>1, and the call price, mrk
t,mc , is less than 

its lower bound, , , , ,m t m t m t m tT r T
t mS e X eδ− −− ; iii) eliminate all the options observations 

with time to maturity less than 6 trading days. The latter filtering rule is adopted 

to avoid extreme option prices that are observed due to potential illiquidity 

problems; iv) price quotes lower than 0.5 index points are not included; v) 

maturities with less than four call option observations are also eliminated, vi) in 
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addition, to remove impact from thin trading we eliminate observations according 

to the following rule: eliminate an observation if the mrk
t,mc  is equal to mrk

1t,mc −  and if 

the open interest for these days stays unchanged and if the underlying asset S 

has changed.  

 Our final dataset consists of 76,401 datapoints. Table 1.1 exhibits some of 

the properties of our sample tabulated according to moneyness ratio and time to 

maturity forming 27 different moneyness/maturity classes. We provide the 

average values for cmrk and BS
conσ , and the number of observations within each 

moneyness and maturity class. The implied volatility, BS
conσ , presents a non-flat 

moneyness structure when fixing the time to maturity and vice versa revealing 

the bias associated with BS. Moreover, we should notice that DITM and VDITM 

options dominate in number of datapoints all other classes, so unlike studies 

that ignore these options we choose to include them in the dataset. For the 

training sub-periods, the observations vary between: 19,852-22,545; for the 

validation sub-periods between: 10,372-10,916; and for the testing sub-periods 

between: 3,797-4,264.  

 In order to check the robustness of the results, in addition to the full 

dataset just described, we repeat the analysis using a reduced dataset. In this 

reduced dataset we follow Hutchison et al. (1994), and we neither use long 

maturity (longer than 180 trading days) options, nor the VDOTM (S/X<0.85) or 

the VDITM (S/X≥1.35) options. The excluded observations (because of 

considerations of thin trading) comprise about 21% of the full dataset resulting 

in a total of 60,402 observations. The training-validation-testing splitting dates 

are the same as in the original dataset. For the training sub-periods, the 

observations vary between: 15,851-18,053; for the validation sub-periods: 7,728-

9,638; and for the testing sub-periods: 2,689-3,983. To be consistent with 

Hutchison et al. (1994), in using the reduced dataset we retrain the ANNs. Our 

discussion will focus on the full dataset. In order to save space, we will only show 

selected results using the reduced dataset. 
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1.4.4. Validation, testing and pricing performance measures 

 Since a practitioner is faced with time-series data, it was decided to 

partition the available data into training, validation and testing datasets using a 

chronological manner, and via a rolling-forward procedure. Our dataset is 

divided into ten different overlapping training (Tr) and validation (Vd) sets, each 

followed by separate and non-overlapping testing (Ts) sets as exhibited by Fig. 2. 

The ten sequential testing sub-periods cover the last 25 months of the complete 

dataset. 

 

 

Figure 1.2. The rolling-over training-validation-testing procedure 

 

 There are M available call option contracts, for each of which there exist 

mΞ  observations taken in consecutive time instances t, resulting in a total of P 

(
1

M

m
m

P
=

= Ξ∑ ) available call option datapoints. To determine the pricing accuracy of 

each model’s estimates kc  (k defining the model), we examine the Root Mean 

Square Error (RMSE) and the Mean Absolute Error (MAE): 

 

∑
=

−=
p

v

k
v

mrk
v ccpRMSE

1

2)ˆ()/1(    (1.11) 

∑
=

−=
p

v

k
v

mrk
v ccpMAE

1
ˆ)/1( ,  (1.12) 

 

where p indicates the number of observations. The error measures are computed 

for an aggregate testing period (AggTs) with 39,831 datapoints by pooling 

together the pricing estimates of all ten testing periods. For AggTs we also 
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compute the Median of the Absolute Error (MeAE). Of course, since ANNs are 

effectively optimized with respect to the mean square error, the out of sample 

pricing performance should be similarly based on RMSE and in a lesser degree 

on MAE and MeAE. 

 

1.4.5. The set of alternative BS, CS and ANN models 

 With the BS models we use as input S, X, T, r, δ , and any of the six 

different volatility measures: 60σ , BS
vixσ , BS

avσ , BS
avTσ , 4

BS
avTσ  and BS

conσ . Using P in 

the superscript to denote the parametric version of BS, the six different models 

are symbolized as: 60
PBS , P

vixBS , P
avBS , P

avTBS , 4
P
avTBS , and P

conBS . In a similar way 

there are five different CS models according to the kind of parameters used: 

60
PCS , P

avCS , P
avTCS , 4

P
avTCS , and P

conCS .  

 With ANNs, we also use three standard input variables/parameters: 

( )/TSe Xδ− , T  and r . Additional input parameters depend on the parametric 

model considered. There are six ANN models that use as an additional input the 

above BS volatility measures to map the standard target function cmrk/X. There 

are six more versions that utilize the maturity adjusted parameters. Each of the 

previous input parameter sets is also used with the hybrid target function. The 

ANNs that use the untransformed BS volatility forecast are denoted by N in the 

superscript, the transformed versions by N*, while the corresponding hybrid 

versions by Nh and Nh* respectively. For instance, N
conBS  ( Nh

conBS ) is the ANN 

model that uses as additional input BS
conσ  and maps the standard (hybrid) target 

function, whilst *N
conBS  ( *Nh

conBS ) the ANN model that uses as additional input BS
conσ%  

and maps the standard (hybrid) target function. In total there are 24 different 

versions of ANNs related to the BS and 20 related to the CS model. 

 

 

1.5. Pricing results and discussion 

 We briefly review the observed in sample fit of the parametric models as 

well as the in sample characteristics of the various implied parameters. Then we 

discuss the out of sample performance of the alternative OPMs. When we do not 

explicitly refer to the dataset, we imply the full one. The insights derived were not 
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affected by the choice of dataset. When noteworthy differences exist, we state 

them explicitly. 

 

1.5.1. BS and CS in sample fitting performance and implied parameters 

 Based on our (not reported in detail for brevity) statistics for the whole 

period (1998-2001) we have observed that CS is producing smaller fitting errors 

than the BS. The contract specific fitting procedure reduces the fitting errors so 

as to almost eliminate the residuals and obtain fully calibrated implied 

parameters. The in sample RMSE measures using the overall average set of 

implied parameters (av), the average per maturity (avT), and the closest four 

contracts (avT4), are: 11.63, 11.31, and 7.00 for the BS model; and 9.52, 8.52, 

and 5.35 for the CS model9. From unreported statistics we can also attest that 

the S&P 500 average BS
conσ  in 1998 was about 33%, in 1999 about 30%, in 2000 

about 26% and in 2001 about 27%. It seems that the in sample fitting error of 

the models (diminishing in time) is positively correlated with the market volatility. 

 We can also provide some statistics about the implied parameter values 

for the whole period. The Brownian volatility varies between 22% and 30% in BS 

and between 27% and 31% in CS. For the BS model, the average implied 

volatility ( BS
avσ ) estimates are smaller in magnitude (both in mean and in median 

values) from the contract specific implied volatility, BS
conσ , although similar 

volatility estimates do not necessarily lead to similar pricing and hedging values 

(Bakshi et al., 1997). Regarding implied skewness and kurtosis, the implicit 

distributions are negatively skewed with excess kurtosis in almost all days, 

something that is probably attributed to the crash fears of the market 

participants after the Black Monday of 1987. Implied average skewness does not 

change significantly (from -1.19 to -1.20) if we move from {av} to {avT} but there is 

a shift in implied average kurtosis (from 6.91 to 6.19).  

 

 

 

                                                 
 
9 The RMSE for CS in the fourth step (con) is 1.82 (caused by a tiny part of the dataset 
less than 0.1%) due to binding constraints on skewness and kurtosis. For this step, the 
MeAE is more appropriate, and is effectively zero. The RMSE and the MeAE for BS in the 
fourth step are effectively zero. 
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1.5.2. Out of sample pricing results 

 Table 1.2, exhibits the performance of all parametric and ANN models 

considered in this study in terms of RMSE, MAE and MeAE for the AggTs 

(aggregate) period. In Table 1.3 we tabulate statistics for a pairwise comparison of 

the (statistical significance of) pricing performance of a selection of models. Since 

the ten testing periods are disjoint and because we have pricing estimates 

coming from different OPMs we can assume (similarly to Hutchison et al, 1994 

and Schittenkopf and Dorffner, 2001) that the pricing errors are independent and 

standard t-test can be applied. Similarly to the previous authors we need to 

report that these tests should be interpreted with caution. The upper diagonal of 

Table 1.3 reports the t-values taken by a two-tail matched-pair test about the 

MAE of the alternative models whilst the lower diagonal exhibits the two-tail 

matched-pair t-test values about the MSE of the compared OPMs. Table 1.4 

provides (as a robustness check) the performance of the models when using the 

reduced dataset. 

 By looking at Tables 1.2 and 1.4 we can see that the use of implied 

instead of historical parameters improves performance, both for parametric and 

ANN models (in both datasets). Note that the 60-day historical volatility 

performed better than VIX with the parametric BS model, but the VIX volatility 

measure performed better with the ANN models. Using time adjusted parameters 

in the ANNs or using contract specific parameters {avT4, con} usually improves 

performance. The combination of time adjusted parameters and contract specific 

parameters always provided the best model within each class of ANNs (standard 

or hybrid, BS or CS based) in both datasets. 

 In comparing the parametric models and again looking at Tables 1.2 and 

1.4, it is noteworthy that CS outperforms BS when average implied parameters 

are used. BS still works better with contract specific parameters. The overall best 

among the parametric models is the contract specific BS model. In other more 

complex parametric models that include jumps and stochastic volatility 

components (i.e. Bakshi et al., 1997), deriving implied parameters may lead to 

model overfitting. The contract specific approach we adopt in this study seems 

not to lead to model overfitting, retaining thus good out of sample properties. For 

the ANN models, the CS based may outperform the BS based in some cases, but 

when the best combinations are used (time adjusted parameters and contract 
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specific parameters), the best model always is BS based in both the standard and 

hybrid networks. 

 

 

Table 1.2.  Pricing error measures in the aggregate testing period (AggTs) 
RMSE is the Root Mean Square Error, MAE the Mean Absolute Deviation and MeAE 
the Median of the Absolute Error. The superscripts refer to the kind of the model: P 
refers to parametric models, N to the simple neural networks and Nh to the hybrid 
neural networks. The asterisk (*) refers to neural network models that use 
transformed variables. The subscripts refer to the kind of historical/implied 
parameters used.    
 

 In comparing the parametric models with the standard ANNs, in the full 

dataset the ANNs never outperform the equivalent parametric ones. Apparently, 

the standard ANNs cannot perform well in the extreme data regions. In the 

reduced dataset (see Table 1.4), we observe the opposite since the standard ANNs 

always outperform the equivalent parametric ones. 

In comparing the hybrid with the standard ANNs, in the full dataset the hybrid 

are always better. In the reduced dataset this may not always be the case, but 

the best combinations (time adjusted parameters and contract specific 

parameters) give as the best model always a hybrid one.  

 In both the full and the reduced dataset, the hybrid always outperform the 

equivalent parametric ones. Finally, in both the full and the reduced dataset, the 

overall best model is the BS based hybrid with time adjusted and contract 

specific volatility. 
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 From Table 1.3, we can confirm the statistical significance of the best 

models. The comparative results we discuss with tests using the full dataset, and 

they also hold for the reduced dataset (statistics not reported for brevity). We can 

see that *Nh
conBS  outperforms all other models. Specifically, *Nh

conBS  is producing a 

RMSE equal to 6.01 and a MAE equal to 2.61, pricing measures that are smaller 

that any other model at the 5% significance level.  

 

 
 

Table 1.3. Matched-pair student t-tests for square and absolute 
differences 
Reported matched-pair t-tests concerning the absolute differences are in the upper 
diagonal, whilst the matched-pair t-tests concerning the square differences in the 
lower diagonal. Both tests compare the MAE and MSE between models in the vertical 
heading versus models in the horizontal heading. In general, a positive t-value larger 
than 1.645 (2.325) means that the model in the vertical heading has a larger MAE or 
MSE than the model in the horizontal heading at 5% (1%) significance level. 
 

 The BS based hybrid ANNs even with historical or the VIX volatility 

measure are considerably better than the equivalent parametric alternatives at a 

statistically significant level. Specifically, *
60
NhBS  is producing 1.23 (1.25) times 

smaller MSE (MAE) compared to 60
PBS . Also *Nh

vixBS  produces 1.52 (1.90) times 

smaller MSE (MAE) compared to P
vixBS .  

 Comparing the out of sample pricing performance of *Nh
conBS  to *Nh

conCS  we 

observe that the extra ANN flexibility of the latter due to the two additional input 

parameters does not lead to increased accuracy. The *Nh
conBS  is better than the 

*Nh
conCS  model at 1% significance level. 

 We can similarly see the statistical significance of the superiority of the BS 

based models with contract specific volatility versus the equivalent CS based 

models (both parametric and hybrid); and the superiority of the models using the 
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implied volatility versus the equivalent ones using the historical volatility 

measures. 

 

 
 

Table 1.4. Pricing error measures in the aggregate period (AggTs) for the 
reduced dataset 
RMSE is the Root Mean Square Error, MAE the Mean Absolute Error and MeAE the 
Median of the Absolute Error. The superscripts refer to the kind of the model: P refers 
to parametric models, N to the simple neural networks and Nh to the hybrid neural 
networks. The asterisk (*) refers to neural network models that use the transformed 
variables. The subscripts refer to the kind of historical/implied parameters used.    
 

   

1.5.3. Other statistics 

 We tabulate in Table 1.5 the MSE of a selective (but representative) choice 

of models, according to the various moneyness and maturity classes for the 

aggregate (AggTs) period. We demonstrate results for the two best performing 

parametric models which serve as benchmark ( P
conBS , P

conCS ,) and the two best 

performing (in their respective class) hybrid ANN models ( *Nh
conBS , *Nh

conCS ). We also 

demonstrate results for the reduced dataset ( *Nh
conBS , *Nh

conCS ). The relevant 

information for the parametric models in the reduced dataset can be taken from 

the information concerning the full if we ignore the long maturities, and the 

VDOTM and the VDITM classes. Very briefly, what can be seen is that P
conBS  has 

a smaller RMSE in all data classes compared to P
conCS . The same holds for *Nh

conBS  

over *Nh
conCS . If we compare the BS and CS based hybrid models with the 
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equivalent parametric ones, the hybrid ANN models rarely underperform the 

parametric ones, and they do so only in some classes far away from ATM. This 

we attribute to the scarcity of such call option datapoints in the training samples 

compared to other moneyness and maturity classes.  

 

 
 

Table 1.5. Root Mean Square Errors for selected models (clustered by 
moneyness and maturity) 
 

 We should finally comment on the complexity of each neural network 

configuration. Since we have a constant number of inputs within each model 

class, the larger the number of hidden neurons the more complex the ANN model 

architecture, and the more complex the target function to be approximated. 

Firstly, we observe that the number of hidden neurons changes significantly 

between sub-periods. This contradicts many previous studies that employ the 

assumption that the market’s options pricing mechanism is the same for all 

periods examined and that a constant ANN structure is sufficient. Secondly, the 
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standard target function is more complex compared to the hybrid one, hence this 

hybrid category of networks can perform better in out of sample pricing. Thus, it 

is not surprising that the best performing ANN model, *Nh
conBS , demonstrates the 

simplest structure with an average of 3.2 hidden layer neurons, compared to the 

8 hidden layer neurons in the case of the equivalent standard ANN ( *N
conBS ). 

Similarly for the CS-based ANNs, we have 4.9 (for *Nh
conCS ) and 7.7 (for *N

conCS ) 

hidden layer neurons respectively. Similar network complexities (not reported) 

were observed in the reduced dataset. 

 

1.6. Delta neutral trading strategies 

 We now investigate the economic significance of the best performing 

models in options trading. In order to save space we discuss the parametric 

versions of BS and CS which are usually the benchmark, and the hybrid ANN 

models which provided the overall best performance. Other studies usually 

restrict their analysis only to a hedging investigation of various alternative POPM 

models (i.e. Hutchison et al., 1994, Garcia and Gencay, 2000, Schittenkopf and 

Dorffner, 2001) and avoid exploiting trading strategies. It is known from previous 

studies that the best POPM in terms of out of sample pricing performance does 

not always prove to be the best solution when we consider delta hedging, since 

ANNs are optimized based on a pricing error criterion. Instead, and following the 

spirit of Black and Scholes (1972), Galai (1977), and Whaley (1982), we 

investigate the economic significance of the OPMs by implementing trading 

strategies. “A model that consistently achieves to identify mispriced options and 

within a time period produces an amount of trading profits will always be 

preferred by a practitioner” (Black and Scholes, 1972). The trading profitability 

that we will document, indirectly also hints to potential option market 

inefficiencies, although testing market efficiency is beyond the scope of our 

study. We implement trading strategies based on single instrument hedging, as 

for example in Bakshi et al. (1997). In addition, we consider various levels of 

transaction costs, and we focus on dynamic strategies that are cost-effective. We 

later extend the analysis by implementing a modified approach for trading using 

hedging ratios obtained via the (widely neglected) Chen and Johnson (1985) 
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method. To our knowledge, this is the first effort to validate this modified trading 

strategy using both parametric and ANN OPMs.  

 In the trading strategy we implement,  we create portfolios by buying 

(selling) options undervalued (overvalued) relative to a model’s prediction and 

taking a delta hedging position in the underlying asset. This (single-instrument) 

delta hedging follows the no-arbitrage strategy of Black and Scholes (1973), 

where a portfolio including a short (long) position in a call is hedged via a long 

(short) position in the underlying asset, and the hedged portfolio rebalancing 

takes place in discrete time intervals (in an optimal manner, not necessarily 

daily). At time t, if according to the model the mth call option contract is 

overvalued (undervalued) relative to its market value, ,
mrk
m tc , we go short (long) in 

this contract and we go long (short) in ,
k
m t∆  “index shares10”, where k denotes the 

relevant model. Then we invest the residual, ,m tB , in a riskless bond. Note that 

,
k
m t∆  is the partial derivative of the option price with respect to the underlying 

asset, , /k
m t tc S∂ ∂ , depending on the POPM under consideration. ,

ANN
m t∆  can be 

calculated by differentiating Eq. (1.4) via the chain rule. The expression for ,
BS
m t∆   

is 1( )Te N dδ−  and is derived from Eq. (1.2). The expression for ,
CS
m t∆  includes ,

BS
m t∆  

and is: 

 

43,, )34(3 ΦµΦµ∆∆ BS
tm

CS
tm −++= ,  (1.13) 

 

where 
S

Q
Φ

∂
∂

= 3
3  and 

S
Q

Φ
∂
∂

= 4
4  are given below: 

 

])1)(3)(3)[()()((
!3

1 2
11

2
11

3
3 −+−+= − dTdTdnde σσΝΤσΦ Τδ

 (1.13.1) 

 

                                                 
 
10 Similarly to Bakshi et al. (1997) we assume that the spot S&P 500 index is a traded 
security. 
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 In general we avoid a naive (expensive) trading strategy with daily 

rebalancing, since in the presence of transaction costs this would become 

prohibitively expensive. Instead, the position is held as long as the call is 

undervalued (overvalued) without necessarily daily rebalancing. Then the 

position is liquidated and the profit or loss is computed, tabulated separately and 

a new position is generated according to the prevailing conditions in the options 

market. This procedure is carried out for all contracts included in the dataset. 

We rebalance our position in the underlying asset to keep the appropriate hedge 

ratio. Rebalanced positions in the index, ,m t tV +∆ , and the bond, ,m t tB +∆ , are 

according to: 

 

)( ,,, tmttmttttm SV ∆∆ ∆∆∆ −±= +++  (1.14) 

ttm
tr

tmttm VeBB ∆
∆

∆ ++ += ,,, ,  (1.15) 

 

where the positive sign is considered when we treat undervalued and the 

negative sign when we treat overvalued options. Note that in all trading 

strategies, when we need to invest money we borrow and pay the riskless rate; 

similarly we do for as long as a strategy provides losses. Thus, when we present 

profits they are always above the dollar return on the riskless rate. 

 Computed statistics include the total profit or loss (P&L), the number of 

trades (# Trades), the total profit or loss at 0.2% transaction costs, P&L (0.2%), 

and 0.4% transaction costs, P&L (0.4%). The (proportional) transaction costs are 

paid for both positions (in the call option and in the “index shares”)11. We also 

implement strategies with enhanced cost-effectiveness by ignoring trades that 
                                                 
 
11 For example, assume that the index is at 1300 and a call option has a market price 
equal to 25 index points and a delta value of 0.60. Under 0.4% transaction costs the total 
commissions paid (for a single trade) will be 3.22 index points. In the AggTs period the 
S&P 500 was in a range from about 1100 to 1500. This level of transaction costs is low 
but attainable by professional traders and market makers. 
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involve call options whose absolute percentage mispricing error, | |/k mrk kc c c− , 

is less than a mispricing margin d = 15%, found as P&L (d = 15%). In addition, 

for these strategies, we also calculate P&L under aggregate transaction costs for 

the “index shares”. With such aggregation, transactions in the underlying assets 

are paid on the net (aggregate) exposure of ,m t tV +∆  and not on each position 

individually. Under this strategy, we expect additional cost savings that may 

provide profits even at rather high transaction cost levels. We use the prefix Agg. 

in front of P&L to indicate this strategy. The following observations refer to the 

full dataset, but they also hold for the reduced one (unreported due to brevity 

considerations). 

 

 
 

Table 1.6. Trading strategies for the Black and Scholes models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs 
when we ignore trades whose absolute percentage of mispricing error between model 
estimates and market values is at least 0% and 15% respectively. Agg. refers to 
aggregating the position on the underlying asset to reduce transaction costs. Panel A 
tabulates results with standard delta values whilst Panel B tabulates results with 
Chen and Johnson modified delta values.    
 

 The results for the parametric BS and CS models are tabulated in Panel A 

of Tables 1.6 and 1.7 respectively. We observe that all models before transaction 

costs produce significant profits, implying that both BS and CS can successfully 

identify mispriced options. Within BS models the magnitude of P&L is larger for 
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P
conBS  that employs a more sophisticated implied volatility forecast. Note though 

that the more sophisticated volatility forecast that is used with BS, the larger the 

number of trades. So, when 0.2% transaction costs are taken into consideration, 

all models produce significant losses and the previous profit dominance of P
conBS  

over 60
PBS  reverts because the latter model incurs less transaction costs (since it 

engages in a smaller number of trades).  

 

 
 

Table 1.7. Trading strategies for the Corrado and Su models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs 
when we ignore trades whose absolute percentage of mispricing error between model 
estimates and market values is at least 0% and 15% respectively. Agg. refers to 
aggregating the position on the underlying asset to reduce transaction costs. Panel A 
tabulates results with standard delta values whilst Panel B tabulates results with 
Chen and Johnson modified delta values 
 

 Similar results hold for the CS models although 4
P
avTCS  generates slightly 

higher profits compared to P
conCS . Realizing that our simpler trading strategy does 

not discriminate between high or low expected trading profits, we compute P&L 

when trades occur only when an expected profit of at least d = 15% is expected. 

Now we observe that all models can be profitable even under 0.4% transaction 

costs. Overall we may conclude the following. First, without transaction costs, 

the CS models produce higher P&L than their counterpart BS models.  This is 

expected since the delta values generated by CS models are consistently higher 

than those of BS models (for example the median delta values of P
conBS  for AggTs 
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is 0.632 whilst for P
conCS  is 0.697), making CS based trading more aggressive. 

Moreover, CS with {av} and {avT} volatility measures, outperforms significantly 

the equivalent BS models since it generates more than twice the number of 

trades; this may happen because unlike the BS models whose implied volatility 

changes more smoothly, CS models implied skewness and kurtosis can change 

more erratically. Secondly, and for the same reason, CS models under 0.2% or 

0.4% transaction costs become inferior to their BS counterparts. Thirdly, from 

unreported calculations we have seen that as d increases we generally observe 

P&L to increase in a diminishing fashion indicating that there is an optimal d for 

maximizing trading profits. Finally, trading “in aggregate” positions leads to 

significant further savings on transaction costs.  

 

 
 

Table 1.8. Trading strategies for the hybrid ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades. P&L (d=0 and 15%) represents the P&L at 0.2% or 0.4% transaction costs 
when we ignore trades whose absolute percentage of mispricing error between model 
estimates and market values is at least 0% and 15% respectively. Agg. refers to 
aggregating the position on the underlying asset to reduce transaction costs. Panel A 
tabulates results for the hybrid BS based ANN model whilst Panel B tabulates results 
for the hybrid CS based ANN models. 
 

 

 In Table 1.8 we present results for the trading strategies based on ANNs 

(only for the hybrid models with time adjusted parameters). In general we observe 

similar results to those of the parametric models. Contrary though to the 
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parametric OPMs, the ANNs offer significant improvement in the cases of less 

sophisticated parameter estimates. For example, *Nh
avBS  produces a P&L equal to 

32,908 compared to a P&L equal to 14,088 in the case of P
avBS . The best models 

provide profits in 77%-82% of transactions (detailed figures not reported for 

brevity) using both the full and the reduced dataset. Finally, in the presence of 

transaction costs the BS based hybrid model with contract specific volatility is 

not only the best performing ANN model, but also the overall best. A final 

observation is that the ability to generate profits even under a considerable level 

of transaction costs (we do not report here, but the best strategies retained 

profitability even up to a level of 0.5% of transaction costs) provides some 

evidence of inefficiency in these options markets. Our study however is not 

intended to be a test of market efficiency.  

 

1.6.1. Improving trading with the Chen and Johnson approach 

 We now extend the trading strategies by utilizing with all models the 

improved hedging scheme suggested by Chen and Johnson (1985). This is a 

widely neglected (see Roon et al., 1998 for a rare exception in the use of 

parametric models) approach that deals with deriving hedge parameters under 

the assumption of mispriced options. According to this hedging scheme and 

when an option is mispriced, the delta hedge parameter, ,
k
m t∆ , should be derived 

in a different way. If a mispriced option has been identified, then the riskless 

hedge will not earn r, the riskless rate, but some other rate, r*. Chen and 

Johnson obtain the expression for a European call option that is the same as BS 

presented in Eqs (1, 1.a) and (1.1.b), by replacing r with r*.  In order to derive the 

correct hedge ratio, Equation 1 must be solved numerically for r* using the 

observed market price of cmrk (like retrieving the implied interest rate). We 

implement this approach with the parametric BS and CS models, and the ANNs.  

 Finding the implied interest rate, r*, for the case of BS or CS is a simple 

numerical task and we employ the repeated cubic interpolation technique 

according to Charalambous (1992). Finding the implied interest rate, r*, for ANNs 

is a more involved task, since in the case of hybrid models we need to jointly 

optimize with respect to the interest rate input to the neural networks and to the 

interest rate in the parametric model that is used to create the hybrid target 

function; this introduces many jagged ridge regions in the optimization surface. 
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Thus, in the case of hybrid ANNs we adopt a more computationally intensive 

methodology according to which we again use the cubic interpolation technique 

with ten different initial starting points. 

 After finding r* for all models considered we rerun the trading strategies. 

Results for the parametric BS and CS models appear in Panel B of Tables 1.6 

and 1.7. The most important observation is that before transaction costs are 

accounted for, in all BS models under consideration there is a slight (only) 

improvement in their profitability (P&L). Under aggregate 0.4% transaction costs 

and for d = 15%, the improvement in 60
PBS  is about 19%, in P

vixBS  is surprisingly 

about 164% and for the more sophisticated P
conBS  model only 1.67%. We remind 

that P
vixBS  exhibited both, the poorest out of sample pricing performance and 

only a modest profitability (under 0.4% transaction costs) among the BS models. 

Under the adjusted deltas, this seems to be partly alleviated. Somewhat similar 

results we observe for the semi-parametric CS model. For both parametric 

models, the modified hedging approach under transaction costs gave the best 

results when using the average (not contract specific) parameters. In the case of 

ANNs (results unreported for brevity) and under no transaction costs, we also 

observe a slight tendency for increased performance, but the results are mixed. 

With transaction costs the technique was unable to improve the profitability of 

ANNs. The above observations refer to the full dataset, but they also hold for the 

reduced one (again not reported due to brevity). 

 A general observation for the use of the modified hedging approach in 

trading strategies is that it significantly improves trading performance when it is 

applied with POPM models under assumptions consistent with the assumptions 

under which this approach was developed. Thus, it performs well with the 

parametric models when either historical, or average implied parameters are 

used. The use of this approach did not reverse our previous findings about the 

best performing models when trading in the presence of transaction costs. Still, it 

demonstrated that simple models can be efficient alternatives to the more 

sophisticated and computationally intensive hybrid ANN methods. 
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1.6.2. Delta hedging 

 We have also considered hedging as a testing tool. Our results here 

coincide with previous literature – model ranking may differ if testing is based on 

hedging instead of pricing. Bakshi et al. (1997) compare alternative parametric 

models and state that the hedging-based ranking of the models is in sharp 

contrast with that obtained based on out of sample pricing. They also state that 

(delta-hedging) performance is virtually indistinguishable among models. Quite 

similar results are reported in papers where non-parametric methods were used, 

like Garcia and Gencay (2000), and Gencay and Qi (2001). Schittenkopf and 

Dorffner (2001) find the results (marginally) better for the parametric models, but 

practically indistinguishable. Hutchison et al. (1994) also report that the learning 

networks they use have a better hedging performance compared to BS but they 

find it difficult to infer which network type performs best. We attribute this 

difference of model ranking to the fact that models are usually optimized with 

respect to pricing. An exception is Carverhill and Cheuk (2003) who focus more 

on hedging performance by optimizing with respect to the hedge parameters. 

Optimizing the “hedging performance” is beyond the scope of this essay. 

Furthermore, hedging performance is not a substitute for trading performance, 

since hedging tests fail to account for the difference between overpriced and 

underpriced options. 

 We have calculated the mean hedging error (MHE) and the mean absolute 

hedging error (MAHE) of a standard hedging strategy with daily rebalancing. For 

brevity we do not report the full results here, but we have found according to 

MHE that the best parametric model is the P
conCS . Among the ANN models the 

best performing one is *Nh
conCS , with an identical error for the parametric CS model 

(equal for both models to 0.26). In addition, the error equals 0.30 for both the 
P
conBS  and the *Nh

conBS  models. In general, from the MHE we cannot tell which 

POPM is the best since their difference in this measure is practically 

indistinguishable. Continuing with the MAHE we have the same picture, and we 

find it hard to observe a certain POPM that dominates in this measure since 

many models have “almost identical” MAHE values. It is true that P
conBS  and 

P
avTBS 4  are the overall best models (with MAHE equal to 2.57 for both) and 
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perform relatively better than the ANN models (their hybrid ANN counterparts 

both having an error equal to 2.63).  

 In general, we can conclude that the hedging error performance is not in 

line with the models’ pricing performance. That is, our best model in pricing 

accuracy, *Nh
conBS , does not produce the smallest hedging errors. But again, it is 

truly hard to differentiate among models. The above discussion pertains to the 

full dataset, but we have observed that ranking models using hedging 

performance is not affected by the choice of dataset. 

 

 

1.7. Conclusions 

 Our effort has focused in developing European option pricing and trading 

tools by combining the use of ANN methodology and information provided by 

parametric OPMs (the BS and the CS model). For our empirical tests we have 

used European call options on the S&P 500 Index from January 1998 to August 

2001. In our analysis we have included historical parameters, a VIX volatility 

proxy derived by weighting implied volatilities (for the case of BS only), and 

implied parameters (an overall average, an average per maturity, the 4-point 

closest in moneyness, and a contract-specific parameter set). Neural networks 

are optimized using a modified Levenberg-Marquardt training algorithm. We 

include in the analysis simple ANNs (with input supplemented by historical or 

implied parameters specific either to BS or the CS model), and hybrid ANNs that 

in addition use pricing information derived by any of the two parametric models. 

In order to check the robustness of the results, in addition to our full dataset we 

repeat the analysis using a reduced dataset (following Hutchison et al., 1994). 

The economic significance of the models is investigated through trading 

strategies with transaction costs. Instead of naive trading strategies we 

implement improved (dynamic and cost-effective) ones. Furthermore, we also 

refine these strategies with the Chen and Johnson (1985) modified hedging 

approach. Our results can be synopsized as follows:  

 Regarding the in sample pricing, CS performs better than the BS model 

(with the exception of the case of the contract specific implied parameters that 

practically eliminate the pricing error). 
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 Regarding out of sample pricing, CS outperforms BS with the use of 

average implied parameters, but BS is still a better model when the contract 

specific implied parameters are used; in general, implied parameters lead to 

better performance than the historical ones or the VIX volatility proxy; the simple 

neural networks cannot outperform the parametric models in the full range of 

data, but we verified allegations to the contrary found in the literature with the 

use of a reduced data set; hybrid neural networks that combine both neural 

network technology and the parametric models provide the best performance, 

especially when contract specific and adjusted parameters are used.  The BS 

based hybrid ANN (with contract specific parameters) is the overall best 

performer, and the equivalent CS hybrid often a good alternative. 

 In trading and before transaction costs, models using contract specific 

implied parameters provide the best performance. But they also lead to the 

highest number of trades. In trading when transaction costs are accounted for in 

a naive manner, profits practically in all cases disappear. In trading and even 

with 0.4% transaction costs, when dynamic cost-efficient strategies are 

implemented, profits are still feasible hinting thus to potential market 

inefficiencies. The parametric BS with contract specific volatility is the best 

among the parametric models. The hybrid ANN based on BS with contract 

specific volatility is the overall best. 

 Implementing the widely neglected Chen and Johnson (1985) modified 

hedging approach, improves significantly the profitability of trading strategies 

that are based on the parametric models with average implied parameters (the 

models more consistent with the assumptions behind the modified hedging 

approach). This approach did not affect the choice of the overall best model in 

terms of trading with transaction costs. But it did demonstrate that reasonable 

alternatives for trading do exist without the need to resort to the extra 

sophistication of ANN technology. 
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1.A. Appendix with full dataset results 

 

 VDOTM DOTM OTM JOTM ATM JITM ITM DITM VDITM 

S/X <0.85 0.85-
0.95 

0.90-
0.95 

0.95-
0.99 

0.99-
1.01 

1.01-
1.05 

1.05-
1.10 

1.10-
1.35 ≥1.35 

Short Term Options  <60 Days 
Call 3.61 1.63 5.15 15.70 32.40 56.58 99.55 199.77 470.38 

BS
conσ  0.36 0.21 0.19 0.19 0.20 0.22 0.27 0.38 0.99 

# obs 399 1,361 4,815 7,483 3,964 6,548 4,970 7,990 2,103 
Medium  Term Options  60-180 Days 

Call 4.38 8.29 23.58 46.06 64.51 90.35 131.10 227.41 493.18 
BS
conσ  0.22 0.18 0.20 0.21 0.21 0.23 0.25 0.30 0.54 

# obs 1,412 1,727 2,578 3,147 1,780 2,901 3,038 8,100 3,999 
Long Term Options   ≥ 180 Days 

Call 9.65 42.09 74.03 106.24 126.03 150.99 185.87 267.12 495.82 
BS
conσ  0.18 0.21 0.22 0.23 0.24 0.25 0.26 0.28 0.40 

# obs 332 333 575 603 343 660 812 2,695 1,733 
Table F1: Sample descriptive statistics  
Sample characteristics for the period January 5, 1998 to August 24, 2001 concerning the 
average call option value, the average Black and Scholes implied volatility and the number of 
observations in each moneyness/maturity class. 

 

 

Set Starting Ending # obs Set Starting Ending # obs 

Tr1 5-Jan-98 8-Mar-99 22,545 Tr6 9-Mar-99 20-Jan-00 20,637 
Vd1 9-Mar-99 12-Jul-99 10,916 Vd6 21-Jan-00 17-May-00 10,511 
Ts1 13-Jul-99 24-Sep-99 4,092 Ts6 18-May-00 17-Jul-00 3,959 
Tr2 24-Apr-98 16-Apr-99 22,038 Tr7 20-Apr-99 28-Feb-00 20,050 
Vd2 19-Apr-99 23-Sep-99 10,579 Vd7 29-Feb-00 17-Jul-00 10,589 
Ts2 24-Sep-99 5-Jan-00 4,122 Ts7 18-Jul-00 10-Oct-00 4,264 
Tr3 23-Jun-98 3-Jun-99 21,304 Tr8 7-Jun-99 11-Apr-00 20,037 
Vd3 4-Jun-99 5-Jan-00 10,660 Vd8 12-Apr-00 6-Oct-00 10,711 
Ts3 6-Jan-00 10-Feb-00 3,963 Ts8 9-Oct-00 24-Jan-01 3,797 
Tr4 3-Sep-98 24-Aug-99 20,950 Tr9 26-Aug-99 5-Jun-00 19,852 
Vd4 25-Aug-99 11-Feb-00 10,616 Vd9 6-Jun-00 24-Jan-01 10,504 
Ts4 14-Feb-00 27-Mar-00 3,813 Ts9 25-Jan-01 29-Mar-01 3,945 
Tr5 29-Jan-99 18-Oct-99 20,631 Tr10 21-Oct-99 11-Aug-00 20,042 
Vd5 19-Oct-99 24-Mar-00 10,405 Vd10 14-Aug-00 30-Mar-01 10,372 
Ts5 28-Mar-00 16-May-00 4,037 Ts10 2-Apr-01 24-Aug-01 3,839 

Table F2: Training (Tr), validation (Vd) and testing (Ts) dates 
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 P
avBS  P

avTBS  P
avTBS 4  P

conBS  P
avCS  P

avTCS  P
avTCS 4  P

conCS  

 In sample descriptive statistics for 1998 

RMSE 18.85 18.71 11.79 0.00 16.33 15.06 9.34 3.20 
MAE 7.48 6.96 3.78 0.00 7.39 5.51 2.89 0.29 

RMeSE 3.61 2.92 0.71 0.00 3.26 1.12 0.24 0.00 
 In sample descriptive statistics for 1999 

RMSE 9.16 8.61 4.53 0.00 6.44 5.20 2.99 0.63 
MAE 6.51 5.87 1.73 0.00 3.59 2.01 0.85 0.03 

RMeSE 5.30 4.26 0.72 0.00 2.53 0.82 0.11 0.00 
 In sample descriptive statistics for 2000 

RMSE 8.55 8.10 5.59 0.04 6.90 5.93 4.19 1.64 
MAE 5.05 4.53 1.57 0.00 2.61 1.84 0.84 0.07 

RMeSE 3.74 3.18 0.61 0.00 1.42 0.58 0.12 0.00 
 In sample descriptive statistics for 2001 

RMSE 4.83 4.46 1.95 0.00 2.49 1.97 1.06 0.25 
MAE 3.46 3.12 1.03 0.00 1.41 0.99 0.43 0.01 

RMeSE 2.68 2.37 0.54 0.00 0.85 0.53 0.16 0.00 
 Total in sample descriptive statistics (1998-2001) 

RMSE 11.63 11.31 7.00 0.02 9.52 8.52 5.35 1.82 
MAE 5.86 5.33 2.06 0.00 3.87 2.63 1.26 0.10 

RMeSE 3.95 3.24 0.65 0.00 1.89 0.74 0.14 0.00 
Table F3: Parametric models in sample fitting errors 
Fitting errors for all versions of the Black-Scholes and Corrado and Su models. RMSE 
is the Root Mean Square Error, MAE the Mean Absolute Deviation and RMeSE the 
Root Median Square Error. 
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 BS
avσ  BS

avTσ  BS
avTσ 4  BS

conσ  CS
avσ  CS

avµ3  CS
avµ4  CS

avTσ  
Min 0.10 0.05 0.05 0.02 0.12 -9.70 0.00 0.06 

5th Perc 0.18 0.17 0.16 0.16 0.19 -1.73 3.31 0.18 
Mean 0.23 0.22 0.28 0.29 0.30 -1.19 6.91 0.27 

Median 0.22 0.22 0.24 0.24 0.26 -1.21 5.20 0.24 
95th Perc 0.29 0.29 0.52 0.56 0.56 -0.39 18.02 0.55 

Max 0.71 1.11 4.58 5.34 1.85 1.33 30.00 1.85 
         

 CS
avTµ3  CS

avTµ4  CS
avTσ 4  CS

avTµ 43  CS
avTµ 44  CS

conσ  CS
conµ3  CS

conµ4  

Min -9.70 0.00 0.00 -10.00 0.00 0.00 -10.00 0.00 
5th Perc -2.30 2.84 0.14 -3.71 0.00 0.14 -3.71 0.00 
Mean -1.20 6.19 0.30 -0.79 7.14 0.31 -0.79 7.14 

Median -1.21 5.20 0.26 -0.98 5.74 0.26 -0.98 5.74 
95th Perc -0.17 13.81 0.57 2.90 25.25 0.71 2.90 25.25 

Max 5.00 30.00 2.00 5.00 30.00 2.50 5.00 30.00 
Table F4: Implied parameters descriptive statistics  
Descriptive statistics for the parametric models implied parameters for the period 
January 5, 1998 to August 24, 2001. For each model it is tabulated the minimum, 
the 5th percentile, the mean and median, the 95th percentile and the maximum 
values. Brownian volatility is symbolized with σ, skewness with µ3, whilst kurtosis 
with µ4. The superscripts refer to the kind of the parametric model whilst the 
subscripts refer to the kind of implied parameter. 
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 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

RMSE 11.18 12.57 9.72 9.47 8.03 7.04 11.25  8.89 8.87 8.11 7.71 
MAE 6.83 8.60 5.32 5.00 3.10 2.70 6.89  3.86 3.72 3.27 3.10 

RMeSE 4.48 6.38 3.74 3.37 1.52 1.43 4.61  2.26 1.94 1.69 1.68 
             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
RMSE 13.06 12.65 10.97 12.48 10.74 9.06 14.68 12.76 12.30 11.69 9.33 7.86 
MAE 7.58 6.65 5.91 7.04 6.04 4.68 7.68 6.70 6.67 6.55 5.04 3.81 

RMeSE 5.13 3.83 3.65 4.11 3.69 2.88 4.71 3.65 3.99 3.94 2.94 2.44 
             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
RMSE 15.22  11.28 11.59 9.87 11.83 14.35  11.42 11.96 9.47 9.76 
MAE 9.13  5.80 6.14 5.73 5.81 7.71  5.39 5.56 4.67 4.87 

RMeSE 6.43  3.48 3.96 3.65 3.65 4.27  3.26 3.15 2.93 3.03 
             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

RMSE 9.05 8.35 8.57 8.29 7.79 6.38 9.03 8.27 8.87 7.84 7.68 6.01 
MAE 5.40 4.55 4.35 4.09 3.30 2.68 5.46 4.53 4.35 3.91 3.17 2.61 

RMeSE 3.73 2.98 2.83 2.51 1.80 1.60 3.98 3.00 2.69 2.53 1.67 1.58 
             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

RMSE 10.33  8.68 8.63 7.97 7.60 9.68  8.83 8.66 7.60 7.39 
MAE 6.38  4.12 3.84 3.42 3.14 6.20  3.95 3.94 3.39 3.11 

RMeSE 4.46  2.42 2.17 1.93 1.77 4.56  2.33 2.35 1.96 1.82 

Table F5: Error pricing measures for all models in the aggregate testing period (AggTs) 
RMSE is the Root Mean Square Error, MAE the Mean Absolute Deviation and RMeSE the Root Median 
Square Error. The superscripts refer to the kind of the model: P refers to parametric models, N to the 
simple neural networks and Nh to the hybrid neural networks. The asterisk (*) refers to neural network 
models that use transformed variables. The subscripts refer to kind of historical/implied parameters 
used to each model per se.    
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 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

MHE 0.24 0.27 0.25 0.24 0.25 0.25 0.24  0.24 0.24 0.23 0.22 
MAHE 2.74 2.89 2.74 2.72 2.62 2.61 2.74  2.90 2.88 2.91 2.91 
MPE 5.93 5.99 5.93 5.92 5.86 5.86 5.95  6.08 6.08 6.13 6.14 
MD 0.592 0.597 0.594 0.592 0.571 0.569 0.592  0.616 0.613 0.610 0.607 

             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
MHE 0.35 0.31 0.29 0.29 0.28 0.27 0.34 0.29 0.26 0.30 0.31 0.28 

MAHE 3.45 3.28 3.29 3.09 2.92 2.88 3.27 3.16 3.01 3.18 2.98 2.86 
MPE 6.67 6.52 6.52 6.27 6.17 6.12 6.52 6.39 6.20 6.40 6.21 6.13 
MD 0.647 0.637 0.640 0.622 0.598 0.594 0.635 0.626 0.617 0.627 0.601 0.593 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
MHE 0.30  0.30 0.31 0.24 0.25 0.31  0.31 0.28 0.27 0.25 

MAHE 3.42  3.17 3.19 2.98 3.01 3.23  3.20 3.04 2.98 2.94 
MPE 6.62  6.40 6.43 6.19 6.23 6.46  6.40 6.24 6.20 6.14 
MD 0.64  0.632 0.630 0.612 0.616 0.630  0.624 0.611 0.607 0.602 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

MHE 0.25 0.26 0.25 0.25 0.26 0.25 0.26 0.28 0.25 0.25 0.26 0.26 
MAHE 2.96 2.97 2.95 2.94 2.66 2.64 2.96 3.00 2.93 2.93 2.66 2.69 
MPE 6.12 6.12 6.12 6.09 5.89 5.89 6.11 6.17 6.09 6.08 5.90 5.94 
MD 0.621 0.621 0.623 0.621 0.582 0.580 0.617 0.626 0.621 0.619 0.583 0.586 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

MHE 0.25  0.24 0.24 0.23 0.23 0.24  0.25 0.24 0.23 0.22 
MAHE 2.87  2.94 2.91 2.92 2.92 2.87  2.99 2.94 2.95 2.96 
MPE 6.07  6.12 6.11 6.14 6.15 6.07  6.16 6.12 6.17 6.20 
MD 0.612  0.623 0.619 0.613 0.609 0.613  0.629 0.621 0.618 0.616 

Table F6: Hedging error measures for all models in the aggregate testing period (AggTs) 
MHE is the Mean Hedging Error, MAHE the Mean Absolute Hedging Error, MPE the Mean Prediction 
Error and MD the Mean Delta of each model. The superscripts refer to the kind of the model: P refers to 
parametric models, N to the simple neural networks and Nh to the hybrid neural networks. The asterisk 
(*) refers to neural network models that use the transformed variables. The subscripts refer to kind of 
historical/implied parameters used to each model per se. 
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 PBS60

 P
vixBS  P

conBS  PCS60
 P

conCS  *NBS60
 *NCS60

 *NhBS60
 *Nh

vixBS  *Nh
conBS  *NhCS60

 *Nh
conCS  

PBS60
  -27.74 75.12 -0.94 65.72 -11.07 -11.72 23.90 40.83 81.22 10.80 66.92 

P
vixBS  7.17  104.84 26.74 94.84 11.84 11.71 53.72 70.71 112.32 40.52 96.53 
P
conBS  -16.13 -25.08  -75.91 -8.43 -70.51 -72.82 -56.94 -38.56 2.12 -70.87 -8.76 
PCS60

 0.34 -6.72 16.31  66.53 -10.28 -10.91 24.85 41.74 82.02 11.78 67.74 
P
conCS  -13.38 -21.60 2.14 -13.58  -63.58 -65.63 -46.76 -28.85 11.11 -60.38 -0.10 

*NBS60
 7.24 4.64 13.37 7.09 12.48  -0.34 30.64 43.94 74.23 20.23 64.28 

*NCS60
 7.77 4.67 15.19 7.59 14.09 -0.62  31.84 45.50 76.80 21.15 66.39 

*NhBS60
 -9.55 -18.30 7.57 -9.81 4.95 -10.83 -12.15  18.64 63.30 -14.28 47.82 

*Nh
vixBS  -12.54 -21.61 4.48 -12.75 2.02 -11.91 -13.46 -3.25  43.70 -32.87 29.50 

*Nh
conBS  -21.16 -32.03 -3.45 -21.26 -5.62 -14.65 -16.83 -12.27 -8.78  -78.03 -11.58 

*NhCS60
 -6.86 -15.36 10.42 -7.15 7.65 -9.84 -10.96 2.97 6.24 15.52  61.73 

*Nh
conCS  -14.98 -23.78 1.15 -15.16 -1.04 -12.95 -14.69 -6.34 -3.26 4.73 -9.18  

Table F7a: Matched pair student-t tests for square and absolute differences 
Matched pair t-tests concerning the absolute differences are reported in the upper diagonal whilst 
on the lower diagonal the matched pair t-tests concerning the square differences are tabulated. 
Both tests compare the MAE and MSE between models in the vertical heading versus models in 
the horizontal heading. In general, a positive t-value larger than 1.645 (2.325) means that the 
model in the vertical heading has a larger MAE or MSE than the model in the horizontal heading at 
5% (1%) significance level. 
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 PBS60
 P

vixBS  P
conBS  PCS60

 P
conCS  *NBS60

 *NCS60
 *NhBS60

 *Nh
vixBS  *Nh

conBS  *NhCS60
 *Nh

conCS  
PBS60

  -21.23 23.69 -4.37 19.79 -7.72 -8.57 36.11 50.44 37.08 29.37 23.50 
P
vixBS  7.17  35.66 18.88 30.60 -4.88 -5.04 53.19 69.94 55.02 47.51 35.68 
P
conBS  -16.13 -25.08  -23.68 -6.03 -13.84 -16.00 -11.56 -6.77 7.47 -15.91 -3.41 
PCS60

 0.34 -6.72 16.31  19.89 -7.57 -8.40 35.16 48.95 36.36 27.77 23.48 
P
conCS  -13.38 -21.60 2.14 -13.58  -12.97 -14.90 -7.52 -3.02 10.22 -11.61 8.22 

*NBS60
 7.24 4.64 13.37 7.09 12.48  2.15 11.50 12.60 15.19 10.45 13.46 

*NCS60
 7.77 4.67 15.19 7.59 14.09 -0.62  13.31 14.69 17.79 11.98 15.56 

*NhBS60
 -9.55 -18.30 7.57 -9.81 4.95 -10.83 -12.15  18.82 25.05 -19.39 10.42 

*Nh
vixBS  -12.54 -21.61 4.48 -12.75 2.02 -11.91 -13.46 -3.25  17.48 -42.22 5.27 

*Nh
conBS  -21.16 -32.03 -3.45 -21.26 -5.62 -14.65 -16.83 -12.27 -8.78  -31.61 -9.62 

*NhCS60
 -6.86 -15.36 10.42 -7.15 7.65 -9.84 -10.96 2.97 6.24 15.52  15.05 

*Nh
conCS  -14.98 -23.78 1.15 -15.16 -1.04 -12.95 -14.69 -6.34 -3.26 4.73 -9.18  

Table F6b: Matched pair student-t and Johnson t-tests for the square differences 
Matched pair student-t (lower diagonal) and Johnson modified t (upper diagonal) tests concerning 
square differences are tabulated. Both tests compare the MSE between models in the vertical 
heading versus models in the horizontal heading. In general, a positive t-value larger than 1.645 
(2.325) means that the model in the vertical heading has a larger MSE than the model in the 
horizontal heading at 5% (1%) significance level. 
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 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

 P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

Ts1 16.69 14.71 18.06 17.99 17.16 17.15 16.68 17.78 17.99 18.33 18.25 
Ts2 10.95 11.50 9.80 9.76 8.00 4.52 11.17 9.38 9.60 6.90 5.99 
Ts3 13.87 13.28 9.94 9.25 5.92 4.07 15.24 7.91 7.72 6.07 5.10 
Ts4 14.18 14.86 12.93 12.37 9.67 5.77 14.46 11.89 11.85 9.45 7.53 
Ts5 10.09 16.97 7.65 7.39 5.25 4.73 8.53 6.01 5.94 5.49 5.31 
Ts6 11.95 10.71 7.97 7.64 6.18 4.14 9.82 6.58 5.66 4.81 4.25 
Ts7 7.59 8.09 5.69 5.46 4.62 2.77 7.61 4.66 4.30 3.38 3.47 
Ts8 8.21 12.66 6.15 6.09 5.23 5.98 9.34 5.52 5.52 5.74 5.39 
Ts9 6.97 11.25 6.00 5.73 4.45 4.73 8.33 4.97 5.07 4.85 5.05 
Ts10 6.12 9.13 4.96 4.72 4.18 4.48 6.17 4.74 4.91 4.60 4.80 

 *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  *NhCS60

 *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

Ts1 14.06 13.51 17.21 14.50 16.00 13.70 13.98 18.82 17.35 15.74 17.49 
Ts2 9.14 8.42 8.55 8.07 7.61 4.12 9.08 8.71 9.51 7.38 5.69 
Ts3 10.45 9.62 10.89 7.35 5.74 3.77 12.04 7.51 7.71 7.06 5.09 
Ts4 11.51 11.81 10.81 11.01 9.46 5.75 12.74 10.80 11.39 9.30 7.50 
Ts5 8.85 7.71 6.34 5.83 5.17 4.53 9.93 6.01 5.73 5.51 5.07 
Ts6 8.02 6.68 6.32 6.53 6.43 4.01 8.37 6.08 5.96 4.80 4.21 
Ts7 6.45 4.91 4.97 4.70 4.48 2.62 6.97 5.22 5.12 3.47 3.35 
Ts8 6.84 5.87 5.45 5.07 4.98 5.34 6.78 5.22 5.05 5.48 5.12 
Ts9 5.48 4.37 4.80 4.44 4.38 4.38 6.26 4.61 4.85 4.58 4.37 
Ts10 5.47 4.01 4.43 4.25 4.07 3.92 7.03 4.45 4.54 4.29 4.43 

Table F7: Testing periods RMSE for the best performing models 
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 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
Min 2 4 2 5 6 3 2 4 3 4 4 2 

Mean 6.7 6.4 6.7 8.3 8.5 7.7 6.4 6.3 6.7 7.3 7.4 8 
Max 10 10 10 10 10 10 10 9 10 10 10 10 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
Min 2  2 2 5 6 3  3 4 3 4 

Mean 6.1  6.5 7.7 8.2 8.6 6.9  5 7.1 7.2 7.9 
Max 9  10 10 10 10 9  9 10 10 10 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

Min 2 3 2 2 2 2 2 2 2 2 2 2 
Mean 4.7 5.3 4.1 3.5 4 4.5 4.5 5 4.2 4 4.1 3.2 
Max 9 9 9 6 7 7 10 8 8 7 7 6 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

Min 3  2 2 2 2 4  2 2 2 2 
Mean 6.5  5 4.7 6.2 4.8 7.4  4.5 4.8 5.3 4.9 
Max 10  10 9 10 7 10  10 9 8 10 

Table F8: ANNs complexity 
Minimum, mean and maximum number of the hidden layer neurons for the ten different training 
periods.   
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 P
conBS  P

conCS  
 Short Medium Long Short Medium Long 

VDOTM 3.60 4.91 0.56 8.34 10.61 0.66 
DOTM 2.27 4.50 2.82 3.02 5.24 4.47 
OTM 5.78 8.37 3.97 6.29 9.68 5.08 
JOTM 7.81 6.68 6.15 8.13 7.64 7.65 
ATM 6.67 9.46 5.86 7.30 10.14 7.29 
JITM 6.71 9.41 4.34 7.29 9.21 5.97 
ITM 7.70 7.13 4.43 8.24 7.59 5.18 

DITM 7.07 7.93 7.27 7.20 8.50 7.50 
VDITM 8.26 9.46 8.74 8.29 10.05 9.05 

 *Nh
conBS  *Nh

conCS  
VDOTM 3.60 4.97 1.15 6.13 10.22 6.04 
DOTM 2.46 4.83 2.32 2.96 5.28 5.03 
OTM 5.50 7.75 3.98 6.19 9.41 5.36 
JOTM 5.89 5.36 5.78 7.83 7.30 7.66 
ATM 4.73 8.18 5.38 6.94 9.86 7.13 
JITM 5.59 7.39 4.10 6.89 8.68 6.64 
ITM 6.24 6.05 3.95 7.58 7.16 5.69 

DITM 5.80 7.15 6.74 6.64 8.04 7.17 
VDITM 8.03 9.29 8.46 8.96 10.33 9.26 
Table F9: Root Mean Square Errors for the four best models 
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 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  

P&L 7,447 13,518 14,088 13,069 32,040 35,026 
# Trades 3,361 3,878 4,858 5,477 13,539 15,644 

P&L 0.2% (d=0%) -6,829 -6,847 -5,348 -7,512 -17,911 -23,307 
Agg P&L 0.2% (d=0%) -1,861 -266 737 -1,394 -5,638 -8,437 

P&L 0.2% (d=5%) -153 3,587 4,206 1,731 5,971 5,716 
Agg P&L 0.2% (d=5%) 2,717 5,756 7,217 4,693 8,319 8,304 

P&L 0.2% (d=10%) 1,349 3,723 7,478 5,879 7,334 7,206 
Agg P&L 0.2% (d=10%) 3,433 4,924 8,928 7,373 8,251 8,201 

P&L 0.2% (d=15%) 3,320 4,134 7,527 6,841 7,907 7,369 
Agg P&L 0.2% (d=15%) 5,003 5,019 8,344 7,657 8,384 7,873 

P&L 0.4% (d=0%) -21,105 -27,211 -24,785 -28,093 -67,863 -81,640 
Agg P&L 0.4% (d=0%) -11,170 -14,049 -12,614 -15,858 -43,316 -51,899 

P&L 0.4% (d=5%) -8,636 -5,025 -9,117 -12,571 -9,059 -9,177 
Agg P&L 0.4% (d=5%) -2,897 -688 -3,093 -6,647 -4,364 -4,001 

P&L 0.4% (d=10%) -4,748 -1,988 455 -2,141 1,070 995 
Agg P&L 0.4% (d=10%) -580 414 3,354 848 2,903 2,986 

P&L 0.4% (d=15%) -1,468 -508 3,241 2,269 4,691 4,212 
Agg P&L 0.4% (d=15%) 1,897 1,262 4,875 3,901 5,645 5,221 
Table F10: Trading strategies for Black and Scholes models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PBS60

 P
vixBS  P

avBS  P
avTBS  P

avTBS 4
 P

conBS  
P&L 7,916 14,367 14,232 13,441 32,281 35,229 

# Trades 3,361 3,878 4,858 5,477 13,539 15,644 
P&L 0.2% (d=0%) -6,169 -5,599 -4,958 -6,946 -17,788 -23,080 

Agg P&L 0.2% (d=0%) -1,392 1,342 1,225 -778 -5,534 -8,259 
P&L 0.2% (d=5%) 492 4,867 4,642 2,293 6,271 6,088 

Agg P&L 0.2% (d=5%) 3,044 7,352 7,758 5,278 8,653 8,625 
P&L 0.2% (d=10%) 2,069 5,060 8,044 6,453 7,673 7,522 

Agg P&L 0.2% (d=10%) 3,863 6,457 9,622 8,086 8,615 8,477 
P&L 0.2% (d=15%) 4,044 5,534 8,182 7,546 8,306 7,713 

Agg P&L 0.2% (d=15%) 5,515 6,558 9,115 8,524 8,815 8,198 
P&L 0.4% (d=0%) -20,254 -25,564 -24,148 -27,334 -67,858 -81,390 

Agg P&L 0.4% (d=0%) -10,700 -11,682 -11,782 -14,998 -43,348 -51,748 
P&L 0.4% (d=5%) -7,807 -3,352 -8,451 -11,817 -8,924 -8,883 

Agg P&L 0.4% (d=5%) -2,702 1,617 -2,219 -5,847 -4,160 -3,808 
P&L 0.4% (d=10%) -3,891 -246 1,287 -1,365 1,262 1,177 

Agg P&L 0.4% (d=10%) -304 2,549 4,444 1,901 3,147 3,087 
P&L 0.4% (d=15%) -685 1,284 4,143 3,180 4,883 4,339 

Agg P&L 0.4% (d=15%) 2,257 3,333 6,007 5,137 5,900 5,308 
Table F11: Chen and Johnson trading strategies for Black and Scholes models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

P&L 7,603  28,816 32,803 37,072 36,777 
# Trades 3,430  11,178 13,306 14,911 15,219 

P&L 0.2% (d=0%) -7,658  -15,867 -19,045 -22,750 -24,414 
Agg P&L 0.2% (d=0%) -2,532  -4,495 -5,641 -6,685 -6,909 

P&L 0.2% (d=5%) -468  4,150 3,604 3,871 3,612 
Agg P&L 0.2% (d=5%) 2,351  6,795 6,096 6,815 7,151 

P&L 0.2% (d=10%) 776  7,497 6,660 5,959 5,827 
Agg P&L 0.2% (d=10%) 2,934  8,752 7,810 7,268 7,345 

P&L 0.2% (d=15%) 2,868  7,960 6,791 6,606 6,422 
Agg P&L 0.2% (d=15%) 4,533  8,739 7,483 7,418 7,311 

P&L 0.4% (d=0%) -22,919  -60,550 -70,894 -82,572 -85,604 
Agg P&L 0.4% (d=0%) -12,667  -37,805 -44,085 -50,441 -50,595 

P&L 0.4% (d=5%) -9,026  -14,215 -15,549 -15,088 -15,701 
Agg P&L 0.4% (d=5%) -3,388  -8,924 -10,566 -9,200 -8,622 

P&L 0.4% (d=10%) -5,271  -1,324 -2,135 -3,175 -3,570 
Agg P&L 0.4% (d=10%) -955  1,186 165 -557 -534 

P&L 0.4% (d=15%) -1,949  2,797 1,935 1,371 1,124 
Agg P&L 0.4% (d=15%) 1,383  4,355 3,319 2,993 2,901 
Table F12: Trading strategies for Corrado and Su models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

P&L 7,837  29,208 33,219 37,044 37,097 
# Trades 3,430  11,178 13,306 14,911 15,219 

P&L 0.2% (d=0%) -7,209  -15,317 -18,610 -22,828 -24,203 
Agg P&L 0.2% (d=0%) -2,332  -3,843 -5,186 -6,708 -6,615 

P&L 0.2% (d=5%) -42  4,787 4,174 3,968 3,999 
Agg P&L 0.2% (d=5%) 2,417  7,515 6,680 6,979 7,595 

P&L 0.2% (d=10%) 1,276  8,138 7,202 6,098 6,170 
Agg P&L 0.2% (d=10%) 3,112  9,475 8,353 7,432 7,728 

P&L 0.2% (d=15%) 3,512  8,685 7,322 6,740 6,778 
Agg P&L 0.2% (d=15%) 4,943  9,539 8,024 7,594 7,720 

P&L 0.4% (d=0%) -22,255  -59,841 -70,439 -82,700 -85,503 
Agg P&L 0.4% (d=0%) -12,501  -36,893 -43,590 -50,460 -50,328 

P&L 0.4% (d=5%) -8,404  -13,462 -15,087 -15,231 -15,601 
Agg P&L 0.4% (d=5%) -3,486  -8,006 -10,074 -9,211 -8,409 

P&L 0.4% (d=10%) -4,603  -597 -1,689 -3,301 -3,549 
Agg P&L 0.4% (d=10%) -931  2,076 613 -632 -433 

P&L 0.4% (d=15%) -1,218  3,521 2,303 1,172 1,074 
Agg P&L 0.4% (d=15%) 1,646  5,229 3,707 2,881 2,958 
Table F13: Chen and Johnson trading strategies for Corrado and Su models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  

P&L 25,759 25,627 28,829 24,290 25,980 30,421 
# Trades 4,790 6,159 7,097 6,151 6,777 8,016 
P&L 0.2% 3,825 -721 -2,079 -2,769 -3,017 -4,754 

Agg P&L 0.2% 11,911 7,957 8,150 6,769 7,471 7,381 
P&L 0.2% (d=5%) 10,084 6,187 6,513 4,528 6,353 8,668 

Agg P&L 0.2% (d=5%) 14,093 9,853 11,019 8,629 11,028 12,745 
P&L 0.2% (d=10%) 9,911 6,822 7,280 5,690 6,782 8,465 

Agg P&L 0.2% (d=10%) 12,707 9,060 10,345 8,286 9,470 10,755 
P&L 0.2% (d=15%) 9,139 7,394 7,324 5,630 7,023 8,006 

Agg P&L 0.2% (d=15%) 11,257 9,070 9,740 7,586 8,983 9,571 
P&L 0.4% -18,108 -27,070 -32,987 -29,828 -32,015 -39,929 

Agg P&L 0.4% -1,936 -9,714 -12,528 -10,753 -11,039 -15,659 
P&L 0.4% (d=5%) -2,108 -7,610 -9,055 -8,627 -7,465 -5,130 

Agg P&L 0.4% (d=5%) 5,909 -278 -41 -425 1,884 3,023 
P&L 0.4% (d=10%) 1,721 -1,469 -2,202 -2,246 -569 1,021 

Agg P&L 0.4% (d=10%) 7,313 3,008 3,927 2,946 4,807 5,600 
P&L 0.4% (d=15%) 2,704 1,737 452 -172 1,963 3,227 

Agg P&L 0.4% (d=15%) 6,939 5,090 5,284 3,740 5,884 6,356 
Table F14.1: Trading strategies for standard BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their market 
value is less than 0%, 5%, 10% and 15% respectively. The abbreviation Agg. 
refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
P&L 21,829 26,992 25,975 28,890 26,762 31,164 

# Trades 4,683 6,151 6,024 6,088 7,598 8,793 
P&L 0.2% 334 808 -158 1,980 -4,336 -6,229 

Agg P&L 0.2% 9,399 9,796 8,726 11,299 5,971 5,699 
P&L 0.2% (d=5%) 6,710 8,263 8,675 9,035 4,663 7,322 

Agg P&L 0.2% (d=5%) 11,084 12,017 12,785 13,237 8,653 11,305 
P&L 0.2% (d=10%) 8,231 7,301 8,413 8,886 6,364 8,017 

Agg P&L 0.2% (d=10%) 11,078 9,474 10,941 11,506 8,782 10,249 
P&L 0.2% (d=15%) 7,685 6,796 8,181 8,144 6,704 8,125 

Agg P&L 0.2% (d=15%) 9,994 8,464 10,052 10,075 8,361 9,663 
P&L 0.4% -21,160 -25,376 -26,290 -24,930 -35,433 -43,622 

Agg P&L 0.4% -3,030 -7,400 -8,523 -6,292 -14,820 -19,766 
P&L 0.4% (d=5%) -4,956 -5,489 -4,705 -4,929 -9,232 -6,375 

Agg P&L 0.4% (d=5%) 3,793 2,020 3,513 3,475 -1,252 1,590 
P&L 0.4% (d=10%) 474 -489 222 695 -1,239 581 

Agg P&L 0.4% (d=10%) 6,168 3,856 5,277 5,935 3,596 5,043 
P&L 0.4% (d=15%) 1,660 1,568 2,250 2,137 1,615 3,436 

Agg P&L 0.4% (d=15%) 6,277 4,904 5,992 6,000 4,928 6,514 
Table F14.2: Trading strategies for standard BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NCS60

  N
avCS  N

avTCS  N
avTCS 4

 N
conCS  

P&L 21,244  31,526 27,045 29,141 28,387 
# Trades 4,158  6,833 6,354 7,338 7,093 
P&L 0.2% 2,293  2,298 -1,036 -3,602 -3,063 

Agg P&L 0.2% 9,413  12,590 9,032 10,290 10,525 
P&L 0.2% (d=5%) 6,570  10,917 7,307 7,589 6,728 

Agg P&L 0.2% (d=5%) 10,676  15,307 11,750 13,226 12,558 
P&L 0.2% (d=10%) 7,536  11,081 8,576 8,466 7,619 

Agg P&L 0.2% (d=10%) 10,482  13,716 11,382 11,878 11,137 
P&L 0.2% (d=15%) 7,146  10,018 7,621 8,557 7,716 

Agg P&L 0.2% (d=15%) 9,393  12,053 9,682 10,966 10,200 
P&L 0.4% -16,659  -26,929 -29,116 -36,345 -34,513 

Agg P&L 0.4% -2,418  -6,345 -8,980 -8,561 -7,337 
P&L 0.4% (d=5%) -5,672  -3,648 -6,394 -7,107 -8,106 

Agg P&L 0.4% (d=5%) 2,540  5,132 2,493 4,168 3,554 
P&L 0.4% (d=10%) -1,108  2,197 156 -224 -929 

Agg P&L 0.4% (d=10%) 4,783  7,468 5,768 6,601 6,106 
P&L 0.4% (d=15%) 701  3,760 1,498 2,521 1,769 

Agg P&L 0.4% (d=15%) 5,196  7,830 5,621 7,340 6,737 
Table F15.1: Trading strategies for standard CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NCS60

  *N
avCS  *N

avTCS  *N
avTCS 4

 *N
conCS  

P&L 27,632  29,837 30,074 30,433 28,721 
# Trades 5,224  7,451 8,415 8,502 8,150 
P&L 0.2% 3,771  -2,324 -4,684 -5,330 -5,180 

Agg P&L 0.2% 13,371  9,248 7,181 8,518 7,892 
P&L 0.2% (d=5%) 10,194  7,904 6,118 7,788 6,052 

Agg P&L 0.2% (d=5%) 14,997  12,374 10,643 12,666 11,031 
P&L 0.2% (d=10%) 9,963  8,225 8,127 8,687 7,092 

Agg P&L 0.2% (d=10%) 13,079  11,170 10,595 11,490 10,057 
P&L 0.2% (d=15%) 9,563  8,007 8,104 8,715 6,607 

Agg P&L 0.2% (d=15%) 12,101  10,199 9,756 10,924 8,855 
P&L 0.4% -20,091  -34,486 -39,441 -41,093 -39,080 

Agg P&L 0.4% -890  -11,341 -15,712 -13,396 -12,937 
P&L 0.4% (d=5%) -2,409  -6,442 -10,254 -6,965 -8,346 

Agg P&L 0.4% (d=5%) 7,196  2,498 -1,205 2,792 1,613 
P&L 0.4% (d=10%) 1,569  -630 -680 471 -1,056 

Agg P&L 0.4% (d=10%) 7,801  5,260 4,255 6,076 4,874 
P&L 0.4% (d=15%) 3,265  1,571 2,471 2,811 846 

Agg P&L 0.4% (d=15%) 8,341  5,956 5,776 7,229 5,343 
Table F15.2: Trading strategies for standard CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  

P&L 29,466 29,731 33,402 33,314 34,564 36,881 
# Trades 6,193 8,058 8,722 9,169 11,714 12,953 
P&L 0.2% 2,663 -4,411 -2,528 -2,397 -11,896 -14,050 

Agg P&L 0.2% 11,447 6,292 8,487 8,511 -187 -439 
P&L 0.2% (d=5%) 9,499 4,506 7,511 7,004 6,067 8,222 

Agg P&L 0.2% (d=5%) 12,753 8,060 11,089 10,314 8,509 10,810 
P&L 0.2% (d=10%) 8,735 4,974 7,945 7,654 6,890 9,230 

Agg P&L 0.2% (d=10%) 10,894 7,261 10,268 9,807 8,060 10,342 
P&L 0.2% (d=15%) 7,976 4,597 7,752 7,726 6,946 8,929 

Agg P&L 0.2% (d=15%) 9,661 6,363 9,478 9,285 7,701 9,595 
P&L 0.4% -24,139 -38,553 -38,459 -38,108 -58,356 -64,981 

Agg P&L 0.4% -6,572 -17,148 -16,427 -16,291 -34,939 -37,759 
P&L 0.4% (d=5%) -1,868 -8,959 -7,101 -8,253 -8,090 -5,910 

Agg P&L 0.4% (d=5%) 4,641 -1,851 54 -1,633 -3,205 -734 
P&L 0.4% (d=10%) 1,912 -2,924 -535 -842 625 3,171 

Agg P&L 0.4% (d=10%) 6,231 1,649 4,109 3,463 2,965 5,394 
P&L 0.4% (d=15%) 2,916 -978 2,079 2,323 3,437 5,624 

Agg P&L 0.4% (d=15%) 6,288 2,554 5,531 5,442 4,946 6,956 
Table F16.1: Trading strategies for hybrid BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NhBS60

 *Nh
vixBS  *Nh

avBS  *Nh
avTBS  *Nh

avTBS 4
 *Nh

conBS  

P&L 27,024 29,529 32,908 33,514 35,774 37,281 
# Trades 5,675 8,246 8,907 9,457 11,995 12,650 
P&L 0.2% 1,694 -4,193 -2,435 -4,134 -11,484 -12,939 

Agg P&L 0.2% 10,552 6,053 7,871 7,086 837 1,066 
P&L 0.2% (d=5%) 8,620 5,446 7,439 7,101 6,488 7,054 

Agg P&L 0.2% (d=5%) 11,948 8,816 10,872 10,344 9,020 9,897 
P&L 0.2% (d=10%) 7,587 5,034 7,532 8,837 7,572 8,764 

Agg P&L 0.2% (d=10%) 9,718 7,254 9,841 10,740 8,764 10,107 
P&L 0.2% (d=15%) 6,593 5,147 8,162 8,579 7,910 8,427 

Agg P&L 0.2% (d=15%) 8,247 6,977 9,890 9,957 8,689 9,237 
P&L 0.4% -23,637 -37,914 -37,778 -41,782 -58,741 -63,158 

Agg P&L 0.4% -5,920 -17,424 -17,166 -19,343 -34,100 -35,148 
P&L 0.4% (d=5%) -2,339 -8,601 -7,626 -8,667 -8,087 -7,131 

Agg P&L 0.4% (d=5%) 4,319 -1,861 -760 -2,180 -3,023 -1,443 
P&L 0.4% (d=10%) 1,079 -3,096 -1,479 476 1,225 2,297 

Agg P&L 0.4% (d=10%) 5,340 1,343 3,139 4,280 3,609 4,983 
P&L 0.4% (d=15%) 1,804 -277 2,232 3,156 4,364 4,812 

Agg P&L 0.4% (d=15%) 5,112 3,382 5,687 5,911 5,922 6,432 
Table F16.2: Trading strategies for hybrid BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  

P&L 24,205  28,938 36,057 35,097 36,718 
# Trades 5,117  9,529 11,513 13,042 14,082 
P&L 0.2% 2,068  -9,244 -10,716 -18,188 -21,211 

Agg P&L 0.2% 9,791  2,572 3,118 -1,952 -3,139 
P&L 0.2% (d=5%) 8,919  4,457 5,975 2,658 3,883 

Agg P&L 0.2% (d=5%) 12,359  8,168 9,550 6,440 7,731 
P&L 0.2% (d=10%) 8,518  6,136 6,937 5,173 6,111 

Agg P&L 0.2% (d=10%) 10,835  8,300 8,775 7,154 8,011 
P&L 0.2% (d=15%) 7,515  6,267 7,613 5,888 6,359 

Agg P&L 0.2% (d=15%) 9,272  7,825 8,839 7,185 7,519 
P&L 0.4% -20,068  -47,426 -57,489 -71,472 -79,140 

Agg P&L 0.4% -4,622  -23,793 -29,822 -39,001 -42,996 
P&L 0.4% (d=5%) -2,649  -12,290 -12,275 -16,135 -14,934 

Agg P&L 0.4% (d=5%) 4,230  -4,868 -5,125 -8,570 -7,239 
P&L 0.4% (d=10%) 1,139  -2,722 -1,734 -4,201 -3,184 

Agg P&L 0.4% (d=10%) 5,774  1,606 1,943 -239 615 
P&L 0.4% (d=15%) 2,148  801 2,492 242 936 

Agg P&L 0.4% (d=15%) 5,662  3,918 4,943 2,836 3,256 
Table F17.1: Trading strategies for hybrid CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

P&L 26,691  32,915 31,943 34,907 37,975 
# Trades 5,140  10,043 10,377 12,537 12,947 
P&L 0.2% 3,590  -8,721 -12,019 -17,527 -16,084 

Agg P&L 0.2% 11,032  3,734 898 -1,586 735 
P&L 0.2% (d=5%) 9,328  5,059 3,188 3,854 5,017 

Agg P&L 0.2% (d=5%) 12,243  8,188 6,783 7,447 8,732 
P&L 0.2% (d=10%) 8,398  6,611 4,664 5,718 7,480 

Agg P&L 0.2% (d=10%) 10,353  8,644 6,734 7,752 9,236 
P&L 0.2% (d=15%) 7,337  6,653 5,601 6,052 7,826 

Agg P&L 0.2% (d=15%) 8,861  8,231 7,114 7,439 8,960 
P&L 0.4% -19,511  -50,356 -55,980 -69,962 -70,143 

Agg P&L 0.4% -4,626  -25,446 -30,146 -38,078 -36,505 
P&L 0.4% (d=5%) -1,215  -11,691 -14,095 -14,040 -12,799 

Agg P&L 0.4% (d=5%) 4,615  -5,433 -6,906 -6,852 -5,369 
P&L 0.4% (d=10%) 1,570  -2,378 -3,918 -3,252 -1,363 

Agg P&L 0.4% (d=10%) 5,479  1,688 220 816 2,149 
P&L 0.4% (d=15%) 2,433  724 457 612 2,605 

Agg P&L 0.4% (d=15%) 5,481  3,879 3,484 3,387 4,873 
Table F17.2: Trading strategies for hybrid CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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1.B. Appendix with reduced dataset results 
 
 
 
 
 

Set Starting Ending # obs Set Starting Ending # obs 

Tr1 5-Jan-98 8-Mar-99 18,053 Tr6 9-Mar-99 20-Jan-00 17,352 
Vd1 9-Mar-99 12-Jul-99 9,146 Vd6 21-Jan-00 17-May-00 8,003 
Ts1 13-Jul-99 24-Sep-99 3,174 Ts6 18-May-00 17-Jul-00 3,543 
Tr2 24-Apr-98 16-Apr-99 17,313 Tr7 20-Apr-99 28-Feb-00 16,947 
Vd2 19-Apr-99 23-Sep-99 9,638 Vd7 29-Feb-00 17-Jul-00 8,781 
Ts2 24-Sep-99 5-Jan-00 3,223 Ts7 18-Jul-00 10-Oct-00 3,982 
Tr3 23-Jun-98 3-Jun-99 16,945 Tr8 7-Jun-99 11-Apr-00 16,247 
Vd3 4-Jun-99 5-Jan-00 9,474 Vd8 12-Apr-00 6-Oct-00 9,644 
Ts3 6-Jan-00 10-Feb-00 2,835 Ts8 9-Oct-00 24-Jan-01 3,418 
Tr4 3-Sep-98 24-Aug-99 16,782 Tr9 26-Aug-99 5-Jun-00 15,851 
Vd4 25-Aug-99 11-Feb-00 8,600 Vd9 6-Jun-00 24-Jan-01 9,615 
Ts4 14-Feb-00 27-Mar-00 2,689 Ts9 25-Jan-01 29-Mar-01 3,486 
Tr5 29-Jan-99 18-Oct-99 17,015 Tr10 21-Oct-99 11-Aug-00 16,165 
Vd5 19-Oct-99 24-Mar-00 7,728 Vd10 14-Aug-00 30-Mar-01 9,349 
Ts5 28-Mar-00 16-May-00 3,370 Ts10 2-Apr-01 24-Aug-01 3,594 

Table R1: Training (Tr), validation (Vd) and testing (Ts) dates 
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 PBS60

 P
vixBS  P

avBS  P
avTBS  P

avTBS 4
 P

conBS  PCS60
  P

avCS  P
avTCS  P

avTCS 4
 P

conCS  
RMSE 9.83 11.82 8.41 8.25 7.08 7.06 9.74  7.56 7.55 7.55 7.52 
MAE 6.35 8.43 4.82 4.54 2.65 2.65 6.32  3.38 3.12 2.99 3.04 

RMeSE 4.50 6.57 3.63 3.27 1.48 1.46 4.59  2.17 1.83 1.69 1.71 
             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
RMSE 8.05 6.56 7.34 6.94 6.64 6.69 7.14 6.60 6.82 6.91 6.25 6.12 
MAE 5.07 3.34 4.02 3.72 3.42 3.37 4.11 3.43 3.46 3.59 3.01 3.00 

RMeSE 3.80 2.32 2.99 2.56 2.33 2.24 3.09 2.41 2.44 2.56 1.99 2.02 
             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
RMSE 9.05  7.18 6.93 6.94 6.88 8.35  6.97 6.59 6.50 6.77 
MAE 5.74  3.95 3.61 3.73 3.62 4.94  3.68 3.26 3.23 3.45 

RMeSE 4.25  2.74 2.41 2.60 2.55 3.43  2.62 2.22 2.25 2.36 
             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

RMSE 8.45 6.70 7.29 7.01 6.58 6.78 7.35 6.40 7.05 6.83 5.94 5.64 
MAE 5.11 3.58 3.62 3.38 2.62 2.69 4.27 3.21 3.32 3.30 2.45 2.44 

RMeSE 3.44 2.59 2.55 2.35 1.55 1.65 3.13 2.26 2.30 2.33 1.51 1.54 
             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

RMSE 7.80  7.29 6.83 7.31 7.35 7.69  6.90 6.80 6.51 6.46 
MAE 4.65  3.20 3.08 3.03 3.03 4.58  3.13 2.92 2.83 2.87 

RMeSE 3.41  2.13 2.02 1.82 1.80 3.23  2.03 1.80 1.79 1.81 
Table R2: Pricing error measures for all models in the aggregate testing period (AggTs) 
RMSE is the Root Mean Square Error, MAE the Mean Absolute Error and RMeSE the Root Median 
Square Error. The superscripts refer to the kind of the model: P refers to parametric models, N to the 
simple neural networks and Nh to the hybrid neural networks. The asterisk (*) refers to neural network 
models that use the transformed variables. The subscripts refer to kind of historical/implied parameters 
used to each model per se.    
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 PBS60
 P

vixBS  P
avBS  P

avTBS  P
avTBS 4

 P
conBS  PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

MHE 0.28 0.32 0.29 0.29 0.29 0.30 0.29  0.28 0.28 0.27 0.26 
MAHE 2.68 2.82 2.68 2.66 2.57 2.57 2.68  2.86 2.83 2.87 2.88 
MPE 5.80 5.86 5.80 5.80 5.74 5.75 5.83  5.97 5.97 6.03 6.04 
MD 0.581 0.585 0.584 0.582 0.561 0.558 0.580  0.609 0.606 0.605 0.602 

             

 NBS60
 N

vixBS  N
avBS  N

avTBS  N
avTBS 4

 N
conBS  *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
MHE 0.33 0.30 0.28 0.29 0.28 0.30 0.29 0.29 0.28 0.28 0.29 0.29 

MAHE 3.00 2.92 2.93 2.91 2.71 2.77 2.91 2.89 2.88 2.86 2.68 2.71 
MPE 6.08 6.04 6.08 6.04 5.88 5.91 6.03 6.02 6.02 6.00 5.84 5.86 
MD 0.618 0.614 0.615 0.610 0.578 0.581 0.606 0.611 0.610 0.608 0.579 0.582 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
MHE 0.30  0.29 0.29 0.27 0.27 0.31  0.32 0.30 0.30 0.29 

MAHE 3.07  2.90 2.92 2.84 2.86 2.97  2.97 2.81 2.78 2.81 
MPE 6.14  6.04 6.05 6.00 5.99 6.06  6.09 5.93 5.91 5.94 
MD 0.615  0.611 0.613 0.602 0.605 0.609  0.607 0.593 0.592 0.596 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

MHE 0.30 0.29 0.28 0.30 0.29 0.29 0.31 0.29 0.28 0.29 0.30 0.30 
MAHE 2.94 2.88 2.88 2.91 2.63 2.61 2.93 2.90 2.89 2.90 2.63 2.63 
MPE 6.03 6.00 5.99 5.99 5.79 5.78 6.02 6.01 6.00 6.00 5.79 5.80 
MD 0.616 0.610 0.614 0.614 0.574 0.570 0.615 0.613 0.615 0.615 0.574 0.574 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

MHE 0.30  0.28 0.28 0.27 0.26 0.29  0.29 0.29 0.26 0.26 
MAHE 2.85  2.90 2.85 2.87 2.88 2.83  2.95 2.91 2.95 2.96 
MPE 5.98  6.00 5.98 6.03 6.04 5.95  6.05 6.03 6.11 6.12 
MD 0.605  0.613 0.609 0.605 0.602 0.606  0.621 0.616 0.617 0.615 

Table R3: Hedging error measures for all models in the aggregate testing period (AggTs) 
MHE is the Mean Hedging Error, MAHE the Mean Absolute Hedging Error, MPE the Mean Prediction 
Error and MD the Mean Delta of each model. The superscripts refer to the kind of the model: P refers to 
parametric models, N to the simple neural networks and Nh to the hybrid neural networks. The asterisk 
(*) refers to neural network models that use the transformed variables. The subscripts refer to kind of 
historical/implied parameters used to each model per se. 
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 PBS60

 P
vixBS  P

conBS  PCS60
 P

conCS  *NBS60
 *NCS60

 *NhBS60
 *Nh

vixBS  *Nh
conBS  *NhCS60

 *Nh
conCS  

PBS60
  -33.91 67.72 0.56 59.35 42.88 25.46 39.53 61.45 78.64 33.14 66.94 

P
vixBS  9.23  99.72 34.63 91.26 77.59 59.53 74.19 95.49 112.26 67.82 100.24 
P
conBS  -9.26 -18.95  -67.60 -7.35 -30.38 -44.47 -33.27 -11.78 4.67 -39.12 -4.59 
PCS60

 -0.36 -9.58 8.87  59.17 42.59 25.05 39.21 61.31 78.66 32.78 66.84 
P
conCS  -7.79 -17.20 1.30 -7.42  -21.78 -36.11 -24.68 -3.53 12.68 -30.51 3.31 

*NBS60
 -9.60 -20.05 0.24 -9.19 -1.14  -16.95 -3.40 20.55 39.41 -10.06 27.55 

*NCS60
 -5.54 -15.46 4.05 -5.15 2.63 4.07  13.61 36.30 54.07 7.16 42.53 

*NhBS60
 -9.06 -19.60 0.87 -8.65 -0.54 0.67 -3.46  23.78 42.50 -6.64 30.64 

*Nh
vixBS  -12.00 -22.94 -1.89 -11.56 -3.26 -2.29 -6.41 -3.00  18.58 -30.25 7.61 

*Nh
conBS  -14.73 -26.67 -4.03 -14.26 -5.43 -4.65 -8.94 -5.44 -2.29  -48.82 -10.24 

*NhCS60
 -7.95 -18.38 1.95 -7.53 0.53 1.83 -2.31 1.18 4.19 6.69  36.87 

*Nh
conCS  -11.98 -23.07 -1.76 -11.54 -3.15 -2.16 -6.33 -2.88 0.16 2.50 -4.08  

Table R4a: Matched pair student-t tests for square and absolute differences 
Matched pair t-tests concerning the absolute differences are reported in the upper diagonal whilst 
on the lower diagonal the matched pair t-tests concerning the square differences are tabulated. 
Both tests compare the MAE and MSE between models in the vertical heading versus models in 
the horizontal heading. In general, a positive t-value larger than 1.645 (2.325) means that the 
model in the vertical heading has a larger MAE or MSE than the model in the horizontal heading at 
5% (1%) significance level. 
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 PBS60

 P
vixBS  P

conBS  PCS60
 P

conCS  *NBS60
 *NCS60

 *NhBS60
 *Nh

vixBS  *Nh
conBS  *NhCS60

 *Nh
conCS  

PBS60
  -27.29 15.19 5.00 13.66 56.05 25.49 52.42 59.33 38.80 49.71 35.26 

P
vixBS  9.23  28.88 27.42 27.37 60.81 44.58 62.12 78.15 60.32 59.53 53.50 
P
conBS  -9.26 -18.95  -14.53 -5.43 -0.40 -6.42 -1.42 3.08 7.61 -3.19 4.02 
PCS60

 -0.36 -9.58 8.87  12.99 54.57 23.86 50.11 57.84 37.25 45.03 33.67 
P
conCS  -7.79 -17.20 1.30 -7.42  1.96 -4.40 0.94 5.62 10.18 -0.92 8.32 

*NBS60
 -9.60 -20.05 0.24 -9.19 -1.14  -27.71 -7.51 23.55 13.25 -18.57 6.63 

*NCS60
 -5.54 -15.46 4.05 -5.15 2.63 4.07  19.90 36.18 22.35 12.84 16.92 

*NhBS60
 -9.06 -19.60 0.87 -8.65 -0.54 0.67 -3.46  30.72 16.80 -13.27 9.53 

*Nh
vixBS  -12.00 -22.94 -1.89 -11.56 -3.26 -2.29 -6.41 -3.00  7.04 -37.74 -0.52 

*Nh
conBS  -14.73 -26.67 -4.03 -14.26 -5.43 -4.65 -8.94 -5.44 -2.29  -19.94 -10.44 

*NhCS60
 -7.95 -18.38 1.95 -7.53 0.53 1.83 -2.31 1.18 4.19 6.69  13.08 

*Nh
conCS  -11.98 -23.07 -1.76 -11.54 -3.15 -2.16 -6.33 -2.88 0.16 2.50 -4.08  

Table R4b: Matched pair student-t and Johnson t-tests for the square differences 
Matched pair student-t (lower diagonal) and Johnson modified t (upper diagonal) tests concerning 
square differences are tabulated. Both tests compare the MSE between models in the vertical 
heading versus models in the horizontal heading. In general, a positive t-value larger than 1.645 
(2.325) means that the model in the vertical heading has a larger MSE than the model in the 
horizontal heading at 5% (1%) significance level. 
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 NBS60

 N
vixBS  N

avBS  N
avTBS  N

avTBS 4
 N

conBS  *NBS60
 *N

vixBS  *N
avBS  *N

avTBS  *N
avTBS 4

 *N
conBS  

Min 5 6 3 3 5 5 3 4 3 3 4 3 
Mean 5.7 7.8 6.7 7.3 6.8 7.5 6.2 6.7 5.6 6.9 6.4 6.1 
Max 8 10 10 10 10 10 10 9 7 9 10 10 

             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
Min 3  4 3 4 4 3  5 4 3 3 

Mean 5.9  7.3 7 7.4 6.9 4.8  7.1 6.8 5.4 6.7 
Max 9  10 10 10 10 10  9 10 9 10 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

Min 3 4 4 2 3 2 3 4 3 2 2 2 
Mean 5.6 6.9 5.7 6 3.7 5.7 4.9 6.7 5 5.2 3.8 3.9 
Max 10 10 8 10 6 10 9 10 6 9 6 6 

             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

Min 2  2 2 2 2 2  2 2 2 2 
Mean 5  4.1 4.4 4.2 4.4 5.2  4.6 4.7 3.9 4 
Max 10  7 8 7 7 9  10 9 7 10 

Table R5: ANNs Complexity 
Minimum, mean and maximum number of the hidden layer neurons for the ten different training 
periods.   
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 P

conBS  P
conCS  

 Short Medium Long Short Medium Long 
VDOTM n.a. n.a. n.a. n.a. n.a. n.a. 
DOTM 2.27 4.50 n.a. 3.02 5.24 n.a. 
OTM 5.78 8.37 n.a. 6.29 9.68 n.a. 
JOTM 7.81 6.68 n.a. 8.13 7.64 n.a. 
ATM 6.67 9.46 n.a. 7.30 10.14 n.a. 
JITM 6.71 9.41 n.a. 7.29 9.21 n.a. 
ITM 7.70 7.13 n.a. 8.24 7.59 n.a. 

DITM 7.07 7.93 n.a. 7.20 8.50 n.a. 
VDITM n.a. n.a. n.a. n.a. n.a. n.a. 

 *Nh
conBS  *Nh

conCS  
VDOTM n.a. n.a. n.a. n.a. n.a. n.a. 
DOTM 2.36 4.07 n.a. 2.54 5.22 n.a. 
OTM 5.08 7.25 n.a. 5.69 8.74 n.a. 
JOTM 5.82 5.59 n.a. 6.76 7.09 n.a. 
ATM 4.65 8.37 n.a. 5.68 9.53 n.a. 
JITM 5.50 7.68 n.a. 6.20 8.16 n.a. 
ITM 5.98 5.84 n.a. 6.73 6.75 n.a. 

DITM 5.45 6.59 n.a. 5.95 7.67 n.a. 
VDITM n.a. n.a. n.a. n.a. n.a. n.a. 
Table R6: Root Mean Square Errors for the four best models for the 
full dataset 

 
 

Pan
ay

iot
is 

C. A
nd

reo
u



 
 

112

 
 PBS60

 P
vixBS  P

avBS  P
avTBS  P

avTBS 4
 P

conBS  
P&L 6,617 11,502 12,852 11,398 27,418 29,784 

# Trades 3,128 3,481 4,584 5,130 11,944 13,255 
P&L 0.2% (d=0%) -6,826 -6,744 -5,483 -7,698 -15,038 -17,010 

Agg P&L 0.2% (d=0%) -2,195 -733 320 -1,957 -5,267 -5,467 
P&L 0.2% (d=5%) -1,481 1,774 2,672 -66 4,045 4,276 

Agg P&L 0.2% (d=5%) 1,143 3,743 5,460 2,721 6,009 6,506 
P&L 0.2% (d=10%) 245 2,081 5,896 4,376 6,102 6,229 

Agg P&L 0.2% (d=10%) 2,153 3,116 7,182 5,727 6,834 7,049 
P&L 0.2% (d=15%) 2,552 2,863 6,400 5,741 7,023 6,675 

Agg P&L 0.2% (d=15%) 4,127 3,642 7,144 6,484 7,396 7,075 
P&L 0.4% (d=0%) -20,270 -24,989 -23,819 -26,793 -57,494 -63,805 

Agg P&L 0.4% (d=0%) -11,006 -12,967 -12,211 -15,311 -37,953 -40,717 
P&L 0.4% (d=5%) -9,559 -6,229 -10,067 -13,797 -10,120 -9,779 

Agg P&L 0.4% (d=5%) -4,310 -2,291 -4,490 -8,222 -6,191 -5,320 
P&L 0.4% (d=10%) -5,534 -3,254 -807 -3,352 184 372 

Agg P&L 0.4% (d=10%) -1,717 -1,185 1,764 -651 1,649 2,012 
P&L 0.4% (d=15%) -2,012 -1,535 2,275 1,332 3,998 3,696 

Agg P&L 0.4% (d=15%) 1,137 24 3,763 2,819 4,743 4,496 
Table R7: Trading strategies for Black and Scholes models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PBS60

 P
vixBS  P

avBS  P
avTBS  P

avTBS 4
 P

conBS  
P&L 7,110 12,486 13,068 11,800 27,591 29,886 

# Trades 3,128 3,481 4,584 5,130 11,944 13,255 
P&L 0.2% (d=0%) -6,132 -5,394 -5,017 -7,097 -14,951 -16,884 

Agg P&L 0.2% (d=0%) -1,671 989 885 -1,331 -5,237 -5,387 
P&L 0.2% (d=5%) -798 3,156 3,179 538 4,308 4,596 

Agg P&L 0.2% (d=5%) 1,528 5,413 6,066 3,315 6,253 6,778 
P&L 0.2% (d=10%) 1,010 3,529 6,556 4,992 6,409 6,509 

Agg P&L 0.2% (d=10%) 2,644 4,738 7,951 6,473 7,121 7,289 
P&L 0.2% (d=15%) 3,330 4,400 7,165 6,525 7,379 6,982 

Agg P&L 0.2% (d=15%) 4,689 5,312 7,997 7,403 7,743 7,367 
P&L 0.4% (d=0%) -19,373 -23,274 -23,102 -25,995 -57,494 -63,655 

Agg P&L 0.4% (d=0%) -10,453 -10,509 -11,297 -14,462 -38,066 -40,661 
P&L 0.4% (d=5%) -8,680 -4,491 -9,329 -12,998 -9,989 -9,528 

Agg P&L 0.4% (d=5%) -4,028 23 -3,555 -7,444 -6,099 -5,164 
P&L 0.4% (d=10%) -4,621 -1,440 110 -2,536 375 527 

Agg P&L 0.4% (d=10%) -1,353 978 2,900 426 1,800 2,086 
P&L 0.4% (d=15%) -1,163 357 3,275 2,315 4,188 3,803 

Agg P&L 0.4% (d=15%) 1,555 2,181 4,939 4,072 4,916 4,572 
Table R8: Chen and Johnson modified trading strategies for Black and Scholes 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

P&L 6,575  26,969 29,811 31,291 30,886 
# Trades 3,160  10,136 11,967 12,796 12,893 

P&L 0.2% (d=0%) -7,494  -13,607 -16,185 -18,062 -18,632 
Agg P&L 0.2% (d=0%) -2,708  -3,537 -4,955 -5,645 -5,178 

P&L 0.2% (d=5%) -1,879  2,811 2,038 2,061 2,033 
Agg P&L 0.2% (d=5%) 697  5,077 4,066 4,567 5,160 

P&L 0.2% (d=10%) -369  6,426 5,503 4,754 4,622 
Agg P&L 0.2% (d=10%) 1,625  7,454 6,378 5,893 5,968 

P&L 0.2% (d=15%) 2,020  7,223 6,180 5,708 5,537 
Agg P&L 0.2% (d=15%) 3,609  7,845 6,693 6,400 6,329 

P&L 0.4% (d=0%) -21,563  -54,183 -62,182 -67,415 -68,150 
Agg P&L 0.4% (d=0%) -11,990  -34,042 -39,721 -42,580 -41,241 

P&L 0.4% (d=5%) -10,032  -14,585 -16,016 -15,830 -16,196 
Agg P&L 0.4% (d=5%) -4,882  -10,054 -11,960 -10,817 -9,941 

P&L 0.4% (d=10%) -6,108  -1,969 -2,776 -3,921 -4,292 
Agg P&L 0.4% (d=10%) -2,118  88 -1,027 -1,644 -1,600 

P&L 0.4% (d=15%) -2,578  2,328 1,626 741 483 
Agg P&L 0.4% (d=15%) 600  3,573 2,653 2,126 2,068 
Table R9: Trading strategies for Corrado and Su models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 PCS60

  P
avCS  P

avTCS  P
avTCS 4

 P
conCS  

P&L 6,920  27,251 30,031 31,279 31,025 
# Trades 3,160  10,136 11,967 12,796 12,893 

P&L 0.2% (d=0%) -6,914  -13,122 -15,867 -18,090 -18,570 
Agg P&L 0.2% (d=0%) -2,369  -2,965 -4,662 -5,633 -5,060 

P&L 0.2% (d=5%) -1,315  3,385 2,497 2,230 2,285 
Agg P&L 0.2% (d=5%) 909  5,701 4,492 4,755 5,435 

P&L 0.2% (d=10%) 222  6,987 5,928 4,950 4,844 
Agg P&L 0.2% (d=10%) 1,902  8,056 6,766 6,075 6,204 

P&L 0.2% (d=15%) 2,741  7,877 6,602 5,867 5,759 
Agg P&L 0.2% (d=15%) 4,076  8,528 7,087 6,576 6,582 

P&L 0.4% (d=0%) -20,747  -53,496 -61,765 -67,459 -68,165 
Agg P&L 0.4% (d=0%) -11,658  -33,181 -39,355 -42,545 -41,145 

P&L 0.4% (d=5%) -9,252  -13,850 -15,597 -15,855 -16,192 
Agg P&L 0.4% (d=5%) -4,803  -9,219 -11,606 -10,803 -9,892 

P&L 0.4% (d=10%) -5,332  -1,277 -2,386 -3,945 -4,355 
Agg P&L 0.4% (d=10%) -1,973  859 -710 -1,694 -1,637 

P&L 0.4% (d=15%) -1,754  3,025 1,946 610 344 
Agg P&L 0.4% (d=15%) 916  4,328 2,916 2,029 1,989 
Table R10: Chen and Johnson modified trading for Corrado and Su models 
P&L is the total profit and loss without transaction costs; # Trades is the number of trades 
forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 0.2% or 0.4% 
transaction costs when trading strategies are implemented by ignoring trades that involve 
call options whose absolute percentage of mispricing error between their models estimates 
and their market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the underlying 
asset. 
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 NBS60

 N
vixBS  N

avBS  N
avTBS  N

avTBS 4
 N

conBS  
P&L 22,992 29,737 25,424 27,340 26,012 26,687 

# Trades 4,836 7,615 6,168 7,069 7,770 8,128 
P&L 0.2% 1,604 -2,031 -440 -1,779 -5,467 -5,414 

Agg P&L 0.2% 8,560 6,343 7,812 6,824 4,266 4,686 
P&L 0.2% (d=5%) 8,375 7,155 6,829 7,142 5,866 5,912 

Agg P&L 0.2% (d=5%) 11,289 9,721 10,303 10,385 8,963 9,379 
P&L 0.2% (d=10%) 8,781 6,388 6,030 7,532 6,447 7,221 

Agg P&L 0.2% (d=10%) 10,744 7,774 8,468 9,550 8,278 9,121 
P&L 0.2% (d=15%) 7,985 6,870 7,454 7,482 7,166 7,253 

Agg P&L 0.2% (d=15%) 9,502 7,855 9,347 8,980 8,372 8,553 
P&L 0.4% -19,784 -33,798 -26,305 -30,899 -36,946 -37,516 

Agg P&L 0.4% -5,872 -17,052 -9,800 -13,692 -17,480 -17,315 
P&L 0.4% (d=5%) -2,369 -6,249 -5,494 -6,151 -6,619 -7,032 

Agg P&L 0.4% (d=5%) 3,459 -1,116 1,454 335 -425 -96 
P&L 0.4% (d=10%) 1,817 -319 -1,987 -154 175 457 

Agg P&L 0.4% (d=10%) 5,744 2,452 2,889 3,883 3,836 4,257 
P&L 0.4% (d=15%) 2,764 2,439 1,551 2,318 3,150 3,098 

Agg P&L 0.4% (d=15%) 5,797 4,408 5,337 5,314 5,563 5,700 
Table R11.1: Trading strategies for standard BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NBS60

 *N
vixBS  *N

avBS  *N
avTBS  *N

avTBS 4
 *N

conBS  
P&L 25,747 28,401 27,359 26,910 27,547 28,591 

# Trades 5,398 7,058 7,096 7,077 8,502 8,663 
P&L 0.2% 576 -1,847 -2,388 -2,923 -5,325 -5,531 

Agg P&L 0.2% 8,570 6,338 6,078 6,061 3,879 4,767 
P&L 0.2% (d=5%) 8,771 7,142 6,300 6,013 6,252 6,660 

Agg P&L 0.2% (d=5%) 11,503 9,740 9,238 8,768 8,854 9,834 
P&L 0.2% (d=10%) 7,945 7,205 5,982 5,751 7,222 6,581 

Agg P&L 0.2% (d=10%) 9,609 8,747 7,909 7,459 8,615 8,082 
P&L 0.2% (d=15%) 7,088 7,634 6,343 6,450 7,292 7,172 

Agg P&L 0.2% (d=15%) 8,358 8,721 7,778 7,702 8,218 8,099 
P&L 0.4% -24,594 -32,096 -32,135 -32,757 -38,196 -39,653 

Agg P&L 0.4% -8,607 -15,725 -15,204 -14,788 -19,788 -19,057 
P&L 0.4% (d=5%) -1,515 -5,588 -6,407 -7,159 -6,587 -6,740 

Agg P&L 0.4% (d=5%) 3,950 -394 -530 -1,649 -1,381 -393 
P&L 0.4% (d=10%) 2,094 549 -1,178 -1,592 1,227 550 

Agg P&L 0.4% (d=10%) 5,423 3,634 2,677 1,822 4,014 3,552 
P&L 0.4% (d=15%) 2,765 3,383 1,432 1,578 3,732 3,571 

Agg P&L 0.4% (d=15%) 5,306 5,557 4,302 4,081 5,582 5,424 
Table R11.2: Trading strategies for standard BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NCS60

  N
avCS  N

avTCS  N
avTCS 4

 N
conCS  

P&L 20,675  26,166 27,584 27,124 26,776 
# Trades 4,513  6,514 7,362 6,979 6,964 
P&L 0.2% 673  -560 -2,697 -2,459 -2,680 

Agg P&L 0.2% 8,516  8,386 6,766 8,191 8,130 
P&L 0.2% (d=5%) 6,106  7,415 6,517 7,030 6,978 

Agg P&L 0.2% (d=5%) 9,972  10,848 10,186 10,953 10,904 
P&L 0.2% (d=10%) 6,916  7,353 6,747 7,299 7,783 

Agg P&L 0.2% (d=10%) 9,461  9,575 8,808 9,812 10,259 
P&L 0.2% (d=15%) 6,875  7,229 6,722 7,164 7,585 

Agg P&L 0.2% (d=15%) 8,865  8,847 8,197 9,082 9,445 
P&L 0.4% -19,329  -27,287 -32,978 -32,043 -32,137 

Agg P&L 0.4% -3,643  -9,395 -14,053 -10,743 -10,517 
P&L 0.4% (d=5%) -4,802  -4,985 -7,526 -5,222 -5,349 

Agg P&L 0.4% (d=5%) 2,930  1,882 -188 2,625 2,503 
P&L 0.4% (d=10%) -557  -479 -838 50 546 

Agg P&L 0.4% (d=10%) 4,533  3,965 3,284 5,075 5,498 
P&L 0.4% (d=15%) 1,286  1,582 1,709 2,154 2,598 

Agg P&L 0.4% (d=15%) 5,266  4,819 4,660 5,988 6,318 
Table R12.1: Trading strategies for standard CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NCS60

  *N
avCS  *N

avTCS  *N
avTCS 4

 *N
conCS  

P&L 22,739  27,299 30,079 26,912 26,703 
# Trades 5,173  7,133 8,531 8,106 8,030 
P&L 0.2% -492  -1,118 -3,802 -5,609 -4,992 

Agg P&L 0.2% 7,689  7,923 6,227 4,973 5,413 
P&L 0.2% (d=5%) 7,138  6,880 6,460 6,036 5,479 

Agg P&L 0.2% (d=5%) 10,397  10,163 9,662 9,348 9,427 
P&L 0.2% (d=10%) 7,517  7,117 6,671 7,211 6,405 

Agg P&L 0.2% (d=10%) 9,556  9,178 8,341 9,176 8,807 
P&L 0.2% (d=15%) 6,978  7,048 7,416 7,374 6,379 

Agg P&L 0.2% (d=15%) 8,433  8,659 8,566 8,774 8,212 
P&L 0.4% -23,723  -29,535 -37,683 -38,129 -36,687 

Agg P&L 0.4% -7,360  -11,453 -17,624 -16,965 -15,878 
P&L 0.4% (d=5%) -3,137  -6,142 -7,934 -7,264 -8,493 

Agg P&L 0.4% (d=5%) 3,383  425 -1,530 -640 -599 
P&L 0.4% (d=10%) 1,139  -428 -264 -133 -1,312 

Agg P&L 0.4% (d=10%) 5,218  3,695 3,076 3,796 3,492 
P&L 0.4% (d=15%) 2,490  1,700 3,024 2,729 1,373 

Agg P&L 0.4% (d=15%) 5,402  4,924 5,325 5,528 5,040 
Table R12.2: Trading strategies for standard CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  

P&L 21,946 28,851 25,382 28,451 29,642 29,127 
# Trades 5,090 7,507 7,821 8,162 10,747 10,429 
P&L 0.2% 347 -1,714 -6,099 -4,333 -10,412 -11,602 

Agg P&L 0.2% 7,186 6,659 3,041 4,287 -188 -545 
P&L 0.2% (d=5%) 6,747 7,576 3,233 4,837 5,216 5,376 

Agg P&L 0.2% (d=5%) 9,406 10,228 6,042 7,569 7,318 7,797 
P&L 0.2% (d=10%) 6,213 6,778 4,464 5,560 6,736 6,577 

Agg P&L 0.2% (d=10%) 8,060 8,442 6,547 7,245 7,664 7,763 
P&L 0.2% (d=15%) 6,084 6,404 5,524 6,555 7,608 6,818 

Agg P&L 0.2% (d=15%) 7,557 7,674 7,129 7,774 8,191 7,543 
P&L 0.4% -21,252 -32,279 -37,579 -37,117 -50,467 -52,331 

Agg P&L 0.4% -7,573 -15,532 -19,301 -19,876 -30,018 -30,217 
P&L 0.4% (d=5%) -3,615 -5,370 -10,392 -9,957 -8,608 -7,940 

Agg P&L 0.4% (d=5%) 1,702 -65 -4,774 -4,492 -4,404 -3,097 
P&L 0.4% (d=10%) -401 -255 -3,769 -2,524 705 513 

Agg P&L 0.4% (d=10%) 3,293 3,072 399 847 2,560 2,884 
P&L 0.4% (d=15%) 1,245 1,711 -150 1,259 4,328 3,464 

Agg P&L 0.4% (d=15%) 4,191 4,252 3,060 3,697 5,494 4,915 
Table R13.1: Trading strategies for hybrid BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NhBS60

 *Nh
vixBS  *Nh

avBS  *Nh
avTBS  *Nh

avTBS 4
 *Nh

conBS  

P&L 24,143 30,438 29,540 29,053 31,567 31,379 
# Trades 5,621 8,469 8,338 8,337 10,965 10,758 
P&L 0.2% 460 -3,910 -3,697 -3,775 -10,122 -9,717 

Agg P&L 0.2% 7,793 5,211 5,808 4,700 513 1,216 
P&L 0.2% (d=5%) 7,060 5,085 5,735 6,350 5,621 5,209 

Agg P&L 0.2% (d=5%) 9,819 7,635 8,324 9,081 7,702 7,729 
P&L 0.2% (d=10%) 6,537 5,801 6,202 6,123 6,844 6,461 

Agg P&L 0.2% (d=10%) 8,401 7,352 8,012 7,915 7,796 7,607 
P&L 0.2% (d=15%) 6,383 5,488 6,786 6,738 7,564 7,027 

Agg P&L 0.2% (d=15%) 7,817 6,641 8,165 8,096 8,154 7,728 
P&L 0.4% -23,223 -38,258 -36,933 -36,603 -51,812 -50,812 

Agg P&L 0.4% -8,557 -20,016 -17,923 -19,652 -30,541 -28,947 
P&L 0.4% (d=5%) -3,115 -8,607 -8,606 -8,095 -7,613 -8,019 

Agg P&L 0.4% (d=5%) 2,403 -3,507 -3,429 -2,633 -3,452 -2,980 
P&L 0.4% (d=10%) 316 -1,318 -1,989 -1,772 1,126 563 

Agg P&L 0.4% (d=10%) 4,045 1,783 1,633 1,811 3,031 2,853 
P&L 0.4% (d=15%) 1,779 945 1,372 1,557 4,411 3,715 

Agg P&L 0.4% (d=15%) 4,648 3,250 4,131 4,272 5,591 5,117 
Table R13.2: Trading strategies for hybrid BS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  

P&L 20,002  29,247 28,793 30,691 31,231 
# Trades 5,202  9,157 9,604 11,678 11,871 
P&L 0.2% -1,869  -7,909 -10,106 -15,394 -15,064 

Agg P&L 0.2% 5,336  2,981 1,305 -2,108 -1,449 
P&L 0.2% (d=5%) 5,784  5,846 3,699 2,441 2,884 

Agg P&L 0.2% (d=5%) 8,594  8,882 6,637 5,426 6,367 
P&L 0.2% (d=10%) 5,694  7,401 5,762 5,118 5,023 

Agg P&L 0.2% (d=10%) 7,601  9,184 7,293 6,704 6,625 
P&L 0.2% (d=15%) 5,407  7,448 6,385 5,606 6,073 

Agg P&L 0.2% (d=15%) 6,913  8,732 7,399 6,691 7,033 
P&L 0.4% -23,741  -45,066 -49,004 -61,479 -61,358 

Agg P&L 0.4% -9,329  -23,285 -26,182 -34,907 -34,129 
P&L 0.4% (d=5%) -4,775  -9,338 -12,195 -14,870 -14,853 

Agg P&L 0.4% (d=5%) 844  -3,265 -6,319 -8,901 -7,886 
P&L 0.4% (d=10%) -555  -397 -1,785 -3,370 -3,597 

Agg P&L 0.4% (d=10%) 3,258  3,170 1,276 -198 -393 
P&L 0.4% (d=15%) 818  2,340 1,826 587 1,056 

Agg P&L 0.4% (d=15%) 3,829  4,907 3,855 2,756 2,976 
Table R14.2: Trading strategies for hybrid CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the 
number of trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total 
profit and loss at 0.2% or 0.4% transaction costs when trading strategies are 
implemented by ignoring trades that involve call options whose absolute 
percentage of mispricing error between their models estimates and their 
market value is less than 0%, 5%, 10% and 15% respectively. The abbreviation 
Agg. refers to trading strategy results with aggregate transaction costs of the 
underlying asset. 
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 *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

P&L 22,708  28,886 31,663 32,810 32,718 
# Trades 5,358  8,898 10,463 10,927 11,098 
P&L 0.2% -1,162  -7,138 -10,387 -10,983 -11,897 

Agg P&L 0.2% 6,521  3,451 1,658 1,490 1,836 
P&L 0.2% (d=5%) 6,317  6,143 4,316 4,713 4,041 

Agg P&L 0.2% (d=5%) 9,012  8,849 7,219 7,633 7,401 
P&L 0.2% (d=10%) 6,681  6,737 6,378 6,503 6,091 

Agg P&L 0.2% (d=10%) 8,364  8,435 7,984 8,017 7,757 
P&L 0.2% (d=15%) 6,688  7,560 7,230 6,814 6,972 

Agg P&L 0.2% (d=15%) 8,045  8,847 8,379 7,862 8,040 
P&L 0.4% -25,031  -43,163 -52,437 -54,776 -56,511 

Agg P&L 0.4% -9,666  -21,984 -28,347 -29,829 -29,047 
P&L 0.4% (d=5%) -4,141  -8,962 -11,909 -11,765 -12,765 

Agg P&L 0.4% (d=5%) 1,248  -3,550 -6,102 -5,923 -6,046 
P&L 0.4% (d=10%) 617  -1,176 -1,401 -1,762 -2,165 

Agg P&L 0.4% (d=10%) 3,984  2,220 1,811 1,267 1,168 
P&L 0.4% (d=15%) 2,141  2,633 2,717 1,863 2,128 

Agg P&L 0.4% (d=15%) 4,855  5,208 5,017 3,959 4,266 
Table R14.2: Trading strategies for hybrid CS-based ANN models 
P&L is the total profit and loss without transaction costs; # Trades is the number of 
trades forgone. P&L (d=0%, 5%, 10% and 15%) represents the total profit and loss at 
0.2% or 0.4% transaction costs when trading strategies are implemented by ignoring 
trades that involve call options whose absolute percentage of mispricing error between 
their models estimates and their market value is less than 0%, 5%, 10% and 15% 
respectively. The abbreviation Agg. refers to trading strategy results with aggregate 
transaction costs of the underlying asset. 
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 NBS60

 N
vixBS  N

avBS  N
avTBS  N

avTBS 4
 N

conBS  *NBS60
 *N

vixBS  *N
avBS  *N

avTBS  *N
avTBS 4

 *N
conBS  

t (Sq) 7.03 9.13 2.40 8.87 6.68 1.75 9.54 7.22 6.24 5.97 3.88 1.32 
John. t (Sq) 38.80 46.00 16.72 25.24 16.36 7.77 31.41 46.76 22.61 34.83 27.90 6.36 

t (abs) 27.57 43.07 13.62 35.36 31.42 11.66 37.80 35.54 34.84 30.71 24.80 9.00 
             

 NCS60
  N

avCS  N
avTCS  N

avTCS 4
 N

conCS  *NCS60
  *N

avCS  *N
avTCS  *N

avTCS 4
 *N

conCS  
t (Sq) 9.19  2.40 4.30 3.44 2.72 5.95  2.98 4.89 2.70 2.31 

John. t (Sq) 34.09  16.16 25.07 23.91 18.10 25.53  16.79 18.45 17.81 14.94 
t (abs) 36.20  11.44 25.99 20.96 21.44 19.87  14.97 21.53 16.24 15.22 

             
 NhBS60

 Nh
vixBS  Nh

avBS  Nh
avTBS  Nh

avTBS 4
 Nh

conBS  *NhBS60
 *Nh

vixBS  *Nh
avBS  *Nh

avTBS  *Nh
avTBS 4

 *Nh
conBS  

t (Sq) -2.89 0.92 -0.08 0.44 0.96 -1.35 1.19 1.35 1.93 -0.88 2.41 0.68 
John. t (Sq) -21.80 11.09 -1.01 4.07 8.47 -6.21 17.43 20.50 16.81 -5.73 8.87 3.98 

t (abs) -9.13 4.96 0.66 -0.17 4.78 -1.81 10.27 11.71 7.57 -1.41 5.81 1.61 
             
 NhCS60

  Nh
avCS  Nh

avTCS  Nh
avTCS 4

 Nh
conCS  *NhCS60

  *Nh
avCS  *Nh

avTCS  *Nh
avTCS 4

 *Nh
conCS  

t (Sq) 2.85  0.53 1.84 0.07 0.15 3.18  2.65 1.78 0.98 2.06 
John. t (Sq) 26.62  7.46 9.91 1.51 5.79 31.41  8.43 9.77 6.20 6.54 

t (abs) 16.92  7.00 3.29 1.88 0.54 20.86  4.74 9.27 4.93 1.33 

Table R15: Test statistics that compare the pricing accuracy between the reduced datasets 
without and with retraining of the ANNs 
The t(Sq) compares the MSE of the ANNs trained with the full dataset but examined on the reduced region 
with the MSE of the ANNs trained on the reduced region. John. (Sq) does the same but with the Johnson 
modified t-test; t(abs) compares the MAE of the ANNs trained with the full dataset but examined on the 
reduced region with the MAE of the ANNs trained on the reduced region. In general, a positive value larger 
than 1.645 (2.325) means that the ANN model that was trained in the full dataset and examined in the 
reduced region has a larger MSE or MAE than the ANN model that was trained and examined in the reduced 
region. 
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2. Robust Artificial Neural Networks for Pricing of 
European Options 

 
 
 
 
 

Abstract 

 
 The option pricing ability of Robust Artificial Neural Networks 

optimized with the Huber function is compared against those optimized with 

Least Squares. Comparison is in respect to pricing European call options on 

the S&P 500 using daily data for the period April 1998 to August 2001. The 

analysis is augmented with the use of several historical and implied volatility 

measures. Implied volatilities are the overall average, and the average per 

maturity. Beyond the standard neural networks, hybrid networks that directly 

incorporate information from the parametric model are included in the 

analysis. It is shown that the artificial neural network models with the use of 

the Huber function outperform the ones optimized with least squares.  

 The existing essay had been published in the Computational 

Economics, volume 27, issues 2-3, April-May 2006, pg. 329-351.   
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2.1. Introduction 

 The scope of this work is to compare alternative feed-forward Artificial 

Neural Network (ANN) configurations in respect to pricing the S&P 500 

European call options. Robust ANNs that use the Huber function are 

developed, and configurations that are optimized based solely on the least 

squares norm are compared with robust12 configurations that are closer to the 

least absolute norm.  The data for this research come from the New York 

Stock Exchange (NYSE) for the S&P 500 equity index and the Chicago Board 

of Options Exchange (CBOE) for call option contracts, spanning a period from 

April 1998 to August 2001. 

 Black and Scholes introduced in 1973 their milestone (BS) formula 

which is still a most prominent conventional Parametric Options Pricing 

Model (POPM).  The options we price are on the S&P 500 index, which is 

extremely liquid and is the closest to the theoretical setting of the Black and 

Scholes model (Garcia and Gencay, 2000).  Empirical research in the last 

three decades has shown that the formula suffers from systematic biases for 

various reasons (for details see Black and Scholes, 1975, Rubinstein, 1994, 

Bates, 1991 and 2003, Bakshi et al., 1997, Andersen et al., 2002, and Cont 

and Fonseca, 2002). Despite this, BS is frequently used to price European 

options13 mainly because alternative parametric models (e.g. stochastic 

volatility, jump-diffusion, stochastic interest rates, etc.) have drastically failed 

to provide results truly consistent with the observed market data. 

Additionally, these models are often too complex to implement and be used for 

real trading (see Bakshi et al., 1997). On the other hand, artificial neural 

networks are promising alternatives to the parametric OPMs; they do not 

necessarily rely on any financial theory and are trained inductively using 

                                                 
 
12 Huber (1981) and Hampel et al. (1986) offer an overview for the tools and concepts 
of the theory of robust statistics. As pointed out for example by Franses et al. (1999), 
parametric estimators that are derived under the assumption of normally distributed 
errors are very sensitive to outliers and other departures from the normality 
assumption (see also Krishnakumar and Ronchetti, 1997, and Ortelli and Trojani, 
2005). They show that the results obtained under a robust analysis can differ 
significantly from the ones obtained under similar techniques that are based on the 
Gaussian analysis. Chang (2005) has found that the use of the Huber estimation can 
significantly reduce the influence of outliers for the estimation of block-angular linear 
regression model. 
13 According to Andersen et al., (2002), “the option pricing formula associated with the 
Black and Scholes diffusion is routinely used to price European options”. 
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historical or implied input variables and option transactions data. Their 

popularity is constantly increasing, and contemporary financial econometric 

textbooks (e.g. Tsay, 2002) dedicate special sections or even whole chapters to 

this topic. 

 It is well known that market participants change their option pricing 

attitudes from time to time (i.e. Rubinstein, 1994), so a parametric model 

might fail to adjust to such rapidly changing market behavior.  ANNs can 

potentially correct the aforementioned BS bias (Hutchison et al., 1994, 

Lajbcygier et al., 1996, Garcia and Gencay, 2000, Yao and Tan, 2000).  Neural 

networks trained on the least squares error criterion are highly influenced by 

outliers, especially in the presence of non-Gaussian noise (Bishop, 1995).  

Options data are known to be heavily influenced at least by noise due either 

to thin trading or to abnormal volume trading (Long and Officer, 1997, and 

Ederington and Guan, 2005) and exhibit a strong time-varying element 

(Dumas et al., 1995, and Cont and Fonseca, 2002).  Consecutively, robust 

estimation is expected to improve out of sample pricing of options. 

 In previous empirical research on option pricing, ANNs have been 

optimized based on the l2 (the least squares) norm. The l2 norm is a convenient 

way to train ANNs, since ready to use statistical packages are widely available 

for this purpose. Of course, the least squares optimization is highly 

susceptible to the influence of large errors since some abnormal datapoints 

(or few outlier observations) can deliver non-reliable networks. On the 

contrary, robust optimization methods that exploit the l1 (the least absolute) 

norm are unaffected by large (or catastrophic) errors but are doomed to fail 

when dealing with small variation errors (e.g. Bandler et al., 1993, and 

Devabhaktuni et al., 2001, for applications in the electrical engineering field).  

Here the Huber function (Huber, 1981) is used as the error penalty criterion 

during the ANNs optimization process to immunize the adaptable weights in 

the presence of data-point peculiarities. The Huber function utilizes the 

robustness of l1 and the unbiasedness of l2 and has proved to be an efficient 

tool for robust optimization problems for various tasks (Bandler et al., 1993, 

Jabr, 2004, Chang, 2005), albeit it does not constitute the mainstream. The 

training of ANNs with the Huber technique has recently gained attention in 

electrical engineering (i.e. Devabhaktuni et al., 2001, Xi et al., 1999), but to 

our knowledge has not gained attention in options pricing, where it is possible 
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to observe both small and large errors for a variety of reasons (e.g. Bakshi et 

al., 1997).   Our choice of the Huber function is because it is widely 

referenced on robust estimation (Bishop, 1995), it provides a simple 

generalization of the least squares approach, it avoids the need for any 

probabilistic assumptions, and it is not difficult to implement with neural 

networks. Comparison with other estimators, like the MM estimators (Yohai, 

1987), the S estimators (Rousseeuw and Yohai, 1984), and the redescenting 

estimators (Morgenthaler, 1990), is beyond the scope of this work, but can be 

part of future research.  

 The standard ANN target functions are employed that are comprised by 

the market value of the call option standardized with the strike price. 

Furthermore, the hybrid ANN target function suggested by Watson and Gupta 

(1996) and used for pricing options with ANNs in Lajbcygier et al. (1997) are 

examined. In the hybrid models the target function is the residual between 

the actual call market price and the parametric option price estimate 

standardized with the strike price.  It can capture the potential 

misspecification of the BS assumptions of geometric Brownian motion (see for 

example, Lim et al., 1997).  Unlike Hutchison et al. (1994), in the parametric 

as well as in the nonparametric models both historical and implied volatility 

measures are used. To train the ANNs, the modified Levenberg-Marquardt (LM) 

algorithm which is efficient in terms of time capacity and accuracy (Hagan 

and Menhaj, 1994) is utilized. In contrast to many previous studies, thorough 

cross-validation allows the use of a different network configuration in different 

testing periods.  

 In the following, first the parametric BS model, and the standard and 

hybrid ANN model configuration with the Huber function and with least 

squares (mean square error to be precise) are reviewed. Then, the dataset, and 

the historical and implied parameter estimates are discussed, and the 

parametric and ANN models are defined according to the parameters used. 

Subsequently, the numerical results are reviewed with respect to the in- and 

out of sample pricing errors; the economic significance of dynamic trading 

strategies both in the absence and in the presence of transaction costs is also 

discussed.  The final section concludes. It is demonstrated that with the use 

of the Huber function, ANNs outperform their counterparts optimized with 

least squares. The best (hybrid and standard) ANN models with the Huber 
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function are identified, and evidence is provided that, even in the presence of 

transaction costs, profitable trading opportunities still exist. 

 

 

2.2. Option pricing models: the parametric BS and ANNs 

 

2.2.1. The Black and Scholes option pricing model 

 The Black Scholes formula for European call options modified for 

dividend-paying underlying asset is: 

 

1 2( ) ( )BS T rTc Se N d Xe N dδ− −= −  (2.1) 

- 2

1
ln( / ) ( ) ( ) /2S X r T Td δ σ

σ
+ +

=
Τ

 (2.1.1)   

2 1d d Tσ= −  (2.1.2) 

 

 In the above, BSc ≡  estimated premium for the European call option; 

S ≡  spot price of the underlying asset; X ≡  exercise price of the option; r ≡  

continuously compounded riskless interest rate; δ ≡  continuous dividend 

yield paid by the underlying asset; T ≡  time left until the option expiration; 
2σ ≡  yearly variance rate of return for the underlying asset; (.)N ≡  the 

standard normal cumulative distribution. 

 The standard deviation of continuous returns (σ ) is not observed and 

an appropriate forecast should be used. The literature has used both 

historical and implied volatility forecasts. Contrary to the historical estimates, 

the implied volatility forecasts have desirable properties that make them 

attractive to practitioners: they are forward looking and avoid the assumption 

that past volatility will be repeated. In this study, similarly with Hutchison et 

al. (1994) and in addition to the other volatility measures, the 60 days 

historical volatility which is a widely used historical volatility benchmark is 

also employed.  
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 If BS is a well-specified model, then all implied volatilities of the same 

underlying asset should be the same or at least some deterministic functions 

of time. Unfortunately, this is far from being empirically true. For example, 

Rubinstein (1994) has shown that the implied volatilities derived via BS as a 

function of the moneyness ratio (S/X) and time to expiration (T) often exhibit a 

U shape, known as the volatility smile. This is why BS is usually referred to as 

being a misspecified model with an inherent source of bias (see also Latane 

and Jr., 1976, Bates, 1991, Canica and Figlewski, 1993, Bakshi et al., 2000, 

and Andersen et al., 2002). Under the existence of this anomaly, any 

historical volatility measure is doomed to fail, while measures (like the implied 

ones) that mitigate this bias could perform better.    

 

2.2.2. Neural networks 

 A neural network is a collection of interconnected simple processing 

elements structured in successive layers and can be depicted as a network of 

arcs/connections and nodes/neurons. The network has the input layer, one 

or more hidden layers and an output layer. Each interconnection corresponds 

to a numerical value named weight, which is modified according to the faced 

problem via an optimization algorithm. The particularity of ANNs relies on the 

fact that the neurons on each layer operate collectively and in a parallel 

manner on all input data and that each neuron behaves as a summing vessel 

that works, under certain conditions, as a non-linear mapping junction for 

the forward layer. 

 Figure 2.1 depicts an ANN architecture similar to the one applied for 

the purposes of this study. This network has three layers: an input layer with 

N input variables, a hidden layer with H neurons, and a single neuron output 

layer. Each neuron is connected with all neurons in the previous and the 

forward layer. Each connection is associated with a weight, kiw , and a bias, 

0kw , in the hidden layer and a weight, kv , and a bias, 0v , in the output layer 

(k=1,2,…,H, i=1,2,…N). In addition, the outputs of the hidden layer 

( )()()( ..., 1
H

1
2

1
1 yyy ) are the inputs for the output layer.  

 Inputs are set up in feature vectors, ]...,,[~
21 Nqqqq xxxx =  for which 

there is an associated and known target, qt , P21q ,...,,≡ , where P is the 

Pan
ay

iot
is 

C. A
nd

reo
u



 
 

131

number of the available sample feature vectors for a particular training 

sample. According to Figure 2.1, the operation carried out for computing the 

final estimated output, y , is the following: 

 

∑ ∑
= =

++=
H

1k

N

1i
iki0kHk00 xwwfvvfy )]([  (2.2) 

 

where 0f  and Hf  are the transfer functions associated with the output and 

hidden layers respectively. 

 

Figure 2.1. A single hidden layer feedforward neural network 
 

 For the purpose of this study, the hidden layer always uses the 

hyperbolic tangent sigmoid transfer function, while the output layer uses a 

linear transfer function. In addition, ANN architectures with only one hidden 

layer are considered since research has shown that this is adequate in order 

to approximate most functions arbitrarily well. This is based on the universal 

approximation theorem provided by Cybenko (1989) (theorem can be fund in 

section 1.3., for further details see also Haykin, 1999): 
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 Training ANNs is a non-linear optimization process in which the 

network’s weights are modified according to an error function. For the case 

that the ANN model has only one output neuron, the error function between 

the estimated response qy  and the actual response qt  is defined as: 

 

( ) ( )q q qe w y w t= −  (2.3) 

 

where, w  is an n-dimensional column vector containing the weights and 

biases given by: T
H0HN110H10 vvwwwww ]...,,,,...,,...,[= . The Huber function 

that is used to optimize the trainable parameters w  is defined as (i.e. Huber, 

1981, Bandler et al., 1993): 

 

))(()( ∑
=

=
P

1q
qk weρwE  (2.4) 

 

where kρ  is the Huber function defined as: 

keif
keif

k50ek

e50
eρ

2

2

k >
≤







−
=

.

.
)(  (2.5) 

 

where k is a positive constant. It is obvious that when ke >  the Huber 

function treats the error in the l1 sense and in the l2 sense only if ke ≤  

depending on the value of threshold parameter k. Figure 2.2 depicts the 

Huber function along with the least absolute (l1) and least squares (l2) error 

functions. The Huber function has a smooth transition between the two 

norms at ke =|| , so that the first derivative of kρ  is continuous everywhere.   

 The choice of k defines the threshold between large and small errors. 

Different values of k determine the proportion of the errors to be treated in the 

l1 or the l2 norm. As seen, when k is sufficiently large the Huber function 

encompasses the widely used and conventional least squares (l2) training of 

the ANNs. As the k parameter approaches zero, the Huber function 
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approaches the l1 function and the errors are penalized in the least absolute 

sense. Figure 2.2 makes obvious that the Huber function should be more 

robust to abnormal data since it penalizes them less compared to the l2 norm.  

 

Figure 2.2. The Huber, the least absolute (l1) and the least squares (l2) 
error functions 
 

 The nice properties of the Huber function compared to the l2 norm are 

more distinct when they are compared according to their gradient vector. The 

gradient vector of the least squares error function is: 

 

∑
=

∇=∇
P

1q
qq2l weewE )()(  (2.6) 

 

whilst the gradient for the Huber function is: 

 

∑
=

∇=∇
P

1q
qq weζwE )()(  (2.7) 

where, 
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keif
keif
keif

k
k

e

e
eρ

ζ

q

q

qq

q

qk
q

>

<
≤









+
−=

∂

∂
=

)(
 (2.8) 

 

The P n Jacobian matrix, )(wJ , of the P-dimensional output error column 

vector is given by:   

 

1 ( )
( )

( )

T

T
P

e w
J w

e w

 ∇
 

=  
 ∇ 

M  (2.9) 

 

Using this notation, (2.7) can be written in the form: 

 

( ) ( ) ( )TE w J w wζ∇ =  (2.10) 

 

where ζ is a P-dimensional column vector with elements the qζ  values. 

 Quantity )(weq∇  is the gradient vector of )(weq  with respect to the 

trainable parameter vector w . The difference between (2.6) and (2.7) depends 

on the weighting factor of the )(weq∇ . The weighting factor of )(weq∇  for the 

Huber gradient is the same with the least squares gradient only when 

keq ≤ . In all other cases the weighing factor for the Huber gradient is held 

constant at the value of the threshold k unlike in the l2 case that gives more 

weight to large errors. This is how the Huber function immunizes against the 

influence of large errors.     

 Moreover, the Hessian matrix in the case of the Huber function is given 

by: 

 

2 2

1 1

( ) ( ) ( ) ( )
P P

T
q q q q q

q q

E w d e w e w e wζ
= =

∇ = ∇ ∇ + ∇∑ ∑  (2.11) 
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where 

 

keif

keif

e

)e(
d

q

q

q

qk
q >

≤





=
∂

∂
=

0
1

2

2ρ
 (2.12) 

 

The quantity )(weq∇  is computed based on the back-propagation algorithm 

that is commonly used in the context of feed-forward ANNs. Based on the 

neural network depicted in Figure 2.1, the partial derivative of the error 

function (2.3) with respect to the weight kv  at the hidden layer is:   

 

)()( ψfy
v
e

0
1

k
k

q ′=
∂

∂
 (2.13) 

 

where )(ψf0′  is the differential of the output neuron transfer function at point 

ψ . Since a linear transfer function is used at the output neuron, the )(ψf0′  is 

equal to unity. Furthermore, the partial derivative of the error function (3) 

with respect to the weight kiw  at the input layer is: 

 

)()( 0
)1( ψψκ fvfx

w
e

kHi
ki

q ′′=
∂

∂
 (2.14) 

 

where )( )(1
κH ψf ′  is the differential of the transfer function associated with the 

kth hidden neuron at point )(1
κψ . For our case, we always use the hyperbolic 

tangent as a transfer function: 

 

2

2( ) 1
1H af a

e −= − ≡
+

tanh (a)  (2.15) 
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The differential of this function with respect to α can be expressed in a 

particularly simple form: 

 

2
HH af1af ))(()( −=′  (2.16) 

 

To optimize the weights, the modified Levenberg-Marquardt (LM) algorithm is 

employed. According to LM, the weights and the biases of the network are 

updated in order to minimize )(wE . At each iteration τ of the LM, the weights 

vector w  is updated as follows: 

 

1
1 [ ] ( ) ( )Tw w G I J w wτ τ τ τ τ τµ ζ−
+ = − +  (2.17) 

 

where G  is an approximation of the n n Hessian matrix defined as: 

 

1

( ) ( )
P

T
q q q

q

G d e w e w
=

= ∇ ∇∑  (2.18) 

 

and qd  is defined in (2.12). The matrix G is obtained from the Hessian matrix 

by deleting its second term which is usually considered small. Moreover, I  is 

an n n identity matrix, )( τwJ  is the Jacobian matrix at the τth  iteration, and 

τµ  is like a learning parameter that is automatically adjusted in each iteration 

in order to secure convergence. Large values of τµ  lead to directions that 

approach the steepest descent, while small values lead to directions that 

approach the Gauss-Newton algorithm. Further technical details about the 

implementation of LM can be found in Hagan and Menhaj (1994) and Hagan 

et al. (1996). Based on (2.17), weights and biases update takes place in a 

batch mode manner where update occurs only when all input vectors have 

been presented to the network.   

 In addition to the standard ANNs with Xct mrk /≡  (call market values 

standardized with their strike price), hybrid ANNs according to which the 
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target function is the residual between the actual call market price and the 

BS call option estimation Χ/ˆ/ ΘcXct mrk −≡  (again standardized with the 

strike price) are also investigated, where Θĉ  should define a pricing estimate 

taken by the BS under a certain volatility forecast (this is explained further in 

the following section). For effective training, the input/output variables are 

scaled using the z-score transformation sµxz /)~(~ −= , where x~  is the vector of 

an input/output variable, µ  is the mean and s  the standard deviation of this 

vector. Moreover, the network initialization technique proposed by Nguyen 

and Windrow (see Hagan et al., 1996) is utilized that generates initial weights 

and bias values for a nonlinear transfer function so that the active regions of 

the layer’s neurons are distributed roughly evenly over the input space.  

 For a given set of training data and for a given value of the Huber k 

value, the optimal number of hidden neurons is chosen via a cross-validation 

procedure. ANN structures with 2 to 10 hidden neurons are trained, and the 

one that performs the best in the validation period is selected. Since the initial 

network weights affect the final network performance, for a specific number of 

hidden neurons and Huber k value, the network is initialized, trained and 

validated five separate times. Huber (1981) gives a formula for deriving the 

optimal k value, but this formula was not derived with applications of neural 

networks in mind.  Most importantly, restrictive probabilistic assumptions (of 

symmetrically contaminated Gaussian distributions) are made.  In addition, 

(as pointed out also in Koenker, 1982, p. 232), we need to know the degree of 

contamination (i.e., the percent of abnormal observations).  With neural 

networks we neither make any probabilistic assumptions, nor we know a 

priori the degree of contamination.  Thus, we follow an empirical approach.  

The optimal k value is shown from the data after investigating a wide range of 

potential values.  Different networks are developed for the following Huber k-

values: 0.1, 0.2, 0.30, 0.40, 0.5, 0.60, 0.70, 0.80, 0.90, 1, 1.5, 2 and Inf (that 

corresponds to the optimization of the ANNs based on the l2 norm). After 

defining the optimal ANN structure, its weights are frozen and its pricing 

capability is tested (out of sample) in a third separate testing dataset in order 

to verify the ANNs ability to generalize to unseen data. 
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2.3. Data, parameter estimates and model implementation 

 The dataset covers the period from April 1998 to August 2001. The S&P 

500 Index call options are considered because the CBOE option market is 

extremely liquid and these index options among the most popular. This 

market is the closest to the theoretical setting of the parametric models 

(Garcia and Gencay, 2000).  Our prices are closing quotes.  The majority 

(around 75%) of our call options lies in the +/-15% moneyness area.  As 

suggested by Day and Lewis (1988), because trading volume tends to 

concentrate in the options that are around at-the-money and just in-the-

money, any lack of synchronization between closing index level and the 

closing option price will be minimized for these options (pg. 107).  Of course, it 

is not the first time that non intra-day option and index prices are used in 

analysis (see for example, Day and Lewis, 1988, Hutchison  et al., 1994, 

Ackert and Tian, 2001, and Ederington and Guan, 2005).  Specifically, Ackert 

and Tian (2001) argue that closing prices, which are non-synchronous, 

constitute the best alternative solution to examine the options arbitrage 

violations for the S&P index.  Kamara and Miller (1995) compare intraday and 

closing option pricing results for market efficiency tests and argue that closing 

option prices are appropriate for analysis because they are representative of 

the transaction prices that prevailed during the day.  This suggests that it is 

not unreasonable to use closing data in empirical options research.  In our 

case, the Huber function is helpful in treating the options data according to 

the noise level. 

 Along with the index, a daily dividend yield, δ , is collected (provided 

online by Datastream). After applying various filtering rules, the dataset 

consists of 64,627 data points, with an approximate average of 35,000 data 

points per sub-period. Hutchison et al. (1994) have an average of 6,246 data 

points per sub-period. Lajbcygier et al. (1996) include in total 3,308 data 

points, Yao et al. (2000) include in total 17,790 data points, and Schittenkopf 

and Dorffner (2001) include 33,633 data points. 

 

2.3.1. Observed and historically estimated parameters 

 The moneyness ratio, S/X, is the basic input to be used with ANNs 

since it is highly related with the pricing bias associated with the BS. The 
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moneyness ratio S/X is calculated and used with ANNs like in Hutchison et 

al. (1994) (see also Garcia and Gencay, 2000). The dividend adjusted 

moneyness ratio ( )/TSe Xδ−  is preferred here since dividends are relevant. In 

addition, the time to maturity (T ) is computed assuming 252 days in a year.  

Previous studies have used 90-day T-bill rates as approximation of the 

interest rate. In this study we use nonlinear cubic spline interpolation for 

matching each option contract with a continuous interest rate, r , that 

corresponds to the option’s maturity. For this purpose, the 3-month, 6-month 

and one-year T-bill rates collected from the U.S. Federal Reserve Bank 

Statistical Releases are used. 

 Moreover, the 60-days volatility is a widely used historical estimate (see 

Hutchison et al., 1994, and Lajbcygier et al., 1997). This estimate is 

calculated using all the past 60 log-relative index returns and is symbolized 

as 60σ . In addition, the VIX Volatility Index is an estimate that can be directly 

observed from the CBOE. It was developed by CBOE in 1993 and is a measure 

of the volatility of the S&P 100 Index and is frequently used to approximate 

the volatility of the S&P 500 as well. In our dataset the 30-day returns of the 

two indexes were strongly correlated (with Pearson correlation coefficient 

between 0.94 and 0.99).  VIX is calculated as a weighted average of S&P 100 

option with an average time to maturity of 30 days and emphasis on at-the-

money options.  This volatility measure is symbolized as vixσ .  

 

2.3.2. Implied parameters 

 The Whaley’s (1982) simultaneous equation procedure is adopted to 

minimize a price deviation function with respect to the unobserved 

parameters. For a given day the optimal implied parameter values correspond 

to the solution of an unconstrained optimization problem that minimizes the 

sum of squares residuals between the actual call option market values and 

the BS estimates. The optimization is done via a non-linear least squares 

optimization based on the Levenberg-Marquardt algorithm.  His approach is 

an alternative to using the methodology proposed by Chiras and Manaster 

(1978) (CM), or Latane and Rendleman (1976) (LR).  His reasoning is that: 

“rather than explicitly weighting the implied standard deviations of a 

particular stock where the weights are assigned in an ad-hoc fashion, the call 
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prices are allowed to provide an implicit weighting scheme that yields an 

estimate of standard deviation which has little prediction error as is possible” 

(pg. 39). Bates remarks that the Whaley’s (1982) least squares weighting 

scheme effectively assigns heavier weights on the near the money options 

than CM and LR.  His approach is widely applied even in more recent 

research; for instance Bakshi et al. (1997).  Nevertheless, we tried these two 

weighting schemes (the CM and the modified LR as recommended by CM), 

and at least in our dataset the results are inferior to those of the overall 

average approach (or its per-maturity variant).  The per-maturity versions 

worked even better since they can capture time-varying volatility effects 

(Bakshi, 1997, and Bates, 2003). 

 Similarly to Bakshi et al. (1997), two different implied volatility 

measures are taken from the above procedure. The first optimization is 

performed by including all available options transaction data in a day to 

obtain daily average implied parameters ( avσ ). Second, daily average per 

maturity parameters ( avTσ ) can be obtained by fitting the BS to all options that 

share the same maturity date as long as four different available call options 

exist.  

 For pricing and trading reasons at time instant t, the implied structural 

parameters derived at day t-1 are used together with all other needed 

information (S, T, δ, X and r). The same reasoning holds for the historical ( 60σ ) 

and the weighted implied average ( vixσ ) estimates.  

It is known that ANN input variables should be presented in a way that 

maximizes their information content (Garcia and Gencay, 2000). When 

options are priced, the POPM formulas adjust those values to represent the 

appropriate value that corresponds to an option’s expiration period. According 

to this rationale, for use with the ANNs, the volatility measures are 

transformed by multiplying each of the yearly volatility forecast with the 

square root of each option’s maturity ( 252j j Tσ σ=% , where j={60, vix, av, avT}). 

They are named maturity (or expiration) adjusted volatilities. Also, and 

following the advice by a referee, we have constructed tables (not included for 

brevity) for all nine sub-periods (in several moneyness and maturity ranges) in 

order to compare between the volatilities of the training and the volatilities of 

the testing sub-periods.  If these estimates differ considerably, this may imply 
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saturation of the neural network with poor performance as a consequence.  

On average, we have observed no volatility jumps.  Furthermore, the superior 

out of sample performance of the neural networks (see section 4) is additional 

evidence that the saturation problem mentioned by the referee does not seem 

to be present. 

 

2.3.3. Output variables, filtering and processing 

 For training ANNs, the call standardized by the striking price, /mrk
q qc X , 

is used as one target function to be approximated. In addition, the hybrid 

structure is implemented, where the target function represents the pricing 

error between the option’s market price and the parametric models estimate, 

ˆ/ /mrkc X cΘ− Χ , where Θ is one of 60BS , vixBS , avBS , and avTBS . In both 

cases, target residuals are standardized using the mean-variance scaling; 

hence the output neuron transfer function is linear. 

 Before filtering, more than 90,000 observations were included for the 

period April 1998 – August 2001. The final dataset consists of 64,627 

datapoints. The filtering rules adopted are: i) eliminate an observation if the 

call contract price is greater than the underlying asset value; ii) exclude an 

observation if the call moneyness ratio is larger than unity and the call price is 

less than its dividend adjusted lower bound; iii) eliminate all the options 

observations with time to maturity less than 6 trading days (adopted to avoid 

extreme option prices that are observed due to potential illiquidity problems); 

iv) price quotes lower than 0.5 index points are not included; v) maturities with 

less than four call option observations are also eliminated; vi) in addition, to 

remove impact from thin trading observations are eliminated according to the 

rule: eliminate an observation if the call option price at day t is the same as 

with day t-1 and if the open interest for these days stays unchanged and if the 

underlying asset has changed.  We filter data when we believe that they are 

“bad data” (filtering rules i, ii, iv, vi), or that they come from a different “data 

generating process” (filtering rule iii, following Bakshi et al., 1997).  Filtering 

rule v was perceived as necessary in order to get an average volatility per 

maturity (Bakshi et al., 1997, recommend no less than two observations).   
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2.3.4. Validation, testing and pricing performance measures 

 The available data are partitioned into training, validation and testing 

datasets using a chronological splitting, and via a rolling-forward procedure. 

Our dataset is divided into nine overlapping sub-periods in chronological 

order.  Each sub-period is divided into a training (Tr), a validation (Vd) and a 

testing (Ts) set, again in chronological sequence. In each sub-period the 

training, validation and testing sets are non-overlapping. The nine testing sets 

are non-overlapping and they cover completely the last 20 months of the 

dataset.   

 There are M available call option contracts, for each of which there 

exist Ξm observations taken in consecutive time instances t, resulting in a 

total of P (
1

M

m
m

P
=

= Ξ∑ ) available call option datapoints (P is the total number of 

call option transactions that cover the whole period and is equal to 64,627). 

To determine the pricing accuracy of each model’s estimates, ĉ , the Root 

Mean Square Error (RMSE) and the Mean Absolute Error (MAE) are examined: 

 

2
q

p

1q

mrk
q ccp1RMSE )ˆ(/ ∑

=

−=  (2.19) 

|ˆ|/ΜΑΕ q

p

1q

mrk
q ccp1 ∑

=

−=  (2.20) 

 

where p≤P indicates the number of observations used per case. These error 

measures are computed for an aggregate testing period (AggTs) with 35,734 

(so p is equal to 35,734) datapoints by simply pooling together the pricing 

estimates of all nine testing periods. For AggTs, the Median Absolute Error 

(MdAE) as well as the 5th (5th APE) and 95th (95th APE) percentile Absolute 

Pricing Error values derived from the whole pricing error distribution are also 

computed and tabulated. Since ANNs are not optimized solely based on the 

mean square error and there are cases that the ANNs are optimized with the 

Huber function, it is wise to take into consideration various error measures.  
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2.3.5. The parametric and nonparametric models used 

 With the BS models input includes S, X, T, δ, r, and any of the four 

different volatility measures: 60σ , vixσ  avσ , and avTσ ; the four different models 

are symbolized as: 60BS , vixBS , avBS , and avTBS .  

 To train ANNs inputs of the parametric BS model are also used. These 

include the three standard input variables/parameters: ( )/TSe Xδ− , T  and r . 

The various versions of the ANNs also depend on the BS volatility estimate 

considered, the kind of the target function, and the k value of the Huber 

function.  

 As mentioned before, ANNs are trained based on twelve different values 

of the Huber function (k ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2]). 

Additionally, ANN structures trained with the use of the mean square error (l2 

norm) which is equivalent to the case where the Huber k value is set to a very 

large value that approaches infinity (k = Inf) are included.  

 Specifically, for each of the four different BS volatility measures, there 

are thirteen ANN models that are trained to map the standard target function 

cmrk/X (fifty-two models). Furthermore, each of the previous ANN structures is 

rebuild based on the hybrid target function, ˆ/ /mrkc X cΘ− Χ  where Θ is one 

of 60BS , vixBS , avBS , and avTBS . In total, there are 104 different ANN 

versions. 

 The standard ANNs are denoted by Ns, and the hybrid versions by Nh. 

To distinguish between various Huber function versions, the corresponding 

value of the k parameter is used in the superscript and the BS volatility 

reference is used in the subscript. For instance, Inf
avTNs  ( Inf

avTNh ) is the ANN 

model that uses as fourth input the (maturity adjusted) volatility, avTσ~ , maps 

the standard (hybrid) target function and is trained based on the mean square 

error.  

 

 

2.4. Pricing results and discussion 

 Table 2.1 exhibits the out-of sample pricing performance of BS and 

ANN models with alternative volatility measures. As mentioned before, the 
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various models are compared in terms of RMSE, MAE, MdAE and the 5th and 

95th Absolute Pricing Errors. All statistics are reported for the AggTs 

(aggregate) period; for the neural networks the aggregate results are created 

by selecting the optimal Huber k-value in the RMSE measure for each sub-

period, aggregating, and then comparing with least squares (inf) estimation.  

 

 
 

Table 2.1. Pricing results with standard and robust ANNS 
RMSE is the Root Mean Square Error, MAE the Mean Absolute Error, MdAE the 
Median Absolute Error, 5th APE is the fifth percentile Absolute Pricing Error and 95th 
APE the 95th percentile Absolute Pricing Error. The right hand side subscripts refer to 
the kind of historical/implied parameters used.  For the neural networks, the 
information provided is first under optimal k-value in each sub-period, and then 
under least squares estimation. 
 

 It is obvious that the implied volatility measures lead to lower pricing 

errors in the case of BS. Looking at the parametric models and similarly to 

Bakshi et al. (1997), the overall best BS model is the one that utilizes the 

implied average per maturity volatility, avTBS , followed by avBS  that utilizes 

the overall average. The avTBS  model outperforms significantly all others in all 

error measures. Specifically, avTBS  has RMSE equal to 7.952, MAE equal to 
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4.646 and MdAE equal to 3.274. In addition, this model has a higher chance 

for small pricing errors and considerably smaller chance for large pricing 

errors compared to the other models (see the 5th and 95th APE statistics). 

 

 
 

Table 2.2. Range of observed optimal k values  
The above figures include at least the 66.66% of observed optimal k values for the 9 
testing sub-periods, after the 3 out of the 9 were removed.  The first range is for the 
RMSE and the second for the MAE error measures. 
 

 In comparing the parametric models with the standard (non-hybrid) 

ANNs that were trained based on the mean square error criterion, it is true 

that in general, the standard ANN models underperform the equivalent 

parametric ones (see also Lajbcygier et al, 1996). But Huber standard ANN 

models perform better than the equivalent least squares ones. The 

significance of the improvement provided by the Huber approach is obvious 

from the APE error measures. In some cases (Nsvix) the improvement provides 

a model better than the equivalent parametric one.   

 Before considering the impact of the Huber approach, it is evident that 

the hybrid least squares ANNs outperform significantly both the respective 

parametric ones, and the standard ANNs, in all measures considered in 

practically all cases.  Similarly to the parametric OPMs, the out of sample 

pricing accuracy of ANNs seems to be highly dependent on the implied 

parameters used; that is, as we move from Inf
60Nh  to Inf

avTNh  the pricing 

accuracy improves significantly. The hybrid least squares ANNs even with 

historical or weighted average input parameters are considerably better than 

the equivalent parametric alternatives. Furthermore, it can be observed that 
Inf
avTNh  outperforms all other parametric and least squares ANN models. 

 The Huber optimized hybrid ANN models outperform significantly all 

equivalent standard ANNs (Huber and least squares) in all error measures 

considered.  The Huber optimized hybrid ANN models outperform significantly 
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all equivalent least squares hybrid ANNs, in all measures considered in 

practically all cases.  The only exception is when vix volatility is used and in a 

small difference among the RMSE measures; in all other measures, this model 

with the Huber approach proved to be superior to the least squares one.  

Again, the Huber optimized hybrid ANN model with avT volatility is the overall 

best, with RMSE equal to 6.83, MAE equal to 3.56, MdAE equal to 2.38, and 

5th APE equal to 0.20.  We should feel confident in selecting this model, since 

its 95th APE is equal to 9.13, compared to 11.37 of the equivalent least 

squares ANN. 

 Since in each testing sub-period we used the optimal Huber k-value 

determined from the validation set, Table 2.2 demonstrates a clustering 

summary for standard and hybrid ANNs, in the RMSE and the MAE error 

measure.  It shows the range that includes the majority of observed optimal k 

values (six out of the nine).  For the standard ANNs we have a strong 

clustering around 0.1 and 0.2, and for the hybrid ANNs values around 0.3 

and 0.6 are the most likely ones. 

 

 

 
 

Table 2.3. Percentage of outliers for standard robust ANNs 
In each cell tabulated (per maturity and degree of moneyness) the percentage of 
observations that behave as outliers when the RMSE is used as error measure in the 
standard robust neural network.  The information is grouped vertically for the four 
volatility measures, starting with the 60 days maturity, then the VIX, the overall 
average (av), and finally the average per maturity (avT).  
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Table 2.4. Percentage of outliers for hybrid robust ANNs 
In each cell tabulated (per maturity and degree of moneyness) the percentage of 
observations that behave as outliers when the RMSE is used as error measure in the 
hybrid (robust) neural network.  The information is grouped vertically for the four 
volatility measures, starting with the 60 days maturity, then the VIX, the overall 
average (av), and finally the average per maturity (avT).  
 

 Tables 2.3 (for the standard ANN) and 2.4 (for the hybrid ANN) present 

information about the percent of observations treated as outliers by the use of 

the Huber function (using the RMSE as the error measure).  Each cell is for a 

maturity and degree of moneyness classification the following line the percent 

of those observations treated as outliers.  For the standard neural networks 

we observe outliers heavily concentrated in the in-the-money observations of 

short and medium maturity options.  There is also evidence of outliers present 

in at-the-money long maturity options.  Drawing on Long and Officer (1997) 

the long-maturity at-the-money outliers instead, may be attributed to 

microstructure effects.  As Long and Officer show, excessive demand for 

certain options may also induce the presence of outliers. For the hybrid 

neural networks we observe that the Huber technique is even more important 

since outliers are heavily concentrated not only in in-the-money but also in 

out-of-the-money observations; furthermore, other cells also often show 

significant evidence of outliers.  The wide range of outliers in the hybrid model 

is a hint that the misspecification of the BS model is in general rather 

significant in all ranges of moneyness and maturity.  Heavily out-of-money 

outliers may also be due to thin (non-synchronous) trading effects (Day and 
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Lewis, 1988).  For the hybrid model, the choice of volatility used with BS 

seems to be more important than for the standard neural network. 

 In the spirit of Black and Scholes (1972), Galai (1977), and Whaley 

(1982), the economic significance of the OPMs has also been investigated by 

implementing trading strategies. Trading strategies are implemented based on 

single instrument hedging as for example in Bakshi et al. (1997), and in 

addition, transaction costs and cost-effective heuristics are incorporated (see 

results in Essay #1).  Portfolios are created by buying (selling) options 

undervalued (overvalued) relative to a model’s prediction and taking a delta 

hedging position in the underlying asset. This (single-instrument) delta 

hedging follows the no-arbitrage strategy of Black and Scholes (1973), where a 

portfolio including a short (long) position in a call is hedged via a long (short) 

position in the underlying asset, and the hedged portfolio rebalancing takes 

place in discrete time intervals.  Rebalancing is done in an optimal manner, 

not necessarily daily; the position is held as long as the call is undervalued 

(overvalued) without necessarily daily rebalancing.  Proportional transaction 

costs of 0.2% are also paid for both positions (in the call option and in the 

“index shares”). Strategies with enhanced cost-effectiveness are also 

implemented by ignoring trades that involve call options whose absolute 

percentage mispricing error is less than a mispricing margin of 15%.  Even 

with transaction costs, there still exist opportunities for profitable trading.  

Again, the hybrid neural networks outperform all other models, and when 

estimated via the Huber approach they outperform the ones estimated via 

least squares.  

 

 

2.5. Conclusions 

 The option pricing ability of Robust ANNs optimized with the Huber 

function is compared with that of ANNs optimized with Least Squares. 

Comparison is in respect to pricing European call options on the S&P 500 

Index from April 1998 to August 2001. In the analysis, a historical parameter, 

a VIX volatility proxy derived by a weighted implied, and implied parameters 

(an overall average, and an average per maturity) are used. Simple ANNs (with 

input supplemented by historical or implied parameters), and hybrid ANNs 
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that in addition use pricing information directly derived by the parametric 

model are considered. The economic significance of the models is investigated 

through trading strategies with transaction costs. Instead of naïve trading 

strategies, improved (dynamic and cost-effective) ones are implemented. The 

use of the robust Huber technique has delivered better ANN structures. The 

results can be synopsized as follows:  

 Regarding out of sample pricing, the hybrid models outperform both 

the standard ANNs and the parametric ones. Huber optimization improves 

significantly the performance of both the standard and the hybrid ANNs. The 

non-hybrid ANNs are affected more by large errors, and thus require smaller 

Huber k-value. The overall best models were the Huber based hybrid ANNs. In 

general, within each class, the best performing Huber model has considerably 

smaller probability of large mispricing compared to the least squares 

counterpart.  Lye and Martin (1993) identify the importance of the generalized 

exponential distributions for the error function, in the presence of skewed fat-

tailed error distribution.  Future work could consider option pricing with 

robust ANNs that explicitly account for such error distributions.  Regarding 

the economic significance of the models, the Huber models are the overall best 

models.  We have also found that profitable opportunities still exist with 

single-instrument cost-effective trading strategies and 0.2% proportional 

transaction costs. 
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3. Generalizing the Deterministic Volatility 
Functions for Enhanced Options Pricing 

 
 

 

Abstract 

 We extend the Deterministic Volatility Functions of Dumas et al. (1998) 

to provide a semi-parametric approach where an enhancement of the implied 

parameter values is used in the parametric option pricing models. We 

enhance not only volatility but also skewness and kurtosis. Empirical results 

using three years of S&P 500 index call option prices strongly support our 

approach and compares very favorably to stochastic volatility and jump 

models. The economic significance of the approach is tested in terms of 

hedging where the evaluation and estimation loss functions are aligned: 

hedging results when enhancing skewness and kurtosis parameters are 

significantly improved.      
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3.1. Introduction 

 In this essay we price S&P 500 index call options by extending the 

Deterministic Volatility Functions14 (DVF) of Dumas et al. (1998) to provide a 

nonparametric enhancement of the implied parameter values to be used in 

Parametric Option Pricing Models (POPMs). The proposed method allows us to 

estimate generalized parameter functions in the sense that not only volatility 

but other parameters (like skewness and kurtosis) can also be estimated. The 

resulting semi-parametric models, which we call the enhanced Parametric 

Option Pricing Models (ePOPMs), outperform (in respect to out of sample 

pricing) by a large margin the counterpart DVF based parametric ones. With 

respect to hedging, our results confirm the intuition in Christoffersen and 

Jacobs (2004) that better out of sample performance can be obtained when 

optimization is based on a hedging criterion.   

 The Black and Scholes (1973) (BS) model is an options pricing formula 

that is built on a set of unrealistic assumptions and exhibits systematic 

biases like the volatility smile (i.e. Black and Scholes, 1975, Rubinstein, 1994, 

Bakshi et al., 1997, Bates, 2000). Recent POPMs that incorporate Stochastic 

Volatility (SV) or Stochastic Volatility and Jump (SVJ) risk factors (e.g. 

Andersen et al., 2002, Bakshi et al., 1997, Bates, 1991, 1996 and 2000, 

Heston, 1993, Eraker, 2004), mitigate much of the bias associated with the 

original BS. A similar effect is achieved indirectly with the Corrado and Su 

(1996, 1997) (CS) model, an important alternative due to its ease of use15. 

According to Bakshi et al. (1997), SV and SVJ parametric models offer flexible 

distributional structures with adequate ability to capture negative skewness 

and excess kurtosis in option market prices. This results to better out of 

sample pricing performance compared to the simple BS model, with SVJ being 

superior to SV; yet both models are clearly misspecified (p.g. 2026) with SV 

                                                 
 
14 The DVF approach relaxes the BS assumption of having a single volatility per day. 
15 The CS model is an extension of BS using a Gram-Charlier (Type A) series 

expansion that allows for non-normal skewness and kurtosis. Backus et al. (1997) 

conjecture that the CS formula exhibits good performance for pricing options when 

the underlying asset follows a jump-diffusion process (see also Jurczenko et al., 

1997). 
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producing implied parameters that can be statistically inconsistent with those 

implied by historical time series. According to Dumas et al. (1998) and Hull 

and Suo (2002) both models are difficult to be estimated on a daily basis. BS 

has shown severe time endurance16 and is still widely used by practitioners 

since it generates reasonable prices for a wide spectrum of European financial 

options. 

 Dumas et al. (1998) estimate DVF of quadratic forms that provide 

unique per contract volatility estimates (in contrast to the overall average 

volatility estimates of Whaley, 1982) and examine how well they predict option 

prices. This methodological framework is conceptually similar to the one 

developed with the Space Mapping techniques in Bandler et al. (1994) and 

Bandler et al. (1999) where several parameter values to an imperfect model 

are adjusted so as to make the imperfect model (for example a simple POPM) 

approximate the performance of a finer but more expensive or inaccessible 

one to use (for example the market prices). Berkowitz (2004) demonstrates 

theoretically that the DVF constitutes a reduced-form approximation to an 

unknown structural model which under frequent re-estimation can exhibit 

exceptional pricing performance. Dumas et al. (1998) conclude by suggesting 

that the DVF approach should be extended and generalized. Our approach 

extends DVF by also retaining the intuition in Christoffersen and Jacobs 

(2004) that while calculating implied parameters optimization should be in 

respect to the option pricing function.  

 Researchers have also addressed attention to the use of nonparametric 

techniques like artificial neural networks that can be used for nonlinear 

regression. The key power provided by this type of methods is that they rely 

on fairly simple algorithms and the underlying nonlinearity can be learned 

from transactions data (see Duda et al., 2001, for further details). Standard 

applications of artificial neural networks do not involve any financial theory 

and can be used to estimate directly the empirical options pricing function 

(thereinafter termed as the standard/traditional neural network approach). 

Evidence concerning their out of sample pricing performance is mixed. 

                                                 
 
16 According to Andersen et al., (2002), “the option pricing formula associated with the 

Black and Scholes diffusion is routinely used to price European options, although it is 

known to produce systematic biases”. 
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Hutchinson et al. (1994) apply them on market transactions of the S&P 500 

futures call options from 1987 to 1991 to conclude that although the 

networks do not constitute a substitute for the more traditional BS formula, 

they can be more accurate and computationally more efficient alternatives 

when the underlying asset’s price dynamics are unknown. Garcia and Gencay 

(2000) find that the BS with historical volatility underperforms significantly 

the standard artificial neural networks. Of course, the application of standard 

artificial neural networks for pricing of options has also its limitations. First of 

all, standard neural networks are usually applied in cases where there is lack 

of knowledge about an adequate functional form; so they are commonly 

interpreted as “black boxes” since they learn the empirical functions 

inductively from transactions data without embedding any information related 

to the problem under scrutiny. Second, standard artificial neural networks 

are very sensitive to time-varying input variables and this problem is 

exaggerated in option pricing since key variables, such as (implied) volatility, 

can be very volatile. Finally, the use of standard neural networks can deliver 

options prices that violate fundamental financial principles; for instance they 

might return negative option values or irrational Greek letters (these are the 

partial derivatives of the option with respect to a parametric model’s 

structural parameters). Herrmann and Narr (1997) show that standard neural 

networks return negative implied state price densities in regions that available 

options data is scarce and non informative. 

 The scope of this essay is to propose a nonparametric enhancement of 

the parameter values used in the POPMs, generalizing thus Dumas et al. 

(1998) DVF (see also Christoffersen and Jacobs, 2004). With our approach we 

estimate Generalized Parameter Functions (GPF) that allow enhancement of 

parameters beyond volatility without specifying a-priori a deterministic 

parametric functional form. In our case, the parameter enhancement provides 

the volatility to the BS and CS models. In addition, skewness or skewness and 

kurtosis can be enhanced for the CS model. A significant feature of the 

methodology is that it allows a set of the input variables to the parametric 

model to be jointly determined by the GPF. Thus, the neural networks are not 

used in the standard (black box) approach but they incorporate existing 

theoretical knowledge arising from parametric models. The proposed semi-

parametric approach has the following important features. First, it retains the 

Pan
ay

iot
is 

C. A
nd

reo
u



 
 

154

theoretical properties17 of the parametric model being enhanced concerning 

the desire for: i) nonnegative option values (we thus expect satisfactory pricing 

performance at the boundary of option pricing areas, in both dense and 

sparse input areas), ii) theory consistent Greek letters, and iii) nonnegative 

implied state price densities. Second, as conjectured by Bandler et al. (1999), 

semi-parametric techniques that incorporate knowledge regarding the nature 

of the problem should need a smaller amount of estimation samples and also 

reduce the number of free parameters needed for estimation to exhibit 

satisfactory out of sample performance as opposed to the case of standard 

nonparametric approaches (a similar conjecture is also made by Aït-Sahalia 

and Lo, 1998, pg. 510). Third, compared to the DVF and Whaley (1982) (see 

also discussions in Christoffersen and Jacobs, 2004, p. 313) we use long term 

estimation (twelve months) of the GPF. At the same time though, we capture 

the time-variation of the option valuation relationship since both in the 

estimation of the GPF and for the out of sample application we use daily 

implied parameters.  This is in the same spirit with Christoffersen et al. (2007) 

where they use long term (twelve months) for the estimation of most 

parameters but with frequent reestimation of implied spot volatilities.   

 We build ePOPMs for both the BS and the CS model. We compare them 

with their parametric alternatives using the overall average implied 

parameters and their DVF versions in pricing S&P 500 index call options. Part 

of our contribution is to apply the DVF approach to the CS model. Moreover, 

we include in the comparison the SVJ model of Bates (1996) since it is an 

effective remedy to the BS biases (see Bakshi et al., 1997, and Bates, 1996) 

but we also report results for the SV sub-model. We first show that daily 

calibration of either SVJ or the DVF based BS and CS models requires careful 

daily parameter search. In the sample, SVJ has the best fit while SV is inferior 

to the best DVF models. Concerning the out of sample pricing performance we 

                                                 
 
17 In the case of Corrado and Su in some extreme regions of skewness and kurtosis 

the model may give negative option values and/or negative sensitivity of the call to the 

underlying asset (see also Jondeau and Rockinger, 2001). In our sample this was 

extremely rare (the worst case was 0.1% of the sample where the negative values were 

slightly only below zero). Furthermore, our methodology could easily constrain 

skewness and kurtosis to prohibit such inconsistencies. 
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find that extending the DVF approach to the case of CS can significantly 

improve the model’s performance, yet SVJ dominates in the family of 

parametric models. We find that all semi-parametric models (ePOPMs) have 

excellent performance and outperform their DVF parametric counterparts. 

The enhanced CS model is the overall best ePOPM and is competitive in 

performance to SVJ since it is found to have a rich distributional flexibility in 

generating skewness and kurtosis patterns across time to maturity and strike 

prices. Our results show that ePOPMs exhibit superior out of sample 

robustness, and the enhanced models can significantly outperform SVJ in 

moneyness regions not used in estimation. The hedging performance of all 

models is in line with previous literature when models are optimized with a 

pricing criterion. Better out of sample results are obtained when optimization 

is based on a hedging criterion, where the resulting enhanced parameters 

differ significantly from those used in pricing. Parameters enhanced for 

hedging exhibit positive skewness and high kurtosis hedging against the 

prospect of extreme (negative) returns.  

 In the following we review the parametric models and we explain the 

implementation of the ePOPM structure via the GPF. We then discuss the 

data, filtering and the alternative versions of the models under comparison. 

Finally we discuss the pricing results, we provide various pricing robustness 

checks, we implement a single instrument hedging strategy for the best 

models considered and then we conclude. The Appendix shows the necessary 

Greeks for the POPMs used during calibration and hedging.  

 

 

3.2. Parametric models used 

 Below we briefly discuss the different POPMs we employ in this study. 

The first model examined is the Black and Scholes (1973) since it is a 

benchmark and widely referenced model. The BS formula for European call 

options modified for dividend-paying (see also Merton, 1973) underlying asset 

is: 

 

)()( TdNXedNSec rTTydBS σ−−= −        (3.1) 
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Τ

++
=

σ

σ 2/)()()/ln( 2TTdrXS
d y-

  (3.1.1) 

 

where BSc  is the price of the European call option, S  is the spot price of the 

underlying asset, X  is the exercise price of the call option, r  is the 

continuously compounded risk free interest rate, yd  is the continuous 

dividend yield paid by the underlying asset, T  is the time left until the option 

expiration date, 2σ  is the yearly variance of the rate of return for the 

underlying asset and (.)N  stands for the standard normal cumulative  

distribution. Vega, which is the partial derivative of the BS call options with 

respect to the volatility will be necessary for our application of the ePOPMs: 

 

)(dnTSec TydBS
−

=
∂

∂
σ

 (3.1.2) 

 

In addition for hedging purposes the BS delta value is also needed: 

 

)(dNe
S

c Td
BS

y−=
∂

∂  (3.1.3) 

 

 The abundant empirical evidence regarding the smile/smirk behavior of 

the BS implied volatility is indicative of implied return distributions that are 

negatively skewed with higher kurtosis than what the BS log-normal 

distribution allows (see Bakshi et al., 1997 and Bates, 2000). For this reason 

we include in the parametric analysis more general option pricing models. We 

use the Corrado and Su (1996) model which is an extension of the BS model 

able to capture non-normal skewness and kurtosis for the underlying returns’ 

distribution. Corrado and Su derived an extension of the BS model based on a 

methodology employed earlier by Jarrow and Rudd (1982). Using a Gram-

Charlier series expansion of a normal density function they define their model 
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as (see also the correction in Brown and Robinson, 2002; for further 

discussions see Jondeau and Rockinger, 2001, and Jurczenko et al., 2004):  

 

4433 )3( QQcc BSCS −++= µµ   (3.2) 

 

where BSc  is the BS value for the European call option given in Eq. (3.1) and, 

 

))()()()2((
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1 2
3 dNTdndTTSeQ Tyd σσσ +−=

−  (3.2.1) 

))()()())(31((
!4

1 32
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−   (3.2.2) 

 

In Eq. (3.2) 3Q  and 4Q  represent the marginal effect of non-normal skewness 

and kurtosis respectively in the option price whereas 3µ  and 4µ  correspond 

to coefficients of skewness and kurtosis. In the above expressions,  

 

)2/exp(
2
1)( 2zzn −=
π

 (3.2.3) 

 

refers to the standard normal probability density function.  The following 

partial derivatves (Greek letters) are necessary for our application of ePOPMs. 

The CS Vega is given by:  
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where, 
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The CS partial derivative of call with respect to skewness is given by: 

 

3
3

QcCS
=

∂
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µ

 (3.2.7) 

 

The CS partial derivative of call with respect to kurtosis is given by: 

 

44
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 (3.2.8) 

 

In addition, for hedging purposes the CS delta value is also needed: 
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 (3.2.9) 

 

 Motivated by empirical evidence (Bakshi et al., 1997, Das and 

Sundaram, 1999, Bates 2000), and unlike Christoffersen and Jacobs (2004) 

that concentrate on the SV model, we consider SVJ as the benchmark model 

(but we also report results for SV). Bakshi et al. (1997) found that the SVJ 

exhibited better out of sample pricing performance for the S&P 500 index 

options when compared to the SV and BS models. Here we must note that SV 

and SVJ models are not widely used by traders for pricing options (see Hull 
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and Suo, 2002, p. 300). Traders usually rely on simpler models and more 

intuitive methodologies that are closer to DVF (see also Brandt and Wu, 

2002). We employ the SVJ model of Bates (1996) where the instantaneous 

conditional variance tV  follows a mean-reverting square root process: 

 

dqdZVdt
S

dS κκλµ ++−= )(   (3.3) 

vv dZVdtVdV σβα +−= )(  (3.4) 

with 

dtdZdZ v ρ=),cov(   

),5.0)1(ln(~)1ln( 22 θθκκ −++ N   

dtdqprob λ== )1(   

 

Here µ  is the instantaneous drift of the underlying asset, λ  is the annual 

frequency of jumps, κ  is the random percentage jump conditional on a jump 

occurring, q  is a Poison counter with intensity λ , 2θ  is the jump variance, 

and ρ  is the correlation coefficient between the volatility shocks and the 

underlying asset movements. Moreover, β  is the rate of mean reversion and 

βα /  is the variance steady-state level (long run mean). In the above diffusion 

specification the correlation between the volatility and the returns of the 

underlying asset controls the level of skewness whilst the variability of 

volatility allows for non-normal kurtosis. Moreover, the addition of a jump 

component enhances the distributional flexibility and allows for more 

accurate pricing performance especially for the short term options.  

 The value of the European call option is given as a function of state 

variables and parameters: 

 

][ 21 Π−Π= − XFec rTSVJ  (3.5) 
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with Τ)()( ydr
T SeSEF −

==  the forward price of the underlying asset, (.)E  the 

expectation with respect to the risk-neutral probability measure and TS  the 

price of S  at option’s maturity. Evaluation of the probabilities 1Π  and 2Π  is 

done by using the moment generating functions of )/ln( SST . The following 

expressions are needed to compute 1Π  and 2Π : 
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5.01 =µ ,  5.02 −=µ , vB ρσβ −=1 ,  βΒ =2  (3.7.3) 

 

and 1Π  and 2Π  are derived by numerically evaluating the imaginary part of 

the Fourier inversion: 
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with )/ln( SX≡χ  and the integrals to be evaluated with an adaptive Lobatto 

quadrature. By constraining the jump component values equal to zero we get 

European call prices for the SV model.   

 In this work, we fit the POPMs to obtain daily the implied parameters 

that minimize the sum of squared pricing deviations from daily market prices, 

so these (risk-neutral) parameters indirectly account for any pricing of jump 

and volatility risk. The proposed methodology should be compared to the DVF 

based BS and CS alternatives18, but for completeness we also provide results 

for SVJ. 

    

 

 

3.2.1. Deterministic volatility functions for BS and CS 

 According to Dumas et al. (1998), this approach of smoothing the BS 

implied volatilities across strike prices and maturities exhibits superior in and 

out of sample performance for pricing European options. For our analysis we 

estimate the three different DVF models: 

 

 DVF#1: ),01.0max( 2
210 XaXaa ++=σ  

 DVF#2: ),01.0max( 43
2

210 XTaTaXaXaa ++++=σ  

 DVF#3: ),01.0max( 2
543

2
210 TaXTaTaXaXaa +++++=σ  

 

As in Dumas et al. (1998), parameters can be estimated using either Ordinary 

Least Squares (OLS) where the loss function is the difference between the 

estimated volatility and the contract specific implied volatility or Nonlinear 

Least Squares where the loss function is the difference between the estimated 

and the actual option price. Aït-Sahalia and Lo (1998, Eq. 12 in pg. 511) 

                                                 
 
18 Christoffersen and Jacobs (2004) conclude that the DVF based BS model, which 

does not require additional assumptions about investors’ preferences for risk, 

represents a new and tougher benchmark against which the performance of future 

structural models can be measured.    
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examine a semi-parametric19 approach where they use the BS volatility loss 

function but estimation is through a nonparametric kernel regression instead 

of OLS. Christoffersen and Jacobs (2004) demonstrate that the OLS estimates 

of the DVF parameters yield biased option pricing and that a price loss 

function should be used.  

 In this essay we implement the DVF not only for BS but also for the 

first time for the CS model, using both loss functions. For CS this is done in 

two steps. We first fit daily the CS model to market option prices to obtain 

overall average implied parameters values (similarly to the Whaley, 1982 

method). Then we fix the skewness and kurtosis values to those obtained 

earlier (in contrast to the BS where these parameters are always fixed to the 

values of zero and three respectively) and further calibrate the model’s 

volatility parameter in order to obtain a daily contract specific implied 

volatility value. Subsequently, for both BS and CS, we estimate the 

coefficients for the three different DVF models each day using OLS (Lc) and 

also using Nonlinear Least Squares (NLc). For the latter we use several 

initializations to minimize the risk of estimating coefficients based on a local 

minimum of the optimization function.  

 

 

3.3. ePOPM structure 

 In order to estimate the enhanced parameters nonparametrically we 

employ artificial neural networks. They are universal function approximators 

with good out of sample generalization abilities (see Cybenko, 1989; for a 

general discussion of neural networks in financial econometrics see Tsay, 

2002). An artificial neural network is a collection of interconnected simple 

processing elements structured in successive layers and can be depicted as a 

network of links (termed as synapses) and nodes (termed as neurons) between 

layers. A typical feedforward neural network has an input layer, one or more 

                                                 
 
19 Our approach (and similarly DVF and Aït-Sahalia and Lo, 1998) should be 

considered as semi-parametric since a parametric option pricing model is involved in 

the process but estimation implies deviations from the theoretical model, when for 

example volatility is assumed to be a function of moneyness, etc.  
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hidden layers and an output layer. Each interconnection corresponds to a 

modifiable weight, which is adjusted according to the faced problem via 

optimization (the training algorithm). 

 Figure 3.1 depicts the general idea of the ePOPM structure we propose 

while Figure 3.2 depicts the exact network structure developed for the 

purposes of this study. For our analysis, inputs are set up in feature vectors, 

]...,,[~
21 Npppp xxxx =  for which there is an associated and known target 

characterizing our problem, pt , Pp ...,,2,1= , where P is the number of the 

available sample feature vectors for a particular estimation sample and N the 

number of input variables. The network’s outputs are obtained when the data 

are presented to the input layer and after evaluating the signals at each node. 

To let the network learn the underlying relationship, its weights are adjusted 

in order to minimize a loss function of the error between the network output 

and the desired target values.      

 The proposed network model has four layers. The first three are typical 

layers of a feedforward artificial neural network: an input layer with N input 

variables, a hidden layer with H neurons, and a layer with M output neurons. 

For these three layers, each node is connected with all neurons in the 

previous and the forward layer. Each connection is associated with a weight, 

)1(
inw , and a bias, )1(

0iw , in the input layer (i=1,2,…,H, n=1,2,…N) and a weight, 

)2(
jiw , and a bias, )2(

0jw , in the hidden layer (j=1,2,…,M). Each neuron behaves 

as a summing vessel that computes the weighted sum of its inputs to form a 

scalar term and with the use of the transfer/activation function it eventually 

works as a non-linear mapping junction for the forward layer. The part of the 

network that is outside the bold-dotted line in Figure 3.2 is a typical three-

layer feedforward artificial neural network with a single output that under 

proper treatment can be used for nonlinear regression (Hutchinson et al., 

1994 discuss the approach for option pricing). 

The fourth layer, which hereafter will be termed as the enhanced layer, allows 

a certain POPM to be part of the network’s structure. In this setting the 

network structure embeds knowledge from the parametric model during 

estimation (resulting thus to a semi-parametric options pricing methodology). 

If we let DEI XXX ∪=  denote the set of all input parameters that are 
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necessary for the parametric model, then (see Figure 3.1) IE XX ⊆  

corresponds to the enhanced parameters provided non-parametrically and 

ID XX ⊂  those that are passed to the parametric model directly. The 

enhanced parameter set EX  is basically a choice of the researcher and 

effectively manifests the number of neurons at the output layer and the type 

of activation function to be used at the enhanced layer. In addition, SX  

represents the set of inputs to the nonparametric model.  

 According to Figure 3.2, the operation carried out for computing the 

final estimated output, y, is the following:  

 

),( DPM Xvfy =  (3.9) 

and, 

)](),...,(,)([ 21 21 Mddd dfdfdfv M=  (3.10) 

 

where (.,.)PMf  refers to the functional form of the parametric options pricing 

model, (.)djf  are smooth monotonically increasing activation functions and 

jd  are simply the descaled values of )2(
jy , where Mj ...,,2,1= . We use the 

term enhanced for the jv  variables (see enhanced layer in Figure 3.2) that are 

determined by the Generalized Parameter Function (GPF) mechanism. In our 

application, v ≡ EX .  

 The elements of vector T
Myy ][ )2()2(

1 K  follow the functional form of a 

typical three-layer network:    
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where (.)Mf  and (.)Hf  are smooth monotonically increasing activation 

functions associated with the output and hidden layer respectively and snx  

(represented by SX  in Figure 3.1), n=1,2,…,N, is just the scaled value of the 

input nx . The M elements of Eq. (3.11) are estimated simultaneously using 

information propagated by the POPMs. The vector defined by the right hand 

side of Eq. (3.11) is the GPF which (with the appropriate descaling and the 

transformation depicted in Table 3.1 Panel A) produces the enhanced 

variables.  

 As shown in Figure 3.2, the proposed network structure can 

accommodate a scaling scheme for both the inputs and the enhanced 

variables. This can be essential since it increases the effectiveness of the 

optimization algorithm and minimizes the significance of differing dimensions 

of the input/output signals (see Haykin, 1999). In the current study we 

choose to apply a standard z-score scaling for the input signals: smxz /)~(~ −= , 

where x~  is the vector of an input, m  is the mean and s  the standard 

deviation of this vector.  

 In our case, the smooth monotonically increasing activation functions 

are among the hyperbolic tangent sigmoid,  

 






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
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+

−
=

−

−

ηη

ηη
αη bb

bb

ee

eef )(  (3.12) 

 

the logistic, 

 

η
αη be

f
−+

=
1

)(  (3.13) 

 

or the linear one, 

 

ηη =)(f  (3.14) 
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In the above expressions, with ℜ∈ba, , a controls the output range and b the 

slope of the activation function20. In the hidden layer we always use the 

standard hyperbolic tangent sigmoid activation function (with α and b equal 

unity) for (.)Hf , while in the output layer we use a linear activation function 

for (.)Mf . The choice of the activation function at the enhanced layer is 

dictated by the type of the parametric model we use and the kind of enhanced 

variable(s) we choose; thus it is possible for (.)1df , (.)2df ,…, (.)Mdf  to be 

different depending on the case considered. This set of activation functions 

are necessary during the implementation of the method in order to ensure 

that the values of each of the enhanced variables are within an acceptable 

range for use with the parametric model21. Table 3.1 (Panel A) describes the 

different activation functions we use at the enhanced level for all cases 

considered. We use activation functions that truncate the enhanced variable 

value range. For instance in the case of BS and CS we do not allow volatility 

to be larger than 70%, and for the case of CS, skewness is confined in the 

]15,15[−  range and kurtosis is set to smaller than 30. The choice of the 

truncation point is not crucial for the implementation of the models as long as 

we allow each enhanced variable to vary within a plausible value range. This 

choice can be guided by empirical investigation. For example we rarely 

observe volatility to be above 70% or skewness to be below -15 or above 15 

and kurtosis to be above 30 (e.g. Christoffersen and Jacobs, 2004, Ait-Sahalia 

and Lo, 1998, Corrado and Su, 1997, Bates, 1991).    

                                                 
 
20 As in Duda et al. (2001, pg. 308), the overall range and slope are not important 

because it is their relationship to parameters such as the learning rate and 

magnitudes of the inputs and targets that affect learning. According to Haykin (1999) 

these transfer functions work well with feedforward artificial neural networks. 
21 For instance, if BS is the chosen parametric model and volatility is the enhanced 

variable, then our activation function should be a logistic that allows only positive 

values whilst if the enhanced variable is the skewness of CS then the activation 

function should be a hyperbolic tangent one that allows both positive and negative 

values. 
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Enhanced 
Parameter(s) 

Nonparametric 
model 

Call Option 
Value 

SX

DX

Set of parameters 
relevant to options 

pricing 
EX

 

Parametric  
Model 

Figure 3.1. Schematic description of the enhanced models (ePOPMs) 
In the proposed semi-parametric methodology the call option value is provided by a parametric model. Let DEI XXX ∪=  denote the set of 
all input parameters that are necessary for the parametric model. IE XX ⊆  corresponds to the enhanced parameters estimated 
nonparametrically and ID XX ⊂  those that are passed directly to the parametric model. In addition, SX  denotes the set of inputs 
to the nonparametric model.                 
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  The estimation of any type of network model is formulated as a highly 

non-linear optimization process in which the network’s weights are modified 

according to a loss function. The loss function (discrepancy between the 

estimated response py  and the actual response pt ) is defined as: 

 

ppp twywe −= )()(  (3.15) 

 

where w  is an ν -dimensional column vector with the weights and biases 

given by: 

 

T
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Table 3.1. Structure characteristics for the Enhanced Parametric Option 
Pricing Models (ePOPMs) 
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 The traditional backpropagation algorithm which is based on the 

gradient descent vector is the most popular method for estimating feedforward 

artificial neural networks. It is shown in Charalambous (1992) that this 

algorithm is often unable to converge rapidly to the optimal solution. So, in 

this essay we rely on the Levenberg-Marquardt algorithm which is much more 

efficient estimation method in terms of time and convergence rate. The 

weights and the biases of the network are updated in such a way so as to 

minimize the following sum of squares error performance function22: 

 

2

11

2 )()()( ∑∑
==

−≡=
P

p
pp

P

p
p tywewF  (3.16) 

 

Then, at each iteration τ of the algorithm, the weights vector w is updated as 

follows: 

 

 [ ] )()()()(
1

1 τττττττ wewJIlwJwJww TT −
+ ++=  (3.17) 

 

where, )( τwJ  is the P ν  Jacobian matrix of the P-dimensional output error 

column vector at τth iteration, and is given by:   
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In the above, I is νν ×  identity matrix, and τl  is a learning parameter that is 

automatically adjusted at each iteration in order to secure convergence. Large 

values of τl  lead to directions that approximate the steepest descent, while 

small values lead to directions that approximate the Gauss-Newton algorithm. 

                                                 
 
22 The use of Sum of Squared Errors (SSE) is common in empirical option pricing 

studies since Whaley (1982) and is supported by Christoffersen and Jacobs (2004).  
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Further technical details about the implementation of the Levenberg-

Marquardt algorithm can be found in Hagan and Menhaj (1994) and Hagan et 

al. (1996). Based on Eq. (3.17), the weights and biases update takes place in a 

batch mode and only when all input vectors have been presented to the 

network.   

 The quantity )(we p∇  is the gradient vector of )(we p  with respect to the 

optimized parameter vector w. The partial derivative of the error function in 

Eq. (3.15) with respect to the weight )2(
jiw  at the hidden layer is:   

 

)2()2(
)2( ij

ji

p y
w

e
δ=

∂

∂
 (3.19) 

 

and, 

 

)()( )2()2(
jMjjd

j
PM

j fsdf
v

f
j ψδ ′′

∂
∂

=  (3.20) 

 

where )( )2(
jMf ψ′  and )( jjd df ′  are the differentials at points )2(

jψ  and jd  

respectively, and js  the standard deviation of the enhanced variable given 

that a z-score scaling has also been applied at the enhanced layer.   

 The quantity 
j

PM
v

f
∂
∂  is the partial derivative of the parametric model 

with respect to input jv  creating a semi-parametric method dedicated to 

pricing European call options. This quantity is very important during the 

estimation because it incorporates theoretical knowledge from a parametric 

model. The partial derivative of the error function in Eq. (3.15) with respect to 

the weight )1(
inw  at the input layer is: 
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sni
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p x
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 (3.21) 

where, 

 

)( )1()1()1(
iHii f ψεδ ′=  (3.22) 

∑
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)2()2()1( δε  (3.23) 

 

and snx is simply the z-score scaled value of nx .  

 The optimal number of hidden neurons is chosen via a cross-validation 

procedure. All ePOPM structures with 1 to 10 hidden neurons are estimated, 

and the one that performs the best in the validation period is selected. The 

model is initialized, estimated and cross-validated with twenty different 

initializations (trying thirty initializations did not improve results). We employ 

the network initialization technique proposed by Nguyen and Windrow (see 

Hagan et al., 1996) that generates initial weights and bias values for a 

nonlinear activation function so that the active regions of the layer’s neurons 

are distributed roughly evenly over the input space. After defining the optimal 

network structure, its weights are frozen and its pricing capability is tested 

(out of sample) in a third separate testing dataset. 

 

 

3.4. Data and methodology 

 Our dataset covers the period January 2002 to August 2004 for a total 

of 671 trading days.  The S&P 500 index call options are used because this 

option market is extremely liquid. They are the most popular index options 

traded in the CBOE and the closest to the theoretical setting of the parametric 

models (see Garcia and Gencay, 2000). For each trading day we have the last 
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bid and ask call price for all available contracts, along with the strike price23, 

X , date of expiration24, volume and open interest. We have collected a daily 

dividend yield25, yd , provided online by Datastream. In our analysis we use 

the midpoint of the call option bid-ask spread since as noted by Dumas et al. 

(1998), using bid-ask midpoints rather that trade prices reduces noise in the 

cross sectional estimation of implied parameters. Each day the midpoint of 

the call option bid ask spread at the close of the market, mrkc , is matched 

with the closing value of S&P 500 index26.       

 We used a chronological data partitioning via a rolling-forward 

procedure in order to have a better simulation of the actual options trading 

conditions. The data is divided into eighteen different overlapping 

training/estimation (trn) and validation (vld) sets, each followed by separate 

and non-overlapping testing (tst) set. Each trn, vld and tst period has 12, 2 and 

1 month spanning period respectively27,28. For instance, the first trn set covers 

                                                 
 
23 For the purposes of this study we use the following moneyness categories: deep out 

the money (DOTM) when S/X≤0.90, out the money (OTM) when 0.90<S/X≤0.95, just 

out the money (JOTM) when 0.95<S/X≤0.99, at the money (ATM) when 

0.99<S/X≤1.01, just in the money (JITM) when 1.01<S/X≤1.05, in the money (ITM) 

when 1.05<S/X≤1.10, deep in the money (DITM) when S/X>1.10. 
24 In terms of time length, an option contract is classified as short term maturity (when 

maturity ≤ 60 calendar days), as medium term maturity (when maturity is between 61 

and 180 calendar days) and as long term maturity (when maturity > 180 calendar 

days). 
25 Jackwerth (2000) also assumes that the present value of expected future dividends 

for the S&P 500 index can be approximated by a dividend yield. In addition, Chernov 

and Ghysels (2000) use a constant dividend yield for the whole period they examine.   
26 Data synchronicity is a minimal issue for this highly active market (see also Garcia 

and Gencay, 2000, and Ait-Sahalia and Lo, 1998). Among others, Christoffersen and 

Jacobs (2004) and Chernov and Ghysels (2000) use daily closing prices of European 

call options written on the S&P 500 index.  
27 In contrast to the implied trees methodology and the daily calibrated DVF models 

where data from a single day are used, using a training set of twelve months should 

alleviate overfitting concerns. 
28 Keeping the model’s weights the same for one month period is consistent with the 

reasoning of Bates (2000, pg. 184). Daily recalibration of the weights would imply that 
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the period January to December 2002, the first vld set covers the period 

January to February 2003, the first tst set covers the period March 2003, etc. 

The eighteen testing (out of sample) monthly periods are non-overlapping. For 

the needs of the analysis, we created (after the use of filtering rules explained 

below) an aggregate testing period (AggTs) with 21644 data points by simply 

pooling together the pricing estimates of all eighteen tst periods. For AggTs we 

compute and tabulate: the Root Mean Square Error (RMSE), the Mean 

Absolute Error (MAE), the Median Absolute Error (MdAE) and the 5th 

Percentile of Absolute Error (P5AE) and 95th Percentile of Absolute Error 

(P95AE). The main analysis is based on the RMSE measure. As pointed by 

Christoffersen and Jacobs (2004) estimation and evaluation of a model should 

be based on the same error measure. In addition, they conclude that RMSE 

estimates perform the best among different loss functions. Finally, Bates 

(2000, p. 202) points out that the RMSE is a relatively intuitive error measure 

and is useful for comparison purposes.    

 

3.4.1. Observed structural parameters 

The moneyness ratio, S/X, is a common input to non-parametric models since 

it is highly related to the pricing bias associated with the POPMs (see 

Hutchinson et al., 1994, and Garcia and Gencay, 2000). The dividend 

adjusted moneyness ratio Χ
− /)( TydSe  is preferred here since dividends are 

relevant. Finally, time to maturity (T ) is computed assuming 252 days per 

year. Previous studies have used 90-day T-bill rates as an approximation of 

the interest rate. In this study we use nonlinear cubic spline interpolation for 

matching each option contract with a continuous interest rate, r , that 

corresponds to the option’s maturity. For this purpose, 1, 3, 6, and 12 

months constant maturity T-bills rates (collected daily from the U.S. Federal 

Reserve Bank Statistical Releases) were considered.  

 

 

 

                                                                                                                                              
 
the enhanced models are never to be taken seriously as a genuine data generating 

mechanism.     
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3.4.2. Data and filtering rules 

 To create our dataset we rely on the following filtering rules (see also 

Bakshi et al., 1997): We first eliminate all observations that have zero trading 

volume since they do not represent actual trades. Second, we eliminate 

observations that violate either the lower or the upper arbitrage options 

bounds. Third, we eliminate all options with less than six or more than 260 

days to expiration to avoid extreme option prices where an illiquidity 

problem29 may be present. Similarly, option price quotes of less than 1.0 

index points are not included. Finally, we demand at least four datapoints per 

maturity to secure that during the implied parameters extraction process, 

every maturity period is satisfactorily represented. The final dataset has a 

total of 37202 observations (from which 21644 are used out of sample) and 

compares favourably with previous studies that test nonparametric methods. 

For instance Hutchinson et al. (1994) have an average of 6246 data points per 

sub-period; Aït-Sahalia and Lo (1988) have a total of 14431 data points; 

Schittenkopf and Dorffner (2001) include a total of 33633 data points. Sample 

characteristics for the dataset can be found in Table 3.2 where the average 

implied parameters are also reported (see explanations in section 5). The 

volatility anomaly is obvious both for the BS and the CS model. 

 

3.4.3. Implied parameters 

 The methodology employed here for the extraction of daily overall 

average implied parameters is similar to that in previous studies (Bates, 1991, 

Bakshi et al., 1997, Christoffersen et al., 2006) that adopt the Whaley’s (1982) 

simultaneous equation procedure to minimize a price deviation function with 

respect to the unobserved parameters30. Market option prices ( mrkc ) are 

                                                 
 
29 Dumas et al. (1998) drop observations with more than 100 days, and Bates (2000) 

and Christoffersen et al. (2006) choose to drop observations with more than 180 days. 

We choose to keep them since these options are not necessarily illiquid and comprise 

a significant part of the total number of observations.  
30 As noted by Das and Sundaram (1999), Chernov and Ghysels (2000) and 

Christoffersen et al. (2006) for the purpose of option valuation, parameters estimated 
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assumed to be the corresponding POPM prices ( kc ) plus a random additive 

disturbance term ( kε ), k = BS, CS, or SVJ: 

 

kkmrk cc ε+=  (3.24)  

 

 
 

Table 3.2. Sample characteristics  
Figures refer to average market values of call options (first line), Black and Scholes 
implied volatility (second line), Corrado and Su implied volatility (third line), the total 
number of observations for the (whole) period 2 January 2002 to 31 August 2004 
(fourth line) and the total observations used in the out of sample period (aggregate – 
AggTs) for the period 03 March 2003 to 31 August 2004 (fifth line). 
 

 

To find optimal implied parameter values per model k we solve an 

optimization problem that has the following form: 

 

∑
=

=
tP

j

k
jk

tSSE
1

2)(min)( ε
ξ

 (3.25) 

 

                                                                                                                                              
 
from option prices are preferable to parameters estimated from the underlying 

returns. See also Pan (2002) for such kind of applications.  
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where tP  refers to the number of different call option transaction datapoints 

available in day t, and kξ  to the unknown parameters associated with a 

specific POPM (k = BS, CS and SVJ). The SSE is minimized via Nonlinear 

Least Squares with a subspace trust region method based on the Newton 

approach offered by the MATLAB® Optimization Toolbox. To minimize the 

possibility to obtain implied parameters that correspond to a local minimum 

of the error surface with each model we use several starting values for the 

unknown parameters based on daily average values reported by previous 

literature (see section 5 for details).  

 From the above we obtain the following sets of daily overall average (av) 

implied (risk-neutral) parameters:  

 

 Daily overall average implied BS volatility estimates BSξ ={ }BS
avσ  

 Daily overall average implied CS estimates CSξ ={ }43 µµσ ,,CS
av . 

 Daily overall average implied SVJ estimates31 SVJξ ={ SVJ
avσ , λ , κ , θ , α , 

β , vσ , }ρ . 

 

In order to have a pure unconstrained optimization problem and avoid 

implausible implied values we enforce certain transformations to each model 

parameters via smooth, strictly increasing and differentiable functions. 

Specifically: i) via log transformations we constrain BS
avσ , CS

avσ , and SVJ
avσ  to be 

positive,  4µ  to be smaller than 30, λ  to be smaller than 10,  θ , α  and vσ  to 

be smaller than 2,  and β  to be smaller than 20,  and ii) via the hyperbolic 

tangent sigmoid functions we constrain 3µ  to lie between -15 and +15, κ  to 

lie between -0.99 and 0.99 and ρ  to be between -1 and +1. For similar 

treatments of the optimization phase see Bates (1991 and 2000) and Jondeau 

and Rockinger (2001).    

                                                 
 
31 Similarly with the SVJ we also calibrate the SV model. In addition, like Bakshi et al. 

(1997) and Christoffersen and Jacobs (2004) we also calibrate the instantaneous 

conditional variance tV  daily (where its square root for consistency is also denoted as 

SVJ
avσ ). 
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 We also estimate the three DVF models (DVF#1, DVF#2, and DVF#3) 

defined earlier. For BS this is straightforward; for CS we first estimate the 

overall average implied parameters and then we fix skewness and kurtosis to 

compute the contract specific implied volatility. We differentiate among the 

DVF models by using appropriate subscripts k
NL1σ , k

NL2σ  and k
NL3σ  for the 

Nonlinear Least Squares estimation and k
L1σ , k

L2σ  and k
L3σ  for OLS estimation 

(k ∈ {BS, CS}). In addition, the DVF parameter estimates obtained via the 

Nonlinear Least Squares based on initial values obtained from the OLS are32: 

k
NLL1σ , k

NLL2σ  and k
NLL3σ .  

 For pricing and hedging reasons at time instant t, the implied 

structural parameters derived33 at day t -1 are used together with all other 

needed information. Daily recalibration of the implied parameters (DVF and 

overall average) for POPMs is also adopted by Bakshi et al. (1997) and 

Christoffersen and Jacobs (2004) (see also discussions in Hull and Suo, 2002, 

and Berkowitz, 2004).     

 

3.4.4. The set of alternative models 

 With the jBS  models we use as input S, X, T, yd , r, and any of the 

following ten volatility estimates: BS
jσ  where j ∈ {av, L1, L2, L3, NL1, NL2, 

NL3, NLL1, NLL2, NLL3}. Similarly we denote the ten parametric CS 

alternatives. Finally note that for the SV and SVJ models we use the overall 

average parameter estimates. 

 The notation for the enhanced models depends on the parametric 

model considered. We use jeBS , with j ∈ {av, NL2}, to denote the two 

                                                 
 
32 It is quite tedious to find starting values for the nonlinear estimation of the DVF. 

Possible candidates for this are, among others, the estimates of the DVF coefficients 

obtained from OLS.  
33 Following the results in Christoffersen and Jacobs (2004) we use estimation with t - 

1 day information; these authors have also used larger estimation period for their 

models in order to increase precision in the parameters estimation but they observed 

inferior out of sample results. 
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enhanced models where the BS volatilities BS
avσ  and BS

NL2σ  are being enhanced. 

Likewise we use 1
jeCS , with j ∈ {av, NL2}, to denote the two ePOPMs where 

the CS volatilities CS
avσ  and CS

NL2σ  are being enhanced. We also use 2
jeCS , with 

j ∈ {av, NL2}, to denote the two ePOPMs where the CS parameters ( CS
avσ , 3µ ) 

and ( CS
NL2σ , 3µ ) are being enhanced. Finally, we use 3

jeCS , with j ∈ {av, NL2}, 

to denote the two enhanced models where the CS parameters ( CS
avσ , 3µ , 4µ ) 

and ( CS
NL2σ , 3µ , 4µ ) are being enhanced. In addition to these parameters, the 

dividend adjusted moneyness ratio Χ
− /)( TydSe  and the time to maturity (T ) 

are also used as inputs to estimate the GPF. When we make reference to an 

enhanced model and we drop the subscript we refer to any model using daily 

either the av or NL2 volatility inputs. All enhanced models examined are 

exhibited in Panel B of Table 3.1. 

 

 

3.5. Model calibration and analysis of pricing results 

 

3.5.1. Model calibration 

 To obtain the best daily overall average implied parameters for each 

model we use five different starting values in each case. For BS we choose five 

starting volatility values in the 6%-70% range. For CS we choose five starting 

sets of parameter values from the Corrado and Su (1996, 1997) studies. For 

SVJ we use five starting sets of parameter values (using more initializations 

for daily estimation of the SVJ model would be impractical). Three are based 

on the results reported in Bakshi et al. (1997, pg. 2018, Table III): 

initialization #1 is their average SVJ implied parameters taken by using all 

available options, initialization #2 is their average SV implied parameters 

taken by using all available options and initialization #3 is their average SVJ 

implied parameters taken by using all available at the money options. 

Moreover, two additional initializations are used: initializations #4 and #5 are 

created by adding noise from a uniform distribution to each of the average 
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implied parameters values of the initializations #1 and #3. A similar approach 

is adopted for the case of SV.  

 Table 3.3 presents results from the daily optimization process for SVJ. 

We present the in and the out of sample pricing performance for each 

initialization and the number of cases where it produces the smallest daily 

RMSE. There is a variation in their out of sample pricing performance despite 

that four out of five initializations have similar in sample fitting. Initialization 

#2 is less successful indicating that calibrating properly the jump component 

is crucial. It is notable that initialization #3 which produces the least in 

sample RMSE in 178 out of 671 days is not the best model. The results 

indicate the existence of many local minima where different implied 

parameters reach the same in sample RMSE but result to significantly 

different out of sample RMSE. As noted by Bates in many of his works the 

complex parametric option pricing models appear to suffer from a nonlinear 

identification problem in that quite different parameter values can yield 

virtually identical in sample option prices. Finally, although initialization #1 

seems to perform well in and out of sample, still it is not safe to conjecture 

that this will always be the case. Our calibrating results for SVJ indicate that 

it is better to try various initializations and choose the one with the smallest 

daily (in sample) RMSE. Calibrating either BS or CS is much easier; in each 

model, the different starting values result in almost the same final parameter 

values (results not shown due to brevity).  

 

 
 

Table 3.3. Summary statistics for SVJ optimization 
Daily in sample Root Mean Square Error (RMSE) pricing performance with the 
corresponding out of sample performance regarding the stochastic volatility and jump 
(SVJ) options pricing model. The first three initializations (Init. #1, #2 and #3) are 
accordingly three sets of overall average implied parameters reported in Bakshi et al. 
(1997) while Init. #4 (Init. #5) is taken by Init. #1 (Init. #3) after adding noise from a 
uniform distribution to each of the parameters. The last line reports the number of 
times/days that each of the five initializations has been the optimal one (has returned 
the lowest RMSE).       
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Table 3.4. Summary statistics for DVF optimization 
Daily in sample Root Mean Square Error (RMSE) pricing performance is reported for 
the optimization process regarding the Deterministic Volatility Functions (DVF) used 
with Black and Scholes and the Corrado and Su models for the period 2 January 
2002 to 31 August 2004. Only 5 out of 21 initializations used are reported here. The 
first and third columns of numerical results report the number of days that each of 
the 21 initializations used has been the optimal one (has resulted in the lowest 
RMSE). The results reported concern the DVF#2 specification according to which the 
volatility is linear in strike price, the squared of strike price, time to maturity and the 
cross product of strike price with time to maturity. Lc is the coefficient vector taken by 
OLS after regressing implied volatility on the variables included in DVF#2.   
 

 To obtain the daily optimal values for the DVF based BS and CS 

coefficients (OLS ones, Lc, and Nonlinear Least Squares, NLc) we similarly rely 

on a thorough optimization search regarding starting values. Although not 

reported in previous literature, finding “proper” starting values and optimizing 

the DVF models is not a trivial task. For each DVF model we try twenty-one 

different initial starting values. The first initialization is by using the Lc 

values. Another eight initializations are created by multiplying each of the 

elements of Lc by a value in the range 0.1 to 2 (specifically 0.1, 0.2, 0.5, 0.8, 

0.9, 1.2, 1.5, 2). Additional three initializations are created by random 

numbers coming out of the normal distribution N(0,0.1) and three more from 

N(0,0.01). Finally, six initializations are created by using Lc + Lc x 

(random_sign) where random_sign is a vector of randomly chosen numbers 

(±0.2, ±0.5 or ±1 with equal probability between plus or minus sign). 

 In Table 3.4 we present partial results regarding the in sample 

performance of the most successful initializations for the DVF#2 based BS 

and CS (the optimization results for DVF#1 and DVF#3 are similar). The 

second and fourth columns present the number of days where a certain 

initialization produces the smallest RMSE for BS and CS respectively, while 

the third and fifth columns exhibit the in sample RMSE obtained by using 

every day the same starting values. As can be seen the most successful 
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initializations are the ones using the Lc multiplied by 0.2, 0.5 and 0.8. This 

kind of initialization is supported by the results of Christoffersen and Jacobs 

(2004, figures in p. 310) who find that in their sample, non-linear DVF 

coefficients (NLc) are smaller than the linear ones (Lc) by a constant.  

 

 
 

Table 3.5. Daily average implied parameters for the parametric models 
Daily average implied parameter values obtained by jointly minimizing the sum of 
squared pricing deviations between a parametric model’s estimates and the actual 
market value of the call options for the period 2 January 2002 to 31 August 2004. 
Standard error of each parameter is reported in parenthesis. Bold figures in square 
brackets are the corresponding values reported by Bakshi et al. (1997). The structural 
parameter σ  is the Brownian volatility, 3µ  and 4µ  the skewness and kurtosis 
coefficients for CS. β  is the rate of mean reversion, α / β  is long run mean, vσ  is 
the volatility of volatility and ρ  is the correlation coefficient between the volatility 
shocks and the underlying asset movements for the stochastic volatility process. λ  is 
the frequency of jumps per year, κ the mean jump size andθ  the volatility of the 
logarithm of 1+κ  for the jump process.    
 

 Despite the fact that some initializations often produce the smallest 

daily RMSE, yet their in sample fitting performance is by far worst compared 

to the case where each day we select the initialization with the lowest RMSE. 

Using 0.5Lc to obtain the NLc for BS and CS proves to produce the smallest 

RMSE in 207 and 409 days respectively. DVF initializations created from 

random values were almost never the optimal choice. Finally, Lc very rarely 

provided the optimal choice. The conclusion again is that a thorough 

initialization for the DVF models is important34. 

                                                 
 
34 In sample fitting of Dumas et al. (1998) models for call options is 0.651, 0.300, 

0.222 and 0.218 for the BS using the overall average volatility and nonlinear DVF#1, 

DVF#2 and DVF#3 respectively. The ratios of their overall average RMSE divided by 

their RMSE obtained for the three DVF models are 2.17, 2.93 and 2.99. The 
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3.5.2. Implied parameter estimates 

 In Table 3.5 we report the mean daily estimates for the overall average 

parameter values of the POPMs along with their standard errors in 

parentheses. In addition the bold figures in the square brackets report the 

associated values found in the study of Bakshi et al. (1997). The results for 

CS demonstrate that the implied index return distributions are negatively 

skewed with higher kurtosis than permitted by the BS assumptions. Thus, 

the BS model with av volatility is expected to perform poorly compared to 

other models that allow for more flexible distributions (see also Bakshi et al., 

1997). Regarding the volatility process parameters, similarly to Bakshi et al. 

(1997) we observe implied volatilities of BS, SV and SVJ extremely close to 

each other, and we find that the implied long run mean volatility βα /  for 

SV equals 0.238 and is higher to 0.144 of SVJ. In addition, we similarly find 

the volatility of volatility vσ  and the magnitude of the correlation coefficient ρ 

in SV to be higher relative to SVJ indicating that SVJ captures part of the 

excess kurtosis and negative skewness with the jump component. In contrast 

though, the variation coefficient vσ  for SV is almost double compared to the 

one obtained for SVJ (a similar finding is also obtained in Bates, 2000, p. 

203). According to Bates (2000, p. 226, see also Bates, 1996 and 2003), the 

negative correlation coefficient in SV is not enough to generate sufficiently 

negative implicit skewness, so a very high volatility of volatility (implausibly 

high compared to the time series properties of asset prices) might be 

necessary to match the observed option values35 (similar conclusions are 

obtained by Bakshi et al., 1997, pg. 2043). Regarding the jump components of 

SVJ, we find that the average yearly frequency of jumps is 0.678, the average 

jump size is -14.9% and the jump size volatility is 19.2%. The jump size 

                                                                                                                                              
 
respective ratios for our sample are 1.89, 3.91 and 4.88 indicating a successful 

optimization search for the DVF models coefficients (at least for DVF#2 and DVF#3; 

the ratio for our DVF#1 appears inferior since in our dataset we have also included 

long maturities). 
35 Bates (2000) favours SVJ by arguing that in the presence of a jump component, the 

model provides option prices more compatible with market prices and generates more 

plausible implied stochastic volatility parameter values. 

Pan
ay

iot
is 

C. A
nd

reo
u



 
 

184

parameter values are higher compared to those of Bakshi36 et al. (1997) and 

closer to those of Bates (2000).    

 

 
 

Table 3.6. Summary statistics of coefficient estimates for DVF#2 model 
Daily average coefficients obtained from fitting DVF#2 for the Black and Scholes and 
for the Corrado and Su model for the period January 2, 2002 to August 31, 2004. The 
t-statistics of each average coefficient value (computed from the daily values of the 
estimated coefficients) are reported below in parenthesis. Lc (NLc) is the ordinary least 
squares (nonlinear least squares) coefficient vector taken by regressing implied 
volatility on the variables included in DVF#2 specifications.    
 

 Table 3.6 tabulates the in sample coefficient estimates for the DVF#2 

model of BS and CS (means and below in parenthesis the t-statistic). The first 

observation is that the sign of the average coefficient values for BS coincides 

with the ones obtained by Dumas et al. (1998) and Christoffersen and Jacobs 

(2004): negative for strike price (X) and time to maturity (T ) and positive for 

2X  and XT. Interestingly, the sign of the coefficients of 2X  and XT for CS are 

opposite to those for BS. This is evident also from Table 3.1 where we see that 

CS implied volatility is larger for out of the money options and smaller for in 

the money (the opposite pattern compared to BS). Second, similarly with 

Christoffersen and Jacobs (2004) we observe for all DVF#2 parameters (both 

for BS and CS) that the average coefficient values of NLc are significantly 

                                                 
 
36 S&P 500 in the case of Bakshi et al. (1997) exhibited a major uptrend move in the 

whole period they examine while in our case, the market experienced a major down-

trend move in the first 15 months and a steady upward movement afterwards.    
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smaller compared to Lc and more importantly less volatile37 (as implied by 

larger t-statistic values for NLc). According to Christoffersen and Jacobs 

(2004) this manifests their better out of sample performance (as we also show 

below). Finally, by comparing BS with CS we can see that for both Lc and NLc 

models, BS coefficient values and t-values are larger. This indicates that the 

volatility smile is generally “flatter” for CS after controlling for skewness and 

kurtosis.  

 

3.5.3. Pricing results 

 Table 3.7A provides the in sample RMSE and Table 3.7B demonstrates 

out of sample the pricing performance of all models considered in terms of 

RMSE, MAE, RMeSE, P5AE and P95AE for the aggregate period (AggTs). Before 

we compare the in and out of sample pricing performance of the alternative 

models we should note that the comparison can be biased against our semi-

parametric approach since unlike the daily parameter (re-)calibration for the 

POPMs, GPFs are estimated only once a month. 

 

 
 

Table 3.7A. In sample pricing performance of the parametric models  
Root Mean Square Error (RMSE) values regarding the in the sample pricing 
performance for all parametric (overall average and DVF) models obtained by 
minimizing the sum of squared pricing deviations between a model’s estimates and 
the actual market value of the call options for the period January 2, 2002 to August 
31, 2004. 
 

                                                 
 
37 In general we have verified that the DVF#2 BS coefficient values plotted across the 

671 days in our sample closely resemble (for the common coefficients) the plots 

presented in Christoffersen and Jacobs (2004, p. 310).   
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 We first concentrate our attention to Table 3.7A (in sample) for the 

parametric BS, CS, SV and SVJ models. Before the alternative DVF versions 

are considered, the more complex parametric models with daily overall 

average values (av) exhibit superior performance, and thus SVJ is the best, 

followed by SV. The DVF approach improves the pricing performance of the 

BS and CS models considerably, with the nonlinear DVF#3 being superior; yet 

the SVJ is the overall best model in sample.  

 

 
 

Table 3.7B. Out of sample pricing performance of the parametric models  
Error performance results (out of sample pricing) for all parametric models for the 
aggregate period March 3, 2003 to August 31, 2004. SV* results are the original ones 
before replacing extreme mispricing observations. SV  results are obtained after 
replacing, with 2NLBS , SV* values that differ by more than 50% compared to 2NLBS . 
In total, 747 observations are replaced. RMSE is the Root Mean Square Error, MAE is 
the Mean Absolute Error, MeAE is the Median Absolute Error and P5AE (P95AE) is the 
5th (95th) Percentile of Absolute Errors. 
 

 We then concentrate on Table 3.7B (out of sample performance of the 

parametric models)38. We see that the DVF based CS models provide better 

                                                 
 
38 Our RMSE results are larger compared for instance to the ones of Bakshi et al. 

(1997) and Dumas et al., (1998) since for the period we examine the average index 
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performance than the corresponding DVF based BS ones. The best model is 

2NLCS  which improves RMSE performance over 2NLBS  by 14%. The nonlinear 

DVF#2 model provides the best out of sample performance for both BS (this is 

consistent with the results in Dumas et al., 1998) and CS (although for the 

BS case the nonlinear DVF#1 was equally good in terms of the RMSE but 

inferior by far in terms of the other measures). The inferior performance of the 

nonlinear DVF#3 model is not surprising since as Bates (2000) notes, over-

parameterized models entail the risk of overfitting the options data and start 

explaining white noise (see also Dumas et al., 1998 who argue in favor of the 

greater parsimony in the volatility function provided by DVF#2). Note that an 

overfitting problem does not appear to be present in the enhanced models 

where a large dataset is used for estimation. Similarly with Christoffersen and 

Jacobs (2004) we find that SV39 underperforms 2NLBS . Still, among 

parametric models, the SVJ model is the top performer in all metrics. 

We then look at Table 3.8 with the out of sample performance for the ePOPMs. 

We see that all enhanced models have excellent performance. The best BS 

version is 2NLeBS  which is the enhancement of BS with nonlinear DVF#2 

input and 16% RMSE improvement. The best CS version is 2
2NLeCS  that 

enhances two parameters of CS (volatility and skewness) and improves RMSE 

by 19%. 2
2NLeCS  is also the overall best ePOPM in terms of the RMSE metric. 

The 2
aveCS  model is the second best ePOPM. Models 3

aveCS  and 3
2NLeCS  are 

also good performers. We must make the comment that the enhanced models 

                                                                                                                                              
 
option prices are most of the time double or triple than theirs (compare our Table 2 

with Table I of Bakshi et al., 1997). 
39 We noticed that the stochastic volatility model produced large out of sample 

mispricings for many cases. The problematic observations include options with 

maturities longer than 180 days. Table 7B presents two sets of pricing results for the 

stochastic volatility model. SV* results are the original ones before replacing extreme 

mispricing observations. SV  results are obtained after replacing, with 2NLBS , SV* 

values that differ by more than 50% compared to 2NLBS . In total, 747 observations 

are replaced for the out of sample period. Christoffersen and Jacobs (2004, p. 307) 

mention that they have removed from their out of sample results certain problematic 

SV pricing observations.  
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using as input the overall average parameters show performance slightly only 

inferior but practically comparable to the enhanced models with DVF#2 

volatility input; and they outperform by far the equivalent parametric models 

with overall average parameters. A final comment is that the best enhanced 

models40 are also competitive to the SVJ model which is too expensive to 

properly calibrate daily. 

   

 
 

Table 3.8. Out of sample pricing performance of the non-parametrically 
enhanced models (ePOPMs) 
Error performance results (out of sample pricing) for selected enhanced parametric 
models for the aggregate period March 3, 2003 to August 31, 2004. RMSE is the Root 
Mean Square Error, MAE is the Mean Absolute Error, MeAE is the Median Absolute 
Error and P5AE (P95AE) is the 5th (95th) Percentile of Absolute Errors. 
 

We see using both statistics that the ePOPMs outperform the equivalent 

POPMs (both with overall average and DVF parameter estimates), and the 

difference is statistically significant at the 1% level. The best ePOPM model is 
2

2NLeCS  and is competitive to SVJ (any difference in performance is not 

statistically significant). Our second best ePOPM is 2
aveCS  which although 

appears marginally inferior to the SVJ is much easier to estimate.  

 

                                                 
 
40 We have also checked the performance of standard neural networks like the ones 

used in previous studies (i.e. Hutchinson et al., 1994, Garcia and Gencay, 2000). The 

optimization/training methodology setup is similar to the one employed for the 

enhanced models. The results for standard feedforward artificial neural networks are 

always inferior to that of the enhanced models. Specifically their RMSE is between 

2.013 and 2.743 which is quite large compared to the enhanced models whose RMSE 

is consistently below 1.754.    
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Table 3.9. t-tests for out of sample model performance comparison 
Values in the upper (lower) diagonal report the Student t-value (Johnson, 1978, 
modified t-value) regarding the comparison of means of the squared residuals between 
models in the vertical heading versus models in the horizontal heading. In general, a 
positive (negative) t-value larger (smaller) than 1.96 (-1.96) indicates that the model in 
the vertical (horizontal) heading has a larger MSE than the model in the horizontal 
(vertical) heading at 5% significance level (for 1% significance level use 2.325 and -
2.325 respectively). 
 

 In Tables 3.10 and 3.11 we analyze the RMSE of the best performing 

models in terms of moneyness and time to maturity (7x3=21 classes). In 

addition, the bottom panel of each table reports RMSE per moneyness class 

(aggregating time to maturity) while the last column reports RMSE per time to 

maturity (aggregating moneyness). First, we concentrate on the best 

performing parametric models (Table 3.10). Comparing moneyness class 

performance (bottom panel) we see that SVJ is superior in five out of seven 

moneyness classes while 2NLBS  exhibits the best performance in JITM and 

ITM options. 2NLBS  is superior to SV in all moneyness classes  (a similar 

conclusion is reached by Christoffersen and Jacobs, 2004) except for DOTM. 

In addition, we see that 2NLCS  which produces the overall best RMSE among 

DVF models is not superior to 2NLBS  in all moneyness classes. Specifically, it 

is performing well in out-of-the-money options while 2NLBS  is superior in at- 

and in-the-money options. In terms of time to maturity only (last column) we 

see that SVJ ( 2NLBS ) is the first (second) best performing in short term 

options, 2NLBS  (SVJ) is the first (second) best performing in medium term 

options and SVJ ( 2NLCS ) is the first (second) best performing in long term 

options. Concluding on parametric models’ results, although SVJ has the 

overall best performance on aggregate in terms of RMSE still it does not 

produce the least RMSE in all moneyness and time to maturity classes.  
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2NLCS  dominance over 2NLBS  is coming from long term, out-of-the-money 

options. Finally note that SV fails over DVF models because it exhibits poor 

performance for long term options.      

 In Table 3.11 we see the results for the ePOPMs. In general the CS ones 

produce the best results. By comparing 2
aveCS  with 3

aveCS  we see that the 

enhancement of kurtosis in the latter model helps to improve the DOTM and 

DITM options but does not offer any improvement in the other cases. This 

result is very intuitive since kurtosis affects the tails. In comparing 2
aveCS  

with 2
2NLeCS  we see that the latter model has better performance for JOTM, 

ATM and JITM options. Another significant observation is that enhanced 

models with DVF input perform better in short and medium term options 

while enhanced models with overall average implied parameters as input have 

significantly better performance in long term options. Lastly if we compare 

SVJ with 2
2NLeCS  ( 2

aveCS ) we can see that in many cases the proposed semi-

parametric methodology is better. Specifically 2
2NLeCS  ( 2

aveCS ) has lower 

RMSE in eleven (six) out of twenty-one classes. 

 To investigate whether our semi-parametric approach imposes any 

discipline on the models and to preclude the possibility that the enhanced 

parameters are just moving around excessively through time we used 

graphical diagnostics (plots are not displayed due to brevity). Specifically, for 

each of the 379 out of sample days of the period 3 March 2003 to 31 August 

2004 we use the already estimated GPF and DVF and get predictions for the 

daily volatility values for moneyness equal to S/X = 0.90, 1.00 and 1.10 and 

time to maturity equal to T = 21, 63, 126, 189 and 252 trading days (in total 

15 combinations per day per model). The conclusion is that the enhanced 

volatility estimates derived by the GPF are in general less volatile compared to 

the DVF volatility estimates for the out of sample period and track better the 

evolution of the actual daily implied volatility41. A representative summary of 

the graphical diagnostics is exhibited in Table 3.12, where we report the 

                                                 
 
41 The actual implied volatility is extracted daily from market option prices that are 

closest to each combination of moneyness and time to maturity.  
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RMSE between the daily actual contract specific volatility implied by market 

option prices and the volatility estimates obtained by the DVF based 2NLBS   

 

 
 

Table 3.10. Tabulation (moneyness vs. maturity) of out of sample pricing 
RMSE for selected parametric models 
Root Mean Square Error (RMSE) values regarding the out of sample pricing 
performance for selected parametric models for the aggregate period March 3, 2003 to 
August 31, 2004. RMSE is tabulated into moneyness and time to maturity. The 
bottom panel reports RMSE per moneyness classes (aggregating time to maturity) 
while the last column reports RMSE per time to maturity (aggregating moneyness). 
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Table 3.11. Tabulation (moneyness vs. maturity) of out of sample pricing 
RMSE for selected non-parametrically enhanced models (ePOPMs) 
Root Mean Square Error (RMSE) values regarding the out of sample pricing 
performance for selected enhanced parametric models (ePOPMs) for the aggregate 
period March 3, 2003 to August 31, 2004. RMSE is tabulated into moneyness and 
time to maturity. The bottom panel reports RMSE per moneyness classes (aggregating 
time to maturity) while the last column reports RMSE per time to maturity 
(aggregating moneyness).  
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and 2NLCS  models and the enhanced models: aveBS , 2NLeBS , 1
aveCS , 

1
2NLeCS . The first three rows of numerical results report RMSE for three 

specific moneyness cases (always aggregating time to maturity) while the last 

row of numerical results exhibits the aggregate RMSE values. The general 

conclusion is that the enhanced models provide more accurate predictions of 

the implied volatility surface compared to the DVF counterparts.  

 

 
 

Table 3.12. Out of sample RMSE of volatility predicted by selected 
models 
Root Mean Square Error (RMSE) values regarding the out of sample volatility 
prediction for selected models for the period March 3, 2003 to August 31, 2004. 
Volatility estimates for each day for specific moneyness (for five representative 
maturities) cases are compared with contract specific implied volatility taken using 
the market call option prices closest to each moneyness/maturity combination. 
Contract specific implied volatility for the Corrado and Su model is computed after 
fixing the skewness and kurtosis coefficients to their daily overall average values 
taken with the Whaley (1982) method.    
 

 Table 3.13 shows for the aggregate testing period the mean values of 

the enhanced parameters (volatility, skewness and kurtosis) for the aveBS , 

1
aveCS , 2

aveCS  and 3
aveCS  models for different maturity and moneyness 

classes. These parameters are provided by the GPF (see jv  variables in the 

enhanced layer in Figure 2). We concentrate on enhancement created using 

overall average parameters as input since these are the models that have 

shown superior robustness (see next section for robustness analysis). For 

3
aveCS  the enhanced volatilities preserve a smile effect in the short and 

medium term options, the enhanced skewness is increasing in moneyness 

and decreasing in maturity, and the enhanced kurtosis exhibits a hump 

shape in moneyness. For 2
aveCS  enhanced volatilities preserve a similar smile 

effect in the short and medium term options, and skewness exhibits a hump 
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shape in moneyness for short and medium maturity options and similarly 

decreasing in maturity. Das and Sundaram (1999) compare the stochastic 

volatility model with jump-diffusion and conclude that “it is less obvious 

whether the theoretical predictions of either class of models are – or can be 

made – consistent with the observed term structures of these deviations” (see 

also Andersen et al., 2002). The authors wonder whether SV and Jump 

models can fit the data well by capturing the level of skewness and kurtosis 

implied by the data for all maturities. They state that (compared with 

empirical observations) Jump models allow too rapid decay in skewness and 

kurtosis, and stochastic volatility models exhibit a hump shape overly 

pronounced for intermediate maturities. In contrast, the results for the 

enhanced CS model show that is allows more flexibility in all estimated 

parameters, not only in terms of maturity but also in terms of moneyness. 

 

 

3.6. Robustness analysis for pricing results 

 We check the robustness of the performance of the enhanced models in 

several ways. First, we check in terms of the complexity of the nonparametric 

GPF. Then we check in terms of pricing data not used in the estimation. 

Finally we compare the performance of the enhanced models (which are 

estimated monthly) with parametric benchmarks estimated weekly instead of 

daily. These robustness tests can also be seen as tests of overfitting. We check 

the robustness of the enhanced models in out of sample performance by using 

fewer hidden neurons in the validation phase (results not reported for brevity). 

We use one-to-eight and one-to-six hidden neurons and the results show 

significant robustness to the case of one-to-ten hidden neurons used in the 

analysis. Specifically, with one-to-eight hidden neurons the out of sample 

RMSE deteriorates at most 3.8% for 2NLeBS  and less than 1% for the other 

models while for one-to-six hidden neurons RMSE deteriorates around 6% for 

2NLeBS  and less than 4% for the other models. Enhanced models that employ 

an overall average implied parameter input exhibit the greatest robustness. 

We also calculated (not reported for brevity) out of sample RMSE by fixing the 

number of hidden neurons during estimation across periods. BS based 

enhanced models exhibit similar performance for seven to ten hidden neurons 
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with RMSE deterioration around 3.7%-6.7% while between three and seven 

hidden neurons RMSE is below 1.90. CS based enhanced models with five or 

more hidden neurons exhibit quite similar out of sample RMSEs which are 

close to the optimal ones as in Table 3.8 

 

 
 

Table 3.13. Summary statistics regarding the enhanced parameters for 
models (ePOPMs) optimized and selected using a pricing criterion  
Moneyness and time to maturity tabulation of enhanced parameters implied by some 
of the enhanced models for the aggregate period March 3, 2003 to August 31, 2004. 
 

.  

 The next test was to disaggregate each model RMSE into two 

components: the RMSE of observations (in total 16609) that are common both 

in day t-1 (day used to extract the implied parameters) and in day t (out of 
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sample day) and the RMSE of observations (in total 5035) that can be thought 

of as unseen data (exist in t but not in t-1). Results are presented in Table 

3.14 (columns 2-3 with numerical results). The first column reports again the 

RMSE for the AggTs dataset for comparison purposes. It is important to see 

whether the models’ performance in the unseen data is close to the 

performance in the common data or if it deviates significantly. As expected, 

the RMSE for the common observations (unseen) is always lower (higher) than 

the RMSE in AggTs. We can see that DVF models loose more accuracy when 

used to price unseen observations compared to the BS and CS with overall 

average implied parameters. We also confirm that SV is highly inaccurate 

when used to price unseen data (especially of long maturity) compared to SVJ.  

 

 
 

Table 3.14. Robustness analysis - RMSE for common/unseen and totally 
new observations 
The results in the second and third numerical columns disaggregate each model Root 
Mean Square Error (RMSE) into two components: i) the RMSE of observations (in total 
16609) that are common both in day t-1 (day used to extract the implied parameters) 
and in day t (out of sample day), and ii) the RMSE of observations (in total 5035) that 
can be thought of as unseen data (exist in t but not in t-1). The RMSE in the last 
column refers to the out of sample pricing performance of each model for 1237 totally 
unseen observations (outside the moneyness range used in estimation). The first 
column of results repeats RMSE for the aggregate dataset (AggTs) for comparison 
purposes. 
 

 As can been seen, the enhanced models with overall average implied 

parameters as input ( aveBS , 2
aveCS  and 3

aveCS ) are very robust with unseen 

data and some even outperform the SVJ model (for example, the RMSE of 
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2
aveCS  in the unseen dataset is 1.693, quite smaller than 1.910 for SVJ). The 

robustness of our proposed enhanced models is very important since unseen 

data comprise a considerable part of the contracts traded every day (about 

23% of out of sample observations in our dataset were contracts not traded 

the day before). 

 We also examine the models’ performance to price totally unseen 

contracts (outside the moneyness range used in estimation). Specifically for 

the period January 2002 – August 2004 there are 784 observations with 

moneyness in the range of 0.70-0.80 and 453 observations with moneyness in 

the range of 1.20-1.30 (in total 1237 new observations). Results are reported 

in the last column of Table 3.14. First, we note that CS based parametric 

models significantly outperform the equivalent BS ones. The SV model (in 

contrast to SVJ) performs very poorly (again we have verified that large errors 

are mostly produced from long maturity options). The enhanced models with 

overall average implied parameters are the best performers. Actually, the 

RMSE of 3
aveCS  is 1.341 outperforming by far that of SVJ (1.709) and as we 

have verified this performance is consistent in all moneyness and maturity 

ranges of the new observations.  

 As a final check we calculate the RMSE of the parametric models five 

days ahead. Remember that the enhanced models are estimated and then 

used for a whole month, whereas the parametric ones (overall average and 

DVF) are estimated every day. In that comparison there is obviously a bias 

against the proposed semi-parametric methodology, since some models and 

especially the SVJ are very computationally expensive to calibrate daily. As 

shown in Table 3.15, the RMSE deteriorates for avBS  by 7.7%, for 2NLBS  by 

34.5%, for avCS  19.2%, for 2NLCS  by 30.9%, for SV by 23.4%, and for SVJ by 

43.3%. We see that the RMSE for five days ahead deteriorates so that the 

enhanced models are far superior to the parametric ones (now they 

outperform SVJ considerably). RMSE for ten or more days ahead (not shown 

for brevity) deteriorates even further for the parametric models. These results 

are consistent with the arguments in Christoffersen and Jacobs (2004), Bollen 

and Whaley (2004), and Hull and Suo (2002) that implied volatility functions 

are not persistent.  
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Table 3.15. Robustness analysis - 5-days ahead (out of sample) pricing 
performance for selected parametric models 
Root Mean Square Error (RMSE) regarding the out of sample pricing performance for 
selective parametric models for the aggregate period March 3, 2003 to August 31, 
2004. The models are used to price call options on day t with implied parameters 
computed on day t - 5. The second row reports the Deterioration Ratio which is the 
RMSE of each model in this table divided by the RMSE obtained for out of sample 
performance one day ahead.  
 

 

3.7. Single instrument hedging analysis 

 We now investigate the hedging performance of the best (with respect to 

out of sample pricing) models. We follow a single instrument hedging strategy 

similar to the one conducted by Bakshi et al. (1997). Based on previous 

research (i.e. Hutchinson et al., 1994, Bakshi et al., 1997, Garcia and 

Gencay, 2000, Chernov and Ghyssels, 2000), the best model (parametric or 

nonparametric) in terms of out of sample pricing accuracy does not always 

prove to be the best performing one with respect to hedging performance. 

Bollen and Whaley (2004) find that the slope of the daily implied volatility 

functions in terms of moneyness is very erratic which may explain the poor 

performance of pricing models when used for hedging. As suggested by 

Christoffersen and Jacobs (2004) the above ambiguity may be due to the 

inappropriate choice of the loss function. They suggest that “the best possible 

parameter estimates for a hedging exercise will likely be obtained using a 

hedging based loss function” (p. 316). For the enhanced models, in order to 

align the estimation and evaluation loss functions we employ the following 

methodology (see also Garcia and Gencay, 2000): enhanced models 

parameters are estimated by minimizing the pricing RMSE but monitoring the 

hedging RMSE in the validation sample so that for each period the model with 

the lowest hedging error is chosen. The results are compared to hedging 

results obtained by the parametric models and to those obtained by enhanced 

models optimized and chosen based on a pricing loss function.       
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The single-instrument hedging mitigates the no-arbitrage strategy followed by 

Black and Scholes (1973), where a portfolio including a short position in a call 

with a certain exercise price and time to expiration is hedged via a long 

position in the underlying asset. For such a hedging strategy and for each 

model, at time instance t we short the mth call option contract with market 

value, mrk
t,mc , go long in t,m∆  “index shares” and invest the residual, t,mB , in the 

risk-free bond. Next, at time t+∆t we liquidate the position by buying the call 

and selling the index and calculate each hedging error H(∆t) as follows: 

 

mrk
ttm

tr
tmtttm ceBStH ∆+

∆
∆+ −+∆=∆ ,,,)(  (3.26)  

ttm
mrk

tmtm ScB ,,, ∆−=  (3.27)  

 

Each trading day the hedged portfolio is rebalanced. The hedging error is 

calculated when both prices, mrk
tmc ,  and mrk

ttmc ∆+,  are available. For each model 

we calculate the hedging RMSE for the AggTs period. The expression BS
t,m∆  for 

BS is equal to t
BS

tm Sc ∂∂ /,  = ( )dNe Tyd− , for SVJ is equal to t
SVJ

tm Sc ∂∂ /,  = 

1Π
− Tyde  (see also Appendix in Bakshi et al., 1997) and for CS are given in 

section 3.2. The theoretical delta value t,m∆  for a long call always lies between 

zero and unity (for a positive dividend yield) but for the CS model, these 

bounds may be violated.  In our sample this occurred in very few instances in 

which cases the delta values were set equal to their theoretical bound. As can 

be deduced from the results in Hutchinson et al. (1994) (see their Figure 5 

and also discussions in Aït-Sahalia and Lo, 1998, pg. 512) there are cases 

where standard feedforward artificial neural networks fail to produce 

theoretically consistent delta values. In contrast, our semi-parametric method 

has the advantage of being consistent with the parametric model being 

enhanced. In the following tables we discuss the RMSE measure that was 

used in estimation but for completeness we also report the MAE and MeAE 

measures. 
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 Single instrument hedging results are reported in Table 3.16 for the 

parametric models. The single instrument analysis is most appropriate for the 

parametric BS and CS and the respective enhanced models and we will focus 

in the comparison of those models. We see that the BS models are the best 

performers among the parametric ones with respect to hedging, in contrast to 

pricing where the CS models are superior, confirming thus Bakshi et al. 

(1997) who also find that model ranking differs between pricing and hedging.  

We also confirm Dumas et al. (1998) since the several DVF based BS models 

are indistinguishable with respect to hedging. Similarly indistinguishable 

among themselves are the parametric CS based models. Among all parametric 

models, the BS based ones are the best42.  

 

 
 

Table 3.16. Out of sample hedging performance of parametric models  
Error measures (out of sample) for single instrument hedging performance of all 
parametric models (aggregate period March 3, 2003 to August 31, 2004). RMSE is the 
Root Mean Square Error, MAE is the Mean Absolute Error and MeAE is the Median 
Absolute Error. 
 

 The hedging performance of the enhanced models in Table 3.17 is given 

first for models chosen for pricing and then for models chosen explicitly for 

                                                 
 
42 Evidence that parametric models which can handle negative skewness and excess 

kurtosis can underperform BS for single instrument hedging is also documented in 

Capelle-Blancard et al. (2001), Vähämaa (2003) and Jurczenko et al., (2004). 
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hedging. In the first case we see that results compare with those of the 

parametric models, with only the CS based ones ( 2
aveCS , 2

2NLeCS , 3
aveCS , 

3
2NLeCS ) demonstrating an improvement over the respective parametric ones. 

The improvement is present when skewness ( 2eCS ) and both skewness and 

kurtosis ( 3eCS ) are enhanced, but not when only volatility ( 1eCS ) is 

enhanced. When models are estimated besed on a hedging criterion, we see 

that 2
aveCS , 2

2NLeCS , 3
aveCS  and 3

2NLeCS  improve hedging performance 

considerably, confirming the conjecture in Christoffersen and Jacobs (2004). 

Finally we note that the benchmark model SVJ (and SV) in a single 

instrument hedging analysis underperforms the parametric BS and the 

enhanced models. 

 

 
 

Table 3.17. Out of sample hedging performance of non-parametrically 
enhanced models (ePOPMs) 
Error measures (out of sample) for single instrument hedging performance of selected 
enhanced parametric models (ePOPMs) for the aggregate period March 3, 2003 to 
August 31, 2004. The upper panel of results presents the single instrument hedging 
performance of enhanced models optimized and selected using a pricing criterion 
while the lower panel presents the single instrument hedging performance of 
enhanced models selected using a hedging criterion. RMSE is the Root Mean Square 
Error, MAE is the Mean Absolute Error and MeAE is the Median Absolute Error.  
 

 We remark that Bakshi et al. (1997) (see also Dumas et al., 1998, and 

Chernov and Ghysels, 2000) find that their models’ hedging performance is 

virtually indistinguishable and that the hedging based rankings of the models 

are in sharp contrast with their out of sample pricing performance. We reach 

similar conclusions for the case of the parametric models. As a significant 
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variation from previous literature we see that this is not the case for the 

enhanced models, especially the CS based ones.        

 

 
 

Table 3.18: Summary statistics regarding the enhanced parameters for 
models (ePOPMs) optimized on a pricing criterion and selected using a 
hedging criterion  
Moneyness and time to maturity tabulation of enhanced parameters implied by some 
of the enhanced models for the aggregate period March 3, 2003 to August 31, 2004. 
 

 

Finally we notice that the enhanced models chosen for hedging had a very 

poor performance in pricing (results not reported for brevity). We examine 

their enhanced parameter values as provided by the GPF (Table 3.18), 

especially for 3
aveCS  that conveys information for skewness and kurtosis. In 

contrast to Table 3.13, skewness is now positive for 18 out of 21 

moneyness/maturity classes with an average value of 0.25 whilst kurtosis 
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bounces between 7.18 and 9.74. These values differ by far from those in Table 

3.13 and fully explain the poor pricing performance. This might be attributed 

to movements in deltas not directly linked to asset price movements (see 

Capelle-Blancard et al., 2001). The inappropriate choice of the loss function 

results in parameter estimation not suitable for such a different use. Under 

this setting we try to find the best delta values, not the best call price. The 

obtained enhanced parameters for models chosen on the hedging criterion 

capture efforts to hedge against exposures to the risks of the underlying asset. 

The hedged positions seem to have two properties: skewness is positive 

immunizing in this way the downsize risk and kurtosis is excessively high 

immunizing against the prospect of extreme returns (fat tails). Effectively both 

effects help reduce the impact of volatility.           

 

 

3.8. Summary and conclusions 

 In this study we extend the Dumas et al. (1998) DVF for option pricing, 

with a nonparametric approach to estimate generalized parameter functions 

(GPF). The resulting enhanced parametric models have many desirable 

properties compared to the standard implementation of artificial neural 

networks like theory consistent option values and Greek letters. In general, 

this semi-parametric methodology is proposed as a way to alleviate 

deficiencies of the modern parametric options models and standard 

nonparametric approaches. For pricing and hedging performance analysis we 

use the S&P 500 index call options for the period January 2002 to August 

2004. We compare the GPF approach with parametric models using both daily 

overall average implied parameters (for all parametric models considered) and 

daily contract specific implied parameters derived by the DVF approach (for 

the BS and CS models). The SVJ and SV models have also been included in 

the analysis for comparison. 

 We discuss the calibration of the parametric models, first for the overall 

average implied parameters of BS, CS, SV and SVJ, and then for the DVF 

based BS and CS models. We show that a careful estimation/optimization 

search is needed to obtain good implied parameters. The results obtained out 
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of sample strongly support the proposed methodology. The first important 

finding is that the DVF approach when applied to CS provides results superior 

to CS (with overall average parameter estimates) and also to BS (with either 

overall average or DVF estimates). The second is that the SVJ model is the 

best model among the parametric models whilst SV is inferior to DVF based 

BS and CS models. The third is that the increase in the pricing accuracy of 

the enhanced BS and CS models over the best performing BS and CS 

parametric ones is considerable and statistically significant. In general, the 

best enhanced models (with daily implied parameters but monthly estimation 

of the GPF) are comparable to the daily estimated SVJ.  

 In addition, we find that the enhanced methodology is robust to the 

complexity of the GPF. It is also robust to the pricing of contracts not used 

during estimation, where 3
aveCS  significantly outperforms SVJ. 

Consistently with the recommendation in Christoffersen and Jacobs (2004) we 

observe that single instrument hedging results using ePOPMs chosen using a 

hedging criterion outperform all the parametric models and the ePOPMs 

chosen using a pricing criterion.  

The proposed approach can also be used in other studies like Brandt and Wu 

(2002) where option parameters are estimated from liquid European options 

and then applied to price less liquid and exotic derivatives. In addition, it 

allows estimation of term and moneyness structure in skewness and kurtosis 

which is essential for value-at-risk analysis (see Das and Sundaram, 1991, p. 

212). 
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4. Functional Estimation for Options Pricing Via 
Support Vector Machines 
 

 

Abstract  

 The focus of this essay is to explore the pricing performance of Support 

Vector Machines for pricing S&P 500 index call options. SVM is a novel 

nonparametric methodology that has been developed in the context of 

statistical learning theory and until now it has been practically neglected in 

financial econometric applications. This new method is compared with 

feedforward Artificial Neural Networks and also with Parametric Options 

Pricing Models using standard implied parameters and parameters derived via 

Deterministic Volatility Functions. The empirical analysis has shown 

promising results for the SVMs.  
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4.1. Introduction 

 The Black and Scholes (BS) (1973) model is considered as the most 

prominent achievement in the options pricing theory. Empirical research has 

shown that the formula suffers from systematic biases known as the volatility 

smile/smirk anomaly, which is the result of the simplistic assumptions that 

underlie its pricing dynamics (see Black and Scholes, 1975, Rubinstein, 1994, 

Bates, 2003, Bakshi et al., 1997, Andersen et al., 2002). More elaborate 

POPMs that allow for stochastic volatility and jumps in their diffusion process 

have been introduced in an attempt to eliminate most of the BS biases (for a 

review see Bakshi et al., 1997). Although these models seem to produce more 

accurate pricing results compared to the BS model, yet they are quite 

challenging and complex when used for real time applications and none is so 

flexible enough to provide results fully consistent with the observed market 

data (Bates, 1996 and 2000, and 2003, Bakshi et al., 1997, Dumas et al., 

1998, Hull and Suo, 2002, Eraker, 2004). This is why BS has shown severe 

time endurance and is still widely used by practitioners. In addition, 

simplistic extensions of BS like the Corrado and Su (CS) (1996) model and the 

use of BS in the context of Deterministic Volatility Functions (Dumas et al., 

1998) generate quite accurate prices for a wide spectrum of European 

financial options (see also Hull and Suo, 2002).  

 Financial markets are complex and characterized by a stochastic (time 

interchanging) behavior resulting to multivariate and highly nonlinear option 

pricing functions. There is evidence indicating that market participants 

change their option pricing attitudes from time to time (i.e. Rubinstein, 1994). 

POPMs may fail to adjust to such rapidly changing market behavior (see also 

Cont and Fonseca, 2002, for evidence of noticeable variation in daily implied 

parameters) since they are relying on static dynamics regarding their diffusion 

process. There is a great quest for nonparametric techniques that can 

potentially alleviate the limitations of POPMs. In addition to this, market 

practitioners have always a need for more accurate option pricing models that 

can be utilized in real-world applications. Under such cases, nonparametric 

data driven models like SVM and ANNs are powerful candidates to be applied 

for options pricing.  

 ANNs are very popular for applications in financial and economic 

applications (see Tsay, 2002) at least for four reasons. First, there are 
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theoretical foundations showing that ANNs can be used for multidimensional 

nonlinear regression since they are universal approximators able to 

approximate any nonlinear function and its derivatives arbitrarily well (see 

Cybenko, 1989, and Haykin, 1999). Second, they do not necessarily rely on 

any financial assumptions and can learn the empirical input/output 

relationships inductively using historical or implied input variables and 

transactions data. Third, they rely on fairly simple training algorithms. 

Fourth, their out of sample generalization performance is adequate as long as 

a large datasets are being used and nowadays this is feasible due to the 

abundance of historical transactions data provided by numerous vendors. 

Under these conditions, unavoidably ANNs have also found extensive 

applications in the options pricing area. The vast amount of empirical 

evidence from these applications show that ANNs can outperform the most 

widely used POPMs (like the BS for example), and that they can be more 

accurate and computationally more efficient alternatives when the underlying 

asset’s price dynamics are unknown (see Hutchinson et al., 1994, Garcia and 

Gencay, 2000, refer also to results from the first essay).  

 Unlike ANNs, SVMs have not gained yet any significant popularity in 

financial econometric applications although they are widely used in electrical 

engineering, bioinformatics, pattern recognition, text analysis, computer 

vision etc (see Smola and Schölkoph, 1998, and references therein). SVMs 

have evolved in the framework of statistical learning theory (see Vapnik, 1995, 

for extensive details) and can be utilized for problems involving linear or 

nonlinear regression. The main advantage of SVMs over other nonparametric 

techniques is that they encompass statistical properties that enable them to 

generalize satisfactorily well to unseen data. Another significant characteristic 

is that under SVMs someone solves a convex optimization problem with a 

unique global (and sparse) solution while other nonparametric methods 

usually have non-convex error functions which entail the risk of having 

multiple local minima solutions. Another one significant feature is that SVMs 

employ the so called VC theory (see Vapnik and Chervonenkis, 1974), which 

is defined in a strictly statistical framework, that controls in specific ways the 

model’s estimation and parameterization to preclude overfitting so as to 

ensure good out of sample (generalization) results. Based on the theory that 

underlies SVM, their potential superiority over ANNs should be more obvious 
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in datasets of small and moderate size (see Vojislav, 2001). For this reason we 

employ SVM with training data sets that have short time spans.    

 In this study our main contribution is to develop SVM for pricing 

European options and to compare it with other alternative pricing approaches 

like ANNs and POPMs. The methodological framework can also be beneficial to 

practitioners for real time trading. We consider the traditional SVM for 

function approximation as originally developed by Vapnik based on the ε -

insensitive loss function (see Vapnik, 1995) which is considered to be more 

robust when noise is non Gaussian. In addition, we consider the Least 

Squares Support Vector Machines (LS-SVM) which is a subsequent variant of 

the original SVM methodology, originally proposed by Suykens and co-

workers (see Suykens et al., 2002). Compared to SVMs, LS-SVMs can be more 

robust when noise is Gaussian, they rely on fewer tuning hyper-parameters 

that can expedite the estimation process and minimize a least squares loss 

function which is most common in empirical options pricing studies (see 

Christoffersen and Jacobs, 2004).    

 To our knowledge this is the first time that such a comprehensive 

application is considered43 for options pricing. In this study we estimate ANNs 

and SVM using two different target functions (desired output). One that 

approximates the unknown empirical options pricing function explicitly by 

modeling the market prices of the call options (called the market target 

function) and one implicitly by modeling the residual between the actual call 

market price and the parametric option price estimate (called the hybrid 

target function). These target functions have been also considered in the first 

two essays of this thesis. We compare them with the parametric BS and CS 

models using overall average implied parameters and contract specific implied 

volatility versions derived by the DVF method. Moreover, as an additional 

benchmark model we use the Stochastic Volatility and Jump (SVJ) model of 

Bates (1996) since literature documents that it can be an effective remedy to 

the BS biases (see Bakshi et al., 1997 and Bates, 1996) and can provide 

                                                 
 
43 There are some studies that apply the SVM in financial time series. Müller et al. 
(1999) apply the SVM for approximating the noisy Mackey-Glass system and the 
Santa Fe Times Series Competition (set D). Gestel et al. (2001) apply LS-SVM for one-
step ahead prediction of the weekly 90-day T-bill rate and the daily DAX30 closing 
prices. Cao and Tay (2003) apply SVM to forecast the five day relative difference in 
percentage of price for five futures contracts.  
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significantly better pricing results compared to the stochastic volatility model 

of Heston (1993).  

 In the following we first review the parametric models, and the 

standard and hybrid ANN, SVM and LS-SVM models. Then we discuss the 

dataset and the methodologies employed to get the implied parameter 

estimates. Subsequently we review the numerical results. 

 

 

4.2. The parametric models used 

 Below we briefly discuss the different POPMs that we employ in this 

study. The first model examined is the Black and Scholes (1973) since is a 

benchmark and widely referenced model. The Black Scholes formula for 

European call options modified for dividend-paying (see also Merton, 1973) 

underlying asset is: 

 

)()( TdNXedNSec rTTydBS σ−−= −        (4.1) 

 

Τ

++
=

σ

σ 2/)()()/ln( 2TTdrXS
d y-

  (4.1.1) 

 

where BSc  is premium paid for the European call option, S is the spot price of 

the underlying asset, X  is the exercise price of the call option, r is the 

continuously compounded risk free interest rate, yd  is the continuous 

dividend yield paid by the underlying asset, T is the time left until the option 

expiration date, 2σ  is the yearly variance rate of return for the underlying 

asset and (.)N  stands for the standard normal cumulative  distribution . 

 The Corrado and Su (1996) model is an extension of the BS model that 

accounts for additional skewness and kurtosis in stock returns and is used as 

a benchmark in this essay. Using a Gram-Charlier series expansion of a 
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normal density function Corrado and Su defined their model as (see also the 

correction in Brown and Robinson, 2002):  

 

4433 )3( QQcc BSCS −++= µµ   (4.2) 

 

where BSc  is the BS value for the European call option given in Eq. (4.1) and, 

 

))()()()2((
!3

1 2
3 dNTdndTTSeQ Tyd σσσ +−=

−  (4.2.1) 

))()()())(31((
!4

1 32
4 dNTdnTdTdTSeQ Tyd σσσσ +−−−=

−  

 (4.2.2) 

 

In Eq. (4.2) 3Q  and 4Q  represent the marginal effect of non-normal skewness 

and kurtosis, respectively in the option price whereas 3µ  and 4µ  correspond 

to coefficients of skewness and kurtosis. In the above expressions,  

 

)2/exp(
2
1)( 2zzn −=
π

 (4.2.3) 

 

refers to the standard normal probability density function.  

 In addition to the above models, we also employ as a benchmark the 

SVJ model of Bates (1996). In their study Bakshi et al. (1997) found that the 

SVJ exhibited satisfactory out of sample pricing performance for the S&P 500 

index options when compared to other parametric option pricing models since 

it offers a quite flexible distributional structure able to capture the negative 

skewness and excess kurtosis implicit in the market returns. Under this 

model the underlying asset follows geometric jump diffusion with the 

instantaneous conditional variance tV  to follow a mean-reverting square root 

process: 
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dqdZVdt
S

dS κκλµ ++−= )(   (4.3) 

vv dZVdtVdV σβα +−= )(  (4.4) 

with 

dtdZdZ v ρ=),cov(   

),5.0)1(ln(~)1ln( 22 θθκκ −++ N   

dtdqprob λ== )1(   

 

where µ  is the instantaneous drift of the underlying asset, λ  is the annual 

frequency of jumps, κ is the random percentage jump conditional on a jump 

occurring, q  is a Poison counter with intensity λ , 2θ  is the jump variance, 

and ρ  is the correlation coefficient between the volatility shocks and the 

underlying asset movements. Moreover, β  is the rate of mean reversion and 

βα / is the variance steady-state level (long run mean).  

 The value of a European call option is given as a function of state 

variables and parameters: 

 

][ 21 Π−Π= − XFec rTSVJ  (4.5) 

 

with Τ)()( ydr
T SeSEF −

==  to be the forward price of the underlying asset, with 

(.)E  to be the expectation with respect to the risk-neutral probability measure 

and TS  the price of S  at option’s maturity. Evaluation of 1Π  and 2Π  is done 

under the distributional assumptions embedded in the risk-neutral 

probability measures by using the moment generating functions of  )/ln( SST . 

The following expressions are needed to compute 1Π  and 2Π : 
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5.01 =µ ,  5.02 −=µ , vB ρσβ −=1 ,  βΒ =2  (4.7.3) 

 

and the resulting probabilities 1Π  and 2Π  are derived by numerically 

evaluating the imaginary part of the Fourier inversion: 

∫
∞ −

−
+=>
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)( ])([15.0)|( Φ
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Φ

π
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d
eiFimag

FeSprob
i

j
j

Tydr
T  (4.8) 

 

with )/ln( SX≡χ  and the integrals to be evaluated with an adaptive Lobatto 

quadrature.  

 Here we must note that such complicated models are not widely used 

by traders for pricing options (see Hull and Suo, 2002, p. 300). Traders 

usually rely on simpler models and more intuitive methodologies that are 

closer to BS model used under the DVF approach which are able to handle 

contract specific implied parameters (see also Brandt and Wu, 2002).  

 In conjunction to the above, the DVF approach which was proposed by 

Dumas et al. (1998) for deriving per contract volatility for the BS model 

comprises a practical approach in order to mitigate the volatility smile 

anomaly of the BS model. Berkowitz (2004) demonstrates theoretically that 

the DVF constitutes a reduced-form approximation to an unknown structural 
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model which under frequent re-estimation can exhibit exceptional pricing 

performance. For our analysis we estimate the following DVF specification: 

 

 DVF:  ),01.0max( 43
2

210 XTaTaXaXaa ++++=σ  (4.9) 

 

Empirical results from the third essay have shown that the above 

specification seems to work well for the data under consideration. We also 

implement the DVF for deriving a per contract volatility estimate for the CS 

model since it can produce even more accurate results compared to the BS 

based DVF version (refer to third essay for empirical results).  

 

 

4.3. The nonparametric approaches: ANNs, SVM and LS-SVM 

 ANNs comprise a popular methodology for handling function estimation 

problems for many reasons. First of all, theoretical proofs exist showing that 

under certain conditions, ANNs are universal approximators able to 

approximate any nonlinear function arbitrarily well (Cybenko, 1989). In 

addition, they perform well in situations where there is lack of knowledge for 

the relationship that underpins a set of variables and they are robust on the 

presence of noisy data. Nevertheless, they are potentially prone to some 

practical merits and limitations. First, there are no theoretical foundations on 

how to select the network type and structure and on how to implement the 

optimization procedure. For this reason the model structure (number of 

neuron layers and number of hidden neurons in each of the layers) should be 

defined a-priori which is not necessarily the best strategy in choosing the 

optimal network architecture for the faced problem. This task is rather an art 

instead of science and can be better tackled by experts with experience on 

how to apply the ANNs methodology having at the same time considerable 

knowledge on the problem under investigation. Second, estimating ANNs 

involves the optimization of a highly non-convex error function and frequently 

enough optimization algorithms get stuck to local minima solutions resulting 

to suboptimal solutions for the network free parameters (weights and 
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biases)44. Given this peculiarity, regularization techniques that are employed 

in an attempt to control the capacity of the ANNs, like cross validation 

strategies45 and early stopping46, are only partial remedies potentially 

resulting to structures that do not maximize their generalization performance 

to unseen data. Finally ANNs learn the empirical functions inductively from 

transactions data without embedding any information related to the problem 

under investigation. Under this setting, the estimated weights do not convey 

any meaningful interpretation to help understand better the input-output 

relationship. In a nutshell, significant expertise is needed in order to develop 

ANNs that can be trusted regarding their out of sample pricing estimates.  

 In contrast, SVM are not confined by the above issues (Smola and 

Schölkoph, 1998). First of all, the model complexity does not need to be 

determined a-priori. It is determined endogenously as part of the optimization 

problem in such a way that maximizes the generalization capability of the 

model. More importantly, a unique solution is found after estimation as a 

solution of a (convex) Quadratic Programming (QP) problem with linear 

constraints, which depends on the estimating data and the selection of few 

tuning hyper-parameters. In addition, the solution to the QP problem provides 

the necessary information for choosing the most important datapoints, known 

as support vectors, among all the data; based on the SVM formulation, 

                                                 
 
44 One way to circumvent this is to estimate a predetermined network structure 
several times always starting with different initial weights and biases and selecting 
the model with the least error.    
45 Cross-validation is a classical statistical tool for resolving the trade-off between the 
performance on training data and the complexity of a model. The basic idea of the 
cross-validation is founded on the fact that good-results taken from the data used for 
estimation does not necessarily ensure good performance to a testing set with unseen 
data. To implement the cross validation, a particular dataset is divided in training and 
validation subsets of data. A set of alternative models is estimated using the training 
dataset by exploring a meaningful grid of possible parameter combinations in the case 
of SVM and LS-SVM or by varying the number of hidden neurons in the case of ANNs. 
Then the model that produces the least error (based on a predefined norm) in the 
validation subset is considered as the one that can perform the best out of sample 
using unseen data.  
46 Early stopping is another regularization technique used to control the capacity of 
an ANN. During the nonlinear optimization of an ANN the error in the estimating 
(training) data is generally monotonically decreasing as a function of the number of 
iterations of the algorithm employed. This does guarantees that the error to the 
validation dataset will also decrease. What usually happens is that the error in the 
validation dataset is decreasing at the start and then it starts increasing since the 
ANN tends to memorize (overfit) the estimating data. Early stopping is employed to 
stop training an ANN at the point with the lowest error in the validation sample with 
the hope of maximizing the network generalization ability in the testing dataset.        
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support vectors uniquely define the estimated regression function so in this 

manner the estimated coefficients are informative. Furthermore, input data of 

any arbitrary dimensionality can be treated with only linear cost in the 

number of input dimensions. This property in conjunction with the good 

inherent regularization properties allows SVM to work particularly well when 

data is sparse (see Müller et al., 1999, Smola and Schölkoph, 1998). Yet, the 

performance of the SVM technique, like ANNs, depends crucially by the choice 

of the loss function which is inextricably connected with the noise in the data 

(Gaussian or not) and by other data regularities (e.g. non-stationary financial 

data). In the Appenidx that appears at the end of this essay, we discuss in 

detail the theory behind the SVMs and we demonstrate the programming 

formulations for estimating the SVMs and LS-SVMs (main refernces for this 

are Vapnik, 1995, Smola and Schölkoph, 1998 and Suykens et al., 2002). In 

the following section, we briefly demonstrate only the essensial programming 

formulations for the methodologies used in this essay. 

 

4.3.1. Feedforward artificial neural networks 

 A feedforward artificial neural network is a collection of interconnected 

processing elements structured in successive layers and is usually depicted 

as a network of links (termed as synapses) and nodes (termed as neurons) 

between layers. A typical feedforward neural network has an input layer, one 

or more hidden layers and an output layer. The ANNs used in this study have 

three layers: an input layer with N input variables, a hidden layer with H 

neurons, and an output layer with a single neuron. A particular neuron is 

composed of: i) the vector of input signals, ii) the vector weights and the 

associated bias, iii) the neuron itself that sums the product of the input signal 

with the corresponding weights and bias, and finally, iv) the neuron transfer 

function (commonly known also as activation function). Each connection is 

associated with a weight, kiw , and a bias, kb , in the hidden layer and a 

weight, kv , and a bias, 0v , for the output layer (k = 1,2,…,H, i = 1,2,…,N). In 

addition, the outputs of the hidden layer are the inputs for the output layer 

(thus the term feedforward). The operation carried out for estimating 

outputy , is the following: 
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 The weights and biases are adjusted according to the faced problem via 

optimization (the training algorithm). Their particularity relies on the fact that 

the neurons on each layer operate collectively and in a parallel manner on all 

input data. 

 For the purpose of this study, the hidden layer always uses the 

hyperbolic tangent sigmoid transfer function, while the output layer uses a 

linear transfer function. In addition, ANN architectures with only one hidden 

layer are considered since they operate as a nonlinear regression tool and can 

be trained to approximate most functions arbitrarily well (Cybenko, 1989). 

High accuracy can be obtained by including enough processing nodes in the 

hidden layer. Moreover, we also utilize the network initialization technique 

proposed by Nguyen and Windrow (see Hagan et al., 1996) that generates 

initial weights and bias values for a nonlinear transfer function so that the 

active regions of the layer’s neurons are distributed roughly evenly over the 

input space. 

 Estimating the networks free parameters is done by minimizing the 

following sum of squares loss function: 
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where, w  is a ν -dimensional column vector with the weights and biases given 

by: T
HHNH vvwwbbw ],,,,,,,,[ 0111 KKK= . 

 Optimization of the loss function in Eq. (4.11) is done with the 

Levenberg-Marquardt algorithm (further technical details about the 

implementation of this algorithm for ANNs can be found in the first three 

essays of this thesis and also in Hagan et al., 1996). 
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4.3.2. ε-insensitive support vector machines for function approximation 

 The application of SVM for regression was initially developed only for 

performing linear regression. The technique has been extended to handle 

nonlinear regression applications based on a very intuitive idea (see Vapnik, 

1995, 1998). First, apply a mapping )(xϕ  (chosen a-priori) of the input data x  

into an arbitrarily high dimensional feature space which can be (possibly) 

infinite dimensional. This transformation is usually called the kernel trick. 

Second, the linear SVM regression can be applied to create an approximate 

linear function in this arbitrarily high dimensional feature space. In this way, 

doing linear regression in a high dimensional feature space corresponds to 

nonlinear regression in the (low dimensional) input space (Müller et al., 1999).  

 The idea behind the SVM for function approximation (Support Vector 

Regression) is to estimate the coefficient values w  (called the weights) and b  

(called the bias) that optimize the generalization ability of our regressor by 

minimizing the following regularized loss function: 

 

( )∑
=

+
P

j
jj

T

bw
xftLCww
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)(,

2
1min ε  (4.12) 

 

where ( )xf  is the form of the SVM function approximation and is given by: 

 

( ) bxwxf T += )(ϕ  (4.13) 

 

and ( )xftL (,ε  is the so-called Vapnik’s ε -insensitive loss functions defined 

as: 
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In the above formulations hNNx ℜ→ℜ:)(ϕ represents a nonlinear mapping 

(transformation) of the input space to an arbitrarily high-dimensional feature 

space which can be infinite dimensional (in such case the weights vector w  

will also become infinite dimensional). The constant 0>C  determines the 

trade-off between the amount up to which deviations larger than ε  are 

tolerated and the flatness (complexity) of the estimated model. In the case 

where ε  is chosen to be small and some datapoints do not lay within the tube 

of ε  accuracy the estimation of the w  and b  is done by formulating the 

following optimization problem in the primal weight space of the unknown 

coefficients:  

 

( )∑
=

++=
P

j
jj

T
Pbw

CwwwL
1

*

*,,, 2
1*),,(min ξξξξ

ξξ
 (4.15) 

subject to 

Pjbxwt jj
T

j ...,,1,)( =+≤−− ξεϕ  (4.15.1) 

Pjbtxw jjj
T ...,,1,)( * =+≤+− ξεϕ  (4.15.2) 

Pjjj ...,,1,0, * =≥ξξ  (4.15.3) 

 

where jξ  and *
jξ  are defined in the prime space, that need to be introduced in 

order to make the solution of the optimization of the optimization problem 

feasible for all datapoints that are outside the ε -tube.   

Transforming the above into its dual formulation47 and after applying the 

kernel trick results to the following quadratic programming problem that 

depends only by the dual variables α  and *α  (see the Appendix for details): 

 

                                                 
 
47 In nonlinear regression problems the primal weights vector w can become infinite 
dimensional due to the applied transformation )(xϕ . For this reason the solution of 
the problem is better derived via its dual formulation.      
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with: 
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To successfully apply the SVMs for nonlinear regression problems it is 

necessary to apply the kernel trick by choosing a proper kernel function: 

 

( ) )()(, i
T

jij xxxxK ϕϕ=  (4.19) 

 

A function that is symmetric, continuous and satisfies Mercer’s condition (see 

Vapnik, 1995 for details) is an admissible kernel function that represent a 

scalar product in the (mapped) featured space as expressed in Eq. (4.19). The 
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Gaussian kernel is a widespread kernel function that is admissible for use 

with SVM for function approximation:  
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where 
2

ij xx −  measures the distance between two datapoints and 2
Kσ  is 

called the kernel width parameter and is used as a normalizing factor. It can 

be shown that when the Gaussian kernel function is considered, the 

nonlinear mapping )( jxϕ  is infinite dimensional and also that SVM are 

universal approximators (see Vapnik, 1995 and 1998 for details), an 

implication of paramount importance that is contributing to a growing 

popularity of SVM for regression applications.  

 The application of SVMs in general preserves some very helpful 

characteristics compared to other learning techniques (e.g. feedforward 

artificial neural networks,). The system of equations defined by Eqs. (4.16), 

(4.16.1) and (4.16.2) given a positive definite kernel translates to the 

optimization of a convex QP problem subject to linear constraints that results 

in a global and unique solution. On the contrary, feedforward artificial neural 

networks suffer from existence of multiple local minima solutions48 since the 

optimization function is not convex with respect to the network weights and 

biases49. Second, after selecting the SVM tuning parameters (C ,ε , 2
Kσ ), the 

model complexity is implicitly defined  by the number of support vectors as 

                                                 
 
48 Among others, Cybenko (1989) has shown that ANNs with one hidden layer of 
neurons can be universal function approximators that provide adequate robustness 
and convergence with good out of sample generalization abilities. However, this 
property can be of limited use in practice when the optimization algorithm gets stuck 
in local minima resulting to a suboptimal solution because of the non-convexity of the 
optimized error/loss function. In this study ANNs are implemented under certain 
strategies like early stopping and use of cross-validation techniques that try to 
eliminate the effect of local minima solutions and overfitting of the data.   
49 For ANNs one would have a convex problem if one would fix a number of hidden 
layer weights and one would compute the output layer’s weights (with linear 
characteristic at the output) from a sum of square error cost function (Suykens et al., 
2002). 
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part if the solution to the convex problem, whilst for the case of the ANNs the 

number of hidden neurons should be defined a-priori. Third, the solution to 

the problem is characterized by a sparse representation of the solution. As 

explained earlier, the final solution is defined solely by the support vectors 

which represent only a part of the datapoints used initially for the estimation 

of the model. Another important issue is that the function’s representation is 

independent of the dimensionality of the input space and depends only on the 

number of support vectors; in other words the size of the QP problem does not 

depend on the dimensionality of the input space. This is a significant remedy 

for the curse of dimensionality issue. On the contrary, ANNs are prone to the 

effects of the curse of dimensionality. In this case, early stopping and cross 

validation techniques should be very carefully applied by an expert in an 

attempt to overcome the curse of dimensionality by preventing the networks 

from memorizing the data used for estimation and to result to a limited or a 

poor generalization performance (Vojislav, 2001, Suykens et al., 2002).       

  

 

4.3.3. Least squares support vector machines  

 The Least Squares Support Vector Machines method is a variant of the 

original SVM methodology originally proposed and developed by Suykens and 

co-workers (see Suykens et al., 2002). According to this approach the model 

estimated is given by the following optimization problem in the primal weight 

space: 

 

∑
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subject to 

Pjebxwt jj
T

j ...,,1,)( =++= ϕ  (4.21.1) 

 

The above formulation is nothing else but a ridge regression cost function 

formulated in the featured space defined by the mapping )(xϕ . Parameter γ  

determines again the trade-off between the model complexity and goodness of 
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fit to the estimation data. As in the case of SVM (see Suykens et al., 2002, pg. 

98), after applying the kernel trick we obtain the following linear KKT system 

in a  and b  (see the Appendix for details): 

 

( ) Pjt
a
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j

P

j
jj ,...,1,),(
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==++∑

= γ
α  (4.22) 
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j
j

1
0α  (4.23) 

 

where the resulting LS-SVM model that characterizes the estimated regression 

function is given by: 

 

( )∑
=

+=
P

j
jj bxxKaxf

1
,)(  (4.24) 

 

Compared to the SVMs case, LS-SVMs preserve the following characteristics. 

First, the Gaussian kernel function given by Eq. (4.20) can be used in this 

case too. Second, the dual problem above corresponds to solving a linear KKT 

system which is a square system with a unique (global) solution when the 

matrix has full rank. Third, the error variable je  is used to control deviations 

from the regression function instead of the slack variables *, jj ξξ  and a 

squared loss function is used for this error variable instead of the ε -

insensitive loss function. This has two implications regarding the solution of 

the problem: i) lack of sparseness since every data point will now be a support 

vector, something that can be considered as a drawback compared to the 

SVM, ii) only two parameters γ  and 2
Kσ  are needed to be tuned compared to 

three for SVM which is an advantage since it reduces the possible parameters 

combinations (2-D grid instead of 3-D) and at the same time reduces the risk 

of selecting a suboptimal parameter combination. Due to the reasons 
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explained above, optimizing a set of LS-SVM models can be potentially faster 

compared to standard SVMs.   

 Regarding the estimation process, for SVMs we use the support vector 

training algorithm proposed by Vishwanathan et al., (2003) while for the LS-

SVMs we use a MATLAB® toolbox prepared by Suykens and co-authros (see 

Suykens et al., 2002 for details). Finally we note that a z-score (mean-

standard deviation) scaling was applied to all input and output variables 

during the estimation of all nonparametric models.  

 

 

4.4. Data and methodology 

 

4.4.1. Data and filtering rules 

 Our dataset covers the period January 2002 to August 2004 for a total 

of 671 trading days. The S&P 500 index call options are used because this 

option market is extremely liquid. They are the most popular index options 

traded in the CBOE and the closest to the theoretical setting of the parametric 

models (see Garcia and Gencay, 2000 and Constantinides et al, 2008). Each 

trading day we have the last available bid and ask call price, along with the 

strike price50, date of expiration51, volume and open interest. In our analysis 

we use the midpoint of the call option bid-ask spread since as noted by 

Dumas et al. (1998), using bid-ask midpoints rather that trade prices reduces 

noise in the cross sectional estimation of implied parameters. Each day the 

midpoint of the call option bid ask spread at the close of the market, mrkc , is 

matched with the closing value of S&P 500 index52.       

                                                 
 
50 For the purposes of this study we use the following moneyness categories: deep out 
the money (DOTM) when S/X≤0.90, out the money (OTM) when 0.90<S/X≤0.95, just 
out the money (JOTM) when 0.95<S/X≤0.99, at the money (ATM) when 
0.99<S/X≤1.01, just in the money (JITM) when 1.01<S/X≤1.05, in the money (ITM) 
when 1.05<S/X≤1.10, deep in the money (DITM) when S/X>1.10. 
51 In terms of time length, an option contract is classified as short term maturity (when 
maturity ≤ 60 calendar days), as medium term maturity (when maturity is between 61 
and 180 calendar days) and as long term maturity (when maturity > 180 calendar 
days). 
52 Data synchronicity should be minimal issue for this highly active market (see also 
Garcia and Gencay, 2000). Among others, Christoffersen and Jacobs (2004) and 
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 To create an informative dataset we rely on the following filtering rules 

(see also Bakshi et al., 1997): We first eliminate all observations that have 

zero trading volume since they do not represent actual trades. Second, we 

eliminate observations that violate either the lower or the upper arbitrage 

options bounds. Third, we eliminate all options with less than six or more 

than 260 days to expiration to avoid extreme option prices that are observed 

due to potential illiquidity problems. Similarly, price quotes of less than 1.0 

index points are not included. Finally, we demand at least four datapoints per 

maturity to secure that during the implied parameters extraction process, 

every maturity period is satisfactorily represented. The final dataset has a 

total of 37202 which 21644 are used in the testing dataset. The data used in 

this essay are similar to those used in the third one; thus sample 

characteristics and other descriptives can be found in Table 3.2.  

 

4.4.2. Splitting the data  

 We must first consider two issues; one regarding which dataset to use 

for estimating our nonparametric models and one regarding the use of a cross 

validation method when selecting our models. Regarding the first issue, until 

now previous studies that apply ANNs for options pricing use long data 

periods that result in large datasets. This is imperative to properly estimate 

and select the best ANN models when high out of sample pricing accuracy is 

requested (see Hutchinson et al., 1994, Garcia and Gencay, 2000, and 

references therein). Contrary to this, for reasons explained earlier, SVM are 

potentially more powerful when used with small datasets. They can be 

estimated very fast when the dataset is small. Moreover, using shorter time 

horizons might be beneficial in capturing the fast changing market conditions 

which are probably missed with long time horizons. Using shorter time 

horizons makes the estimation of SVM more competitive to POPMs which are 

usually calibrated on a daily basis. For these reasons we use a chronological 

data partitioning via a rolling-forward procedure.  

 Regarding the second issue, using cross validation is almost always 

needed since this is an effective, yet heuristic, way of controlling the capacity 

                                                                                                                                              
 
Chernov and Ghysels (2000) use daily closing prices of European call options written 
on the S&P 500 index.  
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of ANNs. Model capacity for SVM is part of the optimization problem but 

cross-validation may be needed so as to properly select the tuning hyper-

parameters to ensure high out of sample accuracy. On the other hand when 

the grid of possible tuning hyper-parameters is selected based on prior 

knowledge then it may be possible to have good out of sample performance 

without using a validation dataset.  

 For the case of SVM and LS-SVM we have conducted a pilot study 

using data from 2002 in order to determine areas of the tuning parameters 

values that result to models which performed well out of sample. For SVM we 

restrict our attention to the following hyper-parameter values resulting in a 

total of 40 possible combinations per training sample: 

 ( )200,100,50,10∈C  

 ( )05.0,025.0∈ε  

 ( )00.10,50.7,00.5,50.2,00.1∈Kσ  (4.25) 

 

For LS-SVM we restrict our attention to the following hyper-parameter values 

resulting to a total of 30 possible combinations per training sample: 

 ( )1000,750,500,250,100,10∈γ  

 ( )50,40,30,20,10∈Kσ  (4.26) 

 

The above allows us to limit the possible number of hyper-parameter 

combinations for the (testing) data in 2003-2004. We must note though that 

the above naïve selection does not guarantee that our SVM and LS-SVMs will 

be optimized in the best possible way and that will result to the overall best 

out of sample pricing estimates. There are other more sophisticated and 

structured methodologies for hyper-parameter selection (Cherkassky and Ma, 

2004). Such methodologies will be considered in future work.       

 For ANNs all networks having two to ten hidden neurons (in total nine) 

are examined per training case. Moreover, for a certain number of hidden 

neurons the network is (re)initialized and (re)trained 10 separate times in an 

attempt to minimize the potential problems of obtaining weights and 

parameters that result from a local minimum (in total 9x10=90 different 

model/parameter estimations per input/output variable combination and per 
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period). In addition, for a certain number of hidden neurons an early-stopping 

strategy is also adopted as a second measure in avoiding overfitting.  

 Regarding the data splitting we estimate SVM and LS-SVMs, our 

estimating (training) sample is always by using one month of data (around 23 

trading days) and our validation sample is always 5 trading days. After 

estimating all possible model combinations using the hyper-parameter 

combinations in Eq. (4.25) and (4.26) the model with the least Root Mean 

Squared Error (RMSE) in the validation dataset is chosen and used for out of 

sample pricing for the 5 trading days following the validation sample. 

 For ANNs we follow two different ways for splitting the data. In the first 

case we comply with previous studies that use rather long periods for training 

and validation. As like in the third essay of this thesis we use twelve months 

of data for training and two months for validation. After estimating all possible 

model combinations the model with the least RMSE in the validation dataset 

is chosen and used for out of sample pricing for the following one month of 

data. In the second data splitting we use much less data points to be 

compatible with the first splitting used for SVM and LS-SVM, that is one 

month for training and 5 days for validation.  

 In this essay the period March 2003 to August 2004 is a period where 

we can get out of sample pricing estimates from all models. For this period we 

have 21644 datapoints for which we compute and tabulate: the Root Mean 

Square Error (RMSE), the Mean Absolute Error (MAE), the Median Absolute 

Error (MdAE) and the 5th Percentile of Absolute Error (P5AE) and 95th 

Percentile of Absolute Error (P95AE). The focus of our analysis will be based on 

the RMSE measure since Bates (2000, p. 202) points out that RMSE is a 

relatively intuitive error measure and is useful for comparison with other 

work.    

 

4.4.3. Implied parameters 

 The methodology employed here for the estimation of the overall 

average implied parameters is similar to that in previous studies (Bakshi et 

al., 1997, Christoffersen et al., 2006) that adopt the Whaley (1982) 

simultaneous equation procedure to minimize a price deviation function with 

respect to the unobserved parameters. Market option prices ( mrkc ) are 
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assumed to be the corresponding POPM prices ( kc ) plus a random additive 

disturbance term ( kε ), k = BS, CS, or SVJ: 

 

kkmrk cc ε+=  (4.27)  

 

To find optimal implied parameter values per model k we solve an 

optimization problem that has the following form: 

 

∑
=

=
tP

j

k
jk

tSSE
1

2)(min)( ε
ξ

 (4.28) 

 

where tP  refers to the number of different call option transaction datapoints 

available in day t, kξ  the unknown parameters associated with a specific 

POPM (k = BS, CS, and SVJ). The SSE is minimized via a Nonlinear Least 

Squares optimization based again on the Levenberg-Marquardt algorithm. To 

minimize the possibility of obtaining implied parameters that correspond to a 

local minimum of the error surface with each model we use a variety of 

starting values for the unknown parameters based on daily average values 

reported in previous literature (for further technical details  and numerical 

results refer to the third essay of this thesis).  

 In addition to the above daily overall average (av) implied parameters, 

we also estimate the DVF volatility estimates using a similar optimization 

process. For BS this is straightforward; for CS we first estimate the overall 

average implied parameters and then we fix skewness and kurtosis to 

compute the contract specific implied volatility based on the volatility 

structure given in Eq. (4.9). Finally we 

note that for pricing at time instant t, the implied structural parameters 

derived at day t -1 are used together with all other needed information based 

on day t. Daily recalibration of the implied parameters (DVF and overall 

average) for POPMs is also adopted by Bakshi et al. (1997) and Christoffersen 

and Jacobs (2004) (see also Hull and Suo, 2002 and Berkowitz, 2004).     
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4.4.4. The set of alternative models 

 With the BS models we use as input S, X, T53, yd 54, r55, and any of the 

following ten volatility estimates: BS
jσ  where j = {av, DVF } with jBS  denoting 

the alternative BS parametric models. Similarly we denote the parametric CS 

alternatives ( jCS ). Finally note that for the SVJ model we only use the overall 

average parameter estimates (SVJ ). All these POPMs are used as benchmark 

models. 

 The dividend adjusted moneyness ratio Χ
− /)( TydSe  and time to 

maturity (T ) are always inputs to the nonparametric models. For 

nonparametric models we have two different target functions. The market 

target function which represents actual market prices of call options and the 

hybrid one represents the residual between the actual call market price and 

the parametric option price estimate.   

 The notation here depends on the additional inputs that are used from 

the parametric models. We use i
jSVM , with j={av, DVF} to denote the SVM 

that use as additional input variable the BS volatilities: BS
avσ  and BS

DVFσ . In 

addition, we use i={M, H} for subscript for denoting the nonparametric models 

that are estimated based on Market and the Hybrid target function. In a 

similar fashion we use i
jLSSVM  and i

jANN  for the LS-SVM and ANNs 

models. In total we examine four SVM models and four LS-SVMs. In addition, 

we have four ANN models that are estimated with the twelve-two-one months 

data-plitting and another four ANN models that are estimated with the same 

short data splitting as with the SVMs and LS-SVMs. 

 

                                                 
 
53 Time to maturity is computed assuming 252 days in a year.  
54 We have collected a daily dividend yield provided by Thomson Datastream. 
Jackwerth (2000) also assumes that the future dividends for the S&P 500 index can 
be approximated by a dividend yield. 
55 Previous studies have used 90-day T-bill rates as approximation of the interest rate. 
In this study we use nonlinear cubic spline interpolation for matching each option 
contract with a continuous interest rate, r , that corresponds to the option’s maturity. 
For this purpose, 1, 3, 6, and 12 months constant maturity T-bills rates (collected 
from the U.S. Federal Reserve Bank Statistical Releases) were considered. 
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4.5. Analysis of pricing results 

 Extensive details and numerical results regarding the calibration of the 

parametric models in obtaining the best daily overall average (av) and DVF 

implied parameters are given in the third essay of this thesis. Moreover, in the 

same essay we can find details regarding the in sample implied mean values 

of their parameters as well as their in sample pricing performance.  

We start our analysis with Table 4.1 that exhibits the out of sample 

performance of the parametric models. We see that the DVF based CS models 

provide better performance than the corresponding DVF based BS ones with 

about 14% improvement in the RMSE. Overall though, the SVJ model is the 

top performer in all metrics. 

 

 
 

Table 4.1. Out of sample pricing performance of the parametric models  
Error performance results (out of sample pricing) for all parametric models for the 
aggregate period March 3, 2003 to August 31, 2004. 
 

 We then look at the nonparametric models’ results. We first 

concentrate our attention to Table 4.2 which exhibits the out of sample 

pricing for ANNs using the short (top panel) and the long (lower panel) data-

splitting. The first observation is that the pricing performance with the short 

data-splitting is much better in the three out of the four models considered. 

Using so short data splittings is not the mainstream for financial applications 

of ANNs; thus this observation is rather new evidence indicating that under 

proper development ANNs can have good pricing performance in small 

datasets most probably because they can better capture the fast changing 

market conditions.  Another important observation from this table is that 

always the hybrid models perform better than the ANNs estimated with the 

market target function; the hybrid ANNs (with the short data splitting) are 

competitive with the best POPMs. In addition, as expected, the models with 
BS
DVFσ  always perform better than the models with BS

avσ . Specifically, H
DVFANN  
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is much better that any of the BS and CS DVF based models and its RMSE is 

also statistically non different to the RMSE of SVJ  (see statitscs of Table 4.5 

that tabulates standard two-tail t-tests and Johnson’s, 1978, modified t-tests). 

 

 
 

Table 4.2: Out of sample pricing performance for ANNs 
Error performance results (out of sample pricing) for all Artificial Neural Network 
models for the aggregate period March 3, 2003 to August 31, 2004. The symbol “N” is 
used to indicate that the ANN is estimated based on the market target function while 
“H” is used to indicate the hybrid target function. Morover the subscript “av” indicates 
that the Black and Scholes overall average implied volatility is used as an extra input 
to the ANNs while “DVF” indicates that the the Black and Scholes overall average 
implied volatility is used as an extra input. RMSE is the Root Mean Square Error, 
MAE is the Mean Absolute Error, MeAE is the Median Absolute Error and P5AE 
(P95AE) is the 5th (95th) Percentile of Absolute Errors. 
 

 The out of sample results for SVMs (Table 4.3) and for LS-SVMs (Table 

4.4) follow the same pattern as with ANNs. First, we always observe the hybrid 

models to perform considerably better than the models estimated with the 

market target function. Second, the models estimated with BS
DVFσ  as input 

perform better than the models estimated with BS
60σ . At a first glance the 

RMSE results of these models are for most of the cases above 2.00 meaning 

that they are not competitive enough to the POPM results shown in Table 4.1; 

this happens for six out of eight cases. Only H
DVFSVM  and H

DVFSVMLS −  have 

RMSE substantially lower than 2.00.  Specifically the RMSE for H
DVFSVM   is 

equal to 1.623 and for H
DVFSVMLS −  is equal to 1.594; these are statistically 

lower than the RMSE’s of 2NLBS  and 2NLCS  but statistically higher than the 

RMSE’s of SVJ .   
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Table 4.3: Out of sample pricing performance for SVM 
Error performance results (out of sample pricing) for all Support Vector Machines for 
the aggregate period March 3, 2003 to August 31, 2004. The symbol “N” is used to 
indicate that the ANN is estimated based on the market target function while “H” is 
used to indicate the hybrid target function. Morover the subscript “av” indicates that 
the Black and Scholes overall average implied volatility is used as an extra input to 
the ANNs while “DVF” indicates the Black and Scholes overall average implied 
volatility is used as an extra input. RMSE is the Root Mean Square Error, MAE is the 
Mean Absolute Error, MeAE is the Median Absolute Error and P5AE (P95AE) is the 
5th (95th) Percentile of Absolute Errors. 
 

 
 

Table 4.4: Out of sample pricing performance for LS-SVM 
Error performance results (out of sample pricing) for all Least Squares Support Vector 
Machines for the aggregate period March 3, 2003 to August 31, 2004. The symbol “N” 
is used to indicate that the ANN is estimated based on the market target function 
while “H” is used to indicate the hybrid target function. Morover the subscript “av” 
indicates that the Black and Scholes overall average implied volatility is used as an 
extra input to the ANNs while “DVF” indicates the Black and Scholes overall average 
implied volatility is used as an extra input. RMSE is the Root Mean Square Error, 
MAE is the Mean Absolute Error, MeAE is the Median Absolute Error and P5AE 
(P95AE) is the 5th (95th) Percentile of Absolute Errors. 
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Table 4.5. t-tests for out of sample model performance comparison 
Values in the upper (lower) diagonal report the Student t-value (Johnson, 1978, 
modified t-value) regarding the comparison of means of the squared residuals between 
models in the vertical heading versus models in the horizontal heading. In general, a 
positive (negative) t-value larger (smaller) than 1.96 (-1.96) indicates that the model in 
the vertical (horizontal) heading has a larger MSE than the model in the horizontal 
(vertical) heading at 5% significance level (for 1% significance level use 2.325 and -
2.325 respectively). The models compared are: 
1: 2NLBS  
2: 2NLCS  
3: SVJ  
4: M

DVFANN  

5: H
DVFANN  

6: M
DVFSVM  

7: H
DVFSVM  

8: M
DVFSVMLS −  

9: H
DVFSVMLS −  

 

 There are two additional observations we can make from these tables. 

First, we should note that in three out of the four cases, the performance of 

the LS-SVM models is better compared to the SVM models. The only exception 

is H
avSVM  with RMSE equal to 2.656 compared to the 3.756 of H

avSVMLS − . 

In addition, it is obvious that the RMSE out of sample results for ANNs are 

lower compared to the counterpart SVMs and LS-SVMs models. This does not 

necessarily imply that LS-SVMs are superior to SVMs and that ANNs are 

superior to the other nonparametric models. One explanation for this regards 

the naïve hyper-parameter selection process we follow which as noted earlier 

might not be the best strategy to adopt. Furthermore, someone should notice 

that ANNs and SVMs (and LS-SVMs) employ different forms to model the 

problem under investigation and they use different loss functions to measure 

performance. If the data are contaminated with pure Gaussian noise then 
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may observe ANNs and LS-SVM that are optimized based on a sum of squares 

loss function to perform better than SVMs; also SVMs with the ε -insensitive 

loss function can potentially perform better than non-Gaussian noise (Müller 

et al., 1999). In addition, SVMs that use inappropriate large values for ε  may 

introduce systematic bias to the estimation and considerably underfit the 

relationship (Müller et al., 1999).  

 

 

4.6. Conclusions 

 In this essay we investigate the options pricing performance of ANNs, 

AVMs and LS-SVMs for the period 2002-2004. With these models we use 

implied volatility inputs obtained by the Black and Scholes model and we 

estimated them using the market and the hybrid target functions. All results 

obtained for the nonparametric models are compared with the Black and 

Scholes, the Corrado and Su and the Stochastic Volatility and Jumps 

parametric models. The results suggest that LS-SVMs perform better than 

SVMs but the ANNs performance is the overall best among the nonparametric 

models. In addition, there is a hybrid ANN model that has comparable 

performance with SVJ which is the best performing POPM.   

In our view, the results obtained for SVMs and LS-SVMs are promising 

enough for the problem under insvestigation. We feel that the out of sample 

results for ANNs might look better than the ones obtained with SVMs and LS-

SVMs because our level of expertise with ANNs is significantly higher. We can 

expect that under more careful and sophisticated strategies of hyper-

paramete selection SVM and LS-SVM can improve their out of sample 

performance. Further research is needed here to also investigate the 

performance of SVMs and LS-SVMs combined with other inputs/outputs from 

the POPMs. Ideally the most advanced extension of this analysis is to manage 

to combine the methodologies of the third and fourth essays in order to derive 

generalized parameter functions with SVMs and LS-SVMs. 
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4.A. Appendix 
 
 Below we present an extensive overview regarding the nonparametric 

methodologies employed in this essay. A shorter version of the following has 

been included in the main content of the essay. 

 
 
4.A.1 The nonparametric approaches: ANNs, SVM and LS-SVM 

 ANNs comprise a popular methodology for handling function estimation 

problems for many reasons. First, of all theoretical proofs exist showing that 

under certain conditions, ANNs are universal approximators able to 

approximate any nonlinear function arbitrarily well (Cybenko, 1989). In 

addition, they perform good in situations where there is lack of knowledge for 

the relationship that underpins a set of variables and they are robust on the 

presence of noisy data. Nevertheless, they are prone also to some practical 

merits and limitations. First, there are no theoretical foundations on how to 

select the network type and structure and on how to implement the 

optimization procedure. For this reason the model structure (number of 

neuron layers and number of hidden neurons in each of the layers) should be 

defined a-priori which is not necessarily the best strategy in choosing the 

optimal network architecture for the faced problem. This task is rather an art 

instead of science and can be better tackled by experts with experience on 

how to apply the ANNs methodology having at the same time considerable 

knowledge on the problem under investigation. Second, estimating ANNs 

involves the optimization of a highly non-convex error function and frequently 

enough optimization algorithms get stuck to local minima solutions resulting 

to suboptimal solutions for the network free parameters (weights and biases). 

Given this peculiarity, regularization techniques that are employed in an 

attempt to control the capacity of the ANNs, like cross validation strategies 

and early stopping, are only partial remedies potentially resulting to 

structures that do not maximize their generalization performance to unseen 

data. Finally ANNs learn the empirical functions inductively from transactions 

data without embedding any information related to the problem under 

investigation. Under this setting, the estimated weights do not convey any 

meaningful interpretation to help understand better the input-output 

relationship.  
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 In contrast, SVMs are not confined by the above issues (Smola and 

Schölkoph, 1998). First of all, the model complexity does not need to be 

determined a-priori. It is determined endogenously as part of the optimization 

problem in such a way that maximizes the generalization capability of the 

model. More importantly, a unique solution is found after estimation as a 

solution of a (convex) Quadratic Programming (QP) problem with linear 

constraints, which depends on the estimating data and the selection of few 

tuning hyper-parameters. In addition, the solution to the QP problem provides 

the necessary information for choosing the most important datapoints, known 

as support vectors, among all the data; based on the SVM formulation, 

support vectors uniquely define the estimated regression function so in this 

manner the estimated coefficients are informative. Furthermore, input data of 

any arbitrary dimensionality can be treated with only linear cost in the 

number of input dimensions. This property in conjunction with the good 

inherent regularization properties allows SVMs to work particularly well when 

data is sparse (see Müller et al., 1999, Smola and Schölkoph, 1998). Yet, the 

performance of the SVM technique, like ANNs, depends crucially by the choice 

of the loss function which is inextricable connected with the noise in the data 

(Gaussian or not) and by data regularities (e.g. non-stationary financial data).  

 

4.A.2 About the empirical and structural risk minimization  

 When we apply ANNs our ultimate purpose is for a given finite set of 

input patterns x  to define a set of adjustable parameters ω  resulting to the 

estimating function ),( ωxf  that describes the known target patterns (desired 

output) t . To achieve this we minimize the following error measure which is 

called the empirical risk: 

 

( )∑
=∈

=
P

j
jjjemp

Hf
xftxL

P
fR

l 1
),(,,1][minarg ω  (4.A.1) 

 

where ( )),(,, ωjjj xftxL  represents a general loss function determining how 

estimation errors are penalize and lH  represents a general class of  
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continuous function from which the approximating function ),( ωxf  can be 

selected. 

 By minimizing the empirical risk with the finite sample data we assume 

that we will manage to identify the best function ),( ωxf  that also minimizes 

generalization error (also termed as the expected risk) of the estimator given 

by: 

 

( ) dxdttxpxftxLfRgen ),(),(,,)( ∫= ω  (4.11) 

 

which expresses the level of error obtained by the data generating mechanism 

under the joint probability distribution ),( txp  that governs all input-output 

data. The fact is that the joint probability distribution ),( txp   is most of the 

time unknown for real-life applications and the model must be estimated 

using only the observed datapoints by minimizing the empirical risk. In the 

context of statistical learning theory, Vapnik has shown that the following 

probabilistic bound can be derived for the generalization error: 

 

),,()()( ηhPVCfRfR empgen +≤  (4.A.2) 

 

where in the above bound the second term is a confidence term, called the  

Vapnik – Chervonenkis confidence, that holds with probability 1-η  for a 

sample size of P . The VC confidence also depends crucially on h  which 

characterizes the model complexity known as the VC dimension (see Vapnik, 

1995 for further technical details); in general it is an increasing function in 

the number of free parameters56 and decreasing in the number of datapoints. 

The expression in Eq. (4.A.2) is analogous to the bias-variance trade-off. 

Simple models that have too few adjustable parameters do not have enough 

representational power and they typically result in high bias (high empirical 

                                                 
 
56 There can be cases where a model with more free parameters does not necessarily 
has a higher VC dimension compared to one with fewer free parameters (Vapnik, 
1995).     
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risk). However, they are rather robust and not so sensitive to the data used for 

estimation resulting to low variance (low VC bound). On the contrary, a high 

capacity model with a large number of adjustable parameters will result in 

higher accuracy on the given training set with low bias (low empirical risk). 

Large capacity models because of high approximating power are able to overfit 

(memorize) the data by also modelling the noise inherent in the data. Such 

models are data sensitive meaning that each particular dataset will give rise 

to a different model meaning that their variance (VC bound) will be high 

(Vojislav, 2001, pg. 136). Thus for a given finite sample of data points the best 

generalization performance will be achieved if the right balance is identified 

between the accuracy obtained on that particular training set, and the 

capacity of the model. 

 Thus the informational content behind Eq. (4.A.2) is that we can define 

an upper bound for this kind of risk that can eventually help us to select 

among alternative models. Furthermore, in the context of VC theory it can be 

shown that for bounded loss functions the empirical risk minimization 

principle is consistent if and only if empirical risk converges (in probability) 

uniformly to the expected risk in the following sense: 

 

( ) 0,0)()(suplim >∀=



 >−

∞→
εε

ω
fRfRp empP

 (4.A.3) 

 

The above expression imposes the necessary conditions so that the function 

that minimizes the empirical risk converges to the best function that 

minimizes the expected risk. An important insight of the VC theory is that a 

necessary and sufficient condition for a fast rate of convergence of the 

empirical risk minimization is that the VC dimension of a set of approximating 

functions be finite (Vapnik, 1995). In other words, without restricting the set 

of admissible functions, empirical risk minimization is not consistent when 

trying to estimate a model with a finite number of datapoints. The so called 

structural risk minimization can be employed to circumvent this peculiarity 

(see Vapnik, 1995) especially when dealing with small samples (Vojislav, 

2001). One considers a set H of approximating functions: 
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...... 11 +− ⊂⊂ lll HHH  (4.A.4) 

 

which consists of nested sets of functions of increasing complexity (increasing 

VC dimension). The larger the VC dimension the smaller the empirical risk 

can become but the VC confidence term in Eq. (4.A.2) will grow. Structural 

risk minimization is an effective way of controlling the VC confidence so as to 

control the generalization risk. SVM can be a promising alternative compared 

to ANNs since there are theoretical foundations showing that they actually 

minimize the generalization error by simultaneously minimizing the VC 

confidence interval and the empirical risk, resulting in models with potentially 

superior generalization ability (not asymptotically but when using a finite data 

sample). The most intriguing feature is that this process is part of the 

formulated optimization problem. On the contrary, heuristic techniques like 

early stopping and cross validation are used with ANNs in order to select from 

a possibly infinite pool of candidate models the best model with the smallest 

possible generalization error.    

 Below we explain the mathematical framework that underpins the 

nonparametric methodologies we employ in this study. For this we assume 

that we have a given dataset with features points ),( 11 tx , ),( 22 tx , …, ),( PP tx   

were N
jx ℜ∈  are the input features, ℜ∈jt  are the known target values 

(desired output), N  is the number of input variables and Pj ...,,2,1=  with 

P to represent the sample size. 

 

4.A.3. ε-insensitive support vector machines for function approximation 

 The application of SVM for regression was initially developed only for 

performing linear regression. The technique has been extended to handle 

nonlinear regression applications based on a very intuitive idea (see Vapnik, 

1995, 1998). Firstly, to apply a mapping )(xϕ  (chosen a-priori) of the input 

data x  into an arbitrarily high dimensional feature space which can be 

(possibly) infinite dimensional. This transformation is usually called the kernel 

trick. Secondly, the linear SVM regression can be applied to create an 

approximate linear function in this arbitrarily high dimensional feature space. 

In this way, doing linear regression in a high dimensional feature space 
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corresponds to nonlinear regression in the (low dimensional) input space 

(Müller et al., 1999).  

 The idea behind the SVM for function approximation (Support Vector 

Regression) is to estimate the coefficient values w  (called the weights) and b  

(called the bias) that optimize the generalization ability of our repressor by 

minimize the following regularized loss function: 

 

( )∑
=

+
P

j
jj

T

bw
xftLCww

1,
)(,

2
1min ε  (4.A.5) 

 

where ( )xf  is the form of the SVM function approximation and is given by: 

 

( ) bxwxf T += )(ϕ  (4.A.6) 

 

and ( )xftL (,ε  is the so-called Vapnik’s ε -insensitive loss functions defined 

as: 

 

( )
otherwise

)(if
)(

0
)()(,

ε
εεε

≤−





−−
=−=

xft
xft

xftxftL  (4.A.7) 

 

 In the above formulations hNNx ℜ→ℜ:)(ϕ represents a nonlinear 

mapping (transformation) of the input space to an arbitrarily high-

dimensional feature space which can be infinite dimensional (in such case the 

weights vector w  will also become infinite dimensional). Under this Eq. 

(4.A.6) can be seen as a set of linear functions that are defined in a high 

dimensional space, thus allowing us to solve nonlinear regression problems 

with the use of SVM that perform linear regression. Minimizing the norm of 

the weights vector, wwT  in Eq. (4.A.5), allows us to control the complexity 

(called flatness or capacity) of the estimated function. The empirical risk 

minimization is achieved by minimizing the Vapnik’s ε -insensitive loss 
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function, ( ))(, xftLε , that allows us to control the accuracy of the estimated 

function that is defined by the value ε  (called the tube size). Finally, the 

constant 0>C  determines the trade-off between the amount up to which 

deviations larger than ε  are tolerated and the flatness (complexity) of the 

estimated model.  

 In the case where ε  is chosen to be small and some datapoints do not 

lay within the tube of ε  accuracy the estimation of the w  and b  is done by 

formulating the following optimization problem in the primal weight space of 

the unknown coefficients:  

 

( )∑
=

++=
P

j
jj

T
Pbw

CwwwL
1

*

*,,, 2
1*),,(min ξξξξ

ξξ
 (4.A.8) 

subject to 

Pjbxwt jj
T

j ...,,1,)( =+≤−− ξεϕ  (4.A.8.1) 

Pjbtxw jjj
T ...,,1,)( * =+≤+− ξεϕ  (4.A.8.2) 

Pjjj ...,,1,0, * =≥ξξ  (4.A.8.3) 

 

where jξ  and *
jξ  are positive slack variables, defined in the prime space, that 

need to be introduced in order to make the solution of the optimization of the 

optimization problem feasible for all datapoints that are outside of the ε -tube.   

The above formulation is better solved by introducing positive Lagrange 

multipliers 0,,, ** ≥jjjj ηηαα  (called the dual variables) 57: 

 

                                                 
 
57 In nonlinear regression problems the primal weights vector w can become infinite 
dimensional due to the applied transformation )(xϕ . For this reason the solution of 
the problem is better derived via its dual formulation.      
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( )
( ) ( )

( ) ( )∑∑
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P

j
jjjj

P

j
j

T
jjjj

P

j
j

T
jjj

P

j
jj

T
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bxwtCww

bw

1

**

1

**

1

*

1

*

***

)(

)(
2
1

,,,,,,,

ξηξηϕξεα

ϕξεαξξ

ηηααξξΛ

  

 (4.A.9) 

The saddle point of the Lagrangian formulation should be maximized with 

respect to the dual variables and minimized with respect to the primal 

variables: 

 

( )***

,,,,,,
,,,,,,,minmax

***
ηηααξξΛ

ξξηηαα
bw

bw
 (4.A.10) 

 

It follows from the saddle point condition that the partial derivatives of Λ  

with respect to the primal variables ( *,,, ξξbw ) have to vanish for optimality: 

 

( )∑
=

−=⇒=
∂
∂ P

j
jjj xw

w 1

* )(0 ϕααΛ
 (4.A.11) 

( )∑
=

=−⇒=
∂
∂ P

j
jjb 1

* 00 ααΛ
 (4.A.12) 

jj
j

C αη
ξ
Λ

−=⇒=
∂
∂ 0  (4.A.13) 

**
* 0 jj
j

C αη
ξ
Λ

−=⇒=
∂
∂

 (4.A.14) 

 

Substituting Eq. (4.A.11) through X(4.A.14) into Eq. (4.A.9) results to a 

quadratic programming problem that depends only by the dual variables α  

and *α  (called the dual problem): 
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( )( ) ( )

( ) ( )∑∑

∑

==

=

−++−

−−−=

P

j
jjj

P

j
jj

ij

P

ij
iijjD

aataa

xxKaaaaL

1

*

1

*

1,

**

*,
,

2
1*),(max

ε

αα
αα

 (4.A.15) 

subject to 

( )∑
=

=−
P

j
jj aa

1

* 0  (4.A.15.1) 

Caa jj ≤≤ *,0  (4.A.15.2) 

 

Using Eq. (4.A.11), the dual representation of the model becomes: 

 

( ) ( )∑
=

+−=
P

j
jjj bxxKaaxf

1

* ,)(  (4.A.16) 

 

In the above setting the kernel trick has been applied with 

( ) )()(, i
T

jij xxxxK ϕϕ= . It enables us to work in huge dimensional feature 

spaces )(xϕ  without actually having to do explicit computations in this space. 

Also note that in this setting, the optimization problem corresponds to finding 

the flattest function in the feature space, not in the input space (Smola and 

Schölkoph, 1998). It is also important to note that we do not need to compute 

explicitly the value of w  to evaluate the function that results from the 

estimation of the SVMs since )(xf  can be easily evaluated via Eq. (4.A.16) 

with the use of the kernel trick.  

 Someone can use the complementary Karush-Kuhn-Tucker (KKT) 

conditions for the computation of the coefficient b . KKT state that product 

between dual variables and constraints should be zero at the optimal 

solution. Based on the aforementioned this results to: 
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( ) 0)( =++−+ bxwt j
T

jjj ϕξεα  (4.A.17) 

( ) 0)(** =++−+ bxwt j
T

jjj ϕξεα  (4.A.18) 

( ) 0=− jC α  (4.A.19) 

( ) 0* =− jC α  (4.A.20) 

 

The above expressions allow us to make several useful conclusions (see Smola 

and Schölkoph, 1998). Firstly, only samples ),( jj tx  with corresponding 

Cjj =*,αα  lay outside the ε -insensitive tube around the estimated function. 

Secondly, for the same data point obviously there can never be a set of dual 

variables *, jj αα  which are simultaneously nonzero ( 0* =jjαα ). Thirdly for 

( )Cjj ,0, * ∈αα  it holds that 0, * =jj ξξ  thus the second factor in Eq. (4.A.17) 

and (4.A.18) should equal zero respectively. Hence, b  can be computed as 

follows:     

 

( )Cxwtb jj
T

j ,0for)( ∈−−= αεϕ  (4.A.21) 

( )Cxwtb jj
T

j ,0for)( * ∈+−= αεϕ  (4.A.22) 

 

From the above, one data point should be in principle sufficient to compute 

the bias b  but for stability purposes it is recommended to take the average 

over all points that hold ( )Cjj ,0, * ∈αα  (Müller et al., 1999). Then the 

estimation of b is given by: 

 

( ) ( ) ( ) ( )CaaxxKaat
N

b jjii

N

j
ijjji ,0,forsign,(1 **

1

* ∈−+−−= ∑
=

ααε
 

 (4.A.23) 
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From Eq. (4.A.17) and (4.A.18) it follows that for datapoints that lay inside the 

ε -insensitive tube, 0* =jjαα  so that the KKT conditions are satisfied. With 

this and in conjunction with Eq. (4.A.11) it is true we have a sparse expansion 

of w  in terms of the datapoints jx . In other words after estimating the SVM 

model we do not need all jx  to describe w . The examples that come with no 

vanishing coefficient values for w  are called support vectors (see also Vapnik, 

1995). Support Vectors can depict the distributional features of all data 

according to the nature of SVMs, removing some trivial data from the whole 

training set will not greatly affect the generalization performance but speed 

the training process effectively (Suykens et al., 2002). 

 To successfully apply the SVMs for nonlinear regression problems it is 

necessary to apply the kernel trick by choosing a proper kernel function: 

 

( ) )()(, i
T

jij xxxxK ϕϕ=  (4.A.24) 

 

such that we do not need to explicitly define the nonlinear mapping function 

)(xϕ  since Eq. (4.A.24) is a function in input space. A function that is 

symmetric, continuous and satisfies Mercer’s condition (see Vapnik, 1995 for 

details) is an admissible kernel function that represent a scalar product in the 

(mapped) featured space as expressed in Eq. (4.A.24). The Gaussian kernel is 

a widespread kernel function that is admissible for use with SVM for function 

approximation:  

  

( )














 −
−= 2

2

2 K

ij
ij

xx
expx,xK

σ
 (4.A.25) 

 

where 
2

ij xx −  measures the distance between two datapoints and 2
Kσ  is 

called the kernel width parameter and is used as a normalizing factor. It can 

be shown that when the Gaussian kernel function is considered, the 
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nonlinear mapping )( jxϕ  is infinite dimensional and also that SVM are 

universal approximators (see Vapnik, 1995 and 1998 for details), an 

implication of paramount importance that is contributing in a growing 

popularity of SVM for regression applications. It is notable that although 

implicitly the mapping corresponds to dot products in an infinite dimensional 

feature space, the complexity of computing the kernel function can be much 

smaller resulting to tractable computations.   

 The application of SVMs in general preserve some very helpful 

characteristics compared to other learning techniques (e.g. feedforward 

artificial neural networks, etc). The first important characteristic regards their 

optimization aspect. The system of equations defined Eqs. (4.A.15), (4.A.15.1) 

and (4.A.15.2) given a positive definite kernel translates to the optimization of 

a convex QP problem subject to linear constraints that results to a global and 

unique solution. On the contrary, feedforward artificial neural networks suffer 

from existence of multiple local minima solutions58 since the optimization 

function is not convex with respect to the network weights and biases. 

Second, after selecting the SVM tuning parameters (C ,ε , 2
Kσ ), the model 

complexity is implicitly defined  by the number of support vectors as part if 

the solution to the convex problem, whilst for the case of the ANNs the 

number of hidden neurons should be defined a-priori. Third, the solution to 

the problem is characterized by a sparse representation of the solution. As 

explained earlier, the final solution is defined solely by the support vectors 

which represent only a part of the datapoints used initially for the estimation 

of the model. Another important issue is that the function’s representation is 

independent of the dimensionality of the input space and depends only on the 

number of support vectors; in other words the size of the QP problem does not 

depend on the dimensionality of the input space. This is a significant remedy 

for the curse of dimensionality issue. On the contrary, ANNs are prone to the 

                                                 
 
58 Among others, Cybenko (1989) has shown that ANNs with one hidden layer of 
neurons can be universal function approximators that provide adequate robustness 
and convergence with good out of sample generalization abilities. However this 
property can be of limited use in practice when the optimization algorithm gets stuck 
in local minima resulting to a suboptimal solution because of the non-convexity of the 
optimized error/loss function. In this study ANNs are implemented under certain 
strategies like early stopping and use of cross-validation techniques that try to 
eliminate the effect of local minima solutions and overfitting of the data.   
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effects of the curse of dimensionality. In this case, early stopping and cross 

validation techniques should be very carefully applied by an expert in an 

attempt to overcome the curse of dimensionality by preventing the networks 

to memorize the data used for estimation and to result to a limited or a poor 

generalization performance (Vojislav, 2001, Suykens et al., 2002).       

  

 

4.A.4. Least squares support vector machines  

 The Least Squares Support Vector Machines (LS-SVM) method is a 

variant of the SVMs methodology originally proposed and developed by 

Suykens and co-workers (see Suykens et al., 2002). According to this 

approach the model estimated is given by the following optimization problem 

in the primal weight space: 

 

∑
=

+=
P

j
j

T
Pebw

ewwewL
1

2

,, 2
1

2
1),(min γ  (4.A.26) 

subject to 

Pjebxwt jj
T

j ...,,1,)( =++= ϕ  (4.A.26.1) 

 

The above formulation is nothing else but a ridge regression cost function 

formulated in the featured space defined by the mapping )(xϕ . Parameter γ  

determines again the trade-off between the model complexity and goodness of 

fit to the estimation data. Like in the case of SVM (see Suykens et al., 2002, 

pg. 98), the resulting Lagrangian formulation is: 

 

( ) ( )∑∑
==

−++−+=
P

j
jjj
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j

P

j
j

T tebxwewwebw
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2 )(
2
1

2
1,,, ϕαγαΛ   

 (4.A.27) 
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where jα  are the Lagrange multipliers which in contrast to the SVM case can 

be both positive or negative due to the equality constraints. Again, the 

conditions for optimality are given by: 

 

∑
=

=⇒=
∂
∂ P

j
jj xw

w 1
)(0 ϕαΛ
 (4.A.28) 

∑
=

=⇒=
∂
∂ P

j
jb 1

00 αΛ
 (4.A.29) 

Pje
e jj

j
,...,1,0 ==⇒=

∂
∂ γαΛ

 (4.A.30) 

Pjtebxw jjj
T

j

,...,1,0)(0 ==−++⇒=
∂
∂ ϕ
α
Λ

 (4.A.31) 

 

Substituting the expressions for w  and e  back to Eq. (4.A.27) result to the 

following linear KKT system in a  and b :  

 

( ) Pjt
a

bxxK j
j

P

j
jj ,...,1,),(

1
==++∑

= γ
α  (4.A.32) 

∑
=

=
P

j
j

1
0α  (4.A.33) 

 

where the resulting LS-SVM model that characterizes the estimated regression 

function is given by: 

 

( )∑
=

+=
P

j
jj bxxKaxf

1
,)(  (4.A.34) 
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Someone can observe that the kernel trick as given by Eq. (4.A.32) is also 

applied here and that the size of the KKT system is not influenced by the 

dimension of the input space but is only determined by the sample size.    

 Compared to the SVMs case, LS-SVMs preserve the following 

characteristics. First, kernel functions that are admissible for the SVMs can 

also be used in the formulation of the LS-SVMs so the use of Gaussian kernel 

function given by Eq. (4.A.25) can be used in this case too. Second, the dual 

problem above corresponds to solving a linear KKT system which is a square 

system with a unique (global) solution when the matrix has full rank. In 

addition, for moderate sample sizes there are algorithms that can efficiently 

(in terms of time and computer’s memory capacity) solve the above system. 

For instance the Hestenes - Stiefel conjugate gradient algorithm can be 

applied to solve the above system of equations after transforming it into a 

positive definite system (see Suykens et al., 2002, for further details). Third, 

the error variable je  is used to control deviations from the regression 

function instead of the slack variables *, jj ξξ  and a squared loss function is 

used for this error variable instead of the ε -insensitive loss function. This has 

two implications regarding the solution of the problem: i) lack of sparseness 

since Eq. (4.A.30) implies that every data point will be now a support vector 

since no langrage multiplier jα  will be exactly zero which it can be considered 

as a drawback compared to the SVM, ii) only two parameters γ  and 2
Kσ  are 

needed to be tuned compared to three for SVM which is an advantage since it 

reduces the possible parameters combinations (2-D grid instead of 3-D grid) 

and at the same time reduces the risk of selecting a suboptimal parameter 

combination. Due to the reasons explained above, optimizing a set of LS-

SVMs model can be faster compared to standard SVMs.   

 
 
 Pan

ay
iot

is 
C. A

nd
reo

u



 
 

249

II. Concluding Remarks 
 
 The research interest of this thesis is on the empirical performance of 

alternative, parametric and nonparametric, options pricing models that are 

more realistic and can result in more accurate option estimates.  

First, a lot of consideration is given to parametric formulas that are based on 

more flexible distributional assumptions able to model negative skewness and 

excess kurtosis. Specifically, we consider as benchmarks the Stochastic 

Volatility and Stochastic Volatility and Jump models proposed by Bates 

(1996) which are developed based on a specific parameterized diffusion 

process that allows for discontinuities and randomly changing variance of the 

underlying asset. Although these models are known to be more accurate 

compared to the Black and Scholes formula, they are less intuitive and 

sometimes exceedingly complex to be applied in practice. For this reason, in 

the first three essays we incorporate the use of the Corrado and Su (1996) 

model in the framework we develop. This model is an extension of the Black 

and Scholes model that can easily handle nonnormal skewness and kurtosis. 

In addition, to the above we also consider the Deterministic Volatility 

Functions approach proposed by Dumas, Fleming and Whaley (1998) which is 

an intuitive approach that relaxes the Black and Scholes assumption of 

having a constant volatility per options contract. This methodology is very 

intriguing since there are theoretical proofs showing that it constitutes a 

reduced-form approximation to an unknown structural model which under 

frequent re-estimation can exhibit exceptional pricing performance. 

 The most significant contributions of this thesis regard the 

development and applications of nonparametric methodologies. The first essay 

includes comparisons with respect to pricing and trading performance 

between parametric models and several alternative artificial neural network 

specifications by using a large amount of input-output combinations. This 

essay considers in depth significant issues not examined before and 

reconciles partial evidence reported previously. The second essay uses only 

the key results of the first essay in order to show that better options pricing 

performance can be achieved with robust artificial neural networks.  

All nonparametric models examined in the first two essays are able to learn to 

approximate the empirical options pricing function inductively from 
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transactions data. Yet their estimation algorithms do not embed directly 

theoretical information related to the specific problem under investigation. 

The third essay improves this by proposing a novel semi-parametric approach 

that allows a set of the input variables to a parametric model to be determined 

by systems of equations that are estimated with the use of artificial neural 

networks. As a result the proposed semi-parametric approach preserves 

important features concerning the desire for nonnegative option values, theory 

consistent Greek letters, rational pricing behavior at the boundary of option 

pricing areas etc. It also presents a very extensive set of pricing and hedging 

results testing all models considered for robustness under alternative data 

choices and model complexity. 

 Finally the last essay is an attempt to examine the applicability of 

support vector machines in the empirical options pricing research field. This 

essay reconsiders robust and least squares optimization techniques and 

elaborates further on issues examined by the first two essays regarding the 

application of nonparametric methods by using as benchmark models the 

most sophisticated ones that have been used in the third essay. The results 

obtained here indicate that this is a very promising methodology and we 

believe that there is a lot of room for improvement.  

 To summarize, the best POPM was the SVJ model (far outperforming 

the SV model). The hybrid structures we develop are superior to the standard 

ANNs. Among the ones we develop, we believe that the GPF structure is the 

most promising one and has a value of its one because it extends the DVF 

methodology (which is a standard benchmark). There seems to be fertile 

ground for future research in directions that will combine aspects of the third 

essay with the support vector machines of the fourth. Specifically, in these 

essays we find that a number of competing models can fit a particular set of 

data resulting in a range of alternative option pricing and hedging estimates. 

Since we always choose the model with the best out of sample pricing 

performance, all other estimated models are frequently ignored. One way to 

combine estimates from different models is to rely on the Bayesian Model 

Averaging (see Rafteri et al., 1997 and Hansen, 2007). 
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