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Abstract 
 

 

In this study we extend the real options framework to include managerial interacting learning 

and control options i.e. actions that are expected to enhance value but have uncertain outcome. 

We allow the history of decisions to affect the impact (expected profitability, variance and cost) 

of future decisions and we show the optimal timing and optimal decision regions by also 

allowing early exercise and abandonment options.  This framework allows the study of the effect 

on the value of firm’s investment opportunities of options to change the distribution of future 

payoffs through for example marketing research and advertisement (or product redesign or 

repositioning), basic research or exploration actions and product attribute or quality enhancing 

actions. The framework also allows the analysis of optimal timing of such actions, optimal timing 

of introduction of pilot projects, early development of the complete project and abandonment 

options.  We provide analytic compound formulas for sequential options with embedded control 

and learning actions under the assumption that project value follows either diffusion or a jump 

diffusion process. We also extend the model to complex multistage problems with path dependent 

actions, by developing a numerical lattice based model. We illustrate the importance of this 

theoretical framework through applications in R&D projects and the valuation of new products. 

Building on recent theories based on the contingent claim approach we also model the 

determination of optimal investment policy (with respect to timing of investment) and the 

simultaneous determination of optimal capital structure and we study the impact of debt 

financing constraints on firm value, the optimal timing of investment and other important 

variables like the credit spreads. We also explore the social welfare implications of financing 

constraints. Finally we incorporate managerial learning and control actions in this more 

general framework that can be interpreted as pre-investment risky growth options (e.g. R&D, or 

pilot projects) using the methodology of this study and we investigate their effect on firm value 

and other important variables like leverage, equity and the credit spreads. 
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1. Introduction 
 
The real options theory has been mostly associated with investment appraisal and firm valuation 

by taking into consideration managerial flexibility to react under uncertainty. The option to defer 

investment for the potential of favourable conditions in the value of the investment, the option to 

abandon when conditions become unfavourable (thus limiting losses), the option to expand or 

contract capacity depending on demand conditions, are only few examples of the valuable 

flexibility that exists in managerial hands and is analyzed in the real options literature. 

Conceptually the real options approach can be seen as an Expanded version of the NPV approach 

(see Trigeorgis, 1996) that takes into account managerial flexibility (and also possible flexibility 

under competitive interactions)- the traditional Net Present Value (NPV) approach can be seen as 

a special case of this more general approach where this flexibility value zero (see also Dixit and 

Pindyck, 1994, for an overview of the theoretical framework and applications and Copeland and 

Antikarov, 2001, for a more applied approach to real options).  The purpose of this study is to 

add another dimension in these problems, namely introduce managerial actions to improve the 

value of a project (or the firm) that have action specific uncertainty beyond that introduced by 

exogenous competition. For example the price of the a particular product might be out of the 

control of management and move stochastically over time; on the other hand the firm may 

engage in actions to improve its market share (quantity of sales) or efforts to reduce it’s costs. 

Some examples include the introduction of new products, the improvement of attributes or 

quality enhancement of a current product, the adoption of technological innovations in 

operations (e.g. new software or operational processes).  The exercise of these plans/options 

would be made at a cost, will be targeting an increase in demand but may have a random 

outcome (this uncertainty exists beyond exogenous uncertainty). A firm that does not take these 

actions will simply abandon a potentially valuable option to improve revenues. The value of 

these actions are due to the expected improvements in cash flows but also from the additional 

(resolved) volatility  that combined with the option to invest and other managerial flexibility (e.g. 

abandonment option)  further enhances flexibility value. Our approach has similarities with 

Pindyck (1993) who presents a framework for the analysis of options where costs are driven by 

two components regarding uncertainty: exogenous uncertainty (e.g. prices of materials or inputs 
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into a process) modeled as a continuous diffusion process and additional uncertainty that is 

purposefully (and at a cost) being resolved by the firm’s management.    The latter component of 

uncertainty can be used to model technical uncertainty (see also Schwartz and Moon, 2000 for 

further applications of this framework in new drug development). In this study we explore an 

alternative approach where actions are taken in discrete points in time and have an impulse 

outcome. Our analysis in the first part of the thesis focuses on the analysis of these “managerial 

control” actions with random outcome on the value side and allows for positive expected impact 

on value (in contrast to Pindyck, 1993 where the expected impact is zero) using the framework 

of Martzoukos (2000). Childs and Triantis (1999) also consider a situation where completion of a 

research project resolves uncertainty but does not affect the expected impact. We specifically 

investigate path-dependency in the characteristics (average impact, volatility and costs) of these 

managerial control actions which adds economically and methodologically interesting issues. 

This feature is important, since in many situations encountered in practice the sequence of 

actions affects the outcome; an interesting example is learning-by-doing where the impact of a 

follow-up investment may be higher than the previous or the costs may be less.  Path-

dependency introduces methodological challenges that once met allow for other interesting 

issues that are also analyzed in this study like time-to-learn (lags in realization of impact and 

volatility of controls) and convex adjustment costs (abandonment values with path-dependent 

recovery amounts). 

 

Another dimension that is investigated in this study is that of learning actions. Investment in pure 

learning actions like research, experimentation, and marketing research is difficult to be 

motivated and explained in a real option setting. This is because learning is often thought to 

decrease volatility while option values are increasing in volatility-why would then a manager 

ever invest in learning actions? Learning is essential when real assets may exhibit specific 

uncertainty (noise) due to incomplete markets or unique physical, contractual locational 

characteristics (this motivation is provided in Childs et al., 2001 and Childs et.al., 2002); see also 

Martzoukos 2003, and Martzoukos and Trigeorgis, (2001). Effectively, under these cases the 

firm may find it valuable to resolve more uncertainty regarding the true value of the project. Our 

model is consistent with Childs et. al. (2001) and (2002) filtering approach and is extended in a 

multi-stage setting with path-dependency.  We make explicit and we distinguish between options 
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to enhance value with random outcome- for example quality enhancement, R&D, or 

advertisement-and learning actions like pure research, marketing or experimentation. The 

methodological treatment of learning and managerial control actions is similar thus keeping   the 

problem tractable and practical for implementation. Our results elaborate and provide further 

insights on the importance of information acquisition an issue that is absent in most real option 

models. We show how learning may improve option values and how it affects the probability of 

development. The investigation of learning and control actions in a unified framework is 

demonstrated in the second part of the thesis where analytic compound option formulas with 

embedded learning or control actions, early exercise, abandonment and path-dependency are 

provided. The compound option formula of Geske (1979) and the extendible option of Longstaff 

(1990) are special cases of this more general formulation. Competitive interactions that may limit 

or sometimes destroy some forms of flexibility are often for simplicity modelled using a 

competitive erosion parameter- in analogy to the dividend yield modelling of financial options. 

This modelling approach cannot handle cases of random arriving changes that can be 

accommodated in the form of jumps. For this reason we furthermore demonstrate the jump-

diffusion case implementation with managerial control and learning actions. In general, our 

setting (with managerial control and learning) captures the notions described in Weitzman and 

Roberts (1981) while also maintaining the correct adjustment for risk in the real options 

framework. The learning and the control actions are induced endogenously by the firm by 

optimally weighing the expected benefits (in terms of additional option value) compared with the 

additional costs. Our assumption throughout the study regarding the risk of controls or learning 

volatility is that is uncorrelated with market risk and is not priced (alternatively a risk-neutral 

agent approach could be implemented like in Childs et al, 2001). 

 

An additional important feature that is only recently being explored in the literature is the 

integration of investment options and financing decisions in a unified framework. Financing 

choices may affect the value of investment opportunities and investment timing. For example, 

the benefits of debt financing due to tax advantages arising from tax deductibility of interest 

payments may be exposed to the risk of being lost if the firm waits due to unfavourable 

movements in demand; this in general pushes investment earlier. Including debt into the picture 

also brings issues of optimal capital structure, default risk, and the determination of credit 
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spreads and the selection of optimal default trigger by equity holders. We build on Mauer and 

Sarkar (2005) (that in turn has extended Leland, 1994) to include optimal capital structure and 

optimal investment timing in a unified framework and we analyze the important issue of debt 

financing constraints.  Debt holders may reduce the provision of credit due to moral hazard or 

asymmetric information (see Jensen and Meckling, 1976 and Myers and Majluf, 1984, for 

discussion of these issues).  Asymmetric information has also been provided as a reason 

justifying why the suppliers of credit engage in credit rationing (see Fazzari et al., 1988, Stiglitz 

and Weiss, 1981).  Boyle and Guthrie (2003) analyze the effect of financing constraints on 

investment policy but their model focuses on liquidity/cash constraints while ours on constraints 

on the level of debt financing. Furthermore, our model shares the good characteristics of the 

Mauer and Sarkar (2005) model in that it explicitly models optimal capital structure decisions 

(with the added constraint in our setting), the tax benefits of debt, credit spread determination 

and the optimal default policy of the firm.  

 

The thesis consists of three parts. In the first part, we maintain the traditional real option setting 

(with the options to react under uncertainty incorporated in prior literature), and we introduce 

active managerial actions to control (enhance) cash flows, albeit with random outcome. The first 

part of the thesis extends prior literature results as follows: 

 A multi-stage investment setting with path dependency between value-enhancing 

managerial control actions with random outcome 

 Delays in the realization of managerial control’s impact (time-to-learn) 

 Accelerated versus sequential investment policies, learning-by-doing and decreasing 

marginal reversibility of capital invested (Convexity in adjustment costs)  

 Applications in new product development and innovation adoption and discussion of 

implications  

In the second part we extend the analysis of the first chapter and do the following: 

 Incorporate managerial actions to learn besides option to enhance 

 Extend stochastic process dynamics for project value that accommodates jumps 

(discontinuities) coming from intense competition, political, or regulatory reasons 
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 Provide analytic solutions for sequential (compound) options with embedded 

learning and value-enhancing controls and exogenous jumps and describe the factors 

affecting the determination of decision regions 

 Discuss numerical applications in new product development (including pilot projects, 

learning actions before development).  

In the third part of the thesis, we build on recent theories of the capital structure that use the 

contingent claim approach and provide a natural extension of the real option theory developed in 

the first two parts to provide for the potential of debt financing. This new setting provides the 

environment for the analysis of new interesting issues highlighted below: 

 Simultaneous determination of optimal investment and capital structure decisions 

under exogenous uncertainty 

 Discussion of the factors affecting the trade-off between investment and financing 

flexibility 

 The valuation of corporate securities, equity and debt,  the determination of credit 

spreads and investment and default triggers 

 The effect of financing constraints on debt on firm value, the investment and default 

triggers, the credit spreads and the values of equity 

 The effect of managerial control actions with random outcome on firm value, the 

value of corporate securities, the credit spreads and investment and default triggers (also 

simultaneously considering the effect of financing constraints on debt) 

 

Each chapter in the thesis separately provides all the relevant literature review, the models, the 

main findings and contributions and applications.  

 

 

 

 

 

 

 

 

 9

Nico
s K

ou
ss

is



References 
 

Boyle, Glenn W., and Graeme A. Guthrie. (2003). “Investment, Uncertainty, and Liquidity,” 

Journal of Finance 58, 2143-2166. 

 

Childs, Paul D., and Alexander J.Triantis. (1999). “Dynamic R&D Investment Policies,” 

Management Science 45, 1359-1377. 

 

Childs, Paul D., Ott, Steven H., and Timothy J. Riddiough, (2001). “Valuation and Information 

Acquisition Policy for Claims Written on Noisy Assets,” Financial Management 30, 45-75. 

 

Childs, Paul D., Ott, Steven H., and Timothy J. Riddiough. (2002). “Optimal Valuation of 

Claims on Noisy Assets: Theory and an Application,” Real Estate Economics 30, 415-444. 

 

Copeland, Thomas E., and Vladimir Antikarov. (2001). “Real Options: A Practitioner’s Guide. 

W.W. Norton & Company; 1st edition 

 

Dixit, Avinash , and Robert Pindyck. (1994). Investment under Uncertainty.  Princeton, New Jersey: 

Princeton University Press. 

 

Fazzari, Steven M., Glenn R. Hubbard, and Bruce C. Petersen. (1988). “Financing Constraints and 

Corporate Investment,” Brookings Papers on Economic Activity 1, 141-195. 

 

Geske, Robert (1979). “The Valuation of Compound Options” Journal of Financial Economics 7, 

63-81. 

 

Jensen, Michael C. and William H. Meckling, 'Theory of the Firm: Managerial Behavior, 

Agency Costs and Ownership Structure,' Journal of Financial Economics, Vol. 3, No. 4 (1976). 

 

 10

Nico
s K

ou
ss

is



Pindyck, Robert S. (1993). “Investments of Uncertain Cost,” Journal of Financial Economics 34, 

53-76. 

 

Leland, Hayne (1994). “Corporate Debt Value, Bond Covenants, and Optimal Capital Structure,” 

Journal of Finance 49, 1213-1252. 

 

Longstaff, Francis A. (1990). “Pricing Options with Extendible Maturities: Analysis and 

Applications,” Journal of Finance, 45, 935-957. 

 

Martzoukos, Spiros H. (2000). “Real Options with Random Controls and the Value of Learning,” 

Annals of Operations Research 99, 305-323. 

 

Martzoukos, Spiros H. (2003). “Real R&D Options with Endogenous and Exogenous Learning,” In 

D. A. Paxson (ed.) Real R&D Options, 111-129. Butterworth-Heinemann Quantitative Finance 

Series. 

 

Martzoukos, Spiros, and Lenos Trigeorgis. (2001). “Resolving a Real Options Paradox with 

Incomplete Information: After all, Why Learn?,” Working Paper,  University of Cyprus.  

 

Mauer, David C., and Sudipto Sarkar. (2005). “Real Options, Agency Conflicts, and Optimal 

Capital Structure,” Journal of Banking and Finance 26, 1405-1428. 

 

Myers, Steward C. and Nicholas Majluf. (1984). “Corporate Financing and Investment Decisions 

when Firms have Information that Investors do not have” Journal of Financial Economics 13, 

187-221.  

 

Schwartz, Eduardo S., and Mark Moon. (2000). “Evaluating Research and Development 

Investments.” In M. J. Brennan and L. Trigeorgis (eds.), Project Flexibility, Agency and 

Competition. New Developments in the Theory and Applications of Real Options. Oxford 

University Press. 

 

 11

Nico
s K

ou
ss

is



Stiglitz, Joseph and Andrew M. Weiss. (1981). “Credit Rationing in Markets with Imperfect 

Information,” American Economic Review 71, 393-410.  

 

Trigeorgis, Lenos (1996). Real Options: Managerial Flexibility and Strategy in Resource 

Allocation.  Cambridge: The MIT Press. 

 

Weitzman, Martin L., and Kevin Roberts. (1981). “Funding Criteria for Research, Development, 

and Exploration Projects,” Econometrica 49,1261-1288. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12

Nico
s K

ou
ss

is



2. Real R&D Options with Time-to-learn and Learning-by-doing 

 

Abstract 

R&D actions are implemented as optional, costly and interacting control actions expected to 

enhance value but with uncertain outcome. We examine the interesting issues of the optimal 

timing of R&D, the impact of lags in the realization of the R&D outcome, and the choice 

between accelerated versus staged (sequential) R&D. These issues are also especially interesting 

since the history of decisions affects future decisions and the distributions of asset prices and 

induces path-dependency. We show that the existence of optional R&D efforts enhances the 

investment option value significantly. The impact of a dividend-like payout rate or of project 

volatility on optimal R&D decisions may be different with R&D timing flexibility than without. 

The attractiveness of sequential strategies is enhanced in the presence of learning-by-doing and 

decreasing marginal reversibility of capital effects. 
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2.1. Introduction 

 

We adopt a real options framework (see Dixit and Pindyck, 1994, Trigeorgis, 1996) to model 

optional and costly R&D actions. The real options literature has analyzed the impact of 

uncertainty in making optimal investment timing decisions. Our model helps expand the insights 

derived in evaluating such R&D efforts. We analyze a firm which can select among a number of 

optional actions: defer investment in costly value-enhancing control actions (R&D), invest in a 

control action (or select from mutually exclusive ones), invest in several control actions 

sequentially, develop the project early (exercise an investment option), or abandon it for a resale 

value (see Myers and Majd, 1990). Our approach can be applied in cases where firms, before 

making the final capital-intensive investment decision to bring a product to market, can invest in 

efforts to enhance its market appeal or lower the cost of production. Consider, for example, a 

leading car manufacturer contemplating bringing a new model to the market. Before doing so, 

the firm has the option to delay the commercialization phase and invest (via R&D or by adopting 

existing technological innovations) in improving the attributes of the initial design. Such 

improvements may affect the aerodynamic performance, the looks, the engine design, the brake 

or the suspension system, etc. Some of these improvement efforts may occur at a reduced total 

cost if they take place not sequentially but together in a focused (accelerated) effort. Other efforts 

may occur more effectively if they take place sequentially, due to the firm´s learning during the 

early stages. Such actions can be seen as R&D investments (or adoption of existing innovations) 

intended to enhance the value of existing investment opportunities. The outcome of such 

improvement efforts is uncertain, and in some cases the new product may even prove to be less 

valuable than the original one.1  

 

An early treatment of controls with random outcome is Korn (1997). Impulse-type random 

controls were introduced in real options by Martzoukos (2000) (see also Martzoukos, 2003). 

These authors treated independent controls available at predetermined times only, while we 

focus on the optimal timing of interacting controls. Control interactions introduce path-

dependency since the history of decisions affects future decisions and the distribution of asset 
                                                 
1 Such may be the case, for example, in the redesign of a product with the intention to strengthen the price and/or market share, potentially with a 

negative customer response or reduced productivity (see Brynjolfsson and Hitt, 2000).  
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prices. Path-dependencies are important in new product development or in innovation adoption. 

Efforts to improve the features of software, for example, may have lower cost and higher 

expected impact if they follow earlier R&D to introduce basic features and functionality to the 

software. Similarly, the effect of a new innovation may be different if it follows a prior 

innovation, reflecting learning-by-doing or other synergies. These additional features via path-

dependencies can substantially affect investment option values and optimal investment 

thresholds.  

 

R&D actions were previously studied in a statistical framework by Roberts and Weitzman 

(1981), but without proper adjustment for risk (as in a real options framework). Pennings and 

Lint (1997) present a real options model for the valuation of an R&D project where the arrival 

time of new information regarding profitability is random and exogenous. Schwartz and Moon 

(2000) discuss information revelation regarding the level of costs in the case of development of a 

new drug in a compound-option framework without path-dependency. They concentrate on the 

effect of technical and input-cost uncertainty and use assumptions similar to those in Pindyck 

(1993) that costs follow a controlled diffusion process. Schwartz and Gorostiza (2000) value 

information technology in development and acquisition projects. Childs and Triantis (1999) 

consider a situation where completion of a research project resolves uncertainty (learning-by-

doing). They focus on the choice between accelerated versus staged (sequential) R&D, but 

assume completion of R&D is mandatory before any realization of profits, whereas in our case 

this is optional. Effectively, they focus on the sequential development process of a new project 

whereas we focus on optional R&D efforts to enhance the value of an existing investment 

opportunity. Grenadier and Weiss (1997) analyze alternative innovation adoption strategies for 

firms confronted with a sequence of randomly arriving innovations. Innovations in their setting 

arrive at random times and the firm can follow different strategies regarding their adoption. They 

focus on the uncertainty regarding the arrival of new technologies while in our framework the 

firm has an option to adopt an existing innovation with unknown impact and it must select the 

best alternative at an optimal timing. We also allow for a multistage setting with other potential 

strategies (like abandonment or early exercise of the investment option), and incorporate path-
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dependencies between actions2. R&D investments may also take time to complete, an effect we 

call “time-to-learn” due to lag in the realization of the control’s impact (e.g., due to delayed 

response of consumers to the new features or time needed to build them). Lags in the 

development process of construction projects were previously analyzed by Majd and Pindyck 

(1987), who used the term “time-to-build” (see also Bar-Ilan, Sulem, and Zanello, 2002). 

 

We consider as a benchmark the case of a single R&D action without timing flexibility in its 

activation. Then we study numerically the general case with optimal timing of R&D, and the 

impact that lags in the realization of the research outcome have on investment option value. The 

presence of optional R&D actions can significantly enhance investment option value and can 

affect the critical decision thresholds. We investigate the dividend-like payout rate and asset 

volatility effects on project value and optimal thresholds. Results differ significantly with timing 

flexibility for the control actions than without. We also show that lags (time-to-learn) reduce 

option value, and that the sensitivity of thresholds to parameter values of the stochastic process 

depends on the degree of timing flexibility in controls. Finally, in a more general setting we 

analyze a complex situation with two potential R&D strategies: an accelerated strategy with 

higher cost and higher average impact, versus a (flexible) staged strategy involving two 

sequential control actions. Contrary to what one might expect, the sequential strategy does not 

dominate the accelerated strategy. The appeal of the sequential strategy is enhanced if there are 

learning-by-doing effects or decreasing marginal reversibility of capital invested in research.  

 

The chapter is organized as follows. In the next section we discuss the (benchmark) special case 

of R&D without timing flexibility, and then describe the general framework for optimal 

activation and timing of control actions involving path-dependency. Section 3 presents our 

numerical results. The last section concludes. An Appendix provides numerical evidence 

concerning the accuracy and convergence of our numerical scheme. 

                                                 
2 Our setting is one of active control, unlike the passive learning case studied in Majd and Pindyck (1989) where efficiencies in production 

accumulate simply while the firm is in operation. 
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2.2 A general framework with control actions and path-dependency 

We assume that project returns follow a risk-neutral process of the form: 

                                              ( )t
t j

t

dS r dt dz k dq
S

δ σ= − + + j .                                                        (1)      

In the above equation r is the riskless rate, δ is a dividend-like payout rate representing an 

opportunity cost of waiting to invest, and σ is the standard deviation of the rate of change in 

project value. The term dzt is an increment to a standard Wiener process describing the 

uncertainty of project value in the absence of control actions. Equation (1) is similar to that of 

jump-diffusion, but this equation does not refer to jump-diffusion. The similarity exists because 

the control is of an impulse-type, multiplicative nature (with random outcome). We denote by  

the impact on project returns of control action j, specified by its cost, I

jk

C, and the distribution of 

1+ . Counter  takes the value one if control j is activated by the decision-maker and zero if 

not.  is a control variable, not a random variable (unlike the case of jump-diffusion). The 

decision maker has the option to activate controls at a cost, solving the optimization problem 

discussed in section 2.2. Since the system is stochastic with project value S being the primary 

driver, at each point in time when a control is available the level of S helps determine whether 

control activation is optimal or not.  Other determinants of control activation are the parameter 

values of the stochastic process of S, the remaining time to option maturity, and the control 

characteristics (distribution of the impact, parameter values of the distribution, and the cost of the 

control). Control activation is also affected by whether there is timing flexibility in control 

activation, and whether other mutually-exclusive controls also exist. The cost of the control and 

the parameter values of its distribution may be dependent on time and previous activation of 

other controls. 

jk jdq

jdq

 

We assume that an equilibrium model like the continuous-time CAPM (see Merton, 1973) holds 

and that controls have firm-specific risk which is uncorrelated with the market portfolio and is 

thus not priced. We use risk-neutral valuation as established in Constantinides (1978), Harrison 

and Pliska (1981), and Cox, Ingersoll, and Ross (1985). The dividend-like payout rate (or 

opportunity cost of waiting to invest) δ  can be deducted from the equilibrium-required rate of 
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return as in McDonald and Siegel (1984)3. Denoting the accumulated (Brownian) noise from t = 

0 to T by ZT, we can rewrite equation (1) in the following form 

 

          
2

0

exp ( ) (1 )
2

T
T j

j

S r T Z k
S

σδ σ
⎡ ⎤

= − − + +⎢ ⎥
⎣ ⎦

∏ jdq

)−

)j

.                    (1a) 

(1 )j
j

k+∏  denotes the impact of j multiplicative controls that have been activated (dqj = 1) 

before time T. Equations (1-1a) imply that the underlying asset in the absence of controls is log-

normally distributed. The multiplicative effect of control action 1+  is assumed to be log-

normally (logN(.)) distributed: 

jk

 

                                 ,                                       (2)                           (( )0.521 ~ log exp( ),exp( ) exp( ) 1j j j jk N γ γ σ+

( ) (2

0 0

ln[ ] ln[ ] 0.5 ln(1 )
T T

T t t j
j

S S r dt dZ k dqδ σ σ− = − − + + +∑∫ ∫ .                     (2a) 

 

The assumption of log-normally distributed controls is convenient. It not only ensures non-

negative asset values, but also conditional on control activation asset values retain their general 

distributional properties since the product of two log-normal distributions is log-normal. Control 

j is characterized by its average impact and volatility parameters, jγ  and  respectively, and 

by its cost I

2
jσ

C. Parameter 0jγ >  represents efforts to enhance the value of project returns. When a 

control is activated, immediate return to R&D equals (kjS – IC)/IC and it can be either positive or 

negative. This return will be realized only when (and if) the final investment is made. In general 

we consider an investment opportunity to pay a capital cost X and realize net value S – X. The 

control problem involves efforts to enhance project value S before the final investment decision 

takes place. The objective is to activate available controls optimally by choosing the best among 

several alternative controls at an optimal time taking into account potential path-dependencies in 

the parameter values of controls. The parameter values (including the cost) of these control 

actions may depend on the sequence in which they are activated. Even though control actions are 
                                                 
3 It may also account for competitive erosion to the project’s cash flows (e.g., Childs and Triantis, 1999, Trigeorgis, 1996, ch.9, and Trigeorgis, 

1991). 
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expected to enhance project value S (at a cost), the final outcome is uncertain. Of course, we 

expect that the availability of such “optional” actions will enhance real option value.  

 

The parameter values of controls may depend on activation of previous controls, but not on the 

exact value outcome of the activation, neither on the level of S. The outcome of previous 

activation, however, will influence future optimal actions since optimal decisions depend on the 

level of asset value S at each time. Due to the numerical nature of the solution it is feasible to 

allow controls have characteristics (cost and parameter values of the distribution of its impact) 

that are functions of the level of state-variable S. The assumption that the outcome of a control is 

independent of the outcome of other previously-activated controls is reasonable when each 

control in the sequence treats different aspects of the problem under consideration. In some 

situations (not treated in this paper) this may not be the case.  

2.2.1. Simple case (without timing flexibility): A benchmark  

 

We first consider a special (single-period) case without flexibility in the timing of the control 

that has an analytic solution. This will allow us to investigate the possible action regions at t = 0 

for different levels of project value S (where for notational convenience we drop the dependence 

of S on time). It will also serve as a benchmark for testing the accuracy of our numerical results. 

The benchmark relates to the simple case of a European investment (call) option conditional on 

activation of a single control (at a cost IC), without timing flexibility. The solution to the option 

value in this special case becomes: 

 

                                                         (3) 1
1 2( ) ( )δ γ− + −= −TC rT

CV Se N d X e N d I−

with                  
2 2

2 21 1
1 2 1 12 2 1/ 2

1

ln( / ) ( ) 0.5 0.5 , [
[ ]
δ γ σ σ σ σ
σ σ

+ − + + +
= =

+
S X r T Td d

T
1/ 2]− +d T , 

 

where IC , 1γ , and 2
1σ  are, respectively, the cost, average impact, and variance of the impact of 

the control action. If the control were costless (IC = 0), it would always increase option value as 

long as the average impact is positive ( 1 0γ > ) for a call option. In this simple case the firm owns 
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(has monopoly power over) an investment option, and can (at t = 0) take any of the following 

actions. First, it can simply wait (W) and keep the investment option alive (but sacrifice the 

embedded optional control). In this case the value of waiting VW equals the simple Black and 

Scholes (1973) solution (VC with 011 == σγ  and IC = 0). Second, it can take the single control 

action (C) and get VC. Finally, it can exercise early (EE) the investment option for an immediate 

value VEE = S – X. Thus, the optimal value V* is the best among the three possible alternatives 

VC, VW, and VEE.  

 

Figure 1. Payoff function slopes and optimal decisions for a European 

option involving control and possible early exercise at t = 0 
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Panel B 
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Notes:  We illustrate typical examples for the determination of optimal decision regions for a single-stage 

investment problem where the firm can either invest early (EE) at t = 0, Wait (W), or activate a managerial control (C) 

and then decide whether to invest at t = T. We examine the slope of the payoff functions for each strategy (partial 

derivatives of option value with respect to S) using the analytic formulas in equations (3) and (4). The average impact of 

control is denoted by γ. 

 

To examine the optimal decisions among these three action choices as a function of the level of 

the underlying project value S, it is useful to compare (see Figure 1) the slopes of the respective 

claim values from the following equations: 

 

             1,)(,)( 11 =
∂

∂
→=

∂
∂

→=
∂
∂ +−

>>

+−−

>>

−

S
VedNe

S
VedNe

S
V EE

T

XS

T
C

T

XS

T
W

γδγδδδ ,                         (4) 

 

where S>>X means S sufficiently higher than X (so that ).  Panel A in Figure 1 shows 

the case where for very large project values (S>>X) the slope in case of early exercise remains 

always above the other slopes so the optimal decision is to exercise early (EE). Panel B in Figure 

1 shows the case where the slope with control activation remains the highest and for high values 

of S, activating the control (C) is the optimal decision. For low values of S, neither the costly 

control nor the early exercise decision would have much value, and thus the wait (W) decision 

will prevail. At higher values of S (assuming the average control impact 

1( ) 1N d →

1γ is positive) the 
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increase in value is higher for control activation, and after some critical threshold the wait 

decision (W) gets dominated by the control decision (C).  But at certain values of S > X, the 

decision can also be early exercise (EE). Thus, in Panel B (at t = 0) for increasingly higher 

project values S the regions of optimal decisions can be {W,C,EE,C}, {W,EE,C} or {W,C}. If the 

slopes of the (W) and (C) cases were to cross, we could have {W,C,W,EE,C}, {W,C,W,C} or 

{W,EE,C}, etc. In the first panel, the order could be {W,C,W,C,EE}, {W,C,EE}, or {W,EE}, etc. 

For each Panel some regions may vanish and the regions that actually prevail would also depend 

on other option parameter values like project volatility and the opportunity cost of waiting to 

invest. The regions of optimal decisions at t = 0 derive from the simple case where an analytic 

solution exists (which in the presence of control timing flexibility is equivalent to the decision 

stage just before option maturity). They can provide insights for the more general case where the 

control(s) can be activated at an optimal time. The exact level of thresholds that separate the 

various regions as well as the actual regions that result may also depend on the additional 

flexibility to time the control activation, the number and order of path-dependent controls, etc. 

These can be analyzed with precision only as part of a numerical investigation. We do so right 

after we discuss in the next subsection the more general problem, structure and solution 

methodology. 

 

2.2.2. Multi-stage decisions with optimal timing of path-dependent R&D 

actions 

 

This section discusses our more general framework. Consider the managerial investment 

decision problem with control actions shown in Figure 2 (with  for illustration 

purposes). The firm has an option to invest an amount X to obtain project value S. It can also 

invest in  control actions to improve the level of cash flows (or alternatively to reduce costs) 

before the project development/commercialization decision. This (optional and costly) 

investment in controls may occur in the context of mutually exclusive actions or sequences of 

actions involving path-dependency. The information regarding the firm’s actions at each decision 

cn 4cn =

cn
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point t is captured by the operating mode  at that time. In general, there is a starting mode 

reflecting the decision to wait (W) before project development or any control decisions are made. 

There are  possible controls {C

tm

cn 1, C2,…, } and  intermediate wait modes between control 

actions {W

cnC cn

1, W2,…, }. Finally, there are two terminal boundary conditions: an early exercise 

of the investment option involving a development/commercialization (EE) decision, and an 

abandonment mode for capital recovery (A). Modes {EE, A} are absorbing states. In early 

exercise mode (EE) the firm obtains S – X, while in mode (A) the firm recovers a percentage α of 

total investment TC in prior control actions

cnW

4. 

 

Figure 2.  A general decision framework with path-dependent R&D control actions 
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Notes: The firm starts in a wait (W) mode and has the option to defer investment in controls, or invest in controls (C1)-(C4) 

either sequentially or by skipping some control actions. After investing in a control action the firm can also move to wait (W1)-

(W4) modes, invest in other remaining control actions, exercise the early investment option (EE) or abandon (A) the project for a 

recovery amount. The modes (EE) and (A) are accessible at any time. 

                                                 
4 This recovery factor is usually below 100% depending on recovery (the extent of partial reversibility) of capital, but sometimes it may be above 

100% due to accumulated know-how, sale of patents, etc. 
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We divide the time to option maturity T into  equally-spaced decision points, 

with . Thus 

sn

...}3,2,1{=sn
s

s

ss n
Tn

n
T

n
Tt

)1(
,...,2,,0

−
=  represent the corresponding action times 

with  being the terminal decision point at time T. At maturity T the firm has a last chance 

to decide whether to develop or abandon the project. The effect of the jth control action, 1+ , is 

assumed to be log-normally distributed with average impact 

1+sn

jk

jγ  and volatility jσ . In the more 

general specification ),( jhγ  and ),( jhσ  are conditional on the previous state h since there is 

path-dependency between actions; we use this notation for simplicity, although the parameter 

values may depend not only on the previous action but also on a whole sequence of actions. 

Following activation of control action j at time t, 1 2{ , ,..., }
cnj C C C∈ , and conditional on the 

previous action h, project log-returns are normally distributed: 

 

                      ⎟
⎠
⎞

⎜
⎝
⎛ +Δ+Δ−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ+ ),(),,()
2
1(~,|ln 222 jhtjhtrNjh

S
S

t

tt σσγσδ .                                 (5) 

 

If no control is activated, 1 2{ , , ,..., }
cnj W W W W∈ , the terms involving the average impact ),( jhγ  

and the volatility of the control´s impact  in equation (5) vanish. ),(2 jhσ

 

The average impact and volatility of controls, and their cost, is determined by the sequence 

(path) in which the controls are being activated. For example, a particular control C2 may 

represent an expensive new design. This new design alone may have a different average impact 

(if it is activated directly from W), γ(W,C2), than if it follows another recently introduced similar 

design C1, γ(C1,C2). The cost of each control action j may also be path-dependent. For example, 

suppose CA is an accelerated control strategy of high impact with cost I(W,CA). If {C1,C2} is a 

sequential control strategy, each individual control with half the impact of the accelerated 

strategy, total costs may differ from I(W,CA). Pre-specified switching matrices provide the 

parameter values (average impact, volatility, and cost) of controls for every feasible decision 
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sequence (transition). These switching matrices must be economically (or logically) consistent. 

If, for example, CA and the sequence {C1, C2} are mutually exclusive alternatives, we should 

compare I(W,CA) with I(W,C1) + I(C1,C2). If I(W,CA) > I(W,C1) + I(C1,C2) cost efficiencies that 

favor the sequential strategy may be achieved due to learning-by-doing. If I(W,CA) < I(W,C1) + 

I(C1,C2), there may be scale efficiencies.  

 

When path-dependency is involved we can only define payoffs conditional on prior decisions 

and search for the optimal sequence of actions. We assume decisions can be revised at periodic 

intervals Δt.  is the payoff under decision m(.)tmV t. This payoff is a function of the level of 

project value S at that point determined by the path of actions followed, including the switching 

costs , the average impact of controls, the development cost X, the recovery rate α in case 

of abandonment, etc. Superset M includes all information about admissible actions, action 

sequences, and the parameter values of controls in each case. At each time t, stochastic subset 

 describes the history of actions up to time t, and stochastic subset  defines the remaining 

admissible actions and relevant parameter values. More specifically, the problem of finding the 

optimal value function  involves maximizing  by choosing the optimal action at t 

given the past decisions: 

),( jhI

−
tM +

tM

*(.)V (.)tmV

 

    { }t

t

m

M
ttt VMMMtSV

+
=−+ max),,|,(* .                        (6) 

 

We differentiate the following cases.   

 

For :         },....,,{ 21 cnt CCCm ∈ =−+ ),,|,( ttt
m MMMtSV t

        .                              (6a)   ( ) *( , | , , , ) ( , )r t
t t t t t t t t t t te E V S t t S M M M I m m− Δ + −

+Δ +Δ +Δ −Δ⎡ + Δ −⎣ ⎤⎦

 

For :                  }{EEmt ∈ =−+ ),,|,( ttt
m MMMtSV t XSt − .                                                  (6b) 
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For , with  being the total control costs paid until t: }{Amt ∈ ( tTC M − )

       =−+ ),,|,( ttt
m MMMtSV t ( )tTC Mα − .                                           (6c) 

 

For : },...,,{ 21 cnt WWWm ∈

         =−+ ),,|,( ttt
m MMMtSV t ( ) *( , | , , , )r t

t t t t t t t te E V S t t S M M M− Δ + −
+Δ +Δ +Δ⎡ ⎤+ Δ⎣ ⎦ .                       (6d) 

 

Equations (6a-6d) incorporate various path-dependent factors like costs , average 

impact and volatility, early development options, and abandonment to recover a percentage of 

total past investment in controls TC. The expectation operator  is taken with respect to the 

distribution of log-returns given earlier.  

),( ttt mmI Δ−

[.]E

 

At the last decision point, , we have the terminal condition: 1+sn

 

     ( )( )( , | , , ) max ,Tm
T T T TV S T M M M S X TC Mα+ − −= − T .                          (7) 

 

To find the optimal project value at t = 0, equations (6) are evaluated for each decision mode at 

each decision point and (after discretization) for each state of the realization of the underlying 

asset S. Due to path-dependencies,  cannot be evaluated in the usual backward dynamic 

programming manner. Rather, we must take into account all feasible combinations of actions and 

paths of project value.  

*V

 

We use the above framework in order to study the optimal timing of controls, and optimal 

activation of controls with delay in the realization of their outcome (time-to-learn).  We also 
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study the optimal activation of mutually exclusive sequences of controls, specifically the choice 

between an accelerated strategy with high impact and cost and a sequential strategy in two 

controls each having lower impact and cost. 

2.2.3. Numerical lattice implementation and accuracy investigation 

 

To evaluate the expectation operator in equations (6) we discretize the state-space using a 

numerical lattice scheme. This is in contrast to Martzoukos (2000) who used a finite-difference 

(rectangular) scheme with Markov-chain methods to solve for sequential (independent) controls; 

that method could easily handle sequential controls, but not path-dependency. We approximate 

the log-normal distribution between decision points (stages) with a binomial lattice with  

steps (the total number of steps N being ). The terminal nodes of each sub-lattice serve as 

starting nodes for new ones. Figure 3 illustrates a simple case where decisions are allowed at t = 

0, t = T/2, and t = T.  Controls are allowed only at t = 0 and t = T/2 (a two-stage decision 

problem, i.e. ). The very first sub-lattice starts at node 1 with terminal nodes points 4, 5, 

and 6. From each of these terminal nodes starts a different sub-lattice. For example, the sub-

lattice that starts from node 4 ends at nodes 11, 12, and 13.  In this example, each sub-lattice is 

constructed with two steps ( ).  At node 1 all decisions are examined successively.  For 

each decision, the value is provided by the option value given by the sub-lattice.  At the terminal 

nodes 4, 5, 6 we evaluate each possible decision and keep the one with the highest value; 

allowing for more in-between steps enhances accuracy.  For decisions to be evaluated at nodes 4, 

5, and 6 each time a new sub-lattice is constructed, and so on. Effectively this defines the state 

and decision space over which a forward-backward exhaustive search method is applied. Despite 

the fact that the figure for simplicity shows an overall recombining lattice, this will not generally 

be the case: each sub-lattice is a recombining one, but the overall lattice is not.  Only in the 

absence of path-dependencies, would the approach reduce to using a simple backwards induction 

and the overall lattice would be a recombining one. In the absence of path dependency and with 

the optional controls available at predetermined times, the numerical solution would become 

similar to that for sequential (compound) options (see Geske, 1979). 

sN

ss Nn

2sn =

2sN =
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Figure 3. Example of sub-lattice construction   
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Notes:  In this example of sub-lattice construction, there are decision stages at t = 0, t = T/2, and at t = 

T; and two steps per sub-lattice. Since controls can be activated at t = 0 and at t = T/2, this is a 2-stage 

problem. Sub-lattices are defined by nodes (1-4-6), (4-11-13), (5-12-14), and (6-13-15). 

 

 

The overall lattice may not be recombining because, the distribution of outcomes at i + 1 will 

differ, depending on the decision at decision point i. We thus employ different volatility, up and 

down probabilities, and up and down jumps for the sub-lattice implementation depending on the 

decision. The conditional volatilities  between decision points are as follows: ),(2
ttt mmv Δ+

 

For : },...,,{ 21 cnt CCCm ∈
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When controls are not activated and },...,,{ 1 cnt WWWm ∈ , the conditional volatilites simply 

reduce to the diffusion volatility 
s

s
ttt N

T
mmv 22 ),( σ=Δ+ .  Between stages, we use the following 

up and down project value steps: 
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The probabilities of an up and down move for the case of controls, i.e., for , 

are : 
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For , the term involving γ in equation (9) vanishes. The above specification 

allows us to evaluate the expectation in equations (6). Note that in the special case discussed 

earlier involving a single ( ) control decision at t = 0 without any timing flexibility, the 

whole lattice is just the single sub-lattice. In the following applications we use a discretization 

scheme with one step per month.  

},...,,{ 1 cnt WWWm ∈

1sn =
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Evaluation of real (investment) claims with path-dependency is generally a complex and 

computationally intensive problem. Such problems rarely allow for analytic-type solutions5. The 

numerical complexity in the case of real option problems was discussed in Kulatilaka (1988) and 

Ritchken and Kamrad (1991). Hull and White (1993) demonstrated that it is feasible to solve 

American (or semi-American) option problems with path-dependency using a lattice 

framework6. Thompson (1995) analyzes a specialized contract called “take or pay” where the 

path-dependency was also due to past decisions.  Being able to describe the path with one value 

and due to the specific structure of his problem he was able to solve it with backwards induction, 

with the additional use of an auxiliary variable that describes the possible path realizations. In 

our model path-dependency involves both the history of decisions and (due to the random 

outcome of decisions) the history of the asset price. Furthermore, we allow a rich set of 

alternative actions the firm can take at each point in time. Each action not only affects the future 

distribution of the state variable but also affects the set of remaining actions. Problems with such 

features of path-dependency can be solved with a backward-forward approach of exhaustive 

search. At each decision point a (finite) set of alternatives is investigated by taking the induced 

path-dependencies into account.  

 

We investigate the accuracy of our lattice scheme using one step per month. This is quite feasible 

in the simple case with a single control available at t = 0 (that has an analytic solution). We have 

derived numerical results with several parameterizations and compare them against the known 

analytic solution (see Table A0 of the Appendix). In the next section we analyze more complex 

problems with no analytic solutions, for which the high accuracy observed earlier may not be 

achieved. For those problems we investigate how the solution behaves as the number of steps in 

the lattice implementation increases. Our calculations show (see tables A1-A3 in the appendix) 

that the numerical model appears to converge relatively quickly and the chosen lattice scheme 

with one step per month is adequate. 

 

                                                 
5 For exceptions with analytic solutions, see Bar-Ilan and Strange (1998) and Hartman and Hendrickson (2002). 
6 They actually solved exotic derivative problems where dependency was due to the history of the asset price and evaluated American lookback 

and Asian options using interpolation techniques. 
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2.3. Applications, numerical results and discussion 

 

In this section we apply our framework to real option problems with optional R&D actions at the 

pre-investment stage. We study option valuation and optimal decisions in problems with 

increasing level of complexity. We start with the optimal timing of a single control action, 

compared to the case where there is no timing flexibility. We also consider the ability to abandon 

operations for recovery of capital invested in controls. An additional complexity involves a 

possible delay in the effect of the control (time-to-learn). We then consider mutually exclusive 

control strategies, namely the choice between an accelerated and a sequential strategy, and 

examine cases involving learning-by-doing or diminishing marginal recovery rates. We provide 

sensitivity results to parameter values of the controls as well as to the standard option 

parameters, namely the project (Brownian) volatility and the opportunity cost of waiting to invest 

(“dividend-like payout rate”) δ7.  

 

For our numerical results we use as base case a single control action with cost I1 =10, average 

impact (on project value) γ1 = 0.20, and volatility of impact σ1 = 0.30. The other base case 

parameters are: r = δ = 0.05, volatility of the diffusion process σ = 0.15, investment horizon T = 

5 years, and project development cost X = 100. In the case involving timing flexibility, we 

assume  decision points, whereas if there is no timing flexibility . The choice of 

parameter values is consistent with the literature. The level of X defines the investment scale, and 

approximates the value of the single-project firm (before adjusting for the net present value of 

the investment). A cost for the control I

5=sn 1sn =

1 = 10 is consistent with the empirical observation that 

R&D expenditures are about 9% of the market value of equity (Amir, Guan, and Livne, 2004). 

Chan, Martin, and Kensinger (1990) find that event announcements to increase R&D 

expenditures have a positive and statistically significant impact on share value. Such 

announcements increase return variance by a factor of about 100% on the announcement day. 

Grabowski and Vernon (1990) document returns to Pharmaceutical R&D of around 15%-30%. 

As they demonstrate, the return distribution is highly skewed, with the top decile providing a 

                                                 
7 Sensitivity to the dividend-like rate is important, since it may also indirectly (in a non-game theoretic framework) capture effects like value 

erosion due to actions of competitors, etc. (see Trigeorgis, 1991). 
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return around 400%-500%. Kothari, Laguerre, and Leone (2002) present empirical evidence for 

a positive relation between R&D expenditures and uncertainty of future benefits. They also point 

out that if R&D expenditures were to replace all capital expenditures, earnings variance would 

increase by 30-70%. Childs and Triantis (1999) use a standard deviation of 0.40 assuming it is 

completely attributed to R&D and that the volatility attributed to the Brownian motion is zero. 

Our choice of control volatility σ1 = 0.30 thus seems plausible (if one control is activated within 

a year, the total volatility would equal 33.5%). For brevity we present selected numerical results, 

but our insights are supported by sensitivity on a much wider range of parameter values8.  

 

2.3.1. Optimal timing of a single R&D control action 

 

The simplest case with induced path-dependency involves the optimal timing of a single control 

action. This case exhibits path-dependency because control activation affects the forward lattice 

construction, so simple backwards induction cannot take into account the possibility of earlier 

control activation. We present results for various cases at different levels of the initial project 

value S. In contrast to Grenadier and Weiss (1997), we focus on the flexibility in the timing of 

innovation adoption; in general we show how the results differ according to the level of the 

stochastic variable, the parameters of the control actions and the parameter values of the 

exogenous stochastic process (which is absent in their model). 

 

For comparison purposes we present numerical results for cases involving both timing and no 

timing flexibility. Option values and optimal decision thresholds are presented in Tables 1 – 2. 

Table 1 describes the case with no timing flexibility. With timing flexibility (Table 2), the single 

control may be activated at any of five decision stages before option maturity. In both tables the 

first column refers to the base case. Note that due to the specific option and control parameter 

values in Table 1, for much higher than reported values of S, 

                                                 
8 We have investigated (partly only reported) parameter values for a cost I1 = 5, 10, 20, 30, 40; for a mean impact γ1 = 0.10, 0.20, 0.30, 0.40, 0.80; 

and for a volatility of impact σ1 = 0.10, 0.30, 0.50. For the parameter values of the stochastic process, we have made numerical investigations for 

a dividend-like payout rate δ = 0, 0.03, 0.05, 0.08, 0.10, 0.20; and for a Brownian volatility σ = 0.05, 0.15, 0.30, 0.50. 
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and the dominant strategy is early exercise (EE). This is not the case in Table 2, where the 

presence of flexibility to delay R&D decisions may make decisions other than early exercise 

(EE) dominant at high project values. 

Table 1.  Option value and optimal decisions:  

Single R&D action without timing flexibility  

  Base Case I1 = 40 δ = 0.1 σ = 0.50 γ1 = 0.30 σ1 = 0.50 

S Value 
 

Dec. Value 
 

Dec. Value 
 

Dec. Value 
 

Dec. Value 
 

Dec. Value 
 

Dec. 
260 160.00 EE 160.00 EE 160.00 EE 171.52 C1 185.50 C1 160.27 C1
251 151.00 EE 151.00 EE 151.00 EE 163.37 C1 176.05 C1 151.83 C1
250 150.05 C1 150.00 EE 150.00 EE 162.47 C1 175.00 C1 150.90 C1
240 140.58 C1 140.00 EE 140.00 EE 153.57 C1 164.51 C1 141.57 C1
230 131.11 C1 130.00 EE 130.00 EE 144.83 C1 154.02 C1 132.25 C1
220 121.67 C1 120.00 EE 120.00 EE 136.09 C1 143.55 C1 122.92 C1
210 112.24 C1 110.00 EE 110.00 EE 127.34 C1 133.09 C1 113.72 C1
200 102.83 C1 100.00 EE 100.00 EE 118.60 C1 122.63 C1 104.55 C1
190 93.49 C1 90.00 EE 90.00 EE 109.86 C1 112.23 C1 95.38 C1
180 84.15 C1 80.00 EE 80.00 EE 101.19 C1 101.82 C1 86.36 C1
170 74.93 C1 70.00 EE 70.00 EE 92.89 C1 91.51 C1 77.44 C1
160 65.74 C1 60.00 EE 60.00 EE 84.58 C1 81.20 C1 68.52 C1
150 56.75 C1 50.00 EE 50.00 EE 76.28 C1 71.05 C1 59.94 C1
140 47.85 C1 40.00 EE 40.00 EE 67.97 C1 60.96 C1 51.38 C1
130 39.23 C1 30.00 EE 30.00 EE 59.95 C1 51.10 C1 43.14 C1
123 33.35 C1 23.00 EE 23.00 EE 54.54 C1 44.32 C1 37.50 C1
120 30.91 C1 20.81 W 20.00 EE 52.23 C1 41.48 C1 35.09 C1
110 22.92 C1 15.20 W 10.00 EE 44.51 C1 32.15 C1 27.48 C1
104 18.42 C1 12.25 W 4.00 EE 39.88 C1 26.80 C1 23.04 C1
100 15.42 C1 10.33 W 2.98 W 36.79 C1 23.24 C1 20.08 C1
90 8.70 C1 6.45 W 1.61 W 29.81 C1 15.05 C1 13.48 C1
83 4.53 C1 4.28 W 0.94 W 24.92 C1 9.86 C1 9.10 C1
80 3.54 W 3.54 W 0.74 W 22.82 C1 7.67 C1 7.39 C1
79 3.29 W 3.29 W 0.67 W 22.12 C1 6.96 C1 6.82 C1
71 1.72 W 1.72 W 0.29 W 18.10 W 1.93 C1 2.49 C1
70 1.58 W 1.58 W 0.26 W 17.66 W 1.58 W 2.02 C1
69 1.46 W 1.46 W 0.24 W 17.22 W 1.46 W 1.55 C1
60 0.55 W 0.55 W 0.07 W 13.23 W 0.55 W 0.55 W 

Notes:  We show option values and optimal decisions (Dec). This is the case of no timing flexibility of the control, and we use time to 

maturity (T = 5) with decision at t = 0 only (no flexibility to delay). Admissible actions (Dec.): Wait (W), R&D Control (C1), and early 

exercise of investment option (EE). Base case parameter values are r = δ = 0.05, σ = 0.15, development cost X =100. For R&D control: 

average impact γ1= 0.20, volatility σ1 = 0.30, and cost I1 = 10. Results are numerically derived using one step per month. Sensitivity is with 
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respect to project value S, control cost I1, opportunity cost of waiting δ, exogenous project volatility σ, average impact γ1 and volatility of 

control impact σ1. 

Table 2.  Option value and optimal decisions: 

Single R&D action with timing flexibility  

 

 Base Case I1 = 40 δ = 0.1 σ = 0.50 γ1 = 0.30 σ1 = 0.50 Abandonment 
S Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. 

220 150.59 C1 120.59 C1 138.07 C1 160.07 C1 177.41 C1 151.92 C1 150.63 C1
217 147.12 C1 117.12 C1 134.76 C1 156.87 C1 173.56 C1 148.51 C1 147.16 C1
210 139.02 C1 110.00 EE 127.05 C1 149.40 C1 164.59 C1 140.61 C1 139.06 C1
200 127.45 C1 100.00 EE 116.03 C1 138.75 C1 151.77 C1 129.33 C1 127.51 C1
190 115.94 C1 90.00 EE 105.05 C1 128.14 C1 138.99 C1 118.11 C1 116.06 C1
180 104.49 C1 80.00 EE 94.13 C1 117.62 C1 126.24 C1 106.92 C1 104.63 C1
170 93.08 C1 70.00 EE 83.23 C1 107.48 C1 113.51 C1 96.01 C1 93.25 C1
160 81.72 C1 60.00 EE 72.37 C1 97.55 C1 100.81 C1 85.23 C1 82.03 C1
150 70.62 C1 50.00 EE 61.80 C1 88.20 W 88.28 C1 74.59 C1 70.99 C1
140 59.63 C1 40.00 EE 51.30 C1 79.08 W 75.83 C1 64.11 C1 60.10 C1
136 55.28 C1 36.00 EE 47.11 C1 75.48 W 70.87 C1 59.95 C1 55.80 C1
135 54.19 C1 35.00 EE 46.06 C1 74.58 W 69.63 C1 58.91 C1 54.76 C1
130 48.87 C1 30.86 W 41.02 C1 70.22 W 63.53 C1 53.86 C1 49.60 C1
123 41.67 C1 25.49 W 34.24 C1 64.25 W 55.19 C1 47.04 C1 42.51 C1
120 38.62 C1 23.27 W 31.35 C1 61.71 W 51.64 C1 44.16 C1 39.54 C1
110 28.71 C1 16.63 W 21.90 C1 53.37 W 40.00 C1 34.81 C1 29.95 C1
104 23.23 C1 13.23 W 16.90 C1 48.48 W 33.44 C1 29.39 C1 24.66 C1
100 19.98 W 11.07 W 13.67 C1 45.27 W 29.16 C1 25.84 C1 21.28 C1
99 19.24 W 10.62 W 12.88 C1 44.51 W 28.11 C1 24.97 C1 20.45 C1
94 15.66 W 8.39 W 9.02 C1 40.77 W 22.98 C1 20.86 C1 16.78 W 
93 14.96 W 7.96 W 8.25 C1 40.03 W 22.07 W 20.06 C1 16.10 W 
92 14.30 W 7.52 W 7.48 C1 39.30 W 21.17 W 19.27 C1 15.44 W 
90 13.03 W 6.79 W 5.99 C1 37.82 W 19.49 W 17.72 W 14.15 W 
80 7.58 W 3.67 W 2.68 W 30.60 W 12.01 W 11.10 W 8.50 W 
70 3.71 W 1.62 W 0.94 W 23.94 W 6.31 W 6.12 W 4.41 W 
60 1.40 W 0.55 W 0.25 W 17.83 W 2.71 W 2.71 W 1.79 W 

Notes:  We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to maturity 

(T = 5) with five yearly decision stages (ns = 5). Admissible actions (Dec.): Wait (W), R&D Control (C1), and early exercise of investment option 

(EE); in the last two columns we also allow Abandonment (A) to recover 50% of R&D expenditures.  Base case parameter values are r = δ = 0.05, 

σ = 0.15, development cost X = 100. For R&D control: average impact γ1= 0.20, volatility σ1 = 0.30, and cost I1 = 10. Sensitivity is with respect to 

project value S, control cost I1, opportunity cost of waiting δ, exogenous volatility σ, average impact γ1 and volatility of control impact σ1. 

 

In both tables we observe that option value increases and control activation thresholds decrease 

when the control is more valuable (e.g., when it has a higher average impact and/or higher 

volatility of impact or when it has a lower cost). At the limit, for reasonably high values of the 

control cost, the model effectively becomes equivalent to the one in the absence of controls 

where only the actions of early exercise (EE) or wait (W) are possible. For example, when I = 

40, control activation occurs very rarely, and option value is substantially lower.  
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The other option parameters (dividend-like payout rate, δ, and Brownian volatility, σ) provide 

interesting differences worth of discussing. In both cases (with and without timing flexibility of 

control action) an increase in the payout rate or a decrease in project volatility results in lower 

option values, consistent with standard real options theory. Their impact on threshold levels, 

though, is different: With no timing flexibility an increase in the payout rate δ or a decrease in 

the volatility of project value may increase the control threshold. In contrast, with timing 

flexibility an increase in δ or a decrease in project volatility decreases the control activation 

threshold (in which case the traditional real options intuition still holds). For δ = 0 (results not 

reported for brevity) and timing flexibility all actions are deferred and waiting (W) prevails for 

all levels of S. This means that early exercise (EE) would occur at the end of the time horizon, 

but investing in a control action (C) could occur at the decision stage just before option maturity, 

since at that point the control action cannot be further deferred. 

 

We also examine in the last column of Table 2 the case where capital invested in control 

action(s) can be recovered via later abandonment. In the table we show results assuming partial 

reversibility of invested capital (including “rights resale” value) equal to the total capital invested 

in control action(s), i.e., a known recovery factor α = 50%9. With the ability to abandon (with 

capital reversibility), option values are higher and investment in the control action occurs earlier. 

For higher recovery values, option values increase further and critical activation thresholds 

further decrease.  These results are consistent with the intuition deriving from the literature on 

partial reversibility of investment.  For example, Abel et. al. (1996) in a two-period option model 

of investment with partial reversibility of invested capital show that the option to disinvest raises 

the incentive to invest. Similarly, Abel and Eberly (1997) study a firm that faces revenue 

uncertainty and compare the case with and without capital reversibility. They find that the case 

of reversible investment increases the fundamental value of the firm.  

                                                 
9 We have also tried (not shown) α = 150%, 125%, 100%, 75%, 25% without affecting the derived insights. 
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2.3.2. The effect of time-to-learn 
 

Time-to-complete before realizing the impact of an R&D action can also be an important feature 

in many investment projects10. In Table 3 we investigate the impact of time-to-learn constraints 

for different periods needed for the impact (and volatility) of control to materialize. We assume 

the general case where during the delay early development is still possible at any time. 

Sensitivity to several parameters is provided in groups of three columns, first with no delay (no 

delay), then with a delay of one decision stage (delay = 1), and finally with a delay of three 

decision stages (delay = 3) (recall the total number of decision stages is five). The first upper 

three columns report results using the base case parameters. They show that such restrictions 

(delays) in the realization of the control reduce option value. Comparing the base case to the 

lower part of the table we see that, as expected, a higher control cost reduces option value and 

defers control exercise, whereas more valuable controls (having higher average impact or higher 

impact volatility) increase option value and lead to earlier control activation.  

 
10 For example, Schwartz and Moon (2000) mention that the stages needed for a drug development based on US Federal Drug Administration 

(FDA) standards may take more than 11 years to complete. 
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Table 3. Option value and optimal decisions: Single R&D action with time-to-learn (delay) effects  

  Base case δ= 0.10 σ = 0.50 
  No delay Delay = 1 Delay = 3 No delay Delay = 1 Delay = 3 No delay Delay = 1 Delay = 3 
S Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. 

220 150.59 C1 142.82 C1 128.38 C1 138.07 C1 120.00 EE 120.00 EE 160.07 C1 154.91 C1 142.75 C1
210 139.02 C1 131.82 C1 118.47 C1 127.05 C1 110.00 EE 110.00 EE 149.40 C1 144.77 C1 133.57 C1
200 127.45 C1 120.87 C1 108.58 C1 116.03 C1 100.00 EE 100.00 EE 138.75 C1 134.69 C1 124.42 C1
190 115.94 C1 109.93 C1 98.72 C1 105.05 C1 90.00 EE 90.00 EE 128.14 C1 124.67 C1 115.31 C1
180 104.49 C1 99.06 C1 88.93 C1 94.13 C1 80.20 C1 80.00 EE 117.62 C1 114.73 C1 106.28 C1
170 93.08 C1 88.25 C1 79.19 C1 83.23 C1 70.48 C1 70.00 EE 107.48 C1 104.93 C1 97.39 C1
160 81.72 C1 77.54 C1 69.56 C1 72.37 C1 60.88 C1 60.00 EE 97.55 C1 95.31 C1 88.62 C1
150 70.62 C1 66.97 C1 60.05 C1 61.80 C1 51.47 C1 50.00 EE 88.20 W 85.82 C1 79.95 C1
140 59.63 C1 56.58 C1 50.71 C1 51.30 C1 42.26 C1 40.00 EE 79.08 W 76.44 C1 71.33 C1
135 54.19 C1 51.48 C1 46.12 C1 46.06 C1 37.77 C1 35.00 EE 74.58 W 71.82 C1 67.09 C1
130 48.87 C1 46.44 C1 41.60 C1 41.02 C1 33.35 C1 30.00 EE 70.22 W 67.45 W 62.90 C1
120 38.62 C1 36.67 C1 32.80 C1 31.35 C1 24.89 C1 20.00 EE 61.71 W 59.20 W 54.69 C1
110 28.71 C1 27.38 C1 24.43 C1 21.90 C1 17.00 C1 10.00 EE 53.37 W 51.16 W 46.65 C1
104 23.23 C1 22.10 C1 19.66 C1 16.90 C1 12.62 C1 7.06 W 48.48 W 46.42 W 41.89 C1
103 22.35 W 21.25 C1 18.89 C1 16.09 C1 11.92 C1 6.62 W 47.67 W 45.65 W 41.10 C1
101 20.75 W 19.55 C1 17.36 C1 14.47 C1 10.52 C1 5.75 W 46.07 W 44.09 W 39.65 W 
100 19.98 W 18.71 W 16.59 C1 13.67 C1 9.83 C1 5.33 W 45.27 W 43.31 W 38.94 W 
97 17.78 W 16.56 W 11.54 C1 11.33 C1 7.85 C1 4.41 W 43.01 W 41.10 W 36.91 W 
93 14.96 W 13.85 W 11.54 C1 8.25 C1 5.38 C1 3.26 W 40.03 W 38.19 W 34.25 W 
90 13.03 W 11.98 W 9.72 W 5.99 C1 4.20 W 2.55 W 37.82 W 36.06 W 32.26 W 
84 9.55 W 8.60 W 6.61 W 3.81 C1 2.54 W 1.50 W 33.45 W 31.85 W 28.34 W 
80 7.58 W 6.71 W 4.89 W 2.68 W 1.76 W 1.05 W 30.60 W 29.08 W 25.81 W 
70 3.71 W 3.09 W 1.92 W 0.94 W 0.56 W 0.34 W 23.94 W 22.62 W 19.97 W 
60 1.40 W 1.04 W 0.58 W 0.25 W 0.13 W 0.08 W 7.59 W 16.75 W 14.62 W 

 

 

 

 

 

 37

Nico
s K

ou
ss

is



38

  I1 = 30 γ1 = 0.30 σ1 = 0.50 
  No delay Delay = 1 Delay = 3 No delay Delay = 1 Delay = 3 No delay Delay = 1 Delay = 3 
S Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. 

220 130.59 C1 122.82 C1 120.00 ΕΕ 177.41 C1 168.30 C1 151.40 C1 151.92 C1 144.16 C1 129.72 C1
210 119.02 C1 111.82 C1 110.00 ΕΕ 164.59 C1 156.12 C1 140.39 C1 140.61 C1 133.40 C1 120.00 C1
200 107.45 C1 100.87 C1 100.00 ΕΕ 151.77 C1 143.95 C1 129.41 C1 129.33 C1 122.70 C1 110.34 C1
191 97.08 C1 91.02 C1 91.00 ΕΕ 140.26 C1 133.01 C1 119.54 C1 119.23 C1 113.13 C1 101.70 C1
190 95.94 C1 90.00 ΕΕ 90.00 ΕΕ 138.99 C1 131.80 C1 118.44 C1 118.11 C1 112.07 C1 100.74 C1
180 84.49 C1 80.00 ΕΕ 80.00 ΕΕ 126.24 C1 119.69 C1 107.51 C1 106.92 C1 101.54 C1 91.24 C1
170 73.08 C1 70.00 ΕΕ 70.00 ΕΕ 113.51 C1 107.61 C1 96.63 C1 96.01 C1 91.11 C1 81.83 C1
160 61.72 C1 60.00 ΕΕ 60.00 ΕΕ 100.81 C1 95.60 C1 85.81 C1 85.23 C1 80.82 C1 72.54 C1
150 50.62 C1 50.00 ΕΕ 50.00 ΕΕ 88.28 C1 83.69 C1 75.08 C1 74.59 C1 70.71 C1 63.41 C1
145 45.10 C1 45.00 ΕΕ 45.00 ΕΕ 82.03 C1 77.77 C1 69.76 C1 69.33 C1 65.73 C1 58.92 C1
141 41.00 EE 41.00 ΕΕ 41.00 ΕΕ 77.07 C1 73.07 C1 65.53 C1 65.15 C1 61.78 C1 55.35 C1
140 40.03 W 40.00 ΕΕ 40.00 ΕΕ 75.83 C1 71.90 C1 64.48 C1 64.11 C1 60.80 C1 54.47 C1
136 36.42 W 36.00 ΕΕ 36.00 ΕΕ 70.87 C1 67.24 C1 60.29 C1 59.95 C1 56.91 C1 50.95 C1
135 35.54 W 35.00 W 35.00 EE 69.63 C1 66.08 C1 59.25 C1 58.91 C1 55.94 C1 50.07 C1
130 31.28 W 30.86 W 30.86 W 63.53 C1 60.30 C1 54.06 C1 53.86 C1 51.15 C1 45.75 C1
120 23.47 W 23.27 W 23.27 W 51.64 C1 49.00 C1 43.89 C1 44.16 C1 41.83 C1 37.33 C1
110 16.73 W 16.63 W 16.63 W 40.00 C1 38.08 C1 34.07 C1 34.81 C1 32.91 C1 29.26 C1
100 11.13 W 11.07 W 11.07 W 29.16 C1 27.71 C1 24.73 C1 25.84 C1 24.48 C1 21.62 C1
94 8.42 W 8.39 W 8.39 W 22.98 C1 21.86 C1 19.45 C1 20.86 C1 19.72 C1 17.31 C1
92 7.55 W 7.52 W 7.52 W 21.17 C1 19.97 C1 17.74 C1 19.27 C1 18.18 C1 15.91 C1
90 6.80 W 6.79 W 6.79 W 19.49 W 18.18 W 16.06 C1 17.72 W 16.68 C1 14.55 C1
86 5.41 W 5.40 W 5.40 W 16.30 W 15.09 W 12.84 C1 14.80 W 13.75 C1 11.89 C1
83 4.46 W 4.45 W 4.45 W 14.04 W 12.88 W 10.51 C1 12.90 W 11.88 W 9.97 C1
80 3.68 W 3.67 W 3.67 W 12.01 W 10.90 W 8.55 W 11.10 W 10.15 W 8.11 C1
70 1.62 W 1.62 W 1.62 W 6.31 W 5.41 W 3.43 W 6.12 W 5.33 W 3.55 W 
60 0.56 W 0.55 W 0.55 W 2.71 W 2.06 W 0.88 W 2.71 W 2.15 W 0.98 W 

Notes:  We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to maturity (T = 5) with five yearly decision stages (ns = 5). Time-

to-learn (delay) refers to the delay periods for the realization of the control’s impact. Admissible actions (Dec.): Wait (W), R&D Control (C1), and early exercise of investment option (EE).  Base case 

parameter values are r = δ = 0.05, σ = 0.15, development cost X = 100. Parameter values for R&D control: average impact γ1 = 0.20, volatility σ1 = 0.30, and cost I1 = 10.   Sensitivity is with respect to 

project value S, control cost I1, opportunity cost of waiting δ, exogenous volatility σ, average impact γ1 and volatility of control impact σ1. 

Table 3 (continued) 
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As expected, a higher payout rate reduces option value whereas a higher volatility 

enhances option value. The effect of these two parameters on control activation is more 

subtle though. The earlier discussion in Tables 1 – 2 about the impact of timing flexibility 

is relevant here. When there is no delay, timing flexibility has bigger impact and 

increasing the opportunity cost of waiting to invest or lowering project volatility shifts 

the activation threshold earlier. When there is time delay (of several decision stages out 

of a total of five), this effect is reduced (with delay = 1) or even reversed (with delay = 

3); increasing the opportunity cost of waiting to invest or lowering volatility shifts the 

activation threshold to higher project values S. This impact of δ is similar to the time-to-

build effect in Majd and Pindyck (1987). A higher level of δ when it takes time to 

complete development of a new construction means higher erosion of value and therefore 

a higher level of project value S is needed to induce investment. Furthermore, since we 

allow the investment to be made without activation of the (optional) control, with higher 

δ the early exercise region in our case becomes more attractive and may even dominate.  

 

2.3.3. Optimal choice between accelerated and sequential control 

strategies 

 

In this section we investigate the more involved case where a firm can invest in a more 

costly (accelerated) R&D action with higher expected impact, or in a sequential strategy 

where a first-stage low-cost R&D investment can be followed by another small-scale 

R&D investment. We investigate the critical control thresholds for the single high-cost 

high-impact accelerated action versus the low-cost low-impact sequential strategy. Figure 

4 describes the set of possible decisions. 
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Figure 4.  Choice between accelerated (CA) and sequential (C1, C2) R&D strategies 
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Notes: The firm starts in a wait mode (W) and has the option to defer investment in controls, or invest in either of two mutually 

exclusive strategies: an Accelerated control strategy (CA) that gives a high expected impact at a high cost, and a Sequential (staged) 

control strategy (C1, C2) where each control has less impact, less volatility, and less cost. The firm can exercise early the investment 

option (EE), or abandon the project (A) at any time.  

 

 

At the start, the firm can either wait (W), implement an accelerated control action CA by 

paying IA, invest in the first stage C1 of the sequential strategy by paying I1, or move 

directly to exercise early (EE) the development/commercialization option. If it chooses 

the accelerated action CA, it can later develop the project or abandon it by recovering αIA, 

or delay further actions (WA). Similarly, development and abandonment options also 

exist after first-stage R&D action C1, while the firm can proceed with second-stage R&D 

action C2 by paying I2. After C2, it can continue with project development (EE), delay 

( ), or abandonment to recover 2W )( 21 II +α . Abandonment depends on the recovery 

factor, α, as well as the preceding control actions. Childs and Triantis (1999) study R&D 

investments by examining the choice between accelerated versus staged (sequential) 

 40

Nico
s K

ou
ss

is



R&D. In their treatment, completion of the research project is mandatory before any 

realization of profits, whereas in our case it is not. In contrast to Childs and Triantis 

(1999), we focus our investigation more on factors that affect our control strategy choice. 

For the base case, we use the same option parameter values as before, and for the 

accelerated control strategy the same parameter values as in the previous case of a single 

control. For the sequential strategy, we assume initially that each control action involves 

half the cost, half the average impact, and half the variance of the accelerated strategy, 

i.e., I1 = I2 = 5, γ1 = γ2 = 0.10, and 2/30.021 == σσ . With this specification, if both 

controls of the sequential strategy were simultaneously activated, the total costs and 

expected benefits of the sequential strategy would match those of the accelerated one.  

 

The results are illustrated in Table 4. Those for the base case (first column) are rather 

typical. Often it is not beneficial to follow a sequential strategy. The value of the 

flexibility to stage the R&D investment in this case is not so important, since the total 

impact of the accelerated strategy (and its high volatility) can be realized sooner. The 

accelerated strategy may have advantages (especially at large project values) since the 

investment option can be exercised soon after (whereas the full impact of a sequential 

strategy might not be realized). The sequential strategy may still be advantageous at 

lower project values, as in the 2nd column when the total expected impact is high. We 

investigate this case further, focusing on the additional option to abandon and recover 

R&D costs, as well as on the sensitivity to the opportunity cost of waiting to invest, and 

project volatility. The presence of abandonment enhances option value, and can justify 

earlier control activation. In addition, it may also enhance the range where the sequential 

strategy prevails. Consistent with the discussions in previous subsections, lower project 

volatility and higher opportunity cost of waiting to invest will also justify earlier control 

activation. 
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Table 4. Accelerated (CΑ) versus sequential (C1/C2) control strategy  

γΑ = 0.8 γΑ = 0.8 γΑ = 0.8 γΑ = 0.2 

  

γ1 = γ2 =  0.1 
( Base Case) 
 

γ1 = γ2 =  0.4 
 
 

γ1 = γ2 =  0.4 
& Abandon 
 

γΑ = 0.8 
γ1 = γ2 =  0.4 
σ = 0.05 
 

γΑ = 0.8 γΑ = 0.8 
γ1 = γ2 =  0.4 γ1 = γ2 =  0.4 γ1 = γ2 =  0.4 

δ = 0.03 δ = 0.08 σ = 0.3 
   

Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. S 
CΑ CΑ CΑ CΑ CΑ CΑ CΑ127.45 318.28 318.28 318.28 318.35 326.83 305.76 200 
CΑ CΑ CΑ CΑ CΑ CΑ CΑ115.94 297.11 297.11 297.11 297.20 305.23 285.22 190 
CΑ CΑ CΑ CΑ CΑ CΑ CΑ104.49 275.94 275.94 275.94 276.05 283.64 264.68 180 
CΑ93.08 170 254.77 CΑ 254.77 CΑ 254.77 CΑ 254.94 CΑ 262.05 CΑ 244.13 CΑ

160 81.72 CΑ 233.60 CΑ 233.60 CΑ 233.60 CΑ 233.87 CΑ 240.45 CΑ 223.59 CΑ

150 70.62 CΑ 212.43 CΑ 212.43 CΑ 212.43 CΑ 212.81 CΑ 218.86 CΑ 203.04 CΑ

140 59.63 CΑ 191.26 CΑ 191.27 CΑ 191.26 CΑ 191.76 CΑ 197.29 CΑ 182.50 CΑ

130 48.87 CΑ 170.10 CΑ 170.12 CΑ 170.09 CΑ 170.87 CΑ 175.73 CΑ 161.96 CΑ

120 38.62 CΑ 148.95 CΑ 148.98 CΑ 148.92 CΑ 150.11 CΑ 154.19 CΑ 141.43 CΑ

110 28.71 CΑ 127.81 CΑ 127.88 CΑ 127.75 CΑ 129.39 CΑ 132.74 CΑ 120.91 CΑ

104 23.23 CΑ 115.16 CΑ 115.26 CΑ 115.05 CΑ 117.17 CΑ 119.89 CΑ 108.62 CΑ

100 19.99 W 106.74 CΑ 106.86 CΑ 106.59 CΑ 109.14 CΑ 111.36 CΑ 100.43 CΑ

90 13.03 W 85.73 CΑ 86.04 CΑ 85.44 CΑ 89.23 CΑ 90.26 CΑ 80.05 CΑ

84 9.55 W 73.30 CΑ 73.71 CΑ 72.78 CΑ 77.42 CΑ 77.71 CΑ 67.91 CΑ

80 7.58 W 65.06 CΑ 65.54 CΑ 64.35 CΑ 69.89 CΑ 69.78 C1 59.84 CΑ

76 5.83 W 56.86 CΑ 57.58 CΑ 55.95 CΑ 62.52 CΑ 61.98 C1 51.88 CΑ

74 5.08 W 52.78 CΑ 53.70 CΑ 51.77 CΑ 58.86 CΑ 58.16 W 47.99 CΑ

70 3.72 W 44.92 CΑ 46.03 CΑ 43.47 CΑ 52.12 W 50.70 W 40.25 CΑ

66 2.61 W 37.17 CΑ 38.51 CΑ 35.23 CΑ 45.83 W 43.46 W 32.59 CΑ

64 2.16 W 33.37 CΑ 35.06 C1 31.16 CΑ 42.80 W 39.94 W 28.78 CΑ

60 1.40 W 26.58 C1 28.79 C1 23.28 CΑ 36.84 W 33.13 W 21.83 CΑ

59 1.26 W 24.98 C1 27.27 C1 21.35 CΑ 35.38 W 31.49 W 20.13 CΑ

56 0.87 W 20.39 C1 22.85 C1 16.29 C1 31.25 W 26.70 W 15.09 CΑ

53 0.57 W 16.33 W 18.84 C1 11.60 C1 27.33 W 22.17 W 10.66 CΑ

50 0.35 W 12.69 W 15.10 C1 7.35 C1 23.52 W 17.95 W 7.68 W 
48 0.25 W 10.56 W 12.85 W 4.80 C1 21.15 W 15.33 W 6.03 W 
40 0.04 W 4.08 W 5.87 W 0.25 W 12.81 W 6.76 W 1.79 W 

Notes:  We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time 

to maturity (T = 5) with five yearly decision stages (ns = 5). Admissible actions (Dec.): Wait (W), accelerated R&D control (CA), 1st 

stage of the sequential R&D Control (C1), early exercise of investment option (EE). Base case parameter values are r = δ = 0.05, σ = 

0.15, development cost X = 100. Parameter values for the accelerated strategy: γA = 0.20, σA = 0.30, and IA = 10; and for the sequential 

strategy: γ1 = γ2 = 0.10, σ1 = σ2 = σA/√2, and I1 = I2 = 5. Sensitivity is with respect to project value S, control cost I1, opportunity cost of 

waiting δ, exogenous volatility σ, average impact γA, and abandonment. 
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Table 5. Accelerated (CΑ) versus sequential (C1/C2) control strategy:  

Learning-by-doing effects and convexity of adjustment costs 
Base case and abandonment effect Learning by doing Volatility 

effect 
 

 

  
  

Base Case 
Abandonment

(linear) 
Abandonment

(convex) 
Lower cost 
I1 = I2 = 4 

Higher 
impact 
γ2 = 0.12 

  
  

σ1 = σ2 = 0.30 
S Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. Value Dec. 

200 127.45 CΑ 127.51 CA 127.51 CA 127.45 CΑ 127.45 CΑ 127.45 CΑ
190 115.94 CΑ 116.06 CA 116.06 CA 115.94 CΑ 115.94 CΑ 115.94 CΑ
180 104.49 CΑ 104.63 CA 104.63 CA 104.49 CΑ 104.49 CΑ 104.49 CΑ
170 93.08 CΑ 93.25 CA 93.25 CA 93.08 CΑ 93.08 CΑ 93.08 CΑ
160 81.72 CΑ 82.03 CA 82.03 CA 81.72 CΑ 81.72 CΑ 81.72 CΑ
150 70.62 CΑ 70.99 CA 70.99 CA 70.62 CΑ 70.62 CΑ 70.62 CΑ
145 65.10 CΑ 65.53 CA 65.53 CA 65.10 CΑ 65.10 CΑ 65.10 CΑ
140 59.63 CΑ 60.10 CA 60.10 CA 59.63 CΑ 59.81 C1 59.63 CΑ
137 56.36 CΑ 56.86 CA 56.86 CA 56.36 CΑ 56.67 C1 56.36 CΑ
130 48.87 CΑ 49.60 CA 49.60 CA 48.87 CΑ 49.42 C1 49.53 C1
128 46.80 CΑ 47.56 CA 47.56 CA 46.80 CΑ 47.40 C1 47.64 C1
120 38.62 CΑ 39.54 CA 39.54 CA 39.06 C1 39.47 C1 40.21 C1
110 28.71 CΑ 29.95 CA 29.95 CA 29.86 C1 30.01 C1 31.31 C1
104 23.23 CΑ 24.66 CA 24.66 CA 24.71 C1 24.68 C1 26.28 C1
101 20.75 W 22.11 CA 22.11 CA 22.22 C1 22.12 C1 23.86 C1
100 19.99 W 21.28 CA 21.31 C1 21.40 C1 21.28 C1 23.06 C1
99 19.24 W 20.45 CA 20.54 C1 20.61 C1 20.46 C1 22.27 C1
95 16.36 W 17.48 W 17.67 C1 17.52 C1 17.26 C1 19.22 C1
94 15.66 W 16.79 W 16.97 W 16.77 C1 16.48 C1 18.47 C1
91 13.66 W 14.80 W 14.98 W 14.60 C1 14.41 W 16.28 C1
90 13.03 W 14.16 W 14.34 W 13.92 W 13.77 W 15.57 C1
86 11.29 W 11.70 W 11.95 W 12.47 W 11.29 W 12.85 C1
80 7.58 W 8.50 W 8.77 W 8.23 W 8.06 W 9.40 W 
70 3.72 W 4.41 W 4.65 W 4.11 W 3.97 W 4.91 W 
60 1.40 W 1.79 W 1.97 W 1.57 W 1.50 W 2.00 W 
50 0.35 W 0.50 W 0.59 W 0.40 W 0.37 W 0.54 W 
40 0.04 W 0.07 W 0.09 W 0.05 W 0.05 W 0.07 W 

Notes: We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to 

maturity (T = 5) with five yearly decision stages (ns = 5). Admissible actions (Dec.): Wait (W), accelerated R&D control (CA), 1st stage 

of the sequential R&D Control (C1), early exercise of investment option (EE).  Base case parameter values are r = δ = 0.05, σ = 0.15, 

development cost X = 100. Parameter values for the accelerated strategy: γA = 0.20, σA = 0.30, and IA = 10; and for the sequential 

strategy: γ1 = γ2 = 0.10, σ1 = σ2 = σA/√2, and I1 = I2 =5.  For learning-by-doing: in the lower-cost case I1 = I2 = 4; in the higher impact 

case γ2 = 0.12; in the higher volatility case σ1 = σ2 = 0.30; abandonment (linear) is for α = 0.50 of R&D expenditures; and abandonment 

(convex) is for α1 = 0.90 > αA = 0.50 > α2 = 0.10 .   
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2.3.4. The effects of learning-by-doing, and convexity of adjustment 

costs 

 

The sequential strategy may often offer certain advantages. We will consider two general 

cases, the case of learning-by-doing, and the case of diminishing marginal reversibility of 

R&D capital (convexity of adjustment costs). For example, the sequential strategy may 

offer more than half the average impact and/or volatility per stage, or the combined 

effects can be achieved at a lower total cost. This is the case with learning-by-doing 

effects, similar to that analyzed extensively in the case of manufacturing to model 

efficiencies in production (e.g., Majd and Pindyck, 1987). When learning-by-doing 

efficiencies appear in the form of reduced total costs, the firm invests an initial low 

amount I1 = 4 in the first stage. It can then implement the second stage by incurring 

another cost I2 = 4, for a total of 8 (instead of 10 for the accelerated strategy). For similar 

reasons we can also justify a higher average impact in the second only stage of a 

sequential strategy (γ2 = 0.12). This may be the case when the particular technology is 

disruptive, having low impact at the beginning but a greater one subsequently (e.g., 

Schwartz and Gorostiza, 2000b). 

We also provide the example where σ1 = σ2 = 0.30 (whereas the accelerated strategy has 

a combined volatility of σA = 0.30). We have finally considered recovery of capital 

invested in sequential R&D in the case of convexity of adjustment costs (decreasing 

marginal recovery of investment, as in Abel and Eberly, 1997). We have investigated the 

case where after C1 we can recover α1I1, after C2 we can recover α1I1 + α2I2, and after CA 

we can recover αAIA. To capture convex adjustment costs, we use α1 = 0.90 > αA = 0.50 > 

α2 = 0.10 (and like before we assume IA = I1 + I2) and we compare it to the linear 

adjustment cost function with α1 = αA = α2 = 0.50. 

 

Table 5 confirms that learning-by-doing and convexity in adjustment costs can play an 

important role in R&D project decisions. With learning-by-doing option values are 

enhanced and control is activated earlier. The presence of such effects also alters the 

optimal decisions: for low values of S, the first stage of the sequential strategy may be 
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chosen instead of the costly accelerated strategy; at higher values of S, the sequential 

strategy does not offer any advantages. Similarly, when the combined uncertainty of the 

sequential control actions is higher than that of the accelerated strategy (last column), 

option values are higher and the sequential strategy may again become the preferred 

choice. The second column in Table 5 shows the case with abandonment. Abandonment 

increases the value of the investment opportunity, and leads to earlier investment in 

R&D. The third column presents the results for the case of convexity in the adjustment 

costs when R&D capital is reversible. Sensitivity results (not reported) confirm that 

convexity increases option value and can enhance the relative attractiveness of the 

sequential R&D.  

2.4. Conclusions 

 

This paper has investigated control actions (R&D and innovation adoption) with 

uncertain outcome in a real options framework with features of path-dependency. In the 

special case involving optimal timing of a single action, our results confirm the 

significant impact of time-to-learn effects and capital recovery of realized costs. We 

investigate the critical threshold to activate the control action (rather than wait, or 

proceed directly to project development) and the impact of key parameters on this 

threshold.  When there is flexibility to activate a control action at an optimal time, an 

increase in the dividend-like payout rate or a decrease in the volatility of project value 

induces earlier control activation (i.e., lowers the threshold level).  The opposite is often 

observed in the case with no timing flexibility in R&D. With time-to-learn effects, the 

impact of such parameters is more subtle since there are varying degrees of timing 

flexibility. We also investigate the case of two mutually-exclusive alternative strategies, 

one with a single (accelerated) control action versus a sequential strategy. Interestingly, 

the assumed flexibility in a sequential strategy is not always that valuable in this setting. 

The sequential strategy often has less appeal unless there is abandonment (with recovery 

of R&D invested capital), presence of learning-by-doing effects, or decreasing marginal 

recovery of capital invested in research. Our approach can be beneficial in other areas 
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beyond R&D, such as in marketing research and advertisement actions prior to the 

introduction of a new product. 
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Appendix 

 

This Appendix investigates the convergence of our numerical lattice scheme. We have 

investigated the accuracy of our lattice scheme with one step per month, in the simple 

case with a single control available at t = 0 that has an analytic solution. To make 

exposition simpler we consider the case where the cost of control is zero and control is 

always activated ( 1 0γ > ). The accuracy of the numerical scheme can be established by 

how closely it approximates the known benchmark with analytic solution (equation 3). 

We provide numerical results with several parameterizations and compare against the 

known analytic solution. Table A0 summarizes the results.  

Table A0. Accuracy of numerical lattice against analytic benchmark (European 

option with single control without timing flexibility) 

 

  Numerical Analytic 
% Difference 
(Num/Anal) 

   S= 80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 
  γ1=0, σ1=0 3.536 10.329 20.807 3.511 10.372 20.822 0.007 -0.004 -0.001 
δ=0.05, γ1=0.1, σ1=0.3 8.994 18.979 31.874 9.026 19.041 31.825 -0.004 -0.003 0.002 
σ=0.15 γ1=0.5, σ1=0.3 31.258 53.405 77.569 31.374 53.493 77.570 -0.004 -0.002 0.000 
  γ1=0.1, σ1=0.5 13.255 23.669 36.367 13.199 23.751 36.362 0.004 -0.003 0.000 
  γ1=0.5, σ1=0.5 35.925 57.081 80.286 35.924 57.197 80.314 0.000 -0.002 0.000 
  γ1=0, σ1=0 0.739 2.979 7.639 0.731 3.023 7.686 0.010 -0.015 -0.006 
δ=0.10, γ1=0.1, σ1=0.3 3.254 8.115 15.447 3.270 8.171 15.407 -0.005 -0.007 0.003 
σ=0.15 γ1=0.5, σ1=0.3 15.079 29.148 45.996 15.138 29.221 45.962 -0.004 -0.002 0.001 
  γ1=0.1, σ1=0.5 6.245 12.160 20.033 6.200 12.233 20.036 0.007 -0.006 0.000 
  γ1=0.5, σ1=0.5 19.803 33.736 49.976 19.756 33.829 49.980 0.002 -0.003 0.000 
  γ1=0, σ1=0 22.481 32.873 44.632 22.449 33.009 44.531 0.001 -0.004 0.002 
δ=0.05, γ1=0.1, σ1=0.3 27.777 39.912 53.463 27.732 40.060 53.350 0.002 -0.004 0.002 
σ=0.5 γ1=0.5, σ1=0.3 52.922 73.777 96.213 52.903 73.969 96.113 0.000 -0.003 0.001 

  γ1=0.1, σ1=0.5 29.430 41.735 55.429 29.366 41.891 55.307 0.002 -0.004 0.002 
  γ1=0.5, σ1=0.5 54.900 75.823 98.311 54.856 76.023 98.199 0.001 -0.003 0.001 

Notes:  Comparative results are provided for the case of a European call option with a single embedded managerial control 

using the numerical lattice and the analytic solution of equation (3). Parameter values are X = 100, r = 0.05,  T = 5, and cost of 

control IC = 0. We provide sensitivity with respect to the level of S (80, 100, 120), the average impact γ1 (0.10, 0.50), the volatility 

of impact σ1 (0.30, 0.50), the opportunity cost of waiting δ (0.05, 0.10), and the project volatility σ (0.15, 0.50).  The case where γ1 

= σ1 = 0 is equivalent to the absence of control. 
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Sensitivity results are given with respect to the moneyness of the option (S being above, 

equal to, or lower than X), the average impact and volatility of the impact, the 

opportunity cost of delaying (δ), and project volatility (σ). We value a five-year 

investment option (using a discretization scheme with one step per month). The results 

confirm that very reasonable accuracy levels can be achieved (with numerical error in all 

cases investigated being less than 1.5%).  This comparison is not a proof of accuracy 

since only a special case (without optimal R&D timing) allows for an analytic solution, 

but it provides evidence that high accuracy levels can be achieved. 

 

We examine all cases considered in the applications with a different number of steps and 

check for numerical differences when more steps are used in the lattice implementation. 

Table A1 presents results for the optimal control timing case, Table A2 for the time-to-

learn case, and Table A3 for the choice between accelerated versus sequential actions 

(without and with learning-by-doing). We have checked from 3 to 24 steps per year (3, 6, 

9, 12, 15, 18, 21, and 24-step schemes), but report only a subset due to space constraints. 

Convergence is rather fast and the chosen 12-step scheme is very adequate; from 12 steps 

and beyond oscillations are of minimal magnitude, and the difference between our 

scheme and ones that are somewhat more accurate but highly more intensive 

computationally is negligible. Further, optimal decisions are generally not affected 

(except in just a few cases). To save space we report option values for 12, 21, 24, and the 

average of 21 and 24 steps, and show the % difference between the 12-step scheme used 

and either the 24-step scheme or the average of the 21 and 24 steps (an odd and a nearby 

even number). The chosen 12-step scheme differs marginally from the more accurate 

results provided by the 21/24-step schemes.  Our calculations show that the numerical 

model appears to converge relatively quickly and the chosen lattice scheme with one step 

per month is adequate. 
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Table A1. Investigation of numerical accuracy/convergence:  

Optimal timing of a single R&D action 

 γ = 0.2 (Base case) γ = 0  γ = 0.4 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 7.584 19.980 38.618 3.668 11.071 23.265 18.033 40.517 66.689 
21 7.576 20.010 38.585 3.634 11.128 23.270 18.139 40.624 66.719 
24 7.593 20.003 38.596 3.654 11.098 23.271 18.163 40.599 66.733 

Avg(21,24) 7.584 20.007 38.591 3.644 11.113 23.271 18.151 40.611 66.726 
% Diff.(24-12) 0.001 0.001 -0.001 -0.004 0.002 0.000 0.007 0.002 0.001 

% Diff.(Avg(21,24)-12) 0.000 0.001 -0.001 -0.007 0.004 0.000 0.007 0.002 0.001 

 σ1 = 0.3 (Base case) σ1 = 0.1  σ1 = 0.5 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 7.584 19.980 38.618 6.081 17.586 35.329 11.104 25.835 44.160 
21 7.576 20.010 38.585 6.085 17.604 35.390 11.105 25.908 44.069 
24 7.593 20.003 38.596 6.090 17.579 35.401 11.107 25.896 44.133 

Avg(21,24) 7.584 20.007 38.591 6.087 17.591 35.395 11.106 25.902 44.101 
% Diff.(24-12) 0.001 0.001 -0.001 0.002 0.000 0.002 0.000 0.002 -0.001 

% Diff.(Avg(21,24)-12) 0.000 0.001 -0.001 0.001 0.000 0.002 0.000 0.003 -0.001 
Notes: Time to maturity (T = 5) with five yearly decision stages (ns = 5). For the base case we use r = δ = 0.05, σ = 0.15, development 

cost X =100. Parameter values for R&D control: average impact γ1= 0.20 with volatility σ1 = 0.30, and cost I1 = 10. Admissible 

actions: Wait (W), R&D Control (C1), and early exercise of investment option (EE).  Sensitivity is with respect to the average impact 

γ1 and the volatility of control impact σ1. 
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Table A2. Investigation of numerical accuracy/convergence:  

Time-to-learn 

 γ = 0.2 (Base case) γ = 0  γ = 0.4 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 5.813 17.686 34.746 3.668 11.071 23.265 15.550 36.452 59.916 
21 5.819 17.711 34.755 3.634 11.128 23.270 15.727 36.567 59.978 
24 5.826 17.715 34.755 3.654 11.098 23.271 15.759 36.585 59.988 

Avg(21,24) 5.822 17.713 34.755 3.644 11.113 23.271 15.743 36.576 59.983 
% Diff.(24-12) 0.002 0.002 0.000 -0.004 0.002 0.000 0.013 0.004 0.001 

% Diff.(Avg(21,24)-12) 0.002 0.002 0.000 -0.007 0.004 0.000 0.012 0.003 0.001 

 σ1 = 0.3 (Base case) σ1 = 0.1  σ1 = 0.5 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 5.813 17.686 34.746 4.612 15.011 32.052 9.128 23.054 39.565 
21 5.819 17.711 34.755 4.585 15.054 32.080 9.143 23.052 39.542 
24 5.826 17.715 34.755 4.588 15.052 32.085 9.136 23.046 39.541 

Avg(21,24) 5.822 17.713 34.755 4.586 15.053 32.083 9.140 23.049 39.541 
% Diff.(24-12) 0.002 0.002 0.000 -0.005 0.003 0.001 0.001 0.000 -0.001 

% Diff.(Avg(21,24)-12) 0.002 0.002 0.000 -0.006 0.003 0.001 0.001 0.000 -0.001 
Notes: Time to maturity (T = 5) with five yearly decision stages (ns = 5). For the base case we use r = δ = 0.05, σ = 0.15, 

development cost X = 100. Parameter values for R&D control: average impact γ1 = 0.20 with volatility σ1 = 0.30, and cost I1 = 10. 

Admissible actions: Wait (W), R&D Control (C1), and early exercise of investment option (EE).  Time-to-learn (delay) refers to the 

delay periods for the realization of the control’s impact. Here we assume delay = 2. Sensitivity is with respect to the average impact 

γ1 and the volatility of control impact σ1. 
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Table A3. Investigation of numerical accuracy/convergence:  

Accelerated versus sequential strategy with learning-by-doing  

 No learning by doing 
 γ = 0.2 (Base case) γ = 0  γ = 0.4 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 7.584 19.986 38.618 3.668 11.071 23.265 18.035 40.517 66.689 
21 7.576 20.010 38.585 3.634 11.128 23.270 18.139 40.624 66.719 
24 7.593 20.003 38.596 3.654 11.098 23.271 18.166 40.599 66.733 

Avg(21,24) 7.584 20.007 38.591 3.644 11.113 23.271 18.152 40.611 66.726 
% Diff.(24-12) 0.001 0.001 -0.001 -0.004 0.002 0.000 0.007 0.002 0.001 

% Diff.(Avg(21,24)-12) 0.000 0.001 -0.001 -0.007 0.004 0.000 0.007 0.002 0.001 

 σ1 = 0.3 (Base case) σ1 = 0.1  σ1 = 0.5 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 7.584 19.986 38.618 6.081 17.586 35.329 11.170 25.835 44.160 
21 7.576 20.010 38.585 6.085 17.604 35.390 11.176 25.908 44.069 
24 7.593 20.003 38.596 6.090 17.579 35.401 11.176 25.896 44.133 

Avg(21,24) 7.584 20.007 38.591 6.087 17.591 35.395 11.176 25.902 44.101 
% Diff.(24-12) 0.001 0.001 -0.001 0.002 0.000 0.002 0.001 0.002 -0.001 

% Diff.(Avg(21,24)-12) 0.000 0.001 -0.001 0.001 0.000 0.002 0.001 0.003 -0.001 
 Learning by doing (Lower costs of sequential strategy) 

 γ = 0.2 (Base case) γ = 0  γ = 0.4 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 8.226 21.403 39.057 3.676 11.094 23.275 19.408 40.971 66.689 
21 8.225 21.416 39.034 3.649 11.140 23.279 19.498 41.010 66.719 
24 8.231 21.409 39.037 3.661 11.117 23.286 19.514 41.020 66.733 

Avg(21,24) 8.228 21.412 39.035 3.655 11.128 23.282 19.506 41.015 66.726 
% Diff.(24-12) 0.001 0.000 -0.001 -0.004 0.002 0.000 0.005 0.001 0.001 

% Diff.(Avg(21,24)-12) 0.000 0.000 -0.001 -0.006 0.003 0.000 0.005 0.001 0.001 

 σ1 = 0.3 (Base case) σ1 = 0.1  σ1 = 0.5 

Number of yearly steps 
S= 
80 S=100 S=120 S= 80 S=100 S=120 S= 80 S=100 S=120 

12 8.226 21.403 39.057 6.300 18.051 36.105 12.732 27.100 44.229 
21 8.225 21.416 39.034 6.284 18.077 36.110 12.712 27.102 44.206 
24 8.231 21.409 39.037 6.294 18.059 36.110 12.715 27.090 44.191 

Avg(21,24) 8.228 21.412 39.035 6.289 18.068 36.110 12.713 27.096 44.199 
% Diff.(24-12) 0.001 0.000 -0.001 -0.001 0.000 0.000 -0.001 0.000 -0.001 

% Diff.(Avg(21,24)-12) 0.000 0.000 -0.001 -0.002 0.001 0.000 -0.002 0.000 -0.001 
 Notes: Time to maturity (T = 5) with five yearly decision stages (ns = 5). For the base case we use r = δ = 0.05, σ = 0.15, 

development cost X = 100. Admissible actions: Wait (W), accelerated R&D control (CA), 1st stage of the sequential R&D Control 

(C1), early exercise of investment option (EE).  Parameter values for the benchmark case: Accelerated strategy: γA = 0.20, σA = 0.30, 

and IA = 10; Sequential strategy: γ1 = γ2 = 0.10, σ1 = σ2 = σA/√2, and I1 = I2 = 5.  For learning-by-doing the sequential strategy has 

lower costs per stage (I1 = I2 = 4). 
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3. Sequential options with exogenous jumps and active 

interacting managerial control actions 

 

      Abstract 

We study the interaction between learning and value-enhancing actions with random 

outcome before irreversible investment decisions are made. We employ diffusion process 

for the value of the project and we add endogenous, optimally determined, costly 

managerial controls to learn or enhance value. This framework allows the study of the 

effect on the value of firm’s investment opportunities of options to change the distribution 

of future payoffs through for example marketing research and advertisement (or product 

redesign or repositioning), basic research or exploration actions and product attribute or 

quality enhancing actions. The framework also allows the analysis of optimal timing of 

such actions, optimal timing of introduction of pilot projects, early development of the 

complete project and abandonment options.  We provide analytic formulas for sequential 

options with embedded control and learning actions under the assumption that project 

value follows either diffusion or a jump diffusion process and we investigate the decision 

regions that will appear under different parametization of the model. We also extend the 

model to complex multistage problems with path dependent actions, by developing a 

numerical lattice based model. The implementation for the jump-diffusion process case is 

provided in the appendix. We illustrate the importance of this theoretical framework 

through an application for the valuation of new product development.  
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3.1. Introduction 

 

The real options approach to firm and project valuation extends traditional NPV analysis 

and accommodates managerial flexibility to react under uncertainty. For example, 

McDonald and Siegel (1986) value an irreversible investment opportunity when the value 

of the project and its costs are uncertain and the firm has the flexibility to delay 

investment. They show that the value of the investment opportunity can be substantially 

higher than the NPV with the extra value reflecting the value of waiting. There are 

several other cases where the real option flexibility is important like the case of flexible 

manufacturing systems (e.g. Kulatilaka (1988)), construction (e.g. Majd and Pindyck 

(1987)) R&D investments (e.g. Pennings and Lint (1997) or Childs and Triantis (1999)) 

and the adoption of technological innovations (Grenadier and Weiss (1997)). Recently, 

there is a tendency to also incorporate game theoretic interactions, optimal capital 

structure and other corporate policy features in these models (see for example Lambrecht, 

2001, and Mauer and Sarkar, 2005) 

 

An aspect not incorporated in many real options models is that of the value of learning 

and managerial intervention to enhance value or reduce costs that may have action-

specific uncertainty. In the present paper we make this step and introduce managerial 

“control” options to enhance project value through learning or direct value enhancing 

actions (or efforts to reduce costs). Learning options prior to investment include 

investments in marketing research, R&D or exploration activities and pilot projects or 

experimentation of new production processes. These actions resolve uncertainty about 

true project value or cost enabling management to have valuable information before 

irreversible investment is undertaken. Childs et al. (2001) (see also Childs et al., 2002) 

also model information acquisition for options on noisy claims and Epstein et al. (1999) 

discuss the value of market research in a real options model. Impulse-type random 

controls were introduced in real options by Martzoukos (2000) who also analyzes 

learning.  Direct value-enhancing (control) actions include advertising, efforts to improve 

the attributes or the quality of a product or efforts to reduce cost through adoption of new 

technologies in production. These actions are targeting to an increase in project value 

 59

Nico
s K

ou
ss

is



albeit have a random outcome. Traditionally, the way to incorporate sequential actions to 

improve value in the real options framework has been through compound-growth options. 

Differentiation among alternative strategies is done through different growth factors. Our 

approach captures the action-specific uncertainty of these actions and at the same time 

captures interactions in the form of path-dependency i.e. one action affecting the 

expected average impact and volatility of another action. Abraham and Taylor (1997) 

create an option pricing model that incorporates the uncertain impact of exogenous 

events; in our case action specific uncertainty is endogenously determined in the model at 

optimal time. Another possible method of capturing synergies between different actions 

is to analyze their values separately and incorporate correlations linking the effect of 

different actions (e.g. in Childs et al. (1998) where they compare sequential versus 

parallel development).   

 

Our setting captures the notions described in Weitzman and Roberts (1981) while also 

maintaining the correct adjustment for risk in the real options framework. The learning 

and the control actions are induced endogenously by the firm by optimally weighing the 

expected benefits (in terms of additional option value) compared with the additional 

costs; the additional induced risk is assumed to be firm specific and thus not priced. Other 

related papers is Childs and Triantis (1999) and Grenadier and Weiss (1997).  

 

We first develop analytic formulas for compound-growth options with embedded 

learning and attribute improvement control actions in a two stage model. Our analytic 

model includes Geske (1979) and Longstaff (1990) as special cases and is not limited to 

the standard call on call case but extend to other cases like call on put, put on call and put 

on put. We similarly provide formulas for the case where the underlying asset follows 

jump diffusion with multiple sources of jumps. Furthermore, we show how to incorporate 

path-dependency using the analytic formulas. We then focus on the compound-growth 

option (call on call) case that has interesting applications in real investment problems. 

The analytic formulas show how learning and control actions affect the value of an 

investment opportunity, the probability to proceed to next stage, the probability to 

proceed and develop in the final stage and the probability to develop early.  
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Real life investment problems include multiple stages decisions with the potential for 

early development, optimal timing of actions, and interactions between learning and 

control actions. For these reasons we extend the analysis by implementing a numerical 

model that can be used for the evaluation of such complex cases with path dependencies. 

Our theoretical model is then applied in the context of new product development showing 

the importance of marketing research, attribute or quality improvement actions, 

advertisement, pilot projects, etc.  

 

3.2. Model assumptions 

 

In this section we set up the framework and assumptions that we will also use to develop 

the analytic formulas of the next section and the more general multistage model in section 

IV. Our first assumption relates to the stochastic process of the underlying asset (present 

value of project cash flows). Our results in the main text are based on diffusion case and 

the jump diffusion with multiple classes of jumps case is discussed in the appendix. In the 

possible presence of  optional managerial learning or control 

actions the process is defined as: 

MCNMCMCMCi ,..., 21=

 

                                                   ii
t

t dqkdzadt
S

dS
++= σ                                                  (1) 

 

Parameter  denotes the expected rate of return (capital gain) of the project (including 

the impact of jumps). For managerial controls we assume that they induce an additional 

effect on expected returns

a

11. Parameter σ is the standard deviation of the rate of return, 

and dz is an increment to a standard Wiener process describing the exogenous uncertainty 

of the state variable. Parameter  is a random variable that represents the effect on ik
                                                 
11 This effect can be thought to be an effect not captured by historical information but based on managerial 
discretion. Effectively, the realization of this return is on managerial discretion by weighing the expected 
benefits with the expected costs of control actions.  
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project returns of control or learning action i and  is a control variable that takes the 

value one if the action is activated and zero if not.  

idq

 

The PDE that the option should satisfy is 

 

               [ ]∑
=

−+++−+=
MCN

i
iitSSS dqtSVtSYVEVSVrVSrV

1

22 )],(),([)(
2
1 δσ                 (2) 

 

To derive the PDE one can follow Merton’s (1976) replication argument, which imposes 

two further assumptions, that the intertemporal CAPM of Merton (1973b) holds and that 

managerial controls have firm specific risks, which are uncorrelated with the market 

portfolio and thus not priced.  Alternatively, we can use the framework developed in 

Garman (1976), Cox, Ingersoll, and Ross (1985) and Hull and White (1988) that use a 

complete markets framework and no arbitrage arguments.  

                        

For real options valuation the latter approach is probably more suitable and avoids 

assumptions about the existence of a “twin” security that mimics the risk of the project 

cash flows and is used to replicate the option. The no-arbitrage approach maintains the 

expected returns should be adjusted to their certainty equivalent measure and their 

payoffs discounted at the risk free rate (see for example Constandinides (1978) for an 

application of this idea in project appraisal)12.An opportunity cost of waiting )(δ  that 

should be deducted from the equilibrium required rate of return (see McDonald and 

Siegel, 1984) is also incorporated, which may also be used to model exogenous 

competitive erosion to the project’s cash flows (e.g., Childs and Triantis, (1999), and 

Trigeorgis (1996) ch.9) 

 

Denoting the accumulated (Brownian) noise from t = 0 to T by Zt we then have that asset 

values at a future period T will be determined by: 

                                                 
12  As stated in Constantinides (1978) the project value  may or may not be traded in capital markets but 
the results will still hold by requiring only that assets earn the equilibrium rate of return as defined by the 
intertemporal CAPM.  

S
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We assume that the effect of control actions are log-normally distributed. Each control, 

learning action has impact Y = 1+  that follows a lognormal distribution: ik

 

                        ( )5.02 )1))(exp(exp(),exp(log~)1( −+= iiii NkY σγγ                               (4) 

             

                 

The assumption of log-normally distributed controls is adopted since it allows non-

negative asset values, and also, conditional on control, asset values retain log-normality. 

We will use ),( ii σγ to denote characteristics of control or learning actions. We use 

0>iγ  to describe efforts to enhance value with random outcome. Alternatively, if S was 

interpreted as a cost , 0<iγ  would mean efforts to reduce costs. In this study we focus on 

efforts to enhance project value. The special case of 0=iγ  with  while 

methodologically similar to the control case, it is nevertheless used to capture costly 

learning actions i.e. resolution of uncertainty about the true project value. These 

formulation is consistent with a Bayesian approach and the above parameters of the 

lognormal distribution can be estimated as the parameters of the preposterior distribution 

(see Kaufman,1963, and a recent application by Davis and Samis, 2005).Alternative 

approach called empirical based on Hui and Berger (1983) for estimating the volatility of 

option prices is presented in Karolyi (1993) and is applied for financial options.  

02 >iσ

 

The risk neutral distribution of S at T conditional on the activation of control i and on the 

is given by: 
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The distribution of returns conditional on no activation of control is found by 

setting . 02 == ii σγ

 

The boundary condition at the maturity of the option T is the maximum of the values of 

the decision to exercise (EE) and getting XST −  (X is the final/development cost) or 

abandon (A) the project for some recovery amount α of the total costs TC that have been 

paid until that point. The recovery amount may be a function of the costs that have been 

paid for enhancing the product features or resale of expertise obtained. In the most 

general setting we allow the firm to take decisions at discrete points in time before 

expiration of the option. The decision points can be at any point in time but for 

convenience we use equally spaced decision points for the numerical model with denote 

decN

dec

dec
T

decdec N
TN

t
N

Tt
N
Ttt

)1(
,...,2,,0 1210

−
==== −  to be the corresponding time where 

actions can be taken before the maturity of the option. For the analytic solutions with two 

stage problems we have decisions at 00 =t  and Tt <1 .Note that at time T  the decision 

would either be exercising or abandoning the project. Growth options like pilot projects 

are incorporated by allowing the firm to acquire a fraction m of the project value. Growth 

factors can in general exist under different decisions where the firm can continue to the 

next stage i.e. in modes  and can be path-dependent. The set of 

all possible actions is denoted by 

},...,,,{ 21 MCNMCMCMCW

},..., 2W,,...,,,,{ 121 MCNNC WWMCMCMCEEAWM = ; it 

includes wait (W), abandon ( A ), exercise investment option ( EE ) , a set of managerial 

controls ( ) and a set of possible states of inaction after a control has been performed 

( ).  Note that  denotes the “wait” mode after managerial enhancement action i has 

taken place and is used a separate action to keep track of the realized path. At any 

decision point in time , and depending on the problem, the set of available choices  

will not necessarily include all decisions and will be a subset of the superset 

iMC

iW iW

t tM

M  i.e. 
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MM t ⊆ . The set of actions at t as well as their characteristics (e.g. impact and volatility 

of control and costs) is affected by the action history ; this is practically monitored by 

keeping track of the previous action .  This allows the incorporation of path-

depedency in the problem specification so that the value of the project under decision , 

 is a function of the history of actions (  or ). The modes {EE, A} are 

absorbing states since under both cases the decision process stops (no further actions are 

performed).  

−
tM

1−td

td

tdV −
tM 1−td

 

3.3. Analytic formulas 

 

We now derive valuation formulas for investment options with embedded multiple 

managerial controls with different characteristics in a two stage framework. We also 

analyze the optimal timing issue by considering early exercise and extendible options. 

Multiperiod extensions of the valuation formulas are feasible but involve keeping track of 

the decision paths and the evaluation of multivariate normal integral. For these reasons 

we present a numerical multistage lattice solution in the next section that can also 

accommodate path dependency between actions. 

 

Here we present the compound call on call case with embedded learning, control, early 

exercise and abandonment at 00 =t  and  (the appendix, section A provides other 

interesting cases of call on put, put on call and put on put and appendix B solutions for 

the jump diffusion case). At  if the firm early exercises the investment option will 

get and if it decides to abandon zero; with respect to the latter the firm is at least 

in the same position by deciding to wait. If the firm decides wait or managerial control 

action i.e.  then the payoff at an intermediary point  under 

decision  and conditional on decision   is generally defined by: 

01 >t

00 =t

XS −0

},{\00 AEEMd ∈ Tt <1

1d 0d

 

          (6) 
01

1

1

1
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where . With },...,,,{ 2111 MCNMCMCMCEEWMd =∈ Wd =1  the second term is 

basically a standard call option.  With iMCd =1  the second term is given by a modified 

version of the standard call option formula that we describe below (see also Martzoukos, 

2003).  Note that the value function at the intermediary point is a function of previous 

decisions; the growth factors, expected impact and volatility but also the costs are 

functions of previous decision. Furthermore, the model allows the incorporation of 

recovery of a percent of past paid costs. The model of Geske (1979) and Longstaff (1990) 

are special cases of this specification. Geske (1979) model applies zero growth factors 

and abandonment option and no managerial controls and Longstaff (1990) does not 

include growth options, managerial controls and abandonment options.  

 

We next define a general two stage compound option valuation formula that 

accommodates early exercise {EE}, wait or extend {W} and  managerial controls at 

the intermediary point  is as follows.  defines cost of delaying the option to next 

stage;  will be used for standard wait and .  defines the cost of early 

exercise which can in general be different than 

MCN

1t WX

0=WX 0>WX EEX

X  and 
MCNi MCMCMCiX ,...,, 21=   

denotes the costs for the each of  controls. Additionally, define 

to be the number of regions that decision 

optimally appears at  and use L to denote the lower boundary of that region and 

iMCN

},...,,,{, 2111 MCNd MCMCMCEEWdR ∈

1d 1t H to 

denote the high boundary of that region. Then the value of the general sequential two 

stage option is given by: 
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Note that can be interpreted as the probability of 

reaching a particular region  at , while 

gives the 

probability of reaching region  at and also exercising investment option atT .  

Furthermore,

 

denotes the probability to reach region 

12,
1

2, , )]()([ MiaNaN H
il

R

l

L
il

i

∈⎥
⎦

⎤
⎢
⎣

⎡
−∑

=

i 1t

},...,,{}{\)],,,(),,([ 212,2,
1

2,2, MC

i

Nii
H
il

R

l
ii

L
il MCMCMCWEEMibaNbaN =∈−∑

=
ρρ

i 1t

},...,,{}{\)],,,(),,([ 212,2,
1

2,2, MC

i

Nii
H
il

R

l
ii

L
il MCMCMCWEEMibaNbaN =∈−−−−−∑

=

ρρ

1Mi∈ at  and abandoning the project at 1t T . 

At the same time gives the expected value that the 

optionholder gets if it enters region 
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ρργγδ gives the expected value the 

optionholders gets at T  given that he has passed through decision (note 

that for W 0

}{\1 EEMi∈

),( 10 =ddγ ) at .  In section A of the appendix we provide similar formulas 

for compound-growth options of call on put, put on call and put on put. Appendix B 

provides formulas for all the cases for the special case of two sequential controls using 

the jump diffusion assumption where all the information needed for numerical evaluation 

is provided.  

1t

 

Equation (7) as well as the generic formulas in appendix A have some “abstract” features. 

There are two pieces of information that need to be determined (1) the number of optimal 

regions for each action (2) the critical point for switching from one region to the another. 

The discussion that follows focuses exactly on the determination of this information for 

the call on call case. Similar discussion applies for other cases but we avoid it for brevity.  

 

The critical threshold at maturity is determined by applying the value matching condition:  

 

)),(().(
01010

*
dT XddXaXddS +=−  

 

Note that depending on the path the critical trigger point at maturity will differ. 

 

At the intermediary point, we need a graphical inspection for finding all possible regions. 

Although there might be special cases where we know the regions a priori-some 

mentioned in next section-in general there is no easy way to determine the optimal payoff 

(the optimal decisions might interchange at different ).  The exact critical point of  

where we switch from optimal decision i to 

1t
S S

j  would be determined by solving for that 

equates the payoff of the current optimal decision with the new one i.e. by applying a 

value matching condition of the form: 

S
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Note that in general the payoff at will have the following form: 1t
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,1},{ =∈ it MCWMI  zero otherwise 

 

 

Theoretically can take any values from 
1t

S ),0[ ∞ and so this searching process would be 

practically infeasible if the payoffs intertwine as  increases with no payoff dominating 

the other. Fortunately we are able to determine which payoffs dominate at the two limits 

and so this searching process can be accomplished by only searching within a finite 

interval. For obviously the optimal decision would be to abandon the project

S

0
1
→tS 13. 

For the upper decision region suppose for example that we find that decision dominates 

other decisions for a high value of ,  and we want to ensure that i dominates all other 

decisions for any . To ensure this we only need to show that the rate at which the 

payoff of i  increases is higher than any other slope for .Since the slope of the 

payoff function shows the increase in the payoff though an incremental increase in S, this 

i

S hS
hSS >

hSS >

                                                 
13 Another choice would be to wait until maturity but as a practical matter this would also give a zero 
payoff. Furthermore if the abandonment value is some positive amount then we will always choose to 
abandon.  
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means that decision  will be preferred for a high value of  if its slope for any  

is higher than the other payoffs. From equation 6 we find that: 

i hS hSS >

 

)(),(
.)|(

Slope 1,
),()(

10 1

1011

1

1 d
ddtTt

d

d aNeddm
S
SV γδ +−−+=

∂

∂
=  

 

Also note that for a sufficiently large S we have  for W or MC payoffs. If by 

moving from slope at to slope evaluated at  the increment in is 

negligible this means that decision will be determined from growth factor and expected 

impact γ. Τhe optimal decision for high values of S thus in fact depends on 

. For decision the slope is zero for any S so abandonment will 

not be preferred for high values of S over all other decisions (wait for example will be 

preferred). Exercise of the investment option gives a slope equal to one for all S i.e. 

there is a one to one translation of value of S to payoff to the option holder while for {W} 

the slope would be  which means that  will dominate {W} for high 

values of .Our arguments make intuitive sense since as  increases the optimal 

decision will depend on the way each decision translates S into value rather than the costs 

of following a particular decision. In turn this means that growth factors and value 

enhancing impact factors (

1)( 1,1
→daN

hS hSS > )( 1,1daN

idtTeddm γδ +−−+ )(
10

1),( }{A

}{EE

1)( 1 <−− dtTe δ }{EE

S S

γ ’s) will play the most important role for high values of S.  

 

Unfortunately, there is no easy answer to the question of which decision dominates for 

the intermediary values of S in the general framework we have just described since for 

low values of S all factors including costs, growth components, volatility of learning and 

enhancing options and the impact of controls will play their role in determining the 

optimal decision. The determined regions are in this cases determined though a graphical 

inspection of the regions. This difficulty is alleviated in the numerical solution procedure 

that we describe in the next section since the regions are automatically determined.  The 

slope argument we have just discussed can give us some intuition on when some actions 
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and in particular learning and enhancement options are likely to be more important- we 

discuss this, some applications of the formula as well as special cases in the next section.  

 

3.3.1. Some special cases illustrated 
 

The formula we have described in previous section (see equation 7) encompasses 

managerial control actions with random outcome, learning, early development and path-

dependency in both the impact and volatility of control/learning actions and the recovery 

amount of abandonment. Naturally it can encompass many other cases appearing in the 

literature as special cases. First, the case of Geske (1979) can be calculated by applying 

the following parameters: 
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RN
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EEMC

dd σγ

 

Note that in the intermediary decision point there are two regions appearing A, W and 

. There are also alternative ways 

to get the same result, using for example a costly control action with zero impact and 

volatility. Also note that with 

0);,();,(),( 2,2,1,1,0
*
1

==⇒∞= ρρ W
H
WW

H
W

H
t baNbaNWdS

0),( 0 =WdX  we reduce to the case of simple European 

call option (if we additionally allow for    we have a formula for European 

call option with embedded managerial control).  The case of the extendible option of 

Longstaff (1990) which is more complex than the Geske (1979) case is obtained as 

follows: 

02
00
≠= dd σγ
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In this case there are three regions appearing in the intermediary decision point, A¸ W, EE 

(the Wait mode here is equivalent with extension option in Longstaff, 1990). There are 

two trigger points from A to W and from W to EE that can be calculated by applying 

appropriate value matching conditions described in previous section: the value of Wait 

equated with Abandon and the value of Early Exercise with Wait; note that additionally 

. 0)()(),( 2,1,0
*
1

==⇒∞= H
EE

H
EE

H
t aNaNEEdS

 

The interesting special case of the compound-growth option with two sequential controls, 

(optionally) activated at  and/or at the intermediate date0=t 1tt =  is discussed below. 

The first control  has mean impact and variance of impact characteristics (γ0MC 0, 0σ ) 

and can be activated at at a cost , and the second control ( ) has distributional 

characteristics (γ

0=t 0X 1MC

1, 1σ ) and can be activated at 1tt =  at a cost . Using previous notation 

the set of available decisions are

1X

},{ 00 MCWM = , },{ 11 MCAM =  with abandonment 

value for simplicity set to zero. For  we also allow a growth option i.e. if  is 

activated the firm gets a fraction of S equal to  (e.g. a pilot project). The value of the 

compound-growth option conditional on the activation of control  at is given by: 

1MC 1MC

1m

0d 0=t
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10110 aNeXaNeSmbaNeXbaNeS
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==∈
γδγγδ ρρ

                    

                                                                                                                                           (8) 

where  
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The value of the option assuming  is not activated at  0MC 0=t  but waiting is decided is 

given by setting 000 == σγ . The value of the project at t = 0 

equals ( ))|(.__,)|(.__max 00 WCallonCallXMCCallonCall − . The compound call 

option of Geske (1979) is a special case by setting 01100 ==== σγσγ ,  = 0 

and .  

0X

01 =m

 

This case is a simple case of the general model discussed in the previous section where 

there is only one region at  above which the managerial control will be activated. Note 

that the upper critical boundary is 

1t

∞ and this is what makes some terms from equation 7 

for the upper boundary to disappear. Obviously in this case the managerial control payoff 

will lie above the abandonment payoff for all values of  where 

 . 

S

0)()1 N)( 12
(

1
)(

1
11 >−−+ −−+−− XdeXdNeSSm tTrtT γδ

 

 

So there is only one critical value, , which is found by solving numerically the value 

matching condition: 

*
1MCS
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The analytic solutions for the European compound-growth call on put, put on call and put 

on put are similarly derived and provided in section B of the appendix.  

 

 

3.3.2. Insights on region determination and the value of learning and 
control 
 

Focusing on the special case of the control-growth option described above we see in 

figure 1  a numerical example of the joint effect of the changes in impact of a managerial 

action 0γ and volatility 0σ  will affect the value of the compound-growth option. As we 

can see the marginal impact of these managerial actions is more profound for out of the 

money options where a small increase in the values of either impact or volatility can give 

a high increase in the value of the option. For the at the money and in the money cases, 

the increase in value due to an increase in either impact or volatility increases more 

smoothly, almost linearly. Later on we show some more numerical results using the 

above formula for selected parameter values and discuss some implications.  
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Figure 1: Sensitivity of compound call option with embedded learning and control 

with respect to changes in control’s impact and volatility  

 
Panel a: Out of the money (S = 60) 

 
Panel b: At the money (S = 100) 

 
 

 
Panel c: In the money (S = 140) 

 

 
 

Notes: Numerical results using analytic formula for the compound option with controls (equation 8 of the main text) by varying γ0 and 

σ0. Parameters are development cost X = 100, cost of control X1 = 5, r = δ = 0.05, σ = 0.1, t1 =1 and T = 2. 
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Interesting insights can also be gained though an investigation of the slope of the paoff 

functions. In order to concentrate on the learning and enhancement effect let’s assume 

 and δ=0. Other parameters are as 

follows

0),( 10 =ddm 11 Md ∈∀

1,2,2.0,100,05.0 1 ===== tTXr σ . Figure 2, panel a shows the behaviour of 

the slope of learning payoff as a function of S for different values of volatility versus the 

slope of the wait payoff.  

 

Figure 2: Slope of payoffs for learning versus wait as function of 

the underlying value 
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Notes: We analyze the slope of payoff function (see equation 6 and the discussion that follows in the main text). The 

slope shows the rate at which the payoff increases under wait strategy versus learning or value enhancing strategy.   

For d1 = W, L use m(d0,d1) = 0. Other parameters are r = 0.05, δ = 0, Χ = 100, σ = 0.2, t1=1 and Τ =2 .For 

learning use σL = 0.3 or σL = 0.5 and for the value enhancement control action use σMC = 0.3 

and 4.0or  2.0 == γγ . 
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The figure clearly shows that learning is important for low values of S and reduces in 

importance for higher values of S where the wait decision starts to payoff more.  

Depending on the costs of the learning action it is then likely that a wait region at low 

values of S could be followed by a learning region and wait will again be optimal in the 

upper region.  The results indicate there is a higher incremental value of learning when 

the uncertainty resolution is substantial and when the project is not deep in the money.  In 

figure 1 panel b we focus on the behaviour of the slope for value enhancement action 

relative to the passive strategy of waiting. We see that the value enhancement action 

increases more rapidly than the wait payoff for all values of S. This means that a value 

enhancement action will at some point be preferred (but how valuable this strategy will 

be depends on the cost of the particular action). The exact regions will be determined by 

a graphical inspection of the payoff functions to determine the optimal regions for each 

decision ( for each ) and though the use of appropriate value matching 

conditions to get accurate values for all  “trigger” points . 

iR 1Mi∈

*
1t

S

 

3.3.3. A complex example with multiple learning and managerial 
control actions 

 

Now we will see how we would practically use equation 7 to evaluate a two stage 

problem with multiple control actions, wait and early exercise features and path-

dependency. Assume we have the set of actions at 0=t  are },,,{ 000 MCLEEWM = . 

This means that the firm can either wait, early exercise, perform a learning action (for 

example R&D or marketing research) or engage in a managerial action to enhance value 

(for example advertisement or improve attributes of a product). Then we assume that at 

 the firm can choose from the set of actions1tt = },,,{ 111 MCLEEWM = . This means that 

it can wait again until maturity, early exercise the investment option, perform a second 

learning action ( ) or perform a second enhancement option ( ). Notice that in this 

case we allow that the firm makes all possible combinations of actions between t=0 and 

 i.e.  

1L 1MC

1tt =
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Combination of actions: 
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101000

10100

11

MCMCLMCEEMCWMC
MCLLLEELWL
EEWMCWLWWW

o  

 

To be able to solve for the value of the project we need to determine the optimal regions 

at the intermediate point  and then evaluate equation 7 three times, conditional on W,  

conditional on  and conditional on . The value of the project at  would then 

be calculated as the maximum of the value of S-X, 

1t

0L 0MC 0=t

)|(.__ 0 WdCallonCall = , 

and 
0

)|(.__ 00 MCXMCdCallonCall −=
0

)|(.__ 00 LXLdCallonCall −= . Notice that 

the optimal regions and the critical points at  are not affected by the decision at 1t 0=t ; 

however several other variables are affected: the probabilities of reaching a region 

(  ), the probabilities to reach a region and develop in the final 

stage (  

)()( 2,2,
H
i

L
i aNaN − 1Mi∈

),,(),,( 2,2,2,2, ii
H
iii

L
i baNbaN ρρ − }{|1 EEMi∈ ), the risk neutral expected value of 

the project if it ends in the money at  (given by ) and the risk neutral 

expected value at 

1t )( 1,
01

i
t

i aNSem γδ +−

T given that S pass through region i at t1 (given 

by ). ⎥
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To perform a numerical investigation, assume that the initial value of the project 

is , the development costs are 1000 =S 100=X , 2.0,05.0 === σδr  with time to 

maturity of the option of  years and intermediate managerial decision point at =1. 

For the first learning action assume 

2=T 1t

5.0,0
00
== LL σγ  and cost , and for 

managerial enhancement option at 

5.2
0
=LX

0=t assume 3.0,1.0
00
== MCMC σγ  with 

cost . For the second stage managerial control actions assume that they have the 

same characteristics but double costs i.e. 

5
0
=MCX

5.0,0
11
== LL σγ and cost  and 5

1
=LX
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3.0,1.0
11
== MCMC σγ  with cost 10

1
=MCX . Given these parameter values the optimal 

regions at  are obtained by comparing the payoffs for different possible values of the 

realization of the value of the stochastic value of the project cash flows. This is illustrated 

in figure 3. 

1t

 

Figure 3: The payoff functions of the compound-growth option with two managerial 

controls, wait and early exercise at the intermediate point  1t
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Figure 3 (cont.) 

 

Panel a:      Panel b: 
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Panel c:              Panel d: 
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Notes: We investigate the payoffs for alternative decisions  at t1 =1 for an investment option with maturity 2=T . The set of possible actions 

at t1 is Wait (W), Early Exercise (EE), Managerial Control 1 (MC) or Learning 1(L). The general parameters for the problem is S  =100, r  =  

δ  = 0.05, σ = 0.2. For learning 1 use σL = 0.5 , ΧL = 5  while for managerial enhancement option use σMC = 0.3, γMC = 0.1, XMC = 10.     
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Figure 3 shows that there will be three possible regions of actions at , W,  (the 

three different panels take a closer look over the regions). This means that the decision to 

1t 11, MCL

EE  is a dominated strategy and will not appear at  regardless of the decision at 1t 0=t . 

Notice that at low values of realization of the value of the project S, will be the 

optimal strategy while for very high values of   is the dominating strategy. The 

 payoff grows at a higher rate than any other payoff for any high values of and so 

no other payoff will surpass it. This is shown by the slopes of the payoffs. For example at 

S = 250 we have that  

W

S 1MC

1MC S

05.1)(250Slope 1,
)(

1

1

1
=== +−−

MC
tT

MC
aNeS id γδ  while for wait we 

have 951.0)(250Slope 1,
)(

1

1 === −−
W

tT

W
aNeS dδ  and for learning we 

have 928.0)(250Slope 1,
)(

1

1

1
=== −−

L
tT

L
aNeS dδ . Given that the cumulative normal terms 

have almost reached their limits of one ( 976.0)(,998.0)(,1)( 1,1,1, 11
=== LMCW aNaNaN ) 

and that  for any )()( 11 tTtT ee i −−+−− > δγδ 0>γ then we should not expect the payoff of W or 

 to surpass the payoff of 14
1L 1MC . Note that the payoff of EE  would dominate both the 

payoffs of W, and  because it crosses them at some point and then it is impossible for 

the other payoffs to surpass it again (since they do not grow more than the 

1L

EE  payoff 

which equals one). This happens because of the positive opportunity cost δ but even if 

0=δ the payoffs of W and  could only grow at a rate equal to one at the limit as S 

tends to infinity. Finally note that the payoff of W  dominates  for high values of 

since the learning payoff does not grow faster in the upper range. All these 

observations are confirmed if we plot the payoffs for even higher values of S as figure 3 

panel d illustrates.  

1L

1L

S

 

                                                 
14  Even if the slope of learning goes to one for an incremental increase in S (i.e. added 0.024) while the 
slope of managerial enhancement action does not change, it is still not be possible for the learning payoff to 
surpass the managerial enhancement payoff.  
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In order to determine the critical points with accuracy we apply the value matching 

conditions. First note that the lower boundary where W is activated is . To 

find the critical point where we switch from wait to learning we solve: 

0),( 0
*
1

=WdS L
t
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Then we need to determine the highest boundary for the decision . This is found by 

solving:  

1L
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With this information we can use equation 7 to get: 

 

26.159)|(.__
24.827)|(.__

888.15)|(.__

00

00

0

==
==
==

MCdCallonCall
LdCallonCall
WdCallonCall

 

 

After considering the costs of each strategy at 0=t  the optimal decision would be to 

perform learning at  and the value of the complete project at t = 0 

is

0=t

327.222.5-24.827)|(.__
000 ==−= LXLdCallonCall . 

 

Table 1 provides additional information about the above case. Specifically it shows the 

probability of reaching a particular region at  , the present value of costs expected to be 

paid at , the joint probability of reaching a region at  and developing or abandoning at 

 and the present value of  the project and it’s costs under each scenario expected at T . 

1t

1t 1t

T
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These calculations are provided for each possible decision at 0=t  and may proof useful 

in practical applications since they provide further insights for managerial planning and 

budgeting purposes15.  

 

Table 1: Probabilities to reach regions, expected costs and 

expected values using the analytic formula 

 

Panel a: Conditional on d0 = W

Expected Expected Expected
Region at t 1 Marginal Prob. Cost at t 1 A EE Sum Value at T Cost at T

W 0.023 0.000 1.000 0.000 1.000 0.015 0.014
L 1 0.904 4.298 0.664 0.336 1.000 47.284 30.446

MC 1 0.073 0.694 0.937 0.063 1.000 9.709 5.667
Sum 1

Panel b: Conditional on d 0 = L 0

Expected Expected Expected
Region at t 1 Marginal Prob. Cost at t 1 A EE Sum Value at T Cost at T

W 0.306 0.000 0.999 0.001 1.000 0.059 0.055
L 1 0.474 2.253 0.836 0.164 1.000 22.894 14.810

MC 1 0.220 2.093 0.796 0.204 1.000 39.503 18.417
Sum 1

Panel c: Conditional on d 0 = MC 0

Expected Expected Expected
Region at t 1 Marginal Prob. Cost at t 1 A EE Sum Value at T Cost at T

W 0.105 0.000 1.000 0.000 1.000 0.036 0.036
L 1 0.639 3.038 0.763 0.237 1.000 33.408 21.401

MC 1 0.257 2.441 0.768 0.232 1.000 40.662 21.032
Sum 1

Region at t1 & Region at T
Joint prob.

Region at t1 & Region at T
Joint prob.

Region at t1 & Region at T
Joint prob.

 

 

 

 
Notes: Parameters are S = 100, r = δ = 0.05, T = 2, t1 = 1, 1.0

10
== MCMC γγ , 3.0

10
== MCMC σσ ,  5.0

10
== LL σσ , 

, . This case is evaluated using equation 7 of the main text.  52
01
=⋅= LL XX 102

01
=⋅= MCMC XX

 

 

                                                 
15  The results are based on calculations based on risk-neutral world. In practice, calculation of the real 
growth rate will be necessary.  
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Interestingly, if the firm decides to wait at 0=t then most likely will move to learning at 

. Exercise of learning at  reduces the probability to exercise the second learning 

(and its associate expected costs) but increases the likelihood of exercising a control 

action, the overall probability of development and expected value received at T. 

Compared with the decision to exercise learning at , exercise of managerial control at 

 increases the probability to exercise the second learning and control and the overall 

probability of development and expected value received at T; due to the higher cost 

however will not be preferred at t = 0.   

1t 0=t

0=t

 

We have also implemented the same case assuming a recovery amount in case of 

abandonment of 50% of past paid costs. For example, if learning is exercised at t = 0 the 

firm can recover 1,25 at  while if additionally a control is exercise at  the firm may 

recover 6.25 (=1,25+5) at T. Analogously path-dependent recovery costs hold if the firm 

exercises control at  t = 0. If the firm decides to wait and then exercise learning or control 

at  then it can recover 50% of the paid costs at T. Under this specification we have the 

following results (net of associated costs of each action): 

1t 1t

1t

 

23.515)|(.__
23.951)|(.__

264,17)|(.__

00

00

0

==
==
==

MCdCallonCall
LdCallonCall
WdCallonCall

 

 

Again, the optimal decision at t = 0 will be to exercise the learning action. The decision 

regions will be A, W, L1, MC1 at  (abandon now appears in the lower region). Similar 

calculations for the probabilities of reaching each region and expected values and costs 

are possible but are avoided for brevity.  

1t

 

Now consider a slightly modified version of the above problem where we keep all the 

parameters of the problem the same and we double the costs for  to and of 

 to . In this case we will have the following regions appearing at : W, 

1L 10
1
=LX

1MC 20
1
=MCX 1t
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L1, EE, MC1 i.e. we will also have a region where EE  appears to be optimal region as 

figure 4 illustrates. 

 

Figure 4: The payoff functions of the compound-growth option with two managerial 

controls, wait and early exercise at the intermediate point : Higher costs for learning 

and control at t

1t

1 
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Figure 4 (cont.) 

 

Panel a:     Panel b:     
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Panel c:     Panel d: 
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Notes: We investigate the payoffs for alternative decisions at for an investment option with maturity . The set of possible 

actions at is Wait, Early Exercise, Managerial Enhancement 1 or Learning 1 i.e. . The general parameters for 

the problem is . For learning 1 use  while for managerial enhancement option 

use .  

11 =t 2=T

1t },,,{ 111 LMEEEWM =

2.0,05.0,1000 ==== σδrS 10,5.0
11
== LL Xσ

20,1.0,3.0
111
=== MEMEME Xγσ
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We know from the slope criterion that for high values of S 

 while for EE the slope is everywhere equal to one, so that 

the payoff of  will surpass the EE payoff at some point. This is indeed confirmed in 

the panel d of figure 4.  

051.1Slope 11

1

)( == Μ+−− CtT
MC e γδ

1MC

 

Our analytic formulas where confined to a two stage investment problem. The results can 

be extended to multi-period problems but one would then have to evaluate the cumulative 

multivariate normal functions. Furthermore, one would have to check for the various 

combinations of actions that are increasing as the number of stages increase. Another 

issue is that of path dependency of the characteristics of actions. For example a 

managerial enhancement action may have higher impact if activated after a learning 

action than if activated after a passive wait decision. The analytic model we have just 

developed allows for path dependency between actions of period 0 and that of period 

at . For instance, in the examples above we may allow that 1t 1MCγ  is higher if the previous 

action was  than anything else. In the context of R&D this could reflect an 

increasing effectiveness of the second R&D action if some fundamental research 

development has first taken place.  

0MC

 

In the next section we extend the framework to multi-period sequential managerial 

actions with possible path dependencies using a numerical lattice model. The numerical 

model allows a more effective way of searching for the best alternative and allowing 

complex path dependence structures and at the same time as we will see is relatively 

accurate. 
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3.4. A sequential numerical model with interacting learning and control 
actions 

 

3.4.1. A generalization to multiple stages with path dependencies 
between actions 

 

Now we consider an extended version of the investment problem discussed earlier to 

allow for multiple stages, multiple interacting learning and control actions with path 

depedencies, growth options, abandonment options and early development in a unified 

framework. We discuss a numerical method that can be used to evaluate these complex 

cases.  

 

We now use the more general specification ),( ihγ and ),( ihσ  for the description of the 

impact and volatility of control, conditional on the previous state h. With activation of 

action  at t, log-returns for the diffusion process will follow: it MCd =

 

                         ⎟
⎠
⎞

⎜
⎝
⎛ +Δ+Δ−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ+ ),(),,()
2
1(~|ln 222 ihtihtrNh

S
S

t

tt σσγσδ                 (10) 

 

 

 

The information regarding the expected impact and volatility of controls will be 

determined by the sequence (path) in which the controls are being activated. Note also 

that we may allow the cost of each control action to be path dependent. We define the 

information regarding the path dependency of controls’ costs in a matrix where we define 

the costs that need to be paid for switching from decision h to i.  ),( ihx

 

An example of path-dependency is discussed in Koussis, Martzoukos and Trigeorgis 

2005. First, interpret MC1 to be an accelerated control strategy of high impact then 

 90

Nico
s K

ou
ss

is



x(W,MC1) it’s associated cost. Additionally assume that {MC2,MC3} are the first and 

second of two sequential investments in controls with total outcome of impact and 

volatility comparable to that of the first control. Total costs might however differ from 

x(W,MC1) due for example to learning by doing. In general X(W,ME1) > X(W,ME2) + 

X(ME2,ME3) can be used to model implies cost efficiencies achieved due to learning by 

doing. The opposite, X(W,ME1) < X(W,ME2) + X(ME2,ME3), would imply scale 

efficiencies. Similarly, the impact or volatility might be different for the sequence 

compared with the accelerated strategy. 

3.4.2. A lattice based numerical solution framework 
 

We allow decisions to be made sequentially at Δt (assumed for simplicity equal) 

intervals. We define  the payoff the firm gets under decision d(.)tdV t = i. This payoff is a 

function of the level of cash flows S at that decision point, the characteristics of available 

controls, the development cost X, the switching (path-dependent) control costs , 

the recovery rate α for the case of abandonment options, growth factors  of S, etc. At 

each decision point  we wish to maximize the value of the investment by making 

the optimal pre-investment learning/exploration and/or control actions: 

),( ihX

im

Tt <

 

                         { }t

t

d

Mttt VMMMtSV max),,|,(* =−+                             (12) 

 

We have the following cases for :   (.)tdV

 

 

                    =−+ ),,|,( ttt
d MMMtSV t

                  [ ] ),(),,,|,(*)(
ttttdttttt

d
t

tr ddXSmMMMSttSVEe
t

t
Δ−

−+
Δ+

Δ− −+Δ+          (13a)                              

                  for ,                                                                                               },....,,{ 21 MENt MCMCMCd ∈
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                 =−+ ),,|,( ttt
d MMMtSV t XSt −                                             (13b) 

                 for , }{EEdt ∈

 

                                                                    (13c) =−+ ),,|,( ttt
m MMMtSV t )( −

ttt MTCα

                for ,  }{Adt ∈

 

where are the total costs paid for learning or value    enhancing actions until t  

and 

)( −
tMTC

 

               =−+ ),,|,( ttt
d MMMtSV t [ ]),,,|,(*)( −+

Δ+
Δ− Δ+ tttttt

tr MMMSttSVEe                   (13d) 

               for . },...,,{ 21 cNt WWWd ∈

 

 

Finally, at the last decision point at t = T, the optimal values are given by the terminal 

condition: 

 

                                                (13e) ))(,max(),,|,( −−+ −= TTTTT
d MTCaXSMMMTSV T

 

 

We can see that equations (13) incorporate path dependent costs, impact and volatility of 

controls and learning, early development options and abandonment options to recover a 

fraction α of the total investments in controls and pilot projects. Expectation when 

is taken with respect to the distribution of log-returns that },...,,{ 21 MENt MCMCMCd ∈
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depend on the specification chosen for the exogenous process and the impact of controls; 

for the case of no control with },...,,,{ 21 cNt WWWWd ∈ , expectation is taken excluding 

the impact of controls. Note further that for { }AEEdt ,∈  the expectation operator returns 

zero (these are terminal/absorbing states with no feasible continuation of decisions)16. 

 

In order to find project value at t = 0, we should the value functions in equation (13) is 

evaluated for each decision mode, at each decision point in time and for each state of the 

underlying asset S. Due to the presence of path dependency,  cannot be evaluated in 

the usual backward solution method of dynamic programming. Instead, we must take into 

account all alternative combinations of actions and paths of the state-variable.  We thus 

implement a forward-backward looking algorithm of exhaustive search (alternatively, see 

Hull and White, 1993, or Thompson, 1995), and the optimal decision will determine 

today’s option value.  

*
imV

 

In order to evaluate the expectation operator defined in equations (13) we need a 

discretized state-space and we use a numerical lattice scheme. From equation (10) the 

underlying asset S has a lognormal distribution between decision points. We approximate 

this distribution between steps with a binomial lattice with  number of steps, with 

total number of steps N equal to . The conditional volatilities  

between decision points for the diffusion case are:  

subN

subs NN ),(2
ttt ddv Δ+

 

                                     
s

ttt

sub

sub
ttt N

dd
N
T

ddv
),(

),(
2

22 Δ+
Δ+ +=

σ
σ ,        (14)  

                                      for  },...,,{ 21 MENt MCMCMCd ∈

 

 

                                                 
16  We demonstrate the implementation for the jump diffusion case in the appendix.  
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The specification in (14) allocates the volatility of control actions and jumps to  

points for a total uncertainty of . When controls are not activated we just 

set the volatility of controls to zero. 

subN

),(2
ttt mm Δ+σ

 

 

Furthermore we use the following up and down moves for the lattice between stages: 

 

                   ( )
),(

1),(,),(exp),(
ttt

ttttttttt ddu
dddownddvddup

Δ+
Δ+Δ+Δ+ ==      

  

Finally the probabilities for an up and down move (diffusion case) 

for  are: },...,,{ 21 MENt MCMCMCd ∈
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while for  we set the γ and σ parameters of controls to zero. },...,,{ 1 cNt WWWd ∈

 

With this specification between decision points for the sub-lattice construction we are 

able to incorporate the asset price and embedded control actions and evaluate the 

expectation in equations (13). 
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In the next section we test the accuracy of the numerical model with the analytic 

solutions provided in the section II. Then, we discuss the importance of options to learn 

and enhance value by analyzing the new product development case.  

 

 

3.5. Numerical results and applications 
 

 

Our first set of numerical results shows the accuracy of the numerical model by 

comparing with the results of the analytic formula for the compound option with learning 

or control. In the next section we analyze a realistic multi stage application for new 

product development.  

 

3.5.1. A comparison of the analytic and numerical model 
 

Table 2 shows the comparison between the analytic and lattice based numerical model for 

the case of a compound-growth option with learning. At the intermediate date , besides 

the value of the option to invest at the terminal date, the firm may also acquire a fraction 

 of the project value (a pilot project). In our problem specification, the firm cannot take 

the investment option unless it pays X

1T

m

1, which we interpret as the cost of getting the pilot 

project cash flows plus resolving uncertainty for the final project. The first panel provides 

results for the case where no growth option is available (only learning) and the second 

panel considers the case with an option to acquire a fraction 1.0=m  of the project value, 

plus learning. We can see that the numerical model provides a very good approximation 

to the analytic formulas in both cases. Focusing on the first panel we note that the case of 

zero volatility of control and zero impact reflects the case of the compound option of 

Geske (1979). The results show that when the volatility are positive the value of learning 

options embedded in investment options can be extremely important (this result will be 
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even more considerable with positive expected impact). Taking for example the case 

where S = 100 we see that compared to the case of a simple compound option with no 

learning, the value of the compound option with a learning potential (volatility) of 0.1 

increases by more than 50%, while a learning potential (volatility) of 0.2 increases value 

by 242%. In the second panel we see that the availability of growth options besides 

learning can further enhance project values. It captures the realistic case where a pilot 

project provides learning. Overall, the results indicate that project value can be 

substantially underestimated if learning, control, and other project attributes like growth 

options are neglected. If we interpret the learning action as marketing research, the higher 

the uncertainty that marketing research will resolve for a given cost the more likely that it 

will be performed. In the next section we investigate more complex investment decision 

scenarios in the context of new product development. 
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Table 2: Compound option with learning: Comparison of numerical and analytic 

values    

 

Time Vol. of Control Analytic Numerical Analytic Numerical Analytic Numerical
0.000 0.000 0.000 1.103 1.094 14.320 14.315
0.100 0.001 0.001 1.656 1.662 14.839 14.838
0.200 0.016 0.015 3.773 3.774 16.864 16.863
0.300 0.282 0.282 7.079 7.093 19.883 19.892
0.400 1.743 1.753 10.660 10.678 23.341 23.357
0.500 4.424 4.438 14.266 14.288 26.991 27.012
0.000 0.013 0.013 2.123 2.118 14.100 14.094
0.100 0.027 0.026 2.648 2.654 14.675 14.675
0.200 0.126 0.127 4.406 4.410 16.547 16.550
0.300 0.616 0.618 7.203 7.214 19.310 19.319
0.400 2.038 2.050 10.447 10.461 22.506 22.519
0.500 4.400 4.416 13.792 13.811 25.906 25.924
0.000 0.302 0.300 3.860 3.859 13.635 13.643
0.100 0.378 0.380 4.244 4.244 14.091 14.094
0.200 0.668 0.664 5.427 5.439 15.462 15.464
0.300 1.338 1.338 7.339 7.348 17.560 17.566
0.400 2.552 2.563 9.747 9.758 20.091 20.102
0.500 4.319 4.328 12.402 12.418 22.850 22.866

Time Vol. of Control Analytic Numerical Analytic Numerical Analytic Numerical
0.000 2.964 2.963 8.670 8.662 25.992 25.989
0.100 3.220 3.218 10.239 10.243 26.537 26.536
0.200 4.511 4.511 13.344 13.349 28.567 28.567
0.300 6.707 6.712 16.827 16.841 31.587 31.595
0.400 9.357 9.368 20.413 20.431 35.045 35.061
0.500 12.223 12.237 24.019 24.041 38.695 38.716
0.000 3.133 3.134 9.857 9.846 25.407 25.401
0.100 3.506 3.505 11.001 11.005 26.045 26.044
0.200 4.796 4.797 13.576 13.584 27.957 27.961
0.300 6.838 6.843 16.674 16.685 30.725 30.734
0.400 9.299 9.310 19.957 19.972 33.921 33.934
0.500 11.973 11.989 23.304 23.323 37.321 37.339
0.000 3.946 3.951 11.345 11.331 23.977 23.986
0.100 4.320 4.320 12.004 12.009 24.510 24.512
0.200 5.400 5.403 13.699 13.705 25.991 25.995
0.300 7.029 7.033 15.970 15.978 28.137 28.144
0.400 9.006 9.014 18.527 18.540 30.679 30.691
0.500 11.187 11.199 21.220 21.236 33.440 33.456

Growth option factor m = 0

T  = 2

T  = 5

Growth option factor m = 0.1

T  = 1

T  = 2

T  = 5

T  = 1

S = 80 S = 100 S = 120

S = 80 S = 100 S = 120

 
Notes: Parameters are r = δ = 0.05, σ = 0.10, t1 = T / 2  ,  γ = 0 and cost of control   = 5.  For the numerical lattice we use N1X sub = 60 

steps. 
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3.5.2. The new product development case 
 

In this section we employ the numerical model and we discuss the case of new product 

development by incorporating more complex and realistic features than in the previous 

cases. First, we take the scenario where  5=T  and 3.0=MCσ  as base case and we 

extend it in several dimensions while maintaining only two decision points (at t = 0 and 

). Then we will extend the framework adding more decision points and more 

path-dependency.  

2/Tt =

 

The first two columns of Table 2 provide the project´s option value at t = 0 for a simple 

base case, where the firm can only choose to activate a learning action (L) at , and it can 

only wait (W) at t = 0.  The first extension we consider is the optimal timing of learning 

when early development is also possible. The set of all possible sequence of actions are 

given in panel a of figure 5. 

1T

 

Figure 5: A two stage investment problem with learning (L), managerial control 

(MC), and early development (EE) in: The set of possible actions 

 

Panel (a): Optimal timing of learning (L) and early development (EE) with no 

control action (MC)  
 

t = 0 t = T1
W W
W EE
W L
L W
L EE  
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Panel (b): Optimal timing of learning (L), early development (EE), and control 

action (MC)  

 
t = 0 t = T1
W W
W EE
W L
W C
L W
L EE
L MC
MC W
MC EE  
 

 

In column 3 and 4 of Table 3 we provide numerical results for this scenario of the 

optimal timing of learning and development case. In comparison with the results of the 

base case we see that optimal values are enhanced and optimal decisions may differ; L 

and EE may now be optimal at t = 0. Another extension concerns the availability of other 

actions to learn or enhance value. For example the firm may have the option to activate 

two learning actions sequentially at t = 0 and 2/Tt = . Alternatively, the firm may have 

the option to learn initially and then enhance project value by a control action. We 

concentrate on the case where the firm can activate both a learning action and a control. 

The set of all possible combinations of marketing research (learning), improvement 

actions (controls) and early development that can be made are given in panel b of figure 

5.Note that the case described in panel b is substantially more complex. For example it 

allows the firm to perform L and then choose at the intermediary decision point between 

MC, W, or EE. Columns 5 and 6 of Table 3 provide results for this case where the 

characteristics of control are γMC = 0.1 with σMC =0.3.  
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Table 3: Project value for four different scenarios with increasing flexibility and 

impact 
 

 

Timing of L and EE after L
Dec. Dec. Dec. Dec.

S Value at t =0 Value at t =0 Value at t =0 Value at t =0
240 109.032 W 140.000 EE 140.000 EE 140.000 EE
230 101.245 W 130.000 EE 130.000 EE 130.000 EE
220 93.457 W 120.000 EE 120.000 EE 120.000 EE
210 85.671 W 110.000 EE 110.000 EE 110.000 EE
200 77.886 W 100.000 EE 100.000 EE 100.000 EE
190 70.106 W 90.000 EE 90.000 EE 90.000 EE
180 62.336 W 80.000 EE 80.000 EE 80.690 L
170 54.589 W 70.000 EE 70.000 EE 71.520 L
160 46.891 W 60.000 EE 60.000 EE 62.472 L
150 39.292 W 50.000 EE 50.000 EE 53.567 L
140 31.889 W 40.000 EE 40.480 MC 44.896 L
130 24.806 W 30.000 EE 31.670 MC 36.417 L
120 18.223 W 20.000 EE 23.362 MC 28.458 L
110 12.401 W 13.272 L 15.592 MC 20.911 L
100 7.503 W 7.824 W 8.656 W 13.954 L
90 3.833 W 3.912 W 4.322 W 7.934 L
80 1.489 W 1.499 W 1.618 W 2.999 L
70 0.377 W 0.378 W 0.395 W 0.395 W
60 0.052 W 0.052 W 0.053 W 0.053 W
50 0.003 W 0.003 W 0.003 W 0.003 W

L  only at t 1

Timing of L, MC
(Ι)

Learning only Learning and control
(ΙΙ) (ΙΙΙ) (ΙV)

and EE
Diff. impact of MC 

 
Notes: Parameters are r = δ = 0.05, σ = 0.10, T = 5 and t1 = T / 2, σL = 0.30 with XL = 5 for all cases. For case I there is no 

early development or timing of learning; learning is available only at t1. For case II there is optimal timing of learning and 

development option. For case III there is optimal timing of learning, control and development option with  γ(W,MC) = 

γ(L,MC) = 0.1 and σ(W,MC) = σ(L,MC) = 0.30 . Case IV is the same as case III but the control characteristics are different if 

prior action is L  i.e γ(W,MC) = 0.1, σ(W,MC) = 0.30, γ(L,MC) = 0.2, σ(L,MC) = 0.30. For the numerical lattice we use Nsub = 

30 steps. 

 

 

The results show that option values change and more importantly that there is a large 

region where it pays to proceed with further improvement actions (MC) immediately. The 
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last two columns of the table provide numerical results for the case where the 

characteristics of control after learning action are different from the case where the firm 

proceeds directly to control). Specifically, if the firm performs control directly it gains 

γ(W,MC) = 0.1, and if the firm performs control after marketing research it gains γ(L,MC) 

= 0.2 while the volatility of control remains the same in both cases  to σ(W,MC) = 

σ(L,MC) = 0.3. The results indicate a large change in optimal values and optimal 

decisions. Under this scenario there is a large region where it is optimal to go for 

marketing research first so that the firm can later capture a higher effectiveness of 

control. 

 

Next, we consider a complex scenario with 5 decision points, 2 learning actions and 2 

controls with optimal timing and path dependency. Figure 6 gives a general description of 

the problem and a base case specification of the parameters of the problem. There are two 

learning and two control actions . In the first phase we can activate 

either  or , then we can proceed with a pilot project that will give a fraction m of 

the project cash flows S and at the same time will create a learning effect . The first 

phase actions can be skipped altogether and the firm can move directly to the pilot project 

or even to early development. Furthermore, we allow the firm to also activate a second 

phase of actions The firm can move from a learning action to a control, specifically from 

 to , and from  to . The volatility of the pilot project is set to be double 

the volatility of the first learning action (reflecting the fact that the pilot project is 

expected to be more effective in revealing the true demand level). If instead a first phase 

of learning action has already been activated then the first action resolves half of the total 

uncertainty and the other half can be optionally revealed through the pilot project. The 

volatilities of control actions are all set to 0.30. For the impact of controls we assume that 

the impact of controls doubles if learning has been performed.  

),( 1 GLL ),( 21 MCMC

1L 1MC

)( GL

1L 1MC GL 2MC
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Figure 6: A multi stage investment option with multiple interacting learning and 

control actions for the new product development problem 

 

 

 

 

 

 

 

 

 

                           

 

 

 

 

 

Start 

Learning (L1) 
(e.g. Marketing 
research) 

Control (MC1) 
 (e.g. change 
attributes) 

Pilot Project (LG) 2nd Phase 
Control (MC2) 
(e.g. improve 

Early Develop 

 
Notes:   The firm has the option to invest in a first phase of learning or controls ( , ), develop the project early (EE), invest in a 

pilot project ( ) and invest in a second phase control action . Base case parameters are r = δ = 0.05, σ = 0.1 and T = 5 and the 

cost for each action is  and . Growth factor of pilot project is m = 0.1.  The average impact and 

volatility of learning and control actions are given in the following matrices. 

1L 1C

GL 2C

10
211
=== MCMCL XXX 20=GX

 
Volatility matrix of learning and control actions                                  Mean impact matrix of control actions 
 

L 1 L G MC 1 MC 2

W (0.3)2 2(0.3)2 (0.3)2 -
L 1 - (0.3)2 (0.3)2 -
L G - - - (0.3)2

MC 1 - - - (0.3)2

From

To

                 

L 1 L G MC 1 MC 2

W 0 0 0.1 -
L 1 - 0 0.2 -
L G - - - 0.2
MC 1 - - - 0.1

From

To
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The costs of each the actions are 20,10
211

==== GMCMCL XXXX  and the maturity of 

the option is T = 5. Our numerical results provide sensitivities with respect to the growth 

option parameter m, and the importance of learning actions to enhance the impacts of 

controls that are reflected in parameters ),( 11 MCLγ and ),( 2MCLGγ . Table 4 provides 

sensitivity with respect to the effectiveness of learning action while keeping the growth 

option potential to m = 0.1.  
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Table 4:  Multistage investment program with a pilot project option and two 

phases of learning and controls: Sensitivity with respect to the effectiveness of 

learning actions  

 

γ(L G,M C 2) = 0.2

Dec. Dec. Dec.
S Value at t =0 Value at t =0 Value at t =0

240 155.495 MC 1 164.770 L 1 170.096 L G

230 144.523 MC 1 153.281 L 1 158.230 L G

220 133.564 MC 1 141.814 L 1 146.400 L G

210 122.629 MC 1 130.381 L 1 134.615 L G

200 111.747 MC 1 118.995 L 1 122.890 L G

190 100.925 MC 1 107.689 L 1 111.274 L G

180 90.153 MC 1 96.446 L 1 99.761 L G

170 79.471 MC 1 85.296 L 1 88.365 L G

160 68.965 MC 1 74.308 L 1 77.109 L G

150 58.589 MC 1 63.483 L 1 66.080 L G

140 48.468 MC 1 52.891 L 1 55.347 L G

130 38.700 MC 1 42.644 L 1 44.903 L G

120 29.294 MC 1 32.784 L 1 34.831 L G

110 20.575 MC 1 23.535 L 1 25.390 L G

100 12.514 MC 1 14.982 L 1 16.521 L G

90 6.599 W 7.840 W 9.006 W
80 2.720 W 3.198 W 3.951 W
70 0.755 W 0.849 W 1.180 W
60 0.113 W 0.119 W 0.179 W
50 0.006 W 0.006 W 0.009 W
40 0.000 W 0.000 W 0.000 W

γ(L 1,M C 1) = 0.1 γ(L 1,M C 1) = 0.2

Growth  m = 0.1
 γ(L G,M C 2) = 0.1 

γ(L 1,M C 1) = 0.2

 
Notes: see problem description and base case parameters in figure 6 
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The first two columns show the results when the learning actions cannot improve the 

impact of the controls that are activated in next stages; columns 3 and 4 provide option 

values and optimal decisions for the case where only  can improve the impact for  

and the last two columns when both  and  can improve the impact, for  and 

 respectively. The results show that if learning does not provide any additional 

value-enhancement for the control actions, then it is likely that it will be skipped and the 

firm will proceed to the controls immediately. If instead,  provides a better impact for 

the control actions then it is likely that the firm will proceed with learning at . The 

pilot project  will not be preferred over  at t = 0 unless it also provides an improved 

impact for the second phase control as well. In Table 5 we provide sensitivity with 

respect to the level of the growth factor.  

1L 1MC

1L GL 1MC

2MC

1L

0=t

GL 1L

2MC
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Table 5:  New product development (investment program with a pilot 

project option and two phases of learning and control): Sensitivity 

with respect to the level m of pilot project cash flows 

 

Dec. Dec. Dec.
S Value at t =0 Value at t =0 Value at t =0

240 164.770 L 1 170.096 L G 194.096 L G

230 153.281 L 1 158.230 L G 181.230 L G

220 141.814 L 1 146.400 L G 168.400 L G

210 130.381 L 1 134.615 L G 155.615 L G

200 118.995 L 1 122.890 L G 142.890 L G

190 107.689 L 1 111.274 L G 130.274 L G

180 96.446 L 1 99.761 L G 117.761 L G

170 85.296 L 1 88.365 L G 105.365 L G

160 74.308 L 1 77.109 L G 93.109 L G

150 63.483 L 1 66.080 L G 81.080 L G

140 52.891 L 1 55.347 L G 69.347 L G

130 42.644 L 1 44.903 L G 57.903 L G

120 32.784 L 1 34.831 L G 46.831 L G

110 23.535 L 1 25.390 L G 36.390 L G

100 14.982 L 1 16.521 L G 26.521 L G

90 7.840 W 9.006 W 17.430 L G

80 3.198 W 3.951 W 9.360 W
70 0.849 W 1.180 W 3.920 W
60 0.119 W 0.179 W 1.002 W
50 0.006 W 0.009 W 0.105 W
40 0.000 W 0.000 W 0.002 W

γ(L G,MC 2) = 0.2 ,   γ(L 1,MC 1) = 0.2
Growth  m  = 0.2Growth  m  = 0.1Growth  m  = 0

 
Notes: see problem description and base case parameters in figure 6 

 

 

As expected, the higher the growth factor the more likely that we will proceed with the 

pilot project immediately. 
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3.6. Conclusions 
 

We analyze investment options with embedded learning (explorative research, marketing 

research, etc,) and control (attribute or quality improvement, advertisement etc.) actions. 

The paper extends the analysis of investment options to provide analytic solutions for 

compound options with embedded optional pilot project, learning, and control actions, 

early development and abandonment when the project value follows diffusion or jump 

diffusion process. Geske (1979) and Longstaff (1990) are special cases. We show that the 

availability of options to learn and control can substantially affect project option values 

and optimal decisions. We demonstrate the incorporation of path-dependency in the 

impact, volatility and cost of actions and we extend the results for multiperiod sequential 

options using a numerical lattice. Within this extended framework we demonstrate the 

importance of learning actions like exploration activities, investigative R&D, marketing 

research that can be launched prior to value-enhancing investments (attribute enhancing 

R&D, advertising activities, etc.). 
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Appendices 
 

Appendix A: General valuation formulas for the call on put, put on put 
and put on put cases 
 

In this section we provide analytic valuation formulas for the general case of the European 

compound-growth options (under Geometric Brownian motion assumptions) conditional on  

controls activated at   and  with optional actions ( ) at . The 

formulas are for the cases of call on put, put on call and put on put. For the case of the call 

on put the optionholder has the option to pay a fixed amount  and a fraction of S at  

and acquire a put option that expires at T or early exercise and get

0=t
MCNMCMCMCW ,...,, 21 1t

iX im 1t

SX − . S should in this 

case be interpreted as a cost and controls are directed towards a decrease in S (γ’s are 

expected to be negative in this case). For the case of a put on call, the optionholder has the 

option at t1 to give up a call (short a call), pay a fraction  of the underlying asset value 

and get  or early exercise and get

im

iX SX − . S should again be interpreted as a cost and 

controls increase optionholder’s value when are directed towards a decrease in S (γ’s are 

negative). For the case of a put on put the optionholder has the option at t1 to get  and a 

fraction  of the underlying and give up a put or early exercise and get . S in this 

case should be interpreted as project value and the controls are directed towards an 

increase in project value (γ’ s are positive). Note that readjustments on the signs of certain 

variables like X

iX

im XS −

i’s and mi’s can give rise to other special cases with possible different 

economic interpretations. The formulas are generic assuming that multiple regions exist 

at t1 and the actual thresholds are not specified. In general they could be found by 

applying value matching conditions depending on the regions (see discussion in main 

text). Also note that we do not explicitly consider path-dependency and abandonment 

options in the notation although these features can be easily incorporated in direct 

analogy to equation 7 of the main text. 
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The formulas are: 
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The parameters of the univariate and multivariate cumulative Normal are defined in 

equation (7) of the main text. 
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Section B: Analytic formulas and the numerical lattice implementation 
for the jump-diffusion case 
 

The assumptions and PDE for the jump-diffusion case 

 

In the possible presence of 
MCNMCMCMCi ,..., 21=  optional managerial learning or 

control actions the process and independent classes of jumps the value of the project 

is defined as: 

jN

 

                         ∑∑
==

+++−=
jj N

j
jjii

N

j
j

t

t dkdqkdzdtka
S

dS
11

)( πσλ                                      (A1) 

 

Jumps have an impact  of  j=1,2,…,Njk j jumps with jdπ  denoting Poisson processes 

with frequency of arrival jλ  per year. The diffusion case with controls is simply obtained 

by setting the last term in equation (A1) equal to zero. This applies also for the discussion 

that follows. 

 

 

The PDE that the option should satisfy is 
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   (A2) 

 

To derive the PDE one can follow Merton’s (1976) replication argument, which imposes 

two further assumptions, that the intertemporal CAPM of Merton (1973b) holds and that 

managerial controls and jumps have firm specific risks, which are uncorrelated with the 
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market portfolio and thus not priced.  Alternatively, we can use the framework developed 

in Garman (1976), Cox, Ingersoll, and Ross (1985) and Hull and White (1988) that use a 

complete markets framework and no arbitrage arguments.  

                        

 

Denoting the accumulated (Brownian) noise from t = 0 to T by Zt we then have that asset 

values at a future period T will be determined by: 
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We assume that the effect of control actions and jumps are log-normally distributed. Each 

control, learning action or exogenous jump has impact Y = 1+  that follows a 

lognormal distribution: 

pk

 

                        ( ) jipNkY pppp ,)1))(exp(exp(),exp(log~)1( 5.02 =−+= σγγ           (A4) 

             

                 

The assumption of log-normally distributed controls and jumps is adopted since it allows 

non-negative asset values, and also, conditional on control or jump activation, asset 

values retain log-normality. We will use ),( ii σγ to denote characteristics of control or 

learning actions and  to denote the characteristics of randomly arriving jumps, 

with j = 1,2,…,N

),( 2
jj σγ

j jump classes. We use 0>iγ  to describe efforts to enhance value with 

random outcome. Alternatively, if S was interpreted as a cost, 0<iγ  would mean efforts 

to reduce costs.  
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The risk neutral distribution of S at T conditional on the activation of control i and on the 

realization of jumps is given by: },...,,{ 21 jNnnnn =
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The distribution of returns conditional on no activation of control is found by 

setting  and the diffusion by setting the . 02 == ii σγ 0
111
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Analytic formulas  

 

Due to the complexity of the notation we present the formulas for the case of compound-

growth options. The formulation can be easily generalized to multiple actions and regions 

but is not reported for brevity. Our results are consistent with Gukhal (2004) who prices 

compound options for the jump-diffusion case but here we also allow for endogenous 

controls and learning. In the case where project value follows jump diffusion with 

 sources of jumps with impact jNj ,...2,1= jγ and volatility jσ , and like before there 

exist two controls at  and 0=t 1tt = , the compound-growth option conditional on 

activation of control action at  is given by: 0=t
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In this case we weight the value of the compound option with the probabilities of 

occurrence of all combinations of jumps that can be realized until , 1t

( )
jNtntntn )(,..,)()( 1111 = , and those realized from  to T, i.e., 1t ( )

jNtntntn )(,..,)()( 2122 = , t2 

= T-t1. 

 

The critical value  is found by solving numerically the equation: *
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We also provide the analytic valuation formulas the cases of call on put, put on call and put 

on put. The parameters of the univariate and bivariate Normal and the probability of 

occurrence of jumps are given in equation above for the call on call case. 

 

Compound-growth call on put:    
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Compound-growth put on call: 
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Compound-growth put on put: 
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The numerical solution for the jump-diffusion case 

 

For the jump diffusion case the conditional on the realization of },...,,{ 21 jNnnnn = jumps 

log-returns follow: 
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In the cases where no control is activated, },{ it WWd = , we have  

regardless of the previous action h.  

0),(),( 2 == ihih σγ

 

Equations (13b), (13c), and (13e) stay the same, and we have the following adjustments 

to equations (13a) and (13d): 
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We note that for the jump diffusion case the expectations should be taken over all 

possible realizations of jumps, weighted by the probability of occurrence as the term 

 demonstrates.  
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The volatility for the jump diffusion conditional on the realization of  

jumps is:  ),...,,( 21 jNnnnn =
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The up and down steps stay like in the diffusion case (with the above specification of 

volatility used) and the up and down probabilities for the jump-diffusion case are given 

by: 
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 4. Investment Options with Debt Financing Constraints 
 
 
 
 

Abstract 
 

Building on the Mauer and Sarkar (2005) model that captures both investment flexibility 
and optimal capital structure and risky debt, we study the impact of debt financing 
constraints on firm value, the optimal timing of investment and other important variables 
like the credit spreads. We also explore the social welfare implications of financing 
constraints. Interestingly, we show that under some circumstances financing constraints 
will be beneficial for social welfare, i.e., a socially optimum level of financing constraints 
may exist but in other cases it might be harmful for social welfare (e.g. when imposed on 
firms with high growth rates). The importance of debt financing constraints regarding 
firm value and investment policy depends largely on the relative importance of 
investment timing flexibility and debt financing gains. In cases where investment 
flexibility has high relative importance the firm can mitigate the effects of debt financing 
constraints by adjusting its investment policy. We show that these adjustments are non-
monotonic and may create a U shape of the investment trigger as a function of the degree 
that debt is constrained.  We show that for shorter investment horizon, constraints have a 
more significant impact on firm value.  We also consider managerial pre-investment risky 
growth options (e.g. R&D, or pilot projects). We see that they reduce the maturity effect, 
and (in contrast to the Brownian volatility) they tend to reduce expected credit spreads. 
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4.1. Introduction 
 
The main purpose of this study is to investigate the effect and importance of debt 

financing constraints on firm’s timing of investment decision, firm value and some other 

important variables like the credit spreads. The study of these issues are also important 

for policy makers since some parameters like the tax rate, the risk-free rate, but also the 

level of debt constraints themselves, can be potentially (directly or indirectly) be 

controlled by policy makers. For this reason we also explore the social welfare 

implications of debt financing constraints.   

 

We build on the contingent claim approach to investigate these issues. Since the initial 

contingent claims approach of valuing equity and debt was set by Merton (1974), several 

papers generalized and extended this idea into new dimensions including coupon 

payments, the tax benefits of debt and bankruptcy costs (for example, Kane et al., 1984, 

and 1985). Leland (1994) uses a perpetual horizon assumption and derives closed form 

expressions for the value of levered equity, debt and the firm in the presence of taxes and 

bankruptcy costs. Security values are contingent on the uncertain unlevered value of the 

firm. He abstracts from the investment decision and he analyzes equity holders optimal 

trigger point of default (unprotected debt case). Leland and Toft (1996) extend Leland 

(1994) to allow the firm to choose the optimal maturity of the debt, and debt level.  

 

The above papers do not incorporate equity holders investment option decisions. Brennan 

and Schwartz (1984) present a finite horizon model for the valuation of the levered firm 

when equity holders optimally choose both the investment and financial policy 

continuously over time. Bankruptcy is triggered by bond covenant provisions when the 

value of the firm is less than the face value of debt that matures at the end of the time 

horizon. Mauer and Triantis (1994) analyze interactions of investment and financing 

decisions. The model allows for dynamic change in capital structure and default is 

triggered through a positive net worth bond covenant restriction. Gamba et al. (2005) 

analyze investment options with exogenous debt policy and both corporate and personal 
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taxes. Mauer and Sarkar (2005) include optimal capital structure, optimal default and the 

investment option of the firm and discuss agency issues17.  

 

We adopt the contingent claims framework of Mauer and Sarkar (2005) and we study 

debt financing constraints which may exist due to exogenous regulatory restrictions set to 

financial institutions18. Debt holders may also wish to reduce their stakes in a firm due to 

moral hazard or asymmetric information (see Jensen and Meckling, 1976 and Myers and 

Majluf, 1984, for discussion of these issues).  Asymmetric information also can justify 

why the suppliers of credit may engage in credit rationing (see Fazzari et al., 1988, 

Stiglitz and Weiss, 1981 and Pawlina and Renneboog, 2005, for analysis of financing 

constraints and credit rationing issues).  In contrast to Boyle and Guthrie (2003) our 

model does not focus on liquidity/cash constraints but on constraints on the level of debt 

financing.  Furthermore, we explore the effect of debt constraints in a model that allows 

endogenous capital structure decisions, endogenous default and valuation of risky debt 

(using the Mauer and Sarkar, 2005 setting), issues not considered explicitly in that 

paper19.In our model investment can be launched with sufficient equity and debt funds, 

the latter being constrained, even in the absence of available internal financing. This 

situation might be particularly relevant in closely own private firms or where the 

information asymmetries on the equity side are of lesser importance. Other related work 

is that of Uhrig-Homburg (2004) that explores costly equity issue that can lead to a cash-

flow shortage restriction. In relation to Mauer and Triantis (1994) the model we use here 

(prior to imposing the constraints) captures optimal default decisions rather than default 

based on bond covenant restrictions. Since our focus is on the effect of financing 

constraints we however avoid issues of recapitalization (financing flexibility) like they 

                                                 
17 Fries et al (1997) explore the valuation of corporate securities (debt and equity) incorporating the tax 
benefits, bankruptcy costs and the agency costs of debt in a competitive industry with entry and exit 
decisions.  Valuation of corporate securities in a duopoly with entry and exit decisions has been studied by 
Lambrecht (2001). In this paper we do not explicitly model competition but we allow for exogenous 
competitive erosion.  
18 Such restrictions may implicitly arise due to compliance to minimum capital requirements.  
19 Boyle and Guthrie (2003) modelling approach of external financing constraints does not distinguish 
between debt or equity financing. Effectively in this way they ignore the issues involved with respect to 
optimal capital structure, the tax benefits of debt, and endogenous default decisions that lead to risky debt. 
Furthermore their model implies immediate repayment as opposed to coupon paying debt that is explicitly 
modelled here. 
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do. Gamba and Triantis (2005) consider personal and corporate taxes, capital issuance 

costs and liquidity constraints in a dynamic model, without the endogenous (optimal) 

default determination in the analytic framework of Leland and Mauer and Sarkar that we 

use. 

 

We study the effect of debt financing constraints with respect to the risk-free rate, 

dividend yield (competitive erosion), volatility of the value of unlevered assets, 

bankruptcy costs and taxes.  The importance of financing constraints under different 

parametarizations of the model depends on the relative importance of investment 

flexibility versus the net benefits of debt. Further insights are provided through a 

comparison of the Mauer and Sarkar model with Leland (1994) and the McDonald and 

Siegel (1986). Leland’s (1994) model includes only the financing decision (with no 

investment timing) while McDonald and Siegel (1986) is an all-equity model that focuses 

on the investment option decision. Using this comparison we clearly demonstrate the 

trade-off between investment timing and the net benefits of debt and explain the 

importance of debt financing constraints under different parameter values. This analysis 

also provides insights on the observed U shape of the investment trigger with respect to 

the level of financing constraint. In the numerical sensitivity we also show the effect of 

financing constraints on equity value, the bankruptcy triggers, the optimal leverage, and 

the credit spreads. Additionally, we implement the models with finite maturity horizon 

for the investment option using a numerical lattice scheme and investigate the effect of 

financing constraints depending on the maturity of the investment option. In this section 

we also analyze the welfare effects of debt financing constraints. Interestingly, we show 

that under some circumstances financing constraints will be beneficial for social welfare, 

i.e., a socially optimum level of financing constraints may exist; but in other cases it 

might be harmful for social welfare (e.g. when imposed on firms with high growth rates). 

We also explore the effect of financing constraints in the components of social welfare 

(firm value and government taxes). 

 

Finally, we introduce at the pre-investment stage the (growth) option to enhance the value 

of the unlevered asset, but in our setting the exercise of this option has random outcome. 
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This assumption is similar to Martzoukos (2000) (see also Martzoukos, 2003 for the 

special case with analytic solution) where an all-equity framework was used. Koussis, 

Martzoukos and Trigeorgis (2005) have extended it to include path-dependency between 

actions, and optimal timing of the exercise of growth options. Our assumption of growth 

options that when exercised have a random outcome differs from the growth option 

component of Childs, Mauer and Ott (2005) and Mauer and Ott (2000) in that the 

potential exercise of the (equity financed) pre-investment growth option affects the 

distribution of project value before investment is made and uncertainty reverts to 

“normal” once the full investment is in place. This situation is particularly relevant for 

risky start-up ventures. Leland (1998) investigates alternative modes of riskiness of the 

project but he uses this to investigate equity holders ability to engage in “asset 

substitution” i.e. engage in riskier strategies ex-post to debt agreement thus transferring 

wealth from bond holders to equity holders. Equity holders in that model can switch 

between low risk and high risk strategies. Our emphasis is on the study of the interaction 

between these pre-investment managerial actions and investment options and financing 

decisions with borrowing constraints. We find that a managerial decision to exercise 

these growth option increases firm value, mostly by increasing the value of the option on 

the unlevered assets; their effect on the expected net benefits of debt is of lesser 

importance. We also find that exercise of these growth options decrease leverage ratios 

and expected credit spreads in the presence of constraints, in contrast to the case of no 

constraints where managerial actions have no effect on leverage ratios and expected 

credit spreads.  

 

In the next section, we present the theoretical framework of Leland (1994) and its 

extension based on Mauer and Sarkar (2005) and we then introduce the borrowing 

constraints. We also implement the model with finite investment horizon using a 

numerical binomial tree approach to study the effect of investment horizon. In section 3 

we study numerically and discuss the model with investment option and optimal capital 

structure, and the impact of the financing constraints on firm value, the optimal threshold 

to invest, and other interesting variables like credit spreads. We also include a section on 

the welfare effects of financing constraints. In section 4 we consider pre-investment 
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managerial growth actions with random outcome and their interaction with borrowing 

constraints. 

 

 

4.2. The Leland and Mauer and Sarkar model with financing 
constraints 
 

In this section, we review the theoretical framework of Leland (1994) that allows for 

optimal default policy and optimal capital structure and its extension by Mauer and 

Sarkar (2005) that also incorporates the optimal investment timing decision.  Then we 

incorporate and discuss the debt financing constraints (studied numerically in section 3).  

The control-growth option will be added in the model and its numerical investigation will 

be discussed separately in section 4.  

 

We assume that the firm’s unlevered assets follow a Geometric Brownian Motion  

 

                                                              dZdt
V
dV σμ +=                                                 (1) 

 

where μ  denotes the capital gains of this asset, σ  denotes its volatility, is an 

increment of a standard Weiner process.  

dZ

 

We also consider a dividend-like payout rate in the form of opportunity cost of waiting to 

investδ  that can be used to model coupon payments on debt and may also have the 

interpretation of competitive erosion on the value of assets (e.g., Childs and Triantis 

(1999), Trigeorgis (1996) ch.9, and Trigeorgis (1991)). Similarly to Leland (1994) we 

avoid using the first interpretation and we assume that V is unaffected by the firm’s 

capital structure: any coupon payments on debt are financed by new equity leaving the 

value of unlevered assets unaffected. Leland (1994) has shown that liquidation of assets 

to meet debt coupon obligation is inefficient (reduces firm value) compared to equity 

financed payments.  Using either a replication argument of Black and Scholes-Merton or 

 130

Nico
s K

ou
ss

is



the risk-neutral valuation as established in Constantinides (1978) we know that any 

contingent claim on V should satisfy the following PDE:  f

 

0)(
2
1 22 =−−−+ rfffVrfV tVVV δσ . 

 

Figure 1 shows the sequence of decisions in our model. Working backwards and in the 

absence of a control, or after the control has been activated, we refer to F(V) as the value 

of the firm.  is the value of an option (see figure 1) to invest capital I (potentially 

with borrowing) at the optimal time   and acquire a levered position . The money 

the firm actually needs to pay (the equity financing, not to be confused with equity value) 

equals . Thus the firm has the option on 

)(VF

It )(VE

)(VDI − )0)),(()(max( VDIVE −− which is 

equivalent to )0,)()(max( IVDVE −+ . This demonstrates that optimal exercise of the 

investment option is by using the first best approach to maximize the total value of the 

levered firm.  The maturity T of the investment option can be either finite (in which case 

a binomial lattice will be implemented) or infinite (in which case the analytic solution of 

the following equation 2 holds). The investment option is exercised when V hits the 

optimal investment trigger  which is determined by simultaneously finding optimal 

capital structure (through coupon payment R) and the optimal default trigger . To 

retain an analytic component for the values of and , default can be triggered 

after and at any time up to infinity (following Leland, 1994).  

IV

BV

)(VE )(VD

It
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Figure 1:  Extended Leland model with 
growth option, investment option, and debt 
financing constraints 
 

 
Time 0:  Control decision (F*(V)) 
• Exercise of growth options, or 
• exercise investment option, or 
• wait 

 
 
 
 
 
 

Time  (T is infinite in the 
analytic solution case): Investment 
and capital structure decision 
(F(V)) 

],0[ Tt ∈

• Wait, or 
• exercise investment option at  t  

when V hits optimal investment 
trigger ; determine optimal 
coupon subject to financing 
constraints, and optimal default 
trigger V  

I

IV

B

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Time t  until ∞ : Default decision 
( E(V)) 

It>

≤• Default if V  BV

 
 
When both the investment and the default horizons are infinite we use Mauer and Sarkar 

(2005) to get the following equation which is a variant of their model20 more consistent 

with Leland and a focus on the value of unlevered assets (see Appendix for a review of 

the steps followed): 

                                                 
20 In their model the underlying asset equals the present value of a stochastic yearly revenue flow minus the 
present value of constant costs.  We make an assumption consistent with Leland (and McD&S) that the 
underlying unlevered asset does not have a fixed component and follows a geometric Brownian motion.  
Because of the absence of the fixed yearly costs, the abandonment option treated in Mauer and Sarkar 
(2005) is meaningless in our version of the model. 
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By rRI ,,,τ  we denote the investment cost, tax rate, coupon, and the risk free rate 

respectively. The term b  denotes proportional (to V) bankruptcy costs and  the 

bankruptcy trigger point that will be optimally selected by equity holders in order to 

maximize equity value .  is equity holders position once investment is 

initiated which can be re-written in the form  

BV

)(E IV )( IVE
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and has the following interpretation: conditional on investment, equity holders will obtain 

the value of unlevered assets  minus the expected value of unlevered assets at 

bankruptcy (second term) minus a perpetual stream of coupon payments (third term) that 

is netted with the payments that will not be made after bankruptcy (fourth term) plus the 

tax benefits (fifth term) also netted in the event of bankruptcy (sixth term). At the 

investment trigger, debt can also be re-written as  

IV
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which equals  a perpetual stream of coupons received (first term) netted with the expected 

coupon payments not received after bankruptcy trigger (second term) plus the expected 

value of the firm received at the bankruptcy trigger netted for the potential bankruptcy 

costs (third term).  The derivations of the above formulas are discussed in Leland (1994).  

 

For the optimal investment threshold we use a “first best” rule throughout the paper 

numerical results where  is selected to maximize the levered value of the firm (equity 

plus debt) as opposed to the “second best” of equity maximization. The first order 

condition is (see the appendix): 

IV
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Equation (6) is solved numerically by simultaneously searching for optimal R.  

 

Effectively, the model presented here so far is a special case of Mauer and Sarkar (2005) 

and we will call it the extended-Leland/MS model.  It includes Leland (1994) and 

McDonald and Siegel (1986) (McD&S thereon) as special cases. Leland’s model can be 

obtained by setting  in equation (2) (immediate development with no investment 

timing). McD&S model can also be obtained by setting coupons 

IVV =

R equal to zero (all-

equity firm with an investment option), effectively imposing a zero debt restriction and 

that the firm never defaults ( 0=BV ). Furthermore, applying R = 0 in equation 3 we get 

the McD&S investment trigger that equals I
a

aVI )1( −
= .  
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Replacing for and  into  (see equation 2) the firm value can also be 

written as: 
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where E in the last line now reads “expected value”. The last line effectively shows that 

the value of the firm can be written as the expected value of the unlevered assets (option 

on unlevered assets) plus the expected value of tax benefits minus the expected value of 

bankruptcy costs (as in Mauer and Sarkar, 2005, but with emphasis on the value of the 

unlevered assets). The net benefits of debt are defined as the difference between the 

expected tax benefits and the expected bankruptcy costs i.e. )()( BCETBENB −= .  As 

we will show in the next section, this decomposition proves useful since it is shown that 

optimal coupon and investment trigger selection involves a trade-off between obtaining 

higher option on unlevered assets (the investment flexibility that the McD&S model 

studies) versus higher NB of debt (debt financing gains that the Leland model studies).  

 

Before moving to the discussion of financing constraints that is our main issue of analysis 

we show how  in the extended-Leland/MS model in finite investment option 

horizon can be obtained by implementing a numerical lattice scheme. With N lattice steps 

we have that up and down lattice moves and the probabilities of up and down equal: 
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For optimal coupon selection for a given V value we apply the condition 0)(
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with  given in equation (2). BV

 

We apply equation 6 at each node of the lattice and we additionally allow for the early 

exercise of the investment option. At exercise, option value equals with 

 and given in equation (2).  

IVDVE −+ )()(

)(VE )(VD

 

We now make the above framework more realistic by adding financing constraints that 

may exist for example due to asymmetric information, moral hazard or even by internal 

or regulatory constraints set to the banks. Debt financing constraints set a cap to the 

level of debt financing so that . Without the constraint,  could even 

be higher than the required level of investment, which is rather unrealistic in practical 

applications. Furthermore, we could have percentage constraints i.e. , 

 which can be interpreted as a cap on the maximum allowable 

leverage ratio (e.g. imposed by debt holders). In this paper we discuss the effects of the 

constant value . We now effectively face a constrained maximization problem. 

When we use the analytic solution of equation 5 we impose the constraint by running a 

numerical search for the coupon that satisfies the first order condition of the investment 

trigger and at the same time satisfies that debt does not exceed . Our approach is 

consistent with the “first-best” strategy for the firm value maximization. In the cases 

where the lattice framework is used the constraint is applied and must be satisfied at each 

lattice node. In the following section we discuss how the firm will adjust its investment 

maxD
max)( DVD I ≤ )( IVD

)()( VcVVD L≤

)()()( VDVEVV L +=

maxD

maxD
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and optimal default strategies in the face of financial constraints and control-growth 

options.    

 

4.3. Numerical results and discussion  
 

In this section we provide numerical results for the extended-Leland/MS model described 

earlier. In subsection 3.1 we provide insights on the trade-off between investment timing 

flexibility and the net benefits of debt that will be useful in the subsequent discussion of 

financing constraints. The effects of financing constraints from firm’s perspective will be 

discussed in subsection 3.2. The social welfare effects of financing constraints are 

discussed in section 3.3.  

 

4.3.1. Insights on the trade-off between investment timing flexibility and 
the net benefits of debt 
 

In order to illustrate the trade-off between investment flexibility and debt financing gains, 

we first use the decomposition of firm value from equation (7). Figures 2 and 3 use 

arbitrary (not optimal) values for the investment trigger.  Figure 2 shows that the net 

benefits of debt, are decreasing in the investment threshold, while there is an optimal 

coupon at immediate exercise that maximizes firm value. It can be seen in figure 3, that 

the option on unlevered assets is invariant to the coupon and there is an investment 

trigger higher than the current value of unlevered assets that maximizes option value.  It 

is thus expected that optimal investment trigger and coupon decisions involve a trade off 

between investment option benefits and the net benefits of debt financing.  
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Figure 2: Net benefits of debt as a function of the coupon and investment trigger 
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Notes: Net benefits of debt (NB) are defined as the tax benefits minus bankruptcy costs (see equation 7 of the 
main text). We use a value of unlevered assets V =100, a risk-free rate r = 0.06, an opportunity cost δ = 0.06, an 
investment cost I = 100, a volatility of unlevered assets σ = 0.25, a tax rate τ = 0.35 and a bankruptcy costs level 
of b =0.5.  

Figure 3: Option on Unlevered Assets as a function of the coupon and 
investment trigger 
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Notes: Option on unlevered assets is defined as the option to pay I and get V (see equation 7 of the main text). We use 
a value of unlevered assets V =100, a risk-free rate r = 0.06, an opportunity cost δ = 0.06, an investment cost I = 100, a 
volatility of unlevered assets σ = 0.25, a tax rate τ = 0.35 and a bankruptcy costs level of b=0.5.  
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This tradeoff can be further seen in Table 1, where we compare the extended-Leland/MS 

model (that has both investment and financing options), with the McDonald and Siegel 

(1986) model (with the investment only option) and the Leland (1994) model (with the 

financing only option). It provides the firm values, and then the (%) net gain that has the 

following decomposition in (%) gain of investment flexibility and (%) gain in net 

benefits of debt:  

 

 
( ) ( )( ) ( )% Net Gain

( ) ( ) ( )

i ii

i i

E V I E V I NB NBF V F V
F V F V F Vi

⎡ ⎤ ⎡ ⎤− − − −− ⎣ ⎦ ⎣ ⎦= = +         (7) 

 

where i = {McD&S, Leland}. We keep the base case of parameters of Leland (1994) plus 

a positive opportunity cost δ of 6%. Other parameters are as follows: value of unlevered 

assets V =100, risk-free rate r = 0.06, investment cost I =100. For the extended-

Leland/MS and the Leland models bankruptcy costs b = 0.5 and tax rate τ = 0.35. The 

table provides sensitivity analysis for the risk-free rate r, the opportunity cost δ, the 

volatility of unlevered assets σ, the bankruptcy costs b, and the tax rate τ and the 

investment cost I.  Note that the different components for Leland’s model are found by 

applying  in equation (2). When we compare the extended-Leland/MS model with 

the McD&S, we see that the net gain is due to the net benefits of debt only (at a loss in 

investment flexibility). When comparing it to the Leland model, the net gain is due to 

investment flexibility only (at a loss in the net benefits of debt). 

VVI =
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Table 1: Comparison of three models with various levels of flexibility: firm value 
and investment and debt financing gains analysis 
 

Ext.-Leland/MS vs McD&S Ext.-Leland/MS vs Leland 
Firm Value 

 
Ext.- 

Leland/MS McD&S Leland 
% Gain 
E(V-I) 

% Gain 
NB  

% Net 
Gain  

% Gain  
E(V-I) 

% Gain 
NB  

% Net 
Gain  

Base  35.42 25.48 18.18 -0.03 0.42 0.39 1.36 -0.41 0.95 
r = 0.02 23.92 18.28 11.19 -0.03 0.33 0.31 1.59 -0.46 1.14 
r = 0.04 29.48 21.74 14.73 -0.03 0.39 0.36 1.43 -0.43 1.00 
r = 0.08 41.38 29.27 21.34 -0.03 0.45 0.41 1.33 -0.39 0.94 
δ = 0.02 68.30 53.27 21.95 -0.01 0.29 0.28 2.41 -0.30 2.11 
δ = 0.04 47.29 35.49 19.96 -0.02 0.35 0.33 1.75 -0.38 1.37 
δ = 0.08 28.05 19.28 16.68 -0.05 0.51 0.45 1.10 -0.42 0.68 
σ = 0.05 35.99 5.30 35.99 -1.00 6.79 5.79 0.00 0.00 0.00 
σ = 0.15 28.88 15.69 23.76 -0.17 1.01 0.84 0.55 -0.33 0.22 
σ = 0.35 43.09 34.40 15.04 -0.01 0.26 0.25 2.26 -0.40 1.87 
b = 0.05 39.93 25.48 25.58 -0.06 0.63 0.57 0.93 -0.37 0.56 
b = 0.25 37.51 25.48 21.67 -0.04 0.52 0.47 1.12 -0.39 0.73 
b = 0.75 33.94 25.48 15.65 -0.02 0.36 0.33 1.59 -0.42 1.17 
τ = 0.15 27.30 25.48 3.57 0.00 0.07 0.07 7.12 -0.48 6.64 
τ = 0.25 30.41 25.48 9.38 -0.01 0.20 0.19 2.69 -0.45 2.24 
τ = 0.45 43.43 25.48 31.04 -0.09 0.80 0.70 0.75 -0.35 0.40 
Ι = 60 58.23 41.88 58.18 -0.03 0.42 0.39 0.01 -0.01 0.00 
Ι = 80 44.01 31.65 38.18 -0.03 0.42 0.39 0.28 -0.13 0.15 
Ι =120 29.66 21.33 0.00 -0.03 0.42 0.39 - - - 

 
Notes: “Ext.-Leland/MS” refers to the main model used with investment and debt financing gains. “McD&S” refers to McDonald and 
Siegel (1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal debt financing and no 
investment flexibility. Base case used for all models: value of unlevered assets V =100, risk-free rate r = 0.06, opportunity cost δ = 
0.06, volatility σ = 0.25, investment cost I = 100. For the Ext.-Leland/MS and the Leland model we use bankruptcy costs b = 0.5, tax 
rate τ = 0.35. The notation “% gain E(V-I)” refers to the % change in value of the option on unlevered assets and “% gain NB” refers 
to the % change in the net benefits of debt relative to the other two models. Sensitivity analysis is with respect to the risk-free rate r, 
opportunity cost δ, volatility of unlevered assets σ, bankruptcy costs b, and the tax rate τ, investment cost I.  
 
 
 

The comparison will provide insights on the effect of financing constraints that is studied 

in detail in the next subsection.  It is expected that when debt financing gains are 

relatively more important, the effect of financing constraints will be more severe.  First 

note that, as expected, the firm value in the extended model is higher than in both other 

models.  The (%) differences between the extended and the McD&S (Leland) models are 

at a maximum (minimum) at higher opportunity cost δ, higher risk-free rate r, lower 

volatility σ, lower bankruptcy costs b, and higher tax rate τ.  In absolute values, this 

relation is reversed for the comparison with the Leland model in the case of the risk-free 

rate r, and for the comparison with the McD&S model in the case of the opportunity cost 

δ.   
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Another interesting observation is the effect on firm value of changes in the above 

parameters.  Higher risk-free rate r and lower opportunity cost δ increase firm value in all 

models (both investment flexibility and net benefits of debt are affected positively).  

Taxes and bankruptcy costs affect the extended model only through the effect on net 

benefits similarly with the Leland model.  A significant observation is on the effect of 

volatility.  An increase in volatility increases the firm value in the McD&S model 

(investment flexibility increases) but it decreases firm value in the Leland model (net 

benefits of debt decrease).  In the extended-Leland/MS model, these opposite forces 

result in a U-shape in firm value (a result not reported in Mauer and Sarkar, 2005).  

Finally, at higher investment cost I, firm value decreases in all models.  Investment 

flexibility to delay is relatively more important than the net benefits of debt and thus the 

differences between the extended-Leland/MS and the Leland model are increasing. At 

high investment costs it is possible (i.e., I =120) that immediate investment is not feasible 

since firm value will be negative (so in the Leland model firm value equals zero).  

 

Table 2 shows additional information with respect to the three models. The investment 

triggers and the bankruptcy triggers are reported first21.  The other columns show for all 

models, equity and debt values, optimal coupon and credit spreads, reported at the 

optimal investment trigger (note that for the standard Leland model, investment takes 

place immediately at time zero). We first see that the investment triggers in the extended 

model are in all cases lower than in the McD&S model. This result is driven by the 

existence in the extended model of the benefits of debt which are decreasing in the 

investment trigger (see discussion in the previous subsection and figure 2). Note that the 

comparison is for two extreme cases, the extended model at optimal debt, and the 

McD&S which is effectively a model constrained to zero debt.  As we will see in the next 

subsection, for in-between cases (with arbitrary levels of debt constraint) this relationship 

is not monotonic.  We also note that the bankruptcy triggers in the extended-Leland/MS 

                                                 
21 Note that in the case of low volatility, σ = 0.05, we report the theoretical trigger although the current 
value of V is higher than that; the investment option is exercised immediately so that firm value reported  is 
equal to that of the Leland model. 
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model are higher than in the Leland model.  It can be seen that the optimal coupon that is 

actually paid is higher in the extended model than in the Leland model.  The optimal 

leverage and the credit spreads are the same in the extended-Leland/MS and in the Leland 

model, despite the differences in the equity and debt values and in the optimal coupon.  

 

The sensitivity results for the Leland model are consistent with the analysis in Leland 

(1994).  For the extended model, we can see that the bankruptcy trigger at the investment 

trigger may exhibit a U-shape with respect to the volatility.  Also, as we know from 

Leland, the optimal capital structure is invariant to the level of unlevered assets V, and 

the same holds for the extended model.   
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Table 2: Comparison of three alternative with various levels of flexibility: Investment and bankruptcy triggers, optimal 
leverage, optimal coupons and credit spreads  
 
 

     Optimal Capital Structure at Investment Trigger VI

 Inv. Trigger (VI)  Bankr. Trigger (VB) Equity Debt Optimal Leverage Optimal Coupon Credit Spread 

 
Ext. –

Leland/MS McD&S 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
Base  171.57 202.77 57.92 33.76 74.82 43.60 127.94 74.57 0.63 0.63 10.84 6.32 0.0247 0.0247 

r = 0.02 148.61 165.24 30.88 20.78 77.69 52.27 87.55 58.92 0.53 0.53 4.71 3.17 0.0338 0.0338 
r = 0.04 158.75 182.15 43.42 27.36 75.71 47.68 106.43 67.05 0.58 0.58 7.30 4.60 0.0286 0.0286 
r = 0.08 186.71 226.57 73.97 39.62 74.78 40.04 151.77 81.29 0.67 0.67 15.47 8.29 0.0219 0.0219 
δ = 0.02 406.51 495.73 165.73 40.77 159.98 39.36 335.77 82.60 0.68 0.68 25.28 6.22 0.0153 0.0153 
δ = 0.04 227.75 273.23 84.39 37.06 94.73 41.59 178.47 78.37 0.65 0.65 14.19 6.23 0.0195 0.0195 
δ = 0.08 145.64 169.93 45.14 30.98 66.01 45.34 103.92 71.34 0.61 0.61 9.44 6.48 0.0308 0.0308 
σ= 0.05 84.93 115.51 56.74 66.83 20.05 23.57 95.45 112.42 0.83 0.83 6.05 7.13 0.0034 0.0034 
σ = 0.15 124.17 153.68 54.77 44.12 46.40 37.36 107.27 86.40 0.70 0.70 7.77 6.26 0.0124 0.0124 
σ = 0.35 229.71 264.24 64.16 27.93 108.65 47.30 155.61 67.73 0.59 0.59 15.65 6.81 0.0406 0.0406 
b = 0.05 161.48 202.77 76.72 47.50 44.13 27.34 158.65 98.24 0.78 0.78 14.36 8.89 0.0305 0.0305 
b = 0.25 166.65 202.77 67.05 40.24 59.10 35.46 143.66 86.21 0.71 0.71 12.55 7.53 0.0274 0.0274 
b = 0.75 175.34 202.77 50.97 29.06 87.73 50.05 115.05 65.60 0.57 0.57 9.54 5.44 0.0229 0.0229 
τ = 0.15 195.76 202.77 39.61 20.25 124.03 63.34 78.72 40.24 0.39 0.39 5.67 2.90 0.0120 0.0120 
τ = 0.25 185.38 202.77 52.22 28.16 95.15 51.34 107.63 58.04 0.53 0.53 8.47 4.57 0.0187 0.0187 
τ = 0.45 154.75 202.77 58.73 37.94 59.18 38.25 143.61 92.79 0.71 0.71 12.99 8.39 0.0305 0.0304 
Ι = 60 102.96 121.66 34.78 33.76 44.87 43.60 76.81 74.57 0.63 0.63 6.51 6.32 0.0248 0.0247 
Ι = 80 137.25 162.21 46.32 33.76 59.86 43.60 102.33 74.57 0.63 0.63 8.67 6.32 0.0247 0.0247 
Ι =120 205.89 243.32 69.51 33.76 89.78 43.60 153.54 74.57 0.63 0.63 13.01 6.32 0.0247 0.0247 

 
Notes: “Ext.-Leland/MS” refers to the model developed with both investment timing flexibility and debt financing gains. “McD&S” refers to McDonald and Siegel (1986) model of the perpetual 
investment option and “Leland” to the Leland (1994) model with optimal debt financing and no investment flexibility. Base case used for all models: value of unlevered assets V =100, risk-free rate r = 
0.06, opportunity cost δ = 0.06, volatility σ = 0.25, investment cost I = 100. For the Ext. Leland and Leland model use bankruptcy costs b = 0.5, tax rate τ = 0.35.Equity, debt, optimal leverage, optimal 
coupons and the credit spread are calculated at the investment trigger. Sensitivity analysis with respect to the risk-free rate r, opportunity cost δ, volatility of unlevered assets σ, bankruptcy costs b, and 
the tax rate τ, investment cost I.  
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4.3.2. The effect of financing constraints on firm value and optimal firm 
decisions 
 

In this section we explore the effect of financing constraints on firm and equity value, 

bankruptcy and investment thresholds, and on leverage and the credit spreads.  In the 

following figures, firm values are reported at time zero. All other information about 

equity values, etc. is for a value of V equal to the optimal investment trigger VI. Figures 4 

and 4A show the implications of financing constraints on firm and equity value, the 

investment and bankruptcy triggers, leverage and the credit spread at different levels of 

risk-free rate, opportunity cost δ and volatility. Our discussion will concentrate on 

realistic levels of debt equal to the total required investment (= 100) and below. We 

compare the base case with ones reflecting lower parameter values. As can be seen from 

the figures, the truly unconstrained case often leads to unrealistic debt levels above 100% 

of the required investment capital, with an unrealistically high firm value. This is an 

important observation that shows the significance of our constrained borrowing approach, 

since to even remain at 100% debt, we need to apply the constraints.  Similarly 

unrealistic is the high investment and bankruptcy trigger values for the truly 

unconstrained case. 

Figure 4: Firm value, equity values, and investment trigger as a function of 
maximum levels of debt: Sensitivity with respect to r, δ and σ.  
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Notes: Base case used: Value of unlevered assets V =100, risk-free rate r =0.06, oopportunity cost δ = 
0.06, investment cost I =100, volatility of unlevered assets σ = 0.25, tax rate τ = 0.35 and bankruptcy 
costs b= 0.5. Sensitivity with respect to the risk free rate r, opportunity cost δ, and volatility σ.   
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Figure 4A: Bankruptcy trigger, leverage and credit spreads as a 
function of maximum levels of debt: Sensitivity with respect to r, 
δ and σ.  
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Notes: Base case used: Value of unlevered assets V =100, risk-free rate r =0.06, oopportunity cost δ = 
0.06, investment cost I =100, volatility of unlevered assets σ = 0.25, tax rate τ = 0.35 and bankruptcy 
costs b= 0.5. Sensitivity with respect to the risk free rate r, opportunity cost δ, and volatility σ.   
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In figure 4 as expected we see that financing constraints decrease firm values and 

increase equity values.  An interesting observation is that they often produce a U-shape in 

the investment trigger.  This result differs from Boyle and Guthrie (2003) since they 

effectively focus on constraints on cash balances and we focus on constraints on debt.  

We interpret this U-shape as follows: when the firm is unconstrained, it will use debt at a 

maximum.  As constraints start to become binding, the firm will adjust its investment 

policy by lowering the investment trigger so as to capture net benefits of debt (as we have 

discussed in the previous subsection, the net benefits of debt are decreasing in the 

investment trigger).  When constraints become much more binding, the effect of net 

benefits of debt becomes less important, and the firm gives priority to the exploitation of 

its investment timing flexibility by increasing the investment trigger.  After careful 

inspection, we also see that a small dividend yield results in a less pronounced (%) 

decrease in firm value (due to the higher importance of investment flexibility at lower δ 

discussed in subsection 3.1). A small volatility results in a more pronounced (%) decrease 

in firm value (reducing thus the larger financial flexibility benefits of low volatility 

discussed in subsection 3.1).  

 

In figure 4A we see that bankruptcy trigger and leverage ratios are decreasing.  The fact 

that lines on the figures may cross, shows that firms with different characteristics (i.e., 

different parameter values) will adjust optimal leverage differently in respect to imposed 

constraints.  The last figure shows the impact of constraints on credit spreads, which is 

far from linear.  Compared to the base case, for lower δ credit spreads are lower (see table 

2 of subsection 3.1). This in general reflects lower bankruptcy risk, since investment 

trigger is higher, the bankruptcy trigger is lower, and the (risk-neutral) drift is higher. 

With stricter constraints, the difference between the levels of the bankruptcy and the 

investment triggers is larger, thus the credit spreads are further reduced. Again compared 

to the base case, for lower interest rates credit spreads are higher (see table 2 of 

subsection 3.1). This now reflects higher bankruptcy risk, since although both the 

investment and the bankruptcy trigger are somewhat lower, the (risk-neutral) drift is 

 147

Nico
s K

ou
ss

is



lower. With stricter constraints, the investment trigger goes up and the bankruptcy trigger 

goes down, thus further decreasing bankruptcy risk and credit spreads. The case of 

volatility is more complex. Lower volatility reduces the gap between the two triggers, 

which would increase bankruptcy risk, but with lower volatility the probability of hitting 

the bankruptcy trigger may be reduced and apparently this latter effect is more important.     

 

In figures 5 and 5A we similarly see the implications of financing constraints on firm and 

equity value, the investment and bankruptcy triggers, leverage and the credit spread at 

different levels of bankruptcy costs and tax rates. In figure 5 and to the left, all values for 

zero debt converge to the same point which corresponds to the McD&S case, since the 

bankruptcy costs and tax rates affect the net benefits of debt only.  

Figure 5: Firm value, equity values, and investment trigger as a 
function of maximum levels of debt: Sensitivity with respect to τ 
and b.  
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Notes: Base case parameters used: Value of unlevered assets V =100, risk-free rate r = 0.06, opportunity 
cost δ = 0.06, investment cost I=100, volatility of unlevered assets σ = 0.25, tax rate τ = 0.35 and 
bankruptcy costs b=0.5. Sensitivity with respect to bankruptcy cost b and tax rate 
 

Figure 5A: Bankruptcy trigger, leverage and the credit spread as 
a function of maximum levels of debt: Sensitivity with respect to 
τ and b.  
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Notes: Base case parameters used: Value of unlevered assets V =100, risk-free rate r = 0.06, opportunity 
cost δ = 0.06, investment cost I =100, volatility of unlevered assets σ = 0.25, tax rate τ = 0.35 and 
bankruptcy costs b=0.5. Sensitivity with respect to bankruptcy cost b and tax rate τ.  
 

We observe that for low taxes, stricter constraints have a small effect on firm value and 

the investment trigger since for low taxes the net benefits of debt are low.  In figure 5A 

we see that leverage and more importantly credit spreads tend to converge in the 

constrained region, whereas in the unconstrained region there can be significant 

differences for different levels of bankruptcy costs and tax rates. In the constrained region 

the optimal bankruptcy trigger for low tax rates is higher than in the base case. In both 

figures we see that reducing bankruptcy costs in the constrained region has a negligible 

effect. 
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We have also implemented a numerical lattice with 2 steps per year (figures not shown 

for brevity). The lattice captures a finite investment horizon. We have observed that for 

stricter constraints, the decrease in firm value is more pronounced when option maturity 

is lower. For looser constraints, the decrease in option value is rather insensitive to option 

maturity. 

 

4.3.3. Welfare effects of debt financing constraints 
 

In this section we investigate the welfare implications of financing constraints on debt. 

We use the definition of welfare described in Mauer and Sarkar (2005) as the sum of firm 

value and the expected taxes of the government. The analysis could prove useful for 

policy makers when they wish to examine the total effect of a policy on financing 

constraints for a particular industry but the analysis of this section also provides useful 

information with respect to the tax raising potentials of such policies.   

 

Taxes are contingent on the continuous flow of revenues that are generated by the firm. 

Keeping as underlying source of uncertainty the value of unlevered assets in this case 

would not allow for the analysis of welfare effects since we would not be able to 

calculate the continuous flow of tax revenues. For this reason in this section we use the 

price of the product as the driving source of uncertainty like in Mauer and Sarkar (2005) 

and we use the relationship: 

 

)1( τ
δ

−=
PV  

 

Effectively, the value of unlevered assets is the present value of after tax income stream 

(we set operational costs to zero and we exclude the option to abandon that where used in 

the Mauer and Sarkar, 2005 model).  To maintain the same initial values for V like in our 

previous base case (remember that 100=V ) we then invert to get δ
τ )1( −

=
VP  to be the 
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starting price of the product. Note that to maintain consistency 
r
RPB δ

β
β

)1( −
−=   so that 

)1( τ
δ

−= B
B

PV  is like before.  is selected using first best approach where  is 

replaced with 

IP IV

)1( τ
δ

−= I
I

PV in the first order condition. Our results are now fully 

consistent with previous section’s results defined with respect to the value of unlevered 

assets i.e. the price investment and price default triggers (and optimal coupon) will 

generate the same investment and default triggers with respect to the value of unlevered 

assets and the same firm, equity and debt values like before. This formulation allows the 

calculation of taxes as: 
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Social welfare at time zero is calculated as: 
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Note that the function of firm value F(.) is the same like before evaluated with respect to 

the price of the commodity.  

 

In contrast to Mauer and Sarkar (2005) we do not allow the social planner (government) 

to control the investment trigger but only to possibly control the level of debt financing. 

While obviously firms will benefit by being unconstrained on the level of debt financing, 

it is less clear in advance that the government will also find that unconstrained debt 

financing is optimal from the social point of view. In particular, the government is also 

interested in optimizing the level of taxes received that can be used to finance projects of 

public interest. Taxes received will be affected by the investment trigger and the level of 
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default trigger which are beyond the control of government (can only be indirectly 

controlled by selecting the level of debt constraint).  

 

Figure 6: Social Welfare and it’s components, firm value and 
taxes as a function of debt financing constraints 
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Notes: Base case used: Price of the product P = 9.231 which is equivalent to a value of unlevered 
assets V =100. Risk-free rate r =0.06, opportunity cost δ = 0.06, investment cost I =100, volatility of 
unlevered assets σ = 0.25, tax rate τ = 0.35 and bankruptcy costs b= 0.5.  
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Figure 6A: Social Welfare and it’s components, firm value and 
taxes as a function of debt financing constraints: Lower tax rate 
(τ = 0.15) 
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Notes: Base case used: Price of the product P = 7.059 which is equivalent to a value of unlevered 
assets V =100. Risk-free rate r =0.06, opportunity cost δ = 0.06, investment cost I =100, volatility of 
unlevered assets σ = 0.25, tax rate τ = 0.15 and bankruptcy costs b= 0.5.  
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Figure 6B: Social Welfare and it’s components, firm value and 
taxes as a function of debt financing constraints: Lower 
opportunity cost ( δ = 0.02) 
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Notes: Base case used: Price of the product P = 3.077  which is equivalent to a value of unlevered 
assets V =100. Risk-free rate r =0.06, opportunity cost δ = 0.02, investment cost I =100, volatility of 
unlevered assets σ = 0.25, tax rate τ = 0.35 and bankruptcy costs b= 0.5.  
 
 
 
 
In figures 6 we see the effects of financing constraints on welfare and its components, 

firm value and taxes for the base case parameters used in the previous section. Figure 6A 

shows the results for a lower tax rate and lower opportunity cost δ. Interestingly, using 

the base case parameters we find that social welfare is maximized when the government 

sets a constraint of 75% on total investment cost. This result is driven by the fact that 

government taxes exhibit a concave shape i.e. increase initially but as more debt 

financing is allowed they tend to decrease (firm value is always increasing in the level of 
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available debt financing). The behaviour of taxes is driven by the behaviour of the 

investment and default trigger and will vary depending on the parameters used. For the 

base case parameters, remember that the investment trigger exhibits a U shape and the 

default trigger is higher as more debt can be used. Starting from zero debt and allowing 

for some debt to be used will decrease the investment trigger and will start generating 

taxes earlier. The earlier receipt of taxes seems to dominate the decreased taxes that will 

be received once investment is initiated at the investment trigger (the decreased taxes at 

the investment trigger is due to the lower revenues generated at a lower trigger and 

because of the earlier default after investment is launched). The opposite forces seem to 

dominate as the financing constraint is relaxed even more.  Interestingly for a tax rate of 

15% (see figure 6A) social welfare is maximized at around 50% level of constraint. With 

lower taxes it is shown that taxes decrease as more debt financing is allowed. This is 

because the investment trigger is rather stable (see previous section) while the default 

trigger increases as the level of debt financing increases.   

 

It should be emphasised that corner solutions are possible. In particular, for lower interest 

rates (r = 0.02) (figures for lower r and σ not shown to preserve space) social welfare 

increases as the financing constraint on debt increases reaching a maximum at zero debt. 

Taxes are thus increasing as the constraints become stricter. On the hand, for low rate of 

competitive erosion ( 02.0=δ ) social welfare increases as debt financing constraints are 

relaxed, reaching a maximum in the unconstrained case. This is an interesting observation 

showing that higher debt financing potentials allowed for growth firms can also be 

beneficial from social welfare perspective (see figure 6C).  For a lower volatility (σ = 

0.15) and lower bankruptcy costs (b = 0.25) the results regarding the maximum point of 

the base case are not affected i.e. social welfare reaches a maximum at a 75% level of 

debt financing constraint.  
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4.4. The effect of managerial control/growth options with random 
outcome  
 

In this section we use the previous models and we introduce managerial control/growth 

options that exist prior to the exercise of the investment option (see Martzoukos, 2000).  

These controls may be costly, they have an instantaneous (impulse) and random outcome 

and they are assumed to be equity financed (a reasonable assumption for start-up growth 

firms).  Control characteristics are their volatility, expected impact and cost.  Such 

actions may represent managerial growth options to engage in R&D, product redesign, 

advertisement, marketing, or any other actions that are targeted towards an increase in 

value, albeit have a random outcome.  We wish to study the effect of such actions on firm 

value and its components (option on unlevered assets and the net benefits of debt), and on 

the expected at development optimal leverage, equity and debt value, and credit spreads.  

Of particular interest is the effect of the volatility of such actions on the aforementioned 

variables in contrast to the effect of Brownian volatility.  Changes in the Brownian 

volatility that we discussed in the previous section hold both before and after the 

investment decision; they thus affect both the investment timing option, and the risk of 

debt and debt capacity of the firm.  The effect (increase) of uncertainty due to the 

control/growth actions is action-specific and thus affects volatility before the investment 

decision and not after22.  

 

We assume that the control can be activated at time zero at a cost .  Its effect on the 

unlevered asset will have a random outcome (1+ k ) where: 

CI

 

                                                 
22 Merton (1974) uses the Black and Scholes model to value equity and risky debt.  In that model, increases in volatility create the so-
called asset-substitution effect by transferring value from debt holders to equity holders.  The assumption is that the investment and 
the level of debt have been already decided upon, and then there is a change in volatility.  In the Leland (1994) model asset 
substitution can be studied by first deciding on the coupon level, and then changing volatility given the coupon level decision (see also 
Leland, 1998).  In section 3 we discussed the sensitivity to volatility for the Leland and the extended Leland model.  In our 
implementation of both models the new volatility level holds both before and after the investment decision.  In our implementation 
thus of the Leland model, optimal coupon is decided given the new level of volatility.  In section 4, the action-specific volatility has a 
direct effect on uncertainty before the investment decision and not after. 
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                                               ⎟
⎠
⎞

⎜
⎝
⎛ −+ 22 ,

2
1~)1ln( CCNk σσγ .                                            (8) 

 

The assumption of a lognormal distribution is convenient since we retain the 

lognormality of the asset values when controls are activated. The expected multiplicative 

impact of control on V is )exp(1 γ=+ k  with a variance ( ) 5.02 1)exp()exp( −Cσγ (from 

lognormal distribution). We assume that an equilibrium continuous-time CAPM (see 

Merton, 1973) holds and that controls have firm-specific risks which are uncorrelated 

with the market portfolio and are thus not priced.  

 

In general we may have optimal timing of controls and issues of path dependency (see 

Koussis, Martzoukos, and Trigeorgis, 2005, for an all-equity model with control/growth 

actions). For simplicity here we assume that controls are available only at t = 0, although 

optimal timing of those actions could be added in the present capital structure framework 

but at a significant expense of computational intensity and without offering any important 

additional insights.  

 

Optimal firm value, F*(V) is calculated as the option to invest capital  in control- 

growth action at time zero that will potentially enhance V but has a random outcome. 

This gives the investment option  to pay capital cost I and acquire a potentially 

levered position . Note that  and denote the stochastic 

values of equity and debt respectively (see section 2). Optimal firm value at t = 0 can be 

defined as follows:  

CI

)(VF

)()()( VDVEVV L += )(VE )(VD

 

                                                                             (9) )](,)]([max{)(* VFIVFEVF C
C

CI

−=
ϕ

 

where =
CIϕ {exercise of growth option, no exercise of growth option} and  is 

expectation under the managerial control distribution. For the evaluation of the 

expectation under control activation we use a Markov chain implementation.  Effectively, 

[.]CE
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we create a grid of V values with attached probabilities consistent with the distribution of 

control-growth option activation described in equation (8).  In the Tables 3 and 4 that 

follow, all the values reported are expected due to the presence of control uncertainty, 

since we report them conditional on control activation. They are calculated with the use 

of the Markov-Chain that approximates the lognormal distribution of the multiplicative 

effect of the control as discussed earlier. In the extended model where delay is possible, 

the values are the expected ones given control activation of the expected values at the 

investment trigger given the uncertainty coming from the Wiener process. 

 

Martzoukos (2000) and Koussis, Martzoukos and Trigeorgis (2005) have shown that 

these managerial control actions increase investment option value for an all-equity firm. 

Here we investigate their effect with both investment timing flexibility and net benefits of 

debt.  Table 3 shows numerical results for the effect of controls on firm value and its two 

components, the expected value of unlevered assets and the expected net benefits of debt. 

In the same table we explore the effect of control actions with random outcome in the 

presence of financing constraints on debt. We assume that the cost of the control is zero 

to concentrate on the effect of the control distributional characteristics. Effectively, the 

control can be activated if its cost is less than the increase in added value it provides. For 

example, the firm value in the extended Leland model equals 35.42 without any control 

activated, and 55.18 when a control with volatility 0.60 and mean impact 0.10 is 

activated. Thus, an equity-financed cost up to 55.18 – 35.42 = 19.76 could be paid for 

this control action. Concentrating on the first panel (the case with no constraints) we see 

that in all models firm values are increasing in both the volatility of control and the 

expected impact.   This is in contrast to the effect of an increase in the Brownian 

volatility (see discussion on Table 1) that decreases firm value in the Leland model (and 

creates a U-shape in the extended model).  In both the extended Leland and the Leland 

models, an increase in the mean impact has a positive effect on both the option on 

unlevered asset and the net benefits of debt. An increase in volatility though, increases 

the option on unlevered assets, but may decrease the net benefits of debt. The net effect 

though of an increased control volatility is still positive, since the effect of higher 
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volatility on the option on unlevered assets is strong enough to counterbalance a negative 

effect on the net benefits of debt. 

Table 3: The effect of managerial control actions and financing constraints on 
firm value and its components (option on unlevered assets and expected net 
benefits of debt) 
 

Firm value  

Option on  
Unlevered Assets  

E(V-I) 

  
Net Benefits 
of Debt (NB) 

 
Ext.- 

Leland/MS McD&S Leland 
Ext.- 

Leland/MS Leland 
Ext.- 

Leland/MS Leland 
No constraints        
No control 35.42 25.48 18.18 24.67 0.00 10.75 18.18 

γ = 0.10        
σC = 0.2 44.81 32.24 31.56 31.23 13.37 13.58 18.18 
σC = 0.4 49.34 35.86 37.50 35.02 21.23 14.32 16.26 
σC = 0.6 55.18 41.01 44.94 40.35 30.29 14.83 14.65 
σC = 0.2        
γ = 0.1 44.81 32.24 31.56 31.23 13.37 13.58 18.18 
γ = 0.3 66.25 47.74 59.60 46.41 35.30 19.84 24.30 
γ = 0.5 96.90 70.46 94.85 69.17 64.88 27.73 29.96 

Max Debt = 75        
No control  32.70 25.48 18.18 24.02 0.00 8.68 18.18 

γ = 0.10        
σC = 0.2 41.36 32.24 30.41 30.45 13.37 10.92 17.04 
σC = 0.4 45.24 35.86 35.07 34.41 21.23 10.84 13.84 
σC = 0.6 50.06 41.01 41.10 39.88 30.29 10.18 10.81 
σC = 0.2        
γ = 0.1 41.36 32.24 30.41 30.45 13.37 10.92 17.04 
γ = 0.3 61.02 47.74 56.16 45.46 35.30 15.57 20.86 
γ = 0.5 88.66 70.46 87.40 68.43 64.88 20.22 22.52 

Max Debt = 50        
No control 30.25 25.48 14.87 24.67 0.00 5.59 14.87 

γ = 0.10        
σC = 0.2 38.28 32.24 26.58 31.23 13.37 7.05 13.21 
σC = 0.4 42.13 35.86 31.76 35.01 21.23 7.11 10.53 
σC = 0.6 47.08 41.01 38.23 40.35 30.29 6.74 7.94 
σC = 0.2        
γ = 0.1 38.28 32.24 26.58 31.23 13.37 7.05 13.21 
γ = 0.3 56.58 47.74 50.71 46.40 35.30 10.18 15.40 
γ = 0.5 82.74 70.46 80.93 69.16 64.88 13.58 16.05 

 
Notes: “Ext.-Leland/MS” refers to the model with both investment timing flexibility and debt financing gains. “McD&S” refers 
to McDonald and Siegel (1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal 
debt financing and no investment flexibility. Base case used for all models: value of unlevered assets V =100, risk-free rate r = 
0.06, opportunity cost δ = 0.06, volatility σ = 0.25, investment cost I = 100. For the Ext. Leland and Leland model use 
bankruptcy costs b = 0.5, tax rate τ = 0.35.  Managerial control parameters have expected impact γ and volatility σC and are 
implemented using a Markov-chain with N =50 states. Max. Debt refers to constraints on the total amount of debt that can be 
issued.  
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Table 4: The effect of managerial control actions and financing constraints on optimal capital 
structure, expected costs, expected leverage ratio and on expected credit spreads.  
 

 Optimal capital structure    

 Expected  Expected  Expected  Expected  Expected  

 Equity  Debt  Cost  Leverage Credit Spread 

 Ext. -  Ext.-   Ext.-   Ext.-   Ext.-   

 Leland/MS Leland Leland/MS Leland Leland/MS Leland Leland/MS Leland Leland/MS Leland 
No constraints          

No control  25.79 43.60 44.10 74.57 34.47 100.00 0.63 0.63 0.0247 0.0247 
γ = 0.10           
σC = 0.2 32.58 43.61 55.71 74.58 43.47 86.63 0.63 0.63 0.0247 0.0247 
σC = 0.4 34.35 39.01 58.74 66.71 43.75 68.23 0.63 0.63 0.0247 0.0247 
σC = 0.6 35.58 35.14 60.84 60.09 41.24 50.29 0.63 0.63 0.0247 0.0247 
σC = 0.2           
γ = 0.1 32.58 43.61 55.71 74.58 43.47 86.63 0.63 0.63 0.0247 0.0247 
γ = 0.3 47.59 58.28 81.38 99.68 62.73 98.35 0.63 0.63 0.0247 0.0247 
γ = 0.5 66.53 71.87 113.76 122.91 83.39 99.93 0.63 0.63 0.0247 0.0247 

Max Debt = 75          
No control  42.24 43.60 28.61 74.57 38.15 100.00 0.40 0.63 0.0109 0.0247 
γ = 0.10           
σC = 0.2 53.35 53.11 35.96 63.93 47.95 86.63 0.40 0.55 0.0108 0.0194 
σC = 0.4 57.05 53.07 35.43 50.23 47.24 68.23 0.38 0.49 0.0103 0.0173 
σC = 0.6 61.04 53.72 32.96 37.67 43.95 50.29 0.35 0.41 0.0096 0.0147 
σC = 0.2           
γ = 0.1 53.35 53.11 35.96 63.93 47.95 86.63 0.40 0.55 0.0108 0.0194 
γ = 0.3 78.07 81.02 51.12 73.50 68.17 98.35 0.40 0.48 0.0106 0.0154 
γ = 0.5 110.56 112.41 65.71 74.93 87.61 99.93 0.37 0.40 0.0098 0.0115 

Max Debt = 50          
No control  47.50 64.87 17.25 50.00 34.50 100.00 0.27 0.44 0.0061 0.0122 
γ = 0.10           
σC = 0.2 60.03 69.90 21.75 43.32 43.50 86.63 0.27 0.38 0.0061 0.0105 
σC = 0.4 64.01 65.88 21.89 34.11 43.77 68.23 0.25 0.34 0.0058 0.0096 
σC = 0.6 67.71 63.37 20.63 25.15 41.26 50.29 0.23 0.28 0.0055 0.0080 
σC = 0.2           
γ = 0.1 60.03 69.90 21.75 43.32 43.50 86.63 0.27 0.38 0.0061 0.0105 
γ = 0.3 87.96 99.88 31.38 49.18 62.77 98.35 0.26 0.33 0.0060 0.0086 
γ = 0.5 124.45 130.90 41.71 49.97 83.42 99.93 0.25 0.28 0.0057 0.0067 

Notes: “Ext.-Leland/MS” refers to the model with both investment timing flexibility and debt financing gains. “McD&S” refers to McDonald and Siegel 
(1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal debt financing and no investment flexibility. Base 
case used for all models: value of unlevered assets V =100, risk-free rate r = 0.06, opportunity cost δ = 0.06, volatility σ = 0.25, investment cost I = 100. For 
the Ext. Leland and Leland model use bankruptcy costs b = 0.5, tax rate τ = 0.35.  Managerial control parameters have expected impact γ and volatility σC 
and are implemented using a Markov-chain with N =50 states. All values reported are time zero expected values. Max. Debt refers to constraints on the total 
amount of debt that can be issued.  

 

The second and third panel of table 3 show the effect of different levels of financing 

constraints on firm value and its components.  For a given debt constraint, the effect of 
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controls is like before. Comparing the panels with increasingly strict debt constraints, we 

still see (as expected) a decrease in firm values.  The driver of the decrease in firm value 

is mostly due to the decrease in the net benefits of debt.   But now, we do not necessarily 

observe a decrease in expected option on unlevered assets. This is because of the often 

observed U-shape of the investment trigger (see discussion on figure 4) where the firm 

adjusts its investment policy to stricter constraints.  

 

Table 4 presents more information for the expected optimal capital structure (expected 

leverage) and the expected credit spread. Note that firm values (of Table 3) are equal to 

expected equity plus expected debt minus the expected investment cost.  We see that (in 

both the unconstrained and the constrained cases) expected equity is increasing in both 

control volatility and control mean impact in the extended model, while in Leland´s 

model it is only increasing in the mean impact (but may be decreasing in control 

volatility). In the unconstrained case, expected leverage and expected credit spreads stay 

unchanged in the presence of controls (and expected debt is affected positively in the 

impact and volatility of the control).  With the simultaneous presence of controls and 

stricter debt constraints we see a decrease in expected optimal leverage and an 

accompanying decrease in expected credit spreads.  This is to be contrasted with the case 

of an increase in Brownian volatility that would increase credit spreads. 

Expected costs reflect the probability of development.  We see that, in both the 

unconstrained and the constrained cases, an increase in control volatility decreases 

expected cost while an increase in its mean impact increases expected cost. 
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Table 5: The effect of controls and financing constraints with finite 
investment option maturity 
 
 Firm value 

 T = 2 T = 5 T = 10 T = 20 T = 50 
No constraints      

No control 24.83 29.06 32.17 34.34 35.22 
γ = 0.10      
σC = 0.2 36.02 39.38 41.99 43.79 44.52 
σC = 0.4 41.38 44.33 46.71 48.38 49.08 
σC = 0.6 48.05 50.54 52.70 54.32 55.03 
σC = 0.2      
γ = 0.1 36.02 39.38 41.99 43.79 44.52 
γ = 0.3 61.08 62.83 64.38 65.51 65.97 
γ = 0.5 95.07 95.55 96.09 96.53 96.71 

Max Debt = 50      
No control 21.03 24.74 27.44 29.33 30.08 
γ = 0.10      
σC = 0.2 30.62 33.57 35.84 37.39 38.03 
σC = 0.4 35.22 37.79 39.86 41.30 41.91 
σC = 0.6 40.90 43.07 44.95 46.34 46.96 
σC = 0.2      
γ = 0.1 30.62 33.57 35.84 37.39 38.03 
γ = 0.3 52.07 53.62 54.97 55.95 56.34 
γ = 0.5 81.14 81.57 82.04 82.42 82.57 

Notes: Base case used models: value of unlevered assets V =100, risk-free rate r = 0.06, opportunity cost δ 
= 0.06, volatility σ = 0.25, investment cost I = 100, bankruptcy cost b = 0.5 and tax rate τ = 0.35. Firm 
values are calculated using a Markov-chain implementation with N =50 states for the controls (with 
average impact γ and volatility σC) and a numerical lattice scheme for the investment option with dt = 0.5 
years. Max. Debt refers to constraints on the total amount of debt that can be issued.  
 
 
 
  
In the results for the numerical implementation shown in table 5, we see the impact on 

the firm value in the extended Leland model of investment maturity, constraints and 

controls. Note that with very high maturities (T = 50) the numerical solution 

approximates the analytic model (see first column of table 3). Reduced maturity 

obviously results in a decreased firm value. This result appears in both constrained and 

unconstrained case, and both in the presence and in the absence of controls. An 

interesting observation is that in the presence of controls, the effect of maturity on firm 

values is lessened.  
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4.5. Summary 
 

We use the Mauer and Sarkar (2005) contingent claims model of firm value with the 

option for optimal investment timing and net benefits of risky debt (that allows for 

optimal capital structure and endogenously determined optimal bankruptcy), with an 

adaptation so that it is consistent with Leland (1994).  We make the interesting 

observation that in this extended model firm value exhibits a U-shape in volatility (not 

reported in previous research). 

 

To this (extended Leland/MS) model we add financing constraints, and with the use of a 

Markov-Chain method we also accommodate the presence of pre-investment 

control/growth options with random outcome. Beyond the analytic solution for a 

perpetual horizon, we also implement the investment option in a finite horizon on a 

binomial lattice, while maintaining the analytic structure for the capital structure 

decisions.  The scope is to study the effect of capital constraints on firm, equity and debt 

value, optimal investment and bankruptcy trigger, leverage and credit spreads.   

 

A comparison of the extended model with the McD&S model that does not include a debt 

financing option and the Leland (1994) model that does not include an investment option 

provides insights on the trade-off between investment timing flexibility and the net 

benefits of debt.  We show that financing constraints have a more significant relative 

impact on firm values at higher opportunity cost (dividend yield), riskless rate of interest 

and taxes, and lower volatility and bankruptcy costs.  The effect of financing constraints 

is more severe when investment option maturity is lower.  Financing constraints also 

reduce leverage and credit spreads in a nonlinear fashion.  An important observation is a 

U-shape of the investment trigger as a function of the constraint.  This result is driven by 

the trade-off between investment timing flexibility and the net benefits of debt.  

 

We also explore the social welfare implications of financing constraints on debt. Our 

analysis shows the effects of constraints on the components of welfare (firm value and 

taxes). We show that there are cases where the government can maximize social welfare 
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by setting a constraint.  In some other case social welfare is maximized when debt 

financing is not constrained-the most interesting case being when firms have large growth 

rates (lower parameter δ).    

 

Exercise of pre-investment managerial growth options increase firm value, although they 

may decrease expected net benefits of debt.  In contrast to the Brownian volatility, the 

volatility of the managerial growth options does not create a U-shape on the firm value.  

This action-specific volatility affects uncertainty prior to the investment decision and has 

no effect in the absence of constraints (and a very small reduction effect in the presence 

of constraints) on expected credit spreads after development.  The probability of 

investment increases in the mean impact and decreases in the volatility of the growth 

option; however, firm value always increases in the mean and the volatility of the growth 

options.  Reduced maturity results in a decreased firm value, with and without 

constraints. In the presence of controls, this maturity effect on firm value tends to 

disappear. 
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Appendix: 
 

In this appendix, we show the derivation of the analytic solution for the extended 

Leland/MS model (see equations 2 and 3) with the embedded investment option.  

Although the model is a special case of Mauer and Sarkar (2005), we retain the derivation 

in order to demonstrate the exact form of the first order condition we use in the paper. 

Similarly with Leland (1994), and conditional on investment, the optimal default point 

 is found by solving for the following smooth-pasting condition: BV
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Equation (A2), compared to the one in Leland, includes dividend-like competitive 

erosion (included in term β ). Since 0<β , this means that  for any positive level 

of coupons R. 

0>BV

 

The general solution of the option to invest  can be written as: )(VF
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21)( +=

 

The option also satisfies the usual ordinary deferential equation (since the investment 

horizon is perpetual): 
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By applying the general solution (A3) to the differential equation we find the solution for 

parameters to be: a
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Consistently with Mauer and Sarkar (2005) we apply three boundary conditions to obtain 

the values for ,   and the investment threshold . In particular we have the 

following boundary conditions: 

1A 2A IV

 

0)0( =F                                                              (A6) 

IVDVEVF III −+= )()()(                                             (A7) 

 

II VVVV V
E

V
F

== ∂
∂

=
∂
∂  (Second best) or 

II VV

L

VV V
V

V
F

== ∂
∂

=
∂
∂  (First best)    (A8) 

 

where  and  functional forms are given in equation 5 (derived in Leland, 1994) 

and are evaluated at  and is the value of the levered firm at 

the investment trigger. Using (A6) we find that 

(.)E (.)D

IV )()()( III
L VDVEVV +=

02 =A  (since 0<β ). With (A7) we find 
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1)()( 11  so replacing into (A3) we find equation (5) for the firm 

value: 
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Finally, we use (A8) to find the investment threshold. If the second best (equity 

maximization) approach is used we arrive at the following non-linear first order condition 

that can be solved (numerically) for : IV
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Alternatively, if the first best (firm value maximization) approach is used we have the 

first order condition: 
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For optimal capital structure, when coupon is also a choice variable, we solve the first-

order condition for the investment trigger by simultaneously searching for the optimal 

coupon R.  In this paper, we use the first best approach and we implement equation A11. 
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