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ABSTRACT 

The notions of algebra and algebraic thinking have been a focus of attention 

by researchers, policy makers, and curriculum designers during the last decades. Yet, 

the field of mathematics education has not conceptualized algebra and algebraic 

thinking in a way that they can explicitly become a part of mathematics teaching and 

learning in the early grades. This study examines the way algebraic thinking might be 

conceptualized and the way this conceptualization might inform mathematics 

instruction at the elementary grades in order to enhance the development of algebraic 

thinking. The purpose of this study was (a) to empirically test a theoretical model 

about the core aspects of algebraic thinking, (b) to examine its relation to domain-

specific processing abilities, different types of reasoning forms and general cognitive 

processes of mental action, and (c) to investigate the impact of two concrete 

instructional approaches on students’ algebraic thinking ability. 

Six hundred and eighty four students from Grades 4, 5, 6 and 7 participated in 

the study. Seven different tests were administered: (i) a test measuring algebraic 

thinking abilities; (ii) a test measuring processes involved in the Specialized 

Structural Systems (SSSs); (iii) the Naglieri Non-Verbal Ability Test that measures 

several types of reasoning, (iv) a test measuring deductive reasoning; (v) a test 

measuring working memory; (vi) a test measuring speed of processing, and (vii) a test 

measuring control of processing. Two teaching interventionist experiments with 86 

fifth graders were also conducted. 42 students participated in the “Semi-structured 

problem situations” experiment and 44 students participated in the “Structured 

mathematical investigations” experiment. The purpose of the two interventions was to 

explore whether it would be possible to engineer instructional interventions that could 

have positive impact on students’ algebraic thinking.  

The results of the study verified the theoretical model proposed by Kaput 

(2008) about the core aspects of algebraic thinking from K-12 grades. According to 

the model, algebraic thinking can be described using a combination of three distinct 

but interrelated factors: (i) “Generalized arithmetic”, (ii) Functional thinking”, and 

(iii) “Modeling as a domain for expressing and formalizing generalizations”. The 

study describes in detail the three factors through the identification of specific 

categories of tasks that belong to each factor. Following the suggestions of Kieran 
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(2004), all tasks were carefully selected in order to satisfy two conditions: (i) the tasks 

involved processes that are considered to be linked with early algebraic thinking, such 

as generalization, problem solving, argumentation and justification, prediction and 

proof, and (ii) the tasks involved verbal expressions, diagrams, drawings or graphs 

rather than symbols and did not require the use of symbols. The factor “Generalized 

arithmetic” refers to the use of arithmetic as a domain for expressing and formalizing 

generalizations. The factor “Functional thinking” refers to the generalization of 

numerical or geometrical patterns and the exploration and expression of relationships 

of co-variation and correspondence that are represented in several ways (with table, 

graphically, diagrammatically, verbally, symbolically). The factor “Modeling as a 

domain for expressing and formalizing generalizations” involves the construction of 

models for representing regularities from mathematized situations or phenomena 

where the regularity itself is secondary to the larger modeling task. Therefore, the 

findings of the current study verify through empirical data Kaput’s proposed structure 

of algebraic thinking and also the idea that Kieran (1992) developed about 

conceptualizing algebraic activity not just as a topic in mathematics curriculum but as  

a multifaceted activity which encompasses various types of tasks and ways of 

thinking. 

According to the results, the three factors of algebraic thinking remain stable 

in all the age-groups that the study examined. Nevertheless, students’ algebraic 

thinking abilities in the fourth grade are different in relation to the students of the 

other grades. Students’ algebraic thinking abilities in the seventh grade are also 

different.  

Based on the findings regarding the components of algebraic thinking, this 

study also described four classes of students which reflect broad portraits of students’ 

skills that can be used to inform our understanding of the way students develop 

generalization abilities and abilities for representing generalizations and regularities 

and move from arithmetical to algebraic ways of thinking. Students in the first class 

hardly solved any type of algebraic tasks, implying the absence of algebraic thinking 

abilities. Students in the second class had average performance in “Generalized 

arithmetic” tasks and low performance in the “Functional thinking” and “Modeling” 

tasks. These students managed to solve with more success the “Generalized 

arithmetic” tasks by applying arithmetical strategies, implying a level of transition 
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between arithmetical and algebraic ways of thinking. Students in the third class had 

average performance in the “Generalized arithmetic” and “Functional thinking” tasks 

and low performance in the “Modeling” tasks. These students managed to solve 

successfully some of the items that involved correspondence and co-variational 

relationships as well as finding the nth term in numerical patterns. Students in the 

fourth class had high abilities in the items of the factors “Generalized arithmetic” and 

“Functional thinking” and average abilities in the items of the factor “Modeling as a 

domain for expressing and formalizing generalizations”. These students developed 

abilities for producing relational reasoning, not only in the context of patterns or co-

variational relationships but also in contexts where a regularity is presented through a 

realistic situation or phenomenon.  

This study contributed to theory about the core aspects of algebraic thinking 

by utilizing research from mathematics education and psychology. Using Demetriou 

and colleagues’ (2002, 2011, 2015) overarching theory about the architecture and 

development of the mind as a basis for describing mental action, this study 

investigated the relationship between algebraic thinking and several cognitive factors 

and reasoning processes. The results indicated that the relationship between algebraic 

thinking and cognitive factors changes from age to age. Along the transition of the 

students from grade to grade, some of the factors appear or disappear in the 

relationship and some of them remain stable in all age-groups.  

The findings of the study indicated that the Causal-Experimental System, 

Serial Reasoning and Working Memory are significant predictors of students’ 

algebraic thinking in all age-groups. For this reason, their relationship was further 

examined. The model that was extracted from quantitative data suggests that the 

Causal-Experimental System, Serial Reasoning and Working Memory predict 

algebraic thinking abilities. Thus, this study proposes a model which describes 

algebraic thinking as a multidimensional factor that is synthesized by the factors of 

“Generalized Arithmetic”, “Functional Thinking” and “Modeling as a domain for 

expressing and formalizing generalizations”; this factor is predicted by the operations 

in the Causal-Experimental system, Serial Reasoning and Working Memory. Serial 

Reasoning involves the generation of possible relationships and structure between a 

set of objects. The Causal-Experimental System refers to causal relationships and 

encloses mental operations such as trial and error, combinatorial hypothesis, 
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systematic experimentation and modeling construction. Working Memory refers to 

the maximum amount of information and mental acts that the mind can operate 

concurrently in an efficient way. These three cognitive factors seem to act 

simultaneously and enable students to extract generalizations when they encounter 

algebraic problems. 

The qualitative analytic system which is responsible for the representation of 

similarities and differences relationships and the corresponding analogical reasoning 

which allows the comparison of specific objects of a set with other specifics objects 

seem to predict students’ algebraic thinking in Grade 4. The abilities of the students in 

Grades 5, 6 and 7 for representing generalities and using symbols seems to be 

influenced form the Spatial-Imaginal System and the corresponding Spatial 

Visualization reasoning; these cognitive factors enable the identification of structure 

in geometrical patterns and the use of visual representations for expressing and 

formalizing generalizations. Moreover, the Verbal-Propositional System and the 

reasoning processes by which this system interacts, inductive and deductive 

reasoning, seem to further enrich students’ abilities for generalizing and using 

symbols. Deductive reasoning appears to be a predictive factor for students’ algebraic 

thinking abilities in Grade 7.  

This study explored two approaches that aimed to develop students’ algebraic 

thinking ability; two interventions with ten 80-minutes lessons were examined in 

respect to their effectiveness, the “Semi-structured problem situations” and the 

“Structured mathematical investigations”. Both interventions involved all of the 

aspects of algebraic thinking and had similar objectives and characteristics in respect 

to the quality of instruction. The interventions differed in respect to characteristics of 

the tasks that were used. In the first intervention, the tasks represented contexts from 

real life situations; a question was posed and students were encouraged to apply their 

own strategies for approaching the problem. In the second intervention, the tasks 

involved investigations that were aided with more assisting questions and scaffolding 

steps. The results showed that students who received instruction through “Semi-

structured problem situations” outperformed students who received instruction 

through “Structured mathematical investigations” in the algebraic thinking post-test. 

More detailed results have shown that both experiments had positive impact in the 

“Generalized arithmetic” component. However, the students involved in the “Semi-
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structured problem situations” experiment had significantly higher performance in the 

components of “Functional Thinking” and “Modeling as a domain for expressing and 

formalizing generalizations”. The results of the study showed that students’ individual 

differences in the three cognitive factors that are related to algebraic thinking (Causal-

experimental system, Serial Reasoning, Working Memory), and their interactions with 

the type of instruction had a significant impact on the benefits from the instructional 

intervention program. 

These results provide empirical evidence supporting the arguments from 

previous literature (e.g. Drijvers, Coddijn & Kindt, 2011; Kaput, 2008; Mason, 

Graham & Johnston-Wilder, 2005; Radford, 2008) about the multidimensional nature 

of algebraic thinking and that algebraic thinking ‘is not all about literal symbols but 

rather is about ways of thinking’ (Kieran, 2011, p.591). The results enlighten the types 

and features of these ways of thinking by indicating specific cognitive factors and 

reasoning processes that flow through varying degrees through the three dimensions 

of algebraic thinking in each age level. Moreover, the results indicate that these ways 

of thinking are not static and stable but they progressively become more abstract and 

flexible. The integration of specific features in teachers’ practices create viable 

opportunities in order these ways of thinking to be empowered and formulated 

through supportive classroom environments.  
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ΠΕΡΙΛΗΨΗ 

Κατά τα τελευταία 20 χρόνια, η άλγεβρα και η αλγεβρική σκέψη αποτέλεσαν 

αντικείμενο έρευνας για πολλούς ερευνητές, σχεδιαστές εκπαιδευτικών πολιτικών και 

συγγραφείς αναλυτικών προγραμμάτων.  Ωστόσο, στο πεδίο της μαθηματικής 

παιδείας δεν είχε διευκρινιστεί η έννοια της αλγεβρικής σκέψης με τέτοιο τρόπο ώστε 

να αποτελέσει αναπόσπαστο κομμάτι της διδασκαλίας και της μάθησης των 

μαθηματικών στο δημοτικό σχολείο. Η εργασία μελετά την έννοια της αλγεβρικής 

σκέψης μέσα από παιδαγωγικά και γνωστικά πεδία ανάλυσης, έχοντας ως στόχο την 

διασαφήνιση της έννοιας και την περιγραφή της σχέσης της με διάφορους γνωστικούς 

παράγοντες. Επιπλέον, η εργασία στοχεύει στη διαμόρφωση πρακτικών διδασκαλίας 

και μάθησης στο δημοτικό σχολείο που ενδυναμώνουν την ολόπλευρη ανάπτυξη της 

αλγεβρικής σκέψης. Ο σκοπός της εργασίας ήταν (α) ο εμπειρικός έλεγχος του 

θεωρητικού μοντέλου του Kaput (2008) για τα βασικά στοιχεία που συνθέτουν την 

έννοια της αλγεβρικής σκέψης, (β) η εξέταση της σχέσης μεταξύ της αλγεβρικής 

σκέψης και διαφόρων γνωστικών παραγόντων και διαδικασιών συλλογισμού και (γ) η 

εξέταση της επίδρασης δύο διαφορετικών διδακτικών παρεμβάσεων στην ενίσχυση 

της αλγεβρικής σκέψης των μαθητών δημοτικού σχολείου.   

Στην έρευνα συμμετείχαν εξακόσιοι ογδόντα τέσσερις μαθητές από τις Δ’, Ε’ 

και Στ’ τάξεις του δημοτικού σχολείου και την Α’ γυμνασίου. Στους συμμετέχοντες 

χορηγήθηκαν συνολικά επτά δοκίμια που αξιολογούσαν: (i) την αλγεβρική σκέψη, 

(ii) τις ικανότητες στα Εξειδικευμένα Δομικά Συστήματα (ΕΔΟΣ), (iii) διάφορα είδη 

συλλογισμού (Naglieri Non-Verbal Ability test), (iv) τον επαγωγικό συλλογισμό, (v) 

την εργαζόμενη μνήμη, (vi) την ταχύτητα επεξεργασίας και (vii) τον έλεγχο 

επεξεργασίας. Επιπλέον, πραγματοποιήθηκαν δύο διδακτικές παρεμβάσεις στις 

οποίες συμμετείχαν 86 μαθητές της Ε’ δημοτικού. Στην παρέμβαση «Ημι-δομημένες 

διερευνήσεις σε ρεαλιστικά προβλήματα» συμμετείχαν 42 μαθητές. Στην παρέμβαση 

«Δομημένες μαθηματικές διερευνήσεις» συμμετείχαν 44 μαθητές. Ο σκοπός των δύο 

διδακτικών παρεμβάσεων ήταν η διερεύνηση του ενδεχομένου για ενίσχυση της 

ανάπτυξης της αλγεβρικής σκέψης των μαθητών δημοτικού σχολείου μέσα από 

καινοτόμες πρακτικές και διαδικασίες.  

Τα αποτελέσματα της έρευνας επιβεβαίωσαν το θεωρητικό μοντέλο που 

προτάθηκε από τον Kaput (2008) σχετικά με τα βασικά στοιχεία που συνθέτουν την 
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έννοια της αλγεβρικής σκέψης. Σύμφωνα με το μοντέλο, η αλγεβρική σκέψη 

αποτελείται από τρεις διακριτούς παράγοντες: (i) τη «Γενικευμένη αριθμητική», (ii) 

το «Συλλογισμό με μεταβλητές», και (iii) τη «Μοντελοποίηση ως ένα πεδίο για την 

έκφραση και την επισημοποίηση γενικεύσεων». Η εργασία περιγράφει αναλυτικά 

τους τρεις παράγοντες μέσα από την αναγνώριση συγκεκριμένων κατηγοριών έργων 

που ανήκουν σε κάθε παράγοντα. Ακολουθώντας τις εισηγήσεις της Kieran (2004), 

όλα τα έργα επιλέχθηκαν με προσοχή, ώστε να ικανοποιούν δύο συνθήκες: (i) τα έργα 

περιλάμβαναν διαδικασίες που συνδέονται με την πρώιμη αλγεβρική σκέψη, όπως 

γενίκευση, λύση προβλήματος, υπόθεση, επαλήθευση, αιτιολόγηση, πρόβλεψη και 

απόδειξη και (ii) τα έργα περιλάμβαναν λεκτικές εκφράσεις, διαγράμματα, πίνακες 

και γραφικές παραστάσεις παρά σύμβολα, ενώ παράλληλα δεν απαιτούσαν τη χρήση 

συμβόλων. Ο παράγοντας «Γενικευμένη αριθμητική» αναφέρεται στη χρήση της 

αριθμητικής ως ένα πεδίο για τη διερεύνηση σχέσεων και δομής στους αριθμούς και 

τις πράξεις και την έκφραση γενικεύσεων. Ο παράγοντας «Συλλογισμός με 

μεταβλητές» αναφέρεται στη γενίκευση αριθμητικών ή γεωμετρικών μοτίβων και τη 

διερεύνηση και έκφραση σχέσεων συν-διακύμανσης και συμμεταβολής μέσα από 

διάφορα είδη αναπαραστάσεων (πίνακας, γραφική παράσταση, διάγραμμα, λεκτικές 

και συμβολικές εκφράσεις). Ο παράγοντας «Μοντελοποίηση ως ένα πεδίο για την 

έκφραση και την επισημοποίηση γενικεύσεων» περιλαμβάνει την κατασκευή 

μοντέλων για αναπαράσταση σχέσεων και γενίκευση κανονικοτήτων από 

μαθηματικοποιημένες καταστάσεις ή φαινόμενα της καθημερινής ζωής. 

Σύμφωνα με τα αποτελέσματα της εργασίας, οι τρεις παράγοντες αλγεβρικής 

σκέψης παραμένουν σταθεροί σε όλες τις ηλικιακές ομάδες. Ωστόσο, οι ικανότητες 

αλγεβρικής σκέψης των μαθητών στη Δ’ τάξη διαφοροποιούνται από τις ικανότητες 

των μαθητών στις τάξεις Ε’, Στ’και Α΄ γυμνασίου. Επιπλέον, οι ικανότητες των 

μαθητών στην Α’ γυμνασίου διαφοροποιούνται από τις ικανότητες των μαθητών σε 

όλες τις προηγούμενες τάξεις. 

Τα ευρήματα της εργασίας υποδεικνύουν την παρουσία τεσσάρων κατηγοριών 

που αντανακλούν διαφορετικά επίπεδα ικανοτήτων αλγεβρικής σκέψης ανάμεσα 

στους μαθητές. Οι μαθητές της πρώτης κατηγορίας αδυνατούσαν να επιλύσουν 

σχεδόν όλα τα έργα του δοκιμίου αλγεβρικής σκέψης, γεγονός που υποδηλώνει ότι 

δεν είχαν ακόμα αναπτύξει ικανότητες αλγεβρικής σκέψης. Οι μαθητές στη δεύτερη 

κατηγορία είχαν μέτρια επίδοση στη «Γενικευμένη αριθμητική» και χαμηλή επίδοση 
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στο «Συλλογισμό με μεταβλητές» και τη «Μοντελοποίηση». Αυτοί οι μαθητές 

κατάφεραν να επιλύσουν με μεγαλύτερη επιτυχία τα έργα της «Γενικευμένης 

αριθμητικής» εφαρμόζοντας κυρίως αριθμητικές στρατηγικές. Οι μαθητές στην τρίτη 

κατηγορία είχαν μέτρια επίδοση στη «Γενικευμένη αριθμητική» και το «Συλλογισμό 

με μεταβλητές» και χαμηλή επίδοση στη «Μοντελοποίηση». Οι μαθητές αυτοί 

χρησιμοποιήσαν αριθμητικές στρατηγικές, αλλά κατάφεραν να επιλύσουν με επιτυχία 

έργα όχι μόνο στον παράγοντα της «Γενικευμένης αριθμητικής», αλλά και στον 

παράγοντα του «Συλλογισμού με μεταβλητές». Αυτοί οι μαθητές επίσης προσέγγισαν 

μερικά από τα έργα που περιλάμβαναν σχέσεις συν-διακύμανσης και συμμεταβολής, 

καθώς και υπολογισμού του νιοστού όρου σε αριθμητικά και γεωμετρικά μοτίβα. Οι 

μαθητές στην τέταρτη κατηγορία είχαν ψηλές επιδόσεις στη «Γενικευμένη 

αριθμητική» και το «Συλλογισμό με μεταβλητές» και μέτρια επίδοση στη 

«Μοντελοποίηση».  

Η παρούσα εργασία αξιοποίησε την ολοκληρωμένη θεωρία του Δημητρίου 

και των συνεργατών του (2002, 2011, 2015) για την αρχιτεκτονική και την ανάπτυξη 

του νου, με σκοπό να περιγράψει  τη σχέση μεταξύ της αλγεβρικής σκέψης και 

διαφόρων γνωστικών παραγόντων και διαδικασιών συλλογισμού. Τα αποτελέσματα 

έδειξαν ότι η σχέση αυτή αλλάζει από ηλικία σε ηλικία. Καθώς οι μαθητές 

μεταβαίνουν από την μια τάξη στην άλλη, ορισμένοι παράγοντες εμφανίζονται η 

απουσιάζουν από τη σχέση που περιγράφει την αλγεβρική τους σκέψη σε σχέση με 

διάφορες γνωστικές δομές, ενώ άλλοι παράγοντες δείχνουν να παραμένουν σταθεροί 

στη σχέση σε όλες τις ηλικιακές ομάδες. 

Τα αποτελέσματα της εργασίας έδειξαν ότι το Αιτιώδες-Πειραματικό 

Σύστημα, ο Σειριακός Συλλογισμός και η Εργαζόμενη Μνήμη εμφανίζονται στη 

σχέση της αλγεβρικής σκέψης με γνωστικούς παράγοντες σε όλες τις ηλικιακές 

ομάδες. Για το λόγο αυτό, η σχέση τους εξετάστηκε περαιτέρω μέσα από τη 

εφαρμογή δομικών μοντέλων στατιστικής ανάλυσης. Το μοντέλο που επιβεβαιώθηκε 

υποδηλώνει ότι ο Σειριακός Συλλογισμός, το Αιτιώδες-Πειραματικό Σύστημα και η 

Εργαζόμενη Μνήμη προβλέπουν την αλγεβρική σκέψη των μαθητών. Έτσι, η εργασία 

αυτή προτείνει ένα μοντέλο που περιγράφει την αλγεβρική σκέψη ως έναν 

πολυδιάστατο παράγοντα που συντίθεται από τους παράγοντες της «Γενικευμένης 

Αριθμητικής», του «Συλλογισμού με μεταβλητές» και της «Μοντελοποίησης ως 

γλώσσας για την έκφραση και την επισημοποίηση γενικεύσεων». Ο παράγοντας 
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αυτός προβλέπεται από τον Σειριακό Συλλογισμό, το Αιτιώδες-Πειραματικό σύστημα 

και την Εργαζόμενη Μνήμη. 

Με βάση τα συμπεράσματα της εργασίας, ο Σειριακός Συλλογισμός επιτρέπει 

την παρατήρηση της δομής και των σχέσεων με τις οποίες ένα σύνολο στοιχείων 

συνδέονται μεταξύ τους. Το Αιτιώδες-Πειραματικό Σύστημα επιτρέπει την 

επεξεργασία αιτιωδών σχέσεων, την κατασκευή υποθέσεων για τον κανόνα που 

διέπει τις σχέσεις σε ένα σύνολο στοιχείων, τον πειραματισμό για εξέταση της 

υπόθεσης και την αιτιολόγηση με βάση την αντιστοιχία της υπόθεσης με τα 

αποτελέσματα του πειράματος. Η Εργαζόμενη Μνήμη συγκρατεί ταυτόχρονα τις 

πληροφορίες για την παρατηρούμενη σχέση και τις πληροφορίες που αφορούν τη 

διαδικασία και τα αποτελέσματα του πειράματος. Η παράλληλη λειτουργία αυτών 

των μηχανισμών επιτρέπει την εξαγωγή γενικεύσεων.  

Το Ποιοτικό-Αναλυτικό Σύστημα που είναι υπεύθυνο για την αναπαράσταση 

σχέσεων ομοιότητας και διαφοράς και ο αντίστοιχος Αναλογικός Συλλογισμός που 

επιτρέπει τη σύγκριση των επιμέρους στοιχείων ενός συνόλου με επιμέρους στοιχεία, 

φαίνεται να προβλέπουν τις ικανότητες αλγεβρικής σκέψης των μαθητών στη Δ’ 

τάξη. Στην Ε’ τάξη, τη Στ΄ τάξη και την Α’ γυμνασίου, η έκφραση γενικεύσεων και η 

χρήση συμβολισμού φαίνεται να σχετίζεται με τη λειτουργία γνωστικών μηχανισμών 

όπως, το Οπτικό-Εικονικό Σύστημα και ο χωρικός συλλογισμός που επιτρέπουν την 

παρατήρηση της δομής και των σχέσεων σε γεωμετρικά μοτίβα και την ευέλικτη 

διαχείριση οπτικών αναπαραστάσεων για την έκφραση και ερμηνεία γενικεύσεων, 

όπως τα διαγράμματα και οι γραφικές παραστάσεις, Επιπρόσθετα, το Λεκτικό-

Προτασιακό Σύστημα και οι συλλογισμοί με τους οποίους αλληλοεπιδρά, ο 

επαγωγικός και ο παραγωγικός συλλογισμός, ενισχύουν περεταίρω τις ικανότητες για 

γενίκευση και χρήση αφηρημένων συμβόλων. Ο επαγωγικός συλλογισμός επιτρέπει 

την εξέταση ειδικών περιπτώσεων για εξαγωγή γενικεύσεων. Ο παραγωγικός 

συλλογισμός, που εμφανίζεται ως προβλεπτικός παράγοντας της αλγεβρικής σκέψης 

στην Α’ γυμνασίου, επιτρέπει την αξιοποίηση γενικεύσεων για την επεξεργασία 

ειδικών περιπτώσεων, 

Η παρούσα εργασία εξέτασε επίσης την επίδραση δύο διδακτικών 

παρεμβάσεων στην ικανότητα αλγεβρικής σκέψης μαθητών της Ε’ τάξης. Κάθε 

παρέμβαση περιλάμβανε δέκα ογδοντάλεπτα μαθήματα. Η πρώτη παρέμβαση 
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περιλάμβανε  «Ημι-δομημένες διερευνήσεις σε ρεαλιστικά προβλήματα» ενώ η 

δεύτερη περιλάμβανε «Δομημένες μαθηματικές διερευνήσεις». Και οι δύο διδακτικές 

παρεμβάσεις αποσκοπούσαν στη ενδυνάμωση όλων των πτυχών της αλγεβρικής 

σκέψης και είχαν τους ίδιους στόχους και χαρακτηριστικά σε σχέση με την ποιότητα 

της διδασκαλίας. Οι δύο διδακτικές παρεμβάσεις διέφεραν σε σχέση με τα 

χαρακτηριστικά των έργων που χρησιμοποιήθηκαν σε καθεμιά από αυτές. Στην 

πρώτη παρέμβαση, τα έργα παρουσίαζαν ανοικτά αυθεντικά περιβάλλοντα από την 

καθημερινή ζωή. Στη δεύτερη παρέμβαση, τα έργα αποτελούσαν μαθηματικές 

διερευνήσεις οι οποίες συνοδεύονταν από βοηθητικές ερωτήσεις και ακολουθούσαν 

βήματα-σκαλωσιές. Τα αποτελέσματα έδειξαν ότι οι μαθητές που συμμετείχαν στις 

«Ημι-δομημένες διερευνήσεις σε ρεαλιστικά προβλήματα" είχαν καλύτερα 

αποτελέσματα σε σύγκριση με τους μαθητές που συμμετείχαν στις "Δομημένες 

μαθηματικές διερευνήσεις" στο δοκίμιο αλγεβρικής σκέψης που δόθηκε μετά την 

ολοκλήρωση των παρεμβάσεων. Επιπρόσθετα, τα αποτελέσματα έδειξαν ότι και οι 

δύο παρεμβάσεις είχαν θετική επίδραση στην επίδοση των μαθητών σε έργα  

«Γενικευμένης αριθμητικής". Οι μαθητές που συμμετείχαν στις «Ημι-δομημένες 

διερευνήσεις σε ρεαλιστικά προβλήματα" είχαν στατιστικά σημαντική ψηλότερη 

επίδοση σε έργα του «Συλλογισμού με μεταβλητές » και της «Μοντελοποίησης». 

Τα αποτελέσματα της παρούσας εργασίας έδειξαν επίσης ότι η 

αλληλεπίδραση των τριών γνωστικών παραγόντων που σχετίζονται με την  αλγεβρική 

σκέψη (Αιτιώδες-Πειραματικό Σύστημα,  Σειριακός Συλλογισμός και Εργαζόμενη 

Μνήμη) με τον τύπο της διδακτικής παρέμβασης είχε σημαντική επίδραση στα οφέλη 

των μαθητών σε σχέση με τις ικανότητες αλγεβρικής σκέψης μετά την ολοκλήρωση 

των διδακτικών παρεμβάσεων.  

Η εργασία παρέχει εμπειρικά στοιχεία που υποστηρίζουν τις ιδέες που 

αναπτύχθηκαν από προηγούμενες μελέτες (π.χ. Drijvers, Coddijn & Kindt, 2011∙ 

Kaput, 2008∙ Kieran, 2007∙, Mason, Graham & Johnston-Wilder, 2005∙ Radford, 

2008) σχετικά με την πολυδιάστατη φύση της αλγεβρικής σκέψης. Επιπλέον, 

περιγράφει αναλυτικά τα στοιχεία αυτά μέσα από συγκεκριμένα έργα. Τονίζεται μέσα 

από τα αποτελέσματα ότι η αλγεβρική σκέψη «δεν είναι όλα όσα σχετίζονται με τα 

αλγεβρικά σύμβολα, είναι τρόποι σκέψης» (Kieran, 2011, σελ.591). Συγκεκριμένα, τα 

αποτελέσματα της εργασίας επισημαίνουν τους τύπους και τα χαρακτηριστικά αυτών 

των τρόπων σκέψης, υποδεικνύοντας συγκεκριμένους γνωστικούς παράγοντες και 
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διαδικασίες συλλογισμού που προβλέπουν τις τρεις διαστάσεις της αλγεβρικό σκέψης 

σε κάθε ηλικία. Επιπλέον, τα αποτελέσματα δείχνουν ότι αυτοί οι τρόποι σκέψης δεν 

είναι στατικοί και σταθεροί, αλλά σταδιακά γίνονται πιο αφηρημένοι και ευέλικτοι. Η 

ενσωμάτωση συγκεκριμένων χαρακτηριστικών στη διδακτική πρακτική δίνει τη 

δυνατότητα στον εκπαιδευτικό να ενδυναμώσει αυτούς τους τρόπους σκέψης και να 

τους διαμορφώσει μέσα από υποστηρικτικά περιβάλλοντα μάθησης.  
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CHAPTER I 

 

The Problem 

 

Introduction  

The notion of algebra historically emerged after arithmetic; reflecting this 

trajectory, mathematics curricula were usually treated as an assortment of isolated 

topics, where arithmetic precedes and algebra follows (Carraher & Schliemann, 

2007). In recent years, however, there is a growing consensus that algebra is “the 

getaway to K-12 mathematics reform for the next century” (Kaput, 1998, p.134). 

Researchers and policy makers seem to agree that students should engage with 

algebra in a coherent and systematic way throughout their schooling. For this reason, 

great importance has been given to the development of algebraic thinking, which 

“moves across the grades” instead of being taught through traditional courses of 

algebra in the middle school (NCTM, 2000). More specifically, the NCTM’s 

Principles and Standards for School Mathematics suggested that school mathematics 

from prekindergarten through grade 12 should empower students’ abilities in: 

 exploring patterns, relations, and functions;  

 representing the inherent relationships in mathematical situations and 

structures, by using algebraic notation;  

 extracting mathematical models from quantitative relationships; 

 analyzing the notion of change within various contexts. (NCTM, 1989; 2000) 

The realization of this need stems primarily by the fact that, in the discipline 

of mathematics, algebra has a fundamental role, serving at least two primary 

functions. First, algebra is closely linked to the development, establishment and 

communication of knowledge in all areas of mathematics, including arithmetic, 

geometry and statistics (NCTM, 2000). Algebraic processes ensure the unity 

throughout the content of the mathematics curriculum. Second, algebra is considered 

as an essential language, base and foundation for the participation of the individual in 

an “economy of knowledge” (Mason & Sutherland, 2002). As it is recommended by 
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the RAND Mathematics Study Panel Report (2003), algebra is pivotal not only for 

exploring most areas of mathematics but also for other disciplines such as science and 

engineering. Competency in algebra is considered as critical for achieving further 

study in mathematics and also for accessing professions in science, business and 

industry (Hatfield, Edwards, Bitter, & Morrow, 2000).  

Besides its potential to promote these functions, the focus on algebraic 

thinking as a widely held goal of K-12 mathematics instruction is supported by the 

fact that students’ abrupt and isolated introduction to algebra in the middle school has 

led them to experience serious difficulties in understanding core algebraic concepts 

(Cai & Knuth, 2005). The National Research Council (1998) has characterized the 

entry-courses to algebra in the United States as an “unmitigated disaster for most 

students” (p. 1). Previous research highlights, among others, the difficulty that middle 

and high school students have in understanding the equal sing as bidirectional and 

using symbols as generalizable numbers or as variables (e.g. Booth, 1984; Vergnaud, 

1985). On the one hand, several researchers (e.g. Chazan & Yerushalmy, 2003; 

Herscovits & Linchevski, 1994; Kuchemann, 1981) have attributed these difficulties 

to the insufficient cognitive development of the students. On the other, current policy 

and research discourse is tilted in favor of introducing algebra much earlier, in order 

to better prepare students for the formal study of algebra in later grades (Cai & Knuth, 

2011).  

The widespread presence of algebra in school mathematics is considered as 

important for at least two more reasons. First, it has been suggested that the 

distinction between arithmetic and algebra deprives meaningful learning of 

mathematics in the early years (Kieran, 1992). Blanton and Kaput (2005) argued that 

the mere focus of elementary mathematics on arithmetic and computational fluency 

dismisses the conceptual development of mathematical ideas. Second, the call for 

reconceptualizing the nature of school algebra from K-12 grades is underlined by the 

belief that algebraic thinking is within the conceptual reach of all students. According 

to Mason, Graham, and Johnston-Wilder (2005), 

Everyone who gets to school has already displayed the powers needed to 

think algebraically and to make sense of the world mathematically. They 

have all generalized and expressed generalities to themselves and others. 

Mari
a C

him
on

i



3 
 

What they need is encouragement and permission to develop those 

powers in a supportive setting (p.ix).  

In this context, algebraic thinking is considered as a wide conceptual field which 

does not coincide with the content of traditional algebra at the secondary grades.  

Since mid-1990s, research that investigated the idea of integrating 

algebraic thinking in the early grades has become intensive. The studies that 

emerged run through cognitive, curricular and instructional perspectives (Kieran, 

2011). Some researchers investigated the nature and components of this kind of 

thinking. Others attempted to specify the content of mathematical activities that 

count as algebraic in the elementary school. Another group of researchers 

reflected on the way by which algebraic thinking might be accessible to younger 

students and developed instructional approaches that demonstrate routes for 

developing algebraic thinking.  Nevertheless, researchers’ efforts to describe 

algebraic thinking through several perspectives are characterized by diversity 

(Carraher & Schliemann, 2007). While available studies in the field are 

considered as ‘groundbreaking’, still many research questions remain open 

(Radford, 2012).  

 The fact that the field of mathematics education has not yet described 

algebraic thinking in a coherent and systematic way, is a serious threat to the 

viability of students’ learning experiences as well as teachers’ knowledge and 

practices. This study addresses this problem by studying what it might mean to 

conceptualize algebraic thinking in order to be concretely seen as central in even 

young students’ mathematical instruction rather that as an advanced skill. 

 

The Problem  

A number of research studies investigated the transition from arithmetic to 

algebra. These approaches were based on the fact that algebra starts where arithmetic 

ends. Filloy and Rojano (1989) provided historical data on the idea of the ‘didactic 

cut’ which takes place as the mathematical thinking moves from arithmetic to algebra 

and students are called to act on unknown terms. Similarly, Herscovics and 

Linchevsky (1994) referred to the ‘cognitive gap’ which is inherent between 
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arithmetic and algebra and it becomes obvious through the weakness of students to 

spontaneously act on the unknown. However, some researchers contended that there 

is not a clear distinction between these two mathematical domains, suggesting that 

arithmetic is inherently algebraic and algebra is inherently arithmetical (e.g. Carraher 

et al., 2006; Lins & Kaput, 2004). For example, pattern activities bring arithmetic and 

algebra together (Radford, 2014). Furthermore, the structural exploration of 

expressions that contain only numbers in arithmetical contexts is a prerequisite for the 

structural exploration of expressions that contain both numbers and letters in algebraic 

contexts (Watson, 2009). In this perspective, there is a need to comprehensibly 

describe the relationship between arithmetic and algebra, in order to avoid teaching 

arithmetic while we are thinking that we teach algebra and vice versa (Radford, 

2014). 

Some researchers attempted to describe the development of algebraic thinking 

by analyzing in detail a sequence of advanced transitions from an operational 

perspective to a structural perspective. (e.g., Mason, 1989; Sfard & Linchevski, 1994; 

Thomas & Tall, 2001). This body of research suggested that achievement of the 

fundamental shift from arithmetical to algebraic contexts is cognitively demanding.  

For example, Sfard and Linchevsky (1994) draw attention to individual learning and 

understanding by questioning the role of “what one is prepared to notice and able to 

perceive” (p.192) when confronts algebraic problems. Their model defined two 

crucial transitions: from the operational conception of a mathematical notion to the 

structural conception (of an unknown) and then to the functional conception (of a 

variable). English and Sharry (1996) took the analysis of Sfard and Linchevsky 

(1994) a step further by suggesting that it is the incorporation of a process of 

analogical reasoning that constitutes a mental tool for extracting differences and 

commonalities between mathematical structures and articulating expressions of 

generality. However, Rivera and Becker (2007) suggested that inductive and 

abductive reasoning have a pivotal role when students investigate the commonality in 

a pattern through the prediction of plausible generalizations. The combination of these 

two reasoning forms prompts the production of conjectures and testable hypotheses in 

order to construct a sustainable generalization. Other studies also suggested that 

solving algebraic problems is closely related to reasoning skills such as inductive 

reasoning (Ellis, 2007; Palla, Potari & Spyrou, 2012) and deductive reasoning 
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(Pedemonte, 2008). It seems then that research offers various views in respect to the 

kind of reasoning forms which seem to affect individuals’ algebraic thinking ability.  

More recently, few studies addressed the need for investigating the correlation 

of skilled performance in algebra to several cognitive factors, implying that innate 

constraints might frame the timing and sturdiness of the transition from the 

operational to the structural understanding of mathematical ideas.  For example, 

Tolar, Lederberg and Fletcher (2009) found that the achievement of college students 

in algebra depends on a person’s computational fluency, 3D spatial ability and 

working memory. Lee, Ng, Ng and Lim (2004) identified that the skill for pre-

algebraic problem solving among 10 years old students is predicted by factors such as 

the central executive, performance IQ, and literacy. In a recent study, Lee, Ng, Bull, 

Pe, and Ho (2011) found that high scores of 6-8 years old students in pattern 

recognition and calculation completely mediate the effects of working memory. 

Fuchs, Compton, Fuchs, Powell, Schumacher, Hamlett, Vernier and Namkung (2012) 

pointed to the influence of non-verbal reasoning and oral language to pre-algebraic 

knowledge. 

While these studies provide considerable insights into the relationship of 

cognitive factors and algebraic thinking, they focused on the investigation of isolated 

cognitive constructs and they do not employ an overarching model of mental 

causation. The findings of this body of research can be informed by unified theories 

of cognitive organization and development, which describe the way by which multiple 

cognitive constructs, including general cognitive factors of mental action, domain-

specialized processing abilities, and reasoning processes, underlie the presence of 

individual differences in achieving understanding within algebraic tasks. Relative 

results from psychological research suggested that is important for education to 

consider comprehensive theories that describe the way the mind causes cognitive 

behavior, since what teachers have at hand are tools that can influence behavior 

(Hunt, 2012).  

Besides the efforts for illustrating the cognitive dimensions of algebraic 

thinking, several studies in the mathematics education literature approached the 

concept of algebraic thinking through epistemological and curricular perspectives. 

However, few of the existing research studies made an attempt for depicting a 
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thorough picture of the field (Carraher and Schliemann, 2007). On the one hand, 

NCTM’s recommendations regarding the content of algebra in K-12 curriculum and 

its application in the mathematics classroom have been considered as general and 

unclear (Howe, 1998). On the other, most of the studies that made an effort to 

describe the notion of algebraic thinking in the early grades (e.g. Kaput, 1998; Kieran 

1996; Kirshner, 2001; Radford, 2000), mix up reasoning processes (e.g. 

generalization and problem solving) with mathematical topics (e.g. functions and 

modeling); this is indicative of the fact that the effort for analyzing algebraic thinking 

is still in its ‘infancy’ (Carracher and Schliemann, 2007). Moreover, it has not yet 

been clarified whether early algebraic thinking represents a distinct domain of study 

or if it is better to be integrated into a more general algebraic terrain that captures the 

teaching and learning of algebra for both younger and older students (Carraher & 

Schliemann, 2007).  

From an instructional point of view, a number of teaching interventions, 

indicated the critical role that instruction might play in providing young learners with 

rich opportunities to develop algebraic concepts from the beginning of their 

mathematical learning. Mathematics education research gradually offered evidences 

that as early as in the elementary grades students are able to develop algebraic 

thinking in appropriate classroom environments (e.g., Blanton & Kaput, 2005; 

Carpenter & Levi, 2000; Carracher, Brizuela & Schliemann, 2000; Irwin & Britt, 

2005; Radford, 2008; Warren & Cooper, 2008). As reported by Watson (2009), these 

teaching experiments include examples of functional approaches, multi-

representational approaches, equation approaches, and generalization approaches. 

However, Watson (2009) characterized the available research in developing 

instructional approaches to algebraic thinking as “patchy” because refers on learning 

in “particular contexts and materials” and not “across contexts and materials” 

(Watson, 2009, p.24). Similarly, Carracher and Schliemann (2007) emphasized the 

need for establishing a solid research basis in order the role of mathematics teachers 

in cultivating algebraic thinking in their classrooms to be clarified. While there are 

findings that demonstrated elementary school students’ capability to think 

algebraically, it seems that research has not established a thorough understanding of 

the way in which algebraic thinking is conceptualized and incorporated in early 

mathematics teaching and learning through appropriate instructional practices. 
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Aim of the Study 

 The aim of this study is the development of a better understanding of the 

notion of algebraic thinking in ways that make sense even in the context of early 

mathematics instruction. In particular, this study aims to describe an overarching view 

of the nature and components of algebraic thinking and analyze the relationship 

between algebraic thinking ability and cognitive factors that affect individuals’ 

behavior. An aim of the current study is also the investigation of promising 

instructional practices that foster the development of algebraic thinking through 

mathematics instruction in the elementary grades. The specific purposes of the study 

are the following:  

a) to empirically test a theoretical model about the components and structure of 

algebraic thinking ability; 

b) to identify and describe classes of students that reflect different levels of 

algebraic thinking ability; 

c)  to investigate the presence of a possible hierarchical trend in the way the 

components of algebraic thinking develop; 

d) to investigate the relationship among students’ algebraic thinking ability and 

various cognitive factors, such as domain-specific processing abilities, 

reasoning forms and general cognitive processes of mental action; 

e) to investigate the impact of two teaching experiments on students’ algebraic 

thinking ability; 

f) to investigate the impact of the interaction between teaching experiments and 

students’ cognitive abilities in their algebraic thinking ability. 
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Research Questions  

This dissertation addresses eight main questions, which define the aim of the 

study: 

1) Which components synthesize 10- to 13-year-old students’ algebraic thinking 

ability and what is the structure of this ability? 

2) Is the structure of students’ algebraic thinking ability the same or different in 

relation to age? 

3) What are the classes of algebraic thinking ability of 10- to 13-year-old 

students? 

4) What are the characteristics of students’ performance in algebraic thinking at 

different classes of ability? 

5)  Is there a consistent hierarchical trend in students’ algebraic thinking ability? 

6) What is the relation of algebraic thinking with domain-specific processes, 

different types of reasoning forms and general cognitive processes of mental 

action?  

7) What kind of instructional practices nurture algebraic thinking in elementary 

school mathematics? 

8) What is the impact of the interactions between the type of teaching experiment 

and students’ cognitive abilities on their algebraic thinking ability? 
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Significance and Originality  

From a theoretical perspective, this study’s significance lies to the fact that 

aims to set a theoretical framework which informs ways that make sense even in the 

context of elementary mathematics instruction, in order to enhance the development 

of algebraic thinking and consequently competence in algebra.  This study’s special 

attention to early mathematics instruction is vital. Although the current research and 

policy discourse requires all levels of mathematics instruction to form a part of an 

integrated instructional program with the purpose to empower students’ algebraic 

thinking, the elementary grades are obviously disjointed from this program. 

Moreover, secondary school students seem to face serious problems in achieving 

higher algebra goals. As evidences from national reports have shown that, about 35% 

of students fail in completing high school algebra courses and 93% of 17th years-old 

students fail in solving multistep algebra problems, (U.S Department of Education, 

2008). Therefore, the fact that the notion of algebraic thinking has not been 

conceptualized in a sensible way in order to be easily integrated into younger 

students’ opportunities to learn mathematics constitutes a serious lack in the way 

mathematics instruction is understood and formulated. This study takes up this 

problem, considering the significance of offering insight into what algebraic thinking 

might means, and what it would take to make algebraic thinking central to elementary 

students’ mathematics instruction. Moreover, this dissertation takes into consideration 

current suggestions for the importance of integrating findings of psychological 

research and mathematics education research and relating models of information 

processing abilities rather than neuroscientific evidence to the process of education 

(Hunt, 2012).   

From a practical point of view, the significance of this study lies to the fact 

that aims to develop a conceptual analytic tool for measuring students’ algebraic 

thinking. This tool can support the detailed description of the components of algebraic 

thinking and the way students perform in each of these components. Furthermore, this 

tool might support the design of materials that can be applied in corresponding 

mathematical activities in the classroom, as well as materials that can be used in 

teachers’ training programs.   
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This study’s originality lies to the fact that aims to parse the notion of 

algebraic thinking in a viable and integrated way which for the first time crosses both 

conceptual, cognitive and instructional contexts. This dissertation takes into 

consideration the suggestions of previous research for not just pushing algebra topics 

of the secondary school down to the elementary school curriculum. As Mulligan, 

Cavanagh and Keanan-Brown (2012) suggested, there is a need for reconceptualizing 

the development of algebraic thinking” (Mulligan, et.al. 2012). The RAND 

Mathematical Study Panel (2003) also pointed to the need for systematically 

investigating the topic of algebraic cognition among students of 6 to 12 years old. 

Similarly, the National Mathematics Advisory Panel [NMAP] (2008) recommended 

the documentation of factors that predict algebra achievement in order to design 

interventions that boost the development of basic skills. Hence, this study’s originality 

lies to the fact that seeks to reconceptualize algebraic thinking by examining its 

association to core mathematical concepts, processes and mental operations in an age 

span that captures late elementary grades and the first grade of the secondary school. 

In doing so, algebraic thinking is approached in a way that is responsive to students’ 

effective understanding.  

In doing so, this study follows calls for adopting teaching and learning routes 

that aspire personal conceptual understanding. In 2005, the UK’s Department of 

Education and Skills presented the initiative Every Child Matters: Change for 

Children in Schools for promoting children’s learning and development. Among other 

suggestions, this text posed that schools should contribute to the well-being of 

children and young people by “helping each pupil to achieve the highest educational 

standards they possibly can” (p. 2). Concurrently, research has highlighted that 

teaching practices should correspond to students’ needs for learning and pace at which 

they learn (Tomlinson, 1999). This study’s originality is based to the fact that special 

attention is paid to the role of individual differences in the development of algebraic 

skilled performance. This study aims to describe the relationship between algebraic 

thinking and students’ cognitive abilities. In addition, concrete instructional practices 

will be provided for enhancing the development of algebraic thinking and personal 

conceptual understanding. These practices might influence curricular changes in 

respect to the teaching and learning of algebra, as well as teachers’ education 

programs. 

Mari
a C

him
on

i



11 
 

The conceptualization of algebraic thinking through a theoretical model that is 

validated by empirical data contributes to theory building in the teaching and learning 

of algebra in the early grades and more broadly to the K-12 mathematics instruction. 

Furthermore, the instructional interventions developed by the study can support the 

design of curriculum materials and provide guidance to elementary school teachers 

for fostering the development of algebraic thinking in their classrooms.  

 

Limitations 

This study aims to describe the notion of algebraic thinking and its 

relationship to cognitive factors. For this reason, several design decisions were 

demarcated. The study examines a relatively selected sample of late elementary 

school students and early secondary school students, in the light of a particular 

theoretical model. Moreover, this study involves quantitative data and corresponding 

analysis techniques.  The investigation of instructional practices that nurture the 

development of algebraic thinking involved two particular theoretical frameworks and 

the approach pursued to collect and analyze data was based on the direct involvement 

of the researcher in conducting the lessons. All these features of the design and the 

implementation of the study enforce limitations on the study, with more significant 

the extent to which its findings might be transferable.  

 

Structure  

The present dissertation is structured into six chapters. The first chapter states 

the problem, the aims and research questions of the intended study. Moreover, the 

significance and originality of the study are reported, suggesting specific theoretical 

and practical contributions.    

In the second chapter, there is a summary of important literature, which 

demonstrates understanding of the research issues and identifies gaps that the current 

research is intended to address. In this chapter, the theoretical framework of the 

current study is analyzed, with reference to key studies which describe the forms that 

algebraic thinking might take in the early grades and studies that investigated the 
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relationship between algebraic thinking and cognitive factors. Furthermore, the 

selection of a specific psychological theory, which was considered as appropriate for 

the investigation of the relationship between cognitive structures and algebraic 

abilities, is justified.    

The third chapter describes the research design and methodology, including 

details about the students, the instruments, the design of the two teaching 

interventions and the research techniques that were employed in the analysis of the 

data.  

The fourth chapter presents the results that emerged from the analysis of the 

data, with reference to the validation of the proposed model about the components and 

structure of algebraic thinking, and the presence of different classes of students 

regarding their algebraic thinking abilities. The results about the relationship of 

algebraic thinking with domain-specific processing abilities, reasoning processes and 

general cognitive factors of mental action are also reported. Additionally, this chapter 

descries the impact of the two teaching interventions on students’ algebraic thinking 

abilities.  

The fifth chapter discusses the results of the study and attempts to capture a 

holistic view of the nature of algebraic thinking. Specifically, a unified model of the 

quantitative results is presented which informs about the components and structure of 

the notion of algebraic thinking, its relationship with cognitive characteristics of the 

individuals and effective instructional practices for empowering algebraic thinking in 

the elementary grades. 

The sixth chapter includes the conclusions of the current study, theoretical, 

methodological and practical implications, as well as suggestions for future research.  
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Definition of Concepts 

Algebra.  Several definitions of algebra can be found in the mathematics 

education literature. A key aspect, which is involved in almost every description of 

algebra, is the concept of generalization. Watson (2009) defines algebra as “the way 

we express generalizations about numbers, quantities, relations and functions” 

(Watson, 2009, p.3). Nevertheless, generalization seems to be only one of the multiple 

dimensions of algebra.  Kaput (1995) identified five aspects of algebra: generalization 

and formalization, syntactically guided manipulations, the study of structure, the 

study of functions, relations and joint variation, and modeling language. NCTM 

(1998) stated that the content of school algebra could be analyzed in four organizing 

themes: functions and relations, modeling, structure, and language and representation. 

Howe (2005) also defined algebra by making references to ideas such as working with 

variables, representation and modeling of situations, manipulating expressions and 

equations, uncovering algebraic structure in arithmetical formations.  The current 

study will adopt a definition of algebra which was developed by Mason, Graham, and 

Johnston-Wilder (2005) and which seems to summarize the many of the possible 

approaches to the meaning of algebra reflected in literature. This involves four 

interrelated strands:  

i. expressing generality and fostering an awareness of generality,  

ii. encountering multiple expressions for the same generality, 

iii. experiencing ‘freedom’ when symbols are used as yet-unknowns or as yet-

unspecified quantities and ‘constraint’ when these have to be placed in 

specific equations or inequalities and manipulated through particular methods, 

and  

iv. experiencing structure which leads to express in general both the rules of 

arithmetic and the rules for manipulating algebraic expressions. 

 

Algebraic thinking.   The terms algebraic thinking and algebraic reasoning 

are used interchangeably within mathematics education literature. However, Kieran 

(2011) emphasized the need for adopting the term algebraic thinking instead of the 

term algebraic reasoning; using the term algebraic reasoning points to a confined 

conceptual field, comparable to other types of mathematical reasoning such as 

Mari
a C

him
on

i



14 
 

deductive, abductive, inductive and analogical reasoning. Thus, the broader term of 

algebraic thinking seems to be more appropriate for considering its multifaceted 

notion and components.  

In this study, the term algebraic thinking will be used, in order to reflect the 

effort for uncovering its complex nature and multiple components. Algebraic thinking 

is considered as a wide-ranging field of concepts which does not merely coincide with 

what we already know and teach as school algebra. Specifically, algebraic thinking 

refers to the presence of ‘psychological processes’ in the process of solving problems 

which mathematicians would solve by applying formal algebraic symbolization 

(Carraher & Schliemann, 2007,). One of the main aims of the current research is to 

precisely describe which psychological processes are related to the notion of algebraic 

thinking.  

 

Early algebra. Given the emphasis of this study on the development of 

algebraic thinking as early as the elementary grades, the term early algebra will be 

used for referring to the possibility of making algebra and algebraic thinking central 

to all students’ mathematical experiences through the grades. This approach is 

underlined by the view that algebra and algebraic thinking ought not to follow 

arithmetic. The development of algebraic thinking should be fostered along all 

mathematics lessons and not purely at the time that specific aspects of algebra are 

introduced (Lins & Kaput, 2004).  In this context, the term early algebra is 

distinguished from the term pre-algebra.  Pre-algebra approaches “do not question the 

sequence of arithmetic first, algebra later”, (Carraher and Schliemann, 2007, p. 675). 

This kind of lessons aimed to properly prepare students usually of the ages between 

12 to 14 years old on basic concepts, such as equality and variable. Their purpose was 

to eliminate the difficulties that students could encounter on the formal study of 

algebra in later grades. In contrast, early algebra approaches suggested the integration 

of algebra and algebraic thinking across all grades and all topics. Kaput (1998) 

recommended that school mathematics should be ‘algebrafied’. This does not mean 

that traditional algebra topics should be moved down to the elementary mathematics 

but requires a coherent conceptualization of the nature and components of algebraic 

thinking as well as a re-examination of when specific algebraic ideas should be 
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introduced to the students (Knuth, Alibali, McNeil, Weinberg & Stephens, 2005). 

This view is developed throughout the present study.   

 

Domain-specific processing abilities.  Domain-specific processing abilities 

refer to the processes that underlie problem solving in specific domains of thought. 

Each of these processes is specialized at the representation, intellectual management, 

treatment and comprehension of concrete sectors of knowledge of the environment. 

(Demetriou, Spanoudis and Mouyi, 2011). 

 

Reasoning processes. Reasoning processes are applicable when meanings are 

transferred from one representation to another. Reasoning by induction, deduction, 

analogy and abduction are some of the different inferential mechanisms that are used 

during the transfer of information from an initial representation to a target 

representation. These types of reasoning are related to each other by common 

inferential processes which emerge as a separate level in hierarchical models of 

cognition (Demetriou, Spanoudis and Mouyi, 2011). 

 

General cognitive factors. General cognitive factors are related to the 

processes that underlie problem solving across different domains. For example the 

mechanisms of working memory, control of processing and speed of processing are 

considered as general cognitive factors. This group of cognitive factors includes time 

parameters regarding the processing of information for solving a problem, speed by 

which the treatment of stimulus is activated, as well as the examination of the 

relativity of incoming information to the main objective (Demetriou, Spanoudis and 

Mouyi, 2011). 
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CHAPTER II 

 

Literature Review 

 

Introduction  

NCTM’s Principles and Standards (1989) advocated algebra as the keystone of 

mathematics reform, suggesting that algebra experiences through K-12 curriculum 

will empower elementary students’ learning with understanding and reduce secondary 

students’ difficulties in learning formal algebra (NCTM, 2012). Since then, research 

in the field of algebra and early algebra is rapidly evolving. Nevertheless, this field is 

characterized by diversity, reflecting multiple research perspectives (Kieran, 2011). 

The first part of the theoretical framework of this study is structured into three 

sections, aiming to capture three different perspectives within which previous 

research has been developed. The first section summarizes literature that is concerned 

with describing the concepts of algebra, early algebra, and algebraic thinking. The 

second section refers on the ways by which research, both from the discipline of 

mathematics education and the discipline of psychology, approached the notion of 

algebra, early algebra, and algebraic thinking from a cognitive perspective, including 

developmental aspects and cognitive factors that affect algebraic thinking. In the third 

section, research which provides insights into pedagogical factors that play a role in 

supporting the development of students’ algebraic thinking will be reported, including 

teachers’ instructional practices, curriculum materials, and technological tools. The 

second part of the theoretical framework is focused on psychological research and 

theories of mental causation which might help educators and researchers in better 

understanding students’ mathematical learning and behavior. In particular, the 

overarching theory of the architecture and development of the mind (Demetriou, 

Spanoudis & Mouyi, 2011) is thoroughly described, as well as research studies within 

mathematics education which provide support on the educational implications of this 

theory. Figure 2.1 presents the structure of the theoretical framework of the study. 
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PART A

The notions of algebra, early algebra, and 
algebraic thinking

1. Conceptualizing algebraic 
thinking 

- The traditional distinction between 
arithmetic and algebra

- Students' difficulties in learning 
algebra

- Pre-algebra

- Early algebra

- Algebraic thinking

- Theories about the core aspects of 
algebraic thinking or algebraic 
activity (Kaput, 2008; Kieran, 1996)

- Algebraic thinking, reasoning, and 
proof

2. Algebraic thinking from a 
cognitive perspective

- Developmental aspects of algebraic 
thinking

- Cognitive factors that affect algebraic 
thinking

3. Algebraic thinking from an 
instructional perspective

- Equation-centered approaches

- Functional thinking approaches

- Modeling situation approaches

PART B

Psychological research on mental causation

1. Theories of mental causation

- Case's theory

- Luria's  theory

- The overarching theory of the 
architecture and development of the 
mind (Demetriou, Mouyi & 
Spanoudis, 2011)

2. The overarching theory of the 
architecture and development of the 
mind

- Specialized structural systems

- Representational Capacity System

- Inference system

- Counciesness system

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2.1.  The structure of the theoretical framework of the study. 
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Conceptualizing Algebraic Thinking  

The traditional distinction between arithmetic and algebra. The notion of 

algebra has traditionally been associated with secondary school mathematics. The 

arithmetic then algebra tradition has been predominant in the mathematics curricula of 

most countries, indicating the belief that “Historically, algebra grew out of arithmetic 

and so it ought to grow afresh for each individual” (British Mathematical Association, 

1929, p. 219: in Lins & Kaput, 2004). Moreover, this teaching and learning trajectory 

was justified by the idea that arithmetic is more concrete and easy for students, where 

algebra is more abstract and difficult (Lins & Kaput, 2004). Following Piaget’s 

developmental trajectory, algebra was associated with higher developmental stages 

because the abilities required for achieving high performance in algebra were related 

to formal thinking. For example, Davies (1975, 1984) highlighted the complexity that 

underlines fundamental algebraic activities such as solving linear equations in relation 

to performing simple arithmetical operations.  

During the decade between 1980s and 1990s, several research studies (e.g., 

Booth, 1981) made an attempt for defining algebra by introducing the notion of 

‘generalized arithmetic’. This approach, which refers to the use of letters for 

expressing general rules of arithmetic, can still be found in algebra research of the 

present (Kieran, 2006). Kuchemann (1978, 1984) was among the first who attempted 

to uncover the nature and content of algebra through the investigation of its 

arithmetical foundations. Furthermore, Kuchemann combined the idea of generalized 

arithmetic and Piagetian levels of intellectual development, suggesting that the 

transition of students through levels of using symbols within arithmetical contexts is 

under the control of cognitive constraints. The standpoint that depicted a cognitive 

gap between arithmetic and algebra was further strengthen by mathematics education 

research during 1980s. These studies highlighted the difficulties that middle and high 

school students face during their algebra courses (e.g. Booth, 1981; Kieran, 1981; 

Vergnaud, 1985). 

 

Students’ difficulties in learning algebra. Various researchers pointed to the 

difficulty of understanding the meaning of the equals sign. Where in arithmetic the 

equals sign means that a calculation must be operated, in algebra the equals sign has a 
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bidirectional role. The use of letters as generalized numbers or as variables is also a 

hurdle for middle school students. For example, students easily perform the operation 

6 + 4 = 10 but not easily understand that a + b = c is a mathematical expression for 

representing an additive relation. Furthermore, students struggle to manipulate 

mathematical expressions that contain both letters and numbers [e.g. 4(x + z)]. In this 

case, numbers are not involved in calculations but they are treated structurally in the 

same way as letters. Another difficulty of the students is the application of the 

commutative and distributive properties (Wagner, 1981). For example, in arithmetical 

contexts, the expression 4 + b = 7 can easily be solved by retrieving previous 

knowledge on the bonds facts. However, 178 + y = 213 is simpler to be solved by 

applying the commutative property.  

Some researchers attributed the difficulties that middle and high school 

students face in algebra to the inadequate cognitive development of the students. 

Filloy and Rojano (1989) referred to the discontinuity among arithmetic and algebra 

with the term ‘didactic cut’.  Specifically, they suggested that when students deal with 

equations of the form ax + b = c, where a, b, and c are numbers, by applying the 

commutative property, they operate through arithmetical perspectives. On the 

contrary, when students confront equations of the type ax + b = cx + d, where they 

have to manipulate both each side structurally and the concept of the equals sign, they 

operate through algebraic perspectives. Specifically, in this kind of equations students 

have to consider the unknown quantities as if they were known (Radford, 2012). 

According to Filloy and Rojano (1989), these two situations are disjoint due to 

developmental limitations of the students. Similarly, Herscovits and Linchevski 

(1994) analyzed the differences between arithmetic and algebra with the term 

‘cognitive gap’. 

Following these ideas, many researchers support that students should not be 

introduced to algebraic notation before they are developmentally ready (e.g. 

Linchevski, 2001). Sfard (1992) argues that students will encounter algebra through 

an operational outlook and then move to more structural conceptions of algebra. For 

this reason, algebra education should start from an operational perspective instead 

from a structural perspective. Moreover, most curricula around the world had placed 

arithmetic before formal algebra teaching. In addition, learning and succeeding in 

traditional algebra was considered as a privilege of the more skilled students. Students 
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who were not ready were designated to fail in algebra courses. As Kieran (1992) 

reports, many students experience difficulty in learning algebra. Indicative of this fact 

is a quotation from NRC (1998) where first year algebra courses in the United States 

are characterized as “an unmitigated disaster for most students (p.1).  

 

The notion of Pre-algebra. Acknowledging the intrinsic epistemological 

differences between arithmetic and algebra and the abrupt appearance of formal 

algebra in the high school, many researchers sought for interventions that would 

diminish students’ difficulties. Specifically, the aim of these studies was to develop 

transitional levels of teaching and learning which would assist students to smoothly 

pass from arithmetical perspectives to algebraic perspectives. Nevertheless, these 

approaches “do not question the sequence of arithmetic first, algebra later” (Carraher 

and Schliemann, 2007, p. 675).  Their rationale is based on the idea that algebra is 

associated, almost exclusively, with high school mathematics and that students could 

better be prepared for these courses if they had the opportunity to investigate the 

meaning and use of symbols during their mathematical experiences in the middle 

school. 

This kind of studies includes lessons with students of the ages between 12- to 

14- years old. Their content is focused on basic concepts, such as equality and 

variable. For example, Herscovits and Kieran (1980) developed teaching approaches 

for helping seven and eight grade students in understanding the notion of equality and 

transforming arithmetical expressions into algebraic equations. Vergnaud (1985), 

working with eighth and ninth graders, designed activities with two-plate balance 

scales for exploring the meaning of equality. More recently, Kieran and Saldanha 

(2005) used a Computer Algebra System, known as CAS, for helping ninth graders in 

exploring different meanings of the equals’ sign, such as equivalence as a condition 

which gives equal values for a range of input values of the variables, and equivalence 

as the condition where expressions are transformations of the same form. 

Besides the equation-centered approaches, some studies within the perspective 

of pre-algebra focused on the notions of generalization, number patterns, and 

functions. Kieran and Sfard (1999) pointing to the equivalence between forms of 

functional expressions, used a graphical function approach. In their tasks, students 
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were enabled to observe that equivalent algebraic representations generate the same 

graphs and hence represent the same relationships between variables. The teaching 

and learning of variables also seemed to be empowered through instruction that makes 

use of software environments. For example, Healy, Hoyles, and Sutherland (1990) as 

well as Ursini (1994, 1997, 2001) used LOGO environments for indicating the idea of 

generalization within algebraic representations. Sutherland and Rojano (2003) 

engaged students of 10 years old in spreadsheets activities in order to work with 

undetermined quantities as if they were known and operate on them. Yerushalmy and 

Schwartz (1993) and Schwartz (1996) emphasized the important role of software 

environment which combine multiple forms of representations, such as algebraic 

notation, graphs, and natural language for enhancing students understanding on the 

meaning of functions. In particular, Schwartz indicated the value of this kind of 

software in enabling students to flexibly switch between different kinds of 

representations.  

A more recent study of Knuth et al. (2005) examined middle school students’ 

understanding of two fundamental algebraic concepts, equivalence and variable. Their 

conclusions highlighted the importance of preparing students at the time they entry 

middle school grades, by linking their prior arithmetical knowledge to early algebraic 

thinking. This kind of interventions is considered as pivotal for succeeding when they 

study formal algebra. Furthermore, understanding equivalence and variable through 

the participation of the students in pre-algebraic mathematical experiences was found 

to be related to their performance in solving problems where these two ideas are used.   

To recap, research within the context of pre-algebra recognizes the minimal 

preparation of the students for abstract algebra courses in the high school as 

problematic. The findings obtained from this kind of studies highlighted the 

importance of exploring the ideas of equation, equivalence, and variable through 

various perspectives. Nevertheless, pre-algebra approaches were mainly focused on 

interventions that take place in the middle school and strongly accepted that 

arithmetic’s place in the mathematics curriculum is prior to algebra’s place.  

 

The notion of Early Algebra. Similar to pre-algebra approaches, the strand of 

early algebra also advocates that many students experience difficulties in learning 
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algebra. Nevertheless, early algebra approaches are tilted in favor of the idea that 

young students are expected to face difficulties at the time they entry the secondary 

grades due to the fact that no meaningful learning occurs while they study 

mathematics in the elementary school. In this perspective, early algebra research 

focused on ways and content for introducing algebra as early as the first or second 

grades rather than the sixth or seventh grades (Lins & Kaput, 2004). More recently, 

studies with kindergarten students demonstrated that early algebra can also become a 

part of 5-years old students’ mathematics education (e.g. Mulligan, English & 

Mitchelmore, 2008). 

At the end of the 1980s, researchers began to sturdily support the idea of 

reforming the mathematics curriculum in favor of re-examining the content of algebra 

and identifying ways for introducing core algebraic concepts at the primary grades 

(Kieran, 2004).  Davies (1985, 1989) was among the first who emphasized the need 

for integrating algebra in the mathematics curriculum for grades 2 or 3. Schoenfeld 

(1995) also stressed out that algebra should be spread throughout the curriculum 

instead of being taught at the middle or high school levels (Algebra Initiative 

Colloquium Working Group, La Campagne, 1995). Kaput (1998) has argued that 

algebra is the gateway to K-12 mathematics reform for the next century” (p.134) and 

highlighted the significance of teachers’ abilities in enhancing students’ opportunities 

for developing algebraic thinking. Similar to researchers’ proposals, the NCTM 

Standards (2000) underlined the need for introducing activities that empower 

algebraic thinking abilities of the students from the start of their mathematical 

learning.  

The idea of examining the introduction of students to algebra at a much earlier 

age instead of restricting its teaching and learning to specific grades or lessons 

sequences seems to gain ground in the mathematics education discourse. This 

approach rejects the belief that algebra starts where arithmetic ends only because 

algebra historically emerged after arithmetic. Moreover, early algebra supporters 

discard the value of introducing a transitional period in-between arithmetic and 

algebra courses where pre-algebra lessons will bridge topics of algebra and arithmetic. 

On the contrary, it is strongly supported that students’ failure in understanding 

algebraic concepts might be rooted to the absence of opportunities for extending 

mathematics that students are taught during the elementary grades in order to 
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encompass algebraic thinking and especially the concept of generality (Blanton & 

Kaput, 2011). Specifically, the aim of early algebra is considered to be the 

introduction of young students to ways of thinking algebraically which progressively 

become more formal and make use of algebraic symbolism for expressing, 

establishing and justifying their ideas (Blanton, Levi, Crites & Dougherty, 2011).   

A number of researchers analyzed the way by which specific arithmetical 

contexts might be interwoven with algebraic contexts. For example, it has been 

suggested that the concept of function could be introduced while students investigate 

problems of addition (Carraher, Schliemann, Brizuela & Earnest, 2006). The 

expression +3 represents not only an operation on a specific number but also the 

relationship that connects input and output values (e.g. f(x) = x + 3) or mapping 

notation of the type x  → x + 3. In the context of these possibilities, the objects of 

arithmetic can be used as both particular and general. Furthermore, algebraic concepts 

seem to be not just an extra and optional topic but essential in order students to 

achieve conceptual understanding in mathematics. As Carraher et al. (2006) state 

“…arithmetic has an inherently algebraic character in that it concerns general cases 

and structures that can be succinctly captured in algebraic notation” (p. 89).   

Despite the current emphasis of research on early algebra, and the 

corresponding suggestions made by curriculum designers and policy makers, still 

many questions remain unanswered. For example, the capability of young learners for 

learning algebraic concepts has not yet been defined (Carraher et al., 2006). The 

ability of the teachers for teaching algebra in the elementary grades is also a matter of 

discussion (Carraher and Schliemann, 2008). Still, the content of algebra within early 

grades have not been coherently defined. Kieran (2011) referred to Subramaniam and 

Banerjee (2011) who note that arithmetic needs to be viewed with ‘algebra eyes’ and 

to Blanton and Kaput (2008) who describe the phenomenon of ‘algebrafying’ 

mathematics curriculum as efforts for nurturing classroom norms where the 

mathematical processes of argumentation, conjecture and justification occur. 

According to Kieran, combining these two ideas together, a picture of routes for 

developing algebraic thinking in early grades is depicted; nevertheless, emerging 

research in the field demonstrates that routes towards early algebra involve much 

more than these two aspects. 
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The notion of algebraic thinking. Research in mathematics education assigns 

considerable importance to the development of algebraic thinking as a way for 

approaching algebra within the early grades. There is a widespread acceptance of the 

distinction of algebraic thinking from what we already know and teach as school 

algebra. Moreover, algebraic thinking is considered to be within the conceptual reach 

of all students and vital for their participation in society (Mason, Graham & Johnston-

Wilder, 2005). For this reason great importance has been given to the development of 

algebraic thinking across the grades instead on the teaching and learning of algebra 

through traditional courses in the middle or high school (NCTM, 2000). As it is has 

been emphasized by Kaput (1999), definitions of algebra that are based on what we 

were teaching in schools during the last century “is one of simplifying algebraic 

expressions, solving equations, learning the rules for manipulating symbols, the 

algebra that almost everyone, it seems, loves to hate” ( p.134). Algebraic thinking is 

unquestionably a broader conceptual field rather than a list of specific tasks.  

This idea raised the important issue of which are the aspects of algebraic 

thinking both in the primary and secondary education. A considerable number of 

research studies described the kinds of meaning secondary students make when they 

are engaged with algebraic tasks either through constructivist / cognitive or social / 

cultural frameworks (Kieren, 2007). More recent research focused on the 

development of young learners’ algebraic thinking (e.g., Irwin & Britt, 2005; Warren 

& Cooper, 2008; Zaskis & Liljedahl, 2002). While both of these bodies of research 

provided important advances to the field, it has not yet been clarified whether early 

algebraic thinking represents a distinct domain of study or if it is better to be 

integrated into a more general algebraic terrain that captures the teaching and learning 

of algebra for both younger and older students (Carraher & Schliemann, 2007).  

Several researchers made efforts to analyze the nature and content of algebraic 

thinking, focusing on what individuals do and how their abilities for generalizing and 

using symbols develop. Lins (1990) declared that algebraic thinking refers to an 

intended shift from real or mathematical contexts to structure. This process 

encompasses an emergent competence of the individuals for understanding and using 

symbols.  Kaput (1998) also emphasized the process of symbolization, and the need 

for using symbolic expressions in order to establish and justify generalizations. Kieran 

(1996) offered a slightly different view by arguing that algebraic thinking is not only 
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about using symbols in order to express generality; algebraic thinking arises when 

individuals make use of any kind of representations when they try to manipulate 

quantitative situations in a relational way (in Kieran, 2011).  

 Radford (2000) examined more systematically the ways by which 

generalization might be expressed and highlighted that algebraic thinking is not 

merely apparent when a precise symbolic language is acquired and applied by the 

students.  Similar to Kieran, Radford (2000) suggested that algebraic thinking entails 

efforts of the individual to represent generality in certain ways. The identification of a 

functional relationship constitutes the first step in the process of generalization, where 

its expression is a further process that does not necessarily involve standardized 

mathematical symbols; it is a process with semiotic and symbolic nature, where 

social-linguistic elements of the culture of the individual are inducted to mathematical 

activities. Consistently, most authors place important role to the natural language as a 

tool for representing algebraic relations in primitive stages of algebraic thinking 

development (Carraher & Schliemann, 2007).  

Furthermore, Radford (2004) added to the field by clarifying the importance of 

“semiotic mathematical and non-mathematical” systems in students’ production of 

meaning when they encounter algebraic tasks. In particular, Radford (2004) specified 

that there are three sources of meaning in algebraic activities; (a) the algebraic 

structure itself (e.g. the letter-symbolic representations), (b) the problem context (e.g. 

word problems, modeling activities) and (c) the exterior of the problem context (e.g. 

social and cultural features, such as language, body movements, and experience). 

Kieran (2007) reflected on Radford’s conceptualization of meaning in algebraic 

activity, by suggesting that the first source also involves mathematical 

representations, such as graphs and tables; students could draw on multiple 

representations in conjunction with letter-symbolic representations for producing 

meaning in algebraic tasks. 

Other definitions of algebraic thinking were focused to one or more aspects of 

school algebra. Driscoll (1999) contends that algebraic thinking refers to the ability 

for manipulating quantitative expressions in a way that functional relationships are 

expressed and justified. This definition is linked to the aspect of manipulating 

variables and functions. Swafford and Langrall (2000) asserted that algebraic thinking 
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refers to the individuals’ ability for manipulating unknown quantities as if they were 

known. This approach is more closed to the aspect of manipulating and transforming 

symbolic statements. Likewise, Schmittau (2005) emphasized that a starting point for 

developing algebraic thinking among young learners is reasoning about relations 

between undefined quantities, if these can be handled and compared. For example, 

individuals are able to understand that if a>b and b>c then a>c, even if they don’t 

know the values of a, b, and c.  

This kind of demarcations define in a great extend the differences between 

arithmetical thinking and algebraic thinking. Where arithmetical thinking is dedicated 

on giving specific quantitative results, algebraic thinking is dedicated to the process 

and structure of a mathematical operation (Malara & Navara, 2003).  Radford (2012) 

draw on the findings of previous research (e.g., Filloy and Rojano 1989; Filloy, 

Rojano, and Puig 2007; Kieran1989), for summarizing the main conditions that 

require the application of algebraic thinking rather than arithmetical thinking: (a) 

‘indeterminacy’: the problem involves unknowns numbers; (b) ‘denotation’: the 

unknown numbers involved in the problem have to be symbolized; (c) ‘analyticity’: 

the unknown quantities are treated as if they were known numbers. In this context, the 

students start solving the problem by operating on the unknowns (i.e., applying 

addition, subtraction, multiplication or division) as if they were known. 

Mason and Sutherland (2002) in an attempt for distinguishing algebraic 

thinking from algebra as appears in school textbooks, offered a description of 

algebraic thinking which reflects essential abilities for future employees or university 

students. Specifically, they argue that algebraic thinking involves; (i) formulating, 

transforming and understanding generalizations, not only in numerical contexts but 

also in spatial relations, (ii) using symbolic models for predicting and representing 

mathematical or other situations, and (iii) controlling and using spreadsheets, 

graphing, programming, and database software.  

The previous examples reveal the diversity of approaches through which 

researchers depicted algebraic thinking. Most of them focus on specific dimensions of 

this multifaceted notion. Nevertheless, they all seem to agree that algebraic thinking 

‘is not all about literal symbols but rather is about ways of thinking’ (Kieran, 2011, 

p.591). 
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Theories about the core aspects of algebraic thinking or algebraic activity. 

Despite increased emphasis on the notion of algebra in school mathematics, little 

research has focused on comprehensively clarifying the meaning of algebra in this 

context, and even less research has attended to this issue in the elementary grades, 

where algebra has traditionally had a limited role. Bell (1996) offered a particularly 

useful conceptualization of algebra as a means to express generalizations, relations, 

and formulas; represent unknowns; and solve equations. Usiskin (1998) analyzed 

algebra into four conceptions: generalized arithmetic; the set of processes used for 

solving certain types of problems; the study of relationships among quantities; and the 

study of structures. Kaput (1995) reported in his early studies five aspects of algebra: 

generalization and formalization; syntactically guided manipulations; the study of 

structure; the study of functions, relations and joint variation; and a modeling 

language.  

More recent conceptualizations of algebra have been offered by Mason, 

Graham, and Johnston-Wilder (2005) and Drijvers, Coddijn, and Kindt (2011). 

According to Mason et al. (2005), the roots of algebra are found in: expressing 

generality; using and manipulating multiple expressions for the same generality; using 

symbols for denoting unknowns or unspecified quantities; and expressing structure as 

a result of expressing the general rules of arithmetic. Drijvers et al. (2011) described 

three main components of algebra: making generalizations through the exploration of 

patterns and formulas; solving equations and in-equalities with reference to specific 

constraints; investigating functional relationships. 

The strands of algebra, as these are reflected through the above studies, 

provide a guide that informs the design and organization of mathematical lessons. 

However, all these strands do not merely synthesize a school subject. In an effort to 

address this misinterpretation, Lee (1997) interviewed a number of mathematicians, 

teachers, students, and researchers in respect to the question of what is algebra. As he 

highlighted, one of the themes that appeared to prevail all others was the 

interpretation of algebra as activity. One of the most influential developments of the 

past decades in respect to conceptualizing the notion of algebra as an activity is 

Kieran’s (1996) model for synthesizing the activities of school algebra. This model 

encompasses three types of activities; “generational” activities, “transformational” 

activities, and “global, meta-level” activities. 
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i. The Generational activities refer to the generation of equations and 

expressions from various situations. These are considered as objects of 

algebra. More specifically, the Generational activities involve: (a) exploration 

of problem situations leading to the formation of equations containing an 

unknown, (b) exploration of numerical or geometrical patterns leading to the 

formation of generalizations, (c) exploring numerical relationships leading to 

the expression of rules. The field of Generational activity is associated with 

the role of algebra as a linguistic system for expressing meaning or as a habit 

of mind (Kieran, 2007).  

ii. The Transformational activities refer to the transformation of expressions by 

applying specific rules. For example, these activities involve collecting like 

terms, factoring, expanding, substituting one expression for another, adding 

and multiplying polynomial expressions, exponentiation with polynomials, 

solving equations and inequalities, simplifying expressions, substituting 

numerical values into expressions, working with equivalent expressions and 

equations. Kieran (2007) emphasizes that this kind of activities are not simply 

skill-based. They are not just a set of techniques but they involve conceptual 

understanding of algebraic objects. 

iii. The Global/meta level activities refer to activities which are not strictly 

algebraic in nature but where algebra is an essential tool for investigating and 

understanding their meaning. These activities include more general 

mathematical processes, such as problem solving, modeling, and working with 

generalizable patterns, justifying and proving, making predictions and 

conjectures, studying change in functional relationships, identifying structure. 

These activities do not necessarily involve the representation of relationships 

in a symbolic way.  

Kieran’s (1996) model for conceptualizing algebraic activity denotes that 

algebra is not just a topic in mathematics curriculum. It is rather a multifaceted 

activity which encompasses various types of tasks and ways of thinking. Algebraic 

thinking in particular is considered as an approach to quantitative situations which 

seeks to look for relationships and structure with means that are not strictly letter-

symbolic. In this sense, algebraic thinking is a way for introducing students to the 
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more abstract aspects of formal algebra (Kieran, 1996). Nevertheless, as Kieran 

(2004) pointed out, this model, as well as all of the previous studies reported in this 

section, was developed in the perspective of understanding the kinds of meaning that 

secondary students make when they are engaged with algebraic tasks. No direct link is 

made to the notion of early algebra. In a more recent paper, Kieran (2004) declared 

that early algebraic thinking is interrelated to the Global meta-level of algebraic 

activity. According to Kieran (2004), the processes involved in Global-meta level 

activities are considered as appropriate for the introduction of young learners to 

algebraic thinking, since they do not require the use of letter-symbolic forms but they 

provide opportunities for developing algebraic ways of thinking which will be later 

introduced more formally through Generational and Transformational activities. 

Blanton and Kaput (2005) offered a slightly different perspective from that 

offered by Kieran (2004) (in Kieran, 2011). While Kieran (2004) argued that younger 

students could be engaged in Global/meta-level activities without the use of letter-

symbolic forms, Blanton and Kaput (2005) placed an emphasis on the process of 

establishing, systematically expressing and justifying generalizations in increasingly 

more formal forms. Moreover, they highlighted that expressing generalizations with 

symbols depends on students’ age and level. Kaput (2008) further offered a more 

coherent definition of algebraic thinking by specifying that there are two core aspects 

of algebraic thinking: (i) making generalizations and expressing those generalizations 

in increasingly, conventional symbol systems, and (ii) reasoning with symbolic forms, 

including the syntactically guided manipulations of those symbolic forms. In the case 

of the first aspect, generalizations are produced, justified and expressed in various 

ways. The second aspect refers to the association of meanings to symbols and to the 

treatment of symbols independently of their meaning.  The second aspect develops 

after the first aspect since students need first to explore and understand the situations 

where generalization occurs and then to apply specific associations of symbols. Kaput 

(2008) asserted that these two aspects of algebraic thinking denote reasoning 

processes that are considered to flow through varying degrees throughout three 

strands of algebraic activity: (i) generalized arithmetic, (ii) functional thinking, and 

(iii) the application of modeling languages for describing generalizations. 

This conceptualization breaks down the wide field of algebraic thinking into 

major components of mathematical activity that can be integrated into teachers’ 
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instructional practices. Kaput’s (2008) ideas articulated ways in which algebraic 

activities might be applied both in early algebra and secondary school algebra 

contexts. Moreover, this breakdown of algebraic thinking into specific strands seems 

to be helpful in organizing and synthesizing research studies that worked out different 

dimensions of algebraic thinking and tackling their relation to mathematical thinking 

and application at a classroom level. 

The strand of Generalized arithmetic points to the traditional association of 

algebra with arithmetic. Specifically, it is asserted that understanding arithmetic 

requires thinking relationally about operations and their properties (Empson, Levi & 

Carpenter, 2011). Brit and Irwin (2011) also support that investigating operations in a 

relational way supports understanding in arithmetic, since arithmetical operations and 

equations are not only viewed as processes for calculation but as relational objects. 

Unpacking numerical operations and equations by using their properties are 

considered as fundamental parts of early algebra, where thinking relationally about 

relationships that are expressed with literal symbols is found at the secondary school 

level (Kieran, 2011). Hence, it is suggested that mathematics educators can organize 

instructional activities for helping students to become aware of the structure 

underneath arithmetic (e.g. Carpenter, Franke, & Levi, 2003). Accordingly, 

generalized arithmetic as a way for applying algebraic thinking in arithmetical 

settings involves: 

i. using letters for generalizing rules about relations between numbers; 

ii. manipulating operations and exploring their properties; 

iii. generalizing numerical patterns; 

iv. transforming and solving equations ; 

v. understanding the equals sign in number relations. (Kaput, 1995; 

Blanton & Kaput, 2005) 

Algebraic thinking as Functional thinking refers to the identification and 

description of functional relationships between independent and dependent variables. 

This approach focuses on the concepts of change and variation in situations and 

contexts as well as on the representation of relationships between variables (Kieran, 
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2011). For example, what makes a patterning activity algebraic in nature is the shift 

from thinking about particular quantities to extracting and using a rule or calculation 

method (Radford, 2011). Blanton and Kaput (2005) included in this category the 

development of symbol sense in order to symbolize quantities for modeling problems 

and operating on symbolized expressions. Functional approaches also involve: 

i. the use of function machines where students give instructions by writing 

operations and using algebraic symbolization; 

ii. comparing multiple representations in order to understand problems about 

rates of change (graphs, equations, tabular data) (Booth, 1984). 

 

Blanton (2011) suggested that mathematics educators need to consider the 

capability of elementary schools students to reason about functions and potentially 

foster the improvement of their performance by organizing appropriate instructional 

activities.  Several studies (e.g. Blanton 2008; Brizuela and Schliemann 2003; 

Carraher et al. 2008; Kaput and Blanton 2005; Moss et al. 2008) proposed that young 

students are able to use different forms of representations for being successfully 

engaged with functional thinking, they can describe relationships of recursion, 

covariance and correspondence by using symbols and words, and they can apply 

symbolic language for solving problems with unknown quantities. 

The third strand of algebra, Modeling is described as the engagement of the 

learner in the expression and formalization of generalizations from mathematized 

situations inside or outside mathematics (Blanton & Kaput, 2005). From this 

perspective, algebraic thinking can be used as a conceptual tool for exploring 

modeling problems that are derived from complex realistic situations or phenomena. 

 

The conceptualization of modeling encompasses components of algebraic 

thinking. For example, the representation of a realistic situation involves: 

i. using symbols for developing the model; 
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ii. using isomorphism for illustrating the correspondence between the 

model and the situation; 

iii. manipulating variables either in the model or the situation; 

iv. re-translating the transformations between the situation and the model 

(Watson, 2009b). 

Blanton and Kaput (2005) stated that the application of modeling languages 

for describing generalizations is a form of algebraic thinking that is less common to 

the students of the elementary grades. Modeling seems to share common features with 

what Kieren (19960 has described as Global/meta level activities. Modeling involves 

processes, such as problem solving, working with generalizable patterns, justifying 

and proving, making predictions and conjectures, and identifying structure. These 

activities do not necessarily involve the representation of relationships in a symbolic 

way. Moreover, they are not strictly algebraic but they encompass features from other 

disciplines of mathematics, e.g. statistics and measurement. 

 

Algebraic thinking, reasoning, and proof. Generalization is unquestionably 

the main route to algebraic thinking. Yet, anticipating, conjecturing, explaining, and 

justifying also constitute important processes for developing algebraic thinking 

(Kieran, 2011). According to Principles and Standards for School Mathematics, two 

standards that should be cultivated by curriculum and instruction in all grades are 

algebra and reasoning and proof (NCTM, 2000). These are naturally related since 

both of them involve processes of generalization (Lannin, 2003). Blanton and Kaput 

(2005) noted that algebraic thinking in relation to reasoning and proof can take three 

forms: 

 using generalizations to build other generalizations; 

 generalizing mathematical processes or formula; 

 testing conjectures, justifying and proving. 
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These instances of algebraic thinking come to an interplay with all aspects of 

algebraic thinking. Specifically, Blanton and Kaput (2005) contended that these 

categories reflect more sophisticated levels of the ability for thinking algebraically as 

a culture or habit of mind. For example, justification becomes apparent when students 

construct mathematical arguments to justify general claims for classes of numbers. 

Although younger students are not able to be engaged into formal proving, they can 

represent specific numerical expressions by using various representations such as 

drawings, models, or story contexts and extend models for justifying general claims 

(Russell, Schifter & Bastable, 2011). 

NCTM (2000) suggested that activities such as the investigation of patterns 

and structures offer opportunities to young students for identifying regularities, 

produce conjectures about observed regularities, construct and evaluate mathematical 

arguments. This kind of proving activity reveals the significant role of algebraic 

thinking. For example, Pedemonte (2007) suggested that generalization is necessary 

for being engaged into an inductive argumentation. In particular, students of 12th and 

13th grades manage to transform an inductive argumentation into a mathematical 

inductive proof only when they are constructing conjectures by means of a pattern 

generalization. Pattern generalization focuses on regularity on the results, and it can 

be visualized as: E1, E2, E3… where E is a property generalized on cases 1, 2, 3, and 

so on (p. 29). Similarly, Bednarz, Kieran and Lee (1996) supported that 

generalization, i.e. uncovering and expressing generalities in number patterns, 

establish a foundation not only for algebraic thinking but also for proving. Bastable 

and Shifter (1998) argued that tasks of the type “what is the result of adding two even 

numbers” or “what is the result of adding two odd numbers” can also be used in the 

classroom discourse in order to trigger students’ participation in activities of 

reasoning about the validity of their ideas. This kind of discussions prompts students 

to reason about hypothesis and proof, as well as about the quality of their own 

arguments and the arguments given by others.    

Hanna and Janke (1998) argued that “rigorous proof is generally considered as 

a sequence of formulae within a given system, each formula being either an axiom or 

derivable from an earlier formula by a rule of the system. This kind of proof clearly 

reveals the influence of algebra)” (in Pedemonte, 2008, p.386). Taking into account 

the growing emphasis by recent studies on the important role of algebra for 
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communicating proofs (e.g. Healy & Hoyles, 2000; Pedemonte, 2008), algebraic 

proof might be considered as a significant feature of algebraic thinking.  At the 

elementary level, the term ‘justification’ is used instead of the term ‘proof’. 

According to Carpenter et al. (2003) the term justification is more appropriate for 

considering all the diverse arguments that students may provide when they try to 

prove their hypotheses. Studies with students of primary and secondary grades have 

shown that the ability of the students for justification passes through levels where 

justification is based on external paradigms to levels where justification is based on 

examples and then to levels where justification is based on mathematical reasoning 

(e.g. Carpenter et al., 2003; Lannin, 2005; Sowder & Harel, 1998).  

 

Algebraic Thinking from a Cognitive Perspective 

Developmental aspects of algebraic thinking. The views of algebraic 

thinking reported above focused on the establishment of generalizations, taken to 

mean the detection and expression of structure and a growing understanding of 

symbolization. Nonetheless, this seems to be an ability of developmental nature. 

Seeing expressions as structures depends “on the ability to discern details (Piaget, 

1969 p. xxv) and application of an intelligence sense of structure (Wertheimer, 1960) 

and also to know when and how to handle specifics and when to stay with structure” 

(Watson, 2009, p. 18). Regarding this consideration, learners develop algebraic 

thinking as they shift from simple calculations to relational thinking.  

Kuchemann (1978, 1981), considering the root of algebraic thinking to be the 

extraction of meaning when letters are used within algebraic tasks, investigated the 

ways students of the secondary grades treat letters. The results of Kuchemann’s study 

revealed that students’ understanding of letters diverges through various levels. Seven 

levels describe the way students tribute meaning to the use of letters within algebraic 

representations, moving from having no understanding of the meaning of formal 

symbols to developing deep understanding of the meaning of symbolic 

representations as variables: (a) letters are evaluated in some way, e.g. x = 4, (b) 

letters are ignored, e.g. 5y taken to be 5, (c) letters are used for the representation of 

objects, e.g. b=ball, (d) letters are used as specific unknowns that have not yet been 
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defined, (e) letters are used as generalizable numbers, and (f) letters are used as 

variables. 

According to a research from the field of cognitive psychology (Demetriou, 

1993), the abilities for relational thinking evolve over seven developmental levels and 

involve three component abilities: abilities of quantitative specification and 

representation, abilities of dimensional-directional construction and abilities of 

dimensional-directional coordination. The quantitative-relational abilities are biased 

to symbol systems enabling the individual to focus on, represent, and process the 

quantification-relevant aspects of reality and ignore all irrelevant aspects and 

properties. Algebraic competence develops at level 3, from 9 to 10 years through 

early adulthood. In particular, at the age of 9-10 years old, students are able to operate 

on simple mathematical relations, even those that are symbolically represented. For 

example, they can identify symbols in equations such as 8 × b = 5 and a + 5 = 8. At 

the age of 11-12 years old students are able to coordinate simple structures and 

operate on undefined structures. For example, the equation x = y + 3 is easy to be 

solved if x is given.  

When students are 13-14 years old, they become able to identify complex 

relationships in relations, such as unbalanced proportions. Furthermore, they can 

coordinate complex symbolic expressions to determine the value of a variable (e.g., 

determine the value of x if x = y + g and x + y + g = 30). It is also possible to 

quantify covariance and understand direct ratio. At the ages of 14-16 years old they 

are able to generalize quantitative dimensions and identify relationships between 

them. For example, they can understand that the equation a + b + c = a + x + c is 

true if b = x. A dimension can be represented in alternative ways, which can be 

determined by reference to other representations. They understand the quantification 

of covariance of inversely proportional quantities. Finally, at the age of 17-18 years 

old, students search for a variety of relations. 

Mason (1989) was among the first who tried to describe the development of 

algebraic thinking as a process that leads to the detection of structure in mathematical 

expressions. According to his approach, the development of algebraic abstraction 

(structural thinking) involves the movement from experience in manipulating objects 

(whether these be physical, pictorial, symbolic, or mental), to expressing this 
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experience, to articulating the properties of such experience as expressions of 

generality, and subsequently manipulating such expressions to search for further 

properties. The actual process of abstraction is considered to lie in the "delicate shift 

of attention" from seeing the expression as an expression of generality, to seeing it as 

an object or property that can be manipulated. This does not imply that the latter 

replaces the former, rather, abstraction entails conceiving mathematical constructs in 

both ways. Hence, the development of algebraic thinking is ensured as long as the 

student maintains a “dual awareness of expressions both as entities or objects, and as 

statements about how a calculation will be performed”. Mason (1989) argued that this 

kind of ability requires effective use of self-monitoring processes. 

Sfard and Linchevski (1994) also described the development of algebraic 

thinking and understanding as a sequence of advanced transitions from an operational 

perspective to a relational perspective. Moreover, Sfard and Linchevski (1994) draw 

attention to individual learning by questioning the role of “what one is prepared to 

notice and able to perceive” (p.192) when confronts algebraic problems. Sfard (1995) 

and Sfard and Linchevski (1994) have found connections between the historical 

development of the mathematical knowledge and the development of students’ 

mathematical knowledge. As far as it concerns algebra, it is assumed that historically 

there is a distinction between the representation of the unknown in equations and the 

use of letters for representing general solutions.  Similarly, students’ capability for 

using symbols passes through these levels. This fact highlights the relation of 

psychological perspectives to the development and nature of algebraic abstraction 

(Carracher, Schliemann, Brizuela, & Earnest, 2006).  

Specifically, the main question of Sfard and Linchevski (1994) was the extent 

to which learners are capable of seeing and using the variety of possible 

interpretations of algebraic objects. According to their model, the learners initially 

understand algebraic expressions as computational processes. An expression, such as 

4 (y + 6) + 2 represents an arithmetical process. By performing particular operations, 

the symbol will obtain meaning. At this level, individuals face expressions as means 

for determining the value of the letter through the application of a prescribed process. 

The persistence in performing computations in order to take a defined result is called 

by Collis (1974) as the inability to accept the ‘lack of closure’. The expression on the 

left-hand side is considered by individuals as a process, whereas the expression on the 
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right-hand side is expected to be a product. This idea seems to be interrelated with 

learners’ previous experience with arithmetic where the equals sign '=' triggers the 

articulation of a result appearing to the left of this sign. For example, students perform 

differently to problems that are quite similar, such as ‘What is x if 2x + 7 =45?’ and 

'If A = L × B tells us how to work out A, what formula tells us how to work out L?’. 

In the first case, the final result is a number where in the second the final result is a 

formula.  

In the second level, algebraic expressions are conceptualized as specific 

entities; they are the products of computations rather than the computation itself. The 

unknown is considered as a fixed value and the entire expression as one number. 

Letters are treated as certain unknown numbers and each side of an equation as a 

concrete series of operations. Nevertheless, at this level students seem to struggle 

when solving inequalities. An inequality requires testing the values of the component 

formulae and comparing the results for applying different values of the letter. Hence, 

in the context of an inequality, the letter plays the role of a variable rather than of a 

fixed value.  

The third level in Sfard and Linchevski’s (1994) approach refers to the 

passage from the algebra of a fixed-value (of an unknown) to the functional algebra 

(of a variable). In this stage, individuals understand the dual nature of algebraic 

expressions as both process and product. The symbol represents not a fixed value, but 

a manageable object. Nevertheless, the functional approach of algebraic 

representations is not easily accessible even for the more skilled students. The 

learners usually develop first ‘pseudostructural’ conceptions. While they may be able 

to handle a functional relationship, their actions remain instrumental. Students act as 

if they are handling some kind of object, but their thinking is completely inflexible 

and structural interpretations are unavailable. For example, many students do not 

understand the difference between a quadratic inequality and a quadratic equation. In 

a problem like z 2 + z + 1< 1, students usually apply the formula for the roots 

mechanically. This kind of behavior demonstrates that students’ thinking is not 

flexible enough and definitely they do not interpret the expression in a structural way.  

More recently, Thomas and Tall (2001) offered a slightly more detailed 

conceptualization of the development of algebraic thinking. Similar to Sfard and 
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Linchevski (1994), their model refers to the long-term shift between working in 

contexts of Simple arithmetic, Generalized arithmetic, Evaluation algebra, 

Manipulation algebra and Axiomatic algebra. The movement from one level to 

another is framed against several cognitive difficulties. In brief, students first 

implement a range of different procedures in order to accomplish a process. In the 

level of Simple arithmetic, the addition of two whole numbers can be done either by 

step-by-step algorithmic procedures or by more compressed computation procedures. 

In Generalized arithmetic, boxes in equations as referents to the unknowns are 

replaced by letters. In this level, some children are not able to see algebra expressions 

as a process/concept because they cannot evaluate them and search for a number as an 

answer. Another obstacle for many learners seems to be the need for reading 

expressions in different orders and not only in the left-to-right order. Moving to 

Evaluation algebra, students understand symbols as manageable concepts. According 

to Thomas and Tall (2001), the use of spreadsheets might play a significant role in 

achieving this kind of understanding. In such environments, calculations and 

predictions can be made without the need for manipulating symbols. Furthermore, the 

potential for representing the same process with different procedures is better 

understood. For example two equivalent expressions, such as 2n + 6 and 2 × (n + 3), 

represent two different procedures of the process of evaluation when n is replaced by 

a specific value. 

In the level of Manipulation algebra, equations involve variables that are 

represented by letters and they have to be approached algebraically. It has been 

reported that students who succeed in Manipulation algebra have “readily accessible 

links to alternative procedures and checking mechanisms”, as well as “tight links 

between graphic and symbolic representations” (Crowley, 2000, p. 209: in Thomas 

and Tall, 2001). The range of procedural techniques leads to the construction of 

‘procepts’ where algebraic expressions have a dual nature; they can be evaluated as a 

process and manipulated as a concept. On the last developmental stage, students have 

to reach Axiomatic algebra by achieving a cognitive reconstruction. This involves a 

major discontinuity in development since in axiomatic algebra laws are not built on 

experiences of the operations in arithmetic but operations have to be seen as ‘genuine’ 

laws that lead to the deduction of new properties. 
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Besides theories and models that describe the development of algebraic 

thinking through concrete levels, many researchers attempted to provide further 

explanations of what it means for students to have developed a deep understanding of 

formal algebraic symbols. For example, Arcavi (1995, 2004) sought a more detailed 

analysis of the notion of ‘symbol sense’ among secondary school students. 

Specifically, Arcavi identifies behaviors that illustrate what is accepted to be 

examples of symbol sense as soon as algebraic thinking has been developed. 

According to his investigation, there are six fundamental components of symbol 

sense. The first one refers to the development of friendliness with symbols. Symbols 

are readily accessible to students in order to represent relationships, generalizations 

and proofs. Moreover, there is a feel of when symbols are unnecessary and it is better 

to make use of other types of representations. The second component is related to the 

use of syntactic rules for solving equations with meaning and not merely as a 

mechanical process. Engineering symbolic expressions in order to transform one type 

of representation to another type is a third component of number sense. For example, 

students must be able to construct the symbolic expression for a desired graph. The 

fourth component refers to the capability of individuals for switching between various 

representations when they try to represent a problem situation until they find the more 

suitable representation. The fifth component involves the recognition of the need for 

checking what the symbol means during the implementation of a process and 

comparing the resulted meaning with those that were expected. At last, the sixth 

component of symbol sense involves the realization that symbols can have dissimilar 

roles in different contexts (e.g. in an equation symbols may represent parameters or 

variables) and the development of an intuitive understanding for those differences. 

 Lannin (2005) claims that in order to better understand the development of 

algebraic thinking among young students, it is of great importance to study the 

justifications given for the generalizations they produce as they explore patterning 

activities. Student justifications provide a window to view their understanding of the 

general nature of their rules. Generalization is found to be on the core of algebraic 

activity, providing a link between numeric situations and symbolic representations. 

Nevertheless, establishing the validity of a general statement is a challenging task for 

students. As stated by Lannin, there are four levels of using justifications. At the 

Level 0 students provide no justification or their responses do not address 
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justification. At Level 1 students’ justifications appeal to external authorities. 

Specifically, they are referred to the correctness stated by other individuals or 

reference materials. At Level 2, students justify their generalizations by providing 

empirical evidence. Justification is provided through the correctness of particular 

examples. At Level 3, students’ examples are more generic. Deductive justification is 

expressed in a particular instance. Lastly, at Level 4 students’ justifications have a 

deductive nature. Validity is given through a deductive argument that is independent 

of particular instances. 

 

Cognitive factors that affect algebraic thinking. Available research on 

developmental aspects of algebraic thinking provides support to the assumption that 

cognitive factors might frame the development of algebraic thinking and in particular, 

the sequence of advanced transitions from an operational perspective to a structural 

perspective (e.g., Mason, 1989; Sfard & Linchevski, 1994; Thomas & Tall, 2001). As 

it is implied by the examples offered by Arcavi (1994, 2005) and Lannin (2005), 

algebraic skilled-performance depends on the acquisition of multiple capabilities. In 

the following section, corresponding literature pertaining the relationship of algebra 

and algebraic thinking with various reasoning processes or cognitive factors is 

reported.  

Reasoning processes. English and Sharry (1996) made an effort to describe 

the construct that enable individuals to develop algebraic thinking, and mostly relying 

on Sfard and Linchevski’s (1994) model, provided explanations about students’ 

competence for expressing generality. In particular, they showed that analogical 

reasoning constitutes the mental source of extracting commonalities between relations 

and constructing mental representations for expressing generalizations. The action of 

noticing differences and commonalities among things is cognitive in nature and ends 

up with the formulation of a generalized concept that it does not completely coincide 

with any of its particular cases. Likewise, Radford (2008) pointed out that, when you 

verify that “a” is equal to “b” or that “a” is analogous to “b” (as it happens when you 

verify that two specific trees are equal despite their obvious differences), it means you 

select certain characteristics of “a” and “b” and you ignore some others.  
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Radford (2008) took this analysis a step further by developing a definition of 

the process of generalizing a pattern which encompasses various forms of reasoning: 

Generalizing a pattern algebraically rests on the capability of 

grasping a commonality noticed on some particulars (say p1, p2, 

p3,…, pk); extending or generalizing this commonality to all 

subsequent terms (pk + 1, pk + 2, pk + 3, …), and being able to use 

the commonality to provide a direct expression of any term of the 

sequence. (p. 84) 

As the quotation suggests, this process first involves the identification of 

differences and similarities between the parts of the sequence – described as 

analogical reasoning by English and Sharry (1996). Then the commonality founded is 

generalized through predicting a plausible generalization as far as it concerns the 

following terms of the sequence. Rivera and Becker (2007) consider the stage where a 

plausible generalization is hypothesized to be abductive in nature; according to them 

it is abductive reasoning that boosts conjecturing and adopting a hypothesis that is 

considered by the individuals as testable. In the final stage of this process, this 

commonality becomes the basis for inducing the generalized concept of the sequence. 

Here, the role of inductive reasoning is considered as pivotal in order for students to 

come up with the formulation and expression of the nth term of the sequence (Ellis, 

2007; Rivera & Becker, 2007). Palla et al. (2012) also suggested that mathematical 

induction is essential in situations where a geometrical pattern is translated into an 

algebraic expression.   

The emphasis on reasoning forms that enable generalization processes and 

also personal efforts of the individual for integrating signs and meanings, illustrates 

the involvement of cognitive systems that facilitate individual to shift from 

calculating to observing a functional relationship and then expressing it. Moreover, a 

lot of studies supported that the difficulties that students face in algebra reflect 

developmental or cognitive obstacles (Carracher et al., 2006). For example, Filloy and 

Rojano (1989) provided historical data on the idea of the ‘didactic cut’ which takes 

place as mathematical thinking moves from arithmetic to algebra and students are 

called to act on unknown terms. Similarly, Herscovics and Linchevsky (1994) 

referred to the ‘cognitive gap’ which is inherent between arithmetic and algebra and it 

becomes obvious through the weakness of students to spontaneously act on the 

unknown. Given the foregoing descriptions on the developmental progression of 
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students’ ability for algebraic thinking, it becomes obvious that innate constraints 

might outline the time and the quality of the transition from operational to structural 

outlook. Nonetheless, there is a scarcity of research that examines the cognitive 

framework of algebraic thinking in detail (Tolar et al., 2009).  

 

Domain-specific processing abilities and General cognitive factors of mental 

action. Some studies from the field of psychology have shown that working memory, 

three-dimensional (3D) spatial visualization, and computational fluency relate to the 

general mathematical achievement of adolescents and adults (Engle, Tuholski, 

Laughlin, & Conway, 1999; Geary, Saults, Liu, & Hoard, 2000; Reuhkala, 2001; in 

Tolar et.al, 2009). Tolar et al. (2009) examined the way in which these three factors 

might affect algebra achievement among college students. Their results demonstrated 

that the successful accomplishment of algebraic tasks depends on a person’s 

computational fluency, where 3D spatial ability and working memory have lower 

effects. On the other hand, 3D spatial ability mostly affected the Scholastic 

Assessment in Mathematics (SAT-M) scores. However, computational fluency and 

3D spatial ability completely mediated the effect of working memory for both algebra 

and SAT-M achievement. Lee et al. (2011) also indicated the important role of 

arithmetic and word problem-solving in setting the basis for engagement with early 

algebra. In an earlier study, Lee et al. (2004) also showed that the effect of general 

cognitive factors such as central executive, performance IQ, and literacy was small. 

Fuchs et al. (2012) indicated that second grade students’ pre-algebraic knowledge is 

indirectly influenced through arithmetical skills by attentive behavior, phonological 

reasoning, and processing speed.   

 

Algebraic Thinking from an Instructional Perspective 

Within the field of mathematics education research, it is important to take into 

consideration not only the influence of cognitive skills to algebraic thinking but also 

the exposition of students in environments that foster the development of algebraic 

thinking (Tolar et al., 2009). The interaction between mental processing and 

educational experience seems to be reciprocal; therefore, the ways by which cognitive 
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processes are related to performance and the ways by which educational experiences 

affect cognitive processes need to be specified (Demetriou et al., 2011). In this 

context, it seems necessary to study possible ways for engaging students to 

educational experiences that facilitate the emergence of algebraic thinking. In 

response to calls for improving students’ performance in algebra, a number of 

research studies implemented instructional approaches to algebraic thinking with 

students of different ages (Rakes, Valentine, McGatha & Ronau, 2010). For example, 

The ‘No Child Left Behind Act’ (2002) called for the use of research-based strategies 

to practically help teachers to choose the most appropriate programs and materials for 

their particular settings. Moreover, the 70th yearbook of NCTM (Greenes & 

Rubenstein, 2008) was focused on topics such as the teaching and learning of algebra 

and suggested practices for improving algebra instruction at the classroom level.  

Diverse teaching approaches targeted the learning of one or more concepts and 

skills that are considered as forms of algebraic thinking (Watson, 2009). Among 

them, there is an agreement that the development of algebraic thinking affects 

understanding in higher mathematics (Rakes et al. 2012). Moreover, these studies are 

considered as interventionist because they do not suggest procedural manipulation of 

algebraic tasks. Nevertheless, the definition of algebra in this body of literature 

remains unclear since research takes place in particular aspects, contexts and 

materials. As Watson (2009) highlighted, research is sporadic and runs throughout 

specific perspectives. In respect to the issue of early algebra, Canadas, Dooley, 

Hodgen and Oldenburg (2012) pointed out to the need for re-contextualizing early 

algebra and clarifying the contribution that each intervention makes to the field as a 

whole through stronger literature reviews.  

This section seeks to provide a valuable synthesis of research on algebra and 

algebraic thinking instructional practices by investigating what kind of concepts and 

skills have been studied and how effective have the particular methods been at 

improving algebra achievement. Three main categories of contexts and materials that 

aimed to empower students’ algebra knowledge and algebraic thinking skills can be 

found through literature:  

 Equation-centered approaches: relationships between expressions are 

described as equations and sets of techniques for handling, transforming and 
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solving equations in order to find unknown values or represent relationships 

between variables are introduced. 

 Functional thinking approaches: relationships of co-variation and 

correspondence are analyzed in order to express generalities; functions and 

their inverses are expressed using multiple representations. 

 Modeling situations approaches: variables and their co-variation are identified 

through the investigation of mathematical problems or real situations. 

In the following section, related studies to the above categories of teaching 

approaches are reported. 

 

Equation-centered approaches. Numerous teaching experiments were 

focused on traditional problems of representing and finding unknowns. In a teaching 

experiment with third grade students, Carraher, Brizuela, and Schliemann (2000) used 

suitable problems, such as Tom is 4 inches taller than Maria; Maria is 6 inches shorter 

than Leslie, with the aim to introduce the notion of unknown and the need for 

representing it. In this experiment, although students were puzzled several times, they 

demonstrated an ability for expressing with a letter a number that is not yet known. 

Bastable and Shifter (2008) also supported that students become able to construct 

generalizations about operations and methods when they are provided with 

appropriate support.   

Blanton et al. (2011) suggested that young students are able to generalize 

properties of operations in supportive classroom environments. This study suggested 

that students should be encouraged to observe patterns on the way numbers behave 

when they investigate addition, subtraction, multiplication, and division.  For 

example, students should understand that the series of numbers we add does not have 

an effect on the final result. At the start of such an investigation, young students are 

able to express the commutative property of addition through the use of language. 

This property will become more formal as students grow up and algebraic symbols 

will be used for expressing the relationship between any two numbers. Therefore, the 

verbal expressions of students for representing the commutative property of addition 

will become later on a formal expression of the type a + b = b + a.  
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Blanton and Kaput’s (2005) experiment invested on the professional 

development of teachers for being sensitive to the ways by which they could promote 

algebraic thinking in their classrooms.  In this study, teachers were helped in 

developing ‘algebra eyes and earls’ in order to make use of everyday mathematical 

experiences for drawing students’ attention to the algebraic nature of arithmetical 

activities. Moreover, the mathematics lessons were formulated in order to include 

tasks that reflected all of the three strands of algebraic thinking as these were 

described by Kaput. The results of their study showed that they indicated that primary 

school children were able to invent and solve “missing number” sentences using 

letters as placeholders, symbolize quantities in patterns, devise and use graphical 

representations for single variables, and some could write simple relations using 

letters, codes, “secret messages” or symbols. 

In an earlier study, Sutherland and Rojano (1993) involved 10 to 11 years old 

students in the construction of equivalent expressions using spreadsheets. Their 

results indicated that spreadsheet technology can assist students to make connections 

between their informal ideas and the formal algebraic representations. Students 

seemed that were helped in understanding the meaning of a variable as a quantity that 

changes when they clicked on a cell that represented a particular case of a 

generalization. This act supported the construction of a rule which related two or more 

quantities. In addition, spreadsheets promote flexible and recursive reasoning which 

allow the emergence of generalization in problem situations.  

The CARAPACE study (Kieran, Boileau and Garancon, 1996) also 

investigated the ways by which 13 years old learners confront graphs and values. The 

CARAPACE environment involved graphs, data, situations and functions that 

supported the understanding of equality and equivalence of two functions and the 

manipulation of equations. It was found that the combination of multiple 

representations assisted the manipulation of word problems and applications of 

functions.  

Other studies showed that manipulatives can also provide students with rich 

opportunities for investigating the structure underneath mathematical relationships. 

For example, rod or diagrams are extensively used in Singapore (Greenes and 

Rubenstein, 2007) to represent part/whole comparisons, reasoning, and equations. 
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These manipulatives appear to scaffold students’ thinking from actual numbers to 

structural relationships of addition or repeated addition. Statements in the problem are 

translated into equalities. These equal lengths are constructed from rods which 

represent both the actual and the unknown numbers. The rod arrangements or values 

can then be manipulated to find the value of the unknown pieces. This approach 

which is used for introducing 11-12 years old students to the notion of equations with 

variables is similar to the use of Cuisenaire rods in Europe.    

The use of technological tools, like graphing calculators, seems to have a 

critical impact on understanding the notion of equivalence in algebraic expressions 

and finding the unknown term in secondary school students. For example, Kieran and 

Saldanha (2005) demonstrated the improvement of a group of 10th graders in 

considering equations as objects with meaning by using computer algebra systems 

(CAS). As they reported, graphic representations promoted discussions about the 

equivalence of expressions not only in the level of purely numerical reasoning. The 

interpretation of CAS outputs influenced investigations of the concept of equivalence 

that do not normally occur in traditional algebra classrooms. 

 

Functional thinking approaches. Several research studies suggested that 

functions must have a prevailing role in algebra instruction (e.g. Blanton, 2011; 

Schwartz, 1999; Schwartz & Yerushalmy, 1992; Chazan & Yerushalmy, 2003). As 

described in the previous section, one of the main abilities required for the 

development of algebraic thinking is the manipulation and understanding of letters as 

variables rather than as yet-unknowns that need to be calculated. Placing functions at 

the center of algebra instruction entails the systematic exposition of students to tasks 

that employ the idea of letters as variables and hence creates opportunities for 

students to pass from levels of performing calculations to levels of operating with 

rules for functions (Kaput, 1998). Blanton et al. (2011) suggested that functional 

thinking requires the establishment of generalizations in respect to the relationships 

between quantities that continuously change, the expression of such relationships with 

words, symbols, tables and graphs, and reasoning through these representations about 

the structure that underlie functions.  
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A number of studies approached functional thinking through the exploration of 

sequences of patterns, where students are asked to describe a general term in the 

sequence. The expectation is that this kind of tasks generates the need for algebraic 

symbolization. Moss, Beatty and Macnab (2006) worked with 9 year old students in a 

longitudinal study and found that developing expressions from pattern sequences was 

an effective introduction to understanding the nature of rules in “guess the rule” 

problems. Most of the participants in this study seemed to be able for articulating 

generality. Moss and Mcnab (2011) summarize that pattern activities enhance 

students’ understanding of functional relationships, act as a basis for moving to more 

abstract and general mathematical constructs, and empower students’ abilities for 

hypothesizing and proving.  

 Cooper and Warren (2007) and Warren and Cooper (2008) also used 

patterning activities to teach elementary school students ways for expressing 

generalizations, using various representations, and comparing expressions and 

structures. This method seemed to have an impact on developing meaning about the 

use of algebraic symbolization. Specifically, Cooper and Warren’s intervention 

emphasized the use of algebraic conventions and notations and the underlying 

operational nature of mathematical expressions. Besides using patterns, they also 

introduced students to the concept of inverse operations through function machines 

and a range of mental arithmetic methods.  

The findings of Carraher, Martinez and Schliemann (2007) from a one year 

teaching experiment showed that third grade students are able to make generalizations 

when they work with variables in arithmetic problems. More specifically, it was 

shown that instructional environments should support the transition of students from 

generalizations that are based on term-to-term empirical data to generalizations that 

are extracted from understanding the mathematical relations between the position of 

the term and the term which reflects a relation between an independent and a 

dependent variable.  Similarly, Steele (2007) demonstrated ways by which 12 to 13 

years old students could manage this transition when they used various forms of data 

such as pictorial, diagrammatic and numerical. Rivera and Becker (2007) also 

designed a teaching experiment for studying middle school students’ understanding of 

sequences of growing figural patterns. They found that the deconstruction of diagrams 
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leads more easily to the identification of a functional formula rather than reasoning 

inductively from numbers. 

Radford (2008) also used geometrical patterns for introducing the concept of 

generalization. The teacher has the role of drawing students’ attention to the structure 

of the pattern and to the need for identifying a rule that is repeated. According to 

Radford (20087) two basic processes take place when students explore geometrical 

patterns. First, previous experiences of the students guide their action to the tasks 

through a process that is called ‘iconicity’. Specifically, students identify similarities 

and differences between previous experiences and the new situations that are called to 

investigate. These similarities and differences constitute the basis for articulating a 

generality. The second process is called ‘contraction’. Through this process students 

are focused on the important parts of the task and their attention is removed from facts 

that are irrelevant.  

Booth (1984) was among the first that showed that lower secondary students 

working with function machines were capable to construct proper instructions for the 

machine by writing operations in order and using proper algebraic syntax where 

necessary. At the end, the students were able to understand the whole expression of 

the structure underlying the function of the machine. Schliemann, Carraher and 

Brizuela (2006) also used function tables in order to represent the relationship 

between the number of items and their price for developing; the aim was to develop 

third grade students’ reasoning about variable quantities and their interrelations. 

According to their results, students were able to attend the invariant relationship 

between the values in the first and second column, after they were introduced to a 

guess-my-rule game. Moreover, the introduction of letters for representing any value 

of the first variable in a function table seemed to be helpful for emphasizing the 

existence of a general rule that relates the two variables. Blanton (2008) used function 

machines for helping young students in searching for the underlined ‘secret’ rule of 

the machine. The main purpose of these tasks was to guide students in order to 

observe and understand the relationship between input and output values.  

Likewise, Warren, Cooper, and Lamp (2006) used function machines with 9-

10 years-old students. Their results revealed the ability of the students for developing 

functional thinking and expressing their thoughts through verbal or symbolical 
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representations. Stephens et al. (2012) studied the way 8 to 11 years-old students’ 

functional thinking was influenced by an intervention which focused on early algebra 

concepts. Their results demonstrated that students who were taught mathematics 

within the perspective of early algebra improved their performance in tasks such as 

the development of a functional table, the detection of repeated patterns and 

understanding linear functions. The use of function machines was also found to be a 

valuable tool in developing functional thinking. 

Goodraw and Schliemann (2003) investigated the impact of graphical 

representations on students’ understanding of functional relationships. Students of 8 

years old were able to construct graphical representations and to understand the way 

coordinates are placed on the grid and form a graphical representation. Moreover, 

students were able to relate a graphical representation with the corresponding 

functional relationship and to justify their selection. 

  

Modeling as a domain for expressing and formalizing generalizations. A 

field that has not yet been investigated in extend is the use of modeling languages for 

representing mathematical relationships that arise through real situations. Suh and 

Moyer (2007) examined the learning of algebra in a third grade classroom, by 

investigating the representation of variables through the use of algebraic models. 

Their project involved two groups of students that in a course that lasted a week long 

were engaged to different kinds of algebraic models. More specifically, the students 

were exposed to virtual and physical manipulative situations and were encouraged to 

use informal strategies for expressing relational thinking. Their results showed that 

both kinds of manipulative models were effective in supporting students' algebraic 

thinking. 

An important feature of interventions that aimed to develop students’ ability 

for using symbolic representation as models for representing relationships in algebraic 

tasks is the application of contexts that have meaning for the students (Blanton & 

Kaput, 2011). Bodanskii (1991) used problem situations in order to investigate the 

ability of young students of the first and second grade to use algebraic language. The 

results of this study indicated that young students performed better than older students 

of the sixth and seventh grades. The overall conclusion was that students is better to 
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be introduced to symbolic systems for representing equations at the age of six rather 

than the age of 11. Similarly, Schliemann et al. (2013) suggested that within 

supportive mathematical activities, young students become capable for translating 

algebraic problems into formal symbolic representations. 

 

Psychological Research on Mental Causation 

Psychological theories. In order to enhance what is currently known in 

respect to the notion of algebraic thinking, this study aims to investigate its 

relationship with a set of psychological factors.  Such investigations are worthy from 

an educational perspective. “What skills/thought processes do we need to emphasize” 

about specific mathematical topics and “What are the mathematical concepts and 

reasoning processes that prepare and enable students to learn and use algebra?” are 

questions listed among the research-guiding questions of the National Councils of 

Teachers of Mathematics’ Research Agenda (NCTM, 2012). Taken together, these 

two questions imply that mathematics education research calls for investigating in 

depth the factors that affect the development of students’ algebraic thinking. In this 

vain, associating mathematics education research and psychological research might 

better inform the way students’ multiple forms of algebraic thinking unfold under the 

control of cognitive mechanisms that enable students to apply specific reasoning skills 

and processes.  

In this perspective, this study proposes that algebraic thinking could be 

investigated in terms of its relation to interrelated systems that represent mental 

actions for processing information. The findings from previous studies both from the 

field of mathematics education and psychology suggested the important role of 

cognitive resources in nurturing the development of algebraic thinking. Although 

enlightening, these studies examined the way in which algebra performance depends 

upon specific cognitive constructs, as these were retrieved from other available 

studies pertaining general mathematical performance. Their research was not designed 

on the basis of a theoretical model of the mind functioning, which evaluates a range of 

both general and domain-specific factors as well as different forms of reasoning. 

Moreover, their algebra test was not based on a theoretical framework which captured 

all of the different forms of algebraic thinking. For example, Fuchs et al.’s (2012) test 
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of pre-algebraic knowledge included only two types of problems; mathematical 

equivalence problems with letters standing for missing quantities and function tables. 

As it was described previously, equivalence problems constitute only one type of 

algebraic thinking tasks that Blanton and Kaput (2005) included in their description of 

generalized arithmetic. Similarly, functional thinking is not merely measured by 

function tables but through multiple representations that tackle the concept of 

variance and change.  

Recognizing both the importance and challenge of better understanding the 

nature of algebraic thinking from a cognitive perspective, accounts of both general 

cognitive factors of mental action, reasoning processes and domain-specific 

processing abilities need to be taken into consideration. On the one hand, analyzing 

the importance of cognitive factors such as working memory could help teachers in 

enhancing their students’ advancement. For example, Stylianides and Stylianides 

(2008) suggested that teachers should prevent the unnecessary usage of working 

memory when students encounter proving tasks; at the same time, they should foster 

the development of strategies for managing personal working memory capacity. On 

the other, understanding the individuality of children’s information processing styles 

establishes implementation of instructional practices that guide effective learning 

(English & Watters, 1995). The importance of information processing in general 

mathematical achievement is not a new idea. Battista (1994), for example, has 

demonstrated that high performance in mathematics depends on the ability for 

interrelating two specific modes for processing information, spatial and verbal 

processing (Battista, 1994). Brown and Presmeg (1993) have also shown that 

mathematical achievement in general is related to spatial ability. English and 

Watters’s (1995) study indicated that students with high spatial and verbal-logical 

ability have better performance in scientific problem solving. In particular, they have 

shown that inductive reasoning in scientific problem-solving is strongly correlated to 

integrating information in a holistic or spatial mode. However, there appear to be 

comparatively few studies that have examined children’s information processing 

modes in relation to algebraic thinking. 

To recap, a psychological theory that clarifies mental causation could be 

useful in setting algebraic thinking into a framework of analysis from a cognitive 

standpoint.  In the section that follows the psychological theories of Luria, Case and 

Mari
a C

him
on

i



52 
 

Demetriou and colleagues will be reviewed in order to depict the set of factors that 

seem to formulate individuals’ cognitive skills and educational behavior. 

 

Luria’s neuropsychological theory of information processing. One of the 

most influential developments of the past decades in neuro – psychological research is 

Luria’s model of information processing. This theory (Luria, 1973) provides 

explanations of individuals’ foundations of cognitive functions in overall cognitive 

processing. In brief, this theory describes three hierarchical functional brain units: the 

arousal unit, the sensory-input unit and the organization and planning unit. Although 

the interaction between all of the three units affects any behavior, Luria’s model 

hypothesizes that certain aspects of information processing are associated with each 

unit.  

The first unit comprises the reticular activating system. It is linked with states 

of consciousness and controls sustained attention. The role of the second unit is the 

collection, processing and storage of information. The third unit is related to the 

integration and organization of outputs and includes programming, regulation and 

verification of information. Luria argues that it is in the second unit that any concrete 

experience converts into abstract thinking. Specifically, this theory suggests that both 

verbal and non-verbal information can be processed either simultaneously or 

successively in the sensory-input unit. In simultaneous processing each piece of 

information is immediately accessible in relation to another. Successive synthesis 

refers to information processing in a time dependent sequential mode. Das and 

Varnhargen (1986), based on the framework provided by Luria, developed a model of 

information processing that postulates two formats of information synthesis; a 

simultaneous, quasi-spatial format or a temporally organized format irrespective of 

the mode of information presentation to the sensory receptor. The way information is 

processed is influenced by individual’s features, the level of attention, the nature of 

the tasks and their interactions. 

Many researchers have adopted Luria’s neurophysiological theory in order to 

explore learning in various content areas. For example, Das and Verhargen (1986) 

have shown that the capacity to process information in a simultaneous format is 

correlated with cognitive skills that are important for Piagetian tasks such as 
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conservation, transitive inference and class inclusion. Harris and Wachs (1986) 

examined the relationship between Luria variables and mathematical achievement. It 

was found that high scores on the simultaneous processing factor are correlated 

significantly with success in Scholastic Aptitude Test (SAT) Math scores. Similarly, 

Watters (1993) indicated that simultaneous synthesis significantly predicts high 

achievement by 10 years old children in scientific reasoning. Wang, Georgiou and 

Das (2011) examined children’s reading skills, indicating that successive processing 

predicts reading accuracy and fluency through the effects of phonological awareness 

whereas simultaneous processing predicts reading accuracy and fluency through the 

effects of orthographic knowledge. Harris and Wachs (1986) have investigated the 

relationship between simultaneous and successive synthesis and writing skills. It was 

found that high successive processing is correlated with fewer sentence errors. High 

simultaneous processing is also correlated with better performance in indicating 

relationships between sentences and paragraphs. 

Moreover, the psychometric model stemming from Luria’s research offers 

much insight into the individual differences that promote or restrict the expression of 

spatial ability in tasks that demand high spatial ability. These differences are sought in 

students’ individual information processing styles. Watters and English (1995) have 

examined the relationship between competencies in scientific problem solving 

(syllogistic and inductive reasoning) and children’s levels of simultaneous and 

successive synthesis. In this study, subjects were administered a test battery 

developed by Fitzgerald (1971) which included Matrix Test A and Matrix Test B for 

measuring simultaneous processing and Number Span, Word String Test and Letter 

Span Test for measuring successive processing. Furthermore, simultaneous processing 

was also measured by the Raven’s Coloured Progressive Matrices (Raven, Court & 

Raven, 1986). Subjects were also presented with two tasks which measured reasoning, 

one for deductive reasoning and one for inductive reasoning. Analysis of the data 

revealed a significant correlation of deductive and inductive reasoning with both 

simultaneous and successive synthesis. The strongest correlation was found between 

simultaneous processing and inductive reasoning. As Watters (1993) claims,  

Simultaneous processing involves information processing in a way 

that allows linkages to be made independent of temporal limitations. 

At the perceptual level this is synonymous with spatial processing. 

At higher cognitive levels this may be the neurological basis for the 
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generation of mental models (Johnston-Laird, 1983; Gentner, & 

Gentner, 1983), of mental capacity (Halford, 1991; diSessa, 1983). 

(Watters, 1993, p.14). 

Given the findings of studies on simultaneous synthesis and successive 

synthesis which indicate the relationship between individual characteristics and the 

demands of various learning tasks, an important question arises: which could be the 

roles of simultaneous (spatial) and successive (verbal-logical) abilities in algebraic 

thinking. According to Watters and English (1995), there is a need for being aware of 

the relationships between cognitive characteristics such as information processing 

styles and scientific problem solving. More specifically, they recommended that 

reasoning by analogy and relational understanding, as “the establishment of a 

schematized abstraction of experiences involving a rich network of connections 

between concepts and incorporating access to problem solving strategies” (p. 11) can 

be investigated through the lens provided by Luria’s psychometric model. 

 

Case’s developmental theory of central conceptual structures. Case’s theory 

describes developmental changes in representational and information processing 

capacity. Development is considered as the progressive construction of higher order 

control structures and is influenced by the resources of working memory, which also 

increase as the development moves from a stage to another (Case, 1985). This theory 

undertakes that conceptual understanding in any domain is actively constructed by the 

children. In this outline, progress on cognitive development depends on the children’s 

ability for reflecting and rethinking about their own conceptual understanding. 

Through this procedure, children become able to reorganize their existing structures 

and then consolidate a new formed structure into a better and more complex coherent 

structure.  

According to Case (1985), there are four stages of development or structures 

of thinking with three sub-stages within each. However, this theory highlights that 

developmental stages are influenced by the special characteristics of a particular 

domain of thought. At the beginning of each stage, a new type of structure is 

assembled, but it can only be applied in isolation. At the second stage, two such units 

can be applied in succession, but cannot be integrated into a coherent structure. 

Finally, at the third stage, two more structures can be applied simultaneously and 
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integrated into a reasonable system. As a result of this integration, the system acquires 

the general set of properties that Piaget referred to with terms such as ‘reversibility’ 

and ‘compensation’. Another result is that the system at this stage becomes the base 

for further progress at the next stage.  

As stated by Case, the stages arise at approximately the same ages as Piaget’s 

stages. Nonetheless, these developmental stages are labeled differently. The first stage 

is the sensorimotor stage (0-2 years old), which is characterized by children 

processing sensory input and thinking in respect to the physical world and the 

physical impact that they can have on their own environment.  

At the second stage, known as the inter-relational stage (2-5 years old), 

children are able to recognize the relationship between two action-reaction units, such 

as the fact that by pushing a door, the door will open, while by pulling a door, the 

door will close. Once the child is able to differentiate, coordinate, and consolidate 

these two action-reaction units, the child becomes capable of what Case signifies as 

‘inter-relational’ thinking. Furthermore, at this stage, children can also understand the 

effects of adding a door stop to the door. For example, they realize that the door will 

open and close in a different way due to the presence or absence of the door stop. 

Another example of capabilities of the children at this stage is the recognition of the 

effects or outcome of having a heavy weight on one side of a balance beam and a light 

weight on the other side.  

Finally, the children move to the dimensional stage (6 to 11 years old). At this 

stage, children are able to coordinate their conceptual structures for dealing with 

causation. For example, in balance beam scenarios, the children develop the ability to 

recognize and anticipate the outcome of having different weights on two sides of the 

fulcrum of the balance beam. Consequently, in the process of learning to recognize 

and cognitively manipulate two relationship structures, the child is able to consolidate 

the inter-relationship functions. At this phase, the children also become able to 

understand the physics of a balance and the impact of gravity on objects that have 

different weights. Moreover, children begin to understand the concept of weight as a 

quantity instead of a characteristic of physical appearance (Case, 1991). This ability 

becomes obvious when the child focus on the actual value or number of weights on 

each side of the balance beam, instead of simply arriving at conclusions based on 
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which side “looks” heavier. By the end of the dimensional stage, children can further 

understand the relationship between two such dimensions, such as the relationship 

between number and weight. For example, they can relate the number of weights on 

each side of a balance beam, and the distance of weights placed on each side of the 

balance beam.  

As soon as the differentiation, coordination, and consolidation of two or more 

dimensions are achieved, the child moves to the fourth developmental stage, known as 

the vectorial stage. Within this final stage, children enter a second sub-stage of 

vectorial operations, in which they become able to coordinate two dimensional 

structures. For example, they can coordinate the type of dimensional structure used 

for the weight-distance effect on the balance beam, and another dimensional structure 

such as the concepts of fractions and ratios (Case, 1991). Finally, in the third sub-

stage of vectorial operations, the child is able to understand abstract systems in which 

there are no concrete referents to a problem. In the paradigm of the balance beam 

task, this ability is reflected when the children convert two ratios of weight or distance 

to two new ratios with a common denominator. The children compare two new 

abstract terms to draw a conclusion. Therefore, they can successfully predict which 

side of the balance beam will go down. Throughout all of these specified stages, 

development proceeds through a recursive process. 

Case (1996) argued that a set of central conceptual structures, which consist 

of core semantic units and relations within specific domains or modules of 

knowledge, is responsible for the manipulation of domain-specific phenomena. These 

conceptual structures provide the representational units which ensure the function of 

the control structure that were described in the previous developmental trajectory. As 

Case (1996) clarifies, processing with the units of a conceptual structure, and the 

development of conceptual structures, is controlled by the general stage model 

outlined above.  

Central conceptual structures are needed for the functioning of control 

structures in a particular semantic domain. These structures are domain specific in 

their semantic development, thus accounting for domain-specific learning and 

developmental results. Consequently, the general development of a particular 

semantic domain is constrained by the domain general control structure capacities and 
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constructive possibilities. Forms of information processing and developmental 

constructions, then, are domain general, while the representational units with respect 

to which that information processing occurs are domain specific. 

Case’s model is an information processing model, in which the information 

processing control structures are hierarchically organized in the stages and sub-stages 

mentioned above, and the semantic elements which are processed are modularized 

into central semantic domains. This model can be used in order to investigate levels in 

students’ thinking which are described both in the perspective of time-constraints and 

explain which are the students’ abilities in each stage. Moreover, the role of central 

conceptual structures in the development of students’ thinking can be studied.  

Case in collaboration with other researchers has extensively used his theory 

for investigating the way many mathematical concepts develop, implying that a 

psychological theory is useful for uncovering features of students’ thinking and 

learning. For example, Griffin and Case (1996) developed a research-based 

mathematics program, known as Number Worlds, for testing this developmental 

theory. This program investigated the progress of students at risk in developing 

number sense through their participation in rich activities of making connection and 

exploring concepts. The application of Case’s developmental theory ensured that 

number sense concepts were introduced to students in an appropriate sequence. The 

results of this program indicated that students in the control group were experiencing 

a developmental gap both at the beginning of kindergarten, and at the beginning and 

at the end of first grade.  On the contrary, the students at risk of the experiment group 

presented better results at all measures of their number sense development. The 

success of the Number Worlds program provided support to Case’s psychological 

theory and the benefits of applying this theory in educational settings. It has been 

highlighted that teaching number sense through particular instructional principles and 

set of tools drawn from this theory, seems to be effective and powerful (Bransford, 

Brown & Cocking, 1999).  

Case and Moss (1999) have studied the development of students’ 

understanding of rational numbers. Specifically, this research study used Case’s 

developmental theory for proposing a new curriculum in respect to the teaching and 

learning of rational numbers. Following the four stages of development of the theory, 
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the first topic of this curriculum was the concept of percent which was introduced in a 

linear-measurement context. The idea of halving was also emphasized. At the next 

phase, decimals were introduced. At the last stage the fractional notation as another 

form for representing decimals was introduced. The researchers compared the results 

of teaching according to their proposed trajectory in respect to the results of a group 

of students that followed the traditional curriculum. The results of this study showed 

that the students in the experiment group demonstrated deeper understanding of 

rational numbers. These students seemed to be less dependent on whole number 

strategies when they solved simple problems, and they used more often proportions 

for justifying their answers. As far as it concerns conventional computation skill, no 

differences were found among the experiment and the control group. 

 

The overarching theory of the architecture and development of the mind. 

Demetriou and colleagues (2002; 2011; 2015) introduced the construction of a unified 

theory of learning, understanding and development, whereby findings and concepts 

from the psychology of intelligence, the psychology of cognitive development and 

cognitive psychology are integrated. In brief, they have proposed a model of 

development and education that is based on the tenet that the construction of 

computational models could assist researchers’ attempts for understanding cognition 

(Hunt, 2012). According to this theory, the human mind is organized into four 

systems which function differently during problem solving tasks. However, these 

systems interact dynamically and changes in one system during development are 

related to changes in other systems.  

(1) The first system is comprised by a set of processing systems, known as 

Specialized Structural Systems (SSS). These involve information processing 

mechanisms that specialize in the representation and processing of information 

coming from different environmental domains. Five domains of thought are 

identified: categorical, quantitative, causal, spatial and social thought. Each of the 

SSS involves specific logical processes.  

(a) The Qualitative-Analytic system specializes on the representation and 

processing of similarity and difference relations. Its functioning is based on the 

specification and disentangling of the properties that may co-define the mathematical 
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objects. The abilities required in the Qualitative-Analytic system contribute to 

understanding mathematical concepts that are characterized by the inclusion relations 

connecting the elements of a hierarchy by the horizontal or intersection relations or by 

the sequential and dimensional structure. 

(b) The Causal-Experimental system is specialized on the processing of causal 

reality structures. The abilities related to this system are combinatorial abilities, 

hypothesis formation abilities that enable the induction of predictions about possible 

causal connections on the basis of data patterns, experimentation abilities that enable 

the conversion of hypotheses to experiments and model construction abilities that 

enable the mapping of experimentation’s results with the original hypothesis in order 

to reach an acceptable interpretation of the data. 

(c) The Spatial-Imaginal system is referred to the visualization of aspects of 

reality by the “mind’s eye” as integral wholes and processed as such. This system 

involves abilities such as mental rotation, image integration, and image 

reconstruction. It also directs the activities which are related to location, orientation 

and experimentation in space. 

(d) The Verbal-Propositional system is concerned with the formal relations 

between mental elements. This system deals more with reasoning, including induction 

and deduction and involves the abilities of distinguishing between the contextual and 

formal elements, discarding irrelevant information, and the abilities of meaning 

construction. 

(e) The Quantitative – Relational system is concerned with abilities of 

construction and reconstruction of the quantitative relations between reality elements 

varying along one or more dimensions as well as to inter-relate the dimensions 

themselves. As a representational system, is biased to symbolic representations which 

enables the thinker to focus on quantitative properties and relations and ignore those 

properties and relations which are irrelevant to quantitative processing. 

The development of each of the five systems runs along three dimensions: 

complexity, abstraction and flexibility. As individuals grow older, they are able to 

handle more complex relations among representations of a situation. These relations 

are further abstracted as new representations. Furthermore the treatment of these 
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relations becomes fluid and flexible since individuals are able to thought either on the 

specifics of particular representations or on their general form. Hence, “development 

of the SSS is a continuous process of emergence, differentiation, and integration of 

new representations” (Demetriou, Spanoudis & Mouyi, 2011, p. 605). 

(2) The second system, called the Representational Capacity System, refers to 

information processing potentials which are related to the number of information and 

mental operations that the mind is able to activate simultaneously. Working memory 

and speed are basic cognitive resources for the operation of processes in the 

representational capacity system, such as analyzing and interpreting information.  

(3) The third system, known as the Inference System, involves reasoning 

processes for transferring meaning from one representation to another. Reasoning by 

induction, deduction, analogy and abduction are some of the different inferential 

mechanisms that are used during the transfer of information from an initial 

representation to a target representation. These types of reasoning are related to each 

other by common inferential processes which emerge as a separate level in 

hierarchical models of cognition; this level interacts with several of the SSS.  

(4) The fourth system, called as the Consciousness System, includes functions 

and processes oriented to self-monitoring, self-representation, self-regulation, 

reflection and recursion. These are core mechanisms of consciousness that are 

responsible for identifying the goal in a problem solving situation, evaluating the 

progress of the process and controlling the inconsistencies between the current status 

of the process and the targeted goal.  

The investigation of cognitive capacities that allow individuals to reason 

mathematically has been a timeless issue. As far as it concerns the concept of 

Specialized Structural Systems (SSS), these were found to be related to the general 

mathematical performance of 12 to 18 years old students (Demetriou, Christou & 

Pitta-Pantazi, 2003). In another study, Pitta-Pantazi et.al (2011), analyzed 

mathematical ability according to the five SSS, in their effort for identifying 

mathematically gifted students. Moreover, it was shown that each of the SSS is 

predisposed in a different way to processes of deduction and induction. The 

Qualitative-Analytic system is closely related to deductive reasoning rather than 

inductive reasoning whereas the Causal-Experimental system more frequently makes 
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use of inductive reasoning processes (Kargopoulos & Demetriou, 1998). Induction 

and deduction processes play an important role while students are engaged to 

mathematical proof and proving activity (Stylianides & Stylianides, 2008). 

Cognitive factors which are included in Demetriou et al.’s (2011) theory were 

found to be connected to skilled mathematical performance. Mathematical 

achievement, for example, has been associated to the ability of the individuals to 

interrelate spatial images and verbal propositions (Krutetskii, 1976; Hermelin & 

O’Connor, 1986; Bishop, 1989; Battista, 1994). The influence of visual-spatial 

abilities on children’s mathematical achievement seems to be low, when mathematical 

activities involve computations and problem-solving (Friedman, 1995). However, the 

effect of spatial ability, when the visual-spatial tasks include mental manipulation of 

three-dimensional (3D) objects, seems to be higher among adolescents and adults, 

when assessment involves higher-level mathematical skills rather than arithmetical 

computation (Friedman, 1995; Casey, Nuttall, & Pezaris, 1997; Reuhkala, 2001). In 

addition, three-dimensional (3D) spatial processing is associated with working 

memory (Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). Individuals with 

higher working memory capacity may be more proficient at processing spatial 

information than those with lower working memory capacity, and, as a consequence, 

perform better on mathematical problems that involve spatial processing.  

Furthermore, it has been well documented by literature that components of the 

representational capacity system, such as working memory and the consciousness 

system, such as self-monitoring and self-regulation mediate cognitive power (Case, 

1992; Pacual-Leone, 1970; Mouyi, 2008). It was also found that these systems 

communicate with the SSS and the inference system. For example, intelligence 

depends among others on the efficiency and accuracy of the activated SSS as they 

deliver their content for representation to the representation system (Demetriou et al., 

2011).  

 

Choosing a psychological theory. Demetriou, Spanoudis and Mouyi (2011) 

provided explanations about the cognitive structures and processes of the human 

mind, including accounts of the changes in cognitive organization during 

development. Their theory is considered as appropriate in order to investigate the 
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relation between cognitive factors and algebraic thinking. It has been selected among 

other psychological theories such as Luria’s neuropsychological theory of information 

processing (Luria, 1973) and Case’s developmental theory of central conceptual 

structures (Case, 1992) for several reasons. 

1. The theory describes an overarching paradigm about the architecture of 

the mind, which integrates influential and widely accepted theories within the field of 

cognitive, developmental and, differential psychology. More specifically, it combines 

developmental theories about representational and information processing capacity 

(e.g. Case, 1985; Luria, 1973) and the experiential structuralism theory (Demetriou, 

Christou, Spanoudis, & Platsidou, 2002) about the development of thought and 

consciousness. 

2. The theory is strongly supported by extended empirical work, which 

includes empirical studies with school students (e.g. Demetriou, Kyriakides & 

Avraamidou, 2003; Demetriou & Kyriakides, 2006; Elia, Gagatsis & Demetriou, 

2007; Panaoura, Gagatsis & Demetriou, 2009; Pitta-Pantazi, Christou, Kattou & 

Kontoyianni, 2011). 

3. The theory has recently offered implications for educational 

applications, suggesting that education plays a crucial role in the development and 

establishment of cognitive processes and mechanisms (Demetriou, Spanoudis & 

Mouyi, 2011; Demetriou, 2015). Specifically, the overarching theory of cognitive 

development and organization denotes that the human mind operates both with 

general cognitive structures and processes that underlie understanding, problem-

solving and learning across different domains and with processes that are domain-

specific. Furthermore, it is highlighted that all general mechanisms and all SSS 

interact variably with the different knowledge domains to be mastered at school 

(Demetriou et. al., 2011). This suggests that educators can potentially foster the 

development of all these processes depending on four dimensions: 

(1) developmental time (i.e., the age and developmental condition of 

the students), (2) educational time (i.e., the grade and prior 

educational experience and knowledge already attained as specified 

in the curriculum), (3) the particularities of the subject matter or 

knowledge domain concerned, and (4) the structural and procedural 

aspects of education that are crucial for learning, such as the 

Mari
a C

him
on

i



63 
 

education of the teachers, teaching methods, technological support 

of learning, etc. (Demetriou, et al., 2011,  p.628). 

The aforementioned recommendation implies that a considerable amount of 

research work needs to be done in order the tenets of the theory to be integrated into a 

coherent conception of the instruction of the various curriculum subjects. 

Nevertheless, as Hunt (2012) points out, this model is based on the description of 

interrelated systems as mental actions for information processing rather than on 

neuroscientific evidence that explain the neural bases of cognition. In this way, the 

model becomes useful for educators and researchers since it provides a framework for 

generating further, more specific and testable models of specific situations (Hunt, 

2012). In the same line of thought, Anderson (2012) supports that Demetriou, 

Spanoudis and Mouyi’s (2011) recommendations laid the ground for the development 

of more concrete and systematic connections between psychology and teaching and 

learning.  

This dissertation aspires a more coherent conceptualization of a specific aspect 

in mathematics performance. This purpose corresponds to the clarification of the third 

and fourth dimension reported above for specifying the particularities of the subject 

matter or knowledge domain concerned – in this case of algebraic thinking - and the 

structural and procedural aspects of education that are crucial for learning. 

 Tolar et al. (2009) proposed that there are several theoretical reasons for 

hypothesizing the connection of a variety cognitive factors to the development of 

algebraic thinking. As they contended, working memory could be related to algebraic 

thinking, since when individuals solve algebraic problems, they need to maintain 

multiple conceptions of mathematical expressions and to retrieve previous algorithmic 

knowledge. As far as it concerns, spatial ability, Tolar et al. (2009) argued that 

algebraic tasks that include functional relations need to be manipulated mentally 

through the incorporation of spatial representations. Moreover, patterns need to be 

represented graphically. Their study, indeed verified the relationship of these 

cognitive factors to algebra achievement. Nonetheless their research was based to 

these hypotheses and was constrained to the mere investigation of these two factors in 

combination with computational fluency.  This dissertation hypothesizes that insights 

into the relationship between algebraic thinking and a range of cognitive mechanisms 

can be gleaned from the theory of Demetriou et al. (2011). This hypothesis is in 
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alignment with Demetriou et al. (2011) who suggested through their theory that “the 

possibilities afforded to an individual by a particular profile of processing and 

inferential possibilities must be invested in readily available domain-specific, socially 

and culturally relevant skills and knowledge” (p. 628). 

 

Summary. In this chapter, a review of theoretical and research studies on 

students’ ability for algebraic thinking has been presented. Specifically, the literature 

review focused on theories and research studies that aimed to describe the concepts of 

algebra and algebraic thinking. The traditional distinction between algebra and 

arithmetic, and the notions of pre-algebra, early algebra, and algebraic thinking were 

analyzed. Furthermore, the theories of Kieran (1996) and Kaput (2008) which 

describe algebraic activity and algebraic thinking in extend were presented. Kaput’s 

conceptualization of algebraic thinking from K-12 grades, reflects the multifaceted 

nature and content of algebraic thinking on which this dissertation is focused. Relying 

on Kaput’s theoretical framework, this study aims to investigate whether different 

types of algebraic tasks could be used to explore the core aspects of algebraic 

thinking, and the extent to which different aged-groups of students reflect these 

aspects. 

This chapter was also referred on theories and studies both from the discipline 

of mathematics education and the discipline of psychology, which highlighted the 

cognitive framework that possibly frames the development of algebraic thinking 

among students, including developmental stages and cognitive factors that affect 

algebraic thinking. Recognizing both the importance and challenge of better 

understanding the way students’ algebraic thinking unfolds under the control of 

cognitive factors such as domain-specific processing abilities, reasoning forms and 

general cognitive factors, this study aims to provide further explanations about 

students’ algebraic thinking abilities by focusing on accounts of a range of cognitive 

processes.  

The literature review also included research studies that foster ways for 

introducing algebraic concepts and algebraic thinking in the secondary and primary 

school level. The findings of these studies indicated that specific instructional 

practices, curriculum materials, and technological tools might be used for supporting 
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the emergence of algebraic thinking as early as the primary grades. Nevertheless, the 

translation of these findings into concrete instructional practices, that cross contexts 

and materials and that teachers can easily use to cultivate the various aspects and 

abilities of algebraic thinking, requires additional investigation.   

The last part of this chapter provided descriptions of the tenets of a corpus of 

psychological theories on students’ development of conceptual understanding. These 

theories provide a broad portrait of students’ emerging cognitive skills that can be 

used to inform mathematics education researchers’ understanding of the approximate 

ages at which students may be able to acquire different abilities of meaning 

construction that are essential to their engagement with mathematics. The theories of 

Luria, Case, and Demetriou and colleagues designate that educators seem to be 

benefited by findings of psychological research which describe when and how 

students achieve conceptual understanding in various semantic domains of though and 

knowledge. In particular, the overarching theory of the architecture and development 

of the mind (Demetriou, Spanoudis & Mouyi, 2011) was thoroughly described, as 

well as research studies within mathematics education which provide support on the 

educational implications of this theory. This overview suggests that student’ abilities 

for algebraic thinking might be better described through providing explanations about 

the way a corpus of cognitive factors are related to algebraic thinking. The four 

systems that Demetriou et al’s (2011) theory describes as core features of mental 

action will be integrated in a way that they will thoroughly describe algebraic thinking 

abilities. 
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CHAPTER III 

 

Methodology 

 

Introduction 

The third chapter describes the research design and methodology of the 

current study. The first section provides information about the participants of the 

study. The second section presents the data collection instruments that were 

developed and used in the study. The third section refers to the data collection 

procedures and the way the data instruments were marked. The fourth section 

provides information about the design and procedure of instructional interventions. 

The final section outlines the data analysis procedures.   

 

The Participants of the Study 

  The participants of the study were 684 students from 10 different schools (3 

urban and 7 rural) and 42 different classrooms in Cyprus. In order to investigate 

algebraic thinking ability across an age-span, the participants represented four age-

groups; 170 were fourth-graders (10 years old), 164 were fifth-graders (11 years old), 

184 were sixth-graders (12 years old), and 166 were seventh-graders (13 years old). 

The participants were selected by convenience due to the fact that the sample had to 

be large. There were approximately equal numbers of males and females in the 

population of the study.  The elementary school participants (10-12 years old) were 

students of five schools from Nicosia district, one from Limassol district, and two 

from Larnaca district. The middle school (13 years old) participants were students of 

one middle school from Nicosia district and one middle school from Larnaca district.  

In order to examine instructional practices that cultivate algebraic thinking in 

elementary school mathematics, a sample of 96 fifth-graders from two different 

elementary schools and four different classrooms, attended a teaching intervention 

program. These students were also selected by convenience. 
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Taking into consideration the fact that the data collection instruments would 

be the same for all of the participants of the study, no younger or older groups of 

students were selected. On the one hand, third grade students would not be able to 

understand or manipulate the tasks of the test, probably due to developmental reasons 

and absence of experience with such tasks.  

The mathematics curriculum in effect at the school year that the study was 

conducted did not include algebra as a distinct domain of mathematics education or 

precise objectives regarding algebra teaching and learning. Elementary school 

students were introduced to algebraic problems such as balance scale tasks in the 

fourth grade. Students at Grades 4 and 5 had occasionally the experience of pattern 

activities and activities involving the interpretation of linear graphs. In Grade 5, the 

properties of operations (associative property of addition and multiplication, 

distributive property of multiplication, properties of 0, and order of operations) were 

introduced. Symbols, as a way for expressing unknowns in equations, were not 

introduced before Grade 6. The formal integration of algebra within mathematics 

education appeared in Grade 7. The corresponding lessons in 7th graders books 

emphasized the use and meaning of symbols as a tool for representing unknown 

quantities as well as the investigation of algebraic rules for solving equations. 

Eighth grade students were considered as more skillful in solving algebraic 

tasks due to their more intensive involvement in algebra courses. Hence, in order to 

include eight grade students in the study, the test should have been adapted to their 

previous knowledge and experience, meaning to include in the test complex algebraic 

tasks (e.g. equations with variables and equivalent expressions) that would be abstract 

for the students of younger ages.  

 

Data Collection Instruments  

In order to address the multiple research questions set by the current study, 

various data collection instruments were required. Specifically, the participants were 

tested with seven different tests: (i) a test including items that examine algebraic 

thinking abilities; (ii) a test that addresses processes involved in the Specialized 

Structural Systems (SSSs); (iii) the Naglieri non-verbal ability test that addresses 
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reasoning processes in the inferential system, (iv) a deductive reasoning test; (v) a 

working memory test; (vi) a speed of processing test, and (vii) a control of processing 

test. The construction of the test on algebraic thinking was mainly based on Kaput’s 

(2008) theoretical framework and the recommendations from other related literature, 

curricula, and textbooks, national and international studies on mathematics 

achievement.  For capturing the cognitive component, as this is described by the 

overarching theory of the architecture and development of the mind (Demetriou, 

Spanoudis & Mouyi, 2011), tasks from previous studies were also selected and 

adapted.  Specifically, four different tests that were used in previous studies of 

Demetriou and colleagues were selected and adapted to capture the Hypercognitive 

System and the Specialized Structural Systems. Moreover, the Naglieri Nonverbal 

Ability Test (NNAT) and a deductive reasoning test were used for measuring aspects 

of the inferential system. Table 3.1 presents the title of each test and the parameters 

that aims to measure. 
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Table 3.1  

Data collection instruments of the study 

 Tests Ability/ 

System to 

measure 

Components 

1 Algebraic thinking Test Algebraic 

thinking 

abilities  

 Generalized Arithmetic 

 Functional Thinking 

 Modelling 

2 Specialized Structural 

Systems Test 

Specialized 

Structural 

Systems  

 Spatial-Imaginal 

 Causal-Experimental 

 Qualitative-Analytic 

 Verbal-Propositional 

3 Naglieri Non-Verbal 

Ability Test 

Inferential 

System  

 Serial Reasoning 

 Spatial Visualization 

 Reasoning by Analogy  

 Pattern Completion 

4 Deductive Reasoning Test Inferential 

System  

 Deductive Reasoning 

5 Working Memory Test Hypercognitive 

System 

 Working Memory 

6 Speed of Processing Test Hypercognitive 

System 

 Speed of Processing 

7 Control of Processing Test Hypercognitive 

System 

 Control of Processing 

 

Test on algebraic thinking abilities. As it has already been mentioned, 

algebraic thinking is not only about learning the mathematical language for 

representing algebraic expressions. What is emphasized in literature is the relation of 

algebraic thinking to the ability for expressing and justifying generalizations in 

several problem solving contexts by following processes of symbolization (Kaput & 

Blanton, 2005). At the elementary school level, algebraic thinking is embedded in 
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activities as generalized laws about numbers and patterns, expressing change and 

relationships through the manipulation of variables, manipulating symbolic 

expressions, and expressing structure in modeling situations, within and outside 

mathematics (Kaput, 2008). 

 The test on algebraic thinking was constructed on the basis of the descriptions 

of algebraic thinking from existing theory and research. The identification of 

appropriate tasks in order to measure algebraic thinking was mainly based on the 

theoretical models of Kaput (2008) and Kieran (1996; 2007). Moreover, a content 

analysis of several curricula was conducted, in order to identify all the possible kinds 

of mathematical activities that are considered by curriculum designers as algebraic in 

nature. An additional requirement for designing the test was a content analysis of the 

curriculum (Cyprus Ministry of Education and Culture, 2005) and textbooks (Cyprus 

Ministry of Education and Culture, 1998; 1999; 2001) employed in Cypriot schools at 

the time the research was conducted. This review revealed that students were 

introduced to topics of algebra occasionally during the fourth grade, at the middle of 

the fifth grade and then at the sixth grade. These concepts mostly referred to the 

notion of balance scale problems, symbolization for representing unknowns and 

interpreting graphical representations. As soon as they entered the seventh grade, 

students studied algebra more systematically, focusing on the concepts of equations 

and equivalence. 

The test consisted of tasks that were adapted from previous research studies 

related to the notions of algebra and algebraic thinking or algebraic proof. In 

particular, the design and content of the test was based on previous studies of Blanton 

and Kaput (2005), Drijvers et al. (2011), Kieran (1997; 2004; 2007; 2011), Mason et 

al, (2005) and Stylianides and Stylianides (2008). Furthermore, the test involved tasks 

that were included in past research studies that evaluated students’ mathematical 

achievement in international or national level (e.g. TIMSS - Grade 4, 2011; NAEP – 

Grade 4, 2011; MCAS – Grade 4, 2012). The test included 21 tasks which denoted 

three forms of algebraic activity (see Appendix 1). In particular, assuming that these 

21 tasks required different aspects of algebraic thinking to be processed, they were 

accordingly categorized into three groups which reflected the three strands of algebra 

as these were described by Kaput’s (2008) theoretical framework: Generalized 

arithmetic, Functional thinking, and Modeling as a domain for expressing and 
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formalizing generalizations. There were also tasks that took into consideration the 

relationship of algebraic thinking with roving procedures. The tasks included both 

open-ended questions and multiple choice questions. 

A variety of tasks in the test intended to capture the strand of generalized 

arithmetic. In accord with previous studies, the items of the generalized arithmetic 

strand examined students’ performance on identifying generalizations and structure 

within arithmetical contexts. Tasks from several research studies guided the 

construction of the items in this strand of algebraic thinking abilities, such as Blanton 

and Kaput (2005), Kieran (2004), Mason et al. (2005), MCAS (2012), NAEP (2011), 

Stylianides & Stylianides (2008) and TIMSS (2011). The test involved items that 

addressed properties of numbers and number theory, such as determining if the sum of 

two numbers is an odd or even number (item ga1, see Appendix I) and determining if 

the sum of two multi-digit numbers is an odd or even number (item ga7, see Table 3.2 

or Appendix I). There were also items that examined operations and their properties, 

such as analyzing whole numbers into possible sums and examining the structure of 

those sums (item ga2, see Table 3.2 or Appendix I), relating place-value properties to 

operations’ algorithms (item ga3, see Table 3.2 or Appendix I) and identify the 

structure of mathematical operations using the hundredths table (item ga4, see Table 

3.2 or Appendix I). In addition, there were items that addressed the concepts of 

equality (items ga6 and ga8, see Appendix I) and inequality (item ga5, see Table 3.2 

or Appendix I). The manipulation of this kind of activities required an ability of 

attending the structure of a mathematical expression relying on the fact that numbers 

are placeholders rather than on the computation of specific numbers. 

The problems of the Functional thinking strand were categorized into three 

types of activities: (i) representing and interpreting data graphically, and (iii) 

identifying and expressing functional relationships (correspondence and co-variation 

relationships), and (iv) identifying and describing numerical and geometric patterns.  

These items were adapted from items that were included in relative research studies 

that were undertaken by Blanton and Kaput (2005), MCAS (2012), NAEP (2011), 

TIMSS (2011), Radford (2008), and Rivera (2007). The first type of items examined 

students’ ability for encoding and decoding information graphically in order to 

analyze a functional relationship (item ft1, see Appendix I, and item ft6, see Table 3.2 

or Appendix I). One item asked students to specify the correspondence among a 
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correspondence relationship and generalize a rule that describes this relationship in a 

verbal form (item ft3, see Table 3.2 or Appendix I). The remaining items in this strand 

required finding the nth term in arithmetical and geometrical patterns and expressing 

this generalization in a verbal, symbolic or any other form (items ft2, ft5 see 

Appendix I and item ft2, see Table 3.2 or Appendix I). 

The next strand of algebraic thinking activities was associated with Modeling 

activities that required the expression and formalization of generalizations. In 

particular, these items (see Table 3.2 or Appendix I) engaged the participants with the 

analysis of information that were presented verbally, symbolically or in a table. The 

construction of these items was guided by items used in the studies of Mason et al. 

(2005) and school textbooks (e.g. California Mathematics– Grade 6, 2008). This 

group of items included the following: Modeling with a symbolic expression the 

relationship between Celsius and Fahrenheit degrees (item mod1, see Table 3.2 or 

Appendix I), modeling with a symbolic expression the process for calculating the area 

of a square (item mod2, see Appendix I), modeling with symbolic or verbal 

expressions three sale offers (item mod3, see Appendix I), modeling with symbolic or 

verbal expressions two offers for taking computer lessons (item mod4, see Table 3.2 

or Appendix I), modeling with a table two offers for downloading songs (item mod5, 

see Table 3.2 or Appendix I), modeling a figural pattern (item mod6, see Appendix I) 

and modeling with a symbolic expression a function machine (item mod7, see 

Appendix I). All of these tasks required establishing relationships between the 

variables involved in a phenomenon or situation and associating meanings extracted 

from the modeling situation to symbols or other forms of representations, such as 

verbal expressions, diagrams, graphs or table).  
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Table 3.2 

Examples of tasks included in the test on algebraic thinking abilities 

1. Algebraic Thinking as Generalized Arithmetic 

A. Exploring 

properties of 

numbers 

Determining if 

the sum of two 

multi-digit 

numbers is an 

odd or even 

number (ga7) 

Is the sum of the following addition an even or an 

odd number? Explain your thinking.  

 

1245676 + 4535731    

 

 

 

 

B. Exploring 

properties of  

numbers and 

operations 

Analyzing 

whole numbers 

into possible 

sums and 

examined the 

structure of 

those sums 

(ga2) 

 

Nikiforos found the sum  80 + 50 with the 

following way:  

 

 

 

 

Use the procedure that Nikiforos applied in order 

to calculate the sum 70 + 50. 

Relating place-

value properties 

to the 

multiplication 

algorithm (ga3)  

Vasiliki calculated the following multiplication.  

 

 

  

 

 

Is Vasilikis’ solution right? Explain your answer. 

  (continued) 

 

 

 

 

 

 

 

 

     35 

Χ  22 

    70 

+  70 

  140   

 

 

 
 

80 + 20 + 30   = 100 + 30  

               = 130 

 

Mari
a C

him
on

i



74 
 

   

 Representing 

addition in the 

hundredths 

table (ga4) 

A pawn was moved from number 64 to number 

72. 

Which operation represents its movement? 

(a) 64 + 8                      

(b) 64 + 10 - 2  

(c) 64 + 6 + 2                

(d) 64 + 10 + 2 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 63 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

C. Exploring 

equality / 

inequality as 

expressing a 

relationship 

between 

quantities 

Solve an 

inequality (ga5) 

 

For which value of β the following inequality is 

right?  

12 > 3 Χ β 

(a) 2           

(b) 3            

(c) 4             

(d) 5 

   

(continued) 
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2. Algebraic thinking as functional thinking 

A. 

Representing 

and 

interpreting 

data 

graphically 

Interpreting a 

graph (ft6) 

The graphical representation presents the time that 

Stavriani needs for solving some mathematical  

problems. 

 

 

 

 

 

How much time does Stavriani need for solving 3 

problems? 

 

B. Finding 

functional 

relationships 

Choosing the 

appropriate 

verbal 

expression for 

representing a 

recursive 

relationship 

(ft3) 

  

 

 

 

 
 

 

Eftychios applied a rule to the          in order to get                    

the number in the          . Which was his rule?  

Express it in words or any other form. 

C. Identifying 

and 

describing 

numerical and 

geometric 

patterns 

Calculating the 

nth term in the 

geometrical 

pattern of even 

numbers (ft4) 

Vasilis is arranging squares in the following way: 

 

 

        Figure 1          Figure 2             Figure 3 

How many squares there will be in the 16th 

figure? 

  (continued) 
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3. Modeling as a domain of expressing and formalizing generalizations 

A. 

Generalizing 

regularities 

from 

mathematized 

situations  

Modeling with 

symbolic or 

verbal 

expressions two 

offers (mod4) 

Joanna will take computers lessons twice a week. 

Which is the best offer?  

 

 

 

 

 

 

 

B. 

Symbolizing 

quantities and 

operating 

with 

symbolized 

expressions 

Modeling with 

a symbolic 

expression the 

relationship 

between Celsius 

and Fahrenheir 

degrees (mod1) 

  

The temperature can be measured in Celsius (C) 

degrees or in Fahrenheit (F) degrees. Some 

children have converted the degrees in Celsius to 

Fahrenheit. Choose the symbolic expression that 

describes the relationship between these two 

measurement units?  

 

 

 

 

 

 

 

 

(α) 9 × C = (F-32) ×5  

(β) 9 × F = (C-32) × 5 

(γ) 9 ×C = (47 – F) × 5 

(δ) 9× F = (32 – C) × 5 

Celsius (C) Fahrenheit (F) 

25 47 

30 86 

40 104 

OFFER Α 

€8 for each lesson 

 
OFFER B 

€50 for the first 5 

lessons of the month 

and then €4 for every 

additional lesson 

 

 

9 × 25 = (47 - 32) × 5 

9 × 30 = (86 – 32)  × 5 

9  × 40 = (104 – 32) × 5 
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Test on Domain-Specific Processing Abilities (Specialized Structural 

Systems). The items involved in the test about the SSS were adopted from previous 

tests that were designed from Demetriou and colleagues (e.g. Demetriou & 

Kyriakides, 2006). In particular, tasks from the WISC-R intelligence test were used, 

since previous literature has indicated that they can measure all of the domains of 

thought that are included in the SSS (Case, Demetriou, Plastidou & Kazi, 2001). The 

test measured students’ abilities in four types of domain-specific processing abilities: 

the Spatial-Imaginal system, the Causal-Experimental system, the Qualitative-

Analytic system, and the Verbal-Propositional system. 

The Spatial – Imaginal items involved spatial visualization. Specifically, these 

tasks referred to mental rotation around vertical, horizontal and diagonal axes. These 

items required the ability to manipulate complex spatial information when several 

stages are needed to produce the correct solution.   

The Causal – Experimental items involved cause-effect relations.  

Specifically, these items involved the representation of causal relations between 

objects and persons and operations related to causality. In this perspective, the 

production of inductive inferences was expected. Students were requested to perform 

systematic experimentation by isolating variables and model construction for 

explaining an experimental result.  For example, students had to examine various 

combinations between different materials, such as soda and milk and the way these 

combinations affect the preparation of a cake. This kind of tasks assessed students’ 

understanding of basic types of causal relationships. The causal relations represented 

in these tasks were as follows: necessary and non-sufficient, non-necessary and non-

sufficient, and incompatible relative to an effect.  

The Qualitative – Analytic items addressed categorical though. The 

corresponding items asked students to identify similarity and difference relations and 

make inductive inferences. Specifically, these items involved classification and 

forming hierarchies of interrelated concepts about class relationships, specification of 

the semantic and logical relations between properties, transformation of properties 

into mental objects and construction of conceptual systems. The first items in this 

battery included Raven-like questions (Raven test, 2000) that were made up of a 

series of drawings or patterns with one missing piece. The individuals were asked to 
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fill the missing piece. The Raven-like matrices appeared in a series of increasing 

complexity. Students were asked to integrate two dimensions of a pattern (e.g. shape 

or background). To integrate two aspects of background in order to construct a 

complex layout and to integrate various patterns through a complex transformation.  

The second part in this battery included verbal analogies. In the first analogy, 

students were given a, b, and c components and were asked to specify d component 

by choosing one of three alternatives. The second analogy presented a pair of familiar 

terms and relations and students were asked to construct the second pair. The third 

analogy required the specification of the d term but involved abstract relations. The 

fourth analogy required the students to understand the two higher (second order) 

relations and specify one of them.  

Finally, the last part of Qualitative-Analytic items included items of class 

inclusion. Students were asked to manipulate objects/animals in reference to the 

relationship between the classes involved. The corresponding items requested students 

to compare classes with clear class inclusion relations, by specifying the combination 

of characteristics of the objects/animals involved.  

The Verbal – Propositional items included questions of inferring a conclusion 

from two premises based on logical rules - implication and transitivity. Each question 

involved two premises and one conclusion and participants were asked to judge the 

validity of the conclusion. These items required students to reason inductively and 

deductively. The abilities associated with these activities included abstraction of 

information in goal-relevant ways, differentiation of the contextual from the formal 

elements, elimination of biases from inferential processes, and securing validity of 

inference.  

Two aspects of verbal – propositional reasoning were included in the test, the 

propositional reasoning and reasoning in pragmatic contexts. The degree of difficulty 

in each task depended on the type of the logical relations involved, the validity of the 

argument, and the intuitiveness of the premises. Some logical relations (e.g. 

transitivity, disjunction, and modus ponens) are found to be more easily constructed 

than other relations (e.g. implication, modus tollens). The propositional reasoning 

items involved two premises and a conclusion, and student’s task was to indicate if 

the conclusion was right, wrong, or undecidable. In particular, this item addressed 
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modus tollens (i.e. p or q; not p; therefore p). The reasoning in pragmatic contexts 

items addressed modus ponens (i.e. if p then q, p, therefore q).  

The pragmatic reasoning items addressed the ability to draw conclusions from 

a pragmatic context. More specifically, a series of dialogues are presented and the 

students are requested to draw the logically valid conclusion suggested by the 

dialogues by integrating the premises (Item F3, see appendix II). The relations 

involved here are similar to the relations involved in the propositional reasoning 

items. 

 

Tests on processes in the inferential system. Two tests that are considered to 

measure inferential processes that underlie reasoning and problem solving were used. 

The first test was the Naglieri Non-Verbal Ability Test (NNAT) which assesses 

students’ non-verbal syllogism and abilities of problem solving. The second test was 

developed by English and Watters (1995) and assessed students’ deductive reasoning 

ability. 

 

The Naglieri Nonverbal Ability Test (NNAT). The Naglieri Nonverbal Ability 

Test (NNAT) is a nonverbal test of general ability. Specifically, the NNAT measures 

cognitive ability independently of linguistic and cultural background (Naglieri, 2003). 

The tasks of the test are all multiple choice tasks. The NNAT’s administration 

requires a time period of approximately 30 minutes. There are seven different levels 

of the test corresponding to different age-groups of students. In accord with the level, 

the NNAT may be administered to K–12 school children. The administration may be 

processed on an individual or group basis. The NNAT test has been administered to 

more than 100 000 students around the world and was found to have very good 

indices of validity. Usually this test is used as a means for identifying potentially 

gifted and talented students.  If the student achieves high scores in the NNAT test, the 

student might be placed in a gifted and talented program. 

 The Naglieri Non-Verbal Ability test is a matrix reasoning type of exam that 

contains diagrams and shapes that form patterns and shapes. It contains four different 

types of questions: (i) Pattern Completion, (ii) Reasoning by Analogy, (iii) Serial 
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Reasoning and (iv) Spatial Visualization. Examples for each type of questions are 

presented in Table 3.3.   

The Pattern Completion questions (Item 4, see Table 3.3) involved series of 

patterns with one missing part. The students were asked to choose among five 

possible answers the missing part of the pattern by focusing on aspects of orientation 

and special characteristics.  

The Reasoning by Analogy questions (Item 2, see Table 3.3) required the 

students to identify relationships between a series of drawings by focusing on their 

special characteristics. Specifically, students were asked to identify similarities and 

differences between the drawings. 

The Serial Reasoning questions (Item 5, see Table 3.3) requested students to 

conceive the way a set of drawings are placed in a series, horizontally and vertically, 

and then identify the changes on the way the drawings are placed in another series. 

Serial reasoning shares common features with Inductive Reasoning, which indicates 

the progression from particular/individual instances to broader generalizations. In the 

case of Serial Reasoning items, students had to study the specific instances and 

generalize the rule that guided their placement.   

The Spatial Visualization (see Table 3.3) questions requested students to 

visualize the way a shape will look after a transformation or the way two shapes will 

look after they are combined.  

This study made use of the NNAT Level D for the students of grade 4, the 

Level E for the students of grades 5 and 6, and the Level F for the students of grade 7. 

The Level D included 6 pattern completion tasks, 10 reasoning by analogy tasks, 8 

serial reasoning tasks, and 14 spatial visualization tasks. The Level E included 5 

pattern completion tasks, 6 reasoning by analogy tasks, 8 serial reasoning tasks, and 

19 spatial visualization tasks. The Level F included 6 pattern completion tasks, 10 

reasoning by analogy tasks, 8 serial reasoning tasks, and 14 spatial visualization tasks. 

The NNAT was selected among other rival tests that are used extensively for 

assessing students cognitive ability, such as the Raven Progressive Matrices test 

(Raven, 2000), due to the fact that NNAT includes different categories of questions 

which reflect different types of reasoning processes. Specifically, these categories 
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request students to use in great extend inductive reasoning (diSessa, 1983, 1993; in 

English and Watters, 1995) which is associated to scientific explanation. This process 

entails observation, isolation of phenomena, consideration, reflection combination, 

and at the end generalization of abstractions and theories.   

 

Table 3.3 

Examples of types of questions in the Naglieri Nonverbal Ability Test 

Pattern Completion 

 

Reasoning by analogy 

 

 

(continued) 
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Serial reasoning 

 

Spatial visualization 
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Test on Deductive Reasoning.  A test on syllogism that requires deductive 

reasoning was used, following methodological practices suggested by existing theory 

and research on deductive reasoning. In particular, the test on deductive reasoning 

was adapted from a test that was used by Watters and English (1995). This test was 

considered as appropriate due to the fact that it was used for measuring deductive 

reasoning among students that were approximately of the same age as the participants 

in the current study. 

The items in this test represented 10 syllogisms which requested the students 

to reason deductively. This process included the analysis of premises that describe 

formal truth relationships, without reference to the empirical or practical truth value 

of the premises. After this kind of analysis is conducted, a logical fact, result or 

consequence is derived. According to Nickerson (1986; in English and Watters, 1995) 

deductive reasoning involves the abilities of developing arguments, evaluating the 

validity of hypotheses and the plausibility of assertions, deciding possible paths for 

action and reflect on the possible consequences of the decisions taken.  

The premise of the five first items involved fantasy or make-believe animals 

called Bongos and Wobbles (Item A, see Table 3.4). Students were encouraged to 

believe that they visited a planet where this kind of creatures lived. The following five 

items contained premises involving real entities (Item Z, see Table 3.4). Nevertheless, 

both sets of items described phenomena or behaviors that did not correspond to real-

life experiences. 
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Table 3.4 

Examples of types of questions in the Deductive Reasoning Test 

Syllogisms including creatures of fantasy 

Α.  Bangos have big eyes.  

Animals with big eyes like the sun. 

Ten is a Bango. 

Does Ten like the sun? 

 

YES    or    NO 

Syllogisms including real-entities 

Ζ. All dogs drink milk. 

The animals that drink milk are meow. 

Do dogs meow? 

 

YES or  NO 

 

Tests on processes in the representational capacity system. The test on the 

representational capacity system involved two computer-based activities that were 

designed in the context of a former study of Demetriou, Mouyi, and Spanoudis (2008) 

which investigated the structure and development of intelligence. Specifically, the 

first activity (Figure 3.1) measured the working memory of the students by evaluating 

their ability to remember a figure which appears on the computer screen and to 

distinguish it from other comparable figures.  
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Figure 3.1. Example of tasks included in Working Memory test. 

 

The second activity (Figure 3.2) evaluated speed and control of processing. 

The computer screen is divided into two parts. The individuals had to focus on the 

form of a stimuli presented (green circle or blue square) and press the right or left 

keyboard arrow according to the form of the shape (left arrow for the green circle and 

right arrow for the blue square). Moreover, they had to ignore the position (left or 

right) where the figure appears on the screen and press the left arrow if the green 

circle appeared and the right arrow if the blue square appeared. For half of the items 

of this test the green circle appeared in the same direction as the keyboard button that 

had to be pressed (left side of the screen, left arrow). These items measured speed of 

processing. For the other half of the items, the green circle appeared on the right side 

of the screen and the student had to press the left arrow (right side of the screen, left 

arrow). These items, for which the keyboard arrow to be pressed is inconsistent with 

the part of the screen that the shape appears, measured control of processing.  

 

Figure 3.2. Example of tasks included in Speed and Control of Processing test. 
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Validity of Instruments 

 The items of the algebraic thinking test were developed for the aims of the 

current research, based on related literature, national exams and textbooks. The 

algebraic thinking test was structured in three parts, each measuring one of the three 

components of algebraic thinking: Generalized arithmetic, Functional thinking and 

Modeling as a domain for expressing and formalizing generalizations. For this reason, 

it was necessary to examine the construct validity of the items to measure the three 

categories. In order to evaluate the construct validity of the test, a pilot administration 

of the test was conducted. The results of this analysis (see Figure 3.3) indicated that 

the fitting of the model to the data gathered from the pilot study were satisfactory 

(CFI=.969, TLI=.979, x2=141.647, df =88, x2/df =1.61, p<.01, RMSEA=.036).The 

pilot study also guided the modification of some items. For example, item ga5 had a 

low factor loading and for this reason it was modified – from an open-ended question 

became a multiple choice question. Some factors were enriched with more items and 

corrections were made in the wording of some items.  

The internal consistency of scores measured by Cronbach’s alpha was 

satisfactory for the algebraic thinking test (a=0.87). The internal consistencies of 

scores measured by Cronbach’s alpha were also satisfactory for the NNAT test 

(a=0.84), the Deductive Reasoning test (a=.79), and the Hypercognitive tests (a=.96). 
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Note. The first number indicates factor loading and the number in the parenthesis indicates the corresponding 

interpreted dispersion (r2) 

Figure 3.3. Model of construct validity of the algebraic thinking test. 

Identifying the rule of a 

complex pattern - ft5 

Solving an inequality - ga5 

Solving an equation - ga6 

Determining if the sum of 

two multi-digit numbers is 

odd or even - ga7 

Using a known sum to find a 

new sum - ga8 

.978 (.856) 

Determining if the sum of 

two even numbers is odd - 

ga1 
Analyzing whole numbers 

into possible sums - ga2 

Relating place-value 

properties to the 

multiplication algorithm - ga3 

Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Representing addition in the 

hundredths table - ga4 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing the appropriate 

verbal expression for 

representing a recursive 

relationship - ft3 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic or 

verbal expression the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

.701 (492) 

.501 (.251) 

.560 (.314) 

.234 (.055) 

.613 (.376) 

.653 (.426) 

.807 (.651) 

.765 (.585) 

.608 (.370) 

.924 (.854) 

.913 (.834) 

.933 (.870) 

.583 (.340) 

.478 (.228) 

.696 (.484) 

.668 (.446) 

Calculating the nth term in 

the geometrical pattern of 

even numbers – ft4 

.642 (.413) 

Modeling with symbolic or 

verbal expressions two 

offers - mod4 

.455 (.207) 

.440 (.228) 

Modeling with a table two 

offers – mod5 

.475 (.226) 
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The Proposed Model 

It has been well documented that algebraic thinking is a wide conceptual field 

which does not merely coincide with what we know as traditional algebra (e.g. 

Blanton & Kaput, 2005; Kaput, 2008; Kieran, 1992; Mason, Graham & Johnston-

Wilder, 2005). This idea raised the important issue of which are the aspects of 

algebraic thinking both in the primary and secondary education. Kaput, for many 

years, sought ways for defining algebraic thinking (Carraher & Schliemann, 2007). 

Blanton and Kaput (2005) described algebraic thinking as the process of establishing, 

systematically expressing and justifying generalizations in increasingly formal ways. 

They highlighted that expressing generalizations with symbols depends on students’ 

age and level. Kaput (2008) further specified that there are two core aspects of 

algebraic thinking: (i) making generalizations and expressing those generalizations in 

increasingly systematic, conventional symbol systems, and (ii) reasoning with 

symbolic forms, including the syntactically guided manipulations of those symbolic 

forms. The first aspect refers to the way, generalizations are produced, justified and 

expressed in various ways. The second aspect refers to the association of meanings to 

symbols and to the treatment of symbols independently of their meaning. Kaput 

(2008) asserted that these two aspects of algebraic thinking denote reasoning 

processes that are considered to flow in varying degrees throughout three strands of 

algebraic activity: (i) generalized arithmetic, (ii) functional thinking, and (iii) the 

application of modeling languages for describing generalizations.  

Relying on Kaput’s theoretical framework, this study investigated whether 

different types of algebraic tasks could describe the basic components of algebraic 

thinking, and the extent to which different age-groups of students reflect these 

aspects. The proposed model consisted of three first-order factors: Generalized 

Arithmetic, Functional Thinking and Modeling as a domain for expressing and 

formalizing generalizations. 

 Generalized arithmetic was related to items of “Exploring properties of 

numbers” (see items ga1, ga7 in Table 3.5), “Exploring properties of numbers and 

operations” (see items ga2, ga3, ga4 and ga7 in Table 3.5) and “Exploring equality / 

inequality as expressing a relationship between quantities” (see items ga5, ga6 and 

ga8 in Table 3.5).  
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Functional thinking items involved “Representing and interpreting data 

graphically” (see items ft1 and ft6 in Table 3.5), “Finding functional relationships” 

(see item ft3 in Table 3.5) and “Identifying and describing numerical and geometric 

patterns” (see items ft2, ft4 and ft5 in Table 3.5).  

Modeling items involved “Generalizing regularities from mathematized 

situations” (see items mod3, mod4 and mod5 in Table 3.5) and “Symbolizing 

quantities and operating with symbolized expressions” (see items mod1, mod6 and 

mod7 in Table 3.5).   

 

Table 3. 5  

Description of Factors and Items of Factors of the Algebraic Thinking Ability 

1st order Factor  Description of Items 

Generalized 

Arithmetic 

Exploring properties 

of numbers 

Ga1 Determining if the sum of two 

even numbers is an odd or an even 

number  

Ga7 Determining if the sum of two 

multi-digit numbers is an odd or an 

even number 

Exploring properties 

of numbers and 

operations” 

Ga2 Analyzing whole numbers into 

possible sums 

Ga3 Relating place-value properties 

of numbers to the multiplication 

algorithm 

Ga4 Representing addition in the 

hundredths table 

(continued) 

Mari
a C

him
on

i



90 
 

  

Exploring equality / 

inequality as 

expressing a 

relationship between 

quantities 

Ga5 Solving and inequality  

Ga6 Solving an equation with one 

unknown 

Ge8 Using a known sum to find a new 

sum. 

Functional 

thinking 

Representing and 

interpreting data 

graphically 

Ft1 Choosing the appropriate graph 

for representing a recursive 

relationship 

Ft6 Interpreting a graph 

Finding functional 

relationships 

(correspondence , co-

variation) 

Ft3 Choosing the appropriate verbal 

expression for representing a 

recursive relationship  

 Identifying and 

describing numerical 

and geometric patterns 

Ft2 Identify possible in terms in a 

numerical pattern 

Ft4 calculating the nth term in the 

geometrical pattern of even numbers 

Ft5 developing the rule of a complex 

pattern 

 

(continued) 
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Modeling as a 

domain of 

expressing and 

formalizing 

generalizations 

through algebraic 

symbols 

Generalizing 

regularities from 

mathematized 

situations  

Mod3 Modeling with symbolic or 

verbal expressions the process three 

sales offers 

Mod4 Modeling with symbolic or 

verbal expressions two offers for 

computer lessons 

Mod5 Modeling with a table two 

offers for downloading songs 

Symbolizing 

quantities and 

operating with 

symbolized 

expressions 

Mod1 Modeling with a symbolic 

expression the relationship between 

Celsius degrees and Fahrenheit 

degrees  

Mod2 Modeling with a verbal or a 

symbolic expression the process for 

calculating the area of a square 

Mod6 Modeling a figural pattern 

Mod7 Modeling with a symbolic 

expression a function table 
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Figure 3.4. The proposed model for the structure of algebraic thinking. 

Interpreting a graph - ft6 

Solving an inequality - ga5 

Solving an equation - ga6 

Determining if the sum of two 

multi-digit numbers is odd or 

even - ga7 

Using a known sum to find a 

new sum - ga8 

Determining if the sum of two 

even numbers is odd - ga1 

Analyzing whole numbers into 

possible sums - ga2 

Relating place-value 

properties to the 

multiplication algorithm - ga3 

Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Representing addition in the 

hundredths table - ga4 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing a verbal expression 

for representing a recursive 

relationship - ft3 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic or 

verbal expression the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

Calculating the nth term in 

the geometrical pattern of 

even numbers -  ft4 

Modeling with symbolic or 

verbal expressions two 

offers - mod4 

Modeling with a table two 

offers - mod5 

Modeling a figural pattern – 

mod6 

Modeling with symbols a 

function table – mod7 

Identifying the rule of a 

complex pattern -  ft5 
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Teaching Experiments 

The design experiment methodology. The final part of the study focuses on 

the effect of two teaching experiments on students’ algebraic thinking. In particular, 

the aim of the intervention was to assist students to make progress with respect to the 

three components of algebraic thinking. 

The design of the intervention is grounded in the suggestions of available 

literature pertaining teaching experiments. In particular, Cobb, Confrey, diSessa, 

Lehrer and Schauble (2003) described five features which are involved in preparing 

for and carrying out a teaching experiment and in conducting a retrospective analysis 

of data and results produced during the experiment. First, the design experiment 

should explain the process of learning and describe the means that will provide 

support for that learning. For example, the design experiment should be based on a 

psychological model of the process by which students are expected to develop deep 

understanding of the particular mathematical topic of foci, together with the type of 

tasks and teacher practices that can support that learning.  Second, it should be 

ensured that the experiment will be highly interventionist; in order to make certain the 

interventionist nature of the experiment and to investigate the possibilities of 

educational improvement, the methodology of the experiment should draw on the 

theoretical and empirical results of prior research. Third, the design experiment 

should be both prospective and reflective in nature. While the design is implemented 

in accordance to a hypothesized learning process, an equally important objective is to 

generate and test alternative conjectures when a prospective conjecture is refuted.  A 

fourth characteristic should be the iterative design. A design experiment is consisted 

of cycles of application and revision. Finally, the theoretical products of a design 

experiment should precisely inform domain specific learning processes and speak 

directly to the types of problems that practitioners address in the course of their work.  

In line with the suggestions made by Cobb et al. (2003), two highly 

interventionist teaching experiments were conducted. These kinds of experiments 

were selected for several reasons. First, their formulation reflects features of larger 

projects that were found in related literature and were exclusively designed for 

promoting algebraic thinking among students of elementary grades. Additionally, 

these projects supported investigative learning. Also, both projects were found to be 
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effective. However, the tasks used in each project seemed to be different in respect to 

the extent of providing students with scaffolding steps for accomplishing 

mathematical investigations.  

Pre- and post-tests were administered to the students in order to measure their 

algebraic thinking and cognitive abilities. The results of the tests were analyzed in 

order to compare the effectiveness of the two teaching approaches.  

 

Clarifying the process of learning and the means for supporting it. 

According to the first suggestion of Cobb et al. (2003), the design experiments were 

based on the conceptual and cognitive analysis of the notion of algebraic thinking in 

order to clarify specific content, cognitive processes that affect learning and the 

means that will support that learning. Situated in this context, the experiments were 

also guided by the results of the quantitative analysis of the data, about the 

relationship between algebraic thinking and various types of cognitive factors. 

 

Teaching experiment I: Semi-structured Problem Situations.  The first 

teaching experiment used semi-structured problems which reflected situations and 

phenomena from the real life. These tasks addressed a general question and students 

were given time to get engaged to the problem situation, analyze and combine 

information and apply their own strategies and pathways for solving the task. 

Moreover, these tasks employed some features of modeling like tasks. For example, 

modeling activities engage children to authentic situations that need to be interpreted 

and described in mathematical ways (Lesh, 2003). Key mathematical constructs are 

embedded within the problem context and are formulated by the students as they 

investigate the problem. An important feature of modeling activities is that they 

require students to figure out ways for solving the problem (English, 2004). 

Moreover, they might need to use various technological tools for examining all of the 

given information and organizing and interpreting their data (e.g. spreadsheets).  

This kind of tasks is cognitively demanding and aim to generate understanding 

of relative mathematical concepts. In the same line of thought, the first teaching 

experiment included intellectually stimulating activities. These activities provided 
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students with opportunities for generating algebraic thinking as a meaningful 

mathematical construct. Specifically, modeling like tasks are considered as 

appropriate for enhancing the development of algebraic thinking because models 

involve the description and interpretation of complex systems of information through 

the application of processes such as, constructing, explaining, justifying, predicting, 

generalizing, conjecturing, and representing (English, 2011; English & Watters, 

2005). Most of these processes coincide with what Kieran (2011) has described as 

important aspects that research has addressed pertaining algebraic thinking in the 

early grades. These processes are also integrated in most of the cognitive factors that 

were examined by the current research and are considered by psychologists to affect 

students’ educational behavior, such as processes of the causal-experimental system, 

spatial-imaginal system, inductive and deductive reasoning. Moreover, mathematical 

models focus on structural characteristics of phenomena (e.g. patterns, interactions, 

and relationships among elements) (English & Watters, 2005). In this context, 

modeling like activities provide the learners with opportunities for developing and 

applying algebraic thinking as a powerful tool for understanding and predicting the 

behavior of problem situations. 

 

Teaching experiment II: Structured Mathematical Investigations. The 

second teaching experiment included tasks that aimed to assist students in 

investigating all important aspects of algebraic thinking, through scaffolded activities 

that directed students to develop relational thinking, through identifying and 

understanding structure in mathematical concepts. Specifically, the tasks involved 

several assisting steps and pathways which guided students’ investigation to the 

extraction of an explicit conclusion. This kind of activities is considered as relevant 

and important for enhancing algebraic thinking since they apply fundamental 

processes, such as pattern building, generalization, formulation and expression of 

relationships and progressive symbolization.  

This experiment draw upon the findings from two large evaluation studies that 

aimed to enhance young children’s early algebraic thinking and their awareness of the 

structural development of mathematics, the GEAAR project (Kaput & Blanton, 1999) 
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and the PASMAP program (Mulligan, 2009; Mulligan, English & Mitchelmore, 

2011).  

The “Generalizing to Extend Arithmetic to Algebraic Reasoning” (GEAAR) 

project was designed to develop teachers’ abilities to identify and strategically build 

upon students’ attempts to reason algebraically and to use appropriate classroom 

instructional activities to support this (Kaput & Blanton, 1999). The strategy of 

GEAAR increased teachers’ capacity to transform instructional materials in order to 

shift the focus of their practice from arithmetic to opportunities for pattern building, 

conjecturing, generalizing, and justifying mathematical facts and relationships. This 

project grouped teachers across grade levels and engaged them in solving authentic 

mathematical tasks and reflecting on the algebraic character of these tasks and how 

they might play out mathematically and pedagogically in their classroom. Teachers 

then adapted these tasks to their particular grade levels and implemented them in their 

own classrooms, focusing on students’ emergent algebraic thinking.  

Mulligan and colleagues developed a “Pattern and Structure Mathematics 

Awareness Program” (PASMAP) that focused explicitly on raising primary school 

students’ awareness of mathematical pattern and structure through a variety of well-

connected pattern-eliciting experiences (Mulligan, 2009; Mulligan, English & 

Mitchelmore, 2011). In this program, learning experiences are scaffolded in order 

children to look for and represent patterns and structure across a variety of concepts 

and then transfer this structure to other concepts. The PASMAP promoted simple or 

‘emergent generalization’ in young children’s mathematical thinking across a range of 

concepts. This study documented astonishing changes in children’s structural 

awareness and development of mathematical concepts that were above the expected 

for their age level. PASMAP also had an effect on their scores on independent 

mathematics assessments.  

 

The interventionist nature of the experiments.  According to the second 

feature reported by Cobb et al. (2003), both of the experiments will draw on the 

results of the literature presented above, in order to ensure their interventionist nature. 

The studies reported above lend strong support to the hypothesis that cultivating 

algebraic thinking in young students should lead to a general improvement in the 

Mari
a C

him
on

i



97 
 

quality of their mathematical understanding. However, most of the studies did not 

have sufficiently large or representative sample and did not track and describe in 

depth the effects on algebraic thinking. Moreover, most studies lacked a comparison 

group which also had the opportunity to engage in algebraic thinking within practices 

and materials that are different from those that are expected to be used in a traditional 

classroom.  

To overcome these gaps, both of the interventions adopted characteristics for 

utilizing conceptual understanding and reaching advanced forms of reasoning, such as 

‘promoting the active development of knowledge rather than the acquisition of static 

knowledge’ and creating highly cognitive demanding learning activities (English, 

2011). In order to approach this goal, the design of this intervention was based on the 

results of a systematic review and meta-analysis of algebra instruction improvement 

strategies conducted by Rakes et al. (2010). The recommendation of this systematic 

review was that the use of coherent curricula, instructional strategies, manipulatives, 

and technology to develop conceptual understanding has significantly positive effects 

on improving learning in algebra. Coherent curricula refer to the design and 

organization of curricula that comprehensively serve the principles and standards set 

by policy makers in respect to learning. Instructional strategies involve teaching 

methods such as cooperative learning, multiple representations, and assessment 

strategies. Manipulatives refer to the use of objects that help understanding a 

particular concept, e.g. rectangular tiles for developing polynomial multiplication 

skills. Technology involves tools such as graphic calculators, computer programs, and 

java applets. In this context, the two teaching experiments were designed in order to 

adapt all of these effective strategies with the aim to attend a possible positive effect 

on students’ algebraic thinking.  

The current intervention set a “coherent curriculum” that cultivated students’ 

algebraic skills in robust ways through their mathematical experiences. The aim was 

to design of a broad range of activities which encompassed the multiple forms of 

algebraic thinking as these were described through the literature review and are 

enclosed in the proposed model of algebraic thinking. In this context, each 

intervention was developed through ten lessons of 80-minutes duration (see Table 3.6. 

or Appendix II). Lessons 3-4 were focused on “Generalized arithmetic”, lessons 

1,2,6,7 on “Functional thinking”, lessons 5,8,9,10 on “Modeling as a domain for 

Mari
a C

him
on

i



98 
 

expressing and formalizing generalizations” and algebraic proof. In particular, the 

instruction was arranged around mathematical activities that promoted algebraic 

thinking through the use of appropriate tasks and classroom interactions. The goal 

was to build habits of mind whereby students naturally were engaged in algebraic 

tasks and used instructional strategies (e.g. cooperative learning) and tools 

(technological tools, objects, structures and processes) that supported the 

implementation of the tasks.  

 

Table 3.6 

Structure of Instructional Interventions and Objectives for each Lesson 

LESSONS Topic Objectives: To develop students’ ability to… 

3-4 Generalized 

arithmetic 

 Apply properties and relationships of 

whole numbers 

 Apply properties of operations on 

whole numbers 

 Treat equalities as objects that express 

quantitative relationships  

 Treat numbers by attending structure 

rather than computations 

 Solve missing numbers sentences 

1, 2, 6, 7 Functional thinking 

 

 Symbolize quantities and operate on 

symbolized expressions 

 Encode information graphically for 

analyzing a functional relationship 

 Identify correspondence among 

quantities or co-variation relationships 

and develop a rule that describes the 

relationship 

 

  
(continued) 
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 Identify and describe numerical and 

geometrical patterns 

5, 8, 9, 10 Modeling / 

Algebraic proof 

 Generalize regularities from 

mathematized situations 

 Use generalizations to build other 

generalizations 

 Describe, justify, and test 

generalizations 

 Generalize a mathematical process or 

formula 

 

In this perspective, the interventionist nature of both experiments lay on the 

fact that they applied the same theoretical framework and similar characteristics as far 

as it concerns the content, the quality of instruction, the investigative nature of 

learning, and the cognitive demand of the learning activities. In both teaching 

experiments the goal was the teaching and learning of the same content. Nevertheless, 

they were elaborated through different types of tasks. Hence, the two teaching 

experiments were compared in relation to the type of the tasks through which 

algebraic thinking was expected to be emerged. One group was involved in semi-

structured problem situations that moved beyond typical problem solving and 

involved authentic contexts. Students were expected to work collaboratively in order 

to uncover the mathematics enclosed in the situation, organize schemes of work by 

themselves, formulate strategies and build proper mathematical models for 

representing the situation. The other group was involved in scaffolded and structured 

mathematical investigations. Students were expected to come to specific viable 

conclusions while following the assisting steps and questions in each investigation. In 

both experiments, technology had a pivotal role, since digital work was encouraged 

through the use of online applets.  

Figure 3.5 summarizes the similarities and differences among the two teaching 

experiments.  
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Figure 3.5. Similarities and differences between the two teaching experiments. 
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Table 3.7 presents an example of the activities in one of the lessons focused on 

generalized arithmetic. The topic of the lesson is examining properties of numbers. 

Table 3.8 presents an example of the activities in one of the lessons focused on 

functional thinking. The topic of this lesson was generalizing the nth term in pattern 

tasks. Appendix II includes all the lessons that were conducted in both teaching 

interventions. 

 

Table 3.7 

Example of tasks in generalized arithmetic lessons 

Teaching experiment 1: Semi structured problem situation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(continued) 

1. Constantinos noticed that last year the school 
holidays of the 25th of March and 1st of April were on 
the same day of the week. Both of them were on 
Tuesday.  He is wondering if this happens every year. 
Check in other years’ calendars if the schools holidays 
of the 25th of March and 1st of April were on the same 
day of the week. Explain your thinking and your answer.  
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Teaching experiment 2: Structured mathematical investigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. What is the instruction that you have to write on the calculator in order 

to color: 

a) the multiples of 5 

_________________________________________________________________ 

b) the multiples of 7 

_________________________________________________________________ 

c) the pattern 1, 12, 23, 34, … 

_________________________________________________________________ 

  

Use the applet:  

http://www.nctm.org/java/eexamples/4.5/standalone1.asp 
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Table 3.8 

Examples of tasks in functional thinking lessons 

Teaching experiment 1: Semi-structured problem situation 

 
Fanis is a waiter. He is preparing the tables for the lunch reservations.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

You can use the applet:  

http://illuminations.nctm.org/Activity.aspx?id=3542 

(continued) 

(α) The restaurant has square tables. How many square tables Fanis needs to 

place side by side for Mr. Charalambous’ reservation? Justify your answer.   

Reservations  20/10/14 

Name             Number of 

                        people   

Georgiou                  4 

Demetriou               6 

Stephanou               8 

Charalambous          16 

Kyriakou                 22 
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Teaching experiment 2: Structured mathematical investigation 

 

1. Investigate the following pattern. 

 
 

 

 

 

 

 

 

 

 

 

 

 
(a) How many squares are colored in each figure? 

 

Figure 1:    _________ 

Figure 2:   _________ 

Figure 3:   _________ 

 
(b) How many colored squares will the 4th Figure of the pattern have? 

____________    

 

(c) Use the applet: 

http://www.explorelearning.com/index.cfm?method=cResource.dsp

Detail&ResourceID=219 

 

Sketch Figure 4 and then check your answer by clicking on «check». 

  

 

 

 

 

 

 

 

 

 
(d) How many colored squares will the 20th figure of the pattern have? 

Explain your answer.  
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Analysis 

Statistical techniques for analyzing quantitative data. To address the 

research questions of the study, the MPLUS statistical package of structural equation 

analysis (Muthén & Muthén, 1998) was used in order to perform Confirmatory Factor 

Analysis (CFA) and Latent Class Analysis (LCA). Moreover, the SPSS statistical 

package was used in order to perform descriptive statistics analyses. 

The Confirmatory Factor Analysis (CFA) was used for two reasons (i) to test 

the construct validity of the algebraic thinking instrument and (ii) to investigate 

whether the theoretical assumptions of the model about the core aspects of algebraic 

thinking fit the data of the study. The Confirmatory Factor Analysis was applied at the 

whole population that participated in the study. Moreover, the Multiple Group 

Confirmatory Factor Analysis was applied in order to examine whether the model fits 

the data of each age-group separately (Grade 4, Grade 5, Grade 6 and Grade 7). 

Goodness of fit of the data is evaluated by using three indices: (i) chi-square to its 

degree of freedom ratio (x²/df), (ii) Comparative Fit index (CFI), and (iii) Root Mean-

Square Error of Approximation (RMSEA). The observed values of x²/df should be 

less than 2, the values for CFI should be higher than 0.9, and the RMSEA values 

should be close to zero (Marcoulides & Schumacker, 1996). 

The Latent Class Analysis (LCA) was used to test whether there are different 

classes of students that are at different levels of algebraic thinking ability. 

Specifically, this analysis detected groups of students with similar behavior 

(Marcoulides & Schumacher, 1996). More than one fit indices are used to evaluate the 

possibility of grouping students into different groups: (i) the Entropy index, which 

needs to be the highest possible, (ii) the AIC index which needs to be the lowest 

possible, and (iii) the BIC which needs to be the lowest possible.  

Regressions analysis and Structural Equation Model (SEM) analysis was used 

to investigate the relation between algebraic thinking abilities and the cognitive 

factors. Specifically, for each age-group in separation, several regression models were 

investigated in order to define the cognitive factor that influence algebraic thinking. 

Then SEM analyses were used with the aim to test (i) the validity of a model where 

the abilities of the students in the different cognitive systems (SSS, Inferential 

System, Hypercognitive System) predict algebraic thinking ability, and (ii) the 
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validity of a model where algebraic thinking ability and the abilities of the students in 

the different cognitive systems (SSS, Inferential System, Hypercognitive System) are 

sub-factors of a more general ability, namely “Generalization abilities”.   

Using the SPSS statistical package, the means and the standard deviations of 

the answers of the students in the items of all of the tests were measured. Moreover, 

analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) 

was conducted. First it was investigated whether there are statistically significant 

differences between the performance of different age-groups in the components of 

algebraic thinking ability, in their overall performance in the algebraic thinking 

ability, and their performance in the different cognitive abilities of the human mind. 

Second, it was investigated whether there are statistically significant differences 

between the different classes of students as far as it concerns the algebraic thinking 

ability (as these were extracted from the latent class analysis) in their performance in 

the different components of algebraic thinking and in their overall performance in the 

algebraic thinking ability, and their performance in the different cognitive abilities of 

the human mind.  

 

Statistical techniques for analyzing the impact of the instructional 

intervention. In order to test the means and standard deviations in the algebraic 

thinking test and the cognitive tests of the two groups that participated in the 

instructional intervention program, the SPSS statistical package was used.  Paired-

sample t-test was performed in order to measure the differences in the performance of 

students of the same group in the pre-tests and the post-tests. Moreover, multivariate 

analysis of covariance (MANCOVA) was used to examine the impact of the two 

teaching interventions (structured mathematical investigations and semi-structured 

problem situations) on the participants’ algebraic thinking abilities. The type of 

intervention was the independent variable. Students’ performance in algebraic 

thinking pre-test was considered as the covariate, and the performance differences 

between the pre- and post- tests as dependent variables.  

A multivariate analysis of covariance (MANCOVA) was also used in order to 

investigate the impact of the interactions between the type of teaching experiment 

(structured mathematical investigations and semi-structured problem situations) and 
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students’ individual characteristics. The MANCOVA analysis was applied with the 

purpose of evaluating the moderation effects of the intervention and students’ 

cognitive abilities, in respect to students’ benefits in algebraic thinking, while 

adjusting for covariates in the students’ abilities prior to the intervention program. 

Modeling as a domain for expressing and formalizing generalizations). In the 

analysis, the dependent variables were the benefits in students’ overall algebraic 

thinking abilities, in generalized arithmetic concepts, functional thinking concepts and 

modeling concepts. The fixed factor was the intervention type (structured 

mathematical investigations and semi-structured problem situations). The covariates 

were the cognitive factors. 

 

Scoring of the Data Collection Instruments  

For the data coding of the algebraic thinking test, different procedures were 

followed according to the type of the task. Considering that students had adequate 

time to complete the test during administration, items with no response were graded 

with 0 marks.  

For the multiple choice tasks which had four alternative responses, one mark 

was given to each correct response and zero marks were given to each incorrect 

response (items ga5, ga6, ga7, ft1, ft2, ft3, mod1, mod6 and mod7).  

For the coding of the tasks that had two sub-questions, partial credit was 

given, considering the maximum sum of the marks of the sub-questions to be equal to 

1 (items ft5 and mod 5). Specifically, in the item “Developing the rule of a complex 

pattern” (ft5) the scoring was as follows: 0 mark for incorrect responses to all sub-

questions, 0.50 for answering correct the first sub-question and 0.50 for answering 

correct the second sub-question. In the item “Modeling with a table two offers for 

downloading songs” (mod5), the scoring was as follows: 0 mark for incorrect 

responses to all sub-questions, 0.33 for completing correct the first row of the table, 

0.33 for completing correct the second row of the table and 0.33 for answering correct 

the last question.  

In the items where students had to justify their answers (ga1, ga3 and ga7), the 

scoring was as follows: 0 mark for fully incorrect responses, 0.50 for giving a correct 
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answer without justifying the answer or giving a wrong justification and 1 mark for 

giving a correct answer and a proper justification.  

In the remaining items (ga2, ga8, mod1, mod2, ft4, mod3 and ft6), 0 mark was 

given for an incorrect response and 1 mark was given for a fully correct response.  

The Specialized Structural Systems test, the Naglieri Non-Verbal Ability test 

and the Deductive Reasoning test involved only multiple choice items, with four 

alternative responses each. In these tests, 1 mark was given to each correct response 

and 0 marks were given to each incorrect response. Items in these tests with no 

response were also graded with zero, since students had adequate time to complete all 

of the tests during administration. 

For the measurement of students’ working memory, speed of processing, and 

control of processing, computer based tests were used which calculated the total time 

needed for completing the tasks and the number of correct responses that each student 

gave. The final score of the students in these tests was their reaction times. These 

were calculated by dividing the total time needed for the tasks by the number of 

correct responses of each student. As a result, three reaction times were measured for 

each student. 

 

Procedure 

The procedure of the study included six phases. The first phase involved the 

literature review which guided the establishment of the theoretical framework of the 

study and the construction and selection of the instruments. The second phase 

included the administration of the instruments in a pilot study and their modification. 

The third phase involved the administration of the final instruments to the students. 

The fourth phase included the analysis of the data collected. The fifth phase involved 

the design and conduction of the teaching interventions in two fifth grade classes. 

Finally, the sixth phase included the analysis of all the data collected and the 

extraction of conclusions. 

At the first phase research findings and theoretical frameworks that examine 

the notions of algebra and algebraic thinking were synthesized. Moreover, 

psychological studies that were used in the context of education and offered insights 
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about mental causation were reviewed. This analysis guided the design, construction, 

and selection of instruments. Specifically, several curricula, textbooks, national and 

international studies on mathematics achievement, and research studies were reviewed 

in order to select and adapt tasks that were appropriate for measuring students’ 

abilities on algebraic thinking. Following Kaput’s (2008) theoretical framework and 

the recommendations from related literature (e.g. Drijvers et al, 2011; Kieran, 2004; 

Mason et al, 2005; Radford, 2008), the tasks were grouped into three categories: 

generalized arithmetic, functional thinking and modeling as a domain for expressing 

and formalizing generalizations.  For measuring the parameters of the cognitive 

component, as these were extracted from the overarching theory of the architecture 

and development of the mind (Demetriou, Spanoudis & Mouyi, 2011), tests from 

previous studies were selected and adapted.  Specifically, four different tests that were 

used in previous studies of Demetriou and colleagues were selected and adapted to 

capture the Representational Capacity System, the Specialized Structural Systems. 

Moreover, the Naglieri Nonverbal Ability Test (NNAT) and a deductive reasoning 

that was developed by Watters and English (1996) were used for measuring aspects of 

the inferential system.  

The second phase included the evaluation of the tests in a pilot study. In 

particular, the tests were administered to three fourth grade classes (58 students), three 

fifth grade classes (66 students), three sixth grade classes (82 students), and four 

seventh grade classes (95 students). The administration of the tests in the pilot study 

aimed to examine the level of difficulty in the tasks, the difficulties of the participants 

in understanding the instructions and the time needed for completing the tests.    

Following the pilot study and based on its results, in the third phase the tests 

were modified and administered to the whole sample. Some items were modified, in 

order to be better clarified and improve the wording of instructions. Also, in the final 

test some tasks were removed due to time restrictions. Then, in the fourth phase, the 

analysis of the quantitative data collected through the tests was conducted.  

The fifth phase included the teaching interventions in four fifth grade classes. 

The students of these classes were divided into two different teaching intervention 

experiments, both aiming to enhance their algebraic thinking abilities. The duration of 

each program was six weeks long, with two eighty-minute period lessons each week. 
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All lessons took place in students’ classroom or in the school computer laboratory and 

were conducted by the researcher.   

The final phase of the study included the analysis of all the collected data, the 

discussion and the conclusions based on the theoretical framework that was used as a 

guide for designing the research. 
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CHAPTER IV 

 

Data Analysis and Results 

 

Introduction 

This chapter presents the study results pertaining to the research questions, 

which aimed at a thorough exploration of the nature and content of algebraic thinking 

from pedagogical and cognitive perspectives. In particular, this chapter presents the 

quantitative results of this study, as they were extracted from the analysis of data 

collected from tests that measured algebraic thinking and various types of cognitive 

factors. Additionally, the results that arose from the conduction of the instructional 

intervention program are described. These refer to the comparison of two different 

teaching experiments for developing students’ algebraic thinking.  

The chapter consists of four sections. The first section addresses the first two 

research questions of the study about the structure and components of algebraic 

thinking. Kaput’s model about the aspects that synthesize algebraic thinking is 

empirically tested. The stability of this model across the four age-groups that were 

included in the sample (Grade 4, Grade 5, Grade 6 and Grade 7) is also examined.   

In the second section, questions third, fourth and fifth are addressed. 

Specifically, the results from evaluating the possibility of grouping students into 

different groups considering the level of their algebraic thinking ability are presented. 

Then, the characteristics and differences between these groups are described in detail. 

Moreover, the presence of a hierarchical route that prescribes levels of algebraic 

thinking ability is investigated. Both sections one and two of this chapter contribute to 

better understand the concept of algebraic thinking from a pedagogical perspective. 

In the third section of this chapter, the sixth research question is approached. 

This refers to the extent to which there is an association between algebraic thinking 

and different types of cognitive factors. In particular, the third section presents a 

detailed description of the relationship among students’ algebraic thinking and (i) 

domain-specific processes of mental action, (ii) different types of reasoning forms, 
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and (iii) general cognitive processes of mental action. This analysis is conducted 

separately for each of the four age-groups that are involved in the study. Finally, this 

section outlines which of these factors are significantly related to algebraic thinking. 

The aim is to define the nature of the relationship between different types of cognitive 

factors and algebraic thinking. As significant factors in this relationship are 

considered to be only the factors that appear to be common and significant in all of 

the four age-groups. By identifying factors that affect students’ performance in the 

algebraic thinking test, this section contributes in further defining algebraic thinking 

from a cognitive perspective.   

The fourth section of this chapter explores the possibility of enhancing 

students’ algebraic thinking using innovative teaching approaches. Questions seventh 

and eighth are examined pertaining the impact of a particular intervention program. 

Specifically, the two teaching experiments are compared in respect to their effect in 

fifth grade students’ algebraic thinking abilities. The interventionist nature of both 

experiments lies to the fact that they consider the results reported in the previous two 

sections for articulating the goals and objectives of a series of lessons in several 

algebraic concepts. Similar characteristics are applied in both experiments as far as it 

concerns the quality and content of instruction and the cognitive demand of the 

learning activities. Nevertheless, the tasks and questions used in each experiment have 

different characteristics. One group of students is involved in semi-structured realistic 

problem situations that move beyond typical problem solving and the other group is 

involved in more scaffolded and structured mathematical investigations. Algebraic 

thinking is integrated in viable ways in the activities of both experiments. This chapter 

provides further evidence regarding the aim under consideration for unpacking the 

concept of algebraic thinking from a pedagogical perspective and offers insight into 

the way the components of algebraic thinking can be manifested in teachers’ 

practices.  
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The Structure and Components of Algebraic Thinking 

This section reports the results concerning the nature and content of algebraic 

thinking from an epistemological perspective. This section is organized along the first 

two questions of this study:  

1) Which components synthesize 10- to 13-year-old students’ algebraic 

thinking ability and what is the structure of this ability? 

2) Is the structure of students’ algebraic thinking ability the same or different 

in relation to age? 

In order to answer these questions, the data collected from the algebraic 

thinking test are analyzed from a quantitative standpoint. First, the results of 

descriptive statistics analyses are considered. Then, the verification of the theoretical 

model about the structure and components of algebraic thinking is examined through 

confirmatory factor analyses. This section concludes considering the stability of the 

proposed model across the four age-groups of the participants.  

 

Descriptive statistics of the algebraic thinking ability test. Table 4.1 

presents the results of descriptive statistics analysis for each of the 21 items that were 

included in the algebraic thinking test. Depending on their content and structure, these 

items were categorized in three distinct groups, which reflected the three first-order 

factors in the proposed model for the algebraic thinking ability. The first three 

categories of Table 4.1 correspond to the means, standard deviations and range of the 

algebraic thinking measures; the next three categories represent the information 

concerning the distribution of scores on categorical and continuous variables. As 

shown in Table 4.1, the highest mean of the students’ performance was in the item 

“Solving an equality” which belongs in the component of Generalized Arithmetic 

(M=.806). The second higher mean of the students’ performance was and in the item 

“Analyzing whole numbers into possible sums” which also belongs to the component 

of Generalized arithmetic. The third and fourth highest means of subjects’ 

performance belong to the component of Functional thinking. Specifically, in the 

items “Choosing the appropriate verbal expression for representing a recursive 

relationship” and   “Calculating the nth term in the geometrical pattern of even 
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numbers” the students appear to have high means of performance (M=.569 and 

M=.559 respectively). In all of the items in the component of Modeling the students 

appear to have means that are lower than .400. The highest mean in this component 

was in the item “Modeling with a symbolic expression the relationship between 

Celsius and Fahrenheit degrees” (M= .383). The lowest mean of the students in this 

component was in the item “Modeling with a table two offers for downloading songs” 

(M=.243).  In the other two modeling items which both required the comparison of 

offers and decision making about the best offer (“Modeling with a symbolic or verbal 

expressions three sales offers that represent proportional relationships” and 

“Modeling with symbolic or verbal expressions two offers for attending computer 

lessons”), the students’ performance was also very low (M=.249 and M=.269 

respectively). 

The maximum value of performance in all of the categories of items was 1 and 

the minimum was 0. The range of the students’ performance was 1, showing that there 

were students that responded correctly to the item, as well as students that did not 

respond correctly. The skewness values provide indication of the symmetry of the 

distribution. Kurtosis provides information about the peakedness of the distribution. If 

the distribution is perfectly normal it means that skewness and kurtosis value of 0. In 

the current study, the values of these indices were smaller than 2 and larger than -2. 

This result suggests that the variables of the students’ performance for the three 

categories of items in the algebraic thinking test follow a normal distribution. 

The reliability coefficient of the algebraic thinking test items was Cronbach’s 

Alpha = .875 which is considered as very good. The reliability indices for the three 

groups of items were at satisfactory levels (aGA=.688, aFT=.739, aMOD =.734, 

GA=Generalized arithmetic, FT=Functional thinking and MOD=Modeling as a 

domain for expressing and formalizing generalizations). 
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Table 4.1 

Descriptive Results of the Students’ Performance in Algebraic Thinking Components  

Test Mean 
Standard 

Deviation 
Range Skewness Kyrtosis 

A. Generalized arithmetic      

Determining if the sum of two 

even numbers is either odd or 

even number (ga1) 

.531 .499 1.00 -.123 -1.991 

Analyzing whole numbers into 

possible sums (ga2) 
.648 .478 1.00 -.620 -1.621 

Relating place-value properties 

to the multiplication algorithm 

(ga3) 

.322 .467 1.00 .765 -1.418 

Representing addition using the 

hundredths table (ga4) 
.427 .495 1.00 .296 -1.918 

Solving an inequality (ga5) .528 .500 1.00 -.112 -1.993 

Solving an equation (ga6) .806 .396 1.00 -1.547 .396 

Determining if the sum of two 

multi-digit numbers is either odd 

or even  number (ga7) 

.504 .500 1.00 -.018 -2.006 

Calculating a sum by using a 

known sum (ga8) 
.474 .499 1.00 .106 -1.995 

B. Functional thinking           

Choosing the appropriating 

graph for representing a 

recursive relationship (ft1) 

.462 .498 1.00 .153 -1.982 

Identifying possible numbers in 

a numerical pattern (ft2) 
.437 .496 1.00 .254 -1.941 

     (continued) 
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Choosing the appropriate verbal 

expression for representing a 

recursive relationship (ft3) 

.569 .495 1.00 -.278 -1.928 

Calculating the nth term in the 

geometrical pattern of even 

numbers (ft4)  

.559 .496 1.00 -.236 -1.950 

Developing the rule of a  

complex geometrical pattern 

(ft5)  

.333 .401 1.00 .677 -1.117 

Interpreting a graph (ft6) .431 .497 1.00 .278 -1.928 

C. Modeling           

Modeling with a symbolic 

expression the relationship 

between Celsius and Fahrenheit 

degrees (mod1) 

.383 .487 1.00 .482 -1.773 

Modeling with a symbolic or 

verbal expressions the process 

for calculating the area of a 

square (mod2) 

.366 .482 1.00 .560 -1.692 

Modeling with a symbolic or 

verbal expressions three sales 

offers that represent proportional 

relationships (mod3)  

.249 .432 1.00 1.166 -.642 

Modeling with symbolic or 

verbal expressions two offers for 

attending computer lessons 

(mod4) 

.269 .444 1.00 1.044 -.913 

     (continued) 
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Modeling with a table two offers 

for downloading songs (mod5) 
.243 .405 1.00 1.192 -.414 

Modeling with a symbolic or 

verbal expression a figural 

pattern (mod6) 

.319 .466 1.00 .780 -1.396 

Modeling with a symbolic 

expression a machine (mod7) 
.292 .455 1.00 .915 -1.167 

 

Table 4.2 presents the correlations between all the items of the test measuring 

the algebraic thinking ability. The variables correspond to the 21 items of the 

algebraic thinking test. The first immediate observation from this table is that all 

correlations between the same types of items for each component of the algebraic 

thinking ability (items that belong to the same first-order factor of the proposed 

model) are statistically significant and the correlation is significant at the 0.01 level. 

For the “Generalized arithmetic” factor, the highest correlation appears to be between 

items ga1 and ga7 (r=.363, p<.01). These items examine the ability for generalizing 

properties and relationships of numbers. Item ga1 is also highly correlated with item 

ga3 which examines the identification of properties of operations (r =.328, p<.01). A 

high correlation appears between the items ga7-ga5 and ga7-ga8 (r=.328, p<.01 and 

r=.284, p<.0.1 respectively). Both items ga5 and ga8 correspond to the group of items 

that examine the ability for treating equations and finding the unknown.  

For the “Functional thinking” factor, the highest correlation appears between 

items ft5 and ft6 (r=.441, p<.01). The item ft5 requires the translation of a pattern that 

is represented geometrically to its numerical representation. The item ft6 requires the 

translation of a functional relationship that is represented graphically to its numerical 

expression.  The item ft5 is also highly correlated with item ft3 (r=.432, p<.01). The 

item ft3 requires the translation of a functional rule that is represented 

diagrammatically to its verbal expression. Another high correlation that is observed 

within the component of “Functional thinking” is between the items ft3 and ft6 

(r=.371, p<.01).   The items ft1 and ft2 also appear to have a high correlation (r=.344, 
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p<.01). The item ft1 represents a functional relationship through a graphical 

representation where ft2 represents a numerical pattern.  

For the “Modeling as a domain of expressing and formalizing generalizations” 

factor, the results show that the items mod1 and mod3 have the highest correlation 

(r=.493, p<.01). The item mod1 refers to the interpretation of a procedure that some 

children follow in order to construct a model for easily converting Fahrenheit degrees 

to Celsius degrees. The item mod3 requires the construction of a model in order to 

compare offers for buying shampoos in three different supermarkets. The items mod5 

and mod6 are also highly correlated (r=.484, p<.01). The item mod5 refers to the 

extraction of a model from data that are represented within a table. The aim is to 

easily compare two offers for downloading songs from the internet. The item mod6 

refers to the extraction of a model from data that are represented within a figural 

pattern involving of different pictures of balls. The aim is to construct a model 

through a numerical expression that describes the way the balls are set in the 

sequence. The items mod3 and mod5 that both correspond to the group of items that 

require the comparison of offers and decision making about the best offer, also seem 

to be highly correlated (r=.364, p<.01).  

The descriptive statistics just reported provide some first insights into the 

inquiry under exploration. Specifically, they indicate that students under the age-span 

being explored by the study exhibit different performance in different types of 

algebraic tasks. Students seem to perform better on the “Generalized arithmetic” tasks 

rather than on the “Functional thinking” tasks or the “Modeling” tasks; they 

exhibited higher scores in “Generalized arithmetic” tasks comparing to the 

“Functional thinking” tasks, while their performance is quite low in the “Modeling” 

tasks.   

In sum, the findings reported above show that in overall there are different 

mean scores in different categories of algebraic thinking tasks and high correlations 

are observed between items that belong to the same group. For example, all of the 

items that were categorized in the “Generalized arithmetic” factor are highly 

correlated. Similar correlations were found between the performance in the items of 

“Functional thinking” and “Modeling as a domain for expressing and formalizing 

generalizations”. At the same time all items present high correlations either at the 
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level of significance 0.01 or 0.05. No significant correlations appear between the item 

ga4 and items ft5, ft6, mod5 and mod6. This result might be attributed to the fact that 

the item ga4 requires students to generalize an arithmetical rule about the way an 

operation can be represented in the hundredths table where items ft5, ft6, mod5 and 

mod6 involve functional rules that are based on the observation of patterns. 
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The structure of algebraic thinking ability. This part is organized in two 

subdivisions. In the first subdivision, the results of the confirmatory factor analysis for 

testing the validity of Kaput’ model about the structure and components of algebraic 

thinking are presented. Specifically, Confirmatory Factor Analysis (CFA) is used to 

test whether the set of measures in the algebraic thinking test has three-factorial 

dimensionality reflecting that algebraic thinking ability is synthesized by three 

different factors (Generalized arithmetic, Functional thinking and Modeling as a 

domain for expressing and formalizing generalizations). In the second subdivision, the 

results of exploring the extent to which this model remains stable across the four age-

groups of the participants are described.  

The results of the confirmatory factor analysis showed that the data of the 

research fitted the theoretical model at a satisfactory level (CFI=.990, TLI=.988, 

x2=144.427, df =101, x2/df =1.43, p<.01, RMSEA=.025,). Hence, the theoretical model 

of three first order factors and one second order factor can describe algebraic thinking 

ability. The factor loadings of all of the items to their corresponding factors are 

statistically significant, as shown in Figure 4.1. The distinct nature of the three factors 

of the model is confirmed by the fact that all observable variables load only on one 

first-order factor. The fitting of the data to the structure of the theoretical model 

confirms that the items in the algebraic thinking test measure three distinct 

dimensions of algebraic thinking ability.  

The results of the analysis indicated that the interpreted dispersion of the items 

that were finally included in the model was relatively high (see Figure 4.1.). Therefore 

the items interpret the dispersion of the factors of the model. The factor loadings of all 

the first-order factors to the corresponding higher order factor were statistically 

significant and very high. The factors of performance in the items of “Functional 

thinking” , “Modeling as a domain for expressing and formalizing generalizations” 

and “Generalized arithmetic” had a high ability for predicting the second order factor 

(r2=.932, p<.01, r2=.886, p<.01 and r2=.817, p<.01 respectively).  
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Note. The first number indicates factor loading and the number in the parenthesis indicates the 

corresponding interpreted dispersion (r2) 

Figure 4.1. The model of algebraic thinking ability. 

Solving an inequality - ga5 

Solving an equation - ga6 

Determining if the sum of 

two multi-digit numbers is 

odd or even - ga7 

Using a known sum to find a 

new sum - ga8 

.965 (.932) 

Determining if the sum of two 

even numbers is odd - ga1 

Analyzing whole numbers 

into possible sums - ga2 

Relating place-value 

properties to the 

multiplication algorithm - ga3 

Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Representing addition in the 

hundredths table - ga4 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing the appropriate 

verbal expression for 

representing a recursive 

relationship - ft3 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic or 

verbal expression the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

.709 (.502) 

.536 (.287) 

.577 (.333) 

.358 (.128) 

.662 (.438) 

.728 (.530) 

.793 (.629) 

.762 (.581) 

.630 (.397) 

.941 (.886) 

.904 (.817) 

.941 (.886) 

.653 (.426) 

.532 (.283) 

.711 (.505) 

.697 (.486) 

Calculating the nth term in 

the geometrical pattern of 

even numbers – ft4 

.687 (.472) 

Modeling with symbolic or 

verbal expressions two 

offers - mod4 

.526 (.277) 
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Students’ ability in algebraic thinking components. Table 4.3 presents the 

results of descriptive statistics in respect to the students’ performance in the three 

factors of algebraic thinking ability. In order to describe the performance of the 

students as high, average and low, the sum of the mean of students’ overall 

performance in the algebraic thinking test plus the standard deviation was used as 

indices of reference (mean + standard deviation). Specifically, the mean of the overall 

performance in the algebraic thinking test was .44 and the standard deviation was .25. 

Their sum is .69. In the light of this consideration, the performance of a group is 

considered to be high when is equal or higher than .69, average when is lower than 

.69 and higher or equal to .44 and low when is lower than .44. 

The first three categories of table 4.3 correspond to the means, standard 

deviations and range of the algebraic thinking measures; the next three categories 

represent the information concerning the distribution of scores on continuous 

variables. As shown in Table 4.3, the highest mean of the students was in the 

“Generalized Arithmetic” items (M=.530). The second higher mean of the students 

was and in the “Functional Thinking” items (M=.507). The lowest mean of the 

students was in the “Modelling for expressing and formalizing generalizations” items 

(M=.302).  According to these results, students appear to have an average 

performance in the items of “Generalized Arithmetic” and “Functional thinking”. 

Their performance is low in the items of “Modeling”.  

The maximum value of performance in all of the categories of items was 1 and 

the minimum was 0. The range of the students’ performance was 1, showing that there 

were subjects that responded correctly to all of the items of a specific category, as 

well as subjects that did not respond correctly to any item of a specific category. The 

values of skewness and kurtosis were smaller than 2 and larger than -2. This result 

suggests that the variables of the students’ performance for the three categories of 

items in the algebraic thinking test follow a normal distribution. 
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Table 4.3  

Descriptive Results of the Students’ Performance in Algebraic Thinking Components  

Items of the test Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Generalized Arithmetic .530 .230 1 -.172   -.798 

Functional Thinking .507 .352 1 -.044 -1.275 

Modelling  .302 .302 1  .605   -.375 

 

 

Correlations between the three components of algebraic thinking ability. 

Table 4.4 presents the correlations between the performances of the subjects in the 

three categories of items in the algebraic thinking test which represent the three first 

order factors of the proposed model for the structure and components of the algebraic 

thinking. The highest correlation appears between the factors “Functional thinking” 

and “Modelling as a domain for expressing and formalizing generalizations” (r=.601, 

p<.01). As far as it concerns the rest of the correlations, “Generalized arithmetic” and 

“Functional thinking” are highly correlated (r=.587, p<.01). Also, the factor 

“Generalized arithmetic” and “Modelling as a domain for formalizing 

generalizations” have a high correlation (r=.564, p<.01). The fact that all correlations 

between the subjects’ performance in the three categories of items in the algebraic 

thinking test were statistically significant suggests that they measure the same ability. 

This finding resonates with the theoretical framework that was verified with the 

Confirmatory Factor Analysis, which posits that different categories of items 

constitute algebraic thinking, as a higher order factor.   
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Table 4.4 

Correlations Between the First Order Factors of Algebraic Thinking Ability 

 

Examination of the stability of the model for algebraic thinking. To 

examine the stability of the structure of the proposed model for algebraic thinking 

ability, the validity of the model was tested considering the presence of four different 

age-groups in the sample. The results of this analysis confirmed its stability when 

only two out of the four age-groups of the participants were included in the analysis. 

Specifically, the results of the confirmatory factor analysis suggested that the model 

remains stable only for Grades 5 and 6 (see Figure 4.2).  

Considering this result, the validity of the model was tested in Grade 4 and 

Grade 7 separately. The results confirm that in these groups, three distinct first order 

factors compose a second-order factor. Nevertheless, the items of the best fitting 

model that seem to have statistically significant factor loadings to the corresponding 

first-order factors were not exactly the same. This result suggests that the model 

remains stable from grade to grade in respect to the structure. However, the items that 

interpret the dispersion of each factor are slightly differentiated, reflecting different 

abilities of students of different ages for solving specific algebraic tasks. In each age-

group, the factor loadings of all the first-order factors to the corresponding higher-

order factor were statistically significant and very high. Figures 4.3, 4.4 and 4.5 

present analytically the results for Grade 5 and 6, Grade 4 and Grade 7.  

 

 

  GA FT MOD  

GA 
1       

FT 
,587** 1     

MOD 
,564** ,601** 1   

 

Note. Code GA corresponds to the factor “Generalized Arithmetic, FT to the factor “Functional 

Thinking”, MOD to the factor “Modeling as a domain for expressing and formalizing generalizations”  

**p<.01  
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Note. The first number indicates factor loading for Grade 5 and the second for Grade 6.                                                                                                                                    

CFI=.951, TLI=.949, x2=305.730, df=212, x2/df=1.44, p<.05, RMSEA=.051                                                                                                           

Figure 4.2. The model of algebraic thinking ability for Grades 5 and 6.                              

Solving an inequality - ga5 

Solving an equation - ga6 

Determining if the sum of 

two multi-digit numbers is 

odd or even - ga7 

Using a known sum to find a 

new sum - ga8 

.939, .951 

Determining if the sum of two 

even numbers is odd - ga1 

Analyzing whole numbers 

into possible sums - ga2 

Relating place-value 

properties to the 

multiplication algorithm - ga3 

Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Representing addition in the 

hundredths table - ga4 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing the appropriate 

verbal expression for 

representing a recursive 

relationship - ft3 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic or 

verbal expression the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

.768, .798 

.494, .486 

.576, .495 

.402, .554 

.435, .727 

.819, .719 

.800, .728 

.763, .766 

.805, .461 

.851, .983 

.977, .930 

.837, .884 

.561, .692 

.562, .563 

.658, .806 

.667, .683 

Calculating the nth term in 

the geometrical pattern of 

even numbers – ft4 

.670, .558 

Modeling with symbolic or 

verbal expressions two 

offers - mod4 

.670, .884 
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CFI=.956, TLI=.949, x2=166.211, df=132, x2/df =1.26, p<.05, RMSEA=.039      

Figure 4.3. The model of algebraic thinking ability for Grade 4.                             

Solving an inequality - ga5 

Solving an equation - ga6 

Determining if the sum of 

two multi-digit numbers is 

odd or even - ga7 

Using a known sum to find a 

new sum - ga8 

.948 (.900) 

Analyzing whole numbers 

into possible sums - ga2 

Relating place-value 

properties to the 

multiplication algorithm - ga3 

Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Representing addition in the 

hundredths table - ga4 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing the appropriate 

verbal expression for 

representing a recursive 

relationship - ft3 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic or 

verbal expressions the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

.537 (.288) 

.791 (.625) 

.296 (.088) 

.732 (.536) 

.645 (.415) 

.633 (.401) 

.664 (.441) 

.785 (.616) 

.643 (.414) 

.898 (.806) 

.973 (.946) 

.559 (.313) 

.588 (.345) 

.664 (.441) 

.625 (.390) 

Calculating the nth term in 

the geometrical pattern of 

even numbers – ft4 

.398 (.158) 

Modeling with symbolic or 

verbal expressions two 

offers - mod4 

Modeling with a table two 

offers - mod5 

.755 (.569) 

.446 (.199) 

Developing the rule of a 

complex pattern – ft5 

Modeling a figural pattern – 

mod6 

.649 (.421) 

.424 (.180) 
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CFI=.961, TLI=.955, x2=182.534, df =116, x2/df =1.57, p<.01, RMSEA=.059 

Figure 4.4. The model of algebraic thinking ability for Grade 7.                              

Interpreting a graph – ft6 

 

Determining if the sum of 

two even numbers is odd - 

ga1 

Solving an equation - ga6 

Determining if the sum of 

two multi-digit numbers is 

odd - ga7 

Using a known sum to find a 

new sum - ga8 

.988 (.977) 
Algebraic 

Thinking 

Generalized 

Arithmetic 

Functional 

Thinking 

Modelling as a 

domain for 

formalizing 

generalizations 

Choosing the appropriate 

graph for representing a 

recursive relationship - ft1 

Identifying possible terms in 

a numerical pattern - ft2 

Choosing the appropriate 

verbal expression for 

representing a recursive 

relationship - ft3 

.475 (.226) 

.652 (.426) 

.744 (.554) 

.717 (.514) 

.879 (.772) 

.791 (.525) 

.933 (.870) 

.789 (.622) 

.475 (.226) 

.683 (.466) 

Calculating the nth term in 

the geometrical pattern of 

even numbers – ft4 

.977 (.955) 

Developing the rule of a 

complex pattern – ft5 

.449 (.202) 

Modeling with a symbolic 

expression the relationship 

between Celsius and 

Fahrenheit degrees - mod1 

Modeling with a symbolic 

or verbal expressions the 

process for calculating the 

area of a square - mod2 

Modeling with symbolic or 

verbal expressions three 

offers - mod3 

.459 (.211) 

.552 (.304) 

.593 (.352) 

Modeling with a table two 

offers - mod5 

.758 (.575) 

.948 (.898) 

Modeling a figural pattern – 

mod6 

Solving an inequality – ga5 

Modeling with a symbolic 

expression a function 

machine – mod7 

.676 (.458) 

.751 (.564) 
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Students’ ability in algebraic thinking components by grade level. After 

providing evidence for the stability of the model of algebraic thinking ability across 

the four age-groups, in the next parts further details about the performance of the 

students at each age-group are explored. Table 4.5 presents descriptive results (means 

and the standard deviations) regarding students’ performance in the algebraic thinking 

test at each grade level. The results of the analysis showed that the mean increases 

from grade to grade. The performance of the students in Grade 4 is considered as low. 

The performance of the students in Grades 5, 6 and 7 is considered as average.  

 

Table 4.5 

Means and Standard Deviations of the Students’ Performance in Algebraic Thinking 

by Grade Level 

Factor 

Grade 4 Grade 5 Grade 6 Grade 7 

M SD M SD M SD M SD 

Algebraic Thinking .404 .332 .508 .246 .582 .265 .606 .195 

 

To further investigate whether there are any differences in the performance of 

the students from different grade levels in algebraic thinking ability components, an 

analysis of variance (ANOVA) was performed. In this analysis, the dependent 

variable was the performance in the algebraic thinking test and the independent 

variable was students’ grade level. The results of the analysis of variance (ANOVA), 

as reported in Table 4.6, showed that there are statistically significant differences 

between the students of the four grades that participated in the study (Pillai’s 

F=20.798, p<.01).  
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Table 4.6 

Results of the Analysis of Variance for Algebraic Thinking Ability by Grade 

 Sum of Squares df Mean Square F Significance 

Between Groups 927.430 3 309.143 20.798 .000 

Within Groups 9349.652 629 14.864   

 

Table 4.7 presents the results of post-hoc analyses (Bonferroni criterion) 

which were performed in order to further investigate statistically significant 

differences in algebraic thinking ability between the different grade levels.  

 

Table 4.7 

Comparisons of the Students’ Performance in Algebraic Thinking Ability at the four 

Grade Levels 

Dependent Variable 
School Grade 

X 

School Grade 

Y 

Post-hoc 

significance 

Algebraic Thinking 

 

 

 

 

 

 

 

 

 

 

 

 

Grade 4 Grade 5 .000 

 Grade 6 .000 

 Grade 7 .000 

Grade 5 Grade 4 .000 

 Grade 6           1.000 

 Grade 7 .001 

Grade 6 Grade 4 .000 

 Grade 5           1.000 

 Grade 7 .036 

Grade 7 Grade 4 .000 

 Grade 5 .001 

 Grade 6 .036 
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As it is shown, there are statistically significant differences between Grade 4 

and all other grade levels in their algebraic thinking ability. There are also statistically 

significant differences between Grade 7 and all other grades. The results indicate that 

there is not a statistical difference between Grade 5 and Grade 6 regarding their 

algebraic thinking ability.  

Table 4.8 presents the means and the standard deviations of the students at 

each grade level, regarding their performance in the three components of algebraic 

thinking ability. The results of the analysis showed that the mean scores increase from 

grade to grade.  

 

Table 4.8  

Means and Standard Deviations of the Subjects’ Performance in Algebraic Thinking 

Components by Grade Level 

Factor 

Grade 4 Grade 5 Grade 6 Grade 7 

M SD M SD M SD M SD 

Generalized 

Arithmetic 
.500 .262 .556 .264 .582 .265 .669 .209 

Functional 

Thinking 
.373 .323 .514 .337 .604 .325 .609 .342 

Modelling as a 

domain for 

formalizing 

generalizations 

.254 .258 .364 .320 .407 .255 .513 .257 

 

In order to investigate whether there are any differences in the performances 

of the students from different grade levels in the three components of algebraic 

thinking, a multivariate analysis of variance (MANOVA) was performed. In this 

analysis, there were three dependent variables: the performance in the items of 

“Generalized arithmetic”, the performance in the items of “Functional thinking” and 
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the performance in the items of “Modeling”. The independent variable was students’ 

grade level. The results of the analysis showed that there are statistically significant 

differences between the students of the four grade levels that participated in the study 

(Pillai’s F=1148.548, p<.01). As presented in Table 4.9, there are statistically 

significant differences between the students of the four grades in their abilities in the 

three components of algebraic thinking ability.  

 

Table 4.9 

Results of the Multiple Analysis of Variance for the Components of Algebraic 

Thinking Ability by Grade 

 Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F Significance 

Generalized Arithmetic 

 

140.406 3 46.802 11.417 .000 

Functional Thinking 

 

94.024 3 31.341 17.856 .000 

Modeling as a Domain 

for Formalizing 

generalizations 

129.960 3 43.320 23.009 .000 

 

Post-hoc analyses were also performed to reveal statistically significant 

differences in ability in the components of algebraic thinking between the grade 

levels. The data of this analysis are presented in Table 4.10. As it is shown, in the 

“Generalized arithmetic” component indicate that there are not statistically significant 

differences between Grade 4 and Grade 5 and between Grade 5 and Grade 6. There 

are statistically significant differences between Grade 7 and all other Grade levels.  
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Table 4.10 

Comparisons of the Students’ Performance in the Components of Algebraic Thinking 

Ability at the four Grade Levels 

Dependent Variable 
School Grade 

X 

School Grade 

Y 

Post-hoc 

significance 

Generalized Arithmetic 

 

 

 

 

 

 

 

 

 

 

 

Grade 4 Grade 5 .253 

 Grade 6 .018 

 Grade 7 .000 

Grade 5 Grade 4 .253 

 Grade 6 1.000 

 Grade 7 .001 

Grade 6 Grade 4 .018 

 Grade 5 1.000 

 Grade 7 .019 

Grade 7 Grade 4 .000 

 Grade 5 .001 

 Grade 6 .019 

Functional Thinking 

 

 

 

 

 

 

 

 

 

 

 

 

Grade 4 Grade 5 .001 

 Grade 6 .000 

 Grade 7 .000 

Grade 5 Grade 4 .001 

 Grade 6 .082 

 Grade 7 .084 

Grade 6 Grade 4 .000 

 Grade 5 .082 

 Grade 7 1.000 

Grade 7 Grade 4 .000 

 Grade 5 .084 

 Grade 6 1.000 

Modeling as a Domain for 

Formalizing 

Generalizations 

 

 

 

 

 

 

 

 

 

 

 

Grade 4 Grade 5 .002 

 Grade 6 .000 

 Grade 7 .000 

Grade 5 Grade 4 .002 

 Grade 6 .920 

 Grade 7 .000 

Grade 6 Grade 4 .000 

 Grade 5 .920 

 Grade 7 .006 

Grade 7 Grade 4 .000 

 Grade 5 .000 

 Grade 6 .006 
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As far as it concerns the component of “Functional thinking”, the analysis 

indicates that there are statistically significant differences between Grade 4 and all 

other Grade levels. There are not any significant differences between Grade 5 and 

Grade 6 and between Grade 6 and Grade 7, in respect to the abilities of the students in 

the “Functional thinking” factor.  

As it is shown in Table 4.10, in the “Modeling” component, there are 

statistically significant differences between there are not statistically significant 

differences between Grade 4 and all other Grade levels. There are also statistically 

significant differences between Grade 7 and all other Grade levels. Grade 5 and Grade 

6 appear not to have any statistically significant differences regarding the abilities of 

the students in solving the modeling tasks.  

 

Classes of Ability in the Components of Algebraic Thinking  

In this section, as part of the investigation of students’ algebraic thinking from 

a pedagogical perspective, the possibility for tracing classes of algebraic thinking 

ability is examined. Understanding the extent to which students in the sample varied 

according to their level of ability will be based on their performance in the algebraic 

thinking test.  

Specifically, this section presents the results concerning the third aim of the 

study by taking up the third, fourth and fifth research questions:  

(3) What are the classes of algebraic thinking ability of 10- to 13-year-old 

students? 

(4) What are the characteristics of students’ performance in algebraic thinking 

at different groups of ability? 

(5) Is there a consisted hierarchical trend of students’ algebraic thinking 

ability? 

This section is organized in three parts. The first part addresses the first 

question about the possibility of identifying groups of students which reflect different 

levels of algebraic thinking ability; namely, it presents the results of the quantitative 
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analyses pertaining to analyze students ‘performance in the items of the algebraic 

thinking test. Statistical procedures for classifying students based on their ability in 

the components of algebraic thinking are described. Building on the results of the first 

part, the second part looks across the identified classes of students and describes in 

detail their quantitative features in the three factors of algebraic thinking ability. 

These results indicate which specific items in the algebraic thinking test were able to 

solve the students in each class. Finally, in the third part, the existence of a specific 

hierarchical trend across the three factors of algebraic thinking is considered and 

tested.  

 

Classes of students in the components of algebraic thinking. In order to 

investigate whether there are subgroups of students with similar behavior in respect to 

their ability in algebraic thinking components, students’ performance in the items of 

the algebraic thinking test was used. Specifically, the statistical method of latent class 

analysis (LCA) was applied which is part of mixture growth analysis (Muthen & 

Muthen, 1998). This method can be used for finding sub-types of related cases (latent 

classes) from multivariate data and for classifying cases into their most likely latent 

class. Given a sample of subjects measured on several variables, LCA can be used for 

examining whether there is a small number of basic groups into which cases fall. 

Once the latent class model is estimated, subjects can be classified into their most 

likely latent classes by means of recruitment probabilities. A recruitment probability 

is the probability that, for a randomly selected member of a given class, a given 

response pattern will be observed (Muthen & Muthen, 1998).  

The validity of four consecutive models was tested, according to which the 

subjects of the study could be divided into two, three, four, or five groups of similar 

behavior to the algebraic thinking test. The model with five groups of students was 

not taken into consideration due to the fact that the average class probability of the 

subjects to be classified in a specific group was not satisfactory. The results 

concerning the assumption that there are two, three or four classes of subjects are 

presented in Table 4.11. The best fitting model with the smallest AIC (88.431) and 

BIC (169.934) indices and the model where the analyses indicated recruitment (at 

least 10 times) of the best loglikelihood was the one involving four classes. The 
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entropy statistic is a summary measure which assesses the quality of the classification. 

The entropy value is closed to 1, indicating high classification accuracy.  

 

Table 4.11 

Fit Indices for Models with Different Number of Classes  

Indices Entropy AIC BIC Adjusted BIC 

2 Classes model .813 240.623 285.903 254.151 

3 Classes model .832 109.089 172.481 128.029 

4 Classes model .809 88.431 169.934 112.782 

 

Taking into consideration the average class probabilities as shown in Table 

4.12, it can be concluded that classes were quite distinct, indicating that each class has 

its own characteristics.  

 

Table 4.12  

Average Latent Class Probabilities    

Latent class probabilities Class 1 Class 2 Class 3 Class 4 

Class 1 Subjects .904 .000 .096 .000 

Class 2 Subjects .000 .854 .081 .066 

Class 3 Subjects .037 .094 .869 .000 

Class 4 Subjects .000 .079 .000 .921 
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Descriptive results of the four classes of students in algebraic thinking 

ability. According to the latent class analysis the percentages of the students that are 

classified within the four Classes are:  31.4% was within Class 1, 23.1% was within 

Class 2, 19.3% was within Class 3 and 26.2% was within Class 4.  

Table 4.13 presents the way that the percentage of students that are classified 

within each class varies according to grade level. 37.2% of Grade 4 students are 

classified within Class 1, 26.6% are classified within Class 2, 21.2% are classified 

within Class 3 and 11.2% are classified within Class 4. As far as it concerns Grade 5, 

22.8% of the students are classified within Class 1, 22.8% are classified within Class 

2, 23.5% are classified within Class 3 and the 26.8% are classified within Class 4. The 

percentages of Grade 6 students were 21.4% for Class 1, 25.3% for Class 2, 31.8% for 

Class 3, and 31.3% for Class 4. The percentages of Grade 7 students were 18.6% for 

Class 1, 25.3% for Class 2, 23.5% for Class 3 and 30.7% for Class 4.  

 

Table 4.13 

Percentages of Students in the Four Classes of Algebraic Thinking Ability 

 Class 1 Class 2 Class 3 Class 4 

Grade 4 37.2 % 26.6% 21.2% 11.2% 

Grade 5 22.8% 22.8.% 23.5% 26.8% 

Grade 6 21.4%       25.3% 31.8% 31.3% 

Grade 7 18.6%       25.3% 23.5% 30.7% 

Sum 31.4% 23.1% 19.3% 26.2% 

 

The majority of Grade 4 students are classified within Class 1 (37.2%). 

Similar percentages of Grade 5 students are classified within Class 1, Class 2 and 

Class 3 (22.8%, 22.8% and 23.5% respectively). The majority of the students in Grade 

5 are classified within Class 4 (26.8%). Similar percentages of Class 6 students are 

classified within Class 3 and Class 4 (31.8% and 31.3% respectively). The majority of 
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Grade 7 students are classified within Class 4 (30.7%). The percentage of the students 

that belong in Class 4 seems to be increased from Grade 4 to Grade 5. Similar 

percentages of students from Grade 6 and Grade 7 seem to belong to Class 4 (31.3% 

and 30.7% respectively). 

In order to investigate whether there are statistically significant differences 

between the subjects of the four classes concerning their overall performance in the 

algebraic thinking test, analysis of variance was performed (ANOVA). The results of 

this analysis suggest that there are statistically important differences regarding the 

general algebraic thinking ability of the students in each class (Pillai’s F=400.621, 

p<.01). The means and standard deviations of each class regarding the overall 

performance in the algebraic thinking test are reported in Table 4.14.  

 

Table 4.14 

Means and Standard Deviations of Students’ Performance in Overall Algebraic 

Thinking Ability in Each Class 

 Class 1  Class 2  Class 3  Class 4 

 Mean SD  Mean SD  Mean SD  Μean SD 

Overall Algebraic 

Thinking Ability 

.202 .128  .394 .130  .521 .161  .709 .173 

 

Additionally, a multiple analysis of variance (MANOVA) was performed in 

order to investigate whether there are statistically significant differences in students’ 

ability in the three components of algebraic thinking (Generalized arithmetic, 

Functional thinking and Modeling as a domain for expressing and formalizing 

generalizations). This analysis showed that there are statistically significant 

differences between the groups in the three algebraic thinking components (Pillai’s 

F= 82.133, p<.01). Table 4.15 presents the means and standard deviations of the 

students in each class in the three components of algebraic thinking. The mean 

performance of each class in the three components of algebraic thinking was 
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significantly higher than the corresponding mean of the previous class. All the 

differences are statistically significant at the <.01 level. In order to describe the 

performance of the students in each class as high, average and low, the sum of the 

mean of students’ overall performance in the algebraic thinking test plus the standard 

deviation was used (mean + standard deviation). As reported in the previous section 

of this chapter, the mean was .44 and the standard deviation was .25. An indice for 

considering the performance of the students as high, average and low could be their 

sum (.44 + .25 = .69). In the light of this consideration, the performance of a group is 

considered to be high when is equal or higher than .69, average when is lower 

than .69 and higher or equal to .44 and low when is lower than .44. 

 

Table 4.15 

Means and Standard Deviations of Performance in the Components of Algebraic 

Thinking for Each Class 

 Class 1  Class 2  Class 3  Class 4 

 Mean SD  Mean SD  Mean SD  Mean SD 

Generalized 

arithmetic 

.322 .222  .502 .224  .608 .231  .747 .175 

Functional 

thinking 

.097 .129  .427 .124  .549 .234  .717 .273 

Modeling  .094 .158  .196 .040  .361 .277  .642 .268 

 

Table 4.15 shows that students in Class 4 outperformed students in Class 1, 

Class 2 and Class 3 in the tasks of all of the three components of algebraic thinking. 

The means of students in Class 1 in all tasks was below .44, showing that these 

students had difficulties in conceptualizing algebraic thinking ideas. Class 2 students 

had difficulties in the tasks of “Functional thinking” and especially in the tasks of 
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“Modeling as a domain for expressing and formalizing generalizations”, since their 

mean of performance was below .44. These students were more successful in the tasks 

of “Generalized arithmetic” ( =.502). Class 3 students had difficulties in the tasks of 

“Modeling as a domain for expressing and formalizing generalizations” since their 

mean of performance was below .44. These students were more successful in solving 

“Generalized arithmetic” tasks and “Functional thinking” tasks ( =.608 and =.549 

respectively). Finally, class 4 students not only seemed to have a high performance in 

the “Generalized arithmetic” tasks and “Functional thinking” tasks ( =.747 and 

=.717 respectively) but also to have an ability to solve the “Modeling as a domain for 

expressing and formalizing generalizations” tasks ( =.642). 

Table 4.17 summarizes the characteristics of the four classes of the students 

regarding the means of the classes in the three components of algebraic thinking. It 

seems that the students of Class 1 had low performance in all of the components of 

algebraic thinking. The students of Class 2 had an average performance in the factor 

“Generalized Arithmetic” and low performance in the factors “Functional Thinking” 

and “Modeling as a domain for expressing and formalizing generalizations”. The 

students of Class 3 had average performance in the factors “Generalized arithmetic” 

and “Functional thinking” and low performance in the factor “Modeling as a domain 

for expressing and formalizing generalizations”. The students of Class 4 had high 

performance in the factors “Generalized arithmetic” and “Functional thinking” and 

average performance in the factor “Modeling as a domain for expressing and 

formalizing generalizations”. 
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Table 4.16 

Characteristics of the four Classes in the Components of Algebraic Thinking 

 Class1  Class 2 Class 3 Class 4 

High 

Performance 

(Μ≥.69) 

   GA, FT 

Average 

Performance 

(.69>Μ≥.44) 

 GA GA, FT MOD 

Low 

performance 

(Μ<.44) 

GA, FT, MOD FT, MOD MOD  

Note. The code GA corresponds to the factor “Generalized arithmetic”, FT 

corresponds to the factor “Functional thinking” and MOD to the factor “Modeling as a 

domain for expressing and formalizing generalizations”.  

 

Characteristics of the four classes in the factors of algebraic thinking. In 

this section, the characteristics of the four classes of students regarding their 

performance in algebraic thinking are presented. This report is organized along the 

three distinct factors of algebraic thinking. First, the factor of generalized arithmetic is 

considered. In particular, the performance of each class of students in the 

corresponding tasks of generalized arithmetic is presented. This description is 

repeated for the factors of functional thinking and generalized arithmetic. 

  

Students’ characteristics of performance in the tasks of the factor 

“Generalized arithmetic”. Table 4.18 presents the overall performance of the four 

groups of ability in the tasks of the factor “Generalized arithmetic”. Students of Class 

1 had low performance in the items ga1, ga2, ga3, ga4, ga5, ga7, and ga8. Specifically 

less than 50% of the students of Class1 responded correctly in these items (25.1%, 
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44.2%, 13%, 30.7%, 27%, 27% and 28.4%) respectively. Students of Class 1 had 

average performance only in the item ga6 where they had to select the possible value 

of an unknown in an equation (62.3% responded correctly).  

Students of Class 2 had low performance in items ga3, ga4, and ga7, with 

29.1% of the students responding correctly in item ga3, 41.8% in item ga4 and 42.4% 

in item ga7. Students in Class 2 had average performance in items ga1, ga2, ga5, and 

ga8 (47.5%, 64.6%, 47.5%, and 46.2% respectively responded correctly). Students in 

Class 2 had high performance in the item ga6 (82.3% responded correctly). 

Students of Class 3 had low performance only in the item ga3 where the 

percentage of success was 26.4%. In items ga1, ga4, ga5, ga7, and ga8 students in 

Class 3 had average performance (65.9%, 50%, 59.8%, 58.3%, and 52.3% 

respectively responded correctly).Similar to students in Class 2, students in Class 3 

also had a high performance in item ga6 (87.9%). 

Students of Class 4 did not have low performance in any item of the 

“Generalized arithmetic” component. They had average performance in items ga3, 

ga4, and ga8 (54.7%, 52.5%, and 67.6% was the percentage of success in each item 

respectively). The percentages of students’ success in items ga1, ga2, ga5, ga6 and  

ga7 were 82.1%, 81.6%, 83.2%, 95.5% and 79.9%), indicating high performance in 

these items. 
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Table 4.17 

Characteristics of the four Classes in the Factor Generalized Arithmetic 

 Class1  Class 2 Class 3 Class 4 

High 

Performance 

(Μ≥.69) 

 ga6 ga2, ga6 ga1, ga2, ga5, 

ga6, ga7 

Average 

Performance 

(.69>Μ≥.44) 

ga6 ga1, ga2, ga5, 

ga8 

ga1, ga4, ga5, 

ga7, ga8 

ga3, ga4, ga8  

Low 

performance 

(Μ<.44) 

ga1, ga2, ga3, 

ga4, ga5, ga7, 

ga8 

ga3, ga4, ga7 ga3  

Note. **p<.01, ga1: Determining if the sum of two even numbers is odd, ga2: Analyzing whole 

numbers into possible sums, ga3: Relating place-value properties to the multiplication algorithm, ga4: 

Representing addition in the hundredths table, ga5: Solving an inequality, ga6: Solving an equation, 

ga7: Determining if the sum of two multi-digit numbers is odd or even, ga8: Using a known sum to 

find a new sum  

 

Students’ characteristics of performance in the tasks of the factor 

“Functional thinking”. Table 4.19 presents the overall performance of the students in 

the four groups of ability in the items of the factor “Functional thinking”. Students of 

Class 1 had low performance in all of the items in this factor. Specifically, the 

percentages of correct responses in the items f1, f2, f3, and f4 were very low (11%, 

6.5%, 7.9%, and 13% respectively). Item f4, which had the highest percentage of 

success among students in Class 1, represented a geometrical pattern with the rule 

L=2n. The second higher percentage of success was in the item f1 which requested 

students to choose the appropriate graph for representing a recursive relationship. 

Students of Class 2 had low performance in items f1 and f2, with 34.2% and 

29.1% of the students responding correctly to these items, respectively. More than 
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50% of the students had an average performance in items f3 and f4 (55.1% and 52.5% 

of the students responded correctly respectively). 

Students in Class 3 had low performance only in the item f1, where 42.4% of 

the students were able to give a correct answer. In the items f2 and f4, the percentages 

of success were 49.2% and 55.3% respectively. Students in Class 3 appeared to have a 

high percentage of success in the item f3 (72.7%), indicating an ability in linking a a 

recursive relationship with its corresponding verbal expression.  

Students in Class 4 did not have low performance in any of the items of the 

“Functional thinking” factor. Moreover, they had average performance only in the 

item f1 (66.5% responded correctly). In the items f2, f3, and f4 students appeared to 

have high percentage of success (73.2%, 73.7%, and 73.2% respectively).  

 

Table 4.18 

Characteristics of the four Classes in the Factor Functional Thinking 

 Class1  Class 2 Class 3 Class 4 

High 

Performance 

(Μ≥.69) 

  f3 f2, f3, f4 

Average 

Performance 

(.69>Μ≥.44) 

 f3, f4 f2, f4 f1 

Low 

performance 

(Μ<.44) 

f1, f2, f3, f4 f1, f2 f1  

Note. **p<.01, f1: Choosing the appropriate graph for representing a recursive relationship, f2: 

Identifying possible terms in a numerical pattern, f3: Choosing the appropriate verbal expression for 

representing a recursive relationship, f4: Calculating the nth term in the geometrical pattern of even 

numbers 
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Students’ characteristics of performance in the tasks of the factor 

“Modeling as a domain for expressing and formalizing generalizations”. Table 4.20 

presents the overall performance of the students of the four groups of ability in the 

items of the factor “Modeling as a domain for expressing and formalizing 

generalizations”. Students of Class 1 had low performance in all of the items of this 

factor. In the items mod1, mod2, and mod4 students’ percentages of success were 

slightly above 10% (12.6%, 14.9%, and 11.2% respectively). In the items mod3 and 

mod 5, the percentages of success were very low. For the item mod3 3.3% of the 

answers were correct. For the item mod5 3.7% of the students’ answers were correct 

and 3.3% were partially correct.  

Similar to students of Class1, students of Class2 had low performance in all of 

the items of the items of the factor “Modeling as a domain for expressing and 

formalizing generalizations”. Nevertheless, their percentages of success in some items 

were much larger comparing to the percentages of the students of Class 1. These 

were:  mod1 - 28.5%, mod2 - 25.3% and mod4 - 20.9%. In the item mod 5 the 

percentage of the students that answered correctly was 13.3% where the percentage of 

the students that gave a partially correct answer was 8.2%. In the item mod3, the 

percentage of success was very low (5.7%).  

Students of Class 3 also had low performance in items mod1, mod3, mod4 and 

mod5. The percentages of success in the items mod1, mod3, and mod4 were 43.2%, 

23.5%, 38.6% respectively. In the item mod5 9.1% of the students’ answers were 

partially correct and 23.5% were correct. Students in Class 3 appeared to have 

average performance in item mod2 where 47% of the students responded correctly. 

Students of Class 4 did not have low performance in any of the items of the 

factor “Modeling as a domain for expressing and formalizing generalizations”.  

Specifically, these students had the percentages of success in the items mod2, mod3, 

and mod4, were 64.8%, 68.7%, and 63.1%, respectively, indicating an average 

performance. In the item mod 5, 44.1% of the students answered correctly where 

12.8% of the students gave a partially correct answer. Furthermore, these students 

appeared to have high performance in the item mod1. A percentage of 74.3% 

answered correctly to the task, which requested students to model with a symbolic 

expression the relationship between Celsius and Fahrenheit degrees. 
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Table 4.19 

Characteristics of the four Classes in the Factor Modeling as domain for expressing 

and formalizing generalizations 

 Class1  Class 2 Class 3 Class 4 

High 

Performance 

(Μ≥.69) 

   mod1 

Average 

Performance 

(.69>Μ≥.44) 

  mod2 mod2, mod3, 

mod4, mod5 

Low performance 

(Μ<.44) 

mod1, mod2, 

mod3, mod4, 

mod5 

mod1, mod2, 

mod3, mod4, 

mod5 

mod1, mod3, 

mod4,  mod5 

 

Note. **p<.01, mod1: Modeling with a symbolic expression the relationship between Celsius and 

Fahrenheit degrees, Mp2: Examining offers by modeling them through algebraic symbols, mod2: 

Modeling with a symbolic or verbal expression the process for calculating the area of a square, mod3: 

Modeling with symbolic or verbal expressions three offers, mod4: Modeling with symbolic or verbal 

expressions two offers, mod5: Modeling with a table two offers.  

 

Summary of the characteristics of the four groups of algebraic thinking 

ability. This section presents a summary of the characteristics of the four groups of 

algebraic thinking. Table 4.21 presents a summary of the results. As it is extracted 

from the results described in the previous section, the students in Class 1 had average 

performance only in the item of solving an equation (ga5), where it was requested to 

identify the missing value of an unknown symbolized by a letter in an additive 

relationship. This task does not request the identification of the structure underneath 

the operation. On the contrary, this task relies on the calculative skills of the subjects. 

Students in Class 2 appeared to have high performance in the item of solving 

equations. These students also had average performance in functional thinking tasks, 

such as the identification of the pattern of even numbers. Despite the fact that the 
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performance of the students in Class 2 in the items of “Modeling as a domain for 

expressing and formalizing generalizations” was characterized as low, their 

percentages of success in these items were much higher than those of the students in 

Class 1. This result shows that students in Class 2 outperformed in respect to students 

in Class1, in the modeling tasks. Their highest percentage of success was found in the 

item were they had to model the relationship of Fahrenheit and Celsius degrees by 

choosing the appropriate expression.  

Students in Class 3 were very successful in in the items of analyzing whole 

numbers into possible sums and solving an equation. The item in which they appeared 

to have more difficulties was the item were they had to identify and explain the error 

in a multiplication algorithm by focusing on place-value properties. Also these 

students had average or high performance in most of the items of the “Functional 

thinking” factor. Their highest percentage of success was in the item of linking a 

recursive relationship that it was represented through a diagram with an appropriate 

verbal expression. Additionally, these students were very successful in solving the 

modeling task where they had to relate the Fahrenheit and Celsius degrees in a 

symbolic way.  In the items, such as the development of a tabular representation for 

examining the offers of two internet companies for downloading songs, students in 

Class 3 seemed to have a low performance.  

The results indicated that students in Class 4 had high performance in three 

more items of the “Generalized arithmetic” factor, comparing to students in Class 3. 

Specifically, students in Class 4 were able to gain high scores in the items of 

determining if the sum of two even numbers is odd or even, solving an inequality, and 

determining if the sum of two multi-digit numbers is odd or even. These items 

required the application of properties of numbers and a conceptual understanding of 

the equality/inequality symbols. Moreover, the students of Class 4 had high 

performance in three out of the four items of the “Functional thinking” factor. 

Students within this Class solved successfully the modeling problems. Similar to the 

students of Class 3, their highest percentage of success was in the item that involved 

the relationship between Fahrenheit and Celsius degrees. Their percentage of success 

in items that required the comparison of offers and decision making about the most 

advantageous offer, students in Class 4 had satisfactory results. 
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Table 4.20 

Characteristics of the four Classes in the three factors 

 Class1  Class 2 Class 3 Class 4 

High 

Performance 

(Μ≥.69) 

 

 

ga6 

 

ga3, ga6, f1 ga1, ga2, 

ga5, ga6, 

ga7, f2, f3, 

f4, mod1 

Average 

Performance 

(.69>Μ≥.44) 

ga6 ga1, ga2, ga5, 

ga8, f3, f4 

ga1, ga4, ga5, 

ga7, ga8, f2, f4,  

mod2 

ga3, ga4, 

ga8, f1, 

mod2, mod3, 

mod4, mod5 

Low 

performance 

(Μ<.44) 

ga1, ga2, ga3, 

ga4, ga5, ga7, 

ga8, f1, f2, f3, 

f4, mod1, mod2, 

mod3, mod4, 

mod5 

ga3, ga4, ga7, 

f1, f2, mod1, 

mod2, mod3, 

mod4, mod5 

 

ga3, f1, mod1, 

mod3,  mod4, 

mod5 

 

 

Note. **p<.01, ga1: Determining if the sum of two even numbers is odd, ga2: Analyzing whole 

numbers into possible sums, ga3: Relating place-value properties to the multiplication algorithm, ga4: 

Representing addition in the hundredths table, ga5: Solving an inequality, ga6: Solving an equation, 

ga7: Determining if the sum of two multi-digit numbers is odd or even, ga8: Using a known sum to 

find a new sum , f1: Choosing the appropriate graph for representing a recursive relationship, f2: 

Identifying possible terms in a numerical pattern, f3: Choosing the appropriate verbal expression for 

representing a recursive relationship, f4: Calculating the nth term in the geometrical pattern of even 

numbers, mod1: Modeling with a symbolic expression the relationship between Celsius and Fahrenheit 

degrees, Mp2: Examining offers by modeling them through algebraic symbols, mod2: Modeling with a 

symbolic or verbal expression the process for calculating the area of a square, mod3: Modeling with 

symbolic or verbal expressions three offers, mod4: Modeling with symbolic or verbal expressions two 

offers, mod5: Modeling with a table two offers.  
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Hierarchy of Algebraic Thinking Components 

The presence of a consistent trend in level of difficulty across the three factors 

of algebraic thinking supports the hypothesis of the existence of a specific hierarchical 

trend. The results of the latent class analysis implied that there are four classes of 

students. Class 1 had low performance in all the components of algebraic thinking. 

Class 2 had an average performance in the “Generalized arithmetic” tasks. Class 3 had 

average performance in the “Generalized arithmetic” tasks and “Functional thinking” 

tasks. Class 4 had high performance in the “Generalized arithmetic” tasks and the 

“Functional thinking” tasks. Additionally, Class 4 had average performance in the 

tasks of the component “Modeling as a domain for expressing and formalizing 

generalizations”. This result denotes that, students grasp generalized arithmetic 

concepts first and then they grasp functional thinking concepts. The concepts of 

modeling are grasped only after generalized arithmetic and functional thinking have 

been conceptualized.   

To further examine this sequence, three models were tested for specifying the 

nature of the hierarchical trend of students’ understanding of the algebraic thinking 

concepts. The first model, which results from the data of the previous analyses, 

assumes that students first understand the generalized arithmetic concepts and then 

are able to understand the concepts of functional thinking and modeling (see Figure 

4.6). The second model assumes that students first grasp both generalized arithmetic 

and functional thinking concepts. Since, only students in Class 4 were able to have an 

average performance in the modeling concepts, it was assumed that in order to 

understand and develop these concepts students might need to simultaneously have 

developed the generalized arithmetic and functional thinking concepts. The third 

model assumes that modeling concepts are understood only after students first 

understand the concepts of generalized arithmetic. After grasping the modeling 

concepts, students become able to understand the concepts of functional thinking. 

This model was assumed based on the results of the confirmatory factor analysis and 

particularly on the fact that “Functional thinking” had the highest loading to the 

second order factor in the model of algebraic thinking ability. Latent Path analysis 

was used to examine the model that best fits the empirical data. 
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Model 1 

 

 

 

 

Model 2 

 

 

 

 

 

 

 

 

Model 3 

 

 

 

Note. **p<.01, The first number indicates the regression coefficient and the number in parenthesis 

indicate the proportion of variability that can be explained (r2) 

 

Figure 4.5. The comparison of the three models of the hierarchy of algebraic thinking 

components.  

 

Functional 

thinking 

Generalized 

arithmetic Modeling .866 (.889) .943 (.749) 

Functional 

thinking 

Generalized 

arithmetic 
Modeling .884 (.781) .883 (.780) 

Functional 

thinking 

Generalized 

arithmetic 

Modeling 

.746 

.142  

r2=.760) 
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Table 4.21 

Fitting Indices of Model 1, Model 2 and Model 3 

 CFI TLI x2/df RMSEA 

Model 1 .959 .953 1.73 .033 

Model 2 .959 .952 1.73 .033 

Model 3 .952 .944 1.87 .036 

 

From Figure 4.6 and Table 4.17, we can deduce that the best fitting model is 

model 1, since it has the best fitting indices and high regression coefficients for each 

of the algebraic thinking components. Specifically, the fitting indices are adequate to 

provide evidence that supports the structure implied in it (CFI=.959, TLI=.953, 

x2=201.853, df =117, x2/df=1.73, RMSEA=.033). While these fit indices seem to be 

the same also for model 2, Figure 4.6 shows that in model 2 the regression coefficient 

of modeling concepts on generalized arithmetic concepts is very low (.179). For this 

reason, Model 2 cannot be considered as the best model for describing the 

developmental trend among the algebraic thinking components.   

These results reaffirm the developmental trend as described above and indicate 

that students are first more fluent in doing the generalized arithmetic tasks and then in 

doing the functional thinking tasks and then the modeling tasks.  
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Algebraic Thinking Ability and its Relation to Cognitive factors 

The preceding analyses largely resonated with the existence of three distinct 

algebraic thinking components, as three first-order factors were yielded from the 

quantitative analysis. These factors appear to synthesize a second-order factor which 

reflects the concept of algebraic thinking. Moreover, the results presented in the 

previous section indicated that there are four quite distinct classes of students 

regarding their algebraic thinking ability; each class has its own characteristics. 

Further examinations have shown that there is a consistent trend in level of difficulty 

across the three components of algebraic thinking; the data implied that students grasp 

generalized arithmetic concepts first and then move to grasp functional thinking 

concepts. Modeling concepts are grasped only after generalized arithmetic and 

functional thinking have been conceptualized. This part of the study moves a step 

further, in order to explore this concept within a cognitive perspective.   

The development of this section follows the fifth, sixth and seventh aim of the 

current study pertaining the investigation of the relationship between students’ 

algebraic thinking and three categories of cognitive factors: (i) domain-specific 

information processing abilities, (ii) reasoning processes and (iii) general cognitive 

structures. Specifically the question under examination is the following: 

(6) What is the relation of algebraic thinking with domain-specific processes, 

different types of reasoning forms and general cognitive processes of mental action?  

An understanding of the association between algebraic thinking and various 

types of cognitive factors will be built upon data gathered from six sources: 

(i) the Specialized Structural Systems test 

(ii) the Naglieri Non-Verbal Ability test 

(iii) the Deductive Reasoning test 

(iv) the Working Memory test 

(v) the Control of Processing test 

(vi) the Speed of processing test 
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In what follows, each of the above aims is extensively elaborated. In 

particular, this part is organized in three sections. Each section provides results in 

respect to the relationship between algebraic thinking and the cognitive factors 

measured by the aforementioned tests. Results are reported for each age-group (Grade 

4, Grade 5, Grade 6 and Grade7).  Specifically, regression analyses were applied in 

each age-group separately in order to identify predictive relationships between 

different cognitive factors and algebraic thinking. Then, conclusions about which of 

these factors are related to algebraic thinking ability were assisted by triangulation 

between the different data sources and by observing similarities and differences in the 

results of each grade level.  

 

Algebraic thinking ability and its relation to domain-specific information 

processing abilities. This section presents the results concerning the investigation of 

the relation between students’ ability in algebraic thinking and specific information 

processing abilities. In order to measure students’ abilities in domain-specific 

processes, a test on Specialized Structural Systems was used. The test measured 

students’ abilities in four cognitive constructs: the Spatial-Imaginal System, the 

Causal-Experimental System, the Qualitative-Analytic System, and the Verbal-

Propositional System. Descriptive information in respect to the test on Specialized 

Structural Systems is described first. Secondly, the results of correlation analyses 

between all the factors of algebraic thinking and the four types of Specialized 

Structural Systems are reported. Finally, the relationship between algebraic thinking 

and Specialized Structural Systems for each age-group (Grade 4, Grade 5, Grade 6 

and Grade7) is described. Regression analyses were applied in each age-group 

separately. The purpose was to generate for each age group an equation to describe 

the statistical relationship between the four types of Specialized Structural Systems 

(predictor variables) and algebraic thinking (response variable). 
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Descriptive results of the test on Specialized Structural Systems. Table 4.23 

presents the results of descriptive statistics analysis in each of the four categories of 

the items in the Specialized Structural Systems test. The first three categories of this 

table correspond to the means, standard deviations and range of the algebraic thinking 

measures; the next three categories represent the information concerning the 

distribution of scores on continuous variables. As the figures in Table 4.23 show, the 

highest mean of the students was in the items of the “Qualitative-Analytic System” 

(M=.624). The second higher mean of the subjects was and in the items of the 

“Causal-Experimental System” (M=.603). The lowest means of the subjects were in 

the items of “Spatial-Imaginal System” (M=.548) and “Verbal-Propositional System” 

(M=.358).  The maximum value of performance in all of the categories of items was 1 

and the minimum was 0. The range of thestudents’ performance was 1, showing that 

there were students that responded correctly to all of the items of a specific category, 

as well as students that did not respond correctly to any item of a specific category. 

The Skewness and Kyrtosis values suggest that the variables of the students’ 

performance for the items of the four systems in the test follow a normal distribution. 

 

Table 4.22 

Descriptive Results of the Specialized Structural Systems Test According to the 

Category of the Item 

Items of the test Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Spatial-Imaginal System .548 .304 1 -.089 

 

-.826 

Causal-Experimental System .603 .353 1 -.410 

 

-1.068 

Qualitative-Analytic System .624 .231 1 -.429 

 

.095 

Verbal-Propositional System .358 .815 1 .463 -.491 
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Relation between the factors of algebraic thinking and the Specialized 

Structural Systems. Table 4.24 shows the correlations between the three factors of 

algebraic thinking and the Specialized Structural Systems. There were significant 

correlations between all the factors of algebraic thinking and the four categories of the 

Specialized Structural Systems. 

 

Table 4.23 

Correlations between the Performance of the Subjects in the Algebraic Thinking 

Factors and the Specialized Structural Systems 

System / Factor Spatial-

Imaginal 

Causal-

Experimental 

Qualitative-

Analytic 

Verbal-

Propositional 

SSSs 

Generalized 

arithmetic 

.089* .302** .240** .251** .242** 

Functional 

thinking 

.132** .334** .313** .292** .295** 

Modeling .105* .350** .305** .317** .268** 

Algebraic 

Thinking 

.125** .384** .330** .333** .310** 

*p<.05, **p<.01 

 

Students’ performance in all of the algebraic thinking factors is positively 

related to the abilities involved in Specialized Structural Systems (rgen.arithmetic=.242, 

rfunct.thinking=.295, rmodeling=.268, p<.01). The overall performance in the algebraic 

thinking test is also positively related to the abilities involved in Specialized 

Structural Systems (ralg.thinking=.310, p<.01). Moreover, performances in the three 

factors and in the overall performance in the algebraic thinking test appear to have the 

highest correlation with the “Causal Experimental” system.  

Relation between algebraic thinking ability and Specialized Structural 

Systems in Grade 4. Table 4.25 presents the results of Multiple Regression Analysis, 
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where the performance of the fourth graders in the algebraic thinking test is explained 

by their performance in the four types of tasks in the Specialized Structural Systems 

test.  

  

Table 4.24 

Regression Analysis of the Performance in each of the four Specialized Structural 

Systems with Dependent Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, two out of the four Specialized Structural Systems exert 

a significant influence on the prediction of individuals’ performance in algebraic 

thinking. The Causal-Experimental and the Qualitative-Analytic systems seem to have 

a positive effect on the dependent variable, which means that the higher these abilities 

are the higher is the performance of fourth graders in algebraic thinking tasks. The data 

show that the factor with the greatest effect on the prediction of achievement in algebraic 

thinking tasks is the Causal-Experimental system (β=.225). The Qualitative-Analytic 

system also explains a respectable proportion of variance in the fourth graders’ 

performance in the algebraic thinking test (β=.218). The Spatial-Imaginal and the 

Verbal-Propositional systems do not seem to be significant predictors of students’ 

algebraic thinking at this age group. 

On the basis of the results reported in Table 4.24, the model of the regression 

equation was extracted. Figure 4.7 presents the coefficients of the multiple regression 

model. The overall performance of fourth graders in the algebraic thinking test (AT) is 

the criterion (depended variables) and the four types of Specialized Structural Systems, 

Algebraic thinking B SE Beta 

Spatial-Imaginal 

 
.083 .052          .118 

Causal-Experimental 

 
.143 .048 .225* 

Qualitative-Analytic 

 
.203 .069          .218* 

Verbal-Propositional 

 
.092 .063          .108 

R2=.193 

*p<.05 
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the Spatial-Imaginal (SI), the Causal Experimental (CE), the Qualitative-Analytic (QA) 

and the Verbal-Propositional (VP), are the predictors (independent variables). 

 

 

 

Note. AT4thG: Algebraic Thinking-Grade 4, SI: Spatial-Imaginal, CE: Causal Experimental, QA: 

Qualitative-Analytic, VP: Verbal-Propositional  

Figure 4.6. The regression model for the relation of algebraic thinking and 

Specialized Structural Systems in Grade 4. 

 

Relation between algebraic thinking ability and Specialized Structural 

Systems in Grade 5. Table 4.26 presents the results of Multiple Regression Analysis, 

where the performance of the fifth graders in the algebraic thinking test is explained 

by their performance in the four types of tasks in the Specialized Structural Systems 

test.   

 

Table 4.25 

Regression Analysis of the Performance in each of the Four Specialized Structural 

Systems with Dependent Variable the Performance in Algebraic Thinking in Grade 5 

 

Algebraic thinking B SE Beta 

Spatial-Imaginal 

 
.165 .045          .222** 

Causal-Experimental 

 
.405 .045 .588** 

Qualitative-Analytic 

 
.031 .052          .034 

Verbal-Propositional 

 
.102 .041 .135* 

R2=.612 

**p<.01,  *p<.05 
   

 

AT4thG = .225(CE) + .218(QA) + .118(SI) + .108(VP) + 8.504 
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Three out of the four Specialized Structural Systems appear to exert a 

significant influence on the prediction of individuals’ performance in algebraic 

thinking, as shown in Table 4.26. The Causal-Experimental, the Spatial-Imaginal and 

the Verbal-Propositional systems seem to have a significant positive effect on the 

dependent variable. This result indicates that the higher these abilities are the higher is 

the performance of fifth graders in the items of the algebraic thinking test. Similar to 

the results of the fourth graders, the factor with the greatest effect on the prediction of 

performance in algebraic thinking tasks is the Causal-Experimental system (β=.588). 

In fifth grade, the effect of this system on algebraic thinking becomes larger. The 

Spatial-Imaginal also explains an important proportion of variance in the performance 

in the algebraic thinking test (β=.222). The Verbal-Propositional system appears to 

have a positive effect on fifth graders’ algebraic thinking (β=.135). In contrast to 

fourth graders’ results, the Qualitative-Analytic system does not seem to be a 

significant predictor of students’ algebraic thinking at this age group. 

Figure 4.8 illustrates the corresponding to the above results regression 

equation. The overall performance of fifth graders in the algebraic thinking test (AT) 

is the criterion (depended variables) and the four types of Specialized Structural 

Systems, the Spatial-Imaginal (SI), the Causal Experimental (CE), the Qualitative-

Analytic (QA) and the Verbal-Propositional (VP), are the predictors (independent 

variables).  

 

 

 

Note. AT5thG: Algebraic Thinking-Grade 5, SI: Spatial-Imaginal, CE: Causal Experimental, QA: 

Qualitative-Analytic, VP: Verbal-Propositional  

Figure 4.7. The regression model for the relation of algebraic thinking and 

Specialized Structural Systems in Grade 5. 

 

 

 

 

AT5thG = .588(CE) + .222(SI). + .135(VP) + .34(QA) + 21.652  
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Relation between algebraic thinking ability and Specialized Structural 

Systems in Grade 6. In order to examine the way sixth grades’ performance in the 

algebraic thinking test is explained by their performance in the four types of tasks in 

the Specialized Structural Systems test, Multiple Regression Analysis was conducted 

for this age group. The results are presented in Table 4.27.  

 As can be seen in Table 4.27, three out of the four Specialized Structural 

Systems exert a significant influence on the prediction of individuals’ performance in 

algebraic thinking. The Causal-Experimental, the Verbal-Propositional and the 

Spatial-Imaginal systems seem to have a positive effect on the dependent variable 

(β=.413, β=.210 and β=.170 respectively). Similar to the corresponding results in 

Grade 5, the Causal-Experimental system appears to have great effect on the 

prediction of achievement in algebraic thinking tasks. 

 

Table 4.26 

Regression Analysis of the performance in each of the four Specialized Structural 

Systems with dependent variable the performance in algebraic thinking in Grade 6 

 

Based on the results of the regression analysis, a regression model was extracted 

for the performance of sixth graders in algebraic thinking (see Figure 4.9). The overall 

performance of sixth graders in the algebraic thinking test (AT) is the criterion 

(depended variables) and the four types of Specialized Structural Systems, the Spatial-

Imaginal (SI), the Causal Experimental (CE), the Qualitative-Analytic (QA) and the 

Verbal-Propositional (VP), are the predictors (independent variables). 

Algebraic thinking B SE Beta 

Spatial-Imaginal 

 
.014 .006          .170* 

Causal-Experimental 

 
.313 .056 .413** 

Qualitative-Analytic 

 
.115 .082          .150 

Verbal-Propositional 

 
.166 .056 .210* 

R2=.354 

**p<.01, *p<.05 
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Note. AT6thG: Algebraic Thinking-Grade 6, SI: Spatial-Imaginal, CE: Causal Experimental, QA: 

Qualitative-Analytic, VP: Verbal-Propositional 

Figure 4.8. The regression model for the relation of algebraic thinking and 

Specialized Structural Systems in Grade 6. 

 

Relation between algebraic thinking ability and Specialized Structural 

Systems in Grade 7. The results of Multiple Regression Analysis that examined 

whether there is a predictive relationship between seventh grades’ performance in the 

four types of tasks in the Specialized Structural Systems test and their algebraic 

thinking ability test are reported in Table 4.27.  

 

Table 4.27 

Regression Analysis of the Performance in each of the four Specialized Structural 

Systems with Dependent Variable the Performance in Algebraic Thinking in Grade 7 

 

According to the model, three out of the four Specialized Structural Systems 

exert a significant influence on the prediction of individuals’ performance in algebraic 

thinking. Like Grade 5, the Causal-Experimental, the Spatial-Imaginal and the Verbal-

Propositional systems seem to have a positive effect on the dependent variable, which 

means that the higher these abilities are the higher is the performance of seventh 

Algebraic thinking B SE Beta 

Spatial-Imaginal 

 
.144 .061          .220* 

Causal-Experimental 

 
.124 .054 .217* 

Qualitative-Analytic 

 
.069 .061           .109 

Verbal-Propositional 

 
.101 .055 .153 * 

R2=.352 

*p<.05 
   

 

AT6thG = .413(CE) + .210(VP) + .170(SI) + .150(QA) + 5.326 
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graders in algebraic thinking tasks. In contrast to the results regarding Grades 5 and 6, 

in Grade 7 the factor with the greatest effect on the prediction of performance in 

algebraic thinking tasks is the Spatial-Imaginal (β=.220). The Causal-Experimental 

explains a respectable proportion of variance in the performance in the algebraic 

thinking test (β=.217). The Verbal-Propositional system also seems to have a 

statistically significant effect on fifth graders’ algebraic thinking. The Qualitative-

Analytic system does not seem to be a significant predictor of students’ algebraic 

thinking at this age group.  

Figure 4.10 presents the regression equation that was extracted from the 

analysis described above. The overall performance of sixth graders in the algebraic 

thinking test (AT) is the criterion (depended variables) and the four types of 

Specialized Structural Systems, the Spatial-Imaginal (SI), the Causal Experimental 

(CE), the Qualitative-Analytic (QA) and the Verbal-Propositional (VP), are the 

predictors (independent variables). 

  

 

 

Note. AT7thG: Algebraic Thinking-Grade 7, SI: Spatial-Imaginal, CE: Causal Experimental, QA: 

Qualitative-Analytic, VP: Verbal-Propositional  

Figure 4.9. The regression model for the relation of algebraic thinking and 

Specialized Structural Systems in Grade 7. 

 

Algebraic thinking ability and its relation to reasoning processes. This 

section presents the results regarding the relation between students’ ability in 

algebraic thinking and different types of reasoning processes. In order to measure 

students’ abilities in several types of reasoning processes two different tests were 

used. The first one measured students’ deductive reasoning and the second one was 

the Naglieri Non-Verbal Ability Test (NNAT) which measures overall cognitive 

ability. Nevertheless, the score of the students in the NNAT test can be split into four 

types of reasoning processes: (i) Serial reasoning, (ii) Spatial Visualization, (iii) 

Reasoning by Analogy and (iv) Pattern Completion.  The descriptive information of 

 

AT7thG= .220(SI) + .217(CE) + .153(VP) + .109(QA) + 27.546  
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the deductive reasoning tests and the NNAT test are presented first. Then, the results 

of correlation analyses between all the different types of reasoning processes and 

algebraic thinking components are presented. Finally, the association between 

algebraic thinking and the different types of reasoning processes for each age-group 

separately (Grade 4, Grade 5, Grade 6 and Grade7) is defined. Similar to the previous 

part, where the association of algebraic thinking and the Specialized Structural 

Systems was described, this part aspires the generation of an equation for each age 

group, in order  to describe the statistical relationship between the different types of 

reasoning processes (predictor variables) and algebraic thinking (response variable). 

Descriptive results of the test on Deductive Reasoning test. Table 4.29 

presents the results of descriptive statistics analysis in the overall performance of the 

students in the deductive reasoning test. The first three categories of this table 

correspond to the means, standard deviations and range of the algebraic thinking 

measures; the next three categories represent the information concerning the 

distribution of scores on continuous variables.  

As the figures in Table 4.29 show, students had an average performance in this 

test (M=.512). The maximum value of performance in all of the categories of items 

was 1 and the minimum was 0. The range of the students’ performance was 1, 

showing that there were students that responded correctly to all of the items of a 

specific category, as well as students that did not respond correctly to any item of a 

specific category. The Skewness and Kyrtosis values suggest that the variables of the 

students’ performance for the items of the four systems in the test follow a normal 

distribution. 

 

Table 4.28 

Descriptive Results of the Deductive Reasoning Test 

 Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Deductive Reasoning .512 .251 1 .369 -.158 
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Relation between the factors of algebraic thinking and deductive reasoning. 

Table 4.30 presents the correlations between the three factors of algebraic thinking 

and deductive reasoning. According to the results of this analysis, deductive reasoning 

appears to be significantly related with all the factors of algebraic thinking ability.  

Students’ performance in all of the algebraic thinking factors is positively 

related to the abilities involved in deductive reasoning (rgen.arithmetic=.242, 

rfunct.thinking=.275, rmodeling=.278, p<.01). The overall performance in the algebraic 

thinking test is also positively related to the abilities involved in deductive reasoning 

(ralg.thinking=.308, p<.01). Moreover, students’ performance in the factor of “Functional 

thinking” appears to have the highest correlation with the abilities involved in 

deductive reasoning.   

 

Table 4.29 

Correlations between the Performance of the Students in the Algebraic Thinking 

Factors and Deductive Reasoning 

System / Factor                Deductive Reasoning 

Generalized arithmetic  .242** 

Functional thinking  .275** 

Modeling                         .278** 

Algebraic Thinking  .308** 

**p<.01   

 

Relation between algebraic thinking ability and deductive reasoning in 

Grade 4. Table 4.31 presents the results of Regression Analysis, where the 

performance of the fourth graders in the algebraic thinking test is explained by their 

performance in the deductive reasoning test.  
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Table 4.30 

Regression Analysis of the Performance in the Deductive Reasoning test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, deductive reasoning exerts a significant influence on 

the prediction of fourth graders’ performance in algebraic thinking (β=.318). 

Nevertheless, the value of R2 is .101, which tells us that can account for 10.1% of the 

variation in algebraic thinking. This means that almost 90% of the variation in 

algebraic thinking cannot be explained by deductive reasoning. Figure 4.11 presents 

the coefficients of the multiple regression model. The overall performance of fourth 

graders in the algebraic thinking test (AT) is the criterion (depended variables) and 

deductive reasoning (DR) is the predictors (independent variable). 

 

 

 

Note. AT4thG: Algebraic Thinking-Grade 4, DR=Deductive Reasoning 

Figure 4.10. The regression model for the relation of algebraic thinking and 

Deductive Reasoning in Grade 4. 

 

Relation between algebraic thinking ability and deductive reasoning in 

Grade 5. Table 4.32 illustrates the relationship between the performance of the fifth 

graders in the algebraic thinking test and their performance in deductive reasoning 

test, after the conduction of Regression analyses.  

 

 

Algebraic thinking B SE Beta 

Deductive Reasoning  

 
2.996 .695          .318** 

R2=.101 

**p<.01 
   

 

AT4thG = .318(DR) + 23.015 
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Table 4.31 

Regression Analysis of the Performance in the Deductive Reasoning Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 5 

 

As set by the figures in Table 4.32, deductive reasoning exerts a significant 

influence on the prediction of fourth graders’ performance in algebraic thinking 

(β=.227). Nevertheless, as in the case of fourth graders, the R Square of the model is 

very low. Figure 4.12 presents the coefficients of the multiple regression model. The 

overall performance of fifth graders in the algebraic thinking test (AT) is the criterion 

(depended variables) and deductive reasoning (DR) is the predictors (independent 

variable). 

 

 

 

Note. AT5thG: Algebraic Thinking-Grade 5, DR=Deductive Reasoning 

Figure 4.11. The regression model for the relation of algebraic thinking and 

Deductive Reasoning in Grade 5. 

 

Relation between algebraic thinking ability and deductive reasoning in 

Grade 6. Table 4.33 presents the results of Regression Analysis, where the 

performance of the sixth graders in the algebraic thinking test is explained by their 

performance in the deductive reasoning test.   

 

 

 

Algebraic thinking B SE Beta 

Deductive Reasoning  

 
1.923 .682          .227* 

R2=.052 

*p<.05 
   

 

AT5thG = .227(DR) + 39.101  
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Table 4.32 

Regression Analysis of the Performance in the Deductive Reasoning Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 6 

 

According to the results, deductive reasoning exerts a significant influence on 

the prediction of sixth graders’ performance in algebraic thinking (β=.294). However, 

the value of R Square is very low, indicating that a large proportion of the variation in 

algebraic thinking cannot be explained by deductive reasoning. Figure 4.13 presents 

the coefficients of the multiple regression model. The overall performance of sixth 

graders in the algebraic thinking test (AT) is the criterion (depended variables) and 

deductive reasoning (DR) is the predictors (independent variable). 

 

 

 

Note. AT6thG: Algebraic Thinking-Grade 6, DR=Deductive Reasoning 

Figure 4.12. The regression model for the relation of algebraic thinking and 

Deductive Reasoning in Grade 6. 

 

Relation between algebraic thinking ability and deductive reasoning in 

Grade 7. Table 4.34 presents the corresponding results of conducting Regression 

Analysis, where the dependent variable is the performance of the seventh graders in 

the algebraic thinking test and the independent variable is their performance in the 

deductive reasoning test.  

 

  

Algebraic thinking B SE Beta 

Deductive Reasoning  

 
2.928 .796          .294** 

R2=.086 

**p<.01 
   

 

AT6thG = .294(DR) + 33.761  
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Table 4.33 

Regression Analysis of the Performance in the Deductive Reasoning test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 7 

 

According to the model, deductive reasoning exerts a significant influence on 

the prediction of sixth graders’ performance in algebraic thinking (β=.402). Figure 4.14 

presents the coefficients of the multiple regression model. The overall performance of 

seventh graders in the algebraic thinking test (AT) is the criterion (depended variables) 

and deductive reasoning (DR) is the predictors (independent variable). 

 

 

Note. AT7thG: Algebraic Thinking-Grade 7, DR=Deductive Reasoning 

Figure 4.13. The regression model for the relation of algebraic thinking and 

Deductive Reasoning in Grade 7. 

 

Descriptive results of the Naglieri Non-Verbal Ability test. Table 4.35 

presents the results of descriptive statistics analysis in each of the four categories of 

the items in the Naglieri Non-Verbal Ability Test. The first three categories of this 

table correspond to the means, standard deviations and range of the algebraic thinking 

measures; the next three categories represent the information concerning the 

distribution of scores on continuous variables. As the figures in Table 4.34 illustrate, 

the highest mean of the subjects was in the items of “Spatial Visualization” (M=.637). 

The second higher mean of the subjects was and in the items of “Serial reasoning” 

(M=.427). The lowest means of the subjects were in the items of “Pattern 

Completion” (M=.397) and “Reasoning by Analogy” (M=.376).  The maximum value 

of performance in all of the categories of items was 1 and the minimum was 0. The 

Algebraic thinking B SE Beta 

Deductive Reasoning  

 
3.336 .689          .402** 

R2=.161 

**p<.01 
   

 

AT7thG = .402(DR) + 31.001  
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range of the subjects’ performance was 1, showing that there were subjects that 

responded correctly to all of the items of a specific category, as well as subjects that 

did not respond correctly to any item of a specific category. The Skewness and 

Kyrtosis values suggest that the variables of the subjects’ performance for the items of 

the four systems in the test follow a normal distribution. 

 

Table 4.34 

Descriptive Results of the Naglieri Non-Verbal Ability Test 

Items of the test Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Reasoning by Analogy .376 .161 1   .979   .483 

Pattern Completion .397 .164 1 -.158 -.270 

Spatial Visualization .637 .332 1   .357 -.149 

Serial Reasoning .427 .213 1   .274   .480 

 

 

Relation between the factors of algebraic thinking and reasoning processes 

in the Naglieri Non-Verbal Ability test. Table 4.36 presents the correlations between 

the three factors of algebraic thinking and reasoning processes in the Naglieri Non-

Verbal Ability test (NNAT). There were significant correlations between all the 

factors of algebraic thinking and the four types of reasoning processes involved in the 

NNAT. 
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Table 4.35 

Correlations between the Performance of the Subjects in the Algebraic Thinking 

Factors and the NNAT Abilities 

System / 

Factor 

Reasoning 

by 

Analogy 

Pattern 

Completion 

Spatial 

Visualization 

Serial 

Reasoning 

Overall 

Cognitive 

Ability 

Generalized 

arithmetic 

.435** .388** .451** .526** .453** 

Functional 

thinking 

.375** .358** .395** .464** .422** 

Modeling .376** .335** .455** .449** .422** 

Algebraic 

Thinking 

.470** .427** .512** .569** .510** 

**p<.01 

 

Students’ performance in all of the algebraic thinking factors is positively 

related to the overall cognitive abilities involved in the NNAT (rgen.arithmetic=.423, 

rfunct.thinking=.460, rmodeling=.409, p<.01). Students’ performance in the factor of 

“Functional thinking” appears to have the highest correlation with the overall 

cognitive ability. The overall performance in the algebraic thinking test is also 

positively related to the overall cognitive ability (ralg.thinking=.472, p<.01). Moreover, 

the data in Table 4.35 show that students’ overall performance in the algebraic 

thinking test has the highest correlations with the abilities involved in “Serial 

reasoning” and “Spatial Visualization”. 
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Relation between algebraic thinking ability and NNAT abilities in Grade 4. 

In order to examine the relationship between the performance of students in Grade 4 

with their performance in the NNAT, Multiple Regression Analysis was conducted. 

Specifically, the performance of the students in the algebraic thinking test was 

considered as the dependent variable where their performance in the four types of 

processes included in the NNAT were considered as the independent variables. The 

results of this analysis are reported in Table 4.36. 

 

Table 4.36 

Regression Analysis of the Performance in Each of the Four Types of Tasks in the 

NNAT with Dependent Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, two out of the four types of abilities involved in the 

NNAT exert a significant influence on the prediction of individuals’ performance in 

algebraic thinking. The Reasoning by Analogy and the Serial Reasoning processes seem 

to have a positive effect on the dependent variable, which means that the higher these 

abilities are the higher is the performance of fourth graders in algebraic thinking (β=.252 

and β=.232 respectively). The Pattern Completion and the Spatial Visualization 

processes do not seem to be significant predictors of students’ algebraic thinking at this 

age group. 

The results reported above, provide information for extracting the model of the 

regression equation. Figure 4.15 presents the coefficients of the multiple regression 

model. The overall performance of fourth graders in the algebraic thinking test (AT) is 

Algebraic thinking B SE Beta 

Reasoning by Analogy .225 

 

.074 

 

    .252* 

 

Pattern Completion .098 

 

.075 

 

.129 

 

Spatial Visualization .141 

 

.099 

 

.152 

 

Serial Reasoning .220 .089 .232* 

R2=.426 

*p<.05 
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the criterion (depended variables) and the four types of cognitive abilities, the 

Reasoning by Analogy (RA), the Pattern Completion (PC), the Spatial Visualization 

(SV) and the Serial Reasoning (SR) are the predictors (independent variables). The 

value of the constant was not included in the following equation since its level of 

significance was higher than .05. 

  

 

 

Note. AT4thG: Algebraic Thinking-Grade 4, RA=Reasoning by Analogy, SR=Serial Reasoning, 

SV=Spatial Visualization and PC=Pattern Completion 

Figure 4.14. The regression model for the relation of algebraic thinking and NNAT 

abilities in Grade 4. 

 

Relation between algebraic thinking ability and NNAT abilities in Grade 5. 

Multiple Regression analysis was conducted for examining the relationship between 

the performance in the algebraic thinking test and the NNAT for the students in Grade 

5. Similar to the previous part, the aim was to describe the way by which the 

performance in the algebraic thinking test is explained by the performance in the four 

types of tasks in the NNAT test.  As shown in Table 4.37, this relationship in Grade 5 

does not follow the same pattern as in Grade 5. In particular, the Reasoning by 

Analogy does not appear to be a significant predictor of the fifth grades in the 

algebraic thinking test.  

According to the model, two out of the four types of abilities involved in the 

NNAT exert a significant influence on the prediction of individuals’ performance in 

algebraic thinking. The Serial Reasoning and the Spatial Visualization processes seem 

to have a positive effect on the dependent variable, which means that the higher these 

abilities are the higher is the performance of fifth graders in algebraic thinking 

(β=.369 and  β=.184 respectively). The Pattern Completion and the Reasoning by 

Analogy processes do not seem to be a significant predictor of students’ algebraic 

thinking at this age group. 

 

 

AT4thG = .252(RA) + 232(SR) +.152(SV) + .129(PC) + .386 
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Table 4.37 

Regression Analysis of the Performance in Each of the Four Types of Tasks in the 

NNAT with Dependent Variable the Performance in Algebraic Thinking in Grade 5 

 

On the basis of the results reported in Table 4.38, the model of the regression 

equation was extracted. Figure 4.16 presents the coefficients of the multiple 

regression model. The overall performance of fifth graders in the algebraic thinking 

test (AT) is the criterion (depended variables) and the four types of of cognitive 

abilities, the Reasoning by Analogy (RA), the Pattern Completion (PC), the Spatial 

Visualization (SV) and the Serial Reasoning (SR), are the predictors (independent 

variables). 

 

 

 

Note. AT5thG: Algebraic Thinking-Grade 5, RA=Reasoning by Analogy, SR=Serial Reasoning, 

SV=Spatial Visualization and PC=Pattern Completion 

Figure 4.15. The regression model for the relation of algebraic thinking and NNAT 

abilities in Grade 5. 

 

Algebraic thinking B SE Beta 

Reasoning by Analogy .075 .061 .093 

Pattern Completion .013 .093 .012 

Spatial Visualization .181 .084 .184* 

Serial Reasoning .358 .085   .369** 

R2=.305 

*p<.05 , **p<.01 

   

 

AT5thG = .369(SR) + .184(SV) + .093(PC) + .012(RA) + 20.661 Mari
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Relation between algebraic thinking ability and NNAT abilities in Grade 6. 

Table 4.39 presents the results of Multiple Regression Analysis, pertaining the 

relationship between algebraic thinking and the four types of processes involved in 

the NNAT test. Similar to the results described in the previous section regarding fifth 

graders, the Spatial Visualization and the Serial Reasoning processes seem to have a 

positive effect on the dependent variable.   

As the Table 4.38 shows, the Spatial Visualization and the Serial Reasoning 

processes exert a significant influence on the prediction of individuals’ performance 

in algebraic thinking, which means that the higher these abilities are the higher is the 

performance of sixth graders in algebraic thinking (β=.337  and β=.283 respectively). 

The Pattern Completion and the Reasoning by Analogy processes do not seem to be 

significant predictors of students’ algebraic thinking at this age group. 

 

Table 4.38 

Regression Analysis of the Performance in each of the Four Types of Tasks in the 

NNAT with Dependent Variable the Performance in Algebraic Thinking in Grade 6 

 

On the basis of the results reported in Table 4.39, the model of the regression 

equation was extracted. Figure 4.17 presents the coefficients of the multiple 

regression model. The overall performance of sixth graders in the algebraic thinking 

test (AT) is the criterion (depended variables) and the four types of cognitive abilities, 

the Reasoning by Analogy (RA), the Pattern Completion (PC), the Spatial 

Algebraic thinking B SE Beta 

Reasoning by Analogy .039 .060   .048 

Pattern Completion .074 .086   .066 

Spatial Visualization .371 .096   .337** 

Serial Reasoning .284 .298   .283* 

R2=.421 

*p<.05, **p<.01 
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Visualization (SV) and the Serial Reasoning (SR), are the predictors (independent 

variables). 

  

 

 

Note. AT6thG: Algebraic Thinking-Grade 6, RA=Reasoning by Analogy, SR=Serial Reasoning, 

SV=Spatial Visualization and PC=Pattern Completion 

Figure 4.16. The regression model for the relation of algebraic thinking and NNAT 

abilities in Grade 6. 

 

Relation between algebraic thinking ability and NNAT abilities in Grade 7. 

Table 4.40 presents the results of Multiple Regression Analysis, where the 

performance of the seventh graders in the algebraic thinking test is explained by their 

performance in the four types of tasks in the NNAT test.    

According to the model, two out of the four types of abilities involved in the 

NNAT exert a significant influence on the prediction of individuals’ performance in 

algebraic thinking. The Spatial Visualization and the Serial Reasoning processes seem 

to have a positive effect on the dependent variable, which means that the higher these 

abilities are the higher is the performance of seventh graders in algebraic thinking 

(β=.447  and β=.312 respectively). The Pattern Completion and the Reasoning by 

Analogy processes do not seem to be significant predictors of students’ algebraic 

thinking at this age group. 

 

 

 

 

 

 

 

AT6thG = .337(SV) + .298(SR) + .066(PC) + .048(RA) +  14.807 
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Table 4.39 

Regression Analysis of the Performance in each of the Four Types of Tasks in the 

NNAT with Dependent Variable the Performance in Algebraic Thinking in Grade 7 

 

On the basis of the results reported in Table 4.40, the model of the regression 

equation was extracted. Figure 4.18 presents the coefficients of the multiple 

regression model. The overall performance of seventh graders in the algebraic 

thinking test (AT) is the criterion (depended variables) and the four types of cognitive 

abilities, the Reasoning by Analogy (RA), the Pattern Completion (PC), the Spatial 

Visualization (SV) and the Serial Reasoning (SR), are the predictors (independent 

variables). 

 

 

 

Note. AT7thG: Algebraic Thinking-Grade 7, RA=Reasoning by Analogy, SR=Serial Reasoning, 

SV=Spatial Visualization and PC=Pattern Completion 

Figure 4.17. The regression model for the relation of algebraic thinking and NNAT 

abilities in Grade 7.  

 

Algebraic thinking B SE Beta 

Reasoning by Analogy .074 .091 .065 

Pattern Completion .034 .066 .036 

Spatial Visualization .515 .050 .447** 

Serial Reasoning .314 .081 .312** 

R2=.544 

**p<.01 

   

 

AT7thG = .447(SV) + .312(SR) + .065(RA) + .036(PC) + 6.726   Mari
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Algebraic thinking ability and its relation to General Cognitive Processes 

of Mental Action. This section presents the results regarding the relation between 

students’ ability in algebraic thinking and general cognitive structures. In order to 

measure students’ abilities in general cognitive processes of mental action three 

different tests were used. The first one measured working memory, the second one 

measured Control of Processing and the third one measured Speed of Processing. All 

of the tests were computer-based.  

This section is organized along three subdivisions concerning the three general 

cognitive structures measured in the current study. In each subdivision, the descriptive 

information of each test is described first, followed by the results of correlation 

analyses between all the factors of algebraic thinking and the general cognitive 

structure. Finally, the relationship between algebraic thinking and each of the general 

cognitive structures is described through the conduction of Regression Analysis. 

Specifically, regression analyses were applied in each age-group separately. In the 

vein of the previous parts regarding Specialized Structural Systems and Reasoning 

Processes, the purpose was to generate for each age group an equation to describe the 

statistical relationship between the general cognitive processes (predictor variable) 

and algebraic thinking (response variable). 

 

Descriptive results of the test on Working Memory. Table 4.41 presents the 

results of descriptive statistics analysis in the overall performance of the students in 

the Working Memory test. The first three categories of this table correspond to the 

means, standard deviations and range of the Working Memory measures; the next 

three categories represent the information concerning the distribution of scores on 

continuous variables.  

As the figures in Table 4.41 set out, students had an average performance in 

this test (M=.597). The maximum value of performance in all of the categories of 

items was 1 and the minimum was 0. The range of the subjects’ performance was 1, 

showing that there were subjects that responded correctly to all of the items of a 

specific category, as well as subjects that did not respond correctly to any item of a 

specific category. The Skewness and Kyrtosis values were higher than -2 and lower 
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than 2, suggesting that the variables of the subjects’ performance for the items of the 

four systems in the test follow a normal distribution. 

 

Table 4.40 

Descriptive Results of the Working Memory Test 

 Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Working Memory .597 .236 1 -.925 

 

.361 

 

 

Relation between the factors of algebraic thinking and Working Memory. 

Table 4.42 presents the correlations between the three factors of algebraic thinking 

and Working Memory. According to the results of this analysis, Working Memory 

appears to be significantly related with all the factors of algebraic thinking ability. 

 

Table 4.41 

Correlations between the Performance of the Subjects in the Algebraic Thinking 

Factors and Working Memory 

System / Factor                Working Memory 

Generalized arithmetic                         .133** 

Functional thinking  .249** 

Modeling                         .166** 

Algebraic Thinking  .204** 

**p<.01   

 

Students’ performance in all of the algebraic thinking factors is positively 

related to the abilities involved in deductive reasoning. The correlation between the 
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performance of the students in the items of “Generalized arithmetic” and their 

Working Memory appears to be significant at the .05 level rgen.arithmetic=.248, p<.01). 

“Functional thinking” and “Modeling as a domain for expressing and formalizing 

generalizations” are also significantly correlated with Working Memory 

(rfunct.thinking=.248, rmodeling=.194, p<.01). The overall performance in the algebraic 

thinking test is also positively related to students’ Working Memory (ralg.thinking=.285, 

p<.01). Moreover, students’ performance in the factor of “Functional thinking” 

appears to have the highest correlation with their Working Memory.   

 

Relation between algebraic thinking ability and Working Memory in Grade 

4. Table 4.43 presents the results of Regression Analysis, where the overall 

performance of the fourth graders in the algebraic thinking test is explained by their 

performance in the Working Memory test.  

 

Table 4.42 

Regression Analysis of the Performance in the Working Memory Test with Dependent 

Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, Working Memory exerts a significant influence on the 

prediction of fourth graders’ performance in algebraic thinking (β=.520). Figure 4.19 

presents the coefficients of the multiple regression model. The overall performance of 

fourth graders in the algebraic thinking test (AT) is the criterion (depended variables) 

and Working Memory (WM) is the predictor (independent variable). 

  

 

 

Algebraic thinking B SE Beta 

Working Memory .496 .069          .520** 

R2=.270 

**p<.01 
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Note. AT4thG: Algebraic Thinking-Grade 4, WM=Working Memory 

Figure 4.18. The regression model for the relation of algebraic thinking and Working 

Memory in Grade 4. 

 

Relation between algebraic thinking ability and Working Memory in Grade 

5. Table 4.44 illustrates the relationship between the performance of the fifth graders 

in the algebraic thinking test and their performance in the Working Memory test, after 

the conduction of Regression analyses.  

 

Table 4.43 

Regression Analysis of the Performance in the Working Memory Test with Dependent 

Variable the Performance in Algebraic Thinking in Grade 5 

 

As set by the figures in Table 4.44, Working Memory exerts a significant 

influence on the prediction of fifth graders’ performance in algebraic thinking (β=.890). 

Figure 4.20 presents the coefficients of the multiple regression model. The overall 

performance of fifth graders in the algebraic thinking test (AT) is the criterion 

(depended variables) and Working Memory (WM) is the predictor (independent 

variable). 

  

 

 

 

Algebraic thinking B SE Beta 

Working Memory .957 .047          .890** 

R2=.791 

*p<.01 
   

 

AT4thG = .520(WM) + 14.530 
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Note. AT5thG: Algebraic Thinking-Grade 5, WM=Working Memory 

Figure 4.19. The regression model for the relation of algebraic thinking and Working 

Memory in Grade 5. 

 

Relation between algebraic thinking ability and Working Memory in Grade 

6. Table 4.45 presents the results of Regression Analysis, where the performance of 

the sixth graders in the algebraic thinking test is explained by their performance in the 

Working Memory test.  

  

Table 4.44 

Regression Analysis of the Performance in the Working Memory Test with Dependent 

Variable the Performance in Algebraic Thinking in Grade 6 

 

Similar to Grades 4 and 5, Working Memory is a significant predictor of sixth 

graders’ performance in algebraic thinking (β=.838). Figure 4.21 presents the 

coefficients of the multiple regression model. The overall performance of sixth graders 

in the algebraic thinking test (AT) is the criterion (depended variables) and Working 

Memory (WM) is the predictor (independent variable). 

 

 

 

  

Algebraic thinking B SE Beta 

Deductive Reasoning  

 
.963 .058          .838* 

R2=.703 

*p<.05 
   

 

AT5thG = .890(WM) - .662  
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Note. AT6thG: Algebraic Thinking-Grade 6, WM=Working Memory 

Figure 4.20. The regression model for the relation of algebraic thinking and Working 

Memory in Grade 6. 

 

Relation between algebraic thinking ability and Working Memory in Grade 

7. Table 4.46 presents the corresponding results of conducting Regression Analysis, 

where the dependent variable is the performance of seventh graders in the algebraic 

thinking test and the independent variable is their performance in the Working 

Memory test.  

  

Table 4.45 

Regression Analysis of the Performance in the Working Memory Test with Dependent 

Variable the Performance in Algebraic Thinking in Grade 7 

 

According to the model, Working Memroy is a significant predictor of sixth 

graders’ performance in algebraic thinking (β=.392). Figure 4.22 presents the 

coefficients of the multiple regression model. The overall performance of seventh 

graders in the algebraic thinking test (AT) is the criterion (depended variables) and 

Working Memory (WM) is the predictor (independent variable). 

  

 

 

Algebraic thinking B SE Beta 

Working Memory .406 .099          .392** 

R2=.154 

**p<.01 
   

 

AT6thG = .838(WM) - .056  
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Note. AT7thG: Algebraic Thinking-Grade 7, WM=Working Memory 

Figure 4.21. The regression model for the relation of algebraic thinking and Working 

Memory in Grade 7. 

 

Descriptive results of the test on Control of Processing. Table 4.47 presents 

the results of descriptive statistics analysis in the overall performance of the students 

in the Control of Processing test. The first three categories of this table correspond to 

the means, standard deviations and range of the Control of Processing measures; the 

next three categories represent the information concerning the distribution of scores 

on continuous variables.  

As the figures in Table 4.47 set out, students had a high performance in this 

test (M=.690). The maximum value of performance in all of the categories of items 

was 1 and the minimum was 0. The range of the students’ performance was 1, 

showing that there were students that responded correctly to all of the items of a 

specific category, as well as subjects that did not respond correctly to any item of a 

specific category. The Skewness and Kyrtosis values were higher than -2 and lower 

than 2, suggesting that the variables of the students’ performance for the items of the 

four systems in the test follow a normal distribution. 

 

Table 4.46 

Descriptive Results of the Control of Processing Test 

 Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Control of Processing .690 .236 1 -.925 

 

.361 

 

 

 

AT7thG = .392(WM) + 23.989  
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Relation between the factors of algebraic thinking and Control of 

Processing. Table 4.48 presents the correlations between the three factors of algebraic 

thinking and Control of Processing. According to the results of this analysis, Control 

of Processing appears to be significantly related with all the factors of algebraic 

thinking ability. 

 

Table 4.47 

Correlations between the Performance of the Subjects in the Algebraic Thinking 

Factors and Control of Processing 

System / Factor                Control of Processing 

Generalized arithmetic                         .126* 

Functional thinking  .242** 

Modeling                         .157** 

Algebraic Thinking  .195** 

*p<.05, **p<.01   

 

Students’ performance in all of the factors is positively related to the cognitive 

factor of Control of Processing. In contrast to the corresponding results that involved 

“Generalized arithmetic” and Working Memory, this analysis shows that 

“Generalized arithmetic” is significantly correlated with Control of Processing 

(rgen.arithmetic=.126, p<.05). “Functional thinking” and “Modeling as a domain for 

expressing and formalizing generalizations” are also significantly correlated with 

Control of Processing (rfunct.thinking=.242 and rmodeling=.157, p<.01). The overall 

performance in the algebraic thinking test is positively related to students’ Control of 

Processing (ralg.thinking=.195, p<.01). The highest correlation appears between Control 

of Processing and “Functional thinking”.  
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Relation between algebraic thinking ability and Control of Processing in 

Grade 4. Table 4.49 presents the results of Regression Analysis, where the overall 

performance of the fourth graders in the algebraic thinking test is explained by their 

performance in the Control of Processing test.  

 

Table 4.48 

Regression Analysis of the Performance in the Control of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, Control of Processing exerts a significant influence on 

the prediction of fourth graders’ performance in algebraic thinking (β=.225).Though, 

the value of R Square of the model is very low. Figure 4.23 presents the coefficients of 

the multiple regression model. The overall performance of fourth graders in the 

algebraic thinking test (AT) is the criterion (depended variables) and Control of 

Processing (CP) is the predictor (independent variable). 

  

 

 

Note. AT4thG: Algebraic Thinking-Grade 4, CP=Control of Processing 

Figure 4.22. The regression model for the relation of algebraic thinking and Control 

of Processing in Grade 4. 

 

 

 

Algebraic thinking B SE Beta 

Control of Processing .190 .066          .225** 

R2=.050 

**p<.01 
   

 

AT4thG = .225(CP) + 28.011 
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Relation between algebraic thinking ability and Control of Processing in 

Grade 5. Table 4.50 illustrates the relationship between the performance of fifth 

graders in the algebraic thinking test and their performance in the Control of 

Processing test, after the conduction of Regression analyses.  

 

Table 4.49 

Regression Analysis of the Performance in the Control of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 5 

 

As illustrated by the figures in Table 4.50, Control of Processing does not 

influence fifth graders’ performance in algebraic thinking since the correlation is not 

significant at the .05 level. Figure 4.24 presents the coefficients of the multiple 

regression model. The overall performance of fifth graders in the algebraic thinking test 

(AT) is the criterion (depended variables) and Control of Processing (CP) is the 

predictor (independent variable). 

  

 

 

Note. AT5thG: Algebraic Thinking-Grade 5, CP=Control of Processing 

Figure 4.23. The regression model for the relation of algebraic thinking and Control 

of Processing in Grade 5. 

 

 

 

Algebraic thinking B SE Beta 

Control of Processing .103 .059 .136 

R2=.018    

 

AT5thG = .136(CP) + 45.003  
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Relation between algebraic thinking ability and Control of Processing in 

Grade 6. Table 4.51 presents the results of Regression Analysis, where the 

performance of the sixth graders in the algebraic thinking test is explained by their 

performance in the Control of Processing test.  

 

Table 4.50 

Regression Analysis of the Performance in the Control of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 6 

 

Similar to Grades 4, Control of Processing appears to influence sixth graders’ 

performance in algebraic thinking (β=.159). Like Grade 4, the value of R Square of the 

model is very low. Figure 4.25 presents the coefficients of the multiple regression 

model. The overall performance of sixth graders in the algebraic thinking test (AT) is 

the criterion (depended variables) and Control of Processing (CP) is the predictor 

(independent variable). 

  

 

 

Note. AT6thG: Algebraic Thinking-Grade 6, CP=Control of Processing 

Figure 4.24. The regression model for the relation of algebraic thinking and Control 

of Processing in Grade 6. 

 

 

 

Algebraic thinking B SE Beta 

Control of Processing .122 .059          .159* 

R2=.025 

*p<.05 
   

 

AT6thG = .159(CP) + 45.148  
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Relation between algebraic thinking ability and Control of Processing in 

Grade 7. Table 4.52 presents the corresponding results of conducting Regression 

Analysis, where the dependent variable is the performance of seventh graders in the 

algebraic thinking test and the independent variable is their performance in the 

Control of Processing test.  

 

Table 4.51 

Regression Analysis of the Performance in the Control of Processing test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 7 

 

According to the model, Control of Processing is a significant predictor of 

seventh graders’ performance in algebraic thinking (β=.213). Nevertheless, the value of 

R Square is very low. Figure 4.26 presents the coefficients of the multiple regression 

model. The overall performance of seventh graders in the algebraic thinking test (AT) 

is the criterion (depended variables) and Control of Processing (CP) is the predictor 

(independent variable). 

  

 

 

Note. AT7thG: Algebraic Thinking-Grade 7, CP=Control of Processing 

Figure 4.25. The regression model for the relation of algebraic thinking and Control 

of Processing in Grade 7. 

 

 

Algebraic thinking B SE Beta 

Control of Processing .131 .047          .213** 

R2=.045 

**p<.01 
   

 

AT7thG = .213(CP) + 41.539  
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Descriptive results of the test on Speed of Processing. Table 4.53 presents the 

results of descriptive statistics analysis in the overall performance of the students in 

the Speed of Processing test. The first three categories of this table correspond to the 

means, standard deviations and range of the Speed of Processing measures; the next 

three categories represent the information concerning the distribution of scores on 

continuous variables.  

As the figures in Table 4.53 set out, students had a high performance in this 

test (M=.723). The maximum value of performance in all of the categories of items 

was 1 and the minimum was 0. The range of the students’ performance was 1, 

showing that there were students that responded correctly to all of the items of a 

specific category, as well as students that did not respond correctly to any item of a 

specific category. The Skewness and Kyrtosis values were higher than -2 and lower 

than 2, suggesting that the variables of the students’ performance for the items of the 

four systems in the test follow a normal distribution. 

 

Table 4.52 

Descriptive Results of the Speed of Processing Test 

 Mean Standard 

Deviation 

Range Skewness Kyrtosis 

Speed of Processing .723 .162 1 -.925 

 

.361 

 

 

Relation between the factors of algebraic thinking and Speed of Processing. 

Table 4.54 presents the correlations between the three factors of algebraic thinking 

and Speed of Processing. According to the results of this analysis, Speed of 

Processing appears to be significantly related with all the factors of algebraic thinking 

ability. 
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Table 4.53 

Correlations between the Performance of the Students in the Algebraic Thinking 

Factors and Speed of Processing 

System / Factor  Speed of Processing 

Generalized arithmetic  .108* 

Functional thinking  .248** 

Modeling  .194** 

Algebraic Thinking  .285** 

*p<.05, **p<.01   

 

Students’ performance in all of the factors is positively related to the cognitive 

factor of Speed of Processing. Similar to the corresponding results that involved the 

correlation of algebraic thinking and Control of Processing, “Generalized arithmetic”, 

“Functional thinking” and “Modeling as a domain for expressing and formalizing 

generalizations” are significantly correlated with Speed of Processing 

(rgen.arithmetic=.108, p<.05, rfunct.thinking=.248 and rmodeling=.194, p<.01). The overall 

performance in the algebraic thinking test is positively related to students’ Control of 

Processing (ralg.thinking=.285, p<.01). The highest correlation appears between Control 

of Processing and “Functional thinking”.  

 

Relation between algebraic thinking ability and Speed of Processing in 

Grade 4. Table 4.55 presents the results of Regression Analysis, where the overall 

performance of the fourth graders in the algebraic thinking test is explained by their 

performance in the Speed of Processing test.  
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Table 4.54 

Regression Analysis of the Performance in the Speed of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 4 

 

According to the model, Speed of Processing is a significant predictor of fourth 

graders’ performance in algebraic thinking (β=.204).Despite the fact that the value of 

Beta is statistically significant, the value of R Square of the model is very low. Figure 

4.27 presents the coefficients of the multiple regression model. The overall performance 

of fourth graders in the algebraic thinking test (AT) is the criterion (depended variables) 

and Speed of Processing (SP) is the predictor (independent variable). 

  

 

 

Note. AT4thG: Algebraic Thinking-Grade 4, SP=Speed of Processing 

Figure 4.26. The regression model for the relation of algebraic thinking and Speed of 

Processing in Grade 4. 

 

Relation between algebraic thinking ability and Speed of Processing in 

Grade 5. Table 4.56 illustrates the relationship between the performance of fifth 

graders in the algebraic thinking test and their performance in the Speed of Processing 

test, after the conduction of Regression analyses.  

 

 

 

 

Algebraic thinking B SE Beta 

Speed of Processing .172 .066          .204* 

R2=.042 

*p<.05 
   

 

AT4thG = .204(CP) + 27.063 
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Table 4.55 

Regression Analysis of the Performance in the Speed of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 5 

 

As set by the figures in Table 4.56, Speed of Processing does not influence fifth 

graders’ performance in algebraic thinking since the correlation is not significant at the 

.05 level. Figure 4.28 presents the coefficients of the multiple regression model. The 

overall performance of fifth graders in the algebraic thinking test (AT) is the criterion 

(depended variables) and Speed of Processing (SP) is the predictor (independent 

variable). 

 

 

Note. AT5thG: Algebraic Thinking-Grade 5, SP=Speed of Processing 

Figure 4.27. The regression model for the relation of algebraic thinking and Speed of 

Processing in Grade 5. 

 

Relation between algebraic thinking ability and Speed of Processing in 

Grade 6. Table 4.57 presents the results of Regression Analysis, where the 

performance of the sixth graders in the algebraic thinking test is explained by their 

performance in the Speed of Processing test.  

  

 

 

 

 

Algebraic thinking B SE Beta 

Speed of Processing .064 .055          .092 

R2=.009    

 

AT5thG = .092(SP) + 46.006  
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Table 4.56 

Regression Analysis of the Performance in the Speed of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 6 

 

As set by the figures in Table 4.57, Speed of Processing does not influence sixth 

graders’ performance in algebraic thinking since the correlation is not significant at the 

.05 level. Figure 4.29 presents the coefficients of the multiple regression model. The 

overall performance of fifth graders in the algebraic thinking test (AT) is the criterion 

(depended variables) and Speed of Processing (SP) is the predictor (independent 

variable). 

 

 

Note. AT6thG: Algebraic Thinking-Grade 6, SP=Speed of Processing 

Figure 4.28. The regression model for the relation of algebraic thinking and Speed of 

Processing in Grade 6. 

 

Relation between algebraic thinking ability and Speed of Processing in 

Grade 7. Table 4.58 presents the corresponding results of conducting Regression 

Analysis, where the dependent variable is the performance of seventh graders in the 

algebraic thinking test and the independent variable is their performance in the Speed 

of Processing test.  

 

 

 

 

Algebraic thinking B SE Beta 

Speed of Processing .106 .054          .150 

R2=.023    

 

AT6thG = .150(SP) + 45.086  
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Table 4.57 

Regression Analysis of the Performance in the Speed of Processing Test with 

Dependent Variable the Performance in Algebraic Thinking in Grade 7 

 

According to the model, Speed of Processing is a significant predictor of seventh 

graders’ performance in algebraic thinking (β=.207). Though, the value of R Square of 

the model is very low. Figure 4.30 presents the coefficients of the multiple regression 

model. The overall performance of seventh graders in the algebraic thinking test (AT) 

is the criterion (depended variables) and Speed of Processing (SP) is the predictor 

(independent variable). 

  

 

 

Note. AT7thG: Algebraic Thinking-Grade 7, SP=Speed of Processing 

Figure 4.29. The regression model for the relation of algebraic thinking and Speed of 

Processing in Grade 7. 

 

 

 

 

 

 

 

Algebraic thinking B SE Beta 

Speed of Processing .119 .044          .207** 

R2=.043 

**p<.01 
   

 

AT7thG = .207(SP) + 41.509  
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Summary of the results regarding the relation of algebraic thinking to 

Specialized Structural Systems, Reasoning Processes and General Cognitive 

Structures of Mental Action. As presented in the previous parts, multiple regression 

analyses were applied with the purpose of investigating the relationship between 

algebraic thinking and different types of cognitive factors. Specifically, regression 

analyses were conducted in each age-group separately (Grade 4, Grade 5, Grade 6 and 

Grade7). Based on these results, several model equations were generated in order to 

describe statistical associations between the different types of cognitive factors 

(predictor variables) and algebraic thinking (response variable) in each age-group.  

The quantitative analysis showed positive high correlations with some of the 

Specialized Structural Systems and some of the processes involved in the Naglieri 

Non-Verbal Ability Test (NNAT). Positive moderate correlations were observed 

between algebraic thinking and deductive reasoning. Also positive moderate 

correlations were found between algebraic thinking and some of the processes 

involved in the tests of the Hypercognitive System.   

Table 4.59 summarizes the results for each age-group. An important 

observation made from this table is that the four age-groups present differentiations in 

respect to the cognitive factors found to be significant predictors of algebraic thinking 

ability.  Nevertheless, the four age groups also share similarities. Table 4.63 indicates 

which cognitive factors appear to be common in respect to their response in predicting 

students’ performance in algebraic thinking in all of the four age groups. 

 According to the results presented in Table 4.63 the abilities that seem to be 

common at all of the four age groups and predict individuals’ performance in 

algebraic thinking are: 

i. Causal-Experimental Ability (measured by the Specialized Structural 

Systems Test) 

ii. Serial Reasoning (measured by the NNAT) 

iii. Working Memory (measured by the Working Memory test) 
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Table 4.58 

Summary of the Cognitive Factors Predicting Individual’s Performance in Algebraic 

Thinking in Each Age Group  

 Measurement 

tool 

Type of 

Cognitive 

process 

Grade 

4 

Grade 

5 

Grade 

6 

Grade 

7 

 

 

Domain - 

Specific 

Information 

Processing 

Abilities 

 

        

 

 

Reasoning 

Processes 

 

 

Specialized 

Structural 

Systems Test 

 

 

Spatial-

Imaginal  

    

Causal-

Experimental 

    

Qualitative-

Analytic 

    

Verbal-

Propositional 

    

Deductive 

reasoning 

Test 

Deductive 

Reasoning 

    

 

 

Naglieri Non-

Verbal 

Ability Test 

Reasoning by 

Analogy 

    

Pattern 

Completion 

    

Spatial 

Visualization 

    

Serial 

Reasoning 

    

 

General 

Cognitive 

Processes 

of Mental 

Action 

 

Hyper-

cognitive 

System Tests 

Working 

Memory 

    

Control of 

Processing 

    

Speed of 

Processing 
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The Qualitative-Analytic System appears as a predictor of the algebraic 

thinking ability only in Grades 4. Reasoning by Analogy also appears to be a 

predictor of algebraic thinking ability only in Grade 4. Deductive Reasoning, Pattern 

Completion, Control of Processing and Speed of Processing do not seem to 

significantly predict students’ performance in algebraic thinking in any age-group.  

 

Relation between algebraic thinking and the cognitive factors found to 

predict algebraic thinking ability in all age-groups. This section presents the 

results of Structural Equation Modelling analysis (SEM) which was conducted with 

the aim of further examining the mediating effect of cognitive factors on algebraic 

thinking. Specifically, the results obtained in the previous section informed the 

construction of a theoretical model which expands the concept of algebraic thinking 

so as to describe its association with specific cognitive factors.    

In order to investigate this relationship, the structure of two theoretical models 

was examined. Model 1 assumes that the three cognitive factors that were extracted 

from the analyses in the previous section (Serial Reasoning, the Causal-Experimental 

System and Working Memory) can predict performance in algebraic thinking, as a 

multidimensional factor synthesized by the factors of “Generalized Arithmetic”, 

“Functional Thinking” and “Modeling as a domain for expressing and formalizing 

generalizations”. Model 2 assumes that algebraic thinking and the abilities involved in 

the three cognitive factors are sub-factors of a more general ability, namely 

“Generalization abilities”. 

The results of the Structural Equation Modeling Analysis showed that the best 

model to describe the relation between algebraic thinking and the three cognitive 

factors was Model 1 (see Table 4.60). According to these results the three cognitive 

factors can predict algebraic thinking. 
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Table 4.59 

Fit Indices of Models for the Relation between Algebraic Thinking Ability and the 

Five Cognitive Factors 

 CFI TLI χ2 df χ2/df p RMSEA 

Model 1 .959 .953 227.007 129 1.760 .000 .033 

Model 2 .919 .907 335.791 133 2.525 .000 .047 

 

As it is shown in Figure 4.31, the five cognitive factors (Spatial Visualization, 

Serial Reasoning, Deductive Reasoning, the Causal-Experimental Structural System 

and Working Memory) have high ability for predicting students’ algebraic thinking 

ability.   

 

 

 

 

 

 

 

 

 

 

Figure 4.30. The model for the relation between algebraic thinking and the five 

cognitive factors. 

 

 

 

 

Causal-Experimental 

System 

Serial Reasoning 

Algebraic Thinking Working Memory 

.354* 

.411* 

.313* 

*p<.01 
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The Impact of two Teaching Experiments on Algebraic Thinking Abilities 

 The final section of this chapter presents the results related to the sixth aim of 

the research. Specifically, this section reports on the impact of two different 

interventionist teaching experiments on enhancing fifth grade students’ algebraic 

thinking abilities. The research questions that are answered are the following: 

(7) What kind of instructional practices nurture algebraic thinking in elementary 

school mathematics? 

(8) What is the impact of the interactions between the type of teaching 

experiment and students’ cognitive abilities on their algebraic thinking ability? 

In order to examine the impact of two different teaching experiments, one 

based in scaffolded and structured mathematical investigations (Group 1) and one 

based on semi-structured problem situations (Group 2), two groups of fifth grade 

students with equal abilities were formed. First, the descriptive results of the abilities 

of the two groups and their mean comparisons are presented. Second, the impact of 

the two teaching interventions is presented. 

 

Group mean comparisons prior to the intervention. Table 4.61 presents the 

means and standard deviations for the two groups, regarding their abilities in 

algebraic thinking and abilities involved in the Causal-Experimental System, Spatial 

Visualization, Serial Reasoning, Deductive Reasoning and Working memory. In order 

to compare the abilities of the two groups and their personal traits prior to the 

intervention, a MANOVA analysis was conducted. The results suggest that the two 

groups did not have any statistically significant differences in their algebraic thinking 

abilities or in their cognitive abilities (F=.576, p>.05). 
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Table 4.60 

Mean Comparisons of the Two Groups Prior to the Intervention 

Performance Group 1 Group 2   

 M1 SD M2 SD F  p 

Overall Algebraic 

Thinking 

.337 .195 .368 .151 .576 .449 

Generalized arithmetic .467 .326 .473 .235 .009 .897 

Functional thinking .302 .263 .404 .228 2.998 .107 

Modeling .223 .241 .183 .202 .565 .454 

Causal Experimental 

System 

.322 .260 .267 .253 .804 .298 

Spatial Visualization .364 .217 .299 .244 1.370 .204 

Serial Reasoning .457 .192 .419 .227 .574 .454 

Deductive Reasoning .460 .183 .470 .288 .088 .794 

Working Memory .540 .246 .503 .196 .404 .493 

 

 

 

The impact of the two teaching experiments. In order to compare the impact 

of the two teaching interventions on the groups’ performance in the algebraic thinking 

post-test, controlling for their pre-test scores, multivariate analysis of covariance 

(MANCOVA) was applied. Table 4.62 presents the results. The analysis indicated 

significant overall intervention effects, controlling for pre-test scores in the algebraic 

thinking test (Pillai’s F=9.586, p<.05). As shown in Table 4.69, the students the semi-

structured problem situations group had a significantly higher overall performance in 

algebraic thinking rather than the students in the structured mathematical 

investigations group. The effect size indices for the overall algebraic thinking ability 

Mari
a C

him
on

i



201 
 

(partial n2=.088) suggest that the effect of the semi-structured problem situations 

intervention over the structured mathematical investigations intervention were 

moderate. The students in the semi-structured problem situations group had 

significantly higher performance in the functional thinking component (Pillai’s 

F=26.845, p<.01) and in the modeling component (Pillai’s F=9.804, p<.05) I 

comparison to the students in the structured mathematical investigations group. The 

effect size indices for the functional thinking component (partial n2=.286) and the 

modeling component (partial n2=.128) suggest that the effect of the semi-structured 

problem situations intervention over the structured mathematical investigations 

intervention was moderate. The performance of the students in the semi-structured 

problem situations group in the generalized arithmetic component did not have any 

significant difference in relation to the performance of the students in the structured 

mathematical investigations group (Pillai’s F=.081, p>.05). 

 

Table 4.61 

Results of the Multiple Covariance Analysis Between the Two Intervention Groups 

Post-test Performance in Algebraic Thinking 

 

 

Structured 

Mathematical 

Investigation 

Group 

Authentic 

Problem  

Situations 

 Group 

    

Ability Mean1 SE Mean1 SE df F p np
2 

Overall Algebraic 

Thinking 
.452 .206 .570 .179 1 6.452 .013* .088 

Generalized 

arithmetic 
.663 .213 .647 .246 1 .081 .777 .001 

Functional 

Thinking 
.369 .225 .547 .270 1 26.845 .000** .286 

Modeling .291 .291 .509 .319 1 9.804 .003* .128 

1 Estimated Marginal Means 

*p<.05, **p<.01 
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In order to compare the differences within the groups’ pre-test and post-test 

scores in the overall algebraic thinking ability and in the components of “Generalized 

arithmetic”, “Functional thinking” and “Modeling as a domain for formalizing and 

expressing generalizations”, paired-samples t-test scores were performed. Table 4.63 

presents the means and the standard deviations of the pre-tests and the post-tests of 

overall algebraic thinking ability, “Generalized arithmetic”, “Functional thinking” and 

“Modeling as a domain for formalizing and expressing generalizations” for the 

structured mathematical investigations group. The results of paired-samples t-tests 

showed statistically significant differences in the mean difference between the pre and 

post-tests means of performance of the structured mathematical investigations group. 

Students in this group had a significant increase in their overall algebraic thinking 

ability and in the “Generalized arithmetic” component. The results also show that no 

statistically significant differences exist between pre- and post-tests means of 

performance in the “Functional thinking” component and in the “Modeling as a 

domain for formalizing and expressing generalizations” component.  

 

Table 4.62 

T-test Comparisons between Pre-test and Post-test Performance of the Structured 

Mathematical Investigations Group Subjects in Overall Algebraic Thinking Ability 

and in Algebraic Thinking Components 

 Pre-test Post-test   

Ability  M      SD M SD T(df) p 

Overall Algebraic 

Thinking 
.337 .195 .452 .206 -5.519(33) .000** 

Generalized 

arithmetic 
.467 .326 .663 .213 -4.112(33) .000** 

Functional 

Thinking 
.302 .263 .369 .225 -2.774(33) .09 

Modeling .223 .241 .291 .291 -1.231(33) .227 

**p<.01       
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Table 4.64 presents the means and the standard deviations of the pre-tests and 

the post-tests of overall algebraic thinking ability, “Generalized arithmetic”, 

“Functional thinking” and “Modeling as a domain for formalizing and expressing 

generalizations” for the semi-structured problem situations group. The results of 

paired-samples t-tests showed statistically significant differences in the mean 

difference between the pre and post-tests means of performance of the authentic 

problem situations group. Students in this group had a significant increase in their 

overall algebraic thinking ability and in all of the components of algebraic thinking. 

 

Table 4.63 

T-test Comparisons between Pre-test and Post-test Performance of the Semi-

structured Problem Situations Group Subjects in Overall Algebraic Thinking Ability 

and in Algebraic Thinking Components 

 Pre-test Post-test   

Ability M SD M SD T(df) p 

Overall Algebraic 

Thinking .368 .151 .570 .179 -10.147(34) .000** 

Generalized 

arithmetic .473 .235 .647 .246 -4.818(34 .000** 

Functional 

Thinking .404 .228 .547 .270 -5.663(34) .000** 

Modeling .183 .202 .509 .319 -9.926(34) .000** 

**p<.01       
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Interactions between teaching interventions and students’ individual 

differences.  A multivariate analysis of covariance (MANCOVA) was used in order 

to investigate the impact of the interactions between the type of teaching experiment 

(structured mathematical investigations and semi-structured problem situations) and 

students’ individual characteristics. Taking into consideration the results described in 

previous sections of this Chapter, students’ individual characteristics were defined on 

the basis of their scores in the pre-test regarding the Causal-Experimental system, 

Serial reasoning and Working memory. Specifically, the three factors that were found 

to be important predictors of students’ algebraic thinking were used as indicators for 

students’ cognitive abilities. 

The MANCOVA analysis was applied with the purpose of evaluating the 

moderation effects of the intervention and students’ cognitive abilities, in respect to 

students’ benefits in algebraic-thinking, while adjusting for covariates in the students’ 

abilities prior to the intervention program. Students’ benefits were calculated as the 

difference between their post-test and pre-test scores for their overall algebraic 

thinking ability and for the three factors of algebraic thinking (Generalized arithmetic, 

Functional thinking, Modeling as a domain for expressing and formalizing 

generalizations).  

In the analysis, the dependent variables were the benefits in students’ overall 

algebraic thinking abilities, in generalized arithmetic concepts, functional thinking 

concepts and modeling concepts. The fixed factor was the intervention type 

(structured mathematical investigations and semi-structured problem situations). The 

covariates were the three cognitive factors (causal-experimental system, serial 

reasoning and working memory). Table 4.65 presents the results of the analysis.  
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Table 4.64  

Results of the Analysis for the Effects of Interactions Between Teaching Experiment 

Type and Students’ Cognitive Abilities on Students’ Benefits in Overall Algebraic 

Thinking Ability and Algebraic Thinking Factors  

 

 df MS F p np
2 

Benefits in algebraic thinking ability      

Main effects      

Teaching Experiment type × Causal-

Experimental System × Serial Reasoning 

× Working Memory 

2 49.340 4.218 .019* .115 

      

Benefits in generalized arithmetic      

Main effects      

Teaching Experiment type × Causal-

Experimental System × Serial Reasoning 

× Working Memory 

2 3.471 .676 .512 .020 

      

Benefits in functional thinking      

Main effects      

Teaching Experiment type × Causal-

Experimental System × Serial Reasoning 

× Working Memory 

2 6.630 3.490 .036* .097 

      

Benefits in modeling      

Main effects      

Teaching Experiment type × Causal-

Experimental System × Serial Reasoning 

× Working Memory 

2 2.236 1.351 266 .040 

      

*p<.05 
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According to the results the main effect of the interaction between the teaching 

experiment type and the three cognitive factors  on the benefits of the students 

regarding their overall algebraic thinking ability was significant while adjusting for 

the covariates  (F=4.120, p<.05, np
2=.115). The data also indicate that the main effect 

of the interaction between the teaching experiment type and the three cognitive factors 

on the benefits of the students regarding functional thinking concepts was significant 

adjusting for the covariates (F=2.236, p<.05, np
2=.040).  

These results eliminate the covariates’ effects on the relationship between the 

type of the experiment and the benefits of the students. In this way, more variability in 

the model between the independent and dependent variables is explained. 

Specifically, the data in Table 4.65 illustrate that the three cognitive factors (Causal-

Experimental System, Serial Reasoning and Working Memory) moderate the impact 

of the independent factor (Intervention type) on two out of the four dependent 

variables (Benefits in algebraic thinking ability and Benefits in Functional thinking).  

Associating these results to the results reported in the previous sections of this 

chapter, illustrates the way algebraic thinking as a multifaceted concept that is 

comprised by three distinct components and is affected by specific cognitive factors. 

Moreover, the results indicate that the relationship between cognitive characteristics 

of the individuals and the type of mathematics instruction is dynamic and interactive.  
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CHAPTER V 

 

Discussion  

 

The introductory section of Chapter I outlined a critical problem in 

mathematical teaching and learning. Although calls from policy makers and 

curriculum designers during the last twenty years highlighted that algebraic thinking 

should become central to all students’ mathematical experiences across K-12 grades, 

available research has not conceptualized algebraic thinking, at least explicitly. The 

field of mathematics education remained unclear about: (i) the nature and components 

of algebraic thinking in the early grades, (ii) the similarities and differences of 

algebraic thinking between elementary and secondary grades, (iii) the relationship 

between algebra and arithmetic, (iv) the reasoning processes and other types of 

cognitive factors that assist algebra learning, and (v) the key instructional practices for 

promoting algebraic thinking in elementary school mathematics.  

This study took up these issues of concern, by focusing on three interrelated 

goals. The first goal centers on the development of a thorough understanding of the 

structure and components of algebraic thinking in the context of elementary 

mathematics by empirically testing the theoretical model proposed by Kaput (2008). 

The second goal extends the first, by involving the relation of algebraic thinking to 

specific reasoning processes and cognitive constructs, in order to develop a thorough 

understanding of factors that facilitate the development of algebraic thinking. The 

third goal examines concrete instructional practices that consider a sensible 

conceptualization of algebraic thinking in order to foster its development in the 

elementary mathematics classroom. 

This study is significant for at least the following reasons: (a) algebraic 

thinking has a pivotal role in students’ learning because it is closely linked to the 

development, establishment and communication of knowledge in all areas of 

mathematics, including arithmetic, geometry and, statistics; it is not possible to create 

viable opportunities for students to learn mathematics without having a 

comprehensive understanding of algebraic thinking, (b) prior experiences have shown 
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that students’ abrupt and isolated introduction to algebra in the middle school had led 

them to experience serious difficulties in understanding core algebraic concepts; there 

is a need for defining algebraic thinking in a way that considers students’ pass from 

elementary grades to secondary grades of schooling, (c) the emphasis of early 

mathematics instruction on arithmetic and computational fluency is considered as a 

preventer for the development of conceptual understanding among young learners; it 

is important to describe the relationship between arithmetic and algebra and enable 

the presence of both in young students’ mathematical experiences. 

This chapter is organized in terms of the three foregoing goals, which 

correspond to the aims and research questions of the study. For each question, the 

main findings of the study are presented and discussed. 

 

Which Components Synthesize 10- to 13-year-old Students’ Algebraic Thinking 

Ability and What is the Structure of this Ability?  

The components and structure of algebraic thinking. Kaput’s (1995; 2005; 

2008) theoretical model about the core aspects of algebraic thinking from K-12 grades 

has been used in a great extent within the field of mathematics education. In 

particular, it is considered as one of the most influential developments of the past 

decades for many reasons. First, Kaput conceptualized the notion of algebraic 

thinking as multidimensional; many research studies were based on this idea for 

developing further research on the field and offering explicit details of the 

characteristics of algebraic thinking. Secondly, this conceptualization broke down the 

wide field of algebraic thinking into three major and clearly distinguished components 

that can be easily integrated into teachers’ instructional practices. Thirdly, Kaput’s 

model articulated ways in which algebraic activities might be designed and applied 

both in early and secondary school algebra contexts, considering that algebraic 

thinking involves (i) the construction of generalizations and the expression of those 

generalizations in increasingly, conventional symbol systems, and (ii) reasoning with 

symbolic forms, including the syntactically guided manipulations of those symbolic 

forms. 
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However, this model has not been verified before with empirical data. 

Moreover, the components of the model were not explicitly defined through specific 

tasks. Noting this gap and with the aim to describe the components and structure of 

algebraic thinking, this study used appropriate quantitative methods to empirically test 

a model of algebraic thinking based on the theoretical foundations set by Kaput. The 

results of the study confirm that the concept of algebraic thinking is synthesized by 

three distinct but interrelated factors: (a) Generalized arithmetic, (b) Functional 

thinking and (c) Modeling as a domain for expressing and formalizing 

generalizations. In order to measure and verify these three factors, this study 

developed and used a corresponding algebraic thinking test.  

The factor “Generalized arithmetic” refers to the use of arithmetic as a domain 

for expressing and formalizing generalizations. This study, with the aim to examine 

students’ abilities in generalized arithmetic concepts, involved the following 

categories of tasks: (i) exploring properties and relationships of whole numbers (e.g. 

odd and even numbers), (ii) exploring properties of operations on whole numbers (e.g. 

distributive property of multiplication, associative property of addition), (iii) 

exploring equality and inequality as expressing a relationship between quantities and  

understanding the equals sign in number relations (e.g. solving and manipulating 

equations), and (iv) treating numbers as placeholders and attending the structure of 

numbers rather than relying on computations (e.g. determining if the sum of two 

multi-digit numbers is odd or even without performing calculations). 

The factor “Functional thinking” refers to the generalization of numerical or 

geometrical patterns and the exploration and expression of relationships of co-

variation and correspondence that are represented in several ways (with table, 

graphically, diagrammatically, verbally, symbolically). In this study, the items of 

“Functional thinking” involved the following categories of tasks: (i) finding variation 

within a sequence of values (recursive patterning ), (ii) co-variational thinking based 

on analyzing how two quantities vary simultaneously and in keeping that change as an 

explicit, dynamic part of a function’s description (e.g., “as x increases by one, y 

increases by three”), (iii) correspondence relationships based on identifying a 

correlation between variables (e.g., “y is 3 times x plus 2”), and (iv) comparing 

multiple representations in order to understand problems about rates of change (e.g. 

graphs, equations, tabular data). 
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The factor “Modeling as a domain for expressing and formalizing 

generalizations” involves the construction of models for generalizing regularities from 

mathematized situations or phenomena where the regularity itself is secondary to the 

larger modeling task. In order to measure this factor, the test of the study included 

tasks that required the identification and expression of regularities in real life 

problems, such as decision making about the best sales offer or in mathematical tasks 

that students needed to construct a model in order to represent an algebraic 

relationship (table, diagram, symbolic expression). Moreover, the test included tasks 

that required the expression and use of a regularity developed by repeated reasoning, 

such as a mathematical process or formula that address broad concepts of 

mathematics (e.g. the formula of area) or a figural pattern. 

The results of the study indicated that the aforementioned tasks loaded only on 

one first-order factor. This fact confirms the high interpreted dispersion of the tasks 

and the distinct nature of the three factors of the model. Therefore, this study confirms 

that, “Generalized arithmetic”, “Functional thinking” and “Modeling as a domain for 

expressing and formalizing generalizations” represent three first-order factors and 

algebraic thinking represents a second, higher-order factor. Therefore, the findings of 

the current study verify through empirical data Kaput’s proposed structure of 

algebraic thinking and also the idea that Kieran (1992) developed first about 

conceptualizing algebraic activity not just as a topic in mathematics curriculum but as  

a multifaceted activity which encompasses various types of tasks and ways of 

thinking.  

All tasks were carefully selected in order to satisfy two conditions: (i) the 

tasks involved processes that are considered to be linked with early algebraic 

thinking, such as generalization, problem solving, argumentation and justification, 

prediction and proof, and (ii) the tasks involved multiple forms of representation, such 

as verbal expressions, diagrams, drawings or graphs rather than symbols and did not 

require the use of symbols. Thus, the results lend support to the argument of several 

researchers (e.g. Carraher & Schliemann, 2014; Kieran, 2004, Radford, 2000) that 

algebraic thinking in the early grades can take place in the absence of algebraic 

notation.   
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Students’ performance in “Generalized arithmetic”. The results of the 

study showed that the factor “Generalized arithmetic” had the highest mean of 

performance among the students in the sample. Students’ means of performance in the 

factors of “Functional thinking” and “Modeling as a domain for expressing and 

formalizing generalizations” were lower. Not surprising, students’ higher mean of 

performance was in the item “Solving an equation” which belongs to the factor 

“Generalized arithmetic”. The second higher mean of students’ performance was in 

the item “Decomposition of whole numbers into possible sums” which also belongs to 

the factor “Generalized arithmetic”. Both items represent the way thinking 

relationally is integrated in arithmetical settings. According to Kieran (2014) the 

ability to describe relations and solve procedures in a general way remains a timeless 

characterization of algebraic thinking from the years that Freudenthal (1977) made an 

effort to describe algebra until today.  

This result illustrates the answer to the common question among researchers 

about the relationship between arithmetic and algebra. According to the results, 

“Generalized arithmetic” represents the module where arithmetic and algebra co-exist 

and interact; this interaction enables students to smoothly pass from arithmetical 

settings to algebraic settings. There is not a clear cut between them. As soon as 

students start to think about relationships and understand structure within numbers 

and properties of operations, their thinking moves from arithmetic to algebra.  This 

result, based on empirical data, reflects Sfard and Linchevski’s (1994) argument that 

learners initially understand algebraic expressions as computational processes. An 

expression, such as 4 (y + 6) + 2 represents an arithmetical process. By performing 

particular operations, the symbol will obtain meaning. At this level, individuals face 

expressions as means for determining the value of the letter through the application of 

a prescribed process. Nevertheless, this level enables them to start detecting structure 

in mathematical expressions. Consequently, “Generalized arithmetic” is considered as 

an essential component of elementary mathematics instruction which will set the 

space for students in order to achieve what Mason (1989) have called, a "delicate shift 

of attention" from seeing the expression as an expression of calculations to seeing it 

as an expression of generality and then to seeing it as an object or property that can be 

manipulated. 
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Students’ performance in “Functional thinking”. The descriptive results 

showed that students had high means of performance in two of the items in the factor 

“Functional thinking”. The majority of the students was able to solve the item 

“Choosing the appropriate verbal expression for representing a recursive 

relationship”. This item involved a simple correspondence relationship based on the 

relation of variables (y is x plus 7). This relation was represented diagrammatically 

and students were called to choose the appropriate verbal expression. Additionally, 

students were able to solve the item “Identifying the pattern of even numbers when 

they are generated geometrically”. The identification of simple rules in numerical 

patterns (such as “multiplying by 2” or “adding 7”) represent cases of examining 

topics that are arithmetical in nature through functional approaches. This result is in 

accordance to the results found by Blanton and Kaput (2005) regarding the ability of 

students as young as 3rd graders for representing additive and multiplicative 

relationships transitioning from iconic to natural language. Consistently, Carracher 

and Schliemann (2014) offered the example of “multiplication by 3” for presenting 

the way early mathematics might integrate an algebraic character; “Multiplication by 

3 is viewed as a subset of the integer function, 3n, that maps a set of input values to 

unique output values, thus preparing the ground for the continuous function, f(x) = 

3x” (p.195).  

This study indicated that the factor of “Functional thinking” is a distinct 

component of algebraic thinking. Hence, this study confirms that recursion, co-

variance and correspondence represent basic concepts of algebraic thinking not only 

in the secondary grades but also in the elementary grades. This study conceptualizes 

functional thinking in such a way that it could be seen not as an advanced form of 

algebraic thinking that can be cultivated only in the upper grades of schooling but as 

central in even young students’ learning of mathematics. This result confirms the 

suggestions of previous studies (e.g. Blanton, 2011; Brizuela and Schliemann 2003; 

Carraher et al. 2008; Kaput and Blanton 2005; Moss et al. 2008) about the capability 

of elementary school students to reason about functions and use different forms of 

representations for being successfully engaged with functional thinking. 

Consequently, this result specifies that the absence of functional thinking from 

elementary mathematics instruction, could become a serious threat to students’ 

opportunities to develop algebraic thinking. Students should be provided with rich 
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opportunities to develop functional thinking skills from the start of their mathematical 

study.  

 

Students’ performance in “Modeling as a domain for expressing and 

formalizing generalizations”. The means of performance among students concerning 

the items in the factor “Modeling as a domain for expressing and formalizing 

generalizations” were low. This factor included items that in an extent share 

similarities with the so-called “algebra problem solving”, which, as reported by 

Kieran (2014), is an area of algebra learning that challenges many students. 

Nowadays, “algebra problem solving” has been broadened to include not merely word 

problems but also non-routine tasks that are purely symbolic and do not connect to 

real world (Kieran, 2014). In this study, an effort was made to include in the factor 

“Modeling as a domain for expressing and formalizing generalizations” mostly items 

that present situations of the real world and only the items “Modeling a figural 

pattern”  and “Modeling with a symbolic expression a function table” was 

disconnected from realistic settings.  

All of the items in this factor hindered regularities which were secondary to 

the general modeling task. This kind of items provides opportunities to students to 

express and formalize generalizations from mathematized situations inside or outside 

mathematics (Blanton & Kaput, 2005). From this perspective, algebraic thinking is 

used as a conceptual tool for exploring modeling problems that are derived from 

complex realistic situations or phenomena. Therefore, the engagement of students in 

modeling activities is considered as crucial in order to develop both ways of thinking 

that are algebraic, such as working with generalizable patterns and identifying 

structure and ways of thinking that are not exclusively algebraic, such as problem 

solving, justifying and proving, making predictions and conjectures. 

A possible reason for students’ low performance in the modeling items may be 

the fact that they were cognitively demanding. Modeling tasks required students to 

synthesize sets of information in order to produce and test a hypothesis through the 

use of appropriate models. In this perspective, such activities might require the 

integration of a more complex spectrum of cognitive constructs and reasoning 

processes. According to Kieran (2007), modeling is involved in the global-meta level 
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of algebraic activity and addresses not only algebraic thinking but also more general 

mathematical processes. The following sections of this Chapter will further enlighten 

the role of reasoning processes and other types of cognitive factors in students’ 

performance in the algebraic thinking test.  

Another possible explanation of the results reported above might be students’ 

mathematical experiences. Specifically, the mathematics curriculum in effect at the 

school year that the study was conducted did not include algebra as a specific domain 

of mathematics education or precise objectives regarding algebra teaching and 

learning. Students at Grades 4 and 5 had occasionally the experience of pattern 

activities and activities involving the interpretation of linear graphs. In Grade 5, the 

properties of operations (associative property of addition and multiplication, 

distributive property of multiplication, properties of 0, and order of operations) were 

introduced. Symbols, as a way for expressing unknowns in equations, were not 

introduced before Grade 6. The formal integration of algebra within mathematics 

education appeared in Grade 7. The corresponding lessons in 7th graders books 

emphasized the use and meaning of symbols as a tool for representing unknown 

quantities as well as the investigation of algebraic rules for solving equations. 

  

Correlations between the three components of algebraic thinking. The 

results yielded from the study showed that the correlations between the three first-

order factors were statistically significant. The highest correlation appears between 

the factors “Functional thinking” and “Modeling as a domain for expressing and 

formalizing generalizations”. Intertwined with this result might be the fact that 

modeling activities share common features with functional thinking activities. As it 

was reported in Chapter II, modeling encompasses components of algebraic thinking, 

such as the manipulation of symbols, the illustration of the correspondence between 

the situation and the model and re-translations between the situation and the model 

(Watson, 2009b). What differentiates the two factors is that the modeling task 

embodies a mathematized situation either inside or outside mathematics. The object in 

the modeling items is the identification of the algebraic components that are enclosed 

in the task as well as the development of a modeling language for analyzing the 

situation and finding a logical answer. Moreover, this kind of tasks involve in a great 
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degree the use of generalizations for supporting intuitive arguments and discussion 

about the rationality or incorrectness of a decision on the basis of reasoning about the 

relations among quantities.  

 

Is the Structure of Students’ Algebraic Thinking Ability the Same or Different in 

Relation to Age?  

The structure of the model across Grades 4, 5, 6 and 7. The results pertaining 

the stability of the verified model for algebraic thinking across the four age-groups 

showed that the model remains stable only for Grades 5 and 6. Considering this result, 

the validity of the model was tested in Grade 4 and Grade 7 separately. The results 

confirm that in these groups, three distinct factors compose a higher-order factor. 

Nevertheless, the items of the best fitting model that seem to have statistically 

significant factor loadings to the corresponding factors were not exactly the same. 

This result suggests that the model remains stable from grade to grade in respect to 

the structure. However, in each factor the items that interpret the dispersion of the 

factor are slightly differentiated, reflecting different abilities of students of different 

age-levels for solving specific algebraic tasks. 

  This finding signifies that algebraic thinking ability in the higher primary 

grades and in the beginning of secondary education is synthesized by three distinct 

factors, as these were described above. Besides, Kaput’s argumentation was that the 

model of algebraic thinking refers to a broader conceptualization that captures both 

primary and secondary education. Even though the level of ability in algebraic 

thinking varies between the students of different grade levels, the dimensions of this 

ability are the same for all students, with respect to their educational level and 

cognitive abilities. The fact that the content and the extent of the instructional time 

devoted to algebraic concepts from grade to grade are different does not appear to 

differentiate the structure of ability in algebraic thinking.  

For the students of Grades 4 and 7, the model remains stable as far as it 

concerns its three-dimensionality but the items that load to the three first order factors 

are slightly different. A possible reason for this differentiation might be the fact that 

according to several psychological theories (e.g. Piaget, 1970; Pascual-Leone, 1970; 
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Case, 1985), the corresponding ages of the students in these grades (9-10 years old 

and 12-13 years old) represent transitional stages in students’ development in respect 

to their cognitive abilities and educational behavior. According to Demetriou, 

Spanoudis and Mouyi (2008), students that are 9-10 years old are only able to 

construct simple math relations of the type a + 5 = 8 ; students’ of 12 years old 

develop proportional reasoning and they are able to co-ordinate symbolic structures; 

students’ of 13 years old develop algebraic reasoning that is based on mutually 

specified symbols systems. These descriptions as well as others reporting differences 

across developmental cycles in students’ abilities regarding specialized domains, 

working memory and processing efficiency and inferential skills (e.g. Demetriou et 

al., 2002, Demetriou, Spanoudis & Mouyi, 2010; Demetriou, Spanoudis & Shayer, 

2015) might provide viable explanations about the different behavior of the students 

in Grade 4 and Grade 7.  

In order to measure algebraic thinking in four different grades of school 

education, the test was constructed on the basis of Kaput’s model. On the one hand, 

the test included items that corresponded to the three factors as reported above; on the 

other, the items were carefully selected considering the majority of them not to 

involve algebraic notation. In the items of the factor “Functional thinking” all 

variables were mainly represented either through verbal expressions, diagrams, 

drawings or graphs. Moreover, these tasks did not require the representation of an 

extracted generalization with symbols but in one of the aforementioned forms. As 

Carraher and Schliemann (2014) stated, algebraic thinking in the early grades can take 

place in the absence of algebraic notation. Also, Radford (2014) argued that what 

allowed researchers to discuss about the possibility of developing algebraic thinking 

in the early grades is the rejection of the idea that notations are a manifestation of 

algebraic thinking. Moreover, the use of letters in algebra is not a sufficient evidence 

for thinking algebraically. For example, students could solve the equation 

“2x+2=10+x” by replacing notations with particular numbers (e.g., x=1 or x=2, etc.) 

and applying trial and error strategies (Radford, 20014, p.4). Similarly, Kieran (2004) 

suggested the following definition for algebraic thinking in the early grades:  

Algebraic thinking in the early grades involves the development of 

ways of thinking within activities for which letter-symbolic algebra 

can be used as a tool but which are not exclusive to algebra and which 

could be engaged in without using any letter-symbolic algebra at all, 
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such as, analyzing relationships between quantities, noticing 

structure, studying change, generalizing, problem solving, modeling, 

justifying, proving, and predicting (p.149).     

Radford (2006) suggested that the alphanumeric algebraic symbolism is a 

modern invention, which appeared during the Renaissance years as a need for 

representing quantities and relationships between quantities. Radford (2006) also 

refered to paradigms from history that indicate that notations are not necessarily 

manifestations of algebraic thinking: (i) Euclid used in his Elements letters without 

the aim for expressing  algebraic ideas; (ii) Ancient Chinese mathematicians solved 

systems of equations without using notations (iii) Babylonian scribes used geometric 

diagrams to think algebraically. Hence, the use of letters in algebra is neither an 

essential nor an adequate condition for demonstrating that a student is thinking 

algebraically.  

The results of the study also show that the distinction between arithmetic and 

algebra cannot be cast in terms of notations, as it has often been supported. Based on 

the epistemological analyses of the past along with the theoretical contribution of 

researchers like Kieran (1996; 2004) and Kaput (2000; 2008), the test on algebraic 

thinking was constructed by items that required students to think algebraically and 

satisfied the following conditions that according to Radford (2014) characterize 

algebraic thinking: (i) the tasks involved unspecified numbers (fixed unknowns and 

variables), (ii) the unspecified numbers had to be named or symbolized (alphanumeric 

symbols, natural language, unconventional signs, a mixture of these), and (iii) the 

unspecified numbers had to be treated as if they were known and students had to 

operate on them (e.g. perform additions, subtractions, multiplications and divisions). 

As the results of the current study show, students’ algebraic thinking from Grades 4 to 

7 can be characterized by three distinct factors measured by items that satisfy the 

conditions described above. Moreover this result, supports Carracher and 

Schliemann’s (2014) claim that the incorporation of early algebra in young learners’ 

education is dependent on teachers’ fluidity to handle algebraic representations, 

especially those that are expressed through natural language, diagrams, tables and 

graphs. 
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Students’ performance in the algebraic thinking test across grades. The 

results of the study showed that there are significant differences in the algebraic 

thinking abilities of the students in the four grades (Grade 4, Grade 5, Grade 6 and 

Grade 7). The means of the overall performance of the students in the algebraic 

thinking test increases from grade to grade. Moreover, the means in the performance 

of the students in each of the three factors of algebraic thinking also increase from 

grade to grade.  

This result is in accordance with the content of students’ mathematics 

education related to algebraic concepts, as this was described in the previous part of 

this chapter. Moreover, this result supports the hypothesis of this study about the 

relations of algebraic thinking with significant cognitive factors that are age-

dependent and influenced by developmental constraints. As Kaput asserted, there are 

two core types of reasoning processes which flow through varying degrees throughout 

the three factors of algebraic thinking; (i) making generalizations and expressing 

those generalizations in increasingly, conventional symbol systems, and (ii) reasoning 

with symbolic forms, including the syntactically guided manipulations of those 

symbolic forms. In the case of the first reasoning process, generalizations are 

produced, justified and expressed in various ways. The second reasoning process 

refers to the association of meanings to symbols and to the treatment of symbols 

independently of their meaning. These reasoning processes might be related to 

different types of cognitive factors and accordingly be responsible for the significant 

differences among the performance of students of different ages. The part of the 

current study that discusses the findings about the relation of algebraic thinking with 

various cognitive factors, purposes to enlighten the reasons underneath the 

differentiations in the abilities of the students from grade to grade.  

 

What are the Classes of Algebraic Thinking Ability of 10- to 13-year-old 

Students?  

This study indicates that there are four different classes-groups of students 

which can describe their algebraic thinking abilities. Class 1 students had low 

performance in all of the three factors of algebraic thinking. Class 2 students had 

average performance in the factor “Generalized arithmetic” and low performance in 
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the factors “Functional thinking” and “Modelling as a domain for expressing and 

formalizing generalizations”. Class 3 students had average performance in the factors 

“Generalized arithmetic” and “Functional thinking” and low performance only in the 

factor “Modelling as a domain for expressing generalizations”. Class 4 students did 

not have low performance in any of the three factors of algebraic thinking. These 

students had high performance in the factors “Generalized arithmetic” and 

“Functional thinking” and average performance only in the factor “Modelling as a 

domain for expressing generalizations”.  

Nearly 1 2⁄  of the students in Grade 4 were classified within Class 1. Around 

1 3⁄  of the students in Grade 5 and around 1 4⁄  of the students in Grades 6 and 7 were 

classified within Class 1. Class 2 had almost equal percentages of students from the 

four grades; around 1 5⁄  of the students in each grade were classified within Class 2. 

Class 3 had also almost equal percentages of students from the four grades; around 

1 4⁄  of the students in each grade were classified within Class 3. Class 4 was mostly 

represented by students in the seventh, sixth and fifth grade. Furthermore, the 

percentage of the students that belong in Class 4 seems to be increased from Grade 4 

to Grade 7. 

These results indicate that fourth grade students’ level of algebraic thinking 

abilities is different in comparison to the fifth, sixth and seventh grade students. 

Students in Grade 4 are able to solve some tasks from the generalized arithmetic 

factor and simple patterning tasks from the functional thinking factor. Students in 

Grade 5 and 6 do not seem to have important differences in respect to their algebraic 

thinking abilities, since they are both able to solve the tasks from the generalized 

arithmetic factor and most of the tasks in the functional thinking factor.  A transition 

seems to occur as soon as students enter secondary school, since the majority of the 

students in this grade were classified within Classes 3 and 4. These students have 

more abilities in solving not only the generalized arithmetic and functional thinking 

tasks but also the modeling tasks. Therefore, it can be argued that there are three 

broad transitional stages regarding the abilities of the students in algebraic thinking 

over the ages 10 to 13 years old. The first stage includes students who are at 9 to 10 

years old. The second stage includes the students who are at 10 to 12 years old. The 

third stage includes the students who are at 12 to 13 years old. These results support 

the hypothesis that differences in the cognitive characteristics of the students 
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pertaining the involvement of specific reasoning forms or other cognitive factors, 

affect their individual algebraic thinking abilities. As reported in the previous section 

of this chapter, these results are in accordance with the developmental stages 

described by Piaget (Piaget & Inhelder, 1967), concerning advances in the cognitive 

behavior of the students. 

 

What are the Characteristics of Students’ Performance in Algebraic Thinking at 

Different Classes of Ability?  

The results of the study indicated that students in each of the four classes have 

different abilities. In the following section, the four classes are described based on the 

abilities of the students in the three factors of algebraic thinking. A brief report of 

some typical characteristics observed while scoring students’ answers in the test of 

algebraic thinking, is also included for each class separately. These characteristics 

concern students’ nature of approaches to specific tasks of the algebraic thinking test.  

Characteristics of the first class of algebraic thinking ability. The results of 

the study have shown that the students of the first class had low abilities in all of the 

three factors of algebraic thinking. Regarding the factor “Generalized arithmetic”, the 

majority of the students in this class was unable to respond correctly to most of the 

items included in this factor. The only item that they appear to solve successfully was 

the item “Solving missing number sentences”, which required finding the unknown in 

an equation representing an additive relationship. Specifically, this task was mainly 

solved through trial and error strategies where students tested possible numbers before 

giving an answer for the value of the unknown that was involved in the equality. As 

far as it concerns the factor “Functional thinking”, the highest percentage of correct 

responses was found to be in the item “Choosing the appropriate verbal expression for 

representing a recursive relationship”. This relationship was represented through a 

diagram and student should translate it into a verbal representation. In the factor 

“Modeling as a domain for expressing and formalizing generalizations” less than 30% 

of the students within Class 1 were able to respond correctly to any of its items. 

Generally, the students that according to the quantitative analysis probably 

belong in Class 1 had many difficulties regarding the ability to generalize and 
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manipulate expressions as generalizable objects that represent relationships between 

quantities rather than calculating procedures. The main problem of these students 

seem to be their failure in developing strategies for operating on the unknown. 

According to the studies reported previously and other analyses that aimed to describe 

what is algebra (e.g., Filloy, Rojano & Puig, 2007; Kieran 1989, 1990; Radford & 

Puig, 2007; Serfati, 1999), the way of thinking that distinguishes arithmetic from 

algebra is the consideration of indeterminate quantities as if they were something 

known. The students in Class 1 seemed to fail operating on the unknowns as if they 

were specific numbers, thus failing in gaining respectable mean scores in any of the 

three types of tasks involved in the algebraic thinking test.  

 

Characteristics of the second class of algebraic thinking ability. The 

students of the second class had average abilities in the tasks of “Generalized 

arithmetic” and low abilities in the tasks of ‘Functional thinking” and “Modeling as a 

domain for expressing and formalizing generalizations”. What was perceived while 

scoring the tests of the students, was that the strategies they followed in order to solve 

the tasks in the Factor “Generalized arithmetic” were arithmetical in nature. For 

example, in the item “Relating place-value properties to the multiplication algorithm”, 

most students in this class needed to do the multiplication from the start, to find that 

the result was false rather than relying on the fact the in a two-digit multiplication the 

second digit by which we multiply is at the tens place. Others stated that the answer 

was false since no place was left under the units place, indicating a procedural 

understanding of the algorithm rather than a conceptual understanding. In the item 

“Determining if the sum of two multi-digit numbers is either odd or even”, the 

majority of the students performed the addition in order to calculate the sum of the 

two multi-digit numbers instead of attending the structure of the numbers and 

confront them as placeholders. According to Blanton and Kaput (2005), this kind of 

behavior is indicative of students that have developed the ideas of arithmetic within a 

procedural perspective rather than a conceptual one. Their mathematical knowledge is 

constrained to the field of arithmetic and computational procedures. 

 Drawing on the above observations, these students seem to use their 

arithmetical knowledge, in order to express and formalize generalizations. The most 
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common strategies used by these students were “Guess and check” and “Working 

backwards”. Several researchers consider these strategies as arithmetical rather than 

as algebraic (e.g. Bednarz & Janvier, 1996; Davydov, 1990; Dougherty, 2001). 

Nonetheless, Sfard and Linchevski (1994) argue that these strategies signify the 

beginning of thinking algebraically and a smooth transition between arithmetic and 

algebra. Hence, the current study addresses once again the problem of defining the 

relationship between arithmetic and algebra. Students in Class 2 seem to make an 

effort for better understanding the algebraic tasks by using as tools the knowledge and 

abilities they have developed through the strand of arithmetic. These tools provide 

them the basis for smoothly passing from arithmetic and algebra.    

Nonetheless, due to the limited prospects that these strategies provide, students 

in Class 2 seem to fail in solving tasks of the factor “Functional thinking. In these 

cases, such as the translation of a co-variation relationship that is represented verbally 

to its graphical representation, arithmetic methods prove not to be sufficient. 

Algebraic thinking has to be applied by the analytic manner where students deal with 

indeterminate numbers. According to Vergnaud (1998), this kind of activities, which 

include concepts such as functions, variables and parameters reflect the new objects 

that students have to treat as soon as they move from the field of arithmetic to the 

field of algebra.  

 

Characteristics of the third class of algebraic thinking ability. The students 

that according to the results belong in Class 3, had average abilities in the factors of 

“Generalized arithmetic” and “Functional thinking”. These students had low 

performance means in the tasks of the factor “Modeling as a domain for expressing 

and formalizing generalizations”. The higher abilities of the students of Class 3 can be 

explained by the fact that they were more able in treating numerical expressions as 

relationships rather than as directions for performing calculations. Moreover, the 

students of this class managed to solve more successfully some of the items that 

involved correspondence and co-variational relationships as well as finding the nth 

term in numerical patterns. Fujii και Stephens (2008) argue that the identification of 

repeated patterns is one of the more important indicators of students’ ability for 

thinking relationally rather than thinking with specific numbers.  
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Nonetheless, the task “Identifying possible numbers in a numerical pattern” 

which had the highest mean of performance among the items of the factor “Functional 

thinking” (62%) was mainly approached with arithmetical strategies. Specifically, in 

order to extend either a numerical or geometric sequence, students need to notice the 

relationship between the numbers or the way the figures in the pattern are placed 

structurally (Mulligan and Mitchelmore 2009); especially in the geometrical patterns, 

students need to uncover the regularity that involves the association between the 

spatial structure and the corresponding numerical structure. Contrary to this, most of 

the students within Class 3 were merely focused on the numerical aspect of the terms. 

Their activity relied to counting or “Guess and check” strategies.  

Consistently with Howe (2005), producing a formula within patterning 

activities might merely be based on guessing the formula and trying it; nonetheless, 

this strategy is based on arithmetic concepts. This might be a possible reason for the 

low means of performance of students in Class 3 in more complex patterns, such as 

the item “Developing the rule of a complex geometrical pattern” (43.5%). In this kind 

of task the counting or try-and-error methods are not sufficient. Usually, the students 

start counting the number of hexagons and squares in Figures 1, 2, and 3, and realize 

that the number of hexagons and squares increase by the same number each time. 

However, as the students quickly notice this recursive relationship between 

consecutive figures, this is not a practical way to answer the question about Figure 

100. Students in Class 3 also seem to rely on their arithmetical knowledge and 

abilities for untangling the algebraic tasks of the test. Comparing to students in Class 

2, students in Class 3 seem to have attained a higher level of abilities in the strand of 

algebra. 

 

Characteristics of the fourth class of algebraic thinking ability. According 

to the results of the study, the students of the fourth Class had high abilities in the 

items of the factors “Generalized arithmetic” and “Functional thinking” and average 

abilities in the items of the factor “Modeling as a domain for expressing and 

formalizing generalizations”. The majority of the students that belong in this class 

comes from Grade 7. This result is consistent with Blanton and Kaput (2005) who 

argue that the factor of modeling is mostly apparent within students of secondary 
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education.  A significant observation is that the students in Class 4 demonstrated an 

ability for producing formulas while solving patterning tasks rather than applying trial 

and error. Thus their success in the items of the factor “Functional thinking” was 

based in an extent to their ability for attending generalizing processes where general 

functional relationships were first identified (e.g., the number of hexagons and 

squares in the item “Developing the rule of a complex geometrical pattern”) and then 

simplified in order to be expresses as the rule for finding any term of the sequence.  

In the factor “Modeling as a domain for expressing and formalizing 

generalizations”, students in Class 4 were able to respond more successfully 

comparing to the students that belong in Classes 1, 2 and 3. Specifically, they 

demonstrated an ability for responding correctly mainly to the tasks that involved 

phenomena or situations from real life settings. A possible reason for this result might 

be the fact that these students had developed in a great extend the abilities required for 

solving the tasks of the factors “Generalized arithmetic” and “Functional thinking”.  

Students in Class 4 seem to have developed abilities for producing relational 

reasoning, not only in the context of patterns or co-variational relationships but also in 

contexts where a regularity is presented through a realistic situation or phenomenon. 

An ability that seems to be central when students confront modeling tasks is the 

ability for translating representations of one form to another as well as the ability for 

choosing the appropriate model (e.g. symbolic expression, table, and graph). As past 

research studies have shown, flexibility in managing multiple representations and 

constructing appropriate representations for treating “mathematically” a situation 

remains difficult for the majority of students. (e.g. Lamon, 1998). 

Summarizing the results in this section, it seems that there are four classes of 

students reflecting different levels of algebraic thinking abilities. Students in Class 1 

seem not to have successfully develop algebraic thinking abilities, since they are not 

able to solve with success any tasks of the algebraic thinking test. Students in Class 2 

and 3 seem to be in an intermediate stage where some arithmetical strategies help 

them to attend algebraic tasks both in the “Generalized arithmetic” factor and the 

“Functional thinking” factor. Students in Class 4 seem to have achieved the passing 

from arithmetical modes of thinking to algebraic ones, demonstrating relational 
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reasoning when solving algebraic tasks and applying strategies that enable them to 

construct viable generalizations.  

 

Is there a Consistent Hierarchical Trend of Students’ Algebraic Thinking 

Ability?  

The data indicated that there is a hierarchical relationship in the development 

of ability in algebraic thinking. Specifically, the results of the study specified that the 

factor “Modeling as a domain for expressing and formalizing generalizations” is 

grasped only after the factors “Generalized arithmetic” and “Functional thinking” 

have been conceptualized by the students. Specifically, it seemed that this hierarchy 

follows a progression of (i) “Generalized arithmetic, (ii) “Functional thinking” and 

(iii) “Modeling as a domain for expressing and formalizing generalizations”. The 

analysis indicated that this hierarchy is confirmed. Students are more successful first 

in undertaking the generalized arithmetic tasks. Later on, they are successful in 

undertaking the functional thinking tasks. It seems that the modeling tasks can be 

understood once students have mastered the previous two aspects of algebraic 

thinking. Thus, it can be argued that, for students in Grade 4 to 7, understanding of the 

basic algebraic ideas progresses from “Generalized arithmetic”, to “Functional 

thinking”, to “Modeling as a domain for expressing and formalizing generalizations”. 

This finding is important, since it implies that the factors of algebraic thinking 

do not develop simultaneously. A possible reason might be the emphasis in the 

mathematics classroom and especially in the primary schools, which does not focus 

on algebra itself as a topic of interest. Furthermore, modeling tasks are absent from 

the school textbooks (the ones used by the time the study was conducted. Considering 

the differences that psychological theories describe  in students’ abilities in 

specialized domains (e,g, Demetriou, Spanoudis & Mouyi, 2010), working memory 

and processing efficiency (e.g. Demetriou et al., 2002) and reasoning (e.g. Demetriou, 

Spanoudis & Shayer, 2015), another possible reason for this result may be the extent 

to which specific cognitive factors influence students’ abilities in each of the three 

components.  
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Besides, available theoretical descriptions on developmental aspects of 

algebraic thinking, as these were reported in Chapter 2 of the current study, imply that 

the development of algebraic thinking is a process that evolves from thinking with the 

specifics to thinking abstractly, from thinking with fix-values (unknowns) to thinking 

about quantities that vary (variables) (e.g. Kuchemann, 1981; Mason, 1989; Sfard & 

Linchevski, 1994; Thomas & Tall, 2001). Along this developmental process, the 

meaning and use of symbols also alters, from understanding and using symbols as a 

way for representing relationships to applying syntactic rules for solving equations 

and then understanding the different role that the same symbol might take in an 

equation (Arcavi, 2005). 

  

What is the Relation of Algebraic Thinking with Domain-Specific Processes, 

Different Types of Reasoning Forms and General Cognitive Processes of Mental 

Action?  

The study’s special attention to the relationship between algebraic thinking 

and several cognitive constructs is crucial. As it was reported above students’ 

algebraic thinking abilities are differentiated in between the grades of schooling as 

well as within a single grade. A serious possible reason for observing this 

differentiation was attributed to individual differences among the students pertaining 

their cognitive characteristics. This study confirms that that there is a strong 

relationship between algebraic thinking and several cognitive factors. Specifically, the 

following categories of cognitive factors were measured for the purposes of this 

study:   

(vii) Specialized Structural Systems (Spatial-Imaginal System, Causal-

Experimental System, Qualitative-Analytic System, and Verbal-

Propositional System) 

(viii) Reasoning processes (Deductive Reasoning and the processes 

measured by the Naglieri Non-Verbal Ability test - Reasoning by 

Analogy, Pattern Completion, Spatial Visualization and Serial 

Reasoning) 

(ix) General cognitive structures of mental action (Working Memory, 

Control of Processing and Speed of processing) 
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The predictive relationship between various cognitive factors and 

algebraic thinking across Grades 4, 5, 6 and 7. The analysis of the data produced 

several model equations that described the statistical associations between the above 

factors (predictor variables) and algebraic thinking (response variables) in each age 

group separately (Grades 4, 5, 6 and 7). The results indicated that the predictive 

relationship between algebraic thinking and different cognitive factors changes from 

age to age. Along the transition of the students from grade to grade, some of these 

factors appear or disappear in the relationship and some of them remain stable in all 

age-groups. Hence, the results of this part of the study explain the reasons for 

observing differentiation in respect to the tasks in the algebraic thinking test that 

students in each grade level where able to solve as well as in the algebraic thinking 

abilities of the students. 

The findings of the study suggest that the algebraic thinking ability of the 

students in Grade 4 is in a great extent subtle to the effect of different types of 

cognitive factors. In particular, it was found that fourth graders’ algebraic thinking is 

influenced by the Causal-Experimental System and the Qualitative-Analytic System. 

As far as it concerns the reasoning processes, in Grade 4 it seems that Reasoning by 

Analogy and Serial Reasoning play an important role. Working memory appears to 

exert a significant influence on fourth graders algebraic thinking. 

The results of the current study have shown that the relationship of different 

cognitive factors and algebraic thinking changes as students move from Grade 4 to 

Grade 5. Fifth graders’ algebraic thinking appears to be influenced by the Spatial-

Imaginal System, the Causal-Experimental System and the Verbal-Propositional 

System. Spatial Visualization and Serial reasoning were also identified as significant 

predictors of algebraic thinking in Grade 5. From the general cognitive structures of 

mental action, fifth graders’ algebraic thinking seems to be influenced by Working 

Memory. Summarizing the results pertaining the changes in the relationship of 

different cognitive factors and algebraic thinking for Grades 4 and 5, it seems that the 

Qualitative-Analytic System and Reasoning by Analogy do not continue to be 

significant predictors of algebraic thinking as students move from Grade 4 to Grade 5. 
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Moreover, in Grade 5, Spatial-Imaginal System and the corresponding Spatial 

Visualization process are added in the relationship.  

The findings of the regression analyses in Grade 6 showed that there are no 

differences between the predictive relationship of different cognitive factors and 

algebraic thinking between Grade 5 and Grade 6. The factors that influence algebraic 

thinking in Grade 5, as these were reported in the previous paragraph, remain the 

same as students move to Grade 6. 

The results regarding Grade 7 showed that all the factors that influence fifth 

and sixth graders’ algebraic thinking continue to be significant in Grade 7. 

Nevertheless, there is an important difference between Grades 5 and 6 and Grade 7. 

The factor of Deductive Reasoning appears for the first time in Grade 7 as a 

significant predictor of students’ algebraic thinking.  

These findings are in line with past and recent research in cognitive 

psychology which aims to explain the causal role of various cognitive factors in 

different types of cognitive activity and also the educational behavior of individuals. 

Demetriou, Spanoudis and Shayer (2015) emphasize that all important theories 

describe four major levels of intellectual development, reflecting transitions between 

1
1

2
 – 2, 6-7, and 11-12 years old (e.g. Piaget, 1970; Pascual-Leone, 1970; Case, 1985). 

These transitions are related to changes in the way individuals operate with 

representations, moving from concrete to increasingly more abstract representations.  

In particular, Demetriou and colleagues described through their research the 

way several cognitive factors are developed and enriched in respect to the age of the 

individuals. Specifically, the Qualitative-Analytic System enables students from the 

age of 9-10 years old to transfer experiences and knowledge from familiar contexts to 

unfamiliar contexts based on the identification of similarities and differences. Later 

on, at the age of 11-12 years this ability becomes more flexible (Demetriou, 

Spanoudis & Mouyi, 2008).  

The Causal-Experimental System also starts by the age of 9-10 years old to 

facilitate the testing of theories about causal relations between objects and persons, 

while at the age of 11-12 years old this system enables individuals to isolate variables 

in causal relationships (Demetriou, Spanoudis & Mouyi, 2008).  
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The Verbal-Propositional System facilitates interaction between persons, 

direct action, and organization of inference across different domains and situations; it 

is strongly interrelated with the processes of inductive and deductive reasoning 

(Demetriou, Spanoudis & Mouyi, 2007). According to Demetriou et al. (2002), the 

verbal propositional system does not indicate noticeable and stable improvement 

between the ages of 8 to 10 years old; it is rather at the age of 12 that students begin to 

develop Verbal-Propositional abilities.  

The Spatial-Imaginal System enables students of 9-10 years old to represent 

familiar persons and objects; this system is improved by the age of 11-12 years old 

where students become able to imagine non real objects (Demetriou, Spanoudis & 

Mouyi, 2008). The Spatial-Imaginal System appears to improve faster than the verbal-

propositional system, as by the age of 10-11 years old students become able to solve 

complex tasks, such as mental rotation (Demetriou at al., 2002).  

Inference is initially based on perceptual similarity (Demetriou, Spanoudis & 

Mouyi, 2008). Similarly, analogical reasoning facilitates individuals to transfer 

meaning on the basis of similarity relationships between objects and concepts 

(Demetriou, Spanoudis & Mouyi, 2008).  As far as it concerns the processes of 

inductive and deductive reasoning, Demetriou, Spanoudis and Mouyi (2007) have 

shown that both of them are improved through the ages of 6 to 12 years old. However, 

the performance of the students in inductive reasoning tasks is consistently higher 

than deductive reasoning tasks. The development of both inductive and deductive 

reasoning is influenced by processing efficiency, working memory and information 

integration. Therefore, deductive reasoning seems to require more support from the 

various processes. Inductive reasoning develops from the age of 6 to the age of 12 

years and proceeds from abilities for identifying patterns and formulating 

generalizations on the basis of a single dimension or relation to handling hidden or 

implied relations that require the combination of information available to the senses 

with information stored in long-term memory. At the last level, inductive reasoning is 

based on theoretical supposition where multiple parameters and relations can be 

simultaneously considered and manipulated and generalizations can be extracted. 

Deductive reasoning is associated with awareness of cognitive processes and 

cognitive control which enable individuals to search systematically for the relations 

suggested by premises of an argument and their relations. 
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Working memory is the cognitive construct related to the maintenance of 

information in an active state while that information or other information is being 

processed (Tolar rt al., 2009). As Demetriou at al. (2002) suggested, the more 

demanding the operations to be performed on information are, the less capacity 

available for storing information. For this reason, working memroy seems to have a 

pivotal role when students are engaged to problem solving activities. Working 

memory abilities improve as students get older and as a consequence problem-solving 

abilities are imporved systematically with age. However, the exact capacity available 

at succesive phases of development cannot be specified; what matters is the nature of 

information and the operational demands of the problem associated with what can be 

stored (Demetriou at al., 2002).  

The results of the current study have shown that fourth graders were based on 

their abilities regarding the Qualitative-Analytic System and Analogical Reasoning in 

order to construct inductive inferences guided by similarity-difference relations. For 

example, this kind of abilities assisted students in identifying the similarities between 

the terms of a numerical pattern in order to figure out its next term. Inductive 

reasoning abilities of the first level also might have facilitated the identification of 

patterns. In a similar vein, Radford (2008) argued that generalization processes in the 

early grades encompass grasping commonalities among particular elements in a 

pattern structure.  

Students in higher grades appear to rely in their improved Verbal-

Propositional abilities for better organizing their inferences, probably in the modeling 

tasks where they had to interpret the verbal problem, identify its mathematical content 

and construct plausible inferences. Moreover, older students have improved abilities 

in the Spatial-Imaginal System and the corresponding Spatial Visualization process. 

This result is in accordance with previous studies that showed the relation of 

mathematical achievement to students’ spatial ability (e.g. Battista, 1994; Brown and 

Presmeg, 1993). In the case of algebra, the identification and analysis of figural 

patterns, requires noticing the relationship between the way the figures in the pattern 

are placed structurally and discovering the association between the spatial structure 

and the corresponding numerical structure of each figure (Mulligan and Mitchelmore, 

2009). In addition, algebraic thinking involves the ability to represent functional 

relations graphically and to manipulate visual-spatial representations mentally (Tolar 
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et al., 2009). Consistently, the results of the study index spatial visualization abilities 

as an important factor for solving algebraic tasks.  

Deductive Reasoning appears as a significant predictor of algebraic thinking 

only in Grade 7. One reasonable explanation for this result might be the fact that 

deductive reasoning is strongly associated to the notion of proof (e.g. Stylianides & 

Stylianides, 2008). According to Blanton and Kaput (2005) activities that are included 

in all of the three factors of algebraic thinking and mainly in the factor of “Modeling” 

involve proving procedures such as using generalizations to build other 

generalizations, generalizing mathematical processes, testing conjectures, and 

justifying. Hence, students’ abilities in Grade 7 for solving the modeling tasks is 

attributed to the fact that at this age, deductive reasoning has more been developed 

comparing to the other age groups. For example, the seventh graders were able to 

successfully solve the item “Determining if the sum of two odd numbers is an even or 

an odd number” which entailed proving procedures.   

The Causal-Experimental System appears to remain stable regarding its effect 

in algebraic thinking along the four age-groups. A possible reason for this result might 

be the fact that the Causal-Experimental system refers to overt and covert causal 

relationships and encloses mental operations such as trial and error, combinatorial 

hypothesis, systematic experimentation and modeling construction (Demetriou, 

Spanoudis & Shayer, 2015). These mental operations are in alignment with the 

requirements of the tasks on all the factors of algebraic thinking (Generalized 

arithmetic, Functional thinking, Modeling as a domain for expressing and formalizing 

generalizations) as well as the strategies that students applied in order to be able to 

complete these tasks in each of the four classes of algebraic thinking abilities that 

were described in the previous section. 

This study confirms that Serial Reasoning is an important predictor of 

algebraic thinking in all age groups. Serial reasoning shares common features with 

inductive reasoning. This ability has been considered by related literature as crucial 

for the engagement in activities of determining pattern rules, recognizing the part that 

is repeated, and finding not observable terms (e.g. Warren & Cooper, 2008). Palla et 

al. (2012) also suggest that mathematical induction is applied in situations where a 

geometrical pattern is translated into an algebraic expression. Ayalon and Even (2013) 
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emphasized the role of inductive reasoning when students investigate algebraic 

expressions. Martinez and Pedemonte (2014) have shown that a prerequisite for 

linking inductive argumentation in arithmetic and deductive proof in algebra is the co-

existence of arithmetic and algebra for supporting the arguments developed within an 

argumentation. All these literature reports indicate the important role of inductive 

reasoning for completing successfully tasks that belong to all of the three factors of 

algebraic thinking. The results of the current study seem to be aligned with the 

recommendations of available literature.  

 The fact that, in the current study, Working Memory seems to stimulate 

students’ algebraic thinking in all grades might be explained by the fact that, as 

reported above, individual differences in learning at this age-span are sensitive to 

differences regarding processing and representational efficiency. Specifically, in 

algebraic problems students are called to handle multiple forms of mathematical 

expressions, such as, objects with features or a set of procedures, and switch between 

them as appropriate; this process requires students to retrieve algorithms and facts 

from long-term memory (Tolar et al., 2009). 

 

The relationship between significant cognitive factors and algebraic 

thinking in all grades. The findings of the study indicated that there are three 

important abilities that seem to be common at all of the four age groups and are 

associated to individuals’ performance in algebraic thinking: (i) the Causal-

Experimental System (ii) Serial Reasoning and (iii) Working Memory. In order to 

better describe the nature of this relationship, this study used Structural Equation 

Modeling Analysis. The results of the analysis suggest that the three cognitive factors 

predict algebraic thinking. An important contribution of the study is the extraction of 

a thoroughgoing model where algebraic thinking is a multidimensional factor that is 

synthesized by the factors of “Generalized Arithmetic”, “Functional Thinking” and 

“Modeling as a domain for expressing and formalizing generalizations”. This factor is 

predicted by the Causal-Experimental system, Serial Reasoning and Working 

memory.  

Serial Reasoning involves the generation of possible relationships and 

structure between a set of objects. Based on this reasoning process, a general rule is 
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extracted and used for identifying any object of the set. The Causal-Experimental 

System refers to overt and covert causal relationships and encloses mental operations 

such as trial and error, combinatorial hypothesis, systematic experimentation, and 

model construction. Working Memory refers to the maximum amount of information 

and mental acts that the mind can operate concurrently in an efficient way. These 

three cognitive factors seem to act simultaneously and enable students to extract 

generalizations when they encounter algebraic problems.  

According to the results, students’ abilities for generalization is predicted by 

their abilities for observing relationships in series of objects, and then making 

plausible hypotheses about the rules that guide these relationships. Emerging 

processes in the Causal-Experimental System permit students to test their hypotheses 

through experimentation and examine the correspondence among the results of their 

experiment and their initial hypothesis. The construction of a model among the initial 

hypothesis and the experiment results leads to the establishment of a final 

generalization about the observed relationship and its justification.  

Working memory plays an important role in enabling the Serial Reasoning and 

Causal-Experimental procedures to act simultaneously. As suggested from studies in 

the field of psychology, working memory’ role is pivotal for determining the 

complexity of the relations that the mind examines and the problem-solving tasks that 

may be implemented; working memory involves not only the storage of information 

but also the orientation to the currently active mental goal and the integration of 

information across different models of representation (Demetriou, Spanoudis & 

Shayer, 2015). 

 

What Kind of Instructional Practices Nurture Algebraic Thinking in Elementary 

School Mathematics?   

This study focused on the question of whether it would be possible to engineer 

an instructional intervention that could have positive impact on the three factors of 

algebraic thinking. Answering this question is important since prior interventions in 

this area tended to (i) focus on one aspect of algebraic thinking thereby producing 

knowledge that could not alone promote the overall development and enrichment of 

students’ algebraic thinking, (ii) extract conclusions through the comparison of one 
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type of interventionist series of lessons to the traditional series lessons. This study 

followed a different methodology. First the lessons that were designed involved all of 

the aspects of algebraic thinking. Second, two types of interventionist teaching 

experiments were designed and conducted, the “Semi-structured problem situations” 

experiment and the “Structured mathematical investigations” experiment. Both 

teaching experiments had similar objectives and characteristics in respect to the 

quality of instruction which was investigative in nature. Though, the tasks in each 

experiment had different characteristics. In the “Semi-structured problem situations”, 

the tasks represented authentic contexts from the real life and the questions used were 

exploratory. In the “Structured mathematical investigations” the tasks involved 

investigations that were aided with more assisting questions and scaffolding steps. 

The results of the study showed that the instruction with “Semi-structured 

problem situations” had better learning outcomes compared to instruction with 

“Structured mathematical investigations”, while controlling for preliminary 

differences regarding students’ algebraic thinking ability and cognitive characteristics. 

Specifically, the students who received instruction that was developed through “Semi-

structured problem situations” outperformed students who received instruction that 

was developed through “Structured mathematical investigations” in the algebraic 

thinking post-test. Nevertheless, more detailed results regarding the effect of the two 

types of teaching experiments have shown that both experiments had positive impact 

in the “Generalized arithmetic” component. What seems to have affected the overall 

outcome of the comparison between the two teaching experiments seem to be the fact 

that the students involved in the “Semi-structured problem situations” had 

significantly higher performance in the components of “Functional Thinking” and 

“Modeling as a domain for expressing and formalizing generalizations” in respect to 

the students that were involved in the “Structured mathematical investigations”. 

The tasks that were selected for both teaching experiments involved 

characteristics that according to Drijvers, Goddijn and Kindt (2011) signify whether 

an activity is algebraic in nature or not. Specifically, the tasks involved implicit or 

explicit generalization, patterns of relationships between numbers, logical reasoning 

with unknown or yet-unknown quantities, mathematical operations with variables, 

tables and graphs that represent formulas, formulas and expressions that describe 

situations in which units and quantities play a role, and processes for solving 
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problems contain steps that are based on calculation rules, but that do not necessarily 

have any meaning in the context of the problem. 

Despite the fact that these characteristics were established for the tasks 

included in both experiments, the results have shown that the experiments had 

different effects on students’ algebraic thinking.  A possible explanation regarding 

this result might be the fact that the two teaching experiments involved different tasks 

in respect to the way algebraic thinking was expected to be emerged. The “Semi-

structured problem situations” involved complex thinking to solve tasks in which 

there was not a predictable, well-tested approach explicitly suggested by the task. The 

tasks involved in the “Structured mathematical investigations” used procedures in a 

manner that deep levels of understanding of mathematical concepts and ideas were 

maintained and developed. Although students followed suggested pathways through 

the problems, the pathways tended to be broad, general procedures that had closed 

connections to the underlying conceptual ideas. While both types of tasks had high 

cognitive demands, it appears that the first type of tasks facilitated in a greater extend 

the students to achieve advanced gains in the components of “Functional thinking” 

and “Modeling as a domain for expressing and formalizing generalizations.   

Specifically, the activities that were included in the “Semi-structured 

problem situations” share common features with modelling approaches to 

mathematical problem solving. As English and Sriraman (2013) describe, 

modeling tasks offer richer learning experiences than the typical word problem 

activities where students have to record problem information with arithmetic 

quantities and operations through a one- or two-step process. These word 

problems are usually constrained to problem-solving contexts that are 

artificially constructed in order to point to the relevant concept (Hamilton, 

2007; in English & Sriraman, 2013). In contrast, modelling tasks provide 

opportunities for children to elicit their own mathematical models as they 

analyze the problem. That is, the problems require to make sense of the 

situation so that they can mathematize it themselves in ways that are 

meaningful to them. This involves a cyclic process of interpreting information, 

selecting relevant quantities, identifying operations that may lead to new 

quantities, and creating meaningful representations (Lesh & Doerr, 2003; in 

Enlish & Sriraman, 2013). 
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The above features are reported by many researchers as important processes 

that should be integrated in young children’ algebraic thinking. As it was reported in 

the first section of this chapter, algebraic thinking in the early grades should involve 

activities where students are engaged in analyzing relationships between quantities, 

noticing structure, studying change, generalizing, problem solving, modeling, 

justifying, proving, and predicting. Modeling tasks seem to offer a supportive learning 

environment for involving all of the above processes.  

As far as it concerns the “Structured mathematical investigations”, the type of 

tasks that were included in this experiment also seem to have helped the students to 

gain some advances to their algebraic thinking controlling for their initial abilities. 

The “Structured mathematical investigations” experiment aimed in pointing students’ 

attention to the structural relationships that are involved in algebraic activities. This 

purpose was approached through more scaffolded learning experiences that promote 

emergent generalization across a range of concepts. While this kind of teaching 

experiment was found to have an equal effect to children’s abilities in “Generalized 

arithmetic” concepts comparing to “Semi-structured problem situations” experiment, 

the gains of the students regarding “Functional thinking” and “Modeling as a domain 

for expressing and formalizing generalization” were lower. 

Another interrelated reason for the aforementioned results might be the way 

cognitive skills were addressed in the teaching experiments. As reported already the 

tasks in both interventions were cognitively demanding. Both “Semi-structured 

problem situations” and “Structured mathematical investigations” involved problem-

solving processes and skills. Also, the tasks practiced core operators in the SSS such 

as processing and construction of associations between meaning and representations 

(Qualitative-Analytic system), hypothesizing and testing causal relationships (Causal-

Experimental System) and spatial processing that extends from basic information 

processing mechanisms related to speed and control of processing to spatial working 

memory and spatial reasoning (Spatial-Imaginal system). 

The fact that “Semi structured problem situations” had higher benefits in the 

components of “Functional thinking” and “Modeling” might be attributed to the fact 

that the corresponding activities triggered operators of the Verbal-Propositional 

System, such as logical exploration and coherence and the Inference System in 
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general, as in the authentic problem situations students were more intensively 

involved in testing and arguing.  

Summarizing the results from the teaching intervention program, “Structured 

mathematical investigations” tasks might be more appropriate for students of younger 

ages that need to develop an awareness of mathematical patterns and structure and 

smoothly pass from arithmetic to algebra through scaffolded learning experiences that 

are mostly focused on topics of the “Generalized arithmetic” factor and some aspects 

of the “Functional thinking” factor, such as pattern-eliciting activities. “Semi-

structured problem situations” might be more appropriate as students need to further 

apply their developed awareness of mathematical pattern and structure to other 

aspects that are related to the factors of “Functional thinking” and “Modeling as a 

domain for expressing and formalizing generalizations”.  

This suggestion is in alignment with the findings regarding the relationship 

between algebraic thinking and cognitive factors as students move from grade to 

grade. On the one hand, in the tasks of the “Structured mathematical investigations” 

experiment, the students had to look for and represent patterns across a variety of 

concepts, by mainly identifying commonalities and differences. This requirement 

might be more facilitated by the Reasoning by Analogy factor which was found to be 

an important predictor of algebraic thinking in fourth graders. On the other, the 

“Semi-structured problem situations” experiment involved tasks that required students 

to uncover the mathematical relationships in realistic situations. In most cases 

students had to spatially analyze and represent the situation and then deductively or 

inductively come to a conclusion. Thus, it seems that this kind of tasks are in a greater 

degree facilitated by the spatial abilities of the students and deductive reasoning.  

As Radford (2004) argued, “semiotic mathematical and non-mathematical” 

systems in students’ production of meaning when they encounter algebraic tasks are 

very important. In particular, Radford (2004) specified that there are three sources of 

meaning in algebraic activities; (a) the algebraic structure itself (e.g. the letter-

symbolic representations), (b) the problem context (e.g. word problems, modeling 

activities) and (c) the exterior of the problem context (e.g. social and cultural features, 

such as language, body movements, and experience). The structured mathematical 

investigation tasks seemed to have involved in a greater extent the first source where 
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semi-structured problem situation tasks involved more the second source. 

Nevertheless, as Radford declares, both sources are important in algebraic activities.  

Accordingly, the results of this study provide support to the argument that 

considering all types of meaning sources along with specific cognitive skills in the 

design of educational environments and not merely focusing on specific aspects of 

mathematical knowledge, might powerfully facilitate students’ gains in algebraic 

thinking ability. Thus we may say that the power of the intervention derives from the 

synergetic effect of the entire set of design and implementation features of the tasks 

which combined the core aspects of algebraic thinking and core practices that require 

the emergence of concrete cognitive constructs. Concluding, the types of tasks that are 

used in algebraic thinking lessons might be differentiated regarding their “semi-

structured” or “structured” character depending on the age of the individuals and the 

corresponding specific topics of learning. 

 

What is the Impact of the Interactions between the Type of Teaching Experiment 

and Students’ Cognitive Abilities on their Algebraic Thinking Ability?  

The results of the study showed that students’ individual differences in the 

three cognitive factors that are related to algebraic thinking, and their interactions 

with the type of instruction have a significant impact on the benefits from the 

instructional intervention program. This result supports several claims that were 

raised in literature regarding the impact of cognitive skills on the teaching and 

learning outcomes. The findings of this study suggest that various cognitive constructs 

interact with the type of intervention and this interaction affects the overall benefit of 

the students. Hence, it seems that the benefits of the students in both teaching 

experiments and especially in the “Semi-structured problem situations” experiment 

where the overall benefits were larger, can be accounted to the fact that they allowed 

the interaction between the content and type of the tasks with specific cognitive 

constructs, such as the Causal-Experimental System, Serial Reasoning and Working 

Memory. This result enhances the arguments made in the previous section pertaining 

the promising effect of teaching experiments which promote the involvement of 

specific cognitive constructs in the learning experience.  

 

Mari
a C

him
on

i



239 
 

Summary of the Results: Conceptualizing Algebraic Thinking as “Ways of 

Thinking” 

 Figure 5.1 summarizes the results of the current study pertaining the 

conceptualization of algebraic thinking through the identification of (i) its main 

components and (ii) its ineraction with fundamental cognitive factors and reasoning 

processes. The connection of these two parts of the study and related findings aims to 

illustrate a concrete conceptualization of algebraic thinking as “ways of thinking”. 

In the right hand side of the diagram (see Figure 5.1), the gradation of shading 

in the three factors of algebraic thinking (from light grey to black) denotes students’ 

level of abilities in each age-level. Next to the three factors, information about the 

abilities of the students along two core axes are reported: (i) the abilities for 

formulating and expressing generalizations and the nature of strategies used, and (ii) 

the type of notation used for expressing relationships and generalizations. On the left 

hand side of the diagram, the cognitive factors that were found to predict algebraic 

thinking in each age-level are presented. With bold are marked the factors that were 

found to be common in all age-levels. With italics are marked the cognitive factors 

that appear only in one age-level.  
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Figure 5.1. The components of algebraic thinking and its relation to cognitive factors.  
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Interpreting the diagram vertically. As the right hand side of the diagram 

illustrates, students’ algebraic thinking between the ages of 10 to 13 years old is 

comprised by three distinct factors. Nevertheless, students’ abilities along the two 

axes of strategies and notation are differentiated from level to level. Specifically, at 

the lower grades, students’ strategies seem to be based on arithmetical knowledge and 

computation procedures. Moving upwards, these strategies become more algebraic in 

nature, involving relational reasoning. At the upper grades, these strategies are 

enriched and enable the manipulation of generalizations as independent objects that 

are not strictly related to particular numbers or situations. Hence, these 

generalizations can be symbolized through the use of formal algebraic notation. 

As the left hand side of the diagram shows, there are three main cognitive 

factors that predict algebraic thinking in all age-levels; Serial Reasoning, the Causal-

Experimental system and Working Memory.  

Serial reasoning, which involves features of inductive reasoning, allows 

students to generate possible hypotheses about the relationships and structure between 

a set of objects. Based on this reasoning process, students make an effort for 

extracting a general rule that can be used for identifying any object of the set.  

The Causal-Experimental System refers to overt and covert causal 

relationships and encloses mental operations such as trial and error, combinatorial 

hypothesis, systematic experimentation, and model construction. These kinds of 

processes permit students to test their initial hypotheses about the observed 

relationship in a set of objects, through experimentation and examine the 

correspondence among the results of their experiment and their initial hypothesis. The 

construction of a model among the initial hypothesis and the experiment results leads 

to the establishment of a final generalization about the observed relationship and its 

justification.  

Working Memory refers to the maximum amount of information and mental 

acts that the mind can operate concurrently in an efficient way. Hence, Working 

Memory plays an important role in enabling the Serial Reasoning and Causal-

Experimental procedures to act simultaneously. As suggested from studies in the field 

of psychology, working memory’s role is pivotal for determining the complexity of 

the relations that the mind examines and the problem-solving tasks that may be 
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implemented; working memory involves not only the storage of information but also 

the orientation to the currently active mental goal and the integration of information 

across different models of representation (Demetriou, Spanoudis & Shayer, 2015). 

The interaction between Serial Reasoning, Causal-Experimental System and 

Working Memory in all grades seems to predict students’ abilities for solving 

generalization tasks. Furthermore, this interaction provides support to the argument of 

Blanton and Kaput (2008) who described the phenomenon of ‘algebrafying’ 

mathematics curriculum as an effort for nurturing classroom norms where the 

mathematical processes of argumentation, conjecture and justification occur. 

While abilities in Serial Reasoning, the Causal-Experimental System and 

Working Memory appear as crucial for developing algebraic thinking abilities, there 

are some cognitive factors that do not remain stable in all age-levels. A horizontal 

correspondence between students’ abilities in algebraic thinking and their cognitive 

abilities in each age-level might provide further insights into the reasons for observing 

differentiations in students’ performance in algebraic thinking from level to level. 

 

Interpreting the diagram horizontally. Starting from the lower levels, the 

right hand side of the diagram illustrates that fourth graders’ algebraic thinking is 

comprised by three distinct factors. Nevertheless, for the majority of the students, 

their performance in the corresponding tasks was low, indicating low abilities in each 

factor. Looking at the left hand side of the diagram, the factors that seem to predict 

algebraic thinking at this age are the Causal-Experimental System, the Qualitative-

Analytic System, Reasoning by Analogy, Serial Reasoning and Working Memory. 

These students were able to solve some generalized arithmetic tasks (e.g. solving 

equations) and some functional thinking tasks (e.g. simple numerical patterns that 

required the identification of the next term of the pattern and not the general term). 

The Qualitative-Analytic System and Analogical Reasoning which appear only in 

Grade 4 as significant predictors of algebraic thinking, seem to have facilitated 

students to construct inductive inferences guided by similarity-difference relations 

and to use strategies that they are mainly arithmetical in nature. Specifically, 

analogical reasoning is a specific type of inductive reasoning which is applied in 
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relations as such (e.g. London is to the UK what Paris is to France) (Demetriou, 

2015).  

According to Sfard and Linchevsky (1994) these strategies signify the 

beginning of thinking algebraically and a smooth transition between arithmetic and 

algebra. As it was reported in Chapter II, Sfard and Linchevsky (1994) described the 

development of algebraic thinking and understanding as a sequence of advanced 

transitions from an operational perspective to a relational perspective. English and 

Sharry (1996), reflecting on Sfard and Linchevsky’s study, argued that the mental 

source that triggers this transition is analogical reasoning. It seems that in the case of 

fourth graders, their strategies and manipulation of notation reflect this transitional 

stage, where Reasoning by Analogy and Qualitative-Analytic play a central role. 

Moving to the second age-level, the diagram illustrates that students in Grades 

5 and 6 had average performance in the generalized arithmetic and functional thinking 

tasks and low performance in the modeling tasks. Similar to Grade 4, the Causal-

Experimental System, Serial reasoning and Working Memory predict algebraic 

thinking for both Grades 5 and 6. However, in these age-levels, the Spatial-Imaginal 

System and the corresponding Spatial Visualization process, and the Verbal-

Propositional System, seem to be empowered and added as significant predictors of 

algebraic thinking. As students get older, their abilities in the Spatial-Imaginal System 

are improved, resulting to a higher performance in functional thinking tasks, such as 

the identification and analysis of figural patterns which require noticing the 

relationship between the ways the figures in the pattern are placed structurally and 

discovering the association between the spatial structure and the corresponding 

numerical structure of each figure. Spatial Visualization abilities also seem to enable 

students in manipulating visual-spatial representations mentally, such as graphs (Tolar 

et al., 2009). This result also aligns with Mason and Sutherland’s (2002) argument 

about important features of algebraic thinking; specifically, their first feature referred 

to algebraic thinking as formulating, transforming and understanding generalizations, 

not only in numerical contexts but also in spatial relations.  

Students in Grade 5 and 6 also appeared to rely in their improved Verbal-

Propositional abilities for better organizing and extracting inferences, probably in the 

functional thinking tasks where they managed to form verbal expressions for 
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interpreting or representing a functional relationship. The Verbal-Propositional 

abilities are also important in the modeling tasks where students had to interpret the 

verbal problem, identify its mathematical content, and construct plausible inferences. 

According to Demetriou, Spanoudis and Mouyi (2008), verbal-propositional abilities 

encompass the identification of truth in information, abstraction of information in 

goal-relevant ways, differentiation of the contextual from the formal elements, 

elimination of biases from inferential process, and establishing validity of inference. 

This system, enables students to move from the particular to the general and from the 

general to the particular in flexible ways, and work out concepts that are not any more 

dependent on particular numbers but on abstract objects.  

Students in Grades 5 and 6 seemed to be more able in treating numerical 

expressions as relationships rather than as directions for performing calculations. 

Moreover, these students solved more successfully some of the items that involved 

correspondence and co-variational relationships as well as finding the nth term in 

numerical patterns, indicating an advanced ability for thinking relationally rather than 

thinking with specific numbers. However, arithmetical strategies were also apparent. 

Some students focused on the numerical aspect of the terms and their strategies relied 

to counting or “Guess and check”. All of these features in the behavior of fifth and 

sixth grade students reflect a more advanced stage in the process of moving form 

operational to structural perspectives of thinking, where generalization is expressed 

through various ways and, as Kieran (2011) and Blanton and Kaput (2005) have 

highlighted, the mathematical processes of argumentation, conjecture and justification 

begin to have a pivotal role when students manipulate and solve algebraic tasks.  

Students in Grade 7 seem to have higher abilities in all factors of algebraic 

thinking. Their strategies involved producing relational reasoning, not only in the 

context of patterns or co-variational relationships but also in contexts where a 

regularity is presented through a realistic situation or phenomenon. Students at this 

age-group also seemed to have developed a sense of the meaning of symbols as they 

managed to solve the modeling task in the algebraic thinking test that required the 

development of a symbolic expression for modeling a function table. Deductive 

Reasoning appears for the first time as a significant predictor of algebraic thinking in 

Grade 7. Deductive reasoning is the type of inference where students transfer meaning 

from general premises to specific premises (Demetriou, 2015) and enables individuals 
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to search systematically for and envision the relations suggested by the premises of an 

argument and their relations. According to Demetriou, Spanoudis, and Mouyi (2011), 

deductive reasoning as such does not appear before representations are differentiated 

from each other and expressed into natural language. In the perspective of the current 

study, deductive reasoning seems to have facilitated students in following proving 

procedures such as using generalizations to build other generalizations, generalizing 

mathematical processes, testing conjectures, and justifying, and also in expressing 

their inferences with multiple representations, involving formal algebraic notation. 

Hence, students’ abilities in Grade 7 for solving the modeling tasks can be attributed 

to the fact that at this age group, the factor of deductive reasoning has been developed 

in a larger extent compared to the other age groups. 

 

Implications. These results provide empirical evidence supporting the 

arguments from previous literature (e.g. Drijvers, Coddijn & Kindt, 2011; Kaput, 

2008; Mason, Graham & Johnston-Wilder, 2005; Radford, 2008) about the 

multidimensional nature of algebraic thinking and that algebraic thinking ‘is not all 

about literal symbols but rather is about ways of thinking’ (Kieran, 2011, p.591). The 

results enlighten the types and features of these ways of thinking by indicating 

specific cognitive factors and reasoning processes that flow through varying degrees 

through the three dimensions of algebraic thinking in each age level. Moreover, the 

results indicate that these ways of thinking are not static and stable but they 

progressively become more abstract and flexible.  

This study also indicates that in lower age-levels, algebraic thinking is not 

apparent through the use of precise symbolic language. As Radford (2000) suggested, 

algebraic thinking entails efforts of the individual to represent generality in certain 

ways; the expression of generalizations is a process with semiotic and symbolic 

nature, where social-linguistic elements of the culture of the individual are inducted to 

mathematical activities. Kieran (2007) also argued that students are facilitated through 

a variety of mathematical representations to search for and identify structures, such as 

graphs and tables. The results of the current study reflect this idea, since they provide 

evidence of the way students move from formulating and expressing generalizations 

with means that are not strictly formal to the use of letter-symbolic representations 
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CHAPTER VI 

  

Conclusions 

 

Prior research that has been successfully enlighten the notion of algebraic 

thinking focused primarily on secondary school students’ algebraic thinking or most 

often on one of its multiple aspects. This fact hindered the building of foundations for 

effectively integrating algebraic thinking in earlier levels of schooling. This study 

explored a different approach to the issue of describing in detail the notion of 

algebraic thinking in the elementary grades. In particular, the theoretical model 

proposed by Kaput (2008) about the core aspects of algebraic thinking was for the 

first time empirically tested. This study confirms, based on empirical data, that 

algebraic thinking can be described using a combination of three distinct but 

interrelated factors: (i) “Generalized arithmetic”, (ii) Functional thinking”, and (iii) 

“Modeling as a domain for expressing and formalizing generalizations”. The findings 

which derived from applying multiple methods of statistical analysis in data gathered 

from fourth, fifth, sixth and seventh graders, offered good evidence for the presence 

of the three basic components in students’ algebraic thinking ability, thus creating the 

basis for examining the potential applicability of this model in other age groups, either 

younger or older. 

The tasks in the algebraic thinking test study were carefully selected so as to 

unfold each of the three factors in the model and to measure algebraic thinking in four 

different grades of school education. The wide use of algebraic notation in the tasks 

was avoided in purpose, since Kaput highlighted that algebraic thinking involves 

making generalizations and expressing those generalizations in forms that are not 

necessarily symbolic but increasingly become more conventional. Carraher and 

Schliemann (2014) also stated that algebraic thinking in the early grades can take 

place in the absence of algebraic notation. Similarly, Radford (2014) argued that what 

allowed researchers to discuss about the possibility of developing algebraic thinking 

in the early grades is the rejection of the idea that notations are a manifestation of 

algebraic thinking. Therefore, the majority of the tasks involved verbal expressions, 
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diagrams, drawings or graphs rather than symbols. Moreover, these tasks did not 

require the representation of an extracted generalization with symbols but in one of 

the aforementioned forms.  

Based on the findings regarding the components of algebraic thinking, this 

study also described four classes of students which reflect broad portraits of students’ 

abilities and skills that can be used to inform our understanding of the way students 

develop generalization abilities and move from arithmetical to algebraic ways of 

thinking. In contrast to existing theoretical approaches which focused on designating 

border lines in between algebra and arithmetic, this study supports that there are not 

explicit compounds between them since the factor of “Generalized arithmetic” offers 

students the opportunity to see arithmetic in algebra and algebra in arithmetic. 

Particularly, the results indicated that some students attended the “Generalized 

arithmetic” tasks and even some of the “Functional thinking” tasks through the 

application of arithmetical strategies such as counting and guess and check. 

Nonetheless, students illustrated an awareness of the structure in the tasks. This is 

exactly the level where arithmetic and algebra co-exist; arithmetical and algebraic 

modes of thinking come into an interplay and assist students to progressively move to 

more abstract and advanced forms of thinking. This level reflects Subramaniam and 

Banerjee’s (2011) emphasis on the need for viewing arithmetic with ‘algebra eyes’. 

Specifically, this study describes four classes of students with different levels 

of algebraic thinking abilities. Students in Class 1 hardly solved any type of algebraic 

tasks, implying a primitive level of algebraic thinking ability. Students in Class 2 

seem to be in an intermediate stage since they managed to solve the “Generalized 

arithmetic” tasks by applying arithmetical strategies. As Sfard and Linchevski (1994) 

argued, these strategies signify the beginning of thinking algebraically and a smooth 

transition between arithmetic and algebra. Students in Class 2 seem to make an effort 

for solving algebraic tasks by using as tools the knowledge and abilities they have 

developed through the strand of arithmetic.  

Students in Class 3 also used arithmetical strategies but they managed to 

attend algebraic tasks not only in the factor of “Generalized arithmetic” but also in the 

factor of “Functional thinking”.  These students were more able in treating numerical 

expressions as relationships rather than as directions for performing calculations. 
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Moreover, the students managed to solve successfully some of the items that involved 

correspondence and co-variational relationships as well as finding the nth term in 

numerical patterns. As Fujii και Stephens (2008) argued, the identification of repeated 

patterns is one of the most important indicators of students’ ability for reasoning 

relationally rather than thinking with specific numbers. Mulligan and Mitchelmore 

(2009) also supported that when students are able to extend either a numerical or 

geometric sequence, they indicate a structural awareness of the way the numbers or 

the figures in the pattern are placed. 

Students in Class 4 had high abilities in the items of the factors “Generalized 

arithmetic” and “Functional thinking” and average abilities in the items of the factor 

“Modeling as a domain for expressing and formalizing generalizations”. These 

students seem to have developed abilities for producing relational reasoning, not only 

in the context of patterns or co-variational relationships but also in contexts where a 

regularity is presented through a realistic situation or phenomenon. Moreover, these 

students were able to manipulate and /or translate representations of one form to 

another as well as to select the appropriate model for representing a complex problem 

(e.g. symbolic expression, table, and graph).  

The results of the study show that the majority of the students in Class 1 came 

from Grade 4. The majority of fifth and sixth graders were categorized in either 

Classes 2 or 3. The majority of the students in Class 4 came from Grade 7. These 

results indicate that the abilities of the students in each class are not age independent. 

Consequently, students’ algebraic thinking cannot be independent regarding their 

learning experiences or the cognitive skills that characterize each age-group.  

Analyses pertaining the existence of a hierarchical trend in the way the 

components of algebraic thinking develop indicated that students are more successful 

first in doing the generalized arithmetic tasks and later on in doing the functional 

thinking tasks. Students were only able to deal with the modeling tasks once they 

have been successful in the generalized arithmetic and functional thinking tasks. 

Thus, this study indicates that, for students from Grades 4, 5, 6 and 7, the 

development of algebraic thinking progresses from generalized arithmetic, to 

functional thinking, to modeling. This analysis specifies previous descriptions from 

available literature which supported that the development of algebraic thinking is a 
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process that evolves from thinking with the specifics to thinking abstractly, from 

thinking with fix-values (unknowns) to thinking about quantities that vary (variables) 

(e.g. Kuchemann, 1981; Mason, 1989; Sfard & Linchevski, 1994; Thomas & Tall, 

2001). Along this developmental process, the meaning and use of notation also alters, 

from understanding and using notation through verbal expression, diagrams or graphs 

to the use of formal symbols for representing relationships. According to Arcavi 

(2005), this ability is extended in the middle school in order students to be able to 

apply syntactic rules for solving equations and then understanding the different role 

that the same symbol might take in an equation. 

This study contributed to theory about the core aspects of algebraic thinking 

by utilizing research from mathematics education and psychology. In particular, this 

study proposes and exemplifies a model that aims to cast light on the cognitive 

constructs of the individuals that affect their algebraic thinking ability. Using 

Demetriou and colleagues’ (2002, 2011, 2015) overarching theory about the 

architecture and development of the mind as a basis for describing mental action, this 

study investigated the relationship between algebraic thinking and several cognitive 

factors and reasoning processes. The results indicated that the relationship between 

algebraic thinking and cognitive factors changes from age to age. Along the transition 

of the students from grade to grade, some of the factors appear or disappear in the 

relationship and some of them remain stable in all age-groups. This analysis can be 

used to inform our understanding of when students are expected to overcome innate 

constraints related to their algebraic thinking ability. 

The findings of the study suggest that the algebraic thinking ability of the 

students in Grade 4 is predicted by the Causal-Experimental System, the Qualitative-

Analytic System, Reasoning by Analogy, Serial Reasoning and Working Memory. 

The algebraic thinking ability of students in both Grades 5 and 6 is predicted by the 

Spatial-Imaginal System, the Causal-Experimental System, the Verbal-Propositional 

System, Spatial Visualization, Serial reasoning and Working memory. The results 

regarding Grade 7 showed that all the factors that predict fifth and sixth graders’ 

algebraic thinking continue to be significant in Grade 7. Nevertheless, the factor of 

Deductive Reasoning also appears in Grade 7 as a significant predictor of students’ 

algebraic thinking. These findings are in line with past and recent research in 

cognitive psychology which aims to explain the important role of various cognitive 
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factors in different types of cognitive activity and also the educational behavior of 

individuals. As in cognitive psychology, the relationship of algebraic thinking with 

cognitive factors changes as soon as students move from Grade 4 to Grade 5 and then 

from Grade 6 to Grade 7 (e.g. Piaget, 1970; Pascual-Leone, 1970; Case, 1985). These 

transitions denote changes in the way individuals operate with representations, 

moving from concrete to increasingly more abstract representations.  

The fact that processes in the Qualitative-Analytic System and Reasoning by 

analogy appear to influence fourth graders algebraic thinking might explain the 

abilities of these students to manipulate and successfully solve many generalized 

arithmetic tasks and simple patterns, as these cognitive factors enable the 

identification of similarities and differences between several structures in a set.  

In a similar vein with the results of psychological studies (e.g. Demetriou, 

Spanoudis and Mouyi, 2008), students in Grades 5 and 6 appeared to have improved 

Verbal-Propositional and Spatial-Imaginal skills; these abilities might explain their 

successful manipulation of tasks that involved proving procedures, such as the items 

involving operations with odd and even numbers, and tasks that involved the analysis 

of spatial structures, such as geometrical patterns and co-variation relationships that 

were represented with graphs. 

The fact that deductive reasoning appears as a significant factor of seventh 

graders’ algebraic thinking is also in alignment with previous evidence from 

psychological studies (e.g. Demetriou et al, 2002), which indicated that this process is 

enriched as students get older. The advanced skills of seventh graders in deductive 

reasoning might have facilitated their higher performance in algebraic tasks that 

required the application of general methods in order to reach a viable conclusion in a 

specific situation (e.g., the comparison of sales offers).   

The findings of the study indicated that the Causal-Experimental System, 

Serial reasoning and Working Memory appear in the relationship of algebraic 

thinking with cognitive factors in all age-groups. For this reason, their relationship 

was further examined through Structural Equation Modeling analyses. The model that 

was extracted from these analyses suggests that the Causal-Experimental System, 

Serial Reasoning and Working Memory predict algebraic thinking abilities. Thus, the 

proposed model of algebraic thinking offers insights into the prior-unclear 
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relationship between algebraic thinking and specific cognitive constructs. According 

to the model, algebraic thinking is a multidimensional concept that is synthesized by 

the factors of “Generalized Arithmetic”, “Functional Thinking” and “Modeling as a 

domain for expressing and formalizing generalizations”. This factor is associated with 

the operations of the Causal-Experimental system which belongs to the Specialized 

Structural Systems, the Serial Reasoning which belongs to the Inference System and 

Working Memory which belongs to the Representational Capacity System.  

Serial reasoning shares common features with inductive reasoning. At initial 

stages, this ability enables students to identify patterns and formulate generalizations 

on the basis of a single dimension or relation. In more advanced levels, this ability 

facilitates the formulations of generalizations in more complex patterns. Similarly, 

this ability has been considered by related literature as crucial for the engagement of 

the students in activities for determining pattern rules, recognizing the part that is 

repeated, and finding not observable terms (e.g. Ellis, 2007; Rivera & Becker, 2008; 

Warren & Cooper, 2008).  

The Causal-Experimental System seems to predict algebraic thinking since it 

refers to overt and covert causal relationships and encloses mental operations such as 

trial and error, combinatorial hypothesis, systematic experimentation and modeling 

construction (Demetriou, Spanoudis & Shayer, 2015). According to the results, 

students’ abilities for generalization is predicted by their abilities for observing 

relationships in series of objects through Serial Reasoning processes, and then making 

plausible hypotheses about the rules that guide these relationships. Emerging 

processes in the Causal-Experimental System permit students to test their hypotheses 

through experimentation and examine the correspondence among the results of their 

experiment and their initial hypothesis. The construction of a model among the initial 

hypothesis and the experiment results leads to the establishment of a final 

generalization about the observed relationship and its justification.  

Working memory plays an important role in enabling the Serial Reasoning and 

Causal-Experimental procedures to act simultaneously. This cognitive construct is 

related to the maintenance of information in an active state while that information or 

other information is being processed (Tolar et al., 2009). As Demetriou at al. (2002) 

suggested, the more demanding the operations to be performed on information are, the 
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less capacity available for storing information. For this reason, working memory 

seems to have a pivotal role when students are engaged to problem solving activities. 

Specifically, in algebraic problems students are called to handle multiple forms of 

mathematical expressions, such as, objects with features or a set of procedures, and 

switch between them accordingly (Tolar et al., 2009). 

Based on the above results, this study explored two approaches to the issue of 

impacting positively on fifth grade students’ algebraic thinking ability; two 

interventions with ten 80-minutes lessons, the “Semi-structured problem situations” 

and the “Structured mathematical investigations”, were examined in respect to their 

effectiveness. Both interventions involved all of the aspects of algebraic thinking and 

had similar objectives and characteristics in respect to the quality of instruction. The 

interventions differed in respect to characteristics of the tasks that were used. In the 

first intervention, the tasks represented contexts from real life and the questions used 

were more exploratory. In the second intervention, the tasks involved mathematical 

investigations that were aided with more assisting questions and scaffolding steps. 

The findings, which derived from the analysis of pre-test and post-test data, offered 

good evidence for the positive impact of both interventions on students’ algebraic 

thinking in the particular context of the classes . However, the results showed that the 

instruction with “Semi-structured problem situations” had better learning outcomes 

compared to instruction with “Structured mathematical investigations”, while 

controlling for preliminary differences regarding students’ algebraic thinking ability 

and cognitive characteristics. Specifically, the students who received instruction 

through “Semi-structured problem situations” outperformed students who received 

instruction through “Structured mathematical investigations” in the algebraic thinking 

post-test. More detailed results have shown that both experiments had equal positive 

impact in the “Generalized arithmetic” component. The students involved in the 

“Semi-structured problem situations” experiment had significantly higher 

performance in the components of “Functional Thinking” and “Modeling as a domain 

for expressing and formalizing generalizations” comparing to the students that were 

involved in the “Structured mathematical investigations” experiment.  

As it appears, the activities that were included in the “Semi-structured problem 

situations”, which share common features with modeling approaches to mathematical 

problem solving provided students with opportunities to elicit their own mathematical 
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models as they analyzed real-life problem situations. These problems required to 

interpret the problem information, select relevant quantities, identify operations that 

may lead to new quantities, and create meaningful representations. Thus, this kind of 

tasks seem to offer a supportive learning environment for involving important 

algebraic thinking aspects, such as analyzing relationships between quantities, 

noticing structure, studying change, generalizing, problem solving, modeling, 

justifying, proving, and predicting. These processes remind of Blanton and Kaput’s 

(2008) description of the phenomenon of ‘algebrafying’ mathematics curriculum as 

efforts for nurturing classroom norms where the mathematical processes of 

argumentation, conjecture and justification occur.  

The “Structured mathematical investigations” seem to have helped the 

students to gain some advances to their algebraic thinking controlling for their initial 

abilities. The “Structured mathematical investigations” experiment aimed in pointing 

students’ attention to the structural relationships that are involved in algebraic 

activities. This purpose was approached through more scaffolded learning experiences 

that promote emergent generalization across a range of concepts. While this kind of 

teaching experiment was found to have an equal effect to children’s abilities in 

“Generalized arithmetic” concepts comparing to “Semi-structured problem situations” 

experiment, the gains of the students regarding “Functional thinking” and ‘Modeling 

as a domain for expressing and formalizing generalization” were lower.  

Taking into consideration the results of both interventions, the “Structured 

mathematical investigations” tasks might be more appropriate for students of younger 

ages that need to develop an awareness of mathematical patterns and structure and 

start to develop algebraic thinking through scaffolded learning experiences that are 

mostly focused on topics of the “Generalized arithmetic” factor and some aspects of 

the “Functional thinking” factor, such as pattern-eliciting activities. “Semi-structured 

problem situations” might be more appropriate as students need to further apply their 

developed awareness of mathematical pattern and structure to other aspects that are 

related to the factors of “Functional thinking” and “Modeling as a domain for 

expressing and formalizing generalizations”. Concluding, the types of tasks that are 

used in algebraic thinking lessons might be differentiated regarding their “semi-

structured” or “structured” character depending on the age of the individuals, the 
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corresponding specific topics of learning or even the way that matches students’ style 

of learning. 

The results of the study showed that students’ individual differences in the 

three cognitive factors that are related to algebraic thinking (Causal-experimental 

system, Serial Reasoning, Working Memory), and their interactions with the type of 

instruction had a significant impact on the benefits from the instructional intervention 

program. This result supports the argument that teaching experiments which promote 

the involvement of specific cognitive constructs in the learning experience might have 

positive effect on students’ algebraic thinking. Further, the results demonstrate that 

algebraic thinking competence is associated with approaches that also enable the 

development of competence in specific cognitive constructs. 

Concluding, a major contribution of this study is the description of a broad 

portrait of students’ emerging algebraic thinking abilities which dynamically interact 

with students’ emerging cognitive skills as these are defined by cognitive factors that 

reflect three systems of mental action - the Specialized Structural Systems, the 

Inferential System and the Hypercognitive System. Therefore, this study 

conceptualizes algebraic thinking, through concrete paradigms and descriptions 

extracted form empirical data as “ways of thinking”. This conceptualization can be 

used in order to inform educators’ understanding of the approximate ages at which 

students may be able to master different forms of algebraic thinking and cognitive 

skills that are essential to their engagement with algebraic tasks. In addition, the two 

teaching experiments developed in the perspective of these results, offer useful 

insights into the way different forms of algebraic thinking and cognitive requirements 

necessary for the development of algebraic thinking might be cultivated in school 

mathematics classroom. 

 

Theoretical, Methodological and Practical Contributions of the Study 

This study offers insights into the notion of algebraic thinking by extending 

previous theoretical frameworks in order to describe not only the core components of 

algebraic thinking but also their relationship to specific cognitive constructs. For the 

first time, a study approached Kaput’s theoretical framework from an empirical 

perspective and verified its content and structure. Moreover, this analysis refers to the 
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higher grades of elementary school and first grade of secondary school, establishing a 

basis for understanding in what ways algebraic thinking changes as students move 

from the elementary to the secondary school. From a theoretical standpoint, this study 

described in detail the theoretical foundations of algebraic thinking in respect to its 

nature and content and its relation to various cognitive factors and reasoning 

processes, for every age group in separation. This analysis reflects upon a timeless 

enquiry in mathematics education pertaining the relationship between arithmetic and 

algebra and also declares the role of algebraic notation in the process of developing 

students’ algebraic thinking.  

From a methodological standpoint, this study offers a tool for measuring 

students’ algebraic thinking for Grades 4, 5, 6 and 7. The algebraic thinking test that 

was designed and used in this study clarifies the tasks which can be used in order to 

describe students’ abilities in the three factors of algebraic thinking. Taking into 

consideration the fact that the tool refers to a range of ages, the tasks were carefully 

selected in order to avoid the need for involving algebraic notation and requiring the 

use of algebraic notation for representing relationships, equations and formulas. In 

contrast, the test makes use of a variety of representations, such as verbal expressions, 

tables, figural representations, graphs and diagrams. The test includes both open-

ended questions and multiple choice tasks.  

From a practical standpoint, the theoretical model of the study acknowledges 

researchers, educators and policy makers about the basic components of algebraic 

thinking, thus serving as a tool for integrating algebraic thinking in a viable way in 

mathematics curricula and instructional programs. Moreover, the model of algebraic 

thinking and the test of algebraic thinking represent a comprehensive set of tasks that 

can be used as a guide for further designing and implementing teaching-related 

algebraic tasks and explore further their effectiveness through experimental studies 

that investigate teachers’ training and preparation programs.  

This study also offered insights into the often-problematic relationship 

between theory on fundamental mathematical concepts and the practical work of 

mathematics teaching and learning. Specifically, it contributes to understanding of the 

way theoretical ideas on the mathematics content knowledge can be used to design 

appropriate instructional programs. In this case, the results pertaining the structure 
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and components of algebraic thinking were used in order to design an instructional 

program that covers all aspects of algebraic thinking for students in Grade 5. In 

addition, the program took into consideration the need for designing mathematical 

activities that promise to promote the involvement of specific cognitive skills of the 

students during mathematics instruction. Specifically, the instructional program 

proposes conditions that increase the need for using specific cognitive skills and 

reasoning processes, such as causal-experimental contexts, spatial visualization and 

inductive reasoning, in order to empower the developmental progression in students’ 

algebraic thinking.  

Following this methodology, as well as the results of the current research, 

similar instructional programs can be designed with the purpose of further enhancing 

students algebraic thinking either in Grades 4, 6 or 7. The model of algebraic thinking 

as well as the cognitive factors that appear to predict students’ abilities in each grade, 

can potentially guide the development of appropriate tasks and corresponding lessons 

plans. In this perspective, algebraic thinking can be integrated in students’ 

mathematical experiences in a viable way which corresponds to their specific needs 

and capabilities, depending on their age. 

 

Limitations of the Study 

To facilitate the exploration of the notion of algebraic thinking through 

identifying its main components and its association with cognitive factors, research 

was based on quantitative data and analyses. The fact that no qualitative data were 

collected resulted in findings that are not supported by detailed information about 

students’ common errors and thinking while solving algebraic tasks.    

To explore the notion of algebraic thinking, a test was constructed which 

involved multiple-choice questions and open-ended questions. Moreover, the 

Specialized Structural Systems test, the Deductive Reasoning test and The Naglieri 

Non-Verbal Ability test were all multiple-choice tests. The scoring and analysis 

undertaken highlighted some of the limitations of using multiple-choice questions, 

since this format assist students to correctly answer a question despite the fact that 

they might not have acquired the knowledge that the question is designed to capture. 
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Moreover, with this format is not possible to trace students’ reasoning in answering 

these questions. 

To investigate the possibility of empowering students’ algebraic thinking 

through promising instructional practices, two teaching experiments were conducted 

and compared. The teaching experiments followed specific theoretical backgrounds 

regarding their characteristics and the design of the tasks involved. Inevitably, this 

fact imposes constraints to the study, the most important that other significant theories 

and models in respect to mathematics instruction were not taken into consideration. 

For this reason, the outcomes of the intervention program are strictly interpreted on 

the basis of the specific design decisions that were taken.  

 

Implications for Further Research 

This study proposes a model which clarifies the basic components of algebraic 

thinking and important cognitive factors that interact with algebraic thinking. 

According to the model, algebraic thinking is a multidimensional factor that is 

synthesized by the factors of “Generalized Arithmetic”, “Functional Thinking” and 

“Modeling as a domain for expressing and formalizing generalizations”. This factor is 

associated with the Causal-Experimental system, Serial Reasoning and Working 

Memory. The sample that the study used was limited to students from Grades 4, 5, 6 

and 7. For this reason, it is important to conduct similar research studies that 

investigate students’ algebraic thinking with younger and older students. Specifically, 

it is important to investigate the way the tenets of this model apply to other algebraic 

tasks that capture students’ algebraic thinking abilities in either Grades 1-3 or Grades 

7-11.  Moreover, another direction of research can be the investigation of the way 

students’ engagement with algebraic tasks at different levels of schooling can be 

organized based on the forms of algebraic thinking that they can master and their 

corresponding cognitive skills.     

This study identified four classes which reflect groups of students with 

different abilities in algebraic thinking. The classes exemplify the tasks that students 

in each class are able to solve as well as some strategies that students applied while 

solving the algebraic thinking test. Complementary studies can be designed in order to 
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investigate students’ abilities, conceptions, strategies, common errors and difficulties 

in each class by using qualitative methods of research. All of the results in this study 

were based on quantitative data and corresponding analyses. For this reason, the 

conduction of qualitative studies will further cast light on students’ algebraic thinking 

abilities. Similar studies can also be conducted to validate the existence of these 

classes of abilities and investigate the possibility of additional classes in higher levels 

of education. 

Moreover, in the light of the proposed model of algebraic thinking, the 

development of students’ symbol sense can further be investigated and described. 

Specifically, it would be significant to depict through a longitudinal, qualitative study, 

the way different forms of notation are interpreted and used in each of the three 

factors of algebraic thinking along different ages. 

The two interventions that were designed and implemented in the context of 

the current study have shown that the corresponding lessons indeed helped fifth 

graders to develop further their algebraic thinking. In particular, the “Semi-structured 

problem situations” experiment appeared to have a more positive effect on students’ 

algebraic thinking comparing to the “Structured mathematical investigations” 

experiment. Consequently, it remains open to further examine whether this program 

will be equally effective with students that belong in other age groups, either younger 

or older. In addition, future studies can investigate the effects of other characteristics 

of the intervention, such as the mixture and use of both semi-structured problem 

situations and structured mathematical investigations in the same experiment. 
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APPENDIX I: ALGEBRAIC THINKING TEST 
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80 + 20 + 30 = 100 + 30  

          = 130 

 

 

 

1. Συμφωνείς με την πιο κάτω δήλωση; Να δικαιολογήσεις την απάντηση σου.  

Το άθροισμα δύο ζυγών αριθμών είναι πάντα μονός αριθμός. 

_____________________________________________________________________ 

_____________________________________________________________________ 

_________________________________________________________________________                                                                                                                                                 

  

(ga1) 

2. O Νικηφόρος υπολόγισε το άθροισμα 80 + 50 με τον ακόλουθο τρόπο:  

 

 

 

Να χρησιμοποιήσεις τον τρόπο του Νικηφόρου, για να υπολογίσεις το 

άθροισμα 70 + 50. 

                  

(ga2) 

3. Να παρατηρήσεις τον τρόπο με τον οποίο η Βασιλική εκτέλεσε τον 

πολλαπλασιασμό 35 Χ 22. 

 

 

 

Είναι ορθή η απάντηση της Βασιλικής; Να δικαιολογήσεις την απάντηση σου. 

_____________________________________________________________________ 

_____________________________________________________________________ 

(ga3) 

    35 

Χ  22 

    70 

+  70 

  140   

 

 

ΔΟΚΙΜΙΟ ΑΛΓΕΒΡΙΚΗΣ ΣΚΕΨΗΣ 
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4. Ένα  πιόνι μετακινήθηκε από τον αριθμό 64 στον αριθμό 72. 

 

 

 

 

 

 

 

 

 

 

 

Ποια πράξη παρουσιάζει την κίνηση του; 

(α) 64 + 8 

(β) 64 + 10 - 2  

(γ) 64 + 6 + 2 

(δ) 64 + 10 + 2 

(ga4) 

5. Για ποια τιμή του β ισχύει η ανισότητα; 

12 ˂ 3 Χ β 

(α) 2 

(β) 3 

(γ) 4 

(δ) 5 

(ga5) 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 
54 55 

56 57 58 59 60 

61 63 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 
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6. Να υπολογίσεις την αξία του Ν, ώστε να ισχύει η πιο κάτω ισότητα. 

 

(ga6) 

 

7. Το άθροισμα της μαθηματικής πρότασης    1245676 + 4535731   είναι 

ζυγός ή μονός αριθμός; Να επεξηγήσεις. 

_____________________________________________________________________ 

_____________________________________________________________________ 

_____________________________________________________________________ 

(ga7) 

 

8. Αν   γνωρίσεις ότι         +       = 4 τότε,  

                                        +       + 6 = ;                                                

(ga8) 

9. Η θερμοκρασία μπορεί να μετρηθεί τόσο σε βαθμούς Κελσίου (Cο) όσο και 

σε βαθμούς Φαρενάιτ (Fο). Τα παιδιά έχουν μετατρέψει τους βαθμούς Κελσίου 

σε Φαρενάιτ και συμπλήρωσαν τον πίνακα. Ποια σχέση συνδέει τα δύο μεγέθη; 

 

 

 

 

(α) 9 Χ C = (F-32) X 5 

(β) 9 Χ F = (C-32) X 5 

(γ) 9 X C = (47 – F) X 5 

(δ) 9 X F = (32 – C) X 5 

(mod1) 

Κελσίου (Cο) Φαρενάιτ (Fο) 

25 47 

30 86 

40 104 

9 Χ 25 = (47 - 32) Χ 5 

9 Χ 30 = (86 – 32) Χ 5 

9 Χ 40 = (104 – 32) Χ 5 

 

Ν + 4 = 12 
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10. Η Λίζα κερδίζει €7 για κάθε ώρα που εργάζεται. Ποια από τις πιο κάτω 

γραφικές παραστάσεις παρουσιάζει τον συνολικό αριθμό χρημάτων που 

κερδίζει η Λίζα σε σχέση με τις ώρες εργασίας της;  

 

 

 

 

 

 

 

 

 

 

 

 

 

(ft1) 

 

11. Αν το μοτίβο 3, 6, 9, 12   συνεχιστεί, ποιος από τους αριθμούς θα 

μπορούσε να είναι ένας από τους αριθμούς του μοτίβου; 

(α) 26 

(β) 27 

(γ) 28 

(δ) 29 

(ft2) 

ΣΥΝΟΛΙΚΟΣ ΑΡΙΘΜΟΣ ΧΡΗΜΑΤΩΝ 

ΠΟΥ ΚΕΡΔΙΖΕΙ Η ΛΙΖΑ 

Χ
Ρ

Η
Μ

Α
ΤΑ

 (
€

) 

ΧΡΟΝΟΣ ΕΡΓΑΣΙΑΣ (ΩΡΕΣ) 

Α. 
ΣΥΝΟΛΙΚΟΣ ΑΡΙΘΜΟΣ ΧΡΗΜΑΤΩΝ 

ΠΟΥ ΚΕΡΔΙΖΕΙ Η ΛΙΖΑ 

Χ
Ρ

Η
Μ

Α
ΤΑ

 (
€

) 

ΧΡΟΝΟΣ ΕΡΓΑΣΙΑΣ (ΩΡΕΣ) 

Β.  

ΣΥΝΟΛΙΚΟΣ ΑΡΙΘΜΟΣ ΧΡΗΜΑΤΩΝ 

ΠΟΥ ΚΕΡΔΙΖΕΙ Η ΛΙΖΑ 

Χ
Ρ

Η
Μ

Α
ΤΑ

 (
€

) 

ΧΡΟΝΟΣ ΕΡΓΑΣΙΑΣ (ΩΡΕΣ) 

Γ.  ΣΥΝΟΛΙΚΟΣ ΑΡΙΘΜΟΣ ΧΡΗΜΑΤΩΝ 

ΠΟΥ ΚΕΡΔΙΖΕΙ Η ΛΙΖΑ 

Χ
Ρ

Η
Μ

Α
ΤΑ

 (
€

) 

ΧΡΟΝΟΣ ΕΡΓΑΣΙΑΣ (ΩΡΕΣ) 

Δ.  
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12.  

 

 

 

 

O Ευτύχιος εφάρμοσε ένα κανόνα για να πάρει τον αριθμό στο            από τον 

αριθμό στο            . Ποιος ήταν ο κανόνας; 

 

(α) Πολλαπλασιάζω επί 1 και προσθέτω 5.  

(β) Πολλαπλασιάζω επί 2 και προσθέτω 2.  

(γ) Πολλαπλασιάζω επί 3 και αφαιρώ 1. 

(δ) Πολλαπλασιάζω επί 4 και αφαιρώ 4.                                            

(ft3) 

 

13. Να βρεις με διαφορετικούς τρόπους πόσα μικρά τετράγωνα χωράνε στο 

μεγάλο τετράγωνο. 

Ποιος είναι ο πιο σύντομος τρόπος; Να επεξηγήσεις. 

 

   

 

 

 

 

 

(mod2) 

Ο κανόνας του Ευτύχιου 

 

 
3 

 
4 

 
5 

8 

 

10 

 

12 

 

 

 

Ο κανόνας του Ευτύχιου 

Ο κανόνας του Ευτύχιου 

Ο κανόνας του Ευτύχιου 
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14. Να βάλεις σε σειρά τις πιο κάτω προσφορές αρχίζοντας από αυτήν που 

προσφέρει τη μεγαλύτερη έκπτωση:  

 

 

  

 

 

 

 

 

(mod3) 

 

15. Ο Βασίλης τοποθετεί τετράγωνα με τον ακόλουθο τρόπο: 

 

   

          Σχήμα 1          Σχήμα 2             Σχήμα 3 

 

Πόσα τετράγωνα θα υπάρχουν στο 16ο σχήμα;                             

 

 

 

 

(ft4) 

 

 

1. _________________________________________________ 

2. _________________________________________________ 

3. _________________________________________________ 

 

 Δύο στην τιμή του ενός. 

 Αγόρασε δύο και πάρε ένα δωρεάν. 

 Τρία στην τιμή του ενός. 
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16. Σε ένα θρανίο με σχήμα τραπέζιο μπορούν να καθίσουν 5 παιδιά. Αν 

ενωθούν δύο τέτοια θρανία μπορούν να καθίσουν 8 παιδιά. 

  

 

 

1 θρανίο 

 

2 θρανία 

 

 

(α) Πόσα παιδιά μπορούν να καθίσουν σε 3 θρανία; 

 

 

 

 

(β) Πόσα παιδιά μπορούν να καθίσουν σε 10 θρανία; 

 

 

 

 

 

 

 

(ft5) 
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17. Η Ιωάννα θα κάνει μάθημα ηλεκτρονικών υπολογιστών δύο φορές τη 

βδομάδα. Ποια προσφορά θα της σύστηνε να επιλέξει, ώστε να πληρώσει όσο 

το δυνατόν λιγότερα χρήματα στο τέλος του μήνα; 

 

 

 

 

 

 

 

 

(mod4) 

 

 

18. Η γραφική παράσταση δείχνει το χρόνο που πήρε στη Σταυριανή για να 

λύσει προβλήματα.  

  

 

 

 

 

Πόσο χρόνο πήρε στη Σταυριανή να λύσει 3 προβλήματα; 

 

 

(ft6) 

ΠΡΟΣΦΟΡΑ Α 

€8 για κάθε μάθημα 

 

ΠΡΟΣΦΟΡΑ Β 

 

€50 για τα 5 πρώτα μαθήματα του 

μήνα και €4 για κάθε επιπλέον 

μάθημα. 
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19. Πιο κάτω φαίνονται οι προσφορές δύο μουσικών εταιριών στο διαδίκτυο. 

Η κάθε προσφορά περιλαμβάνει 10 δωρεάν τραγούδια κάθε μήνα. 

 

 

 

 

 (α) Να συμπληρώσεις τον πίνακα.  

 

 

(β) Ποια εταιρία θα σύστηνες σε μια φίλη σου αν σκοπεύει να αγοράζει 9 

επιπλέον τραγούδια το μήνα;  

 

 

 

 

(mod5) 

 

 

 

 

Αριθμός επιπλέον τραγουδιών 

κάθε μήνα 
3 6 9 12 15 

ΜΟΝΟ ΕΠΙΤΥΧΙΕΣ / ΣΥΝΟΛΙΚΟ 

ΚΟΣΤΟΣ 
€29     

ΤΑ ΚΑΛΥΤΕΡΑ ΤΡΑΓΟΥΔΙΑ/ 

ΣΥΝΟΛΙΚΟ ΚΟΣΤΟΣ 
€36     

ΜΟΝΟ ΕΠΙΤΥΧΙΕΣ:               €20 το μήνα, €3 για κάθε επιπλέον τραγούδι.  

ΤΑ ΚΑΛΥΤΕΡΑ ΤΡΑΓΟΥΔΙΑ:   €30 το μήνα, €2 για κάθε επιπλέον τραγούδι. 
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20. Η Λίζα κατασκευάζει το πιο κάτω μοτίβο με αυτοκόλλητα. Ποια θα είναι 

η 15η μπάλα;  

 

 

 

 

 

(mod6) 

 

21. Να επιλέξεις την εξίσωση που περιγράφει το μοτίβο του πίνακα; 

 

 

 

  

(α) 16 – 7 = ψ                           

 (β) χ – 7 = ψ 

 (γ)  χ + 6 = ω                              

 (δ)  ψ + 6 = χ 

(mod7) 

 

 

 

 

 

 

Εισερχόμενα 
(χ) 

16 19 22 25 28 31 

Εξερχόμενα 
(ψ) 

9 12 15    

(α)  

(β)  

(γ)  

(δ)  
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APPENDIX II: TEACHING EXPERIMENTS  
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 2 

 
Περιεχόμενα 

 

 
Μάθημα 1: Αριθμητικά και γεωμετρικά μοτίβα                             3 

 
Μάθημα 2: Έννοια  μεταβλητής                                                      5 

 
Μάθημα 3: Μοτίβα και πράξεις                                                      7 

 
Μάθημα 4: Επίλυση απλών εξισώσεων                                        9 

 Μάθημα 5: Σχέσεις συνάρτησης  

                    Γραφικές / Συμβολικές αναπαραστάσεις                11                                                               

 
Μάθημα 6: Γραμμικές συναρτήσεις  I                                          14 

 
Μάθημα 7: Γραμμικές συναρτήσεις II                                          17 

  

Μάθημα 8: Άλγεβρα και απόδειξη - Εμβαδόν ορθογωνίου      19 

                                                                       

 
Μάθημα 9: Άλγεβρα και απόδειξη - Τετράγωνοι αριθμοί          21                            

 Μάθημα 10: Αριθμητικά και γεωμετρικά μοτίβα  

                      Μοντελοποίηση                                                        23                                                                   
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Ο Φάνης εργάζεται σε ένα εστιατόριο. Ετοιμάζει τα τραπέζια, για να υποδεχθεί τις 
κρατήσεις που έχει το εστιατόριο για το μεσημέρι.  

 

  

1 

(α) Το εστιατόριο διαθέτει τετράγωνα τραπέζια. Να υπολογίσεις τον αριθμό των 
τετράγωνων τραπεζιών που θα ενώσει ο Φάνης για την κράτηση των 16 ατόμων. 

Λίστα Κρατήσεων 

 
Όνομα              Αριθμός                
                       ατόμων                      

Γεωργίου           4  

Δημητρίου         6 

Στεφάνου           8  

Χαραλάμπους      16 

Κυριάκου           22 

Βασιλείου           24 

Mari
a C

him
on

i



 4 

(β) Το εστιατόριο διαθέτει και τραπέζια που έχουν σχήμα εξάγωνο. Ο Φάνης θα 
χρησιμοποιήσει αυτά τα τραπέζια για την κράτηση των 22 ατόμων. 

 

 

  

(γ) Ο Φάνης σκέφτεται ότι για την κράτηση των 24 ατόμων θα ήταν καλύτερα να 
χρησιμοποιήσει τα τραπέζια που έχουν σχήμα εξάγωνο. 
Συμφωνείς με τον Φάνη; Να αιτιολογήσεις την απάντησή σου.  

Προτεινόμενο εφαρμογίδιο:  
http://illuminations.nctm.org/Activity.aspx?id=3542  
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Ο Γιάννης και η Νίκη βρίσκονται για διακοπές σε μια ευρωπαϊκή πόλη. Παρα-
τηρούν τις τιμές δύο εταιρειών ταξί για τη μετάβασή τους από το ξενοδοχείο 
σε διάφορα σημεία της πόλης.  

 

  

2 

(α) Θέλουν να επισκεφθούν το ενυδρείο που βρίσκεται σε απόσταση 6 Km α-
πό το ξενοδοχείο. Ποια από τις δύο εταιρείες νομίζεις ότι θα πρέπει να επιλέ-
ξουν; Να αιτιολογήσεις την απάντησή σου. 

Προορισμός 

Εταιρεία 
ταξί 

«Άλφα» 

Εταιρεία 
ταξί 

«Κόσμος» 

Μουσείο (3 Km) €9,00 €14,00 

Στάδιο (4 Km) €12,00 €15,00 

Αεροδρόμιο (7 
Km) 

€21,00 €18,00 
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(β) Ο Γιάννης και η Νίκη είχαν επιλέξει την προηγούμενες μέρες την εταιρεία ταξί 
«Άλφα» για τη μετάβασή τους σε τρία σημεία της πόλης. Πιο κάτω, φαίνεται το 
αντίστοιχο ποσό που πλήρωσαν για κάθε διαδρομή. 

 

 

  

Νομίζεις ότι ήταν ορθή η επιλογή της συγκεκριμένης εταιρείας και για τις τρεις δια-
δρομές; Να αιτιολογήσεις την απάντησή σου.  

Ξενοδοχείο – Ζωολογικός κήπος 

€15 

Ξενοδοχείο – Θέατρο 

€6 

Ξενοδοχείο – Εμπορικό κέντρο 

€27 
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3 

Ο Κωνσταντίνος παρατήρησε ότι πέρυσι οι σχολικές 
αργίες της 25ης Μαρτίου και της 1ης Απριλίου ήταν 
και οι δύο ημέρα Τρίτη. Mari
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(α) Να ελέγξεις σε ημερολόγια άλλων ετών κατά πόσο κάθε χρόνο οι αργίες της 
25ης Μαρτίου και της 1ης Απριλίου είναι η ίδια μέρα της βδομάδας. 

Να εξηγήσεις τη σκέψη σου. 

 

  

Είναι ορθή η υπόθεση της Βασιλικής; Να επεξηγήσεις. 

Η 1η Μαρτίου και η 1η Φεβρουαρίου 

ήταν και οι δύο ημέρα Σάββατο. Κάθε 

χρόνο η 1η Μαρτίου και η 1η Φε-

βρουαρίου θα είναι η ίδια μέρα της 

εβδομάδας.  

(β) Η Βασιλική μελέτησε το ημερολόγιο του 2014 
και έκανε κάποιες παρατηρήσεις. 
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4 

Ο κύριος Γιάννης θέλει να υπολογίσει 
τη μάζα ενός σακουλιού που περιέχει 
μήλα. Τοποθέτησε το σακούλι στη ζυ-
γαριά, μαζί με μερικά βαρίδια των 100 
g. 
 
Με ποιο τρόπο μπορεί να βρει τη μάζα 
του σακουλιού; Να επεξηγήσεις. 
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(β) Na αναπαραστήσεις την εξίσωση, σχεδιάζοντας βαρίδια στη ζυγαριά. Στη 
συνέχεια, να λύσεις την εξίσωση. Κάθε βαρίδιο είναι ίσο με 100 g. 

 

 

 

  

χ + 1 = 4  

ψ + 3 = 7  

(γ) Να λύσεις τις πιο κάτω εξισώσεις. 

Χ - 8= 12                                          12 + ψ = 27  

 

(δ) Να γράψεις μια δική σου εξίσωση με λύση το 5         

Mari
a C

him
on

i



 11 

Η εταιρεία επιδιόρθωσης ηλεκτρικών συσκευών «Το γρήγορο εργαλείο» χρεώ-
νει €30 για κάθε επίσκεψη και €45 για κάθε ώρα που διαρκεί η επιδιόρθωση.  

 

  

5 

(α) Το πλυντήριο ρούχων της κυρί-
ας Φλώριας έχει χαλάσει. Καλεί την 
πιο πάνω εταιρεία να έρθει να το 
επιδιορθώσει αλλά έχει στη διάθεσή 
της μόνο €120.  
 
Ποσό χρόνο είναι δυνατόν  να 
διαρκέσει η επιδιόρθωση ώστε το 
συνολικό κόστος να μην υπερβεί το 
ποσό αυτό; 
Να αιτιολογήσεις την απάντησή 
σου. 
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(β)  

 

  

«Οι πολυμήχανοι μάστορες» 

 

Επιδιορθώνονται ηλεκτρικές συσκευές 

 

€45 για κάθε επίσκεψη και  €30 / ώρα. 

Τηλ. 9000007788 

Επιδιόρθωση ηλεκτρικών συσκευών 

«Το γρήγορο εργαλείο» 

 

€30 για κάθε επίσκεψη και       €45 / 

ώρα. 

Να μελετήσεις τις πιο πάνω προσφορές για επιδιορθώσεις ηλεκτρικών συ-
σκευών. 

Να δείξεις στη γραφική παράσταση το συνολικό κόστος επιδιόρθωσης μιας 
ηλεκτρικής συσκευής για 1, 2, 3, 4 και 5 ώρες διάρκειας της επιδιόρθωσης. 
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 (β) Να εκφράσεις με λόγια ή σύμβολα τον τρόπο υπολογισμού του κό-
στους της επιδιόρθωσης για οποιοδήποτε αριθμό ωρών, για κάθε εται-
ρεία. 

(γ) Ποια από τις δύο εταιρείες, «Το γρήγορο εργαλείο» ή «Οι πολυμήχανοι 

μάστορες», είναι φθηνότερη για επιδιορθώσεις με μεγάλη διάρκεια και 

ποια είναι φθηνότερη για επιδιορθώσεις μικρής διάρκειας; Να επεξηγήσεις. 

Οι πολυμήχανοι μάστορες:  
 
……………………………………………………………………………………… 
 
……………………………………………………………………………………… 

Το γρήγορο εργαλείο:  
 
……………………………………………………………………………………… 
 
……………………………………………………………………………………… 
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6 

β) Να χρησιμοποιήσεις το εφαρμογίδιο: 
http://www.explorelearning.com/index.cfm?
method=cResource.dspDetail&ResourceID=625 

(α) Ο Μάριος έτρεξε απόσταση 100 m σε 10 δευτερόλεπτα. Ο Νίκος έτρεξε α-
πόσταση 60 μέτρα σε 5 δευτερόλεπτα. 
 
 Ποιος δρομέας έτρεξε τη μεγαλύτερη απόσταση;  
 
     ___________________________________________________________________ 
 
     ___________________________________________________________________ 
 
 
 Ποιος δρομέας είναι ο πιο γρήγορος; Να επεξηγήσεις. 
      
     ___________________________________________________________________ 
 
     ___________________________________________________________________ 
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 (α) Να πατήσεις το πράσινο κουμπί (Έναρξη). Τι παρατηρείς να συμβαί-
νει; 
____________________________________________________________________ 
 
(β) Να μετακινήσεις την πράσινη ράβδο στο σημείο όπου ο χρόνος είναι 
ίσος με 1 δευτερόλεπτο.  
 
 Πόση απόσταση είχε καλύψει ο δρομέας τη συγκεκριμένη χρονική 

στιγμή; 
___________________________________________________________________ 

 
 Ποιες είναι οι συντεταγμένες του σημείου στη γραφική παράσταση 

που δείχνει τη θέση και το χρόνο του δρομέα; ______________________ 

(γ) Μια γραφική παράσταση που δείχνει τη σχέση της απόστασης με το 
χρόνο, περιέχει το σημείο (4,15). Τι σημαίνει αυτό για τον δρομέα; 

______________________________________________________________________

______________________________________________________________________ 

 

(δ) Να ρυθμίσεις τα σημεία της γραφικής παράστασης ώστε να είναι 3. Η 

γραφική παράσταση να περιέχει τα σημεία (0,0), (2,10) και (4,40). 

 

 Από ποιο σημείο αρχίζει ο δρομέας να τρέχει; __________________ 

 Που θα βρίσκεται μετά από 2 δευτερόλεπτα; __________________ 

 Που θα βρίσκεται μετά από 4 δευτερόλεπτα; __________________ 

 Να βάλεις σε κύκλο τη χρονική περίοδο κατά την οποία ο δρομέας 

έτρεχε πιο γρήγορα. 

0 – 2 δευτερόλεπτα                   2 – 4 δευτερόλεπτα 
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 (ε) Δύο δρομείς θα τρέξουν μια διαδρομή με μήκος 40 m.  
 
 Na δείξεις στη γραφική παράσταση με ποιο τρόπο ο Δρομέας 1 θα 

μπορέσει να έρθει πρώτος. 

 

(στ) Να δείξεις στη γραφική παράσταση με ποιο τρόπο ο Δρομέας 2 θα 

είναι στην αρχή πίσω από τον Δρομέα 1, αλλά στη συνέχεια θα τον  προ-

σπεράσει και θα έρθει πρώτος.  

Mari
a C

him
on

i



 17 

Να διαβάσεις το πιο κάτω άρθρο.  

 

  

7 

«Οι άνθρωποι πρέπει να περιορίσουν τις προσπάθειες στην άθληση τους, 

ώστε να μην υπερβαίνουν ένα συγκεκριμένο αριθμό καρδιακών παλμών. 

Για χρόνια, η σχέση μεταξύ του μέγιστου επιτρεπτού αριθμού καρδιακών 

παλμών ενός ατόμου και της ηλικίας του περιγραφόταν με τον ακόλουθο 

τύπο: 

 
 Μέγιστος επιτρεπτός αριθμός καρδιακών παλμών = 220 – ηλικία 

 

Πρόσφατη έρευνα έδειξε ότι αυτός ο τύπος πρέπει να τροποποιηθεί. Ο νέος 

τύπος είναι ο ακόλουθος: 

 
Μέγιστος επιτρεπτός αριθμός καρδιακών παλμών = 208 – (0.7 x ηλικία) 

 

Η χρήση του νέου τύπου αντί του παλιού, έχει ως αποτέλεσμα ο μέγιστος ε-

πιτρεπτός αριθμός παλμών της καρδιάς ανά λεπτό να είναι ελαφρώς μειω-

μένος για τα νέα άτομα και ελαφρώς αυξημένος για τους πιο ηλικιωμέ-

νους.» 
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 Από ποια ηλικία και μετά ο μέγιστος επιτρεπτός αριθμός καρδιακών παλ-
μών αυξάνεται ως αποτέλεσμα της εισαγωγής του νέου τύπου; Να αιτιο-
λογήσεις την απάντησή  

 
 
Μπορείς να κατασκευάσεις γραφική παράσταση, για να παρουσιάσεις 
την απάντησή σου. 
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8 

 

Κατά τη διάρκεια του 19ου αιώνα πολλοί ερευνητές ταξίδευαν στη Βόρεια Α-

μερική για να βρουν χρυσό.   

Ο Dan Jackson ήταν ιδιοκτήτης γης στην οποία είχε ανευρεθεί χρυσός και ε-

νοικίαζε κομμάτια γης σε διάφορους ερευνητές.  

Ο Dan έδωσε σε κάθε ερευνητή 4 ξύλα και σχοινί με μήκος 100 m. Κάθε ερευ-

νητής έπρεπε να χρησιμοποιήσει τα ξύλα και το σχοινί για να οριοθετήσει ένα 

ορθογώνιο κομμάτι γης μέσα στο οποίο μπορούσε να σκάψει. 
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(β) Με ποιο τρόπο θα πρέπει να τοποθετήσει ένας ερευνητής τα ξύλα ώστε να 
οροθετήσει το μεγαλύτερο κομμάτι γης που μπορεί; Να αιτιολογήσεις την απά-
ντησή σου.  

 

 

 

  

(γ) Ένας ερευνητής είχε 
μια ιδέα: «Να δέσουμε όλα τα σχοινιά μαζί! Έτσι, 

μπορούμε να οριοθετήσουμε μεγαλύτερο 

κομμάτι γης και να δουλέψουμε μαζί. Θα 

μοιράσουμε το χρυσό που θα βρούμε.» 

Έχει δίκαιο ο ερευνητής, αν δουλέψουν όλοι ερευνητές μαζί και χρησιμοποιή-
σουν 4 μόνο ξύλα; 
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9 

    ν = 1                  ν = 2                       ν = 3                                  ν = 4 

Ένας γεωργός φυτεύει μηλιές με τρόπο που να σχηματίζεται ένα μοτίβο με 
τετράγωνα. Για να προστατεύει τις μηλιές από τον άνεμο, φυτεύει γύρω από 
το κάθε τετράγωνο κυπαρίσσια.  

Χ   = κυπαρίσσι 

 = μηλιά 
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(β) Ο γεωργός θέλει να δημιουργήσει ένα πολύ μεγάλο χώρο με πολλές σειρές 
δέντρων.  

Όσο ο γεωργός κάνει το χώρο μεγαλύτερο, ποια δέντρα θα αυξηθούν περισσό-
τερο, οι μηλιές ή τα κυπαρίσσια;  

Να αιτιολογήσεις την απάντησή σου.  
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10 

Ένα εργοστάσιο κατασκευάζει μεταλλικά δικτυώματα από ράβδους, όπως 
αυτά που φαίνονται στην πιο κάτω εικόνα.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Το μήκος κάθε δικτυώματος είναι ίσο με τον αριθμό των ράβδων στο κάτω 
μέρος του δικτυώματος. Για παράδειγμα, το πιο κάτω δικτύωμα έχει μήκος 6 
m.  

L = 6 m 
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(β) Το εργοστάσιο έλαβε μια παραγγελία μέσω φαξ για την κατασκευή ενός δι-
κτυώματος. Όμως στο φαξ δεν φαινόταν καθαρά ο συνολικός αριθμός των ρά-
βδων που χρειάζονταν. Κάποιοι έλεγαν ότι ίσως είναι 47 και κάποιοι 48. 

(α) Ποιος νομίζεις ότι είναι ο ορθός αριθμός;  

 

β) Ποιο είναι το μήκος του δικτυώ-

ματος; 

 

(β) Ποιο είναι το μήκος του δικτυώματος; 
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Να χρησιμοποιήσεις το εφαρμογίδιο: 

http://www.explorelearning.com/index.cfm?

(α) Να παρατηρήσεις το μοτίβο της πιο κάτω εικόνας. 

  

1 

(α) Πόσα τετράγωνα είναι χρωματισμένα σε κάθε εικόνα; 
 
           Εικόνα 1:   _________ 

           Εικόνα 2:   _________ 

           Εικόνα 3:   _________ 

 
 Πόσα τετράγωνα θα έχει η Εικόνα 4 του μοτίβου; ____________   
 
 Να σχεδιάσεις την Εικόνα 4  και στη συνέχεια, να ελέγξεις την απάντησή σου, 

πατώντας  «check».  
 
 Πόσα χρωματισμένα τετράγωνα θα έχει η 10η εικόνα του μοτίβου; Να εξηγή-

σεις. 
 
     _________________________________________________________________ 
 
     _________________________________________________________________ 
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(β) Nα πατήσεις new για να εμφανιστεί ένα καινούριο μοτίβο. Στο πιο κάτω πλαί-
σιο, να σχεδιάσεις το μοτίβο που βλέπεις. Κάτω από κάθε εικόνα να γράψεις τον 
αριθμό των χρωματισμένων τετραγώνων. 

 

  

(γ)  
 
 Πόσα τετράγωνα θα έχει η εικόνα 4; Να αιτιολογήσεις την απάντησή σου. 
     __________________________________________________________ 
 
 Να σχεδιάσεις την Εικόνα 4  και στη συνέχεια, να ελέγξεις την απάντησή 

σου, πατώντας  «check».  
 
 Να γράψεις τον κανόνα του μοτίβου και στη συνέχεια, να ελέγξεις την απά-

ντησή σου, πατώντας  «Show relationship between figures». 
     __________________________________________________________ 
 
 Να παρατηρήσεις την αριθμητική γραμμή κάτω από τον πίνακα. Με ποιο 

τρόπο η αριθμητική γραμμή παρουσιάζει πόσα τετράγωνα είναι χρωματι-
σμένα σε κάθε εικόνα; 

     __________________________________________________________ 
 
     __________________________________________________________ 
     
 Πόσα χρωματισμένα τετράγωνα θα έχει η 10η εικόνα του μοτίβου; Να εξη-

γήσεις.  
     __________________________________________________________ 
 
     __________________________________________________________ 
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(δ) Να πατήσεις «new» για να εμφανιστούν δύο νέα μοτίβα. Για κάθε μοτίβο: 

 Να σχεδιάσεις τις τρεις πρώτες εικόνες και να γράψεις τον αριθμό των χρωμα-
τισμένων τετραγώνων κάτω από κάθε εικόνα. 

 Να υπολογίσεις των αριθμό των χρωματισμένων τετραγώνων στην Εικόνα 4. 
Να σχεδιάσεις την Εικόνα 4 και στη συνέχεια, να πατήσεις «check» για να ελέγ-
ξεις την απάντησή σου.  

 

  

ΜΟΤΙΒΟ 1 

  
   
 
 

 

 

ΚΑΝΟΝΑΣ:  

 
Αριθμός χρωματισμένων τετραγώνων στην  

Εικόνα 10: 

__________________________________________________________________ 

 

ΜΟΤΙΒΟ 2 

  
   
 
 

 

 

ΚΑΝΟΝΑΣ:  

 
Αριθμός χρωματισμένων τετραγώνων στην  

Εικόνα 10: 

__________________________________________________________________ 
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Στη φρουταρία «To φρέσκο φρούτο», οι πελάτες μπορούν να ζυγίσουν μόνοι 
τους τα φρούτα ή τα λαχανικά που θα αγοράσουν, επιλέγοντας το αντίστοι-
χο κουμπί. 

 

  

2 

Η μηχανή τυπώνει μια σημείωση με το είδος του φρούτου ή του λαχανικού, την 
τιμή του ανά κιλό, τη μάζα και το συνολικό κόστος. 
 
(a) Να συμπληρώσεις τον πίνακα. 

ΝΤΟΜΑΤΕΣ 

€2, 00 / Kg 

2, 00 Kg 

€4, 00 

Ντομάτες 

Μάζα (Kg) 

Τιμή ανά 

κιλό 

Συνολικό 

κόστος 

4 €2   

1 €2   

3 €2   

5 €2   
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(β) Οι μπανάνες κοστίζουν €2,50 το κιλό. Πόσο θα κοστίσουν 3 Kg μπανάνες;  

 

  

 ΕΙΣΟΔΟΣ 

   ΕΞΟΔΟΣ 

(δ) Η ζυγαριά μοιάζει με μια 
μηχανή  που στην είσοδο της 
εισέρχεται η μάζα των φρού-
των ή των λαχανικών και στην 
έξοδο εξέρχεται η συνολική 
τους τιμή. 

(γ) Αν η κυρία Νίκη αγόρασε 4 Kg μήλα και πλήρωσε €10,00, να υπολογίσεις 
την τιμή των μήλων ανά κιλό.  

Μπορείς να χρησιμοποιήσεις το εφαρμογίδιο   
https://www.explorelearning.com/index.cfm?
method=cResource.dspDetail&resourceID=1035 ,  
για να μελετήσεις τον τρόπο λειτουργίας διαφόρων 
μηχανών. 
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Να βρεις τον κανόνα λειτουργίας της πιο κάτω μηχανής και να συμπληρώσεις. 

 

 

(β) Να βρεις τον κανόνα λειτουργί-

ας της πιο κάτω μηχανής και να συ-

μπληρώσεις. 

 

4 

32 

5 

40 

12 

 

Κανόνας: ____________________________________________________________ 

(ε) Να βρεις τον κανόνα λειτουργίας της πιο κάτω μηχανής και να συμπληρώσεις. 

10 

22 

7 

16 

 

20 

Κανόνας: ____________________________________________________________ 
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(στ) Να επιλέξεις την μαθηματική πρόταση που περιγράφει τον κανόνα λειτουργί-
ας της πιο κάτω μηχανής. 

 

(β) Να βρεις τον κανόνα λειτουργί-

ας της πιο κάτω μηχανής και να συ-

μπληρώσεις. 

 

16 

14 

24 

20 

32 

28 

i.  χ    4 = ψ             ii.  χ – 4 = ψ               iii.  ψ + 8 = χ           iv.  16 – 4 = ψ 

(γ) Να βρεις τον κανόνα λειτουργίας της πιο κάτω μηχανής και να συμπληρώ-
σεις. 

45 

 

22 

 

 

36 

(ζ) Να συμπληρώσεις τις τιμές στην πιο κάτω μηχανή, αν ο κανόνας που 

ακολουθεί είναι  (χ + 5) - 4 = ψ. 
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Να χρησιμοποιήσεις το εφαρμογίδιο:  

http://www.nctm.org/standards/content.aspx?id=25013 

 

  

3 

Ποια εντολή πρέπει να γράψεις στην υπολογιστική μηχανή ώστε να χρωματι-
στούν: 

(α) τα πολλαπλάσια του 5 

__________________________________________

__________________________________________ 

(γ) τα πολλαπλάσια του 10 

__________________________________________

__________________________________________ 

(β) το μοτίβο 1, 12, 23, 34, … 

__________________________________________

__________________________________________ 

(δ) οι αριθμοί 75 και 86 

__________________________________________

__________________________________________ 

(ε) οι ζυγοί αριθμοί 

__________________________________________

__________________________________________ 

(ζ) ένα μοτίβο με αριθμούς που περι-

λαμβάνει και τον αριθμό 100 

__________________________________________

__________________________________________ 

(στ) οι μονοί αριθμοί 

__________________________________________

__________________________________________ 

(η) ένα μοτίβο με αριθμούς που δεν 

περιλαμβάνει τον αριθμό 100 

__________________________________________

__________________________________________ 
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4 
Να χρησιμοποιήσεις το εφαρμογίδιο¨ 
 http://www.mathplayground.com/AlgebraEquations.html  

(β) Να λύσεις την εξίσωση και να ελέγξεις την απάντησή σου.  

(α) Να μελετήσεις το εφαρμογίδιο και να αναπαραστήσεις την εξίσωση που 
εμφανίζεται στο δεξί πάνω μέρος της οθόνης, χρησιμοποιώντας τα εικονίδια:  

(γ) Να ακολουθήσεις την ίδια διαδικασία για τις επόμενες δύο εξισώσεις που 
θα εμφανιστούν στο εφαρμογίδιο. 
 
(δ) Να λύσεις τις εξισώσεις. 

ω + 7 = 10 

 
 

χ + 3 = 5  

                              
 

 6 + γ = 10 

                             
 

α - 5 = 9 
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(α) Να αντιστοιχίσεις τις εκφράσεις με την κατάλληλη αλγεβρική αναπαρά-
σταση. 

 

  

5 

Το εικοσιένα αφαιρείται από έναν αριθμό.  

(2 ×  κ) + 3 

(μ : 7) + 6 

(λ - 5) × 2 

π - 21 

21 - τ 

Ένας αριθμός αφαιρείται από το εικοσιένα. 

Διαίρεσε με το εφτά έναν αριθμό και μετά πρόσθε-

σε έξι. 

Αφαίρεσε πέντε από έναν αριθμό και μετά πολλα-

πλασίασε επί δύο. 

Διπλασίασε έναν αριθμό και πρόσθεσε τρία. 

  

(β) Να γράψεις μια συμβολική αναπαράσταση για κάθε έκφραση. 

 

Τέσσερα περισσότερα από ένα αριθμό         ……………………………... 

 

Ένας αριθμός προστίθεται στο τέσσερα       ……………………………... 

 

Τέσσερα λιγότερα από ένα αριθμό                 ……………………………... 

 

Ένας αριθμός αφαιρείται από το τέσσερα    ……………………………... 
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(γ) Ο Χάρης εργάζεται στο πρατήριο      
βενζίνης. Κερδίζει €7 την ώρα τις         
καθημερινές και €9 την ώρα το          
Σαββατοκύριακο. 

i. Να υπολογίσεις πόσα χρήματα   
κέρδισε συνολικά ο Χάρης αν: 

 

- Εργάστηκε 8 ώρες τις καθημερινές 
και 12 ώρες το Σαββατοκύριακο. 

  

 

- Εργάστηκε 4 ώρες τις καθημερινές 
και 5 ώρες το Σαββατοκύριακο. 

ii. Να γράψεις μια συμβολική αναπαράσταση, για να δείξεις με ποιο τρόπο 
μπορεί να υπολογίζει ο Χάρης το μισθό του κάθε βδομάδα, για οποιοδήποτε 
αριθμό ωρών. 

iii. Ο Χάρης χρειάζεται €115 για να αγοράσει ένα κινητό τηλέφωνο. Εργάστηκε 
5 ώρες το Σαββατοκύριακο. Πόσες ώρες πρέπει να εργαστεί τις καθημερινές 
για να πάρει τα χρήματα που χρειάζεται; Mari
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6 

β) Να αντιστοιχίσεις κάθε γραφική παράσταση με την κατάσταση που πα-
ρουσιάζει.   

(a) Να συμπληρώσεις τον πίνακα εισόδου και εξόδου για κάθε έκφραση. 
 
      
      
      

4 × Κ Ρ + 3 

ΕΙΣΟΔΟΣ 

Κ 

ΕΞΟΔΟΣ  ΕΙΣΟΔΟΣ 

Ρ 

ΕΞΟΔΟΣ 

1     1   

2     2   

3     3   

4    4   

5     5   

Ο δρομέας καλύ-

πτει 6 μέτρα κάθε 1 

δευτερόλεπτο. 

Στην έδρα υπήρχαν 

36 βιβλία. Κάθε παιδί 

παίρνει από 6 βιβλία. 

 

Η εγγραφή στο κατάστημα 

ενοικίασης ταινιών είναι €12. 

Κάθε ταινία που ενοικιάζεται 

χρεώνεται με €3. Mari
a C
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 (γ) Να παρατηρήσεις τη γραφική παράσταση και να συμπληρώσεις τον 
πίνακα. 

(δ) Ποιος αριθμός θα είναι στην έξοδο, αν στην είσοδο είναι ο αριθμός 8. 

Να επεκτείνεις τη γραφική παράσταση.  

 

 

(δ) Να περιγράψεις μια κατάσταση που μπορεί να παρουσιάζει η πιο πά-

νω γραφική παράσταση. 

ΕΙΣΟΔΟΣ 

  

ΕΞΟΔΟΣ 
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(α) Να γράψεις μια συμβολική αναπαράσταση που αναπαριστά την πιο πά-
νω σχέση. 

Οι άνθρωποι πρέπει να περιορίσουν τις 

προσπάθειες στην άθληση τους, ώστε να 

μην υπερβαίνουν ένα συγκεκριμένο αριθ-

μό καρδιακών παλμών. Ο μέγιστος επιτρε-

πτός αριθμός καρδιακών παλμών  του αν-

θρώπου όταν βρίσκεται σε κατάσταση η-

ρεμίας υπολογίζεται με τον εξής τύπο: Α-

φαιρείς την ηλικία σου (Α) σε χρόνια από 

τον αριθμό 220 για να βρεις τον μέγιστο 

επιτρεπτό καρδιακό παλμό (Μ). 

(β) Να χρησιμοποιήσεις τον πιο πάνω τύπο για να συμπληρώσεις τη γραφική 

Ηλικία 

Ε
π

ιτ
ρ

επ
τό

ς
 α

ρ
ιθ

μ
ό

ς
 κ

α
ρ

δ
ια

κ
ώ

ν
 π

α
λ
μ

ώ
ν
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 (γ) Ποιος έχει υψηλότερο επιτρεπτό αριθμό καρδιακών παλμών, εσύ ή ο/
η δάσκαλος/α σου; Να εξηγήσεις. 

 

(δ) Ο Δημήτρης είναι προ-

πονητής της κολύμβησης. 

Δίνει οδηγίες στους αθλητές 

του, ώστε κατά τη διάρκεια 

της προπόνησής τους να 

φτάνουν στο 75% του επι-

τρεπτό αριθμού καρδιακών 

παλμών.  

 

 

Να γράψεις ένα καινούριο μαθηματικό τύπο με τον οποίο οι αθλητές 

μπορούν να υπολογίσουν τον επιτρεπτό αριθμό καρδιακών παλμών κα-

τά την προπόνησή τους  (Π) σε σχέση με τον επιτρεπτό αριθμό καρδια-
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8 

 

(α) Να συγκρίνεις την περίμετρο και το εμβαδόν των πιο κάτω σχημάτων. 

(β) Να συγκρίνεις την περίμετρο και το εμβαδόν των πιο κάτω σχημάτων. 

Α Β Γ Δ 

Ε ΣΤ 
Η 

Θ 
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(β) Να χρησιμοποιήσεις το εφαρμογίδιο: 

http://illuminations.nctm.org/Activity.aspx?id=4159  

 

 

 

  

(γ) Ποιο είναι το μεγαλύτερο εμβαδόν που μπορεί να έχει ένα ορθογώ-
νιο με περίμετρο 100. Να αιτιολογήσεις την απάντησή σου.  
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(α) Να βρεις τους επόμενους πέντε τετράγωνους και τρίγωνους αριθμούς. 

(β) Με ποιο τρόπο μπορείς να βρεις έναν οποιονδήποτε τετράγωνο ή        
τρίγωνο αριθμό; 

Ένας τετράγωνος αριθμός μπορεί να αναπαρασταθεί με τελείες που δη-
μιουργούν ένα τετράγωνο.   

 

 

 

              

                           1ος           2ος            3ος              4ος  

 

Ένας τρίγωνος αριθμός μπορεί να αναπαρασταθεί με τελείες που σχηματί-
ζουν ένα τρίγωνο. 

 

 

 

 

                                1ος        2ος           3ος              4ος  
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(γ) Να χρησιμοποιήσεις σειρές με τελείες για να αναπαραστήσεις τις πιο κάτω 
σχέσεις.  

 

  

Το άθροισμα δύο διαδοχικών 

τρίγωνων αριθμών είναι τετρά-

γωνος αριθμός. 

Το αποτέλεσμα της πράξης 8 φο-

ρές έναν τρίγωνο αριθμό συν 1 

είναι ένας τετράγωνος αριθμός.  
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Η Χριστίνα φτιάχνει το πιο κάτω μοτίβο, χρησιμο-
ποιώντας οδοντογλυφίδες. 

 

  

 

 

 

(β) Πόσες οδοντογλυφίδες θα χρειαστούν για να κατασκευάσει το 10ο σχή-
μα του μοτίβου. Να αιτιολογήσεις την απάντησή σου.  

ΣΧΗΜΑ 1 ΣΧΗΜΑ 2 ΣΧΗΜΑ 3 

(α) Να σχεδιάσεις το επόμενο σχήμα στο μοτί-
βο της Χριστίνας. 
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(γ) Η Χριστίνα κατασκεύασε ένα νέο μοτίβο με τις οδοντογλυφίδες. . 

 

  

i. Να σχεδιάσεις το επόμενο σχήμα του νέου μοτίβου. 

ii. Να συμπληρώσεις τον πίνακα. 

ΣΧΗΜΑ 1 ΣΧΗΜΑ 2 ΣΧΗΜΑ 3 

 Μήκος σχήματος (Μ) Αριθμός οδοντογλυφίδων  

(T) 

 

 

 

1  

 

 

 

2  

 

 

 

3  

 

 

 

4  

(γ) Πόσες οδοντογλυφίδες θα χρειαστεί για να φτιάξει το 10ο σχήμα; 
Να αιτιολογήσεις την απάντησή σου. 
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Δομημένες Μαθηματικές Διερευνήσεις 
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