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Abstract

The need to process and classify signals is encountered in many applications. Signals

are abundant in nature and can arise from numerous sources. In many cases how-

ever, signals also contain high levels of noise. This poses a unique challenge when

processing the signals in order to obtain useful information needed for classification.

In this thesis, we show that by using an appropriate representation transformation

of the signal and by kernel-based feature-extraction methods, we can mitigate the

effect of noise. We describe a biologically-inspired classification system which can

classify various types of noisy signals, without the need to perform extensive pre-

processing on the signal. We introduce the concept of rank order kernels which

employ rank order coding. Rank order coding is a type of temporal coding which

has been proposed as a possible explanation of how neurons encode information.

We formulate an image distance metric based on rank order kernels and use it for

classification.

We focus on the problem of Automatic Speech Recognition (ASR) in order to

demonstrate the capability of our classification system. The accurate recognition of

speech is a vital element in human-computer interfaces. One of the main obstacles

to building robust ASR systems is the problem of noise. With our methodology, we

transform speech signals to two-dimensional time-frequency image representations

and classify them using the rank order kernel distance metric.

In our attempt to create a noise-robust speech recognition system we found that it

was also necessary to develop an endpoint detection system which was also robust to

noise. This thesis therefore also presents an endpoint detection system which uses

a spectrogram representation of speech and variance kernels in order to separate

speech from non-speech. Our endpoint detection system is used as a pre-processing

step to our speech recognition system.

Our endpoint detection algorithm and rank order kernel method can also be
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applied to other types of signals. We show how the endpoint detection algorithm

is used to detect the endpoints of micro-Doppler signatures in ultrasound signals,

and how the rank order kernels can be used to classify Raman spectra obtained from

bacterial samples. The classification system we develop in this thesis can be used on

any type of signal by first converting the signal to an appropriate two-dimensional

image representation and then performing classification using the rank order kernel

distance metric.
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PerÐlhyh

H an�gkh gia thn epexergasÐa kai taxinìmhsh twn shm�twn, sunant�tai se pollèc efar-

mogèc. Ta s mata eÐnai �fjona sth fÔsh kai mporoÔn na prokÔyoun apì pollèc phgèc.

Se pollèc peript¸seic ìmwc, ta s mata perièqoun, epÐshc, uyhl� epÐpeda jorÔbou. Autì

apoteleÐ mia monadik  prìklhsh kat� thn epexergasÐa twn shm�twn prokeimènou k�poioc

na l�bei qr simec plhroforÐec pou apaitoÔntai gia thn taxinìmhsh.

Sthn paroÔsa ergasÐa, deÐqnoume ìti me th qr sh enìc kat�llhlou metasqhmatismoÔ

sthn anapar�stash tou s matoc kai twn kernels, mporoÔme na elaqistopoi soume thn

epÐdrash tou jorÔbou. Perigr�foume èna biologik� empneusmèno sÔsthma taxinìmhshc

to opoÐo mporeÐ na qarakthrÐsei di�forouc tÔpouc shm�twn, qwrÐc thn an�gkh gia e-

ktetamènh pro-epexergasÐa sto s ma. 'Eqoume eisag�gei thn ènnoia twn rank order

kernels pou qrhsimopoioÔn kwdikopoÐhsh seir�c kat�taxhc ( rank order coding). H

kwdikopoÐhsh seir�c kat�taxhc eÐnai èna eÐdoc kwdikopoÐhshc pou èqei protajeÐ wc mia

pijan  ex ghsh gia to p¸c oi neur¸nec kwdikopoioÔn plhroforÐec. 'Eqoume diamorf¸sei

èna mètro me b�sh ta rank order kernels kai to qrhsimopoioÔme gia taxinìmhsh.

Esti�zoume thn prosoq  mac sto prìblhma thc autìmathc anagn¸rishc omilÐac, pro-

keimènou na apodeÐxoume thn ikanìthta tou sust matoc taxinìmhshc. H anagn¸rish thc

omilÐac eÐnai èna shmantikì stoiqeÐo sthn epikoinwnÐa tou anjr¸pou me ton upologist .

'Ena apì ta kÔria empìdia eÐnai to prìblhma tou jorÔbou. Me th mejodologÐa mac,

èqoume metatrèyei ta s mata omilÐac se dÔo diast�seic. DhmiourgoÔme anaparast�seic

qrìnou-suqnìthtac kai tic taxinomoÔme me ta rank order kernels.

Sthn prosp�jei� mac na dhmiourg soume to sÔsthma anagn¸rishc omilÐac br kame

ìti  tan epÐshc anagkaÐo na anaptuqjeÐ èna sÔsthma endpoint detection. Sthn paroÔsa

ergasÐa parousi�zetai wc ek toÔtou, epÐshc, èna sÔsthma endpoint detection to opoÐo

qrhsimopoieÐ fasmatogr�fhma thc fwn c kai variance kernels prokeimènou na diaqw-

rÐsei thn omilÐa apì thn mh-omilÐa. To sÔsthma endpoint detection qrhsimopoieÐtai wc

pro-epexergasÐa gia thn omilÐa sto sÔsthma anagn¸rishc.
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O algìrijmoc endpoint detection kai to rank order kernel mporeÐ epÐshc na

efarmosteÐ kai se �lla eÐdh shm�twn. 'Eqoume deÐxei p¸c o algìrijmoc endpoint

detection mporeÐ na qrhsimopoihjeÐ gia uperhqhtik� s mata, kai ta rank order kernels

mporoÔn na qrhsimopoihjoÔn gia thn taxinìmhsh fasm�twn Raman.
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Chapter 1

Introduction

1.1 Intelligent Systems

A system, be it human or machine, exhibits intelligence if it is able to learn from past

experience and make predictions about the future. Learning is the process of building

models by using information. We humans learn because our brain is essentially a

machine that builds models of the world based on the information gathered from

our experiences. Using these models we are able to construct theories and make

predictions about the future, and thus adapt to our environment. Understanding

speech for example, is a process of interpreting sound information and making

predictions on the different words that the sounds represent.

The human brain has the amazing ability to extract relevant patterns from the

input it receives from our senses, which allows it to build appropriate models and

make predictions. Even though these pattern recognition models exist in our mind,

we cannot consciously describe them. A young child for example, can easily recog-

nize a dog when it sees one. Based on the information available to the brain from the

visual system, the prediction is made that the object is a dog. However, nobody can

describe explicitly and in detail what features and models the brain uses to make the

prediction.

The task of artificial intelligence researchers is to develop intelligent systems. Ac-

cording to Hawkins [40], one of the key ingredients needed to develop an intelligent

system is the use of invariant representations. An invariant representation is a way

of portraying information about an object so that even if the information changes

slightly, the object is still recognizable for what it is. For example, humans can rec-
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Representation

touch

audition

vision

Pattern
Recognition

 prediction

Figure 1.1: A schematic showing how a classification system can make predictions

from multiple modalities by first transforming input signals into an invariant repre-

sentation and then performing pattern recognition.

ognize speech without being greatly affected by changes in pronunciation and voice

tone. Another argument made by Hawkins [40], is that at a high level the brain

processes all information with a common algorithm, irrespective of the modality

(e.g. touch, acoustic, visual). In this thesis, we have used these two comprehen-

sive proposals of invariant representation and a common processing algorithm as

inspiration in order to create a noise-robust classification system. This system is

able to make predictions using input from various modalities by first converting the

input signal into an invariant representation and then applying a pattern matching

algorithm. Figure 1.1 illustrates this concept.

1.2 Thesis statement

In this thesis we describe a classification system which can classify various types

of noisy signals, without the need to perform extensive pre-processing on the sig-

nal. We do not focus on intricate filtering or advanced noise-reduction techniques.

Instead, we focus on finding appropriate representations for signals, and in com-

bination with a noise-robust feature-extraction mechanism, we show how noisy

signals can be classified with high accuracy even when the noise levels are high. We

demonstrate how this classification system is well suited for noise-robust automatic

speech recognition.
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1.3 Automatic Speech Recognition

Automatic Speech Recognition (ASR) systems have numerous commercial applica-

tions. The use of voice to interface with devices, such as mobile phones, is becoming

increasingly common. The future of human-machine interaction lies with voice con-

trol. Electric appliances in the house, home automation systems, home robots, and

in-car systems will all be controlled with the user’s voice. Voice control is not yet

widespread however, because of the poor performance of current ASR systems.

The field of ASR has advanced significantly in the past few decades. Current

state-of-the-art ASR systems perform extremely well when the vocabulary of words

is limited, when there is no background noise, and finally, when the voice and

pronunciation of the human speaker is not too different from the voice and pronun-

ciation of the speakers used to train the system. When the variability of the speech

signal increases, due to factors such as background noise, the performance of ASR

systems drops significantly. Humans, on the other hand, have an amazing ability

to process speech. Humans can understand continuous streams of speech input

consisting of a large vocabulary of words. This ability is un-hindered even when a

high level of background noise is present. All the more impressive is the fact that in

the case of multiple speakers talking at the same time, a human listener can separate

out and focus on the speech of only one single speaker of interest.

Researchers have turned to biology in an attempt to find ideas which can help

to improve the speech recognition performance of ASR systems so that these sys-

tems can eventually reach, and maybe even surpass, the speech recognition per-

formance of humans. For example, Mel Frequency Cepstral Coefficients (MFCCs)

are a now the standard method for feature creation in ASR. The frequency dis-

tribution and bandwidth of MFCCs attempt to imitate those of the cochlea in the

human ear. The general model of current state-of-the-art ASR systems however,

bears no resemblance to human neurobiology. Current state-of-the-art ASR sys-

tems use a frame-based model and employ Hidden Markov Models (HMMs). The

HMM statistical model is in disagreement with biological models, and although

improvements are continuously being made, this model seems to have reached its

limitations. The performance of such statistical approaches depends on accurate

estimates of probability distributions during the supervised training phase. For this

reason, the latest significant improvements in ASR were a result of the availability
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of vast speech databases and extensive computational power which has allowed for

improved statistical estimates of the characteristics of speech. Nonetheless, these

incremental improvements are both inefficient and unsatisfactory. The only way

to drastically improve ASR performance is by finding a more appropriate speech

recognition model. Consequently, several researchers have indicated the need for

new, biologically-inspired, ASR models [50, 89, 95, 99].

1.4 Biologically-inspired representations

Although we do not have a perfectly clear and detailed view of how the human brain

works, we can still draw inspiration from the results of research studies performed on

the brain. Such studies, for example, have established the fact that the brain’s cerebral

cortex decomposes visual images into features of oriented edges. Of great interest for

the purposes of this thesis is a publication by Christopher deCharms et al. [16] which

shows evidence that the brain also decomposes sound into visual-like features. From

their experiments with primates, they found that the primary auditory cortex shows

complex patterns of sound-feature selectivity. Certain neurons are more sensitive

to “edges” in frequency-time, and to transitions in frequency or intensity. They

observed that stimuli designed for a particular neuron’s preferred feature pattern

can drive that neuron with higher sustained firing rates than have typically been

recorded with simple stimuli. “This suggests that the cortex decomposes an auditory

scene into component parts using a feature-processing system reminiscent of that

used for the cortical decomposition of visual images.” [16]

In the current thesis we therefore draw inspiration from the human visual system

which has primitive features for detecting patterns in images in order to detect pat-

terns in speech. We use a two-dimensional time-frequency representation of sound

together with another biologically-inspired idea, that of Rank Order Coding (ROC).

ROC is a temporal coding technique which has been hypothesized as a possible de-

scription of how neurons code information. The information is distributed through a

large population of neurons and is represented by the relative timing of the neuronal

spikes. ROC has the advantages that it is easier to implement, it is less subject to

changes in intensity of the stimulus, and the information is available as soon as the

first spike arrives. Recent experimental studies on the auditory system of cats and

somatosensory system of humans show that ROC might be responsible for coding
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sensory information with only one spike per neuron [120]. ROC has been primarily

used for image processing applications [34,113], but it has also been used for speech

recognition. Rouat et al. compared a simple speech recognition prototype which

uses ROC with a conventional HMM system. They found that the ROC system did

surprisingly well compared to the HMM system [95].

Our work combines the idea of a two-dimensional image representation of sig-

nals, with the idea of rank order coding, in order to formulate the mechanism of

Rank order kernels. Rank order kernels operating on a two-dimensional image are

a form of invariant representation, which is robust to noise. We demonstrate this

robustness to noise by focusing on speech recognition experiments. The bio-inspired

aspects of our algorithm are the transformation of sound to a two-dimensional image

representation and the use of rank order coding.

1.5 Outline

This thesis presents a noise-robust approach to classification using rank order ker-

nels. We have chosen to focus on the problem of Automatic Speech Recognition

(ASR) because it is an important field of research and because the performance of

ASR systems is greatly influenced by noise. Our speech recognition experiments are

performed using a speech corpus which we have collected ourselves, and a set of

twenty publicly-available noise files. The isolated-word speech recognition system

we have developed in the current thesis is based on image similarity metrics which

require accurate endpoint detection of speech. For this reason, we also developed

a biologically-inspired noise-robust endpoint detection system which we use as a

pre-processing step.

The following is an outline of this thesis. Chapter 2 gives a detailed description of

the speech corpus we have created, and a description of the noise files used in our ex-

periments. Chapter 3 describes the Endpoint Detection System we have developed.

Chapter 4 is the core contribution of this thesis which describes the formulation of

Rank Order Kernels. The result is a novel image similarity metric. Chapter 5 applies

Rank Order Kernels to the problem of Automatic Speech Recognition and shows that

our method is robust to noise. Chapter 6 shows how the same Endpoint Detection

System and Rank Order Kernel approach can be used for two other applications.

Chapter 7 summarizes our work, talks about possible future research related to our
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work, and states the main contributions of this thesis.
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Chapter 2

Speech Data and Noise Data Used

In this chapter we give a detailed description of the data that we used for this

thesis. We created our own corpus of spoken isolated words which we used for our

experiments. In order to test the performance under noisy conditions we acquired a

set of 20 noise types which were publicly available.

2.1 Isolated Word Speech Corpus

We decided to create our own speech corpus because we did not find a freely-

available corpus suitable for our experiments. We needed a large set of isolated-

word recordings from a wide range of speakers. For this reason we recruited 15

male speakers and 15 female speakers. We chose 100 words which the speakers

were asked to utter into the microphone. It was required that each word was uttered

10 times, but not sequentially. In total therefore, we have 1000 recordings for each

speaker. Each recording had a duration of 2 seconds. The speaker initiated and

completed the utterance of the word within those 2 seconds. We created a Graphical

User Interface (GUI) which randomly presented one word at a time to the human

speaker. Figure 2.1 shows how this GUI looks. The data was recorded as part of an

undergraduate thesis [26]. Table 2.1 shows the 100 words we used in our recordings.

Table 2.2 shows the ages of the 30 speakers.

The recording environment was a small room, the walls of which were covered

with egg cartons to reduce reverberation. Figure 2.2 shows a photograph of the

computer used to perform the recordings in the room. The speakers were asked to

speak at a close distance to the microphone in order to increase the signal-to-noise
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Table 2.1: Our speech corpus of isolated word recordings consists of these 100 words.

Each word was uttered 10 times by each of 15 male and 15 female speakers.

1 add 26 four 51 no 76 silent

2 AM 27 fourteen 52 north 77 six

3 answer 28 front 53 now 78 sixteen

4 backward 29 go 54 off 79 sixty

5 bat 30 goodbye 55 OK 80 slower

6 buy 31 hello 56 on 81 sound

7 bye 32 high 57 one 82 south

8 cancel 33 higher 58 open 83 start

9 close 34 house 59 pause 84 stop

10 computer 35 hundred 60 play 85 switch

11 curtains 36 keyboard 61 PM 86 telephone

12 door 37 left 62 power 87 ten

13 down 38 lights 63 preserve 88 thirteen

14 east 39 low 64 pull 89 thirty

15 eight 40 lower 65 push 90 three

16 eighteen 41 mat 66 rear 91 TV

17 eighty 42 menu 67 remove 92 twelve

18 eleven 43 microphone 68 repeat 93 twenty

19 faster 44 monitor 69 reserve 94 two

20 fifteen 45 mouse 70 reverse 95 type

21 fifty 46 music 71 right 96 up

22 five 47 mute 72 screen 97 west

23 flamingo 48 nine 73 seven 98 window

24 forty 49 nineteen 74 seventeen 99 yes

25 forward 50 ninety 75 seventy 100 zero
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Table 2.2: The ages of the 15 male and 15 female speakers who were recruited for

our recordings. The recordings were taken during the year 2009, all under the same

recording conditions and with the same recording equipment.

Speaker Age Speaker Age

male01 14 female01 21

male02 17 female02 22

male03 24 female03 22

male04 20 female04 22

male05 23 female05 22

male06 23 female06 21

male07 22 female07 22

male08 22 female08 21

male09 19 female09 22

male10 24 female10 23

male11 19 female11 30

male12 22 female12 22

male13 40 female13 21

male14 31 female14 24

male15 23 female15 23
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Figure 2.1: A screenshot showing the Graphical User Interface used for recording

the words of our speech corpus. In this example, the speaker is asked to utter the

word “keyboard”. The recording duration is 2 seconds, after which, the waveform

of the recording is presented on the axis in the lower center. The controls on the

right can be used to start and stop the recording process, while the numbers on the

left side indicate the progress.
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Figure 2.2: A photograph of the recording room showing the computer and micro-

phone used for the recordings. The walls are covered with egg cartons to reduce

reverberation.
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ratio (SNR) of the recording. The speakers were also asked to not speak directly on

to the microphone in order to minimize the number of recordings with breathing

sounds and air puffs. In general, we instructed the speakers to not introduce any

extra unwanted noise. Even so, we found that a large number of our recordings

contained sound artifacts such as:

• breathing noises

• microphone clicks

• tongue/mouth sound when opening the mouth before talking

• chair sounds

• keyboard/mouse sounds

It is common for recordings to contain artifacts, as is mentioned in several pub-

lications [1,53,109]. Among the artifacts mentioned in these publications are hisses,

clicks, coughs, gulps, tongue clicks, lip-smacks, breaths, and microphone clicks. In

this thesis we term the recordings which do not contain artifacts as “clean” record-

ings, and those which do contain artifacts as “non-clean” recordings. We use both

clean and non-clean recordings in our experiments.

For some of our experiments, it was necessary to manually label some of the

recordings into “clean” and “non-clean” as well as to manually select the endpoints

of the spoken word in the recording. This was done by a human expert who manually

labeled the endpoints by visual inspection of the waveform, and by repeated listening

of the segmented waveform until the segmentation was satisfactory. This is similar

to the procedure carried out by Acero [3], but without using the spectrogram.

2.2 Noise types

We used a total of twenty noise types. Fifteen of them were obtained from the

NOISEX-92 [108, 121] database1. The other five are publicly-available noise types

1These were downloaded from http://spib.rice.edu/spib/select_noise.html where they

were available at the time of this writing.
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found online2. The noise files were used as added noise to our own speech record-

ings. For this reason, only 2 seconds of sound was required from each noise file.

From the noise files we downloaded, we decided to discard the first second of the

recording and to use the next two seconds of the file as the added noise.

Each noise type is described in the following paragraphs, with the help of figures.

For each noise type, the figures show the waveform, the power spectral density esti-

mate using Burg’s method, and the spectrogram representation of the noise. Autore-

gressive modeling can identify the frequencies for each noise type which have high

energy. Burg’s method is a way to estimate the autoregressive parameters. Several

methods are available to estimate an autoregressive model. The Yule-Walker method

is one such other method. Later in this thesis we will use the Levinson-Durbin algo-

rithm to solve the normal equations that arise from the least-squares formulation, in

order to create the spectrograms of spoken words. The various estimation methods

generally lead to similar results. The Yule-Walker method and least-squares method

estimate the autoregressive parameters directly. Burg’s method first estimates the

reflection coefficients and then the parameter estimates are determined using the

Levinson-Durbin algorithm.

Air conditioner

This type of noise is a recording from an air conditioner. It produces a low energy

noise with almost no variations. Most of the energy is concentrated below 2kHz.

This type of noise is useful for conducting experiments because it represents the type

of noise which is common in a quiet office environment. A graphical analysis can

be seen in Figure 2.3.

Speech babble

This noise is a recording from a canteen with 100 people speaking. There are

several conversations taking place. The conversations are mainly in the background,

without any legible speech in the foreground. This type of noise is useful to test if a

system is susceptible to an environment where there are many people talking in the

background. A graphical analysis can be seen in Figure 2.4.

2These were downloaded from http://www.partnersinrhyme.com/pir/PIRsfx.shtml where

they were available at the time of this writing.
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  (a) Waveform of noise type "Air conditioner"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.3: Analysis of the noise type “Air conditioner”. Most of the energy is below

2kHz.
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  (a) Waveform of noise type "speech babble"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.4: Analysis of the noise type “speech babble”. It shows the characteristics

of speech which has most of its energy below 4kHz, but also includes significant

information above 4kHz. The “banded” structure can also be seen which is a char-

acteristic of vowel sounds produced by a fundamental frequency and harmonics.
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  (a) Waveform of noise type "Buccaneer jet cockpit (190 knots)"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.5: Analysis of the noise type “Buccaneer jet cockpit at 190 knots”. The noise

covers all frequencies and there is a high energy region just below 3kHz.

Buccaneer jet cockpit at 190 knots

This noise type is a recording from the cockpit of a Buccaneer jet traveling at 190

knots. The jet was moving at an altitude of 1000 feet, with airbrakes out. There is a

characteristic sound with a frequency just below 3kHz which is varying with time.

A graphical analysis can be seen in Figure 2.5.

Buccaneer jet cockpit at 450 knots

This noise type is a recording from the cockpit of a Buccaneer jet traveling at 450

knots. The jet was moving at an altitude of 300 feet. A graphical analysis can be
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  (a) Waveform of noise type "Buccaneer jet cockpit (450 knots)"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.6: Analysis of the noise type “Buccaneer jet cockpit at 450 knots”. The noise

covers all frequencies.

seen in Figure 2.6.

Conference Room

This noise was recorded from an empty conference room. There is a uniform low

frequency sound. This noise is again useful for testing applications which will

operate in a quiet office environment. A graphical analysis can be seen in Figure 2.7.
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  (a) Waveform of noise type "Conference room"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.7: Analysis of the noise type “Conference Room”. Almost all the energy is

concentrated at low frequencies.
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  (a) Waveform of noise type "Intergalactic cruiser"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.8: Analysis of the noise type “Intergalactic Cruiser”. Almost all the energy

is concentrated at very low frequencies.

Intergalactic Cruiser

This is a simulated noise of an intergalactic space cruiser. It is a low-frequency

background noise. From the noise types we have used, this noise type is the one

with most of its energy in the very low frequencies. A graphical analysis can be seen

in Figure 2.8.

Destroyer Engine Room

This noise was recorded from the engine room of a destroyer type warship. Most of

the energy is below 3kHz. A graphical analysis can be seen in Figure 2.9.
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  (a) Waveform of noise type "Destroyer engine room"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.9: Analysis of the noise type “Destroyer Engine Room”. The noise covers all

frequencies but most of its energy is below 3kHz. There are characteristic frequency

peaks around 2kHz.
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Destroyer Operations Room

This noise was recorded from the operations room of a destroyer type warship.

During the recording there were people talking in the operations room. Therefore,

the recording also includes some background speech. A graphical analysis can be

seen in Figure 2.10.

F16 cockpit

This noise was recorded at the co-pilot’s seat in a two-seat F-16, traveling at a speed

of 500 knots, and an altitude of 300-600 feet. There are two frequency regions with

high energies. A graphical analysis can be seen in Figure 2.11.

Factory floor (1)

This noise was recorded in a factory near plate-cutting and electrical welding equip-

ment. Most of the energy is in the low frequencies, but there are also high frequencies

at certain points in time. A graphical analysis can be seen in Figure 2.12.

Factory floor (2)

This noise was recorded in a car production hall. A graphical analysis can be seen

in Figure 2.13.

HF radio channel

This is a recording of noise in an HF radio channel after demodulation. A graphical

analysis can be seen in Figure 2.14.

Jet airliner cabin

This is the noise one would hear while sitting in the passenger cabin of a commercial

airliner. It is mainly low energy noise caused by the jet engines. A graphical analysis

can be seen in Figure 2.15.

Leopard military vehicle

A recording from a Leopard military vehicle moving at a speed of 70 km/h. The

engine makes high energy low-frequency noise. A graphical analysis can be seen in
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  (a) Waveform of noise type "Destroyer operations room"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.10: Analysis of the noise type “Destroyer Operations Room”. Most of

the energy is concentrated in the low frequencies. This noise type includes both the

sound of the ship and of the people talking in the operations room. The characteristic

patterns of speech can be seen in the spectrogram.
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  (a) Waveform of noise type "F−16 cockpit"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.11: Analysis of the noise type “F16 cockpit”. This noise type covers all

frequencies but there are two frequency regions, around 3kHz and 4kHz, with very

high energy.
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  (a) Waveform of noise type "Factory floor (1)"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.12: Analysis of the noise type “Factory floor (1)”. Most of the energy is

in the low frequencies, but there are also high frequencies. It can be seen from the

spectrogram that at certain points in time there are sounds which span the whole

frequency range. These are sounds caused by the machinery in the factory.
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  (a) Waveform of noise type "Factory floor (2)"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.13: Analysis of the noise type “Factory floor (2)”. Most of the noise is in the

low frequencies. There are some regions with higher frequency sound as well.
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  (a) Waveform of noise type "HF channel"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.14: Analysis of the noise type “HF radio channel”. This is a uniformly

distributed type of noise, like white noise, but with the energy concentrated below

3kHz.
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  (a) Waveform of noise type "Jet airliner cabin"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.15: Analysis of the noise type “Jet airliner cabin”. Most of the noise is low

frequency noise.
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Figure 2.16.

M109 military tank

This noise was recorded from an M109 military tank which was moving at a speed of

30 km/h. There are some higher frequency sounds in addition to the low frequency

sounds of the engine. A graphical analysis can be seen in Figure 2.17.

Machine Gun

This is a recording of a .50 caliber gun fired repeatedly with short pauses in between.

In the 2-second recording which we used, the noise starts off with one short burst

of firing, followed by a pause, and then another short burst of firing. A graphical

analysis can be seen in Figure 2.18.

Car interior

This recording was made inside a Volvo 340 while driving at 120 km/h, in 4th gear,

on an asphalt road, in rainy conditions. This is a very useful recording for testing

speech recognition applications because such applications are usually required to

operate in the car while driving. A graphical analysis can be seen in Figure 2.19.

Street traffic

This is a recording made on a street with cars passing by. A graphical analysis can

be seen in Figure 2.20.

Pink

Pink noise has the characteristic that the power spectral density of the noise is

inversely proportional to the frequency. It is called pink noise because visible light

with the same frequency characteristics appears pink to the human eye. A graphical

analysis can be seen in Figure 2.21.

White

White noise has a flat power spectral density. The energy in one frequency band is

equal to the energy in any other frequency band. It is called white noise because
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  (a) Waveform of noise type "Leopard military vehicle"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.16: Analysis of the noise type “Leopard military vehicle”. Most of the noise

is in the low frequencies. Some variations can be seen in the very low frequencies.

These are caused by changes in the amount of power applied to the vehicle’s engines.
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  (a) Waveform of noise type "M109 military tank"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.17: Analysis of the noise type “M109 military tank”. Most of the energy is

in the low frequencies, but there are also some characteristic higher frequencies.
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  (a) Waveform of noise type "Machine gun"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.18: Analysis of the noise type “Machine Gun”. The machine gun is firing

two short bursts, with a pause in between. The sound from the bullet shots show a

very characteristic pattern.
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  (a) Waveform of noise type "Vehicle interior (120km/h)"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.19: Analysis of the noise type “Vehicle interior (Volvo car at 120 km/h)”.

Most of the energy is in the low frequencies.
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  (a) Waveform of noise type "Street traffic"
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.20: Analysis of the noise type “Street traffic”. Most of the energy is below

6kHz.
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  (a) Waveform of pink noise
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.21: Analysis of pink noise.
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  (a) Waveform of white noise
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  (b) Power Spectral Density Estimate using Burg’s method (order=15).

 

 

 

  (c) Spectrogram (Time window=30s, Overlap=90%)
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Figure 2.22: Analysis of white noise.

visible light with the same frequency characteristics appears white to the human

eye. A graphical analysis can be seen in Figure 2.22.
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Chapter 3

Endpoint Detection

3.1 Motivation

The accuracy and robustness of a speech recognition system can be greatly increased

by first separating the regions of the input sound signal into speech and non-speech

regions. This is especially important in the case of an isolated word recognition

system [80]. In the case of isolated word recognition, it is assumed that the input

sound signal consists of a single word. Only a certain region of this signal is the

actual spoken word. Before the start of the word, and after the end of the word, there

are non-speech regions which consist of silence and background noise. Endpoint

detection is the process of finding the start point and end point of a word in a signal,

and thus separating the speech region from the non-speech regions. Once endpoint

detection is performed, only the speech segment is used as input to the isolated word

speech recognition algorithm.

Assuming that endpoint detection is performed accurately, this segmentation

can be important for two reasons. The first reason is that the speech recognition

algorithm will not need to process non-speech regions. This makes the recognition

process faster by reducing computation, and also more accurate. The second reason

is that the words can be normalized in terms of time duration. It is evident that

when a word is spoken, the time duration of the word is not always the same,

even for the same exact word. The duration of the word can change based on the

human speaker uttering the word and it can also change based on the situation

under which the word is spoken. This variability in time duration can greatly

influence speech recognition systems which are based on pattern matching, which
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is the typical method used by isolated-word recognition systems [3]. One such

pattern-matching speech recognition system is the one presented in this thesis. For

our speech recognition system it is important that the duration of each word is

normalized. A time-warping operation can normalize the word to a specific time

duration. This normalization can only be achieved however, by first performing

accurate endpoint detection.

3.2 Background

Detecting the endpoints of a spoken word is not a trivial task, except in the cases

of extremely high signal-to-noise ratio [85]. It is a problem that has been studied

for several decades [56]. It is one of the most fundamental, important, and difficult

problems encountered in speech processing [17]. The large number of publications

which address this subject is simple evidence of the high level of difficulty that

this problem presents. To a newcomer in the field this may seem strange, because

humans have no trouble in distinguishing when a spoken word starts and stops,

even in the presence of a significant amount of noise. It still eludes us however how

to make a machine that can perform equally as well as humans in distinguishing

speech from non-speech. Robust endpoint detection is an unsolved problem in

speech processing [92] and it is an important area of speech processing research

because it affects numerous applications [130]. Such applications include robust

speech recognition, discontinuous transmission, real-time speech transmission on

the Internet, and combined noise reduction and echo cancellation schemes in the

context of telephony [90]. In a real-world evaluation of a discourse system which

used an endpoint detector and an isolated-word speech recognition system, it was

found that more than half of the recognition errors were due to errors of the endpoint

detection system [46].

Endpoint detection algorithms perform well under conditions of stationary noise

and high signal-to-noise ratios (above 30dB). When the signal-to-noise ratio (SNR) is

high, the energy of all the speech sounds is greater than the energy of the background

noise and so a simple energy threshold is sufficient in determining the regions of

speech [85]. However, once noise and other non-speech events, called “artifacts”, are

introduced then the performance of these algorithms drops significantly. Acoustic

background noise and sound artifacts, such as breathing noises before or after the
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word which can be wrongly classified as speech, are a problem in real-world sound

recordings. It is therefore of paramount importance that the issues of background

noise and artifacts are addressed if an endpoint detection algorithm will be used in

real-world situations. In such situations, noise can be introduced by the speaker, the

recording environment, and by the transmission system [53].

The required characteristics of an ideal endpoint detection system are [96]: re-

liability, robustness, accuracy, adaptation, simplicity, real-time processing, and no

a-priory knowledge of the noise. The most difficult of these to achieve is robustness

to noise [47].

3.2.1 Voiced and Unvoiced speech

For certain words it is very difficult to distinguish the endpoints. This is because

some phonemes, such as weak fricatives (“f”, “th”, “h”), weak plosive bursts (“p”,

“t”, “k”), and final nasals [85], have very low energy. This makes it difficult to

differentiate the spoken phoneme from background noise, especially considering

that such low-energy phonemes appear at the beginning or end of a word. Speech

can be divided into voiced and unvoiced speech. 1 A voiced sound is one which is

produced by the larynx. During the production of a voiced sound the vocal chords

are vibrating. All vowel sounds are voiced sounds. Voiced sounds also include some

nasals (e.g. “m”, “n”), certain plosives (e.g. “b”, “g”), and voiced fricatives (e.g. “v”,

“z”). Unvoiced sounds do not use the larynx. The vocal chords do not vibrate when

producing unvoiced sounds. These unvoiced sounds include the sibilants (e.g “s”,

“z”, “sh”), plosives (e.g. “t”, “k”, “p”), and unvoiced fricatives (e.g. “f”, “th”). One

of the most difficult problems in speech analysis is to correctly classify speech into

“voiced speech”, “unvoiced speech”, and “silence” [83].

3.2.2 Voice Activity Detection

The problem of endpoint detection is closely related to the problem of Voice Activity

Detection (VAD), which is also known as Speech Activity Detection (SAD). A VAD

system attempts to label regions of a sound signal as either “speech” or “non-speech”.

1A particularly enlightening demonstration of different phonetic sounds in American English,

complete with audio and video, can be found at http://www.uiowa.edu/˜acadtech/phonetics/

english/frameset.html
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The sound signal is broken up into small time frames (for example 10ms segments)

and each frame is then classified as being a frame with speech or a frame without

speech. A VAD system can be used as an endpoint detection system by either

applying simple rules, or by using more complex algorithms [73]. A simple rule can

be used in the case of a sound recording which consists of only one isolated spoken

word. In this case, a simple rule would be to mark the first frame for which the VAD

detects speech as the start of the word , and to mark the last frame for which the

VAD detects speech as the end of the word. VAD systems are especially important

in telecommunication applications where efficient coding of transmitted speech can

be achieved by applying silence compression during the non-speech segments of

the signal [9]. The benefits of this approach are apparent when one notes that in a

phone-based communication about 60% of the time the transmitted signal contains

just silence [90].

3.2.3 Summary of methods

Many methods have been tried in order to improve the accuracy and performance

of endpoint detection and voice activity detection. The long list of methods used

includes: energy thresholds [100, 127, 129], log energy [4], zero crossing rate [8,

48, 85], pitch detection [14], spectral analysis [66], least-square periodicity mea-

sures [115], cepstral analysis [39], Linear Predictive Coding coefficients [83], for-

mant shape [43], smoothed likelihood ratio [15], noise robust features and decision

rules [56, 66, 107, 129], hybrid detection [53], fusion [110], specialized order statistics

filters [92], rank-order statistics [17], autocorrelation functions [135], Mel-scale filter

banks [132], spectral entropy [44, 64, 103, 130], noise suppression [131], non-linear

likelihood-based projections derived from a Baysian classifier [88], time-frequency

features [47], long-term spectral envelope (LTSE) [91], Poincaré recurrence met-

ric [38], bispectrum [126], Hidden Markov Models [3], dynamic programming [57],

Support Vector Machines [1], multilayer neural networks [79], Higher Order Statis-

tics [36,71], a multiple observation likelihood ratio test [93], third-order spectra [70],

and change-point detection [57]. The large number of methods tried by researchers

over the past few decades is testament to the difficulty of the problem of endpoint

detection. Although many approaches have been proposed, the problem of accurate

noise-robust endpoint detection still remains unsolved. Some algorithms perform
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better than others, but they all have their shortcomings when the noise levels are

high. The earliest approaches using classical methods could only perform well at

low noise levels. The more recent approaches which employ time-frequency features

are better at handling noise.

Classic methods

Classic endpoint detection methods and voice activity detection (VAD) methods use

signal energy and zero crossing rate [48, 85]. The zero crossing rate (ZCR) is useful

for detecting unvoiced speech [23] because unvoiced speech has low energy but

high ZCR. When using signal energy and ZCR, the sound signal is divided into

small time windows, which are typically around 10ms. For each time window, the

energy of the signal is calculated. If the energy surpasses a preset threshold, then the

time window is classified as “speech” based on the assumption that speech regions

have a higher energy than the background noise. To accommodate varying noise

levels, the preset threshold can be recalculated for each analysis window if needed.

The ZCR uses a similar approach. The ZCR of noise is assumed to be significantly

larger than that of speech. A preset threshold can therefore be used based on the

ZCR. Both these assumptions for energy level and ZCR fail at low SNRs. Figure 3.1

taken from [104] shows the energy and ZCR for the spoken digits “zero six” under

non-noisy conditions. It can be seen from the figure that the ZCR is important for

detecting the “s” sound at the beginning of the word “six” which appears between

the 1200ms mark and 1400ms mark.

Classifier-based vs. Rule-based methods

Although there are many types of endpoint detection methods, they can be divided

into two broad categories [44,88]. One category is rule-based. In their great majority

these methods employ thresholds for making decisions. These methods extract fea-

tures from the sound signal and compare them to a threshold. The thresholds can

either be fixed, or they can be adaptive and change based on the input signal. It is im-

portant to note that although the threshold-based methods are not explicitly trained

on training data, the thresholds are still defined empirically after experimenting with

speech data. When using rule-based methods, a specific rule needs to be created

for each feature. So every time a new feature is introduced, a new rule has to also
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Figure 3.1: Waveform, energy and ZCR graphics for the words “zero-six”. (Figure

taken from [104])

be defined. This makes it difficult to have a large number of features when using

rule-based methods. The other category is classifier-based which rely on pattern-

matching. These methods also extract features, but in this case the features are used

in order to estimate model parameters. Training data is used to train a model to

recognize patterns. One disadvantage of classifier-based models, including models

used for speech recognition as well as those used for for endpoint detection, is that

there could be a mismatch between training conditions and testing conditions. If the

models are trained on noiseless data, and then tested on data with noise, and if the

features are not robust to noise, then the accuracy of the model drops significantly.

Such models are therefore not suitable for noisy environments [90]. Another concern

when using classifier-based models is the relatively large amounts of data needed

for training when a large number of features is used [88].

Explicit vs. Implicit methods

Another important way to differentiate between types of endpoint detection methods

is to separate them into explicit and implicit methods [53]. In the explicit methods, the
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endpoints are determined independently, without the need of a speech recognition

system. Therefore the endpoints are chosen explicitly, before any speech recognition

system is used. In contrast, the implicit methods use a speech recognition system to

determine the endpoints. As stated in [53], for implicit methods:

All (reasonable) combinations of beginning points and ending points are

used and the best output from the pattern similarity stage and decision

rule (lowest distance) is used to implicitly define the word endpoint as

well as the recognized word.

The literature suggests that implicit methods perform better than explicit meth-

ods [3]. Furthermore, hybrid methods have also been developed which use aspects

from both explicit and implicit methods. It has been shown that these hybrid meth-

ods provide the best endpoint detection performance [57]. One way to overcome

the poor accuracy of endpoint detection when performing speech recognition is to

eliminate explicit endpoint detection altogether [128]. Systems which use Hidden

Markov Models or Dynamic Time Warping, do not require explicit endpoints. They

only require that the speech to be recognized is completely contained within the

input signal.

3.2.4 Comparison of methods

The broad categories of classifier-based vs. rule-based methods and explicit vs. implicit

methods are useful for describing endpoint detection methods. To compare the

methods even further, more characteristics of endpoint detection methods can be

considered. Table 3.1 attempts to list these characteristics in a concise way, and also

provides references to publications associated with some of these characteristics.

3.2.5 Time-frequency features

In order to improve the performance of endpoint detection systems under noisy

conditions researchers have attempted to use a wide variety of features. Some of the

most successful endpoint detection systems use time-frequency features [47, 57, 88,

132].
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Table 3.1: Comparison of the characteristics of endpoint detection methods, with

references to examples.

Training required [1] No training required [17]

Use of thresholds [85] No use of thresholds [57]

Frame-by-frame decisions [8] Requires whole word before making

decision [47]

Requires calculation of statistics be-

fore start [103]

Does not require calculations before

start [85]

Computationally intensive [17] Low computational cost [8]

Estimation of background noise [57,

66]

No estimation of background noise

Pitch and frequency information

used [47, 88, 132]

No frequency information used [53,

85]

Noise-reducing filters used [80] No filtering [85]

Robust to noise [38, 66] Not robust to noise, or only robust to

one type of noise [17, 85]

Uses longer-term information [91] Uses shorter-term information [8]

Isolated word endpoint detection [57] Continuous speech endpoint detec-

tion [4]

Real-time processing [56, 88] Batch-mode processing [88]

Assumes an initial recording interval

(e.g. 100ms [85], 200ms [66]) of no

speech being present

Does not make any assumptions

about where the speech starts
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Time-frequency parameter

Junqua et al. [47] created a parameter they called the “time-frequency parameter”

(TF) which is based on the energy in the frequency band 250-3500 Hz. This fre-

quency band corresponds to the vowel portions of speech and is therefore useful for

distinguishing between speech and noise. With this simple approach they obtained

better results than previous methods which did not use frequency-based features. A

disadvantage of their method is that it needs to empirically determine the thresholds

and has ambiguous rules which are not easily determined by a human [132]. Also,

as we show later, better results can be obtained by using higher frequencies so that

non-vowel sounds can also be captured.

Adaptive Time-frequency parameter

To improve on the TF parameter method, Wu et al. [132] created the “adaptive time-

frequency parameter” (ATF) which uses multi-band spectrum analysis instead of

a single band. Their method is termed “adaptive” because it adaptively chooses

the proper frequency bands to use. They employ 20 frequency bands based on

the mel-scale frequency bank. An important observation in their experiments is

that when noise is added to a speech signal, some frequency bands are corrupted

more severely by the noise than others. For performing good endpoint detection it

is therefore important to ignore the frequency bands which have little word signal

information and to keep the useful frequency bands which contain more word signal

information. This is easily illustrated by an example. Figure 3.2 shows the smooth

and normalized frequency energies of a clean speech signal, for 20 frequency bands

and 100 time frames. Figure 3.3 shows the same speech signal with added white

noise at 10dB SNR. Comparing sub-figures (b) in these two figures it can be seen

that the fifth frequency band (top graph) retains word signal information after the

addition of white noise. Conversely, the eighteenth frequency band (bottom graph)

loses almost all word signal information when white noise is added. In this example

therefore, the fifth frequency band is useful in determining the endpoints of the

word whereas the eighteenth frequency band should be ignored. An additional

observation from this work is that as the energy of the background noise increases,

the number of useful frequency bands, which can be used for endpoint detection,

decreases.
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Figure 3.2: Multi-band spectrum analysis of a clean speech signal with length of

100 time frames. (a) Smoothed and normalized frequency energies, X(m, i), on 20

frequency bands. (b) Smoothed and normalized frequency energies, X(m, 5) and

X(m, 18), on the fifth and eighteenth frequency bands. (Figure taken from [132])
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Figure 3.3: Multi-band spectrum analysis of the speech signal in Figure 3.2 with

additive white noise of 10dB. (a) Smoothed and normalized frequency energies,

X(m, i), on 20 frequency bands. (b) Smoothed and normalized frequency energies,

X(m, 5) and X(m, 18), on the fifth and eighteenth frequency bands. (Figure taken

from [132])
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Spectral representations

Features used by speech recognition systems are typically based on spectral represen-

tations which can be derived from the short-term Fourier transform of the signal [88].

It is therefore reasonable to use such features for endpoint detection systems as well.

The short-time Fourier transform is the most commonly-used tool for spectral anal-

ysis. In speech processing, another commonly-used tool is Linear Predictive Coding

(LPC) which can be used to capture the spectral envelope of a speech signal. An

interesting extension to using spectral representations for endpoint detection is the

use of spectral entropy [103, 130].

Linear Predictive Coding

Linear predictive coding (LPC) is defined as a digital method for encoding an analog

signal in which a particular value is predicted by a linear function of the past values

of the signal [12]. A linear predictive filter calculates the value of the next sample by

a linear combination of the previous samples. LPC can be used to model speech as

an autoregressive process. The LPC model consists of a number of coefficients which

are the weights of the linear combination of previous samples. The order of the LPC

model defines the number of previous samples to use, and therefore also defines

the number of coefficients. The coefficients can be calculated using an optimization

algorithm which minimizes, in the least-squares sense, the error between the actual

signal samples and predicted signal samples. A higher order model, with more

coefficients, uses a larger number of previous samples for making predictions and

is therefore better at capturing rapidly-changing characteristics of the signal. A

lower order model on the other hand, can only capture characteristics which do not

change as rapidly. In our work we use the Levinson-Durbin algorithm to find the

coefficients.

Speech production in humans can be modeled as air being pushed from the lungs

(the source) and through the vocal tract (a filter) to generate speech. This is called the

source-filter model for sound production. The source-filter model is the model that is

used in linear predictive coding. It is based on the idea of separating the source from

the filter in the production of sound [12]. LPC attempts to find a set of parameters

to model the vocal tract during the production of speech.

Endpoint detection systems can segment a speech signal into time frames and
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perform LPC analysis on each frame. The LPC coefficients obtained for each frame

can then be used by endpoint detection systems as features [83]. Furthermore,

the frequency response of the linear predictive filter obtained after LPC analysis

can itself be used to create features. The order of the autoregressive model which

is chosen is very important. In speech processing, it is common to use an order

in the range from 8 to 14. In endpoint detection systems, it is common to use

8th-order [83, 128] and 10th-order [71] LPC analysis. Rabiner [83] used a distance

function which included the 8 LPC coefficients as features, in order to discriminate

each 15ms time frame of the signal into one of three classes: “silence”, “unvoiced

speech”, and “speech”. The distance was calculated on the training data by applying

a nearest-neighbor approach. The authors claim that an advantage of this technique

with LPC coefficients is that all spectral information of the signal is used. Although

LPC analysis has been used successfully in endpoint detection systems, there are

also some authors who claim that the linear prediction model is not well suited

for endpoint detection systems [57]. One claim is that LPC is quite successful

for modeling vowels, but not particularly suitable for modeling nasal sounds and

fricatives [132].

Spectral entropy

A very interesting approach which has been used successfully in endpoint detection

systems is one which calculates entropy [51] in the time-frequency domain. This is

referred to as spectral entropy [103]. First, the probability density function (pdf) of

the spectrum of each time frame of the signal is estimated. This can be achieved

by using the spectrogram of the sound signal. In [103], the spectrogram is derived

using the Fast Fourier Transform (FFT). The pdf can then be calculated by using

the frequency components of each frame. Following this, the spectral entropy is

measured based on the pdf. It was found that spectral entropy has a higher value in

the segments of the signal which contain speech than in segments without speech.

This remained true even in the presence of different types of noise at low SNRs. A

specific enhancement to the algorithm was made which places an upper and lower

bound on the pdf. The lower bound effectively removes noise which has almost

constant power spectral density values over all frequencies, like white noise. The

upper bound eliminates noise which is concentrated on specific frequency bands,
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such as a single-frequency sine wave.

Detecting patterns in the spectrogram

A recent publication on endpoint detection describes an algorithm which detects

speech based on the banded structure of the spectrogram of speech [130]. It attempts

to detect patterns in the spectrogram which represent speech. Figure 3.4 shows the

waveform and spectrogram of a mixed signal consisting of vehicle noise, multi-

talker babble noise, factory noise, speech, and white noise. The banded structure

only appears in the case of speech. Spectral entropy is a measure which attempts

to capture this banded structure in order to detect the parts of the spectrogram

which contain speech. Wu and Wang [130] claim that the spectral entropy alone

cannot adequately capture this banded structure, and so they devised the adaptive

band-partitioning spectral entropy (ABSE) parameter. This parameter separates

the spectrogram into 32 frequency bands and adaptively discards frequency bands

which are corrupted by noise. This is the same idea as the adaptive time-frequency

(ATF) parameter proposed by Wu et al. [132], described previously. Additionally, the

multi-band analysis can also enhance the banded nature of the speech spectrogram.

The most important advantage of the ABSE parameter is that it is robust to noise.

The banded structure in the speech spectrogram is itself robust to additive noise.

This is illustrated in Figure 3.5 where the waveforms and spectrograms of clean

speech and noisy speech are compared. Four kinds of noise (vehicle noise, factory

noise, white noise, and multi-talker babble noise) are added to the clean speech at

0dB. The banded structure of the speech can still be seen in all the spectrograms of

the noisy speech. In some cases (e.g. for white noise) the banded structure degrades

more than in other cases (e.g. for vehicle noise), but it is still present. Looking at this

example, one can speculate that an algorithm that captures the patterns of speech in

a spectrogram can lead to a noise-robust endpoint detection system.

3.3 Endpoint Detection System

In this section we describe a novel endpoint detection system for isolated words.

The first step converts the sound signal into a time-frequency representation called

a spectrogram. The spectrogram is generated using a low-order autoregressive

50

Alex
an

dro
s K

yri
ak

ide
s



Figure 3.4: The banded structure is a characteristic which only appears in the spec-

trogram for speech. (a) Mixed signal waveform of vehicle noise, multi-talker babble

noise, factory noise, speech, and white noise. (b) The spectrogram of the corre-

sponding signal obtained by using the short-time Fourier Transform. (Figure taken

from [130])
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Figure 3.5: The banded structure in the speech spectrogram is robust to noise. The

spectrogram on the left shows the banded structure present in clean speech. The rest

of the spectrograms show that this banded structure remains (although degraded

to some degree) even when various types of noise are added at an SNR of 0dB.

(a1) Waveform of clean speech. (b1) Waveform of speech with vehicle noise. (c1)

Waveform of speech with factory noise. (d1) Waveform of speech with white noise.

(e1) Waveform of speech with babble noise. (a2) Spectrogram of clean speech. (b2)

Spectrogram of speech with vehicle noise. (c2) Spectrogram of speech with factory

noise. (d2) Spectrogram of speech with white noise. (e2) Spectrogram of speech

with babble noise. (Figure taken from [130])
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model. Subsequently, by using a variance kernel to process the spectrogram, we

are able to detect regions in the spectrogram which have high local variance. These

high-variance regions correspond to speech. A threshold, which is automatically

calculated for each word, separates the high-variance regions from the low-variance

regions in order to separate speech from non-speech. Our experiments show that

this method is robust to noise even at low SNRs. We call our endpoint detection

system the Variance Kernel method.

The time-frequency representation of sound is analogous to the representation

used by the human auditory system. The cochlea in the human ear acts as a filter

bank which separates the incoming sound into different frequency bands [7]. The

magnitude of the excitation in each frequency band changes with time, depending

on the sound. The brain then processes this input by using both time and frequency

information. The spectrogram is a representation which includes both time and

frequency information.

3.3.1 Overview of methodology

When a sound signal containing speech is converted to a spectrogram, the regions

containing speech show some distinguishing patterns. This was illustrated in Sec-

tion 3.2.5. Our methodology attempts to capture these two-dimensional patterns.

We treat the spectrogram as an image and perform a transformation on the image

using a two-dimensional image filter. The image filter calculates the standard devi-

ation of the pixel values of each 5× 5 square area of the image. The resulting values,

after the filter is applied, are standard deviation values. Nevertheless, we choose to

call the resulting image the “variance image.”. As explained in a later section, using

standard deviation values instead of variance values aids in the calculation of the

automatic threshold.

The spectrogram image has high pixel intensity values for time-frequency loca-

tions with high energy. The variance image has high pixel values for regions of the

spectrogram which have high variance. Figure 3.6 shows an example of these trans-

formations. In the example shown in the figure, the spectrogram was created using a

256-point Short Time Fourier Transform (STFT). The sampling frequency of the input

signal shown in Figure 3.6 (a) is 8kHz. For the STFT, a window size of length 30ms

was used, with a 90% overlap between windows. The energy (E) was then converted
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to decibels to obtain the image pixel values (I) of the spectrogram (I = 10 log10 E) in

Figure 3.6 (b). This example uses the STFT with relatively short window sizes and

large overlap in order to create the spectrogram. This creates a spectrogram which

is easier for visualization by a human. This spectrogram however, is not well suited

for detecting the regions of speech using a 5×5 standard deviation filter (or variance

kernel). This is evident in the variance image shown in Figure 3.6 (c), which shows

the standard deviation values after the filter is applied to the spectrogram. The

high-variance regions in this variance image do not adequately capture the regions

of speech.

In our endpoint detection algorithm, we calculate the spectrogram using a fourth

order LPC filter, and we use longer time windows with less overlap. We have found

that this type of spectrogram is appropriate for detecting speech regions using a

variance kernel.

3.3.2 Description of Algorithm

In this section we describe our endpoint detection algorithm, the Variance Kernel

method, in detail. The algorithm consists of the following steps:

1. The input signal is first down-sampled to 16kHz if necessary, and then passed

through a high-pass filter.

2. A spectrogram is created using a 4th order LPC analysis filter. Frequencies

below 200Hz in the spectrogram are removed. The pixel values are converted

to decibels.

3. A variance image is created by applying a 5× 5 variance kernel on the spectro-

gram.

4. If the highest value in the variance image does not exceed a preset global

threshold, then the algorithm terminates here with the decision that no speech

is present in the signal. Otherwise, the algorithm decides that speech is present

in the signal and therefore continues to the next steps in order to set the

endpoints.

5. The variance image is converted to a gray-scale image and a threshold is

automatically calculated using Otsu’s method on the gray-scale image.

54

Alex
an

dro
s K

yri
ak

ide
s



100 200 300 400 500 600 700 800 900 1000

−5

0

5

Time (ms)

A
m

p
lit

u
d
e
 (

a
.u

.)
 

  (a) Waveform of the word "computer"

 

 

 

  (b) Spectrogram Image (324x129 pixels)

Time (ms)

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

154 309 463 617 772 926

620

1240

1860

2481

3101

3721

dB

−30

−20

−10

0

10

20

 

  (c) Variance Image (324x129 pixels)

Pixel index

P
ix

e
l 
in

d
e
x

 

 

50 100 150 200 250 300

20

40

60

80

100

120

Std. Dev.

1

2

3

4

5

6

7

8

Figure 3.6: Transformation of a sound signal, first to a spectrogram, and then to a

variance image. (a) The waveform of the word “computer” sampled at 8kHz. (b)

The spectrogram calculated using the STFT with a window size of 30ms and 90%

overlap between windows. (c) The variance image, calculated using a 5×5 standard

deviation image filter.
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6. The gray-scale image is converted to a binary image consisting of black and

white pixels, by using the automatic threshold calculated in the previous step.

7. Small isolated components in the binary image of area less than 25 pixels are

removed from the binary image. Narrow horizontal lines in the binary image

of width less than 10 pixels are also removed from the binary image.

8. The decision is made to place the first endpoint (beginning of word) at the

leftmost white pixel in the binary image, and the second endpoint (end of

word) at the rightmost white pixel in the binary image.

The flowchart in Figure 3.7 describes the endpoint detection algorithm. The next

few sections explain each step in detail.

Sampling Frequency

Most endpoint detection systems use a sampling frequency of 8kHz for the input

signal. When performing frequency analysis therefore, only frequencies below the

Nyquist frequency of 4kHz can be captured. In our experiments however, we have

found that certain phonemes contain energies above 4kHz. For example, the sibilants

(such as “s” and “z”) have a large proportion of their energy above 4kHz. This is

nicely illustrated in Figure 3.8 which shows the spectrogram of the word “six”. The

black dashed horizontal line marks the 4kHz frequency position. The high-energy

region at the center of the waveform is the vowel sound “i”. Most of the vowel’s

energy is concentrated below 4kHz. Conversely, it can be clearly seen that the

fricative “s” sounds at the beginning and end of the word “six” have most of their

energy above 4kHz. It is therefore useful to have frequency information above 4kHz

when performing endpoint detection in order to capture such phonemes. Voiced

speech has most of its energy collected in the low frequencies, whereas most energy

of unvoiced speech is found in the higher frequencies [86]. For this reason, we have

decided to use a sampling frequency of 16kHz for our endpoint detection system

so that frequency information up to 8kHz is available. Nevertheless, our endpoint

detection algorithm still performs well if the lower sampling rate of 8kHz is used.

At this lower sampling frequency however, there is a slight drop in performance.
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Input Signal

(sampled at 16kHz)

Frequency pre-emphasis with high-pass

filter

Create spectrogram using fourth order LPC

analysis

Remove frequencies below 200Hz and

convert pixel values to decibels

Spectrogram Image

Variance kernel operation

Variance Image

Maximum

variance

exceeds global

threshold?

Convert to gray-scale image

Calculate automatic threshold using Otsu’s

method

Apply automatic threshold to obtain binary

image

Remove small binary objects

No speech detected

Binary Image

Mark endpoints using binary image

Endpoint detection complete

yes

no

Figure 3.7: A flowchart describing the endpoint detection system.
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  (a) Waveform of the word "six"

 

 

 

  (b) Spectrogram Image (241x129 pixels)
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Figure 3.8: The spectrogram of the word “six”. It reveals that the consonant sounds of

the word have a large proportion of their energy above the frequency of 4kHz. (a) The

waveform of the word “six” sampled at 16kHz. (b) The spectrogram calculated using

the STFT with 30ms time window and 90% overlap. The black dashed horizontal

line marks the 4kHz frequency. It is evident that there are two regions above the

4kHz line which have high energy, at the beginning and end of the word.
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Frequency pre-emphasis

It is common for speech processing systems to use a frequency pre-emphasis filter

as an initial step. This high-pass filter restrains the low frequencies of the signal and

increases the accuracy of the system. The filter also helps to emphasize the high

frequencies present in fricatives [3]. The idea of frequency pre-emphasis is related

to the physiology of human hearing. The human ear is insensitive to low frequency

signals, but is good at capturing the higher frequency properties of speech [80].

In our endpoint detection system we used a digital filter with transfer function

H(z) = 1 − 0.9375z−1.

Spectrogram

In order for our method to be robust to noise we used a time-frequency represen-

tation which is not commonly used in the literature. The most common way of

creating a spectrogram is by using the short-time Fourier Transform. After extensive

experimentation however, we have found that for the purpose of endpoint detection,

spectrogram estimation using a fourth order Autoregressive (AR) model produces

superior results. This AR model utilizes a Linear Predictive Coding (LPC) filter to

obtain the parameters which are then used to create the spectrogram. The spectro-

gram can then be used in conjunction with a variance kernel to greatly improve the

noise robustness of the endpoint detector. Although typically a 10th or 14th order

AR model is used for the vocal tract, the advantage of using a lower order AR model

is that it captures the essential endpoint and energy characteristics of speech. This

is consistent with studies in voicing detection in early LPC systems.

Our decision to use a 4th order LPC model was made after experimentation.

We tried LPC models of various orders, ranging from 2 to 50, and we obtained the

best results with a fourth order model. The use of fourth order LPC models can be

found in several publications. They have been used for the cancellation of side-tone

oscillations in mobile phones [98] and for fixed-point implementations in speech

coding [13]. Spectral moments (mean, variance, skewness, and kurtosis) based

either on LPC or DFT spectra have been used with some success to classify acoustic

transients, voiceless speech, and voiced speech [78]. In specific applications using

the spectral moments approach, good results were obtained with fourth order LPC

models [78]. An important algorithm which uses a 4th order LPC model is a pitch
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detector known by the name of “Simple Inverse Filtering Tracking” (SIFT) [65, 81].

The authors state that the success of the SIFT method is strongly dependent upon

a proper choice of the number of filter coefficients, which is defined by the order of

the LPC model. Although the use of fourth order LPC models is not new, our idea to

perform isolated word endpoint detection using a spectrogram generated by fourth

order LPC analysis is a novel one.

Another distinguishing feature of our algorithm is that it uses relatively long

window sizes for creating the spectrogram. We use a window size of 100ms with

a 50% overlap, multiplied by a Hamming window. The input signal is therefore

segmented into time frames of length 100ms. Each time frame corresponds to one

column of the spectrogram image. To calculate the pixel values of each column of the

spectrogram image, a 4th-order LPC analysis is performed on each time frame so that

a fourth order digital filter is obtained. The amplitudes of the frequency response

of this filter at different frequencies constitute the pixel values of the spectrogram.

We chose to divide the frequency response into 129 different frequencies, on a linear

scale. Consequently, each column of the spectrogram has 129 pixels.

Once the spectrogram is obtained, two operations are carried out on the image.

The first operation removes the rows of the spectrogram which correspond to fre-

quencies below 200Hz. This is done to remove any DC, low frequency hum, or

very low frequency noise [83]. Such low frequency noise can be seen at the bottom

part of the spectrogram images in Figure 3.6 (b) and Figure 3.8 (b). After this first

operation, the number of rows in the spectrogram is reduced from 129 to 126. The

second operation transforms the image so that the new pixel values are ten times

the log magnitude of the original pixel values: Inew = 10 log10 Iorig. This step, from

input waveform to spectrogram, can be seen in Figure 3.9. Sub-figure (a) shows the

input waveform. Sub-figure (b) shows the spectrogram image obtained after the

operations described above.

Variance Image

The variance image is calculated by processing the spectrogram using a 5×5 standard

deviation image filter. This image filter takes as input each of the 5 × 5 square areas

in the spectrogram. The output value of the filter is the standard deviation of the

25 pixel values covered by each square area. The location of the center pixel of each
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5 × 5 area in the spectrogram defines the location of the pixel in the variance image

which will acquire the output value of each filter operation. All possible 5×5 squares

in the spectrogram are processed, with maximum possible overlap. For the pixels

on the borders of the spectrogram image, symmetric padding is used. That is, the

values of padding pixels are a mirror reflection of the border pixels. In this way, the

spectrogram image and the variance image have exactly the same size.

The standard deviation image filter can also be called a kernel because it operates

on a fixed-size two-dimensional pixel area. Although the actual operation calculates

the standard deviation, we choose to call it a variance kernel, because it sounds more

intuitive. It captures local regions of the spectrogram in which the pixel values vary

a great deal.

The final choice for the size of the kernel was made after experimentation with

several kernel sizes. Both square and rectangular kernels were tried, with either

dimension ranging from 3 to 31 pixels. Only odd numbers were used for each

dimension so that the center pixel of the kernel could be easily defined. In our

experiments we found that the 5 × 5 kernel worked the best. However, we cannot

claim that this size is the optimal for all situations. We have not carried out extensive

testing as far as the kernel size is concerned. For this specific methodology it was

found that smaller size kernels work better than larger ones.

The kernel covers 5 pixels in the horizontal direction, which represents time, and

5 pixels in the vertical direction, which represents frequency. In this specific case

therefore, based on the parameters used to calculate the spectrogram, each 5 × 5

kernel covers a time region of 250ms and a frequency region of 310Hz. The benefits

of using of a relatively long time region for separating speech from non-speech has

also been reported by others [91].

The variance image shown in Figure 3.9 (c) was obtained after processing the

spectrogram as described above. The pixel values displayed are standard devia-

tion values (σ). The regions of the spectrogram which contain speech have higher

variance than the non-speech regions.

Decision on the presence of speech

Before calculating the endpoints, our endpoint detection system makes a decision on

whether speech is present in the complete input sound signal or not. There are two
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 (a) Waveform of a sound sample which contains the word "microphone"
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 (d) Binary Image (39x126 pixels)
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.9: The step-by-step procedure of our endpoint detection system. (a) The

input sound signal sampled at 16kHz which contains the word “microphone”. (b)

The spectrogram image calculated using fourth order LPC analysis. (c) The variance

image calculated using a 5 × 5 standard deviation kernel. (d) The binary image

obtained after automatic thresholding using Otsu’s method. The endpoints of the

word are the leftmost white pixel and the rightmost white pixel in this image. (e) The

endpoints of the word calculated using our endpoint detection system are marked

with the red lines. The green lines are for reference and they indicate the correct

endpoints which were manually selected by a human.
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cases where this is useful. The first case is when the input sound does not actually

contain any speech. The second case is when the input does contain speech, but at the

same time has a high level of noise. High levels of noise can mask the speech making

it more difficult to discern from the waveform, spectrogram, and variance image. For

each input instance therefore, it is appropriate to make a decision on whether there

is speech present or not. As we are dealing with isolated word endpoint detection,

an input instance is one complete sound recording. In our experiments for example,

each input instance consisted of 2 seconds of sound.

If the algorithm decides that there is no speech present in an input that does

actually contain speech, then this is considered to be a “miss”. In some cases, when

the noise levels are high, it is more desirable to have a “miss” instead of detecting

speech and marking it with endpoints which are very far from being correct. That

is, in some applications it is sometimes better to have a “miss” than to be “wrong”.

The decision on the presence of speech is based on the maximum standard

deviation value in the variance image and a pre-set global threshold. If the maximum

value in the variance image is above the global threshold, then the decision is made

that speech is present in the input signal. If the maximum value in the variance image

is equal to or below the global threshold, then the decision is made that no speech

is present in the input signal. We call it a global threshold because it is pre-set to a

specific value and this same value applies to all input signals. This is in contrast to the

automatic threshold described in the next section which is automatically calculated

separately for each input signal, and therefore it changes from one input instance to

the next.

The global threshold can be tweaked in order to balance between the number

of wrong endpoint decisions and the number of missed words. A higher global

threshold decreases the endpoint detection errors, but increases the miss rate. A

lower global threshold decreases the miss rate, but increases the number of endpoint

errors. A lower global threshold however, can also result in more correct endpoint

detections for some words which would have otherwise been considered a “miss”

if the global threshold was set higher. The maximum pixel value in the generated

spectrograms typically differs from the minimum pixel value by approximately

50dB. Through experimentation we have found that a value of σ = 10 is a good

global threshold in order to have a satisfactory balance between the miss rate and

the error rate. A lower global threshold can be used if the miss rate needs to be

63

Alex
an

dro
s K

yri
ak

ide
s



reduced. Figure 3.11 shows an example of a noisy input signal being processed

by our endpoint detection system. The signal contains added white noise at an

SNR of 0dB. The calculated endpoints shown in sub-figure (e) are considered correct

because they are very close to the manually selected endpoints. Looking at the

variance image however in sub-figure (c), one can see that the maximum pixel value

is σ = 6.11. If the global threshold was set to σ = 10, then this instance would have

been classified as a “miss” because the decision would have been that no speech is

present in this input signal, and therefore no endpoints would have been calculated.

In contrast, if a global threshold of σ = 5 was used, then the endpoints of this word

would have been found correctly.

Automatic Threshold

The variance image is converted to a binary image using an automatically calculated

threshold. In order to calculate the threshold, the values in the variance image are

linearly scaled so that they fall in the range from 0 to 1. This is achieved by finding the

minimum and maximum values in the variance image, σmin and σmax, respectively.

The value of σmin is subtracted from each pixel of the variance image, and the result

is divided by σrange = σmax − σmin. The threshold is then calculated on this gray-scale

image using Otsu’s method [76].

Otsu’s method finds a threshold that maximizes the inter-class variance. One

class is formed by the values below the threshold and the other class by the values

above the threshold. Maximizing the inter-class variance is the same as minimizing

the intra-class variance. Intuitively, this method finds a threshold which separates

the pixel values into two groups which are as “compact” as possible, and as far

apart from each other as possible. We call this the automatic threshold to distinguish

it from the global threshold which was described in the previous section. The

automatic threshold is used to transform the gray-scale image to a binary image. All

pixels which fall below the threshold are converted to “black” pixels (value=0), and

pixels which fall above the threshold are converted to “white” pixels (value=1). An

example of such a binary image is seen in Figure 3.9 (d).

The values in the variance image that we use are standard deviation values. If

we had used variance values in the variance image, converted them to gray-scale,

and carried out Otsu’s method, the result would change. A different binary image
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would be obtained because the automatic threshold would change. We have found

that using standard deviation values instead of variance values yields better results.

The following equations describe the steps to go from the spectrogram image

with symmetric padding (S̃), to the variance image (V) , to the binary image (B). T

is the automatic threshold calculated by Otsu’s method.

V(p, q) =

√√√√
1

25

p+2∑
i=p−2

q+2∑
j=q−2

(S̃(i, j) − µ)2 (3.1)

µ =
1

25

p+2∑
i=p−2

q+2∑
j=q−2

S̃(i, j) (3.2)

B(p, q) =


1, if V(p, q) > T

0, if V(p, q) < T
(3.3)

Removal of binary objects

Some input signals contain sound artifacts which can cause the endpoint detection

system to make mistakes. These artifacts manifest themselves in the binary image

as binary objects. A binary object is a collection of connected white pixels. The

connectivity can be defined based on some sort of neighborhood. In order to remove

unwanted binary objects we perform two operations.

The first operation removes horizontal lines which have a height less than 10

pixels. This can be useful for removing any isolated constant-frequency noises, such

as a sine wave. A sine wave with a single frequency will show up as a horizontal

line in the spectrogram, variance image, and binary image. In the binary image, it

will have a height less than 10 pixels, and so it will be removed. The binary object

connectivity in this case is defined by the neighborhood in the horizontal direction

only.

The second operation removes binary objects using a two-dimensional eight-

connected neighborhood. It removes all binary objects which have an area less than

25 pixels.

Both these operations are demonstrated in the example shown in Figure 3.10. The

input signal contains some sound artifacts before and after the spoken word “eight”.

The spectrogram image and variance image are not shown in the figure. The binary

image obtained immediately after the automatic thresholding of the variance image
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is shown in sub-figure (b). There are three artifacts marked as A1, A2, and A3 in

the image. By performing the binary object operations described above, these three

artifacts are removed. The two artifacts marked A1 and A2 have a pixel height

less than 10 pixels. Therefore they are removed by the first binary object removal

operation. The artifact marked A3 has a height greater than 10 pixels, but its total

area is less than 25 pixels. It is therefore removed by the second binary object removal

operation. Sub-figure (c) shows the binary image after the binary objects have been

removed. It is worth noting that the binary image shown previously in Figure 3.9

(d) was obtained after the removal of the binary objects.

Establishing the endpoints

The endpoints of the word are determined directly from the binary image. The

column pixel index (c1) of the leftmost white pixel in the binary image determines

the first endpoint, which is the start of the word. The column pixel index (c2) of the

rightmost white pixel in the binary image determines the second endpoint, which

is the end of the word. If the digitally sampled waveform of the input signal has

a length of N time samples, and the binary image has a width of C pixels, then the

sample index of the first endpoint is n1 = dN(c1/C)e, and the sample index of the

second endpoint is n2 = bN(c2/C)c. It is important to note that each pixel in the

spectrogram represents 50ms of time in the horizontal direction. This is also true

in the binary image. Therefore, the endpoint detection algorithm has an endpoint

decision resolution of 50ms. In Figure 3.9 (d), the binary image is shown, and in

sub-figure (e) the endpoints calculated as described are marked with red lines. The

smaller green lines are for reference and they show the correct endpoints which

were manually selected. The automatically calculated endpoints are very close to

the manually selected endpoints. In the example in Figure 3.10, it is evident that

the binary object removal operations, described before, significantly improved the

detection of the endpoints of the word. In sub-figure (d), the dashed vertical red lines

indicate where the endpoints would have been placed if the binary objects were not

removed. The solid red vertical lines show where the endpoints are placed after the

binary objects are removed. They are much closer to the correct manually-selected

endpoints which are marked with green vertical lines.
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  (a) Waveform of "non−clean" sound sample containing the word "eight"

 

  (b) Binary Image with artifacts
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  (d) Calculated endpoints before and after artifact removal

A1

A2

 A3

Figure 3.10: An example of how the removal of binary objects improves endpoint

detection. (a) The waveform of a sound sample which contains the word “eight”.

This sound sample is non-clean. It contains “artifacts” before and after the word. (b)

The binary image obtained after automatic thresholding of the spectrogram variance

image (not shown). This binary image is before the removal of binary objects. The

image shows three artifacts: A1, A2, and A3. (c) The binary image after removal of

the binary objects. Artifacts A1 and A2 were removed by the rule which removes

binary objects which have a pixel height less than 10 pixels. Artifact A3 was removed

by the rule which removes isolated binary objects of pixel area less than 25 pixels. (d)

The waveform showing the endpoints which would have been calculated if binary

object removal was not performed (dashed red lines), and the actual endpoints

calculated after binary object removal (solid red lines). The green lines show the

manually selected endpoints, for reference.
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3.3.3 Characteristics of the algorithm

The isolated-word endpoint detection system we have developed can be character-

ized as an explicit rule-based system. It is explicit because it calculates the endpoints

of the word without the need to use a speech recognition system to verify the end-

points. It is rule-based because there is no classification model involved and no

training is needed. The system uses a set of rules, based on thresholds, to determine

the position of the endpoints. Two thresholds are used. One threshold is the global

threshold which is pre-set by the user. It is not difficult to set this threshold to a value

which is appropriate for the application at hand. The value of the global threshold

can be selected empirically in order to achieve the desired balance between miss rate

and error rate. The other threshold is the automatic threshold which adapts itself to

each input instance without any user intervention.

Referring to the list of characteristics in Table 3.1, we can compare our endpoint

detection system, which we call the Variance Kernel method, to those implemented

by others. An important feature of our endpoint detection implementation is that it

requires the whole recording to be available in order to make a decision. It does not

make a decision on a frame-by-frame basis. The spectrogram is calculated on a frame-

by-frame basis, but the automatic threshold operation requires the whole recording.

The use of frequency information is a particularly important characteristic of the

system. This information is made available by the spectrogram representation. Also,

by using a relatively wide kernel, the algorithm captures longer-term information in

the sound, which has proved to be advantageous.

There is no explicit calculation of the statistics or nature of the background noise.

The algorithm can proceed in the same way irrespective of the type of noise. This

allows it to perform well under many types of noise conditions. Also, it does not

require an initial period of non-speech “silence” at the beginning of the recording.

The algorithm in its current implementation works in batch mode and not in

real-time. It would be possible however, to make adjustments so that it works in

real-time.

Computational cost

There are four operations in this endpoint detection system which define the com-

putational complexity of the overall system. They are the calculation of the spec-
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trogram, the application of the variance kernel, the calculation of the automatic

threshold, and the operation which removes the binary objects. The main compu-

tational cost is due to the spectrogram calculation. The spectrogram calculation

constitutes about 87% of the total computational cost. The variance kernel trans-

formation takes about 3%, the automatic threshold calculation about 2%, and the

binary object removal operation about 8%. The performance of the system, in terms

of time, can therefore be improved if the time to perform the spectrogram calculation

is reduced. The spectrogram calculation can be performed in a parallel fashion. The

above measurements were made using a spectrogram calculation which was per-

formed sequentially. In a parallel implementation, each column of the spectrogram

can be independently calculated. A separate parallel process can be instantiated to

compute each column. This can lead to a speed increase of a factor approximately

equal to the number of columns in the spectrogram. In our examples, the spectro-

grams have 39 columns. The spectrogram calculation is greatly dependent on LPC

analysis. We therefore believe that by using optimized LPC analysis algorithms, an

even greater improvement can be made to the speed of the overall system.

Robustness to noise

The most significant advantage of this endpoint detection system is its robustness to

noise. The results presented in the following sections support this claim. Addition-

ally, a few illustrative examples can emphasize this point. In Figure 3.11 an example

is presented where a sound sample containing the word “microphone” is processed

by the endpoint detection system. The recording is corrupted with additive white

noise at an SNR of 0dB. The high level of noise can be seen in the waveform in

sub-figure (a). The frequency pre-emphasis step, accentuates the high frequencies.

Consequently, and because white noise contains energy in all the frequencies, the

pixels in the upper part of the spectrogram image have higher values than the ones

in the lower part of the image in sub-figure (b). The variance kernel manages to

select the region which contains speech because the variance in the non-speech re-

gions is relatively low. Even if the pixels in the upper part of the spectrogram have

high energies, the image representation has low variance due to the uniformity of

the noise. This allows the variance kernel to disregard the noise. It is important to

note however that the highest pixel value in the variance image in sub-figure (c) is
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σ = 6.11. If the pre-set global threshold was chosen to be above this value, then for

this particular recording, the endpoint algorithm would decide that no speech was

present. If the global threshold was set to a value below 6.11 however, the endpoints

selected by the system would be very close to the correct ones selected manually by

a human. This is seen in sub-figure (e) where the waveform is shown without the

added noise so that it is easier to visualize the endpoints. The red lines indicate the

endpoints detected by the system. The green lines indicate the correct endpoints.

The word is only slightly clipped at the beginning by about 10ms, and at the end by

about 40ms.

A word which poses particular difficulty for endpoint detection systems is the

word “six”. Significant endpoint detection errors are most likely seen for this word

because it begins and ends with high frequency, low energy, noise-like sounds [128].

The word “six” starts and ends with the fricative sound “s”. This makes it difficult

to discern the ends of the word in the presence of noise. Wilpon and Rabiner [128]

looked at various examples of the word “six” and found that in general their endpoint

detection system did not detect the ending fricative of the word and that only a small

portion of the beginning fricative was detected.

There is criticism in the literature that LPC coefficients are not suitable for mod-

eling fricative sounds [132] and that LPC does not work well in adverse environ-

ments [130] . Nevertheless, our approach of using LPC analysis to create a spectro-

gram and subsequent processing by a variance kernel has proved to be a suitable

approach for detecting fricative sounds, even under noisy conditions. To demon-

strate this, we present examples using two sound recordings, each containing the

word “six”. White noise is added to one recording at an SNR of 10dB and to the

other recording at an SNR of 0dB. Figure 3.12 and Figure 3.13 reveal the effectiveness

of the algorithm in these two cases. Sub-figure (e) in both figures shows with red

lines the endpoints calculated by the algorithm. The green lines indicate the posi-

tion of the manually selected endpoints. In both cases, the automatically-detected

endpoints are very close to the manually-selected ones, showing that the endpoints

of the word “six” were found correctly even when a high level of noise is present.

In the case where the SNR is 0dB, the energy level of the noise is so high that if one

just looks at the waveform representation of the input signal (sub-figure (a)), only

the high-energy vowel sound in the middle of the word can be distinguished from

the noise.
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 (a) Waveform of sound containing the word "microphone", with added white noise (SNR=0dB)
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.11: The same procedure as the one shown in Figure 3.9, but this time

with a different sound sample. In this example, the sound is corrupted with added

white noise at an SNR of 0dB. The spectrogram in sub-figure (b) has more energy

in the high frequencies because of the high-pass filter which was applied before the

spectrogram was generated. The variance image in sub-figure (c) shows that the

highest pixel value in the image is σ = 6.11. Consequently, if the global threshold

was set above this value, then the word in this sound sample would not be detected.

In sub-figure (e) the manually selected endpoints are shown in green for reference.

71

Alex
an

dro
s K

yri
ak

ide
s



200 400 600 800 1000 1200 1400 1600 1800 2000

−10

0

10

Time (ms)

A
m

p
lit

u
d

e
 (

a
.u

.)

 (a) Waveform of sound containing the word "six", with added white noise (SNR=10dB)

 

 

 (b) Spectrogram Image (39x126 pixels)
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.12: A sound sample containing the spoken word “six” corrupted with white

noise with an SNR of 10dB. The endpoint detection system adequately captures the

fricative sounds at the beginning and end of the word. As a result it detects the

endpoints of the word correctly.
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 (a) Waveform of sound containing the word "six", with added white noise (SNR=0dB)

 

 

 (b) Spectrogram Image (39x126 pixels)
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.13: A sound sample containing the spoken word “six” corrupted with white

noise with an SNR of 0dB. The endpoint detection system adequately captures the

fricative sounds at the beginning and end of the word. As a result it detects the

endpoints of the word correctly.
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Robustness to amplitude scaling

In real-world applications, different input signals can have different intensities.

Some endpoint detection systems which use energy-based thresholds are sensitive

to changes in the overall intensity of the input signal. If an input signal has a higher

overall energy, then more of the signal is classified as “speech”. This is because more

of the signal will be above the energy threshold. This can lead to false detections. A

greater number of non-speech frames will be wrongly classified as speech frames.

When testing endpoint detection systems, one can simply scale the amplitude

of the input signal by a certain factor in order to see how the system behaves

in such situations. With some endpoint detection systems, scaling the amplitude

up by a certain factor causes most of the input signal to be classified as speech.

Correspondingly, scaling the amplitude down by a certain factor causes most of the

input signal to be classified as non-speech.

In batch systems, which process one input signal at a time, the problem of having

input signals with inconsistent intensities can be solved by normalization. The

energy of the input signal or the maximum amplitude of the signal can be normalized

to a certain value before the signal is presented to the endpoint detection system.

It is still an issue however, to select the normalization parameters which are most

appropriate for the endpoint detection system at hand.

One advantage of the endpoint detection system we have presented, is that it is

unaffected by amplitude scaling. When the amplitude of the input signal is scaled up,

the pixel values of the spectrogram image increase because more energy is present

in the signal. When the amplitude is scaled down, the values of the spectrogram

decrease. The variance image however, remains the same in both cases.

In a sound signal, if the amplitude is scaled by a factor of C then the energy is

multiplied by a factor of C2. Spectral energy is also multiplied by C2. After LPC

analysis therefore, the values obtained for the two-dimensional time-frequency rep-

resentation are multiplied by C2 because the pixel values represent spectral energy.

These pixel intensity values (I) are then converted to decibels by taking the log to

the base 10 and multiplying by 10. The log transformation means that a multiplica-

tive change becomes an additive change. So the multiplication of the energy by C2

means that a constant value is added to each pixel value in the final spectrogram:

10 log10(C2I) = 10 log10(C2) + 10 log10(I). The variance of a set of values does not
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change if the same constant is added to all the values. And so the variance of each

pixel area in the final spectrogram does not change when the amplitude of the input

signal is multiplied by a constant factor.

In the figures we have presented until now, which show the endpoint detection

system in action, we have arbitrarily chosen to normalize the input signal so that

its RMS value is 1. One such figure is Figure 3.9. If the amplitude of the same

input signal in that figure is scaled up or down by a certain factor, the result of the

endpoint detection decision will not change. This can be seen in Figure 3.14 where

the amplitude is scaled up by a factor of 100, and in Figure 3.15 where the amplitude

is scaled down by a factor of 100.

3.4 Evaluation of Endpoint Detection

An endpoint detection system can be evaluated by running tests, using several in-

puts, in order to measure performance. There are two reasonable ways of evaluating

the performance of an endpoint detector [128].

3.4.1 Evaluation by using a speech recognition system

The first way to evaluate an endpoint detection system is by initially performing

endpoint detection and subsequently measuring the recognition accuracy of a speech

recognition system. The detected endpoints are used to decide which part of the

sound signal is passed as input to the speech recognition system. The assumption

is that the speech recognition accuracy will be higher when the endpoint detection

accuracy is higher. The accuracy of the speech recognition system can therefore be

used as an indication of the performance of the endpoint detection system.

It can be argued that the reason for performing endpoint detection is so that

it can ultimately improve speech recognition accuracy. With this reasoning, the

evaluation of an endpoint detection system using speech recognition accuracy is

more relevant. It should be noted however, that in some cases, even gross errors

in endpoint locations do not necessarily lead to speech recognition errors [128].

Some speech recognition systems can still perform well even when the endpoints

are not correct. Even if a small segment of the word is passed to such a speech

recognizer, it can still recognize the word correctly. Furthermore, it could be the case

75

Alex
an

dro
s K

yri
ak

ide
s



200 400 600 800 1000 1200 1400 1600 1800 2000

−1000

−500

0

500

1000

Time (ms)

A
m

p
lit

u
d

e
 (

a
.u

.)

 (a) Waveform of a sound sample which contains the word "microphone"
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.14: The endpoint detection system is robust to amplitude scaling. In this

example, the input signal is the same as the one in Figure 3.9, but with the amplitude

scaled up by a factor of 100. The values in the spectrogram image have increased, but

the values in the variance image have remained the same. Therefore, the endpoint

detection decision does not change.
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 (a) Waveform of a sound sample which contains the word "microphone"
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 (e) The automatically calculated endpoints (red) and the manually selected endpoints (green)

 

 

Figure 3.15: The endpoint detection system is robust to amplitude scaling. In this

example, the input signal is the same as the one in Figure 3.9, but with the am-

plitude scaled down by a factor of 100. The values in the spectrogram image have

decreased, but the values in the variance image have remained the same. Therefore,

the endpoint detection decision does not change.
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that the speech recognition system was trained on just a small segment of the word

instead of the whole word. This could happen if the same endpoint detection system

was used in the training phase. In this case, the speech recognition system would

perform better if just a small segment of the word is presented to it instead of the

whole word, because it was trained on just that small segment. By using a speech

recognition system to evaluate an endpoint detection system one cannot guarantee

that the endpoint detection system is being evaluated in an independent way and

one cannot claim that the endpoints found by the endpoint detection system are the

ones that would be accepted by a human as being the true endpoints of the word.

For this reason, we did not use this way to evaluate our endpoint detection system.

3.4.2 Evaluation by comparing to pre-selected endpoints

The second way of evaluation requires that the “correct” endpoints of the words

in the input data are already known. The endpoints calculated by the endpoint

detection system can then be compared to these correct endpoints. The correct

endpoints can be manually determined by a human. This is the approach we have

taken in our evaluation tests.

Manually marking the endpoints of words is a cumbersome procedure which

takes a long time. For this reason, instead of using a human to manually mark

the endpoints, some researchers choose to use some standard endpoint detection

algorithm to automatically mark the endpoints which they then consider as being

“correct”. For example, in one particular publication [66], the standard G.729 al-

gorithm was used for automatic marking instead of manually marking the words.

The authors made the assumption that the output of the G.729 is “correct” and they

evaluated their own speech pause detection system based on this assumption. As

our experiments show, this assumption is a good one when there is no noise present

in the input. In the absence of noise, the G.729 algorithm has a high speech pause

hit rate (non-speech hit rate) and a low error rate. The G.729 algorithm is discussed

in more detail in Section 3.5.2. It is one of the algorithms with which we compared

the performance of our own endpoint detection system.
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Evaluation of Endpoint Detection Systems

Manual endpoints might not always result in the best performance of a speech

recognition system [127]. Even so, comparing to manual endpoints provides a good

objective criterion which is independent of the speech recognition system, and is

therefore good for comparison [3]. When comparing the automatically calculated

endpoints to the manual endpoints, some measures need to be defined. When

dealing with endpoint detection systems, the following are useful:

Correct rate The percentage of words for which the endpoints were found correctly.

The endpoints are considered correct if they fall within a certain pre-defined

time distance from the manual endpoints.

Wrong rate The percentage of words for which the detected endpoints were wrong.

The endpoints are considered to be wrong if they fall outside the pre-defined

time distance from the manual endpoints.

Miss rate The percentage of words for which no endpoints were detected. A spoken

word is present in the input sound, but the endpoint detection system does not

detect any speech.

Mean and Standard Deviation of differences: The average difference (µ) and stan-

dard deviation (σ) in milliseconds between the automatic endpoints and the

manual endpoints [3].

Distribution of differences: Further to calculating µ and σ, histogram plots of the

differences in endpoint locations can be used to visualize the distribution of

the differences [128].

The above measures are used for endpoint detection systems. They make direct

comparisons between the automatic endpoints and the manual endpoints in order

to find the time differences between the two. For our evaluation tests we decided to

use the first three measures: Correct rate, Wrong rate, and Miss rate. These measures

use a pre-defined time distance which determines if the endpoints are correct or not.

Gu et al. [38] for example, decided to use a time distance of 75ms for the beginning

endpoint and 100ms for the ending endpoint. So if the automatic beginning endpoint

was less than 75ms from the manual beginning endpoint, and the automatic ending

endpoint was less than 100ms from the manual ending endpoint, then the endpoint

79

Alex
an

dro
s K

yri
ak

ide
s



detection for that word was considered to be correct. Otherwise, it was considered to

be wrong. In our evaluation, we decided to use a different definition for correctness.

When the calculated endpoints are different than the manual endpoints, the error

can be in one of two directions. The error can either be in the direction towards the

word, in which case some of the word is “clipped”, or the error can be in the direction

away from the word, in which case some extra non-speech “noise” is added to the

word. We believe that it is more important that the calculated endpoints do not clip

the word, and that it is less important if some extra non-speech noise is added to the

ends of the word. For this reason, we chose to use the following criterion to define

correctness:

A word is considered to have been correctly endpointed if each of the

automatically calculated endpoints differs from the corresponding man-

ually selected endpoint by no more than 50ms in the direction towards

the word, and by no more than 150ms in the direction away from the

word. Equivalently, the endpoints of a word are considered to be wrong

if either endpoint clips more than 50ms of the word or if either endpoint

adds more than 150ms of non-speech noise.

Evaluation of Voice Activity Detection systems

Voice Activity Detection (VAD) systems do not explicitly define endpoints. Instead,

the input sound signal is divided into short time frames and a classification to

“speech” or “non-speech” is made for each frame. When evaluating VADs it is

therefore more convenient to use measures based on short time pulses, instead of

comparing word endpoints. It is a binary classification exercise. Each short time

pulse belongs either to the class “speech” or “non-speech”. The following measures

are useful when evaluating VADs:

Rejection rate: The percentage of speech pulses that are not detected by the end-

pointer [3]. A high rejection rate in the VAD could cause a speech recognizer

to reject or delete a word.

False Alarm Rate of speech (FAR0): The percentage of speech pulses that are wrongly

classified as non-speech [91]. This is the same as the Rejection rate above.

80

Alex
an

dro
s K

yri
ak

ide
s



False Alarm Rate of non-speech (FAR1): The percentage of non-speech pulses that

are wrongly classified as speech.

Non-Speech Hit Rate (HR0): The percentage of non-speech pulses that are correctly

classified as speech [91]. This can also be called the speech pause hit rate [66].

Speech Hit Rate (HR1): The percentage of speech pulses that are correctly classified

as speech [91].

Error Rate (ER): The percentage of all speech pulses that are wrongly classified.

The measures above should be used in combination so as to give a complete and

accurate picture of the performance of a VAD. Stating only one measure would give

a partial and inaccurate view. For example, a trivial implementation of a VAD which

classifies all pulses as speech will have a speech hit rate of HR1=100%. So it would be

important to also state the non-speech hit rate, which in this case would be HR0=0%.

It should be noted that HR0 and HR1 provide the same information as FAR0 and

FAR1, because FAR0=100%-HR1, and FAR1=100%-HR0. In order to have a complete

picture of the performance of the VAD, it would be necessary to also include the Error

Rate (ER) in the performance measurements. Some publications [66, 91, 93] which

state only the speech hit rate (HR1) and the non-speech hit rate (HR0), without

stating the error rate (ER), may be misleading.

The following pair of examples demonstrates this point. The examples show that

even if HR0 and HR1 stay the same, the ER can change.

Example1: The total number of sound pulses is 100. The total number of speech

pulses is 25, and 5 of these are correctly classified as speech. Therefore

HR1=5/25=20%. The total number of non-speech pulses is 75, and 45 of

these are correctly classified as non-speech. Therefore HR0=45/75=60%. A

total of 20+30=50 pulses were classified incorrectly. The error rate is therefore

ER=50/100=50%.

Example2: The total number of sound pulses is 100. The total number of speech

pulses is 50, and 10 of these are correctly classified as speech. Therefore

HR1=10/50=20%. The total number of non-speech pulses is 50, and 30 of these

are correctly classified as non-speech. Therefore HR0=30/50=60%. In this case,

a total of 40+20=60 pulses were classified incorrectly. The error rate is therefore

ER=60/100=60%.
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So the interpretation of HR0 and HR1 is highly dependent on the ratio of speech

to non-speech pulses in the test set data. This ratio is not the same for all test sets.

In our test set for example, 33% of pulses are speech pulses and 67% are non-speech

pulses. If this ratio is not specified in the results together with HR0 and HR1, then

the results could be misleading. For this reason, the error rate should always be

stated in the results in order to provide a complete basis for comparing different

VADs. In our results we state the non-speech hit rate (HR0), speech hit rate (HR1),

and the error rate (ER).

3.5 Experiments

In order to test the performance of our endpoint detection system, which we call

the Variance Kernel method, we have run several experiments. In the experiments

we used speech data from our own speech corpus (see Chapter 2). In addition

to our own endpoint detection system, we have also tested two publicly-available

algorithms for comparison purposes. We used the VAD algorithm defined in the ITU

G.729 standard [8] and the endpoint detector of the Sphinx-4 system [124]. In order

to demonstrate the robustness of our system under noisy conditions, we digitally

added 20 types of noise to the sound recordings with signal-to-noise ratios (SNRs)

ranging from 20dB to -5dB.

3.5.1 Data

Our speech database consists of voice recordings from 15 male and 15 female speak-

ers. For our endpoint detection experiments we used a test set with recordings of

the following 15 words: “six”, “computer”, “telephone”, “one”, “eight”, “forward”,

“microphone”, “power”, “OK”, “switch”, “pause”, “keyboard”, “silent”, “push”,

and “north”. These words were chosen specifically in order to include some cases

which are especially difficult for endpoint detection systems. Each word was spoken

once by each speaker during a sound recording of 2 seconds. Our test set therefore

contains a total of 450 recordings.

For evaluation purposes, each recording instance was manually labeled by a

human expert. Using acoustic input and a graphical presentation of the waveform

of the signal, the expert marked the two endpoints of the word in each recording.
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Additionally, the expert also decided if each recording instance was either “clean”

or “non-clean”. The “clean” instances were the ones which did not contain any

sound artifacts before the start or after the end of the spoken word. The “non-clean”

instances were the ones which did contain sound artifacts before and/or after the

spoken word. Such sound artifacts included tongue clicks, air puffs, and breathing

noises. From the 450 recordings, it was determined that 185 of them were “clean” and

265 of them were “non-clean”. The fact that almost 59% of the recordings were “non-

clean” shows that, in real-life applications, it is important to consider the behavior of

systems using recordings which contain artifacts, because such recordings are highly

likely to occur. It is valuable to note that from the combined total of 900 seconds of

recordings in our test set, approximately 295 seconds (33%) were speech, and 605

seconds (67%) were not speech.

Fifteen noise types were obtained from the NOISEX-92 [108, 121] database. In

addition, five publicly-available noise types were used in our experiments. The

following 20 types of noise were used:

1. Air conditioner
2. Speech babble (100 people speaking in a canteen)
3. Buccaneer jet cockpit at 190 knots
4. Buccaneer jet cockpit at 450 knots
5. Conference Room
6. Intergalactic Cruiser
7. Destroyer Engine Room
8. Destroyer Operations Room
9. F16 cockpit

10. Factory floor (1)
11. Factory floor (2)
12. HF radio channel
13. Jet airliner cabin
14. Leopard military vehicle
15. M109 military tank
16. Machine Gun
17. Vehicle interior (Volvo car at 120 km/h)
18. Street traffic
19. Pink
20. White

3.5.2 The G.729 algorithm

The G.729 algorithm is a speech coding algorithm standardized by the International

Telecommunication Union (ITU) in 1996. It is described in Recommendation G.729
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of the Telecommunication Standardization Sector (ITU-T). Annex B of this Recom-

mendation defines a voice activity detector (VAD) and a comfort noise generator for

use with G.729 [8]. The VAD was developed for fixed telephony and multimedia

communications in order to reduce the transmission rate during silence periods of

speech. It makes a voice activity decision every 10ms. A set of difference parameters

is used for making a decision. The parameters are based on the full-band energy,

the low-band energy (0-1kHz), the zero-crossing rate, and spectral distortion. The

algorithm is adaptive to background noise. It keeps track of running averages of the

background noise characteristics. The output of the VAD is either 0 or 1, indicating

the presence or absence of voice activity, respectively.

It is common for researchers to compare their own algorithms with the G.729

VAD [66, 91]. Comparing a novel algorithm with this standard algorithm makes it

also comparable with other algorithms. It is important to note however, that the

G.729 algorithm was designed to be used in environments with low levels of noise.

The G.729 source code is freely available for download from ITU’s web site 2. The

G.729 coder is designed to operate with a digital signal obtained by first performing

telephone bandwidth filtering. It also requires the input to be sampled with an 8kHz

sampling rate, and coded with 16-bit linear PCM. For the filtering we used the G.712

algorithm3, as indicated in the specification document of G.729. We found that this

filtering improved the results by reducing the non-speech detection errors.

3.5.3 The Sphinx-4 speech recognizer

Sphinx-4 is a state-of-the-art speech recognition system [124]. It was created via a

joint collaboration between the Sphinx group at Carnegie Mellon University, Sun

Microsystems Laboratories, Mitsubishi Electric Research Labs (MERL), and Hewlett

Packard (HP), with contributions from the University of California at Santa Cruz

(UCSC) and the Massachusetts Institute of Technology (MIT). Sphinx-4 includes the

SpeechClassifier java class which implements a simple VAD algorithm designed

2We obtained the source code from http://www.itu.int/rec/T-REC-G.729-200701-I/en. We

compiled the code found in the Soft/g729AnnexB/c codeB/ directory and used the resulting coder

binary executable.
3For the G.712 implementation we used the Filtering and Noise Adding Tool (FaNT) available for

download at http://dnt.kr.hs-niederrhein.de/download.html.
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by Bent K. Schmidt-Nielsen4. The algorithm classifies each audio frame as speech

or not. For each fame, the average signal level and the background noise level are

updated. If the average signal level is greater than the background noise level by a

certain threshold value, then the current audio is marked as speech. Otherwise, it is

marked as non-speech. The threshold value is configurable.

The wrapper java class SpeechMarker inserts markers into the sound input

stream. The markers are identified as SpeechStartSignal and SpeechEndSignal.

These two markers indicate the start and end of a period of speech. In a recording

containing an isolated word, these two markers are therefore the endpoints of the

word.

3.5.4 Experimental Procedure

The goal of our experiments was to test the endpoint detection performance of the

Variance Kernel method and to compare it to the performance of G.729 and Sphinx-4

on isolated words. The performance measures are generated by comparing each

algorithm’s automatically calculated endpoints to the manually selected endpoints

which were marked by a human.

Endpoint detection vs. Voice Activity Detection

As already mentioned in Section 3.4.2, there is a difference in the way performance

can be measured depending on whether a system is an endpoint detection system or

a voice activity detection system (VAD). In an endpoint detection system, the output

is a set of endpoints which mark the start and end of a word. In a VAD, the output

is a list of labels, one label for each short time frame (typically 10ms), indicating

whether each frame is “speech” or “non-speech”. Our Variance Kernel method and

the Sphinx-4 implementation we used, both output a set of endpoints. The G.729

algorithm is a VAD, and therefore it outputs a list of voice activity labels. We decided

to evaluate all three systems both as endpoint detection systems and as voice activity

detection systems. For this reason, we needed to translate the endpoint detection

outputs to voice activity detection outputs, and vice versa.

Translating endpoint detection outputs to voice activity detection outputs is

straightforward. Considering that we are dealing with isolated words, we have

4Bent K. Schmidt-Nielsen works at MERL Research (http://www.merl.com/people/?user=bent)
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two endpoints: the beginning and the end of the word. To translate the endpoints

into voice activity detection outputs we need to label all the short time frames in

each recording. We do this by labeling all time frames before the beginning endpoint

of the word as non-speech, and we also label all the time frames after the ending

endpoint of the word as non-speech. The time frames between the two endpoints

are the only ones labeled as speech.

To translate VAD output to endpoints is a more involved task. The straightfor-

ward way would be to mark the first time frame which is labeled as speech to be the

first endpoint, and the last time frame which is labeled as speech to be the second

endpoint of the word. In some cases this can lead to significant errors however. For

example, an individual time frame of 10ms might be labeled as speech, while all

time frames before and after it are all labeled as non-speech. There is no word which

has a duration of 10ms or less. Also, the opposite can occur. There could be isolated

time frames which are labeled as non-speech while they are surrounded by speech

frames. A rule needs to be in place to decide what to do in such cases.

The endpoint detection system in Sphinx-4 is actually based on an underlying

VAD with a set of rules. This set of rules translates the VAD decisions into endpoints.

In the default configuration, Sphinx-4 makes a VAD decision every 10ms, just like

the G.729 algorithm. The Sphinx-4 rules are based on four configurable parameters.

These parameters are the following:

Start Speech Time: This defines the minimum amount of time in speech to be con-

sidered as utterance start. Therefore, in order to mark the start of the word, a

continuous sequence of time frames labeled as speech of time length at least

equal to this parameter is needed.

End Silence Time: This defines the amount of time in silence (non-speech) to be

considered as utterance end. Therefore, in order to mark the end of the word,

a continuous sequence of time frames labeled as non-speech of time length at

least equal to this parameter is needed.

Speech Leader: This defines the amount of time before speech start to be included as

speech data. So when the start of a word is detected, based on the Start Speech

Time parameter above, the endpoint is placed this amount of time before the

first time frame which was labeled as speech.
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Speech Trailer: This defines the amount of time after speech ends to be included as

speech data. So when the end of a word is detected, based on the End Silence

Time parameter above, the endpoint is placed this amount of time after the last

time frame which was labeled as speech.

The above four parameters are used to translate VAD decisions into endpoints.

The default values in Sphinx-4 are 200ms for the Start Speech Time and 500ms for

the End Silence Time. For the Speech Leader and Speech Trailer parameters, the

defaults for Sphinx-4 are 50ms. The Sphinx-4 VAD algorithm tends to clip the start

and end of the words, and therefore these speech leader and trailer values are used.

In our experiments we decided to keep the default value of 200ms for the Start

Speech Time. We also set the End Silence Time value to 200ms. Because our input

sound recordings were only 2000ms in length, we deemed that the default value of

500ms for the End Silence Time was too long. For Sphinx-4 we kept the default value

of 50m for the speech leader and trailer.

To translate the G.729 VAD decisions to endpoints, we implemented an algo-

rithm which utilizes the same four parameters as those of Sphinx-4. For the G.729

endpointer we again used a value of 200ms for both the Start Speech Time and End

Silence Time. Unlike Sphinx-4, the G.729 algorithm is more sensitive to speech and

does not clip words. We therefore decided to use a value of 0ms for the speech leader

and trailer. That is, the endpoints were marked exactly on the frames which were

labeled as speech, without adding any extra signal before or after.

Configuration of parameters

The three algorithms under test (Variance Kernel, G.729, and Sphinx-4) change in

the way they operate based on the values of certain parameters. Some of these

parameters are built-in, while others are user-configurable. The built-in parameters

are usually set by the authors of the algorithm to values which are found to work the

best in most situations. The user-configurable parameters can be set by the user of

the algorithm in order to achieve the desirable performance. The user-configurable

parameters tend to influence the algorithm’s sensitivity to noise. When a system is

more sensitive to noise, it is more likely to detect speech where there is no speech.

The less sensitive it is, the more likely it is to miss speech activity. We will talk about

each of the algorithms in turn.

87

Alex
an

dro
s K

yri
ak

ide
s



For the Variance Kernel method, there are many built-in parameters which can

greatly affect the performance of the algorithm. Such built-in parameters include the

length and overlap percentage of the time windows used to create the spectrogram,

the order of the LPC analysis, the size of the variance kernel, the pixel threshold

values used to remove binary objects, and the sampling frequency of the input

signal. The values of these parameters are specified in Section 3.3.2. There is only

one user-configurable parameter in the Variance Kernel algorithm. This parameter is

the global threshold parameter described in Section 3.3.2. A higher global threshold

makes the algorithm less sensitive. With a higher global threshold the miss rate

increases. With a lower global threshold however, the number of wrong endpoint

detections will increase. In our experiments we used a global threshold value of

σ = 10. We found that this provides a good balance between the Miss rate and the

Wrong rate.

For the G.729 VAD algorithm, there are many built-in parameters which are

mainly related to thresholds. In Annex B of Recommendation G.729, the values

of approximately 44 such parameters (or constants) are specified5. The executable

program for the G.729 coder does not allow any user-configurable parameters. We

have found however, that for short recordings with substantial levels of noise, the

G.729 VAD has the tendency to classify the initial input frames as speech frames,

even when there is no speech present. This results in a large error for the position

of the endpoint at the beginning of the spoken word. In order to overcome this

problem, we used a pre-padded input signal as input to the G.729 algorithm. The

padding consisted of a signal with a duration of 2 seconds. This padding signal was

created by taking the first 100ms of the original signal and concatenating 20 copies of

it. As a result, during the experiments, a signal of 4 seconds duration is passed to the

G.729 algorithm. Consequently, when evaluating the VAD results and calculating

the endpoints, the first 2 seconds which are the padding are simply ignored.

For Sphinx-4, there are no built-in parameters per se, because all the parameters

can be configured by the user using the Sphinx-4 API. Most of the parameters have

default values which work well under most circumstances. The most important

of these parameters in terms of configuration purposes is the threshold parameter.

5The documentation which specifies the constants can be downloaded from http://www.itu.

int/rec/T-REC-G.729-200701-I/en
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From the Sphinx-4 documentation6:

If the current signal level is greater than the background level by this

threshold, then the current signal is marked as speech. Therefore, a

lower threshold will make the endpointer more sensitive, that is, mark

more audio as speech. A higher threshold will make the endpointer less

sensitive, that is, mark less audio as speech.

The default threshold value is 10. We tried threshold values ranging fro 7 to 13,

and found that the default value of 10 gave the most satisfactory performance on

our test data. Another parameter which can make a difference is the length of the

each time frame. Again, we found that the default value of 10ms works well with

our data. We therefore retained all the default values for the Sphinx-4 endpointer

in our experiments, except for the End Silence Time parameter (mentioned above)

which was changed from the default value of 500ms to 200ms.

Adding Noise

Our endpoint detection experiments were carried out using both the original sound

recordings without any added noise, and also under various noise levels using

various noise types. We added noise at levels ranging from 20dB SNR to -5dB SNR.

The noise types are listed in Section 3.5.1.

The speech recordings in our database each have a duration of two seconds. Each

of the noise sample files we acquired, have a longer time duration. For this reason it

was necessary to clip each noise file so that it had the same duration as each of the

speech recordings. We decided to use the same two seconds of noise from each of

the noise files for all the experiments so that the results are repeatable. We chose to

skip the first second of each noise file and to use the next two seconds.

In our tests, the noise was artificially added to the original speech recordings

during the experiments. The original speech recordings were recorded under con-

ditions without any background noise. Although artificially adding noise is an

adequate way for evaluation purposes, it is not completely realistic. The reason is

that when humans speak under noisy conditions, they tend to change their voice.

When humans are aware that there is background noise, they change their voice so

6Taken from the javadoc at http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/

sphinx/frontend/endpoint/SpeechClassifier.html
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that it is easier for others to understand them. This is an involuntary tendency and

it includes changes such as increase in sound intensity, increase in pitch, increase in

vowel duration, and a shift in formant center frequencies. This is called the Lom-

bard effect and some researchers have tested their algorithms under such Lombard

conditions [47]. In order to do this, the speech recordings have to be performed in

such a way that the noise can also be heard by the speaker during the recording. We

did not do this, and so our experiments do not take into account the Lombard effect.

Running the tests

The tests were run in batch mode by passing each of the 450 sound recordings as input

to each of the three algorithms using each of the 20 noise types, under each of seven

noise level conditions. We therefore obtained 63000 outputs for each algorithm, and

saved them in a large output file for subsequent analysis. For our Variance Kernel

method and for the Sphinx-4 method we saved the calculated endpoints. For the

G.729 method we saved both the endpoints, based on the rules we created, and the

original VAD decisions.

3.6 Results

Our results can be used to analyze the performance of the three algorithms under

test: the G.729 algorithm, the Sphinx-4 endpoint detector, and our Variance Kernel

method. The results are based on a total of 450 manually endpointed recordings

which we used in our experiments. From these, 185 of them do not contain any

sound artifacts (“clean” recordings) and 265 of them do contain sound artifacts

(“non-clean” recordings). The automatically calculated endpoints are evaluated by

comparing them to manually selected endpoints which are considered to be the ideal

endpoints for each word. Acero et al. [3] also presented endpoint detection results

by using manually endpointed recordings. In their publication they present results

based on 347 recordings.

There are two different ways to view the results of the three algorithms under test.

They can either be seen as Endpoint Detection results or as Voice Activity Detection

results. These two ways of evaluation were described in detail in Section 3.4.2.

Endpoint Detection makes a direct comparison between the automatic and man-
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ual endpoints in order to find the time difference between them. We used the

definition of correctness stated on page 80. A recording is considered to have been

correctly endpointed if less than 50ms of the word is clipped on either end, and if

less than 150ms of extra signal is added on either end of the word. For Endpoint

Detection we present our results in the form of bar charts and tables.

Voice Activity Detection on the the other hand can be thought of as a classification

exercise. The sound recordings are segmented into short time frames (typically 10ms

in duration). The manual endpoints can be used to label the true class of each time

frame as either speech or non-speech. Each time frame is then classified as speech

or non-speech by the voice activity detector so that the hit rate and error rate can be

calculated. For Voice Activity Detection we present our results in the form of line

charts and tables.

In order to demonstrate the robustness to noise of our method, we used various

types of added noise in our experiments. The complete set of Endpoint Detection

results and Voice Activity Detection results for all noise types can be found in

Appendix A. We also performed significance tests on the endpoint detection results

using Fisher’s exact test [29]. The significance tests show that for high levels of

noise, when the SNR is less than 20dB, the performance of our variance kernel

method is significantly different and better than the performance of both the G.729

algorithm and Sphinx4. The tests were carried out on the endpoint detection results

using all the noise types combined, for clean and non-clean recordings separately.

The p-values of the significance tests are shown in Appendix C. We now focus

on five noise types which serve to show the strengths and weaknesses of the three

algorithms.

3.6.1 Babble noise

Babble noise presents a particularly difficult challenge to the G.729 algorithm. Even

when a low level of babble noise is added, the performance of the G.729 endpointer

drops significantly. The reason for this is that the babble noise is classified as

speech, even when the noise level is low. The Sphinx-4 endpoint algorithm however,

performs well. Our Variance Kernel method also performs well, and in fact it

performs just a bit better than Sphinx-4 for endpoint detection. As a voice activity

detector, the Sphinx-4 algorithm is better at correctly classifying non-speech frames
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than the other two methods when babble noise is added. For this reason, it also has

the lowest error rate when used as a voice activity detector. The comparison in terms

of endpoint detection performance can be seen in Figure A.2. The numerical values

of the evaluation measures are available in Table A.2. The voice activity detection

performance results can be seen in Figures A.24 and A.25. Table A.23 provides the

numerical values of the performance measures.

3.6.2 Factory floor noise

In the collection of noise types that we have tried, there are two files with factory floor

noise. The first of these contains sounds which create high local variance regions

when converted to the spectrogram representation of our Variance Kernel method.

This causes the accuracy of the Variance Kernel method to drop. Nonetheless, the

Variance Kernel method still performs slightly better than the other two methods

we tried with this type of noise. The comparison can be seen in Figure A.8. The

numerical values of the evaluation measures are available in Table A.8. The voice ac-

tivity detection performance results can be seen in Figures A.36 and A.37. Table A.29

provides the numerical values of the performance measures.

3.6.3 Machine gun noise

From all the noises tried in our experiments, machine gun noise poses the most

challenging problem to the three endpoint detection methods. The irregular high-

energy bursts of the machine gun sound are mistaken as speech by the endpoint

detection algorithms when the noise level is high. This causes the three algorithms to

have a high number of wrongly endpointed instances. Even so, the Variance Kernel

method still outperforms the other two methods. This difference in performance

between the Variance Kernel method and the other two methods is especially evident

when the SNR is around 15db to 10dB. The comparison can be seen in Figure A.13.

The numerical values of the evaluation measures are available in Table A.13. The

voice activity detection performance results can be seen in Figures A.46 and A.47.

Table A.34 provides the numerical values of the performance measures.
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3.6.4 Car interior noise

Most of the energy of the car interior noise is in the low frequencies. Our Variance

Kernel method performs outstandingly well in such cases because it ignores all

frequencies below 200Hz. It is almost unaffected by the added noise, even at SNRs

as low as -5dB. The G.729 algorithm also performs very well with this type of noise.

It not affected significantly when the SNR is above 5dB. The Sphinx-4 endpoint

algorithm however, does not perform well when the car interior noise is added. As

the level of the noise increases, it wrongly classifies non-speech regions as speech.

The comparison of the endpoint detection performance can be seen in Figure A.15.

The numerical values of the evaluation measures are available in Table A.15. The

voice activity detection performance results can be seen in Figures A.50 and A.51.

Table A.36 provides the numerical values of the performance measures.

3.6.5 White noise

White noise uniformly corrupts all the frequencies of the speech signal with random

noise. This type of noise provides a good approximation for various noises encoun-

tered in the environment, such as electrical noise. It is therefore useful to test the

performance of endpoint detection methods with added white noise. In the case of

the Variance Kernel method, the white noise has the effect of “masking” the high

variance speech regions. The energy of white noise is distributed almost uniformly

along all the frequency bands. Despite this drawback, the Variance Kernel method

still outperforms the other two methods in the presence of added white noise. It is

interesting to note that in the case of “non-clean” recordings, the Variance Kernel

method performs better when a small level of white noise is added (with 20dB SNR)

rather than when no noise is added. This is because some relatively low-energy

sound artifacts (e.g. microphone clicks) are masked by the white noise and are

therefore not mistaken as speech by the Variance Kernel. The G.729 voice activity

detection algorithm has a higher speech hit rate than the other two algorithms at

low SNRs. It can correctly classify some speech frames, when the other two algo-

rithms wrongly classify the frames as speech. When the G.729 is used for endpoint

detection however this does not result in higher accuracy. The reason is that under

high levels of white noise, the G.729 algorithm misclassifies unvoiced speech frames

as silence [8]. The endpoints resulting from the G.729 algorithm are therefore the
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endpoints of the voiced region of the spoken word, which are not necessarily the

endpoints of the whole word. This greatly decreases the accuracy of the G.729 algo-

rithm as an endpoint detector in the presence of white noise. The comparison of the

three methods can be seen in Figure A.16. The numerical values of the evaluation

measures are available in Table A.16. The voice activity detection performance re-

sults can be seen in Figures A.52 and A.53. Table A.37 provides the numerical values

of the performance measures.

3.7 Discussion

We have developed a method for performing endpoint detection which is based on

a time-frequency image representation of sound. This method gives high accuracy

even under the presence of high levels of background noise. We have compared

our algorithm to the standard G.729 voice activity detector. It is well known that

G.729 has a high error rate [9] under noisy conditions. Nevertheless, it provides

a good standard for comparison because other researchers also use it as a bench-

mark [66, 90]. In addition, we have obtained results from a publicly-available open

source endpoint detection algorithm which is part of the Sphinx-4 speech recognition

system. The three methods were evaluated both as endpoint detectors and as voice

activity detectors under noisy conditions using twenty different types of noise. The

performance of our algorithm is shown to be comparable, and in many cases better,

than G.729 and Sphinx-4.

The G.729 algorithm aims to keep the misclassification of unvoiced and silence

frames to a minimum [8]. This is confirmed by our results which show that as the

SNR decreases, the non-speech hit rate (HR0) for this algorithm remains at high

levels, while the speech hit rate (HR1) decreases significantly. This can be seen in

Figure A.23. Marzinzik and Kollmeier [66] have also used some of the same added

noise that we have used in our experiments. Their results for G.729 agree with ours:

the G.729 algorithm performs well with added vehicle noise, but with added babble

noise its performance is extremely poor.

Our Variance Kernel algorithm uses two thresholds. One is automatically cal-

culated using Otsu’s method, and the other threshold is manually selected. It is

very common to use thresholds in voice activity and endpoint detection systems.

The values of the thresholds can have a strong impact on the performance of the
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algorithm. Reliable threshold determination under noisy conditions remains an un-

solved problem [57]. It is therefore important that our algorithm calculates one of the

thresholds automatically because this makes the threshold adaptive and unbiased.

The automatically-calculated threshold determines the endpoints. The additional

manually-selected threshold is used as a parameter to control the tradeoff between

the number of false detections and wrongly endpointed recordings. False detections

can occur when a recording does not contain any speech.

Our endpoint detection system was designed in order to be used as a pre-

processing step to a speech recognition system. Speech recognition performance

is dependent on extracting complete speech segments from the recording, and not

so much on accurate frame-level classification of speech and non-speech [57]. For

this reason, it was important to test if our algorithm can find the endpoints of the

words in the recordings, rather than being able to have a high frame-level accuracy.

Evaluating an algorithm based on the accuracy of the calculated endpoints provides

a better criterion for the subsequent success of the speech recognition system. On

the other hand, a voice activity detection evaluation is based on the frame-level clas-

sification performance. Therefore, evaluation based on voice activity detection does

not give the best indication to whether the speech activity detector will be a good

pre-processing step for speech recognition. For example, the G.729 algorithm was

designed to perform well as a voice activity detector, but it does not perform well

as an endpoint detector because under noisy conditions it classifies many speech

frames as non-speech. Our Variance Kernel method however, is better at detect-

ing the endpoints of a word under noisy conditions. This can be clearly seen in

Figure A.1.

Under noisy conditions the detected endpoints tend to capture only the high

energy regions. Therefore, the endpoints move further in, missing the start and end

of the word, which ultimately results in the clipping of the word. This is evident from

the G.729 results where the VAD measures are good under noise but the endpoint

detection results are very poor. Under high levels of noise, the G.729 algorithm only

detects the high energy regions of the word. Our Variance Kernel method however,

is better at detecting the low energy regions of the word under the same levels of

noise. For speech recognition systems it is important that the endpoints of the word

are detected as accurately as possible, because as stated by Lamel et al. [53]:
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Providing a great deal of latitude in the specification of the endpoint

location tends to degrade the recognition performance severely. Hence,

accurate location of endpoints is a strong requirement for a practical

recognition system.

The use of both time and frequency parameters in endpoint detection systems

has been shown to work well and lead to superior results [132]. In the method

presented by Wu and Lin [132] however, the adaptive algorithm usually ignores high-

frequency bands because these bands are the ones which are primarily corrupted

with noise. Ignoring such high frequency bands could lead to problems when

attempting to capture the endpoints of words like “six” which begins and ends with

high-frequency, low energy, noise-like sounds. Our algorithm uses time-frequency

information with the use of a spectrogram and can adequately detect speech at

high frequencies, even when noise is present. Our method utilizes characteristics

of the spectrogram which are robust to noise. This approach of using noise-robust

spectral features was also successful in the spectral entropy approach presented by

Wu and Wang [130]. Our algorithm is able to accurately endpoint spoken words

even below 0dB SNR which is something that most other algorithms fail to achieve.

Some authors even state that their algorithms are not supposed to work well below

0dB SNR.

The current state of our endpoint detection algorithm is ideal for voice-controlled

equipment which operates under conditions with high background noise. In real-

life recording environments, sound artifacts will always be present. Our recordings

provide evidence of this. About 60% of our recordings were “non-clean” because

they contained sound artifacts before or after the spoken word. As shown in our

results, sound artifacts in the recording greatly affect the performance of voice activ-

ity and endpoint detection systems. When evaluating such systems, it is therefore

important to use both “clean” and “non-clean” recordings as we have done in our

experiments.

96

Alex
an

dro
s K

yri
ak

ide
s



Chapter 4

Rank Order Kernels

4.1 Overview

In this chapter we will define Rank Order Kernels. The idea of Rank Order Kernels

as described in this thesis is a novel one. It has been inspired by the following:

• Image basis functions

• Image kernel functions

• Rank Order Coding

Rank Order Kernels operate on two-dimensional images. They are used as a

feature extraction procedure in order to compare images, for the purpose of classi-

fication. Rank Order Kernels are robust to noise. This is attributed to their Rank

Order Coding aspect. Rank Order Kernels lead to a noise-robust distance metric

between images.

4.2 Motivation

When comparing two images, the human brain is able to extract relevant information

from the two images allowing it to determine how similar one image is to the other.

It is able to extract significant features from the images and recognize important

patterns. Although the notion of “patterns” in an image might be clear for a human

to understand, these patterns cannot be explicitly defined in an exact mathematical

way. It is difficult to say exactly which patterns are the ones that allow us humans

to distinguish one image from another.

97

Alex
an

dro
s K

yri
ak

ide
s



 (a) Image from a natural scene

 (b) Exactly the same pixels of the image on the left, 

 shuffled and placed at random locations

Figure 4.1: On the left is a natural image. The image on the right was produced

by randomly shuffling the pixels of the image on the left. The image on the left

is recognizable by a human because it contains certain primitive elements, such

as edges. The image on the right has lost this information and therefore, it is not

recognizable by a human. Image similarity metrics which use features based on

primitive elements, such as the rank order kernel metric developed in this thesis,

require this information.

Figure 4.1 shows two images. The image on the left is a natural image. The

image on the right is obtained by just shuffling the pixels of the image on the left.

Concerning the two images, Granai [37] states:

The difference between the two images is clear to everybody, notwith-

standing this it is not easy to define. In order to formalize such a dis-

tinction, it might be helpful to observe that an image presents peculiar

elements such as wedges, textures, and smooth parts that are usually

absent in random pixel combinations. Therefore, the problem of image

representation must deal with these components or “primitives”. Note

that this topic is strongly related to the characteristics of the human visual

system.

Following this reasoning, our task is to find components in images which will

allow us to recognize patterns in order to create an image similarity metric for

comparing images. We are dealing with two-dimensional images and so these

components will themselves be two-dimensional in nature. A desirable characteristic

of such components would be that they are robust to noise.
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4.3 Background

Previous work regarding the search for image components can be loosely classified

into two approaches:

1. Basis functions

2. Kernel functions

4.3.1 Image basis functions

Basis functions can be thought of as synthesis functions [74]. That is, any image can be

modeled in terms of a linear superposition of basis functions. When modeling a two-

dimensional gray-scale image, these basis functions are two-dimensional matrices,

and so the basis functions themselves can also be visualized as gray-scale images.

The basis functions are image components which can be used to describe a larger

image.

The challenge is to find a suitable set of such basis functions. In the literature, the

methods used to find these basis functions are optimization techniques which aim

to minimize the reconstruction error and at the same time to maximize the sparsity

of the representation [74, 105, 106]. The reconstruction error arises because the basis

functions will not fully reconstruct the larger image. There will be a difference

between the reconstructed image and the original image.

When the basis functions are used for discriminating between images, the opti-

mization procedure for finding the basis functions can also optimize for discrimina-

tion [63]. The complete set of basis functions found by the optimization procedure

can be called the dictionary of elements. This dictionary can be used to reconstruct

larger images. For a given image, only a small number of elements from the dictio-

nary is used to reconstruct the image, thus leading to a sparse representation.

Researchers have worked on finding basis functions for both visual images [37,63,

74] and for spectrograms [49,105,106]. In this thesis, we are giving special attention

to spectrogram images because we will use them for performing speech recognition.

Basis functions from visual images

Olshausen and Field [74] describe a procedure which aims to create an efficient

coding of visual images using basis functions. They propose a sparse coding from
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an over-complete set of basis functions. The training procedure used data derived

from ten images of natural scenes. The resulting basis functions can be seen in

Figure 4.2. It is interesting that these basis functions which were derived using a

purely mathematical data-driven model resemble those found in the primary visual

cortex of our brain.

One of the drawbacks of the procedure used to find basis functions is that it is

computationally expensive. This is due to the optimization process which needs to

be performed. When working with intensity images, each basis function is a gray-

scale image. Therefore, each pixel can have any real value in the range from 0.0 to

1.0. This means that the number of possible basis functions is infinite. Nonetheless, a

desirable characteristic of the basis functions is that they are learned from the images

themselves. Learning takes place by using a set of training images. Small sections

(patches) of the training images are used in order to find the basis functions. The

size of the patches used is predefined and hence so is the size of the basis functions.

Olshausen and Field [74] used ten images from natural scenes for training. The

images were 512 × 512 pixels in size. From these ten images, image patches of size

12 × 12 pixels were selected at random. These small patches were then used for

training in order to obtain the basis functions shown in Figure 4.2.

Basis functions from spectrograms

Smit and Barnard [105, 106] used the process proposed by Olshausen and Field [74]

on spectrogram images instead of visual images. The goal was to find a set of basis

functions which could be used to reconstruct spectrogram images. For the training

set they used the single digits (“oh”, “zero”, “one”,... , “nine”) from the TIDIGITS

database [55]. They used 16 frequency channels for the spectrogram representation

of the sounds. Frequencies below the threshold of human hearing were removed.

The result is shown in Figure 4.3.

These basis functions are quite different from the basis functions obtained from

visual images. It is intriguing to see that some of the basis functions capture the

banded structure, which is a characteristic found in voice spectrograms. A subset of

these basis functions can be used to reconstruct any spectrogram of the spoken digits.

An example is shown in Figure 4.4. The example demonstrates how only four of

the 30 basis functions can be used to reconstruct the spectrogram of the word “six”.
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Figure 4.2: Basis functions for visual images. This is the set of 144 basis functions

learned by a sparse coding algorithm using visual images as input. All have been

normalized to fill the gray scale. (Figure taken from [74]).
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Figure 4.3: Basis functions obtained from spectrograms of spoken digits. The y-axis

gives the frequency. The x-axis gives the time. The basis functions use 16 frequency

channels and span a time length of 250ms. (Figure taken from [105]).

These four basis functions and their time location in the reconstructed spectrogram

image characterize the word “six”. The basis functions and their time location can

therefore be used as features in order to recognize the word.

4.3.2 Kernel functions

When referring to images, a kernel function is some type of function operating over

a rectangular area of pixels of the input image. The size of the kernel defines the

height and width of the area of the pixels that the kernel function will operate on.

The pixel values in the rectangular area covered by the kernel are the input to the

kernel function, and the output of the kernel function is a single value. The kernel

function can be used to transform an input image to an output image by “sliding”

the kernel function over all locations of the input image. At each location, the output

of the kernel function defines the pixel value of the output image at that location.

This is shown graphically in Figure 4.5.

A convolution kernel is a very common type of kernel function. It consists of

multiplying each input pixel by a coefficient (defined by the kernel itself), followed

by a summation, to calculate the output value. The coefficients are arranged in a

two-dimensional matrix which fully defines the convolution kernel (also called a
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Figure 4.4: Showing how the basis functions from Figure 4.3 can be used to recon-

struct and thus recognize the spoken word “six”. (a) A spectrogram of the word

“six”. (b) The sparse code for the spectrogram using the basis functions in Figure 4.3.

Only four of the basis functions (1, 9, 16, 21) are used to reconstruct the spectrogram.

The x-axis shows the time location where each basis function is used. The y-axis

indicates the numeric identifier of the basis function. Basis function 16 is used first,

then basis function 1, followed by basis function 9, and then basis function 21. (c)

The spectrogram after it has been reconstructed from the sparse code. (Figure taken

from [105]).
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Figure 4.5: Converting an input image to an output image using a kernel.

convolution filter). For example, the convolution kernel described by the matrix in

Figure 4.6a is called an “on-center” convolution kernel because it emphasizes the

regions in the input image which have a bright pixel surrounded by dark pixels. The

off-center kernel, of which an example is shown in Figure 4.6b, does the opposite.

It emphasizes regions of the input image which have a dark pixel surrounded by

bright pixels. The retina of the human eye has cells which perform similar operations

as these two convolution kernels. The next level of the human visual system uses

orientation maps which detect edges in various directions in order to process the

images. For this reason, attempts to create image recognition systems which imitate

the human visual system employ on-center, off-center, and orientation convolution

kernels when processing visual images [119]. A schematic of the process is shown

in Figure 4.7 and Figure 4.8 shows the results of this process when it is applied to an

image of a face. When trying to recognize faces in an image, the faces can appear in

different sizes in the image. This is handled by using different scales of convolution

kernels [113].

Using kernel functions on spectrograms

The approach of using convolution kernels on visual images can also be applied

to spectrograms. Instead of using a visual image as input to the process shown in
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(a) On-center (b) Off-center

Figure 4.6: Convolution kernels

Figure 4.7: Processing an image using convolution kernels. The first level uses

on-center and off-center kernels. The second level uses orientation kernels.(Figure

taken from [119])

105

Alex
an

dro
s K

yri
ak

ide
s



Figure 4.8: Processing an image of a face using convolution kernels. The first

level uses on-center and off-center kernels. The second level uses orientation ker-

nels.(Figure taken from [119])
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Figure 4.7, we can use a spectrogram as input.

Although these convolution kernels (on-center, off-center, orientation) work well

for visual images, it is not clear what kernels work best for time-frequency images

originating from sound signals. The number of possible convolution kernels is infi-

nite, so trying a brute-force approach to find appropriate convolution kernels is not

feasible. Almost any approach would be prohibitively expensive computationally.

It is a challenge to find appropriate kernels to use for processing time-frequency

images of sound.

An approach presented by Viola and Jones [123] uses kernels which they call

“rectangle features”. These features are shown in Figure 4.9. They are a special kind

of kernel function. The output of the kernel function is the difference of two sums.

The kernel separates the pixel area under consideration into two regions. The sum

of the pixel values of one region is subtracted from the sum of the pixel values of

the other region. The following is an explanation of these features (or kernels) taken

from their paper [123]:

The simple features used are reminiscent of Haar basis functions

which have been used by Papageorgiou et al. [77]. More specifically,

we use three kinds of features. The value of a two-rectangle feature is the

difference between the sum of the pixels within two rectangular regions.

The regions have the same size and shape and are horizontally or ver-

tically adjacent. A three-rectangle feature computes the sum within two

outside rectangles subtracted from the sum in a center rectangle. Finally

a four-rectangle feature computes the difference between diagonal pairs of

rectangles.

Viola and Jones used these rectangle features for face detection. The same type

of features were then used by Ke et al. [49] for music identification. They converted

music signals to spectrograms and then used the rectangle features to capture im-

portant characteristics of the sound. It is important to note that these rectangle

features were not created specifically for detecting characteristics in spectrograms.

The features were generated by Viola and Jones for visual images and then the same

features were then used successfully by Ke and al. for music identification.
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Figure 4.9: The rectangle features are a kernel function which sums the pixel values

in two different regions (light regions and dark regions, as shown in the figure) and

then subtracts one sum from the other. In this figure, four rectangle features are

shown relative to an enclosing detection window. The sum of the pixel values which

lie within the white rectangles are subtracted from the sum of the pixel values which

lie within the dark rectangles. This is the output of the kernel function. (A) and (B)

show “two-rectangle features”. (C) shows a “three-rectangle feature”. (D) shows a

“four-rectangle feature”. (Figure taken from [123]).
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4.3.3 Rank order coding

Rank order coding is a proposition on how neurons transmit information. The classic

model describing the transmission of information in neurons is based on rate coding.

Meanwhile, Thorpe et al. [34, 113] have argued that rate coding is not sufficient to

explain the speed with which a primate’s visual system can process information.

A simple model of a neuron is one which has one or more inputs, a function to

process the inputs, and one output. In a neural network the output of one neuron

is connected to one of the inputs of another neuron. The output information is

transmitted along the axon of the neuron as a series of spikes. Rate coding is based

on the rate, or frequency, of these spikes. The higher the rate of the spikes, the

higher the output value. Regarding rate coding, Gautrais and Thorpe [34] state the

following:

A simple mathematical analysis reveals that, due to the stochastic nature

of spike generation, even transmitting the simplest signals reliably would

require either: (1) excessively long observation periods incompatible with

the speed of sensory processing or (2) excessively large numbers of re-

dundant neurons, incompatible with the anatomical constraints imposed

by the sensory pathways.

Temporal codes are an alternative to rate codes and they overcome these prob-

lems. A temporal code is based on a population of neurons. The neurons fire

asynchronously. The temporal code is determined by the relative time difference

between the arrival of spikes across the population of neurons. What is important in

temporal coding is not the rate of the spikes on each neuron, but the time of arrival

of a spike on a certain neuron relative to the time of arrival of the spikes on the other

neurons.

Rank order coding is a type of temporal coding. With rank order coding only the

first spike on each neuron is important. This has the advantage that only one spike

is required per neuron. The latency of each spike is determined by the intensity

of the input to the neuron. An input with higher intensity gives a lower latency.

Spikes with lower latency arrive first at the output. This is illustrated in Figure 4.10

where a population of 8 neurons is used to encode an input signal. The intensity

of the signal varies in space. Each neuron is connected to a different position on
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Figure 4.10: A population of 8 neurons. The intensity at the input of each neuron

determines the latency of firing. Each neuron has fired one spike. More strongly ac-

tivated neurons fire first. The rank order code is the order of firing: B,A,H,C,G,D,F,E.

(Figure taken from [119])

the signal and, as a result, each neuron receives a different intensity value as input.

A higher intensity leads to a lower latency. Neuron B is the one connected to the

location with the highest intensity. Accordingly, neuron B has the lowest latency

and consequently it fires first. This is represented in the diagram with the spike on

neuron B having traveled the longest distance along the axon of the neuron. Neuron

A fired second because it is connected to the second-highest intensity value. The

rest of the neurons fire accordingly based on the input intensity at their location.

Neuron E is the last one to fire because it receives the lowest intensity. The order of

firing is B,A,H,C,G,D,F,E. This is the rank order code. With eight neurons, there are

8! different possible orderings, or codes.

4.3.4 Applications of Rank order coding

Thorpe et al. have created a software program called SpikeNet which simulates large

networks of asynchronously firing neurons which use Rank Order coding [20, 22,

113,114]. They have used their model successfully for face identification [21,119] and

scene categorization [112]. The idea of rank order coding has also been applied by

others for efficient image reconstruction and encoding [10,101,102]. More relevant to
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this thesis is the fact that rank order coding has been used in various ways for speech

recognition. Loiselle et al. [59] have experimented with a small speech database of

French digits. They used recordings from 5 male and 4 female speakers and showed

that rank order coding can lead to low error rates even when the training set is

small. One male and one female speaker were used for training and recognition

was performed on the other 7 speakers. Uysal et al. experimented with rank order

coding in order to perform speech recognition on five vowel sounds [117]. They

showed that rank order coding is robust to noise [116] and also compared rank order

coding to other types of spike coding techniques [118].

4.3.5 Advantages of Rank order coding

Rank order coding depends only on the relative order of the first spikes and not on

their precise timing. This offers certain important advantages.

Short response times: Response times are short because processing can take place

with only one spike per neuron. Contrast this to rate coding where a relatively

longer time is needed for processing the code due to the necessity to sample

the spikes on each neuron over a long enough period in order to estimate the

frequency of the spikes.

High information capacity: A population of n neurons can encode n! different

codes. For example, there are 40320 different possible codes with just 8 neu-

rons. Therefore, when creating applications which use rank order coding, only

a few neurons are usually needed. This reduces the memory and hardware

requirements.

Robust to noise and changes: Even if the spike timings of each neuron change by

a relatively small amount, the rank order code remains the same, as long

as the order of the spikes does not change. This makes the code robust to

noise. Noise can randomly alter spike timings by small amounts. Additionally,

large uniform changes in the overall intensity of the input do not change

the rank order code. This is easily illustrated by an example, as shown in

Figures 4.11 and 4.12. Take a set of 9 gray-scale intensity pixels. Each pixel is

connected to one neuron. Each neuron fires one spike. The intensity of each

pixel determines the latency of each spike. The bottom part of Figure 4.11
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shows the pixel intensities. The top part of the figure shows the neurons with

the fired spikes. The neuron connected to the pixel with the highest intensity

fired first, and hence its spike has propagated the longest distance along the

axon of the neuron. Figure 4.12 shows what happens when one of two changes

is made to these pixels. The top of the figure shows three different sets of pixel

intensities. The one in the center is the same as the one in Figure 4.11. The two

pixel sets on the left and right have lower contrast. That is, there is a smaller

difference between the highest intensity pixel value and lowest intensity pixel

value. The one on the left has low luminance, whereas the one on the right

has high luminance. What is important to note is that all three sets of pixels

have exactly the same rank order code. This is shown in the bottom part of

the figure. The changes in contrast and luminance do not affect the rank order

code in any way, making it robust to such changes. For example, say these

pixels were part of an input image taken from a room. If the lights in the room

were suddenly dimmed, the rank order code which would be used to encode

the image would not change.

Fast training: Although there are various ways in which rank order codes can be

used for learning, it is usually the case that training is simple and fast. This is

mainly due to the finite number of codes which are possible for each population

of neurons, and their discrete nature.

Simple implementation: Compared to other types of neural codes, implementing

rank order coding is simple because the exact timings of the spikes are not

needed. Only the order is important.

Parallel implementation: The processing can be performed in parallel because of

the architecture of the neural network. Each neuron can process the input

independently from any other neuron. Also, in a hierarchical architecture,

each level can process information independently from the other levels. This

has been shown using the SpikeNet implementation where several machines

were used in parallel over the network to process images using rank order

coding [22].

Sparse coding: In most cases, enough information is available at the output as soon

as the first spikes arrive. In a recognition task for example, it is possible
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to recognize the image without waiting for the spikes to arrive from all the

neurons. By using just the spikes from the first few neurons, the recognition

can be made. The input image can therefore be sparsely coded by using only a

small number of neurons from the total number. The advantages of this sparse

coding are twofold: speed and robustness. It is faster because recognition can

take place without having to wait for all the neurons to fire. It is more robust

because only the salient features of the image are considered (first spikes)

without considering the less important features (later spikes). It can also be

argued that the first spikes encode more general features of the input, while

the later spikes encode more specific details. In our formulation of rank order

kernels in Section 4.4.2, we use this fact to define a degree for the kernel. The

kernel degree places a limit on the number of first spikes to consider, therefore

influencing how general or specific a kernel will be.

4.3.6 Other rank-based methods

Although the idea of rank order coding for neural codes was first proposed by

Thorpe et al. [113], the ideas of rank and order have also been used in other fields. In

signal detection theory the goal is to separate the information from the noise. Non-

parametric detection schemes can be used which do not make assumptions about the

statistics of the signal. Impressive results have been obtained using nonlinear rank

statistics [111]. Nonparametric rank-order statistics have been used successfully

to classify regions of sound signals into voiced, unvoiced, and silence regions [17].

Order statistic filters have been used in speech processing for endpoint detection [92].

Similarity measures have been proposed for comparing ranked lists which are

encountered in daily life [125]. Such lists include the list of results returned by a

search engine. For location-aware mobile applications, a rank based fingerprinting

algorithm has been proposed for indoor positioning [62].

In image processing, rank-order spatial filters are a type of nonlinear filter. They

have been successfully applied for the restoration of images, and have been shown to

overcome certain problems which were not solvable by the use of linear filters [94].

In image processing terms, the pixel neighborhood on which the filter operates is

called the “mask”. The output of a rank-order filter is determined by ordering

the pixels under the mask using their values. The median filter is the best-known
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Figure 4.11: Spiking neurons connected to a set of pixels. At the bottom of the figure

there are 9 gray-scale pixels representing an image. At the top of the figure there are

9 neurons. The input of each neuron is connected to each of the pixels. Each pixel has

a different intensity. The intensity of each pixel determines the latency of firing of

each neuron. The neuron connected to the pixel with the highest intensity (brightest

pixel) fires first. The neuron connected to the pixel with the lowest intensity (darkest

pixel) will fire last. (Figure taken from [34])
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Figure 4.12: Rank order coding is robust to changes in contrast and mean luminance.

At the top center of the figure are the same 9 pixels from Figure 4.11. At the top left,

the contrast of the pixels is smaller and the mean luminance is lower. At the top

right, the contrast of the pixels is again smaller but the mean luminance is higher. In

all three cases the rank order coding is the same. This is shown at the bottom of the

figure. (Figure taken from [34])
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example of such a rank-order filter. The output of the median filter is the value of

the pixel appearing in the middle of the order. It is crucial to emphasize that the

output of these image processing filters is a real number. The rank order kernels we

describe in the next section differ from these classic filters because the output of the

rank order kernel is not a real number. The output of a rank order kernel is a rank

order code.

4.4 Rank order kernels

In this section we will describe rank order kernels, which are one of the main

contributions of this thesis. These kernels were inspired by basis functions, kernel

functions, and rank order coding, as described earlier in this chapter. Rank order

kernels will be used for constructing an image similarity metric which is robust to

noise. In the next chapter, this similarity metric will be used to compare spectrograms

of spoken words in order to perform speech recognition. Before defining rank order

kernels, some critical distinctions need to be made between basis functions and

kernel functions.

• Basis functions can be regarded as synthesis functions whose main purpose is

to reconstruct an image. They can also be used to discriminate between images

by finding a sparse code of basis functions which are needed to reconstruct

specific images. Images which use the same code can be considered to be

similar.

• Kernel functions can be regarded as analysis functions whose main purpose is

to filter an image. They have an input and an output. They can be used to

discriminate between images by transforming images to representations which

emphasize the important discriminative features between the images.

• Basis functions are obtained by using a set of training images and an optimiza-

tion procedure. The basis functions arise directly from the images used for

training. That is, the process is “data-driven”.

• Kernel functions can be pre-defined before any data is processed. For example,

on-center and off-center convolution kernels are defined irrespective of the data

they will process.
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• Kernel functions can also be learned from the data. The challenge is to find a

method to accomplish this. Viola and Jones [123] presented a method by using

what they call “rectangle features”. The training was done on visual images.

To the best of our knowledge there is no published work which presents kernel

functions trained on spectrogram images.

• Computational complexity is always a concern when learning from data.

Learning basis functions is costly. Learning kernel functions can be even more

costly. So in order to learn kernel functions, it is important to find a way which

is not computationally expensive. Learning convolution kernels for example

is prohibitively expensive. That is one reason Viola and Jones used “rectangle

feature” kernels instead of convolution kernels.

• When using basis functions, it is desirable that the coding is sparse and that

the dictionary is over-complete. There is an infinite number of possible basis

functions and so an optimization procedure is needed to find the best ones.

Methods used in the literature optimize by minimizing the reconstruction error

and by maximizing the sparsity at the same time.

• With kernel functions, if one tries to find optimal convolution kernels, the

number of possibilities would again be infinite.

• With kernel functions, using the “rectangle features”, the possibilities are finite,

but again they are quite numerous. For example, as the authors state [123],

when using a 24 × 24 pixel size rectangle, the number of rectangle features is

over 180, 000. It is important however that the number is finite. They use a

weak learning algorithm (AdaBoost [31]) to select a small number of significant

features. The significant features are the ones which best separate positive from

negative examples.

Our approach consists of using a method which is inspired by both basis functions

and kernel functions. We will create kernel functions using rank order coding. For a

given kernel size, the number of possible kernels will be finite. The kernel functions

are learned from the data.
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4.4.1 Rank order kernels defined

A rank order kernel operates on a two dimensional image, which can be represented

as a two-dimensional matrix of intensity values. The kernel is applied in a similar

manner to that of image spatial filters. It is “slid” across the image to create an

output that is associated to the particular kernel. Whereas in image processing the

output is a single real value, in the rank order kernel case, the output is a vector

containing kernel-related positional indices, ranked in terms of pixel intensity. We

decided to use characters to represent the positional indices and therefore the rank

order kernel output is a character string. The kernel size (M × N) is defined by the

kernel’s height (M) and width (N) in pixels. The kernel needs to have a well-defined

center point. For this reason, we restrict M and N to have only odd values. In

general, a kernel transforms an input image to an output image. The rank order

kernel transforms an input image into a two-dimensional array of rank order codes.

Each element of the output array is a character string which is the rank order code.

The kernel performs an operation on the input image on a neighborhood of pixels

around the center point. This neighborhood is defined by the size of the kernel. The

result of the rank order kernel operation becomes the value of the element in the

output array at that center point. The kernel operation is performed for every point

of the input image, by moving the center point to every pixel in the input image.

An illustration of this process is shown in Figure 4.13. In the figure, the kernel has a

size of 3× 3 pixels. The neighborhood in the input image around the center pixel on

which the kernel operates is shown in green. The output of the kernel defines the

value of the corresponding center pixel in the output array, which is shown in red.

The figure shows one single operation around a specific center pixel. To complete

the transformation from input image to output array, the kernel operation has to be

performed on all the pixels of the input image.

The output of the rank order kernel operation is a rank order code. Each pixel

location of the kernel is given a label. An example can be seen in Figure 4.14 where

each of the 9 pixel locations of the 3 × 3 kernel is given a label using the letters from

A to I. The output of the kernel is a character string which represents the order of

the corresponding pixel values on which the kernel operates on the input image. In

the figure, the pixel values of the 3 × 3 neighborhood in the input image are shown

inside the green squares. For gray-scale intensity images, the values can range from
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Figure 4.13: Converting an input image to an output array using a rank order kernel.

Each element of the output array will be a rank order code, represented by a character

string.

0.0 to 1.0. The highest pixel value in this example is 0.99, and it appears at location

D. Hence, the rank order code starts with D. The second-highest pixel value is 0.93

and it is located at position A. The lowest pixel value is 0.12, at position G. The full

rank order code for this example is D,A,B,F,H,C,I,E,G. This rank order code is the

output of the kernel operation. In the case of ties (when two or more pixels have the

same value), we arbitrarily choose to order the labels in alphabetic order.

4.4.2 Degree of Rank order kernels

When using rank order coding (described in Section 4.3.3) it is not necessary to

wait for all the neurons to fire. As explained earlier, it is usually advantageous to

consider only the neurons which fire first and to ignore the rest which fire later. This

is accommodated by the rank order kernels by defining a degree for the kernel. The

degree of the kernel is the number of top pixel values which will be used for the

output. It is analogous to specifying the number of neurons for which we will wait

to fire in the rank order coding paradigm. For a kernel of degree n, only the top n

pixel values of the input will be used for the rank order code. This is equivalent to

saying that only the first n neurons to fire will be considered.
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Figure 4.14: An example of a rank order kernel operation. The kernel has size 3 × 3.

The input pixel values are shown on the top left, with green background color. The

pixel locations of the kernel are labeled from A to I. The output of the kernel is shown

at the top right. It is the rank order code of the 9 input pixel values.

An example of a rank order kernel of degree n = 1 is shown in Figure 4.15. In this

case only the top pixel value is considered. It is located at position D, and as a result

the output of the kernel is just D. In Figure 4.16 a rank order kernel of degree n = 2

is shown. Only the top two pixel values are considered. The output of the kernel is

their rank order which is D,A. Figure 4.17 shows a rank order kernel of degree n = 3

and Figure 4.18 shows a rank order kernel of degree n = 4. In our experiments using

spectrograms for speech recognition, which will be described in the next chapter, we

have found that 3 × 3 rank order kernels with degrees 1 to 4 give the best results. A

kernel with a lower degree captures more general features, whereas a kernel with a

higher degree is more specific. The degree of the kernel provides a way to control

the generality of the kernel.

4.4.3 Image similarity metric using rank order kernels

Our goal is to calculate an image similarity metric between two images. For this

particular discussion we restrict ourselves to gray-scale images. Let’s start with

two gray-scale images G1 and G2. The first step in calculating the image distance
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Figure 4.15: A rank order kernel of degree n = 1 operating on a 3×3 pixel area. Only

the top pixel value is considered. The output of the kernel is: D.

Figure 4.16: A rank order kernel of degree n = 2 operating on a 3×3 pixel area. Only

the top two pixel values are considered. The output of the kernel is: D,A.
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Figure 4.17: A rank order kernel of degree n = 3 operating on a 3×3 pixel area. Only

the top three pixel values are considered. The output of the kernel is: D,A,B.

Figure 4.18: A rank order kernel of degree n = 4 operating on a 3×3 pixel area. Only

the top four pixel values are considered. The output of the kernel is: D,A,B,F.
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between the two images is to transform both images using rank order kernels. Three

parameters have to be chosen: the height of the kernel (M), the width of the kernel

(N), and the degree of the kernel (n). The image distance depends on these three

parameters. In our experiments with spectrogram images we found that 3×3 kernels

work the best, with degrees ranging from 1 to 4.

The original gray-scale images have an intensity value for each pixel. Once

both images have been transformed, the two resulting “images” are actually two-

dimensional arrays containing rank order codes. Processing gray-scale image G1

with the rank order kernel gives output array R1. Processing gray-scale image G2

with the same rank order kernel gives output array R2. The elements in R1 and

R2 are each represented by a rank order code, which is the result of the rank order

kernel operation. The next step is to compare each element in R1 and R2 to find how

many corresponding elements have the same rank order code. Two corresponding

elements are ones which have the same (x, y) location in array R1 and array R2.

Equations 4.1 and 4.2 describe the transformation from gray-scale images to rank

order code arrays. G1 and G2 are the two gray-scale images. The function k(p) is the

rank order kernel which operates on the pixel neighborhood centered around pixel

p. The result of the two transformations are the two rank order code arrays R1 and

R2.

R1(x, y) = k(G1(x, y)) (4.1)

R2(x, y) = k(G2(x, y)) (4.2)

Equation 4.3 describes the distance metric (d) between two rank order code arrays

R1 and R2 of size X×Y. The binary operator ROC
==== operates on two rank order codes. If

the rank order codes are exactly the same, the operator returns the value 1, otherwise

it returns the value of 0. This can be visualized as a binary image. The binary image

has a value of 1 at locations where the rank order codes match, and a value of 0

where they do not match. An example of this can be seen in Figure 5.3 on page 140

where two gray-scale spectrogram images are compared using rank order kernels.

The two gray-scale images for which the image similarity metric is to be calculated

are shown in subfigures (a1) and (b1). The binary image is shown in subfigures (a2)

and (b2). The red pixels indicate the locations where the binary image has a value
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of 1. These are the locations where the rank order kernels gave the same output for

both spectrograms.

d = 1 −
1

XY

[ Y∑
y=1

X∑
x=1

(
R1(x, y) ROC

==== R2(x, y)
)]

(4.3)

With the distance metric equation, if all the corresponding rank order codes

between R1 and R2 are the same, the result will be that d is 0.0. That is, the distance

between the two original images is zero: they are exactly the same as far as the rank

order code is concerned. If all the corresponding rank order codes between R1 and

R2 are different, the value of d will be 1.0, which is the maximum value that d can

take.

4.4.4 Advantages of rank order kernels

The advantages of rank order kernels stem from the advantages of rank order coding

(see Section 4.3.5).

Robust to noise: Rank order kernels are robust to noise because small changes in

the input pixel values to the kernel do not change the rank order code output

of the kernel.

Fast processing: A simple sort operation on the input pixel values is enough to

determine the rank order code output of each kernel. The absolute values of

the pixels are not important, just their relative order. Sort operations are fast

compared to most other types of operations.

Simple implementation: Implementing a rank order kernel in software or hardware

is simple. It is just a sort operation.

Massively parallel: Transforming an image of size M×N requires M×N kernel op-

erations. Each of these operations can be performed independently from the

other. For this reason, the image transformation can be massively parallelized.

Each kernel operation can be a process of its own. Each process will need the

pixel values of the neighborhood on which the kernel operates. This neigh-

borhood is usually small, and so very little memory will be needed for each

parallel thread. Memory requirements can be an issue for parallel processing

when a large amount of memory is needed for each thread.
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4.5 Discussion

Images can be found in various formats. There are vector graphic images, which

are represented geometrically by shapes such as curves and polygons. There are

also raster graphics images (or bitmap images) which are represented with pixels

placed on a square grid. There is one pixel for each coordinate value pair on the grid.

Raster images can be color images, gray-scale images, or binary images. For color

images each pixel has color values. There are various color models. One such model

is the RGB model which specifies the red, green, and blue levels of each pixel. For

gray-scale images each pixel has only one value: the intensity. For binary images,

each pixel has one of two values: 0 or 1. There are many different image distance

metrics depending on the type of the image [24, 25].

In our image similarity formulation we have only dealt with gray-scale raster

images. That is, each image is a set of pixels each having an (x, y) coordinate and an

intensity value I. For digital images, the intensity can take only a finite set of values.

For an 8-bit gray-scale image for example, the intensity can have an integer value

between 0 and 255. In our description of image distance using rank order kernels

we assumed that the intensity can take any real value between 0.0 and 1.0. We leave

the formulation of a distance metric on color images as possible future work.

4.6 Summary

In this chapter we have introduced the concept of rank order kernels. A rank order

kernel is defined by its size and degree. An image distance metric can be calculated

using rank order kernels. The distance value is specific to a rank order kernel of

specific size and degree. In the next chapter we use rank order kernels of size 3 × 3

and degrees ranging from 1 to 4 in order to perform Automatic Speech Recognition.
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Chapter 5

Speech Recognition

5.1 Overview

Automatic Speech Recognition systems take a speech recording as input and produce

a sequence of spoken words as output. The input is in the form of a sound signal

and the output can be in the form of text. In this thesis we concentrate on isolated

word recognition in order to demonstrate how a speech recognition system which

uses rank order kernels is highly robust to noise. For isolated word recognition, each

input is a sound recording containing a single spoken word.

Our approach consists of converting each sound recording into a time-frequency

image representation, or spectrogram. The spectrogram is created using Linear

Predictive Coding which allows us to capture the important characteristics of speech.

Each recording is therefore represented by an image. A simple nearest neighbor

classification algorithm is then used for prediction. The distance metric between

two images used by the classification algorithm is based on rank order kernels.

For our experiments we used our own corpus of recorded speech, as presented in

Chapter 2. Each instance consists of a 2-second sound recording containing a single

spoken word. A training set of recordings is chosen for building the classifier, and

a test set of recordings is chosen for evaluation purposes. Our results show that by

using rank order kernels a low error rate can be achieved even under high levels of

added noise.
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5.2 Motivation

Automatic Speech Recognition (ASR) is becoming increasingly important in appli-

cations. In the near future, voice-controlled devices will be an essential part of our

lives. This is evident from the recent developments in mobile applications which are

now using ASR to interface with the user. Although the problem of ASR has been

studied for several decades [18,86], current ASR systems are still lacking when com-

pared to a human’s ability to recognize speech. The two main challenges for ASR are

the large number of variations found in speech and the presence background noise.

Speech recognition becomes even more difficult when the noise correlates to speech.

Co-speaker noise for example seems to have the worst effect on ASR systems.

A spoken word can vary a great deal depending on the speaker. There are

differences caused by pronunciation and in the voice of each speaker, such as the

tone and fundamental frequency of the voice. Background noise is always present

when performing ASR in real world applications. The accuracy of ASR systems

drops dramatically when the noise levels are high [58]. It is therefore impressive that

humans have the ability to recognize speech under many different conditions. This

ability is only slightly affected by changes in pronunciation, voice characteristics,

and noise [97].

In our attempt to make a robust speech recognition system, we take inspiration

from the human auditory system and from the human brain. Sounds are spec-

trotemporally processed by the primary auditory cortex [105]. We therefore use a

time-frequency image representation of speech, or spectrogram. Rank order coding

has been presented as a plausible explanation of how the brain can efficiently process

information [34]. It has the advantages of being robust to noise and it allows for

fast processing. We therefore employ rank order kernels, as we have defined them

in Section 4.4, in order to process the spectrograms. The use of rank order kernels

allows for noise-robust processing of spectrogram images, as well as the possibility

for fast massively parallel implementations in both software and hardware.

5.3 Background

The classic method for performing Automatic Speech Recognition (ASR) is by mod-

eling speech as a discrete sequence of states. Each state is described by a probability
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distribution based on short-time spectral characteristics of speech. State of the art

speech recognition systems use Hidden Markov Models (HMM) to model units of

speech. In isolated word recognition for example, each word can be modeled by

a distinct HMM [84]. Recognition is performed by finding which HMM has the

highest probability of describing an observation.

More recently, researchers have turned to using spectrogram representations for

ASR [89, 99]. Such approaches have shown to be robust to noise and also have

the ability to perform well even when using small training sets. The spectrogram

representation allows the ASR system to capture image-based features which are not

greatly affected by noise. Also, image reconstruction methods [89] can overcome the

problem of missing features. Missing features can result from high levels of noise

which corrupt the spectrogram. When processing images, the human brain can fill

in missing parts of images which are occluded. It is reasonable therefore to consider

the possibility that the human brain uses similar “reconstruction” techniques when

processing sounds.

5.3.1 Classic methods

Classic Automatic Speech Recognition (ASR) systems rely on Hidden Markov Mod-

els (HMM). Most state-of-the-art ASR systems are of this type. For example, Sphinx-4

is a state-of-the-art speech recognition system based on HMMs [124]. The process

used by classic ASR systems can be summarized as follows:

1. Feature extraction, using Mel-Frequency Cepstral Coefficients (MFCC)

2. Acoustic modeling, using Gaussian Mixture Models (GMM)

3. Sequence modeling, using Hidden Markov Models (HMM)

4. Recognition, using the Viterbi algorithm for search

Feature extraction

Automatic Speech Recognition (ASR) is fundamentally a pattern classification task [82].

Therefore, as in all pattern classification tasks, adequate feature extraction plays a

central and crucial role. It is usually not clear which features best describe the data

in order for classification to be successful. The best features are the ones which allow

129

Alex
an

dro
s K

yri
ak

ide
s



for maximum discriminability between instances without sacrificing generality. In

ASR, the standard feature extraction method are Mel-frequency cepstral coefficients

(MFCC) [19]. To calculate the values of the features, the input sound signal is broken

down into short time frames and the short-time Fourier transform is computed for

each frame in order to find the spectrum. The spectrum of each frame is then passed

through a Mel Filter bank which is a bank of triangular filters spaced according to

the Mel-frequency scale [133]. The mel scale does not space the frequency bands

linearly, but rather it attempts to model the human auditory system. Human audi-

tory perception has a higher resolution at low frequencies than at high frequencies.

The final step in the calculation of the MFCCs is a discrete cosine transform which

produces a set of coefficients. Typically, only the first few coefficients are kept.

Perceptual Linear Prediction (PLP) is another method which can be used for

feature extraction [5, 6, 41]. It is also inspired by the human auditory system and

is sometimes used as an alternative to MFCC. An extension to PLP is RASTA-

PLP [42] which attempts to remove background noise that varies slowly compared

to variations in the speech signal.

Acoustic modeling

Hidden Markov Models (HMM) consist of a sequence of states. Each state is mod-

eled by a probability distribution. In ASR this is usually modeled by Gaussians

or mixtures of Gaussians [45]. This Gaussian mixture model (GMM) models the

likelihood of the extracted features being generated by a given state. It is the prob-

ability of having a specific feature vector given an HMM state. Instead of GMMs,

multi-layer perceptrons can also be used to calculate this probability [11].

Sequence modeling

In classic ASR systems, speech is modeled as sequence of states. A Hidden Markov

Model (HMM) is a probabilistic model which consists of a sequence of “hidden”

states [84]. It is a probabilistic model because transitions are possible from one state

to another based on transition probabilities. In a Markov model, such as this, the

probabilities of transitioning from one state to the next depend only on the current

state. The transition probabilities do not depend on any of the previously-visited

states. In HMMs, the states are “hidden” because they cannot be directly observed.

130

Alex
an

dro
s K

yri
ak

ide
s



We cannot be sure which state is the current state. Each state however has an output,

based on a probability distribution (such as the GMM described above). This output

is directly observable. In the case of GMMs, this output is the log-likelihood.

Recognition

Speech is modeled as a sequence of states with certain constraints on the state

transitions. The Hidden Markov Model (HMM) is what places these constraints.

When performing speech recognition, the speech has to be broken down into units.

For example, it can be broken down into small units, such as phonemes, or larger

units, such as words. The selection of the type of unit to use is a design decision.

For each unit, one HMM is trained. In isolated word speech recognition it would

be reasonable to create one HMM for each word. HMMs place constraints on the

acoustic features based on the training set. Further constraints can be placed during

speech recognition based on a language model which can define constraints on the

sequence of words.

HMMs are generative models. They define a probabilistic method for generating

data. In the ASR case, the data are the feature vectors. When trying to recognize a

word therefore, the recognition task is one of finding the HMM which would most

likely generate the sequence of feature vectors extracted from the speech input. This

is also referred to as “decoding”. Given a sequence of observations one needs to

estimate the underlying HMM. A search procedure finds the best HMM based on

the model outputs at each time step. A dynamic programming algorithm, called the

Viterbi algorithm, can be used to do this efficiently [84].

5.3.2 The problem of noise

In classic ASR systems the recognition accuracy depends on how well the probability

distributions of the acoustic features match between training data and test data. This

presents a problem when the test data includes noise while the training data does

not. In this case, the distributions of the acoustic features in the training data and test

data are different [69]. As a result, the recognition accuracy drops significantly. This

problem can be mitigated by transforming either the training set distribution or the

test set distribution in order to decrease the mismatch. In the first case it is called data

compensation, and in the second case it is called classifier compensation [89]. Some
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of the data compensation methods are CDCN [2], VTS [69], RATZ [69], and POF [72].

Classifier compensation methods include PMC [32], model composition [122], and

MLLR [54].

Both the data compensation methods and classifier compensation methods as-

sume that the noise is stationary. Based on this assumption, it follows that the acous-

tic feature distributions would be affected in exactly the same way, irrespective of

input signal. For non-stationary noise, this does not hold, and so for non-stationary

noise these two methods are not successful [87].

Human beings are able to understand speech corrupted by either stationary or

non-stationary noise [58, 67]. It is also interesting to note that humans can still

understand speech when it has been either high-pass or low-pass filtered with a

cutoff frequency of 1800Hz [30]. In the context of this thesis however, the capture

effect [68] exhibited by the human auditory system is the most interesting: locally

more intense signal components dominate the neural response, suppressing weaker

components, sometimes completely [89]. The degree parameter of the rank order

kernels presented in Section 4.4.2 imitate this characteristic of the human auditory

system.

5.3.3 Patterns in spectrograms

Modeling speech as a discrete sequence of states is the classic approach for Auto-

matic Speech Recognition (ASR) systems. It has been acknowledged however, that

this model presents problems [75]. Breaking down speech into a sequence of time

frames and processing on frame-based features is restrictive. The human brain has

amazing pattern matching capabilities. A frame-based approach restricts the possi-

ble patterns available for recognition. A spectrogram representation however, opens

up a wide realm of pattern matching possibilities. A great example of this is pre-

sented by Shutte in his PhD thesis [99]. He uses a parts-based model, based on work

in machine vision [28], to capture local patterns in small time-frequency regions

of the spectrogram. These patterns can represent phonetic cues such as formant

transitions, bursts in particular frequency bands, and voicing information. This is

illustrated in Figure 5.1. This approach allows for a more flexible and powerful

approach to pattern recognition.
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Figure 5.1: In the classic approach to speech recognition, the speech signal (sub-figure

a) is broken down into a sequence of short time frames (sub-figure b). Features

are then extracted individually for each time frame. In the parts-based approach

however, proposed by Shutte [99], patterns are extracted from the spectrogram (sub-

figure c). The parts-based approach allows for a much more flexible and powerful

approach to pattern recognition. Parts of the spectrogram which represent phonetic

cues, such as formant transitions, can be captured by local time-frequency patterns

which are only available in the spectrogram representation. These local pattern

regions are indicated with black polygons in the figure. (Figure taken from [99])
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5.4 Experiments

Our approach for performing speech recognition is to use rank order kernels as

described in Section 4.4. We carried out experiments using our own speech corpus

of isolated word recordings. The recordings are described in Section 2.1. For the

speech recognition experiments we restricted ourselves to the ten digits: “zero”,

“one”, “two”, “three”, “four”, “five”, “six”, “seven”, “eight”, and “nine.” It is

common to restrict experiments to a small vocabulary for initial testing [60,61]. Our

speech corpus contains 10 utterances of each word from each speaker. We separated

our data into a training set and a test set. The training set consisted of 10 male

speakers (male01-male10) and 10 female speakers (female01-female10). The test

set consisted of 5 male speakers (male11-male15) and 5 female speakers (female11-

female15). Therefore, the total number of training instances was 2000, and the total

number of test instances was 1000. The original recordings were recorded at a

sampling rate of 100kHz. For our speech recognition experiments, the recordings

were down-sampled to 8kHz.

The first step was to convert each speech recording into a spectrogram representa-

tion. We found that it was advantageous to use a spectrogram representation created

with Linear Predictive Coding (described in Section 3.2.5). In order to find optimal

spectrogram parameters we carried out a cross-validation exercise on a separate

dataset with different words. Using these parameters, we converted each recording

in our training and test sets into spectrogram images. After this step therefore, the

training set consisted of 2000 images, and the test set of 1000 images. Each image

belongs to one of 10 classes: the 10 spoken words. In order to perform recognition,

a simple nearest neighbor classification was used based on the rank order kernel

distance metric. Each of the images in the test set was compared to each of the

images in the training set in order to find the closest-matching image in the training

set. The closest-matching image is the one with the smallest distance, based on the

rank order kernel distance metric defined in Equation 4.3 on page 124. Using this

method therefore, the predicted class of an image in the test set is the class of the

closest-matching image in the training set.

Each of the recordings in our speech corpus has a length of 2 seconds. A single

spoken word is contained within those 2 seconds. The time positions at which the

speech begins and ends during those 2 seconds however, are arbitrary. This presents
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a problem for our methodology because the spectrogram images of the words need

be properly aligned in order to be directly comparable. It is necessary therefore

to find the endpoints of the spoken word within each recording. This way, the

spectrogram images will represent only the part of the recording which contains

speech and so all spectrogram images will be aligned. An additional problem is

that the duration of each spoken word varies. Even for the same word, different

speakers may speak at different speeds. Finding the endpoints of the word solves

these problems. It allows us to normalize each word in terms of time. Normalization

takes place by resizing all the spectrogram images to the same width, as explained

later. It is evident therefore that endpoint detection plays a crucial role in our

methodology. For the following speech recognition experiments with rank order

kernels we use our endpoint detection system described in Chapter 3. In all cases,

the endpoint detection is carried out on noise-free recordings so that the performance

of the rank order kernel methodology can be ascertained independently from the

endpoint detection performance. For the endpoint detection step the recordings

were down-sampled to 16kHz, whereas for the subsequent speech recognition step

they were down-sampled to 8kHz.

5.4.1 Using Rank Order Kernels

Rank Order Kernels, as described in Section 4.4, require two-dimensional intensity

images as input. Each of our speech recordings was therefore converted into a

time-frequency representation, or spectrogram. The standard method for creating a

spectrogram is to use the Short Time Fourier Transform (STFT). We found however

that for spectrograms used for speech recognition it was advantageous to use Linear

Predictive Coding (LPC) analysis instead. Experiments with the nearest neighbor

method and a simple Mean Square distance metric showed a significant difference in

error rate between spectrograms generated using STFT and spectrograms generated

using LPC. These experiments using the mean square distance were completed as

part of an undergraduate thesis [35]. The top two line plots in Figure 5.2 show

the error rates when STFT spectrograms are used (black line plot) and when LPC

spectrograms are used (red line plot). In both cases, a time window of 40ms with an

overlap of 75% was used to create the spectrograms and each image was resized to

75×60 pixels. The formula for the mean square distance metric between two images
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(I1 and I2) is shown in Equation 5.1, where N is the number of pixels in each image.

d =
1
N

[∑
y

∑
x

(
I1(x, y) − I2(x, y)

)2
]

(5.1)

For the creation of the spectrograms, certain parameters need to be decided. The

spectrogram is generated from the speech signal by taking short time windows and

performing a frequency analysis on each window. One parameter therefore is the size

of the time window. Another parameter is the amount of overlap between successive

time windows. The order used for the LPC analysis is another important parameter.

The time window parameters as well as the LPC analysis resolution determine the

image size of the spectrogram. The rank order kernel distance metric requires that

two images have exactly the same size, in order to calculate the distance between

them. For this reason, all spectrogram images are resized to a standard image size

using bicubic interpolation. Once the height and width of the standard image size

is decided, all images in the training set and test set have this standard size. Finally,

the size and degree of the rank order kernels also needs to be decided.

In order to find the optimal values of the above parameters, a cross-validation

exercise was performed using a dataset of manually-endpointed spoken words.

This is the same dataset of 450 recordings that was used for the endpoint detection

experiments described in Section 3.5.1 on page 82. A wide range of parameters

were tried using several runs. Based on our runs, we determined that the optimal

parameters for the spectrogram creation were a time window of 80ms, a window

overlap of 75%, and an LPC order of 14. It is interesting that our cross-validation

runs indicated that an LPC order of 14 was the optimal because it is well-established

in the literature that LPC orders of 10 and 14 are well-suited for speech recognition

applications. It was found that an LPC order of 10 also works well, but that an order

of 14 was better. From the cross-validation runs it was concluded that a kernel size of

3×3 gave the best results and that kernel degrees above 4 did not give good results. It

was also determined that the most appropriate spectrogram image size was 75× 60.

Table 5.1 shows the range of values tried for the different parameters during cross-

validation and the optimal values found. It is interesting that the optimal value

found for the the time window was 80ms. Most speech processing applications use

smaller windows, but for the rank order kernels a relatively longer window is more

appropriate. This may show that the rank order kernels are well-suited for capturing
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Figure 5.2: A comparison of two different image distance metrics (mean square

distance and rank order kernel distance) and of two different spectrogram generation

methods (FFT and LPC). Speech recognition is performed by first converting speech

recordings to spectrograms. Classification is then carried out with a simple nearest

neighbor algorithm using the image distance metric. The plots show how the error

rate on the test set increases when various levels of white Gaussian noise is added

to the test set instances. The blue plots show the results when using a rank order

kernel of degree n=2. The rank order kernel distance metric is robust to high levels

of noise.
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Table 5.1: The range of parameter values tried in the cross validation exercise in order

to find the optimal parameters. The dataset used for cross-validation consisted of

manually-endpointed words and was separate from the training and test sets used

in our other speech recognition experiments.

Parameter Range of values tried Optimal value found

LPC order 2, 4, 10, 14, 20 14

Length of time window 10, 20, 30, . . . , 130, 140, 150 80ms

Time window overlap 0, 10, 25, 75, 90 75%

Spectrogram image height 10, 15, 20, . . . , 65, 70, 75 75 pixels

Spectrogram image width 10, 15, 20, . . . , 65, 70, 75 60 pixels

Kernel height 3, 5, 7, 9 3 pixels

Kernel width 3, 5, 7, 9 3 pixels

Kernel degree 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4

features in speech which have a relatively longer time duration.

A spectrogram image was created for each of the recordings in the training set and

test set by using the optimal values found from the cross-validation runs. Endpoint

detection was used as a pre-processing step in order to select the section of the

recording which contains speech. The spectrogram images therefore represent only

the section of the recording which contains speech and not the complete 2-second

recording. The selected section of input signal was then normalized to have an

RMS value of 1. A nearest neighbor classification was then used to classify all the

spectrograms in the test set by comparing each one to the all spectrograms in the

training set. The distance metric used was the rank order kernel distance metric

defined in Equation 4.3 on page 124. White noise was added at various SNRs as

well as babble noise (see Section 2.2) in order to test the performance under noisy

conditions. Table 5.2 shows the detailed results of the experiments. From the results

it can be seen that the best performance was obtained using a rank order kernel of

degree n=2. The results for added white noise with a rank order kernel of degree

n=2 are shown as a line plot in Figure 5.2 (blue line plot with triangle points). For

highly noisy conditions there is a significant improvement when the rank order

kernel distance metric is used instead of the simple mean square distance (red line
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plot).

The rank order kernel distance metric compares two spectrogram images by

essentially counting how many kernels, at corresponding locations in the two images,

have the same rank order code. An example of this is shown in Figure 5.3 where two

spectrogram images are compared using rank order kernels. The top left image in

the figure is of the word “eight” taken from the training set, from speaker “male03”.

The top right image in the figure is of the word “eight” taken from the test set,

from speaker “male14”. The rank order kernel distance between these two images

is calculated as follows. For both spectrogram images, the rank order code for each

3 × 3 pixel area (kernel) is found by simply sorting the pixel intensity values in each

pixel area. In this example we use a kernel degree of n=2. Therefore the order of

only the top 2 pixels is considered. The bottom two images in Figure 5.3 indicate

(in red) the kernel locations for which the order of the top 2 pixels is exactly the

same for both spectrogram images. There are a total of 980 such matching kernels.

Most of the matching kernels do not lie at time-frequency locations of high energy,

but rather at locations where there are energy transitions. It is interesting to see that

most of the matching kernels form areas which “envelop” the formant frequencies of

the vowel sounds. This important characteristic of the speech is therefore captured

by the rank order kernels without us having explicitly defined a way to consider

formant frequencies. The total number of pixels in each spectrogram image is 75×60.

The distance between these two specific images for rank order kernels of degree n=2

is therefore 0.7822. The calculation is shown in Equation 5.2. A smaller distance

indicates that the two images are more similar. If a rank order kernel of degree n=1

is used, instead of n=2, the number of matching kernels for this example increases

from 980 to 1647, giving a distance of 0.6340. When using a rank order kernel of

degree n=3, the number of matching kernels for this example decreases to 642, giving

a distance of 0.8573. Kernels with lower degrees are less specific and therefore give

a lower distance, because a higher number of kernels match.

d = 1 −
1

XY

[ Y∑
y=1

X∑
x=1

(
R1(x, y) ROC

==== R2(x, y)
)]

= 1 −
1

75 × 60
× 980 = 0.7822 (5.2)
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 (a1) Spectrogram of an instance of the 

 word "eight" taken from the  training set

 (b1) Spectrogram of an instance of the 

 word "eight" taken from the  test set

 (a2) Location of matching rank order kernels 

 superimposed on the spectrogram above

 (b2) Location of matching rank order kernels 

 superimposed on the spectrogram above

Figure 5.3: An example of how the rank order kernel distance is calculated between

two spectrogram images. In this example, both spectrograms are of the word “eight”.

The spectrogram of an instance taken from the training set is shown in (a1). The

spectrogram of an instance taken from the test set is shown in (b1). The distance

is calculated by counting the number of corresponding kernel locations which have

the same rank order code, based on the degree of the kernel. In this example we

use a kernel degree of n=2. There are a total of 980 kernel locations which match.

These locations are shown with red color in the two images at the bottom. The

locations are superimposed on the training set spectrogram (a2) and on the test set

spectrogram (b2) for comparison. It is interesting to see that the matching kernels

form areas around the important features of the spectrogram, such as the formats of

the vowels. The value of the distance between these two images is 0.7822, as shown

in Equation 5.2.
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Table 5.2: The performance of the rank order kernel method for speech recognition.

The table shows the error rates on the test set when white gaussian noise and babble

noise are added at various levels. Kernels with degree n=2 have lower error rates.

Error (%)
Noise Kernel No SNR

type degree noise 20dB 15dB 10dB 5dB 0dB -5dB

white

n=1 13 11 12 15 18 21 31

n=2 11 11 11 12 14 18 25

n=3 11 11 12 13 15 18 25

n=4 14 13 13 14 17 20 27

babble

n=1 13 15 17 20 28 36 52

n=2 11 13 15 17 22 30 46

n=3 11 14 15 17 23 31 46

n=4 14 16 17 20 26 34 49

5.4.2 Weights for Rank Order Kernels

When using spectrograms to discriminate between words, certain areas of the speech

spectrogram are more important than other areas. In order to capture this fact, a

weighting scheme was devised. We make the assumption that the most important

local time-frequency regions in the spectrogram are the ones which have pixels with

large differences in intensity values between them. Such areas represent features

which are more distinctive. Rank order kernels can capture these features in an

elegant way. When the sound signal is corrupted with noise, the rank order code is

less likely to change for regions with large differences in intensity values. A simple

example with numbers can make this clear. Take two pixel areas, A1 and A2, of

size 2 × 2 pixels. The pixel values in A1 are p1 = 0.010, p2 = 0.020, p3 = 0.012, and

p4 = 0.030. The pixel values in A2 are p1 = 0.14, p2 = 0.37, p3 = 0.58, and p4 = 0.80.

The differences in intensity values for area A1 are small, whereas the differences in

intensity values between the different values in A2 are large. When random noise is

added to the pixels of both areas, the intensity values will change. Let’s assume that

after some noise is added, the new pixel values in A1 become p1 = 0.030, p2 = 0.015,

p3 = 0.013, p4 = 0.012 and in A2 the pixel values become p1 = 0.05, p2 = 0.29,
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Table 5.3: An example illustrating that local pixel areas with pixels which have large

differences in intensity values have a rank order code which is more robust to noise

than pixel areas which have small differences in intensity values. Pixel areas A1

and A2 of size 2 × 2 have 4 pixels each. The intensity values in pixel area A1 have

small differences between them whereas the pixel values in A2 have large differences

between them. When noise is added, the pixel values in both areas change. The

example shows how the pixel values can change hypothetically when random white

noise is added. After noise is added, the rank order code of A1 changes, but the rank

order code of A2 remains the same.

Before (no noise) After (with noise)

Pixel area pixel values rank order pixel values rank order

A1 p1 = 0.010 p4 p1 = 0.030 p1

p2 = 0.020 p2 p2 = 0.015 p2

p3 = 0.012 p3 p3 = 0.013 p3

p4 = 0.030 p1 p4 = 0.012 p4

A2 p1 = 0.14 p4 p1 = 0.05 p4

p2 = 0.37 p3 p2 = 0.29 p3

p3 = 0.58 p2 p3 = 0.30 p2

p4 = 0.80 p1 p4 = 1.00 p1

p3 = 0.30, p4 = 1.00. Before adding noise, the rank order of the pixel values in A1

was p4, p2, p3, p1. When noise was added however, the rank order for A1 changed to

p1, p2, p3, p4. For pixel area A2 the rank order remained p4, p3, p2, p1 both before and

after the noise was added. This example is summarized in Table 5.3.

The weighting scheme we devised attempts to assign a higher weight to kernel

locations which are more robust to noise. Each kernel location of a spectrogram

image in the training set is assigned a weight depending on the level of noise

required to change the rank order code of the kernel at that specific location. The

training procedure which finds the weights for each spectrogram in the training set

is the following:

1. Corrupt the input sound recording with random white noise at successive

levels of noise with SNR 30dB, 20dB, 10dB, and 0dB, and create the spectrogram
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in each case.

2. For each level of noise consider each kernel location and find the locations

where the rank order code does not change (based on the kernel degree).

3. Initialize all kernel locations with a weight of zero.

4. For locations where the rank order code does not change for noise level 30dB,

assign a weight of 1.

5. For locations where the rank order code does not change for noise level 20dB,

add 1 to the weight.

6. For locations where the rank order code does not change for noise level 10dB,

add 1 to the weight.

7. For locations where the rank order code does not change for noise level 0dB,

add 1 to the weight.

The above procedure will produce a weight matrix W(x, y) for each kernel location

(x, y). The minimum possible weight is zero, which indicates kernel locations which

are not robust to noise. The maximum weight is four, which indicates kernel locations

which are very robust to noise. In our experiments, we carried out the above

procedure 10 times for each training image, taking the average, in order to even out

the randomness of the white noise. It is important to note that the weights depend

on the kernel degree. Kernels with lower degree are more robust to noise, and will

therefore have higher weights. In our speech recognition experiments, we used

kernel degrees of 1, 2, 3, and 4. We therefore created a weight matrix for each of

those degrees. In Appendix B we show the weight matrices graphically as images for

ten different words from the training set spoken by “male03”. We believe that this

weighting scheme can generalize to many types of images, not just spectrograms, in

order to designate the areas of an image with the most important features.

In the distance calculation, the weights are used as coefficients. Equation 4.3 is

now modified to incorporate the weights W(x, y), as shown in Equation 5.3. The

weighted distance metric improves the performance of the speech recognition. The

detailed results using this weighted distance metric are shown in Table 5.4. A

comparison to previous results is shown in Figure 5.2 where the blue line plot with
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Table 5.4: The performance of the rank order kernel method for speech recognition

with the use of weights. The table shows the error rates on the test set when white

gaussian noise and babble noise are added at various levels. Kernels with degree

n=2 have lower error rates.

Error (%)
Noise Kernel No SNR

type degree noise 20dB 15dB 10dB 5dB 0dB -5dB

white

n=1 9 8 8 9 11 14 22

n=2 8 8 8 10 10 12 18

n=3 10 9 10 11 12 13 20

n=4 10 11 11 13 13 15 24

babble

n=1 9 11 11 13 19 28 42

n=2 8 9 10 12 17 22 36

n=3 10 11 11 13 17 23 35

n=4 10 12 12 15 18 25 37

diamond marks shows the results when weights are used for the rank order kernels.

The figure shows the performance of rank order kernels with degree n=2.

d = 1 −
1

XY

[ Y∑
y=1

X∑
x=1

W(x, y)
(
R1(x, y) ROC

==== R2(x, y)
)]

(5.3)

5.4.3 Strict Endpoint Detection and Rank Order Kernels

The performance of our speech recognition algorithm greatly depends on the accu-

racy of the endpoint detection step. The rank order kernel distance metric compares

corresponding locations of two spectrogram images. A large error in the locations of

the calculated endpoints results in the shifting of the spectrogram image on the time

axis as well as a change in the width of the image region which represents speech. In

the experiments described previously, the endpoint detection step was performed

using the endpoint detection algorithm presented in Chapter 3. In order to reduce

the effect of endpoint detections which have a great deal of error, we decided to

employ “strict” endpoint detection which uses cutoffs. Recordings for which the
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calculated endpoints determined a highly unlikely time length were discarded. For

each word, a minimum and maximum cutoff was put in place. If the length of the

spoken word was below the minimum cutoff, or above the maximum cutoff, then

the recording was discarded. These cutoffs were used for both the training set and

test set.

To determine the cutoff values for each word, we used the distribution of the

endpointed lengths of all the recordings from each word. For each word (“zero”,

“one”, . . . , “nine”) the endpoints of all the recordings, in both training and test set,

were calculated. Based on the endpoints, the time length of the speech region in

each recording was found. The 30th percentile of this distribution of time lengths

was used as the minimum cutoff, and the 70th percentile as the maximum cutoff.

Table 5.5 shows the cutoffs we used for each word. From the 2000 recordings in the

training set, 1033 recordings were discarded because the speech length determined

by the endpoint detection exceeded the cutoffs. From the 1000 recordings in the

test set, 557 recordings were discarded because the speech length determined by

the endpoint detection exceeded the cutoffs. By using the remaining recordings to

carry out the speech recognition test, the results improved, indicating that a higher

endpoint detection accuracy has a positive effect on the speech recognition accuracy.

The detailed results based on endpoint detection with cutoffs are shown in Table 5.6.

A comparison to previous results is seen in Figure 5.2 where the blue line plot with

star markers shows the results based on endpoint detection with cutoffs. The plots

in the figure for the rank order kernel distance metric are all for rank order kernels

of degree n=2.

5.4.4 Multi-degree Voting for Rank Order Kernels

For all the previous experiments described in this section we used rank order kernels

with degrees 1, 2, 3, and 4. The results we presented were for the performance of

each kernel degree separately. From the results it can be seen that kernel degree

n=2 has lower error rates. We now describe a method for combining several kernel

degrees together in order to reduce the error rate.

When a specific kernel degree is used, the nearest neighbor algorithm finds a

single spectrogram in the training set which has the smallest distance to the test set

image, based on that specific kernel degree. The predicted class is the class of the
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Table 5.5: The minimum and maximum cutoffs used for “strict” endpoint detection.

If the calculated endpoints of a word resulted in a speech region with a time length

less than the minimum cutoff or greater than the maximum cutoff, then the recording

was discarded from the dataset.

Word Minimum cutoff (ms) Maximum cutoff (ms)

zero 682 814

one 525 683

two 472 578

three 577 683

four 630 788

five 682 841

six 787 893

seven 682 841

eight 682 841

nine 577 762

Table 5.6: The performance of the rank order kernel method for speech recognition

with the use of weights and endpoint cutoffs. The table shows the error rates on the

test set when white gaussian noise and babble noise are added at various levels. In

general, kernels with degree n=2 have lower error rates.

Error (%)
Noise Kernel No SNR

type degree noise 20dB 15dB 10dB 5dB 0dB -5dB

white

n=1 5 5 5 5 7 10 17

n=2 4 4 5 4 6 8 13

n=3 4 4 4 5 7 10 15

n=4 5 5 5 6 9 11 17

babble

n=1 5 6 10 11 11 23 36

n=2 4 4 9 8 10 16 25

n=3 4 4 11 8 10 15 25

n=4 5 6 11 10 13 17 29
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Table 5.7: The performance of rank order kernels on speech recognition when using

multi-degree voting. The prediction is made by combining the predictions of kernels

with degree 1, 2, and 3. If the three predictions do not all agree, the instance is

classified as “unknown” and the prediction is considered a “miss”. The results

shown were obtained with kernel weights and endpoint cutoffs.

Noise No SNR

type noise 20dB 15dB 10dB 5dB 0dB -5dB

white

correct(%): 92 92 82 83 83 69 54

wrong(%): 1 1 3 3 3 6 7

miss(%): 7 7 15 14 14 25 39

babble

correct(%): 92 92 82 83 83 71 55

wrong(%): 1 1 3 3 3 4 7

miss(%): 7 7 15 14 14 26 38

training set instance and it will be either “correct” or “wrong”. From our experiments

we have found that kernel degrees 1, 2, and 3, give better results than kernel degree

4. If we consider kernel degrees 1, 2, and 3, we will have three predictions. One

prediction for each kernel degree. We can combine these three predictions in a voting

scheme so that the three predictions become one prediction. If all three predictions

agree, then the final prediction will be the class of the three predictions. If not

all the predictions agree, then the class will be considered as “unknown”, and the

prediction will be regarded as a “miss”. So each prediction can now be “correct”,

“wrong”, or “miss”. This has the result of decreasing the number of errors, at the

expense of also decreasing the number of correct predictions. The detailed results

of this multi-degree voting method, using both weights and endpoint cutoffs, are

shown in Table 5.7. The error rate (“wrong”) is greatly decreased compared to the

error rates reported in previous experiments which used only a single kernel degree.

5.4.5 Comparison to Sphinx

We compared the performance of our speech recognition system to the Sphinx-4

system [124], which is a state-of-the-art speech recognition system that uses Hidden

Markov Models. In order to train Sphinx-4, a large collection of speech data is
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needed, including text transcriptions of the sound files. For this reason, we decided

to use Sphinx with models which were already trained on the TIDIGITS [55] speech

corpus. The TIDIGITS speech corpus consists of 326 speakers (111 men, 114 women,

50 boys, and 51 girls) each pronouncing 77 digit sequences1. For these Sphinx models,

the expected error rate2 on out-of-sample spoken digits is less than 1%, when no noise

is added. When we tested the Sphinx system on the 3000 utterances of spoken digits

in our own speech corpus however, without adding any noise, we obtained an error

rate of 16%. On average, the error rate was higher for female speakers than male

speakers. One reason for the unexpectedly high error rate is probably the fact that

the speakers used to create our own speech corpus had pronunciations which were

significantly different than those of the speakers used to create the TIDIGITS corpus.

When we inspected the error rates for each speaker individually, we found that the

error rate for some speakers was significantly lower than for other speakers. We

ran experiments using added white noise and babble noise. The detailed results

are shown in Tables 5.8, 5.9, 5.10, and 5.11. For four specific speakers (“male03”,

“male10”, “male14”, and “male15”) the error rates were close to zero when no noise

was added. To compare the results of our speech recognition system with those of

Sphinx we therefore decided to restrict the test set for Sphinx to use only those four

speakers.

Figure 5.4 on page 154 shows the comparison of our rank order kernel method

to that of Sphinx when white Gaussian noise is added at various levels. The results

for Sphinx are based on a test set of 400 recordings: 10 utterances of each of the

10 digits from each of four male speakers. The results for our rank order kernel

method are based on the test set we used for all our previous experiments. We used

weighted rank order kernels with multi-degree voting and endpoint cutoffs. The

results of our method which we used for comparison purposes are those of Table 5.7.

At high SNRs the Sphinx system has a very high accuracy with almost zero wrong

classifications, and zero misses. At SNR 5dB the performance of the Sphinx system

starts to degrade. At SNR 0dB, the number of wrongly classified instances reaches

22.5%. When the SNR is -5dB, the Sphinx system cannot recognize most of the words

1Unfortunately the TIDIGITS corpus is not freely-available: http://www.ldc.upenn.edu/

Catalog/CatalogEntry.jsp?catalogId=LDC93S10
2For expected error rates, see: http://cmusphinx.sourceforge.net/sphinx4/#speed_and_

accuracy
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Table 5.8: Digit recognition performance of the Sphinx system on 15 male speakers

when using added white noise. The counts in the table are from a test set of 100

recordings for each speaker (10 utterances of each of the 10 digits).

No SNR (white noise)

Speaker noise 20dB 15dB 10dB 5dB 0dB -5dB

male01

correct: 76 77 81 65 57 36 1

wrong: 24 23 19 32 37 39 8

miss: 0 0 0 3 6 25 91

male02

correct: 96 94 92 87 74 47 15

wrong: 4 6 8 12 25 49 13

miss: 0 0 0 1 1 4 72

male03

correct: 97 100 99 96 91 76 31

wrong: 3 0 1 4 9 19 11

miss: 0 0 0 0 0 5 58

male04

correct: 91 97 97 91 81 52 19

wrong: 9 3 3 8 17 39 12

miss: 0 0 0 1 2 9 69

male05

correct: 86 87 84 80 74 62 15

wrong: 14 13 16 19 24 25 13

miss: 0 0 0 1 2 13 72

male06

correct: 90 90 88 84 84 67 17

wrong: 10 10 12 16 15 26 11

miss: 0 0 0 0 1 7 72

male07

correct: 94 94 95 93 85 67 15

wrong: 6 6 5 6 12 22 14

miss: 0 0 0 1 3 11 71

male08

correct: 87 89 83 80 74 57 9

wrong: 13 11 17 20 25 33 17

miss: 0 0 0 0 1 10 74

male09

correct: 94 98 96 97 91 89 37

wrong: 6 2 4 3 9 7 16

miss: 0 0 0 0 0 4 47

male10

correct: 98 100 98 97 83 52 2

wrong: 2 0 2 3 13 28 10

miss: 0 0 0 0 4 20 88

male11

correct: 84 84 80 86 70 49 15

wrong: 16 16 20 13 21 34 13

miss: 0 0 0 1 9 17 72

male12

correct: 95 92 90 89 78 55 13

wrong: 5 8 10 11 19 26 9

miss: 0 0 0 0 3 19 78

male13

correct: 94 92 96 96 91 78 21

wrong: 6 8 4 4 9 21 21

miss: 0 0 0 0 0 1 58

male14

correct: 100 100 99 100 94 74 17

wrong: 0 0 1 0 6 16 9

miss: 0 0 0 0 0 10 74

male15

correct: 98 98 96 99 92 64 13

wrong: 2 2 4 1 6 27 22

miss: 0 0 0 0 2 9 65
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Table 5.9: Digit recognition performance of the Sphinx system on 15 female speakers

when using added white noise. The counts in the table are from a test set of 100

recordings for each speaker (10 utterances of each of the 10 digits).

No SNR (white noise)

Speaker noise 20dB 15dB 10dB 5dB 0dB -5dB

female01

correct: 87 92 93 86 67 49 5

wrong: 13 8 7 14 27 29 5

miss: 0 0 0 0 6 22 90

female02

correct: 67 79 71 69 52 35 6

wrong: 33 21 29 29 40 43 17

miss: 0 0 0 2 8 22 77

female03

correct: 81 79 76 77 68 55 15

wrong: 19 21 24 22 29 36 17

miss: 0 0 0 1 3 9 68

female04

correct: 75 76 71 68 56 26 0

wrong: 25 24 29 32 38 54 1

miss: 0 0 0 0 6 20 99

female05

correct: 71 77 74 73 61 44 7

wrong: 29 23 26 27 39 44 2

miss: 0 0 0 0 0 12 91

female06

correct: 77 69 66 63 51 35 12

wrong: 23 31 34 35 41 45 9

miss: 0 0 0 2 8 20 79

female07

correct: 73 72 69 65 48 11 1

wrong: 27 28 31 35 48 23 1

miss: 0 0 0 0 4 66 98

female08

correct: 76 70 70 69 70 50 8

wrong: 24 30 30 31 30 47 11

miss: 0 0 0 0 0 3 81

female09

correct: 72 62 62 55 46 30 1

wrong: 28 38 37 44 49 38 6

miss: 0 0 1 1 5 32 93

female10

correct: 81 73 73 70 55 35 4

wrong: 19 27 27 30 40 43 8

miss: 0 0 0 0 5 22 88

female11

correct: 78 71 73 74 54 26 2

wrong: 22 29 27 25 38 45 1

miss: 0 0 0 1 8 29 97

female12

correct: 74 74 72 73 68 48 8

wrong: 26 26 28 27 31 48 17

miss: 0 0 0 0 1 4 75

female13

correct: 68 67 58 58 47 26 1

wrong: 32 33 42 42 51 38 1

miss: 0 0 0 0 2 36 98

female14

correct: 77 78 78 60 52 27 1

wrong: 23 22 22 40 43 49 8

miss: 0 0 0 0 5 24 91

female15

correct: 78 75 77 75 76 57 3

wrong: 22 25 23 25 24 37 9

miss: 0 0 0 0 0 6 88
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Table 5.10: Digit recognition performance of the Sphinx system on 15 male speakers

when using added babble noise. The counts in the table are from a test set of 100

recordings for each speaker (10 utterances of each of the 10 digits).

No SNR (babble noise)

Speaker noise 20dB 15dB 10dB 5dB 0dB -5dB

male01

correct: 76 81 82 79 72 41 4

wrong: 24 19 18 19 20 25 2

miss: 0 0 0 2 8 34 94

male02

correct: 96 98 97 96 84 61 18

wrong: 4 2 3 4 15 28 10

miss: 0 0 0 0 1 11 72

male03

correct: 97 95 93 95 92 79 30

wrong: 3 5 7 5 8 15 12

miss: 0 0 0 0 0 6 58

male04

correct: 91 92 92 89 85 61 23

wrong: 9 8 8 11 14 33 27

miss: 0 0 0 0 1 6 50

male05

correct: 86 89 88 84 74 66 26

wrong: 14 11 11 15 24 24 14

miss: 0 0 1 1 2 10 60

male06

correct: 90 85 86 83 79 70 25

wrong: 10 15 14 17 21 25 20

miss: 0 0 0 0 0 5 55

male07

correct: 94 95 93 86 76 69 33

wrong: 6 5 7 14 22 24 22

miss: 0 0 0 0 2 7 45

male08

correct: 87 91 87 86 71 57 8

wrong: 13 9 13 14 28 35 22

miss: 0 0 0 0 1 8 70

male09

correct: 94 96 96 95 84 77 55

wrong: 6 4 4 5 14 18 23

miss: 0 0 0 0 2 5 22

male10

correct: 98 98 98 97 79 59 21

wrong: 2 2 2 3 20 30 15

miss: 0 0 0 0 1 11 64

male11

correct: 84 92 91 93 78 57 17

wrong: 16 8 9 6 14 20 5

miss: 0 0 0 1 8 23 78

male12

correct: 95 95 95 88 74 50 10

wrong: 5 5 5 12 23 35 10

miss: 0 0 0 0 3 15 80

male13

correct: 94 96 92 84 77 67 18

wrong: 6 4 8 16 23 28 22

miss: 0 0 0 0 0 5 60

male14

correct: 100 100 100 99 98 77 30

wrong: 0 0 0 1 2 14 7

miss: 0 0 0 0 0 9 63

male15

correct: 98 96 95 89 79 67 20

wrong: 2 4 5 11 19 22 20

miss: 0 0 0 0 2 11 60
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Table 5.11: Digit recognition performance of the Sphinx system on 15 female speakers

when using added babble noise. The counts in the table are from a test set of 100

recordings for each speaker (10 utterances of each of the 10 digits).

No SNR (babble noise)

Speaker noise 20dB 15dB 10dB 5dB 0dB -5dB

female01

correct: 87 90 87 84 70 47 7

wrong: 13 10 13 16 28 32 12

miss: 0 0 0 0 2 21 81

female02

correct: 67 71 72 65 51 29 3

wrong: 33 29 28 32 39 43 14

miss: 0 0 0 3 10 28 83

female03

correct: 81 78 75 76 59 47 15

wrong: 19 22 25 24 39 46 12

miss: 0 0 0 0 2 7 73

female04

correct: 75 71 67 66 53 30 0

wrong: 25 29 33 33 43 41 5

miss: 0 0 0 1 4 29 95

female05

correct: 71 72 69 64 44 29 3

wrong: 29 28 31 36 55 47 14

miss: 0 0 0 0 1 24 83

female06

correct: 77 79 78 75 61 39 5

wrong: 23 21 22 23 30 30 0

miss: 0 0 0 2 9 31 95

female07

correct: 73 74 74 68 54 13 7

wrong: 27 26 26 31 43 20 2

miss: 0 0 0 1 3 67 91

female08

correct: 76 72 71 67 58 53 12

wrong: 24 28 29 33 42 44 20

miss: 0 0 0 0 0 3 68

female09

correct: 72 67 60 47 35 14 2

wrong: 28 33 40 49 56 46 9

miss: 0 0 0 4 9 40 89

female10

correct: 81 77 73 70 59 43 10

wrong: 19 23 27 30 34 29 6

miss: 0 0 0 0 7 28 84

female11

correct: 78 76 71 61 51 28 4

wrong: 22 24 29 38 46 38 12

miss: 0 0 0 1 3 34 84

female12

correct: 74 78 78 72 64 46 10

wrong: 26 22 22 28 36 47 19

miss: 0 0 0 0 0 7 71

female13

correct: 68 63 61 54 46 22 0

wrong: 32 37 39 46 50 27 3

miss: 0 0 0 0 4 51 97

female14

correct: 77 78 70 62 57 40 3

wrong: 23 22 30 38 38 46 11

miss: 0 0 0 0 5 14 86

female15

correct: 78 79 80 74 68 47 8

wrong: 22 21 20 26 31 47 13

miss: 0 0 0 0 1 6 79
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and the miss rate becomes 71%, compared to the miss rate of 39% of our rank order

kernel method. At this same noise level, the Sphinx system can only recognize 16%

of the instances correctly, whereas our system recognizes 54% of the words correctly.

We also carried out statistical significance tests using Fisher’s exact test [29] to see if

the performance of the rank order kernel method is significantly different than the

performance of Sphinx. Figure C.1 in Appendix C shows the p-values obtained. For

high levels of noise, when the SNR is 15dB or less, the performance of the rank order

kernel is significantly different than the performance of Sphinx.

Figure 5.5 on page 155 shows the same comparison between the two systems,

this time with added babble noise. Again, the same pattern is observed, where the

Sphinx system has a better performance at low levels of noise, but at high levels of

noise, our rank order kernel method has a lower miss rate, and higher accuracy.

5.5 Discussion

Using our own speech corpus of isolated words we have shown that a simple nearest

neighbor classification algorithm which uses the rank order kernel distance metric

can outperform even state-of-the-art speech recognition systems at high levels of

noise. The outstanding performance is due to the spectrogram image representation

used and to the robustness of rank order kernels. We have shown how a weighting

scheme, which gives higher emphasis to more important areas of the spectrogram,

improves results. Our speech recognition system relies on the direct comparison of

spectrogram images. It relies on the correct alignment of the spectrograms, which

itself relies on accurate endpoint detection. If the endpoints are found with greater

accuracy at the pre-processing step, then the performance of our speech recognition

algorithm improves. We demonstrated this by applying “strict” endpoint detection

which discarded recordings which were highly likely to have been wrongly end-

pointed. This is acceptable, as most speech recognition experiments in the literature

are conducted with the premise that the endpoints of the input speech are known in

advance, even in noisy speech recognition conditions [134]. Our goal in this chapter

was to independently asses the performance of the speech recognition aspect of the

rank order kernel method, without the influence of the endpoint detection accuracy.
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Performance comparison of Rank Order Kernel method and Sphinx system. 
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Figure 5.4: Comparison of the performance of our rank order kernel method to that

of the Sphinx speech recognition system, using added white Gaussian noise. The

Sphinx system has a better performance when the levels of noise are low. At high

levels of noise however, the rank order kernel has an advantage. At SNR -5dB,

the Sphinx system cannot recognize the words and therefore the miss rate increases

significantly. At that noise level, the rank order kernel method correctly recognizes

54% of the words, whereas the Sphinx system only recognizes 16% of them correctly.
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Performance comparison of Rank Order Kernel method and Sphinx system. 

              Spoken digit recognition using added babble noise. 
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Figure 5.5: Comparison of the performance of our rank order kernel method to that

of the Sphinx speech recognition system, using added babble noise. The Sphinx

system has a better performance when the levels of noise are low. At high levels of

noise however, the rank order kernel has an advantage. At SNR -5dB, the Sphinx

system cannot recognize the words and therefore the miss rate increases significantly.

At that noise level, the rank order kernel method correctly recognizes 55% of the

words, whereas the Sphinx system only recognizes 25% of them correctly.
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Chapter 6

Other Applications

6.1 A general framework

The endpoint detection algorithm introduced in Chapter 3 was used for finding the

endpoints of spoken words in sound recordings. The rank order kernel method

described in Section 4.4 was used for speech recognition and the results were pre-

sented in Chapter 5. The general framework we propose is one which transforms the

input signal to a two-dimensional image representation and then applies an appro-

priate image processing algorithm. For example, we found that the same endpoint

detection algorithm and the same rank order kernel method can also be used for

other applications with data other than speech. In this short chapter we present two

applications for which the endpoint detection algorithm and the rank order kernel

method were successful.

6.2 Endpoint detection algorithm applied to ultrasound

signals

Garreau et al. [33] have developed a method to distinguish the mode of transport for

human beings (e.g. walking, running, skating, cycling). They used a micro-Doppler

(mD) system to classify the mode of transport based on the time-frequency signatures

obtained from ultrasound signals. Figure 6.1 shows some examples of spectrograms

for four different modes of transport: walking, running, skating, cycling. Garreau et

al. report accuracies as high as 97% when these spectrograms are used to predict the

mode of transport. The ultrasound recordings obtained from their system however,
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Figure 6.1: Spectrograms generated from ultrasound signals recorded from humans

moving in front of the sensor under four different modes of transport. The horizontal

axis shows the time in seconds and the vertical axis the frequency from 40kHz to

41kHz. Each of the four modes of transport shown (walking, running, skating,

cycling) has a characteristic spectrogram which can be used to classify the mode.

(Figure taken from [33].)

had a great deal of unwanted noise. It became a challenge therefore to find the

locations of the mD signatures in each recording. In a recording of 12 seconds

containing one mD signature the region of interest (ROI) was a small time segment

of 1 to 3 seconds. This ROI was determined manually by a human expert before

passing it to the classification algorithm. The spectrograms shown in Figure 6.1

show only the ROI which was selected manually for each recording.

In order to automate the detection of the ROI, we applied our variance kernel

endpoint detection system. The endpoint detection system was able to detect the

endpoints (start and end) of each ROI. For speech we used an LPC order of 4 and

kernels of size 5 × 5. For the ultrasound signals we found that an LPC order of 25

and kernels of size 7 × 7 were more appropriate. Figure 6.2 shows an example of

how the endpoint detection system located the endpoints of one of the ultrasound

recordings. The top left diagram shows the waveform of an ultrasound recording

of length 12 seconds. The high level of noise is readily apparent. During those 12

seconds, a human subject walked in front of the ultrasound transceiver for a few
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seconds. Therefore only a short segment of the total recording represents the ROI

which is needed for classification. The endpoint detection system converts the signal

into a spectrogram representation using LPC analysis, then applies a variance kernel

transformation, and then converts the variance image to a binary image using the

automatically calculated threshold. This procedure is shown in the diagrams on

the left column of the figure. The right column of the figure shows the endpoints

which were automatically calculated. The diagram on the bottom right compares the

spectrograms of the ROI which was automatically selected by the endpoint detection

algorithm with the ROI selected manually by a human expert. The two ROIs agree.

6.3 Rank order kernels for the classification of Raman

signals

The classification of Raman spectra can be very useful in a wide range of diagnostic

applications including bacterial identification [52]. By being able to predict the

species of the bacteria present in a urine sample of a patient for example, a medical

doctor can promptly decide on a suitable course of treatment. When inexpensive

equipment is used to acquire the Raman spectra however, a great deal of noise is

present, making the classification task particularly challenging. An example of 90

such spectra, taken from three different species of bacteria, are shown in Figure 6.3.

For classification purposes, this data was separated into a training set and a test set.

The test set spectra were acquired at a later time period than the training set data.

Kyriakides et al. [52] reported a high level of accuracy on the test set (87%) using

support vector machines with a correlation kernel.

We decided to use the rank order kernel approach to classify this same set of

Raman spectra. The spectra were each converted to a two-dimensional image rep-

resentation by using segment ratios in the following way. Each spectrum has wave-

numbers ranging from 300cm−1 to 2200cm−1. We segmented each spectrum into

overlapping frames of width 50cm−1, using 50% overlap. This resulted in 77 frames.

For each frame, we took the mean of the intensity values in that frame. A matrix

of ratios was then created by taking the ratio of each mean intensity to every other

mean intensity. This resulted in a two-dimensional matrix of size 77 × 77. We then

processed this matrix as an image. The image was resized to a size of 25 × 75 pixels
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Figure 6.2: An example of our endpoint detection algorithm applied to ultrasound

signals in order to find the region of interest (ROI) which represents the micro-

Doppler signature of a human walking in front of the transceiver. The diagram

on the top left shows the noisy input signal. The diagrams on the left column

describe the endpoint detection procedure. The diagrams on the right column show

the locations of the automatically calculated endpoints. The diagram on the bottom

right compares the spectrograms of the ROI which was automatically selected by the

endpoint detection algorithm with the ROI selected manually by a human expert.
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Figure 6.3: A set of 90 Raman spectra. Of these, 75 were used for training and 15

for testing. The spectra shown in the figure are obtained after median filtering was

applied. In the subplots: (a) 25 E.coli spectra used for training. (b) 25 Klebsiella

spectra used for training. (c) 25 Proteus spectra used for training. (d) 5 E.coli spectra

used for testing. (e) 5 Klebsiella spectra used for testing. (f) 5 Proteus spectra used for

testing.
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Table 6.1: The actual class and predicted class of the 15 instances in the test set.

Twelve of the instances were classified correctly using a nearest neighbor method

with the rank order kernel distance metric.

Instance Actual class Predicted class

1 E.coli E.coli

2 E.coli E.coli

3 E.coli Klebsiella

4 E.coli E.coli

5 E.coli E.coli

6 Klebsiella Klebsiella

7 Klebsiella Klebsiella

8 Klebsiella Klebsiella

9 Klebsiella Klebsiella

10 Klebsiella Klebsiella

11 Proteus Proteus

12 Proteus Proteus

13 Proteus Proteus

14 Proteus E.coli

15 Proteus Klebsiella

using bicubic interpolation. The 75 images in the training set were then used to

classify the 15 images in the test set using a simple nearest neighbor algorithm and

the rank order kernel distance metric. We found that a rank order kernel size of 7×3

and of degree n=1 gave the best results. The instances in the test set were classified

with 80% accuracy (12/15). Table 6.1 shows the predictions.
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Chapter 7

Conclusion

7.1 Summary

In our effort to find a noise-robust classification algorithm which will be able to

process signals from various modalities, we have turned to biology for inspiration.

In this thesis we have presented how an appropriate transformation of a signal to

a two-dimensional image and subsequent processing with rank order kernels can

lead to superior recognition performance even under high levels of noise. We have

focused on the problem of automatic speech recognition (ASR) as an example of

an application where our method shows its advantages. While tackling this prob-

lem, we have also devised a necessary noise-robust endpoint detection algorithm,

which is also biologically-inspired. Our proposed ASR system does not aim to out-

perform current state-of-the-art ASR systems which have been built with years of

knowledge, experience, and fine tuning. Nonetheless, we introduce a novel and

noise-robust speech recognition system, which is based on models derived from

biological evidence. Biologically-inspired approaches, based on pattern matching,

require less training than conventional statistical approaches, which are based on

Bayesian learning methods. It would be possible to combine the two approaches

depending on the circumstances and on the availability of training data. This thesis

presents a transformation and subsequent pattern matching which is a clear depar-

ture from the traditional cepstral-based vector features. We have shown that the

biologically-inspired spectral imaging features used by our algorithm are robust to

background noise.

We have proposed the use of Rank order kernels as a new way to generate
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noise-resistant features. These features make the recognition system insensitive to

undesired variability in the input signal and allow for discrimination even under

high levels of noise. This is achieved by an image distance metric which is insensitive

to changes. We have used two-dimensional image representations because, based

on the literature on auditory perception, there is evidence that the auditory system

generates spatio-temporal representations of the one dimensional sound signal. The

principal result of our research is a noise-robust image similarity metric. We expect

this similarity metric to also perform well in other applications, such as for image

retrieval. Additionally, the weighting scheme we have proposed based on rank

order kernels is a possible method for finding the most important parts of an image.

In general, the performance of machine learning algorithms is highly dependent on

the distance metric used. New proposals for distance metrics are therefore of great

importance to machine learning applications.

7.2 Future Work

The classification model we have proposed is based on a two-dimensional image

representation and subsequent processing with rank order kernels for finding the

distance between images. For speech recognition we have restricted ourselves to a

specific spectrogram representation. It would be interesting to explore new represen-

tations, such as ones based on Mel Frequency Cepstral Coefficients. The spectrogram

images we have used are intensity images, where each pixel is represented by a single

value. The images are essentially gray-scale images. Humans can only differ be-

tween approximately 30 different levels of gray, but they can differ between around

350,000 different colors. Color plays an important part in human visual system.

Research has shown that it is advantageous to use color for image segmentation and

pattern matching [27]. It would therefore be worthwhile to attempt to incorporate

color information in the two-dimensional image representations processed by the

rank order kernel.

In our experiments, we have used a simple nearest neighbor algorithm. Other,

more powerful classification algorithms exist, such as Support Vector Machines

(SVM), which might be able to further improve the results. An SVM model classifies

future instances by creating a discrimination boundary between classes in the feature

space. SVMs have good generalization ability because they maximize the separating

164

Alex
an

dro
s K

yri
ak

ide
s



margin between the classes. Only a selected number of the instances in the training

set are used to define the separating margin. These are called support vectors. Our

speech recognition system would greatly benefit from an SVM model which uses a

small number of support vectors because during the recognition step it would just

need to compare the instance to be classified with the support vectors only and not

with all the instances in the training set, which is the case with the nearest neighbor

algorithm.

In this thesis, we used an empirical method to find weights for the kernels. An

analytical method based on probability and the statistics of noise would be another

approach. The weight of each kernel would be proportional to the probability that

the output of a kernel (rank order code) changes, based on the statistics of the noise.

The weighting scheme we have proposed finds the important areas in the spec-

trogram image. It would be interesting to apply the same weighting scheme to other

types of images, for example natural images, to see if areas with high weights also

indicate important areas in those images.

It would be beneficial to implement rank order kernels in hardware, for faster

processing. The software implementation we used in this thesis, “slides” the kernel

around the input image in order to process each location one after the other, in a

sequential manner. In hardware however, each kernel can form an independent

hardware unit, and therefore all kernels can process information simultaneously

and in parallel, greatly improving performance.

It could be beneficial to use a hybrid approach to speech recognition where the

classic speech recognition algorithms are used when the noise levels are low, and

then a switch-over to our algorithm is made when the noise levels are high.

7.3 Contributions

1. We have introduced rank order kernels. Rank order kernels use rank order

coding and are defined by a kernel size and a degree. Rank order coding is

not a new concept. Our formulation, implementation, and application of rank

order kernels however, is completely novel.

2. We have devised a weighting scheme which can be used for rank order ker-

nels. Locations with high weight are ones with rank order codes which are
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insensitive to noise. It is possible that this weighting method can be used as a

general method to pick out the important areas of images.

3. We have developed an endpoint detection algorithm to separate speech from

non-speech. The algorithm uses an appropriate spectrogram representation of

sound and makes the assumption that high-variance regions of the spectrogram

contain speech. We have shown that our algorithm has very good performance

even with high levels of added background noise.

4. We have created our own speech corpus of isolated words by recording 100

different words from 15 male and 15 female speakers. Each word was spoken

10 times by each speaker. This corpus was used for our experiments.

5. We have shown that Automatic Speech Recognition (ASR) of isolated words

can be performed using a distance metric for images based on rank order

kernels. Our experiments show that our method outperforms state-of-the-art

speech recognition systems at high levels of noise.

6. We have presented two other applications, not related to speech processing,

which show that our endpoint detection system and rank order kernel distance

metric can possibly be applied to many types of applications.

7. Our most important contribution is the introduction of an image similarity

metric, or distance metric, based on rank order kernels. This metric can be

used in image processing applications and in machine learning algorithms.
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Appendix A

Complete Endpoint Detection Results
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Figure A.1: A comparison of the endpoint detection performance of three different
methods, using twenty types of added noise at various SNR’s. The results are shown
as a percentage of a total of 265 “non-clean” recordings and 185 “clean” recordings.
The speech recordings are from 15 different words, each spoken by 15 male and
15 female speakers. The calculated endpoints were determined to be Correct or
Wrong by comparing them to manually labeled endpoints. A Miss occurs when the
endpoint detection system does not detect any speech in the recording.
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Table A.1: Endpoint detection results for three different methods using twenty types
of added noise at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 35.19 31.02 52.26 42.27 45.87 72.49
15 dB 26.75 24.23 51.00 28.76 28.32 66.05
10 dB 17.60 14.17 41.21 17.89 13.57 51.05

5 dB 10.21 6.21 28.94 10.43 5.43 35.22
0 dB 5.60 2.15 21.62 6.11 1.95 27.03

-5 dB 3.38 0.92 18.06 3.46 0.84 21.14

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.32 0.68 0.38 0.30 1.65 0.30
15 dB 1.58 4.77 3.11 1.08 5.00 1.68
10 dB 5.83 15.77 16.21 4.11 14.92 11.24
5 dB 12.53 39.30 35.64 11.60 35.68 34.19
0 dB 20.81 65.62 49.87 18.27 62.81 50.19

-5 dB 34.41 79.32 58.17 31.32 78.22 59.78

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 64.49 68.30 47.36 57.43 52.49 27.22
15 dB 71.66 71.00 45.89 70.16 66.68 32.27
10 dB 76.57 70.06 42.59 78.00 71.51 37.70

5 dB 77.26 54.49 35.41 77.97 58.89 30.59
0 dB 73.58 32.23 28.51 75.62 35.24 22.78

-5 dB 62.21 19.75 23.77 65.22 20.95 19.08
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Figure A.2: A comparison of the endpoint detection performance of three different
methods, using added noise of type “speech babble” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.2: Endpoint detection results for three different methods using added noise
of type “speech babble” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 2.64 36.23 50.19 1.62 57.30 69.73
15 dB 0.75 35.47 47.55 0.00 49.19 55.13
10 dB 0.00 27.17 41.13 0.00 27.57 31.89

5 dB 0.00 16.98 23.77 0.00 13.51 21.08
0 dB 0.00 6.04 12.83 0.54 2.16 11.89

-5 dB 0.00 3.77 7.55 0.54 1.08 7.57

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.38 0.00 0.00 0.54 0.00
15 dB 0.00 1.89 1.13 0.00 2.16 1.08
10 dB 0.00 4.91 6.04 0.00 5.95 5.41
5 dB 0.00 15.47 17.74 0.00 15.13 16.76
0 dB 0.00 45.28 41.13 0.00 41.62 41.62

-5 dB 0.00 76.98 61.13 0.00 81.08 64.86

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 97.36 63.40 49.81 98.38 42.16 30.27
15 dB 99.25 62.64 51.32 100.00 48.65 43.78
10 dB 100.00 67.92 52.83 100.00 66.49 62.70

5 dB 100.00 67.55 58.49 100.00 71.35 62.16
0 dB 100.00 48.68 46.04 99.46 56.22 46.49

-5 dB 100.00 19.25 31.32 99.46 17.84 27.57
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Figure A.3: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Buccaneer jet cockpit (190 knots)” at various
SNR’s. The results are shown as a percentage of a total of 265 “non-clean” recordings
and 185 “clean” recordings. The speech recordings are from 15 different words, each
spoken by 15 male and 15 female speakers. The calculated endpoints were deter-
mined to be Correct or Wrong by comparing them to manually labeled endpoints.
A Miss occurs when the endpoint detection system does not detect any speech in
the recording.
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Table A.3: Endpoint detection results for three different methods using added noise
of type “Buccaneer jet cockpit (190 knots)” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The calculated endpoints were determined to be Correct or Wrong by
comparing them to manually labeled endpoints. A Miss occurs when the endpoint
detection system does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 30.94 32.45 58.87 35.13 38.38 75.68
15 dB 18.87 20.00 55.85 9.73 15.13 65.41
10 dB 10.19 8.30 29.81 3.78 3.24 37.30

5 dB 2.64 0.38 8.68 0.54 0.00 6.49
0 dB 0.38 0.00 2.26 0.54 0.00 2.16

-5 dB 0.00 0.00 0.38 0.00 0.00 0.00

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.75 1.51 0.75 0.54 3.78 1.08
15 dB 3.77 10.57 8.68 3.24 9.73 3.78
10 dB 13.59 31.32 43.77 10.81 30.81 29.19

5 dB 29.06 74.72 83.40 27.57 71.35 83.24
0 dB 45.28 100.00 97.36 41.62 100.00 97.84

-5 dB 75.47 100.00 99.25 71.35 100.00 99.46

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 68.30 66.04 40.38 64.32 57.84 23.24
15 dB 77.36 69.43 35.47 87.03 75.14 30.81
10 dB 76.23 60.38 26.41 85.41 65.95 33.51

5 dB 68.30 24.91 7.92 71.89 28.65 10.27
0 dB 54.34 0.00 0.38 57.84 0.00 0.00

-5 dB 24.53 0.00 0.38 28.65 0.00 0.54
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Figure A.4: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Buccaneer jet cockpit (450 knots)” at various
SNR’s. The results are shown as a percentage of a total of 265 “non-clean” recordings
and 185 “clean” recordings. The speech recordings are from 15 different words, each
spoken by 15 male and 15 female speakers. The calculated endpoints were deter-
mined to be Correct or Wrong by comparing them to manually labeled endpoints.
A Miss occurs when the endpoint detection system does not detect any speech in
the recording.
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Table A.4: Endpoint detection results for three different methods using added noise
of type “Buccaneer jet cockpit (450 knots)” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The calculated endpoints were determined to be Correct or Wrong by
comparing them to manually labeled endpoints. A Miss occurs when the endpoint
detection system does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 33.59 30.19 63.02 32.43 36.22 72.43
15 dB 24.91 20.00 54.72 14.60 15.68 58.38
10 dB 11.32 7.17 33.21 7.03 3.78 37.30

5 dB 1.89 0.38 5.28 1.62 0.00 10.27
0 dB 0.38 0.00 0.00 0.00 0.00 0.54

-5 dB 0.00 0.00 0.00 0.00 0.00 0.00

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.38 1.51 0.38 1.08 3.78 0.00
15 dB 1.89 10.94 3.02 1.08 10.81 2.16
10 dB 10.19 33.96 28.30 7.57 29.73 16.76

5 dB 23.02 76.98 76.98 22.16 71.89 58.38
0 dB 40.00 100.00 99.25 33.51 100.00 98.92

-5 dB 64.53 100.00 100.00 55.68 100.00 100.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 66.04 68.30 36.60 66.49 60.00 27.57
15 dB 73.21 69.06 42.26 84.32 73.51 39.46
10 dB 78.49 58.87 38.49 85.41 66.49 45.95

5 dB 75.09 22.64 17.74 76.22 28.11 31.35
0 dB 59.62 0.00 0.75 66.49 0.00 0.54

-5 dB 35.47 0.00 0.00 44.32 0.00 0.00
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Figure A.5: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Destroyer engine room” at various SNR’s. The
results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.5: Endpoint detection results for three different methods using added noise
of type “Destroyer engine room” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 28.30 32.08 56.98 27.03 36.22 74.59
15 dB 19.62 21.13 56.23 15.68 15.13 70.27
10 dB 9.43 7.92 36.60 5.41 2.70 47.03

5 dB 4.91 1.13 20.75 3.24 0.00 17.30
0 dB 0.75 0.00 12.07 2.70 0.00 8.11

-5 dB 0.00 0.00 4.15 0.54 0.00 3.78

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.75 1.51 1.13 0.54 3.24 0.54
15 dB 4.53 10.57 6.79 2.70 7.57 2.16
10 dB 12.07 31.70 33.21 8.65 28.65 27.03

5 dB 21.89 69.43 61.51 23.24 61.62 67.57
0 dB 41.13 99.62 80.75 28.65 100.00 84.32

-5 dB 65.66 100.00 94.34 63.78 100.00 95.68

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 70.94 66.42 41.89 72.43 60.54 24.86
15 dB 75.85 68.30 36.98 81.62 77.30 27.57
10 dB 78.49 60.38 30.19 85.95 68.65 25.95

5 dB 73.21 29.43 17.74 73.51 38.38 15.13
0 dB 58.11 0.38 7.17 68.65 0.00 7.57

-5 dB 34.34 0.00 1.51 35.68 0.00 0.54
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Figure A.6: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Destroyer operations room” at various SNR’s.
The results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.6: Endpoint detection results for three different methods using added noise
of type “Destroyer operations room” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 42.26 34.72 57.36 42.70 45.41 74.59
15 dB 23.77 26.79 57.74 20.00 24.86 61.08
10 dB 12.45 13.96 43.77 7.03 8.65 41.62

5 dB 4.15 3.40 21.13 3.78 1.08 18.38
0 dB 0.75 0.00 5.28 1.62 0.00 5.41

-5 dB 0.00 0.00 0.75 0.00 0.00 1.62

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.75 0.75 1.13 0.54 1.08 0.54
15 dB 2.64 5.66 3.77 1.62 5.95 3.78
10 dB 10.19 18.49 23.77 8.11 18.38 14.60

5 dB 20.00 50.19 52.83 20.00 38.92 51.35
0 dB 35.09 91.70 86.04 30.81 88.11 85.41

-5 dB 61.13 100.00 95.47 49.19 100.00 98.38

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 56.98 64.53 41.51 56.76 53.51 24.86
15 dB 73.58 67.55 38.49 78.38 69.19 35.13
10 dB 77.36 67.55 32.45 84.86 72.97 43.78

5 dB 75.85 46.41 26.04 76.22 60.00 30.27
0 dB 64.15 8.30 8.68 67.57 11.89 9.19

-5 dB 38.87 0.00 3.77 50.81 0.00 0.00
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Figure A.7: A comparison of the endpoint detection performance of three different
methods, using added noise of type “F-16 cockpit” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.7: Endpoint detection results for three different methods using added noise of
type “F-16 cockpit” at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 40.00 33.96 60.00 48.65 44.87 70.81
15 dB 29.81 24.15 57.74 24.32 19.46 64.86
10 dB 14.34 9.81 37.74 10.81 3.78 42.16

5 dB 8.30 1.51 13.21 5.41 0.54 11.35
0 dB 3.02 0.00 4.15 3.24 0.00 3.24

-5 dB 0.00 0.00 1.13 0.54 0.00 0.00

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.75 1.13 0.54 1.62 0.54
15 dB 1.13 7.17 7.55 1.62 7.03 3.78
10 dB 8.68 25.66 34.72 4.86 24.86 22.70
5 dB 18.87 64.53 72.08 16.22 54.59 72.43
0 dB 28.30 99.62 93.21 24.86 98.92 96.22

-5 dB 45.66 100.00 98.49 44.87 100.00 98.92

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 60.00 65.28 38.87 50.81 53.51 28.65
15 dB 69.06 68.68 34.72 74.05 73.51 31.35
10 dB 76.98 64.53 27.55 84.32 71.35 35.13

5 dB 72.83 33.96 14.72 78.38 44.87 16.22
0 dB 68.68 0.38 2.64 71.89 1.08 0.54

-5 dB 54.34 0.00 0.38 54.59 0.00 1.08
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Figure A.8: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Factory floor (1)” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.8: Endpoint detection results for three different methods using added noise
of type “Factory floor (1)” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 15.85 36.98 43.40 20.54 49.19 51.89
15 dB 11.32 31.32 37.74 15.68 34.05 40.00
10 dB 12.07 18.87 21.89 11.35 14.05 20.54

5 dB 9.06 5.66 8.68 8.65 1.62 7.03
0 dB 7.55 0.00 2.26 8.65 0.00 2.16

-5 dB 7.17 0.00 1.13 7.57 0.00 0.54

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.38 0.38 0.00 1.08 0.00
15 dB 0.38 2.26 4.91 0.00 3.24 2.70
10 dB 1.51 12.83 27.17 0.54 12.43 19.46
5 dB 4.53 37.74 63.77 2.70 35.13 58.92
0 dB 7.17 80.00 89.06 4.86 75.68 91.89

-5 dB 10.57 100.00 97.36 8.65 100.00 98.38

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 84.15 62.64 56.23 79.46 49.73 48.11
15 dB 88.30 66.42 57.36 84.32 62.70 57.30
10 dB 86.42 68.30 50.94 88.11 73.51 60.00

5 dB 86.42 56.60 27.55 88.65 63.24 34.05
0 dB 85.28 20.00 8.68 86.49 24.32 5.95

-5 dB 82.26 0.00 1.51 83.78 0.00 1.08
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Figure A.9: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Factory floor (2)” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.9: Endpoint detection results for three different methods using added noise
of type “Factory floor (2)” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 51.70 34.72 48.30 62.16 60.54 73.51
15 dB 43.77 35.09 52.83 51.35 45.95 70.81
10 dB 33.21 25.66 52.08 28.11 26.49 60.54

5 dB 20.38 11.70 46.41 14.05 10.27 46.49
0 dB 10.19 2.26 29.81 9.73 0.54 25.95

-5 dB 3.77 0.00 18.87 2.70 0.00 16.22

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.00 0.00 0.00 0.54 0.00
15 dB 0.00 0.75 0.38 0.54 2.70 0.00
10 dB 1.13 6.79 3.40 1.62 6.49 2.16
5 dB 8.68 22.26 15.09 5.41 21.62 14.05
0 dB 14.34 52.08 40.00 11.89 43.24 40.54

-5 dB 26.41 97.36 62.26 21.62 90.81 68.11

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 48.30 65.28 51.70 37.84 38.92 26.49
15 dB 56.23 64.15 46.79 48.11 51.35 29.19
10 dB 65.66 67.55 44.53 70.27 67.03 37.30

5 dB 70.94 66.04 38.49 80.54 68.11 39.46
0 dB 75.47 45.66 30.19 78.38 56.22 33.51

-5 dB 69.81 2.64 18.87 75.68 9.19 15.68
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Figure A.10: A comparison of the endpoint detection performance of three different
methods, using added noise of type “HF channel” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.10: Endpoint detection results for three different methods using added noise of
type “HF channel” at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 27.17 30.19 55.47 21.62 32.97 72.97
15 dB 13.96 20.00 53.96 6.49 14.05 65.95
10 dB 5.28 7.55 42.26 1.08 2.70 45.95

5 dB 0.75 0.38 24.15 0.54 0.00 21.08
0 dB 0.38 0.00 15.09 0.00 0.00 12.43

-5 dB 0.00 0.00 9.43 0.00 0.00 5.95

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 1.13 1.89 1.13 1.08 3.24 1.08
15 dB 9.06 12.07 6.04 3.24 10.81 3.24
10 dB 19.25 35.09 27.55 16.22 30.81 22.70

5 dB 35.85 76.23 54.72 34.59 71.89 62.70
0 dB 55.47 100.00 70.94 50.27 100.00 76.76

-5 dB 90.19 100.00 84.91 87.57 100.00 88.65

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 71.70 67.92 43.40 77.30 63.78 25.95
15 dB 76.98 67.92 40.00 90.27 75.14 30.81
10 dB 75.47 57.36 30.19 82.70 66.49 31.35

5 dB 63.40 23.40 21.13 64.86 28.11 16.22
0 dB 44.15 0.00 13.96 49.73 0.00 10.81

-5 dB 9.81 0.00 5.66 12.43 0.00 5.41
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Figure A.11: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Leopard military vehicle” at various SNR’s.
The results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.11: Endpoint detection results for three different methods using added noise
of type “Leopard military vehicle” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 37.74 37.36 46.41 47.03 52.43 74.59
15 dB 31.32 33.59 47.17 41.62 40.00 75.14
10 dB 21.51 23.02 49.81 28.65 22.70 74.05

5 dB 16.98 11.32 53.59 20.00 7.57 71.35
0 dB 10.19 4.15 49.81 12.43 2.70 58.92

-5 dB 6.79 0.75 43.77 8.11 0.54 38.38

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.38 0.00 0.00 0.00 1.08 0.00
15 dB 0.75 1.13 0.00 0.00 2.70 0.00
10 dB 1.13 8.68 0.00 1.08 8.65 0.00
5 dB 5.66 21.13 1.89 6.49 20.54 0.00
0 dB 12.07 52.83 6.79 12.97 45.95 5.95

-5 dB 16.98 87.55 21.89 17.84 84.32 25.41

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 61.89 62.64 53.59 52.97 46.49 25.41
15 dB 67.92 65.28 52.83 58.38 57.30 24.86
10 dB 77.36 68.30 50.19 70.27 68.65 25.95

5 dB 77.36 67.55 44.53 73.51 71.89 28.65
0 dB 77.74 43.02 43.40 74.59 51.35 35.13

-5 dB 76.23 11.70 34.34 74.05 15.13 36.22
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                    using added nose of type "M109 military tank" at various SNR’s 
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Figure A.12: A comparison of the endpoint detection performance of three different
methods, using added nose of type “M109 military tank” at various SNR’s. The
results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.12: Endpoint detection results for three different methods using added nose
of type “M109 military tank” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 46.04 32.08 54.72 54.05 53.51 77.30
15 dB 37.36 30.57 61.13 38.38 34.59 71.89
10 dB 26.04 16.23 56.98 25.41 16.76 51.35

5 dB 17.36 5.28 42.26 12.97 2.16 32.97
0 dB 7.92 0.38 15.85 4.32 0.54 12.97

-5 dB 4.53 0.00 5.28 2.16 0.00 3.78

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.00 0.38 0.00 1.08 0.00
15 dB 0.38 2.26 1.51 0.54 4.32 1.08
10 dB 2.64 12.45 4.53 3.24 10.27 5.95
5 dB 12.45 35.85 22.64 8.65 31.35 21.62
0 dB 21.89 81.51 53.96 18.38 78.38 50.81

-5 dB 37.36 100.00 81.89 30.81 100.00 82.70

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 53.96 67.92 44.91 45.95 45.41 22.70
15 dB 62.26 67.17 37.36 61.08 61.08 27.03
10 dB 71.32 71.32 38.49 71.35 72.97 42.70

5 dB 70.19 58.87 35.09 78.38 66.49 45.41
0 dB 70.19 18.11 30.19 77.30 21.08 36.22

-5 dB 58.11 0.00 12.83 67.03 0.00 13.51
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.13: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Machine gun” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.13: Endpoint detection results for three different methods using added noise
of type “Machine gun” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 30.57 19.25 48.30 40.00 38.92 75.14
15 dB 27.93 9.06 48.68 34.59 19.46 66.49
10 dB 19.25 3.02 36.98 23.24 6.49 31.89

5 dB 12.07 1.13 18.11 11.89 1.62 14.60
0 dB 3.02 0.75 9.43 1.62 1.62 7.57

-5 dB 1.89 0.75 6.79 0.54 1.08 4.86

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.38 0.00 0.00 0.00 0.54 0.00
15 dB 0.00 0.00 0.00 0.00 1.08 0.00
10 dB 0.00 0.00 0.00 0.00 0.54 0.00
5 dB 0.00 0.38 0.00 0.00 0.00 0.00
0 dB 0.00 0.00 0.00 0.00 0.00 0.00

-5 dB 0.00 0.00 0.00 0.00 0.00 0.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 69.06 80.75 51.70 60.00 60.54 24.86
15 dB 72.08 90.94 51.32 65.41 79.46 33.51
10 dB 80.75 96.98 63.02 76.76 92.97 68.11

5 dB 87.92 98.49 81.89 88.11 98.38 85.41
0 dB 96.98 99.25 90.57 98.38 98.38 92.43

-5 dB 98.11 99.25 93.21 99.46 98.92 95.14
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                                           using added pink noise at various SNR’s 
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Figure A.14: A comparison of the endpoint detection performance of three different
methods, using added pink noise at various SNR’s. The results are shown as a
percentage of a total of 265 “non-clean” recordings and 185 “clean” recordings.
The speech recordings are from 15 different words, each spoken by 15 male and
15 female speakers. The calculated endpoints were determined to be Correct or
Wrong by comparing them to manually labeled endpoints. A Miss occurs when the
endpoint detection system does not detect any speech in the recording.
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Table A.14: Endpoint detection results for three different methods using added pink
noise at various SNR’s. The percentages are calculated from a total of 265 “non-
clean” recordings, which contain sound artifacts, and 185 “clean” recordings, which
do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 39.62 32.45 61.13 45.95 43.78 71.35
15 dB 30.57 22.64 56.60 20.00 19.46 61.62
10 dB 13.21 10.57 33.96 9.19 3.78 37.30

5 dB 7.17 1.51 6.79 5.95 0.54 9.19
0 dB 0.75 0.00 1.89 1.08 0.00 1.62

-5 dB 0.00 0.00 0.00 0.00 0.00 0.00

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 1.13 1.13 0.38 0.54 2.16 0.54
15 dB 2.26 6.42 6.79 2.16 7.03 4.32
10 dB 10.94 24.15 38.11 5.41 25.41 24.86

5 dB 16.98 66.04 82.26 12.43 56.22 78.38
0 dB 26.41 99.62 98.11 23.24 98.38 97.84

-5 dB 48.30 100.00 99.62 41.08 100.00 100.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 59.24 66.42 38.49 53.51 54.05 28.11
15 dB 67.17 70.94 36.60 77.84 73.51 34.05
10 dB 75.85 65.28 27.93 85.41 70.81 37.84

5 dB 75.85 32.45 10.94 81.62 43.24 12.43
0 dB 72.83 0.38 0.00 75.68 1.62 0.54

-5 dB 51.70 0.00 0.38 58.92 0.00 0.00
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.15: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Vehicle interior (120km/h)” at various SNR’s.
The results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.15: Endpoint detection results for three different methods using added noise
of type “Vehicle interior (120km/h)” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 47.92 21.13 44.15 69.19 38.92 75.68
15 dB 43.77 15.47 44.91 66.49 23.24 75.68
10 dB 44.91 10.57 45.66 63.78 12.97 75.68

5 dB 38.49 6.42 47.17 51.35 5.95 73.51
0 dB 32.83 4.91 48.30 40.00 2.70 72.97

-5 dB 24.15 3.77 50.19 23.24 2.16 66.49

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.00 0.00 0.00 0.54 0.00
15 dB 0.00 0.00 0.00 0.00 0.54 0.00
10 dB 0.00 1.13 0.00 0.00 2.16 0.00
5 dB 0.00 3.02 0.00 0.00 3.78 0.00
0 dB 0.38 10.57 0.00 0.00 9.73 0.00

-5 dB 1.13 20.38 0.38 1.62 22.70 0.54

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 52.08 78.87 55.85 30.81 60.54 24.32
15 dB 56.23 84.53 55.09 33.51 76.22 24.32
10 dB 55.09 88.30 54.34 36.22 84.86 24.32

5 dB 61.51 90.57 52.83 48.65 90.27 26.49
0 dB 66.79 84.53 51.70 60.00 87.57 27.03

-5 dB 74.72 75.85 49.43 75.14 75.14 32.97
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                                          using added white noise at various SNR’s 
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.16: A comparison of the endpoint detection performance of three different
methods, using added white noise at various SNR’s. The results are shown as
a percentage of a total of 265 “non-clean” recordings and 185 “clean” recordings.
The speech recordings are from 15 different words, each spoken by 15 male and
15 female speakers. The calculated endpoints were determined to be Correct or
Wrong by comparing them to manually labeled endpoints. A Miss occurs when the
endpoint detection system does not detect any speech in the recording.
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Table A.16: Endpoint detection results for three different methods using added white
noise at various SNR’s. The percentages are calculated from a total of 265 “non-
clean” recordings, which contain sound artifacts, and 185 “clean” recordings, which
do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 39.24 27.93 62.26 43.78 32.43 67.03
15 dB 25.28 17.36 46.79 18.38 12.97 51.35
10 dB 12.45 4.53 21.51 5.95 2.70 25.95

5 dB 2.64 0.00 1.13 1.08 0.00 3.24
0 dB 0.38 0.00 0.00 0.54 0.00 0.00

-5 dB 0.00 0.00 0.00 0.00 0.00 0.00

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.38 2.26 0.75 0.54 3.24 1.62
15 dB 1.13 14.34 10.57 1.62 12.43 4.86
10 dB 9.81 39.24 48.30 5.41 31.89 32.43
5 dB 24.15 81.51 91.70 23.24 77.30 87.03
0 dB 39.24 100.00 100.00 35.68 100.00 100.00

-5 dB 62.64 100.00 100.00 52.97 100.00 100.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 60.38 69.81 36.98 55.68 64.32 31.35
15 dB 73.58 68.30 42.64 80.00 74.59 43.78
10 dB 77.74 56.23 30.19 88.65 65.41 41.62

5 dB 73.21 18.49 7.17 75.68 22.70 9.73
0 dB 60.38 0.00 0.00 63.78 0.00 0.00

-5 dB 37.36 0.00 0.00 47.03 0.00 0.00
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.17: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Air conditioner” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.17: Endpoint detection results for three different methods using added noise
of type “Air conditioner” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 38.11 33.96 45.66 44.32 57.84 73.51
15 dB 27.93 28.68 47.17 37.84 49.19 73.51
10 dB 20.75 27.55 47.17 21.62 36.76 72.43

5 dB 14.72 18.49 46.04 12.43 17.30 65.95
0 dB 12.07 8.30 44.15 8.65 3.78 63.24

-5 dB 7.55 2.26 43.77 6.49 0.54 57.30

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.38 0.00 0.00 1.08 0.00
15 dB 0.00 0.75 0.00 0.00 1.62 0.00
10 dB 0.38 2.26 0.38 0.54 3.78 0.00
5 dB 1.13 12.07 0.38 1.62 10.27 0.00
0 dB 6.42 39.62 1.89 3.24 33.51 2.16

-5 dB 15.85 85.66 6.04 11.35 80.54 4.86

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 61.89 65.66 54.34 55.68 41.08 26.49
15 dB 72.08 70.57 52.83 62.16 49.19 26.49
10 dB 78.87 70.19 52.45 77.84 59.46 27.57

5 dB 84.15 69.43 53.59 85.95 72.43 34.05
0 dB 81.51 52.08 53.96 88.11 62.70 34.59

-5 dB 76.60 12.07 50.19 82.16 18.92 37.84
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Figure A.18: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Conference room” at various SNR’s. The
results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.18: Endpoint detection results for three different methods using added noise
of type “Conference room” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 32.45 32.45 44.53 48.65 54.05 75.68
15 dB 23.77 30.57 46.41 29.19 42.70 75.68
10 dB 13.96 21.51 48.30 15.68 32.97 76.22

5 dB 8.30 16.23 50.94 10.27 26.49 76.22
0 dB 6.79 9.43 54.34 4.86 16.76 71.89

-5 dB 4.53 5.28 52.45 3.78 8.11 57.30

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.00 0.00 0.00 0.00 0.00
15 dB 0.00 0.75 0.00 0.00 1.08 0.00
10 dB 0.00 2.26 0.00 0.00 3.24 0.00
5 dB 0.75 7.55 0.75 0.54 4.86 0.00
0 dB 1.51 15.09 2.26 1.62 9.19 0.54

-5 dB 6.79 23.77 6.42 5.95 20.00 9.19

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 67.55 67.55 55.47 51.35 45.95 24.32
15 dB 76.23 68.68 53.59 70.81 56.22 24.32
10 dB 86.04 76.23 51.70 84.32 63.78 23.78

5 dB 90.94 76.23 48.30 89.19 68.65 23.78
0 dB 91.70 75.47 43.40 93.51 74.05 27.57

-5 dB 88.68 70.94 41.13 90.27 71.89 33.51
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.19: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Intergalactic cruiser” at various SNR’s. The
results are shown as a percentage of a total of 265 “non-clean” recordings and 185
“clean” recordings. The speech recordings are from 15 different words, each spoken
by 15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.19: Endpoint detection results for three different methods using added noise
of type “Intergalactic cruiser” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 45.28 20.00 44.15 71.35 41.62 75.14
15 dB 40.76 13.21 45.28 66.49 23.78 75.14
10 dB 35.47 8.68 45.28 49.73 10.27 75.68

5 dB 19.62 6.79 46.04 28.65 7.57 75.14
0 dB 11.70 3.02 46.41 17.30 3.78 73.51

-5 dB 6.79 1.51 45.66 12.43 2.16 71.89

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.00 0.00 0.00 0.54 0.00
15 dB 0.00 0.38 0.00 0.00 0.00 0.00
10 dB 0.00 0.00 0.00 0.00 0.54 0.00
5 dB 0.00 1.51 0.00 0.00 3.24 0.00
0 dB 0.00 6.04 0.00 0.00 3.24 0.00

-5 dB 1.13 13.21 0.00 1.08 3.78 0.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 54.72 80.00 55.85 28.65 57.84 24.86
15 dB 59.24 86.42 54.72 33.51 76.22 24.86
10 dB 64.53 91.32 54.72 50.27 89.19 24.32

5 dB 80.38 91.70 53.96 71.35 89.19 24.86
0 dB 88.30 90.94 53.59 82.70 92.97 26.49

-5 dB 92.08 85.28 54.34 86.49 94.05 28.11
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Figure A.20: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Jet airliner cabin” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.20: Endpoint detection results for three different methods using added noise
of type “Jet airliner cabin” at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are
from 15 different words, each spoken by 15 male and 15 female speakers. The
calculated endpoints were determined to be Correct or Wrong by comparing them
to manually labeled endpoints. A Miss occurs when the endpoint detection system
does not detect any speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 40.38 30.19 44.53 53.51 52.97 75.68
15 dB 37.36 25.66 45.66 50.81 38.92 75.68
10 dB 25.66 18.49 46.04 32.97 23.78 74.59

5 dB 9.43 11.70 45.66 12.97 10.27 72.43
0 dB 0.38 3.40 44.91 1.62 4.32 71.89

-5 dB 0.00 0.38 45.66 0.00 1.08 67.57

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.00 0.38 0.00 0.00 1.08 0.00
15 dB 0.00 1.13 0.00 0.00 2.70 0.00
10 dB 1.13 6.04 0.00 0.00 5.41 0.00
5 dB 1.89 18.11 0.00 1.08 19.46 0.00
0 dB 1.89 50.19 0.00 1.08 42.16 0.00

-5 dB 0.00 81.89 0.38 0.54 82.16 0.54

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 59.62 69.43 55.47 46.49 45.95 24.32
15 dB 62.64 73.21 54.34 49.19 58.38 24.32
10 dB 73.21 75.47 53.96 67.03 70.81 25.41

5 dB 88.68 70.19 54.34 85.95 70.27 27.57
0 dB 97.74 46.41 55.09 97.30 53.51 28.11

-5 dB 100.00 17.74 53.96 99.46 16.76 31.89
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 (b) On "clean" recordings (sound artifacts absent)
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Figure A.21: A comparison of the endpoint detection performance of three different
methods, using added noise of type “Street traffic” at various SNR’s. The results
are shown as a percentage of a total of 265 “non-clean” recordings and 185 “clean”
recordings. The speech recordings are from 15 different words, each spoken by
15 male and 15 female speakers. The calculated endpoints were determined to be
Correct or Wrong by comparing them to manually labeled endpoints. A Miss occurs
when the endpoint detection system does not detect any speech in the recording.
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Table A.21: Endpoint detection results for three different methods using added noise of
type “Street traffic” at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The calculated endpoints
were determined to be Correct or Wrong by comparing them to manually labeled
endpoints. A Miss occurs when the endpoint detection system does not detect any
speech in the recording.

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

Correct
(%)

no noise 44.91 27.93 44.91 69.73 65.95 75.14
20 dB 33.96 32.08 55.85 35.68 49.73 72.43
15 dB 22.26 23.77 55.85 13.51 28.65 67.03
10 dB 10.57 12.83 53.96 7.03 9.19 61.62

5 dB 5.28 3.77 49.06 3.24 2.16 50.27
0 dB 2.64 0.38 33.59 2.70 0.00 34.05

-5 dB 0.38 0.00 24.15 0.54 0.00 19.46

Miss
(%)

no noise 0.00 0.38 0.00 0.00 0.00 0.00
20 dB 0.38 0.75 0.00 0.54 2.70 0.00
15 dB 3.77 6.42 1.13 3.24 6.49 0.54
10 dB 13.96 18.49 4.91 8.11 18.38 1.62

5 dB 25.66 51.32 15.09 25.95 44.32 11.35
0 dB 39.62 88.68 36.60 42.70 88.11 32.97

-5 dB 58.49 99.62 53.59 60.54 98.92 60.00

Wrong
(%)

no noise 55.09 71.70 55.09 30.27 34.05 24.86
20 dB 65.66 67.17 44.15 63.78 47.57 27.57
15 dB 73.96 69.81 43.02 83.24 64.86 32.43
10 dB 75.47 68.68 41.13 84.86 72.43 36.76

5 dB 69.06 44.91 35.85 70.81 53.51 38.38
0 dB 57.74 10.94 29.81 54.59 11.89 32.97

-5 dB 41.13 0.38 22.26 38.92 1.08 20.54
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Figure A.22: A comparison of the voice activity detection performance of three
different methods, using twenty types of added noise at various SNR’s. The results
are for 265 “non-clean” recordings, which contain sound artifacts. The evaluation
measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate
(ER).
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Figure A.23: A comparison of the voice activity detection performance of three
different methods, using twenty types of added noise at various SNR’s. The results
are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Table A.22: Voice activity detection performance for three different methods using
twenty types of added noise at various SNR’s. The percentages are calculated from a
total of 265 “non-clean” recordings, which contain sound artifacts, and 185 “clean”
recordings, which do not contain any sound artifacts. The speech recordings are from
15 different words, each spoken by 15 male and 15 female speakers. The evaluation
measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 81.31 79.81 81.80 87.10 93.26 89.68
15 dB 81.98 83.11 83.87 85.83 91.26 90.40
10 dB 81.73 85.97 86.07 84.34 90.20 90.11

5 dB 80.40 87.95 87.57 81.72 89.15 90.46
0 dB 78.68 88.83 88.93 79.42 89.11 91.40

-5 dB 77.77 89.90 90.26 78.28 89.73 92.53

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 86.70 90.83 96.25 84.86 86.28 95.53
15 dB 81.33 82.13 92.35 79.10 78.06 92.38
10 dB 74.96 67.63 78.25 72.69 64.06 81.16

5 dB 68.56 46.03 59.72 66.34 46.21 59.75
0 dB 62.25 26.79 46.99 60.55 27.75 46.30

-5 dB 54.90 15.66 39.14 53.92 16.39 37.27

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 16.93 16.59 13.49 13.64 9.04 8.39
15 dB 18.23 17.21 13.36 16.39 13.09 8.95
10 dB 20.48 20.01 16.48 19.50 18.41 12.84

5 dB 23.46 25.72 21.51 23.35 25.00 19.66
0 dB 26.68 31.40 24.74 26.80 31.11 23.46

-5 dB 29.68 34.30 26.40 29.75 34.44 25.68
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Figure A.24: A comparison of the voice activity detection performance of three
different methods, using added noise of type “speech babble” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.25: A comparison of the voice activity detection performance of three
different methods, using added noise of type “speech babble” at various SNR’s. The
results are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Table A.23: Voice activity detection performance for three different methods using
added noise of type “speech babble” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 44.02 84.80 81.40 44.21 97.20 89.69
15 dB 42.26 88.17 82.54 42.67 97.92 89.76
10 dB 41.72 92.37 82.78 42.13 98.62 84.74

5 dB 41.18 96.11 80.69 41.38 99.20 79.95
0 dB 40.83 98.03 83.84 40.50 99.41 82.50

-5 dB 40.19 99.44 87.79 40.01 99.74 88.23

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 91.37 92.44 95.34 91.33 89.23 94.81
15 dB 87.77 88.16 93.16 87.63 84.36 91.03
10 dB 83.12 78.97 86.52 82.92 74.40 83.73

5 dB 78.35 64.65 74.99 78.93 60.95 74.37
0 dB 74.07 38.92 54.02 75.34 37.57 52.50

-5 dB 69.59 15.06 36.33 71.45 12.63 32.92

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 40.55 12.71 14.05 40.26 5.43 8.62
15 dB 42.91 11.83 14.00 42.51 6.55 9.82
10 dB 44.78 12.00 16.00 44.43 9.36 15.59

5 dB 46.70 14.15 21.17 46.25 13.40 21.89
0 dB 48.33 21.24 25.88 48.02 20.97 27.39

-5 dB 50.22 28.07 28.99 49.63 28.97 30.00
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Figure A.26: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Buccaneer jet cockpit (190 knots)” at
various SNR’s. The results are for 265 “non-clean” recordings, which contain sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Figure A.27: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Buccaneer jet cockpit (190 knots)” at
various SNR’s. The results are for 185 “clean” recordings, which do not contain any
sound artifacts. The evaluation measures used are non-speech hit rate (HR0), speech
hit rate (HR1), and error rate (ER).
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Table A.24: Voice activity detection performance for three different methods using
added noise of type “Buccaneer jet cockpit (190 knots)” at various SNR’s. The percentages
are calculated from a total of 265 “non-clean” recordings, which contain sound
artifacts, and 185 “clean” recordings, which do not contain any sound artifacts. The
speech recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 96.29 88.70 85.59 99.80 98.35 92.75
15 dB 98.39 93.80 89.56 99.97 99.07 94.95
10 dB 99.32 98.57 95.44 100.00 99.62 97.21

5 dB 99.76 99.89 98.96 99.99 99.95 99.33
0 dB 99.91 100.00 99.85 100.00 100.00 99.88

-5 dB 99.99 100.00 99.97 100.00 100.00 100.00

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 78.71 85.82 95.78 76.12 79.29 93.83
15 dB 70.50 69.45 85.49 67.15 64.74 87.89
10 dB 60.83 46.63 49.66 57.38 42.12 61.19

5 dB 51.81 13.43 14.15 48.41 15.63 12.94
0 dB 42.08 0.00 2.49 40.02 0.00 2.32

-5 dB 29.80 0.00 0.58 29.29 0.00 0.29

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 9.44 12.24 11.09 8.01 7.93 6.90
15 dB 10.70 14.14 11.77 10.85 12.24 7.37
10 dB 13.23 18.37 19.49 14.05 19.33 14.66

5 dB 15.87 28.30 28.69 17.01 27.84 29.14
0 dB 18.95 32.60 31.89 19.77 32.96 32.27

-5 dB 22.89 32.60 32.44 23.30 32.96 32.87
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Figure A.28: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Buccaneer jet cockpit (450 knots)” at
various SNR’s. The results are for 265 “non-clean” recordings, which contain sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Figure A.29: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Buccaneer jet cockpit (450 knots)” at
various SNR’s. The results are for 185 “clean” recordings, which do not contain any
sound artifacts. The evaluation measures used are non-speech hit rate (HR0), speech
hit rate (HR1), and error rate (ER).
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Table A.25: Voice activity detection performance for three different methods using
added noise of type “Buccaneer jet cockpit (450 knots)” at various SNR’s. The percentages
are calculated from a total of 265 “non-clean” recordings, which contain sound
artifacts, and 185 “clean” recordings, which do not contain any sound artifacts. The
speech recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 92.17 87.58 86.94 95.99 98.36 93.67
15 dB 94.16 93.77 89.56 95.84 99.14 95.61
10 dB 95.13 98.65 95.06 95.87 99.62 97.65

5 dB 95.58 99.92 99.25 95.86 99.96 99.55
0 dB 95.74 100.00 100.00 95.85 100.00 99.98

-5 dB 95.85 100.00 100.00 95.83 100.00 100.00

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 80.29 85.15 95.36 78.69 78.66 92.93
15 dB 72.81 69.14 90.36 69.75 64.65 87.37
10 dB 63.32 44.98 62.60 60.85 42.44 68.77

5 dB 54.26 12.14 17.08 51.51 15.05 28.82
0 dB 45.20 0.00 0.44 43.02 0.00 0.68

-5 dB 34.35 0.00 0.00 33.36 0.00 0.00

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 11.71 13.21 10.32 9.71 8.13 6.57
15 dB 12.80 14.26 10.18 12.76 12.23 7.10
10 dB 15.24 18.84 15.52 15.67 19.23 11.87

5 dB 17.89 28.70 27.54 18.75 28.03 23.76
0 dB 20.74 32.60 32.46 21.56 32.96 32.74

-5 dB 24.20 32.60 32.60 24.76 32.96 32.96
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Figure A.30: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Destroyer engine room” at various
SNR’s. The results are for 265 “non-clean” recordings, which contain sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Figure A.31: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Destroyer engine room” at various
SNR’s. The results are for 185 “clean” recordings, which do not contain any sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Table A.26: Voice activity detection performance for three different methods using
added noise of type “Destroyer engine room” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 78.97 88.44 83.23 81.97 98.33 90.63
15 dB 77.52 94.01 87.18 79.31 99.03 92.80
10 dB 77.21 98.40 92.27 78.59 99.57 95.90

5 dB 77.13 99.87 96.55 77.87 99.89 98.05
0 dB 77.18 100.00 98.60 77.17 100.00 98.88

-5 dB 76.90 100.00 99.62 76.75 100.00 99.62

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 79.89 85.52 95.94 78.03 79.26 95.08
15 dB 72.29 69.49 88.56 69.40 66.56 91.92
10 dB 64.60 46.84 60.88 61.61 43.54 65.14

5 dB 56.75 16.99 33.08 54.59 20.43 27.50
0 dB 49.26 0.17 16.96 47.94 0.00 13.50

-5 dB 39.77 0.00 5.28 38.54 0.00 3.98

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 20.73 12.51 12.62 19.33 7.96 7.90
15 dB 24.19 13.98 12.37 23.95 11.67 7.49
10 dB 26.90 18.41 17.97 27.00 18.89 14.24

5 dB 29.52 27.15 24.14 29.80 26.30 25.20
0 dB 31.93 32.55 28.01 32.47 32.96 29.26

-5 dB 35.21 32.60 31.14 35.84 32.96 31.90
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Figure A.32: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Destroyer operations room” at various
SNR’s. The results are for 265 “non-clean” recordings, which contain sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).

235

Alex
an

dro
s K

yri
ak

ide
s



 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (a) Non−Speech Hit Rate
H

R
0
 (

%
)

SNR (dB)

 

 

G.729

Sphinx4

Variance Kernel

 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (b) Speech Hit Rate

H
R

1
 (

%
)

SNR (dB)

 

 

G.729

Sphinx4

Variance Kernel

 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (c) Error Rate

E
R

 (
%

)

SNR (dB)

 

 
G.729

Sphinx4

Variance Kernel

Figure A.33: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Destroyer operations room” at various
SNR’s. The results are for 185 “clean” recordings, which do not contain any sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Table A.27: Voice activity detection performance for three different methods using
added noise of type “Destroyer operations room” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 94.19 85.65 87.39 98.82 97.86 92.84
15 dB 96.71 92.12 91.19 99.04 98.60 95.09
10 dB 97.98 96.43 94.59 99.17 99.31 96.43

5 dB 98.59 99.67 97.58 99.31 99.72 98.44
0 dB 99.07 99.96 99.43 99.40 99.99 99.38

-5 dB 99.36 100.00 99.68 99.52 100.00 99.95

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 81.04 89.69 94.10 78.63 83.68 94.32
15 dB 73.00 78.14 89.08 70.24 73.21 86.39
10 dB 65.15 60.00 67.05 62.02 54.40 72.72

5 dB 56.56 31.00 37.87 53.08 34.89 36.56
0 dB 47.66 4.15 9.87 45.61 5.90 10.44

-5 dB 36.97 0.00 2.87 36.92 0.00 1.41

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 10.10 13.03 10.42 7.83 6.81 6.67
15 dB 11.02 12.44 9.50 10.45 9.77 7.78
10 dB 12.72 15.45 14.39 13.07 15.49 11.38

5 dB 15.11 22.71 21.89 15.92 21.65 21.95
0 dB 17.69 31.27 29.77 18.33 31.02 29.93

-5 dB 20.98 32.60 31.88 21.11 32.96 32.53
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Figure A.34: A comparison of the voice activity detection performance of three dif-
ferent methods, using added noise of type “F-16 cockpit” at various SNR’s. The
results are for 265 “non-clean” recordings, which contain sound artifacts. The evalu-
ation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error
rate (ER).
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Figure A.35: A comparison of the voice activity detection performance of three
different methods, using added noise of type “F-16 cockpit” at various SNR’s. The
results are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

239

Alex
an

dro
s K

yri
ak

ide
s



Table A.28: Voice activity detection performance for three different methods using
added noise of type “F-16 cockpit” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 91.72 86.45 86.29 96.83 97.97 92.78
15 dB 93.68 92.71 90.10 96.13 98.88 94.60
10 dB 95.12 97.77 94.90 95.79 99.50 96.62

5 dB 95.51 99.83 98.39 95.67 99.84 98.84
0 dB 95.75 100.00 99.55 95.88 100.00 99.66

-5 dB 96.23 100.00 99.92 96.29 100.00 99.98

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 83.61 88.34 94.47 81.38 83.08 94.07
15 dB 76.49 74.47 86.49 73.57 70.54 88.02
10 dB 67.30 52.28 58.10 64.99 47.30 66.22

5 dB 58.87 19.98 23.89 56.56 24.71 21.61
0 dB 51.37 0.17 5.87 49.75 0.49 3.56

-5 dB 41.79 0.00 1.36 41.15 0.00 0.56

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 10.92 12.93 11.04 8.26 6.93 6.79
15 dB 11.93 13.23 11.08 11.31 10.46 7.57
10 dB 13.95 17.06 17.10 14.36 17.71 13.39

5 dB 16.43 26.21 25.90 17.22 24.92 26.62
0 dB 18.72 32.55 30.99 19.33 32.80 32.01

-5 dB 21.52 32.60 32.21 21.88 32.96 32.78

240

Alex
an

dro
s K

yri
ak

ide
s



 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (a) Non−Speech Hit Rate

H
R

0
 (

%
)

SNR (dB)

 

 

G.729

Sphinx4

Variance Kernel

 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (b) Speech Hit Rate

H
R

1
 (

%
)

SNR (dB)

 

 

G.729

Sphinx4

Variance Kernel

 No Noise 20 15 10 5 0 −5  
0

20

40

60

80

100

 (c) Error Rate

E
R

 (
%

)

SNR (dB)

 

 
G.729

Sphinx4

Variance Kernel

Figure A.36: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Factory floor (1)” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.37: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Factory floor (1)” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.29: Voice activity detection performance for three different methods using
added noise of type “Factory floor (1)” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 71.61 85.23 81.55 75.13 97.46 85.98
15 dB 71.96 90.68 82.89 73.55 98.41 83.22
10 dB 72.71 95.54 84.64 73.39 99.17 80.72

5 dB 73.22 99.00 90.26 73.23 99.64 86.84
0 dB 73.32 99.95 96.63 73.52 99.96 97.84

-5 dB 73.74 100.00 98.87 73.87 100.00 99.90

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 91.87 90.72 94.38 90.87 86.32 93.18
15 dB 88.65 83.45 88.11 87.62 77.65 87.66
10 dB 84.78 66.42 65.02 83.66 61.76 70.28

5 dB 80.47 41.12 29.93 80.12 38.30 33.25
0 dB 77.52 10.47 9.59 77.02 12.95 7.33

-5 dB 73.92 0.00 2.68 73.85 0.00 1.01

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 21.78 12.97 14.27 19.68 6.21 11.65
15 dB 22.60 11.68 15.41 21.81 8.43 15.31
10 dB 23.36 13.95 21.76 23.23 13.16 22.72

5 dB 24.42 19.87 29.41 24.50 20.58 30.82
0 dB 25.31 29.22 31.75 25.32 28.72 31.99

-5 dB 26.20 32.60 32.49 26.14 32.96 32.69
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Figure A.38: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Factory floor (2)” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.39: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Factory floor (2)” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.30: Voice activity detection performance for three different methods using
added noise of type “Factory floor (2)” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 88.50 78.93 79.40 97.37 95.99 88.50
15 dB 92.53 84.95 81.52 98.53 97.31 89.57
10 dB 95.69 91.43 84.25 99.30 98.32 91.22

5 dB 97.94 96.90 88.36 99.61 99.10 92.78
0 dB 99.06 99.18 91.98 99.88 99.55 94.37

-5 dB 99.54 100.00 95.79 99.94 99.98 97.27

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 90.11 94.23 97.46 88.15 90.83 96.80
15 dB 84.87 89.63 96.12 82.98 83.56 95.52
10 dB 78.47 76.98 92.11 75.12 73.06 91.22

5 dB 70.27 57.19 79.07 66.92 53.84 77.49
0 dB 61.78 30.13 53.35 59.97 32.91 50.12

-5 dB 53.87 1.35 32.23 52.81 4.94 27.24

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 10.97 16.08 14.71 5.67 5.71 8.77
15 dB 9.97 13.53 13.72 6.59 7.22 8.47
10 dB 9.93 13.28 13.19 8.66 10.01 8.78

5 dB 11.09 16.05 14.67 11.16 15.82 12.26
0 dB 13.09 23.33 20.61 13.28 22.41 20.21

-5 dB 15.35 32.17 24.93 15.59 31.34 25.81
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Figure A.40: A comparison of the voice activity detection performance of three differ-
ent methods, using added noise of type “HF channel” at various SNR’s. The results
are for 265 “non-clean” recordings, which contain sound artifacts. The evaluation
measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate
(ER).
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Figure A.41: A comparison of the voice activity detection performance of three
different methods, using added noise of type “HF channel” at various SNR’s. The
results are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Table A.31: Voice activity detection performance for three different methods using
added noise of type “HF channel” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 97.25 88.96 81.39 99.92 98.42 90.06
15 dB 98.85 94.19 85.35 99.94 99.18 92.20
10 dB 99.44 98.73 91.56 99.97 99.62 95.02

5 dB 99.78 99.91 95.21 99.97 99.96 97.46
0 dB 99.94 100.00 97.12 99.99 100.00 98.48

-5 dB 99.98 100.00 98.94 99.99 100.00 99.31

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 75.06 84.10 96.59 72.60 77.85 94.81
15 dB 65.92 67.82 89.81 62.98 63.66 90.61
10 dB 56.43 43.62 65.75 53.34 41.84 69.07

5 dB 46.97 12.63 39.34 44.74 15.25 31.92
0 dB 37.47 0.00 24.22 35.72 0.00 19.33

-5 dB 23.28 0.00 12.74 24.47 0.00 9.36

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 9.99 12.62 13.65 9.08 8.36 8.37
15 dB 11.89 14.41 13.20 12.24 12.53 8.33
10 dB 14.58 19.24 16.85 15.40 19.43 13.53

5 dB 17.43 28.55 23.01 18.23 27.96 24.14
0 dB 20.43 32.60 26.65 21.19 32.96 27.60

-5 dB 25.02 32.60 29.16 24.90 32.96 30.34
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Figure A.42: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Leopard military vehicle” at various
SNR’s. The results are for 265 “non-clean” recordings, which contain sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Figure A.43: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Leopard military vehicle” at various
SNR’s. The results are for 185 “clean” recordings, which do not contain any sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Table A.32: Voice activity detection performance for three different methods using
added noise of type “Leopard military vehicle” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 68.76 82.55 77.62 73.38 97.28 87.34
15 dB 66.40 87.35 78.75 68.65 98.13 87.95
10 dB 63.76 92.67 80.15 65.49 98.75 88.78

5 dB 61.89 96.58 82.56 60.74 99.29 89.75
0 dB 59.19 98.88 85.77 58.59 99.70 92.46

-5 dB 57.54 99.93 90.37 57.27 99.97 95.29

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 88.77 92.29 97.49 85.95 87.41 97.68
15 dB 83.86 87.69 97.36 81.73 81.46 97.49
10 dB 79.28 74.89 97.41 77.16 70.37 96.74

5 dB 74.15 58.51 94.51 72.99 54.14 95.31
0 dB 70.20 31.61 88.08 69.08 32.62 87.65

-5 dB 66.55 7.01 70.74 65.54 8.59 65.11

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 24.71 14.27 15.91 22.48 5.97 9.25
15 dB 27.91 12.54 15.18 27.04 7.36 8.90
10 dB 31.18 13.13 14.23 30.66 10.61 8.60

5 dB 34.12 15.83 13.54 35.22 15.59 8.42
0 dB 37.22 23.05 13.48 37.95 22.41 9.13

-5 dB 39.52 30.36 16.03 40.01 30.15 14.66
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Figure A.44: A comparison of the voice activity detection performance of three
different methods, using added nose of type “M109 military tank” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.45: A comparison of the voice activity detection performance of three
different methods, using added nose of type “M109 military tank” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.33: Voice activity detection performance for three different methods using
added nose of type “M109 military tank” at various SNR’s. The percentages are cal-
culated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female speak-
ers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 88.28 81.08 83.11 94.40 96.59 90.58
15 dB 90.92 86.92 87.35 94.35 97.79 92.55
10 dB 93.14 92.90 89.54 94.89 98.80 90.36

5 dB 94.53 97.76 90.56 95.88 99.61 91.11
0 dB 96.36 99.94 91.37 96.86 99.97 88.88

-5 dB 97.61 100.00 95.66 98.21 100.00 95.23

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 87.28 92.62 96.49 85.39 88.03 96.24
15 dB 81.53 84.77 94.14 78.84 78.83 93.73
10 dB 73.77 68.26 88.98 72.21 65.39 85.48

5 dB 65.84 42.98 69.57 62.74 42.30 67.70
0 dB 57.68 10.23 38.91 54.20 11.90 41.86

-5 dB 49.67 0.00 14.47 47.08 0.00 14.27

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 12.05 15.15 12.53 8.57 6.23 7.55
15 dB 12.14 13.78 10.44 10.76 8.46 7.06
10 dB 13.18 15.13 10.64 12.59 12.21 11.25

5 dB 14.82 20.10 16.29 15.04 19.28 16.61
0 dB 16.25 29.30 25.73 17.20 29.06 26.61

-5 dB 18.02 32.60 30.81 18.64 32.96 31.45
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Figure A.46: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Machine gun” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.47: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Machine gun” at various SNR’s. The
results are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Table A.34: Voice activity detection performance for three different methods using
added noise of type “Machine gun” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 38.05 55.96 78.39 40.90 73.75 87.73
15 dB 35.05 43.80 75.85 37.23 55.60 83.50
10 dB 29.40 34.53 66.22 31.21 36.63 64.72

5 dB 24.34 31.19 51.20 25.92 30.39 46.63
0 dB 19.97 32.52 42.54 21.40 33.14 38.36

-5 dB 18.44 36.44 36.74 19.97 37.14 32.05

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 91.34 96.42 97.28 90.21 93.96 97.39
15 dB 87.73 96.55 97.31 86.41 94.27 97.09
10 dB 84.23 96.07 97.10 82.69 95.43 97.08

5 dB 81.48 90.64 97.76 79.67 90.70 97.62
0 dB 78.85 81.27 97.96 77.01 80.85 97.92

-5 dB 76.77 60.67 97.37 74.80 60.86 97.03

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 44.58 30.85 15.45 42.84 19.59 9.08
15 dB 47.77 39.00 17.15 46.56 31.66 12.02
10 dB 52.73 45.41 23.71 51.83 43.99 24.61

5 dB 57.03 49.43 33.62 56.37 49.73 36.56
0 dB 60.83 51.58 39.39 60.27 51.14 42.01

-5 dB 62.54 55.66 43.49 61.96 55.05 46.53
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Figure A.48: A comparison of the voice activity detection performance of three
different methods, using added pink noise at various SNR’s. The results are for 265
“non-clean” recordings, which contain sound artifacts. The evaluation measures
used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate (ER).
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Figure A.49: A comparison of the voice activity detection performance of three
different methods, using added pink noise at various SNR’s. The results are for
185 “clean” recordings, which do not contain any sound artifacts. The evaluation
measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate
(ER).
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Table A.35: Voice activity detection performance for three different methods using
added pink noise at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The evaluation measures
used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 94.38 86.71 88.21 99.45 98.05 93.53
15 dB 97.17 92.05 91.62 99.78 98.87 95.15
10 dB 98.84 97.74 95.93 99.96 99.53 97.27

5 dB 99.41 99.82 99.24 99.97 99.84 99.33
0 dB 99.81 100.00 99.89 99.99 100.00 99.95

-5 dB 99.89 100.00 100.00 100.00 100.00 100.00

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 83.55 88.09 94.31 81.90 82.06 93.36
15 dB 76.40 74.58 86.06 73.26 70.75 86.40
10 dB 66.48 53.25 53.76 64.39 47.23 63.08

5 dB 58.20 19.64 14.13 55.63 24.47 16.13
0 dB 50.73 0.17 1.92 48.72 0.76 1.79

-5 dB 40.53 0.00 0.06 38.84 0.00 0.00

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 9.15 12.84 9.80 6.34 7.22 6.52
15 dB 9.60 13.65 10.19 8.96 10.40 7.74
10 dB 11.71 16.77 17.82 11.76 17.71 14.00

5 dB 14.02 26.32 28.51 14.64 25.00 28.09
0 dB 16.19 32.55 32.05 16.91 32.71 32.40

-5 dB 19.46 32.60 32.58 20.16 32.96 32.96
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Figure A.50: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Vehicle interior (120km/h)” at various
SNR’s. The results are for 265 “non-clean” recordings, which contain sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Figure A.51: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Vehicle interior (120km/h)” at various
SNR’s. The results are for 185 “clean” recordings, which do not contain any sound
artifacts. The evaluation measures used are non-speech hit rate (HR0), speech hit
rate (HR1), and error rate (ER).
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Table A.36: Voice activity detection performance for three different methods using
added noise of type “Vehicle interior (120km/h)” at various SNR’s. The percentages are
calculated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female
speakers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate
(HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 78.53 58.56 77.16 91.45 71.86 86.76
15 dB 78.67 50.82 77.67 90.38 57.55 86.96
10 dB 79.49 44.50 77.75 88.45 50.85 87.14

5 dB 78.80 40.05 78.09 87.00 40.78 87.34
0 dB 80.30 43.34 79.75 85.70 41.02 88.06

-5 dB 81.54 49.01 80.61 84.75 48.06 88.41

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 95.30 96.66 97.71 93.34 95.32 98.05
15 dB 94.63 96.09 97.69 92.52 95.26 98.00
10 dB 92.56 95.02 97.61 90.31 92.38 97.95

5 dB 89.41 93.33 97.24 86.59 91.25 97.43
0 dB 83.39 86.42 97.21 81.00 85.84 96.92

-5 dB 77.04 76.10 96.67 73.85 74.65 95.10

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 16.00 29.02 16.14 7.93 20.41 9.52
15 dB 16.13 34.42 15.80 8.92 30.02 9.40
10 dB 16.25 39.03 15.77 10.94 35.46 9.30

5 dB 17.74 42.58 15.67 13.13 42.58 9.33
0 dB 18.70 42.61 14.56 15.85 44.21 9.02

-5 dB 19.93 42.15 14.15 18.84 43.18 9.39
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Figure A.52: A comparison of the voice activity detection performance of three
different methods, using added white noise at various SNR’s. The results are for
265 “non-clean” recordings, which contain sound artifacts. The evaluation measures
used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate (ER).
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Figure A.53: A comparison of the voice activity detection performance of three
different methods, using added white noise at various SNR’s. The results are for
185 “clean” recordings, which do not contain any sound artifacts. The evaluation
measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate
(ER).
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Table A.37: Voice activity detection performance for three different methods using
added white noise at various SNR’s. The percentages are calculated from a total of 265
“non-clean” recordings, which contain sound artifacts, and 185 “clean” recordings,
which do not contain any sound artifacts. The speech recordings are from 15 different
words, each spoken by 15 male and 15 female speakers. The evaluation measures
used are non-speech hit rate (HR0), speech hit rate (HR1), and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 95.29 89.38 88.18 99.73 98.51 94.39
15 dB 97.93 94.70 91.72 99.92 99.21 96.11
10 dB 99.15 98.95 97.33 99.98 99.65 98.39

5 dB 99.62 99.95 99.84 100.00 99.97 99.83
0 dB 99.89 100.00 100.00 100.00 100.00 100.00

-5 dB 99.97 100.00 100.00 100.00 100.00 100.00

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 81.92 82.85 94.19 79.78 76.86 90.16
15 dB 73.95 65.12 81.29 71.36 60.98 82.71
10 dB 64.29 39.33 42.76 61.71 40.33 52.24

5 dB 54.70 9.39 5.65 51.56 11.88 8.11
0 dB 45.02 0.00 0.00 42.92 0.00 0.00

-5 dB 35.04 0.00 0.00 33.60 0.00 0.00

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 9.07 12.75 9.86 6.84 8.62 7.00
15 dB 9.88 14.94 11.68 9.49 13.39 8.31
10 dB 12.21 20.49 20.47 12.63 19.90 16.82

5 dB 15.03 29.57 30.87 15.96 29.06 30.40
0 dB 18.00 32.60 32.60 18.81 32.96 32.96

-5 dB 21.20 32.60 32.60 21.88 32.96 32.96
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Figure A.54: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Air conditioner” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.55: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Air conditioner” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.38: Voice activity detection performance for three different methods using
added noise of type “Air conditioner” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 79.12 75.98 76.90 87.17 92.84 87.08
15 dB 79.11 80.09 77.92 85.38 92.86 87.29
10 dB 79.11 85.67 78.92 82.94 94.36 87.51

5 dB 80.54 90.87 78.80 82.50 94.46 87.93
0 dB 82.89 95.09 79.55 85.10 96.20 88.34

-5 dB 85.27 99.20 82.17 87.93 98.45 89.77

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 92.97 94.50 97.85 91.38 91.03 97.65
15 dB 89.69 91.59 97.81 88.48 87.97 97.45
10 dB 85.71 86.65 97.19 83.26 80.21 97.17

5 dB 80.28 68.72 96.91 78.22 68.03 95.72
0 dB 74.78 43.37 94.24 72.42 44.89 92.64

-5 dB 69.19 9.03 88.90 68.08 11.99 88.40

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 16.37 17.98 16.27 11.45 7.76 9.44
15 dB 17.44 16.16 15.60 13.60 8.75 9.36
10 dB 18.74 14.01 15.12 16.95 10.30 9.31

5 dB 19.54 16.35 15.29 18.91 14.25 9.51
0 dB 19.75 21.77 15.66 19.08 20.71 10.24

-5 dB 19.97 30.19 15.64 18.61 30.05 10.68
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Figure A.56: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Conference room” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.57: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Conference room” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.39: Voice activity detection performance for three different methods using
added noise of type “Conference room” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 75.44 71.74 77.34 86.13 89.36 86.92
15 dB 73.12 77.81 78.13 80.78 86.45 87.32
10 dB 70.37 78.00 79.17 76.52 87.92 88.05

5 dB 69.93 77.05 80.65 73.58 83.23 88.88
0 dB 70.67 70.60 83.70 71.94 75.95 90.84

-5 dB 71.69 64.11 87.02 71.47 66.28 93.33

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 94.70 95.52 97.69 92.66 92.80 98.00
15 dB 93.03 92.33 97.33 91.50 88.91 97.89
10 dB 90.13 87.68 97.40 88.73 84.23 97.48

5 dB 86.35 82.32 96.48 84.12 81.79 96.94
0 dB 81.92 77.47 94.09 79.60 80.75 94.79

-5 dB 77.04 74.42 88.14 74.74 76.45 83.82

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 18.28 20.51 16.02 11.72 9.50 9.43
15 dB 20.38 17.46 15.61 15.69 12.74 9.20
10 dB 23.19 18.84 14.89 19.45 13.29 8.84

5 dB 24.72 21.23 14.19 22.94 17.24 8.46
0 dB 25.66 27.16 12.92 25.53 22.47 7.86

-5 dB 26.56 32.53 12.62 27.45 30.37 9.81
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Figure A.58: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Intergalactic cruiser” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.59: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Intergalactic cruiser” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.40: Voice activity detection performance for three different methods using
added noise of type “Intergalactic cruiser” at various SNR’s. The percentages are cal-
culated from a total of 265 “non-clean” recordings, which contain sound artifacts,
and 185 “clean” recordings, which do not contain any sound artifacts. The speech
recordings are from 15 different words, each spoken by 15 male and 15 female speak-
ers. The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 78.26 61.21 76.80 91.34 75.93 86.73
15 dB 77.73 56.11 77.81 89.49 59.72 86.77
10 dB 74.79 49.10 77.86 85.23 50.73 86.86

5 dB 70.87 46.24 78.04 76.90 42.98 87.11
0 dB 66.44 43.26 77.99 71.55 39.02 87.16

-5 dB 59.97 50.90 78.08 63.49 45.64 86.94

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 95.43 96.76 97.66 93.96 95.12 98.04
15 dB 94.92 94.97 97.39 93.09 96.62 98.00
10 dB 93.13 93.62 97.15 91.69 94.25 98.09

5 dB 89.89 90.22 97.08 88.43 89.90 97.84
0 dB 85.93 79.72 97.08 83.71 83.80 97.60

-5 dB 82.17 58.53 97.26 80.53 65.14 97.46

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 16.14 27.20 16.40 7.79 17.75 9.54
15 dB 16.66 31.22 15.80 9.32 28.11 9.53
10 dB 19.23 36.39 15.85 12.64 34.92 9.44

5 dB 22.93 39.42 15.75 19.30 41.56 9.35
0 dB 27.20 44.85 15.79 24.45 46.22 9.40

-5 dB 32.79 46.61 15.67 30.89 47.93 9.59
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Figure A.60: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Jet airliner cabin” at various SNR’s.
The results are for 265 “non-clean” recordings, which contain sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Figure A.61: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Jet airliner cabin” at various SNR’s.
The results are for 185 “clean” recordings, which do not contain any sound artifacts.
The evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1),
and error rate (ER).
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Table A.41: Voice activity detection performance for three different methods using
added noise of type “Jet airliner cabin” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 80.72 74.86 77.21 88.78 93.26 86.77
15 dB 80.91 78.69 77.50 86.60 92.94 86.96
10 dB 74.47 82.80 77.67 79.06 94.14 87.14

5 dB 51.25 90.09 78.07 50.47 95.51 87.12
0 dB 19.12 95.90 78.35 16.95 98.37 87.28

-5 dB 3.99 99.01 78.79 2.73 99.27 87.83

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 91.02 94.42 97.72 89.45 89.98 98.04
15 dB 86.90 90.45 97.69 84.88 83.74 98.00
10 dB 83.28 80.31 97.43 80.85 74.50 97.74

5 dB 82.54 64.75 97.36 81.54 57.81 97.39
0 dB 84.56 35.09 97.41 84.65 36.76 97.13

-5 dB 84.56 10.87 96.53 84.87 12.00 95.52

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 15.93 18.76 16.10 11.00 7.82 9.52
15 dB 17.13 17.47 15.92 13.96 10.09 9.40
10 dB 22.66 18.01 15.88 20.35 12.33 9.37

5 dB 38.55 18.17 15.64 39.29 16.91 9.49
0 dB 59.54 23.92 15.44 60.74 21.94 9.48

-5 dB 69.74 29.72 15.43 70.20 29.49 9.63
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Figure A.62: A comparison of the voice activity detection performance of three dif-
ferent methods, using added noise of type “Street traffic” at various SNR’s. The
results are for 265 “non-clean” recordings, which contain sound artifacts. The evalu-
ation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and error
rate (ER).
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Figure A.63: A comparison of the voice activity detection performance of three
different methods, using added noise of type “Street traffic” at various SNR’s. The
results are for 185 “clean” recordings, which do not contain any sound artifacts. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).
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Table A.42: Voice activity detection performance for three different methods using
added noise of type “Street traffic” at various SNR’s. The percentages are calculated
from a total of 265 “non-clean” recordings, which contain sound artifacts, and 185
“clean” recordings, which do not contain any sound artifacts. The speech recordings
are from 15 different words, each spoken by 15 male and 15 female speakers. The
evaluation measures used are non-speech hit rate (HR0), speech hit rate (HR1), and
error rate (ER).

“non-clean” recordings “clean” recordings

SNR
G.729 Sphinx4 Var.

Kernel
G.729 Sphinx4 Var.

Kernel

HR0
(%)

no noise 77.70 68.83 76.94 91.66 91.88 86.61
20 dB 94.62 83.48 81.83 99.20 97.73 88.90
15 dB 96.46 89.36 83.26 99.08 98.60 89.61
10 dB 97.74 94.56 85.40 98.88 99.31 90.52

5 dB 98.17 98.32 89.09 98.58 99.75 92.92
0 dB 98.08 99.86 92.76 98.05 99.97 95.78

-5 dB 97.77 99.99 95.24 97.57 100.00 97.61

HR1
(%)

no noise 95.74 96.59 97.73 94.01 94.73 98.04
20 dB 79.77 90.55 97.28 77.34 84.79 96.26
15 dB 71.66 78.76 95.77 68.58 73.56 94.47
10 dB 62.39 60.90 90.63 58.99 56.11 91.69

5 dB 54.10 31.05 78.20 50.37 32.95 80.35
0 dB 45.56 6.40 56.11 43.21 6.95 58.02

-5 dB 36.10 0.17 38.65 34.71 0.51 31.89

ER
(%)

no noise 16.42 22.11 16.28 7.56 7.18 9.62
20 dB 10.22 14.21 13.13 8.01 6.53 8.67
15 dB 11.63 14.10 12.66 10.97 9.65 8.79
10 dB 13.79 16.42 12.90 14.27 14.93 9.09

5 dB 16.20 23.62 14.46 17.31 22.27 11.22
0 dB 19.04 30.61 19.19 20.02 30.69 16.67

-5 dB 22.34 32.55 23.21 23.15 32.79 24.05
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Appendix B

Examples of Rank Order Kernel
Weights
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 (a) Spectrogram of word "zero"

 

 

                    Normalized Intensity 

                    (for spectrogram on left) 

 

                    Normalized Weight 

                    (for weight images below)
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1

 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.1: Weights calculated for a training instance of the word “zero”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "one"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.2: Weights calculated for a training instance of the word “one”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "two"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.3: Weights calculated for a training instance of the word “two”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "three"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.4: Weights calculated for a training instance of the word “three”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "four"

 

 

                    Normalized Intensity 

                    (for spectrogram on left) 
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.5: Weights calculated for a training instance of the word “four”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "five"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.6: Weights calculated for a training instance of the word “five”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "six"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.7: Weights calculated for a training instance of the word “six”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "seven"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.8: Weights calculated for a training instance of the word “seven”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "eight"
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 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.9: Weights calculated for a training instance of the word “eight”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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 (a) Spectrogram of word "nine"

 

 

                    Normalized Intensity 

                    (for spectrogram on left) 

 

                    Normalized Weight 

                    (for weight images below)

0

0.2

0.4

0.6

0.8

1

 (b1) Rank order kernel weights for degree n=1  (b2) Rank order kernel weights for degree n=2

 (b3) Rank order kernel weights for degree n=3  (b4) Rank order kernel weights for degree n=4

Figure B.10: Weights calculated for a training instance of the word “nine”. Higher
weights indicate rank order kernel locations which are more robust to white noise.
(a) The spectrogram of the word. (b1) The weights calculated for kernels of degree
n=1. High weights indicate locations where the rank order of the highest-valued
pixel does not change easily with noise. (b2) The weights calculated for kernels
of degree n=2. High weights indicate locations where the rank order of the two
highest-valued pixels does not change easily with noise. (b3) The weights calculated
for kernels of degree n=3. High weights indicate locations where the rank order of
the three highest-valued pixels does not change easily with noise. (b4) The weights
calculated for kernels of degree n=4. High weights indicate locations where the rank
order of the four highest-valued pixels does not change easily with noise.
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Appendix C

Significance Tests
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Figure C.1: Significance tests which show that at SNRs of 15dB and below, the speech
recognition performance of the Rank Order Kernel method is significantly different
from that of the Sphinx-4 system. The p-values were calculated using Fisher’s exact
test by comparing the number of “correct”, “wrong”, and “miss” counts between the
two methods at each SNR. The performance measures used for these significance
tests are the ones obtained using added white noise, as shown in Figure 5.4 on
page 154.
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Figure C.2: Significance tests which show that at SNRs of 15dB and below, the end-
point detection performance of the Variance Kernel method is significantly different
from that of the G.729 algorithm. The p-values were calculated using Fisher’s exact
test by comparing the number of “correct”, “wrong”, and “miss” counts between
the two methods at each SNR. The performance measures used for these significance
tests are the ones obtained using non-clean recordings and twenty noise types, as
shown in Figure A.1(a) on page 178.
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Figure C.3: Significance tests which show that at SNRs of 20dB and below, the end-
point detection performance of the Variance Kernel method is significantly different
from that of the Sphinx-4 system. The p-values were calculated using Fisher’s exact
test by comparing the number of “correct”, “wrong”, and “miss” counts between
the two methods at each SNR. The performance measures used for these significance
tests are the ones obtained using non-clean recordings and twenty noise types, as
shown in Figure A.1(a) on page 178.
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Figure C.4: Significance tests which show that at SNRs of 20dB and below, the end-
point detection performance of the Variance Kernel method is significantly different
from that of the G.729 algorithm. The p-values were calculated using Fisher’s exact
test by comparing the number of “correct”, “wrong”, and “miss” counts between
the two methods at each SNR. The performance measures used for these significance
tests are the ones obtained using clean recordings and twenty noise types, as shown
in Figure A.1(b) on page 178.
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Figure C.5: Significance tests which show that at SNRs of 20dB and below, the end-
point detection performance of the Variance Kernel method is significantly different
from that of the Sphinx-4 system. The p-values were calculated using Fisher’s exact
test by comparing the number of “correct”, “wrong”, and “miss” counts between
the two methods at each SNR. The performance measures used for these significance
tests are the ones obtained using clean recordings and twenty noise types, as shown
in Figure A.1(b) on page 178.

300

Alex
an

dro
s K

yri
ak

ide
s




