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ABSTRACT 

The economic dispatch of generation in power systems is one of the most 

important optimization problems for both the generating companies competing in a free 

electricity market and the systems operator in charge with a fair handling of 

transactions between electricity suppliers and their customers. The fuel cost component 

is still the major part of the variable cost of electricity generation, directly reflected in 

the electricity bills. Fine tuning in modelling the cost function, together with the right 

solution adopted to solve the problem, may lead to significant savings per year in large 

power system networks.  

Economic dispatch aims at allocating the electricity load demand to the 

committed generating units in the most economic or profitable way, while continuously 

respecting the physical constraints of the power system. Typically, the economic 

dispatch problem is a highly non-linear optimization problem and there are a significant 

number of constraints that need to be respected, thus making economic dispatch a 

computationally intensive task. This problem needs to be solved continuously at time 

intervals ranging from minutes to half an hour, depending on the utility practice and the 

electricity market it operates in. 

This dissertation proposes a novel heuristic-hybrid optimization 

method/algorithm particularly suited to large dimensional, complex optimization 

functions. The algorithm proposed is called GAAPI and is an hybridization between 

two optimization techniques: a special class of ant colony optimization for continuous 

domains entitled API and a genetic algorithm (GA). The algorithm adopts the downhill 
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behavior of API (a key characteristic of optimization algorithms) and the good 

spreading in the solution space of the genetic algorithm. GAAPI improves the overall 

search capability of the two constituent algorithms, while maintaining robustness in the 

solution and fast computational capabilities. 

GAAPI is tested using twenty benchmark optimization functions. The results are 

analyzed in terms of both the quality of the solution and the computational efficiency; it 

is shown that the proposed GAAPI algorithm is capable of obtaining highly robust, 

quality solutions in a reasonable computational time, compared to a number of similar 

algorithms proposed in the literature. 

The proposed algorithm is applied to the problem of the economic dispatch in 

power systems. Four IEEE test power systems having different sizes and complexities 

are used to validate the effectiveness and applicability of the algorithm for solving the 

economic dispatch problem in its different formulations. Due to the fast computational 

capabilities of the proposed algorithm, it is envisioned that it becomes an operations 

tool for both the generation companies and the TSO/ISO. The main advantages of the 

optimization tool proposed are its flexibility in adding more constraints with minimum 

transformations in the approach, its reduced computational time, and the robustness of 

the solution. 

This dissertation also investigates a number of technical and economic challenges 

a power system may encounter when variable, partially predictable generation 

resources share a significant amount in the load covering. In specific, this work 

includes a study for the dispatch challenges in isolated power systems with a high share 

of renewable generation, such as wind. The power system of Cyprus has been used as a 
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case study for the application of this methodology and solutions to overcome the 

dispatch challenges in such isolated power systems are proposed.
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ΠΕΡΙΛΗΨΗ 

 

Η νηθνλνκηθή θαηαλνκή ηεο παξαγσγήο ζηα ζπζηήκαηα ειεθηξηθήο ελέξγεηαο 

είλαη έλα από ηα πην ζεκαληηθά πξνβιήκαηα βειηηζηνπνίεζεο, ηόζν γηα ηηο εηαηξείεο 

παξαγσγήο νη νπνίεο αληαγσλίδνληαη ζηελ ειεύζεξε αγνξά ειεθηξηθήο ελέξγεηαο, όζν 

θαη γηα ηνλ δηαρεηξηζηή ηνπ ζπζηήκαηνο ν νπνίνο είλαη ππεύζπλνο γηα ηε δίθαηε 

δηαρείξηζε ησλ ζπλαιιαγώλ κεηαμύ ησλ παξνρέσλ ειεθηξηθήο ελέξγεηαο θαη ησλ 

θαηαλαισηώλ. Τν θόζηνο θαπζίκνπ παξακέλεη ην πην ζεκαληηθό κέξνο ηνπ 

κεηαβιεηνύ θόζηνπο παξαγσγήο ειεθηξηθήο ελέξγεηαο θαη αλαθιάηαη απεπζείαο ζηνπο 

ινγαξηαζκνύο ειεθηξηθήο ελέξγεηαο. Μηθξέο αιιαγέο ζηε κνληεινπνίεζε ηεο 

ζπλάξηεζεο θόζηνπο καδί κε ηελ πηνζέηεζε ηεο ζσζηήο κεζνδνινγίαο επίιπζεο ηνπ 

πξνβιήκαηνο κπνξνύλ λα νδεγήζνπλ ζε ζεκαληηθέο εμνηθνλνκήζεηο αλά έηνο. 

Τν πξόβιεκα ηεο νηθνλνκηθήο θαηαλνκήο ζηνρεύεη ζηνλ θαηακεξηζκό ηεο 

δήηεζεο ειεθηξηθνύ θνξηίνπ ζηηο δεζκεπκέλεο κνλάδεο παξαγσγήο, κε ηνλ πην 

νηθνλνκηθό ή επηθεξδή ηξόπν, ελώ ηαπηόρξνλα ηθαλνπνηνύληαη όινη νη θπζηθνί 

πεξηνξηζκνί ηνπ ζπζηήκαηνο ειεθηξηθήο ελέξγεηαο. Σπλήζσο, ην πξόβιεκα ηεο 

νηθνλνκηθήο θαηαλνκήο είλαη έλα άθξσο κε-γξακκηθό πξόβιεκα βειηηζηνπνίεζεο, ελώ 

ππάξρεη έλαο ζεκαληηθόο αξηζκόο πεξηνξηζκώλ νη νπνίνη πξέπεη λα ηθαλνπνηνύληαη. Οη 

πην πάλσ παξάγνληεο θαζηζηνύλ  ην πξόβιεκα ηεο νηθνλνκηθήο θαηαλνκήο έλα 

ππνινγηζηηθά απαηηεηηθό πξόβιεκα. Επηπιένλ, απηό ην πξόβιεκα απαηηείηαη λα 

επηιύεηαη ζπλερώο ζε ρξνληθά δηαζηήκαηα πνπ θπκαίλνληαη από δεπηεξόιεπηα κέρξη 

κηζή ώξα, αλάινγα κε ηηο πξαθηηθέο θάζε εηαηξείαο θαη ηελ αγνξά ειεθηξηζκνύ ζηελ 

νπνία επηρεηξεί. 

Απηή ε δηαηξηβή πξνηείλεη έλα θαηλνηόκν επξεζηηθό-πβξηδηθό αιγόξηζκν 
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βειηηζηνπνίεζεο, ν νπνίνο είλαη ηδηαίηεξα θαηάιιεινο γηα ζπλαξηήζεηο  

ειηηζηνπνίεζεο νη νπνίεο είλαη ζύλζεηεο θαη κεγάιεο ζε δηαζηάζεηο. Ο αιγόξηζκνο πνπ 

πξνηείλεηαη νλνκάδεηαη GAAPI θαη είλαη πβξηδνπνίεζε κεηαμύ δπν ηερληθώλ 

βειηηζηνπνίεζεο: κηαο εηδηθήο ηάμεο βειηηζηνπνίεζεο βαζηδόκελε ζε ζπκπεξηθνξέο 

απνηθηώλ κπξκεγθηώλ (API) θαη ελόο γελεηηθνύ αιγνξίζκνπ (GA). Ο θαηλνηόκνο 

αιγόξηζκνο εθκεηαιιεύεηαη ηελ ζπκπεξηθνξά θαηάβαζεο ηνπ API (ε νπνία είλαη 

ζεκαληηθό ραξαθηεξηζηηθό γηα νπνηνδήπνηε αιγόξηζκν βειηηζηνπνίεζεο) θαη ηελ θαιή 

εμάπισζε ζην ρώξν ιύζεσλ ηνπ γελεηηθνύ αιγόξηζκνπ. Ο αιγόξηζκνο GAAPI 

βειηηώλεη ηελ ηθαλόηεηα εμεξεύλεζεο ησλ δπν ζπληζηώλησλ αιγνξίζκσλ, ελώ δηαηεξεί 

ηελ ζηηβαξόηεηα ζηε ιύζε θαη παξέρεη ηαρείο ππνινγηζηηθέο δπλαηόηεηεο.  

Ο GAAPI εμεηάζηεθε ρξεζηκνπνηώληαο είθνζη πξόηππεο ζπλαξηήζεηο 

βειηηζηνπνίεζεο. Τα απνηειέζκαηα αλαιύνληαη αλαθνξηθά κε ηελ πνηόηεηα ηεο 

ιύζεσο θαη ηελ ππνινγηζηηθή απόδνζε. Δεηθλύεηαη όηη ν πξνηεηλόκελνο αιγόξηζκνο 

GAAPI είλαη ηθαλόο λα επηηπγράλεη ιύζεηο πςειήο ζηηβαξόηεηαο θαη πνηόηεηαο εληόο 

ινγηθνύ ππνινγηζηηθνύ ρξόλνπ, ζπγθξηλόκελνο κε αξηζκό αιγνξίζκσλ πνπ 

πξνηείλνληαη ζηε βηβιηνγξαθία. 

Ο πξνηεηλόκελνο αιγόξηζκνο εθαξκόδεηαη ζην πξόβιεκα ηεο νηθνλνκηθήο 

θαηαλνκήο ζηα ζπζηήκαηα ειεθηξηθήο ελέξγεηαο. Χξεζηκνπνηνύληαη ηέζζεξα 

δνθηκαζηηθά ζπζηήκαηα ηνπ Ιλζηηηνύηνπ Ηιεθηξνιόγσλ θαη Ηιεθηξνληθώλ 

Μεραληθώλ (ΙΕΕΕ), ηα νπνία έρνπλ δηαθνξεηηθά κεγέζε θαη πνιππινθόηεηεο, γηα λα 

επηθπξσζεί ε απνηειεζκαηηθόηεηα θαη ε εθαξκνζηκόηεηα ηνπ αιγνξίζκνπ ζε δηάθνξεο 

δηαηππώζεηο. Λόγσ ησλ ηαρέσλ ππνινγηζηηθώλ ηνπ δπλαηνηήησλ, ν πξνηεηλόκελνο 

αιγόξηζκνο νξακαηίδεηαη λα ρξεζηκνπνηεζεί σο έλα εξγαιείν ιεηηνπξγίαο ηόζν γηα ηηο 
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εηαηξείεο παξαγσγήο όζν θαη γηα ηνπο δηαρεηξηζηέο ηνπ ζπζηήκαηνο κεηαθνξάο. Τα 

θύξηα πιενλεθηήκαηα ηνπ πξνηεηλόκελνπ εξγαιείνπ βειηηζηνπνίεζεο είλαη ε επειημία 

ζηελ πξνζζήθε πεξαηηέξσ πεξηνξηζκώλ κε ειάρηζηεο ηξνπνπνηήζεηο ζηελ πξνζέγγηζε, 

ν κεησκέλνο ππνινγηζηηθόο ρξόλνο θαη ε ζηηβαξόηεηα ηεο ιύζεο.  

Απηή ε δηαηξηβή εμεηάδεη επίζεο αξηζκό ηερληθώλ θαη νηθνλνκηθώλ πξνθιήζεσλ 

ηηο νπνίεο κπνξεί λα αληηκεησπίζεη έλα ζύζηεκα ειεθηξηθήο ελέξγεηαο όηαλ ππάξρεη 

ζεκαληηθή δηείζδπζε κεηαβιεηώλ, κεξηθώο πξνβιεπηώλ πεγώλ παξαγσγήο. 

Σπγθεθξηκέλα, απηή ε εξγαζία ζπκπεξηιακβάλεη κηα κειέηε γηα ηηο πξνθιήζεηο 

θαηαλνκήο ζε απνκνλσκέλα ζπζηήκαηα κε πςειή δηείζδπζε αλαλεώζηκσλ πεγώλ 

ελέξγεηαο, όπσο ε αηνιηθή. Τν ζύζηεκα ηεο Κύπξνπ έρεη ρξεζηκνπνηεζεί σο 

πεξηπησζηαθό κνληέιν γηα ηελ εθαξκνγή απηήο ηεο κεζνδνινγίαο, ελώ πξνηείλνληαη 

ιύζεηο γηα λα ππεξπεδεζνύλ νη πξνθιήζεηο θαηαλνκήο παξαγσγήο ζε ηέηνηα 

απνκνλσκέλα ζπζηήκαηα ειεθηξηθήο ελέξγεηαο.  
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Chapter 1  

 

Introduction 

1.1 Electricity as a vital commodity  

Electricity became a vital commodity in our modern times. Almost every other 

commodity around us relies on electricity, from light systems, heating, cooling, water 

systems, communication, and transportation to a wide range of industrial processes. 

More than fifteen percent of energy consumed worldwide refers to electricity, but this 

percent is much higher in developed countries and tends to increase. Moreover, 

electricity consumption is highly correlated with the economic growth. In the past three 

decades, the electricity consumption worldwide almost tripled as a consequence of 

economic growth.  

The vital impact of electricity on our daily lives is especially noticed when sudden 

interruptions in the continuous electricity supply occur. Moreover, sudden, 

uncontrolled, wide-scale power outages may result in high societal and economic 

threats. Just to mention in brief several notable blackouts which occurred during the last 

decade around the world and their impacts in terms of the number of people affected: 
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the blackout in Java-Bali, Indonesia affected more than a hundred million people in 

September 2005; in November 2009 the blackout in Brazil and Paraguay affected about 

ninety million people,  while in September 2003 a widespread blackout affected all Italy 

(except two of its islands) for about twelve hours and part of Switzerland for about 

three hours; the blackout in Northeast USA and Southeast Canada in 2003 left forty 

million people in the dark [1]. 

Electricity is usually produced by large power plants which use coal, heavy fuel oil, 

natural gas, hydro or nuclear fission as primary energy source and transform it into 

electrical power. Besides these technologies which have been used in power systems for 

decades, renewable energy sources such as wind, solar thermal and solar photovoltaics, 

biomass and micro-hydro are increasingly being utilized into the modern power 

systems. Each of the technologies mentioned above have a couple of economic, 

technical and societal advantages and disadvantages. The fossil fuel and nuclear 

technologies, on one hand, have the disadvantages of using finite resources with 

unequal distribution of fuel supplies between regions (creating possibilities for 

exercising political influence), and they are pollutant (emission of greenhouse gases or 

nuclear waste). On the other hand, they represent affordable, reliable and well 

controllable technologies for electricity supply at a large scale. Renewable sources of 

energy have the advantage of being an unlimited resource (especially wind and solar), 

and may lead to a reduced dependency on imported fuel. However, they have economic 

and technical disadvantages, such as that they are still more expensive than 

conventional generation and they are mostly less controllable since their primary energy 
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cannot be controlled (with the exception of hydro, geothermal and biomass). Therefore, 

the integration of renewable energy sources into the power system poses technical and 

economic challenges.  

To reach the consumers (also known in power systems as loads) which are widely 

spread on large areas, electricity is usually transported and delivered through electrical 

networks (transmission and distribution networks which differ by means of the voltage 

level).  A schematic representation of electricity supply chain is presented in Figure 1.1.  

 

Figure 1.1 Pictogram of the electricity supply chain 
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Electric energy is critically important in our daily lives, and its need is growing 

year after year with a faster or slower rate, depending on the economic growth and 

societal development. Sustainable and reliable generation of electricity is required, 

while societal, economic and engineering constraints need to be met. Moreover, 

compared to other vital commodities such as water or food, electricity has a number of 

particularities which make it a special commodity: it cannot be economically stored, has 

no substitutes, and requires near perfect, instantaneous balance between generation and 

demand. Thus, it is worth saying that the power system operation and management is 

one of the most challenging problems to solve. Parts of these challenges are to be 

addressed in this work.  

1.2 Economic dispatch in power system operation 

In general, the power generation problem is based on three different sets of 

decisions which are dependent on the length of the planning time horizon. The first set 

consists of the long-term decisions (years) where the decision variables to be 

determined are the capacity, type, and number of power generators (units) to own. In 

the medium term (days to months), one needs to decide how to schedule (commit) the 

existing units for the planning horizon. And finally, in the short term (minutes to hours), 

the goal is to efficiently determine the amount of power that each committed unit need 

to produce in order to meet the real-time electricity demand. In general, the long-term 

problem is identified as the power expansion problem, the medium-term problem is 

identified as the unit commitment (UC) problem, and the short-term problem is called 
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the economic dispatch (ED) or generator allocation problem. Note that the mid-term 

problems may refer also to the maintenance scheduling, when the time horizon is in the 

range of one year. In this case, the short-term problems refer to both UC and ED, and 

their time horizon is in the range of weeks to minutes.  

A pictorial understanding of the main power system operation problems, their time 

frame and questions they answer is given in Figure 1.2 below. 

 

Figure 1.2 Overview of the main power system operation problems 

 

One of the main challenging aspects of power systems operation is that electrical 

energy cannot be economically stored in significant amounts. Thus, electrical power 
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must be consumed at the same moment it is generated. For a reliable supply of power it 

is therefore essential to maintain the balance between demand (total system load 

including transmission and distribution line losses) and generation. It is in principle 

possible to maintain the power balance by adjusting both generation and demand, but 

historically, mostly the central generation units have been used to follow the demand at 

all times. The operation of power systems is therefore critically dependent on the 

capabilities of generators for balancing the load. In reality, one may say that any electric 

power system is never at its equilibrium. This happens first of all due to the stochastic 

nature of the demand, due to unplanned equipment failures, or due to stochastic power 

generation.  

Due to the diversity in the characteristics and operation properties of different 

power generation units in a power system network, scheduling of these generation units 

is needed based on load forecasts and the economics and technical characteristics of the 

available generation units. This involves the calculation of the optimal selection of units 

for power generation (UC) and the optimal loading of the selected generators for 

subdivisions of time of the initial commitment time span (ED). The main difference 

between the ED and the UC problems is that the ED assumes that there is a set of units 

(say NG units) already connected to the system. On the other hand, the UC problem 

assumes that having a set of MG available units and assuming as known a forecasted 

load, determine which are the optimal subsets of the complete set of MG units which 

will satisfy the load in the most economical way? Note that the number of total 

available units (MG) is not always identical to the total number of committed units 
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(NG). The units not committed form the so called ―cold reserve‖.  Important parameters 

in unit commitment include start-up and shut-down costs, minimum up and down-times 

and operating cost. The economic dispatch performs the actual distribution of the total 

load between committed units, which is optimized for each operating state while taking 

into account all economic and technical aspects of the units. The cost component which 

is the most important in the economic dispatch case is the operating cost. The operating 

cost is dominated by the fuel cost, although labor is also a key component. Thus, the 

goal of power system economic dispatch is to minimize the fuel cost (or in other words, 

to maximize system efficiency and minimize system losses that cannot be billed or pass 

on to customers). From the output of UC and ED an estimation of the associated use of 

fossil fuels and emission of greenhouse gases can be calculated as well. In summary, in 

order to reach the goal of economic dispatch, first one needs to develop relationships 

between the cost of power output and the operating costs. 

Unit commitment and economic dispatch problems rely on forecasted values for 

the load demand determined for each dispatch interval. When stochastic power 

generation such as wind is part of the power system portfolio, the UC and ED problems 

are highly challenging due to the variability and limited predictability of this 

generation, which come on top of existing variations and uncertainties of the load. For 

the operation of power systems with significant amounts of stochastic renewables, the 

importance of conventional generation will remain or may increase even further in 

order to guarantee a reliable power supply.  
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1.3 Motivation and objectives 

In power systems planning and operation, the optimal allocation of power output 

among the committed generating units, termed economic dispatch (ED), is one of the 

most important optimization problems. In practice, due to the power generation 

diversity, the power plants have different fuel and operational costs, they are not located 

at the same electrical distance from the centre of loads, and under normal operating 

conditions the generation capacity is more than the total load demand and transmission 

losses. Thus, there are many options for scheduling generation [2]. Moreover, it is 

widely recognized that a proper scheduling of the available generating units may lead to 

significant savings per year (billions of Dollars/Euros for large utilities) in production 

costs [3]. 

Just analyzing a simple example may give a hint of what economic dispatch means 

in terms of utility savings. The following example is based on the principle of equal 

incremental fuel cost, which will be detailed in Chapter 2. In short, the incremental fuel 

cost (IC) is an indicator of how much it will cost to operate a generator which produces 

one additional MW of power, and has as unit Euros per megawatt hour (€/MWh). Let 

us assume a case where there is a power system with two generators characterized by 

linear incremental fuel costs IC1>IC2. That means that for an additional 1 MW, the 

operating cost of the first generator is more than the operating cost of the second 

generator. Assume an ideal system where there are no transmission line losses, and no 

generator limits and if the objective is to minimize the total operation cost, which 
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always is the business case, then it is reasonable to reduce the power output at generator 

one and, in return, increase the output of generator two.  

In real power systems, the economic dispatch problem is highly nonlinear due to 

the fuel-power characteristic of the modern thermal units (e.g. units with multiple 

admission valves) or due to the power system operation constraints (e.g. power flow 

and transmission losses in the network) and discontinuity due to a number of technical 

constraints which may affect each individual unit such as generation limits (maximum 

generation capacity and minimum stable generation), flexibility (the power output can 

be adjusted within limits, or there are inflexible units such as nuclear where the power 

output cannot be adjusted due to technical reasons), or prohibited operating zones 

(zones on the power output characteristic which must be avoided due to thermal 

instability of the unit). The  non-detailed  formulation  of  the  problem  due  to  the  

necessary assumptions  made is leading  to  limitations  in  the  modelling  of  real-

world,  large  scale power  systems.   

This dissertation aims at proposing solutions for a more accurate model of the ED 

problem in power system generation which takes into account its nonlinearities and 

nonconvexities, as well as the partial predictability of power generation from renewable 

sources such as wind, while respecting at all times the physical constraints of the power 

network. The fuel cost curve allows us to look at a wide range of economic dispatch 

practice such as total operating cost of a system, incremental cost and minute by minute 

loading of a generator. Further, the power system modeling and economic dispatch 

procedure highly reflect the fact that the power grid system is fast becoming a 
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computerized control system. By taking this approach, we are aiming at a much higher 

operating precision and less human error.  

The algorithms proposed in this dissertation are characterized by the accuracy and 

robustness of the solution, while computational effort is reduced compared to other 

similar recently developed methods. Moreover, one of the algorithms proposed in the 

dissertation can easily be applied to any other large scale optimization problem having 

high nonlinearities. 

Nowadays, renewable energy, and especially wind energy, draws much attention 

for both governments and the power engineering community as a viable clean energy 

alternative to classical, coal or oil-fuel burning power plants. However, wind generation 

brings technical and economic challenges to be addressed, especially in power systems 

with limited flexibilities. Such flexibilities refer to interconnections to other power 

systems, the existence of hydropower plant and/or combined heat and power (CHP) 

units in the generation mix, and the presence of flexible consumers (consumers which 

can reduce or increase their load according to the needs of the power system 

dispatcher). The dissertation also stresses the dispatch challenges that the power system 

dispatchers may face in operating isolated systems with a high share of renewable 

generation and limited flexibilities, in particular the power system of Cyprus. Solutions 

to part of these challenges are proposed. 

In summary, the main objectives and contributions of this dissertation are as 

follows: 
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• to identify dispatch challenges in the future power system architecture; the 

focus of this objective is to analyze the transformations in the economical and 

technical organization of the modern power systems and to identify the impact 

and challenging aspects on the dispatch of generation; 

• to determine suitable models and mathematical formulations for the economic 

dispatch problem according to the new power system architecture; the focus of 

this objective is to determine how to represent the objective mathematically and 

what is the accuracy of this formulation (limitations and assumptions under 

which the system is represented); 

• to develop approximate search algorithms which can provide suitable solutions 

for the more accurate models proposed (nonconvex in nature) for the economic 

dispatch problem; the focus of this objective is to find the 

mathematical/algorithmic tool to be used to obtain the objective defined above 

and to interpret what does solving the set of equations help us to decide; 

• to propose solutions which may overcome part of the dispatch challenges in 

isolated power systems with a high share of power supplied by renewable 

energy sources. 

1.4 Dissertation Outline 

 This dissertation is structured in six parts. They are briefly introduced below. 
Ire

ne
 C

ior
ne

i



 

 

12 

 

Chapter two discusses the possible formulations of the economic dispatch problem. 

This chapter looks at and classifies the different formulations of the problem according 

to the optimization targets that are to be followed.  

Typically, the objective of the economic dispatch problem is to find the real power 

scheduling of each power plant or at each power producer (in the energy market 

context), such that to minimize the operation cost (total fuel cost), while continuously 

respecting the operating/physical constraints of the power network. This is done by 

minimizing (maximization can be translated into a minimization problem as well) the 

selected objective functions while maintaining an acceptable system performance in 

terms of generating capability limits and the output of the compensating devices.  

The objective functions, also commonly known as cost functions, may refer to 

economic costs or profits, system security, environmental emission costs, or other 

objectives. Active and reactive power planning may be considered for the economic 

operation of the power systems. A detailed description of the various forms of objective 

functions and the constraints considered in the ED problem is summarized in this 

chapter. The optimization problem may be a linear, quadratic, or non-convex 

constrained optimization problem based on the mathematical approximation model 

used; consequently, the methodologies to solve this optimization problem can vary 

significantly. 

Chapter three analyzes and discusses the methodologies proposed in the power 

system community to solve different approaches of the economic dispatch problem. The 

methodologies used to solve the economic dispatch problem vary widely according to 
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different approaches in formulation. Therefore, a variety of methodologies and 

algorithms has been developed to accomplish the solution of the optimal economic 

dispatch problem, according to the utility generation mix and their particular constraints 

and needs in terms of modeling accuracy. The methods vary from relatively simple 

analytical or graphical methods, to highly complex and theoretically complicated 

approaches. This chapter summarizes the classical and modern algorithms proposed in 

the last three decades and classifies them into analytical, computational intelligence, 

and hybrid methods. The chapter also presents a summary of the most common testing 

platforms (benchmark test systems) for the surveyed algorithms. A concluding 

discussion emphasizes the advantages and disadvantages in adopting different solutions 

together with their appropriate usage according to the model adopted in formulation of 

the economic dispatch problem. 

Chapter four introduces the novel algorithm of GAAPI which aims at being a 

robust optimization tool for unconstrained continuous optimization problems. This 

algorithm is appropriate for optimization problems whose decision variables take values 

from the real – number domain. The GAAPI algorithm was created by combining some 

unique characteristics of two other powerful meta–heuristic algorithms: a real coded 

genetic algorithm (RCGA) and a special type of ant colony based algorithms for 

continuous domains (API). An empirical validation of the algorithm is carried out for 

twenty widely known challenging benchmark functions. It was proven that in most of 

the test cases (15 out of 20), GAAPI provided satisfactory or optimum solutions, with 

very little computational effort compared to other powerful methods of its class. The 
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algorithm is recommended for large, complex problems with a dimensionality greater 

than 30.  

Chapter five proposes the application of the new developed GAAPI algorithm to 

the constrained optimization problem of economic dispatch in power systems. The 

proposed algorithm was redesigned in such a way that the various power system 

constraints may be modeled and respected. It was also shown that starting from the 

solution obtained for the quadratic cost function (Lagrange multipliers method), the 

search space is reduced, and implicitly the computational effort is reduced. The strategy 

for handling the constraints is to always generate feasible solutions and work only with 

these feasible solutions during the search process of API, while the RCGA algorithm 

may allow infeasible solutions which are further controlled by an aggregated penalty 

objective function. This constraint handling method is therefore a hybrid one. The 

proposed solution was then empirically validated on a number of standard IEEE test 

systems. It was proven that the GAAPI for ED always find comparable or better 

solutions in a number of independent trials, while always satisfying the constraints, as 

compared to other methods available in the power systems literature. Further, through 

the test cases presented, its superiority in robustness is evident: it has a high probability 

to reach the global or quasi-global solution, especially in nonconvex formulations. 

GAAPI converges smoothly to the global, avoiding fast convergence that may lead to 

local optima. 

Chapter six addresses the technical and economic challenges of isolated power 

systems with variable, partially predictable generation such as wind. Also, the impact of 
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wind generation on the economic dispatch is discussed. Further, solutions to partially 

overcome the dispatch challenges are proposed, while directions for further research are 

discussed. In this chapter a real case study (the power system of Cyprus) in considered 

for the analysis of economic and technical challenges in dispatching isolated power 

systems with stochastic generation such as electricity generation from wind parks and 

limited flexibility. A brief enumeration of the challenges resulted from the study is: (i) 

there may be an increase in reserve demand (which can go up to 20% increase) 

especially in the valley load periods which coincide with high instant penetration of 

wind power; (ii) an increase in frequency of ramping in the case of fast units which can 

be translated into shortening the maintenance period intervals for those units and 

therefore higher maintenance costs per year and also increase in failure risk of those 

units; (iii) wind power curtailment may be advised by the system operator when a large 

error between predicted and realized wind occur.  

In this chapter, two solutions are proposed to overcome some of the above 

mentioned challenges. One refers to the reformulation of the ED problem as a multi/bi-

objective optimization where the cost of generation and the security level of the system 

are optimized simultaneously. The other one addresses the importance of the ramp rate 

limits in the formulation of the ED problem, especially when more variability takes 

place during intra-hour dispatch. The last solution refers to a stochastic ED formulation 

where the ramping constraints are depicted as linear stochastic functions. Moreover, 

when a forecasting program is run before each ED call, better integration of wind 
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energy is expected, as suboptimal solutions and eventually wind curtailment are 

avoided.  

Chapter seven: the last chapter of the dissertation refers to concluding remarks and 

to future directions of research in the field of power generation dispatch. 
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Chapter 2 

 

Economic dispatch: Approaches 

2.1 Introduction  

In general, the generation scheduling problem is identified as the economic 

dispatch problem (also known as generator allocation or optimal loading). The 

economic dispatch problem is concerned with selecting the best output level for all 

generators which are committed in the system. It can be a subproblem of the unit 

commitment problem, or an independent problem to be solved at a time interval (known 

as the dispatch interval), which typically ranges from five minutes to one hour, 

depending on the utility. The ED problem answers the question: what should the output 

power of each committed unit be during each dispatch interval such that to ensure 

secure electricity supply for a specific load demand in the most economical way?  

The possible formulations of the economic dispatch problem are discussed in this 

chapter. Typically, the objective of the economic dispatch problem is to find the real 

power scheduling of each power plant or at each power producer (in the energy market 

context), such that to minimize the operation cost (total fuel cost), while continuously 
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respecting the operating/physical constraints of the power network. This is done by 

minimizing (maximization can be translated into a minimization problem as well) the 

selected objective functions while maintaining an acceptable system performance in 

terms of generating capability limits and the output of the compensating devices. The 

objective functions, also commonly known as cost functions, may refer to economic 

costs or profits, system security, environmental emission costs, or other objectives. 

Active and reactive power planning may be considered for the economic operation of 

the power systems. This dissertation focuses on active power dispatch.   

The economic dispatch problem may be formulated in terms of the energy market 

context (e.g., monopoly or liberalized), in terms of the approximation used for the 

objective function, in terms of the assumptions related to load dynamics, and in terms of 

the constraints considered. Despite the type of formulation, the generic economic 

dispatch problem is in essence a constrained optimization problem of the general form 

given below:  

Optimize f(x)      x Є R
n 

s.t. hk(x) = 0, with k=1…K 

gl(x) ≤ 0, with l=1…L 

(2.1) 

where, f(x) is the objective function to be minimized or maximized, and hk(x) and gl(x) 

are the equality and inequality constraints imposed by the physical limitations of the 

system. Κ and L denote the number of the equality and inequality constraints considered 

in the problem.  

Ire
ne

 C
ior

ne
i



 

 

19 

 

A summary of various formulations of the economic dispatch problem is pictured 

in Figure 2.1. Detailed description of the various forms of objective functions and the 

constraints considered in the ED problem is presented in the following parts of this 

chapter. The optimization problem may be a linear, quadratic, or non-convex 

constrained optimization problem based on the mathematical approximation model 

used; consequently, the methodologies to solve this optimization problem can vary 

significantly. 

 

Figure 2.1 Summary of the economic dispacth approaches 
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2.2 Objective Function Formulations 

The objective function to be optimized in the ED problem refers mainly to the 

generation cost. Generation costs may be subdivided into capital costs (those required 

to erect the plant) and operating costs (those required to actually produce electric 

power, which in turn have two main components: the fuel cost and the labor cost). 

These costs may vary widely with different technologies: for example, nuclear and 

some hydroelectric units have high capital costs and low operating costs, while natural 

gas generators have low capital costs and higher operating costs. It is important to note 

that both the capital and the operating costs may differ from country to country for the 

same technology.  

 It is widely accepted that generator operating costs are those to be taken into 

account for the economic dispatch formulation [2, 4-7]. These costs are typically 

represented by up to four different curves: 1) input/output (I/O); 2) fuel-cost curve; 3) 

heat-rate curve; and 4) incremental cost curve [2, 5, 8]. 

In the context of the electricity market, the objective function of the economic 

dispatch problem refers to the overall profit of the economic players in the market 

(generation, retailers, and consumers). This profit is very sensitive to electricity price 

volatility in different time intervals (the day-ahead retail price refers to a time-slot in 

the day-ahead market; and the real-time retail price refers to a time-slot of the 

balancing market/real time-scheduling market), as well as to the market agents behavior 

[9-11]. 
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2.2.1 Formulation with Respect to the Optimization Problem 

 It is possible to formulate the objective function as a minimization, maximization, 

or multi-objective problem. In the context of the energy market framework, all three 

formulations may coexist.  

a. Minimization problem 

The allocation of generation to the generating units is performed in such a way as 

to minimize the cost of power generation: 

                          (  )   

s.t. hk(x) = 0, with k=1…K 

gl(x) ≤ 0, with l=1…L 

 

(2.2) 

where, OC is the cost of generation in the load following group of committed units, 

while hk and gl are the equality and inequality sets of constraints as defined in (2.1). The 

detailed mathematical approximation of the OC is described by (2.8), (2.10), (2.11), and 

(2.12) below.  

b. Maximization problem 

 Each actor in the energy market aims at maximizing its profit. Profit 

maximization is not always identical with the minimization of the operational cost. In 

the energy market context, the GENCOs no longer have the obligation to serve the 
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demand; therefore, they may choose to generate less than the demand. This fact allows 

more flexibility and makes the ED problem under a deregulated environment more 

complex. Moreover, the profit depends, not only on the cost, but also on the revenue. If 

the revenue increases more than the cost does, then the profit will increase. This 

problem is formulated as,  

                (  ) 

s.t. hk(x) = 0, with k=1…K 

gl(x) ≤ 0, with l=1…L 

(2.3) 

where Pt is the profit of the generating company (difference between the selling price 

and the cost of generation). The profit is given by, 

   ∑         
  

   
 (   ) (2.4) 

where, Pi is the output power of the i
th

 generating unit, sp is the selling price per MW 

produced (which is taken as constant during the dispatch interval), and NG is the 

number of generators in the power system committed for dispatch. The operational cost 

and the profit are generally expressed in monetary currency per hour. Both Euro (€) and 

US Dollar ($) currencies have been arbitrarily chosen in this dissertation. 

Recent advances in economic dispatch under a deregulated energy market may 

consider a model with both supply (SSM) and demand side management (DSM). 

Generation and demand offers are highly sensitive to forecasted electricity prices, while 

also correlated to the behavior of other market participants. Thus, one can distinguish 

two classes of opportunistic users: non-persistent (users which leave the power market 
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if they find that the current electricity price, in the time frame they are acting, is 

unacceptable) and persistent (they wait for the next acceptable price corresponding to 

the next time frame of the market)[10]. The objective function implies maximization of 

the overall profit which refers to both generation and demand sides. Thus, the profit Pt 

from (2.4) is written as, 

   ∑   
 

 

   
 (   ) (2.5) 

where,   
  is the total profit (revenue) of both generating companies and electricity 

consumers in the interval m of the day-ahead market, when the day-ahead retail price is 

u(m), and M is the total number of intervals in the day-ahead market. Due to the 

probabilistic nature of the generation and the demand sides,   
   is determined as an 

approximate (expected) value of a random variable. Thus,   
  depends on the exact 

stochastic models assumed for wind generation and the energy demand of the 

consumer. Also note that the optimization problem related to (2.5) is subject to the 

timeframe of generation/consumption in the day-ahead or balancing electricity markets. 

c. Multi-objective problem 

The multi-objective problem as referenced in economic dispatch approaches may 

refer to i) the minimization of generation cost and maximization of the security level of 

operating the system, when variable generation from renewable sources take part into 

the economic dispatch process [11-13]; or ii) the minimization of both generation cost 

and emissions (duality problem), when emissions regulations play a significant role in 
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the load following operation [4, 14-20]. The multi-objective problem is therefore 

formulated as, 

         (  )                             (  ) (2.6) 

or 

         (  )                        ( ) (2.7) 

where, SL is the security level of the power system under consideration; it can be 

estimated using different reliability parameters (e.g., the loss of load availability per 

year [12, 21, 22]) and can be modeled as a linear or quadratic approximation. The 

emissions function (E) can be seen as a tax paid for emissions produced by each kWh 

output [23, 24] and can therefore be included in the operational cost optimization 

function; or, as the total amount of emissions produced by the thermal generation mix 

under dispatch (in tons/h) and included in the constraints [19-21, 23-28]. A simplified 

representation of the OC and E can be found in (2.8) and (2.10), and (2.9), respectively.  

2.2.2 Formulation with Respect to the Form of the Objective Function 

The most common representations in the ED formulation are the quadratic cost of 

generation, the linear or piecewise linear function, the nonconvex cost of generation, 

and the multiple fuel types. Ire
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a. Quadratic cost of generation (variable fuel cost) 

Smooth quadratic (convex) function approximations of the unit input-output 

characteristics provide the basis for most classical economic dispatch techniques. The 

objective function may be represented as a second order polynomial in the form, 

   ∑ (            
 ) 

  

   
(   ) (2.8) 

where, Pi is the output of the generating unit i and the terms ai, bi and ci, are the 

constant, linear and quadratic fuel-cost coefficients of unit i. The quadratic 

representation is the most common approach when modeling the operational cost of any 

thermal power plant.  

The quantitative function of the emissions is typically represented (mainly for 

simplification) as a quadratic [19-21, 23] or linear function [19-21, 23, 25-27], 

  ∑   
  

   
∑                

 
  

   
  (   ) (2.9) 

where, NP refers to the number of pollutants taken into account; the terms αij, βij, γij are 

the constant, linear and quadratic coefficients of the emissions of fuel type j emitted by 

unit i, respectively, and they are expressed in (tons/h), (tons/MWh), and (tons/(MW)
2
h), 

respectively; wj is the emissions-to-cost conversion factor for emissions type j, and is 

expressed in (€/tons). 

In the deregulated energy market context, and assuming nondiscriminatory access to 

the transmission facilities, the variable cost to be optimized can be seen as an 

aggregation between the variable fuel cost (2.8) and the wheeling cost (which reflects 
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the use of the transmission facility for every power transaction). The most common 

wheeling cost function is determined based on a DC power flow model [29].  

b. Linear or piecewise linear function 

Many utilities prefer to represent their generator cost functions as single- or 

multiple-segment linear cost functions [2, 5, 8], as illustratively presented in Figure 2.2. 

a) 

Fu
el

 c
os

t (
€
/h

)

Power output (MW)
Pmin Pmax

b) 

Fu
el
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os

t (
€

/h
)

Power output (MW)
Pmin Pmax

 

Figure 2.2. Linear or piecewise linear generator cost function: a) single-segment 

representation; b) multiple-segment representation. 

 

In the energy market framework, the incremental cost (IC) or marginal cost (MC) 

of generation is one of the most important quantities in operating a power system, 

representing the cost of producing the next increment of power (next MWh). At least 

theoretically, the MC should be the bidding price into the market of any power producer 

(GENCO), together with the physical limitations of their generator portfolios [8]. 

Therefore, the TSO responsible with the energy market balance will solve the dispatch 

problem using the above mentioned IC (MC), together with the wheeling (transmission) 
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cost (WC) [30]. Assuming a quadratic representation of the fuel cost, the IC can be 

written as, 

    
    
   

          (     ) (2.10) 

Linear components to incorporate risk evaluation due to wind energy variability in 

generation can be added to the generic fuel cost function [12], or to the power wheeling 

cost component  [31]. According to [30], there are four methods to evaluate the power 

wheeling cost: the postage stamp method, the megawatt mile method, the contract path 

method, and the marginal cost method. All the above mentioned methods assume linear 

approximations and only the approaches differ.   

c. Nonconvex cost of generation   

Modern thermal units have multiple fuel admission valves that are used to control 

the power output of the unit. The generator cost function is obtained from data points 

taken during "heat run" tests, when input and output data is measured as the unit is 

slowly varied through its operating region. As each steam admission valve in a turbine 

starts to open, it produces a rippling effect on the unit curve. These "valve-points" are 

illustrated in Figure 2.3 for a five-valve steam turbine unit.  Ire
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Figure 2.3 Nonconvex cost of generation for a five-valve steam turbine unit 

 The valve point effect is modeled by adding a sinusoidal component to the 

quadratic approximation of the fuel cost function [32-49], 

   ∑             
  |      (  (  

      ))|
  

   

  

(   ) (2.11) 

where, ei and fi are the fuel-cost coefficients of unit i  responsible to model the rippling 

effect of the opening of the admission valves and Pi
min

 is the minimum accepted output 

power of unit i. 

A power generation system may also use combined cycle units (CC), formed by a 

series of single-cycle gas turbines in conjunction with some heat recovery steam 

generators (HRSG), as peak load serving units [50].  In this case, the ED problem with 

CC units has a mixed continuous-discrete optimization incremental cost function as 

depicted in Figure 2.4. 
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Figure 2.4. Incremental cost curve for a CC unit with three gas turbines and one HRSG 

d. Multiple fuel types 

 Some modern thermal units can burn different types of fuels at different stages 

of operation [43]. Therefore, their corresponding generation cost should be expressed as 

follows, 

   (  )  {

               
          

          
               

                     
               

          (   )    
   

 (   ) (2.12) 

where, aij, bij, cij  are the cost coefficients of generator i for the fuel type j, and Pi is the 

power output of generator i.  

Most of the formulations in (2.8), (2.10), (2.11) and (2.12) suggest that the thermal 

power plants ensure the load following regulation. This is true for the majority of the 

power systems, but in some power systems combined cycle (CC), hydropower plants 
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and wind farms can also participate in the economic dispatch operation. As the fuel 

component is the most significant part of the operation cost, wind and hydro 

participation will not influence the objective cost function, but only the system 

constraints.  

2.2.3 Formulation with Respect to Load/Generation Variations 

The economic dispatch problem may be formulated as a static or dynamic 

optimization problem. 

a. Static economic dispatch (ED)  

In this formulation, the temporal component is ignored, as presented in (2.8), 

(2.10), (2.11), and (2.12).  

b. Dynamic economic dispatch (DED)  

In the dynamic formulation of the economic dispatch problem, the changes in the 

load (in the context, load may refer either to the power consumption or to the 

aggregated load which is read as the difference between the power consumption and the 

power generated from wind) are taken into account over a specific time interval 

(dispatch period) which usually lasts for 24 hours. Therefore, a temporal component is 

considered in the problem formulation. Compared to the static formulation of the 

problem, the dynamic formulation approach  has a ―look ahead capability‖ [51]. 

Typically, the ramp rate constraints distinguish the dynamic economic dispatch (DED) 

problem from the traditional, static economic dispatch [14, 32, 33, 52-59]. These 
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constraints are also called ―dynamic constraints‖. The dynamic economic dispatch may 

also have a convex or nonconvex function of cost of generation, while the constraints 

can be the same as in the static approach.  

Optimal dynamic dispatch is a variation of DED where the generation of a power 

system is modeled in terms of a continuous-time or discrete-time control system [60, 

61]. For a recent survey on the dynamic economic dispatch formulation and solutions, 

the reader is invited to study a recent survey of Xia and Elaiw [51]. 

2.3 Constraints formulation 

In power systems operation a number of physical (mechanical, thermal, and 

capacity) constraints must be continuously respected to ensure the reliable and secure 

operation of the system. The generic economic dispatch formulation takes into account 

most of the following limits and constraints. 

a. System Demand and Generation Balance 

The total electric power generation has to meet the total electric power demand plus 

the power losses in the transmission lines. Hence,  

         ∑     
  

   
 (2.13) 

where, PD is the load power demand, PLoss  represents the transmission losses, and Pi is 

the output power of unit i out of NG total units in the system. The balance constraint is 

usually expressed in terms of real power. Demand side power can be seen as an 
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uncertain measure in the context of energy markets which allow demand side 

management (opportunist users) [62]. 

b. Generation Limits 

For stable operation, the real power output of each generator is restricted by lower 

and upper limits as follows, 

  
         

    (  ) (2.14) 

where, Pi
min

 and Pi
max

 are the lower and the upper bound of generation of unit i. 

c. Prohibited Operating Zones 

Modern generators with valve point loading may have many prohibited operating 

zones [13]. Therefore, in practical operation, when adjusting the generation output Pi of 

unit i, operation in the prohibited zones must be avoided. The feasible operating zones 

of unit i can be described as,  

  
         

  

 
 

          
  

 
 

        
   

             

 

(2.15) 

where, NPOZ is the number of prohibited zones of unit i;  
 

  
  and  

 

  
  are the lower and 

upper bounds of the prohibited zone j of unit i, respectively.
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d. Reservoir Storage Limits 

When hydro units are part of the generation dispatch pool, restrictions imposed by 

the limits of their storage reservoirs must be considered,  

  
         

    (  ) (2.16) 

where, Xi
min

 and Xi
max

 are the minimum and the maximum level of the reservoir of the 

hydro unit i. 

e. Hydro Water Discharge Limits 

Each hydropower plant can discharge a limited quantity of water in a predefined 

time interval (the dispatch period), and therefore, 

  
         

    (                ) (2.17) 

 

where, Ui
min

 and Ui
max

 are the minimum and the maximum water discharge limits of the 

hydro unit i. 

f. Transmission Constraints  

The following constraints are derived from the OPF formulation and are also 

usually called network constraints as they relate to the power balance in the system.  

           ∑     
  

   
,      (     )        (     )-    (2.18) 
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           ∑     
  

   
,      (     )        (     )-    (2.19) 

where, i = 1,..., NB; NB is the number of buses; Qi is the reactive power generated at the 

i
th

 bus; PDi and QDi are the i
th

 bus real and reactive power demand, respectively; Gij and 

Bij are the transmission line conductance and susceptance between bus i and bus j, 

respectively; |Vi| and |Vj| are the voltage magnitudes at bus i and bus j, respectively; and 

δi and δj are the voltage angles at bus i and bus j, respectively.  

The power flow solution gives all the bus voltage magnitudes and angles. The real 

power losses in the transmission system can then be derived as, 

      ∑   ,  
    

          (     )-
  

   
 (  ) (2.20) 

where, NL is the number of transmission lines and gk is the conductance of the k
th

 line 

that connects bus i to bus j. 

However, a common practice is to express the total transmission losses either as a 

quadratic function of the power output of generating units (known as Kron’s loss 

formula), or through a simplified linear formula [3]. The Kron’s loss formula is,  

      ∑ ∑         ∑          
  

   

  

   

  

   
 (  ) (2.21) 

where, Bij, Bi0, and B00 are the B coefficients which are assumed to be constant. 

Reasonable accuracy can be expected when the actual operating conditions are close to 

the case at which these coefficients were computed. To determine the coefficients for a 

new case study, a power flow program must be run in advance. 
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Security limits are part of the transmission constraints and they refer to the secure 

operation of the power system, i.e. the apparent power flow through the transmission 

line (Sl) is restricted by its upper limit. Hence, 

     
              (   ) (2.22) 

where, NL represents the number of lines in the system. 

g. Ramp Rate Limits  

Increasing or decreasing the output generation of each unit is restricted to an 

amount of power over a time interval due to the physical limitations of each unit. The 

generator ramp rate limits change the effective real power operating limits as follows: 

   (  
      

       )    
     (  

      
       ) (    ) (2.23) 

where,   
    is output power of generator i in the previous dispatch (which took place at 

time t-1); and   
  is the output power of generator i in the current dispatch interval t; the 

terms DRi and URi are the down-rate and up-rate limit of the i
th

 generator, respectively, 

and it is measured in terms of the increment of power over the dispatch time period 

(MW/time-period).  

h. Spinning Reserve  

A minimum spinning reserve value is imposed to each unit in order to have primary 

frequency response to load variations. The spinning reserve constraint can have linear 

or multiple-segment characteristics (e.g., pumped storage for negative spinning reserve 

requirements). The spinning reserve constraint can be represented as, 
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∑        
  

   
 (  ) (2.24) 

 

where, SRi is the fraction of total spinning reserve of the power system (SSR) allocated 

to the unit i. 

i. Tie Line Limits  

For multi-area generation scheduling, the TSO must take into account the 

limitations of the transmission capacity between areas. A relation similar to (2.19) can 

be used [63]. Constraints (2.14) to (2.17) and (2.20) to (2.23) are the physical system 

operating limits, and are usually called engineering constraints [64]. 

j. Emission Constraints  

Emissions can be taken into account either as part of the objective function or as 

constraints [23, 25, 26]. The total emissions of all generating units can be expressed as a 

polynomial function of active power output [15, 16, 30],  

  ∑ ∑                
      

     
  

   

  

   
      (      ) (2.25) 

 

where, φij and λij are the exponential coefficients of the emissions function of pollutant j 

applied to generator i, and E
max

 is the maximum allowable amount of pollutants for the 

entire system. It should be noted that the total amount of emissions also depends on the 

load level. The typical pollutants taken into consideration refer to NOx, CO2, SO2, 
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particles, or thermal pollutants. The emission coefficients differ with different thermal 

power plant technologies and with the age of the units.  

2.4 Chapter Summary 

This chapter is an attempt to keep track of the classical and modern economic 

dispatch formulations. In economic dispatch practices there are many choices for setting 

the operating points of generators. These choices are highly dependent on the variables 

that affect operational costs, such as the generator characteristics, the distance from the 

load, type of fuel, load capacity and transmission line losses.  By including these 

variables one will be able to perform economic dispatch and inter-connect generators to 

minimize operating costs and costs due to other system characteristics. This chapter 

presented a detailed description of the various forms of objective functions and the 

constraints considered in the ED problem. 

The generator cost is typically represented by four curves, namely:  Input/Output 

(I/O), heat rate, fuel cost and incremental cost curve. Generator cost curves are not 

smooth, and they are generally represented by quadratic functions and piecewise linear 

functions. However, nonlinearities due to generation characteristics (modern generators 

with multiple valves, combined cycle units), nonlinearities in equality and inequality 

constraints, and increased unpredictability due to large renewable generation, call for 

better approximation models that can provide satisfactory accuracy compared to the real 

system operation.  
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Typically, the objective of the economic dispatch problem is to find the real power 

scheduling of each power plant or at each power producer (in the energy market 

context), such that to minimize the operation cost (total fuel cost), while continuously 

respecting the operating/physical constraints of the power network. This is done by 

minimizing (maximization can be translated into a minimization problem as well) the 

selected objective functions while maintaining an acceptable system performance in 

terms of generating capability limits and the output of the compensating devices.  

The objective functions, also commonly known as cost functions, may refer to 

economic costs or profits, system security, environmental emission costs, or other 

objectives. Active and reactive power planning may be considered for the economic 

operation of the power systems. The optimization problem may be a linear, quadratic, 

or non-convex constrained optimization problem based on the mathematical 

approximation model used; consequently, the methodologies to solve this optimization 

problem can vary significantly. 
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Chapter 3 

 

Economic dispatch: Methodologies 

3.1 Introduction 

The methodologies used to solve the economic dispatch problem vary widely 

according to different approaches in formulation. Therefore, a variety of methodologies 

and algorithms has been developed to accomplish the solution of the optimal economic 

dispatch problem, according to the utility generation mix and their particular constraints 

and needs in terms of modeling accuracy. The methods vary from relatively simple 

analytical or graphical methods, to highly complex and theoretically complicated 

approaches. This chapter summarizes the classical and modern algorithms proposed in 

the last three decades and classifies them into analytical, computational intelligence, 

and hybrid methods. The chapter also presents a summary of the most common testing 

platforms (benchmark test systems) for the surveyed algorithms. A concluding 

discussion emphasizes the advantages and disadvantages in adopting different solutions 

together with their appropriate usage according to the model adopted in formulation of 

the economic dispatch problem.  
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A pictorial summary of the methodologies used to solve the economic dispatch 

problem in power system is given in Figure 3.1. 

 

Figure 3.1 Summary of the methodologies used to solve the economic dispatch problem 

 

3.2 Benchmark test systems 

A number of test benchmark systems (IEEE based test systems or real power 

networks) have been used to test different solution approaches for the ED problem. The 

test systems vary from small test systems with three generators up to 40-generator test 

systems. A summary of these most common benchmark power systems is presented in 
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Table 3.1. The cost function characteristics in the ED formulation, the best solution 

reported so far in the literature (minimum cost of generation), and appropriate 

references for the test systems are main entries of the table.  

Table 3.1. Test systems for the economic dispatch problem 

Test 

system 
Characteristics 

Power 

Demand 

(MW) 

Minimum 

cost of 

generation
(a) 

($/h)
 

References 

3-gen VPE, NC 850 8234.0 [38, 40, 45, 50, 65-67] 

6-gen 

QCF; NC 

1263 

15275.93 [35, 65] 

QFC;TL 15446.02
(b)

 [35, 39, 65, 68] 

QFC; POZ, TL 15443.24 [35-37, 68-72] 

combination of VPE, 

PWC and QCF; 

CCCP units, RRL 

283.4 697.73 [36, 73] 

10-gen 
PWC; MF 2400 481.6 [38, 74, 75] 

VPE; MF; NC 2700 624.1273 [39, 43] 

13-gen 

VPE; no TL 1800 17938.95 
[36, 43, 44, 47-49, 66, 69, 

76, 77] 

VPE; TL; no 

constraints to units 

11 and 12 

2520 

24164.04 
[36, 37, 43, 44, 49, 72, 

76] 

VPE; no TL; the 

output of units 11 

and 12 are fixed to 

75 MW, and 60 MW, 

respectively 

24246.60 [36, 49, 67, 76] 

VPE; TL; no 

constraints to units 

11 and 12 

24540.06 [36, 77] 
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Test 

system 
Characteristics 

Power 

Demand 

(MW) 

Minimum 

cost of 

generation
(a) 

($/h)
 

References 

15-gen 

QCF; POZ; TL 

2650 

32480.91 [36, 45, 65] 

QCF; POZ; no TL 33048.33 [36, 77, 78] 

QFC; POZ; no TL; 

SR; 
32507.5 [45, 79] 

QCF; POZ; TL 2630 32393.23 [35, 36, 65, 68] 

20-gen QCF; TL 2500 62421.16 [67, 78, 80, 81] 

40-gen VPE, NC 10500 121501.14 
[36-39, 43, 44, 46, 47, 65, 

66, 69, 72, 77, 82] 

Crete 

Power 

system 

18-gen with QCF, 

TL 400 
29731.03 [36, 83] 

19-gen; TL 32015.42 [36] 

Hellenic 

power 

system 

32- CCCP units; 

LCF; TL; unit 26 has 

fixed output 

6300 227582.29 [36] 

Taiwan 

power 

40 gen; with 3 CC 

units;QCF; 
5320 - 8708 

5994532- 

11269335 
[50] 

gen: generators; LCF: linear cost function; QCF: quadratic cost function; CCF: cubic 

cost function; PWC: piecewise cost function; VPE: valve point effect considered; POZ: 

prohibited operating zones considered; RRL: ramp rate limits; CCCP: combined cycle 

co-generation plant; TL: transmission losses considered; MFQ: multiple fuels, 

quadratic; MFN: multiple fuels, nonconvex VPE; NC: no complexity (no TL, no POZ, 

no RRL). Notes: (a) refers to the best solution reported so far in the literature reviewed 

in this paper; (b) balance mismatch >0.6 MW. 
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3.3 Analytical Methods 

Many electric utilities prefer analytical optimization methods to determine the 

optimal solutions for diverse practical planning problems, due to their deterministic 

approach they guarantee to find the optimum solution (if it exists) in a finite number of 

operations.  The optimum solution here shall be read as a local optimum approximate 

solution. These analytical methods usually refer to approximate solutions obtained by 

variations of linear programming techniques or quadratic, gradient based methods.  

 A simple example 

In essence, the most common industry approach is the simplified ED formulation 

which reads as follows. Having a portfolio of NG generating units committed for power 

production, and each one is characterized by a fuel cost function of the form (3.1) or 

(3.2), determine the best set of Pi while respecting the balance between generation and 

demand (3.3). Some extended formulations may also include transmission losses into 

the balance constraint (3.4), the generator limits (3.5). The transmission losses are 

generally approximated with a linear or with a quadratic function like in (3.6).  

   ∑ (            
 ) 

  

   
(   ) (3.1) 

    
    
   

          (     ) (3.2) 

   ∑     
  

   
 (3.3) 
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         ∑     
  

   
 (3.4) 

  
         

    (  ) (3.5) 

      ∑ ∑         ∑          
  

   

  

   

  

   
 (  ) (3.6) 

 

The solution for this simplified approach is as follows: starting from the cost 

function of each generator (3.1), determine the incremental cost of each generator (3.2). 

Thus, having a simple power system with two committed generating units to cove a 

load demand of 500 MW determine which is the optimal way of loading each unit.  

Each unit is characterized by a production cost OC1 and OC2, respectively.  

                   
  (   ) (3.7) 

                   
  (   ) (3.8) 

Therefore we have a minimization problem with one equality constraint. Using the 

Lagrange multiplier method, we first redefine the problem as an unconstrained 

optimization by forming the Lagrangean: 

 (   )  ∑   

 

   

(  )   (   ∑  

 

   

) 

 The necessary conditions for a minimum are: 

    (  )

   
                 (3.9) 
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    (  )

   
                 (3.10) 

            (3.11) 

Therefore, we need to solve a system of three linear equations (3.9), (3.10) and 

(3.11), which in a matrix form looks like, 

[
       
       
     

] [
  
  
 
]  [

   
   
   

] (3.12) 

 

The solution of this system is, 

[
  
  
 
]  [

        
        
          

] (3.13) 

When to the previous example we add another constraint, such as the generation 

limits, the optimal solution can be found based on the same equal incremental cost of 

each generating unit, through an iterative process which minimizes the error between 

the sum of generation output of the entire set of the committed units and the load 

demand, while checking the constraint of generator limits at each iteration. If the limits 

are exceeded, freeze any generator beyond its upper limit to its Pi
max

, and any generator 

below its lower limit to Pi
min

; extract these values from the total load and solve again 

the balance of the remaining set of generators, always checking for new limits. Ire
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a. Linear Programming Methods 

One of the most widespread optimization methods in practical planning 

applications is linear programming. The use of piecewise linear cost curves for the 

formulation of the operational cost function results in a separate variable for each 

segment in the curve. Linear programming methods are attractive to operation 

researchers, because they include the system constraints in their formulation and they 

have no convergence problems as they solve the problem in its primal form. Three 

major linear programming based methods were introduced for the solution of the ED 

problem in the last twenty years: a) Simplex method [64, 84], b) Interior point methods 

[54, 85-93] and c) Mixed integer linear programming [8, 94]. Moreover, Lagrangean 

approaches to deal with constraints may be part of the solution strategy [64, 84, 91]. 

Simplex linear optimization methods deal with searching a set of feasible solutions 

placed on the vertex of the feasible convex polyhedron and then walking along edges of 

the polyhedron to vertices with successively better values of the objective function until 

the optimum is reached. Interior point based methods, contrary to the Simplex method, 

reach an optimal solution by traversing the interior of the feasible region, and have 

proved to be more efficient in practice, especially for large systems. Further to the 

efficiency in terms of computational effort, interior point methods do not need a 

feasible starting point [89]. 

The application of linear programming techniques was based on either the 

transformation of the quadratic approximation of the generation cost into piecewise 

linear format, or the use of the incremental cost, ignoring a number of constraints in the 
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first stage and correcting the solution in further stages if the constraints considered were 

violated [85, 88]. Decomposition of the whole problem into subproblems with the use 

of the Benders or Dantzig-Wolfe decomposition principle [85, 91, 95] may be used to 

simplify the solution procedure.  

In [92] a nonlinear primal-dual interior point method is applied to solve the 

extended optimal power flow model of a pool-bilateral electricity market.  The 

objective function of the dispatch model in deregulated markets comprises a linear 

approximation of the generation cost, a linear approximation of the transmission losses 

and a linear approximation of a penalty cost for the deviation of the vector of the 

contracted power from the proposed values. 

In [96], contingency constraints (reserve constraints) are taken into account, in 

addition to the standard economic dispatch formulation, in order to incorporate the 

impact of an outage or loss of generation of any single generating unit. The Simplex 

method is used to solve the linear formulation of the ED problem with implicit lower 

and upper generation constraints. 

b. Quadratic Programming/Newton Based Methods 

One of the most popular methods to solve the ED problem is the Lagrange 

multipliers (LM) method, also called ―Lambda iteration method‖ [2, 5, 8, 27]. This 

algorithm is based on quadratic programming approaches (gradient methods) and a 

Lagrange multipliers aggregation procedure to reduce constrained optimization 

problems to an unconstrained form. Kuhn-Tucker optimality conditions must be 
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applicable [2]. The method requires existence of first derivatives of the objective 

function as well as linear characteristics of the constraints. An analytical approach over 

the LM method is given in [97]. Using the duality theory, the authors prove that, for a 

set of assumptions, Kuhn-Tucker conditions might be omitted and no iterative 

algorithm is needed to determine the optimal primal and dual solution of the problem, 

but only 2n function evaluations are needed (where n is the number of unknown 

variables in the optimization problem). In [98] a graphical representation of the LM 

method is presented. In [99] the Lagrange multipliers method is extended for prohibited 

operating zones constraints, using penalty factors to discourage operation in the 

forbidden zone. In [100], the LM method was applied to solve an environmental 

constrained ED problem with quadratic approximation of the emissions function.  

Similar algorithms to the LM method are quadratic interior point approaches [101], 

and Newton based (quadratic programming) search methods applied to solve the 

generic ED problem [25-27, 33, 41, 102-106]. In [105], the transmission wheeling cost 

is included into the objective function of the GENCO. A decomposition technique is 

applied to determine individual wheeling current from the line flow, and to determine 

the utilization factors for each transaction in every transmission facility of the power 

system, using a power flow model. Then, the estimated wheeling cost is combined with 

the fuel cost to form the objective function of the ED model. Moreover, the fuel cost 

was represented in this case as a cubic function.  

Cogeneration dispatch using two aggregated LM methods is presented in [107]. In 

a first approximation, ι is set to a large value such that all units operate at their 
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maximum capacity, and then the output power of the units with the highest incremental 

cost is progressively reduced until balance between generation and load is met 

concomitant with a heat dispatch procedure. In [108], a direct search gradient based 

method is proposed to solve the generic and multi-area ED with transmission capacity 

constraints. The direction of search is chosen according to the increase or decrease in 

the operation cost of independent generating units. The handling of prohibited operating 

zones in the classical LM is treated in [79]. ―Advantageous‖ sub-regions in the solution 

space are defined for prohibited zone violations to trigger the solution to a feasible 

point. The authors use a cost penalty, similar to that in [99] to define the ―advantageous 

spaces‖. 

c. Dynamic Programming 

In power engineering optimization, dynamic programming (DP) was mainly used 

for discrete optimization problems such as unit commitment. However, there have been 

attempts to solve the ED problem with piecewise linear cost of generation [2, 5, 8]. The 

dynamic programming solution to the ED problem is characterized by stages, where 

each generating unit is associated with a stage. It is assumed that each generator cost 

function and the load demand are expressed as discrete MW steps with a constant step 

size. The main advantage of DP compared to the LM method is that no restrictions on 

the generation cost function are needed [53]. In [109] DP is used to determine the 

optimal generation allocation through a hydropower plant mix, with non-convex flow 

slope characteristics. A network flow approach is used in [110] to solve the multi-area 
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economic dispatch problem with a significant number of constraints such as spinning 

reserve, emission constraints, transmission losses, and tie-line limitations.  

d. Taguchi Method (TM)  

The Taguchi method is a statistical theory-based optimization method, similar to an 

experimental design approach, which involves a step by step search in a subset of all 

possible combinations of parameter values. Here, parameters refer to the unknown 

variables of the objective function (e.g., the vector of the power outputs of the 

generators in the system). The subset of explored solutions is chosen such that sufficient 

information is extracted with respect to evaluation characteristics.  

To solve the ED problem with a nonconvex cost function and multiple fuels, in 

[38] it is proposed to use the Taguchi method with orthogonal arrays. The method 

consists of choosing, at first, a number of discrete values (between the generation 

limits) selected in ascending order, which are called ―levels‖. Then, an orthogonal array 

is formed as a set of combinations of different levels that the generation output may 

have, such that two rules are respected: a) each output level of each generator appears 

the same number of times in every column of the array, and b) each combination of 

generators between any two columns appears the same number of times. Therefore, for 

a given number of levels (q), and number of generators (n), the number of tests 

(combinations) to be explored in the orthogonal array is much smaller than the total 

number of combinations (q
n
) when the array formation rules are adopted. After each 

array evaluation (cycle test) a minimum generation cost is found, and a ―trend 
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parameter‖ which counts the contribution of each level in the evaluation process of the 

cost function is calculated. According to the ―trend parameter‖, new levels are chosen 

for the next array formation. The algorithm procedure is repeated until a satisfactory 

balance mismatch between load and generation is achieved.  

3.4 Computational Intelligence Methods 

Computational intelligence approaches are increasingly being used for the solution 

of highly nonconvex global optimization practical problems [36, 45, 111-113]. 

Computational intelligence based algorithms have the advantage (if successful) of 

finding the near global optimum solution much faster than many analytical based 

methods, and they do not require that the objective functions and the constraints be 

differentiable and continuous. However, their inability to guarantee convergence [112] 

causes skepticism for some real life system applications.  

A number of different classes of computational intelligence algorithms have been 

proposed to solve the generic quadratic and the non-convex ED problems in both 

regulated and deregulated energy markets. Such methodologies include: Tabu Search, 

Simulated Annealing, Artificial Neural Networks, Genetic Algorithms, Evolution 

Strategies, and Swarm Intelligence Optimization. A brief description of the general 

approaches related to these optimization techniques is provided below. Ire
ne

 C
ior

ne
i



 

 

52 

 

a. Tabu Search 

The Tabu search algorithm is in fact a multiple-local search method that uses 

memory (called ―Tabu list‖) to avoid reevaluation of visited solutions: once a potential 

solution has been determined, it is marked as "Tabu" so that the algorithm does not visit 

that possibility again [45]. In [114] an improved Tabu search algorithm (ITS) with 

flexible memory system is proposed to solve the ED problem with nonconvex 

generation cost. In order to avoid the entrapment in a local minimum an ―ideal of 

distance" to the fitness is calculated such that to accelerate the algorithm convergence. 

The authors apply a parallel search technique to reduce the dependence of the 

convergence rate on the initial condition. A parallel Tabu search (PTS) algorithm, 

implemented on a system with 32 processors is proposed in [115]. The solution to the 

ED (quadratic and nonconvex) formulation with ramp rate limits uses a neighborhood 

decomposition technique to split the search space into subspaces (―subneighborhoods‖) 

and a competitive selection subroutine to update the best solution achieved by search 

subspaces.  

b. Simulated Annealing 

Simulated annealing (SA) is a powerful optimization method especially used in 

combinatorial problems. It is inspired from the physical process of successively 

overheating and cooling a solid to increase its strength. In optimization, better solutions 

can be obtained following a step by step transitioning from an equilibrium state to 

another until the minimum ―energy‖ of the system is reached. In [116] the simulated 
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annealing method is applied to solve the generic ED problem with a quadratic cost 

function. Initially the losses are ignored, and later they are incorporated in the algorithm 

using the ―B-loss‖ formula. In [117] the method is used to determine the optimal 

generation dispatch of a generation mix of wind and thermal power plants. In [84], SA 

is used to determine the optimal trajectory of the generation dispatch considering the 

thermal stress constraints of the generating units.  

c. Artificial Neural Networks 

Artificial neural networks (ANNs) are computational models which simulate 

biological neural networks in both structure and functionality. Generally, ANNs are 

adaptive systems that capture the dynamic changes of the system they try to model, and 

they evolve to the target in a ―learning‖ manner. ANN programming is more common 

for system control, forecasting applications, and pattern recognition applications. 

However, ANNs have also been used to solve combinatorial and continuous 

optimization problems such as the ED problem [74, 75, 80, 81, 118-120]. In [55] a 

redispatch approach based on the Hopfield neural network is proposed to solve the 

dynamic economic dispatch (DED) problem. The solution methodology is divided into 

two stages: a lambda-iteration method is first used to obtain a first approximation of the 

static ED problem and then, a Hopfield neural network redispatch technique is applied 

for the DED problem. In [42] ANNs are applied to the real-time optimal generation 

dispatch of thermal units, considering environmental constraints, operational 

requirements and network losses. The algorithm uses penalty factors derived from a 

Newton-Raphson power flow subroutine to incorporate system load changes.  
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d. Genetic Algorithms 

Genetic algorithms (GA) are a special class of evolutionary optimization 

approaches (algorithms which imitate the principles of natural evolution based on 

survival). The main idea behind genetic algorithms is to improve a set of candidate 

solutions for a problem by using several genetic operators inspired from genetic real life 

evolution mechanisms. Genetic operators are the variation mechanisms that generate 

new candidate solutions, similar to the parent solutions (solutions from a previous 

generation), but including some differences. Usually, the genetic operators used are 

selection, crossover, and mutation. The selection operator makes sure that the best 

member from a population survives. Crossover generates two new individuals 

(offspring) from two parent solutions, based on certain rules such as mixing them with a 

given probability. Mutation takes an individual and randomly changes a part of it with a 

certain probability [121]. The representation of a solution in a GA is typically based on 

a list of discrete [72] tokens, often bits (genome), but it can be extended to graphs, lists, 

or real-valued vectors. The crossover operator plays a significant role in GAs.  

Different approaches to solve both the quadratic and the nonconvex ED problem 

using GA based algorithms have been proposed [16, 40, 43, 82, 83, 122-125]. In [16] a 

niched Pareto genetic algorithm (NPGA) is proposed for the solution of a 

multiobjective environmental/economic dispatch (EED) problem. The method uses a 

hierarchical clustering technique in order to provide the decision maker with a simple 

and manageable architecture of the Pareto-optimal non-dominated solutions of the 

multiobjective EED problem. In [18] a fuzzy logic controller is proposed to adaptively 
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adjust the crossover probability and mutation rate during the GA optimization process. 

In [40] two different GA binary encoding techniques are proposed and compared to 

solve the ED problem with valve point effect.  GA is used in [43] to solve the practical 

ED problem with valve point effect and multiple fuels. The proposed algorithm uses an 

evolutionary direction operator called ―multiplier updating‖ to deal with the equality 

and inequality constraints and a migration operator to make the search more effective. 

In [83] a real-coded GA with varying operator probabilities is used to solve the generic 

convex ED problem with network constraints. A floating point number representation is 

used to overcome the decision of how many bits should be used for encoding in the case 

of binary-GA applications. In [126] a GA technique is used to determine the optimum 

integration of renewable technologies in power systems. 

e. Evolution Strategies 

Evolution or evolutionary (both terms appear in the literature) strategies (ESs) were 

first developed in Germany in the 60s and were focused on solving complex, 

continuous optimization problems; later, they were extended to discrete optimization 

[127]. Evolution strategies are part of the same class of optimization approaches as 

GAs, called the Evolutionary Algorithms (EA) or evolutionary computation (EC) class. 

The main difference between GAs and ESs is in the representation of the solution, the 

type of selection, and the mutation scheme. ESs use the representation that best fits the 

problem domain (most often real vectors). All n parents are mutated (typically no 

crossover) to create n new children. Therefore, in the current generation, a total of 2n 

candidates are set from which only the n most fit candidates are kept, where n is the 

Ire
ne

 C
ior

ne
i



 

 

56 

 

number of individuals in a population of candidate solutions. Mutation schemes can 

also be adaptive [128]. 

Different improvements and adaptations of the generic evolution strategy were 

proposed to solve the classical single- or multi-objective ED, or the practical nonconvex 

ED problem [15, 28, 50, 66, 71-73, 76, 77, 129-131]. 

In [28] the environmental economic dispatch (EED) problem was solved using an 

ES with a Gaussian mutation, stochastic tournament selection scheme, as well as an 

acceleration technique for faster convergence and robustness of the search. The 

acceleration technique is based on examining the loading of all units in the sense that 

the units which are found to be close to one of their extreme operating limits are shifted 

to the corresponding limit. Pereira-Neto et al. [72] proposed an ES for the solution of 

the economic dispatch problem with noncontinuous and nonconvex cost functions. The 

economic dispatch problem takes into account nonlinear generator characteristics such 

as ramp-rate limits and prohibited operating zones in the power system operation. 

Abido [15] uses ES to solve a multi-objective environmental/economic electric power 

dispatch (EED) problem. His algorithm, entitled Pareto-based Multi-Objective 

Evolutionary Algorithm (MOEA) gives the solution in the form of the pareto-optimal 

front. A feasibility check procedure has been superimposed on MOEA to restrict the 

search to the feasible region of the problem space.  

In [130] an ES which uses both recombination (crossover) and mutation operators 

to create offspring is proposed to solve  the ED problem with a non-convex valve point 

effect generation cost function, prohibited operating zones, ramp rate limits, and 
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transmission losses considered. In [73] an EP technique is proposed for the solution of 

the optimal power flow (OPF) problem with non-smooth fuel functions, like quadratic, 

piece-wise, valve point loading, and combined cycle cogeneration plants. To avoid 

premature convergence, the authors propose an adaptive mutation, which non-linearly 

changes with respect to the number of generations. In [76] a ―real-parameter quantum 

evolutionary algorithm‖ is proposed to solve the DED problem. Each solution string is 

represented as a two dimensional floating point array with each element representing 

the output of one generating unit, in a particular time interval. The real numbers are 

scaled to be between 0 and 1, as in quantum computing representation (q-bits), with 0 

representing the minimum generation limit and 1 the maximum generation limit for the 

corresponding generator. In [77] an EP approach, entitled self-tuning hybrid differential 

evolution (self-tuning HDE), is used to determine the solution of the ED problem with 

valve point effect, ramp rate limits, and prohibited operating zones. The self-tuning 

HDE uses the concept of the 1/5 success rule of evolution strategies (ESs) to accelerate 

the search for the global optimum.  Another modified differential evolution (MDE) 

approach is proposed in [131] to solve the dynamic economic dispatch (DED) problem 

with valve-point effects taken into account. In contrast to the penalty function method, a 

constraints-handling method is used to guide the solution search to the feasible region 

quickly.  

In [132] a comparison of various evolutionary algorithms (EA) is given, such as 

real coded GA, particle swarm optimization (PSO) and differential evolution (DE), 

which are used to solve the ED problem valve-point effect and multiple fuel options 
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(with both quadratic and non-smooth approximations). A ―parameter-less constraint-

handling scheme‖ is proposed, instead of the classical penalty aggregation fitness 

function used in ESs methods to handle constraints. The constraint-handling scheme 

consists of using different comparisons between feasible and infeasible solutions. 

Precisely, if the solutions are feasible (have zero constraint violation), their comparison 

measure is their value on the objective function; otherwise, if the comparison is 

between infeasible solutions then they are evaluated according to their constraint 

violations alone. Hence, the objective function and the constraint violations are not 

combined in creating a new solution and thus, the use of weights for an aggregated 

single objective function is avoided.   

f. Swarm Intelligence Optimization 

Swarm intelligence optimization refers to optimization models based on the 

―collective‖ or social behavior in sharing information between individuals within a 

group for completing tasks [133]. Such models include ant colony optimization (ACO), 

particle swarm optimization (PSO), bird flocking, animal herding, or fish schooling 

[134]. In this section reference will be made only to the first two approaches. 

The behavior of ants for finding the shortest path to the food was first modeled for 

optimization purposes in [135]. In this algorithm (the ACO algorithm), initially each ant 

searches randomly different paths towards the food. Later on, each artificial ant 

constructs one solution according to the amount of pheromone (information) deposited 

on the ground by other members of the colony who previously followed the same path. 
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Therefore, a set of artificial ants cooperate in the solution of a problem by exchanging 

information via pheromone deposited along the edges of a graph. Another type of ant 

search developed for continuous optimization problems, entitled API, was proposed in 

[136]. 

Ant colony optimization is more common for discrete optimization problems than 

for continuous ones [67]. However, the classical or modified ACO has been applied to 

solve continuous optimization problems such as the ED problem [67, 137, 138]. In [67] 

a chaotic ant swarm optimization (CASO) is used for the solution of the classical ED 

with transmission losses and generation limits. The search behavior of the ant colony is 

initially ―chaotic‖, and more organized as the search evolves (the chaotic behavior of 

the individual decreases gradually, and is taken into account using an ―organizational 

variable‖).  

In the PSO case, the swarm behavior can be modeled with simple information rules 

based on two important operators: cognitive operator (―individual velocity‖), which 

express the own experience of each individual, and social operator (―global velocity‖), 

which express the entire community experience [36, 113]. An illustrative vectorial 

presentation of the search mechanism in particle swarm optimization is given in Fig. 3.2 

(adapted from [46]), to understand how each particle evolves during the search. The 

equations that describe the transitioning scheme of each particle in the search 

mechanism are, 

  
       

         (      
    

 )         (      
    

 ) (3.14) 
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    (3.15) 

 

where, Vi
k
 is the velocity of individual i in iteration k; σ, c1, and c2 are weight 

parameters; Xi
k
 is the position of individual i in iteration k; Ibesti

k
 and Gbesti

k
  store  the 

best positions (solutions) of individual i and of the group respectively, until iteration k; 

Xi
k+1

 is the next position occupied by individual i after modifying its velocity. 

 

Figure 3.2. The search mechanism of particle swarm optimization [46] 

 

Park et al. [46] used the particle swarm optimization (PSO) technique to solve the 

practical ED problem with nonconvex cost functions and multiple fuels. A constraint 

treatment mechanism is used for both the initialization and updating processes, such 

that always feasible candidate solutions are examined during the search procedure. 

Also, a search-space reduction strategy is adopted to accelerate the optimization process 

when the search is not improving after a predefined search period. The search space is 

Ire
ne

 C
ior

ne
i



 

 

61 

 

―dynamically adjusted‖ (increased or reduced) according to the distance between the 

generating boundaries of unit i and the global position of the swarm, up to the current 

iteration. 

In [65], a self-organizing hierarchical particle swarm optimization (SOH_PSO) is 

proposed for the solution of the practical ED problem. Time-varying acceleration 

coefficients are included in the classical PSO mechanism to avoid premature 

convergence to sub-optimum solutions.  

In [48] quantum mechanics and Monte Carlo approaches are used to derive the 

transitioning equations for the movement of particles in the solution space. Equations 

(3.14) and (3.15) remain the same. However, Ibest and Gbest are calculated using 

Schrödinger’s equation from quantum mechanics for the motion of microscopic 

particles, which is based on the harmonic oscillator principle. 

In [139], the classical quadratic ED problem with prohibited operating zones and 

ramp rate limits is solved using eight combinations of PSO search. The classical 

equations of the PSO ((3.14) and (3.15)) are transfigured in that the two random 

functions rand1 and rand2 are now combinations of Gaussian probability distribution 

and/or chaotic sequences functions. In this context, [139] proposes improved PSO 

approaches for solving EDPs that take into account nonlinear generator features such as 

ramp-rate limits and prohibited operating zones in the power system operation.  Ire
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3.5 Hybrid Methods 

Hybrid methods are the merger of two or more optimization algorithms to improve 

the overall performance of a single optimization technique [13, 20, 32, 33, 44, 45, 68-

70, 78, 140-145]. The main goal of developing hybrid methods is to achieve an 

improvement in terms of complexity and computational effort reduction, on one hand, 

and to increase the accuracy and robustness of the solution, on the other hand.  

Thus, in [37], simulated annealing and particle swarm optimization techniques 

form the hybrid SA-PSO model, which solves the practical ED problem with valve 

point effect, ramp rate limits, and prohibited operating zones. The particle swarm 

optimization is the main search algorithm and SA is used as a ―judgment operator‖ for 

the velocity update process. Thus, if the fitness value of the next value (position) of 

each particle calculated using (3.14) and (3.15) is better than the fitness of the previous 

position, then the particle moves to this new position; otherwise, an SA probabilistic 

criterion is used to decide on whether to allow this movement. In [44] a combination of 

a genetic algorithm (GA) with a sequential quadratic programming (SQP) technique is 

proposed for the solution of the DED problem with valve-point effects considered. GA 

is the main search algorithm, and SQP is used as a ―local optimizer to fine-tune the 

region explored by GA‖. For the SQP, the authors use an approximation, differentiable, 

entropy-type function instead of the fuel cost defined in (3.10), in order to maintain the 

valve point effect. More specifically, the hybrid method uses SQP as a fourth operator 

to generate offspring in the GA process, together with the common selection, crossover, 

and mutation. In [20], a fuzzy logic strategy is combined with PSO to solve the multi-
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objective EED problem. The proposed method is entitled fuzzified multi-objective 

particle swarm optimization (FMOPSO). In [13] a hybrid optimization method is 

presented that combines the PSO with chance-constrained programming to solve the 

generic ED problem of cascaded hydroelectric plants. In [142] an improved differential 

evolution (IDE) is combined with Shor's r-algorithm to solve the DED problem with 

valve-point effects taken into account. The evolution algorithm is used as a based level 

search (conducts the direction towards the optimal global region), and the Shor's r-

algorithm as local search (fine tuning) to reach the optimal solution. In [68] ant colony 

API search and GA are combined to form a hybrid GAAPI model which solves the 

practical ED problem. Here API is the main search mechanism, keeping the ―hill 

climbing behavior‖ of constantly improving the solution, while the GA is used to deal 

with the diversity of solutions explored. In [144] a fuzzy clustering-based particle 

swarm optimization (FCPSO) algorithm has been proposed to solve the EED problem. 

An external repository is used to keep a record of the nondominated particles found 

along the search process, and the fuzzy clustering technique to manage the size of this 

repository (eliminates from time to time similar solutions, such that the dimension of 

the repository is kept between the predefined limits). 

 

3.6 Chapter summary 

This chapter is an attempt to keep track of the classical and modern methodologies 

related to the economic dispatch problem. Even though many and excellent advances 
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have been made in the classical formulation of the problem using analytical based 

optimization methods, the conclusion of the majority of the literature surveyed is that, 

with a few exceptions, these methods suffer from certain drawbacks. Such drawbacks 

include: (i) the non-detailed formulation of the problem due to the necessary 

assumptions made, leading to limitations in the modelling of real-world, large scale 

power systems; (ii) poor convergence characteristics and slow execution when a large 

number of variables is considered; (iii) getting stuck in local optima. However, a 

number of advantages may make them preferred, especially in the industry community, 

such as that they have been proven to provide stable approximate solutions (mature 

mathematical programming techniques where optimality is rigorously demonstrated) 

and that they may take advantage of existing sparsity techniques to handle large-scale 

systems.   

 Nonlinearities due to generation characteristics (modern generators with multiple 

valves, combined cycle units), nonlinearities in equality and inequality constraints, and 

increased unpredictability due to large renewable generation, call for optimization 

methods that can provide satisfactory results in terms of computational effort, accuracy, 

and robustness of the solution. The competition in energy generation, together with the 

environmental concerns and their governmental regulations, complicate the economic 

dispatch problem even further. In the near future, combined energy carriers such as 

electricity, gas, heat, and hydrogen production may ask for an integrated solution in 

terms of dispatch of resources. Computational intelligence based methods can cope with 

these nonlinearities and discontinuities in the solution space, giving good approximate 
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solution in reasonable computational time regardless of the dimension of the system. 

However, one of the main drawbacks of computational intelligence methods is their 

sometimes lack of consistency in solution and no guarantee that the solution obtained is 

the global optimum. The above mentioned remarks are derived from the surveyed 

literature. 

The preference in using one method over another depends on the designer sense of 

optimality and the level of acceptance or definition of a ―good‖ model or solution. This 

is totally in agreement with the no free lunch theorem concept [146] which states that 

―all algorithms that search for an extremum of a cost function perform exactly the same, 

when averaged over all possible cost functions‖ [147].Different needs are to be 

addressed in the near future, with solutions accompanied by solid theoretical and test 

results, as well as tools for actual implementation of economic dispatch methodologies, 

especially considering both the demand side and the generation side uncertainties, as 

well as the benefits of smart grid technologies. A common dispatch methodology or 

standard with respect to variable renewable energy sources that penetrate the generation 

mix needs to be developed. A theoretical proof of convergence and robustness of the 

computational intelligence methods is required in order to gain the confidence of 

industry engineers. Further, the future industry application economic dispatch may 

transition from a single objective to a highly multi-objective optimization problem, 

especially considering environmental concerns and a multi-carrier energy industry. The 

impact of uncertainty in generation and the impact of market structure to the economic 

dispatch approach need a closer examination.  
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Chapter 4 

 

GAAPI: Efficient Solution for Global Continuous 

Optimization 

4.1 Introduction 

Global optimization refers to the procedure of finding approximate solutions, 

which are considered the best possible solutions, to objective functions [148]. Ideally, 

the approximation is optimal up to a small constant error, for which the solution is 

considered to be satisfactory. In general, there can be solutions that are locally optimal, 

but not globally optimal; this situation appears more frequently when the dimension of 

the problem is high and when the function has many local optima [112]. Consequently, 

global optimization problems are typically quite difficult to be solved exactly, 

especially in the context of nonlinear problems or combinatorial problems. Global 

optimization problems fall within the broader class of nonlinear programming (NLP). It 

should be noted that approximation algorithms are increasingly being used for problems 

where exact polynomial algorithms are known but are computationally expensive due to 

the dimensionality of these problems. In the last three decades, a significant research 
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effort was focused on the development of effective and efficient stochastic methods that 

could reach the nearest global optimal solution. In this class of methods, evolutionary 

computation (EC) is one of the favorite methodologies, using techniques that exploit a 

set of potential solutions (called a population) in order to detect the optimal solution 

through cooperation and competition among the individuals of the population [149]. 

These techniques often find the optima for difficult optimization problems faster than 

traditional adaptive stochastic search algorithms. The most frequently used population-

based EC methods include evolutionary strategies (ES) [149-151], genetic algorithms 

(GAs) [121, 152, 153], evolutionary programming (EP) [154], clustering methods 

[155], ant colony optimization (ACO/API) [136, 156], and particle swarm optimization 

(PSO) [157].  

One of the issues that probabilistic optimization algorithms might face in solving 

global, highly nonconvex optimization problems is premature convergence. One of the 

causes of premature convergence of evolutionary based algorithms is the lack of 

diversity. In nature, the diversity is ensured by the variety and abundance of organisms 

at a given place and time. The same principle (different type of solutions at one moment 

in the iterative search process) is used in computational intelligence for optimization 

algorithms [158].  

Another issue of probabilistic approaches in optimization is related to their lack of 

advanced search capability around the global solution. Several studies have shown that 

incorporating some knowledge about the search space can improve the search capability 
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of evolutionary algorithms (EAs) significantly [159]. In particular, the hybridization of 

EAs with local searches has proven to be very promising [160, 161]. 

The efficiency of natural ecosystems is based on the many ways of interaction 

between species and/or members of the same species, in order to reach the species goal 

or the equilibrium of the ecosystem. The algorithm proposed in this work, improves 

both the diversity and the ―hill climbing‖ consistency. This is achieved by combining 

genetic algorithms and API. The main proposed algorithm in this dissertation, named 

GAAPI, underlines the best behavior of the foraging strategy of API (downhill 

characteristics by continuously looking for a better prey) and of GAs (good spreading in 

the solution space by using its operators: selection, crossover, and mutation). 

 GAAPI has been designed to find the near global optimum solution for nonlinear, 

unconstrained and constrained problems. The main strategy of the algorithm is a 

modified API; the modifications are mentioned in the description of the algorithm in the 

following section of this chapter. Genetic algorithm operators are used in the 

information sharing process of each ant, to ensure that the trapping in local minima has 

a probability near zero.  

4.2 API + RCGA = GAAPI 

This section of the chapter describes in detail the proposed GAAPI algorithm. First, 

an introduction of the two main components of the GAAPI algorithm is provided. The 

first component, the API algorithm, is the core of the proposed method; the second 

component is the real coded genetic algorithm (RCGA) with emphasis on GA operators 
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modified such that an improved balance between exploration and exploitation in the 

search procedure is maintained. Also, the main differences between API and GAAPI 

are underlined.  

 

4.2.1 API Algorithm 

The API algorithm was inspired by the behavior of a type of ants (pachycondyla 

apicalis ants) which live in the Mexican tropical forest near the Guatemalan border. 

Colonies of these ants comprise around 20 to 100 ants. The foraging strategy of the 

pachycondyla apicalis ants can be characterized by the following description. First, 

these ants create their hunting sites which are distributed relatively uniformly within a 

radius of approximately 10 m around their nest. In this way, using a small mosaic of 

areas, the ants cover a rather large region around the nest. Second, the ants intensify 

their search around some selected sites for prey. Pachycondyla apicalis ants use a 

recruitment mechanism called tandem running, in which pairs of ants, one leading and 

one following, move toward a resource. In this foraging process, these ants use their 

memory of the visual landmark (map of the terrain encountered in their previous 

search) rather than pheromone trails (chemical signals) encountered in other ant species.  

After capturing their prey, the ants will move to a new nest via the tandem running 

recruitment mechanism, to begin a new cycle of foraging. Based on the natural behavior 

of pachycondyla apicalis ants described in [162], Monmarché et al. proposed an API 

algorithm (short for apicalis) for the solution of optimization problems [163]. Despite 
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the good performance of the algorithm, further research shows that API has poor use of 

the memory that generally characterizes ant colony systems [164].  

The nest (N) initially takes a random position in the feasible search space 

,         -, where      ,  
      

        
   - and      ,  

      
        

   - 

are the lower and upper bound vectors for each dimension, respectively, delimitating 

the feasible solution space in R
n
 (n is the dimension of the problem). Therefore,           N 

= (N1, N2, …, Nn) is the initial position of the nest in the feasible solution space. Then, 

the feasible solution space ,         - is divided into smaller solution spaces with 

different amplitudes (defined as a percentage of the search space) from the initial 

domain, where overlapping is allowed. Figure 4.1 shows how the initial solution space 

is divided into smaller search spaces. The example in Figure 4.1 is given for a two 

dimensional search space. This approach is the one adopted by Monmarché in his thesis 

when proposing the API algorithm [163].  The approach is quite similar to later 

adaptations of ACO for continuous domains proposed in [165]. 

The amplitudes for search space division change dynamically. The formula used to 

determine the search amplitude of each agent (ant) is given by, 

     (  
 

     
)      

(4.1) 

where, Aant is the radius from the nest N, delimitating the solution space ant i can cover; 

k  is the current index (iteration of the search loop) of ant i, Nants is the total number of 

search agents, and      is the age of the ant and it is a parameter that increases as ant i 

performs its tasks with time, and is computed by, 

Ire
ne

 C
ior

ne
i



 

 

72 

 

      
  
     

 (4.2) 

This parameter was inspired from the real behavior of pachycondyla apicalis ants 

described in [162]. Ti is the current number of iterations after the movement of the ant i, 

and       is the maximum number of iterations between two movements of the ant ii.  

 

Figure 4.1 Search space division according to API strategy 

 

In Figure 4.1 above,      denotes a bi-dimensional solution space; s1, s2, s3 are 

sites randomly generated around the nest N, and their maximum allowed distance from 

the nest being given by Aant. The small squares denote local explorations of the site 

(points situated at a maximum distance of Asite from the center of site s) [136]. 
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A short step-by-step description of API is given in Table 4.1. 

 

Table 4.1 API algorithm 

1. Initialization: set the algorithm parameters 

2. Generation of new nest (exploration) 

3. Exploitation 

3.1. Intensification search:  

FOR each ant 

IF the number of hunting sites in its memory is less than a predefined number  

THEN create a new site in its neighborhood and exploit the new site 

ELSEIF the previous site exploitation was successful 

THEN exploit the same site again 

ELSE exploit a probabilistically selected site (among the sites in its memory) 

End (if) 

End (for) 

3.2. Erase sites: from the memory of ants erase all sites that have been explored 

unsuccessfully more than a predefined consecutive number of times  

3.3. Information sharing: 

Choose two ants randomly and exchange information between them. The information 

exchanged is the best site in their memory at the current iteration 

3.4. Nest movement:   

IF the condition for nest movements is satisfied, go to step (4)  

ELSE, go to step (3.1) 

End (if) 

4. Termination test:  

IF the test is successful, STOP 

ELSE, empty the memory of all ants and go to step (2) 

END 

The initialization of algorithm parameters (step 1) refers to setting the number of 

ants, the number of hunting sites each ant can memorize (search), the number of times 

one ant accepts to go back to an unsuccessful site (a site where the solution was not 
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improved compared to the previous search in the same site), and to the maximum 

number of nest movements. The nest is moved in a new position only if at least one ant 

found a better solution than the current position of the nest or if the number of 

unsuccessful search cycles (at the end of step 3 the solution is not improved compared 

to the current nest position) reached a predefined number. The algorithm stops when 

either the total number of nest movements was reached, or the number of unsuccessful 

search cycles reached the limit. 

4.2.2 RCGA Algorithm 

The real-coded genetic algorithm (RCGA) is inspired from the float representation 

of the evolutionary strategy approach. Real-coded genetic algorithms work with real 

number representation, therefore there is no other structure of the chromosomes, but 

floating vectors whose size is the number of variables of the optimization problem to be 

solved. This form of GA has the advantage of eliminating coding and decoding 

procedures needed in the binary representation of GA, thus using real-value object 

representation. For most applications of GAs in constrained optimization problems, the 

real coding is used to represent a solution to a given problem. This is one of the reasons 

that it has been adopted for hybridization with API in this work.  

Genetic algorithms start searching the solution space by initializing a population of 

random candidates for the solution. Every individual in the population undergoes 

genetic evolution through crossover and mutation. The selection procedure is conducted 

based on the fitness of each individual. By using elitist strategy, the best individual in 
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each generation is ensured to be passed to the next generation. The elitist selection 

operator creates a new population by selecting individuals from the old populations, 

biased towards the best individuals. The chromosomes, which produce the best optimal 

fitness, are selected for the next generations. 

 Crossover is the main genetic operator, which swaps chromosome parts between 

individuals. Crossover is not performed on every pair of individuals, its frequency being 

controlled by a crossover probability (Pc). This probability should have a large value for 

a higher chance of creating offspring with genome appropriate to the parents. The blend 

crossover (denoted as BLX-alpha) is the operator adopted in this work, due to its 

interesting property: the location of the child solution depends on the difference in the 

parent solutions. In other words, if the difference between the parent solutions is small, 

the difference between the child and parent solutions is also small. This property is 

essential for a search algorithm to exhibit self-adaptation. Thus, the BLX-alpha 

proceeds by blending two float vectors (x
t
, y

t
) using a parameter   ,   -, where t 

denotes the index of the generation. The resulting children (x
t+1

, y
t+1

) are equal to 

  
    (    )  

      
 , and to   

        
  (    )  

 , respectively. 

The next operator is mutation and its action is to change a random part of the string 

representing the individual. Mutation probability should be quite low, relative to the 

crossover probability, so that only a few elements in the solution vector undergo the 

mutation process. If the probability of mutation is high, then the offspring may lose too 

many of the characteristics of the parents and may lead to divergence in the solution. 

Uniform mutation was adopted in this work. The algorithm is repeated for several 
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generations until one of the individuals of the population converges to an optimal value 

(until the weighted average change in the fitness function value over all generations is 

less than a threshold/tolerance) or the required number of generations is reached. A 

step-by-step description of the RCGA is given below. 

 

Table 4.2 RCGA algorithm 

1. Initialize the population: 

SInit=(s1; s2; …; sPopSize)=(x
(1)

; x
(2)

; … ; x
(PopSize)

), where  ( )      (         )
( )

, and k=1, …, 

PopSize 

2. Determine the fitness score of the population and select parents according to their fitness score 

(the individuals with the highest fitness are selected as parents): ζ(sk)= G(f(sk)) 

3. Variance assignment: 

3.1. Apply blend crossover, with probability Pc: sk = sk+m  

3.2. Apply mutation operator, with probability Pm: sk+m,j = Sk,j + N(0, βj*ζ(sk) + zj) , j = 1,..., k 

4. Determine the  fitness score of each variance:  

Each variance si+m is assigned a fitness score ζ(sk+m) = G(f(sk+m)). 

5. Rank the solution in descending order of ζ(sk)  

6. Repeat: Go to step 3 until an acceptable solution has been found or the available execution time is 

exhausted. 

 

In Table 4.2, 

 PopSize is the population size at the current iteration, sk 
 
is the individual k of 

the population, with k = 1,..., PopSize.  Unif is a uniform distribution between in 

the lower and the upper bounds of each i dimension of individual k as presented 

in (4.4), and m is the number of potential parents (which is less or equal to the 

population size); 

Ire
ne

 C
ior

ne
i



 

 

77 

 

 ζ(sk) from item 2 above is the fitness score of the individual sk, G denotes the 

fitness score function, and f  is the real fitness or optimization function. The 

fitness score function adopted in this paper is the inverse of the fitness function 

to be optimized. In case of minimization problems, the individual is considered 

to be the most fitted if it has the smallest value of the optimization function. In 

case of maximization problems the fitness score is given by the fitness function; 

 Sk,j  from item 3 above is the element j of the individual k, N(μ, ζ
2
) is the 

Gaussian random variate with mean κ and standard deviation ζ; βj  is a constant 

of proportionality to scale ζ(sk), and zj  is the offset that guarantees the minimum 

amount of variance. 

The equation from item 3.1 above (sk=sk+m), shall be read as follows: after 

crossover, a new individual is formed (sk+m), which is added at the end of the current 

population of parents (whose dimension is m). If a randomly generated number is 

higher than the probability of crossover (Pc) of the k
th

 individual in the current 

population, then the newly formed individual (sk+m) replaces the k
th

 individual in the 

next generation. The same applies to item 3.2, in which the mutation operator is applied 

with a probability of mutation Pm to each gene j of each individual k. 

4.2.3 GAAPI Algorithm 

To eliminate the shortcomings and the insufficient robustness of the global search 

ability of the API algorithm, a GAAPI algorithm that incorporates some favourable 

features of GA and API algorithms has been developed. The idea in GAAPI is to keep 

the algorithm focused towards continuous improvement of the solution, while avoiding 

getting trapped in local optima. Therefore, the API algorithm was intended to be the 

core of the GAAPI (keeping the search targeted towards improvement in the solution) 
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while RCGA was intended to provide the escape mechanism from local optima when 

API is trapped. Thus, when API is at the search level of sites (the lowest search level) 

and continuously improves the solution, RCGA is in a passive mode. In this passive 

mode, the population of RCGA is formed by all the best solutions generated by API at 

the ant level only (there are no sites to be forgotten). When API is slow in improving 

the solution (there are sites to be forgotten due to failure in improving the solution), 

RGCA switches to an active role. This time, its population uses the information of 

forgotten sites as well (the population is more heterogeneous than in the former case), 

and thus the solution generated by the RCGA has more chances to be far from the local 

optimum in which the API was trapped.  

The key modifications in API to form the new GAAPI algorithm are summarized 

below. 

 1. Generation of New Nest: After initialization, only the best solution found 

since the last nest move has the opportunity to be selected as a new nest to start the next 

iteration. The ―hill climb‖ property is not very strong in this case, so the trapping in 

local minima is avoided. 

 2.  Exploitation with API: Initially, each ant checks its memory. If the number 

of hunting sites in its memory is less than a predefined number, it will generate a new 

site in the small neighborhood of the center of its current hunting site, save it to its 

memory, and use it as the next hunting site. Otherwise, one of the sites in its memory is 

selected as the hunting site. The ant then performs a local search around the 

neighborhood of this hunting site. If this local exploitation is successful, the ant will 
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repeat its exploration around the site until an unsuccessful search occurs; otherwise (if 

the previous exploration was unsuccessful), the ant will select an alternative site among 

its memorized sites. This process will be repeated until a termination criterion is 

reached. The termination criterion used in this phase is that the procedure will stop 

automatically once the number of successive unsuccessful explorations reaches a 

predefined value, or there is no improvement after a number of iterations. A schematic 

representation of the search mechanism of API is given in Figure 4.2; where, ns 

represents the counter for the number of sites memorized by each ant; e(ns) is the 

counter for consecutive failure in site search; Ns is the total number of sites one ant can 

memorize; popRCGA is the counter for the number of individuals added into the 

population of the RCGA algorithm; P is the predefined number of allowed consecutive 

search failures in one site before it is deleted from the memory of the ant.  

2.1. Information sharing with RCGA: In order to keep diversity in the solution 

space, information sharing is performed using a simple RCGA method. A random site 

is chosen in the memory of a randomly chosen ant, and it is replaced by the new RCGA 

solution. This can be seen as a form of communication. The RCGA procedure involves 

a population formed by the currently best hunting sites in the memory of all ants as well 

as the forgotten (erased) sites. The best solution obtained after one set of GA operations 

(selection, crossover, mutation), replaces the chosen site in the memory of the selected 

ants. This technique is applied before moving the nest to the best position so far. The 

RCGA contains the forgotten sites in order to keep diversity in the population. The 

RCGA operators are set as follows: Blend crossover operator (BLX-α) [121] with a 

Ire
ne

 C
ior

ne
i



 

 

80 

 

probability of 0.3, and a value of α set to 0.366 [30]; a uniform mutation with a 

mutation probability set to 0.35; Elitism: the two best individuals are retained with no 

modifications in the population of the next generation, such that the strongest genes up 

to this point are retained.  

 

Figure 4.2 API search mechanism as used in the GAAPI algorithm 
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GAAPI has a well established balance between exploration (with API and RCGA) 

and exploitation (API). API keeps the algorithm focused towards the global optimum, 

moving the nest position (the point where exploitation starts) only in the best solution 

found so far, while RCGA helps the ants to use useful information of less explored 

regions (forgotten sites) The strong influence of API with its ―down-hill‖ (gradient 

descending) behavior may increase the speed of convergence towards the global when 

compared to other powerful global search techniques such as PSO, EAs or GAs, where 

the exploration behavior may play a strong role. Figure 4.3 shows the GAAPI algorithm 

in the form of a flowchart, demonstrating the key steps of the process. 
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Figure 4.3 GAAPI flowchart 

4.3 Proof of convergence 

The problem of optimal search begins with an object of interest (target) which the 

searcher wishes to find. The target is assumed to be located either at a point in 
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Euclidean n-space (S) or in one of a possibly infinite collection of cells j. The search 

space S is called continuous, and the search space J is called discrete. While the target’s 

position is unknown, it is assumed that there is a probability distribution, known to the 

searcher, for the target’s position at time t0. It is assumed that the target is stationary 

(does not change position in time).    

a. Definitions 

D1.  An unconstrained optimization problem (UCOP) can be formulated as a 

minimization of an objective function of the form, 

          ( )   (          )    (4.3) 

where,      defines the search space of the optimization problem, which is an n-

dimensional space bounded or not by the parametric constraints, 

         
              (4.4) 

 Thus,   ,         - 

where,      ,  
      

        
   - and      ,  

      
        

   -. 

D2.  A constrained optimization problem (COP) can be formulated as a minimization 

of an objective function of the form, 

          ( )   (          )      
(4.5) 

 

Ire
ne

 C
ior

ne
i



 

 

84 

 

where, S is as defined in (4.3) and F is the feasible region of variable x, and reads as 

  *        ( )             +; g(x) represents the vector constraints of the 

optimization problem. 

b. Assumptions 

In this part of the dissertation we are particularly interested in unconstrained 

optimization problems, and thus it is assumed that the set S is wide enough such that, 

     *   
    ( )   + (4.6) 

for a sufficiently large real number c.  

Suppose that    (  
    

      
 ) is a globally optimal solution and ε > 0 is a 

sufficiently small number. If a candidate solution  ̃  ( ̃   ̃     ̃ ) satisfies 

  ̃    
              (4.7) 

or 

  ( ̃)   (  )    (4.8) 

then,  ̃ is called an ε-optimal solution of the problem defined in (4.5). 

Further, it is assumed that the function f(x) is continuous on S, and that      is a 

nonempty and compact set for a real number c.  

For the GAAPI algorithm, S0 and c defined in (4.6) have the following 

interpretation: S0 is the solution space of all better solutions than the current nest 
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position (N) found by the ant colony during the current search, and c = f(N) is the 

evaluation of the objective function in the current position of the nest. 

Let c be a constant satisfying     , where           ( ). The set S0 defined 

in (4.6) is called a level set f(x), and can be characterized by the following mean, 

 (   )  
∫  ( )  
  

 (  )
 

(4.9) 

M(f,c) is called the mean of f(x) on the level set S0, where μ(S0) is the Lebesgue 

measure of S0 [166]. If {ck} is an arbitrary decreasing sequence with the limit f* ({ck}→ 

f*) and lower bound  f*, then M(f, ck) is a decreasing sequence with lower bound f*. 

Moreover, this limit does not depend on the choice of {ck}. 

Using the same logic as in [166] and [167] the following assumptions are set up: 

Assumption (A1):  f(x) is continuous on S0. 

Assumption (A2): There is a real number c such that S0 is a nonempty and compact 

set. 

Lemma 1: Under the assumptions (A1) and (A2), if S∩S0≠Ø and μ(S∩S0)=0, then c 

is the globally optimal value of f(x) on S and S∩S0 is the set of globally optimal 

solutions. 

Lemma 2: Under the assumptions (A1) and (A2), the following conclusions may be 

made: 

• If c>f*, then M(f,c)≤c. If c1>c2>f*, then M(f,c1)≥M(f,c2) ≥f* 
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• f* is the globally optimal function value if and only if M(f,f*)=f* 

• If         
    , then        (   

 )   (    ). 

Thus, under the assumptions (A1) and (A2) and following the Lemmas 1 and 2, the 

probability to end up in an ε-optimal solution by using the GAAPI algorithm goes to 

one as the number of iterations (nest movements) goes to infinity, in the GAAPI 

algorithm. 

4.4 Algorithm Validation   

Besides the theoretical proof of convergence of the proposed GAAPI algorithm 

under the specific assumptions, also the performance of the proposed algorithm for 

continuous a set of hard global optimization problems is empirically investigated as 

well. The investigation covers a set of twenty benchmark test functions, widely used in 

the scientific literature to test optimization algorithms. Note that most of these test 

functions have many local minima and therefore they are challenging enough for 

performance evaluation. 

a. Test Functions 

The proposed GAAPI algorithm aims to be a solution in solving a large class of 

continuous unconstrained and constrained global optimization problems. Therefore, in 

order to validate the proposed algorithm, twenty functions were chosen as benchmark 

test functions [161, 163, 166, 168, 169].  
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Table 4.3 Characteristics of the test functions 

Test 

Function 
Search space 

Global 

minimum 

Dimension 

(n) 

F1 [-500, 500]
n
 -12569.5 30 

F2 [-5.12, 5.12]
n
 0 30 

F3 [-32, 32]
n
 0 30 

F4 [-600, 600]
n
 0 30 

F5 [-50, 50]
n
 0 30 

F6 [-50, 50]
n
 0 30 

F7 [0, pi]
n
 -99.2784 100 

F8 [-pi, pi]
n
 0 100 

F9 [-5, 5]
n
 -78.3324 100 

F10 [-5, 10]
n
 0 100 

F11 [-100, 100]
n
 0 30 

F12 [-1.28, 1.28]
n
 0 30 

F13 [-10, 10]
n
 0 30 

F14 [-100, 100]
n
 0 30 

F15 [-100, 100]
n
 0 30 

F16 [-5, 5]
n
 -1.03163 2 

F17 [-5, 10]x[0, 15] 0.398 2 

F18 [-2, 2]
n
 3 2 

F19 [-5, 5]
n
 0.000308 4 

F20 [0, 1]
n
 -3.32 6 

 

The functions chosen are test functions widely used in the scientific literature to test 

global optimization algorithms and to deduce conclusions regarding their performance. 

The basic parameters of all twenty test functions are listed in Table 4.3, including the 

search space limits, their dimensions and their global minimum (which is known). The 

equations that describe the twenty benchmark test functions are given in the Appendix 

(Section A1). Table 4.4 presents few descriptive characteristics of a class of six very 

popular and highly challenging test functions among those twenty. The corresponding 

3D plots of this class of the most popular test functions are also given in the Appendix. 
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Table 4.4 Characteristics of six genertic benchmark functions 

Function 
Name of the 

function 
Description 

F2 Rastrigin 

A highly multimodal function. The location of the deep local 

minima is regularly distributed. The global minimum is in x* = 0 

and f(x*) = 0. 

F3 Ackley 

A multimodal function with deep local minima. The global 

minimum of this function is x* = 0 and f(x*) = 0. The variables of 

this function are independent. 

F4 Grienwangk 

A multi-modal function, having the global minimum in x* = 0 and 

f(x*) = 0. There is significant interaction between its variables due 

to the product term.  

F10 Rosenbrock 

A unimodal function, that has its global minimum at  

x* = (1, 1, …, 1) and f(x*) = 0. This function has many 

interactions between some of its variables.  

F11 Spherical 

A very simple unimodal function, that has its global minimum at 

x* = 0 and f(x*) = 0. This function has no interaction between its 

variables. 

F14 Quadratic 

It is a variation of the spherical function but with many 

interactions between its variables. The global minimum is located 

at x* = 0 and  f(x*) = 0. 

 

b. Parameter values for GAAPI 

The values of the parameters of GAAPI that have been used for the global 

optimization of the twenty test functions are given below.  

 The population size of RCGA is variable and depends on the current iteration 

and the number of unsuccessful sites memorized until the recruitment process. 

In the case of the initial iteration, the population has five individuals: the first 

and second best up to the first call of RCGA and three other individuals 

chosen randomly from all the sites of all ants. In the case of subsequent 
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iterations, the population composition is like the first iteration only if no 

forgotten sites appear up to that point.   

 Blend crossover operator (BLX-α) with a probability Pc = 0.3; the value of α 

was set to 0.366. 

 Uniform mutation with a mutation probability Pm = 0.35. 

 The number of ants in the API colony was set to 100. 

 The number of sites each ant can search and memorize was set to 3. 

 The maximum number of explorations of the same site was set to 30. For a number 

of functions which have many local minima very near to each other (F5, F7, F16, F17, 

and F20), the maximum number of explorations was set to 500. The number of 

consecutive unsuccessful visits at one site before being deleted from the memory of the 

ant was set to 5 (or 40 for the functions cited above). 

c. Empirical performance 

The GAAPI algorithm was implemented in MATLAB 7.a on a Pentium IV personal 

computer with a 3.6 GHz processor and it was executed in 50 independent runs for each 

test function, in order to keep the same base of comparison with other similar 

algorithms. The following qualitative indicators were recorded: the minimum function 

value denoted by MIN, the maximum function value denoted by MAX, the average 

function value denoted by MEAN, the standard deviation denoted by STD, the average 

CPU time of 50 independent runs denoted by CPU and the mean number of function 
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evaluations denoted by M_num_fun. The last two indicators give a fair indication about 

the effectiveness of the algorithm in real problems. All these indicators are generally 

accepted measures of performance when referring to heuristic global optimization 

algorithms. Note that CPU time together with the PC platform on which the algorithm 

was executed, is only provided for comparison purposes to other works which used this 

indicator. However, this parameter is subject to hardware platform capabilities on 

which the algorithm is run, and may not be the best choice of comparison of 

computational performance. The use of M_num_fun is emphasized in this dissertation 

instead.  

Table 4.5 gives the qualitative performance results for the twenty test functions. In 

most of the benchmark functions GAAPI proved its consistency, having the lowest 

standard deviation as compared to the other methods and the lowest mean number of 

function evaluations and CPU time. The mean number of function evaluations 

(M_num_fun) is the average of the total number of function evaluations during a 

predefined number of independent runs of the algorithm. In other words, if we denote 

with nFi the number of function evaluations in the i
th

 independent run of the proposed 

algorithm and we have a total of M runs which we take into account in our evaluation 

process, then the mean number of function evaluations is, 

 

          
∑    
 
   

 
 (4.10) 
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Table 4.5 Performance of GAAPI over the 20 test functions 

Function MIN MAX MEAN STD CPU (s) 

F1 -12569.5 -12568.3 -12569.4 0.2618 30.5867 

F2 1.02E-06 0.028603 0.005046 0.0074 27.0671 

F3 0.000163 0.187231 0.038933 0.0545 18.2644 

F4 2.2E-05 1.027464 0.077839 0.2250 37.2827 

F5 3.65E-10 1.72E-08 2.73E-06 1.1E-06 22.4786 

F6 2.23E-07 0.33526 0.068774 0.1102 42.2726 

F7 -39.7847 -24.5752 -37.4486 4.7103 24.2658 

F8 1.4E-07 1.441302 0.149302 0.3299 401.7522 

F9 -78.3323 -78.331 -78.3322 0.0003 37.9272 

F10 4.18E-05 0.257584 0.040124 0.0707 35.5866 

F11 6.67E-09 0.063028 0.010741 0.0176 35.6439 

F12 1.28E-05 0.0132 0.0037 0.0030 17.0035 

F13 0.001297 0.244238 0.055812 0.0546 37.5640 

F14 0.000537 9.408785 2.292226 3.2218 39.5760 

F15 0.000298 0.047323 0.01266 0.0134 30.7023 

F16 6.94E-10 1.24E-05 1.36E-06 3.05E-06 23.8269 

F17 10.22525 10.22532 10.22526 1.47E-05 27.8655 

F18 3.002442 7.805611 3.703591 1.2472 27.2073 

F19 0.051743 0.051869 0.051756 3.08E-05 27.9693 

F20 -22.231 -22.231 -22.231 1.45E-05 29.0590 

 

In most of the cases, the number of function evaluations to reach a solution very 

near to the global solution is 10 to 50 times less than the other methods used for 

comparison. For seven of the most popular and difficult functions, GAAPI obtained the 

best global solution fast and accurately (F1, F5, F8-F12). 

GAAPI responds very well, particularly for complex functions with higher 

dimensionality (N = 100 or 30, such as in F1–F7, F9–F15, and F18). However, the 

algorithm did not perform satisfactorily for test functions F16 (Fig. 4), F17 (Fig. 5), 
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F19, and F20. This may be due to the flatness characteristics of these functions (many 

local minima at the same level). In this validation analysis the GAAPI algorithm was 

executed for all twenty functions using the same termination criterion: the algorithm 

stops if no improvement occurs after twenty consecutive nest movements. The initials 

of the algorithms referenced in this work are presented in Table 4.6. A brief description 

of some of these algorithms is presented in [166].  

 

Table 4.6 Notations of the algorithms used for comparison 

Notation Description 

ALEP Evolutionary programming with adaptive Levy mutation 

FEP Fast evolutionary programming Cauchy mutation 

OGA/Q Orthogonal genetic algorithm with quantization 

HTGA Hybrid Taguchi – genetic algorithm 

EDA/L Hybrid estimation of distribution algorithm 

M-L Modified mean-level-set method proposed in [166] 

LEA Level-set evolution and Latin squares algorithm 

CEP Conventional evolutionary programming 

HPSO-TVAC Hierarchical particle swarm optimization with time-varying 

acceleration coefficients 

CPSO-H6 Hybrid cooperative particle swarm optimization, API – special 

class of continuous domain ant colony optimization search based 

on the Monmarché approach [136] 

ACAGA Hybrid algorithm combining ant colony algorithm with genetic 

algorithm for continuous domain optimization problems [170] 

 

Table 4.7 provides a comparison of the computational time required for GAAPI 

and other heuristic methods for determining the global optimal solution. Results on 

other methods are obtained from [166]. It is shown that GAAPI is faster compared to 

the other methods; in some cases it is considerably faster. As the computational effort is 

very important, especially to actual problems that need to be solved in real time, 
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GAAPI may be considered as a useful optimization tool based on the computational 

time required determining the global optimum. 

 

Table 4.7 Comparison to other heuristic methods with respect to CPU time 

Function Algorithm used and CPU time (s) 

F1 
HTGA CPSO-H6 LEA GAAPI 

689.30 658.70 656.30 30.59 

F2 
HTGA CPSO-H6 LEA GAAPI 

607.50 557.70 557.20 27.07 

F3 
ALEP CPSO-H6 LEA GAAPI 

359.30 326.80 326.10 18.26 

F4 
HTGA CPSO-H6 LEA GAAPI 

373.80 368.10 365.60 37.28 

F5 
HTGA CPSO-H6 LEA GAAPI 

378.60 369.80 368.50 22.48 

F6 
HTGA CPSO-H6 LEA GAAPI 

381.20 363.70 359.10 42.27 

F7 
HTGA CPSO-H6 LEA GAAPI 

765.20 719.60 660.80 24.27 

F8 
ALEP CPSO-H6 LEA GAAPI 

689.40 503.40 493.40 401.75 

F9 
ALEP CPSO-H6 LEA GAAPI 

782.70 685.80 612.30 37.93 

F10 
HPSO-TVAC CPSO-H6 LEA GAAPI 

594.50 501.10 443.80 35.59 

F11 
HTGA CPSO-H6 LEA GAAPI 

312.50 242.60 240.20 35.64 

F12 
HTGA CPSO-H6 LEA GAAPI 

318.40 243.70 242.40 17.00 

F13 
HTGA CPSO-H6 LEA GAAPI 

322.60 243.00 240.80 37.56 

F14 
HTGA CPSO-H6 LEA GAAPI 

328.40 244.60 241.30 39.58 

F15 HTGA CPSO-H6 LEA GAAPI 
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Function Algorithm used and CPU time (s) 

334.20 243.10 242.20 30.70 

F16 
HTGA ALEP LEA GAAPI 

31.60 31.10 30.80 23.83 

F17 
HTGA ALEP LEA GAAPI 

31.10 31.10 30.60 27.87 

F18 
HTGA ALEP LEA GAAPI 

35.40 34.00 33.50 27.20 

F19 
HTGA ALEP LEA GAAPI 

121.20 102.00 101.30 27.97 

F20 
CPSO-H6 ALEP LEA GAAPI 

67.70 66.60 66.20 29.06 

 

Tables 4.8 to 4.11 show a comparison between the performance of GAAPI and the 

performance of other heuristic algorithms, for all twenty test functions used for the 

present analysis. Each table compares the performance of each algorithm (if the results 

are available, and only for the functions tested) and provides the mean number of 

function evaluations (M_num_fun), the best value determined by each algorithm (M-

best), and the standard deviation for 50 independent runs of each algorithm. Further, the 

optimal value of each test function is provided.  

It should be noted that in the literature selected for comparison for the purposes of 

this work, the same number of function evaluations for each algorithm was not 

available. Thus, this measure is used only to sustain a quasi-comparison on the speed of 

convergence of different heuristic algorithms toward a near global solution denoted as 

the best-mean solution over a number of independent runs. 
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Table 4.8 Comparison to other heuristic methods for F1 to F5 

Function Algorithm M_num_fun M-best Std Opt-F 

F1 

ALEP 150000 -11469.2 58.2 

-12569.5 

FEP 900000 -12554.5 52.6 

OGA/Q 302116 -12569.45 6.44E-4 

HTGA 163468 -12569.46 0 

EDA/L 52216 -12569.48 N/A 

M-L 655895 -5461.826 275.15 

LEA 287365 -12569.45 4.83E-4 

ACAGA N/A -12569.48 4.12E-3 

GAAPI 26510 -12569.5 5.77E-7 

F2 

ALEP 150000 5.85 2.07 

0 

FEP 500000 0.046 0.0012 

CEP 250000 4.73 N/A 

OGA/Q 224710 0 0 

HTGA 16267 0 0 

HPSO-

TVAC 
200000 0.044 0.19 

CPSO-H6 200000 0.778 N/A 

EDA/L 75014 0 N/A 

M-L 305899 121.7575 7.75 

LEA 223803 2.10E-8 3.3E-18 

API N/A 2.32 N/A 

ACAGA N/A 2.53E-6 3.62E-6 

GAAPI 24714 1.02E-6 4.58E-9 

F3 

ALEP 150000 0.019 0.001 

0 

FEP 150000 0.018 0.021 

CEP 250000 7.49E-4 N/A 

OGA/Q 112421 4.4E-16 3.9E-17 

HTGA 16632 0 0 

CPSO-H6 200000 2.7E-12 N/A 

EDA/L 106061 4.1E-15 N/A 

M-L 121435 2.5993 0.094 

LEA 105926 3.2E-16 3.0E-17 

API N/A 2.22E-3 N/A 

ACAGA N/A 4.69E-6 7.12E-5 

GAAPI 19592 0.000163 9.1E-7 

F4 

ALEP 150000 0.024 0.028 

0 
FEP 200000 0.016 0.022 

CEP 250000 2.52E-7 N/A 

OGA/Q 134000 0 0 
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Function Algorithm M_num_fun M-best Std Opt-F 

HTGA 20999 0 0 

HPSO-

TVAC 
200000 0.01 0.001 

CPSO-H6 200000 0.0524 N/A 

EDA/L 79096 0 N/A 

M-L 151281 0.11894 0.0104 

LEA 130498 6.10E-6 2.5E-17 

GAAPI 29647 2.2E-05 2.05E-8 

F5 

ALEP 150000 6.0E-6 1.0E-6 

0 

FEP 150000 9.2E-6 3.6E-6 

OGA/Q 134556 6.01E-6 1.15E-6 

HTGA 66457 1.0E-6 0 

EDA/L 89925 3.6E-21 N/A 

M-L 146209 0.2105 0.0360 

LEA 132642 2.42E-6 2.27E-6 

GAAPI 60297 3.65E-10 1.82E-11 

 

 

For the first five functions GAAPI found the near global solution in much less 

computational time and/or mean number of function evaluations (up to twenty times 

less) for all of the functions under analysis in this table. Also, GAAPI found the best 

solution among all algorithms for two of the functions (F1 and F5), while for the other 

three functions GAAPI practically found the global optimum (the error was less than 

10
-4

). It should be noted that the values for the API and ACAGA algorithms given in 

Tables 4.8 and 4.10 were obtained from [163] and [170] respectively. 
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Table 4.9 Comparison to other heuristic methods for F6 to F10 

Function Algorithm M_num_fun M-best Std Opt-F 

F6 

ALEP 150000 9.80E-05 1.20E-05 

0 

FEP 150000 1.60E-04 7.30E-05 

OGA/Q 134143 1.87E-04 2.62E-05 

HTGA 59003 0.0001 0 

EDA/L 114570 3.49E-21 N/A 

M-L 147928 1.51E+00 2.25564 

LEA 130213 1.73E-04 1.21E-04 

GAAPI 26895 2.23E-07 3.06E-03 

F7 

OGA/Q 302773 -92.83 0.02626 

-99.3 

HTGA 265693 -92.80 0 

EDA/L 169887 -94.3757 N/A 

M-L 329087 -23.9754 0.62875 

LEA 289863 -93.01 0.02314 

GAAPI 21235 -39.7847 0.100521 

F8 

OGA/Q 190031 4.67E-07 1.29E-07 

0 

HTGA 186816 5.87E-05 8.33E-05 

EDA/L 124417 3.29E-08 N/A 

M-L 221547 25877.8 1739.75 

LEA 189427 1.63E-06 
6.527E-

07 

GAAPI 28778 1.40E-07 2.33E-02 

F9 

OGA/Q 245930 -7.83E01 6.29E-03 

-78.3 

HTGA 216535 -78.303 0 

EDA/L 153116 -78.3107 NA 

M-L 251199 -35.8099 0.89146 

LEA 243895 -78310 6.13E-03 

GAAPI 28701 -78.3323 1.38E-05 

F10 

OGA/Q 167863 0.752 0.114 

0 

HTGA 60737 0.7 0 

HPSO-

TVAC 
200000 9.855 6.725 

EDA/L 128140 4.32E-03 N/A 

CPSO-H6 200000 0.194 N/A 

M-L 137100 2935.93 134.8186 

LEA 168910 0.5609 0.1078 

GAAPI 29171 4.18E-05 5.03E-03 
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Table 4.10 Comparison to other heuristic methods for F11 to F15 

Function Algorithm M_num_fun M-best Std Opt-F 

F11 

ALEP 150000 6.32E-04 7.60E-05 

0 

FEP 150000 5.70E-04 1.30E-04 

CEP 250000 3.09E-07 N/A 

OGA/Q 112559 0 0 

HTGA 20844 0 0 

HPSO-

TVAC 
120000 0.01 N/A 

M-L 162010 3.19123 0.29463 

LEA 110674 4.73E-16 6.22E-17 

API N/A 6.65E-06 N/A 

GAAPI 29199 6.67E-09 1.89E-04 

F12 

CEP 250000 9.42 N/A 

0 

OGA/Q 112652 6.30E-03 4.07E-04 

HTGA 20065 0.001 0 

M-L 124982 1.703986 0.52155 

LEA 111093 5.14E-03 4.43E-04 

GAAPI 4149 1.28E-05 7.21E-07 

F13 

FEP 200000 0.0081 7.70E-04 

0 

CEP 250000 1.99E-03 N/A 

OGA/Q 112612 0 0 

HTGA 14285 0 0 

M-L 120176 9.7416 0.463769 

LEA 110031 4.25E-19 4.24E-19 

ACAGA N/A 2.58E-05 4.17E-05 

GAAPI 30714 0.001297 2.01E-02 

F14 

ALEP 150000 0.04185 5.97E-02 

0 

FEP 500000 0.016 0.014 

CEP 250000 0.612 N/A 

OGA/Q 112576 0 0 

HTGA 26469 0 0 

CPSO-H6 200000 2.63E-66 N/A 

M-L 155783 2.21994 0.50449 

LEA 110604 6.78E-18 5.43E-18 

ACAGA NA 2.26E-07 1.75E-6 

GAAPI 31792 0.000537 3.1932 

F15 

FEP 500000 0.3 0.5 

0 
CEP 250000 0.323 N/A 

OGA/Q 112893 0 0 

HTGA 21261 0 0 
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Function Algorithm M_num_fun M-best Std Opt-F 

M-L 125439 0.55755 4.00E-02 

LEA 111105 2.68E-16 6.26E-17 

GAAPI 31040 0.000298 4.01E-03 

 

For the next group of functions (F11 to F15), for the first two functions GAAPI 

obtained the best solution reported so far; for the next three functions (F13 to F15) 

GAAPI obtained a near global optimum solution. For F13, GAAPI obtained better 

solutions than the FEP, CEP and M-L algorithms, and better CPU time/ mean number 

of function evaluations than all the other algorithms. However, OGA/G, HTGA, 

ACAGA and LEA had a better minimum solution. For F14, GAAPI outperformed 

ALEP, FEP, CEP and M-L, but OGA/G, HTGA, CPSO-H6, ACAGA and LEA 

performed better than GAAPI. For F15, LEA, OGA/Q, HTGA and LEA outperformed 

GAAPI in terms of the best solution found so far; however, the GAAPI solution was 

near the global optimum in faster computational time. 

For the last group of five test functions, GAAPI obtained a good solution for F18. 

However, its performance for the other four test functions was not satisfactory. The 

main reason for this failure is the flatness of these objective functions around the global 

minimum, and due to the termination criterion of the GAAPI to stop when no 

improvement occurs after a number of consecutive nest movements. However, this 

termination criterion is very powerful to limit the computational effort. 
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Table 4.11 Comparison to other heuristic methods for F16 to F20 

Function Algorithm M_num_fun M-best Std Opt-F 

F16 

ALEP 3000 -1.031 0 

-1.031 

FEP 10000 -1.03 4.90E-07 

M-L 13592 -1.02662 5.27E-03 

LEA 10823 -1.03108 3.36E-07 

GAAPI 27241 6.94E-10 1.40E-07 

F17 

FEP 10000 0.398 1.50E-07 

0.398 
M-L 12703 0.403297 8.83E-03 

LEA 10538 0.398 2.65E-05 

GAAPI 29625 10.22525 5.43E-07 

F18 

ALEP 3000 3 0 

3 

FEP 10000 3.02 0.11 

M-L 16325 3.048855 0.0603749 

LEA 11721 3.00003 6.25E-05 

GAAPI 29625 3.002442 2.85E-05 

F19 

FEP 400000 5.00E-04 3.20E-04 

3.08E-4 
M-L 186768 1.34E-03 2.98E-04 

LEA 55714 3.51E-04 7.36E-05 

GAAPI 28654 0.051743 8.45E-07 

F20 

FEP 20000 -3.27 0.059 

-3.32 
M-L 92516 -3.12696 0.067397 

LEA 28428 -3.301 7.83E-03 

GAAPI 29302 -22.231 3.87E-07 

 

 

4.5 Chapter Summary 

In this chapter a new algorithm, called GAAPI, was introduced as a solution to 

global unconstrained continuous optimization problems. This algorithm is appropriate 

for optimization problems whose decision variables take values from the real – number 
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domain. The GAAPI algorithm was created by combining some unique characteristics 

of two other robust meta–heuristic algorithms: RCGA and API.  

It was proven that in most of the test cases (15 out of 20 benchmark functions) 

GAAPI provided satisfactory or optimum solutions, with very little computational 

effort. The algorithm is recommended for large, complex problems with a 

dimensionality greater than 30. For seven benchmark functions GAAPI gave the best 

solution reported so far in the literature, with less number of function evaluations (10 to 

50 times less than other powerful methods). The best solution was found for complex 

functions with high dimensionality (n = 30 or n = 100) (seven test functions). For eight 

other test functions with high dimensionality (n = 30) GAAPI gave near global optimal 

solutions with much less computational effort. However, for a small class of functions 

(five benchmark functions), having mainly small dimensionality (n = 2, n = 4 or n = 6), 

GAAPI failed to find the global optimum solution.  The main reason for this failure is 

the flatness of the objective function around the global minimum. 

There are at least two main reasons why GAAPI performs better than other 

powerful heuristic techniques. First, the balance in exploration and exploitation given 

by the two chosen algorithms API and GA is one of the reasons. API has a strong 

influence targeting the search towards a continuously improved solution (the nest is 

moved only in the best solution found at each iteration by its ants), while GA has an 

active role in the solution search, only when API reduces its speed of convergence (the 

solution does not improve much from one iteration to another, or there are many 

failures in exploiting different sites). This balance in exploration and exploitation 
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increases the chances of a faster convergence towards the global optimum, while other 

methods such as PSO, EAs, or GAs have a strong exploration component.  The second 

reason is the choice of crossover and mutation functions in RCGA. These influence the 

activeness or passiveness of GA in the GAAPI search. A different crossover (for 

example, an arithmetic real coded crossover) would maintain GA active at each nest 

movement, which may lead to solution divergence. The same may happen if the 

mutation probability is higher than the crossover probability.  

Other hybridization techniques of API with variances of evolutionary algorithms 

may further improve the quality of the solution in difficult global optimization 

problems, but a difficulty in implementation could appear due to the complicated forms 

of the operators to be used. There may be value in comparing analytically the search 

behavior of GAAPI and other search models for ACO-GA hybridization techniques or 

in the association of API with other evolutionary algorithms used for some applications 

in continuous global optimization. There may also be value in concentrating on 

comparisons of GAAPI to other hybridization schemes which relate to GA and local 

search mechanisms. This study focused mainly on continuous domain optimization 

problems, so further work can be addressed to see the applicability of the proposed 

algorithm to discrete as well as constrained optimization problems. Ire
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Chapter 5 

 

GAAPI: Integrated solution for economic dispatch in power 

systems 

5.1 Introduction 

This chapter proposes the application of the developed GAAPI algorithm to the 

constrained optimization problem of economic dispatch in power systems. First, the 

formulations of the economic dispatch problem to which GAAPI is proposed as a 

solution are introduced. Second, the adaptations needed in the GAAPI algorithm for 

constrained optimization are presented. Last, the proposed solution is empirically 

validated on a number of standard IEEE test systems.  

5.2 Economic dispatch: modeling 

In this work we call mathematical model any system of functions, equations, 

equalities and inequalities which define the optimization problem intended to be solved. 

In specific, for the economic dispatch in power systems, combinations of different 

formulations of the objective function together with different sets of constraints taken 
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into account can form distinct models of the problem. Thus, this section summarizes the 

mathematical models used in this work for the analysis of the economic dispatch 

problem in its various aspects. From the large number of formulations available in the 

recent literature for the economic dispatch of generation in power systems (see Chapter 

2), only some of them were elaborated in the current work due to their practical 

meaning (e.g., modern generators have multiple admission valves, and therefore their 

output characteristic is no longer quadratic), as well as for comparison purposes (e.g., 

use of the quadratic approximation of the objective function or neglecting the network 

constraints) of the GAAPI algorithm with other similar techniques. The critical ―must 

be respected‖ network constraints used in the formulations adopted for analysis in this 

dissertation are also described in detail with emphasis on their importance in practice. A 

summary of the mathematical characteristics of the economic dispatch models used for 

the applicability of GAAPI is given in Table 5.1. 

 

Table 5.1 Characteristics of the mathematical ED models used to test GAAPI 

Name of the model Characteristics 

Simplified model 

The simplest model of the ED problem: 

quadratic single objective function and 

one equality linear constraint 

Convex constrained 

model 

Complex model: 

quadratic single objective function with 

nonlinear equality and inequality constraints 

Nonconvex constrained 

model 

More complex model: 

nonconvex single objective function with 

nonlinear equality and inequality constraints 
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a. Simplified model 

The first model called the simplified model is one of the first approaches used to 

describe mathematically the optimization problem of economic dispatch. It refers to the 

case when the ED problem is stated as a single objective minimization problem.  The 

cost of fuel (the optimization objective) is represented as a quadratic polynomial, and 

only the balance constraint is taken into account in this model, all others been 

neglected. The reason for the existence of this simplified model is that, when the 

transmission distances are very small and the load density is very high, transmission 

losses can be neglected, which is the case of this model, when the system configuration 

or the impedances of the transmission lines are not taken into account. In brief, the 

simple ED model assumes that all generators and loads are connected to a single bus, as 

presented in Figure 5.1. 

OC1 OC2 OCn

P2P1 Pn

PD

 

Figure 5.1 The simple economic dispatch model (Simplified model) 
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This model is mathematically formulated as, 

      ∑             
 

  

   
   

Subject to, 

    ∑     
  

   
  

     

 

(5.1) 

The above model is used in this work mainly for comparison to other analytical or 

heuristic approaches previously used by other authors to solve this specific problem. It 

was also used as a measure of confidence of the GAAPI convergence and accuracy of 

the solution in the early stages of the development of the proposed algorithm. As an 

example, for small size test systems, such as two or three generator power systems the 

global solution of the ED problem stated in (5.1) is known (it may be determined 

analytically). Therefore, it is enough but not sufficient, in the first stages of algorithm 

testing, to verify if the algorithms that are developed and analyzed in this dissertation 

converge to this known global solution.  

b. Convex constrained model 

The second model in this dissertation refers to the convex constrained model that is 

described mathematically below. This is the most common model used in the literature 

to validate different methodologies or algorithms to solve the economic dispatch 

problem. The model is a minimization problem which uses a quadratic approximation 

of the objective function (the sum of the cost of fuel of each generating unit) and a 
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number of constraints from the balance and transmission losses, to the prohibited 

operating zone constraints. In large interconnected power networks, where power is 

transmitted over long distances with low load density areas, transmission losses are a 

major factor which affects the optimum dispatch of generation. Therefore, this model 

takes into account the power system network architecture by considering the real power 

losses through the transmission lines for transmitting the electrical energy from the 

source (generating unit) to the destination (power consumer). 

The convex constrained model differs from the simple ED model presented in the 

previous section mainly with regards to the number of constraints taken into account. 

The transmission losses are generally approximated with a quadratic function of the 

power output of the units committed in the dispatch procedure. The coefficients of the 

quadratic approximation of the transmission losses are set up as constants after a 

previous run of a power flow model of the system.  

As can be observed in (5.2), the second model under analysis in this dissertation is 

more complex and more difficult to approach than the simplified model, due to 

nonlinearities and recurrence in the approximation of the transmission losses on one 

hand, and due to noncontinuities in the constraint of the prohibited operating zones, on 

the other hand.  The model is described mathematically below. [Bij] is a square matrix 

of dimensions NG by NG, [Bi0] is a column vector with NG components, and B00 is a 

real constant, all representing the ―B-loss‖ coefficients which are assumed to be 

constant over the economic dispatch run; DRi and URi refer to the down-ramp rate of 

unit i and up-ramp rate of unit i, respectively.  
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(5.2) 

 

c. Nonconvex constrained model 

The third model refers to the nonconvex constrained model for the economic 

dispatch problem. This model is an extension of the convex constrained ED model, 

because only the form of the objective function differs. This model takes into account 

the rippling effect of the multiple steam admission valves of the modern thermal units, 

which is known in the power system literature as ―the valve point effect‖. When 

modelling this effect, an extra sinusoidal term is added to the quadratic approximation 

of the classical cost of generation. This rippling effect due to the steam admission 
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valves is also linked to the prohibited operating zones constraints, as presented in detail 

in Chapter 2.  

A schematic representation of the constrained ED models (both convex and 

nonconvex) is presented in Figure 5.2. 

OC1

OC2

OCn

Pn

Bloss

PLoss

PD

[Pmin]
 Pmax]
[P0]

Prohibited zones

P2

P1

…
…

..

P2

P1

…
…

..

Pn

 

Figure 5.2 Representation of both convex and nonconvex constrained models 

 

The nonconvex constrained model for the ED problem is a more accurate model 

than the previous two models, and it closely represents the architecture of actual power 

systems.  Despite the fact that this model does not explicitly represent hydro or 

combined cycle (CC) units, the model does not lose generality. Hydro units add just 

another ―generating‖ limit constraint (the reservoir limits), and the CC units include 

other non-continuities, which may be incorporated into the prohibited operating zones 
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constraints. The mathematical description of the nonconvex constrained ED model is 

given by, 

   ∑             
  |      (  (  

      ))|
  

   

  

 

Subject to, 
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 (5.3) 

 

5.3 GAAPI for constrained optimization 

In the previous chapter the GAAPI algorithm was introduced and validated as a 

viable solution for a class of complex unconstrained optimization problems. In this 

chapter, this algorithm will be applied to the constrained optimization of economic 

dispatch of generation in power systems. Therefore, limited number of 

adaptations/transformations of the algorithm is needed in order to cope with the 

constraints of this optimization problem. These adaptations are discussed in the 

following two subsections.  
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5.3.1 Handling constraints 

One of the major issues to deal within constrained optimization problems is how to 

cope with the infeasible individuals throughout the search process. There are two major 

possible approaches to handle infeasible individuals. One approach is to completely 

disregard them and continue the search with feasible individuals only. This option 

might have a drawback for probabilistic search approaches, such as Gas, because some 

information contained in infeasible solutions could be utilized. Thus, if the search space 

is discontinuous, then the algorithm may be trapped in local minima. The other 

approach to handle constraints is to use a penalty fitness function (optimization 

function) that aggregates the objective function with the constraint functions penalized 

[46, 65, 80]. The simplicity of penalty functions has made them the most commonly 

used methods for solving constrained optimization problems. In penalty functions, 

infeasible individuals will be penalized for violation of constraints by adding a penalty 

value to their original fitness (determined only by the objective function evaluation). 

Adding a penalty value will decrease the probability of an infeasible individual being 

selected for recombination. The penalty functions have the following general form: 

 ( )   ( )  ∑       ( )
 

   
 (5.4) 

where, F(x) is the aggregated fitness function (fitness plus constraints); f(x) is the 

objective function; pfi is the i-th penalty coefficient; hi is the i-th constraint function 

(counting for both equality and inequality constraints), which takes the value of zero if 
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there is no violation and greater than zero if there is a violation; and m is the number of 

constraints of the constrained optimization function.  

Two main approaches regarding the use of penalty functions can be identified in 

the literature: (a) the simplest and the earliest approach is using static penalty functions 

(or constant penalty coefficients) during the whole search procedure, and (b) the 

adaptive approach using dynamic adjustments of the penalty coefficients during the 

evolution of the search.  In the first case, the penalty coefficients must be carefully 

chosen to distinguish between feasible and infeasible solutions. Sometimes this 

parameter training is a difficult task even when the problem is well known.  

In this work, a hybrid approach is used to cope with the constraints. The algorithm 

mainly works with feasible solutions. However, from time to time, as the search 

progresses, infeasible solutions are allowed throughout the search process. This happens 

because the objective function the algorithm tries to optimize is the aggregated penalty 

function F(x) as defined in (5.4). 

Our approach in handling constraints is called ―the feasible solution generator” 

and reads as follows. First, an initial solution, x = P = (P1, P2,…, Pi,…, PNG) is 

generated respecting generation and ramp rate limits, according to, 

     
        ()  (  

      
   ) (5.5) 

where, rand() is a uniform random number between 0 and 1. Then, the balance 

constraint with losses is checked. While the balance constraint considering losses is not 

satisfied (the first constraint in any of the models (5.1), (5.2) and (5.3)), a random 
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generator is chosen as slack from the pool of NG generators, and its output is set to 

meet the balance. If its limits are exceeded, then another random slack generator is 

chosen from the (NG-1) pool. If all the generators are checked and no one can cover the 

difference to meet the balance, then two generators will be chosen as slack and share 

the difference, and so on. When a generator is in a prohibited zone, then its output is set 

to the closest feasible bound. 

The RCGA, which is the part of the GAAPI does not follow this handling 

constraint rule, but only pays attention to the bounding limits of the solution space. So, 

the process of handling the constraints is relaxed from the point of view of the feasible 

solution space. However, if these solutions are highly infeasible (they are far from the 

feasible region), then they will be ultimately discharged due to the high penalty 

assigned to the optimization function. 

5.3.2 Adaptation of GAAPI for the solution of economic dispatch 

The first step of the proposed GAAPI algorithm is to find a starting point for the 

search (referred from here on as the initialization process). This starting point is given 

by the solution of the Lagrange multipliers (LM) method applied to the simplified 

model of the problem (5.1). The reason for this choice is provided below.  

If one uses a quadratic cost function or a generation function with valve point 

effects (see Figure 5.3) and ignores transmission losses and all other constraints (except 

the balance constraint), an approximate area containing the optimal solution may be 

identified. Taking the particular case presented in Figure 5.3, the balance constraint is a 
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straight line crossing the cost function at the point where the generation output equals 

the load demand (the geometrical view for one generator).  With more constraints taken 

into account, this geometrical delimitation is more difficult to draw. Therefore, if at 

time t0 the losses are computed using an approximate solution given for the economic 

dispatch problem for this time frame (t0) and set as a constant value in the balance 

constraint equation, then this equation becomes linear. Then, using the quadratic 

approximation of the generation function, a good starting point for the next, more 

accurate search can be determined. This starting point is the optimal solution of the 

optimization system described by an extension of the simplified model, as described in 

(5.1), with transmission constraints taken into consideration. 

 

Figure 5.3 Determining the first approximation of the ED solution 
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Note that after the initialization process (when the nest is first placed at a point of 

the search space), each ant of the nest takes a different position according to their 

―experience‖ (e.g., some ants search/take positions closer to the nest if they are less 

experienced, while some others search in larger areas around the nest, up to the entire 

search space). The amplitude coefficient differs from one ant to another, and thus 

resulting in a heterogeneous population of ants according to their specialization or their 

age. The implication of this is that the ants that are more experienced are allowed to 

search in a wider area and also recruit followers, as the search progresses (Figure 5.4).  

 

 

Figure 5.4 Heterogenous population of ants: recruitment mechanism 
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The main steps of the GAAPI for economic dispatch are described below. 

Table 5.2 Constrained GAAPI for the ED problem 

1. Read the power system data 

2. Assign as first best solution of RCGA a high dummy value (this is useful for the first time 

comparison between the best solutions given by API and RCGA at step 7.2).  

3. Run LM method for the simplified model of the data system 

4. Assign the solution from step 2 to the initial position of the nest 

5. Generate the position of the ants around the nest using the feasible solution generator 

6.  IF the number of nest movements OR the number of consecutive failures in solution 

improvement reached? 

 6.1. THEN go to step 10. 

 6.2. ELSE, apply API search always using the feasible solution generator for  

 exploring new points in the search domain 

7. IF there are any sites to be ―forgotten‖ at the end of one API call 

 7.1. THEN add these sites to the current initial population of the RCGA  

  7.1.1. Perform RCGA search (note that here, infeasible solutions may appear due to 

  the genetic transformations of the solutions) 

  7.1.2. Recruit ant/sites for information sharing  

  7.1.3. Check for feasibility and transform infeasible recruited individuals into feasible 

ones and go to (6.2.) 

 7.2. ELSE, choose the best solution between API and RCGA outputs from steps (6) and 

 (7), respectively.  

  - Note that the comparison is based on the aggregated penalty objective function. 

  - Thus, infeasible solutions are less likely to be chosen as the next position of the  

  nest.  

8. Move the nest in the next best point found at step (7.2) 

9. Reset the memory of all ants and go to step (6). 

10. Print the best solution 

 Ire
ne

 C
ior

ne
i



 

 

117 

 

5.4 Validation of GAAPI as a solution for economic dispatch 

5.4.1 Benchmark Power Systems 

In the literature, besides the formulations of the economic dispatch of generation in 

power systems there are different generic or real test systems used for validating 

different solution methodologies. A summary of the most common IEEE power test 

systems used in the literature to test ED algorithms is given in Chapter 3, Table 3.1. 

From this large set of benchmarks, four test power systems have been selected, on the 

basis of their characteristics and constraints as explained in this subsection. These test 

systems allow a full testing of the GAAPI algorithm under development. The 

description and characteristics of these test systems are presented below. 

The first test system is a 3-unit system with a valve point effect cost of generation 

and only the balance constraint considered. The data for this system was taken from 

[114] and [40]. The minimum cost of generation found for this system is 8234.07 $/h 

[46]. 

The second test system is a 6-unit power system (obtained from the IEEE 30 bus 

test system) and having a demand of 1263 MW [35]. The cost of generation for this 

system is chosen to be a smooth (quadratic) function and the nonconvexity is given by 

the prohibited operating zones and ramp rate limits. The reason for choosing these 

generator characteristics is to compare the results with other similar metaheuristic 

methods described in [46] and [65]. Then, the complexity of the problem is increased 

by using the cost of generation with valve point effect included, as in (2). The 
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comparison for this second case covers implementations of a binary GA and a simple 

RCGA and compared to the best cost obtained with the GAAPI method. The data of 

this test system can be found in [68]. 

The third test system is a 15-unit system with smooth (quadratic) cost of generation 

(but discontinuous due to prohibited operating zones and ramp rate limits) and having a 

demand of 2630 MW. The system data were taken from [171] and [45]. The minimum 

generation cost reported so far for this system is 32751.39 $/h [36].  

The fourth test system is a larger system with 40 units, a nonconvex generation 

function with valve point effect, and considering power losses. The load demand for 

this system is 10500 MW [65, 66]. It seems that this system has not been tested by other 

researchers using constraints such as transmission losses. This system was chosen to 

demonstrate the applicability of the proposed algorithm in relatively large and complex 

systems. The B-loss coefficients used to compute the transmission losses of this system 

were derived from the B-loss coefficients of the 6-generator test system [68], by 

multiplication on rows and columns up to 40 units.   All the characteristics of the test 

power systems are presented in detail in the Appendix (section A3). 

 

5.4.2 Parameter settings  

a. Parameters of API 

The number of ants to perform the search is directly proportional to the dimension 

of the system (number of generating units).  For all the test systems, the number of ants 
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is ten times the number of generating units. Therefore, for a 3-generator test system, the 

number of search agents in API is 3x10 = 30 ants. The number of hunting sites which 

each ant can memorize is five (TotalAnts=5) as suggested in [136]. The number of 

consecutive search failures of each site in the memory of ants is also five (PF=5). The 

maximum number of site exploitations (searches) is directly proportional to the 

dimension of the system (five times the number of generating units, e.g., for a 3-

generator test system this number is 3x5=15).  

b. Parameters of RCGA 

The population size is set dynamically as the minimum between the number of ants 

from API and a maximum of 1000 ants. The population size is a function of the number 

of the forgotten sites appearing during each movement of the nest. Having a variable 

population size of RCGA aids in increasing the probability of the generated solution 

being different than the API-generated solution, thus triggering the search in a region 

less explored (in the case of large RCGA population). In case that the API search 

improves the solution in an adequate pace, the role of RCGA is limited by its small 

population size (less diversity). The probability of crossover (Pc) is 0.3 and the 

probability of mutation (Pm) is 0.35; the factor  of the blend crossover operator is 

0.366. All the parameter settings were chosen either according to the directions of other 

authors (based on their experience in working with API or the RCGA adopted in 

GAAPI), or based on our personal experience in performing different searches with 

GAAPI.  
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5.4.3 Convergence Tests 

In the power systems literature, the convergence tests in the field of economic 

dispatch are mainly related to the number of iterations or generations (e.g., in the case 

of GAs and PSO) until the solution falls below a certain threshold, and/or related to the 

CPU time per iteration/generation [36, 46, 65, 70, 111]. However, the CPU time is 

subject to the computer infrastructure available and therefore, it is a parameter that is 

difficult to be used as an evaluation criterion. Thus, the measure of the speed of 

convergence adopted in this work is the mean number of (objective) function 

evaluations (denoted as M_num_fun) until the algorithm stops [166]. This measure was 

introduced and explained in Chapter 4. 

 

Figure 5.5 Convergence characteristics of the GAAPI for a 6-generator test system with 

smooth cost of generation 
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The convergence behavior of the GAAPI algorithm was tested in order to 

determine how fast the proposed algorithm drops under the best average cost of 

generation reported so far and to prove that the algorithm convergence is not steep, 

therefore avoiding local minima trapping. Figure 5.5 and 5.6 show the convergence 

behavior of the GAAPI algorithm for the test system with 6 generators and 40-

generators, respectively, both having nonconvex fuel cost optimization functions. It can 

be noticed that the solution drops quickly (only after 10 iterations) under the average 

best solution reported so far and smoothly decreases in time trying to gather better 

solutions, as near as possible to the global. 

 

Figure 5.6 Convergence characteristics of the GAAPI algorithm (40-generator test system) 
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5.4.4 Robustness tests 

Due to the random process that heuristic algorithms involve, the robustness tests of 

the algorithms imply the need to perform several independent trials/runs of the 

algorithms. In this work, robustness tests refer to the analysis of consistency in results 

over a number of independent runs of the algorithms. The measure used to emphasize 

the robustness in this case is the average value gathered during fifty independent runs 

of the algorithms. The standard deviation is not presented in the comparison tables, 

since other authors who solved the same problem using other powerful stochastic 

methods, have not represented this metric. Two other measures are also presented in the 

comparison tables below, and they refer to the maximum and the minimum values 

obtained over the fifty independent runs. 
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Figure 5.7 Comparison on consistency of results over fifty independent runs: 6-generator test 

system with nonconvex cost of generation 

 

A plot of the distribution of the best cost (minimum cost) found by GAAPI for the 

6-generator test system with nonconvex cost of generation is provided in Figure 5.7. In 

the same graph, the optimum cost of two other recent evolutionary based algorithms 

(the author’s implementation of SOH-PSO [65] and RCGA [125]) is plotted for the 

same number of independent runs. It can be observed that GAAPI outperforms the other 

two functions in terms of the minimum cost of generation (in average and at the end of 

each independent run). Further, it is consistently giving almost the same result over the 

independent runs, clearly outperforming in consistency the RCGA.  SOH-PSO appears 

to be slightly more consistent than GAAPI, however with a highest cost.  

Ire
ne

 C
ior

ne
i



 

 

124 

 

For the smooth 6-generator test system (Table 5.3), it can be noticed that GAAPI 

gives comparable results with the NPSO-LRS and SOHPSO methods in terms of the 

minimum best solution, and better average than all other methods used in the 

comparison table. GA binary refers to the GA optimization package from MATLAB. 

The results used for comparison in the case of GA, NPSO-LRS and SOHPSO were 

obtained from [39, 65].  

 

Table 5.3 Comparison on robustness for a 6-generator test system with smooth cost of 

generation 

Method Max ($/h) Min ($/h) Average ($/h) 

GA binary 15519.87 15451.66 15469.21 

GA 15524.00 15459.00 15469.00 

NPSO-LRS 15455.00 15450.0 15454.00 

SOHPSO 15609.64 15446.02* 15497.35 

GAAPI 15449.85 15449.78 15449.81 

(*) The loss value computed with the B-Loss formula (12.95 MW) is higher than the one 

given by the author (12.55 MW) [65] which can lead to a higher minimum value of the cost of 

generation than the one reported in [65]. 

 

Table 5.4 Comparison on robustness for a 15-generator test system 

Method Max ($/h) Min ($/h) Average ($/h) 

GA  33337.00 33113.00 33228.00 

SOHPSO 32945.00 32751.00 32878.00 

GAAPI 32756.01 32732.95 32735.06 

 

For the 15-generator test system (Table 5.4), it can be noticed that GAAPI gives the 

best results compared to the GA and SOHPSO [65] methods in terms of both minimum 

value and average value found in fifty independent runs.  Figure 5.8 gives an insight to 

the robustness characteristics of the proposed algorithm when applying it to the 15-
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generator test system.  The picture presents an evaluation of the performance over one 

hundred independent runs. 

 

Figure 5.8 GAAPI performance analysis for the 15-generator test system 

 

5.4.5 Comparison with respect to the quality of the solution 

For all the power test systems used in this work, the best solutions obtained in a 

predefined number of independent runs (in this work this number is fifty) are compared 

to the corresponding values reported in the literature, when available (Tables 5.5 to 

5.9). The fourth test power system, including constraints, seems to have not been used 

in the literature. The best solution determined using the GAAPI algorithm (in fifty 

independent runs) for this last test system is provided in Table 5.9. 
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The first test system (3-generator), being a small test system, has a known global 

solution [46]. Table 5.5 presents a comparison of the best results obtained with GAAPI 

for this test system with different powerful optimization methods. It can be noticed that 

GAAPI performed as good as other recent and powerful methods such as EP and 

MPSO, and little better than GA and IEP algorithms. 

 

Table 5.5 Best solution for a 3-generator test with nonconvex cost of generation 

Unit output (MW) GA IEP EP MPSO GAAPI 

P1 300.00 300.23 300.26 300.27 300.25 

P2 400.00 400.00 400.00 400.00 399.98 

P3 150.00 149.77 149.74 149.73 149.77 

Total output 850.00 850.00 850.00 850.00 850.00 

Generation cost ($/h) 8237.60 8234.09 8234.07 8234.07 8234.07 

 

For the 6-generator test system with smooth-convex and nonconvex cost of 

generation, the best results reported so far are summarized in Tables 5.6 and 5.7, 

respectively. It was shown that in terms of the best cost of generation in the case of the 

system with smooth-convex cost of generation, the GAAPI method and all variations of 

PSO and LM method, all have comparable results and better than the GA binary of real 

coded algorithms. However, for the nonconvex generation cost function, GAAPI 

proved its superiority against SOH-PSO and the RCGA algorithms (for both, binary and 

real coded GAs). 
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Table 5.6 Best solution for a 6-generator test system with a smooth cost of generation 

Unit output (MW) LM GA binary RCGA NPSO-LRS SOH-PSO GAAPI 

P1 447.00 456.46 474.81 446.96 447.49 447.12 

P2 173.50 168.26 178.64 173.39 173.32 173.41 

P3 264.00 258.68 262.21 262.34 263.47 264.11 

P4 138.50 132.66 134.28 139.51 139.06 138.31 

P5 166.04 170.97 151.90 164.70 165.47 166.02 

P6 87.00 89.10 74.18 89.01 87.13 87.00 

Losses 13.00 13.13 13.02 12.93 12.55* 12.98 

Total output 1276.00 1276.13 1276.03 1275.94 1275.55 1275.97 

Generation cost ($/h) 15450.00 15451.66 15459.00 15450.0 15446.02 15449.7 

(*) The loss value computed with the B-Loss formula (12.95 MW) is higher than the one 

given by the authors (12.55 MW) in [65]. 

 

Table 5.7 Best solution for a 6-generator test system with a nonconvex cost of generation 

Unit output (MW) SOH-PSO RCGA GAAPI 

P1 419.64 495.09 499.98 

P2 188.16 150.45 199.89 

P3 198.15 223.11 225.75 

P4 150.00 149.40 124.95 

P5 200.00 147.94 150.19 

P6 120.00 109.72 74.97 

Losses 12.95 12.07 13.13 

Total power output 1275.95 1275.70 1276.13 

Total generation cost ($/h) 15896.73 15634.70 15607.47 

 

A comparison of the best solutions obtained with different heuristic methods for the 

third power test system examined (the 15-genarator test system), is given in Table 5.8. 

It can be observed that the proposed GAAPI gives the best solution over fifty 

independent trials, when compared to two other recent, recognized powerful heuristic 

methods such as classical PSO and SOH-PSO.  
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Table 5.8 Best solution for a 15-generator test system with a discontinuous cost of generation 

Unit output (MW) PSO SOH-PSO GAAPI 

P1 455.00 455.00 454.70 

P2 380.00 380.00 380.00 

P3 130.00 130.00 130.00 

P4 129.28 130.00 129.53 

P5 164.77 170.00 170.00 

P6 460.00 459.96 460.00 

P7 424.52 430.00 429.71 

P8 60.00 117.53 75.35 

P9 25.00 77.90 34.96 

P10 160.00 119.54 160.00 

P11 80.00 54.50 79.75 

P12 72.62 80.00 80.00 

P13 25.00 25.00 34.21 

P14 44.83 17.86 21.14 

P15 49.42 15.00 21.02 

Losses 30.49 32.28 30.36 

Total power output 2660.44 2662.29 2660.36 

Total generation cost ($/h) 32798.69 32751.39 32732.95 

 

The best solution determined using the GAAPI algorithm (in fifty independent 

runs) for the 40-generator test system is provided in Table 5.9. For this test system, 

transmission constraints were considered and because no such approach was taken into 

account up to now in the literature for this system, no comparison is available.  
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Table 5.9 Best solution for a 40-generator test system with a nonconvex cost of generation 

Unit output 

(MW) 
GAAPI 

Unit output 

(MW) 
GAAPI 

P1 114.00 P21 550.00 

P2 114.00 P22 550.00 

P3 120.00 P23 550.00 

P4 190.00 P24 550.00 

P5 97.00 P25 550.00 

P6 140.00 P26 550.00 

P7 300.00 P27 11.44 

P8 300.00 P28 11.56 

P9 300.00 P29 11.42 

P10 205.25 P30 97.00 

P11 226.30 P31 190.00 

P12 204.72 P32 190.00 

P13 346.48 P33 190.00 

P14 434.32 P34 200.00 

P15 431.34 P35 200.00 

P16 440.22 P36 200.00 

P17 500.00 P37 110.00 

P18 500.00 P38 110.00 

P19 550.00 P39 110.00 

P20 550.00 P40 550.00 

Losses 10.4506 

Total power output 11545.06 

Total generation cost ($/h) 139864.96 

 

5.5 Chapter summary 

This chapter proposed the application of the GAAPI algorithm to solve the 

nonconvex economic load dispatch problem. The proposed algorithm was redesigned in 

such a way that the various power system constraints may be modelled and respected. It 

is also shown that starting from the solution obtained for the quadratic cost function 

(Lagrange multipliers method), the search space is reduced, and implicitly the 
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computational effort is reduced. The strategy for handling the constraints is to always 

generate feasible solutions and work only with these feasible solutions during the search 

process of API, while the RCGA algorithm may allow infeasible solutions which are 

further controlled by an aggregated penalty objective function. This constraint handling 

method is therefore a hybrid one.  

The proposed algorithm is proven to always find comparable or better solutions in 

a number of independent trials, as compared to other methods available in the power 

systems literature. GAAPI has provided near global solutions, while always satisfying 

the constraints. Further, through the test cases presented, its superiority in robustness is 

evident: it has a high probability to reach the global or quasi-global solution, especially 

in nonconvex formulations. GAAPI converges smoothly to the global optimum, 

avoiding fast convergence that may lead to local optima. 
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Chapter 6 

 

Challenges and solutions for economic dispatch in isolated 

power systems with stochastic generation 

6.1 Introduction 

This chapter deals with the economic dispatch problem of power systems with 

stochastic generation such as electricity generation from wind parks. In this work it is 

assumed that the power system under consideration is an isolated one and that it does 

not have access to an electricity market. The chapter is divided into two parts: i) the 

first part deals with the technical and economic challenges of a system with high share 

of variable generation may face and it is a real case study for the power system of 

Cyprus; ii) the second part deals with economic dispatch decision solutions in order to 

overcome part of the challenges emphasized in the first part of this chapter. Ire
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6.2 Challenges in operating isolated power systems with wind power 

6.2.1 Brief overview of wind integration studies 

In the last decade there has been an increased interest in renewable energy solutions 

for replacing large scale power thermal plants which burn high pollutant fuels such as 

coal, and heavy oil. Some examples of renewable energy sources are wind, solar 

photovoltaic, solar thermal, biomass, and hydro. These sources have the advantage that 

they do not emit any greenhouse gas emissions. Further, some of these technologies, 

such as hydro and wind have competitive capital and generation costs compared to 

conventional generation technologies. Nevertheless, with the exeption of biomass and 

hydro, these technologies have a number of technical and economic drawbacks due to 

their partially predictable generation and almost no dispatch capabilities (in the classical 

sense). Wind energy is the most emerging renewable technology accommodated by the 

power system industry in recent years [172], and therefore several studies have been 

performed concerning the integration of the wind farms in power systems. The focus of 

these studies is mainly on economic (cost of integration) and technical issues 

(reliability, robustness, control). It should be noted that the majority of the literature in 

the field of wind integration mainly deals with the unit commitment problem, while the 

economic dispatch problem has not been addressed as much.  

A bibliographical list of wind impact studies in different countries in Europe, USA 

and Canada with more than 250 references is given in [173]. From these studies, a 

significant contribution was added by Scandinavian countries, Germany, Spain, and 
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USA [174, 175] [176-179]. These countries are among the leaders in the amount of 

electricity generation shared from wind sources. The results of these studies are not 

easy to compare due to a number of factors, such as the models used for wind farms 

(e.g., negative load, or thermal generator with effective load carrying capability), the 

conventional generation mix of the power system under analysis, the size of the 

balancing area and the size of interconnections, differences in methodology, tools and 

data used, and representation and terminology of results.  However, some common 

conclusions related to wind integration measures are: 

 Increase in power system reserve is necessary as the penetration level of wind 

generation increases; 

 The variability of wind power is reduced when referring to a large 

interconnected power system with different sources of generation and having a 

dispersed wind power production;  

 For some systems, there may be a need for increased transmission and larger 

control areas as the penetration level of wind generation increases;  

 Interconnections with other systems allow increasing the share of wind power in 

the power system. 

 

6.2.2 Methodologies and assumptions 

In order to address the technical feasibility and the relative costs and benefits 

associated with the installation and operation of a significant amount of wind power 

farms, this study is carried out using a public version of the WILMAR Planning Tool 

(from here on referred in short as WILMAR), which is a rolling stochastic linear 

programming tool. Further, in order to estimate the needed amount of increase in 
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reserve due to the increased stochasticity in the system caused by the variable 

generation, a very recent reliability method [22] is adopted.  

a. WILMAR Model 

WILMAR is an hour-per-hour stochastic, rolling planning optimization model. It 

was initially designed as a stochastic optimization model for the electricity systems in 

Denmark, Finland, Germany, Norway and Sweden. The tool has been used successfully 

in several studies related to wind integration into the main power grid, studies 

performed for many TSOs in Europe [180] and, recently, in the USA [181]. The model 

optimizes the unit commitment and economic dispatch taking into account the trading 

activities of the different actors on three different types of energy markets: a day-ahead 

market (for physical delivery of electricity), an intra-day market (for handling 

deviations between expected production and consumption agreed upon on the day-

ahead market and the realized values of production and consumption in the actual 

operation hour), and a day-ahead market for automatically activated reserve (frequency 

activated or power-flow activated).   

WILMAR consists of a number of sub-models and databases as shown in Figure 

6.1. However, the main functionality of this planning tool is embedded in the two main 

components: i) a Scenario Tree Tool (STT) which in essence is a program that creates 

the probabilistic forecasts of wind and load, as well as demands for stochastic reserve; 

and, ii) a Scheduling Model (SM), which is a stochastic mixed-integer optimization 
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model (rolling planning procedure) that uses the outputs of the STT as inputs along with 

other generation and transmission data to minimize the expected production cost. 

 

Figure 6.1 Operation schemata of the WILMAR planning tool [182] 

 

The rectangle boxes are models, cylinders are databases, and parallelograms are 

exchanges of data between models and between models and databases. The User Shell 

controls the selection of cases and execution of the models. The arrows indicate data 

exchange, and the dash arrows indicate the flow of commands from the User shell to the 

models.  

b. Sensitivity analysis for operating reserve relative to wind power stochasticity 

The reliability of the system is an objective measure to determine the effect of 

increasing wind power penetration. The actual variability of the load and wind power 

itself do not directly impact the system reserve levels. However, the accuracy of the 
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load and wind power forecasts have a significant effect on the system reserve levels as 

they introduce greater uncertainty in the system. In order to quantify the effects of 

increased uncertainty due to wind generation, the methodology developed by Doherty 

and O’Malley [22], which is based on the reliability criterion explained below.  

The reliability criterion is defined either as being the number of load shedding 

incidents (LSI), or the loss of load expectation (LOLE) tolerated per year. A load 

shedding incident is defined as an incident when there is not enough reserve to meet a 

generation shortfall. Both the LSI and LOLE reliability criteria quantify the likelihood 

of failure but do not quantify the magnitude of load shedding. Doherty linked these 

criteria to the cumulative uncertainty in load and wind forecast and determined the 

probability of LSI in one hour, as a function of the probability of having an incident 

during normal operation hours and after a full or partial outage of one generating unit. 

The full outage probability (FOP) of a unit is the probability that the unit will stop 

providing all of its current output in a period of one hour. Similarly, the partial outage 

probability (POP) is the probability of an instantaneous loss of a portion of the 

generation.  

c. Assumptions of the study 

The power system of Cyprus was chosen as a case study in order to determine the 

technical and economic challenges in isolated power systems with high share of 

stochastic generation. The reference historical year chosen for this study is the year of 
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2008, while the reference forecasted year is the year of 2011. All data that follows are 

related to these reference years, unless mentioned otherwise. 

The power system of Cyprus is a small, isolated power system with an installed 

capacity of 1288MW. There is no hydro energy generation and no heat energy 

production. The thermal generation mix is ensured from three power plants owned by 

the Electricity Authority of Cyprus and from a small power plant owned by one 

independent power producer. Τhe maximum power demand in Cyprus appears in the 

summer due to the influence of tourism, when the population of the island almost 

doubles, and due to the air conditioning devices that work at their full load. Hence, the 

power demand difference between summer and winter is large, reaching a coefficient of 

variance of 0.246. In short, the seasonality of load demand can be summarized in Table 

6.1. 

 

Table 6.1 Power system seasonality in Cyprus as per reference year 2008 

Period  Date  Time  

P 

(MW)  

Q 

(MVAr)  

S 

(MVA)  pf  

Winter Peak  30/1/2008  18:15  908.08  278.00 949,68  0,956  

Spring Off-Peak  26/3/2008  4:00  282.45  -81.00  293,83  0,961  

Summer Peak  28/8/2008  14:00  1024.48  466.13 1125,54  0,933  

Autumn Off-Peak  24/11/2008  3:45  290.60  -93.00  305,12  0,952  

 

The expected wind generation capacity to be installed in Cyprus by the end of 2011 

was around 455 MW, according to CERA’s approval plan [183]. From the set of all 
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wind farms approved to operate around the island there were formed three clustered 

sites as shown in Figure 6.2 (the figure was adapted from [183]). The clusters of wind 

farms (WF) were set up as follows: one wind farm for the Pafos–Limassol (PL) region 

and having a total installed capacity of 118 MW, and two wind farm clusters for 

Larnaca-Lefkosia (LL) region having total installed capacities 311 MW and 26.5 MW, 

respectively. 

According to the distance between the wind farm clusters, a correlation coefficient 

for the wind speed forecasting error between individual farms can be calculated using 

Figure 6.3 which was adopted from [180].  

 

 

Figure 6.2 Clusters of wind farms used for WILMAR planning tool simulations 
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Figure 6.3 Correlation coefficient of wind speed forecast errors as a function of distance 

between individual wind farms 

 

The estimated power output (PWFk) of a cluster k of WFs was obtained applying 

the power curve given in Figure 6.4 and multiplied with the number of turbines 

available on that specific site. Note that this is a rough approximation which may 

significantly differ from the real generation from one wind farm to another, depending 

on the terrain and consequently the dynamics of the air flow hitting each wind turbine 

of the wind farm. The power curve in Figure 6.4 was obtained using real measurement 

data from an onshore Bonus 2 MW wind turbine in Finland. For simplification, in this 

study it is assumed that all the WFs around the island have only Bonus-type wind 

turbines of a rating of 2 MW. 

     ∑      
   

   
 (6.1 ) 
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where, k is the index of wind farm clusters (with k=1:3); NWF is the number of wind 

turbines of the wind farm cluster k, and WPi,k is the power output of the wind turbine i 

of the wind farm cluster k. 

 

 

Figure 6.4 Wind power curve for a generic Bonus 2 MW wind turbine 

 

The standard deviation of load forecast error (ζload) was determined based on 

historical data and it has a value of 25 MW. The standard deviation of the wind forecast 

error for the three clusters of wind farms was determined from [22] and has the 

following vector values according to the established three wind farm clusters: 

ζwind = [10.3, 26.35, 2.21] MW 

Due to the roughness of the terrain, the real distances between wind farms were 

assumed to be 100 km more than the real distance between the wind farm clusters. 
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Therefore, the correlation coefficients were determined from Figure 6.3 and based on 

the increased distance. The standard deviation of the wind forecast error was observed 

to increase with the prediction time horizon [22, 184].  

The probability of full and partial outage of the generating units was calculated 

from historical operation data of the units owned by the Electricity Authority of Cyprus 

(EAC). The most reliable unit has an unplanned full outage probability of 0.6% from 

the total number of hours of operation during one year, and the least reliable unit a 

value of 4.4%. The partial outage probabilities are in the range of 0 to 2.1%.  As the 

amount of electricity generated by the independent power producers (IPP) is negligible 

compared to the EAC production, their reliability data were ignored. For the clearance 

of a generator outage, it is assumed that two hours pass until the reliability of the system 

is restored (same assumption as proposed in [22]).  

 

Table 6.2 Full and partial non-availability of the generating units of the power system of Cyprus 

(2008 data) 

Power Plant  
Installed 

Capacity  

Full Non-availability (hours)  Non-availability (partial)  

Planned  
Un-

planned  
Total  Planned  

Un-

planned  
Total  

Gas turbine 5x37.5MW  0.0%  0.6%  0.6%  0.0%  0.0%  0.0%  

Steam turbine 

Moni  
5x25 MW  17.5%  4.4%  21.9%  0.0%  0.3%  0.3%  

Steam turbine 

Dekelia  
6x60 MW  14.2%  1.5%  15.7%  0.0%  0.1%  0.1%  

Steam turbine 

Vasilikos  
3x128 MW  11.4%  1.9%  13.3%  0.0%  2.1%  2.1%  
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Table 6.2 summarizes the data for full and partial non-availability of the generating 

units of the power system of Cyprus as per the reference year 2008. It is assumed that 

the same data are valid for the reference forecasted year of 2011. No data were 

available related to the CC unit, so it was assumed that the unit will be fully available in 

the forecasted year 2011. 

 

6.2.3 Dispatch challenges arising from the study 

The study was carried out adapting the WILMAR Planning Tool to the power 

system of Cyprus, together with the estimation of the increase in power reserve using 

the reliability method described above. Two main generation regions were considered: 

PL region - with one generic large wind farm and LL region - with two generic wind 

farms. There is full interconnection between them, which reads as there are no 

bottlenecks on the transmission lines between the two regions. Two cases were 

analysed in this study: 1) the case when the system is operated only with conventional 

sources of energy (noWind); and 2) the case when the wind generation will be part of 

the electricity generation mix in Cyprus (withWind).   

Real wind measurements for the representative months were scaled to determine 

the estimated power production according to the assumptions given at the beginning of 

this chapter. The same is true for the estimated load demand for the representative year 

2011. 
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Figure 6.5 and 6.6 present the estimated thermal generation mix for the case 

noWind in the regions PL and LL respectively, for one week of the winter peak load. 

The gas turbines (GT) and steam turbines (ST) run with fuel oil, and the CC unit of 

Vasilikos is considered to operate with liquefied gas (it is assumed that the liquefied gas 

has the same parameters as the natural gas). The Pafos-Limassol (PL) region has 

generation from the Moni power plant, only, while the Larnaca-Lefkosia region has two 

power plants under its jurisdiction (Vasilikos and Dekelia). 

 

Figure 6.5 Generation mix in PL region: noWind case Ire
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Figure 6.6 Generation mix in LL region: noWind case 

 

 Figure 6.7 Generation mix in PL region: withWind case  
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The generation mix in the case withWind, for the same peak load period is 

presented in Figure 6.7 and 6.8, respectively. It can be noted that the wind generation is 

not following the daily load curve as smooth as the thermal units do in the case noWind, 

thus forcing also the thermal units to ramp up or down their generation more often in 

order to meet the load curve shape continuously. The importance of the ramping effect 

of the conventional generation will be emphasized later in Section 6.2. 

 

Figure 6.8 Generation mix in LL region: withWind case 

 

The variation of load demand and power production, as well as the power flow in 

terms of the export/import of energy between the two regions such that to meet the 

demand, for the same peak load period, are provided in Figure 6.9 and 6.10, 
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respectively. The negative values of the Net_Export (export of energy from one region 

to another) in the PL region, has the meaning that the generation mix in this region 

cannot cover its demand. It therefore imports energy from the LL region. In other 

words, the flux of energy goes from the LL region (which has positive values of 

Net_Export) to PL such that at all times the balance between generation and demand are 

respected. CapOnline_conv denotes the available online capacity from conventional 

sources (fuel based units). The real production from conventional sources is denoted as 

Prod_Conv in these figures. Realized_Wind denotes the estimated wind energy 

production.  

 

Figure 6.9 Detailed load demand and realised power for the PL region: withWind case 
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Figure 6.10 Detailed load demand and realised power for the LL region: withWind case 

WILMAR has the ability to simulate the error in forecasting (the difference 

between the simulated wind power production and the simulated forecast of the wind 

power). The simulation of this forecasting error from the valley-load case withWind for 

the PL and LL region is presented in Figure 6.11 and 6.12, respectively. In the legend of 

the figures, the simulated signal of wind power forecast is denoted by Wind_Forecast, 

and the simulated power production from wind is denoted as Realized_Wind, while 

Wind_Shed denotes the amount of wind power which can cause stability problems in 

the operation of the power system. The TSO is therefore advised to shed this amount of 

power. Ire
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Figure 6.11 Wind curtailments in the period of valley-load for the PL region: withWind case 

 

Figure 6.12 Wind curtailments in the period of valley-load in the LL region: withWind case 
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Besides the need for wind curtailment/shedding, it was observed that an increase in 

the frequency of change in loading was needed especially for the fast units (i.e., GTs). 

This effect can be observed by comparing Figure 6.13 with Figure 6.14. Following 

engineering logic, if there is an increase in the frequency of ramping, then there must be 

an increase in the stress of the unit, and consequently a decrease in the maintenance 

period. Therefore, an increase in the cost of operation may occur in long term running 

of the system. However, this study was not intended to estimate this final cost. Future 

research may go in this direction. 

In Figure 6.13 and 6.14, the following notations were used: vgonline denotes the 

online available capacity of the thermal unit (e.g., one GT from Moni power station); 

vgelec is the electricity production (MWh) sold in the Day-Ahead market for the 

thermal unit; vgelec_dpos is the up regulation needed in the Intra-Day market, and 

vgelec_dneg is the down regulation needed in the Intra-Day market, respectively; while 

Prod_rea is the realized production. 
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Figure 6.13 Production from one generic GT at Moni power plant: noWind case 

 

Figure 6.14 Production from one generic GT at Moni power plant: withWind case 

 

Applying the reliability method of Doherty, and limiting the number of shedding 

incidents per year (LSI) up to four, the result shows a need for increase in reserve, as 
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follows: during peak load periods a 10% increase in reserve margins is necessary, while 

up to 20% increase in reserve is required for the valley-load periods in the study case 

withWind.  

6.3 Solutions for better integrating wind power into the main grid 

With the variable and unpredictable nature of many renewable sources of energy 

such as wind and solar energy, many new technical and economic challenges arise 

when operating a power system with a significant infusion of such energy sources. The 

first part of this chapter presented specific technical and economic challenges which 

may appear, especially in isolated power systems, due to variable, unpredictable energy 

generation. In this Section, two solutions are proposed which may help the system 

operator to better integrate wind power into the dispatch process (both economically 

and securely). The first solution refers to a reformulation of the dispatch problem as a 

multi-objective (bi-objective) optimization, where both the operation cost and the 

security of the system are to be optimized simultaneously. The second solution refers to 

the integration of the wind forecast module and the ramping constraint into the dispatch 

process. It is shown that these solutions can help the dispatcher to avoid suboptimal or 

even infeasible dispatch solutions as well as to better use the available reserve. 

Suboptimal solutions means higher costs of generation, while infeasible solutions may 

lead to higher levels of reserve needed to operate the system, which also translates to 

higher generation costs.   
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6.3.1 Multi-objective model for economic dispatch with wind 

A fuzzy model to encounter the penetration level of wind generation acceptable for 

a power system dispatcher at each dispatch time was proposed in [11]. The 

interpretation of this model is as follows: after an a priori stability analysis of the power 

system with variable RES generation, the dispatcher can set thresholds which define the 

stability status of the power system. For example, the dispatcher may state that for a 

specific load demand covered by classical controllable thermal generation and wind 

with a penetration level less than a П
min 

value, the operation of the power system is 

stable; and if the penetration level of wind is higher than a П
max

, the system is unstable. 

The interesting part comes when analyzing cases between these two thresholds, because 

the dispatcher may have the flexibility to decide on the safe level of wind power to 

accept at one determined moment of dispatch. In this work, the quadratic fuzzy model 

of dispatcher attitude towards wind integration (the multi-objective model) is used 

(Figure 6.15).  

The mathematical formulation of the economic dispatch model including the 

dispatcher attitude towards high level of variable RES integration into the main grid is 

given in (6.2), below, where μ is the function that defines the system security level, and 

can be expressed as amount in MW or a cost (μC) expressed in € /h; W represents the 

actual wind power generation (MW) integrated at the current moment into the 

generation mix (dispatched generation); Wav is the total available wind power of the 

wind parks; and Cw is the penalty cost for not using all the available wind power. μ and 

μC are defined in (6.3) and (6.4), respectively. 

Ire
ne

 C
ior

ne
i



 

 

153 

 

min max
W (MW)

minC
maxC cost

1

0

optim
istic

linear

pessim
istic

(€/h)

μ

μC
Se

cu
rit

y 
le

ve
l

 

Figure 6.15 Fuzzy quadratic representation of the security level in terms of wind power 

penetration and cost 
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   {

            

    
                           

            
 (6.4) 

CW refers to the cost associated with the security level, and aw, bw, cw are the 

coefficients of the quadratic fuzzy membership function that defines the security level 

of the system in terms of wind power penetration, and they are determined based on 

experts’ experience.  

We assume that the relationship between the function which defines the level of 

security in terms of power (μ) and its associated cost (CW) is linear. Therefore the 

coefficients remain the same for both functions. A value of one, for the security level, 

states that the system is secure, and a value equal to zero states that the system is 

insecure. The parameters П
min 

(or ПC
min

) and П
max 

(or ПC
max

) depend on the total 

demand of the power system at the specified dispatch time. If the coefficient aw is null, 

then the security level function is linear (Figure 6.15). If aw, bw, cw are chosen such that 

a concave curve is formed above the linear security level, then it is said that the 

dispatcher has an ―optimistic attitude‖, while if they are chosen such that a convex 

curve is formed below the linear security level, it is said that the dispatcher has a 

―pessimistic attitude‖ towards the amount of wind power to be accepted in the grid. 

 The cost of generation OC was chosen to have a nonconvex representation (as 

described in Chapter 2, (2.11)), so as to encounter more realistically modern generators, 

which may form the committed set of generation units.  
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a. Overview of multi-objective optimization 

Most of the real world optimization problems (in any domain) do not concern only 

one objective. Generally, multiple objectives or parameters have to be optimized or 

met, each representing one criterion to be taken into account [112]. In such cases, 

typically there is no single solution that simultaneously optimizes each objective to its 

fullest. Often, an improvement in one objective is gained at the cost of deterioration in 

other objectives, therefore trade-offs are necessary. In short, multi-objective 

optimization refers to the optimization of F sets of N objective functions fi, each of 

them representing one criterion to be optimized. 

  *                           + (6.5) 

There are two main ways to treat multi-objective optimization problems. The 

simplest way, but not always the best, to determine what is optimal in a multi-objective 

optimization problem is to reduce the problem to a single objective optimization 

problem, which implies the creation of a composite objective function. This composite 

function (also known as the aggregation function) is a linear weighted sum F(x) of all 

the functions fi(x) from F. Each objective fi is multiplied with a weight wi representing 

its importance. Using signed weights is also possible to minimize one objective while 

maximizing another. Thus, the aggregation function which represents the single new 

objective function is of the form,  

 ( )  ∑     ( )             
 

   
    (6.6) 
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The above approach will always lead to a single solution according to the vector of 

weights (w) chosen. It is evident that the decision maker may make a better (informed) 

decision if a trade-off surface (Pareto front) between conflicting objectives can be 

inspected before any choice is made.  Thus, the second way to treat multi-objective 

(sometimes conflicting) optimization problems is to look for a solution for which each 

objective has been optimized to such an extent/limit that if going any further will lead 

to the deterioration of other objective(s). This limit is called pareto-optimal set or 

pareto front, and it will be presented in detail below. 

A practical approach to multi-objective optimization is to investigate a set of 

solutions (the best-known Pareto set) that represents the Pareto optimal set as closely as 

possible [185]. A multi-objective optimization approach should achieve the following 

three conflicting goals [186]: 

i. The best-known Pareto front should be as close as possible to the true Pareto front. 

Ideally, the best-known Pareto set should be a subset of the Pareto optimal set. 

ii. Solutions in the best-known Pareto set should be uniformly distributed and diverse 

over of the Pareto front in order to provide the decision-maker with a true picture of 

trade-offs. 

iii. The best-known Pareto front should capture the whole spectrum of the Pareto front. 

This requires investigating solutions at the extreme ends of the objective function 

space. 

For a given computational time limit, the first goal is best served by focusing 

(intensifying) the search on a particular region of the Pareto front. On the contrary, the 
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second goal demands the search effort to be uniformly distributed over the Pareto front. 

The third goal aims at extending the Pareto front at both ends, exploring new extreme 

solutions. 

More specifically, in multi-objective optimization problems we seek to 

simultaneously reach N objectives: yi = fi(x), where i = 1,…, N, and where each 

objective depends upon a vector x of K parameters or decision variables. The 

parameters may also be subject to the J constraints: hj (x) ≥ 0 for j = 1,…, J. 

Without loss of generality, it is assumed that these objectives are to be minimized; 

the problem can therefore be stated as: 

          ( )  (  ( )   ( )     ( ))  

                                                    Subject to 

 ( )  (  ( )   ( )     ( ))    

(6.7) 

A decision vector u is said to strictly dominate another decision vector v (denoted  

u < v) if fi (u) ≤ fi (v) for any i = 1, . ., D, and fi (u) < fi (v) for some i; less stringently u 

weakly dominates v (denoted u - v) if fi(u) ≤ fi(v) for all i. A set of decision vectors is 

said to be a non-dominated set if no member of the set is dominated by any other 

member. The true Pareto front, PF, is the non-dominated set of solutions which are not 

dominated by any feasible solution. 

As a summary, the Pareto dominance concept defines that a solution x dominates 

another solution y if no objective of x is worse than the corresponding one of y and at 

least one objective of x is better than y. Based on this concept, the Pareto optimal front 
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is defined as the set of all non-dominated solutions, and this set is what we want to find 

to solve the multi-objective optimization problem. By searching for the Pareto optimal 

front, this kind of approach relieves the burdens of the decision makers since they only 

need to pick the desired solution from the obtained (approximate) Pareto front, whose 

size is much smaller than the original solution space. This is one reason for the rapid 

growth of research work on solving multi-objective optimization problems by achieving 

(or approximating) the Pareto optimal front. 

b. Modified Pareto-Differential Evolution Algorithm (MPDEA) for the multi-

objective economic dispatch 

Evolutionary algorithms are a kind of global optimization techniques that use 

selection and recombination as their primary operators to tackle optimization problems. 

The Pareto-Differential Evolution algorithm (PDE) was first proposed in [187]. The 

PDE is an adaptation for multi-objective optimization derived from Differential 

Evolution (DE), a branch of evolutionary algorithms developed by Storn and Price 

[188] for optimization problems over continuous domains. In DE, each variable is 

represented in the chromosome by a real number. The description of the algorithm is 

provided below. 
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Table 6.3 Pseudo-code of the Pareto-Differential Evolution Algorithm  

1. Create a random initial population of potential solutions. Each variable is assigned a 

random value according to a Gaussian distribution between its specific LB and UB 

2. Repeat 

2.1. Evaluate the individuals in the population and label those that are non–

dominated. 

2.2. Repeat              

  Find a non–dominated solution among those that are not labeled 

  Label the solution as non–dominated 

Until the number of non–dominated individuals in the population is greater than 

or equal to three  

2.3. If the number of non–dominated individuals in the population is greater than the 

allowed maximum 

         Then  

  Repeat apply the neighborhood distance function  

Until the number of non–dominated individuals in the population is less than 

the allowed maximum 

2.4. Delete all dominated solutions from the population 

2.5.  Repeat 

2.5.1. Select at random an individual as the main parent p1, and two 

individuals, p2; p3 as supporting parents. 

2.5.2. Select at random a variable j. 

2.5.3. For each variable i 

   With some probability Uniform(0; 1)  

    If i = j 

    Then    
        

  
      (  

  
   

  
)  

    Else   
        

  
 

2.5.4.  If the child dominates the main parent 

   Then place it into the population 

  Until the population size reaches its maximum. 

     Until termination conditions are satisfied 
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LB and UB are the lower and the upper bounds, respectively, of the solution vector 

x. The solution vector x is classified into other two main categories, such as children 

(e.g. x
child

) and parents (x
p
). A solution may be a parent in generation i+1 and a child in 

generation i. In order to create a child solution for the next generation, each variable i in 

the main parent, xi
p1

, is perturbed by adding to it a ratio rand=Gaussian(0; 1) of the 

difference between the i
th

 variables of the two supporting parents xi
p2

 and xi
p3

, 

respectively, if a random generated number j is bigger or equal than a predefined 

threshold (probability). At least one variable must be changed. The neighborhood 

distance function determines the individuals that are concentrated in a search area, and 

it is based on Euclidean distance as the distance metric. 

One of the main difficulties in applying any multi-objective optimization 

commercial or open source tool is dealing with the constraints, as the majority of the 

algorithms designed to solve this type of problems were built for unconstrained 

optimization problems, or with linear constraints, only. Therefore, the approach 

followed in this work was to first design a random function that creates the initial 

population only with feasible individuals. A summary of the modifications needed for 

the applicability of PDE algorithm to the multi-objective economic dispatch model is 

given bellow.  

At step 1 (Create a random initial population) from the PDE algorithm described 

above, instead of using the Gaussian distribution between low (LB) and upper (UB) 

bounds, a Feasible Generation function is used to create a random population only with 

feasible individuals according to (6.2). This is the same approach described in the 
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GAAPI algorithm for the economic dispatch problem.  

The neighborhood distance function from point 2.3 is not applied, as the maximum 

number of Pareto-Optimal solutions is set to be the same as the population size. At 

point 2.5.3, the children are checked if they are feasible or not. If they are not, the 

process to create a feasible child is repeated (select other main parent and supporting 

parents from point 2.5.1) until a feasible solution is found or until a number of trials is 

reached. If the exit from the above mentioned loop is done with the maximum number 

of trials, then the child is created at random with the feasible generation function. 

In order to validate the proposed solution, the algorithm was run for all three cases 

(optimistic, pessimistic and linear) of the dispatcher attitude towards wind energy 

integration into the power system as presented in Figure 6.15. A modified IEEE 30-bus 

test system was used to test the proposed algorithm. This test system comprises six 

thermal generators with nonconvex cost of generation and one wind farm. The Pareto-

Optimal sets for these three scenarios are shown in Figure 6.16. Unlike single-objective 

optimization, in multi-objective optimization the decision maker can choose a suitable 

solution based on his/her goals at a certain point in time, from a pool of non-dominated 

solutions. It can be also appreciated that for the same risk level, calculated from 

different membership functions, the optimistic design has the lowest operational cost 

since it includes the largest amount of wind power among all of the three designs. It 

should be noted that the Pareto-Optimal sets are Nonconvex, since the cost of 

generation for all six thermal generating units is also nonconvex. 
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An illustrative non-dominated solution derived in different design scenarios is 

given in Table 6.4. The table gives different Pareto-Optimal dispatch solutions for the 

three scenarios under analysis. The data depicted in the table include the output of 

thermal generating units (P1,…, P6) and the output of the wind farm (W), the 

transmission system losses (calculated only for the thermal generating units), the 

amount of total generation, the total generation cost and the risk level. It can be noticed 

that for a low cost of generation a higher risk must be assumed (the linear case from the 

table), and vice-versa (the optimistic case from the table).  

 

Figure 6.16 Pareto-optimal sets for different attitudes of the dispatcher 

 

The data presented in Table 6.4 is a snapshot of the Pareto-Optimal solutions 

plotted in Figure 6.16. The data were collected randomly from the solution vectors of 
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the three scenarios (pessimistic, optimistic, and linear). Due to the random process of 

the algorithm it is almost impossible to have the solutions in all three cases for the same 

risk level, or for the same cost of generation.     

 

Table 6.4 Solution for different dispatcher attitudes with respect to the level of wind power 

penetration 

Power 

output [p.u.] 

Dispatcher attitude 

Pessimistic 

10-20% 

Linear 

10-20% 

Optimistic 

10-20% 

P1 

P2 

P3 

P4 

P5 

P6 

W 

Losses 

5.0000 

1.6826 

2.1048 

1.1232 

1.7843 

0.5392 

0.5237 

0.1278 

5.0000 

0.9027 

2.5713 

1.4084 

1.2760 

1.0066 

0.5724 

0.1274 

5.0000 

1.6129 

2.6031 

1.0727 

1.0486 

1.0439 

0.3765 

0.1277 

Total generation 12.8856 12.8648 12.8854 

Generation cost ($/h) 1425.3 1423.3 1427.0 

Risk level 1.2942 1.9056 1.0318 

 

6.3.2 Stochastic economic dispatch with secondary reserve regulation 

The second solution which may lead to a better integration of wind power into the 

grid refers to the integration of a wind forecasting module and the reserve constraint 

into the economic dispatch solution. A stochastic economic load dispatch (SED) 

formulation is proposed to incorporate the impact of the variability of wind generation 

on the ramp rate limits constraints. The purpose of this method is to limit the probability 

of generation plus reserve not meeting the load due to the aggregated variability of the 

wind generation and the load demand. To better represent the conditions in real power 
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systems, the cost of modern thermal units with multiple valves is considered. The 

problem is nonconvex and complex; therefore, the hybrid heuristic GAAPI algorithm is 

used to generate the dispatch solution. Numerical results based on a modified IEEE 30-

bus test system are presented to validate the proposed solution. 

a. Secondary Reserve Regulation 

The secondary reserve correction actions are taken to balance the net load and wind 

deviations from their predicted values. In Figure 6.17 it is shown that the scheduled up 

and down secondary reserves (UR and DR, respectively), which are identical to the total 

ramping available from the committed units, may be insufficient to balance the power 

for certain time intervals. In the figure, Δ(W-PD) is the estimated mean variation of 

aggregated wind power and load values over the dispatch interval; ηt is the deviation 

from the estimated mean. If the mean variation is not zero, the system frequency may 

temporarily deviate from its acceptable limits.  

If the calculation of the reserve for unit commitment planning is performed using a 

deterministic approach, then such frequency violations may not be tolerated. However, 

if a probabilistic approach is used, some power imbalance is acceptable, if it occurs 

with a sufficiently low probability. In [189], it is shown that instead of using a 

stochastic program with recurrence, where different net load realizations are modeled 

by scenarios carrying a certain probability of occurrence ([174], [190]), a better and less 

computationally intensive solution is to incorporate the stochasticity of wind generation 

and load demand as a constraint in the ED model. 
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Figure 6.17 Automatic secondary regulation 

 

When the stochastic wind and load variability are to be considered in the ED 

model, an additional constraint has to be added to the nonconvex economic dispatch 

model (5.3). It should be noted that in this model the wind generation is treated as 

negative load and that the variability of the wind and of the load is aggregated. The 

additional constraint states that the probability of the generation plus reserve not 

meeting the load is bounded by the maximum number of load shedding incidents per 

year relative to the economic dispatch time interval and it is summarized as, Ire
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∑      
 

  

∑      
 

   

        (   )  

        ( ) 

(6.8) 

UR and DR are the total upper and lower ramp rate available, respectively; CDF is 

the Cumulative Distribution Function that defines the uncertainty in load and wind 

prediction (Figure 6.18), and ε is the user specified probability bound which can be 

easily determined from a LOLE (loss of load expectation) calculation [22].  

 

Figure 6.18 Normal cumulative density function of the deviation from the estimated mean (ηt) 
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b. Case study  

The test system under analysis is a modified IEEE 30 bus test system which 

consists of six generators having nonconvex cost of generation and to which one big 

wind farm was added. In order to have a more realistic data, a scatter of 5 minutes of 

real measured data from an offshore wind farm in Denmark is used [191]. Figure 6.19, 

which was adapted from [191], shows the measurements obtained during one hour with 

high weather turbulences.  

 

Figure 6.19 Power generation of Horns Rev offshore wind farm on January 18, 2005 

 

c. Analysis of results 

 The analysis is carried out for four intra-hour secure economic dispatch (SED) 

runs, using both mean forecasted values of load minus wind generation (and when the 

forecasted wind power is estimated only one day ahead), and intra-hour forecasted 
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values (supposing that the system is assisted online by a wind forecasting algorithm). 

An assumption made for the calculations in this work is that the active power losses 

associated with the power generated from the wind farm are negligible compared to the 

active power losses due to the contributions of the thermal generators of the power 

system. Therefore, the losses of the system are considered to be the same as when the 

wind farm generates zero power. The assumption is not far from reality as the 

maximum share of wind generation for this particular example is less than 10% of the 

total thermal power share, while the losses are about 1.2% of the total generated power, 

meaning that the contribution of the wind farm to the total system losses is expected to 

be less than 0.12%. The system data are available in Tables A3, A4 and A5. The load 

demand for four fifteen-minute time intervals are given in Table 6.5, where the 

following notations are used:  load shall be read as the difference between real power 

load demand and wind generation; Mean load is the estimated average load as 

determined by a day-ahead forecast for each hour of the day; and the Real load is 

determined based on the value received from a wind forecasting module, which always 

runs before the ED algorithm (this can be seen as a real time forecasting).  

 

Table 6.5 Intrahour load demand 

Time [h:min] Real load [MW] Mean Load [MW] 

9:15 

9:30 

9:45 

10:00 

1153 

1108 

1166.5 

1200 

1182 

1177 

1172.8 

1166 

 

For a fair comparison, the effect of ramp rate constraint on the SED formulation is 
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emphasized, due to the increased variability that may occur in the intra-hour SED runs. 

Tables 6.6 to 6.9 present the ED solutions for 15 minute intervals during one hour. For 

each 15 minute interval, four cases are examined: using real load values (with and 

without ramp rate limits) and mean load values (with and without ramp rate limits, 

denoted in the tables as WithRamp and NoRamp, respectively).  

 

Table 6.6 ED solution for hour 9:15 

 

Power (MW) 

Real Mean 

NoRamp WithRamp NoRamp WithRamp 

P1 432.39 434.46 435.10 435.17 

P2 149.06 147.53 147.73 172.58 

P3 200.03 199.44 200.14 175.15 

P4 127.50 127.51 129.01 128.90 

P5 167.52 167.56 169.27 193.31 

P6 87.50 87.50 112.39 88.83 

Total Generation 1164.03 1164.04 1193.67 1193.97 

Losses 11.034 11.04 11.67 11.97 

Generation Cost ($/h) 1378.89 1378.84 1384.82 1385.41 

PLOAD 1153 1182 

 

Table 6.7 ED solution for hour 9:30 

 

Power (MW) 

Real Mean 

NoRamp WithRamp NoRamp WithRamp 

P1 411.58 410.43 435.21 434.93 

P2 147.53 148.26 149.14 173.78 

P3 175.05 176.61 196.85 176.67 

P4 129.04 127.63 127.67 127.50 

P5 167.51 167.69 192.50 193.37 

P6 87.50 87.59 87.51 82.63 

Total Generation 1118.23 1118.24 1188.90 1188.90 

Losses 10.22 10.24 11.89 11.90 

Generation Cost ($/h) 1371.22 1371.22 1383.86 1385.16 

PLOAD 1108 1177 
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The economic load dispatch solutions indicate a difference in the results depending 

on the case considered. This is expected, since on one hand the load data are real or 

mean, and on the other hand the ramping constraints are or are not considered. For the 

real load data scenario with ramping considered, the total generation cost is always 

smaller or equal than when ramping is not taken into account. For the mean load data 

scenario, the opposite happens, but this is only due to the fact that some units exceed 

their ramping limit, and therefore the solution is also suboptimal in terms of constraint 

violation (e.g., the third unit in Table 6.6).  

 

Table 6.8 ED solution for hour 9:45 

 

Power (MW) 

Real Mean 

NoRamp WithRamp NoRamp WithRamp 

P1 438.55 430.01 434.70 427.71 

P2 168.48 159.98 147.50 175.19 

P3 177.40 188.33 175.05 171.60 

P4 134.87 137.34 129.09 135.27 

P5 168.18 173.07 192.46 186.77 

P6 90.17 88.95 105.88 87.816 

Total Generation 1177.66 1177.69 1184.70 1184.37 

Losses 11.16 11.19 11.90 11.57 

Generation Cost 

($/h) 
1381.96 1381.96 1383.78 1384.38 

PLOAD 1166.5 1172.8 
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Table 6.9 ED solution for hour 10:00 

 

Power (MW) 

Real Mean 

NoRamp WithRamp NoRamp WithRamp 

P1 439.38 430.43 436.33 410.95 

P2 174.37 160.76 153.90 173.20 

P3 202.07 192.86 187.18 177.43 

P4 128.35 140.13 128.72 130.09 

P5 180.27 180.19 179.29 198.45 

P6 87.56 100.09 92.00 87.61 

Total Generation 1212.04 1204.49 1177.44 1177.76 

Losses 12.04 11.76 11.44 11.76 

Generation Cost ($/h) 1388.05 1387.19 1381.81 1382.93 

PLOAD 1200 1166 

 

When comparing the real load data scenario to the mean load data scenario, it is 

obvious that the ED solution depends heavily on the accuracy of load prediction. 

Therefore, as long as the forecasting procedure is called as near as possible to the ED 

run, a more accurate solution will be obtained. On the other hand, when less accurate 

data are used (e.g., the mean load data scenario), more energy from expensive 

generators will be used as an effect of the regulation action (for automatic control 

regulation units) to keep the system generation and load in balance.  

6.4 Summary of the chapter 

This chapter presented a real case study for economic and technical challenges in 

dispatching isolated power systems with stochastic generation such as electricity 

generation from wind parks and limited flexibility. The power system of Cyprus was 

used as a case study. Some of the main conclusions/challenges resulting from the study 
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are: (i) there may be an increase in reserve demand (which can go up to 20% increase) 

especially in the valley load periods which coincide with high instant penetration of 

wind power; (ii) an increase in frequency of ramping in the case of fast units which can 

be translated into shortening the maintenance period intervals, leading to higher 

maintenance costs per year and therefore increasing the failure risk of those units; (iii) 

wind power curtailment may be advised by the system operator when a large error 

between predicted and realized wind occur. Two solutions are proposed to overcome 

some of the above mentioned challenges. The first solution refers to the reformulation 

of the ED problem as a multi/bi-objective optimization, where the cost of generation 

and the security level of the system are optimized simultaneously. The second solution 

addresses the importance of the ramp rate limits in the formulation of the ED problem, 

especially when more variability due to wind power generation is experienced during 

intra-hour dispatch. The second solution refers to a stochastic ED formulation where the 

ramping constraints are depicted as linear stochastic functions. Moreover, when a 

forecasting program is run before each ED run, better integration of wind energy is 

expected, as suboptimal solutions and eventually wind curtailment may be avoided.  
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Chapter 7 

 

Conclusions 

7.1 Concluding remarks 

The economic dispatch is one of the most important, and still challenging and 

highly complex optimization problems in power systems operations. The economic 

dispatch problem, in its primary form, provides an answer to the question ―what is the 

optimal sharing of generation between generators such that the total fuel cost is 

minimized?‖ However, other questions that are important in the operation of power 

systems may also be related to economic dispatch, such as ―what savings are possible 

with economic dispatch and how these savings can be estimated?‖ or ―are there any 

environmental advantages of economic dispatch?‖  

This work concentrated on novel optimization solutions for the economic dispatch 

problem in power systems using more accurate models than the majority of methods 

applied in practice. The models used reflect better the practices of power system 

planning and operation, the integration of renewable generation and the approach of 

handling greenhouse gas emissions, while a secure and reliable operation is ensured.  

Ire
ne

 C
ior

ne
i



 

 

174 

 

One of the major contributions of the present work is the development of a novel 

heuristic optimization algorithm, entitled GAAPI. The hybrid meta-heuristic algorithm 

proposed in this work came into life by linking two other powerful algorithms (RCGA 

and API). The proposed algorithm is relatively simple to implement and manage, and is 

proven to always find comparable or even better solutions compared to other 

optimization methods. The GAAPI algorithm was successfully tested on twenty 

benchmark functions proposed in 2005 at the ―IEEE Congress on Evolutionary 

Computation― as test-bed systems for global optimization methods and proved its 

superiority in the quality of the solution, consistency of results on a number of 

independent runs, and computational efficiency in comparison to various efficient 

heuristic algorithms. It was proven that for most of these functions (15 out of 20 

benchmark functions) GAAPI provided satisfactory or optimum solutions, with very 

little computational effort. The algorithm best performed especially for large, complex 

problems with a dimensionality greater than 30. For seven benchmark functions GAAPI 

gave the best solution reported so far in the literature, with a smaller number of function 

evaluations (10 to 50 times less than other powerful methods). For eight other test 

functions with high dimensionality (n = 30), GAAPI gave near global solutions with 

much less computational effort. However, for a small class of functions (five 

benchmark functions), having mainly small dimensionality (n = 2, n = 4, or n = 6), 

GAAPI failed to find the global optimum solution. The main reasons for this failure is 

the small dimensionality of the problem and the flatness of the objective function 

around the global minimum.  

As a first conclusion, GAAPI is proposed to be used as a robust solution to a large 
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class of continuous global optimization problems such as engineering complex 

optimization problems, especially with large dimensionality, where analytical or other 

heuristic methods fail to give satisfactory results in a reasonable computational time. 

Another major contribution of this work, is the adaptation and application of the 

proposed GAAPI algorithm on the economic dispatch problem in power systems. 

Several formulations of this problem were targeted, having a quadratic cost of 

generation or a nonconvex cost function (with valve point loading effect). The 

algorithm was tested successfully on several IEEE test power systems. Accurate power 

system models were used in order to gain a more realistic view of the problem, as well 

as to improve the current economic dispatch procedures. Comparison with other 

powerful evolutionary computation methods proved the effectiveness and superiority of 

the proposed method and its applicability to real time processing in power systems 

operation. GAAPI has provided the global solution, always satisfying the constraints, 

and proved its superiority in robustness by its high probability to reach the global or 

quasi-global solution, especially in nonconvex formulations. GAAPI converges 

smoothly to the global, avoiding fast convergence that may lead to local optima. 

Moreover, it was proven that starting from the solution obtained for the quadratic form 

of the generation cost function (Lagrange multipliers method), the search space can be 

reduced, and implicitly the computational effort can be reduced. The strategy for 

handling the constraints proposed in this dissertation is to always generate feasible 

solutions and work only with these feasible solutions during the search process. 

Compared to the penalty factors method, this strategy has the advantage of not dealing 

with other parameter settings that complicate the use of the method.  
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The dissertation also contributes with a study which identified and analysed 

challenges in isolated power system operation, as well as with solutions to be 

undertaken to solve this coming problem. The study performed in this dissertation 

discussed both the advantages and the challenges an isolated power system may face 

when variable sources of energy, such as wind energy, are part of the generation mix. 

This is a very hot topic as more and more renewables are to be connected to regional 

power grids. The power system of Cyprus was used as a case study, and the analysis 

was carried out using an open source tool called WILMAR and a reliability based 

method to estimate the spinning reserve needed for a safe operation of the system.  

The results emphasized some advantages wind energy can bring to the economy 

of system operation: CO2 emission reductions due to the partial replacement of thermal 

units’ usage in load coverage, increase in self sustainability and decrease in the 

dependency on fuel imports for the power system of Cyprus. Note that currently Cyprus 

is 100% dependent on fuel import. There is no need for additional conventional 

capacity. However, in terms of TSO concerns, a number of technical and economic 

challenges may occur due to the wider variation of load at balancing units (reduction in 

maintenance period and increase of operation cost). Another challenge, when large 

amounts of wind energy penetrate the network, refers to an increase in spinning reserve 

allocation for isolated power systems. In terms of wind farm owners, they may face 

curtailments due to technical infeasibilities such as unacceptable high costs, generation 

greater than load, and system security concerns, especially during valley-load periods. 

Therefore, a reduction in their revenue may occur. The issue of wind curtailment in 

Cyprus is another serious problem, as there is already an executive decision to 
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accommodate all wind generation. Further studies need to be performed to address this 

issue. 

Two solutions are proposed to overcome part of the above mentioned challenges. 

One refers to the reformulation of the economic dispatch problem as a multi/bi-

objective optimization where the cost of generation and the security level of the system 

are optimized simultaneously. Therefore, another contribution of the current 

dissertation refers to an improved Pareto-Differential Evolution algorithm (MPDEA) 

which was proposed to solve the multi-objective economic dispatch problem, when risk 

assessment due to the partial predictability of the wind and economic operation are both 

taken into account. To perform the economic dispatch of a hybrid power system 

(classical thermal, dispatchable units and RES units with variable generation), the 

dispatcher must ensure the security of the system while the generation cost is 

minimized. An analysis of a dual-objective economic dispatch problem considering 

wind power generation was performed. Economic and security impacts as conflicting 

objectives were modeled in the proposed optimization problem. A quadratic fuzzy 

membership function was used to reflect the dispatcher's attitude toward the wind 

penetration and the wind power cost. In order to validate the model and its applicability, 

the proposed MPDEA method was tested on a modified IEEE bus test system. The 

Pareto-Optimal set of solutions obtained can be interpreted as a map based on which the 

dispatcher (decision maker) can decide which solution serves better his/her interest at a 

specific decision moment. The results of the simulations also proved that the algorithm 

is capable of determining the nearest Pareto Optimal set of the generation dispatch with 

wind power integration, while preserving the diversity in the solution space. 
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The other solution to the dispatch challenges of power systems with variable 

generation addresses the importance of the ramp rate limits in the formulation of the 

economic dispatch problem, especially when several deviations from the predicted 

load/generation are experienced during intra-hour dispatch. The dissertation proposes a 

stochastic economic dispatch formulation where the ramping constraints are depicted as 

linear stochastic functions. A comparison between the model without ramping 

constraints and the model which takes them into account was performed. It was shown 

that the former model can lead to infeasible solutions due to sudden, large deviations 

from the predictions in the case of wind power generation (especially centralized 

generation), which may exceed the ramping capability of the units.  Moreover, it was 

shown that when a forecasting program is run before each economic dispatch call, 

better integration of wind energy is expected, as suboptimal solutions and eventually 

wind curtailment are avoided.  

The dissertation also contributes with a number of implementations of well known 

algorithms such as lambda iteration method for the simplified quadratic economic 

dispatch model, binary and real coded genetic algorithms and particle swarm 

optimization methods used in different stages of the work, mainly for comparison 

reasons. 

7.2 Future steps 

This dissertation contributed with a novel optimization solution, entitled GAAPI, 

with potential applicability to a large class of global continuous complex and 
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unconstrained optimization problems. Therefore, future steps need to be directed 

towards identifying real world problems which can be solved using GAAPI, while 

further improvement in algorithm performance can emerge from these applications. 

One possible improvement of the improvement may result from the investigation of an 

optimal adaptive setting of some of algorithm parameters and by investigating the 

optimal time of switching between the two algorithms (API and the RCGA). Further, a 

more general approach towards the application of GAAPI to constrained global 

optimization can be conducted. Developments in this direction can be guided by 

identification of other engineering complex optimization problems (besides its 

application to the economic dispatch problem in power systems), where GAAPI may be 

applied. 

 The proposed GAAPI was adapted for application to the dispatch of generation in 

power systems, where IEEE test systems were used to validate the algorithm 

performance. Adaptation of GAAPI for multi-objective optimization and application to 

the environmental and secure economic dispatch formulation may also be conducted. 

Furthermore, an interest from various industry members was expressed in the 

possibility of using the GAAPI solution to the generation dispatch of real power 

systems, such as the power system of Cyprus. This possibility is being investigated. 

The GAAPI algorithm may be extended to address the more general problem of unit 

commitment. Further, as the solution is finally intended to be extended as an economic 

dispatch tool for the power industry, further work needs to be directed towards the 

development of a GUI with a user friendly interface for the power system engineers.  

The GUI application is intended to be offered to a number of electric utilities (for user 
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acceptance tests), thus receiving constructive criticism on the performance of the tool, 

which may lead to further enhancements of its features.  

This dissertation has also addressed the economic and technical challenges in 

dispatching the generation from a mixed power portfolio where renewable and partially 

predictable generation in significant amounts is part of the generation mix. Some of the 

challenges raised from the study are difficult to quantify, such as the increase in cost of 

operating the system. A study to quantify the increase in maintenance cost of fast 

generating units that cope with the partial predictability of wind energy generation 

accommodated in large amounts may give one indication, while the amount of reserve 

needed for secure operation and how this translates into cost is another potential 

indicator.  
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Appendix 

A1. Global optimization benchmark test functions 
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where, ij and ij are random numbers in [-100, 100], and i is a random number in  

[-, ]. 
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where, 

[a1,…, a11] = [0.1957 0.1947 0.1735 0.16 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 

0.0246]; 

[b1,…, b11] = [4  2  1  0.5 1/4  1/6  1/8  1/10  1/12  1/14  1/16]. 
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[c1 … c4] = [1 1.2  3  3.2]; 

[   ]    [

            
              
           
              

]  

 

[   ]    [

                                    
                                    
                                    
                                    

]  

 

A2. Plots of the most common global optimization benchmark 

functions 

 

Figure A.1 Test function F16 

 

 

Figure A.2 Test function F17 Ire
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Figure A.3 Rastrigin’s function 

 

Figure A.4 Akley’s function 

 

Figure A.5 Grienwangk’s function 

 

Figure A.6 Rosenbrock’s function 

 

Figure A.7 Sphere function 

 

Figure A.8 Quadratic function Ire
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A3. Characteristics of the IEEE test power systems 

Table A.1 Capacity and cost coefficients: 3-unit test system (PD=850 MW)  

Generator Pmin Pmax A b c e f 

1 150 600 561 7.92 0.001562 300 0.0315 

2 100 400 310 7.85 0.001940 200 0.0420 

3 50 200 78 7.97 0.004820 150 0.0630 

 

Table A.2 B-loss coefficients: 3-unit test system 

  [
                      
                     
                      

]  

   ,                       -       

B00 = 0.040357 

 

Table A.3 Capacity and cost coefficients: 6-unit test system (PD=1263 MW) 

Generator Pmin Pmax A b C E F 

1 100 500 240 7.0 0.0070 300 0.0315 

2 50 200 200 10.0 0.0095 150 0.063 

3 80 300 220 8.5 0.0090 200 0.042 

4 50 150 200 11.0 0.0090 100 0.084 

5 50 200 220 10.5 0.0080 150 0.063 

6 50 120 190 12.0 0.0075 100 0.084 

 

 

Table A.4 B-loss coefficients: 6-unit test system 

  

[
 
 
 
 
 
                                       
                                      
                                 
                                        
                                         
                                          ]
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Table A.5 Ramp rate limits and prohibited operating zones: 6-unit test system 

Generator 
P

0 

(MW) 

UR 

(MW/h) 

DR 

(MW/h) 

Prohibited zones 

(MW) 

1 440 80 120 [210 240]; [350 380] 

2 170 50 90 [90 110]; [140 160] 

3 200 65 100 [150 170]; [210 240] 

4 150 50 90 [80 90]; [110 120] 

5 190 50 90 [90 110]; [140 150] 

6 110 50 90 [75 85]; [100 105] 

 

 

Table A.6 Capacity and cost coefficients: 15-unit test system (PD=2630 MW) 

Generator Pmin Pmax a b C 

1 150 455 671 10.1 0.000299 

2 150 455 574 10.2 0.000183 

3 20 130 374 8.8 0.001126 

4 20 130 374 8.8 0.001126 

5 150 470 461 10.4 0.000205 

6 135 460 630 10.1 0.000301 

7 135 465 548 9.8 0.000364 

8 60 300 227 11.2 0.000338 

9 25 162 173 11.2 0.000807 

10 25 160 175 10.7 0.001203 

11 20 80 186 10.2 0.003586 

12 20 80 230 9.9 0.005513 

13 25 85 225 13.1 0.000371 

14 15 55 309 12.1 0.001929 

15 15 55 323 12.4 0.004447 
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Table A.7 Ramp rate limits and prohibited operating zones: 15-unit test system 

Generator P
0 
(MW) UR (MW/h) DR (MW/h) Prohibited zones (MW) 

1 400 80 120 - 

2 300 80 120 [185  225]; [305 335]; [420 450] 

3 105 130 130 - 

4 100 130 130 - 

5 90 80 120 [180 200]; [305 335]; [390 420] 

6 400 80 120 [230 255]; [365 395]; [430 455] 

7 350 80 120 - 

8 95 65 100 - 

9 105 60 100 - 

10 110 60 100 - 

11 60 80 80 - 

12 40 80 80 [30 40]; [55 65] 

13 30 80 80 - 

14 20 55 55 - 

15 20 55 55 - 

 

Table A.8 Capacity and cost coefficients: 40-unit test system (PD=10500 MW) 

Generator Pmin Pmax a b c e f 

1 36 114 94.705 6.73 0.0069 100 0.084 

2 36 114 94.705 6.73 0.0069 100 0.084 

3 60 120 309.54 7.07 0.02028 100 0.084 

4 80 190 369.03 8.18 0.00942 150 0.063 

5 47 97 148.89 5.35 0.0114 120 0.077 

6 68 140 222.33 8.05 0.01142 100 0.084 

7 110 300 287.71 8.03 0.00357 200 0.042 

8 135 300 391.98 6.99 0.00492 200 0.042 

9 135 300 455.76 6.6 0.00573 200 0.042 

10 130 300 722.82 12.9 0.00605 200 0.042 

11 94 375 635.2 12.9 0.00515 200 0.042 

12 94 375 654.69 12.8 0.00569 200 0.042 

13 125 500 913.4 12.5 0.00421 300 0.035 

14 125 500 1760.4 8.84 0.00752 300 0.035 

15 125 500 1728.3 9.15 0.00708 300 0.035 
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Generator Pmin Pmax a b c e f 

16 125 500 1728.3 9.15 0.00708 300 0.035 

17 220 500 647.85 7.97 0.00313 300 0.035 

18 220 500 649.69 7.95 0.00313 300 0.035 

19 242 550 647.83 7.97 0.00313 300 0.035 

20 242 550 647.81 7.97 0.00313 300 0.035 

21 254 550 785.96 6.63 0.00298 300 0.035 

22 254 550 785.96 6.63 0.00298 300 0.035 

23 254 550 794.53 6.66 0.00284 300 0.035 

24 254 550 794.53 6.66 0.00284 300 0.035 

25 254 550 801.32 7.1 0.00277 300 0.035 

26 254 550 801.32 7.1 0.00277 300 0.035 

27 10 150 1055.1 3.33 0.52124 120 0.077 

28 10 150 1055.1 3.33 0.52124 120 0.077 

29 10 150 1055.1 3.33 0.52124 120 0.077 

30 47 97 148.89 5.35 0.0114 120 0.077 

31 60 190 222.92 6.43 0.0016 150 0.063 

32 60 190 222.92 6.43 0.0016 150 0.063 

33 60 190 222.92 6.43 0.0016 150 0.063 

34 90 200 107.87 8.95 0.0001 200 0.042 

35 90 200 116.58 8.62 0.0001 200 0.042 

36 90 200 116.58 8.62 0.0001 200 0.042 

37 25 110 307.45 5.88 0.0161 80 0.098 

38 25 110 307.45 5.88 0.0161 80 0.098 

39 25 110 307.45 5.88 0.0161 80 0.098 

40 242 550 647.83 7.97 0.00313 300 0.035 
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