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Abstract

On-line condition monitoring provides information about the existence of PDs

in cables and their accessories under normal operating conditions and lies at

the heart of a condition-monitoring program of power equipment. Identifica-

tion of the source of a PD and the evolution of the measured quantity of PD

activity over time are of paramount importance for the assessment of the insu-

lation integrity of power equipment. In such a continuous monitoring system

the feature vector has to have the minimum possible number of dimensions

otherwise classification times can be very slow for real-time implementation.

The motivation behind this work, and hence its contribution is to propose

and evaluate two complementary lower dimensional feature vectors based on

time and phase-resolved measurements, which can be exploited in on-line

scenarios. Towards this end the methodology that is followed is the creation of

an experimental database of known PD sources, its analysis using statistical

and signal processing methods, the proposition of the feature vectors, and

their assessment using supervised, unsupervised, experimental and field data.

Firstly a database of experimental PDs of different sources is built, based on an

experimental set-up in a high voltage laboratory under controlled conditions.

Based on analysis of this database two feature vectors of lower dimensional-

ity, one using time-resolved and another using phase-resolved measurements,

for use in a continuous on-line system, are proposed. The tools employed in

achieving a compact characterisation of different PD sources are the Wavelet

Packets Transform and Higher Order Statistics. The WPT provides an adap-

tive time frequency decomposition of the PD signals, resulting in a compact

representation, and specific nodes of the best basis tree are selected using a

similar procedure for the two proposed features. The HOS are employed to

derive statistical descriptors of the wavelet coefficients of the selected nodes,

reducing even further the dimensionality.
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While the proposition of these proposed features is one novelty of this work,

their evaluation using different algorithms and data is another. Firstly they

are evaluated using the experimental database and two supervised algorithms

that utilise different training principles, the Support Vector Machines (SVM)

and the Probabilistic Neural Network (PNN). The SVM is used to compare

the proposed features to already existing works that employ the raw wavelet

coefficients as features. Despite the slight reduction in classification accuracy

the proposed features show comparable rates to existing solutions, taking into

account the significant reduction in the dimensionality. The proposed feature

vectors are then employed to directly compare the SVM and the PNN, which

provide similar results, irrespective of the training method employed. In all

the cases statistical analysis by the use of tolerance intervals is used to support

the results.

Next the proposed time-resolved feature is evaluated using an unsupervised

algorithm simulating on-line conditions where the use of supervised algorithms

poses a problem as the training class labels and the number of PD sources

are not a priori known. The use of unsupervised or clustering algorithms

can provide this information, or even alleviate the need for training data.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

algorithm using the time-resolved proposed feature vector is used on both

experimental, and field data acquired from the network of the Electricity

Authority of Cyprus. The results demonstrate the use of this feature in on-

line field measurements, as a pre-processing step to Phase Representation

Partial Discharge (PRPD) analysis.
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Abstract

Η παρακολούθηση για ύπαρξη Μερικών Ηλεκτρικών Εκκενώσεων (ΜΗΕ) σε

πραγματικές συνθήκες προσφέρει σημαντικές πληροφορίες για την κατάσταση

του διηλεκτρικού των υπογείων καλωδίων μεταφοράς και διανομής και συνεπώς

βρίσκεται στην πρώτη γραμμή ενός προγράμματος συντήρησης του εξοπλισμού

ισχύος. Η αναγνώριση της πηγής της ΜΗΕ και της εξέλιξης της τιμής της με

το χρόνο είναι υψίστης σημασίας για την εκτίμηση της ακεραιότητας του διη-

λεκτρικού σε εξοπλισμό ισχύος. Προς επίτευξη τούτου χρειάζεται ένα συνεχές

σύστημα παρακολούθησης, μια από τις ιδιότητες του οποίου πρέπει να είναι η

ελαχιστοποίηση των διαστάσεων του χαρακτηριστικού διανύσματος, ούτως ώ-

στε ο αλγόριθμος κατηγοριοποίησης να μην είναι πολύ αργός και άρα αδύνατο

να χρησιμοποιηθεί σε ένα σύστημα πραγματικού χρόνου.

Αυτή η ερευνητική εργασία δημιούργησε μια πειραματική βάση δεδομένων βα-

σισμένη σε μια σε εργαστηριακή διάταξη κάτω από ελεγχόμενες συνθήκες. Α-

κολούθως, με βάση την ανάλυση της βάσης δεδομένων, προτείνονται δύο χαρα-

κτηριστικά διανύσματα μικρότερων διαστάσεων, ένα για δεδομένα με βάση το

χρόνο και άλλο για δεδομένα με βάση την φάση, τα οποία έχουν την δυνατότη-

τα να χρησιμοποιηθούν σε ένα συνεχές σύστημα παρακολούθησης πραγματικού

χρόνου. Για να επιτευχθεί ο συμπαγής χαρακτηρισμός των διαφορετικών πηγών

ΜΗΕ οι μέθοδοι ανάλυσης των πακέτων κυματιδίων και της ανώτερης τάξης

στατιστικής χρησιμοποιούνται. Τα πακέτα κυματιδίων αποσυνθέτουν το σήμα

σε μια χρονική και φασματική απεικόνιση, προσαρμοσμένη στα χαρακτηριστικά

του σήματος επιτυγχάνοντας συμπαγέστερη απεικόνιση. Συγκεκριμένοι κόμβοι

του δέντρου της καλύτερης βάσης επιλέγονται από μια παρόμοια διαδικασία για

τα δυο προτεινόμενα χαρακτηριστικά διανύσματα. Κατόπιν μέσω της χρήσης της

ανώτερης τάξης στατιστικής πραγματοποιείται στατιστικός χαρακτηρισμός των

συντελεστών κυματιδίων των επιλεγμένων κόμβων, επιτυγχάνοντας περαιτέρω

μείωση της διάστασης.

Τα προτεινόμενα χαρακτηριστικά διανύσματα αξιολογούνται από δύο εποπτικούς

αλγόριθμους (τα πιθανολογικά νευρωνικά δίκτυα και τις μηχανές υποστήριξης
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διανυσμάτων), οι οποίοι εκπαιδεύονται βασιζόμενοι πάνω σε δύο διαφορετικές αρ-

χές, χρησιμοποιώντας την πειραματική βάση δεδομένων. Οι Μηχανές Υποστήρι-

ξης Διανυσμάτων (ΜΥΔ) χρησιμοποιούνται για να συγκριθούν τα προτεινόμενα

χαρακτηριστικά διανύσματα με παρόμοιες εργασίες οι οποίες χρησιμοποιούν τους

συντελεστές των κυματιδίων ως χαρακτηριστικά διανύσματα. Παρ όλη την μι-

κρή μείωση στην ακρίβεια της κατηγοριοποίησης, τα προτεινόμενα διανύσματα

παράγουν αποδεκτά αποτελέσματα, δεδομένης και της αισθητής μείωσης στις

διαστάσεις. Ακολούθως τα προτεινόμενα διανύσματα χρησιμοποιούνται στην

απευθείας σύγκριση των ΠΝΝ και των ΜΥΔ, οι οποία δίδει παρόμοια αποτε-

λέσματα, ανεξαρτήτως της μεθόδου εκπαίδευσης. Σε όλες της περιπτώσεις τα

αποτελέσματα επιβεβαιώθηκαν μέσω της στατιστικής ανάλυσης χρησιμοποιών-

τας τα διαστήματα ανοχής.

Σε συνθήκες πραγματικών δεδομένων οι εκπαιδευόμενοι αλγόριθμοι μπορεί να

αντιμετωπίσουν προβλήματα καθώς οι ετικέτες τάξης των δεδομένων που χρησι-

μοποιούνται για εκπαίδευση και ο αριθμός των διαφορετικών πηγών δεδομένων

δεν είναι εκ των προτέρων γνωστά. Ευτυχώς η χρήση αλγόριθμων χωρίς επο-

πτεία ή αλγόριθμων ομαδοποίησης δίνει αυτές τις πληροφορίες ή μπορεί ακόμη και

να καταργήσει την ανάγκη για δεδομένα εκπαίδευσης. Συνεπώς χρησιμοποιείται

ο αλγόριθμος DBSCAN με το προτεινόμενο χαρακτηριστικό διάνυσμα που χρη-

σιμοποιεί χρονικά δεδομένα πάνω σε πειραματικά και πραγματικά δεδομένα από

το δίκτυο της Αρχής Ηλεκτρισμού Κύπρου (ΑΗΚ). Τα αποτελέσματα καταδει-

κνύουν τη δυνητική χρησιμότητα του προτεινόμενου χαρακτηριστικού διανύσματος

ως εργαλείο προ επεξεργασίας της ανάλυσης σε σχέση με την φάση (PRPD).

Dem
etr

es
 Eva

go
rou



Acknowledgements

Κι αν πτωχική την βρεις, η Ιθάκη δεν σε γέλασε. ΄Ετσι σοφός που

έγινες, με τόση πείρα, ήδη θα το κατάλαβες η Ιθάκες τι σημαίνουν.

-Κ. Καβάφης

I would like to acknowledge the support, encouragement and feedback of a

number of people that made this work possible. Firstly many thanks to

my supervisor Dr George E. Georghiou for his guidance, encouragement and

motivation. He has done everything possible to see that this work had a

successful outcome and his behaviour has set an example for me. Working

with his team has been a beneficial learning experience both for my personal

and professional development. Without his contribution none of this would

have been possible.

A special acknowledgement to Dr Andreas Kyprianou for his contribution

in the signal processing part of this work and for our discussions that led

to fruitful development of ideas. His guidance was more than valuable and

without it this work would had been so much less interesting.

Special thanks to Prof. Paul L. Lewin for his feedback throughout this work

and for granting us access to The Tony Davies High Voltage laboratory at the

University of Southampton, where part of the experiments was performed.

Also the help of Dr Liewi Hao in setting up the experiments and providing

all the necessary help during our visit at the lab is acknowledged.

The involvement of the Electricity Authority of Cyprus was an integral part of

this work, both because of its financial contribution, as well as for allocating

personell that escorted us during the field measurements, as well as granting

us access to its T&D network. Special attribute is made to Dr Venizelos

Efthymiou and Dr Andreas Stavrou from the EAC for their trust in this

work.

Dem
etr

es
 Eva

go
rou



The financial support of the EAC and the Cyprus Research Promotion Foun-

dation for funding this work under contract ΤΕΧΝΟ/1104/10 and ΤΕΧΝΟΛΟ-

ΓΙΑ/ΜΗΧΑΝ/0308(ΒΙΕ)/05 is greatly appreciated.

Last, but not least, I thank my wife and my family for their understanding,

tolerance and support during the years required to complete this work.

Dem
etr

es
 Eva

go
rou



To my parents, my wife, and to my daughter.

Στους γονείς, την γυναίκα και κόρη μου.

A mis padres, mi mujer y mi hija.

Dem
etr

es
 Eva

go
rou



Contents

Nomenclature xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Physical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.2 PD Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Work done towards the solution of the problem . . . . . . . . . . . . . . 7

1.5 Novelty of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Outline of the proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 List of publications out of the thesis . . . . . . . . . . . . . . . . . . . . . 12

2 Building a database of experimental PD sources 14

2.1 PD generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Recurrence of discharges . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 PD detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Underground cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 High frequency behaviour of cables . . . . . . . . . . . . . . . . . 20

2.4 Bandwidth of HFCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Artificial PD Sources . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Apparent charge . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 Calibration of experimental arrangement . . . . . . . . . . . . . . 29

2.6 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Phase data using Peak Detection . . . . . . . . . . . . . . . . . . 32

2.6.2 Single Pulse data . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix

Dem
etr

es
 Eva

go
rou



3 Feature Extraction 37

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Phase-Resolved Representations . . . . . . . . . . . . . . . . . . . 38

3.1.2 Time Resolved Representations . . . . . . . . . . . . . . . . . . . 40

3.2 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The Continuous Wavelet Transform (CWT) . . . . . . . . . . . . 42

3.2.2 The Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Wavelet Packets Transform (WPT) . . . . . . . . . . . . . . . . . 47

3.2.4 WPT parameters selection . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Higher Order Statistics (HOS) . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Use of cumulants to describe the pdf . . . . . . . . . . . . . . . . 52

3.4 Time-resolved PD proposed feature . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Selection of the Wavelet Packet Transform Nodes . . . . . . . . . 55

3.4.1.1 Error analysis on the selected nodes . . . . . . . . . . . 57

3.5 Phase Resolved PD Proposed Feature . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 PD Classification 64

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Probabilistic Neural Network (PNN) . . . . . . . . . . . . . . . . 67

4.2.2 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . 69

4.3 Methodology for Parameter Selection . . . . . . . . . . . . . . . . . . . . 73

4.4 Time Resolved Data Results . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Proposed vs higher dimensional feature vector using the SVM . . 75

4.4.2 PNN and SVM comparison using the proposed feature . . . . . . 78

4.4.3 Classification Accuracy Assessment by Tolerance Intervals . . . . 78

4.4.4 Performance with Additive White Gaussian Noise (AWGN) . . . 80

4.5 Phase Resolved Data Results . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Proposed vs higher dimensional feature vector using the SVM . . 83

4.5.2 PNN and SVM using the proposed feature . . . . . . . . . . . . . 85

4.5.2.1 Principal Component Analysis (PCA) . . . . . . . . . . 85

4.5.3 Classification Accuracy Assessment by Tolerance Intervals . . . . 87

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x

Dem
etr

es
 Eva

go
rou



5 Clustering using the Proposed Time-resolved feature 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 91

5.3 Evaluation on multiple sources using laboratory data . . . . . . . . . . . 93

5.4 Evaluation using laboratory data collected from PILC loops . . . . . . . 97

5.5 Evaluation using field data . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Field data from Pavlou Nirvana substation . . . . . . . . . . . . . 100

5.5.2 Field data from Kato Lakatamia substation . . . . . . . . . . . . 101

5.5.3 Field data from Santa Rosa substation . . . . . . . . . . . . . . . 104

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions 107

7 Future Work 110

References 124

xi

Dem
etr

es
 Eva

go
rou



List of Figures

1.1 Flow chart of the work done in this thesis towards the proposal and eval-

uation of lower dimensional feature vectors for use in continuous on-line

monitoring systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 External (E0) vs internal (Ei) electric field for (a) gas-filled void in an

insulator and (b) corona in air configuration (taken from [1]) . . . . . . . 15

2.2 Behaviour of Etot(t) under the application of a 50 Hz voltage (taken from

[1]). The recurrence of PDs is explained with reference to the electric

fields. The total electric field Etot(t) is the sum of the externally applied

E0(t) and the internal Ei(t) fields. When it reaches a value above Einc

and provided that a free electron is available then a PD occurs. The

total electric field immediately after a PD occurrence drops to Eres, and

subsequently rises approximately as E0(t). When it is raised again above

Einc another discharge occurs and this pattern repeats itself. . . . . . . . 16

2.3 Comparison of a commercial HFCT sensor and an epoxy mica capacitor

measurement at an on-line PD monitoring system . . . . . . . . . . . . . 17

2.4 Explanation of the main principal design elements in High Voltage cables

(taken from [2]). The figure illustrates the stranded conductor that can

be made of aluminium or copper, together with the conductor and insula-

tion screens (semiconductor shields) which differs for paper-insulated and

XLPE cables. In paper-insulated they consist of copper tape interlapped

with kraft or metalised kraft paper tape while in polymeric dielectrics they

consist of extruded semiconducting layers of polyethylene (PE) which en-

sures good bonding between this layer and the insulation. The metal and

outer sheaths are not considered here. . . . . . . . . . . . . . . . . . . . . 19

2.5 Commercial HFCT (IPEC 140/100) analysed . . . . . . . . . . . . . . . . 21

2.6 HFCT Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Diagram of the experimental setup . . . . . . . . . . . . . . . . . . . . . 22

xii

Dem
etr

es
 Eva

go
rou



2.8 Experimental setup for generating PDs of different types . . . . . . . . . 24

2.9 Common defects in polymeric cables (taken from [2]) . . . . . . . . . . . 25

2.10 PD explanation through an electrical model using capacitors (reproduced

from [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 PD test circuit where Ct is the total capacitance across the specimen (taken

from [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Robinson detector (bottom) and oscilloscope (top) setup to measure the

output of the detector and the reading from the HFCT on different channels 30

2.13 (a) Plot of the oscilloscope reading for the Robinson detector calibration

pulse in and (b) simultaneous reading of the Robinson detector and the

HFCT sensor output for an internal discharge . . . . . . . . . . . . . . . 31

2.14 One cycle phase-resolved measurements for various PD types, at different

voltages sampled at 500 kS/s (using the peak detection function) . . . . . 33

2.15 Single pulse data measurements for various PD types, at different voltages

sampled at 500 MS/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Explanation of the capability of the CWT to highlight the local character-

istics of a signal based on dilations and translations. The transform is an

inner product of the signal with the wavelet function and at dilations and

translations where there is similarity between the two large coefficients are

being generated (figure taken from [4]). . . . . . . . . . . . . . . . . . . . 43

3.2 Scalogram plots of the CWT coefficients for two different experimental

PD sources. The scalogram is given as the energy of the coefficients

PWx(a, b) = ‖Wx(a, b)‖2 and the plots here show the PWx(a, b) values

normalised to the signal energy (‖x(t)‖2). The actual time plots of the

signals on top of the scalograms show that the CWT delineates differ-

ences in the signals to produce different coefficients in the time-frequency

decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The implementation of a fast transform for the WT ideal for computations

is shown as a series of filter operations with subsamplings (↓2). The result-

ing tree from the implementation is also shown which has been expanded

up to level 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Implementation of the WPT as a series of filter operations with subsam-

pling. The full resulting tree from the implementation is also shown which

has been expanded up to level 5. . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Best Basis tree representation for an experimental corona single pulse at

an applied voltage of 6 kV using Shannon’s entropy as a cost function. . 49

xiii

Dem
etr

es
 Eva

go
rou



3.6 The Symmlets 8 (a) scaling and (b) wavelet functions chosen as the func-

tions to be used in the wavelet analysis of PDs. . . . . . . . . . . . . . . 50

3.7 Time plot of experimentally acquired internal discharge at an applied volt-

age of 26 kV against its reconstruction using the wavelet coefficients d51[k]

which shows that coefficients in specific nodes can be used to delineate

different time-frequency characteristics of a signal. . . . . . . . . . . . . . 55

3.8 Best Basis tree expansion for single pulse experimental PD data of different

sources (sampled at 500 MS/s) calculated through mimimisation of Shan-

non’s entropy cost function and using a Symmlet wavelet with 8 vanishing

moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 The “common” best basis tree selected using the proposed procedure for

node selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Confidence interval for the feature vector. The feature vector has been

broken down in order to make more visible the differences between the

different statistical descriptors used. In 3.10a η, estimated from the wavelet

coefficients of the selected nodes is plotted. In 3.10b σ and in 3.10c γ1 are

shown. Finally 3.10d plots γ2. The middle line is the value of the mean

of the estimated quantity while the box enclosing it is the 0.95 confidence

interval, with 500 samples used. The plot resulted in separate values for

the majority of the dimensions, especially when γ2 values are considered,

showing the potential of this feature to be used as a fingerprint in PD

source identification. The numbering in the figure stands for 1: Corona,

2: Floating, 3: Internal, 4: Surface. . . . . . . . . . . . . . . . . . . . . . 60

3.11 Best Basis tree expansion for phase resolved experimental PD data of dif-

ferent sources (sampled at 500 kS/s through the peak detection function

of the oscilloscope) calculated through mimimisation of Shannon’s entropy

cost function and using a Symmlet wavelet with 8 vanishing moments. . . 62

4.1 Probabilistic Neural Network using a mixture of Gaussian densities (after

Streit and Luginbulh [5]). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Optimal Canonical Separating Hyperplane (OCSH). . . . . . . . . . . . . 71

4.3 Plot of the optimum parameters search using the cross validation technique

for the SVM using the proposed feature. . . . . . . . . . . . . . . . . . . 76

4.4 Plot of the classification rates for the different PD sources with varying

SNR values, using a SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Plot of the classification rates for the different PD sources with varying

SNR values, using a PNN. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiv

Dem
etr

es
 Eva

go
rou



4.6 Plot of the first two Principal Components of the phase-resolved feature

extraction for PD data of different sources (variables normalised) for data

visualisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Plot of the first three principal components of the HOS feature vector on

selected nodes of the wavelet tree of experimental data. . . . . . . . . . . 94

5.2 Plot of the k-distance graph, for k=13, for DBSCAN ε and kmin parameter

selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Plots of the output of the DBSCAN algorithm on the left and superim-

posed with the experimental data on the right. The squares around the

experimental data indicate the points that have been included in a cluster

by the algorithm while their colour identifies the cluster number. . . . . . 95

5.4 Spike induced defect in a joint/splice of a 3 phase belted PILC cable (185

mm2) loop in phase 2 (L2) pointing towards phase 1 (L1). . . . . . . . . 97

5.5 Mechanical crushing of a PILC using a sharp edge. . . . . . . . . . . . . 98

5.6 PRPD data for 15 cycles when the cable is able to withstand the rated

voltage after its failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Clustering for PILC spike and mechanical crushing data. . . . . . . . . . 99

5.8 PRPD and typical single pulse data for classes 1 and 2 identified by the

DBSCAN algorithm with kmin = 4 and ε = 5. . . . . . . . . . . . . . . . . 100

5.9 Plot of the first three principal components of the feature vector of the

processed by the DBSCAN algorithm with parameters ε set to 0.7 and

kmin to 4. The points marked with x are the points identified as class 1

while those marked with an x enclosed by a diamond as class 2. Outliers

have been marked with an x and enclosed by a square. . . . . . . . . . . 101

5.10 Plots of the waveforms of data clustered into class 1 (a), class 2 (b) and

outliers (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 PRPD data plot of the on-line field, data at cable loop of the EAC network

for classes 1 and 2 identified by the DBSCAN algorithm with ε set to 0.7

and kmin to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.12 Plot of the first three principal components of the feature vector of the

processed by the DBSCAN algorithm with parameters ε set to 1.5 and

kmin to 4. The points marked with · are the ones identified in class 1 while

outliers have been marked with an ∗ . . . . . . . . . . . . . . . . . . . . . 103

5.13 Plots of the waveforms of data clustered into class 1 (a) and outliers (b). 103

xv

Dem
etr

es
 Eva

go
rou



5.14 PRPD data plot of the on-line field data at cable loop of the EAC network

for class 1 identified by the DBSCAN algorithm with ε set to 1.5 and kmin

to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 Plot of the first three principal components of the feature vector of the

processed by the DBSCAN algorithm with parameters ε set to 1.5 and

kmin to 4. The points marked with · are the ones identified in class 1 while

class 2 is identified by ◦. Outliers have been marked with an ∗ . . . . . . 104

5.16 Plots of the waveforms of data clustered into class 1 (a), class 2 (b) and

outliers (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.17 PRPD data plot of the on-line field data at cable loop of the EAC network

for (a) class 1 and (b) class 2 identified by the DBSCAN algorithm with ε

set to 1.5 and kmin to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvi

Dem
etr

es
 Eva

go
rou



List of Tables

2.1 Comparison of Electrical and Dielectric Properties of paper-insulated and

XLPE-insulated High Voltage (HV) cables(taken from [2]) . . . . . . . . 20

2.2 Details of simulated PD data acquired in synchronisation with phase and

using the peak detection function of the oscilloscope (500 kS/s). . . . . . 34

2.3 Details of simulated single pulse PD data acquired at a sampling rate of

500 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Frequency content of specific nodes of the WPT. . . . . . . . . . . . . . . 57

3.2 Error analysis for various nodes of the Wavelet Packet Transform tree for

the corona discharge. The values are given as the mean and the standard

deviation of the respective error measure, with 10000 pulses being analysed. 58

3.3 Error analysis for various nodes of the Wavelet Packet Transform tree for

the floating discharge. The values are given as the mean and the standard

deviation of the respective error measure, with 10000 pulses being analysed. 58

3.4 Error analysis for various nodes of the Wavelet Packet Transform tree for

the internal discharge. The values are given as the mean and the standard

deviation of the respective error measure, with 10000 pulses being analysed. 59

3.5 Error analysis for various nodes of the Wavelet Packet Transform tree for

the surface discharge. The values are given as the mean and the standard

deviation of the respective error measure, with 10000 pulses being analysed. 59

4.1 Misclassification matrix using the SVM with C = 219 and γ = 2−14 for the

proposed feature that utilises the HOS for dimensionality reduction. . . . 76

4.2 Misclassification matrix using the SVM with C = 230 and γ = 2−6 on the

feature vector that utilises the scaled, raw, wavelet coefficients at specific

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Misclassification matrix using the PNN with G1 = 1, G2 = 2, G3 = 3 and

G4 = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xvii

Dem
etr

es
 Eva

go
rou



4.4 Tolerance Intervals for SVM with C = 219 and γ = 2−14. . . . . . . . . . 79

4.5 Tolerance Intervals for PNN with G1 = 1, G2 = 2, G3 = 3 and G4 = 4. . . 80

4.6 Classification rate for the proposed time-resolved feature vector with the

addition of White Gaussian Noise using the SVM. . . . . . . . . . . . . . 81

4.7 Classification rate for the proposed time-resolved feature vector with the

addition of White Gaussian Noise using the PNN. . . . . . . . . . . . . . 82

4.8 Misclassification matrix for the proposed feature vector using the SVM

with optimum parameters C = 2 and γ = 2−13. . . . . . . . . . . . . . . . 84

4.9 Misclassification matrix for the un-processed wavelet coefficients d13, d
1
6 and

d19 feature vector using the SVM with optimum parameters C = 107 and

γ = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Misclassification matrix for the proposed vector using the PNN with opti-

mum parameter G=[1 2 1 1]. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Tolerance Intervals for the proposed feature vector using the SVM with

optimum parameters C = 2 and γ = 2−13. . . . . . . . . . . . . . . . . . 87

4.12 Tolerance Intervals for the proposed feature vector using the PNN with

optimum parameters G=[1 2 1 1]. . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Details of simulated single cycle PD data acquired at a sampling rate of

500 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Identification matrix for the DBSCAN algorithm with parameters kmin =

13, ε = 0.14 evaluating the whole dataset. . . . . . . . . . . . . . . . . . 96

5.3 Identification matrix for the outliers using an SVM with parameters C =

220 and γ = 2−10 trained using identified clusters by the DBSCAN as

training data (89 samples from each cluster randomly chosen). . . . . . . 96

xviii

Dem
etr

es
 Eva

go
rou



Nomenclature

Acronyms

ACF Autocorrelation Function

ANN Artificial Neural Network

CWT Continuous Wavelet Transform

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DSO Digital Signal Oscilloscope

EAC Electricity Authority of Cyprus

EPR Ethylene Propylene Rubber

EPR Ethylene Propylene Rubber

ERM Empirical Risk Minimisation

GIS Gas Insulated Switchgear

HF High Frequency range, 3-30 MHz

HFCT High Frequency Current Transformer

HOS Higher Order Statistics

HV High Voltage

MRA Multiresolution Analysis

MV Medium Voltage

OPTICS Ordering Points To Identify the Clustering Structure

xix

Dem
etr

es
 Eva

go
rou



PD Partial Discharge

pdf probability density function

PE Polyethylene

PILC Paper Insulated Lead Covered

PRPD Phase Representation Partial Discharge

QMF Quadrature Mirror Filters

RV Random Variable

SF6 Sulphur Hexafluoride

SRM Structural Risk Minimisation

STFT Short time Fourier Transform

SVM Support Vector Machine

T&D Transmission and Distribution

UHF Ultra High Frequency range, 300 MHz-3 GHz

VC Vapnik-Chervonenkis

VHF Very High Frequency range, 30-300 MHz

WA Wavelet Analysis

WPT Wavelet Packet Transform

WT Wavelet Transform

XLPE Cross-Linked Polyethylene

Mathematical

ε Minimum distance used to define a core point in the DBSCAN

γ Smoothing parameter of the exponential kernel in SVM

x Vector representation (column vector)

xx

Dem
etr

es
 Eva

go
rou



ωm A priori probability of class m

ρj(x) Decision risk of of classifying the input x into class j

C Regularisation coefficient indirectly controlling the number of misclassifications in

SVM (C =∞ in the linearly separable case)

cjm Loss associated with classifying an input vector x into class j given that it belongs

to class m

Dr
ω Differential operator dr

dωr

f(x, y) Probability density function of two RVs X and Y

f(x, β) Function parameterised by β where β ∈ Λ and Λ is a set of parameters

f(x, β0) Function that minimises the risk functional R(β) over the class of functions

f(x, β), β ∈ Λ

f(x, βl) Function that minimises the empirical risk based on a training set of l samples

F (x, y) Probability distribution function of two RVs X and Y

fj(x) pdf of class j

Gj No of components in the approximated pdf of class j

gj(x) General mixture approximating the pdf of class j

hk VC dimension

k Capacity of the learning machine

K(xi,xj) Kernel function

kmin Minimum number of points used to define a core point in the DBSCAN

l Number of training samples

L(y, f(x, β))dF (x, y) Loss function measuring the discrepancy between the actual re-

sponse y to a given input x and the response f(x, β) provided by a learning ma-

chine

Ld(α) Dual Lagrange function

xxi

Dem
etr

es
 Eva

go
rou



Ld(α) Primal Lagrange function

R(β) Risk functional, the expected value of the loss L(y, f(x, β))dF (x, y)

R(βkl ) Risk functional implementing SRM where k is related to the VC dimension hk

Remp(β) Empirical risk functional

Sk Subsets of functions Sk = {f(x, β), β ∈ Λk}

x Scalar representation

Wx(a, b) Continuous Wavelet Transform with dilation a and scaling b

f ? g(t) Continuous convolution

f ? g[n] Discrete convolution

+∞∫
−∞

x(t)g(t)dt Correlation

〈x, g〉 Inner product

C Complex numbers

Z Integers

N Positive integers including 0

R Real numbers

R+ Positive real numbers

Pvj
x Projection of signal x(t) onto subspace Vj

PWj
x Projection of signal x(t) onto subspace Wj

Φ(ω) Characteristic function of a RV

Ψ(ω) Second characteristic function of a RV

M(ω) Moment generating function of a RV

κr Cumulant of order r

µ′r Moment of order r

xxii

Dem
etr

es
 Eva

go
rou



µr Central moment of order r

φa,b Scaling function

Vj Vector space spanned by an orthonormal basis {φj,n}n∈Z for any j ∈ Z

Wj Vector space spanned by an orthonormal basis {ψj,n}n∈Z for any j ∈ Z

U⊕V Direct sum of two vector spaces

ψa,b Wavelet function

aj[n] Wavelet “approximation” coefficients at scale j

dj[n] Wavelet “detail” coefficients at scale j

dpj [k] Wavelet Packet coefficients at scale j and position p

Physical Constants

η Electron attachment coefficient

α Electron ionisation coefficient (number of electrons produced by an electron per

unit length in the direction of the field)

E0 Externally applied electric field across the electrodes of a dielectric specimen

Einc Critical or inception electric field above which a PD can occur

Ei Internal electric field across a PD

Eres Residual electric field

ε0 permittivity of free space ≈ 8.854× 10−12Fm−1

εr relative permittivity of material

xxiii

Dem
etr

es
 Eva

go
rou



Chapter 1

Introduction

1.1 Motivation

On-line condition monitoring provides information about the existence of PDs in ca-

bles and their accessories under normal operating conditions and lies at the heart of a

condition-monitoring program of power equipment. Sole identification of a PD, without

any information about its source of origin, can be utilised for placing the equipment un-

der monitoring and assessing it as having an increased risk of failure. However some PD

types have a detrimental effect on the integrity of the insulation while others will pose no

risk, taking into account the equipment under test. For example a corona discharge in oil

filled switchgear can be classified as relatively harmless while the same type of discharge

can be deemed as having a detrimental effect on Sulphur Hexafluoride (SF6) switchgear.

Therefore identification of the PD source is of paramount importance for the assessment

of the insulation integrity of power equipment.

The evolution of the amplitude of PD activity has to also be recorded over time

through several measurements before an evaluation can be made. This is due to the

fact that the evolution (trending) provides more information about the integrity of the

insulation rather than an absolute measurement. Once the presence of a PD and its

source has been identified then further measurements will have to be taken at regular

time intervals. Since calibration is not possible in on-line measurements, trending will

also allow correlation between measurements of different equipment with the loading

cycle. Generally the time to failure is very difficult to predict and can be years or seconds

from the time of the first measurement. Therefore valuable information may be lost

in between measurements (such as PD activity prior to failure) or even cable failure

may occur between the measurement intervals. The implementation of an early warning
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system to detect trend to failure and thus enable predictive maintenance can thus only

be achieved through continuous on-line monitoring, the ultimate target of a complete PD

monitoring system. Such a system poses difficulties that need to be addressed before its

implementation becomes practical, especially when used for example in real-time mode.

If the raw single pulse data delineating the characteristics of a PD in the time domain is

used then the amount of data that needs to be processed can soon become unmanageable

and lead to data storage and processing problems. Also input data to the classification

algorithm has to have the minimum possible number of dimensions otherwise classification

times can be very slow for real-time implementation.

The application of on-line PD measurements often gives a more descriptive status as

the cable is operating under normal conditions, providing information about progress-

ing degradation under operational stress and taking into account service factors that

may affect the PD activity. Such factors can be the operating temperature and thermal

expansion characteristics of the different materials, the mechanical loading, the current

loading effects as well as long-term energisation effects (i.e. insulation responding dif-

ferently because it has been energised for a long time, compared to initial energisation)

which are not captured by off-line PD testing.

1.2 Aim of the thesis

The aim of this thesis is to propose and evaluate feature extraction methods of low di-

mensions that will be implemented in a continuous on-line system where minimisation

of data storage and computational times are important. The proposed features are to

employ complementary time and phase-resolved data and will be evaluated using a super-

vised algorithm with experimental data, and subsequently a supervised and unsupervised

algorithm using on-line, field data.

1.3 Literature Review

1.3.1 Physical models

Partial Discharge measurement has emerged as the dominant insulation assessment method

in medium and high voltage power cables. Although other methods such as the low fre-

quency testing method [6] and the oscillating wave test method [7] exist, PD monitoring

is by far the most widely adopted. One of the main reasons is that alternative methods
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require the application of a voltage at a different frequency than the mains, which has

been shown to provide PD patterns that are easily misinterpreted when compared to

patterns using the 50 Hz cycle [8–10].

Partial Discharge is a complex physical process that can be physically explained using

the theory of electrical breakdown in gases [11, 12]. For a PD to occur two conditions

have to be fulfilled. Firstly an initiating electron has to be available and the electric field

has to be above the inception field. Several attempts have been performed to model the

physical behaviour of PDs [13], the majority of which have been performed in order to

provide a better understanding of the underlying phenomena and to be able to interpret

the different PD patterns. Some of the physical factors affecting the PD behaviour [13]

are the interfaces involved in the PD, the electron generation, the physical properties of

the streamer and the electrical field. Although there have been attempts to relate the

parameters of physical models to actual measurements, such as [1] where the PD is treated

as a stochastic process described by a differential equation, these models are valid for very

specific cases and rely on unknown physical parameters. One such parameter relating to

the model is the surface conductivity that has to be selected a priori based on knowledge

of the discharge source, for example that it is a needle in air, or a void discharge and

can be fine tuned using the observed pattern by trial and error. This information is not

available in field scenarios where no knowledge about the discharge type is available and

moreover such parameters do change during the course of PD activity.

Another model where PD activity has been treated as a stochastic process that can

show memory effects due to the internal field alteration from space charge detrapment and

decay related to surface conductivity is found in [14, 15]. In these works it was attempted

to unravel those memory effects through the use of conditional amplitude and phase-of-

occurrence distributions. In Pulse Sequence Analysis [16, 17] these space charge memory

effects are taken into account by the considering the correlation between consecutive

discharges. It relies on a plot of the phase difference between two successive discharges at

time n (∆Un) against (∆Un−1) as a parameter set where the point to dielectric, electrode

bounded cavity and electrical treeing discharges produced from experimental data have

been employed to produce distinct PD fingerprints.

In contrast to attempts performed to directly relate physical parameters to actual

measurements that can be a daunting task, physical models have been used in order to

gain an understanding into the physical mechanisms underlying PD activity that can

lead to descriptive parameters extracted from PD measurements. For example, rise times

when measured at the discharge site [18] give an inside into the discharge mechanisms
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involved and are affected by factors such as the overvoltage and space charges present at

the discharge site. In voids where a short gap is involved lower amplitude longer rise-time

pulses are referred as Townsend-like discharges while higher amplitude shorter rise-time

pulses are referred to a streamer-like from streamers in long gap theory [19]. However

both types of discharges are actually Townsend discharges since both involve the cathode

feedback mechanism but with different mechanisms involved in the emission of electrons

from the cathode [20]. In the case of low overvoltage conditions the classical ion impact is

the primary cathode emission mechanism where in the case of high overvoltage and space

charge build up the mechanism involved is photon impact followed by field and thermal

emission resulting in lower rise times.

Such descriptive methods have been widely used in PD feature extraction and identi-

fication, due to the fact that they can be easily extracted from PD measurements. In this

work this descriptive approach is followed after reviewing some of the most important

descriptors of the discharge pulses such as their amplitude, rise time, recurrence rate,

phase relationship of occurrence with respect to the applied alternating voltage and time

interval to the preceding pulses [20].

1.3.2 PD Identification

One of the early and most successful analysis methods employed are the so called φ−q and

φ−n representations where the peak (qp) charge, the average (qm) charge or the number of

discharges, n, per phase window are plotted as a univariate distribution against the phase.

Dividing the extracted quantity (for example the maximum charge) into windows as well,

allows the calculation of the number of discharges for each phase and charge window.

This can be plotted as a bivariate distribution against the charge and the phase, giving

the 3-dimensional φ− q−n plot, one of the most complete PD data representations [21–

27]. These representations have traditionally been referred to as Phase Representation

PD (PRPD), a terminology that is adopted here.

Statistical analysis tools were one of the first methods applied successfully on phase-

resolved data to get descriptive parameters for the 2-dimensional PRPD distributions and

many such attempts can be found in the literature [21, 22, 24, 27, 28]. For example in [28]

the complete feature vector was derived from the estimation of the skewness and kurtosis

of the positive and negative half cycle of the φ − qm and φ − n distributions as well as

other statistical operators such as the correlation coefficient. This 9-dimensional feature

was tested on sixteen full scale samples and showed a good potential for classification of
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discharging defects in insulation structures using contour score. In [21] minimum distance

classification using statistical data on pulse quantities such as apparent charge, energy

and phase has been performed using the L1 and L2 norm metrics. In the minimum

distance classifier each class is represented by a cluster and a reference point for that

cluster, where a data point is classified into the cluster with the nearest reference point.

A 15 dimensional feature derived from the application of statistical tools to analyse the

properties of the mean pulse height and pulse count phase distributions was employed

in [22]. These descriptors were used as input patterns to a back-propagation network,

Kohonen self-organizing map and learning vector quantization network. All three neural

networks, as used in this work, recognized fairly well the PD patterns of those insulation

defects for which they were trained.

In addition to statistical analysis tools, signal processing on 2-dimensional PRPD or

image processing on 3-dimensional PRPD were employed. The φ−q−n was transformed

into a 2-dimensional image where one of the quantities (usually the n) was represented

by the pixel values of the image. Tools such as the 2D wavelet transform [26] or fractal

analysis [29, 30] were used to extract descriptive features.

In the above approaches the data was acquired using the IEC 60270 [31] standard

which defines the upper bandwidth of the measurements to be below 1 MHz. The use of

PRPD distributions to produce interpretable representations is based on the assumption

that the recorded data is free from interference and there is only one source of PD

active. In on-line field conditions this is often not the case and therefore wideband

measurements employing higher frequency ranges (3 MHz-3 GHz) have been employed in

order to be able to pre-process a PD signal to remove interferences and separate multiple

PD sources concurrently active. The employment of such methods allows the analysis

of the waveforms of PD defects which forms a recent development in PD identification.

The two methods can complementary be combined as in [32], an approach that will be

followed in this thesis.

Most non-conventional electric PD systems are based on detecting the HF properties of

PD processes. As a result, to sensitively detect the PD signals, higher frequency contents

of PD signals are processed in time- or frequency domain. Time and frequency content of

time-resolved PD signals is related to the type of PD as different sources of PD produce

different time and frequency characteristics. Moreover, the low-pass characteristics of

underground power cables result in distortion as a function of the distance travelled,

affecting the frequency content of the pulse. In [33] different classification algorithms

have been applied on PD time parameters such as the apparent charge, the rise time,
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fall time, area under the PD pulse and product of the pulse width and apparent charge.

The pulse shape recognition capabilities using these time parameters were assessed using

the nearest neighbour classifier, learning vector quantization and multilayer perceptron

paradigms, on artificial cylindrical cavities of different sizes and provided similar results.

An extension of the above is found in [34] where similar parameters are classified using

the fuzzy decision tree based on different cavity sizes. The fuzzification is based on three

void sizes, small (1 mm), medium (1.5 mm) and large (2 mm).

To analyse the frequency content of a PD signal the Fourier Transform was employed

in [35] to extract features to identify fixed (on conductors or spacer surfaces) or free

moving particles in SF6 gas-insulated substations (GIS). However one of the weak points

of the Fourier Transform (FT) is that its basis functions extend over the whole time

interval without any localisation properties, and therefore time information is completely

lost. To overcome this problem the Short Time Fourier Transform (STFT) is employed

that uses a fixed window to capture the signal allowing a simultaneous time-frequency

analysis of the signal.

An implementation of the above transform can be found in [36–38], where the signal

was captured in windows of K samples. The acquired pulses were mapped into a time

(T) and frequency (F) equivalent bandwidth calculated as the second central moment of

the square of the time and frequency coefficients of the data, creating a time-frequency

representation of the energy of the signal. The detailed procedure for the T-F map

was explained in [38] where the signals have been identified using a fuzzy classification.

A distance function is used to to derive the membership of data as a function of the

distance from each cluster and formed clusters are classified as different PD sources,

where clustering is done in an unsupervised mode.

The Wavelet Transform provides a variable time-frequency decomposition and has

been employed in PD classification using experimental data [39]. The detail wavelet

coefficients at level 3 are utilised as features and an SVM is employed in the classification.

The training data was provided by experimental set-ups with different dimensions and

shapes than the test data which proved the robustness of the use of the WT with an

SVM. In [40] the WT has been used in obtaining a time-frequency map representation

of different PD types utilising time data. A neuro-fuzzy approach achieves automatic

PD identification based on slow and fast rise times of the PD pulses. The Wavelet

Packet Transform (WPT) due to its inherent adaptive structure and ability to capture

the signal’s characteristics in a few coefficients was employed in [41] where the kurtosis

and skewness of selected coefficients were used to identify experimental PDs in GIS.
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The statistical analysis of PD pulses is able to capture the variability in PD properties

and have thus been employed in feature extraction. Such a method was employed in [42]

on time-resolved measurements, where different PD sources were identified on the basis of

the shape parameter of the Weibull distribution of the pulse height. The Autocorrelation

Function (ACF) was also used in [43] for clustering time-resolved data (identified by the

K-means clustering algorithm). The utilisation of statistical analysis using moments was

confined up to the second order and the use of Higher Order Statistics (HOS) received

limited attention. The application of HOS on time-resolved data was examined on acous-

tic and electric data taken from experimental measurements of contaminating particles in

a tank of oil [44]. Features such as the collision time interval between successive particle-

tank impact, and the impact magnitude were extracted and it was demonstrated that

higher order moments and (histogram entropy) of the features do improve classification

results.

This research attempts to employ the concept of statistical analysis through the appli-

cation of HOS (up to fourth order) on selected wavelet coefficients, in order to explore the

potential of the combination of WPT and HOS methods on electrical measurements in

power cables. The proposed features are evaluated using experimental and field data and

supervised (such as the PNN and the SVM) and unsupervised (DBSCAN) algorithms.

The next section elaborates on the motivation behind this thesis and the following section

on the work done in this thesis.

1.4 Work done towards the solution of the problem

The correct classification of different PD types is of vital importance in a condition-

monitoring program and the evolution of PD activity over time gives valuable information

about the integrity of the system. This improves the decision-making and thus the

work done in this research implemented algorithms that can be part of a continuous on-

line condition monitoring system. The target of PD source identification using a lower

dimensional feature was broken into different tasks which when combined together gave

an overall solution to the problem as shown in figure 1.1.

The PD source identification problem is approached using both phase and time re-

solved data which provide a complementary and thus a more complete representation

of the PD data. Traditional phase resolved PD data representation of the measured

quantities is regarded as one of the most complete forms of graphical representation of
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a PD pulse distribution [21–24, 26, 27]. However its use in on-line, on-site implementa-

tions suffers from the contamination of the measurements by noise and the need to set a

threshold, below which all measurements are discarded. Also the simultaneous activity

from multiple PD sources that can potentially be present at the equipment under test

makes the implementation of such phase resolved methods much more prone to erroneous

conclusions. Specific time characteristics of the waveform such as the rise time, fall time

and shape constitute important parameters that can be correlated to the PD activity.

The recording of a single pulse waveform requires sufficient sampling rate which when

whole data cycles are sampled the amount of data becomes prohibitively expensive in

terms of storage and processing. The capture of single pulse data together with its phase

of occurrence allows the data to be processed in the time domain taking advantage of

the time resolved data analysis benefits. Both types of data were acquired in a labora-

tory under controlled conditions from different PD sources (corona in air, floating in oil,

internal in oil and surface in air). This data formed part of a database that is analysed

using statistical and signal processing tools to extract the most representative features of

the different PD sources.

Feature extraction algorithms for both phase and time resolved data are proposed

utilising the Wavelet Packet Transform (WPT) as a pre-processing step and following a

procedure for the selection of particular nodes in the tree decomposition that are found

Data Acquisition Database of PD Sources 

Proposed Feature 
Extraction 

Identification 
Supervised 

Algorithms (PNN 
& SVM) 

Identification 
Unsupervised 
Algorithms 
(DBSCAN) 

Phase-resolved Time-resolved 

Figure 1.1: Flow chart of the work done in this thesis towards the proposal and evaluation
of lower dimensional feature vectors for use in continuous on-line monitoring systems.

8

Dem
etr

es
 Eva

go
rou



to best represent the characteristics of the signal.

Once the specific nodes of the WPT tree were selected Higher Order Statistics (HOS)

were used to approximate the coefficients of these nodes. The first four cumulants were

used for each node resulting in 4 dimensions per node included in the feature. For phase

resolved data all the nodes in the best wavelet packet tree decomposition were selected and

HOS of the nodes at each level were added together to reduce the number of dimensions.

This feature can be compared to the raw use of the un-processed wavelet coefficients at

specific nodes where a feature vector of 1468 dimensions was created. The new feature

yields gives similar results but with a dimensionality of the order of 36, a significant

improvement [45]. This low dimensional feature vector alleviated the numerical problems

associated with the use of a Probabilistic Neural Network (PNN) which was compared to

the use of the Support Vector Machine (SVM) and features of much higher dimensions,

providing similar results.

For the time resolved data the use of HOS on the wavelet coefficients of nodes at

level 3 position 1 (d13[k]), level 4 position 1 (d14[k]), level 5 position 0 (d05[k]) and level 5

position 1 (d15[k]) produced a feature vector of 16 dimensions while if the un-processed,

wavelet coefficients at the same nodes were used 1304 dimensions would have been created.

The proposed feature was compared to the un-processed feature using the SVM and the

results were identical (98%). Next the PNN was compared to the SVM, which was made

possible through the reduction in dimensions and the alleviation of problems in the PNN

associated with the dimensionality. The two algorithms produced similar classification

results although implementing different training methods.

Once evaluated using these supervised algorithms the potential use of the time-

resolved proposed feature in on-line scenarios was evaluated. In such cases the presence

of an unknown number of PD sources simultaneously active and the fact that the training

data class labels are not a priori known called for the use of an unsupervised or clustering

algorithm. Such an algorithm can provide the class labels and the number of PD sources,

under the assumption that each source maps into a single cluster, enabling the use of su-

pervised algorithms or even totally alleviating the need for training data. The DBSCAN

was utilised firstly on experimental data acquired from PILC cable loops with known

defects, simulating on-line operating conditions as close as possible, and then extended

to field data acquired from the EAC distribution network. The results proved promising,

demonstrating the use of the proposed time-resolved feature vector as a pre-processing

step to PD source clustering. Subsequently PRPD plots can be extracted for each cluster

which can help in the identification of PD sources.
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1.5 Novelty of the research

The research in this thesis is an attempt to approach the PD classification in cable

networks from a continuous on-line monitoring perspective. The main novelty of this

research is the proposal and evaluation of feature extraction methods for both phase and

time-resolved data that incorporate an important reduction in the number of dimensions

without any significant drop in the performance. The proposed feature extraction meth-

ods are evaluated and compared with existing methods by utilisation of supervised and

unsupervised algorithms, and experimental and field on-line data.

Firstly the comparison of the proposed feature extractor for continuous on-line PD

identification is performed to a similar feature extractor of higher dimensionality using

the SVM. Results of both the phase and time resolved data show slightly inferior but still

acceptable performance between the already used, higher dimensional and the proposed

feature vectors.

As a consequence of this lower dimensional feature the use of the Probabilistic Neu-

ral Network (PNN) is made possible as this method suffered from numerical problems

associated with the dimensionality of the data as well as speed problems as its implemen-

tation involves the computation of the inverse of a matrix whose dimension is directly

proportional to the dimensionality of the feature vector. As the complexity of inverting

an N -dimensional matrix is O(N2), a significant reduction in the number of dimensions

results in an even higher reduction in the computational complexity for the PNN. The

SVM and the PNN are directly compared using the same feature vector and demon-

strated the use of the proposed features with supervised algorithms, that rely on two

distinct training principles.

Finally the DBSCAN is applied on the proposed time-resolved feature vector utilising

both experimental and field, on-line data evaluating the use of the proposed feature

vector in pre-processing real data to extract different clusters and then PRPD can be

complementary used to identify the different sources.

1.6 Outline of the proposal

The aim of this thesis is to propose and evaluate feature extraction methods of low

dimensions that will be implemented in a continuous on-line system where minimisation

of data storage and computational times are important.
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In chapter 2 the experimental setup in a high voltage laboratory to generate different

PD sources under controlled conditions is described. The experiments are performed in

order to generate the most frequently encountered PD types in cable networks, namely

the corona, the floating, the internal and the surface discharges. The database of different

PD sources includes both time and phase resolved measurements, which are considered

complementary to each other. The apparatus and the sensor used are analysed, together

with a treatment of the two main cable types used in the Cypriot T&D network and their

characteristics to PD propagation.

The acquired data is analysed in chapter 3 in an effort to arrive at a compact feature

representation. Two features are proposed, one for time-resolved and another for phase-

resolved data. Both employ the Wavelet Packets Transform (WPT) to achieve an adaptive

time-frequency decomposition of a signal. Specific nodes are selected that represent the

characteristics of the different PD sources and the wavelet coefficients at these nodes

describe their characteristics. In an effort to reduce the number of dimensions the first

four cumulants from Higher Order Statistics (HOS) are used as statistical descriptors of

the wavelet coefficients at the selected nodes.

The proposed vectors are evaluated in chapter 4 using the experimental dataset and

two supervised algorithms that employ a set of labelled training data in order to classify

previously unseen data. Firstly the time-resolved proposed feature is compared to a

higher dimensional feature vector [39] using a Support Vector Machine (SVM) and the

classification rate as a performance criterion. Once shown that the reduction in the

number of dimensions does not significantly affect the performance, the SVM is compared

to the Probabilistic Neural Network using the proposed feature. The two algorithms

utilise different principles during the training phase, and it is investigated whether this

has an effect on the classification rate. The same procedure is followed for the phase-

resolved proposed feature vector and the reproducibility of the results for both features

is verified by the use of tolerance intervals.

Finally in chapter 5 the proposed time-resolved feature vector is evaluated as a poten-

tial tool in pre-processing of on-line data to extract clusters and their respective PRPD

plots which can be utilised in PD identification. In on-line scenarios the presence of an

unknown number of PD sources and the lack of knowledge about the class label of the

training data poses a problem to the use of supervised algorithms. Fortunately unsuper-

vised or clustering algorithms can provide such class labels or even alleviate the need for

training data. The DBSCAN is employed on the proposed feature vector calculated from
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experimental data on PILC cable loops, simulating operating conditions as close as pos-

sible. Once found to identify different PD sources on-line field data from the distribution

network of the EAC are analysed, showing promising results and the potential that this

feature can be used as a pre-processing tool in on-line PD identification.

At the end the conclusions drawn from this work are summed up in chapter 6 and

some thoughts on future work are reflected in chapter 7.
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Chapter 2

Building a database of experimental

PD sources

In this chapter an attempt to build a database of PD sources using an experimental ar-

rangement in a high voltage laboratory is presented. Firstly a brief overview of how PDs

are generated and the equivalent electrical model that can be used to simulate their recur-

rence using a set of capacitors is given. Next two common types of cables, installed at the

Cypriot T&D network, are briefly reviewed as their high-frequency response characteris-

tics can affect the bandwidth of the PD and the choice of sensor. The frequency response

of a commercially available clamp-on High Frequency Current Transformer (HFCT) sen-

sor is measured using a Network Analyser in order to determine its bandwidth and in

effect its suitability in PD measurements for cables and their accessories. Once the sen-

sor is characterised an experiment is designed to create a database of experimental PDs

composed of phase synchronised as well as single pulse data. The equipment used in

the experiment and the different set-ups for building the database of PD sources is ex-

plained next. This chapter presents the first step of the methodology that will lead to

the development of a proposed feature extraction method for PD identification.

2.1 PD generation

A partial discharge (PD) is a localised electrical discharge that only partially bridges

the insulation [31]. Although a PD does not indicate a complete failure of the system

or collapse of the voltage between the energised electrodes, it indicates a weak point in

the installed system. The physical principles governing the generation and evolution of

partial discharges lie on the study of electrical breakdown in gases, and especially in air
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which has been around for a long time. A rather simple overview of how these discharges

are generated and repeated is presented next while more detailed theoretical background

can be found in textbooks such as [11],[12].

For a PD to take place the total electric field (Etot) must be above the critical electric

field, known as the inception electrical field (Einc), and an initiating electron must be

available to start the first avalanche of the ionisation process. The total electric field is

defined as the sum of the internal field (Ei) and the externally applied electrical field

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.

(a)

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.

(b)

Figure 2.1: External (E0) vs internal (Ei) electric field for (a) gas-filled void in an insulator
and (b) corona in air configuration (taken from [1])

(E0) (figure 2.1). In general the fraction of the externally applied electric field that will

appear across the void gap depends on the geometry of the void [13]. The critical electric

field is a function of the material properties and depends on the choice of the gaseous

and solid insulation materials during the insulation design as well as the pressure of the

gas. The availability of initiating electrons controls the statistical characteristics of the

discharges while in the limiting case where there is ample availability of electrons, PDs

can show deterministic behaviour [46].

2.1.1 Recurrence of discharges

A PD can be detected as a sequence of current impulses across the leads of the sample.

The PD process leading to these impulses is qualitatively described with the aid of figure

2.2, in relation with the behaviour of the total electric field for this particular void.

Although the electric field across the dielectric is a fraction of the externally applied

voltage and the constant of proportionality is related to the shape of the void, here,

without loss of the qualitative description it is assumed to be unity. Therefore Eo appears
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across the gap. Assuming that this is the first discharge in the sample no space charges

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.

Figure 2.2: Behaviour of Etot(t) under the application of a 50 Hz voltage (taken from
[1]). The recurrence of PDs is explained with reference to the electric fields. The total
electric field Etot(t) is the sum of the externally applied E0(t) and the internal Ei(t) fields.
When it reaches a value above Einc and provided that a free electron is available then a
PD occurs. The total electric field immediately after a PD occurrence drops to Eres, and
subsequently rises approximately as E0(t). When it is raised again above Einc another
discharge occurs and this pattern repeats itself.

exist and Etot has the same value as Eo up to the first PD occurrence. When Etot surpasses

the inception field (Einc) and an initiating electron becomes available then a PD occurs,

dropping Etot to the residual field. This electric field drop (and thus the voltage drop)

takes place in a very short period of time (of the order of 10−7s), which can be picked

up at the leads of the samples as a breakdown current. After the discharge the total

electric field (being the total of the applied electric field and the internal electric field of

the surface discharges deposited at the cavity walls after the first discharge, figure 2.1)

begins to increase again. When the electric field reaches the inception field again then

a new PD occurs. Space charges left over by previous discharges can become trapped

at shallow traps and provide additional electron supply through their detrapping [? ].

When the total electric field starts to fall a PD occurs when it reaches the −Einc value.

Therefore a pattern of voltage drops takes place during the discharge. The magnitude of

the pulses depends on ±Einc and ±Eres. The positive and negative values being equal

pulses of the same amplitude are created while asymmetrical discharges occur at cavities

with an inception field Einc being unequal to −Einc. Moreover in a practical case the

generation and decay rate of space charges from previous PDs will affect the regularity

of the PD sequence. These PD sequences can theoretically be picked up by different

measurement sensors based on the various physical quantities generated by PD activity.
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2.2 PD detection

PD activity generates physical phenomena which can cause the transmission of acoustic,

electrical and optical energy, as well as chemical changes within the dielectric material.

Detection methods are based on sensors that can measure these emissions which are very

small, typical signal magnitudes are often close to background noise levels. Optical and

chemical sensors find use mainly in laboratory measurements with the optical method

being characterised by a high sensitivity (less than 1 pC) [47]. Practical detection relies

on acoustic and electrical methods the latter being the most commonly used in power

cables.

The acoustic emission technique [48] has the advantage of being immune to electri-

cal interference but attenuation of the acoustic waves significantly reduces measurement

sensitivity (around 100 pC). It is more suitable for PD monitoring in power transform-

ers [49], switchgear or GIS, due to the better transmission coefficient in oil compared to

power cables. Since the ultrasonic signals travel from the origin of a discharge to the

sensor along different paths and at different speeds in a power transformer, distinguish-

ing the signal coming from the origin and those corresponding to alternative paths of the

reflected signals is one of the main limitations of its external use in PD location.

Electrical methods constitute the most common of the detection methods and rely

on two different physical principles which can be used to classify them into two broad

categories. Sensors forming a capacitive link [50],[51] with the equipment under test have

been used and provide the most direct way to measure PD activity, giving the highest

sensitivity. However they require an interruption of the supply to the equipment in
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Figure 2.3: Comparison of a commercial HFCT sensor and an epoxy mica capacitor
measurement at an on-line PD monitoring system

order to be installed which makes them less attractive for on-line measurements. On the
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other hand inductive sensors constitute a large part of the electrical detection method

and their success lies on the fact that they can be installed non-invasively. They are

clamped around the earth wire of the equipment under test measuring the current to

earth. Data acquired from an on-line cable using a commercially available HFCT sensor

(IPEC 140/100 HFCT) and a capacitor consisting of 80 mm layer of epoxy impregnated

mica splittings as the main dielectric (referred to as epoxy mica capacitive coupler) is

shown in figure 2.3 where the lower noise floor demonstrates a higher sensitivity for the

capacitive coupler. However a drawback of both methods is that they are susceptible

to electrical interferences and noise, which usually have to be removed or reduced by

pre-processing the measurements using signal processing techniques. The choice of an

HFCT in this work is based on the ease of installation of the HFCT clamp-on sensor on

measuring medium voltage cables, which becomes important when field measurements as

a screening method for PD activity are performed on a systematic basis.

Electrical coupling techniques work on various frequencies, ranging from a few MHz to

several hundred MHz. Sensors are being classified according to their bandwidth ranging

from High Frequency (HF, 3-30 MHz), Very High frequency (VHF, 30 -300 MHz) all

the way up to the Ultra High frequency (UHF, 300 MHz-3 GHz) range. The choice of

a sensor with a sufficiently high bandwidth depends on the equipment under test and

affects the detected PD. For cable circuits HF sensors are used due to the high frequency

attenuation characteristics of the cable [52], [53] while UHF sensors are used in Sulphur

Hexafluoride (SF6) equipment which has a lower high frequency attenuation factor. In

the next section an overview of the two types of underground cables encountered in the

T&D network of the Electricity Authority of Cyprus (EAC) is given and how their high

frequency attenuation affects PD detection is presented.

2.3 Underground cables

When considering the propagation characteristics of underground cables the type of ca-

ble must be taken into account as different types have different loss mechanisms. The

principal design elements of Medium (MV) and High Voltage (HV) are depicted in figure

2.4. With reference to this figure they are classified in two general categories according

to the dielectric used: impregnated paper and extruded synthetic materials.

Impregnated paper cables consist of narrow strips of paper lapped spirally over each

other [2]. In order to ensure that different layers do not have any air gaps between

them (and thus prevent pre-discharges) a high-viscosity insulating oil is used, which
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at operating temperature becomes less viscous thus filling any air gaps. This change in

viscosity with operating temperature produces a“self healing” effect for this type of cable,

which means that an air void forming a source of PD at low operating temperature (and

therefore high viscosity) can be filled with oil when the cable reaches a higher operating

temperature (at which the oil has a lower viscosity) which temporarily prevents this

source from discharging.

Solid dielectric cables require no impregnating medium and the dielectric can be

extruded directly on the conductor, resulting in a less time-intensive operation to con-

struct this type of cables. The two main dielectric materials used are the cross-linked

polyethylene (XLPE) and synthetic rubber (Ethylene Propylene Rubber, EPR). XLPE

has prevailed as the most commonly used solid dielectric material for voltages above 150

kV as the EPR has comparatively higher dielectric losses. One of the things that has to

be kept in mind is that in polymeric cables the level of PD activity permitted is much

lower than in PILC as they lack the stability provided by the oil viscosity in the presence

of PDs. Although XLPE cables have replaced PILC ones since many years, large lengths

of PILC cables are still in operation in many countries. The brief analysis here aimed at

understanding the structural and electrical (table 2.1) differences between the two cable

types, as the cable type can be taken into account when interpreting PD measurements

due to their slightly different HF behaviour, as explained next.

!Figure 2.4: Explanation of the main principal design elements in High Voltage cables
(taken from [2]). The figure illustrates the stranded conductor that can be made of
aluminium or copper, together with the conductor and insulation screens (semiconductor
shields) which differs for paper-insulated and XLPE cables. In paper-insulated they
consist of copper tape interlapped with kraft or metalised kraft paper tape while in
polymeric dielectrics they consist of extruded semiconducting layers of polyethylene (PE)
which ensures good bonding between this layer and the insulation. The metal and outer
sheaths are not considered here.
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Table 2.1: Comparison of Electrical and Dielectric Properties of paper-insulated and
XLPE-insulated High Voltage (HV) cables(taken from [2])

Property Test Conditions Paper Value XLPE Value

Dielectric dissipation
Factor tan δ

50 Hz/20 ◦C 1.5-3×10−3 0.3-0.5×10−3

Permittivity εr 50 Hz/20 ◦C 3.5-3.8 2.3-2.4

Dielectric loss coeffi-
cient εr · tanδ

50 Hz/20 ◦C 5-12×10−3 0.7-1.2×10−3

2.3.1 High frequency behaviour of cables

Power cables act as low-pass filters therefore high frequency signals are being attenuated

when propagating through them. This attenuation is frequency dependent and can alter

the waveform of a signal travelling down the cable. The mechanisms dominating the

high frequency losses for paper-insulated and XLPE cables are slightly different at higher

frequencies. At low frequencies (<1MHz) the loss mechanism is common to both types

of cables and is dominated by the skin effect of the conductor. This loss is frequency

dependent and varies roughly as the square root of the frequency. Dielectric losses increase

roughly in proportion with the frequency and thus dominate at higher frequencies. For

PILC cables with relatively high dielectric losses (see table 2.1) this is the dominating

mechanism at high frequencies (MHz range). For cables with low dielectric losses, such

as XLPE, the radial capacitive current passing through the conductor and ground shield

layers is the dominating high frequency loss mechanism. This current is dependent on

the frequency related conductivity and dielectric constant of the shield [52]. The loss

mechanisms decrease the bandwidth (-6 dB) of a 270 MHz pulse to 10 MHz after around

100 m of propagation [54] which explains the fact that a HF sensor is sufficient for PD

measurements in cables. In the next section the bandwidth of the sensor used in acquiring

the PD signals in this work is measured by a network analyser.

2.4 Bandwidth of HFCT

A commercial HFCT with internal and external diameters 100 mm and 140 mm respec-

tively (figure 2.5) is used in acquiring the PD data and its frequency response is analysed

to evaluate its suitability for PD measurements. The magnitude and phase frequency

responses captured by the network analyser, are shown in figure 2.6. One port of the

20

Dem
etr

es
 Eva

go
rou



Figure 2.5: Commercial HFCT (IPEC 140/100) analysed
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Figure 2.6: HFCT Power Spectrum

network analyser is connected to a wire terminated by a 50 Ω BNC connector passing

through the centre of the sensor (simulating the earth carrying conductor) while the sec-

ond port is connected to the BNC of the sensor. From the frequency response plot above,

it can be deduced that the bandwidth of the transformer at 25 dB below the peak value,

defined as the useful bandwidth, is around 200 MHz. The actual frequency response of

the sensor defined as the point of occurrence of the first resonance, is around 10 MHz. At

higher frequencies a series of resonances and anti-resonances can be observed as for ex-

ample at 20 MHz, which is due to the presence of parasitic inductances and capacitances

in the sensor. The same response has been observed in [55] where the higher frequency

response is dominated by the capacitances in the system. Also according to [56] the
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difference in the value of the coupling coefficients between different sections of the CT

(depending on the position of the primary coil in the transformer window) can be one

of the reasons for the occurrence of resonances and antiresonances at higher frequencies.

Similar frequency behaviour has been predicted (although at higher frequencies) for a

Rogowski coil modelled as a distributed-element transmission line [57].

With a useful bandwidth of around 200 MHz and a first resonance at 10 MHz the

HFCT has a sufficient bandwidth for experimental PD data collection as well as on-line

PD data from cable loops. Therefore one can proceed to the build-up of a database

of various PD sources under laboratory controlled conditions that will be used in the

characterisation of PDs. In order to generate partial discharge data from different sources

a simple experiment is set up in a high voltage laboratory. A diagram of the experimental

arrangement is shown in figure 2.7. The 60 kV bushing tap of a large auto-transformer

used (model 60HC755) has a 235 pF nominal capacitance, and is PD free under its

nominated operating condition. The clamp-type split core HFCT IPEC model 140-100 is

Figure 2.7: Diagram of the experimental setup

used as a sensor with a measurable frequency range from 10 kHz to 200 MHz. A digital

oscilloscope, Tektronix DPO7254 with a bandwidth of 2.5 GHz and 400 MSample memory

is used to display, analyze and store the obtained signals. A Robinson type 5 model 700

conventional electrical PD detection (in accordance to IEC 60270 [31]) with 40-300 kHz
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bandpass frequency is also used to quantify the apparent charge of the simulated PD

activity, through a blocking capacitor (CK) of 1 nF and a measuring impedance (input

unit). The different discharge sources are generated by artificial defects introduced to high

voltage equipment under controlled conditions in order to form a database of different

PDs. As explained in the next section this database consists of PD sources that exists in

field conditions and the purpose of this database is to be analysed in the following chapter

where a reduced set of features will be deduced based on this experimental database.

Once this is evaluated on experimental data then field data are employed to evaluate the

identification performance of the proposed feature. The different PD sources that form

part of this database are described next.

2.4.1 Artificial PD Sources

Taking into account the majority of discharges found in cable networks and their ac-

cessories, four types of discharges are considered, namely corona discharge, floating dis-

charge, internal discharge and surface discharge. The occurrence of internal discharges is

the most common encountered in power cables and can be present in XLPE and PILC

cables, as well as their accessories. They can occur in the metal semiconductor interface

due to the result of the different thermal expansion coefficients of the two materials and

thermal loading. The surface discharge is more common in cable joints close to the field

grading cone, when for example there is a tracking along an interface. The floating dis-

charge requires the inclusion of a metal particle in the dielectric and is more unusual to

exist in power cables but can exist in nearby transformers or GIS equipment and prop-

agate into cables. Similarly a corona discharge can exist where sharp object are subject

to an electric as for example a protrusion on a high voltage electrode surrounded by air

or a loose screw, and do propagate into cables from nearby equipment. The arrangement

shown in figure 2.8 is used to generate these PDs and each set-up is explained briefly

below.

Before analysing each discharge type it is noteworthy to mention that the set-up for

the internal and the floating discharge types are immersed in mineral oil. This can be

explained by the fact that the inception voltage of both corona and surface discharges in

air is much lower than the respective inception voltage of the floating and the internal

discharges in air. Immersion in oil increases the inception voltage of the corona and

surface discharges and therefore the inception voltage of the floating and the internal

discharges can be reached without the unwanted occurrence of any corona or surface

discharges.
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(a) Internal discharge in oil

 
(b) Floating discharge in oil

 
(c) Surface discharge in air

 
(d) Corona discharge in air

Figure 2.8: Experimental setup for generating PDs of different types

Internal discharges are by far the most common family of discharges in the cable

dielectric which can be further subdivided into categories depending whether an insulating

or conducting interface is involved. Figure 2.9 shows common types of internal discharges

in a cable which includes protrusions at the semiconductive layers, microvoids in the

dielectric and conducting or non-conducting inclusions. To simulate an internal discharge

in a gas-filled inclusion of low dielectric strength (microvoid in the dielectric) a void of

5 mm (diameter) by 1 mm (depth) is embedded between two pieces of perspex, which

is placed between two symmetric planar electrodes. The HV source is connected to

the upper electrode and the lower electrode is earthed while the whole arrangement

is immersed in transformer oil, as shown in figure 2.8a. The recorded environmental

conditions were recorded prior to commencing the data acquisition and found to be 18◦C

at a pressure of 761 mmHg.

Floating discharges are examined next as they can be considered a special case of

internal discharges. As shown in figure 2.9 internal discharges can occur at the presence
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Figure 2.9: Common defects in polymeric cables (taken from [2])

of contaminating particles. When these contaminating particles are conductive, the re-

sulting discharge is included here as a separate discharge, the floating discharge. Floating

discharge in oil is simulated by inserting a 5 mm thick Perspex sheet with coils of tinned

copper wire on its surface between the two planar electrodes and the whole arrangement

immersed in oil (figure 2.8b). The upper electrode is at a HV potential while the lower

electrode is earthed, and the temperature is 20.3◦C and the pressure 743 mmHg. When

a voltage is applied to the arrangement the copper wires are at a floating potential and

thus the name for this discharge.

Surface discharges can exist in cable accessories for example in cable joints or termi-

nations and generally where dielectrics of different permittivity are joined together or at

the end of a conductor-insulator interface. Surface discharges occur when there exists a

stress component parallel to the dielectric surface. These discharges affect the electric

field extending beyond the region where the discharge originated from. To simulate sur-

face discharge behaviour, a perspex block is inserted between a pair of electrodes, the

upper electrode is connected to the high voltage power supply, and the lower electrode is

grounded, as shown in figure 2.8c. The temperature prior to performing the experiment

is 21◦C and the pressure 761 mmHg. The upper electrode is sharp, as this reduces the

inception voltage compared to a planar electrode. Application of a HV creates a dis-

charge along the insulator block that propagates along the insulator surface, and is thus

considered as a conductor-insulator discharge. Electron avalanches now start both in the

gas (with an electron ionisation coefficient α) as well as along the insulator surface (with

an electron ionisation coefficient αs).

Corona discharges are not usually found in cables but they can propagate from neigh-

bouring equipment or from overhead lines and be detected in PD measurements. Corona
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occurs at sharp points in gasses, usually at the high voltage electrode. The distance

between the electrodes is large but due to the field enhancement at a sharp point, a

partial breakdown does occur. In order to simulate the corona discharge, a piece of thin

aluminium wire is suspended from the high voltage conductor, as shown in figure 2.8d,

with ambient conditions being 15.5◦C at a pressure of 748mmHg. Even though the dis-

tance between the electrodes is large, the field concentration at the sharp edge of the HV

electrode causes a partial breakdown of the surrounding air. The length of the wire, as

well as the radius of the sharp point, have a significant effect on the inception voltage,

and by adjusting these two parameters different PD inception voltages can be realized.

Due to the distribution of space charges negative coronas (when the HV electrode is at

a negative potential) appear at a much lower voltage than positive coronas, and show a

repetitive pattern.

The experimental set-up and measuring equipment is used to acquire phase and time-

resolved data from the PD sources described above in order to build a database of different

PD sources that will be used in the development of a feature extractor for PD charac-

terisation, and its assessment using classification algorithms. Although the dielectric

material, the distance between the electrodes, the ambient humidity and temperature

all have an effect on the amplitude of the discharges, their effect is not investigated in

this work. Before proceeding to examine the acquisition of the various PD sources the

whole set-up needs to be calibrated in order to be able to record the apparent charge

for each discharge. The notion of apparent charge plays a crucial role in quantifying the

magnitude of the discharges and is explained below.

2.4.2 Apparent charge

The actual charge transfer locally involved at the PD site is the variable of interest but

since this is not an observable quantity the apparent charge is used instead. It is a

quantity that can be related to the actual charge at the site and can be understood

through the so called a-b-c model of PDs using capacitors to approximate PD currents

at the terminals of laboratory test objects. The electric field distribution across the

terminals (A-B) is simulated by partial capacitances as shown in figure 2.10a, provided

that no space charges are present to disturb this distribution. The field lines inside the

cavity are simulated by Cc while the lines above and below the cavity wall to the upper

and lower electrode by Cb = C ′bC
′′
b /(C

′
b + C ′′b ). The field distribution on the rest of the

specimen outside the cavity is represented by C ′a on the left and C ′′a on the right. These
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!

(a) Capacitances used in the model

!

(b) Electrical model of PD across the test spec-
imen using capacitors

Figure 2.10: PD explanation through an electrical model using capacitors (reproduced
from [3])

two capacitances are in parallel and can therefore be represented by Ca (= C ′a +C ′′a ). All

of the above capacitances, provided that the field distribution inside them is uniform, can

be approximated by the well known parallel plate capacitor equation

C = εrε0
A

d
(2.1)

where A is the area of overlap and d the separation between the two plates. With reference

to this equation and taking into account the realistic geometries involved we have Ac = Ab

and db � dc which gives the relation Cc � Cb. Considering the dimensions involved in Ca

it can be deduced that Aa � Ac which translates into Ca � Cc. Combining all the above

relations the following inequality relates the magnitudes of the capacitances involved

Ca � Cc � Cb. (2.2)

PD phenomena can be simulated by the equivalent circuit shown in figure 2.10b. The

voltage controlled (by the voltage across the capacitor Cc given by Vc) switch is closed

for a short period of time, during which the capacitor discharges through resistor Rc.

The shape of the current through this resistor, ic(t) is related to the discharge process

but unfortunately it is not a measurable quantity. Instead by employing the principle

of conservation of charge before and after the discharge occurrence it can be related to

the voltage drop across the terminals δVa. Assuming that the sample was charged to Va

and when the switch closes the terminals are removed from the voltage source (Vs) then
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the current ic(t) releases a charge δqc = CcδVc, provided Cc completely discharges. As a

result a voltage drop δVa appears across the terminal given by

δVa =
Cb

(Ca + Cb)
δVc. (2.3)

This quantity is measurable and proportional to (CbδVc), which can be vaguely related

to the charge released by current ic(t), δqc. This is achieved through the increase of Cc

!
Figure 2.11: PD test circuit where Ct is the total capacitance across the specimen (taken
from [3])

with the geometric dimensions of Cb. However the magnitude of δVa will be rather small

(the ratio Cb/Ca will be very small) and practical problems in measuring such small

magnitudes exist, let alone the fact that this ratio is not known. Therefore practical

detection circuits are based on the current i(t) and charge q from the circuit shown in

figure 2.11. The specimen in figure 2.10a is now connected to an ac voltage source through

an impedance Z and a ‘coupling capacitor’ CK has been placed in parallel with the test

specimen Ct. During the short duration of the PD current pulse, CK can be regarded

as quite a stable voltage source, releasing a charging current, i(t), between CK and Ct

to cancel the voltage drop δVa across Ct ≈ (Ca + Cb). If CK � Ct, δVa is completely

compensated and the charge transfer provided by i(t) is given by

q = (Ca + Cb)δVa = CbδVc (2.4)

through application of equation 2.3. This charge is the so called apparent charge, a

fundamental quantity in PD measurements. It is not the actual charge involved locally

at Cc but a more realistic quantity, independent of Ca, that measures the interaction of

dipole moments of local charge with the electrodes.
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However for finite values of CK the voltage across it will also drop during the PD, by

a value δV ∗. Assuming that the same charge has been transferred in the PD test circuit

and the PD test object (ic(t) = i(t)) we have the charge transferred from CK to Ct by

the reduced i(t), qm given by

qm = CKδV
∗ =

CK
Ca + Cb + CK

q ≈ CK
Ca + CK

q. (2.5)

This charge is related to q by a constant of proportionality which needs to be calculated

for a given experimental arrangement by a calibration procedure in order to get indicative

magnitudes of the various PD sources and establish the noise floor of the arrangement in

coulombs.

2.4.3 Calibration of experimental arrangement

To quantify the apparent charge during a PD event the Robinson detector is calibrated

using two injected pulses of known charge (50 or 500 pC) from a LDIC LDC-5RUF

UHF calibrator. Once the output of the Robinson detector is recorded on a channel

of the oscilloscope, the HFCT is connected to another channel (as shown in the actual

experimental setup in figure 2.12). The HV power supply is switched on and raised to

the desired voltage level, generating PD activity. Both channels (HFCT and Robinson

detector) are displayed and recorded giving quantitative information about the apparent

charge in the PD when compared to the reading of the calibration pulse.

The measurements taken during the acquisition of an internal discharge at an applied

voltage of 26 kV are shown in 2.13. A 50 pC charge is first injected into the set-up

of figure 2.7 at the UHF calibrator point and the recorded pulse at the output of the

Robinson detector (channel 1, yellow trace of the oscilloscope) is shown in figure 2.13a.

From this figure it can be seen that a charge of 50 pC produces a reading of 1.9 Volts

on the channel measuring the output of the Robinson detector (for the pulse at the

positive half of the voltage). Without changing the experimental set-up or the Robinson

detector settings the HFCT is connected to channel 2 (blue trace), the HV power supply is

switched on and the voltage raised to 26 kV. At this level the two channels are recorded

simultaneously (figure 2.13b) and the reading of the output of the Robinson detector

is mapped to picocoulombs according to the previous calibration (the measured 1.8 V

map to 1.8/1.9 × 50 ≈ 47 pC). Subsequently the reading of the HFCT channel is read

to be 8.1 mV which translates to approximately 17.23 mV/100 pC. Following the same

procedure for all the PD sources and voltage levels indicative values in pC are obtained
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Figure 2.12: Robinson detector (bottom) and oscilloscope (top) setup to measure the
output of the detector and the reading from the HFCT on different channels

for the HFCT sensor readings. Typical measurements of the various discharge types,

show that the captured data suffers from background noise which affects the sensitivity

of the measurements. Discharge activity having magnitude greater than 45 pC can be

reliably detected by the measurement system, while discharge activity with a charge lower

than this is buried in background noise, as shown from the acquired data in the following

section.
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(a) Robinson detector output for 50 pC pulse calibration

(b) Robinson detector and HFCT sensor output for an internal PD at an applied voltage of 26 kV

Figure 2.13: (a) Plot of the oscilloscope reading for the Robinson detector calibration
pulse in and (b) simultaneous reading of the Robinson detector and the HFCT sensor
output for an internal discharge

2.5 Data acquisition

The experimental arrangement analysed in section 2.5 is used to acquire phase as well as

single pulse data for the four PD sources at different applied voltages. This data forms

a database of different PDs that will be analysed in order to extract a representative

feature vector, able to compactly describe the characteristics of each PD. Subsequently the

dataset will also be employed in evaluating the proposed feature using the classification
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performance as a criterion.

Data acquired in synchronisation with the ac cycle can be used to assess the recur-

rence of discharges as well as to extract the so called Phase Resolved Partial Discharge

(PRPD) data representations. These representations constitute one of the most complete

representations of PD data since they can be directly related to physical aspects of the

discharge such as for example the symmetry of a void discharge. The sampling rate is

chosen to be 500 MHz, as the -25 dB high frequency point for the HFCT used is around

200 MHz. To reduce the amount of data the peak detection function of the oscilloscope

is used in the phase synchronised acquisition.

2.5.1 Phase data using Peak Detection

A broadband HFCT sensor of 200 MHz useful bandwidth implies a sampling frequency

of at least 500 MHz. If used for PD detection, such an approach will very quickly

create a significant volume of data that would introduce processing delays which are not

generally acceptable. Therefore the envelope of the PD discharge signal measured by

the HFCT is captured using the digital storage oscilloscope’s peak detect function. The

peak detection function of the oscilloscope is useful for catching high frequency glitches

but at a lower sampling rate. This is achieved by internally sampling at a high enough

frequency so as to avoid aliasing but only recording the highest and lowest of all the

samples in two consecutive intervals. This approach reduces the amount of data stored

per cycle of applied voltage by a factor of 103. A key issue with such an approach, is

whether post-processing of the enveloped data can discriminate between PD sources since

information about the individual pulses is lost using this acquisition mode. The use of

peak detection to reduce the volume of data allows the post processing of whole cycles

of data which are used in the calculation of traditional PD descriptors such as the pulse

count distribution,(φ− n plot, Hn(φ)) and the mean pulse height distribution (φ− q− n
plot, Hqn(φ)) [58]. Several cycles, at a sampling rate of 500 kS/s using the peak detection,

for different applied voltages and in synchronisation with the 50 Hz AC mains frequency,

are captured as seen in table 2.2 while plots for the different PD sources are shown in

figure 2.14.

2.5.2 Single Pulse data

Although phase resolved measurements can be utilised to extract patterns related to

the physics of the discharge, when applied to on-line data they suffer from noise and
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(a) Corona discharge in air at an applied volt-
age of 9 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
11.25 pC/mV.
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(b) Floating discharge in oil at an applied volt-
age of 23.4 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
2.47 pC/mV.
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(c) Internal discharge in oil at an applied voltage
of 24.5 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
10.75 pC/mV.

0 5 10 15 20

−0.2

0

0.2

Time (ms)

A
m

p
lit

u
d
e
 (

V
)

(d) Surface discharge in air at an applied volt-
age of 9 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
3.68 pC/mV.

Figure 2.14: One cycle phase-resolved measurements for various PD types, at different
voltages sampled at 500 kS/s (using the peak detection function)

interferences. Measured quantities make no distinction between a true PD and a pulse

shape interference. Moreover the occurrence of multiple discharge sources simultaneously

active in on-line measurements further complicates the extracted patterns. Since the

success of PRPD methods is based on laboratory measurements where the assumption

that a single PD source is active and no interferences present such methods find limited

applicability in field measurements. However using signal processing techniques to pre-

process the data enables the extraction of homogeneous (in the sense that they consist

of a PD from a single source and is interference free) phase patterns and thus the use of

PRPD. The signal processing part is done on single pulse data sampled at a sufficiently
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Table 2.2: Details of simulated PD data acquired in synchronisation with phase and using
the peak detection function of the oscilloscope (500 kS/s).

Type Voltage No of cycles Sample
length (per
cycle)

Corona in air 7 kV 500 9992 pts

Corona in air 8 kV 500 10 002 pts

Corona in air 9 kV 500 10 011 pts

Corona in air 11 kV 500 9998 pts

Floating in oil 23.4 kV 500 10 000 pts

Floating in oil 25.5 kV 500 10 000 pts

Internal in oil 21 kV 500 10 000 pts

Internal in oil 24.5 kV 500 10 000 pts

Surface in air 6 kV 500 10 000 pts

Surface in air 9 kV 500 10 000 pts

high sampling rate, where features such as the rise and fall times relate to the physics, as

well as the location of the PD. Single pulse signals are acquired in batches of 500 pulses

per file and 10 files are recorded for each applied voltage. This generates 5000 pulses per

applied voltage as shown in table 2.3. Plots of randomly chosen time-resolved data are

presented in figure 2.15 where the different waveforms produced by each PD source can

be seen.

The acquired phase and time-resolved data form a database of PD sources that will

be analysed in the subsequent chapters in order to propose and evaluate feature vectors

of low dimensionality that can find application in on-line measurements.

2.6 Conclusions

In this chapter the occurrence and recurrence of PD activity was briefly reviewed followed

by an explanation of the different types of cables and their effect on PD measurements.

Next the frequency response of the HFCT sensor used in the experiments was measured

and found to be adequate for use in the experiments. The equipment used and the

experimental set-up to build a database of different sources of PD was explained. The

database consists of phase and single pulse data, as they complement each other. The
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(a) Corona discharge in air at an applied volt-
age of 6 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
3.3 pC/mV.
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(b) Floating discharge in oil at an applied volt-
age of 24 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
0.12 pC/mV.
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(c) Internal discharge in oil at an applied volt-
age of 26 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
1.27 pC/mV.
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(d) Surface discharge in air at an applied volt-
age of 6 kV. From calibration of the Robinson
detector, the sensitivity of this measurement is
3.39 pC/mV.

Figure 2.15: Single pulse data measurements for various PD types, at different voltages
sampled at 500 MS/s

data collected here forms the basis for the following work and in the next chapter two

feature extraction methods are proposed.
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Table 2.3: Details of simulated single pulse PD data acquired at a sampling rate of 500
MHz

Type Voltage Sample Du-
ration

Sample
length

Sample
Quantity

Corona in air 6 kV 10 µs 5000 pts 5000

Corona in air 9 kV 10 µs 5000 pts 5000

Floating in
oil

24 kV 10 µs 5000 pts 5000

Floating in
oil

28 kV 10 µs 5000 pts 5000

Internal in oil 26 kV 10 µs 5000 pts 5000

Internal in oil 36 kV 10 µs 5000 pts 5000

Surface in air 6 kV 10 µs 5000 pts 5000

Surface in air 9 kV 10 µs 5000 pts 5000
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Chapter 3

Feature Extraction

In this chapter a feature vector of low dimensionality is proposed, which reduces the stor-

age requirements and computational burden of the classification algorithm. Two variants

of the proposed feature are presented, one using time and another using phase resolved

data, as the use of both type of data complements each other facilitating the PD identifi-

cation method. In order to deduce a feature that best characterises each discharge with a

minimum number of dimensions, the data collected under laboratory controlled conditions

from various sources of PD in chapter 2 are analysed. To tackle this lower dimensionality

constraint the Wavelet Packet Transform (WPT) and Higher Order Statistics (HOS) are

employed. The WPT expands the signal using an adaptive time-frequency decomposi-

tion, delineating characteristics that are not immediately obvious from a representation

in the time domain. The selection of specific time-frequency regions that contain most of

the information in the signal and the use of HOS as a statistical descriptor of the wavelet

coefficients in these tiles reduces the dimensions of the characterisation. The reduction in

the number of dimensions achieved through the combination of the above tools can find

potential application in continuous on-line PD monitoring systems. Such systems enable

trending analysis of the measured PD data that can reveal important information about

the severity of the deterioration caused by the discharge.

3.1 Literature Review

The traditional goal of a feature extractor is to characterize an entity to be recognised

by very similar values for objects in the same category but very distinct for different

categories [59]. Some of the most important descriptors of the discharge pulses are their

amplitude, rise time, recurrence rate, phase relationship of occurrence with respect to
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the applied alternating voltage and time interval to the preceding pulses [20]. As some

of these attributes are extracted from time-resolved while others from phase-resolved

data, different feature extraction methods [60] are broadly categorised according to the

representation utilised.

Both phase and time-resolved (also called single pulse) data can be related to aspects

of the physics of the discharges and this can explain their extended use in attempts

to describe PD behaviour. Phase-resolved data representations give information about

the phase of occurrence of PD activity and can provide the intervals between successive

discharges. Such information can be related to electron availability or the decay time

constants of space charges. On the other hand time-resolved data takes into account

quantities such as the rise-time giving an insight into the discharge mechanisms involved

in the emission of electrons at the cathode [18, 20]. The two approaches are reviewed

in the following two sections and as phase-resolved representations were historically the

first to be employed in PD analysis they are reviewed first.

3.1.1 Phase-Resolved Representations

Phase-resolved data involves acquisition of several cycles in synchronisation with the

mains frequency. One of the early and most successful analysis methods employed are

the so called φ− q and φ− n representations where the phase axis is divided into small

bins and extracted quantities are plotted against it. In the former case the peak (qp)

or the average (qm) charge while in the latter the number of discharges, n, per phase

window are plotted as a univariate distribution against the phase. Dividing the extracted

quantity (for example the maximum charge) into windows as well, allows the calculation

of the number of discharges for each phase and charge window. This can be plotted as a

bivariate distribution against the charge and the phase, giving the 3-dimensional φ−q−n
plot, one of the most complete PD data representations [21–27]. These representations

have traditionally been referred to as Phase Representation PD (PRPD), a terminology

that is adopted here.

Although these 2 or 3-dimensional plots can be utilised in themselves as feature vec-

tors, their dimensionality depends on the product of amplitude and phase bins. In an

attempt to reduce the number of dimensions the PRPD were used to extract features.

Towards this end two main paths were followed, the descriptive and the physical mod-

elling. In the descriptive approach mathematical and data analysis tools were employed

to derive a set of values that describe the PRPD (or the data series), while in the physical
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modelling approach a physical model or a set of equations was employed to analyse the

observed phase-resolved data series.

Statistical analysis tools were one of the first methods applied successfully on phase-

resolved data to get descriptive parameters for the 2-dimensional PRPD distributions and

many such attempts can be found in the literature [21, 22, 24, 27, 28]. For example in [28]

the complete feature vector was derived from the estimation of the skewness and kurtosis

of the positive and negative half cycle of the φ − qm and φ − n distributions as well as

other statistical operators such as the correlation coefficient. This 9-dimensional feature

was tested on sixteen full scale samples and showed a good potential for classification of

discharging defects in insulation structures.

In addition to statistical analysis tools, signal processing on 2-dimensional PRPD or

image processing on 3-dimensional PRPD were employed. The φ−q−n was transformed

into a 2-dimensional image where one of the quantities (usually n) was represented by the

pixel values of the image. Tools such as the 2D wavelet transform [26] or fractal analysis

[29, 30] were used to extract descriptive features.

The utilisation of statistical, image, or signal processing tools results in a set of pa-

rameters that are not directly physically interpretable. For example a change in the

applied voltage can result in a significant change in the value of the parameter in spite of

the fact that the physics of the discharge remains the same. To extract more meaningful

descriptors, whose interpretation is directly related to the physics of the actual discharge,

attempts to employ physical models were undertaken. However very few approaches exist

in the literature, possibly due to the complexity of the PD process and its dependence

on the initial conditions.

A stochastic model was considered in [1] where three physical parameters (the initi-

ation probability, the decaying function of the internal field, and the residual field) were

used to describe an observed phase-resolved series. Another physical model approach is

the Pulse Sequence Analysis (PSA) [61]. It relies on a plot of the phase difference between

two successive discharges at time n (∆Un) against (∆Un−1) as a parameter set. One of the

benefits of this approach is that it takes into account the space charges developed after

the PD has been initiated and the phase shift as a result of the presence of these space

charges. However a general drawback of these methods is that due to the complexity of

the discharge process it is difficult to estimate the physical parameters directly from the

measurements and a trial and error procedure must be followed.

In this research the descriptive approach is used, despite its aforementioned drawback,

due to its simplicity in estimating a set of descriptive parameters from the measurements.
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The WPT and HOS are combined to derive a set of features and detailed explanation of

the phase-resolved proposed feature is given section 3.5.

PRPD distributions produce interpretable representations under the assumption that

the recorded data is free from interference and there is only one source of PD active.

However in on-line measurements these two assumptions do not hold which results in de-

scriptors extracted from PRPD distributions and physical parameters from phase-resolved

series, that will not be able to adequately characterise the PD process. Fortunately phase-

resolved methods can still be employed provided that a pre-processing step to separate

different sources of PD is applied [37]. Single pulse data implements this based on pulse

shape analysis and is reviewed in the next section.

3.1.2 Time Resolved Representations

In time-resolved measurements data representing the waveforms of single pulses are cap-

tured for a sufficiently long time at a sufficiently high sampling rate. The “sufficiently

long” requirement is needed in order to capture quantities such as the rise-time, fall-time

and waveform of the PD without truncating them, and a “sufficient sampling rate” en-

sures that no distortion will be introduced due to the digitisation (sampling). A variety

of discriminatory features derived from the actual measurement or by the application of

signal processing techniques exist in the literature, and publications relevant to the work

in this thesis are reviewed.

Time and frequency content of time-resolved PD signals is related to the type of PD

as different sources of PD produce different time and frequency characteristics. More-

over, the low-pass characteristics of underground power cables result in distortion as a

function of the distance travelled, affecting the frequency content of the pulse. Adding

the two, time or frequency analysis of PD signals can result in identifying PDs, under

the assumption that PDs originating from the same source will have similar time and

frequency characteristics.

To analyse the frequency content of a PD signal the Fourier Transform was employed

in [35] to extract features to identify fixed (on conductors or spacer surfaces) or free

moving particles in SF6 gas-insulated substations (GIS). However one of the weak points

of the Fourier Transform (FT) is that its basis functions extend over the whole time

interval without any localisation properties, and therefore time information is completely

lost. To overcome this problem the Short Time Fourier Transform (STFT) is employed

that uses a fixed window to capture the signal allowing a simultaneous time-frequency

analysis of the signal.
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An implementation of the above transform can be found in [36–38], where the signal

was captured in windows of K samples. The acquired pulses were mapped into a time

(T) and frequency (F) equivalent bandwidth calculated as the second central moment of

the square of the time and frequency coefficients of the data, creating a time-frequency

representation of the energy of the signal. However the STFT employs a fixed time-

frequency plane, whose area is limited by the Heisenberg uncertainty principle. Wavelet

Analysis (WA) overcomes this limitation by providing a time-frequency representation

that is dependent on its scaling parameters.

The Wavelet Transform, a discretisation of WA, provides a variable time-frequency

decomposition that delineates signal characteristics not immediately obvious in the origi-

nal signal. The WT was firstly applied in denoising PD signals [62–64] but was extended

to the utilisation of the wavelet coefficients as features [39].

The Wavelet Packets Transform, an extension of the WT, expands the signal into a

set of adaptive bases (time-frequency tiles adapted according to the characteristics of the

signal) that potentially results in a more compact representation. This transform is em-

ployed here and a procedure is proposed where the nodes representing the characteristics

of the different PD sources are selected. The wavelet coefficients of these nodes constitute

descriptors and can be used as features. However in order to reduce the dimensionality

of the representation statistical analysis is employed to approximate these coefficients.

The statistical analysis of PD pulses is able to capture the variability in PD properties.

Such a method was employed in [42] on time-resolved measurements, where different PD

sources were identified on the basis of the shape parameter of the Weibull distribution of

the pulse height. The Autocorrelation Function (ACF) was also used in [43] for clustering

time-resolved data (identified by the K-means clustering algorithm). The utilisation of

statistical analysis using moments was confined up to the second order and the use of

Higher Order Statistics (HOS) received limited attention. The application of HOS on

time-resolved data was examined on acoustic and electric data taken from experimental

measurements of contaminating particles in a tank of oil [44].

This research attempts to employ the concept of statistical analysis through the ap-

plication of HOS (up to fourth order) on selected wavelet coefficients, in order to explore

the potential of the combination of WPT and HOS methods on electrical measurements

in power cables. To the author’s best knowledge the only study in the literature where

similar work was performed on time-resolved data is [41] but substantial differences exist

between that work and this thesis, such as the selection of the WPT nodes, the HOS

and the number of PD samples used. As both time and phase-resolved proposed features

41

Dem
etr

es
 Eva

go
rou



employ these analysis tools, they are theoretically analysed in the next section, starting

from Wavelet Analysis.

Using the wavelet analysis signals with form changes, characteristic of those generated

by PDs, can be better analysed with a decaying oscillatory wavelet signal (due to the

admissibility condition) than with a uniform Fourier sinusoid of infinite extend. The

theoretical analysis starts with a redundant transform, the Continuous Wavelet Transform

(CWT) to explain how the wavelet coefficients are calculated and why they can enhance

specific characteristics of a signal. Redundant approximations employ dictionaries of

vectors that are larger than bases to build sparse representations of complex signals.

3.1.3 The Continuous Wavelet Transform (CWT)

The continuous wavelet transform of a signal x(t) can be considered as its correlation (or

inner product) with a wavelet function. The transform is given by

Wx(a, b) =

+∞∫
−∞

x(t)ψ∗a,b(t)dt = 〈x, ψa,b〉 (3.1)

where

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(3.2)

is the wavelet function which is a function ψ ∈ L2(R) that has to fulfil certain math-

ematical properties [65]. For real wavelets it has to have a finite energy and obey the

admissibility condition given by

Cψ =

∫ +∞

0

‖x̂(ω)‖2

ω
dω <∞ (3.3)

where x̂(f) is the Fourier Transform of x(t). The admissibility condition is satisfied

if x̂(ω) = 0 and x̂(ω) is continuously differentiable. It can be verified that x̂(ω) is

continuously differentiable if ψ has a sufficient time decay:∫ +∞

−∞
(1 + |t|)|ψ(t)|dt <∞. (3.4)

The above conditions translate into a real wavelet being a decaying oscillatory function

with zero mean. Introducing a scaling function φ(t) allows the aggregation of wavelet at

scales larger than a0 (a > a0) and reduces the number of scales needed to represent the
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signal. This scaling function is defined by

|φ̂(ω)|2 =

∫ +∞

ω

|ψ̂(ξ)|
ξ

dξ. (3.5)

Also ‖φ‖ = 1 and from the admissibility condition

lim
x→0
|φ̂(ω)|2 = Cψ (3.6)

which points to the fact that the scaling function has to have a low-pass response. The

importance of the behaviour of the wavelet function in enhancing the local characteristics

of a signal can best be explained with the aid of figure 3.1. The CWT is clearly a function

of two variables, one controlling the dilation (a) and the other the translation (b) of the

wavelet. At a particular scale the transform measures the correlation of the wavelet

function with the signal x(t) and therefore large coefficients are produced at translations

where the local characteristics of the two signals match. Increasing the scale results in

Figure 3.1: Explanation of the capability of the CWT to highlight the local characteristics
of a signal based on dilations and translations. The transform is an inner product of the
signal with the wavelet function and at dilations and translations where there is similarity
between the two large coefficients are being generated (figure taken from [4]).

a dilated wavelet which correlates to different time characteristics of the signal. Since

the wavelet at different dilations and locations has a given time and frequency support it

results in a continuous time-frequency distribution. The scalogram, which is the energy

of the CWT coefficients as a fraction of the energy of the signal, shown in figure 3.2

for two different experimental signals, is such a distribution. Looking at this plot it can

be seen that the peaks occur at different scales which indicates different time-frequency

content for the experimental surface and corona discharges both at an applied voltage of

6 kV, not immediately obvious from their time plots.
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(a) Scalogram for a single pulse experimental
surface discharge at an applied voltage of 6 kV
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(b) Scalogram for a single pulse experimental
corona discharge at an applied voltage of 6 kV

Figure 3.2: Scalogram plots of the CWT coefficients for two different experimental PD
sources. The scalogram is given as the energy of the coefficients PWx(a, b) = ‖Wx(a, b)‖2
and the plots here show the PWx(a, b) values normalised to the signal energy (‖x(t)‖2).
The actual time plots of the signals on top of the scalograms show that the CWT de-
lineates differences in the signals to produce different coefficients in the time-frequency
decomposition.

The CWT is a redundant representation as the dilation and translation parameters

are continuous variables producing a higher number of wavelet coefficients than critically

sampled parameters. The Wavelet Transform through a dyadic logarithmic discretisa-

tion produces such a representation resulting in a more concise characterisation. It is

equivalent to the mathematical theory of Multiresolution Analysis (MRA), which links

the transform to signal processing theory of digital filters, where iterative computation

through a series of Quadrature Mirror Filters (QMF) is achieved. Next we look at the

theory behind this analysis and its implications in processing PD signals.

3.1.4 The Wavelet Transform

The Wavelet Transform emerges through a discretisation of the dilation and translation

parameters to give a less redundant representation. One such discretisation scheme is the

logarithmic which gives the following wavelet function

ψj,n(t) = 1
1√
aj0

ψ

(
t− nb0aj0

aj0

)
(3.7)
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where the integers j and n control the dilation and translation respectively. Setting this

logarithmic scaling to a dyadic grid by letting a0 = 2 and b0 = 1 a critical sampling is

achieved in the sense that a unique inverse transformation exists. The dyadic wavelet

function is given by

ψj,n(t) =
1√
2j
ψ

(
t− n2j

2j

)
. (3.8)

The formalisation of the link between the discretisation of the CWT and the sampling

used can be found in frame theory [65, 66].

By employing Multiresolution Analysis (MRA) the discrete Wavelet Transform (WT)

can be calculated in a completely iterative manner, which is ideal for computations. In

MRA the approximation of a function f at a resolution 2−j is defined as the orthogonal

projection Pvj
f on a vector space Vj ⊂ L2(R). According to the axioms of multiresolu-

tion [65, page 264], a sequence {Vj}j∈Z of closed subspaces of L2(R) is a multiresolution

approximation if the following six properties are satisfied

∀(j, n) ∈ Z2, f(t) ∈ Vj ⇔ f(t− 2jn) ∈ Vj (3.9)

∀j ∈ Z, Vj+1 ⊂ Vj (3.10)

∀j ∈ Z, f(t) ∈ Vj ⇔ f

(
t

2

)
∈ Vj+1 (3.11)

lim
j→+∞

Vj =
+∞⋂
j=−∞

Vj = 0 (3.12)

lim
j→−∞

Vj = Closure

(
+∞⋃
j=−∞

Vj

)
= L2(R) (3.13)

and there exists θ such as {θ(t−n)}n∈Z is a Riesz basis of V0. The orthogonal projection

on Vj is included in Vj−1 and letting the orthogonal complement of Vj in Vj−1 be Wj

then we have

Vj−1 = Vj ⊕Wj. (3.14)

where the ⊕ denotes a direct sum of vector spaces. This can be expressed as the sum of

the orthogonal projections of f on Vj and Wj:

PVj−1
f = PVj

f + PWj
f. (3.15)

The complement PWj
f is the detail of f at scale 2j−1, which disappears at the coarser
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scale 2j. To compute these projections an orthonormal basis of Vj is needed. A scaling

function constructed through orthogonalisation of the Riesz basis given by [65]

φj,n =
1√
2j
φ

(
t− n

2j

)
(3.16)

provides such a basis. The family {φj,n}n∈Z is an orthonormal basis of Vj for any j ∈ Z.

Similarly, the family of wavelet functions {ψj,n}n∈Z is an orthonormal basis of Wj for any

scale 2j and {ψj,n}(j,n)∈Z2 an orthonormal basis of L2(R) for all scales. The coefficients

of the projection in each of the Vj and Wj vector spaces are defined as

aj[n] = 〈f, φj,n〉 and dj[n] = 〈f, ψj,n〉 (3.17)

where aj[n] are the “approximation” and dj[n] the “detail” wavelet coefficients at scale

j. Successive application of 3.15 results in a fast wavelet transform that can successively

decompose each approximation into a coarser approximation plus the detail coefficients

which are calculated with a cascade of discrete convolutions and subsamplings [67, 68]

aj+1[p] =
+∞∑

n=−∞

h[n− 2p]aj[n] = aj ? h[2p] (3.18)

dj+1[p] =
+∞∑

n=−∞

g[n− 2p]aj[n] = aj ? g[2p] (3.19)

where x[n] = x[−n].

The coefficients h[n] and g[n] are given by the following relations

h[n] =
1√
2
〈φ(

t

2
), φ(t− n)〉 (3.20)

g[n] =
1√
2
〈ψ(

t

2
), φ(t− n)〉 (3.21)

g[n] = (−1)1−nh[1− n] (3.22)

and can be regarded as the coefficients of discrete conjugate mirror filters [65]. The

original signal passes through two filters and two signals emerge, the approximation

and detail coefficients corresponding to low-frequency and high-frequency components

respectively. An orthogonal representation of aL = 〈f, φL,n〉 is composed of the detail

coefficients of f at scales 2L < 2j < 2J plus the remaining approximation coefficients

at the largest scale 2J . The whole procedure of iteratively filtering the signal from the
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(a) The Wavelet Transform implemented as a
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(b) The resulting Wavelet Transform tree

Figure 3.3: The implementation of a fast transform for the WT ideal for computations
is shown as a series of filter operations with subsamplings (↓2). The resulting tree from
the implementation is also shown which has been expanded up to level 9.

previous level to produce the detail and approximation coefficients at the next level is

shown in figure 3.3a. The resulting wavelet tree in figure 3.3b is a projection of a signal

in bases that are a priori known and does not depend on the signal’s characteristics.

Through the use of Wavelet Packets however the projection of a signal is done on bases

that are adaptively selected according to an entropy criterion. Therefore Wavelet Packets

are better suited than the WT for providing a more compact representation of the signal,

a desired property for feature extraction algorithms.

3.1.5 Wavelet Packets Transform (WPT)

The WPT, extends the WT, by further projecting the signal in subspace Wj onto two

new subspaces at scale j + 1, thus deriving new bases [69]. In comparison with the WT

where only the “approximation” coefficients aj are further decomposed at scale j+1, now

the “detail” coefficients dj can be further decomposed at scale j+ 1. This decomposition

is given by the following projection

Wp
j = W2p

j+1 ⊕W2p+1
j+1 . (3.23)
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(b) The resulting Wavelet Transform tree

Figure 3.4: Implementation of the WPT as a series of filter operations with subsampling.
The full resulting tree from the implementation is also shown which has been expanded
up to level 5.

where the following two wavelet functions

ψ2p
j+1 =

+∞∑
n=−∞

h[n]ψpj (t− 2jn) (3.24)

ψ2p+1
j+1 =

+∞∑
n=−∞

g[n]ψpj (t− 2jn) (3.25)

constitute orthogonal bases for the two subspaces. Similarly to the wavelet transform

h[n] and g[n] are given by

h[n] = 〈ψ2p
j+1(u), ψpj (u− 2jn)〉 (3.26)

g[n] = 〈ψ2p+1
j+1 (u), ψpj (u− 2jn)〉 (3.27)

where the relation of 3.22 still holds and they can be viewed as the coefficients of discrete

filters recursively calculated by subsampling and convolving the discrete filters coefficients

h[n] and g[n] with the coefficients at a lower scale

d2pj+1[k] = dpj ? h[2k] and d2p+1
j+1 [k] = dpj ? g[2k] (3.28)

as shown in figure 3.4a. In figure 3.4b the full WPT tree is shown where it can be seen

how the wavelet coefficients at node (j, p), dpj [n], representing the projection in subspace

Wp
j are projected into their two children giving wavelet coefficients d2pj+1[n] and d2p+1

j+1 [n].
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This full tree decomposition provides a larger choice of bases that the signal can

be expanded into and can provide an adaptive decomposition for a particular signal.

Therefore a measure is needed as a criterion for the selection of the bases to be included

in the decomposition. The requirement is that this cost function is concave and that

it is minimised by the selected basis. Several measures exist in the literature the most

commonly used being Shannon’s entropy of the energy of the WP coefficients [65] defined

as

C(f,B) = −
N∑
m=1

|〈f, gm〉|2

‖f‖2
ln

(
|〈f, gm〉|2

‖f‖2

)
(3.29)

where gm is the dictionary of wavelet bases. For a length N signal, the dictionaries of

these wavelet packets include more than 2
N
2 bases and finding the minimum by brute force

comparison of the cost of all Wavelet Packets is computationally prohibitive. Fortunately

the fast dynamic algorithm of Coifman and Wickerhauser [70] finds the best basis with

O(N log2N) complexity, by taking advantage of the tree structure of these dictionaries

and the additivity of the cost function. In figure 3.5 the best basis tree is shown for an

(0,0)

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1)

(4,0) (4,1)

(5,0) (5,1) (5,2) (5,3)

Figure 3.5: Best Basis tree representation for an experimental corona single pulse at an
applied voltage of 6 kV using Shannon’s entropy as a cost function.

experimental corona at an applied voltage of 6 kV computed by employing the fast basis

search algorithm and Shannon’s entropy cost function.

The cost function is not the only parameter that has to be chosen a priori by the user

but the number of vanishing moments and the family of the wavelet used can have an

impact on the decomposition, as explained next.
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Figure 3.6: The Symmlets 8 (a) scaling and (b) wavelet functions chosen as the functions
to be used in the wavelet analysis of PDs.

3.1.6 WPT parameters selection

Wavelets are defined by the number of vanishing moments and the family they belong

to, which have to be selected according to the application at hand. A wavelet having n

vanishing moments, defined as

∞∫
t=−∞

tkψ(t)dt = 0 for 0 ≤ k < n (3.30)

suppresses polynomials of degree n-1. Although the support size of a function and the

number of vanishing moments are a priori independent, due to the constraints imposed

on orthogonal wavelets if ψ has p vanishing moments then its support is at least 2p − 1

[65]. This imposes a trade-off between the number of vanishing moments and the support.

The number of vanishing moments relates to the frequency behaviour of the wavelet filter,

which in turn can be linked to the steepness of the filter. It has been shown [71] that

provided the order of the filter is above a certain value (where this value depends on the

wavelet packet) and a certain resolution level then the wavelet coefficients within a partic-

ular node decorrelate. In effect choosing higher wavelet moments can have a “whitening”

effect on the coefficients. The two most widely used family of wavelets in PD are the

Daubechies and the Symmlets wavelets. Daubechies are very asymmetric because they

are constructed by selecting the minimum-phase response while the Symmlets provide a

linear phase response. The choice of the Symmlets wavelet with 8 vanishing moments

(shown in figure 3.6) is found to be a good compromise between a high enough number
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of moments and an acceptable level of support. This choice is based on reported work

in the literature [72] as well as work by the author in denoising simulated PD signals

[62, 73] where the performance of the wavelet family and order was evaluated based on

the correlation coefficient, the SNR and the Mean Squared Error (MSE) between the

original and the denoised signal. Unless otherwise explicitly stated throughout this work

the Symmlets 8 wavelet is used and the wavelet packet tree obtained by minimisation

of Shannon’s entropy function. Also the effect of the levels of decomposition on the de-

noising performance was examined in [74] where the inclusion of 9 levels produced better

results.

In this section the WPT is selected to adaptively decompose the PD signal and is

applied on experimental PD data resulting in a best basis tree, using the parameters

above. Subsequently specific nodes of this tree that are believed to best represent the

various PD sources are selected, using a procedure that is explained in section 3.4.1.

Although the actual wavelet coefficients of the selected nodes can be used as features

[39], this creates a feature vector of high dimensionality which is undesirable due to its

higher computational and storage burden. Instead the application of statistical analysis

tools to describe the probability density function of the respective wavelet coefficients, is

examined. Application of Higher Order Statistics as statistical descriptors is one possible

solution, and the theoretical ground for their use is set in the next section.

3.2 Higher Order Statistics (HOS)

As stated in sections 3.1.1 and 3.1.2 statistical analysis methods were utilised in order to

capture the statistical nature of PD signals and their amplitude variations. This statistical

nature stems from the fact that the initiation and development of a PD depends on a

number of physical mechanisms (for example the presence of a starting electron in order

for a PD to take place is governed by a probability law). The probability density function

(pdf) of PD amplitudes was used for example in [42, 75] where a Weibull Distribution

was fitted to the pulse amplitudes which in turn could be described by the scale and

shape parameters of the distribution. Such parametric approaches require the a priori

selection of an underlying distribution and the calculation of its parameters from the

measurements through an appropriate estimator. As long as this assumption holds true

the parameters can accurately represent the process but if this is not the case then the

performance will deteriorate. The use of HOS approximates a distribution in a least
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squares sense without making an assumption about its shape, through the calculation of

the statistical cumulants.

The basic principles for the description of a random variable revolve around the inter-

play between four statistical descriptors: the probability density (pdf), the characteristic,

the moment and the cumulant generating functions. If two distributions have a certain

number of cumulants in common they will bear some resemblance to each other and a

mathematical justification of this can be found in [76, page 111]. The cumulants, have

properties that are more useful from a theoretical point of view. The cumulant of two sta-

tistically independent random variable equals the sum of the cumulants of the individual

random variables, whereas this is not true for higher order moments. This allows us to

treat cumulants as operators simplifying matters [77]. Furthermore from the additivity

property third and higher-order cumulants are blind to Gaussian noise. All of the above

properties make the cumulants the chosen set of descriptors used in this work and are

thus described in the next section.

In the univariate case X is a real random variable with probability density f(x) and

the characteristic function Φ(ω) given by

Φ(ω) =

∫ +∞

−∞
ejωxf(x)dx (3.31)

3.2.1 Use of cumulants to describe the pdf

The cumulants, κ1, κ2, ..., κr are defined as the derivatives of the second characteristic

function Ψ(ω) defined as

Ψ(ω) = ln(Φ(ω)). (3.32)

where Φ(ω) is the characteristic function given by

Φ(ω) =

∫ +∞

−∞
ejωxf(x)dx. (3.33)

The cumulant function, κr is the coefficient of ωr/r! in ln Φ(ω), if an expression in power

series exists in the same way that µ′r is the coefficient of ωr/r! in Φ(ω). Relations between

cumulants and central moments exist and are given by

κ2 = µ2

κ3 = µ3 (3.34)

κ4 = µ4 − 3µ2
2.
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Cumulants except the first are invariant under change of origin, a property that is shared

by central moments (µr) as well.

The notion of cumulants as a set of descriptive constants can be extended to the

multivariate case where a collection of random variables, X = [X1 X2 ..... Xn]T is defined

by the joint characteristic function of the multivariate distribution F (x1, x2, · · · , xn)

given by

Φ(ω1, ω2, ...... , ωn) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

ejω1x1+jω1x1+···+jωnxn . (3.35)

The multivariate equivalent of the cumulant expansion as a power series is given by

exp

(
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rn=0

κr1r2···rnω
r1
1 ω

r2
2 · · ·ωrnn

r1!r2! · · · rn!

)

=
∞∑
r1=0

∞∑
r2=0

· · ·
∞∑

rn=0

µ′r1r2···rnω
r1
1 ω

r2
2 · · ·ωrnn

r1!r2! · · · rn!
(3.36)

where k00 is defined as equal to 0. The calculation of product cumulants, κr1r2···rn and

higher order terms when n is larger than 2 in 3.36 becomes a tedious task and the series

expansion can be approximated by partial terms such as for example ri = 1 ∀i.
Having reviewed how the cumulants can be a set of descriptive constants, the nor-

malised cumulants (normalised to the energy of the signal, κ2) are chosen, as they are

invariant to changes of scale and translations, to approximate the pdf of the wavelet co-

efficients at selected nodes of the WPT tree. These cumulants have to be estimated from

the available samples dpj [k] and the following equations [76] are used in their calculation:

η = µ′1 =
1

Nj

Nj∑
k=1

(dpj [k]) (3.37)

σ =
√
κ2 =

 1

Nj − 1

Nj∑
k=1

(dpj [k]− η)2

 1
2

(3.38)

γ1 =
κ3

κ
3/2
2

=

√
Nj(Nj − 1)

Nj − 2

1

σ3

Nj∑
k=1

(dpj [k]− η)3 (3.39)

γ2 =
κ4
κ22

=
Nj(Nj + 1)

(Nj − 1)(Nj − 2)(Nj − 3)

1

σ4

Nj∑
k=1

(dpj [k]− η)4 − 3
(Nj − 1)2

(Nj − 2)(Nj − 3)
. (3.40)
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In all the above equations Nj is the number of wavelet packet coefficients at scale j,

which halves each time the scale increases by one. They are used in the calculation of four

statistical descriptors for each wavelet packet tree node included in the representation.

Now that the theoretical background behind the use of HOS as statistical descriptors

has been layed, two feature extractors based on a combination of the tools analysed in the

previous two sections are proposed. The first proposed feature is based on time-resolved

measurements while the second one on phase-resolved data.

3.3 Time-resolved PD proposed feature

The applicability of WPT and HOS in getting compact, descriptive representations of

PD signals of different sources was explained theoretically in the previous two sections.

Here a proposed feature vector based on time measurements and the two data analysis

tools is proposed. The measurements shown in table 2.3 are used in the analysis and are

processed using the WPT to reduce the size of the representation and recover the useful

information, using an adaptive time-frequency decomposition. Previous research [73, 78]

showed the advantages of wavelet decomposition of PD signals in both the time and

frequency domain. Through the use of the Wavelet Packet Transform (WPT) some of the

signal characteristics can be enhanced and represented in a more compact form resulting

in a feature vector of lower dimensions. For example figure 3.7 shows the original signal

of an internal discharge at an applied voltage of 26 kV (3.7a) against the reconstructed

signal from wavelet packet coefficients at node (5,0) (3.7b) which demonstrates the fact

that each node highlights different time frequency characteristics that are not immediately

obvious in the original signal.

Specific nodes of the WPT have been reported to provide good results in identifying

PDs, for example in [39] the wavelet coefficients of node at level 3 position 1 (d13[k])

expanded using a Symmlet 8 were scaled and used as a feature vector in a SVM clas-

sification machine. After processing, the data length was reduced to approximately 1/8

of its original size [39] which supports the ability of the transform to compact useful

information in a signal. In this research a combination of different nodes of the wavelet

packet tree decomposition are used and their selection procedure is outlined in the next

section.

54

Dem
etr

es
 Eva

go
rou



0 2 4 6 8 10

−0.05

0

0.05

Time (µs)

A
m

p
lit

u
d

e
 (

V
o

lts
)

(a) Original

0 2 4 6 8 10

−0.01

0

0.01

0.02

Time (µs)

A
m

p
lit

u
d
e
 (

V
o
lts

)

(b) Reconstructed

Figure 3.7: Time plot of experimentally acquired internal discharge at an applied voltage
of 26 kV against its reconstruction using the wavelet coefficients d51[k] which shows that
coefficients in specific nodes can be used to delineate different time-frequency character-
istics of a signal.

3.3.1 Selection of the Wavelet Packet Transform Nodes

All the single pulse experimentally acquired PD signals of table 2.3 are expanded into

the best basis tree that minimises Shannon’s entropy using a Symmlet wavelet with 8

vanishing moments. Typical wavelet packet trees for the different discharge types can be

seen in figure 3.8 where the signals are expanded up to level 5. The number of wavelet

coefficients at a particular scale (Nj) are used in the formula of the calculation of the

cumulants (3.37-3.40). Since a low value can result in unreliable estimates (high bias of

the estimator) and the number of coefficients halves with an increase of scale, level 5 is

considered a good compromise (N5 = 170). The coefficients are not exactly half each

other because 5000 is not an integer of a power of 2 and the algorithm takes this into

account. The selection procedure followed is to extract a common best basis tree whose

coefficients adequately describe and differentiate the different PD sources.

For each discharge type the terminal nodes in the best basis tree expansion for each

signal are recorded. The ten terminal nodes that are most frequently included in the

best basis tree are selected for each discharge type. Terminal nodes that appear on all

four “common” trees are selected to represent the “common” wavelet packet tree for all

discharges, shown in figure 3.9. From this common tree nodes (3,1), (4,1), (5,0) and

(5,1) are selected as the nodes whose coefficients pdf will be approximated by HOS. The

frequency content of these nodes is shown in table 3.1 and is seen that they capture

different frequency content of the PD signals. Since the field data is expected to be
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(a) Corona discharge in air at an applied voltage
of 6 kV.
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(b) Floating discharge in oil at an applied volt-
age of 24 kV
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(c) Internal discharge in oil at an applied voltage
of 26 kV
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(d) Surface discharge in air at an applied voltage
of 6 kV

Figure 3.8: Best Basis tree expansion for single pulse experimental PD data of different
sources (sampled at 500 MS/s) calculated through mimimisation of Shannon’s entropy
cost function and using a Symmlet wavelet with 8 vanishing moments.
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Figure 3.9: The “common” best basis tree selected using the proposed procedure for node
selection.
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Table 3.1: Frequency content of specific nodes of the WPT.

Wavelet Node Relative Frequencies Absolute Frequencies (MHz)

3,1 fs/16-2fs/16 31.25-62.50

4,1 fs/32-2fs/32 15.625-31.25

5,0 0-fs/64 0-7.8125

5,1 fs/64-2fs/64 7.8125-15.625

5,2 3fs/64-4fs/64 23.4375-31.25

5,3 2fs/64-3fs/64 15.625-23.4375

affected by the propagation characteristics of the signal which attenuates high frequency

content (the frequency content of a PD in a cable is expected to be around 10 MHz) and

the same sensor is used it can be expected that field data can be adequately described

by the selected nodes, which will be verified in chapter 5 when field data are examined.

To verify that this selection of nodes will adequately represent the signal and how many

of the nodes have to be selected an error analysis is performed in the following section.

3.3.1.1 Error analysis on the selected nodes

An error analysis is performed on the wavelet coefficients of the selected nodes to verify

that they can represent the PD signal satisfying a performance criterion and that selection

of more nodes does not significantly improve the performance. Several criteria have been

used in this thesis which are the entropy of the energy of the wavelet coefficients at the

selected nodes plus the mean square error (mse) and the relative energy (to the signal’s

energy) of the reconstructed signal using only the wavelet coefficients at each node.

Results of this error analysis are shown for each PD type in tables 3.2, 3.3, 3.4, and 3.2

for the corona, floating, internal and surface discharges respectively. From the analysis it

seems to exist a dominant node in the examined nodes, where the coefficients of node (5,0)

(d05[k]) significantly improve all three error criteria for all PD types. For example for the

corona discharge the reconstruction of the signal using coefficients d05[k] retains around

86% of the energy of the signal. The rest of the nodes have a much lower contribution

and they can be ordered with a decreasing contribution as (4,1), (5,2), (5,3) and (3,1).

A compromise between the number of nodes and the quality of the representation on

one side with the number of dimensions of the representation has to be reached. As the

nodes (5,2) and (5,3) are children nodes of (4,1) which means that it contains all the

information of its children nodes, the inclusion of the four selected wavelet nodes (3,1),
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Table 3.2: Error analysis for various nodes of the Wavelet Packet Transform tree for the
corona discharge. The values are given as the mean and the standard deviation of the
respective error measure, with 10000 pulses being analysed.

Variable Property
WPT Node index

[0,0] [3,1] [3,2] [3,3] [4,1] [5,0] [5,1] [5,2] [5,3]

entropy
mean 7.59 0.15 0.11 0.12 0.40 3.87 0.04 0.24 0.17

std 0.39 0.06 0.04 0.04 0.17 0.73 0.02 0.11 0.07

energy (%)
mean 100.00 1.48 1.08 1.13 5.43 86.23 0.45 3.09 2.33

std 0.00 0.62 0.44 0.47 2.67 5.76 0.21 1.73 1.20

mse
mean 0.00 0.99 0.99 0.99 0.95 0.14 1.00 0.97 0.98

std 0.00 0.01 0.00 0.00 0.03 0.06 0.00 0.02 0.01

Table 3.3: Error analysis for various nodes of the Wavelet Packet Transform tree for the
floating discharge. The values are given as the mean and the standard deviation of the
respective error measure, with 10000 pulses being analysed.

Variable Property
WPT Node index

[0,0] [3,1] [3,2] [3,3] [4,1] [5,0] [5,1] [5,2] [5,3]

entropy
mean 8.10 0.13 0.06 0.12 0.24 4.74 0.03 0.14 0.11

std 0.60 0.13 0.07 0.12 0.25 0.95 0.03 0.15 0.13

energy (%)
mean 100.00 1.67 0.63 1.65 4.72 87.32 0.34 2.58 2.14

std 0.00 2.08 0.83 2.04 6.06 15.15 0.41 3.52 3.16

mse
mean 0.00 0.98 0.99 0.98 0.95 0.13 1.00 0.97 0.98

std 0.00 0.02 0.01 0.02 0.06 0.15 0.00 0.04 0.03

(4,1), (5,0) and (5,1) seems a good compromise, retaining more than 90% of the energy

while the addition of more nodes does not significantly improve this.

The pdf of the wavelet coefficients at each selected node is approximated by their mean

η, standard deviation σ, normalised skewness γ1 and normalised kurtosis γ2, and will be

used as a fingerprint for each type of PD and as an input to the classifier. These quantities

are estimated from the available samples using equations 3.37-3.40. To investigate the

ability of this feature extraction method to produce significantly different feature values

for different sources of PD a confidence interval plot for the estimated HOS is plotted
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Table 3.4: Error analysis for various nodes of the Wavelet Packet Transform tree for the
internal discharge. The values are given as the mean and the standard deviation of the
respective error measure, with 10000 pulses being analysed.

Variable Property
WPT Node index

[0,0] [3,1] [3,2] [3,3] [4,1] [5,0] [5,1] [5,2] [5,3]

entropy
mean 7.92 0.19 0.07 0.09 0.63 4.29 0.07 0.25 0.37

std 0.46 0.12 0.05 0.06 0.42 0.92 0.05 0.22 0.26

energy (%)
mean 100.00 2.47 0.67 0.92 11.38 81.01 1.02 4.75 6.62

std 0.00 1.86 0.58 0.68 9.10 13.67 0.93 5.42 5.33

mse
mean 0.00 0.98 0.99 0.99 0.89 0.19 0.99 0.95 0.93

std 0.00 0.02 0.01 0.01 0.09 0.14 0.01 0.05 0.05

Table 3.5: Error analysis for various nodes of the Wavelet Packet Transform tree for the
surface discharge. The values are given as the mean and the standard deviation of the
respective error measure, with 10000 pulses being analysed.

Variable Property
WPT Node index

[0,0] [3,1] [3,2] [3,3] [4,1] [5,0] [5,1] [5,2] [5,3]

entropy
mean 7.61 0.09 0.05 0.07 0.12 4.22 0.03 0.06 0.07

std 0.50 0.06 0.04 0.05 0.07 0.67 0.02 0.04 0.04

energy (%)
mean 100.00 0.97 0.43 0.74 1.81 94.08 0.30 0.75 1.06

std 0.00 0.73 0.38 0.66 1.18 4.41 0.22 0.55 0.64

mse
mean 0.00 0.99 1.00 0.99 0.98 0.06 1.00 0.99 0.99

std 0.00 0.01 0.00 0.01 0.01 0.04 0.00 0.01 0.01

in figure 3.10. In the calculation of the confidence intervals for the estimation of each

parameter in the feature vector, 500 pulses per PD source are used. From the plot it

can be seen that the normalised kurtosis at the selected wavelet nodes produces distinct

values for different PD sources, at the 0.95 confidence interval. Therefore this feature

seems to have the potential to be used as a fingerprint in PD source identification.

If the procedure of selecting the WPT coefficients of these nodes is followed, a feature

vector of 1304 dimensions will be created. Through the use of HOS on each of these four

nodes, a feature vector of 16 dimensions (4 dimensions per node) is constructed. This
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Figure 3.10: Confidence interval for the feature vector. The feature vector has been
broken down in order to make more visible the differences between the different statistical
descriptors used. In 3.10a η, estimated from the wavelet coefficients of the selected nodes
is plotted. In 3.10b σ and in 3.10c γ1 are shown. Finally 3.10d plots γ2. The middle
line is the value of the mean of the estimated quantity while the box enclosing it is the
0.95 confidence interval, with 500 samples used. The plot resulted in separate values
for the majority of the dimensions, especially when γ2 values are considered, showing
the potential of this feature to be used as a fingerprint in PD source identification. The
numbering in the figure stands for 1: Corona, 2: Floating, 3: Internal, 4: Surface.

reduction in the number of dimensions translates into reduced computational effort both

in training and classification times, as well as lower storage requirements. The proposed

feature vector for single pulse data will be considered in subsequent chapters and its

use as a pre-processing step to create homogeneous phase resolved data patterns will be

assessed. In the next section we look at the proposed phase resolved feature extractor

that is also based on the WPT and HOS.
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3.4 Phase Resolved PD Proposed Feature

Traditional phase resolved representations have been used in PD identification, in the

early days of PD, mainly in laboratory measurements. However with the advent of

computational power and the use of non-conventional sensors they can be used as a

complementary PD identification tool. Since they rely on the assumption of a single PD

source concurrently active and no interference present, pre-processing using time-resolved

features and clustering techniques is required.

Statistical analysis and signal processing tools were utilised in an attempt to describe

the characteristics of PRPD with a set of descriptive parameters, as reviewed in section

3.1.1. In this section the experimental PD signals collected under controlled conditions

are processed using the WPT to obtain a feature vector based on HOS. The approach of

using the WPT to extract a feature vector, utilises the properties of the transform itself

in representing the signal, combined with the use of HOS as statistical descriptors.

The phase resolved data acquired using the peak detection function of the oscilloscope

(table 2.2 and figure 2.14) is expanded into the WPT using a Symmlet 8 wavelet. The best

basis trees obtained by the minimisation of Shannon’s entropy function for different PD

sources are shown in figure 3.11 with 10 levels of decomposition used. The wavelet packet

coefficients of each terminal node are approximated by the mean η, standard deviation

σ, normalised skewness γ1 and normalised kurtosis γ2. The statistical operators for

terminal nodes at the same decomposition level are added together and thus only four

statistical descriptors are used at each decomposition level. As 10 levels are used in the

decomposition and level 1 does not include any terminal nodes, this procedure results

in 9 levels to be represented by four statistical descriptors. To estimate the statistical

descriptors the available samples from table 2.2 are used in equations 3.37-3.40.

The proposed feature uses four descriptors for each scale, therefore a feature vector of

36 dimensions is needed to represent the data. If the histogram of the wavelet coefficients

at each level is used as a feature vector, then for 100 bins used in the calculation of the

histogram, a feature vector of dimension 900 will emerge for each PD signal. Use of the

proposed method reduces the dimensions of the feature vector from 900 to 36, a reduction

by a factor of 25. This makes the input vector more tractable and the classification less

resource demanding. The use of HOS in dimensionality reduction is demonstrated [45]

when compared to a similar feature extraction method that utilises specific nodes of the

WPT tree decomposition (the d13, d
1
6 and d19 coefficients) [79]. As this has a dimension of

1468 then the proposed feature with only 36 dimensions offers a reduction of the order
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(d) Surface discharge in air at an applied voltage
of 6 kV

Figure 3.11: Best Basis tree expansion for phase resolved experimental PD data of differ-
ent sources (sampled at 500 kS/s through the peak detection function of the oscilloscope)
calculated through mimimisation of Shannon’s entropy cost function and using a Symmlet
wavelet with 8 vanishing moments.

of 40. In the next chapter the classification rate of this lower dimensional feature will be

evaluated and its suitability in identifying different PD sources assessed.

3.5 Conclusions

In this chapter two feature vectors, one for time and another for phase-resolved data, of

lower dimensionality were proposed. Due to this property they have the potential to be

applied on data collected from continuous on-line systems where the storage and compu-

tation complexity need to be minimised. In both methods the WPT was firstly applied

on the data resulting in an adaptive time-frequency decomposition of the PD signal. This
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exploited the different frequency content between different PD sources resulting in differ-

ent coefficients at specific nodes of the Wavelet Packet tree. A procedure was followed

to select particular nodes in the tree that contained discriminatory characteristics. Fol-

lowing the application of statistical analysis tools, HOS were employed to get a set of

statistical descriptors of the wavelet coefficients at each of the selected nodes. From the

analysis in this section, it seems that the proposed feature vectors have the potential to

be used as fingerprints in PD characterisation. In order to verify this, the performance of

the proposed features in classifying PDs of different sources using supervised classification

algorithms is considered in the following chapter.
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Chapter 4

PD Classification

In this chapter two supervised classification algorithms are used to assess the classification

performance of the proposed feature vectors in chapter 3 using the experimental database

of different PD sources. Although the two algorithms are based on a training set to provide

a category label in order to estimate the weights of the discriminant function, they rely

on inherently different principles in order to calculate these weights. The Probabilistic

Neural Network (PNN) is based on the Empirical Risk Minimisation (ERM) and the

Support Vector Machines (SVM) on the Structural Risk Minimisation (SRM) principle,

each minimising a different term of the risk functional generalisation learning formula.

The reproducibility of their performance on both single pulse and phase resolved data

is statistically evaluated using the concept of tolerance intervals. Both the single pulse

and phase resolved data proposed features show marginally inferior classification rates

to similar works [39, 79] but with a significant reduction in the number of dimensions,

which can be exploited in scenarios where the computational complexity and the storage

requirements need to be minimised.

4.1 Overview

The various PD classification algorithms in the literature are based on statistical analy-

sis, signal processing analysis, fuzzy logic, time-series analysis, artificial neural networks

(ANN), and the more recent Support Vector Machine (SVM) [60, 80]. Although these

algorithms make use of different fundamental concepts in achieving the classification of

PD data, they all rely on a set of labelled data to estimate a set of weights in the al-

gorithm. Such supervised methods usually achieve this through the minimisation of a

64

Dem
etr

es
 Eva

go
rou



the error between the estimated and the provided labels. In the following section a brief

review of the different methods employed in PD identification is provided.

Artificial neural networks (ANN) have been successfully applied in various pattern

classification problems including PD identification [33, 81–83]. The basic advantage of

ANN over other distance classifiers is its ability to learn from examples, where knowledge

in the training set is extracted and stored in the connection weights and neuron biases

during the learning phase. The Multilayer Perceptron (MLP) [84, 85] and Radial Basis

Function (RBF) neural networks are known for their ability to universally approximate

any non-linear function, through the presence of a hidden layer with a differentiable non-

linear activation function. Such networks usually follow a winner takes it all strategy

where different PD sources are discriminated into a single class and the information

provided is only that class id. However there are cases when two classes are marginally

close that more information, such as for example the probability of belonging to a specific

class, will be useful if conveyed to the user. PNNs constitute a flavour of ANN that have

a meaningful interpretation of their outputs in terms of probabilities.

A much more recent topic used in the identification of PD patterns is the so called

machine learning methods and in particular the Support Vector Machine (SVM). It was

firstly described by V.N. Vapnik in 1995 [86] as an application of statistical learning

theory. SVM uses the concept of Kernels for a number of learning tasks and has shown

better performance than neural networks in a variety of fields [78, 85, 87]. The SVM has

been used in a number of PD classification tasks including PDs where results of using the

SVM with several feature extractors have been published in [78]. Its advantages include

the fact that the network topology need not be selected a priori but is done during the

training phase, and that optimisation is performed on a quadratic convex function that

has a single minimum alleviating issues with local minima.

The algorithms chosen to be used in this research, namely the Probabilistic Neural

Network (PNN) and the Support Vector Machine (SVM) are based on the theory of sta-

tistical learning but use different underlying principles to produce discriminant functions.

This theory is briefly outlined in the following section in order to give a background in-

sight into the differences and similarities between the two algorithms that will facilitate

the comparison of the results.
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4.2 Statistical Learning Theory

The notions of Empirical Risk Minimisation (ERM) and Structural Risk Minimisation

(SRM) lie at the heart of the implementation of the PNN and the SVM respectively. The

theory of statistical learning theory developed by Vapnik [86] formally defines these two

principles.

The problem of learning is that of choosing from a set of functions f(x, β), β ∈ Λ the

one that minimises the following expected risk:

R(β) =

∫
L(y, f(x, β))dF (x, y) (4.1)

where L(y, f(x, β)) is a loss function between the actual response of the system y and the

expected value of the response f(x, β). Usually F (x, y) is unknown and the only available

information is a training set of l observations drawn from F (x, y) = F (x)F (y|x) which

are assumed to be independent and identically distributed (i.i.d.), and given below

(x1, y1), . . . , (xl, yl). (4.2)

In order to minimise the risk functional based on the empirical data of (4.2) the expected

risk is replaced by the empirical risk

Remp(β) =
1

l

l∑
i=1

L(y, f(xi, β))dF (x, y) (4.3)

and the function L(y, f(x, β0)), that minimises the expected risk, by L(y, f(x, βl)). This

principle is called the Empirical Risk Minimisation (ERM) inductive principle and plays

a crucial role in learning theory.

In spite of the consistency of the ERM (tends to the expected risk as l tends to

infinity), it is intended to deal with large samples, where the empirical risk asymptotically

attains the actual risk. To avoid the risk of overfitting when sets of smaller sizes are

considered the complexity of the learning machine must also be controlled, which is

based on the bound formula [86, page 123]

R(βkl ) ≤ Remp(βkl ) + Φ(
l

hk
) (4.4)

where the first term is the empirical risk and the second one the confidence interval. The

term on the left of the inequality is the expected risk while the index l is the number of
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training samples, k the capacity and hk the Vapnik-Chervonenkis (VC) dimension of the

learning machine. The Structural Risk Minimisation (SRM) principle minimises this risk

by controlling both factors of the inequality in contrast to the ERM that minimises only

the first term. For a given number of training samples l, the minima of the empirical risks

decrease while Φ( l
hk

) increases, as the index k increases, which explains the fact that the

SRM principle defines a trade-off between the quality of the approximation of the given

data and the complexity of the approximating function.

The two classification methods used in this thesis differ in the constructive approach

to minimise (4.4). The Probabilistic Neural Network approach minimises the first term

(the number of errors in the training set) through Empirical Risk Minimisation (ERM)

while the second term is a priori chosen and kept fixed. The approach taken by the

SVM is exactly the opposite, minimisation of the second term through Structural Risk

Minimisation (SRM) while the first term is a priori set to a value [86]. For example the

structure of the PNN (number of hidden layers neurons) has to be selected a priori, while

a regularisation parameter can be incorporated to penalise the complexity of the function.

In fact Radial Basis Functions (RBF) were developed as part of this regularisation theory.

In the case of the SVM the user selects the Kernel of the nonlinear mapping from the

input to the feature space and the penalty on errors.

4.2.1 Probabilistic Neural Network (PNN)

PNNs are part of the larger family of feedforward RBF Neural Networks that respond

to an input pattern by processing the input data from one layer to the next with no

feedback paths. The PNN is based on the estimation of the conditional probability

density functions (pdf) from a training set using a sum of Gaussian kernels, and choosing

the class that minimises the expected risk. Considering the general case, one is faced with

the problem of classifying a given set of p-dimensional input vectors (the feature vectors)

xT = [x1....xj....xp] in one of M classes θ1, θ2, ... θM .The decision risk of classifying the

input x into class j is given by (4.5). Here ωm denotes the a priori probability of class m

and cjm the loss associated with classifying an input vector x into class j given that x

ρj(x) =
M∑
m=1

cjmωmfm (x) (4.5)

belongs to class m. The minimum decision risk is to classify x into that class j having

the minimum risk, that is j = arg min {ρj(x)}. The decision j is the optimum Bayesian
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Figure 4.1: Probabilistic Neural Network using a mixture of Gaussian densities (after
Streit and Luginbulh [5]).

classification decision [88]. The discriminant function can be arbitrarily complex and it

can approximate any polynomial discriminant function [89]. The key to using (4.5) is

the ability to estimate pdfs based on training patterns. According to [90] and [91] the

multivariate estimate of the pdf of class j can be expressed by gj as

gj(x) =
1

(2π)p/2σp
1

Tj
Tj∑
i=1

exp

{
−(x− xji)

T (x− xji)

2σ2

}
(4.6)

where j is the class, i the pattern number in the jth class, Tj the total number of training

patterns in class j, xji the ith training sample from class j, σ is a smoothing parameter

and p the dimensionality of the space. The pdf estimate for class j is simply the sum

of all multivariate Gaussian distributions centred at each training sample. This means

that for every training sample a node is needed in the hidden layer of the NN. As all the

training samples have to be stored and used in the calculation of the expected risk, the

PNN suffers from large computation times. However if the maximum likelihood training

of the PNN is employed, which is based on the Generalised Fisher (GF) training [5] then

the number of nodes can be reduced significantly, which reduces the computation time.

Figure 4.1 shows the structure of the PNN trained with this method. The pdf of class j,
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fj(x), is approximated by a general mixture pdf, denoted by gj(x), that is,

fj(x) ≈ gj(x) =

Gj∑
i=1

πijpij(x), j = 1, ....,M (4.7)

where πij denotes the proportion of component i in class j and Gj the number of different

components in the jth class mixture pdf. The pdf pij is assumed to have the form

pij(x) = (2π)−N/2 |Σ|−1/2 exp

{
−1

2
(x− µij)TΣ−1(x− µij)

}
(4.8)

where µij is the mean vector and Σ is the positive definite covariance matrix of pij.

Now the problem of the training algorithm is to estimate the parameters, λ, defining the

homoscedastic mixture of mixtures, which comprises of the following variables:

• ωj = the a priori probability of class j,

• πij = the mixing proportion of component i in class j,

• µij = the mean vector of component i in class j, and

• Σ = the common covariance matrix of all Gaussians.

Estimation of λ can be seen as estimation of incomplete data as the component i

in which a training vector of class j belongs to is not known but has to be estimated

from the observed data. Therefore the Expectation Maximisation (EM) algorithm [92]

computes the maximum likelihood parameter estimates. The number of components Gj

in class j is a parameter that has to be selected by the user since NNs are based on ERM

to minimise the error between the estimated and labelled data. This is equivalent to the

selection of hk in equation 4.4 that affects the generalisation ability of the PNN. A high

value will result in zero training error (first term in 4.4) but high variance while a low

value gives a low variance but a high bias. Methods for selecting such parameters from a

data set do exist in the literature and are employed in the relevant section of parameter

selection. Support Vector Machines do not have such a model order selection problem

but have other user selected parameters as seen in the following section.

4.2.2 Support Vector Machine (SVM)

The SVM approaches the solution to classification by using a linear function to separate

the two classes. The construction of maximum margin separating hyperplanes between
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two classes plays a very important role related to the fact that due to mathematical

theories of maximisation a function called the dual function can be maximised instead.

This maximisation relates not to the dimensionality of the feature space but to the number

of training vectors that reside on the maximum margin separating hyperplanes, the so

called support vector machines. For example, figure 4.2 shows two linearly separable

clusters of data that are described by two features (x1 and x2). The construction of an

optimal canonical separating hyperplane (OCSH) with the largest margin is the ultimate

learning goal in statistical learning theory underlying SVM [85]. A canonical hyperplane

is the one satisfying

min
xi∈x
|wTxi + b| = 1. (4.9)

The geometrical margin M is given by

M =
2

‖w‖
. (4.10)

The points closest to the OCSH, that satisfy

yj|wTxi + b| ≡ 1, i = 1, Nsv (4.11)

are support vectors, where Nsv is the number of support vectors. This hyperplane ob-

tained from limited training samples must have a maximal margin because it will probably

better classify new data and must be in canonical form because this will ease the quest

for significant patterns, here called support vectors. During training, a minimization of

the canonical hyperplane weight norm ‖w‖ maximizes the margin given by (4.10) and

minimizes the VC dimension at the same time [86], implementing a SRM.

Thus, in order to find the optimal separating hyperplane having a maximal margin,

a classic non-linear optimization problem with inequality constraints must be solved: a

learning machine should minimize ‖w‖ subject to the following inequality constraints

yj(w
Txi + b) ≥ 1, i = 1, l. (4.12)

The optimisation of such a problem with equality and inequality constraints can be solved

using the Lagrange formalism, which leads to the primal form of the objective function

Lp(w, b, α) =
1

2
wTw +

l∑
i=1

αi{yj[wTxi + b]− 1} (4.13)
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Figure 4.2: Optimal Canonical Separating Hyperplane (OCSH).

where αi are the Lagrange multipliers. Lagrangian treatment of convex optimisation

problems leads to an alternative dual description where the solution of the problem of

minimising wTw subject to constraints 4.12 is equivalent to determining the saddle point

of the function Lp(w, b, α), at which it is minimised with respect to w and maximised

with respect to αi which gives the dual form of the Lagrangian

Ld(α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαjx
T
i xj. (4.14)

In order to find the optimal hyperplane, the dual Lagrangian must be maximised with

respect to non-negative αi

αi ≥ 0 i = 1, l (4.15)

subject to constraints
l∑

i=1

αiyixi. (4.16)

The importance of the solution of this optimisation problem in the so called dual space is

that it is expressed in terms of the training data and depends only on the scalar products

of input patterns (xi,xj). Furthermore utilising the Karush-Kuhn-Tucker (KKT) comple-

mentary conditions which state that only Lagangian multipliers corresponding to points

on the maximal margin hyperplane (αoi) are non-zero, then the dual representation can
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be expressed as
l∑

i=1

yiαoi〈xi · xj〉 (4.17)

and
l∑

i∈SV

yiαoi〈xi · xj〉. (4.18)

The optimal hyperplane is now defined by

wo =
Nsv∑
i=1

αoiyixi (4.19)

bo =
1

Nsv

(
Nsv∑
s=1

1

ys
− xTs wo

)
. (4.20)

The summation goes over only support vectors since the Lagrange multiplier of non

support vectors vanishes and can be calculated using the very few support vectors of the

training data set and not the whole training data. The decision hyperplane is now

d(x) =
l∑

i=1

yiαoix
Txi + bo. (4.21)

With reference to figure 4.2, the support vectors are enclosed in circles (x1,x2 for class 1

and x4 for class 2).

The above analysis can be extended to cases where the data are not separable. If the

procedure above is applied to such data then the algorithm chooses almost all training

points as support vectors. In order to avoid this a soft margin classifier is implemented

instead where all the data in this margin, whether on the correct or wrong side of the

separating line are ignored. This is achieved by the introduction of non negative slack

variables in the optimisation problem [93].

A design penalty parameter C, is introduced to control the penalty assigned to errors.

Higher C means higher penalty to misclassifications, simultaneously resulting in larger

weights. This parameter controls the maximum allowable value for the Lagrange multi-

pliers ai in the dual optimisation process. The previous case of linearly separable data

can be considered a special case of the non separable case with the value C = ∞. This

parameter has to be selected by the user during the construction of an SVM and together

with the kernel are the only parameters of the algorithm.

For non-linearly separable data sets, the classification ability of the above optimal
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hyperplane is limited. A solution is to map the input vectors to a high-dimensional feature

space, F , by using a non-linear mapping z = Φ(x) (where Φ represents a mapping X 7→
F ) and use linear classification analysis in this feature space. Unfortunately this mapping

creates a feature space of very high dimensionality and hence poses a computational

problem when working in this space. Recalling that in (4.21) training samples appear

only in the form of scalar products xTi xj then replacing them by zTi zj in the feature space

F , can be expressed through a kernel function

K(xi,xj) = zTi zj = ΦT (xi)Φ(xj). (4.22)

The advantage of this kernel is that it is a function in the input space and thus avoids

a mapping, Φ(x), in the higher dimensional feature space. Instead, the required scalar

products in a feature space ΦT (xi)Φ(xj) are calculated directly by computing kernels

K(xi,xj) for given training data vectors in an input space. In this way, one bypasses

the possibility of an extremely high dimensional feature space F . Thus, using the chosen

kernel K(xi,xj), an SVM can be constructed that operates in an infinite dimensional

space [85]. The decision surface now is given by

d(x) =
l∑

i=1

yiαiK(x,xi) + b (4.23)

where it can be seen that the computations are done in the lower dimensional input space.

A Kernel has to follow certain mathematical conditions (Mercer’s conditions) and the

choice of the kernel used in this work is explained in the choice of the parameters section.

Next the methodology followed to select the relevant parameters for each algorithm is

explained.

4.3 Methodology for Parameter Selection

As explained in the previous section both classification algorithms utilised in this work

have free parameters which have to be selected by the designer of the system a priori.

Generally there is no approved method for selecting them and various techniques can

be utilised. In this work a grid-search algorithm is selected to find their optimal values.

In order to compare the results produced by different parameters a criterion has to be

selected such as for example the training error. However, in classification algorithms

a low training error on a given dataset does not guarantee good generalisation ability.
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Therefore the grid-search algorithm needs to take into account the estimation error on

previously unseen data as a criterion for the parameter selection.

A solution to the above problem can be the use of the holdout method where the

available data is separated into two sets, the training and test set. As implied by the

names the training data set is used for training the algorithm and the test set is used for

estimating the classification accuracy of the trained classifier (its generalisation ability).

However this method is a single train-and-test experiment and the estimate of the classi-

fication error will be misleading if it happened to get an unfavourable split. The K-fold

cross validation overcomes this problem by resampling at the expense of more computa-

tions. A K-fold partition of the dataset is created and K experiments are carried out.

For each of the K experiments K−1 folds are used for training and the remaining one for

testing. Now the classification error is estimated as the average classification error of the

K experiments. The choice of the number of folds, K, is a trade off between the variance

and the bias of the estimator as well as of the structure and sparsity of the dataset. A

large number of folds reduces the bias of the estimator (very accurate estimator) at the

expense of computational time but increases the variance of the true classification error.

On the other hand a small number of folds reduces the computational time, decreases

the variance of the estimator but increases the bias resulting in a conservative or higher

classification error than the true error. A compromise between the computation time

and the number of folds is reached by setting K=5. This methodology is applied to

the selection of the relevant parameters both in the time and phase resolved proposed

features. Therefore next the time-resolved proposed feature and the relevant parameters

selection is discussed.

4.4 Time Resolved Data Results

The classification performance of the proposed lower dimensional feature vector in section

3.4 is used to evaluate the suitability of this feature in separating PDs of different sources.

The evaluation is done by comparing the proposed feature to a feature used in similar

works that uses the un-processed, scaled wavelet coefficients [39, 78, 79, 94, 95]. Since in

these works the SVM was employed, it is chosen to be used in the comparison, ensuring

that the effect of the choice of a classification algorithm on the results is minimised.

However before proceeding to evaluate the proposed feature vector the parameters of the

algorithms are selected following the procedure in section 4.3.
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The available time-resolved dataset (table 2.3) is composed of 40000 vectors. The

dataset is divided into 5 sets with 8000 pulses each where four folds are used to train

the algorithm and one to test it. After the parameters selection the data is divided into

a training and a test data set of 4000 and 36000 pulses respectively. The same division

is used in both the SVM and the PNN classification methods to be able to compare

the results and eliminate the effect of any unfavourable division affecting one of the

algorithms. Therefore in the next section the classification results for the test data set,

trained using the training set and the optimum parameters calculated using the above

procedure, are presented.

4.4.1 Proposed vs higher dimensional feature vector using the

SVM

The RBF kernel is the most widely chosen kernel in the nonlinear mapping from the

input to the feature space in SVM, mainly due to the fact that it provides a similarity

measure with tractable properties, generating a zero value when the inputs are apart and

one when close together, as deduced from 4.24. Moreover it has been used in previous

works showing good performance in PD classification [39] and is chosen to be used with

the SVM.

K(x,xi) = exp

(
−||x− xi||2

2γ2

)
(4.24)

The two parameters that have to be optimised are γ, the smoothing parameter of

the exponential kernel and C, the bound on the Laplace coefficient indirectly controlling

the number of misclassifications. Both are grid-searched using cross validation where the

large range of values of both C and γ are best exploited by an exponential search. The

base two exponential is chosen and the value of C is set to 219 and γ to 2−14 giving a

cross validation accuracy of around 96% as shown in figure 4.3.

The proposed lower dimensional feature for time resolved data is validated against a

similar feature extraction method used in [39, 79] in order to demonstrate whether this

lower dimensional feature can be used in identifying PDs of different origin. The results

of the proposed feature vector using the SVM with an RBF kernel, trained using 4000

data (1000 from each source) and tested using the remaining 36000, are shown in table

4.1.

The results of the proposed feature vector are compared to a feature extraction method

that uses the actual wavelet packet coefficients, after being normalised so at each node
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Figure 4.3: Plot of the optimum parameters search using the cross validation technique
for the SVM using the proposed feature.

Table 4.1: Misclassification matrix using the SVM with C = 219 and γ = 2−14 for the
proposed feature that utilises the HOS for dimensionality reduction.

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
99.90% 0.09% 0.16% 0.06%

9000 1000
(8991) (8) (14) (5)

Floating
0.01% 97.33% 1.44% 2.47% 9000 1000

(1) (8760) (130) (222)

Internal
0.09% 1.83% 98.37% 0.82% 9000 1000

(8) (165) (8853) (74)

Surface
0.00% 0.74% 0.03% 96.67% 9000 1000

(0) (67) (3) (8699)

they have a range between +1 and -1, as features [79]. The results of employing the raw

coefficients of the same nodes as the proposed vector, are shown in table 4.2, where the

optimum parameters (C = 230 and γ = 0.0156) are used.

The use of the un-processed, scaled wavelet coefficients achieves slightly better results

than the HOS of the same coefficients (98.47% and 98.06% respectively). This deterio-

ration in performance of the proposed lower dimensional vector is small and cannot be

considered detrimental. The significance of the results lies in the fact that the classifi-

cation performance is kept almost at the same level while incorporating the advantages

of the proposed feature extractor. The most important improvement is the dimension-
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Table 4.2: Misclassification matrix using the SVM with C = 230 and γ = 2−6 on the
feature vector that utilises the scaled, raw, wavelet coefficients at specific levels.

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
100.00% 0.10% 0.28% 0.06%

9000 1000
(9000) (9) (25) (5)

Floating
0.00% 95.43% 0.99% 0.00% 9000 1000

(0) (8589) (89) (0)

Internal
0.00% 4.47% 98.61% 0.11% 9000 1000

(0) (402) (8875) (10)

Surface
0.00% 0.00% 0.12% 99.83% 9000 1000

(0) (0) (11) (8985)

ality reduction from 1304 down to 16 (a reduction of about 82 times) which can play

a significant role in the quest to move to on-line, real-time PD monitoring where the

reduction of classification time and storage requirements are very important. In order

to demonstrate the improvement in classification complexity the time to classify the test

dataset is compared for the two features. The number of support vectors (SV) for the two

cases is 438 for the novel feature and 1842 for the un-processed wavelet coefficients. The

number of support vectors relates to the generalisation ability of the algorithm through

an inverse relationship [93, page 101], [85, page 162] and to the classification time. The

proposed feature resulted in a faster classification time (3.00 seconds compared to 636.90

seconds on the same PC) for the whole test dataset. In an on-line, real-time implementa-

tion scenario this improvement in classification time is very important and the successful

classification of PDs using feature vectors of such low dimensions is a push towards its

actual implementation.

In the next section two classification algorithms are compared using the proposed

feature vector. The choice of these two algorithms is based on the fact that although

under some circumstances they can be structurally equivalent, their training methods

employ different criteria as explained in section 4.2. The comparison is possible due to

the fact that the proposed lower dimensional feature vector alleviated singularity problems

associated with the PNN.
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4.4.2 PNN and SVM comparison using the proposed feature

The PNN is chosen as an alternative classification algorithm for the evaluation of the

proposed vector. The two algorithms are based on different training principles and the

comparison of the two algorithms demonstrates the effect of the training methods. As

with the SVM, the PNN has free parameters that have to be a priori selected by the user.

The selection of parameter Gj is an important one and unfortunately this parameter

cannot be estimated from the Expectation Maximization (EM) algorithm used to train

the PNN but it has to be selected a priori. It represents the number of nodes used to

approximate the pdf of class j in 4.7. Selection of this parameter will have an effect

on the computational burden of the algorithm as well as on the classification results,

and its choice is based on grid-search using cross validation. Values of Gj from 1 to 5

for each class are considered and optimum results are obtained for G = [1 2 3 4] with

a cross validation classification accuracy of around 98%. The classification results are

shown in table 4.3 and can be directly compared with those in table 4.1. Hence a direct

comparison between the SVM method used in [39, 78, 94] and the PNN used in [45, 96]

is performed, where the results are truly comparable since the same feature vector and

dataset are used.

The two methods provide very similar results indicating that they can be considered

two equivalent methods as far as the classification rate of PD of different sources is

concerned. In order to investigate whether the partition of the data is more favourable

for one of the methods and whether these results are reproducible, the method of tolerance

intervals is employed.

4.4.3 Classification Accuracy Assessment by Tolerance Inter-

vals

Tolerance intervals assess statistically the range of values that some specified proportion

of the population falls in, with some probability. Reproducibility is examined by removing

a random uniform set of training samples, S(= 4000), from the available samples T (=

40000), training the algorithms with S and then using the remaining samples to evaluate

the performance. Iterative application of this procedure results in a number of training

trials which are considered independent realisations of a multivariate discrete random

variable. The realisations are independent because of the independence of the subsets S

drawn from T , and discrete since there is only a finite number of different possible subsets

S that can be drawn from T [5]. The univariate case was extended to the multivariate case
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Table 4.3: Misclassification matrix using the PNN with G1 = 1, G2 = 2, G3 = 3 and
G4 = 4.

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
99.97% 0.00% 0.24% 0.23%

9000 1000
(8997) (0) (22) (21)

Floating
0.00% 96.96% 1.19% 1.43% 9000 1000

(0) (8726) (107) (129)

Internal
0.03% 3.03% 98.56% 0.02% 9000 1000

(3) (273) (8870) (2)

Surface
0.00% 0.01% 0.01% 98.31% 9000 1000

(0) (1) (1) (8848)

through the concept of statistically equivalent blocks [97, 98] and to the discontinuous

case [99]. From the tables in [100] 413 training trials are performed so that a population

coverage of 0.9 with a 0.95 confidence between the maximum and minimum value in the

training trials is observed after removing the appropriate statistically equivalent blocks

[101].

The tolerance intervals for the SVM and the PNN are shown in Tables 4.4 and 4.5

respectively. The way the tolerance intervals are presented is the inclusion of a mean

value with a deviation value. Addition of the deviation value to the mean value gives

the maximum of the tolerance interval while subtraction of the deviation value gives

the minimum one. The analysis confirms that the results in section 4.4.2 are within the

Table 4.4: Tolerance Intervals for SVM with C = 219 and γ = 2−14.

Input Class

Decision (%) Corona Floating Internal Surface

Corona 99.61±0.36 0.30±0.28 0.46±0.36 0.07±0.07

Floating 0.13±0.13 96.97±0.99 1.83±0.93 2.37±0.88

Internal 0.32±0.31 2.27±0.99 97.63±1.02 0.88±0.61

Surface 0.08±0.08 0.76±0.56 0.31±0.29 96.92±1.17
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Table 4.5: Tolerance Intervals for PNN with G1 = 1, G2 = 2, G3 = 3 and G4 = 4.

Input Class

Decision (%) Corona Floating Internal Surface

Corona 99.88±0.09 0.01±0.01 0.43±0.40 0.43±0.42

Floating 0.00±0.00 97.06±1.96 2.21±1.82 2.44±2.06

Internal 0.12±0.09 2.93±1.97 97.41±2.07 0.04±0.04

Surface 0.00±0.00 0.24±0.24 0.07±0.07 97.36±2.13

confidence interval for all of the discharge types. This translates into good reproducibility

of the results.

Next the actual tolerance intervals for the PNN and the SVM are compared. Ideally

a superior classification algorithm should have higher middle values and lower deviation

values at the same time indicating a higher average classification value and tighter limits

respectively. The analysis has concluded that both algorithms provided reproducible,

consistent and similar results with no algorithm showing overall superiority.

In this section the proposed feature vector for use in continuous, on-line PD monitoring

was compared to the use of the un-processed wavelet coefficients and showed a slight drop

in classification performance from around 98.47% to 98.06%. However, this is considered

acceptable taking into account the massive reduction in the number of dimensions and the

considerably reduced classification time. Moreover through the use of the proposed lower

dimensional feature vector a direct comparison of the performance of the PNN against the

SVM in classifying the PD data was made possible and the method of tolerance intervals

was used to assess the consistency and reproducibility of the classification results. The

results demonstrated that both methods provided consistent and reproducible results

with very similar identification rates.

Once the time-resolved proposed feature vector is evaluated and found to produce

comparable results in PD identification with existing methods when trained using a super-

vised algorithm noise is added in an effort to relate the performance on the experimental

measurements to field conditions.

4.4.4 Performance with Additive White Gaussian Noise (AWGN)

The experimental data utilised in evaluating the performance of the proposed time-

resolved feature vector is acquired under controlled conditions and is not affected by
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noise. In field conditions however noise can pose a problem and in this section AWGN

is added to the experimental data and the identification performance of the proposed

method quantified with respect to the Signal to Noise Ratio (SNR). The SNR is calcu-

lated in dB, using

(SNR)dB = 10 log

(
x2s
x2n

)
(4.25)

where x2s and x2n are the variances of the signal and noise respectively.

Table 4.6: Classification rate for the proposed time-resolved feature vector with the
addition of White Gaussian Noise using the SVM.

SNR (dB)

Input Class 10 7 3 0

Corona 99.96 99.98 99.97 99.98

Floating 95.60 92.91 82.40 56.20

Internal 96.84 93.16 80.23 61.85

Surface 89.30 75.32 40.46 20.76

Overall 95.43 90.34 75.77 59.70
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Figure 4.4: Plot of the classification rates for the different PD sources with varying SNR
values, using a SVM.

Firstly the SVM is employed, trained using the optimum parameters obtained using

the 5 fold cross validation on the experimental data. Then AWG noise of different vari-

ances is added to the experimental data, giving different SNR values, and classified using
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Table 4.7: Classification rate for the proposed time-resolved feature vector with the
addition of White Gaussian Noise using the PNN.

SNR (dB)

Input Class 10 7 3 0

Corona 99.96 97.54 49.68 6.78

Floating 97.09 97.13 96.87 96.57

Internal 97.77 96.41 85.20 63.25

Surface 96.24 95.42 90.82 47.40

Overall 97.77 96.63 80.64 53.50

the already trained model. The results are shown in table 4.4 and figure 4.6. A similar

procedure is followed using the PNN where it is trained using the noise free experimental

data and tested using data corrupted by AWG noise as shown in table 4.5 and figure

4.7. As expected the overall classification rate deteriorates with decreasing SNR indi-

cating that in field conditions for an SNR value below 3 dB denoising algorithms will

need to be considered in order to improve the results. Denoising can be incorporated

as a pre-processing step on the time-resolved measurements due to the wider bandwidth

of this data, allowing noise to be differentiated from useful signals. Since the WPT has

been extensively utilised in successfully denoising PD signals through thresholding of the

wavelet coefficients [62, 63, 102–104], this pre-processing step can be easily incorporated
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Figure 4.5: Plot of the classification rates for the different PD sources with varying SNR
values, using a PNN.
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into the proposed features.

In the following section the phase-resolved feature is examined to assess whether it is

a valid complementary PD identification method, through the comparison of the results

given by the two algorithms already utilised in this section.

4.5 Phase Resolved Data Results

The feature extraction algorithm for PD classification proposed in section 3.5 is used as an

input to the PNN and SVM. This feature extraction algorithm uses the mean, standard

deviation, skewness and kurtosis of the wavelet coefficients at each decomposition level.

For the PD signals used, each proposed feature has a dimension of 36. In training the

two algorithms, feature vectors from the database of laboratory simulated PD data of

section 2.6.1 are used. These training vectors are calculated using 100 randomly chosen

measurements of corona, floating in oil, internal in oil and surface in air discharge. There

is no reason to assume that one class is more probable than the other, and this translates

into setting ωl to 0.25. There is also no reason to assign a higher risk in misclassifying a

sample coming from one class into any other class. Therefore the cost of misclassification

was set to one and the cost of correctly classifying a sample was taken to be zero.

4.5.1 Proposed vs higher dimensional feature vector using the

SVM

The proposed lower dimensional feature is validated against a similar feature extraction

method used in [39, 79], where the un-processed wavelet coefficients at selected nodes,

scaled to have values between -1 and +1 are used as inputs to the classification algorithm.

The SVM is the chosen method to validate the novel feature vector as the SVM is the

method used in [39]. The question that is answered here is whether this lower dimensional

feature can be used as a feature in identifying PDs of different origin using phase resolved

data.

When using RBF kernels there are two parameters to be optimised, the bound on the

Laplace optimisation coefficient indirectly controlling the number of misclassifications

that can be tolerated, C, and the smoothing parameter of the exponential in the RBF

used as the kernel function, γ. In this work, C and γ are grid-searched using cross

validation. The large range of values of both C and γ is best exploited by an exponential

search. The base two exponential is chosen and the value of C was set to 2 and γ to 2−13
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giving a cross validation accuracy of around 94.86% for the proposed feature. For the

feature utilising the un-processed wavelet coefficients the value of C is set to 107 and γ to

10−2 giving a cross validation accuracy of around 96.86%. Results using the RBF kernel

Table 4.8: Misclassification matrix for the proposed feature vector using the SVM with
optimum parameters C = 2 and γ = 2−13.

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
98.10% 0.00% 2.56% 0.00%

996 99
(880) (0) (23) (0)

Floating
0.00% 84.54% 0.44% 1.00% 1000 101

(0) (760) (4) (9)

Internal
1.78% 0.00% 95.11% 0.00% 1000 100

(16) (0) (856) (0)

Surface
0.11% 15.46% 1.89% 99.00% 1000 100

(1) (139) (17) (891)

Table 4.9: Misclassification matrix for the un-processed wavelet coefficients d13, d
1
6 and d19

feature vector using the SVM with optimum parameters C = 107 and γ = 10−2.

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
100.00% 0.00% 0.00% 0.00%

996 99
(897) (0) (0) (0)

Floating
0.00% 88.09% 0.11% 1.89% 1000 101

(0) (792) (1) (17)

Internal
0.00% 0.56% 99.89% 0.00% 1000 100

(0) (5) (899) (0)

Surface
0.00% 11.35% 0.00% 98.11% 1000 100

(0) (102) (0) (883)

SVM trained using 400 data (100 from each source) with the optimum parameters found
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from a 5 fold cross validation and tested using the remaining 3596 are shown in table 4.8

and table 4.9. The overall identification rate for the proposed feature vector is 94.19%

which is very close to the rate 96.52% provided by the un-processed wavelet coefficients

at specific nodes. However the dimensionality of the proposed feature is of the order

of 36 which compared to the dimensionality of the un-processed feature of the order of

1468, signifies a significant reduction (almost 40 times). This is exactly what is sought,

a feature vector of lower dimensionality but with no significant drop in performance, to

be used in a continuous on-line monitoring where the reduction in computational burden

can be significant. Once the proposed feature has been validated as having an acceptable

classification performance two classification algorithms are compared, the PNN and SVM

using this feature.

4.5.2 PNN and SVM using the proposed feature

The two classification algorithms are based on different training principles and are com-

pared using the proposed feature, in order to investigate whether one of the training

methods gives superior results. The PNN has a set of a priori selected parameters, the

number of nodes needed to represent the pdf of class j in 4.7. The method of cross

validation is employed considering values of Gj from 1 to 5 for each class and optimum

results are obtained for G=[1 2 1 1] with a cross validation classification accuracy of

around 84.40%.

The proposed feature vector lives in a 36-dimensional space that is very difficult to

be visualised by humans that are accustomed living in a 3-dimensional world. Therefore

a transformation into a 2 or 3-dimensional plot can facilitate the understanding of how

the different PD sources are represented by the proposed feature. Principal Component

Analysis (PCA) is such an effective linear transformation that projects high dimensional

data onto a lower dimensional space.

4.5.2.1 Principal Component Analysis (PCA)

The Principal Component Analysis is a transformation that projects the data x into

the directions defined by its eigenvectors where the coefficients of this projection are the

eigenvalues. The p-dimensional mean value µ and the covariance matrix Σ (= (x−µ)T (x−
µ)) are calculated from the full data set x. The computed eigenvalues of the covariance

matrix are sorted in an ascending order and the m largest values are selected with their
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corresponding eigenvectors. The PCA is then the projection onto the m-dimensional

subspace given by

x′ = AT (x− µ) (4.26)

where A is the p×m matrix of the m eigenvectors [59]. In our case the 36-dimensional

phase-resolved feature vector is projected onto its two dimensional subspace (m = 2)

spanned by the two eigenvectors with the largest eigenvalues of the covariance matrix

of the input data. The plot of the first 2 principal components, used as a visualisation
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Figure 4.6: Plot of the first two Principal Components of the phase-resolved feature
extraction for PD data of different sources (variables normalised) for data visualisation.

tool for the data, can be seen in figure 4.6. Although it merely represents a projection

of the proposed feature vector onto a plane, the results obtained in table 4.8 and table

4.10 for the SVM and PNN respectively, can be explained with the use of this figure. It

is expected that the highest misclassification rates will be between the classification of

floating and surface discharges, due to the floating discharge data scatter into the surface

discharge data. Indeed the floating discharge data are misclassified as surface discharge

data at a rate of 15.46% using the SVM, and surface discharge data are misclassified at

a rate of 6.89% using the PNN, both being the worst classifications for each algorithm.

The internal discharge, that exhibits the highest rate of correct classification, is projected

onto a very highly concentrated space on the plane.

The PNN provides marginally better overall classification results (96.92%) compared

to the SVM (94.19%) but the difference is small and in order to investigate whether the

partition of the data is more favourable for one of the methods and whether these results

are reproducible, the method of intervals is employed.
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Table 4.10: Misclassification matrix for the proposed vector using the PNN with optimum
parameter G=[1 2 1 1].

Input Class Sample Size

Decision Corona Floating Internal Surface Test Training

Corona
99.22% 0.11% 0.00% 0.78%

996 99
(890) (1) (0) (70)

Floating
0.56% 96.22% 0.00% 6.89% 1000 101

(5) (865) (0) (62)

Internal
0.22% 0.11% 100.00% 0.11% 1000 100

(2) (1) (900) (1)

Surface
0.00% 3.56% 0.00% 92.22% 1000 100

(0) (32) (0) (830)

4.5.3 Classification Accuracy Assessment by Tolerance Inter-

vals

Using the method of tolerance intervals the consistency and reproducibility of the clas-

sification algorithms can be evaluated following the same procedure as in section 4.4.3.

Reproducibility is examined by removing a random uniform set of training samples,

Table 4.11: Tolerance Intervals for the proposed feature vector using the SVM with
optimum parameters C = 2 and γ = 2−13.

Input Class

Decision (%) Corona Floating Internal Surface

Corona 97.49±2.40 0.06±0.06 4.61±4.06 0.00±0.00

Floating 0.06±0.06 84.67±1.56 0.83±0.83 2.28±2.28

Internal 2.45±2.34 0.39±0.39 94.22±3.89 0.00±0.00

Surface 0.61±0.61 15.23±1.45 2.11±1.67 97.72±2.28

S(= 400), from the available samples T (= 3996), training the algorithms with S and

then using the remaining samples to evaluate the performance. From the tables in [100]

918 training trials are performed so that a population coverage of 0.9 with a 0.95 confi-
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Table 4.12: Tolerance Intervals for the proposed feature vector using the PNN with
optimum parameters G=[1 2 1 1].

Input Class

Decision (%) Corona Floating Internal Surface

Corona 98.38±1.62 1.33±1.33 0.28±0.28 1.28±1.28

Floating 1.00±1.00 92.22±5.22 0.11±0.11 6.23±6.01

Internal 1.45±1.45 0.33±0.33 99.72±0.28 0.50±0.50

Surface 0.00±0.00 6.89±5.33 0.00±0.00 93.33±6.12

dence between the maximum and minimum value in the training trials is observed after

removing the appropriate statistically equivalent blocks [101].

The results shown in Table 4.11 and Table 4.12 support the results obtained in Table

4.8 and 4.10 for the SVM and PNN respectively. The analysis using tolerance inter-

vals indicates reproducible results where the larger performance variations are observed

when floating discharges were identified as surface discharges with the SVM and internal

discharges correctly identified with the PNN.

Using phase resolved data the SVM was used to assess the performance of the fea-

ture vector extracted using the WPT and HOS. The proposed feature vector resulted

in identical results with higher dimensional feature vectors but has the advantage of a

significantly lower dimensionality which can be applied in continuous on-line applications

where computational times must be minimised. The success rate of the SVM with this

feature vector was compared to the PNN and in both cases this was above 90%, which

is very promising. The PNN gave marginally better identification rates compared to the

SVM. The tolerance intervals were used to show that the classification rates for both

methods were reproducible. The importance of the results lies in the fact that the use

of HOS resulted in a feature vector that achieves marginally inferior results compared to

similar works but at a significantly lower number of dimensions which further supports

the use of WPT and HOS in characterising PD signals of different sources.

4.6 Conclusions

In this chapter two supervised algorithms, the SVM and the PNN were used to evaluate

the classification performance of the time and phase-resolved proposed features. The
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experimental database of PD data was partitioned into training and testing datasets,

used to train and test the algorithms respectively. The SVM was used to compare the

proposed, time-resolved feature vector to a higher dimensional one giving slightly lower

classification rates but with a significantly lower dimensionality. Once the proposed

feature showed acceptable results, it was employed to compare the PNN to the SVM. The

two algorithms provided similar results and the method of tolerance intervals was used to

assess their reproducibility. As these algorithms are based on different training principles,

the results showed acceptable performance for the proposed feature, irrespective of the

training method used. A similar procedure to the above was followed using the phase-

resolved data where the SVM was used to compare it against higher dimensional features,

and also to the PNN. The phase-resolved proposed feature showed comparable results to

other approaches but with a lower dimensionality.

The use of WPT and HOS, employed in the proposed features, have the potential to

be used in PD source separation, using supervised algorithms. Indeed the results proved

to be encouraging, achieving a significant dimensionality reduction at the expense of a

slight drop in performance. This can find potential use in on-line measurements were

lower storage and computational times are required. However in such scenarios it can

sometimes be difficult to label the training data, as the different PD sources are a priori

unknown. Unsupervised or clustering algorithms divide the data into different clusters

based on some metric which can be used to provide labels to the training data or even

alleviate the use of training data. In the next chapter the potential use of the proposed

feature with a clustering algorithm to separate PDs of different sources from actual field

measurements will be demonstrated, using time-resolved data.
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Chapter 5

Clustering using the Proposed

Time-resolved feature

In this chapter the use of the time-resolved feature vector proposed in chapter 3 and

evaluated in chapter 4 is extended to on-line scenarios. In such cases the collected data

used as training samples in a supervised algorithm have no a priori class labels. To

overcome this problem clustering techniques can be applied to group data together based

on a similarity measure, which can provide the class labels or even alleviate the need for

training data. Such methods are applied to time-resolved data, as a preprocessing step

and can be complemented with PRPD. Therefore the Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) algorithm [105] is employed here on the proposed

time-resolved feature vector to evaluate its performance as a potential pre-processing tool

in on-line measurements. The evaluation is performed on a set of laboratory data and

once satisfactory results obtained, field data from the distribution network are examined.

5.1 Introduction

In on-line scenarios supervised algorithms suffer from the fact that the training labels

or the different PD sources are not a priori known, as in the case of experimental data.

However the use of clustering algorithms forms “natural grouping” of the input patterns

which can provide both the labels and the number of clusters for use with a supervised

algorithm. Moreover the data in each cluster can be identified as originating from a

different PD source, alleviating the need for training data. The formation of a cluster

depends on a distance metric or the minimisation of a cost function and is classified into

the partitioning and hierarchical approaches. In the former all the points in the data
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set form disjoint clusters while in the latter each point can belong to several clusters

depending on the level of clustering. In this work a partitioning algorithm is used where

different choices of the distance metric and cost function exist.

One of the most widely used algorithms relying on a distance metric is the K-means

clustering, used in [43] with the autocorrelation as a feature. This algorithm relies on

estimating the euclidean distance of a sample from the K means representing the clus-

ters and then recomputes the means. The number of clusters is usually a priori chosen

according to some knowledge about the data or through a pre-processing procedure of

the data.

An application of clustering algorithms is the vector quantisation [106] where a p

dimensional vector x can be represented by a codebook of g vectors using a minimum

distortion criterion to select the code vectors.

The nearest-neighbour algorithm assigns each sample to the cluster its closest point

belongs to, where again the distance function chosen affects the resulting partitioning.

A large variety of similarity (or distance) measures and criterion functions exist for clus-

tering which can be found in [59, 107]. The Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise (DBSCAN) [105] is used for the evalua-

tion of the time-resolved proposed feature, in on-line scenarios using both experimental

and real data.

5.2 Density-Based Spatial Clustering of Applications

with Noise (DBSCAN)

The DBSCAN belongs to the family of algorithms that rely on a distance metric to form

clusters of arbitrary shape (in contrast to many algorithms that assume an elliptic cluster)

and can identify noise. One of its advantages is that it does not require the number of

clusters to be a priori selected but instead it is defined by two parameters, ε, the minimum

distance, and kmin, the minimum number of points. The ε-neighbourhood of a point p

is defined as all the points, q, that have a distance less that ε between p and q. The

distance metric employed is the Euclidean distance although other metrics can be used

(e.g. Mahalanobis). Two types of points can be identified within a cluster, core points

and border points. The DBSCAN is based on the definition of density reachability and

density connectivity therefore these notions have to be defined:
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• A point p is a core point if more than kmin points are included in a hypersphere (of

volume V), with radius ε centred at p.

• A point q is directly density-reachable from p with respect to ε and kmin if it is

included in V and p is a core point.

• A point r is density-reachable from p if there is a chain of objects p1, p2,...,pn, where

p1=p and pn=r, such that, for 1 ≤ i ≤ n, pi+1 is directly density-reachable from pi.

• A point s is density-connected to p, if there is an object t such that both s and p

are density-reachable from t.

The algorithm starts processing points randomly checking if they are core points. Once

a core point is discovered it then chooses this point as the seed. Next all the points

that are density-reachable from the seed are retrieved forming the cluster containing the

seed. The algorithm then chooses a new unprocessed point and the whole procedure is

repeated. The process terminates when no new points can be added to any of the clusters.

The essence of the algorithm is that a density-based cluster is being formed based on

the notions of density-connected and density-reachable points. Data not contained in a

sufficiently populated cluster will be identified as noise. This clustering algorithm could

serve as a pre-processing step to interference rejection as randomly occurring pulse shaped

noises are expected to either be located sparsely so that no cluster will be formed or be

identified as a different cluster and be rejected. Moreover identified clusters can be used

as training data to a supervised algorithm or identified as different PD sources, under

the assumption that each cluster represents a PD source. This clustering algorithm has

been used in [108] on on-line data and has shown promising results. A similar approach

will be followed here to evaluate the feature vector presented in 3.4, on experimental and

on-line data for source identification and interference rejection. Due to the fact that the

clustering algorithm is based on a distance metric (in this case the Euclidean distance)

when the input data has a high number of data dimensions it can suffer from the curse

of dimensionality. In order to minimise the number of dimensions and also make it easier

to visualize the data the Principal Component Analysis (PCA) is chosen to reduce the

number of dimensions.

The PCA was analysed in section 4.5.2.1 and it basically provides an effective linear

transformation to project high dimensional data onto a lower dimensional space. The

eigenvalues of the covariance matrix of the input data are calculated and sorted in a

descending order. The data is then projected into the m-dimensional space spanned by
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the eigenvectors corresponding to the m largest eigenvalues. The projection of the 16-

dimensional proposed time-resolved feature vector onto the 3-dimensional space spanned

by the 3 largest eigenvalues, constitutes the input to the DBSCAN.

5.3 Evaluation on multiple sources using laboratory

data

The use of time resolved data using the WPT and HOS on specific nodes of the wavelet

packet tree which correspond to specific frequencies was proposed in section 3.4. The

method provided high enough identification rates of different PD sources from laboratory

measurements under controlled conditions, when trained using a supervised algorithm

(chapter 4). Time domain data with a clustering algorithm can be used as a pre-processing

step for separating different PD sources. The procedure followed is that PD data are

acquired in synchronization with the phase at a high enough sampling rate and processed

with a peak extraction algorithm to obtain the location and waveform of the pulses.

Then the pulses can be analysed in the time domain using the proposed feature vector

and an appropriate clustering algorithm. Different identified clusters can be considered as

different subpatterns that can each correspond to a discharge source. From these clusters

the PRPD data can be utilised in the identification, facilitating PD recognition. In order

Table 5.1: Details of simulated single cycle PD data acquired at a sampling rate of 500
MHz.

Type Voltage Sample Du-
ration

Sample
length

Sample
Quantity

Corona in air 6 kV 20 ms 5000 pts 40

Corona in air 9 kV 20 ms 5000 pts 40

Floating in oil 24 kV 20 ms 5000 pts 40

Floating in oil 28 kV 20 ms 5000 pts 40

Internal in oil 26 kV 20 ms 5000 pts 40

Internal in oil 36 kV 20 ms 5000 pts 40

Surface in air 6 kV 20 ms 5000 pts 40

Surface in air 9 kV 20 ms 5000 pts 40

to test the proposed time-resolved feature vector as a pre-processing tool eighty two cycles

of data for each of four PD sources at two different voltage levels (41 measurements voltage
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per level) are taken in the laboratory as shown in table 5.1. The data is processed through

a peak extraction algorithm and time resolved data is extracted. The mean of each cycle

is subtracted from the data in order to facilitate the peak detection algorithm. Therefore

the feature extraction is modified to exclude the mean from the HOS.
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Figure 5.1: Plot of the first three principal components of the HOS feature vector on
selected nodes of the wavelet tree of experimental data.
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Figure 5.2: Plot of the k-distance graph, for k=13, for DBSCAN ε and kmin parameter
selection.

In figure 5.1 the 3-dimensional plot of the PC for the different sources of PD is plot-

ted where the first three PC retain around 89% of the signal’s energy. Before running

DBSCAN the parameters of the algorithm have to be selected as they can have a sig-

nificant effect in the creation of clusters. The procedure in [105] is followed where a

k-distance graph is plotted in descending order, with kmin = 13. From this plot (figure

5.2) the parameter ε = 0.14 is selected and the results of the clustering shown in figure

5.3a. The superimposed results of the DBSCAN and the experimental data is included

in figure 5.3b. The results of the DBSCAN algorithm presented in a visual form have
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(a) Plot of the identified clusters by the DB-
SCAN run on the first three principal compo-
nents of the proposed time-resolved feature vec-
tor using experimental data
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(b) Plot of the first three principal components
of the HOS feature vector on selected nodes of
the wavelet tree of experimental data superim-
posed on the result of the DBSCAN algorithm

Figure 5.3: Plots of the output of the DBSCAN algorithm on the left and superimposed
with the experimental data on the right. The squares around the experimental data
indicate the points that have been included in a cluster by the algorithm while their
colour identifies the cluster number.

also been included in table 5.2. It can be seen that the clustering identifies well some of

the sources such as the corona which forms a distinct dense cluster and shows acceptable

performance for the floating (68.25%) and the internal (59.79%) discharges. The surface

discharge shows the lowest performance of all discharge types (41.05%), due to the fact

that the global parameters can not handle clusters of significantly different densities.

The surface discharge data as seen in figure 5.1 scatters within the internal and floating

discharges and forms three subclusters that can not be captured using global parameters.

To improve the classification accuracy the clustering algorithm can be combined with

the SVM, a supervised algorithm considered in chapter 4. Data from the identified

clusters using the DBSCAN are used as the training data where each cluster provides

a class label. The optimum parameters using the 5 fold validation are selected (C =

220 and γ = 2−10) and the data identified as outlier is processed by the SVM giving

the classification rates shown in table 5.3. From this results it can be seen that the

combination of the clustering and unsupervised algorithms increases the identification

rate for the surface discharge to 71.05% and the overall rate from 67% to around 75%.

In order to examine the efficiency of the DBSCAN algorithm on data acquired under

conditions that resemble on-line conditions as close as possible an experiment is designed

using a PILC cable loop.
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Table 5.2: Identification matrix for the DBSCAN algorithm with parameters kmin = 13,
ε = 0.14 evaluating the whole dataset.

Input Class

Decision Corona Floating Internal Surface

Corona
99.62% 0.00% 0.00% 0.00%

(2656) (0) (0) (0)

Floating
0.00% 68.25% 14.43% 17.89%

(0) (288) (28) (34)

Internal
0.00% 30.09% 59.79% 1.58%

(0) (127) (116) (3)

Surface
0.00% 0.00% 5.67% 41.05%

(0) (0) (11) (78)

Outliers
0.38% 1.66% 20.10% 39.47%

(10) (7) (39) (75)

Table 5.3: Identification matrix for the outliers using an SVM with parameters C = 220

and γ = 2−10 trained using identified clusters by the DBSCAN as training data (89
samples from each cluster randomly chosen).

Input Class

Decision Corona Floating Internal Surface

Corona
100.00% 0.00% 0.00% 1.33%

(10) (0) (0) (1)

Floating
0.00% 100.00% 46.15% 5.33%

(0) (7) (18) (4)

Internal
0.00% 0.00% 2.56% 17.33%

(0) (0) (1) (13)

Surface
0.00% 0.00% 51.28% 76.00%

(0) (0) (20) (57)
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5.4 Evaluation using laboratory data collected from

PILC loops

An experiment is designed at a high voltage laboratory where three phase belted Paper

Insulated Lead Covered (PILC) cables are utilised to study the effects of introducing

known defects. The actual setup of the experiment is described in detail in [109] and is

briefly presented here. The aim of the experiment is to simulate operating conditions as

close as possible therefore allowing control of the voltage, current and cable temperature.

Since the PILC cables are operating at 11 kV then the voltage during the experiment is set

to this value and the temperature is controlled by injecting a circulating current through

two Current Transformers (CT). To investigate the PD signals produced by common fault

mechanisms, a 10 m cable section was terminated and a straight lead joint that contains

a known defect is introduced to the sample. When constructing a straight lead joint in a

PILC cable section, the sweating process involves applying a molten,“solder” consisting

of aluminum and tin to ensure an effective connection of the conductors within the joint.

After the application of the solder material, it is imperative to wipe away any excess

material and sand down the area to reduce the number of sharp points on the conductor

that would lead to a high stress point and reduce the insulating performance of the joint.

To mimic the effects of poor ferrule preparation, a metal spike is attached to phase 2 and

orientated in the direction of phase 1. The spike is manufactured by wrapping a metal

wire around the conductor and covering it with a layer of solder as shown in figure 5.4.

Figure 5.4: Spike induced defect in a joint/splice of a 3 phase belted PILC cable (185
mm2) loop in phase 2 (L2) pointing towards phase 1 (L1).

The cable under test is thermally cycled for an extended period of time and activity

due to the spike gradually reduced until it is indiscernible with respect to background
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noise. To simulate another source of PD mechanical crushing is applied to the cable, as

shown in figure 5.5, until PD activity is detected. However the cable deteriorates rapidly

Figure 5.5: Mechanical crushing of a PILC using a sharp edge.

and fails before a large amount of PD data could be collected.

After the cable fails it is maintained at a rated temperature using two CT until

the insulation could support the rated voltage. At this point a number of cycles are

captured at a rate of 100 MHz using a commercially available HFCT around the earthing

conductor. In figure 5.6 the PRPD data of 15 cycles after the cable could again support

the rated voltage are shown and are analysed using the time-resolved proposed feature

and the DBSCAN to extract the different PD sources. The system used to acquire

the data triggers on the positive edge of the low voltage side therefore depending on the

transformer configuration there is a phase shift between the voltage of the PRPD plot and

each of the three phases on the high voltage side. The parameters ε and kmin are selected

according to the procedure described above and set to 5 and 4 respectively. Figure 5.7

shows the two classes identified by the DBSCAN algorithm. The respective PRPD and

typical waveform plots of classes 1 and 2 are shown in figure 5.8. From this plot it can

be deduced that class 1 represents the current transformer pulses and class 2 the pulses

after the application of the mechanical crushing, as the cable was monitored prior to the

application of the crushing and no pulses having the time-frequency distribution of the

pulses in 5.8d were observed.

The proposed time-resolved feature vector and the DBSCAN appear to give mean-

ingful results and can identify different PD sources and interference, using experimental
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Figure 5.6: PRPD data for 15 cycles when the cable is able to withstand the rated voltage
after its failure.
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Figure 5.7: Clustering for PILC spike and mechanical crushing data.

data of PILC cable loops, designed to simulate operating conditions as close as possible.

Therefore next step is to evaluate the proposed feature vector on field data acquired from

the Electricity Authority of Cyprus (EAC) distribution network.

5.5 Evaluation using field data

The proposed feature vector is evaluated using on-line, field data that are acquired from

the Cyprus distribution network belonging to the EAC. The cable loops in this network

consist of combinations of lengths of PILC and XLPE cables. The PILC cables were

laid many years ago, and have started to show signs of ageing. A systematic procedure

of screening cable loops categorised as increased risk, based on the details and previous

behaviour of the cables, was undertaken based on PD measurements. Analysis of these

measurements designated specific locations that are believed to exhibit increased PD

activity. The locations are under monitoring and analysed using the proposed time-
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Figure 5.8: PRPD and typical single pulse data for classes 1 and 2 identified by the
DBSCAN algorithm with kmin = 4 and ε = 5.

resolved feature to provide more insight into PD activity and as a means of evaluating

the feature in situations where PD activity is believed to be present. Three examples

from such loops are presented.

5.5.1 Field data from Pavlou Nirvana substation

The particular cable loop under investigation consists of runs of PILC and XLPE cables

connected together by transitional and straight through joints, with a total length of

around 400 m. The HFCT sensor analysed in section 2.4 is placed around the earthing

wire at the PILC cable termination end and 120 cycles are recorded at 50 MHz in syn-

chronization with the mains frequency. The mains is fed from an 11kV/415V delta/star

Dy11 configuration transformer, which means that the secondary voltage leads the pri-

mary by 30 ◦C. This is taken into account when interpreting the PRPD plots, where the
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sine waves of the three phases on the HV side are shown. The data is processed by a

peak extraction algorithm and the feature vector proposed is calculated. After applying

the PCA to reduce the number of dimensions the DBSCAN is run using the parameters

ε=0.7 and kmin= 4.
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Figure 5.9: Plot of the first three principal components of the feature vector of the
processed by the DBSCAN algorithm with parameters ε set to 0.7 and kmin to 4. The
points marked with x are the points identified as class 1 while those marked with an x
enclosed by a diamond as class 2. Outliers have been marked with an x and enclosed by
a square.

The outcome is shown in figure 5.9 where it can be seen that the data is identified as

two classes with some outlier points. The waveforms of selected data points are plotted in

figure ??. From this plot it can be seen that classes 1 (figure 5.10a) and 2 (figure 5.10b)

contain very similar pulses and can be merged into a single class. The points identified

as outliers (figure 5.10c) consist of signals that can be regarded as interference, and

therefore being correctly rejected. By examination of the waveforms it can be concluded

that merged classes 1 and 2 resemble the waveforms of PD activity. Figure 5.11 displays

the PRPD plot from data that have been identified to belong to classes 1 and 2 and can

be used as a complementary identification tool. This specific loop has been placed under

monitoring and the evolution of PD activity is being recorded.

5.5.2 Field data from Kato Lakatamia substation

The second loop analysed also consists of mixed PILC and XLPE cables with several

joints. The same procedure is followed where a peak detection algorithm is run and the

extracted waveforms together with their phase of occurrence are recorded. The time-

resolved proposed feature vector is extracted and processed through PCA to extract the

first three principal components. The outcome of the DBSCAN algorithm using the
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Figure 5.10: Plots of the waveforms of data clustered into class 1 (a), class 2 (b) and
outliers (c).
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Figure 5.11: PRPD data plot of the on-line field, data at cable loop of the EAC network
for classes 1 and 2 identified by the DBSCAN algorithm with ε set to 0.7 and kmin to 4.

parameters ε = 1.5 and kmin = 4, is shown in figure 5.12, where it can be seen that the

data is clustered into a single class plus the outliers.
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Figure 5.12: Plot of the first three principal components of the feature vector of the
processed by the DBSCAN algorithm with parameters ε set to 1.5 and kmin to 4. The
points marked with · are the ones identified in class 1 while outliers have been marked
with an ∗ .

Looking into the waveforms of the identified classes it can be concluded that a signal

that resembles a PD pulse is identified in class 1 (figure 5.13a) while indeed the outliers

class identifies interference pulses (figure 5.13b). The PRPD plot from data identified as
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Figure 5.13: Plots of the waveforms of data clustered into class 1 (a) and outliers (b).

class 1 is plotted in figure 5.14 where it can be seen that the majority of the pulses occur

on the rising edge of the positive ac cycle and the falling edge of the negative ac cycle

(first and third quadrants) with respect to the yellow phase, which can support the fact

that the data in class 1 represents actual PD events. The loop has been placed under

monitoring and the evolution of PD activity is being recorded.
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Figure 5.14: PRPD data plot of the on-line field data at cable loop of the EAC network
for class 1 identified by the DBSCAN algorithm with ε set to 1.5 and kmin to 4.

5.5.3 Field data from Santa Rosa substation

The third loop analysed also consists of mainly PILC cable with just a small section of

XLPE. The same procedure is followed as with the previous cases and the outcome of

the DBSCAN algorithm using the parameters ε = 1.5 and kmin = 4, is shown in figure

5.15, where it can be seen that the data is clustered into a two classes plus the outliers.

The waveforms of the identified classes are shown in figure 5.16 where class 1 is shown in
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Figure 5.15: Plot of the first three principal components of the feature vector of the
processed by the DBSCAN algorithm with parameters ε set to 1.5 and kmin to 4. The
points marked with · are the ones identified in class 1 while class 2 is identified by ◦.
Outliers have been marked with an ∗ .

figure 5.16a and 5.16b. The PRPD plots for the two classes shown in figures 5.17a and

5.17b respectively verify the fact that the activity in this specific loop is not related to

PD activity.
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Figure 5.16: Plots of the waveforms of data clustered into class 1 (a), class 2 (b) and
outliers (c).
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Figure 5.17: PRPD data plot of the on-line field data at cable loop of the EAC network
for (a) class 1 and (b) class 2 identified by the DBSCAN algorithm with ε set to 1.5 and
kmin to 4.
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5.6 Conclusions

In this chapter the application of the proposed time-resolved feature vector on on-line

data was evaluated. In such a scenario the lack of class labels for the training data, as

well as the lack of any a priori knowledge about the number and type of PD sources,

pose a difficulty to the use of supervised algorithms. Fortunately the use of clustering

or unsupervised algorithms provides the class labels or even alleviates the use of training

data. The DBSCAN was evaluated on experimental data from PILC cables with artificial

defects where the effect on PD activity of the application of mechanical crushing on a

spike defect was identified and the relevant PRPD extracted. Next on-line measurements

from the Cyprus distribution network at locations suspected of increased PD activity

with mixed PILC and XLPE cables were utilised. The analysis identified a potential PD

sources, clustering pulses belonging to this source close together and rejected interference

pulses by not including them in a specific cluster. It can be concluded that the proposed

feature vector has the potential to be used in on-line applications, either through a

combination of supervised or clustering algorithms or through the sole employment of a

clustering algorithm.
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Chapter 6

Conclusions

Classification into sources of different origin is essential in evaluating the severity of the

damage caused by PD activity on the insulation of power cables and their accessories. The

correct classification of different PD types is of vital importance in a condition monitoring

program. The work in this thesis was an attempt to approach the PD classification in

cable networks from a continuous on-line monitoring perspective. Such an approach

imposes additional constraints on the implementation of the algorithms such as the need

of an algorithm that will create manageable storage requirements and computational

effort. Both phase and time resolved features were employed in order to give a more

complete representation of the data.

In order to study the characteristics of different PD sources an experiment was de-

signed under laboratory controlled conditions. The experiment provided phase and time-

resolved data for four types of discharges, believed to more frequently occur in power

cable networks. The corona, floating, internal and surface discharge data was acquired

using an HFCT sensor, simulating on-line acquisition where this sensor is clamped around

the earth wire. The data formed the database on which the development of the proposed

features and their evaluation was based.

Both the phase and time-resolved features employed the WPT to expand the signal

into wavelet coefficients that represent different time-frequency characteristics of the sig-

nal. In phase resolved data the probability distribution (pdf) of the wavelet coefficients at

each scale provided a description of the main features of each PD type. In order to reduce

the dimension of the pdf statistical descriptors such as the mean, variance, skewness and

kurtosis were used producing a feature vector of 36 dimensions. Using the experimental

database the proposed feature vector was validated against a feature extraction method

of much higher dimensionality (1468) using a supervised algorithm, the SVM. The success

rate was similar for both features but with a reduction factor of the order of 40, which
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has a significant impact on the computational burden. The SVM was compared to the

PNN using the proposed feature. Since their training is based on different principles, the

results proved to be acceptable irrespective of the training method used.

Using time-resolved data four nodes of the WPT tree decomposition were selected

and the coefficients at each of the selected nodes found to describe different PD sources.

Statistical descriptors, provided by HOS, on the selected coefficients of each node resulted

in a significant dimensionality reduction (1304 to 16). Comparison of this proposed

feature with the use of the raw wavelet coefficients using the SVM showed a slight drop

in performance from around 98.47% to 98.06%, which was considered acceptable given

the gain in the computational load resulting from the dimensionality reduction.

The direct comparison of the performance of the PNN against the SVM in classifying

PD data using the time-resolved proposed feature was performed, which became possible

through the reduction in dimensionality as it alleviated numerical problems in the PNN

associated with the number of dimensions. The two algorithms employ different training

principles and the results showed that both methods provided consistent and reproducible

results with very similar identification rates.

One of the problems facing on-line PD source separation is the presence of PD activity

from multiple sources. This poses a problem to the use of supervised algorithms since no

knowledge about the class labels or the number of PD sources in the training data is avail-

able. The use of unsupervised or clustering algorithms can provide this information or

even alleviate the use of training data. The proposed time-resolved feature was evaluated

on experimental data acquired from PILC cable loops, simulating operating conditions

as close as possible. The DBSCAN was used and identification of an artificially created

PD source was achieved. Field data from the EAC network from locations suspected of

showing PD activity was processed by the proposed feature and the DBSCAN algorithm.

The analysis identified a potential PD source and also rejected data that resembled inter-

ference pulses. This evaluation performed showed that the time-resolved proposed feature

vector has the potential to be used in an on-line application.

The end goal of this work was to achieve an acceptable identification rate for PD of

different sources for a continuous on-line application. Such an application needs feature

vectors of lower dimensional space resulting in lower computational effort and storage

burden. This requirement was incorporated into the design of the feature extractor

through the use of HOS. The lower dimensionality allows the capture of data at more

regular intervals which is a potential step closer to continuous on-line PD monitoring
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that allows trending of data, giving an insight into the behaviour of PD activity from

inception to failure.
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Chapter 7

Future Work

This work proposed two feature extraction methods, one using time and another using

phase-resolved data, that achieved a characterisation of different PD sources using a com-

pact representation. This lower dimensionality can be exploited in an on-line environment

where the lower storage requirements of the proposed feature vectors allow the capture

of data at more regular intervals. Therefore suspected locations of the EAC distribution

network can be monitored on an almost real-time basis thus drawing conclusions about

the evolution of the PD with time.

Supervised and unsupervised algorithms were used in evaluating the proposed feature

vectors. The supervised algorithms were first employed on experimental data where

laboratory controlled set-ups were used to build a database of different PD sources.

This database can be expanded to include more PD sources or further subdivide the

existing PD sources. For example the internal discharge simulated was a void discharge

located midway between the electrodes. This can further subdivided into three different

discharges one when the void is close to the high voltage electrode, one the void in the

middle and a third one with the void close to the earthed electrode. Similarly the rest of

the PD sources can be subdivided into more specific ones and the proposed algorithms

can be evaluated if they can achieve good separation of these sources.

In this thesis a database was acquired and separated into a training and a test dataset

to train and evaluate the algorithms. Another improvement of the proposed feature

vectors is their evaluation on a different training and testing database. The training and

test databases could perhaps be acquired using slightly different experimental set ups. As

an example the training database for the surface discharge can be acquired using a needle

shaped high voltage electrode and the test using a disc shaped one. By this procedure

the robustness of the proposed algorithms will be evaluated as well as the results will
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be more indicative of real scenarios where the training and test data sets are completely

independent and not part of the same dataset.

In identifying PD sources using the field data in an unsupervised mode the DBSCAN

algorithm has been employed. One of the drawbacks of this algorithm is that the param-

eters of the algorithm are determined from the thinnest cluster in the dataset. Although

this results in clusters of arbitrary shape to be identified when the underlying data has

clusters with different density then the algorithm can not identify the true structure.

As an alternative the OPTICS algorithm can be employed which creates an augmented

ordering of the database representing its density based clustering structure. The use of

this algorithm can be considered in field data and compared to the results presented here

to evaluate any increase in identification.

The proposed feature vectors are to be employed in a continuous on-line condition

monitoring system where trending will be employed to evaluate the insulation integrity

of the equipment under test. However the interpretation of the trending has not received

much attention and is a field that can give vital contributions to the PD community once

exploited.

In general the PD community is very close to successful implementation of PD diag-

nostics. Several research groups have proposed different algorithms for identifying PDs in

field conditions, including the work done in this thesis. From the results it seems that we

are in a position to identify PD activity with a high probability of being correct. However

the ultimate target of the PD community should be to move towards prognostics, which

not only identifies the presence of PD activity but also can provide a time frame towards

failure. This can be achieved through a series of new research activities such as more

modelling of the PD process in order to better understand the underlying process per

specific case. Moreover monitoring only PD activity can not provide us enough infor-

mation about the insulation integrity as this activity depends on a number of additional

factors . In order to arrive at more informative conclusions about the PD activity at

a particular location it has to be coupled to the ambient and soil temperature, the soil

thermal conductivity, the temperature of the core conductor, the load as well as meteo-

rological conditions such as the speed of the wind. Existing models should be modified

to incorporate all this information in order to enforce PD prognostics.
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