
Department of Electrical and Computer Engineering

Path Delay Fault Testing for Digital VLSI Circuits Using

Specialized Binary Decision Diagrams

Kyriakos A. Christou

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the University of Cyprus

May, 2012

Kyri
ak

os
 C

hri
sto

u

© Kyriakos A. Christou, 2012

Kyri
ak

os
 C

hri
sto

u

APPROVAL PAGE

Kyriakos A. Christou

Path Delay Fault Testing for Digital VLSI Circuits Using Specialized Binary Decision

Diagrams

The present Doctorate was submitted in partial fulfillment of the requirements for the Degree

of Doctor of Philosophy in the Department of Electrical and Computer Engineering, and was

approved on May 03, 2012 by the members of the Examination Committee.

Committee Chair
Dr. Theocharis Theocharides

Research Supervisor
Dr. Maria K. Michael

Committee Member
Prof. Dhiraj K. Pradhan

Committee Member
Dr. Chryssis Georgiou

Committee Member
Dr. Chrysostomos Nicopoulos

III

Kyri
ak

os
 C

hri
sto

u

Abstract

Increasing complexity and speed with billions of transistors on a single integrated circuit

has let to circuits with incredible capabilities. Circuit advances in a rigorous evolving envi-

ronment have let manufacturing testing into new test challenges. This thesis studies delay

testing, that is detecting the circuit’s timing violations and ensuring it’s temporal correctness.

Specifically, this dissertation investigates the identification and test generation of single

and multiple Path Delay Faults (PDFs) for enhanced fully scanned digital circuits as well

as circuits with no scan capabilities. A crucial problem for the PDF model is the derivation

of compact test sets. The PDF identification and test generation for various PDF classifi-

cations is investigated. The newly proposed test generation algorithms, utilize variants of

special data structures known as Binary Decision Diagrams (BDDs) in a way that explicit

enumeration of the PDFs is avoided. Paths and PDFs, are processed in an implicit and non-

enumerative manner, which facilitates their usage in terms of dealing with a large number

of circuit paths in reasonable time. For the single PDF case, experimental results on the

enhanced full-scanned benchmarks, demonstrate clearly the practicality of the method in

terms of test compactness for the critical PDF set. Furthermore, for the multiple PDF set,

experimental results indicate that only a small number of critical multiple faults, compared

to the number of single critical faults, needs and suffices to be examined. Therefore, only

a small number of additional test patterns is needed to guarantee a circuit’s timing specifi-

cations. For circuits with no scan capabilities such as microprocessors, experiments show

that the methodology adopted allows reducing the test generation time, by concentrating on

suitably classified structurally coherent fault lists and avoiding computation intensive gate

level simulations.

Finally, an efficient way of identifying the pairwise physical paths correlation between

the paths in a set is proposed. Beyond PDF testing, this metric has important implications in

various design automation problems, such as timing analysis, test generation and diagnosis.

When considering the complexity and tight timing constraints of modern circuits, this corre-

IV

Kyri
ak

os
 C

hri
sto

u

lation affects both the design process and the testing approaches followed in manufacturing.

V

Kyri
ak

os
 C

hri
sto

u

Περίληψη

Η αυξημένη πολυπλοκότητα στο σχεδιασμό, καθώς επίσης και οι υψηλές ταχύτητες

λειτουργίας των σύγχρονων κυκλωμάτων, τα οποία περιέχουν δισεκατομμύρια

ημιαγωγούς (transistors) σε ένα ενιαίο ολοκληρωμένο κύκλωμα, έχουν οδηγήσει στην

παραγωγή κυκλωμάτων με απίστευτες ικανότητες. Η ραγδαία αυτή πρόοδος των

κυκλωμάτων, μέσα σε ένα αυστηρώς εξελισσόμενο περιβάλλον, έχει οδηγήσει τη

διαδικασία ελέγχου μετά την παραγωγή τους σε νέες προκλήσεις. Το αντικείμενο αυτής

της διατριβής έχει ως στόχο τη μελέτη του ελέγχου της ορθής λειτουργίας χρονισμού

κυκλωμάτων, συγκεκριμένα την ανίχνευση χρονικών παραβάσεων σε κυκλώματα μετά

την παραγωγή τους, έτσι ώστε να διασφαλίζεται η χρονική τους ακρίβεια.

Συγκεκριμένα, αυτή η διατριβή διερευνά τον εντοπισμό (αναγνώριση) και την παραγωγή

διανυσμάτων ελέγχου, τόσο για μονά, όσο και για πολλαπλά σφάλματα χρονικών

καθυστερήσεων σε μονοπάτια (Path Delay Faults - PDFs), για κυκλώματα πλήρης

σάρωσης αλλά και για κυκλώματα χωρίς δυνατότητα σάρωσης. Ένα πρόβλημα ζωτικής

σημασίας για το PDF μοντέλο, που μελετάται στη διατριβή αυτή, είναι η παραγωγή

συμπαγών διανυσμάτων ελέγχου σε ψηφιακά κυκλώματα πολύ μεγάλης κλίμακας

ολοκλήρωσης (VLSI). Η αναγνώριση μονοπατιών και η παραγωγή διανυσμάτων ελέγχου

για αυτά, διερευνάται για διάφορες ταξινομήσεις του PDF μοντέλου. Οι αλγόριθμοι για

την παραγωγή διανυσμάτων ελέγχου που προτείνονται σε αυτήν την διατριβή,

χρησιμοποιούν παραλλαγές εξειδικευμένων δομών δεδομένων, γνωστές ως δυαδικά

διαγράμματα αποφάσεων (Binary Decision Diagrams - BDDs), με τέτοιο τρόπο κατά τον

οποίο η απευθείας απαρίθμηση (explicit enumeration) των διαφόρων PDFs να

αποφεύγεται. Τα υπό εξέταση μονοπάτια, και PDFs, διερευνήθηκαν με άμεσο τρόπο,

χωρίς απαριθμήσεις, κάτι που διευκολύνει τη χρήση τους όσον αφορά την αντιμετώπιση

μεγάλου αριθμού PDFs σε ένα κύκλωμα, μέσα σε λογικά χρονικά πλαίσια. Για την

περίπτωση των μονών PDFs, τα πειραματικά αποτελέσματα που πάρθηκαν από

κυκλώματα πλήρης σάρωσης, επιδεικνύουν την πρακτικότητα της μεθόδου όσον αφορά

την πυκνότητα των διανυσμάτων ελέγχου για το σύνολο των κρίσιμων PDFs. Επιπλέων,

για την περίπτωση των πολλαπλών PDFs, τα αποτελέσματα δείχνουν ότι μόνο ένας

μικρός αριθμός πολλαπλών κρίσιμων PDFs, σε σύγκριση με τον αριθμό των μονών PDFs,

χρειάζεται και επαρκεί να εξεταστεί. Ως εκ τούτου, μόνο ένας μικρός αριθμός

VΙ

Kyri
ak

os
 C

hri
sto

u

επιπρόσθετων διανυσμάτων ελέγχου χρειάζεται για να διασφαλιστούν οι χρονικές ενός

κυκλώματος. Για κυκλώματα χωρίς δυνατότητες σάρωσης, όπως οι μικροεπεξεργαστές, τα

πειράματα δείχνουν ότι η μεθοδολογία που υιοθετείται επιτρέπει τη μείωση του χρόνου

παραγωγής των διανυσμάτων ελέγχου, με την επικέντρωση σε κατάλληλα ταξινομημένες

δομικά συνεκτικές λίστες σφαλμάτων και την αποφυγή υπολογισμού εντατικών

προσομοιώσεων σε επίπεδο πύλης.

Τέλος, προτείνεται ένας αποτελεσματικός τρόπος αναγνώρισης και εύρεσης συσχέτισης

μεταξύ των φυσικών μονοπατιών ανά ζεύγος, σε ένα σύνολο μονοπατιών. Πέραν της

εφαρμογής του στα προβλήματα αναγνώρισης και ελέγχου για PDFs, αυτό το μέτρο έχει

σημαντικές επιπτώσεις σε διάφορα προβλήματα αυτοματοποίησης σχεδιασμού, όπως ο

ακριβής καθορισμός της μέγιστης καθυστέρησης, ανίχνευση και διάγνωση σφαλμάτων σε

ψηφιακά κυκλώματα. Εξετάζοντας την πολυπλοκότητα και τους στενούς χρονικούς

περιορισμούς των σύγχρονων κυκλωμάτων, η συσχέτιση αυτή επηρεάζει τόσο την

διαδικασία σχεδιασμού όσο και τις μεθοδολογίες ελέγχου που ακολουθούνται της

παραγωγής.

VΙΙ

Kyri
ak

os
 C

hri
sto

u

Acknowledgements

This thesis would not have been possible without the constant support and encouragement of

my advisor Dr. Maria K. Michael, Assistant Professor in Electrical and Computer Engineer-

ing Department, University of Cyprus. Maria was always available for discussion, guidance,

comments, criticism and interest in my work. A valuable colleague and an excellent teacher.

For this I am grateful.

I would also like to thank my PhD examination committee members Professor Dhiraj

K. Pradhan (University of Bristol, UK), Dr. Chryssis Georgiou (University of Cyprus, CS

department), Dr. Theocharis Theocharides as well as Dr. Chrysostomos Nicopoulos (Uni-

versity of Cyprus, ECE department), for their helpful suggestions.

I would, also, like to thank Professor Mateo Sonza Reorda, Dr. Paolo Bernardi, Dr.

Ernesto Sanchez and Dr. Michalangello Grosso (Politecnico Di TORINO, Italy) for their

valuable collaboration.

Furthermore, during my research, I have had long and valuable collaboration with Dr.

Stelios Neophytou. He has been an excellent collaborator and very good friend.

My parents, Andreas and Eleni, my brothers, Chistakis, Marios, Drosos, Nikolaos and

friends have provided the support needed to complete a project of this scale. Especially I

would like to thank my wife Stella and son Mario for their constant encouragement patience

and love.

VIII

Kyri
ak

os
 C

hri
sto

u

Publications

Published Book Chapters

1. Bernardi P., Christou K., Grosso M., Michael M. K., Sanchez E. and Reorda M. S.,

“Exploiting MOEA to Automatically Generate Test Programs for Path-Delay Faults in

Microprocessors”, in Springer Lecture Notes in Computer Science, Vol. 4974/2008,

pp. 224-234.

Published Journal Publications

1. Christou K., Michael M. K. and Tragoudas S.,“On the Use of ZBDDs for Implicit

and Compact Critical Path Delay Fault Test Generation”, J. Electronic Testing,Vol.24,

pp.203-222, 2008.

Published Peer-Reviewed Conference Proceedings

1. Neophytou S., Christou K. and Michael M. K.,“An Approach for Quantifying Path

Correlation in Digital Circuits without any Path or Segment Enumeration”, Proc. of

IEEE European Test Symposium, pp.141-146, 2011.

2. Christou K., Michael M. K. and Neophytou S.,“Identification of critical primitive path

delay faults without any path enumeration”, Proc. of IEEE VLSI Test Symposium,

pp.9-14, 2010.

3. Christou K., Michael M. K., Bernardi P., Grosso M., Sanchez E. and Reorda M. S., “A

Novel SBST Generation Technique for Path-Delay Faults in Microprocessors Exploit-

ing Gate- and RT-Level Descriptions”,Proc. of IEEE VLSI Test Symposium, pp.389-

394, 2008.

4. Christou K., Michael M. K. and Tragoudas S.,“Implicit Critical PDF Test Generation

with Maximal Test Efficiency”,Proc. of IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems, pp.50-58, 2006.

IX

Kyri
ak

os
 C

hri
sto

u

5. Michael M. K., Christou K. and Tragoudas S.,“Towards finding path delay fault tests

with high test efficiency using ZBDDs”,Proc. of IEEE International Conference on

Computer Design, pp.464-467, 2005.

Journal Publications Under Review

1. Christou K. and Michael M. K.,“On the use of Decision Diagrams to Identify Critical

Primitive Path Delay Faults”, submitted, May 2012.

2. Neophytou S., Christou K. and Michael M. K.and Tragoudas S.,“A Non-Enumerative

Technique for Measuring Path Correlation in Digital Circuits”, submitted, November

2011.

X

Kyri
ak

os
 C

hri
sto

u

Contents

1 Introduction 1

1.1 Motivation and Prior Work . 1

1.2 Thesis Organization and Major Contributions 4

2 Preliminaries 10

2.1 Delay Testing and Fault Models . 10

2.2 Decision Diagrams . 15

2.2.1 ZBDD Representing the PDFs of a Circuit 16

2.3 Delay Test Application Methodologies . 17

3 ZBDDs for Implicit and Compact Path Delay Fault Test Generation 21

3.1 Introduction . 21

3.2 Preliminaries and Notation . 24

3.3 ISOP/ZBDD Graph for Sensitizable PDFs 26

3.3.1 Non-Robust PDF Sensitization . 26

3.3.2 Other PDF Sensitization Types . 29

3.3.3 ISOPs/ZBDD for All Sensitizable PDFs 32

3.4 Finding Critical Sensitizable PDFs . 37

3.4.1 Fan-out free circuits . 38

3.4.2 Treating Fan-Out Stems . 39

3.5 Generation of Tests with Maximal Test Efficiency 42

3.5.1 Generation of the T -graph . 46

3.5.2 Deriving additional tests . 49

3.6 Experimental Results . 51

3.7 Conclusions . 56

XI

Kyri
ak

os
 C

hri
sto

u

4 Using of Decision Diagrams for Identifying Critical Primitive Path Delay Faults 61

4.1 Introduction . 61

4.2 Preliminaries and Notation . 63

4.2.1 PDF Classification . 63

4.2.2 Critical Primitive PDF . 64

4.2.3 Function Notation, ZBDDs and ISOP/ZBDD Graph 66

4.3 Finding the Critical Primitive PDF Set . 72

4.3.1 General Methodology . 72

4.3.2 Finding Multiple Critical Primitive faults 74

4.3.3 Necessary Function Formulation 85

4.3.4 Maintaining the Primitivity Property-A Three Step Procedure . . . 88

4.3.5 New ZBBD Operators for primitive PDFs 90

4.4 Experimental Results . 101

4.5 Conclusions . 106

5 Generation of Functional Programs to Test Path Delay Faults within Micropro-

cessors Cores 107

5.1 Introduction . 107

5.2 Preliminaries . 109

5.2.1 Software-Based Path Delay Testing 109

5.2.2 Exploiting Gate and RT Level Descriptions for Path Delay Testing . 110

5.2.3 BDDs for Structural Path Delay Fault Tests 110

5.2.4 Basic Concepts on MOEAs . 111

5.3 The Proposed Approach . 112

5.3.1 BDDs for path delay fault excitation 114

5.3.2 Sequential Fault Excitation . 116

5.4 Experimental Results . 120

5.5 Conclusions . 123

6 A Non-Enumerative Technique for Measuring Path Correlation in Digital Cir-

cuits 124

6.1 Introduction . 124

6.2 Motivation . 127

6.3 Proposed Methodology . 129

XII

Kyri
ak

os
 C

hri
sto

u

6.3.1 Pairwise Path Overlap Calculation 129

6.3.2 Path Representation and Manipulation 132

6.3.3 Overlap Identification Algorithm 133

6.3.4 A Path Overlap Calculation Example 135

6.4 Experimental Results . 136

6.4.1 Set of critical I/O paths with different average path overlap 138

6.4.2 Evaluation of stuck-at test sets for propagation path overlap 141

6.5 Conclusions . 143

7 Conclusions and Future directions 145

7.1 Thesis summary . 145

7.2 Future work . 148

Bibliography 150

XIII

Kyri
ak

os
 C

hri
sto

u

List of Figures

2.1 PDF Test Conditions for the Robust, Non-Robust and Functionally Testable. 13

2.2 Classification of the PDF Set. 14

2.3 Example circuit C1 . 17

2.4 ZBDD with all PDFs of circuit C1 of Fig. 2.3. 18

2.5 Enhanced-Scan delay test application to sequential circuit (Adopted from [16]) 19

2.6 Launch On Shift Test methodology . 20

2.7 Launch On Capture Test methodology . 20

3.1 Line functionalities using ISOP-based ZBDDs. 25

3.2 Non-Robust Sensitization functions for primary inputs of circuit C1 of Fig. 2.3. 28

3.3 Sensitization functions for line g of circuit C1 of Fig. 2.3. 30

3.4 Sensitization functions for line j of circuit C1 of Fig. 2.3. 31

3.5 Function Gcircuit() for circuit C of Fig. 2.3. 35

3.6 Pcircuit() for circuit C of Fig. 2.3. 36

3.7 Example circuits C2. 39

3.8 Example circuits C3. 41

3.9 Cr for circuit C3. 41

3.10 Subset Operation on k of C3. 42

3.11 Existentially Abstract Operation on k of C3. 43

3.12 ISOPs/ZBDD for all sensitizable PDFs in C3 of Fig. 3.8. 44

3.13 ISOPs/ ZBDD for critical PDFs in C3 of Fig. 3.8. 45

3.14 T-graph for the ISOPs/ZBDD of Fig. 3.12. 47

3.15 T -graph for the ISOPs/ZBDD of Fig. 3.13. 48

3.16 Statistical Information for Circuit S641. 57

3.17 Statistical Information for Circuit S1238. 58

3.18 Statistical Information for Circuit S3271. 59

XIV

Kyri
ak

os
 C

hri
sto

u

3.19 Statistical Information for Circuit S713. 60

4.1 Example circuit C with C ={↓b.f.g.i, ↓b.f.h.i, ↓b.d.g.i} 65

4.2 A primitive critical PDF of cardinality 2 (ΠC
2) 65

4.3 Another primitive critical PDF of cardinality 2 (ΠC
2) 65

4.4 A functionally unsensitizable multiple PDF of cardinality 2 65

4.5 Example circuit C; critical paths shown in bold 67

4.6 ZBDD for all single PDFs in Circuit C . 69

4.7 ISOP/ZBDD Graph for all single testable PDFs of Circuit C 70

4.8 ZBDD for all single testable PDFs of Circuit C 71

4.9 Potentially Testable Critical PDFs of circuit C (C) 75

4.10 Singly Untestable Critical PDFs of circuit C (C) 75

4.11 Critical Primitive PDFs of circuit C (C −ΠC
1) 76

4.12 Untestable Set MPDF set (ΠC
2) . 76

4.13 Example Circuit F . 81

4.14 Critical ZBDD PDFs in Circuit F . 83

4.15 ISOP/ZBDD Graph for x1 fanin of F . 83

4.16 ISOP/ZBDD Graph for x3 fanin of F . 84

4.17 ISOP/ZBDD Graph for SinglePO of x . 84

4.18 ISOP/ZBDD Graph for singly testable PDFs of C (P) 91

4.19 PDFs from PI c of Circuit C (Q) . 92

4.20 ISOP/ZBDD Graph R = P∩n Q . 93

4.21 P-ISOP/ZBDD Graph for falling PDFs of line g 96

4.22 Q-ISOP/ZBDD Graph for falling PDFs of line h 97

4.23 ISOP/ZBDD Graph for R = P ?6 Q . 98

4.24 ZBDD from f with Rising PDF segments of Circuit C 100

4.25 ZBDD from f with Falling PDF segments of Circuit C 100

5.1 PDF Example:on(off)-path signals given in thick(normal) lines (a, f ,h,k)(b,g, j).109

5.2 BDD for NRS excitation requirement for PDF ↑ a− f − h− k of the PDF

example depicted on Fig. 5.1. 115

5.3 Sequential fault excitation phase. 118

5.4 Fitness behavior on a coherent path list, average and maximum values. . . . 122

5.5 Trajectories of 5 fitness values during the first 50 steps. 122

XV

Kyri
ak

os
 C

hri
sto

u

6.1 A path selection method example . 127

6.2 Examples for the calculation of the average path overlap measure of Defini-

tion 3. 131

6.3 Using ZBDDs for path set representation and overlap identification. 137

6.4 Path Overlap Distribution for four different sets of paths of circuit s713 . . 140

XVI

Kyri
ak

os
 C

hri
sto

u

List of Tables

3.1 Standard ZBDD Operators used . 24

3.2 Resource requirements for the ISOPs/ZBDD and MaxTE for All PDFs . . . 53

3.3 Resource requirements for the ISOPs/ZBDD and MaxTE for Critical PDFs 54

3.4 AvgTE for different test sets . 55

4.1 Standard/NEW ∗ ZBDD Operators used . 71

4.2 Results for delay threshold T = 90%. 102

4.3 Results for delay threshold T = 95%. 103

4.4 CPU time(secs) requiremnts for the proposed method. 105

5.1 Propagation & Excitation based on (a)BDD approach (b)Gate Simulation . 122

6.1 Path overlap for the example of Fig. 6.1 128

6.2 Comparison with brute-force approach . 139

6.3 Statistics for the four different path sets obtained by the proposed method . 142

6.4 Comparing path overlaps between multiple-detect and n-detect test sets . . 144

XVII

Kyri
ak

os
 C

hri
sto

u

List of Algorithms

3.1 The Sensitization Algorithm . 32

3.2 The Sub-Sensitization Algorithm . 33

3.3 T -Graph Create . 47

3.4 Compact-ATPG Algorithm . 50

4.1 Compute Critical Primitive PDF Set ΠC 73

4.2 Multiple Critical Primitive PDF Set ΠC
i . 77

4.3 Multiple Critical Primitive PDF Set ΠC
i,l,ci,l

. 80

4.4 New-Intersect: P∩n Q . 94

4.5 New-Product: P?n Q . 95

4.6 Segment: ∧nP . 99

5.1 Pseudocode for procedure bit error . 117

6.1 Path Overlap Identification . 133

6.2 Retrieve Overlap Histogram (Linear Complexity Operator) 135

XVIII

Kyri
ak

os
 C

hri
sto

u

Chapter 1

Introduction

In this Chapter the thesis motivation and prior work is presented followed by the thesis

statement, its major contributions and organization.

1.1 Motivation and Prior Work

Increasing complexity and speed (device size, power domains, high-speed pins, probe cards,

interface boards) of modern digital circuits conduce in violations of the performance speci-

fications, inducing the circuit’s quality echelon. With billions of transistors on an integrated

circuit, the nanometer era, and the integration technology advances have let to circuits hav-

ing incredible capabilities [120]. The trend is to put as many components of a system in an

integrated circuit by taking advantage of the large integration potentials, since manufactur-

ing yield is getting smaller. In the 2011 edition of the International Technology Roadmap for

Semiconductors (ITRS) [120], is reported that despite all the effort in reducing the test cost,

test cost is becoming an increasing concern for the test community. A survey was contacted

in ITRS 2011, asking what is the community’s biggest concern and 40% of the respondents

have said that their biggest concern is the cost of test, compared to 30% from the ITRS 2009.

Furthermore, in the question if the cost of test is expected to become their biggest concern,

85% responded positively. Thus, test cost is proved to be of increasing concern. Moore’s

law [36] should be maintained by having high quality test procedures and at the same time

the testing cost should be kept low. Vertically Stacked die with Through Silicon Vias (TSV),

called 3D/TSV, has set new challenges to the test community that concerns testing multiple

interconnected devices which will include multiple vendors and technologies. With TSVs

being as small as 2 µm2 per connection and using 3D interconnects, different dies can be

1

Kyri
ak

os
 C

hri
sto

u

stacked together vertically. Thus a test engineer must be concern of not only for individual

die testing but also for the partial/entire die stack. The ITRS 2011 reveals that all of the

above imply great testing challenges and methodologies in a rigorous evolving environment.

Technology scaling imposes tight timing constraints that should be accommodated, with-

out affecting the quality of the integrated circuit. This thesis concentrates on delay testing.

Detecting timing defects and assuring the circuit’s specifications is the primary objective of

delay testing. Delay testing has been a hot research topic for more than two decades now.

Increasing design speed, advances in VLSI technology and strict timing requirements of

modern digital circuits is an increasing driving force that leads delay testing in another era

beyond testing small delay defects [1,33,63,94,116] and faults caused by statistical process

variations [5,65]. Extensive research to the delay testing problem resulted in the introduction

of several new testing methodologies/schemes and delay fault models.

Five major delay fault models exist: line, gate, transition, path and segment delay fault

models [16]. The first three delay fault models represent delay defects lumped at gate while

path and segment delay fault models represent defects that are lumped at a gate or distributed

along the examined path or segment. The Path Delay Fault (PDF) model [57, 88, 106] ad-

dresses tests for paths. A path can be defined as a sequence of connected gates from the

primary inputs to the primary outputs. This delay fault model concerns the cumulative de-

lay that may occur along the path. This implies that small delay defects may be detected

through this model since it models distributed delay faults. Thus, the main advantage of

the PDF model is that it is the most accurate delay fault model. The main drawback of the

PDF model is that it is much more complex than the other three models mentioned. For

every physical paths of a circuit there exist two PDFs, namely the rising or slow to rise

(R,↑) and the falling or slow to fall (F ,↓) PDFs. The number of considered faults can be

exponential with respect the lines of the examined circuit, even when restring to the criti-

cal set, [85], [102], [114], [37], [27], [70], thus the test size increases which implies longer

test application time. Furthermore, test generation and fault simulation are computationally

expensive compared to the transition, gate or line delay fault model. A single PDF can be

classified as robustly testable, non-robustly testable and functionally sensitizable. All the

PDFs that do not meet the sensitization criteria mentioned are categorized as functionally

unsensitizable or as redundant faults.

Primitive PDFs have appeared in [51, 52, 56, 64, 105, 113]. It has been proven that the

primitive PDF set is fault-free if and only if the circuit examined is strongly delay-verifiable.

This immediately implies that if the primitive PDF set is identified and tested, then this

2

Kyri
ak

os
 C

hri
sto

u

would guarantee the circuits performance. Identifying the primitive PDF set is a complex

and difficult task since it deals with multiple PDFs and the number of multiple PDFs is

exponential with the lines of the examined circuit in the worst case.

The testing methodology used relies on the circuit type examined, combinational or se-

quential. Delay testing for combinational circuits or for the enhanced full-scanned sequential

circuit versions, [31], involves the application of a test vector pair at the circuits primary in-

puts, V = {v1,v2}. This is a necessary step for creating and propagating transitions in the

circuit under investigation. The first vector, v1, initializes the circuit under test to the desired

values while the second vector, v2, propagates the desired transition to the primary outputs

of the circuit. The values observed at the primary outputs are then compared to the already

known output values of a faulty-free circuit. Any arbitrary vector pairs can be applied since

the two vectors v1 and v2 are uncorrelated. Chapter 3 and Chapter 4 consider the enhanced

full-scanned circuit version.

When considering sequential circuits, with limited scan capability, or even in the absence

of scan capability, delay testing becomes harder. According the Huffman model [73], a

sequential’s circuit operation can break into time frames. Each time frame represents the

combinational logic of the circuit and the application of the vector pair involves values not

only for the primary inputs, but for the state lines also (current and next state lines). A number

of testing strategies for sequential circuits with scan capabilities exist such as enhanced scan,

Launch On Capture (LOC- [97], [2]) and Launch On Shift (LOS - [98]). For the LOS delay

test application, also known as skewed-load delay test, vector v1 is arbitrary while vector v2 is

derived by a 1-bit shift of v1. For the LOC test application methodology also called broadside

or double capture or even functional transition method, v1 is an arbitrary vector while vector

v2 is derived from v1 through the circuit function. Circuits with no scan capability, such as the

microprocessor circuits in Chapter 5. If a microprocessor design is tested using its functional

vectors, i.e., using instruction sequences [58], [18], [59], the input signals to the embedded

block of the processor are derived by their functionality. Evolutionary algorithms [28], have

been successfully exploited for the automatic generation of program sets for verification, test

[29], and diagnosis [95] for processors described at different levels of abstraction. Depending

on the testing methodology used, especially for sequential circuits, area, test application time

and fault coverage vary.

Binary Decision Diagrams (BDDs), have been used long time now for the represen-

tation of choice [3, 60]. The work of Bryant [14], which focuses on boolean functions

and the Boole-Shannons expansion, reveals the advantages of BDDs with their two main

3

Kyri
ak

os
 C

hri
sto

u

properties.Zero-suppressed BDDs (ZBDDs) are BDD variants where the absence of a vari-

able implies a zero value for that variable and not a don’t care value as in a BDD would.

BDDs have been proposed for test generation under the stack-at fault model, [103]. As

the number of stack-at faults in a circuit is linear to the number of lines in the circuit, thus

structural techniques with a test per fault approach tend to behave better than BDD-based

approaches in terms of time and memory. This dissertation exploits the PDF fault model

where the number of faults considered are exponential with respect to the number of lines

of the circuit in the worst case. Thus, a test per fault approach is not acceptable. A tool that

can capture in an efficient and compact manner this huge fault space utilizes ZBDDs [84].

Hence, this thesis takes advantage of such a tool and incorporates it appropriately with BDDs

in order to identify and test PDFs in an efficient manner, avoiding PDF enumeration at any

stage.

1.2 Thesis Organization and Major Contributions

This thesis concentrates on delay testing and examines permanent errors caused by manufac-

turing defects. The thesis investigates the complete identification and efficient test generation

of single and multiple Path Delay Faults (PDFs) for enhanced fully-scanned digital circuits

as well as circuits without any scan capabilities. The PDF identification, for both the sin-

gle and multiple case, is addressed in an implicit (non-enumerative) manner. Moreover, the

generation of test sets that can test a large number of PDFs in reasonable time is examined.

Furthermore, this thesis proposes an efficient way to identify the pairwise physical paths

correlation between paths in a set. This metric has important implications in various design

automation problems, such as timing analysis, test generation and diagnosis. The results

presented in Chapter 3 are derived from the work appearing in papers [25], [24], [26]. The

results of Chapter 4 appeared in paper [23] while a journal version is currently under sub-

mission. The results of Chapter 5 have appeared in [8] and [22], while the results of Chapter

6 appeared in paper [81] while a journal version is currently under submission.

Chapter 2 of the thesis gives basic notation and preliminaries. The first main problem

addressed in this work, Chapter 3, considers the PDF classification of [21], where faults can

be tested robustly, non-robustly, or with functional sensitization. The proposed framework

includes function-based formulations, with appropriate representations and test generation

algorithms. In particular, it investigates the use of Zero-Suppressed Binary Decision Dia-

grams (ZBDDs) [77] in compact and efficient PDF test generation, concentrating on critical

4

Kyri
ak

os
 C

hri
sto

u

PDFs. In order to derive a compact test set, tests with high test efficiency must be generated.

Test Efficiency (TE) is defined here as the number of new PDFs detected by a test. For each

sensitization type, a Boolean function is formulated whose solution is the set of all targeted

sensitizable PDFs along with their corresponding set of sensitization cubes (PDF tests). The

function produced is represented by a ZBDD-based canonical data structure. Both, circuit

paths and PDF tests are captured in a non-enumerative fashion.

The first challenge is to show how the tests and the corresponding sensitized PDFs can

be mapped by a single Boolean function and represented appropriately and efficiently. For

completeness and clarity, it is first shown how such a function can be constructed for all the

PDFs in a circuit, not just the critical ones. In this case, the problem of exact identification

of sensitizable PDFs (also, that of unsensitizable PDFs) is solved non-enumeratively. This

is a major problem in PDF ATPG, as demonstrated in [21, 38, 62, 72, 85, 101, 109], among

many others. Consequently, it is shown how the proposed data structure can be constructed

for any subset of PDFs, such as the potentially critical PDFs. In this case, the proposed

PDF-sensitization function is restricted such that only sensitizable PDFs from a targeted set

of PDFs are included.

The motivation is to investigate how the generated data structure, containing all the tar-

geted sensitizable PDFs and their corresponding tests, can be efficiently manipulated to de-

rive a compact test set. A challenging task here involves exploiting the properties of the

structure to generate a test with high TE, a compact test, without enumerating any of the

paths or tests represented by the structure. A major contribution of this work involves deriv-

ing a test with maximal TE in linear time to the size of the data structure, using appropriate

graph traversals. Additional tests with high TE are derived by removing already detected

PDFs from the data structure and repeating the method to derive another test with maximal

TE. Thus, each generated test guarantees to detect a large number of PDFs that have not been

already detected. The experimental results clearly demonstrate the practicality of the method

and its superiority over existing methods in terms of high test efficiency for critical PDFs.

The main contributions of this work are given below:

• all (critical) singly sensitizable PDFs of a circuit are incorporated in a newly proposed

specialized variant of BDDs called ISOP/ZBDD, in an implicit and compact manner,

• function formulations are given for three sensitization types namely robust, non-robust

and functionally sensitization,

• find a methodology (T -Graph generation) for deriving a test with maximal Test Ef-

5

Kyri
ak

os
 C

hri
sto

u

ficiency(TE), in linear time to the size of the data structure, using appropriate graph

traversals is proposed,

• additional tests with high TE are derived by removing already detected PDFs from the

data structure and repeating the methodology proposed,

• experimental results clearly demonstrate the practicality of the method and its superi-

ority over existing methods in terms of high test efficiency for critical PDFs.

Chapter 4 considers the problem of finding the testable critical primitive PDF set in

combinational or enhanced fully-scanned sequential circuits. Even though the problem

of identifying testable critical PDFs has been extensively addressed in the literature, see

[25, 64–66, 85, 114] among many others, none of these methods considers primitive PDFs

explicitly. This work is the first to define and identify critical primitive PDFs, integrating

both aspects of criticality and primitivity in a common framework. A major challenge in

such a problem is the large number of paths needed to be considered in order to identify

primitive faults, even when the problem is restricted to a small number of critical faults. It

is important to note that the work here is independent from the critical PDF selection phase;

any critical PDF set selection algorithm and delay model can be applied to derive the set of

single critical PDFs which is used as input to our methodology.

The proposed methodology utilizes function-based formulations with appropriate data

structures (Zero-Suppressed Binary Decision Diagrams - ZBDDs) for implicit and compact

representation of paths such that the targeted set of faults is identified in a non-enumerative

manner (no path, path-segment, or fault is ever enumerated). ZBDDs have been previously

proposed for the simpler version of this problem for traditional (critical) PDFs [25,85] how-

ever, none of these methods can be trivially extended to primitive faults since the standard

ZBDD operators they utilize cannot handle multiple faults. This work presents new oper-

ators, polynomial to the size of the ZBDD, for efficient and non-enumerative manipulation

of multiple faults which are necessary for identifying all critical primitive faults. The major

contributions of this work are:

• testable critical primitive PDFs are defined,

• the targeted faults are identified efficiently, avoiding enumeration of faults or paths

which can be prohibitive for large circuits,

• any delay model for identifying the potentially testable critical (single) PDF set can

be considered,

6

Kyri
ak

os
 C

hri
sto

u

• the generated data structure that represents the targeted faults also contains test genera-

tion data (all tests per identified testable fault) and, hence, the proposed method can be

easily incorporated in a very efficient test generation framework, since the necessary

tests are already generated (test generation is not the main focus of this work, however,

some indicative test generation results are reported),

• the reported experimental results show that only a small number of multiple primitive

PDFs is testable (when compared to the set of single primitive PDFs), implying that

a small number of additional tests suffices to guarantee the circuit’s timing correctness

under the multiple fault criterion.

Chapter 5, exploits the usage of PDFs when considering sequential circuits with no scan

capability. Specifically, this Chapter presents an innovative approach for the generation of

functional programs to test path delay faults within microprocessors. The proposed method

takes advantage of both the gate- and RTlevel description of the processor. The former is

used to build Binary Decision Diagrams for deriving fault excitation conditions; the lat-

ter is exploited for the automatic generation of test programs able to excite and propagate

fault effects, based on an evolutionary algorithm and fast RTL simulation. Experimental

results show that this methodology allows reducing the test generation time, by concentrat-

ing on suitably classified structurally coherent fault lists and avoiding computation-intensive

gate-level simulations. The employed evolutionary algorithm takes advantage of the intro-

duced BDD-based fitness evaluation functions for directing the test programs generation

flow towards optimal solutions. The obtained coverage results are comparable to man-

ual/deterministic approaches in literature. The major contributions of the third main problem

addressed in this thesis are given below:

• build BDDs for deriving fault excitation conditions and compute a fitness value based

on the gate(logic) level description of the microprocessor core,

• drop un-testable faults using the BDD-based fitness evaluation function,

• use of a newly introduced BDD-based fitness evaluation function for better (faster)

directing the test programs generation flow towards a solution

• experimental results show that this methodology allows reducing the test generation

time, by concentrating on suitably classified structurally coherent fault lists and avoid-

ing computation-intensive gate-level simulations.

7

Kyri
ak

os
 C

hri
sto

u

Chapter 6 exploits an efficient way of identifying the pairwise correlation between the

paths of a given set, for example the physical paths of a digital circuit. The correlation

between the physical paths of a digital circuit has important implications in various design

automation problems, such as timing analysis, test generation and diagnosis. When consid-

ering the complexity and tight timing constraints of modern circuits, this correlation affects

both the design process and the testing approaches followed in manufacturing. In this work

the diversity of a set of paths (or path segments) is quantified, let these be critical I/O paths,

error propagation paths for various fault models, or paths traced for diagnostic purposes.

Circuit paths are encoded using Zero-Suppressed Binary Decision Diagrams (ZBDDs). The

proposed method consists of a sequence of standard ZBDD operations to provide a measure

of the overlap of the paths under consideration, that is, a comprehensive statistical charac-

terization for a given path set. The main contribution of the presented method is that path

or path segment enumeration is entirely avoided and, hence, a large number of paths can

be considered in practical time. The proposed ZBDD method has a polynomial, to the size

of the diagram, complexity. The effectiveness of the proposed measure can be seen though

experimentation using two different approaches. The first one shows how the proposed tech-

nique identifies similarities among various I/O critical path sets and can distinguish their

characteristics based on just two measure values per test. The second one uses the proposed

methodology to compare the propagation paths between multiple-detect and n-detect test sets

in relation to their corresponding defect coverage. The main contributions in this Chapter

are listed below:

• a new methodology based on standard ZBDD operations that gives a comprehensive

statistical characterization for a given path set of polynomial complexity and avoids

enumeration and, hence, a large number of paths can be considered in practical time,

• the effectiveness of the methodology is demonstrated via two different experimenta-

tions:

– the first one shows how the proposed technique identifies similarities among var-

ious I/O critical path sets and can distinguish their characteristics based on just

two measure values per test,

– the second one uses the proposed methodology to compare the propagation paths

between multiple-detect and n-detect test sets in relation to their corresponding

defect coverage.

8

Kyri
ak

os
 C

hri
sto

u

Chapter 7 summarizes this thesis and discusses future research directions.

9

Kyri
ak

os
 C

hri
sto

u

Chapter 2

Preliminaries

In this Chapter necessary background is provided. First, a summary of delay testing and fault

models is given. Then a general introduction on decision diagrams is presented and in the

last section of this chapter the different test application methodologies are described.

2.1 Delay Testing and Fault Models

The primary objective of delay testing is to assure the circuit’s specifications by detecting

timing defects. Strict timing requirements are being imposed by the advances in the modern

digital circuits speed, complexity and size. Delay testing for combinational circuits, involves

the application of a test vector pair at the circuits primary inputs, V = {v1,v2}, to first create

and then propagate transitions at the circuit’s primary outputs, where the values are compared

with the responses of a non-faulty circuit. If the circuit under test is a sequential circuit then

according to the Huffman model [73], a sequential’s circuit operation can break into time

frames, where each time frame corresponds to the combinational logic of the circuit. Several

testing strategies for sequential circuits exist namely enhanced scan, standard scan, at speed

and slow-fast-slow. Area, test application time and fault coverage vary depending on the

testing methodology used.

As mentioned in the introduction, five major delay fault models are considered namely

line,gate,transition,path and segment delay fault models. The first three delay fault models

represent delay defects lumped at gate while path and segment delay fault models represent

defects that are lumped at a gate or distributed along the examined path. It is assumed that

there exists a nominal delay for each gate for a transition to reach it’s output pin, from the

gates input pins, and a nominal delay interconnect delay for the transition to move from an

10

Kyri
ak

os
 C

hri
sto

u

output pin to an input pin [16].

The transition delay fault model [20] assumes that the delay defect of the gate examined,

slow to rise or slow to fall, is large enough so that all the transitions from the specific gate

will be delayed. This implies that small or distributed delay defects along a circuit’s path

may not be captured. Nowadays, small delay defects [1, 33, 63, 94, 116], become a big issue

since moving to nanometer designs there exist more small delay defects than large delay

defects. Moreover smaller cycle times imply more sensitivity to small delay defects. On the

other hand this model is practical since its fault list and coverage metric are similar to the

stuck-at-fault model. It can also detect defects missed by the stuck-at-fault model like opens,

shorts and coupling defects. The main difference of the gate delay fault model [44, 93] with

the transition delay fault model is that it takes timing into account. It is assumed that all long

paths going through the defective gate might affect the performance. The gate delay fault

model does not assume that a large delay on a gate will defenetly affect the performance of

the circuit. It takes into account the propagation path through the defective gate. In order for

a test for the gate delay fault model to be able to detect a defect, a threshold for determining

the smallest delay fault size has to be specified. The limitations of the gate delay fault model

is similar to the limitations of the transition delay fault model. The line delay fault model [67]

is a variation of the gate delay fault model that assumes that a fault occurring at a specific

line, propagates through the longest sensitizable path that includes that line. Thus the line

delay fault model may detect faults distributed along certain paths. The main advantage of

these three delay fault models is that they have a linear number of faults with respect to the

number of gates in the circuit.

The Path Delay Fault (PDF) model [57, 88, 106], addresses tests for paths. A path can

be defined as a sequence of connected gates from the primary inputs to the primary out-

puts. This delay fault model concerns the cumulative delay that may occur along the path.

This implies that small delay defects may be detected through this model since it models

distributed delays on circuit’s paths. Thus the main advantage of the PDF model, is that it

is the most accurate delay fault model [16]. The disadvantages of the PDF model is that it

is much more complex than the other three models mentioned. The number of considered

faults can be exponential thus the test size increases which implies longer test application

time. Furthermore, test generation and fault simulation is computationally more expensive

compared to the transition, gate or line delay fault model. Another disadvantage of the PDF

model is that there exist a lot of path delay faults that are redundant, PDF faults that do not

affect the circuits performance. The segment delay fault model [39, 40] is a variation of the

11

Kyri
ak

os
 C

hri
sto

u

PDF model along with the transition fault model. It breaks the path into segments. If the

path breaks to the number of the gates of the path is the same as the transition fault model

and if the path starts at a primary input and ends on a primary output is the same as the path

delay fault model. Thus the test size maybe linear to exponential and the test generation

process depends on the segments length. Moreover, if we consider an untestable path, a part

of it maybe testable. Based on this observation, a lot of research has been carried out that

determines the segment length value.

For every physical paths of a circuit there exist two Path Delay Faults (PDFs), namely

the rising or slow to rise (R,↑) and the falling or slow to fall (F ,↓) PDFs. A PDF can be

classified as robustly testable, non-robustly testable and functionally sensitizable. All the

PDFs that do not meet the sensitization criteria mentioned are categorized as functionally

unsensitizable or as redundant faults. A lot of research work has been done in identifying

untestable PDFs, that do not affect the circuits performance and thus they do not need to be

tested [38], [21], [62], [101]. It has been proven that a lot of redundant faults can be identified

through logic implications. In order to detect a PDF fault, a rising or falling transition, must

be propagated along the path under consideration. A gate along that path is called an on-

input gate while all the other are called site-input gates. Similarly a multiple input gate that

is also an on-input gate, has a single on-input fan-in and all the others are called site-input

or off-input fan-ins. Furthermore a controlling value (cv) for a gate is defined to be the value

that determines the output of the gate. For example, the value 0(1) for the AND(OR) gate is

a controlling value while 1(0) is a non-controlling value (ncv). Moreover, X denotes a ”don’t

care” value. The different sensitization conditions/criteria are described below.

A PDF is robustly testable [61, 106] if it guarantees to detect the delay fault on the

targeted path independent of all other delays in the circuit. If we have a transition on the path

examined cv→ ncv, all the site inputs on a gate that belongs to the examined path will have

to be either steady at the ncv of the gate, or finally to take a ncv or even to have the same

transition as the on-input. If the transition is from a ncv to a cv, ncv→ cv, then all the site

input should settle to a non-controlling value. All the conditions just described, for the AND

and OR logic gates, can be seen in Fig. 2.1(a).

The set of non-robustly testable PDFs [61] is a superset of the robustly testable PDFs.

Non-robust PDFs are obtained by relaxing the sensitization conditions at the off-input fan-

ins of the gates along the PDF examined. In the non-robustly testable set of PDFs conditions

are reposed so that even in the ncv→ cv case the only requirement is that the side inputs

in the second vector are settled to their ncv, on vector v2. The sensitization conditions for

12

Kyri
ak

os
 C

hri
sto

u

(a) Robust (b) Non-Robust (c) Functional

Figure 2.1: PDF Test Conditions for the Robust, Non-Robust and Functionally Testable.

the non-robust sensitization case can be seen in Fig. 2.1(b). The sensitization conditions

are identical with the static sensitization conditions of [7], justifying the name statically

sensitizable PDFs. This implies that if we can obtain the delays of the circuit, we can have

better non-robust tests (there exist a large number of non-robust tests for a PDF) if we could

make sure that the transitions on the site-inputs of the PDF examined have less eventuality

to mask the on-input transitions. A non-robust test is guaranteed to be valid if no other path

has a delay fault.

Functionally sensitizable PDFs [51, 52] include both robustly and non-robustly testable

PDFs as a superset. The sensitization conditions for the functionally sensitizable conditions

can be seen in Fig. 2.1(c). Examining the cv→ ncv case on the on-input fan-in of a gate

along the PDF examined, the requirement is that the site inputs final settle to their ncv. The

ncv→ cv allows the site-inputs not only to settle to the finally ncv but also to settle to their cv

with hazards. Take for example an OR gate. The second case, ncv→ cv, is to have a rising

transition on the on-input fan-in. Thus not only X → ncv (ncv = 0 for the OR gate), a final

logic value of 0 is allowed, but it is also allowed to have a final logic 1 value with hazards.

This means that the site inputs can have any value except the staple at cv, in our example

this implies that the off input on the OR gate can not be S0, stable at 0. This expressed with

Ucv = Xcv−Scv, U0 = X0−S0 for the AND gate and U1 = X1−S1 for the OR gate. This

observation implies that the functionally sensitizable PDF set includes PDFs that have to be

multiply tested. In the case of the robustly and non-robustly testable PDFs the considered

PDF set includes only singly testable delay faults. Indirectly this suggests that functionally

13

Kyri
ak

os
 C

hri
sto

u

Figure 2.2: Classification of the PDF Set.

sensitizable PDF set is a much more bigger set.

As we have previously mentioned, the functionally unsensitizable or redundant PDFs

[21, 34, 108] are the ones that do not affect the circuits performance and thus they do not

needed to be tested. This set includes PDFs that their on-input transitions are always masked

by the site input transitions either by settling to the stable at cv on the site input or finally

settling at the controlling value (if the transition is from cv→ ncv). If this PDF set is iden-

tified and removed, it becomes easier to deal with the rest of the PDFs since the number

of the PDFs is in the worst case exponential. Furthermore, the need for lowering the PDF

number considered has directed researchers in finding a smaller PDF set to consider in order

to guarantee the circuits performance, the primitive PDF set.

Primitive PDFs have appear for example, in [51, 52, 56, 64, 105, 113]. It has been proved

that the primitive PDF set is faulty free if and only if the circuit examined is strongly delay-

verifiable. This immediately implied that if we could identify and test the primitive PDF set

we could guarantee the circuits performance. Identifying the primitive PDF set is a complex

task as we shall see later in Chapter 4.

Fig. 2.2 categorizes the set of all PDFs. The set of PDFs can be partitioned into two

disjoin subsets, the PDFs that can be sensitized under specific sensitization conditions and the

PDFs that can not be sensitized. The later subset is exactly the functionally un-sensitizable

PDFs. The first subset of PDFs can be further categorized based on the sensitization type of

the faults. Again two possible sensitization type groups can be identified, namely the group

that can be statically sensitized and the the group that can not be statically sensitized. In

the first group the singly sensitized PDFs is identified with two possible single sensitization

14

Kyri
ak

os
 C

hri
sto

u

types, namely the robustly sensitizable and the non-robustly sensitizable PDFs. Based on the

PDF classification of [21] the set of non-robustly sensitized PDFs include the set of robustly

testable PDFs. The group that can not be statically sensitized is exactly the set of functionally

sensitizable PDFs.

The primitive PDF set includes PDFs from the functionally sensitizable PDFs and the

statically sensitized PDFs. The primitive PDF set can be partitioned into two big sub-groups,

namely the singly sensitized PDF group denoted by SPDF and the multiply sensitized group

MPDF . The primitive SPDF set is exactly the singly non-robustly sensitized PDF set. The

MPDF is a fraction of the functionally sensitizable PDF set.

2.2 Decision Diagrams

Binary Decision Diagrams (BDDs) have been used for the representation of choice [3, 60].

The work of Bryant [14], which focuses on boolean functions and the Boole-Shannons ex-

pansion, reveals the advantages of BDDs with their two remarkable properties, that have

influenced the world of testing, equivalence checking, circuit optimization and many more.

The first property is about the remarkable power that BDDs have in effectively representing

very large combinatorial sets. The second property refers to the canonicity of the BDDs. Un-

der certain conditions BDDs are a canonical representation of functions. A form is canonical

if and only if the representation of a function in that form is unique. For example 2 cir-

cuits are equivalent if their corresponding BDDs are identical. This immediately implies that

equivalence checking is easy.

A BDD is a single rooted Directed Acyclic Graph (DAG) with 2 different node types. The

first node type called terminal nodes has 2 elements, namely terminal node 1 and terminal

node 0. All the other nodes, internal nodes, have 2 outgoing edges (out-degree of each node

is 2). The first outgoing edge namely the T (THEN or 1) edge and the E (ELSE or 0) edge.

A route or path in the BDD that ends up on terminal 1 is a solution of the function that

the BDD represents. An ordered BDD implies that all paths starting from the root node to

the terminal nodes appear in the same order. A reduced BDD implies that all redundant

nodes have been removed, nodes that their 1 and 0 edges end up on the same node, and that

isomorphic subgraphs have been identified and merged. This implies that absence of a node

(variable) in the BDD entails a don’t care value of that variable.

Some important properties of BDDs are discussed below. The number of internal nodes

of a BDD can be exponential in the worst case. Moreover the complexity of the logical

15

Kyri
ak

os
 C

hri
sto

u

AND and OR operations of two BDDs is polynomial in terms of the size of the operants.

Complementation, satisfiability and tautology can be solved in constant time. On the other

hand BDDs sizes rely on the variable ordering used. Finding a good variable ordering is hard

and has also been a critical research issue. Two BDDs that represent the same function with

different variable ordering may differ in the size of the produced BDD, in terms of number of

nodes used. Moreover a bad ordered BDD produces a difficult to read and understand DAG

in contrast with a good ordered BDD. Furthermore, in some cases the Sum Of Products

(SOP)/Product Of Sums (POS) function representation form, are more compact and more

close in the final circuit implementation.

Other decision diagrams have been proposed by simply applying different reduction

rules. Zero-suppressed BDDs (ZBDDs) is a BDD variant where absence of a variable implies

a zero value for that variable and not a ”don’t care” value as the BDD would. Thus in cases

where you deal with functions that have a lot of zero values this decision diagram performs

best due to the applied reduction rule. ZBDDs efficiently represent problems expressed in

set theory and they perform better in the cover representation problem. Moreover in sparse

sets, where a lot of elements have a zero value, ZBDDs represent these sets more compactly

than BDDs.

2.2.1 ZBDD Representing the PDFs of a Circuit

Applications for the representation of sparse combinatorial sets with ZBDDs have been used

in [84], to efficiently and compactly represent the path delay faults of a given circuit, even

for path-intensive circuits. ZBDDs can also store Boolean functions by introducing some

additional variables but without increasing the number of paths in the ZBDD [77]. Namely,

two variables are introduced for each variable in the function, and an appropriate encoding

protocol is activated so that when both variables are suppressed, the original variable is a

don’t care. A ZBDD where such pairs of variables are used for each original variable is a

ZBDD-based representation of an Ir-redundant Sum-of-Products (ISOPs) [77,79,96]. Some

necessary definitions and an example of how PDFs can be represented using ZBDDs follow.

Path variables are defined, which encode the PDFs. Let P define the set of path vari-

ables, PI the set of primary inputs, and L the set of circuit lines other than primary inputs.

There is one path variable per line in L, and two path variables per line in PI to represent the

rising and falling transitions on the primary inputs. Hence |P|= |L|+2×|PI|. Consider the

circuit in Fig. 2.3 which has 7 internal lines {d,e, f ,g,h, i, j} and 3 primary inputs {a,b,c}.

16

Kyri
ak

os
 C

hri
sto

u

Figure 2.3: Example circuit C1

There are 13 path variables denoted by P = {aR,aF,bR,bF,cR,cF,d,e, f ,g,h, i, j}, where

iR (iF) is the rising (falling) transition variable for primary input i. A PDF is encoded by a

combination over the variables of P . For example, the rising PDF on path a− d− e− g−

i− j is represented by aR ·d · e ·g · i · j. Missing path variables assume a 0 value. The ZBDD

representation of all the PDFs for the circuit C1 in Fig. 2.3, is shown in Fig. 2.4. The variable

ordering follows the topological order of the lines in the circuit. There are exactly 10 paths

from the root node aR to the terminal-1 node, one for each PDF in the circuit.

2.3 Delay Test Application Methodologies

The testing methodology used relies on the circuit type examined, combinational or sequen-

tial. Regarding test generation addressing path-delay faults, several techniques exist for en-

hanced full-scan circuits, based on either structural ATPG tools [32], [112] or function based

tools using Binary Decision Diagrams (BDDs) [10], [74], [13] and Boolean-SAT [19], [117]

implementations. Delay testing for combinational circuits or for the enhanced full-scanned

sequential circuit versions [31], involves the application of a test vector pair at the circuits

primary inputs, V = {v1,v2}. This is a necessary step for creating and propagating transi-

tions in the circuit under investigation. The first vector, v1, initializes the circuit under test

to the desired values while the second vector, v2, propagates the desired transition to the pri-

mary outputs of the circuit. The values observed at the primary outputs are then compared

to the already known output values of a faulty-free circuit. Any arbitrary vector pairs can

be applied since the two vectors v1 and v2 are uncorrelated. Hence for sequential circuit’s

v1 and v2 do not need to be functional vectors. Fig. 2.5 shows the application of the vector

pair to the circuit. An extra hold latch is used per each scan flip-flop. The first pattern can

be scanned in and applied to the functional logic and the second pattern can then be scanned

17

Kyri
ak

os
 C

hri
sto

u

PDFs

aR

0 1

d

bR

e

cR

j

aF

d

bF

e

cF

g

f

i

h

Figure 2.4: ZBDD with all PDFs of circuit C1 of Fig. 2.3.

18

Kyri
ak

os
 C

hri
sto

u

Figure 2.5: Enhanced-Scan delay test application to sequential circuit (Adopted from [16])

in, while the first pattern is still being applied to the functional logic. The second pattern can

then be applied to the functional logic.

Two main approaches are distinguished in the case where sequential circuits have limited

scan capability namely Launch On Capture (LOC- [97], [2]) and Launch On Shift (LOS -

[98]). For the LOS delay test application, also known as skewed-load delay test (launch-on-

last-shift), vector v1 is arbitrary while vector v2 is derived by a 1-bit shift of v1. The first

pattern, v1, is scanned in and the second pattern, v1, is obtained from v1, with the application

of a single scan clock cycle. Thus v2 vector is restricted since it must be a shifted version

of v1. If the scan path architecture is based on flip-flops, the scan shift is significantly lower

speed compared to the system clock. The scan enable signal should be able to switch values

very quickly and as soon as V2 is at the flip-flop outputs, the response of the circuit must

be captured within a time equal to the system clock cycle time. The LOS waveform can

be seen in Fig. 2.6. For the LOC test application methodology also called broadside or

double capture or even functional transition method, v1 is an arbitrary vector while vector v2

is derived from v1 through the circuit function. The first pattern, v1, is scanned through the

scan path. Pattern v2 is then loaded from the functional logic outputs. Any arbitrary v1 can

be used but v2 is restricted based on the functional logic. The waveform of LOC can be seen

in Fig. 2.7.

Circuits such as a microprocessor (used in Chapter 5) can not have the luxury of scan

capability because this would imply a huge overhead. Delay fault testing in circuits with

no scan capabilities require more than two vectors and two methodologies can be applied

19

Kyri
ak

os
 C

hri
sto

u

Figure 2.6: Launch On Shift Test methodology

Figure 2.7: Launch On Capture Test methodology

[12], [68]. The basic idea is that the second vector v2 should be justified by v1 through the

combinational function while v1 will be generated by a set of vectors starting at some initial

state (justification sequence). The state should be propagated at some primary outputs if

the path destination is a flip flop. A functional test is a test that can be applied at speed,

at the normal circuit operation. A path is functionally testable if there exist a functional

test for that path. Software-based test generation tries to produce such test sequences, i.e;

instruction sequences in the case of a microprocessor. Some work on software-based test

generation has been done exploiting deterministic techniques [104], [59], [35], [58], [18]. If

a microprocessor design is tested using it’s functional vectors, i.e using instruction sequences

[58], [18], [59] the input signals to the embedded block of the processor are derived by their

functionality. Testing a microprocessor requires that a test program should be made to ensure

that in a consecutive pair of clock cycles the excitement conditions of the targeted path delay

fault is met and that the delay effects are propagated to the processor’s output ports.

20

Kyri
ak

os
 C

hri
sto

u

Chapter 3

ZBDDs for Implicit and Compact Path

Delay Fault Test Generation

3.1 Introduction

The Path Delay Fault (PDF) model is one of the most popular models used for delay testing,

since it is the most accurate model that can detect both lumped and distributed delay defects.

For practical reasons, PDF testing usually considers functionally sensitizable PDFs [10],

[11], [21], [38], [48], [62], [72], [74], [85], [90], [91], [99], [101], [102], [109], [114], [115]

even though it has been shown in [105], that a subset of the multiple PDFs, called the prim-

itive PDFs, needs and suffices to be tested. Furthermore, due to the large number of faults,

which is exponential to the circuit size in the worst case, often only the critical paths are

considered [85], [102], [114]. A critical path is one with large delay. Traditionally, the delay

of a path has been calculated based on discrete-valued models, such as the fixed and bounded

delay models. More recently, statistical models are also proposed for the selection of criti-

cal paths [114]. Even when the problem is restricted to critical PDF testing, its complexity

remains prohibitive, mainly because:

1. the number of critical PDFs to be considered can still be very large and

2. often, only a small number of the critical PDFs are sensitizable.

For the above two reasons, the problem of deriving compact test sets for critical PDFs

in an implicit manner is crucial, especially for path intensive circuits. The test generation

problem remains a critical and a hot research topic for more that three decades now [92], [89].

21

Kyri
ak

os
 C

hri
sto

u

This work considers the PDF classification of [21], and gives function-based formula-

tions with appropriate representations and test generation algorithms, using ZBDDs [78], in

a non-enumerative, compact and efficient PDF test generation. Test Efficiency (TE) is defined

here as the number of new (critical) PDFs detected by a test. For completeness and clarity,

it is first shown how such a function can be constructed for all the PDFs in a circuit, not

just the critical ones. In this case, the problem of exact identification of sensitizable PDFs

(also, that of unsensitizable PDFs) is solved non-enumeratively. This is a major problem in

PDF ATPG, as demonstrated in [21], [38], [62], [72], [85], [101], [109], among many others.

Consequently, it is shown how the proposed data structure can be constructed for any subset

of PDFs, such as the potentially critical PDFs. In this case, the proposed PDF-sensitization

function is restricted such that only sensitizable PDFs from a targeted set of PDFs are in-

cluded.

The motivation is to investigate how the generated data structure, containing all the tar-

geted sensitizable PDFs and their corresponding tests, can be efficiently manipulated to de-

rive a compact test set. A challenging task here involves exploiting the properties of the

structure to generate a test with high TE, without enumerating any of the paths or tests rep-

resented by the structure. A major contribution of this work involves deriving a test with

maximal TE in linear time to the size of the data structure, using appropriate graph traver-

sals. Additional tests with high TE are derived by removing already detected PDFs from

the data structure and repeating the method to derive another test with maximal TE. Thus,

each generated test guarantees to detect a large number of PDFs that have not been already

detected.

The recently proposed function-based method of [85] stores all sensitizable PDFs in a

circuit using ZBDDs, but functions are maintained only for each sensitizable segment of the

PDFs, as BDDs [13] (a segment is defined between any consecutive fan-out stems). This

method examines pairs of path segments that are on common unsensitizable paths, similarly

to the structural techniques of [38], [62] and [101] 1, which identify either such pairs of

segments or lines. The advantage of [85] over these structural techniques is on the repre-

sentation of the PDFs (or segments), such that it gains in computation time. However, the

test efficiency of this method is very low, almost a test per fault, since the data structures it

uses cannot assist in compact test pattern generation. Low test efficiency also exists with the

1These methods estimated a lower bound on the number of unsensitizable PDFs, which can be used to indi-

cate the completion of the ATPG process more accurately, however, they do not provide any specific guidance

to the ATPG on path or test selection.

22

Kyri
ak

os
 C

hri
sto

u

structural method of [109], which identifies testable and untestable PDFs using an implica-

tion graph to generate test sets with very high fault coverage.

Methods that explicitly target the generation of compact test sets for PDFs have been

proposed in [115], [11], [47], [90], [99]. The test compaction procedures of [11], [47], [90],

use the concept of primary and secondary target faults. Once a test is found for a primary

fault, it is expanded to detect one or more secondary faults. The level of compaction in these

techniques depends greatly on the selection order of the primary and secondary faults. [99]

finds maximal sets of potentially compatible faults. Even though they may not target all

faults explicitly, the above methods remain enumerative since they are based on the principle

of first targeting a single fault and then attempting to find one or more faults that can be

tested mutually with the original fault. The methods of [115] and [47], which focus on

critical paths, report considerably higher test efficiencies that the other enumerative methods,

however, they both remain restrictive due to their path enumerative nature.

Non-enumerative ATPG methods, such as [48], [74], [91], were proposed to overcome

the problem of path enumeration. [48], [91] are structural-based methods relying on graph

theoretic arguments. Still, each of their generated test detects a very small number of

PDFs. The recent function-based (BDD-based) non-enumerative tool of [74] outperforms

both [48], [91] in terms of TE. Although this method offers scalability (TE does not drop

much as coverage increases), it is not complete since it may not be able to achieve 100%

coverage since it generates a test that sensitizes a number of PDFs simultaneously, however,

the PDFs detected may not always be new. Furthermore, [74] cannot handle unsensitiz-

able paths implicitly (i.e., cannot avoid targeting such paths). More importantly, none of

the existing non-enumerative methods can handle critical PDF test generation in an absolute

non-enumerative manner.

The rest of the chapter is organized as follows. Section 4.2 gives necessary background

and notation. Section 3.3 shows the proposed function formulation along with its represen-

tation can be derived, under each of the considered sensitization types. Section 3.4 extends

the framework to consider only a subset of the PDFs, such as the potentially critical PDFs.

The compact ATPG process is discussed in Section 3.5. Section 3.6 reports and discusses

the obtained experimental results and Section 3.7 concludes the chapter.

23

Kyri
ak

os
 C

hri
sto

u

Expression Description
!(S,v) Complement v for all combinations in set S
S∪Q Set union
S∩Q Set intersection
S\Q Set difference
∃(S,v) Existentially abstract variable v from set S
|S| Number of combinations in set S

⊂ (S,v) Subset of set S such that v = 1

Table 3.1: Standard ZBDD Operators used

3.2 Preliminaries and Notation

Finding sensitizable PDFs requires considering the sensitization conditions at the path off-

inputs, which can be derived by examining the functionality of the circuit’s lines. Thus,

sensitization conditions can be represented using functions, referred to as test functions. The

work in [10], has shown BDD-based test functions per single PDF and [74] derived BDD-

based test functions for sets of PDFs. A test function contains all tests that detect one (or

a set) of PDFs. However, it does not contain any information on which PDF(s) is detected.

Here, the goal is to find the sensitizable PDFs along with their tests and store them compactly

in a common structure. The PDFs are represented using ZBDDs, for efficiency and compact-

ness, as demonstrated in [84]. To incorporated the tests in the same data structure with the

PDFs, we generate ZBDD-based ISOPs to represent the sensitization conditions (instead

of BDDs, as in [74] and [10]. The resulting common structure is called an ISOPs/ZBDD

because of the interpretation as far as variable appearances are concerned. Some variables

participate in pairs and thus are interpreted according to the ZBDD-based ISOPs encoding

whereas the remaining variables are interpreted as usual. Each node in this structure obeys

standard ZBDD decomposition and reduction rules. Table 3.1 lists all the standard ZBDD

operations used by the proposed methodology.

Next, we present basic notation used in this chapter and some more details on ZBDD

representations of PDFs and derivation of ZBDD-based ISOPs from standard BDDs.

The proposed function is expressed over two sets of variables, the test variables which

encode the test cubes and the path variables which encode the PDFs. Let P define the set of

path variables, PI the set of primary inputs, and L the set of circuit lines other than primary

inputs. There is one path variable per line in L, and two path variables per line in PI to

represent the rising and falling transitions on the primary inputs. Hence |P|= |L|+2×|PI|.

The reader id refereed to read Chapter 2, where a detailed example that demonstrates the

24

Kyri
ak

os
 C

hri
sto

u

encoding used is presented.

a1

0 1

(a) f 1
a () = a1a0 = a.

b1

0 1

(b) f 1
b () = b1b0 = b.

c1

0 1

(c) f 1
c () = c1c0 = c.

a0

1 0

b0

(d) f 1
g () = a1a0+b1b0 = a+b.

Figure 3.1: Line functionalities using ISOP-based ZBDDs.

Let T 1 ⊂ T be the set of test variables corresponding to vector v1, i.e., {i10, i11} ∈

T 1, ∀i ∈ PI. Similarly we define T 2 ⊂ T for vector v2. f 1
l (T

1) and f 2
l (T

2) are the

functions realized at a circuit line l expressed with respect to variables in T 1 and T 2, re-

spectively. These functions are derived by generating the appropriate BDD per line and then

using the procedure of [77] to derive their ZBDD-based ISOPs representation. Fig. 3.1 shows

the line functionalities using ISOPs-based ZBDDs for various lines of circuit C1 of Fig. 2.3,

with respect to variables in T 1 for the first vector v1. For clarity, the variable notation used in

Fig. 3.1 is a bit simplified from the one presented in the previous paragraph. Thus, a1(b1,c1)

is actually a1
1(b

1
1,c

1
1) and a0(b0) is a1

0(b
1
0), i.e., the superscript 1 is implied in these figures

(all the figures in this chapter follow this labelling, unless otherwise stated). Observe the

ISOPs-based ZBDD of Fig. 3.1. Variable a1 appears in its normal form and the missing

variable a0 is implied to appear in a complemented form. Thus, f 1
a (T

1) = a1 = a1a0 = a

(where a is the original variable in the BDD). A function f 2
l (T

2), for some line l, is identical

to f 1
l (T

1) when every variable in T 2 is substituted by its corresponding variable in T 1. It

is necessary to define different line functions (and hence, input variables) over the two time

frames of (v1,v2), since an input can assume different values over the two time frames of a

25

Kyri
ak

os
 C

hri
sto

u

delay test.

We also define stability functions S0
l (T) and S1

l (T) per line l, to contain all solutions

of (v1,v2) that bring a stable-at-0 and stable-at-1 value at l, respectively. Stability functions

were introduced in [10] for single-input change tests (also used in [74]) and later generalized

in [54] for multi-input change tests. The later method is used to derive multi-input stability

functions for all circuit lines in BDD format which are then converted to ZBDD-based ISOPs.

3.3 ISOP/ZBDD Graph for Sensitizable PDFs

This Section discusses the desired function formulation, using a polynomial number, to the

circuit size, of standard ZBDD operations. Both circuit paths and PDF tests are captured

implicitly (no path or segment or test enumeration is performed), which gives a strictly non-

enumerative solution to the problem of exact identification of (un)sensitizable PDFs. The

focus of this Section is on path sensitization, how to capture the various sensitization con-

ditions [21] in a single function, along with the sensitized paths. Given correct sensitization

conditions, restricting appropriately to only critical paths is consequently considered in Sec-

tion 3.4.

Assume a circuit line l with set of immediate predecessor lines denoted by FI(l). Func-

tions GR
l (T ∪P) and GF

l (T ∪P) denote the desired sensitization functions at some line

l. We show how functions GR
l () and GF

l () are formulated at l, based on functions GR
i () and

GF
i (), i ∈ FI(l). Let ncvg,cvg ∈ {0,1} denote the non-controlling and controlling value of

gate g, respectively.

3.3.1 Non-Robust PDF Sensitization

Under the non-robust sensitization criterion, path off-inputs at some gate g must be set to

x→ ncvg under (v1,v2), irrespective of the type of transition propagated on the path on-input.

This implies that only input values for v2 need to be examined (values in v1 are implied based

on the values of v2). Hence, only test variables in T 2 ⊂T are used.

Let i be a primary input. We start by defining functions GR
i () and GF

i () at the primary

inputs in PI. Each i ∈ PI is associated with two path variables, iR and iF , and two test

variables, i20 and i21. The functionality of i, based on the ZBDD-based ISOPs representation,

is given by f 2
i () = i20 · i21 and its complement is f 2

i () = i20 · i21. (The complementation operation

is not the standard Boolean one. It is based on ZBDD-based ISOPs encoding.) To represent

26

Kyri
ak

os
 C

hri
sto

u

a transition on i, the appropriate path variable (iR or iF) and corresponding value at i in v2

(value 0 for falling and 1 for rising transition) need to be included. The necessary function

formulations at a primary input i are given below:

GR
i
(
T 2∪P

)
= !

(
f 2
i (T

2), iR
)
, i ∈ PIs (3.1)

GF
i
(
T 2∪P

)
= !

(
f 2
i (T

2), iF
)
, i ∈ PIs (3.2)

The change operator (!) appends the appropriate variable to each cube in the set, and

gives GR
i () = i20 · i21 · iR and GF

i () = i20 · i21 · iF . Observe how the desired information is encoded

in these functions. For example, GR
i = i20.i

2
1.iR gives the rising segments up to line i (which

is just line i in this case encoded as iR in the cube) that is non-robustly sensitized by setting

i = 1 (i20.i
2
1 = i) in v2. The value of i is implied in v1 to the 0 value, since iR encodes a rising

transition. Consider the circuit C1 of Fig. 2.3. The ISOPs/ZBDD graphs for the sensitization

functions for some of C1’s input lines are given in Fig. 3.2. For example, in Fig. 3.2(b)

GF
a () = a0.aF . Variable a1 has a 0 value and, therefore, is suppressed. Here, the falling

segment up to a line a (aF) is sensitized by setting a to 0 in v2 (a1.a0 = a). For v1, a = 1 is

implied by the existence of variable aF in the cube.

Consider now an AND gate g with output line l and fanins FI(l). PDF segments can

be sensitized up to line l through any of the lines in FI(l). Thus, any line in FI(l) can

be considered as an on-input with the remaining lines being off-inputs that must settle to

ncvg. Consider line y ∈ FI(l) to be an on-input. Function
⋂

x∈FI(l),x,y
f 2
x () will give all test

cubes that allow all remaining off-inputs in FI(l) to settle to ncvg = 1 (given by f 2
x () in the

expression). Let tr ∈ {R,F} denote a Rising or a Falling transition. Function !((Gtr
y () ∩

(
⋂

x∈FI(l),x,y
f 2
x ())), l) will give all non-robustly sensitizable PDFs up to line l, through line y,

along with the sensitization cubes. Every line in FI(l) is a possible on-input, thus function

Gtr
l () given by:

Gtr
l () = !

 ⋃
y∈FI(l)

(Gtr
y () ∩ (

⋂
x∈FI(l),x,y

f 2
x ()))

 , l

 (3.3)

For an OR gate g the off-inputs in FI(l) need to settle to ncvg = 0. Thus, it suffices to

replace f 2
x () with f 2

x () in Eq. 3.3, as given below:

Gtr
l () = !

 ⋃
y∈FI(l)

(Gtr
y () ∩ (

⋂
x∈FI(l),x,y

f 2
x ()))

 , l

 (3.4)

27

Kyri
ak

os
 C

hri
sto

u

a1

0 1

aR

(a) GR
a () = a1.aR.

a0

0 1

aF

(b) GF
a () = a0.aF .

b1

0 1

bR

(c) GR
b () = b1.bR.

b0

0 1

bF

(d) GF
b () = b0.bF .

Figure 3.2: Non-Robust Sensitization functions for primary inputs of circuit C1 of Fig. 2.3.

The GR
l () and GF

l () functions for the output line l of a NOT gate with input line y are

given below.

GR
l () = !

(
GF

y (), l
)

(3.5)

GF
l () = !

(
GR

y (), l
)

(3.6)

An illustrating example is presented next. Consider the circuit of Fig. 2.3, which has

5 physical paths and, thus, 10 PDFs. There are 3 primary inputs and a total of 10 lines in

the circuit. As already mentioned in Section 4.2, there are 13 path variables denoted by

P . Since non-robust sensitization is considered, T = T 2. For clarity, variable i20(i
2
1) is

denoted by i0(i1) in the figures. In this example, there are 6 test variables in T ={a1, a0,

b1, b0, c1, c0}. Fig. 3.3 shows the falling(Fig. 3.3(a)) and rising(Fig. 3.3(b)) sensitizable

PDF segments up to the internal line g of the circuit. All sensitizable segments up to g, that

arrive at g with a falling transition, are shown in Fig. 3.3(a). Only two such segments exists,

aR−d− e−g and bR−d− e−g. The ISOPs/ZBDD graph in Fig. 3.3(a) contains 2 paths

from the root node to the terminal-1 node, {a1.b1.aR.d.e.g,a1.b1.bR.d.e.g}, one per existing

28

Kyri
ak

os
 C

hri
sto

u

sensitized segment. Furthermore, the graph contains all sensitization cubes for each of these

two segments, given by a1b1 = a1a0b1b0 = ab = 11 for v2. For v1, a = 0 for segment

aR.d.e.g and b = 0 for bR.d.e.g (implied by the aR and bR variables, respectively). Thus,

(v1,v2) = (a1b1c1,a2b2c2) = (0xx,11x) is the complete set of tests for aR.d.e.g. Similarly,

(v1,v2) = (x0x, 11x) for bR.d.e.g.

The ISOPs/ZBDD for the sensitization functions for complete PDFs, derived only after

the output line j is processed, are given in Fig. 3.4. All sensitizable PDFs, arriving at the

output line j with a falling transition, are contained in the graph of Fig. 3.4(a) (3.4(b)). Five

(one) such PDFs exists for C1 and exactly 5 (1) paths from the root node of GF
j () (GR

j ()) to the

terminal-1 node exist. The circuit contains 4 non-robustly unsensitizable PDFs (aF.d.e.g.i. j,

bF.d.e.g.i. j, aR.d. f .h.i. j, bR.d. f .h.i. j). All of these PDFs arrive with a rising transition to

one of the input lines of the AND gate with output line i. The fact that they are unsensitizable

is recognized when forming GF
i (), which equals to the constant function 0 implying that no

PDF segment can be sensitized with a rising transition on line i. This occurs since none of

the necessary sensitization conditions imposed by the function formulation is satisfied and,

implicitly, all PDF segments with a rising transition at line i are dropped (removed) from

the corresponding ISOPs/ZBDD. In the case where only a subset of segments is identified

as unsensitizable, the function formulation ensures that only the unsensitizable segments are

dropped, as it happens in GR
j () of Fig. 3.4(b).

3.3.2 Other PDF Sensitization Types

For robust and functional sensitization, certain input values in both v1 and v2 vectors need to

be explicitly fixed [21]. Thus, the set of T = T 1∪T 2 test variables is used. For a primary

input i, the GR
i () and GF

i () functions for either robust or functionally sensitizable PDFs are

given below:

GR
i (T ∪P) = !

(
f 1
i ()∩ f 2

i (), iR
)
, i ∈ PIs (3.7)

GF
i (T ∪P) = !

(
f 1
i ()∩ f 2

i (), iF
)
, i ∈ PIs (3.8)

In this case, the sensitization cubes for a rising transition on input i are given in f 1
i . f

2
i =

i10.i
1
1.i

2
0.i

2
1 = i1.i2, which denotes that i = 0 in v1 and i = 1 in v2. Similarly, for a falling

transition on i, f 1
i . f

2
i gives i = 1 in v1 and i = 0 in v2.

When a cvg→ ncvg transition is propagated on a PDF on-input, the off-input sensitization

criteria are identical for all types of sensitization [21]. Thus, Eq. 3.3 and 3.4 also hold for

29

Kyri
ak

os
 C

hri
sto

u

a1

0 1

b1

aR

d

bR

e

g

(a) GF
g ().

a1

01

b0

a0

bF

b1

aF

d

e

g

(b) GR
g ().

Figure 3.3: Sensitization functions for line g of circuit C1 of Fig. 2.3.

robust and functional sensitization. When the propagating on-input transition is ncvg→ cvg,

robust sensitization requires all off-inputs to be stable at the non-controlling value, while

functional sensitization allows any value other than stable at the controlling value at the off-

inputs. Stability functions are used in order to express the necessary off-input constraints.

For robust sensitization, function Gtr
l () for any non-inverting gate g with output line l under

tr = ncvg→ cvg, is given by:

Gtr
l () = !

 ⋃
y∈FI(l)

(Gtr
y () ∩ (

⋂
x∈FI(l),x,y

Sncvg
x ()))

 , l

 (3.9)

In Eq. (3.9), Sncvg
x () denotes the stable at non-controlling value function at line x, which

is the S0
x() function for an OR gate or the S1

x() function for an AND gate. Similarly to Eq.

(3.9), function Gtr
l () for functional sensitization is defined below, for tr = ncvg→ cvg:

Gtr
l () = !

 ⋃
y∈FI(l)

(Gtr
y () ∩ (

⋂
x∈FI(l),x,y

Scvg
x ()))

 , l

 (3.10)

Function Scvg
x () denotes the stable at controlling value function at line x, which is the S1

x()

30

Kyri
ak

os
 C

hri
sto

u

a1

01

b1a0

c0 b0b1

c0

c0

cF

aR c0

aF bF

d

bR

j

d

e f

hg

i

(a) Sensitization function for falling line j, GF
j ().

c1

0 1

cR

j

(b) Sensitization function for rising

line j, GR
j ().

Figure 3.4: Sensitization functions for line j of circuit C1 of Fig. 2.3.

31

Kyri
ak

os
 C

hri
sto

u

function if g is an OR gate or the S0
x() function if g is an AND gate.

3.3.3 ISOPs/ZBDD for All Sensitizable PDFs

Data: Circuit C, Sensitization Type ST

Result: ISOPs/ZBDD for Gcircuit()

1 % Gate Types (GT) = {BUFF, NOT, AND, NAND, OR, NOR};

2 % Sensitization Types (ST) = {R, NR, FS};

3 Declare set of test variables T = T 1∪T 2;

4 T 2
i = {i2 | ∀i ∈ PI};

5 if ST == (R or FS) then

6 T 1
i = {i1 | ∀i ∈ PI};

7 else

8 T 1 = /0;

9 end

10 Declare set of path variables P, P = {iR, iF, l | ∀i ∈ PI and ∀l ∈ L};

11 Build BDDs for line functionalities f 1
l (T

1), f 2
l (T

2)∀l ∈ L∪PI;

12 if ST == (R or FS) then

13 Build BDDs for stability functions S0
l (T),S1

l (T),∀l ∈ L∪PI;

14 end

15 Convert all BDDs to ISOP-based ZBDDs;

16 % Traverse C in topological manner;

17 foreach line l ∈ L∪PI do

18 Call Sub-Sensitization Algorithm ;

19 end

20 Gcircuit(T ∪P) =
⋃

O∈PO

(
GR

O() ∪ GF
O()
)
;

Algorithm 3.1: The Sensitization Algorithm

Let PO define the set of all primary outputs. After all circuit lines are processed, the union

of all primary output line functions,
⋃

l∈PO Gtr
l (), gives the function that contains all sensi-

tizable PDFs and their corresponding test cubes. Let this function be denoted by Gcircuit().

The basic steps of the proposed algorithm are listed in the pseudocode of Algorithm 3.1.

The input parameters are the circuit under consideration, C, and the desired sensitization

type, ST = {R, NR, FS} for Robust, Non-Robust and Functional Sensitization, respectively.

32

Kyri
ak

os
 C

hri
sto

u

1 g = gate that drives line l;

2 FI(l) = fanin list of g;

3 if (l ∈ PI) then

4 if (ST==NR) then

5 use Eq. 3.1 and 3.2 for GR
l () and GF

l ();

6 else if ST == (R or FS) then

7 use Eq. 3.7 and 3.8 for GR
l () and GF

l ();

8 end

9 else if GT(g) == BUFF then

10 GR
l () = GR

j () and GF
l () = GF

j (), j ∈ FI(l);

11 end

12 else if GT(g) == NOT then

13 GR
l () = GF

j () and GF
l () = GR

j (), j ∈ FI(l);

14 end

15 else if GT(g) ∈ {AND, NAND, OR,NOR} then

16 if (cvg→ ncvg) or (ST==NR) then

17 if GT(g) == (AND or NAND) then

18 use Eq. 3.3 for Gtr
l (), tr ∈ {R, F};

19 end

20 if GT(g)== (OR or NOR) then

21 use Eq. 3.4 for Gtr
l (), tr ∈ {R, F};

22 end

23 else if (ncvg→ cvg) and (ST==R) then

24 use Eq. 3.9 for Gtr
l (), tr ∈ {R, F};

25 end

26 else if (ncvg→ cvg) and (ST==FS) then

27 use Eq. 3.10 for Gtr
l (), tr ∈ {R, F};

28 end

29 if g == INV (inverting gate) then

30 Gtemp() = GR
l (),G

R
l () = GF

l ()andGF
l () = Gtemp();

31 end

32 end
Algorithm 3.2: The Sub-Sensitization Algorithm

33

Kyri
ak

os
 C

hri
sto

u

The set of internal lines is denoted by L. Algorithm 3.2, Sub-Sensitization Algorithm , is a

sub-algorithm of the sensitization Algorithm 3.1.

The algorithm for constructing the ISOPs/ZBDD traverses the circuit in a topological or-

der, starting from the primary inputs. The first 10 steps of Algorithm 3.1 are some necessary

initialization steps and declarations. Step 11-14 constructs the BDD line functionalities or

stability functionalities for all primary inputs, in linear time. Step 15, converts all BDDs

to ISOP/ZBDDs. This is a standard ZBDD operation which in the worst case is polyno-

mial. Lines 16-19 traverse the circuit and when a circuit line l is visited, its corresponding

sensitization functions are generated (Algorithm 3.2), based on the previously generated sen-

sitization functions of the line’s immediate predecessor lines. The number of standard ZBDD

operations per line l is (n− 1)2, where n is the number of immediate predecessor lines of l

(gate fanin), and thus polynomial. Thus, the complexity of the Sub-Algorithm 3.2 is poly-

nomial in the worst case, since it is executed in a liner number, (n−1)2, of standard ZBDD

operations. The last step of Algorithm 3.1, 20, takes the standard ZBDD union operation of

polynomial complexity at the worst case, of all the the sensitization functions generated on

all the primary outputs. All operations used are of polynomial complexity and the number of

operations are linear per circuit line. Thus, the total number of standard ZBDD operations

used in Algorithm 3.1 is |Lines| ∗ (n−1)2. Thus, the overall complexity of the algorithm is

in the worst case polynomial.

Lines 1-15 of Algorithm 3.1 list necessary preprocessing steps to define all Boolean

variables and construct line functionalities as BDDs, which are then converted to ISOPs-

based ZBDDs (line 15) using the method of [77]. If the examined sensitization type is either

R or FS, then the necessary stability functions are also created, first as BDDs (as in [54], [74])

and then converted to an ISOPs-based ZBDD format. The ISOPs/ZBDD graphs (GR
l and GF

l)

per line l are constructed based on the type of sensitization (ST) considered and the type of

the gate driving l, as outlined in Algorithm 3.2. The pseudocode refers to Eq. 3.1 - 3.10, for

each appropriate case, which give the exact ZBDD operations performed.

To find the ZBDD that contains only all sensitizable PDFs, denoted by Pcircuit(), suffices

to Existentially abstract all variables in T from Gcircuit():

Pcircuit(P) = ∃
∀v∈T

(Gcircuit(), v)

|Pcircuit()| will give the exact number of sensitizable PDFs in the circuit. The ZBDD with

all unsensitizable PDFs is derived by taking the set difference of the ZBDD representing all

34

Kyri
ak

os
 C

hri
sto

u

a1

01

b1a0

c0 b0b0

c1

c0

cR

c0

aR c0

aF bF

j

cF

d

bR

d

ef

h g

i

Figure 3.5: Function Gcircuit() for circuit C of Fig. 2.3.

PDFs with Pcircuit().

The function that contains only all tests, denoted by Tcircuit(), can also be derived by

existentially abstracting all variables in P from Gcircuit().

Fig. 3.5 shows the ISOPs/ZBDD graph for Gcircuit = GF
j ()∪GR

j () of Fig. 2.3, for the

non-robust case. Observe the paths from the root to the terminal-1 node, implying that there

are 6 sensitizable PDFs that reach output j, 5 with a falling transition and 1 with a rising

transition at j. Fig. 3.6 shows the ZBDD that contains only the sensitizable PDFs, after all

test variables are existentially abstracted. The number of sensitizable PDFs can be calculated

using the cardinality operator (|Pcircuit()|), which is linear to the size of the graph.

35

Kyri
ak

os
 C

hri
sto

u

aR

01

d

bR

e

cR

j

aF

d

bF

f

cF

h g

i

Figure 3.6: Pcircuit() for circuit C of Fig. 2.3.

36

Kyri
ak

os
 C

hri
sto

u

3.4 Finding Critical Sensitizable PDFs

The previous Section presented how the sensitizable PDFs and their tests can be derived and

stored in an ISOPs/ZBDD graph. To consider critical PDF test generation, it is necessary to

generate an ISOPs/ZBDD which contains only the critical faults. We show how the sensitiza-

tion function of Section 3.3 can be restricted to only contain critical PDFs. This is achieved

in a non-enumerative manner by appropriate manipulation of the ISOPs/ZBDD per circuit

line, while taking under consideration a selected set of potentially critical PDFs represent by

a ZBDD. A potentially critical PDF is not necessarily sensitizable.

Any previously proposed method for critical path selection, under various delay models,

can be considered. Consequently, the selected paths can be encoded efficiently in ZBDD

format. Depending on the path selection methodology used the encoding can be done in

an enumerative or non-enumerative manner. In [85] for example, it is shown how a ZBDD

containing all potentially critical PDFs, under the bounded delay model, can be derived

without any path enumeration. The same method applies under the other traditional gate

delay models, such as the fixed and min-max delay models. The remaining of this Section

focuses on re-formulating the ISOPs/ZBDD sensitization function to only include critical

PDFs.

Let Z denote the ZBDD containing the set of potentially critical PDFs. When consid-

ering critical paths, three major issues need to be considered when forming the sensitization

function:

(i) How to only consider potentially critical circuit lines. A potentially critical line is one

that is at least on one potentially critical PDF. This is achieved by appropriate examination

of the paths in Z .

(ii) How to identify the unsensitizable PDFs in Z and exclude them from the generated sen-

sitization function. This is done automatically since the sensitization function formulation of

Section 3.3, considers the various sensitization criteria and discards unsensitizable segments

implicitly.

(iii) How to avoid introducing segments/PDFs that are not included in Z . This problem

appears when processing fanout stem lines that drive several branches, and it is common in

methods that process paths in an non-enumerative manner [84], [48], [91].

We first address issue (i) and show the formulation of the critical PDF sensitization func-

tion for fanout-free circuits. Consequently, we discuss issue (iii) and present the solution.

Issue (ii) has already been addressed in the function formulation of Section 3.3. Without any

37

Kyri
ak

os
 C

hri
sto

u

loss of generality, we describe how to derive the ISOPs/ZBDD for critical non-robustly sen-

sitizable PDFs. The formulation extensions for the robust and functional sensitization case

can be derived in a similar fashion as in Section 3.3. The underlying operations necessary for

the critical path extension are independent to the type of the PDF sensitization considered.

3.4.1 Fan-out free circuits

Let Gtr
l (), tr = {R,F}, denotes a rising or falling sensitization function containing all critical

PDF segments up to line l, along with all their corresponding sensitization cubes.

When at some line l, it is necessary to determine whether l is a potentially critical line. If

not, Gtr
l () = /0. To determine if l is potentially critical, it suffices to find the subset of Z such

that l = 1, given by Zl =⊂ (Z , l) (see Table 3.1 for the standard ZBDD subset operation). If

Zl = /0 then l is not critical. Otherwise, Zl will contain all potentially critical PDFs through

line l. According to the ZBDD subset operation, the variable of l will not appear in Zl , since

it is cofactored. The next step is to determine which of the immediate predecessor lines of l,

given in FI(l), are potentially critical. This is also determined using the subset operation. A

line y ∈ FI(l) is potentially critical if Zy =⊂ (Z ,y) , /0. Let CI(l) ⊆ FI(l) denote the set of

all immediate potentially critical predecessors of l.

Function Gtr
l () is formulated with respect to the critical sensitization functions of its

predecessor lines in CI(l). The main idea here is to be able to find all potentially critical PDF

segments up to line l and through some line y ∈ CI(l). Once this is derived, the sensitization

conditions of the underlying sensitization type can be incorporated for the off-inputs, in

order to drop any unsensitizable segments from the function. Thus, for the case of fanout-

free circuits, the sensitization function for all critical PDF segments up to the output line l of

an AND gate, is given by:

Gtr
l () = !

 ⋃
y∈CI(l)

(Gtr
y () ∩ (

⋂
x∈FI(l),x,y

f 2
x ()))

 , l

 (3.11)

This formulation is identical to that of Eq. 3.3 in Section 3.3, with the exception that only

critical predecessor lines of l (CI(l)) are considered. The off-inputs sensitization conditions

are enforced on all immediate predecessor in FI(l).

38

Kyri
ak

os
 C

hri
sto

u

Figure 3.7: Example circuits C2.

3.4.2 Treating Fan-Out Stems

When considering circuits with fanout sections, the formulation of Eq. 3.11 can introduce

non-critical PDFs in Gtr
l (). We discuss why this occurs with the help of an example. Consider

circuit C2 in Fig. 3.7. It contains 12 PDFs. Let’s consider only the rising PDFs. Let

Z () contain 2 potentially critical PDFs, Z () = aR.c.d. f + bR.c.e.g. For the primary

inputs GR
a () = f 2

a ().aR and GR
b () = f 2

b ().bR. At line c, both segments aR− c and bR− c

are included, since they are both critical. Thus, GR
c () = f 2

a (). f
2
b ().aR.c+ f 2

a (). f
2
b ().bR.c.

Up to this point, all functions contain the correct information. 2 Consider lines f and g.

Observe that only a subset of GR
c () is needed when computing the functions for these two

lines, since GR
f () should only include path aR− c− f and GR

g () should only contain path

bR−c−g. However, based on the formulation of Eq. 3.11, GR
f () = f 2

a (). f
2
b (). f

2
i ().aR.c. f+

f 2
a (). f

2
b (). f

2
i ().bR.c. f , which includes the non-critical path bR− c− f . Similarly, GR

g () will

include the non-critical path aR− c−g.

This problem is alleviated by appropriate manipulations on Z (). Consider again a line l

and corresponding Zl =⊂ (Z , l) which contains all potentially critical paths through line l.

Removing from Zl() all variables corresponding to lines not driving l, gives all potentially

critical PDF segments up to l. This is done using the existential abstraction operator, as given

below. The set of all lines not driving line l is denoted by ND(l), and it can be derived via a

single circuit traversal.

Zl,seg() = ∃
v∈ND(l)

(Zl,v)

Let Gtr
y (), y∈CI(l), be the function with all critical PDF segments up to y. When comput-

ing the critical sensitization function for line l, it is necessary to only consider those critical
2Branch lines and single input gates have been explicitly represented mainly for illustration and clarification

purposes. We do not use them in our implementation.

39

Kyri
ak

os
 C

hri
sto

u

segments in Gtr
y (), and corresponding tests, that also pass through line l. This is achieved by

computing the intersection of Gtr
y () with Zl,seg(). Zl,seg() must be extended with all test vari-

ables, otherwise the outcome of the intersection will be the empty set. This occurs because

Gtr
y () also contains the test cubes per critical segment. In order to maintain the correctness

of the test set, all test variables are incorporated in Zl,seg() at their don’t care state, as shown

below:

Z X
l,seg() = !(!(Zl,seg(),v0),v1),∀v ∈T

The intersection will give the ISOPs/ZBDD with all critical segments up to line l through

line y, along with the sensitizatizing tests up to line y. Consequently, the sensitization func-

tion for all critical segments up to the output line l of an AND gate, is given by:

Gtr
l () =!

 ⋃
y∈CI(l)

((Z X
l,seg()∩Gtr

y ())∩ (
⋂

x∈FI(l),x,y

f 2
x ()))

 , l

 (3.12)

The functions for other gate types and sensitization criteria are derived in a similar man-

ner as in Eq. 3.12. Continuing with the example of Fig. 3.7, Z X
f ,seg() = aR.c (branch

variable d can be ignored). GR
c ()∩Z X

f ,seg() = aR.c removes segment bR.c and, thus, GR
c () =

f 2
a (). f

2
b (). f

2
i ().aR.c. f is now correct.

The following example illustrates the new operations introduced in this subsection. Cir-

cuit C3 of Fig. 3.8 contains 12 PDFs. Assume that all paths that pass through three or more

gates are considered critical. In this case, Z () contains 8 potentially critical PDFs, as shown

in Fig. 3.9. These are {bR− f − j− l−m, bF− f − j− l−m, cR− j− l−m, cF− j− l−m,

bR− g− h− k− l−m, bF − g− h− k− l−m, dR− k− l−m, dF − k− l−m }. The po-

tentially 4 critical PDFs through line k are given in Zk() in Fig. 3.10. Variable k does not

appear in Fig. 3.10, since it is cofactored by the subset operation Zk() = ⊂ (Z ,k). The

ZBDD with all PDF segments up to k (excluding k) is given in Zk,seg() in Fig. 3.11. The

ISOPs/ZBDD for all critical PDFs is shown in Fig. 3.13. It contains only 4 critical PDFs

{bR− f − j− l−m, cR− j− l−m, cF− j− l−m, bR−g−h−k− l−m }. The remaining

4 PDFs in Z () are implicitly identified as non-sensitizable and are not included. Fig. 3.12

shows the ISOPs/ZBDD for all sensitizable PDFs in C3 which is actually a superset of Fig.

3.13.

The critical PDF sensitization algorithm follows the same basic steps outlined in Algo-

rithm 3.1. In addition, it accepts or creates the ZBDD of the potentially critical PDFs Z (),

40

Kyri
ak

os
 C

hri
sto

u

Figure 3.8: Example circuits C3.

bR

0 1

f

cR

jg

dR

l

k

bF

cF

dFh

m

Figure 3.9: Cr for circuit C3.

41

Kyri
ak

os
 C

hri
sto

u

bR

0 1

g

dR

h

l

bF

m

dF

Figure 3.10: Subset Operation on k of C3.

and, before forming the critical sensitization function for a line l, it computes Z X
l,seg(). Eq.

3.12 replaces Eq. 3.3 in Algorithm 3.1. All other Eq. are modified appropriately in a similar

manner as Eq. 3.12.

3.5 Generation of Tests with Maximal Test Efficiency

This Section discuses the generation of a compact test set by generating tests with high test

efficiency. It is shown how a test with maximum test efficiency, under the given ordering

of variables in the ISOPs/ZBDD (i.e changing the variable ordering can lead to different

TE), is derived. Consequently, additional tests with high test efficiency are derived by ap-

propriately removing the detected PDFs and repeating the process. Thus, each generated test

detects a large number of PDFs that have not been detected by already generated tests. No

unsensitizable PDFs are targeted in this process.

The challenging task in finding a compact test set is finding a test with high test efficiency.

Therefore, the first part of this Section is focused on this task, while the second part describes

how additional tests with the same property can be derived.

42

Kyri
ak

os
 C

hri
sto

u

Ex. Abstr. k

bR

0 1

f

cR

jg

dR

l

bF

m

cF

dFh

Figure 3.11: Existentially Abstract Operation on k of C3.

43

Kyri
ak

os
 C

hri
sto

u

a1

01

b1

a0

c1

b0

b1

c1

aF

d0 c0

d1

bF

i

bR

aR d1

bR

d0

e

g

cF

j

f cR

bR

m

e

h

l

k

Figure 3.12: ISOPs/ZBDD for all sensitizable PDFs in C3 of Fig. 3.8.

44

Kyri
ak

os
 C

hri
sto

u

a1

0 1

b1

c1

d0

c0

bR

d1

bR

d0g

cF

j

fcRh

l

k

m

Figure 3.13: ISOPs/ ZBDD for critical PDFs in C3 of Fig. 3.8.

45

Kyri
ak

os
 C

hri
sto

u

3.5.1 Generation of the T -graph

The basic idea is centered on finding one test in the ISOPs/ZBDD graph that shares the

largest number of paths from the root to the terminal-1 node. This amounts to finding a set

of test nodes in the graph that cover the maximum number of such paths.

The ISOPs/ZBDD nodes are classified as test nodes (T -node) if they correspond to vari-

ables in T or path nodes (P-node) if they correspond to variables in P . Observe that, in

decision diagrams such as the one considered here, several nodes in the graph can corre-

spond to the same variable. Let the ISOPs/ZBDD graph be denoted by G, and NT denote all

T -nodes in G. A graph that contains all T -nodes in the original ISOP/ZBDD graph, plus

the terminal-1 node, is derived. In this graph, referred to as the T -graph, an edge from a

T -node v to a T -node (or terminal-1 node) u exists if u is the first T -node reachable from

v through some path in G. This information for all T -nodes can be found via a single traver-

sal of G. Furthermore, a weight w(v→ u) is defined per edge, to be the number of paths

from v to u in G. The weights can also be calculated via a graph traversal. Without any loss

of generality, it is assumed that the root of G is a T -node (this always holds with variable

reordering). The T -graph has a single source, the root of G, and a single destination, the

terminal-1 node. A post-processing step is necessary after all edges and weights have been

derived to remove T -nodes (and their incoming edges), other than the terminal-1 node, in

the T -graph that have no successors. Such nodes do not have any paths to the terminal-1

node in G, which implies that they are not in the function on-set. The basic steps of the

algorithm that builds the T -graph are listed in Algorithm 3.3. V is the set of nodes and E

the set of edges of the generated T -graph.

Algorithm 3.3, generates the T -graph via a traversal on a DAG, the ISOP/ZBDD struc-

ture. Starting from the root node, steps 4-14, traverse the input ISOP/ZBDD and visits all

nodes of the data structure while constructing the T -graph, which contains only the test

nodes of the input ISOP/ZBDD. Thus, the overall complexity for generating such a graph is

of linear complexity to the size of the input ISOPs/ZBDD graph.

As an example, consider circuit C3 of Fig. 3.8. The ISOPs/ZBDD for all (critical) PDFs

in C3 was given in Fig. 3.12 (Fig. 3.13). The T -graph for each of these case is shown

in Fig. 3.14 and Fig. 3.15, respectively. All T -nodes and the terminal-1 node from the

ISOPs/ZBDDs appear in the T -graphs (ignore the numbers in the square brackets in each

of the nodes of T -graph at this point). Edges can be of three types. A solid (dotted, dashed)

edge leaving some node v implies that v = 1 (v = 0,v = X) in the test cube.

46

Kyri
ak

os
 C

hri
sto

u

Data: G(T ∪P) ISOPs/ZBDD graph

Result: T -graph(V,E)

1 Find node set NT = {v, | v ∈T -node of G(T ∪P) } ;

2 Vertex set V = {NT ∪ (terminal-1 node)};

3 % Traverse G in topological order, starting from the root node;

4 foreach node v ∈ NT do

5 s(v) = list of all immediate successors of v in NT ;

6 foreach u ∈ s(v) do

7 Add edge (v,u) in E, if there exists a path from v to u;

8 w(v,u) = number of paths from v to u;

9 end

10 foreach node u ∈ NT do

11 if u , terminal-1 node AND s(u) == /0 then

12 NT = NT −u;

13 end

14 end

15 end
Algorithm 3.3: T -Graph Create

Figure 3.14: T-graph for the ISOPs/ZBDD of Fig. 3.12.

47

Kyri
ak

os
 C

hri
sto

u

Figure 3.15: T -graph for the ISOPs/ZBDD of Fig. 3.13.

The test that detects the maximum number of PDFs, under the variable ordering of the

ISOPs/ZBDD graph, is the path in T -graph that terminates to the terminal-1 node with the

maximum weight. In general, let a path P be denoted as a collection of consecutive nodes

e1→ e2→ . . .→ en. The weight of P, denoted by W (P) is the product of the weights on its

edges. Thus,

W (en) = ∏
i=1...n

w(ei)

A topological traversal of the T -graph suffices to calculate the maximum weight among

all paths up to each node, which leads to the calculation of the maximum weight of a path

in the graph. The root node r is always initialized to W (r) = 1. When at some node v, with

immediate predecessor nodes in FI(v), then W (v) is given by:

W (v) = max
i∈FI(v)

{W (i)×w(i→ v)}

The maximum weighted path can be easily found by backtracking appropriately from the

terminal-1 node to the immediate predecessors, until the root node is reached. The complex-

ity cost is linear since it just linear traversals on the T -graph.

Fig. 3.14 and Fig. 3.15 show the W (v) value per node in the T -graph in square brackets

inside each node. The maximum weighted path in the T -graph of Fig. 3.14 is a1− b1−

c1−d0−1 with weight 4 and, thus, the test cube a ·b · c ·d is the highest quality test (it can

48

Kyri
ak

os
 C

hri
sto

u

sensitize 4 PDFs). The maximum weighted path in the T -graph of Fig. 3.15 is a1− b1−

c1−1, with weight 2.

For this example, where non-robust sensitization was considered, the derived test deter-

mines the value of vector v2 for the PDF test (v1,v2). A traversal on the ISOP/ZBDD can

determine the PDFs detected by the test. Then, v1 is determined by the primary input path

variables on the detected PDFs, by a linear number (to the number of primary inputs) subset

operations. Continuing with the example of Fig. 3.14, v2 = a · b · c · d (=a1 · b1 · c1 · d0)

leads to PDFs aR− i−m, bR− e− i−m, bR− f − j− l−m and cR− j− l−m and, hence,

v1 = a · b · c · x (d is a don’t care). This process is not necessary for robust or functional

sensitization, since the test will contain the values for both v1 and v2 vectors.

3.5.2 Deriving additional tests

We now discuss how additional tests with maximal TE can be derived. The idea here is to be

able to remove the PDFs detected by the maximum weighted test extracted by the T -graph

from the ISOPs/ZBDD, and repeat the process to find another test with high test efficiency.

Assume that the first test, t, has been generated. Let the original ISOPs/ZBDD be denoted

by G(). A single traversal from the root to the terminal-1 node of G(), restricted by the values

of the variables in t, will give the ZBDD that contains all PDFs detected by t, denoted by

Gt(). Then, Gt() is extended to an ISOPs/ZBDD, denoted by G′(), by insisting that all test

variables in the circuit appear as don’t cares, which is encoded as v0 · v1 for a variable v in

ISOPs-based ZBDD form. This is achieved by a linear number, to the primary inputs, of

change (!) operators, as shown below:

G′() = !(!(Gt(),v0), v1),∀v ∈T

It suffices to remove G′() from G(), using the set difference operation G()\G′(), to re-

move all PDFs detected by t from G(). Consequently, the next test generated will be maximal

and guarantees to detect only new PDFs. The process just described can be repeated until

a fixed number of tests is derived or the desired fault coverage is achieved. The basic steps

of the proposed ATPG algorithm are listed in Algorithm 3.4. Tcov and Tth denote user de-

fined parameters that can be used to terminate the ATPG process when a desired coverage

or number of tests has been reached. Alternately the process can run until 100% coverage

is achieved. The algorithm accepts as input an ISOPs/ZBDD for the targeted PDFs, denoted

by G(). T denotes the set of test variables.

49

Kyri
ak

os
 C

hri
sto

u

Data: G(), Tcov,Tth

Result: Compact test set T

1 repeat

2 T -graph-Create(G(),T -graph(V,E));

3 foreach node u ∈V do

4 FI(u) = immediate predecessor nodes of u;

5 % calculate maximum path weight up to u;

6 W (u) = max
i∈FI(u)

{w(i)×w(i→ u)}, i ∈ FI(u);

7 end

8 t = path with maximum weight in T -graph;

9 Derive Gt() from G();

10 G′() = !(!(Gt(),v0), v1),∀v ∈T ;

11 G() = G()\G′();

12 until Coverage==100% OR Coverage==Tcov OR Coverage==Tth;

Algorithm 3.4: Compact-ATPG Algorithm

The ATPG process is linear to the size of the ISOPs/ZBDD graph, per generated test.

Each iteration is faster than the previous one since the size of the ISOPs/ZBDD graph de-

creases. The coverage obtained during each operation is trivially calculated without employ-

ing fault simulation. If G() == /0, then a 100% coverage is reached since no more unde-

tectable PDFs remain in the ISOPs/ZBDD. The achieved coverage is calculated by dividing

the number of PDFs detected by the total number of PDFs in G(). This requires finding the

cardinality of G(), which is a standard ZBDD operation that amounts to a linear traversal on

G(). The coverage calculation is exact, in contrast to all existing practical ATPG methods,

since the exact number of sensitizable PDFs is known.

The overall complexity of Algorithm 3.4, depends on the number of iterations executed.

Each step has a linear complexity, and as discussed before each iteration is faster than the

previous one. In the worst case where the 100% coverage is needed, and assuming that

test efficiency is a test per fault then, in this case the algorithm stops executing and takes a

random test per PDF. Experimental results indicate that Algorithm 3.4 is much faster than a

test per fault approach and produces highly compact tests.

50

Kyri
ak

os
 C

hri
sto

u

3.6 Experimental Results

The proposed method was implemented in C language on top of the decision diagram pack-

age of [107] (for all BDD and ZBDD related operations), and run on a 1GHZ SunBlade

1500 workstation. We report results for all ISCAS′85, except for C6288, and the enhanced

full-scanned ISCAS′89 circuits. C6288 cannot be represented directly using BDDs, however,

such circuits could be represented in another appropriate canonical form, such as partitioned-

BDDs [80], which can then be converted to ZBDD-based ISOPs. The ZBDD representation

of all ∼ 1020 PDFs of C6288 has been shown to be very efficient in [84]. The initial variable

ordering in the BDDs was the one provided along with the tool of [107]. No variable re-

ordering, which can be used to reduce the size of the decision diagrams, was activated in any

of the reported experiments. We present results for the non-robust sensitization criterion.

Table 3.2 and 3.3 reports the resource requirements, for time and space, for the generated

ISOPs/ZBDDs. In both tables 3.2 and 3.3 Column 2 lists the total number of PDFs per

circuit. Column 3 gives the exact number of sensitizable PDFs per circuit, obtained after

generating the ISOPs/ZBDD graph for the sensitization function presented in Section 3.3.

No fault was aborted.

Examining Table 3.2 the maximum number of PDFs detected by a single test, denoted

by MaxTE, is listed in Column 5, obtained by the ATPG algorithm of Section 3.5. Time (in

CPU seconds) and memory (in MBytes) needed to construct the sensitization function and

generate the test of MaxTE are given in Columns 6 and 7, respectively. Both requirements are

very small for the small circuits. For the larger circuits, memory requirements are increased

due to the large number of PDFs in the circuits and, more importantly, the enormous number

of tests that exists under the non-robust sensitization criterion. For certain circuits, the single

traversal approach to examine all circuit paths, required a large amount of memory to build

the sensitization functions. In such cases, the circuit was divided into partitions such that

no two partitions contained the same PDFs. The approach was applied on each of these

partitions. These circuits are indicated by a * in Column 1 of Table 3.2. Partitions were

derived either by considering all paths terminating to the same primary output or, in certain

cases, all paths starting at the same primary input and terminating at the same primary output.

The total number of sensitizable PDFs reported is the sum of the sensitizable PDFs in each

partition. Since the partitions are non-overlapping, they can be examined independently and,

thus, can all be processed in parallel. Time and memory reported for each of these circuits

is the maximum required among all partitions. TE can be impacted when partitions are

51

Kyri
ak

os
 C

hri
sto

u

considered, since only a subset of the circuit paths are considered at one time.

Considering both Tables 3.3 and 3.3, column 4 lists the number of critical PDFs, ob-

tained after generating the ISOPs/ZBDD graph for critical PDFs (Section 3.4). The pro-

posed method can consider various delay models and critical path selection methods. In our

experimentations, we used the bounded delay model. Delay ranges for each gate were ob-

tained from the TSMC 0.18 micron technology files using the corner values for the nMoS

and pMOS transistors. The delay threshold was set as 90% of the circuit delay, obtained

using static timing analysis. A single topological traversal was used to implicitly identify

all potentially critical PDFs. The numbers listed in Column 4 are those identified by our

approach as critical. The MaxTE, time and space required to derive the critical PDFs and the

test with the maximum test efficiency are given in Columns 5, 6, and 7, respectively of Table

3.3. For critical PDFs, a single sensitization function was derived for every circuit (no parti-

tions were considered). This explains why the time required is sometimes larger for critical

PDFs than the one required for all sensitizable PDFs. However, considering the entire circuit

at once contributes to a considerable increase in MaxTE in most of the larger circuits, as it

can be seen by comparing the results reported in Column 5 in Tables 3.2 and 3.3.

The overwhelming majority of the CPU time spent and the memory used, in both cases

(all sensitizable PDFs and critical PDFs), is attributed to the ISOPs/ZBDD generation and not

to the ATPG task, since the latter is archived by only a linear traversal of the ISOPs/ZBDD.

This is very important, since it allows for the generation of complete test sets in linear time

to the size of the ISOPs/ZBDD. The only factor that impacts the ATPG time is the number

of generated tests (since an ISOPs/ZBDD traversal per test is necessary) but, this is also

optimized since the tool’s goal is to maximize the test efficiency and hence, the generated

test set is inherently compact.

Figures 3.16, 3.17, 3.18, 3.19 demonstrate that the same trend exist for all benchmark

circuit examined. Each of these figures consists of three sub-figures. The first sub-figure

shows number of PDFs per test, the second sub-figure shows the total number of detected

PDFs per test and the third and last sub-figure reports the average Test Efficiency, AvgTE,

per test. Even when considering large circuits someone can see that all the circuits follow

the same trend for all the circuits in all the three examined cases.

Table 3.4 reports results that demonstrate the scalability of the approach for critical PDF

test generation. The average test efficiency for test sets with different number of tests is

given. The average test efficiency, denoted by AvgTE, listed in Columns 4, 6, 8, 10, 12 and

13, is the ratio of all detected PDFs (given in Columns 3, 5, 7, 9 and 11) over the total number

52

Kyri
ak

os
 C

hri
sto

u

Table 3.2: Resource requirements for the ISOPs/ZBDD and MaxTE for All PDFs

Circuit Total Sens. Critical All PDFs

Name PDFs PDFs PDFs MaxTE Time(secs) Mem(MBs)

s208.1 284 284 12 10 0.05 0.53

s386 414 414 78 28 0.07 0.66

s298 462 364 45 14 0.03 0.29

s344 710 654 50 10 0.04 0.60

s349 730 656 50 10 0.07 0.80

s510 738 738 14 31 0.18 5.20

s382 800 734 94 19 0.08 0.62

s526n 820 718 45 14 0.06 0.57

s420.1 948 948 20 18 2.19 28.31

s820 984 984 84 34 0.38 6.56

s832 1012 996 84 36 0.41 6.68

s444 1070 813 72 19 0.11 4.81

s1488 1924 1916 6 50 0.77 16.82

s1494 1952 1927 4 50 0.77 16.40

s953n 2312 2312 54 56 0.87 16.79

s641 3488 2270 142 21 1.29 21.48

s1196 6196 3759 104 81 3.92 30.81

s1238 7118 3684 90 96 7.32 38.81

C880 17284 16652 3768 94 70.50 43.59

s3271 38388 19292 2421 87 12.94 95.27

s713 43624 4922 613 185 2.41 24.71

s1423 89452 45198 890 100 144.60 547.57

C2670* 1359920 130626 56982 407 24.22 55.91

C7552* 1452988 277244 21680 280 254.70 92.65

C1908* 1458114 355168 67584 117 1150.80 196.58

s38584.1* 2161446 334927 20444 603 1034.91 670.54

C5315* 2682610 342117 64032 593 159.13 72.31

s13207* 2690738 476145 64681 271 367.22 233.70

C1355* 8346432 1110304 1008800 345 539.18 252.31

* denotes partitioning-based processing on primary output or primary

input/primary output basis for All PDFs (Columns 5-7)
53

Kyri
ak

os
 C

hri
sto

u

Table 3.3: Resource requirements for the ISOPs/ZBDD and MaxTE for Critical PDFs

Circuit Total Sens. Critical Critical PDFs

Name PDFs PDFs PDFs MaxTE Time(secs) Mem(MBs)

s208.1 284 284 12 3 0.06 0.22

s386 414 414 78 5 0.12 0.38

s298 462 364 45 10 0.11 0.30

s344 710 654 50 10 0.22 0.30

s349 730 656 50 10 0.23 0.31

s510 738 738 14 3 0.18 0.28

s382 800 734 94 6 0.46 0.39

s526n 820 718 45 10 0.18 0.25

s420.1 948 948 20 4 0.39 0.38

s820 984 984 84 8 0.79 0.48

s832 1012 996 84 8 0.78 0.42

s444 1070 813 72 12 0.36 4.25

s1488 1924 1916 6 2 0.21 0.09

s1494 1952 1927 4 2 0.11 0.08

s953n 2312 2312 54 12 0.77 0.24

s641 3488 2270 142 21 3.68 1.09

s1196 6196 3759 104 26 3.85 0.79

s1238 7118 3684 90 17 2.98 1.03

C880 17284 16652 3768 72 63.08 39.05

s3271 38388 19292 2421 46 18.49 40.87

s713 43624 4922 613 160 6.05 3.02

s1423 89452 45198 890 48 12.44 6.50

C2670 1359920 130626 56982 600 20.17 51.39

C7552 1452988 277244 21680 512 197.41 81.03

C1908 1458114 355168 67584 768 1053.80 180.32

s38584.1 2161446 334927 20444 470 975.15 597.03

C5315 2682610 342117 64032 864 147.35 68.45

s13207 2690738 476145 64681 792 1105.81 679.31

C1355 8346432 1110304 1008800 1152 489.81 231.13

54

Kyri
ak

os
 C

hri
sto

u

Ta
bl

e
3.

4:
A

vg
T

E
fo

rd
iff

er
en

tt
es

ts
et

s

C
ir

cu
it

C
ri

tic
al

M
ax

#
te

st
s=

10
M

ax
#

te
st

s=
20

M
ax

#
te

st
s=

30
M

ax
#

te
st

s=
40

M
ax

#
te

st
s=

50
10

0%
C

ov
.

PD
Fs

D
ed

A
vg

T
E

D
ed

A
vg

T
E

D
ed

A
vg

T
E

D
ed

A
vg

T
E

D
ed

A
vg

T
E

A
vT

E
s2

08
.1

12
12

1.
50

-
-

-
-

-
-

-
-

1.
50

s3
86

78
34

3.
40

49
2.

45
59

1.
97

69
1.

73
78

1.
59

1.
59

s2
98

45
41

4.
10

45
3.

21
-

-
-

-
-

-
3.

21
s3

44
50

36
3.

60
48

2.
40

50
2.

27
-

-
-

-
2.

40
s3

49
50

36
3.

60
48

2.
40

50
2.

27
-

-
-

-
2.

40
s5

10
14

14
1.

55
-

-
-

-
-

-
-

-
1.

55
s3

82
94

39
3.

90
59

2.
95

74
2.

47
84

2.
10

94
1.

88
1.

88
s5

26
n

45
45

4.
10

-
3.

21
-

-
-

-
-

-
3.

21
s4

20
.1

20
20

2.
22

-
-

-
-

-
-

-
-

2.
22

s8
20

84
39

3.
90

57
2.

85
67

2.
23

77
1.

93
84

1.
79

1.
79

s8
32

84
39

3.
90

57
2.

85
67

2.
23

77
1.

93
84

1.
79

1.
79

s4
44

72
40

4.
00

58
2.

90
68

2.
27

72
2.

12
-

-
2.

12
s1

48
8

6
6

1.
20

-
-

-
-

-
-

-
-

1.
20

s1
49

4
4

4
1.

33
-

-
-

-
-

-
-

-
1.

33
s9

53
n

54
54

6.
00

-
-

-
-

-
-

-
-

6.
00

s6
41

14
2

99
9.

90
12

1
6.

05
13

1
4.

37
14

1
3.

53
14

2
3.

46
3.

53
s1

19
6

10
4

67
6.

70
88

4.
40

10
3

3.
43

10
4

3.
35

-
-

3.
35

s1
23

8
90

77
7.

70
90

5.
29

-
-

-
-

-
-

5.
29

C
88

0
37

68
50

4
50

.4
0

82
1

41
.0

5
10

69
35

.6
3

12
85

32
.1

3
14

72
29

.4
4

9.
78

s3
27

1
24

21
39

3
39

.3
0

70
9

35
.4

5
94

9
31

.6
3

11
49

28
.7

3
13

19
26

.3
8

13
.3

7
s7

13
61

3
52

4
52

.4
0

57
5

28
.7

5
59

1
19

.7
0

60
1

15
.0

3
61

1
12

.2
2

23
.2

4
s1

42
3

89
0

30
4

30
.4

0
46

4
23

.2
0

57
2

19
.0

7
65

2
16

.3
0

71
6

14
.3

2
13

.2
1

C
26

70
56

98
2

44
40

44
4.

00
74

28
37

1.
40

10
11

6
33

7.
20

12
13

2
30

3.
30

13
93

2
27

8.
64

77
.2

4
C

75
52

21
68

0
33

78
33

7.
80

58
42

29
2.

10
75

58
25

1.
93

88
40

22
1.

00
98

38
19

6.
76

56
.9

6
C

19
08

67
58

4
81

60
81

6.
00

13
84

7
69

2.
35

18
40

3
61

3.
43

22
89

7
57

2.
42

25
60

7
51

2.
14

85
.3

7
s3

85
84

.1
20

44
4

31
54

31
5.

40
54

24
27

1.
20

70
52

23
5.

06
79

09
19

7.
72

87
66

17
5.

32
51

.2
9

C
53

15
64

03
2

73
68

73
6.

80
13

20
8

66
0.

40
17

35
8

57
8.

60
20

84
4

52
1.

10
24

01
6

48
0.

32
95

.8
7

s1
32

07
64

68
1

69
80

69
8.

00
12

86
6

64
3.

30
15

94
5

53
1.

50
19

61
0

49
0.

25
23

62
7

47
2.

54
79

.5
4

C
13

55
10

08
80

0
11

52
0

11
52

.0
0

23
04

0
11

52
.0

0
34

56
0

11
52

.0
0

41
47

2
10

36
.8

0
47

23
2

94
4.

64
12

7.
51

-d
en

ot
es

th
at

10
0%

cr
iti

ca
lf

au
lt

co
ve

ra
ge

is
al

re
ad

y
ac

hi
ev

ed

55

Kyri
ak

os
 C

hri
sto

u

of generated tests. For example, Column 3 (Ded) lists the number of critical PDFs detected

and Column 4 lists their AvgTE, when up to the 10 tests are generated. Dividing Ded by

AvgTE gives the exact number of tests generated in each case. We observe that the AvgTE is

maintained in many occasions, i.e., additional tests with large TE are derived. These are very

encouraging results since they demonstrate that very compact test sets can be derived by the

proposed approach. Column 13 lists the AvgTE when all the critical PDFs listed in Column

2, are detected. The drop in AvgTE in this case is attributed to the fact that, after many PDFs

are detected and removed from the ISOPs/ZBDD, the remaining critical PDFs are less likely

to be tested by common tests. This is inherent to the circuit structure and not to the proposed

method that considers all possible tests per PDF.

To our knowledge, no previous method that examines the proposed problem exists and,

therefore, no comparison with previous work is possible. All existing methods concentrate

either on the compactness constraint of the problem, but do not consider critical PDFs (such

as [11], [47], [48], [74], [91], [90], [99]), or on critical PDF selection and test generation

but do not consider the compactness issue (such as [85], [102], [114]). The methods of

the later case enumerate the critical PDFs (even in the case of the recent method of [85],

unsensitizable PDFs are identified non-enumeratevely but ATPG examines the critical PDFs

explicitly) and, thus, the AvgTE of their generated test sets is bounded to be close to 1.

3.7 Conclusions

This work presents a test generation methodology for PDF tests with high test efficiency for

critical PDFs. It is shown how tests with maximal test efficiency can be derived by linear

manipulations of a canonical decision diagram that represents PDFs along with all their

associated test patterns compactly. The method can apply to all circuit paths or to sets of

circuit paths, such as the set of critical paths. The experimental results clearly demonstrate

the practicality of the method and its superiority over existing methods in terms of high test

efficiency for critical PDFs. Besides compact test generation, the proposed decision diagram

can be important to a variety of other delay test-related and timing analysis problems.

56

Kyri
ak

os
 C

hri
sto

u

(a) Number of PDFs per Test.

(b) TotalNumber of Tests.

(c) Average Test Efficiency (AvTE).

Figure 3.16: Statistical Information for Circuit S641.

57

Kyri
ak

os
 C

hri
sto

u

(a) Number of PDFs per Test.

(b) TotalNumber of Tests.

(c) Average Test Efficiency (AvTE).

Figure 3.17: Statistical Information for Circuit S1238.

58

Kyri
ak

os
 C

hri
sto

u

(a) Number of PDFs per Test.

(b) TotalNumber of Tests.

(c) Average Test Efficiency (AvTE).

Figure 3.18: Statistical Information for Circuit S3271.

59

Kyri
ak

os
 C

hri
sto

u

(a) Number of PDFs per Test.

(b) TotalNumber of Tests.

(c) Average Test Efficiency (AvTE).

Figure 3.19: Statistical Information for Circuit S713.

60

Kyri
ak

os
 C

hri
sto

u

Chapter 4

Using of Decision Diagrams for

Identifying Critical Primitive Path Delay

Faults

4.1 Introduction

The Path Delay Fault (PDF) model has been long considered as the most accurate one among

the various delay fault models, due to its ability to detect both lumped as well as small dis-

tributed delay defects [106]. The PDF set consists of single as well as multiple faults (a fault

that is not singly detectable may be detected when tested as part of a multiple fault). A lot

of effort has been devoted in the past on the quality of the generated tests for PDFs. Single

PDFs are tested using robust tests, if these exist, otherwise non-robust tests are used. Multi-

ple faults (also referred to as functionally sensitized faults in the literature) are tested using

non-robust tests [21]. The number of functionally sensitized faults is usually intractable, as

any number of paths can contribute to the formation of a multiple path. However, a sig-

nificant number of functionally sensitizable PDFs does not have to be tested to ensure the

temporal correctness of a circuit. It has been previously shown e.g., ([51, 52, 56, 105]) that

functionally sensitizable PDFs that can affect the performance of a circuit, must also be

primitive faults. A multiple PDF is classified as a multiple primitive fault if the multiple

PDF is static sensitizable and no proper subset of this multiple PDF is static sensitizable.

The primitive PDF model, which is a refinement of the traditional PDF model, limits sig-

nificantly the number of multiple faults needed to be tested (a non-primitive fault is always

covered by a corresponding primitive one) and, besides in delay testing, it has also been

61

Kyri
ak

os
 C

hri
sto

u

shown to apply in timing verification and timing analysis.

A major problem faced when considering any of these two path-dependent fault models

is their enormous number of faults (paths), which in the worst case grows exponentially to

the number of lines in the circuit. Restricting the problem to the critical path set, reduces

considerably the number of faults considered and, hence, makes the problem more practical.

A critical path is one with large delay, enough to affect the timing correctness of the circuit

if it contains a delay defect. Various models have been used to derive the critical path set, in-

cluding both deterministic, such as the fixed and bounded delay models, as well as statistical

models [64, 65, 102, 113, 114].

This work considers the problem of finding the testable critical primitive PDF set in

combinational or enhanced fully-scanned sequential circuits. Even though the problem

of identifying testable critical PDFs has been extensively addressed in the literature, see

[25, 64–66, 85, 114] among many others, none of these methods considers primitive PDFs

explicitly. This work is the first to define and identify critical primitive PDFs, integrating

both aspects of criticality and primitivity in a common framework. A major challenge in

such a problem is the large number of paths needed to be considered in order to identify

primitive faults, even when the problem is restricted to a small number of critical faults. It

is important to note that the work here is independent from the critical PDF selection phase;

any critical PDF set selection algorithm and delay model can be applied to derive the set of

single critical PDFs which is used as input to our methodology.

The proposed methodology utilizes function-based formulations with appropriate data

structures (Zero-Suppressed Binary Decision Diagrams - ZBDDs) for implicit and compact

representation of paths such that the targeted set of faults is identified in a non-enumerative

manner (no path, path-segment, or fault is ever enumerated). ZBDDs have been previously

proposed for the simpler version of this problem for traditional (critical) PDFs [25,85] how-

ever, none of these methods can be trivially extended to primitive faults since the standard

ZBDD operators they utilize cannot handle multiple faults. This work presents new oper-

ators, polynomial to the size of the ZBDD, for efficient and non-enumerative manipulation

of multiple faults which are necessary for identifying all critical primitive faults. The major

contributions of this work are summarized below:

(i) testable critical primitive PDFs are defined,

(ii) the targeted faults are identified efficiently, avoiding enumeration of faults or paths

which can be prohibitive for large circuits,

(iii) any delay model for identifying the potentially testable critical (single) PDF set can

62

Kyri
ak

os
 C

hri
sto

u

be considered,

(iv) the generated data structure that represents the targeted faults also contains ATPG

data (all tests per identified testable fault) and, hence, the proposed method can be easily

incorporated in a very efficient ATPG framework, since the necessary tests are already gen-

erated (ATPG is not the main focus of this work, however, we do report some indicative

ATPG results), and

(v) the reported experimental results show that only a small number of multiple primitive

PDFs is testable (when compared to the set of single primitive PDFs), implying that a small

number of additional tests suffices to guarantee the circuit’s timing correctness under the

multiple fault criterion.

The rest of this chapter is organized as follows: Section 4.2 presents necessary definitions

and preliminaries concepts. Section 3 describes the proposed algorithm for identifying crit-

ical primitive PDFs; Subsection 4.3.1 presents the overall approach, subsection 4.3.2 con-

centrates on multiple critical PDFs and subsection 4.3.3 gives the detailed function-based

formulation based on standard ZBDD operators and the newly proposed operators to han-

dle multiple paths. Subsection 4.3.4 explains how the primitivity property is ensured in the

proposed framework and, finally, subsection 4.3.5 presents in detail the new operators, along

with some illustrative examples. Section 4.4 presents and discusses the obtained experimen-

tal results, and section 4.5 concludes the chapter.

4.2 Preliminaries and Notation

4.2.1 PDF Classification

Under the PDF model, a fault is a sequence of Falling (F/ ↓) or Rising (R/ ↑) transitions

along a physical path from a primary input (pi) to a primary output (po), tested by a pair of

input vectors (v1, v2).

The set of PDFs can be partitioned into two disjointed subsets, the PDFs that can be

sensitized under certain sensitization conditions, and the PDFs that cannot be sensitized

under any condition [21]. PDFs that cannot be sensitized under any condition have no effect

on the timing of the circuit and are known as functionally unsensitizable, or functionally

redundant, PDFs.

The set of functionally sesnsitazable PDFs includes both single and multiple PDFs.

Single PDFs are those that can be tested with non-robust (or robust) tests. Multiple PDFs

63

Kyri
ak

os
 C

hri
sto

u

require co-sensitization as they can only be detected if multiple faults exists [21]. According

to [52], all single PDFs are primitive. However, only a small subset of the multiple PDFs

are primitive and need to be tested. Let πi denote a primitive PDF of cardinality i. Hence, π1

denotes a single primitive PDF . A primitive PDF of cardinality i (πi) consists of exactly i

single PDFs that terminate at the same po, none of which is part of any other primitive PDF

of cardinality less than i [52]. Let Πi denote the set of all primitive PDFs of cardinality i.

Then Π1 is the single primitive PDF set, Π2 is the set of all primitive PDFs of cardinality 2,

and so on. We define Π to be the set of all primitive PDFs, Π = Π1∪Π2∪ ·· ·Πn, where n

is the maximum cardinality index. Hence, the primitive PDF set can be categorized into the

Single PDF (SPDF) set, which is Π1, and the Multiple PDF (MPDF) set, which is Π−Π1.

4.2.2 Critical Primitive PDF

Let C denote the set of the potentially testable critical single PDFs. C contains the single

PDFs that are part of the critical set and may or may not be testable under the primitive

model. ΠC denotes the set of all critical primitive PDFs, ΠC
1 the set of all critical SPDFs,

and ΠC −ΠC
1 the set of all critical primitive MPDFs. Furthermore we define SC

i to be the

set of single PDFs that have contributed in ΠC
i . SC

1 is exactly the ΠC
1 set.

The critical primitive PDF set ΠC has the following characteristics:

(i) ΠC
1 ⊆ C , where C \ΠC

1 is the set of single non-robustly untestable PDFs,

(ii) Any multiple critical primitive fault πi ∈ ΠC
i consists only of single non-robustly

untestable PDFs in C \ (SC
1 ∪SC

2 ∪·· ·∪SC
i−1).

For example, any fault π2 ∈ ΠC
2 will consist of 2 PDFs in C , each of which is not

sensitizable under the single fault criterion (and, hence, is contained in C \ΠC
1). This ensures

the primitivity property. Moreover, in order to maintain the criticality property, all single

PDFs composing a multiple PDF πi ∈ ΠC
i must be critical (belong to C) since the fastest

transition in a multiple fault is the one determining the overall delay of the fault.

As an example, consider the circuit of Fig. 4.2.2. Let the critical paths in C ={↓b.f.g.i,

↓b.f.h.i, ↓b.d.g.i}. Observe that none of these PDFs is singly sensitizable (non-robustly

testable), hence, ΠC
1 = /0. There are 3 possibly testable critical primitive PDFs of cardinality

2 (all the pairwise combinations in C). Fig. 4.1 and 4.2 show 2 out of the 3 possible faults

(shown in bold lines), which are both primitive (as no constituent single PDF belongs in ΠC
1)

and critical (as each constituent PDF belongs in C). Observe that the sensitization criterion

in multiple PDFs allows for a don’t care bit in v1(x) and requires a non-controlling value for

64

Kyri
ak

os
 C

hri
sto

u

Figure 4.1: Example circuit C with C ={↓b.f.g.i, ↓b.f.h.i, ↓b.d.g.i}

Figure 4.2: A primitive critical PDF of cardinality 2 (ΠC
2)

Figure 4.3: Another primitive critical PDF of cardinality 2 (ΠC
2)

Figure 4.4: A functionally unsensitizable multiple PDF of cardinality 2

65

Kyri
ak

os
 C

hri
sto

u

v2 (0 for the NOR gate and 1 for the AND gate). Hence, the third possible fault, shown in

Fig. 4.3, is redundant as line h can not take any value in x0 (↓ or stable at 0). As SC
2 = C , we

know that no other critical primitive PDF of cardinality greater than 2 exists. Therefore, for

this circuit and the given set of potentially testable critical PDFs, only 2=|ΠC
1 ∪ΠC

2 | faults

need to be tested.

4.2.3 Function Notation, ZBDDs and ISOP/ZBDD Graph

A PDF set can be encoded as a combinatorial set which in turn can be efficiently represented

using ZBDDs, a variant of BDDs, where the absence of a variable is interpreted as a zero

assignment. ZBDDs have been successfully used in representing a huge number of PDFs

compactly in a non-enumerative fashion [84]. ZBDDs can also store boolean functions by

introducing additional variables. For each variable in the function, two variables are used

such that when both variables are suppressed, the original variable has a don’t care value.

Such a structure is called a ZBDD-based representation of an Irreduntant Sum-of-Products

(ISOPs) [77]. The work in [25] has proposed a hybrid ISOP/ZBDD-based data structure

capable of implicitly representing all sensitizable PDFs in a circuit, for various path sensi-

tization types (robust, non-robust, functional sensitizable [21]), that requires only a polyno-

mial number of standard ZBDD operations. This method also restricted the targeted PDF

set to the critical paths. The methodology proposed in this chapter, in contrast to the work

in [25], can consider primitive multiple faults and, hence, can drastically reduce the number

of multiple faults needed to be tested in order to guarantee the circuit’s timing correctness.

Handling primitive faults with ZBDDs is a considerable challenge, not examined by previous

work and requires new ZBDD operators, as it will be discussed in the next section.

The remaining of this subsection gives some preliminary concepts and notation for PDF

representation using ZBDDs as well as the hybrid ISOP/ZBDD-based structure used in this

work, via a simple example. Necessary notation and definitions will follow. The reader is

refereed to [25, 84] for extended details.

Two sets of variables are defined, the test variables which encode the test cubes and the

path variables which encode the PDFs. Let P define the set of path variables, T the set of

test variables, PI the set of primary input lines, and L the set of internal circuit lines (other

than fanout branches, including primary output lines). There are two path variables per line

in PI ∪ L, corresponding to R and F transitions. Hence |P| = 2 ∗ |(PI ∪ L)|. For the test

variables, we use 2 variables per primary input (as it will be explained a bit further), hence

66

Kyri
ak

os
 C

hri
sto

u

Figure 4.5: Example circuit C; critical paths shown in bold

T = 2∗ |PI|.

Consider the circuit of Fig. 4.5, which has 3 primary inputs, PI ={a, b, c}, and 6 lines

in L = {d, e, f, g, h, i}. The ZBDD for all single PDFs of C requires 18 path variables,

denoted by P = {aR,aF,bR, · · · ,iR,iF}, and is shown in Fig.4.6 with variable ordering

aR<aF<bR<bF< · · · <iR<iF. The variable ordering follows the topological order of the

lines in the circuit. A PDF is encoded by a combination over the variables of P . Missing

path variables assume a 0 value. Observe that there are exactly 12 routes from the root node

to the terminal one node (1) that correspond to the 12 PDFs of the circuit.

A ZBDD-based ISOPs representation is a compact and implicit cube set representation

[77, 79, 96]. A ZBDD-based ISOPs involves defining two variables i0 and i1 per i variable

in the BDD, such that i = i1 · i0 and i = i1 · i0. Combination i1 · i0 implies that i = x (don’t

care) and i1 · i0 can not appear based on this encoding.As non-robust sensitization conditions

are considered for primitive PDFs, [56,105], it suffices to use only one variable per primary

input in the BDD, the one corresponding to the sensitization condition of vector v2. The

value of v1 is always don’t care under the non-robust criterion, except from the primary

input initiating the PDF which must assume a R or F value. The later is encoded by the

path variable in our representation, as it will become more clear in the next example (Fig.

4.7). As BDDs are transformed to ZBDD-based ISOPs in this work, the total number of test

variables used is |T | = 2 ∗ |PI|. The ISOP/ZBDD-based tree of Fig. 4.7 represents all the

singly testable PDFs (subset of those of Fig. 4.6), along with all of the possible test cubes per

PDF . Observe that the variables in T ={a1,a0,b1,b0,c1,c0}, are placed on top of the variable

ordering (the root of Fig. 4.7 starts with test variables, followed by the path variables). Every

path from the root to the 1 node of Fig. 4.7 represents a single non-robustly testable PDF

along with some of its test cubes. For example, the path a1.b1.c1.c0.cF.eF.fF.hR.iF indicates

that the falling PDF on path c.e.f.h.i can be tested by (v1,v2)=(xx1, 110). This is derived

67

Kyri
ak

os
 C

hri
sto

u

as follows: the sub-combination a1.b1.c1.c0 encodes values for v2, such that a = a1.a0 = 1,

b = b1.b0=1 and c = c1.c0=0. Observe that as this is a ZBDD-based representation, any

missing variables from the encoding (suppressed ZBDD nodes), such as a0 and b0, always

assume the zero(0) value. Hence, v2 = 110. For v1, all variables (primary inputs) can take

the don’t care value , except from c which must have a 1 value as indicated by variable cF

in the PDF encoding (cF.eF. f F.hR.iF). Hence, (v1,v2)=(xx1, 110). Observe that, for this

particular case, a1.b1.c1.c0 encodes the entire test space for the PDF , as cF.eF. f F.hR.iF

is not contained in any other path from the root to the terminal 1 node of the graph. The

ZBDD in Fig. 4.8 contains only the singly testable PDFs of C (5 PDFs), with no test cube

information, and is derived from Fig. 4.7 after existentially abstracting all test variables.

Standard ZBDD operations that are used by the proposed method can be seen in Table

4.1. Furthermore, three new, polynomial ZBDD operators are introduced in this work, which

are used in combination with the standard ZBBD operators in order to derive the critical

primitive path set in an implicit and non-enumerative manner. These new operators have a

’*’ in front of their description in Table 4.1. Namely these are New-Intersect, New-Product

and New-Segment. New-Intersect performs intersection between the elements of two sets,

starting from a given variable index and assuming that the second argument of the operator

does not contain variables of smaller index than the specified one (n). A variable index n

refers to the level in the graph of the nodes of a particular variable. In decision diagrams

(such as ZBDDs) a variable can have multiple nodes in the graph (see for example variable

bR in Fig. 4.7). Furthermore, as these are ordered graphs, the nodes are levelized. The node

at the root (corresponding to the first variable) has level 0, the nodes of the next variable

in the order have level 1, and so on. Hence, for a variable order a<b<c the corresponding

variable indexes are 0<1<2. Any node of variable b (c) has index 1 (2). New-Product

computes the binate product of 2 sets up to a specified variable index and then computes

the unate product for the remaining elements in the sets. New-Segment is a single argument

operation that returns the ZBDD segments, of the given set, starting from the specified index.

Multiple primitive PDF identification requires additional effort than that required for

single primitive PDF identification. This derives from the multiple PDF representation as a

single route in the ZBDD and the critical primitive conditions for the multiple PDF imposed.

The need of new ZBDD operations arises from the logical representation used, both for

the PDF and the functionality, and the conditions imposed by the problem examined. The

exact methodology and a detailed description of the new ZBDD operators are given in the

following section.

68

Kyri
ak

os
 C

hri
sto

u

0 1

aR

dR

aF

gF

dF

bR

gR

dR

bF

fR

dF

cR

fF

eR

cF

eF

iR

gF

iF

gR

hF hR

Figure 4.6: ZBDD for all single PDFs in Circuit C

69

Kyri
ak

os
 C

hri
sto

u

0 1

a1

b1

a0

c1

b1 b1

c1 c1

bR bR c0

fR

cR

fR

cR cF

eF

gF

eR

hF

eR

fF

hR

iR iF

Figure 4.7: ISOP/ZBDD Graph for all single testable PDFs of Circuit C

70

Kyri
ak

os
 C

hri
sto

u

01

bR

fR

cR

gF

eR cF

eF

fF

hR

iR

hF

iF

Figure 4.8: ZBDD for all single testable PDFs of Circuit C

Table 4.1: Standard/NEW ∗ ZBDD Operators used

Expression Description

!(P,v) Complement value of variable v in P

P∪Q Union of P and Q

P∩Q Intersection of P and Q

P×Q Pairwise Intersection of P and Q

P•Q Binate Product of P and Q

P\Q Subtract Q from P (P−Q)

∃(P,v) Existentially abstract variable v from P

|P| Cardinality of P (number of paths to terminal 1)

Pv1 Subset of P such that variable v = 1

P∩n Q *Intersection of P and Q starting at variable index n

P?n Q *Binate Product of P and Q until index n and Unate Product of P and Q after index n

∧nP *Segments of P, starting from index n

71

Kyri
ak

os
 C

hri
sto

u

4.3 Finding the Critical Primitive PDF Set

In this Section a methodology/algorithm for finding the critical primitive PDF set is given.

4.3.1 General Methodology

Let C denote the potentially testable critical PDF set. This set is an input to our methodology

and, hence, can be derived using any of the state-of-the-art techniques for selecting critical

paths. The set is encoded in ZBDD format using the method of [84].

The proposed methodology takes as input the netlist C of the circuit under consideration

and C , and firstly applies the method of [25] to derive all the single non-robustly critical

testable PDFs. This set is the single primitive set denoted by ΠC
1 . Then, it proceeds in

an iterative manner to find multiple primitive critical PDFs of cardinality i = 2,3, The

iterative process terminates when no more testable faults exist.

The basic steps of the method are given in Algorithm 4.1. The single critical primitive

PDF set (ΠC
1), is calculated in step 1. Consequently, step 2 removes all the singly testable

faults from the critical path set C , using a standard ZBDD set difference operation. Next,

the algorithm proceeds in an iterative fashion to find the critical primitive MPDF set of

cardinality i (1 < i), per iteration (line 5). Every time a ΠC
i set is calculated, the set of

potentially critical faults C is updated such that it only contains single PDFs that have not yet

contributed in any of the primitive faults of cardinality equal or less than i. This is achieved

by first finding the single PDFs in C that are a part of the multiple faults in ΠC
i , denoted

by SC
i in Algorithm 4.1 (line 7), and then removing them from C (line 8). As a result, the

critical primitive MPDF set ΠC
i+1 calculated in the next iteration will maintain the primitivity

property. The iterations terminate when the number of single PDFs that have remained in C

is less than i, which means that no multiple critical primitive faults of cardinality i exist. If C

is the empty set at the end of the iterations it means that all the critical PDFs originally in C

are testable under the primitive criterion. Otherwise, any PDF left in C is proven untestable

(under the single and multiple fault criterion).

Next we give a simple example to outline the basic steps of the proposed methodology,

followed by a more detailed description on how the multiple faults are derived in 4.3.2.

Consider again the circuit in Fig. 4.5 and the input set C of potentially critical testable faults

of Fig. 4.9 which contains 8 PDFs (indicated by the red/bold lines in Fig. 4.5). Only 5 out

of the 8 faults in C are singly testable (see Fig. 4.8), as identified at step 1 of Algorithm 4.1.

72

Kyri
ak

os
 C

hri
sto

u

Data: C : Circuit;

C : Potentially testable critical single PDFs

Result: ΠC : Critical Primitive PDF Set

1 ΠC
1 ← Single Critical Primitive Set(C,C);

2 C ← C \ΠC
1 ;

3 i← 2;

4 while (|C | ≥ i) do

5 ΠC
i ←Multiple Critical Primitive Set (C,C ,i);

6 ΠC ← ΠC ∪ ΠC
i ;

7 SC
i ← Extract Contributing Single PDFs(ΠC

i ,C);

8 C ← C \SC
i ;

9 i← i+1;

10 end

11 ΠC ←ΠC ∪ΠC
1 ;

Algorithm 4.1: Compute Critical Primitive PDF Set ΠC

Hence, the updated C at step 2 will contain only the 3 singly untestable faults {bF.fF.gR.iF,

bF.fF.hR.iF, cF.eF.fF.gR.iF}, as shown in Fig. 4.10. At this point, since |C |> i (3 > 2), step

5 will be executed to derive a critical primitive MPDF set of cardinality 2 (ΠC
2), which as

shown in Fig. 4.11 contains only one such multiple fault {bF.fF.gR.hR.iF}. Observe that

this MPDF consists of 2 out of 3 singly untestable critical PDFs of Fig. 4.10, which are

{bF.fF.gR.iF, bF.fF.hR.iF}. Step 7 will extract these 2 single paths from ΠC
2 and step 8 will

remove them from C . As a result only 1 potentially testable critical single fault will remain

in C , (shown in Fig. 4.12) and, therefore, the algorithm will not enter into the next iteration.

Hence for this example, ΠC contains 6 faults (5 SPDFs and 1 MPDF). Moreover, fault

{cF.eF.fF.gF.iF} does not need to be tested according to the primitivity conditions.

Step 1 of the Algorithm 4.1, is of polynomial complexity as shown in Chapter 3. Step

2 is a standard ZBDD operation. The complexity of Algorithm 4.1 relies on the number of

iterations used. At each iteration, Algorithm 4.1 tries to find a higher cardinality multiple

PDF. The complexity of Algorithm 4.1, will be studied assuming that a reasonable number

of executed iterations is 9 (in order to maintain reasonable execution times), that is exam-

ining multiple PDFs of cardinality 9, and that a reasonable number of fanins at a gate is 16

(considering the structure of modern circuits this a a fair assumption). All the steps inside

73

Kyri
ak

os
 C

hri
sto

u

the while loop, expect steps 5 and 7 are standard ZBDD operations. Section 4.3.4, step 7,

finds the composing single PDFs of a multiple PDF in a linear number of ZBDD operators

of polynomial complexity to the input IZOP/ZBDD graph. Thus, the complexity of Algo-

rithm 4.1 relies in step 5. This step computes combinations of PDFs and executes a linear

number of polynomial ZBDD operations, as it will be seen in Algorithms 4.2 and 4.3. The

number of possible combinations on a 16 fan-in gate is linear,
(16

1

)
+
(16

1

)
+ · · ·+

(16
16

)
. Thus,

Algorithm 4.1 executes 9 circuit traversals with a linear number of polynomial operations

on each visited line. These assumptions are fair if the complexity of the problem is taken

into account. The number of multiple PDFs is double exponential in the worst case. If the

number of PDFs is w = |PDFs|, then w is exponential with respect the number of circuit

lines. The total number of multiple PDFs considered is
(w

1

)
+
(w

2

)
+ · · ·+

(w
w−1

)
+
(w

w

)
.

The necessity of steps 7 and 8 derives from the encoding that the MPDFs follow. As

it can be seen through this example finding the composing single PDFs of a multiple PDF

is not straightforward. Finding the contributing single PDFs is an important step since it

has to do with the correctness of the methodology used. The steps for solving this issue

are explained in detailed later. The primitivity property is preserved at steps 2, 7 and 8 of

Algorithm 4.1, by removing the already detected SPDFs from C . Step 2 of Algorithm 4.1

is a standard set difference ZBDD operation, since it involves removing already detected

SPDFs. Step 7 and 8 involves MPDFs and is treated differently since C consists of SPDFs.

Step 7 finds all the SPDFs that contributed to the MPDF set and then step 8, a standard

set difference ZBDD operation, follows to remove all these identified SPDFs that are a part

of the identified MPDF set, from C . These two steps are a necessity for the algorithms

correctness, before continuing searching for faults of higher cardinality. As it can be seen

from the example, multiple faults are represented within a ZBDD as a single route from the

root node to the terminal 1 node. Each such route denotes a multiple fault. In order to find

all the different SPDFs that contributed to a MPDF fault, SC
i , a two-step operation is used,

given by SC
i =

(
ΠC

i ∗C
)
∩C . The resulting set after steps 7-8, contains only PDFs that have

not contributed to a multiple PDF .

4.3.2 Finding Multiple Critical Primitive faults

The most challenging step of Algorithm 4.1 is step 5, which is presented in this subsection

in more detail. Algorithm 4.2 lists the basic steps for the identifications of all critical primi-

tive MPDFs of some cardinality i, i > 1, given a set of potentially testable critical paths C .

74

Kyri
ak

os
 C

hri
sto

u

01

bR

fR

bF

gF

fF

cR

gR

eR

cF

eF

iR

hF

iF

hR

Figure 4.9: Potentially Testable Critical PDFs of circuit C (C)

01

bF

fF

cF

gR

eF

fF

gR

iF

hR

Figure 4.10: Singly Untestable Critical PDFs of circuit C (C)

75

Kyri
ak

os
 C

hri
sto

u

0 1

bF

fF

gR

hR

iF

Figure 4.11: Critical Primitive PDFs of circuit C (C −ΠC
1)

0 1

cF

eF

fF

gR

iF

Figure 4.12: Untestable Set MPDF set (ΠC
2)

76

Kyri
ak

os
 C

hri
sto

u

Data: C : Circuit;

C : Potentially testable critical single PDFs;

i : Cardinality;

Result: ΠC
i : Multiple Critical Primitive PDF Set;

1 if (cardinality i == 2) then

2 %Traverse C in backward topological;

3 foreach (l line ∈C) do

4 SinglePOC
l ()← Single Sensititized Segment PO(C,C ,l);

5 end

6 else if (cardinality i > 2) then

7 SinglePOC
l () = SinglePOC

l ()∩n (∧mC), (m = Indexl());

8 %Traverse C in forward topological;

9 foreach (l line ∈C) do

10 %Combination of cardinality i at line l;

11 foreach (ci,l ∈ combl,i) do

12 ΠC
i,l,ci,l

←Multiple Critical Primitive (C,C , i, l,ci,l) ;

13 ΠC
i ←ΠC

i ∪ΠC
i,l,ci,l

;

14 end

15 end

16 end

17 return ΠC
i ;

Algorithm 4.2: Multiple Critical Primitive PDF Set ΠC
i

77

Kyri
ak

os
 C

hri
sto

u

MPDFs consist of co-sensitized SPDFs that terminate to the same primary output and have

the same transitions from their first common line (where the co-sensitized begins) until the

primary output line. These are necessary conditions that have to be taken into consideration

in order to guarantee the primitivity property. Hence, Algorithm 4.2 starts with a prepro-

cessing phase (steps 1-7). Using a backward topological traversal it generates, per line l, the

ISOP/ZBDD-based structure containing all singly testable PDF segments in C , along with

their sensitization cubes, from l to all primary outputs. This information is used to combine

different PDF segments (these segments are given in SinglePOC
l ()), starting at some PI(s)

up to the line l examined, that have a common segment to a specific primary output. This

process needs only to be executed once (steps 1-5) in the process of finding all critical prim-

itive MPDFs since the same data can be used by higher cardinality faults. Hence , steps 1-5

is only performed for i = 2 and the segments are globally saved. For i > 2, the only step that

needs to be taken is to remove those single segments that are not contained in the critical set

C , after we have successfully removed the PDFs that have contributed to a MPDF . This is

done in step 7, using two of the newly proposed ZBDD operators. Let m denote the index

of the ZBDD variable used at line l, given as m = Indexl(). Operator ∧mC returns the seg-

ments of the currently examined critical set,C , from line l to the POs. The second operation,

∩n, updates set SinglePOC
l () so as to only contain segments currently in C (i.e. it removes

segments no longer in C). This is necessary as C is updated after ΠC
i is calculated so as to

be able to correctly identify ΠC
i+1 (see step 8 of Algorithm 4.1).

After the preprocessing phase, Algorithm 4.2 proceeds in a topological order, from the

primary inputs to the primary outputs to find all possible combinations that a MPDF of

cardinality i can be constructed, line 11-14. For example consider a line l, that has two fanins

FIl() = {a,b}. Examining cardinality i = 2, is easy to see that the only way to construct a

double sensitized PDF is by combining single segments from the two fanins a and b. Now

setting the primitive cardinality i = 3 there are two possible ways that we can sensitize triple

MPDFs. We can have an already double captured (but not double sensitizable) MPDF

on fanin a and a single captured segment on fanin b (2+1) or the other way round (1+2).

Going further and assuming i = 4 there are three possible ways to capture such faults namely

3+1, 1+3 and 2+2. Exploiting lines with larger number of fanins, increases the number of

combinations that can form a MPDF of cardinality i.

Taking into consideration the discussion on the complexity of Algorithm 4.1 and exam-

ining Algorithm 4.2, this algorithm consists of a single circuit traversals either steps 1-5 or

steps 6-15 are taken. In steps 1-5, a polynomial number of standard ZBDD operators is exe-

78

Kyri
ak

os
 C

hri
sto

u

cuted (see Chapter 3). If steps 6-15 are executed then it has the same argument of complexity

with Algorithm 4.1 with respect the number of combinations necessary, Algorithm 4.3. The

complexity of both Algorithm 4.3 is discussed together with Algorithm 4.2. Algorithm 4.3

consists of a linear number of standard and new ZBDD operations of polynomial complexity,

per examined combination. Thus, if the number of combinations needed is linear, then Algo-

rithm 4.3 is of polynomial complexity and Algorithm 4.2 also of polynomial since Algorithm

4.3 is executed for all circuit lines.

The most critical step in finding the ΠC
i,l,ci,l

set is performed at step 12 and is given in

detail in Algorithm 4.3. Set ΠC
i,l,ci,l

is derived through a linear number of ZBDD operators,

including the newly proposed operators. Step 13 adds the newly captured MPDFs to ΠC
i

and step 17 returns the multiple critical primitive PDF set, ΠC
i , for cardinality i.

Algorithm 4.3 combines PDFs not sensitized up to the examined functionality i, from

PIs (ΠC ,x
j), to specific POs (SinglePOC

l ()). The methodology used can also run per PO

since primitive multiple sensitized PDFs can be captured on one PO. Without any loss of

generality the formulas given in Algorithm 4.3 assumes that a specific PO is being examined.

This makes notation used more simple for better comprehension.

At any step of the algorithm, if any computation results into the empty set (/0), then the

algorithm returns without capturing any MPDF for that specific combination currently ex-

amined. Temporary ZBDDs z1,z2,z3, are used to hold intermediate results of the algorithm.

Step 1 checks if there are any common single PDF segments that the Algorithm 4.3 can

combine from line l at a primary output. Steps 2 and 3 computes the non-controlling func-

tionality on the fanins of l that do not participate in the specific combination. If the examined

gate is a NAND/AND(NOR/OR), then the Type(g) = 1 (Type(g) = 0). The type of the gate

is actually the non-controlling value for a specific gate type for example the value 1(0) is a

non-controlling value for gates AND(OR), NAND(NOR). Step 4 computes the product of

the non-controlling functionality on the off inputs and the single segment from l to the POs,

along with its excitement functionality. This step is used as an intermediate result in steps

11-12 and is assigned to a temporary ZBDD z1. Up to this point all the single PDF segment

from l along with the necessary excitement functionality from line l has been computed. Step

5 checks if the output of the previous step 4, is the empty set to stop the Algorithm 4.3. Steps

7 through 19 try to match PDFs from the composing elements of the combination examined.

Each combination in the ck,i,l ∈ ci,l , consists of a set of elements that needs to be combined

together in order to capture a multiple critical PDF . Number k indicates the order of each

79

Kyri
ak

os
 C

hri
sto

u

Data: C : Circuit;

C : Potentially testable critical single PDFs;

g : Circuit gate examined;

l : Circuit line examined;

ci,l : Combination examined;

Result: ΠC
i,l,ci,l

;

1 if (SinglePOC
l () == /0) then return ΠC

i,l,ci,l
← /0;

2 if (Type(g) = 1) then nc fl,ci,l()← •
y∈FIl(),y<cx, j

i,l ,c
x, j
i,l ∈ci,l

fy();

3 else if (Type(g) = 0) then nc fl,ci,l()← •
y∈FIl(),y<cx, j

i,l ,c
x, j
i,l ∈ci,l

fy();

4 z1← nc fl,ci,l()•SinglePOC
l () ;

5 if (z1 = /0) then return ΠC
i,l,ci,l

← /0;

6 %For each element in ci,l such that k ∈ {1,2, .., |ci,l|};

7 foreach ck,i,l ∈ ci,l do

8 z3← /0;

9 %For each composing element of combination ck,i,l;

10 foreach cx, j
k,i,l ∈ ck,i,l do

11 if (j == 1) then z2←
(

z1 ?n Π
C ,x
1

)
∩n C ;

12 else z2←
(

z1 ?n Π
C ,x
j

)
∩n
(
∧nSinglePOC

l ()
)
;

13 if (z3 = /0) then z3← z2;

14 else z3← z3 ?n z2;

15 end

16 z3← z3∩n
(
∧nSinglePOC

l ()
)
;

17 if (ΠC
i,l,ci,l

= /0) then ΠC
i,l,ci,l

← z3;

18 else ΠC
i,l,ci,l

←ΠC
i,l,ci,l
∪ z3;

19 end

20 return ΠC
i,l,ci,l

;

Algorithm 4.3: Multiple Critical Primitive PDF Set ΠC
i,l,ci,l

80

Kyri
ak

os
 C

hri
sto

u

Figure 4.13: Example Circuit F

set in ci,l . Basically ci,l is a set of sets of elements. Each element, cx, j
k,i,l ∈ ck,i,l , corresponds

to a specific fanin line x and a specific cardinality examined j. Adding all cardinality for

each element in the set should equal i, that is the examined cardinality. Steps 7 loops among

all possible combinations and step 10 loops among all elements of a specific combination.

Step 8 is just an initialization of the temporary ZBDD variable z3. If the cardinality, j, of the

combination element cx, j
n,i,lexamined on fanin x is 1, then step 11 is executed otherwise step

12 is taken. For better understanding of steps 11-16, which contain the newly introduced

operators is best to see these steps through an example in the next paragraph. Steps 17-20

simply add the resulting ISOP/ZBDD with the newly captured critical primitive PDFs, steps

17-18, and return the output of Algorithm 4.3, step 20.

Consider the example circuit F of Fig. 4.13. Following Algorithm 4.3 on this example

circuit with the assumption that the current cardinality being examined is three, i = 3. Con-

sider critical set C = {P1.S3.S1, P2.S3.S1, P3.S1, P4.S1, P5.S2}, containing five elements,

that is 5 single critical PDFs. The circuit contains an AND4 gate, thus the gate type is 1, at

line x with 4 fanins FIx = {x1,x2,x3,x4}. The current combination examined is c3,x and it

consists of a single combination consisted by 2 elements namely, c3,x = {(cx1,1
1,3,x,c

x3,2
1,3,x)}. This

implies that Algorithm 4.3 will try to combine single PDFs captured at x1 fanin and doubly

captured PDFs at x2 fanin. The requirement is that all the PDFs considered singly or doubly

captured have been invalidated at some point from the examined gate or later. That’s why

these PDFs are not singly or doubly sensitized. Examining x1 fanin of the AND4 gate, three

single segments with a total of 3 PDFs have been detected namely {P3,P4,P5}. Observing

the third fanin, x3, a multiple fault of cardinality two, {P1.P2.S3.S1}, has been captured on

an AND2 gate before, but has been invalidated at some point between the examined AND4

gate and the primary output.

Let us assume that the single segment SinglePOC
x () = {nc fS1.S1,nc fS2.S2}, step 1. The

81

Kyri
ak

os
 C

hri
sto

u

ncv functionality on the site inputs has been computed at step 2 , fx2(). fx4(), and step 4

computes the product of the non-controlling functionality on the off-site inputs previously

computed and the single segment SinglePOC
x () from step 1. This is stored in temporary

ZBDD z1 = { fx2(). fx4().nc fS1.S1, fx2(). fx4().nc fS2.S2}. Since z1 is not empty, step 5, the

algorithm proceeds with step 7. Since only one set of elements is in c3,x the algorithm

proceeds on step 10, after initializing temporary ZBDD z3 at step 8.

Now for simplicity we abstract all functionality information from our example. Examin-

ing fanin x1 step 11 is being executed. The first term of the equation, z1 ?n Π
C ,x
1 =, in step 11

is first computed. This term computes the product between the two ZBDD using binate prod-

uct on the two ZBDDs until index n and applying unate product for rest part of the ZBDDs.

This is necessary since the problem examined is described with 2 variable kinds. We want

the product operation on the functionality information of the ISOP/ZBDD to be performed

in a binate way and the rest information that concerns PDFs to be performed in a unate

fashion. Thus applying the 2 way product will produce z1 ?n Π
C ,x
1 = {S1,S2}?n {P3,P4,P5}

= {P3.S1, P4.S1, P5.S1, P3.S2, P4.S2, P5.S2}. As we can see from the produced result

PDFs that are not part of the initial critical set have been produced for example P4.S2. In

order to remove these false PDFs the second term of the equation is applied on the com-

puted set of the first part that is z2 = {P3.S1, P4.S1, P5.S1, P3.S2, P4.S2, P5.S2} ∩nC

= {P3.S1,P4.S1,P5.S2}. In this part of the equation an intersection between the resulted

term from the first part and the critical set will remove these false PDFs. The intersection

concerns only PDF variables that is with index >= n. Since we are investigating single

PDFs we can apply the special intersection operation on the critical set which contains full

PDF information.

For simplicity it is assumed that P4.S1 has not been included in z2 because it has been

removed by the functionality constrains(on the first part of the operation the special prod-

uct). Thus z2 = {P3.S1,P5.S2}. Step 11 is then executed since z3 = /0. The second half of

the combination is examined , that is PDFs coming through fanin x3. This combinations

looks into the already captured doubly PDFs from x3, thus line 12 of Algorithm 4.3 is ex-

ecuted. The first term of line 12 follows the same logic as in line 11, thus z2 = z1 ?n Π
C ,x
j>1

= {S1,S2}?n{P1.P2.S3.S1}= {P1.P2.S3.S1,P1.P2.S3.S1.S2}. The same phenomenon oc-

curs as in line 11, that is false PDFs have been generated. Since now we can not apply the

special intersection on the critical set since this is a multiple PDF and its representation

differs. All the functional information are deleted from the single segment information on

line x, with the operation ∧nSinglePOC
l (). Applying the special intersection operation will

82

Kyri
ak

os
 C

hri
sto

u

1 0

P1

S3

P2

S1

P3

P4

P5

S2

Figure 4.14: Critical ZBDD PDFs in Circuit F

10

ncf_x1_p3

P3

ncf_x1_p4

P4

ncf_x1_p5

P5

Figure 4.15: ISOP/ZBDD Graph for x1 fanin of F

remove all those multiple captured PDFs that are not contained in the segments.

This results in removing the false PDFs, z2 = {P1.P2.S3.S1}. Step 14 is then executed

and this also introduces some false PDFs. Specifically z3 = {P3.S1,P5.S2}?n{P1.P2.S3.S1}

and this results in z3 = {P1.P2.S3.P3.S1,P1.P2.S3.P5.S1.S2}. All the combination have

been covered thus step 16 is executed to clear all the false PDFs. The same arguments and

explanation as in step 14 applies in this case too. Thus true multiple PDF {P1.P2.S3.P3.S1}

is captured and consists of three PDFs namely {P1.S3.S1,P2.S3.S1,P3.S1}. Step 17 is ex-

ecuted since ΠC
i,l,ci,l

= /0 and then step 20 returns the result.

Figure Fig. 4.14 shows the critical PDFs of circuit F , Fig. 4.15 the ISOP/ZBDD graph

83

Kyri
ak

os
 C

hri
sto

u

10

ncf_x3

P1

P2

S3

S1

Figure 4.16: ISOP/ZBDD Graph for x3 fanin of F

1 0

ncf_s1

S1

ncf_s2

S2

Figure 4.17: ISOP/ZBDD Graph for SinglePO of x

84

Kyri
ak

os
 C

hri
sto

u

of fanin x1 of circuit F and Fig.4.16 shows the ISOP/ZBDD graph of fanin x3 of circuit F . In

4.17 shows the SinglePO of line x of sample circuit F . In these three figures, Fig.4.14 -4.17,

ZBDD variables represent path segments, a sequence of variable. This does not imply that

there is not variable sharing between the path segments. The abstraction has been made for

better understanding/simplicity of Algorithm 4.3.

4.3.3 Necessary Function Formulation

Necessary function formulation are given below. Function SinglePOC ,tr
l (), is being used in

Algorithms 4.2 and 4.3. At line l, SinglePOC ,tr
l () denotes all the PDF segments from line

l until a primary output has been reached along with all necessary sensitization criteria at

the PDF segments off-input and belong to the critical C set. Moreover tr ∈ {R,F} denotes

the transition type rising(R) or falling(F). These information are extracted from the circuit

starting from the primary outputs until the primary inputs have been reached. These functions

also are defined over a specific cardinality and a specific primary output. The definition of

this function per primary output is not a necessary step as it can be defined over all the

primary outputs, its only done for simplicity. The cardinality number is needed since the

algorithm iteratively computes the primitive critical PDF set of a specific cardinality. In

order to be correct we must remove all the segments captured at each iteration. This is

achieved by the following operation:

SinglePOC ,tr
l () = SinglePOC ,tr

l ()∩n (∧mC) (4.1)

where m = Indexl(). This means that only segments belonging to the currently examined

critical set, (∧mC), are considered. Algorithm 4.1 is a recursive operation on the cardinality

number. At each iteration step a newly computed critical PDF set is being computed in order

to maintain the primitivity correctness. Only those PDF that have not contributed to a lower

cardinality PDF can contribute to the next iteration. Getting all the critical PDF segment

from line l (∧mC) and then intersecting with the constructed set when cardinality was two

i−1 we remove all those PDF segment that have contributed on i−1 iterations. Maintaining

a list at each line for every primary output makes it faster to find the primitive critical PDF

set because multiple primitives critical PDFs combine at a gate for a certain primary output.

Let o ∈ PO. We start by defining functions SinglePOC ,R
o ()(SinglePOC ,F

o ()) at the PO.

Each o ∈ PO is associated with two path variables, iR and iF . ZBDDs z1 and z0 denote

the terminal one node and terminal zero node respectively. To represent a transition on

85

Kyri
ak

os
 C

hri
sto

u

o, the appropriate path variable (oR or oF) need to be included. The necessary function

formulations at a primary output o are given below:

SinglePOC ,R
o (T ∪P) = !(z1, oR) o ∈ POs (4.2)

SinglePOC ,F
o (T ∪P) = !(z1, oF) o ∈ POs (4.3)

Consider now an AND gate g with output line l and fanins FI(l). PDF segments up to

line l along with all the sensitization information needs to traverse backwards through any of

the lines in FI(l). Any line in FI(l) can be considered as an on-input with the remaining lines

being off-inputs that must settle to ncvg. Consider line y ∈ FI(l) to be an on-input. Function

•
x∈FI(l),x,y

fx() will give all test cubes that allow all remaining off-inputs in FI(l) to settle to

ncvg = 1 (given by fx() in the expression). Function !((SinglePOC ,tr
l () •(•

x∈FI(l),x,y
fx())), l)

will give all non-robustly sensitizable PDFs up to line y, through line l, along with the

sensitization cubes. Every line in FI(l) is a possible on-input not only on gate g but also on

other gates (to cover fanout stems), thus function SinglePOC ,tr
y () given by:

SinglePOC ,tr
y () =

(
!
((

(SinglePOC ,tr
l () • (•

x∈FI(l),x,y
fx()))

)
, ytr

)
,
⋂

n
(∧mC)

) ⋃
(

SinglePOC ,tr
y ()

)
(4.4)

For an OR gate g the off-inputs in FI(l) need to settle to ncvg = 0. Thus, it suffices to

replace fx() with fx() in Eq. 4.3, as given below:

SinglePOC ,tr
y () =

(
!
((

(SinglePOC ,tr
l () • (•

x∈FI(l),x,y
fx()))

)
, ytr

)
,
⋂

n
(∧mC)

) ⋃
(

SinglePOC ,tr
y ()

)
(4.5)

The SinglePOC ,R
y () and SinglePOC ,F

y () functions for the output line l of a NOT gate with

input line y are given below.

SinglePOC ,R
y () = !

(
SinglePOC ,F

l (), yR
) ⋃

SinglePOC ,R
y () (4.6)

86

Kyri
ak

os
 C

hri
sto

u

SinglePOC ,F
y () = !

(
SinglePOC ,R

l (), yF
) ⋃

SinglePOC ,F
y () (4.7)

SinglePOC
y () is computed iteratively on a reversed topological traversal manner until

a primary input has been reached. Starting from the PIs until a PO has been reached the

algorithm for finding a sensitized critical primitive MPDF tries to combine at a gate different

fanins of that gate to form the MPDF (this step is done with FuncPk()) and then tries to

find common way to a single primary output through SinglePOC
y (). In these operations the

transition is implied. That is we can only combine the rising transitions to a specific gates

fanins and we look for a common way to the primary output with the same transition unless

the gate is an inverting gate thus we look for the opposite transition.

Combining MPDFs can only occur on internal gates, thus not on primary input lines,

and only on lines where the number of fanins is greater than 1. Thus single fanin gates,

buffers and inverting gates, are also excluded, since no combination of paths can occur on

these gate types. Moreover only PDFs of the same transition type can be captured together.

That is on a line we can not combine a rising PDF from one fanin and a falling from another.

The function formulation for capturing multiple PDFs of cardinality i at circuit line l and

identifying the primitive critical PDFs at internal gates with greater than one fanin,gates of

type AND, NAND, OR and NOR, is given below:

Π
C ,tr
i,l =

⋃
ci,l∈combi,l

 ?n
cx, j

k,i,l∈ck,i,l

((
nc fl,ci,l()•SinglePOC

l ()
)
?nZ1

)
∩n

(
∧nSinglePOC

l ()
)
(4.8)

Let Z1 to be a temporary ZBDD. Let x ∈ FIl() and j < i to denote the cardinality of the

composing PDFs from fanin x of line l. Then if j > 1 then Z1 = Π
C ,x
j>1() else if j = 1 then

Z1 = Π
C ,x
1 ()∩n C . Computing the non-controlling functionality nc fl,cl,i() depends on the

type of the examined gate g. If the gate is NAND or AND then the non-controlling on the off

inputs is 1 thus nc fl,cl,i()← •
y∈FIl(),y<cx, j

k,i,l ,c
x, j
k,i,l∈ck,i,l

fy(). If the non-controlling functionality on

the site inputs is 0, OR and NOR gate types, then nc fl,ci,l()← •
y∈FIl(),y<cx, j

k,i,l ,c
x, j
k,i,l∈ci,l

fy().

Function Π
C ,x
j () denotes the already captured but not sensitized PDFs of cardinality

j < i, where i denotes the currently examined cardinality and j a lower cardinality captured

PDF . The main difference from the previous function formulation is that these PDF have

been invalidated by the functionality on the single segment from l to a PO. Thus the non-

controlling functionality of the combination examined nc fl,ci,l() is combined with the ZBDD

87

Kyri
ak

os
 C

hri
sto

u

product operation of the single critical segments from l to a PO with no added functionality

on the site inputs of the segment, ∧mC , where m = Indexl().

Π
C ,l,tr
i =

⋃
ci,l∈combi,l

 ?n
cx, j

k,i,l∈ck,i,l

((
nc fl,ci,l()• (∧mC)

)
?nZ1

)
∩n

(
∧nSinglePOC

l ()
)

(4.9)

4.3.4 Maintaining the Primitivity Property-A Three Step Procedure

One of the most important issues in finding the primitive fault set is preserving the Primitivity

Property. The Primitivity Property must be preserved throughout the whole procedure in

order to have a correct primitive path fault set detected. In simple terms a correct primitive

path fault set means that it does not contain smaller cardinality faults. For example if a PDF

was a part of a primitive fault set of cardinality i, then it can no longer contribute and be a

part a higher cardinality primitive path fault set.

The primitivity property is preserved at steps 2, 7 and 8 of Algorithm 4.1, by removing

the already detected PDFs from the critical path set. Step 2 of Algorithm 4.1 is a standard set

difference ZBDD operation. Step 7 and 8 involves multiple faults and is treated differently.

These steps are a necessity for the algorithms correctness. Step 7 of Algorithm 4.1 detects the

different single PDFs that form a multiple critical primitive fault and step 8 removes them

from the critical set examined. These steps must be taken before continuing searching for

faults of higher cardinality, than those currently examined. Observe that step 2 of Algorithm

4.1 involved only single PDFs.

Multiple faults are represented within a ZBDD as a single route from the root node to the

terminal 1 node. Each such route denotes a multiple fault. In order to find all the different

PDFs that contributed to that fault, a three-step operation is used. The multiple fault set

(ΠC
i) and the critical path set (C) are used in these steps. First, at step 7, the Cross Product

of the two set is computed, ΠC
i ∗C . Then the standard ZBDD intersection operator , ∩,

is applied on the resulting set of the Cross Product and the critical path set. The resulting

ZBDD SC
i =

(
ΠC

i ∗C
)
∩C contains only the single PDFs that contributed in the multiple

critical primitive PDF set. The third and final step, 8, is the set difference ZBDD operation

between SC
i and C . The resulting set, C contains only PDFs that have not been merged and

contributed to a multiple PDF . Thus C will be the set of critical PDFs not yet detected and

that set will be used for finding higher cardinality primitive critical faults.

88

Kyri
ak

os
 C

hri
sto

u

C = C \
((

Π
C
i ∗C

)
∩C

)
(4.10)

The steps taken for maintaining the primitivity property is illustrated in detail for the

circuit of Fig. 4.5. When the single testable PDFs have been found then these are removed

from the initial set of potentially testable critical PDFs. For the circuit C of Fig. 4.5 the

initial C set is composed of 8 PDFs and 5 of them are singly non-robustly testable. The set

difference operator is applied to the initial PDF set and the set of singly testable PDF set

and the resulting PDFs, 3, will be used for finding ΠC
2 set. Fig. 4.10 defines the potentially

testable critical path set of circuit C of Fig. 4.5 for finding set ΠC
2 . The ZBDD that contains

ΠC
2 set is showed on Fig. 4.11.

(1) Computing Cross Product:

Π
C
i ∗C = {bF. f F.gR.iF,bF. f F.hR.iF,cF.eF. f F.gR.iF}∗{bF. f F.gR.hR.iF}

= {bF. f F.gR.iF,bF. f F.hR.iF, f F.gR.iF}

(2) Computing Intersection:

(
Π

C
i ∗C

)
∩C = {bF. f F.gR.iF,bF. f F.hR.iF, f F.gR.iF} ∩

{bF. f F.gR.iF,bF. f F.hR.iF,cF.eF. f F.gR.iF}

= {bF. f F.gR.iF,bF. f F.hR.iF}

(3) Removing detected contributing single PDFs:

C \
((

Π
C
i ∗C

)
∩C

)
= {bF. f F.gR.iF,bF. f F.hR.iF,cF.eF. f F.gR.iF} \

{bF. f F.gR.iF,bF. f F.hR.iF}

= {cF.eF. f F.gR.iF}

Thus the set C = {cF.eF. f F.gR.iF} is the potentially testable critical path set of circuit

C that will be used to find ΠC
3 and higher cardinality primitive critical PDFs. The three step

procedure must be executed every time that a ΠC
i has been derived. This way it is ensured

that the newly detected primitive critical PDFs have not been used in a lower cardinality

primitive critical PDFs set. The resulting ZBDD of the third step can be seen in Fig. 4.12.

89

Kyri
ak

os
 C

hri
sto

u

4.3.5 New ZBBD Operators for primitive PDFs

Three new, non-enumerative operators are introduced below. The need for these new ZBDD

operators arises from the problem addressed in this work. Critical primitive paths are stored

and manipulated in ZBDDs and existing ZBDD operators cannot support the problem for-

mulation. These new operators do not increase the performance. All of the three newly

proposed ZBDD operators are based on a depth first search and they are linear in terms the

depth of the ZBDD. In the worst case scenario, any ZBDD operator may require to explore

the ZBDD size, number of ZBDD nodes. As the primitive cardinality increases, the number

of operations used, decreases. If these operators are performed at one element of the set at

a time, then the time needed to compute it would depend on the size of the set. This is not

practical for large sets. The new operators are based on the divide and conquer concept, as

most of the operators of the cudd package. Terms are computed recursively, using hash-

based cache thereby avoiding unnecessary execution. Thus the time needed for all of the

three newly operators are linear to the ZBDD size. The complexity of the first two opera-

tors (∩n,?n) is in the worst case polynomial to the input ZBDDs and the complexity for the

third operator (∧n) is linear to the input ZBDD. All these operators have been used in the

algorithm given finding the critical primitive PDF set.

Furthermore operators New-Intersect(P∩n Q) and New-Product(P?n Q) can not be con-

structed using existing ZBDD operators because these operators are specific to the addressed

problem and handle binate and unate variables in a single structure, the ISOP/ZBDD struc-

ture. On the other hand operator Segment(∧nP) can be constructed by taking the union over

the subset(0) and subset(1) over all variables with index < n on ZBDD Q = Pv1 , for variable

v such that Index(v) = n. If R is the resulting ZBDD then R = ∀
v,Index(v)<n

Qv1 ∪Qv0 . In order

to find R, n union operations and 2∗n subset operations are needed. The Segment operation

is at least twice faster since it explores the tree structure of the given ZBDD and uses the

cache to store partial results thus avoiding extra operations to occur.

Another important observation is that the ZBDD operators, enable complex operations to

be performed in an non-enumerative and implicit manner. This is really important in terms

of memory and time requirements. From this point we assume that P and Q denote a ZBDD.

Operator New-Intersect P∩n Q

A new ZBDD operator is introduced (∩n) to perform intersection between the elements of

two sets after a certain number of variables. This operator is needed since the methodology

90

Kyri
ak

os
 C

hri
sto

u

P

c0

01

b1

c1a1

b1

a0bR

a1

cF

eF

fR

cR

bR

fR

cR

hF

eR

gF

eR

fF

hR

iR iF

Figure 4.18: ISOP/ZBDD Graph for singly testable PDFs of C (P)

91

Kyri
ak

os
 C

hri
sto

u

Q

cR

0 1

eR

cF

fR

eF

fF

gF gR

iR

hF

iF

hR

Figure 4.19: PDFs from PI c of Circuit C (Q)

used uses the ZBDD-based ISOP structure which consists of two kinds of variables, test and

path variables. The input to the above operator is the P set which contains both variable

kinds and the Q set only path variables. The number n provided, denotes the first path

variable found in order. This operation returns a ZBDD that contains only the paths that are

common to both P,Q sets, along with their functionality (which is only found on Q). Thus,

this operator has the same complexity with the standard ZBDD intersection.

This is illustrated through the following example. Let R denote the resulting set of the

new-Intersection operation, R = P∩n Q. Let P be the set that contains all the single testable

PDFs of circuit of Fig. 4.5 along with their functionality. Fig. 4.18 denotes the ZBDD-based

ISOP structure for P. There are exactly 5 PDFs contained in this structure. Let Q be all the

PDFs that begin from primary input c of circuit C of Fig. 4.5. Fig. 4.19 is the ZBDD that

contains three PDFs. There are 4 routes from the root to the terminal node 1 representing

the 4 PDFs that start from primary input c of circuit C. Since the number of primary inputs

of circuit C is 3 then 6 test variables are needed, 0 to 5. Thus the path variables begin from

variable number 6. Thus R is computed as R = P∩6 Q. The resulting ZBDD-based ISOP

structure that represents R is shown in Fig. 4.20. Observe that there are exactly 3 PDFs along

92

Kyri
ak

os
 C

hri
sto

u

R

c1

0 1

b1 c0

a1 b1

a1

cR

a0

cF

eFeR

cR

eR

fR fR fF

hF gF hR

iR iF

Figure 4.20: ISOP/ZBDD Graph R = P∩n Q

93

Kyri
ak

os
 C

hri
sto

u

with their functionality and that the order of the test variables is c > b > a. The resulting

ZBDD R eliminates all those PDFs along with their functionalities that are not contained in

Q.

Operator New-Product P?n Q

Data: ZBDD P,ZBDD Q,n;

Result: ZBDD R;

1 if (P = /0||Q = /0) then return /0 ;

2 if (P=Q) then return P;

3 if (cache(P ∩n Q) , /0) then return cache(P ∩n Q);

4 PTop(QTop)← Top Variable of P(Q);

5 P1(P0)← T(P)(E(P));

6 Q1(Q0)← T(Q)(E(Q));

7 if (PTop = n) then

8 if (PTop > QTop) then R← P ∩n Q0;

9 else if (PTop < QTop) then R← P0 ∩n Q;

10 else

11 Z0← P0 ∩n Q0;

12 Z1← P1 ∩n Q1 ;

13 R← ZBDD(PTop,Z1,Z0);

14 end

15 else

16 Z0← P0 ∩n Q;

17 Z1← P1 ∩n Q;

18 R← ZBDD(PTop,Z1,Z0);

19 end

20 cache(P ∩n Q)← R;

21 return R;

Algorithm 4.4: New-Intersect: P∩n Q

This operator takes as input two ZBDDs P,Q and a number, n, which denotes a certain

variables order in the set. In this operator, from the top variable of both ZBDDs until n has

been reached, the binate product of the 2 covers is performed and from n variable and below

94

Kyri
ak

os
 C

hri
sto

u

the unate product of the 2 covers. The test variables have two ZBDD variables adjacent in

order (binate) while the path variables use only one (unate). Thus, the complexity of this

operator is of polynomial in the worst case.

Take for instance the example shown in Fig. 4.21, Fig. 4.22 and Fig. 4.23. As an input

for the new product operator the two ISOP/ZBDD structures in Fig. 4.21 and Fig. 4.22 will

be used. Fig. 4.21 denotes the ISOP/ZBDD structure, P, for the falling transition on line

g while Fig. 4.22 denotes the ISOP/ZBDD structure, Q, for the falling transition on line h.

Fig. 4.23 denotes the ISOP/ZBDD structure, R, which is the R = P ?6 Q, n = 6 since only 6

test variables exist. In P there are 2 PDFs, namely {bR.fR.gR.gF.iR, cR.eR.fR.gF.iR} and in

Q there are also 2 PDFs, {bR.fR.hF.iR, cR.eR.fR.hF.iR}. The resulting ISOP/ZBDD based

structure contains 3 doubly sensitized PDFs. In the example the PDFs that P and Q consist

of, are all non-robustly singly sensitizable. This example aims to show the potentials of the

new proposed operator.

Data: ZBDD P,ZBDD Q, n;

Result: ZBDD R;

1 PTop(QTop)← Top Variable of P(Q) ;

2 if (QTop > PTop) then R← Q?n P;

3 else if (PTop < n) then R← P Binate Product Q;

4 else R← P Unate Product Q;

5 return R

Algorithm 4.5: New-Product: P?n Q

Now observing the resulting ISOP/ZBDD structure, 3 PDFs can be distinguished, namely

{bR.cR.eR.fR.gF.hF.iR, bR.fR.gF.hF.iR, cR.eR.fR.gF.hF.iR}. Each of these PDFs consist

of two PDFs one in set P and the other in Q. For instance PDFs {cR.eR.fR.gF.iR} and

{cR.eR.fR.hF.iR} form the double PDF {cR.eR.fR.gF.hF.iR}. The power of this operator

hangs from the fact that someone can use this operator and extract the multiply sensitized

PDFs without any restrictions on the cardinality of the multiple PDFs it considers.

Operator Segment ∧nP

The third operator takes as input one ZBDD P, and a number, n, which denotes a variable in

the set. It returns another ZBDD that consists of routes of the given ZBDD P that contain the

variable number n. This actually is an operator that answers the following question: What

95

Kyri
ak

os
 C

hri
sto

u

P

c1

01

b1

a0

bR

fR

cR

gF

eR

iR

Figure 4.21: P-ISOP/ZBDD Graph for falling PDFs of line g

96

Kyri
ak

os
 C

hri
sto

u

Q

c1

01

b1

a1

bR

fR

cR

hF

eR

iR

Figure 4.22: Q-ISOP/ZBDD Graph for falling PDFs of line h

97

Kyri
ak

os
 C

hri
sto

u

R

c1

0 1

b1

a0

bR

cRcR

eR

fR

gF

hF

iR

Figure 4.23: ISOP/ZBDD Graph for R = P ?6 Q

98

Kyri
ak

os
 C

hri
sto

u

are the Rising(Falling) PDF segments that start from a specific circuit line.

Data: ZBDD P,n;

Result: ZBDD R;

1 if (P == /0) then return /0;

2 if (P == 1) then return 1;

3 PTop← Top Variable of P;

4 if (PTop == n) then

5 if (T (P) == /0) then R = /0;

6 else R = ZddGetNode(PTop,T (P),NULL);

7 else if (PTop > n) then R = /0;

8 else

9 Z0←∧n T (P);

10 Z1←∧n E(P);

11 if (Z0 , /0||Z1 , /0) then R←∪(Z1,Z0);

12 else if (Z0 , /0) then R← Z0;

13 else if (Z1 , NULL) then R← Z1;

14 else R← /0;

15 end

16 return R;

Algorithm 4.6: Segment: ∧nP

The segment operator is illustrated through an example. Consider the ZBDD that con-

tains all the circuit PDFs of circuit of Fig. 4.5. This ZBDD, denoted by P, is showed on

Fig. 4.6. Fig. 4.24 shows all the PDF segments of the circuit beginning from line f that

have a rising transition on f until the primary output has been reached. There are exactly 2

segments from line f that have a rising transition and these are {fR.gF.iR, fR.hF.iR}. The

resulting ZBDD, R, has been obtained by applying the segment operator on ZBDD P and

the number that f R is denoted by, R = ∧Index(f R) P. Fig. 4.25 shows all the PDF segments

of circuit C from line f that have a falling transition on f until the primary output has been

reached. There are 2 PDF segments, {fF.gR.iF, fF.hR.iF}, and have been obtained by apply-

ing the segment operator on ZBDD P and the number that f F is denoted by, R = ∧Index(f F)

P.

99

Kyri
ak

os
 C

hri
sto

u

Rising

fR

0 1

gF

iR

hF

Figure 4.24: ZBDD from f with Rising PDF segments of Circuit C
Falling

fF

0 1

gR

iF

hR

Figure 4.25: ZBDD from f with Falling PDF segments of Circuit C

100

Kyri
ak

os
 C

hri
sto

u

4.4 Experimental Results

The proposed methodology was implemented in C language on top of the CUDD package

of [107] and the extra library of [76], and run on a 1GHZ SunBlade 1500 workstation with

4GB of memory. We experimented with the ISCAS′85 and the full-scanned versions of the

ISCAS′89 benchmark circuits. The BDD variable ordering provided along with the tool

of [107] was used, which is optimal for most of these circuits. The circuits were processed

on a primary output basis, i.e., only the part of the circuit with paths terminating to a single

primary output was considered at a time. All paths in a primitive PDF terminate at the same

output and, thus, no fault is missed or double counted under this scenario. In this manner,

the proposed method remains exact, while achieving considerable speedup since all primary

output partitions can be processed in parallel. The total number of critical primitive PDFs is

the sum of the critical primitive PDFs in each primary output partition.

The set of potentially testable and critical single PDFs (C), needed as an input to the pro-

posed method, was derived using some of the non-enumerative algorithms in [85], although

any existing enumerative or non-enumerative method that determines potentially testable

critical single PDFs can be utilized. Any set of such paths can be easily represented by a

ZBDD, as discussed in [25], [84], [85]. The bounded delay model was considered, and the

delay ranges per gate were obtained from the 0.18u TSMC library using the corner values for

the nMoS and pMOS transistors. Criticality is determined by a user defined delay threshold

T , which is a % of the maximum path delay as determined by static timing analysis. Hence,

a threshold of 80% will identify paths with delay greater than 80% of the maximum path

delay. We have experimented for numerous thresholds between 20%-90%, but we only re-

port the results for T ={90%, 95%} since are the most interesting ones. Potentially testable

critical paths (these are paths that [85] cannot classify as critical or non-critical) were not in-

cluded in order to consider a strictly critical path set. This is an implementation detail which

has no impact on the conclusions drawn by the obtained results, especially since any delay

model and critical path selection criterion and method can be used for this pre-processing

step.

Tables 4.2 and 4.3 lists the obtained results. Column 2 reports the total number of single

PDFs per circuit. Columns 3-6 and 7-10 list the results for delay threshold T equal to 90%

and 95%, respectively. The number of the potentially testable critical single PDFs (obtained

by [85], as explained above) under each delay threshold is given in Columns 3, and 7 (indi-

cated by |CT |). The number of critical single primitive PDFs, i.e., critical primitive PDFs

101

Kyri
ak

os
 C

hri
sto

u

T = 90% of max delay

Circuit Single Single

Name PDFs |CT | |ΠC
1 | |ΠC -ΠC

1 | PDFs

[85] (*) in (*)

b06.opt 168 8 8 0 0

s208.1 284 20 20 0 0

s386 414 14 14 0 0

s298 462 56 29 0 0

s344 710 28 26 0 0

s400 896 52 37 3 4

s444 1.070 96 68 0 0

b13.opt 1.328 90 70 0 0

b08.opt 1.406 106 30 11 22

b10.opt 1.426 26 12 0 0

b03.opt 1.592 94 87 0 0

s953n 2.266 42 42 0 0

b09.opt 2.330 1.456 968 0 0

s1512 6.972 318 195 0 0

s991 14.920 224 120 0 0

b11.opt 15.024 1.904 28 6 9

c880 17.284 2.338 2.086 0 0

s5378 27.046 1.344 1.114 6 12

b12.opt 31.550 412 116 0 0

s3271 38.388 1.704 1.040 72 68

s3384 39.582 806 559 0 0

b07.opt 68.464 24.448 5.314 878 1.134

s1269 79.140 6.104 2.672 0 0

s1423 89.452 798 214 0 0

b04.opt 112.884 31.808 10.480 768 768

s9234.1 489.708 76.032 0 8.992 4.192

c2670 1.359.908 413.100 26.964 2.688 3.117

c7552 1.452.988 302.592 7.000 2.712 2.888

c1908 1.458.112 591.744 33.377 5.121 6.245

c5315 2.682.610 505.456 15.824 11.104 8.704

b05.opt 2.822.046 1.686.784 10.799 9.760 14.482

s4863 2.636.114.122 444.006.400 4.543.201 59.472 119.143

s6669 431.685.738.673.270 374.177.550.827.520 102.529 613.325 130.416

Table 4.2: Results for delay threshold T = 90%.

102

Kyri
ak

os
 C

hri
sto

u

T = 95% of max delay

Circuit Single Single

Name PDFs |CT | |ΠC
1 | |ΠC -ΠC

1 | PDFs

[85] (*) in (*)

b06.opt 168 8 8 0 0

s208.1 284 12 12 0 0

s386 414 2 2 0 0

s298 462 2 1 0 0

s344 710 6 5 0 0

s400 896 8 4 0 0

s444 1.070 36 21 0 0

b13.opt 1.328 36 20 0 0

b08.opt 1.406 32 6 5 9

b10.opt 1.426 10 3 0 0

b03.opt 1.592 22 19 0 0

s953n 2.266 8 8 0 0

b09.opt 2.330 480 240 0 0

s1512 6.972 80 48 0 0

s991 14.920 60 34 0 0

b11.opt 15.024 44 0 0 0

c880 17.284 1.512 1.368 0 0

s5378 27.046 792 788 2 4

b12.opt 31.550 34 1 0 0

s3271 38.388 240 120 0 0

s3384 39.582 224 128 0 0

b07.opt 68.464 276 46 2 4

s1269 79.140 672 204 0 0

s1423 89.452 72 36 0 0

b04.opt 112.884 1.680 524 48 48

s9234.1 489.708 30.720 0 0 0

c2670 1.359.908 88.128 5.904 672 672

c7552 1.452.988 56.416 1.296 108 204

c1908 1.458.112 19.328 0 0 0

c5315 2.682.610 196.992 4.800 1.408 1.408

b05.opt 2.822.046 386.048 2.166 1.676 2.888

s4863 2.636.114.122 52.435.456 11.498 1.594 3.188

s6669 431.685.738.673.270 82.257.213.652.992 22.962 147.406 29.648

Table 4.3: Results for delay threshold T = 95%.

103

Kyri
ak

os
 C

hri
sto

u

of cardinality 1 (indicated by ΠC
1) is given in Columns 4, and 8. The difference between

Columns 3-4 (also 7-8) gives the number of critical PDFs that are not single primitive and

must be considered to identify the critical primitive PDFs of cardinality higher than 1 (these

faults are also referred in the literature as singly or non-robustly untestable [21]). For ex-

ample, for circuit s5378 and delay threshold T = 90% (Columns 3-4), there are 230 singly

untestable faults (1344-1114). For some circuits (s953.n and b06.opt), all faults are single

primitive and, thus, there is no need to consider multiple faults. Circuit s6669 has a large

number of single PDFs and thus we have abstracted the numbers in the table to fit in the

columns. Circuit s6669 has a total of 431.685.738.673.270 single PDFs and for T = 90%

the number of critical PDFs equals to 374.177.550.827.520 and for T = 95% the number

of critical PDFs equals to 82.257.213.652.992.

Columns 5, and 9 list the number of critical primitive PDFs of cardinality higher than

1 identified by the proposed method (indicated by |ΠC− ΠC
1 |). Hence, the total number of

critical faults needed to be tested (|ΠC |) is the summation of the faults in Columns 4 and 5,

for the case of T = 90% (similarly for the other values of T). In the reported experiments

we bounded the maximum cardinality of a primitive fault to 9 in order to maintain reason-

able execution times. Thus, ΠC here is actually ∑ΠC
i , i = 1 · · ·9. This is a reasonable bound

since it is unlikely that more than 9 critical paths [105], each of them having delay faults that

violate the maximum circuit delay, can be co-sensitized. This is also supported by the fact

that the majority of the primitive faults identified in set ΠC −ΠC
1 have cardinality 2 or 3.

Nevertheless, the proposed method is exact, thus, critical primitive faults of any cardinality

can be identified in the expense of additional computation time. As expected, the number

of faults in ΠC −ΠC
1 increases as the delay threshold T decreases, since the number of

paths considered critical increases. However, in all circuits |ΠC −ΠC
1 | remains small which

means that adding a small number of tests for the faults in ΠC −ΠC
1 can increase the quality

of the delay test set since necessary critical multiple (i.e., primitive) faults will also be tested.

Columns 6 and 10 report the number of critical singly untestable faults participating in the

formation of at least one multiple fault of those reported in Columns 5, and 9, respectively.

For example, consider again circuit s5378 and delay threshold T = 90%. Out of the consid-

ered 1344 potentially testable critical single PDFs, 1114 are single primitive and 12 can be

tested under the multiple fault criterion by participating in at least 1 of the 6 multiple faults.

The remaining 218 potentially testable critical single PDFs (1344-(1114+12)) are identified

as PDFs that do not need to be tested under the primitive fault conditions.

Table 4.4 reports the CPU time of the proposed method. We observe that time does

104

Kyri
ak

os
 C

hri
sto

u

Circuit Name T = 90% ATPG T = 95% ATPG ATPG (Avg)

b06-opt 0,00 0,00 0,00 0,00 0,00

s208.1 0,13 0,01 0,02 0,01 0,01

s386 0,91 0,01 0,88 0,00 0,01

s298 2,24 0,02 0,98 0,00 0,01

s344 0,70 0,03 0,28 0,01 0,02

s400 3,11 0,04 0,93 0,01 0,03

s444 1,23 0,02 0,54 0,01 0,02

b13-opt 1,68 0,02 0,12 0,01 0,02

b08-opt 0,00 0,02 0,00 0,01 0,02

b10-opt 0,01 0,01 0,00 0,01 0,01

b03-opt 0,51 0,02 0,20 0,01 0,02

s953n 0,67 0,09 0,59 0,07 0,08

b09-opt 0,08 1,01 0,01 0,22 0,62

s1512 0,14 0,86 0,05 0,02 0,44

s991 0,12 0,08 0,07 0,01 0,05

b11-opt 0,22 0,90 0,02 0,01 0,46

c880 5,54 3,21 0,96 1,52 2,37

s5378 4,21 1,31 3,11 1,21 1,26

b12-opt 0,05 0,04 0,00 0,01 0,03

s3271 0,96 1,20 0,54 0,54 0,87

s3384 0,07 0,77 0,01 0,45 0,61

b07-opt 1,33 1,25 0,21 0,02 0,64

s1269 0,88 1,02 0,20 0,02 0,52

s1423 4,41 3,11 1,01 0,18 1,65

b04-opt 0,21 2,22 0,05 0,82 1,52

s9234.1 3,21 3,00 1,01 0,02 1,51

c2670 110,32 24,69 23,24 9,51 17,10

c7552 299,18 15,65 57,21 9,43 12,54

c1908 1.750,19 145,65 304,22 28,96 87,31

c5315 46,84 55,21 11,81 11,23 33,22

b05-opt 18,36 30,21 1,97 10,22 20,22

s4863 250,33 53,20 44,21 11,02 32,11

s6669 350,21 19,52 74,21 12,04 15,78

Table 4.4: CPU time(secs) requiremnts for the proposed method.

105

Kyri
ak

os
 C

hri
sto

u

not necessarily increase with the size of the circuit or the number of the considered paths.

For example, circuit s4863 and s6669 are considerably larger, in terms of number of gates

and number of faults considered, than circuit C1908, but its required time are considerably

lower of that of C1908. This occurs because the time complexity of the proposed method

depends on the size of the underlined ZBDDs, which in turn depend on the structure and

functionality of the circuit rather than its size. Column 3,5 and 6 (averaged over the two

different thresholds),shows the time needed to generate a test set that detects all single and

multiple critical faults in ΠC using simple linear traversals on the generated ZBDD structure

in a manner similar to that proposed in [25].

An important conclusion can be extracted by examining the experimental results. The

proposed method can be scalable to very large circuits. The methodology is fast if the depth

of the circuit under test is not excessively long. This can be explained by examining the size

of the underlined ZBDDs. In short circuits the ZBDD constructed has a lot of sharing and

its really compact. Thus the size of the ISOP/ZBDD graph examined is small. Nowadays,

industrial circuits tend to have a huge number of gates with a short depth.

4.5 Conclusions

The testable critical primitive PDF set is defined and computed in a non-enumerative fashion

for any potentially testable critical PDF set. It is shown that the number of critical multiple

faults is a very small, compared to the number of single critical faults, and therefore only a

small number of additional test patterns is needed to guarantee a circuit’s timing correctness.

106

Kyri
ak

os
 C

hri
sto

u

Chapter 5

Generation of Functional Programs to

Test Path Delay Faults within

Microprocessors Cores

5.1 Introduction

In order to guarantee product quality for todays microprocessor cores, traditional stuck-at

tests are no longer sufficient and more complex fault models have to be considered when

devising test strategies. At-speed delay fault testing, in particular, has been widely addressed

by academia and is becoming common practice in industry [69], [61], [17], [49]. Among all

existing delay fault models, the path-delay fault model is considered the most accurate since

it can detect both lumped and distributed delays [17], [55], but also the most challenging,

due to the enormous number of faults (paths).

Delay test has been approached adopting different strategies, purely relying on an exter-

nal tester or applying structural self-testing methodologies such as Built-In Self-Test (BIST),

or exploiting the execution of suitable self-test programs. The latter strategy is usually re-

ferred to as Software-Based Self-Test (SBST) and is generally more affordable, as it exploits

the processor instructions in the normal mode of operation; it can be used in stand-alone

modules as well as when the processors are deeply embedded in a System on Chip (SoC)

and their accessibility is reduced.

Regarding test generation addressing path-delay faults, several techniques exist for en-

hanced full-scan circuits, based on either structural ATPG tools [32], [112] or function based

tools using Binary Decision Diagrams (BDDs) [10], [74], [13] and Boolean-SAT [19], [117]

107

Kyri
ak

os
 C

hri
sto

u

implementations. Some work on software-based test generation has been done exploiting de-

terministic techniques [104], [59], [35], [58], [18]. If a microprocessor design is tested using

its functional vectors, i.e., using instruction sequences [58], [18], [59] the input signals to the

embedded block of the processor are derived by their functionality. Evolutionary algorithms,

are population-based searching algorithms that mimic natural evolution and exploit the pop-

ulation of individuals to simultaneously evolve solutions. Evolutionary algorithms have been

successfully exploited for the automatic generation of program sets for verification, test [29],

and diagnosis [95] for processors described at different levels of abstraction. In most cases,

the evolutionary algorithm faces the test set generation as a single-objective optimization

problem, e.g., resorting to a multi-run strategy. However, hardware optimization techniques

belong to a real-world classification of problems that usually require the simultaneous opti-

mization of many objectives. Therefore, hardware optimization problems could be addressed

resorting to multiobjective optimizers. Multiobjective Evolutionary Algorithms (MOEAs)

were initially introduced in 1985, by the implementation of the first evolutionary algorithm

dealing with multiobjective optimization problems [100]. Roughly speaking, MOEAs pro-

duce a set of potentially optimal solutions, rather than a unique solution, that represents a

subset of the Pareto optimal set.

This chapter presents an innovative approach for the automatic generation of path delay

functional test programs for microprocessors exploiting both gate- and RT-level descriptions.

The former is used to select the set of critical paths to be considered and to obtain path ex-

citation requirements based on BDD analysis; the latter is used for effectively identifying

the test programs able to reproduce the conditions activating the targeted fault (excitation),

and to make the fault effect(s) visible on the processor outputs (propagation). For auto-

matically generating test programs, the new implementation of an evolutionary algorithm

addressing multi objective optimization is employed. The main advantage introduced is the

improvement in the flow performances compared to other approaches based only on gate-

level simulation [9]. Section 5.2 provides the needed background/preliminaries. Section 3

gives in detail description the proposed methodology used while Section 4 presents a study

case. Finally, in Section 5 concludes the chapter.

108

Kyri
ak

os
 C

hri
sto

u

Figure 5.1: PDF Example:on(off)-path signals given in thick(normal) lines (a, f ,h,k)(b,g, j).

5.2 Preliminaries

5.2.1 Software-Based Path Delay Testing

A path-delay fault occurs when a defect in a circuit causes the cumulative delay of a com-

binational path to exceed some specified duration [55], [16]. The combinational path begins

at a primary input or a clocked flip-flop (startpoint), includes a connected chain of gates,

and ends at a primary output or a clocked flip-flop (endpoint) (see Fig. 5.1). The specified

time duration can be the duration of the clock period (or phase), or the vector period. The

propagation delay is the time that an event (i.e., a transition) takes to traverse the path. For

each combinational path in a circuit, there are two path-delay faults, corresponding to rising

and falling transitions on the startpoint. Signals that compose the path and feed the traversed

gates are called on-path signals; signals that are not on the path but feed the gates on the path

are called off-path signals.

In order to examine the timing operation of a circuit we should examine signal transitions:

delay tests consist of vector pairs (V1→V2) to be applied on the inputs feeding the path (a, b,

c, d and e in Fig. 5.1), so that an input transition on the startpoint propagates to the endpoint.

Path-delay test application can be performed resorting to suitable scan-chains or by em-

ploying functional techniques. In scan-based test methodologies, the patterns are serially

loaded into the scan chains (at reduced speed if necessary). Consequently, the two test vec-

tors are applied in succession with a defined timing and the test results are shifted out through

the scan chains, thus achieving full observability. In the case of Software-Based path-delay

testing the test vectors V1 → V2 reach the targeted path inputs during the normal at-speed

circuit operations, hence depending on the sequence of data feed (instructions in case of

processors) and allowing continuous application of test vectors. When targeting micropro-

cessors, a test program must be made to ensure that the excitement conditions of the targeted

path-delay fault are met in a consecutive pair of clock cycles, and that the fault effect(s)

109

Kyri
ak

os
 C

hri
sto

u

propagate to suitable observable points (e.g., output ports).

If a test can be applied in the normal operations of a circuit, we refer to it as a functional

test. A path is functionally testable if there exists a functional test for that path. Otherwise,

the path is functionally untestable [59]. Functionally untestable faults never determine the

performance in normal operations of the circuit, and if detected during testing may lead to

overkill (i.e., discarding functioning chips). On the other hand, defects on functional testable

paths may degrade the circuit performance when path-delay faults occur. Software-based

testing concentrates on the latter class, intrinsically avoiding over-testing redundant paths.

5.2.2 Exploiting Gate and RT Level Descriptions for Path Delay Testing

Commonly adopted solutions for path-delay test generation in sequential circuits are mostly

based on the analysis of gate-level descriptions. Addressing a fault list provided by timing

analysis tools, test patterns for path excitation are calculated. At this phase it is seldom

possible to assess whether the faults are functionally testable. The test patterns correspond

to two consecutive vectors to be applied at speed to the inputs of the combinational circuit

partition including the selected path. From this point forward, they will be referred as V1 and

V2.

When dealing with functional test (in the absence of scan structures) V1 and V2 are func-

tionally justifiable if and only if they can be consecutively reproduced on the memory el-

ements and primary inputs feeding the path by a sequence of instructions and data. In this

case, the processor RT-level description may be employed to establish whether an instruction

sequence is able to apply V1 and V2 to the selected combinational part. Since the observation

of flip-flop values is required, only, it is possible to relate each considered flip-flop in the

gate-level description to a signal in the RTL one.

5.2.3 BDDs for Structural Path Delay Fault Tests

Rather than devising a specific couple of vectors V1 and V2 that excite a specific fault, through

BDD analysis of the gate-level netlist it is possible to derive a wider set of requirements for

the combinational sub-circuit inputs to excite the path it contains.

A reduced ordered Binary Decision Diagram (referred to as a BDD here) is a canonical

graphical representation of a Boolean function [13]. BDDs have been widely used in test

generation, for various fault models. For the case of path-delay faults in enhanced scan

designs [10], [74], [85], given one (or more) fault(s) a Boolean function can be formulated

110

Kyri
ak

os
 C

hri
sto

u

whose solution space is all the possible pairs of test vectors that can detect the fault(s). This

function is derived based on all the necessary values on on-path and off-path signals of the

path-delay fault(s). The variables of the function correspond to the primary inputs of the

circuit. When such a function is given by a BDD, we have a very compact (due to the

suppression of variables with the x value) and implicit (non-enumerative) representation of

the entire solution space. This is of high importance for several issues in test generation:

untestable faults are very easily determined; hard-to-detect faults, that require a lot of time in

structural-based ATPG tools, are also efficiently handled (BDD is very small since it contains

a small number of cubes); fault simulation, for fault dropping, can be trivially performed on

the BDD and not on the gate-level netlist. Moreover, if an input pattern is not a valid test, the

BDD can be used to quickly determine how far the input pattern is from becoming a valid test

(% of bits that must be changed in the input pattern). The latter is of particular importance in

the proposed methodology, since it can quickly and accurately guide the evolutionary engine

to generate the necessary path-delay fault tests.

5.2.4 Basic Concepts on MOEAs

Multiobjective evolutionary algorithms, as their single-objective counterpart, are population-

based searching algorithms that mimic natural evolution. However, differently from single-

objective algorithms, MOEAs exploit the population of individuals to simultaneously evolve

solutions to multiple and usually conflicting goals [28], [43]. The expected result from a

MOEA is a set of trade-off individuals called nondominated solutions, Pareto-optimal so-

lutions, or Pareto optimal set. For each individual into the population, a fitness vector

fi = (x1,x2,xn) represents the figures of merit obtained by the individual regarding to the

n pursued objectives.

Pareto optimality is defined using the concepts of domination: given two individuals A

and B, A dominates B if and only if A is at least as good as B in all objectives, and better

in at least one. A is equivalent to B iff results on A and B are identical in all objectives. A

covers B if A either dominates or is equivalent to B. Similarly, given two sets of individuals

Y and Z, Y dominates Z if every individual of Z is dominated by some individual of Y.

Similar definitions relative to sets of individuals can be made for equivalence and coverage

concepts. Thus, the Pareto optimal set is the set of all Pareto optimal individuals, and the

corresponding set of fitness vectors is the Pareto optimal front. Individuals belonging to the

Pareto optimal set are equally important. Indeed, for the individuals belonging to the Pareto

111

Kyri
ak

os
 C

hri
sto

u

optimal set, no improvement is possible in any objective without harming at least one of the

other objectives.

Different strategies have been proposed in order to properly sort individuals belonging to

the population; for example: aggregation-based approaches, lexicographical ordering, target-

vector approaches, criterion-based approaches, and Pareto-based approaches. Some of them

do not incorporate directly the concept of optimality outlined before, whereas others not only

exploit it but include additional mechanisms to guarantee the diversity of the population. One

of the most popular strategies used by MOEAs is based on a ranking scheme that divides the

whole population on different sets, in such a way that each set contains only non-dominated

individuals, and lower ranked sets are dominated by higher ones [28]. It is interesting to

highlight that in a successful experiment the highest set contains the individuals belonging

to the Pareto optimal set.

5.3 The Proposed Approach

The proposed methodology is a low-cost generation procedure that exploits both the gate and

RT-level description of the processor. On the gate level description, it retrieves information

about testability of paths and performs a BDD analysis to derive the path (fault) excitation

requirements. On the RT-level description, it performs the heaviest part of the process, which

consists in generating and evaluating instruction sequences. The generation process includes

four main steps:

• Path list grouping: this is a preliminary step for minimizing the cost for the generation

step that will follow; this phase analyzes the processor path list provided by timing

analysis tools and produces a set of shorter fault lists, each one corresponding to a

coherent set of critical paths in the circuit, i.e., a set of paths related to the same

processor elements. As a matter of fact, excitation conditions for faults belonging

to the same structurally coherent fault group are likely to be stressed by the same

instructions. Details on this topic can be found in [9].

• Circuit subdivision and BDD analysis: Given the gate-level netlist and the addressed

path list, for each path a combinational subcircuit (or chunk) is automatically extracted,

which contains the path and, therefore, all the information needed for the analysis of

its excitation conditions. A BDD is then derived that contains all the possible input

vectors that bring necessary excitation values at the inputs of the path under considera-

112

Kyri
ak

os
 C

hri
sto

u

tion. Structurally untestable faults are removed in this phase. The BDD representation

will be used in the sequential fault excitation step for evaluating the ability of each pro-

gram to excite specific faults: the fitness function depends on the minimum hamming

distance of the vectors applied from the set of vectors that can excite the path. It can

be computed optimally and quickly when the set of vectors is represented by a BDD.

• Sequential Fault excitation: this step aims at generating the test programs that effec-

tively excite the considered PDFs. An evolutionary algorithm is exploited to automat-

ically generate instruction sequences, whose fitness is evaluated through RT level sim-

ulation, avoiding highly expensive gate level simulations, and relying on the already

available BDD representations. A MOEA is exploited to automatically generate in-

struction sequences, whose fitness is evaluated through RT-level simulation, avoiding

highly expensive gate-level simulations, and relying on the already available BDDs.

This step will be analyzed in detail.

• Sequential Error propagation: this step targets error propagation to the processor out-

put ports and uses an evolutionary algorithm implementing a single-objective strategy.

For this task, during the RTL simulation of the test program execution, the values of

the flip-flops feeding the investigated path are analyzed at each clock cycle in order

to check for the excitation conditions (both on on-path and off-path); whenever they

are met, a faulty value is forced on the path endpoint for one clock cycle (fault injec-

tion, [9]). From that point in time, the state of all flip-flops is saved at each clock cycle

and compared to the original (fault-free) simulation: if the simulation of the already

generated program on the sabotaged RTL introduces a change on the processor output

ports at any time following the fault injection, the test program achieves excitation and

observation of the addressed fault and is complete. Otherwise, the number of flip-flops

with different contents with respect to the fault-free simulation is used as a fitness

function to be maximized, until the fault effects are propagated to the outputs.

This preliminary step aims at directing and minimizing the costs for the successive

phases. Differently from the approaches in [19], [35], [95], information about the processor

structure that can help in the instruction sequence calculation is not derived from the RT-level

description, but is indirectly obtained from the path list produced by a timing analysis tool

on the processor gate-level netlist. This list is demonstrated to contain the complete set of

functionally testable PDFs [59].

113

Kyri
ak

os
 C

hri
sto

u

A fault classification process decides if two PDFs belong to the same functionally coher-

ent fault group, based on the following criteria:

• the startpoints of the two considered paths are flip-flops in the same register,

• the off-path conditions for enabling the PDF activation are structurally justified by

flip-flops values in the same set of registers,

• the endpoints of the two considered paths are flip-flops in the same register.

The purpose of this process is to concentrate the generation efforts on functionally cor-

related processor areas. As a matter of fact, excitation conditions for faults belonging to the

same structurally coherent fault group are likely to be stressed by the same instructions.

5.3.1 BDDs for path delay fault excitation

Given the processor netlist and the addressed path list, for each path a combinational sub-

circuit (or chunk) is automatically extracted, which contains the path and, therefore, all the

information needed for the analysis of its excitation conditions. This sub-circuit primary in-

puts correspond to the original circuit primary inputs and flip-flops that feed the path (being

all and only the ones which affect its behavior) and its only output signal is the path end-

point. Fig. 5.1 gives the circuit chunk for the targeted path a− f −h− k. Signals a, f , h, k

are on-path signals and signals b, g, j are off-path signals.

Deriving a BDD that contains all the possible pairs of vectors that bring necessary exci-

tation values at the on-path and off-path signals of a PDF (described in a chunk) has been

addressed in [12][13], for singly-testable (robust and non-robust) as well as multiply testable

path delay faults. Fig. 5.2 gives the BDD containing all possible non-robust pairs of vectors

for exciting a rising fault through the targeted path of Fig. 5.1, denoted by ↑ a− f − h− k.

This BDD corresponds to the function given below:

C↑a− f−h−k(a1,a,b,c,d,e) = a1.(a. fb. fg. f j)

= a1.a.b.(d + e)
(5.1)

Here, fi denotes the functionality of an off path signal i, with respect to the input vari-

ables. The first parenthesis contains the necessary conditions for vector V1, which only re-

quire a 0 value on the path input, whereas the second one gives all the necessary conditions

for V2, which require a 1 value on the path input and a non-controlling value on the off input

114

Kyri
ak

os
 C

hri
sto

u

Figure 5.2: BDD for NRS excitation requirement for PDF ↑ a− f −h−k of the PDF example

depicted on Fig. 5.1.

signals. The BDD of Fig. 5.2 contains two cubes {a1.a.b.d,a1.a.b.e}, which represent all

input vector pairs that excite the fault (the x implies a don’t care value):

(V1(a1,x,x,x,x)→V 2(a,b,c,d,e)) = {(0xxxx)→ (11x1x),(0xxxx)→ (11xx1)}.

Given a specific vector pair (V1→ V2), the BDD for a PDF can be used to quantify its

ability to excite a fault,corresponding to finding the % of bits whose value must be changed

(flipped) in order for (V1→V2) to become a solution in the BDD.

Consider (V1→V2) = (00000→ 11x01) and the BDD of Fig. 5.2. Let V = (a1,b1,c1,d1,e1,

a,b,c,d,e) = 0000011x01 be the concatenation of V1 and V2. Then, V satisfies all necessary

excitation requirements of ↑ a− f −h−k if and only if C↑a− f−h−k(V) = 1, i.e., if and only if

V is a solution of C↑a− f−h−k(). This is a very simple operation on a BDD, performed in lin-

ear time to its size. This operation corresponds to fault simulating V , however it is performed

on the BDD and not on the gate-level netlist. For the given V, C↑a− f−h−k(0000011x01) = 1

which means that V is a good vector pair for ↑ a− f −h− k. Observe that any missing vari-

able from the BDD (such as b1, c1, d1 and e1) is considered a don’t care. We say that V has

a 100% fitness. The fitness of V gives the % of bits in V that have a correct value.

Consider now (V 1 → V 2) = (00000 → x0001). In this case, C↑a− f−h−k(V) = 0

indicating that V is not a good choice. Under the proposed framework, V is derived from the

execution of a test program and is evaluated at each clock cycle. The fitness value of V is an

important parameter that can help the evolutionary engine proceed towards a correct solution

115

Kyri
ak

os
 C

hri
sto

u

(i.e., a test program that excites the targeted PDF). Determining the minimum number of

bits in V that are incorrect (must change value) amounts to finding the minimum hamming

distance of V from all 1-cubes represented by the BDD. The 1-cubes of the BDD of Fig. 5.2

are {a1.a.b.d, a1.a.b.e}. A don’t care value (x) in V is considered an incorrect value, since

the evolutionary engine has not yet determined the value. On the other hand, an x value in a

BDD cube (indicated by the absence of a variable in the cube) does not give a bit mismatch

since it can be set to either value 1 or 0. Thus, the minimum hamming distance of V =

00000x0001 is min{3,2} = 2 (3 bit mismatches for bits a, b and d in cube a1.a.b.d and 2

for bits a and b in a1.a.b.e). The fitness value of V is therefore 80% (there are only 2 out of

10 bit mismatches).

The minimum hamming distance of a vector from a set of vectors, as defined above,

can be computed quickly when the set of vectors is represented by a BDD. The operation

amounts to a systematic and linear examination of the BDD edges, similar to the standard

ite() BDD recursive operator, (Algorithm 5.1). The overall complexity is linear to the size

of the given BDD vectors. The fitness value is then computed by:

f itness value = ((nbit error())/n)∗100, where n = |V |. (5.2)

5.3.2 Sequential Fault Excitation

The purpose of the sequential fault excitation phase (Fig. 5.3) is the generation of suitable

instruction sequences that excite the path-delay faults in coherent lists. This process is based

on the usage of a new implementation of a well known evolutionary algorithm (EA), called

µGP3 [121], able to automatically generate suitable test programs.

Roughly speaking, an EA is a population-based optimizer that imitates the natural pro-

cess of biological evolution. Following this perspective, a test program is an individual and

the tool handles a population of individuals (i.e., a collection of assembly programs). The

initial population is generated randomly, then iteratively refined mimicking the Darwinian

Theory: new individuals are generated either by mutation (an individual is slightly modified)

or by recombination (two or more individuals are mixed in some way); the best perform-

ing individuals are selected for survival. The process is blocked after a certain number of

steps, called generations, or when a steady state is reached. The best individual is eventually

provided as output.

Differently from the standard approach described in [69], the evolutionary tool imple-

116

Kyri
ak

os
 C

hri
sto

u

Data: vectorV [1..n],BDDCpd f ,vectorH[1..n];

Result: H[i];

1 % bit(BDD(f ,V, i)) = bit value of V for variable i of BDD f ;

2 % H[1..n] initialized to -1 before the first call of bit error ;

3 i = Top Variable of Cpd f ;

4 if (i == Constant Zero) then return ∞;

5 if (i == Constant One) then return 0;

6 % Solution Found ;

7 if (H[i] ,−1) then return H[i];

8 % H[i] already computed ;

9 if (bit(Cpd f ,V, i) == 0) then

10 d0 = bit error(V, ,Else(Cpd f),H);

11 d1 = bit error(V, ,T hen(Cpd f),H)+1;

12 end

13 if (bit(Cpd f ,V, i) == 1) then

14 d0 = bit error(V, ,Else(Cpd f),H)+1;

15 d1 = bit error(V, ,T hen(Cpd f),H);

16 end

17 if (bit(Cpd f ,V, i) == x) then

18 d0 = bit error(V, ,Else(Cpd f),H)+1;

19 d1 = bit error(V, ,T hen(Cpd f),H)+1;

20 end

21 H[i] = min{d0,d1};

22 return H[i];

Algorithm 5.1: Pseudocode for procedure bit error

117

Kyri
ak

os
 C

hri
sto

u

Figure 5.3: Sequential fault excitation phase.

ments a MOEA [28] able to deal with several path-delay faults at a time. In this case the

main goal of the evolutionary process is not to obtain a single best program but a set of

best programs able to correctly excite the targeted faults. The main idea behind the MOEA

implementation of µGP3 is to simultaneously optimize a complete functionally coherent

group. As mentioned before, faults belonging to the same structurally coherent fault group

are probably excited by similar test programs. Thus, the MOEA will evolve a population of

individuals working on a specific portion of the processor core rather than a single program

focusing on a unique fault.

Algorithm µGP3 bases its evolutionary process on a constrained tagged graph, which is a

directed graph whose elements may own one or more tags, and that in addition has to respect

a set of constraints. The constraints may affect both the information contained in the graph

elements and its structure. Graphs are initially generated in a random fashion; subsequently,

they may be modified by genetic operators (e.g., the classical mutation and recombination,

but also by different operators, as required; the tool architecture has been specially thought

for easy addition of new genetic operators).

The purpose of the constraints is to limit the possible productions of the evolutionary

tool, and also provide them with semantic value. The constraints are provided through a user-

defined library that provides the genotype-phenotype mapping for the generated individuals,

describes their possible structure and defines which values the existing parameters (if any)

can take. Constraint definition is left to the user to increase the generality of the tool; it is

flexible enough to allow the definition of complex entities to easily describe a wide range of

118

Kyri
ak

os
 C

hri
sto

u

processor instruction sets architecture (ISA).

The evolutionary core reads the constraint library in order to adequately generate assem-

bly programs. For each generated program, a vector of fitness values are computed by the

external evaluator considering the targeted faults provided by the functionally coherent fault

list. Differently from the classical approach, the sequence of values in the fitness vector does

not represent a priority list but each of them describes the figure of merit obtained by the

individual regarding to a specific fault.

The task of the µGP3 core is to progressively improve the population of individuals or

test programs. Thus, the population is ordered following a ranking strategy based on the

Pareto-dominance principles described before. Choice of the individuals for reproduction is

performed by means of a tournament selection based on the ranking position. However, since

individuals belonging to the same group are by definition non-dominated ones, the selection

is performed resorting to the delta entropy value of the individual [29]. The purpose of the

entropy value is not to rank a population in absolute terms, but to detect whether the amount

of genetic diversity in a set of individuals is increasing or decreasing. The tournament size is

also endogenous. The population size is set at the beginning of a run, and the tool employs a

variation on the plus (µ +λ) strategy: a configurable number λ of genetic operators are ap-

plied on the population. Since different operators may produce different number of offspring,

the number of individuals added to the population is variable; the activation probability and

strength for every operator is an endogenous parameter. All new unique individuals are then

evaluated, and the population resulting from the union of old and new individuals is ordered

resorting to the ranking approach described previously. Clearly, if a new individual domi-

nates the complete population, a new individuals set is created and it is placed at the top of

the rank list. Finally, only the first µ individuals are kept.

In order to customize this architecture to the specific goal we address here, we use the

BDD-based fitness function described above, which is effective in guiding the algorithm

towards the solution, and can be computed in reasonable times.

In this case, the evaluation of the generated test programs (or instruction sequences) is

performed on the RT-level microprocessor core description by means of a logic simulation:

during the simulation, at each clock cycle the vectors feeding the path are passed to the fitness

function, and the maximum value obtained during the program run identifies the program’s

fitness.

119

Kyri
ak

os
 C

hri
sto

u

5.4 Experimental Results

The methodology proposed has been evaluated on a 8051 microcontroller description, ad-

dressing non-robust path delay fault testing. The processor reads the test programs from an

external memory and its output ports are directly accessible. The critical timing analysis of

the synthesized architecture has been performed utilizing the Synopsys PrimeTime suite ver.

X-2005.12.

A total number of 92,430 worst paths were selected (based on an in-house developed

library). For each path delay fault, a combinational sub-circuit was extracted automatically

from the circuit. The captured path delay fault is then represented by a BDD among with all

sensitizing test cubes. If such a BDD representation does not exist this implies an un-testable

fault and thus it is dropped.

The number of the structurally testable path delay faults is 10.394. These faults have

been divided in classes depending on their structural coherence in an automated way, using

a simple tool based on set covering principles and obtaining 96 coherent fault lists, each one

including an average of about 108 faults.

The sequential fault excitation step has been performed resorting to the new MOEA im-

plementation of µGP3 [24], which also includes a new operator called local-scan mutation,

whose purpose is the generation of a reduced set of individuals in the neighborhood of the

selected parent by performing slight mutations to only one determined parameter. In this

case the fitness evaluator comprised a commercial logic simulator (Mentor Graphics Mod-

elSim v.6.2h) and an ad-hoc C-language software monitor implemented in the simulator

environment. The evolutionary experiment has been set up with the aim of performing a

multi-objective optimization. The initial population is composed of 300 random individuals;

the population size is 100 and at each generation 80 genetic operators are applied. For each

of the coherent fault lists, the evolutionary experiment was set up in the following manner:

• the first 20 faults in the list are initially considered (in order not to slow excessively

the simulation, not all faults in the list are addressed together) and the EA is started,

evaluating the excitation fitness (20 paths implies 20 fitness values)

• whenever a test program fitness hits 100% for one of the inspected faults, that fault is

removed from the experiment and replaced from a new one from the same list (fault

dropping strategy). The obtained test program is saved.

• if the algorithm does not improve the fitness for a set number of generations (10 in this

120

Kyri
ak

os
 C

hri
sto

u

case), the 20 paths are replaced with the following 20 in the list.

The process continues until all paths in the coherent fault list have been considered. This

phase took about 110 hours for the whole fault list. The error propagation step took about

35 hours. The fitness has been evaluated resorting to the ModelSim simulator running a

script performing fault injection and to an ad-hoc tool elaborating the simulation dump. The

majority of the test program set achieves test observability without modification; for the

ones whose fault effects are still not propagated, the EA modifies the original test program

maximizing the observability fitness, making sure that the excitation conditions are still met.

The obtained coverage values (Table 5.1) are comparable to the ones obtained using other

approaches [14][19]. It must be noted that not-covered faults include functionally untestable

ones, which do not determine the circuit performances and cannot be tested functionally.

The required time computation compares favourably with the time required in [19]. The

experiments run on an Intel E6400 @2.13 GHz.

In order to detail the behavior of the approach, the following pictures describe the evo-

lution of an experiment targeting one coherent fault list that contains 84 faults. Fig. 5.4

shows the first 300 steps of the evolutionary process: the continuous dark line represents the

average of the 20 considered fitness values (mean value on the population), while vertical

bars indicate the maximum fitness obtained at each step. For this coherent fault list, the fi-

nal coverage is 50%. It is important to notice that whenever excitation is found for a fault

(e.g., step 28), the average fitness falls down due to the fault dropping strategy. Similarly,

this average value undergoes a big depression each time the steady state is reached and all

targeted faults are replaced (steps 68, 118 and 189). Nevertheless, the average fitness tends

to increase along the experiment. Fig. 5.5 shows the first 50 steps of the same experiment;

in this case, 5 out of the 20 evaluated fitness values are shown (average values on the pop-

ulation). Fitness 5 and 7 show that when a 100% is found the fitness value decreases, due

to the substitution of the path-delay fault under inspection; however, the other fitness values

seem not to be considerably affected by the replacement mechanism. It is also interesting to

note that fitness 9 is continuously increased without finding a 100%. Finally, fitness 0 and 2

describe a very similar trajectory during the first 50 steps, thus demonstrating the advantage

of evolving coherent fault lists in the same experiment.

121

Kyri
ak

os
 C

hri
sto

u

Propagation & Excitation Reports BDD based approach Gate Level Simulation

(# faults) (# faults)

Path Set (Complete) 92.430 92.430

Structurally Justified Paths 10.394 234

Excited Path Delay Faults 2.731 46

Propagated Faults (before error prop.) 1.536 27

Propagated Faults (final) 2.489 86

Table 5.1: Propagation & Excitation based on (a)BDD approach (b)Gate Simulation

Figure 5.4: Fitness behavior on a coherent path list, average and maximum values.

Figure 5.5: Trajectories of 5 fitness values during the first 50 steps.

122

Kyri
ak

os
 C

hri
sto

u

5.5 Conclusions

This chapter presents an innovative approach for automating the generation of Path-Delay

test programs for microprocessors cores. This has been achieved by employing a novel ap-

proach that uses BDDs analysis. A fitness value for directing the test generation flow is

computed by finding a modified hamming distance algorithm on a Binary Decision Diagram

that has been generated from the gate level description of the microprocessor core used.

The produced fitness value seeks an optimal solution. Experimental results show that this

methodology allows limiting the test generation time, by concentrating on suitably classified

structurally coherent fault lists and avoiding computation intensive gate-level simulations.

The obtained coverage results are comparable to manual/deterministic approaches in litera-

ture and shows the advantage of the methodology used over the existing ones.

123

Kyri
ak

os
 C

hri
sto

u

Chapter 6

A Non-Enumerative Technique for

Measuring Path Correlation in Digital

Circuits

6.1 Introduction

A number of digital design automation procedures involve the examination and the char-

acterization of the physical paths of a circuit’s netlist. Applications including, automatic

routing, design verification, fault diagnosis and test generation use information regarding the

physical paths in order to accommodate various issues and provide efficient algorithms and

techniques. The number of physical I/O paths in the circuit, as well as the number of path

segments between two circuit locations, play an important role in almost all of the above pro-

cesses. Also, it is often important to have an indication on the similarities (e.g. the number

of common lines) between two or more paths. As an example of the above, the work in [6]

considers a circuit partitioning problem where minimal cutsize and minimal delay per parti-

tion are desired. Special consideration should be given so that paths with large line overlap

are not part of the same cut since this gives partitions with unbalanced delays, although the

cutsize can be minimal.

Apart from numerous design procedures that can use to their benefit information on

the similarities of physical paths, techniques for design verification, manufacturing test-

ing and diagnosis can also employ this information to significantly increase their efficiency.

Specifically, simulation-based applications for design error and fault diagnosis, such as those

in [4, 41], can dramatically increase their diagnostic resolution if the fault/error propagation

124

Kyri
ak

os
 C

hri
sto

u

path(s) of one fault is not a sub-path of those of other faults/errors. In this manner, the fault

is distinguishable. In such cases, diagnostic test generation approaches should consider path

overlaps during the test generation process.

Path overlap is also important in testing. Due to the increased complexity and radical

technology scaling in modern digital circuits, it is now apparent that older fault models such

as the stuck-at and transition delay fault models, no longer suffice in detecting emerging

chip defects. Test generation procedures try to enhance the quality of the generated test set

in terms of various measures beyond stuck-at/transition fault coverage and test set size, in

an attempt to increase the defect coverage. Some examples of such measures are testing for

low power dissipation, multiple fault detections (n-detect), path delay fault (PDF) coverage,

small delay defect (SDD) coverage, etc. A common concept that must be handled by the test

generation procedures for many of the above models and measures is that of path activation

and path propagation. The quality of the generated test sets in terms of defect coverage can

be enhanced if the various tests activate (propagate) faults via activation (propagation) paths

with small overlap [50, 83].

An important usage of the information regarding the similarity among a set of physical

paths of a circuit is in test generation for delay faults. Delay faults caused by emerging

technology defects and process variations can dramatically change the timing behavioral of a

circuit and can lead to unacceptable yield loss, especially for high performance products [49].

The most difficult to identify delay faults are those that are due to small delays and are

distributed across various circuit lines, widely known as small delay defects [50,63,111,118].

Since the accumulation of small delay defects is highly related to the circuit’s physical paths,

the Path Delay Fault model (PDF) proposed in [106] is considered among the most accurate

models for delay related defects. According to the PDF model, a fault is designated as the

late transition across a physical path, either rising of falling. Since the number of physical

paths in a circuit can be, in the worst case, exponential to the circuit size, deploying the PDF

model in test generation is impractical, especially for dense circuits. A number of previously

proposed test generation methodologies try to address the complexity issue of the PDF model

by targeting a subset of the fault universe which only contains the critical faults [64, 110,

112, 119]. Different criteria and delay models define the “criticality” attribute of the faults

according to the specific problem examined, with main objective to reduce the fault list and,

thus, make the test generation procedure simpler and the obtained test set smaller. Most of the

previous proposed techniques relate criticality with the length of the path or the slack of the

path, i.e., the difference between the expected delay of the path and the maximum allowable

125

Kyri
ak

os
 C

hri
sto

u

delay in the circuit. The slack is either estimated using statistical methods [118, 119] or

calculated using process variation data obtained from the manufacturing process [110]. The

work in [118] takes an n-detect test set for stuck-at faults as input and reduces its size by

selecting those tests that sensitize the most critical paths according to a statistical approach.

In an attempt to further improve the selection procedure the techniques of [64, 112] model

additional technology parameters like coupling noise and power supply noise effects. The

latter two approaches have proven the need for adding more criticality characteristics to

physical paths than just their length.

The work in this chapter proposes a non-enumerative methodology to identify path (seg-

ment) overlap in a given set of physical paths, in order to quantify the correlation between

the paths of the set considered. This set can be a subset of the circuit’s I/O paths (i.e., set of

critical paths), or path segments representing, for example, error/fault activation or propaga-

tion paths. A major contribution of the proposed technique is that it avoids explicit path of

path segment enumeration by using a canonical representation of the paths based on Zero-

Suppressed Binary Decision Diagrams (ZBDDs) [78] which have been shown to cope well

with huge numbers of paths [84]. The method applies a constant number of standard ZBDD

operators (of polynomial complexity) to find the path overlaps and represent them implicitly

in a ZBDD providing a metric for the correlation of the paths in the given set. The differ-

ent statistics obtained by this procedure are then summarized into a single number that can

be used to characterize the correlation between the paths of each set. As mentioned in the

previous paragraph, different applications can use this measure (or the provided statistics)

according to their nature and indented goal. For example, path selection approaches for PDF

or SDD test generation can use this measure to avoid selecting paths similar to paths that

have already been selected, since this will, probably, not identify additional delays in the

circuit. We elaborate more on the motivation for this particular application in Section 6.2.

Section 6.3 gives the detailed description of the methodology and all the appropriate

definitions of the ZBDD operations used. Specifically, we define a measure for the average

path overlap and explain its usage and meaning. We then provide some basic preliminaries

on ZBDDs and explain how we use them in the proposed technique. Finally, we present and

describe the basic steps of the proposed approach as well as a newly proposed operator that

is used for calculating the overlap sizes in ZBDDs.

Section 6.4 shows the experimental results and presents the relevant discussion. We

have used two different approaches in order to demonstrate the applicability of the pro-

posed method and measure. The first one considers different groups of critical I/O paths

126

Kyri
ak

os
 C

hri
sto

u

and quantifies the overlap between the paths for each group. The second approach identifies

the overlaps between the propagation paths obtained from different test sets and investigates

their relation with defect coverage. Section 6.5 summarizes this chapter.

6.2 Motivation

The discussion in Section 6.1 mentions a number of different design automation applications

that can benefit from using path overlap information. Here, we briefly present one such

possible application which we use in our experiments to evaluate the proposed method.

Consider test generation methods for small delay defects (SDDs). The majority of these

methodologies use the PDF model to model such defects and try to reduce the number of

faults by selecting the most important PDFs known as critical PDFs (see [64, 110, 112, 118,

119] among others). Criticality can be defined by various issues (often combined), such

as path length and process variation parameters. These approaches do not explicitly con-

sider path similarities and may result into selecting highly correlated paths. The latter is not

necessarily undesired, but when distributed delays due to SDDs are targeted, selecting two

(or more) correlated paths may not be the best choice. We demonstrate this case with an

example.

Consider the circuit in Fig. 6.1 and assume, without any loss of generality, the fixed

delay model with each NAND gate having nominal delay of 3 time units while the buffer

and the inverter have 2 and 1 units, respectively. Let us assume that the maximum allowable

I/O delay is set to 12 units in order to allow a small slag from the maximum path delay (11

units). Additionally, assume that the PDF test budget for this circuit is only 2, i.e., we can

Figure 6.1: A path selection method example

127

Kyri
ak

os
 C

hri
sto

u

afford only to consider two physical paths in the test generation process. Hence, the path

selection method must select only 2 paths out of the 12 paths of the circuit to use as input to

the test generation process. According to the gate delays, we identify that the critical paths

in the circuit are four, P1={b-d-f-i-k-m-o}, P2={c-d-f-i-k-m-o}, P3={b-d-h-j-k-m-o} and P4

={c-d-h-j-k-m-o}. There exist six different groups of paths with cardinality 2; considering

any one of these groups can be viewed as a valid input candidate to the PDF test generation.

If, however, we examine the overlap of each group the conclusion may result in a different

decision. The overlap information for the path pairs is given at the first 6 rows of Table 6.1.

For instance, the paths of pair G1 have an overlap of 85.71% as there are 6 common lines out

of the average path length which is 7 in this case (more details on this calculation are given

in the next section). If a group with large overlap (e.g. G1) is selected to be considered in the

test generation procedure, its contribution in identifying small delays will be limited because

the cumulative effect of the distributed delays will fall in the paths’ common segment i.e., in

{d-f-i-k-m-o}. To make it more specific, consider that due to process variations gates N1, N3

and B exhibit excessive delay of 0.5 units while all the remaining gates exhibit their nominal

delay. This situation can give unacceptable total delay across an I/O path of the circuit, as in

the case of P3 (delay is 3.5+3.5+3+2.5=12.5 units). Recall that the test generation process has

a 2 path budget so a decision should be taken on which of the 6 pairs should be considered.

By testing the two paths in G1 the excessive cumulative delay is not detected as both P1 and

P2 will give total delay of 12 (i.e., 3.5+3+3+2.5) which is acceptable. On the other hand, if

a group with smaller correlation (overlap) between its paths (any other that G1 and G6) is

selected, the delay will be detected.

Table 6.1: Path overlap for the example of Fig. 6.1

Group Paths Overlap

G1 P1,P2 85.71%

G2 P1,P3 71.43%

G3 P1,P4 57.14%

G4 P2,P3 57.14%

G5 P2,P4 71.43%

G6 P3,P4 85.71%

GA P1,P2,P3 71.43%

128

Kyri
ak

os
 C

hri
sto

u

Generally, when the group with the smaller correlation is selected, the possibility to

detect an excessive cumulative delay across anyone of the considered paths is increased. For

instance, consider that for the circuit in Fig. 6.1 we are given 3 groups of paths, G1, G2, and

G3, and we are asked to decide which of this group is better to be given as input to a test

generation procedure. In order to get excessive delay in the circuit, more than 1 time units

of delay should be distributed among the gates of a critical path. By selecting the group with

the smaller overlap (i.e., G3) the obtained tests detect any excessive delay across any of the

paths considered here as critical. This happens because paths P1 and P4 cover all the possible

combinations of sub-paths between the 4 paths that are considered as critical.

Path correlation is calculated across consecutive and non-consecutive path segments like

the case of group G5, i.e., paths P2 and P4. It is important to ensure that this calculation does

not affect the efficiency of the path selection approach, so it must avoid explicit path or path

segment enumeration, since the number of paths in a circuit can be exponential to the circuit

size. This is a very important attribute, since the modern design optimization tools tend to

give circuits with paths of similar length, increasing the number of candidate critical paths.

We elaborate further on the path correlation calculation on Section 6.3.

6.3 Proposed Methodology

This section discusses the proposed methodology. Section 6.3.1 gives the necessary defini-

tions for pairwise path overlap in a set of paths. All the steps described here use a canonical

data structure (ZBDD) for implicit path representation and manipulation. We provide a brief

overview of ZBDD based path encoding in Section 6.3.2. Sections 6.3.3 and 6.3.4 present

the proposed ZBDD-based operations to calculate path overlap and an illustrative example,

respectively.

6.3.1 Pairwise Path Overlap Calculation

Definition 1. Given two paths P1 and P2 the overlap operator C(P1,P2) gives the set of lines

that are common in P1 and P2.

The calculation of the path overlap between two paths of the same size is done by dividing

the number of common lines over the paths’ size i.e., |C(P1,P2)|/ |P1|. For paths of different

size, an averaging of the two paths’ length is required. Given two paths P1 and P2 the overlap

percentage is given as the size of the overlap between the two paths over the average size of

129

Kyri
ak

os
 C

hri
sto

u

the two paths, i.e., |C(P1,P2)|/(|P1|+ |P1|)/2.

Definition 2. Given a set of paths G = {P1,P2, ..Pn},D is the pairwise path overlap operator

computing the path overlap between all unique pairs of paths in G, given by:

D(G) = {C(P1,P2),C(P1,P3), . . .C(P1,Pn),C(P2,P3), . . .C(Pn−1,Pn) :
∣∣C(Pi,Pj)

∣∣ , 0} (6.1)

The above operator checks all the pairs of paths (Pi,Pj), where Pi, Pj ∈ G and i , j and

gives the sets of lines that form the overlap between the paths of each pair and have a non-

zero size. Eventually, the obtained set D(G) contains all the path segments that are common

in any of these pairs. Using the resulting set D(G) we give the following definition for the

average overlap of a set of paths:

Definition 3. Given a set of paths G = {P1,P2, ...Pn}, the average pair-wise overlap measure

O(G) is given by:

O(G) =

∑
(Pi,Pj)∈D(G)

∣∣C(Pi,Pj)
∣∣/ |D(G)|

∑
Pi∈G
|Pi|/ |G|

(6.2)

This measure gives the average pairwise overlap between the paths of a set of paths

G. For example, the calculation of the average pairwise overlap for a path set GA which

contains P1, P2 and P3 of the circuit of Fig. 6.1 is 71.43% calculated as the average between

the overlaps in G1, G2 and G4, the pairwise combinations of the paths of GA.

Note that the measure was selected to consider pairs of paths and not 3-tuples, 4-tuples

and so on, in order to be generic and applicable in a broader range of applications. By

selecting pairs we actually include all the combinations of paths (pairs, 3-tuples, 4-tuples,

etc) and, thus, incorporate the total correlation between the considered paths in the mea-

sure. On the other hand, the averaging in Definition 3 ensures that no double counting of

common sub-paths occurs and each common sub-path contributes equally to the measure.

Fig. 6.2 illustrates three different examples of path overlap between three different paths,

using Venn Diagrams, in order to demonstrate the application of the operators presented in

the definitions above. Let each set correspond to a circuit path. The elements of a set cor-

respond to the circuit lines constituting the path. Elements in the intersection of two sets

are the lines that are common in the corresponding paths, i.e., form the overlap between

130

Kyri
ak

os
 C

hri
sto

u

Figure 6.2: Examples for the calculation of the average path overlap measure of Definition 3.

the two paths. Consider first Fig. 6.2(a) with P1={a-b-c-d-i-m}, P2={d-e-f-g-h-i-m} and

P3={h-i-j-k-l-m}. The overlap operator of Definition 1 gives C(P1,P2) = {d, e, i, m} and

|C(P1,P2)|= 4. Similarly, |C(P1,P3)|= 2 and |C(P2,P3)|= 3. Applying Definition 2 on this

set of paths gives D(G) = {C(P1,P2),C(P1,P3),C(P2,P3)} = {{d,e,i,m},{i,m},{i,m,h}},

i.e., all the non-empty path overlaps. Using the average pairwise overlap measure of Defini-

tion 3 we calculate the average overlap between the considered paths to be:

O(G) =

3

∑
i, j=1,

C(Pi,Pj)∈D(G)

∣∣C(Pi,Pj)
∣∣/ |D(G)|

3

∑
i=1,
Pi∈G

|Pi|/ |G|

=
(|C(P1,P2)|+ |C(P1,P3)|+ |C(P2,P3)|)/3

(|P1|+ |P2|+ |P3|)/3

=
(4+2+3)/3
(7+7+6)/3

= 45%

(6.3)

Observe that the two lines that form the overlap between all the three paths (i.e., i and m)

contribute more in the above measure than the lines that are common only in two sets (paths).

This becomes more clear if we consider the paths in Fig. 6.2(b). Here, P1 = {a-b-c-d-i-m},

P2 = {d-e-f-g-h-n-o} and P3 = {h-i-j-k-l-m}. For this case we get O(G) = (2+2+1)/3
(7+7+6)/3 = 25%

indicating that the average overlap is smaller, although the number of lines in the overlap

of any two paths as well as the size of all paths considered are the same as in case (a).

Obviously, the fact that two lines are in the overlap of all three paths in the diagram of

Fig. 6.2(a) increases the average overlap compared with the diagram of Fig. 6.2(b). This

is reflected to the value of the measure introduced in Definition 3 even though the paths are

131

Kyri
ak

os
 C

hri
sto

u

considered in pairs and not in 3-tuples (25% for (b) against 45% for(a)). Furthermore, the

averaging in both the numerator and the denominator ensures that the values of the measure

for different path sets are comparable, when the sets are obtained for the same circuit. For

instance, the paths in Fig. 6.2(c) have clearly higher average overlap than the previous two

cases. Here, P1 = {a-c-d-e-h-i-k}, P2 = {b-d-e-f-g-i-k} and P3 = {a-c-h-j-l-m}. However,

one pair gives zero overlap (i.e., |C(P2,P3)| = 0) and it should not be considered by the

measure. If we had only considered the sizes of the overlaps and the paths, the measure

would indicate that the paths in Fig. 6.2(a) have more overlap than those in Fig. 6.2(c) (45%

for (a) against 35% for (c)), which is not confirmed by the diagrams. Applying the measure

to the paths represented by the diagrams in Fig. 6.2(c) gives a higher average overlap value

i.e., O(G) = (4+3)/2
(7+7+6)/3 = 52.5% confirming the larger overlap shown in the diagrams.

6.3.2 Path Representation and Manipulation

The proposed methodology uses Zero-Suppressed Binary Decision Diagrams (ZBDDs) to

represent a large number of paths and obtains information on their overlap using standard

ZBDD operations. ZBDDs [78] have been successfully used in representing a huge number

of paths compactly in a non-enumerative fashion [83]. The representation of paths in a circuit

requires only a polynomial number of standard ZBDD operations and can be generated and

represented in a ZBDD format (as in [83]), by a single topological traversal. Extensive

experimentation has shown that, even circuits with huge number of paths can be effectively

represented using ZBDDs following the approach of [83], which avoids path enumeration.

Fig. 6.3(a) shows the representation of set GA of Table 6.1 that consists of paths P1, P2

and P3 of Fig. 6.1, using ZBDDs. The vertices in the diagram correspond to circuit lines,

and always follow a predefined order (here b < c < d < f < i < h < j < k < m < o). A

path can be obtained by following the paths of the diagram that end in the terminal vertex 1

and considering only the solid (true) edges. The true edges correspond to the existence of a

circuit line in a path, whereas the false (dashed) edges correspond to the absence of a line in

a path. The shaded part of the diagram represents path P3={b-d-h-j-k-m-o}. Observe that,

while vertex f falls in the shaded area, it is not considered in the path since it is connected to h

via a dashed edge. Likewise, the other two paths are represented in the diagram. In the same

way ZBDDs can represent path segments that may not necessarily consist of consecutive

circuit lines.

132

Kyri
ak

os
 C

hri
sto

u

6.3.3 Overlap Identification Algorithm

Given a circuit C and a set of paths G, the proposed algorithm identifies a set of overlapping

path segments D(G) in a non enumerative way using a constant number of standard ZBDD

operators. Set G does not necessarily contain I/O full paths, but it can contain path segments

as well. This allows the algorithm to handle path segments as well, which is desirable for a

number of applications like fault diagnosis, where we want to distinguish between different

sub-paths. The algorithm first implements the pairwise path overlap operator and then per-

forms a final step to obtain the required overlap information. The complexity of algorithm is

in the worst case polynomial to the ZBDD size.

Data: C: Circuit Under Examination;

G: Set of Paths (or path segments) in C;

Result: Overlap Statistics H;

1 ZT
0 ← ZBDD represent(C, G) ;

2 ZT
1 ← ZT

0 ⊗ ZT
0 ;

3 ZT
2 ← maximal (ZT

0) ;

4 ZT
3 ← ZT

2 ∩ ZT
1 ;

5 ZT ← ZT
1 / ZT

3 % ZT corresponds to D(G) ;

6 H ← retrieve overlap histogram(ZT) ;

7 return overlap statistics(H);

Algorithm 6.1: Path Overlap Identification

The procedure of Algorithm 6.1 outlines the basic steps of the algorithm. In the first step

(Line 1) the procedure builds the ZBDD that contains the paths in the given set G. The step

in Line 2 applies a standard ZBDD operation called pairwise intersection (⊗) which takes

all pairs of the paths in the given set and identifies the overlap between the paths of each

pair. The pairwise overlap operation examines all the pairs of paths in ZT
0 and gives a set

containing the sets of lines (sub-paths) in each pair that form the overlap of the two paths.

Hence, ZT
1 contains the overlaps that were identified between any two paths of set G. At

this point we note that as a side effect of the pairwise intersection operator all the paths (or

sub-paths) initially in G will be also contained in ZT
1 , since the operator does not exclude

pairs of the same path. In this case a path initially in G is identified as overlap since the

overlap between two identical paths is the path itself. Using the notation of Definition 1, ZT
1

contains all the C(Pi,Pi) for all i = 1,2. . . |G| which are equal to Pi for all i. This situation

is not desired when only the overlap between distinct paths is required. The next three

133

Kyri
ak

os
 C

hri
sto

u

steps of the algorithm concentrate on cancelling this side effect considering all the possible

complications. Lines 3 and 4 give the diagram that contains all the unwanted paths that

should be removed from the pairwise intersection result. Intuitively, if we remove from ZT
1

all the paths in G this problem will be solved. However, this is not true when G contains

not only I/O full paths (from a primary input to a primary output) but sub-paths as well.

In this case it is not clear whether an overlap in ZT
1 is a true overlap or a sub-path initially

contained in the given set G. The maximal operator (Line 3) removes from G all the paths

that are proper sub-paths of other paths, and, hence, removes this disambiguation. This step

is not necessary if G contains only full paths. The maximal operation on a set of full paths

will return the set itself and so this step does not affect the case where G consists only of

full paths. Line 4 identifies the paths that must be removed from ZT
1 . The set difference

operation of Line 5 removes all the unwanted paths from the obtained overlap set, keeping

only the sub-paths that corresponds to the overlap of any two distinct paths in set G. At this

point we have all the overlapping sub-paths in ZT which is the ZBDD representation of the

set D(G) used in Definition 2.

In Line 6, the overlap information is retrieved from the ZBDD in a histogram-like struc-

ture, using a recursive operator, while Line 7 returns different statistics for the obtained

overlap set the most important of which is the average pairwise overlap (Definition 3) and

the standard statistical measure of skewness of the histogram H. We elaborate further on the

usage of the skewness measure in Section 6.4.

The operator of Step 6 is a newly proposed ZBDD operator, which is executed in linear

time to the size of the ZBDD and, thus, does not increase the method’s complexity. It avoids

explicit path or path segment enumeration, and hence, does not contribute further to the

algorithm’s complexity. The pseudocode of Algorithm 6.2 describes the operator of Line 6

in Algorithm 6.1. The operator takes a ZBDD (ZT) as an argument and calculates an array

per ZBDD vertex that is used to represent the overlap histogram, in a recursive manner.

Each position of the array holds the number of paths (or sub-paths) that have size (length)

equal to the position. For example, array [0,3,5,4,1] represents a set of paths with 3 overlaps

of size 1, 5 with size 2, 4 with size 3 and 1 overlap with size 4. The size of each array

is statically defined to be equal to the largest path is the circuit (circuit’s depth). The first

position of the array indicates a zero size overlap and is only used for terminal vertex 1 to

provide termination of the recursion (Line 1). Lines 2 to 4 check if the root vertex of ZT is

a terminal vertex (terminal zero or terminal one) to indicate the termination of the recursive

process. If the root of ZT is the terminal 0 vertex, a zero histogram is returned to the calling

134

Kyri
ak

os
 C

hri
sto

u

process (Line 3); for terminal 1 a histogram with a single one in the 0th position is returned

(Line 4). In all other cases (i.e., where the root of ZT is not a terminal vertex) the procedure

calls itself to calculate the histograms for the two children of ZT root (Lines 7 and 9). Next,

the two arrays are merged together with the one coming from the true edge shifted by one

position on the right (Line 10) indicating the contribution of this child to a sub-path overlap.

The procedure returns the histogram array to the calling process in line 12, until the root of

ZT is reached and the histogram is returned to the procedure of Algorithm 6.1. Each vertex is

only visited once. Even when a vertex is a child of two or more parents, the calculated array

is cached after the first visit and used for all parents of that vertex. Thus, the complexity of

the operator is linear to the size of the diagram.

In the next subsection, we present an illustrative example of the overall process.

Data: ZT : ZBDD representing a set of Sub-Paths

Result: Histogram H

1 Hzero← [0, 0, 0 ..., 0], Hone← [1, 0, 0 ..., 0],;

2 K = root(ZT) % root() gives the root vertex of ZBDD ZT ;

3 if (k==terminal vertex(0)) then return(Hzero);

4 else if (k==terminal vertex(1)) then return(Hone);

5 else

6 % true edge() gives the ZBDD rooted at solid line child of K ;

7 HT ← Retrieve Overlap Histogram(true edge(K));

8 % false edge() gives the ZBDD rooted at dashed line child of K ;

9 HE ← Retrieve Overlap Histogram(false edge(K));

10 HK ← right shift(HT) + HE ;

11 end

12 return HK;

Algorithm 6.2: Retrieve Overlap Histogram (Linear Complexity Operator)

6.3.4 A Path Overlap Calculation Example

We next give an example to illustrate the execution of the algorithm. Consider again set GA

of the circuit of Fig. 6.1 (i.e., P1, P2 and P3). Fig. 6.3(a) shows the ZBDD representation

that corresponds to the paths in GA (ZT
0 in Algorithm 6.1). Fig. 6.3(b) shows the ZBDD

after applying the pairwise intersection operator (ZT
1 in Algorithm 6.1). Observe that this

diagram contains a total of 6 paths (or sub-paths): (i) 3 sub-paths corresponding to all pos-

sible overlaps between the 3 paths and (ii) the 3 paths of the initial diagram. For instance,

135

Kyri
ak

os
 C

hri
sto

u

the shaded part of the diagram corresponds to the sub-path {d-k-m-o} which is the overlap

between paths P2, P3. Note that, this information does not correspond to path segments

only, but it also contains overlap information than spans in more than one path segment like

the case of the shaded path. The intersection and set difference operations (lines 4 and 5 in

Algorithm 6.1) remove all the unwanted paths and keep only the overlaps as shown in Fig.

6.3(c) (ZT in Algorithm 6.1).

Diagram representing (a) the paths in GA, (b) after applying the pairwise intersection op-

erator (ZT
1 in Algorithm 6.1), (c) after applying intersection and set difference which results

in keeping only the overlaps (ZT in Algorithm 6.1), and (d) execution of the algorithm that

retrieves the overlap histogram (operator of Algorithm 6.2).

Finally, in the diagram of Fig. 6.3(d) we describe the execution of the recursive operator

of Algorithm 6.2 which calculates the overlap histogram. The operator maintains a size array

per vertex (shown in black) holding the numbers and sizes of the overlaps so far, from bottom

to top of the ZBDD. For example, the array of vertex f denotes that up to this vertex two sub-

paths exist, one with size 3 (3rd position in the array) and one with size 5 (5th position in the

array). The size of the array is statically determined by the largest true path in the ZBDD (6

in this case) plus one for the 0th position needed for recursion termination. Starting from the

root vertex of the diagram (a) the operator calculates the histogram array of each vertex by

merging the histogram arrays of the two children of the vertex. For example, for vertex f it

merges the arrays of vertices i and k by shifting the array coming from the solid edge (vertex

i) to the right and adding it to the (non-shifted) array coming from the dashed line (vertex

k). This way all the solid edges are considered in the overlap calculation and all the dashed

lines are omitted. The process stops the recursion when it reaches one of the two terminal

vertices where predetermined arrays are returned (Hone and Hzero of Algorithm 6.2). The

final array associated with the root of the diagram denotes that the obtained overlap set has

three overlaps, one with size 4, one with size 5 and one with 6. This array corresponds to the

histogram structure H of the algorithm. The average overlap percentage from Definition 3

is then calculated as the average of the three overlaps over the average size of path length in

the given set, i.e., O(GA)=[(4+5+6)/3] / [(7+7+7)/3]=71.43%.

6.4 Experimental Results

The proposed method was implemented in C language using the decision diagram package

of [107] (for all ZBDD related operations), and run on a 1GHZ SunBlade 2500 workstation

136

Kyri
ak

os
 C

hri
sto

u

(a) paths in GA (b) pairwise intersection

(c) intersection and set difference (d) algorithm execution

Figure 6.3: Using ZBDDs for path set representation and overlap identification.137

Kyri
ak

os
 C

hri
sto

u

with 4GB of memory. We report results for two different test-related procedures involving

paths. In Subsection 6.4.1 we give as input to the proposed methodology path sets that

consist of critical I/O paths with less than 10% slag. We use the library of the TSMC 0.18um

process to calculate the delays and obtain the slag of the paths and we report statistics for a

number of indicative circuits from the ISCAS’85, ISCAS’89 and ITC’99 benchmark suites.

In Subsection 6.4.2 we compare the average propagation path overlap (path segments), as

well as other statistics, of two different test sets generated considering stuck-at faults.

6.4.1 Set of critical I/O paths with different average path overlap

We first show resources requirements for the proposed method in Table 6.2. The second

column reports the number of paths in the considered path set, while Columns 3 and 4 report

the proposed methodology’s requirements in CPU run time and memory, respectively. These

numbers demonstrate that the method is very efficient and with memory requirements that

are not prohibitive even for circuits with a large number of paths. In order to point out

the efficiency of the proposed method, we compare it with a brute-force approach that does

not avoid path enumeration (in the absence of any existing non-enumerative comparable

method). The brute-force approach actually selects all path pairs enumeratively and identifies

their common lines in order to give the overlap measure according to Definition 2. Column 5

reports the run time in seconds for the brute-force technique. For the circuits with a star (*)

the brute-force technique was allowed to run for 48 hours before aborted. It is obvious that

the proposed methodology is significantly faster than the brute-force technique providing the

desired results in seconds, even for circuits with a large number of paths like those in the last

rows of Table 6.2.

Next we give the results for the overlap between different sets of paths, as well as some

other measures. For each circuit we use as input, four different path sets of equal size. Sets

G1, G2, G3 and G4 consist of critical paths (with less than 10% slag) and have been selected

from a pool of critical paths using four different approaches. G1 and G2 were obtained in a

random fashion, G3 was obtained by selecting paths with more overlaps in the longest paths

and, finally, G4 was obtained by selecting paths from different I/O cones. We first discuss

in detail the obtained results for the medium size circuit s713 from the ISCAS’89 suite. For

each one of the 4 path sets we show the overlap distribution in the histograms of Fig. 6.4. In

the X axis of each histogram we show the overlap size in lines and in the Y axis the number

of the sub-paths having this overlap size. The histograms provide a complete picture of the

138

Kyri
ak

os
 C

hri
sto

u

Table 6.2: Comparison with brute-force approach

Circuit # Critical I/O Paths Proposed Method Brute Force

CPU Time (s) Mem (MBs) CPU Time (s)

s641 104 0.02 5.65 1.26

s5378 360 0.02 13.2 15.21

b09 opt 372 0.04 8.57 16.25

b12 opt 472 0.02 5.83 26.17

s3271 650 0.02 12.95 49.66

c880 682 0.02 5.35 54.67

s1423 726 0.02 6.73 61.96

b11 opt 1,033 0.02 7.64 125.49

s713 3,830 0.02 8.65 1726.22

b07 opt 6,659 0.02 6.65 1.45 h

b04 opt 8,960 0.2 5.27 2.62 h

s38584.1 24,300 1.02 75.53 19.30 h

b14 1 opt 33,528 0.6 26.54 36.75 h

c7552 80640 0.02 23.32 *

c2670 116,100 0.82 15.01 *

c5315 138,720 0.02 31.1 *

c1908 161280 0.17 29.7 *

b14 opt 175,456 7.06 41.75 *

b05 opt 439,103 0.14 37.64 *

b21 1 opt 1,949,696 0.16 74.71 *

b20 1 opt 1,950,650 0.16 77.81 *

c1355 1,959,600 5.78 84.65 *

b15 1 opt 2,209,040 0.78 95.41 *

c3540 4,641,360 2.14 124.82 *

139

Kyri
ak

os
 C

hri
sto

u

overlap distribution; however this information is not practical, especially if we want to use

it to guide a path selection algorithm. The average pairwise overlap measure (O(G) from

Definition 3) gives an indication of this distribution using a single number. For example,

O(G2) is 8.43×10−3 while O(G4) is 5.14×10−3 indicating that the overlap is larger in G2

than in G4. Indeed the distribution of the overlaps, as well as the numbers for each overlap

size indicate that this observation in true. Similarly, the overlap in G3 is larger than in G1

even thought their distributions seem to be similar. In the case of G3 however, the number of

sub-paths per overlap is much larger than in G1.

Figure 6.4: Path Overlap Distribution for four different sets of paths of circuit s713

While the measure from Definition 3 gives a very good indication about the amount of

overlap in the circuit, it gives no information on where the overlaps lay in the graph. For

this reason we use the standard statistical measure of skewness which denotes if the majority

of the values are situated on the left of the average (positive skewness) or on the right of

the average (negative skewness). It is clear that if the desired property of the path set is to

have small correlation, the skewness measure should be positive or very close to 0 (zero).

For instance, observe that while sets G2 and G3 have similar average overlap values, their

distributions are very different, and hence, their skewness values are different. The larger

negative value of G3 indicates that it contains larger overlaps than those in G2, which is

verified from the histogram. The combination of the skewness with the average overlap

140

Kyri
ak

os
 C

hri
sto

u

measure gives a very good picture of the actual histogram obtained in step 6 of the proposed

algorithm (Algorithm 6.1).

Table 6.3 reports the obtained statistics for all the circuits considered, for each of the

four path sets G1, G2, G3 and G4 Columns 1 and 2 report the circuit name and the number

of paths considered in each set. Next, we report the statistics for each path set. In columns

3, 6, 9 and 12, we report the average pairwise path overlap and in columns 5, 8, 11 and

14 the values for the skewness measure. Columns 4, 7, 10 and 13 show the relative differ-

ence between the average overlap values, in order to provide a more indicative relationship

between these values. The differences are calculated with respect to the smaller average

overlap between the four sets. For instance, the average overlap of G3 of circuit s38584.1

differs by 52.894% from the corresponding value of G2 which has the smaller overall value

i.e., (45.090-29.491)/29.491=52.894%. On the other hand, the difference between G2 and

G4 is only 8.779%. Note that this difference is in some cases significant implying large dif-

ferences in the average overlap of the considered set, even though the paths sets have exactly

the same cardinality.

6.4.2 Evaluation of stuck-at test sets for propagation path overlap

In this subsection, we use as input to the proposed methodology sets that consist of fault

propagation paths during test application. For this, we have used three different multiple-

detect test sets for stuck-at faults, i.e., test sets that explicitly target each modeled stuck-at

fault multiple (more than one) times. Multiple-detect test sets were selected for this case

since they have been proven to increase the fault coverage of non-modeled defects including

timing defects [71] that are tightly related to paths. We have used the multiple-detect test

set of [83] for both ISCAS’85 and ISCAS’89 benchmark circuits, and the n-detect test sets

of [82] and [87] for the ISCAS’85 and ISCAS’89, respectively. We use three different test

sets for the comparison. The test sets obtained from the work in [87] are directly comparable

with the method proposed in [83], yet there are not test sets available for ISCAS’85. For this

purpose we have used the method of [82] to generate n-detect test sets that are comparable

with those obtained from [83]. The experimentation consist of two steps. We first apply the

test sets coloring the propagation paths for each pattern and collecting all the propagation

paths in a single group of paths. Then we apply the proposed methodology and report the

statistics from the obtained histograms. The overlap statistics are compared in relation to an

estimation of non-modeled defect coverage obtained by the corresponding test.

141

Kyri
ak

os
 C

hri
sto

u

Ta
bl

e
6.

3:
St

at
is

tic
s

fo
rt

he
fo

ur
di

ff
er

en
tp

at
h

se
ts

ob
ta

in
ed

by
th

e
pr

op
os

ed
m

et
ho

d

#
of

G
1

G
2

G
3

G
4

C
ir

cu
it

C
ri

tic
al

O
(G

1)
D

iff
Sk

ns
O

(G
2)

D
iff

Sk
ns

O
(G

3)
D

iff
Sk

ns
O

(G
4)

D
iff

Sk
ns

I/
O

Pa
th

s
(x

10
−

4)
(%

)
(x

10
−

4)
(%

)
(x

10
−

4)
(%

)
(x

10
−

4)
(%

)
s6

41
10

4
31

6.
04

4
7.

35
8

0.
04

8
46

9.
98

6
59

.6
50

0.
28

7
29

8.
68

8
1.

46
2

-0
.0

11
29

4.
38

4
0.

00
0

0.
68

8
s5

37
8

36
0

26
5.

60
9

9.
57

0
0.

01
4

26
7.

45
3

10
.3

31
0.

00
0

27
7.

94
9

14
.6

61
-0

.0
01

24
2.

41
0

0.
00

0
0.

12
7

b0
9

op
t

37
2

76
.6

92
2.

39
2

-0
.2

81
74

.9
01

0.
00

0
-0

.3
65

95
.8

17
27

.9
25

-0
.4

54
95

.2
90

27
.2

22
-0

.4
45

b1
2

op
t

47
2

20
9.

22
4

28
.2

62
0.

57
0

16
6.

46
1

2.
04

7
0.

68
9

22
1.

83
6

35
.9

94
0.

53
1

16
3.

12
2

0.
00

0
0.

70
0

s3
27

1
65

0
30

4.
36

5
8.

65
9

0.
12

2
28

0,
11

1
0,

00
0

-0
,0

44
32

0,
58

0
14

,4
48

-0
,2

18
28

1,
01

2
0,

32
2

0,
54

9
c8

80
68

2
15

1.
84

0
18

.0
93

-0
.4

33
14

7.
50

2
14

.7
19

-0
.2

42
13

7.
51

5
6.

95
1

-0
.6

12
12

8.
57

7
0.

00
0

-0
.0

08
s1

42
3

72
6

21
2.

24
8

13
.0

80
-0

.2
73

18
7.

69
7

0.
00

0
-0

.1
79

27
5.

99
3

47
.0

42
-0

.2
51

21
0.

16
5

11
.9

70
-0

.3
56

b1
1

op
t

1,
03

3
52

4.
20

3
13

.7
40

0.
26

8
46

0.
87

7
0.

00
0

0.
31

0
72

6.
99

7
57

.7
42

0.
29

5
56

4.
77

3
22

.5
43

0.
51

8
s7

13
3,

83
0

76
.1

87
48

.3
15

-0
.7

38
84

.2
78

64
.0

67
-0

.4
24

88
.7

18
72

.7
09

-1
81

.8
43

51
.3

68
0.

00
0

-0
.2

32
b0

7
op

t
6,

65
9

99
.8

41
11

.5
40

0.
44

4
92

.6
21

3.
47

4
0.

46
5

10
4.

29
6

16
.5

17
0.

46
6

89
.5

11
0.

00
0

0.
66

0
b0

4
op

t
8,

96
0

11
0.

84
5

16
.0

29
0.

46
0

11
2.

98
5

18
.2

70
0.

61
4

14
1.

34
6

47
.9

57
0.

58
0

95
.5

32
0.

00
0

0.
55

3
s3

85
84

.1
24

,3
00

36
.9

44
25

.2
75

0.
14

9
29

.4
91

0.
00

0
0.

22
8

45
.0

90
52

.8
94

0.
31

0
32

.0
80

8.
77

9
0.

47
9

b1
4

1
op

t
33

,5
28

7.
60

3
24

.1
79

0.
27

3
6.

79
1

10
.9

15
0.

15
4

7.
40

9
21

.0
03

-0
.0

08
6.

12
3

0.
00

0
0.

33
0

c7
55

2
80

,6
40

28
.8

52
13

.1
37

0.
10

7
30

.0
23

17
.7

30
0.

01
2

28
.2

52
10

.7
88

-0
.1

70
25

.5
01

0.
00

0
-0

.0
21

c2
67

0
11

6,
10

0
5.

92
2

5.
92

3
0.

14
9

5.
82

5
4.

18
7

0.
12

9
7.

43
7

33
.0

21
0.

14
6

5.
59

1
0.

00
0

0.
21

9
c5

31
5

13
8,

72
0

25
.8

35
0.

00
0

0.
03

5
27

.8
83

7.
92

7
0.

02
0

33
.0

55
27

.9
50

0.
07

4
27

.5
74

6.
73

1
0.

16
6

c1
90

8
16

1,
28

0
6.

38
2

4.
48

3
0.

02
2

6.
34

1
3.

82
0

-0
.0

17
6.

10
8

0.
00

0
-0

.0
49

6.
26

4
2.

55
1

0.
09

8
b1

4
op

t
17

5,
45

6
1.

24
1

1.
24

5
0.

99
2

1.
28

5
4.

84
3

0.
81

9
1.

22
6

0.
00

0
0.

16
6

1.
34

8
9.

98
3

0.
84

0
b0

5
op

t
43

9,
10

3
5.

71
9

31
.1

82
0.

34
8

5.
11

8
17

.3
91

0.
26

6
4.

36
0

0.
00

0
0.

20
0

4.
96

7
13

.9
32

0.
37

6
b2

1
1

op
t

1,
94

9,
69

6
0.

19
5

0.
00

0
0.

30
9

0.
48

7
14

9.
85

7
0.

30
9

0.
79

8
30

9.
99

2
0.

10
7

0.
48

7
14

9.
90

8
0.

30
9

b2
0

1
op

t
1,

95
0,

65
0

0.
81

5
93

.8
94

-0
.3

35
0.

46
2

9.
94

6
-0

.2
52

0.
42

0
0.

00
0

-0
.3

35
0.

48
0

14
.1

67
-0

.3
35

c1
35

5
1,

95
9,

60
0

0.
34

2
2.

85
8

-0
.1

35
0.

33
2

0.
00

0
-0

.0
89

0.
53

1
59

.5
84

-0
.1

61
0.

34
2

2.
81

2
0.

16
0

b1
5

1
op

t
2,

20
9,

04
0

0.
47

7
31

.4
44

0.
60

2
0.

37
9

4.
41

9
0.

51
5

0.
50

7
39

.6
57

0.
42

2
0.

36
3

0.
00

0
0.

70
2

c3
54

0
4,

64
1,

36
0

0.
42

0
5.

72
3

0.
10

7
0.

39
7

0.
00

0
0.

15
4

0.
41

6
4.

63
7

0.
11

2
0.

40
1

0.
90

6
0.

14
1

142

Kyri
ak

os
 C

hri
sto

u

Table 6.4 reports the statistics obtained for the different test sets generated for stuck-at

faults. After the circuit name in Column 1, we report results for the multiple-detect test set

of [83]. Column 2 gives the size of the test set. Columns 3 and 4 report the average path

overlap and the skewness measures, respectively. Column 5, reports the Bridging Fault cov-

erage using a popular estimator called BCE+ proposed in [42]. The following four columns

give the same results for the two n-detect test sets. For the ISCAS’85 the test sets are ob-

tained using the method of [82] while for the ISCAS’89 the test sets are obtained from the

work in [87]. Observe that in most cases, the test set with the largest value of the average

path overlap measure (O(G)) gives larger defect coverage (bridging faults are used as surro-

gates). The test set sizes are very similar and so cannot attribute the difference in the BCE+.

For example, for circuit s9234, the n-detect test set has a smaller value for the average path

overlap than the multiple-detect and although its test set size is smaller, the defect coverage

is higher. In cases where the value of O(G) is similar for the compared test sets, like the case

of s526, the skewness value resolves the issue. For s526, the n-detect test set has a larger

value positive skewness indicating that the overlap sizes are smaller than the n-detect test set

(closer to zero) and this could explain the larger defect coverage.

6.5 Conclusions

This chapter presents an efficient way of identifying the pairwise path correlation between

the paths in a set. A new methodology based on ZBDDs is proposed that gives a compre-

hensive statistical characterization for a given path set. The method is based on standard

ZBDD operations of polynomial, to the size of the diagram, complexity. Experimentation

using the proposed measure demonstrates its effectiveness via two different approaches. The

first one shows how the proposed technique identifies similarities among various I/O critical

path sets and can distinguish their characteristics based on just two measure values per test.

The second one uses the proposed methodology to compare the propagation paths between

multiple-detect and n-detect test sets in relation to their corresponding defect coverage.

143

Kyri
ak

os
 C

hri
sto

u

Ta
bl

e
6.

4:
C

om
pa

ri
ng

pa
th

ov
er

la
ps

be
tw

ee
n

m
ul

tip
le

-d
et

ec
ta

nd
n-

de
te

ct
te

st
se

ts
M

ul
tip

le
-d

et
ec

tT
es

tS
et

[8
3]

n-
de

te
ct

Te
st

Se
t[

82
]±

an
d

[8
7]
±
±

C
ir

cu
it

O
(G

1)
O
(G

1)

#
of

Te
st

s
×

10
−

4
Sk

ns
B

C
E

+
#

of
Te

st
s

×
10
−

4
Sk

ns
B

C
E

+
c8

80
19

9
4.

22
6

-0
.8

58
0.

97
33

0
20

0
±

4.
11

8
-0

.8
11

0.
97

04
4

c1
35

5
84

1
0.

72
5

-0
.5

83
0.

92
89

8
84

0
±

0.
72

3
-0

.6
07

0.
92

41
2

c1
90

8
10

52
1.

44
5

-0
.3

97
0.

96
50

6
10

70
±

1.
52

1
-0

.4
24

0.
95

87
2

c2
67

0
53

8
1.

08
5

-1
.2

02
0.

95
85

3
55

0
±

1.
08

9
-1

.2
52

0.
95

86
3

c3
54

0
11

63
1.

93
5

-0
.7

21
0.

96
12

7
10

00
±

1.
36

6
-0

.9
94

0.
96

10
0

c7
55

2
11

65
3.

23
4

2.
12

4
0.

98
04

5
78

0
±

4.
12

5
1.

95
6

0.
97

98
6

s2
08

27
9

42
.3

34
0.

42
3

0.
98

24
8

27
1
±
±

46
.2

21
0.

37
0

0.
95

21
3

s2
98

23
2

28
.6

51
0.

54
1

0.
95

52
9

23
4
±
±

26
.7

72
0.

57
1

0.
99

59
5

s3
44

13
6

28
.7

82
-0

.0
35

0.
99

62
7

13
8
±
±

28
.8

15
-0

.0
35

0.
98

64
3

s3
82

25
2

17
.0

96
0.

14
0

0.
98

39
1

25
3
±
±

17
.7

66
0.

19
6

0.
99

72
2

s3
86

20
9

13
.4

00
-0

.2
79

0.
99

70
7

20
1
±
±

14
.3

48
-0

.2
31

0.
94

47
1

s4
20

41
0

14
.6

28
-0

.1
24

0.
95

16
7

43
3
±
±

19
.7

84
0.

03
5

0.
85

64
1

s5
10

54
1

14
.8

41
0.

63
5

0.
89

85
0

54
3
±
±

12
.4

84
0.

63
5

0.
98

38
3

s5
26

46
9

11
.1

46
0.

43
1

0.
98

38
6

49
2
±
±

11
.3

51
1.

79
9

0.
99

38
2

s6
41

22
6

9.
59

6
-0

.4
75

0.
99

32
2

22
7
±
±

13
.6

04
-0

.4
17

0.
99

12
5

s8
20

95
0

5.
94

6
0.

20
7

0.
98

22
7

94
9
±
±

6.
04

6
0.

20
0

0.
99

95
9

s9
53

76
7

5.
06

0
0.

23
3

0.
99

94
1

76
6
±
±

5.
18

6
0.

25
5

0.
90

93
8

s1
19

6
12

33
4.

20
0

-0
.1

13
0.

90
74

2
12

33
±
±

4.
39

1
-0

.0
11

0.
96

56
4

s1
42

3
26

9
5.

00
1

-0
.7

30
0.

96
88

1
26

9
±
±

4.
41

5
-0

.6
84

0.
97

37
4

s1
48

8
21

2
3.

87
7

-0
.2

78
0.

96
35

2
20

9
±
±

4.
15

7
-0

.2
60

0.
89

16
2

s9
23

4
11

90
7.

12
9

-0
.8

68
0.

87
96

7
11

32
±
±

6.
57

7
-0

.8
43

0.
90

05
8

s1
32

07
23

34
9.

31
6

-0
.5

93
0.

89
98

9
23

41
±
±

9.
12

4
-0

.5
23

0.
90

78
4

s3
84

17
78

9
18

.4
71

-1
.3

27
0.

98
81

1
78

4
±
±

18
.3

11
-1

.2
50

0.
98

78
9

144

Kyri
ak

os
 C

hri
sto

u

Chapter 7

Conclusions and Future directions

This Chapter first gives an overall thesis summary with the main contributions and results of

this dissertation, followed by short and long term research directions.

7.1 Thesis summary

Increasing complexity of modern digital circuits and current manufacturing processes limit

testing efficiency using traditional fault models. A circuit with correct timing, proved by

applying appropriate input stimuli, is said to be delay-verifiable/correct. The well estab-

lished Path Delay Fault (PDF) model is the most accurate delay fault model since it can

detect both lumped and distributed delay defects. This thesis addresses the identification of

the testable PDFs, single and multiple, and generation of suitable test sets for these PDFs.

This is currently an open problem, mainly due to the huge number of PDFs that exist, even

when restricting to the critical PDF set. Both, fully scanned circuits and circuits with no

scan capabilities, e.g., microprocessors, are considered. This dissertation also examines the

correlation between the physical paths of a digital circuit. This problem has important impli-

cations in various design automation problems, such as timing analysis, test generation and

diagnosis. When considering the complexity and tight timing constraints of modern circuits,

this correlation affects both the design process and the testing approaches followed in man-

ufacturing. A major underlying tool used in this thesis is decision diagrams. A variant of

decision diagrams, ZBDDs, has been previously shown to be very efficient in representing

a huge number of PDFs. Hence, this thesis utilizes ZBDDs along with newly proposed dia-

grams and necessary operators to tackle the examined problems. This thesis focuses on the

exploitation of the four main problems discussed below.

145

Kyri
ak

os
 C

hri
sto

u

The first problem exploited in this thesis is the identification of the all (critical) singly

testable PDF set in combinational or enhanced fully-scanned sequential circuits under dif-

ferent sensitization criteria and the generation of a compact test set for the identified PDF

set. The major challenge was the large number of PDFs considered and the fanout stems

exploitation when restricting to the critical PDF set. The methodology proposed takes as

an input a set of potentially testable (critical) PDFs and returns a specialized BDD that in-

corporates all single testable (critical) PDFs along with their test cubes and a single routed

DAG for deriving a compact test. The main motivation in this problem was to investigate

how the generated specialized BDD, could be efficiently manipulated to derive a compact

test set. The major contributions of this work is the specialized BDD that incorporates all

(critical) singly sensitizable PDFs of a circuit in an implicit and compact manner. Function

formulations are given for three sensitization types namely robust, non-robust and function-

ally sensitization. Moreover, an efficient methodology (T-Graph generation) for deriving a

compact test set was found. Experimental results clearly demonstrate the practicality of the

method and its superiority over existing methods in terms of high test efficiency (compact

test) especially for the critical PDF set.

The second problem studied in this thesis is the identification of the multiple testable (crit-

ical) primitive PDF set in enhanced fully-scanned sequential circuits. The issue here is the

huge number of paths/combinations of paths considered, which can be doubly-exponential in

the worst case (see complexity analysis in Chapter 2) for the primitive multiple PDF identifi-

cation, even when the problem restricts to the critical set. The input to the methodology used

is a set of potentially single critical PDFs and the multiple critical primitive PDF set is the

methodology’s output. The main motivation for this problem is that it has been previously

shown that in order to guarantee the temporal correctness of a circuit, only the primitive

PDF set needs to be tested. No existent methods can be trivially extended to identify primi-

tive faults using ZBDDs, since the standard ZBDD operators cannot handle multiple faults.

New operators, polynomial to the size of the ZBDD, are developed for the efficient and

non-enumerative manipulation of the multiple faults and function-based formulations with

appropriate data structures (ZBDDs) are utilized for implicit and compact representation and

non-enumerative manipulation of PDFs. The major contributions of this work is the defini-

tion of the testable critical primitive PDFs and the efficient identification of faults with no

enumeration considering any set of potentially testable critical PDF set. A data structure is

generated that represents the targeted faults also contains ATPG data (thus easily incorpo-

rated in a very efficient test generation framework). Experimental results show that only a

146

Kyri
ak

os
 C

hri
sto

u

small number of multiple primitive PDFs is testable, thus only a small number of additional

tests suffices to guarantee the circuit’s timing correctness under the multiple fault criterion

The third problem examined in this dissertation explores the generation of path-delay

test programs for microprocessor cores, with no scan capabilities thus the functional de-

lay test application methodology is used. The input to the methodology is the RT and gate

(logic) description of the microprocessor and the output is a test program set (Instruction Se-

quences) that can efficiently detect PDFs. The motivation for this problem is to investigate

how existing evolutionary computation algorithms can take advantage of a BDD-based fit-

ness evaluation function for guided generation of test programs. An evolutionary algorithm

runs RT level simulations and BDDs for deriving fault excitation conditions is constructed

based on the gate level description of the microprocessor core, that computes a fitness value.

This newly introduced BDD-based fitness evaluation function directs the test programs gen-

eration flow towards an optimal solution. If for a PDF a BDD representation can not be

found this implies that the PDF is un-testable and thus is droped. The major contributions

of this work is BDDs are used for deriving fault excitation conditions, exploited for the

automatic generation of test programs able to excite and propagate fault effects, based on

an evolutionary algorithm and fast RTL simulation innovative approach for the generation

of functional programs to test PDFs within microprocessors cores. Experimental results

demonstrate that this methodology allows reducing the test generation time, by concentrat-

ing on suitably classified structurally coherent fault lists and avoiding computation-intensive

gate-level simulations.

The last problem examined in this work is the identification of the pairwise physical paths

correlation between the paths in a set, a difficult to produce a metric. The input to this prob-

lem is a set of circuit paths and the output is a comprehensive statistical characterization for

the given path set. The motivation for this problem is that the correlation between the paths

of an integrated circuit has important implications in various design automation problems,

such as timing analysis, test generation and diagnosis. With the increasing complexity and

tight timing constraints of modern circuits, this correlation affects both the manufacturing

design process and testing. The methodology proposed is based on standard ZBDD opera-

tions that gives a comprehensive statistical characterization for a given path set in polynomial

complexity that avoids enumeration. The major contribution of this work is a methodology

that avoids enumeration of paths or path segments and, hence, a large number of paths can

be considered in practical time. The proposed ZBDD method is has a polynomial, to the

size of the diagram, complexity. Effectiveness through experimentation that, show how the

147

Kyri
ak

os
 C

hri
sto

u

proposed technique identifies similarities among various input/output critical path sets and

can distinguish their characteristics based on just two measure values per test. Effectiveness

is also demonstrated through another experiment using the proposed methodology that com-

pares the propagation paths between the multiple-detect and the n-detect test sets in relation

to their corresponding defect coverage.

7.2 Future work

Some future directions and motivations are given below, to follow relevant research areas,

extracted while working on this thesis.

In Chapters 3 and Chapter 4 a specialized BDD data structure, ISOP/ZBDD, has been

proposed that incorporated all the single and multiple PDFs along with their sensitizing test

cubes. This data structure could be explored to identify and exploit graph properties such as

the connectivity and the diameter. It is believed that important conclusions can be extracted

regarding:

• An optimized variable ordering, in terms of number of nodes, for the produced decision

diagram can be investigated. Some indications point out that if the variable order

used in the BDD, follows a similar pattern with the topological traversal of the circuit

examined, this actually produces a ”good” variable ordering.

• Important graph properties may produce a ”better critical” PDF set, e.g, point out

which path segment or path are the most visited/common, thus must be tested. This in-

formation may be extracted by appropriate manipulations/operations on the produced

data structure.

• Another important problem it to try to explore this data structure for minimizing the

number of tests used by changing the test generation policy. Instead of trying to find

the test with the maximum number of newly detected PDFs per test, try to find a test

set that overall this set would had the smallest cardinality. The target of the previous

methodology used throughout this thesis, the T −graph generation approach, is to find

the ”best” test by test approach instead of considering all the tests as a set and trying

to minimizing the set as a whole.

• Important conclusions and information can be extracted with respect a circuit’s internal

structure. Using the specialized BDD structure, important circuits gates or segments or

148

Kyri
ak

os
 C

hri
sto

u

even paths could be pointed out where the probability that an error will occur increases.

This information would be critical for generating a ”suitable” test set for this circuit.

• Low power test generation would be another interesting problem to look at. This

specialized BDD data structure extracts compact tests, that is tests that can check a

large number of PDFs together. This would imply a lot of switching of transitions,

thus this would need more power. This may result in a violation of power, where

overheating could occur.

In Chapter 5 a methodology for guided generation of path-delay test programs for mi-

croprocessor cores with no scan capability was presented. This approach, processes each

PDF separately. An interesting problem would be to investigate how existing evolutionary

computation algorithms can take advantage of a BDD-based fitness evaluation function for

a set of PDFs together. To solve this, a technique to select appropriate PDF sets, would be

needed and it would be interesting if this could be exploited using decision diagrams.

Finally, Chapter 6 gives a comprehensive statistical characterization for the given path

set. Additional methodologies could be explored for providing a metric that may concentrate

and would make better sense if it addresses a specific area, e.g., a generic metric for test

compactness.

149

Kyri
ak

os
 C

hri
sto

u

Bibliography

[1] N. Ahmed, M. Tehranipoor and V. Jayaram, “Timing-based delay test for screening small
delay defects.”, Proc. of DAC, pp. 320-325, 2006.

[2] N. Ahmed, M. Tehranipoor, C.P. Ravikumar, “Enhanced Launch-Off-Capture Transition
Fault Testing.”, Proc. of ITC, Paper 11.1, 2005.

[3] S. B. Akers, “Binary Decision Diagrams.”, IEEE Transactions on Computers, Vol. 27(6),
pp. 509-516, June 1978.

[4] S. B. Akers, “Failure diagnosis of structured VLSI.”, IEEE Design & Test of Computers,
Vol. 6(4), pp. 49-60, June 1989.

[5] B. Arslan and A. Orailoglu, “Delay test quality maximization through process-aware
selection of test set size”, Proc. of ICCD, pp. 390-395, October 2010.

[6] K. Bazargan, N. Selvakkumaran, G. Karypis and C. Ababei, “Multi-objective circuit
partitioning for cutsize and path-based delay minimization.”, Proc. of ICCAD, pp. 181-
185, 2002.

[7] J. Benkoski, E. V. Meersch, L. J. M. Claesen and H. De Man,“Timing Verification using
statically sensitizable paths”, IEEE Trans. on CAD, Vol. 9, pp. 1073-1084,September
1990.

[8] P. Bernardi, K. Christou, M. Grosso, M. K. Michael, E. Sanchez and M. S. Reorda,
“Exploiting MOEA to Automatically Generate Test Programs for Path-Delay Faults in
Microprocessors”, in Springer Lecture Notes in Computer Science, Vol. 4974/2008, pp.
224-234.

[9] P. Bernardi, M. Grosso, E. Sanchez and M. S. Reorda,“On the Automatic Generation of
Test Programs for Path-Delay Faults in Microprocessor Cores.”, IEEE ETS, pp. 179184,
2007.

[10] D. Bhattacharya, P. Agrawal and V. D. Agrawal, “Test Pattern Generation for Path
Delay Faults using Binary Decision Diagrams”, IEEE Trans. on Computers, Vol. 44(3),
pp. 434-447, March 1995.

[11] S. Bose, P. Agrawal, and V. D. Agrawal, “Generation of compact delay tests by multiple
path activation”, Proc. of ITC, pp. 714-723, 1993.

[12] S. Bose and V. D. Agrawal, “Sequential Logic Path Delay Test Generation by Symbolic
Analysis”, Proc. of AST, pp. 353-359, Nov. 1995.

[13] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation”, IEEE
Trans. on Computers, Vol. C-35(8), pp. 677-691, August 1986.

150

Kyri
ak

os
 C

hri
sto

u

[14] R. E. Bryant,“Symbolic Boolean manipulation with ordered binary-decision dia-
grams.”, ACM Comput. Surv., Vol. 24(3), pp. 293-318, September 1992.

[15] R. E. Bryant and Y.A. Chen, “Verification of arithmetic circuits using binary moment
diagrams”, Proc. CAD, pp. 535-541, 1995.

[16] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for Digital, Mem-
ory & Mixed-Signal VLSI Circuits”, Kluwer Academic Publishers, Dordrecht, 2000.

[17] T. J. Chakraborty, V. D. Agrawal and M. L. Bushnell, “Delay fault models and test
generation for random logic sequential circuits.”, ACM/IEEE Design Automation Con-
ference, pp. 165-172, 1992.

[18] L. Chen and S. Dey, “Software-Based Self-Testing Methodology for Processor Cores.”,
IEEE Trans. on CAD, Vol. 20(3), pp. 369-380, March 2001.

[19] C. A. Cheng and S. K. Gupta, “Test generation for path delay faults based on satisfia-
bility”, IEEE Design Automation Conference, 1996.

[20] K. T. Cheng, “Transition Fault Testing for Sequential Circuits”, IEEE Trans. on CAD,
Vol. 12(12), pp. 1971-1983, December 1993.

[21] K.T. Cheng and H.C. Chen, “Classification and Identification of Nonrobust Untestable
Path Delay Faults”, IEEE Trans. on CAD, Vol. 15, pp. 845-853, August 1996.

[22] K. Christou, M. K. Michael, P. Bernardi, M. Grosso, E. Sanchez and M. S. Reorda, “A
Novel SBST Generation Technique for Path-Delay Faults in Microprocessors Exploit-
ing Gate- and RT-Level Descriptions”,Proc. of IEEE VLSI Test Symposium, pp.389-394,
2008.

[23] K. Christou, M. K. Michael and S. Neophytou,“Identification of critical primitive path
delay faults without any path enumeration”, Proc. of IEEE VLSI Test Symposium, pp.9-
14, 2010.

[24] K. Christou, M. K. Michael and S. Tragoudas,“Implicit Critical PDF Test Generation
with Maximal Test Efficiency”,Proc. of IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, pp.50-58, 2006.

[25] K. Christou, M. K. Michael and S. Tragoudas., “On the Use of ZBDDs for Implicit and
Compact Critical Path Delay Fault Test Generation”, Journal of Electronic Testing, Vol.
24, pp. 203-222, January 2008.

[26] M. K. Michael, K. Christou and S. Tragoudas,“Towards finding path delay fault tests
with high test efficiency using ZBDDs”,Proc. of IEEE International Conference on Com-
puter Design, pp.464-467, 2005.

[27] J. Chung, J. Xiong, V. Zolotov, and J. A. Abraham, “Path Criticality Computation in
Parameterized Statistical Timing Analysis Using a Novel Operator.”, IEEE Trans. on
CAD, Vol. 31(4), April 2012.

[28] C. A. CoelloCoello, D. A. Van Veldhuizenand and G. B. Lamont,“Evolutionary Algo-
rithms for Solving Multi-Objective Problems”, Kluwer Academic Publishers, Dordrecht,
2002.

151

Kyri
ak

os
 C

hri
sto

u

[29] F. Corno, E. Sanchez and G. Squillero, “Evolving Assembly Programs: How Games
Help Microprocessor Validation”, IEEE Trans. on Evolutionary Computation, Vol. 9, pp.
695706, 2005.

[30] R. Drechsler and D. Sieling, “Binary Decision Diagrams in theory and practice”, Int’l
Journal on STTT, 3, pp. 112 - 136, 2001.

[31] B. Dervisoglu and G. Stong, “Design for Testability: Using Scanpath Techniques for
Path-Delay Test and Measurement.”, Proc. of ITC, pp. 365-374, 1991.

[32] K. Fuchs, M. Pabst and T. Roessel, “RESIST: A Recursive Test Pattern Generation
Algorithm.”, IEEE Trans. on CAD, Vol.13(12), pp. 15501561, 1994.

[33] F. Galarza, J. Garcia, V. H. Champac, A.Orailoglu “Small-Delay Defects Detection
Under Process Variation Using Inter-Path Correlation.”, Proc. of VTS, 2012.

[34] M. A. Gharaybeh, M. L. Bushnell and V. D. Agrawal, “Classification and modeling of
path delay faults and Test Generation Using Single Stuck-Fault Tests”, Proc. of ITC, pp.
139-148, October 1995.

[35] S. Gurumurthy, R. Vemu, J. A. Abraham and D. G. Saab, “Automatic Generation of
Instructions to Robustly Test Delay Defects in Processors”, IEEE ETS, pp. 173178, 2007.

[36] S. Hamilton, “Taking Moore’s law into the next century.”, IEEE Computer, Vol. 32(1),
pp. 43-48, 1999.

[37] K. R. Heloue, S. Onaissi, and F. N. Najm, “Efficient Block-Based Parameterized Tim-
ing Analysis Covering All Potentially Critical Paths.”, IEEE Trans. on CAD, Vol. 31(4),
April 2012.

[38] K. Heragu, J. H. Patel and V. D. Agrawal, “Fast identification of untestable delay faults
using implications”, Proc. CAD, pp. 642-647, 1997.

[39] K. Heragu, J. H. Patel and V. D. Agrawal, “Segment delay faults: a new fault model”,
Proc. of VLSI Test Symp., pp. 32-39, 1996.

[40] K. Heragu, J. H. Patel and V. D. Agrawal, “SIGMA: A Simulator for Segment Delay
Faults”, Proc. of International Conf. CAD, pp. 502-508, 1996.

[41] S. Y. Huang and K. T. Cheng, “ErrorTracer: design error diagnosis based on fault
simulation techniques.”, IEEE Trans. on CAD, Vol. 18(9), 1999.

[42] T. Huaxing, C. Gang, S. M. Reddy, W. Chen, J. Rajski and I. Pomeranz, “Defect aware
test patterns.”, Proc. of DFTS, pp. 450-455, 2005.

[43] S. Huband, P. Hingston, L. Barone and L. While, “A Review of Multiobjective Test
Problems and a Scalable Test Problem Toolkit”, IEEE Trans. on Evolutionary Computa-
tion, Vol. 10(5), pp. 477-506, 2006.

[44] V. S. Iyengar, B. K. Rosen and J. A. Waicukauski, “On Computing the Sizes of Detected
Delay Faults”, IEEE. Trans. on TCAD, pp. 299-312, March 1990.

[45] A. M. Jabir and D. K. Pradhan “A Graph-Based Unified Technique for Computing and
Representing Coefficients over Finite Fields”, IEEE Trans. on Computers, Vol. 56(8),
August 2007.

152

Kyri
ak

os
 C

hri
sto

u

[46] A. M. Jabir, D. K. Pradhan, A. K. Singh, and T.L. Rajaprabhu “A Technique for Rep-
resenting Multiple-Output Binary Functions with Applications to Verification and Sim-
ulation”, IEEE Trans. on Computers, Vol. 56(8), August 2007.

[47] S. Kajihara, M. Fukunaga, W. Xiaoqing, T. Maeda, S. Hamada, and Y. Sato, “Path
Delay Test Compaction with Process Variation Tolerance” Proc. DAC, pp. 845-850, June
2005.

[48] D. Karayiannis and S. Tragoudas, “A Fast Non-enumerative Automatic Test Pattern
Generator for Path Delay Faults”, IEEE Trans. on CAD, Vol. 18(7), pp. 1050-1057, July
1999.

[49] K. S. Kim, S. Mitra and P. G. Ryan, “Delay defect characteristics and testing strate-
gies.”, IEEE Design & Test of Computers, Vol. 20(5), pp. 8-16, 2003.

[50] M. M. V. Kumar and S. Tragoudas, “High-Quality Transition Fault ATPG for Small
Delay Defects.”, IEEE Trans. on CAD, Vol. 26(5), pp. 983-989, 2007.

[51] W. Ke and P. R. Menon., “Delay-Verifiability of Combinational Circuits Based on Prim-
itive Faults”, Proc. of ICCD, pp. 86-90, 1994.

[52] W. Ke and P. R. Menon., “Synthesis of Delay-Verifiable Combinational Circuits.”,
IEEE Trans. on Comp., Vol. 44(2), pp. 213-222, February 1995.

[53] F. Kocan and M. H. Gunes, “On the ZBDD-based nonenumerative path delay fault
coverage calculation”,IEEE Trans. on CAD, Vol. 24, pp. 1137-1143, July 2005.

[54] D. A. Kirkpatrick and A. L. Sangiovanni-Vincentelli, “Digital Sensitivity: Predicting
Signal Interaction using Functional Analysis”, Proc. ICCAD, pp. 536-541, November
1996.

[55] A. Krstic and K. T. Cheng, “Delay fault Testing for VLSI circuits.”, Kluwer Academic
Publishers, Dordrecht, 1998.

[56] A. Krstic, K. T. Cheng and S. T. Chakradhar, “Primitive Delay Faults: Identification,
Testing, and Design for Testability.”, IEEE Trans. on CAD, Vol. 18(6), pp. 669-684, June
1999.

[57] A. Krstic and K. T. Cheng, “Resynthesis of Combinational Circuits for Path Count
Reduction and for Path Delay Fault Testability”, Proc. of European Design and Test, pp.
486-490, March 1996.

[58] W. C. Lai, A. Krstic and K. T. Cheng, “On Testing the Path Delay Faults of a Microp-
orcessor Using its Instruction Set.”, Proc. of VTS, 2000.

[59] W. C. Lai, A. Krstic and K. T. Cheng, “Test Program Synthesis for Path Delay Faults
in Microprocessor Cores”, IEEE International Test Conference, pp. 1080-1089, 2000.

[60] C. Y. Lee, “Representation of Switching Circuits by Binary-Decision Programs.”, The
BELL SYSTEM TECHNICAL JOURNAL, pp. 985-999, July 1959.

[61] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits”, IEEE TCAD,
Vol.6, pp. 694-703, September 1987.

[62] Z. C. Li, R. K. Brayton and Y. Min, “Efficient identification of Non-Robustly
Untestable Path Delay Faults using implications”, Proc. ITC, pp. 992-997, 1997.

153

Kyri
ak

os
 C

hri
sto

u

[63] X. Lin, K. H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingenberg, Y.
Sato, S. Hamada and T. Aikyo, “Timing-Aware ATPG for High Quality At-speed Testing
of Small Delay Defects”, Proc. of ATS, pp. 139-146, 2006.

[64] J. J. Liou. A. Krstic, Y. M. Jiang and K. T. Cheng, “Path selection and pattern generation
for dynamic timing analysis considering power supply noise effects”, Proc. of ICCAD,
pp. 493-496, 2000.

[65] X. Lu, Z. Li, W. Qiu, D. M. H. Walker and W. Shi, “Longest-path selection for delay test
under process variation”, IEEE Trans. on CAD, Vol. 24(12), pp. 1924-1929, December
2005.

[66] S. Y. Lu, P. Y. Hsieh and J. J. Liou, “Exploring linear structures of critical path delay
faults to reduce test efforts”, Proc. of ICCAD, pp. 100-106, 2006.

[67] A. K. Majhi, J. Jacob, L. M. Patnaik and V. D. Agrawal, “On test coverage of path delay
faults”, Proc. of VLSID, 1996.

[68] S. Majumder, V. D. Agrawal and M. L. Bushnell, “Path Delay Testing: Variable-
clock versus Rated-clock”, Proc. of the 11th International Conference on VLSI Design,
pp.470-475, Jan. 1998.

[69] T. M. Mak, A. Krstic, K. T. Cheng and Li. C. Wang, “New challenges in delay testing
of nanometer, multigigahertz designs.”, IEEE Design & Test of Computers, Vol. 21(3),
pp. 241-248, 2004.

[70] P. Manikandan, B. B. Larsen and E. J. Aas, “Experiments with ABIST test methodology
applied to path delay fault testing.”, Design & Test Symposium (EWDTS), pp. 59-63,
2010.

[71] E. J. McCluskey and T. Chao-Wen, “Stuck-fault tests vs. actual defects.”, Proc. of ITC,
pp. 336-342, 2000.

[72] P. C. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-
Vincetelli, “Timing Analysis and Delay Fault Test Generation using Path Recursive
Functions”, Proc. CAD, pp. 180-183, 1991.

[73] P. C. McGeer and R. K. Brayton, “Integrating Functional and Temporal Domains in
Logic Design”, Kluwer Academic Publishers, Dordrecht, 1991.

[74] M. K. Michael and S. Tragoudas, “Function-based Compact Test Pattern Generation
for Path Delay Faults”, IEEE Trans. on VLSI, Vol.13(8), pp. 996-1001, April 2005.

[75] M. K. Michael, K. Christou and S. Tragoudas, “Towards finding path delay fault tests
with high test efficiency using ZBDDs”, Proc. ICCD, pp. 464-467, 2005.

[76] A. Mishchenko, “EXTRA CUDD:http://web.cecs.pdx.edu/ alanmi/ re-
search/extra.htm”. 2003.

[77] S. I. Minato, “Fast Generation of Prime-Irredundant Covers from Binary Decision Di-
agrams”, IEICE Trans. Fundamentals, Vol. E76-A(6), pp. 976 - 973, June 1993.

[78] S. I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems”, Proc. DAC, pp. 272-277, 1993.

154

Kyri
ak

os
 C

hri
sto

u

[79] S. I. Minato, “Fast Factorization method for implicit cube set representation”, IEEE
Trans. on CAD, Vol. 15(3), pp. 377-384, April 1996.

[80] A. Narayan, J. Jain, M. Fujita and A. Sangiovanni-Vincentelli, “Partitioned ROBDDs -
A Compact, Canonical and Efficiently Manipulable Representation for Boolean Expres-
sions”, Proc. ICCAD, pp. 547-554, 1996.

[81] S. Neophytou, K. Christou and M. K. Michael,“An Approach for Quantifying Path
Correlation in Digital Circuits without any Path or Segment Enumeration”, Proc. of IEEE
European Test Symposium, pp.141-146, 2011.

[82] S. Neophytou and M. K. Michael, “Hierarchical Fault Compatibility Identification for
Test Generation with a Small Number of Specified Bits.”, Proc. of DFT, pp. 439-447,
2007.

[83] S. Neophytou, M. K. Michael and K. Christou, “Generating Diverse Test Sets for Mul-
tiple Fault Detections Based on Fault Cone Partitioning.”, Proc. of DFTS, pp. 401-409,
2009.

[84] S. Padmanaban, M. K. Michael and S. Tragoudas, “Exact path delay fault coverage
with fundamental ZBDD operations”, IEEE Trans. on CAD, Vol. 22, pp. 305-316, March
2003.

[85] S. Padmanaban and S. Tragoudas, “Efficient Identification of (Critical) Testable Path
Delay Faults Using Decisions Diagrams”, IEEE Trans. on CAD, Vol. 24(1), pp. 77-87,
January 2005.

[86] S. Padmanaban and S. Tragoudas, “Non-Enumerative Path Delay Fault Diagnosis”,
Proc. of DATE, pp. 10322-10327, 2003.

[87] I. Pomeranz and S. M. Reddy, “Forming N-detection test sets without test generation.”,
ACM TODAES, Vol. 12(2), No. 18, April 2007.

[88] I. Pomeranz, and S. M. Reddy, “On Synthesis-for-Testability of Combinational Logic
Circuits”, Proc. of DAC, pp. 126-132, June 1995.

[89] I. Pomeranz and S. M. Reddy, “Sizes of test sets for path delay faults using strong and
weak non-robust tests.”, IET Comput. Digit. Tech, Vol. 5(5), pp. 405-414, September
2011.

[90] I. Pomeranz, and S. M. Reddy, “Test Enrichment for Path Delay Faults Using Multiple
Sets of Target Faults”, IEEE Trans. on CAD, Vol. 22(1), pp. 82-89, January 2003.

[91] I. Pomeranz, S. M. Reddy and P. Uppaluri, “NEST: A Non-enumerative Test Generation
Method for Path Delay Faults in Combinational Circuits”, IEEE Trans. on CAD, Vol.
14(12), pp. 1505-1515, December 1995.

[92] D. K. Pradhan and C. Liu “EBIST: A Novel Test Generator With Built-In Fault Detec-
tion Capability”, IEEE Trans. on CAD, Vol. 24(9), September 2005.

[93] A. K. Pramanick and S. M. Reddy, “On the fault coverage of gate delay fault detecting
tests”, IEEE Trans. CAD, Vol. 16(1), pp. 78-94, January 1997.

[94] R. Putman and R. Gawde, “Enhanced timing-based transition delay testing for small
delay defects”, Proc. of VTS, 2006.

155

Kyri
ak

os
 C

hri
sto

u

[95] E. Sanchez, M. Schillaci, M. Sonza Reorda and G. Squillero,“An Enhanced Technique
for the Automatic Generation of Effective Diagnosis-oriented Test Programs for Proces-
sors”, IEEE Design, Automation and Test in Europe, pp. 16, 2007.

[96] T. Sasao and J. T. Butler, “Worst and best irredundant sum-of-products expressions”,
IEEE Trans. on Computers, Vol. 50(9), pp. 935-948, September 2001.

[97] J. Savir and S. Patil, “On Broad-Side Delay Test.”, Proc. of VTS, pp. 284-290, 1994.

[98] J. Savir, “Skewed-Load Transition Test: Part I, Calculus.”, Proc. of ITC, pp. 705-713,
1992.

[99] J. Saxena and D. K. Pradhan, “A method to derive compact test sets for path delay faults
in combinational circuits”, Proc. of ITC, pp. 724-733, 1993.

[100] J. D. Schaffer,“Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms”, Intl Conf. on Genetic Algorithms and Their Applications, pp. 93100, 1985.

[101] Y. Shao, S. M. Reddy, S. Kajihara and I. Pomeranz, “An Efficient method to identify
Untestable Path Delay Faults”, Proc. ITC, 2001.

[102] M. Sharma and J. H. Patel, “Testing of critical paths for delay faults”, Proc. of ITC,
pp. 634-641, 2001.

[103] T. Shinogi, T. Hayashi, T. and K. Taki, “Test generation for stuck-on faults in BDD-
based pass-transistor logic SPL”, ATS, pp. 16-21, Nov. 1997.

[104] V. Singh, M. Inoue, K. K. Saluja and H. Fujiwara, “Instruction-Based Delay Fault
Self-Testing of Processor Cores”, IEEE International Conference on VLSI Design, pp.
933938, 2004.

[105] M. Sivaraman and A. Strojwas, “Primitive Path Delay Faults:Identification and Their
Use in Timing Analysis.”, IEEE Trans. on CAD, Vol. 19(11), pp. 1347-1362, November
2000.

[106] G. L. Smith, “Model for Delay Faults Based upon Paths”, Proc. of ITC, pp. 342-351,
1985.

[107] F. Somenzi, “CUDD: CU Decision Diagram Package”, Dept. of ECE, The University
of Colorado, release 2.3.0, 1999.

[108] U. Sparmann, D. Luxenburger, K. T. Cheng and S. M. Reddy,“Fast identification of
robust dependent path delay faults”, Proc. of DAC, pp. 119-125, 1995.

[109] P. Tafertshofer, A. Ganz and K. J. Antreich, “IGRAINE – An Implication GRaph
bAsed engINE for fast Implication, Justification, and Propagation”, IEEE Trans. on
CAD, Vol. 19(8), pp. 907927, 2000.

[110] S. Tani, M. Teramoto, T. Fukazawa and K. Matsuhiro, “Efficient path selection for
delay testing based on partial path evaluation.”, Proc. of VTS, pp. 188-193, 1998.

[111] R. Tayade and J. Abraham, “Small-delay defect detection in the presence of process
variations.”, Microelectronics Journal, Vol. 39, pp. 1093-1100, 2010.

[112] R. Tayade and A. J. Abraham, “Critical Path Selection for Delay Testing Considering
Coupling Noise.”, JETTA, Vol. 25(4), pp. 213-223, 2009.

156

Kyri
ak

os
 C

hri
sto

u

[113] R. C. Tekumalla and P. R. Menon, “Test generation for primitive path delay faults in
combinational circuits”, Proc. of ICCAD, pp. 636-641, 1997.

[114] L. C. Wang, J. J. Liou and K. T. Cheng, “Critical Path Selection for Delay Fault
Testing Based Upon a Statistical Timing Model”, IEEE Trans. on CAD, Vol. 23(11), pp.
1550-1565, November 2004.

[115] D. Xiang, K. Li, H. Fujiwara and J. Sun, “Generating compact robust and non-robust
tests for complete coverage of path delay faults based on stuck-at tests.”, Proc. ICCD,
pp. 446-451, 2006.

[116] H. Yan and A. D. Singh , “Evaluating the effectiveness of detecting delay defects in
the slack interval: a simulation study”, Proc. of ITC, pp. 242-251, 2004.

[117] K. Yang, K. T. Cheng and L. C. Wang, “TranGen: A SAT-Based ATPG for Path-
Oriented Transition Faults”, ASP-DAC, pp. 92-97, 2004.

[118] M. Yilmaz, K. Chakrabarty and M. Tehranipoor, “Test-Pattern Selection for Screening
Small-Delay Defects in Very-Deep Sub-micrometer Integrated Circuits.”, IEEE Trans.
on CAD, Vol. 29(5), 2010.

[119] V. Zolotov, X. Jinjun, H. Fatemi and C. Visweswariah, “Statistical Path Selection for
At-Speed Test.”, IEEE Trans. on CAD, Vol. 29, pp. 749-759, 2010.

[120] “International Technology Roadmap for Semiconductors.”, tech. rep., ITRS, 2011.

[121] MicroGP++, “http://ugp3.sourceforge.net”

157

Kyri
ak

os
 C

hri
sto

u

	Thesis

