

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

STEREO VISION HARDWARE ARCHITECTURES

FOR REAL-TIME DEPTH COMPUTATION IN

EMBEDDED VISION APPLICATIONS

DOCTOR OF PHILOSOPHY DISSERTATION

CHRISTOS TTOFI

2014

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

STEREO VISION HARDWARE ARCHITECTURES

FOR REAL-TIME DEPTH COMPUTATION IN

EMBEDDED VISION APPLICATIONS

CHRISTOS TTOFI

A Dissertation Submitted to the University of Cyprus in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

May 2014

Chri
sto

s T
tof

i

© Christos Ttofi, 2014

Chri
sto

s T
tof

i

i

VALIDATION PAGE

Doctoral Candidate: Christos Ttofi

Doctoral Thesis Title: Stereo Vision Hardware Architectures for Real-Time Depth

Computation in Embedded Vision Applications

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy at the Department of Electrical and Computer

Engineering and was approved on May 23, 2014 by the members of the Examination

Committee.

Examination Committee:

Committee Chair

Research Supervisor

Committee Member

Committee Member

Committee Member

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

iii

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other

statements.

…………………………………….. [Full Name of Doctoral Candidate]

…………………………………….. [Signature]

Christos Ttofi

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

v

ΠΕΡΙΛΗΨΗ

Η αλάθηεζε ηνπ βάζνπο, δειαδή ηεο απόζηαζεο ελόο αληηθεηκέλνπ από κία δηάηαμε θακεξώλ,

κέζσ ππνινγηζηηθώλ ζπζηεκάησλ ζηεξενζθνπηθήο όξαζεο, αλακέλεηαη λα νδεγήζεη ζε κηα ξαγδαία

αλάπηπμε λέσλ εθαξκνγώλ ζηα ελζσκαησκέλα ζπζηήκαηα όξαζεο κεραλήο, ησλ νπνίσλ ε ιεηηνπξγία

κέρξη ηώξα βαζηδόηαλ ζε δηζδηάζηαηε πιεξνθνξία. Απηέο εθαξκνγέο απηήο ηεο λέαο ηάζεο ήδε

ππάξρνπλ ζε πνιιέο πεξηνρέο: από ειεθηξνληθά είδε επξείαο θαηαλάισζεο θαη ςπραγσγίαο, κέρξη

ζπζηήκαηα ξνκπνηηθήο, απηνθηλήησλ, ηαηξηθήο απεηθόληζεο, ζηξαηησηηθέο ζπζθεπέο θ.ι.π. Η

ζηεξενζθνπηθή όξαζε κεραλήο απνηειεί κηα θαηάιιειε ηερλνινγία γηα ηελ εθηίκεζε πιεξνθνξίαο

βάζνπο ζε κηα νπηηθή ζθελή, ρξεζηκνπνηώληαο ζηεξενζθνπηθά δεύγε εηθόλσλ. Η δηαδηθαζία απηή

επηηπγράλεηαη κε ηελ αλαδήηεζε θαη εληνπηζκό αληίζηνηρσλ πξνβνιώλ θνηλώλ ζεκείσλ ζην ρώξν, ηα

νπνία όκσο αληρλεύνληαη από ηηο δύν θάκεξεο ζε δηαθνξεηηθέο ζέζεηο. Σε γεληθέο γξακκέο, ε

δηαδηθαζία ηεο ζηεξενζθνπηθήο αληηζηνίρηζεο ζπληζηά έλα ππνινγηζηηθά απαηηεηηθό ζηόρν θαη έρεη

επηιπζεί κε δηάθνξα είδε αιγνξίζκσλ, παξάγνληαο δηαθνξεηηθά απνηειέζκαηα όζν αθνξά ηελ

αθξίβεηα ησλ απνηειεζκάησλ θαη ηελ ππνινγηζηηθή πνιππινθόηεηα. Επηπξόζζεηα, νη απαηηήζεηο είλαη

αθόκα κεγαιύηεξεο ζε εθαξκνγέο ελζσκαησκέλσλ ζπζηεκάησλ, όπνπ ην θόζηνο ζε θαηαλάισζε

πιηθνύ, δηαζέζηκεο κλήκεο θαη ελέξγεηαο ρξεηάδεηαη λα ειαρηζηνπνηεζνύλ.

Η παξνύζα δηαηξηβή δηεξεπλά ηελ αξρηηεθηνληθέο πιηθνύ αιγνξίζκσλ ζηεξενζθνπηθήο όξαζεο

πνπ έρνπλ ηε δπλαηόηεηα λα ηθαλνπνηήζνπλ ηηο απαηηήζεηο ελζσκαησκέλσλ εθαξκνγώλ όξαζεο

κεραλήο. Αξρηθά, ε δηαηξηβή παξνπζηάδεη ηε ζρεδίαζε κηαο αξρηηεθηνληθήο ζηεξενζθνπηθήο όξαζεο, ε

νπνία κέζσ ηεο ελζσκάησζεο αλίρλεπζεο αθκώλ ζε εηθόλεο επηδηώθεη λα επηηαρύλεη ηε ρξνλνβόξα

δηαδηθαζία αληηζηνίρηζεο θνηλώλ ζεκείσλ ζηηο δύν εηθόλεο, κε ηε κείσζε ηνπ ζπλνιηθνύ

ρώξνπ αλαδήηεζεο, πνπ έρεη σο απνηέιεζκα ηε ζεκαληηθή βειηίσζε ηεο επεμεξγαζηηθήο ηαρύηεηαο. Η

ελζσκάησζε αληρλεπηώλ αθκώλ κεηώλεη επίζεο ηνπο απαηηνύκελνπο πόξνπο ζε πιηθό θαη κλήκε,

δίλνληαο έηζη ηε δπλαηόηεηα ζρεδηαζκνύ κηαο παξάιιειεο, επεθηάζηκεο θαη απνδνηηθήο σο πξνο

ηνπο απαηηνύκελνπο πόξνπο αξρηηεθηνληθή πνπ είλαη ζε ζέζε λα επεμεξγάδεηαη ζηεξενζθνπηθέο

εηθόλεο πςειήο αλάιπζεο ζε πξαγκαηηθό ρξόλν.

Σηε ζπλέρεηα, ε δηαηξηβή εζηηάδεηαη ζην ζρεδηαζκό ηεο αξρηηεθηνληθήο ελόο πνιύπινθνπ, αιιά

κε κεγάιε αθξίβεηα, αιγνξίζκνπ ζηεξενζθνπηθήο αληηζηνίρηζεο πνπ ρξεζηκνπνηεί πξνζαξκνζηηθά

βάξε ππνζηήξημεο θαη θαηάηκεζε εηθόλαο, ζε κηα πξνζπάζεηα λα βειηηώζεη ηελ αμηνπηζηία ηεο

δηαδηθαζία αληηζηνίρηζεο θαη λα ηθαλνπνηήζεη ηηο εμαηξεηηθά πςειέο

απαηηήζεηο αθξίβεηαο αλαδπόκελσλ ελζσκαησκέλσλ εθαξκνγώλ όξαζεο κεραλήο. Η δηαηξηβή εηζάγεη

βειηηζηνπνηήζεηο πνπ ζηνρεύνπλ ζηελ πξνζαξκνγή ηνπ αιγνξίζκνπ, ώζηε απηόο λα κπνξεί λα

πινπνηεζεί απνδνηηθά ζε πιηθό. Η αξρηηεθηνληθή πνπ πξνθύπηεη επηηπγράλεη έλα απνηειεζκαηηθό

ζπκβηβαζκό ηαρύηεηαο/αθξίβεηαο ζε ζύγθξηζε κε ήδε ππάξρνληα ζπζηήκαηα αληηζηνίρηζεο, σζηόζν,

θαηαλαιώλνληαο κεγάιν πνζνζηό δηαζέζηκσλ πόξσλ.

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

vii

Καηά ζπλέπεηα, ε δηαηξηβή επηθεληξώλεηαη ζηε ζπλέρεηα ζε κηα ελαιιαθηηθή κέζνδν ε νπνία

ζηεξίδεηαη ζηελ πινπνίεζε ηεο ζηεξενζθνπηθήο αληηζηνίρηζεο κε ηε ρξήζε ηνπ πξόζθαηα

πξνηεηλόκελνπ θαζνδεγνύκελνπ θίιηξνπ εηθόλαο. Η δηαηξηβή παξνπζηάδεη κηα ζπκπαγήο θαη

απνδνηηθή ζρεδίαζε ηνπ θίιηξνπ ζε πιηθό, θαη αλαδεηθλύεη ηηο δπλαηόηεηεο ηνπ θίιηξνπ γηα κείσζε

ηεο πνιππινθόηεηαο ηεο δηαδηθαζίαο ζηεξενζθνπηθήο αληηζηνίρηζεο πνπ είλαη βαζηζκέλε ζε

πξνζαξκνζηηθά βάξε ππνζηήξημεο, αιιά θαη ηελ απνηειεζκαηηθόηεηά ηνπ γηα πινπνίεζε κηαο ηζρπξήο

κνλάδαο βειηίσζεο ησλ εμαγόκελσλ πηλάθσλ βάζνπο, ε νπνία κπνξεί λα βειηηώζεη ηελ αθξίβεηα ηνπ

αιγνξίζκνπ ζηεξενζθνπηθήο αληηζηνίρηζεο ζεκαληηθά, αθόκε θαη αλ είλαη ελζσκαησκέλε ζε απινύο

αιγνξίζκνπο αληηζηνίρηζεο.

Τέινο, ε δηαηξηβή παξέρεη ελδηαθέξνπζεο πιεξνθνξίεο πνπ πξνθύπηνπλ από ηελ αμηνιόγεζε

ησλ πξνηεηλόκελσλ αξρηηεθηνληθώλ ζηεξενζθνπηθήο όξαζεο, ζε εθαξκνγέο αλίρλεπζεο αληηθεηκέλσλ

ζε εηθόλεο, θαζώο θαη απνθπγήο εκπνδίσλ ζε απηόλνκα ξνκπνηηθά ζπζηήκαηα.

Λέξεις Κλειδιά: Ελζσκαησκέλα Σπζηήκαηα, Υπνινγηζηηθή Όξαζε, Ελζσκαησκέλε Όξαζε Μεραλήο,

Σηεξενζθνπηθή Όξαζε, Πίλαθεο Αλαδηαηαζζόκελεο Λνγηθήο

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

ix

ABSTRACT

Empowering embedded vision systems with 3D perception capabilities is expected to lead to a

boost of new applications that so far could not be done with classical 2D alternatives. Applications of

this new trend already exist in numerous areas: from consumer electronics and entertainment, to

robotics, automotives, medical imaging, defense, etc. Stereo vision is a well-suited technology that

uses two standard image cameras to infer depth information, by solving the so-called stereo matching

problem. This involves searching and locating corresponding projections of the same 3D points sensed

by the two cameras in different positions, a challenging task that can be tackled with many algorithms,

consequently producing different outcomes in terms of accuracy and computational complexity. Stereo

matching becomes even more challenging when targeting applications in embedded and mobile

environments, where cost, energy and memory overheads need to be minimized.

This thesis investigates hardware architectures of stereo matching algorithms that have the

potential to satisfy the requirements of constrained embedded vision applications. Initially, the design

of a stereo matching architecture that utilizes edge information as a means to accelerate the overall

matching process, is presented. By constraining the matching process only on binary data (edges), the

search space is greatly reduced and the overall frame-rate is improved. The integration of edge

information also reduces the logic and memory requirements, thus enabling the design of a parallel,

scalable and resource-optimized architecture that is able to process HD stereo images in real time.

Afterwards, the thesis focuses on designing the architecture of a complex, accurate matching algorithm

that uses adaptive support weights (ADSW) and image segmentation, in an attempt to improve the

robustness of the matching process and satisfy the extremely high matching accuracy required by many

of today‟s embedded vision applications. The thesis introduces hardware design optimizations to adapt

the segment-based ADSW algorithm for a hardware-friendly and compatible with embedded

constraints design. The resulting architecture obtains an effective speed-accuracy tradeoff when

compared to state-of-the-art stereo matching systems, however at the expense of high resource usage.

Consequently, an alternative method that implements stereo matching based on the recently proposed

guided filter, is investigated. The thesis presents a compact and efficient design of the filter, and

illustrates its potential in reducing the complexity of the ADSW matching process, but also its

efficiency in enabling a powerful disparity refinement unit, which can improve the matching accuracy

considerably, even if it is integrated into simple stereo matching algorithms. Finally, the thesis

provides insights obtained from evaluating the proposed architectures in object detection and

obstacle avoidance applications.

Keywords: Embedded Systems; Computer Vision; Embedded Vision; Stereo Vision; Real-Time; Field

Programmable Gate Arrays (FPGAs)

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

xi

PUBLICATIONS

Publications Stemming from this Thesis

Journal Publications:

1. Christos Ttofis, Christos Kyrkou and Theocharis Theocharides, "A Hardware-Efficient

Architecture for Accurate Real-Time Disparity Map Estimation," ACM Transactions on

Embedded Computing Systems, accepted for publication, 2014.

2. Christos Kyrkou, Christos Ttofis, and Theocharis Theocharides, “A Hardware

Architecture for Real-Time Object Detection Using Depth and Edge Information,” ACM

Transactions on Embedded Computing Systems, vol. 13, no. 3, pp. 54:1-54:19, December

2013.

3. Christos Ttofis, Stavros Hadjitheofanous, Athos Georghiades and Theocharis

Theocharides, “Edge-Directed Hardware Architecture for Real-Time Disparity Map

Computation,” IEEE Transactions on Computers, vol. 62, no. 4, pp. 690-704, April 2013.

4. Christos Ttofis and Theocharis Theocharides, “Hardware Design Considerations for

Edge-Accelerated Stereo Correspondence Algorithms,” VLSI Design – Special Issue on

Circuits and Systems for Advanced Video Compression Standards, vol. 2012, Article ID

602737, 17 pages, 2012.

Publications in Refereed Conference Proceedings:

5. C. Ttofis and T. Theocharides, “High-Quality Real-Time Hardware Stereo Matching

based on Guided Image Filtering,” Design, Automation & Test in Europe Conference &

Exhibition (DATE’14), Dresden, Germany, 24-28 March 2014.

6. C. Ttofis, D. Stavrou, D. Koukounis, T. Theocharides and C. Panayiotou, “A Laboratory

Course on 3D Vision for Robotic Applications,” Proceedings of the IEEE International

Conference on Microelectronic Systems Education 2013 (MSE '13), pp. 21-24, 2-3 June

2013, Austin, Texas, USA.

7. C. Ttofis and T. Theocharides, “Towards Accurate Hardware Stereo Correspondence: A

Real-Time FPGA Implementation of a Segmentation-Based Adaptive Support Weight

Algorithm,” Proceedings of the Design, Automation & Test in Europe Conference &

Exhibition (DATE’12), Dresden, Germany, 12-16 March 2012.

8. C. Kyrkou, C. Ttofis, T. Theocharides, “FPGA-Accelerated Object Detection using

edge information”, Proceedings of Field Programmable Logic and Application

Conference (FPL) 2011.

9. C. Kyrkou, C. Ttofis, T. Theocharides, “Depth-directed hardware object detection,”

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE) 2011, pp.1-6, Grenoble, France, 14-18 March 2011.

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

xiii

10. S. Hadjitheophanous, C. Ttofis, A. S. Georghiades, and T. Theocharides, “Towards

Hardware Stereoscopic 3D Reconstruction: A Real-Time FPGA Computation of the

Disparity Map,” Proceedings of the Design, Automation & Test in Europe Conference

& Exhibition (DATE) 2010, pp.1743-1748, Dresden, Germany, 8-12 March 2010.

Other Publications:

11. Christos Ttofis, "Disparity Estimation Hardware Architectures and Design Techniques

for Embedded Stereo Vision Applications," presented as part of PhD dissertation in

PhD Forum at the IEEE Design Automation and Test in Europe (DATE’13) Conference,

Grenoble, France, March 2013.

Under Submission:

12. Martinianos Papadopoulos, Christos Ttofis, Christos Kyrkou, Theocharis Theocharides,

“Real-Time Obstacle Avoidance for Mobile Robots via Stereoscopic Vision Using

Reconfigurable Hardware,” 24th International Conference on Field Programmable Logic

and Applications, 2014

13. Christos Ttofis and Theocharis Theocharides, “A low-cost embedded accurate stereo

vision system based on guided image filtering”, Computer Vision and Image

Understanding, Elsevier, 2014.

Other Publications by the Author

Journal Publications:

14. Dimitris Koukounis, Christos Ttofis, Agathoklis Papadopoullos, Theocharis

Theocharides, “A High Performance Hardware Architecture for Portable, Low-Power

Retinal Vessel Segmentation,” Integration, The VLSI Journal, Elsevier, to appear, 2014.

15. Christos Ttofis, Theocharis Theocharides, and Maria K. Michael, “FPGA-based

Laboratory Assignments for NoC-based Manycore Systems,” IEEE Transactions on

Education, vol. 55, no. 2, pp. 180-189, May 2012.

16. Christos Ttofis, Agathoklis Papadopoulos, Theocharis Theocharides, Maria K. Michael,

and Demosthenes Doumenis, “An MPSoC-Based QAM Modulation Architecture with

Run-Time Load-Balancing,” EURASIP Journal on Embedded Systems, vol. 2011, Article

ID 790265, 15 pages, 2011.

Publications in Refereed Conference Proceedings:

17. D. Koukounis, C. Ttofis, T. Theocharides, “Hardware Acceleration of Retinal Blood

Vasculature Segmentation”, Proceedings of the 23rd ACM international conference on

Great lakes symposium on VLSI (GLSVLSI'13), pp. 113-118, Paris, France, 2-3 May

2013.

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

xv

18. C. Ttofis, A. Papadopoulos, T. Theocharides, M. Michael, D. Doumenis, “A

reconfigurable MPSoC-based QAM modulation architecture,” Proceedings of 18th

IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC 2010), pp.137-142, 27-29 Sept.

2010.

19. C Ttofis, C. Kyrkou, T. Theocharides and M. K. Michael, “FPGA-Based NoC-Driven

Sequence of Lab Assignments for Manycore Systems,” Proceedings of the IEEE

International Conference on Microelectronic Systems Education 2009 (MSE '09), pp.5-

8, San Francisco, USA, 25-27 July 2009 - Best Paper Award

20. C. Ttofis, T. Theocharides, “A C++ Simulator for Evaluting NoC Communication

Backbones,” in the Proceedings of the 3rd Greek National Student Conference of

Electrical and Computer Engineering, page 54, Thessaloniki, Greece, April 2009.

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

xvii

ACKNOWLEDGEMENTS

During the three years of this thesis research work, I received much support from many people

around me. Therefore, I would like to take this opportunity to express my gratitude and appreciation to

these people. This thesis would not have been possible without their invaluable help and support.

First of all, I would like to thank my very passionate advisor, Dr. Theocharis Theocharides, for

his guidance and support over these years. He have believed in me from the beginning, guided me

steadily through this period, and managed to keep me calm in demanding and stressful situations.

Furthermore, I will always be thankful for his knowledge, insistence, and the fact that he has

provided a productive and friendly environment for research, factors that all strengthened this work

significantly. It has been an honor to work with him.

I would also like to express my sincere thanks to my colleagues from the EASOC laboratory for

the pleasant collaborations, as well as the enjoyable group meetings and discussions we had. A special

thanks to my colleague Christos Kyrkou for his committed collaboration in the development of the

“depth-accelerated hardware object detection system”. Our collaboration has resulted in several

publications, which are included in this thesis. I also thank my colleagues at the KIOS Research Center

for establishing a nice and enjoyable working atmosphere.

During the three-year period of my PhD research, I was lucky to have the chance to work in the

RUNNER project, together with a group of brilliant experts, who contributed in making meetings,

visits and workshops a fun and rewarding experience. I am also indebted to the members of my

examination committee professor Constantinos Pattichis, Dr. Maria Michael, Dr. Dimitrios Soudris, Dr.

Theocharis Theocharides and Dr. Chrysostomos Nicopoulos, who dedicated time to review this

dissertation, and provided feedback and suggestions.

On a personal note, I am so thankful to my wonderful family for the continuous support,

patience and encouragement during the progress of my thesis. I am grateful for my wife, Ioanna, who

always make me keep trying to reach my dreams, and for my son, Savvas, because he has brought me

so much joy, but in addition to the smiles and laughter he brings, he has taught me more than I believe

could have been possible. I now understand why they both came in my life so early. I am also thankful

for my pets, which make life so much pleasanter. Lastly, I am thankful for God, who not only gave me

all the above, but who is always in my corner, seeing me through each day!!

Thank You All

Christos Ttofi

May 23, 2014

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

xix

DEDICATION PAGE

To My Family

My Wife Ioanna Filippou, and

My son Savvas TtofiChri
sto

s T
tof

i

xx

TABLE OF CONTENTS

1 Introduction to Embedded Vision and Depth Perception - Thesis Motivation &

Contributions ... 1

1.1 The Embedded Vision Revolution.. 1

1.2 Embedded Stereo Vision - Motivation ... 3

1.3 Objectives and Scope of Research - Thesis Contributions 4

1.4 Overview of Chapters ... 7

1.5 The Main Contributions of the Author ... 11

2 Stereo Vision for Depth Perception: Fundamentals and Relevant Work 12

2.1 A Brief Introduction to Computer Vision and Depth Estimation 12

2.1.1 Image Representation .. 13

2.1.2 Color, Grayscale and Binary Images ... 13

2.1.3 Representation of 3D images over a plane .. 15

2.1.4 Standard Testbeds.. 17

2.2 Depth Estimation Technologies .. 19

2.2.1 Time-of-flight .. 19

2.2.2 Structured-light .. 21

2.2.3 Stereo vision .. 21

2.2.4 Conclusion ... 23

2.3 The Human Visual Perception of Depth ... 24

2.4 Depth Estimation using Stereo Vision .. 25

2.4.1 Pinhole Camera Model, Perspective Projection and Epipolar Geometry 27

2.4.2 Major Steps in a Stereo Vision System ... 29

2.5 Overview and Classification of Stereo Matching Algorithms 34

2.5.1 Stereo Matching Four-Step Pipeline ... 35

2.5.2 Classification of stereo matching algorithms .. 41

2.6 Challenges of Stereo Vision Systems ... 45

2.7 Applications of Stereo Vision ... 48

2.8 Parallel Architectures – Implementation Platforms .. 49

2.8.1 Multi-core Central Processing Units (CPUs) .. 51

2.8.2 Graphics Processing Units (GPUs) ... 52

2.8.3 Cell Broadband Engine ... 52

2.8.4 Digital Signal Processors (DSPs) .. 53

2.8.5 Field Programmable Gate Arrays (FPGAs) .. 54

2.8.6 Application Specific Integrated Circuits (ASICs) ... 56

2.9 Review of Existing Stereo Vision Implementations ... 56

Chri
sto

s T
tof

i

xxi

2.9.1 Implementations based on General Purpose CPUs ... 56

2.9.2 Implementations based on General Purpose Graphics Hardware 57

2.9.3 Implementations based on Digital Signal Processors 57

2.9.4 Implementations based on the Cell Platform .. 58

2.9.5 Implementations based on Application-Specific Hardware Acceleration 58

2.10 Concluding Remarks .. 61

3 Edge-Directed Hardware Stereo Matching: Empowering Resource-Constrained

Embedded Systems with Hard Real-Time Depth Computation .. 62

3.1 Introduction - Motivation ... 62

3.2 Edge-Directed Disparity Estimation System Overview ... 63

3.3 Edge Detection Unit (EDU) ... 65

3.3.1 Sobel Edge Detector Overview ... 66

3.3.2 Sobel Edge Detection Unit (EDU) Architecture ... 66

3.4 Disparity Computation Unit (DCU) ... 67

3.4.1 DCU process overview ... 68

3.4.2 DCU Architecture Overview ... 69

3.5 Experimental Platform and Results .. 72

3.5.1 Experimental Platform .. 72

3.5.2 Disparity Map Quality–Impact of Edge Detector ... 74

3.5.3 Disparity Map Quality Analysis.. 79

3.5.4 System Performance .. 81

3.5.5 Hardware Overheads ... 84

3.6 Concluding Remarks .. 87

4 A Segmentation-Based Stereo Matching Hardware Design with Adaptive

Support Weights: Balancing Speed and Accuracy in Embedded Vision Applications 88

4.1 Introduction - Motivation ... 88

4.2 Segment-based adaptive support weight algorithm .. 89

4.2.1 Matching Cost Initialization .. 91

4.2.2 Cost Aggregation .. 92

4.2.3 Disparity Computation .. 92

4.2.4 Disparity Refinement .. 93

4.3 Hardware Adaptation Methodology ... 93

4.4 Proposed disparity estimation hardware architecture ... 96

4.4.1 Input Management Unit (IMU) ... 97

4.4.2 Disparity Calculation Unit (DCU) .. 98

4.4.3 Disparity Refinement Unit (DRU) .. 99

4.5 Experimental methodology & Results .. 102

Chri
sto

s T
tof

i

xxii

4.5.1 Experimental Platform & Synthesis Results ... 102

4.5.2 FPGA Implementation and Emulation .. 102

4.5.3 Exploring large-scale scalability through an ASIC Implementation............. 105

4.5.4 Performance Results and Discussion .. 106

4.6 Concluding Remarks .. 114

5 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image

Filtering. ... 116

5.1 Introduction - Motivation ... 116

5.2 The Guided Image Filter and its Use in Stereo Matching 119

5.2.1 The Guided Image Filter (GIF) ... 119

5.2.2 Stereo Matching using Guided Image Filtering .. 122

5.2.3 Weighted Median Filtering using the Guided Filter Weights 125

5.3 Hardware Implementation of the Guided Image Filter ... 127

5.4 Proposed GIF-based Stereo Matcher (GIF-SM) ... 130

5.4.1 Gradients Computation & Memory Management Unit (GCMMU) 131

5.4.2 Cost Volume Construction Unit (CVCU) ... 132

5.4.3 Cost Volume Filtering & Disparity Selection Unit (CVFDSU).................... 133

5.4.4 Disparity Refinement Unit (DRU) .. 133

5.5 FPGA Implementation Results ... 135

5.5.1 Experimental Platform .. 135

5.5.2 Cost-Benefit Analysis.. 136

5.5.3 Comparisons with Related Work .. 139

5.5.4 FPGA Synthesis Results - System scalability ... 141

5.6 Concluding Remarks .. 142

6 Incorporating Real-Time Depth Computation in Embedded Vision

Applications.. ... 144

6.1 Depth-Accelerated Hardware Object Detection ... 144

6.1.1 Introduction - Motivation .. 144

6.1.2 Background ... 146

6.1.3 Related Work ... 148

6.1.4 Depth-Accelerated Object Detection Hardware Architecture 149

6.1.5 Experimental Platform and Results ... 153

6.1.6 Conclusion ... 157

6.2 Real-Time Obstacle Avoidance for Mobile Robots ... 157

6.2.1 Introduction - Motivation .. 158

6.2.2 Obstacle Avoidance - Overview & Existing Techniques 160

6.2.3 Proposed Robotic Platform ... 162

Chri
sto

s T
tof

i

xxiii

6.2.4 Experiments and Evaluation ... 168

6.2.5 Conclusion... 171

7 Conclusion and Future Work ... 172

7.1 Concluding Remarks .. 172

7.2 Future Directives .. 174

7.2.1 Short-Term Plans .. 174

7.2.2 Long-Term Plans ... 176

7.3 Summary ... 181

8 References ... 182

9 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching

Design……. .. 194

9.1 Algorithm Overview ... 194

9.2 Hardware-Directed Optimization Techniques .. 195

9.3 Proposed Hardware Architecture ... 196

9.3.1 Input Stage (IS) ... 196

9.3.2 On-chip Memory Arrangements (MAs) .. 197

9.3.3 Calculation Stage (CS) .. 199

9.4 Experimental Platform and Results .. 199

9.4.1 Experimental Platform .. 199

9.4.2 Disparity Map Quality Analysis.. 201

9.4.3 Processing Speed ... 202

9.4.4 Hardware Overheads ... 203

9.5 Conclusion .. 204

9.6 References .. 204

10 Biography .. 206

Chri
sto

s T
tof

i

xxiv

LIST OF FIGURES

Figure 1.1: Elements of an embedded vision system. ... 3

Figure 1.2: Scope of Research and Thesis Contributions. .. 8

Figure 2.1: Digital Image Representation in a Nutshell.. 14

Figure 2.2: Color vs. grayscale, vs. binary image. .. 15

Figure 2.3: Discetization of depth. .. 16

Figure 2.4: Tsukuba (left view) and its grayscale and color-based 3D representation [25]. 17

Figure 2.5: (a) Teddy (left view). (b) Pseudo 3D depth map representation [24].. 17

Figure 2.6: Sample of stereo pairs in the Middlebury dataset with their corresponding ground

truth disparity maps and the ALL, DISC and NON_OCC regions. .. 18

Figure 2.7: Principle of operation of ToF [32]. ... 19

Figure 2.8: Accomodation and Convergence in human visual perception system. 24

Figure 2.9: Stereo vision disparity. ... 26

Figure 2.10: The principle of a pinhole camera. ... 27

Figure 2.11: The perspective projection. .. 28

Figure 2.12: The epipolar geometry. ... 29

Figure 2.13: Stereo vision system overview. .. 29

Figure 2.14: Images used to calibrate the left camera. .. 31

Figure 2.15: Rectification transforms each image into a common image plane, aligning the

pairs of conjugate epipolar lines to the horizontal image axis [51]. ... 33

Figure 2.16: Triangulation computes 3D coordinates of corresponding points. 34

Figure 2.17: The pixel-wise cost computation process. .. 35

Figure 2.18: Cost Aggregation Strategies. .. 37

Figure 2.19: Stereo image pairs showing the challenges of stereo matching. 47

Figure 2.20: Examples of real-world applications of stereo vision technology. (a) NAO

humanoid robot from Aldebaran Robotics, (b) Mars rover, (c) Continental's ContiGuard

forward-looking braking system ... 49

Figure 2.21: Architectures of the different implementation platforms. 55

Figure 3.1: Detailed block diagram of the proposed system architecture. (a) Edge detection

unit (b) Disparity computation unit. .. 64

Figure 3.2: Sobel edge detection overview. .. 66

Figure 3.3: Search area and SAD technique used in correlation matching. 68

Figure 3.4: Computing the minimum SAD value. .. 72

Figure 3.5: FPGA implementation used to verify the proposed architecture. 73

Figure 3.6: FPGA implementation used to verify the proposed architecture. 74

Figure 3.7: Evaluation results for real-world images. ... 75

Chri
sto

s T
tof

i

file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc389000594

xxv

Figure 3.8: Percentage of bad pixels vs. Sobel threshold. .. 79

Figure 4.1: Steps involved in the algorithm implemented by the proposed disparity estimation

architecture. ... 91

Figure 4.2: Sparse Census transform and matching cost computation. The Hamming distance

of the bitstrings resulting from sparse Census transform over Ir and It is the Hamming weight

of Bitstring1 xor Bitstring2. .. 95

Figure 4.3: Proposed segmentation-driven disparity estimation hardware architecture. 97

Figure 4.4: Major units involved in the disparity calculation unit. (a) Hamming distance

computation, (b) Weight generation, (c) Cost aggregation. ... 99

Figure 4.5: Segment-based smoothing based on cumulative histograms. 101

Figure 4.6: FPGA prototype system. (a) Experimental testbed used to verify the operation of

the system architecture, (b) Block diagram of system components. 103

Figure 4.7: Scalability analysis of full system on Kintex-7 FPGA (impact of the number of

aggregators on the amount of utilized FPGA resources). Axes with logarithmic scale (base 2).

Y-axes do not start at zero. ... 104

Figure 4.8: Evaluation results with synthetic and real-world images. (a) Evaluation results of

the proposed system architecture and the original algorithm [Tombari et al. 2007] using

Middlebury stereo pairs. From left to right: Reference image, Ground truth, Disparity maps

generated by the original algorithm, and Disparity map yielded by the proposed system. (b)

Evaluation results of real-world and synthetic scenes before and after applying post-processing

steps. Real-world scenes captured in our laboratory (rows 1-2), a real-world scene with a

moving vehicle (row 3), and a synthetic scene of pedestrians (row 4). 110

Figure 5.1: Illustration of the guided image filtering process [141]. 121

Figure 5.2: Major Steps of the GIF-based Stereo Matching Algorithm. 124

Figure 5.3: Weighted median filtering over a noisy disparity map based on the GIF [143]. . 127

Figure 5.4: (a) Mean Filtering Process. (b) Mean Filter Hardware Architecture 128

Figure 5.5: Guided Image Filter Hardware Architecture. ... 129

Figure 5.6: Architecture of the proposed GIF-based Stereo Matcher. 131

Figure 5.7: (a) Gradients Computation Core, (b) Cost Computation Unit. 132

Figure 5.8: Block diagram of the CVFDSU. .. 133

Figure 5.9: (a) Left-Right Consistency Check, (b) Filling of invalid pixels. 134

Figure 5.10: (a) Experimental Testbed. (b) Benchmark Stereo Images. (c) Real-world Stereo

Pairs Captured in the Lab. ... 136

Figure 5.11: Various Stereo Matching Hardware Designs utilizing the GIF. 137

Figure 5.12: FPGA resource usage/matching accuracy tradeoff analysis using scatter plots. 139

Figure 6.1: Window Size Estimation Algorithm. (a) The disparity map is sampled every few

pixels (b) For each disparity value the corresponding window size is estimated (c) Read

Chri
sto

s T
tof

i

file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc389000611
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc389000611
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc389000611

xxvi

window pixel values from one of the two stereo images (d) Output result of classified

windows. ... 148

Figure 6.2: Proposed Hardware System Architecture. .. 150

Figure 6.3: Window Extraction Unit. .. 151

Figure 6.4: Downscaling Process. Each coordinate in the 19x19 window is mapped to a

coordinate in the larger window. The coordinates where the 19x19 window coordinates are

mapped, correspond to the pixels values that will be read for classification. 152

Figure 6.5: SVM classification engine architecture. ... 153

Figure 6.6: Evaluation Images and Results. (a) Right Images from stereoscopic pairs (b)

Disparity Maps from stereo processing (c) Detection results using depth-guided method (d)

Detection results using the traditional sliding window approach. .. 154

Figure 6.7: Block diagram of the proposed robotic platform. .. 163

Figure 6.8: Obstacle Avoidance Algorithm. (a) Input from Stereo Camera. (b) The region of

interest divided in three equally sized windows over the disparity map. 165

Figure 6.9: The Next State and Output Process of the Decision-Making Module. 166

Figure 6.10: Proposed navigation module architecture. ... 166

Figure 6.11: Steering Control with PWM Pulses. ... 167

Figure 6.12: Figure 6. (Top) Two indoor example images. (Bottom) Two outdoor example

images with the decision beneath.. 169

Chri
sto

s T
tof

i

file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc389000626

xxvii

LIST OF TABLES

Table 2.1: Common Cost Aggregation Methods. ... 36

Table 2.2: Classification of stereo matching algorithms. ... 443

Table 2.3: Comparison of the different implementation platforms. 543

Table 3.1: Input image pairs and the output of the EDU for the left image. 765

Table 3.2: Evaluation results of the proposed system using Middlebury stereo pairs. 776

Table 3.3: Quality reduction for different edge detectors. .. 787

Table 3.4: Average percentage of bad pixels BE. ... 787

Table 3.5: Quality comparison of the proposed method with other methods. 79

Table 3.6: Image size and system performance. ... 81

Table 3.7: Comparison of MDE/s performance for various systems and methods. 82

Table 3.8: Resource utilization and maximum disparity range. ... 85

Table 3.9: Resource utilization and maximum window size. ... 85

Table 3.10: Resource utilization and maximum image size. .. 85

Table 3.11: Complete system hardware overheads. ... 86

Table 4.1: FPGA Prototype Hardware Overheads. ... 104

Table 4.2: Resource Utilization Of Different FPGA Implementations. 105

Table 4.3: ASIC implementation synthesis results. .. 106

Table 4.4: Summary of existing disparity estimation systems. .. 108

Table 4.5: Comparison of the percentage of bad matching pixels between different

implementations. ... 111

Table 4.6: Average performance ranking. .. 113

Table 5.1: Definition of the various stereo matching designs that utilize the GIF. 137

Table 5.2: FPGA resource usage of the various system configurations. 138

Table 5.3: Matching accuracy of the different system configurations. 138

Table 5.4: Quality and Processing Speed Comparison with Related Work. 141

Table 5.5: Kintex-7 Synthesis Results for major system components. 142

Table 6.1: Performance for different system configurations. ... 155

Table 6.2: Hardware requirements for each unit and different system configurations. 156

Table 6.3: Evaluation results in indoor environments. ... 170

Table 6.4: Evaluation results in outdoor environments. ... 171

Table 6.5: FPGA Platform Parameters. .. 171

Chri
sto

s T
tof

i

file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999285
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999289
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999290
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999291
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999292
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999293
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999294
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999295
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999296
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999297
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999298
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999299
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999300
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999301
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999302
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999302
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999303
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999309
file:///C:\Users\Christos\Dropbox\UCY\PhD%20Degree\Thesis%20Defense\ttofisPhD\ttofisPhD_final10.docx%23_Toc388999310

xxviii

LIST OF ABBREVIATIONS

(In Alphabetical Order)

2D Two Dimensional

3D Three Dimensional

ABDIF Absolute Difference

AD Absolute Difference

ADSW Adaptive Support Weight

ALL All Image Regions

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BP Belief Propagation

BTA Binary Tree Adders

CBE Cell Broadband Engine

CCU Cost Computation Unit

CE Classification Engine

CONV Convolution

CPU Central Processing Unit

CS Calculation Stage

CVC Cost Volume Construction

CVCU Cost Volume Construction Unit

CVF Cost Volume Filtering

CVFDSU Cost Volume Filtering Disparity Selection Unit

CW Constant Window

DCU Disparity Computation Unit

DCU Disparity Calculation Unit

DEU Disparity Extraction Unit

DISC Regions with Depth Discontinuities

DMA Direct Memory Access

DP Dynamic Programming

DRU Disparity Refinement Unit

DS Disparity Selection

DSI Disparity Space Image

DSP Digital Signal Processor

EDK Embedded Development Kit

EDU Edge Detection Unit

ETU Edge Tracking Unit

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FPS Frames per Second

FSL Fast Simplex Link

FW Fixed Window

GCC Gradient Computation Core

GCMMU Gradient Computation Memory Management Unit

GIF Guided Image Filter

Chri
sto

s T
tof

i

xxix

GPP General Purpose Processor

GPU Graphics Processing Unit

HD High Definition

HDL Hardware Description Language

I/O Input / Output

IMU Input Management Unit

IP Intellectual Property

IR Infrared

IS Input Stage

LoG Laplacian of Gaussian

LR-check Left-Right Consistency Check

LS Local Store

LUT Look-up Table

MA Memory Arrangement

MCCU Memory Controller Control Unit

MDE/s Million Disparity Estimations per second

MFC Memory Flow Controller

MRF Markov Random Field

MUL_ADD Multiplication-Addition

MW Multiple Window

NCC Normalized Cross Correlation

NN Nearest Neighbor

NON_OCC Non Occluded Regions

NORM Normalization

NRE Non Recursive Engineering

PLB Processor Local Bus

PPE PowerPC Processor Element

PPU Power Processing Unit

PWM Pulse Width Modulation

RMS Root-Mean-Square

RoI Region of Interest

RPi Raspberry Pi

RSB Reference Scanline Buffer

SAD Sum of Absolute Difference

SC System Configuration

SCV Stereo Cost Volume

SDK Software Development Kit

SGM Semi Global Matching

SHD Sum of Hamming Distances

SIMD Single Instruction Multiple Data

SMT Simultaneous Multithreading

SNR Signal to Noise

SoC System on a chip

SPE Synergistic Processing Element

SSD Sum of Square Differences

SSE Streaming SIMD Extensions

Chri
sto

s T
tof

i

xxx

SVM Support Vector Machine

SXU Synergistic eXecution Unit

TAD Truncated Absolute Difference

TFT Thin Film Transistor

ToF Time of Fight

TSB Target Scanline Buffer

UHD Ultra High Definition

USB Universal Serial Bus

VLIW Very Long Instruction Word

VW Varying Window

WEU Window Extraction Unit

WMF Weight Median Filtering

WTA Winner-Takes-All

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

CHAPTER 1

1 Introduction to Embedded Vision

and Depth Perception - Thesis

Motivation & Contributions

HE development of a stereo vision system comprises an interdependent design process, where

the efficiency of the resulting system depends both on the hardware architecture and the

associated algorithms. The design of such a system becomes even more challenging when

targeting applications in embedded and mobile environments, where cost, energy and memory

overheads need to be minimized. This thesis investigates hardware architectures of stereo vision

algorithms that have the potential to satisfy the requirements of constrained embedded vision

applications. This chapter has two purposes. First, it provides an overview on the development

and deployment of embedded vision / stereo vision technology into a variety of interesting and

promising applications, highlighting advances in enabling technologies, including processors,

sensors, and development platforms. Second, it motivates the thesis background, and summarizes

its main contributions and the individual chapters.

1.1 The Embedded Vision Revolution

Most of us have smart phones and tablets with front- and rear-viewing cameras capable

of capturing high-resolution still images and high-definition video clips. Many of us have

enjoyed the fresh new gaming experiences offered by the Xbox‟s Microsoft Kinect and Sony‟s

Playstation 4 video game consoles. Some of us may even have a car with a rear-view parking

camera, or a more advanced driver assistance system capable of detecting pedestrians, lanes,

or even classify various traffic signs including speed limit signs, etc. What we may not realize

is that all of these devices, which have recently become an essential part of our everyday lives,

have something in common – embedded vision.

Embedded vision is a technology that entails a hybrid of two well-established fields:

Embedded Systems and Computer Vision. This emerging technology aims at incorporating

T

Chri
sto

s T
tof

i

3 Introduction to Embedded Vision and Depth Perception – Thesis Motivation & Contributions

automated image analysis and vision capabilities into any kind of a computer-based system

that is not a general purpose computer, but rather it is designed to perform certain tasks only.

Using digital processing and intelligent algorithms, an embedded vision system can extract

and interpret meaning from images or video, enabling it to understand the surrounding world

and interact with its host environment [1]. Embedded vision can lead to the development of

safer, smarter and more responsive machines, which like humans, see and understand. To put it

simply, embedded vision refers to devices or machines that are empowered with the gift of

sight, and are able to see and understand their environment!

Although computer vision algorithms have been extensively studied over the last few

decades in academic research, they have only been implemented using large, heavy,

expensive, and power-draining computers, restricting their usage to a short list of applications

such as factory automation / assembly line inspection, optical character recognition and

military systems [2]. In recent years, however, the emergence of very powerful, low-cost and

energy-efficient processors, image sensors, memories, and other semiconductor devices, along

with robust computer vision algorithms, has made embedded vision much more accessible and

feasible [3]. Nowadays, even inexpensive smart phones and tablets are capable to supply

formidable processing capabilities, including multi-core high-frequency CPUs and embedded

graphics processors, on-chip DSPs and imaging coprocessors, and multiple gigabytes of

memory. They are also provided with front- and rear-viewing camera sensors that support high

image resolutions and frame rates. Therefore, a major transformation is underway, aiming to

integrate vision capabilities into a wide variety of embedded systems and electronic products

to make them more intelligent and responsive than before, and thus more valuable to the users.

An embedded vision system is comprised of four major elements [4], which are

illustrated in Figure 1.1. The image sensor outputs images at some resolution of pixels and a

specific rate, which corresponds to how many image frames the sensor outputs per second.

These images are processed by an embedded processing device, in the form of specialized

processors that implement unique architectures, or dedicated accelerators specific to image

and video processing. Image sensors generate image/video data in a streaming fashion.

Processing the data output from the video sensor usually requires storing in memory either all

or some parts of the image/video. Finally, specialized vision algorithms are required to

manipulate and analyze the vast amount of incoming video data to extract visual meaning

about the surrounding 3D world.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 4

Due to continues technological advances in sensors, processors, memory and algorithms,

embedded vision systems have nowadays the potential to revolutionize a multitude of

industries, including medicine, advertising, security, personal health, entertainment,

automotive and more [5]. Embedded vision has high potential in medicine, where it can be

incorporated for example in medical electronic devices such as intelligent x-ray and MRI

systems to assist radiologist to rapidly and accurately identify image irregularities, eliminating

degrading factors like fatigue and distraction, which occurred when the image analysis is

performed by humans [6]. Another medical application involves the detection of skin cancer

signs in moles on the human body, using a smartphone to capture images of a mole and

process them by a complex vision algorithm developed by dermatologists [6]. Other

revolutionary medical applications aim at providing assistance to blind people, by utilizing a

camera to interpret real objects and communicate them to the user as auditory cues [7]. In

automotive, vision-based systems utilize gesture and face recognition for car safety; the driver

for example can use a winking of the eye to turn the radio on and off, or a movement of the

head to change the volume, thus reducing distractions while driving [7]. Furthermore, the

ability of such systems to detect meaning from images of the road ahead the car could be used

to provide warnings if for example a car begins leaving a lane, approaches a car too closely, or

detects a bicycle or a pedestrian. Furthermore, active research in the field of embedded vision

aims to incorporate face recognition for advertising, in order to track the facial responses of

internet users while they view online advertisements [7]. In general, the era of embedded

vision has just started. We would need several pages to list the abundant applications that

could benefit from the use of this emerging technology, as the technology‟s potential is

fundamentally limited only by our imagination. Moreover, there are great expectations that

within the next ten years, embedded vision will broaden and accelerate its penetration into

numerous new markets, creating exciting products for a range of applications [2].

Figure 1.1: Elements of an embedded vision system.

Chri
sto

s T
tof

i

5 Introduction to Embedded Vision and Depth Perception – Thesis Motivation & Contributions

 The rapid proliferation of embedded vision technology is considered similar to the

evolution of high-speed wireless connectivity, which initially began as an exotic and costly

technology found only in complex and expensive systems, but when digital circuits got fast

enough, inexpensive enough, and energy efficient enough, it became a mass-market

technology. Today, advances in digital integrated circuits are critical enough to pave the way

for the proliferation of embedded vision into high volume applications, in virtually every

category of electronic products, from automobiles to consumer electronics to health care, etc.

Embedded vision applications usually rely on advanced computer vision algorithms that

typically require high processing performance. In addition, they are deployed in embedded

systems of all kinds that need to fit into tight memory, power consumption, size,

communication bandwidth and cost envelopes. In contrast to other digital signal processing

application domains, such as wireless communications, where the aforementioned constraints

are satisfied by the use of specialized accelerators and coprocessors implemented on

Application Specific Integrated Circuits (ASICs), the use of non-programmable accelerators is

less attractive for embedded vision applications. This is mainly attributed in the fact that there

are no common standards available to constrain the choice of vision algorithms; there are

usually many approaches to choose from to solve a particular vision problem. As such, the

majority of computer vision algorithms are implemented on programmable embedded

computing platforms such as Digital Signal Processors (DSPs), Field Programmable Gate

Arrays (FPGAs), and several kinds of multi-core Central Processing Units (CPUs) [2]. These

platforms though are based on heterogeneous and specialized architectures, therefore, to meet

the challenging combination o high performance, low power and low cost, embedded vision

systems are required to exploit the inherent parallelism found in such architectures. Efficient

development methods are also an important issue.

Besides the general parameters of performance, cost and integration associated with the

computing platform, there are also other critical parameters that restrict the computing devices

that can be selected for implementing computer vision applications. Factors such as the way in

which data are transferred to the device (I/O operations), the data type and representation, and

the program flow, are all critical towards delivering revolutionary vision processing in

performance-demanding and power-sensitive embedded vision applications [8]. Hence, an

embedded vision system must be able to deal with all of them.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 6

1.2 Embedded Stereo Vision - Motivation

Among the most important tasks of an embedded vision system is the extraction of depth

information. This can become possible through stereo vision technology, which delivers

precise depth information of the observed scene in a manner similar to human binocular vision

[9], [10], [11]. It uses two cameras that capture the same scene from two different viewpoints,

and depth information is inferred by finding corresponding points in the two images, a process

known as stereo matching (or disparity estimation). Stereo vision has enabled the realization

of applications, which so far could not be done with classical 2D computer vision technologies

[11]. Many applications of stereo vision are in inspection, medicine, automotives, etc. [11].

Moreover, detailed 3D information about the surrounding world is important to enable

autonomous navigation, obstacle detection and classification in unknown environments [12].

Therefore, stereo vision is also used in several consumer electronics and multimedia products

that demand vision-based autonomous behaviors (e.g. mobile robots, intelligent surveillance

and autonomous vehicles). One successful example is the UK‟s Oxford robot car, an

autonomous car recently unveiled by a team from Oxford University that uses stereo vision to

locate and track vehicles [13]. The new Mercedes-Benz S-class 2014 also features a

stereoscopic camera that sees objects ahead in 3-D and helps to detect cross-traffic and

pedestrians [14]. With products like these demonstrating what it is possible, several other

application areas of stereo vision that span virtually every embedded market will experience

huge growth rates in the near future.

While stereo vision is a rather popular and important subject in the fields of machine

vision and image analysis, it is a computationally expensive task. Therefore, its use in

consumer electronics and multimedia products has posed new challenges that need to be

tackled. Such systems usually impose several, often contradictory constraints, including real-

time processing, high matching accuracy and low power consumption. This makes the

successful realization of an embedded stereo vision system a key challenge, both in terms of

the matching algorithm, as well as in terms of the implementation platform. On one hand,

implementations of complex stereo matching algorithms produce very accurate results but rely

on the high-end hardware resources of multi-core CPUs and/or GPU platforms to achieve real-

time processing. Such platforms therefore are unsuitable for the realization of stand-alone

stereo matching systems, and also consume excessive power, which is not desirable in

embedded vision applications, especially in the case of battery-operated devices. DSP

Chri
sto

s T
tof

i

7 Introduction to Embedded Vision and Depth Perception – Thesis Motivation & Contributions

platforms, on the other side, feature lower power consumption than software implementations

running on high-end processors or GPUs, thus they are more favorable in embedded stereo

vision applications. However, the fixed logic and small number of processing cores prohibit

this platform from offering the required parallelism for real-time performance. Recent research

indicates that application-specific hardware acceleration using either FPGAs or custom

circuits (ASICs) might be the most appropriate solution for embedded stereo vision

applications, since it can provide high computational power with low power consumption.

Furthermore, it allows the architectures to be designed in a customized way; therefore, the

computational resources can be optimized in terms of resource utilization. To this end, a lot of

work has been carried out on real-time dedicated hardware implementations of disparity

estimation algorithms on both FPGAs and ASICs. However, FPGAs remain the most popular

implementation choice because of their inherent parallelism, re-programmability and great

flexibility in manipulating the algorithm, and relatively short design cycle.

Application-specific hardware acceleration has been proven to be a promising means

towards designing efficient stereo matching hardware architectures. Existing efforts towards

this direction have yielded encouraging results, yet satisfying the hard real-time constraints of

emerging embedded stereo vision applications, especially for High Definition (HD) images

and under limited resource usage, is still challenging. Moreover, existing dedicated hardware

implementations are mostly directed towards implementing simple stereo algorithms, therefore

trading accuracy for speed. Hence, this research is concerned with the implementation of

hardware architectures of different stereo matching algorithms, which can be used to satisfy

the different constraints involved in embedded environments.

1.3 Objectives and Scope of Research - Thesis Contributions

The scope of this thesis is on dedicated hardware architectures of stereo matching

algorithms for efficient 3D perception in embedded applications. Although there have been

several attempts recently to implement real-time stereo vision systems on dedicated hardware,

most of them cannot satisfy hardware efficiency and memory footprint requirements that

characterize vision applications running on platforms with limited resources. As such, the first

problem addressed in the thesis is how to find novel ways to satisfy the requirements of hard

real-time, resource constrained embedded vision applications. The thesis proposes the design

of a hybrid, block- and feature-matching stereo algorithm; through an edge detector that

generates the features (edges) used to reduce the search space, and a block matching Sum of

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 8

Absolute Difference (SAD) algorithm used for the stereo matching computation. The

integration of edge information constrains the stereo matching process only on binary data

(edges), therefore reducing the search space and improving the overall frame-rate, while also

reducing the logic and memory requirements, thus enabling the design of a parallel, scalable

and resource-optimized architecture that is able to process HD stereo images in real time

(50Hz@1280x1024). Furthermore, edges represent reliable image features, and their use

reduces the sensitivity to pixel intensity variations caused by camera gain or illumination

changes. Therefore, the proposed edge-directed architecture outperforms traditional SAD

block matching-based hardware architectures in terms of matching quality. These features

make the developed architecture suitable for resource-constrained embedded vision systems

that need to satisfy hard real-time and low-power constraints.

 However, many of today‟s applications not only need to satisfy embedded constraints

but also the extremely high matching accuracy offered by more complex stereo algorithms.

Hence, the second problem address in the thesis is the implementation of complex stereo

matching algorithms through hardware-oriented algorithmic modifications, in an attempt to

balance accuracy and speed in embedded stereo vision applications. To this end, the second

part of the thesis presents the design of an Adaptive Support Weight (ADSW) algorithm that

integrates information obtained from image segmentation in an attempt to improve the

robustness of the matching process. The thesis also presents hardware-oriented algorithmic

modifications and optimization techniques that make the algorithm hardware-friendly and

compatible with embedded constraints. A prototype of the architecture was implemented on a

Kintex-7 FPGA board, achieving 60 frames per second (fps) for 640x480 image sizes. At the

same time, synthesis results targeting a commercial CMOS 65-nm cell library indicate that the

architecture can be extended to larger scale systems.

The good quality results of the segment-based ADSW architecture come at the expense

of high resource usage. As a result, a final but important objective of the thesis is the design of

a stereo matching hardware system able to satisfy both speed and accuracy aspects with low

resource requirements. To this end, the thesis focuses on the design of a fully pipelined,

parallel and scalable stereo matching hardware architecture based on the recently proposed

Guided Image Filter. This type of filter has been employed to reduce the complexity of the

cost aggregation step in ADSW methods implemented in software. Therefore, the thesis aims

to present a new and efficient hardware design of the GIF (that can be potentially adopted in

Chri
sto

s T
tof

i

9 Introduction to Embedded Vision and Depth Perception – Thesis Motivation & Contributions

other uses of the filter), and also to explore and concurrently discuss the hardware design

parameters and optimizations involved in integrating the GIF hardware architecture in the cost

aggregation step of ADSW-based hardware stereo matching systems. The latter reduces the

overall hardware complexity of cost aggregation, which in turn allows real-time stereo

matching of HD images, as well as improvements of the overall matching accuracy, thanks to

the edge-preserving property of the GIF.

Overall, the work in this thesis aims at providing depth discernment in embedded vision

applications. Hence, the research done is related to the implementation of hardware

architectures of stereo vision algorithms that have the potential to satisfy the requirements of

constrained embedded vision applications. The developed architectures satisfy different

performance parameters (operation requirements) in the content of embedded vision systems

(optimized for the specific requirements of embedded environments), and can be utilized for

the development of real-world vision applications. Figure 1.2 graphically illustrates the

research purpose and scope of this thesis, and its technical contributions. The thesis

contributions are also briefly summarized below:

 Initially, a stereo vision architecture that targets resource-constrained embedded

applications with hard real-time and low-power constraints is designed. This

Figure 1.2: Scope of Research and Thesis Contributions.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 10

architecture integrates an edge detection mechanism as a means to accelerate the

overall matching process, and reduce its logic and memory requirements.

 The problem of improving the robustness of the hardware stereo matching process is

then examined. Hence, a more complex, but accurate, stereo algorithm based on

image segmentation and adaptive weights is also implemented. Through a series of

hardware-oriented optimization techniques, the architecture enables an effective

speed-accuracy tradeoff, however at the expense of high resource usage.

 Consequently, an alternative architecture that implements the stereo matching process

based on the edge-preserving guided image filter is investigated. A compact and

efficient design of the filter is utilized to reduce the hardware complexity of the

ADSW matching process, while maintaining high-quality depth estimation results.

 In order to illustrate how the results achieved in the thesis can be used long term by

the embedded vision community, and how the proposed stereo vision architectures

can contribute significantly in the development of future 3D vision algorithms and

applications, the thesis also provides insights obtained from evaluating the developed

architectures in the applications of object detection and obstacle avoidance in robotics

environments.

1.4 Overview of Chapters

The thesis is organized as follows. Chapter 2 provides fundamental concepts and

background material related to the general problem of depth estimation, focusing primarily on

the process of depth estimation through stereo vision technology and the associated matching

algorithms. Chapter 2 also provides an overview of existing stereo vision implementations.

Chapter 3 presents the research work that relates to the edge-directed stereo matching

hardware architecture, and Chapter 4 presents the segmentation-driven stereo matching

architecture that uses adaptive cost aggregation for improved accuracy. Chapter 5 investigates

the possibility of utilizing the recently proposed guided image filter to design hardware-based

stereo matching architectures able to provide high accuracy and concurrently high

performance for embedded vision devices, with limited hardware and power budget.

Evaluation of the proposed stereo matching architectures in real-world application scenarios

are also presented in Chapter 6. Finally, Chapter 7 concludes with the most important findings,

and provides future directives on how the work presented in the thesis can be improved.

Chri
sto

s T
tof

i

11 Introduction to Embedded Vision and Depth Perception – Thesis Motivation & Contributions

1.5 The Main Contributions of the Author

The research that forms the basis of this dissertation has been conducted at the

Embedded and Application Specific System-on-Chip (EASOC) Laboratory of the KIOS

Research Center for Intelligent Systems and Networks, under the RUNNER - Reconfigurable

Ultra Autonomous Novel Robots – project (co-funded by the Republic of Cyprus through the

Research Promotion Foundation and the EUREKA Organization under the Eurostars

Programme). In alignment with the objectives of the RUNNER project, the thesis aimed at

utilizing high-end reconfigurable devices in order to allow for extremely high performance

and power-efficient processing when implementing 3D sensing/matching, object recognition

and obstacle avoidance schemes, with the objective to provide a framework that can be used to

create highly autonomous robots with much better perception than the existing solutions. The

author has contributed to the development of the robot‟s perception subsystem through the

developed stereo vision architectures presented in Chapters 3-5. By taking advantage of the

developed architectures and their ability to provide detailed information regarding the position

and size of objects in the 3D space, a sophisticated object-detection scheme was also designed

and implemented. The object detection system uses depth information to estimate the size of

the objects in the environment of the robot, so as to identify with high accuracy and on real

time (based on the reduction of the number of scales used in object detection) the objects

around it. The author developed the object detection subsystem in collaboration with Christos

Kyrkou, a colleague from the EASOC laboratory. Furthermore, the efficiency of the robot

perception subsystem, together with its wide applicability was demonstrated in a real-world

application scenario (obstacle avoidance in unconstrained indoor and outdoor environments).

 Chri
sto

s T
tof

i

CHAPTER 2

2 Stereo Vision for Depth Perception:

Fundamentals and Relevant Work

HE requirements of vision systems and products for emerging embedded applications, in the

previous chapter, have clarified that the applications that benefit from 3D sensors are

abundant. In this chapter, the objective is to cover fundamental concepts and background material

related to the general problem of depth estimation, focusing primarily on the process of depth

estimation through stereo vision technology. The chapter provides a description of the major steps

involved in a stereo vision system, and serves as a partial literature overview of major stereo

matching algorithms. The challenges involved in developing practical stereo vision systems for use

in real-world applications are also discussed. This chapter finally looks into existing stereo vision

implementations, and categorizes them with respect to their processing speed, matching accuracy

and power consumption.

2.1 A Brief Introduction to Computer Vision and Depth Estimation

A digital image is a projection of the three-dimensional (3D) scene from a specific

viewpoint onto a two-dimensional (2D) plane [15]. During this process, the depth information

is mathematically lost. The problem of depth estimation refers to the set of algorithms and

techniques used to obtain a representation of the spatial (three-dimensional) structure and

geometry of a scene [9]. This representation is required in many tasks in computer vision,

robotic navigation, computer graphics, etc. In computer vision for example, extracting and

utilizing depth information about the scene can bypass many traditional problems, such as

varying foreground/background colors and textures, unknown object scales, etc. Considering

the essential role that depth estimation plays is several applications, a wide variety of

techniques have been proposed for acquiring the 3D geometry of objects in the scene,

including stereo vision [16], laser scanning [17], time-of-flight [18], and structured-light [19].

This introductory section reviews basic concepts of depth estimation, covering background

T

Chri
sto

s T
tof

i

13 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

material related to image processing (e.g. image representation, different kind of images, etc.)

and possible ways to represent 3D images over a plane, and also introducing testbeds and

evaluation metrics used for the assessment and ranking of depth estimation methods.

2.1.1 Image Representation

The field of computer vision is concerned with extracting useful information about the

three dimensional (3D) world from two dimensional (2D) images and video [9], [20]. Hence,

the term computer vision is usually considered equivalent (or superset) of the term digital

image analysis [9]. A computer vision system relies on visual input and image processing

algorithms to emulate human vision, including learning and being able to make inferences and

take actions, using computer software and hardware. This section is for those people who want

to read this thesis and do not necessarily have any previous knowledge about image

representation and analysis. Consequently, this section reviews basic concepts related to the

representation of images in computer systems, like types of images, pixels, channels,

resolution, etc.

Images are captured by cameras and stored digitally in computer memory or external

disk. Typically, they are represented by means of a multidimensional matrix of binary

numbers, and the value of each matrix element is called a pixel. A pixel (picture element) is

the small block that represents the amount of color or gray intensity to be displayed for that

particular portion of the image. The pixels of an image are arranged in forms of rows and

columns. This is the most commonly found image type, called raster image. Each horizontal

line in the image is called a scanline. The total number of pixels in an image is referred to as

image resolution, and is usually represented in 𝐻𝑥𝑊 format, where 𝑊 is the width of the

image and 𝐻 is the height of the image. Aspect ratio is basically a ratio of Width:Height of the

image. Images can be represented in three ways – Color Images, Grayscale Image and Black

and White Images (Binary Images), depending on the number of colors each pixel is

comprised. All the aforementioned concepts are shown in a nutshell in Figure 2.1.

2.1.2 Color, Grayscale and Binary Images

Similar to the way humans perceive color through wavelength-sensitive sensory cells

called cones, digital cameras use sensors that have different sensitivity to electromagnetic

radiation (light) of different wavelength. One sensor is mainly sensitive to red light, one to

green light, and one to blue light. It is the combination of the light sensitivities of the sensors

(the three basic colors: red, green and blue) that determine the camera‟s actual color response.

Chri
sto

s T
tof

i

http://en.wikipedia.org/wiki/Aspect_ratio_(image)

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 14

Through these combinations, cameras can generate almost any perceivable color. A color

image captured by a camera is usually processed by a computer or stored in memory, thus it is

often represented as three separate image matrices; one storing the amount of red (R) in each

pixel, one the amount of green (G) and one the amount of blue (B). This representation is

called RGB format.

A grayscale image on the contrary does not differentiate the amount of sensitivity of the

different colors. Rather, the same amount of color is perceived by each channel. As such,

grayscale images are represented using a single image matrix, which differentiates the amount

of light sensitivity for each pixel (pixel intensity), with dark pixels representing little light and

bright pixels much light.

Another kind of image that utilizes only a single bit to represent each pixel is the binary

image. Pixels in a binary image can only exist in two states, usually black or white, used to

differentiate for example foreground from background pixels, image pixels located at object

boundaries or not, etc. It must be noted that binary images are not provided directly by the

camera sensor, but usually are the result of an image processing algorithm applied on a color

or a grayscale image.

Figure 2.1: Digital Image Representation in a Nutshell.

Chri
sto

s T
tof

i

15 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

 One of the first design choices in image processing and computer vision applications,

whichever is the goal, is to decide what kind of images to process. Color images contain much

more information (24 bits per pixel) compared to grayscale (8 bits per pixel), thus they should

be more suitable for data extraction (e.g. depth). However, processing color images requires

more time and calculations than processing grayscale images. Motivated by the fact that

humans can understand images containing lines, silhouettes and other images formed using

only two grey levels, binary images can also be used in many computer vision applications to

reduce the amount of data to be processed, while providing an adequate representation of the

scene. Their use is more essential when dealing with embedded and resource-constrained

applications that require fast computations with less storage and energy consumption.

2.1.3 Representation of 3D images over a plane

2.1.3.1 Grayscale 2.5D representation

A color image stored in a computer system is the result of a quantization process that

reduces the number of distinct colors used to represent the “analogue world”, so that it can be

displayed and process on devices with limited number of colors / bits. As discussed in the

previous subsection, an RGB image consists of three color channels (red, green and blue),

which usually are represented by a matrix of unsigned integers of 8 bits (capable to represent

256 colors each one). In this way, the quantized image is visually similar as possible to the

original image.

 Similarly, the objects in the real-world can have an infinite number of possible depth

values (analogue domain). As a result, the depth measured by a 3D camera sensor is

discretized into parallel planes, with each plane representing a depth value as shown in Figure

2.3. Depth values are stored in a computer as a matrix of unsigned integers, the bit width of

Figure 2.2: Color vs. grayscale, vs. binary image.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 16

which determines the precision of the obtained 3D data. The intensity of these integers

represents the depth of each pixel in the original RGB image; however, the color, texture and

luminosity of the original image are lost [21]. More specifically, the grayscale pixel intensities

represent the inverse of the depth, with brighter pixels corresponding to points that are closer

to the camera, and darker points corresponding to points that are further way from the camera.

Figure 2.4 (a)-(b) shows an RGB image and its corresponding depth grayscale values (depth

map). This is the most commonly used way for depth representation today, and is referred to

as 2.5D representation, as the depth information is directly in each pixel, while it is

represented on a 2D space. The resulting image data representing the 3D information is

usually referred to as range image, depth image, depth map, surface profiles, or 2.5-D image.

We will use the term depth map throughout this thesis.

2.1.3.2 Color 2.5D representation

This depth representation is an extension of the previous one to the case where the depth

values are represented by a color RGB image, rather than a grayscale one. An example of such

a representation is shown in Figure 2.4 (c), where red-black colors represent closer points, and

blue-dark colors the further points. This representation is more probably inspired by studies

showing the effect of object color on depth ordering [22]. However, other color

representations are also available in the literature (e.g. [23]).

Figure 2.3: Discetization of depth.

min_depth

max_depth

Chri
sto

s T
tof

i

17 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

2.1.3.3 Pseudo-3D representation

This representation aims at visualizing the reconstructed scene from different points of

view. Figure 2.5 provides such an example for the Teddy image [24].

2.1.4 Standard Testbeds

The use of standard testbeds and datasets has always been essential for the quantitative

evaluation of computer vision algorithms. Several areas of computer vision including object

recognition and stereo rely on challenging datasets to perform objective comparisons, track the

progress made by leading algorithms and to stimulate new ideas. One of the most important

testbed used in depth estimation, and more specifically in stereo vision, is the Middlebury

database and evaluation testbed [25], [26]. This database includes a set of benchmark stereo

images along with known ground truth disparity maps (as will be shown in subsequent

sections, the disparity map is simply the reciprocal of the depth map) that allow the

quantitative evaluation of depth estimation algorithms using the following quality measures:

1) The root-mean-square (RMS) error in (2.1) measured in disparity units between the

computed disparity map 𝑑C 𝑥, 𝑦 and the ground truth disparity map 𝑑C 𝑥, 𝑦 , where N

is the total number of pixels in the image.

(a) (b)

Figure 2.5: (a) Teddy (left view). (b) Pseudo 3D depth map representation [24].

2.4

(a) (b) (c)

Figure 2.4: Tsukuba (left view) and its grayscale and color-based 3D representation [25].

2.5

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 18

𝑅𝑀𝑆 =
1

𝑁
 𝑑𝐶 𝑥, 𝑦 − 𝑑𝑇 𝑥, 𝑦 2

(𝑥,𝑦)

 (2.1)

2) The percentage of bad matching pixels (2.2), where 𝛿𝑑 is the disparity error tolerance.

𝐵 =
1

𝑁
 𝑑𝐶 𝑥, 𝑦 − 𝑑𝑇 𝑥, 𝑦 < 𝛿𝑑

(𝑥,𝑦)

 (2.2)

Both metrics measure the error in depth estimated values over the whole image, but it is

also possible to compute these statistics on three different kinds of regions, namely

NON_OCC (all points except for occluded areas), ALL (all points including half-occluded

regions), and DISC (only points along depth discontinuities). The aforementioned regions are

used to support the analysis of depth estimation algorithms in typical problem areas. Figure

2.6 illustrates a sample of four stereo pairs in the Middlebury database (from top to bottom:

Tsukuba, Venus, Teddy and Cones) along with their corresponding ground truth disparity maps

and the three kinds of regions just described.

It is worth noting that the statistics in equations (2.1) and (2.2) can also be computed for

each different region independently (e.g. 𝑅𝑀𝑆𝐴𝐿𝐿 , 𝐵𝐴𝐿𝐿 , 𝑅𝑀𝑆𝐷𝐼𝑆𝐶 , 𝐵𝐷𝐼𝑆𝐶 , 𝑒𝑡𝑐.) using the

generic equations (2.3) - (2.4), where the subscript R identifies the set of points (region) over

Left Right Groundtruth ALL DISC NON_OCC

Figure 2.6: Sample of stereo pairs in the Middlebury dataset with their corresponding ground

truth disparity maps and the ALL, DISC and NON_OCC regions.

Chri
sto

s T
tof

i

19 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

which a statistic is measured (i.e. R ∈ {NON_OCC, ALL, DISC}), dC(x,y) and dT(x,y) are the

computed and ground truth disparity maps, respectively, NR is the total number of pixels in the

region of interest, and as already mentioned before, δd is the disparity error tolerance.

𝑅𝑀𝑆𝑅 =
1

𝑁𝑅
 𝑑𝐶 𝑥, 𝑦 − 𝑑𝑇 𝑥, 𝑦 2

(𝑥,𝑦)∈𝑅

, (2.3)

𝐵𝑅 =
1

𝑁𝑅
 𝑑𝐶 𝑥, 𝑦 − 𝑑𝑇 𝑥, 𝑦 < 𝛿𝑑

(𝑥,𝑦)∈𝑅

 (2.4)

Since its development in 2003, Middlebury has been established as the de-facto testbed

for the evaluation of depth estimation algorithms. However, the popularity of the depth

estimation problem in research has recently led to the development of other testbeds as well.

The .enpeda image sequence analysis test site (EISATS) [27] offers sets of image sequences

for the purpose of comparative performance evaluation of stereo vision. The provided image

sequences include both synthesized as well as real-world scenes. Another testbed that provides

challenging real-world stereo vision benchmarks is the KITTI vision benchmark suite [28].

Recent research providing experimental results using the last two benchmarks indicates that

algorithms ranking high on the Middlebury testbed, perform below average when being

moved outside the laboratory to the real-world scenes [29]. Therefore, these benchmarks aim

primarily in reducing the bias to a single benchmark, and complement existing benchmarks by

providing real-world benchmarks with novel difficulties to the computer vision and depth

estimation community.

2.2 Depth Estimation Technologies

The problem of depth estimation has been intensively investigated over the last decade.

Various depth estimation techniques have been technologically demonstrated through a

number of “depth cameras” or “depth sensors”, which integrate specific hardware capable of

retrieving depth information about a scene either using a particular type of sensor (e.g. laser

sensor) or by running an algorithm on the images obtained by general camera sensors (stereo

cameras). Depth sensors that can acquire a continuous stream of depth images are now

commonly available and used in several applications, such as robotics and automotives [30],

[31]. However, the different depth sensors differ considerably both in terms of their working

principle, and also in terms of their resolution and precision. Therefore, choosing a particular

depth sensor over the others is not always a trivial task, and it is strongly dependent on the

Chri
sto

s T
tof

i

http://www.mi.auckland.ac.nz/index.php?option=com_content&view=article&id=43&Itemid=117
http://vision.middlebury.edu/

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 20

targeted application and its requirements. This section provides a brief overview of the

working principle / technical specifications of each depth camera, along with positive and

negative aspects of each of them, and examples of products available in the market. Finally, a

discussion on whether a particular depth camera is more suitable for specific applications will

be made.

2.2.1 Time-of-flight

Time-of-fight (ToF) depth estimation cameras use the known speed of light to measure

the time an emitted pulse of light takes to arrive to an image sensor [32], [33]. These sensors

can be used to produce a depth image directly, without the use of traditional computer vision

algorithms. The principle of ToF depth sensing is illustrated in Figure 2.7. A ToF camera

consist of an IR emitter and an IR sensor, which emits IR waves to target objects, and

measures the phase delay of reflected IR waves at each sensor pixel, respectively. The phase

shift between the radiated and reflected IR waves is proportional to the distances from the

reflecting surfaces, and thus allows the calculation of distances to objects.

ToF depth cameras provide accurate depth maps especially in highly dynamic

environments, but they suffer from many systematic errors that are directed related to the

sensor (e.g. noise and ambiguity), as well as non-systematic errors, such as scattering and

motion blur, which are more strongly related to the scene-content [32]. Also, due to the

periodicity of the cosine-shaped modulation signal, ToF cameras have a non-ambiguous range

within which the distances can be computed uniquely [34]. Furthermore, according to the

color, reflectivity and geometric structure of the target object, the reflected IR light shows

amplitude and phase variations [32]. This causes depth errors in the resulting depth image.

Last but not least, ToF are active sensors, and the amount of IR is limited by the power

Figure 2.7: Principle of operation of ToF [32].

Chri
sto

s T
tof

i

21 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

consumption of the device. As such, the reflected IR suffers from low signal-to-noise ratio

(SNR). One way to increase SNR is to combine multiple pixels to calculate a single depth

pixel; however, this reduces the effective image resolution.

An example of a ToF camera available in the market is the PMD[vision]® CamCube

[35]. This camera has several limitations: besides being very expensive, it has a very limited

frame size (200200 pixels) and a maximum frame rate of 40 fps. Moreover, due to the

technology employed, the depth measurements can be very noisy and affected by the ambient

light, limiting its use to indoor scenarios with controlled lighting.

2.2.2 Structured-light

The basic principle of structured-light depth cameras is the emission of a predefined

light pattern (e.g. gray codes, sine waves, or speckle patterns), which is projected onto an

object and simultaneously observed/captured by a camera (e.g. IR camera for IR patterns).

Speckle patterns are used in popular structured light infrared-based cameras like the Microsoft

Kinect [36] and the Asus XtionPro [37] sensors. These sensors construct the depth map by

analyzing a speckle pattern of infrared laser light. It is worth nothing that the Kinect combines

structured lights with classic depth cues adopted from computer vision techniques (depth from

focus and depth from stereo). The image processor of the Kinect extracts depth from the

deformation of the pattern; it uses the relative positions of the dots in the pattern to calculate

the depth displacement at each pixel position in the image [19].

Structured-light depth sensors provide an attractive off-the-shelf solution to perform

depth estimation with good accuracy and limited noise. Available depth cameras belonging to

this category come at a low price (e.g. Kinect for Windows costs around $250), and also the

depth computation is done entirely on hardware built in the depth camera, thus leaving the

computational resources of the host machine intact. However, such sensors suffer from

interference problems coming from nearby sensors, glass, water or sunlight. In such scenarios,

the depth map information is affected considerably. In addition, these sensors usually support a

limited operating range (0.8 - 3.5 m). These limitations make these sensors mostly suitable for

indoor environments.

2.2.3 Stereo vision

The methods presented so far belong to a specific category called active depth

estimation methods, as they work by putting some energy in the scene, projecting it in order to

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 22

illuminate the space, and processing the reflected energy in a passive manner. On the other

hand, stereo vision belongs to those depth estimation techniques that work with natural light in

the ambient and the optical information of the capture images to estimate depth information

[21]. These techniques use camera sensors to capture 2D images of the scene, and solve the

depth estimation problem in a computational way. In other words, stereo vision is a passive

depth estimation technique, focusing mostly on algorithms. Therefore, stereo vision sensors

present a main advantage over the active ones, in that they do not transmit extract energy.

Stereo vision is inherent in humans and many other animals. Actually, it is what gives us

the ability to see objects with height, width, and depth. In other words, we humans can see in

3D because we have two eyes. Each of our eyes sees the world from a slightly different

perspective and our brain combines these perspectives to give us a sense of how close or far an

object is. Computational stereo vision aims to recreate the human biological stereo vision and

provides 3D perception by means of two spatially separated cameras that capture the same

scene from different viewpoints. Due to the distance between the two cameras, an object in the

real scene appears in each image with a displacement or disparity, which is inversely

proportional to the depth. The problem of depth estimation can therefore be solved

computationally by finding corresponding points in the two images (i.e. projections of the

same 3D point), a process, which as we will see shortly, is known as stereo matching.

Computer stereo vision is therefore much like human stereo vision, except that the medium by

which 3D information is inferred is a computational platform, rather than the brain of some

living creature.

When stereo vision technology was first introduced, it had the disadvantage of requiring

more than one camera sensor and a powerful host machine to execute multiple

computationally expensive algorithms. However, with the availability of very powerful and

low-cost host machines (processors, DSP, FPGA, etc) and the reduced cost of CMOS camera

sensors, this technology is finally established and widely used. Another reason that leaded to

their wide adaptation and made them a valuable solution to the depth estimation problem, is

their unique properties in augmenting the scene reconstruction with highly detailed depth and

color data in areas and conditions where ToF and structured-light cameras may not provide

sufficient details [38], [39], [40]. A widely known stereo camera that is used in research

projects and industrial application is the Bumblebee camera [16]. This depth camera supports

a resolution of 640x480 at 30fps or a maximum resolution of 1280x960 pixels at 15 fps. It also

Chri
sto

s T
tof

i

23 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

supports a very large depth (16-bits depth pixel) with a working range of 0.5–4.5m. However,

the camera is currently quite expensive (around $2000), and the entire depth calculation is

performed entirely on a host computer, which makes the total cost higher. It is anticipated that

the proliferation of low-cost stereo vision cameras that can interface with low-power

computational platforms such as FPGAs, will enable the adaptation of stereo vision

technology in a wide variety of new markets and applications. The last chapter of the thesis

deals with an example of such a system implemented on a low-end FPGA board connected to

an inexpensive stereo camera, which is used in the application of obstacle detection for

autonomous navigation.

2.2.4 Conclusion

The different depth estimation technologies analyzed above have advantages and

disadvantages, regarding energy needs, computational load, accuracy, range, hardware

implementation or price, among others. In general, it is not a trivial task to choose a winner

among all technologies, as the different depth sensors work better in particular conditions and

environments. For example, ToF sensors provide accurate depth maps especially in highly

dynamic environments. They also work well on areas of the scene that have no texture (e.g. a

wall painted in one color). However, they are currently limited by their low resolution and

high cost [34]. Stereo sensors do not work well on texture-less regions, but perform better than

ToF on textured scenes. Structured-light sensors provide an accurate and a cost-effective

solution for depth estimation, but they have limitations in certain environments due to

interference. Thus, they are tailored mostly for indoor applications. Stereo cameras on the

other hand, are more expensive than structured-light sensors, and the depth computation is

performed on the host machine, in a sequence of multiple computationally expensive steps.

Hence, depth estimation through stereo vision relies on the design of efficient algorithms and

architectures to enable real-time depth computation. Furthermore, the quality of the computed

depth data in stereo vision systems is highly influenced by the scene illumination and surface

texture. In general, stereo vision technology is associated with several challenges, which are

extensively discussed in Section 2.6. Conclusively, one needs to consider the final application

and the overall requirements, in order to make the correct choice. Furthermore, considering the

complementary characteristics of the depth sensors, combining the depth information provided

by different sensors could perform better than either sensor alone [41].

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 24

2.3 The Human Visual Perception of Depth

The human visual system interprets depth using a combination of different physiological

and psychological cues. Physiological cues can be binocular or monocular, depending whether

they require both eyes to be open, or if they are available even when looking at the world only

with one eye open. On the other hand, all physiological cues are monocular. The main depth

cues of the human visual system are briefly described below:

 Stereo disparity: humans have two eyes that see two slightly different images. The two

images obviously provide an increased field of view, but also allow us to gauge depth and

allow objects to appear in 3D. This is attributed to the difference in the sensed images

called binocular parallax, or stereo disparity. The human visual system is very sensitive to

these differences, which provide the most important source of depth perception in the

human visual system; the sense of depth can be achieved using binocular parallax even if

all other depth cues are removed.

 Accomodation is the information our brain receives from the muscles that changes the lens

of eye and brings into focus objects at different distances (lens is made thinner as we focus

on distant objects and thicker as we focus on near objects), as illustrated in Figure 2.8 (a).

Accomodation is considered a binocular cue as it happens with both eyes, but it is still a

monocular cue, as one eye alone gives the same information as the two eyes provide.

Furthermore, this depth cue is generally weak, as it is efficient only at viewing distance less

than 2 meters.

 Convergence is the difference in the direction of the eyes. As we focus on close objects, our

eyes point slightly inward (Figure 2.8 (b)). As with accomodation, this depth cue is

effective on short distances (less than 10 meters).

Accomodation Convergence

(a) (b)

Figure 2.8: Accomodation and Convergence in human visual perception system.

Chri
sto

s T
tof

i

25 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

 Interposition is a monocular depth cue derived from the overlapping position of objects

[42]. Nearer objects may partially block our view of the more distant objects. Since the

human brain is trained about the object structures, it interprets obstructed objects as being

farther away.

 Texture gradient is a monocular cue that relates to how detail or texture the brain can sense

according to our proximity to an object [42]. As the surface of an object gets farther away,

the texture gets finer and appears smoother. It is this correlation between proximity and

texture that is interpreted by the brain as a distance cue.

 Relative height: objects that are closer to the horizon seem more distant.

 Relative size: When objects are supposed to be the same size, then smaller objects are

further away than closer ones.

 Linear perspective is the monocular cue provided by the convergence of lines toward a

single point of the horizon.

 Relative motion parallax: Nearby objects move faster than more distant objects.

 Motion perspective: When moving towards an object, more centered parts seem to move

slower than parts on the edges

In summary, the human visual system is able to recover depth information even from a

single still image by relying only on monocular cues in the image. However, while depth

perception from single images is a problem that humans solve fairly well, this problem is

indeed impossible in a narrow mathematical sense, and traditionally is considered impossible

for machines and computers. Consequently, machines and computers mostly rely on binocular

cues and stereo vision to infer depth information of objects in a scene.

2.4 Depth Estimation using Stereo Vision

Vision is undoubtedly the most important sense of humans that provides them with the

ability to understand the surrounding world and perceive the depth of objects in the scene.

This great ability enables humans to accomplish many routine daily activities such as

determining how far away is a car from other objects, climbing a flight of stairs, etc.

Therefore, endowing computers and other machines with vision, or the ability to see in the

same way we can see, has attracted increased attention in the fields of Computer and Machine

Vision for decades. Classical Computer Vision started by analyzing and interpreting the 2D

image frames taken by a single camera. While this method provides relevant information on

the surrounding world (e.g. edge detection, segmentation, object detection and classification),

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 26

it lacks 3D vision, a certain important aspect from human vision that enables the inference of

3D information in the scene.

As discussed in the previous section, recovering 3D information from a single still

image is a problem that humans solve fairly well relying only on monocular cues in the image.

However, this problem is indeed impossible in a narrow mathematical sense, and traditionally

is considered impossible for machines and computers. Computer vision systems utilize a

greater number of cameras in the scene, and rely on binocular cues and stereo vision to infer

depth information [9], [10], [11]. Since the researchers in Computer and Machine Vision fields

aim to mimic the human vision behavior and functionality, a two-camera system, called stereo

vision system, is usually preferred.

The operation of a machine/computer stereo vision system is based on the biological

model of stereovision itself [11], where the distance between the two eyes is exploited to

estimated the depth. Due to this distance, an object in the real scene appears in the vision

obtained from each eye with a displacement or disparity as illustrated in Figure 2.9. This

displacement is inversely proportional to the distance between the two eyes and the object

itself [11]. Human brain is responsible for uniting the two separate images captured from each

eye into one picture, by matching up the similarities in the two images and finding their

differences. Every object appears in the combined three-dimensional stereo image as solid

("stereos" in Greek) in three spatial dimensions: width, height and depth. It is the added

perception of the depth dimension that makes stereo vision so common and important in

computer vision systems [11].

Following the biological vision system, a computer stereo vision system provides 3D

perception by means of two cameras that capture the same scene from two different

viewpoints. Depth information is inferred by searching and locating corresponding points in

Figure 2.9: Stereo vision disparity.

Chri
sto

s T
tof

i

27 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

the two images. In general, video processing in stereo vision has to cover several stages until

inferring the final distance measurements: from image acquisition and camera system

modeling, to stereo matching, depth calculation and filtering. Next, we provide a short

overview of stereo vision fundamental concepts, such epipolar geometry and camera

calibration. We also describe the major steps involved in the stereo vision processing pipeline,

focusing primarily on the matching processing itself, which is the major focus of this thesis

dissertation.

2.4.1 Pinhole Camera Model, Perspective Projection and Epipolar Geometry

This section defines the concepts of pinhole camera model, perspective projection and

epipolar geometry, which are necessary to understand the geometrical model of stereo camera

sensors and the relationship between the sensors and the acquired images. The first step in a

stereo vision system is to acquire a pair of 2D images of the surrounding world that can be

further processed and used to reconstruct the 3D geometry of the scene. This means that image

coordinates from the 2D space are utilized to infer the 3D coordinates of the objects in the

scene. The ideal relationship between the 3D coordinates outside the camera and their

corresponding image coordinates is found through the pinhole camera model.

The history of pinhole cameras goes as far back as the 4
th

 century BC and the Greek

philosopher Aristotle and Mathematician Euclid, who understood and wrote about pinhole

cameras. A pinhole camera is a simple camera with an exceedingly small aperture and no

lenses to focus light – effectively a light-proof box with a small hole in one side [43]. When a

source of light shines on an object, each visible point of the scene reflects a ray of light that

passes through this single hole, and projects an inverted image on the opposite side of the box.

The concept of a pinhole camera is illustrated in Figure 2.10.

Figure 2.10: The principle of a pinhole camera.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 28

Pinhole cameras describe the basic mathematical model that relates the coordinates of

points in the 3D space and their corresponding projections onto 2D image planes [43]. The

geometric mapping from 3D to 2D coordinates that follows the pinhole camera model is called

a perspective projection. The center of the perspective projection is the point in which all the

rays intersect, and is called the optical center or camera center, O. The plane over which the

inverted image is projected is called retinal plane or image plane, R. A pinhole camera is

completely modeled by its optical center and the retinal plane. The distance from the principal

point to the retinal plane is referred to as the focal length, f. The optical axis is the line

perpendicular to the image plane, passing through the optical center, while the intersection

point of the image plane with the optical axis is called the principal point. The pinhole camera

model and perspective projection, along with the fundamental definitions presented in this

section are illustrated in Figure 2.11.

The pinhole camera model, while simple, is sometimes used to model real cameras. A

real camera has a lens that directs the path of light rays to a film or a sensor array to recreate

the image. The camera lenses have optical distortions [44], but since these can be removed by

calibration and rectification procedures (discussed later in this section), modeling real cameras

with the pinhole camera model is a valid assumption.

Figure 2.11: The perspective projection.

Chri
sto

s T
tof

i

29 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

Following the pinhole camera model, only simple geometry and algebra is needed in

order to understand how 3D points can be located in the 3D space using a stereo camera

system. Figure 2.12 shows two pinhole cameras and their optical centers, OL and OR. P(x,y,z)

is a point in 3D space, PL and PR are the projections of P(x,y,z) in the left and right images,

respectively, and the two points, denoted EL and ER, represent the epipoles. An epipole is the

point of intersection of the line across the optical centers, i.e. the baseline, with the image

plane, while the points P, OL and OR form a plane called the epipolar plane. The line P-OL is

seen by the left camera as a point PL because it is directly in line with the camera‟s center of

projection OL. In the right image plane, that line is represented as the line ER-PR and is called

the epipolar line. For each point observed in one image, the same point must be observed in

the corresponding epipolar line on the other image. This is known as the epipolar constraint,

which establishes a mapping between points in the left image and epipolar lines in the right

image, and vice versa. The search for correspondences is thus reduced to a 1D problem

(searching along conjugate epipolar lines) [9]. Given pixel coordinates of PL(xL,yL) in the left

image, and the corresponding pixel coordinates PR(xR,yR) in the right image, the 3D world

coordinates P(x,y,z) are computed as in (2.5), where b (baseline) is the distance between the

centers of projection OL and OR. xL and xR are the coordinates of PL and PR with respect of the

principal points CL and CR. f is the common focal length and z is the distance between P and

the baseline b, which represents the depth of the object. The disparity, d, is defined as the

distance of two corresponding points, and is computed by d = xR - xL (Figure 2.12). Disparity

represents the relative difference in the location between common objects (i.e. the location of

the object in the right image, relative to the location of that object in the left image) on the

stereo image pair. The disparities of all common points form a disparity map, from which

 3D view 2D view

Figure 2.12: The epipolar geometry.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 30

information about the depth of objects can be extracted using (2.5); the depth map is obtained

by the reciprocal of the disparity map.

𝑥 =
𝑏𝑥𝐿

𝑑
, 𝑦 =

𝑏𝑦𝐿

𝑑
, 𝑧 =

𝑏𝑓

𝑑
 (2.5)

2.4.2 Major Steps in a Stereo Vision System

An overview of a stereo vision system is shown in Figure 2.13. It receives a pair of

stereo images (left and right image) as an input, and outputs a disparity map (or, the depth

map). A stereo vision system must solve two basic problems: correspondence, which deals

with finding an object in the left image that corresponds to an object in the right image, and

reconstruction, which deals with finding the depth (i.e., the distance from the cameras that

capture the stereo images) and structure of the corresponding object of interest. The

correspondence problem (also called matching) is the most demanding in terms of

computational complexity, and involves searching and matching techniques (to locate a

common object in both images), the robustness of which determines the quality and precision

of the reconstructed 3D data [25].

 A common approach to locate a corresponding point in the two images lies in using

small windows (called search windows or correlation windows) from both images, which are

being evaluated by comparing the window from the left image to a sliding window from the

right image. The search for stereo correspondences can be constrained along a horizontal

scanline, as the images are rectified. Additionally, an object that appears in both stereo images

will be found within a maximum horizontal bound, which depends on the object‟s minimum

distance from the camera. Henceforth, a search limit can be imposed, known as disparity

range ([𝑑𝑚 , 𝑑𝑀], which constraints the search along a bounded horizontal scanline. The size of

Epipolar Geometry
Calculation

Rectification

Stereo
Correspondence

Disparity
Map

Triangulation

3D view

Stereo Pair

Camera
Calibration

Figure 2.13: Stereo vision system overview.

Chri
sto

s T
tof

i

31 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

the search window, and the disparity range, impact the reconstruction algorithm significantly,

both in terms of performance, as well as quality of the results. When an object is located in

both images, its pixel coordinates are then used to derive the disparity map, and by using

triangulation, the 3D structure of the scene. However, there is a plethora of other algorithms

for locating corresponding points between stereo images. These are discussed in Section 2.5.

2.4.2.1 Calibration of Stereo Cameras

Calibration is a procedure usually performed offline with the aim of finding the

geometry of pair of cameras. This geometry is fully described upon calibrating two kinds of

parameters:

- intrinsic parameters that characterize the transformation mapping of image points from

camera to pixel coordinates. These include the focal length and image center (called

principal point) for each camera, as well as parameters of lenses distortion, etc.

- extrinsic parameters that describe the relative position and orientation of the two

cameras, through rotation and translation matrices that align the two cameras; they

bring the reference frame of the two cameras onto each other.

The most-often used calibration method is carried out by acquiring and processing more

than 20 stereo image pairs (to obtain a solid calibration) of a known checkerboard pattern with

a defined square size and number. The calibration procedure is described in detail in [45].

Calibration is available in both OpenCV [46] and MATLAB [47]. In this thesis, the Bouget‟s

Figure 2.14: Images used to calibrate the left camera.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 32

[47] and RADDOC [48] MATLAB toolboxes were used. The former toolbox requires

interaction with the user in the form of corner picking, while the latter is an optimized version

that utilizes Harris corner detection to automatically locate the checkerboard corners. Figure

2.14 shows 20 stereo pairs used to calibrate the stereo setup integrated with the proposed

disparity estimation architectures.

Recent research in the area of stereo camera calibration has directed towards calibrating

the cameras from the data available during use, rather than relying on data extracted online.

This process, which is called self-calibration [49], makes the complete stereo vision process

more flexible, but at the same time, adds extra computational needs.

2.4.2.2 Stereo Image Rectification

Equation (2.5) holds true when a pair of stereo images comes from calibrated cameras

(with known focal length, and fixed baseline distance), and has been rectified. Rectification is

the process that generates images conversion matrices based on characteristic values (intrinsic

and extrinsic parameters) resulting from camera calibration, and apply these matrices (called

homography matrices, H) to respective images acquired by the stereo camera, in order to

transform each image into a common image plane, thus aligning the pairs of conjugate

epipolar lines to a common image axis (usually the horizontal), as illustrated in Figure 2.15.

The transformation from coordinates from the original images (x, y) to coordinates in the

rectified images (x'', y'') is illustrated in equations (2.6)-(2.7). This transformation is usually

implemented with reverse mapping and interpolation, in order to avoid problems such as

reference duplication [50]. The transformation function can remain the same if the stereo

camera system remains static and calibrated, otherwise, a new transformation function is

necessary [50].

𝑥𝑙
′

𝑦𝑙
′

𝑧𝑙
′
 = 𝐻𝑙

−1
𝑥𝑙
′′

𝑦𝑙
′′

1

 ,

𝑥𝑟
′

𝑦𝑟
′

𝑧𝑟
′
 = 𝐻𝑟

−1
𝑥𝑟
′′

𝑦𝑟
′′

1

 (2.6)

𝑥𝑙

𝑦𝑙
 =

𝑥𝑙
′

𝑧𝑙
′

𝑦𝑙
′

𝑧𝑙
′

 ,
𝑥𝑟

𝑦𝑟
 =

𝑥𝑟
′

𝑧𝑟
′

𝑦𝑟
′

𝑧𝑟
′

 (2.7)

Rectification is an important step in a stereo vision system in order to enable real-time

computation. While the epipolar constraint reduces the search for corresponding points to a

single dimension (along the epipolar lines), rectification ensures that the computation of stereo

Chri
sto

s T
tof

i

33 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

correspondences is reduced to an 1D search problem along the horizontal raster lines of the

rectified digital images, as the transformation function aligns the epipolar lines with the

horizontal scanlines of the images [50]. By making the two images row-aligned, the

rectification step allows easier access to pixel values and helps in avoiding a lot of

computations that are required to keep track of the epipolar lines for the pixels in the reference

image being searched in target image. Moreover, this row-alignment benefits hardware

implementations of stereo vision systems, as the pixels can be processed in scanline order.

This reduces memory usage, makes memory management easier and enables synchronization

of stereo processing modules with the pixel clock of the stereo camera.

The transformation function in (2.6)-(2.7) implies that the rectification process involves

complex operations, including multiplication and inversion of 3x3 matrices. Therefore, the

implementation of the rectification step, either in software running of general purpose

processors or in custom hardware, should be treated with care in order to enable real-time

computation. In order to reduce the overall system complexity, many implementations [52],

[53], [54], [44] pre-store the mapping, and use Look-up tables (LUTs) to perform the

transformation; however, at the expense of consuming excessive memory for high resolution

images and loosing flexibility when camera parameters change at a later time. One solution to

the former issue is to use differentially encoded LUTs, an approach found to obtain a

compression ratio of around 70% [55].

Figure 2.15: Rectification transforms each image into a common image plane, aligning

the pairs of conjugate epipolar lines to the horizontal image axis [51].

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 34

2.4.2.3 Stereo Matching

Stereo matching infers depth information from a pair of rectified stereo images (called

reference and target images) by locating corresponding pixels between the reference image Ir

and the target image It. Given that the input images are rectified, the correspondence of a pixel

at coordinate (x, y) in Ir can only be found at the same vertical coordinate y in It, and within a

maximum horizontal bound, called disparity range D (dm–dM). The disparity is computed as

the absolute difference between the coordinates of the corresponding pixels in Ir and It. The

disparities of all corresponding pixels form a disparity map. More details on the stereo

matching process, including the major steps involved in this process and a classification of

different stereo matching algorithms can be found in Section 2.5.

2.4.2.4 Triangulation

Given the baseline and the focal length from the calibration step, and the disparity map

from the stereo matching step, triangulation computes the position of each correspondence in

the 3D space (Figure 2.16). Triangulation is sometimes referred as 3D reconstruction, as it

reconstructs the 3D point from its two projections (their distance d, more specifically).

2.5 Overview and Classification of Stereo Matching Algorithms

Stereo matching is a flourishing research area that has attracted the interest of many

researchers so far. Active research in this field has resulted in a wide range of algorithms with

primary targets to achieve real-time speed and/or improve the matching accuracy. The

different algorithms are extensively studied in [25], which also provided a testbed for

quantitative evaluation of the algorithms based on the overall rate of bad matching pixels

relative to ground truth disparity maps of benchmark images (the widely know Middlebury

testbed presented in Section 0). According to [25], stereo matching algorithms mostly follow

Figure 2.16: Triangulation computes 3D coordinates of corresponding points.

Chri
sto

s T
tof

i

35 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

four steps:

 matching cost computation, where a cost is computed for every pair of pixels;

 cost aggregation, where the initial matching costs are spatially aggregated either

globally or over a local neighborhood;

 disparity computation/optimization that determines the best correspondence for each

pixel;

 disparity refinement, where the mismatched pixels are removed and interpolated.

Some stereo matching algorithms also add a pre-processing step in order to alleviate

sensor noise and photometric distortions. This is typically achieved by employing methods

such as Laplacian of Gaussian (LoG) filtering [56], histogram equalization/matching,

subtraction of mean values computed in the neighbors of each pixel [57], and bilateral filtering

[58]. The rest of this section provides details for each of the major steps involved in the stereo

matching process, and also provides a summary of the most important stereo matching

algorithms.

2.5.1 Stereo Matching Four-Step Pipeline

2.5.1.1 Matching Cost Computation

The matching cost computation step assigns a cost value for every individual pixel at all

possible disparities as shown in Figure 2.17. There is a plethora of cost measures that can be

used to determine similarity between a pair of pixels. Existing cost metrics include absolute,

squared and sampling-insensitive difference, or truncated versions, both on gray or color

pixels. Some algorithms have also adopted a different approach to the matching cost

computation step that makes uses of non-parametric local transforms (e.g. Rank/Census) as the

Figure 2.17: The pixel-wise cost computation process.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 36

basis for matching. Non-parametric transforms rely on the relative ordering of local intensity

values, and not on the intensity values themselves. Therefore, correlation using such kinds of

transforms can tolerate a significant number of outliers, and also eliminate sensitivity to

radiometric gain and bias [59]. The transformations are applied over the input stereo images,

converting each pixel value into a string based on a set of comparisons in a local window. The

matching costs are then computed using the hamming distance between corresponding strings.

Absolute difference and hamming distance over Census transformed images are the most

endeavored metrics exploited for real-time stereo matching in embedded vision systems,

mainly due to computational simplicity and matching reliability. Moreover, recent approaches

have suggested performing correlation based on combinations of the aforementioned metrics

(e.g. absolute difference with gradient and census measures) to produce reliable matches.

2.5.1.2 Cost Aggregation

Pixel-wise cost computation is generally an ambiguous process. It is possible that wrong

matches have a lower score than correct ones, mainly due to noise from lighting variations and

environmental conditions. To reduce matching ambiguity, the matching costs are aggregated

by summing over a local support region rather than computed pixel-wise, in order to average

the noise (reduce the signal to noise ratio) and therefore obtain more reliable estimates of the

costs. Table 2.1 lists the most common cost aggregation methods. Note that each method is

defined according to the pixel-wise cost metric used to measure the similarity between pairs of

Table 2.1: Common Cost Aggregation Methods.

Cost Metric Description Definition

Sum of Absolute

Differences

(SAD)

Aggregates the color (luminance) difference of

reference pixels and target candidate pixels.
 𝐼𝑟 𝑢, 𝑣 − 𝐼𝑡(𝑢 + 𝑑, 𝑣)

𝑢,𝑣

Sum of Square

Differences

(SSD)

Square difference approach squares and

aggregates the difference of reference pixels and

target candidate pixels.

 𝐼𝑟 𝑢, 𝑣 − 𝐼𝑡(𝑢 + 𝑑, 𝑣) 2

𝑢,𝑣

Normalized

Cross-

Correlation

(NCC)

Normalized Cross Correlation. The cross

correlation is normalized by the mean value in

the block. Higher NCC stands better match.

 𝐼𝑟 𝑢, 𝑣 − 𝐼 𝑟 ∙ 𝐼𝑡 𝑢 + 𝑑, 𝑣 − 𝐼 𝑡 𝑢,𝑣

 𝐼𝑟 𝑢, 𝑣 − 𝐼 𝑟
2 ∙ 𝐼𝑡 𝑢 + 𝑑, 𝑣 − 𝐼 𝑡

2

Rank

Rank transform calculates the number of

neighbor pixels which have the value lager than

the central pixel. The matching cost is calculated

from the absolute difference of the two ranks.

 𝐼𝑟
′ 𝑢, 𝑣 − 𝐼𝑡

′(𝑢 + 𝑑, 𝑣)

𝑢,𝑣

𝐼𝑟,𝑡
′ 𝑢, 𝑣 = 𝐼𝑟,𝑡

𝑚 ,𝑛

 𝑚, 𝑛 < 𝐼𝑟,𝑡(𝑢, 𝑣)

Census

Census Transform encodes the comparison

result of central pixel and neighbor pixels into a

bit string. The matching cost is calculated from

the hamming distance of census bit string of

corresponding matching candidates.

 𝐻𝐴𝑀𝑀𝐼𝑁𝐺 𝐼𝑟
′ 𝑢, 𝑣 , 𝐼𝑡

′(𝑢 + 𝑑, 𝑣)

𝑢,𝑣

𝐼𝑟,𝑡
′ 𝑢, 𝑣 = 𝐵𝐼𝑇𝑆𝑇𝑅𝐼𝑁𝐺𝑚,𝑛 𝐼𝑟,𝑡(𝑚, 𝑛)

< 𝐼𝑟,𝑡(𝑢, 𝑣)

Chri
sto

s T
tof

i

37 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

pixels. Among the methods listed in the table, the most commonly used cost aggregation

methods are the normalized cross correlation (NCC), the sum of square differences (SSD), and

the sum of absolute differences (SAD) [60], which is the simplest in terms of computational

efficiency, and therefore, perhaps the most compatible with embedded constraints.

Aggregation methods that first apply a local transform (such as Rank or Census) to the input

images rely perform aggregation based on the sum of hamming distances (SHD).

Besides the type of the correlation metric, the cost aggregation strategy, which defines

the type and size of the local support region, plays a rather significant role in the processing

performance and matching accuracy of the stereo matching algorithm. One of the earliest and

most simple cost aggregation strategies relies on rectangular windows with fixed weights only

(fixed shape and size). Alternatives to this basic idea were proposed more recently and attempt

to improve the matching accuracy mainly by following either of two different approaches. The

first approach allows the use of different window sizes instead of a single window of constant

size. The other assigns adaptive rather than fixed weights to the points belonging to the

window. In this way, it enables the use of windows whose size and shape change adaptively

from pixel to pixel. The different aggregations strategies along with their pros and cons are

briefly described below, while they are also illustrated visually in Figure 2.18.

2.5.1.2.1 Constant Window Aggregation (CW)

A first category of cost aggregation methods relies on a set of usually square windows

that are fixed in both size and shape. The two windows are symmetrically defined on the

reference and target image to aggregate any similarity measure cost, C, at each possible

disparity level, as in (2.8), where N is the set of pixels around the central pixel of the window.

It is worth observing that in CW aggregation the support region depends entirely on the exact

values of both Ir and It, meaning that the weights assigned to the pixels in the windows are

fixed. Therefore, CW is an efficient approach when considering computation complexity, as it

can take advantage of techniques such as integral images and incremental calculations to make

Fixed Support

Aggregation

Varying Window Size

and/or Offset Aggregation

Multiple-Window

Aggregation

Adaptive Support Weight

Aggregation

Figure 2.18: Cost Aggregation Strategies.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 38

the aggregation process independent of the correlation window size. However, it assumes that

every pixel in the window should share the same disparity. This assumption is violated in

image regions in which the disparity is discontinuous (i.e. at object boundaries). CW also

performs badly at regions such as boundary, slant surface, and repetitive pattern.

𝐶𝐶𝑊(𝑥, 𝑦, 𝑑) = 𝐶𝑊𝑁
(𝑥′ , 𝑦′ , 𝑑)

∀ 𝑥 ′ ,𝑦 ′ 𝜖𝑊𝑁 (𝑥,𝑦)

 (2.8)

2.5.1.2.2 Aggregation based on varying window size and/or offset (VW)

This approach tries to improve the accuracy of the computed correspondences by finding

an optimal support window for each pixel. This is achieved by evaluating the local variation of

intensity and disparity, using a set of window pairs having different sizes and displacements,

and selecting the window pair that minimizes the similarity function, as in (2.9). This method

performs well along depth borders, since it aims at determining the most appropriate point to

center the window (by finding the displacement) in order to aggregate points lying at the same

disparity plane as the central pixel of the window. In addition, it attempts to select a proper

window size to account for image regions with low texture. However, this aggregation

scheme is highly dependent on the initial disparity estimation and also results in rectangular or

constrained-shaped windows. Furthermore, it is associated with high computational

complexity, mainly due to the larger number of window pairs that evaluated to select an

optimal support region.

𝐶𝑉𝑊 𝑥, 𝑦, 𝑑 = 𝑚𝑖𝑛 𝐶𝑊𝑛
 𝑥′ , 𝑦′ , 𝑑

∀ 𝑥 ′ ,𝑦 ′ 𝜖𝑊𝑛 𝑖,𝑗

 ∶ 𝑛𝜖 𝑁𝑚𝑖𝑛 𝑁𝑚𝑎𝑥

𝑖𝜖 𝑥 − 𝑛, 𝑥 + 𝑛 , 𝑗𝜖 𝑦 − 𝑛, 𝑦 + 𝑛

(2.9)

2.5.1.2.3 Multiple-Window Aggregation (MW)
The previous aggregation schemes use one window pair representing the best support.

An alternative scheme is to employ not only a single window pair, but a set of window pairs to

represent the best support region. The multiple windows aggregation strategy [61] selects an

optimal support region comprised of a subset of predefined multiple windows, which are

located at different positions with the same shape. As a result, the support region is not only

constrained to rectangular shapes, but it is made out of partially overlapping windows having

uniform weights, something that is equivalent to the case of having a single rectangular

window with each point of the window weighted differently [61]. However, the limitation of

Chri
sto

s T
tof

i

39 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

this approach is that the shape of the local support region is not general, thus, it is

inappropriate for pixels near arbitrarily shaped depth discontinuities.

𝐶𝑀𝑊 𝑥, 𝑦, 𝑑 = 𝐶𝑊𝑛
(𝑥′ , 𝑦′ , 𝑑)∀ 𝑥 ′ ,𝑦 ′ 𝜖𝑊𝑛 𝑥,𝑦,𝑑 ∪{𝑊𝑛 (𝑥±𝑛,𝑦±𝑛,𝑑)} : 𝑛𝜖 𝑁𝑚𝑖𝑛 𝑁𝑚𝑎𝑥 (2.10)

2.5.1.2.4 Adaptive Support Weight Aggregation (ADSW)

An important generalization to the idea of determining a set of rectangular windows of

varying size to allow supports to have unconstrained shapes and sizes is to assign different and

variable weights to the points surrounding a pair of fixed, rectangular windows on Ir and It.

This category of aggregation strategy is referred to as adaptive support weight (ADSW)

aggregation, and is currently the most accurate among existing aggregation methods. The

weights assigned to the pixels of the support windows are generated adaptively, usually based

on the content of the stereo images, and specifically, the color/ proximity distances of every

pixel in the window with respect to the central pixel [62], as illustrated in (2.11). An improved

version of this approach incorporates information extracted from image segmentation [63]

within the ADSW cost function, based on the assumption that pixels belonging to the same

segment should lie at the same disparity plane. In this way, ADSW aggregation averages only

“relevant” pixels, leading to very good quality at depth borders [62], [63]. Despite their high

matching quality, ADSW aggregation strategies are not suitable for efficient implementations

in embedded vision systems, as they involve a lot of hardware demanding operations (e.g.

multiplication, square root and division operations with floating point numbers). Moreover,

unlike simple fixed support algorithms, it cannot take advantage of the “sliding window”

technique [64], since the adaptive weights have to be recomputed at every pixel. Thus, cost

aggregation needs to be performed in an exhaustive manner, making the hardware complexity

directly dependent on the support window size; and to achieve good quality results in ADSW

methods, large window sizes should be used [65].

 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 ∙ 𝐶𝑊𝑁
(𝑥′ , 𝑦′ , 𝑑)𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡 , 𝑥 ′ ,𝑦 ′ 𝜖𝑊𝑁 (𝑥,𝑦)

 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡

 ,

𝑤𝑕𝑒𝑟𝑒 𝑤 ′
𝑟,𝑡 = 𝑒𝑥𝑝 −

𝑑𝑝 𝑝𝑖 , 𝑝𝑐

𝛾𝑝
−

𝑑𝑐 𝐼𝑟,𝑡 𝑝𝑖 , 𝐼𝑟,𝑡 𝑝𝑐

𝛾𝑐

(2.11)

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 40

2.5.1.2.5 Variants of Adaptive Support Weight Aggregation

In order to accelerate the adaptive support weight cost aggregation process, many

variants of the original ADSW algorithm in [62] have been proposed. These include

algorithms that generate adaptive weights based only on the content of the reference image

(asymmetric aggregation). Other approaches tried to speed up the aggregation process by

generating weights and applying aggregation only on the vertical or the horizontal dimension

around the current pixel (1D aggregation). In general, most variants of ADSW algorithms have

adopted different shapes of support around the pixel being processed. The work in [66] uses a

cross-shaped aggregation to derive a fairly compact representation of the support regions in an

efficient manner. The key idea is that the cross-based representation of the support regions can

be decomposed into two orthogonal 1-D aggregations, which can be implemented using an

orthogonal integral image technique for fast cost aggregation over any arbitrarily shaped

windows at constant time [66]. Other variants work by using smaller matching windows

through down-sampling, rather than changing the shape of the support region. Finally, a

reduced complexity adaptive support weight approach in [67] is based on an approximation of

a bilateral filter [68], with the aim to make the complexity independent of the match window

size. The aforementioned variants of ADSW aggregation strategies have shown increased

processing speed compared to the original ADSW aggregation strategy in [62], however, at the

cost of disparity map quality degradation.

2.5.1.3 Disparity Computation/Optimization

The cost aggregation strategies presented in the previous section were assumed to

aggregate costs over local support regions. Algorithms that follow such aggregation strategies

are referred to as local stereo algorithms. However, there are also algorithms that aggregate

costs globally along the entire image. In the stereo matching literature, these algorithms are

known as global stereo algorithms. These two different categories of algorithms result in

different outputs in terms of computational complexity and matching accuracy.

 The disparity computation /optimization step minimizes a predefined cost function

either locally or globally, depending on the type of stereo matching algorithm implemented. In

local stereo algorithms, a local optimization method called winner-takes-all (WTA) is used for

disparity computation. Adopting a WTA strategy, the displacement or disparity (between the

reference pixel and the matching pixel) that is associated with the minimum or maximum cost

value, is selected at each pixel. On the other hand, global algorithms minimize the cost (or

Chri
sto

s T
tof

i

41 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

energy) function by solving an energy minimization problem, using techniques such as

Dynamic Programming, Graph Cuts and Belief Propagation.

2.5.1.4 Disparity Refinement

The disparity map generated by the disparity computation step usually contains

ambiguous and inaccurate disparity values, which are caused by issues such as occlusions,

camera noise, textureless regions and regions with repetitive patterns. Occluded areas refer to

image points present in one image and not in the other, and for which there is insufficient

information available to estimate a correct disparity. The other issues mentioned above lead to

incorrect disparity computations as they cause the generation of multiple local minima. The

different sources of errors in disparity estimation are described extensively in Section 2.6,

which presents in detail the challenges of the stereo matching problem.

In order to eliminate or correct ambiguous/inaccurate disparities, a final disparity

refinement step is often integrated in the stereo vision processing pipeline. This step performs

the stereo matching one more time, by reserving the reference and target images and

computing a second disparity. Assuming that the disparity map generated when using the left

image as reference (left-to-right) is denoted by 𝐷𝐿, and its opposite disparity map (right-to-

left) by 𝐷𝑅 . Then, ambiguous/inaccurate disparities can be identified and marked as invalid if

the disparity 𝑥 = 𝐷𝐿(𝑖, 𝑗) and its corresponding disparity of 𝐷𝑅(𝑖 + 𝑥, 𝑗) differ by more than a

specified threshold. Optionally, invalid pixels can be interpolated based on the values of the

nearest consistent disparities, or they can be left intact so that to enable higher level

applications that use the disparity map as input to ignore these pixels, and rely on most

confident disparity values instead.

Other procedures commonly used in the disparity refinement step include median

filtering (unweighted and/or weighted) and sub-pixel estimation [11]. Median filtering

performs noise reduction in the disparity map, based on its ability in removing “outliers” like

salt-and-pepper noise, while sub-pixel estimation aims at increasing the resolution of the final

disparity map.

2.5.2 Classification of stereo matching algorithms

As already mentioned in the previous section, stereo matching algorithms are classified

into two broad categories: global and local. Local methods include techniques such as block

matching, gradient-based optimization and feature matching, while global methods include

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 42

techniques such as dynamic programming, intrinsic curves, graph cuts and belief propagation

[60]. Global methods can produce very accurate results, but are slower and computationally

more demanding compared to local methods, due to their iterative nature and high memory

needs [60]. Local methods, on the other hand, are faster and less computationally expensive,

hence suitable for the majority of real-time applications. Local methods can, at the same time,

provide acceptable quality in the computed disparity map [60], especially methods that adopt

complex cost aggregation strategies (e.g. ADSW). Since this thesis targets embedded vision

applications with processing speed, power and hardware resource constraints, it focuses on

local stereo matching algorithms. However, in this section we aim to provide a description of

the most important stereo algorithms available in the literature (along with their pros and

cons), because most of these algorithms are used for comparison purposes with the proposed

stereo matching hardware designs. A summary of the different stereo algorithms described

next is also given in Table 2.2.

2.5.2.1 Local Stereo Matching Algorithms

Local algorithms generally form three broad categories: block matching, gradient-based

optimization and feature matching. Block matching methods seek to locate a common point of

interest in the two images by comparing a small window from both images using a similarity

metric (Table 2.1). Early local algorithms relied on simple aggregation strategies that

performed block matching by using either a fixed (typically square) window, or multiple

windows with different sizes (window size varied based on a reliability measure) and/or

displacements. However, these approaches are prone to matching errors at depth discontinuity

regions; they blindly aggregate pixels belonging to different disparities due to the use of a

fixed window (shape and/or size) [60]. The most recent local techniques attempt to improve

the disparity estimation process at depth discontinuity regions by using an adaptive support

window. These techniques are based on carefully designed cost aggregation strategies, and

represent state-of-the-art methods in local stereo correspondence algorithms, since they can

generate disparity maps that approach the accuracy of global algorithms [60]. These

aggregation strategies include techniques such as adaptive support weight (ADSW) [62] and

segmentation-based ADSW [63], and operate by assigning different weights to the pixels in a

support window based on the proximity and color distances to the center pixel, or on

information extracted from image segmentation. In this way, these methods aggregate only

those neighboring pixels that are at the same disparity.

Chri
sto

s T
tof

i

43 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

Besides block-matching, there are also two other broad categories of local stereo

matching algorithms: gradient-based optimization and feature matching, which however are

used less frequently compared to block-matching algorithms. Gradient-based methods seek to

locate a common point of interest in the two images by formulating a differential equation

relating motion and image brightness [60]. One problem with block matching and gradient

methods however, is that both methods suffer from changes in pixel intensities, are sensitive to

depth discontinuities and to regions of uniform texture in images [60]. Feature-based methods

seek to overcome these problems by limiting the search space to specific, reliable features in

the images, rather than pixel intensities themselves. Of course, this also limits the density of

points for which a disparity value can be estimated, but this limitation can be avoided by using

interpolation techniques, which fill in the points for which a disparity value is not determined

by the stereo correspondence algorithm.

Feature-based methods first extract a set of potentially matchable image locations (called

feature points), and use the detected feature points to highlight areas of high diversity in the

image pair. Feature points may include edges, lines, regions, and gradient peaks. By only

including feature points with high texture diversity, hard-to-match areas of low texture

diversity are not matched. By correlating only feature points, the computational complexity is

greatly reduced. However, a complete dense disparity map cannot be obtained. Additionally,

feature-based methods have a great immunity to noise. Therefore, they may benefit

applications where there is a need to match scenes with very different illuminations. In such

cases, it is preferred to limit the output produced by stereo matching algorithms to stable

features (e.g. edges) in the images, and therefore to matches with high certainty. It should be

noted that the feature-based methods are intended to reduce processing time for stereo

matching, so consideration is taken on choosing a feature extractor that does not consume

more time than it saves.

2.5.2.2 Global Stereo Matching Algorithms

Global algorithms formulate the stereo matching problem as an energy minimization

problem, by imposing smoothness constraints on the disparities in the form of regularized

Markov Random Field (MRF) based energy functions. However, optimization of MRF-based

energy functions in an NP-hard problem, and as such, numerous approximation algorithms

have been proposed, such as Dynamic Programming (DP), Belief Propagation (BP), Graph-

Cuts, etc. A summary of the most known approximation algorithms for global energy

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 44

minimization in stereo matching is provided in Table 2.2. Even though such approximation

algorithms are capable to produce very accurate disparity maps, they still require large

computational power and high memory capacities. For example, storing all messages (beliefs)

in BP-based global stereo matching for a relatively small image pair of one Megapixel

requires ~3 GB of RAM.

2.5.2.3 Semi-Global Matching (SGM)

An interesting alternative stereo matching algorithm that also attempts to achieve quality

results that are on par with global stereo methods is Semi-Global Matching (SGM) [69], [70].

This approach can be considered in-between local and global methods. The basic idea is to

renounce part of the accuracy by approximating a global 2D function using a sum of 1D

optimizations from all directions through the image. SGM methods are therefore more

affordable for dedicated hardware implementation, but they still consume excessive memory

to store the temporary cost of different aggregation paths.

Table 2.2: Classification of stereo matching algorithms.

Approach Brief Description

LOCAL METHODS

Block Matching

Finds the best disparity corresponding to the maximum or minimum cost of a cost

function evaluated over a small region, using correlation-based or robust rank and

census metrics.

Gradient-Based

Optimization

Seeks to locate a common point of interest in the two images by formulating a

differential equation relating motion and image brightness.

Feature Matching Matches feature points rather than pixel intensities themselves.

GLOBAL METHODS

Dynamic

Programming

Finds the optimal matching disparity, by locating a „path‟ through an image

which provides the best (least-cost) match

Intrinsic Curves
Converts the search for the best disparity to a nearest-neighbors lookup problem,

by mapping epipolar lines to intrinsic curve space.

Graph Cuts

Formulates stereo matching as an energy minimization problem on a weighted

graph in which graph nodes represent image pixels, all possible discrete

disparities are represented as a graph label set, and weighted edges between graph

nodes correspond to defined energy terms.

Nonlinear Diffusion Aggregates supports by applying a local diffusion process.

Belief Propagation
Determines the best disparity by passing messages (beliefs) between the pixels in

an image.

Correspondenceless

Methods
Deforms a model of the scene based on an objective function.

OTHER METHODS

Semi-Global-Matching
Approximates a global 2D cost function using a sum of 1D optimizations from all

directions through the image.

Chri
sto

s T
tof

i

45 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

2.6 Challenges of Stereo Vision Systems

Stereo matching is from its nature an ill-posed problem with inherent ambiguities, which

make it challenging to enable both accurate and fast disparity estimation results. The

successful realization of a stereo vision system depends both on the chosen matching

algorithm as well as on the computational platform used to implement the matching algorithm.

To satisfy the requirements of applications where high matching accuracy is critical, the last

few years have seen a resurgence of interest in the development of highly accurate stereo

matching algorithms. Part of this interest has been spurred by fundamental breakthroughs in

matching strategies and optimization algorithms, and part of the interest is due to the

emergence of highly-parallel, powerful computing platforms. Unfortunately, implementations

of complex disparity estimation algorithms usually struggle to achieve real-time processing on

computational platforms suited for embedded vision applications, with limited hardware and

power budget (the challenges related to the computing platforms will be discussed extensively

in Section 2.8). Furthermore, while the most recent algorithms have improved the matching

accuracy considerably, stereo matching still remains a difficult vision problem for the

following reasons:

 Camera system issues such as photometric variations, image blurring and sensor

noise. A stereo matching algorithm should be robust to such unavoidable issues (see

Figure 2.19 a-b).

 Missing information caused by occlusions, slanted surfaces, and other issues related

to extracting information about three dimensions from two dimensional images [71].

Occlusions are regarded as one of the most challenging issues in stereo matching. These

are pixels which do not really have a corresponding pixel in the other image (example

shown in Figure 2.19 h). Therefore, there is insufficient information available to estimate

a correct disparity for those pixels. Furthermore, when the matching process is performed

along one direction only, occlusions can hardly be aware. However, in applications

requiring dense disparity maps, occlusions need to be detected and handled appropriately.

A good approach for handing occlusions in stereo matching is to treat the two images

symmetrically and implement the stereo matching process in both directions. Occlusions

can then be detected by finding where the two disparity maps are not negative of each

other. When detected, occluded pixels can be marked as invalid so that not to be processed

by the application, or they can be assigned a disparity value from their surrounding true

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 46

matches, wishing that this value is also a correct match for the occluded pixel. In the latter

case however, this filling mechanism may fail in cases where a large area of occlusion

happens intensively [72]. Additionally, computing the stereo matching process twice

increases the overall computational complexity, especially in aggregation methods that are

not symmetrical (e.g. adaptive weight methods that generate weights based only on the

reference image).

 Textureless regions. These are areas where there is little or no texture in the scene (an

example is shown in Figure 2.19 d. Such areas mainly constitute a problem in local stereo

methods, which are dependent on the size of their correlation window. Local methods

produce better results in textureless regions when using a large correlation window.

However, some large textureless regions are still hard to handle. For example, if a

textureless area is larger than the match window, a disparity estimate for a given pixel has

not a unique match within a local region, leading to erroneous disparity estimates [73].

Global algorithms on the contrary use minimization of some global cost function that

tends to improve disparity estimates in textureless regions. As already discussed however,

the complex global optimization makes these algorithm slow for real-time applications.

 Regions of repetitive structures and textures. These regions (see Figure 2.19 e) are also

regarded as challenging issues in local stereo matching methods. In such case, there are

usually many “weak” minima of the matching cost (many aggregated matching costs

close to the minimum matching cost), and small image sensor noise or lighting variations

can easily lead to incorrect matches.

 Specular reflections and transparency (non-Lambertian surfaces). Stereo matching in

the presence of specular reflections and transparency (see Figure 2.19 c, f, g) involves a

significant difficulty, mainly because these effects violate the Lambertian assumption

underlying traditional similarity-based stereo vision algorithms. Inferring correspondences

by measuring similarity measures of potentially corresponding image pixels is strictly

valid for surfaces with Lambertian (diffuse) reflectance characteristics [74]. However, in

the presence of specular reflections (e.g. reflections from mirrors or a calm body of water)

from non-Lambertian surfaces, the reflectance is viewpoint dependent. Therefore, objects

in the real-scene may appear in the image captured by each camera with large intensity

differences, leading to inaccurate correspondences, or no correspondences at all.

Chri
sto

s T
tof

i

47 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

 Depth discontinuities. Aggregation of matching costs over a local neighbor around the

pixel being processed is done to average image noise. The use of small match windows

leads to detailed but still noisy disparity maps. On the contrary, a larger match window

results in smoother disparity maps, however, the problem is that it covers pixels which lie

at different depths, thus leading to propagation of disparity information beyond the object

boundaries.

 Stereo camera calibration. Calibration is a very important issue that must be addressed

once for a given stereo camera system. Camera calibration determines the overall

geometric structure of the camera model in relation to object distances; therefore it affects

significantly the accuracy of the 3D measurements. Difficulties of perfectly

calibrating/aligning the stereo camera system affect the epipolar constraint and result in

misalignments in the stereo images [75].

 Perspective distortions. These refer to position and orientation differences of the 3D

(a) Photometric Variations (b) Image Sensor Noise

(c) Specularities (d) Textureless regions

(e) Repetitive Surfaces and Texture (f)Reflections

(g Transparency (h)Occlusions

Figure 2.19: Stereo image pairs showing the challenges of stereo matching.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 48

object relative to the position of the cameras. How a 3D object appears in each image

plane depends on the camera (orientation, position and model), and the relative positions

of the cameras with respect to the object. For example, an object of a particular shape (e.g.

line, rectangle etc.) in one of the images may not correspond to the same shape in the

other image, but to rotated or rescaled versions of the original shape. Therefore, the

presence of significant perspective distortions leads to changes in object shapes that

prevent features to correlate and result in unavoidable incorrect matches.

 Perspective foreshortening. Similar to perspective distortions, perspective

foreshortening, an effect that occurs when a surface is viewed at a sharp angle, also leads

to differences in the projection of an object in both images, reducing the accuracy of

stereo methods.

2.7 Applications of Stereo Vision

As we discussed in Section 2.2, stereo vision is an attractive depth estimation technique

that has the advantage of providing an accurate and detailed 3D representation of the

environment, by passively sensing the environment and processing the captured images. Many

products would benefit greatly from the ability to perceive depth information of the

surrounding scene, in order to interact with their host environment and respond to events in

real-time. Agricultural equipment, for example, could navigate fields autonomously, avoiding

stray objects, people and wildlife. Cars could detect pedestrians and objects in the road, raising

notifications to the driver or even break automatically. Security systems could track people

moving through a building. Moreover, mobile robots with 3D vision capabilities could provide

a clear visualization of critical infrastructures in crisis situations; the robots could be navigated

in an autonomous way in the 3D environment to provide an overall situation awareness. It is

imperative therefore, that stereo vision systems can provide accurate and real-time data in a

variety of applications.

Point Grey [76], a company providing several stereo vision cameras, has also developed

software that utilizes information extracted from stereo vision algorithms to detect and track

the 3D positions of people in the camera's field-of-view [77]. By doing so, the company aims

to enable several other applications in the fields of retail and security. For example, counting

the number of people can be utilized in retail applications to improve store layout and evaluate

the effectiveness of displays. Furthermore, the company mentions that the depth information

Chri
sto

s T
tof

i

49 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

provided by their stereo camera can also be used to improve customer service by recording

queue length and average wait times [77]. Stereo vision can also benefit applications that need

accurate three-dimensional, no-contact scanning of real-life objects, for example, medical

imaging, 3D printing, etc. And plenty of other compelling applications exist such as 3D

videoconferencing, manufacturing line "binning" and defect screening, etc.

Stereo vision technology is also becoming the preferred depth estimation technology in

mobile robotics and automotive applications. This is attributed in a significant way in the

recent advances in hardware computing platforms, which have given rise to the deployment of

stereo vision systems able to produce dense disparity maps in real time. In addition, the fat that

stereo vision is a passive technology that does not rely on beaming out laser or radar waves,

gives it the advantage of not being susceptible to interference from other's robot/vehicle laser

or radar beams. With stereo vision capability, a vehicle can determine not only that another

vehicle or object is in the roadway ahead of or behind you, but also to accurately discern its

distance from it. The following are a few examples of vehicles and robotic platforms that

adopted stereo vision technology.

 The Princeton “Prowler” vehicle in the DARPA Urban Challenge [78], an autonomous

vehicle research and development program that has robotic vehicles competing in a

race in a complex urban environment, utilized the Bumblebee2 stereo camera for

obstacle detection and navigation [77].

 Aldebaran [79] has recently developed a binocular camera system that is arranged

horizontally and can be used to implement stereo vision algorithms of their NAO

humanoid robot [80] (Figure 2.20 a).

 NASA‟s Curiosity Mars rover [81], a car-sized robotic rover exploring the surface of

Mars as part of NASA‟s Mars Science Laboratory mission [81], used a stereo camera

for navigation purposes (Figure 2.20 b). Not only in rovers, but stereo vision can be

used for navigation of unmanned vehicles, submarines, etc. An example of using stereo

vision technology for obstacle avoidance in autonomous robot navigation applications

is presented in Chapter 6.2.

 Continental, an automotive supplier company, has recently announced a safety system

for vehicles called ContiGuard [82]. Their safety system is actually a forward-looking

braking system that uses stereo video cameras to identify pedestrians or crossing traffic

Chri
sto

s T
tof

i

http://www.embedded-vision.com/platinum-members/bdti/embedded-vision-training/documents/pages/embedded-vision-revolution
http://www.embedded-vision.com/industry-analysis/video-interviews-demos/2013/03/09/february-2013-embedded-world-conference-demonstr
http://en.wikipedia.org/wiki/Curiosity_rover

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 50

when the driver does not do so fast enough, as depicted in Figure 2.20 c.

It is generally believed that stereo vision will be the technology of the future for depth

perception, providing a cost effective alternative for applications which so far relied on

expensive laser sources needed to illuminate the scene. The integration of stereo vision

technology in many real-life applications is today a reality. However, there are many things to

be done, in order to enable the integration of faster, more accurate and low-power stereo vision

processing of high-definition images in a variety of exciting new products in embedded and

mobile applications.

2.8 Parallel Architectures – Implementation Platforms

The previous section presented applications that can benefit from the ability of a stereo

vision system to extract 3D information of objects in the scene in real time. In general, the

amount of calculations a practical stereo vision system needs to perform is extremely high.

Even the simplest local stereo algorithms need to evaluate at least 10
9
 disparities every second

[83]. This amount of calculations is far beyond the capabilities of a single processor for real-

time processing, leaving also little time for higher-level tasks. Given that stereo matching

algorithms have high degree of inherent parallelism, their implementation using parallel

architectures and state-of-the-art computing platforms has received considerable interest

during the last decade. Three different architectures have dominated the field and used

extensively towards the implementation of real-time stereo vision applications; Multi-core

Central Processing Units (CPUs), Graphics Processing Units (GPUs) and Field

Programmable Gate Arrays (FPGAs). This is attributed to their parallel capabilities that are

usually needed when dealing with massive amounts of visual data. Another architecture that is

(a) (b) (c)

Figure 2.20: Examples of real-world applications of stereo vision technology. (a) NAO

humanoid robot from Aldebaran Robotics, (b) Mars rover, (c) Continental's ContiGuard

forward-looking braking system

Chri
sto

s T
tof

i

51 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

worth noting for its parallel capabilities, although it has not been used so extensively, is the

Cell Broadband Engine (CBE). From the aspect of embedded stereo vision applications, these

have substantially different constraints, such as low power consumption, limited hardware and

memory resources, etc. Therefore, the architectures mentioned above are not all suitable for

embedded environments, due to their high power consumption. In such cases, FPGAs, Digital

Signal Processors (DSPs) and Applications-Specific Integrated Circuits (ASICs) are the

preferred solutions. This section describes the different architectures and implementation

platforms that have been used for the development of real-time stereo vision systems. The

architectures are described in terms of development history, advantages and disadvantages (in

terms of processing speed, power consumption, memory and communication overheads, etc.).

2.8.1 Multi-core Central Processing Units (CPUs)

 Recently, CPU technology has seen a shift from trying to maximize the performance of

a single core towards integrating multiple simple, low-frequency and low-complexity cores on

a single chip. The latest processors available in the market include many physical CPU cores

working together and communicate through the shared memory programming model.

Furthermore, they also combine the Simultaneous Multithreading (SMT) capability. With

SMT, the pipeline is duplicated to support multiple instruction flows (threads) in parallel,

therefore increasing the total number of available cores through the "virtual" cores. Nowadays,

SMT-based multi-core CPUs have become the trend in mainstream CPU technology, enabling

the design of parallel applications, which can benefit from the extra computing power of more

cores (physical and virtual). Computer vision applications are no exception. Several computer

vision applications require heavy computation and lots of bandwidth in order to run in real-

time, therefore they can greatly benefit from the ability of recent CPUs to run multi-threaded

applications on multi-core processors. Other features of CPU technology that benefits vision

applications include flexibility and ease of programmability (C/C++) and support for floating

point operations. The programmer can easily develop parallel computer vision applications by

using Application Programming Interfaces (APIs) like OpenMP that can split the work into

multiple threads automatically. However, to develop scalable multi-threaded applications that

best utilize the resources of emerging multi-core CPUs, the programmer needs to have a good

understanding of the distinct characteristics of low/mid/high-level vision operations, and in

some cases where real-time performance is critical, the computational workload of a vision

application may need to be split into multiple threads in a manual fashion. From the

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 52

perspective of flexibility, CPUs can be utilized to implement other applications that may not

be inherently parallel more efficiently than GPUs and FPGAs, as they still offer the best

performance in terms of single-core frequencies. On the contrary, they currently offer limited

number of cores and consume excessive amount of power, factors that are prohibitive for

highly parallel embedded vision applications.

2.8.2 Graphics Processing Units (GPUs)

A Graphics Processing Unit (GPU) is a specialized co-processor that can be found in

nearly every computer system. It is traditionally used to enable acceleration of the rendering of

2D and 3D graphics by offloading it from the CPU. However, today‟s GPUs have moved from

being specialized rendering co-processors to more general parallel processors that are

increasingly programmable to the point that they are capable of executing a significant number

of computational kernels from many non-graphical applications. The fact that GPUs were

initially designed to perform operations on a data structure (2D image) that is ideal for

parallelization has allowed them to move to multiple processing cores much earlier than

CPUs. Today, CPUs consist of a few cores optimized for sequential serial processing, while

GPUs consist of thousands of smaller, more efficient cores designed for handling multiple

tasks simultaneously. This Single Instruction Multiple Data (SIMD) capability makes GPUs a

powerful platform for various computer vision algorithms. Although capable of providing

significant performance gains through their streaming and data-parallel nature, they are highly

power consuming and unsuitable to work as stand-alone processing units, as they are designed

to work in tandem with the CPU. Therefore, GPU devices cannot currently find their place in

embedded systems and mobile devices that typically have a quite tight power budget,

particularly when they are powered by batteries. In cases where energy efficiency is an

important design goal, embedded GPUs present a promising solution. However,

OpenCL/CUDA drivers are currently available in the public realm only for a limited number

of embedded GPUs. Furthermore, compared to high-end GPUs, embedded GPUS provide a

restricted set of features, such as limited or no user-defined memory, small instruction-set,

limited number of registers, among others.

2.8.3 Cell Broadband Engine

The CELL processor was built from Sony, Toshiba and IBM with the aim of being used

in Sony‟s PlayStation 3. Therefore, CELL is highly customized for gaming/graphics rendering.

It implements a parallel architecture based on a SIMD computing architecture and high

Chri
sto

s T
tof

i

53 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

performance data transfer management, features that are of benefit for computationally

intensive applications that contain inherent parallelism. The CELL architecture combines one

powerPC multi-threaded core (PowerPC Processing Element - PPE) and eight specialized

cores called Synergistic Processing Elements (SPEs). The different cores are connected with

each other using a bus capable of transferring 25.6GB/s between each core connected to it.

The PPE consists of the power processing unit (PPU), 512 KB 8-way write-back cache (L1)

and 32 KB 2-way reload-on-error instruction cache (L2). The SPE includes a local store

memory (LS), a memory flow controller (MFC) and a Synergistic eXecution Unit (SXU). The

CELL communicates with the rest of the world, through its memory controllers and

input/output controllers. Figure 2.21 (e) shows the architecture of the CELL processor. The

real power of the CELL lies on the SPEs. Each SPE is a 128-bit RISC processor specialized

for data-rich, computation-intensive SIMD applications. The SPE can only access its local

store memory (LS), which is the main storage of each SPE. The exchange of data between the

main memory of PPE and local memory of the other SPEs is realized using DMA. To sum up,

the CELL processor is a suitable architecture for use with computationally demanding

applications and algorithms that are inherently parallel. However, a major limiting factor of

the CELL is the storage space of the SPEs; each SPE has 256 kb to store the data and also the

code to process.

2.8.4 Digital Signal Processors (DSPs)

Digital Signal Processors (DSPs) appeared on the market in early 1980s, and since then,

they have been used as the key enabling technology for many electronic products and

accelerator systems in the fields of communications, multimedia, automotive, military, etc. A

DSP is a specialized microprocessor optimized for the operational needs of real-time digital

signal processing. Moreover, a DSP is designed to implement tasks in parallel (e.g. operations

needed to implement an FIR filter can be completed in a single clock cycle). Since their

appearance, DSPs have undergone an intense evolution in terms of hardware features,

integration and software development tools. From a simple Harvard-based architecture

supporting fixed-width instruction sets that included fixed-point addition, multiplication and

accumulation operations, today's DSPs are based on parallel architectures, such as Very Long

Instruction Word (VLIW) and Single Instruction Multiple Data (SIMD)) with many on-chip

peripherals and added features such as pipelining, multiple dedicated arithmetic units, special

address generation units, and Direct Memory Access (DMA) and support for floating point

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 54

operations. They can easily be reprogrammed by software (usually C/C++), while their

deterministic operations have known execution times, thus a DSP program can guarantee a

desirable, repeatable performance. Additionally, DSPs enable high throughput that can sustain

processing of high-speed streaming data (e.g. audio and image data processing), while at the

same time they are optimized for low power consumption, therefore are well-suited for use in

embedded environments.

2.8.5 Field Programmable Gate Arrays (FPGAs)

A Field Programmable Gate Array (FPGA) is a configurable hardware that can be

programmed by the user with a circuit implementing a specific task. It consists of an array of

programmable logic blocks, where everything runs concurrently. Therefore, FPGAs present an

efficient solution to do parallel processing, and have already shown their high performance

capacity in image and video processing applications [84].

FPGAs have almost zero non-recurring engineering (NRE) cost compared to custom

ASICs. Design with FPGAs takes a few months to about a year; whereas the ASIC design

cycle is 2-3 years. Therefore, FPGAs are more capable of serving the constantly changing

requirements of the market; reduced time-to-market and design flexibility have made FPGAs

relevant for more and more embedded applications. Designing with FPGAs requires easy-to-

use and less complex design tools compared to ASIC design tools. High Level Synthesis tools

have recently appeared as an increasingly popular approach to raise the abstraction level of

digital design with FPGAs. However, optimized FPGA designs require deep knowledge of

Hardware Description (HDL) languages, while coding is typically tailored to the specific

FPGA device.

Table 2.3: Comparison of the different implementation platforms.

Platform Advantages Disadvantages

CPUs FP units, flexibility (C/C++) power, size

GPUs
large number of stream processors, FP

units

high power dissipation and cost, difficult to

program

Cell
Flexibility (C/C++), deterministic

performance

Limited resources, small size of directly

accessible memory

DSPs C/C++, low-power, low-cost
limited/shared resources, data word alignment

and bandwidth issues

FPGAs
low power, high I/O capability, large

scale parallel processing
coding is difficult (tailored for specific devices)

ASICs
lower unit costs, full custom capability,

high density, power efficiency
long and complicated design cycle

Chri
sto

s T
tof

i

55 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

As the technology advances, FPGA density is increased; today, there are FPGAs with

millions of logic cells, many integrated blocks and a large number of I/O pins in a very tiny

area. Moreover, FPGAs include more features on chip, such as RAM blocks, DSP blocks,

memory controllers, high-speed serial input/output transceiver, and hard Intellectual Property

(IP) for PCIE, Ethernet MAC, and also Microprocessors. As new developments and

(a) (b)

(c) (d)

(e) (f)

Figure 2.21: Architectures of the different implementation platforms.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 56

innovations continue to happen to enhance FPGAs with additional flexibility, programmability

and a wide range of new features, FPGAs would definitely be the preferred choice in

applications that are complex and performance-intensive, especially when volumes are of the

order of a few hundred per annum.

2.8.6 Application Specific Integrated Circuits (ASICs)

An Application Specific Integrated Circuit (ASIC) is an integrated circuit that is created

to perform a specific function rather than to be flexible to do multiple functions. Due to this

specialization, the circuit is able to perform the function was built at very high performance

levels. ASICs have a higher R&D cost to design and implement, as compared to an FPGA.

However, once an ASIC is fabricated, it is not reprogrammable like an FPGA is. The layout of

the internal chip constructs are fixed and cannot be modified without a “re-spin” of the ASIC.

This makes ASICs much less flexible than FPGAs. On the other hand, ASICs are more

scalable than FPGAs in terms of useful logic, table sizes and resource availability, and thus are

often used for very dense applications. Even though an ASIC may consume more power per

unit die size than an FPGA, this power is amortized over a higher density solution; hence, an

ASIC provides better power efficiency. Finally, while ASICs typically have a higher R&D cost

to design, in high volume applications the lower costs of manufacturing ASICs are attractive.

2.9 Review of Existing Stereo Vision Implementations

As discussed in the previous section, stereo vision systems targeting embedded

applications need to satisfy, often contradictory constraints, such as real-time processing

speed, high disparity map accuracy and low power consumption. This makes the successful

realization of an embedded stereo vision system a key challenge, both in terms of the chosen

matching algorithm as well as in terms of the implementation platform. The current section

shortly resumes the state-of-the-art stereo vision implementations considered for comparison

purposes in next sections, highlighting their basic features (algorithm, implementation

platform, etc.) and the performance metrics that are more desirable in each case.

Comprehensive surveys of stereo vision implementations can be found in [85], [86].

2.9.1 Implementations based on General Purpose CPUs

While real-time disparity estimation can be achieved by software implementations

running on general purpose processors [87], the accuracy of the disparity maps generated by

these implementations is not very high, as they adopt simple local algorithms, therefore

Chri
sto

s T
tof

i

57 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

trading accuracy for speed. Software implementations of complex algorithms, such as global

or local ADSW, generate very accurate disparity maps, but they rely on the high-end hardware

resources of state-of-the-art processors to address the high algorithmic complexity and obtain

real-time performance. An example of a real-time CPU implementation of a global algorithm

based on dynamic programming (DP) is proposed in [88]. The work in [89] is another example

that achieves real-time performance by making intensive use of the Streaming SIMD

Extensions (SSE) and the multi-core architectures of state-of-the-art CPUs. However, due to

the high computational complexity of the algorithms implemented in [88], [89], their iterative

nature and high memory demands, the real-time performance of such implementations is

limited to small-sized images (smaller than VGA). A recent SGM-based implementation [90]

on a multi-core general purpose PC generates disparity maps whose accuracy is on par with

global algorithms, such as DP and Belief Propagation (BP) algorithms. However, even with

the use of parallelization and image sub-sampling, this implementation is able to compute

640x320 image pairs at ~14 fps, therefore achieving near real-time performance.

2.9.2 Implementations based on General Purpose Graphics Hardware

GPUs are attractive and capable platforms for the implementation of stereo

correspondence algorithms, as evidenced in [91], [92], [93], [94]. GPUs have higher compute

and memory bandwidth capabilities than CPUs, thus can support the algorithmic and memory

complexity of accurate disparity estimation algorithms such ADSW combined with dynamic

programming [93], global BP [92], [94] and SGM [95]. However, GPUs cannot be used alone,

but work in tandem with CPUs, leading to complications with task decomposition and

memory management [96]. Furthermore, they consume excessive power (in the order of

hundreds of Watts [97]), which is not desirable in embedded applications. Hence, GPUs can

only be a solution for PC-oriented applications of stereo matching, where power consumption

is not an issue.

2.9.3 Implementations based on Digital Signal Processors

DSP platforms, on the contrary, feature lower power consumption than software

implementations running on high-end processors or GPUs, thus they are more favorable in

embedded stereo vision applications. One of the most famous, real-time DSP solution

targeting robotic applications is presented in [98]. Another real-time DSP implementation of a

local stereo matching algorithm based on jigsaw matching templates is presented in [99]. The

works in [100] and [101] have proposed real-time and low-power embedded stereo vision systems

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 58

that implement local algorithms on DSP processors. Recently, [65] have develop a fast stereo

matching algorithm that was optimized for high-quality stereo engines for DSPs, achieving near real-

time performance for 320x240 resolution images. The aforementioned works indicate that DSPs are

capable to obtain very good processing performance on local, fixed-support algorithms.

However, due to their limited resources, data word alignment and bandwidth issues, their

computational power is not high enough to support real-time processing of complex disparity

estimation algorithms. In such cases, real-time processing is obtained only for relatively small

images and disparity range, which is not practical for several real-world applications, such as

autonomous robot navigation.

2.9.4 Implementations based on the Cell Platform

Another solution for the implementation of stereo vision algorithms is the Cell

processor. Recent works directed towards this approach indicate that the Cell processor

platform can be used to parallelize complex stereo correspondence algorithms, such as ADSW

[102], dynamic programming [103] and belief propagation [104], to yield very accurate

results. The Cell architecture, however, is subjected to restrictions mainly due to the limited

memory of the Synergistic Processing Elements (SPEs), and hence, the processing time

obtained does not satisfy real-time performance.

2.9.5 Implementations based on Application-Specific Hardware Acceleration

Recent research indicates that application-specific hardware acceleration using either

FPGAs or custom circuits (ASICs) might be the most appropriate solution for embedded

stereo vision applications, since it can provide high computational power with low power

consumption. Furthermore, it allows the architectures to be designed in a customized way;

therefore, the computational resources can be optimized in terms of resource utilization. To

this end, a lot of work has been carried out on real-time dedicated hardware implementations

of disparity estimation algorithms on both FPGAs and ASICs. However, FPGAs remain the

most popular implementation choice because of their inherent parallelism, re-programmability

and great flexibility in manipulating the algorithm, and relatively short design cycle.

Dedicated hardware architectures suitable for real-time disparity map estimation are

presented in [105], [106]. These works implement local, fixed support algorithms using the

Sum of Absolute Difference (SAD) similarity measure, and compute intermediate-sized

disparity maps at a rate of 768 and 600 fps, respectively. Another implementation of a more

complex disparity algorithm based on locally weighted phase correlation is presented in [107],

Chri
sto

s T
tof

i

59 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

and utilizes 4 FPGAs to produce dense disparity maps of size 256x360 at 30 fps. A more

recent FPGA implementation of a real-time stereo vision system is presented in [108], and

generates dense disparity maps based on the Census transform. The hardware implementation

presented in [109] performs a modified version of the Census transform in both the intensity

and the gradient images, in combination with the SAD correlation metric (SAD-IGMCT

algorithm), achieving 60 fps on 750x400 images.

The aforementioned dedicated hardware implementations indicate that the disparity map

estimation can be effectively performed in real-time with high frame rates. However, many

applications of disparity estimation require not only real-time processing but also reliable

depth computation. Unfortunately, the majority of the aforementioned implementations

struggle to provide reliable depth information, as they mostly implement fast fixed-support

algorithms, which have difficulty in determining the best window size and shape for each pixel

during the cost aggregation step. As such, these implementations are prone to errors and tend

to generate incorrect matches especially at points along depth discontinuities [62]. The most

recent dedicated hardware implementations attempt to alleviate the abovementioned problem

by implementing modified versions of ADSW- and SGM-based stereo vision algorithms, thus

enabling much better quality results.

FPGA implementations of SGM-based algorithms are presented in [110], [111], [112],

[113]. The work in [110] introduces a SGM implementation based on a mean-free SAD

(ZSAD) similarity criterion. This work achieves real-time throughput by sub-sampling the

input images (by a factor of 2 in width and height) and reusing the result for full resolution

computation, by parallelizing the path calculation step, and by combining 4 paths in one step

to minimize the external memory bandwidth. The complete system matches two pairs of

320x200 images and a disparity range of 64 pixels at 27 fps; however, as stated in [112], that

system has limited scalability to achieve higher data throughput. The work in [112] realized

the SGM algorithm on a hybrid FPGA/RISC architecture, achieving 30 fps on 640x480

images at a 128 disparity range under 12MHz to 208MHz, depending on the amount of

parallelism used. The architecture extends the initial implementation in [111] by introducing a

novel 3D parallelization concept for the SGM to achieve higher throughput, but it currently

supports processing of only 4 paths and integrates a simple post-processing pipeline

(Left/Right check and 3x3 median filtering). Thus, optimizations are still needed in order to

extend the architecture for higher accuracy. Moreover, the memory (path cost buffers) required

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 60

to store the temporary cost of different paths increases with the number of paths and pixels

processed in parallel, and also depends on the disparity range; thus, the architecture needs

optimizations for high-resolution images. The FPGA implementation by [113] uses a memory

efficient version of the SGM, called eSGM, in which the amount of temporary memory only

depends on the number of pixels. This permits matching of larger images and reduces the

requirements on the bandwidth. While the memory was reduced considerably, the eSGM

exchibits 50% more compute operations as compared to SGM, and obtains lower accuracy.

ADSW-based dedicated hardware implementations follow the same concept with the

SGM-based implementations. That is, a complex, but accurate, stereo matching algorithm is

adapted for hardware implementation through a series of hardware-directed algorithmic

modifications. To the best of our knowledge, there are currently two hardware

implementations that are based on ADSW algorithms. The first one proposed in [114] presents

a hardware-friendly disparity estimation algorithm called mini-census ADSW, and its

corresponding real-time VLSI architecture. Their architecture achieves 42 fps on 352x288

image sizes, with very good accuracy. The other one proposed in [115], presents an

implementation of a complete stereo vision system that incorporates an ADSW algorithm and

integrates pre- and post- processing units. That system achieves 51 fps for 640x480 stereo

images. However, there are still improvements that could be made, especially in terms of the

accuracy of the matching cost function and post-processing integration, as well as in terms of

the frame rate and scalability. It must be noted that the works in [114], [115], do not integrate

segmentation information within the weight cost function, and also their aggregation methods

are based on the reference image only. This does not permit the application of the mutual

consistency check without doing the correlation twice.

The ADSW- and SGM-based hardware implementations described above have the

potential to affect the trends in embedded stereo vision applications, as they are both based on

stereo vision algorithms that achieve results that are on par with global algorithms. However,

the local nature of ADSW algorithms and the reduced memory requirements compared to

SGM algorithms have motivated us to implement an ADSW-based stereo vision algorithm.

The proposed hardware implementation is based on an advanced segmentation-based cost

aggregation strategy, aiming to maximize the speed-accuracy tradeoff. It must be noted that,

between those implementations that an ADSW algorithm have been adopted, no one so far has

deployed segmentation information.

Chri
sto

s T
tof

i

61 Stereo Vision for Depth Perception: Fundamentals and Relevant Work

2.10 Concluding Remarks

Stereo vision is an important component of human vision for depth estimation, and a key

task in several embedded vision systems that require knowledge about the depth of objects in

the scene. This chapter has reviewed fundamental theoretical aspects of depth estimation,

placing particular emphasis on stereo vision technology and its basic theories such as

calibration, rectification and stereo matching. Several stereo matching techniques were briefly

introduced and classified into different categories. In addition, the chapter discussed the main

challenges of stereo matching, and the various applications of this important process in the

context of embedded systems. The chapter then provided an overview of the different

processing devices and architectures that have the potential to exploit the parallelism inherent

in stereo matching algorithms, and looked into existing stereo vision systems that have been

implemented on these architectures.

Chri
sto

s T
tof

i

 CHAPTER 3

3 Edge-Directed Hardware Stereo

Matching: Empowering Resource-

Constrained Embedded Systems with

Hard Real-Time Depth Computation

HIS chapter presents an overview of the use of edge information as a means to accelerate

hardware implementations of stereo correspondence algorithms. The presented approach

restricts the stereo correspondence algorithm only to the edges of the input stereo images rather

than to all image points, thus resulting in a considerable reduction of the search space. The

benefits of the edge-directed approach are highlighted by applying it on a SAD-based fixed-

support algorithm. The Chapter presents design considerations about the implementation of the

edge-directed stereo algorithm on reconfigurable hardware and also discusses issues related to the

memory structures needed, the amount of parallelism that can be exploited, the organization of the

processing blocks, and so forth. The resulting edge-directed architecture is implemented on a

Virtex-5 FPGA and is evaluated in terms of processing speed, disparity map accuracy, and

hardware overheads, against a stand-alone SAD-based architecture and existing hardware stereo

matching systems.

3.1 Introduction - Motivation

The problem of enabling real-time disparity estimation in embedded vision applications

has been investigated extensively during the last decade, leading to the development of

numerous dedicated hardware systems. Common features found in most of these systems

include the implementation of simple, mostly local, stereo matching algorithms, and the use of

hardware mechanisms such as parallelism and pipelining in order to exploit the computation

concurrency inherent in such algorithms. As presented in the literature review in Section 2.9,

such implementations achieve satisfactory frame rates for relatively large image sizes and

disparity ranges. However, due to the increased hardware complexity associated with larger

T

Chri
sto

s T
tof

i

63 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

image sizes and disparity ranges, satisfying the hard real-time constraints of emerging

embedded stereo vision applications, especially for High Definition (HD) images and under

limited resource usage and power budget, is still challenging.

With the aforementioned considerations in mind, this section presents the design of a

hardware stereo matching system that incorporates edge information as a means to accelerate

the overall stereo matching process and achieve real-time frame rates for HD images and

under limited hardware/power budget. In particular, we present the hardware design of a

block- and feature-based (hybrid) stereo matching algorithm; through an edge detector that

generates the features (edges) used to reduce the search space, and a block matching Sum of

Absolute Difference (SAD) algorithm used for the stereo matching computation. Alternative

block matching algorithms can also be used as well; we chose the SAD matching technique,

which is simple, fast and suitable for embedded applications. The integration of edge

information constrains the stereo matching process only on binary data (edges), therefore

reducing the search space and improving the overall frame-rate. Furthermore, edges represent

reliable image features, and their use reduces the sensitivity to pixel intensity variations caused

by camera gain or illumination changes. Therefore, the proposed edge-directed architecture

outperforms traditional SAD block marching-based hardware architectures in terms of

matching quality. Finally yet importantly, stand-alone SAD traditionally requires extensive

resources, both in terms of memory and logic complexity. The edge detector implemented in

the proposed hardware stereo matching architecture reduces the overall hardware

requirements, making the SAD much more efficient than when used as a stand-alone matching

technique. These features enable the design of a highly-parallel, scalable and resource-

optimized architecture that is able to process HD stereo images in real time. Consequently, the

developed architecture is particularly suitable for resource-constrained embedded vision

systems that need to satisfy hard real-time and low-power constraints.

3.2 Edge-Directed Disparity Estimation System Overview

The proposed disparity map computation system follows the correlation window method

(block matching SAD technique), combined with the features (edges) extracted by an edge

detector, in order to reduce the data to be processed and to speed up the overall operation. The

system also uses optimized memory access to the external memory, in an attempt to further

increase the resulting frame rate, exploiting the fact that several computations involved in both

edge detection and disparity computation receive as input overlapping pixel data. We assume

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 64

that the input images are captured from calibrated stereo cameras [10], [116] and are rectified

so that the epipolar lines become horizontal [50]- [44].

The block diagram of the proposed system architecture is shown in Figure 3.1. The

system consists of two major hardware units: the Edge Detection Unit (EDU) and the

Disparity Computation Unit (DCU). The system also consists of a Memory Controller &

Control Unit (MCCU) that optimizes memory access based on the algorithm requirements,

and coordinates data transfers and handshakes between the EDU and the DCU. The

architecture is parametrizable in terms of the correlation window size, the image size and the

disparity range. It receives a rectified stereo image pair as input, and produces a disparity map

at the output. The EDU converts the rectified image pair (grayscale images) into a pair of

binary images (black and white) that characterize only the edges of the initial images. The

black and white images are then fed into the DCU, which performs correlation with the

Figure 3.1: Detailed block diagram of the proposed system architecture. (a) Edge detection unit

(b) Disparity computation unit.

Chri
sto

s T
tof

i

65 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

objective to compute the disparity map of the input image pair.

It is worth noting that while the disparity maps generated by the DCU are sparse

(disparity estimates are provided only for points corresponding to edges), the proposed system

can generate dense disparity maps as well, by integrating interpolation methods as part of the

MCCU. In this work, we use the simple and fast nearest neighbor interpolation method; our

emphasis has been on performance in embedded scenarios. We do however investigate the

impact of more complex interpolation methods such as bilinear and bicubic interpolation.

The EDU and the DCU, which communicate through the use of internal memory (FIFO

queues), are pipelined, and thus operate concurrently. They are also provided with scanline

buffers, which temporarily store the pixels needed to perform convolution (in the case of the

EDU), or correlation (in the case of the DCU). This reduces the clock cycles required to load

image data from the input port, by exploiting the fact that working windows moved over the

image use overlapping pixels. The scanline buffers are organized into FIFO structures and

their size depends on the size of the working window (3x3 for the EDU, mxm for the DCU)

and the width of the image, N. The delay to fill the scanline buffers is proportional to the I/O

bandwidth. A detailed description of the EDU and DCU is given next.

3.3 Edge Detection Unit (EDU)

Incorporating an edge detector into a stereo vision system can reduce the amount of data

to be processed by the stereo correspondence algorithm. However, since correspondence will

be established on a sparse set of image features (edges), the resulting disparity map will not

provide disparity estimates for all image points. Thus, if the disparity map is to be used in

applications that require dense disparity maps, interpolation methods will be necessary to fill

in those points for which a disparity estimate is not determined by the stereo correspondence

algorithm. This is not a problem, however, if the time saving due to the reduction of the search

space is more than the overall delay of the edge detection and interpolation operations, which

traditionally, are considered computationally less expensive than stereo correspondence

algorithms [117].

As such, there are quite a few issues that need to be considered when selecting an edge

detector for a stereo vision system, including the impact of the detector accuracy to the quality

of the disparity maps, the computational delay the detector incurs, and the detector hardware

efficiency. While there exist several edge detection methods, this work integrates the Sobel

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 66

detector in the FPGA-based disparity computation system, mainly due to its simplicity and

good performance on an FPGA [118]; detailed quantitative results for three different

implementations of edge detection methods (Canny, Sobel and an algorithm proposed by

Vasicek et. al. in [119]) are given in the Section 0, justifying our choice.

3.3.1 Sobel Edge Detector Overview

An overview of the Sobel edge detector algorithm is shown in Figure 3.2. The Sobel

operator performs a 2D spatial gradient measurement on the input grayscale image using a pair

of 3x3 convolution masks [118]. The masks hold data values between -2 and 2; thus the

overall convolution can be implemented in hardware using shifters instead of multipliers. By

avoiding the costly multiplication operation, higher frequencies are possible allowing

integration of this method into disparity computation systems without affecting their

performance. Moreover, the simplicity of the Sobel operator could allow for a parallel

hardware implementation, capable of processing more than one image point at a time.

The Sobel edge detector is implemented in order to reduce the amount of data and speed

up the overall operation. The black and white output image pair of the detector characterizes

the feature boundaries (edges in black while non-edges in white). The matching algorithm

matches windows whose central pixels represent edges. The fixed correlation window from

the reference image is moved only to the edges (and not to each possible pixel) along the

working scanline, resulting in a considerable reduction in the search space. Besides data

reduction, the use of binary data can further speedup the overall operation, when compared to

8-bit operations.

3.3.2 Sobel Edge Detection Unit (EDU) Architecture

The proposed disparity computation system integrates a scalable and flexible Sobel Edge

Detection Unit (EDU) shown in detail in Figure 3.1 (a). The EDU employs hardware features,

Input Image
Output Image

-1

-2

-1

0

0

0

1

2

1

Horizontal Gradient

-1

0

1

-2

0

2

-1

0

1

Vertical Gradient

G=|Gx|+|Gy|

Gradient

Combining

Apply

Threshold

Threshold

Value

Figure 3.2: Sobel edge detection overview.

Chri
sto

s T
tof

i

67 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

such as parallelism and pipelining, in an effort to parallelize the repetitive calculations

involved in the Sobel operation, and uses optimized memory structures in order to reduce the

memory reading redundancy. The detector architecture consists of an I/O controller that

reads/writes pixel data from/to the I/O port, on-chip memory for storing pixel data (scanline

buffers) and the convolution mask values, a series of convolution units (MUL_ADD units), as

well as comparators. The architecture is pipelined into 3 stages; INPUT/OUTPUT,

CONVOLUTION and THRESSHOLD, a description of which is briefly given below:

•INPUT/OUTPUT: The I/O controller fetches 4 pixels from the I/O port (2 pixels from

each image), in a row-wise fashion, and forwards them to the input ports of the scanline

buffers (16-bits to each buffer). Each scanline buffer consists of a series of 16-bit registers

(each register stores 2 pixels), which are organized into FIFO structures. When new pixel data

is available at the input, the 16-bit registers are shifted one position to the right. Since each

scanline buffer consists of registers, it can allow parallel access to its elements. Particularly,

each scanline buffer produces two successive 3x3 windows. This pipeline stage is also

responsible for writing the result of the overall operation to the output port; the I/O Controller

asserts a signal indicating that the data at the output is valid.

•CONVOLUTION: This pipeline stage begins after the first 3 scanlines from both images

are stored into the scanline buffers, and each buffer is able to produce 2 successive 3x3

windows per cycle. The four 3x3 windows (shown with gray color in Figure 3.1 (a)) are

convoluted with the Sobel kernels using 4 MUL_ADD units.

•THRESSHOLD: The result of the convolution operations (outputs of the MUL_ADD

units) is compared with a predetermined threshold value. Comparison returns 1-bit pixel

intensity values, which are concatenated into two 16-bit registers. The values from the 16-bit

registers are forwarded to the output port (FIFO queues of the DCU) once every 8 clock

cycles.

3.4 Disparity Computation Unit (DCU)

The DCU calculates sparse disparity maps covering disparity ranges up to 120 pixels

and correlation window sizes from 3x3 to 11x11. Figure 3.1 (b) shows the architecture of the

DCU, which involves three major steps: INPUT/OUTPUT, SADs_COMPUTATION and

MINSAD_COMPUTATION. The architecture consists of an I/O controller that reads/writes

data from/to the I/O port, on-chip memory (FIFO queues, scanline buffers and window

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 68

buffers) for temporarily storing the edge data, and a unit that searches and finds the position of

the edge to be processed (edge tracking unit - ETU). It also consists of a collection of adders

and subtractors to compute the SAD values for all disparity levels, a unit to compute the

minimum SAD value, multiplexers, and intermediate pipeline registers. Apart from

reading/writing data from/to the I/O port, the I/O controller also acts as a control unit,

coordinating memory accesses from the on-chip memory, as well as data transfers and

handshakes between the components of the DCU.

3.4.1 DCU process overview

The DCU performs correlation on the binary image pair produced by the EDU.

Correlation works by comparing the edge points of the two images found in the scanline

buffers. The correlation values are computed using the SAD correlation metric, which in the

case of binary data, is reduced to a hamming distance operation that can be directly

implemented in hardware using only addition and 1-bit subtraction operations. The

comparison of the edge points is carried out by a correlation window from the reference image

(fetched from the reference image scanline buffers and stored to the window buffer), that is

correlated with a second window from the target image (fetched from the target image scanline

buffers and stored to the disparity range buffer). The second window is shifted through all

possible positions in the target image. These positions are bounded by the disparity range (dm –

dM). The location where the correlation search yields the best score (minimum in our case),

determines the edge in the target image that best corresponds to the edge of interest in the

Figure 3.3: Search area and SAD technique used in correlation matching.

Chri
sto

s T
tof

i

69 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

reference image, and consequently yields a potentially matching edge in the two images.

Figure 3.3 shows the correlation search space and the SAD matching technique between

correlation windows. Each window in the target image is shifted on a predetermined offset

(one pixel in our implementation), and compared to the correlation window in the reference

image. The process is repeated for all disparity levels (i.e. disparity range, between 1 and 120

in our case). Something that needs to be further discussed is the locations that the correlation

window in the reference and target images is allowed to move, and subsequently the value of

the central pixel of the correlation window in the reference and target images. As mentioned

earlier, the correlation window in the reference image is moved only to the edges (edge points

are represented with 1 and the non-edge points with 0). Therefore, the central pixel of the

correlation window in the reference image always has a value of 1. The central pixel of the

correlation window in the target image, on the other hand, can take a value of either 0 or 1,

since the window is moved in one pixel increments. The proposed system, therefore, combines

characteristics from both block- and feature- matching stereo correspondence algorithms, to

increase the frame rate.

3.4.2 DCU Architecture Overview

The DCU unit was designed with emphasis on parallelism, targeting a large number of

search and match operations performed in a single clock cycle. This is facilitated by the

simplicity of the adders and subtractors used (due to the use of binary data), and by the

organization of the adders and comparators in tree structures. The DCU exploits both pixel-

level and window-level parallelism [120]. Pixel-level parallelism is achieved by computing the

absolute differences in a SAD in parallel. Window-level parallelism is achieved by computing

the SAD values for all disparity levels in a pipelined and parallel manner. The number of SAD

values that are computed in parallel depends on the targeted operating frequency of the DCU.

The same happens for the MINSAD_COMPUTATION stage, where the minimum disparity

value is computed. As the performance of the DCU depends on the time necessary to compute

the edge points, the level of parallelism for the DCU is somewhat restricted by the speed of the

EDU and its ability to generate features (edges). However, the EDU can be parallelized as

well, so the real limitation in terms of parallelism is the external memory I/O.

Due to its pipelined and parallel structure, the DCU presents good scalability in terms of

correlation window size and disparity range. Particularly, it can compute the SAD values for

all possible positions of the shifting window with a maximum size of 11x11 in two clock

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 70

cycles, and the minimum SAD value for a maximum of 120 disparity levels in three cycles.

However, once the pipeline fills up and the FIFO queues are not empty, the DCU can provide

a disparity value at the output every clock cycle.

To keep a constant flow of data in the pipeline, the DCU must be able to locate one edge

in the reference image every clock cycle, while discarding the non-edge points found between

successive edges. At the same time, the DCU must have parallel access to the mxm window

surrounding the edge found in the reference image, as well as to the corresponding dM

windows from the target image. For these reasons, each scanline buffer used in the DCU

consists of a series of 16-bit registers, and can store m scanlines from an input image. We

avoid using 1-bit registers in order to facilitate more parallelism and to make the process of

discarding the non-edge points fast. The 16-bit registers are organized into FIFO structures,

and allow parallel access to their elements. Specifically, the scanline buffers for the reference

image (RSB) output 16 successive mxm windows (stored in the Candidate Window buffers),

while the scanline buffers for the target image (TSB) output 16 successive mx(m+dM) windows

(stored in the Candidate Disparity Range buffers). The RSB also output a 16-bit vector (search

vector) from positions 1+w to 16+w of the (w+1)
th

 scanline, where w=(m-1)/2. The search

vector is being searched for potential edge points by the edge tracking unit (ETU), which is

the connection point between the INPUT/OUTPUT stage and the remaining stages. The ETU

works by locating an edge and its corresponding position in the 16-bit search vector every

clock cycle. The positions of the edges found during the searching process are used to select

the window and disparity range buffers (among the 16 candidates) corresponding to the edge

points found; the selected buffers become the input of the next pipeline stage. It must be noted

that the ETU requires from 1 cycle (in the best case) to 16 cycles (in the worst) to locate all

edges in the search vector. During this period, the edge_found signal is set to 1 and the

scanline buffers are disabled, so that the content of the candidate window and candidate

disparity range buffers remains constant. When all edges in the search vector are located, the

ETU sets the edge_found signal to 0. This informs the I/O controller to fetch new edges from

the input FIFO queues and to shift the scanline buffers to the right.

A description of each major step involved in the DCU is given next:

•INPUT/OUTPUT: This pipeline stage fetches pixel data from the I/O port, executes the

edge tracking process, and selects the windows corresponding to the edges found. The data

fetched from the input port (the two 16-bit vectors produced by the EDU) are stored into FIFO

Chri
sto

s T
tof

i

71 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

queues. The I/O controller reads data from the input FIFO queues (if they are not empty) and

forwards data to the scanline buffers (16-bits to each scanline buffer), until the first m

scanlines from both images are stored into the scanline buffers. After the scanline buffers are

filled, the I/O controller reads new pixel data from the queues only if the edge_found signal is

set to 0 by the ETU. While the edge_found signal is set to 1, the scanline buffers are disabled,

and during this period the edge tracking process described above is performed. If there is new

data available at the input during this period, this data is written to the input queues.

Furthermore, during this pipeline stage, the I/O controller writes the disparity value computed

in the previous cycle to the output port.

•SADs_COMPUTATION: The SAD values for all disparity levels are computed during

this pipeline stage. The stage consists of dM Absolute Difference (ABDIF) units, which

compute the absolute difference between the mxm correlation window (stored in the Window

Buffer) and the dM mxm windows (stored in the Disparity Range Buffer). Each ABDIF unit

receives as input two m
2
-bit vectors, whose elements are the edge points of the correlation

windows, and consists of m
2
 1-bit subtractors that compute the absolute difference of the edge

points. The output of each ABDIF unit is an m
2
-bit vector, which is next added bitwise using

binary tree adders (BTA). Given the 11x11 maximum supported correlation window size, and

1-bit pixel intensities, the maximum value of the addition operation cannot be greater than

121. As such, the outputs of the BTA units are 7-bit values.

•MINSAD_COMPUTATION: The SAD values for all disparity levels in the range [1 :

dM] are compared with each other in order to compute the minimum value and its disparity.

The comparison is carried out by a collection of 7-bit comparators and registers, arranged in

tree structure to reduce the delay of the longest path. As stated previously, this stage was

further divided into 3 pipeline stages in order to meet the targeted operating frequency (100

MHz). Figure 3.4 shows the circuit that computes the minimum SAD value and its disparity.

Each minSAD unit receives as input two 14-bit vectors, each of which is a concatenation of a

SAD value (7 bits) and its corresponding disparity (7 bits - up to 120 disparity levels). The

minSAD unit compares the two SAD values and outputs the minimum of them along with its

disparity. The entire circuit for computing the minimum SAD value and its disparity consists

of multiple minSAD units, arranged in a structure of a binary tree of log2(dM) levels. The

circuit is configurable in terms of the disparity range, allowing the upper bound (dM) of the

disparity range to lie in the range [1:120]. In the probable cases, however, where dM is less

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 72

than 120, values between dM+1 and 120 are not valid disparity values, and the circuit must

have a way to ignore them and maintain temporal consistency. This is achieved by the 2-to-1

multiplexers located at the outputs of the BTA units. Each multiplexer receives as inputs the

output of a BTA and the value of 127 (maximum value for a 7-bit number). The control logic

for the multiplexers is generated by the I/O controller (control unit) using a decoder to decode

the dM value into 120 control signals. In this way, the disparity values between dM+1 and 120

are not taken into account during the process of finding the minimum SAD value, while

maintaining correct operation.

3.5 Experimental Platform and Results

3.5.1 Experimental Platform

We developed a prototype of the architecture shown in Figure 3.1 using the Xilinx

ML505 Evaluation Platform [121], which is equipped with a Virtex-5 LX110T FPGA and

features several I/O ports suitable for experimental evaluation. We used the Microblaze soft-

processor (provided with Xilinx EDK tool) as the Memory Controller & Control Unit

(MCCU) of the system [122]. Microblaze is used to handle tasks such as system I/O and

control, stereo image rectification, as well as data transfers and handshakes from/to the EDU

and the DCU. It is also used as a parameter initialization mechanism, initializing the system

Figure 3.4: Computing the minimum SAD value.

Chri
sto

s T
tof

i

73 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

architecture parameters, such as correlation window size and disparity range. It communicates

with external devices through the Processor Local Bus (PLB) for data transfers and monitoring

purposes. It also communicates with the EDU and DCU using a FIFO-based communication

protocol over its accelerator interface, called Fast Simplex Link (FSL). The data transfers over

the FSL are non-blocking, allowing thus the communication to be overlapped with the

computation performed at the EDU and the DCU. Additionally, the Microblaze implements

the interpolation mechanism that is used to fill each non-edge point of the sparse disparity map

generated by the DCU. Figure 3.6 (a) shows a block diagram of the particular system

implemented on the FPGA platform.

The system was evaluated using both synthetic and real-world data. The synthetic data

includes 10 stereo images from the Middlebury database [25], [26], while the real-world data

includes stereo images taken in the laboratory and from a moving vehicle using a night vision

stereo camera (provided in [27]). We used the Microblaze processor to generate the rectified

real-world images, which were stored in the on-board DRAM, and fed as input to the system

shown in Figure 3.1. The system was visually verified by displaying the resulting disparity

CONVOLUTION

Scanline Buffers

right image temp pixels

left image temp pixels

Edge Detection Unit

LEFT EDGE REG.

RIGHT EDGE REG.

Scanline Buffers

Disparity Computation Unit

minSAD

I/O

Controller

&

Control

Unit

SAD

I/O

Controller

&

Control

Unit

Right image

edges

Left image

edges
THRESHOLD

mb_plb

Hardware

Debug

Module

Controller

XPS_TFT

Controller

Compact

Flash

Controller

To XDM
Debug

Module

UART

Controller
To

UART

32

FSL2FSL1

MPMC

DXCL

DDR2

32 32

32
32

BRAM LMB

FIFO

FIFO

Figure 3.5: FPGA implementation used to verify the proposed architecture.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 74

maps to a thin-film transistor (TFT) monitor. Figure 3.6 (b) illustrates the experimental setup

of the system and an example display. The evaluation results for the synthetic images are

shown in Table 3.1 and Table 3.2 for the Tsukuba, Venus, Teddy and Cones image pairs (for

which there is an online evaluation system [25], [26]). Figure 3.7 shows the rectified image

pairs generated by the Microblaze processor, the output of the Sobel detector (for the left

images), and the resulting disparity maps for the real-world stereo images.

3.5.2 Disparity Map Quality–Impact of Edge Detector

To evaluate the quality of the proposed system and examine the impact of the edge

detection algorithm in the overall system quality, we use stereo pairs from the Middlebury

database [25], [26] for which the ground truth disparity maps are known, and measure the

incorrect disparity estimates using the percentage of bad pixels evaluation metric [26]. We

measure the percentage of bad pixels for both the sparse disparity maps generated by the

DCU, as well as the dense disparity maps obtained using nearest neighbor interpolation. When

evaluating the sparse disparity maps, we account only for the disparity estimates at edge

points, whereas, when evaluating the dense disparity maps, we account for the disparity

estimates at all image points.

Figure 3.6: FPGA implementation used to verify the proposed architecture.

Chri
sto

s T
tof

i

75 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

To describe the percentage of bad pixels for both cases, we adopt a notation where the

subscript, called P, identifies the set of points for which a disparity value is estimated i.e. P ∈

{E, A} (E=edge points, A=all image points). The percentage of bad pixels, BP, (BE and BA refer

to the percentage of bad pixels for the set of edge points and for all image points,

respectively), is then given by (3.1), where dC(x,y) and dT(x,y) are the computed and ground

truth disparity maps, respectively. NP is the total number of pixels in the set of points E or A

respectively, and δd is the disparity error tolerance. We set δd = 1.0 for all experiments we

carried out as this value coincides with some previously published works [105], [92], [107],

[108], [114], [109].

𝐵𝑃 =
1

𝑁𝑃
 𝑑𝑐 𝑥, 𝑦 − 𝑑𝑇(𝑥, 𝑦) > 𝛿𝑑 , 𝑃𝜖{𝐸, 𝐴}

(𝑥,𝑦)∈𝑃

 (3.1)

(a)

(b)

(c)

(d)

Figure 3.7: Evaluation results for real-world images.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 76

We first measured the percentage of bad pixels incurred from the use of the three

different edge detectors (Canny, Sobel, evolvable), in order to examine the efficiency of each

detector in terms of accuracy and speedup. This was achieved by varying the threshold of each

detector until finding the one that yields the minimum percentage of bad pixels. The data

reduction associated with the minimum percentage of bad pixels for each detector was also

recorded, as the speedup improvement of our method is strongly related to the data reduction.

Experimental results were carried out for ten image pairs from the Middlebury dataset [25],

[26], indicating an average percentage of bad pixels (over all image points) of 23.3%, 20.3%,

and 18.9% for the Canny, Sobel and evolvable edge detector, respectively. Table 3.3 shows the

percentage of bad pixels for a sample of 4 representative pairs. As it can be seen in Table 3.3,

Table 3.1: Input image pairs and the output of the EDU for the left image.

Left image Right image
Edge image

(left image)

% data

reduction

70.23%

73.70%

67.33%

65.85%

 Average percentage of data reduction = 69.3%

Chri
sto

s T
tof

i

77 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

the detector that yields the better quality is the evolvable. However, this detector obtains the

smallest amount of data reduction among all detectors. The Canny detector, on the other hand,

although yields the larger data reduction, its accuracy is less than the other detectors. For these

reasons, we chose the Sobel detector.

 Experimental results carried out over the ten image pairs indicate that the Sobel edge

detector can reduce search data on an average of 55-85%, depending on the content of the

images and the threshold used by the detector. The impact of the threshold value was

determined by measuring BA for a wide range of threshold values. Figure 3.8 illustrates how

the percentage of bad pixels changes with respect to the threshold value for four sample

images from the Middlebury database (Tsukuba, Venus, Teddy, Cones). The results indicate

Table 3.2: Evaluation results of the proposed system using Middlebury stereo pairs.

Ground truth
Computed

disparity map

Bad pixels

(δd=1, BA)

% of

bad pixels

nonocc = 9.26%

all = 10.4%

disc = 28.2%

nonocc = 11.0%

all = 12.1%

disc = 28.9%

nonocc = 21.4%

all = 29.1%

disc = 41.3%

nonocc = 17%

all = 25.3%

disc = 33.4%

Average percentage of bad pixels = 22.3%

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 78

that the optimal threshold value lies in the range 0.005-0.015. We found experemintally that

threshold values in this range work well for the real-world images as well.

We next measured the percentage of bad pixels imposed by the use of the Sobel edge

detector (using the optimal threshold values). Simulation results indicate that the average

percentage of bad pixels is ~20.33% when considering all image points (dense maps were

obtained with interpolation), and ~7.2% when considering only the edge points (sparse

disparity maps). Table 3.1 shows four sample input image pairs used for evaluation, along with

the output of the Sobel edge detector (using the optimal threshold value for each pair).

Correspondingly, the evaluation results using a correlation window size of 11x11 and the

optimal detector threshold value for each pair are shown in Table 3.2. The table shows the

ground truth disparity map for each sample input image pair (column 1), the dense disparity

maps generated by the proposed system after interpolation (column 2), and the percentage of

bad pixels, BA, when δd=1.0 (column 3). The table also lists the percentage of bad pixels for

three different kinds of regions; the non-occluded regions (nonocc), the half-occluded regions

(all), the depth discontinuity regions (disc), as well as the average percentage of bad pixels

(column 4). All statistics in Table 3.2 (column 4) were computed using the Middlebury online

evaluation system [25], [26]. The percentage of bad pixels, BE, (for the set of edge points only)

for the same input image pairs are shown in Table 3.4. An important observation regarding BA

and BE, is that the disparity estimates at edge points are more accurate (present smaller

percentage of bad pixels), as obviously anticipated.

Table 3.4: Average percentage of bad pixels BE.

Image pair Tsukuba Venus Teddy Cones

BE 2.31% 3.11% 14.03% 12.55%

Coverage 29.77% 26.30% 32.67% 34.15%

Accuracy (100 - BE) 97.69% 96.89% 85.97% 87.45%

Table 3.3: Quality reduction for different edge detectors.

Image

pair

Detector

Canny Sobel Evolvable

BA % of data reduction BA % of data reduction BA % of data reduction

Tsukuba 10.30 82.95 8.73 70.23 11.04 57.67

Venus 17.03 81.08 16.73 73.70 12.81 55.78

Teddy 31.57 81.35 30.38 67.33 26.78 50.33

Cones 29.65 80.64 27.60 65.85 24.47 52.75

Chri
sto

s T
tof

i

79 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

3.5.3 Disparity Map Quality Analysis

For a detailed quality analysis, we compare the quality of the disparity maps generated

by the proposed method to the disparity maps generated by a stand-alone SAD block matching

method. The latter consists only of a DCU having a similar architecture with the DCU shown

in Figure 3.1 (b) (without the ETU and the candidate window and disparity range buffers),

which is able to process 8-bit pixel values instead of binary data (edges). The results, extracted

by comparing the disparity maps of both methods to the ground truth disparity maps, are

presented in Table 3.5 (last two rows) for the four sample input images. The dense disparity

maps generated by the proposed method (using nearest neighbor interpolation) are more

accurate, as the average percentage of bad pixels is 22.3%, whereas the percentage of bad

pixels of the stand-alone SAD block matching method is 25.3%. This is because stand-alone

SAD suffers from changes in pixel intensities and is sensitive to depth discontinuities and to

regions of uniform textures in images as well [60]. On the other hand, the proposed hybrid

method potentially tackles these problems, by limiting the correspondence search to specific

reliable features in the images (edges in our case).

Furthermore, we compare the quality of our method with some related works. The works

Figure 3.8: Percentage of bad pixels vs. Sobel threshold.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 80

in [91], [123], [124], [125] and [126] are omitted, either because they do not present quality

results, or because the quality metric used is different from the one adopted in this work. The

results are presented in Table 3.5. As it can be seen, the percentage of bad pixels for our

method is comparable to the majority of local methods ([105], [107], [108]), but it presents a

reduction compared to local methods such as [114] and [109]. Both [114] and [109], however,

achieve lower frame rates; they achieve real-time performance for small-sized (352x288) and

intermediate-sized (750x400) images, respectively. Furthermore, [114] focuses only on

synthetic image data. As evidenced in [29], however, methods that work well on synthetic

scenes might not work well on real-world scenes. Lastly, our method presents an expected

quality reduction compared to global methods such as hierarchical belief propagation [92].

Despite the quality reduction, the disparity maps generated by the proposed system still

preserve most of the details of the disparity map values. As shown from the performance

results (Table 3.6 & Table 3.7 in Section 3.5.4), the reduction in quality can be offset by the

high output frame rates of the system, depending on the application demands. Some

applications with hard real-time constraints (e.g. obstacle and object detection) may work with

lesser-quality disparity maps [45], but benefit from the high-performance in order to perform

the required tasks on-time. Interested readers are referred to Chapter 6.1 (or reference [127])

for a successful application of the proposed method to a hardware object detection system.

The quality of the proposed system is also affected by the chosen interpolation

mechanism, which generates dense disparity maps (see Section 4.1). As stated before, we

implement the nearest-neighbor mechanism; even though a bicubic interpolation mechanism

can perform better with certain images, the nearest neighbor mechanism performs significantly

Table 3.5: Quality comparison of the proposed method with other methods.

Image

Pair

Image

Region

Georgoulas

[23]

Yang

[33]

Darabiha

[36]

Jin

[37]

Chang

[38]

Ambrosch

[42]

Stand-

alone SAD

Edge-

Directed

Tsukuba

nonocc N/A 1.49 19.59 9.79 N/A 5.81 8.40 9.26

all 13.55 3.40 N/A 11.56 2.80 7.14 10.1 10.4

disc N/A N/A 37.62 20.29 20.29 22.6 34.3 28.2

Venus

nonocc N/A 0.77 10.51 3.59 N/A 2.61 6.27 11.0

all 12.6 1.90 N/A 5.27 0.64 3.33 7.86 12.1

disc N/A N/A 31.52 36.82 N/A 25.3 47.8 28.9

Teddy

nonocc N/A 8.72 N/A 12.50 N/A 9.79 25.6 21.4

all N/A 13.2 N/A 21.50 13.7 15.5 33.2 29.1

disc N/A N/A N/A 30.57 N/A 25.7 45.4 41.3

Cones

nonocc N/A 4.61 N/A 7.34 N/A 5.08 18.7 17

all 12.6 11.6 N/A 17.58 10.1 11.5 27.7 25.3

disc N/A N/A N/A 21.01 N/A 15.0 38.2 33.4

Average % of bad

pixels
N/A 7.69 N/A 17.24 N/A 12.5 25.3 22.3

Chri
sto

s T
tof

i

81 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

better with the real-world images used in this work. Images (a) and (b) shown in Figure 3.7

were computed using bicubic interpolation, whereas images (c) and (d) were computed using

nearest-neighbor. These results indicate that further experimentation is necessary to determine

the interpolation mechanism, which however, is also impacted by the environment that the

host application will operate. We plan to experiment with other interpolation mechanisms in

future work, and evaluate them both in terms of quality but also in terms of their performance

and hardware requirements.

3.5.4 System Performance

The performance, in frames per second (fps), of the proposed system architecture mainly

depends on the delay overheads incurred from the Sobel edge detection and the disparity

computation units. There are many factors affecting the resulting system frame rate, including

the data reduction obtained from the edge detector (the percentage of non-edge points over the

total image points), the image size and the I/O bandwidth from/to the external memory.

Obviously, there is a performance improvement if the time saved by the stereo correspondence

algorithm due to data reduction is more than the delay overheads incurred from the edge

detector. With respect to the image size and the I/O bandwidth, the performance decreases as

the image size increases and the I/O bandwidth decreases, since in the former case there is

more data to be processed, while in the latter case, the amount of data flowing into the system

limits the system throughput.

To evaluate the performance of the proposed architecture, we setup two different system

configurations: one based on the proposed edge-based method, and one using a stand-alone

SAD-based approach. The two systems have the same I/O constraints, memory requirements

and operating frequency, and support the same correlation window sizes and disparity levels

ranges. We identify the speedup of the proposed architecture compared to the stand-alone SAD

approach, and provide results when increasing the input image size in order to illustrate the

Table 3.6: Image size and system performance.

Images

size

Max. Performance (fps)
Performance (fps) of

the FPGA Prototype EDU DCU
Stand-alone

SAD

Overall

System

320x240 2572 3185 1225.5 2570 857

640x480 647 1291 315 645.4 215

800x600 414.6 730.8 203.3 412 138

1024x768 253.3 536.2 124.7 252 84

1280x1024 152.1 337 75.2 150.4 50
* OPERATING FREQUENCY = 100 MHZ

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 82

impact of the edge detector as the image size increases.

We used the 10 synthetic stereo image pairs as benchmarks in order to extract

performance results for both systems mentioned above. The results are shown in Table 3.6.

Columns 2-5 of the table provide the maximum performance achieved when the I/O

bandwidth is 32-bits/cycle. These columns illustrate the impact of the input image size on the

performance of the EDU and DCU, as well as on the average system performance for both

system configurations (proposed system vs. stand-alone SAD). As it can be seen, the

performance is inversely proportional with the input image size in both cases. The use of the

edge detector, however, almost doubles the average system performance of the proposed

method, when compared to the stand-alone SAD method, for all images sizes. This is due to

the search data reduction. Table 3.6 also illustrates how the performance of the proposed

system is affected by the data reduction and the frame rates of the EDU and DCU units. While

the speedup obtained by the DCU lies between 2.2 and 6.5 (due to the 55%-85% data

reduction), the proposed method obtains an overall speedup of ~2, because of the performance

of the EDU (in this case, it is the bottleneck). This of course can be improved by increasing

Table 3.7: Comparison of MDE/s performance for various systems and methods.

Work Image size
Disparity

Range

Frame

rate (fps)
MDE/s Algorithm Platform

Q. Yang [33] 384x288 16 12.77 22.2
Hierarchical belief

propagation

NVIDIA Geforce 7900

GTX GPU

Diaz [35] 1280x960 29 52 1885 Phase based
Custom FPGA, Xilinx

Virtex-II (65MHz)

Darabiha [36] 256x360 20 30.3 55.2
LWPC (phase

correlation)

TM-3A board (Xilinx

Virtex-4 2000E FPGA)

Jin [37] 640x480 64 230 4522 Census transform
Virtex-5 XC4VLX200-10

FPGA (93.1MHz)

Ambrosch [31] 450x375 100 600 10125 Block-matching (SAD) EP2S130 (110MHz)

R. Yang [7] 512x512 32 N/A 289 Block-matching (SAD)
ATI Radeon 9800

graphics card

Hile [8] 512x480 32 30 235.9 Block-matching (SAD) N/A

Miyajima [9] 640x480 80 26 639 Block-matching (SAD) ADM-XRC-II (40MHz)

Arias-Estrada

[11]
320x240 16 71 87.2 Block-matching (SAD)

XCV800HQ240-6

(66MHz)

Lee [12] 640x480 64 30 589 Block-matching (SAD) XC2V8000 (10MHz)

Hariyama [13] 64x64 64 5063 1327.2 Block-matching (SAD) APEX20KE (86MHz)

Georgoulas [23] 800x600 80 550 21120 Block-matching (SAD) EP4SGX290 (511MHz)

N. Y. Chang

[38]
352x288 64 42 272.5 Mini-census adsw UMC 90ns Std. Cell

K. Ambrosch

[42]
750x400 60 60 1080 SAD-IGMCT Altera Stratix I (133MHz)

Proposed 1280x1024 120 50 7864
Hybrid method (block-

and feature-matching)

Virtex-5 LX110T FPGA

(100 MHz)

Chri
sto

s T
tof

i

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Miyajima:Yosuke.html

83 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

the parallelism inside the EDU through higher I/O bandwidth. It must be noted that, in the case

where the percentage of data reduction is much smaller than 55% (the input images contain

many more features), then the bottleneck of the system will become the DCU. The data

reduction, however, is rarely less than 55%, as in the average natural scene, edges mostly

signify object boundaries, which cover only a small part of an image as opposed to the “body”

of objects [118].

The last column of Table 3.6 gives the performance of the prototype system

implemented on the FPGA platform. The performance was computed through a dedicated

hardware counter that measured the number of cycles for all images; we obtained the average

frame rate for all 10 stereo pairs. The performance of the prototype system is lower than the

maximum performance (shown in column 5), as it is mainly limited by the ability of the

Microblaze processor to fetch data from the external DRAM. Even with the limitation of the

Microblaze, the prototype implementation still achieves real-time frame rates even for high-

resolution images. We plan to implement the external memory controller as a custom hardware

unit in the future, so that to avoid the limitation of using an embedded processor, and benefit

from the higher frame rates achieved when the I/O bandwidth is 32 bits/cycle.

Table 3.7 presents a comparison between existing implementations [91], [123], [124],

[125], [128], [120], [105], [106], [92], [126], [107], [108], [114], [109] and the proposed

FPGA prototype. Performance is provided in frames per second (fps), as well as in Million

Disparity Estimations per second (MDE/s). The proposed system is faster than all

implementations when considering the input image size and the maximum disparity range

supported, primarily due to the reduction of the search space obtained by the integration of the

edge detector. Moreover, the proposed system achieves a performance of 7864 MDE/s, which

is among the highest rates reported. The only works that achieve higher MDE/s is [105] and

[106]. Both of these works, however, provide only synthesis results; the papers do not clarify

details about the implementation on the FPGAs and the I/O rate. As we discussed in the

previous paragraph, the proposed system architecture can achieve even higher rates by

implementing a custom external memory controller (23593 MDE/s). Conclusively,

performance results indicate that the proposed system architecture exhibits high potential for

applications with hard real-time constraints; the proposed system can meet the real-time

requirements of such applications, even for high-resolution images.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 84

3.5.5 Hardware Overheads

The proposed FPGA system was evaluated for relevant metrics such as area and

operating frequency. Moreover, estimated power consumption (dynamic and static) figures

were obtained using Xilinx‟s XPower analyzer tool, assuming a switching activity of 50%.

The impact of the correlation window size, disparity range and image size on the

aforementioned metrics is also explored.

Prior to presenting the obtained hardware results, however, we first discuss the mapping

on the FPGA fabric, as it highly relates to the resulting performance and area/power costs. The

DCU is more demanding than the EDU in terms of the computations performed, but the EDU

requires a larger amount of on-chip memory for implementing the scanline buffers for the two

input images, as it processes 8-bit values (pixels). The scanline buffers can be mapped on the

Virtex-5 FPGA either by utilizing the 1-bit registers included in each FPGA slice (four 1-bit

registers per slice), or by configuring the 6-input LUT of each slice as a 32-bit shift register

[121]. The former consumes considerable amount of area in terms of slice registers; we

followed the latter approach in an attempt to keep the area utilization of the EDU minimal.

The scanline buffers of the DCU are much smaller, and thus, were mapped on the FPGA slice

registers. The remaining FPGA slice registers were utilized for the mask values (in the case of

the EDU), the window and disparity range buffers (in the case of the DCU), and for the

intermediate pipeline registers. The remaining system components (BTA units, minSAD units,

MULT_ADD units, etc) involve simple operations such as additions and comparisons, and

were mapped on the LUTs.

Table 3.8 shows synthesis and power results for the DCU for different disparity levels up

to 120. There is a linear increase in the utilization of the FPGA LUTs as the disparity range

increases. This is attributed to the additional logic in adders/subtractors required, since there

are more SAD values to be computed as the disparity range becomes larger. Moreover, more

comparator units are needed to compute the minimum disparity value. Apart from the increase

in the number of LUTs, there is also a linear increase in the number of slice registers allocated

for the disparity range buffers and the intermediate pipeline registers. Table 3.8 also shows the

impact on the operating frequency of the DCU as the disparity range increases. The frequency

decreases as the disparity range increases, suggesting that if we want to allow more than 120

disparity levels, we need to introduce more pipeline stages at the expense of further hardware

overhead.

Chri
sto

s T
tof

i

85 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

Table 3.9 shows synthesis and power results for different correlation window sizes (3x3

to 11x11), while the disparity range and image size are kept constant. The results indicate a

significant increase in the utilization of FPGA slice registers as the correlation window size

increases. This is because more image lines need to be stored in the on-chip memory (scanline

buffers) of the DCU. The size of the correlation window buffers and the intermediate pipeline

registers also increases, utilizing more slice registers of the FPGA device. Table 3.9 indicates

that the number of LUTs increases as well. Although the number of comparator units remains

the same (constant disparity range), computing the SAD values between larger correlation

windows requires more adders and subtractors mapped on the LUTs. Additionally, the system

clock frequency decreases as the correlation window size increases.

Table 3.10 illustrates the impact of the input image width on the DCU resource

utilization. Specifically, image width is a major factor affecting mainly the amount of slice

Table 3.8: Resource utilization and maximum disparity range.

(Window size=11x11, Image size=1280x1024)

Disparity Range 20 40 60 80 100 120

Slice Registers

(out of 69120)

28963

41.9%

29536

42.7%

30134

43.6%

30237

43.7%

30592

44.3%

31863

46.1%

Slice LUTs

(out of 69120)

9211

13.3%

16467

23.8%

23357

33.8%

31504

45.6%

39255

56.8%

47331

68.5%

Frequency (MHz) 118.7 115.5 115 109.5 109.5 109

Dynamic Power (W) 0.6 1.2 1.7 2.5 2.8 3.3

Table 3.9: Resource utilization and maximum window size.

(Max disparity=120, Image size=1280x1024)

Window Size 3x3 5x5 7x7 9x9 11x11

Slice Registers

(out of 69120)

9429

13.6%

14965

21.7%

20648

29.9%

26096

37.8%

31863

46.1%

Slice LUTs

(out of 69120)

10701

15.5%

15033

21.7%

25615

37.1%

35519

51.4%

47331

68.5%

Frequency (MHz) 161.4 132.9 126.1 119.6 109

Dynamic Power (W) 0.6 1.0 1.7 2.5 3.3

Table 3.10: Resource utilization and maximum image size.

(Max disparity=120, Window size=11x11)

Image Width 320 640 800 1024 1280

Slice Registers

(69120)

10966

15.9%

17621

25.5%

20868

30.2%

26231

37.9%

31863

46.1%

Slice LUTs

(69120)

47331

68.5%

47331

68.5%

47331

68.5%

47331

68.5%

47331

68.5%

Frequency (MHz) 109 109 109 109 109

Dynamic Power (W) 3.1 3.2 3.2 3.3 3.3

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 86

registers required, since more edge points per scanline need to be stored to the on-chip

memory (scanline buffers) of the DCU. However, the amount of LUTs and the operating

frequency remain unaffected.

Table 3.11 gives the overall hardware demands associated with each of the implemented

components, as well as with the entire system implemented on the FPGA. The entire system

utilizes ~83.8% of the FPGA LUTs and ~60% of the FPGA slice registers. With respect to the

power consumption, the entire system implemented on the FPGA platform dissipates 5.18 W.

The total power consumption consists of dynamic power and static power. The dynamic

power, which is the power consumed through the operation of the FPGA device, is

approximately 4.094 W. The static power, which is the power consumed regardless of design

activity, is approximately 1.086 W. It must be noted, that the most energy-demanding unit is

the DCU, as it contributes nearly 63% of the total power consumption, while the EDU and the

Microblaze system contribute 4% and 12.5% of the total power consumption, respectively.

The static power contributes ~20.5% of the total power consumption.

The last rows of Table 3.8, Table 3.9 and Table 3.10 give the dynamic power consumed

by the DCU with respect to various system parameters. The tables indicate that the dynamic

power consumed by the DCU increases with an increase in the disparity range, window size or

image width (as expected). Even though in some of these cases the operating frequency

decreases, the increase in the dynamic power consumption is attributed to the increase in the

load capacitance, with respect to the amount of logic in the design. It must be noted that the

related works included in Table 7 do not present power consumption results; therefore,

comparisons are impractical.

Table 3.11: Complete system hardware overheads.

(Image size=1280x1024, Max disparity range=120, Window size=11x11)

Design Unit
Slice Registers

(69120)

Slice LUTs

(69120)

Block RAMs

(148)

DSP48Es

(64)

Freq.

(MHz)

Microblaze

System

8562

~12%

7754

~11%

30

~20%

6

~9%
161.2

EDU
1008

~3%

2812

~4%
0 0 134.6

ABDIF & BTA 0 129 0 0 N/A

Tree

Comparators
329 1760 0 0 174.3

DCU
31863

~46%

47331

~68%
0 0 109

Entire System
41559

~60%

66882

~83.8%

30

~20%

6

~9%
100

Chri
sto

s T
tof

i

87 Empowering Resource-Constrained Embedded Systems with Hard Real-Time Depth Computation

Lastly, we compare the hardware overheads of the proposed architecture to the stand-

alone SAD (Section 3.5.4), for a maximum disparity range of 80 pixels, a correlation window

of 5x5 and an image size of 640x480. We use these values, as larger sizes for each parameter

would result in a stand-alone SAD that does not fit on the specific FPGA due to its higher

hardware demands. The proposed technique outperforms the stand-alone SAD in terms of both

power consumption and efficient resource utilization; it consumes ~33% less power and

utilizes ~78.6% and 58.6% slice registers and slice LUTs, respectively. Additionally, we

estimate the total energy consumption per frame for each system; the proposed system requires

~69% less energy to process a frame (stereo pair), as it consumes less power in less time

(almost half) to process a stereo pair.

3.6 Concluding Remarks

Finding corresponding points in stereo images is a tedious task that involves a

significant amount of search and match operations. Therefore, it is a major challenge to extract

depth information in real time and under limited power / hardware resources. This Chapter

presented a stereo vision architecture that relies on the utilization of edge information as a

means to reduce the search space involved in stereo matching considerably, thus enabling

higher performance rates. The developed approach is basically a hybrid method for solving the

stereo matching problem. Through the edge detector that generates the features (edges in our

case), over which SAD-based correlation is then applied. The edge detector generates a black

and white image pair that characterizes only the object boundaries s of the input image pair.

Hence, the stereo matching process does not need to exhaust the entire search space in order to

find matching points between the two images. Instead, the correlation window in the reference

image is moved only to the edges, providing an excellent way reduce the search space and

speed up the overall operation, while also reducing the datapath and on-chip memory

requirements. The Chapter discussed hardware-specific issues that must be tackled in order to

take advantage of the edge-directed approach and associated benefits, and presented the

necessary hardware design optimizations (memory structures needed, amount of parallelism

that needs to be exploited, organization of the processing blocks, etc.) that can lead to an

efficient implementation of the edge-directed stereo algorithm on reconfigurable hardware.

The resulting architecture was implemented on a Virtex-5 FPGA and evaluated in terms of

processing speed, disparity map accuracy, and hardware overheads, against a stand-alone

SAD-based architecture and existing hardware stereo matching systems.

Chri
sto

s T
tof

i

CHAPTER 4

4 A Segmentation-Based Stereo Matching

Hardware Design with Adaptive Support

Weights: Balancing Speed and Accuracy

in Embedded Vision Applications

HIS chapter focuses on the implementation of a hardware stereo matching design that aims

to improve the robustness of the matching process by incorporating image segmentation

information and adaptive support weight aggregation. The chapter also presents a hardware

adaptation methodology that consists of a series of hardware-oriented arithmetic approximations

and optimization techniques, aiming to make the algorithm hardware-friendly and compatible with

embedded constraints. A prototype of the architecture implemented as part of a complete stereo

vision system on a high-end FPGA board featuring HDMI video support, is also presented, along

with comparisons with related implementations in terms of various performance metrics

(processing speed, matching accuracy and hardware overheads).

4.1 Introduction - Motivation

Emerging applications of stereo vision such as robot navigation, space and avionics, and

obstacle detection for autonomous vehicles, require real-time processing, low power

consumption and accurate depth perception. Although the edge-directed disparity estimation

architecture presented in Chapter 3 is compatible with embedded constraints, the implemented

algorithm relies on a simple cost aggregation strategy with a fixed and rectangular correlation

window. As such, it has difficulty in determining the best window shape and size for each

pixel during the matching process, resulting in significant ambiguity along depth borders and

areas with low texture.

Recent local stereo matching algorithms use adaptive weights during cost aggregation in

an attempt to alleviate the aforementioned problems. They work by assigning different weights

to the pixels in the support window, based on the importance of each pixel to the correlation

T

Chri
sto

s T
tof

i

89 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

process. There are different ways that can be utilized to determine the importance of each

pixel. One way is to consider the color similarity of pixels, and assign larger weights to pixels

having similar color with the central pixel of the window. Another approach is to assign

weights based on the proximity distance of each pixel to the central one, using the Euclidean

distance of the pixel coordinates. It is also possible to extract the weights by using image

segmentation information, thus considering the consecutiveness of pixels and shape of

segments. This latter method is based on the assumption that pixels lying in the same segment

should be located at the same disparity.

ADSW algorithms are capable to deliver matching accuracy that is on par with global

approaches [129]. However, this advantage does not come at free, since ADSW algorithms are

usually more computationally expensive compared to fixed support algorithms, mainly due to

the weight generation process that is performed exhaustively on a pixel-to-pixel basis. As

such, their computational, and consequently hardware complexity, increases proportionally

with the window size. In addition, these algorithms usually involve calculations (e.g.

divisions, exponential functions, etc.) that are difficult to be implemented in hardware in a

resource-efficient manner. Hence, a straight algorithm-to-hardware mapping that does not take

into consideration any hardware-oriented algorithmic modifications/optimizations might not

lead a real-time hardware design.

Being aware of the need for high quality, real-time disparity estimation in embedded

vision applications, this Chapter investigates how to design a stereo matching architecture that

utilizes ADSW aggregation, thus providing high matching accuracy, while at the same time, is

able to provide real-time computation. The presented architecture is the first to utilize image

segmentation information within the ADSW cost function, in an attempt to increase the

robustness of the matching process. The Chapter also presents hardware-oriented algorithmic

modifications and optimization techniques that make the algorithm hardware-friendly and

suitable for efficient dedicated hardware implementation. The proposed architecture is able to

provide an effective tradeoff between processing speed and matching quality, thus it can be

used in embedded vision applications that need to provide high-quality disparity estimation in

real time. Especially, given that the architecture obtains improved accuracy at depth

discontinuity points, thanks to the advanced segmentation based cost aggregation strategy, it

might be more suitable for tasks such as recognition or robotic grasping, where it is

particularly important to achieve good accuracy near such points.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 90

In summary, the main contributions of the segmentation-driven stereo matching

architecture presented in this chapter, in relation to existing implementations reviewed earlier

in Chapter 2.8, are as follows:

- It presents a dedicated hardware implementation of an ADSW stereo matching algorithm that

integrates image segmentation information within the weight cost function to increase the

robustness of the matching process.

- It introduces hardware-directed optimization techniques to adapt the algorithm for efficient

hardware implementation, while keeping a balance between processing speed, accuracy and

hardware efficiency.

- It presents the integration of a novel disparity refinement pipeline that benefits from the

already available segmentation information to eliminate ambiguities and further smooth the

resulting disparity maps.

- The presented architecture achieves an effective speed-accuracy tradeoff compared to

existing state-of-the-art implementations.

The rest of the chapter is organized as follows. Section 4.2 presents the basic steps that

constitute the implemented stereo matching algorithm. Section 4.3 introduces the hardware-

oriented algorithmic modifications and optimization techniques. The proposed hardware

architecture is described in Section 4.4, while Section 4.5 details the experimental platform

and evaluation methodology for the architecture, along with performance results and

discussion.

4.2 Segment-based adaptive support weight algorithm

The stereo correspondence algorithm implemented by the proposed disparity estimation

hardware architecture is inspired by the ADSW algorithm proposed in [63]. This algorithm

utilizes segmentation information within the weight cost function in order to increase the

robustness of the matching process. The proposed architecture implements a modified version

of the original algorithm, by introducing modifications of the core matching algorithm (e.g. a

different matching cost, post-processing steps, etc) that aim to improve the overall accuracy.

Furthermore, the architecture integrates hardware-oriented arithmetic approximations and

optimization techniques in an attempt to make the algorithm hardware-friendly and compatible

with embedded constraints. The major steps of the modified algorithm are described in this

sections, while the hardware-oriented algorithmic modifications and optimizations are

Chri
sto

s T
tof

i

91 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

presented in Section 4.3.

The algorithm consists of four major steps: matching cost initialization, cost

aggregation, disparity computation, and refinement, which reflect the taxonomy proposed in

[25]. The overall flow of the algorithm is illustrated in Figure 4.1, while a detailed description

of each individual step is given next.

4.2.1 Matching Cost Initialization

This step calculates a matching cost for each pixel p at all possible disparities in the

range dm to dM. The algorithm proposed in [63] utilizes the truncated absolute difference

(TAD) correlation metric (4.1) for the computation of a matching cost. In (4.1), 𝐶𝑇𝐴𝐷 𝑝, 𝑑 is

the matching cost of pixel p at disparity d, 𝐼𝑟 and 𝐼𝑡 are the pixel intensity values of the

reference and target images, respectively, while 𝑇𝑕 is a truncation threshold.

 𝐶𝑇𝐴𝐷 𝑝, 𝑑 = 𝑚𝑖𝑛 𝐼𝑟 𝑥, 𝑦 − 𝐼𝑡 𝑥 + 𝑑, 𝑦 , 𝑇𝑕 , 𝑇𝑕 : 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 (4.1)

Existing literature [59] suggests that non-parametric costs like Rank and Census can

have better and more robust overall accuracy compared to absolute and square differences (or

their truncated versions), especially for images with radiometric differences. As such, the

algorithm implemented by the proposed hardware architecture uses Census-based correlation

in an attempt to make the matching process more robust. The Census transform is based on the

relative ordering of pixel intensity values in a local neighborhood rather than the pixel values

themselves, and therefore exhibits high resistance to radiometric distortion, vignette and noise

[59]. Census transform encodes a neighborhood window 𝑊𝑐 surrounding a pixel p to a bit

vector of length 𝑠𝑐
2, where 𝑠𝑐 is the width of the Census window. This is done by applying an

ordered set of comparisons of pixel intensities in 𝑊𝑐 in order to find out pixels that have lower

intensity than the intensity of the central pixel p. If the intensity value of a neighboring pixel is

Figure 4.1: Steps involved in the algorithm implemented by the proposed disparity

estimation architecture.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 92

smaller than the intensity of p, then the corresponding position in the Census vector is set to l,

otherwise is set to 0. The matching costs are then computed by the hamming distance of bit

vectors at each disparity level as in (4.2), where 𝐼𝑟𝑐𝑒𝑛𝑠𝑢𝑠 and 𝐼𝑡𝑐𝑒𝑛𝑠𝑢𝑠 are the Census transformed

images calculated by applying the Census transform over Ir and It, respectively.

 𝐶𝑐𝑒𝑛𝑠𝑢𝑠 (𝑝, 𝑑) = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝐼𝑟𝑐𝑒𝑛𝑠𝑢𝑠 𝑥, 𝑦 , 𝐼𝑡𝑐𝑒𝑛𝑠𝑢𝑠 (𝑥 + 𝑑, 𝑦)) (4.2)

4.2.2 Cost Aggregation

This step aggregates the initial pixel-wise matching costs (calculated in the previous

step) over a local support region 𝑊𝑥 around each pixel p. To ensure aggregation of only those

pixels that lie at the same disparity with p, each point in Wx is weighted based on the basis of

its spatial and color distance with regards to p, as well as on information extracted from image

segmentation. The weights are generated by taking into account both the reference and target

images (symmetrical aggregation). Hence, the ADSW aggregation strategy generates a

support-weight for each pixel that falls into the support window 𝑊𝑟 in the reference image,

and correspondingly, in the support window 𝑊𝑡 in the target image. Let 𝑝𝑐 and 𝑞𝑐 being the

central points of 𝑊𝑟 and 𝑊𝑡 , respectively, then each matching cost (computed as the hamming

distance of the Census bit vectors) for any point 𝑝𝑖 in 𝑊𝑟 corresponding to 𝑞𝑖 in 𝑊𝑡 is

weighted by a coefficient 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 and a coefficient 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 , defined as in (4.3).

𝑤 ′
𝑟,𝑡 =

 1.0 𝑝𝑖 ∈ 𝑆𝑒𝑔𝑐

𝑒𝑥𝑝 −
𝑑𝑝 𝑝𝑖 , 𝑝𝑐

𝛾𝑝
−

𝑑𝑐 𝐼𝑟,𝑡 𝑝𝑖 , 𝐼𝑟,𝑡 𝑝𝑐

𝛾𝑐
 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (4.3)

where 𝑆𝑒𝑔𝑐 is the segment where the central point 𝑝𝑐 (or 𝑞𝑐) of the support window

𝑊𝑟 (or 𝑊𝑡) lies, 𝑑𝑝 and 𝑑𝑐 are the spatial and color distance between two coordinate pairs and

two triplets in a chromatic color space, respectively, and 𝛾𝑝 and 𝛾𝑐 are two parameters of the

algorithm. The final aggregated cost is then computed by summing up all the weighted

pointwise scores, and normalizing by the weights sum as in (4.4).

𝐶𝑥+𝑑,𝑦 =
 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 ∙ 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑝𝑖 , 𝑞𝑖 𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡

 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡

 , 𝑑 ∈ [𝑑𝑚 , 𝑑𝑀] (4.4)

4.2.3 Disparity Computation

The fact that ADSW methods belong to local stereo matching algorithms renders the

disparity computation step simple. Once the aggregated costs are estimated for all disparity

Chri
sto

s T
tof

i

93 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

levels, the best disparity for the pixel p is found by locating the disparity with the absolute

minimum aggregated cost through the simple and commonly used Winner-Takes-All (WTA)

approach. The WTA approach has a low complexity, and hence leads to an efficient hardware

implementation without any algorithmic modifications required.

4.2.4 Disparity Refinement

This step eliminates ambiguous/inaccurate disparities, and involves further processing of

the disparity map generated in the previous steps through left-to-right consistency check (L-R

check), interpolation of occluded and mismatched regions, smoothing and spike removal. The

L-R check (or mutual consistency) is applied on the left disparity map, and marks occluded or

mismatched areas that usually arise due to lack of texture or camera noise as invalid (set to

zero value). This is achieved by computing the left disparity map, DL, (left image used as

reference) as well as the right disparity map, DR, (right image used as reference), and then

finding where the two disparity maps are not negative of each other. The pixels marked as

invalid by the L-R check are then given a new disparity value through median interpolation in

a small neighborhood (of size 𝑠𝑚𝑖𝑥𝑠𝑚𝑖) around them, and around their corresponding pixels in

the not consistency checked disparity map. The final interpolated pixel is the smallest between

the two median values. However, only pixels that lie in the same segment with the central

pixel of the window are taken into account during computing the median values. Therefore,

this step is a weighted median filter with the weights being generated by utilizing the

segmentation information already available from the cost aggregation step; the weight of a

pixel is 1 if that pixel and the central one belong to the same segment, and 0 otherwise. The

window size used in this step is selected to be small, as invalid pixels correspond to

occlusions, which mostly belong to the local backgrounds. The next step smoothes the

disparity map based on segmentation information (segment-based smoothing step). Smoothing

is performed by median filtering over a neighborhood region of size 𝑠𝑠𝑏𝑠𝑥𝑠𝑠𝑏𝑠 in a similar way

as discussed in the interpolation of the invalid pixels. However, this step usually involves a

larger window size. Finally, a simple median filtering is applied over a window of size 𝑠𝑠𝑟𝑥𝑠𝑠𝑟

to remove remaining irregularities/spikes, and to further smooth the disparity map (spike

removal step).

4.3 Hardware Adaptation Methodology

While the ADSW algorithm described in Section 4.1 leads to high disparity map

accuracy, it is also a complex algorithm involving a lot of hardware demanding operations

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 94

(e.g. multiplication, square root and division operations with floating point numbers).

Moreover, unlike simple fixed support algorithms, it cannot take advantage of the “sliding

window” technique [64], since the adaptive weights have to be recomputed at every pixel.

Thus, cost aggregation needs to be performed in an exhaustive manner, making the hardware

complexity directly dependent on the support window size. Therefore, the algorithm cannot be

implemented efficiently in hardware just by following a straight algorithm-to-hardware

mapping methodology. Instead, it should be first adapted by applying some arithmetic

approximations and hardware-directed algorithmic modifications and optimizations

techniques, directed towards an efficient hardware implementation. This section details the

algorithm adaptation / hardware reduction methodology that we followed. The selection of the

approximations is guided by the need to provide a tradeoff between processing performance,

accuracy and hardware resource utilization.

The cost initialization step involves comparison operations for the transformation of the

input images to images with Census vectors instead of pixel intensities, as well as hamming

distance computations. While the Census transform is efficient with respect to hardware

implementation, the size of the resulting census vectors (𝑠𝑐
2) affects in a significant way both

the accuracy of the matching process, as well as the hardware utilization of the hamming

distance computation and cost aggregation circuits. Since Census transform is a type of

window-based operation, the size of the local neighborhood plays an important role in the

accuracy of the matching costs. As the Census window size increases, higher matching

accuracy can be achieved [65]. However, an increased window size also causes object

boundaries to be blurred and small objects to be removed for extensively large sizes [106]. As

a result, there is always a tradeoff in selecting a good Census window size. This is also

attributed by the fact that, as the size of the window increases, so do the hardware

requirements; larger Census windows are associated with longer Census bit vectors per each

pixel, thus making the hardware (especially of the cost aggregation step) more complex. In

this work, we aimed to keep a balance between hardware efficiency and disparity map

accuracy, thus we adopted a sparse Census transform. This involves sub-sampling the Census

window with a sampling ratio of 2 in both directions (see Figure 4.2), thus reducing the

hardware requirements of the stereo matching algorithm by a factor of 4; correlation is

performed on shorter Census vectors. The basic idea behind this approach is that large sparse

Census windows perform better (in terms of matching accuracy) than small dense windows

Chri
sto

s T
tof

i

95 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

with the same Census vector size, while requiring equal hardware resources. An example of a

sparse Census transform and matching cost computation based on the resulting Census vectors

is illustrated in Figure 4.2.

Correspondingly, the accuracy and hardware demands of the matching process are

closely related to the size of the support window used in the cost aggregation step. Small

windows do not contain enough information and lead to noisy results. On the other hand,

aggregating over a large support window in ADSW methods was found to achieve better

quality results, especially in noisy datasets [65]. This is a consequence of the fact that pixels

inside the support window have different influence in the aggregation process, hence

considerably reducing the edge-fattening problem when using large window sizes [65].

However, large windows are prohibitive for efficient dedicated hardware implementation, both

in terms of on-chip memory requirements and computational resources. Although simplified

adaptive weight techniques with 1D aggregation, or two-pass horizontal and vertical

aggregation have been proposed [130] for efficient hardware implementation, we found that

by sub-sampling the support window every k pixels in both directions (k=4 in the proposed

hardware implementation) yields better quality. Therefore, we instead focus on this approach,

which requires k times less hardware resources compared to the case of aggregating over the

entire window. The motivation behind this approach is similar to the idea of the sparse Census

transform. That is, large sparse support windows perform better than small dense support

windows, while requiring the same amount of hardware resources.

The cost aggregation step is inherently the most computationally demanding step, as

implied by equations (4.3) - (4.4). As such, besides sub-sampling the support window, we have

adopted some hardware-directed arithmetic approximations to make the corresponding

equations hardware-friendly. Firstly, we have chosen a simple image segmentation algorithm

instead of utilizing the mean shift segmentation used in [63], as the computational complexity

Figure 4.2: Sparse Census transform and matching cost computation. The Hamming distance

of the bitstrings resulting from sparse Census transform over Ir and It is the Hamming weight

of Bitstring1 xor Bitstring2.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 96

and memory requirements of mean shift segmentation make it unsuitable for embedded real-

time applications. The k-means algorithm is simpler and can be implemented in hardware

more efficiently. This work integrates an even simpler method, which partitions the image into

segments using thresholding; we adopt this instead of the k-means, based on our observation

that it has no negative impact on the overall disparity map accuracy.

Additionally, we eliminate the use of the spatial distance during the weight computation

step based on our observation that it affects the accuracy of the disparity maps slightly. We

also adopt YUV instead of CIELAB color representation (used in [63]) in the weight

generation step. This allows the use of unsigned integers instead of signed floating-point

integers, which are complex and difficult to be implemented efficiently in hardware. We also

adopt Manhattan rather than Euclidean distance during the computation of the color distance

between two YUV triplets. In this way, the square and square root operations are replaced by

simple absolute difference and addition operations. Furthermore, the exp(-x) function is

approximated by the 28−x function, which assigns a maximum weight of 256 if the color

distance is zero and a weight of 0 if the color distance is greater than 8. This function

simplifies the circuits that implement the multiplication of the weight coefficients with the

matching costs, as multiplications are reduced to left shift operations. The cost function is

further simplified by setting 𝛾𝑐 to 32 instead of 22 (the value used in [63]). This converts the

division to a right shift operation. Lastly, the denominator of (4) is approximated by the

nearest power of 2, allowing the division to be replaced by a right shift operation.

The majority of the post-processing steps utilize median filtering operations, which have

been widely implemented in hardware using sorting networks (e.g. based on bubble sorting

grid). However, the hardware requirements and complexity of this approach increase with

respect to the window size. In this work, we have adopted the median filtering approach

proposed in [131], which is based on cumulative histograms. This method can have a high

degree of parallelism in hardware, and therefore it is more attractive compared to sorting

network methods.

4.4 Proposed disparity estimation hardware architecture

The proposed disparity estimation architecture is decomposed into three major hardware

units: the Input Management Unit (IMU), the Disparity Calculation Unit (DCU) and the

Disparity Refinement Unit (DRU). These hardware units are fully pipelined so that to obtain

Chri
sto

s T
tof

i

97 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

best processing throughput. Source pixels come progressively in scanline order from the input

port (stereo camera or external memory), enter the processing pipeline consisting of the three

major units mentioned above, and after a pipeline latency, refined disparities are forwarded

successively in scanline order to the output port, synchronized with the input pixel rate. The

IMU performs RGB to YUV color space conversion, sparse Census transform and image

segmentation on the incoming pixels. The DCU performs the correlation process, which is set

up by a cascade of processes calculating the hamming distances, weight coefficients,

aggregated costs and best scores through the winner-takes-all approach. The DCU generates

the left and right disparity maps, which are then forwarded to the DRU to perform the L-R

consistency check, and also to further refine the disparity values by interpolation of the

mismatched pixels, segment-based smoothing and spike removal. Figure 4.3 shows a block

diagram of the proposed architecture and the data flow between units.

4.4.1 Input Management Unit (IMU)

The IMU performs RGB to grayscale conversion, RGB to YUV color conversion, sparse

Census transform and image segmentation on the left and right images, independently. It

receives RGB color pixel values from the input port in a raster scan fashion, and converts

them to grayscale and to their corresponding 8-bit YUV representation by utilizing two RGB

to grayscale converters (rgb2gray) and two RGB to YUV color space converters (rgb2yuv),

respectively. The resulting grayscale and YUV values are stored in line buffer memories

(scanline buffers), which are employed to provide pipelined window context to the Census

Transform and Segmentation units, through the use of register matrices (window buffers and

Figure 4.3: Proposed segmentation-driven disparity estimation hardware architecture.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 98

column buffers). As grayscale and YUV values come in continuously to the scanline buffers,

the 𝑠𝑠𝑤𝑥𝑠𝑠𝑤 support windows in Ir and It slide over the whole frames in a scanline order. The

window and column buffers store all pixels required to compute the Census vectors and

segments corresponding to the rightmost pixels of the sub-sampled support windows in Ir and

It. We used a 17x17 support window, sub-sampled every 4 pixels in each direction, resulting in

a sub-sampled support window size of 5x5. Thus, the IMU utilizes a total of 10 sparse Census

transform and segmentation units (5 per image).

The sparse Census transform units mainly involve comparison operations between the

central pixels in the sparse Census windows and their surrounding pixels, in order to convert

the grayscale values into Census vector values. We use a window size of 7x7 for the Census

transform, sub-sampled every 2 pixels in both directions, thus resulting in a sparse Census

window of 4x4 and a 16-bit long transformed bit vector per each pixel.

The image segmentation units receive 𝑌 values from the column buffers and the number

of segments 𝑛 given as input to the system (maximum supported 𝑛 is 32). A label (an unsigned

integer in the range 1 to 𝑛) computed by a simple method that multiplies the input grayscale

value by the value of 𝑛/256 is assigned to each input 𝑌 value. The multiplication is performed

using fixed-point arithmetic with 8-bits of integer and 16-bits of fraction. The values of 𝑛/256

for all possible values of 𝑛 are stored in a look-up table. The result is given by taking the 5

most significant bits of the multiplication operation.

4.4.2 Disparity Calculation Unit (DCU)

The DCU is provided with on-chip Memory Arrangements (MAs) that temporarily store

the pixels required to perform correlation between the sub-sampled versions of 𝑊𝑟 in 𝐼𝑟 and

the 𝑑𝑀 candidate support windows 𝑊𝑡 in 𝐼𝑡 . In particular, it is provided with 5 MAs per input

image, which store the Y, U, V color values, the Census vectors and the segments, received as

input from the IMU. The DCU also consists of weight generation units, hamming distance

computation units, units that compute the aggregated costs at different disparity levels, a

matching cost memory and WTA units for the left and right disparity maps.

Each weight generator computes the weight coefficients 𝑤′𝑟,𝑡 for a sub-sampled version

of the support window 𝑊𝑟,𝑡 in parallel. It receives the segment information and the YUV color

values corresponding to the 𝑠𝑠𝑤_𝑠𝑢𝑏 𝑥𝑠𝑠𝑤_𝑠𝑢𝑏 sub-sampled support window from the Segments

and [Y,U,V] MAs, respectively, and computes the 𝑠𝑠𝑤_𝑠𝑢𝑏
2 weight coefficients using 𝑠𝑠𝑤_𝑠𝑢𝑏

2

Chri
sto

s T
tof

i

99 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

instances of the circuit shown in Figure 4.4 (b). That circuit consists of a comparator, a

Manhattan distance core and a weight table (LUT). Since the multiplication of the matching

costs by the weight coefficients (cost aggregation step) is performed using shifters instead of

multipliers, each location x of the LUT stores the shift amount corresponding to the weight

coefficient 28−𝑥 . This shift amount is equal to the binary logarithm of 28−𝑥 , except from

values of x greater than 8, for which a binary logarithm does not exist. In that special case, the

corresponding entries in the LUT are set to a number, which is large enough so that the result

of a shift operation by that number is equal to zero. The comparator determines whether the

pixel at location (𝑖, 𝑗) in the sub-sampled support window lies in the same segment with the

central pixel of the window. The result of the comparator specifies whether the shift amount

that corresponds to the weight coefficient 𝑤′𝑟,𝑡 will be assigned to the shift amount

corresponding to the maximum weight (8 in our case) or whether it will be looked up in the

LUT using the color distance generated by the Manhattan Distance core as index.

The DCU utilizes Hamming distance computation units (Figure 4.4 (a)) that compute the

matching costs between corresponding pixels in the sub-sampled support windows stored in

the Census MAs, using XOR circuits and adder trees for the Hamming weight computations.

The weights and hamming distances are the inputs of the cost aggregators. The architecture of

a cost aggregator unit is shown in Figure 4.4 (c). It shifts the hamming distances by the shift

amounts corresponding to the weight coefficients 𝑤′𝑟 and 𝑤′𝑡 using a series of left shifters

(equivalent to multiplying the costs by 𝑤′𝑟 and 𝑤′𝑡). The final aggregated cost is computed by

Figure 4.4: Major units involved in the disparity calculation unit. (a) Hamming distance

computation, (b) Weight generation, (c) Cost aggregation.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 100

summing the outputs of the left shifters using a tree adder, and then normalizing (dividing) it

by the weights sum, which, before being used for division, is rounded to the nearest power of

2 by using tree comparators. This enables a cost-effective implementation of the division using

a right shifter.

The aggregated costs for the left disparity map are stored in the cost memory and are

reused to compute the aggregated costs for the right disparity map, as proposed in [132], [89].

These scores are then utilized to compute the left and right disparity maps by the reference and

target WTA units, respectively. The only difference is that the reference WTA unit operates in

a vertical direction in the cost memory to search the best L-R matches, while the target WTA

unit operates in a diagonal direction. The WTA units are mainly composed of comparators

organized in tree structures and pipelined to keep the delay in the critical path small.

4.4.3 Disparity Refinement Unit (DRU)

The processing pipeline of the DRU begins with checking disparity consistency between

the left and right disparity maps. The left and right disparity values computed by the DCU are

stored in scanline buffers along with their corresponding segments, and are used to identify

occluded and mismatched correspondences in the left disparity map 𝐷𝐿 (used as reference) and

correct them through interpolation. While processing pixel 𝐿(𝑥, 𝑦) in 𝐷𝐿, the scanline buffer

that stores the disparity values from the right disparity map, 𝐷𝑅 , outputs 𝑑𝑀 disparity values in

the interval [𝑅(𝑥 − 𝑑𝑀 , 𝑦) to 𝑅(𝑥, 𝑦)]. Those values are stored temporally in an on-chip

memory, which is addressed by the disparity value 𝐷𝐿(𝑥, 𝑦) at point 𝐿(𝑥, 𝑦). The two

disparities are compared in order to decide whether the disparity passes the L-R check. If the

L-R check is passed, the disparity value at 𝐿(𝑥, 𝑦) forms the output of the L-R Check &

Interpolation unit. Otherwise, the mismatched pixel is interpolated by taking the minimum

value between the median values in a window around 𝐿(𝑥, 𝑦) in 𝐷𝐿 and around 𝑅(𝑥 −

𝐷𝐿(𝑥, 𝑦), 𝑦) in 𝐷𝑅 . The segmentation information from the scanline buffers is incorporated in

the median filters so that to account only for those pixels that lie in the same segment with the

central one. The refined left disparity map is then passed to the segment-based smoothing unit,

which smoothes the disparity map by applying segmentation-directed median filtering on all

disparity map points. Lastly, a simple median filtering process is applied to eliminate

remaining spikes.

All post-processing units employed in the DRU utilize median filtering operations with

different window sizes. To implement an efficient hardware implementation of the median

Chri
sto

s T
tof

i

101 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

filtering operations, which is also scalable to large window sizes, we followed the approach in

[131], which is based on constructing cumulative histograms of the input values (disparities in

our case). However, we extended this approach to the case of adaptive weighted filtering. The

histogram-based median filter architecture is shown in Figure 4.5. For each disparity value in

the window being processed, the corresponding bin and all subsequent bins are incremented.

To implement this requires a register for each possible input disparity value, which implies

that the number of bins is equal to the maximum disparity range 𝑑𝑀 . Each disparity value in

the window addresses a ROM (contents shown in Figure 4.5), whose output decides which

bins to increment.

The entire architecture of the median filter has been designed in a parallel manner,

allowing the computation of the median value for a window of size 𝑚𝑥𝑚 in a single clock

cycle. This was achieved by having m
2
 dM-bit ROMs and an adder tree before each bin to add

the number of times (1 to m
2
) each bin should be incremented. The segmentation information

is used to generate binary weights; 1 if the received value lies in the same segment with the

central pixel, 0 otherwise. These binary weights are generated by a weigh generator circuit,

mainly consisting of comparators, and are used as the enable signals of the ROMs. In the case

of the spike removal unit, which does not incorporate segmentation information as part of the

median filtering process, the enable signals are all set to one. The output median value is

eventually calculated by finding the bin, whose count is the first to reach the value of 𝑑𝑀+1 or

surpass it. To implement this, the context of each bin is compared to the value of 𝑑𝑀+1, giving

0 if the bin count is smaller, and 1 otherwise. The result of the comparator circuits will be zero

Figure 4.5: Segment-based smoothing based on cumulative histograms.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 102

for all bins before the one containing the median value and all the others will be 1. A priority

encoder is employed to isolate that bin.

4.5 Experimental methodology & Results

4.5.1 Experimental Platform & Synthesis Results

To evaluate the proposed architecture, we followed two major steps. First, we designed

and verified the architecture using FPGA emulation. Second, we designed a full-custom ASIC

implementation over a commercial CMOS library, in order give an insight about the

differences in speed and power consumption when the proposed architecture is moved from

the FPGA design point to the ASIC design point. The FPGA system was designed with

emphasis on the corresponding hardware constraints (fixed amount of resources, fixed

placement and routing), while the ASIC design has targeted more parallel configurations with

large image sizes, in order to indicate the feasibility of the proposed architecture for large-

scale embedded systems.

4.5.2 FPGA Implementation and Emulation

In order to evaluate the proposed system architecture and verify its operation, we have

implemented it as part of a complete stereo vision system on the Inrevium Kintex-7 FPGA

ACDC 1.0 Baseboard [133], which is equipped with a Xilinx Kintex-7 FPGA (XC7K325T-

FFG900) [134]. We used a custom-built stereo camera system consisting of two Sony

Handycam video cameras configured to output 640x480 images at 60 fps. The stereo camera

system was calibrated using the Camera Calibration Toolbox for MATLAB [47], and was then

used to capture stereo image pairs, which were rectified and used as input data to the system

architecture shown in Fig. 3. We have implemented an LUT-based stereo image rectification

hardware unit, which was used to determine displacements of pixels in the rectified images

from their positions in the original images. To reduce the size of the rectification LUTs, we

followed the approach in [55], where the LUTs are compressed based on differential encoding.

That method resulted in a compression ratio of ~72.3%, thus allowing the rectification to be

implemented with compact hardware resources. The cameras were interfaced to the FPGA

board through HDMI interface, by using video interface specific FMC daughter cards

(Inrevium HDMI 1.4a Tx and Rx) [135].

While the proposed disparity estimation architecture is scalable and can support parallel

computation of all disparity levels in a single clock cycle, the FPGA implementation of the

Chri
sto

s T
tof

i

103 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

architecture was configured taking into account the available FPGA resources and frame-rate

of the cameras. Configuration was done by changing a few configuration parameters of the

VHDL description. In particular, the DCU was configured to cover a maximum disparity range

of 64 levels, using eight cost aggregators working in parallel. Thus, the system implemented

on the FPGA prototype can generate one disparity value every eight clock cycles.

Since the HDMI and the system architecture use a different clock source, the video

sequences were temporarily stored in line buffers so as to ensure that the input stereo pairs

were forwarded in a continuous fashion to the stereo vision pipeline that consisted of the

rectification unit, the stereo correspondence unit (IMU & DCU) and post-processing modules.

The refined disparity maps were also synchronized with the pixel clock through a line buffer,

and directed to a standard TFT monitor through the TB-FMCH-HDMI2-TX card [135]. The

system diagram of the prototype FPGA implementation is given in Figure 4.6.

The FGPA utilization reports from the Xilinx ISE Synthesis Tool are summarized in

Table 4.1 (footnote lists the various system parameters). The mapping of the different system

components on the FPGA fabric was performed taking into account the computational and

memory demands of each component. We also mapped the different components in a way that

maintains a good ratio between instantiated Slice Look-Up Tables (LUTs), Slice Registers and

Block RAMs (BRAMs), in order to balance the utilization of the available resources. The

entire system implemented on the FPGA utilizes ~53% of the available Slice Registers and

~66% of the available LUTs. It also utilizes ~5% of the DSP units and ~67% of the BRAM

memories. The FPGA resources are dominated by the stereo correspondence unit (IMU &

DCU), while the pre-processing (rectification) and post-processing modules require fewer

resources. The system can operate at a maximum operating frequency of 200 MHz. With

respect to the on-chip power consumption, the entire system dissipates 6.7 W; the power

(a) (b)

Figure 4.6: FPGA prototype system. (a) Experimental testbed used to verify the operation of

the system architecture, (b) Block diagram of system components.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 104

consumed through the operation of the FPGA device (dynamic power) is ~5.9 W, while the

power consumed regardless of design activity (static power) is ~0.8 W. These values indicate

that the architecture implemented on the FPGA device is capable of realistic embedded system

usage.

The scalability of the proposed disparity estimation architecture is explored by

illustrating how the amount of utilized Slice LUTs and Slice Registers of the FPGA

implementation (full system including rectification, stereo correspondence and post-

processing) is increased with the number of cost aggregators (see Figure 4.7). The scalability

figure shows that the implementation complexity of the complete system implemented on the

FPGA scales nearly linearly with the number of aggregators. The figure also shows that the

targeted FPGA can fit up to 16 aggregators. Though, the architecture was tailored to 8

aggregators, as this number was enough to support the frame rate of the stereo camera system

(60 fps). Obviously, given cameras with higher rates, a fully-parallel implementation of the

proposed architecture on a feature-rich FPGA platform that provides more processing power

Figure 4.7: Scalability analysis of full system on Kintex-7 FPGA (impact of the number of

aggregators on the amount of utilized FPGA resources). Axes with logarithmic scale (base

2). Y-axes do not start at zero.

Table 4.1: FPGA Prototype Hardware Overheads.

Design Unit
Slice Registers Slice LUTs DSP48E1s BRAM Freq.

(total=407600) (total=203800) (total=840) (total=445) (MHz)

Stereo Image Rectification
152

(0.04%)

241

(0.1%)
0

132

(29.7%)
230

Stereo Matching

(IMU & DCU)

109377

(26.8%)

98799

(48.5%)
40 - (4.8%) 0 208

L-R Check & Interpolation
2035

(0.5%)

3274

(1.6%)
0

18

(4.0%)
491

Segment-based Smoothing
84504

(20.7%)
17274
(8.5%)

0
121

(27.2%)
495

Spike Removal
838

(0.2%)

2699

(1.3%)
0

25

(5.6%)
498

Full System on Kintex-7 Board

(including HDMI controllers)

214719

(52.7%)

135292

(66.4%)

40

(4.8%)

296

(66.5%)
200

* Parameters:{𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 = 640𝑥480, 𝑑𝑀 = 64, 𝑠𝑐 = 7, 𝑠𝑐_𝑠𝑢𝑏 = 4, 𝑠𝑠𝑤 = 17, 𝑠𝑠𝑤_𝑠𝑢𝑏 = 5, 𝑠𝑚𝑖 = 5, 𝑠𝑠𝑏𝑠 = 11, 𝑠𝑠𝑟 = 5}

Chri
sto

s T
tof

i

105 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

(in the form of more reconfigurable logic, registers and embedded Block RAM) than the one

experimented with in this work, would allow further exploitation of disparity-level

parallelism, thus providing higher processing performance.

Table 4.2 provides FPGA resource utilization details of the referenced FPGA

implementations listed in Table III; some works are omitted as they do not provide the

corresponding results. The FPGA device used in each work influences the resource utilization

considerably. The resources may vary between different FPGA vendors, FPGA technologies

and FPGA families, as some FPGA devices use 4-input LUTs, while others use 6-input or 8-

input LUTs. The resource utilization also depends on factors such as the effectiveness of the

synthesis tool and the quality of the place and route software. Consequently, there is no direct

way to compare the resource utilization of hardware designs implemented on different FPGA

devices. However, Table II is provided as an indication of the hardware overheads incurred by

each implementation; along with the other performance data (processing speed and matching

accuracy) and implementation details provided in Section 6.3, we aim to provide a complete

view of the different implementations based on comprehensive performance data.

4.5.3 Exploring large-scale scalability through an ASIC Implementation

Besides prototyping the proposed disparity estimation architecture on the Kintex-7

FPGA, we also evaluated its performance when implemented through a standard ASIC design

flow targeting a commercial CMOS 65-nm cell library. The corresponding ASIC

implementation was used to obtain experimental insights on the scalability and feasibility of

the proposed architecture towards very large-scale integration, while optimizing the design in

terms of area and power efficiency. In particular, we implemented three configurations of the

Table 4.2: Resource Utilization Of Different FPGA Implementations.

Logic Elements Embedded

Multipliers

Block Memory

(Kbits)
FPGA Platform

Frequency

(MHz) LUTs Registers

Georgoulas [2009] 143653 15442 n.a. 0.1875 Altera EP4SGX290 511

Diaz [2007] 26096 26096 59 1278 Xilinx Virtex-II XC2V6000-4 65

Jin [2010] 60598 53616 12 5796 Xilinx Virtex-5 XC4VLX200-10 93.1

Ding [2011] 50585 35020 2 1404 Xilinx Virtex-5 LX155T 60

Ambrosch [2010] 139606 n.a.2 n.a. 768 Altera Stratix I 133

Gehrig [2009] 30000 n.a. n.a. 1200 Xilinx Spartan-3a 3400 FPGA 133

Banz [2011]1 50144 n.a. 50 2790 Xilinx Virtex-5 XC5LX220T 61.2

Ttofis [2012] 62213 55594 16 1080 Xilinx Virtex-5 LX110T 155

Proposed Work 135292 214719 40 10656 Xilinx Kintex-7 200

1 The paper provides the resource utilization for different systolic array configurations. The results provided here

refer to a systolic array with 5 parallel rows, and a number of parallel disparity levels of 2.
2 Data not available.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 106

proposed architecture: one similar with the FPGA implementation featuring 8 cost aggregators

working in parallel (Configuration 1), and two fully parallel architectures targeting 640x480

and 1280x1024 images, respectively (Configurations 2 & 3). The different ASIC

configurations were synthesized and implemented using Synopsys Design Compiler, with 1V

power supply voltage and a targeted frequency of 200MHz. It must be noted that the targeted

frequency was selected to give an indicative performance when compared to the FPGA

implementation; the reported slack times from the synthesis results indicate that a much higher

frequency is feasible, as the design is highly pipelined and simple due to the proposed

optimizations. Table 4.3 lists the core characteristics of the synthesized designs. Dynamic

power results were obtained using a 50% switching activity; dynamic power consumption for

computing a full stereo pair of images (of the corresponding sizes) is also listed in Table 4.3.

The ASIC synthesis results indicate that the proposed architecture is capable to achieve real-

time frame rates even at high resolution images, while consuming very little power.

4.5.4 Performance Results and Discussion

4.5.4.1 Processing Speed

We measured the processing speed of the proposed system architecture in terms of the

frames processed per second (fps) using synthetic stereo image pairs from [25] as benchmarks.

A real-time performance of around 30 fps is sufficient for most video-rate stereo vision

applications. However, applications with multiple data streams (e.g. multi-view stereo vision)

and high-resolution video analysis may require higher frame rates. Through the computational

reduction obtained by the hardware-directed optimization techniques discussed in Section 4.2,

and the highly parallel and pipelined structure of the proposed system architecture, both the

FPGA and ASIC implementations are capable of high processing performance for 640x480

images (60 fps and 575 fps, respectively) and a disparity range of 64 pixels. While the FPGA

Table 4.3: ASIC implementation synthesis results.

 Configuration 1 Configuration 2 Configuration 3

Technology CMOS 65-nm CMOS 65-nm CMOS 65-nm

Combinatorial Logic Gate

Count Equivalent Estimate
~625,000 ~1,850,000 ~1,975,000

Memory Size Estimate ~886.2 kB ~888.5 kB ~970.8 kB

Image Size 640x480 640x480 1280x1024

Disparity Range 64 64 64

Number of cost aggregators 8 64 64

Targeted Frequency 200 MHz 200 MHz 200 MHz

Processing performance 80 fps - 1572 MDE/s 575 fps - 11304 MDE/s 143 fps - 11995 MDE/s

Dynamic Power ~47 mW ~246 mW ~430 mW

* Parameters: {𝑠𝑐 = 7, 𝑠𝑐_𝑠𝑢𝑏 = 4, 𝑠𝑠𝑤 = 17, 𝑠𝑠𝑤_𝑠𝑢𝑏 = 5, 𝑠𝑚𝑖 = 5, 𝑠𝑠𝑏𝑠 = 11, 𝑠𝑠𝑟 = 5}

Chri
sto

s T
tof

i

107 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

implementation was tailored to the available FPGA resources and camera frame-rate, and is

capable to generate one disparity value every eight cycles, the ASIC implementation has been

designed in a fully parallel manner and generates one disparity every cycle. It is also capable

to achieve real-time performance for larger image sizes (143 fps for 1280x1024 images). Such

rates are significant considering that the proposed architecture implements one of the most

complex and accurate local stereo correspondence algorithms available in literature [61].

Table 4.4 presents a comparison between existing implementations and the proposed

architecture for both the FPGA and ASIC implementations. Performance is provided in frames

per seconds (fps) and also in Million Disparity Estimations per second (MDE/s); the latter

reflects both the density and the speed of the system (number of pixels x disparity range x

frame rate). We adopted these metrics, since they are the two most common metrics used to

evaluate the throughput of stereo vision algorithms and architectures in literature. However,

we acknowledge that a quantitative performance comparison of the reference implementations

included in Table 4.4 is not a simple problem, as it should also take into account multiple other

factors that influence the processing performance of each implementation. Such factors

include the complexity of the adopted algorithm, the amount of parallelism employed, as well

as several hardware-specific details (e.g. implementation platform, operating frequency,

available memory, etc). Baring this in mind, we also report available algorithmic and

hardware-specific details of the reference implementations (in columns 6-7 of Table 4.4) to

allow the reader to make such comparisons.

As shown in Table 4.4, the proposed system (both FPGA and ASIC versions) obtained a

MDE/s performance, which is among the highest reported in the table, outperforming the

implementations based on CPU, Cell, DSP and GPU platforms, as well as the dedicated

hardware implementations of fixed support methods in [107], [109]. Furthermore, the

processing performance obtained by the proposed architecture is higher when compared to the

FPGA-based implementations of SGM algorithms in [110], [113] and similar to the SGM-

based implementation in [112]. Only the implementation in [105] is faster than both the

proposed FPGA and ASIC implementations, while the works in [126], [108] outperform only

the FPGA-based implementation of the proposed architecture. It must be noted that the

systems in [105], [108] use rectangular and fixed support regions during cost aggregation.

With carefully designed data reuse techniques (e.g. “sliding window” technique [64]) and by

taking advantage of the incremental calculations, such systems can fully exploit the

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 108

parallelism and achieve very high speeds. However, due to the simplicity of the adopted

algorithms (and their associated problems in determining a proper window shape and size

during aggregation), the implemented systems in [105], [108] do not lead to high disparity

map accuracy. Although the proposed system is slower compared to the aforementioned state-

of-the-art implementations of fixed support methods (due to the inherent complexity of the

ADSW algorithm adopted in this work), it generates much better accuracy (Table 4.6), thanks

to the advanced segment-based ADSW cost aggregation strategy. Finally, it must be noted that

a direct comparison with the system in [126] is not possible, as the corresponding paper does

not provide quality results.

When compared to hardware implementations of ADSW algorithms [114], [115], both

the FPGA and ASIC versions of the proposed architecture show better processing

performance. Although the complexity of the segment-based ADSW algorithm implemented

Table 4.4: Summary of existing disparity estimation systems.

Work
Image

Size
D MDE/s* fps Method Platform

Hirschmuller [2004] 320x240 32 11.5 4.7 Multiple window Pentium II, 450 MHz

Forstmann [2008] 384x288 32 143.3 40.5 Global based on DP AMD XP 2800+ 2.2GHz

Zinner [2008] 320x240 30 96.8 42 Census-based Intel Core 2 Duo 2GHz

Wang [2006] 320x240 16 52.8 43 ADSW and DP 3 GHz PC & ATI Radeon XL1800

Baha [2010] 384x288 16 8.8 5 Variable Support Window 2.2 GHz Core Duo

Gehrig [2010] 640x320 16 72.7 22.2 SGM Intel Core i7-975ex 3GHz

Yang [2006] 384x288 16 22.2 12.77 Hierarchical BP NVIDIA Geforce 7900 GTX

Yang [2005] 512x512 92 289 13.8 Block-matching (SAD) ATI Radeon 9800

Xiang [2012] 384x288 16 18.8 10.6 Global belief propagation NVIDIA Geforce GTX 260

Ernst [2008] 320x240 64 63.9 13 Mutual information SGM NVIDIA GeForce 8800 ULTRA

Konolige [1997] 160x120 64 9.8 8 LOG transform ADSP 2181, 33MHz

Berretty [2007] 720x480 80 829 30 Block-matching (SAD) TM3270 embedded media proc.

Khaleghi [2008] 160x120 n.a n.a 20 Hamming distance correl. ADSP-BF561, 600MHz

Chang [2007] 384x288 16 88.5 50 Jigsaw matching TMS320C6414T-1000

Humenberger [2010] 320x240 15

660.9 573.7
Optimized Census
Transform

GeForce GTX 280

30.41 26.4 DSP 1GHz T1 TMS320C6416

72.5 62.9 PC Intel Core2 Duo 2 GHz

Cavanag 450x375 59 1.39 0.14 ADSW Cell Processor on PlayStation 3

Liu [2009] 384x288 16 0.9 0.5 Dynamic programming Cell Processor on PlayStation 3

Hsieh [2012] 384x288 16 11.5 6.5 Belief propagation Cell Processor on PlayStation 3

Georgoulas [2009] 800x600 80 21120 550 Block-matching (SAD) EP4SGX290 (511MHz)

Diaz [2007] 1280x960 29 1885 52 Phase based Xilinx Virtex-II (65MHz)

Darabiha [2006] 256x360 20 55.2 30.3 Phase correlation Xilinx Virtex-4 2000E FPGA

Jin [2010] 640x480 64 4522 230 Census transform Virtex-5 XC4VLX200-10 (93.1 MHz)

Yen-Chang [2010] 352x288 64 272.5 42 Mini-census ADSW UMC 90ns Std. Cell

Ding [2011] 640x480 60 940 51 TSAD Adaptive Weights Virtex-5 LX155T

Ambrosch [2010] 750x400 60 1080 60 SAD-IGMCT Altera Stratix I (133MHz)

Gehrig [2009] 340x200 64 117.5 27 ZSAD SGM Spartan-3 FPGA

Banz [2011] 640x480 128 1179 30 SGM Xilinx Virtex-5 (12MHz – 208 MHz)

Hirschmuller [2012] 640x480 64 328.3 16.7 Census SGM Xilinx Virtex-5 (125 MHz)

Ttofis [2012] 640x480 64 589 30 Segment-based ADSW Virtex-5 LX110T FPGA (155 MHz)

Proposed Work 640x480 64
1179 60

Segment-based ADSW
Kintex-7 FPGA (200 MHz)

11304 575 CMOS 65-nm cell library (200 MHz)

* MDE/s = (Image size ⅹ Disparity range ⅹ Frames per second) / 1,000,000

Chri
sto

s T
tof

i

109 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

by the proposed architecture is twice as large as the complexity of the ADSW algorithms in

[114], [115] (as shown in [61] by measuring the time needed to process a reference stereo pair

on the same machine), the proposed FPGA and ASIC systems outperform these

implementations, indicating the potential use of the architecture in high-performance

embedded applications that demand accurate disparity maps.

4.5.4.2 Disparity Map Quality Analysis

The quality of the disparity maps generated by the proposed hardware architecture was

evaluated quantitatively on a set of benchmark stereo images from the Middlebury dataset

[25], and by measuring the incorrect disparity estimates using the percentage of bad matching

pixels (5), a commonly accepted metric [25]. This metric measures the quality based on

known ground truth disparity maps at three different kind of regions, namely, nonocc (all

points except for occluded areas), all (all points including half-occluded regions), and disc

(only points along depth discontinuities). In equation (4.5), the subscript R identifies the set of

points (region) over which the percentage of bad matching pixels is measured (i.e. R ∈

{nonocc, all, disc}), dc(x,y) and dt(x,y) are the computed and ground truth disparity maps,

respectively, NR is the total number of pixels in the region of interest, and δd is the disparity

error tolerance. We set δd = 1.0 for all experiments we carried out, as this value coincides with

some previously published works.

𝐵𝑅 =
1

𝑁𝑅
 𝑑𝑐 𝑥, 𝑦 − 𝑑𝑡 𝑥, 𝑦 < 𝛿𝑑

(𝑥,𝑦)∈𝑅

 (4.5)

We measured the percentage of bad matching pixels using four reference images on the

dataset (Tsukuba, Venus, Teddy and Cones). Evaluation results are shown in Figure 4.8 (a),

and are also given in Table 4.5. Furthermore, the average percentage of bad matching pixels

over the four test images is given for each different region independently in Table 4.6

(columns 2-4). Based on these averages, the overall percentage of bad matching pixels is also

extracted (avg term in column 1 of Table 4.6). Subsequently, an accuracy (acc) term stating the

ratio of the pixels given a correct disparity value (as compared with the ground truth) can also

be derived (acc = 100-avg). The proposed architecture obtains 3.99% bad matching pixels in

non-occlusion regions, 5.00% in the whole disparity map and 16.5% in discontinuity regions,

resulting in an overall percentage of bad matching pixels of 9.79%, which corresponds to an

overall accuracy of 90.21%.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 110

 Compared to the original segment-based ADSW algorithm presented in [63], the

proposed architecture performs reasonably well in terms of disparity estimation accuracy,

especially at regions with enough details (non-occluded regions). In particular, the distance in

quality between the original software implementation and the proposed architecture is only

3.35% on average (1.42% at nonocc regions, 3% at all regions, and 5.66% at disc regions). As

shown in [61], the segment-based ADSW algorithm implemented on Intel Core Duo 2.14GHz

CPU with 2GB RAM requires ~33 minutes to process a 450x375 stereo pair. On the other

hand, the proposed hardware architecture along with the hardware-directed optimization

techniques has significant speedup improvements (more than 10,000x), which justify the small

quality reduction, and render our architecture suitable for embedded computing systems

requiring high quality disparity maps in real time.

 Furthermore, we compare the quality of the generated disparity maps with some related

works. Note that some implementations listed in Table 4.4 are omitted from Table 4.5 and

Table 4.6, because either they do not present quality results, or they have adopted a different

metric, and thus cannot be directly compared to this work. As shown in Table 4.6, the

proposed hardware architecture offers better quality (lower percentage of bad pixels) when

compared to the DSP implementation in [99] and the dedicated hardware implementations in

[105], [107], [109], [108], which adopt fixed-support stereo correspondence algorithms. It also

Figure 4.8: Evaluation results with synthetic and real-world images. (a) Evaluation results of the

proposed system architecture and the original algorithm [Tombari et al. 2007] using Middlebury

stereo pairs. From left to right: Reference image, Ground truth, Disparity maps generated by

the original algorithm, and Disparity map yielded by the proposed system. (b) Evaluation results

of real-world and synthetic scenes before and after applying post-processing steps. Real-world

scenes captured in our laboratory (rows 1-2), a real-world scene with a moving vehicle (row 3),

and a synthetic scene of pedestrians (row 4).

Chri
sto

s T
tof

i

111 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

outperforms the software implementation of [136], [137], which implements a variable

support method, while compares favorably with the DSP implementation based on optimized

Census transform in [65]. Moreover, it compares favorably with the real-time implementation

of the SGM algorithm on the CPU [90] (9.59% vs. 9.06% in non-occlusion regions).

Furthermore, the proposed architecture achieves comparable quality to the GPU

implementation in [93] that combines the ADSW approach with Dynamic programming, and a

small quality reduction (~2%) compared to the GPU implementation in [94] that implements a

global optimum disparity estimation algorithm based on improved belief propagation. The

GPU-based system in [94] indicates that complicated disparity estimation algorithms

implemented on GPUs can achieve very good quality results; however, the high levels of

quality come at the expense of limited processing performance, as [94] obtained ~10 fps for

small-sized images (384x288).

When compared to hardware-based methods of ADSW algorithms, the proposed

architecture outperforms the implementation in [115]. It is worth noting that this

implementation presents a quality reduction of 4.84% compared to the original algorithm

adopted (as presented in [115]). This demonstrates the effectiveness of the specific hardware-

directed optimization techniques adopted in the proposed implementation (quality reduction

relative to original algorithm = 3.35%) in keeping a balance between hardware complexity and

Table 4.5: Comparison of the percentage of bad matching pixels between different

implementations.

Tsukuba Venus Teddy Cones
nonocc

(%)

all

(%)

disc

(%)

nonocc

(%)

all

(%)

disc

(%)

nonocc

(%)

all

(%)

disc

(%)

nonocc

(%)

all

(%)

disc

(%)

Baha [2011] 3.94 5.84 n.a 5.03 6.36 n.a 13.68 21.49 n.a 6.59 15.66 n.a

Tombari [2007] 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77

Gehrig [2010] n.a. 3.38 n.a. n.a. 3.29 n.a. n.a. 16.54 n.a. n.a. 13.04 n.a.

Chang [2007] 21.5 21.7 48.7 16.5 17.8 29.9 26.3 33.6 35,1 24.2 32.4 31.0

Humenberger [2010] 5.08 6.25 19.20 1.58 2.42 14.20 7.96 13.80 20.30 4.10 9.54 12.20

Yang [2006] 1.49 3.40 n.a 0.77 1.90 n.a 8.72 13.2 n.a 4.61 11.6 n.a

Wang [2006] 2.05 4.22 10.60 1.92 2.98 20.30 7.23 14.40 17.60 6.41 13.70 16.50

Xiang [2012] 1.67 3.82 8.44 0.63 1.67 8.67 7.76 14.7 17.8 4.29 12.4 11.4

Georgoulas [2009] n.a 13.55 n.a n.a 12.60 n.a n.a n.a n.a n.a 12.60 n.a

Darabiha [2006] 19.59 n.a 37.62 10.51 n.a 31.52 n.a n.a n.a n.a n.a n.a

Jin [2010] 9.79 11.56 20.29 3.59 5.27 36.82 12.50 21.50 30.57 7.34 17.58 21.01

Ambrosch [2010] 5.81 7.14 22.60 2.61 3.33 25.30 9.79 15.50 25.70 5.08 11.50 15.0

Chang [2010] n.a 2.80 n.a n.a 0.64 n.a n.a 13.70 n.a n.a 10.10 n.a

Ding [2011] 3.73 5.65 10.30 1.59 3.46 10.40 13.50 20.60 20.90 10.80 18.20 19.0

Gehrig [2009] n.a. 5.86 n.a. n.a. 3.85 n.a. n.a. 13.28 n.a. n.a. 9.54 n.a.

Banz [2011] 6.8 n.a. n.a. 4.1 n.a. n.a. 13.3 n.a. n.a. 9.5 n.a. n.a.

Hirschmuller [2012] 2.98 n.a. n.a. 1.49 n.a. n.a. 6.36 n.a. n.a. 3.57 n.a. n.a.

Ttofis [2012] 4.48 6.04 12.7 6.01 7.47 18.2 21.5 28.1 28.8 17.1 25.9 25.8

Proposed Work 3.99 5.00 16.5 0.84 1.94 6.85 9.52 17.3 22.0 5.03 14.1 14.5

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 112

accuracy. The other ADSW implementation [114] outperforms the proposed implementation

when considering all regions. However, the implementation in [114] does not provide

quantitative results for the error rate at depth discontinuity regions. These regions though, are

significantly important when implementing ADSW algorithms, as the idea of the adaptive

support weight approach is primarily motivated by the need to accurately detect depth borders

(where depth discontinuities occur). As such, the effectiveness of the implementation in [114]

cannot be directly compared to the proposed implementation. In addition, the implementation

in [114] focuses only on synthetic image data. As evidence in [29] however, methods that

work well on synthetic scenes might not work well on real-world scenes. In this work, we also

provide evaluation results for real-world scenes in Figure 4.8 (b), evidencing the effectiveness

of the proposed implementation.

Finally, it must be acknowledged that the dedicated hardware implementations of SGM-

based methods in [110], [113] achieve slightly better quality results compared to the proposed

implementation when considering specific kind of regions (all and nonocc regions,

respectively). However, they are both slower in terms of processing performance. On the other

hand, the SGM-based implementation in [112] has similar processing performance to our

implementation, but obtains a lower average percentage of bad matching pixels at nonocc

regions (quality results for the other kind of regions are not provided). It must be noted

though, that while the system in [112] includes a simple post-processing pipeline (LR check

and 3x3 median filtering), the modular nature of the architecture can allow the integration of

more sophisticated post-processing steps (e.g. hole interpolation) to obtain higher accuracy.

4.5.4.3 Discussion

In order to highlight the implementations that better tradeoff between accuracy and

processing speed, we followed a similar ranking scheme to the one proposed in [61] and list in

Table 4.6 an average performance ranking obtained by averaging the accuracy ranking (based

on the percentage of bad pixels in the leftmost columns in the table) and the processing speed

ranking (based on the MDE/s values in Table III). In particular, the different implementations

are ranked in terms of processing speed based on the MDE/s values from Table 4.4, and also in

terms of accuracy based on the average percentage of bad matching pixels from columns 1-4

of Table 4.6. This ranking is listed in columns 5-9 of Table 4.6, and is then used to derive the

average ranking (columns 10-13) by averaging the speed ranking (column 5 in Table 4.6) with

the overall accuracy ranking (column 6 in Table 4.6) and the accuracy ranking at nonocc, all

Chri
sto

s T
tof

i

113 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

and disc regions (columns 7-9 in Table 4.6), respectively. One particular observation is that

our architecture is ranked third in the depth discontinuity regions (disc) after the original

algorithm proposed in [63] and the GPU-based implementation of a global hierarchical BP

algorithm in [94], outperforming all dedicated-hardware implementations. Overall, by looking

at the rightmost columns of the last row in Table 4.6, it is observed that our architecture can be

regarded as an effective accuracy-speed tradeoff, as its average ranking values (and especially

the values associated with the ASIC implementation) are the smallest when considering the

avg, nonocc and disc columns, and among the smallest when considering the all column. As

such, the proposed system provides high disparity map estimation speed, while it is ranked

among the top methods in terms of accuracy. Therefore, the proposed hardware architecture

indicates high potential for high-level vision applications in emerging embedded computing

systems such as intelligent robotic, surveillance, automotive and navigation systems, which

require good performance in both accuracy and speed. Moreover, given that our system

obtains improved accuracy at depth discontinuity points, it might be more suitable for tasks

such as recognition or robotic grasping, where it is particularly important to obtain good

accuracy near such points.

Table 4.6: Average performance ranking.

Percentage of Bad Pixels1 Ranking2 Average Ranking3
avg nonocc all disc MDE/s avg nonocc all disc avg nonocc all disc

Baha [2011] n.a 7.31 12.34 n.a 18 n.a 9 12 n.a n.a 13.5 15.0 n.a

Tombari [2007] 6.44 3.43 6.58 9.31 19 1 1 1 1 10.0 10.0 10.0 10.0

Gehrig [2010] n.a. n.a. 9.06 n.a. 12 n.a. n.a. 8 n.a. n.a. n.a. 10.0 n.a.

Chang [2007] 28.23 22.13 26.38 36.18 11 11 15 16 11 11.0 13.0 13.5 11.0

Humenberger [2010] 9.72 4.68 8.00 16.48 15 4 6 4 6 9.5 10.5 9.5 10.5

Yang [2006] n.a 3.90 7.53 n.a 16 n.a 4 3 n.a n.a 10.0 9.5 n.a

Wang [2006] 9.83 4.40 8.83 16.25 14 6 5 7 5 10.0 9.5 10.5 9.5

Xiang [2012] 7.77 3.59 8.15 11.58 17 2 2 6 2 9.5 9.5 11.5 9.5

Georgoulas [2009] n.a n.a 12.92 n.a 1 n.a n.a 13 n.a n.a n.a 7.0 n.a

Darabiha [2006] n.a 15.05 n.a 34.57 13 n.a 14 n.a 10 n.a 13.5 n.a 11.5

Jin [2010] 16.49 8.31 13.98 27.17 3 9 11 14 9 6.0 7.0 8.5 6.0

Ambrosch [2010] 12.45 5.82 9.37 22.15 5 8 8 9 8 6.5 6.5 7.0 6.5

Chang [2010] n.a n.a 6.81 n.a 9 n.a n.a 2 n.a n.a n.a 5.5 n.a

Ding [2011] 11.51 7.41 11.98 15.15 6 7 10 11 4 6.5 8.0 8.5 5.0

Gehrig [2009] n.a. n.a. 8.13 n.a. 10 n.a. n.a. 5 n.a. n.a. n.a. 7.5 n.a.

Banz [2011] n.a. 8.43 n.a. n.a. 4 n.a. 12 n.a. n.a. n.a. 8.0 n.a. n.a.

Hirschmuller [2012] 8.84 3.6 n.a. n.a. 8 3 3 n.a. n.a. 5.5 5.5 n.a. n.a.

Ttofis [2012] 16.84 12.27 16.88 21.38 7 10 13 15 7 8.5 10.0 11.0 7.0

Proposed FPGA System
9.79 4.85 9.59 14.96

4
5 7 10 3

4.5 5.5 7.0 3.5

Proposed ASIC System4 2 3.5 4.5 6.0 2.5

1 Average percentage of bad pixels computed over all twelve columns (avg) and over columns nonocc, all and disc in Table 4.5,
respectively.
2 Ranking of different implementations based on the MDE/s values from Table 4.4, and on the average percentage of bad
matching pixels from columns 1-4 of Table 4.5.
3 Ranking obtained by averaging the speed ranking (column 5 in Table 4.6) with the overall accuracy ranking (column 6 in

Table 4.6) and the accuracy ranking at nonocc, all and disc regions (columns 7-9 in Table 4.6), respectively.
4 Fully parallel system that processes 640x480 images and supports a disparity range of 64 (Configuration 2 in Table 4.3).

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 114

4.6 Concluding Remarks

This chapter investigated the use of adaptive support weights in embedded stereo

matching architectures. Initially, a discussion on how weighting the pixels in the support

window can increase the robustness of the matching process, improving the quality in regions

with low texture and at depth discontinuities, was provided. The chapter also discussed the

complications of adaptive weights for hardware implementations and showcased how such

algorithms can be adopted for hardware-friendly designs. It is worth mentioning that the edge-

directed approach presented in section Chapter 3 can also be utilized in ADSW hardware

implementations as well. Although it is not shown in this chapter, the reader is referred to

Appendix B, which describes an ADSW stereo matching architectures that also utilizes edge

information.

The proposed ADSW-based stereo matching architecture was implemented on an FPGA

platform, evaluated with real-time data acquisition using a custom-built stereo camera setup,

and compared with related dedicated hardware implementations in terms of accuracy,

processing speed and hardware resource utilization. Experimental results were very

encouraging in that the complete system is able to provide an effective accuracy/speed

tradeoff. However, this was achieved at the expense of relatively high resource usage,

something that motivated us to introduce the hardware architectures presented in the following

chapter.

Chri
sto

s T
tof

i

115 A Segmentation-Based Stereo Matching Hardware Design with Adaptive Support Weights

Chri
sto

s T
tof

i

Chapter 5

5 High-Quality Real-Time Hardware

Stereo Matching Based on Guided

Image Filtering

EVERAL emerging embedded vision applications require high-quality depth computation and

real-time frame-rate. By implementing a simplified version of an adaptive support weight

(ADSW) algorithm, the stereo matching hardware architecture presented in the previous chapter

provides a good balance between accuracy and speed; however at the expense of high hardware

demands and noticeable quality degradation compared to the original ADSW algorithm. This

chapter investigates possibility of designing hardware-based stereo matching architectures able to

provide high accuracy and concurrently high performance for embedded vision devices, which are

associated with limited hardware and power budget. The proposed architectures integrate a

compact and efficient design of the recently proposed guided image filter; an edge-preserving

filter that reduces the hardware complexity of the implemented stereo algorithm, while at the same

time maintains high-quality results. The guided filter design is utilized in different ways in the

stereo matching processing pipeline, illustrating its potential in reducing the complexity of the

ADSW aggregation process, but also its efficiency in enabling a powerful disparity refinement

unit, which can improve the matching accuracy considerably, even if the cost aggregation is based

on simple, fixed support strategies. Prototypes of the architectures have been implemented on a

Kintex-7 FPGA board, achieving real-time processing speed (60 fps) even for high definition 720p

resolution video. Moreover, the proposed stereo matching designs deliver leading accuracy when

compared to state-of-the-art hardware implementations.

5.1 Introduction - Motivation

High-quality real-time stereo matching has the potential to enable various applications in

emerging embedded vision systems including fully autonomous robotics, three-dimensional

video surveillance and security. However, such systems usually require real-time processing

capability under limited resources (e.g. memory and power), something that does not permit

S

Chri
sto

s T
tof

i

117 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

the use of most sophisticated stereo matching approaches. In recent years, a fair amount of

work has been carried out on real-time hardware implementations of local stereo matching

algorithms (e.g. [108]); a thorough review is presented in [85]. The majority of these

implementations have adopted standard block-based aggregation with fixed support windows

(in size and/or shape) [85]. These algorithms can achieve very high frame rates when

implemented in hardware [85], but they lead to low matching accuracy [62]. High matching

accuracy though is of foremost importance in many of today‟s embedded vision applications.

As such, a few attempts have been made recently directed towards improving the matching

accuracy, either by combining different stereo algorithms together, or by implementing

modified versions of Semi Global Matching (SGM) [138], [139] and local Adaptive Support

Weight (ADSW) algorithms [114], [115], [68].

The hardware implementation in [109] performs a modified version of the Census

transform in both the intensity and gradient images, in combination with the SAD correlation

metric. An FPGA implementation of a stereo algorithm based on the neural network and

Disparity Space Image (DSI) data structure is introduced in [137]. The real-time FPGA-based

stereo matching design presented in [140] combines the mini-Census transform and the Cross-

based cost aggregation. SGM-based stereo matching systems have been introduced in [138],

[139] and implemented on FPGAs and a hybrid FPGA/RISC architecture, respectively. The

technical details/parameters of the different implementations are summarized in Table 5.4.

 The works that are closely related to ours in terms of the matching algorithm are the

works in [114], [115], [68], which implement ADSW-based algorithms. The segment-based

ADSW architecture presented in Chapter 4 also belongs to this latter category. The work in

[114] proposed the VLSI design of a hardware-friendly ADSW algorithm that adopted the

mini-Census transform to improve the accuracy and robustness to radiometric distortion. The

work in [115] proposed the implementation of a complete stereo vision system, which

incorporates an ADSW algorithm and also integrates pre- and post- processing units. Finally, a

hardware-oriented stereo matching system based on the adaptive Census transform is

presented in [68]. The aforementioned high-quality ADSW-based systems follow a similar

algorithm-to-hardware mapping methodology. That is, a complex, but accurate, algorithm is

adapted for dedicated hardware implementation through a series of algorithmic

modifications/approximations. In most cases, however, these implementations scarify part of

the accuracy; quality reduction compared to the original implementation of the ADSW

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 118

approach in [62] is ~ 4-5%. In addition, their high memory and hardware demands limit their

scalability to higher resolution images.

Recently, the idea to utilize the Guided Image Filter (GIF) [141] in local ADSW stereo

matching algorithms has been proposed to reduce the complexity of the cost aggregation step.

The GIF has also been utilized to perform weighted median filtering during the disparity

refinement step. Such software implementations have yielded promising results [142], [143].

Motivated by the results of the software implementation presented in [142], [143], this work

focuses on designing fully pipelined, parallel and scalable stereo matching hardware

architectures that integrate the recently proposed GIF. The thesis aims to present a new and

efficient hardware design of the GIF (that can be potentially adopted in other uses of the

filter), and also to explore and concurrently discuss the hardware design parameters and

optimizations involved in integrating the GIF hardware architecture in the cost aggregation

and disparity refinement steps of hardware-based local stereo matching systems. The latter is

expected to reduce the overall hardware complexity of cost aggregation, which in turn will

allow real-time stereo matching of high definition images (HD), as well as improvements of

the overall matching accuracy, thanks to the edge-preserving property of the GIF. Due to this

type of filter, and its optimized hardware design presented in this work, the proposed

architecture(s) push further the accuracy limits of hardware-based stereo matching systems,

while they also achieve real-time frame-rates for HD images.

Additionally, the thesis relies on FPGA implementation and emulation to perform a

detailed benefit-cost analysis (in terms of matching quality vs. resource usage given a fixed

throughput constraint) of different system configurations (e.g. the GIF is integrated either in

cost aggregation/disparity refinement or in both steps). The configuration found to better

exploit the benefits of the GIF is developed as part of a complete stereo vision system on a

Kintex-7 FPGA board. The prototype supports 720p@60Hz HD video sequences (captured

from a custom-built stereoscopic camera system) and various disparity ranges. Finally, the

selected GIF-based Stereo Matcher is evaluated qualitatively and quantitatively, based on

Middlebury benchmark image sets [25], and is also compared with existing state-of-the-art

stereo matching hardware systems.

The rest of this Chapter is organized as follows: Section 5.2 provides background

information on the GIF and its use in stereo matching. Section 5.3 presents a compact and

efficient hardware design of the GIF. Section 5.4 discusses how the GIF design can be

Chri
sto

s T
tof

i

119 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

integrated into stereo matching hardware architectures. Section 5.5 shows results and

comparison with related work. Finally, Section 0 concludes the chapter.

5.2 The Guided Image Filter and its Use in Stereo Matching

This section provides background information related to the guided image filter. A brief

definition of the filter is first introduced along with the necessary mathematical formulation.

The guide filter is quite useful in several applications in image processing and computer vision

[141]. Here, we will focus on the application of this filter in the stereo matching process, and

in particular, its integration in the cost aggregation and disparity refinement steps, along with

associated benefits for dedicated hardware implementations.

5.2.1 The Guided Image Filter (GIF)

The Guide Image Filter (GIF) generally uses a guidance image I to filter a guided image

p; though I and p can be identical. A general equation expressing the output of a linear filter at

each pixel i, is defined in  as a weighted average of the filter kernel 𝑊𝑖,𝑗 and the guided

image p. The filter kernel 𝑊𝑖,𝑗 depends entirely on the guidance image; it is a function of I,

independent of p. The filtering output q is linear with respect to the guided image p. The

following paragraphs will focus on the definition of the guided image filter. Equation 

will be revisited at a later stage to define the filter kernel.

𝑞𝑖 = 𝑊𝑖,𝑗 𝐼 𝑝𝑗

𝑗

 𝑖, 𝑗: 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 

The working principle of the GIF lies on the assumption that the filtering output q is

generated based on a local linear model between I and p. The filtering output q can be defined

as a linear transform of I in a window 𝜔𝑘 centered at the pixel k by finding a solution to ,

where 𝑎𝑘 and 𝑏𝑘 are some linear coefficients assumed to be constant in 𝜔𝑘 . By definition 𝜔𝑘

is a square window with integer radius r, and a side length 2𝑟 + 1 (𝜔𝑘 is the number of

pixels in 𝜔𝑘). The linear model describing the GIF in  makes the filter an edge-preserving

filter, because ∇𝑞 = 𝑎𝑘𝐼 (since 𝑎𝑘 and 𝑏𝑘 are constants). In other words, the filtered output

image q has an edge only if the guidance image I has also an edge.

∃𝑎𝑘 , 𝑏𝑘,∀𝑖𝜖𝜔𝑘 𝑞𝑖 = 𝑎𝑘𝐼 + 𝑏𝑘 

A solution to  can be determined by finding the linear coefficients that minimize the

difference between q and the filtering input p. This is achieved by modeling the output q as the

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 120

input p, subtracting unwanted noise / texture, as given in  The coefficients are then

determined by minimizing the cost function 𝐸 𝑎𝑘 , 𝑏𝑘, in the window 𝜔𝑘 as in  where 𝜖

is a regulization parameter preventing 𝑎𝑘 from being too large. This minimization function is

solved by following the linear ridge regression model [141], and its solution is given in 

&  The terms 𝜇𝑘 and 𝜎𝑘
2 represent the mean and variance of I in 𝜔𝑘 .

𝑞𝑖 = 𝑝𝑖 − 𝑛𝑖 

min
𝑎𝑘 ,𝑏𝑘,

 𝐸 𝑎𝑘 , 𝑏𝑘, ≔ 𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖
2 + 𝜖𝑎𝑘

2

𝑖𝜖𝜔𝑘

 

 𝑎𝑘 =

1

 𝜔
 𝐼𝑖𝑖𝜖𝜔𝑘

𝑝𝑖−𝜇𝑘𝑝 𝑘

𝜎𝑘
2+𝜀

=
𝑐𝑜𝑣(𝐼,𝑝)

𝑣𝑎𝑟 (𝐼)+𝜀
 

𝑏𝑘 = 𝑝 𝑘 − 𝑎𝑘𝜇𝑘 = 𝑚𝑒𝑎𝑛 𝑝 − 𝑎 ∙ 𝑚𝑒𝑎𝑛(𝐼) 

Having computed the linear coefficients 𝑎𝑘 and 𝑏𝑘 , the filtering output 𝑞𝑖 can be

computed by replacing them in . However, in order to reach the final definition of the

GIF, it is necessary to account for the fact that any pixel i is coved by several overlapping

windows 𝜔𝑘 , which leads to different values of 𝑞𝑖 , when this is computed at different windows

(due to many values of the coefficients 𝑎𝑘 and 𝑏𝑘). This problem is solved using the averaging

strategy of overlapping windows, which is popular in image denoising [15]. Based on this

strategy, the filtering output is redefined as in , where 𝑎 𝑘 and 𝑏 𝑘 are the mean values of

𝑎𝑘 and 𝑏𝑘 in the window 𝜔𝑘 , respectively (𝑖𝜖𝜔𝑘 and 𝑘𝜖𝜔𝑖 are equivalent due to the symmetry

of the box window).

𝑞𝑖 =
1

 𝜔
 𝑞𝑖

𝑘,𝑖𝜖𝜔𝑘

 =
1

 𝜔
 𝑎𝑘𝐼 + 𝑏𝑘

𝑘,𝑖𝜖𝜔𝑘

= 𝑎 𝑘𝐼 + 𝑏 𝑘 

It must be noted that ∇𝑞 is no longer scaling with respect to ∇𝐼, as the coefficients 𝑎 𝑘

and 𝑏 𝑘 vary spatially. However, since these coefficients are the output of mean filters, their

gradients are expected to be much smaller near strong edges than the gradient of I. Hence, we

can still assume that ∇𝑞 ≅ 𝑎 𝐼 , which means than the edge-preserving property is mostly

preserved (i.e. sudden intensity changes in 𝐼 most likely will be preserved in 𝑞).

The overall guided filtering process is illustrated in Figure 5.1. Besides the edge-

preserving property, another inherent advantage of this type of filter is that the operations

involved in computing the filtering output are linear, and can be decomposed into a series of

Chri
sto

s T
tof

i

121 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

mean filters with windows radius r. This is a very important property that leads to a fast

implementation of the GIF, because mean filtering (box filtering) can be efficiently performed

using integral images or moving sums in O(1) time (with respect to r). Algorithm 5.1 provides

the pseudocode of the GIF algorithm, which mainly consists of four steps:

1. Computing the images corresponding to the mean values of the guidance image I

and the guided image p.

2. Computing the images corresponding to the variance of image I and the covariance

of images I and p.

3. Computing the images corresponding to 𝑎𝑘 and 𝑏𝑘 .

4. Computing the images corresponding to 𝑎 𝑘 and 𝑏 𝑘 .

5. Computing q based on .

The GIF presented above is completely defined by equations -. It is worth

noting the relationships between I, p and q in these equations, are in the weighted-average

form of . In fact, all three equations can be rewritten as weight sums of the forms

𝑎𝑘 = 𝐴𝑘𝑗 (𝐼)𝑝𝑗𝑗 , 𝑏𝑘 = 𝐵𝑘𝑗 (𝐼)𝑝𝑗𝑗 and 𝑞𝑖 = 𝑊𝑖𝑗 (𝐼)𝑝𝑗𝑗 , respectively. It can be proved (the

proof is provided in [141]) that the kernel weights can be explicitly expressed as in . This

equation suggests that pixels j in the neighborhood of i have a stronger weight in the resulting

value of 𝑞𝑖 if they share similar color with i.

Figure 5.1: Illustration of the guided image filtering process [141].

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 122

𝑊𝑖𝑗 (𝐼) =
1

 𝜔 2
 1 +

 𝐼𝑖 − 𝜇𝑘 (𝐼𝑗 − 𝜇𝑘)

𝜎𝑘
2 + 𝜀

𝑘:(𝑖,𝑗)𝜖𝜔𝑘

 

5.2.2 Stereo Matching using Guided Image Filtering

The edge-aware nature of the Guided Image Filter (GIF) along with the fact that it can

be implemented using a cascade of mean filters (as suggested by its pseudocode in Algorithm

5.1), has recently led to its integration in stereo matching algorithms, as a means to improve

the matching quality in a computationally efficient manner. In particular, the work in [142]

employed the GIF to reduce the complexity of the cost aggregation step in ADSW methods,

while the work in [143] has exploited the filter to perform weighted median filtering during

the disparity refinement step. This section discusses how the GIF can be integrated in the four-

step stereo matching processing pipeline. In subsequent sections, we introduce a new and

efficient hardware design of the filter, and also explore the hardware design parameters and

optimizations involved in integrating the filter in stereo matching hardware architectures.

The GIF is an edge-aware smoothing filter, and as such, in order to better understand

how it is possible to integrate it in the stereo matching process, we will revisit the four-step

stereo matching processing pipeline and look at it in a different way. Until now, the cost

aggregation step has been considered as summation of pixel dissimilarities inside support

windows. However, there is a completely different way for looking at this step, which lies on

the concept of the Stereo Cost Volume (SCV) or Disparity Space Image (DSI). The SVC is

basically a 3D data structure constructed by computing the pixel dissimilarities between the

reference image of the stereo pair and a number of shifted versions of the target image, at the

different disparity levels. According to this structure, the cost aggregation step can be

interpreted as a smoothing of each 2D slice of the SCV. From this perspective, the different

Algorithm 5.1: Guided Image Filter

Input: guidance image I, guided image p
Output: filtering output q
Parameters: r, ε
1: 𝑚𝑒𝑎𝑛𝐼 = 𝑓𝑚𝑒𝑎𝑛 (𝐼); 𝑚𝑒𝑎𝑛𝑝 = 𝑓𝑚𝑒𝑎𝑛 (𝑝);

 𝑐𝑜𝑟𝑟𝐼 = 𝑓𝑚𝑒𝑎𝑛 (𝐼.∗ 𝐼); 𝑐𝑜𝑟𝑟𝐼𝑝 = 𝑓𝑚𝑒𝑎𝑛 (𝐼.∗ 𝑝);

2:
𝑐𝑜𝑣𝐼𝑝 = 𝑐𝑜𝑟𝑟𝐼𝑝 − 𝑚𝑒𝑎𝑛𝐼 .∗ 𝑚𝑒𝑎𝑛𝑝 ;

𝑣𝑎𝑟𝐼 = 𝑐𝑜𝑟𝑟𝐼 − 𝑚𝑒𝑎𝑛𝐼 .∗ 𝑚𝑒𝑎𝑛𝐼;

3: 𝑎 = 𝑐𝑜𝑣𝐼𝑝 (𝑣𝑎𝑟𝐼 + 𝜀) ; 𝑏 = 𝑚𝑒𝑎𝑛𝑝 − 𝑎.∗ 𝑚𝑒𝑎𝑛𝐼;

4: 𝑚𝑒𝑎𝑛𝑎 = 𝑓𝑚𝑒𝑎𝑛 (𝑎); 𝑚𝑒𝑎𝑛𝑏 = 𝑓𝑚𝑒𝑎𝑛 (𝑏);
5: 𝑞 = 𝑚𝑒𝑎𝑛𝑎 .∗ 𝐼 + 𝑚𝑒𝑎𝑛𝑏 ;

Chri
sto

s T
tof

i

123 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

aggregation methods differ mainly in the kernel used to accomplish this smoothing.

Aggregation with a fixed correlation window is equivalent to applying a typical mean filter,

which is fast, but, fails at preserving object boundaries. On the contrary, ADSW need to apply

a weighted smoothing filter at each slice of the SVC. Fortunately, the GIF can be utilized to

smooth the SVC in ADSW methods, giving an edge-preserving effect with high quality, while

at the same time, it can be implemented using the mean filter as its basic building block.

Figure 5.2 gives an outline of the stereo matching processing pipeline that integrates the

concept of the SVC discussed in the previous paragraph, while the pseudocode of the

algorithm is provided in Algorithm 5.2. As shown, the algorithm consists of four major steps:

Cost Volume Construction. This step calculates a matching cost for each pixel (𝑖, 𝑗) at

all possible disparities. The output is a three-dimensional structure (the SVC mentioned above)

consisting of D cost images. Each cost can be computed based on the different correlation

metrics listed in Table 2.1 (Section 2.5.1). In this work, we assume that each cost is computed

as the truncated absolute difference of colors and gradients, a metric that exhibits good

robustness to illumination changes [142]. We also adopt this metric for comparison purposes

between the GIF-based stereo matching architectures developed in this work and existing

software-based implementations [142], [143] that also adopt the GIF. The overall cost

function C(p,d) is computed with -, where 𝑎 is used to balance the influence of the

color and gradients terms, and 𝑇𝑐 and 𝑇𝑔 are truncation thresholds.

𝑀(𝑖, 𝑗, 𝑑) = 𝐼𝑙𝑒𝑓𝑡
𝑖 𝑝 − 𝐼𝑟𝑖𝑔𝑕𝑡

𝑖 (𝑝 − 𝑑)
3

𝑖=1
 

𝐺 𝑖, 𝑗, 𝑑 = ∇𝑥 𝐼𝑙𝑒𝑓𝑡 (𝑝) −∇𝑥 𝐼𝑟𝑖𝑔𝑕𝑡(𝑝 − 𝑑) 

𝐶 𝑖, 𝑗, 𝑑 = 𝑎 ∙ 𝑖𝑛 𝑇𝑐 , 𝑀 𝑖, 𝑗, 𝑑 + (1 − 𝑎) ∙ 𝑚𝑖𝑛 𝑇𝑔 , 𝐺 𝑖, 𝑗, 𝑑 

Cost Volume Filtering. This step utilizes the GIF to smooth each slice of the SCV. Due

to its edge-preserving property, the GIF leads to good accuracy at depth discontinuities.

Typically, the filtered cost value at q and disparity d is a weighted average of the pixels in the

same slice of the SCV, and is expressed as in .

𝑞 𝑖, 𝑗, 𝑑 = 𝑊𝑖,𝑗 𝐼 𝐶(𝑖, 𝑗, 𝑑) 

The GIF generally uses the reference image (grayscale version) of the stereo pair as the

guidance image I to filter a slice of the SVC, which in this case, is the guided image f. The

filter weights are defined as in , where μk and ζk are the mean and the variance of I in a

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 124

squared window ωk with dimensions r×r, centered at pixel k. |ω| is the number of pixels in the

window and ε is a smoothness parameter. As already discussed, an inherent advantage of the

GIF is that the weights can be computed with some linear operations (see [141]), which can be

decomposed into a series of mean filters with windows radius r.

Disparity Selection. Once the SCV slices are filtered, the best disparity for pixel p is

chosen through a simple Winner-Takes-All (WTA) minimization approach using .

𝑑𝑝 = argmin
𝑑∈𝐷

𝑞(𝑖, 𝑗, 𝑑) 

Disparity Refinement. The disparity map generated in the previous step is generally a

noisy disparity map, hence, the disparity refinement step aims to reduce the noise and improve

the overall accuracy. A left/right consistency check (L-R check) is performed. Therefore, the

disparity map, 𝐷𝑅 , using the right image as reference is also computed. The L-R check marks

disparities as invalid if the disparity 𝐷𝐿(𝑖, 𝑗) and its corresponding disparity of 𝐷𝑅(𝑖, 𝑗) differ

by more than 1 pixel. Invalid pixels are then filled with the minimum disparity between their

closest consistent pixels in the left and right direction. Weighted and typical median filtering

are applied next to smooth the filled regions and remove spikes. The following section

discusses how it is possible to perform adaptive median filtering using the GIF, thus improving

further the effectiveness of the disparity refinement step in improving the overall matching

quality. It is worth noting that other adaptive median filters can also be utilized. For example,

the segmentation-based adaptive median filter presented in Chapter 4.4.3, is also a good

candidate. In this work, we developed hardware designs of both filters, and provide tradeoffs

in terms of accuracy when integrating either or both filters in the proposed GIF-based stereo

matching architecture(s).

Figure 5.2: Major Steps of the GIF-based Stereo Matching Algorithm.

Chri
sto

s T
tof

i

125 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

5.2.3 Weighted Median Filtering using the Guided Filter Weights

Besides its use in smoothing the stereo cost volume during cost aggregation, the guided

image filter can also be utilized to develop an efficient weighted median filter that can be

applied during disparity map refinement to remove outlier errors, while preserving

edges/structures [143]. In the following, the theory behind the GIF-based weighted median

filtering process is first introduced, and then the filter‟s properties that make it suitable for fast

and high-quality disparity refinement are discussed.

5.2.3.1 Median Filtering

The (unweighted) median filter is a widely known filter used to perform some kind of

noise reduction in digital images. Due to its ability in removing “outliers” like salt-and-pepper

noise, it is often integrated as a pre-processing step to improve the results of later image

processing operations. The median filter works by replacing the value of each pixel with the

Algorithm 5.2: Stereo Matching based on Guided Image Filtering.

Input: Color Stereo Images 𝐼𝑟 and 𝐼𝑡
Output: Disparity map 𝐷𝐿(.) using the left stereo image as reference

Parameters: Disparity range, radius of match window 𝑟

1. Compute grayscale images 𝐼𝑟_𝑔𝑟𝑎𝑦 and 𝐼𝑡_𝑔𝑟𝑎𝑦

2. Compute the mean and variance images (terms μk and ζk in  of the grayscale image 𝐼𝑟_𝑔𝑟𝑎𝑦

3. 𝐶𝑜𝑠𝑡(∙) ← ∞

4. foreach 𝑑 ∈ 𝑑𝑚 , 𝑑𝑀 do

5. Building slice d of the SVC:

6. foreach pixel 𝑖, 𝑗 in 𝐼𝑟 do

7. Compute the color term  and the gradient term 

8. Compute the pixel cost  as a balanced combination of  and 

9. Set the computed slice of the SVC in the guided image 𝑝 = 𝐶(𝑖, 𝑗, 𝑑)

10. Stereo cost volume slice filtering using the guided filter:

11. Compute the mean of 𝑝 (term 𝑝 𝑘 in 

12. Compute the variance image of 𝐼𝑟 and the covariance of image 𝐼𝑟 and 𝑝 in 

13. Compute the images of coefficients 𝑎𝑘 and 𝑏𝑘  

14. Compute the images 𝑎 𝑘 and 𝑏 𝑘 in 

15. Compute filtering output 𝑞 by 

16. Disparity selection:

17. foreach pixel 𝑖, 𝑗 in 𝐼𝑟 do

18. if 𝐶𝑜𝑠𝑡(𝑖, 𝑗) > 𝑞(𝑖, 𝑗) then

19. 𝐶𝑜𝑠𝑡(𝑖, 𝑗) ← 𝑞(𝑖, 𝑗)

20. 𝐷𝐿(𝑖, 𝑗) ← 𝑑 

21. Disparity refinement:

22. Left-right consistency check:

23. Compute the disparity map 𝐷𝑅 . using the right stereo image as reference (lines 1-20)

24. foreach pixel 𝑖, 𝑗 in 𝐷𝐿 . do

25. if 𝐷𝐿 𝑖, 𝑗 − 𝐷𝑅 𝑖 + 𝐷𝐿 𝑖, 𝑗 , 𝑗 < 𝐿𝑅𝐶_𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 → label disparity 𝑖, 𝑗 as invalid

26. Interpolate invalid disparities

27. Filter interpolated disparity map with weighted median filter

28. Filter with an un-weighted median filter

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 126

median of its neighbors. A straightforward way to compute the median involves sorting the

pixel values in the window, and selecting the value in the middle of the sorted list. A more

efficient way is to compute the median by constructing the histogram 𝑕 𝑝𝑐 , . of the pixels

inside a square window around pixel 𝑝𝑐 , using the equation in . In this equation, 𝑁(𝑝𝑐)

refers to a local, usually square window around the central pixel, 𝑝𝑐 , whose median is being

computed, I(𝑝𝑐) is the pixel value, i is the discrete bin index, and 𝛿 ∙ is the Kronecker delta

function, which is 1 when the argument is 0, and is 0 otherwise. After constructing the

histogram, it is quite easy to pick the median value.

𝑕 𝑝𝑐 , 𝑖 = 𝛿(𝐼 𝑝𝑐 − 𝑖)

𝑝𝑗 𝜖𝑁(𝑝𝑐)



5.2.3.2 Weighted Median Filtering

The unweighted median filter gives equal importance to each neighbor pixel, and hence,

it is possible to lead to morphological artifacts, for example removing thin structures or

rounding sharp edges in the images. The weighted median filter aims to alleviate these

problems by considering each neighbor pixel differently, through the use of weights assigned

to each pixel. The weights are generated based on an image J that can be different from the

image to be filtered I. The median value is found by accumulating the weighted pixels in local

histograms, as in .

𝑕𝑤 𝑝𝑐 , 𝑖 = 𝑤(𝑝𝑐 , 𝑝𝑗)𝛿(𝐼 𝑝𝑐 − 𝑖)

𝑝𝑗 𝜖𝑁(𝑝𝑐)



5.2.3.3 GIF-based Weighted Median Filtering

A naïve implementation of the weighted median filter is computationally demanding as

it depends on the size of the local window and the discrete number of bins, which in practice is

a big constant (256 for grayscale images), especially for high precision input images. An

efficient constant time algorithm, which is independent of the window size, can be derived by

considering the 3D signal 𝑓(𝑝𝑐 , 𝑖) in , where 𝑝𝑐 is the central pixel with 2D spatial

coordinates (𝑥, 𝑦) and 𝑖 is the bin index. With this signal, the computation of the histograms

can essentially be performed using 2D filtering of signal 𝑓 in the spatial domain. This implies

that the computation of the unweighted histogram in  can be simply calculated based on

2D box filtering (mean filtering) on 𝑓 as in , while the weighted histogram in  can

be done by replacing the box filter with a weighted smoothing filter as in . The GIF

Chri
sto

s T
tof

i

127 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

presented before is an excellent candidate for extracting the weights in . Its edge-aware

property helps in maintain sharp edges during the median filtering process, but equally

important, the GIF can have a fast implementation based on a series of box filters (as

discussed in Section 5.2.1).

𝑓(𝑝𝑐 , 𝑖) ≜ 𝛿(𝐼 𝑝𝑐 − 𝑖) 

𝑕 𝑝𝑐 , 𝑖 = 𝑏 𝑝𝑐 , 𝑝𝑗 𝑓(𝑝𝑐 , 𝑖)

𝑝𝑗 𝜖𝑁(𝑝𝑐)



 𝑕𝑤 𝑝𝑐 , 𝑖 = 𝑤 𝑝𝑐 , 𝑝𝑗 𝑓(𝑝𝑐 , 𝑖)𝑝𝑗 𝜖𝑁(𝑝𝑐) 

5.2.3.4 Integration with the stereo matching pipeline

The GIF-based weighted median filter can be integrated in the stereo matching pipeline

within the disparity refinement step to remove outliers from the disparity map, while

maintaining edges/structures. This is possible by decomposing the disparity map extracted in

the disparity computation step into D binary images (D is the number of discrete disparity

levels and also the number of bins). In other words, a binary image is generated for each fixed

𝑖, forming the 3D signal 𝑓(𝑝𝑐 , 𝑖) in . Having computed this 3D signal, the weighted

median filter can be done by applying a guided image filter on 𝑓(𝑝𝑐 , 𝑖) for each fixed 𝑖. In this

way, the final disparity result can be computed from the weighted histogram of 𝑓(𝑝𝑐 , 𝑖). The

weights of the guided filter in the refinement step are computed in the same way as they

computed when applying the guided filter on each slice of the SVC in the cost aggregation

step. In other words, they are computed based on the content of the reference image in the

stereo pair. The overall process of weighted filtering using the GIF in disparity refinement is

illustrated in Figure 5.3.

5.3 Hardware Implementation of the Guided Image Filter

Besides the high quality obtained by smoothing the SCV and/or refining the disparity

map with the GIF, this type of filter can have an efficient dedicated hardware design, as the

(a) Noisy disparity map (b) The 3D signal 𝒇(𝒑𝒄, 𝒊) (c) Weighted histogram 𝒉𝒘 𝒑𝒄, 𝒊 (d) Refined Disparity Map

Figure 5.3: Weighted median filtering over a noisy disparity map based on the GIF [143].

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 128

basic operation involved is the mean filter with windows of radius r. This section describes

how the GIF is implemented in hardware efficiently in a way that its logic resources are

independent of the kernel radius r.

The mean intensity of pixels over rectangular windows in the image can be implemented

in a fast way using the integral image technique. However, this technique requires huge

amount of memory, especially for high-resolution images. Therefore, we instead followed a

variant of the approach in [144], to implement a custom mean filter design that consumes

compact hardware resources. The main idea is to maintain a sum for each column in the image

to be filtered. Each column sum accumulates 2r+1 pixels, while the window sum is computed

by adding 2r+1 adjacent column sums. While filtering the image, the window sum is updated

using the two-step approach illustrated in Figure 5.4 (a). When the window is moved to the

right from one pixel to the next, the column sum to the right of the window is yet to be

computed for the current row, so it is centered one row above. Therefore, the first step consists

of updating the column sum to the right of the window, by subtracting its topmost old pixel

and adding one new pixel below it. The second step moves the window to the right and

updates the window sum by subtracting its leftmost column sum (old column sum), and

adding the updated column sum computed in step 1 (new column sum).

The mean filtering process is implemented in hardware with simple arithmetic

operations (addition, subtraction and fixed-point multiplication) and a series of read/write

operations to a memory buffer (stores the column sums) using the architecture shown in

Figure 5.4 (b). The mean filter architecture receives the new pixel and the old pixel, and

outputs the mean corresponding to the window being filtered. Initially, the column sum yet to

be updated is read from the column sum memory (its size depends on the image width), and

once updated (after adding and subtracting the new and old pixels, respectively), it is written

Figure 5.4: (a) Mean Filtering Process. (b) Mean Filter Hardware Architecture

Chri
sto

s T
tof

i

129 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

to the memory at the same address (read operation performed one clock earlier to maintain

pipeline consistency). The window sum is computed by adding and subtracting the updated

and old column sums, respectively, from the content of window sum register. However, we

avoid fetching the old column sum from the memory, as we aimed to make the architecture

flexible for both ASICs and FPGAs supporting dual-ported BRAMs (2 ports already used to

update the new column sum). Access to the old column sums is instead obtained through a

shift register (queue) with size 2r+1 (an old column sum at cycle t is a delayed version of the

new column sum at cycle t-2r-1). The final mean value is computed by multiplying the

window sum with 1/(2r+1)2.

The architecture of the GIF is depicted in Figure 5.5. It receives two pixels from the

reference image (used as guidance image) and two from the slice of the SCV to be smoothed.

The architecture consists of four mean filters that compute the values of 𝑚𝑒𝑎𝑛𝐼, 𝑚𝑒𝑎𝑛𝑝 , 𝑐𝑜𝑟𝑟𝐼

and 𝑐𝑜𝑟𝐼𝑝 . The remaining values of the described in Algorithm 5.1 are computed using a set of

arithmetic units (fixed-point multipliers, adders/subtractors). The complex division operation

in step 3 of the algorithm is avoided by approximating the denominator by the nearest power

of 2, thus replacing the division with a right shifter. We also avoid finding the mean values of

𝑎 and 𝑏 using the mean filter architecture of Figure 5.4 (b), as this would require high memory

resources in the stereo matcher (for each disparity level and for each column: a column sum

and 2r+1 pixel values need to be stored). It was found that by only computing the mean over

the 𝑥 direction (using an accumulator and a FIFO queue) rather than on a rectangular window,

it reduces the quality by less than 0.5 %, but it also eliminates the need to store the

aforementioned values in BRAMs or shift registers.

Figure 5.5: Guided Image Filter Hardware Architecture.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 130

5.4 Proposed GIF-based Stereo Matcher (GIF-SM)

The edge-aware nature of the GIF, and the simplicity of its hardware architecture

presented in the previous section, can benefit stereo matching dedicated hardware

architectures in many ways. First of all, the filter can be utilized to perform the ADSW

aggregation process in an efficient manner, in that it does not need to rely on the match

window size anymore. Instead, ADSW cost aggregation can now rely on pixel-based

operations. In particular, only two pixels (the new pixel and old pixel) need to be processed

every clock cycle. Hence, the hardware complexity of cost aggregation can be reduced

significantly (compared to the case where the weights are computed exhaustively like in the

architecture presented in Chapter 4.4), or higher levels of disparity level parallelism can be

exploited to enable higher frame rates. It must be noted that the architecture in Chapter 4.4

was not able to exploit parallelism along the full disparity range, whereas the GIF-based stereo

matcher presented in this section can do so, thanks to the simplicity of the GIF. In addition, the

GIF simplifies the design of the memory sub-system, as the memory buffers that store the

RGB and gradient values can be implemented not only using shift registers, but also using

FIFO/BRAM memories. Thus, the buffer types can be selected as per the design effort and

application demands. It is important to note that these important benefits do not lead to a

significant quality degradation of the matching quality, as the GIF performs the weighted-

averaging required in ADSW aggregation, while preserving most of the edges. Last but not

least, the integration of the GIF as part of the disparity refinement step to perform weighted

median filtering can further improve the matching quality.

In this section, we present and discuss how the GIF can be integrated along the entire

video processing pipeline of a hardware stereo matching architecture. Therefore, we will

present a general architecture that integrates the GIF both for filtering the stereo cost volume

(SVC) but also for weighted median filtering. In fact, the generality of the architecture lies in

the “plug-and-play” nature of the SVC filtering, which may perform both an ADSW cost

aggregation by integrating the GIF, or a fixed-support aggregation by simply replacing the GIF

with the architecture of the mean filter (Figure 5.4 (b)). In addition, since it is possible to

perform the weighted median filtering without the GIF, we also describe a general refinement

unit integrating different weighted filters. Later in this chapter, we present a detailed benefit-

cost analysis (in terms of matching accuracy and hardware complexity) that compares

different possible configurations of the architecture (see Section 5.5.2).

Chri
sto

s T
tof

i

131 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

The proposed GIF-based Stereo Matching architecture shown in Figure 5.6 is

decomposed into four major hardware units: the Gradients Computation & Memory

Management Unit (GCMMU), the Cost Volume Construction Unit (CVCU), the Cost Volume

Filtering & Disparity Selection Unit (CVFDSU) and the Disparity Refinement Unit (DRU).

These hardware units are fully pipelined in order to obtain best processing throughput. Source

pixels come progressively in scanline order from the input port (stereo camera or external

memory), enter the processing pipeline consisting of the four major units mentioned above,

and after a pipeline latency, refined disparities are forwarded successively in scanline order to

the output port, synchronized with the input pixel rate. In this way, the architecture complies

with existing pixel feeding standards Figure 5.6 shows a block diagram of the proposed

architecture and the data flow between units. All the processing units and dataflow are

controlled by the system controller.

5.4.1 Gradients Computation & Memory Management Unit (GCMMU)

The GCMMU utilizes two Gradient Computation Cores (GCC) that calculate the

gradients of the input stereo images. While the original algorithm in [142] uses only the

gradients in 𝑥 direction in the final SCV function, this work utilizes the gradients in 𝑦

direction as well, as it was found to yield better quality results. Therefore, the GCCs

implement the Sobel operator to calculate the gradient values in both directions using the

architecture shown in Figure 5.7 (a). The architecture performs convolution of 3𝑥3 windows

Figure 5.6: Architecture of the proposed GIF-based Stereo Matcher.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 132

(fetched from a scanline buffer) with the Sobel kernels using two convolution units (CONV),

and normalizes the result in the range [0,255] (NORM units). The GCMMU is also

responsible for buffering the computed gradients and input color values, and providing them in

a synchronized way to the CVCU. In particular, it stores 2𝑟 + 1 lines of both RGB and

gradient data in single-ported BRAMs working in read-first mode. This allows access on both

the new and old pixels; new data written to the BRAM represents the new pixel, while the

previous content of the address put on the data output is the old pixel. The new pixels (BRAM

inputs) are synchronized with the old pixels (BRAM outputs) by introducing one cycle delay

through register buffers. Finally, the RGB and gradient values of the 2𝑑𝑀 most recently

fetched old and new pixels in the target image (right) are stored in serial-in parallel-load shift

registers. This allows the CVCU to exploit disparity level parallelism.

5.4.2 Cost Volume Construction Unit (CVCU)

The CVCU employs a cascade of Cost Computation Units (CCUs) that calculate the

pixel-wise costs between the new and old pixels in the left image and their 2dM corresponding

pixels in the right image. The architecture of a CCU is shown in Figure 5.7 (b). It consists of

absolute difference units, adders and comparators that calculate the truncated color and

gradient costs, which are then summed up to compute the overall cost. However, prior to the

summation, the truncated color and gradient costs are multiplied by constant values, in order

to balance their influence in the overall cost. The constants are selected to be powers of 2 to

replace multiplication with shifting. The final pixel costs calculated by using the left image as

reference are stored in cost memory buffers, and are reused for the computation of the right

disparity map by the CVFDSU.

Figure 5.7: (a) Gradients Computation Core, (b) Cost Computation Unit.

Chri
sto

s T
tof

i

133 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

5.4.3 Cost Volume Filtering & Disparity Selection Unit (CVFDSU)

The CVFDSU employs two series of GIFs; one working on the vertical and one on the

diagonal direction on the cost memories, to smooth the SCVs corresponding to the left and

right disparity maps, respectively. Smoothing is performed using the architecture of the GIF

shown in Figure 5.5. However, it must be noted that the mean and covariance images of the

input grayscale images are computed only once and shared between the different GIFs, in

order to effectively reuse the computed data and avoid extra hardware resources. The

CVFDSU also incorporates 2 WTA units (composed of comparators organized in tree

structures) that select the disparities with the minimum costs. Figure 5.8 shows the

architecture of the CVFDSU in detail; note that the computation of the second disparity map

used during the left-right consistency check in the refinement step is computed by duplicating

this architecture. As can be observed, multiple slices of the SVC can be filtered in parallel,

depending obviously on the targeted FPGA and the available hardware resources.

5.4.4 Disparity Refinement Unit (DRU)

The DRU implements the L-R check and filling (interpolation) approach described in

Section 5.2.2 through a set of comparators and priority encoders that locate the nearest valid

disparities in the left and right direction of the invalid pixels. The interpolated disparity map is

then filtered to reduce “salt-and-pepper” like noise and remaining spikes by weighted median

Figure 5.8: Block diagram of the CVFDSU.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 134

filters. One approach to perform weighted median filtering is based on the segmentation-based

adaptive smoothing filter presented in the previous Chapter. As a reminder, this architecture

relies on cumulative histograms, to find the weighted median value, has a parallel

implementation able to computation of the median value for a window of size 𝑚𝑥𝑚 in a single

clock cycle. Its major hardware units include ROM memories, adder-trees, comparators and a

priority encoder that locates the median value among the totality of the bins. Moreover, the

binary weights generated by image segmentation ("one" if a disparity value lies in the same

segment with the central pixel of the window, "zero" otherwise). This approach is not only

hardware friendly, but also preserves object borders since pixels lying in the same segment are

more likely to lie at the same disparity. A simple method that partitions the disparity image

into segments based on thresholding was utilized. The binary weights are used as the enable

signals on the ROMs.

As we discussed in the theory section in this Chapter, the GIF can also be employed to

perform weighted median filtering in an efficient manner by relying on a cascade on mean

filters. The same architecture used to perform smoothing of the SVC (shown in Figure 5.8) can

be utilized to perform the GIF-based weighted median filtering. The only difference is that the

incoming values to the architecture do not come from the slices of the SVC but are generated

from the disparity map by utilizing a decoder, the size of which depends on the disparity range

(e.g. 6-to-64 decoder for dM=64). In fact, the decoder generates the 3D signal 𝑓(𝑝𝑐 , 𝑖) in

Figure 5.9: (a) Left-Right Consistency Check, (b) Filling of invalid pixels.

Chri
sto

s T
tof

i

135 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

, by decoding each disparity value into dM binary values, which form the inputs of the

architecture Figure 5.8. In the case, of weighted filtering, this architecture consumes less

resources, due to processing binary instead of 8-bit values (as in the case of the SVC).

The DRU finally implements a typical median filter (spike removal), which is also

implemented based on the cumulative histogram approach and the architecture discussed in

Chapter 4.4.3, Figure 4.5; however, since the typical median filter has not weights, the enable

signals of the ROMs are set to 1.

5.5 FPGA Implementation Results

This section explores the benefits of integrating the GIF in stereo matching hardware

designs by evaluating different configurations of the generic architecture presented in the

previous section using FPGA implementation and emulation. In particular, a detailed

performance analysis is performed to determine the configuration that better exploits the GIF

(in terms of obtaining the best accuracy/hardware overheads tradeoff for a given throughput

constraint), and based on that configuration, the section provides comparisons with related

dedicated hardware and software implementations.

5.5.1 Experimental Platform

The proposed hardware design of the GIF and the stereo matching architectures that

integrate the filter design have been implemented on the Inrevium‟s Kintex-7 FPGA Display

Kit [133], which is equipped with a Xilinx Kintex-7 FPGA (XC7K325T-FFG900) [134]. We

used a custom-built stereo camera system consisting of two Sony Handycam video cameras

configured to output 1280x720 images at 60 fps (720p@60Hz HD video). The stereo camera

setup was directly interfaced to the FPGA board through capturing FMC daughter cards [135],

and was utilized to capture stereo video sequences, which were rectified (through a custom

hardware stereo image rectification unit that follows the architecture presented in [145]), and

used as input data to the system architecture(s) shown in Figure 5.6. We configured the

different system architecture(s) to receive stereo video sequences synchronized with the

HDMI pixel sampling clock. The refined disparity maps were also synchronized with the pixel

clock, and directed to an HDMI-compatible monitor. The experimental testbed and system

diagram of the prototype FPGA implementation is given in Figure 5.10 (a). The resulting

disparity maps for both benchmark and real-world stereo images are shown in Figure 5.10 (b)

& (c), respectively.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 136

5.5.2 Cost-Benefit Analysis

As already discussed in the previous sections, the GIF can be utilized both for cost

volume filtering in the cost aggregation step, and also for weighted median filtering during the

disparity refinement step. By integrating it in both of these processing steps, it is more likely

to enable higher disparity map accuracy; however, at the cost of more hardware and power

demands. In order to determine how the GIF can best benefit stereo matching dedicated

hardware designs, a number of different configurations of the generic architecture of Figure

5.6 were explored. Given a targeted throughput constraint of 60 fps (imposed by the frame rate

of the cameras used), this exploration aims primarily to find an effective tradeoff between

matching accuracy and required hardware resources.

Table 5.1 lists the various possible system configurations. The first configuration utilizes

the GIF for filtering both the SVC and the resulting disparity map (weighted median filtering).

This corresponds to an ADSW stereo matching architecture. A second configuration replaces

the GIF with a series of mean filters (box filtering), which is equivalent to performing the

Figure 5.10: (a) Experimental Testbed. (b) Benchmark Stereo Images. (c) Real-world Stereo

Pairs Captured in the Lab.

Chri
sto

s T
tof

i

137 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

aggregation using a fixed support window (due the use of equal weights). In this case, the

required hardware resources should be much lower; instead of using two series of cascaded

GIFs (that are implemented using cascades of mean filters), aggregation is perform by

utilizing only a cascade of mean filters (considering the symmetrical nature of this aggregation

type). The problems of fixed support aggregation are well discussed several times in this

thesis. This configuration aims to investigate whether integrating the edge-aware GIF in the

refinement step can alleviate some of these problems. The rest of the configurations listed in

the table result from different combinations of weighted median filters (e.g. the GIF with the

segmentation-based weighted median filter presented in Chapter 4, or each filter alone). The

table also lists the different system parameters associated to each configuration; these

parameters were found empirically to yield the maximum matching quality for the specific

configuration. Figure 5.11 provides a visual illustration of the possible configurations (dashed

lines indicate the units that take part in the different combinations).

The various stereo matching designs listed in Table 5.1 are compared in terms of

matching accuracy (measured in terms of the percentage of bad matching pixels relative to

ground truth disparity maps from the Middlebury dataset [26]), and FPGA resource usage

(Slice LUTs, Slice Registers, embedded memory and DSPs). These metrics are analyzed based

on the minimum clock frequency required to fulfill the fixed throughput constraint (60 fps)

Figure 5.11: Various Stereo Matching Hardware Designs utilizing the GIF.

Table 5.1: Definition of the various stereo matching designs that utilize the GIF.

System

Conf.
Description System Parameters

SC1 GIF_AGGR.1 & GIF_WMF2 & SB_WMF3 {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔,, 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 7, 2, 19, 9}

SC2 GIF_AGGR. & GIF_WMF {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔 , 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 7, 2, 19, 9}

SC3 GIF_AGGR. & SB_WMF {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔 , 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 7, 2, 19, 9}

SC4 BOX_AGGR.4 & GIF_WMF & SB_WMF {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔 , 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 6, 1, 19, 9}

SC5 BOX_AGGR. & GIF_WMF {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔 , 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 6, 1, 19, 9}

SC6 BOX_AGGR. & SB_WMF {𝑟𝑎𝑔𝑔𝑟 , 𝜀, 𝑇𝑐 , 𝑇𝑔 , 𝑟𝐺𝐼𝐹𝑊𝑀𝐹 ,𝑟𝑆𝐵_𝑊𝑀𝐹 } = {3, 0, 6, 1, 19, 9}
1 ADSW cost aggregation using the GIF; 2 Weighted median filtering using the GIF;
 3 Segmentation based weighted median filtering; 2 Fixed-support aggregation using box filtering;

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 138

imposed by the stereo cameras; this frequency is 74.25 MHz for a camera resolution of

1280x720 (720p HD video). The FPGA utilization figures and matching quality are

summarized in Table 5.2 & Table 5.3, respectively. As can be observed, SC1 is associated with

the lower error matching rate, but at the same time, it results in the most hardware demanding

design. On the other hand, the most efficient hardware design in terms of utilized FPGA

resources is SC6. However, this design, which implemented simple box aggregation with fixed

window size, produces the less accurate disparity maps.

To compare the different hardware implementations in terms of matching accuracy and

FPGA resource usage, we developed tradeoff x-y scatter plots for each different type of FPGA

resource (i.e. LUTs, registers, etc.) versus the average error matching rate. The scatter plots are

depicted in Figure 5.12. Ideally, the configurations yielding the better accuracy/resource usage

tradeoffs should be located at the right lower corners of the scatter plots, suggesting that SC4

and SC5 are the best possible choices. These configurations integrate the GIF in the disparity

refinement step, and perform weighted median filtering on the disparity map by utilizing only

a cascade of GIFs that process binary values (see equation ). The cost aggregation step is

perform with simple box filtering, which due to its symmetry, it requires only filtering of a

single SVC with a cascade of box (mean) filters; the values of the filtered SVC are reuse for

computing the other filtered SVC. Hence, SC4 and SC5 consume less hardware resources

compared to the most accurate configuration (SC1), which however, filters two independent

Table 5.2: FPGA resource usage of the various system configurations.

System

Configuration

Slice LUTs Slice Registers DSP48E BRAM

Total=203800 Total=407600 Total=840 Total=445

SC1 181866 ~89% 139704 ~34% 738 ~87% 441 ~99%

SC2 179015 ~87% 135303 ~33% 738 ~87% 437 ~98%

SC3 97287 ~47% 129964 ~31% 738 ~87% 271 ~60%

SC4 55739 ~27% 38303 ~9% 328 ~39 310 ~69%

SC5 52888 ~25% 33902 ~8% 328 ~39 306 ~68

SC6 36396 ~17% 29842 ~7% 4 ~1 140 ~31

Table 5.3: Matching accuracy of the different system configurations.

System

Conf.

Tsukuba Venus Teddy Cones
Avg.

Error

NONOCC ALL DISC NONOCC ALL DISC NONOCC ALL DISC NONOCC ALL DISC %

SC1 2.57 3.09 8.89 0.30 0.52 2.65 6.96 12.3 16.8 2.91 8.59 8.48 6.17

SC2 3.42 3.99 9.72 0.48 0.66 3.29 7.05 12.4 16.0 3.11 8.22 9.01 6.45

SC3 4.78 5.28 9.47 1.86 2.22 5.54 8.09 13.5 18.1 3.36 9.37 9.32 7.57

SC4 2.38 3.01 9.38 0.40 0.70 3.62 7.23 12.7 17.2 2.87 8.59 8.27 6.36

SC5 3.48 4.11 10.3 0.89 1.21 5.09 7.41 12.8 16.7 2.86 8.64 8.26 6.81

SC6 5.17 5.92 11.0 2.93 3.47 8.01 9.05 14.5 20.3 3.81 9.94 10.2 8.70

Chri
sto

s T
tof

i

http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/tsukuba/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/venus/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/teddy/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/cones/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/tsukuba/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/venus/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/teddy/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/cones/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/tsukuba/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/venus/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/teddy/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDbqt885j1bctpjhjqoc89l2pjh0/cones/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/tsukuba/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/venus/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/teddy/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/cones/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/venus/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/teddy/newAlgt100.html
http://vision.middlebury.edu/stereo/submit/php/tempAlgs/SIDtbb1krm2tteqb36vigurkict21/cones/newAlgt100.html

139 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

SVC (one when using the left images as reference, and one when using the right.) through two

series of cascaded GIFs, thus consuming excessive hardware resources.

Among configurations SC4 and SC5, we selected the former, as it is associated with

lower matching error rate (due to the fact that it also integrates the segment-based weighted

filter). Despite the significant savings in hardware resources when implementing SC4 over the

most accurate configuration SC1, the former configuration achieves a matching quality that is

on par with the quality of SC1. The general conclusion extracted from the aforementioned

tradeoff analysis is that disparity refinement can be at least as crucial as the so overlooked cost

aggregation. In addition, the GIF-based weighted median filter, thanks to its edge-aware

nature and compact hardware design, can significantly improve the matching quality even

when it is combined with simple box aggregation strategies. This is particularly important for

resource constrained embedded vision systems that require high-quality depth computation in

real time.

5.5.3 Comparisons with Related Work

5.5.3.1 Matching Quality

We used the Middlebury benchmark dataset [26] to evaluate the quality of the resulting

disparity maps. We measured the percentage of bad matching pixels relative to the ground

Figure 5.12: FPGA resource usage / matching accuracy tradeoff analysis using scatter plots.

0

20

40

60

80

100

6,00 7,00 8,00 9,00

U
ti

li
ze

d
 S

li
ce

 L
U

T
s

(%
)

Average Matching Error (%)

0

5

10

15

20

25

30

35

40

6,00 7,00 8,00 9,00

U
ti

li
ze

d
 S

li
ce

 R
e

g
is

te
rs

(%

)

Average Matching Error (%)

0

20

40

60

80

100

6,00 7,00 8,00 9,00

U
ti

li
ze

d
 D

SP
 U

n
it

s
(%

)

Average Matching Error (%)

0

20

40

60

80

100

6,00 7,00 8,00 9,00

U
ti

li
ze

d
 B

R
A

M
s

(%
)

Average Matching Error (%)

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 140

truth disparity maps of four pairs of test images in the dataset. The benchmark disparity maps

and those produced by the selected system configuration are shown in Figure 5.10 (b).

Quantitative evaluation results are listed in Table 5.4 (columns 2-5), which also provides a

comparison with related work. As it can be observed, the proposed GIF-based architecture

generates high quality results, even at regions with low texture and close to object boundaries;

this is evidenced by obtaining the lowest error rates among related hardware implementations

at DISC regions. Most importantly, among the implementations for which an overall

percentage of bad matching pixels is provided, the proposed system obtains the lowest error

rate. Besides the Middlebury benchmark images, the proposed architecture is able to deal with

real-world scenes as well, producing detailed and accurate disparity maps with clean object

boundaries (see Figure 5.10 (c)).

We have also investigated how the resulting disparity maps are compared with those

generated by hybrid CPU/GPU implementations [142], [143] that adopt GIF-based stereo

matching algorithms. As it can be observed from Table 5.4, the distance in quality between the

works in [142], [143] and the proposed architecture is only 0.84% and 0.17% on average. It

should be noted, that these implementations utilize a color version of the GIF, which in general

yields better accuracy. Therefore, the distance in quality can be further reduced if the proposed

GIF-SM is extended to support color guidance images as well. Finally, it is worth mentioning

that the matching accuracy of the proposed GIF-based stereo matcher (SC4) is slightly better

than the quality of the original ADSW algorithm in [62] (6.36% vs. 6.67%), while the ADSW

dedicated hardware implementations in [115], [68] exhibit a quality reduction compared to

[62] of ~4.84% and ~4.68%, respectively. This evidences the superiority of the proposed

hardware-based GIF-SM in maintaining the matching accuracy of the original ADSW

algorithm, thanks to the integration of the GIF.

5.5.3.2 Processing Speed

We measured the processing speed of the proposed GIF-SM in frames processed per

second (fps) and in Million Disparity Estimations per second (MDE/s), a metric that also takes

into account the number of pixels and the disparity range (MDE/s=M∙N∙D∙fps). The FPGA

prototype of the architecture (SC4) is able to process 720p (1280x720) HD video at 60 fps,

with a pixel clock rate of ~74.25MHz. When considering the post place-and-route frequency

(103 MHz) provided by the Xilinx ISE Design tool, the maximum throughput of the

architecture is expected to reach ~83 fps. In general, the architecture presents good scalability

Chri
sto

s T
tof

i

141 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

with respect to the frame rate and image size, as it is intensively pipelined and synchronized

with the pixel clock rate. Therefore, it can easily be configured to process Full HD 1080p

video (pixel clock = 145 MHz) by simply increasing the number of pipeline stages.

Table 5.4 (columns 6-10) presents a comparison between the developed FPGA prototype

and related work in terms of processing speed. Obviously, the proposed system is among the

fastest implementations when considering the MDE/s metric, outperforming all dedicated

hardware implementations targeting high-quality disparity map estimation. Only the work in

[13] obtains higher MDE/s. However, this implementation is not competitive in terms of

quality, mainly due to the use of a fixed support algorithm and its associated problems

discussed in Chapter 2.5.1.2. Finally, the proposed system has a speedup improvement of ~17x

and ~8x when compared to the hybrid CPU/GPU GIF-based stereo matching systems in [142]

and [143], respectively, thus justifying the very small quality reduction. Conclusively, the

obtained speed/quality results indicate that the proposed system has high potential for

embedded vision applications requiring fast and accurate depth computation.

5.5.4 FPGA Synthesis Results - System scalability

Table 5.5 summarizes synthesis results in terms of FPGA utilization figures, operating

frequency and power consumption for each of the major components of the selected GIF-

based Stereo Matcher (system configuration 4 – SC4 in Table 5.1), in order to give a complete

picture of the required hardware overheads associated with the system. The complete FPGA

prototype of this system for a disparity range of 64 pixels (𝑑𝑀 = 64) utilizes ~28% of the

available Slice LUTs and ~18% of the available Slice Registers. It also utilizes ~55% of the

Table 5.4: Quality and Processing Speed Comparison with Related Work.

Work
Average Error Rates

Image size D
Speed

(fps)

MDE/s

(10
6
)

Platform
NONOCC1 ALL2 DISC3 OVERALL4

Baha [137] 7.16 11.5 n.a. n.a. 450x375 50 46 388 FPGA

Zhang [140] 4.41 7.41 12.8 8.20 1024x768 64 60 3019 FPGA

Jin [108] 8.31 13.9 27.2 16.5 640x480 64 230 4522 FPGA

Ambrosch [109] 5.82 9.37 22.2 12.5 750x400 60 60 1080 FPGA

Chang [114] n.a. 6.81 n.a. n.a. 352x288 64 42.5 276 ASIC

Ding [115] 7.41 11.9 15.6 11.5 640x480 60 51 940 FPGA

Perri [68] 4.39 10.09 19.57 11.35 640x480 60 45 829 FPGA

Gehrig [138] n.a. 8.13 n.a. n.a. 340x200 64 27 118 FPGA

Banz [139] 8.43 n.a. n.a. n.a. 640x480 128 30 1179 FPGA

ADSW [62] 3.48 6.53 9.98 6.67 320x240 30 0.01 0.0263 n.a.

Hosni [142] 2.65 5.57 8.43 5.55 640x480 26 25 200 CPU/GPU

Ma [143] n.a. n.a. n.a. 6.19 450x375 59 45 448 CPU/GPU

Proposed (SC4) 3.22 6.25 9.61 6.36 1280x720 64 60 3538 FPGA
1all points except for occluded areas, 2 all points including half-occluded regions, 3 only points along depth discontinuities. 4 average error
rate at nonocc, all and disc regions.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 142

DSP units and ~68% of the block memories. With respect to the on-chip power consumption,

the entire system dissipates ~3 W. Table 5.5 also provides the hardware overheads of the

proposed GIF-SM (SC4) for different values of 𝑑𝑀 = {16,32,64}, in order to investigate how

it scales with respect to 𝑑𝑀 . It can be observed that the hardware implementation complexity

of the GIF-SM scales almost linearly with the number of disparity levels when considering the

number of utilized LUTs and DSP units. The amount of utilized slice resources exhibits a

quadratic increase, which is mainly attributed to the size of the cost memory buffer aimed to

store the aggregated scores that are reused for the computation of the second disparity map

(the size of the buffer is 𝑑𝑀 2). Regarding the scalability of the GIF-based weighted median

filter (GIF-WMF), it is observed that different FPGA resources consumed by this component

increase almost linearly with the disparity range. The remaining components listed in the table,

which include pre-processing (rectification) and post-processing units (LR-check & Filling

and unweighted median filtering) consume relatively low FPGA resources.

5.6 Concluding Remarks

This chapter investigated how to integrate the edge-preserving guided filter into stereo

matching hardware designs, as a means to enable high-quality and concurrently real-time

depth computation. A compact and efficient hardware design of the filter was illustrated,

which was then utilized to develop a number of different stereo matching architectures,

implementing both fixed-support and adaptive-support weight methods. The different GIF-

based stereo matching designs were compared in terms of matching quality / resource usage

Table 5.5: Kintex-7 Synthesis Results for major system components.

Design Unit
Slice LUTs Slice Registers DSP48E BRAM Freq. Power

Total=203800 Total=407600 Total=840 Total=445 MHz Dynamic Static

Rectification 3473 1.7% 6146 1.5% 0 0% 24 5.4% - - -

BOX_AGGR-16 8023 3.9% 5861 1.4% 34 4% 56 12.6% 181 0.5 ~0.13

BOX_AGGR-32 14943 7.3% 10085 2.5% 66 7.9% 72 16.2% 181 0.7 ~0.13

BOX_AGGR-64 29401 14.4% 49702 12.2% 130 15.5% 104 23.4% 181 1.3 ~0.13

LR-check & Filling 504 <1% 650 <1% 0 0% 0 0% 489 0.08 ~0.03

SB_WMF 2851 1.4% 4401 1% 0 0% 4 <1% 500 0.27 ~0.13

UMF 1718 <1% 1778 <1% 0 0% 0 0% 679 0.02 ~0.13

GIF_WMF-16 5527 2.7% 2821 0.7% 84 10% 50 11.2% 103 0.33 ~0.13

GIF_WMF-32 10131 4.9% 4701 1.2% 164 19.5% 90 20.2% 103 0.61 ~0.13

GIF_WMF-64 19343 9.5% 8461 2.1% 324 38.6% 170 38.2% 103 1.2 ~0.13

GIF-SM-16 (SC4) 21920 10.7% 21223 5.2% 122 14.5% 134 30.1% 103 1.14 ~0.13

GIF-SM-32 (SC4) 33570 16.5% 27490 6.7% 234 27.9% 190 42.7% 103 1.64 ~0.13

GIF-SM-64 (SC4) 57492 28.2% 71192 17.5% 458 54.5% 302 67.9% 103 2.8 ~0.13
BOX_AGGR-x: GCMMU & CVCU & CVFDSU for 𝑑𝑀 = {16,32,64}

GIF_WMF-x: Weighted median filter using guided filter weights for 𝑑𝑀 = {16,32,64}
SB_WMF: Segment-based weighted median filter

UMF: Unweighted median filter

Chri
sto

s T
tof

i

143 High-Quality Real-Time Hardware Stereo Matching Based on Guided Image Filtering

tradeoff, and the configuration that best exploits the benefits on the GID was selected to be

implemented as part of a complete stereo vision system on an FPGA platform. Experimental

results have shown that the proposed GIF-based stereo matching design can enable real-time

frame-rates even on HD images. Moreover, the GIF‟s inherent edge-preserving nature allows

for improved matching accuracy when compared to existing state-of-the-art hardware stereo

matching systems.

Chri
sto

s T
tof

i

CHAPTER 6

6 Incorporating Real-Time

Depth Computation in Embedded

Vision Applications

THIS chapter aims to show the significance of real-time depth computation in embedded

vision applications. The design of a depth-accelerated hardware object detection system is

first introduced, following by a real-time obstacle avoidance system for mobile robots. These

example applications, which utilize depth information provided by the architectures presented in

the previous chapters, clearly show that the design of stereo vision architectures satisfying real-

time and low-power constraints is and remains important for implementing cost-effective

embedded vision systems.

6.1 Depth-Accelerated Hardware Object Detection

The section provides useful insights obtained from the integration of the edge-directed

stereo matching design in a hardware object detection system. Section 6.2.1 introduces the

problem of object detection, its challenges, and the motivation behind this work. Section 6.1.2

gives a summary on the object detection process, and explains how depth information can be

used to reduce the overall search space involved in this process. Section 6.1.3 provides

information about related work on object detection hardware systems. Section 6.1.4 presents

the proposed depth-guided object detection hardware architecture, and Section 6.1.5 presents

the experimental platform and simulation results.

6.1.1 Introduction - Motivation

Object detection, an important used task in several computer vision and artificial

intelligence applications, refers to the ability of a computer system to determine the presence

of objects of interest in images. Emerging applications that utilize object detection such as

human-computer interaction, surveillance, biomedical imaging, space missions, and

automobile applications among others, require real-time detection and low energy

T

Chri
sto

s T
tof

i

145 Incorporating Real-Time Depth Computation in Embedded Vision Applications

consumption. In such cases, software implementations of object detection usually struggle to

meet the real-time performance and low energy constraints, and as a result some form of

hardware acceleration or even a complete custom hardware implementation is preferred [146],

[147]. Additionally, the improved performance stemming from hardware architectures extends

the application spectrum in the 3D world, where stereo and multi-view cameras can be used

for object detection in 3D environments. Furthermore, the performance in terms of detection

frame rates of hardware architectures enables optimization steps to be included in the

algorithm, while maintaining the real-time constraints. Such steps include image enhancement

techniques, segmentation and other well-known steps traditionally used in software

implementations.

Several hardware-based object detection architectures yielding real time results emerged

in recent works [148], [147], [149]. The majority of these architectures employ the traditional

sliding search window approach, which generates a lot of data and makes the object detection

process time consuming and tedious in terms of hardware data flow. Moreover, only a few

implementations feature optimizations, which have been widely used in software

implementations, that can potentially contribute in reducing the hardware constraints in terms

of efficient data handling and energy consumption. Some of the few hardware optimizations

employed, utilize techniques such as color segmentation and background segmentation [150],

[151]. Recently, the idea to utilize depth information emerging from disparity maps in

stereoscopic applications has been proposed for reducing the effective search space in the

input image. Such software implementations have yield promising results [152], [153], [154].

Motivated by the software mechanism presented in [152], this section provides insights

about a hardware integration of depth information extracted from stereoscopic disparity map

computation, as a means to reduce the search space and energy consumption of hardware

object detection systems. This reduces the overall search area of the classifier, which in turn

allows real-time detection of larger images as well as reduction of the overall energy

consumption, when compared to naive sliding window search used in traditional object

detection. In contrast to the software implementation in [152], we exploit the inherit

parallelism of the disparity map computation and object detection algorithms by integrating a

variant of the edge-directed disparity computation architecture presented in Chapter 3 along

with a hardware SVM-based object detection classifier developed from the base model

presented in [155], to implement an optimized object detection framework for hardware

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 146

stereoscopic systems. This section focuses on providing a discussion about the hardware

design parameters and the necessary trade-offs involved in using the disparity information, and

presents a complete experimental platform that includes a stereoscopic camera capturing

platform, camera calibration, classifier training and visual display. The entire system was

implemented on a Virtex-5 FPGA platform targeting the application of face detection for a

stereo image pair of 240x320 (row x column) pixels. We observe frame-rate speedups in the

range of 1.9-4.7 when compared to a traditional sliding window approach and estimated

energy savings of 41-48%.

6.1.2 Background

6.1.2.1 Object Detection Overview

The process of image object detection deals with determining whether an object of

interest is present in an image/video frame or not, regardless of its size, orientation, and

environmental conditions. An image object detection system receives an input image/video

frame, and subsequently searches to locate possible objects of interest. This search is usually

done by extracting smaller regions from the frame, called search windows, of m x n pixels,

which are processed by a classification algorithm to determine if they belong to the object of

interest or not. To account for the variable sizes in objects given the typically fixed size of the

search window, an object detection system usually downscales the input image in steps,

effectively reducing the size of the object of interest, and reexamines the image, until the

downscaled image is equal to the size of the search window. Many downscaled images are

produced from a single input image/video frame, each in turn producing a number of search

windows, which increases the amount of data that must be processed by the classification

algorithm. While exhaustive search has been the most popular approach, the number of search

windows becomes prohibitive as the size of the input image increases. Popular methods that

have been used to reduce the number of generated windows include skin segmentation,

background removal and recently depth information.

6.1.2.2 Depth Extraction

Depth information can be extracted by using a stereo vision system which works

similarly to the way that the human visual system infers depth. Stereo vision systems can

infer depth information about a scene from a stereo image pair (usually referred to as left and

right images) [9], [45]. Depth information evolves from the computation of the disparity map,

from which information about the depth of objects in an image frame, relative to the location

Chri
sto

s T
tof

i

147 Incorporating Real-Time Depth Computation in Embedded Vision Applications

of the camera(s), can be extracted. Generally, there are three important tasks for computing the

disparity map: camera calibration, stereo image rectification and stereo correspondence.

Calibration integrates information from intrinsic camera parameters such as focal length (f),

and extrinsic parameters such as relative orientation angles between the two cameras, to

determine the camera perspective projection matrices, necessary for the stereo rectification

algorithm. Rectification can project one of the two images in the other‟s common plane to

reduce a 2D search problem in non-rectified images into a 1D search problem along the

horizontal raster lines of the rectified images [45]. The stereo correspondence algorithm takes

the two rectified images as input and produces a disparity map d(x,y) for each pixel in one of

the two images. Generally, the disparity map stores distances between corresponding points of

interest in the two images, and is computed using searching and matching techniques. Depth

information (Z) can be computed from the disparity map using the formula 𝑍 = 𝑓 ∗ (𝑏 𝑑)

where b refers to the baseline distance between the stereo camera optical centers.

6.1.2.3 Depth Guided Object Detection

By using depth information extracted from a pair of stereo images it is possible to

estimate the size of the object at a given location, thus avoiding the downscaling process and

subsequently reducing the generation of a large number of search windows from each

downscaled version. The relationship between the actual size of the object (𝑂𝑠𝑖𝑧𝑒) as is

represented in the real 3D world and its projection in one of the stereo image frames (𝑊𝑠𝑖𝑧𝑒)

can be estimated using equation (6.1) [45]. The equation essentially relates the size of the

object in the camera image plane with its size in the actual image. Using the relationship

between depth and the disparity map (d), we can use the disparity values instead (6.2), thus,

avoiding the direct computation of depth.

(Wsize /𝑓) = 𝑂𝑠𝑖𝑧𝑒 𝑍 → Wsize = 𝑓 ∗ 𝑂𝑠𝑖𝑧𝑒 𝑍 (6.1)

𝑍 = 𝑓 ∗ (𝑏 𝑑) → Wsize = 𝑂𝑠𝑖𝑧𝑒 𝑏 ∗ 𝑑 (6.2)

The depth-directed search overall procedure is given in Figure 6.1. Each value in the

disparity map corresponds to a certain search window size and the coordinates of that value

are at the center of that window. Consequently, there is no need for exhaustive search in the

disparity map on a pixel by pixel basis, but every few pixels, the same way that the sliding

window operates in traditional object detection schemes. Furthermore, if a large object is

found at the border of the image the window size it will most likely exceed the image

dimensions. That window can then be discarded and that object is left to be detected in another

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 148

window. Finally, any disparity values that map to windows which are smaller than the

expected window size are discarded and the next disparity value is processed. In this way the

number of candidate search windows is further reduced compared to the traditional object

detection search method.

6.1.3 Related Work

In recent years, a fair amount of work has been done in hardware implementations of

object detection algorithms. These works utilize techniques such as neural networks [146],

[148] and the Viola Jones detection algorithm [147], [149], and achieve relatively high

detection frame rates. However, the majority of these implementations follow the sliding

window search approach, where as mentioned earlier, a lot of windows investigated do not

contain object information, and as such a large amount of energy is wasted. Moreover, as the

input image size increases, this problem is further emphasized.

The use of optimization techniques, such as skin color segmentation and background

removal as a means to reduce the number of windows to be processed, and increase the

resulting frame rate, is suggested in several software implementations [150], [156], [157], with

only a few hardware implementations reported thus far [146], [158]. The former technique,

however, can only be applied to applications related to skin-based detection such as face

detection, while the latter may have increased complexity and computational demands

depending on the detection scenario. Alternatively, depth information as a means to reduce the

Figure 6.1: Window Size Estimation Algorithm. (a) The disparity map is sampled every few

pixels (b) For each disparity value the corresponding window size is estimated (c) Read window

pixel values from one of the two stereo images (d) Output result of classified windows.

Chri
sto

s T
tof

i

149 Incorporating Real-Time Depth Computation in Embedded Vision Applications

search space has recently been proposed in [152]. Depth is interpreted in the same way in

many environments and thus provides a more efficient way to reduce the search space for

different applications. Depth information can also be used after the detection process to reduce

the false positive detections, as shown in [153]. The work done in [153], however, targets

improved classification accuracy rather than reducing the search space to increase the

performance.

To the best of our knowledge, this is the first attempt that investigates the use of depth as

search reduction mechanism in hardware for performance improvement and energy reduction.

There has been some initial work done in software [152], [150], [154]. The work done in [152]

demonstrated the performance speedups from reducing the search space. The authors

developed a methodology that uses depth information to estimate the size of each search

window, which is then fed to a Viola-Jones face detector. However, the approach presented in

that work is only suitable for video sequences where the scene does not change much between

successive frames, otherwise the frame rate drops significantly. Moreover, the Viola-Jones

classifier requires many hardware resources [147] so a more flexible and simple classifier

might be appropriate. In this work, we attempt to optimize the depth based algorithm and

implement it in hardware, to allow for scalability and performance optimizations, and

potentially energy reduction. The depth-directed hardware implementation presented here

attempts to search a larger part of the depth information compared to [152] by utilizing parallel

hardware accesses to the depth information memory. We integrate the depth estimation

approach into an existing object detection hardware implementation, in order to explore the

potential performance and energy consumption benefits.

6.1.4 Depth-Accelerated Object Detection Hardware Architecture

The depth-accelerated object-detection architecture consists of three major hardware

units; the Disparity Extraction Unit (DEU), the Window Extraction Unit (WEU) and the

Classification Engine (CE). The system also consists of a system controller that optimizes

accesses to the external memory, controls I/O operation, and synchronizes the other major

units. The system uses two on-chip buffers to temporarily store the image data; the first buffer

stores the disparity values used for the search, and the second buffer stores the parts of the

image that are being searched for potential objects by the CE. Figure 6.2 shows an overview of

the system architecture and the communication flow between units.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 150

6.1.4.1 Disparity Extraction Unit

The Disparity Extraction Unit (DEU) integrated to the system is based on the edge-

directed disparity estimation hardware architecture presented in Chapter 3. Therefore, the

DEU combines the SAD matching algorithm with the features (edges) extracted by the use of

an edge detector in order to perform correlation on rectified stereo image pairs that present a

maximum disparity range of 40 pixels (maximum correlation window sizes up to 11x11). The

DEU uses optimized memory accesses to the external memory and was designed with

emphasis on parallelism. These features enable the architecture to obtain frame rates that

exceed the 150 fps for an image size of 240x320. This is particularly important, as the time for

disparity computation must be small enough in order to obtain a speedup in the overall

operation (disparity computation + object detection).

6.1.4.2 Window Extraction Unit

The window extraction unit (WEU), shown in Figure 6.3, is responsible for computing

(6.2) which estimates the size of the disparity-directed search window, based on the disparity

values provided by the DEU. It essentially links the DEU with the classification engine by

generating the addresses for the pixels that will be fed to the classification engine. The WEU

receives disparity values and the corresponding coordinates of those values from the DEU. It

then estimates the necessary search window size in the original input image. The classification

Figure 6.2: Proposed Hardware System Architecture.

Chri
sto

s T
tof

i

151 Incorporating Real-Time Depth Computation in Embedded Vision Applications

stage usually receives fixed-size search windows (m x m in our case), therefore the WEU is

responsible for compensating for the different sizes. The WEU performs comparisons to check

if the disparity-directed search window is smaller than the classifier window size (m x m), and

whether it exceeds the original input image boundaries. If one of the conditions is true, the

disparity-directed search window is discarded.

In the likely case that the window size is greater than m x m but smaller than the original

image boundaries, we need to downscale the window to m x m so that it fits in the

classification stage. We employ the downscaling method as it does not increase the memory

and computation demands, even if it can lead to some data loss. Furthermore, in this case we

do not need to read the entire disparity-directed search window first and then downscaling it,

but rather read only the pixels that are required to form the m x m search window from the

larger window. This ensures that for every window, regardless of the estimated window size,

only m
2
 pixel values will be read and sent to the CE. To achieve this, we map every coordinate

from a m x m window onto one coordinate of the larger window, by essentially upscaling the m

x m window and fetching the pixels from the mapped coordinates. Details of this scaling

technique are given in Figure 6.4.

6.1.4.3 Classification Engine

The classification engine (CE) used in the proposed detection system features a simple,

yet powerful Support Vector Machine [159] hardware architecture proposed in [155]. The

Figure 6.3: Window Extraction Unit.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 152

processing elements are responsible for computing dot-product operations between vectors

while dedicated units handle the scalar processing of the SVM computation flow. The

classifier is modular and simple; hence, a number of parallel classification units can be used,

to account for different performance demands. The classifier receives the m x m search

window as input, and returns whether the window contains the object of interest or not. The

CE architecture and the interconnectivity between processing elements are illustrated in

Figure 6.5.

6.1.4.4 Flow of Data

The overall operation is partitioned into three stages: disparity computation, search

window estimation and window classification. The memory controller fetches the stereo image

pair from the external memory to the DEU in raster-scan fashion, and stores the incoming

pixels in the input image buffer. The DEU utilizes these values from the buffer and computes

the disparity map, which in turn stores in the disparity buffer. Then the WEU can begin the

window estimation procedure for the computed disparity values. If the generated window is

valid the WEU generates the addresses from which to fetch pixels for that window. The

memory controller receives the addresses and starts fetching the pixel data from the input

image buffer. The incoming pixels are fed to the CE which determines whether the object of

interest is present in the window or not.

Figure 6.4: Downscaling Process. Each coordinate in the 19x19 window is mapped to a

coordinate in the larger window. The coordinates where the 19x19 window coordinates are

mapped, correspond to the pixels values that will be read for classification.

Chri
sto

s T
tof

i

153 Incorporating Real-Time Depth Computation in Embedded Vision Applications

6.1.5 Experimental Platform and Results

6.1.5.1 Experimental Platform and Methodology

To evaluate the proposed architecture we implemented the system architecture shown in

Figure 6.2 using a Xilinx ML505 board (Virtex 5-LX110T FPGA), targeting face detection, a

popular object detection application. The Microblaze soft processor [122] was used as the

system I/O controller to handle tasks such as memory transfers and external I/O. We used a

custom built stereo vision system to construct a dataset consisting of ten 240x320 stereo image

pairs to evaluate the architecture. The stereo system consists of two video cameras separated

by a baseline distance of 77mm, both with a focal length of 25mm. The stereo system was

calibrated using the Camera Calibration Toolbox for MATLAB [47], and was then used to

capture stereo image pairs, which were rectified and stored on the on-board DRAM, and used

as input data to the system. Visual output was directed to a digital monitor, through the on-

board DVI output Figure 6.6 (b and c) shows the output of our experimental framework.

The training of the Support Vector Machine classifier was carried out in MATLAB using

the methodology and strategies employed in [160], [161]. We used the face detection database

from [162], which we also enhanced using bootstrapping. The training procedure produced

400 support vectors for a 2
nd

 degree polynomial kernel (x · y + 1)
2
 [159], and all training data

were stored on the FPGA Block RAM.

To evaluate the performance of the proposed architecture we setup two different

configurations: one using the disparity map to guide the search window space, and one using

the traditional sliding window approach. The latter consists only of the SVM classifier and a

controller which fetches window data from the input image for various scales. The two

Figure 6.5: SVM classification engine architecture.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 154

systems have the same I/O constraints, memory requirements, and training data. We identify

the speedup and hardware overheads of the proposed architecture compared to the traditional

object detection approach. Additionally, we also provide results when increasing the number

of CEs from one to three, to illustrate the impact of inter-window parallelism as an added

benefit of the reduction in search data stemming from the disparity-directed computation.

The sliding window approach requires that the input 240x320 is scaled a number of

times to account for different object sizes. As such the input 240x320 image is downscaled

five times resulting in additional five images (180x240, 90x120, 45x60, 36x48, 19x19). For

each image we generate windows with an overlap of 5 pixels resulting in a total of 4,874

generated windows. On the other hand, for the depth-directed approach we sample the

disparity map every 5 pixels to achieve a high granularity and also compensate for erroneous

disparity values. In the worst case scenario all sampled disparity map windows will be valid

windows resulting in a total of 2496 windows. However, practically this will not be the case,

as from a number of experiments we carried out the number of valid windows is on average

around 1000, and possibly less depending on the number and size of objects inside the input

image.

The performance of depth accelerated object detection system is measured by the time

necessary to compute the disparity map of the input stereo pair and the time needed by the

classification engine (in our case SVM) to classify the generated windows from one of the two

stereo images. The total processing time is affected by the performance of the DEU and the

CE. When the DEU performance is greater, the speedup will also be improved. On the other

hand, when the performance of the CE is greater, the speedup is constraint by the DEU

performance. The experimental results over the input stereo pairs of images we used indicate

that by using the depth guided object detection the number of generated windows is reduced

Figure 6.6: Evaluation Images and Results. (a) Right Images from stereoscopic pairs (b)

Disparity Maps from stereo processing (c) Detection results using depth-guided method (d)

Detection results using the traditional sliding window approach.

Chri
sto

s T
tof

i

155 Incorporating Real-Time Depth Computation in Embedded Vision Applications

on an average of 80% (about 3800 less windows) compared to the traditional sliding window

approach. As a result, the frame rate is also increased.

This drastic reduction in search windows makes the performance of the chosen

classification stage (CE unit) critical in the proposed implementation. However, this is an

easily addressable issue, as the classification engine is modular and scalable, thus additional

classification engines can be integrated to the system for performance improvement purposes.

6.1.5.2 Performance Results

We compare the performance speedups when using the depth-directed search compared

to the traditional sliding window search, for a range of 1 to 3 CEs. In all three cases, we

observe speedups in the range of 1.9 for the worst case scenario, and 4.7 for the average case.

The comparisons are done using the same number of classifiers, with and without the

integration of depth acceleration. Three classification engines are needed for real time

performance. However, it was observed that when a disparity-directed search is used, only one

classifier is necessary for real-time performance (for the average case), yielding both hardware

and energy savings. It must be noted that in the current configuration, the bottleneck of the

system is the classifier. However, as the number of classifiers increases, the performance

bottleneck shifts from the classifier to the disparity computation. Table 6.1 summarizes the

performance results for various system configurations for both the average and worst case.

In comparison, the algorithm proposed in [152] and implemented in software offers

speedup of 2.8, as it does not take advantage of the inherent parallelism of the application.

Furthermore, the resulting speedup is also achieved by searching specific regions in the image

every two frames instead of one. It must also be noted that [152] uses a different classifier,

that consumes many resources when implemented in hardware [147]. Moreover, the detection

Table 6.1: Performance for different system configurations.

Configuration

FPS # of Windows # of

CE

Window Generation

Method
of WEU

1 SW - 11 4874

2 SW - 21 4874

3 SW - 32 4874

1 DA 1
21 2496 (worst case)

53 ~1000(average)

2 DA 2
42 2496 (worst case)

107 ~1000 (average)

3 DA 3
64 2496 (worst case)

150 ~1000 (average)

SW: Sliding Window, DA: Depth Accelerated, CE: Classification Engine

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 156

results are comparable with those of existing hardware detection systems featuring other

classifiers [148], [147], [149], achieving 28-30 frames per second. We observe that in the

worst case with one classifier and depth acceleration the performance is comparable with

exiting works, while all other scenarios that use depth acceleration outperform the

performance of existing works.

Detection accuracies of the SVM CE are similar to other reported works [160], [161] at

about 95% for the given training set [162]. While the accuracy of the detector relies heavily on

the chosen classifier and the training set and is beyond the scope of this thesis, an inherent

advantage of the proposed depth-directed approach also includes a reduction in the number of

false-positive detections, as expected. Evidenced by Figure 6.6 (c) and Figure 6.6 (d), when

utilizing depth information, the number of samples is reduced and as a result the number of

false positive detections is reduced implicitly, improving the system accuracy.

6.1.5.3 Energy Savings and Hardware Overheads

We used the Xilinx X-Power Analyzer tool and the input stereo data as input to the

system in order to determine the relative energy savings when comparing the sliding window

approach vs. the depth-directed approach. We obtained average dynamic power consumption

figures, which we then used to estimate the total energy consumption per frame for each

system. Results show that there is approximately 48% energy reduction in energy per frame

when using 1 CE. Energy savings are observed also as the number of CEs increases; when

increasing the number of CEs from 1 to 3, the reduction in energy is 41%. We observe that the

savings are reduced however, indicating that the primary source of energy consumption in the

optimized system is the CE unit. Overall, the energy savings are attributed to the large amount

Table 6.2: Hardware requirements for each unit and different system configurations.

System

FPGA Resources

Slice LUTs

(69,120)

Slice Registers

(69,120)

DSP48E

(64)

Block Ram

(148)

WEU 419 (~1%) 33 (~1%) - -

CE 14,385 (20%) 5,197 (7.5%) 8 (%) 100 (67%)

DEU 11,996 (17%) 16,145 (23%) - -

Microblaze 7,016 (10%) 8,180 (11%) 3 (4%) 30 (20%)

1 CE, SW 21,401 (32%) 13,377 (19%) 8 (12%) 130 (87%)

2 CE, SW 35,786 (51%) 18,574 (26%) 16 (25%) 130 (87%)

3 CE, SW 50,171 (72%) 23,771 (34%) 24 (37%) 130 (87%)

1 CE, DA 33,816 (48%) 29,555 (42%) 8 (12%) 130 (87%)

2 CE, DA 48,201 (69%) 34,752 (50%) 16 (25%) 130 (87%)

3 CE, DA 62,586 (95%) 39,949 (57%) 24 (37%) 130 (87%)

Chri
sto

s T
tof

i

157 Incorporating Real-Time Depth Computation in Embedded Vision Applications

of data that is eliminated from the classification process, which compensates for the disparity

computation overheads.

The relative hardware requirements for each major unit are shown in Table 6.2, along

with the total hardware requirements per system configuration (number of classification

engines and search method). While the area overhead is not negligible the performance

speedups are more than enough to justify these overheads.

6.1.6 Conclusion

This section provided insights into how depth information can be exploited to reduce the

search space involved in the object detection process, thus enabling the development of high-

performance and energy-efficient hardware-based object detection systems. A hardware

architecture that integrates the edge-directed stereo matching architecture from Chapter 3 with

an SVM-based object detector is also presented in this section. Results showed performance

speedups ranging from 1.9 to 4.7, with energy savings of 41% - 48%, relative to traditional,

sliding window based object detection systems.

6.2 Real-Time Obstacle Avoidance for Mobile Robots

An embedded, real-time, and low power obstacle avoidance system is a critical

component towards fully autonomous robots that can be used in safety missions, space

exploration, and transportation systems among others. This section presents a holistic platform

for evaluation of obstacle avoidance systems and autonomous robots, based on reconfigurable

hardware. The platform integrates an obstacle avoidance algorithm that uses depth information

extracted from a stereoscopic camera. The platform is optimized and implemented using a

low-power FPGA-based hardware architecture, enabling its use in battery-operated

environments. The platform is comprised of an ATLYS Spartan-6 FPGA board hosting all

relevant algorithms, and a modified FDX Vantage 1/10 electric car platform used for

navigation. The evaluation under real world conditions indicates that the platform is capable of

real-time obstacle avoidance and navigation, with accuracy (~ 92%) equivalent to software

implementations.

The rest of the chapter is organized as follows. Section 6.2.1 introduces the problem of

obstacle avoidance in robotics and motivates the need for reconfigurable hardware and real-

time stereo vision capability. Section 6.2.2 provides information on related work, algorithms

and methods. Section 6.2.3 describes the proposed experimental robotic platform detailing the

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 158

main components and hardware architecture. Section 6.2.4 presents results from real-world

evaluation, and finally, Section 6.1.6 provides concluding remarks.

6.2.1 Introduction - Motivation

 Robots have evolved into a major part of the modern society and are increasingly being

deployed in various emerging applications from indoor surveillance to rescue missions. The

majority of these systems however is mostly semi-autonomous and requires some form of

human guided operation. A fully autonomous mobile robot has to be able to move throughout

its operating environment and at the same time work for an extended period without any

human intervention. As such, highly efficient and detailed perception is recognized as one of

the most important challenges for autonomous and effective robots. In particular, automatic

environment recognizing/sensing is a fundamental scientific issue in mobile robotics since

such efficient schemes will significantly increase the capacity of the robots to interact with

three-dimensional real world environments. One of the most important tasks in autonomous

robotics is the computation of accurate three dimensional maps. Here, high resolution precise

3D data as well as fast and accurate matching algorithms / architectures are required to create

consistent scenes, which are necessary to enable exploration and navigation in known and

unknown terrains. Real-time 3D computation of the scene in the moving direction of a robot is

required to ensure obstacle avoidance, which is an important step towards autonomous

navigation. This essential task often relies on depth measurements based on laser, sonar and

structure-light sensor in the immediate vicinity of the robot. However, as we discussed

Chapter 2.2, these sensors are usually associated with short-range operations and bad

performance in the presence of strong radiation and direct sunlight, thus they are mostly

tailored to indoor environments.

A current trend towards creating highly efficient and detailed perception subsystems in

robotics is the incorporation of automated image analysis and computer vision capabilities.

Extracting information from visual input is necessary to increase the perception and

understanding that robots have of their surrounding environment. Stereo vision one such

computer vision-based technique aimed at inferring depth information from a pair of 2D

images, is probably the most suitable solution when it comes to reliable depth estimation,

especially for long-range operations in both indoor and outdoor situations and under variable

lighting conditions. Thus it can particularly benefit the obstacle avoidance process in robotic

systems. Specifically, with stereo vision, a robot is able to not only determine if an object or

Chri
sto

s T
tof

i

159 Incorporating Real-Time Depth Computation in Embedded Vision Applications

obstacle is in its immediate path, but also to accurately determine its distance, thus improving

both obstacle avoidance as well as navigation [163].

 Real-world applications for mobile robots are often associated with real-time and low

power constraints something that limits the available processing resources. Today, camera

systems that can deliver 3D-video with a resolution of more than 20 thousand pixels at a rate

of more than 30 frames per second are available. Beside the high data rate, the low weight and

small size of those systems make them a very interesting sensor for the mobile robotics

platforms. However, even though those cameras provide even more than 30 frames per second

the existing CPU-based systems cannot execute the necessary cue-extraction and object

recognition algorithms, especially when several cues should be extracted simultaneously, at a

rate of more than 20 fps. The main reason for the low rates achieved is the fact that the various

cue extraction and object recognition schemes are very CPU intensive tasks; for example it has

been reported that robust approaches just for object detection based on stereo processing need

the performance equivalent of that triggered by more than a dozen high-end CPUs. Obviously,

things are getting even more difficult when also considering the CPU load due to the

navigation and possible face recognition tasks.

To enable real-time capability, autonomous robots utilize high-end reconfigurable

devices; it has been proved that reconfigurable devices in the form of FPGAs allow for

extremely higher performance and power-efficient processing when implementing data

manipulation methods such as 3D sensing/matching schemes as well as template and feature-

based object recognition algorithms, while they can be reconfigured on real-time. This makes

FPGAs increasingly attractive for robotic applications. With FPGAs, it is possible to develop

real-time vision algorithms, through dedicated parallel hardware architectures, enabling higher

response rates so that obstacles can be detected and avoided even at high speeds [164].

Advances in FPGA technology also enable low power consumption, facilitating increased

battery life and longer autonomous operation. These factors, along with the emergence of

stereo vision algorithms suitable for reconfigurable hardware [165] are paving the way for the

development of computationally effective, low-power stereo-vision-based FPGA-based

mobile robots that can reliably avoid obstacles in unconstraint environments.

There have been several attempts so far towards developing obstacle avoidance and

navigation systems on real-world robotic platforms [166], [167], [168]. However, the majority

of them employ sonar and laser sensors to perform depth measurements. Only few systems

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 160

have utilized vision-based techniques, but these rely on software running on a laptop computer

[169], [170], [171] for the implementation of stereo vision technology, obstacle avoidance,

and/or navigation algorithms. This increases the size and weight of the robotic platform, hence

decreasing its battery life. On the other hand, hardware-oriented implementations such as

[164], consider only part of the computations on the FPGA, and neglect platform

implementation issues.

In this thesis a complete prototyping platform for the evaluation of obstacle avoidance

systems and autonomous robots is realized on reconfigurable hardware. An efficient stereo

vision algorithm for producing the necessary 3D and an obstacle avoidance subsystem were

both implemented on an ATLYS Spartan-6 FPGA board equipped with a VmodCam stereo

camera module. A modified FDX Vantage 1/10 electric car platform was used for testing the

proposed architecture in indoor and outdoor real-world scenes. The system receives stereo

image data from the VmodCam module and a decision-making algorithm is applied on a

specified Region of Interest (RoI) on the produced disparity map. The algorithm outputs the

direction that the robot should move to in order to avoid any obstacles present. Experimental

evaluation results indicate that the FPGA-based robotic platform can avoid obstacles in real-

time (i.e. can process and identify obstacles within a 1/30
th

 of a second that a stereo image

takes to be processed) in both indoor and outdoor environments, with 91.7% accuracy.

6.2.2 Obstacle Avoidance - Overview & Existing Techniques

Obstacle avoidance is a classical problem in robotics and is a hot topic in the field of

autonomous navigation. It is defined as the task of detecting objects or people in a projected

path and steering around them, while avoiding other objects or hazards. The presence of

unexpected obstacles in the route of a mobile robot is a real possibility, especially when

navigating in a dynamic or unknown environment. Incorporating an obstacle avoidance system

is critical in ensuring the safety of the robot as well as its surroundings. Such a system is

responsible for detecting the presence of an obstacle and also decides the direction that the

mobile robot needs to follow while maintaining the path towards its targeted (original)

destination.

Various methods have been proposed for detecting and avoiding obstacles found in the

path of a robot agent. Some early methods propose the use of ultrasonic sensors, in order to

detect the edges of an obstacle and avoid it [166], [172]. Others make use of an evenly spaced

grid and calculate the probability of occupancy for each cell [167], [168]. The elastic strips

Chri
sto

s T
tof

i

161 Incorporating Real-Time Depth Computation in Embedded Vision Applications

method [173], [174] treats the trajectory of the robot as an elastic material to avoid obstacles.

The sensor systems used for implementing most of the obstacle avoidance algorithms

can be divided in two categories. The first category includes all the systems that are based on

laser and IR sensors for providing depth information of their surrounding environment.The

emergence of sensors such as Kinect [36] and LeapMotion [175] enabled the development of

accurate and easy to implement autonomous robots [169], [176]. However the poor

performance of such sensors in pure daylight makes them unsuitable to be used in an outdoor

environment. The second category includes vision based systems. In [177] a vision-based

system that uses a single camera and ultrasonic sensing is proposed. It requires a high amount

of sensors however. Stereo vision systems on the other hand, are widely used, but most of

them require complex computations, therefore require high-end resources to enable real-time

processing when implemented in software, making them unsuitable for use on an autonomous

robot with limited hardware/power resources.

Recently, stereo vision algorithms suited for reconfigurable hardware have been

proposed [165]. There exist several stereo vision systems today based on dedicated hardware

implementations [86], therefore the incorporation of depth information for several vision-

based applications in embedded environments is becoming a reality. Nalpantides et al. in

[178], [170] present a simple algorithm for obstacle avoidance with the sole use of a

stereoscopic camera. Both stereo vision and obstacle avoidance are implemented in software

running on a laptop computer. Thus, this system is not suitable for use in resource-limited

embedded environments. However, the obstacle avoidance algorithm presented in [178] is

quite simple, and can easily be adopted for an FPGA implementation, preventing the obstacle

avoidance system from becoming a significant drain on the battery life of the robot.

A stereo vision-based obstacle detection system is presented in [164]. It uses the Sum-

of-Absolute-Difference (SAD) algorithm for disparity map calculation and proposes the use of

region of interest to limit the region of the images over which the disparity map is estimated,

in order to speed up the overall process. However, this implementation utilizes a naive

approach that only detects the obstacle, while no decision-making is incorporated. Moreover,

this is not an embedded solution, since it uses MATLAB to capture the stereo images, where

only the SAD calculations are performed by the FPGA. As a result, this system provides only

near real-time processing speed (around 20 fps).

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 162

Motivated by the advances in recent works, the contributions of this work focus on the

development of a holistic prototyping platform integrating an obstacle avoidance algorithm

that uses depth information extracted by a single stereoscopic camera, and is entirely based on

reconfigurable hardware (FPGAs) optimized for low-power and portable and flexible

integration within a mobile FDX Vantage 1/10 electric car platform.

6.2.3 Proposed Robotic Platform

6.2.3.1 System Overview

The proposed autonomous robotic platform features a stereo camera mounted on a

standard electric car that carries an FPGA board, which performs all the processing on board

and in real-time. The car is able to navigate around avoiding obstacles with the aid of stereo

vision technology, and chooses as the best way to follow, the path that is less likely to contain

nearby objects. The proposed prototyping platform is comprised into different subsystems as

shown in Figure 6.7. The system consists of an Atlys FPGA board [179] that is interfaced to a

VmodCAM Stereo Camera Module through a VHDCI cable. The FPGA is the main processing

unit of the system that implements the stereo vision and obstacle avoidance algorithms,

through which the direction that the robot needs to follow is extracted. The decision is then

forwarded to a Raspberry Pi computer [180] through a Universal Serial Bus (USB) interface.

The Raspberry Pi is connected to an Arduino computing platform [181] that generates the

analogue signals used to steer the robot to the appropriate direction. These main components

comprise a platform that is computationally efficient and low-power and can reliably avoid

obstacles in unconstraint indoor and outdoor environments. Each subsystem as well as the

complete platform is analyzed in the following subsections.

6.2.3.2 Stereo Vision Subsystem and Disparity Computation

The stereo vision subsystem implemented on the FPGA receives two independent

simultaneous image feeds from the VMODCAM Stereo Camera Module and generates a

disparity map, from which information about the depth of objects in the image frame relative

to the position of the stereo camera module can be extracted. The stereo subsystem consists of

three major stages: Cost Volume Construction (CVC), Cost Volume Filtering (CVF) and

Disparity Selection (DS). The CVC stage calculates a matching cost for each pixel p at all

possible disparities. The output is a three-dimensional structure consisting of D cost images

(Stereo Cost Volume - SCV). Each cost is computed as the truncated absolute difference of

colors and gradients, a metric that exhibits good robustness to illumination changes [142]. The

Chri
sto

s T
tof

i

163 Incorporating Real-Time Depth Computation in Embedded Vision Applications

overall cost function C(p,d) is computed using -, where a is used to balance the

influence of the color and gradients terms, and Tc and Tg are truncation thresholds. Truncation

is important in order to suppress the influence of noise in the final disparity maps, especially

for the indented application which aims to be applied to outdoor scenes that usually suffer

from noise caused by lighting differences and reflections.

𝑀(𝑝, 𝑑) = 𝐼𝑙𝑒𝑓𝑡
𝑖 𝑝 − 𝐼𝑟𝑖𝑔𝑕𝑡

𝑖 (𝑝 − 𝑑)
3

𝑖=1
 

𝐺 𝑝, 𝑑 = ∇𝑥 𝐼𝑙𝑒𝑓𝑡 (𝑝) −∇𝑥 𝐼𝑟𝑖𝑔𝑕𝑡(𝑝 − 𝑑) 

𝐶 𝑝, 𝑑 = 𝑎 ∙ 𝑚𝑖𝑛 𝑇𝑐 ,𝑀 𝑝, 𝑑 + (1 − 𝑎) ∙ 𝑚𝑖𝑛 𝑇𝑔 , 𝐺 𝑝, 𝑑 

The CVF step smoothes each slice of the SCV using a typical mean filter, where the

filtered output value at p and disparity d is the sum of pixels in the same slice of the SCV

divided by the total number of pixels in the match window as shown in .

𝑞 𝑝, 𝑑 =
1

𝑁
 𝐶(𝑝, 𝑑), N: total pixels in the window 

In contrast to most of the existing stereo vision hardware implementations, which

compute the sum of pixels in a window [86] in a naive approach, the stereo vision system

Figure 6.7: Block diagram of the proposed robotic platform.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 164

implemented in this work utilizes the moving sum technique to realize an efficient mean

filtering process where the resources required are independent of the match window size. In

this way, the CVF stage is kept compact consuming less hardware resources, which is

important to keep power consumption low and also to be implemented on smaller FPGA

devices.

The main idea of the moving sum technique is to maintain a sum for each column in the

image to be filtered. Each column sum accumulates 2r+1 pixels, while the window sum is

computed by adding 2r+1 adjacent column sums. While filtering the image, the column sum

to the right of the window is yet to be computed for the current row, so it is centered one row

above. Therefore, the first step consists of updating the column sum to the right of the window,

by subtracting its topmost old pixel and adding one new pixel below it. The second step moves

the window to the right and updates the window sum by subtracting its leftmost column sum,

and adding the updated column sum computed in the first step. The hardware design of the

moving sum technique with all the associated design choices and tradeoffs are described in

Chapter 5.3.

Once all slice of the SCV are filtered, the DS stage selects the best disparity for pixel p

through a simple Winner-Takes-All minimization approach .

𝑑𝑝 = argmin
𝑑∈𝐷

𝑞(𝑝, 𝑑) 

6.2.3.3 Obstacle Avoidance Subsystem

The proposed obstacle avoidance subsystem is responsible for detecting and avoiding

any obstacles present in the robots' path, to facilitate autonomous navigation. Obstacle

avoidance is performed using the previously calculated disparity map frame. Since the robot is

moving on a ground level, a region of interest (RoI) is selected and the lower third of the

image is ignored in the calculations. The selected RoI is equally divided in three zones, as

shown in Figure 6.8 (b).The decision is based only on summations, which are used as an input

to a simple FSM responsible for indicating the safest direction to follow. In this manner, the

safest direction is determined as the one corresponding to the zone containing objects which

are far away from the stereo camera module.

For each of the three zones, a pixel based analysis is performed in order to determine

how many pixels have a disparity value, D(p), greater than a predefined threshold, T. The T

threshold is empirically defined and it selected in regard to which distance is considered close

Chri
sto

s T
tof

i

165 Incorporating Real-Time Depth Computation in Embedded Vision Applications

enough to the mobile agent. The accumulated values are stored in three different registers, Rl,

Rc, Rr. where:

𝑅𝑖 = (𝐷 𝑝 > 𝑇)

𝑟𝑒𝑔𝑖𝑜𝑛 𝑖

 

The final decision is taken by a MOORE State Machine, with three different states. State

0 outputs an instruction for moving forward, state 1 for steering left and state 2 for steering

right. The FSM is in state 0 as long as Rc is smaller than a predefined rate r of the total

number of pixels in the window. This means that there is enough space for the robot to move

forward. If this is not the case the next state is selected by checking which of the registers Rl,

Rr is smaller. After a steering command is given, the FSM returns to state 0. The output of the

FSM is saved in the instruction register, Ri. An overview of the overall algorithm is shown in

Figure 6.9.

The proposed architecture (Figure 6.10) for the decision-making module consists of a

decoder, three accumulators, an FSM, and the four registers. The disparity value D(p), and the

pixel coordinates in the form of image rows and columns, are given as input from the

Figure 6.8: Obstacle Avoidance Algorithm. (a) Input from Stereo Camera. (b) The region of

interest divided in three equally sized windows over the disparity map.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 166

Disparity Unit. A decoder is used first to define if the pixel is in the region of interest and

secondly in which of the three regions the pixel belongs. The disparity value is discarded if it

does not belong to the RoI, otherwise it is passed to the respective accumulator. A change

frame signal also comes from the Disparity Unit which works as the reset signal for the

registers Rl, Rc, Rr and as a write enable for the instruction register Ri. The value of the

instruction register is then passed in a FIFO structure to facilitate the communication protocol

described in the following section.

6.2.3.4 Communication Protocol with the Mobile Agent

Next State Process:

1. next_state<= state - - default is to stay in current state

2. case (state) is

3. when state0_go_straight =>

4. if (Rc< r) then

5. next_state<= state0_go_straight;

6. elsif (Rl<Rr) then

7. next_state<= state1_steer_left;

8. Else

9. next_state<= state2_steer_right;

10. when others =>

11. next_state<= state0_go_straight;

12. end case;

Output Process:
1. if (state = state_go_straight) then

2. Ri = 00; - - go straight
3. elsif (state = state_steer_left) then
4. Ri = 01; - - steer left
5. Else
6. Ri=10; --steer right

Figure 6.9: The Next State and Output Process of the Decision-Making Module.

Figure 6.10: Proposed navigation module architecture.

Chri
sto

s T
tof

i

167 Incorporating Real-Time Depth Computation in Embedded Vision Applications

In order to transfer the instruction to the robot, a flexible and low-power communication

protocol was established by connecting the FPGA board via a USB port with a Raspberry Pi

(RPi) ARM-based computer that is cheap, portable, and extremely flexible. The RPi has a

Broadcom BCM2835 system on a chip (SoC), which includes an ARM 700MHz processor and

runs Raspbian OS. In addition to the reasons stated earlier, the particular computer was

selected also because of its variety of I/O ports. It includes two USB ports, one of which was

used for data communication with the FPGA board, and the other one for powering up the

FPGA board. Furthermore its additional GPIO pins allow it to drive the microcontroller

responsible for the steering.

The communication between the FPGA and the RPi was established using the

FPGALink library [182]. The library allows the programming of the board, but at the same

time provides a good medium for the host (RPi) to exchange data with the FPGA, once

programmed. On the host side a simple C routine was used, while on the FPGA side a standard

FIFO interface was implemented. The routine running on the host side was responsible to read

the instruction Register from the FIFO structure on the FPGA side. The instruction was then

passed to the mobile agent using the GPIO pins on the RPi.

6.2.3.5 Mobile Agent and Steering

To test the system implemented we used a modified FTX Vantage 1/10 remote

controlled car, equipped with a 3215kV brushless motor and a servo motor. Both the speed and

the steering angle of the car were controlled with pulse width modulation (PWM) pulses. The

frequency of the PWM pulses is 50Hz and the amplitude 0V-5V. The information is encoded

in the width of the pulse as Figure 6.11 demonstrates. A 25% duty cycle is used for steering

Figure 6.11: Steering Control with PWM Pulses.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 168

left, a 50% duty cycle is used for going forward and a 75% duty cycle is used for steering

right. As for the speed a 50% duty cycle is used when moving forward and a 25% duty cycle is

used when steering.

The receiver of the RC car was bypassed, and an Arduino Uno R3 physical computing

platform was used for the control. The Arduino is equipped with an Atmel AVR ATmega328

microcontroller, which receives the instruction from the RPi and generates the corresponding

PWM pulses. If an instruction for moving forward is received the steering angle is kept at 0°

and the speed remains constant. If a turn left or turn right instruction is received the speed is

reduced and the steering angle changes to -30° or +30° accordingly, in order to avoid the

obstacle.

6.2.3.6 Powering the Experimental Platform

In order to maintain a small physical size and low weight it was important to power the

whole platform using only a single power source. To achieve this,a single 3000mAh 7.2V

NiMH battery was directly connected to the car and the Arduino. The Arduino was equipped

with a voltage regulator and has a 5V output pin, which was used for powering the RPi. The

FPGA board was in turn powered with a modified USB cable connected to the RPi.

6.2.4 Experiments and Evaluation

6.2.4.1 Methodology and Results

To evaluate the performance of the proposed system a series of tests were ran in indoor

environments with the lights on and outdoor environments with natural lighting. The robot

was placed in front of various scenes to check if it will move towards the right direction by

avoiding any obstacles present.

Threshold T was 0.6 (for 0 <D(p)< 1) and the rate r was 40% of the total pixels in the

central window, for indoor environments and 20% for outdoor environments. These values

define the sensitivity of the system and were empirically chosen in a way that the system

would navigate safely but at the same time would not be susceptible to false alarms. The

reason for choosing different r in the case of outdoor testing is because under natural lighting

the disparity maps produced have different values. An adaptive rate r can be chosen by

analyzing image and filtering the image prior to the disparity computations but is left as future

improvement as it is not the main focus of this work.

A sequence of 23 test set image pairs (640×480 resolution) were used in closed

Chri
sto

s T
tof

i

169 Incorporating Real-Time Depth Computation in Embedded Vision Applications

environments (Figure 6.12) with various obstacles, such as persons, chairs, walls and doors. In

20 out of the 23 cases the robot moved towards the right direction. The results are summarized

in Table 6.3.The cases when a wrong direction was selected are highlighted. In all of these

cases the system correctly decided to steer in order to avoid an obstacle, but the wrong

direction was picked, probably due to noise in the disparity map and poor lighting conditions.

Another sequence of 13 test set image pairs (640×480 resolution) was used in outdoor

environments (Figure 6.12), with obstacles such as trees and benches. The robot selected the

correct direction in all of the cases, which are shown in Figure 6.12. An overall accuracy of

91.7% was achieved during the above tests. Compared to the software implementation

presented in [178], the accuracy achieved is practically the same, proving that a hardware

implementation will not affect the performance of the system.

Another important aspect of the proposed system it‟s the certainty (cert in ) of the

Figure 6.12: (Top) Two indoor example images. (Bottom) Two outdoor example images with

the decision beneath.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 170

decision-making module, when a left or right steering direction needs to be chosen. This is

calculated with a comparison between the Rland the Rr registers and is defined as in . The

results obtained are at the same levels of the software implementation in [178], and in some

cases are much higher. When both the left and the right direction are traversable the certainty

of the decision is relatively small. However the obstacle avoidance task is still fulfilled.

𝑐𝑒𝑟𝑡 =
𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥
 

6.2.4.2 Hardware Overheads and Power Consumption

The total hardware requirements of the FPGA board are shown in Table 6.5. A

processing performance of 30 frames per second was achieved, which implies that the

developed platform can avoid obstacles in real time situations. The overall power consumption

of the proposed architecture, excluding the electronic car platform, is 6 W, making it ideal for

use on mobile robots, without becoming a significant drain on its battery life.

Table 6.3: Evaluation results in indoor environments.

Test Set Rl Rc Rr
% of central windows

with D(p) > T
Cert

Direction

Followed

1 5215 15305 4378 93.15% 16% right

2 5588 13088 6902 80.70% 19% left

3 9048 3713 10506 22.74% - straight

4 8752 11555 9755 70.32% 10% right

5 5360 14652 2102 89.75% 61% right

6 9822 2511 2071 15.38% - straight

7 6794 11081 10735 68.32% 37% left

8 4048 9856 13648 60.77% 70% left

9 5618 3808 2154 23.48% - straight

10 4335 479 2470 2.93% - straight

11 9393 11029 5869 67.56% 38% right

12 9145 7453 7350 45.95% 20% right

13 3826 3088 1153 18.91% - straight

14 412 7511 3215 46.01% 88% left

15 3417 12990 12623 79.57% 72% left

16 6169 7687 4372 47.09% 30% right

17 4204 2668 7806 16.45% - straight

18 5220 7380 9554 45.50% 46% left

19 7000 7124 5208 43.92% 26% right

20 8124 3267 4701 20.01% - straight

21 3108 3458 8353 21.18% - straight

22 4123 8983 8572 55.38% 52% left

23 10802 4704 9550 28.81% - straight

Chri
sto

s T
tof

i

171 Incorporating Real-Time Depth Computation in Embedded Vision Applications

6.2.5 Conclusion

This chapter presented a real-time and low power stereo vision-based mobile obstacle

avoidance platform that can be used for prototyping and experimental purposes. The stereo

vision and obstacle avoidance algorithms were both optimized and implemented with an

FPGA-based hardware architecture, and were utilized to develop a complete experimental

platform based on a modified FDX Vantage 1/10 electronic car platform. Evaluation results

obtained under real-world conditions in both indoor and outdoor environments indicate that

the proposed platform is capable of real-time, low-power obstacle avoidance and navigation,

with accuracy equivalent to software implementations.

Table 6.4: Evaluation results in outdoor environments.

Test Set Rl Rc Rr
% of central window

with D(p) > T
Cert Direction Followed

1 3551 6111 2432 37.19% 32% right

2 2821 8176 2021 49.76% 28% right

3 1501 4880 2446 29.70% 37% left

4 2451 2938 2988 17.88% - straight

5 2145 5793 3676 35.25% 42% left

6 2616 3571 2778 21.73% 5% left

7 1073 1908 1665 11.61% - straight

8 2004 6538 2235 39.79% 10% left

9 1324 2089 1707 12.71% - straight

10 3626 8153 1662 49.62% 54% right

11 213 1256 432 7.64% - straight

12 439 1906 2368 11.60% - straight

13 2467 7079 6184 43.08% 60% left

Table 6.5: FPGA Platform Parameters.

FPGA Platform
Spartan 6 Digilent

XC6SLX45-CSG324
FPGA LUTs 13576 (50%)

Frequency

(MHz)
124

FPGA BRAM 56 (55%) FPGA Registers 7402 (13%) Frame-Rate 30 fps

Chri
sto

s T
tof

i

CHAPTER 7

7 Conclusion and Future Work

HIS thesis investigated hardware architectures of stereo matching algorithms that have the

potential to satisfy the requirements of constrained embedded vision applications. Initially, a

stereo matching architecture that utilizes edge information as a means to accelerate the overall

matching process, and reduce its logic and memory requirements, was presented. Afterwards, the

thesis introduced hardware design optimizations that can be applied to a complex, accurate

matching algorithm that uses image segmentation and adaptive support weights (ADSW), in order

to obtain an effective speed-accuracy tradeoff. Moreover, the thesis discussed how the properties

of the recently proposed Guided Image Filter, and particularly its edge-preserving property and

linear-time complexity, can be exploited to reduce the hardware complexity of the ADSW cost

aggregation process, while maintaining high quality results, and also to improve the effectiveness

of the disparity refinement step through weighted median filtering with the guided filter weights.

Finally, the thesis provided insights obtained from evaluating the proposed architectures in object

detection and obstacle avoidance applications. This chapter summarizes the keys points of the

work done in the thesis and discusses directives for future research.

7.1 Concluding Remarks

Stereo vision, the task of matching the images taken from a stereo camera and extracting

the depth of objects in a scene, is widely used in several embedded applications such as

intelligence surveillance, autonomous vehicles and mobile robots. However, stereo vision is a

computationally demanding task, and thus it is a major challenge to produce 3D content in real

time with high quality and under limited power and hardware resources. Traditional CPUs fail

to take advantage of the inherit parallelism of stereo vision algorithms and thus struggle to

achieve real-time frame rates. On the other hand, GPUs have high power consumption

demands. FPGAs seem to offer a satisfactory trade-off between performance, power,

flexibility and programmability. Thus, this research has focused on the implementation of

three different stereo matching hardware architectures, each satisfying specific constraints in

embedded environments.

T

Chri
sto

s T
tof

i

173 Conclusion and Future Work

The thesis first presented a stereo matching hardware architecture that incorporates an

edge detection mechanism to direct the matching process only on important features on the

stereo images, and therefore reduce the overall data that needs to be processed. The proposed

edge-directed architecture targets resource constrained embedded systems with hard real-time

requirements. However, the architecture relied on a local stereo algorithm with fixed window

aggregation, while many of today‟s applications demand the extremely high matching

accuracy offered by more complex stereo algorithms.

Hence, the thesis also presented the design of a segmentation-driven stereo algorithm

that uses adaptive cost aggregation, in an attempt to increase the robustness of the matching

process. It also presented hardware-oriented algorithmic modifications and optimization

techniques that make the algorithm hardware-friendly and suitable for efficient dedicated

hardware implementation. The segment-based stereo matching architecture provides an

effective balance between speed and accuracy aspects in embedded vision systems, however at

the expense of high resource usage.

Therefore, the research related to this thesis has also focused on the design of a fully

pipelined, parallel and scalable stereo matching hardware architecture based on the recently

proposed Guided Image Filter. FPGA simulation results extracted by integrating this type of

filter in the cost aggregation step of ADSW-based hardware stereo matching systems indicate

that the overall hardware complexity of cost aggregation is reduced significantly, which in turn

could allow for real-time stereo matching of HD images, as well as improvements of the

overall matching accuracy, thanks to the edge-preserving property of the GIF. In addition

edge-preserving nature of the GIF has been exploited in order to design a power disparity

refinement architecture, which can be combined even with fixed support cost aggregation to

result in resource-efficient, high-quality stereo matching design.

As a whole the research done in this thesis aims at the design of novel and efficient

architectures and design techniques that can be used in various embedded vision systems to

perform operations that can benefit from the use of depth information. Depending on the

targeted application domain and associated constraints, each of the presented architectures

might be more suitable for particular embedded vision applications. Additionally, it is possible

to explore the real-time reconfiguration aspect of today‟s FPGAs to use the developed

architectures at any time depending on the actual state of the environment. The thesis has

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 174

presented an evaluation of the edge-directed architecture on a depth-accelerated hardware

object detection system. Future plans include the evaluation of the architectures on

autonomous navigation for unmanned vehicles.

7.2 Future Directives

7.2.1 Short-Term Plans

In this section, we attempt to combine all insights from the thesis to suggest how the

proposed depth computation architectures can be improved in a future system design. The

proposed improvements are discussed in the following subsections.

7.2.1.1 Edge-directed stereo matching architecture

The edge-directed disparity estimation architecture presented in Chapter 3 can be

improved in several ways. First, the Sobel edge detector threshold was determined empirically

by finding the threshold yielding the lowest matching error in terms of percentage of bad

pixels, and computing the average for a number of stereo pairs in the Middlebury dataset. An

improvement to this approach would be to extend the implemented edge detection unit to

compute the threshold dynamically, either by computing a threshold value for each image (e.g.

by considering the image mean value or histogram), or by assigning different thresholds for

different regions in the image (e.g. a threshold for local neighborhood). Second, the SAD

values between correlation windows were computed using parallel XOR circuits and adder

trees. While these operations were performed on binary data based on low-complexity adder

trees (in terms of bit-width), the use of the adder trees could be avoid if the cost computation

and aggregation steps are interpreted as a smoothing filter of the SVC. In this way, the SAD

values can be computed by using the mean filter architecture described in Chapter 5.3,

therefore replacing the adder trees with 1-bit block RAMs and simple adders/subtractors.

Third, the interpolation mechanism integrated in the edge-directed stereo matching

architecture has been implemented on an embedded soft processor core, and works by filling

the non-edge points with disparity values from the local neighborhood of the non-edge point

being processed, using the nearest neighbor interpolation method. The efficiency of the

interpolation process could be improved by implementing and integrating custom hardware

units of more complex interpolation methods such as bilinear and bicubic interpolation.

Finally, the edge-directed architecture does not integrate a disparity refinement pipeline. As

such, there is still room for improving the disparity results by integrating post-processing

Chri
sto

s T
tof

i

175 Conclusion and Future Work

steps, like the ones integrated by the other two stereo matching architectures presented in this

thesis. Especially, the GIF-based weighted median filtering presented in Chapter 5 has the

potential to increase the matching quality significantly.

7.2.1.2 Segment-based ADSW stereo matching architecture

The segment-based ADSW architecture (Chapter 4) integrated a simple segmentation

method based on thresholding of the pixel values. We expect that a more advance

segmentation method (e.g. k-means segmentation) could improve the confidence of the

generated adaptive weights. Moreover, the current version of the architecture uses sub-

sampled versions of the correlation windows in order to reduce the cost aggregation's

complexity. Although this approach reduces the hardware logic required (due to the use of a

smaller number of weight generators and cost aggregators), the working principle of the

scanline buffers imposes that the size of the on-chip memory still depends on the width of the

original window. An improved approach would be to utilize correlation windows with a cross-

based template. In this way, the pixels that contribute to the correlation process are located

across a single row and a single column of the entire correlation window. The pixels across the

row can be stored in a shift register (its size depends on the correlation window width), while

access to the pixels across the columns of the correlation windows can be achieved by

utilizing a 𝑊𝑥𝑚 block ram (𝑊: width of image, 𝑚:width of correlation window). If

configuring the block ram so that each memory location stores 𝑚 pixels, then a single access

to the block ram can provide parallel access to the pixels across a column of the correlation

window. This memory location then needs to be updated by shifting the memory content to the

right and concatenate the new pixel.

7.2.1.3 Depth-guided embedded vision applications

The depth-directed object detection application presented in Chapter 6.1 can be

evaluated using alternative classification engines (e.g. AdaBoost-based classifier or Neural

networks), in order to further explore the impact of the different algorithm-specific

parameters, and investigate the benefits of incorporating edge information with other

classification engines. Furthermore, we plan on comparing the depth-directed approach with

alternative ways of reducing the search spaces such as edge detection., Finally, the

incorporation of path planning and navigation into the stereo vision-based mobile obstacle

avoidance platform presented in Chapter 6.2 could make the platform an ideal test bench for

fully autonomous navigation.

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 176

7.2.2 Long-Term Plans

The work started by this dissertation can be further continued in many directions, which

are summarized in the following subsections.

7.2.2.1 Development of a Stereo Vision Based Adaptive Computing System

This thesis developed different real-time stereo vision hardware architectures, optimized

for the specific requirements of embedded environments. The edge-directed stereo vision

architecture targets resource-constrained embedded applications with hard real-time and low-

power constraints. The segment-driven ADSW architecture improves the robustness of the

matching process by utilizing adaptive support weight aggregation, offering an effective

speed-accuracy tradeoff, however at the expense of high resource usage and processing of

intermediate-resolution stereo images. Finally, the stereo vision architectures that integrate the

GIF (in the cost aggregation and/or the disparity refinement steps) enable real-time and

concurrently high-quality depth computation even at high resolution images. The thesis has

demonstrated how the developed architectures can take advantage of the fine-grain parallelism

made available by programmable hardware (FPGAs) to enable significant speedups and

energy savings compared to traditional general-purpose computer based implementations.

However, the promise of FPGA technology extends beyond the implementation of the

different architectures independently. The real potential of FPGAs lies in Adaptive Computing

Systems (ACS) - systems that adapt and evolve in response to the changing environment while

operational, without compromising the consistency and real-time properties of the system

[183]. As such, a future directive of this thesis lies in the content of adaptive computing in

order to create several different configurations of the developed stereo vision architectures,

each tailored to the specific set of operational requirements mentioned above. This will enable

the development of an ACS that can be reconfigured with a suitable configuration when the

environment and thus the operational requirements change. In this way, the results obtained in

the thesis can be utilized in the long-term to deliver real-time depth computation for a large

number of applications targeting different operational goals, while maximizing component

utilization and minimizing hardware redundancy.

7.2.2.2 Using Approximate Computing for Energy-Efficient Stereo Vision Designs

Approximate Computing (AC) has emerged as a promising approach for the design of

energy efficient dedicated hardware architectures in embedded environments. It refers to the

ability of the architecture to tolerate some loss of quality in the computed results through

Chri
sto

s T
tof

i

177 Conclusion and Future Work

approximate circuit design of arithmetic operations and algorithm-level techniques, with the

aim to allow for substantially improved energy efficiency [184]. In Section 4, we discussed

how a complex ADSW algorithm can be adopted for an efficient hardware design through a

series of hardware-oriented arithmetic approximations and optimization techniques. The

resulting system, however, was able to provide a specific set of operational requirements

(accuracy, processing speed, energy efficiency, etc.) regardless of the application domain and

working environment.

Consequently, a future improvement would be to utilize the approximate computing

approach to endow the proposed stereo vision architectures with a capability similar to the

human brain's ability to scale the degree of accuracy needed for a given task. The main idea is

to explore the real-time reconfiguration aspect of FPGAs to use a specific set of hardware-

oriented optimizations at any time depending on the actual state of the environment and the

operational requirements. In this way, we can develop stereo vision architectures that do not

compute the same level of accuracy all the time. Instead, the application context could be

utilized to dictate different levels of effort, thus offering a scalable approach in terms of

providing a desirable trade-off between efficiency (processing performance or energy) based

on the content of the environment.

7.2.2.3 Optimization of the architectures to support next-generation image resolutions

High resolution images offer a high pixel density, and therefore more details about the

captured scene. Hence, the ability to process high resolution images is becoming important in

computer vision applications for better accuracy in the analysis of images. Many applications

require zooming of a specific area of interest in the image wherein high resolution becomes

essential, e.g. surveillance, forensic and satellite imaging applications. Today, image sensor

and display technology are evolving. Ultra High-Definition (UHD) and 4K (which deliver four

times the picture resolution of 1080p Full HD, that's eight million pixels compared to two

million pixels) are rewriting the rulebook when it comes to image quality and clarity, offering

more fine detail, greater texture and an almost photographic emulsion of smoothness.

Depth estimation for such increased image resolutions is expected to play a significant

role towards the development of future 3D TV applications. High resolution depth estimation

would be of importance in pattern recognition, and also in medical imaging for diagnosis as

well. This thesis has developed stereo vision architectures that can provide high-definition

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 178

(including 720p and 1080p) depth computation (the edge-directed and GIF- based

architectures). The hardware implementation complexity of the architectures and how they

scale towards higher resolution images and image sizes were presented in the corresponding

Sections (Sections 3 & 5). Considering the importance and potential of upcoming UHD and

4K images, a topic that deserves investigation in the near-future is the optimization of the

proposed stereo vision architectures to support processing of next-generation image

resolutions (UHD, 4K, or even 8K).

7.2.2.4 Fusion with other types of depth sensors

Depth extraction using passive stereo technology is a well-studied problem. Advances in

both algorithms and computing devices and platforms have enabled the development of real-

time and accurate solutions for embedded environments. Especially, the stereo matching

architecture presented in Chapter 5, which implements a local stereo algorithm, is capable of

providing a matching accuracy of 93.6%, while the top performing algorithm in the

Middlebury evaluation website achieves ~96%, based on global optimization [26]. The regions

where local stereo algorithms still not work reliably include non-textured and featureless

regions of a scene. In such cases, it is particularly challenging to establish correspondence as

there is simply insufficient visual information across multiple cameras. Global stereo

algorithms solve this problem by propagating information from textured to textureless regions,

using disparity optimization (e.g. Belief propagation, graph cuts, etc.). However, they are

known to be quite fragile in practice and slow [71].

A recent trend in depth estimation is the fusion of multiple sensors together, as a means

to enable higher depth accuracy than can be achieved by each sensor individually. As

discussed in Chapter 2.2, it is not trivial to choose a winner among the available depth sensing

technologies, as the different depth sensors have their pros and cons, and can be more suitable

than others in particular conditions and environments. On one hand, it is well understood that

passive stereo sensors fail in non-textured, featureless portions of a scene, in regions with

repetitive patterns and occluded areas, as these regions cause the generation of multiple local

minima. On the other hand, active sensors are more accurate in these regions, but they

currently have a low image resolution and tend to be noisy in highly textured regions for

which stereo excels (due to the existence of unique local minima). Therefore, the main idea

behind this trend is to take advantage of the complementary nature of more than one depth

sensors in order to generate highly-accurate depth maps at all image regions.

Chri
sto

s T
tof

i

179 Conclusion and Future Work

Exploiting the complementary nature of different depth sensors is a recent research area

that received attention during the last few years. Most of the existing approaches fuse stereo

with Time-of-Flight (ToF) depth sensors. A comprehensive review can be found [185]. The

work in [186] proposed fusing a laser range finder with a stereo vision camera for obstacle

avoidance applications. Other approaches combine the Kinect with stereoscopic cameras

[187]. The aforementioned implementations focus mostly on highly-accurate depth estimation,

and most of them are not capable for real-time performance. In particular, among the

implementations for which a processing performance is provided, the reported processing

times are 8-18 fps for a resolution of 1024x768, while the work in [187] that targets ultra high

definition images 94-12MP) requires 10-20 minutes to generate the combined depth maps.

As such, the work in this thesis which has focused on providing high-quality disparity

estimation for resource constrained embedded systems can be continued by integrating another

type of depth sensing technology, other than stereo vision, and use the provided depth maps, in

order to improve the quality of the disparity maps produced by the architectures presented in

this thesis. Some of the challenges involved in integrating another depth sensor into the

existing architectures are listed below:

- Selecting a depth sensor that is affordable for embedded systems in terms of cost and

energy consumption.

- Active depth sensors output much lower resolution than those from stereoscopic cameras.

To address this problem, it will be necessary to develop real-time hardware designs for

up-sampling the depth maps of the active sensors.

- Non-confident regions in the disparity maps generated by the proposed stereo matching

architecture (e.g. textureless regions) will need to be indentified based on local image

features.

7.2.2.5 Multi-view stereo

Multi-view camera systems are becoming ubiquitous in today‟s applications in

stereoscopic 3D movie and broadcast production, video conferencing, surveillance, image-

based rendering, etc. In such systems, several cameras are placed around the scene, which is

captured from different points of view. Multi-view systems can provide a full 3D model of the

scene, however, to do so, the images captured from the different cameras need to be

correlated. This has to be done in real-time and under tight power envelops when targeting

Chri
sto

s T
tof

i

Stereo Vision Hardware Architectures for Real-Time Depth Computation in Embedded Vision Applications 180

embedded applications.

In this thesis, we demonstrated how the use of edge information can significantly reduce

the search space and enable high frame rates. The obtained frame rates might seem to high for

most video processing applications, where 30 fps are enough. However, the real benefits of the

edge directed stereo matching architecture can be illustrated in the case of multi-view stereo

matching, where the same architecture can be shared over time (time-multiplexed) among

multiple views keeping the overall frame rate at 30 fps, while performing correlation across

multiple views without the need to replicate the architecture, thus also consuming less-energy.

7.2.2.6 A Machine Learning Approach to Depth Estimation: Integrating monocular depth

cues with stereo vision

Inspired by the way humans are able to perceive depth information from visual

information (Chapter 2.3), relying also on monocular depth cues rather than only on binocular

disparity (stereo vision), could definitely result in more robust computer vision based depth

estimation systems. Humans have an amazing ability to judge depth even from a single image,

by relying on monocular cues such as texture variations and gradients, occlusion, known

object sizes, haze, defocus, etc. (see Chapter 2.3).

It is worth nothing that this approach is more efficient than fusing different depth sensors

together, in that, monocular cues can be extracted from the individual images captured by the

stereo camera. However, the real challenge here lies in determining what cues to extract and

the difficulty of extracting depth cues from single images. For most depth cues, the global

structure of the image needs to be account, as they rely on contextual information that

represents global properties on an image and cannot be extracted from local patches. In

addition, prior information about the scene is usually required. Local cues such as texture

color and texture gradient may not be sufficient to accurately determine depth when using

them alone, but they can potentially be of great value when combined with stereo disparity.

With the aforementioned considerations in mind, another future directive would be to

capture monocular cues that can be extracted in real-time with an implementation based on

reconfigurable hardware, and incorporate those cues into the proposed stereo vision systems

so as to obtain better disparity estimates than the stereo matching architectures alone. Proper

integration of monocular depth cues could result in more accurate depth map estimate

(imitating human brain system). The most promising depth cues for a hardware

implementation are motion parallax, texture variation, haze, perspective, vertical coordinate,

Chri
sto

s T
tof

i

181 Conclusion and Future Work

and sharpness, which can be implemented based on local windows. These depth cues will

result in a number of feature sets; the feature sets can be computed for different image-

resolution levels to account also for different object sizes, (1, 1/2, and 1/4), to capture

occlusion and to make these features global accountable features. In this way, depth estimation

becomes a machine learning problem, where extracted features representing monocular depth

cues are used to estimate depth. A recent software implementation that utilizes monocular

depth cues to extract feature vectors that are used with a Support Vector Machine (SVC) is

proposed in [188]. Investigating hardware design issues and considerations of this approach

would certainly be of valuable importance in the embedded vision community.

7.3 Summary

Embedded vision has become an essential requirement for several emerging applications

and markets in many industries including automotive, robotics, medical imaging, defense and

many more. Empowering embedded vision systems with depth information extracted from

stereoscopic vision can help overcome a variety of computer vision challenges, such as

detecting obstacles in automotive and robotic applications or interpreting gestures for smart

user interfaces. However, stereo vision algorithms typically require high compute

performance, and, of course, their implementations for embedded vision systems usually need

to fit into tight cost and power consumption envelopes. This thesis presented hardware

architectures of stereo vision algorithms that have the potential to satisfy the requirements of

constrained embedded vision applications. The developed architectures were evaluated in the

applications of object detection and obstacle avoidance in robotics environments. The author

expects that the results achieved in this thesis will be used long term by the embedded vision

community, and will contribute significantly in the development of future 3D vision

algorithms and applications. Chri
sto

s T
tof

i

8 References

[1] Berkeley Design Technology, Inc. (2011) Implementing Vision Capabilities in Embedded

Systems. [Online]. http://www.bdti.com/private/pubs/BDTI_ESC_Embedded_Vision.pdf

[2] ALTERA. (2012) Processing Options For Implementing Vision Capabilities in Embedded

Systems. [Online]. http://www.altera.com/technology/system-design/articles/2012/vision-

capabilities-in-embedded-systems.html

[3] T. Wilson and B. Dipert, "Embedded Vision on Mobile Devices," Journal of Electronic

Engineering, July 2013.

[4] AVNET. (2013, June) EMBEDDED VISION: Creating a Next-Generation of Machines that

"See". [Online]. http://www.em.avnet.com/en-

us/design/publications/Documents/AXIOM_Embedded%20Vision.pdf

[5] Embedded Vision Alliance. (2014) Applications for Embedded Vision. [Online].

http://www.embedded-vision.com/applications/medical

[6] Jamie Hartford. (2013, April) The Embedded Vision Revolution. [Online].

http://www.mddionline.com/article/embedded-vision-revolution

[7] Argon Design. (2014, January) Embedded vision systems set to revolutionise electronics.

[Online]. http://www.argondesign.com/news/2014/jan/22/embedded-vision-systems/

[8] A. Nieto, D. L. Vilarino, and V. B. Sánchez, "Towards the Optimal Hardware Architecture for

Computer Vision," in Machine Vision - Applications and System.: INTECH, 2012, p. 27 pages.

[9] B. Cyganek and J. P. Siebert, Introduction to 3D Computer Vision Techniques and Algorithms.:

Wiley, John & Sons, 2009.

[10] O. Faugeras, Three Dimensional Computer Vision.: MIT Press, 1993.

[11] M. Domínguez-Morales, A. Jiménez-Fernández, R. Paz-Vicente, A. Linares-Barranco, and G.

Jiménez-Moreno, "Stereo Matching: From the Basis to Neuromorphic Engineering," in Current

Advancements in Stereo Vision.: InTech, 2012.

[12] F. Cheng and X. Chen, "Integration of 3D stereo vision measurements in industrial robot

applications," in IAJC-IJME 2008 Conference, Tennessee, 2008.

[13] (2013) RobotCar UK - Robotics Science For Smarter Cars. [Online].

http://mrg.robots.ox.ac.uk/robotcar/

[14] (2014) Mercedes-Benz S-class 2014. [Online].

http://www.mbusa.com/vcm/MB/DigitalAssets/pdfmb/brochures/2014-S-Class.pdf

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.: Addison-Wesley Pub (Sd),

2007.

[16] (2008) Bumblebee2 stereo vision camera. [Online].

www.ptgrey.com/products/Point_Grey_stereo_catalog.pdf

[17] I., Heikkinen, T., Myllyla, R. & Kilpela, A. Moring, "Acquisition of three-dimensional image

data by a scanning laser range finder," Optical Engineering, vol. 28, no. 8, pp. 897-902, 1989.

[18] S.B. Gokturk, H. Yalcin, and C. Bamji, "A Time-Of-Flight Depth Sensor - System Description,

Issues and Solutions," in Conference on Computer Vision and Pattern Recognition Workshop

(CVPRW '04), vol. 4, 2004, pp. 35-43.

Chri
sto

s T
tof

i

http://www.bdti.com/private/pubs/BDTI_ESC_Embedded_Vision.pdf
http://www.altera.com/technology/system-design/articles/2012/vision-capabilities-in-embedded-systems.html
http://www.altera.com/technology/system-design/articles/2012/vision-capabilities-in-embedded-systems.html
http://www.em.avnet.com/en-us/design/publications/Documents/AXIOM_Embedded%20Vision.pdf
http://www.em.avnet.com/en-us/design/publications/Documents/AXIOM_Embedded%20Vision.pdf
http://www.embedded-vision.com/applications/medical
http://www.mddionline.com/article/embedded-vision-revolution
http://www.argondesign.com/news/2014/jan/22/embedded-vision-systems/
http://mrg.robots.ox.ac.uk/robotcar/
http://www.mbusa.com/vcm/MB/DigitalAssets/pdfmb/brochures/2014-S-Class.pdf
www.ptgrey.com/products/Point_Grey_stereo_catalog.pdf

183 References

[19] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, "Depth mapping using projected patterns,"

Application US20080240502 A1, October 2, 2008.

[20] R. Szeliski, Computer Vision: Algorithms and Applications.: Spinger, 2010.

[21] P. R.a Sanz, B. R. Mezcua, and J. M. S. Pena, "Depth Estimation - An Introduction," in Current

Advancements in Stereo Vision, Asim Bhatti, Ed.: INTECH, 2012, ch. 5.

[22] Reynold Bailey; Cindy Grimm; Christopher Davoli, "The effect of warm and cool object colors

on depth ordering," in APGV '06 Proceedings of the 3rd symposium on Applied perception in

graphics and visualization, New York, NY, USA, 2006, p. 161.

[23] A. Saxena, S. H. Chung, and A. Y. Ng, "3-D Depth Reconstruction from a Single Still Image,"

International Journal of Computer Vision, vol. 76, pp. 53-69, 2008.

[24] M. Bleyer and M. Gelautz, "A layered stereo matching algorithm using image segmentation and

global visibility constraints," Journal of Photogrammetry & Remote Sensing, vol. 59, pp. 128-

150, 2005.

[25] D. Szeliski and R. Scharstein, "A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms," Inter. J. of Comput. Vision, vol. 47, pp. 7-42, 2002.

[26] (2010-2013) Stereo - The Middlebury Computer Vision Pages. [Online].

http://vision.middlebury.edu/stereo/

[27] enpeda. Image Sequence Analysis Test Site. [Online]. http://www.mi.auckland.ac.nz/EISATS/

[28] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite," in IEEE Conference on Conference on Computer Vision and Pattern

Recognition (CVPR), 2012, pp. 3354-3361.

[29] T. Vaudrey, C. Rabe, R. Klette, and J. Milburn, "Differences between stereo and motion

behaviour on synthetic and real-world stereo sequences," in 23rd Int. Conf. on Image and Vision

Computing (IVCNZ 2008), New Zealand, 26-28 Nov. 2008, pp. 1-6.

[30] D. G. Cubber, L. Nalpantidis, G. Sirakoulis, and A. Gasteratos, "Intelligent Robots need

Intelligent Vision: Visual 3D Perception," in IARP/EURON Workshop on Robotics for Risky

Interventions and Environmental Surveillance, 2008.

[31] R.A El-laithy, H. Jidong, and M. Yeh, "Study on the use of Microsoft Kinect for robotics

applications," in 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), 23-26

April 2012, pp. 1280-1288.

[32] M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras: Principles, Methods and

Applications.: Series: Springer Briefs in Computer Science, 2013.

[33] S. Foix, G. Alenya, and C. Torras, "Lock-in Time-of-Flight (ToF) Cameras: A Survey," IEEE

Sensors Journal, vol. 11, no. 9, pp. 1917-1926, Sept. 2011.

[34] Rama Rao Nidamanuri, P Bhanu Prasad Dhanya S Pankaj, "3-D Imaging Techniques and

Review of Products," in International Conference on "Innovations in Computer Science and

Engineering (ICICSE 2013), At Hyderabad, India, 2013.

[35] PDMTechnologies. (2014) pmd[vision]® CamCube 3.0. [Online]. http://www.pmdtec.com/

[36] (2010) Microsoft Kinect. [Online]. http://www.xbox.com/en-us/kinect/

[37] ASUSTeK Computer Inc. (2014, March) Xtion PRO. [Online].

http://www.asus.com/Multimedia/Xtion_PRO/

[38] M. Antunes, J.P. Barreto, C. Premebida, and U. Nunes, "Can stereo vision replace a Laser

Chri
sto

s T
tof

i

http://vision.middlebury.edu/stereo/
http://www.mi.auckland.ac.nz/EISATS/
http://www.pmdtec.com/
http://www.xbox.com/en-us/kinect/
http://www.asus.com/Multimedia/Xtion_PRO/

References 184

Rangefinder?," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2012, pp. 5183-5190.

[39] K. Konolige et al., "Outdoor mapping and navigation using stereo vision," in Proc. of the Intl.

Symp. on Experimental Robotics (ISER), 2006.

[40] K. Khoshelham, "Accuracy analysis of kinect depth data," in ISPRS workshop laser scanning,

vol. 38, Calgary Canada, 2011, pp. 133-138.

[41] R. Nair et al., "High Accuracy TOF and Stereo Sensor Fusion at Interactive Rates," in Computer

Vision – ECCV 2012. Workshops and Demonstrations, Lecture Notes in Computer Science.:

Springer Berlin Heidelberg, 2012, pp. 1-11.

[42] Stephan Reichelt, RalfHäussler,Gerald Fütterer, and Norbert Leister, "Depth cues in human

visual perception and their realization in 3D displays," in Three-Dimensional Imaging,

Visualization, and Display 2010 and Display Technologies and Applications for Defense,

Security, and Avionics, 2010, p. 12.

[43] Wikipedia. (2014, March) Pinhole camera --- Wikipedia

[44] E. Staudinger, M. Humenberger, and W. Kubinger, "FPGA-based Rectification and Lens

Undistortion for a Real-Time Embedded Stereo Vision Sensor," in Proc. FH Science Day 2008,

Linz, Austria, 2008, pp. 18-25.

[45] E. Trucco and A. Verri, Introductory Techniques For 3-D Computer Vision. Upper Saddle River,

NJ, USA: Prentice Hall PTR, 1998.

[46] Y.M Wang, Y. L, and J. B. Zheng, "A camera calibration technique based on OpenCV," in 2010

3rd International Conference on Information Sciences and Interaction Sciences (ICIS), 23-25

June 2010, pp. 403-406.

[47] J.-Y. Bouguet. (2008, January) Camera Calibration Toolbox for Matlab. [Online].

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

[48] M. Warren, D. McKinnon, and B. Upcroft, "Online Calibration of Stereo Rigs for Long-Term

Autonomy," in International Conference on Robotics and Automation, Karlsruhe, Germany ,

2013.

[49] T. Dang, C. Hoffmann, and C. Stiller, "Continuous Stereo Self-Calibration by Camera Parameter

Tracking," IEEE Transactions on Image Processing, vol. 18, no. 7, pp. 1536-1550, July 2009.

[50] D. V. Papadimitriou and T. J. Dennis, "Epipolar line estimation and rectification for stereo image

pairs," IEEE Trans. on Image Processing, vol. 2, pp. 672-676, August 2005.

[51] C. Loop and Z. Zhengyou, "Computing rectifying homographies for stereo vision," in 1999 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1999, p. 131.

[52] B. Maldeniya, D. Nawarathna, K. Wijayasekara, T. Wijegoonasekara, and R. Rodrigo,

"Computationally efficient implementation of video rectification in an FPGA for stereo vision

applications," in 2010 5th International Conference on Information and Automation for

Sustainability (ICIAFs), 17-19 Dec. 2010, pp. 219-224.

[53] C. Vancea and S. Nedevschi, "LUT-based Image Rectification Module Implemented in FPGA,"

in 2007 IEEE International Conference on Intelligent Computer Communication and

Processing, 6-8 Sept. 2007, pp. 147-154.

[54] K. Jawed, J. Morris, T. Khan, and G. Gimel'farb, "Real Time Rectification for Stereo

Correspondence," in 2009 International Conference on Computational Science and Engineering,

2009, pp. 277-284.

Chri
sto

s T
tof

i

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

185 References

[55] D. H. Park, H. S. Ko, J. G. Kim, and J. D Cho, "Real time rectification using differentially

encoded lookup table," in Proceedings of the ACM 5th international Conference on Ubiquitous

information Management and Communication (ICUIMC '11), Seoul, Korea, February 21 - 23,

2011, 2011, pp. 1-4.

[56] T. Kanade, H. Kano, S. Kimura, A. Yoshida, and K. Oda, "Development of a video-rate stereo

machine," in Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative

Robots, 9 Aug 1995, pp. 95-100.

[57] O. Faugeras et al., "Real time correlation-based stereo: algorithm, implementations and

applications," Technical Report 2013, INRIA Sophia Antipolis, 1993.

[58] A. Ansar, A. Castano, and L. Matthies, "Enhanced real-time stereo using bilateral filtering," in

2nd International Symposium on3D Data Processing, Visualization and Transmission, 2004

(3DPVT 2004), 6-9 Sept. 2004, pp. 455-462.

[59] H. Hirschmuller and D. Scharstein, "Evaluation of Stereo Matching Costs on Images with

Radiometric Differences," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 9, pp. 1582-1599, Sept. 2009.

[60] M. Z. Brown, D. Burschka, G. D. Hager, and S. Member, "Advances in computational stereo,"

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, pp. 993-1008, 2003.

[61] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, "Classification and evaluation of

cost aggregation methods for stereo correspondence," in IEEE Int. Conf. Comput. Vision Pattern

Recognit., Jun. 2008, pp. 1-8.

[62] K.-J. Yoon and I.-S. Kweon, "Adaptive support-weight approach for correspondence search,"

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 650-656, Apr. 2006.

[63] F. Tombari, S. Mattoccia, and L. Di Stefano, "Segmentation-based adaptive support for accurate

stereo correspondence," Lecture Notes in Computer Science, vol. 4872, pp. 427–438., Dec. 2007.

[64] K., Maier, D., Hesser, J., Manner, R. Muhlmann, "Calculating dense disparity maps from color

stereo images, an efficient implementation," in Proceedings of the IEEE Workshop on Stereo and

Multi-Baseline Vision (SMBV 2001), 2001, pp. 30-36.

[65] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, "A fast stereo matching

algorithm suitable for embedded real-time systems," Computer Vision and Image Understanding,

vol. 114, no. 11, pp. 1180-1202, November 2010.

[66] K. Zhang, J. Lu, and G. Lafruit, "Cross-Based Local Stereo Matching Using Orthogonal Integral

Images," IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 7, pp.

1073-1079, July 2009.

[67] C. Richardt, D. A. H. Orr, I. P. Davies, A. Criminisi, and N. A. Dodgson, "Real-time

Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid," in European Conference

on Computer Vision (ECCV), Heraklion, Crete, Greece, 5-11 Sept. 2010, pp. 510-523.

[68] S. Perri, P. Corsonello, and G. Cocorullo, "Adaptive Census Transform: A novel hardware-

oriented stereovision algorithm," Computer Vision and Image Understanding, vol. 117, no. 1, pp.

29-41, January 2013.

[69] H. Hirschmüller, "Stereo Processing by Semiglobal Matching and Mutual Information," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328-341, 2008.

[70] P. Steingrube, S. K. Gehrig, and U. Franke, "Performance Evaluation of Stereo Algorithms for

Automotive Applications," in Lecture Notes in Computer Science, vol. 5815, 2009, pp. 285-294.

Chri
sto

s T
tof

i

References 186

[71] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald, "Review of stereo vision algorithms and

their suitability for resource-limited systems," Journal of Real-Time Image Processing, 2013.

[72] Z. Yuhang, R. Hartley, J. Mashford, and S. Burn, "Superpixels, Occlusion and Stereo," in 2011

International Conference on Digital Image Computing Techniques and Applications (DICTA), 6-

8 Dec. 2011, pp. 84-91.

[73] Q. Yang, C. Engels, and A. Akbarzadeh, "Near Real-time Stereo for Weakly-Textured Scenes,"

in British Machine Conference, September 2008, pp. 72.1-72.10.

[74] C. Wöhler and P. d‟Angelo, "Stereo Image Analysis of Non-Lambertian Surfaces," International

Journal of Computer Vision, vol. 81, no. 2, pp. 172-190, 2009.

[75] W. Zhao and N. Nandhakumar, "Effects of camera alignment errors on stereoscopic depth

estimates," Pattern Recognition, Elsevier, vol. 29, no. 12, pp. 2115-2126, Dec. 1996.

[76] Point Grey Research Inc. (2014, April) Point Grey - Innovation in Imaging. [Online].

http://ww2.ptgrey.com/

[77] Point Grey Research Inc., "Stereo Vision Introduction and Applications ," Point Grey Research

Inc., Canada, Technical Application Note 2010.

[78] DARPA. (2014, March) DARPA URBAN CHALLENGE. [Online].

http://archive.darpa.mil/grandchallenge/

[79] Aldebaran Robotics. (2014, March) Aldebaran Robotics. [Online]. http://www.aldebaran.com/en

[80] Aldebaran Robotics. (2014, March) The Companion Robot NAO. [Online].

https://team.inria.fr/perception/nao/

[81] NASA. (2014, April) Mars Science Laboratory. [Online].

http://www.nasa.gov/mission_pages/msl/#.U1Z-DPl_tGQ

[82] Ben Coxworth. (2011, May) Continental forward braking system to get stereo vision. [Online].

http://www.gizmag.com/continental-forward-braking-system-stereo-vision/18594/

[83] R. Kalarot and J. Morris, "Comparison of FPGA and GPU implementations of real-time stereo

vision," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 13-18 June 2010, pp. 9-15.

[84] W. James MacLean, "An Evaluation of the Suitability of FPGAs for Embedded Vision Systems,"

in Proceedings of the 2005 IEEE Computer Society Conference on Computer vision and pattern

recognition, San Diego, CA, 2005, p. 131.

[85] L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos, "Review of stereo vision algorithms: from

software to hardware," Inter. J. of Optomechatronics, vol. 2, no. 4, pp. 435-462, 2008.

[86] C. Banz, H. Blume, and P. Pirsch, "Architectures for Stereo Vision," in Handbook of Signal

Processing Systems.: Springer New York, 2013, pp. 483-515.

[87] H. Hirschmuller, P.R. Innocent, and J.Garibaldi, "Real-time correlation-based stereo vision with

reduced border errors," Int. J. of Computer Vision, vol. 47, no. 1-3, pp. 229-246, April-June

2002.

[88] S. Forstmann, Y. Kanou, Jun Ohya, S. Thuering, and A. Schmitt, "Real-Time Stereo by using

Dynamic Programming," in Proc. of Computer Vision and Pattern Recognition Workshop

(CVPRW '04), June 2004, pp. 29-29.

[89] C., Humenberger, M. and Ambrosch, K. Zinner, "An Optimized Software-Based Implementation

of a Census-Based Stereo Matching Algorithm," in Advances in Visual Computing, Lecture

Chri
sto

s T
tof

i

http://ww2.ptgrey.com/
http://archive.darpa.mil/grandchallenge/
http://www.aldebaran.com/en
https://team.inria.fr/perception/nao/
http://www.nasa.gov/mission_pages/msl/#.U1Z-DPl_tGQ
http://www.gizmag.com/continental-forward-braking-system-stereo-vision/18594/

187 References

Notes in Computer Science.: Springer Berlin Heidelberg, 2008, vol. 5358, pp. 216-227.

[90] S.K. Gehrig and C. Rabe, "Real-time Semi-Global Matching on the CPU," in 2010 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2010, pp. 85-92.

[91] R. Yang and M. Pollefeys, "A versatile stereo implementation on commodity graphics

hardware," Real-Time Imaging, vol. 11, no. 1, pp. 7-18, Feb. 2005.

[92] Q. Yang et al., "Real-time global stereo matching using hierarchical belief propagation," in The

British Machine Vision Conf., 2006.

[93] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and D. Nister, "High-Quality Real-Time

Stereo Using Adaptive Cost Aggregation and Dynamic Programming," in Third International

Symposium on 3D Data Processing, Visualization, and Transmission, 2006, pp. 798-805.

[94] Xueqin Xiang, Mingmin Zhang, Guangxia Li, Yuyong He, and Zhigeng Pan, "Real-time stereo

matching based on fast belief propagation," Machine Vision and Applications, vol. 23, no. 6, pp.

1219-1227, November 2012.

[95] I. Ernst and H. Hirschmüller, "Mutual Information Based Semi-Global Stereo Matching on the

GPU," in Advances in Visual Computing, Lecture Notes in Computer Science., 2008, vol. 5358,

pp. 228-239.

[96] Alan Gray. (2012)

http://www2.epcc.ed.ac.uk/~alang/GPU_training_aug12/GPU_Architecture.pdf.

[97] J. Fowers, G. Brown, P. Cooke, and G. Stitt, "A Performance Energy Comparison of FPGAs,

GPUs, and Multicores for Sliding-Window Applications," in Proceedings of the ACM/SIGDA

international symposium on Field Programmable Gate Arrays (FPGA'12), New York, NY,

USA, 2012, pp. 47-56.

[98] K. Konolige, "Small vision system - hardware and implementation," in Proc. of the International

Symposium on Robotics Research, Hayama, Japan, 1997, pp. 111-116.

[99] N. Chang, Ting-Min Lin, Tsung-Hsien Tsai, Yu-Cheng Tseng, and Tian-Sheuan Chang, "Real-

Time DSP Implementation on Local Stereo Matching," in IEEE International Conference on

Multimedia and Expo, 2-5 July 2007, pp. 2090-2093.

[100] R.-P M. Berretty, A. K. Riemens, and P. F. Machado, "Real-time embedded system for stereo

video processing for multiview displays," in Stereoscopic Displays and Virtual Reality Systems

XIV, San Jose, USA, Jan. 2007.

[101] B. Khaleghi, S. Ahuja, and Q. Wu, "An improved real-time miniaturized embedded stereo vision

system (MESVS-II)," in IEEE Computer Society Conf. on Computer Vision and Pattern

Recognition Workshops 2008 (CVPRW '08), 23-28 June, 2008, pp. 1-8.

[102] S. Cavanag and M. Manzke, "Real time disparity map estimation on the cell processor," in

Proceedings of the 2009 Eurographics Ireland Workshop, Trinity College Dublin, December,

2009, pp. 67-74.

[103] J. Liu et al., "Disparity map computation on a cell processor," in Proceedings of the IASTED

International Conference on Modelling, Simulation, and Identification (MSI '09), Beijing, China,

12-14 October, 2009.

[104] Kun-Yuan Hsieh, Chi-Hua La, Shang-Hong Lai , and Jenq Kuen Lee, "Parallelization of Belief

Propagation on Cell Processors for Stereo Vision," ACM Trans. Embed. Comput. Syst., vol. 11S,

no. Article 13, p. 15 pages, June 2012.

Chri
sto

s T
tof

i

References 188

[105] C. Georgoulas and I. Andreadis, "A Real-Time Occlusion Aware Hardware Structure for

Disparity Map Computation," Image Analysis and Process. – ICIAP 2009, vol. 5716, pp. 721-

730, 2009.

[106] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, "A SAD-based Stereo

Matching Using FPGAs," in Embedded Computer Vision part II. London: Spinger, 2009, pp.

121-138.

[107] A. Darabiha, J. MacLean, and J. Rose, "Reconfigurable hardware implementation of a phase-

correlation stereo algorithm," Machine Vision Appl., vol. 17, no. 2, pp. 116-132, 2006.

[108] S. Jin et al., "FPGA design and implementation of a real-time stereo vision system," IEEE Trans.

on Circuits and Systems for Video Technology, vol. 20, no. 1, pp. 15-26, 2010.

[109] K. Ambrosch and W. Kubinger, "Accurate hardware-based stereo vision," Comput. Vis. Image

Und., vol. 114, no. 11, pp. 1303-1316, Nov. 2010.

[110] S. K. Gehrig, F. Eberli, and T. Meyer, "A Real-Time Low-Power Stereo Vision Engine Using

Semi-Global Matching," in Computer Vision Systems, Lecture Notes in Computer Science.:

Springer Berlin Heidelberg, 2009, vol. 5815, pp. 134-143.

[111] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, "Real-time stereo vision system using

semi-global matching disparity estimation: Architecture and FPGA-implementation," in 2010

International Conference on Embedded Computer Systems (SAMOS), 2010, pp. 93-101.

[112] C. Banz, S. Hesselbarth, H. F. H. Blume, and P. Pirsch, "Real-Time Stereo Vision System using

Semi-Global Matching Disparity Estimation: Architecture and FPGA-Implementation,"

Transactions on HiPEAC, vol. 5, no. 4, 2011.

[113] H. Hirschmüller, M. Buder, and I. Ernst, "MEMORY EFFICIENT SEMI-GLOBAL

MATCHING," in ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci, vol. I-3, 2012, pp.

371-376.

[114] N. Chang, T. Tsai, B. Hsu, Y. Chen, and T. Chang, "Algorithm and Architecture of Disparity

Estimation With Mini-Census Adaptive Support Weight," IEEE Trans. on Circuits and Systems

for Video Technology, vol. 20, no. 6, pp. 792-805, 2010.

[115] J. Ding et al., "Real-time stereo vision system using adaptive weight cost aggregation approach,"

EURASIP JIVP, vol. 2011, no. 1, pp. 1-19, December 2011.

[116] H. Kim and K. Sohn, "3D Reconstruction of Stereo Images for Interaction between Real and

Virtual Worlds," in 2nd IEEE/ACM Int. Symposium on Mixed and Augmented Reality, October

2003, pp. 169-176.

[117] J. Ralli, F. Pelayo, and J. Diaz, "Increasing Efficiency in Disparity Calculation," in 2nd Int. Conf.

on Advances in brain, vision, and artificial intelligence, vol. 4729, 2007, pp. 298-307.

[118] M. Raman and H. Aggarwal, "Study and Comparison of Various Image Edge Detection

Techniques," Int. J. of Image Process., vol. 3, no. 1, pp. 1-12, 2009.

[119] Z. Vasicek and L. Sekanina, "An evolvable hardware system in Xilinx Virtex II Pro FPGA," Int.

J. of Innovative Computing and Applications, vol. 1, no. 1, pp. 63-73, 2007.

[120] M. Hariyama, Y. Kobayashi, H. Sasaki, and M. Kameyama, "FPGA implementation of a stereo

matching processor based on window-parallel-and-pixel-parallel architecture," in Proc. of the

48th Midwest Symposium on Circuits and Systems, vol. 2, Covington, KY, 2005, pp. 1219 –

1222.

[121] Xilinx Inc. (2010, May) Virtex-5 LXT FPGA ML505 Evaluation Platform. [Online].

Chri
sto

s T
tof

i

189 References

http://www.xilinx.com/products/devkits/HW-V5-ML505-UNI-G.htm

[122] Xilinx Inc. (2010, May) MicroBlaze Soft Processor Core. [Online].

http://www.xilinx.com/tools/microblaze.htm

[123] H. Hile and C. Zheng, "Stereo Video Processing for Depth Map," University of Washington,

2004.

[124] Y. Miyajima and T. Maruyama, "A Real-Time Stereo Vision System with FPGA," in Proc. of

the 13th Int. Conf. on Field-Programmable Logic and Applications (FPL 2003), Lisbon,

Portugal, 2003, pp. 448-457.

[125] M. Arias-Estrada and J. M. Xicotencatl, "Multiple Stereo Matching Using an Extended

Architecture," in Lecture Notes in Computer Science, Springer Berlin/Heidelberg, Ed., 2001, vol.

2147, pp. 203-212.

[126] J. Diaz, E. Ros, R. Carrillo, and A. Prieto, "Real-time system for high-image resolution disparity

estimation," IEEE Trans. on Image Process., vol. 16, no. 1, pp. 280–285, Jan. 2007.

[127] C. Kyrkou, C. Ttofis, and T. Theocharides, "Depth-Directed Hardware Object Detection," in

Proc. of the DATE’11, Grenoble, France, 2011.

[128] S. H. Lee, J. Yi, and J. Kim, "Real-Time Stereo Vision on a Reconfigurable System," in Lecture

Notes in Computer Science, Springer Berlin/Heidelberg, Ed., 2005, vol. 3553, pp. 299–307.

[129] Asmaa Hosni, Michael Bleyer, and Margrit Gelautz, "Secrets of adaptive support weight

techniques for local stereo matching," Computer Vision and Image Understanding, vol. 117, no.

6, pp. 620-632, June 2013.

[130] J. Fang et al., "Accelerating Cost Aggregation for Real-Time Stereo Matching," in IEEE 18th

International Conference on Parallel and Distributed Systems, Singapore, 17-19 December,

2012, pp. 472-481.

[131] S.A. Fahmy, P.Y.K. Cheung, and W. Luk, "Novel FPGA-based implementation of median and

weighted median filters for image processing," in International Conference on Field

Programmable Logic and Applications, 2005, pp. 142-147.

[132] H. Sunyoto, W. van der Mark, and D.M. Gavrila, "A comparative study of fast dense stereo

vision algorithms," in Intelligent Vehicles Symposium, 2004 IEEE, 14-17 June 2004, pp. 319-

324.

[133] TOKYO ELECTRON DEVICE LIMITED. (2013) Kintex-7 FPGA Display Kit. [Online].

http://solutions.inrevium.com/products/kits/consumer/tb-7k-acdc.html

[134] Xilinx Inc. (2013) Kintex-7 FPGA Family. [Online]. http://www.xilinx.com/products/silicon-

devices/fpga/kintex-7/

[135] TOKYO ELECTRON DEVICE LIMITED. (2010) FMC Cards: Image Processing. [Online].

http://solutions.inrevium.com/products/fmc/image_processing/index.html

[136] Nadia Baha and Slimane Larabi, "ACCURATE REAL-TIME DISPARITY MAP

COMPUTATION BASED ON VARIABLE SUPPORT WINDOW," International Journal of

Artificial Intelligence & Applications, vol. 2, no. 3, July 2011.

[137] N. Baha and S. Larabi, "Accurate real-time neural disparity MAP estimation with FPGA,"

Pattern Recognition, vol. 45, no. 3, pp. 1195-1204, March 2012.

[138] S. K. Gehrig, F. Eberli, and T. Meyer, "A Real-Time Low-Power Stereo Vision Engine Using

Semi-Global Matching," Computer Vision Systems, Lecture Notes in Computer Science, vol.

Chri
sto

s T
tof

i

http://www.xilinx.com/products/devkits/HW-V5-ML505-UNI-G.htm
http://www.xilinx.com/tools/microblaze.htm
http://solutions.inrevium.com/products/kits/consumer/tb-7k-acdc.html
http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/
http://www.xilinx.com/products/silicon-devices/fpga/kintex-7/
http://solutions.inrevium.com/products/fmc/image_processing/index.html

References 190

5815, pp. 134-143, 2009.

[139] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, "Real-time stereo vision system using

semi-global matching disparity estimation: Architecture and fpga-implementation," in

ICSAMOS, 2010, pp. 93-101.

[140] L. Zhang et al., "Real-Time High-Definition Stereo Matching on FPGA," in FPGA'11,

Monterey, CA, USA, 2011, pp. 55-64.

[141] Kaiming He, Jian Sun, and Xiaoou Tang, "Guided Image Filtering," IEEE Trans. Pattern Anal.

Mach. Intell., vol. 35, no. 6, pp. 1397-1409, 2013.

[142] A. Hosni, M. Bleyer, C. Rhemann, M. Gelautz, and C. Rother, "Real-time local stereo matching

using guided image filtering," in IEEE Int. Conf. on Multimedia and Expo (ICME), 2011, pp. 1-

6.

[143] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, "Constant time Weighted Median Filtering for Stereo

Matching and Beyond," in International Conference on Computer Vision, 2013.

[144] S. Perreault and P. Hebert, "Median Filtering in Constant Time," IEEE Trans. on Image

Process., vol. 16, no. 9, pp. 2389-2394, 2007.

[145] H.-S. Son, K.-r. Bae, S.-H. Ok, Y.-H. Lee, and B. Moon, "A Rectification Hardware Architecture

for an Adaptive Multiple-Baseline Stereo Vision System," in Communication and Networking.:

Springer Berlin Heidelberg, 2012, pp. 147-155.

[146] M. S. Sadri et al, "An FPGA Based Fast Face Detector," in Global Signal Processing Expo and

Conf., 2004.

[147] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "Fpga-based face detection system using haar

classifiers," in Proceeding of the ACM/SIGDA international symposium on Field programmable

gate arrays, New York, NY, USA, 2009, pp. 103-112.

[148] R. McCready, "Real-Time Face Detection on a Configurable Hardware System," in 10th

International Workshop on Field-Programmable Logic and Applications, 2000, pp. 157-162.

[149] M. Hiromoto, H. Sugano, and R. Miyamoto, "Partially Parallel Architecture for Adaboost-Based

Detection with Haar-Like Features," IEEE Trans. on Circuits and Systems for Video Technology,

vol. 19, no. 1, pp. 41-52, Jan. 2009.

[150] T. Darrell, G. Gordon, M. Harville, and J. Woodfill, "Integrated Person Tracking Using Stereo,

Color, and Pattern Detection," in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 1998, p. 601.

[151] Shireen, Khaled, and Sumaya, "Moving object detection in spatial domain using background

removal techniques - state-of-art," Recent Patents on Computer Science, vol. 1, pp. 32-34, 2008.

[152] H. Wu, K. Suzuki, T. Wada, and Q. Chen, "Accelerating Face Detection by Using Depth

Information," in 3rd Pacific Rim Symposium on Advances in Image and Video Technology,

Japan, Jan. 2009, pp. 13-16.

[153] S. Kosov, K. Scherbaum, K. Faber, T. Thormahlen, and H-P Seidel, "Rapid stereo-vision

enhanced face detection," in 16th IEEE International Conference on Image Processing, 2009,

pp. 1221-1224.

[154] Y.G. Wang, E.T. Lim, and R. Venkateswarlu, "Stereo head/face detection and tracking," in

International Conference on Image Processing, vol. 1, 2004, pp. 605-608.

[155] C. Kyrkou and T. Theocharides, "SCoPE: Towards a Systolic Array for SVM Object Detection,"

Chri
sto

s T
tof

i

191 References

IEEE Embedded System Letters, vol. 1, no. 2, pp. 46-49, August 2009.

[156] J. Kovac, P. Peer, and F. Solina, "Human Skin Color Clustering for Face Detection," in

EUROCON International Conference on Computer as Tool, vol. 2, Sept. 2013, pp. 144-148.

[157] Lin Hwei-Jen, Yen Shwu-Huey, Yeh Jih-Pin, and Lin Meng-Ju, "Face Detection Based on Skin

Color Segmentation and SVM Classification," in Second International Conference on Secure

System Integration and Reliability Improvement (SSIRI'08), July 2008, pp. 230-231.

[158] He Chun, A. Papakonstantinou, and Chen Deming, "A novel SoC architecture on FPGA for ultra

fast face detection," in IEEE International Conference on Computer Design, 2009 (ICCD 2009),

Oct. 2009, pp. 412-418.

[159] C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining

and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[160] E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: an application to face

detection," in IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 130-

136.

[161] B. Heisele, T. Poggio, and M. Pontil, "Face Detection in Still GrayImages," in unpublished.

[162] MIT Center for Biological and Computation Learning. (2010, Jan.) CBCL Face Database #1.

[Online]. Available: http://cbcl.mit.edu/software-datasets/FaceData2.html

[163] L. Nalpantidis and A. Gasteratos, "Stereo Vision Depth Estimation Methods for Robotic

Applications," in Depth Map and 3D Imaging Applications: Algorithms and Technologies.: IGI

Global, 2012, pp. 397-417.

[164] R. P. Sadolikar and P. C. Bhaskar, "Obstacle Detection and Avoidance using Stereo Vision

System with Region of Interest (ROI) on FPGA," International Journal of Engineering Research

and Technology, vol. 3, no. 3, March 2014.

[165] S. Mattoccia, "Stereo Vision Algorithms for FPGAs," in IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), June 2013, pp. 636-641.

[166] J. Borenstein and Y. Koren, "Obstacle avoidance with ultrasonic sensors," IEEE Journal of

Robotics and Automation, vol. 4, no. 2, pp. 213–218, 1988.

[167] J. Borenstein and Y. Koren, "Real-time obstacle avoidance for fast mobile robots in cluttered

environments," in IEEE International Conference on Robotics and Automation, vol. 1, 1990, pp.

572–577.

[168] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile

robots," IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991.

[169] D. Sales, D. Correa, F. S. Osorio, and D. F. Wolf, "3D Vision-Based Autonomous Navigation

System Using ANN and Kinect Sensor," in 13th International Conference, EANN 2012, London,

UK, Sept. 2012, pp. 305-314.

[170] L. Nalpantidis and A. Gasteratos, "Stereovision-based fuzzy obstacle avoidance method,"

International Journal of Humanoid Robotics, vol. 8, no. 1, pp. 169-183, 2011.

[171] T. Pire, P. De Cristoforis, M. Nitsche, and J. J. Berlles, "Stereo vision obstacle avoidance using

depth and elevation maps," in IEEE VI RAS Summer School on “Robot Vision and

Applications”, Santiago, Chile, Dec. 2012.

[172] J. L. Crowley, "World modeling and position estimation for a mobile robot using ultrasonic

ranging," in IEEE Int. Conf. on Robotics and Automation, vol. 2, 1989, pp. 674-680.

Chri
sto

s T
tof

i

available:%20%20http://cbcl.mit.edu/software-datasets/FaceData2.html

References 192

[173] O. Khatib, "Motion coordination and reactive control of autonomous multi-manipulator system,"

Journal of Robotic Systems, vol. 15, no. 4, pp. 300–319, 1996.

[174] O. Khatib, "Robot in human environments: Basic autonomous capabilities," International

Journal of Robotics Research, vol. 18, no. 7, pp. 684–696, 1999.

[175] LeapMotion. [Online]. https://www.leapmotion.com/

[176] D.S.O. Correa et al., "Mobile Robots Navigation in Indoor Environments Using Kinect Sensor,"

in 2012 Second Brazilian Conference Critical Embedded Systems (CBSEC), May 2012, pp. 36-

41.

[177] A. Ohya, A. Kosaka, and A. Kak, "Vision-based navigation of mobile robot with obstacle

avoidance by single camera vision and ultrasonic sensing," IEEE Transactions on Robotics and

Automation, vol. 14, no. 6, pp. 969–978, 1998.

[178] L. Nalpantidis, I. Kostavelis, and A. Gasteratos, "Stereovision-based algorithm for obstacle

avoidance," in International Conference on Intelligent Robotics and Applications: Lecture Notes

in Computer Science, Springer Berlin Heidelberg, 2009, pp. 195-204.

[179] Digilent Atlys. [Online]. www.digilentinc.com/atlys/

[180] Raspberry Pi. [Online]. http://www.raspberrypi.org/

[181] Arduino. [Online]. http://www.arduino.com/

[182] FPGALink Library. [Online]. http://www.makestuff.eu/wordpress/software/fpgalink/

[183] Ming Liu, "Adaptive Computing based on FPGA Run-time Reconfigurability," Royal Institute of

Technology, Stockholm, PhD Thesis 978-91-7415-985-1 / 1653-6363, 2011.

[184] H. Jie and M. Orshansky, "Approximate computing: An emerging paradigm for energy-efficient

design," in 2013 18th IEEE European Test Symposium (ETS) , 27-30 May 2013, pp. 1-6.

[185] R Nair et al., "A Survey on Time-of-Flight Stereo Fusion," in Time-of-Flight and Depth Imaging.

Sensors, Algorithms, and Applications: Lecture Notes in Computer Science., 2013, vol. 8200, pp.

105-127.

[186] S. Kumar, D. Gupta, and S. Yadav, "Sensor fusion of laser & stereo vision camera for depth

estimation and obstacle avoidance," International Journal of Computer Applications, vol. 1, no.

25, pp. 20-25, Feb. 2010.

[187] G. Somanath, S. Cohen, B. Price, and C. Kambhamettu, "Stereo+Kinect for High Resolution

Stereo Correspondences," in 2013 International Conference on 3D Vision (3DV'13),

Washington, DC, USA, 2013, pp. 9-16.

[188] Zhipeng Fan, Mingjun Li, and Ying Lu, "An Efficient Image Depth Extraction Method Based on

SVM," International Journal of Multimedia and Ubiquitous Engineering , vol. 8, no. 3, May

2013.

Chri
sto

s T
tof

i

https://www.leapmotion.com/
www.digilentinc.com/atlys/?
http://www.raspberrypi.org/
http://www.arduino.com/
http://www.makestuff.eu/wordpress/software/fpgalink/

193 References

Chri
sto

s T
tof

i

APPENDIX A

9 Case Study: Edge-Accelerated Adaptive

Support Weight Stereo Matching Design

This section presents the design of a stereo matching design that uses image segmentation and

adaptive support weights. Although it has a similar structure with the architecture presented in

Chapter 4, the architecture presented here also utilizes information extracted by an edge detection

mechanism, in an attempt to reduce the search space over which the matching process is executed.

By combining features from both Chapters 3 & 4, this section aims to illustrate how edge

information can been utilized in ADSW-based hardware designs to enable the realization of

complex stereo matching algorithms on reconfigurable hardware. The resulting stereo matching

design was implemented on a Virtex-5 FPGA platform, yielding real-time performance (30 frames

per second – fps) for a stereo image pair of 640x480. Moreover, the architecture is able to improve

the quality of the disparity maps compared to other hardware implementations that feature fixed

support local stereo correspondence algorithms.

9.1 Algorithm Overview

The algorithm's steps towards computing a disparity value for each pixel p in Ir are given

in Fig. 1. The algorithm starts by determining whether a pixel p corresponds to an edge or not.

For each pixel p corresponding to an edge, the algorithm extracts an mxm support window 𝑊𝑟

centered on p in Ir, and an mxm support window 𝑊𝑡 centered on q in It (the coordinate of q is

(x+d, y), where d lies in the range dm to dM). The algorithm then applies a segmentation

process over 𝑊𝑟 and 𝑊𝑡 , and uses the information obtained by the segmentation in the weight

generation step, which generates the weight coefficients w'r and w't (for each pixel falling in

𝑊𝑟 and 𝑊𝑡) as in (1), where 𝑆𝑐 is the segment where the central point 𝑝𝑐 (or 𝑞𝑐) of the support

window 𝑊𝑟 (or 𝑊𝑡) lies, 𝑑𝑐 is the Euclidean distance between two triplets in the CIELAB

color space, and 𝛾𝑐 is a parameter of the algorithm. The next step is to compute a pointwise

score for any pixel 𝑝𝑖 ∈ 𝑊𝑟 corresponding to 𝑞𝑖 ∈ 𝑊𝑡 . The pointwise scores, which are

selected as the Absolute Difference (AD) of 𝑝𝑖 and 𝑞𝑖 , are then weighted by a coefficient

𝑤 ′
𝑟 𝑝𝑖 , 𝑝𝑐 and a coefficient 𝑤 ′

𝑡 𝑞𝑖 , 𝑞𝑐 . The final aggregated cost is computed by summing

Chri
sto

s T
tof

i

195 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

up all the weighted pointwise scores, and normalizing by the weights sum as in (2). The

segmentation, weight generation, pointwise score computation and cost aggregation steps are

executed for all disparity levels and the best disparity for the pixel p is found by locating the

disparity with the minimum aggregated cost through a winner-takes-all (WTA) approach. In

the case where pixel p does not correspond to an edge, the disparity is obtained by a simple

nearest neighbor interpolation step.

𝑤 ′
𝑟 ,𝑡 =

1.0 𝑝𝑖𝜖𝑆𝑐

𝑒𝑥𝑝 −
𝑑𝑐 𝐼𝑟,𝑡 𝑝𝑖 , 𝐼𝑟,𝑡 𝑝𝑐

𝛾𝑐
 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

𝐶 𝑝𝑐 , 𝑝𝑖 =
 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 ∙ 𝐴𝐷 𝑝𝑖 , 𝑞𝑖 𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡

 𝑤′𝑟 𝑝𝑐 , 𝑝𝑖 ∙ 𝑤′𝑡 𝑞𝑐 , 𝑞𝑖 𝑝𝑖𝜖𝑊𝑟 ,𝑞𝑖𝜖𝑊𝑡

 (2)

9.2 Hardware-Directed Optimization Techniques

The segment-based ADSW algorithm in [5] uses mean shift segmentation. However, the

computational complexity and memory requirements make it unsuitable for embedded real-

time applications. The k-means algorithm is simpler, and can be implemented in hardware

more efficiently. In this work, we integrate an even simpler method, which partitions the

image into segments using thresholding; we adopt this instead of the k-means, based on our

observation that it has no negative impact on the overall disparity map accuracy. We also adopt

YUV instead of CIELAB color representation in the weight generation step. This allows the

use of unsigned integers instead of signed floating-point integers, which are complex and

hardware-unfriendly. We also adopt Manhattan rather than Euclidean distance during the

computation of the color distance between two YUV triplets. In this way, the square and

square root operations are replaced by simple absolute difference and addition operations.

Figure 1. Overall flow of the algorithm implemented by the proposed disparity estimation

system.

Chri
sto

s T
tof

i

Appendix A 196

Furthermore, the exp(-x) function is approximated by the 28−x function, which assigns a

maximum weight of 256 if the color distance is zero and a weight of 0 if the color distance is

greater than 8. This function simplifies the circuits that implement the multiplication of the

weight coefficients with the pointwise scores, as multiplications are reduced to left shift

operations. The cost function is further simplified by setting 𝛾𝑐 to 16 instead of 22 (the value

used in [5]). This converts the division to a right shift operation. Lastly, the denominator of (2)

is approximated by the nearest power of 2 during the cost aggregation step, allowing the

division to be replaced by a right shift operation.

We illustrate how the accuracy of the disparity maps is impacted by the aforementioned

optimization techniques in Table I. We compare the error rate averaged over the Tsukuba,

Venus, Cones and Teddy stereo images from Middlebury evaluation website [2] to a reference

algorithm that works similarly with the one proposed in [5], but using the k-means instead of

the mean shift segmentation. Moreover, the reference algorithm does not integrate any post-

processing steps (for refining the disparity maps), as these are part of ongoing work. We

observe that the overall error rate is reduced by ~2.9% after the integration of all optimization

techniques.

9.3 Proposed Hardware Architecture

The proposed architecture consists of two major pipeline stages: the Input Stage (IS) and

the Calculation Stage (CS). The IS fetches pixel values from the input images in RGB format

and performs pixel-based operations on them, such as RGB to grayscale conversion, RGB to

YUV color conversion and segmentation. The image values computed by the IS are

temporarily stored into on-chip buffers (memory arrangements - MAs), ensuring that there is

always sufficient data for the CS, which is responsible for the calculation of the disparities.

The overall system architecture also consists of a control unit that coordinates data transfers

and handshakes between the different system units. Fig. 2 shows a block diagram of the

proposed architecture and the data flow between units.

9.3.1 Input Stage (IS)

The IS consists of a memory controller, 2 RGB to YUV color space converters

TABLE I. IMPACT OF OPTIMIZATION TECHNIQUES ON ERROR RATE
Optimizations 1 1-2 1-3 1-4 1-5 1-6 1-7

Error rate 0% -2.3% -0.8% -2.9% -3.4% -2.6% -2.9%
1 - Thresholding segmentation, 2 - YUV color representation, 3 – Manhattan color distance, 4 - 28−x function, 5 – 𝛾𝑐 = 16, 6
– approximation of the denominator by the nearest power of 2, 7 – edge detector

Chri
sto

s T
tof

i

197 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

(rgb2yuv), 2 RGB to grayscale converters (rgb2gray) and 2 segmentation units. The memory

controller interfaces to an external memory and fetches the RGB color values corresponding to

the support windows Wr and Wt in a column-wise fashion. Those values are then converted to

grayscale by the two rgb2gray units, and to their corresponding 8-bit YUV representation by

the rgb2yuv units. The image segmentation units receive the grayscale values and the number

of segments k given as input to the system (maximum supported k is 32). A label (an unsigned

integer in the range 1 to k) computed by a simple method that multiplies the input grayscale

value by the value of k/256 is assigned to each input grayscale value. The multiplication is

performed using fixed-point arithmetic with 8-bits of integer and 16-bits of fraction. The

values of k/256 for all possible values of k are stored in a look-up table (LUT). The result is

given by taking the 5 most significant bits of the multiplication operation.

9.3.2 On-chip Memory Arrangements (MAs)

The on-chip MAs temporarily store the pixels required to perform correlation between

Wr in Ir and the dM candidate support windows Wt in It. The system is provided with 5 MAs

per input image, which store the Y, U, V color values, the grayscale values and the segments.

Fig. 3 (a-b) shows the architectures of the on-chip MAs for the reference and target image,

respectively. Both MAs consist of a column buffer, a series of FIFO queues and window

Figure 2. Block diagram of the proposed system architecture.

Chri
sto

s T
tof

i

Appendix A 198

buffers. The column buffer, which consists of m 8-bit registers, stores the pixels of an entire

column of a support window. It receives one pixel per clock cycle and outputs a column every

m cycles. The output column is stored in a series of m FIFO queues (1 pixel per queue), which

are used to allow the memory controller to continuously fetch data from the external memory

to the on-chip MAs (given that there is free space in the queues) irrespective of the data

consumption rate of the CS. The CS consumes data at irregular rates; it consumes a column in

dM cycles if p is an edge and in a single cycle if p is not an edge.

The data from the queues is forwarded to the window buffers, which form the inputs of

the CS. The window buffer of the reference MA consists of mxm 8-bit registers, while the

window buffer of the target MA consists of 𝑚 ∙ (𝑚 + 𝑑𝑀 − 1) registers (𝑑𝑚 is set to 0). The use of

registers allows parallel access to the window buffers; after an initial delay of 𝑚 ∙ (𝑚 + 𝑑𝑀 − 1)

cycles per scanline (dominated by the cycles needed to fill in the window buffer of the target

MA), both on-chip MAs can provide an mxm window per cycle. The window buffer of the

target MA is organized in a cyclic structure, and is provided with a series of multiplexers at its

input, which determine whether the input comes from the FIFO queues or from the rightmost

registers of the window buffer. This structure is adopted to enable data reuse.

Figure 3. (a)-(b) On-chip memory arrangements for the reference and target image data, (c) Circuit that

computes the weight of a single pixel.

Chri
sto

s T
tof

i

199 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

9.3.3 Calculation Stage (CS)

The CS consists of an edge detection unit, two units for the generation of the weight

coefficients (weight generators), a unit that computes the aggregated costs and selects the

disparity with the minimum cost, and a unit responsible for the nearest neighbor (NN)

interpolation step.

9.3.3.1 Edge Detection Unit

The edge detection unit implements a Sobel operator, which involves convolution of a

3x3 window (fetched from the reference MA that stores the grayscale values) using two

convolution masks; the masks hold data values between -2 and 2; thus the overall convolution

does not involve a multiplier. The result of the convolution is compared to a predetermined

threshold. The comparison returns 1-bit pixel values that indicate whether the pixel being

processed is an edge or not.

9.3.3.2 Weight Generator

The weight generator computes the weight coefficients w’r,t for a support window 𝑊𝑟,𝑡 in

parallel. It receives the information about the segments and the YUV color values

corresponding to the support window 𝑊𝑟,𝑡 from the Segments and [Y,U,V] MAs, respectively,

and computes the m
2
 weight coefficients using m

2
 instances of the circuit shown in Fig. 3 (c).

Figure 4. Architecture of the cost aggregator and WTA.

Chri
sto

s T
tof

i

Appendix A 200

That circuit consists of a comparator, a Manhattan distance core and a weight table (LUT).

Since the multiplication of the pointwise scores by the weight coefficients (cost aggregation

step) is performed using shifters instead of multipliers, each location x of the LUT stores the

shift amount corresponding to the weight coefficient 28−x . This shift amount is equal to the

binary logarithm of 28−x , except from values of x greater than 8, for which a binary

logarithm does not exist. In that special case, the corresponding entries in the LUT are set to a

number, which is large enough so that the result of a shift operation by that number is equal to

zero. The comparator determines whether the pixel at location (i,j) in 𝑊𝑟,𝑡 lies in the same

segment with the central pixel of 𝑊𝑟,𝑡 . The result of the comparator specifies whether the shift

amount that corresponds to the weight coefficient w’r,t(i,j) will be assigned to the shift amount

corresponding to the maximum weight (8 in our case) or whether it will be looked up in the

LUT using the color distance generated by the Manhattan Distance core as index.

9.3.3.3 Cost Aggregation & Winner-Takes-All (WTA)

The architecture of the cost aggregator and WTA unit is shown in Fig. 4. The unit

utilizes m
2
 absolute different circuits that compute the pointwise scores between corresponding

pixels in 𝑊𝑟 and 𝑊𝑡 . Those scores are then shifted by the shift amounts corresponding to the

weight coefficients w'r and w't using a series of left shifters (equivalent to multiplying the

scores by w'r and w't). The final aggregated cost is computed by summing the outputs of the

left shifters using a tree adder, and then normalizing (dividing) it by the weights sum, which,

before being used for division, is rounded to the nearest power of 2 by using tree comparators.

This enables a cost-effective implementation of the division using a right shifter. Finally, the

WTA unit selects the disparity with the minimum cost.

9.3.3.4 Nearest Neighbor Interpolation

CS integrates a simple and fast nearest neighbor interpolation unit, used to assign each

pixel p at (x, y) not corresponding to an edge, to the disparity value of the nearest edge point

(x', y) in the same scanline, where (x'< x).

9.4 Experimental Platform and Results

9.4.1 Experimental Platform

A prototype of the architecture shown in Fig. 2 was implemented on the Xilinx ML505

board, which features a Virtex-5 LX110T FPGA. The system was evaluated using rectified

synthetic and real-world data, initially stored in the compact flash memory card. The synthetic

Chri
sto

s T
tof

i

201 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

data includes stereo images from the Middlebury database [2], and the real-world data

includes stereo images taken in the lab. The images were loaded into the on-board DRAM

using the Microblaze soft-processor, and were used as input to the system shown in Fig. 2. The

resulting disparity maps were directed to a TFT monitor. The evaluation results of the

synthetic images are shown in Fig. 5 (a) and Fig. 5 (c) (column 3). The evaluation results of

the real-world images are shown in Fig. 5 (c) (columns 1 & 2).

9.4.2 Disparity Map Quality Analysis

The quality of the generated disparity maps was evaluated quantitatively using

Middlebury stereo pairs, and by measuring the incorrect disparity estimates using the

percentage of bad pixels, a commonly accepted metric [2]. Results are given in Table II, which

also compares the quality of our implementation to other existing hardware implementations.

TABLE II. QUALITY COMPARISON OF DIFFERENT DEDICATED HARDWARE IMPLEMENTATIONS

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Georgoulas [14] n.a 13.5 n.a n.a 12.6 n.a n.a n.a n.a n.a 12.6 n.a

Darabiha [16] 19.5 n.a 37.6 10.51 n.a 31.5 n.a n.a n.a n.a n.a n.a

Jin [17] 9.79 11.5 20.2 3.59 5.27 36.8 12.5 21.5 30.5 7.34 17.5 21

Ambrosch [18] 5.81 7.14 22.6 2.61 3.33 25.3 9.79 15.5 25.7 5.08 11.5 15

Chang [19] n.a 2.80 n.a n.a 0.64 n.a n.a 13.7 n.a n.a 10.1 n.a

Proposed 4.48 6.04 12.7 6.01 7.47 18.2 21.5 28.1 28.8 17.1 25.9 25.8

Figure 5. (a) Evaluation results using Middlebury stereo pairs for a correlation window size of 13x13 (from

left to right: Tsukuba, Venus, Teddy and Cones). From top to down: reference image, target image, output of

the segmentation step for the reference image, output of the edge detector for the reference image, ground

truth, disparity map of the proposed FPGA implementation (b) Disparity map of the Tsukuba image pair for

different implementations. From top to down: reference stereo image, ground truth, proposed, Chang et. al.,

Georgoulas et. al., Jin et. al., Darabiha et. al., and Ambrosch et. al., (c) Evaluation results for real-world

images (columns 1 & 2) and a computer-generated image (column 3).

Chri
sto

s T
tof

i

Appendix A 202

We omit results from [8]-[9], [11]-[13], [15] because they do not present quality results or

because a different quality metric is used. For qualitative comparisons, we include the

disparity maps generated by different implementations in Fig. 5 (b).

The proposed implementation yields better quality than the ones listed in Table II when

considering the Tsukuba image pair, excluding the implementation in [19]. This can also be

observed in Fig. 5 (b) and particularly at depth discontinuity regions (indicated with green),

and at regions with repetitive patterns (indicated with yellow). Moreover, the percentage of

bad pixels at depth discontinuity regions is lower than all other implementations when

considering the Venus stereo image pair. In the Teddy and Cones images, the proposed

implementation yields a comparable quality to [14] and [17], but a lower quality when

compared to [18] and [19]. It must be noted that the proposed implementation, along with

[19], are the only ones that implement an ADSW algorithm. However, [19] does not provide

quantitative results for the error rate at depth discontinuity regions. These regions are

significantly important when implementing ADSW algorithms, as the idea of an adaptive

support window is primarily motivated by the need to accurately detect depth borders (where

depth discontinuities occur). As such, the effectiveness of the implementation in [19] cannot

be directly compared to the proposed implementation. In addition, [19] focuses only on

synthetic image data; in contrast, we provide evaluation results for real-world data in Fig. 5

(c), evidencing the effectiveness of the proposed implementation. We anticipate that the

proposed architecture can achieve even better quality by integrating post-processing steps such

as left-to-right consistency check, sub-pixel estimation, spike removal and interpolation of the

occluded regions [2], [17]; the majority of the implementations listed in Table II already

implement these steps.

9.4.3 Processing Speed

We measured the processing speed (in fps) of the proposed hardware implementation

using synthetic stereo image pairs from [2] as benchmarks. Tables III & IV illustrate how the

frame rate is affected by the maximum disparity range and image size. We also give the frame

rate of the system without the edge detector. The frame rate decreases as the disparity range

and the image size increase. In both cases, the edge detector offers significant speedup (2.2 –

3.5) due to its ability to reduce the search data of the input images by an average of 55-85%,

depending on the threshold used by the detector.

Table V presents a comparison between existing implementations and the proposed

Chri
sto

s T
tof

i

203 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

architecture. Performance is provided in frames per second (fps), as well as in Million

Disparity Estimations per second (MDE/s). The proposed system achieves 30 fps for an image

size of 640x480 and a disparity range of 64. Such rates seem sufficient considering that the

proposed architecture implements one of the most complex and accurate local stereo

correspondence algorithms available in literature [20]. The majority of works listed in Table V

implement simple and fast fixed support and multiple window algorithms; only [19]

implements an ADSW algorithm. Even though the complexity of the algorithm implemented

by the proposed architecture is twice as large as the complexity of the algorithm in [19] (as

shown in [20]), the proposed system outperforms [19]. This is attributed to the reduction of the

search space due to the integration of the edge detector.

9.4.4 Hardware Overheads

The proposed FPGA system was evaluated for relevant metrics such as area and

frequency. Table VI gives the overall hardware demands of the FPGA prototype, which

supports a window size of 13x13 and 64 disparity range levels. The system utilizes ~90% of

the FPGA LUTs and ~80% of the FPGA slice registers, and can operate at 155MHz. The slice

TABLE V. PROCESSING SPEED COMPARISON FOR VARIOUS SYSTEMS

Work Image size
Disparity

Range

Frame rate

(fps)

PDS

(10
6
)

Freq.

(MHz)

Hile [8] 512x480 32 30 235.9 n.a.

Miyajima [9] 640x480 80 26 639 40

Arias-Estrada [11] 320x240 16 71 87.2 66

Lee [12] 640x480 64 30 589 10

Hariyama [13] 64x64 64 5063 1327.2 86

Georgoulas [14] 800x600 80 550 21120 511

Ambrosch [15] 450x375 100 600 10125 110

Darabiha [16] 256x360 20 30.3 55.2 n.a.

Jin [17] 640x480 64 230 4522 93.1

Ambrosch [18] 750x400 60 60 1080 133

Chang [19] 352x288 64 42 272.5 n.a.

Proposed 640x480 64 30 589 155

TABLE III. PROCESSING TIME (FPS) VS. DISPARITY RANGE
(Image Size = 320x240, Support Window Size = 13x13)

Disparity Range 8 16 32 64 128

fps w/ Edge Detector 590 361 207 115 66

fps w/o Edge Detector 239 124 65 34 19

TABLE IV. PROCESSING TIME (FPS) VS. IMAGE SIZE
(Max Disparity Range = 64, Support Window Size = 13x13)

Image Size 100x100 240x160 320x240 640x480 800x600

fps w/ Edge Detector 811 227 115 30 19

fps w/o Edge Detector 336 71 34 8 5

Chri
sto

s T
tof

i

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Miyajima:Yosuke.html

Appendix A 204

LUTs are dominated by the cost aggregator and the weight generators, which consume ~64%

of the available LUTs. The slice registers are dominated by the on-chip MAs, which consume

~35% of the available slice registers.

9.5 Conclusion

This appendix section discussed how the edge-directed search space reduction approach

(Section 3) can be integrated within a segmentation-driven ADSW stereo matching algorithm.

Through the utilization of edge information and the integration of a series of hardware-

oriented design optimizations, the complex ADSW-based matching algorithm has been

adopted for an efficient real-time design, which provides high disparity map quality when

compared to other implementations featuring fixed support stereo correspondence algorithms.

9.6 References

[1] B. Cyganek, J. P. Siebert, Introduction to 3D Computer Vision Techniques and Algorithms, Wiley, John &

Sons, 2009.

[2] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence

algorithms,” Inter. J. of Comput. Vision, vol. 47, pp. 7–42, 2002.

[3] M. Z. Brown, D. Burschka, G. D. Hager, and S. Member, “Advances in computational stereo,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 25, pp. 993–1008, 2003.

[4] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 650–656, Apr. 2006.

[5] F. Tombari, S. Mattoccia, and L. Di Stefano, “Segmentation-based adaptive support for accurate stereo

correspondence,” in Lecture Notes in Computer Science, vol. 4872, Berlin, Germany: Springer, Dec. 2007,

pp. 427–438.

[6] S. Hadjitheophanous, C. Ttofis, A. S. Georghiades, T. Theocharides, “Towards hardware

stereoscopic 3D reconstruction: A real-time FPGA computation of the disparity map,” Design,

Automation & Test in Europe Conference & Exhibition 2010 (DATE’10), pp.1743-1748, Dresden,

Germany, 8-12 March 2010.

[7] M. Gerrits and P. Bekaert, “Local stereo matching with segmentation-based outlier rejection,” in Proc. 3rd

Canadian Conf. Comput. Robot Vision, Jun. 2006, p. 66.

[8] H. Hile, C. Zheng, Stereo Video Processing for Depth Map, Technical Report, University of Washington,

2004.

[9] Y. Miyajima and T. Maruyama, “A Real-Time Stereo Vision System with FPGA,” 13th Int. Conf. on Field-

Programmable Logic and Applications, Lisbon, Portugal, 2003, pp. 448-457.

TABLE VI. COMPLETE SYSTEM HARDWARE OVERHEADS
(Image Size=640x480, Max Disparity Range=64, Support Window Size=13x13)

Platform
Slice LUTs

(69120)

Slice Registers

(69120)

DSP48Es

(64)

BRAMs

(140)

Freq.

(MHz)

Virtex-5 LX110T FPGA
62213

(~90.01%)

55594

 (~80.43%)

16

(~25.0%)

30

(~20.3%)
155

Chri
sto

s T
tof

i

205 Case Study: Edge-Accelerated Adaptive Support Weight Stereo Matching Design

[10] L. Nalpantidis, G. Sirakoulis, A. Gasteratos, “Review of Stereo Matching Algorithms for 3D Vision,”Proc. of

the 16th Int. Symposium on Measurement and Control in Robotics (ISMCR 2007), Poland, 21-23 June 2007,

pp. 116-124.

[11] M. Arias-Estrada, J. M. Xicotencatl, “Multiple Stereo Matching Using an Extended Architecture”, Field-

Programable Logic and Applications, vol. 2778, Springer Berlin/Heidelberg, 2003, pp. 203-212.

[12] S. H. Lee, J. Yi, J. Kim, “Real-Time Stereo Vision on a Reconfigurable System,” Embedded Computer

Systems: Architectures, Modeling and Simulation, vol. 3553, Springer Berlin/Heidelberg, 2005, pp. 299–307.

[13] M. Hariyama, Y. Kobayashi, H. Sasaki, M. Kameyama, “FPGA implementation of a stereo matching

processor based on window-parallel-and-pixel-parallel architecture, 48th Midwest Symp. on Circuits and

Syst., vol. 2, Covington, KY, 2005, pp. 1219 –1222.

[14] C. Georgoulas, I. Andreadis, “A Real-Time Occlusion Aware Hardware Structure for Disparity Map

Computation,” Image Analysis and Process. – ICIAP 2009, vol. 5716/2009, pp. 721-730.

[15] K. Ambrosch, M. Humenberger, W. Kubinger, A. Steininger, “A SAD-based Stereo Matching

Using FPGAs,” Embedded Computer Vision part II, pp. 121-138, Spinger, London (2009).

[16] A. Darabiha, J. MacLean, J. Rose, “Reconfigurable hardware implementation of a phase-correlation stereo

algorithm,” Machine Vision Appl., vol. 17, no. 2, pp. 116–132, 2006.

[17] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S-K. Park, M. Kim, J. W. Jeon, “FPGA Design and Implementation

of a Real-Time Stereo Vision System,” IEEE Trans. Circuits Syst. Video Technol., pp. 15 - 26, Jan. 2010.

[18] K. Ambrosch, W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image

Understanding, pp. 1303-1316, 2010.

[19] N.Y.-C. Chang, T-H Tsai, B-H Hsu, Y-C Chen, T-S Chang, “Algorithm and Architecture of Disparity

Estimation With Mini-Census Adaptive Support Weight,” IEEE Trans. Circuits Syst. Video Technol., vol.20,

no.6, pp.792-805, June 2010.

[20] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Classification and evaluation of cost

aggregation methods for stereo correspondence,” IEEE Int. Conf. Comput. Vision Pattern Recognit.,

Jun.2008, pp. 1–8.

Chri
sto

s T
tof

i

10 Biography

Christos Ttofi received the Bachelor's Degree and Master's

Degree in Computer Engineering from the University of

Cyprus in 2009 and 2011, respectively. Since 2011 he is

working toward the PhD degree in Computer Engineering

at the University of Cyprus. He is a researcher at the

Embedded and Application Specific System-on-Chip

Laboratory (EASoC) at the KIOS Research Center. His

research interests include Embedded Systems Design,

Image Processing and Computer Vision, Field

Programmable Gate Arrays (FPGAs), Computer Arithmetic and Computer Architecture.

Christos has been involved in various projects funded by the European Commission and the

Research Promotion Foundation of Cyprus. He is also a student Member of the IEEE and the

IEEE Computer Society, and a member of the Technical Chamber of Cyprus (ETEK).

Chri
sto

s T
tof

i

207 Biography

Chri
sto

s T
tof

i

Chri
sto

s T
tof

i

