
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DISTRIBUTED FAULT TOLERANT CONTROL AND
COMMUNICATION FOR INTERCONNECTED SYSTEMS

PANAGIOTIS PANAGI

A dissertation submitted to the University of Cyprus in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

May, 2015

Pan
ag

iot
is 

Pan
ag

i



© Panagiotis Panagi, 2015

Pan
ag

iot
is 

Pan
ag

i



VALIDATION PAGE
Panagiotis Panagi

Distributed Fault Tolerant Control and Communication for
Interconnected Systems

The present Doctoral Dissertation was submitted in partial fulfillment of the require-
ments for the Degree of Doctor of Philosophy at the Department of Electrical
and Computer Engineering, and was approved on 25/05/2015 by the members
of the Examination Committee.

Committee Chair
Christos Panayiotou, Associate Professor

Research Supervisor
Marios Polycarpou, Professor

Committee Member
Georgios Ellinas, Associate Professor

Committee Member
Kostas Kyriakopoulos, Professor

Committee Member
Michalis Michaelides, Lecturer

iii

Pan
ag

iot
is 

Pan
ag

i



iv

Pan
ag

iot
is 

Pan
ag

i



DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy of the University of Cyprus. It is a
product of original work of my own, unless otherwise mentioned through references,
notes, or any other statements.

Doctoral Candidate : Panagiotis Panagi

Signature : ...................................

v

Pan
ag

iot
is 

Pan
ag

i



vi

Pan
ag

iot
is 

Pan
ag

i



Περίληψη

Ο έλεγχος πολύπλοκων συστημάτων μεγάλης κλίμακας με τη χρήση ενός κεντρικού
ελεγκτή προϋποθέτει υψηλές υπολογιστικές και επικοινωνιακές απαιτήσεις, γεγονός που
καθιστά απαγορευτική την υλοποίηση τους στην πράξη. Ως εκ τούτου, η επιστημονική
κοινότητα στρέφεται προς την ανάπτυξη μεθόδων κατανεμημένου ελέγχου, όπου το σύ-
στημα μεγάλης κλίμακας διαιρείται σε μικρότερα διασυνδεδεμένα υποσυστήματα, και το
κάθε υποσύστημα ελέγχεται ξεχωριστά από τοπικό ελεγκτή. Το χαρακτηριστικό γνώ-
ρισμα των διασυνδεδεμένων συστημάτων είναι πως η συμπεριφορά του κάθε υποσυστή-
ματος εξαρτάται από τη δυναμική συμπεριφορά των άλλων υποσυστημάτων. Επιπλέον,
η ευστάθεια, η επίδοση και η αξιοπιστία του συστήματος είναι άρρητα συνδεδεμένη με
την ποσότητα της πληροφορίας που ανταλλάσσεται μεταξύ των υποσυστημάτων.

Η παρούσα διατριβή επικεντρώνεται στην ανάπτυξη μεθόδων αξιόπιστου ελέγχου
για διασυνδεδεμένα συστήματα. Θεωρούμε μη-γραμμικά υποσυστήματα με άγνωστες
μη-γραμμικές αλληλεπιδράσεις μεταξύ των υποσυστημάτων, και επιπλέον θεωρούμε την
περίπτωση κατά την οποία πολλαπλές βλάβες μπορούν να συμβούν σε κάθε υποσύ-
στημα και διασύνδεση. Η ανάπτυξη της μεθόδου κατανεμημένου ελέγχου βασίζεται στη
χρήση προσαρμοστικών μοντέλων προσέγγισης για την εκτίμηση των αγνώστων δια-
συνδέσεων και των αγνώστων αλλαγών στη δυναμική συμπεριφορά των υποσυστημάτων
λόγω της εμφάνισης βλαβών. Σε πρώτο στάδιο αναπτύσσεται μέθοδος αποκεντρωμένου
ελέγχου διασυνδεδεμένων υποσυστημάτων που εξασφαλίζει την ευστάθεια του συστή-
ματος, χωρίς την ανάγκη ανταλλαγής πληροφοριών μεταξύ των υποσυστημάτων. Προς
τη βελτίωση της ευρωστίας του συστήματος στην παρουσία σφαλμάτων προσέγγισης,
αναπτύσσεται μέθοδος βασισμένη σε τροποποίηση νεκρής-ζώνης, σε συνδυασμό με προ-
σαρμοστική μέθοδο για την εκτίμηση των άνω ορίων των αγνώστων σφαλμάτων προσέγ-
γισης. Εκτός της περιοχής κάλυψης των μοντέλων προσέγγισης, η παρουσία μεγάλων
σφαλμάτων προσέγγισης μπορεί να προκαλέσει προβλήματα αστάθειας στο σύστημα. Το
πρόβλημα αυτό αντιμετωπίζεται με την ανάπτυξη αποκεντρωμένου συστημάτος ελέγχου

vii

Pan
ag

iot
is 

Pan
ag

i



ασφαλείας για την καθοδήγηση της τροχιάς του κάθε υποσυστήματος εντός της περιοχής
κάλυψης. Σε επόμενο στάδιο, αναπτύσσεται μέθοδος για την κατανεμημένη ανίχνευση
και αντιμετώπιση βλαβών, όπου η επικοινωνία μεταξύ των υποσυστημάτων βασίζεται
στη χρήση του τοπικού σφάλματος παρακολούθησης. Το κατανεμημένο σύστημα ανί-
χνευσης βλαβών βασίζεται σε ένα σύνολο μη-γραμμικών εκτιμητών, ένα για κάθε υπο-
σύστημα, και εξασφαλίζεται πως δεν συμβαίνουν άκυροι συναγερμοί ανίχνευσης βλά-
βης. Επιπλεόν, αποδεικνύεται πως με την προσέγγιση ενός άνω ορίου της συνάρτησης
βλάβης, αντί της ίδιας της συνάρτησης βλάβης, εξασφαλίζεται η ευρωστία του συστή-
ματος στην παρουσία σφαλμάτων προσέγγισης. Προς τη βελτιστοποίηση της ανταλλα-
γής πληροφοριών μεταξύ των υποσυστημάτων, αναπτύσσεται αλγόριθμος επικοινωνίας
που βασίζεται στο συντονισμό μεταξύ των συστημάτων. O προτεινόμενος αλγόριθμος
επικοινωνίας μειώνει σημαντικά το κόστος επικοινωνίας, με ελάχιστες επιπτώσεις στην
απόδοση του συστήματος. Περαιτέρω, διαμορφώνεται το πρόβλημα βελτιστοποίησης της
επικοινωνίας για διασυνδεδεμένα συστήματα με τη χρήση συναρτήσεων βήματος για τη
προσέγγιση των αγνώστων διασυνδέσεων. Καθορίζεται η συνάρτηση βήματος που οδή-
γει στη βέλτιστη προσέγγιση άγνωστης συνάρτησης και με βάση αυτό το αποτέλεσμα,
αναπτύσσεται ένας πιο αποδοτικός αλγόριθμος βασισμένος σε προσαρμοστικά μοντέλα
προσέγγισης. Ο προτεινόμενος αλγόριθμος επικοινωνίας ελαχιστοποιεί την αβεβαιό-
τητα για την επίδραση των διασυνδέσεων στη συμπεριφορά των υποσυστημάτων. Με
τη χρήση προσομοιώσεων, παρουσιάζεται η αποτελεσματικότητα της προτεινόμενης με-
θόδου για τον αξιόπιστο κατανεμημένο έλεγχο διασυνδεδεμένων συστημάτων, και των
αλγορίθμων επικοινωνίας για τη βελτιστοποίηση της ανταλλαγής πληροφοριών μεταξύ
των υποσυστημάτων.
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Abstract

The control of complex and spatially distributed systems in a centralized archi-
tecture is computationally and communicationally intensive. Towards the develop-
ment of viable solutions, research efforts are shifting towards a distributed control
architecture, where the large-scale system is decomposed into smaller interconnected
subsystems and controlled through a network of local decision-making modules. A
key characteristic of interconnected systems is that the behavior of each subsystem is
correlated not only with the local dynamics, but also with the dynamics of the other
subsystems. In addition, the stability, reliability and performance properties of the
overall system are often limited by the amount of information exchanged between
the subsystems. A key objective is the development of energy-efficient distributed
control and communication algorithms that guarantee the stability, performance and
reliability of the system, in the presence of uncertain interconnections and faults.

This thesis addresses the problem of distributed fault tolerant control for a class
of interconnected systems. We consider feedback linearizable nonlinear subsystems,
coupled by unknown nonlinear interconnections in which multiple faults may appear
in any of the subsystems as well as in the interconnection effects. The distributed
fault tolerant control scheme is based on the use of adaptive approximation mod-
els for estimating the unknown interconnection effects and changes in model dy-
namics due to failures. At first, we consider the case of no information exchange
between the subsystems and develop a decentralized fault tolerant control scheme
that guarantees uniform ultimate boundedness of the tracking errors to a small re-
gion around zero. The presence of residual approximation errors is addressed using
a dead-zone modification in the adaptive laws combined with an adaptive bound-
ing method. Outside the coverage region of the approximation models, the residual
approximation error is typically significantly large, such that the states of the sub-
systems may become unbounded. This issue is addressed with the development of a
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decentralized safety control scheme for steering the trajectory back into the coverage
region. Next, a distributed fault detection and accommodation scheme is presented,
where the subsystems exchange information according to a self-triggering tracking-
error based communication scheme. The distributed fault detection scheme is based
on a set of distributed nonlinear estimators corresponding to each subsystem, and
ensures that there are no false detection alarms. It is shown that by approximating
the upper bound of the fault function, instead of the fault function itself, robust-
ness to residual approximation errors is ensured. Towards optimizing the exchange of
information between subsystems, a coordinated communication scheme is presented
which substantially reduces the communication cost, with minimal impact on the
system performance. Moreover, an optimized communication technique is developed
based on the use of step functions for approximating the unknown interconnections
and fault functions. Through rigorous mathematical analysis, the step function with
the best approximation property is derived. Following this result, an efficient com-
munication algorithm is presented which utilizes adaptive approximation models to
minimize the uncertainty about the coupling dynamics. The effectiveness of the pro-
posed distributed fault tolerant control and communication scheme is illustrated with
simulations.
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Chapter 1

Introduction

The emergence of large-scale engineering systems has created a paradigm shift
in the way systems are analyzed, designed and implemented. Prominent examples of
large-scale systems include the Internet, critical infrastructure systems and swarm
robots. Characterizing a system as large-scale reflects the effort required to under-
stand its behavior (e.g., commercial aircraft), but it may also reflect its spatial dis-
tribution (e.g., power grid). The inherent complexity of large-scale systems, makes
the synthesis of a single centralized control system a difficult task. Moreover, the
geographical distribution of the system can make the cost for centralization of infor-
mation prohibitively expensive.

The common denominator of large-scale systems is that they are composed by
several subsystems coupled through their dynamics (dynamically coupled systems),
objectives (cooperative systems), or decision-making processes (networked control
systems). Each subsystem can be modeled and controlled in isolation, based on well-
understood control methodologies. However, when considering the system as a whole,
the coupling between the subsystems reveals the need for a theoretical framework that
combines control, communication and cooperation methodologies.

In this thesis we consider spatially distributed large-scale systems where the indi-
vidual subsystems are interconnected through their dynamics. A key observation is
that the behavior of each subsystem is correlated not only with the local dynamics,
but also with the dynamics of other subsystems. The goal is to design local controllers
that stabilize each subsystem in the presence of unknown interconnections, as well as
changes in the system dynamics due to failures. To this end, a key objective is to un-
derstand how the information flow affects the stability and performance of the overall
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system. Information sharing involves either a priori knowledge of other subsystems
models and goals, or a posteriori information exchanged between the subsystems on-
line. In a decentralized control architecture, the subsystems do not share information,
while in a distributed control architecture, the subsystems are allowed to exchange
limited information online.

A key complexity in the development of decentralized control schemes is that
the states of remote subsystems are unknown, and at the same time the coupling
dynamics between the subsystems are at least partially unknown. Towards addressing
this issue, it is typically assumed that the interconnections are weak (e.g., bounded
by lower order polynomials), or satisfy a certain structure which may not be realistic
in practical applications. In addition, the stability and performance of the system is
often obtained at the expense of a large control effort, required for compensating for
the effects of the unmodeled interconnections.

A promising extension of the decentralized control paradigm is based on the use of
distributed state estimation methods for estimating the states of remote subsystems.
According to this approach, the unknown states of the other subsystems are replaced
by local estimators, such that it is possible to use well-known adaptive and robust
control techniques for addressing the interconnections effects. In a variation of this
technique, the subsystems share their desired states a priori, and utilize them online
as estimates of the actual states. Augmenting decentralized control schemes with
states estimators reduces the complexity and control effort of the local controllers, and
broadens their applicability to a greater class of systems. However, in the presence of
unmodeled dynamics, the states estimates can quickly deviate from the actual states,
which may degrade the performance of the system, or even cause instability issues.
Therefore, in the presence of faults and unknown interconnections with significant
magnitude, it is important that the local controllers do not rely on distributed state
estimation methods alone.

It can be said that decentralized control schemes are to distributed control schemes,
as feedforward control schemes are to feedback control schemes. This analogy is jus-
tified by the fact that, the design of both feedforward and decentralized control
schemes is largely based on the premise that an accurate enough model of the system
is available. Feedback control schemes allow us to relax the assumption of an accu-
rate model, by taking measurements of the system performance and adjusting the
controller parameters accordingly. Similarly in a distributed control scheme, the lack
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of knowledge of remote subsystems models and interconnections can be replenished
through the exchange of information online. Furthermore, it is natural to assume that
as the communication rate increases, the performance of the system improves. How-
ever, due to high cost of communication, from a practical viewpoint it is important
that the information flow is kept at a minimum. This creates an interesting trade-off
where, on one hand we want to improve the stability and performance of the overall
system, and on the other hand we want to limit the information that is exchanged
online between the subsystems.

Towards minimizing the communication cost, a promising approach is based on the
communication-as-needed approach: a subsystem broadcasts information only when
the other subsystem needs it. A key challenge is determining when the subsystems
need information, and develop communication algorithms for broadcasting informa-
tion only when it benefits the stability, tracking performance, or some other property
of the system. It is reasonable to assume that since the need for communication is
a direct result of the coupling between the subsystems, the design of the communi-
cation algorithm should account for the structure of the interconnection effects as
well as faults that occur in the system. Moreover, the decision to broadcast infor-
mation should account on what is already known by the other subsystems, available
through online state estimators or other a priori shared knowledge. Therefore, it can
be said that the holy grail lies at the intersection of estimation and communication
techniques, where in the absence of communication an estimator provides an accu-
rate enough approximation of the states of remote subsystems, and the effects of
inaccurate state estimates are neutralized through the exchange of information.

1.1 Motivation

This thesis focuses on the problem of distributed fault tolerant control for un-
certain nonlinear interconnected systems. The main objective is to design local con-
trollers for each subsystem that guarantee the stability of the system in the presence
of uncertain nonlinear interconnections and faults. A key challenge in the control for
interconnected systems is the development of techniques for dealing with uncertain-
ties in the interconnection effects. The main difficulty is due to the fact that the
states of the remote subsystems are unknown, and at the same time the interconnec-
tion effects are at least partially unknown. Ideally, each subsystem needs as much
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information about the other subsystems’ states as possible, in order to properly esti-
mate and address the uncertain coupling dynamics. However, in the case of spatially
distributed large-scale systems (such as, power systems or satellites formation), it is
unrealistic to assume continuous or almost-continuous availability of remote subsys-
tems states. This motivates the design of decentralized local controllers for stabilizing
each subsystem, in the presence of unknown interconnections, as well as changes in
the system dynamics due to failures, without the need for the subsystems to exchange
information. The control of large-scale systems in a decentralized control architecture
is an appealing approach, as it avoids the need for implementing a communication
infrastructure and, since each controller depends only on local measurements, each
subsystem is more autonomous. In this thesis we study the problem of decentralized
control for a class of interconnected systems and in Chapter 4 we present a decentral-
ized fault tolerant control scheme that addresses the case of unknown interconnections
and multiple faults with significantly large unknown magnitude, without exchanging
state information between subsystems. However, due to the fact that no information
is available about the other subsystems’ states, as the strength of the interconnections
increases, the local controller may generate large feedback gains to compensate for
the presence of the unknown interconnection effects. In such cases, the local control
input signal resembles a high-gain feedback design. Moreover, the presence of strong
interconnections can lead to poor transient response and significantly increase the
convergence time of the tracking errors.

Towards addressing some of the drawbacks of completely decentralized control
architectures, that is, reduce the control effort for addressing the coupling dynamics
and improve the performance of the overall system, a promising approach is to con-
sider a distributed control architecture where the subsystems share a priori and/or
limited online information. The premise for distributed control is that, provided that
each subsystem has partial knowledge of the other subsystems’ states, more accurate
estimates of the unknown coupling dynamics can be obtained, such that it becomes
possible to reduce the required control energy for canceling the effects of the coupling
dynamics, as well as improve the tracking performance of the system. Moreover, it
is expected that as the subsystems exchange more information, the benefits in the
control effort and performance are increased. On the other hand, the geographical
separation of the subsystems incurs a high energy cost for broadcasting information,
often exceeding the energy required by sensors and control actuators [39, 64]. As a
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result, a key objective in this thesis is to answer the question of when should the
subsystems communicate such that the benefits from the exchange from information
in the performance of the system are maximized. Previous work in distributed control
consider the case where the subsystems communicate based on a state level-crossing
communication scheme [48, 82, 86]. It is known that such communication schemes
provide better results than time-based communication schemes, where information is
broadcasted periodically [5]. However, as it is shown in this thesis, in the case of in-
terconnections with higher-order nonlinearities, a state level-crossing communication
scheme leads to suboptimal utilization of the available communication resources. This
motivates the development of more efficient communication algorithms, for allowing
the subsystems to exchange information only when it benefits the performance or
other metric of the system.

The principal difficulty in the control of interconnected systems is dealing with
the coupling dynamics. Previous work in decentralized control has shown that it
is feasible to address the presence of the interconnection effects, without the need
for any information sharing between the subsystems. However, by considering dis-
tributed control schemes and by increasing the available information about the other
subsystems states, it becomes to possible to improve the properties of the feedback
control scheme and the performance of the system. In order to illustrate this, con-
sider the tracking control problem for a simple system comprised of m interconnected
subsystems, where the i-th subsystem, i “ 1, . . . ,m, is described by

9xi “ aixi ` biui `

m
ÿ

j“1

θijϕijpxjq (1.1)

where xi P R is the state of the i-th subsystem, ui is the control input, and ai P R

and bi P R ´ t0u are known constants. The interconnection term θijϕijpxjq represents
the effect of the j-th subsystem on the i-th subsystem dynamics, where θij P R is an
unknown constant, and ϕij : R Ñ R is a known function. For notational convenience,
θii “ 0 for i “ 1, . . . ,m. The objective is to design a control law ui for each i-
th subsystem such that xi follows a reference trajectory xdi , where xdi and 9xdi are
uniformly bounded. Let the functions ϕij be globally Lipschitz such that

|ϕijpxjq ´ ϕijpx̄jq| ď Lij|xj ´ x̄j|, (1.2)

for all xj, x̄j P R, where Lij ą 0 are the Lipschitz constants. From (1.2), there exist
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some σij ą 0 constants such that

|ϕijpxjq| ď Lij|xj| ` σij. (1.3)

The bounding assumption (1.3) is satisfied by several mechanical systems [75]. In
addition, from (1.3) and the fact that xdj is uniformly bounded, there exist some
σ̄ij ą 0 constants such that

|ϕijpxjq| ď Lij|x̃j| ` σ̄ij. (1.4)

It has been shown that the bounding assumption (1.4) is satisfied for a spring-
connected double inverted pendulum [71], and for an inter-vehicle spacing regula-
tion problem [72]. Consider the tracking error dynamics, x̃i “ xi ´ xdi of the i-th
subsystem, which based on (1.1) satisfy

9̃xi “ ai ` biui ` δijpxjq ´ 9xdi (1.5)

The performance and robustness properties of the control scheme are closely tied
to the structure and complexity of the interconnection, as well as available a priori
and a posteriori information about the remote subsystems. Towards illustrating the
repercussions of this dependency, consider the following cases:

Case A. The structure of the interconnections and the states of remote subsystems
are both unknown.

Case B. The structure of the interconnections is available, i.e., it is known that the
interconnections are described by θijϕijpxjq, with known globally Lipschitz
functions ϕij.

Case C. Same as in Case B., and in addition the desired state xdi for each subsystem
i is available to all the subsystems for all t ą 0.

Case D. Same as in Case B., and in addition x̂i
j estimates of the remote xj states

are available to the i-th subsystem, satisfying |xj ´ x̂i
j| ď dij, where dij ą 0

are design constants.

Therefore, at each case we progressively assume more information is available about
the interconnections and the other subsystems. In the next subsections we present
the control design and discuss the properties of the feedback control scheme for each
case.

6

Pan
ag

iot
is 

Pan
ag

i



1.1.1 Case A. Unknown interconnections

Consider the isolated subsystems (1.1), δijpxjq “ 0 for i “ 1, . . . ,m and j “

1, . . . ,m. Then the control law ui given by

ui “ ´
1

bi

`

aixi ` kix̃i ´ 9xdi

˘

, (1.6)

guarantees global asymptotic stability of the i-th isolated subsystem, i.e., x̃i Ñ 0

as t Ñ 8, where ki ą 0 are design constants representing the feedback gain. In the
absence of any information about either the structure of the interconnections or the xj

states, the i-th subsystem cannot do better than treat the θijϕijpxjq interconnections
as disturbance terms. The following lemma characterizes the stability properties of
the feedback control scheme in the presence of interconnection terms θijϕijpxjq.

Lemma 1.1. Given that the feedback gain ki satisfies

ki “ λi `
1

2

m
ÿ

j“1

1 ` θ2ijL
2
ij, (1.7)

where λi ą 0 is a constant, the closed-loop system described by the interconnected
system (1.1) and the control law (1.6) ensure that x̃i is ultimately bounded by θij σ̄ij

λi
.

The proof of Lemma 1.1 is given in Appendix 7.2.3. Lemma 1.1 shows that even
in the case where the ki parameters are large enough such that (1.7) is satisfied,
only boundedness of the tracking errors can be guaranteed. Asymptotic stability is
possible only for σij “ 0, which requires that the interconnections θijϕijpxjq vanish
at x̃j “ 0. For ki parameters not satisfying (1.7), the Lyapunov analysis can not
guarantee the stability of the system. In the absence of any information about the
interconnections, the only hope for stabilizing the system is to select large enough
parameters ki, such that the feedback term ´Kix̃i can partially compensate for the
presence of the uncertain interconnections. However, such a design implies high-gain
feedback controllers and the effort required to stabilize the system may lead the
actuator to saturation.

1.1.2 Case B. Interconnections with known structure

Consider the case where the structure of the interconnections θijϕijpxjq is known
and that the ϕij functions are globally Lipschitz. The following analysis shows that
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we can use this knowledge to design adaptive control algorithms that stabilize the
feedback control scheme. Consider the sum of terms

Apx1, x̃1, . . . , xm, x̃mq “

m
ÿ

i“1

m
ÿ

j“1

x̃iθijϕijpxjq,

which based on (1.4) satisfies

Apx̃i, x̃1, . . . , x̃mq ď

m
ÿ

i“1

m
ÿ

j“1

|x̃i|θijLij|x̃j| ` |x̃i|θijσ̄ij.

Using the inequality 2αβ ď α2 ` β2 for α, β P R

Apx1, x̃1, . . . , xm, x̃mq ď

m
ÿ

i“1

m
ÿ

j“1

´1

2
`

1

2
θ2ijL

2
ij

¯

x̃2
i ` |x̃i|θijσ̄ij (1.8)

Define the parameters θaij, θ
b
ij as

θaij “
1

2
`

1

2
θ2ijL

2
ij (1.9)

θbij “ θijσ̄ij (1.10)

Since the θaij, θbij parameters are unknown, they are estimated online with adaptive
parameters θ̂aij, θ̂bij. Let the control law for the i-th subsystem be given by

ui “ ´
1

bi

`

ai ` kix̃i ´ 9xdi ` usi

˘

(1.11)

usi “

m
ÿ

j“1

θ̂aijsgnpx̃iq|x̃i| ` θ̂bijsgnpx̃iq, (1.12)

where the adaptive parameters θ̂aij, θ̂bij are updated according to the following adaptive
laws

9̂
θaij “ γa

ijx̃
2
i (1.13)

9̂
θbij “ γb

ij|x̃i|, (1.14)

where γa
ij, γb

ij ą 0 are design constants representing the adaptive gain. The following
lemma characterizes the stability properties of the feedback control scheme.

Lemma 1.2. The closed-loop system described by the interconnected system (1.1), the
control law (1.11) and the adaptation laws (1.13), (1.14) guarantee that the tracking
errors x̃i converge asymptotically to zero.

The proof of Lemma 1.2 is given in Appendix 7.2.3. Knowledge of the structure
of the interconnections makes it possible to design decentralized adaptive controllers
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that guarantee the stability of the system, despite the fact that the states of the other
subsystems are completely unknown. Notice however that due to the non-decreasing
growth of the parameter estimates θ̂

a

ij and θ̂
b

ij, the usi control terms can produce
large feedback gains. Therefore, the stability of the decentralized feedback control
scheme may only be guaranteed at the expense of a large control effort. Intuitively,
the adaptive bounding terms ensure that each isolated subsystem is sufficiently stable,
such that the class of interconnections that satisfy (1.2) can not destabilize the system.

1.1.3 Case C. Desired states are available to all the subsys-
tems

In this case, the desired states xdj , j “ 1, . . . ,m are available to all the subsystems
for all t ą 0. Provided that the actual state xj is close enough to the desired state
xdj , then xdj represents a good estimate of the unknown state xj. This additional
knowledge can be used to improve the properties of the feedback control scheme. Let
the control law for the i-th subsystem be given by

ui “ ´
1

bi

`

ai ` kix̃i ´ 9xdi ` usi

˘

(1.15)

usi “

m
ÿ

j“1

θ̂aijsgnpx̃iq|x̃i| ` θ̂ijϕijpxdjq, (1.16)

where θ̂ij are adaptive parameter estimates of the unknown θij parameters, updated
according to the following adaptive law

9̂
θij “ γijx̃iϕijpxdjq, (1.17)

where γij ą 0 are design constants. The following lemma characterizes the stability
properties of the feedback control scheme.

Lemma 1.3. The closed-loop system described by the interconnected system (1.1), the
control law (1.15) and the adaptation laws (1.13), (1.17) guarantee that x̃i converge
asymptotically to zero.

The proof of Lemma 1.3 is given in Appendix 7.2.3. Note that the i-th subsys-
tem makes an effort to address the uncertain interconnection term θijϕijpxjq, using
a term θ̂ijϕijpxdjq in the feedback control term usi. Therefore, it is useful to study
the overall error θijϕijpxjq ´ θ̂ijϕijpxdjq which represents how well the feedback term
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θ̂ijϕijpxdjq matches the uncertain interconnection term θijϕijpxjq. Adding and sub-
tracting θijϕijpxdjq we obtain

|θijϕijpxjq ´ θ̂ijϕijpxdjq| “ |θijϕijpxjq ´ θijϕijpxdjq ` θijϕijpxdjq ´ θ̂ijϕijpxdjq|

ď |θijϕijpxjq ´ θijϕijpxdjq| ` |θijϕijpxdjq ´ θ̂ijϕijpxdjq|

ď |θij|Lij|x̃j| ` |θ̃ij||ϕijpxdjq|, (1.18)

where θ̃ij “ θ̂ij ´ θij is the parameter estimation error. The right-hand side of (1.18)
shows that the ability to match the uncertain interconnection term θijϕijpxjq is limited
by two factors, the parameter estimation error θ̃ij and the tracking error x̃j. When x̃j

is small, a large overall error reveals that the magnitude of the parameter estimation
error θ̃ij is large. However this does not present an issue, as the goal is to drive
the tracking error xi to zero, not parameter estimation convergence. This means
that while θ̃ij can be large, the estimated parameter θ̂ij can be such that the term
θ̂ijϕijpxdjq is able to compensate for the presence of the uncertain interconnection. On
the other hand, provided that θ̃ij is small, the term |θij|Lij|x̃j| implies that a large
overall error is due to a tracking error x̃j with significant magnitude. A surrogate
of this term is addressed by the bounding control term θ̂aijsgnpx̃iq|x̃i|. The stability
analysis shows that all tracking errors eventually converge to zero, which implies that
|θij|Lij|x̃j| Ñ 0 as t Ñ 8. However, in the presence of large tracking errors during the
initial stages of the system, the adaptive bounding parameters θ̂ai may grow large,
which can make the control effort unnecessarily large. The fact that an upper bound
of the tracking error x̃j is not guaranteed, may force the i-th subsystem to generate
large adaptive bounding terms for addressing the effects of large overall errors.

1.1.4 Case D. Remote states estimates are available

Finally, we consider the case where estimates of the states of remote subsystems
are available. More specifically, an estimate x̂i

jptq of xj is available to the i-th sub-
system that satisfies

|xjptq ´ x̂i
jptq| ď dij, (1.19)

for all t ą 0, where dij ą 0 is a constant. The x̂i
j estimate is typically based on

information exchange between the subsystems, or a combination of local state esti-
mation with communication. In this formulation, dij represents the communication
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threshold. Based on x̂i
j, the i-th subsystem uses a feedback control term θ̂ijϕijpx̂

i
jq to

address the uncertain interconnection term θijϕijpxjq. Based on (1.2) and adding and
subtracting θijϕijpx̂

i
jq, the overall error θijϕijpxjq ´ θ̂ijϕijpx̂

i
jq satisfies

|θijϕijpxjq ´ θ̂ijϕijpx̂
i
jq| ď |θij|Lijdij ` |θ̃ij||ϕijpxdjq|,

where the fact that x̂i
jptq satisfies |xjptq ´ x̂i

jptq| ď dij for all t ą 0 is used. Define the
parameters θcij as

θcij “ |θij|Lijdij. (1.20)

The unknown parameters θcij are estimated online with adaptive parameters θ̂cij. Let
the control law for the i-th subsystem be given by

ui “ ´
1

bi

`

ai ` kix̃i ´ 9xdi ` usi

˘

(1.21)

usi “

m
ÿ

j“1

θ̂cijsgnpx̃iq ` θ̂ijϕijpx̂
i
jq, (1.22)

where the parameter estimates are θ̂cij and θ̂ij are updated according to the following
adaptive laws

9̂
θcij “ γc

ij|x̃i| (1.23)
9̂
θij “ γijx̃iϕijpx̂

i
jq, (1.24)

where γc
ij ą 0 are design constants. The following lemma characterizes the stability

properties of the feedback control scheme.

Lemma 1.4. The closed-loop system described by the interconnected system (1.1), the
control law (1.21) and the adaptation laws (1.23), (1.24) guarantee that x̃i converge
asymptotically to zero.

The proof of Lemma 1.4 is given in Appendix 7.2.3. The bounding control term
θ̂cijsgnpx̃iq in (1.22) can be made as small as desired by selecting a smaller commu-
nication threshold dij. This demonstrates a trade-off between communication cost
and performance. A smaller communication threshold can improve the performance
properties of the feedback control scheme, but it can also substantially increase the
amount of information that is exchanged online. In addition, the fact that the esti-
mation error x̂i

j ´ xj is bounded by a certain constant dij, ensures the boundedness
of the overall error |θijϕijpx̂

i
jq ´ θ̂ijϕijpxjq|, such that it becomes possible to reduce

the control effort for addressing its presence.
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The above analysis illustrates that the performance of the system is tightly related
to the amount of available information shared between subsystems. Even though in
each case the control design guarantees the stability of the interconnected system,
by assuming more information is available about the remote subsystems’ states, it
becomes possible to progressively enhance the performance properties of the system.
Moreover, the exchange of information between interconnected subsystems can signif-
icantly reduce the control effort for addressing the uncertain interconnection terms.
In later chapters, we consider a more general class of interconnected systems, as well
as changes in the system dynamics due to the occurrence of multiple faults. As we
will see, ensuring the feedback control scheme stability and performance without a
large control effort becomes a challenging task, and dictates the development of more
sophisticated distributed fault tolerant control and communication methodologies.

1.2 Contributions

The main goal of this thesis is the development of fault tolerant control methodolo-
gies for interconnected systems. At first, we consider the case where the subsystems do
not exchange information, and develop a decentralized fault tolerant control scheme
where the presence of the unknown coupling dynamics is addressed through the use
of robustifying terms, designed based on an adaptive approximation framework. A
dead-zone modification in the adaptive laws addresses stability and robustness is-
sues associated with the presence of residual approximation errors, while an adaptive
bounding method relaxes the assumption for a known upper bound on the residual
approximation errors. However, decentralized control architectures are typically ef-
fective only for weakly interconnected systems, as the presence of strong coupling
dynamics can potentially turn the control law into high gain.

A key objective of this thesis is the development of efficient communication al-
gorithms for enhancing the stability, performance and reliability of the system. A
distributed fault detection and accommodation scheme is developed where the subsys-
tems exchange information based on a self-triggering tracking-error based communi-
cation scheme. Partial knowledge of the other subsystems’ states allows for obtaining
more accurate estimates of the unknown interconnections and faults, such that the
control effort to address the unknown coupling dynamics is reduced. Moreover, it is
demonstrated that the detectability of faults is improved as the amount of state infor-
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mation exchanged between the subsystems increases. A coordinated communication
scheme is presented, which generalizes the self-triggering communication scheme and
allows the designer to reduce the cost for communication by trading off some tracking
performance. The main idea of the coordinated communication scheme is to avoid to
broadcast information when the receiver subsystem performs well, i.e., its tracking
error is small. Finally, an optimized communication algorithm is developed where
the subsystems communicate such that the uncertainty about the coupling dynamics
is minimized. In the special case of known interconnection functions, the presented
communication scheme guarantees that the subsystems exchange information such
that the impact on the subsystems dynamics due to inaccurate remote states infor-
mation is minimized, and as a result, it leads to less conservative control gains for
addressing the interconnection effects. In the more general case of unknown intercon-
nections and faults, the decision for communication is based on the use of adaptive
approximation models for learning the unknown coupling dynamics, and then using
this knowledge for minimizing the uncertainty about the coupling dynamics.

1.3 Organization of the Thesis

The organization of the thesis is as follows:
Chapter 2 conducts a literature review on decentralized and distributed control

methods for interconnected systems, as well as fault diagnosis methods for dynamic
systems.
Chapter 3 presents a decentralized fault tolerant control scheme for the control

of a class of interconnected nonlinear systems. We consider the case where changes
in dynamics due to multiple failures may occur in any of the subsystems as well as
in the interconnection effects. Based on linearly parameterized neural networks, the
presence of uncertain dynamics is addressed by estimating unknown upper bounds of
the interconnections and faults. Moreover the robustness in the presence of residual
approximation errors is guaranteed with the use of a combination of a dead-zone
modification in the adaptive laws, and an adaptive bounding method. The main re-
sult shows that, despite the fact that the control design is completely decentralized,
boundedness of the tracking errors to a small region is guaranteed. In addition, the
fact that the approximation errors can become significantly large outside the cover-
age region of the approximation can cause instability issues to closed-loop system.

13

Pan
ag

iot
is 

Pan
ag

i



For addressing this problem, we develop a decentralized safety control scheme, based
on a decentralized sliding mode control design and adaptive bounding terms for com-
pensating for the unknown interconnections and faults. The stability analysis shows
that the decentralized safety control scheme guarantees that the time spent outside
the coverage region of the approximator is finite. This chapter is based on [49–51, 53].

Chapter 4 presents a distributed fault detection and accommodation design for
a class of interconnected nonlinear systems, where faults can occur in any of the sub-
systems as well as in the interconnections. The subsystems share their desired states
a priori, and communicate online according to a self-triggering tracking-error based
communication scheme. More specifically, the state of a subsystem is communicated
to the other subsystems whenever the local tracking error exceeds a certain threshold.
First, a set of distributed nonlinear estimators for each subsystem is designed for the
detection of the occurrence of faults. The fault detection scheme ensures that there
are no false alarms. After a fault is detected by any subsystem, a distributed fault
accommodation algorithm is activated for compensating the effect of the fault. The
fault accommodation algorithm is based on the adaptive approximation of an upper
bound of the fault function. It is shown that by approximating the upper bound of
the fault function, instead of the fault function itself, robustness to residual approx-
imation errors is ensured. The stability analysis establishes asymptotic stability of
the closed-loop system. This chapter is based on [52, 54].

Chapter 5 presents a coordinated communication scheme for the distributed fault
tolerant control of interconnected nonlinear systems. The proposed communication
scheme is based on the idea that it is possible to reduce the cost of communication,
by avoiding to broadcast information when the receiver does not need it. According
to this scheme, two subsystems communicate only when the tracking errors of both
of the subsystems exceed a certain threshold. The stability analysis of the feedback
control scheme show the boundedness of the tracking errors to a region around zero.
The simulation results show that the communication cost is substantially reduced,
when compared to the self-triggering tracking-error based communication scheme,
presented in Chapter 4. The trade-off is that only boundedness of the tracking errors
can be guaranteed, while in the case of a self-triggering tracking-error based com-
munication scheme, asymptotic convergence of the tracking errors to zero is ensured.
This chapter is based on [55].

Chapter 6 presents an optimized communication scheme for the distributed fault
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tolerant control of interconnected nonlinear systems. The main objective is the devel-
opment of a communication decision algorithm, such that the benefits from communi-
cation in the performance (or other metric) of the system are maximized. Communi-
cation optimization is formulated as a problem of best approximation of a continuous
function based on the use of step functions. We establish the approximation proper-
ties of step functions, and show that a partition of the range of the function leads to
the best L8 step function approximation. Moreover, we consider a class of piecewise
linear functions and study the approximation performance improvement when a best
step function approximation is used. The distributed fault tolerant control design is
based on the use of linearly parameterized neural networks for approximating the
unknown interconnections. When the local tracking error is outside a small region
around zero, the other subsystems broadcast their states according to a state level-
crossing communication scheme. When the local tracking error is inside a small region
around zero, the communication decision is based on the use of approximation models
of the unknown interconnections and fault functions, such that the uncertainty about
the coupling dynamics is minimized. The stability analysis shows boundedness of the
tracking errors to a small region around zero.
Chapter 7 contains some concluding remarks and outlines directions for future

research.
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Chapter 2

Literature Review

2.1 Decentralized Control of Interconnected Sys-

tems

During the past decades there has been significant research activity in the mod-
eling and control of large-scale and physically distributed systems. This interest is
motivated by applications in such diverse areas as manufacturing, transportation,
power systems and mobile robotics. While the control structure of such systems was
initially considered in a centralized and/or hierarchical framework, as the complex-
ity of large-scale systems grows, it becomes apparent that the design of a single
centralized controller is a difficult task. In addition, the spatial distribution of the
system requires considerable communication resources for collecting measurements
and broadcasting control decisions. In general, as a result of the complexity and
geographical separation of a large-scale system, the presupposition of centrality of
information and computation cannot be satisfied.

A promising approach is based on a divide and conquer strategy, where the large-
scale system is decomposed into several subsystems, and the task of controlling the
overall large-scale system is divided into smaller subproblems of synthesizing local
controllers for each subsystem [65]. The decomposition of the large-scale system leads
to an interconnected systems structure, and the design is based on a decentralized
control architecture (Fig. 2.1). The underlying idea of the decentralized control ap-
proach is that, if local controllers stabilize the subsystems in the presence of in-
terconnections between the subsystems, then the stability of the overall large-scale
system is guaranteed. Decentralized control leads to simpler models and can reduce
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Figure 2.1: Decentralized Control Architecture. A large-scale system S is decom-
posed into smaller interconnected subsystems S1, S2 and S3, and each subsystem is
independently controlled by decentralized controllers C1, C2 and C3, respectively.

the computational burden for control system analysis and design. Furthermore, the
fact that the control process runs locally at each subsystem, removes the requirement
for broadcasting information to and from a central distant location.

A key challenge in decentralized control is the development of control method-
ologies for addressing the interconnections between the subsystems. Consider the
interconnected systems Si and Sj shown in Fig. 2.2, where δij represents the effect
of the Sj dynamics onto the Si dynamics. The goal in decentralized control is to
design stabilizing controllers for each Si and Sj subsystems. The fact that both the
interconnection effect δij is typically partially unknown and, at the same time, no
online information is available about subsystem Sj, constitutes one of the core issues
in decentralized control. A considerable amount of research effort is directed towards
overcoming this obstacle.

Figure 2.2: The Sj dynamics affect the Si dynamics through the interconnection δij.

The strength of the interconnections is a fundamental indicator of the complex-
ity of the decentralized control problem. In general, as we consider interconnected
systems with stronger couplings, it becomes increasingly difficult to stabilize the sub-
systems in a decentralized way. As it is shown in [29], even weak interconnections can
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potentially destabilize the system, if not properly addressed by the control design. A
well known result that guarantees the stabilizability of interconnected systems by lo-
cal state feedback is based on the M-matrix condition [33,70]. The basic idea is that if
the degree of stability of the closed-loop isolated subsystems is sufficiently higher than
the strength of the interconnections, then it is guaranteed that the stabilized isolated
subsystems will remain stable when interconnected. By ensuring that the M-matrix
condition is satisfied, we are able to design feedback control laws as if the subsystems
were isolated. In [29,40] the authors present model reference adaptive schemes for lin-
ear interconnected systems that satisfy the M-matrix condition. The proposed design
guarantee boundedness of the state errors in the presence of bounded interconnec-
tions. However, the M-matrix condition typically depends on unknown parameters,
such that it may be difficult to satisfy in practice. Furthermore, such schemes can
typically only guarantee boundedness of the states into some small region, and it
is often not possible to control the size of the stability region. In [24], linearly in-
terconnected systems are considered and a decentralized adaptive control method
is presented that does not require the M-matrix condition. The design is based on
an adaptive high-gain approach that guarantees global boundedness of the solutions.
The feedback gains are adapted to whatever level is required to counteract instability
caused by the presence of the interconnections effects.

The aforementioned decentralized control design methods are based on the as-
sumption of linear interconnections or weak nonlinear interconnections. As it is
demonstrated in [69], these schemes are not able to handle higher-order intercon-
nections; the presence of interconnections with significant strength can potentially
destabilize the system. The aforementioned work is the first one that considers higher-
order interconnections. The authors propose a decentralized adaptive control scheme
that is applicable to linear interconnected systems with interconnections bounded by
unknown p-th order polynomials in states. The stability of the decentralized feed-
back control scheme is achieved through the use of higher-order adaptive feedback
terms that are able to dominate the unknown polynomial growth interconnections.
A drawback of the proposed scheme is that the interconnections need to satisfy a
matching condition. In other words, the uncertain interconnections terms need to
appear the same point as the control inputs. The matching condition has since been
addressed with the backstepping technique [35], and in [31], the matching condition
for the interconnections is relaxed by combining a high-gain feedback approach with
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adaptive backstepping, that guarantees global boundedness of the solutions. In [26],
a robust backstepping design is presented that extends the results to the case of
general nonlinear bounds of interconnections. However, although it generalizes the
applicability of the design, the local controller may exhibit high-gain feedback signals
in order to compensate for the effects of strong interconnections. The stability of the
overall system is maintained by a sufficiently large local control effort that is able to
robustly counteract the presence of the interconnections, no matter the strength of
their effect.

Towards addressing some of the drawbacks of completely decentralized control
architectures, a recent approach assumes common a priori knowledge of the desired
states of the interconnected subsystems. It was introduced by the work of [43, 47] for
linearly interconnected systems, and extended to nonlinear interconnections in [46].
According to this approach, the unknown states of the other subsystems, which ap-
pear in the local feedback control law, are replaced by the known reference signals. In-
tuitively, if the subsystems perform as expected, the reference signals provide a good
estimate of the unknown actual states. The authors consider linearly interconnected
systems and present an adaptive control scheme that ensures asymptotic stability
of the overall system. A sufficient condition for the applicability of the methodol-
ogy is that the reference signals are close enough to the actual states, which may
be impossible to guarantee in practice. The presence of large initial tracking errors,
disturbances, faults, or changes of the desired states during operation of the system,
can considerably degrade the tracking performance or even destabilize the system.
Based on this approach, [45] presents a decentralized adaptive output-feedback con-
trol scheme. The unknown interconnections are partially compensated through the
use of neural networks, and the remainder terms are addressed with the use of adap-
tive bounding control. In [9], the results are extended to nonlinear interconnections
that do not satisfy the matching condition. In addition, the proposed scheme does
not impose any bounding assumptions on the interconnections. In general, the sub-
stitution of the unknown actual states with the desired states produces a replacement
error into the subsystem dynamics, which is typically assumed to satisfy a Lipschitz
condition and as such, it is easier to address with adaptive bounding terms. How-
ever, in the presence of unmodeled dynamics (such as faults or disturbances), these
bounding terms can become quite large.

A promising approach for dealing with nonlinear uncertainties in the system dy-

20

Pan
ag

iot
is 

Pan
ag

i



namics is based on the use of approximation models [10, 19, 60, 66, 68, 73, 85, 87]. The
universal approximation property of such structures, with the proper selection of pa-
rameters and basis functions, allows for estimating the uncertain nonlinear dynamics
of the system to an arbitrary accuracy. The ability to estimate the uncertain nonlin-
ear dynamics makes it possible to adjust the parameters feedback control schemes to
the needs of the system, avoiding the requirement for large adaptive bounding terms,
or ad-hoc nonlinear adaptive feedback terms. In [66], Gaussian radial basis functions
are employed to adaptively compensate for the system unknown nonlinearities. A con-
structive procedure is presented, which directly translates the smoothness properties
of the nonlinearities involved, into a specification of the network required to represent
the system to a desired degree of accuracy. In [60], the inherent approximation error
is adaptively estimated online using an adaptive bounding method. In [73], stable di-
rect and indirect adaptive approximation based controllers are presented based on the
principle of certainty equivalence, that provide asymptotic tracking of a reference sig-
nal. In [68], an output feedback control scheme is presented which combines adaptive
approximation control with a high-gain observer to achieve semi-global boundedness
of the tracking error, while the presence of approximation errors is addressed using
projection modification methods. Adaptive approximation methods have been ap-
plied for the control of nonlinear interconnected systems in [28, 37, 45, 71, 77, 78, 95].
The principal difficulty in such schemes is the design of suitable adaptive laws for
estimating the unknown interconnections functions, provided that the inputs of the
functions (typically the states of remote subsystems) are not available.

2.2 Distributed Control of Interconnected Systems

The applicability of decentralized control schemes is typically limited by at least
one of the following:

(a) Only linear, or weak nonlinear, interconnections are considered,

(b) The structure of the interconnections is known (e.g., linear growth, polynomial
growth, etc.),

(c) Only boundedness of the solution is guaranteed (not asymptotic stability),

(d) A sufficiently large control effort is required,
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Figure 2.3: Distributed Control Architecture. The C1, C2 and C3 controllers are al-
lowed to exchange limited information online.

(e) Changes in subsystems and interconnections dynamics due to faults are not con-
sidered.

Motivated by limitations of decentralized control, a natural direction towards the de-
velopment of reliable control schemes for large-scale systems is to consider distributed
architectures, where the interconnected subsystems are allowed to exchange limited
information online (Fig. 2.3). The underlying idea is that by incorporating online
knowledge about the states of the other subsystems, it becomes possible to partially
alleviate the limitations of completely decentralized control schemes.

The concept of the exchange of information between interconnected subsystems
is formulated in [46]. The simulation analysis in this work demonstrates that the per-
formance of the system is substantially improved, even when the subsystems commu-
nicate at very few instants. The authors assert that the design of the communication
algorithm is completely decoupled by the stability of the system. In other words, the
system remains stable even when no information is exchanged between the subsys-
tems. It is indeed desirable to ensure the stability of the system in the absence of
communication, such that the system operates normally in the case of failing commu-
nication links. At the same time however, we are interested in being able to analyze
how communication affects the stability and performance of the system. It is sensi-
ble to assume that by increasing the rate of communication, some of the properties
of the system (e.g., performance, control energy, tolerance to faults, etc.) will likely
improve. However, an analytical framework that relates the design of the commu-
nication decision algorithm to the properties of the feedback control scheme is not
present.
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In practical applications of distributed interconnected systems, there is a need for
maximizing the amount of useful information that is broadcasted between subsys-
tems, while minimizing communication cost. The importance of such a goal becomes
clearer in the case of spatially distributed systems, where the broadcast of informa-
tion incurs large energy cost, in some cases exceeding the energy required by sensors
and control actuators [39, 64]. We seek to improve the quality of communication,
rather than the quantity, by designing broadcasting algorithms with low-bandwidth
requirements that intelligently decide when to communicate, such that the bene-
fits in system stability and performance are maximized. Time-based communication
schemes, where each system broadcasts information periodically, leads to unnecessary
high communication cost, especially in the case of slowly-developing dynamical sys-
tems. A promising approach is based on the use of internal system events for deciding
when to broadcast information [2,3,14,15,23,27,59,67,81,93]. It has been shown that
an event-based communication scheme leads to better performance, as compared to
a time-based communication scheme, with the same amount of broadcasted informa-
tion [5]. In an event-based communication scheme, communication occurs whenever
some monitored signal (such as the state) crosses one or more levels. Event-based com-
munication is also known as level-crossing sampling [34], send-on-delta algorithm [44],
and Lebesgue sampling [5]. According to an event-based communication scheme, the
exchange of information is more frequent when the monitored signal changes rapidly,
and sparser when the signal varies slowly. In this way, communication resources of
each subsystem are reserved when there is little benefit in broadcasting information,
and instead being utilized in cases where more information would actually benefit
the other subsystems. A special case of event-based communication schemes utilizes
the local tracking error for deciding when to communicate [46, 48]. Intuitively, this
communication algorithm is based on the idea that when the local tracking error is
small, the desired reference trajectory provides a good approximation of the actual
state. Therefore, whenever the tracking error is small and the desired trajectory of
neighboring subsystems are available, then communication can be avoided and the
desired trajectory can be used instead of the actual state measurement. However,
as the interconnections become more complex, with higher degrees of nonlinearities,
these approaches become less effective, since a small (large) local tracking error does
not necessarily imply a small (large) impact on the other subsystems’ dynamics. This
important fact implies that the design of the communication algorithm cannot be an
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afterthought, but it should be tightly dependent to the structure of the interconnec-
tion dynamics, as well as the control algorithm.

Table 2.1 summarizes the features of relevant decentralized and distributed control
methodologies for interconnected systems.
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2.3 Fault Diagnosis Methods for Dynamic Systems

A key objective in engineering is the design of reliable systems that are able to
operate within certain performance margins even in the presence of faults [6,61,74,76,
80,88,89,91,94]. Although there has been significant research activity in decentralized
adaptive control for interconnected systems, the problem of fault tolerance for such
systems is not well studied and it presents many theoretical challenges.

A large amount of adaptive control techniques that have been developed in the
past were based on the assumption that the model of the system is sufficiently ac-
curate, with only small perturbations from the nominal model. In practice, critical
changes in the system dynamics may appear which lead to unsatisfactory perfor-
mance or even instability, if not addressed correctly. In general, fault tolerant control
systems (FTCS) schemes can be classified into two types: passive FTCS and active
FTCS. In a passive FTCS scheme, the controller is designed to be robust to a certain
class of faults [18, 84]. On the other hand, in an active FTCS scheme the system
reacts actively to failures by reconfiguring control actions so that the stability and
performance properties of the system are retained [7, 11, 56, 76, 92]. In general, an
active FTCS performs three tasks: (a) fault detection, for detecting the occurrence of
a fault, (b) fault isolation and identification, for determining the location, type and
magnitude of the fault, and (c) fault accommodation, for reconfiguring the control
law in order to accommodate the effect of the fault.

The model-based approach for detecting faults was introduced in [32, 42]. Accord-
ing to this approach, a mathematical model of the healthy system is constructed and,
by comparing the healthy behavior with the system behavior, a diagnostic residual sig-
nal is generated that is sensitive to faults [41]. The fault detection algorithm declares
a fault occurrence typically by comparing a residual signal to a certain threshold.
One of the key challenges of this approach is the detection of faults when other un-
known dynamics are present (such as, disturbances, measurement errors, etc.). The
fault detection algorithm needs to be able to distinguish between the presence of
faults and the presence of other unknown dynamics, in order to avoid false alarms.
In the structured residual approach (see, for example, [22]), a residual signal is gen-
erated such that it is sensitive to faults and intangible to other unknown dynamics.
Various methods have been introduced for generating such residual signals, including
parity equations, diagnostic observers and Kalman filtering [25]. However, these ap-
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Figure 2.4: The Fij fault affects the Si subsystem dynamics. The Fj fault may have
an impact on the Si subsystem dynamics through the δij interconnection.

proaches involve the risk that slowly developing faults may not be detected, because
the enhancement of robustness to other unknown dynamics is associated with an
accompanying decrease of the sensitivity of the fault detection algorithm to slowly
developing faults. To overcome this difficulty, adaptive fault detection schemes have
been proposed, where an adaptive estimator of the healthy system is constructed [16].
By incorporating adaptation, the robustness of the residual with respect to other un-
known dynamics is enhanced and as a consequence, it is made possible to detect
slowly developing faults.

In the case of nonlinear systems with considerable modeling uncertainty, the con-
struction of a mathematical model of the healthy system can be a difficult task. An
alternative approach is based on the use of adaptive approximators for modeling un-
certain parts of the system, and for increasing the robustness of the fault detection
algorithm to unknown dynamics [61, 63, 79]. Through the use of adaptive approxima-
tion models, the controller is able, not only to identify the occurrence of a fault, but
it can also provide an approximation of the effect of the fault in the system dynamics.
Based on the use of approximation models, the feedback control law is reconfigured
to accommodate the effect of the fault.

In the case of interconnected systems, a fault may affect the interconnections,
while a fault occurring in any of the subsystems may have an impact on other sub-
systems (Fig. 2.4). A decentralized fault tolerant control system needs to be able
to automatically compensate the effects of faults in the system dynamics, without
necessarily exchanging of information between the subsystems [38, 57, 58]. In [20], a
distributed fault detection scheme for large-scale systems with overlapping decom-
positions is presented, where a local fault detector is designed for each subsystem.
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Through the use of consensus filters, it is demonstrated that the detectability of
faults that are affecting state variables shared among different subsystems can be
improved. In [90], the authors consider a distributed fault detection scheme for a
class of interconnected nonlinear uncertain systems, where each subsystem commu-
nicates its local state estimate to all the other subsystems. In [83], a fault detection
design for networked control systems is presented, where each subsystem periodically
communicates with a centralized fault detector.
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Chapter 3

Decentralized Fault Tolerant
Control

3.1 Introduction

In this chapter, we address the problem of the decentralized fault tolerant con-
trol for a class of interconnected feedback linearizable systems. We consider inter-
connected nonlinear subsystems that are exactly feedback linearizable, coupled by
unknown nonlinear interconnections in which multiple faults may appear in any of
the subsystems as well as in the interconnection effects. The decentralized control law
of each subsystem is designed in an adaptive approximation framework and through
rigorous stability analysis, uniform ultimate boundedness of the tracking errors to
a small region around zero is proved. The presence of residual approximation errors
are addressed using a dead-zone modification in the adaptive laws combined with
an adaptive bounding method. Outside the coverage region of the approximators, a
decentralized safety control scheme is designed to steer back the trajectory by using
a sliding mode approach with adaptive bounds. A key contribution of the proposed
control scheme for interconnected systems is that it addresses the case of unknown
interconnections and multiple faults with significantly large unknown magnitude,
without exchanging state information between subsystems.

The chapter is organized as follows. In Section 3.2 we formulate the problem and in
Section 3.3 we present the decentralized fault tolerant control design. In Section 3.4,
system stability is established through Lyapunov analysis. Section 3.5 presents a
decentralized safety control scheme for the case where the trajectories go outside
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the coverage region. In Section 3.6, a simulation example is presented to illustrate
the fault tolerant control methodology. Finally, Section 3.7 contains some concluding
remarks.

3.2 Problem Formulation

We consider a system comprised of m interconnected subsystems, which may
be subject to multiple faults occurring at unknown times. The i-th subsystem, i “

1, . . . ,m, is described by

9xij “ xipj`1q, j “ 1, . . . , ni ´ 1

9xini
“ fipxiq ` gipxiqui ` ∆ipx1, . . . , xmq `

κi
ÿ

k“1

βpt ´ Tikqhikpx1, . . . , xmq
(3.1)

where xi “ rxi1, . . . , xini
s

J
P Rni is the state of the i-th subsystem, ui P R is the input,

yi “ xi1 P R is the output of the i-th subsystem, fi : Rni ÞÑ R and gi : Rni ÞÑ R are
known functions representing the nominal local dynamics of the i-th subsystem and
∆i : Rn ÞÑ R (where n “

řm
i“1 ni) represents the unknown interconnection effects

between the i-th subsystem and the remaining subsystems. The term hik : Rn ÞÑ R

denotes the change in the i-th subsystem dynamics due to the k-th fault, while
βpt ´ Tikq represents the corresponding time profile of the fault that occurs at some
unknown time Tik. In this chapter, we consider the possibility of multiple faults in
each subsystem, where Tipq´1q ă Tiq for q “ 2, 3, . . . , κi, with κi denoting the number
of faults occuring in the i-th subsystem (if there are no faults in the i-th subsystem,
κi is simply set to κi “ 0).

In the fault diagnosis literature, two main categories of faults have been consid-
ered: (i) abrupt faults, where the time profile satisfies βpt ´ Tikq “ 0 for t ă Tik, and
βpt ´ Tikq “ 1 for t ě Tik; (ii) incipient faults where βpt ´ Tikq “ 0 for t ă Tik and
βpt´Tikq increases monotonically from 0 to 1 for t ě Tik. In this work, we consider a
general class of faults with time profiles that satisfy 0 ď βpt´Tikq ď 1, for t ě Tik. As
we will see, the rate of growth of the fault as described by βpt ´ Tikq, does not affect
the fault tolerant control design. The fault tolerant control objective is to synthesize
decentralized adaptive approximation based control laws ui such that each yi follows
a smooth reference trajectory ydi in the presence of the unknown interconnection
terms ∆i and fault functions hik. It is assumed that each input gain function, gi,
is bounded away from zero in order to guarantee the controllability of the feedback
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control scheme. Moreover, the desired reference trajectory vector Ydi “
“

ydi , . . . , y
ni
di

‰

for each i-th subsystem is assumed to be available and uniformly bounded.

3.3 Decentralized Fault Tolerant Control Design

Consider the tracking error dynamics, x̃ij “ xij ´ y
pj´1q

di
, of the i-th subsystem,

which, based on (3.1), satisfy:

9̃xij “ x̃ipj`1q, j “ 1, 2, . . . , ni ´ 1

9̃xini
“ fipxiq ` gipxiqui ` ∆ipxq `

κi
ÿ

k“1

βpt ´ Tikqhikpxq ´ y
pniq

di
,

where x “
“

xJ
1 , xJ

2 , . . . , xJ
n

‰J is the state vector of the overall system. The tracking
error dynamics can be written in matrix state-space form as

9̃xi “ Ax̃i ` B

˜

fipxiq ` gipxiqui ` ∆ipxq `

κi
ÿ

k“1

βpt ´ Tikqhikpxq ´ y
pniq

di

¸

, (3.2)

where

A “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
... ... ... . . . ...
0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

—

—

—

–

0

0
...
0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let the decentralized adaptive approximation based control law ui be given by:

ui “ u˚
i ` uFi

, (3.3)

where u˚
i is the nominal control law that stabilizes the i-th subsystem in the absence

of interconnection effects (∆i “ 0) and faults (hik “ 0 for all k), and uFi
is an

augmented control component for addressing the interconnection effects ∆i and the
change in dynamics due to faults. The nominal control law u˚

i of the i-th subsystem
is defined as

u˚
i “

´KJ
i x̃i ´ fipxiq ` y

pniq

di

gipxiq
, (3.4)

where the vector Ki “ rki1, . . . , kini
sJ P Rni is chosen such that A´BKJ

i is a Hurwitz
matrix. Since A ´ BKJ

i is Hurwitz, for any Qi ą 0 there exists Pi ą 0 satisfying the
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Lyapunov equation, PipA´BKJ
i q ` pA´BKJ

i qJPi “ ´Qi. Define the scalar training
error ei “ BJPix̃i. We impose the following assumptions on the interconnection terms
∆i and fault functions hik.

Assumption 3.1. The interconnection terms ∆i and fault functions hik are bounded
by

|∆ipx1, x2, . . . , xmq| ď

m
ÿ

j“1

γ∆
ij p|ej|q (3.5)

|hikpx1, x2, . . . , xmq| ď

m
ÿ

j“1

γh
ijkp|ej|q, (3.6)

where γ∆
ij : R` ÞÑ R` and γh

ijk : R` ÞÑ R` are unknown analytic functions.

From (3.5) and (3.6) we deduce that, since 0 ď βpt ´ Tikq ď 1 for all t ą 0,

|∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq| ď

m
ÿ

j“1

γ∆
ij p|ej|q `

κi
ÿ

k“1

m
ÿ

j“1

γh
ijkp|ej|q,

Therefore, there exists an unknown analytic function γij such that:

|∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq| ď

m
ÿ

j“1

γijp|ej|q, (3.7)

where γij “ γ∆
ij `

řκi

k“1 γ
h
ijk. Assumption 3.1 allows us to consider interconnections ef-

fects, ∆i, and fault functions, hi, of significantly large unknown magnitude. Moreover,
according to (3.7), the fault tolerance problem for the decentralized control scheme is
reduced to the handling of the unknown bounding functions γij. As we will see later,
a surrogate of the bounding functions γij (denoted by si peiq) is adaptively approxi-
mated for use in the feedback control law, using adaptive approximation models such
as sigmoidal neural networks, radial basis functions (RBF), wavelets, etc. [19].

Remark 3.1. A similar bound on the unknown interconnection effects and fault
functions, as the one described in Assumption 3.1, has been used in [28] and [71].
Assume that the interconnection effects satisfy,

|∆ipxq| ď

m
ÿ

j“1

γ̄∆
ij p|zj|q, (3.8)

where zi “ BJPixi and γ̄∆
ij p|zj|q “

řp
k“0 āijk|zj|

k, where āijk P R, k “ 0, 1, . . . , p are
constants and 0 ď p ă 8. We continue to show that the interconnection effect ∆i

satisfying (3.8) is equivalent to ∆i satisfying (3.5). From (3.5), since the γ∆
ij p|ej|q

function is analytic, using Taylor’s theorem it can be represented as

γ∆
ij p|ej|q “

8
ÿ

k“0

aijk |ej|
k, (3.9)
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where aijk P R, k “ 1, 2, . . . , p are constants. We define di “ BJPi

“

ydi , 9ydi . . . y
ni´1
di

‰

,
which allows the scalar training error ei to be expressed as ei “ zi ´ di and γ̄∆

ij p|zj|q

can be written as

γ̄∆
ij p|zj|q “

p
ÿ

k“0

āijk|ej ` dj|
k.

Using the binomial theorem (see, for example, [12]), γ̄∆
ij can be written as,

γ̄∆
ij p|zj|q “

p
ÿ

k“0

āijk

k
ÿ

p“0

ˇ

ˇ

ˇ

ˇ

ˆ

k

p

˙

dk´p
j epj

ˇ

ˇ

ˇ

ˇ

. (3.10)

In order to establish that, when the interconnection effect ∆i satisfies (3.8), it neces-
sarily satisfies (3.5), we need to show that there exists some aijk, such that

γ∆
ij p|ej|q ě γ̄∆

ij p|zj|q. (3.11)

Using (3.9) and (3.10), and after some mathematical manipulations we deduce that
if we choose aijk as,

aijk “

$

’

&

’

%

řp
l“k

`

l´k
k

˘

āijl
ˇ

ˇd̄j
ˇ

ˇ

l´k
k “ 0, 1, . . . , p

0 k “ p ` 1, p ` 2, . . . ,8,

where d̄j “ max
t

tdjptqu, we ensure that (3.11) holds. Therefore the class of intercon-
nected systems with interconnection effects ∆i that are bounded by (3.5), includes
interconnected systems with interconnection effects that are bounded by polynomials
of the states, of an arbitrary unknown order 0 ď m ă 8:

|∆ipxq| ď

m
ÿ

j“1

p
ÿ

k“0

āijk|zj|
k.

The same argument holds for the fault functions hik.

In this work, for simplicity we consider linearly parameterized approximators,
which allow each sipeiq to be represented as

sipeiq “ ϕsipeiq
Jθsi ` µsipeiq, (3.12)

where ϕsipeiq is a set of basis functions, θsi is a set of unknown constant weights
and µsipeiq is the residual approximation error. Typically, the residual approximation
error is small within a certain region of coverage, while it may become large outside
of this region. It is noted that, since sipeiq is by definition a surrogate of the bounding
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functions γij, the residual approximation error can be made as small as desired in
the region of coverage, by choosing a smoother sipeiq that a given approximation
model (ϕsipeiq

Jθsi) can approximate with better accuracy. However, the presence of,
even small, approximation errors within the region of coverage may cause instability
issues to the feedback control scheme due to parameter drift. In order to address
this issue we use a dead-zone modification in the adaptive laws combined with an
adaptive bounding method [62]. The approximation of the unknown functions sipeiq

given by (3.12) is assumed to hold for a certain compact set. Within this compact
set, there exists an upper bound µ̄si for the residual approximation error µsipeiq; i.e.
|µsipeiq| ď µ̄si. The unknown µ̄si is estimated on-line by an adaptive estimate which
is denoted by µ̂si. The augmented control component uFi

of the i-th subsystem is
defined as follows:

uFi
“

´ϕsipeiq
Jθ̂si ´ uci

gipxiq
(3.13)

uci “

$

’

&

’

%

µ̂sisgnpeiq if x̃J
i Pix̃i ą λ̄Pi

ϵ2i

0 if x̃J
i Pix̃i ď λ̄Pi

ϵ2i ,

(3.14)

where ϵi ą 0 is a design constant and λ̄Pi
is the maximum eigenvalue of Pi, respec-

tively. The parameter estimates of the adaptive approximator, θ̂si and the adaptive
bounding parameter µ̂si are updated according to the following adaptive laws

9̂
θsi “ Γsiϕsipeiqqipei, x̃i, ϵiq (3.15)
9̂µsi “ γsi |qipei, x̃i, ϵiq| , (3.16)

where Γsi is a positive definite matrix and γsi is a positive constant representing the
adaptation gains of the parameter estimates and qi pei, x̃i, ϵiq is a dead-zone, defined
as

qipei, x̃i, ϵiq “

$

’

&

’

%

0 x̃J
i Pix̃i ď λ̄Pi

ϵ2i

ei x̃J
i Pix̃i ą λ̄Pi

ϵ2i

(3.17)

The overall decentralized control law of the i-th subsystem is given by

ui “
´KJ

i x̃i ´ fipxiq ´ ϕsipeiq
Jθ̂si ´ uci ` y

pniq

di

gipxiq
. (3.18)
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Remark 3.2. Assumption 3.1 can be satisfied for any continuous interconnection
function and fault function. However in the case of interconnections with significantly
large magnitude, as ej goes to zero, the ∆i and hik functions are bounded by large
constant terms. In this case, the local controller may generate large control signals
in order to compensate for the unknown interconnections and fault functions, pos-
sibly leading to high-gain feedback. In practical applications, large feedback gains
may lead the control signal to saturation, which can cause instability issues to the
feedback control scheme. The necessity for imposing Assumption 3.1 on the inter-
connections and fault functions can be explained by the fact that the states of the
remote subsystems are completely unknown. In the case of strong interconnections,
and in order to enhance the applicability of non-centralized control architectures, it
is necessary that the subsystems share state information online. In the next chapters
we consider distributed control schemes and show that, by introducing the ability
for the subsystems to communicate, it becomes possible to considerably reduce the
control effort for addressing the unknown interconnections and fault functions.

Remark 3.3. The decentralized control law of the i-th subsystem, given by (3.18),
utilizes adaptive approximation models for establishing fault tolerance to all faults
satisfying (3.6). Typically, in adaptive approximation based control law, the un-
known functions are compensated for, through the use of approximation models that
adaptively approximate these unknown functions. However, in this work, in order to
preserve the decentralizability of the feedback control scheme, the unknown intercon-
nection effects and fault functions are compensated for, by adaptively approximating
a surrogate of the bounding functions γij.

Remark 3.4. The introduction of the adaptive bounding term µ̂si allows us to
use arbitrary small ϵi, that characterizes the dead-zone width. Moreover, it avoids
the need for a known upper bound on the residual approximation error (µ̄si) to
be available. Although the non-decreasing growth of µ̂si could cause large feedback
signals, as we will see later, it can only increase over a finite interval due to the
presence of the dead-zone.

In the following section, we consider the stability properties of the above decen-
tralized fault tolerant control scheme.
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3.4 Stability Analysis

Although the interconnection effects ∆i and the fault functions hik are not only
functions of local states xi but also functions of states of remote subsystems xj, j ‰

i, as we prove next, each subsystem’s output is able to asymptotically track the
reference signal within a small error, without exchanging state information between
subsystems.

Lemma 3.1. The closed-loop system described by the interconnected system (3.1), the
decentralized control law (3.18) and the adaptation laws (3.15), (3.16), guarantee that
∥x̃iptq∥ is uniformly ultimately bounded by ϵi; i.e., the total time such that x̃J

i Pix̃i ą

λ̄Pi
ϵ2i is finite.

Proof. Let the Lyapunov function of the i-th subsystem be given by Vi “ Vi1 ` Vi2

where

Vi1 “
1

2
x̃J
i Pix̃i , Vi2 “

1

2
θ̃J
si
Γ´1
si
θ̃si `

1

2γsi
pµ̂si ´ µ̄siq

2,

where θ̃si “ θ̂si ´ θsi is the parameter estimation error vector. By substituting the
control law (3.18) into the tracking error dynamics (3.2), we obtain the following
expression for the closed-loop tracking error dynamics

9̃xi “
`

A ´ BKJ
i

˘

x̃i ` B

˜

∆ipxq `

κi
ÿ

k“1

βpt ´ Tikqhikpxq ´ ϕsipeiq
Jθ̂si ´ uci

¸

.

The time derivative of Vi1 satisfies

9Vi1 “ ´
1

2
x̃J
i Qix̃i ` ei

˜

∆ipxq `

κi
ÿ

k“1

βpt ´ Tikqhikpxq ´ ϕsipeiq
Jθ̂si ´ uci

¸

ď ´
1

2
x̃J
i Qix̃i ´ eiϕsipeiq

Jθ̂si ´ eiuci

` |ei|

˜

|∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq|

¸

.

Using (3.7),

|ei|

˜

|∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq|

¸

ď |ei|
m
ÿ

j“1

γijp|ej|q.

Since γij are analytic functions, their derivative exists to any degree required. There-
fore, using Taylor’s Theorem (see, for example, [12]), there exist smooth functions ξij

such that γijp|ej|q “ γij0 ` |ej|ξijp|ej|q, where γij0 “ γijp0q is a constant. Therefore,
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defining γi0 “
řm

j“1 γij0 and using the inequality 2αβ ď α2 ` β2 for α, β P R, we
obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ´ eiϕsipeiq

Jθ̂si ´ eiuci ` γi0|ei| ` |ei|
m
ÿ

j“1

|ej|ξijp|ej|q

ď ´
1

2
x̃J
i Qix̃i ´ eiϕsipeiq

Jθ̂si ´ eiuci ` γi0|ei| `
1

2
ne2i `

1

2

m
ÿ

j“1

e2jξ
2
ijp|ej|q.

Hence, after some re-ordering of terms,
m
ÿ

i“1

9Vi1 ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ´ ϕsipeiq

Jθ̂siei ´ eiuci

` γi0|ei| `
1

2
me2i `

1

2
e2i

m
ÿ

j“1

ξ2jip|ei|q

ff

.

Let sipeiq “ γi0sgnpeiq ` 1
2
mei ` 1

2
ei
řm

j“1 ξ
2
jip|ei|q. Using (3.12) we have

m
ÿ

i“1

9Vi1 ď

m
ÿ

i“1

„

´
1

2
x̃J
i Qix̃i ´ eiϕsipeiq

Jθ̃si ` eiµsi ´ eiuci

ȷ

.

Let the Lyapunov function of the overall system br given by V “
řm

i“1 Vi1 ` Vi2. The
time derivative of V satisfies,

9V ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ´ eiϕsipeiq

Jθ̃si ` eiµsi ´ eiuci

` θ̃J
si
Γ´1
si

9̂
θsi `

1

γsi
pµ̂si ´ µ̄siq

9̂µsi

ff

.

Subtituting uci from (3.14), for x̃J
i Pix̃i ą λ̄Pi

ϵ2i we obtain,

9V ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ` θ̃J

si
Γ´1
si

´

9̂
θsi ´ Γsiϕsipeiqei

¯

` µ̂sip
1

γsi
9̂µsi ´ |ei|q ` eiµsi ´

1

γsi
µ̄si

9̂µsi

ff

.

Substituting the adaptive laws (3.15), (3.16) for x̃J
i Pix̃i ą λ̄Pi

ϵ2i , the Lyapunov func-
tion satisfies

9V ď

m
ÿ

i“1

„

´
1

2
x̃J
i Qix̃i ` eiµsi ´ |ei|µ̄si

ȷ

ď ´
1

2

m
ÿ

i“1

x̃J
i Qix̃i

which shows that x̃iptq will go into the set Wi “
␣

x̃i P Rni | x̃J
i Pix̃i ď λ̄Pi

ϵ2i
(

. Moreover,
since adaptation stops inside the dead-zone, x̃i, θ̂si , µ̂si P L8, for all t ą 0. However,
the fact that µ̂si is non-decreasing, (3.16), shows that each subsystem enter the dead-
zone in finite time, i.e., there exists a t0 ă 8 such that x̃i P Wi, for all t ą t0. This
result not only shows the uniformly ultimately boundedness of }x̃i} by ϵi, but also
that parameter drift in the presence of residual approximation errors is avoided.
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0

x̃i

‖θ̃si
‖

t = 0

x̃i =
√

ǫi

dead-zone

x̃i = −√
ǫi

Figure 3.1: Illustration of a possible error trajectory of a scalar system

Fig. 3.1 shows the type of error trajectory,
!

x̃i, }θ̃si}
)

, that could occur for a
scalar system, where for illustration purposes the µsi coordinate is ommited.

3.5 Decentralized Safety Control Scheme

In the previous analysis, we assumed that the states of each subsystem are re-
stricted within a certain compact coverage region. Within this region, the residual
approximation error µsi can be arbitrarily reduced by enhancing the approximation
capabilities of the ŝi approximator. However, outside the coverage region, the size of
µsi is typically significantly large, such that the states of the subsystems may become
unbounded. Even in the case that the initial state conditions are inside the coverage
region, due to large initial parameter estimation errors, the states may still leave
the coverage region. Therefore, in order to address this problem, in this section we
consider the design of a decentralized safety control scheme based on sliding mode
control with adaptive bounds. The state space xi of each subsystem i is divided into
the following subset,

ADi
“

!

xi | }xi ´ x0i}p,βi
ď 1

)

,

where x0i is a fixed vector in the state space of subsystem i and }x}p,β is the weighted

p-norm, }x}p,β “

”

řk
j“1

´

|xj |

βj

¯pı 1
p

. Through the use of the weighted p-norm, for dif-
ferent values of p and β, it is possible to specify subsets with arbitrary dimensions
in different coordinates (e.g., ellipse, rectangle) and not necessarily of equal dimen-
sions in different coordinates. The sliding manifold of the i-th subsystem is defined
as ei “ BJPix̃i “ 0. We impose the following assumption.
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Assumption 3.2. In the region Rn ´ AD1 ˆ AD2 ˆ . . . ˆ ADm ” Rn ´ AD,

|∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq| ď

m
ÿ

j“1

wsij |ej|Msijpxjq ` wsi0 , (3.19)

where Msij : Rnj ÞÑ R are known functions, and wsij , wsi0 are unknown positive
parameters.

It is noted that, in general, we do not need to know the functions Msijpxjq since
theoretically, they can be set to one. However, it is best to incorporate as much prior
knowledge as possible into the design to avoid unnecessary large feedback gains.
Define the vector wsi “ rws1i , . . . , wsmi

s
J and let ŵsi and ŵsi0 be the estimates of wsi

and wsi0 respectively. The corresponding parameter estimation errors are defined as
w̃si “ ŵsi ´ wsi and w̃si0 “ ŵsi0 ´ wsi0. The decentralized sliding mode control law is
given by,

usi “
´KJ

i xi ´ fipxiq ` sgnpeiqΠi

gipxiq
(3.20)

Πi “ ´
m

2
|ei| ´

|ei|

2

m
ÿ

j“1

ŵ2
sji
M2

sji
pxiq ´ ŵsi0 . (3.21)

The parameter estimates ŵsi and ŵsi0 are updated according to the following adaptive
laws,

9̂zsi “ Γwi
Lsipxiqe

2
i (3.22)

9̂wsi0 “ γwi0
|ei| , (3.23)

where Γwi
is positive definite matrix and γwi0

is a positive constant corresponding
to the adaptive rates of the parameter estimates, ẑsi “

“

ŵ2
s1i

ŵ2
s2i

. . . ŵ2
smi

‰J and
Lsi “

“

M2
s1i

pxiq M2
s2i

pxiq . . . M2
smi

pxiq
‰J.

Lemma 3.2. The decentralized sliding mode control law (3.20) and the adaptation
laws (3.22)-(3.23) guarantee that each time xi leaves ADi

it returns to it in finite
time.

Proof. Let the Lyapunov function of the i-th subsystem be given by Vi “ Vi1 ` Vi2,
where

Vi1 “
1

2
x̃J
i Pix̃i, Vi2 “

1

2
z̃J
si
Γ´1
wi
z̃si `

1

2γwi0

w̃2
si0
,
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where z̃si “
“

w̃2
s1i

w̃2
s2i

. . . w̃2
smi

‰J. By substituting the control law usi , (3.20), into 9̃xi

we obtain that the time derivative of Vi1 satisfies

9Vi1 ď x̃J
i Pi

«

pA ´ BKJ
i qx̃i ` B

˜

sgnpeiqΠi ` ∆ipxq `

κi
ÿ

k“1

βpt ´ Tkqhikpxq

¸ff

ď ´
1

2
x̃J
i Qix̃i ` |ei|

˜

Πi ` |∆ipxq| `

κi
ÿ

k“1

βpt ´ Tikq |hikpxq|

¸

.

Substituting Πi from (3.21) and using the bound in equation (3.19), we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´
m

2
|ei| ´

|ei|

2

m
ÿ

j“1

ŵ2
sji
M2

sji
pxiq ´ w̃si0

`

m
ÿ

j“1

wsij |ej|Msijpxjq

ff

.

Therefore, using the inequality 2αβ ď α2 ` β2 for α, β P R,

9Vi1 ď ´
1

2
x̃J
i Qix̃i `

1

2

m
ÿ

j“1

e2jw
2
sij
M2

sij
pxjq ´

1

2
e2i

m
ÿ

j“1

ŵ2
sji
M2

sji
pxiq ´ |ei| w̃si0 .

After some reordering of terms,

m
ÿ

i“1

9Vi1 ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ´

1

2
e2i

m
ÿ

j“1

w̃2
sji
M2

sji
pxiq ´ |ei| w̃si0

ff

.

The time derivative of the Lyapunov function of the overall system satisfies

9V ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ´

1

2
e2i

m
ÿ

j“1

w̃2
sji
M2

sji
pxiq ´ |ei| w̃si0

` z̃J
si
Γ´1
wi

9̃zsi `
1

γwi0

w̃si0
9̃wsi0

ff

.

By grouping terms we obtain

9V ď

m
ÿ

i“1

«

´
1

2
x̃J
i Qix̃i ` z̃J

si
Γ´1
wi

´

9̃zsi ´ Γwi
Lsipxiqe

2
i

¯

` γ´1
wi0

w̃si0

´

9̃wsi0 ´ γwi0
|ei|

¯

ff

.

By substituting the adaptive laws (3.22)-(3.23), the Lyapunov function derivative
satisfies 9V ď ´1

2

řm
i“1 x̃

J
i Qix̃i, which shows that the state vector xi of each subsystem

enter ADi
in finite time.
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3.6 Simulation Example

To illustrate the design methodology for the decentralized adaptive approximation
based fault tolerant control, consider the following interconnected uncertain system:

Σ1 : 9x11 “ x12,

9x12 “ x4
11 ` ∆1pxq `

`

1 ` x2
11x

2
12

˘

u1 ` βpt ´ T1qh1pxq

Σ2 : 9x21 “ x22,

9x22 “ x3
22 ` ∆2pxq ` p1 ` |x21x22|qu2 ` βpt ´ T2qh2pxq

Σ3 : 9x31 “ x32,

9x32 “ x2
32 ` ∆3pxq ` p2 ` sinpx31qqu3 ` βpt ´ T3qh3pxq

where x “
“

xJ
1 , x

J
2 , x

J
3

‰J, yi “ xi1 is the output of Σi subsystem, ∆1px1, x2, x3q “

x21´x22´x31`x32, ∆2px1, x2, x3q “ x11` 1
2
x12`x31`x32 and ∆3px1, x2, x3q “ x21` 1

2
x22.

The matrix Pi satisfying the Lyapunov equation, for Q “ I2ˆ2, is given by,

Pi “

»

–

1.5 0.5

0.5 1

fi

fl i “ 1, 2, 3,

where K1 “ K2 “ K3 “

”

1 1
ıJ

. The desired trajectory vector Ydi “ rydi , 9ydis
J and

the signal :ydi are generated using a third order filter with a bandwidth of 5 (rad/sec)
and unity gain below this frequency. The filter input is chosen as a square wave of zero
mean, 1.5 amplitude and a frequency of 0.4 Hz (the same for all three subsystems).
The coverage regions ADi

are chosen as ADi
“ max

!

|xi1|

3
, |xi2|

9

)

ď 1, i “ 1, 2, 3.

Within this region, a lattice of equally spaced radial basis functions are designed for
the approximation of the unknown interconnection effects and the faults. We consider
the case in which abrupt faults occur in Σ1 at T1 “ 4 sec and simultaneously in Σ2

and Σ3 at T2 “ T3 “ 10 sec. For simulation purposes, the unknown fault functions
h1, h2 and h3 are chosen as, h1 “ px31 ` 0.5x32q3 ` x12x22 ` |x11|, h2 “ x3

31 ` x2
32 and

h3 “ x2
21x32 ` 5 |x22| cosp0.01x31q.

In Fig. 3.2 we plot the output tracking error of each subsystem, yi ´ ydi , i “

1, 2, 3, indicating the time occurrence of the faults. As illustrated by the plot, through
the use of adaptive approximation of the interconnection effects and the faults, the
subsystems are able to follow the corresponding reference trajectories. In Fig. 3.3
we plot the parameter estimates, θ̂s1 , θ̂s2 and θ̂s3 of the approximation of the s1pe1q,
s2pe2q and s3pe3q functions, respectively. As shown, a change in the dynamics of
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Figure 3.2: Time evolution of the output tracking error.
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Figure 3.3: Time evolution of the adaptive parameter estimates.
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each subsystem due to the faults, causes the parameter estimates to adapt so as to
accommodate the faults. This is also the case when the change in dynamics is due
to a remote fault (in a different subsystem), as can be seen in the plot of θ̂s1 after
approximately t “ 12 sec. Although the h2 and h3 faults, in Σ2 and Σ3 respectively,
do not directly affect the Σ1 dynamics, the effects of the faults are propagated to
Σ1 through the ∆1 interconnection. More specifically, the h2 and h3 faults cause a
large change in the ∆1 interconnection and as a result the scalar error e1 is increased
(see Fig. 3.2). However, the parameter estimates, θ̂s1 , are self-adapted to correct this
effect. Fig. 3.4 demonstrates the effectiveness of the use of adaptive approximation
of the interconnections effects and faults. More specifically, it illustrates the tracking
performance of Σ1 in the case where adaptive approximation is used, together with
the case where adaptive approximation is switched off (i.e., uF1ptq “ 0 for all t).
Although the presence of the safety control scheme ensures the boundedness of the
tracking error, as shown by the plot, the absence of adaptive approximation results in
a severe degrade of the tracking performance, especially after the occurrence of the h1

fault at t “ 4 sec. Fig. 3.5 shows the phase plane plot of the states of Σ3. The desired
trajectory is shown as a thick dashed line inside the coverage region. For illustration
purposes, the trajectory between the fault occurrence time t “ T3 “ 10 sec of the h3

fault and the time at which the fault is accommodated, is shown as a dotted line. As
can be seen, the fault causes the trajectory to leave the coverage region, however the
decentralized sliding mode control with adaptive bounds is able to steer the states of
the subsystem back to the coverage region.

3.7 Conclusion

In this chapter we have presented a decentralized adaptive approximation de-
sign for the fault tolerant control of a class of nonlinear uncertain interconnected
systems. We have considered multiple faults that occur not only in the local sub-
system dynamics but also in the interconnections between the subsystems. Using
Lyapunov analysis we have derived stable adaptive laws for compensating the effects
of the unknown interconnections and the unknown fault functions. It has been shown
that a class of interconnections and fault functions can be adaptively approximated
locally, without the need of state information exchange between subsystems. The in-
troduction of a dead-zone modification in the adaptive laws combined with adaptive
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bounding parameters, addresses stability and robustness issues associated with the
presence of residual approximation errors. By combining a dead-zone modification in
the adaptive laws with an adaptive bounding method, it becomes possible to relax the
assumption of a known upper bound on the residual approximation errors. Moreover,
the presence of the dead-zone prevents the adaptive bounding term from drifting to
infinity. Through the development of a safety scheme outside the coverage region, we
have addressed stability problems associated with the case where the trajectory leaves
the coverage region. It is important to note that in cases where the interconnections
functions have very large magnitude, then this may lead to saturation of the control
signal. In such cases, one may consider distributed control approaches, such as the
ones presented in later chapters.
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Chapter 4

Distributed Fault Detection and
Accommodation

4.1 Introduction

In this chapter we present a distributed fault detection and accommodation scheme
for a class of feedback linearizable uncertain interconnected systems. We consider
faults that occur in the subsystems local dynamics, as well as in the interconnec-
tions. The subsystems are allowed to exchange state information according to a self-
triggering tracking-error based communication algorithm, where state information is
shared with other subsystems only if the tracking error exceeds a certain bounding
threshold, which is a design variable. Intuitively, the distributed fault detection and
accommodation design is based on utilizing the a priori available desired reference
trajectory if the tracking error is within a certain threshold, while using the transmit-
ted state information if the tracking error exceeds the threshold. The distributed fault
detection scheme is based on a set of distributed nonlinear estimators corresponding
to each subsystem. Each estimator utilizes local, as well as, remote communicated
state information. A nominal control law is designed that ensures asymptotic stabil-
ity of the tracking errors in the absence of faults. After a fault is detected in any
subsystem, a fault accommodation algorithm based on the adaptive approximation
approach [19] is activated for compensating the effect of the fault. It is shown that
by approximating the upper bound of the fault function, instead of the fault function
itself, robustness to residual approximation errors is ensured. Through rigorous sta-
bility analysis, asymptotic stability of all tracking errors, in the presence of faults, is
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established.

This chapter is organized as follows. In Section 4.2 we formulate the problem
and in Section 4.3 we present the design of the distributed fault detection scheme.
Section 4.4 presents a distributed nominal control design, whose stability properties
are established through the use of Lyapunov analysis. In Section 4.5, a distributed
fault accommodation scheme is presented and analyzed. In Section 4.6, a simulation
example is presented to illustrate the effectiveness of the proposed distributed fault
detection and accommodation scheme. Finally, Section 4.7 contains some concluding
remarks.

4.2 Problem Formulation

We consider a system comprised of m interconnected subsystems, which may be
subject to faults occurring at unknown times Ti. The i-th subsystem, i “ 1, . . . ,m, is
described by

9xij “ xipj`1q j “ 1, . . . , ni ´ 1 (4.1)

9xini
“ fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq (4.2)

where xi “ rxi1, xi2, . . . , xini
s

J
P Rni is the state of the i-th subsystem, x “

“

xJ
1 , . . . , x

J
m

‰J

P Rn (where n “
řm

i“1 ni) is the state of the overall system; ui P R is the control input
of the i-th subsystem; fi : Rni ÞÑ R and gi : Rni ÞÑ R are partially known functions
representing the local dynamics of the i-th subsystem; and δij : Rnj ÞÑ R is an un-
known interconnection function representing the effect of the j-th subsystem onto
the i-th subsystem dynamics (δij is subject to some constraints defined later on). For
notational convenience, we define δii “ 0, for i “ 1, . . . ,m. The term hi : Rn ÞÑ R

denotes the unknown change in the i-th subsystem dynamics due to a fault, while
βpt ´ Tiq : R` ÞÑ R represents the corresponding time profile of the fault that occurs
at some unknown time Ti.

In this chapter we consider abrupt faults, where the time profile satisfies βpt´Tiq “

0 for t ă Ti, and βpt ´ Tiq “ 1 for t ě Ti, and incipient faults, where βpt ´ Tiq “ 0 for
t ă Ti and βpt´Tiq increases monotonically from 0 to 1 for t ě Ti. Incipient faults are
typically slowly developing faults that may be difficult to detect. The i-th subsystem
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described by (4.1), (4.2) can be written in matrix form as

9xi “ Axi ` B
”

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq

ı

(4.3)

where

A “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
... ... ... . . . ...
0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

—

—

—

–

0

0
...
0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It is assumed that a local nominal (known) model of the i-th subsystem is de-
scribed by 9xNi

“ AxNi
` B

“

fNi
pxNi

q ` gNi
pxNi

qui

‰

, where

|fipxiq ´ fNi
pxiq| ďf0ipxiq, @xi P Rni (4.4)

|gipxiq ´ gNi
pxiq| ďg0ipxiq, @xi P Rni (4.5)

and f0ipxiq, g0ipxiq are known local bounding functions representing the bound on the
modeling uncertainty for fi and gi, respectively. To avoid any stabilizability problems
and without loss of generality, we assume that gNi

pxiq ´ g0ipxiq is bounded away from
zero and positive for all xi P Rni , to guarantee that gipxiq ą 0 for all xi P Rni. We
also impose a bounding assumption on the interconnection function δij. Specifically,
we assume that δij, for all i ‰ j, satisfies

|δijpxjq| ď Lij|xj| ` σj, @xj P Rnj , (4.6)

where Lij and σj are known constants, and |xj| “
b

x2
j1 ` . . . ` x2

jnj
is the Euclidean

norm.
The objective of this chapter is to develop a distributed fault detection and ac-

commodation scheme for feedback linearizable nonlinear interconnected subsystems
described by (4.1) and (4.2), such that each xi follows a smooth reference trajectory
vector xdi “ rxdi1 , . . . , xdini

sJ. We assume that each xdi and 9xdini
is uniformly bounded

and available to all the subsystems. Let x̃ij “ xij ´ xdij be the tracking error for the
j-th state of the i-th subsystem. The tracking error vector of the i-th subsystem is
defined by x̃i “ rx̃i1, x̃i2, . . . , x̃ini

s
J.

We consider the case in which the subsystems are allowed to exchange state in-
formation under certain conditions. Specifically, the i-th subsystem provides its state
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xiptq to all the other subsystems whenever the norm of its local tracking error x̃iptq

exceeds a certain threshold di, where di ą 0 is a design constant. Otherwise, the other
subsystems utilize the known desired state xdi instead. Define tajk as the time instant
at which the j-th subsystem starts communicating its state to the other subsystems,
for the k-th time, and tbjk as the time instant at which the j-th subsystem stops
communicating its state to the other subsystems, for the k-th time. Without loss of
generality, we assume that tajk ă tbjk. We define the vector x̄i “ rx̄i

1, . . . , x̄
i
ns P Rn

where x̄i
j is given by,

x̄i
j fi

$

’

&

’

%

xj if t P
“

tajk, tbjk
˘

xdj if t P
“

tbjk, tajpk`1q

˘

Remark 4.1. In many practical applications of large-scale systems, there is a need
to minimize communication between controllers while maintaining a high level of per-
formance. A key motivation of this work is to reduce the communication exchange
between subsystems based on a communication-as-needed approach. In this frame-
work, the state xiptq is communicated to the other subsystems only when the tracking
error is above a certain constant value di. Therefore, the fact that the state of the j-th
subsystem is known to the i-th subsystem (j ‰ i) for all t P

“

tajk, tbjk
˘

and that the
desired reference trajectories xdj , j “ 1, 2, . . . , n are available to all the subsystems,
ensures that

|xj ´ x̄i
j| “ 0 if t P

“

tajk, tbjk
˘

(4.7)

|xj ´ x̄i
j| ď dj if t P

“

tbjk, tajpk`1q

˘

. (4.8)

4.3 Distributed Fault Detection Scheme

In this section we consider the design of a distributed fault detection scheme based
on a nonlinear estimator for each subsystem. The estimator for the i-th subsystem is
described by

9χi “ λi pxini
´ χiq ` fNi

pxiq ` gNi
pxiqui ` sgnpϵiq

m
ÿ

j“1

Lij|x̄
i
j| ` σj, (4.9)
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where χi P R is the estimated ni-th state of the i-th subsystem, satisfying χip0q “

xini
p0q, ´λi ă 0 is the estimator pole and ϵi “ xini

´χi is the estimation error, which
is used for fault detection. For each subsystem i, we define a detection threshold Riptq

as follows:

Riptq “

d

1

λi

ż t

0

e´
λi
2

pt´τqpi
`

xipτq
˘

dτ , (4.10)

where pi is given by

pipxiq “

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸2

(4.11)

and rj is given by

rj “

$

’

&

’

%

0 if t P
“

tajk, tbjk
˘

dj if t P
“

tbjk, tajpk`1q

˘

.

A fault is declared at time tid if |ϵipt
i
dq| “ Ript

i
dq. The following theorem shows that in

the absence of any fault the state estimation error satisfies |ϵiptq| ă Riptq, therefore
it is ensured that there are no false alarms.

Theorem 4.1. The local fault detection estimator described by (4.9) satisfies

|ϵiptq| ă Riptq @t ă Ti (4.12)

Proof. Let the Lyapunov function for the i-th subsystem be given by Vi “ 1
2
ϵ2i . Based

on (4.2) and (4.9), before the occurrence of a fault, i.e., for t ă Ti, the time derivative
of Vi satisfies:

9Vi “ ´ λiϵ
2
i ` ϵi

„

fipxiq ´ fNi
pxiq

ȷ

` ϵiui

„

gipxiq ´ gNi
pxiq

ȷ

` ϵi

«

m
ÿ

j“1

δijpxjq ´ sgnpϵiq
m
ÿ

j“1

Lij|x̄
i
j| ` σj

ff

ď ´ λiϵ
2
i ` |ϵi|

ˇ

ˇfipxiq ´ fNi
pxiq

ˇ

ˇ ` |ϵiui|
ˇ

ˇgipxiq ´ gNi
pxiq

ˇ

ˇ

` |ϵi|

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

|δijpxjq| ´

m
ÿ

j“1

Lij|x̄
i
j| ` σj

ˇ

ˇ

ˇ

ˇ

ˇ

.

Using (4.4), (4.5) and (4.6) we obtain

9Vi ď ´λiϵ
2
i ` |ϵi|f0ipxiq ` |ϵiui|g0ipxiq ` |ϵi|

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

Lij|xj| ´ Lij|x̄
i
j|

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Using (4.7) and (4.8) we obtain

9Vi ď ´ λiϵ
2
i ` |ϵi|f0ipxiq ` |ϵiui|g0ipxiq ` |ϵi|

m
ÿ

j“1

Lijrj

ď ´
λi

2
ϵ2i `

λi

2

«

´ ϵ2i `
2

λi

|ϵi|

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸ff

.

By completing the squares we obtain that

´ϵ2i `
2

λi

|ϵi|

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸

ď
1

λ2
i

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸2

Therefore the time derivative of the Lyapunov function satisfies

9Vi ď ´
λi

2
ϵ2i `

1

2λi

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸2

Integrating both sides we obtain

Viptq ď
1

2λi

ż t

0

e´
λi
2

pt´τq

«

f0ipxipτqq ` g0ipxipτqq|uipτq| `

m
ÿ

j“1

Lijrj

ff2

dτ (4.13)

Therefore, based on the definition of Vi, |ϵiptq| “
a

2Viptq ď

b

1
λi

şt

0
e´

λi
2

pt´τqpi
`

xipτq
˘

dτ

The distributed fault estimator, given by (4.9), guarantees that whenever (4.12)
is not satisfied, there is a fault in the i-th subsystem. However, the reverse is not
true, i.e., it is not guaranteed that when |ϵiptq| ă Riptq, the i-th subsystem is fault
free. In order for a fault to be detectable, the fault function hipxq needs to satisfy a
certain fault detectability condition. The following lemma characterizes the class of
faults that are detectable by the proposed distributed fault detection scheme.

Lemma 4.1. A fault in the i-th subsystem is detected at some tid ą Ti, if the fault
function hi satisfies

ż tid

Ti

e´
λi
2

ptid´τqβ2pt ´ Tiqh
2
i pxpτqqdτ ą

3

2

ż tid

0

e´
λi
2

pt´τqpipxipτqqdτ (4.14)

Proof. Consider the Lyapunov the function for the i-th subsystem, Vi “ 1
2
ϵ2i . Before
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fault detection, i.e., for t P p0, tidq, the time derivative of Vi satisfies

9Vi “ ´ λiϵ
2
i ` ϵi

„

fipxiq ´ fNi
pxiq

ȷ

` ϵiui

„

gipxiq ´ gNi
pxiq

ȷ

` ϵi

«

m
ÿ

j“1

δijpxjq ´ sgnpϵiq
m
ÿ

j“1

Lij|x̄
i
j| ` σj

ff

` ϵiβpt ´ Tiqhipxq

ě ´ λiϵ
2
i ´ |ϵi|

ˇ

ˇfipxiq ´ fNi
pxiq

ˇ

ˇ ´ |ϵiui|
ˇ

ˇgipxiq ´ gNi
pxiq

ˇ

ˇ

´ |ϵi|

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

δijpxjq ´

m
ÿ

j“1

Lij|x̄
i
j| ` σj

ˇ

ˇ

ˇ

ˇ

ˇ

` ϵiβpt ´ Tiqhipxq.

Using (4.4), (4.5), (4.6), (4.7) and (4.8) we obtain

9Vi ě ´ λiϵ
2
i ´ |ϵi|

«

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

ff

` ϵiβpt ´ Tiqhipxq

ě ´
λi

2
ϵ2i ´

λi

4

«

ϵ2i `
4

λi

˜

f0ipxiq ` g0ipxiq|ui| `

m
ÿ

j“1

Lijrj

¸

|ϵi|

ff

´
λi

4

„

ϵ2i ´
4

λi

ϵiβpt ´ Tiqhipxq

ȷ

.

Completing the squares we obtain

9Vi ě ´
λi

2
ϵ2i ´

1

λi

pipxiq `
1

λi

β2pt ´ Tiqh
2
i pxq.

Integrating both sides over t P r0, tdi s we obtain

Vipt
i
dq ě

1

λi

ż tid

Ti

e´
λi
2

ptid´τqβ2pt ´ Tiqh
2
i pxpτqqdτ ´

1

λi

ż tid

0

e´
λi
2

ptid´τqpipxipτqqdτ.

Using (4.13) we obtain

1

2λi

ż tid

0

e´
λi
2

ptid´τqpipxipτqqdτ ě
1

λi

ż tid

Ti

e´
λi
2

ptid´τqβ2pt ´ Tiqh
2
i pxpτqqdτ

´
1

λi

ż tid

0

e´
λi
2

ptid´τqpipxipτqqdτ.

Rearranging we obtain

3

2

ż tid

0

e´
λi
2

pt´τqpipxipτqqdτ ě

ż tid

Ti

e´
λi
2

ptid´τqβ2pt ´ Tiqh
2
i pxpτqqdτ.

Therefore, if for some tid ą Ti, (4.14) is satisfied, it is guaranteed that the fault in the
i-th subsystem will be detected.

The detectability condition given by Lemma (4.1) is a sufficient condition for a
fault to be detectable. However, it is not a necessary condition for a fault to be
detected, and therefore the class of detectable faults may be significantly larger.
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4.4 Distributed Nominal Control Design

Based on (4.3), the tracking error dynamics, x̃i “ xi ´ xdi , of the i-th subsystem,
satisfy:

9̃xi “ Ax̃i ` B
”

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq ´ 9xdini

ı

. (4.15)

Let the distributed control law ui be given by ui “ uNi
` uFi

, where uNi
denotes

the nominal control law and uFi
is the augmented fault accommodation control law

for addressing the change in dynamics due to the occurrence of a fault in the i-th
subsystem. Prior to the detection of a fault, uFi

“ 0. In this section, we present the
nominal control design and in the next section we investigate the design of the fault
accommodation scheme.

The nominal control law of the i-th subsystem is defined as

uNi
“

1

gNi
pxiq ` sgnpeiuaiqg0ipxiq

uai (4.16)

uai “ ´ KJ
i x̃i ` 9xdini

´ fNi
pxiq ´ sgnpeiqf0ipxiq

´ sgnpeiq
m
ÿ

j“1

`

Lij|x̄
i
j| ` σj ` rj

˘

, (4.17)

where the vector Ki “ rki1, ¨ ¨ ¨ , kini
sJ P Rni is chosen such that A´BKJ

i is a Hurwitz
matrix. Since A ´ BKJ

i is Hurwitz, for any Qi ą 0 there exists Pi ą 0 satisfying the
Lyapunov equation, PipA ´ BKJ

i q ` pA ´ BKJ
i qJPi “ ´Qi. Based on Pi, the scalar

tracking error ei is defined as ei fi BTPix̃i.

Theorem 4.2. Prior to the occurrence of a fault in the i-th subsystem, the distributed
nominal control law uNi

, given by (4.16) and (4.17), guarantees that x̃iptq Ñ 0 as
t Ñ 8 for i “ 1, 2, . . . ,m.

Proof. Let the Lyapunov function for the i-th subsystem be given by Vi “ 1
2
x̃J
i Pix̃i.

Using (4.15), (4.16) and (4.5), the time derivative of Vi satisfies

9Vi ď
1

2
x̃J
i

`

AJPi ` PiA
˘

x̃i ` ei

«

fipxiq ` uai `

m
ÿ

j“1

δijpxjq ´ 9xdini

ff

.

Substituting uai and using (4.4) we obtain

9Vi ď ´
1

2
x̃J
i Qix̃i ` ei

«

m
ÿ

j“1

δijpxjq ´ sgnpeiq
m
ÿ

j“1

`

Lij|x̄
i
j| ` σj ` rj

˘

ff

ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

m
ÿ

j“1

|δijpxjq| ´

m
ÿ

j“1

`

Lij|x̄
i
j| ` σj ` rj

˘

ff

.
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Using (4.6) we obtain

9Vi ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

m
ÿ

j“1

Lij|xj| ` σj ´

m
ÿ

j“1

`

Lij|x̄
i
j| ` σj ` rj

˘

ff

ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

m
ÿ

j“1

`

Lij|xj ´ x̄i
j| ´ rj

˘

ff

.

Using (4.7) and (4.8) we obtain 9Vi ď ´1
2
x̃J
i Qix̃i. Therefore, using Barbalat’s Lemma [30],

it can be shown that x̃iptq Ñ 0 as t Ñ 8, for i “ 1, . . . ,m.

4.5 Distributed Fault Accommodation Scheme De-

sign

In this Section, we deal with reconfiguration of the control law ui of the i-th
subsystem, after a fault is detected (i.e., t ě tid). In this framework, we use adaptive
approximation models for counteracting the change in dynamics due to faults. The
following lemma shows that for any given set of basis functions ϕspxq, there exists an
upper bound s̄pxq of the function |spxq| that can be represented exactly by θ˚J

s ϕspxq

within a compact set D.

Lemma 4.2. Given a compact set D Ă Rp, let ϕspxq “
“

ϕs1pxq, . . . , ϕsqpxq
‰J

: Rp ÞÑ

Rq be a set of basis functions such that for all x P D at least one basis function is
nonzero. Then for any bounded function spxq there exists a set of bounded parameters
θ˚
s “

”

θ˚
s1
, . . . , θ˚

sq

ıJ

P Rq, such that

|spxq| ď θ˚J
s ϕspxq “ s̄pxq, x P D.

Proof. Consider the function |spxq|, which can be represented within a compact set
D as,

|spxq| “ θJ
s ϕspxq ` µspxq, x P D, (4.18)

where µspxq is the residual approximation error. We continue to show that, there
exists a set of bounded constant parameters θ˚

s , such that s̄pxq “ θ˚J
s ϕspxq is an

upper bound of |spxq| for all x P D. Let the k-th parameter of θ˚
s , k “ 1, 2, . . . , q, be

given by

θ˚
sk

“ θsk `
1

q
sgn pϕskpxqq ak, (4.19)
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where ak “

›

›

›

µspxq

ϕsk
pxq

›

›

›

D,8
fi maxxPD

ˇ

ˇ

ˇ

µspxq

ϕsk
pxq

ˇ

ˇ

ˇ
. Substituting (4.19) into s̄pxq “ θ˚J

s ϕspxq we
obtain

s̄pxq “

”

θs1 `
1

q
sgn pϕs1pxqq a1, . . . , θsq `

1

q
sgn

`

ϕsqpxq
˘

aq

ı

ϕspxq

Using (4.18) we obtain that for all x P D.

s̄pxq “

„

1

q
sgn pϕs1pxqq a1, . . . ,

1

q
sgn

`

ϕsqpxq
˘

aq

ȷ

ϕspxq ` |spxq| ´ µspxq

“
1

q

q
ÿ

k“1

˜

|ϕskpxq|

›

›

›

›

µspxq

ϕskpxq

›

›

›

›

D,8

¸

` |spxq| ´ µspxq

ě
1

q

q
ÿ

k“1

ˆ

|ϕskpxq|

ˇ

ˇ

ˇ

ˇ

µspxq

ϕskpxq

ˇ

ˇ

ˇ

ˇ

˙

` |spxq| ´ µspxq

ě|spxq|.

Therefore, the function s̄pxq “ θ˚J
s ϕspxq, with θ˚

s given by (4.19), satisfies s̄pxq ě |spxq|

for all x P D.

Remark 4.2. Lemma 4.2 is an existence result showing that for |spxq| there exists
an upper bound s̄pxq that can be exactly represented by the adaptive approximator
θ˚J
s ϕspxq. The parameters θ˚

s given by (4.19) are not necessarily optimal in terms of
minimizing

ˇ

ˇs̄pxq ´ |spxq|
ˇ

ˇ.

Remark 4.3. If for some x0 P D, ϕskpx0q “ 0 for all k “ 0, 1, . . . , q, it is not
guaranteed that Lemma 4.2 holds. In order to ensure that Lemma 4.2 holds, the
designer needs to choose overlapping basis functions, such that at least one basis
function is non-zero for all x P D.

Now consider the fault function hipxq. According to Lemma 4.2, there exists a
bound h̄ipxq of the function |hipxq| that can be represented within a compact set
X Ă Rn by an approximation model as follows,

h̄ipxq “ θJ
i ϕipxq, x P X , (4.20)

where θi P Rq is a set of unknown bounded constant parameters and ϕipxq P Rq is a
set of basis functions that covers X . The augmented distributed fault accommodation
control law uFi

is defined by

uFi
“

1

gNi
pxiq ` sgnpeiuciqg0ipxiq

uci (4.21)

uci “ ´ sgnpeiqθ̂
J
i

ˆ

ϕipx̄
iq ` Mi

m
ÿ

j“1

rj

˙

, (4.22)
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where θ̂iptq are the parameter estimates and Mi “ rmi1 . . .miqs
J represents the Lips-

chitz vector such that

ˇ

ˇϕikpxq ´ ϕikpx̄iq
ˇ

ˇ ď mik|x ´ x̄i|, k “ 1, 2, . . . , q; x P X (4.23)

The parameter estimates θ̂i are updated according to,

9̂
θi “ Γi|ei|

˜

ϕipx̄
iq ` Mi

m
ÿ

j“1

rj

¸

(4.24)

Theorem 4.3. Given that the coverage set X is large enough such that xptq P X

for all t ą 0, the adaptive approximation based control law for the i-th subsystem,
given by (4.16), (4.17), (4.21), (4.22), (4.24) guarantees that x̃iptq Ñ 0 as t Ñ 8 for
i “ 1, . . . ,m.

Proof. Let the Lyapunov function for the i-th subsystem be given by Vi “ Vi1 ` Vi2

where Vi1 “ 1
2
x̃J
i Pix̃i, Vi2 “ 1

2
θ̃J
i Γ

´1
i θ̃i, and θ̃i “ θ̂i ´ θi is the parameter estimation

error vector. Consider the time interval t ą τ id. Using the result of Theorem 4.2, the
time derivative of Vi1 satisfies,

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` ei rβpt ´ Tiqhipxq ` gipxiquFi

s .

Substituting uFi
and using (4.5) we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` ei rβpt ´ Tiqhipxq ` ucis .

Substituting uci we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

”

h̄ipxq ´ θ̂J
i ϕipx̄

iq ´ θ̂J
i Mi

m
ÿ

j“1

rj

ı

.

Using (4.20),

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

”

θJ
i ϕipxq ´ θ̂J

i ϕipx̄
iq ´ θ̂J

i Mi

m
ÿ

j“1

rj

ı

.

Adding and subtracting θJ
i ϕipx̄

iq we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´θ̃J
i ϕipx̄

iq ´ θ̂J
i Mi

m
ÿ

j“1

rj

ff

` |ei|θ
J
i

`

ϕipxq ´ ϕipx̄
iq
˘

.
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Using (4.23) and the fact that |x ´ x̄i| ď
řm

j“1 rj we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´θ̃J
i ϕipx̄

iq ´ θ̃J
i Mi

m
ÿ

j“1

rj

ff

.

The time derivative of Vi satisfies 9Vi “ 9Vi1 ` θ̃J
i Γ

´1
i

9̃θi. By grouping terms we obtain

9Vi ď ´
1

2
x̃J
i Qix̃i ` θ̃J

i Γ
´1
i

«

9̃θi ´ Γi|ei|

ˆ

ϕipx̄
iq ` Mi

m
ÿ

j“1

rj

˙

ff

.

Substituting the adaptive law (4.24), we obtain 9Vi ď ´1
2
x̃J
i Qix̃i. Therefore, using

Barbalat’s Lemma [30], it can be shown that x̃iptq Ñ 0 as t Ñ 8, for i “ 1, . . . ,m.

Remark 4.4. Intuitively, the parameter adaptive law (4.24) consists of two com-
ponents. The first component (i.e., Γi|ei|ϕipx̄

iq) is used to approximate the function
h̄ipx̄

iq, while the second component (i.e., Γi|ei|Mi

řm
j“1 dj) is used to compensate for

the replacement error, described by the difference h̄ipxq ´ h̄ipx̄
iq, which arises due to

the tracking-error based communication algorithm where no state is information is
shared if the tracking error is smaller than a certain threshold dj.

Remark 4.5. Theorem 4.3 assumes that after the occurrence of the fault, the
trajectory xptq remains within the coverage region X . If an upper bound is available
on the fault function hipxq, then a safety control scheme (such as the one presented
in Section 3.5) can be designed to bring the trajectory back within X , in case that
it leaves the coverage region. Moreover, in practical applications it may be necessary
to use dead-zone modification to the adaptive law (4.24) in order to avoid parameter
drift in the presence of measurement noise and disturbances.

4.6 Simulation Example

In this section, we consider a simple simulation example based on two inverted
pendulums connected by a spring. The i-th, i “ 1, 2, subsystem is described by

Σi : 9xi1 “ xi2,

9xi2 “

ˆ

migr

Ji
´

kr2

4Ji

˙

sinpxi1q `
kr

2Ji
pl ´ bq `

1

Ji
ui

`

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipx1, x2q

where xi “ rxi1, xi2s
J are the state vectors, θi “ xi1 are the angular displacements

of the pendulums from vertical, m1 “ 5kg and m2 “ 6.5kg are the pendulum end
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(a) Σ1 subsystem. The fault is detected at
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Figure 4.1: Time evolution of the ditributed fault detectors.

masses, J1 “ 0.4kg and J2 “ 0.9kg are the moments of inertia, k “ 105N/m is the
spring constant, r “ 0.8m is the pendulum height, l “ 0.6m is the natural length of
the spring, b “ 0.5m is the distance between the pendulums and g “ 9.81m{s2 is the
gravitational acceleration. The interconnections are given by δ12px2q “ kr2

4J1
sinpx21q and

δ21px1q “ kr2

4J2
sinpx21q. The matrix Pi satisfying the Lyapunov equation, for Q “ I2ˆ2,

is given by,

Pi “

»

–

1.5 0.5

0.5 1

fi

fl i “ 1, 2, 3,

where K1 “ K2 “

”

1 1
ıJ

. The desired trajectory vector xdi “ rxdi1 , xdi2sJ and the
signal 9xdi2 are generated using a third order filter with a bandwidth of 5 (rad/sec)
and unity gain below this frequency. The filter input is chosen as a sine wave of zero
mean, 0.7 amplitude and a frequency of 1 Hz. A lattice of equally spaced radial basis
functions are designed for compensating the effects of faults. The design constants
d1 and d2 are chosen as d1 “ d2 “ 0.5. We consider the case in which abrupt faults
occur in Σ1 at T1 “ 3 sec and in Σ2 at T2 “ 2 sec. For simulation purposes, the
unknown fault functions h1 and h2 are chosen as, h1 “ kpx21x12 ` 0.8qcospx21x22q and
h2 “ 3kpx21x12 ` 1.5x11qcospx11x12q.

Fig. 4.1a and Fig. 4.1b shows the time evolution of the distributed fault detec-
tion scheme of Σ1 and Σ2, respectively. As illustrated by the plots, no false alarms
occur in the subsystems and the faults are detected soon after their occurrence. We
have investigated the relationship between the amount of available information from
remote subsystems and the fault detection time. It has been found that although
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Figure 4.2: Time evolution of the tracking errors.

communication is substantially reduced, as compared to a centralized design, there
is only a minor increase on the detection time of the faults. More specifically, with
d1 “ d2 “ 0.5 the communication is reduced by approximately 80%, while the detec-
tion time increases only by approximately 10%.

In Fig. 4.2a and Fig. 4.2b we plot the tracking error, xi1 ´ xdi1 , i “ 1, 2, of
each subsystem respectively, with and without fault accommodation (via adaptive
approximation based control). As illustrated by the plot, through the use of adaptive
approximation, the subsystems remain stable in the presence of faults and are able
to follow the corresponding reference trajectories. One would expect that a fault that
has occurred in one of the subsystems would have an impact on the dynamics of
the other subsystem. However, as can be seen by the plot, this phenomenon is not
present. The reason is that, the increase of the tracking error in the faulty subsystem
is compensated by the exchange of state information whenever the tracking error
exceeds the threshold di “ 0.5.

It is important to note that the performance of the distributed fault detection and
accommodation scheme is highly dependent on the choice of the design constant di.
In general, for small di the distributed fault detection and accommodation scheme is
fault tolerant to a larger class of faults and is able to detect faults faster and accom-
modate them with less control effort. As di increases, the distributed fault detection
scheme becomes less sensitive to faults and the fault accommodation scheme requires
larger control effort in order to compensate for the effects of the faults. Therefore,
it becomes apparent that there is an inherent tradeoff between communication cost
and fault tolerance which can be addressed with the selection of the communication
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threshold di.

4.7 Conclusion

In this chapter, we have presented a methodology for distributed fault detec-
tion and accommodation of a class of feedback linearizable interconnected uncer-
tain nonlinear systems. The subsystems exchange state information according to a
self-triggering tracking-error based communication algorithm, where each subsystem
transmits its state information only when its tracking error exceeds a certain thresh-
old. In the absence of remote state information, the desired reference trajectory, which
is assumed to be available a priori, is used instead. The distributed fault detection
scheme, based on a nonlinear estimator for each subsystem, ensures that there are
no false detection alarms. A distributed fault accommodation scheme is designed
based on adaptive approximation models for accommodating faults. The robustness
to residual approximation errors is ensured by adaptively approximating the upper
bound of the fault function, instead of the fault function itself. The stability of the
proposed scheme is established through Lyapunov analysis. The simulation results
demonstrated that, although the amount of available information from remote sub-
systems is substantially reduced, as compared to a centralized design, the impact
on the performance of the fault detection and accommodation scheme is minimal.
Moreover, the simulation results demonstrated that the control performance of the
fault accommodation scheme as well as the ability to detect faults is closely tied to
the choice of the design constants di. In the next chapters, we focus on the problem
of communication for interconnected systems, and develop more efficient communi-
cation decision algorithms.
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Chapter 5

A Coordinated Communication
Scheme for Distributed Fault
Tolerant Control

5.1 Introduction

In this chapter a distributed fault tolerant control scheme for a class of feed-
back linearizable uncertain interconnected systems is presented. We consider faults
that occur in the subsystems local dynamics, as well as in the interconnections. The
exchange of state information between subsystems is based on a coordinated commu-
nication scheme. More specifically, two subsystems exchange information when both
of the subsystems tracking errors exceed a certain constant threshold. The distributed
fault tolerant control law is designed in an adaptive approximation framework [19].
Through rigorous stability analysis, uniform ultimate boundedness of the tracking
errors to a region around zero is proved.

This chapter is organized as follows. In Section 5.2 we formulate the problem and
in Section 5.3 we present the distributed fault tolerant control design. In Section 5.4,
we establish the stability of the distributed fault tolerant control scheme through
Lyapunov analysis. Simulation results are presented in Section 5.5 and Section 5.6
contains some concluding remarks.
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5.2 Problem Formulation

We consider a large-scale system comprised of m interconnected subsystems, where
the i-th subsystem is described by

9xik “ xipk`1q k “ 1, 2, . . . , ni ´ 1 (5.1)

9xini
“ fipxiq ` gipxiqui `

ÿ

jPPi

δijpxjq ` βpt ´ Tiqhipxq (5.2)

where xi P Rni , ui P R is the state and control input of the i-th subsystem respectively,
x “

“

xJ
1 , . . . , x

J
m

‰J
P Rn (where n “

řm
j“1 ni) is the state of the overall system,

fi : Rn
i ÞÑ R and gi : Rni ÞÑ R are in general partially known functions representing

the local dynamics of the i-th subsystem. The term δij : Rnj ÞÑ R, j P Pi is an
unknown interconnection function representing the effect of the j-th subsystem onto
the i-th subsystem dynamics, with j ‰ i. The set Pi represents all (neighboring)
subsystems that are interconnected to the i-th subsystem. The term hi : Rn ÞÑ R

denotes the unknown change in the i-th subsystem dynamics due to a fault, while
βpt ´ Tiq : R` ÞÑ R represents the corresponding time profile of the fault that occurs
at some unknown time Ti.

A fault occurring in the i-th subsystem may have an impact on the i-th subsystem
dynamics, but also have an impact on the interconnections effects δij, j P Pi. Both
of these changes in dynamics, due to the occurrence of a fault, are represented by
the hipxq function. The distributed fault tolerant control scheme presented in this
chapter can be extended to the case where multiple faults occur in the local subsys-
tems dynamics and in the interconnection. For the sake of simplicity and notational
convenience, in this chapter we consider a single fault within each subsystem. Addi-
tionally, we consider abrupt faults (where the time profile satisfies βpt ´ Tiq “ 0 for
t ă Ti, and βpt ´ Tiq “ 1 for t ě Ti), as well as incipient faults (where βpt ´ Tiq “ 0

for t ă Ti and βpt ´ Tiq increases monotonically from 0 to 1 for t ě Ti).

The i-th subsystem described by (5.1), (5.2) can be written in matrix form as

9xi “ Axi ` B

«

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq

ff

(5.3)
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where

A “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
... ... ... . . . ...
0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

—

—

—

–

0

0
...
0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It is assumed that a local nominal (known) model of the i-th subsystem is de-
scribed by

9xNi
“ AxNi

` B
“

fNi
pxNi

q ` gNi
pxNi

qui

‰

, (5.4)

where

|fipxiq ´ fNi
pxiq| ďf0ipxiq, @xi P Rni (5.5)

|gipxiq ´ gNi
pxiq| ďg0ipxiq, @xi P Rni (5.6)

and f0ipxiq, g0ipxiq are known local bounding functions representing the bound on the
modeling uncertainty for fi and gi, respectively. To avoid any stabilizability problems
and without loss of generality, we assume that gipxiq ą 0 for all xi P Rni.

The control objective is for each xiptq to follow a desired trajectory xdiptq prior
to the presence of a fault as well as after any possible faults. We assume that the
desired trajectory vector xdiptq is bounded and available to all the interconnected
subsystems j P Pi. Let x̃ik “ xik ´ xdik be the tracking error for the k-th state of
the i-th subsystem. The tracking error vector of the i-th subsystem is defined by
x̃i “ rx̃i1, . . . , x̃ini

s
J.

In Chapter 4, the broadcast of information between subsystems is based on the
local tracking error x̃i, i.e., each subsystem broadcasts its state xi to the other sub-
systems whenever the norm of its local tracking error exceeds a certain threshold,
denoted by di. When no information is available from a certain subsystem i (i.e.,
the tracking error is less than the threshold), its desired state xdi is used instead of
the measured state xi. It is easy to see that with this simple communication scheme
each subsystem is aware that the states of interconnected subsystems are within a
prescribed region, even when no information is received. This communication scheme
is based on the idea that a large local tracking error can have a significant impact on
the other subsystem dynamics, due to inaccurate information, while a relatively small

65

Pan
ag

iot
is 

Pan
ag

i



local tracking error can have little impact on the other subsystem dynamics. How-
ever, in the case of complex interconnections, with higher degrees of nonlinearities,
the aforementioned conclusions may not hold. More specifically, a large local tracking
error may have little impact on the interconnected subsystems, while a small tracking
error, may have a significant impact on its interconnected subsystems. More gener-
ally, the impact of subsystem j onto subsystem i is determined by the interconnection
function δij, which in general is unknown.

To illustrate this, consider the special case of scalar subsystems and analytic
interconnections δij, such that the interconnection δijpxjq can be represented by a
Taylor series around xdj as follows:

δijpxjq “ δijpxdjq ` δ
1

ijpxdjqpxj ´ xdjq `
δ

2

ijpxdjq

2
pxj ´ xdjq

2 ` . . .

“

8
ÿ

k“0

δ
pkq

ij pxdjq

k!
px̃jq

k

where δ
pkq

ij pxdjq denotes the k-th derivative of δij evaluated at xdj . By reordering terms
we obtain

δijpxjq ´ δijpxdjq “ δ
1

ijpxdjqx̃j `
δ

2

ij

2
pxdjqx̃

2
j ` . . .

“ x̃j ` pδ
1

ijpxdjq ´ 1qx̃j `
δ

2

ijpxdjq

2
x̃2
j ` . . .

“ x̃j ` λij (5.7)

where

λij “ pδ
1

ijpxdjq ´ 1qx̃j `
δ

2

ijpxdjq

2
x̃2
j ` . . . (5.8)

On the right-hand side of (5.7), the term λij characterizes mostly the higher order
terms of the approximation. The impact of the lack of communication is described
by the replacement error δijpxjq ´ δijpxdjq. In the special case where λij is small, then
the replacement error can be approximated by the tracking error. Hence, the scheme
presented in Chapter 4 where communication between subsystems is triggered when
the tracking error exceeds a certain threshold works reasonably well, in the sense that
it guarantees that exchange of information occurs when needed.

However, if λij is not relatively small, then it is possible for exchange of information
to occur when not needed, and vice versa, no exchange of information takes place
when it may actually be useful.

66

Pan
ag

iot
is 

Pan
ag

i



To better illustrate this, consider an interconnected system composed by two
scalar subsystems, described by:

9x1 “ ´ 5x1 ` u1 ` δ12px2q “ ´5x1 ` u1 ` x4
2

9x2 “ x2 ` u2 ` δ21px1q “ x2 ` u2 ` e´x1cospx1q

Let the communication threshold be given by d1 “ d2 “ 0.5 and the states of the
subsystems at some time tc P R be given by x1ptcq “ 6 and x2ptcq “ 2. Moreover,
assume that the desired states of the subsystems at tc are given by xd1ptcq “ 5.5 and
xd2ptcq “ 1.5. Since both subsystems reach the communication threshold at time tc,
i.e., |x̃1ptcq| “ |x̃2ptcq| “ 0.5, both subsystems broadcast state information at time tc.
Although the tracking errors of both subsystems have reached the communication
threshold, the impact of lack of communication on the subsystem dynamics is not
the same, as illustrated by computing the magnitude of the replacement error:

|δ12px2ptcqq ´ δ12pxd2ptcqq| “ 10.9375

|δ21px1ptcqq ´ δ21pxd1ptcqq| “ 0.000516.

Therefore, a communication algorithm that is based only on local tracking error, does
not guarantee that communication occurs when it is really needed. Similar systems,
where local tracking-error communication schemes perform poorly, can be found in
real-world applications. For example, in the case of a double inverted pendulum
connected by a spring, where the interconnections (spring) are given by δijpxjq “

αisinpxjq, αi ą 0. In this system, the replacement error satisfies δijpxjq ´ δijpxdjq “ 0

for all xj “ xdj ` π. This shows that while the tracking error may be large, the
replacement error can be negligible.

In order to optimize the benefits from communication, in this chapter we consider
a coordinated communication scheme, where communication between interconnected
subsystems is coordinated by a higher-level communication coordinator. More specif-
ically, the i-th and j-th subsystems exchange state information, if the tracking errors
of both subsystems exceed a certain threshold. If xj is not available to the i-th sub-
system, then its desired state xdj is used instead. Let di denote the communication
threshold for the i-th subsystem and define the indicator function Ci as follows

Ciptq “

$

’

&

’

%

0 }x̃iptq}2 ď di

1 }x̃iptq}2 ą di,
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where }x̃i}2 “

b

x̃2
i1 ` . . . ` x̃2

ini
is the Euclidean norm. The communication coordi-

nator computes a matrix C, defined by

Cptq “

»

—

—

—

—

—

—

—

—

—

–

0 C1C2 ¨ ¨ ¨ ¨ ¨ ¨ C1Cm

C2C1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

... ... . . . ... ...
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 Cm´1Cm

CmC1 ¨ ¨ ¨ ¨ ¨ ¨ CmCm´1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The communication coordinator receives the indicator function Ci from the i-th sub-
system only whenever it has changed, in other words, whenever }x̃i} crosses the
communication threshold di. The communication coordinator computes CiptqCjptq

which allows it to decide whether j-th subsystem should start or stop communicating
with the i-th subsystem. More specifically in this coordinated communication scheme,
the j-th subsystem transmits its state xjptq to each subsystem i for which j P Pi,
whenever:

CiptqCjptq “ 1 (5.9)

The communication coordinator transmits its communication decision to the in-
volved subsystems, only upon change of the decision. Note that C is symmetrical
(CiptqCjptq “ CjptqCiptq), which means that communication between the subsystems
is always bidirectional. Fig. 5.1 illustrates the decision logic of the coordinated com-
munication scheme.

The coordinated communication scheme substantially decreases the cost for com-
munication, by avoiding the transmission of information when not needed by the
receiver subsystem. More specifically it addresses the case where, for example, the
tracking error of the j-th subsystem is large, but the i-th subsystem performs well,
and therefore information from the j-th subsystem is not needed. As we will see later,
the tradeoff is that only boundedness of the tracking errors to a region around zero
can be guaranteed, while in the case of a self-triggering communication scheme (such
as the one presented in Chapter 4), asymptotic convergence of the tracking errors to
zero is ensured.

Remark 5.1. In the case where a fault occurs in the communication coordinator,
which would prevent it from coordinating information exchange between the subsys-
tems, communication falls back to a local tracking-error based scheme. More specifi-
cally, whenever the communication coordinator becomes unavailable, each subsystem
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i-th system j-th system

communication coordinator

Figure 5.1: Decision logic of coordinated communication scheme.

i sends its state to the j-th subsystem, j P Pi, whenever Ciptq “ 1. Therefore, even in
the case of a faulty communication coordinator, the system is able to maintain some
performance margins.

Remark 5.2. The proposed coordinated communication scheme reduces the re-
quired communication resources, by addressing the case where the local tracking
error x̃j is large, but the replacement error, δijpxjq ´ δijpxdjq, may be small. This is
achieved, by allowing information exchange only when both of the tracking errors,
x̃j and x̃i of the j-th and i-th subsystem, exceed certain thresholds. The coordinated
communication scheme does not address the case where x̃j is small, but the replace-
ment error in the i-th subsystem is large. In order to address this case, the designer
needs additional information about the interconnection, more specifically, knowledge
of the term λij. A methodology for addressing this case is presented in the next
chapter.

5.3 Distributed Fault Tolerant Control Design

Consider the tracking error dynamics, x̃i “ xi ´ xdi , of the i-th subsytem, which,
based on (5.3), satisfy

9̃xi “ Ax̃i ` B

«

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq ´ 9xdini

ff

. (5.10)
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Let the distributed fault tolerant control law ui be given by

ui “ uNi
` uFi

(5.11)

where uNi
denotes the local nominal control law for addressing the local dynamics of

the i-th subsystem, and uFi
is the augmented fault tolerant control law for addressing

the unknown interconnections and the change in dynamics due to the occurrence of
a fault in the i-th subsystem.

The local nominal control law of the i-th subsystem is defined as

uNi
“

1

gNi
pxiq ` sgnpeiuaiqg0ipxiq

uai (5.12)

uai “ ´ KJ
i x̃i ` 9xdini

´ sgnpeiqpfNi
pxiq ` f0ipxiqq, (5.13)

where the vector Ki “ rki1, . . . , kini
s

J
P Rni is chosen such that A´BKJ

i is a Hurwitz
matrix. Since A ´ BKJ

i is Hurwitz, for any Qi ą 0 there exists Pi ą 0 satisfying the
Lyapunov equation, PipA ´ BKJ

i q ` pA ´ BKJ
i qJPi “ ´Qi. Based on Pi, the scalar

tracking error ei is defined as ei fi BJPix̃i.
In this chapter, we use adaptive approximation methods [19, 36] for counteracting

the unknown effects of the interconnections δij on the subsystems dynamics, and the
change in the subsystems dynamics due to faults, hi. Define the function

sipxq “

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq. (5.14)

Lemma 4.2 shows that there exists an upper bound s̄ipxq of the function |sipxq|

which can be represented exactly by an adaptive approximator within a compact
set D. More specifically, given a compact set D Ă Rn, and a set of basis functions
ϕsipxq “

“

ϕsi1pxq, . . . , ϕsiqpxq
‰J

: Rn ÞÑ Rqi such that for all x P D at least one basis
function is nonzero, then for any bounded function sipxq there exists a set of bounded
parameters θsi “

“

θsi1 , . . . , θsiq
‰J

P Rqi , such that

|sipxq| ď θJ
si
ϕsipxq “ s̄ipxq, x P D.

Therefore an upper bound of the unknown function sipxq can be represented within
a compact set D Ă Rn by an approximation model as follows,

s̄ipxq “ θJ
si
ϕsipxq, (5.15)

where θsi P Rqi is a set of unknown bounded constant parameters and ϕsipxq P Rqi is
a set of basis functions that covers D. The augmented fault tolerant control law uFi
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is defined by

uFi
“

1

gNi
pxiq ` sgnpeiuciqg0ipxiq

uci (5.16)

uci “ ´ sgnpeiqθ̂
J
si

ˆ

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

˙

, (5.17)

where θ̂siptq are the parameter estimates of the adaptive approximation model. The
vector x̄i is defined as x̄i “ rx̄i

1, . . . , x̄
i
ns P Rn where x̄i

j is given by,

x̄i
j fi

$

’

&

’

%

xj if CiptqCjptq “ 1

xdj if CiptqCjptq “ 0.

The vector Mi “ rmi1, . . . ,miqs
J represents the Lipschitz constant for the basis func-

tions such that

ˇ

ˇϕikpxq ´ ϕikpx̄iq
ˇ

ˇ ď mik|x ´ x̄i|, k “ 1, 2, . . . , q; x P D (5.18)

The parameter estimates θ̂si are updated according to,

9̂
θsi “ CiptqΓsi |ei|

˜

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

¸

, (5.19)

where Γsi is a positive definite matrix representing the adaptation gain of the learning.
The adaptation gain Γsi affects the transient performance of the overall system. The
introduction of the indicator function Ci inside the adaptive law stops the adaptation
of the parameter estimates θ̂si when }x̃iptq}2 ď di. As we will see later, each x̃i

converges inside the set }x̃iptq}2 ď di in finite time, and therefore parameter drift in
the presence of measurement noise and disturbances is avoided.

5.4 Stability Analysis

In this section we show that the distributed fault tolerant control scheme guaran-
tees that the states of the subsystems track the reference signals within a small error,
and that the tracking error x̃i converges within the set }x̃iptq}2 ď di in finite time.

Lemma 5.1. The closed-loop control system described by the interconnected sys-
tem (5.1), the distributed fault tolerant control law defined by (5.11), (5.12), (5.13), (5.16)
and (5.17), and the adaptation law (5.19), guarantee that }x̃iptq} is uniformly ulti-
mately bounded by di.
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Proof. Let the Lyapunov function for the i-th subsystem be given by Vi “ Vi1 ` V12

where

Vi1 “
1

2
x̃J
i Pix̃i,

Vi2 “
1

2
θ̃J
si
Γ´1
si
θ̃si ,

where θ̃si “ θ̂si ´ θsi is the parameter estimation error vector. Substituting uNi
and

using (5.10) and (5.6), the time derivative of Vi satisfies

9Vi1 ď
1

2
x̃J
i

`

AJPi ` PiA
˘

x̃i ` ei

«

fipxiq ` gipxiquFi
` uai

`

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq ´ 9xdini

ff

.

Substituting uai and using (5.5) we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` ei

«

gipxiquFi
`

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq

ff

.

Substituting uFi
and using (5.6) we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` ei

«

uci `

m
ÿ

j“1

δijpxjq ` βpt ´ Tiqhipxq

ff

.

Substituting uci and using (5.14) we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

θ̂J
si

ˆ

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

˙

` |sipxq|

ff

.

Based on (5.15),

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´ θ̂J
si

ˆ

ϕsipx̄
iq

` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

˙

` θJ
si
ϕsipxq

ff

.

Adding and subtracting θJ
si
ϕsipx̄

iq we obtain

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´ θ̃J
si
ϕsipx̄

iq ´ θ̂J
si
Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

` θJ
si

`

ϕsipxq ´ ϕsipx̄
iq
˘

ff

.
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Using (5.18) and the fact that |x ´ x̄i| ď
řm

j“1 dj for all }x̃i} ą di, the time
derivative of Vi for }x̃i} ą di satisfies

9Vi1 ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´ θ̃J
si
ϕsipx̄

iq ´ θ̂J
si
Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

` θJ
si
Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

ff

ď ´
1

2
x̃J
i Qix̃i ´ θ̃J

si
|ei|

ˆ

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

˙

.

The time derivative for the Lyapunov function of the i-th subsystem, Vi “ Vi1 ` Vi2,
satisfies

9Vi ď ´
1

2
x̃J
i Qix̃i ` |ei|

«

´ θ̃J
si

ˆ

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

˙

ff

` θ̃J
si
Γ´1
si

9̃θsi

ď ´
1

2
x̃J
i Qix̃i ` θ̃J

si
Γ´1
si

˜

9̃θsi ´ Γsi |ei|
´

ϕsipx̄
iq ` Mi

m
ÿ

j“1

`

1 ´ CiptqCjptq
˘

dj

¯

¸

.

Substituting the adaptive law (5.19), we obtain

9Vi ď ´
1

2
x̃J
i Qix̃i

which shows that x̃iptq converges in the set Wi “ tx̃i P Rni
ˇ

ˇ}x̃i} ď diu. Additionally,
since adaptation of the parameter estimates θ̂si stops for }x̃i} ď di, x̃i, θ̂si P L8, for
all t ą 0. However, since θ̂si is non-decreasing, (5.19), shows that x̃iptq converges in
the set Wi, i.e., there exists a toi such that x̃iptq P Wi, for all t ą toi.

The above result shows that through the approximation of an upper bound of
the unknown function |sipxq|, instead of sipxq, the robustness of the feedback control
scheme to inherent approximation errors is guaranteed. The tradeoff is that since a
function with a larger magnitude is approximated, the control effort may become
larger. Moreover, due to the fact that adaptation is stopped inside Wi, parameter
drift of the adaptive parameter estimates θ̂si is avoided, even in the presence of
measurement noise or disturbances.

Remark 5.3. In addition to the indicator function Ci, define the indicator function
C l

i as

C l
iptq “

$

’

&

’

%

0 |x̃iptq}2 ď dli

1 }x̃iptq}2 ą dli,
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where dli ą 0 is a design constant representing the communication threshold for the
i-th receiver subsystem. Consider the case where the j-th subsystem transmits its
state xjptq to each subsystem i for which j P Pi, whenever:

C l
iptqCjptq “ 1 (5.20)

The communication algorithm described by (5.9) is a special case of (5.20), with
dli “ di for i “ 1, . . . ,m. According to the communication algorithm described
by (5.20), the designer is able to reduce the size of the convergence region, by selecting
a smaller constant dli. Moreover, the self-triggering tracking-error based communica-
tion algorithm presented in Chapter 4 is a special case of (5.20), with dli “ 0 for
i “ 1, . . . ,m.

5.5 Simulation Example

In this section, we illustrate the design methodology for the distributed fault toler-
ant control, using a simple simulation example. Consider the following interconnected
system:

Σ1 : 9x11 “ x12

9x12 “ x2
11 ` x3

12 ` p1 ` x2
11qu1 ` x4

22 ` βpt ´ T1qh1pxq

Σ2 : 9x21 “ x21

9x22 “ x2
21 ` 5x3

22 ` p2 ` 0.5x2
21qu2 ` ex11cospx11q ` βpt ´ T2qh2pxq,

where xi “ rxi1, xi2s
J is the state vector of the i-th subsystem (i “ 1, 2). The matrix

Pi satisfying the Lyapunov equation, for Q “ I2ˆ2, is given by,

Pi “

»

–

1.5 0.5

0.5 1

fi

fl i “ 1, 2,

where K1 “ K2 “

”

1 1
ıJ

. The desired trajectory vector xdi “ rxdi1 , xdi2sJ and the
signal 9xdi2 are generated using a third order filter with a bandwidth of 5 (rad/sec) and
unity gain below this frequency. The filter input is chosen as a square wave of zero
mean, 1.5 amplitude and a frequency of 0.4 Hz. A lattice of equally spaced radial basis
functions are designed for compensating the effects of the unknown interconnections
and faults. The communication thresholds d1 and d2 are chosen as d1 “ d2 “ 0.2.
We consider the case in which abrupt faults occur in Σ1 at T1 “ 10 sec and in Σ2
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at T2 “ 15 sec. For simulation purposes, the unknown fault functions h1 and h2 are
chosen as h1 “ |x11x12| ` x21x22 and h2 “ 0.4x3

11 ` x12.
In Fig. 5.2 the Euclidean norm of the tracking error vector for each subsystem,

}x̃i}2, is shown. The time occurrences of the fault T1 and T2 are also indicated. As
depicted by the plot, through the use of adaptive approximation of the bound of
the interconnections and fault functions, each subsystem is able to follow the corre-
sponding reference trajectories. For illustration purposes we show only the first 30 sec,
however the subsystems converge inside }x̃i} ď di and therefore parameter drift is
avoided.

Fig. 5.3 shows the time evolution of the parameter estimates θ̂s1 and θ̂s2 for the
approximation of the s̄1pxq and s̄2pxq functions, respectively. As illustrated by the
plot, the change in dynamics due to faults causes the parameter estimates to increase
in order to accommodate the faults.

Fig. 5.4 shows the communication cost for the coordination-based communication
algorithm, as compared to the self-triggering tracking-error based communication al-
gorithm presented in Chapter 4. According this communication algorithm, the i-th
subsystem transmits its state to the other subsystems whenever its local tracking error
exceeds di. The communication cost for the i-th subsystem is defined as

şt

0
Cipτqdτ . As

shown by the plot, a coordination-based communication algorithm results in signifi-
cant reduction of the amount of information that is exchanged between subsystems.
The tradeoff of using a coordinated communication algorithm is that only ultimately
boundedness of the tracking errors to a region around zero can be guaranteed, while in
the case of the self-triggering tracking-error based communication algorithm, asymp-
totic stability is ensured.

5.6 Conclusion

This chapter presented a distributed fault tolerant control scheme for a class of
interconnected nonlinear uncertain systems. A coordinated communication scheme
increases the benefits from communication as compared to a self-triggering tracking-
error based communication scheme. The unknown interconnections and fault func-
tions are compensated for, using linearly parameterized approximation models. Ro-
bustness to residual approximation errors is guaranteed by approximating upper
bounds of the unknown interconnections and fault functions. Through Lyapunov anal-
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Figure 5.2: Time evolution of the tracking error vector norm }x̃i}2.
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Figure 5.3: Time evolution of the adaptive parameter estimates.
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Figure 5.4: Comparison of communication costs for coordinated and self-triggering
tracking-error based communication schemes.

ysis, uniform ultimate boundedness of the tracking errors to a small region around
zero is shown. Moreover, the stability analysis shows that parameter drift in the pres-
ence of residual approximation errors is avoided, and that communication between
subsystems stops after a certain time instant.
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Chapter 6

An Optimized Communication
Scheme for Distributed Fault
Tolerant Control

6.1 Introduction

Communication plays a crucial role in the control of interconnected systems. An
important characteristic in interconnected systems is that the behavior of each sub-
system is correlated not only with the local dynamics, but also with the dynamics
of other subsystems. Due to this characteristic, the performance of the system is
often limited by communication. All other variables being equal, as the communica-
tion rate increases, the performance obtained with a distributed control architecture,
tends to the performance obtained by a centralized control architecture. A key chal-
lenge is the design of low-energy efficient communication schemes, for improving the
performance of the distributed control scheme, while keeping the communication
cost constant. Previous work has shown that event-driven state-based communica-
tion schemes achieve better results as compared to time-driven schemes, with the
same cost for communication. Moreover, in the presence of interconnections with
significantly large magnitude, one can not expect satisfactory performance when the
subsystems do not exchange information [46]. By allowing the interconnected sub-
systems to exchange information, it becomes possible to consider large-scale systems
with strong nonlinear interconnections, and at the same time improve performance
of the system.
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Towards optimizing the exchange of information between subsystems, in Chap-
ter 5 we have presented a coordinated communication scheme that reduces the cost
for communication by avoiding to broadcast state information when a large uncer-
tainty about the remote states has a relatively small impact on the local subsystem
dynamics. This is achieved by utilizing the tracking error of the receiver subsystem in
the communication decision. However, the coordinated communication scheme fails
to address the case where a relatively small uncertainty about the states of the other
subsystems can have a significant impact on the local subsystem dynamics. The goal
in this chapter is the design of a communication algorithm for addressing both of
these cases. More specifically, the optimized communication decision algorithm pre-
sented in this chapter, aims to minimize the replacement error, that arises due to
the uncertainty about the states of remote subsystems. The problem of optimizing
communication for interconnected systems is formulated as a problem of obtaining
the best approximation of a continuous function with step functions. The decision
for communication is such that the approximation of the interconnections based on
the received samples of the remote states is optimal. A rigorous analysis shows that
step functions are universal approximators. In addition, the step function with the
best approximation property is derived. Following these results, a distributed fault
tolerant control for a class of uncertain interconnected systems is presented, where
multiple faults may occur in the interconnections. The decision for communication
is based on the use of adaptive approximation models of the unknown interconnec-
tions and fault functions. More specifically, when the local tracking error is larger
than a certain constant threshold, each subsystem receives information from other
subsystems based on a state level-crossing communication scheme. When the local
tracking error becomes smaller than this threshold, each subsystem transmits the
estimated parameters of the approximation model to the others subsystems, and the
broadcast of information is based on an approximation-model level-crossing scheme.
It is assumed that an estimate of the remote subsystems’ states is available to each
subsystem, especially during the learning phase of the unknown coupling dynam-
ics. The presence of inherent residual approximation errors and replacement errors
are addressed using a dead-zone modification in the adaptive laws combined with
an adaptive bounding method. Through rigorous stability analysis, uniform ultimate
boundedness of the tracking errors to a region around zero is proved.

This chapter is organized as follows. In Section 6.2 we formulate the problem and
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in Section 6.3 we present a mathematical analysis for function approximation based
on the use of step functions. Section 6.4 presents the communication scheme design,
and Section 6.5 presents the distributed fault tolerant control design. In Section 6.6,
we establish the stability of the distributed fault tolerant control scheme through
Lyapunov analysis. Simulation results are presented in Section 6.7 and Section 6.8
contains some concluding remarks.

6.2 Problem Formulation

Consider a system described by a collection of m nonlinear uncertain subsystems,
where the i-th subsystem is described by:

9xik “ xipk`1q k “ 1, 2, . . . , n ´ 1

9xin “ fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tijqhijpxjq (6.1)

where xi P Rn, ui P R is the state and control input of the i-th subsystem respectively,
fi : Rn ÞÑ R and gi : Rn ÞÑ R are functions representing the local dynamics of the
i-th subsystem. The term δij : Rn ÞÑ R, j “ 1, . . . ,m, j ‰ i, is a continuous function
representing the effect of the j-th subsystem onto the i-th subsystem dynamics. In
the special case where a certain subsystem j does not affect the i-th subsystem,
δijpxjq ” 0 for all xj P Rn. The term hij : Rn ÞÑ R is a continuous function that
represents the unknown changes in the δij interconnection due to a fault, while the
βpt ´ Tijq : R` ÞÑ R functions represent the corresponding time profile of the faults
that occur at some unknown times Tij. We consider abrupt faults (where the time
profiles satisfy βpt ´ Tijq “ 0 for t ă Tij, and βpt ´ Tijq “ 1 for t ě Tij), as well as
incipient faults (where βpt´Tijq “ 0 for t ă Tij and βpt´Tijq increases monotonically
from 0 to 1 for t ě Tij).

Remark 6.1. Assuming known functions of the local state, fi and gi, simplifies
the analysis and allows us to focus on the main results presented in this chapter. In
addition, for notational convenience, we assume subsystems with equal dimensions
Rn, as well as single faults in the interconnections. The results presented in this
chapter can be extended to the case of unknown fi and gi functions, subsystems
with arbitrary different dimensions, as well as multiple faults that occur in each
interconnection and in the local subsystems dynamics.
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The i-th subsystem described by (6.1) can be written in matrix form as

9xi “ Axi ` B

«

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tijqhijpxjq

ff

(6.2)

where

A “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
... ... ... . . . ...
0 0 0 ¨ ¨ ¨ 1

0 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

—

—

—

–

0

0
...
0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We impose the following bounding assumption on the interconnection terms δij and
fault functions hij.

Assumption 6.1. There exist constants Lδ,ij P R` and Lh,ij P R` such that
ˇ

ˇ

ˇ
δijpxjq ´ δijpx̄jq

ˇ

ˇ

ˇ
ď Lδ,ij

ˇ

ˇ

ˇ
xj ´ x̄j

ˇ

ˇ

ˇ
(6.3)

ˇ

ˇ

ˇ
hijpxjq ´ hijpx̄jq

ˇ

ˇ

ˇ
ď Lh,ij

ˇ

ˇ

ˇ
xj ´ x̄j

ˇ

ˇ

ˇ
, (6.4)

for all xj, x̄j P Xj Ă Rn.

Define the function δh,ijpxj, tq as

δh,ijpxj, tq “ δijpxjq ` βpt ´ Tijqhijpxjq (6.5)

Using (6.3), (6.4) and the fact that 0 ď βpt ´ Tijq ď 1, there exist constants Lij P R`

such that

|δh,ijpxj, tq ´ δh,ijpx̄j, tq| ď Lij

ˇ

ˇ

ˇ
xj ´ x̄j

ˇ

ˇ

ˇ
, (6.6)

for all xj, x̄j P Xj Ă Rn and t ą 0.
The control objective of this chapter is to develop a distributed fault tolerant

control scheme for interconnected subsystems described by (6.1), such that each xi

follows a smooth reference trajectory vector xdi “ rxdi1 , xdi2 , . . . , xdinsJ in the presence
of unknown interconnections and faults. Let x̃ik “ xik ´ xdik be the tracking error for
the k-th state of the i-th subsystem. The tracking error vector of the i-th subsystem is
defined by x̃i “ rx̃i1, . . . , x̃ins

J. Without loss of generality, it is assumed that gipxiq ą 0

for all xi P Rn, in order to avoid stabilizability problems.
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Given that the effect of the j-th subsystem on the i-th subsystem dynamics and
the effect of a fault occurring in the interconnection are described in a closed-form
and given by the functions δij and hij respectively, then following the universal ap-
proximation results [19], given arbitrary µ̄δ,ij ą 0 and µ̄h,ij ą 0, there exist sets of
bounded constant parameters θ˚

δ,ij, θ˚
h,ij such that δij and hij are represented within

a compact set Xj Ă Rn as

δijpxjq “ θ˚J

δ,ijϕδ,ijpxjq ` µδ,ijpxjq, µ̄δ,ij “ sup
Xj

|µδ,ijpxjq| (6.7)

hijpxjq “ θ˚J

h,ijϕh,ijpxjq ` µh,ijpxjq, µ̄h,ij “ sup
Xj

|µh,ijpxjq|, (6.8)

where ϕδ,ij, ϕh,ijpxjq are a set of basis functions (such as radial basis functions),
θ˚
δ,ij, θ˚

h,ij are a set of unknown constant parameters, and µδ,ijpxjq, µh,ijpxjq are the
residual approximation errors of δij and hij, respectively. Consider the fault term
βpt ´ Tijqhijpxjq which based on (6.8) satisfies

βpt ´ Tijqhijpxjq “ θ˚J

h,ijϕh,ijpxjq ` µβh,ijpxj, tq, (6.9)

where µβh,ijpxj, tq “ pβpt ´ Tijq ´ 1qθ˚J

h,ijϕh,ijpxjq ` βpt ´ Tijqµh,ijpxjq. The unknown
uniform upper bound of µβh,ijpxj, tq, µ̄βh,ij, satisfies

µ̄βh,ij “ sup
Xj ,tą0

max
␣

βpt ´ Tijqµ̄h,ij, |p1 ´ βpt ´ Tijqqθ˚J

h,ij|
(

(6.10)

Note that before the occurrence of a fault, the time profile βpt´Tijq is equal to zero,
and (6.9) is identically zero. After the occurrence of a fault the time profile satisfies
0 ă βpt ´ Tijq ď 1, which ensures that µ̄βh,ij defined by (6.10) always exists. Based
on (6.7) and (6.9), the δh,ijpxj, tq function is represented within a compact set Xj as

δh,ijpxj, tq “ θ˚J

ij ϕijpxjq ` µijpxj, tq, µ̄ij “ sup
Xj ,tą0

|µijpxj, tq|, (6.11)

where ϕij is a set of basis functions, θ˚
ij is a set of unknown constant parameters,

and µijpxj, tq is the residual approximation error, with an unknown uniform upper
bound given by µ̄ij “ µ̄δ,ij ` µ̄βh,ij. The parameter estimates θ˚

ij are unknown and are
estimated online with parameter estimates θ̂ij. The unknown bounds µ̄ij are estimated
online based on an adaptive bounding method. The adaptive laws for the parameter
estimates and the bound estimates are presented later on.

In this chapter, we consider the case where each subsystem j broadcasts its state
xj to the other subsystems i according to a communication algorithm presented later
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Figure 6.1: Block diagram of the broadcast of xj to the i-th subsystem.

on. The communication algorithm Cij : R Ñ N specifies at each t ą 0 whether
xjptq is sampled and broadcasted to the i-th subsystem. Let the release time of the
k-th broadcast of xj be denoted with tkij. The communication algorithm Cij is a
mapping of a continuously-defined signal xjptq, t P R`, to a discretely-defined signal
x̄i
jrks, k P N given by Cijpxjptq; Ejq “

ř

kPN δpt ´ tkijqxjptq, where δ is the Dirac delta
function, and Ej “

“

E1
j , . . . , Ev

j

‰J is a set of events related to the j-th subsystem,
where Ek

j : R Ñ t0, 1u, k “ 1, . . . , v. The i-th subsystem receives the samples x̄i
jrks,

k “ 1, 2, . . . and using a zero-order hold Zij : N Ñ R produces a continuous signal
x̄i
jptq. Therefore the value of x̄i

jptq is equal to the latest broadcasted sample of xj, i.e.,
x̄i
jptq “ x̄ijrms, m “ argmin

k

␣

t ´ tkij
(

. Fig. 6.1 illustrates the schematic diagram for
the communication of xj to the i-th subsystem.

Let the set of release times tkij up to a certain t ą 0 be denoted with Aijptq, i.e.,
Aijptq “

“

t1ij, . . . , t
mij

ij

‰J, where mij “ argmax
k

␣

t ´ tkij ě 0
(

. The cardinality of Aijptq,
|Aijptq|, represents the number of broadcasts for a given time period. Define the cost
function J as

J “

m
ÿ

i“1

JQi
` JWi

`

m
ÿ

j“1

JSij
,

JQi
“

ż 8

0

x̃ipτqJQix̃ipτqdτ

JWi
“

ż 8

0

uipτqWiuipτqdτ

JSij
“

ż 8

0

|Aijpτq|Sij|Aijpτq|dτ,

where Qi : Rn ÞÑ R is a positive definite matrix, and Wi, Sij are positive constants.
The terms JQi

, JWi
and JSij

represent the performance, control effort and communi-
cation cost respectively. Among all the possible sequences of release times t1ij, t

2
ij, . . .,

the optimal communication algorithm is realizing that one sequence that minimizes
the cost function J . Now consider the case of time-driven communication algorithms,
where xj is broadcasted periodically with some period Tij ą 0. As the broadcasting
period Tij decreases, it is expected that the magnitude of either or both JQi

and
JWi

is decreased, leading to a smaller tracking error and control effort, respectively.
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However at the same time, as the rate of communication increases, the magnitude of
JSij

increases. Therefore by increasing the communication rate it is not guaranteed
that J becomes smaller, and it may actually increase. Therefore, it is important that
the communication algorithm adapts to the requirements of the system, broadcasting
information as needed.

Towards this direction, a promising approach is based on level-crossing sam-
pling [4, 5, 34, 44]. According to level-crossing sampling, the communication decision
is a signal-dependent algorithm: a broadcast is released only when some monitored
signal exceeds a certain threshold. A common approach is to use the local state as a
monitoring signal (state level-crossing communication). In this case, the j-th subsys-
tem broadcasts its state xj at time t, whenever |xjptq ´ x̄i

jptq| “ dij, where dij ą 0 is a
design constant representing the communication threshold. Note that level-crossing
sampling exhibits hysteresis; the next broadcast depends not only on the current value
of xjptq, but also on the most recent broadcasted value x̄i

jptq. Level-crossing sampling
ensures that neighboring broadcasting values of xj are always an dij distance apart.

Remark 6.2. The benefit of level-crossing over time-driven communication is two-
fold: (a) It reduces the required mean rate of broadcasts. In other words, in order
to meet certain performance and stability properties, a level-crossing algorithm re-
quires a smaller |Aijptq| as compared to a time-driven communication algorithm [5].
Intuitively, less samples are required to extract the same amount of information from
a slowly varying signal, compared to a fast-varying signal. Level-crossing communi-
cation broadcasts information only when the monitored signal has changed enough,
therefore avoiding oversampling. (b) It improves the properties of the closed-loop sys-
tem in the presence of disturbances or other unmodeled dynamics. In such cases, the
level-crossing communication algorithm increases the broadcast rate to compensate
for the greater uncertainty, while a time-driven communication algorithm may lead
the system to performance degradation or even instability.

Prior work in networked control systems has demonstrated the effectiveness of
level-crossing sampling based schemes and their superiority over time-driven schemes
(see, for example, [81] and [15]). In networked control systems the communication is
taking place between sensors and actuators. The goal in such schemes is to design
communication algorithms for reliably controlling a system remotely. Therefore, a
communication algorithm is evaluated based on how well the networked control sys-

85

Pan
ag

iot
is 

Pan
ag

i



tem performs, in terms of stability properties, control effort, tracking performance,
etc. Indeed, this is also the case with dynamically interconnected systems; the cri-
terion for evaluating a communication algorithm should be the performance of the
interconnected system. But note that in the case of interconnected systems, this
does not happen in a direct way. The performance of the interconnected system will
improve, if the communication algorithm allows the subsystems to more efficiently
compensate for the effects of the interconnections. Therefore, optimization of com-
munication in interconnected systems, indirectly reduces either or both of the cost
functions JQi

(tracking-error performance) and JWi
(control effort).

Previous work in distributed control considers the case where the decision for
communication is based on the local state. Typically in such schemes, each subsystem
broadcasts its state according to a state level-crossing scheme for all t ą 0, [48,82,86].
Although this approach works well for linear interconnections (or weak nonlinear
interconnections), in the case of complex interconnections, with higher degrees of
nonlinearities, it leads to suboptimal results. The following subsection illustrates this
phenomenon through an example.

6.2.1 Motivating example

Consider scalar interconnected subsystems described by (6.1), known analytic
interconnections δij, hij ” 0, and for simplicity gipxiq “ 1. Consider the control law
ui “ uNi

` uFi
, where uNi

is the local control component that stabilizes the i-th
isolated subsystem, and is given by

uNi
“ ´Kix̃i ´ fipxiq ` xdi , (6.12)

where Ki ą 0, and uFi
is the control component for addressing the presence of the

interconnection effects, and given by

uFi
“ ´

m
ÿ

j“1

δijpx̄
i
jq ´ dij (6.13)

Consider the case where the j-th subsystem broadcasts its state whenever |xj ´

x̄i
j| ą dij. Let the Lyapunov function for the i-th subsystem be given by Vi “ 1

2
x̃2
i .

Substituting uNi
from (6.12), the time derivative of Vi satisfies

9Vi “ ´Kix̃
2
i ` gipxiquδi `

m
ÿ

j“1

δijpxjq
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Substituting uFi
from (6.13) we obtain

9Vi “ ´Kix̃
2
i `

m
ÿ

j“1

δijpxjq ´ δijpx̄
i
jq ´ dij (6.14)

Since δijpxjq is analytic it can be represented by a Taylor series around x̄i
j. With a

similar analysis as in Section 5.2, we obtain that the replacement error δijpxjq´δijpx̄
i
jq

satisfies

δijpxjq ´ δijpx̄
i
jq “ pxj ´ x̄i

jq ` λij, (6.15)

where the term λij characterizes the higher order terms of the Taylor series-based
approximation. Based on (6.15), the time derivative of Vi satisfies

9Vi ď ´Kix̃
2
i `

m
ÿ

j“1

|xj ´ x̄i
j| ` |λij| ´ dij

Since |xj ´ x̄i
j| ď dij we obtain that

9Vi ď ´Kix̃
2
i `

m
ÿ

j“1

|λij|,

which shows that 9Vi ď 0 in the set Λi “
␣

xi

ˇ

ˇ |x̃i| ď

b

řm
j“1 |λij |

Ki

(

. In the case of linear
interconnections, λij fi 0, and x̃i “ 0 is asymptotically stable. However, in the general
case of nonlinear interconnections, the presence of nonlinear terms λij with signifi-
cantly large magnitude, the set Λi can become quite large. In the case where the non-
linear interconnection δij satisfies a Lipschitz condition, |δijpxjq´δijpx̄

i
jq| ď Lij|xj´x̄i

j|,
the |δijpxjq ´ δijpx̄

i
jq| term in (6.14) can be canceled with a term L̄ijdij, where L̄ij is

a design constant satisfying L̄ij ą Lij. Therefore in the case of Lipschitz intercon-
nection functions, a state-based communication scheme can still guarantee the sta-
bility of the system in the presence of unknown nonlinear interconnections. However,
analogously to time-driven communication schemes used in linearly interconnected
systems [5], using state-based level-crossing communication schemes on nonlinearly
interconnected subsystems results to suboptimal utilization of the available band-
width. Fig. 6.2 shows an example of a nonlinear interconnection function δij. Due
to the nonlinearity of δij, the distance between the samples at xj “ 1 and xj “ 0 is
not representative of the magnitude of δijp1q ´ δijp0q. As we will see in later sections,
by basing the communication decision on the interconnection function δij, instead of
the state xj, we are able to optimize the performance benefits from communication.
In the next section we investigate the problem of approximating a function based on
the use of step functions. These results will be used for optimally representing the
interconnection function δij, based on the use of broadcasted samples of xj.
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Figure 6.2: State level-crossing sampling of a nonlinear interconnection function.

6.3 Function Approximation with Step Functions

Consider the approximation of the unknown function δh,ij within a compact set
Xj, based on an approximation model δ˚

h,ij given by δ˚
h,ijpxj; θijq “ θ˚J

ij ϕijpxjq. The θ˚
ij

parameters are in general unknown and estimated online using adaptive parameter
estimates θ̂ij. In order to guarantee that the parameter estimates θ̂ij converge to
their optimal values θ˚

ij, the input training signal needs to satisfy a persistency of
excitation condition [30]. However, even if θ̂ij converge to the optimal parameters θ˚

ij,
and the approximation model θ˚

ijϕijpxjq is obtained, due to the fact that xj is not
available at all times, it is not possible for the i-th subsystem to realize θ˚

ij
Tϕijpxjq.

The only information available to the i-th subsystem about xj between broadcasts
is the latest broadcast of xj. Therefore, the best that the i-th subsystem can do is
approximate δ˚

h,ij with a constant value for t P rtkij, t
k`1
ij q. Consider the sequence of

broadcasts t1ij, . . . , tkij for some 0 ă tkij ă 8. Since δh,ij is continuous, it follows
that δijpxjq is uniformly bounded for all xj P Xj and t ą 0. In other words, there
exists an Mij P R` such that |δh,ijpxj, tq| ď Mij. Consider the case where δ˚

h,ijpxj; θijq

is approximated with a constant value blij P R for t P rtlij, tl`1
ij q. By the fact that

the number of approximations are finite and equal to k, and the fact that since δ˚
h,ij

is bounded, the blij constant approximations are real numbers, it follows that the
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approximation of δ˚
h,ij by blij constants is a step function and given by

δ̄˚
h,ijpxjq “

k
ÿ

l“1

blijχtPrtkij ,t
k`1
ij q

p|xjptq|q, 0 ă t ă tk`1
ij , (6.16)

where χS : R Ñ R is the characteristic function defined by

χSpxq “

$

’

&

’

%

1 if x P S

0 if x R S.

Note however that as tkij Ñ 8, δ̄˚
h,ijpxjq can in general take infinitely many values, such

that it is no longer a step function. Now we ask the question, under what conditions
δ̄˚
h,ijpxjq can be represented with a step function for all t ą 0. Define the partition of
Xj, PpXj ,iq

λ as the collection of sets P
pXj ,i,λq

1 , . . . , P
pXj ,i,λq

λ that form an exact cover of
Xj, i.e.,

Ťλ
m“1 P

pXj ,i,λq
m fi Xj and P

pXj ,i,λq
m1

Ş

P
pXj ,i,λq
m2 “ 0, for any m1, m2 P r1, λs. In

others words, for any xj P Xj there is exactly one m P r1, λs such that xj P P
pXj ,i,λq
m .

If λ is finite then δ̄˚
h,ij can be represented by a step function as follows

δ̄˚
h,ijpxjq “

λ
ÿ

m“1

amijχP
pXj ,i,λq

m
p|xj|q. (6.17)

Therefore by limiting the number of distinct values that δ̄˚
ijpxjptqq can take for all

t ą 0 we are able to express δ̄˚
ijpxjq as a step function. Note that even if (6.17)

holds, (6.16) is still not a step function for tkij Ñ 8, since it can take an infinite
number of intervals. The (6.17) representation provides the basis for approximating
the unknown interconnection function δ˚

ij at the i-th subsystem. The communication
algorithm Cij provides the information xj P P

pXj ,i,λq
m , for some m “ 1, . . . , λ, and the

i-th subsystem approximates δ˚
h,ijpxjq with an amij constant, until the next broadcast.

By limiting the number of intervals λ, we ensure that the number of broadcasts
does not become arbitrary large. The following theorem shows that any continuous
function can be approximated with a step function to any desired accuracy within a
compact set.

Theorem 6.1. Consider a continuous function f : X Ă R Ñ R, where X “ ra, bs.
Given an ϵ ą 0, there exists a step function s : X Ă R Ñ R, such that sup

X
|s ´ f | ă ϵ

(I). Moreover, there exists a sequence of step function spnq, n “ 0, 1, . . . such that
|spnq ´ f | Ñ 0 as n Ñ 8 (II).

Proof. Since fpxq is continuous, both the left and right limit of fpxq, limxÑa´ fpxq

and limxÑa` fpxq, exist for any a P X . Therefore fpxq is a regulated function which
shows that (I) and (II) are satisfied [13].
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A different proof which can provide more insight is based on the uniform continuity
of f . Since f is continuous on the compact set X , then based on the Heine - Cantor
theorem, [8], it is uniformly continuous on X . Therefore given an ϵ ą 0 we can
find a δ “ δpϵq ą 0 such that, for every x, y P X with |x ´ y| ă δ we have that
|fpxq ´ fpyq| ă ϵ. Pick λ P N such that h “ b´a

λ
ă δ, where a ă b, a, b P R are the

endpoints of X , and let xk “ a` pk ´ 1qh, k “ 1, . . . , λ. Define the step function s as
follows

spxq “

k
ÿ

m“1

fpxmqχ
P

pX ,λq
m

,

so that on each interval P pX ,λq
m “ rxm, xm`1q, s is constantly equal to the value of f

at the left endpoint of P pX ,λq
m , and at x “ b, spbq “ fpbq. For each x P X we have that

x P rxj, xj`1q for some unique j, and therefore

|fpxq ´ spxq| “ |fpxq ´ fpxjq| ă ϵ,

since |x ´ xj| ă δ which shows that (I) is satisfied. In order to prove (II), consider
the sequence of partitions P

pX ,2q

j , P
pX ,22q

j , . . . , P
pX ,2nq

j . In other words, at stage n, X
is divided into λ “ 2n partitions. The step function for the n-th partition is given by

spnqpxq “

2n
ÿ

m“1

fpxmqχ
P

pX ,2nq
j

,

We want to show that limnÑ8 |fpxq ´ spnqpxq| “ 0. Let x P P
pX ,2nq

j for some j “

1, . . . , 2n, then for all n ą 0 such that b´a
2n

ă δ,

lim
nÑ8

|fpxq ´ spnqpxq| “ lim
nÑ8

|fpxq ´ fpxjq|.

In addition, since limnÑ8
b´a
2n

“ 0 and |x´xj| ă b´a
2n

, it follows that limnÑ8 |x ´ xj| “

0. By the uniform continuity of f on X, it follows that limnÑ8 |fpxq´spnqpxq| “ 0, [21],
which completes the proof.

Theorem 6.1 guarantees the existence of a step function that can approximate any
continuous function within a compact set, to an arbitrary accuracy. Additionally it
shows that by increasing the number of intervals we can increase the approximation
accuracy. Note however, that there exist infinite possible partitions of X . Theorem 6.1
does not deal with the best approximation that we can achieve with a certain step
function. Intuitively, the partitions should be such that f varies slowly within any
interval, such that a constant value can approximate it well. Moreover, increasing the
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number of intervals of the partition, in general increases the frequency of broadcasts.
This is due to the fact that information needs to be broadcasted whenever an interval
boundary is crossed. As we want to exploit the available communication resources to
their fullest, we are interested in designing step-function approximation models that
approximate the unknown interconnection functions as closely as possible with the
minimum number of intervals. We are therefore interested to answer the following
questions:

1. Given a continuous function f and a λ ą 0 , such that X is partitioned
to at most λ intervals, design a step function sλpxq such that the L8 ap-
proximation error is minimized. What approximation error ϵ˚ ą 0 can be
obtained by the best step-function based approximator?

2. (Inverse Problem) Given an ϵ˚ and a continuous function f defined on a
compact set, what is the required number of partitions λ, such that the
approximation of f with a step function sλ satisfies sup

X
|fpxq ´ sλ| “ ϵ˚?

According to the first question, we want to ensure that we use a step-function based
approximator with the best approximation property [19]. Answering the second ques-
tion will provide us with a constructive method for designing step functions that
achieve a desired accuracy.

Theorem 6.2. Given a λ ą 0, the best step-function based approximation s˚
λ of a

continuous function f : X “ ra, bs Ñ R, in the L8 sense, is given by

fpxq “ s˚
λpxq ` ϵpxq, ϵ˚ “ sup

X
|ϵpxq| (6.18)

where

s˚
λpxq “

λ
ÿ

m“1

a˚
mχP

pX ,λq˚

m
, (6.19)

ϵpxq is the minimum functional approximation error, a˚
m are the optimal constant

parameters defined by

a˚
m “ argmin

amPR

"

sup
X

ˇ

ˇfpxq ´ sλpxq
ˇ

ˇ

*

,

and given by

a˚
m “

inf
P

pX ,λq˚

m

pfpxqq ` sup
P

pX ,λq˚

m

pfpxqq

2
, (6.20)
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and P
pX ,λq˚

m are the optimal partitions defined by

P pX ,λq˚

m “ argmin
P

pX ,λq
m PPpX q

λ

"

sup
X

ˇ

ˇfpxq ´ sλpxq
ˇ

ˇ

*

,

and satisfying

sup
P

pX ,λq˚

m

fpxq ´ inf
P

pX ,λq˚

m

fpxq “ c, @m “ 1, . . . , λ, (6.21)

where c ą 0 is a constant such that for x P ra, bq, the equations

fpxq “ fpaq `

Z

sup fpxq ´ fpaq

c

^

c

...

fpxq “ fpaq ` c

fpxq “ fpaq

fpxq “ fpaq ´ c

...

fpxq “ fpaq ´

Z

|inf fpxq ´ fpaq|

c

^

c (6.22)

have exactly λ ´ 1 solutions. The approximation error is then given by ϵ˚ “ c
2
.

In other words, the optimal constant value a˚
m is the midway value between the

extremes of fpxq in P
pX ,λq˚

m , and the optimal partition of X , as defined by the intervals
P

pX ,λq˚

m , are such that the range of f is divided into equally spaced regions.

Proof. Since ϵ˚ “ sup
X

|ϵpxq|, we have that for all k “ 1, . . . , λ, sup
P

pX ,λq˚

k

|ϵpxq| ď ϵ˚ and

for at least one m “ 1, . . . , λ, sup
P

pX ,λq˚

m

|ϵpxq| “ ϵ˚. Therefore, since for all x P P
pX ,λq˚

k ,

sλpxq “ a˚
m the optimal parameter a˚

m is defined by

a˚
m “ argmin

amPR

"

sup
P

pX ,λq˚

m

ˇ

ˇfpxq ´ am
ˇ

ˇ

*

.

First we note that the optimal parameter a˚
m satisfies a˚

m P rinf fpxq, sup fpxqs. There-
fore a˚

m can be written as a˚
m “ inf fpxq ` k˚psup fpxq ´ inf fpxqq, where k˚ P r0, 1s is

defined by

k˚ “ argmin
kPr0,1s

#

sup
P

pX ,λq˚

m

ˇ

ˇ

ˇ
fpxq ´

“

inf fpxq ` k˚
`

sup fpxq ´ inf fpxq
˘‰

ˇ

ˇ

ˇ

+

. (6.23)
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Observing that
ˇ

ˇ

ˇ
fpxq ´

„

inf fpxq ` k˚
`

sup fpxq ´ inf fpxq
˘

ȷ

ˇ

ˇ

ˇ
is maximized for either

sup
P

pX ,λq˚

m

fpxq or inf
P

pX ,λq˚

m

fpxq, (6.23) can be written as

k˚ “ argmin
kPr0,1s

#

argmax
kPr0,1s

"

k˚
`

sup fpxq ´ inf fpxq
˘

,
`

1 ´ k˚
˘`

sup fpxq ´ inf fpxq
˘

*

+

.

“ argmin
kPr0,1s

#

argmax
kPr0,1s

"

k˚,
`

1 ´ k˚
˘

*

+

,

which shows that k˚ “ 1
2

, and the optimal parameters a˚
m are given by (6.20).

We now want to test if there exists partitions that achieve an approximation
error smaller than c

2
. Consider the case where for some k “ 1, . . . , λ, sup

P
pX ,λq˚˚

k

fpxq ´

inf
P

pX ,λq˚˚

k

fpxq “ b ă c. In order for the PpX q

λ to form an exact cover, then for some other

l “ 1, . . . , λ, l ‰ k, sup
P

pX ,λq˚˚

l

fpxq ´ inf
P

pX ,λq˚˚

l

pfpxqq “ d ą c, and therefore ϵ˚˚ “ d
2

ą

ϵ˚, which shows that partitions satisfying (6.21) are optimal. Moreover a decreased
number of partitions, µ ă λ would lead to a larger approximation error. This is
justified by the fact that (6.22) will need to have fewer solutions (µ), and therefore c

needs to increase, which shows that ϵ˚ “ c
2

will increase. Note that if (6.22) has more
than λ solutions for all 0 ă c ă

sup fpxq´inf fpxq

2
, then λ needs to increase.

Theorem 6.3. (Inverse Problem) Given an ϵ˚ ą 0 and a continuous function f :

ra, bs Ñ R, the required λ ą 0 such that sup |fpxq ´ sλ| “ ϵ˚, is given by the number
of solutions to the equations

fpxq “ fpaq ` 2

Z

sup fpxq ´ fpaq

2ϵ˚

^

ϵ˚

...

fpxq “ fpaq ` 2ϵ˚

fpxq “ fpaq

fpxq “ fpaq ´ 2ϵ˚

...

fpxq “ fpaq ´ 2

Z

|inf fpxq ´ fpaq|

2ϵ˚

^

ϵ˚, (6.24)

for all x P ra, bq.

Proof. Since ϵ˚ “ c
2

and using (6.22), the number of solutions to (6.24) is equal to
the required λ. Note that λ is bounded from below by sup fpxq´inf fpxq

2ϵ˚ , which occurs in
the case of a monotonic function fpxq for x P ra, bs.
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In order to gain more insight in the design of the best step-function approximation,
given by (6.19), consider the set

S “

"

fpaq ´

Z

|inf fpxq ´ fpaq|

c

^

c, . . . , fpaq ´ c, fpaq, fpaq ` c,

. . . , fpaq ` fpaq `

Z

sup fpxq ´ fpaq

c

^

c

*

.

Define the preimage of S as the set of all elements of X that map to S

f´1pSq “ tx P X |fpxq P Su

and define the ordered sequence x̌1, . . . , x̌λ`1, fpx̌mq P S, m “ 1, . . . , λ ` 1. Then the
optimal partition of X is defined by P

pX ,λq˚

m “ tx|x̌m ď x ă x̌m`1u. Additionally we
can define the optimal partition of X by considering partial inverses of f . Define a
partition of X into intervals rQX

1 , . . . ,QX
r s, such that f´1

Ql
pfpxqq “ x for all l P r1, rs.

In other words, we partition the domain of fpxq such that the inverse of f , f´1, is
defined within each interval. The P pX ,λq˚ intervals is constructed by finding all x P X

that satisfy f´1
Ql

pkcq “ x, for some k “ 0, 1, . . ., within each Ql.
As the desired approximation error ϵ˚ is reduced, the required number of intervals

(λ) is increased. Since a greater number of intervals in general require more frequent
broadcasts, the selection of the appropriate approximation accuracy, and thus the
number of partition intervals, involves a tradeoff between communication cost and
performance.

In Subsection 6.2.1 we have considered a simple system for illustrating that a
state based communication scheme leads to suboptimal results in the case of nonlin-
ear interconnections. Through Lyapunov analysis we have shown that the region of
convergence increases as the nonlinearity of the interconnection becomes larger. In
the next subsection, by considering a class of piecewise linear functions, we compare
regular partitioning step function-based approximation (where the domain of the
function is partitioned into equal length intervals), with the best, range partitioning,
step function-based approximation given by Theorem 6.2.

6.3.1 Comparison of range partitioning with regular parti-
tioning step approximation

Consider the regular partition of X , PpX q
c where the m-th interval is defined by

P
pX ,cq
m “

"

x
ˇ

ˇx P rpm´ 1qc,mcs

*

, and c ą 0 is the length of the intervals. The regular-
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partitioning step approximation of a function f : R Ñ R is given by

fpxq “ sdcpxq ` ϵpxq, |ϵpxq| ď ϵd
˚ (6.25)

where sdcpxq is a step function given by

sdcpxq “

c
ÿ

m“1

ad
˚

m χ
P

pX ,cq
m

,

and the parameters ad
˚

m are defined by

ad
˚

m “ argmin
admPR

"

sup
P

pX ,cq
m

ˇ

ˇfpxq ´ sdcpxq
ˇ

ˇ

*

“

inf
P

pX ,cq
m

fpxq ` sup
P

pX ,cq
m

fpxq

2

In order to compare the L8 approximation of regular partitioning step approxima-
tion given by (6.25), with range partitioning step approximation given by (6.19), we
consider the class of non-decreasing continuous functions fu : r0, 1s Ñ r0, 1s that sat-
isfy fup0q “ 0 and fup1q “ 1. By the fact that the fu functions are non-decreasing and
that fup0q “ 0 and fup1q “ 1, both the range and regular partitioning step approxi-
mation leads to the same number of intervals. Therefore, by restricting our attention
to functions fu, we are able to perform a more reasonable comparison between the
two approximation schemes.

Consider the class of h-piecewise linear functions F phq : r0, 1s Ñ r0, 1s, where a
member function f phq is defined by

f phqp0q “ 0

f phqpxq “ k
phq

1 x, 0 ă x ă
1

h

f phqpxq “ k
phq

2 px ´
1

h
q ` f phqp

1

h
q,

1

h
ď x ă

2

h
...

f phqpxq “ k
phq

h px ´
h ´ 1

h
q ` f phqp

h ´ 1

h
q,

h ´ 1

h
ď x ă 1

f phqp1q “ 1

where h P N` and k
phq

j P t0, 1, . . . , h´1, hu for j “ 1, . . . , h. By definition, the functions
f phq are defined on a square lattice r0, 0s ˆ r1, 1s, with ph`1q ˆ ph`1q distinct points,
with the additional restriction that f phqp0q “ 0 and f phqp1q “ 1. Fig. 6.3 shows an
example of a f p5q function.

Remark 6.3. It is well known that piecewise linear functions are approximators of
continuous function within a compact set (see, for example, [17]). Given an fu and an
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Figure 6.3: An f p5qpxq piecewise linear function.

ϵphq ą 0, we can find an f phq function with sufficiently large h such that sup |f phqpxq ´

fupxq| ă ϵphq. As a result, instead of considering fu functions for comparing range and
regular partitioning, we can equivalently consider f phq functions.

Note that as h increases, the f phq function can have larger slope. Therefore, f phq

function with large h can be used to approximate fu functions with higher-order
nonlinearities. The approximation of a certain f phq with a regular-partitioning step
function sd1

h

pxq partitions the domain of f phq at 0, 1
h
, . . . , h´1

h
, 1. In addition, since

kj P t0, 1, . . . , h ´ 1, hu, the L8 approximation error ϵd
˚

“ t sup

P
pX , 1

h
q

m

ˇ

ˇfpxq ´ sd1
h

pxq
ˇ

ˇu,

belongs to t0, 1
2h
, . . . , h´1

2h
, 1
2
u and is given by

ϵd
˚

“
1

2h
, if max

j“1,...,h
k

phq

j “ 1

ϵd
˚

“
2

2h
, if max

j“1,...,h
k

phq

j “ 2

...

ϵd
˚

“
h ´ 1

2h
, if max

j“1,...,h
k

phq

j “ h ´ 1

ϵd
˚

“
1

2
, if max

j“1,...,h
k

phq

j “ h.

Define the set of functions F ph,kmaxq “
␣

f phq|max
j

k
phq

j “ kmax

(

, where kmax P t1, . . . , h´

1, hu. Denote a member function of F ph,kmaxq with f ph,kmaxq. Then the regular-partitioning
step approximation error of f ph,kmaxq is given by ϵd

˚

“ kmax

2h
. As expected, the approx-

imation error increases as the maximum slope (kmax) increases. Note that in the
case of range-partitioning step approximation the approximation error is indepen-
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dent of kmax and is equal to ϵ˚ “ 1
2h

. In order to compare range-partitioning with
regular-partitioning step approximation, it suffices to calculate the number of pos-
sible functions f ph,kmaxq for all kmax P t1, . . . , h ´ 1, hu. It is then straightforward to
calculate the ratio of the L8 approximation error of the two approximation schemes,
ϵd

˚

ϵ˚ , as the weighted mean of kmax for all kmax.
For any h, |F phq| ă 8, or in other words, the possible f phq functions are finite.

This is due to the fact that f phq are piecewise linear functions, and the possible break
points are upper bounded by h ` 1. Since |F phq| is finite, |F ph,kmaxq| is finite. As it
turns out the problem of finding the cardinality of the set |F ph,kmaxq| is equivalent to
finding the number of arrangements of h indistinguishable balls in h boxes with the
maximum number of balls in any box equal to kmax P t1, . . . , h´1, hu, [1]. Denote with
Nph, kmaxq the arrangement of h indistinguishable balls in h boxes with the maximum
number of balls in any box equal to kmax. Then |F ph,kmaxq| “ Nph, kmaxq. For a certain
h, the ratio ϵd

˚

ϵ˚ is calculated as

ϵd
˚

ϵ˚
“

h
ÿ

kmax“1

kmaxNph, kmaxq

“
“

Nph, 1q ` 2Nph, 2q ` . . . ` ph ´ 1qNph, h ´ 1q ` hNph, hq
‰

(6.26)

As h increases we are able to consider a greater number of possible f phq functions and
therefore the calculation of ϵd

˚

ϵ˚ based on (6.26) becomes more accurate. In addition,
a larger h includes f phq functions with larger slopes, therefore it is expected that the
ϵd

˚

ϵ˚ ratio will increase. To the best of our knowledge, a closed form expression for
Nph, kmaxq (for any h, kmax) does not exist. Therefore we rely on algorithmic compu-
tation. The values of Nph, 1q, . . . , Nph, hq, for h “ 1, . . . , 10, are given in Table 6.1.

Fig. 6.4 shows the scatter plot of ϵd
˚

ϵ˚ for h “ 1, . . . , 59. The ϵd
˚

ϵ˚ ratio is strictly
increasing with h, which confirms the fact that range-partitioning step approximation
performs increasingly better as the functions f phq can have larger slopes, or equiva-
lently fu functions can have larger nonlinearities. For instance, for h “ 59, ϵd

˚

ϵ˚ “ 6.23.
This shows that, if the range-partitioning approximation of a certain function f p59q

results to λ intervals (for some λ “ 1, 2, . . .), then the regular partitioning approxi-
mation requires 6.23λ intervals to get the same mean approximation accuracy. From
a communication perspective, a regular partitioning approximation must broadcast
6.23 times faster than range partitioning approximation to get the same mean ap-
proximation accuracy.
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Table 6.1: Values of Nph, kmaxq for h “ 1, . . . , 10

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
h=1 1
h=2 1 2
h=3 1 6 3
h=4 1 18 12 4
h=5 1 50 50 20 5
h=6 1 140 195 90 30 6
h=7 1 392 735 392 147 42 7
h=8 1 1106 2716 1652 672 224 56 8
h=9 1 3138 9912 6804 2970 1080 324 72 9
h=10 1 8952 35850 27600 12825 4950 1650 450 90 10

6.4 Communication Scheme Design

In the previous section, we have considered the approximation of a continuous
function based on the use of steps functions. Theorems 6.2 and 6.3 provide the pro-
cedure for designing a step-function with the best L8 approximation property. Given
that the functions δh,ij are known, the designer is able to design a communication
algorithm that allows the i-th subsystem to best approximate δh,ij based on the use of
broadcasted samples of xj. In this work we consider the case of unknown interconnec-
tions δij and fault functions hij. As a result, it is not possible to obtain an optimized
communication scheme based on Theorems 6.2 and 6.3. In order to overcome this
obstacle, we use adaptive approximation models for estimating the unknown δh,ij

functions online, and then use these approximation models for deciding when to
communicate. We now proceed to present the communication algorithm.

We consider the case where an estimate x̂i
j of xj may be available to the i-th

subsystem. The x̂i
j estimate is either based on the desired state xdj , or on distributed

state estimation methods (see, for example, [86]). In addition, the j-th subsystem
broadcasts a sample x̄i

jrks of its state xj to the i-th subsystem according to a decision
logic defined later on. If a sample x̄i

jrks of xj is not available, the i-th subsystem
utilizes the known x̂i

j instead. In the case where x̂i
j is a poor estimate of xj or equiva-

lently when x̂i
j is not available at all, then the i-th subsystem utilizes only broadcasted

samples of xj. For all t ą 0, the i-th subsystem utilizes either the estimate x̂i
jptq, or
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Figure 6.4: Mean ratio of regular and range partitioning step approximation errors
of f phq functions ( ϵd

˚

ϵ˚ ) for h “ 1, . . . , 59

the latest broadcasted sample x̄i
jrks. Define the indicator function Uij as

Uijptq “

$

’

&

’

%

1 if x̄i
jrks is used by the i´th subsystem

0 if x̂i
jptq is used by the i´th subsystem.

Let ˆ̄xi
jptq represent the best available information about xj at time t, which based on

Uijptq is given by

ˆ̄xi
jptq “

$

’

&

’

%

x̂i
jptq if Uijptq “ 0

x̄i
jptq if Uijptq “ 1.

(6.27)

The i-th subsystem receives the indicator function Uij from the j-th subsystem when-
ever it transitions from 1 to 0, such that the i-th subsystem knows when it should use
the state estimate x̂i

jptq. It is easy to see that the transition Uij “ 0 Ñ 1 is implied by
the fact that the i-th subsystem receives a sample of xj. Define the indicator functions
Xijptq, Dijptq and Qiptq as follows

Xijptq “

$

’

&

’

%

0 if |ˆ̄xi
jptq ´ xjptq|2 ď dij

1 if |ˆ̄xi
jptq ´ xjptq|2 ą dij,
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Dijptq “

$

’

&

’

%

0 if |θ̂ijϕijpˆ̄x
i
jptqq ´ θ̂ijϕijpxjptqq| ď δ̄ij

1 if |θ̂ijϕijpˆ̄x
i
jptqq ´ θ̂ijϕijpxjptqq| ą δ̄ij,

Qiptq “

$

’

&

’

%

0 if |x̃iptq|2 ď ϵi

1 if |x̃iptq|2 ą ϵi,

where δ̄ij and ϵi ą 0 are design constants, and |.|2 is the Euclidean norm. The com-
munication algorithm Cijptq is given by

Cijptq “

$

&

%

Xijptqxjptq if Qiptq “ 1

Dijptqxjptq if Qiptq “ 0

(6.28)

(6.29)

In other words, the communication algorithm switches between two cases:

(a) When the tracking error of the i-th subsystem exceeds a threshold ϵi (|x̃iptq|2 ą

ϵi), the communication algorithm is based on a state level-crossing communication
scheme, i.e., a broadcast of xj is released when |ˆ̄xi

jptq ´ xjptq| ą dij.

(b) When the tracking error of the i-th subsystem is smaller than a threshold ϵi,
(|x̃iptq|2 ď ϵi), the communication algorithm is based on an approximation-model
level-crossing communication scheme, i.e., a broadcast of xj is released when
|θ̂ijϕijpˆ̄x

i
jptqq ´ θ̂ijϕijpxjq| ą δ̄ij.

The j-th subsystem receives the indicator function Qi from the i-th subsystem only
whenever it has changed. In addition, whenever Qi transitions to zero, the i-th subsys-
tem transmits the parameter estimates θ̂ij to the j-th subsystem. Fig. 6.5 illustrates
the communication scheme, where the exchange of information according to (6.28) is
shown at the top, and the exchange of information according to (6.29) is shown at
the bottom.

Remark 6.4. In the proposed communication scheme, the tracking error x̃i is uti-
lized for switching between the sampling algorithms (6.28) and (6.29). In order to
explain the reasoning behind this approach, consider the realizable by the i-th sub-
system approximation of δh,ijpxj, tq given by θ̂ijϕijpˆ̄x

i
jq. The difference δh,ijpxj, tq ´

θ̂ijϕijpˆ̄x
i
jq denotes the overall approximation error of the unknown function δh,ijpxj, tq.

Based on the use of the triangular inequality, the overall approximation error satisfies

|δh,ijpxj, tq ´ θ̂ijϕijpˆ̄x
i
jq| ď |δh,ijpxj, tq ´ δh,ijpˆ̄x

i
j, tq| ` |θ̃ijϕijpˆ̄x

i
jq| ` µ̄ij, (6.30)
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State level-crossing communication algorithm (6.28)

Approximation-model level-crossing communication algorithm (6.29)

Figure 6.5: Decision logic of the communication scheme.

where θ̃ij “ θ̂ij ´ θ˚
ij are the parameter estimation errors. On the right hand side

of (6.30), the term δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq represents the replacement error due to

non-zero ˆ̄xi
j ´xj, the term |θ̃ijϕijpˆ̄x

i
jq| represents the parameters estimation error, and

µ̄ij is an upper bound of the residual approximation error. The fact that the local
tracking error x̃i is large (Qiptq “ 1) is an indicator that the magnitude of δh,ijpxj, tq´

θ̂ijϕijpˆ̄x
i
jq is large. As |ˆ̄xi

j ´ xj| Ñ 0, by the fact that δh,ijpxj, tq satisfies a Lipschitz
condition, |δh,ijpxj, tq ´ δh,ijpˆ̄x

i
j, tq| Ñ 0. Therefore, while Qiptq “ 1, it is required

that the difference ˆ̄xi
j ´ xj becomes as small as possible. The state level-crossing

communication scheme, (6.28), aims to minimize the replacement error δh,ijpxj, tq ´

δh,ijpˆ̄x
i
j, tq, such that the overall approximation error is due mostly to the residual

approximation error µ̄ij and the parameter estimation errors θ̃ij, which are due to
the limited approximation capabilities of the approximator and the persistence of
excitation property of the system, respectively. Using the triangular inequality once
more, the overall approximation error satisfies

|δh,ijpxj, tq ´ θ̂ijϕijpˆ̄x
i
jq| ď |θ̃ijϕijpxjq| ` |θ̂ij

`

ϕijpˆ̄x
i
jq ´ ϕijpxjq

˘

| ` µ̄ij. (6.31)

The fact that the local tracking error x̃i is small (Qiptq “ 0) is an indicator that the
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magnitude of the overall approximation error is small. Provided that the parameter
estimation errors θ̃ij are sufficiently small, the term |θ̂ij

`

ϕijpˆ̄x
i
jq ´ ϕijpxjq

˘

| dominates
the right hand side of (6.31), and therefore provides a good estimate of the replace-
ment error δh,ijpxj, tq ´ δh,ijpˆ̄x

i
j, tq. In this case, the communication algorithm based

on an approximation-model level-crossing scheme, (6.29), ensures that the magnitude
of the replacement error is minimized.

Remark 6.5. It is assumed that the available communication bandwidth for each
subsystem j is finite, which means that data transmission cannot be continuous. In
other words, it is assumed that tk`1

ij ´ tkij are non-zero for all k ą 0, such that within
any finite time interval, xj is broadcasted a finite number of times. The proposed
communication scheme avoids explicit continuous broadcast of state information.
However, without an ad-hoc restriction on the inter-broadcast times lower bound, it
is possible for it to be arbitrarily close to zero or it may even result in the limit of
the sequence tkij to be a finite number (Zeno behavior).

6.5 Distributed Fault Tolerant Control Design

Consider the tracking error dynamics of the i-th subsystem x̃i “ xi ´ xdi which
based on (6.2) satisfy

9̃xi “Ax̃i ` B

«

fipxiq ` gipxiqui `

m
ÿ

j“1

δijpxjq ` βpt ´ Tijqhijpxjq ´ 9xdin

ff

. (6.32)

Let the distributed fault tolerant control law be given by

ui “ uNi
` uFi

(6.33)

where uNi
denotes the local nominal control law for stabilizing the i-th subsystem in

the absence of interconnections and faults, and uFi
is the augmented fault tolerant

control law for addressing the unknown δij interconnections and the change in dy-
namics due to the occurrence of faults in the δij interconnections. The local nominal
control law uNi

is given by

uNi
“

1

gipxiq

`

´ KT
i x̃i ´ fipxiq ` 9xdin

˘

, (6.34)

where the vector Ki “ rki1, . . . , kins
J

P Rn is chosen such that A ´ BKJ
i is a Hurwitz

matrix. Since A ´ BKJ
i is Hurwitz, for any Qi ą 0 there exists Pi ą 0 satisfying the
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Lyapunov equation, PipA ´ BKJ
i q ` pA ´ BKJ

i qJPi “ ´Qi. Based on Pi, the scalar
tracking error ei is defined as ei “ BJPix̃i.

Let µ̄δ
ij “ µ̄ij ` Lijdij. The term µ̄δ

i represents the combined inherent error due to
the residual approximation error µ̄ij and the replacement error δh,ijpxj, tq´δh,ijpˆ̄x

i
j, tq.

Let µ̄δ
i “

řm
j“1 µ̄

δ
ij. The unknown µ̄δ

i is estimated online by an adaptive estimate which
is denoted by µ̂δ

i . The adaptive approximation based control law uFi
is given by

uFi
“ ´

1

gipxiq

˜

uci `

m
ÿ

j“1

θ̂J
ijϕijpˆ̄x

i
jq

¸

(6.35)

uci “

$

’

&

’

%

µ̂δ
i sgnpeiq if x̃J

i Pix̃i ą λ̄Pi
ϵ2i

0 if x̃J
i Pix̃i ď λ̄Pi

ϵ2i ,

(6.36)

where λ̄Pi
is the maximum eigenvalue of Pi. The parameter estimates of the adaptive

approximator θ̂ij, and the adaptive bounding parameter µ̂δ
i are updated according to

9̂
θij “ Γijϕijpˆ̄x

i
jqqipei, x̃i, ϵiq (6.37)

9̂µδ
i “ γi

ˇ

ˇ

ˇ
qipei, x̃i, ϵiq

ˇ

ˇ

ˇ
(6.38)

where Γij is a positive definite matrix and γi is a positive constant representing the
adaptive gains, and qipei, x̃i, ϵiq is a dead-zone, defined as

qipei, x̃i,
¯
ϵiq “

$

’

&

’

%

0 x̃J
i Pix̃i ď λ̄Pi

ϵ2i

ei x̃J
i Pix̃i ą λ̄Pi

ϵ2i .

(6.39)

Note that the fact that x̃J
i Pix̃i ď λ̄Pi

ϵ2i ensures that |x̃i|2 ď ϵi.

6.6 Stability Analysis

Theorem 6.4. Given that the coverage set Xi is large enough such that xiptq P Xi

for all t ą 0, the closed-loop system described by the interconnected system (6.1),
the distributed fault tolerant control law (6.33), (6.34), (6.35) and (6.36), and the
adaptation laws (6.37)-(6.38) guarantee that |x̃iptq| is uniformly ultimately bounded
by ϵi; i.e., the total time such that x̃J

i Pix̃i ą λ̄Pi
ϵ2i is finite.

Proof. Let the Lyapunov function of the overall system be given by V “
řm

i“1 Vi,
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where Vi “ Vi1 ` Vi2 is the Lyapunov function of the i-th subsystem defined as

Vi1 “
1

2
x̃J
i Pix̃i,

Vi2 “
1

2

m
ÿ

j“1

θ̃J
ijΓ

´1
ij θ̃ij `

1

2γi
pµ̂δ

i ´ µ̄δ
i q

2,

Substituting uNi
in (6.32), we obtain the following expression for the tracking error

dynamics

9̃xi “
`

A ´ BKJ
i

˘

x̃i ` B

˜

gipxiquFi
`

m
ÿ

j“1

δijpxjq ` βpt ´ Tijqhijpxjq

¸

.

The time derivative of Vi1 satisfies

9Vi1 “ ´
1

2
x̃J
i Qix̃i ` ei

˜

gipxiquFi
`

m
ÿ

j“1

δijpxjq ` βpt ´ Tijqhijpxjq

¸

.

Using (6.5) and substituting uFi
we obtain

9Vi1 “ ´
1

2
x̃J
i Qix̃i ´ eiuci ` ei

˜

m
ÿ

j“1

δh,ijpxj, tq ´ θ̂J
ijϕijpˆ̄x

i
jq

¸

.

Adding and subtracting δh,ijpˆ̄x
i
j, tq we obtain

9Vi1 “ ´
1

2
x̃J
i Qix̃i ´ eiuci ` ei

˜

m
ÿ

j“1

δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq

` δh,ijpˆ̄x
i
j, tq ´ θ̂J

ijϕijpˆ̄x
i
jq

¸

.

Based on (6.11),

9Vi1 “ ´
1

2
x̃J
i Qix̃i ´ eiuci ` ei

˜

m
ÿ

j“1

δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq

` µijpˆ̄x
i
j, tq ´ θ̃J

ijϕijpxjq

¸

.

The time derivative of Vi satisfies

9Vi “ ´
1

2
x̃J
i Qix̃i ´ eiuci ` ei

˜

m
ÿ

j“1

δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq

` µijpx̄
i
j, tq ´ θ̃J

ijϕijpxjq

¸

`

m
ÿ

j“1

θ̃J
ijΓ

´1
ij

9̃θij `
1

γi
pµ̂δ

i ´ µ̄δ
i q

9̂µδ
i .

Substituting the adaptive law (6.37) for x̃J
i Pix̃i ą λ̄Pi

ϵ2i we obtain,

9Vi “ ´
1

2
x̃J
i Qix̃i ´ eiuci ` ei

m
ÿ

j“1

δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq ` µijpx̄

i
j, tq

`
1

γi
pµ̂δ

i ´ µ̄δ
i q

9̂µδ
i .
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Substituting uci from (6.35) for x̃J
i Pix̃i ą λ̄Pi

ϵ2i , we obtain,

9Vi “ ´
1

2
x̃J
i Qix̃i ` ei

m
ÿ

j“1

δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq ` µijpˆ̄x

i
j, tq

´
1

γi
µ̄δ
i

9̂µδ
i `

1

γi
µ̂δ
i p

9̂µδ
i ´ γi|ei|q.

Using (6.6) and the fact that |ˆ̄xi
j ´ xj| ď dij for x̃J

i Pix̃i ą λ̄Pi
ϵ2i we have

9Vi ď ´
1

2
x̃J
i Qix̃i ` |ei|

´

m
ÿ

j“1

Lijdij ` µijpˆ̄x
i
j, tq

¯

´
1

γi
µ̄δ
i

9̂µδ
i `

1

γi
µ̂δ
i p

9̂µδ
i ´ γi|ei|q

ď ´
1

2
x̃J
i Qix̃i ` |ei|µ̄

δ
i ´

1

γi
µ̄δ
i

9̂µδ
i `

1

γi
µ̂δ
i p

9̂µδ
i ´ γi|ei|q

By substituting the adaptive law (6.38) for x̃J
i Pix̃i ą λ̄Pi

ϵ2i we obtain 9Vi ď ´1
2
x̃J
i Qix̃i,

which shows that x̃i converges into the set Wi “

!

x̃i

ˇ

ˇx̃J
i Pix̃i ď λ̄Pi

ϵ2i

)

. The fact that
adaptation is stopped when x̃i P Wi, x̃i, θ̂ij, µ̂

δ
i P L8 for all t ą 0. Moreover, the fact

that µ̂δ
i is non-decreasing shows that x̃i enters Wi in finite time, i.e., there is some t0i

such that x̃i P Wi for all t ą t0i.

Remark 6.6. Intuitively the distributed fault tolerant control scheme is divided
into a learning phase, during which the unknown dynamics of the system are modeled,
and an operating phase, in which the system utilizes the knowledge obtained at the
learning phase to optimize the benefits from communication. As the i-th subsystem
spends more time in the dead-zone it gradually transitions to the operating phase.
The objective in the learning phase is to build as accurate approximation models
of the unknown interconnections and fault functions as possible. The performance
for the approximation of δh,ijpxj, tq is in general improved as the state level-crossing
communication threshold dij is reduced, and as the accuracy of the state estimator x̂i

j

is improved. It is noted that the stability of the system is decoupled from the choice
of the communication threshold dij as well as the availability of a state estimator
x̂i
j. During the operating phase, the i-th subsystem receives information from the

other subsystems based on the approximation-model level-crossing communication
algorithm given by (6.29), Based on this algorithm, the broadcasting samples of xj

are such that θ̂ijϕij are optimally approximated with step functions (Theorem 6.2).
Provided that a sufficiently accurate approximation model θ̂ijϕij of the unknown
δh,ijpxj, tq function is obtained during the learning phase, the approximation-model
level-crossing communication algorithm leads to a near optimal approximation of the
unknown δh,ijpxj, tq function with a step function, and therefore the uncertainty about
the coupling dynamics is minimized.
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Remark 6.7. The proposed scheme does not require the availability of state esti-
mators x̂i

j. In the case where an estimate of xj is not available, the performance of
the approximators depends only on the amount of state information exchanged be-
tween the subsystems. However, as we consider interconnections with higher degrees
of nonlinearities, the required cost for communication to obtain sufficient approxi-
mation performance may become considerably high. Consider the replacement error
δh,ijpxj, tq ´ δh,ijpˆ̄x

i
j, tq which based on (6.6) satisfies

|δh,ijpxj, tq ´ δh,ijpˆ̄x
i
j, tq| ď Lij

ˇ

ˇ

ˇ
xj ´ ˆ̄xi

j

ˇ

ˇ

ˇ
. (6.40)

In the case of higher order nonlinear functions δh,ijpxj, tq, the required constant Lij to
satisfy (6.40) can become quite large. The best achievable approximation is limited
by the size of the replacement error. Therefore, while the i-th subsystem estimates
δh,ijpxj, tq it is important that the replacement error is minimized. As Lij increases,
the required communication threshold dij to minimize the inherent replacement error
and improve the approximation performance goes to zero. Therefore, in practical
applications it is best to incorporate as much communication-free knowledge about
the remote states, by using distributed state estimators, or sharing the desired states
a priori. Note that from a control and approximation perspective, the availability of
state estimators is beneficial only during the learning phase of the unknown dynamics.
After the subsystems enter the dead-zone, the availability of state estimators is only a
matter of reducing the cost for communication. In fact, in the case where the reference
signal xdj is utilized as an estimate for the state xj, the j-th subsystem is free to
change its reference signal without affecting the other subsystems, and thereafter,
broadcast its state xj to the other subsystems according to the approximation-model
level-crossing communication algorithm.

Remark 6.8. Theorem 6.6 assumes that the trajectory xiptq of the i-th subsystem
remains within the coverage region Xi. This can be guaranteed by implementing a
decentralized safety control scheme (such as the one presented in Section 3.5) for
bringing the trajectory back within Xi, in case that it leaves the coverage region.
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6.7 Simulation

To illustrate the design methodology for the distributed fault tolerant control,
consider the following interconnected system:

Σ1 : 9x1 “ x2
1 ` p1 ` x2

1qu1 ` δ12px2q ` βpt ´ T12qh12px2q

Σ2 : 9x2 “ 5x3
2 ` p2 ` 0.5x2

2qu2 ` δ21px1q ` βpt ´ T21qh12px1q,

where xi P R is the state vector of the i-th subsystem (i “ 1, 2). The feedback gains
are chosen as K1 “ K2 “ 1. The desired trajectory vector xdi “ rxdi1 , xdi2sJ and the
signal 9xdi2 are generated using a third order filter with a bandwidth of 5 (rad/sec)
and unity gain below this frequency. The filter input is chosen as a square wave of
zero mean, 1.5 amplitude and a frequency of 0.4 Hz. The unknown interconnections
are approximated with a lattice of equally spaced radial basis functions that cover
the region |xi| ď 10, with the centers distance equal to 0.1. Outside this region, a
decentralized safety control law is implemented based on the control design presented
in Section 3.5. The state estimators x̂1

2ptq and x̂2
1ptq are based on the desired states

xd2ptq and xd1ptq respectively. The state level-crossing communication thresholds d1

and d2 are chosen as d1 “ d2 “ 0.5, while the approximation models level-crossing
communication thresholds are chosen as δ̄12 “ δ̄21 “ 1. The radii of the dead-zones
are chosen as ϵ1 “ ϵ2 “ 0.15.

We consider the case in which abrupt faults occur in Σ1 at T12 “ 30 sec and in Σ2

at T21 “ 70 sec. For simulation purposes, the unknown interconnections δ12 and δ21

are chosen as

δ12px2q “
1

25px2 ` 7q2 ` 0.1
`

1

25px2 ´ 0.3q2 ` 0.1
`

1

px2 ´ 0.9q2 ` 0.4

`
1

10px2 ´ 5q2 ` 0.1
`

1

25px2 ´ 6.3q2 ` 0.3
´

16

10

δ21px1q “ 15tanhp3x1q ` 4sinpx1q,

and the unknown fault functions h12 and h21 are chosen as

h12 “ ´ 20tanh
`

10px2 ` 0.5q
˘

` 20tanh
`

10px2 ´ 0.5q
˘

h21 “ ´ 30tanhp5x1q.

In Fig. 6.6 we plot the tracking error of each subsystem, x̃i, i “ 1, 2, indicating
the time occurrence of the faults. As illustrated by the plot, the subsystems are able
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Figure 6.6: Time evolution of the tracking errors.

to track the reference trajectories in the presence of unknown interconnections and
faults with significantly large magnitude and nonlinearities. In Fig. 6.7 we plot the
parameter estimates, θ̂12 and θ̂21 of the approximation of the δh,12px2, tq and δh,21px1, tq

functions, respectively. Before the occurrence of the faults, the parameter estimates
are updated to approximate the unknown interconnections and drive the trajectories
into the dead-zone (as shown by Fig. 6.6). As the subsystems spend more time in
the dead-zone, the parameters estimates get closer to their final values. The sudden
change in the dynamics due to the occurrence of faults in the interconnections drive
the trajectories out of the dead-zone. However, the parameter estimates are adapted
to accommodate the fault and steer the subsystems back into the dead-zone.

Fig. 6.8 shows the plot of the functions δh,12px2, tq and δh,21px1, tq and their re-
spective approximations after the occurrence of the faults, for t “ 400 sec. The fact
that xdi , i “ 1, 2 are available to the subsystems and the use of a small communi-
cation threshold, ensures sufficient approximation of the unknown interconnections
and fault functions.

Fig. 6.9 compares the approximation error θ̂12ϕ12pˆ̄x1
2q ´ δh,12px2, tq for d12 “ 0,

d12 “ 1, and for the case where xd2 is not available and d12 “ 1. In the latter case
ˆ̄x1
2 is based only on the broadcasted samples of x2 (x̄1

2). The plot shows the time
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Figure 6.7: Time evolution of the adaptive parameter estimates.

evolution of the L1 norm of the approximation error, given by
ż t

0

ˇ

ˇθ̂12pτqϕ12pˆ̄x1
2pτqq ´ δh,12px2pτq, τq

ˇ

ˇdτ.

In the case of d12 “ 0, x2 is available to Σ1 for all t ą 0, such that the approximation
error is due only to the residual approximation error and the parameter estimation
errors. Therefore the case of d12 “ 0 provides a baseline for the approximation we can
expect from the distributed scheme, as any value of d12 greater than zero, produces
an additional approximation error due to the replacement of x2 with ˆ̄x1

2. Comparing
the case of d12 “ 1 with and without knowledge of the desired state xd2 shows that,
although the replacement error is bounded by the same value in both cases, when
xd2 is available the approximation performance is improved. This can be explained
by the fact that in the case where xd2 is not available, the basis functions are not
sufficiently excited and the parameter estimates converge to suboptimal values. The
parameter estimation errors can not be further reduced unless a much smaller d12

is used, which will allow the approximator to explore more areas of the unknown
function δh,12px2, tq.

Next, we compare the approximation-model level-crossing communication scheme
with a state level-crossing scheme, where the j-th subsystem transmits its state when-
ever |ˆ̄xi

jptq´xjptq|2 ą dij (Xijptq “ 1), even when |x̃iptq|2 ď ϵi (Qiptq “ 0). We consider

109

Pan
ag

iot
is 

Pan
ag

i



x2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-50

-40

-30

-20

-10

0

10

δh,12(x2, t)

θ̂12φ12(x2)

x1

-10 -8 -6 -4 -2 0 2 4 6 8 10

-20

-10

0

10

20
δh,21(x1, t)

θ̂21φ21(x1)

Figure 6.8: Approximation of the functions δh,12px2, tq and δh,21px1, tq for t “ 400 sec.
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Figure 6.9: Time evolution of the L1 norm of the approximation error of δh,12px2, tq,
for (a) d12 “ 0, (b) d12 “ 1, and (c) d12 “ 1 and xd2 unknown.
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Figure 6.10: Broadcasted values of the states x1 and x2 for approximation-model and
state level-crossing communication schemes.

the case where after t “ 200 sec the desired state xdj is no longer available to the
other subsystem, such that ˆ̄xi

jptq “ x̄i
jptq for all t ą 200 sec. In Fig. 6.10 we plot the

histogram of broadcasted values of the state of each subsystem, for t P r0, 1000s sec.
As the plot illustrates, when state level-crossing is used, the broadcasted values are
spread out in the operating region. As a result, the subsystems communicate even
when the change in the δh,ijpxj, tq function is small, while not exchanging enough
information when the δh,ijpxj, tq function changes fast. In the case of approximation-
model level-crossing communication, the broadcasted values are more frequent in
areas where the δh,ijpxj, tq function changes rapidly (such as the area around x1 “ 0),
and minimal in areas where δh,ijpxj, tq function is slowly varying or, in other words,
when the replacement error is small.

Finally we compare the communication cost of the proposed communication scheme
to the state level-crossing scheme, by considering the broadcast of x2 to the subsys-
tem Σ1. We consider the case where the desired state xdj is not available to the i-th
subsystem, i “ 1, 2, for all t ą 0. Moreover, the communication thresholds for the
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Figure 6.11: Comparison of communication cost for approximation-model and state
level-crossing communication schemes.

two cases are chosen such that the sum of the performance and control-effort cost of
Σ1 (JQ1ptq ` JW1ptq) is equalized at t “ 1000 sec. The performance and control-effort
cost is equalized with the selection of d12 “ 0.4 and δ̄12 “ 4.6 for the approximation-
model level-crossing communication scheme, and d12 “ 0.8 for the state level-crossing
scheme. Fig. 6.11 shows the time evolution of the number of broadcasted samples,
|A12ptq|. The plot illustrates that the communication cost is substantially reduced
when the approximation-model level-crossing algorithm is used inside the dead-zone.
Intuitively, the subsystems communicate more frequently outside the dead-zone such
that the approximation performance is improved, and then use this knowledge to
optimize the exchange of information inside the dead-zone.

6.8 Conclusion

In this chapter we have presented a distributed fault tolerant control and com-
munication scheme for a class of interconnected nonlinear uncertain systems. We
considered the problem of designing optimized communication algorithms for opti-
mizing the performance of the system, while minimizing the communication cost.
The optimization of communication is formulated as a problem of obtaining the best
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approximation of the unknown coupling dynamics, based on the use of step functions.
A rigorous analysis shows that step functions are universal approximators, and the
step function with the best approximation property is derived. We considered a class
of piecewise linear functions to show that range partitioning performs increasingly
better than regular partitioning step-function approximation, as the nonlinearity of
the function increases. The communication algorithm is based on the use of the local
tracking errors, as well as adaptive approximation models for estimating the unknown
interconnections and fault functions. By introducing adaptive approximation models
into the communication decision algorithm, the subsystems are able to exchange in-
formation such that the replacement error is minimized. Robustness to the presence
of residual approximation errors and replacement errors is ensured through the use of
a dead-zone modification in the adaptive laws, combined with an adaptive bounding
method. The use of a dead-zone prevents parameter drift in the presence of mea-
surement noise and disturbances, as well as ensures that communication is optimized
during normal operation of the system.
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Chapter 7

Conclusion

7.1 Concluding Remarks and Contributions

This thesis investigated the problem of the control a class of nonlinear uncer-
tain interconnected systems. A key challenge in interconnected systems is developing
control and communication methods for dealing with uncertain interconnection dy-
namics. The difficulty arises from the fact that the interconnections are typically
partially unknown, and at the same time, the states of other subsystems are com-
pletely or partially unknown. The situation becomes more challenging as we consider
unpredictable failures that change the dynamics of the local subsystems and intercon-
nections. In order to enhance the applicability of distributed schemes for the control
of large-scale systems, it is important that the system is able to operate within certain
performance margins even in the presence of faults.

A key contribution of this thesis is the development of a decentralized fault tol-
erant control scheme that guarantees the stability of the interconnected system, in
the presence of unknown interconnections and multiple faults with significant magni-
tude, without the need for the exchange of state information between the subsystems
(Chapter 3). We considered the class of interconnected systems where the intercon-
nections and faults are bounded by unknown nonlinear functions of the local tracking
error, γij. Such bounding functions are satisfied in practice by several applications
(e.g., inter-vehicle spacing regulation problem, [72]). Furthermore, we have shown the
equivalence between bounding functions of the tracking error and bounding functions
of the state. The decentralized control law is designed in an adaptive approximation
framework for estimating the unknown upper bounding functions γij of the intercon-
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nections and faults. Intuitively, the design of the decentralized fault tolerant control
algorithm, is based on the a priori knowledge of the existence of bounding functions
γij. Each closed-loop isolated subsystem is made sufficiently stable, such that it is
guaranteed it remains stable in the presence of unknown interconnections and fault
functions.

The presence of even small approximation errors may cause instability issues to
the feedback control scheme due to parameter drift. This issue was addressed with
a dead-zone modification in the adaptive laws combined with an adaptive bounding
method. The feedback control scheme guarantees the boundedness of the tracking
errors to a small region around zero, inside the dead-zone. The stability analysis
shows that each subsystem’s tracking error enters the dead-zone in finite time. The
size of the dead-zone can theoretically be designed as small as desired. However, as the
dead-zone becomes smaller, the time interval to enter the dead-zone can become very
large. This can drive the parameter estimates to large values and cause saturation
of the control signal. Therefore the choice of the size of the dead-zone is a tradeoff
between tracking performance and control effort.

A key characteristic of approximation models is that their ability to accurately
represent a function is typically restricted within a compact set. Within this set,
the approximation error can be as small as desired (for example, by increasing the
number of basis functions). Outside this coverage set, the approximation error can
become arbitrary large, to the point where no useful approximation of the function is
obtained. From a control perspective, the inability of the approximator to restrict the
size of the approximation error outside the coverage region can potentially destabilize
the system. We address this issue with the development a decentralized safety con-
trol scheme based on sliding mode control with adaptive bounds. The design allows
embedding any available knowledge about the bounds of the interconnections and
faults into the decentralized safety control law, in order to reduce the control effort
to bring the trajectory back into the coverage region. The stability analysis of the
proposed scheme shows that the time spent outside the coverage region is finite.

There are some key limitations in the use of a completely decentralized architec-
ture, which is usually effective only for weakly interconnected systems. In the case of
strong interconnections, the local controller is typically forced to generate large con-
trol signals in order to compensate for the unknown interconnections, possibly leading
to high-gain feedback. Prior research work has shown that the exchange of limited
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information between the subsystems can considerably reduce the control effort and
improve the performance of the system. This motivates us to study distributed control
schemes, where the subsystems exchange limited information online. We begin with
the simple case where each subsystem continuously communicates its state whenever
the local tracking error exceeds a certain design threshold. If the local tracking error is
within this threshold, the other subsystems utilize the a priori available reference tra-
jectory instead. Based on this communication scheme, we develop a distributed fault
detection scheme based on the use of distributed nonlinear estimators (Chapter 4).
The fault detection algorithm ensures that there are no false detection alarms. After a
fault is detected, a fault accommodation algorithm based on adaptive approximation
models is activated for estimating and accommodating the unknown fault function.
A novelty of the proposed approach is that by approximating an upper bound of the
unknown fault function instead of the fault function itself, robustness to the presence
of residual approximation errors is ensured. The simulation study revealed a tight
relationship between the choice of the communication threshold, and the ability of
distributed estimators to detect faults. A smaller communication threshold allows the
derivation of smaller fault detection thresholds and the fault accommodation algo-
rithm is able to compensate for the presence of faults with less effort. At the same
time, the simulation analysis revealed that for any sufficiently small communication
threshold, the subsystems communicate when not needed. This phenomenon can be
explained by the nonlinearity of the interconnections: a large local tracking error does
not necessarily mean a large replacement error on its interconnected systems. As we
consider higher-order interconnections, the local tracking error may misrepresent the
magnitude of the impact on the other subsystems dynamics. As a consequence, the
subsystems may communicate when not needed, while no exchange of information
occurs when it could be beneficial.

Towards alleviating this problem we developed a coordinated communication
scheme, in which two subsystems exchange information only when both of the track-
ing errors exceed a certain design threshold (Chapter 5). The basic idea is that while
a subsystem performs well (i.e., the local tracking error is small), it is less likely
that it needs information from other subsystems. As demonstrated by the simulation
analysis, the proposed communication scheme substantially reduces the cost for com-
munication, with no significant impact on the tracking performance. The tradeoff is
that only boundedness of the tracking errors is guaranteed, while in the case of the
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self-triggering tracking-error based communication algorithm, asymptotic stability is
ensured. However, the size of the convergence region can be made as small as desired
by selecting smaller constants for certain communication thresholds. As these design
constants approach zero, the coordinated communication scheme is reduced to the
self-triggering tracking-error based communication scheme presented in Chapter 4.

The coordinated communication scheme presented in Chapter 5 reduces the cost
for communication by avoiding to exchange information when not needed. However,
it fails to address the issue where a small local tracking error can have a significant
impact on the other subsystems. As the nonlinearities of the interconnection become
larger, the magnitude of the replacement error can grow very large. In such cases,
the replacement error can be reduced only by reducing the size of the communication
threshold. Due to the high cost of communication, it is important that communication
algorithms maximize the benefits from the available communication resources.

A key point in this thesis is that communication is optimized when the decision to
communicate is based on the interconnection effects between the subsystems. More
specifically, the exchange of information should be such that the subsystems are able
to approximate, and therefore address, the interconnection functions as best as pos-
sible. In Chapter 6 we formulate the problem of communication optimization as a
problem of obtaining the best approximation of the unknown coupling dynamics,
based on the use of step functions. A rigorous analysis is presented which shows that
a regular partition of the range of the function leads to the best L8 step function ap-
proximation. Following this analysis, a communication algorithm is presented based
on the use of adaptive approximation models for estimating the unknown intercon-
nections and fault functions. The decision to communicate is based on monitoring
the value of the approximator rather than the value of the local state or tracking
error. The proposed communication scheme ensures the boundedness of the replace-
ment errors, without necessarily increasing the communication cost. Furthermore, the
magnitude of the replacement errors is controllable through a communication thresh-
old. The proposed scheme does not require the availability of estimates of remote
states, as it was assumed in previous chapters. However, in practical applications it
is best to incorporate as much communication-free knowledge about the other sub-
systems, in order to reduce the cost for communication. The simulation study shows
a great reduction of the communication cost as compared to previous communication
schemes, while keeping the tracking performance and control effort constant.
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7.1.1 Applicability of the approach in real systems and large-
scale applications

The class of interconnected systems considered in this work is large enough so that
it is not only of theoretical interest, but also of practical applicability. Moreover, al-
though we have assumed identical subsystems, by the fact that the model assumes a
significant uncertainty both in the local subsystems dynamics as well as in the inter-
connection effects, it can be used to model a wide range of real systems. The academic
nature of the simulation examples considered in this thesis, allows for illustrating the
effectiveness of the proposed approach and focus on certain aspects of the feedback
control scheme. In general, the analysis and design of the distributed fault tolerant
control and communication methodologies presented in this thesis provides the basis
for the development of algorithms for improving the stability, performance, reliability
of real-world large-scale and complex systems, as well as reduce the communication
requirements in practical applications. In order to investigate the applicability of the
approach in real-world applications, it is needed that more complex simulation setups
are considered, including: (a) a large number of subsystems, and (b) communication
delays and failures. In addition, in order to broaden the applicability of the proposed
approach, a more general class of interconnected systems needs to be considered, such
as, non-feedback linearizable subsystems and multiple-input multiple-output (MIMO)
subsystems.

7.2 Future Research Directions

7.2.1 Extension to a more general class of interconnected
systems

In this thesis we have considered interconnected uncertain nonlinear single-input
single-output (SISO) subsystems that are exactly feedback linearizable. Real world
systems are often dynamical systems with MIMO subsystems. Therefore, extending
the results of this thesis to a MIMO framework would be beneficial from an applica-
bility perspective. Towards this direction, a key challenge is to extend the optimized
communication scheme presented in Chapter 6 to the case of interconnection effects
represented by vector functions. In the case of highly complex vector interconnection
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functions, obtaining a good approximation of the coupling dynamics becomes more
difficult, and a different approach might be needed to approximate the unknown
coupling dynamics and design the communication decision algorithm.

The distributed fault tolerant control and communication schemes presented in
Chapters 4, 5 and 6 consider the case of linear-growth and Lipschitz interconnections.
In order to enhance the applicability of the proposed distributed design, we need to
consider a more general class of interconnections. The key challenge in this direction
is developing control and communication methods for ensuring the boundedness of
the replacements errors. In the case of Lipschitz interconnections it is guaranteed
that the replacement error is relatively bounded and typically small, provided that
the communication threshold dij is small. However, in the more general case of non-
Lipschitz interconnections, even a very small dij can produce a very large replacement
error. The distributed fault tolerant control and communication scheme needs to be
able to handle arbitrary large replacement errors, both from a stability and commu-
nication cost perspective. A potential approach is to combine the distributed fault
tolerant control scheme with decentralized adaptive bounding methods for enhancing
the stability of the system in the presence of large replacement errors.

7.2.2 Multiple unknown interconnections and fault functions

A key assumption of the optimized communication scheme presented in Chapter 6
is that the local tracking error is a good training signal for learning the unknown in-
terconnections and fault functions. Note that, the optimality of the communication
algorithm is as good as the accuracy of the obtained approximation models. How-
ever, by basing the approximation of a potentially large number of interconnection
effects on a single training signal, it becomes increasingly difficult to obtain good
approximation performance. In order to ensure sufficient approximation performance
and therefore improve the efficiency of communication in the case of a large num-
ber of interconnection functions, it is required that we develop more sophisticated
estimation methods for approximating the unknown coupling dynamics and design
separate training signals for each interconnection and fault function. A potential ap-
proach towards this direction is the development of a bank of estimators (one for
each interconnection function) for estimating the effect of each interconnection and
fault function onto the local subsystem dynamics. Based on this approach, a residual
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error is generated that is used as an augmented training signal for approximating the
corresponding unknown interconnection and fault function.

7.2.3 Sampling-based function approximation

A key limitation of the proposed approach, as well as prior research work in dis-
tributed control, is the assumption of shared knowledge of reference trajectories, or
the availability of online estimators of remote subsystems states. In practice the ref-
erence trajectories might change at runtime, while it may be difficult to ensure the
accuracy of the state estimators throughout the operation of the system. In Chap-
ter 6 we have presented a distributed fault tolerant control scheme that combines
state estimators with communication for approximating the uncertain dynamics in
the system. The simulation analysis shows that the lack of state estimators can con-
siderably increase the approximation error.

An interesting question to explore is what approximation performance can we ex-
pect when only discrete samples of the states of remote subsystems are available. In
order to motivate this problem, consider the distributed input-output system given
by yi “ δpxjq, where xj P Xj Ă R is the input, yi P R is the output, and δ : R Ñ R

is an unknown continuous function. Assume that an observer has access to xj for all
t ą 0 and transmits samples x̄i

jptq to an approximator δ̂, according to a level-crossing
communication algorithm, with a certain communication threshold d ą 0. The ob-
jective is the design of an adaptive approximation framework for approximating the
unknown function δ, based only on the use of the communicated samples x̄i

jptq and
the measurement of y, which is available for all t ą 0. Intuitively, if the samples
are close enough (i.e., if the communication threshold d is small), the approximation
performance tends to the case where xj is available for all t ą 0. However, we need
to determine the relationship between the best approximation performance and the
properties of the function, as well as the choice of the communication threshold d. In
addition, we need to explore alternative communication algorithms for enhancing the
performance of the approximation. Finally, we need to investigate the use of other
approximation structures (such as, piecewise linear functions and splines) that may
be more suitable for function approximation, provided that only samples of the input
are available.
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Proof of Lemma 1.1

Let the Lyapunov function be given by V “ 1
2

řm
i“1 x̃

2
i . Substituting ui from (1.6)

into the tracking error dynamics (1.5), the time derivative of V satisfies

9V “

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

x̃iθijϕijpxjq.

From (1.4) we have

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

|x̃i|θijLij|x̃j| ` |x̃i|θijσ̄ij.

Using the inequality 2αβ ď α2 ` β2 for α, β P R,

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

1

2
θ2ijL

2
ijx̃

2
i `

1

2
x̃2
j ` |x̃i|θijσ̄ij

ď ´

m
ÿ

i“1

m
ÿ

j“1

”

`

ki ´
1

2
´

1

2
θ2ijL

2
ij

˘

|x̃i| ´ θijσ̄ij

ı

|x̃i|

Which shows that for ki “ λi ` 1
2

řm
j“1,j‰i 1 ` θ2ijL

2
ij, for some λi ą 0, x̃i is ultimately

bounded with the ultimate bound |x̃i| ă
θij σ̄ij

λi
.
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Proof of Lemma 1.2

Let the Lyapunov function be given by V “
řm

i“1
1
2
x̃2
i `

řm
j“1

1
2γa

ij
θ̃a

2

ij ` 1
2γb

ij
θ̃b

2

ij , where
θ̃aij “ θ̂aij ´ θaij and θ̃bij “ θ̂bij ´ θbij are the parameter estimation errors. Substituting ui

from (1.11) into the tracking error dynamics (1.5), the time derivative of V satisfies

9V ď

m
ÿ

i“1

´kix̃
2
i ´ x̃iusi `

m
ÿ

j“1

x̃iθijϕijpxjq `
1

γa
ij

θ̃aij
9̃θaij `

1

γb
ij

θ̃bij
9̃θbij.

Based on (1.8) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i ´ x̃iusi `

m
ÿ

j“1

´1

2
`

1

2
θ2ijL

2
ij

¯

x̃2
i ` |x̃i|θijσ̄ij

`

m
ÿ

j“1

1

γa
ij

θ̃aij
9̃θaij `

1

γb
ij

θ̃bij
9̃θbij.

Using (1.9) and (1.10), and substituting usi from (1.12) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

´θ̃aijx̃
2
i ´ θ̃bij|x̃i| `

1

γa
ij

θ̃aij
9̃θaij `

1

γb
ij

θ̃bij
9̃θbij.

Substituting the adaptive laws (1.13) and (1.14) shows that 9V ď ´
řm

i“1 kix̃
2
i , which

completes the proof.
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Proof of Lemma 1.3

Let the Lyapunov function be given by V “
řm

i“1
1
2
x̃2
i `

řm
j“1

1
2γa

ij
θ̃a

2

ij ` 1
2γij

θ̃2ij, where
θ̃aij “ θ̂aij ´ θaij and θ̃ij “ θ̂ij ´ θij are the parameter estimation errors. Substituting ui

from (1.15) into the tracking error dynamics (1.5), the time derivative of V satisfies

9V ď

m
ÿ

i“1

´kix̃
2
i ´ x̃iusi `

m
ÿ

j“1

x̃iθijϕijpxjq `
1

γa
ij

θ̃aij
9̃θaij `

1

γij
θ̃ij

9̃θij.

Adding and subtracting θijϕijpxdjq and substituting usi from (1.16) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

x̃i

`

θijϕijpxjq ´ θijϕijpxdjq
˘

` x̃iθ̃ijϕijpxdjq ´ θ̂aijx̃
2
i

`
1

γa
ij

θ̃aij
9̃θaij `

1

γij
θ̃ij

9̃θij

Substituting the adaptive law (1.17) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

x̃i

`

θijϕijpxjq ´ θijϕijpxdjq
˘

´ θ̂aijx̃
2
i `

1

γa
ij

θ̃aij
9̃θaij

From (1.2) we have

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

|x̃i||θij|Lij|x̃j| ´ θ̂aijx̃
2
i `

1

γa
ij

θ̃aij
9̃θaij

Using the inequality 2αβ ď α2 ` β2 for α, β P R,

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

1

2
x̃2
i θ

2
ijL

2
ij `

1

2
x̃2
j ´ θ̂aijx̃

2
i `

1

γa
ij

θ̃aij
9̃θaij

Using (1.9) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i ´

m
ÿ

j“1

x̃2
i θ̃

a
ij `

1

γa
ij

θ̃aij
9̃θaij

Substituting the adaptive law (1.13) we obtain that 9V ď ´
řm

i“1 kix̃
2
i which completes

the proof.
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Proof of Lemma 1.4

Let the Lyapunov function be given by V “
řm

i“1
1
2
x̃2
i `

řm
j“1

1
2γc

ij
θ̃c

2

ij ` 1
2γij

θ̃2ij, where
θ̃cij “ θ̂cij ´ θcij and θ̃ij “ θ̂ij ´ θij are the parameter estimation errors. Substituting ui

from (1.21) into the tracking error dynamics (1.5), the time derivative of V satisfies

9V ď

m
ÿ

i“1

´kix̃
2
i ´ x̃iusi `

m
ÿ

j“1

x̃iθijϕijpxjq `
1

γc
ij

θ̃cij
9̃θcij `

1

γij
θ̃ij

9̃θij.

Adding and subtracting θijϕijpx̂
i
jq and substituting usi from (1.22) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

x̃i

`

θijϕijpxjq ´ θijϕijpx̂
i
jq
˘

` x̃iθ̃ijϕijpx̂
i
jq ´ θ̂cij|x̃i|

`
1

γc
ij

θ̃cij
9̃θcij `

1

γij
θ̃ij

9̃θij

Substituting the adaptive law (1.24) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

x̃i

`

θijϕijpxjq ´ θijϕijpx̂
i
jq
˘

´ θ̂cij|x̃i| `
1

γc
ij

θ̃cij
9̃θcij

From (1.2) we have

9V ď

m
ÿ

i“1

´kix̃
2
i `

m
ÿ

j“1

|x̃i||θij|Lij|xj ´ x̂i
j| ´ θ̂cij|x̃i| `

1

γc
ij

θ̃cij
9̃θcij

From (1.19) and (1.20) we obtain

9V ď

m
ÿ

i“1

´kix̃
2
i ´

m
ÿ

j“1

θ̃cij|x̃i| `
1

γc
ij

θ̃cij
9̃θcij

Substituting the adaptive law (1.23) shows that 9V ď ´
řm

i“1 kix̃
2
i which completes

the proof.

139

Pan
ag

iot
is 

Pan
ag

i


	1 Introduction
	1.1 Motivation
	1.1.1 Case A. Unknown interconnections
	1.1.2 Case B. Interconnections with known structure
	1.1.3 Case C. Desired states are available to all the subsystems
	1.1.4 Case D. Remote states estimates are available

	1.2 Contributions
	1.3 Organization of the Thesis

	2 Literature Review
	2.1 Decentralized Control of Interconnected Systems
	2.2 Distributed Control of Interconnected Systems
	2.3 Fault Diagnosis Methods for Dynamic Systems

	3 Decentralized Fault Tolerant Control
	3.1 Introduction
	3.2 Problem Formulation
	3.3 Decentralized Fault Tolerant Control Design
	3.4 Stability Analysis
	3.5 Decentralized Safety Control Scheme
	3.6 Simulation Example
	3.7 Conclusion

	4 Distributed Fault Detection and Accommodation
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Distributed Fault Detection Scheme
	4.4 Distributed Nominal Control Design
	4.5 Distributed Fault Accommodation Scheme Design
	4.6 Simulation Example
	4.7 Conclusion

	5 A Coordinated Communication Scheme for Distributed Fault Tolerant Control
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Distributed Fault Tolerant Control Design
	5.4 Stability Analysis
	5.5 Simulation Example
	5.6 Conclusion

	6 An Optimized Communication Scheme for Distributed Fault Tolerant Control
	6.1 Introduction
	6.2 Problem Formulation
	6.2.1 Motivating example

	6.3 Function Approximation with Step Functions
	6.3.1 Comparison of range partitioning with regular partitioning step approximation

	6.4 Communication Scheme Design
	6.5 Distributed Fault Tolerant Control Design
	6.6 Stability Analysis
	6.7 Simulation
	6.8 Conclusion

	7 Conclusion
	7.1 Concluding Remarks and Contributions
	7.1.1 Applicability of the approach in real systems and large-scale applications

	7.2 Future Research Directions
	7.2.1 Extension to a more general class of interconnected systems
	7.2.2 Multiple unknown interconnections and fault functions
	7.2.3 Sampling-based function approximation


	Appendices



