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Abstract

This thesis deals with the simulation of devices utilising AC Electrokinetics
(ACEK) for the manipulation of micro- and nano-particles. Such simulations
are necessary in order to better understand and design AC Electrokinetics de-
vices, that behave in a more predictable manner. A fundamental step towards
the better understanding of ACEK methods is the development of a physical
model that can describe the dynamics of such devices. Using such a physical
model, numerical simulations of the devices’ operation are performed. The
simulations can be used as an aid in the analysis of devices and as a fast and
cheap method for the design of novel systems, due to the low cost associated

with the design process.

First of all, a physical model for the dynamics of a micro- or nano-particle
subject to the Dielectrophoretic (DEP) force suspended in a fluid is introduced.
Physical models are also introduced for other forces on the particle, such as
drag, buoyancy and gravity, and the method of finite elements is used in order

to solve the resulting system of equations.

In the next step, the Electrohydrodynamic (EHD) phenomena associated with
DEP are investigated. The first of these is the AC Electroosmotic (ACEO)
motion of the fluid, which is caused by the interaction of the fluid ions in the
electrical double layer over the electrode surface with the AC electric field. A
linear physical model for the double layer potential is used in order to simulate
the ACEO fluid motion. These simulations enable the analysis of existing
ACEO pumping systems and the design of novel systems. Using numerical
simulation, a novel system for configurable ACEO pumping is proposed and

analysed.

The second EHD phenomenon investigated is the AC Electrothermal (ACET)
fluid motion. ACET is caused by the non-uniform heating of the fluid, due
to the non-uniform electric field used for DEP. The physical model describing
ACET fluid motion is also used in order to provide numerical simulations for
the device operation. Using both the ACET and ACEO models, a device is

analysed that utilises both phenomena for biosensor enhancement.

The following part investigates the dynamics of a DEP manipulation system

using a velocity field analysis, in order to study the trapping of particles in



different occasions when both DEP and ACEO are significant. This study
is extended by introducing the Smoluchowski equation in order to study the
particle concentration evolution. It is found that the effect of ACEQO is detri-
mental in the particle concentration dynamics and therefore its inclusion in

any future study is considered essential.

The model used for the evolution of the particle concentration is further ex-
panded in the subsequent part by introducing modifications in order to account
for the finite particle dimensions. These modifications are necessary in order
to enable the model to simulate the particle collection dynamics for larger
particles, for which otherwise the concentration would reach unrealistic levels,
due to the low diffusivity associated with such particles. It is found that the
introduction of these modifications alters the simulated device dynamics sig-
nificantly. The simulated dynamics using the steric particle model are more
realistic and therefore the modifications are considered an improvement of the

existing model.

Particle steric modifications are then applied to the Navier-Stokes equations
for the suspension, so that joint DEP and ACEO can be investigated using
the particle steric model. The results from the simulation of a real device for
DNA manipulation are then compared with available experimental data and
exhibit a more realistic behaviour than the previous model. Also, the ability to
extract data from the simulation with and without the inclusion of the ACEO
fluid motion allows the interpretation of observations previously unexplained,
such as the non-linearity of the initial rate of increase of the particle collection
with the particle polarisability. What is even more important in the results
produced is that it can be deduced that the non-linearity of the relationship
is actually due to enhancement of the initial rate of increase of the particle

collection.

The modified model also allows the investigation of many design parameters
that are important for the device operation, such as the particle size and the
electrode height. The behaviour of devices with a range of different character-
istics can therefore be investigated using simulations that can be performed
with a relatively much lower cost and at reduced computation time compared

to purely experimental methods.



IHepiinyn

Avty 1 Awrpip] acyoAeitol e TNV TPOGOUOIMOT, GLOKELAOV Ol OmOoiEg
ypnoponoovv texvikés Hiektpokivntikng Evaliaccouevouv Pevuatoc (HEP)
Yy T OloEIPIon UIKPO- Kot VOvo-copatidimv. Ot TpoGoHOIdGELS aVTEG Eivor
OVOYKOUES Y10 TV KOADTEPT Katavonom Kot To oxedtacid cvokevmv HEP ot
omoieg ovumeprpépovtal pe mo mpoPrentd Tpomo. Baowod Puo mpog v
katevBuvon avt elvar n avdmtuén evog eLoKoL HOVTEAOL TO Omoio va
TEPLYPAPEL TN OVVOUIKY] TETOIWV GLOKEL®V. XPNGUYOTOIOVINS TO (QULGIKO
HOVTELO, TOPOVGLALoVTOL OpPBUNTIKEG TPOCOUOIDGES TNG AETOVPYIOG T®V
ovokKeLOV. O1 TPOCOUOUDGELS LITOPOLV Va. xpnoipomoinfovv yia va fondrcovv
OTNV 0VAALCT] TOV GLGKELMOV KOl GOV UL YPNYOPN KOl XOpUNAoD KOGTOLG

1EB0J0G Y10 TOV GYESUGHO KOVOTOU®Y GUOKEVDV.

Kot apynv, mapovcialetal £vo QUOIKO HOVTEAO Y10l TN SVVAUIKT VO LKPO- N
Vavo-GOUOTO0L avaptnuévov o€ vypd Kot to omoio Ppioketon vwd TV
emiopaon ¢ Amhiektpopopntikic (AH®) ddvaung. Xto poviélo avtod
EVOOUOTOVOVTOL KOl GALEG OLVAUES OTTWG 1 OTICHEAKOVOM, 1| AVMOOT] KOl 1
Bapvmta. AxoAovbwg, ypnoomoteitor 1 péBodOC TV TEMEPUGUEVOV

OTOLYEI®V Y10 TNV EMALOT TOV GYETIKOV EIGADGEMV.

Y10 embuevo o10d10, Odepevvavion ta. Hiektpoddpodvvapukd (HYA)
eowvopeva mov cvvomdpyovv pe v AHO. To mpdto amd avtd sivor 1
H)extpooopotiky Kivnon Evollaocoduevov Peduatog (HKEP) tov vypov, n
omoio TpokoAeitonl amd TNV AAANAETIOpOCT TV WOVI®OV TOV VYPOV GTO OTAO
nAektpkd otpopo pe to Hiextpwcod [edio. 'Eva ypappikd euoikd poviéro y
TO SUVAUIKO GTO OIMAO OTPpOUA Ypnoonoteiton yia va tpocopolwbei n HKEP.
Ot mpocopoldoel kabiotohv dvvat) TNV OVAAVCT LIAPYOVG®Y GLGKELOV
HKEP xot 10 oyedaopnd véov cvotnudtov. Mg m ypnon tov apliuntikov
TPOGOLOIDCEMY, £VO, KOWVOTOUO CUGTNUO YL OVOTPOGAPUOLOUEV] AVTANGN

vypov pe ™ xprion HKEP mpoteiveTon ko avalvetor n Asttovpyia tov.



H dgvtepn HYA «ivnom mov depevvatan sivon m HAiektpoBeppkn Kivnon
EvaAlacoopevov Peduatog (HOEP) tov vypod. H HOEP npokaieiton amd to
YEYOVOG OTL TO AVOLOL0YEVEG NAEKTPIKO TTEDI0 TpoKadel avopoloyevn Béppavon
oL VYPoV. To Pvowd poviéro mov weprypdpet v HOEP ypnowomoteitot yio
va opayfovv aplOuNTIKEG TPOCOUOUDGELS Y0 TNV TEPTLYPOPT] TNG AEITOVPYING
OLOKEVDV. XPNOUOTOIOVTOS TO. QUOIKE povtéda yie v HOEP xou v
HKEP, avaldovior GuoKevEG 01 OTTOIES YPNOIUOTOI0VV TO PUIVOLEVO OVTE Y10

v evioyvon Pooicntpov.

To endpevo pépog diepeguvd v duvapkn cvotnudtov AHO ypnoyonoidvog
aviAvon TOV TENIMV TOYLTATOV, HE OTOTEPO OKOMO UEAETN TOV OoNueiov
nayidevong o€ cvvovacpovg HKEP kot AH®. Avt n pehétn emexteiveran pe
mv elooyoyn ™ e&icmong Smoluchowski yio v Teptypa@n ¢ SVVOUIKNG
™G oLYKEVTP®ONG copoTinv. Edd dwapaivetar 6T 1 enidopacn ¢ HKEP og
ovokevég AH®D eivor Opapatikr), Kol GCUVER®MC 1 GLUmEPIANYM ™S o€

UEALOVTIKEG TPOCOUOLDGELS GuoKeEL®V AH®D glvan avaykaia.

To poviého mOv YPNCIUOTOIEITOL VIO TNV TEPLYPOPY| TNG GLYKEVIPOONG TMOV
COUATIOIMV ETEKTEIVETOL TEPAUTEP® GTO EMOUEVO HEPOC, LE TN GUUTEPIANYN CE
oVTO TPOMOTOUWCEWV Ol omoieg AauPdvovv v’ dYv TIC TEMEPACUEVES
O00TAoES TV COUATOIMV. AVTEG Ol TPOTOTOMCELS Elval avaykaieg Yo va
KATOOTEL dUVOT 1 TPOCOUOIMOT CLOTNUATOV oTe. omoiot To Uéyebog TV
COUOTIOIMY CUVETAYETOL PN PECAICTIKEG GLYKEVIPMOELS UE TO TPONYOVUEVO
HOVTELD, AOY® YOUNANG S1AYVONG TOV COUATIOIMV Kol LEYOA®Y SUVAUE®V TOV
avartuoocovtol. Ed® dwapaivetor 0Tt o1 TpOmoTOn|oElS d10popoTotlovy pilikd
TN OLVOWIKT] TOV GUOTHUOTOG KOlU GUVETMC 1 XPNON TOLG GE UEAAOVTIKEG

TPOGOLOIDGELS Bonbd otn PeAtimon ¢ akpifelag TV amoTeEAeGUATOV.

Avaroyeg Tpottomomoels epappolovior 6to endpevo Ppa Kot otic eEloMoElg
Navier-Stokes, €161 ®ote Vo, KATAOGTEL SLVOTH 1) TOVTOYPOV] TPOGOUOIMOT
HKEP kot AH® ce o ovokevn. To amoteAéopato amd v TPOocopoinwon
pog mpoypotikng cvokevng vy olayeipion DNA ovuykpivovtor emiong pe
TEPAUATIKE ATOTEAECUATO KO EMOEIKVOOVY TTO PEOAGTIKY GUUTEPIPOPA OTTd
t0 mpomnyovuevo poviéro. Emiong, mn  dvvardotmro  emavaAnyng g
npocopoinong yopic HKEP emrpénet tv enenynon mopatnprcemv o1 omoieg

dev umopovcoav vo eEnynbodv TponyovuEvms, OO N U YPOUUKT GXECT] TOV



apywov puOuod aENOMNG TG GLYKEVIPOONS COUATOIOV GE GYEoM UE TNV
dutolkn pomn tovg. Emiong, axopo mo evolapépov gival 1o yeyovog OTL amod
TIG Tpocopowdoelg pmopet va e€ayfel 6tL n p| Ypoukn oyéon opeileton o€

evioyvon ™ ddKaciag.

To 1tpomomomuévo pOvTéAO emtpémel emiong TN OlEPEVVNOT  TOAADV
peTOPANTOV oYed1oU0D, OTwG To HEYEBOg TV SOUATIOIOV Kol TO VYOG TMV
niektpodiov. 'ETol, N ovumeppopd TV GUOKELOV GE GYECN UE OLAPOPES
TOPOUETPOVS GYEOOGHOV Umopel va diepevvnBel pe ToAD yauniod KOGTOG Ko
o€ TOAD Alyo ¥pOVO GE GUYKPION UE OLTOV TOV OMOLTEITOL HE TEPOUATIKES

pebod0LG.



Nomenclature

Greek Symbols

€ Electrical permittivity
€r Relative permittivity
€o Permittivity of free space

€mr  Medium relative permittivity
€m Medium electrical permittivity
Epr Particle relative permittivity
Particle electrical permittivity
Ne Suspension viscosity

Ny Fluid viscosity

v Phase shift

A Ratio of the diffuse double layer potential drop over the total double layer potential
drop

Apebye Debye length

Q Non-dimensional frequency
w Angular frequency

[0) Electric potential

s 3.14159265358...

Pt Fluid density

Pp Particle density

Ps Suspension density
viii



o Electrical conductivity

om  Medium conductivity

op Particle conductivity

Roman Symbols

?D pp Suspension volume dielectric body force
E Electric field

F pep Dielectrophoretic force

n Unit vector normal to the boundary
uy Fluid velocity

U Particle velocity

Us Suspension velocity

a,,  Real part of the particle polarisability

bp Base pairs

C Particle concentration
c Particle volume fraction
Cm Particle maximum volume fraction

Claiffuse Diffuse layer capacitance
Cpr  Double layer capacitance
Clstern Stern layer capacitance

D Diffusion constant

D,  Damkohler number

=

Frequency

Friction factor

~~

e

Electrothermal body force
g Gravitational acceleration

K(w) Clausius-Mossotti factor

X



kr Thermal conductivity
kg Boltzmann constant
kbp  Thousands of base pairs
P Fluid pressure

Da Dipole moment

Pe  Péclet ratio

T Absolute temperature
U, Pumping velocity

ugip  Fluid slip velocity

Vi Particle volume

Vappliea Electrode excitation potential
x x-coordinate

Y y-coordinate

Zpr, Double layer impedance
Acronyms

ACEK AC Electrokinetics
ACEO AC Electroosmosis
ACET AC Electrothermal
DEP Dielectrophoresis

EHD Electrohydrodynamics
IHP Inner Helmholtz Plane

OHP Outer Helmholtz Plane
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Chapter 1

Introduction

In this chapter, the background and motivation for the work presented in the thesis
is outlined. Furthermore, work previously conducted in the field of AC Electrokinetics
and numerical modelling in particular is presented. Also, justification for the use of the

particular numerical scheme employed is provided.

1.1 Motivation

For a very long time, mankind has been fascinated with objects of great scale. This has
led to the construction of huge buildings, monuments and machines for the majority of
known history. However, recently another fascination has began. The fascination with
the small world, one which is invisible to the eye and extends to the molecular or even

atomic level.

One of the first expressions of this fascination was the famous lecture by Richard Feynman
at an American Physical Society meeting at Caltech on December 29, 1959, ‘There’s
Plenty of Room at the Bottom’. This was one of the first expressions of a new quest for
exploration of the limits which could be broken on the small scale, therefore allowing for
a new scientific field to emerge, that of Nanotechnology. Since then, a lot of progress has
been made and nowadays Nanotechnology is considered one of the most promising fields

of science.

Nanotechnology is not a ‘technology’ by itself, but usually a set of enabling technologies
that can serve in many other fields. Progress in a number of manufacturing techniques has
enabled the advancement of knowledge on the subject. Therefore, the scale over which it
is possible to control the manufacturing of devices, particularly those manufactured using

photolithography methods, is constantly decreasing.
1
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Devices are nowadays required to be smaller and consume less power. New materials such
as Carbon Nanotubes (CNTs) are utilised in the construction of devices. Novel techniques
are investigated that can assist in the production, purification and handling of CNT
nanocomponents. These techniques are essential in order to enable the manufacturing of
devices that can be accurately built from such components, with large scale production
ability and in a cost-effective manner. Therefore, it is of great importance to be able
to handle and manipulate components of very small scale in order to manufacture such

devices.

Furthermore, recent progress in the fields of genomics and proteomics has accelerated
the identification of genes that cause or influence numerous diseases. Inexpensive, minia-
turised and automated devices for molecular screening are expected to revolutionise the
diagnosis and prognosis of diseases and disease risks even at points of care, in the home
and in environments lacking any infrastructure. With the increasing interest in molecular
nanodevices and their fabrication, techniques are developed in order to handle, manipulate

and attach molecules such as DNA to surfaces at specific locations.

Methods utilising non-uniform electric fields are emerging as most promising techniques
for this kind of particle manipulation. They require no moving parts and hence can be
inherently scalable for massively parallel micro- and nano-particle manipulation. Dielec-
trophoresis (DEP) in particular, is an electronic analogue to optical tweezers: an AC
electric field induces a dipole moment on an object in solution, which then experiences a
force that depends on the gradient of the electric field magnitude and frequency, as well as
on the particle and medium properties. For both types of tweezers, this force must com-
pete with thermal Brownian motion to be effective, which becomes increasingly difficult
as the particle size approaches the nanometre scale. However, the scaling of dimensions
also favours the DEP force strength, since DEP depends on the electric field gradient.
Therefore, it is one of the few candidate forces for particle manipulation for which the
scaling of dimensions does not prohibit the use. In fact, modern electrodes constructed
using photolithography techniques can achieve much higher electric field gradients than
electrodes originally used for DEP and are therefore capable of manipulating much smaller

particles than was originally thought possible.

In addition to direct methods of interacting with the particles, methods of indirect ma-
nipulation are also employed in so called lab-on-chip systems. These consist of the Elec-
trothermal (or AC Electrothermal) and AC Electroosmotic (ACEO) motions of the fluid
in which the particles are suspended. The Electrothermal fluid motion is caused by ther-
mal non-uniformities in the fluid which are caused by the non-uniform electric field, which
in turn cause conductivity and permittivity gradients. The ACEO fluid motion is a con-
sequence of the interaction of the tangential electric field over a charged electrode surface,

acting on the ions in the electrical double layer. The ions are mobilised by the electric
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field resulting in the ACEO fluid motion. The fluid indirectly exerts a force on the par-
ticles through drag and may therefore be used to manipulate the suspended particles.
The fluidics problems involved in micro- and nano-particle manipulation are inherently
existent and have to be studied in accordance to the direct forces on the particles in order

to produce systems that behave in the way they are designed to.

Since AC Electrokinetic (ACEK) phenomena are difficult to observe experimentally, other
methods are sought in order to better understand the underlying processes. Such insight
can be provided by numerical simulations of the devices in question. Therefore, there is
a great need to provide numerical simulations in order to aid in the analysis and design
of devices for ACEK particle manipulation. An essential step towards this direction is
the formulation of a physical model able to describe the dynamics of such devices. The
physical model must then be solved in order to obtain the device dynamics. This will
enable fast and cheap analysis and design of devices utilising non-uniform electric field

methods. The alternative would be costly and time-consuming trial and error methods.

The work presented in this thesis sets out to provide a solution to this problem by de-
veloping a numerical simulation for the system dynamics of ACEK particle manipulation
devices. The simulations presented evolve in complexity as the thesis progresses and reach
a state where they can be used to provide useful insights into the operation of real devices.
In the course of this work, devices are analysed and new insights are provided in their
operation, enabling the interpretation of experimental results which previously disagreed
with theoretical predictions. Furthermore, new device designs are proposed that exhibit

improved operation over existing devices.

1.2 Literature Survey

1.2.1 Theoretical and experimental work on AC Electrokinetics

The DEP force is a force exerted on a dielectric particle due to the presence of a non-
uniform electric field. DEP was first studied in detail by Pohl (5) in one of the first
publications on the subject. Furthermore, the same author investigated many experimen-
tal aspects of DEP in (6).

Biological applications of DEP are studied in (7), while a theoretical investigation of DEP
is made by (8). Although methods which involve integration of the Maxwell stress tensor
on the particle surface (9) and using the energy variation principle (10) can be used to
calculate the DEP force, the effective dipole method is the most commonly used method
due to the ease of implementation and its reasonable accuracy (11). The use of AC

fields avoids the problem of electrolysis that is caused when using DC electrophoresis for
3
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similar tasks (12). The effect of illumination of the microfluidic channel is an important

parameter which has also been a subject of study (13).

DEP devices in the early stages used very large components such as steel conduits and
wires and required very high potentials to operate. A major step in applying DEP in
microscale and nanoscale problems was the development in the manufacturing of silicon
chips using nanopatterning by photolithography, as well as the introduction of novel
materials. This enabled the interaction with much smaller particles due to the very high
electric field gradients and also required much lower operating potentials of the order of
1 V. DEP using new manufacturing techniques for devices was investigated by (14) and
enabled the first fluidic integrated circuits to be manufactured (15). Such technology was
used to investigate the dielectric properties of body tissues (16) and in order to enable the
separation of yeast cells (17). The aforementioned advances also led to the construction of
devices to separate leukaemia cells from blood (18). Important work was also conducted
in order to link the dielectric properties of a suspension of colloidal particles to both the
DEP and Electrorotational behaviour (19) (20).

Nowadays DEP can handle single cells, viruses and other nanometre scale particles and
interact with them (since the DEP force depends on electric field gradients, smaller device
features increase its magnitude significantly) (21) and even destroy their exterior to extract
the contents (22). It has been demonstrated that DEP methods can be used to manipulate
the position, orientation and velocity of micro- and nano-metre scale particles (23) (14),
including CNTs (24) and biological particles such as viruses, DNA, bacteria, cells of
various kinds and subcellular components (25). ACEK methods are widely accepted
as the most likely methods of nanoscale particle manipulation (26) and find numerous

applications for nanotechnology in general (27).

The application of DEP methods promises to improve the performance of devices such
as sensors by orders of magnitude (12), (28), (29). ACEK methods may address issues
such as separation (30), movement through capillaries and trapping or focusing particles
on a surface so that they can be detected more easily (31). DEP can even be used to
selectively destroy cells in a mixture (32). Important work has also been conducted in
the use of DEP for cell fusion (33) (34) (35). It has also been demonstrated that DEP
can be used to separate particles solely based on their dielectric properties (36) (37) (38).
Combined with fluidic gradients DEP can also be used to separate solutions of particles
(39).

The use of fabrication techniques based on the manipulation of components using electric
fields is a very important step in devices for which nanoscale component assembly is
required. These methods of fabrication can be massively parallelised and are ideal even in
the case of biological nanocomponents, since they do not contaminate or destroy biological

particles (40). It is even proposed that using electrodes of suitable size makes it possible
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to trap 1 nm particles or single molecules (41). These can be used for pick-and-place

devices instead of current AFM based methods.

DEP-based separation methods frequently employ fluid flow as a force competing with
DEP in order to achieve the separation of two populations of particles. DEP can be
used as the discriminating force in field flow fractionation (42) (43) (44) (45). DEP field
flow fractionation is based on the fact that particles experiencing different DEP force will
levitate to different heights in a capillary and therefore will travel at a different speed due
to the parabolic profile of capillary flow. Further applications for total analysing systems

are proposed in (46).

Another important method for particle manipulation is travelling wave DEP, in which the
electrodes are excited using a time-varying magnitude of the voltage, therefore creating
a propagating profile. This was investigated by (47) for pumping liquids. Further work
on yeast cells was also performed (48). A unified theory for DEP and travelling wave
DEP has been proposed in (49). Important work has also been conducted in a multipolar
theory for DEP and Electrorotation, which takes into account higher than dipole order
polarisation (50). Furthermore, using DEP it is possible to extract the dielectric properties

of nanoparticles by employing non-uniform, AC electric fields (51).

For DNA in particular, DEP may be used for purification, rapid DNA separation and di-
rect manipulation (52). This might be used in conjunction with microdevice electrophore-
sis (53). The use of the DEP method and possible developments in the field of electrical
detection could enable DNA analysis on a single chip. DEP can also be used in the final
stages of DNA analysis to concentrate DNA ensembles in order to increase the localisation
of the fluorescence, instead of pure hydrodynamic focusing (52). Such DNA trapping can
be achieved by using DEP potential wells formed by castellated electrode structures (54)
(55). Using DEP it may even be possible to manipulate DNA so that it can be used as
a storage device. DEP together with electrophoresis may provide the required accuracy
in the positioning of DNA so that information can be obtained optically (31). Apart
from increased concentration, electronic and optical methods of detection of DNA require
methods of immobilising and possibly stretching of DNA so that small samples can be

detected, preferably in a device that can be reusable.

Up to now it has not been very important for manipulation methods to be realisable on
chip devices, since optical methods cannot be integrated on a chip. However, the develop-
ment of electrical detection methods means that in order to benefit from these methods
(of electrical detection) one needs to be able to integrate the manipulation stages on-chip
(56) (57), together with the detection stage. The possibility of using DEP assisted nano-
electrodes has been suggested as a very good candidate method for DNA manipulation

and preconcentration (58).
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Another significant application of DEP is for sorting CNTs (1), a step essential in the
fabrication of CNT based sensors (40), relying on the fact that different nanotube types
have different dielectric properties and dimensions. DEP is also used for assembling
CNT networks on electrodes (59) (60). The use of DEP manipulation may enable the
construction of novel sensors based on CNT response properties. CNT electrodes utilising
DEP suitable for DNA direct manipulation and preconcentration might also be designed
based on past work (61) (62) (63) (64).

Already sensors have been tested for ammonia detection, using DEP to assemble the
CNTs to desired locations on electrodes (40). Sensors for temperature and fluid flow have
also been manufactured using DEP to deposit CNTs to desired locations (24). These
sensors would otherwise be made by moving individual nanotubes in place using AFMs,
which would require manual intervention and monitoring and would not be possible to
move large numbers simultaneously. AFM-based methods would therefore render batch
fabrication unrealistic, whilst DEP and other electrokinetic methods are very promising

in this sense.

DEP has been used in manipulation and separation of biological organisms. It has been
shown that it can also be used in the manipulation of Actin-Myosin systems (65). Addi-
tionally, it has been demonstrated that it is possible for DEP to separate human breast
cancer cells from blood, again based on the fact that the dielectric properties of these
differ significantly (66). The advancement of these methods will enable levels of control

of biological systems that have not been achieved up to now by any other method.

In addition to DEP, it has been demonstrated that EHD phenomena can be used to
enhance transport or placement of nanoparticles and therefore by careful design EHD
effects can be used constructively (67). This is a very important concept that is now
being proposed for transport enhancement and concentration in sensor devices (12) (68).
DEP methods assisted by EHD can also be used in conjunction with CNT electrodes in
order to achieve DNA preconcentration and manipulation (69) (70) (71) (72). Trapping of
particles can be further enhanced by the use of EHD appearing in DEP devices (73) and
can be utilised in lab-on-chip devices, such as for prospective devices for DNA analysis,

where pressure-driven flow is almost impossible (74) (75).

An important EHD phenomenon associated with DEP is ACEQ, the fluid motion due to
the fluid ions being mobilised on the electrode surface. It was first reported by (76). ACEO
has since been proposed for the pumping of liquids (77) and has been found to be very
important in DEP particle manipulation through experimental observations (78). ACEO
can also be used to enhance the performance of trapping (79) (80) (80). The pumping
of fluids using asymmetric electrodes is investigated in (3) (81). Tunable asymmetries
are investigated by (82) and then by (83) and demonstrated using ACEO pumps (84).
The pumping of water using ACEO is achieved by (85). Electrical methods can also be

6
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utilised in the form of ACEOQO in order to move fluids in microfluidic chips, where surface

forces are too high to use pressure pumping (52).

The ACET fluid motion is an EHD phenomenon caused by the thermal gradients intro-
duced in conductive fluids by a non-uniform electric field (86). Promising applications of
these exist for biofluidic applications, where high conductivity electrolytes are required
(87). ACET fluid motion requires a minimum hydraulic diameter to operate (88). The

heating source can also be provided by means other than an electric field (89) (13).

Finally, a review of forces in microelectrode arrays is given in (90) and an investigation of
the scaling laws regarding these in (88). Another review on lab-on-chip methods is given
in (91).

1.2.2 Literature survey for numerical simulations

One of the first computational investigations of the DEP force acting on a single particle
was performed in (92). Also, the simulation of the DEP of CNTs has been studied in (1),
where the DEP force is calculated using finite elements and the particle trajectories are
simulated using the drag force balance with DEP. Each particle is simulated individually
taking into account Brownian motion and it was found that DEP can be used to separate
Single Walled from Multi Walled CNTs.

Direct simulations for DEP are performed in (93) and (94), where the physics of the
particle-fluid problem for a small number of particles is solved and the appearance of
particle chains is demonstrated. The influence of experimental conditions on the mea-
surement of dielectric properties of particles from Electrorotation measurements is investi-
gated numerically in (95). Furthermore, a comprehensive velocity field analysis for ACEK
is performed in (96) and simulations of a quadrupolar dielectrophoretic trap using a mesh
free approach are presented in (97). In addition to these, DEP ratchet structure devices
are simulated in (98). Finally, molecular dynamics investigation of DEP of nanocolloids

is performed in (99).

The phenomena of AC Electrothermal (ACET) and ACEO fluid motion are very im-
portant in DEP manipulation devices and can also be used for pure pumping purposes.
ACET pumping numerical simulations are performed by (87) and (100) and are compared
to experimental results. Fluid motion caused by ACET is simulated in (101) in order to
predict the operation of a stirring system while motion caused by travelling wave excita-
tion was investigated numerically in (102). Two-dimensional simulations are performed
for ACET fluid motion in novel biosensor devices in (103). Trapping of viruses using
DEP and ACET fluid motion has been demonstrated and investigated using a numerical
calculation of the induced velocity fields by (104).

7
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ACEO is investigated in (105) and further work is performed in (106), where a linear
model using the Helmholtz-Smoluchowski formula is proposed. ACEO fluid motion was
simulated using finite elements in (2) and compared to experimental results. ACEO
stagnation points are investigated in (107) and ACEO microfluidic particle transport
using electrode asymmetric polarisation is simulated in (108). Furthermore, the linear
ACEOQO and travelling wave ACET fluid motions are simulated in (109). Variations of this
pumping method have been proposed, such as the use of AC Faradaic polarisation (110)

and the use of non-planar electrodes (111) (112).

In addition to the above, several issues regarding ACEO pumps are examined in (113),
such as the effect of geometrical confinement, Faradaic current injection and non-linear
surface capacitance. A non-linear electrical double layer analysis taking into account
surface conduction is simulated for ACEO in (114). The pumping of fluids using travelling
wave electroosmosis is investigated in (115) and (47). Modified Nernst-Planck equations
have been investigated in order to take into account the non-linearity of the double layer
potential in (116) and (117). Numerical simulations are performed in (118) in order to

study the effect of ionic concentration gradients generated by Faradaic currents.

The electric field and therefore the subsequent DEP and ACEQO velocities in a particle
manipulation system are investigated numerically in (119). Particle movement using a
numerical calculation of the DEP and ACET velocity fields was performed in (120) and
an investigation of DEP with travelling wave force by using velocity fields is conducted

in (121). Guidelines on the simulation of DEP are also given in (122).

Simulations of the dynamics of particles under DEP are performed using a Langevin
formulation in (123). Furthermore, the behaviour of DNA subject to DEP was simulated
numerically using a Fokker-Planck approach in (4). The phase separation and formation
of distinct fronts in negative DEP, taking into account the particle steric effect, has
been analysed using a numerical simulation in (124), by utilising a single-particle model.
The simulations and experiments in (124) are performed using insulating corn oil as the
medium, therefore avoiding issues that have to do with the double layer. The steric
effect of particle concentration on the electric field and hence on the DEP force, has been
investigated using an Effective Medium Approximation (125), where it is found that this
is important. An overview of recent advances in numerical simulation of a wide range of
MEMs devices is provided in (126).

It is evident from the literature that previous numerical investigations usually deal with
the aforementioned physical phenomena partially, because of the increased complexity in
integrating many of these in a single simulation and the increased computational needs.
This thesis attempts to integrate these phenomena simultaneously in one of the most
complete numerical simulations up to date and use the numerical model to provide new
insights into the operation of DEP and EHD devices.

8
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1.3 Method Selection

In order to investigate the operation and design of particle manipulation devices several
methods were initially considered. The analytical method was rejected as the only method
for device analysis since it is limited to a very small range of geometries and system com-
plexity. Therefore, the ultimate task of understanding the operation of such devices and
designing novel systems could not be achieved solely by analytical means. The experi-
mental method was also rejected as the only method for device design, because the trial

and error method would prove too costly and time consuming to be of any practical use.

The best method considered for the analysis and design of ACEK manipulation devices is
the numerical method. This consists of a family of techniques that can be used to produce
the solution for an equation, which might otherwise be impossible to obtain. Numerical
methods can be classified as either direct or iterative methods, depending on whether
they are expected to produce an exact solution (given that infinite precision arithmetic is

used) or an approximate solution.

The method of finite elements is particularly suitable for problems involving complex
geometries. This method assumes a known function that is used to approximate the
solution inside the discrete intervals and the matrix equations formed are solved using a
numerical method. This technique has been particularly popular following the advent of

powerful computers that can perform the necessary calculations in a very short time.

Therefore, the finite element method is selected as a method to solve the PDEs governing
the physical model. It is a well-established method which can be used to solve a wide
range of PDE types for arbitrary geometries. These features are essential for a model

which will be of increasing complexity as this thesis evolves.



Chapter 2

Dielectrophoresis

In this section a theoretical model for the Dielectrophoretic (DEP) force on a particle is
introduced. This is subsequently implemented using a numerical scheme and the method
of solution is verified by comparing the observed results with an analytical solution for
a specific geometry. Then, the particle dynamics in a DEP manipulation device are
simulated using both the finite element solution of the Smoluchowski equation and the
Monte-Carlo simulation of the corresponding Langevin equation, in order to assess the

advantages and disadvantages of each method for the problem of interest.

2.1 Theory

2.1.1 Dielectrophoresis

Dielectric particles suspended in a dielectric medium are polarised under the action of
electric fields. If the field is spatially inhomogeneous, it exerts a net force on the polarised
particle known as the Dielectrophoretic (DEP) force. This force widely depends upon
the temporal frequency (for AC Dielectrophoresis) and spatial configuration of the field,
as well as on the dielectric properties of both the particles and the medium in which
they are usually suspended. The choice of AC excitation of the electrodes offers many
advantages over DC, such as the ability to use the different frequency response of different
particles, the avoidance of electrolysis and the reduced power consumption. DEP can be
positive or negative depending on whether the particle is more or less polarisable than the
surrounding medium respectively (5). This is illustrated in figure 2.1. The grey particle
experiences a force to the left and therefore positive DEP (towards the high electric field

gradient region) whilst the white particle experiences negative DEP and therefore a force

10



2.1 Theory

to the right (towards the low electric field gradient region). The arrow inside the particles

indicates the net dipole moment.

Figure 2.1: DEP force on two spherical particles, the arrows indicating the net dipole
direction.

Although in absolute terms the strength of the DEP force is rather small, at the micro-
and nano-scale it is very effective in manipulating and positioning particles by applying
relatively small voltages on a proper configuration of electrodes. For this part of the
model formulation, the fluid is assumed not to be mobilised due to any effects from the

electric field. The DEP force for a spherical particle is given by ! (122):
Fppp = 213, (Re (K(W)) VE? + In(K(w)) (E2V7y, + E2Vry, + E2V7.))  (2.1)

where 7 is the particle radius, €, the medium permittivity, E the rms electric field, v
the phase shift and K(w) is the Clausius-Mossotti factor. A proof of this can be found in

(122). This proof only takes into account first order dipole formation on the particle.

The DEP force in the case of no phase gradients or gradients equal to 180° is given by:
Fpgp = 21re,Re (K (w) ) VE? (2.2)
The second part of equation 2.1 describes the force due to the phase gradients and is

used in the case of travelling wave DEP and electrorotation. Travelling wave DEP is the

motion of a particle caused by the lag of the dipole formed on a particle in relation to a

IFor particles of other shapes there exist appropriate amendments to this and also an electro-
orientation phenomenon.

11



2.1 Theory

propagating electric field. Electrorotation is the continuous rotation of the particle in a

rotating electric field.

2.1.2 The Clausius-Mossotti factor

The Clausius-Mossotti factor mentioned in equation 2.1 is given by:

€,k —Ep %
K(w) = 2 ™
€p ¥ +26€,%

(2.3)

where €,, is the medium permittivity, ¢, the particle permittivity and the complex per-

. o e . _ -Op _ -0
mittivities are given by €,x = €, — 172 and €,,x = €, —1%2.

However, equation 2.3 for an elongated object such as a CNT becomes (1):

€,k —€,, %
Em ¥
1 -
~e-metallic SWNT in water
0.5- ——semiconducting SWNT in water
= ¢
X
o)
o
0
'h,..
-0.5 L 1 1 1 | |
10° 10° 10 10° 10° 10" 10"

Frequency (Hz)

Figure 2.2: Real part of the Clausius-Mossotti factor for CNTs in water, plotted against
frequency (1).

This force also depends on the shape of the particle and is modified accordingly for non-
spherical particles. The structure of biological organisms is usually very complex and

most commonly used models include spherical or elliptic multishell approximations (122).

12
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Figure 2.3: Factor proportional to the Real part of the Clausius-Mossotti factor (I" is the
volume factor) for carbon nanotubes in electrolytes, plotted against frequency (1).

Differences in dielectric properties provide a means of discrimination for otherwise sim-
ilar particles. Figure 2.2 shows the real part of the Clausius-Mossotti factor for several
frequencies of the AC electric field of metallic and semiconducting Single Walled CNT's

in water.

It is evident that the Clausius-Mossotti factor and therefore the DEP force, is signifi-
cantly different in magnitude for the two types of nanotubes and also the direction is
different for a range of frequencies. This signifies that potentially separation of metallic
and semiconducting CNTs can be achieved by utilising DEP at certain operating con-
ditions. Furthermore, figure 2.3 shows the variation of the Clausius-Mossotti factor in

different electrolytes for the same type of CNT.

2.1.3 Electrostatic force

Many particles under consideration might possess charge, either natural or induced. Hence
they experience an electrophoretic motion under a DC electric field and this motion is
used in a large number of applications. However, electrophoretic motion is not an issue
and is not examined here, even in the case of charged particles, since the electric fields
used are solely high frequency AC. The use of AC fields means that any electrostatic force
has zero average and a time period too small for any noticeable oscillation of the particles
to occur. Therefore, it is not considered as a force affecting the dynamics of the systems

of interest.
13
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2.1.4 Drag, buoyancy and gravity

For the vast majority of the systems of interest, the particles under manipulation are
suspended in a fluid. What this means is that as they move through the fluid, they

experience a drag force, which in its simplest form is given by the Stoke’s drag:
ﬁdmg = —6mnri, (2.5)

where i, is the particle relative velocity, 7 the fluid dynamic viscosity and r is the Stokes

radius.

Another force on the particle is buoyancy given by:

Fbuoyancy = pfg‘/p (26)

where p; is the fluid density, g the gravitational acceleration and V), is the particle volume.

Also, the gravitational force is given by:

Fgravity = _ppg‘/;;? (27)

where p, is the particle density, g the gravitational acceleration and V), is the particle

volume.

The last two forces might be negligible for very small particles or when the particle and
fluid densities are very similar, where these cancel each other out. The particle velocity

U, is subsequently found by equating:

ﬁdrag + F;total =0= ﬁp = (28)
Equation 2.8 assumes that the particles reach terminal velocity in a characteristic time

that is negligible compared to the period of the applied electric field.

2.2 Model Verification

The first physical model used and verified here is the one described by (122) for the DEP
force on a particle suspended in solution under a non-homogeneous electric field. The
calculation of the DEP force for arbitrary geometries requires VE? to be calculated using

finite elements, since F is not available analytically for most device geometries under
14



2.3 Results

investigation. Choosing a 2D axisymmetric model for a spherical conductor, the surface
charge is set as 1 C'/m2 on a 10 wm radius sphere. The solution is then found for the

electric field numerically. VE? is also calculated analytically using:

4 74
VE? = —— 2.9
where r is the sphere radius and d is the distance from the centre of the sphere.
x 107
O,
-
ok - -
— Analytical calculation
f”'g ===Finite element calculation
= -3r
(8]
> ‘
% H
L 4 :
= i
-5- H
6
_7 | | 1 1 | | | | 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance (m) x10™

Figure 2.4: VE? vs Distance plotted for both the analytical and numerical solution.

Plotting the calculated V E? using the finite element solution of the electric field and the
analytic result on the same plot figure 2.4 is obtained. The two solutions are identical

and this indicates that the numerical method used to calculate V E? is correct.

2.3 Results

2.3.1 Monte-Carlo and Smoluchowski simulations

The simulation of the particle dynamics can either be investigated using a finite element
solution of the Smoluchowski equation, or by performing the simulation of the correspond-
ing Langevin equation for a large number of particles. Both are investigated below, in
order to determine the method most suitable to this problem. In this section, the poly-

nomial electrode system in figure 2.5 is simulated in terms of its DEP operation using

15
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a numerical solution for the Smoluchowski version of the Fokker-Planck equation and a

Monte-Carlo simulation of the corresponding Langevin equation.

The reason for doing this is to determine which method of the two is more suitable for
the problem set here-that of simulating the particle dynamics of DEP devices, to verify
the correct application of both methods and to estimate the computational resources and
the solution time required for each of these methods. The parameters used are listed in
table 2.1.

The Smoluchowski equation is solved here, as described in (127) (128):

oC 1 0 0? 0 0?
T ?[—%(FDEP(%?JJ)) + kBT@ — 8_y(FDEP($ay7t)) + szTa—yg]C(x,y,t)(Q.IO)

where kg is the Boltzmann constant, T the absolute temperature, f the friction factor

and the other variables have the meaning stated before. Here the diffusion constant

D = kBTT is used. Equation 6.2 assumes that the motion of the particles is independent,

that is, there are no collisions between suspended particles. This gives a distribution of

concentration of the form shown in 2.6.

Figure 2.5: Geometry of polynomial electrodes (not to scale).

Table 2.1: Simulation parameters.

Property Value

Diffusion constant 2.55 x 10713 m?.s71
Relative  permittivity of | 18.6

medium

Electrode peak potential 5V

Permittivity of free space 8.8542 x 10712 F.m~!
Friction factor 1.62 x 1078 N.s.m™!
Particle volume factor I' 377 x 1072 m?

16
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Particles/m2 9

Figure 2.6: Concentration profile for particles under negative DEP 10 s after electrode
excitation.

The update algorithm used for the Monte-Carlo simulation is:

Tiv1 = T; +uppp(T,y) X At +v/2x D x At x W,

(2.11)
Yir1 = Yi + vpep(z,y) X At +v2 x D x At X V;

where (x,y) the particle coordinates, (upgp,vprp) the particle velocity components, D
the diffusion constant and W;, V; are independent random variables drawn from a Normal
distribution at each time step. This update algorithm creates paths of the type shown in
figure 2.7.

In order to extract useful statistics for the particle behaviour and compare the Finite ele-
ment /Smoluchowski solution and Monte-Carlo/Langevin method, the following problem is
solved. An initially uniform particle distribution exists. In the Finite element/Smoluchowski

this is set as an initial condition.

In the Monte-Carlo/Langevin this is set by taking the initial particle positions at equally
spaced intervals in the problem domain. Then, the Finite element/Smoluchowski is solved
up to a specific time point. The update algorithm from the Monte-Carlo/Langevin method
is used to simulate the paths of a large number of particles, which are uniformly distributed
in terms of initial coordinates in the domain. The results are then compared by counting
the number of particles in a circular area of which the radius extends r = 107% m from
the electrode centre. In the Finite element/Smoluchowski the fraction of particles in that

area is given by % where A is the area of the domain.

17
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Distance (m)
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Figure 2.7: Path of a particle in the interelectrode space with 0.1 s time step for duration
of 1 s.

Table 2.2: Fraction of particles within an area.

Circle radius | Langevin Fokker- Difference
and duration Planck
107° m after 9 s | 539/5996 = 0.089893 (0.5 s step) | 0.105819 —15%
1075 m after 9 s | 209/2054 = 0.101752 (0.1 s step) | 0.105819 —3.8%
1076 m after 5 s | 160/2261 = 0.070765 (0.2 s step) | 0.0749495 | —5.6%
1075 m after 1 s | 44/2261 = 0.0194604 (0.5 s step) | 0.0212406 | —8.3%
1075 m after 1 s | 48/2261 = 0.0212295 (0.2 s step) | 0.0212406 | +0.05%
1079 m after 1 s | 49/2261 = 0.021672 (0.1 s step) | 0.0212406 | +2%

For the Monte-Carlo/Langevin that is the number of paths which are located in that area
at time t s over the total number of particle paths simulated. The results are summarised
in table 2.2. Tt is evident that as the time step size is reduced and the number of simulated
particles increased, the two methods converge and in the limit will give the same result.
The results are also compared for the whole of the domain for the two forms of solution.
This is done by plotting the fraction of particles within annuli from the centre. The results

for the 1 s, 0.1 s time step case are presented in figure 2.8.

2.4 Conclusions

In this chapter, a model was introduced for the Dielectrophoretic force on a dielectric
particle suspended in a medium. The DEP force was solved for a specific case using
the method of finite elements and verified using an analytical formula. Furthermore,
both the Finite element/Smoluchowski and Monte-Carlo/Langevin methods were used to

investigate particle dynamics in a DEP system.

18
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Figure 2.8: Comparison of the concentration of particles within specific annuli from the
electrode centre (the number on the right of the bars is the external radius whilst the
number on the left is the internal radius of each annulus).

Although both methods can be used to produce the solution for the problem, the Finite
element /Smoluchowski solution was selected as the means of future investigation of the
device operation and for the design of novel devices. While the Monte-Carlo/Langevin
method can provide more information on particle trajectories, the most important data
of interest here, which is the average particle concentration, can also be given using the
Finite element/Smoluchowski. The latter is much faster and requires less computational
resources, an issue which will prove very important as the complexity of the problem

mcreases.

However, the physical model developed in this chapter only takes into account the DEP
force on the particle. In most DEP manipulation devices, the fluid in which the particles
are suspended is also mobilised due to the presence of the electric field. The fluid motion
due to the electric field presence is a very important factor that has to be taken into
account in the simulation of DEP devices and is therefore examined in the chapters to

follow.
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Chapter 3

AC Electroosmotic fluid motion

As mentioned earlier, the fluid-electrolyte in which particles are suspended in DEP ma-
nipulation devices is also mobilised due to the presence of the electric field. The most
common phenomena that cause the fluid motion are AC Electroosmosis (ACEO) and the
Electrothermal effect.

In this chapter a model for the ACEO motion of the fluid in an AC electric field is
introduced and the ACEO motion is simulated using the method of finite elements. Fur-

thermore, a novel system is proposed for fluid pumping and its operation is investigated.

3.1 Theory

3.1.1 The electrical double layer

An important concept throughout this thesis is that of the electrical double layer (referred
to as the double layer hereafter). The double layer is a concept that describes the distri-
bution of the electric charge near a surface and particularly that of a charged surface in
contact with a fluid. Free charges in the solution will experience a Coulombic force (129),

giving rise to a charge formation as displayed in figure 3.1.

The Inner Helmholtz Plane (IHP) is defined as the center of water molecules and ions
in contact with the solid. The Stern layer extends from the solid surface to the Outer
Helmholtz Plane (OHP). The OHP is the center of the solvated ions in closest approach
to the surface. The zeta potential is the potential difference from the plane of no-slip to
the bulk of electrolyte solution. The plane of no-slip is thought to be close to the OHP,
towards the side of the bulk. In this model, the plane of no-slip is considered to be at the
OHP for simplicity.
20
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Figure 3.1: The electrical double layer.

fluid ions that is responsible for the fluid motion.

3.1.2 AC Electroosmosis

21

The Debye length is defined as the typical thickness of the diffuse layer, which consists
of exponentially decaying free charge (129). The double layer is very important when
considering the behaviour of colloidal particles in suspensions and can be the decisive
factor in the behaviour of the particle. It is also very important in the following theory of

ACEO because it is the formation of this double layer over the electrode surface by the

ACEO is the fluid motion which is caused by the presence of a non-uniform electric field
over a surface, most likely that of an electrode for the systems of interest. It was first
reported by (76), where a linear double layer theory is also proposed in order to model
the behaviour of the fluid.



3.1 Theory

The electric field over the electrode surface has a tangential component which causes
ions in the electrolyte to move and carry the bulk fluid together with them. It is more
significant at low frequency AC fields (=1 kHz) and decreases significantly at higher
frequencies (=1 M Hz). AC electroosmotic flow over electrodes (such as travelling wave
DEP electrodes) is not the same as DC Electroosmosis in capillaries. The former causes
an oscillating ion motion whilst the latter causes a constant flow of ions and therefore

fluid motion (2). The model proposed by (76) makes the following assumptions:

1. The electrodes are ideally polarisable, that is, no charge is flowing from the electrode

to the electrolyte.

2. The potential drop across the diffuse double layer is small (smaller than ~25 mV)

so that a linear approximation can be made.

3. The convection current is much smaller than the conduction current and therefore

the electrical problem is independent of the velocity field.

Assumptions 1 and 3 are true for most real systems that are examined here. However, it is
almost certain that for most cases assumption 2 is not valid. Therefore, the physical model
provides a good insight into the behaviour of the fluid under ACEQ, but the quantitative

predictions are increasingly erroneous for potentials higher than ~25 mV'.

For the purpose of the numerical simulation of ACEO the following equations are used
(2). The first is the Laplace equation that is solved in order to find the electric field

distribution in the domain:
Vi =0 (3.1)

where ¢ is the electric potential. This is solved with the following boundary condition on

the electrode due to charge conservation (2):

e _‘/a ie
on.NV e, = %Z—DLppld (3.2)

where 77 is the normal unit vector to the electrode surface, ¢, the potential at the outer

edge of the electrical double layer, o the fluid electrical conductivity, Vppics the value of

_1
iwwCpr,

Cpr = /\;ZW the capacitance of the double layer (if the size of the compact layer is

negligible), w the angular frequency of the electric field and Apepye is the Debye length

the voltage applied at the electrodes, Zp;, = the impedance of the double layer,

on the electrode surface. The boundary condition used for all the electrodes is therefore

given by equation 3.2. The Navier-Stokes equations are also solved, neglecting the inertial
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terms (since the Reynolds number is small), to find the resulting incompressible fluid flow

(under no external forces on the fluid):

nfV? Uy —Vp =0 (3.3)
V- us=0 (3.4)

where 7 is the fluid viscosity, u ¢ the fluid velocity and p is the fluid pressure.

This has the following boundary condition for the fluid velocity on the surface of the

double layer (which coincides with the electrode surface in the model geometry):

E_mAa |¢ep - Vapplied|2
r Ox

(3.5)

Uslip

where A is the ratio of the diffuse double layer potential drop over the total double layer
potential drop. The parameter

o CStern
CStern + Cdiffuse

(3.6)

is given by the ratio between the total capacitance and the diffuse double layer capacitance
and is set here to be equal to 1 for verification purposes (2). It should be noted that a

potential 2V = 0.5 V' is used here to allow direct comparisons to be made with (3) and

(2).

3.2 Model Verification

Data is used here from (3) and (2) to verify the model above. The geometry modelled is

shown in figure 3.2 and the properties used in the simulations are shown in table 3.1.

This is modelled by the boundary conditions (by exploiting anti-symmetry) shown in
figure 3.3, where ¢p = ¢, as defined in equation 3.2 and U, = ugup as defined in
equation 3.5, Vppiieq 1S the absolute value of the voltage applied at the electrodes and the

rest of the variables have their usual meaning.

3.2.1 Electric potential

The electric potential given by the solution of the Laplace equation for the domain above

the electrodes is shown in figures 3.4, 3.5, both real and imaginary parts.
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Figure 3.2: The geometry of the domain used for model verification (not to scale).

— f,u=0

u=U

r f :fE
slip
!

u,v=0 —

Figure 3.3: The boundary conditions used for model verification (not to scale).

A useful variable used here is the non-dimensional frequency €2 =

U/\Debye

wem L

, where L is the

device characteristic length (107 m) and w is the angular frequency of the AC excitation

used.
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Figure 3.4: The simulated Real part of the potential.
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Figure 3.5: The simulated Imaginary part of the potential.
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Table 3.1: Electrolyte properties.

Property Value

Fluid Viscosity (n¢) 1 x 1073 Pa.s
Relative permittivity of medium (€,,,) 80.2

Electrode peak potential difference (2V) 0.5V

A 1

Permittivity of free space (¢g) 8.8542 x 10712 F.m™!
Debye length (Apepye) 1x107" m
Conductivity (o) 8.6 mS.m~!
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3.2.2 Fluid motion

The potential is coupled with the Navier-Stokes equations by the boundary condition
ugip Set at the electrode surface. The resulting fluid flow is calculated numerically and is

demonstrated in figure 3.6. The characteristic circular patterns are clearly visible.

x10*

0,
E
8
c-1-
8
@
a

2-

-0.5 25

Distance (m) x10*

Figure 3.6: Fluid flow in the domain for {2 = 11.

In figure 3.7 the fluid flow over the electrodes is plotted for different non-dimensional
frequencies. The behaviour is again as expected, reaching a peak at an intermediate

frequency, while reducing for higher and lower frequencies.

The surface velocity as a function of both the distance from the electrode gap centre and
the non-dimensional frequency is plotted in figure 3.8. Furthermore, the surface fluid

velocity is plotted in figure 3.9 for several fluid conductivities.

€x(2V0)2 X Apebye ’ where We is the

electrode width, at several distances from the electrode inner edge is plotted versus the

As a further validation, the reduced fluid velocity U, =
non-dimensional frequency (defined earlier) in figure 3.10. The plot is compared with

figure 4 in (3) and it is evident that the results are very close to the ones presented both

in this reference and in (2).

27



3.2 Model Verification

Horizontal speed (m/s)

Surface speed (m/s)

15

—_
(=)

o

&)

©

2 3 4 5 6 7 8 9 10
Distance from electrode gap (m) x 107

Figure 3.7: Fluid flow over the electrodes for different 2.
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Figure 3.8: Fluid velocity on electrode surface vs (2.
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Figure 3.9: Fluid speed on electrode surface vs Conductivity of the electrolyte.
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Figure 3.10: Reduced fluid velocity vs Non-dimensional frequency for several distances
from the electrode edge closer to the gap. Results from (2) are presented as blue diamonds
for the 5 pum case and black stars for the 30 um case.
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The results presented in this section provide a verification that the solution of the physical
model for the ACEO fluid motion used here is correct. The verification of the solution
is very important since the method of solution will be used throughout the thesis for the
calculation of the ACEO fluid velocity.

The proposed model is used in the following section in order to analyse existing devices
that utilise ACEO in asymmetric electrode systems for fluid pumping. Furthermore,
novel systems are proposed that utilise configurable asymmetries in order to produce a

configurable directional pumping effect.

3.3 Results

3.3.1 Novel systems for configurable ACEO pumping

Since the discovery of the ACEO fluid flow (90) (76), many methods have been proposed
to utilise this in the pumping of fluids in capillaries, due to several advantages over DC
Electroosmosis. The main advantage is that the use of low AC voltage can reduce or
eliminate Faradaic currents, which reduces or eliminates the generation of bubbles and

new species in the liquid.

An important set of pumping systems that have been proposed and demonstrated, are
ones that utilise asymmetries in the electric field, created by planar electrode structures in
capillaries to produce a directional ACEO net flow of fluid (77). In particular, a method
utilising an asymmetry in the electrode geometric configuration has been demonstrated
experimentally by (85) and analysed theoretically in (3), which describes the asymmetric
array and predicts the right direction of the fluid flow. This electrode structure has
also been utilised in the trapping of DNA using ACEO (130). Another important set of
pumping methods has been described in the literature that utilise travelling wave electric
fields generated by symmetric electrode arrays for the purpose of fluid pumping (131)
(115). Asymmetries in this type of pumping systems can be introduced in many ways,
such as asymmetries in the shape of the electrodes (85) or their properties (77) or even
by adding DC bias in the electrode excitation (132) (80). Proposed methods also include

three-dimensional asymmetric electrode structures (111) (112).

An interesting issue in ACEO pumping using asymmetric electrode arrays is the reversal

of the pumping direction. For low voltages and frequencies, the expected flow occurs

at the side of the smaller electrode towards the larger one. This flow has been shown

to reverse at higher voltages and frequencies (84) (81). However, the mechanism that

causes flow reversal is yet unclear (although Faradaic currents have been proposed as an

explanation for this (77) (110)). Possible undesirable effects on the electrodes have also
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been associated with high voltages, such as the formation of bubbles due to electrolysis
and the degradation of the electrodes (81). Recently, there has been an investigation into
the effect of Faradaic currents, as well as other important factors on ACEO flow (113),

such as vertical confinement and non-linear surface capacitance.

In this section a method of creating configurable geometric asymmetries in a system of
arrays of identical electrodes is proposed, as shown in figure 3.11 (system B) and figure
3.12. The system operates by applying the same AC voltage on two adjacent electrodes
(say 1 and 2) while applying a voltage of equal magnitude in anti-phase to the other
electrode (therefore the system consists of triplets of identical electrodes instead of pairs of
non-similar electrodes, with another possibility being an arbitrarily wide middle electrode
with identical electrodes at the two sides) (82).

This can also be implemented by applying a single AC signal to one electrode group while
earthing the other. A geometric asymmetry similar to the one in a system of asymmetric
electrodes is created, as described in (84) and shown in figure 3.11 (system A), with
the significant advantage that in the proposed system this asymmetry is configurable, as

shown in figure 3.11 (system B).

The proposed method may be used to create configurable asymmetry by employing a
number of identical electrodes and therefore can be used to control the direction of the
pumping velocity, without the need for high applied voltage. It is also demonstrated
here that the amplitude of the pumping velocity can be controlled in a step-wise manner

depending on the number of electrodes in a group.

System A Electrolyte
-V,ycos(wt) V,cos(wt)
SyStem B Electrolyte
Yy
-V, cos(wt) Vocos(wt) Vocos(wt)

Figure 3.11: Geometry of the electrodes of the standard asymmetric system A and the
proposed system B (basic form)(not to scale).
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Figure 3.12: Schematic of the configuration and operation of the proposed system (not
to scale). The arrows and streamlines indicate the fluid flow direction.

Finally, it is worth noting that the proposed system allows for flow reversal at any voltage

(both low and high) without the need to change the magnitude of the applied voltage.

The theory used in the simulation of the device has been presented in section 3.1.2; while

the properties used in the simulations are presented in table 3.2.

Table 3.2: Electrolyte properties.

Property Value

Fluid Viscosity (ny) 1 x107° Pa.s
Relative permittivity of medium (e,,,) 80

Electrode peak potential difference (2Vy) 1V

A 0.25

Permittivity of free space (¢) 8.8542 x 10712 Fom™!
Debye length (Apepye) 3x10%m
Conductivity (o) 1.23 mS.m™!

The two side boundaries of the domain have periodic boundary conditions (i.e. ¢(—[/2,0)
¢(+1/2,0) where [ = 600 pm here) and the rest of the boundaries are set to a homogeneous
Neumann boundary condition 77.V¢ = 0, where 77 is the vector normal to the surface. The
electrode width is 100 pm, the channel depth is 200 pm, the interelectrode gap is 10 um

and the distance between electrode groups is 280 um.

The boundary condition at the surface of the electrodes is u = wug;, (defined earlier),
where Vippiieq is different for each electrode, while the side boundaries are set to periodic
boundary conditions and the boundaries at the interelectrode gaps are set to a no-slip

condition.
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Both the electrical and fluid flow problems are solved numerically using the method of

finite elements. A parameter useful for the analysis of such a system (and used here) is the

wel
0'>\Debye

the value used is twice the length of an electrode, 200 pm), Apepye the Debye length, o the

non-dimensional frequency 2 = , where L is the device characteristic length (here

electrolyte conductivity and w the angular frequency of the AC excitation. Another such

477f Luslip
e(AV)2A

viscosity, 1, the dimensional velocity and AV the potential difference between electrode

parameter is the non-dimensional velocity given by U,.,= where 7y is the fluid

groups, which is equal to 2V} in this case.

3.3.1.1 Proposed method and system

Here the system of interest is one of parallel electrodes in a narrow channel, where both
the electrode width and the channel depth are much larger than the electrode height so
that the electrodes can be considered flat and the length of the electrodes is much larger

than their width, so that the problem can be treated as two-dimensional.

The proposed system is related to the one shown in figure 3.11 (system A) and demon-
strated experimentally in (85) and theoretically in (3), with the significant difference that

the asymmetry is configurable and not fixed into the system (system B).

In the simplest form, the proposed system consists of a repeating pattern of three identical
electrodes as shown in figure 3.11 system B and in more detail in figure 3.12. The idea is
that by applying a potential so that electrodes 2 and 3 are in anti-phase with electrode
1, an asymmetry of the electric field is created. This asymmetry is almost the same as if
electrodes 2 and 3 were connected and the system was asymmetric in shape (system A in
figure 3.11). This type of excitation will create circular flow patterns above the electrodes,
which results in a net flow towards the larger group of electrodes, as shown in figure 3.12.
The advantage of this system is that by applying the same potential on electrodes 1 and
2 this time, with electrode 3 in anti-phase, the asymmetry is reversed and therefore the

flow is also reversed.

The fluid slip velocity over the electrodes at non-dimensional frequency 2 = 6.03 is shown
in figure 3.13. It can be seen that by using different grouping of the electrodes it is possible

to reverse the asymmetry and therefore the flow.

The pumping velocity is defined here as:

1/2
/ Ustipdx (3.7)
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Figure 3.13: Flow over the electrodes for two cases. Dashed line is for electrodes 2 and
3 grouped together, solid line for electrodes 1 and 2 grouped together. The electrode
position is also indicated on the figure.

where [ is the length of the periodic segment of the device and wg;, is the slip velocity at

the electrode surface, as found by equation 3.5, with u = 0 at the gaps between electrodes.

The non-dimensional pumping velocity for system A is plotted against the non-dimensional
frequency in figure 3.14 and compared to the results obtained by (3) (figure 9) for a system
with the form shown in figure 3.11 system A, with a non-dimensional interelectrode gap
GG1 = 0.1. This has been done for verification purposes and the results were found to be

in good agreement with the results obtained in (3).

On the same plot in figure 3.14 the solid line is for system B, the system proposed
here, with the electrode dimensions adjusted to (width of first electrode) W7 = 0.3, (gap
after first electrode) G; = 0.1, W5 = 0.6, G5 = 0.1, W3 = 0.3 and G3 = 1 in order
to be consistent with the dimensions used in (3) and the channel height set to 200 to
approximate an infinite channel height such as in (3)(note that the above parameters are
non-dimensional). It can be seen clearly in this plot that the effect of using the triple
electrode system is a 10% reduction in velocity at the peak, while this is lower for other
frequencies. This small drop in performance is more than compensated for by the added

convenience of being able to alter the flow direction.
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Figure 3.14: Non-dimensional pumping velocity against non-dimensional frequency.
Black dashed line is for the case plotted in (3) (corresponds to figure 9 top curve for
non-dimensional interelectrode gap G; = 0.1), solid red line is for the device proposed
here.

3.3.1.2 Other electrode structures

It has been demonstrated here that it is possible to construct a system with controllable
asymmetry by using at least three identical electrodes per periodic array set. It is also
possible to construct more interesting systems by adding more electrodes in the periodic
array. As an extension of the previous system, one could make this array out of four
electrodes and group 1, 2 and 3 together in terms of excitation, or 2, 3 and 4 to reverse
the flow. Larger numbers of electrodes give the possibility of controlling the pumping
velocity in a step-wise manner solely by inverting the polarity of the applied voltage on

the electrodes.

For example, in a five-electrode array, grouping the first four or first three electrodes
together would give pumping velocity in the same direction but of different magnitude.
Therefore control of the pumping velocity can be achieved by simple switching between
Vocos(wt) to —Vycos(wt) on certain electrodes, which minimises the required power cir-
cuitry and hence constitutes a great advantage for such systems. The velocities in the
two cases for such a system are demonstrated in figure 3.15. The electrodes are of length
80 pwm each while the gap between them is 25 ym. The array periodic length is the same

as in the three-electrode system described before, equal to 600 pum.
The pumping velocity when one electrode is a group on its own is 4.638 x 107% m.s™!

while it becomes 2.102 x 107% m.s~! when the first two are grouped together.
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Figure 3.15: Dimensional slip velocity against distance from symmetry axis. Dashed
line is for the case where electrodes 2 to 5 are grouped together (electrode 1 constitutes
the other group), solid line for the case where electrodes 3 to 5 are grouped together
(electrodes 1 and 2 form the other group). The electrode position is indicated on the plot.

This decrease in pumping velocity is due to the decrease in the asymmetry of the system
(at 2 = 4.12). This observation demonstrates the fact that the pumping velocity can
be controlled by varying the system asymmetry. The flow rate ' can be obtained by

_ UglipX (Areacross—section)
F= 2

length (the electrode length being the dimension perpendicular to figure 3.11 as viewed
here).

, given that the channel height is much smaller than the electrode

It is clear that increasing the number of electrodes in the length of one period will give
a higher level of control on the system, as well as the ability to introduce more complex

phenomena into the system.

It must be stated here that in terms of system fabrication, the proposed design requires
an extra layer for every two electrodes added per periodic array, in order to accommodate
the electrode connections. This means that there is an extra manufacturing cost incurred
compared to the planar asymmetric electrode arrays. What also has to be noted is the
alternative method of using travelling wave devices for fluid pumping. This is superior in
terms of efficiency and can be realised by a two layer design. The proposed design can
be readily implemented on travelling wave arrays by electrode grouping as described here
(where three electrodes out of four are used and one is left as a spacer) and is a possible
mode of operation in the case when a multi-phase supply is not available for portable
micro-devices. In order to realise the application of this method to existing devices, one

could envisage the replacement of the two asymmetric concentric electrodes in (130) with
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three concentric electrodes of equal width. That would enable the reversal of the flow at

a given voltage and therefore would allow the device to operate with more flexibility.

Another possible use of the proposed system could be in the local control of the flow
direction in microfluidics networks. One could think of such a system to be similar to
the one proposed by (133), the difference being that the electrode arrays are replaced
by the arrays proposed here. In this way the direction of the flow can be changed in
a cross-shaped channel intersection by changing the direction of flow at each array and
therefore at each channel. This also has applications in mixing, where the change in flow

direction facilitates it.

3.4 Conclusions

In this chapter, a physical model for the ACEO fluid motion has been introduced. ACEO
fluid flow has been simulated using a finite element method and verified using results from

the literature.

Furthermore, using this model, a novel method has been demonstrated that enables the
creation of configurable geometric asymmetries. This method has interesting applications
in ACEO pumping at low voltages. Initial numerical simulations of a system designed
using the described method, show that it is possible to produce inversion of the pumping
velocity direction at low voltages, unlike systems where the asymmetry is fixed into the
system. Such systems are particularly useful in microfluidics pumping applications where
the use of low voltages is required, as in the local control of flow in microfluidic networks

and the pumping of secondary flows that can enhance stirring and mixing.

The ACEO fluid motion is one of the two most important fluid phenomena associated
with DEP manipulation systems. The other important phenomenon is the Electrothermal
fluid motion. This is a direct subsequence of the heating of the fluid and that is why it is

significant in fluids of high conductivity. This is examined in the following chapter.
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Chapter 4

Electrothermal fluid motion

In this part, a theoretical model for the Electrothermal motion of a fluid is introduced.
The phenomenon is then simulated using the finite element method and verified using data
available from the literature. Furthermore, numerical simulations of Electrothermal and

ACEO fluid motion are used to investigate their use in biosensor enhancement devices.

4.1 Theory

The Electrothermal force on a fluid is caused by the non-uniform heating of the fluid
due to the interaction with the electric field. The electric field causes gradients in the
temperature of the fluid and therefore introduces permittivity and conductivity gradients.

These in turn lead to dielectric and Coulombic forces on the fluid and mobilise the fluid.

Heat is transferred to the fluid through the electric field and can be found by balancing
Joule heating with thermal diffusion (90):

VT = —— (4.1)

where T' is the temperature, kr the thermal conductivity, o the electrical conductivity

and F is the rms electric field.

This causes a body force on the fluid, due to gradients in permittivity and conductivity,

which is given by (90):

. 1 L ¢E 1
P o= ——[(E—E) E—— 4= (4.2)
1+

(w7)
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Figure 4.1: System geometry and electrode placement (not to scale).

where Ve = g—;VT, Vo = g—%VT and 7 = £ is the charge relaxation time. It is evident
from this equation that the first term is the Coulomb force whilst the second is the dielec-
tric force on the fluid. As a consequence of the scaling of the first term with frequency
there exists a crossover frequency at which the dielectric force becomes dominant. Af-
ter solving the heat equation, the Navier-Stokes equation is then used to calculate the

Electrothermal fluid velocity.

4.2 Model verification

In order to verify the solution method for the Electrothermal motion of a fluid, a system
for which there is available literature is analysed and the results are compared. The system
chosen is described in (12) and is shown in figure 4.1. The boundaries are numbered in
figure 4.2 for ease. The properties for the electrolyte used in the following simulations are

shown in table 4.1.

Table 4.1: Electrolyte properties.

Property Value

Thermal conductivity 2.66 W.m LK1
Fluid Viscosity 1 x 1073 Pa.s
Diffusion constant 1 x 1071 m2st
=2l —0.004 K

0= 8—%% 0.02 K1
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Figure 4.2: Geometry for the domain used in the Electrothermal motion verification,
boundaries 2 and 5 are the electrode surfaces (not to scale).

4.2.1 Electric potential

In order to find the electric field distribution in the domain, Laplace’s equation is solved
with the boundary conditions used for the electrical problem shown in table 4.2. The

electric potential formed with 6 V' excitation is shown in figure 4.3.
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Figure 4.3: Electric Potential by +6 V' and —6 V' electrode excitation.
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Table 4.2: Boundary conditions for electric problem.
Boundary | Boundary Condition
Number
5 Dirichlet boundary condition, V' =6 V
2 Dirichlet boundary condition, V' = —6 V
1,3,4,6 Neumann boundary condition

4.2.2 Heating of the fluid

The heating of the fluid due to the presence of the electric field is given by the solution

of equation

4.1 described earlier. The boundary conditions used for the heat problem are

shown in table 4.3 and the resulting temperature distribution is shown in figure 4.4.

Distance (m)

Figure 4.4:

Table 4.3: Boundary conditions for heat problem.

Boundary | Boundary Condition
Number
3,4 Thermal insulation, 7' = 300 K
1,2,5 Fixed Temperature, T' = 300 K
x 10
304
s T
| 303.5
i 303
L 1302.5
I —302
| 13015
i 301
| 300.5
TS S S S Sl
Distance (m) x10™

Temperature distribution in the domain after 5 s under electrode excitation.
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Figure 4.5: Velocity distribution in the domain after 5 s under electrode excitation.

4.2.3 Electrothermal motion of the fluid

The Navier-Stokes equation for the fluid under the Electrothermal force becomes (90):

nV2i; — Vp+F =0 (4.3)

V- us=0 (4.4)

where F, is the Electrothermal body force, p the fluid pressure, @, the velocity of the fluid
and F. is given by equation 4.2 described earlier. The boundary conditions for the fluid

motion are given in table 4.4. The resulting fluid motion is shown in figure 4.5.

Table 4.4: Boundary conditions for fluid dynamics problem.

Boundary | Boundary Condition
Number

2,3,4,5 No slip

1 Inflow, Fixed velocity

6 Outflow, Pressure=0

4.2.4 Characteristics of the Electrothermal motion

By choosing a point in the domain and noting the maximum induced velocity and the

temperature variation the results presented in table 4.5 are obtained.
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4.3 Results

The results in table 4.5 demonstrate a factor of four increase in temperature rise and the

factor of sixteen increase in maximum velocity, a relation predicted theoretically in (90).

Table 4.5: Temperature and velocity variation with electrode voltage.

Property Value 1 Value 2
Voltage on electrodes | 6 V 12V
Maximum velocity 0.39 mm.s~* 6.3 mm.s~1
AT 41 K 16.3 K

In this section the model used for the Electrothermal motion of the fluid has been verified
using data available from the literature. In the following section, this model is used to
investigate the operation of a device (and a number of variations) proposed by (101) for

Electrothermal stirring, as well as the possibility of using ACEQO in similar applications.

4.3 Results

4.3.1 ACEO and Electrothermal biosensor enhancement

An interesting subject is the possibility of using ACEO and/or Electrothermal fluid mo-
tions to produce an enhancement of the concentration of a species on the surface of a
sensor in a microchannel. The enhancement can be achieved by utilising these methods
at different stages of the manipulation or at the same time by using a fluid conductivity
strong enough to give Electrothermal motion without making ACEO too small. Further-
more, the ACEO fluid motion can be used in devices where it is necessary for some reason
for the fluid conductivity to be low, therefore rendering the use of Electrothermal stirring

impossible.

In this section the effects of EHD phenomena on the enhancement of reactions in capillary
sensors are analysed, as well as methods to combine these (ACEO and Electrothermal).
It is shown here that ACEO can cause significant enhancement during the operation
of the device, which is smaller in magnitude than the one caused by Electrothermal,
but also consumes significantly less energy. It is also shown that the use of ACEO and
Electrothermal enhancement simultaneously in a device produces an effect greater than

the effect of each method separately, for certain ranges of solution conductivity.

The system of interest is one that consists of a functionalised surface in a capillary. Such
systems are expected to appear frequently in lab-on-chip devices, since one of the most
important applications of such devices is the detection of a substance in a fluid by reacting

with a receptor substance.
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The system geometry is shown in figure 4.1. The channel length is 600 pm, the channel
depth is 100 pm, the interelectrode gap is 25 um and the functionalised surface length
is 50 um. The dimensions have been chosen so that a direct comparison with previously
published results (101) can be made.

In this particular system, the process under investigation is the detection of an antigen
present in the fluid injected at the left side of the capillary. This antigen is detected
by binding to a functionalised surface of immobilised antibodies, indicated in figure 4.1.
Very often the reaction slows down if the diffusion of the antigen alone is not capable of
feeding the reaction and the area above the functionalised surface is depleted of antigen
(101), posing a significant shortcoming in its operation. In order to alleviate the problem
above, it has been proposed that using Electrothermal fluid stirring the reaction can be
enhanced at the functionalised surface (101) (134). The EHD stirring carries away the
depleted antigen and therefore fresh antigen is exposed to the functionalised surface. As
a result the reaction becomes faster, or alternatively the required sample for the same

detection time becomes lower.

4.3.1.1 AC Electroosmotic fluid motion

The ACEO fluid flow is caused by the interaction of the ions in the double layer with
the tangential electric field on the electrode surface. The theory used to simulate the

phenomenon is analysed in section 3.1.2.
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Figure 4.6: ACEO fluid velocity over an electrode in a parallel array.
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The ACEO fluid flow over an electrode is shown in figure 4.6. One can observe here the

characteristic circular patterns produced by ACEO above the electrode edges.

4.3.1.2 Electrothermal fluid motion

The Electrothermal fluid motion is found using the Navier-Stokes equations 4.4 described
earlier, where the body force is found using equation 4.2. The Electrothermal fluid flow
over two electrodes is shown in 4.7. Here the characteristic pattern of the flow can be
seen, with the fluid moving down the symmetry line between the electrodes and towards

the electrode centre.

4.3.1.3 Fluid flow problem

A fluid (water with K C1 in this case) is injected into the capillary, containing the antigen
to be detected. The Navier-Stokes equations are used to model the fluid motion under
both EHD phenomena.

The entry boundary is set to constant speed uy, the exit to a neutral boundary condition,
the electrode surface to the ACEO induced slip velocity and the rest of the boundaries
are set to a no-slip condition. Depending on whether the Electrothermal or ACEQO effects

are deactivated, F, or ug;, are set to zero respectively.
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Figure 4.7: Electrothermal fluid velocity between two electrodes in a parallel array.
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ELECTROTHERMA

Figure 4.8: Antigen concentration for the three cases of (a) No EHD enhancement, (b)
ACEO enhancement and (c) Electrothermal enhancement.

4.3.1.4 Antigen motion and reaction

The antigen motion is described by the convection-diffusion equation:

oC
— = DV?*C —i;.VC (4.5)
ot
where C' is the concentration of the antigen and u; is the velocity of the fluid, which is

due to pressure pumping and any EHD induced motion.

The reaction of the antigen with the immobilised antibodies at the functionalised surface
is given by (135):

B
88_15 = konC(Ry — B) — koss B (4.6)

The definition of the parameters and their values are given in table 4.6. The rate of
antigen binding must be equal to the diffusive flux at the functionalised surface (135):
0B
— =n.DVC 4.7
where 77 is the vector normal to the surface. The antigen introduction is simulated by
imposing a steady concentration at the entry of the capillary, at 0.1 nM, whilst the exit

is set to convective flux and the rest of the boundaries to insulation.
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Table 4.6: Properties of the system.

Property Value

kon (on rate constant) 1073 571
koss (off rate constant) 10 (M.s)~!
D (antigen diffusion constant) 107" m?.s7!
Ry (receptor concentration) 3.3x 107" M.m
o (fluid conductivity) 0.66 S.m™!
ns (fluid viscosity) 107% Pa.s
Pe (Péclet ratio) 100

Da (Damkohler number) 330

usp (pressure induced fluid velocity) 10 pm.s™!
Cy (concentration at entrance of channel) 0.1 nM

F (frequency) 200 kHz

4.3.1.5 Electrothermal enhancement

B
B—O,the

ratio of the bound antigen after the EHD is introduced, over the value of the bound antigen

The enhancement of the bound antigen is studied here, which is defined as B, =

concentration before the EHD is introduced. More specifically, the system is studied with
the properties listed in table 4.6. A snapshot of the system antigen concentration after 100
s of introducing the antigen to the capillary is shown in figure 4.8, for various cases. One
can see that both in the case of the fluid flow alone (no EHD enhancement) and in the case
where ACEO is introduced, the depleted antigen remains largely over the functionalised
surface, as can be seen by the darker colour of the antigen concentration over the electrode
in figure 4.8 cases (a) No EHD and (b) ACEO only. The case with ACEO enhancement
shows that the depleted region over the electrode moves slightly to the right due to the
ACEOQ velocity. This means that significant enhancement is expected at the left side of the
functionalised surface and much less at the right side. The Electrothermal enhancement

is less localised and mobilises a larger amount of antigen, forming large circular loops.

The enhancement factor is dependent on the Damkohler number (D, = %), the
ratio of reaction speed to diffusion speed and the Péclet ratio (Pe = %L), the ratio of
convective velocity to diffusive velocity. The analysis of this dependence has been carried
out in (101).

Another issue of interest is the effect of the voltage applied on the electrodes (the voltage
that causes the Electrothermal motion) on the enhancement factor. The enhancement
factor is plotted against applied voltage in figure 4.9. It can be seen from this figure that
for the inner side of the functionalised surface, there is a voltage where the enhancement

obtained is maximum, before and after which the enhancement decreases.

For the case of lower voltage than the voltage at the peak enhancement, the reduction
exists because the depleted antigen is not removed fast enough. For the case that the

voltage is larger than the voltage at the peak, the reduction exists due to the fact that
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Figure 4.9: Enhancement of bound antigen vs applied Voltage for Electrothermal fluid
motion after 100 s. Dashed line is for the outer side, solid line is for inner side of the
functionalised surface.

the velocity of the fluid becomes such that it not only removes the depleted antigen, but
also removes the non-depleted part. For the outer side of the surface the enhancement
increases constantly with voltage. This happens because the form of the flow is such that
the outer side is always exposed to the streamlines of the non-depleted antigen, in contrast

to the inner side.

4.3.1.6 ACEO enhancement

A similar enhancement effect can also be produced by ACEO. To achieve ACEO fluid
motion, lower conductivity is required, so that the induced double layer is deep enough.
Therefore the fluid motion is examined at the inner side of the functionalised electrode
surface for conductivity o = 1.23 mS.m~!, for which the Debye length is approximately
30 nm. The frequency of peak ACEO velocity for this system is approximately at 10
kH z and therefore this value is used in the ACEO simulations. The enhancement versus
applied voltage for ACEO at this frequency is shown in figure 4.10. It is evident that
there is a significant enhancement using ACEQ. This is lower by approximately a factor
of two compared to the enhancement obtained by Electrothermal methods. However, it
should be noted that the ACEO method theoretically consumes a very small amount of
energy compared to Electrothermal and does not heat the fluid significantly, which could

be a significant advantage in some devices.

48



4.3 Results

35

Enhancement factor

1.5

| | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Applied voltage difference (V)

1 | |

Figure 4.10: Enhancement of bound antigen vs Voltage difference for ACEO after 100 s.
The results are for the inner side of the functionalised surface.

An important issue is discussed in (101) on the possible effect of ACEO, which has large
surface velocity, on the lifetime of the bonds on the functionalised surface. Here the effect
of ACEO on the shortening of the lifetime of the bonds is not taken into account. This
characteristic of ACEQ, with high surface velocity, might be beneficial (if one wants the
bonds to break), destructive (if one does not want the bonds to break) or negligible (if
the bonds do break but their lifetime is very high anyway) depending on the reaction on
the surface and the general operation of the system. Therefore, this should be considered

depending on the system, its use and type of bonds forming.

In the past, ACEO has been demonstrated to aid in focusing particles for detection in
devices where low particle concentration was a problem (132). This was done by depositing
the particles at the stagnation point on an electrode, where ACEO was zero. Therefore
possible effects of the position of the functionalised surface and the electrode size and
placement could be beneficial in using ACEO for enhancement and should be further

investigated.

4.3.1.7 Joint enhancement

For the low conductivity case, the system is also examined under the influence of both the
ACEO and Electrothermal effects. This is done by imposing the slip velocity condition
caused by ACEO on the electrode surface and the Electrothermal body force simultane-

ously, using the same settings as in the previous two sections for both effects.
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Figure 4.11: Antigen concentration for two alternative cases of electrode designs(a) Case
1: Three-electrode design and (b) Case 2: Two-electrode design.

It was found that the ACEO alone at 0.5 V' potential difference between the electrodes
produces an enhancement of 3.3, whereas at 6 V' rms the Electrothermal enhancement at
this conductivity (with the rest of the settings as before) is 3.0. The joint enhancement
(when both are used simultaneously) is 4.2 for the inner side of the functionalised surface
for these conditions. These results indicate that there is a possibility to combine the flows
to produce increased enhancement, also exploiting the reduction in power consumed due
to the lower heat dissipated. It might also be possible to combine the flows by using
each one at different stages during the operation of the device. Electrothermal fluid
motion is more powerful in the bulk and therefore will carry more antigen towards the
functionalised surface, whilst ACEO is stronger on the surface and may help in carrying

away the depleted particles.

4.3.1.8 Other electrode configurations

Other electrode configurations were also tested in order to investigate the possibility
of improving the enhancement by changing the electrode geometry. The investigation
(utilising Electrothermal fluid motion only) showed that the set-up proposed by (101) was
actually better than the ones tested for this purpose. The two alternative configurations
are shown in figure 4.11. Case 1 consists of two larger electrodes with a smaller one (where
the functionalised surface is placed), while case 2 consists of an asymmetric configuration

of electrodes where the functionalised surface is placed at the inner edge of the larger
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electrode. The antigen concentration in case 1 indicates that the depleted material is
actually trapped over the electrode. This might be useful where the intention is to keep

the material over the functionalised surface long after the reaction has taken place.

4.4 Conclusions

In this chapter a physical model for the Electrothermal motion of the fluid was introduced.
The operation of a number of devices utilising Electrothermal motion was simulated using

the finite element method and compared with results available in the literature.

Furthermore, the enhancement of the binding of antigen on a functionalised surface in a
capillary sensor by using EHD was analysed. The dependence of enhancement on voltage
was investigated and the behaviour was explained for both Electrothermal and ACEO
fluid motion. It was also demonstrated that ACEO and Electrothermal fluid motion can
be combined by the use of different frequency signals applied on the same electrode at
low conductivities, so that each can be controlled separately to produce a hybrid effect.
The advantage of using ACEO for fluid stirring is the reduced power consumption and
the avoidance of excessive heating of the sample, which can be significant for some cases

when using Electrothermal stirring.

Up to this point, the fluid phenomena and DEP have been examined separately. However,
these are usually co-existent in real systems and it is important that they are investigated
simultaneously. In the following chapter, this is done for DEP and ACEO simultaneously,

in a low conductivity electrolyte.
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Chapter 5

Combined Dielectrophoresis and AC
Electroosmosis using velocity field

analysis

The phenomena of DEP and ACEOQO are usually coexistent in DEP manipulation devices,
such as the parallel electrode device. Due to the increased complexity of both phenomena
acting on the particles simultaneously, several trapping regions are formed, which are very
important for DEP manipulation devices. The position and nature of these is investigated

in this chapter.

5.1 Introduction

Investigations into the nature of particle traps formed in parallel electrode arrays by joint
DEP and ACEO have shown that there is trapping both at positive and negative DEP
which changes form as the particle size varies (136) (137). This is an important phe-
nomenon with many applications, such as in sensor devices where one needs to selectively
trap and manipulate nanoparticles for detection purposes. What is also important is that
the method can operate at very small scales and can be used for mass processing of a
sample, in contrast to mechanical methods. The trapping and manipulation of nanopar-
ticles by joint ACEO and DEP is investigated in this chapter. The combination of DEP
with ACEO and Electrothermal fluid motions is a very promising technique due to the
properties of each phenomenon. DEP is very strong close to the electrodes and can trap
the particles once there, while ACEO or Electrothermal phenomena have a longer reach

due to the fact that they mobilise the surrounding fluid.
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Table 5.1: Electrolyte properties.

Property Value

Fluid Viscosity (1) 1 x 1073 Pa.s
Relative permittivity of medium (e, ) 80

Relative permittivity of particle (e,.) 2.5

A 0.25

Permittivity of free space () 8.8542 x 10712 F.om™!
Conductivity of medium (o,,) 1.23 mS.m™!
Conductivity of particle (o,) 9 mS.m~!

Fluid density (py) 1x 103 kg.m™3
Particle density (p,) 1.1 x 10% kg.m™=3

The current state of the art uses combined ACEO with DEP (28) (138) (78) or combined
Electrothermal with DEP (139) (104).

In this chapter, nanoparticles are used in a solution over an array of parallel or config-
urable asymmetric electrodes (82) and a potential is applied on the electrodes, to cause the
DEP force on the particles and induce the ACEQO fluid motion. The concept of nanopar-
ticle trapping by joint DEP and ACEO is extended in this work by using a configurable
asymmetric electrode system to create stable trapping zones of which the location can be
changed by altering the electrode excitation. These zones are observed at the location
where an electrode of finite height meets the substrate, instead of the electrode edge as

ACEO is also strong at the edge and hence carries the particles away.

5.2 Results

In this investigation a device is simulated that consists of an array of identical parallel
electrodes 20 um wide and placed 20 um apart. The electrolyte and particle properties
used are stated in table 5.1, unless otherwise stated. The Clausius-Mossotti factor for the
fluid and particle is shown in figure 5.1. A potential is applied on the electrodes and as
a result a DEP force is exerted on the particles in the fluid. The fluid is mobilised by
ACEO and therefore through drag a force is also exerted on the particles. The important
feature that is of interest here is the particle radius at which the stable DEP/ACEO traps
form over the electrodes, which are defined as the points where the particle velocity is
zero. The stable trapping points are those with restoring velocity near the point, whereas
unstable are the points for which if the particle moves even by an infinitesimal degree

away from the point, it will be carried away from the point (140).
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Figure 5.1: Real part of the Clausius-Mossotti factor for the system of particle and fluid
with the properties given in table 5.1.

5.2.1 Positive DEP

In this part of the work, the voltage settings are 5 V', 10 kHz. The particle radius is
varied and the flows shown in figures 5.2, 5.3, 5.4 and 5.5 are observed. The trapping
points at the electrode edges are well known and are not discussed here, since they exist
even without the presence of ACEQO. In figure 5.2 it can be seen that for particle radius

of a = 0.1 um there are two unstable trapping points formed inside the ACEO whirls.

The points here are formed because ACEO is dominant at lower particle radii as it does
not scale with particle radius while DEP scales with the particle volume. The points
are unstable for positive DEP because when the particle is disturbed (say by Brownian
motion) from the zero velocity point, it will move towards the electrodes. Therefore the
instability is in the vertical direction. This is not the case for negative DEP, where the
DEP and ACEQO also balance in the vertical direction, therefore making these trapping
points stable. As the particle radius increases, the trapping point moves towards the
electrodes. The ACEO-induced velocity is constant, therefore as the particle gets larger
the positive DEP has a longer reach and the trapping point will move further away
from the electrode, as seen in figures 5.3 and 5.4. The meaning of this is that for all
points vertically above the electrode centre and closer to the electrode than this point,
the velocity field is pointing vertically downwards and therefore the particle will move

towards the electrode.

In this investigation, it was also found that a situation arises in positive DEP where a
stable trapping point forms on the electrode surface in the middle, as shown in figure
5.5. This situation arises when DEP is stronger than ACEQO in the vertical direction and
ACEQ is stronger in the horizontal direction.
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Figure 5.2: Plot of overall velocity of a particle at 10 kH z for particle radius a = 0.1 um.

The same phenomenon has also been observed in (137).

5.2.2 Negative DEP

Here the effect of the particle radius in the formation of stable trapping points is inves-
tigated, using the same settings as before but the frequency is changed to 5 M Hz. The
frequency of 5 M Hz means that the DEP is now in the negative DEP region, as seen
in figure 5.1. The flows shown in figures 5.6, 5.7 and 5.8 are observed for the different
particle radii. It can be seen that again, as in positive DEP, for small particle radius
ACEQO motion dominates in the fluid bulk as in figures 5.6 and 5.7.

x 10 >é10
4 L4 i it et vewe=" “"” ~~~~~~ SV VYL m/s
bbb 44t vewe=s™ AER TR AR AR i I NN MY VLA
357 L4 b4 d st v wweem=® AT R A I IR TR T T T T N 25
3 S b s st Location of unstable equilibrium point
-
£ eriseierrennns AR 2
(0] |
02.5 -nt o
c 444 sttt tvvere SNNYYYAYL L
@ ¢
0 2- Ll b 44 d ittt vvevee ] sssan Sy vy 15
©
a A A A T T T T T T T T S NN N S S )
o 1.5-
T
) L A I I I I I ] 1
> qh
0.5 0.5
e e agee ey aaaaaan AP .
o- I
1 1 1 1 o
0 1 2 3 4
Horizontal distance (m) x10°

Figure 5.3: Plot of overall velocity of a particle at 10 kH z for particle radius a = 2 um.
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Figure 5.4: Plot of the unstable trapping point (point where the curves cross the x-axis)
movement as the particle size changes from 0.1 — 2.5 um.

As the particle radius gets larger DEP begins to become comparable with ACEO and
it can be observed in figure 5.8 that after 5 nm the ACEO characteristic whirls start to
disappear. The trapping points in the middle of the interelectrode space and in the middle
of the electrode surface are not discussed here because these exist in negative DEP even
when ACEOQ is not present. It has to be noted here that while the particular settings
for frequency and particle size might be of little use in practical systems, similar system
dynamics might be obtained for real devices. Therefore, the trapping regions investigated
here could appear in combined negative DEP/ACEO situations at different particle sizes

and frequencies of excitation.

m/s §1 o’
16+
14
25
12
E! 2
[0]
[$]
C
ol
b 1.5
il
©
RS
g 1
>
0.5
) Stable trapping point
1 15 2 25 3 "
Horizontal distance (m) x10°

Figure 5.5: Plot of the stable trapping point over electrode at 10 kH z, for particle radius
900 nm and electrode excitation of 0.5 V.
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Figure 5.6: Plot of overall velocity of a particle at 5 M H z for particle radius a = 0.1 nm.

5.2.3 Asymmetric electrodes

Trapping is also investigated for the case of configurable asymmetric electrodes. The

system is described in detail in (82) and consists of arrays of three identical electrodes.

The simulations are performed with the same settings as in table 5.1, except that the

particle radius is 1 nm and the excitation is 0.5 V. The grouping of electrodes in terms of

excitation creates an asymmetry that is configurable. For example, if the two electrodes

on the left are grouped together the asymmetry is reversed from the case where the two

electrodes on the right are set at the same AC potential. This method of configurable

asymmetry has already been demonstrated to be capable of creating a reversible pumping

effect.
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Figure 5.7: Plot of overall velocity of a particle at 5 M Hz for particle radius a = 5 nm.
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Figure 5.8: Plot of overall velocity of a particle at 5 M H z for particle radius a = 10 nm.

Here it is demonstrated that it can be used to create stable trapping points whose position

can be changed by altering the electrode grouping.

5.2.3.1 Asymmetric electrode simulation

It is of great interest to describe not only the velocity field for a particle, but also the
concentration distribution of an ensemble of particles of finite size, taking into account
that some diffusion is present. To describe the particle concentration one may use the
Smoluchowski equation, as described in (127). The particles described in the previous
section are large enough for diffusion to be very small compared to the velocities induced

here.

This causes two major problems in the simulation of the concentration for such a system.
The first one is that the very high spatial concentrations require the use of a very high
number of mesh points. The second problem is that in the Smoluchowski equation, the
finite size of the particles and therefore the maximum possible volume fraction of particles

at close packing is not taken into account.

In order to avoid the issues aforementioned, some modifications have been implemented.
Firstly, a function is applied that multiplies the DEP velocity so that it takes into account
the fact that as particles come close to maximum close packing, their velocity decreases.
Secondly, the diffusion constant is modified to include a step function which introduces
large diffusion in the system so that the concentration does not exceed the value of C' =
0.64 for maximum close packing of spheres (124). The subject of steric effects is dealt

with in more detail in chapter 7.
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Figure 5.9: Volume fraction of particles of 600 nm particle radius at 10 kHz, 0.5 V under
both DEP and ACEO at steady state symmetric excitation.

The modifications used here effectively limit the maximum concentration and achieve
convergence without compromising the physical insight. The results obtained for an initial
volume fraction of 1 x 10~* of 600 nm radius particles under the same parameters as in
the previous section are displayed in figures 5.9 and 5.10 for the symmetric and figures
5.11 and 5.12 for the asymmetric excitation of the electrodes, after they have reached
steady state. The main distinguishing features are that the particles are not trapped at
the electrode centre in the symmetric excitation, as shown in figure 5.9 and that in both
cases the particles are trapped at the interface between the electrode and the substrate

and not at the electrode edges.
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Figure 5.10: Volume fraction of particles of 600 nm particle radius at 10 kHz, 0.5 V
under both DEP and ACEOQO at steady state symmetric excitation, zoomed.

99



5.2 Results

x10°
3
0.4
' 0.35
03
: - 025
L 02
. - 015

E
0]
[S]
c
g
@2
©
T
9
5
s 0.1
05 0.05
0

2 15 1 05 0 05 1 15 2
Horizontal distance (m) x10°

Figure 5.11: Volume fraction of particles of 600 nm particle radius at 10 kHz, 0.5 V
under both DEP and ACEO at steady state asymmetric excitation, where electrodes 1
and 2 are in-phase.

This can be attributed to the fact that while DEP is strongest at the electrode edge, so
is ACEOQ, therefore carrying the particles away (an issue that is pointed out in (101) as a
possible disadvantage when using ACEQO to collect particles to sensor surfaces located at
the electrode edges). In relation to the trapping at the electrode centre, taking diffusion
into account makes trapping at the electrode centres disappear for this system. It must be

noted that these observations are valid for the system examined subject to these particular
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Figure 5.12: Volume fraction of particles of 600 nm particle radius at 10 kHz, 0.5 V'
under both DEP and ACEQO at steady state asymmetric excitation, where electrodes 1
and 2 are in-phase, zoomed.
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5.3 Conclusions

The observation that particles gather preferentially to one side due to higher DEP in that
region, can be useful for many applications, such as moving a particle to different sensor

surfaces in sequence or assembling different particles to different positions on a surface.

5.3 Conclusions

Numerical simulations were used here to investigate the existence and behaviour of trap-

ping points in parallel electrode and configurable asymmetric electrode systems, under
the combined influence of positive DEP and ACEOQ.

It was found that using a configurable asymmetric system it might be possible to trap
particles either in a symmetric or an asymmetric manner, with the degree of precision
and flexibility being related to the device characteristic scale and number of electrodes in
an array. Therefore, such a system might be useful in devices where small scale precision

manipulation of particles is required, such as in sensor devices.

Furthermore, the DEP and ACEQO velocity fields were investigated simultaneously, reveal-
ing the joint effect on the particles. However, in order to examine the system dynamics,
it is necessary to model the evolution of the particle concentration taking into account
diffusion of the particles. This is done in the next chapter, where the system dynamics of
a device for DNA trapping are analysed using a Smoluchowski equation to describe the

evolution of the particle concentration.
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Chapter 6

Combined Dielectrophoresis and AC
Electroosmosis using a

Concentration analysis

The dynamics of the particle concentration are investigated in this chapter using a Smolu-
chowski equation. This is very important in examining the system operation because the
particle concentration is the desired information that must be extracted from the simu-
lations of DEP manipulation systems. The previous analysis has examined the velocity
fields due to the two phenomena, ACEO and DEP, but did not take into account diffusion

and nor did it provide direct information on the particle concentration.

6.1 Introduction

The manipulation of DNA particles is a subject of increasing interest, due to applications
in lab-on-chip systems (56). A very useful method for DNA manipulation utilises the DEP
force. Experimental investigations of DEP particle concentration suggest a difference
between experimental and numerical results, which is attributed to other factors, such
as the ACEO flow (4). The manipulation problem therefore becomes more complicated
by the fact that ACEO fluid flow is induced in the system, which disturbs the DEP
concentration of particles. As a result, the inclusion of the ACEQO effect is required to

more accurately simulate the behaviour of the system.

In this section, the Smoluchowski form of the Fokker-Planck equation (141) (142) (127)
is used in order to study the steady state concentration of dsA5 DNA in a sample under

both DEP and ACEQ. The ACEO and DEP induced velocities are used as the convective
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6.2 Theory

terms in the equation, whilst the diffusion of DNA is also taken into account (143). It
is assumed that the particles do not affect the electric field or the fluid flow and that
the particles do not interact with each other. The results from this investigation clearly
indicate the significant effect of ACEQO. The fluid flow caused by ACEQ effectively carries
the particles from the electrode edges towards the electrode centre, therefore reducing
the DEP concentration at the edges. This observation is consistent with experimental

observations.

6.2 Theory

6.2.1 Dielectrophoresis of DNA using experimental polarisabil-
ity data

The system in figures 6.1 and 6.2 is used as an example of a possible electrode configuration
in a lab-on-chip system to manipulate DNA, which is suspended in water with KCI. The
combined force from gravity and buoyancy is neglected in this domain since, at this
distance from the electrodes, the DEP force is orders of magnitude higher. The DEP
force was given earlier in equation 2.2. However, since the dielectric properties for the
DNA particles under investigation are available in relation to the particle polarisability at
specific frequencies, the DEP force is given by the following alternative expression (141)
(144):

A, X VE?
Fpgp = T (61)
where a,, = % (F.m?) is the polarisability of the DNA particle, pq the dipole moment
and E (V.m™1) the peak electric field applied.

Investigations of the diffusion of dsA5 DNA estimate its diffusion coefficient to be 1.07 x
10719 m?2.s71 (143). Furthermore, studies on the dielectric relaxation of 12 kbp (thousands
of base pairs) plasmid DNA (51) give approximate values for the polarisability of the DNA
at several frequencies. A reasonable assumption for the dsA5 polarisability, which has 20
bp (base pairs) length, would be to consider the ratio of the a,, of the dsA5 to the a,, of
the 12 kbp plasmid DNA to be equal to the ratio of their volumes. This estimate of a,, is
accurate enough to give an order of magnitude value of the DEP force on DNA particles
of this scale. The friction factor is found by f = % = 4.387 x 107" N.m.s~! (1) and
the diffusion constant gives D; = % = 90.22 x 107 m2.s7! which is very close to the
one used and which was observed experimentally (143). The Debye length for the system
here is approximately Apepye = 10 nm.
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Figure 6.1: Geometry of parallel electrodes (not to scale)
6.2.2 Stochastic motion

The concentration or probability density function for the particles in two dimensions

C(x,y,t) is given by the Smoluchowski equation, as described in (127), (128)

oC 0 0? 0 0?

— = [—= wi D—— — wi D—]C (6.2

T [ e (vpEP(T) + Viwia(z)) + 02 oy (vpEP(Y) + Viwia(y)) + 8y2] (6.2)
where D is the diffusion constant and the other variables have the meaning stated before.
Here the diffusion constant D = 1.07 x 1071° m?.s~! found experimentally (143) is used.
For the solution of the Smoluchowski equation, all boundaries are set to be reflective. The

properties employed for the simulations are summarised in table 6.1.

Table 6.1: Electrolyte and particle properties.
Property Value
Fluid Viscosity (ny) 1 x 1072 Pa.s
Diffusion coefficient for dsA5 DNA (D) | 1.07 x 1071 m?2.s7!
Relative permittivity of medium (€,,.) | 80

Electrode peak potential (V) 45V

A 0.25

Permittivity of free space () 8.8542 x 107'* F.m~!
Debye length (Apepye) 1x108m
Conductivity (o) 8.6 mS.m~*

Friction factor (f) 4.387 x 107 N.s.m™!
Particle polarisability a,, varied from 0.1667 to

5.333 x 10733 m?
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Figure 6.2: Computational domain for the periodic problem of parallel electrodes

6.3 Results

6.3.1 Steady state simulations

The interest here lies in the relationship between the particle polarisability (or equiva-
lently frequency) and the steady state DNA concentration under DEP. The steady state
concentration at a point is the concentration after this no longer changes with time. This
will allow the investigation of how ACEO flow affects the final distribution of particles in
the device when ACEOQ is also considered. It is predicted by theory that the relationship
is exponential (141), however the relationship indicated by experimental results is a linear
one (4). It is also found experimentally that the concentration is much lower than the
one predicted by DEP theory alone. The main issue of interest is the relation between
the particle polarisability and steady state concentration, which is why the concentration
is plotted as the non-dimensional ratio c%v the ratio of the steady state concentration C'
to the initially uniform concentration Cy. The point tested is (1.499 x 1075 m, 3 x 1077

m), which is close to the electrode edge.

By using the properties in table 6.1 and the boundary conditions in figure 6.2, the system
shown in figure 6.1 is simulated. A 4.5 V peak voltage is applied and equation 6.1 is used
for the DEP force. It can be seen in figure 6.3 that the steady state concentration with
DEP alone is of exponential form, as predicted by theory (the logarithmic plot is linear)
(141). The concentration due to ACEO and DEP is simulated using the Smoluchowski

equation, by using the DEP and ACEO induced velocities as the convective terms.

The effect of ACEO flow (which is the induced fluid velocity) is superimposed to the DEP-

induced particle velocity and then it is incorporated into the Smoluchowski equation.
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Figure 6.3: Natural logarithm of the steady state concentration due to DEP alone vs
particle polarisability (F.m?)

The steady state concentration is clearly disturbed by the ACEO flow, as seen by the
circular patterns of the concentration isocontours formed by the DNA in figure 6.4. Figure
6.4 is a side view of one of the electrodes shown in figure 6.1, of length equal to one periodic

length of the array.

When ACEO flow is introduced, it can be seen in figure 6.5 that the local steady state
concentration at a point dramatically decreases, which agrees with experimental observa-
tions (4), where very modest collections of DNA on the array were observed in comparison

to the concentrations predicted experimentally by DEP.
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Figure 6.4: Concentration of DNA (C%) in steady state over the electrodes, taking both
DEP and ACEO into account
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surface as a function of frequency (H z)
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It can be seen that the induced velocity due to ACEO is of the same order of magnitude
or larger than the particle velocity induced by DEP.

ACEQ is therefore strong enough to distort the exponential relationship predicted by
theory and is found to be significantly modified and very dependent on ACEO flow.
More specifically, ACEO flow is maximum at the electrode edges, where DEP is also
maximum. The ACEO flow effectively removes the particles from the edges and carries
them towards the electrode centre. Furthermore it can be observed that the effect of
ACEO is at its highest at a particle polarisability of 5.3 x 10733 F.m? or equivalently at
a frequency of about 10 kH z, as shown in figures 6.5 (the minimum concentration is at
particle polarisability 5.3 x 1073 F.m? for the combined ACEO and DEP case) and 6.6
(the maximum ACEOQO velocity magnitude is at 10 kHz). This frequency corresponds to

a non-dimensional frequency of 8, which agrees with the literature (2).

6.4 Conclusions

The DEP manipulation of dsA5 DNA particles in a suspension was investigated numer-
ically. ACEO fluid motion was also simulated and the results with and without ACEO
were compared. These indicate a strong decrease in the concentration at the edges and
subsequent movement of particles towards the centre of the electrode, a fact verified by ex-
perimental observations (4). Finally, the ability of the Smoluchowski equation to simulate
combined diffusion, ACEO and DEP to describe the evolution of particle concentrations

in such a system has been verified.

While this chapter has revealed the ability of the numerical model to simulate the dy-
namics of the system, it is limited by the fact that the particle size simulated can not be
large enough for the particle concentration to become significant, since it does not take
into account the finite particle dimensions and would therefore predict unrealistically high
volume fractions, which would require the particles to overlap in space. Therefore, it is of
great importance to include the particle steric effect in order to be able to simulate the

dynamics of larger particles than the ones simulated here.

68



Chapter 7

Particle steric effects:

Dielectrophoresis

In order to improve the physical model presented in chapter 6, it is necessary to introduce
a modification to the Smoluchowski equation to account for the limitations imposed on
the particle concentration by the finite particle dimensions. This is done here and the
simulation results are compared with the previous model in order to understand the effect

of the modifications.

7.1 Introduction

The physical model used in chapter 6 does not take into account the finite size of the
particles. The particle finite size means that two particles cannot overlap with each other
and therefore a maximum volume fraction limit exists for the particles, depending on
their shape. Furthermore, as the particle concentration becomes higher, the motion of a

particle is affected by the presence of nearby particles.

If the particle size is large enough for the diffusion to be negligible, the device operation
can be analysed by studying the velocity fields as in chapter 5. However, in a region
where both the concentrations can be large but diffusion is still significant, such as in the
case of the 12 kbp pTA250 DNA, the steric effects of the particle concentration have to be
taken into account in a model that also incorporates the effects of diffusion, such as the
Smoluchowski equation. This is one of the tasks pursued here, so that numerical results

can subsequently be comparable with experimental data.

The first direct effect of this modification is that the maximum possible concentration is

limited. The maximum possible concentration can be assumed to be equal to approxi-
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mately 0.64 volume fraction (0.64 random close packing or 0.74 maximum close packing-
when the spheres are orderly placed in adjacency to each other (125)). The maximum
volume fraction is not ‘strictly’ imposed (i.e. instead of the steric parameters becoming
infinite or zero at the set limit, these are set to become very high or very low respectively),
as such a strategy would cause numerical problems, but practically the volume fraction
is kept very close to the limiting value. Further analysis and discussion on this issue is

provided in section 8.2.2.

7.2 Theory

The system in figure 6.1 of the previous chapter is investigated. This consists of parallel
electrodes of 10 pum width and interelectrode spacing of the same size. It is assumed here
that the length and width of the array are infinitely long so that end effects are not taken

into account. A water solution with DNA particles is placed on top of the electrodes.

7.2.1 Particle dynamics

The concentration of the particles in two dimensions C(x,y,t) is given by the Smoluchowski
equation, as described in (128), (127)

oC 0 0? 0 0?
i [—%(UDEP(JI) + Vfiia(T)) + Do~ a_y<UDEP(y) + Vfwia(y)) + Da_yg]c (7.1)

where D is the diffusion coefficient and the other variables have the meaning stated before.

Here the diffusion constant D = &rﬁﬁ (where 67n(/In2 the friction factor) is used
(1). Also, the DEP velocity is calculated as Upgp = _Fper _ For the solution of the

6mnyl/In 27[ ’
Smoluchowski equation, all boundaries are set to be reflective. The properties employed

for the simulations are summarised in table 7.1. The motion of the fluid due to ACEO
must also be taken into account for the analysis of such a device, but is not presented
in this section in order to study the steric effect before introducing further complexity to
the problem. More details on this can be found in (82) (144) (105) (106).

7.2.2 Steric effect modification

Based on theory presented in (124) (not including concentration effects on the electric

field or DEP) the equation for the conservation of particles is given by equation 7.2 (145)
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(146)
= +V.(ct+7,) =0 (7.2)

where ¥ is the suspension velocity, ¢ = nV, the particle volume fraction (n is the number

density, V,, is the particle volume) and jp is given by

- V(1 —c)?

Jp = %ﬂ,—anc[_vup + (pp - pf)g] (7'3)

where V,u, is the chemical potential (increment of the system energy by adding a particle),

a the particle radius and p,, , py are the particle and fluid densities respectively. Therefore

Oty _ T 2(0) | 02 (7.4)

Vi = Jc V, * ¢ +8c

and

- (- C)2kBTacZ(C)Vc N (1—c)?

_ — Vv 7.5
Jp 6mar, e 6man, (Pp = Pr)cVg (7.5)

1.5¢ ] is the effective viscosity

Z is the suspension compressibility factor and 7. = n[1 + 5
of the suspension (7 is the fluid viscosity and ¢, the maximum packing volume fraction,
here set to ¢, = 0.64). One can write

7, K(c) . T@cZ(c)vc+ K(c)

6many dc 6many

(Pp — P£)CVpg (7.6)

The Carnahan-Starling equation (147) gives

and

(7.8)
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Including DEP the equation for the volume fraction becomes

Jc . . dcZ(c)
% + V.(cts 4+ cK(c)up — DoK(c) P

Ve) =0 (7.9)

where ¥, is the suspension velocity, wp the particle velocity induced by external forces
(DEP, buoyancy and gravity) and Dy is the diffusion constant for a particle without any

interactions between the particles.

7.3 Results

Simulations of concentration dynamics are produced here using the method of finite ele-
ments for DNA particles for lengths of 1 kbp, 2 kbp and 4 kbp. The dynamics of an initial
concentration of particles are simulated for 10 s under the conditions described earlier

and the results are presented here.

7.3.1 Time evolution

After the sudden application of an AC potential difference of 9 V' peak-to-peak, the
particle concentration starts to evolve. A point is selected close to the electrode edges and
the evolution of concentration as a volume fraction is presented for all the three particle
size cases so that the behaviour of the suspension is investigated. The results are plotted
in figure 7.1. The point under investigation is given by coordinates (z = 1.499 x 107 m,
y = 3 x 1077 m) and can be seen in figure 7.3. It can be seen that the general form of
the plots indicates that all the cases tend towards a steady state that is reached faster for
larger particles. It is also evident that the rise in concentration is faster as the particles
get larger. At 4 kbp the rise time becomes very short, an issue that might cause numerical

problems with simulations of larger particles.

Table 7.1: Electrolyte and particle properties.

Property Value

Fluid Viscosity 7y 1 x 1072 Pa.s
Relative permittivity of medium ¢,,, 80.2

Electrode potential V 45V
Permittivity of free space ¢ 8.8542 x 10712 F.m~t
Conductivity o 5 mSm™1
Friction factor f (6mnl)/log(2l/r)
Real part of particle polarisability a,, | variable

DNA base length 0.23 x 1072 m
DNA width 1.275 x 1072 m
Initial concentration 0.5x 1073
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Concentration (volume fraction)

0.1 4 5 6 7
Time (s)

Figure 7.1: Plot of the concentration at one point (z = 1.499 x 107° m, y = 3 x 10~" m)
for the three cases simulated.

Comparing these with experimental results from (4) it can be seen that the time scale
from initial concentration to steady state agrees qualitatively. Quantitative comparison

requires the transformation of concentration to normalised fluorescense.

0.1

Concentration (volume fraction)

£y

-0'10 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance (m) x 108

Figure 7.2: Plot of the concentration profile at a radial distance from the electrode edge
for the three cases simulated. The profiles are taken at ¢t = 10 s.
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Figure 7.3: Steady state without the steric modification.

7.3.2 Concentration profile

A cross section of the concentration profile is presented here in order to investigate its
evolution. The results are plotted in figure 7.2. It can be seen that the rise time for the
larger particles is faster, as observed in figure 7.1. Furthermore, it can be seen that the
dynamics of the system as the particle size increases move asymptotically towards a well
defined step. It may therefore be possible to use these to extrapolate to larger particle

sizes.

Distance (m)

1.49 1.495 1.5 1.505
Distance (m) x10°

Figure 7.4: Steady state with the steric modification.
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Figure 7.5: Plot of the concentration evolution versus time for 1 kbp particles at the same
point as figure 7.1 without the steric modification.

7.3.3 Comparison with non-steric case

The evolution of the concentration is also simulated using equation 7.1 without the mod-
ifications. A comparison of the non-steric and steric cases at the same time instant under
the same conditions is presented in figures 7.3 and 7.4. It is evident in the non-steric
case, that the particles, as can be seen in figure 7.3, have reached an unrealistically high
concentration at the electrode edge (in a region which is theoretically a point), while the

region near the electrodes has negligible concentration.

This is further supported by figure 7.5 which shows that the initial concentration decreases
rapidly and remains very low for the rest of the time in the non-steric case. This essentially
means that for the non-steric case all particles within range collect at an infinitesimal
region near the electrode surface, which is not realistic. However, the finite particle
dimensions limit the particle concentration in real devices, therefore producing a profile

shown in figure 7.4, which has been produced after 10 s by the modified model.

7.4 Conclusions

A physical model for the collection of DNA on parallel electrode arrays by DEP has been
introduced that incorporates steric effects in the particle concentration. This is important
in the simulation of real devices where the particle concentration under DEP is of interest.
The model has been compared with simulations without the modification introduced and
there has been significant impact on the results, making the results more realistic. Also,

it has been possible to extract the dynamics of a system of particles suspended in a device
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as the particle size increases.

As a next step the physical model will be further expanded by including the ACEO
fluid motion in the simulation. This requires the introduction of particle steric effect
modifications in the Navier-Stokes equations for the suspension. The simulations can
then be comparable with experimental data, since the most important phenomena for

this problem will have been taken into account.
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Chapter 8

Particle steric effects: Joint
Dielectrophoresis and AC

Electroosmosis

In the previous chapter the Smoluchowski equation was modified in order to take into
account the particle steric effects. In this chapter the effects on the suspension motion are
also modelled by modifying the Navier-Stokes equations and the ACEO fluid motion is
included in the simulations. The simulation results are then compared with experimental

data and are also used to investigate a number of variables affecting the device operation.

8.1 Introduction

High local concentrations mean that the suspension effective viscosity and density are
modified. The complications of this are taken into account by introducing modified
Navier-Stokes equations. The effect of these modifications is that as the local concen-
tration becomes higher, the density, viscosity and therefore local suspension velocity are
modified to reflect this. Therefore, the density increases, the viscosity also increases and
the particle DEP velocity is reduced as the concentration increases. The modifications
are also helpful in the numerical convergence of the model, since a number of variables
are confined to a more limited range of values whereas by using the simpler model these

could become very large in regions of high concentration.
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8.2 Theory

8.2.1 Particle steric effect modifications on the suspension mo-

tion

The modified Navier-Stokes equations for the suspension flow are given in equations 8.1,
8.2 (124) (23):
ovs ., . -
pS(E + ¥5.VUs) = =Vp + V.0 V) — NVt fpep +c(pp — pf)g (8.1)
V.-us,=0 (8.2)

where ¥ is the velocity of the suspension, ¢ the volume fraction, ps = (1 — ¢)ps + ¢p, the
suspension density using an effective medium approximation, Vp, defined in equation 7.4

and the fluid viscosity is given by equation 8.3 (124).

1.5¢
ne = npll + (33)

Cm

The force fppp is the volume dielectric body force on the suspension and is given by

equation 8.4, assuming low concentration or polarisability of the particles.

- ca,, V E?
fDEP: 4—% (8'4)

where a,, is the real part of the particle polarisability and V,, the particle volume.

The boundary condition on the electrode surfaces is given by equation 3.5 defined earlier
(in the slip velocity definition the viscosity is set as constant n; = 1 x 107® Pa.s because
the particles are assumed not to stick to the surface). Furthermore, the Navier-Stokes
equations are solved simultaneously with equation 7.9 for the volume fraction in order to

simulate the particle concentration evolution.

The model used is modified as above and simulations are performed to investigate the

impact of these modifications.

The modified steric model can simulate larger particle sizes in the form of the modified
Smoluchowski equation. Also, the steric model can be used to perform simulations of
systems already analysed and the results can be compared in order to examine its impact

on smaller as well as larger particle suspensions.

The model described above is implemented and solved using a finite element formulation.
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Table 8.1: Properties used in the simulations.

Property Value

Fluid Viscosity (ny) 1 x107° Pa.s
Relative permittivity of fluid (€,,,.) 80.2

Electrode peak Voltage (Vo) 45V

A variable

Permittivity of free space () 8.8542 x 10712 F.om™!
Debye length (Apepye) 1.31 x 10 % m
Conductivity of fluid (o,,) 5 mS.m~!

Frequency variable

Initial concentration/volume fraction 0.0005 a.u.

Table 8.2: Relation of particle polarisability with Frequency (4).

Particle polarisability Frequency
2.4 x 10739 Fm? 100 x 10° Hz
1.5 x 1073 Fm? 200 x 10% Hz
0.84 x 10739 F'm? 500 x 103 Hz
0.61 x 10730 F'm? 1x10° Hz
0.39 x 10739 F'm? 2% 10% Hz
0.14 x 1073 Fm? 5x 105 Hz

The settings used for the simulation here are presented in table 8.1. The particles con-
sidered are plasmid pTA250 DNA 12 kbp long. The DNA properties of interest are its
size, density and particle polarisability. The size is taken as a cylinder of radius= 1.275
nm, length = 0.23 nm x12 x 10% bp and with density of 1.1 x 10> Kg/m3. The particle

polarisability is shown in table 8.2 for all frequencies used in the following work.

8.2.2 Exponential models for the polynomial expressions

After a number of initial simulations, it was found that the parameters 7., Z(c), K(c)
caused problems and instability to the numerical simulations, due to the singularities
inherently existent in the expressions. Therefore, they were approximated by exponential
expressions that are listed here for Z(c), K(c), 1. in equations 8.5, 8.6 and 8.7 respectively.
These were selected due to the fact that the exponential functions have smooth derivatives
and no discontinuities over the regions of interest. Furthermore, the exponential models
can be tuned easily to approximate the required polynomials, as can be seen in figures

8.1, 8.2 and 8.3 . The impact of using such approximations is investigated in section 8.4.

e =1 x 1073 x ¢l(©/0:35)* (8.5)
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Z(c) = 0.5 x (e/015 4 ¢=¢/0.15) (8.6)

K(c) = e~ 1(9/015] (8.7)

Exponential
== =Polynomial

e n wi wm PT 1 1
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Concentration {volume fraction)

Figure 8.1: The exponential expression for 7. plotted with the polynomial expression.
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Figure 8.2: The exponential expression for Z(c) plotted with the polynomial expression.
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Figure 8.3: The exponential expression for K (c) plotted with the polynomial expression.
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8.3 Results

8.3.1 Investigation of the tuning parameter A

The theory for the ACEO slip velocity contains a tuning parameter which is experimen-
tally determined. In order to determine its effect, the simulation was run for several values

of this parameter, A.

The meaning of the particle collection referred to in this chapter is defined as the integral of
the concentration/volume fraction over an area of plus or minus 1 pm from the electrode
edge and to a height of 1 um over the electrode edge. This is the focal area of the
microscope as stated in (4). This is always plotted as normalised by the initial value of
the integral so that the plotted quantity is easier to compare. The evolution of the particle
collection for different A values is shown in figure 8.4. The differences in the initial rates

of increase are small.

However, for the A = 0.25 case the difference in steady state is high. The same plot for
the 1 M Hz case is shown in figure 8.5. The differences are smaller at this frequency. It
can be seen in figures 8.4 and 8.5 that the effect of varying A in the vicinity of 0.15 is
small. As expected, the effect of varying A is much smaller in figure 8.5, because ACEO

is weak at such high frequencies and DEP is dominant.
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Figure 8.4: The particle collection over the electrode edge for different values of A at 200
kHz.
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Figure 8.5: The particle collection over the electrode edge for different values of A at 1
MHz.

Here, since no ACEO experimental data is available for the system, 0.15 is taken as
an estimate!. The steady state particle collection for 200 kHz A = 0.15 is shown in
figure 8.6. Its form here is such that there is high particle collection at the vicinity of
the electrode edge, but there is also significant particle collection over the surface of the
electrode towards the electrode centre. This is due to the high ACEO velocity which

forces the particles towards the electrode centre.

Figure 8.7 shows the steady state particle collection for 1 M Hz A = 0.15. Here it is more
confined to the vicinity of the electrode edge. This is due to the fact that ACEO is very
small at this frequency and DEP is highly dominant, therefore giving rise to a steady
state profile very similar to the one in figures 8.8 and 8.9, the cases without ACEQO for
200 kHz A =0 and 1 MHz A = 0 respectively (where A = 0 is used it is implied that

the suspension velocity v in equation 7.9 is set to zero).

The evolution of the particle collections is shown in figure 8.10, where it can be seen that
the steady state and the initial rate decrease with the increase in frequency, due to the
reduction in particle polarisability. As can be seen, at lower frequency where ACEOQO is
stronger, collection is significantly disturbed and that particles are dragged away from
the electrode edge towards the electrode centre. The particle collection is increased in the
region where the electrode intersects the substrate, because this region is shielded from
strong ACEO flow. At the electrode edge, it is decreased in both cases.

'From this point on it is implied that A = 0.15 unless otherwise stated.
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Figure 8.6: The steady state particle collection over the electrode edge for 200 kH z
A =0.15.

It can also be seen that for the case without ACEO the particle collection evolution is
much slower than with ACEO. Furthermore, it is clear from figures 8.6 and 8.7 that
for the cases where ACEO is not introduced, the frequency change does not affect the
collection profile as much as before. Figure 8.11 shows that at 200 kH z the steady state
particle collection is much more dependent on A than at 1 M Hz, which is as expected
theoretically, since ACEQO is much stronger at this frequency. From the results shown in
this section, one can observe that ACEQ in this system under the conditions tested always
reduces the steady state of the system. The higher the ACEO the higher the reduction
in the system steady state trapping.
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Figure 8.7: The steady state particle collection over the electrode edge for 1 MHz A =
0.15.
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Figure 8.8: The steady state particle collection over the electrode edge for 200 kH z
without fluid motion.

In figure 8.12 it is evident that the time to reach steady state is dramatically reduced
by ACEOQ, although the relationship is not monotonic. This is due to the fact that the

ACEO fluid velocity is much higher than the DEP-induced velocity in a region that is
close to the electrode edge.

Distance (m)
o
[

(=]

-0.5

35 4 4.5 5 55 6

Distance (m) x10°

Figure 8.9: The steady state particle collection over the electrode edge for 1 M H z without
fluid motion.
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Figure 8.10: The evolution of the particle collection over the electrode edge for 200 kH z
and 1 M Hz without fluid motion.
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Figure 8.11: The steady state particle collection over the electrode edge for different values
of Aat 200 kHz and 1 M Hz.
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Figure 8.12: The time taken to reach steady state for different values of A at 200 kH z.
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8.3.2 Investigation of frequency dependence

For the 200 kHz case in figure 8.4 the particle collection steady state is not affected
significantly by ACEO. However, what is affected significantly is the initial rate of increase.
This becomes much higher with ACEO. As a matter of fact, the analysis of (4) on the
initial rate of increase assumes that DEP is the dominant mechanism, which is why it
is expected to have a linear relationship with the particle polarisability. However, it is
evident here that the initial rate is dominated by ACEQO. The dependence of ACEO on
frequency is therefore responsible for the non-linearity of the relationship of the initial

particle collection rate with the particle polarisability.

The results from figure 8.13 (figure 8.14 is a zoomed version) show that the general form
of the particle collection evolution is very similar in terms of the form of the plot and the
time scales existent with the fluorescence plots obtained experimentally by (4). In figure
8.15 it can be seen how the steady state particle collection decreases with frequency as
also observed experimentally. Direct comparison of the absolute values is not possible,

since experimental results are available for the fluorescence and not the particle collection.
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Figure 8.13: The evolution of the particle collection over the electrode edge for all fre-
quencies, A = 0.15.

88



8.3 Results

1401

120
3100 —100 kHz
s w200 kHz
g 500 kHz
o
'§ e I L o 1 MHz
§ =2 MHz
P 60
.2
D 40 F

20f;
0 1 1 1 1 1 1 1 | | J
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Figure 8.14: The evolution of the particle collection over the electrode edge for all fre-
quencies (zoomed version), A = 0.15.
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Figure 8.15: Plot of the steady state particle collection vs frequency.
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8.3.3 Particle polarisability and initial rate of particle collection

The initial rate, defined as the rate of increase of the particle collection at t = 0 s (found
by dividing the particle collection increase with time for ¢ = 0.06 s, the time instant chosen
so that the region used for the calculation is a tangent to the curve at ¢ = 0 s) is plotted
with the particle polarisability with and without ACEQO in figure 8.16. As predicted by
theory, the plot without ACEO is linear. For the plot with ACEQ, it is evident that the

initial rate is enhanced at all frequencies.

The result from (4) indicates that the enhancement is greater at higher particle polaris-
ability, which resembles the simulation results obtained. Therefore, it is found here that
the ACEO fluid motion is a very strong contribution to the departure from the linear
relationship predicted by the DEP theory alone. What is further observed here is that
the non-linearity is due to enhancement of the process, a fact that has not been verified
experimentally but was proposed as a possible explanation by (4). Furthermore, a hy-
pothetical case is also simulated where ACEO is set to zero, but the equations 8.1 are
solved for, and the result is plotted in figure 8.16 (no ACEO/with suspension motion). It

is evident that some enhancement is still present.
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Figure 8.16: The initial rate of particle collection with ACEO, without ACEO and without
ACEO but including the suspension motion for A = 0.15.
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8.3.4 Investigation of the effect of electrode height

The electrode height is also investigated here as a factor affecting the dynamics of the
system. It is a fact that most previous work on the simulation of DEP/ ACEO systems
has assumed flat electrodes. While this is geometrically a good approximation, since the
electrode height is usually much smaller than the channel height, it is a major source of
error for the electrical problem and therefore the DEP and ACEO calculations. The flat
electrode theoretically causes an infinite electric field at its edge and so will an electrode
of which the edge is a 90° angle. Instead, a finite height electrode is used throughout this
thesis (apart form chapters 3 and 4, where comparison had to be made with simulations
which use the flat electrode approximation). The electrode height is typical of real devices
and is very important in trapping, as can be seen here, due to the fact that DEP and ACEO
calculations are more realistic and also because ACEO velocity is blocked in the regions
where the electrode meets the substrate, therefore enhancing trapping at frequencies where
ACEQ is important.

The simulation for A = 0.15, at 2 M H z is repeated for an electrode height of 400 nm, 350
nm, 300 nm, 200 nm, 100 nm and 50 nm and for A = 0.15, at 200 kH z for an electrode
height of 400 nm, 300 nm, 200 nm and 100 nm. It can be seen in figures 8.17 and 8.18
that for the 200 nm, 100 nm and 50 nm electrodes the DEP enhancement and speed of
convergence are reduced for the lower frequency, while the enhancement is increased for

the higher frequency and the speed of convergence is also increased.

In figure 8.19 the initial rate of increase is plotted for the 100 nm and 300 nm electrode
cases, together with the previous case. It is obvious that compared to experimental obser-
vations the initial rate dependence on particle polarisability is similar both qualitatively
and quantitatively with the quadratic shape observed experimentally, with the 100 nm
better fitting the quadratic shape than the 300 nm electrode case (4). In both cases, nev-
ertheless, the initial rate is enhanced. Therefore, it is verified again that the non-linearity

is due to enhancement of the process indeed.

In figure 8.20 the steady state particle collection is plotted against the particle polar-
isability. This is found not to be linear, in contrast to the experimental results by (4)
where the fluorescence is found to be linear. This is inconclusive, however, because the
fluorescence measured by (4) is not proportional to the particle collection beyond some
point where particle layers overlap. Physically, what happens is that the steady state
particle collection flattens out at higher particle polarisability, due to the ACEO flow
which carries away particles that are further than the distance where the DEP force is
smaller than ACEQ. That is, even if DEP is stronger, particles away from the electrode
edge cannot keep accumulating due to the effect of ACEO.
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8.17: The evolution of the particle collection over the electrode edge for A = 0.15

2 M Hz and electrode height of 400 nm, 350 nm, 300 nm, 200 nm, 100 nm and 50 nm.

1407 e AT A TR TR TR THTIRTRTI
120
100 nm
N [ L 200 nm
5 100 —300 nm
< 400 nm
C
S 80
(&}
Q ;
(—g H
o g i
.0 i
T 40
20¢
0 | | | | | 1 | | | |
0 5 10 15 20 25 30 35 40 45 50
Time (s)
Figure 8.18: The evolution of the particle collection over the electrode edge for A = 0.15

200 kHz and electrode height of 400 nm, 300 nm, 200 nm and 100 nm (the integral is
taken over the whole electrode surface, due to the particle collection extending beyond
the focal region at this frequency).
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Figure 8.19: The initial rate of particle collection (A = 0.15) and different electrode
heights of 100 nm and 300 nm.
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