HIGH QUALITY TEST PATTERN GENERATION

TECHNIQUES FOR DIGITAL VLSI CIRCUITS

by
Stelios N. Neophytou

Diploma in Computer Engineering and Informatics, 2003

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
at the University of Cyprus

Recommended for Acceptance by the
Department of Electrical and Computer Engineering
University of Cyprus

March, 2009

Copyright (©, by Stelios Neophytou 2009
All Rights Reserved

AN ABSTRACT OF THE DISSERTATION OF

Stelios N. Neophytou for the Doctor of Philosophy degree in Computer Engineering, pre-
sented on 28 of January 2009, at the University of Cyprus

TITLE: High Quality Test Pattern Generation Techniques for Digital VLSI Circuits
SUPERVISOR PROFESSOR Dr. Maria K. Michael

While traditional fault models, such as the stuck-at and transition delay fault models are still
widely used, they have been shown to be inadequate to handle the increased complexity of
modern digital integrated circuits. The goal of this dissertation is to provide a set of novel
test generation methodologies that increase the quality of post-manufacturing tests for digital
circuits, without increasing the complexity of the underlying fault models.

The first part of the thesis examines test generation under a linear variation of the transition
delay fault model for obtaining transition tests that are robust and excite critical path delays
in the circuit. Thus, an enhanced quality transition delay fault model is considered and a
method to implicitly derive all tests per transition fault, using well defined fault sensitization
criteria each of which provides different detection quality, is proposed.

The thesis also examines the problem of generating test patterns with a large number of un-
specified bits. The inherent flexibility of such test sets benefit different applications in VLSI
circuit testing. After appropriate unspecified bit fixing, the obtained test sets can provide
desired solutions to special applications and, thus, are of higher quality. Two versions of
this problem are examined: dynamic test generation and static test set relaxation. For the
dynamic problem, two different algorithms, based on fault compatibility properties repre-
sented by an appropriate undirected acyclic graph, are proposed. The obtained results give
very compact test sets with a large number of unspecified bits. Under the static problem,
two different techniques have been developed to maximize the number of unspecified bits in

thetest set, without compromising the fault coverage or increasing the test set size. Experi-
mental results show increased reduction rates compared to existing methods, even when the
input test set is very compact or already contains unspecified bits. The impact of using test
sets with small number of specified bits for on-chip test set embedding is also investigated.
Two popular Built-In Self-Test schemes for deterministic test set embedding, are used to
demonstrate considerable reduction to the total number of on-chip bits required to encode
the generated test set.

The last part of the thesis investigates test set generation and relaxationdetéect” test

sets to increase the quality of such test sets. First, the novel problem of relagigtgct test

sets is addressed. A systematic algorithm is proposed, where each test is replaced by a new
one that detects a subset of the faults detected by the first one. This new test has fewer speci-
fied bits, yet the replacement algorithm ensures thatttietect fault coverage is maintained.

Next, the thesis proposes a novel technique which guarantees diversity.different tests

that target the same fault, by propagating the fault via different propagation paths. This is
achieved by a linear and systematic partitioning of the circuit, into non-overlapping propaga-
tion sub-circuits. The experimental results show increased coverage in non-modeled faults
without invalidating any desired attributes of the initial test set.

IIEPIAHYH

H e&&MEN g TevoroYiag OAOKAN PO G ETETPEYE TNV VAOTOINGCT] OAOKANPOUEVOV KUKA®UA-
TV (LKpoToin) pe ekmAnktikég dvvatotnteg. H dpapatikn advénon g moAvmlokdtnrag tov
OAOKANPOUEVDV, TOALEC POPESG dVOAVALOYO OC TPOS TO OPELOS amdOOoNGS, Eival TO PUGIOAO-
YIKO TIUMUOL Y100 TO CTUOVTIKO 00TO emitevypa. Toco 1 avénon g molvmAokdtnTog 660 Kot
TUKVOTNTO TV TPOVEIGTOp 6TO OAOKANPOUEVO, 001 YOUV GE PEYOADTEPO TOGOCTA EANTTMOLLO-
TIKOV OAOKANpOUEVOVY Katd TNV Tapoywyn. Ta tpofAquota mov TpokOTToOLV 68 GYéom Le
TOV GYEOACUO TV OAOKANPOUEVOV EIVOL CIUOVTIKA, OU®G Ol TPOKANGELS TOV OPOPOVV TOV

Eleyyo ¢ 0pBOTNTAG TOVC, Elval AKOUT CUAVTIKOTEPEG.

AOy® ™G avEavopevng TOALTAOKOTNTOG, TO TAPAOOGLOKA LOVTEAN CPUAUAT®V ATOOEIKVVO-
VIOl OVOTTOTEAEGLOTIKA Y100 TNV OLCPAALCT] TNG TOLOTNTOS TOL EAEYYOV 0pBOTNTOG GTNV TTOPaL-
YOV OAOKANPOUEVOV KUKAORATOV. O okomdg ¢ mapovoag oaTping eivar vo mpoteivel
éva. GUVOAO Omd, LYNANG TodTNTAG, KOvoTOUES HeBodoroyieg avToUATIGHOD TNG TOPOYWYNG
eMéyyov opBOTTAG, Yoo YyNElokd KUKAM®UOTE TOAD peyding kAipakog oAokAnpoong. H moio-

TNTO TOGOTIKOTOLEITAL AVAAOYMS TNG EQPAPUOYNG TTOL eEeTAlETON OE KAOE TEPIMTOO.

To Tp®TO PEPOC TNG JATPIPNG TPAYHOTEVETAL TNV OlAdIKAGI EAEYXOL 0pBOHTNTAG YPOVIGHOD
Kot TOPOoVCIAlel (o amOd0TIKY Kot amoTtelecuatiky] pebodoroyia yio tnv mapaywyn dtovv-
OLATOV EAEYXOV OV OEV YAVOLV TNV KAVOTNTO OVIYVELONG COOAUATMOV OKOLO KOl KAT®O oo
SLPOpPETIKEG cLVONKES YPOoVIGHOV. [0 To 6KOTO OV TO Be®pPOVUE Lo TAPOAAAYT TOV TAPUOO-
olKOV HOVTEAOV GOAALOTOC HETAPaoNS Kot TpoTeivovpe HeBOdOAOYIES Yot TNV TOpOy®YN
oAV TV dtovocpdtov eAEyyov pe Paorn KaAdS oplopéva Kpitnplo. evaicintoroinong mov

TOPEYOLY OUPOPETIKNG TOLTNTOS AVIXVEVOT).

Emumiéov, n dwtpiPn e&etaletl to mpdPAnpa TG Topay®yng Stovucudtomv AEYYOL Ta omoia

&xovv éva peydho aptBud omd pn-kabopiopéves Aoyikég Tnég. To TpoPAnpa avtd sivor dion-

TEPWOC ONUAVTIKO Yol €vo aplOud amd eQapproyés Omme, Ay. N HElWON KATAVAA®ONG 10(VOG
KaTé TOV €AeyY0 KaOADG Kot 1| CUUTIEST], O TEPLOPIGUAC KOl O EUTAOVTIGUOS TOV GLVOAOL dla-
vooudtov eErEyyov opfotrac. MeletiOnkav 600 SLOPOPETIKEG ekdOYEG TOV TpoPfAnuatog, (1)

SUVOULKT TTOPOy®YT SLOVOGUAT®V EAEYYOL Kot (1) OTATIKT XOAGP®OT] TOL GLVOLOL EAEYYOV.

IMa 10 dvvoaukd TPOPANUa mpoteivoviar 6VO aAYOPIOOL O1 OTTO10L YPNGILOTOLOVV 1OLOTNTECG
oLUPATOTNTOG COUAUATOV Ol OTOIEG OVOTOPIOTMOVTOL UE €V UN-KATELOVVOUEVO OKLKAIKO
vYPao. Ta TepapaTikd amoTeEAEGLATO TOPOVSIALOVY GHVOAN SLOIVUCUATOV EAEYYWOV TO OTTOi0
etvatl ovventuypévou peyéBovg kat, TLTOXPOVMG, TEPIEXOVY UEYAAO aplOUd €1600®V UE un-
kaBopiopéveg Aoykég Tipég. E&etaletan emiong, N emintwon g ¥pons uTdV TOV TEXVIKOV
0€ OPYITEKTOVIKEG EVOOUATMONG TOL EAEYYOV 6TO OAOKANPOUEVO. Ta omoTEAEGHOTA KATOOEL-
KVOOUV 0EIOCUEIDTN HEIMOTN OTIG OMAITNOELS 0 EMTALOV VAIKO Yl TNV KOOIKOTOINGM TWV

TOPAYOUEVOV SLOVOGUATOV EAEYYOVL.

IMa 10 otaTKd TPOPANUA avarTHYONKOV OVO TEXVIKES Yo TV YOAAP®ST VO d00EVTOG GUVO-
AOV OOVUGUATOV EAEYXOV, DOOTE VO, TEPLEYEL £V LEYOAO aplOpd un-kabopiopévov 1000wV
Yopic TV HEI®ON TOL TOG0GTOV AviXVELONG CEUALATOV 1 ovénon Tov peyébovg tov. Ot Te-
YVIKES ALTEG avTIKAOIoTOOV KABE d1dvuoua eAEYYOV, 6TO 006V GHVOLD, LE KATO0 EVOAANKTL-
KO 10 omoio aviyvevel povo Tov amapaitnto opliid GPUAUATOV. XTO TEPOUOTIKO OTOTEAE-
oHOTO TOPOVCIALOVTAL VYNAG TOCOOTA UEIMONG, OKOUN KOl OTIC TEPUTTOGELS OOV TO d00EV

oLVOAO TEPLEYEL NON €16000VG HE PN-KOOOPIGUEVT TIUN.

Téhog, peretdton | mopaywyn Kot 1 YoOAGP®OT GLVOA®MY OVLGUATOV EAEYYOL 0pBOTNTOG [LE
TOAOTAEG aviyvevoels Yo kiBe cpdipa. Katapyds, dtatommvetat, yio TpdTn Gopd, To TPo-
BANua g YoAdp®ONS VEIGTAREVOL GUVOAOD JAVUGHATOV LE TOAAUTALG AVIXVEVCELS COOA-
HAT®V Kot TPOTEIVETOL £VOG CLOTNUATIKOG AAYOPLOLOG OVTIKATACTAOTG OLOVUGHAT®V £TGL TOV
VO LELMVETAL 0 GLVOMKOG aplBpdg TV 1600wV e kabopiopévn tiun. Ev cuveyela, mpoteive-
TOL U0 TPOTOTLTN TEXVIKN OV €YYVATOL OTL 01 TOAALOTAES aviyveDoES COUAUATOV Oa etvan
drapopetikés. O adydpBpog meptypapet £va GUGTNUOTIKO TPOTO Yo TNV KOTATUNGY| TOV LO-
VTEAOL TOV KUKADUOTOG, GE UN-OAANAOETIKOAVTITOUEVO VTO-KVKADUATO, GTO. OO0 POy LLoL-
TOTOLEITOL N TOPAY®YN TOV SIVUGUATOV EAEYYXOV. Ontwg QaiveTol amd To TEWPAUATIKO OTOTE-
Aéopata, To TOPayOUEVO GUVOAOL OLOVUCUATOV EAEYYOL TOPEXOLV QVENUEVO TOGOGTO Ovi-

YVELONG LN-LLOVTEAOTOMUEVOV COOALATOV.

Vi

ACKNOWLEDGMENTS

This thesis is the result of my research activities during the last five years held at the Electrical
and Computer Engineering Department, University of Cyprus. However, this work would
not be possible without the precious help of many people, some of whom | mention here.

First, 1 would like to thank my advisor Dr. Maria Michael, Assistant Professor in ECE
Department, for the continuous academic help she provided me through all these years. She
was both a valuable colleague and an admonishing teacher.

Special thanks to all faculty and administrative staff of the Electrical and Computer Engi-
neering Department, University of Cyprus for all kind of help that have provided during the
years.

Furthermore, | am indebted to the members of my PhD examination committee Professor
Christoforos Hadijicostis, Dr. Theocharis Theocharides (University of Cyprus), Dr. Vassos
Soteriou (Cyprus University of Technology) and Professor Alex Orailoglu (University of
California, San Diego), for their helpful suggestions.

| would, also, like to thank Professor Irith Pomeranz (Purdue University), Professor Nur
Touba (University of Texas at Austin) and Professor Kohei Miyase (Japan Science and
Technology Agency) which made available to us their tools and/or experimental data which
helped in developing a number of the proposed techniques.

Last, but not least | would like to thank my wife Maria. Her patience, love and encourage-
ment have upheld me, especially at those days that research was my only concern.

Parts of the research described in this thesis has been funded by the Cyprus Research Pro-
motion Foundation under the progradtENEK/ENTAZ=/25 and a project funded by Intel
Corporation.

Stelios Neophytou

Vil

TABLE OF CONTENTS

ADSIract e iii
Acknowledgments Vil
Listof Tables Xiii
Listof Figures e XV
1 Introduction 1

2 Functions for Quality Transition Fault Tests and their Applications in Test

SetEnhancement 7
2.1 Introduction 7
2.2 Recursive Definition of Propagation Functions 11
2.3 Test Function Generation for Transition Faults 15
2.4 Applications of Test Functions in Test Set Enhancement 24
25 ExperimentalResults 32
2.6 Conclusions 39
3 Static Test SetRelaxation o 41
3.1 Introduction 41
3.2 Problem Formulation and Notation 43

3.3 Test-Based ReplacementMethod 44

3.4 Fault-Based ReplacementMethod 49
3.5 Post-Processing CompactionStep, 55
3.6 ExperimentalResults 56
3.7 Conclusions 60

Dynamic Test Generation with Large number of Don’'t care bits 63
4.1 Introduction 63
4.2 The Constrained Fault Compatibility Graph 66
4.3 Match-And-Merge Algorithm, 68
4.4 Hierarchical Fault Compatibility Identification Algorithm 72
4.5 Implementation Overview e 77
4.6 Experimental Results for the two Dynamic Methods 82
4.7 ConcClusions 91

Application of Relaxed Test Sets in BIST schemes with LFSR reseeding . . 93
5.1 Introduction 93
5.2 Overview of Test Set Embedding Schemes 94

5.3 A Generic Framework for LFSR-based Reseeding Parameter ExploratidiB.

5.4 ExperimentalResults 103
55 Conclusions 105

Relaxation ofn-detect TestSets 107
6.1 Introduction 107

6.2 Motivation e, 110

6.3 Problem Formulation and Notation 112
6.4 Proposed Methodology, 114
6.5 TestReplacementExample 118
6.6 ExperimentalResults, 121
6.7 Conclusions 130

7 Generating Increased Qualityn-detect Test Sets via Fault Cone Partitioning 133

7.1 Introduction 133
7.2 Partitioning the Fault Site Cone into Propagation Subcircuits 136
7.3 Test Generation Methodology 139
7.4 ExperimentalResults 143
7.5 Conclusions e 147
8 ConcludingRemarks e 149
Bibliography 153
VITA e e e e 165

Xi

LIST OF TABLES

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

Off-input constraints for event propagation through gste 12
Fault activation functions L 23
Test Function generation for the ISCAS’85 and ISCAS’89 circuits.33
Time and space requirements for test function generation for the ISCAS’85

and ISCAS’89 circuits. 34
Test Set Compaction for ISCAS’85 and ISCAS’89 circuits 38
Time requirements for Test Set Compaction (CPUsecs) 39
Test-based ReplacementExample 47
Fault-based ReplacementExample 53
Results of the proposed methods for two different initial test sets. 57
Comparison with existingwork. oL 58
Impact of the cube optimization heuristic 82
Results for the match-and-mergemethod 33
Test generation results of the hierarchical dynamic method. 85

Comparison between existing static and the proposed dynamic methods.86 .

Xiii

4.5

4.6

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

Number of specified bits far of different size, fors1494.. 89

Effect of various vertex ordering methods in the method of section 4.4 . 90

Using the resulting test sets with two popular BIST encodings. 104

Average fault detections for single-detect and multiple-detect test sets 110.

Test Replacement Method Example 119
Test Set Relaxation for 10-detect TestSets 123
Comparing with a Brute-Force Technique 124
Fault Contribution for Different Fault Orderings 125
Test Relaxation using Different Fault Orderings 126

Test Relaxation using Different Fault Orderings (essential faults first) .127

Random Unspecified Bits Fixing Effect 131
Average Number of Propagation Paths PerFault 144
Total Number of PropagationPaths 146
Test Set Sizes and Bridging Fault Coverage 147

Xiv

LIST OFFIGURES

2.1 Pseudocode for Propagation Function generation. 20
2.2 Attempting to deriv€’; on original Graph C. 26
2.3 Replication of nodétoderiveCs. 26
2.4 Pseudocode for Compaction Algorithm 30
2.5 Pseudocode for Enrichment Algorithm 31
2.6 Finding new testfunctiod/(). 32
2.7 SubcircuitC; details for some ISCAS'85circuits.. 36
2.8 SubcircuitC; details for some ISCAS'89circuits.. 37
3.1 Static Test-based Replacement Method. 45
3.2 Static Fault-based Replacement Method. 51
3.3 Specified bits distribution among generated tests of Table 3.4 59
4.1 Aniteration of the match-and-merge algorithm 71
4.2 Flowchart of proposed dynamic methodology. 73
4.3 Hierarchical fault mergingexample. 74

4.4 Identifying additional unspecified bits per test in BDD-based implementat®hs.

XV

4.5

4.6

5.1

5.2

5.3

6.1

7.1

7.2

7.3

7.4

Specified bits distribution among tests after applying the hierarchical meti®ad

The effect of the size of in Merging Efficiency, fors1494. 88
The basic Multiple Polynomial LFSR architecture 96
Flowchart for parameter exploration framework 102
Selecting thé&), andS, parameters. 103
Proposed-detect relaxation algorithm 117
Proposed Fault Cone Decomposition 138
Generating test functions foreachfault 140
Proposed ATPG method 141
Example of Barrier Test Compatibility Reduction Algorithm 142

XVi

CHAPTER 1

INTRODUCTION

Integration technology improvement has allowed the realization of circuits with astonish-
ing capabilities. The nanometer era is an incontestable fact with billions of transistors fit
in an integrated circuit. The natural price paid for this achievement is the increase on the
complexity of the circuits, in some cases disproportional to the benefit obtained. Both cir-
cuits’ complexity and transistor density lead to larger defective parts ratio, which implies
lower values for the manufacturing yield. According to the 2007 edition ofiberna-

tional Technology Roadmap for Semiconduct@iRS) [1], in the near future, integrated
circuits will have a number of cores, possibly of different types. Following the trace of
the telecommunication evolution, future devices will be categorized as Systems-on-Chips
(SoCs), System-in-Package (SiPs), Multi-Chip Packaging (MCP), among others. Hence, the
trend is towards taking advantage of the large integration capabilities in order to put as many
as possible components of a system in an integrated circuit. This is imposing a number of
questions regarding the designing of an integrated circuit. At the same time, it gives rise to
great challenges regarding the testing methodologies of such circuits. Modern digital circuits
are accompanied with technologies such as RF, analog, optical etc [2, 3, 4]. The interaction
of all these diverging components impose new issues on testing the whole integrated circuit,
as well as on testing the digital part of the circuit [5, 6, 7]. Moreover, emerging multicore
architectures are of increased complexity due, mainly, to their interconnection and synchro-
nization structure as well as the memory access mechanism. These parameters need to be
taken into consideration to ensure the quality of digital circuit testing [8, 9, 10]. Furthermore,
since modern circuits run at very high frequencies, the need for low power testing arises in
order to avoid circuit overheating while test application. Tight timing constraints imposed by
technology scaling should also be accommodated effectively, without affecting the quality

of the test application and/or on-line generation process [11, 12]. Considering all these is-
sues, théest and Testabilitghapter of the 2007 edition of the ITRS suggests that extended
attention should be given to high quality testing procedures in order to maintain Moore’s law
and, at the same time, keep the testing cost small.

The increased complexity of digital ICs limits the testing efficiency of traditional fault mod-
els. While traditional fault models, such as the stuck-at and transition delay fault models, are
still widely used, they have been shown inadequate to handle the new challenges [13]. The
goal of this thesis is to provide a set of novel test generation methodologies which increase
the quality of post-manufacturing tests for digital circuits. One important motivation of this
thesis is to avoid the use of complex fault models that can introduce increased complexity
in the test generation effort. Instead, the thesis investigates how traditional models, whose
usage is already established in the industry, can be enhanced to increase test quality. Quality
is measured based on the specific application under consideration. In the case of test set
compaction and on-chip or off-chip compression applications, the measure of quality could
be the size of the (compressed) test set. Alternatively, the quality of a single test pattern,
typically, depends on the capability of the pattern to detect modeled, as well as non-modeled
defects. In this case, some measures of quality include robustness of a test (guarantees that
the applied test cannot get invalidated), test criticality (whether a test detects critical faults),
encoding efficiency of a test, power dissipation, flexibility of enhancement for multiple fault
detection etc. Each of the problems examined in this thesis considers at least one of the
aforementioned quality measures.

Chapter 2 of the thesis examines test generation under the transition delay fault model and
shows how to effectively and efficiently generate transition delay tests which are robust and
excite critical path delays in the circuit. The proposed methodology considers an enhanced
version of the traditional transition fault model. Thus, it proposes a method to implicitly
derive all tests per transition fault, under established robust (and possibly other) fault sensiti-
zation criteria. The derived high quality test functions are further enhanced in three different
ways to derive better quality test sets. The first enhancement restricts fault sensitization along
critical sub-circuits whose paths have long delays under a fixed delay model. The second one
manipulates the functions in order to generate compact test sets. The last one enriches the
test set with additional test vectors, so that each new vector detects transition faults through
different activation and propagation paths, without any path enumeration. The results of this
work have already been published in [14, 15, 16].

Chapters3 and 4 of the proposed thesis examine the problem of generation of test patterns
with a large number of unspecified bits (bits widbn’t carevalue). This is a very impor-

tant problem since it has implications to a number of applications, such as low power test
(unspecified bits can be fixed appropriately to reduce power dissipation during test), test set
compaction (a test pattern with large number of unspecified bits has a higher probability
to detect additional faults), on-chip and off-chip test set compression (typically, the com-
pression ratio increases as the number of unspecified bits in the test set increases), and test
set enrichment for multiple fault detection or additional fault type detection. In these two
chapters, systematic procedures that generate “flexible” test sets (test sets that have a large
number of don’t care bits) are proposed. Therefore, quality here is measured with respect to
the number of unspecified bits in the generated test set. Further elaboration on the motivation
Is provided in the corresponding chapters. Two distinct problems are examined:

(i) static test set relaxation, i.e. increasing the number of unspecified bits in a given test set,
and

(i) dynamic test set generation with a large number of unspecified bits.

For problem (i), two different techniques have been developed to relax a given test set by
maximizing the number of unspecified bits in the test set, without compromising the fault
coverage or increasing the test set size (Chapter 3). The first method replaces each pattern in
the test set with one targeting as few faults as necessary. The second method iterates among
faults and tries to enforce detection of each fault by only a single test. This test is selected
among all tests that detect that fault such that the largest overall specified bits reduction is
achieved. Experimental results show increased reduction rates, when compared to existing
methods, even when the input test set has been compacted or already contains unspecified
bits. Part of this work has been published in [17].

While the proposed algorithms targeting the static test set relaxation problem result in test
sets with a large number of unspecified bits, their effectiveness is always biased on the given
test set. This is exactly the reason for examining problem (ii). In Chapter 4, two techniques
are proposed to generate test sets with a large number of unspecified bits, without consider-
ing a previously generated test set as a basis. Both techniques are deterministic algorithms
that consist of iterations on a constrained fault compatibility graph. The first algorithm iden-
tifies compatible faults that can be tested by a single test with a small number of specified
bits by considering the entire graph per iteration. The second method is, essentially, a hi-

erarchicalalgorithm which considers a small part of the graph per iteration to find a locally
optimized solution which is in term used in subsequent iterations. This hierarchical method
is more scalable than the first one and, thus, more applicable to larger circuits. The obtained
results give very compact test sets with a large number of unspecified bits. These approaches
were presented in [18] and [19] and have been submitted for publication to a peer-reviewed
international journal.

Extensive literature review, it is convincing that having test sets with a large number of un-
specified bits can benefit techniques targeting a number of different problems including, but
not limited to, test set compression, test set encoding, design-for-testability and low power
testing. Chapter 5 investigates the impact of using the test sets obtained by all the methods
described in Chapter 3 and Chapter 4 in one such possible application, that of determinis-
tic test set embedding. Particularly, focus is given on LFSR-based reseeding schemes for
mixed-mode Built-In Self Test (BIST). Such schemes are very popular, since they can easily
be used in a large range of designs without modifying critical parts of the design, like the
scan-in chain. Even though LFSR reseeding is chosen for demonstrating the applicability of
the methods of Chapter 3 and Chapter 4, their impact in other applications is also significant.
Two simple variations of LFSR reseeding, (i) multiple polynomial LFSR reseeding [20] and

(1) partial reseeding [21]. Both these embedding schemes can impose certain constraints on
the test set to be embedded, e.g. the maximum number of specified bits in a single test pat-
tern. This chapter proposes a generic framework which allows for a systematic exploration of
parameters that are important to a specific embedding scheme, in order to derive those flex-
ible test sets that are best for the considered scheme. Hence, it is shown how the techniques
of Chapters 3 and 4 can be applied on top of some embedding scheme to further optimize the
generated test set. The storage requirements are shown to be reduced when the obtained test
sets are used. While this methods have been developed using the stuck-at fault model, any
linear fault model (such as the transition fault model used in the techniques of Chapter 2)
can be used without affecting the affecting the techniques’ complexity. Preliminary results
of this work have been published in [18].

Chapters 6 and 7 examine problems related to test sets that explicitly detect each modeled
fault multiple times. Such test sets, knownradetect test sets since they enforce detection

of each fault with at least different test patterns, have been shown to be of increased quality
for detecting random defects and/or non-modeled faults. Chapter 6 investigdétsct test

set relaxation. This problem has not been studied before and, thus, is of increased interest.

4

Currentn-detecttest generation methods produce a large number of fully specified test pat-
terns, limiting their practical application to large circuits. The problem is formulated as an
optimization problem and propose a solution that iterates among faults. This methodology
enforces detection of each fault only by theseests resulting in the overall largest specified

bits reduction. Experimental results showed thatetect test set relaxation rates are very
similar and, in some cases, even higher than those of 1-detect test sets. Moreover, experimen-
tation with random bit fixing showed that thedetect test sets maintain their non-targeted
fault and defect coverage, after the relaxation process. As with 1-detect test set relaxation,
the results where obtained using the stuck-at fault model, but any linear model can be used.
A part of the results has appeared in [22].

Chapter 7 proposes a new test generation methodologydetect test sets, which increases

their quality in terms of the number of fault propagation paths per generated test. Specifically,
then tests per stuck-at fault are, for the first time, guaranteed to propagate the fault effect via
different propagation paths, without any path or path segment enumeration. The proposed
method can easily be extended to other linear, to the circuit size, static or dynamic fault mod-
els for multiple fault detections, such as the transition fault model for which both different
activation and propagation paths can be guaranteed. The generated test sets demonstrated
increased numbers of propagation paths and non-modeled fault coverage, when compared to
traditionaln-detect test sets.

Chapter 8 summarizes the conclusions of this thesis and discusses some future research di-
rections relevant to the presented work.

CHAPTER 2

FUNCTIONS FORQUALITY TRANSITION FAULT
TESTS AND THEIRAPPLICATIONS INTESTSET

ENHANCEMENT

2.1 Introduction

The need for testing accurate temporal behavior, commonly known as delay testing [23, 24],
is becoming increasingly important due to the demand for high performance in today’s digital
circuits as well as various process variations, manufacturing defects, and noise factors. The
two most popular delay fault models are theth delay faul{fPDF) model [25, 26, 27] and
thegate delay faulmodel [28, 29, 30, 31]. Even though the PDF model is the most accurate
one since it can detect both lumped and distributed delay defects, it can become impractical
because an exponential, to the circuit size, number of faults is explicitly examined. On the
other hand, gate delay fault models examine a linear, to the circuit size, number of faults
and, therefore, they are more feasible for larger circuits. For both models, a test consists of
a pair of vectorsg vy, vy >, wherew, initializes the target node/path amg launches the
appropriate transition and propagates it to an observable point (primary output).

The most commonly used gate delay fault model istthesition faultmodel,which models
excessive delay on a single circuit node and associates two delay faults per stmle:te-
rise (rising) fault and aslow-to-fall (falling) fault. The generation of a transition fault test
involves two steps. First, thactivation of the target fault by creating a transition on the

faulty line through single or multiple paths and, second,ptopagationof the fault effect

to a primary output by single or multiple path sensitization. The underlying assumption
of this model is that the extra delay caused by a transition fault is large enough to cause
a timing failure at a primary output. Thus, the delay on any sensitizable propagation path
from the fault site to a primary output is assumed to exceed the maximum allowable circuit
delay. Based on this assumption, traditional transition faults are modelled as stuck-at faults
[23], making test generation simpler. Specifically, for a fault gjteectorv, is a stuck-

at 0 (stuck-at 1) test for a rising (falling) transition fault/eand vectory, assertd to a 0

(1) logic value. However, such transition fault tests, also known as weak non-robust tests
for their propagation properties [29, 32], can be invalidated during testing due to signal
hazards and other factors [33]. Recent research efforts on transition fault testing, such as
[32], have focused on generating high quality tests by examining various sensitization criteria
for activating and propagating transition faults.

In this chapter, we present the first ever proposed method to derive a function that contains
all possible tests for each transition fault. For a rising (falling) transition fault, we refer to
the corresponding function as thising (falling) test function Test function generation is
advantageous for a variety of reasons including test set compaction, non-enumerative critical
path sensitization, and test set enrichment. Function—based ATPG methods are inherently
scalable and are gaining in popularity over structural methods as the circuit size increases
with the advances in deep sub—micron. They are also backed by advances in data struc-
tures and methods that store and manipulate functions which include canonical forms, such
as the Binary Decision Diagrams (BDDs) [34], and non-canonical forms, such as Boolean
satisfiability.

Quiality tests for transition faults are generated by considering any previously proposed type
of sensitization to either activate a transition at the fault site or propagate it to a circuit output.
Events are also restricted to propagate along any path in a subcircuit containing paths that
meet predetermined delay criteria using the fixed delay model.

The difficulty in generating a function is primarily associated with the development of a
systematic methodology to incorporate the sensitization criteria required for quality tests
during either fault activation or fault propagation. This inherently requires structural meth-
ods (circuit traversals) during the function formulation. The desired functions are generated
by generalizing a recently proposed method in [35] which shows how to use structural meth-

odsto generate logic error as well as event propagation functions. For logic errors, the
traditional boolean difference functions are generated using structural metfirod®vents
(transitions), [35] shows how to generate a Boolean function that represents all the possible
primary input assignments that allow for an event (a rising or falling transition) on some line
to be propagated at some primary output.

The work in this chapter generalizes the work in [35] and allows for events to propagate
through gates using specific sensitization rules either during the fault activation phase or the
fault propagation phase. We distinguish among robust, non-robust or function sensitization
criteria [25, 26, 27], but any other sensitization classification rules that have been proposed in
the literature can be incorporated in our framework. Subsequently, given a transition fault, it
Is shown how to generate a function that contains all patterns that allow for its activation, and
a function that contains all patterns for its propagation. The product of these two functions
forms the final function for the transition fault. Better quality tests are obtained by working
on subcircuits whose paths meet criticality criteria as explained earlier.

Another important contribution of this work is that is shown how to reduce the required
amount of computational effort for generating all transition fault test functions in a circuit.
Specifically, it is shown that (i) all activation functions can be generated using a single for-
ward topological traversal of the original circuit and (ii) all propagation functions can be
generated using a backwards topological traversal on a linearly modified circuit. Thus, in
contrast to traditional brute-force approaches that would require, in the worst case, circuit
traversals per fault, the proposed method, which is based on dynamic programming princi-
ples, can derive all transition fault functions based only on two circuit traversals.

This work also shows how the proposed method for the function generation can be beneficial
to test set enhancement techniques that can be applied to provide higher quality tests. Itis
first shown that events can be restricted to either sensitize paths in a subcircuit containing
paths that meet predetermined delay criteria using a fixed delay model. Previous attempts for
quality tests for transition faults insist that transitions are restricted along predefined paths
that pass through the fault cite [32, 36]. Such research efforts essentially propose that the
complexity of the PDF model is handled by examining only a subset of the PDFs. Re-

stricting the event activation along a predetermined activation and/or propagation route is, in
principle, associated with the PDF model and not the transition fault model whose original

1Given a circuit linex and primary output, the boolean difference function is defined%s

definitionis path independent. In contrast to any existing approach, the proposed method
generates test functions for each transition fault under any activation/propagation sensitiza-
tion criterion and at the same time allows the event to sensitize any path in a subcircuit whose
paths have exactly the same delay. In particular, using a dynamic programming algorithm,
we definek subcircuits: the first contains all longest paths, the second all second longest
paths, and so on. Then, for each transition faufynctions are generated. Tk function
contains all tests to detect a transition fault where the event is propagated along any of the
paths of the*" subcircuit, under a parameterized sensitization criterion. This is a path inde-
pendent, yet quality test oriented, method that focuses on critical routes and generates tests
for a polynomial number of delay faults, which we call quality transition fault tests for the
above mentioned reasons.

The second enhancement technique deals with test set compaction. The generated test func-
tions are manipulated to generate compact test sets. The objective is to cover the same
transition faults using a small subset of the original set of test functions. This amounts to
performing AND operations, in a systematic manner, on the original test functions. Two
simple heuristics for compaction are presented and the impact of each one is evaluated in
Section 2.5. It is shown that applying both compaction methods to the original test set gives
a compaction rate of 70-80% for all ISCAS’89 and ISCAS’85 circuits. Note that the studied
compaction problem differs from the one in [37] where the authors also benefit by transition
fault coverage by the additional (in-between) pairs of patterns that are formed when the tests
generated by the ATPG tool are placed in a test set, one after the other. Future research will
investigate reductions by such post-processing steps.

Finally, a novel method to enrich the compacted transition fault test set with additional tests
of a certain property is presented. This property is related to the paths sensitized by the test.
The rationale in this case is to add a number of new tests in the set such that they still detect
the targeted transition faults but through paths that have not been sensitized by the original
test set. Such test sets have higher quality since events propagate through many critical paths
and, thus, are more likely to detect a delay violation in the circuit. It is expected that, on
average, this procedure will allow the number of paths along which the event propagates to
increase proportionally to the number of tests per transition fault.

The remainder of this chapter is organized as follows. Section 2.2 presents the formulation of
event propagation functions at a single line under various sensitization criteria. Section 2.3

10

discussesnethodologies for generating propagation functions and activation functions for
all lines in a circuit. The various enhancement techniques are presented in Section 2.4. Sec-
tion 2.5 presents experimental results for the ISCAS’85 and ISCAS’89 benchmark circuits,
and Section 2.6 concludes Chapter 2.

2.2 Recursive Definition of Propagation Functions

An event is either a risingi{) or a falling (F') transition and is denoted Ity € {R, F'}. (The

terms event and transition are used interchangeably in this context.) The event propagation
function at some liné for transitiontr is denoted byP, ;,.(). SetF'I(G) denotes the set of

all fanin (immediate predecessor) lines of gateThe controlling (non-controlling) value of

a gatey is denoted bywv(g) (ncv(g)) € {0,1}.

The event propagation function at a lihés defined recursively, with respect to the event
propagation function at the line’s immediate successor and the necessary sensitization criteria
required at lines driving the same gate as lind.ine [is called anon-inputand the lines

driving the same gate as li@re calledoff-inputs

This Section discusses the formulation of such a recursive event propagation function for
a single circuit line. Different formulations are given in the respective subsections based
on the type of sensitization criteria proposed in [25], which extends those first presented in
[26, 27] by determining multiple path sensitization criteria. Table 2.1 shows the constraints
(or necessary conditions) on the off-inputs of a gamhich are determined based on the type

of transitiontr to be propagated from the on-input @fand the type of sensitization under
consideration. Thelon't care valueis denoted by:. Observe that in the case of multiple

path propagation (functional sensitization), the off-inputs can assume any value besides the
stable-at controlling value.

11

Table 2.1: Off-input constraints for event propagation through daite

Sensitization tr on the on-input(s)
Condition cv(G)— ncv(G) | nev(G)— cv(G)
Robust z — ncv(Q) stable at ncv(Q)
Non-Rohust r — ncv(Q) x — ncv(G)
Functional r — nev(Q) not stable at cv(Q)

2.2.1 Non-robust Sensitization

Consider a 2-input AND gaté&' with inputs {a, b} and outputc. An event on linea can
propagate through gate to some primary output (letbe an internal line) only if the event
can propagate from lineto some primary output. Under the non-robust sensitization crite-
rion, all of the off-input lines ofG (line b for this example) must settle atrav(G) value,
irrespective of the type of the event to be propagated.omherefore, lineh must settle to
valuel for G. (Similarly, b must settle to 0 i&+ is an OR gate).

Non-robust sensitization does not impose any constraints for the first vegjorThis is
indicated by the don't care requirement fgrin Table 2.1. Thus, the off-input constraints
for v, at some liner can be expressed with respect to a single boolean variablEpr every
line = we define a boolean variahtg, which will represent the two logic valugg, 0}. For
value 1 we use;, and for value O we Usg,.

The event propagation function at line for gate G is defined asP, ;.() = P.4() - bo.
Similarly, if G is an OR gate we havB, ;.() = P..() - by. In general, given an AND gate
G with output lineg and on-input lin€, the non-robust propagation function for evenbn
[is given by:

Pur() = P -][(22) (2.1)

VzeFI(G),z#l
For an OR gate Equation 2.1 becomes:

Pu() = Pu() -] @ (2.2)

VeeFI(G),x#l

Finally, for a NOT gate arR(F') event onl is propagated as afi(R) event onG giving:

Bir() = Por() (2.3)

Br() = Pyr() (2.4)

12

Obsernre that, in the above formulas, we have not yet defined the set of variables over which
the propagation functions, ;.() and P, ..() are expressed. This will be presented in detail
in Section 2.3.

2.2.2 Robust Sensitization

A major disadvantage when applying non-robust tests is that they may get invalidated due,
primarily, to signal hazards [33]. A non-robust test assumes that all of the transitions on
the off-inputs of the gates on the propagation paths arrive earlier than the transitions on the
corresponding on-inputs. Only then it is guaranteed that a delay will be detected. Robust
tests, on the other hand, always guarantee the detection of the delay and, thus, are preferred
for high quality testing.

In contrast to non-robust sensitization, robust sensitization imposes more stringent rules on
the off-inputs (see Table 2.1). When the event to be propagated settles to a non-controlling
value the off-input constraints are the same as those for non-robust sensitization. However,
when it settles to a controlling value only stable-at non-controlling values are allowed on the
off-inputs, in order to avoid hazard excitation. In this case, hgtandv, vectors must be
explicitly determined.

We define variables ands; for every linel € L to represent the stable-at-0 and stable-at-1
values, respectively. (We elaborate on stability values and functions in Subsection 2.3.1.)
Assume the same 2-input AND gate example as in the previous subsection. The event prop-
agation function at line: for gateG is defined based on the type of the transition to be
propagated. If the transition settles to a non-controlling value, thus R, then the robust

event propagation function is identical to the non-robust event propagation function, thus
P, r() = P.r() - by If the transition settles to a controlling value,= F', then the robust

event propagation function is defined Bsr() = P.r() - si. Similarly, if G is an OR gate
thentr = R settles to a controlling value and we habgg() = P.x() - s).

In general, given an AND gat& with output lineg and on-input lin€, the robust propagation
function for eventr that settles to a controlling value éis given by:

Pr() = Por() - JI (s)

VeeFI(Q),z#l

13

For an OR gate the above Eqg. becomes:

Pr() = Pr() - J] ()

VzeFI(G),a#l

Observe that for events that settle to a non-controlling valug ¢ime robust event propa-
gation functions are identical to those given for non-robust propagation in Equation 2.1 —
Equation 2.2. Clearly, Equation 2.3 — Equation 2.4 are the same for all types of sensitization.

2.2.3 Functional Sensitization

The proposed propagation function formulation also handles the case where an event cannot
be propagated as a single event, but when propagated together with other events it can affect
the delay of the circuit. According to the classification of [25], when no non-robust tests exist
(in our context this means that the desired event cannot be propagated to some primary output
using a non-robust test) the targeted fault is either untestable or it can be detected together
with other faults as a multiple fault. Multiple faults are tested using functional sensitization.

As in the case of robust sensitization, the off-input constraints for event propagation under
functional sensitization conditions differ based on the type of event to be propagated (see
last row of Table 2.1). Whety settles to a non-controlling value, the off-input constraints

are the same as those for non-robust sensitization and, thus, the event propagation functions
for functional sensitization are identical to those for non-robust propagation given by Equa-
tion 2.1 — Equation 2.2.

When the event to be propagated settles to a controlling value, the off-inputs can take any
value besides stable-at controlling since such a value would mask the propagation of the
event. As in the case of robust tests, the stability variables can be used to represent the nec-
essary values. Specifically, any value other than stable-at-1(0) on soniedirepresented

by s} (sf).

Therefore given an AND gate~ with output lineg and on-input lind, the functional sen-
sitization propagation function for event that settles to a controlling value énis given
by:

Pr) = BrO) - I (59)

VeeFI(G),x#l

14

For an OR gate the above Eqg. becomes:

Pr() = Pyr() - H <S_>

VzeFI(G),a#l

8]

2.3 Test Function Generation for Transition Faults

This Section discusses the generation of transition fault test functions for all circuit lines. A
transition fault test function is the product of fault activation and fault propagation functions.
First, a systematic methodology is presented for generating all event (transition fault) propa-
gation functions in the circuit based on a single traversal of a linearly modified circuit. This
method is a generalization of the recently proposed method of [35], to allow for the propa-
gation events, based on specific sensitization rules. Moreover, it is shown how considerable
speedup over the algorithm of [35] can be achieved. Next, it is shown how to generate all
activation functions based on a single traversal of the original circuit.

2.3.1 Propagation Function Generation
Generating Propagation Functions for all Faults

We definelL = {iy, s, ..., 1, } to be the set of all lines in a circuit, excluding primary outputs,
and/ C L to be the set of all primary inputs. For each linewe maintain two boolean
variablesi; ands? to form the set of all variable® = {i},4?, 3,43, ...,4.,42}. We partition
VoVt = {il,dd,....il} andV? = {i%,42,...,i%} to be the subsetg € V, andii € V,

respectively. Additionally, we defing! c V! andV? c V2 as the sets of all variables in
V1 andV2, respectively, corresponding to only primary inputs.

Definition 2.1. Thefunctionsof a linel € L, denoted byF}! (V}') and F*(V}?), are the func-
tions realized at linéexpressed with respect to the input variableglrandV/?, respectively.

Given a logic gate&~ with output linel, F'1(G) stands for the set of all inputs (fanins) Gf
The variable set¥ G' = {i; | iy € FI(G)} andVG? = {i? | iy, € FI(G)} consist of the

15

variables corresponding to the fanins(of

Definition 2.2. Thelocal functions LF}(VG') andLF?(V G?), of output linel € L of gate
G, are the functions realized at ligexpressed with respect to variables/ia! andV G2,
respectively.

Definition 2.3. Thestability functionsof line [€ L, denoted bys? (V! U V?) and S} (V! U
V?), contain all vectors< vy, v, > that bring a stable-at-0 and stable-at-1 value at line
respectively.

Stability functions were first introduced in [38] for single-input change tests, and later gen-
eralized in [39] for multi-input change tests. We use the latter method to derive multi-input
global stability functions for all circuit lines. According to [39], t18() and S} () functions

are defined recursively with respect to the appropriate stability functions of the immediate
predecessor lines df based on the type of gate that drivedf [€ 1, S?() = I; - I, and

S}H() = 1y - . (Primary inputs are assumed to always be hazard-free.)

For example, for a 2-input AND gate with inpufs, b} and output, S!() = S1()- S} () and
S2() = S2() + S2(). If cis a primary input thenS! () = ¢; - ¢, and.S?() = &7 - &. Similarly,

if G is an OR gate then$?() = SY%() - SP() andS!() = Si() + Si() whenc is an internal
line, andS?() = 7 - & andS} () = ¢; - co Wwhenc is a primary input.

We also define the set of boolean varia$és = {s; ,s? s} ,s?,...,s; ,s? } such that for
every linei, € L two variables,s) ands; , are maintained. The variables 1" will be
used to express the local stability requirements. Assume(gatith output linel and fanins
FI(G). The variable sefVG = {s! ,s? |i, € FI(G)} contains the stability variables for

i) “tg
the fanins ofG.

Definition 2.4. The local stability functionsof output linel € L of gateG, denoted by
LS}(SV@G) and LS (SV@G), are the stability functions realized at linexpressed with re-
spect to the variables ifiV G.

For the same example of the 2-input AND galteS! = s! - s} andLS? = 52 + s).

The propagation functions for all circuit lines are generated using a single topological traver-
sal of a modified circuit, starting at the primary outputs, as in [35] where they were initially

16

proposed. The algorithm identifies topological levels, and iterates over these levels. [35]
shows that the size of the modified circuit remains linear to the size of the original one, since
a line may appear in at mogttopological levels, wheré€ is the circuit depth. For clarity
purposes, we present in this subsection the algorithm for generating all event propagation
functions based on the topological level requirement (i.e. a line may be processed up to d
times) of [35]. However, we show at the end of this subsection that this requirement can be
relaxed such that each line is processety once at the expense of some additional local
functions ¢ F'() and LF?()) generation.

We also defind.,, C L to be the set of lines in a topological level Thus the topological
level corresponding to the set of primary input lines is denoted.pwnd the one corre-
sponding to the set of primary output lines by. Now, let setV, C V' = {z},z’? | i; € Ly}
and setSV;, € SV = {s;,s? | i; € L} be sets of variables corresponding to the lines in

15 Y ij
level L;,.

The propagation function for each line, in every level, is expressed in terms of the neces-
sary value assignments on all other lines in that level. This form of expressing propagation
functions using topological levels is referred tdasal propagation functionff P F).

Definition 2.5. The local propagation functiorof a linel € L, for eventtr, denoted by
LPF}, (Vi U SV,), is the function that represents all necessary conditions at the lines con-
tained in levelk that propagate event on linel to some primary output.

After generating thd. P F's for all lines in a levek, they are re-expressed with respect to the
variables in levek — 1, so that they can be used to compute tHeF's for the lines in level

k — 1. OperatorSub_l(), which substitutes every variable in & F' with its corresponding

local function LF) or local stability function {.5) is used to accomplish thisupl C (VU

SV,) denotes the set of variables in the supporLétF, (). OperatorSub_I() is defined

to perform variable substitution corresponding to lines of successive topological levels as
follows:

Sub.I(LPE},,()) = LPEf, (it — LF) (), — LE2(),s. — LS. (), 50 — LS2().

|it,i2, s} SQ] € Supf \ (Viei USVi_1))

YRRV E z’]-v [

17

Notethat operatorSub_[() doesnot affect variables that are contained in both levetnd
k—1.

The propagation functions given by Equation 2.1 — Equation 2.4 in Subsection 2.2.1 (for
non-robust sensitization) can now be expressed completely in terms of necessary operations.
For a gate7 with output lineg € Ly, input linel € L;_,, and fanin linesF'I(G) € Ly_4,

the local propagation function for linefor non-robust sensitization, denoted by 7', * (),

for AND, OR, and NOT gates are given below.

AND: LPFS'()=Subd(LPF;,.0) - [@)
Vi; €FI(G)ij#l
OR: LPFS'()=Suwl(LPFy, () - J[@

Vi; e FI(G),ij#l

NOT: LPF/3'() = Subl(LPFF())

NOT: LPF/;'() = Subl(LPF}())

Similar equations can be derived for the remaining types of gates as well as for the robust and
functional sensitization propagation functions of all expressions given in Subsection 2.2.2
and Subsection 2.2.3.

We now give the definition of a propagation function of a stem. Assume a stantevel

k — 1 with two branche$; andb, at levelk. Let P be the boolean cube that represents the
event to be propagated athamelyP = s; - 55 for the F' event andP = 57 - s, for the R
event. TheL. PF for stems, is given by:

LPF;;I() = Sub_l(LPF,ﬁ’tr(Sil — S1-89, 521 — 51-53) —|—LPF£¢,,(5;2 — 51-89, 322 —51°52))|p

18

With this formulation, propagation of the targeted event through any one of stem’s branches
is allowed. Moreover, it is ensured that the stemnd all of its branches can only assume

the value of the propagating event by cofactoring theF’ with respect td°. Paths passing
through a stem and then reconverging at some other circuit cite may bring different values
on the stem’s branches. If no local functions and variables were considered, and thus, prop-
agation functions were expressed only with respect to variables corresponding to primary
inputs, conflicts between stems and branches could not be identified. Also, stability vari-
ables are associated with the local line variables, in order to implicitly identify all conflicting
assignments and exclude them from further consideration.

Expressing thel PF' in terms of the circuit inputs gives the final form of a propagation
function, referred to apropagation function PF).

Definition 2.6. Thepropagation functiomf a linel € L, for eventtr, denoted byP £} ., (V;),
is the function that contains the complete set of primary input patterns that propagate event
tr on linel, to some primary output.

To derive thePF of a line, a variable substitution operation is performed on the liiké"
accordingly. Such Operatdéfub(), is defined below:

PFiu() = Sub(LPE,()) = LPEf, (i) — FL(),& — F2(), s < 810,52 — S20),

|3}, 42, 51,80 € Supl)

VRV ij7 i]-

PF's are the final form of a propagation function, expressed in terms of the circuit inputs.
Observe that they are not used in computing the propagation functions of lines in subsequent
levels.

Figure 2.1 describes the process of generating all propagation functions in a pseudocode
form. Lines 1 through 6 refer to global and local function generation. Then the topological
levels are derived and the algorithm iterates per such level to generdi@’tfiger line in a

level, based on the input sensitization criteronThe PF' of a line is only computed once

(as shown in lines 12-13).

19

procedureevent_propagation functions()
INPUT: circuit C,
sensitization criteriord
OUTPUT: Propagation Functio® F' per circuit line
% Propagation Function Generation
1: Generate set of lines = {1,2,...,n}, ordered topologically.
2:foreachlinel € L, | ¢ POs
3: Declare Boolean variabléds, /%, s;, ands!
4: for eachlinel € L

5: Generate functions}! (), F(), S} (), andSy()

6: Generate local functionsF}' (), LF?(), LS} (), andLS}()
7: levels = Derivetopologicallevels(C, d), %d = depth %

8: for k = d down to0

9: foreachtr € {R, I'}

10: for eachline [€ level k]

11: LPF},.() = generateL PF(S)

12: if | & level[k — 1] then

13: PF},.() = generateP F ()

Figure 2.1: Pseudocode for Propagation Function generation.

Speeding up the Generation of All Propagation Functions

The topological level based processing requirement of the algorithm presented in the previ-
ous subsection, may result in generating the local propagation fundtiBi’y of a line at

mostd times, wherel is the topological depth of the circuit. In practice, [35] showed that for
the ISCAS’85 and ISCAS’89 circuits, the number of local propagation function generations
per line is a very small constant, between 2.1 and 12.9 (whiler these circuits is be-
tween 13 and 218). Here, we show that it is only necessary to generate the local propagation
function per line once, at the expense of some additional local function generations.

A topological level is defined as a set of circuit lines that has the following three properties:
(a) Every 1/O path contains a line in the level.

(b) No two lines in the level are on the same 1/O path.

(c) A line belongs in a level only after all of its successor lines have been processed.

As stated before a line can be present in at n@dsvels. That is because of property (c)
above. As an example consider a linat topological level that has 2 immediate successors

20

(i.e. s is a stem withh; andb, branches), in levels+ 1 andi + 7, respectively (this implies
that branchh, also belongs in levels+ 1...i + j — 1). The LPF!() cannot be generated
unless bothLPF;*'() and LPF;"'() are realized. Th&PF() for b, is generated at level
i+ 7 for the first time LPngj()) and thus it must be re-expressed with variables in all levels
i+ j — 1 downtoi + 1, beforeL PF; () can be generated (in the worst cas&,F}, () and
LPFy,() may have to be re-expressed uplte 2 times, wherel is the circuit depth).

Theorem 2.1. The local propagation function for a circuit ling LPF; (), needs to be
generated (expressed with respect to local variables only in a topological level) only the first
time it appears in a topological level, during the course of the algorithm.

Proof. We first give a definition that generalizes the local functionality and local stability
function definitions given so far (Definition 2.2 and Definition 2.4). Lét""() andLS,""()

(LF?*() and LS>*()) be the local function and local stability functions for lih¢he first
(second) vector, expressed with respect to variables corresponding to lines in topological
level k. Observe that for the algorithm of Subsection 2.3.1, dnly () and LS} () (LEF?()

and L.S?()) are defined, since local functionalities and stabilities are expressed only with
respect to immediate predecessors, and not also with predecessors in some arbitrary level
k. Recall that level& = 0 andk = d are the levels containing all primary inputs and all
primary output lines, respectively, and that the algorithm starts at the primary outputs and
terminates at the primary inputs.

Let leveli + j be the first topological level the algorithm visits lihand let: + 1 be the
last one to do so. Then for linewe maintaini + 1 LF"*() and LS,"*() (LF"*() and
LSf"“()) functions withk = 0,1, 2, ...,4, according to the definition given in the previous
section. ClearlyLF"°() = F!() (LF/°() = F?()) (Definition 2.1) andLS,"’() = S}()
(LSP°() = S?()) (Definition 2.3), which are used by th&ub() operation to realize the
final form of propagation functio®F;(). Similarly, LF"'() = LE'() (LF?'() = LF?())
(Definition 2.2) andLS,"'() = LS} () (LS} () = LS?() (Definition 2.4).

We redefine operatofub_l (LPF}'()) to Subl’ (LPF}}?(),i) to apply the substitution
operation on the local propagation function of lihat level: 4+ j with respect to variables
in level i, by substituting every variable in level i + j with their local functionalities and
local stability functions for leved (LF}(), LF>(), LSY(), LS%()).

Thus,

21

Subl'(LPF;}7(),i) = Subl(LPF}}!()) = LPF}, andSub_l'(LPF}}?(),0) = Sub(LPF}}()) = PF,.

Litr

Thereforejt is only necessary to generate th& F for line [once, that ofLPFlf;j().]

Calculatingthe local propagation functions only once, can reduce the computation time up
to a factor ofd, whered is the number of topological levels of the circuit. This reduction

is made in the cost of maintaining all tHeF}"*(), LE>*(), LS;"*(), and LS}*(), for all

k =0,...,7 which however is a one time cost, obtained by pre-processing of the circuit.

2.3.2 Generating Activation Functions for all Faults

Generating a test for a transition fault involves two steps: factivationand faultpropaga-

tion. So far, we have described a methodology that generates all fault propagation functions
in a circuit. Here, we describe the generation of all fault activation functions. The ultimate
goal is to derive the transition fault test functi@py, () = A+ () - PE4(), wherePFE,.()

is the propagation function as defined in the previous subsection (Definition 2.6), atidl

is the activation function for transitiofr at line!. The number of minterms ii; ;. () is the

total number of testfor transition faulttr at!.

If no specific sensitization conditions are enforced from the primary inputs to the fault site
[, then the following test functions can be used for a falling and rising transition failt at
respectively:

Tip()=F (- F() - PEr()

T.r() = FH() - FZ() - PER()

With the above equations, it is ensured that the appropriate transition is launchaddat
propagated (robustly, non-robustly, or functionally, depending on Ra,.() was gen-
erated) to some primary output. Observe that the above formulations do not allow for
non-robust activation dtbased on static-hazard excitation (i.e. eithéra 1 — 0 or a

1 — 0 — 1 atl) since only "real” transitions (not hazards) can be launchéd at

For higher quality tests, one should also consider the various sensitization conditions of
Table 2.1 for fault activation so that the generated tests will guarantee to sensitipdete

22

Table 2.2: Fault activation functions

Non-Robust Sensitization

AND Ag,tr() = ZWEF[(G) [Aier() - HVjeFI(G),j;éi sz(”

OR | Agu() = ZWEFI(G) [Air() - HVjEFI(G),j;ﬁi FjQ(”

Rolust Sensitization

AND | Ay r() = Yvierie[Air() Tlvjer@).jzi 95 0]

OR AgyR() = ZWEFI(G) [ALR() . HVjeFI(G),j;éi S?()}

FunctionalSensitization

95)

AND Ag,F() = EViEFI(G) [Ai,F() ’ HVjEFI(G),j;éi]O()]

92)

OR Ay,R() = ZWGF!(G) [ALR() y HVJEFI(G),J'# Jl()]

pathsfrom the primary inputs to the primary outputs, through the fault site, in a robust, non-
robust, or functional manner. We briefly describe how to generate such activation functions
below.

Consider again the example of the 2-input AND gate with indut$} and outputc, and

the case of non-robust fault activation. {, b} are primary inputs thed, z() = @ - as,

Aur() = ay a3, Apr() = by - by, and Ay, () = by - by. ConsequentlyA..;,.() = Agir() - by +

Ay () - a2. Thus, the activation function at the output of a gate can be expressed with respect
to the activation functions and the off-input constraints of its immediate predecessors. If
{a, b} are internal circuit lines theA,. ;,.() = Aui-() - FZ() + Apsr() - F2(), whereF?() is

the function of linei for vectorwv, (Definition 2.1).

In general, for a gaté& with output lineg and faninsF’'I(G), the transition fault activation
functions forG € { AN D, OR}, under the various sensitization conditions of Table 2.1, are
shown in Table 2.2. Similar equations can be derived for the remaining types of gates. The
activation function of a branch is identical to that of its corresponding stem. Note that for
robust and functional sensitization, only the functions for transitiogettling to a control-

ling value are given, since the functions fersettling to non-controlling value are identical

to those of non-robust sensitization (see Table 2.1).

23

Obsene that only variables for the primary inputs need to be used in this formulation. There-
fore, only functionsF! () and £%() and stability functionss*() and S°() per line, are nec-
essary to derive the activation functions. No local variables (variables per internal line) or
local functions are used. A single topological traversal, for the primary inputs to the primary
outputs, on the original circuit suffices in generating all fault activation functions.

It is noted that with the proposed technique it is possible, as in [32], to combine different
activation and propagation sensitization conditions.

2.4 Applications of Test Functions in Test Set En-

hancement

In this section we show how test functions can be beneficial by presenting various test set
enhancement techniques that can be applied to produce better quality test sets. Specifically,
three such enhancement methods that benefit greatly from the use of test functions are dis-
cussed.

2.4.1 Testing Faults Through Paths of Specific Length

The method of Section 2.3 can be applied to restrict event activation/propagation through
a subcircuit that contains paths that meet predetermined delay criteria under the fixed gate
delay model. In this manner, specific sensitization criteria as well as path criticality can be
considered for high quality test generation.

We define a subcircuif’; of original circuitC' which consists of all paths i6" of length:.

Let d be the size of the longest topological pathCin ThenC, contains only the paths of

C' of maximum length, namely the longest paths. In this maifef contains only second
longest paths}';_» contains only third longest paths, and so on. We use a dynamic program-
ming algorithm to generate the transition fault test functiong fuch subcircuits, whereis

a constant between 1 adddefined by the desired path criticality criteria. Using the method

24

of Section2.3, k different test functions are generated for each fault, each of which restricts
event propagation/activation through all paths of the same lengtamely subcircuit;.
Depending on the desired qualities of the test set,kthest functions can either be used
separately to derive a test for each fault in ew€ryor be combined (Boolean OR) to derive

a test for allC; subcircuits; = d,d — 1,...,d — k, that allows fault activation/propagation
through paths of any length betweémndd — k. This circuit decomposition can be run in
parallel, if necessary, so as to minimize the computation time.

Next we focus on how to derive@; subcircuit. We use a simple algorithm, based on circuit
traversals and linear number of node replications, which guarantees that the generation of
C; is done in linear, to the size of circuit, time. First, a forward topological traversal is
performed inC. At each linel in the circuit, a list of buckets is maintained and each bucket

B is labelled with thdength(L) of sub-paths ending at that line. Each such buBkdtolds

a list of identifiers for alimmediatepredecessor df that reach with sub-paths of length

L. As an example, consider the graph of Figure 2.2. Graph nodes represent circuit lines
andL|[p1, ps, ...] for nodel denotes thap;, p, ... are immediate predecessorg dhat reach

[with sub-paths of lengtil, (bucketB; and corresponding identifiers kept). For instance,
nodee is labelled with3[d], 2[d], 1[is] which implies that it has 3 bucket§Bs, B,, B; }, one

for every sub-path length up to that node. Nads the only identifier in the list for buckets

B3 and B, of nodee, since sub-paths of length 3 and 2 readhom d. In the same manner,

the primary input; is the only identifier contained in the list for buckit of line e, sinceis

is the only immediate predecessoredhat reaches with length 1. In general, the number

of buckets kept per line is no more thdnwhered is the length of the longest path in the
circuit.

A backward traversal follows the forward traversal, starting from primary outputs that have

a bucket labelled with the desired path length, let thig.b&/hen at some bucket;, of a

nodel, the list of identifiers kept fo3;, is used to determine the nodes to be visited next.
For example, consider again the graph of Figure 2.2 and suppose that we are interested in
derivingC's. For simplicity, let’s focus only on paths of length 5 ending at primary oukput
namelyisadf hk, iobdf hk andiide fhk. Then, forBs atk we know that h is to be visited next.
Moreover, bucketB, of h is selected, since in order to reachvith paths of length 5, it is
necessary to reac¢hwith paths of length 4. In this manner, the paths of the desired length are
identified when the primary inputs are reached, based on the visited nodes and edges. During
this process, it is essential to ensure that no paths of any length otherdramcluded in

25

1[i0,i1] <:> 2[d]
/
©

o] i 4[e1,3[Me. i1]
([A— : 6[h] 5[h] 4[h],3[] 2[c]
@/ J S
54l

f1,3[f],2[f.c]
1[i2] / 3[d],2[d],1[i3] 5[gm® 6[h,j],5[h,j1.4[h,j].3[h,j]

0

°R

Figure 2.2: Attempting to derive’’; on original Graph C.

Figure 2.3:Replication of nodel to deriveCs.

C;. Observe again Figure 2.2. If the process of backtracking fBrof £ is applied till all

primary inputs are reached, then the identified paths are shown in bold lines in Figure 2.2. In
this case(’; (bold part of the Figure 2.2) also contains paths of lengthdf k) and length

6 (icadefhk andisbde f hk). In order to avoid such cases, our algorithm modifies the induced
subcircuit by replicating nodes to ensure the propertigs; oVisited nodes (other than PIs)

that have sub-paths to POs, of different size are replicated with connections to appropriate
successors and predecessors. In the graph of Figure 2.3 (only used buckets per node are
shown), nodel is replicated inC; (consider again only paths of length 5 to Rsince it is

reached fromy via B3 and frome via B;. Noded, reaches nodesandb via B, and node

26

d, reaches, viaits By bucket. Bold lines in Figure 2.3 show all visited nodes and edges. In
general, if d is the length of the longest path in circditshen a node may be replicated, in
the worst case, as many@s- i+ 1 times in order to derive subcircuit;. Clearly, the circuit
modification is linear to the size of the original circuit

Note that a subcircuif’; does not contain lines which are not on a path of lerigihd are
needed by the method of Section 2.3 to ensure off input constraints presence along targeted
paths. We call these linessde linesof ;. Formulation of test functions is trivially modified

in a way such that the side input constraints are met, but no fault sensitization through sub-
paths consisting of side lines are allowed.

2.4.2 Test Set Compaction

The second test set enhancement method proposed examines the problem of decreasing
the size of the test set without any compromise in fault coverage, known as test set com-
paction. By insisting on maintaining test functions per fault we have a major advantage over
structural-based techniques, that find only one test per fault (or small set of tests if don’t-cares
are allowed), when trying to compact a test set. Each test function can implicitly represent
an enormous number of tests per fault. This gives a much greater flexibility in finding tests
that detect many faults.

Consider faultf with transition fault test functiofi’;(). Function7’;() contains all possible

tests forf, under the specified sensitization criterion. Any mintern?’ef), letm, can be
selected to cover faulf. Consider now a second fadlt other thanf, with corresponding

test function’(). One can again derive a minterm, let., from 7/() to cover faultf’.
Alternatively, one may attempt to find a common test for the two faults, i.e., a single test that
will detect both faults simultaneously. This amounts to computing the intersection of the two
sets of minterms represented by each test function. When dealing with boolean functions,
set intersection is equivalent to Boolean AND. Thilig() - 7'() will contain all possible

tests that can detect faulfsand f’ simultaneously. () - T () = 0 then faultsf and

are said to be incompatible, which means that they can never be detected together by a single
test. In general, given a list of faults, { f1, f», ..., f»} and their corresponding list of test
functions,{7y,(),T%,(), ..., T}, ()}, the functionly () that contains all tests that detected all

n faults simultaneously is given By () = [[._, ,, 77 ().

27

Thegoal here is to select test functions that can be combined, i.e. have at least one common
minterm. Ideally, one would lik&y () to have as many minterms as possible, since this may
also indicate that further reduction of the test set is possible. In general, the main objective
for achieving good test set compaction using functions relies on finding a combination of the
faults in the targeted fault list such that each of gener@igd combines a large number of
functions such that the number8f; () functions necessary to detect all faults is minimized.

We use two simple heuristics to demonstrate the effectiveness of test function generation in
test set compaction. The first method starts with a test set that contains one test function per
fault and checks for local compatibilities, i.e. attempts to compact faults in the same locality.
Using a backward circuit traversal we check if the test function of a faattsome liné can

be combined with the appropriate test functions for faults at one or more of the immediate
predecessor lines df For instance, consider a 2-input NAND gate with inputand b

and outputy. There are 6 transition faults for linds;, b, g} (3 rising and 3 falling faults)

with 6 corresponding test functions, denoted{l@y*(), 7. (), T,7(), T,” (), T,(), T, () }. The
compaction algorithm will attempt first to compute functidhg) = 7.7() - T,7() - 7,7 () and

() =T, () - T,7() - T,*(). FunctionT () (T»()) attempts to combine all the rising (falling)
faults on the inputs with the falling (rising) fault at the output of the gate. If any of these
two functions is 0, the algorithm will select subsets of the inputs (instead of all) and try to
see if their corresponding faults can be tested together. Once a test function is considered
in one compacted set of functions, it is dropped from further consideration. We repeatedly
apply this scheme at each line in the circuit. At fanout stems the rising (falling) test function
for a fault at the stem is combined with all rising (falling) test functions for the faults at its
branches. If a single function that detects all does not exist (=0), then the algorithm again
selects subsets of the branches to be combined. This scheme is very effective, as it guarantees
to reduce the test set by at least 50% (except in the case where the stem fault is redundant),
since the test function of a gate’s output (fanout stem) can always be successfully combined
with the corresponding test function of at least one of the gate’s inputs (fanout branches).
We call this heuristic compaction methed

A second compaction heuristic, we call it methBd is also applied on top of methaodl.

It considers pair-wise compaction of all remaining functions in the test set. This greedy
approach can be applied in an iterative manner until the size of the test set cannot be further
reduced. We start with the set of test functions obtained by compaction matfmak can

also apply method® independently by considering one test function per fault in the input test

28

set)and perform pair-wise compaction. Once a test function is considered in one compacted
pair of functions, it is dropped from further consideration. Any functig() that cannot be
combined with any other function is also added in the new list of test functions to guarantee
that fault coverage is not compromised. The above process is repeated on the new list of test
functions until no further compaction is possible (size of starting list is equal to the size of the
new list). Although, this approach selects functions to combine greedily, our experimental
results for the ISCAS’85 and ISCAS’89 circuits show that it can achieve up to 80% of test
set compaction of the original test set (when applied on top of compaction mgjhod

The pseudocode for the compaction heuristic is shown in Figure 2.4. Methediven in
lines 1-13 and metho# in lines 14—-26. Faulf/” denotes transition fault at linewith ¢r =

{R, F}. Operatorl denotes the change of transiti®{ F’) to transitionF’'(R). For example,
if tr = R thenltr = F. Operators and+ denote Boolean AND and OR, respectively.

2.4.3 Test Set Enrichment

Here we discuss an additional application of high quality transition fault test functions for
test set enhancing. We present a novel method to enrich the compacted test set with more
tests by adding a number of new tests in the set such that they detect the same transition
faults but only through paths that have not been sensitized by the initial test set. Such test
sets have higher quality since events propagate through many different paths and, thus, are
more likely to detect a delay violation in the circuit. It is expected that, on the average, this
procedure will allow the number of paths sensitized by all transition fault tests to increase
proportionally to the number of tests per transition fault.

Any minterm of a transition fault test function guarantees to detect transition fault by ac-
tivating and propagating the transition through at least one circuit path. Using the method
described in Subsection 2.4.2 the test set is compacted as a first step. If the test set size drops
below some required upper bound (maximum test set size), one can select to enrich the test
set with new tests that guarantee detection of already detected faults, but via sensitization
of new (not already sensitized) paths, thus, improving the quality of the test set. (Note that
the method described in this section can be also applied independently to the compaction
method of Subsection 2.4.2.)

29

procedurecompact()
INPUT: circuit C,
test function array’' A,
corresponding fault array' A
OUTPUT: compacted test function arrayw T A
% Compaction method
1: for eachfault f!" in FA
: G = gate driving linei
if G is inverting gateghen tr' =!tr elsetr’ = tr
FI(G) = fanin list of gateGG with output line:
comp TA=10
temp 1,00 = T (), T2,,() = logic_one(1)

for eachfaninj € FI(G), wheref!” € FA
temp-Tlp,,() = TE () - Tigy()

comp comp

o: if temp T () = logic_zero(0) then break

comp

10: elseT’” () =temp. T2 ()

comp comp

11: Dropfault f from F A
12: Add T () to comp T A

comp
13: for eachfault /i € FFA, Add T}"() to comp T A
% Compaction methodB

14:k =0, new TA =temp.TA =

O NouRhwin

15: do

16: if K =0thentemp TA = comp_ T A elsetemp TA =new TA
17: Incrementk

18: foreachT7y!() € temp T A

19: foreachTy () € temp-T'A, Ty () # T ()

20: Toomp() = T30 - TF0)

21: if T0p() # logic_zero(0) then

22: Add T}, () tonew T A

23: Drop functions?’y’() and777() from temp_T' A
24: break

25: for each T} () € temp TA, Add T} () to new T A
26: while (jnew_T A| < |temp-T Al)

Figure 2.4: Pseudocode for Compaction Algorithm

The enrichment algorithm starts with a compacted (or not) list of test functions. For every
functionT;() in the list, a mintermn, (test) is randomly selected and simulated to identify

all sensitized paths, under the given sensitization criterion that the function was originally
generated. Paths through which the targeted fault(s) is(are) sensitized, as well as other paths
of the circuit detected incidentally, are identified. Then, for each identified sensitized path,
the path test function (again, under the given sensitization criterion) is generated. Path test

30

procedureenrich()
INPUT: test function array’ A, TestSetBound
OugPUT enhanced test sét

2: for eachtest functionT;() € TA
3 my, = pick-minterm(Z())
4: Add testmy, to S

5: while (|S| < TestSetBound

6: PlcktestmT es

7

8

SlmulatemT

; P = set of paths sensitized by,
o: Tp = logic_zero(0)
10: for eachpathp, € P
11: T,,() = test function for patlp;
12: Tp() =Tp() + Tp,()
13 T} =T() Tp()
14: my. = pick-minterm(Z/())

15: Add testm7, to S

Figure 2.5: Pseudocode for Enrichment Algorithm

functions, denoted here 1gj,() for some pattp, are discussed and generated in [38] and

[40], among others. LeP = {p;,ps,...,p,} be the set of paths sensitized by tesir,

and7p() = {1,,(),1,,(), ..., T,,()} be the set of their corresponding path test functions.

The set of all possible tests that can sensitize any paf, idenoted byl's() is given by

Tp() = > T,.(), where)_ denotes the Boolean OR operation. To find the set of all tests
i=1..n

in 7;() that sensitize paths not iR, it suffices to compute functio() = 7;() - Tr(). We
can then enrich our test set with any minterm. of 77 (), which guarantees to detect fault
through paths not if®.

The diagram in Figure 2.6 illustrates the above process in a Venn diagram. It assumes that test
functionT; covers 2 faults. It is shown how the set of minterms (tests) of functjdin =

T,() - (T,,() + T,,,()) is defined. U is the universe of possible patterns. The test function
T;(), for fault 7, is the intersection of activation and propagation functiofig) and P;(),
respectively. Any mintermn,, selected froni;(), sensitizes paths whose corresponding
test functions can have some or complete overlap with fundjoh These two cases are
illustrated in Figure 2.6. Letn;, sensitize two pathg;; andp,. Their corresponding test
functions, denoted by, () andT,, (), are shown in Figure 2.6. Observe tiat() C T;(),

which implies that patlp; contains the line of transition fault On the other hand, pah

31

maybe an incidental path sensitized by, . In any case7} () (shown in the patterned set in
Figure 2.6) contains those mintermsigf) that will detect the fault through any path other
thanp; or py.

The number (0f%) of new tests added to the original test set can be user defined. The
pseudocode of the proposed enrichment algorithm is shown in Figurel@sbSetBound
denoteghe maximum number of tests allowed in the enriched test set. Operatnts+
denote Boolean AND and OR, respectively.

2.5 Experimental Results

The proposed methods were implemented in C language and run on a 1GHz SunBlade 1500
with 4GB of RAM. All Boolean functions were represented and manipulated using Binary
Decision Diagrams (BDDs)[34]. The package of [41] was used to generate the BDDs as well
as optimal initial ordering of variables, that is also provided along with [41]. No dynamic
variable reordering was allowed, even though it could have been invoked to provide space
saving at the expense of computation time. All circuits of the ISCAS’85 and ISCAS’89
benchmarks, with the exception of c6288, were considered. Circuit c6288 is a 16 x 16
multiplier that cannot be represented using BDDs. We note here that no comparison between

4 7

§
70

Pi()

Figure 2.6:Finding new test functioff ().

32

our results and other methods is possible since, to our knowledge, no other existing work
considers such types of quality tests for transition faults.

Table 2.3: Test Function generation for the ISCAS’85 and ISCAS’89 circuits.

SubcircuitC,,, 4. SubcircuitC,, 4.1 SubcircuitC,,4.—2

Circuit Paths | Faults| Red. | Paths | Faults| Red.| Paths | Faults| Red.
s$382 24 82 0 4 44 0 18 88 0
s420.1 9 64 0 4 86 0 13 156 0
s444 32 122 29 16 90 0 8 102 19
s641 2 200 | 113 2 198 | 113 4 386 38
s713 32 232 | 184 32 230 | 183 76 442 | 186
s1423 4 204 8 6 224 | 10 4 216 2

s9234.1 | 5632 | 1668 | 1475| 512 704 | 652 | 10240 | 1858 | 1677
s13207.1] 240 322 | 235 | 840 830 | 197 | 3184 | 1340 | 1252
s15850.1) 1024 | 442 | 396 | 24292| 1254 | O 91432 | 2060 | 1042
s38417 64 238 | 192 | 112 322 | 259 96 498 | 397
s38584.1| 896 598 | 524 | 128 338 | 293 | 7147 | 1176 | 1028

c880 108 196 0 270 | 244 0 334 388 0
c1355 196608| 1588 | 894 | 65536| 1508 | 801 || 298560 2664 | 1599
c1908 32 360 | 180 | 618 | 888 | 180 | 3328 | 1498 | O
c2670 448 346 | 334 || 1248 | 528 | 516 | 5568 | 916 | 904
c3540 32 202 | 163 | 460 | 678 | 291 | 5014 | 1318 | 30
c5315 12 328 | 164 | 816 | 692 | 386 | 7388 | 1208 | 601
C7552 1 124 | 64 136 | 492 | 138 | 1743 | 980 | 204

We first present the results obtained for generating the transition fault test functions for non-
robust propagation, without enforcing any specific sensitization rule for fault activation. As
already mentioned in Subsection 2.3.2, the computational effort to generate all fault acti-
vation functions for various sensitization criteria is considerably less than the one required
to generate all fault propagation functions, since in the former case no local variables or
functions are involved. Table 2.3 shows the results when faults are activated and propagated
along any path in subcircuits,, ..., Cruaz—1, andCi,..—2, Wheremax denotes the size of

the longest circuit path. For each subcircuit, the number of paths (Columns 2, 5, and 8),

33

Table 2.4: Time and space requirements for test function generation for the ISCAS’85 and
ISCAS’89 circuits.

SubcircuitC,,,., || SubcircuitC,,,.—1 || SubcircuitC,,,_»
Circuit CPU | Mem. | CPU Mem. CPU Mem.
(secs)| (MBs) | (secs)| (MBs) (secs)| (MBs)

s382 0.04 1.94 0.01 1.94 0.04 2.05
s420.1 0.05 | 7.45 0.71 16.06 1.01 17.85
s444 0.04 | 2.02 0.02 2.04 0.0 2.05
s641 0.07 3.28 0.06 3.33 0.07 3.49
s713 0.06 3.33 0.04 3.35 0.07 3.35

s1423 0.75 | 2285 | 1.11 22.50 1091 | 30.36
s9234.1 || 12.75 | 172.7 | 0.26 81.99 1991 | 213.74
s13207.1| 0.38 | 30.83 | 0.54 31.45 0.41 31.45
s15850.1| 0.26 | 34.02 | 0.19 34.02 0.09 34.02
s38417 24.27 | 4.0 31.13 5.01 38.11 4.97

s38584.1) 37.15 | 57.99 | 25.18 | 55.98 41.51 | 63.99
c880 7.78 | 2851 | 9.11 29.36 9.99 35.42
c1355 110.01| 213.72| 55.73 | 83.99 | 174.11| 228.98
c1908 7490 | 188.47| 71.29 | 252.02 | 79.18 | 312.02
c2670 0.14 | 1147 | 0.90 13.42 5.15 | 121.67
c3540 60.89 | 43.61 || 110.86| 52.77 90.32 | 50.75
c5315 93.11 | 30.71 | 80.13 | 51.17 85.13 | 65.37
C7552 8.45 | 31.85| 7.08 95.32 13.44 | 115.30

the number of faults (Columns 3, 6, and 9), and the number of identified redundant faults
(Columns 4, 7, 10) are reported. Time and space requirements are given in a similar manner
in Table 2.4. All faults were processed, i.e., there were no aborted faults in any of the three
subcircuits. An important observation from the obtained results is that a very large percent-
age of the faults, for many subcircuits, are redundant (cannot be activated or propagated to
some primary output under the considered sensitization criterion). A fault is identified as re-
dundant when its test function is the constant zero function. It is expected that when specific
sensitization criteria are enforced also for fault activation, the number of redundant faults
will increase further. Note that the number of faults considered and the number of redundant

34

faults are reported per subcircuit in Table 2.3. To determine the total number of redundant
faults after the three iterations of the approach (for subcircujts,, Craz—1, aNdC0z—2),

one should compute the sum (logic OR) of the test function for the same faults that appear in
any subcircuit. This information is not provided here, however, it could be trivially obtained.

Next we concentrate on presenting some static information per circuit, with regard to sub-
circuits C;. One might want to know how many iterations of test function generation are
necessary (one iteration find$ containing only paths of lengthand applies the method of
Section 2.3 to find the transition fault test functions), given some user defined threshold for
transition fault coverage as well as % of considered paths of high quality (high length).

Figure 2.7 and Figure 2.8 show information for some of the ISCAS’85 and some of the IS-
CAS’89 circuits, respectively. Each figure contains two plots. The bottom plot in each figure
shows the percentage of circuit lines (analogous to the percentage of transition faults cov-
ered with high quality tests) considered, as the number of iterations increases. The maximum
number of iterations per circuit is equal to the size of the longest path in the circuit (under the
fixed gate delay model). Again, letax be the size of the longest path in a circuit. Thus, for
some iteration this plot shows the percentage of transition faults covered through paths of
at least lengthnax — i 4+ 1. For example, for iteration 1 this plot will show what percentage

of transition faults can be covered through only longest paths (iteration 1 will consider sub-
circuit C,,..). Observe that the fault coverage reported here is pessimistic (it can be higher)
since the total number of the redundant faults is not considered in the calculation.

The top plot in each of the Figure 2.7 and Figure 2.8 shows the percentage of high quality
paths (in terms of length) considered for transition fault activation/propagation as the number
of iterations increases. For example, for iteration 1 this plot will give the percentage of the
total paths that are the longest. For iteratidthese plots show the percentage of paths of
lengthmaz — i + 1 or greater from the total number of paths in the circuit. Up to iteratjon

the method considers subcircus, .., Crnaz—1, - - - , Cmaz—i+1 @nd the reported percentage

of paths shows the ratio of the sum of paths among all considered subcircuits over the total
number of paths in the circuit.

Consider, for example, circuit 3540 in the bottom plot of Figure 2.7. With approximately
21 iterations the targeted transition faults (around 55% of total number of transition faults
as given in the top plot of Figure 2.7) will be detected though only 40% of the paths of

35

Total Lines Covered per Iteration

90,00%

80,00% -
70,00% -
60,00% -
50,00%

0w
(0]
£
. Y all s
40,00%
30,00% -
20,00% -
10,00% V
L0 e L LA e B e e e L e e L e e e e e B B e e A e e e e e B]
1 3 5 7 9 11 183 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67
Iteration
—— 7552 —=—c5315 —&— 3540 —>—c1908
Total Paths Considered per lteration
100,00% -
90,00% / fﬂ
80,00%
70,00% -
60,00% -
2
w 50,00%
o
40,00%
30,00% -
20,00% -
10,00%
0,00% onﬁ ““““““““““““““““““““““““““““““

183 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67
Iteration

| —+—crs52 —m-c5315 —4—c3540 —»—cioos |

Figure 2.7: SubcircuitC; details for some ISCAS’85 circuits.

the circuit. Each path in this 40% has lengtiuz — 20 or more. Thus, around 55% of
the transition faults can be detected through paths ofisize — 20 or more. As another

36

Total Lines Covered per lteration

-

80,00%

60,00% -
[%2]
(0]
c
-

40,00% -

20,00% -

0,00%
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
Iteration
—>—s13207.1 —¢—s713 —#—s641 —&—s38417
Total Paths Considered per lteration

100,00%

80,00% /

60,00%
192
e
£
©
o

40,00% W
20,00%

0,00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
Iteration

[5513207.1 ——s713 —W—s641 —4—s38417 |

Figure 2.8: SubcircuitC; details for some ISCAS'89 circuits.

example, consider circuit s641 shown in Figure 2.8. It shows that with around 30 iterations,
approximately 45% of the transition faults can be detected through 20% of the total paths,
which have lengthnax — 30. Such information is very useful in guiding the overall ATPG

process.

37

Table 2.5: Test Set Compaction for ISCAS’85 and ISCAS’89 circuits
SubcircuitC,, . SubcircuitC,,,, 1 SubcircuitC,q;—2
Circuit No. | Comp.| Comp.| Comp. || No. | Comp.| Comp.| Comp. || No, | Comp.| Comp.| Comp.
Tests| A(%) | B(%) | Tot.(%) || Tests| A(%) | B(%) | Tot.(%) || Tests| A(%) | B(%) | Tot.(%)

s382 82 56 50 78 44 52 50 76 88 58 50 78
s420.1 64 55 47 77 86 48 50 74 156 61 50 81
s444 93 57 48 78 90 49 44 72 83 62 a7 80
s526n 28 52 50 76 58 59 50 80 83 60 50 80
s641 87 56 50 78 85 53 50 7 348 55 a7 76
s713 48 56 50 78 a7 57 50 79 256 57 50 79
s1423 196 57 41 75 214 59 50 80 214 52 49 76

$9234.1 | 193 59 50 80 52 41 50 71 181 53 48 76
s13207.1) 87 56 45 75 633 48 48 73 88 57 50 79

s15850.1| 46 56 46 76 1254| 51 47 74 1018| 59 47 78
s38417 46 55 41 73 63 53 50 7 101 46 50 79
s38584.1 74 56 45 76 45 53 45 74 148 59 48 79
€880 196 55 48 1 244 51 50 76 388 59 48 79

€1355 694 55 48 1 707 46 46 71 1065| 60 a7 79
€1908 180 68 50 84 708 61 47 79 1498| 57 50 79
c2670 12 58 50 79 12 53 50 7 12 53 50 77
c3540 39 61 a7 79 387 43 50 72 1288| 56 a7 7
c5315 164 54 40 72 386 52 50 76 607 55 49 77
c7552 60 56 50 78 354 54 48 76 776 56 50 70
Avg. Comp. % | 56.74 | 47.16 | 77.16 51.74 | 48.68 | 75.47 56.58 | 48.79 | 78.27

Next, we report compaction results, obtained by applying the compaction method described
in Subsection 2.4.2. Table 2.5 shows the compaction results for the test sets presented in
Table 2.3. Thus, Columns 2, 6, and 10 show the size of the original test set (equal to the
number of test functions generated) for subcircaits,.., Cruaz—1, aNdC,,._o, respectively.
Columns 3, 7, and 11 show the reduction rate (%) achieved for Metlad&ubsection 2.4.2,

and Columns 4, 8, and 12 show the reduction rate achieved for Métloid&ubsection 2.4.2.

The total reduction rate when Methd@tlis applied on top of Method is shown in Columns

5, 9, and 13. The proposed compaction technique is very effective since the total reduction
rates are between 70% and 84% for all circuits. The last row of Table 2.5 reports the average
reduction rates for all listed circuits. The total time performance (CPU secs), shown in
Table 2.6, demonstrate that the proposed scheme is very efficient.

38

Table 2.6: Time requirements for Test Set Compaction (CPU secs)

Subcircuit| Subcircuit| Subcircuit
Cir cuit Chrnax Chrnaw—1 Chrnar—2
s382 0.01 0.01 0.01
s420.1 0.01 0.01 0.02
s444 0.01 0.01 0.01
s526n 0.01 0.02 0.02
s641 0.02 0.02 0.08
s713 0.02 0.02 0.03
s1423 0.03 0.02 0.03
s9234.1 0.23 0.01 0.02
s13207.1 0.03 0.04 0.02
s15850.1 0.01 8.17 511
s38417 0.02 0.02 0.03
s38584.1 0.02 0.01 0.04
c880 0.04 0.02 0.05
cl355 0.08 0.11 0.19
c1908 27.54 39.11 51.99
c2670 0.01 0.01 0.02
c3540 0.05 0.19 1.53
c5315 0.02 0.05 0.06
c7552 0.01 0.02 0.04

2.6 Conclusions

This chapter presented a novel methodology for efficient generation of transition fault test
functions for high quality tests. First we showed how to generate a function that contains all
possible tests to detect a transition fault. Moreover, a systematic methodology is presented,
that derives the functions for all transition faults based on only two circuit traversals. Quality
tests are generated by requiring that the function formulation considers established sensiti-
zation criteria to either activate a transition at the fault site, or propagate it to a circuit output.
Experimental results on the ISCAS’85 and ISCAS’89 circuits demonstrate the promise of the
method and that the examined test functions can be generated quickly and with reasonable
memory requirements. In addition, they show that, in many cases, only a small percentage of
the faults, for the examined problem, can have high quality tests. Moreover, it is shown how
the proposed method can be beneficial for further test set enhancement techniques which can
be applied to provide better quality test sets. One such method restricts events propagation
along any path in a subcircuit containing paths that meet predetermined delay criteria using
the fixed delay model. Another, manipulates the derived test functions to generate compact
test sets. Experimental results show a compaction rate of the order of 70% to 84%, with no
compromise in fault coverage. Finally, a novel method to enrich the compacted test set with

39

additionalvectors so that transition faults are tested through different activation and propa-
gation paths. Such test sets have higher quality, compared to traditional transition fault test
sets, since events can propagate through many critical paths.

The test generation methodology proposed in this chapter can be easily extended to produce
test sets with don't care bits (incompletely specified test sets), on top of the quality criteria
specified in this work. Such “flexible” test patterns may be desirable for many reasons.
Appropriate don't care bit fixing can be used to benefit different applications such as low
power testing, test set embedding, test set enrichment and test set compaction, among many
others. The subsequent chapters explicitly examine the problem of generating flexible test
sets. Even though the stuck-at fault model is used in the experiments, any linear fault model,
such as the enhanced transition delay fault model presented in this chapter, can be considered.

40

CHAPTER 3

STATIC TEST SET RELAXATION

3.1 Introduction

A number of digital circuit testing problems can benefit when using flexible test sets, i.e.,
test sets with a large number of unspecified bits, as their starting point. In this chapter we
approach quality from a different direction from that of Chapter 2. Instead of generating test
sets of increased detection capabilities, we generate “flexible” test sets which under appropri-
ate manipulation benefit different test-related applications and problems. Such applications
include, but are not limited to, adding to a given test set extra properties such as fixing
unspecified bits appropriately for low power dissipation during test [11, 42] or additional
fault type detection [43]. Flexible test sets are also extremely crucial in various compression
schemes for on-chip or off-chip test set embedding, given in [44, 45, 46] among many others,
as well as in test set compaction as it will be demonstrated in this dissertation. The majority
of existing test generation tools produce fully specified test sets since fixing the values of
test bits is essential for the test set compaction methods they employ. Most of the popular
compaction techniques rely on having fully specified bits in order to take advantage of coin-
cidental detection of faults and removal of tests that do not target any new faults. Examples
of such compaction methods include the static technique of reverse order fault simulation as
well as the popular dynamic method of [47] which identifies and merges compatible tests.
Test generation techniques that allow the existence of don’t cares (unspecified bits) in the
generated test set usually result in larger test sets. Moreover, one drawback that is common
to all ATPG or dynamic compaction methods is that they cannot take advantage of random
test generation when don’t care values need to be considered.

41

Thereforejt is often necessary to relax an already generated test set so that it contains many
unspecified bits. The work in this chapter examines this problem, which is defirred as
placing a fully or partially specified test set with a new partially specified test set such that
the total number of unspecified bits is maximized while fault coverage remains the same and
test set size does not increaskn this context, test set relaxation does not imply that the
specified bits of the new test set are a subset of the specified bits in the original test set, as
it is the case with the existing test relaxation methods in [48, 49]. These methods rely on
various ATPG concepts in order to identify specified bits in the test set that can be replaced
by don't care values. [48] proposes a method for identifying don’t care bits in a test pattern
using ATPG concepts such as implication and justification. [49] uses a similar rationale, tak-
ing into consideration testability measures in the justification process. Moreover, this latter
method proposed some heuristic to improve the accuracy of the relaxation process.

The methods proposed here are essentially test replacement techniques, which ensure that
each new test pattern has fewer care bits than the one being replaced, and detects at least a
subset of the faults detected by the original test. In order to maintain fault coverage, each
fault is guaranteed to be detected at least once. Detecting a fault additional times is not
essential and can be eliminated in favour of decreasing the specified bits. This is actually a
major observation that is implicitly enforced by all previous methods that solve this problem
[48, 49]. Here, this observation is explicitly explored in the proposed techniques. Without
any loss of generality, the work in this chapter concentrates on single time stuck-at fault
detection, as in [48, 49]. However, the presented methodologies apply to any other linear, to
the size of the circuit, fault model, such as the transition fault model considered in Chapter 2.

The first method investigated proceeds in a test-oriented manner. It replaces each test with
one that has a larger number of unspecified bits and targets only those faults detected by the
original test but are not explicitly or coincidentally detected by already relaxed tests. This
is essentially a simple test dropping process, coupled with test generation for maximizing
unspecified bits, which in practice performs very well (as it is demonstrated by the obtained
experimental results). The second method presented is more sophisticated and proceeds
towards a different direction than the first one by considering one fault at a time. For each
fault, this method determines the one test to detect the fault (among all of the original tests
that detected the fault) that gives the maximum benefit in terms of specified bits savings in
the entire test set. Thus, it selects the “best” test to detect the fault and drops the fault from
the remaining tests in order to reduce the total number of specified bits in these tests.

42

Both of the proposed methods are different from the previously proposed techniques since
they use test set replacement instead of relaxing each test pattern. The latter can limit the
number of specified bits that can be relaxed. On the other hand, test set replacement implies
explicitly invoking a test generator, capable of generating tests with large number of unspec-
ified bits. However, this is not very different from what is required by the existing methods
[48, 49], which rely on modified ATPG routines (such as justification) or have to deal with
standard ATPG related problems (such as fault masking due to multiple path activation).

All test generation related routines can be implemented with any previously proposed method
that generates tests with many unspecified bits. Essentially, structural approaches like those
used in [48, 49] can be employed. Alternatively, symbolic techniques in a function-based
framework (e.g. BDD based, SAT based) can be used for all the proposed techniques, as well
as for the techniques we propose in the next chapter. Since the impact of the test generation
process is important for all the proposed techniques, we propose a function-based approach
based on Binary Decision Diagrams (BDDs) [34]. Beyond test generation, this approach
allows for efficient representation and manipulation of tests or group of tests. Moreover, we
take advantage of the canonical form of BDDs in order to generate tests with a large number
of specified bits. We postpone this discussion until the next chapter (Section 4.5) in order to
give a complete framework that can be used with all the proposed techniques of this as well
as the next chapter.

The rest of this chapter is organized as follows. Section 3.2 gives the problem formulation
together with some necessary definitions. Section 3.3 and Section 3.4 describe in detail the
two proposed methods. In Section 3.5 we present a post-processing compaction heuristic for
reducing the number of tests in the relaxed test set. Section 3.6 gives the obtained experi-
mental results and necessary comparisons for the proposed methods. Section 3.7 concludes
Chapter 3.

3.2 Problem Formulation and Notation

Consider a given test s&t={ty, t, ..., t; } for a combinational or a fully-scanned sequential
circuit-under-tesf. Each of the N test patterns consists of a string of 3-valued:bfts 1,x},

43

thus,the test sef can be fully or partially specified. Consider also a fault mobl€l based

on which the list of faults detected ¥, denoted byF', is derived. For a test sét, we
denote the ratio of the bits having a specified vaJ0gl } over the total number of test set
bits by K (7). This ratio gives a test set property that indicates how flexible a test set is.
Clearly,0 < K(7) < 1, for any test set. The closéf(7) is to 0, the more flexiblg is.

For fully specified test setdy (7)) = 1.

The test set relaxation process refers to replacing tesfsét, ¢, ..., ty } with a test set
T'={t},t,, ..., t"y} such that each of the following is satisfied:

¢ 7' has the same fault coverageagunder fault mode/M)
e K(7T') < K(T),i.e. 7" has more unspecified bits than
e Everyt; € 7' detects a subset of the faults detected by soneeT

Since there is no constraint on the place of specified bits that become unspecified at a test,
the replacement method may give tests that have no specified bits at all. Depending on the
targeted application, such tests can be either preserved or eliminated.

3.3 Test-Based Replacement Method

The optimal approach for solving the problem of minimizing the number of specified bits in
atest setis to identify a minimal input assignment to test each fault. In other words, the target
Is to find the test that detects each fault with the minimum number of specified bits. Since, for
this problem, we focus on modifying a given test set to have as few specified bits as possible,
the optimal solution is to identify the pattern in the test set that contributes less in specified
bits and then convert the specified bits to don’t care in all other tests that detect the fault
under examination. The former step, however, can become problematic because it involves
test generation, not only for each one of the examined faults but for all the combinations of
faults, as well. Hence, since the number of combinations can be exponential, the methods
proposed in this subsection (as well as in the next subsection) try to identify the optimal test
(the one that gives the fewer specified bits), in an iterative manner. Of course the results
are not optimum; however, experimentation shows that they are better than other similar
methods.

44

Thefirst method proposed in this subsection iterates among tests examining the faults that
are targeted by the pattern considered at each iteration. Thus, the order by which the faults
are examined is defined by the order of the test patterns in the test set. All faults that have
been detected by a previous test are removed form the detect list of each test and a new test
is formed that has fewer specified bits than the given one. Thus, the new test, that replaces a
test in the initial test seT’, detects the faults detected by the initial test excluding any faults
already detected. The proposed algorithm is given in Figure 3.1. The input parameters are
the circuit-under-test, the test set to be relax&d and the considered fault mod#t based

on which the targeted fault ligt is derived (lines 1-2 of Figure 3.1). Consequently, for each
given testt; € 7 the algorithm first finds the faults detected f§yand not already detected

by testst|, t,, ..., t._, (this corresponds to lines 5-6 in Figure 3.1), and then generates a test
replacement’ that only targets these faults. If all the faults detected laye already detected

by at least one of), t,, ..., t._, thent; is a fully unspecified test (i.e5(¢') = 0 which is the
maximum relaxation possible foy) and is dropped from test sét. The process terminates

when all tests inZ have been processed or when 100% fault coverage is achievéd for

(line 14 of Figure 3.1). In this manner, the relaxed test7/Ses guaranteed to have no more

tests than the initial test s&t.

procedureTest Based Replacement

Inputs: circuitC, test setl, fault modelM
Outputs: relaxed test sef’

01: Fault Simulatg based on fault mode\t
02: F = list of faults detected by

03: 7' =0, F' =10

04:foreacht € T

05: F; =list of faults detected by;

06: if /5, —F' #£0

07: generate test that detects all faults if; — F’
08: if ¢ has more unspecified bits than

09: th =1t

10: else

12: addt; in 7’

13: F'=F +F

14: if I/ = I break

15:return 7'

Figure 3.1: Static Test-based Replacement Method.

45

All static test set relaxation methods rely, implicitly or explicitly (as in the proposed meth-
ods), on removing multiple detections of faults in the given test set.sh@t) denote the
number of specified bits in test The effectiveness of the proposed static method, relies on
the following:

Theorem 3.1.1If a testt; detects a number of faulis;, = {f,,j = 1,2...,n|t; detectsf,},
thenv F/ C F; 3t that detects all faults irF] and such thasp(t,) < sp(t;).

Proof. Let T; denote the set of all tests that detect fgfjlt Then the set of tests that detect
all faults in F; is given byTy, = (1}, f; € F;. Clearly, test;, € Tr,. Then, forF C F,
andTFi/ = (71}, f; € F! it holds thatTy, C Tr. The latter suggests that € T which
implies thatt; cannot have more specified bits thian This occurs becausé, can be any
test inTFi/ then it can also bé,. Moreover, in the case whei@. C Trr, t; can even have
fewer specified bits thaty since a test il — T may have fewer specified bits if,.
Thereforesp(t;) < sp(t;). Since,F; was arbitrarily selected and has no constraints except
that of I/ C F;, then this statement holds for all proper subsets;of O

Although, Theoren8.1 can only guarantee that when replacing a#esith anothert, de-

tecting only a subset of the faults, the number of specified bifsdannot be more than those

in ¢;, we expect that removing faults from will give tests with fewer specified bits. Thus,

the test generation process should be able to find a test for the faui}stivat has fewer
specified bits tham;. Actually, the effectiveness of the proposed method depends greatly
on the ability of the test generation process (line 7 of Figure 3.1) to derive tests with a large
number of unspecified bits. Several existing methods can be used to solve this problem effec-
tively. Both of the structural methods of [48, 49] propose specific ATPG-like routines (using
implications, justifications, and testability measure concepts) to find a large test cube (test
with a large number of unspecified bits) that detects a number of faults. Alternatively, the
function-based routine that we describe in Section 4.5 can derive a large cube by extracting
the shortest path in a BDD-based implementation. Any of these techniques can be used by
the proposed method whose main contribution is not on this specific single test generation
problem but on finding a systematic method to replace an entire test set such that the total
number of unspecified bits is maximized.

46

The proposed algorithm is quite effective, as it can be concluded from the experimental re-

sults, yet is of the same order with other comparable techniques, in terms of time complexity.

We give a brief worst-case time complexity analysis of the algorithm, expressed in necessary
typical operations such as number of fault simulations and number of test generations pre-
formed. The proposed algorithm requires, in the worst c@Sefault simulations, andi7 |

test generations. This is in the same order as the complexity of [48], which requires, in the
worst case3 - |7 | fault simulations and - |7 | test-generations.

Initial Test Setl’ Test Set7”’ (ord. 1) Test Set7”’ (ord. 2) Test Set7”’ (ord. 3)
Fault t1 |ty | T3 | ta | 5 t1 |ty | T3 | ta | t5 to | ta | t1 | T3 | &5 t3 | ta | ta |ty | 5
fi o | o ° | — ° - ° | —
fo ° ° ° °
f3 ° ° ° - o | — ° —
Ja . . . - o | — . _
fs o | o o | — ° - ° —
fs ° o | o ° - | - o | — | — o | — -
fr ° ° ° °
fs o | o o | — ° - ° —
Sp.Bits. | 23|20 29| 22| 19 23117122119| 0 20122,18|21| 0 29119/19|0 |0
Total Bits 113 81 81 67

@ (b) (©) (d)

Table 3.1: Test-based Replacement Example: (a) Initial Test Set (b) Relaxed Test Set with
orderingt; < t, < t3 < t4 < t5, (C) Relaxed Test Set when considering essential faults first,
(d) Relaxed Test Set with ordering < t, <t < t; < t5.

Next we present an illustrative example for the method of Figure 3.1. Assume an initial test
setT = {ti, s, t3,14,t5} and a circuit with 8 faults given iei' = { f1, fo, ..., fs}. Table 3.1(a)

gives the fault simulation results f@r. The rows of the table correspond to the faults in the
fault list F' and the columns correspond to the testginA dot in a table cell indicates that

the fault in the corresponding row is detected by the test in the corresponding column. For
instance, test; detects faultsfy, f3 and fs. The cells in the last row show the number of
specified bits in the corresponding test. In the first iteration of the method, a test is generated
detecting faultsf;, f3 and f; at the same time. This new test, let thatthehas as many
unspecified bits as possible. Faufts f; and f are then dropped from further consideration.
Next, t;, is generated for faultg, and f; only, sincef; has already been covered by tést
Testt!, is guaranteed to have at least as few specified bitg get removing the constraint of
detectingf; suggests the possibility of fewer specified bitg,inin the following iteratiort,

is generated and detects orfly whereas for the fault§; and fs a new test), is generated in

a7

the subsequent iteration. Finally, sinegonly detects already detected by previous tests, it

is no more necessary in the test set. Thus, the complete fault coverage termination condition
(line 14 of Figure 3.1) determines the process which returns the relaxed t&st(gaten in

Table 3.1(b)). According to Theorem 3.1, no tesfihcan have a larger number of specified

bits than its corresponding tests in the initial testBetMoreover, it is expected that tests

t,, t, andt) will have fewer specified bits tham, ¢; andt,, respectively, since each of them
targets fewer faults. In the casetgfwhere no faults are left, the test is removed from the test
set. In this example, the total specified bits reduction in the entire test set is 32 bits, giving a
test set with only 81 specified bits instead of the 113 specified bils of

The observation that targeting essential faults (i.e. faults that are targeted only by one test in
the test set) first, made by the authors of [48], might be beneficial for a number of compaction
techniques as well as the test set relaxation technique of [48]. To the contrary, it gives no
advantage in this test-based replacement method, since targeting essential faults first does
not guarantee that the resulting test will have larger number of specified bits. In Table 3.1(c)
we give the relaxed test set when we consider essential faults first. Since this is a test-based
method, considering essential faults first translates to examining the tests that target essential
faults first. Despite the fact that the initial test §epf this example was randomly chosen

to illustrate the algorithm, observe that no difference in the number of specified Wits in

was recorded. Actually, changing the ordering in which the tests are considered by our
algorithm, can affect the number of specified bits in the resulting test set, yet no clear benefit
was reported among all circuits during experimentation.

The results of this method clearly depend on the processing ordering of the t@sts-or
example, if we repeat the example of Table 3.1(a) using a decreasing test ordering on the
number of faults detected by each fault, ig. < t, < ty < t; < ts5, (Sincets; detects

4 faults,t,, t, andt, detect 3 faults, anés detects 2 tests) we have a differéfitshown in

Table 3.1(d). Here7”’ contains 3 tests and a total of 67 specified bits. In this case more relax-
ation was achieved than applying the method with the different ordering (Table 3.1(b)). Our
implemented tool allows running the method under various ordering heuristics including:

I. increasing ordering on the number of faults detected by each test,
ii. decreasing ordering on the number of faults detected by each test,

iii. considering tests detecting essential faults first,

48

Iv. considering tests detecting essential faults last,

v. existing test ordering in the initial test.

However, our extensive experimentation using all these orderings shows no consistent ad-
vantage for one of the orderings considered. In short, all orderings give larger numbers of
unspecified bits in some circuits and smaller numbers in the other circuits. Based, on that the
only conclusion that can be extracted, is that this test-based replacement method is highly
biased on the test ordering and that less biased methods should be investigated.

3.4 Fault-Based Replacement Method

This section discusses an alternative method for static test set relaxation which proceeds in
a different direction to that of the method described in the previous section. Essentially, the
method proposed in Section 3.3 is greedy, in the sense that the decision on which test should
detect each fault is taken based on the ordering under which the tests are examined. As
shown previously, this makes the test-based replacement method biased on the ordering of
the tests. Here, we describe a more intelligent approach that gives well-defined criteria based
on which the test that should target each fault is chosen. Thus, instead of concentrating on
one test at a time, this method pivots on one fault at a time. For someffdh# algorithm
determines the test € 7 to be the only one detecting the fault such that the number of
bits that can be relaxed in the entire test set is maximized. Put differently, the algorithm
determines the test to explicitly target the detection of the fault and relaxes the bits in the
remaining tests required to detect the fault. We formulate the problem as an optimization
problem were the proposed algorithm tries to identify the appropriate test for each based on
a closed-form equation.

Consider a faulff; detected by one or more testsin Let7; C 7 denote the set of tests in
7T that detect faulyf;. Consider a test, € 7;.

Definition 3.1. The contribution of a faulf; in a testt, denoted by, is the number of
specified bits int;, that can be unspecifieddf no longer detectg;.

49

Thetotal number of specified bits ih that can become unspecified if faifilis only detected
by some test; € 7; (and not by any other test §i7; — ¢;}), is given by:

Gij=> ci, ke{T—t;} (3.1)

Thus,G;; denotes the gain in unspecified bits if fagilis only explicitly targeted during the

test generation of tegt. Of course, coincidental detection ¢f by other tests may occur

but this is done with no extra cost in terms of specified bits. Observe that, based on theorem
Theorem 3.1sp(tx) — cir < sp(tx). Thus, the range of values of, is0 < ¢y < sp(ty),

since by definitior;;, cannot be more thasp(¢,). In turn, the range of the values 6f; is

given by0 < Gy < > sp(te), k€ {Ti —1;}.

In order to determing,,, i.e. the testirny’ = {¢,, ., ..., tx } that should explicitly target fault
fi, it suffices to calculate:

~

Gim = maz{Gy;}, t; €, CT (3.2)

Figure 3.2 shows the proposed algorithm. First, fault simulation is performed to derive the
complete fault listF" as well as the fault list$; for each test; € 7. Then, the algorithm
iterates over each fault € F, to determine the “best” test to detefit This is done by
examining only tests if7” that detectf;, that is7; (lines 06-16). For every teg} € 7, the
contribution of f; in ¢; (c;;) is calculated (line 08). This is a crucial step which invokes a
similar test generation routine to that of the method in Section 3.3 (line 07 of Figure 3.1).
Specifically, to find;; for a fault f; and a test; detecting the faults i;, we generate a test
cubet’ targeting faults inf; — f; and calculate:;; = sp(t;) — sp(t’). This is the number

of specified bits savings if tesf no longer detects faulf,. Oncec;; is calculated for every
testt; € 7;, the total gainG,; in unspecified bits (meaning is detected by, but not by

{7, —t;}) for every test, is easily computed (line 10). Consequently, the maximum gain is
found (line 11) indicating the test, € 7; selected to detedt.

The next step (lines 13-16) convey the dynamic nature of the algorithm. Oncg,test
determined as the most appropriate to defgdt is no longer necessary for tedt$; — ¢,,,}

to detectf;. Therefore, the fault list’; for each of the remaining tests i is updated. In

this manner, faulff; will never be targeted in any subsequent test generation step (line 08).
Observe that if a test’s fault list becomes empty at any point, the test can be fully relaxed
which means it can be dropped since all of the faults it detected are now detected by some

50

Procedure Fault-basedReplacement

Inputs: circuitC, test setZ, fault modelM
Outputs: relaxed test set’

01: Fault Simulatg” based on fault modeW
02: F = list of faults detected by”

03: for eachtestt; € T

04: F; = list of faults detected by;

05: for eachfault f; € F

06: 7, = list of tests detecting;

07: for eachtestt; € 7;

08: useF; to calculate;;

09: for eachtestt; € 7;

10: calculates,;; = > ci, k€ {7, —1t;}

11. éim = maX{Gij}, tj S 7;
12: % testt,,, keeps faultf;, tests{7; — ¢,,} drop f;
13: foreacht; € {7, —t,,}

14. Fj = ,FJ — fi

15: if £, =10

16: T =T —t; %drop testt;

17: 7" =10

18: for eachtestt; € 7

19: generate test that detects all faults if;
20: addt’; to 7"

21:return 7’

Figure 3.2: Static Fault-based Replacement Method.

other test(s). The fault coverage 6fis maintained since every fauff is guaranteed to be
detected by some test with F,,, # 0.

Once all faults are examined, the relaxed test/Sas generated based on the updated fault
list F; for each test; that has remained i (lines 17-20). Each new tesf € 7' is
guaranteed to detect a subset of the faults detected by the corresponding=test since

the size of the updated fault list per test is reduced (in most cases) or, in the worst case,
remains the same.

The worst-case time complexity of this approach in terms of fault simulations and test gen-
erations performed ig | fault simulations plus7 | - |F’| + |7 | test generations. In practice,
however, the factdfT | - | F'| is much smaller since each fayjte F is examined only against

the small number of tests i, C 7 that detect the fault, and not for the entire testBet

51

Moreover, in practice, the initial test sét is small since it is required to be compact to
reduce the test application time.

The following Lemma is used to show the effectiveness of the fault-based replacement
method. Let us first assume that there exists a test generation process that identifies the
test that detects a number of faults with a minimal number of specified bits. We elaborate on
this assumption later in this section.

Lemma 3.1. For a given test sef, the fault-based replacement method (Figure 3.2) iden-
tifies a test € 7 that detects faulf; with the minimum overhead in specified bits, under
some fault ordering irF".

Proof. When|7;| = 1 then testt; € 7; is clearly the one with the minimum overhead in
specified bits for targeting;. When|7;| > 1, the values for thé&,; for fault f; are given by

Gij = > ck, ty € {T; — t;}, Vt; € T; (by Equation 3.1). That is the total cost in specified
bits of testing; with tests in7 (i.e., > c;, t, € 7) minus the cost for testing; with ¢;

(i.e. ¢;;). Recall that by assumption the contribution in specified bits of each fault at a test
(i.e. ¢;), can be computed optimally. This occurs since the test generation process gives the
test with the minimal number of specified bits for a group of faults. Since the decision on
which test explicitly targetg, in 7" is taken by selecting the maximum over thg, then this
number is the total cost in specified bits for testfagvith tests inZ” minus the minimum cost

for testing f; with a test in7 i.e., Gy, = max; {Gy;} = Gim = max;{—ci; + Y cir, i €

T} = Gy = > ek, t € T —minj{c;;}. The total cost in specified bits for testirfgy

with tests in7 is constant and all;; have non-negative integer values; thus, the selected test
gives the minimum overhead in specified bits for testihgith a test in7". By considering
different ordering of the faults may change the values fortheTo prove this, consider two
testsf, and f, that are both tested by a specific tgsti.e.,t, € 7., t, € 7, andf,, f, € F,.

If we first consider faultf, (i.e. iteration for faultf, is before iteration for faulf,) and the
selected test to targét is nott,,, thenF, = F,— f, (step 14 in Figure 3.2). Thus, calculation

of ¢, in the iteration for faultf, (step 8 of Figure 3.2) may give a different value than the
case where the origindl,, was used. That is, if we first consider fait (i.e. iteration for

fault f, is before iteration for faultf,), calculation ofc,, will be done usingF, and not

F,, — f.. Since changing the ordering the faults are considered may change the valyes of
this statement holds only for the ordering considered and does not give a global minimum
for the testing overhead in specified bits for faflt]

52

Table 3.2: Fault-based Replacement Example

Initial Test SetT RelaxedTest Set7’
ti |ty |ty | ta | ts Fault list t | te | t5 | ta | t5
° ° fi o | —
° fa °
° ° f3 - °
° ° f1 ° -
° ° f5 o | —
° ° ° fe - — | e
° fr °
° ° I3 o | —
23120]29|22|19 Spec.Bits 1616|201 22| 0
113 Total Spec. Bits 74
(a) (b)
Iteration for f; Iteration for f, Iteration for f3 Iteration for f,
Faultlist || ¢, | to |ty | ta | t5 | &1 | ta | t3 | ta | s || t1 | to | t3 | ta | t5 || t1 | T2 | t5 | ta | 5
fi 314 o | — o | — o | —
fa 8 ° °
I3 5 3 - °
1 4 5
Is
s
J7
Js
Gyj 4| 3 3 5 5 4
Spec.Bits || 23| 20| 29|22|19(23|16|29|22|19|23|16|29|22|19|18|16|29|22|19
(©)
Iteration for f; Iteration for f Iteration for f; Iteration for f3
Faultlist || ¢4 | to | €3 | ta | t5 | t1 | to |t | ta | 5 | t1 |t | ts | ta | &5 || t1 | o | £5 | ta | t5
fi °o | — °o | — o | — ° | —
fa ° ° ° °
f3 - ° - ° - ° — °
fi . - . - . - . -
fs 4|5 o | — o | — °o | —
fo 5 4 | 3 - — | e _ _ | e
Iz 1
fs 4|14
Gij 5|4 7 819 14| 4
Spec.Bits | 21| 16| 24| 22|14 21|16|22|22|14|16|16|20|22|14|16|16|20| 22|14
(d)

53

Obviously, the assumption on the test generation is not realistic since it implies full explo-
ration of a circuit’s test space, which is known to be an NP-hard problem. Yet, together with
Lemma 3.1 it ensures that if the test generation process is effective in generating tests with a
large number of unspecified bits, the resulting test set will have a large number of unspecified
bits, optimizing the test set relaxation method.

Next we give an illustrative example for the method of Figure 3.2. Consider an initial test
setT = {t1,1s,t3,14,t5} detecting the 8 faults i’ = { f1, fa, ..., fs} shown in Table 3.2(a).

The rows of the table correspond to the faults in the faultAistThe columns of the table
correspond to tests in the test set under considerafign A bullet on a cell denotes that

the fault of that row is detected by the test of the corresponding column, in the initial test
set. The last two rows report the number of specified bits for the test of the corresponding
column and the total number of specified bits in the entire test set, respectively.

Tables Table 3.2(c) and (d) summarize the execution of the proposed algorithm. Each sub-
table corresponds to an iteration of the algorithm, noted at the header. Recall that each
iteration examines one fault and so iteration 1 is fariteration 2 forf, and so on. The

test and fault orientation is as in the Table 3.2(a). An entry between g.tastl a faultf;,

for some iteration, denotes the number of specified bits that can be relaxed if;fauho

longer detected by the test that will replace tgsh the final test set (i.ec;;). For instance,
consider faultf; during the first iteration, which is detected by testsandt,. The entry
betweenf, andt; (¢2) givescy; = 3 (ci2 = 4), meaning that iff; is no longer detected by

t1 (t2) the number of bits that can be relaxed is 3 (4). Consequéftly= 4 andG, = 3,

given in the row labeled;;; in the table. The last row reports the number of specified bits in

a testt;, when all the faults in its fault list for a specific iteration (faultsAy) are explicitly
targeted. An empty entry indicates that the fault is not detected by the corresponding test.
We only show the values @f; for the fault corresponding to the iteration considered.

During the first iteration, enforcing detection ¢f by ¢; and not byt, results in more un-
specified bits than the opposité{; > G15). So the decision is to keefy in F; and discard

it from F,. This is shown in the next subtable (iteration f3) with a dot undert; and a
hyphen undet,. The number of specified bits ta has been reduced by 4 as the effect of not
consideringf; when generating a test for the remaining faultgin Moving to the second
iteration (targeting faults) the gains for the tests that deteGtare computed, in order to
reflect the new situation after removirfg This computation gives 8 bits gain if we exclude

54

fa fromt,. Sincef, is only detected by, no decision needs to be made and the algorithm
moves on to the next iteration fgg. Here, f5 is selected to be detected tbyand not byt
resulting in 5 specified bits reduction for teést In the same manner, after iterations for fault
f4andfs, t3 andt, are selected for faults, and f5, respectively. The process continues until

all faults are examined. The Table 3.2(b) shows the final distribution of the faults between
the tests. Each column determines the targeted fault list for the corresponding test. For each
list a test is generated to replace the one originally present in the given test set (lines 22-23
of Figure 3.2). Tests with empty lists;(in this example) are removed from the test set. The
proposed method gives a test set with 74 specified bits, instead of 113 in the original test
set. Note that, for the proposed fault-based method the ordering under which the tests are
considered is not important for the number of specified bits in the resulting test set. How-
ever, the ordering under which the faults are examined may affect the effectiveness of the
proposed method. This happens since the computatiéh,af based on the list of faults

that are detected by a test (i.&; for testt; € 7). If we change the ordering under which

the faults are examined, the elements of the listsvill be different for the same iteration

of the algorithm. Experimentation shows that the fault ordering does not considerably affect
the results of this fault-based method.

3.5 Post-Processing Compaction Step

The performance of the presented methodologies is biased on the order in which the tests
in 7 (for the test-based method) as well as the faultg’iffor the fault-based method) are
considered. Thus, as in the case of all existing methods that examine the same problem, the
algorithms are not optimal and it is possible to further reduce the number of tests in the re-
laxed test se¥’. We propose a test set compaction algorithm that formulates the problem as
a system of constraint equations, similar to the unate covering problem. Based on informa-
tion obtained by the fault simulation the constraint equations are formed in such a way that
they correspond to all fault considered. Each variable of the Boolean equation represents a
pattern in the test set and the optimal solution will give a single variable becoming true at
each equation. However, this problem is known to be NP-hard and, thus, we use heuristic
algorithm to solve the problem, giving a near-optimal solution.

55

For each fault in the fault lis#’, a constraint Boolean equation representing all tests that
detect the fault is given by:

Cr.= \ 4 (3.3)

t; detects f;
wheref; andt; are boolean variables corresponding to faults and tests, respectively. Satisfy-
ing each of these equations ensures detection of the corresponding fault by at least one test.
In order to preserve the fault coveragelit is necessary to also find a satisfying solution
for:
1= A f (3.4)
fieF
The solution for the system of equations formed by Equation 3.3 and Equation 3.4 results
in a logic value assignment on the variableand f;. All variables f; get a logic one value
(due to Equation 3.4). A test variablggiven a logic zero variable implies, that the test cor-
responding ta; can be safely dropped from the test set. The system can be solved using any
two-level logic minimization procedure such as Quine-McCluskey or Espresso Exact. Our
experimentation showed test set size reduction for uncompacted or moderately compacted
test sets.

3.6 Experimental Results

The proposed methods were implemented in C language and run on a SunBlade 1500 ma-
chine, running Solaris with 4GB of RAM. We experimental with the ISCAS’85 and the full-
scan versions of the ISCAS’89 benchmark circuits. The initial test sets were derived from
ATALANTA, for stuck-at faults. Two types of initial test sets were used; one fully-specified
and optimized in terms of compaction and the other optimized in terms of unspecified bits.
Furthermore, we experimented with the compact test sets provided by the authors of [48].
The fault simulation and test generation steps were implemented using an in-house function-
based tool for single stuck-at faults, based on BDDs.

Table 3.3 lists the results obtained by the proposed methodologies, for a number of circuits,
for each of the two initial test sets obtained by ATALANTA. We show results for the larger
ISCAS’89 as well as all the ISCAS’85 benchmark circuits. We do not report results for
circuit 6288, since it is known that its representation with BDDs is not feasible. Partitioned

56

Table 3.3: Results of the proposed methods for two different initial test sets.

Initial Test Set Test-based Replacement Fault-based Replacement
Circuit [Pis [7| [sp.Bits | K(7) [|7'| [Sp.Bits | K(7") | Red. (%) | CPU(secs)| |T'| | Sp.Bits [K(7") | Red.(%) | CPU(secs
Initial Test Sets Optimized for Test Set Size

€c2670| 233 | 113| 32853 1 60 3259 | 0.099 90.1 63.1 59 3384 | 0.103 89.7 62.1
c7552| 207 | 238 | 49266 1 171 | 9444 | 0.192 80.8 6.1 75 6645 | 0.135 86.5 5.4
s838.1| 66 | 149| 9834 1 141 | 3406 | 0.346 65.4 0.3 140| 3189 | 0.324 67.6 0.2

s1196, 32 | 144| 4608 1 125| 1701 | 0.369 63.1 0.8 123| 1657 | 0.360 64.0 0.8

s1238| 32 | 158| 5056 1 138 | 1845 | 0.365 63.5 0.9 124| 1697 | 0.336 66.4 0.8

s1423| 91 71 6461 1 24 1215 | 0.188 81.2 0.3 24 1174 | 0.182 81.8 0.2
$9234.1) 247 | 365| 90155 1 122 8512 | 0.094 90.6 34 123| 8418 | 0.093 90.7 31
s13207.1 700 || 472 | 330400 1 275| 11957 | 0.036 96.4 12.9 265| 11453 | 0.035 96.5 12.4
s15850.1] 611 || 441 | 269451| 1 99 | 13003 | 0.048 95.2 7.6 100| 13185 | 0.049 95.1 7.1
s38584.1 1464 || 637 | 932568 1 115| 33215 | 0.036 96.4 231 114 | 33401 | 0.036 96.4 23.2

Average Reduction: 82.3 83.5
Initial Test Sets Optimized for Unspecifed bits

c2670| 233 | 141| 14620 | 0.45 | 81 3489 | 0.106 76.1 63.6 58 3413 | 0.104 76.7 63.8

c7552| 207 | 258 | 31866 | 0.65 || 111| 8054 | 0.163 4.7 6.2 110 7737 | 0.157 75.7 5.9
s838.1| 66 | 184| 6569 0.67 | 140 3312 | 0.337 49.6 0.3 144 | 3312 | 0.337 49.6 0.3

s1196, 32 | 155| 3546 0.77 | 126 1708 | 0.371 51.8 1.0 124| 1677 | 0.364 52.7 0.9

s1238| 32 | 164| 3724 0.74 | 133| 1801 | 0.356 51.6 0.9 134 1779 | 0.352 52.2 0.7

s1423| 91 83 5955 092 | 41 1449 | 0.224 75.7 6.9 44 1448 | 0.224 75.7 6.1
$9234.1) 247 | 495| 65931 | 0.73 || 124| 8568 | 0.095 87.0 3.7 126| 8601 | 0.095 87.0 3.2
s13207.1 700 || 692 | 256333 | 0.78 | 274 | 11956 | 0.036 95.3 12.9 278 | 12125 | 0.037 95.3 11.2
s15850.1) 611 || 519| 163698 | 0.61 || 102 | 13241 | 0.049 91.9 7.9 103 | 13541 | 0.050 91.7 7.5
$38584.1] 1464 || 840 | 868090| 0.93 || 114 | 33860 | 0.036 96.1 26.1 114 | 34012 | 0.036 96.1 252

Average Reduction: 75.0 75.3

BDD techniques [50] can be used in order to represent this circuit and other larger and/or
more complex circuits. Columns 1-2 list the circuit name and the number of Primary Inputs,
respectively. Columns 3-5 give information regarding the initial test set. Column 3 lists
the number of tests in the initial test set; Column 4 lists the total number of specified bits,
and Column 5 gived{(7") which is the ratio of the specified bits over the total number of
bits in the test set. For the fully specified test skt&7) = 1. Columns 6-8 and 10-12
show the same information for the relaxed testSebbtained after applying the methods of
Section 3.3 and Section 3.4, respectively. Columns 9 and 13 give the reduction (%) achieved
by the two methods, calculated byKL(7")/K (7). In all results the postprocessing step
described in Section 3.5 has been applied on top of the two methods.

The average reduction in specified bits obtained by the test-based replacement method is 82.3
% for the initial compact test sets and 75 % for the initial partially-specified test sets. For
the fault-based replacement this reduction is 83.5 % and 75.3 %, respectively. Obviously,
the fault-based method gives better results for most of the circuits. However, the reduction
rates are very similar between the two methods, especially when the initial test sets have

57

unspecifiedbits. Moreover, the reduction is higher when the initial test set to be relaxed

is fully specified. However, the proposed methods also give significant reduction for the
partially specified test sets. Of course, the final value&¢f”) (Columns 8 and 13) are

very similar for the two different types of test sets, indicating a saturating behavior of the
proposed methods for the given test sets. Another interesting observation is that the size of
the relaxed test séft’ is also significantly reduced (compacted), irrespective of the initial test
set, as it can be concluded by comparing Column 3 with Columns 6 and 11.

Table 3.4: Comparison with existing work.

Initial Test Set [48] Proposed
Circuit | Pls || Tests| Sye | SP. BitS || Siaz | Sawg/Pl (%) | Sp. Bits | Red. (%) || Spae | Savg/Pl (%) | Sp. Bits | Red. (%)
c880| 60 21 60 1260 60 65.6 827 34.4 50 62.7 790 37.3
c1355| 41 84 41 3444 41 100.0 3444 0.0 41 82.3 2836 17.7
c1908| 33 106 | 33 3498 33 83.0 2903 17.0 32 53.0 1853 47.0
c2670| 233 | 45 | 233 | 10485 || 233 29.3 3072 70.7 183 26.4 2767 73.6
c3540| 50 93 50 4650 50 46.7 2172 53.3 41 42.6 1982 57.4
c5315| 178 || 46 | 178 | 8188 178 38.6 3161 61.4 132 36.0 2948 64.0
c7552| 207 || 75 | 207 | 15525 || 207 45.5 7064 54.5 163 42.6 6613 57.4
s1238| 32 125 | 32 4000 32 43.5 1740 56.5 23 42.5 1698 57.6
s1423| 91 24 91 2184 91 58.0 1267 42.0 73 53.5 1168 46.5
s1494| 14 100 14 1400 14 72.6 1016 27.4 14 72.0 1008 28.0
s9234| 247 || 111 | 247 | 27417 || 247 31.0 8499 69.0 218 30.2 8293 69.8
s13207| 700 || 235 | 700 | 164500 | 700 8.0 13160 92.0 672 7.3 12031 92.7
s15850 611 | 97 | 611 | 59267 | 611 22.7 13454 77.3 408 20.6 12186 79.4
s$38417| 1664| 84 | 1664 | 139776 | 1664 25.2 35224 74.8 1145 22.9 32016 77.1
$38584| 1464 | 114 | 1464 | 166896 | 1464 18.9 31543 81.1 1321 18.0 29984 82.0

Table 3.4 provides a comparison between the proposed methodologies and that of [48], which
reports the highest reduction among all existing techniques that examined the considered
problem. For a fair comparison, we experimented with the same initial test sets of [48],
which are fully specified and very compactColumn 3 reports the size of the initial test set

and Column 5 gives the number of specified bits in the test set. The results of [48] are given
in Columns 6-9 and those of the proposed methodologies in Columns 10-13 (the best results
among the two methods are considered). Based on the reduction percentage for each of the
methods (Columns 9 and 13) we note that the proposed methods always outperform that of
[48]. In some cases the increase in our reduction is marginal; however, in some other cases
this increase is considerable (such as for circuits C1355 and C1908). For both methods, the
size of the relaxed test s@t' equals that of the initial test s&t. This occurs because the

initial test sets are very compact and all their tests detect at least one essential fault. In these

1We would like to thank the authors of [48] for kindly providing us their input test patterns

58

casesthe post-processing step of Section 3.5 gives no improvement. Columns 8 and 12 show
the average number of specified bits among tests as a percentage of the number of primary
inputs, i.e. the portion of unspecified bits at each test over the number of primary inputs.
Another useful observation is that the maximum number of specified bits on a test, denoted
by S... (Columns 4,6,10), is significantly reduced by the proposed method, in many cases.
This value is very important in some applications, such as deterministic LFSR-based BIST,
because it determines the size of the LFSR hardware. Chapter 5 elaborates further on this
issue.

70% ——(7552 -H-3832
SH=51196 —+s1423
60% - c1908
2
= 50% |
Q
)
2 40%
W
2
8
< 30%
o
(]
e \
= 20%
()
Q
)
2 10% - \\
0% 17 ; \e
de do do do do de do do do do
& N & el » < S " & N
N W o w o § N &

specified bits per test (% of PIs)

Figure 3.3: Specified bits distribution among generated testBatlle 3.4

The values reported in the Columns 8 and 12 of Table 3.4 show the average number of speci-
fied bits (5,,,) as a percentage on the maximum size of a test pattern. Since our experimenta-
tion is done using full-scan versions the maximum size of a pattern is identical to the number
of primary inputs of the circuit examined. This number, together withtthg value, give an
indication on the distribution of the specified bits. Of course, these two numbers alone may
result in misleading conclusions regarding the specified bits distribution among test patterns.
Yet, as it can be concluded from our experimentation, the test sets resulting from both the
proposed static methods tend to have a lot of patterns whose numbers of unspecified bits are

59

closeto the value ofS,,,. Figure 3.3 shows the distribution of specified bits, in the test pat-
terns, for 5 indicative circuits. The horizontal axis shows the percentage of specified bits per
test, while the vertical axis shows the distribution of tests in the test set based on the number
of specified bits per test. Observe that in all cases the number of specified bits in the majority
of tests is close to the value 6f,,. This kind of distribution can benefit certain applications

like test pattern concatenation used in the test set embedding scheme of [44]. We investigate
this application in Chapter 5. Analogous specified bits distribution is recorded for all the
circuits examined.

3.7 Conclusions

Two systematic methodologies for increasing the unspecified bits in a static test set have been
presented. The first method is test oriented. It iterates among tests, under a given ordering,
removing fault detections that have been covered by an already examined test. Essentially,
this is a straight forward, easy to implement method that gives high specified bits reduction
ratio. The second method proceeds on a fault oriented rationale. It iterates among faults in
order to identify the test in the test set, that gives the minimum cost in specified bits, when
detecting the fault examined. The test selection for each fault is done based on a gain factor
which is dynamically calculated, depending on the faults that remain undetected at each
iteration. Finally, we propose a post-processing compaction technique that reduces the test
size of the relaxed test set. This step can be applied on top of both the techniques proposed
here, and gives small reduction in the number of tests in the resulting tests when the given
test set is not highly compacted.

The reported experimental results demonstrate the effectiveness of the proposed methods in
achieving high specified bit reduction rates, for various types of test sets under the stuck-
at fault model (additional, linear fault models, such as the one discussed in Chapter 2 also
apply). Moreover, they give a smooth distribution of specified bits among the tests in the
test set, as well as small test set sizes. While the fault-based method gives slightly better
results than the test-based method, both methods outperform all the previously proposed
relaxation techniques. Nevertheless, since these two techniques are based on a given test set,
the obtained reduction of specified bits is limited by the initial test set. Thus, at this point,

60

it would be interesting to study if better results can be obtained when there is no constraint
on an initial test set. Thus, the following chapter, presents dynamic techniques that generate
compact test sets with many unspecified bits.

61

CHAPTER 4

DYNAMIC TEST GENERATION WITH LARGE

NUMBER OFDON’'T CARE BITS

4.1 Introduction

While test set relaxation is highly desired when we want to maintain some properties of a
test set obtained by a certain test generation technique, starting from an initial test set may
limit the unspecified to specified bits ratio that can be achieved. This chapter investigates
test generation with many unspecified bits. Our motivation is analogous to compact test set
generation, yet in this context we impose extra constraint to keep the number of specified bits
in the test set as small as possible. Thus, this additional constraint makes the problem essen-
tially different from the well studied problem of test set compaction. Test set compaction is a
traditional problem in the VLSI testing area. Its goal is, mainly, to reduce the test application
time by reducing the number of tests in a test set. A number of other parameters also benefit
from small test sets, such as area requirements in test set embedding as well as the usage of
ATE resources. Various algorithms for compact test set generation have been proposed in
the literature, for various applications [51, 47, 52].

At the same time, test sets with many unspecified bits (inputs with don’t care values) have
become desirable for a number of applications. A large number of unspecified bits in the
test set gives the flexibility to fix values appropriately for low power dissipation during test
application [11, 53, 42]. Also, don’t care bits are typically beneficial in increasing the encod-
ing efficiency of many deterministic test set embedding schemes, such as [46, 44, 45]. For

63

example, in LFSR-based deterministic ATPG ([44, 45]), itis desirable to keep the number of
specified bits per pattern bounded to reduce the LFSR overhead, in addition to minimizing
the total number of bits stored on the chip. Having many unspecified bits can also be ad-
vantageous when enriching a test set with some additional desired property, likel¢tect
property (also see Chapter 7) or detecting additional fault types (also see Chapter 2).

Existing methods for test set compaction are categorized as static or dynamic. Static tech-
niques [51, 47] are applied on top of the ATPG process, to compact the given test set while
maintaining the fault coverage. Dynamic compaction [54, 55] involves test replacement
through test generation, to explicitly consider test reduction during the test generation pro-
cedure. Existing methods for identifying don't care bits in a test set (compact or not) are
mainly static, although they use some ATPG concepts such as implications and justifications
[48] and testability measures [49], in order to modify the given test set. The two static meth-
ods proposed in Chapter 3 outperform existing methods, mainly because they do not rely
on the structure of the circuit and, thus, can take decisions in a less localized manner. The
existing dynamic methods for generating test sets with a large number of don’t care bits are
usually application oriented. For instance, the work of [44] invokes a test generation process
which gives test sets with large numbers of unspecified bits, prior to the application of their
proposed test set embedding technique. However, this process is tuned toward the specific
application of deterministic test set embedding for LFSR-reseeding based BIST and, there-
fore, may result in a larger number of tests while trying to minimize the LFSR size. ATPG
tools that allow for unspecified inputs can also be used; however, their resulting test sets
are usually too large since compaction methods using reverse-order fault simulation [56] or
double detection [57] do not apply to test sets with unspecified bits.

This chapter presents two methodologies for generating small test sets containing a small
number of specified bits, in a dynamic manner. Thus, test generation and compaction are
performed in a unified single phase, which is optimized with respect to three measures:

(i) small number of specified bits per test,
(i) small number of tests in the test set, and
(i) small number of total specified bits in the test set.

The first two measures come from the motivation constraints discussed in the previous para-

64

graph,while the latter is a natural outcome of the first two, essentially defining the overall
goal of the dynamic methods proposed here. Whereas static methods attempt to relax the
specified bits in a given test set to don’t care values, the proposed techniques proceed toward
an opposite rationale, trying to minimize the number of specified bits during test generation.
The idea behind both methods is to identify a large number of compatible faults (faults that
can be mutually tested by a single test) at a time. This is a concept that has been tradition-
ally used in compaction methods (see [47], among others). Here we consider a constrained
version of compatible faults, whetevo (or more) faults are considered compatible iff they

can be mutually detected by a test with a small number of specifiedTthiesproposed ap-
proaches employ ATPG methods to identify groups of such compatible faults. Faults are
placed in the same compatibility group (and, thus, will be detected by a single test), only
if there exists a test whose number of specified bits does not exceed a user defined thresh-
old and detects all faults of the group. The considered threshold is bounded and explored
systematically. This problem is modeled as an undirected graph, which weocaliraint
fault-compatibility graphand use in both methods.

The first method is essentially a straight forward match-and-merge algorithm. The method
is iterative on the graph’s vertices and proceeds in two phases. In the first phase the algo-
rithm identifies compatible faults, corresponding to graph vertices, considering the entire
fault compatibility graph. A local optimization selection criterion is used to identify pairs of
vertices of minimal cost in terms of specified bits. In the second phase the vartices of each
compatibility pair are merged into a single vertex, and the constrained compatibility graph
is reconstructed to reflect the new relationships between faults. The second method is essen-
tially a hierarchical refinement of the previous method. At each iteration it considers only
a small part of the graph (i.e. a subgraph) to identify the best matching among compatible
faults. The size of the subgraph can be explored in order to determine the value that gives
the best results in terms of specified bits. Moreover, this exploration can help handle large
circuits and, thus, give extra importance to the hierarchical nature of the second method.

Both the processes of identifying fault compatibility and of merging vertices, corresponding
to faults, involve test generation. Since test sets with a large number of unspecified bits
are desired, the test generation routine must have the ability of generating tests with many
don't cares. Ideally thes test that has the fewer specified bits among all tests that detect a
fault or a group of faults is desired. The two approaches we propose here, can be combined
with any structural or function-based test generation procedure that gives test sets with many

65

don't care bits. However, this chapter includes a function-based framework based on Binary
Decision Diagrams (BDDs) [34] which is used by the proposed methods, as well as with the
methods of Chapter 3.

As in Chapter 3 we experimented with the popular stuck-at fault model, yet any other fault
model with a linear number of faults can be considered. Both of the proposed dynamic
methods give small number of specified bits per generated test set, as it can be observed from
the experimental results. Moreover, the results show higher specified bit reduction ratios than
any static test relaxation technique. At the same time, they give high fault coverage while
keeping the test set size small.

In the remainder of this chapter, we first give the necessary notation and preliminaries (Sec-
tion 4.2). Next, we describe the match-and-merge dynamic algorithm (Section 4.3), while
in Section 4.4 we describe the hierarchical merging dynamic algorithm. Section 4.5 pro-
vides necessary implementation details for the ATPG process, including a function-based
BDD framework, which we have developed for the purpose of this dissertation. Finally
Section 4.6 presents the experimental results and relevant discussion, whereas Section 4.7
concludes the chapter.

4.2 The Constrained Fault Compatibility Graph

This section defines the constrained fault compatibility graph that is used by both of the
algorithms we propose in this chapter.

Let sp(t) denote the number of specified bits in some te§iven a set of test%, S, =
mazx{sp(t)|t € T}, i.e. S is the maximum number of specified bits in a tesZofAlso,
let 7; denote the set of all possible tests that detect some fault

Consider a fault list = {fi, fo, ..., fn} With corresponding sets of tes¥s, 75, ..., 7,,. A
weighted undirected gragh(V, E), whereV is the set of vertices anfl is the set of edges,

is defined as théault compatibility graph In this graph, every vertex; € V initially
corresponds to a faulf; € F. Thus,|V| = |F|. An edgee;; = (v;,v;) € E exists if and
only if the two corresponding fault§ and f; can both be detected by at least one test. In

66

generalcompatibility can be expanded to more than two faults. For example, consider faults,
f1, f and f5. These faults are compatible iff N 7, N 73 # (. If the latter condition holds,

then it can be concluded that there is at least one test that detects all three faults. Thus, every
vertex may correspond to a group for faults, instead of a single fault, in the case, for example,
that two vertices are merged into one. The weight at some veytexi” denoted byw (v;),

is the smallest number of specified bits in some tdbat detects faulf; corresponding to
vertexv;, i.e.,w (v;) = min{sp(t)|t € 7;}. The weight of a vertex gives the minimum cost,

in terms of number of specified bits, to detect the corresponding fault or group of faults. The
weight at some edge; € E, denoted by (e;;), is the smallest number of specified bits

in some test that detects both faults (group of faultg),and f;, associated witle;;, i.e.,

W (ei;) = min{sp(t)|t € 7; N 7;}. In the case of an edge, the weight gives the minimum
number of specified bits required to detect the two associated faults (group of faults) by a
single test.

Now, consider two sets of tests and F};, with corresponding sets of teslsand7Z;. Each
test in7Z; (7;) detects all faults irf; (F}). K-compatibility between the sets of faults and
F; is defined as follows.

Definition 4.1. Two sets of faultsF; and F; are K-compatible if and only if all of the fol-
lowing hold:

I. There exists at least one test that detects all faults BndF} , i.e. 7, N 7; # 0.

ii. Atleast one test can be found ir#; N 7, that contains no more th&a specified bits,
e.3te T,NT;:sp(t) < K.

Theconstrained fault compatibility grapis a subgraph of a fault compatibility graph where

all vertices corresponding to set of faults that are Ketompatible have been removed.
Stated otherwise, the constrained fault compatibility graph has edges only between sets of
faults that arelC-compatible, i.e. can be both tested by at least one test that has no more
thankC specified bits. Like compatibilityC-compatibility can be expanded to more than two
sets of faults. For example, consider the sets of faditsF, and 3. These set of faults are
IC-compatible iff7; N 7, N 73 # O and3 ¢t € 7; N7, N 73 such thatsp(t) < K. If the two
conditions hold, then it can be concluded that there is at least one test that detects all faults
in all three sets and does so with no more tiaspecified bits. Of coursé} (e;;) < K if

67

F; and F; are C-compatibleand, thus, in the constrained fault compatibility graph no edge
weight is higher thaiiC. The same holds for the vertex weights, onlyCifis greater than or
equal toS,,,4z-

4.3 Match-And-Merge Algorithm

The first dynamic method is essentially a two phase match-and-merge procedure, employing
the constrained compatibility graph described in Section 4.2. The ideal solution for this
problem need to have complete information of (i.e. have all the tests targeting) both each
fault considered and all the possible combinations between faults. If this information was
available then the optimal solution can be obtained by finding a set of fault combinations
that gives the overall minimum number of specified bits and, at the same time, cover all the
considered faults. The latter can be reduced to the infarmetisovering problemvhich

is known to be an NP-complete problem [58], i.e., has no polynomial time solution. This
is in addition to the test generation problem that is necessary for obtaining the complete
information about the tests described earlier. Specifically, it has been shown that the general
problem of test generation for digital circuits is NP-hard [59]. Hence, this section, as well
as the next one, propose heuristic algorithms for obtaining test sets with a large number of
unspecified bits using the constrained fault compatibility graph described in Section 4.2.

First, pairs of faults are identified and merged (via vertex merging) based on a minimum-
weight-neighbor criterion. The algorithm takes a decision on which neighbor to choose
based on local information, yet the minimization goal is global. The algorithm terminates
when no edge is left on the graph and the final vertices correspond to tests that detect all
the modeled faults considered. Initially each vertexn the graph corresponds to a fault

fi in the fault list, under the fault model considered. The edges between vertices are placed
according to theC constraint which is upper bounded by a user defined threshpld he

value of paramete$), is important to the performance of the method since it directly impacts
the maximum number of specified bits allowed per generated test. The siecain be
experimentally determined in a systematic manner.

In the first phase, the algorithm identifies pairs of compatible faults that give the minimum

68

testingcost in terms of specified bits. We formulate this problem as a modified min-cost max-
matching; instead of focusing on minimizing the overall weight (sum of all node weights in
the graph), as in the traditional min-cost max-matching problem, we concentrate on max
matching with individual node weights not greater thifgn This procedure is applied iter-
atively, with pair-wise matching per iteration. The solution to this problem will give us a
maximal merging of the faults (max—matching) with a minimal number of specified bits in
each generated test.

To solve this problem, we use a Path Growing Algorithm for the weighted matching problem,
similar to the one proposed in [60]. The algorithm is linear to the size of the input graph
and guarantees a performance ratio of 1/2. More sophisticated algorithms could always be
used, at the expense of extra complexity in both implementation and running cost. Initially,
an arbitrary vertex, is selected and a growing paf, is constructed by following the
minimum weight edge...;,. All other edges adjacent to the current vertex are dropped from
consideration. The other endpoint of the selected edgg)becomes the current vertex, and

the path is grown in the same manner, until the path can grow no further. Then, an unvisited
vertexwv, is selected to be the starting vertex of a new path. The algorithm terminates when
no more edges exist. In each iteration, two edge lists are maintained. The graph edges are
inserted in the appropriate list so that no adjacent edges are in the same list. The list with the
minimum size is a valid matching for the graph examined.

Once the weighted matching algorithm terminates, the match-and-merge procedure enters its
second phase, i.e. the one performing the vertex merging. For eacl,addbke matching
obtained, the algorithm merges its adjacent vertigeand v, to form a new vertex .
Merging, essentially, refers to the union of the corresponding set of faqltand ;) and,
consequently, to the intersection of the corresponding set of t&sen@i7;). In this way

v(1,2) corresponds to a new set of faults containing all faults in BgtandF; (i.e., Fi U F, =

F1 5). Each one of the faults iR} » can be detected by any test that belongs to Got#md7s,
(i.e.,in7y N7y = 71 5). In the next iteration of the algorithm a new constraint compatibility
graph is constructed using the merged vertices. The weights on the vertices are computed
again using test generation for the corresponding set of faults, in order to determine the set

of tests7; ;, for each vertex, ;.

Lemma 4.1. The weight on a vertex; ; emerged after the merging of two vertieggndv,,
denoted byw(v; ;) always falls within the following bounds:

69

max(w (v;) ,w (v5)) < w(viy) < w(v;) +w(vy)

Proof. Both bounds are determined by the intersection operation performed in the set of tests
corresponding te; andv; in order to obtain the merged vertey;. Recall that, the weight on

a vertex is essentially the minimum number of specified bits per test among all tests that de-
tect the corresponding faults. Sin€g; consists only of tests that are in bafthand7;, then

the test with the minimum number of specified bitjn is the test with the minimum num-

ber of specified bits either i or in 7;. From these two tests only the one with the maximum
number of specified bits can be in bathandZ;. Thus,max(w (v;),w (v;)) < w (v;;).
Furthermore, the test with the minimum number of specified bitg; incannot be more

than the sum of the number of specified bits in the minimum tesf @indZ;. This hap-

pens because a test having specified bits in the same positions as the minimuntjest in
and the minimum test iff; together, is an element of bof#) andZ; and, thus, an element

of 7; ;. Such test always exists since s#isand F; are compatible and, so it holds that
w(vi;) < w(v;)+w(v)). O

This match-and-merge algorithm iterates until all vertices in the constrained compatibility
graph are fully disjoint, indicating that no further matching/merging can be done for the
given value ofS},.

An example of the iterative match-and-merge procedure is shown in Figure 4.1. Figure 4.1(b)
shows the initial weighted constraint compatibility graph corresponding to the fault list in
Figure 4.1(a). For simplicity, the graph vertices are denoted by their corresponding sets of
faults. Let us se$),, = 32, so that we consider a 32-compatibility constraint in the graph. The
procedure starts from the randomly selected vefteand selects the edgéy, F7) which is
placed in the first edge list, let that be denotedihy={(F>,F1)}. All other edges adjacent

to I, are dropped from further consideration. In the next step the eldgery) is selected

and inserted in the second list, i.&, ={(F»,F3)}. The path cannot grow any more so a
new vertex is selected; let that Ibg, which is matched with¥, and (F}, F) is placed inL;.

At this point the matching phase of the algorithm ends. The maximum matching is given
in L, containing the edged, F3) and (3, Fs) which are merged and become the graph’s
vertices in the next iteration (second phase). All vertices not considered in the matching
are also included in the new graph. The starting graph in the second iteration is shown in
Figure 4.1(d) and the corresponding fault list in Figure 4.1(c). Note, that the test generation

70

(b)

6 10 6
Fault List F12 @
F12=F1UF2
Fa=F3
Fae6=F4 U Fsg 18
Fs5=Fs5 32 @

Y@

T T T T T

oo OOk~ WON -
o o .
N N—

(d)

Figure 4.1: An iteration of the match-and-merge algorithm

procedure was used in order to calculate the new weight on the graph’s edges. The weights
on the graph’s vertices are equal to the weight of the corresponding edges, before the merging
phase. The second iteration is the final one and matches V@rtewith F; and vertexF q

with F5. Thus, tests are generated for the sets of falilts;=F1 , U Fs and Fy 5 6 =F, ¢UF5

with as few specified bits as possible.

71

4.4 Hierarchical Fault Compatibility Identification Al-
gorithm

The second method that we propose in this chapter is essentially an improvement over the
algorithm of Section 4.3. It generates the desired test set by appropriate manipulations and
modifications on a constraint compatibility graph that corresponds to a given targeted fault
list. Essentially, the matching phase in this second dynamic method is totally different. The
decision is taken on a more localized rationale, considering only a small part of the graph
at each iteration. This makes the method more efficient and, at the same time, applicable to
large circuits for which the first dynamic method blows up.

The flowchart of the algorithm of the method is given in Figure 4.2. The inputs are the
circuit-under-test’, an ordered fault lis¥' and a value for constrairif. The ordering of
the faults inF’ can be significant to the overall performance of the method. Section 4.6
elaborates further on this issue, presenting and evaluating various ordering methods.

The algorithm begins by constructing the corresponding test sets per f&ulaimd the con-
strained fault compatibility grapt¥, as given in Section 4.2. Then, it enters a sequence of
iterations, where at each iteration a set of vertices,ifet that be denoted hy, is examined

for minimum-costC-compatibility. At the end of each iteration, the pairskdicompatible
vertices are merged into one and the vertex and edge weightsia recomputed, based on

the new vertices id7. The algorithm is hierarchical in the sense that it does not examine all
the vertices inG for min-costC-compatibility at once. Instead, it selects a small number of
vertices (faults) and attempts to find the best way to pairwise merge (detect) them with some
other vertex inGG, such that the overall cost on the number of specified bits is minimized.
Merging of two vertices corresponds to finding the set of tests that detect all faults repre-
sented by the two vertices. As explained in Section X-Zzompatible vertices can always

be merged. Next we discuss min-cdStcompatibility. Consider a vertex, € v C V.
Vertexv; is KC-compatible with all vertices id7 that are connected to via an edge. The
minimum cost incurred to merge vertexwith one of itsXC-compatible neighbors, referred

to as min-cosiC-compatibility, is given by:

72

Hl]lﬂ{W(@Z]) + Z w<Uk)}

eikEEk#£]

The idea behind min-cog€-compatibility is that fault (or faults) corresponding to some
vertexv; is selected to be detected with the fault(s) of some vertesy a single test such
that the number of specified bits in this teBt (e;;)) plus the number of specified bits in the
remaining/C-compatible vertices af; is minimized.

Begin «—— Inputs: Circuit C, Constraint K,
Ordered Fault List L, Size of v.

Find Test Set Tfi for each fault in L

Construct initial weighted Graph G. “
(section 2)

}

Select first |v| faults from L. ‘

< } v=m + next |v| - |/m| faults in L
A

> Vul. ShY

Y

m = all merged nodes in v with
Y at least one edge.

ujémin-cost K-compatibility for v,

}

Merge U, U, Mark(u), Mark(uj). YES

Reconstruct G.
Recompute weights.

Figure 4.2: Flowchart of proposed dynamic methodology.

After the min-costC-compatibility is computed for all vertices i, GG is reconstructed to
reflect the new merged vertices as well as the new vertex and edge weights. In the next
iteration the set includes the vertices merged in the previous iteration which have at least
one neighbor. For every such vertex with no neighbors, a new vertex that corresponds to
the next fault inF" is added tar. Thus|v| is kept constant among iterations. The algorithm
terminates when there are no more edges in the@evhich indicates ndC-compatibility

73

and,thus, no test that can detect all faults represented by two verticésantl have at most
KC specified bits.

Figure 4.3: Hierarchical fault merging example.

Figure 4.3 gives an illustrative example. Consider an ordered fault'list{a < b < ¢ <
d<e< f<g<h}, K=12and|v| = 2. Figure 4.3a shows the initial gragh (first
iteration) with some assumed vertex and edge weights. Here each vertex corresponds to a
unique fault inf" and no edge or vertex weight is greater tkanDuring the first iteration

v = {a, b}. Vertexa is K-compatible with verticesande. The min-costC-compatibility for

ais 11, thatis 6 for the edge, e) plus 5 for the cost of vertex Thus, vertex is selected to

be merged with vertex which implies that faults ande can be tested by a single test with

at most 6 specified bits. The other choice here would have been merguitd ¢ which,
however, gives a higher cost of 14. In a similar manner, vertesxselected to be merged

with vertexc with a cost of 11. Next, grapty is reconstructed to reflect the new merged
vertices and corresponding weights, as shown in Figure 4.3b. Observe that only vertex and

74

edgeweights involving the merged vertices need to be recomputed. In the next iteration,
only the merged vertek remains inv, since it is still connected. The unconnected vertex
ae implies that no moréC-compatible vertices exists for this vertex, thus will contribute with

6 specified bits in the final test set. Vertéis the next in the order if’ (¢ is part of a merged
vertex, already inv), so it is added te. Verticesbc and f are merged since no other option

is left for the two vertices, during the second iteration. During this iteration verdieesl g

are merged together (cost=13 over 14 for mergingth £) as illustrated in Figure 4.3c. The
previously merged vertebef is removed fromv andh is added. The algorithm terminates
after the fourth iteration with three disconnected vertiees,bcf and dgh (Figure 4.3d).
Thus, the resulting test set will contain three tests with a total number of 25 specified bits.
Observe that if we want to explicitly detect each fault with a dedicated test, the total cost in
specified bits is 38, as it can be concluded by adding all the vertex weights in Figure 4.3(a).

In order to demonstrate the effectiveness of the proposed dynamic method and give some
theoretical bounds on the execution time of the algorithm, we make the following statements.

Theorem 4.1. If two vertices,v, and v, of the fault compatibility graph corresponds to
faults (or group of faults) that aréC-compatible, themax{w(v,), w(v,)} < W(ey,) <
min{IC, w(v,) +w(vy)}.

Proof. Let us first denote by the test inT; that has the minimum number of specified

bits among all tests ifi;. From definitiomu(v,) = min{sp(t) | t € T,} = sp(t™") and

w(v,) = min{sp(t) [t € T,} = sp(t;*"), whereT, andT, are the sets of tests detecting

the faults (or group of faults) corresponding to verticesandv,, respectively. Since, the
weight on an edge of the fault compatibility graph corresponds to the specified bits of a
new test that detects all faults that corresponds to both the merged vertices, this test must
come from the intersection of the corresponding sets of tests. In the case considered here,
Wesy) = min{sp(t) | t € T, NT,}. Clearly, this new test cannot have less specified
bits than either™" or t;’”’”. More precisely, it cannot have fewer specified bits than the
maximum of these two tests since, since only the maximutfy'éfandt;"" can be common

in 7, andT,, sincet;" and¢;"" are both minimum, in terms of specified bits, for each set.
Thus, max{w(v,), w(v,)} < Wi(ey,). In order to prove the upper bound of this theorem,

we consider the case where the two minimum tests#(['€.and¢ ") have no common bits

that have a specified logic value. In this case the new test consists of all the specified bits
of t™" and all the specified bits GL’”'". Stated differently, since this new test is minimum

75

in the intersection off;, and T, it cannot have more thasp(t7**") + sp(t;"") since this

test exist in the intersection (no conflicting bits) and combining the bits in Hgthand

t;’”” gives a test that detects all faults previously detected by each of the two tests. Thus,
W(es) < w(v,) +w(vy,). Furthermore, by hypothesis the two tests dreompatible, and

so WV (e.,) cannot be greater thad@. Thus, only ifKC is greater thamp(t7**) + sp(t;"") the
proven upper bound holds. This implies the{e,,) < min{K, w(v,) + w(v,)}. O

Lemma 4.2. The number of iterationg that the algorithm can perform is bounded by:
0 < I < |F|—1, where|F| is the number of faults considered.

Proof. The lower boundindicates that it is possible not to enter any iteration, in the case
where no two faults i’ can be detected by a single test. Tupper bounds met when at
every iteration, the number of merged vertices is exactly one. O

Definition 4.2. For one iteration, we refer to the ratio of the number of edges selected (indi-
cates selection of vertices/faults to be detected by a single test) to the maximum of the edges
that could be selected dderging Efficiency, abbreviated as ME.

Lemma 4.3. The range of\/ E per iteration is given bg <MFE < 1.

Proof. Theupper bounds when at every iteration all vertices inare merged with vertices
outsider, resulting in merging the maximum number of vertices at that iteration.|Gver
boundcomes when no vertex inis merged with a vertex outside i.e. when% memged
pairs consist only of vertices in]

Theproposed algorithm guarantees that, after merging, the produced set of tests contains at
least one test that is of less specified bits than the tests in the merged sets. Actually, from
Theorem 4.1, it is guaranteed that if we are able to find the minimum test for detecting a
fault or a group of faults, vertex merging will not increase the number of specified bit of
the underlying test set, while the test set size is systematically reduced. In the worst case
vertex merging gives a test set with the same number of specified bits, and with fewer tests.
Experimental results in Section 4.6, show that the total number of specified bits in the test
set is also reduced because of the vertex merging. Further experimentation shows that the
upper bound of Theorem 4.1 is rarely met, especially in the first iterations of the algorithm

76

wherethe tests have very few specified bits. Moreover, from Lemma 4.2 we conclude that
the number of iterations are bounded. In practice, as our experimental results demonstrate,
the number of iterations decreaseg:gsncreases, at the expense of more computation per
iteration. Another important attribute for the proposed algorithm is the number of vertices
merged at each iteration. In Definition 4.2 we have defined this attribute as the merging
efficiency. This number gives the rate by which our algorithm approaches the final solution.
In most cases the higher this rate is, the better the solution is. The latter is because ideally
our approach should expand each test as much as possible by combining it with as much
compatible faults as possible, before the corresponding fault is removed fram l$eétvo

faults insider are merged together, then this expansion is constrained to one of the faults.
This can limit the efficiency of this dynamic method, especially when the fault ordering
considered, gives priority to the easy-to-detect faults.

4.5 Implementation Overview

While the methods described in Chapter 3 and Chapter 4 could be implemented using any
test generation and fault simulation procedures, for the purpose of this dissertation, we have
implemented all methods using a function-based framework. In this section we give some

details for this implementation, as well as some preliminaries on function-based implemen-

tation. We choose a function-based implementation for the test generation and the fault
simulation procedures because they provide an easy way to identify various desirable char-
acteristics of a test or a group of tests. Specifically, they provide an efficient way of finding

a minimum specified bits test among a set of tests, as well as an elegant systematic way of
identifying compatibility andC-compatibility between two or more tests.

45.1 Function-Based Test Generation and Fault Simulation

For all test generation and fault simulation proposed in this paper we have used a function-
based framework. Although any of the previously proposed function-based frameworks can
be used, in this work we have used an in-house tool that uses Binary Decision Diagrams
(BDDs) [34].

1

Test generation is performed by XORing the fault free functionality of the circuit with the
functionality of the circuit after the considered fault is injected. For the results obtained we
have used the stuck-at fault model. Given one or more faults, the corresponding test func-
tion implicitly represents all the test patterns detecting the fauf@). Essentially, every
minterm of this function is a valid test for the fault(s). By considering a large number of tests
for each fault a great advantage over structure-based techniques, is obtained. That is because
the large number of tests gives more flexibility in selecting the appropriate one, based on the
targeted application. This advantage is more important in the dynamic method where no ini-
tial test restriction exists and, thus, flexibility in the test selection process is highly desired.
For the test generation in all methods proposed in this work, we extract a test function for
each targeted fault in the collapsed stuck-at fault list of the circuit. Fault collapsing in this
phase is done using the static arguments of the Checkpoint Theorem [59]. Then, functional
fault equivalence and functional fault dominance are applied to further reduce the number of
faults that need to be considered.

Fault simulationis performed by checking if a test cube corresponding to a given test is
contained in the function generated for each fault considered. Containment here implies that
the cube consists only of minterms of the function examined and can be justified if the logic
ANDiIng between the test cube and the function corresponding to the fault gives a non-zero
function.

The process ofetrieving a test with a large number of unspecified figsn a test function

Is identical to the process of finding a large cube in that function. If the largest cube is
selected, then a test is found which is guaranteed to have the fewer specified bits among all
tests detecting the corresponding fault or group of faults. While the process of identifying
the largest cube in a generic test function is a hard process, it can be done efficiently when
BDDs are used. Because of their canonical form, the largest cube can be found by following
the shortest path in the diagram which is a linear time operation, with respect to the size
of the BDD. Obtaining the shortest path is done with respect to the BDD variable ordering
and, thus, it does not guarantee that it coincides with the function’s actual largest cube.
Improvements can be achieved using a heuristic described in the next subsection.

Fault compatibility which is necessary for the dynamic method of Chapter 4, can be ex-
amined by ANDing the test functions corresponding to the faults checked for compatibility.
The result of the AND operation gives a test function whose each minterm can detect all the

78

faults considered, at the same time. If this function is zero then the faults are not compatible;
otherwise, faults can be tested together and the ANDing operation corresponds to the merg-
ing operation of the method described in Chapter 4. Consequently, the test function resulting
from this AND operation, implicitly holds all the tests that can detect all the merged faults.

In order to determine whether two faults meet th&ompatibility constraint, a largest cube
guery on the merged test function is performed, as explained in the previous paragraph. If
the size of the largest cube is lower than, or equalitthen the two faults ar&-compatible.

Using BDDs for representing test functions may lead to high memory requirements, and,
consequently may be an issue for the scalability of the methods using BDDs. Both the
proposed methods essentially consist of two parts regarding the usage of the BDDs. The
first part is a pre-processing step that generates a test function for each fault considered.
The second part includes all the BDD-related operations of the methods. For the proposed
methods, the second part does not affect scalability, since the proposed methods perform
BDD operations just for obtaining temporal information used for locally taken decisions. The
BDDs constructed for this reason are released after the decision is made, and, thus memory
is not accumulated. The first part (i.e. generating a test function for each fault considered)
is the part that can give undesired memory increase. Stated differently, this is the only part
of the algorithm that can make the algorithm implementation blow-up and, thus, hurt the
scalability of the proposed methods. Based on our experience on the ISCAS benchmark
circuit, this happens mainly due to the complexity of a circuit and not proportional to its
size. It is well known that out of all ISCAS circuits, only ¢6288 from the ISCAS’85 suite
cannot be represented using BDDs, despite the fact that other circuits with much larger size
and much more paths can be represented.

A number of solutions can be used for handling more complex and/or larger circuits like
modern industrial circuits:

e Instead of building a BDD for the entire test function for each fault, construct a number
of simplified BDDs for each fault by systematically fixing a small number of the circuit’s
primary inputs. The inputs to be fixed should be selected so that they affect as small portion
of the circuit as possible. Different BDDs are generated for all possible value combinations
for these inputs. Appropriate merging of these BDDs gives a reduced size diagram which,
however, has smaller number of tests and, thus, smaller test space. Naturally, this affects the
obtained test set that may have more specified bits (sub-optimal solution). This approach has

79

beenused in [61] and manages to handle even the problematic benchmark c6288. Naturally,
this solution gives partial information and, thus, the decisions taken at different steps of the
proposed methods are not the best possible. Moreover, this rationale can be extended in
generating test functions at the input-output fault cones, and, hence, drastically reduce the
memory requirements of the methods.

¢ Constraint versions of the BDDs can be used in order to avoid blowing up. In [50] a frame-
work is proposed, where each test function is partitioned into k different partitions so that
each partition is represented by a different BDD. This way the total memory requirements
are reduced canceling any scalability problem that may occur. These new constraint BDDs
are called Partitioned BDDs and have been used in design verification [50, 62] and show
great reduction in the BDD size. The framework, also, proposes procedures for efficient ma-
nipulation of Partitioned BDDs. Yet, the efficiency of this solution should be verified, with
respect to the final test sets obtained by the two methods.

¢ Using heuristic techniques for the Boolean Satisfiability problem (SAT-solvers) in conjunc-
tion with the BDD structures in order to reduce the BDD size. A number of recent work (see
[63, 64] among others) has been proposed which describe some very fast implementations of
SAT-solvers, based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [65]. Pre-
vious work on using SAT-solvers for test generation (e.g. the work in [66, 67]) as well as in

a number of design automation problems [68]. Essentially, SAT-solvers can be used together
with BDDs in cases where BDDs blows-up in order to give a sub-optimal solution for the
corresponding function or can be used as a standalone solution in order to completely replace
BDDs for function representation and manipulation. This approach has been widely used for
Symbolic Model Checking ([69, 70, 71] among others) and shows to drastically reduce the
process response time.

4.5.2 An Optimization Heuristic for Obtaining a Larger Cube from

a BDD

We now present an optimization heuristic to further reduce the size of a largest cube in a
BDD-based function. This is a post-processing step, that can be optionally applied. The size
of the largest cube in a BDD depends on the BDD variable order. Thus, theoretically, the

80

largest cube derived from a BDD can be further enlarged. The heuristic tries to further en-
large the largest cubeC; of a BDD-based test functidfiF; by appropriately relaxing fixed
variables inLC;. It iterates on the variables in the support/af; and performs Existential
Abstraction onLC; with respect to each variable, i.e. removes the impact of the variable
from the corresponding functiohi ;. The resulting cube is then checked against function
TF; for satisfiability. If the resulting cube satisfi@g; the new cube is set as the largest
cube and the heuristic continues with the next variable, until all variables are considered.
The operations of existential abstraction and satisfiability are standard BDD operations and
can be done very efficiently due to the canonical structure of the BDDs. Figure 4.4 shows
the pseudocode of the heuristic using standard BDD operations.

proceduradentify _extra_xs()

INPUT: functionTF;
OUTPUT: largest cubel.C; of functionT'F;,
. LCtGmP:LCi:ShorteSPathGFi)
. S=Support"F;)
. for eachvariablev € S
LC' e = Existential Abstract(LGemp) o
if (TFL'(LCn(zw) =1)then
LCLemp = LCncw
sreturn LC;=LCemyp

Figure 4.4:Identifying additional unspecified bits per test in BDD-based implementations.

Next, we give some measurements that demonstrate the impact of this optimization proce-
dure. Table 4.1 shows this information for an indicative number of circuits when this opti-
mization is used together with the dynamic method of Section 4.4. Column 2 lists the average
gain (percentage against number of primary inputs) that can be obtained each time the op-
timization is called. This gain is considerable for certain cases. For example, C880 has 60
inputs. An average gain of 6.75% leads to approximately 4 new unspecified bits per test, on
the average. Columns 3 and 4 list the number of tests and the number of specified bits in the
test set, when no optimization was activated. Columns 5 and 6 list similar information, when
the optimization was applied every time a largest cube query in the BDD was performed.
Columns 7 and 8 report the optimization’s gain when the optimization is applied only once,
after the algorithm terminates and the test set has been derived. These measurements show
that applying the optimization just once at the end of the algorithm gives a noticeable benefit
on the total number of specified bits. Moreover, applying the optimization throughout the

81

algorithm’s execution does not always lead to a smaller number of specified bits. This oc-
curs since modifying the number of specified bits per vertex in the compatibility graph can
guide the fault merging algorithm to a different direction. The behavior of the optimization
Is analogous for all the static and dynamic methods proposed in this dissertation.

Table 4.1: Impact of the cube optimization heuristic

Circuit | Avg. Gain No optimization Always Activated | Activated at the End
(% PIs) | Test Func.| Sp.Bits | Test Func.| Sp. Bits | Test Func.| Sp. Bits
c880 6.75 20 815 21 764 20 734
c1355 8.02 84 3120 84 2844 84 2985
€1908 2.72 107 1762 107 1701 107 1666
c2670 1.15 56 2945 55 2798 56 2834
c3540 3.08 100 2159 101 2075 100 2005
c5315 1.11 51 3106 52 3145 51 3005
c7552 0.59 78 6140 78 6044 78 6044
s953 4.33 78 1124 79 1003 78 972
1196 3.23 118 1740 117 1634 118 1618
s$1238 4.21 123 1875 123 1709 123 1709
s1423 4.22 25 1341 24 1186 25 1245
$1494 7.06 102 1171 103 1081 102 1063
9234 0.02 145 8399 147 8419 145 8367
13207 1.17 267 12173 267 11480 267 11596

4.6 Experimental Results for the two Dynamic Meth-

ods

The proposed methods were implemented in C language and run on a SunBlade 1500 ma-
chine, running Solaris with 4GB of RAM. We experimented with the ISCAS’85 and the
full-scan versions of the ISCAS’89 benchmark circuits. All the test generation related pro-
cedures were implemented using the framework described in Section 4.5.

In Table 4.2 we show results for the first dynamic method proposed in this chapter. Column

82

Table 4.2: Results for the match-and-merge method

Circuit | PlIs | Faults | Tests| S,... | Total Bits | Sp. Bits | % Sp. Bits | #Iter. | CPU (s)
c880| 60 895 76 43 4560 2266 49.7 8 18.1
c1355| 41 | 1536 | 200 | 40 8200 6844 83.5 9 14.6
c1908| 33 | 1981 | 161 | 31 5313 3778 71.1 9 10.6
c2670| 233 | 2681 | 69 | 188 16077 7536 46.9 10 75.7
c3540| 50 | 3634 | 141 | 44 7050 3924 55.7 9 98.6
c5315| 178 | 5623 | N/A | N/A N/A N/A N/A N/A N/A
c7552| 207 | 7620 | N/A | N/A N/A N/A N/A N/A N/A
s510| 25 551 70 11 1750 541 30.9 6 0.1
s713| 54 514 | 125 | 26 6750 1453 215 6 0.1
s832| 23 833 | 136 | 15 3128 1287 41.1 7 0.2
s953| 45 | 1063 | 129 | 19 5805 1664 28.7 6 0.2
s1196| 32 | 1334 | 182 | 18 5824 2577 44.2 8 0.8
s1238| 32 | 1334 | 258 | 18 8256 2648 32.1 9 1.2
s1423| 91 | 1532 | 212 | 20 19292 3233 16.8 7 2.0
s1494| 14 | 1694 | 155 | 14 2170 1450 66.8 9 0.7
s9234| 247 | 9402 | N/A | N/A N/A N/A N/A N/A N/A

s13207| 700 | 13287 | N/A | N/A N/A N/A N/A N/A N/A

s15850| 611 | 10278 N/A | N/A N/A N/A N/A N/A N/A

s38417| 1664 | 31183 N/A | N/A N/A N/A N/A N/A N/A

s38584| 1464 | 36301 | N/A | N/A N/A N/A N/A N/A N/A

2 lists the number of Primary Inputs and Column 3 lists the number of total faults in the
collapsed fault list, per circuit. The collapsed fault list was realized after functional equiva-
lence and structural dominance were applied to the given fault list. No faults were aborted.
Column 4 gives the number of tests by the obtained method and Column 5 reports the maxi-
mum number of specified bits per test for each test set. Observe that the sizes of the test sets
are large, which was expected, while thg,, attribute is much lower than the number of
primary inputs, indicating a significant reduction for this measure. Columns 6 and 7 report
the number of total test bits and the number of specified bits, respectively, while Column 8
gives the percentage of specified bits in the test set. The last two columns show the method’s
requirements in terms of iterations and CPU time (in secs) needed. The N/A indicates that
the results for the corresponding circuit could not be obtained, since the BDD-based im-
plementation could not handle the huge number of BDD operations. As we show next we

83

overcome this problem in the hierarchical method.

Table 4.3 gives our results for the hierarchical fault compatibility method. Column 2 lists
the number of Primary Inputs and Column 3 lists the number of total faults in the collapsed
fault list, per circuit. Column 4 reports the number of tests in the generated test set. The
value for constrainfC is given in Column 5 which is actually th&,,,, parameter per test

set, i.e., the maximursp(t) among all tests in the set. The valuefofranges between the
maximum largest cube for each individual fault and the number of primary inputs of the
circuit. Columns 6 and 7 give the total number of bits and the number of specified bits per
test set, respectively. The percentage of the specified bits with respect to the total bits in the
resulting test sets is given in Column 8. As expected, circuits with a large number of primary
inputs tend to have a small number of specified bits, whereas circuits with a small number
of primary inputs do not allow for a large number of unspecified bits in compact test sets.
Column 9 shows the cardinality ofconsidered for each benchmark and Column 9 reports
the CPU time for the proposed method in seconds.

In Table 4.4 we compare the two proposed approaches. To our knowledge no dynamic
technique that explicitly targets the same problem exists and, thus, we compare with the
best previously proposed static technique [48], for completeness. We intend to compare with
application specific dynamic techniques in Chapter 5. Since we are interested in maintaining
compact test sets, we compare with the results reported in [48] for compact test sets, which
also include information on thg&,,,, parameter.

The results of the proposed dynamic methods are given again in Table 4.4. Columns 2-5 and
Columns 10-13 of the table show the results for the hierarchical method and the match-and-
merge method, respectively. The experimental results reported in [48] are listed in Columns
6-9. TheN/A value corresponds to non-reported circuits. In this comparison, the key mea-
sure is the total number of specified bits in the final test. We focus on the hierarchical fault
compatibility method, since it shows to give better results in terms of absolute numbers of
specified bits. Observe that in all cases, except for s1494, the hierarchical method reports
a reduction in the total number of specified bits per test set (Columns 4 and 8), which is
considerable in some cases such as for circuits c1908 and s13207. Also, despite the fact that
the method of [48] uses very compact initial test sets (derived from a compaction tool), the
proposed method was able to derive test sets with very comparable cardinality, with some
exceptions (s9234, s38417). This shows that the hierarchical method was able to generate

84

Table 4.3: Test generation results of the hierarchical dynamic method.

Circuit | Pls | Faults | Tests| S,,.. | Total Bits | Sp. Bits | % Sp.Bits | |v| | CPU (s)
c880 60 895 20 55 1200 734 61.2 2 23.4
cl1l355 41 1536 | 84 41 3444 2844 82.6 1 18.6
cl908 | 33 | 1981 | 107 | 31 3531 1666 47.2 1 12.3
c2670 | 233 | 2681 | 55 | 149 12815 2798 21.8 2 72.6
c3540 | 50 | 3634 | 100 | 33 5000 2005 40.1 4 89.4
c5315 | 178 | 5623 | 51 127 9078 3005 33.1 4 101.5
c7552 | 207 | 7620 78 160 16146 6044 37.4 2 38.1
s510 25 551 56 11 1400 447 31.9 2 0.2
s713 54 514 23 33 1242 632 50.9 2 0.3
s832 23 833 | 127 | 16 2921 1056 36.2 1 0.3
s953 45 | 1063 | 78 22 3510 972 27.7 1 0.4
s1196 | 32 | 1334 | 115 | 19 3680 1599 43.5 4 0.9
s1238 32 1334 | 123 20 3936 1709 43.4 1 1.1
s1423 | 91 | 1532 | 24 80 2184 1186 54.3 2 1.9
s1494 14 1694 | 102 14 1428 1063 74.4 4 0.7
9234 | 247 | 9402 | 145 | 205 | 35815 8367 23.4 4 5.3
s13207| 700 | 13287 | 267 | 458 | 186900 | 11480 6.1 2 7.9
s15850| 611 | 10278 | 160 | 541 97760 11871 12.1 4 21.2
s38417| 1664 | 31183| 88 | 1012| 146432 | 31731 21.7 4 95.1
38584 | 1464 | 36301 | 126 | 1314| 184464 | 29768 16.1 4 | 1219

testswith a large number of unspecified bits, and at the same time, maintain a small number
of total tests. Based on this, we conclude that the highest relaxation achieved by the method
does not come because we have not imposed any constraint on the size of the test set. Relax-
ation is not even inversely proportional to the size of the test set (see results for c1355 and
c1908). On the contrary, the large percentage of unspecified bits is attributed mainly to the
constraints enforced on the fault compatibility graph, which guide the algorithm in choosing
groups of compatible faults to be detected by a single test with small number of specified
bits. In all cases, thé,,,. parameter is lower than those reported in [48], in some cases
considerably (e.g. s1238, s13207). A low value for$hg, parameter is desirable for many

test encoding/embedding methods, such as in deterministic BIST with LFSR-reseeding, giv-
ing the proposed technique a clear advantage for such applications. Despite the fact that the

85

methodof [48] did not target the problem of test set embedding specifically, it is quite com-
mon for these techniques to start from highly compacted test set, in order to reduce the area
of the embedding overhead. For this specific application, however, the results obtained by the
match-and-merge method may be of greater interest. Observe that, in most cases, while the
absolute number of specified bits is larger, the percentage of specified bits is lower, mainly
because the test set sizes are too large. Moreover, the values foy thattribute is, in most

of the cases, lower for the match-and-merge method. This occurs because the method of
Section 4.3 gives priority in minimizing thg,,,, parameter in disfavor of the total number

of tests. These two test set characteristic can become very desirable in test set embedding
techniques using compression, like those in [72, 73, 74]. More importantly, the technique
of Section 4.3 cannot handle large circuits for the problem considered. We investigate how
these test sets can be used in test embedding techniques in Chapter 5.

Table 4.4: Comparison between existing static and the proposed dynamic methods.

Hierar chical Method (Section 4.4) [48] BIST-guided (Section 4.3)
Circuit | Tests| S,.az | Sp.Bits | % Sp. Bits || Tests| S,.ax | Sp.Bits | % Sp. Bits || Tests | S,.q | Sp.Bits | % Sp. Bits
€880 20 55 734 61.2 21 60 827 65.6 76 43 2266 49.7
c1355 84 41 2844 82.6 84 41 3444 100.0 200 40 6844 83.5
c1908 107 31 1666 47.2 106 33 2903 83.0 161 31 3778 71.1
c2670 55 149 2798 21.8 45 233 3072 29.3 69 188 7536 46.9
c3540 100 33 2005 40.1 93 50 2172 46.7 141 44 3924 55.7
c5315 51 127 3005 331 46 178 3161 38.6 N/A N/A N/A N/A
c7552 78 160 6044 37.4 75 207 7064 455 N/A N/A N/A N/A
s510 56 11 447 31.9 N/A N/A N/A N/A 70. 11 541 30.9
s713 23 33 632 50.9 N/A | N/A N/A N/A 125 26 1453 215
s832 127 16 1056 36.2 N/A N/A N/A N/A 136 15 1287 41.1
s953 78 22 972 27.7 N/A | N/A N/A N/A 129 19 1664 28.7
s1196 115 19 1599 435 N/A N/A N/A N/A 182 18 2577 44.2
s1238 123 20 1709 43.4 125 32 1740 43.5 258 18 2648 321
s1423 24 80 1186 54.3 24 91 1267 58.0 212 20 3233 16.8
51494 102 14 1063 74.4 100 14 1016 72.6 155 14 1450 66.8
s9234 145 | 205 8367 234 111 | 247 8499 31.0 N/A | N/A N/A N/A
s13207 | 267 458 11480 6.1 235 700 13160 8.0 N/A N/A N/A N/A
s15850| 160 541 11871 12.1 97 611 13454 22.7 N/A N/A N/A N/A
s38417| 88 1012 | 31731 21.7 84 1664 | 35224 25.2 N/A N/A N/A N/A
s38584 | 126 | 1314 | 29768 16.1 114 | 1464 | 31543 18.9 N/A N/A N/A N/A

In Figure4.5 we show the specified bits distribution among the tests in the resulting test
set, for the second dynamic method proposed (hierarchical). The distribution is similar to

86

60% —4—7552 -#-3832
=H=51196 =—+=s1423
c1908

50% -

40% -

30%
20%
|/ AL\
- 4'L'/ // \\ \ \ \\
0% - ‘ A —— XL : —
o’d\" of\0 @6\0 d\o 60’&0 @d\0 ,\0,6\0 @6\0

percentage of tests per test set

T
g g
S) o N
& NN N

© N S S X & & N SRS

specified bits per test (% of Pls)

Figure 4.5: Specified bits distribution among tests after applying the hierarchical method

that of the static method (see Figure 3.3. Although the two methods may give different val-
ues for theS,,,/Pl, they both give a large percentage of tests that have number of specified
bits closed taS,,,. Observe, for instance, s1423. In the static method it gives 55% for the
Savg/Pl. Approximately, 57% of the obtained tests have specified around 50-65% of the test
pattern bits. Similarily, in the dynamic method, where fg,/PI is 35%, 71% of the test
pattern have specified around 25-40% of each test pattern bits. The distribution of the speci-
fied bits, among the test patterns, follows this trend due to the constraint imposed to the test
selection process that inherently exists in both methods. Furthermore, the dynamic method
amplifies this trend, mainly because it is more flexible in selecting the tests to combine with-
out considering given tests. For circuit c1908, the resulting test set obtained by this dynamic
method does not follow the observed trend. This has to do with the structure of c1908. Since
c1908 is an error detector/corrector circuit all of its primary inputs are used to generate a
syndrome in order to identify the erroneous bit(s). This gives high corelation between the
circuit’s primary inputs, which eventually enforces large groups of the test patterns bits to
form clusters of bits that influence each other. Within these clusters test bits cannot be left
unspecified if one or more bits in the same cluster have been specified, and, thus the patterns

87

with similar number of specified bits are clustered too giving two or more values of specified
bits that correspond to a large number of tests.

vi=2 lvi=4
. 10 .14
>
>
Q]
Q ©
= 0.6 EO.G 1
L i}
o) 04
= 24
o o
2
o 02 $0-2
s =
0.0 0
1 48 95 142 189 236 283 330 377 424 471 518 565 612 659 706 753 1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391
Iteration Iteration
lvi=8 vl =16
14 14
2 , .
) 0.8 3os
o 3
S| Q@
= 0.6 é 0.6 4
w i
) 4
£ D04
5 g
0.2 02
E 2 0.2
0 L e]
1 14 27 40 53 66 79 92 105 _118 131 144 157 170 183 196 209 1 9 17 25 33 41 49 57 65 73 81 89 97 105113121 129
Iteration lteration

Figure 4.6: The effect of the size af in Merging Efficiency, for s1494.

The plots in Figure 4.6 show the merging efficiengy £), as defined in Definition 4.2, per
iteration for circuit s1494, for four different values pf|, i.e. |v| = 2,4,8,16. Observe

that the bounds defined by Lemma 4.3 are clearly verified. The merging efficiency is almost
always optimal fov| = 2 and|v| = 4, and it drops folv| = 16. Further experimentations
show that it drops further dg/| increases. This demonstrates the advantage of the hierar-
chical nature of the second dynamic method. It is preferable to perform more iterations,
considering the merging of a small number of vertices in the constrained compatibility graph
per iteration and, thus, solving an easier problem at a time. This approach gives better overall
results (merging of vertices) than the case where a large portion or the entire compatibility
graph (such as in the match-and-merge method) is considered at a time, since this is theo-
retically a harder problem. For| = 1, ME = 1 (optimal) since the single vertex inis

always merged with a vertex outside

Table 4.5 shows the number of tests and the number of total specified bits after applying the

88

Table 4.5:Number of specified bits far of different size, for s1494.

lv| | Tests| Sp.Bits | Avg. ME | # Iterat.
1 104 1134 1 1639
2 104 1116 0.99 829
4 102 | 1063 0.95 431
6 107 | 1136 0.92 298
8 108 | 1187 0.89 231
12 | 114 | 1162 0.84 163
16 116 1275 0.71 145
20 | 120 | 1228 0.69 120
30 | 121 | 1240 0.64 86
50 | 124 | 1262 0.59 56
100| 129 | 1314 0.55 30
V| | 143 | 1445 0.54 8

algorithmof the hierarchical method using different values fief; for circuit s1494. The
average merging efficiency and the number of iterations per run are also reported. In the last
row, the case of not imposing any constraint on the size o&., whenv equals the number

of vertices on the graph, is reported. Observe how the AVHE drops agv| increases.

Also, the number of iterations increases|@isdecreases. In this case, the best results were
obtained foriv| = 4, which has an AvgM FE close to the optimal (=0.95) and a considerably
smaller number of iterations from the case of optimal AV§E (=1). The worst results were
obtained for the case in the last row, where the entire compatibility graph is considered per
iteration. As discussed in the previous paragraph, this occurs because the merging efficiency
of the method is considerably higher when considering a small number of vertices at a time.
The latter observation is justified by the results obtained for the match-and-merge method,
where essentially is equal to the number of vertices in the graph (i.e.= |G|). The

main conclusion from this observation is that althoughcan be user-defined and, thus,
extensively explored to obtain the best results, this is not necessary in practice. The best
results can be obtained by considering a small valuéfor

Both algorithms of the dynamic methods consider an ordering on the vertices (faults) of

89

(7, to guide the selection of the vertices in the graph, that are considered per iteration. We
experimented with the five different vertex ordering methods, for the hierarchical method
proposed:

Table 4.6: Effect of various vertex ordering methods in the metho&eétion 4.4

(i) (ii) (iii) (iv) ()

Circuit Sp. | Avg. Sp. | Avg. Sp. | Avg. Sp. | Avg. Sp. | Avg.
Tests| Bits | ME | Tests| Bits ME | Tests| Bits | ME | Tests| Bits | ME | Tests| Bits ME
c880 20 734 | 0.99 | 23 953 | 0.96 | 21 785 | 0.98 | 22 932 | 0.97| 23 984 | 0.96
c1355 84 2844 | 0.99 | 88 3015 | 097 | 85 2901 | 0.97| 87 2991 | 0.97| 88 3016 | 0.96
c1908 | 107 | 1666 | 0.99 | 109 | 1911 | 0.96 | 106 | 1785 | 0.98 | 108 | 1896 | 0.96 | 109 | 1921 | 0.96
c2670 56 2875 | 0.98 | 58 2975 | 097 | 55 2798 | 0.98 | 57 2891 | 0.97| 59 2981 | 0.96
c3540 | 100 | 2005 | 0.99 | 102 | 2101 | 0.98 | 100 | 2075 | 0.98 | 103 | 2198 | 0.98 | 103 | 2214 | 0.97
c5315 52 3087 | 0.97 | 55 3125 | 0.95| 51 3005 | 0.97 | 56 3208 | 0.95| 56 3212 | 0.95
c7552 78 6075 | 0.99 | 80 6232 | 0.96| 78 6044 | 0.99 | 81 6209 | 0.96 | 81 6286 | 0.96
s953 78 972 | 0.97 | 91 1165 | 0.97 | 85 1007 | 0.98 | 92 1202 | 0.96 | 93 1311 | 0.95
s1196 | 118 | 1618 | 0.98 | 144 | 1978 | 0.97 | 115 | 1599 | 0.99 | 139 | 1895 | 0.97 | 145 | 2015 | 0.95
s1238 | 123 | 1709 | 0.98 | 153 | 2115 | 0.94 | 125 | 1761 | 0.97 | 153 | 1965 | 0.96 | 155 | 2231 | 0.94
s1423 24 1197 | 0.99 | 27 1301 | 0.97 | 24 1186 | 0.99 | 26 1253 | 0.97 | 29 1330 | 0.96
s1494 | 102 | 1063 | 0.99 | 117 | 1212 | 0.97 | 103 | 1088 | 0.98 | 118 | 1227 | 0.97 | 118 | 1241 | 0.94
s9234 | 145 | 8367 | 0.97 | 154 | 8985 | 0.96 | 146 | 8412 | 0.97 | 152 | 8912 | 0.96 | 159 | 8981 | 0.93
s13207| 266 | 11512| 0.96 | 271 | 12012 | 0.95| 267 | 11480| 0.96 | 270 | 11971 | 0.96 | 275 | 12154| 0.92

i. Descendingnw (v;) per vertexv; in the initial graph.

ii. Ascending onw (v;) per vertexv; in the initial graph.
iii. Ascending on the number of tests per vertex in the initial graph.
iv. Descending on the number of tests per vertex in the initial graph.

v. Random.

For example, considering the ordering of (i) the vertices with the largest weight will be
included first inv, during the initial iterations. Once a vertex cannot be further merged (to
cover additional faults), the vertex with the next largest weight is included Trhe ordering

of the vertices is a preprocessing step which is performed once and is considered throughout
the algorithm’s execution. A vertex weight indicates how many specified bits will be needed

90

to cover a vertex (detect one or more faults), whereas the number of tests at a vertex indicates
the merging difficulty of the corresponding faults. Clearly, methods (iii) and (iv) only apply

to implementations that can efficiently give all the tests for a fault or a group of faults, like
function-based implementations (see Section 4.5).

Table 4.6 lists the number of tests, the total number of specified bits, and the merging effi-
ciency (M E), for each one of the five orderings for the hierarchical method. The best results
are obtained when the ordering is descending on the node weights (i) or ascending on the
number of tests per fault (iii). In both of these cases, the algorithm starts by merging the
nodes that correspond to more “difficult” faults. The difficulty here represents the proba-
bility of a node to be merged at a future iteration of the algorithm and is attributed either
to a violation of the/C-compatibility property or due to the small number of possible tests.
Merging the difficult nodes first, ensures no isolation of those nodes during future iterations
which results in a smaller test set. The other two options (ii and iv) are very close to the
random ordering.

4.7 Conclusions

We have proposed two new dynamic methods for obtaining test sets with a large number of
unspecified bits. The primary goal here is to generate such test sets without relying on an
initial test, that can bias the obtained results. We first transform the considered problem into
a graph representation, motivated from traditional test set compaction techniques. We call
this graph a constraint fault compatibility graph. The constrained compatibility is identified
here by function-based ATPG; however structural methods can also apply. Both methods
identify compatible faults, constrained by the number of specified bits in the common tests,
and try to test them together in order to increase the number of the don’t care bits in the test
set.

The first method is essentially a simple two phase algorithm which identifies pairwise match-
ing for the graph’s vertices. The matched vertices are then merged together, in order to give
a single test detecting all the faults corresponding two these vertices. We refer to this method
as thematch-and-mere method The second method isierarchicalandconsiders a small

91

partof the compatibility graph per iteration, in order to identify the compatible faults. Essen-
tially, it tries to detect as many faults as possible by a small number of tests before proceeding
to the generation of other tests.

The experimental results demonstrate that the match-and-merge method (first dynamic method)
results in high test set sizes, despite the fact that the percentage of specified bits in the re-
sulting test sets are higher than the hierarchical method (second dynamic method). However,
the maximum size of specified bits in a single test is smaller for the first method. On the
other hand, the proposed hierarchical dynamic method outperforms, in some cases consid-
erably, existing static methods as well as the static method proposed in Chapter 3 in terms
of the total number of specified bits, while keeping the size of the test set size small. These
results, together with the statistics on the distribution of specified bits in the obtained test set,
imply that the obtained test sets can give benefit to various applications, including test set
embedding architectures. We investigate this possibility in the following chapter.

92

CHAPTER 5

APPLICATION OFRELAXED TESTSETS INBIST

SCHEMES WITHLFSR RESEEDING

5.1 Introduction

Built-In Self Testing (BIST) architectures have received a lot of consideration in the last fif-
teen years. Modern complex designs demand more reliable and effective embedded testing
with no extra operational complexity and with as much reduction in hardware overhead as
possible. Replacement of costly Automatic Testing Equipment (ATE) with efficient on-chip
embedding architectures is desirable to fill the technology gap between ATE and integrated
circuits design capabilities. In this chapter we investigate how two popular BIST architec-
tures can benefit when considering the relaxed test sets obtained by the methods described
in Chapter 3 and Chapter 4. The purpose here is to investigate the possible reduction in the
overall hardware requirements for standard test set embedding schemes, since it is known
that such schemes benefit from test sets with a large number of unspecified bits. Moreover,
a small maximum number of specified bits per test, in the test set may reduce the overall
hardware since it determines an important part of the embedding hardware.

Traditional BIST schemes use pattern generation circuitry, like Linear Feedback Shift Reg-

isters (LFSRs), to generate pseudorandom patterns [75, 76]. However, for more complex de-
signs, it is necessary to apply deterministic test patterns (generated by an appropriate ATPG
tool) to cover hard-to-detect faults not targeted by the pseudorandom patterns . Thus, a
mixed-mode scheme is usually followed where a pseudorandom sequence of limited length,

93

followed by a sequence of deterministic tests, is applied [77, 20, 46]. Popular determinis-
tic BIST schemes involve ATPG and test set compaction, encoding and regeneration of the
embedded tests on the chip, and application of the patterns via scan-chain loading.

Most of the previous work for deterministic test set embedding for stuck-at faults focuses on
proposing new BIST architectures along with efficient test encoding techniques to provide
for high fault coverage. See [78, 46, 44, 79, 80, 81, 82, 83, 77, 45, 84, 73, 74, 85], among
others. Most of these techniques employ test-per-scan application to reduce the hardware
overhead as well as the on-chip storage. In contrast some other methods, such that of [81],
use test-per-clock schemes to gain from all intermediate patterns produced by the test re-
generating device and, thus, reduce the test application time. Many of the existing encoding
techniques try to take advantage of the unspecified bits in the test set to be embedded, in
order to reduce the on-chip storage for the encoded deterministic test patterns.

Even though existing test pattern generators (TPGs) can generate tests with unspecified bits,
they do not specifically consider the number and distribution of the specified bits in the
final compacted test set. [79] demonstrated that the scheme of [44] can benefit greatly, in
terms of reducing the storage requirement, if the embedded test patterns are generated by
an ATPG tool that (i) maximizes the number of unspecified bits in each generated test and
(i) concatenates tests into sequences that have a number of specified bits equal or slightly
greater than the maximum number of specified bits in any test pattern.

In this chapter we investigate how the methods presented in Chapter 3 and Chapter 4 can be
used in test set embedding schemes. In Section 5.2 we review the previous work in BIST
architectures following the test set embedding and/or encoding rationale. Next, we present
an experimentation framework we have used in order to thoroughly explore the various test
set generation and embedding parameters (Section 5.3). Section 5.4 shows the obtained
experimental results and discusses the findings, while Section 5.5 concludes the chapter.

5.2 Overview of Test Set Embedding Schemes

In this section we give a brief overview of the existing work on test set embedding. We
assume dest-per-scararchitecture, with a single scan chain. This implies that the size of

94

thethe scan chain equals the number of primary inputs; let this be denoted by

The traditional single-polynomial LFSR scheme, used for generating pseudorandom test pat-
terns, has been tuned to regenerate deterministic test patterns, by using different initializing
seeds [77] obtained on an algebraic rationale. Thus, it can be used in a mixed mode approach
(oftenly referred to as hybrid BIST) for both pseudorandom test generation and deterministic
pattern decompression and application. The seeds can be computed in a systematic way, by
solving a system of equations based on the number of specifiedpliisin a test pattern

t. In the general case for a test pattern with some don't care values, (ge{1,0,z}™),

the corresponding LFSR seed can be computed in the following way. For each specified bit
in the pattern, an equation based on the companion matrix of the LFSR is obtained, forming
a system of linear equations. The solution of this system of equations gives the seed of the
LFSR that can be used for the reproduction of test pattefior this test-per-seed scheme it

has been shown that a test pattern can be encoded, with a very high probability (greater than
1 — 107%) of success, into asp(t) + 20 bit-wide seed. Given a test SBt= {t,,ts, ..., {3},

the total storage amount for the encoded tests is determined by the maximum number of
specified bits in a test pattern in the test set, i%8,,, = max{sp(t)|t € T} as well as

the distribution of the numbers(,), sp(ts), ..., sp(tx). The hardware overhead is primarily
determined by the storage requirement for the LFSR seeds corresponding to all the deter-
ministic test patterns. The size of the LFSR, which determines the size of the LFSR seeds is
equal toS,,,. + 20.

In the Multiple-Polynomial LFSR (MPLFSR) reseeding scheme of [44], the LFSR hard-
ware is modified to become reconfigurable, i.e. include logic for reprogramming the LFSR
feedback. Essentially, reprogramming refers to the process of changing the characteristic
polynomial of the LFSR. This can be easily done by adding an AND and an XOR gate for
every LFSR bit as shown in Figure 5.1. Thimear Feedback Controlle(Z F'C) is a mem-

ory structure holding programming sequences, consistidu$, wherel is the size of the
LFSR. Based on the chosen polynomial, theC' determines the polynomial implemented

by the LFSR. The basic reseeding scheme implies storing only the seeds needed to initial-
ize the LFSR. This method manages to improve the encoding efficiency of LFSR reseeding
using an LFSR size equal 18,,,, by only considering 16 different polynomials. For the
MPLFSR scheme, extra storage is necessary to keep the polynomial selection sequences as
well as extra bits for each seed to identify the corresponding polynomials. In [79] the authors
managed to further improve the encoding efficiency of the scheme of [44] by allowing a se-

95

guenceof test patterns to be encoded by a single seed with size clasg,jqreferred to as

test concatenation). [74] also achieves high encoding efficiency when considering variable-
length seeds. Once the seed is loaded to the configured LFSR, it requanomous
transitions of the LFSR to regenerate the encoded pattern and transfer it to the scan chain for
application. The storage requirement for MPLFSR reseeding is given by:

Storage =S, - (P+G)+ G

whereG is the number of seeds (concatenated patterns) to encode the entire test&et and

is the size of each (concatenated) seledefers to the number of characteristic polynomials
required for the encoding. By restricting the number of specified bits in the concatenated
pattern to be at least equal £,.. (the maximum number of specified bits over all patterns

in the embedded test set), a high encoding efficiency can be guaranteed. The system for-
mulation for MPLFSR is done on the concatenated patterns and a seed for each pattern is
obtained. Thus, the storage requirements for the MPLFSR reseeding scheme is the sum of
the bits needed to store the feedback polynomials, the bits to store the seeds and one extra
bit for each seed to determine the corresponding polynomial. One bit is used here instead
of 4 (=l0g2(16)), since we assume that all seeds corresponding to the same polynomial are
stored in successive memory positions and so a 'next bit’ is adequate for indicating reconfig-
uration of the LFSR. Figure 5.1 shows the underlying architecture of the MPLFSR reseeding
scheme.

g | e .. <@1 L

=]

o

< T N & CUT

g L L |]

'f.: [] ‘ |

=

g PrtEPetees it
3 e o 0 - Scan Chain

b4

next bit

[$ f LFSR register [

Output Verification

ROM

Figure 5.1: The basic Multiple Polynomial LFSR architecture

96

Several other LFSR reseeding schemes have been proposed that can further improve the over-
all seed storage at the expense of some extra BIST hardware to the one shown in Figure 5.1.
[80] proposed a new architecture based on folding counters to encode the static test set. The
number of seeds to be stored benefits from standard encoding techniques as well as input
reduction methods, which however implies reorganization of the scan chain. Hardware over-
head for this architecture consists of extra counters and comparators and when mixed-mode
BIST is desired, an extra LFSR is needed to deploy the pseudo-random patterns generation.
In [73] the scheme of [80] is extended to become more flexible by accommodating the LFSR
and the folding counter in a more general scheme in order to reduce the overall hardware.
Deterministic test cubes are encoded as LFSR seeds and those seeds are then compressed as
seeds of the folding counter.

A new architecture is also presented in [85] that uses Twisted-Ring Counters (TRC) to embed
a static test set. No extra hardware is added to the CUT as the test generation circuitry can be
implemented using the standard scan chain, a multiplexer and an inverter in the serial input
of the scan register. Moreover, a seed extraction technique is proposed to get the required
seeds that will allow the TRC circuitry to reproduce a given static test set. Here, the number
of specified bits in the test set needs to be small as it provides a better seed selection.

In [83] and [82] the authors present a multiphase architecture for regenerating a deterministic
test set. The scan chain is fed by multiple LFSR cells (not only the last one) to provide more
useful test patterns. During each phase the same set of seeds is loaded to the LFSR but a
different LFSR cell drives the scan chain per phase. In this manner a smaller set of seeds
needs to be stored at the expense of extra time due to the multiple phase application.

The work in [84] introduces a method for a three-phase mixed-mode BIST. First, a number
of pseudo-random test patterns is applied and easy-to-detect faults are dropped from further
consideration. Then ATPG is performed to get deterministic patterns for all the remaining
faults. A number of repeating sequences is then obtained from those patterns and grouped
using a clustering algorithm. The groups of repeating sequences are then used to construct
a test set of semi-random tests which are applied at the second phase of this scheme. The
repeating sequences, as well as some controlling overhead, are stored on-chip together with
deterministic patterns targeting faults which remain uncovered, even after applying the semi-
random patterns.

97

The work in [21] proposed a technique for partially reseeding the LFSR instead of fully
replacing the LFSR seed, reducing in this way the seed storage. While the architecture for
the partial reseeding scheme is the same as that of Figure 5.1 there is no Linear Feedback
Controller which selects from a number of available characteristic polynomials for the LFSR.
Instead, there is a structure between the ROM and the LFSR that appropriately combines the
current LFSR seed with the partial seed stored in ROM, in order to generate the new LFSR
seed. However, the size of the LFSR has teohg, + 20 as stated in the original reseeding
scheme [77]. For this scheme the storage requirements is given by:

Storage,, = (B —1) -1+ Spaz + 20

whereB is the number of partial seedsis the size of the partial seed afgl,, + 20 is the
size of the LFSR and, thus, the size of the initial seed.

All the encoding techniques presented here can be improved if the targeted test set has a
large number of unspecified bits.

Without any loss of generality, the remainder of this chapter will focus on two simple LFSR
reseeding schemes for mixed-mode BIST, that of multi-polynomial reseeding presented in
[44] and that of partial reseeding presented in [21]. We will investigate the usage of the
methods of Chapter 3 and Chapter 4, for generating test sets appropriate for the consid-
ered schemes. Moreover, we will evaluate the impact of the proposed guided ATPG tool in
reducing the on-chip seed storage in such mixed-mode BIST schemes.

5.3 A Generic Framework for LFSR-based Reseeding

Parameter Exploration

Instead of using the generated relaxed test sets as they are in the considered embedding
schemes, we present a generic framework which allows to efficiently explore certain param-
eters relevant to the embedding mechanisms, in order to further minimize the seed space
requirements. Both the methods of Chapter 3 and Chapter 4 can be incorporated in this

98

framework.

The framework essentially integrates the two relaxation methods and the test embedding
techniques discussed in the previous section (i.e., [44, 21]. This exploration provides a sys-
tematic way of exploring two parameters of the methods presented in the two previous chap-
ters, when used in the LFSR-based BIST schemes reviewed in the previous section. Before
describing the framework we show theoretical and empirical bounds for these parameters.

The framework explores two parameters nam®)yand.S, which are given as input to the
relaxation methods and the MPLFSR encoding technique, respecti¥gli a constraint
imposed on the number of specified bits allowed for each test pattern. The proposed frame-
work appliesS), on the relaxation methods (Chapter 3 and Chapter 4) as an upper bound to
the maximum number of specified bits per test pattern. Specifically, for the static method
(Chapter 3)S,, equals to the,,,.. parameter and for the dynamic method (Chapter 4) equals

to the constrainiC. S is a constraint imposed on the number of specified bits per concate-
nated test pattern, in the MPLFSR reseeding and determines the maximum number specified
bits (and, thus, test patterns) that can be encoded in a single concatenated Saiteaiso
important because it determines the size of the LFSR and, thus, the hardware overhead of
this embedding scheme. Next, we give the range of the values that these parameters take the-
oretically, and we show how these ranges can be safely made tighter to reduce the number of
iterations applied by the framework.

ParametelS;, determines the maximum number of specified bits in any test pattern in the
test set obtained by either of the proposed methods (static and dynamic). In order to exten-
sively explore this parameter, the proposed methods should examine all its possible values,
which is constrained by < S, < # of PIs. This is becausé); cannot be greater

than the number of primary inputs since this will give a test pattern with more specified bits
than its total number of bits. On the other hang,cannot be smaller than the maximum
number of specified bits in any test among all tests in the initial test set$}.g., of the

initial test. Specifically, the lower bound 6f, can be accurately computed when a test set
containing all tests for each fault considered is generated and the test with fewer specified
bits for each fault is isolated. The test with the maximum number of specified bits deter-
mines the exact lower bound 6f,. Since this information is available only when symbolic
techniques (like that of [86]) are used, we have experimented by gbjiras small values

as possible, in this case 1, only avoiding fully unspecified bits. Of course this lower bound

99

resultsin unacceptable fault coverage. Extensive experimentation, on the benchmark cir-
cuits considered, shows that when starting $heexploration form value% usually
100%fault coverage is achieved. Thus, the following empirical lower bound may be used:
#olPls < S, < #of Pls

Another important parameter which is, however, relevant only to the embedding scheme of
MPLFSR [44], isS,. As discussed in the previous subsectipis the size of the concate-
nated test pattern which equals the size of the LFSR. The bounds 6y, trerameter are
within the S;, obtained and the total number of specified bits in the test set.

ParameterS, which, however, is relevant only to the embedding scheme of MPLFSR [44]
determines the size of the concatenated test pattern which equals the size of the LFSR. The
bounds for theS, parameter are within obtainet}, and the total # specified bits in the test

set (i.e.,obtaineds; < S, < total # specified bits in the test $etThe lower bound

is because the embedding procedure assumes the test sets obtained by one of the proposed
methods as its input. Thus, the concatenated pattern cannot have fewer specified bits that the
test with the maximum number of specified bits in the test set which is constrainggl by
Moreover, S, can be equal to the total number of specified bits of the entire test set. This
Is the case when all test patterns are concatenated in a single test pattern, which is clearly
not desired and in most cases not feasible. In practice, we examine valGgdhatt are

close to and larger thafi,, as this keeps the size of the LFSR small ant, thus, efficient to
implement. Nevertheless, the experimental results show that the lower storage requirements
are whensS, is much smaller thas,+200 and in most cases very closeSto Experimental

results show that for values ¢f, that are not higher thah.2 x .S, gives the best results

in terms of storage requirements. Specifically, the exploration of all possible valugs of
(defined by the theoretical bounds) showed that for values between 100% and 12Q% of

the best results have been obtained. The larger values were obtained for circuits with a small
number of primary inputs, and, thus it may not be the case with large industrial circuits. For
instance, for a circuit with only 32 primary inputs, the best results, in terms of storage, are
obtained forS;, = 20 and.S, = 24 which implies 20% increase:(= 120%). The same
increase for a circuit with 200 primary inputs asg = 120 givesh = 103%. However,
experimentation shows that setting a constant valuefdinstead of a percentage ¢f)

makes the experimntation framework not general, and, thus not applicable for a large range
of circuits. Of course, if the designer has the luxury to allow a larger sized LFSR, then
the practical bound of;, can be increased appropriately. Based on this, in the proposed

100

framework we set the upper bound 6f to be slightly larger thaty,, i.e.,h x S,, whereh

is a user defined parameter greater than 1. Our expiriance showed that this number can be
safely put toh = 1.2. Thus, the empirical bounds of paramefgy used in this framework,

are givenbyS;, < S, < h x 5.

Figure 5.2 shows the flowchart of the proposed parameter exploration framework. When the
desired method is selected, it is iteratively run for the various values, .ofor the static
method (Chapter 3), is used to constraif,,.... Any test that has more specified bits than

Sy, IS not accepted to be in the final test set. For the dynamic metfpds used as the
value K to determinelC-compatibility. Since, in the fault compatibility graph, no vertex or
edge weight is larger thaki, the resulting test set does not contain tests with larger $han
specified bits. If for any value of;, 100% fault coverage is not achieved, the results are
discarded and the next value 8f is applied as a constraint.

The obtained test set is then encoded using one of the two techniques of MPLFSR [44]
and partial reseeding [21] and the best results among those with various valtigsief

saved. Here, better results imply smaller storage requirements and at the same time small
size of the LFSR. While priority is given on the test set storage, the size of the LFSR is also
important and test sets with (slightly) larger storage and significantly smaller LFSR size are
preferred. NextS; increments by one and the same process is repeated,Syntlaches

its upper bound (number of PIs). In the case of the MPLFSR technique, where test pattern
concatenation is preformed, two extra steps are inserted (shown in gray background) in order
to explore theS, parameter. The first extra (upper) step is made in order to initigljznd

apply the test concatenation algorithm. The second (lower) step incremestsgtheameter

and checks if the upper bound is met. If not the concatenation and encoding procedures are
repeated. Note, that this nested iterative process does not apply to partial reseeding. When
both parameters of interest are fully explored, the process terminates and the (saved) best
results are returned.

Since the two parametef andS, are highly related, in the MPLFSR scheme, we have ex-
perimented with taking a combined decision of the values of the two, instead of first choos-
ing S, and thenS,. This is illustrated in Figure 5.3 where we show the exploration of the
Sy based on the proposed framework for a number of valugs, oflose to the best one as
determined for the test generation process, for circuit s15850. Observe tiatd36 the
storage is similar and falls below 4,500 bits in two casesSfor 60 andS, = 99. In this

101

Pls
5=
N|
l—Dynamic Stalic—l
K =S, S = 5
Apply Method of Apply Method of
Chapt er 4 Chapter 3
[]
]
}
+<
| Apply Test Concatenation |

Y
L FSR-based Encoding

save results |<—

No

Figure 5.2: Flowchart for parameter exploration framework

case,S, = 60 is selected since it gives a smaller size LFSR. While, this can be done with
all values of theS),, it is sufficient to be explored only for the four closest values to the best
Sh, as this has shown (from experimentation) to give the lower storage requirements. Higher
values ofS, can give lower total storage, yet the LFSR size will become too large and, thus,
these results are not preferred. These observations confirm that the best valyes faery

close toS),.

102

7000

6500 4 ~.

6000 -

5500 A

Storage (bits)

5000 A

4500 A

4000 T T T T T T T
30 50 70 90 sb 110 130 150 170

Figure 5.3: Selecting the5;, and.S, parameters.

5.4 Experimental Results

The proposed framework was implemented in C language and run on a 3GHz Pentium 4,
running Linux with 1GB of RAM. We experimented with the ISCAS’85 and the full-scan
versions of the ISCAS’89 benchmark circuits. The tool of [21] was used for the partial re-
seeding, while the method of [44] was implemented using a first fit decreasing Bin-Packing
algorithm for the test set concatenation step. We used the best test sets obtained by either
the static or the dynamic methods, after exploring paraméleesnd S, (where applicable).

Since LFSR-based encoding has been shown to be beneficial for hybrid BIST schemes, we
first applied 10000 pseudo-random tests in order to catch all the easy-to-detect faults, and
then encoded only tests that target the remaining, hard-to-detect, faults using the two en-
coding schemes. All the generated test sets were verified for 100% coverage of the targeted
faults, using the FSIM simulator of [87].

Table 5.1 shows these results for the larger ISCAS '85 and ISCAS '89 circuits. After the

circuit name the number of faults considered by the proposed method is reported, i.e. the
number of faults not targeted after application of 10,000 pseudo-random test patterns. For
each of the two techniques we report the number of seeds to be stored (Columns 3,6,10
and 13), the LFSR size (Columns 4,7,11 and 14) as well as the total storage size, in bits

103

Table 5.1: Using the resulting test sets with two popular BIST encodings.
No. Full Reseeding (MPLFSR) 79 Partial Reseeding R1]

Circuit | faults Proposed Reportedin [79] Red. Proposed Reportedin [21] Red.
seeds| LFSR | Storage| seeds| LFSR | Storage | Ratio | seeds| LFSR | Storage | seeds| LFSR | Storage | Ratio
2670 424 31 58 2061 52 60 3412 0.60 99 65 3165 N/A N/A N/A N/A
c7552 445 19 80 2179 41 100 5241 0.42 61 110 3478 N/A N/A N/A N/A
s838.1 343 50 51 2875 39 36 1623 1.79 99 69 3104 N/A N/A N/A N/A
51196 11 11 16 235 12 17 267 0.88 11 36 256 N/A N/A N/A N/A
s1238 85 9 17 213 11 17 249 0.86 7 37 133 N/A N/A N/A N/A
s1423 17 3 18 111 N/A N/A N/A N/A 3 38 64 N/A N/A N/A N/A
s9234.1 | 1146 | 46 83 4412 103 61 6923 0.66 86 85 3485 138 81 5013 0.70
s13207.1 819 43 54 2635 138 24 3570 0.74 82 58 2299 157 44 3008 0.77
s15850.1 990 | 57 76 4767 | 134 46 6528 | 0.73 | 115 70 3801 | 167 58 5204 | 0.73
s38584.1 2007 | 44 65 2845 46 70 3406 0.86 54 91 2328 62 75 2942 0.79

(Columns5,8,12 and 15). The results are compared with those reported ihdafl][21],
for mixed-mode BIST. Columns 9 and 16 show the reduction ratio in total storage for the
two techniques. Here, N/A means not available values for the corresponding circuits.

For the technique of [79] in all but one circuit the test sets obtained by the proposed meth-
ods give lower seed storage, whereas the LFSR sizes, in most cases, are kept closed to those
reported in [79]. Note, that the test sets used in [79] were also optimized to have a large num-
ber of unspecified bits. Nevertheless, using the framework of Section 5.3, the results with
smaller LFSR size can be obtained, at the expense of more seed storage, by appropriately
adjusting the decision taken regarding the results to be saved.

In the case of partial reseeding of [21], the total seed storage is also reduced, as it can be
seen from Column 16. In all cases the obtained results are between 70 % and 80 % of the
reported in [21] which is considerable for BIST schemes. The LFSR size is also kept close
to that of [21], while the number of seeds is significantly reduced.

1We compare with the results reported inJ#®tead of comparing with the results of [44], since the former
provides more detailed results and for more circuits. The work’8f §eneralizes the work of [44], yet the

results in [f9] are comparable to the results presented here.

104

5.5 Conclusions

The work in this chapter examines a specific application that can benefit when used in con-
junction with test sets that have a large number of unspecified (don’t care), namely built-in
self test. We have reviewed the most important work for BIST related with test set embed-
ding at the gate level. Two such methods that were made available to us have been used in
order to evaluate how the test sets obtained by the methods presented later in this thesis (i.e,
in Chapter 3 and Chapter 4) impact the final on-chip storage. A new systematic experimen-
tation framework is proposed in this chapter. The framework allows a thorough exploration
of the test generation and/or relaxation parameters, as well as, the test set embedding pa-
rameters, in order to find the solution with minimal area overhead. This exploration plays
an important role in obtaining optimal results, since it is done systematically and based on
theoretical and empirical bounds. The experimental results show improvement when used in
a mixed-mode BIST scheme. The embedding storage overhead reduction is, in most of the
cases, significant and denotes the importance of the static test set relaxation method and the
relaxed test set generation method presented in the two previous chapters.

105

CHAPTER 6

RELAXATION OF n-DETECT TEST SETS

6.1 Introduction

The on-going increase in the complexity of the modern VLSI microchips demands more so-
phisticated post-manufacturing testing methodologies and/or procedures. Current nanome-
ter manufacturing processes suffer from larger defective parts ratio, partly due to numerous
emerging defect types. While traditional fault models, such as the stuck-at and transition
delay fault models are still widely used, they have been shown to be inadequate to handle
these new defects. One obvious approach is to develop complex fault models to imitate de-
fect behavior at either the logic or layout level of abstraction. The combination of the large
number of possible defect types together with the huge number of fault sites in a modern cir-
cuit implies that modeling these defects will give prohibitively large input for a systematic
test generation methodology [88, 89]. Moreover, detailed layout information is typically not
available until the fabrication phase, giving limited information to test engineers.

Instead, previous work proposed the use of test sets targeting each modeled fault multiple
times in order to increase the probability of detecting additional fault types as well as the
defect coverage. The rationale behind detecting a fault more than once is to achieve higher
quality in terms of defect coverage, by generating a number of different tests for each mod-
eled fault. Such test sets are knownnadetect test sets, since they detect each fault with
different tests. As a result, a variety ofdetect test set generation methods and their impact

in the quality of the testing process have been proposed [90, 91, 92, 93, 94, 95, 96, 97, 98, 99].

Existing methodologies fot-detect test generation produce tests that are fully specified (i.e.,

107

all the test set bits have a fixed value of O or 1). This occurs since many of these techniques
try to fix unspecified (don'’t care) bits to logic values such that the number of detected faults
is increased. Actually, even if bit fixing does not improve on thdetect fault coverage,

it can improve on the coverage of non-targeted faults and defects even by randomly fixing
the unspecified bits. As a result, existing test generation tools return fully specified test sets.
This, however, limits the applicability of-detect test sets in several currently important
problems. Methods for low power test generation [11, 42, 100], for instance, can benefit
when the input test set includes a large number of unspecified bits by appropriately fixing
those bits. Such flexible test sets are also extremely crucial in various compression schemes
for on-chip or off-chip test set embedding, given in [79, 80, 83, 84, 85] among many others.

The work in this chapter considers the problem of relaxing-@ietect test set. The given test

set can be fully or partially specified. The total number of specified bits in the resulting test
set is minimized, while maintaining its originaldetect fault coverage. Furthermore, the

test set size is guaranteed not to increase. The motivation behind this problem is that a test
bit needs to banitially fixed only if this helps the:-detect fault coverage, otherwise it can be

left unspecified. The generated relaxed test set can then be used in a variety of applications
that fix the unspecified bits appropriately. The applied fully specified test set is expected to
have similar defect and non-targeted fault coverages to that of the original test set. This is
justified by the simple observation that in existing test generation techniques considering the
traditionaln-detect fault definition, any improvement in the coverage of non-targeted faults
and defects, beyond thedetect per targeted fault improvement, is caused by the random bit
fixing. The latter is supported by experimentally obtained data.

Static relaxation of 1-detect test sets was studied in [48, 49] and in Chapter 3 which have
proposed methods relying on various ATPG concepts in order to identify specified bits in the
test set that can be replaced by don't care values. [48] proposed a method for identifying
don’t care bits in a test pattern using ATPG concepts such as implication and justification.
[49] used a similar rationale, taking into consideration testability measures in the justification
process. The methods of Chapter 3 identify all fault detections for each fault under a given
test set and explicitly remove extra detections by using different selection criteria. Extend-
ing these methods to-detect test sets is not straightforward. Actually, these methods benefit

from identifying essential testsvhich do not exist im-detect test sets. The two methods

A test is essential if it is the only one detecting a fault

108

presentedn Chapter 4 also consider test set relaxation, but in a dynamic manner. They do
not consider an initial test set to be relaxed; rather, they both restrict the ATPG process to
consider the number of specified bits in the generated compact test set. As a result, these dy-
namic approaches cannot be easily extendeddetect test sets, especially for large values

n. While the extension of both the static and dynamic methodsdetect test sets could be
investigates, in this chapter we propose a new methodology that is optimized based on the
characteristics and parameters of thdetect test sets.

Here, test set relaxation does not imply that the specified bits of the relaxed test set are a
subset of the specified bits of the initial test set, as it is the case with the existing static
relaxation methods in [49, 48]. Rather, relaxation refers to the process of increasing the total
number of unspecified bits in order to make the test set more “flexible” for other applications.
A novel systematic test replacement algorithm is proposed, in which each test is replaced by
anew one that detects a subset of the faults detected by the first one, with fewer specified bits.
In order to maintain the fault coverage, each fault is guaranteed to be detectedratileast

where this is possibfe The algorithm explicitly removes additional (more thgrdetections

for each fault. The latter is possible since experimentation shows thatigtect test sets

the average detections for each fault is much greater thanainly, due to the presence

of many easy-to-detect (randomly detected) faults. Specifically, the methodology targets an
optimization problem; it determines themost appropriate tests to detect a fault (among

all of the tests that detect the fault) that give the maximum benefit in terms of specified bits
savings in the entire test set. Thus, it selects the “bes€sts to detect the fault and drops

the fault from the remaining tests in order to reduce the total number of specified bits in these
tests.

The rest of this chapter is organized as follows. Section 6.2 elaborates on our motivation and
presents supportive data. Section 6.3 gives necessary notation and the problem formulation,
and Section 6.4 describes the proposed technique. A comprehensive example illustrating
the proposed method’s execution is presented in Section 6.5. Section 6.6 gives the obtained
experimental results for the specified bits reduction together with necessary discussion. This
experimentation was done using the popular stuck-at model; however other (linear) fault

model can be used such as the transition fault model discussed in Chapter 2. In Section 6.6
we also present experimentally obtained information on the method’s parameters and usage.

2somefaults inherently have less thandifferent tests

109

Table 6.1: Average fault detections for single-detect and multiple-detect test sets

Fully specified single-detect Partially specified single-detect Fully specified
testsetTy testsetTy 10-detecttest setTy
Circuit | |Ta| | AD(Ta) | AD(TY) | AD(TY) || |Ts| | Xs (%) | AD(Tg) | AD(Tg) | AD(TE) || |Tn| AD(Ty)
s510 64 10.83 5.24 10.91 65 0.30 11.86 5.96 12.03 | 543 57.17
s526 60 6.58 4.70 6.82 68 4.10 5.29 4.56 7.11 492 60.07
s641 55 9.26 4.13 9.11 62 | 12.80 9.25 4.22 9.42 227 45.01
s820 108 | 3.58 221 3.63 116 | 13.50 3.67 2.35 3.85 949 31.92

s953 91 26.71 13.21 26.18 95 3.80 18.65 11.26 27.23 766 112.21
s1196 | 144 | 17.66 9.98 1799 | 151 | 23.10 14.36 8.65 18.37 || 1233 93.30
51423 24 8.65 3.23 4.48 70 8.20 8.14 3.45 17.65 269 48.82
s1488 | 118 | 4.12 2.89 4.21 123 | 0.40 4.15 2.95 4.42 209 8.93

s9234 | 411 | 45.62 32.12 45.63 || 495 | 26.80 | 35.67 28.76 47.62 || 1132 142.14
s13207 | 472 | 77.46 56.39 7751 || 692 | 22.10 | 61.48 54.59 83.15 | 2341 354.22
s15850| 441 | 64.27 43.34 64.03 | 519 | 38.50 | 38.54 29.39 67.31 983 156.52

6.2 Motivation

Previously proposed methods for deriving single-detect relaxed test sets can be categorized
into static ([49, 48] as well that of Chapter 3) or dynamic (Chapter 4). Static methods con-
sider an initial test set whereas dynamic methods incorporate the problem in the ATPG pro-
cess. Extending these methodsrtaletect test sets is not straightforward. Actually, the
static methods benefit from identifying essential tests (a test is essential if it is the only one
detecting a fault) which do not exist indetect test sets. Moreover, the common underlying
idea used in both types of methods is the identification of coincidental multiple times fault
detections, i.e. a fault is detected by several different tests even though it was only targeted
once in the test generation process. The latter occurs very often, especially in the traditional
stuck-at fault model (as well as in transition delay faults which are often modeled as stuck-
at faults during test generation), because the majority of the faults are easy-to-detect (also
referred to as randomly detected faults). The static methods drop multiple times detection
implicitly, through fault simulation and fault dropping, in order to determine bits that can
be relaxed. The dynamic method of Chapter 4 proceeds in a different rationale. It identifies
sets of faults that can be detected by a single test with a small number of specified bits and
explicitly avoids multiple-times detections. In any case, the derived relaxed test sets still
include some multiple-times detections due to coincidental fault detection. At this point we
have to define how we use the average detections concept in this context.

Definition 6.1. The Average Detectionsf a test setl’ (referred asAD(T)) denotes the

110

average times a fault is detected by a testiSethat is, the total detections of the faults in a
considered fault list’ by the tests in the test sétdivided by the number of faults if'. If
we caIIDJ?i the number of tests i’ that detect faullf; then the average detection parameter

is given by
Z

fiel
AD(T) = €|F|

WhenT is relaxed to a partially-specified test st (with the same fault coverage) then,
based on the above definition andl)ﬁ_ counts only detections by the specified bits/of
AD(T") < AD(T). Table 6.1 lists data that supports this observation. Columns 2-10 list data
for two different 1-detect stuck-at fault test sets derived from ATALANTA [101]. Test set
T4 is fully-specified wherea&z contains a small number of don’t care bits. Columns 2 and

6 show the number of tests iy andT, respectively. The percentage of the don't care bits,
with respect to the total number of bits, B is given in Column 7. The average detections

per fault in7Ty andT are listed in Columns 3 and 8, respectively. Observe that7,)

and AD(Tp) are much higher than 1 in these 1-detect test sets, due to the coincidental fault
detections. Both test sets were relaxed using a technique similar to that of [48]. The average
specified bits reduction ifh4 is 82% and il 75% (fully-specified test sets allow for higher
specified bit reduction than partially-specified test sets of similar size). The fault coverage
and the test set size of the initial test §&t (73) are maintained i7", (7). Columns 4

and 9 give theAD(T",) andAD(T}) of T, andT};, respectively. As expected, based on the
discussion of the previous paragraph, the average detections per fault drops in the relaxed
test sets, increasing the number of unspecified bits.

The motivation behind relaxing 1-detect test sets is to make these test sets amenable to ad-
dressing additional issues beyond detection of the targeted faults. For example, the unspec-
ified bits can be specified appropriately to detect additional faults such as delay or bridging
faults. This process is referred to as test enrichment in [43] and has been used in Chapter 2
in a transition fault framework. Alternatively, the unspecified bits can be specified in such

a manner that power dissipation during test set application is minimized [42]. Also, relaxed
test sets give storage space reduction in on-chip or off-chip compression techniques, which
fully specify the test set before test application in some deterministic manner based on the
de-compressing hardware. The recent work in [91] proposed a new method that takes advan-
tage of the unspecified bits produced by a standard 1-detect ATPG tool, in order to embed

111

multiple detection in a 1-detect or andetect test set. This method can be combined with
the work proposed here, in order to maximize the times a fault is detected.

In any case, fully specified test sets are finally applied. Since fully-specified test sets take
advantage of coincidental fault detections to increase the average detections per fault, relaxed
test sets are expected to have the same advantage when they are finally applied. Columns 5
and 10 give theAD(T%) and AD(T}) of the test set derived after the relaxed test §&ts

and T}, were randomly fully specified. Observe th&dD(7,) ~ AD(T') and AD(Ts) <
AD(T}). The latter holds since the average fault detections per fault is lower in the original
partially specified test sef§), than in the final fully specified test sét)).

Maintaining average fault detections may not be of much importance in 1-detect test sets,
since their goal is to detect the targeted faults. However, it becomes of great importance in
n-detect test sets which are intended for increased non-targeted fault and defect coverage.
Coincidental fault detection (by randomly fixing some test bits) occurs similartydetect

test sets as in 1-detect test sets. Column 12 of Table 6.1 gil&§y) of the fully specified
10-detect test set of [97], which is much higher than the targeted 10-detection coverage.
This shows a lot of room for relaxation in thedetect test sets. At the same time, since the
AD(Ty)—n detections were achieved coincidentally, a relaxedfggivhich maintains the
n-detection fault coverage) will recover the reductiondif (77;) when it will be finally fully
specified before test application. Thus, relaxedetect test sets are expected to maintain
their non-targeted fault and defect coverages.

6.3 Problem Formulation and Notation

Here, we expand the problem definition of test set relaxation presented in Chapter 3 for
n-detect test sets.

Consider a givem-detect test sef ={t,, ¢, ..., t,, } for a combinational or a fully-scanned
sequential circuit-under-teSt Each of then test patterns consists of strings of 3-valued bits
€ {0,1,x}. Consider also a fault modéi, based on which the list of faults detected by
denoted byF, is derived. For the considered fault list, the testBétasN (7") n-detect fault
coverageand K (7) specified bits ratio. In the following we define these two parameters of

112

atest set.

Definition 6.2. Then-detect fault coverage of a test $etdenoted byV(7) is the percent-
age of the faults considered, under a given fault mode(i.e. F'), that are detected by
with n different tests. Note, that for some faulls C F, only p < n different tests exist
(i.e. can be generated by any test generation process), where. In the case where no
tests exist for a faulff, (i.e.,p = 0), then faultf, is considered to be redundant. For the
cause of this definition and throughout this teXt,7") is calculated considering all faults in
F, including redundant. For those faults that> 0 then they are considered to have full
n-detect fault coverage and, thus, do not reduce fault coverage.

For completeness, we repeat here the definitioli @f), first introduced in Chapter 3, which
denotes the specified bits ratio in a test set.

Definition 6.3. For a test se?, we denote the ratio of the bits having a specified value
{0,1} over the total number of test set bits By 7). This ratio gives a test set property that
indicates how flexible a test setis. Cleafly< K (7) < 1, for any test set. The closéf(7)

is to 0, the more flexiblg is. For fully specified test set# (7) = 1.

The test set relaxation process refers to replacing test séty, to, ..., t,,,} with a test set
T'={t},t,,....,t. } such that each of the following constraints is satisfied:

() N(T')>N(T)
(i) K(T') < K(T)

The above constraints give the specifications of the test set relaxation problem considered.
Constraint (i) preserves thedetect fault coverage in the same way as the fault coverage is
preserved in single detect test sets. If a fgillis detectech < n times in test sef (i.e.,

D}; = p < n), then faultf; is detecte times in the relaxed test sét'. All other faults,

l.e. those withD}; = p > n, are detected at leasttimes in the relaxed test set, and not
necessarily times. Increase of the fault coverage may occur due to coincidental detections
of those faults that if" they haveD} = p < n and inT" they haveDJTi’ > p . Constraint

(i) comes directly from the definition of the relaxation problem since the overall goal is to
decrease the portion of specified bifs((Z")) in the test set.

113

6.4 Proposed Methodology

In the proposed method, every testiinis systematically replaced by a new test with more
unspecified bits. The algorithm concentrates on one fault at a time to deteurdifferent
tests{¢t;,j = 1,2,...,n} € 7 that detect the fault such that the number of bits that can be
relaxed in the entire test set is maximized. Put differently, the algorithm determitesss

to explicitly target the detection of the fault and relaxes the bits required to detect the fault in
the remaining tests.

Consider a faulff; detected byZ". LetZ; C 7 denote the set of tests 1h that detect faulf;.
The algorithm finds the tests in7;, given inZ,* C 7, that should detect faulf,. Consider
atestt, € 7;. Let the number of specified bits tp that can be unspecified if no longer
detectsf; be denoted by;,. In other wordsg;,, is the contribution, in specified bits, of fault
fi intestt,. Then, the total number of specified bitsirthat can become unspecified if fault
fi is only detected by test € 7; (and not by any other if7; — ¢;}) is given by:

Gij = Zcikv tr €{T; — t;} (6.1)

Thus,G;; denotes the gain in unspecified bits if failis only explicitly targeted during the
test generation by test. Of course, coincidental detection ffby other tests may occur but
this is done by no extra cost in terms of specified bits.

In order to determine which tests of7 = {¢1, ts, ..., t,, } must explicitly target faulff; , we
calculate:

~

Gi=max{G;;}, t;€7; (6.2)
J

n different times, removing; from 7; each time this calculation is made. All the selected
tests form the set of tes%” that explicitly target faultf;.

Equation 6.1 and Equation 6.2 are the same used in 1-detect test set relaxation. At this point
we expand the two equations is such a way that can emsdegect fault coverage. It can

be argued that, since we want to find the number of test set bits that can become unspecified
after keeping: detections only, Equation 6.1 and Equation 6.2 should take into consideration
all combinations ofn detections. In other words, it is a question whether keeping:the
detections that give the larger specified bits relaxation is quite as effective as keeping the
combination ofn detections that give the larger relaxation. Next, we prove that the two
decision criteria are identical. First we slightly modify Equation 6.1 and Equation 6.2 in

114

orderto evaluate the gain and maximum gain in specified bits considering all combinations
of n detections for the same fault.

Gh=> e the{Ti—T7} (6.3)

With 7; we denote a subset @f that have size.. Thus,G;?j is calculated for all combination
of n tests out of all tests that detect fayijt

Gr = mjaX{G?j}, 7, CT; (6.4)
Theorem 6.1. When am-detect test séf’ is fault simulated against a fault ligt, there exist
a set of faultsF,,, C F' that are detected more thantimes. For every faulf; € F;, we keep
those detections(tests) that when using Equation 6.2 give thikigher values, in sef ().
Moreover, for the same fault € F' we keep those detections (testsjhthat when using
Equation 6.4 give the higher value, in sgfi). We next show that(i) and C(:) coincide
for all faults in F,,.

Proof. SetS(i) contains then tests that give the maximum values when calculating Equa-
tion 3.2, for faultf;. By substituting Equation 3.1 in Equation 3.2 we have:

Gi = m]ax{ Z Cik}7 tj € 7; =4
tre{Ti—t;}

G; = max{z ik —¢Cijt, teT;
/ tL€T;
and since alt;; are non-negative integers we have :

G;=min{cy}, €T (6.5)
J

In the same manner sét(:i) contains the: tests which are elements of that gives the
maximum value in Equation 6.4, for fauff. By substituting Equation 6.3 in Equation 6.4
we have:

GI' = mjax{ Z cry, T CT &

tp€{7i—7;}

Gi" = mjax{z Cik — Z cnt, 1, CT;

tr€T; thGTj
and since alt;;, are non-negative integers we get:
G = min{ Z cnt, 1, CT (6.6)
J thET;

115

Equation6.5 implies that the sef(i) contains the: tests that have the minimuey i.e., the
tests that are elements of the subsef,00f sizen that has the minimum sum ef;. The
subset of7; of sizen that has the minimum sum ef; can be identified by Equation 6.6
which, however, gives the sét(i). Thus, set$ (i) andC(i) are identical. O

Equation6.1 suggests that using Equation 6.1 and Equation 6.2 for selecting the best tests
detect each fault gives exactly the same decision as using Equation 6.3 and Equation 6.4.
Thus, there is no need of finding the contribution in specified bits for all combinatioms of
tests in the sef; for fault f;, in order to keep those tests that give the higher reduction in
terms of specified bits.

Figure 6.1 shows the proposed algorithm. The input parameters are the circuit-under-test
C, the test set to be relaxefl, the n-detect parametet, and the considered fault model

M based on which the targeted fault listis derived (lines 1-2 of Figure 3.2). First, fault
simulation is performed to derive the complete fault ksts well as the fault listg; for
eachtest; € 7. Then, the algorithm iterates over each fafile F, following a predefined
ordering (see discussion in Subsection 6.6.1), in order to determine the ‘béssts to
detectf;. This is done by examining only tests # that detectf;, that is7Z; (lines 6-19).

For every test; € 7; the contribution off; in ¢, (c;;) is first calculated (line 8). This is a
crucial step which invokes a test generation routine. Specifically, ta:fjrfdr a fault f; and
atestt; detecting the faults it;, we generate a test cubgargeting faults inF; — f;. If the
number of specified bits in a testis denoted by(t,), then,c;; = s(¢;) — s(t’). This is the
number of specified bits savings if tésho longer detects faul;. Oncec;; is calculated for
every test; € 7;, the total gain;; in unspecified bits (meaning is detected by; but not

by {7, — t;}) for every test; is easily computed (line 10). Consequently, theests giving

the maximum gain are determined (lines 11-14). This is achieved by calcutatinmgs the
maximum gain, each time removing all the previously found tests with maximum gain. Tests
tm, € 7;,d = 1,2...n form the testZ;” containing all tests that detefit

The next steps (lines 16-19) convey the dynamic nature of the algorithm. OnGg¢ set
determined, it is no longer necessary for tesfs— 7.} to detectf;. Therefore, the fault

list F; for each of the remaining tests € 7; is updated. In this manner, fayft will never

be targeted in any subsequent test generation step (line 8). Observe that if a test’s fault list
becomes empty at any point, the test can be fully relaxed which means it can be dropped

116

n_detectrelax

Inputs: circuitC, test setZ, n, fault modelM
Outputs: relaxed test set’

01: fault simulateZ” based on fault mode\1
02: F = list of faults detected by

03: for eachtestt; € T

04: F; = list of faults detected by;

05: for eachfault f; € F

06: 7; = list of tests detecting;

07: for eachtestt; € 7;

08: useF; to calculate;;

09: for eachtestt; € 7;

10: calculates,;; = > cix, k€ {7, —t;}
11: 7" =10

12: ford=1ton

13: Gimd = HlaX{Gij}, tj < {7; — /];n}
14: T =T"+1,,

15: % tests inZ,” keepf;, tests in{7; — 7.} drop f;
16: foreacht; € {7, — 7"}

18: if F; =

19: T =7 —t; % drop test;

20: 7" =10

21:for eachtestt; € 7

22: generate test that detects all faults i
23: addt’; to 7"

24:return 7'

Figure 6.1: Proposed:-detect relaxation algorithm

since all of the faults it used to detect are now detected by some other test(s). The fault
coverage off is maintained since every fauft is guaranteed to be detected bylifferent
testst,,, € 7,",d = 1,2,...,n with F,,, # 0.

Once all faults are examined, the relaxed test/Sas generated based on the updated fault
list F; for each test; that has remained i (lines 20-23). Each new tesf € 7' is
guaranteed to detect a subset of the faults detected by the corresponding=test since

the size of the updated fault list per test is reduced or, in the worst case, remains the same.

The effectiveness of the proposed method depends greatly on the ability of the test generation
process (line 8 and line 22 of Figure 6.1) to derive tests with a large number of unspecified
bits. Several existing methods can be used to solve this problem effectively. Both of the

117

structuralmethods of [49, 48] propose specific ATPG-like routines (using implications, jus-
tifications, and testability measure concepts) to find a large test cube (test with a large number
of unspecified bits) that detects a number of faults. Alternatively, the function-based frame-
work presented in Section 4.5 can derive a large cube by extracting the shortest path in a
BDD-based implementation. Any of these techniques can be used by the proposed method
whose main contribution is not on this specific single test generation problem but on finding
a systematic method to replace an entire test set such that the total number of specified bits
IS minimized.

The proposed algorithm také® | fault simulations plus, in the worst cas&,| - |F| + |7 |
test generations. In practice, however, the fa¢fgr- |F'| is much smaller since each fault
fi € F is examined only against the small number of testg;ic 7 that detect the fault,
and not for the entire test st

6.5 Test Replacement Example

This section illustrates the proposed algorithm with an example. For simplicity, a 2-detect
test set is considered.

Consider an initial test s&f = {t1, to, t3, t4, t5, t} for a circuitC with 12 Primary Inputs

that detects the 12 faults i = { f1, fo, ..., f12}. For this test set the-detect fault coverage

is N(7T) = 2, since all faults, excepf, and fi,, are detected = 2 times. Table 6.2 (c)
through (h) summarize the execution of the proposed algorithm and Table 6.2 (a) and (b)
show the initial test set and the final test set after the relaxation process has been applied.
Each pair of tables corresponds to an iteration of the algorithm, noted at the header of each
table. Recall that each iteration examines one fault and so iteration 1fig fteration 2 for

fo and so on. At each pair, the leftmost talile. Table 6.2 (c),(e) and (gtorresponds to the

gain computation step of the algorithm (lines 6-14 of Figure 6.1), while the rightmost table
(i.e. Table 6.2 (d),(f) and (h)corresponds to the fault lists updating step of the algorithm
(lines 16-20 of Figure 6.1). The rows of each table correspond to the test patterns in the test
set7 showing the actual bit orientation in the test pattern. The last but one column at each

table shows the faults detected by each test (i.e. théJifdr testt;), while the last column

118

Table 6.2: Test Replacement Method Example

Initial Test SetT after Fault Simulation RelaxedTest SetT”’

Test Pattern Detects Test Pattern Detects
t111/0(2{0[1(0|2/2(0|2|0|1|f1, oS3 fa, /5[0 t1 |10 x| x|[1|x|1/2/0|2|0|1|/fofs f1,[5 6
t2/0/1]0(0|0[1]{0|1]2|0|0|1]|fo,fs,fs fr fss fr0 62|01 x|0|x|x|x|1|2|0[0|1]|f,fs fr: fs: fro
t311]0(0|2(0|1(2\1|2\/0|2|1|f1,fs3 fa, /5 f6:fs tg | X| X |X[X|[X|X]|X]|Xx|X|X]|X|X|none(can be removed)
t4|0/1]0[0|0|1|0(0[|0|1|0|1|f,fsf5 f7, fs fr0 ta |O|X|X[0[0|1|0|0|x|xX|X|X|f5 f7,fs fi0
t5111111)1)0\/1|1|0|01)0|1|f,fufo fu,fr2 ts 1|1 11{x|1|1|x[0|1]0]|x]|fi,fo, f1, fr2
t¢ |0/0|0[1]{0[0|2|02|1|1|0]|f, S5 [1,f6f5: /11 te |00 | X |X |00 |X|x|X|X|1]0|f1,fs f1, [11

(@ (b)

Iteration for f; - Identify extra detections Iteration for f; - Remove extra detections

Test Pattern Detects Gy Test Pattern Detects Gy
ty 1021|010 2[1|0|1]0|1| L, fo.fsfi 5 7 lt|2]0x|x|1|{x|2|2]0[1|0|1| 8 1 fs fi.fsfs
t2|0[1]0[0[0|1/0|1|1/0|0|1|fsfsf6fr fs S0 t210/110/0/01/0\111|0\0|1)fo,fs,f6 7, fs: f10
t311/0/0|21]{0|1|2\2\2|0|1|1|fy,[sfu,[5fc,/s | 6 t3 [1/0|0|x |01 |x|1|x|x|1|1 B[, [1,fs5 6 fs
t4|0]/1(0|0]0|1/0[0|0|1|0|1]fo,faf5 f1,[s: 10 t4|0)1)/0)0|0|1|0]0|0[1(0|1|fo, fasfs f7,fs5 fr0
ts[1[2)1]2]0[1]2[0[0|2|0|1|f, fufofin iz | (9] [ts|2]2]|2]|2]0[2[2/0]|0|1]0]|1|F, [fo, fur, fro 9
t6| 000100101 |1|1|0|f,fs fufofs,fu| (8 | |te|0]0|0[1)0[0|1]0|L1|1|1|0|F,fs fsfofs /11 8

© (d)

Iteration for f, - Identify extra detections Iteration for f, - Remove extra detections

Test Pattern Detects Go; Test Pattern Detects Go;
tr 20| x| x| 1|x|1[1]0|1|0|1|M 6 fs fufofs | 6)] |t1|1/0|x|[x|1|x|1]1|0|1|0 1|8 L f5 [s/f5 S 6
t2/0(1/0|0|0(1)/0[11]0|0|1|f,fsfofr fsfro| (6)| |t2)0|1)0[0|0|1]|0|1|1]|0|0| 1L fuf5 [r.f5: fr0 6
t3| 100X |01 x|1|x|x|1|1 B fsfifs fo fs t3|1)0]0|x |01 x| 1| x|x|1|1 M S frfs fo. fs
t4[0[1(0|0|0|1]0|0|0|2|0|1|fs, fu,f5 f7,[s. 00| 4 tg [O|X|x|0[0[1|0|0|0|1|x|x|M [f5 fr.fs, f10
ts|1/1|1[1]0[1/2/0|0|1|0|21|f,fs fo, f11,f12 ts [1/1)1]2]0[1(2/0|0|1|0|1|f,fafo, f11,f12
t¢ |0/0|0[1]/0(0|2|/0|2|{1|1|0|f1,fs [1,[6[5, /11 te [0/0|0|21/0[0[2|0|2|{2|1|0|f, S5 [1,[6[s5[11

(e) f)
.
.
.

Iteration for fs - Identify extra detections Iteration for fs - Remove extra detections

Test Pattern Detects Gg; Test Pattern Detects Gg;
61 1|0|x|x|1|x|21|1(0|21|0|1|8, L fs, fo. fo [61| 1|0|x|x|1|x|1|1/0|1|0|1|8 L, fs fo. f5 fo
te |01 x|0|x|x|x[1]1]0|0|1]| fo, M fs, fr,fs fro| 6)| |t2|0|1|x|0|x|x|x|1]|1|0|0|1| fo, M fs, fr,fs, f10 6
t3 |10 [0 X|X|X|X|X|X]|X]|x|x /O . o6 By | X XXX XXX | X | X | X | X | x| Ay
ta [O[X[X]|0]|0|1]0|0|x|x|x|x NN,/ [fs, fr0 | (9) ta |O[X|X|0|0|2]0|0|x|x|x|x|/HW f fs, f10 9
ts [1]1(1|21|x|1|1|{x|0|1|0|x]|fi,.M fo, 11,12 ts (121|211 |x|[1]2|x|0|1|0|x|f1,M fo,fi1.fr2
tg [0 0| x|x[0][0[2|0|2|\x|[1|0]|f1,/fs fr, M fs f11| 6 te |00 X [X[O|0|X|X|X|X|1|0]| f1,[s fa, FEEHH [,

()] (h)

119

reportsthe values of5;; where applicable. A valid detection for the fault considered at each
iteration is denoted by bold font, whereas a sketched fault denotes that the fault is no more
detected by the corresponding test. For instance, in Table 6.2(d)/faslho more detected

by testt;, while it is detected bys.

The given initial test sef has no unspecified bitSTable 3.2(a))and the fault simulation
identifies the lists of faultd’; that are detected by each teést We follow the execution of
the proposed algorithm by considering the fault orderifig< fo < f3 < fu < f5 < fe <

Jr < fs < fo < fio < fu1 < fi2.

The first iteration considers the fayit. Using Equation 6.3 we calculate the gain in specified
bits for each one of the tests, t3, t5 andtg, when faultf; is only considered in one of the
corresponding listsK;, F5, F5 and Fg, respectively). Recall that’;; denotes how many
specified bits can be changed into unspecified, ifs explicitly targeted only by test;.
According to Table 6.2(c), if; is enforced to be detected by téstand not by any other test
that detects it (i.ets, t5, tg), 7 specified bits can be converted into don’t cares. This gain is
6 bits forts, 8 bits fort; and 9 bits forts. Since,n = 2 the algorithm selects the 2 “best”
values, i.e. those that give the higher gain in specified bits, which in this case i&tests

ts. The 2 higher gains are shown in angular brackets. In Table 6.2(d), flaidtremoved
from F} and F3 so that 7 bits in the corresponding tests become unspecified, that is 3 in
and 4 int; shown in bold.

In the second iteratioif Table 6.2 (e) and (§) the algorithm considers fault, which is
detected by tests, t, and¢,. Computing the values for th@,; results in 6, 6, and 4 bits

for teststy, t; andt,, respectively. Thusf, is removed fromF} giving 4 bits that can be
converted into unspecified, and which are shown in bold in Table 6.2(f). We follow the same
process for faultys, f4, f5, and fs, while fault f; is kept in the only two lists that exists (i.e.

F, and Fy), without any computation.

The iteration for faultfs identifies four tests that detect the fault, i®.,ts,t, andts. Test

t4 is certainly one of the two “best”, yet no clear decision can be made for the second best
test. Any secondary decision criterion can be used, yet in our implementation we decide in
favor of the first test in the test set order. Thus, fgiylts removed fromF; and F; which

gives 3 more unspecified bits in tegtsandig, respectively. The latter relaxation gives a
test (i.e.t3) what detects no faults; can be removed or not in the final test set depending

120

onthe intended application. For instance, if the application requires small application time
t3 should be removed, whereas if the targeted application demands high defect cayerage
should be left in the test set and all bits should be fixed appropriately.

All remaining faults, i.e. fs, f10, f11, @nd fi» are detected by only 2 or 1 tests, and, thus, no
further action is necessary. Recall, that, keeping all detections for a fault that is detected

or fewer times is essential, since, from the problem formulation (Section 6.3)detect

fault coverage should be preserved. Thus, processing these faults give no more unspecified
bits and leaves the test set unchanged. In Table 6.2(b) the final relaxed tEsissshown,
together with the list of faults detected by each test. Observe tha{ (fié) = N(7) = 2
sinceall faults are detected times, except faultg, and f;» which are detected only once,
like they do in the given test s@t. Moreover,K (7)) > K(7') since7"’ has only 38 specified
bits (K(7") = 0.53), while 7 is a fully specified test sef{(7") = 1). Finally, the number
of test patterns is the same or can be smaller (by remaynglepending on the targeted

application. Thus, all three constraints of the problem considered have been satisfied.

6.6 Experimental Results

The proposed algorithm was implemented using ANSI C++ language, in a UNIX environ-
ment. All experiments were run on a 1GHz SunBlade 1500 with 4GB of RAM, using the
full-scan versions of the ISCAS’89 benchmark circuits. The initiadetect test sets were
obtained from [97].

From the method’s algorithm (Figure 6.1) we note that the test generation and the fault
simulation processes are important for the proposed technique. Although, any previously
proposed test generation process that produce tests with a lot of don’t cares bits can be used,
we use the in-house function-based tool for single stuck-at faults, based on Binary Decision
Diagrams and using the package of [41] described in Section 4.5.

First we present the test set characteristics before and after applying the proposed method
on the compact 10-detect test sets of [97]. Table 6.3 shows the number of Primary Inputs
in Column 2, next to the circuit name. Column 3 reports the number of faults considered
for each circuit. The number of faults considered for each faults was obtained after applying

121

function-basedault equivalence rules similar to those used in [102] on top of the Checkpoint
Theorem [59]. Column 4 reports the size of the initial testBetnd Column 5 the number

of specified bits ir7. Column 6 reports the-detect fault coverage calculated using Defini-

tion 6.2. Columns 7-9 list the same information for the derived relaxed test sktoreover,

the specified to total bits rati’ (7”) (Definition 6.3), after the test relaxation is reported, in
Column 10. The initial test sets are fully-specified, thil§;7) = 1, in all cases. Finally,
Column 11 shows the time required for the proposed method, in seconds. For all circuits re-
ported then-detect fault coverage has been preserved. Circuits s386, s420, s1196, and s1488
then-detect fault coverage is increased due to coincidental detections of faults that have less
thann detections in the initial test set. The latter occurs since, as we mentioned before, our
method performs test generation for the list of faults remained for each test and, thus, extra
fault detections may arise. Clearly, the proposed method helps significantly in identifying
bits that can get don’t care values. The reduction in specified bits is, in most cases, around
50% and on the average is 59%, since the avefa@g’) is 1-0.41. This reduction is signif-

icant, despite the fact that the 10-detect test sets used are very compact (close to the optimal
size for 10-detect). Typically, less compact test sets allow for higher specified bits reduction.

Since, to our knowledge, there is no prior work on test set relaxation-étmtect test sets we

have implemented a simple test relaxation technique in order to demonstrate the effectiveness
of the proposed method. Specifically, this method is a brute-force method in which each test
is fault simulated and only the detected faults that have not been condnexs are used

to generate a new test, with fewer specified bits, to replace the one from the original test
set. Consequently, fault dropping is performed after each test replacement. In this manner,
each considered test to be relaxed will no longer have to target a fault if it has already been
detectedr times. Table 6.4 lists the obtained results. The initial test Betse the same

as those used for the experiment in Table 6.3. Columns 3 and 4 list the specified to total
bits ratio K (7") for the brute-force and the proposed approach, respectively. In all cases
the proposed methodology is more effective in decreasing the number of specified bits. This
demonstrates that the optimization goal targeted in the proposed approach helps in finding
better sets of (10 for this experiment) tests to target a fault such that the number of specified
bits is reduced, than a straightforward approach that selectssthesesets in a brute-force
manner (first tests in the test set that detect the fault).

122

Table 6.3: Test Set Relaxation for 10-detect Test Sets
Initial Test Set After Proposed Method

Circuit | Pls | #faults | |7| | sp.bits | N(7)(%) || |7’| | sp.bits | N(7")(%) | K(7') | CPU(s)
s208 18 210 271 4878 73.190 || 156 1050 63.524 0.22 1.36
$298 17 332 234 3978 100.000 | 234 2320 100.000 | 0.58 1.99
s344 24 334 138 3312 100.000 | 136 1907 100.000 | 0.58 2.32
s382 24 418 253 6072 100.000 || 251 2988 100.000 | 0.49 3.36
s386 13 430 201 2613 60.442 | 201 1903 60.535 0.73 3.49
s420 34 446 | 433 | 14722 58.991 | 224 2852 59.170 0.19 9.35
s510 25 572 | 543 | 13575 | 100.000 || 543 4278 100.000 | 0.32 4,01
s526 24 625 | 492 | 11808 | 100.000 || 491 6621 100.000 | 0.56 4.12
s641 54 518 227 | 12258 | 100.000 || 227 5997 100.000 | 0.49 8.25
s820 23 1018 | 949 | 21827 | 100.000 | 942 | 10270 100.000 | 0.47 9.85
s953 45 1078 | 766 | 34470 | 100.000 || 764 9442 100.000 | 0.27 13.12
s1196 | 32 1294 | 1233| 39456 97.295 || 1131| 15262 97.303 0.39 14.35
s1423 | 91 1408 | 269 | 24479 | 100.000 || 265 | 11974 100.000 | 0.49 13.75
s1488 | 14 1642 | 209 2926 55.164 | 209 2482 55.201 0.85 11.94
s9234 | 247 | 6960 | 1132| 279604 | 100.000 || 1132| 84656 100.000 | 0.30 || 232.32
s13207| 700 | 9788 | 2341| 1638700| 100.000 || 2341| 113449 | 100.000 | 0.07 | 325.36
s$15850| 611 | 11182 | 983 | 600613 | 100.000 || 983 | 114596 | 100.000 | 0.19 | 486.32
$38417| 1664 | 31183 | 784 | 1304576| 100.000 || 784 | 756652 | 100.000 | 0.58 | 912.33
Average:| 91.394 Average:| 90.874 0.41

6.6.1 Fault Ordering Effect on Relaxation

The algorithm of Figure 3.2 implies that the proposed method highly relies on the order in
which the faults are examined. The reason is that the main decision on which tests must ex-
plicitly detect each fault is taken based on the gain function (Equation 6.3 and Equation 6.4)
which is computed using the contribution, in specified bits, of each fault at each test (i.e.
¢;j)- This contribution changes during the relaxation process, since every fault detection that
is removed from each test’s list(for testt;) disturbs the bit orientation in the considered
test.

For example, consider a test = {1,0,1,0,1,0,1, 1} that detects 3 faultg,, f,, and f,
(i.e., F. = {f., fy, f-}), shown in Table 6.5. The contributions., ¢,., andc,. is 2, 1,
and 2 specified bits, respectively. Specifically, assume that by remgyitige first two
bits become don’t care, whereas removijfjghe fifth bit of the test becomes of unspecified
value. Removingf, results in two don’t cares bits, i.e., the last two bits of the test (bits 7

123

Table 6.4: Comparing with a Brute-Force Technique

Brute-force | Proposed
Circuit | |7 K(T") K(T")
s208 271 0.48 0.22
s298 234 0.82 0.58
s344 138 0.72 0.58
$382 253 0.89 0.49
s386 201 0.91 0.73
s420 433 0.35 0.19
s510 543 0.67 0.32
s526 492 0.74 0.56
s641 227 0.78 0.49
s820 949 0.66 0.47
s953 766 0.45 0.27
s1196 | 1233 0.54 0.39
s1423 | 269 0.69 0.49
s1488 | 209 0.91 0.85
s9234 | 1132 0.57 0.30
s13207| 2341 0.69 0.58
s15850| 983 0.38 0.19
s38417| 784 0.72 0.58

and8). Bits 3 and 4 become don't cares if both fauftsand f, are removed fron¥, and

bit 6 becomes don't care if both faulfs and f, are removed fron#.. Let us concentrate on

the contribution of faultf, and assume that this fault is examined second. If the algorithm
examinesf, first and the decision is to remoye from F, then the contribution of faulf,
remains 2, as it is shown in the first double-row of Table 6.5. If the algorithm examines fault
f,, first and removes it forn#, then the contribution of the fault becomes = 4 (second
double-row of Table 6.5). When the decision on fafjltis to be made, the outcome may
change depending on which ¢f and f, has been examined first. Table 6.5 summarizes
the changes in the faults contribution for different orderings. For real circuits, the faults
contribution change range can become very large, especiallyndbtect test sets where

the average number of detections are larger and, thus, each test’s list of detected faults is
larger. The latter implies that the ordering of the examination of the considered faults has a
great effect on the final ratio of specified bits in the test set.

124

Table 6.5: Fault Contribution for Different Fault Orderings

Ordering Fault Removed Test Pattern Cae | Cye | Cze | SP.bitsin t.:

none none 1/o[1]o0|1]0]1]1 112 8
I 1/0/1{0|1|0|x|X 2 | - 6

[<Ju <y
fm X|x[1/0/1]0|x|X - 4 - 4
1y 1/0/1|0|x|0|1/1] 4| -] 3 7

fy < fa <[
fa X[X[X|X|x[|0[1]|1] - - 3 3
:) fz X|{x|1]/0|1/0]1]|1 3|2 6

fo <[y <[
fy X[X|x|x|[x|0]1]|1] - -1 3 3
1 1/0/1/0(1|0|x|x| 2| 2] - 6

fo<fy<fa
1y 1{0[1|0|x|x|x|x| 4| - - 4
Iy 1/0/1|0|x|0|1/1] 4| -] 3 7

fy<f.<fe
I 110[1]0|x|x|x|x| 4] - 1| - 4
fe Xx|x|1/0|1/0|21|1] - 3|2 6

fe < fo < Jy
f: X|X|[1[0/1|0[x|x| - |4] - 4

Next, we give experimental results for the proposed test relaxation method under a number
of different fault orderings. Sorting the faults under the different criteria can either be done
once before the application of the algorithm of the proposed method, or can be updated
dynamically during the execution of the algorithm. We have experimented using the first
method which keeps the execution time small. Specifically, our experimentation investigates
five different fault orderings:

I. Follow topological order of faults, i.e., examine faults closer to the primary inputs first.

ii. Consider faults with more tests detecting them first, i.e., consider faults with more
minterms in the corresponding test functions, first.

iii. Consider faults with fewer tests detecting them first, i.e., consider faults with less
minterms in the corresponding test functions, first.

iv. Consider faults with more tests in the initial test detecting them, first.

v. Consider faults with fewer tests in the initial test detecting them, first.

125

Table 6.6: Test Relaxation using Different Fault Orderings

Initial Test Set

Topological Order

Mor e Minterms First

Circuit | Pls - - -
Tests| Sp.Bits | BCE+(%) | Tests| Sp.Bits | BCE+(%) || Tests| Sp.Bits | BCE+ (%)

s208 18 | 271 | 4878 92.688 177 | 1100 90.012 156 | 1052 89.516
s298 17 | 234 | 3978 99.595 234 | 2340 99.486 234 | 2329 99.582
s344 24 || 138 | 3312 98.643 138 | 1985 98.212 137 | 1923 98.133
s382 24 || 253 | 6072 99.722 253 | 3169 99.594 251 | 2988 99.515
s386 13 | 201 | 2613 94.471 201 | 1903 94.479 201 | 1904 94.479
s420 34 || 433 | 14722 85.641 243 | 3008 85.214 225 | 2862 84.972
s510 25 || 543 | 13575 98.383 542 | 4304 98.210 542 | 4291 98.141
s526 24 || 492 | 11808 99.382 492 | 6907 99.251 491 | 6668 99.124
s641 54 || 227 | 12258 99.125 226 | 6208 98.427 227 | 5997 98.350
s820 23 || 949 | 21827 99.959 948 | 10466 | 99.950 942 | 10285 99.948
s953 45 || 766 | 34470 90.938 766 | 9620 89.746 766 | 9469 89.745
s1196 | 32 | 1233| 39456 96.564 || 1155| 15715 | 95.867 | 1133| 15299 95.890
s1423 | 91 | 269 | 24479 97.374 269 | 12755 | 96.198 269 | 12135 96.186
s1488 14 | 209 | 2926 89.162 209 | 2492 89.112 209 | 2483 89.161
9234 | 247 | 1132| 279604 | 99.058 | 1131| 85273 | 88.430 | 1132 84656 88.302
s13207| 700 | 2341| 1638700 90.784 | 2341| 114173| 88.994 | 2341 | 113449 88.664
s15850| 611 | 983 | 600613 | 92.798 983 | 114712| 90.321 983 | 114618 90.331
s38417| 1664 | 784 | 1304576/ 98.789 784 | 757011| 87.413 784 | 756852 87.143

(a)
Gircuit | Pls Fewer Minterms First Mor e Test Detecting it first | Fewer Tests Detecting it First

Tests| Sp.Bits | BCE+(%) | Tests| Sp.Bits | BCE+(%) || Tests| Sp.Bits | BCE+ (%)

s208 18 195 1146 90.214 156 | 1050 89.527 206 | 1195 90.311
s298 17 | 234 | 2373 99.581 234 | 2320 99.579 234 | 2358 99.580
s344 24 || 137 1975 98.251 136 | 1907 98.175 138 | 1985 98.312
s382 24 || 253 | 3237 99.612 251 | 2993 99.521 253 | 3228 99.595
s386 13 | 201 1905 94.479 201 | 1904 94.479 201 | 1905 94.479
s420 34 || 275 | 3271 85.121 224 | 2852 84.965 286 | 3306 85.384
s510 25 || 543 | 4320 98.201 542 | 4281 98.134 543 | 4327 98.208
s526 24 || 492 7006 99.312 491 | 6621 58.346 | 492 | 6976 98.152
s641 54 || 226 | 6217 98.544 226 | 6001 98.483 226 | 6187 98.519
s820 23 || 949 | 10573 99.949 942 | 10270 | 99.949 949 | 10558 99.950
s953 45 | 765 | 9980 89.787 764 | 9442 89.745 766 | 9861 89.753
s1196 | 32 | 1180| 16153 95911 || 1131| 15262 | 95.899 | 1178| 16055 95.921
s1423 | 91 | 269 | 12856 96.198 265 | 11974 | 96.194 269 | 12918 96.201
51488 14 | 209 | 2505 89.183 209 | 2482 89.178 209 | 2510 89.184
s9234 | 247 | 1132| 85436 88.491 || 1132| 84933 | 88.386 | 1132| 85764 88.615
s13207| 700 | 2340| 113721 | 88.830 | 2341| 113488| 88.818 | 2341 | 114001 88.936
s15850| 611 || 983 | 114811 | 90.242 983 | 114596| 90.234 982 | 114686 90.239
s38417| 1664 | 783 | 756768 | 87.186 784 | 756652| 87.087 783 | 756822 87.217

(b)

126

Table 6.7: Test Relaxation using Different Fault Orderings (essential faults first)

Initial Test Set Topological Order Mor e Minterms First
Tests| Sp.Bits | BCE+(%) || Tests| Sp.Bits | BCE+(%) | Tests| Sp.Bits | BCE+(%)

Circuit | Pls

s208 18 271 4878 92.688 178 | 1125 90.012 157 | 1057 89.516

s298 17 234 3978 99.595 234 | 2348 99.486 234 | 2333 99.582

s344 24 138 3312 98.643 138 | 1991 98.212 138 | 1935 98.133

s382 24 253 6072 99.722 253 | 3195 99.594 252 | 3012 99.515

s386 13 201 2613 94.471 201 | 1905 94.479 201 | 1905 94.479

s420 34 || 433 | 14722 85.641 243 | 3015 85.214 226 | 2931 84.972

s510 25 543 | 13575 98.383 542 | 4358 98.210 542 | 4302 98.141

s526 24 || 492 | 11808 99.382 492 | 7001 99.251 491 | 6702 99.124

s641 54 227 | 12258 99.125 226 | 6211 98.427 227 | 6004 98.534

s820 23 949 | 21827 99.949 948 | 10502 99.948 942 | 10320 99.948

s953 45 766 | 34470 90.938 766 | 9702 89.846 766 | 9511 89.773

s1196 32 || 1233| 39456 96.564 || 1154 15680 95.877 | 1133| 15320 95.890

s1423 91 269 | 24479 97.374 269 | 12854 96.203 269 | 12245 96.194

s1488 14 209 2926 89.162 209 | 2511 89.188 209 | 2503 89.193

s9234 | 247 || 1132| 279604 | 90.058 | 1132| 84927 88.322 | 1132| 85002 88.421

s13207| 700 || 2341 | 1638700| 90.784 || 2340| 114012| 89.041 | 2341| 113781 88.731

s15850| 611 || 983 | 600613 | 92.798 983 | 114671| 90.251 983 | 114681 90.257

s38417| 1664 || 784 | 1304576 98.789 784 | 756799 | 87.255 784 | 756724 87.192

©

Fewer Minterms First Mor e Test Detecting it first | Fewer Tests Detecting it First
Tests| Sp.Bits | BCE+(%) || Tests| Sp.Bits | BCE+(%) | Tests| Sp.Bits | BCE+ (%)

Circuit | Pls

s208 18 195 1151 90.223 175 | 1095 89.518 168 | 1073 90.320

$298 17 234 2421 99.591 234 | 2357 99.569 234 | 2325 99.570

s344 24 137 1977 98.261 138 | 1930 98.165 136 | 1931 98.322

s382 24 253 3241 99.622 253 | 3051 99.511 251 | 3119 99.585

s386 13 201 1905 94.479 201 | 1904 94.470 201 | 1904 94.488

s420 34 275 3299 85.130 224 | 2891 84.957 236 | 2931 85.393

s510 25 | 543 4403 98.211 543 | 4278 98.120 542 | 4335 98.218

s526 24 | 492 7012 99.322 492 | 6708 58.340 491 | 6812 98.142

s641 54 226 6258 98.649 227 | 6075 98.414 226 | 6040 98.521

s820 23 || 949 | 10580 99.948 949 | 10445 | 99.949 943 | 10446 99.950

s953 45 || 765 9997 99.836 766 | 9507 99.803 764 | 9563 990.811

s1196 | 32 | 1181 16192 95.976 || 1152| 15581 | 95.889 | 1131 15408 95.915

s1423 | 91 | 269 | 12906 96.269 269 | 12232 | 96.056 265 | 12465 96.116
s1488 | 14 | 209 2509 89.169 209 | 2502 89.169 209 | 2485 89.157
9234 | 247 || 1132| 85554 88.429 | 1132| 84711 | 88.342 | 1132 85281 88.496
s13207| 700 | 2341 | 113851 | 88.838 | 2341| 113563| 88.719 | 2341 | 113982 88.739
s15850| 611 | 983 | 114760 | 90.313 982 | 114842| 90.355 983 | 114691 90.292
s38417| 1664 | 784 | 756801 | 67.265 783 | 756742| 67.118 784 | 756912 67.309

(d)

127

Orderings(iv) and (v) actually sort faults based on the number of tests that detect them on
the initial test set. This information can be easily obtained by the fault simulation procedure
preceding the main algorithm application. Ordering (i) examines faults based on the order the
corresponding circuit lines are visited during on a topological traversal of the circuit’s graph.
A topological order can be obtained in linear, to the size of the circuit’s graph, time [103].
Orderings (ii) and (iii) are different from (iv) and (v), since they consider all tests that detect
the corresponding fault obtained by a test generation process. Since, in our experimentation
the test generation is carried out by the function-based framework presented in Chapter 3, we
are able to obtained accurate information on the total number of tests that exist for each fault,
efficiently. The latter can be done by counting the number of minterms in the test function
corresponding to each fault. Recall that we use a BDD-based function implementation and,
thus, counting the function’s minterms is a linear operation on the diagram'’s size.

Alternatively, if the test generation process used does not allow efficient retrieval of such
information, a limited number of test generation queries for each fault can be made, in order
to classify faults according to criteria (ii) and (iii). The motivation for this classification is
an attempt to sort faults depending on how “difficult” is to be detected. Thus, orderings (ii)
and (iv) give priority to easy-to-detect faults, while, ordering (iii) and (v) favor hard-to-detect
faults. Intuitively, we expect that orderings (ii) and (iii) will give more accurate classification
of faults for this criterion.

Table 6.6 (a) and (b) report experimental results for all five different orderings. For each
ordering the relaxed test set size, the number of specified bits in the relaxed test set and the
bridging fault coverage estimation (BCE+) are reported. Table Table 6.6(a) reports results
for orderings (i) and (ii) in Columns 6-8 and 9-11, respectively, while Columns 3-5 report
this information for the initial test set. Table 6.6(b) provides results for orderings (iii), (iv)
and (v) in Columns 3-6 , 6-8, and 9-11, respectively. The same information is reported
in Table 6.7 (a) and (b) when the orderings considered the essential faults first, i.e., those
faults that have fewer tham or exactlyn detections. The best results for all orderings are
shown in boldfaced font. Observe that there is a clear advantage for ordering (iv) i.e., when
considering faults with more tests in test getfirst. In all but six circuits the most relaxed

test sets are those where the faults are examined based on this rationale. Nevertheless, our
method allows applying two or three different ordering with small increase on the CPU time
and keep the best results in terms of specified bits. Considering essential faults first does
not give better results, thus, one can only focus on orderings (ii) and (iv) in order to get

128

the best relaxation results. Both these orderings try to “accommodate” easy-to-detect faults
first, in the tests considered. While ordering (ii) is most accurate than ordering (iv) the best
results are obtained by the latter ordering, in most of the cases, while in the cases while (ii)
Is best the difference in specified bits is not large. This observation eliminates the need for
considering ordering (ii) when no accurate information on the number of tests for each fault
is available, if for instance, a structure-based test generation framework is used.

6.6.2 Random Fixing of Unspecified Bits

Table 6.8 shows experimental results justifying that random bit fixing restores the average
detection parameter as well as the defect fault coverage. We have cdBsaigng Faults

to represent defects, using the standard non-feedback bridging fault model [104]. After
the circuit name and the number of primary inputs for each one of the circuits, we report
experimentally obtained information about three differettetect test sets. The first test set
(Columns 3-6) is the initial test set, the second one (Columns 7-10) is the relaxed test set
obtained by the proposed method and the third test set (Columns 11-14) is after random bit
fixing. For the bit fixing we have used a 0-1 random generator with uniform distribution and
have fixed all the unspecified bits, even in those tests that after the relaxation process detect
no faults and could be removed from the test set.

For each of these test sets we report the size of the test set (Columns 3,7, and 11), its es-
timated bridging fault coverage (Columns 4 and 5, 8 and 9, 12 and 13), and its average
detection (Columns 6, 10, and 14). The bridging fault coverage was estimated using two dif-
ferent estimators. The bridging fault coverage under the Columns named BCE+ (Columns 5,
9 and 13) were calculated using the estimator proposed in [105] which takes into considera-
tion the number of detections of each fault and the probabilities for each line to have the logic
one or the logic zero value. [105] shows that this estimator gives very good approximation
of the actual bridging fault coverage. Yet, in Columns 4, 8 and 11 we also provide a more
commonly used estimator (i.e., BCE), proposed in [106], for completeness.

The average detections in the obtained test4é1((Z’)) has dropped, as expected, after the
relaxation, in all but three circuits (s298, s386 and s1488). These circuits have the lower
reduction (42 %, 27 % and 15 %, respectively). The latter two h&i&7’) < 10 since

there exist a lot of faults with lower than 10 different tests and only few with more than 10.

129

We observe that the drop iIAD(7") is, most of the times, analogous (7). In other
words, the higher the reduction in specified bits (low#&(7")), the higher is theAD(7")
drop. This is inherent to the test relaxation process, as explained in Section 6.2.

The major observation, here, is that the average detection is tightly correlated with the bridg-
ing fault coverage. When average detection decreases, due to the relaxation process, the
bridging fault coverage also decreases and in all but two cases (s208, s420) the decrease is
proportional for these two measures. Since an advantagelefect test sets is the detection

of defects and faults not explicitly targeted, it could be argued that reducing the average fault
detections may cancel this advantage. Essentially, all the fixed value bits in the unrelaxed test
set7 contribute to the detection of non-targeted faults and defects as it is concluded from
the bridging fault coverages before and after relaxation. Those of the test set bits that are
converted to don't cares during the relaxation process remove their contribution to this extra
detection property. By observing the bridging fault coverage for the relaxed test set after
applying random bit-fixing, this is not problem that remains during test application where all
bits are fixed. The latter confirms that although our method removes additional modeled fault
coverages (i.e., beyonddetect), non-targeted fault and defect coverages are maintained or
can be even increased, if bit fixing is applied. Despite the fact that the relaxation process
affects the values for both the average detection and the bridging fault coverage, after ran-
dom bit fixing the values for average detection, as well as for the bridging fault coverage, are
restored to the same level as in the initial testBetThus, experimentation shows that the
statement made in Section 6.2 assuming that the test relaxation process has no catastrophic
effect on the defect detection ability afdetect test sets, is very realistic. Since all applica-
tions that benefit from having relaxed test sets as input, will fix the don’t care bits prior to the
test application, the average fault detections for test $etill eventually increase to that of

7.

6.7 Conclusions

In this chapter we have investigated the impact of test set relaxatiowl@tect test sets. We
presented a systematic methodology for decreasing the number of specified bits in a given
n-detect test set. The motivation comes from the observation that the specified bits in an

130

Table 6.8: Random Unspecified Bits Fixing Effect

Initial Test Set After Proposed Method After Random Bit Fixing

Circuit | Pls | |7] | BCE (%) | BCE+ (%) | AD(T") || |T'| | BCE' (%) | BCE+ (%) | AD(T') | |T"| | BCE" (%) | BCE+" (%) | AD(T")
s208 18 || 271 | 97.188 92.688 37.45 | 156 | 95.346 89.527 11.18 || 271 96.012 91.434 29.16
s298 17 || 234 | 99.950 99.595 25.57 || 234 | 99.946 99.579 2521 || 234 99.959 99.661 34.32
s344 24 138 | 99.973 98.643 29.92 | 136 | 99.951 98.175 22.31 | 138 99.964 98.475 30.30
s382 24 || 253 | 99.979 99.722 38.22 || 251 | 99.953 99.515 25.34 | 253 99.964 99.880 38.29
s386 13 || 201 | 94.752 94.471 9.88 201 | 94.758 94.479 9.41 201 94.813 94.535 9.82
s420 34 | 433 | 93.917 85.641 54.14 | 224 | 93.903 84.965 18.23 || 433 96.410 88.214 54.92
s510 25 || 543 | 99.976 98.383 57.17 | 543 | 99.972 98.134 51.34 | 543 99.976 98.413 57.11
s526 24 || 492 | 99.984 99.382 60.07 | 491 | 99.958 99.110 39.1 492 99.968 99.258 60.38
s641 54 || 227 | 99.980 99.125 45.01 | 227 | 99.944 98.350 32.22 || 227 99.968 98.865 43.40
s820 23 || 949 | 99.959 99.959 31.92 | 942 | 99.956 99.949 29.67 | 949 99.956 99.956 31.71
s953 45 | 766 | 99.979 90.938 112.21 | 764 | 99.978 89.745 79.59 | 766 99.978 90.903 111.27
s1196 | 32 | 1233| 99.814 96.564 93.3 || 1131| 99.805 95.899 63.12 | 1233 99.841 99.709 94.97
s1423 91 | 269 | 99.991 97.374 48.82 | 265 | 99.964 96.194 26.12 || 269 99.990 97.359 47.70
51488 14 || 209 | 90.727 89.162 8.93 209 | 90.744 89.178 8.15 209 90.760 89.202 8.95
s9234 | 247 | 1132| 99.985 90.058 148.28 || 1132 99.969 88.302 60.51 | 1132 99.980 89.462 167.42
s13207| 700 | 2341 99.984 90.784 354.22 | 2341 99.960 88.664 62.89 | 2341 99.974 89.705 413.97
s15850| 611 || 983 | 99.991 92.978 156.52 || 983 | 99.969 90.234 48.41 | 983 99.982 91.722 172.15
s38417| 1664| 784 | 99.981 98.789 67.12 | 784 | 98.212 87.087 38.34 | 784 99.982 98.804 67.84

n-detecttest set adds extra detections for faults that are easy to detect. The actual number of
detections for these faults in these test sets is much largemthad these extra detections

can be removed, by un-fixing the values for some test bits. This process makes the test
sets flexible and, thus, suitable for a number of applications that appropriately fix the values
for the don’t care test bits. The experimental results reported demonstrate the effectiveness
of the proposed method in achieving high specified bit reduction ratesdetect test sets,

while maintaining then-detect fault coverage. Provided discussion also explains how the
defect coverage and non-targeted fault coverage of the relaxed test sets will be similar to that
of the initial test sets, when the relaxed test sets are fully-specified before test application.

131

CHAPTER 7/

GENERATING INCREASEDQUALITY n-DETECT

TESTSETS VIA FAULT CONE PARTITIONING

7.1 Introduction

In the previous chapter we have argued that test sets targeting each modeled fault more that
once are beneficial for targeting non-modeled faults and emerging defects. The rationale
behind detecting a fault more than one time is to achieve higher quality in terms of defect
coverage, by generating a numberdifferenttests for each modeled fault. Test sets that
detect each fault multiple times or with at leastifferent tests have been shown to give

high non-modeled fault coverage [90, 91, 92, 93, 94, 95, 97].

Most of the ATPG methods for multiple-detectordetect test sets concentrate, mainly, on
reducing the test generation effort while keeping the overall test set size small. Another
important issue addressed in the literature is the diversity of the different generated tests per
fault. While test generation is generally done with well defined techniques, in an iterative
manner, the main target is to quantify the difference between the tests that target the same
fault and, thus, generate as diverse tests as possible for each modeled fault. A number of
previous works address the issue of how differentthests for each fault should be, either

by changing the test set characteristics [96, 97], or by using structure-based metrics [89,
94, 107, 108]. This is because a test set with diverse tests per targeted modeled fault has
been shown to increase the defect and non-modeled fault coverage of the test set [96, 107,
108, 109]. Diversity, i.e., how different are the tests that detect a fault, has been defined

133

in various ways. [96] proposed a definition feufficiently differentests, in terms of how
different certain primary input signal values are with respect to the already generated tests for
a fault. The works in [96, 108, 109] introduce measures that quantify the difference between
tests detecting the same fault, based either on the internal signal values that excite the fault
[96, 108] or on propagating the fault to a primary output [109]. In essence, the motivation
behind all these methods is to find tests that activate the fault in different ways (internal
signal values) and propagate the fault effect to some primary output via different propagation
paths. They attempt to achieve that by incorporating randomness or some efficient brute-
force heuristic in the test pattern generation process. Hence, none of the existing methods
that generate diverse tests examines activation and/or propagation paths. As a result, the
number (and different constituent circuit lines) of the different activation/propagation paths
for a fault cannot be guaranteed.

The work in this chapter is motivated by previous work on the need for generating diverse
tests for increasing the quality, in terms of non-modeled fault coverage, ofdatect test

set. Since, from the work presented in Chapter 2, we have observed that differentiating the
propagation paths increase the quality of the test sets, we follow the same rationale here, for
introducing diversity fom-detect test sets. Thus, we propose a methodology for generating
n-detect test sets such thesich of then tests detecting a fault is guaranteed to propagate
the fault via a different propagation path than the remaininng. tests In the case where

only £ < n such tests exist for a fault (the proposed method can efficiently determine this)
n tests are still generated in order to maintain 100%etect fault coverage. However, two

or more tests that propagate a fault through the same propagation path can still differ since
the proposed method can work in a complementary manner to the methods of [96, 108] to
generate tests with different excitation conditions or sufficiently different test pattern values.

Essentially, the proposed method gives a systematic way of partitioning the circuit under test
into non-overlappingpropagation subcircuitsFor each fault a number of such subcircuits is
obtained, each of which contains a number of paths that allow the propagation of the fault to
at least one primary output. Each propagation subcircuit is guaranteed to contain at least one
different propagation path from any other propagation subcircuit for the same fault. The pro-
posed algorithm identifies the circuit cone starting from each fault site towards the primary
outputs. Then, it performs a breadth-first traversal on the cone and groups the propagation
paths (paths segments) in propagation subcircuits, based the cone’s fanout branches. The
process accommodates paths in different propagation subcircuits as soon as they are iden-

134

tified to be distinct cone’s stem. This decision criterion not only ensures non-overlapping
propagation subcircuits, but includes the longest paths from the fault site to some primary
output in different subcircuits for the fault under consideration. For each faulifferent
subcircuits are obtained. For faults with orily< n propagation pathg; subcircuits are
obtained with each subcircuit being a physical path segment.

Next, the algorithm generates test functions for each one of the faults, for all the subcircuits
obtained. Thus, the test space for each fault is partitionedrir@r £ when less tham
propagation paths exist) groups which generally contain different tests. An undirected graph
is then constructed where each graph vertex corresponds to a test group. The proposed algo-
rithm iterates on the graph and merge compatible vertices together in a bottom-up rationale.
For this work we use a modified definition of test compatibility where two test groups corre-
sponding to the same fault are not considered as compatible, in order to avoid merging the
different tests for the same fault and, consequently, destroy-tiegect property.

The main contributions of the method are:

e In contrast to existing methods, the propagation of a fault via different paths (if these
exist) isguaranteed

e The different propagation paths have as little overlap (common circuit lines) as possi-
ble.

e Path and path segment enumeratioexplicitly avoided allowing the method to be
efficient and scalable.

e The methods of [96, 108] can be used on-top of the proposed method. Hence, each of
the n generated tests is guaranteed to propagate the fault via a different propagation
pathandwith different internal signal values than any of the othet tests.

e The method can be easily generalized to apply to any other fault model (other than the
stuck-at fault model) that is linear to the size of the circuit. In particular, for dynamic
models such as the transition delay fault model, the method can guarantee different
activation paths on top of thedifferent propagation paths.

While the proposed methodology is presented in this context for the stuck-at fault model, it
can be generalized to any fault model that is linear to the size of the circuit. For instance, the

135

transitionfault model can be used in the same manner. Specifically, for the transition fault
model, the subcircuit partitioning can be done not only for propagation, but also for activation
in order to obtain more diversity in the different tests for the same fault. Appropriate
sensitization criteria can be used in both activation and propagation in the same way as they
have been used in Chapter 2.

The rest of the chapter is organized as follows. Section 7.2 describes the process for parti-
tioning a circuit under test inta@ propagation subcircuitper fault. Section 7.3 presents the

test generation methodology. Section 7.4 presents and discusses the obtained experimental
results which demonstrate the effectiveness of the proposed methodology in terms of increas-
ing the number of different fault propagation paths. The impact on defect coverage (using
the bridging fault model as surrogate) is also reported. Section 7.5 concludes the work in
this chapter.

7.2 Partitioning the Fault Site Cone into Propagation

Subcircuits

The significant difference in this work in terms of quality is that the proposed methodology
ensures as much diversity as possible between the different tests targeting the same fault. In
order to achieve this we perform test generation for different parts of the circuit for every
fault. This way we enforce implicit partitioning of the test space for each fault based on a
fault propagation criterion. An important role in the proposed methodology is accorder to
the partitioning process, described in this section.

Each fault defines a circuit cone which starts at the fault site and terminates at the primary
outputs driven by the fault site. In order to fimddifferent tests, each detecting the fault

via different propagation paths, the proposed method partitions the propagation paths into
n groups and generates a test that detects the fault via at least one propagation path per
group (the latter is discussed in detail in Section 7.3). In this section we present how these
groups of different propagation paths can be derived in linear to the circuit size time, without
performing any path enumeration.

136

We first give some necessary definitions used later in this section.

Definition 7.1. The fault cone of line /; is the part of the circuit originating from ling
which includes all physical path segments from lin@ll circuit lines driven by lin€; up to
the primary outputs).

Definition 7.2. A propagation path is a physical path segment from a circuit liheo a
primary output which, under an appropriate value assignment at the primary inputs, allows
the propagation of the effect of a fault at lihg¢o a primary output.

Definition 7.3. A propagation subcircuit for a fault at linel; is a subpart of the fault cone
for [; that contains at least one propagation path. Any non-redundant fault has at least one
such propagation subcircuit.

For any propagation subcircuit of a stuck-at fault at lipet least one primary input assign-
ment exists that allows the propagation of the fault effect through at least one propagation
path of the propagation subcircuit. Any such assignment is a valid test for the stuck-at fault
at line [;. Moreover, it enforces propagation of the fault at least through the propagation
paths that form the propagation subcircuit. The idea of the proposed algorithm is to generate
the n different tests for each fault for different propagation subcircuits corresponding to
that fault. If onlyk < n propagation subcircuits exist then the proposed method uses multi-
ple copies of these subcircuits and tries to differentiate the tests using unspecified bits value
fixing.

The algorithm of Figure 7.1 describes the proposed decomposition of the fault cone into
n propagation subcircuits for a given fault diteThe algorithm performs a breadth-first-
search-like traversal of the circuit to identify thdanout branches that are closer (minimum
distance) to the fault site but to not contain same path segments. Each of these branches is
then used along with the fault site, to define a propagation subcircuit. The traversal starts
at the fault sitef, using a First-In-First-Out queue. For each line that is removed from the
queue all the successor lines are inserted in the queue. If the line under examination is a
fanout branch, then it is kept in a separate ksflines 07-08). Moreover, if this branch is
driven by some other branehin the fault cone (which is already iR), ¢’ is removed from

LIn this section, the paths in an identified subcircuit correspond to physical path segments, instead of prop-
agation paths (as iDefinition 7.2). This requires ATPG to be determined, and is examined in the next section.

For simplicity, we still refer to propagation subcircuits here.

137

find_propag@tion.subcircuitsC,n, f)
Inputs: circuit C, n, fault site f
Outputs: set of propagation subcircuif3s
01: queue = ()

02: listsL =0,B =10

03: insertf at the end of)

04:do

05: ¢ =first element of)

06: remove; from Q

07: if ¢is afanout branch

08: insertg in B
09: if B contains brancl’ that drives branch
10: remove;’ from B

11. L =successor lines afin C

12: foreachlinel € L

13: insert] at the end ofy)

14: until @Q is emptyOR size of B=n

15: for each branch lineg in B

16: ps = subcircuit defined by lineg andgq
17. savepsin PS

18: end if

19:return PS

Figure 7.1: Proposed Fault Cone Decomposition

B. This ensures that no two propagation subcircuits will contain identical path segments
(starting a the fault site). The traversal terminates wiheach fanout branches are identified
or when the primary outputs are reached.

The second step of this algorithm (lines 15-20) derivesitipeopagation subcircuits using

the branch lines included iB. For some lingy in B, the propagation subcircuit is defined as

the part of the circuit that includes all path segments starting at the faulf sitel passing
through the branch ling. Since no two branch lines that can be on the same path are
included in B, every generated subcircuit contains different path segments. Moreover, the
path segments included in a subcircuit are guaranteed to have minimum overlap (in terms
of circuit lines) with the segments of other subcircuits, since the algorithm considers the
appropriate branch lines that are closer to the fault/sitehus, the number of lines between

the fault sitef and the fanout stem of two branchgandq’ in B (which is the common lines
between path segments in the subcircuits deriveg dydq’) is minimized.

In the case where the number of path segments from the faulf sté < n, the algorithm
returnsk propagation subcircuits, each containing a single path segmentt Bon, the

138

generatedgubcircuit may contain more than one path segments. For the examined problem,
there is no need to have balanced subcircuits (in terms of the number of the path segments)
since propagating a fault through at least one path segment in each propagation subcircuit
suffices to derive the desireddetect test set. This method can be easily extended to the
transition fault model for which activation path diversity is desired, in addition to propagation
path diversity. The activation subcircuits can be obtained using the algorithm of Figure 7.1,
traversing the circuit from the fault site towards the primary inputs and keeping gate inputs
in list B, instead of fanout branches.

7.3 Test Generation Methodology

After partitioning the graph inta (if possible) subcircuits, we perform test generation for
each one of those subcircuits. The target here is to haests that propagate the fault via

n different paths in order to achieve as much diversity as possible. The algorithm here is
again graph-theoretic like the one presented in Chapter 4 and takes special consideration for
preserving both the-detect fault coverage and the difference on the propagation paths.

The proposed test generation procedure is function-based and starts by generating one test
function per subcircuit identified in Section 7.2. Hence, it will generatdifferent test
functions per fault. A test function in this case is derived by only considering the circuit
cone from the primary inputs to the fault site (fault activation subcircuit) and one propagation
subcircuit, instead of the entire circuit that is considered in traditional function-based ATPG
like that of Section 4.5. Figure 7.2 shows this first step of the proposed test generation
method.

For each fault the fault cone partitioning procedure of Figure 7.1 is invoked in order to get
different subcircuits per fault (line 02). Then, for each subcircuit, a test function is generated
that implicitly holds all the tests that allow the propagation of the fault effect via any path
segment in the subcircuit (line 04). It is possible that a test function is the constant zero
(0) function, implying that no tests exist that can propagate the fault effect via one of the
path segments in a subcircuit, i.e., the fault is redundant when considering the particular
subcircuit. In this case the propagation subcircuit decomposition procedure of Section 7.2

139

generaten_testfunctions(C,n, F)

Inputs: circuit C, n, fault list F°

Outputs: n test functions for each fault i’

01: for eachfault f; in F

02: PS =find_propagtionsubcircuits(C'n, f;)

03: for eachsubcircuitps; € PS

04: tfi; = generate test function fgf; propagating vias;

05: insertt f;; in TF

06: # replace subcircuits ifP.S containing no propagation paths
07: k=|PS]

08: ifk==n

09: while 3 ¢f;; =0

10: k=k+1

11: PS,=find_propagtion subcircuits(C'k, f;)

12: for eachps; € PS, — PS

13: t fi;=generate test function fgf underps;

14: insertt f;; in TF

15: end while

16: endif

17: else

18: forz=Fk to n

19: tfi. =tf € TF with zth larger number of minterms

20: end else
21:return TF

Figure 7.2: Generating: test functions for each fault

is called again, untih different subcircuits with non-zero test functions are derived (lines
07-16). In this case the algorithm of Section 7.2 is specifically guided to ignore the part of
the circuit corresponding to subcircuits already determined as undesired and concentrate on
the remaining part of the circuit (this is not shown in Figure 7.2 due to space limitations).
Finally, if fewer thann propagation paths exist (and thus, fewer thatest functions), the
already obtained test functions are used in order to cover the extra detections (lines 18-20).
Test functions with a higher number of minterms (tests) are preferred for this purpose.

The procedure of Figure 7.3 describes a graph based approach that allows for the generation
of propagation path diverse tests that detect a large number of faults, for reducing the test
size, without destructing the-detect test coverage. After generatimglifferent test func-

tions per fault using the algorithm of Figure 7.2, an undirected g€ajghconstructed, where

each vertex in the graph corresponds to one test functiori/(lsahd an edge on the graph
denotes compatibility (or not) between two test functions {set There are two kind of

edges in our graph: weighted edges and barriers. The weighted edges between two vertices

140

denotecompatibility, i.e., that the two set of tests implicitly represented by the correspond-
ing test functions can be reduced into a single set of tests since they include common tests
that can detect all faults detected by both test functions (lines 08-15). The weight of an edge
denotes the number of specified bits in the largest cube (partially specified test pattern) in
the intersection of the two set of tests corresponding to the edges’ endpoints. The process
of combining minimum edge vertices in a compatibility graph has been shown to produce
compact test sets, in the case where single detection is desired for stuck-at faults (see Chap-
ter 4. The barriers are essentially non-edges (or edges with infinite weight) and denote that
the vertices at their endpoints can never be combined, because this will reduce the number

barriercompatibility memging
Inputs: circuit C, n, fault list
Outputs: n-detect test set’

01: T F'=generaten _testfunctions(Gn, F')
02: undirected grapti'(V, E) = ()

03: for eachfault f; in F

04: forj=iton

05: insert vertex corresponding @;; in V'

06: insert barrier betweeny;; and allt f;;, for k # jin £
07:do

08: for eachvertexu; € V

09: for eachvertexu; € V, u; # u;

10: t f; = test function corresponding tq

11: tf; = test function corresponding to;

12: if (tf; @ tf; # 0) AND (3 barrier betweem; andu;)
13: insert edge between andu; in £

14: weight{s;, u;)= size of maximum cube itif; e tf;
15: end if

16: foreachvertexu; € V
17: while adj(w;) # 0

18: Umin = Vertex of minimum weight in adj(g
19: w; = mergeu; andu,,n

20: adj@;) = adj(u,) N adj(umnin)

21: barr(y) = barr(y;) U barr(,,)

22: tfi, = tfv L4 tfm,in

23: end while

24: until E contains only barriers

25: for eachvertexu;, € V

26: tf; = test function corresponding ig
27: T =T + cube fromtf;

28: fix unspecified bits i’

29:return T'

Figure 7.3: Proposed ATPG method

141

Figure 7.4:Example of Barrier Test Compatibility Reduction Algorithm

of detections for some fault (line 06), and, thus, disturt»tkaetect fault coverage. The al-
gorithm then focuses on a single vertex (line 16) and identifies the minimum weighted edge
among the list of its adjacent edges (line 17-18). This edge is then absorhedibgs 19-

22). Only the common edges of andu,,;, remain in the new adjacent list of (line 20).

The barriers ofy,,;, are included in the list of barriers af (line 21) to avoid the combina-

tion of u; with a vertex that,,;,, can not be combined. Of course, the new test functiar of

is the result of the logic AND operation between the corresponding functions (line 22). The
same process is repeated until only barrier edges are left in gfagthe desired:-detect

test set is generated by obtaining one test cube from every test function corresponding to
the remaining vertices. The don't care bits in each test cube can be fixed either in a random
manner, or as in [108, 96] to increase the possibility of different fault excitation conditions
for even further diverse tests.

We demonstrate the execution of the algorithm of Figure 7.3 with an illustrative example
for n = 2, shown in Figure 7.4. Let the number of faults befg,... f5. Initially graph G
contains 8 vertices. For each one of the faifiltsf;s and f, there are two vertices in the graph
indicating the two different detections and differentiated by the superscript index. For faults
f1 and f5, only one test exists and so a single vertex is preset, ifor each one of these
faults. A solid line between two vertices represents a weighted ed@e while a dashed

line represents a barrier (Figure 7.4(a)).

142

First, the algorithm examines vertef{l) (shown in light grey) and selects the minimum
edge adjacent to it (Figure 7.4(a)). The vertex at the other endpoint of the edg%(ﬁ)e.,

in absorbed bwl(l) and the new node (Figure 7.4(b)) contains all tests that detect both
fl(l) and fQ(”. Only one common vertex exists in the lists of adjacent verticeﬁ(]t))fand

79 i.e., the vertex corresponding to fayfff’. This edge is included in the list of adjacent
vertices ofa as it can be observed from Figure 7.4(b). The barriefQ%)f is included in

the barrier list offl(l). Next, the only weighted edge of vertexs selected and vertefég)

is absorbed by: adding a new barrier betweenand frfl) (Figure 7.4(c)). Since, vertex

has no more weighted edges the algorithm selects another vertex to examirfé?)imd
vertexa is retired (shown in black). In the same rationale, the edge with fé]dlts selected

and fél) is absorbed (Figure 7.4(d)). The algorithm terminates when only barriers are left
in G (Figure 7.4(f)). Each vertex left corresponds to a test function that contains valid tests
for detecting all absorbed faults. Specifically, each test in the test function corresponding to
vertexa detects faults’!", £ and f{* which means that faultg, and f, are propagated

via some paths in their subcircuit named 1 and féyltia some path in its subcircuit named

2. Vertexb covers faultsf”, 2 and f{" and vertexc f{" and f{"". Thus, then-detect
coverage required in the initig¥ is maintained, and each of the 2 tests for fauiltsf; and

f4 propagate their effect via different paths.

The vertices left correspond to a test function that contains valid tests for the same number
of detections of the faults initially present@ Specifically,a contains all valid tests for all

faults f1, fo and f3, vertexb for faults f5, f4 and f5 and vertexc for f; and f,. Obtaining

a cube from each one of the test functions corresponding to these vertices, gives a valid
2-detect test set for the circuit under examination.

7.4 Experimental Results

The proposed methodology was implemented using ANSI C++, in a UNIX environment. All
experiments were run on a 1GHz SunBlade 1500 with 4GB of RAM, using the ISCAS’85
and the full-scan versions of the ISCAS’89 benchmarks. The function-based ATPG tool was
implemented using BDDs (on top of CUDD) (see Section 4.5).

143

Table 7.1: Average Number of Propagation Paths Per Fault

1-detecttest set 10-detecttest sets
avg. avg. non-empty avg. method of Chapter 4 [97] Proposed
Circuit | pathssegments| prop. subcircuits | prop. paths | avg. prop. paths | % increase| avg. prop. paths | % increase | avg. prop. paths | % increase
c880 6.634 6.234 3.691 4.121 1.000 nla n/a 6.317 6.107
c1355 10.585 9.874 10.122 10.213 1.000 n/a n/a 10.527 4.451
c1908 9.666 8.123 8.198 8.213 1.000 n/a n/a 8.431 15.533
c2670 9.901 9.123 8.771 8.980 1.000 n/a n/a 9.686 4.378
€3540 12.857 9.345 8.931 9.045 1.000 nla n/a 9.362 3.781
c5315 8.681 7.213 6.853 6.987 1.000 n/a n/a 7.583 5.448
c7552 10.401 9.111 5.139 6.436 1.000 nla n/a 7.951 2.168
s208 2.877 2.789 2.473 2.769 1.000 2.789 1.068 2.794 1.084
5298 2.626 2.267 2.264 2.265 1.000 2.266 2.000 2271 7.000
s344 3.863 3.685 3.449 3.663 107.000 3.451 1.000 3.686 118.500
$382 3.469 3.300 3.259 3.269 1.000 3.275 1.600 3.310 5.100
s420 3.683 3.415 2.825 2.843 1.000 2.881 3.111 3.467 35.667
s510 2.569 2.562 2.473 2.479 1.000 2.503 5.000 2.562 14.833
s526 2.578 2471 2.213 2.391 1.113 2.373 1.000 2.474 1.631
s641 5.425 5.203 4.421 5.174 9.779 4.498 1.000 5.209 10.234
s820 1.571 1.570 1.570 1.570 1.000 1.570 1.000 1.570 1.000
5953 3.993 3.992 3.538 3.698 1.000 3.719 1.131 3.996 2.863
s1196 5.849 4.562 3.714 3.923 1.000 4.152 2.096 4.660 4.526
s1423 6.376 6.000 4.451 5.664 1.626 5.197 1.000 6.006 2.084
s9234 5.762 5.463 4.648 4.912 7.765 4.682 1.000 5.487 24.676
s13207 6.142 5.931 5.634 5.705 1.000 5.801 2.352 5.976 4.817
515850 6.081 5.897 5.315 5.452 1.305 5.420 1.000 5.996 6.486
$38417 6.744 6.441 5.983 6.063 1.000 6.121 1.725 6.487 6.300

We consider the stuck-at fault model and obtain the fault lists using the checkpoint theorem.
We compare the generated test sets with two traditionrdétect test sets available to us,

in order to demonstrate the increase in propagation paths obtained when using our method
for n-detect test generation. The first one was derived using the 1-detect test generation
method of Chapter 4, run 10 different times with special consideration in maintaining the
n-detect property. The second is the compact 10-detect test sets of [97]. A comparison with
the test sets of [96, 108] is not possible at this point, since we do not have them by the
time of this thesis completion. Nevertheless, as explained in the introduction of this chapter,
these two methods do not target explicitly the problem of guaranteeing different propagation
paths. More importantly, they are complementary to the proposed method (our technique
can apply on top of these methods). Finally, a 1-detect test set obtained by the academic tool
ATALANTA was used in order to show that the increase in the number of propagation paths
in the tests sets of the proposed method is not an inherent property of traditidetdct test

sets.

Table 7.1 shows comparisons on the average number of propagation paths per fault.After the
circuit name we show the average number of path segments per fault, obtained by a forward
traversal from the fault site to all primary outputs. This is essentially a static information

144

which gives an upper bound on how many different propagation paths exist per fault. Of
course this number is not expected to be reached for two reasons: (i) some of these paths
cannot propagate the fault effect to a primary output and, (ii) the algorithm does not generate
more tham tests, per fault, even if they exist. In Column 3 we report the average number of
possible non-empty propagation subcircuits (in each subcircuit, there exists at least one path
segment that can propagate the fault effect) as obtained by the algorithms of Figure 7.1 and
Figure 7.2. Observe that this gives the exact number of possible propagation paths per fault,
on the average, for n=10. For example, for c880 there exists only 6.234 propagation paths
per fault, on the average, for n=10. Hence, the proposed method should generate test sets
that detect each fault at least as many times. This is demonstrated in Column 9 (the slightly
higher numbers are attributed to additional coincidental fault propagations in a subcircuit).
We have used an in-house tool based on Zero-suppressed BDDs in order to count propagation
paths. This tool allows counting a propagation path only once (no double counting), without
an explicit enumeration of the paths. Moreover, it does not consider the subpaths of a path as
different propagation paths. Thus, in cases where propagation is achieved through two paths
segments one of which is a subpath of the other, the tool counts only one path, specifically
the larger one. Columns 4, 5, and 7 list the average number of fault propagations in the
1-detect, the 10-detect using the method of Chapter 4, and the 10-detect of [97] test sets,
respectively. An/a here indicates that no test set is available for the corresponding method.
In all cases the average number of propagation paths per fault is higher in the proposed
method. The small difference in the averages implies that the extra effort by the proposed
method is necessary when we need to target additional propagation paths. As an example
consider circuit s382. The average number of propagation paths per fault for the 1-detect
test set is 3.259 and for the 10-detect test set of the proposed method is 3.31, give an 0.051
improvement. However, the traditional 10-detect test sets give an even smaller improvement
with average numbers of 3.269 and 3.275, i.e., 0.01 and 0.016 improvement respectively.
Hence, the proposed method achieved 5 times more improvement from the first test set and
3.2 improvement from the second one (the 1-detect test set is used as a reference point here,
in order to show the real improvement on the number of propagation paths in the various
n-detect test sets). This analysis explains the difficulty in obtaining additional propagation
paths, from those already obtained in a 1-detect test set, and, thus, the importance of the
proposed method in increasing the quality of thdetect test sets. In Columns 6, 8 and 10

we show the % increase (improvement) of the average number of propagation paths for the
three different 10-detect test sets, similar to the example given before. This percentage is

145

computedas the difference in propagation paths from the 1-detect test set, normalized to the
smaller such difference among the 10-detect test sets presented here. For most of the cases
this increase is considerable and in some cases extremely high.

Table 7.2: Total Number of Propagation Paths

10-detecttest sets
Circuit 1-detect | method of Chapter 4 [97] Proposed
c880 1422 1459 n/a 6121
c1355 702908 712138 n/a 748038
c1908 8342 8621 n/a 9863
c2670 20959 21293 n/a 331307
c3540 | 10103212 10121231 n/a 12912812
c5315 589591 592103 n/a 642440
c7552 38350 40415 n/a 41878
s1196 2157 1989 1962 2157
s1423 3939 8647 6574 13940
s9234 20064 25727 20143 47692
s13207 | 582132 592346 598211 612391
515850 | 7010166 7017295 7012133 | 7285178
$38417 | 424693 429089 432093 | 465903

Table 7.2 gives the total number of propagation paths. We show numbers only for the larger
circuits since the number of propagation paths for the small circuits are close to the total
number of physical paths in each circuit, even for the 1-detect test sets. For each test set
we count the total number of propagation paths among all fault avoiding double counting
of propagation paths as well as counting propagation paths that are fully contained in larger
propagation paths. Hence, the reported paths are all distinct, and not properly contained in
other, path segments that propagate at least one fault in each circuit. The number of these
paths is increased considerably by the proposed method, allowing us to conclude that in
traditional 10-detect test sets there is a lot of propagation path overlap between tests for
different faults.

Table 7.3 gives test set sizes (Columns 2, 4, and 6) and an estimation on nhon-modeled fault
coverages, using the Bridging Fault (BF) model as a surrogate for defects (Columns 3, 5, 7).
The BF coverages are estimated using the formula proposed in [105], indicated by BCE+ in
Table 7.3. Observe that the test set size may be larger in the case of the proposed algorithm,
yet this is necessary in order to guarantee propagation through different paths. For all the
examined circuits the BF coverage is increased, indicating that the propedetct test

146

Table 7.3: Test Set Sizes and Bridging Fault Coverage

10-detectmethod of Chapter 4 | 10-detectof [97] Proposed
Circuit | tests BCE+ tests| BCE+ | tests| BCE+
€880 | 200 0.97044 n/a n/a 260 | 0.97493
c1355| 840 0.92412 n/a n/a 891 | 0.92712
€1908| 1070 0.95872 n/a n/a 1193 0.95934
€2670| 550 0.95863 n/a n/a 689 | 0.96687
€3540/| 1000 0.96100 n/a n/a 1545/ 0.96809
¢5315| 510 0.97986 n/a n/a 872 | 0.99382
c7552| 780 0.95213 n/a n/a 1238/ 0.96871
s208| 340 0.92833 271 | 0.92688 | 350 | 0.95650
s298| 290 0.99780 234 | 0.99595 | 281 | 0.99619
s344| 200 0.98362 138 | 0.98643 | 168 | 0.98989
s382| 290 0.99830 253 | 0.99722 | 283 | 0.99764
s420| 690 0.89006 433 | 0.85641 | 705 | 0.91460
s510| 560 0.97828 543 | 0.98383 | 586 | 0.98541
s526| 580 0.99204 492 | 0.99382 | 568 | 0.99427
s641| 330 0.98896 227 | 0.99125 | 307 | 0.99405
s820| 1050 0.99899 949 | 0.99959 | 1064 | 0.99969
s953| 780 0.88213 766 | 0.90938 | 935 | 0.91464
s1196| 1150 0.95145 1233 | 0.96564 | 1450 | 0.96804
s1423| 240 0.95621 269 | 0.97374 | 371 | 0.97114
s9234| 1450 0.88093 1132| 0.90058 | 1471 | 0.88620
s13207| 2670 0.91213 2341| 0.90784 | 2614 | 0.99989
s15850| 1600 0.94524 983 | 0.92798 | 1824 | 0.96242
s$38417| 880 0.98127 784 | 0.98789 | 981 | 0.99012

setsare of higher quality.

7.5 Conclusions

In this chapter we presented a novel method for generating high quatigtetct test sets.

The methodology guarantees to increase the number of paths in the circuit that propagate
a fault to a primary output of the circuit. A new method for obtaining subcircuits per fault
cone and enforcing propagation through each subcircuit is presented, without explicit path or
path segment enumeration. A graph-based algorithm controls the size of the test set without
removing then-detect property of the test set. The obtained results show considerable im-

147

provement for then-detect test sets generated using the proposed method, in terms of prop-
agating the fault effect via additional propagation paths as well as increased non-modeled
fault coverages.

148

CHAPTER 8

CONCLUDING REMARKS

Manufacturing testing of digital VLSI circuits is becoming an increasingly challenging prob-
lem due to the enormous circuit complexity, as well as, the nanometer technology scaling.
Very complex large designs with tight timing constraints give rise to a number of diverse
types of defects. Thus, traditional fault models and/or test generation techniques are no
longer adequate for guaranteeing that, within reasonable time and effort, delivered devices
will not exhibit malfunction.

This dissertation presents a number of techniques that provide high quality test sets, for mod-
ern digital integrated circuits. Quality is defined in a number of different ways, depending
on the application under examination, defining a number of different problems.

The first part of the dissertation examines the problem of high quality test generation for
delay faults. The two traditional fault models for delay are either not efficient or not effec-
tive enough. The Transition Fault model, while of linear complexity, can only detect delays
lumped at a specific circuit site. On the other hand, the Path Delay Fault model can de-
tect both lumped and distributed delays, yet its complexity is exponential to the circuit size,
limiting its applicability. Thus, we considered a hybrid model that is of increased quality,
yet its complexity remains linear to the size of the circuit. A function-based test generation
framework was proposed following established path sensitization criteria that provide dif-
ferent quality levels. Moreover, we have proposed a number of enhancements on top of the
generated test sets in order to provide more quality characteristics. The test set compaction
method proposed, reduces the test set size with small decrease on the number of sensitized
paths, and allows for enriching the test set with tests that excites the circuit’'s potential fault
sites through different paths. Additional quality attributes can be assigned to the test sets by

149

restrictingfault propagation only through critical parts of the circuit. The enrichment tech-
nigues proposed here are some of many different enhancement methods that can be applied
on top of the test sets obtained for delay faults using the proposed function-based framework.
Future work could examine more such enhancement methods that take advantage of the size
reduction obtained by the proposed test set compaction technique. In addition, appropriate
combination of the test generation framework and compaction techniques could be used for
a number of different test related problems. An interesting direction would be to take ad-
vantage of the test generation framework in order to generate a large number of tests, with
different path sensitization criteria and for different critical parts of the circuit. On top of
that the proposed test compaction technique can be used, tailored for low power testing, i.e.,
a technique which selects the tests patterns that will give lower power density during test
application. The latter can be done effectively since, the compaction technique proposed can
take full advantage of the information on the tests’ quality used in the test generation process
of the function-based framework.

Making the test generation process flexible can benefit a number of test related applications,
yet for each different application the generation process has to be appropriately tuned in
order to give the desired results. A similar, yet more general approach is to have flexible
test sets, i.e. develop techniques that give test sets that can be appropriately utilized and give
benefit to different applications. In order for the test sets to be flexible, they should have a
large number of test bits that do not have a specified logic value, i.e., can either get the logic
one or the logic zero value. We proposed a number of different such techniques, with this
dissertation, that follow two different rationales for the stuck-at fault model, that can also be
used with any linear fault model. A static one, that concentrates on relaxing a given test set,
which may be fully or partially specified and a dynamic one, which essentially performs test
generation, keeping the number of specified bits in the test set, small. The static methods
give high unspecified to total test bits ratio and, at the same time, keep all the given test
set attributes. On the other hand, the dynamic methods give slightly larger test sets, yet the
unspecified to total test bits ratios are significantly larger. Moreover, they give more balanced
distribution of specified bits among the test patterns.

The flexible test sets can be used in a number of test related applications. Some of them, like
on-chip test set embedding and test set compression, use the unspecified bits as degrees of
freedom in order to increase the encoding efficiency and keep the required overhead small.
A number of other applications, like low power testing and test set enrichment, fix the values

150

of the unspecified bits appropriately so as to reach the desired result. We have experimented
with two, fairly simple, test set embedding schemes that are based on the reseeding of Linear
Feedback Shift Registers (LFSRs) using the flexible test sets obtained by the proposed meth-
ods. The results demonstrate the benefit that these applications have when using the flexible
test sets, instead of using general purpose test sets. While using flexible test sets in different
application has an interesting perspective, another promising direction is generating flexible
tests sets under non-traditional fault models in order to be used in a more demanding, in
terms of quality, scheme. Future research could concentrate on the generation of flexible
test sets for delay fault models like the recently proposed models for small delay faults or
even for modeled defects like bridging faults. Developing test generation of test sets with a
large number of unspecified bits, under the hybrid delay model proposed in this dissertation,
Is expected to provide more room for quality enhancements of the obtained test sets. Even
examining static relaxation for the obtained test sets under the function-based framework for
this hybrid model, could be considered as a continuation of this work.

Finally, a different approach is presented in order to produce test sets of increased quality
by generating test sets that target each modeled fault more than one times. This has been
previously shown to give test sets with high defect detection capabilities, beyond stuck-at
fault coverage. These increased quality tests sets are commonly knowalessct test sets,

as they enforce detection of each faultbgifferent test patterns. Our experimentation on the
relaxation ofn-detect test sets has shown high relaxation rates, similar to those of 1-detect
test sets. At the same time, they maintain their high quality after the relaxation process
and the unspecified bit value fixing, even in a random fashion. Relaxation is of increased
importance im-detect test sets, since their large size can limit their usage in a large number
of applications. Future work should try to evaluate the relaxation effect on the applicability

of n-detect test sets. Preliminary work on higher qualitdetects test set generation was
presented here. This technique imposes a diversity constraint ondiferent tests that

target the same fault. Diversity is ensured by systematic fault cone partitioning of the circuit-
under-test, which is guaranteed to be as balanced as possible. Experimental results show
increased defect coverage to that of traditionaletect test sets, denoting that there is great
potential. We intend to investigate more sophisticated methods to improve test set size, while
guaranteeing the maximum possible diversity. Promising ideas on developing a complete
function-based framework that controls the diversity of the tests via different propagation
paths, without explicit path enumeration are going to be explored in the future.

151

BIBLIOGRAPHY

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

“International Technology Roadmap for Semiconductors,” tech. rep., ITRS, 2007.

G. Gielen and R. Rutenbar, “Computer-aided Design of Analog and Mixed-Signal
Integrated Circuits,Proceedings of the IEEEvol. 88, no. 12, pp. 1825-1854, Dec.
2000.

S. Hamilton, “Taking Moore’s law into the next centuryEEE Computervol. 32,
no. 1, pp. 43-48, 1999.

N. Verghese and D. Allstot, “Computer-aided Design Considerations for Mixed-
Signal Coupling in RF Integrated CircuitslEEE Journal of Solid-State Circuits
vol. 33, no. 3, pp. 314-323, 1998.

Y. Joannon, V. Beroulle, C. Robach, S. Tedjini, and J.-L. Carbonero, “Decreasing Test
Quialification Time in AMS and RF SystemdEEE Design & Test of Computers
vol. 25, no. 1, pp. 29-37, Jan.-Feb. 2008.

S. Krishnaswamy, I. Markov, and J. Hayes, “Tracking Uncertainty with Probabilistic
Logic Circuit Testing,"IEEE Design & Test of Computengol. 24, no. 4, pp. 312-321,
July-Aug. 2007.

S. Akbay, A. Halder, A. Chatterjee, and D. Keezer, “Low-cost test of embedded
RF/analog/mixed-signal circuits in SOPHZEE Transactions on Advanced Packag-
ing, vol. 27, no. 2, pp. 352-363, 2004.

N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopoulos, “Hybrid-
SBST Methodology for Efficient Testing of Processor CorSEE Design & Test of
Computers, vol. 25, no. 1, pp. 64-75, Jan.-Feb. 2008.

153

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Y. Zorian, S. Dey, and M. Rodgers, “Test of future system-on-chilisSZE/ACM
International Conference on Computer Aided Desjgn. 392—398, 2000.

Y. Zorian, E. Marinissen, and S. Dey, “Testing Embedded-Core-Based System Chips,
IEEE Computervol. 32, no. 6, pp. 52—60, 1999.

P. Girard, “Survey of Low-Power Testing of VLSI CircuitdEEE Design & Test
vol. 19, no. 3, pp. 82-92, 2002.

J. Monteiro and S. DevadaSpomputer-Aided Design Techniques for Low Power Se-
quential Logic Circuits Kluwer Academic Publishers Norwell, MA, USA, 1997.

R. Aitken, “Nanometer Technology Effects on Fault Models for IC TestihgEE
Computer, vol. 32, no. 11, pp. 46-51, Nov 1999.

M. K. Michael, S. Neophytou, and S. Tragoudas, “Functions for Quality Transition
Fault Tests,” inProc. of IEEE International Symposium on Quality of Electronic De-
sign, pp. 327-332, 2005.

S. Neophytou and M. K. Michael and S. Tragoudas, “Test Set Enhancement for Qual-
ity Transition Faults using Function-based MethodsPmc. of the 15th IEEE/ACM
Great Lakes Symposium on VSpp. 182-187, 2005.

S. N. Neophytou, M. K. Michael, and S. Tragoudas, “Functions for Quality Transition-
Fault Tests and Their Applications in Test-Set Enhancem#88EE Transactions on
Computer-Aided Design of Integrated Circuits and Systewis25, no. 12, pp. 3026—
3035, Dec. 2006.

S. Neophytou and M. K. Michael, “Two New Methods for Accurate Test Set Relax-
ation via Test Set Replacement,”Rnoc. of IEEE International Symposium on Quality
of Electronic Design2008.

S. Neophytou, M. K. Michael, and S. Tragoudas, “Efficient Deterministic Test Gener-
ation for BIST Schemes with LFSR Reseedirfgrdc. of IEEE International On-Line
Testing Symposiurpp. 43-50, 2006.

S. Neophytou and M. K. Michael, “Hierarchical Fault Compatibility Identification for
Test Generation with a Small Number of Specified Bits,Pioc. of IEEE Defect and
Fault Tolerance Symposiymp. 439-447, 2007.

154

[20] S.Hellebrand, S. Tarnick, B. Courtois, and J. Rajski, “Generation of Vector Patterns
Through Reseeding of Multipe-Polynominal Linear Feedback Shift Registers.,” in
Proc. of International Test Conferengep. 120-129, 1992.

[21] C. V. Krishna, A. Jas, and N. A. Touba, “Achieving high Encoding Efficiency with
Partial Dynamic LFSR Reseedind§CM Transactions on Design Automation of Elec-
tronic Systemsvol. 9, no. 4, pp. 500-516, 2004.

[22] S. Neophytou and M. K. Michael, “On the Relaxation of n-detect Test Set®fan.
of IEEE International VLSI Test Symposiupp. 187-192, 2008.

[23] A. Krstic and K. ChengDelay Fault Testing for VLSI CircuitsKluwer Academic
Publishers, 1998.

[24] A. Majhi and V. Agrawal, “Delay Fault Models and Coverage,”Rroc. of Interna-
tional Conference on VLSI Desigpp. 364-369, 1998.

[25] K. Cheng and H. Chen, “Classification and Identification of Nonrobust Untestable
Path-Delay FaultsJEEE Transactions on CADvol. 15, no. 8, pp. 845-853, 1996.

[26] C. Lin and S. Reddy, “On Delay Fault Testing in Logic Circuit§EE Transactions
on CAD vol. 6, no. 5, pp. 694-703, 1987.

[27] G. Smith, “Model for delay faults based upon paths,Froc. of International Test
Conference, pp. 342—-349, 1985.

[28] Y. Levendel and P. Menon, “Transition Faults in Combinational Circuits: Input Tran-
sition Test Generation and Fault Simulation,”Rroc. of International Fault Tolerant
Computing Symposiump. 278—-283, 1986.

[29] A. Pramanick and S. Reddy, “On the Detection of Delay FaultsProc. of Interna-
tional Test Conference, pp. 845-856, 1988.

[30] M. Schulz and F. Brglez, “Accelerated Transition Fault SimulationPrac. of Con-
ference on Design Automatippp. 237—-243, 1987.

[31] J. Waicukauski, E. Lindbloom, B. Rosen, and V. lyengar, “Transition Fault Simula-
tion,” IEEE Design & Test of Computergol. 4, no. 2, pp. 32-38, 1987.

155

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Y. Shao, I. Pomeranz, and S. Reddy, “On Generating High Quality Tests for Transition
Faults,” inProc. of Asian Test Symposiupp. 1-8, 2002.

H. Konuk, “On Invalidation Mechanisms for Non-Robust Delay Tests,Pmc. of
International Test Conferengcpp. 393—-399, 2000.

R. Bryant, “Graph-Based Algorithms for Boolean Function ManipulatiotEEE
Transactions on Computergol. C-35, no. 8, pp. 677-691, 1986.

M. Michael, T. Haniotakis, and S. Tragoudas, “A Unified Framework for Generating
all Propagation Functions for Logic Errors and EventSEE Transactions on CAD
vol. 23, no. 6, pp. 980-986, 2004.

K. Yang, K. Cheng, and L. Wang, “TranGen: A SAT-Based ATPG for Path-Oriented
Transition Faults,” irProc. of Asia and South Pacific Design Automation Conference
pp. 92-97, 2004.

I. Hamzaoglu and J. Patel, “Compact two-pattern Test Set Generation for Combina-
tional and Full Scan Circuits,” iRroc. of International Test Conferenggp. 944—953,
1998.

P. Agrawal, D. Bhattacharya, and V. D. Agrawal, “Test Generation for Path Delay
Faults Using Binary Decision DiagramdEEE Transactions on Computevol. 44,
no. 3, pp. 434-447, 1995.

D. Kirkpatrick and A. Sangiovanni-Vincentelli, “Digital Sensitivity: Predicting Sig-
nal Interaction Using Functional Analysis,” iroc. of International Conference on
Computer-Aided Desigmpp. 536-541, 1996.

M. Michael and S. Tragoudas, “Function-based Compact Test Pattern Generation for
Path Delay Faults,JEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 13, no. 8, pp. 996-1001, Aug. 2005.

F. Somenzi, “CUDD: CU Decision Diagram Package.” Dept. of ECE, The University
of Colorando., release 2.3.0 1999.

S. Wang and S. Gupta, “ATPG for Heat Dissipation Minimization During Test Appli-
cation,”|IEEE Transactions on Computeml. 47, no. 2, pp. 256-262, 1998.

156

[43] I. Pomeranz and S. M. Reddy, “Test Enrichment for Path Delay Faults Using Multiple
Sets of Target Faults|[EEE Transactions on CADvol. 22, no. 1, pp. 82—-90, 2003.

[44] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-In Test
for Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback
Shift Registers,IEEE Transactions on Computensol. 44, pp. 223-233, 1995.

[45] C. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial LFSR
Reseeding,” irProc. of International Test Conferengep. 885-893, 2001.

[46] K. Chakrabarty, B. T. Murray, and V. lyengar, “Deterministic Built-In Pattern Genera-
tion for High-Performance Circuits Using Twisted Ring CounteiSEE Transactions
on VLSI Systemsol. 8, pp. 633 — 636, 2000.

[47] 1. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational
Circuits,” IEEE Transactions on CADvol. 19, no. 8, pp. 957-963, 2000.

[48] K. Miyase and S. Kajihara, “XID: Don’t care Identification of Test Patterns for Com-
binational Circuits,TEEE Transactions on CADvol. 23, no. 2, pp. 321-326, 2004.

[49] A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relaxation Technique for Com-
binational & Full-Scan Sequential Circuits,” Rroc. of VLSI Test Symposiupp. 53—
59, 2002.

[50] A. Narayan, J. Jain, M. Fuijita, and A. Sangiovanni-Vincentelli, “Partitioned ROBDDs
—a compact, canonical and efficiently Manipulable Representation for Boolean Func-
tions,” in Proc. of International Conference on Computer-Aided Desogn 547-554,
1996.

[51] J. Chang and C. Lin, “Test Set Compaction for Combinational CircUEEE Trans-
actions on CADvol. 14, no. 11, pp. 1370-1378, 1995.

[52] T. Niermann, R. Roy, J. Patel, and J. Abraham, “Test Compaction for Sequential Cir-
cuits,” IEEE Transactions on CADvol. 11, no. 2, pp. 260-267, 1992.

[53] S.Kajihara, K. Ishida, and K. Miyase, “Test Vector Modification for Power Reduction
during Scan Testing,” ifProc. of VLSI Test Symposiypp. 160-165, 2002.

157

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

S. Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for Dynamic
Compaction in Sequential CircuitslEEE Transactions on CADvol. 16, no. 10,
pp. 1157-1172, 1997.

I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST: a Method to Generate Com-
pact Test Sets for Combinational CircuitlEfEE Transactions on CAvol. 12, no. 7,
pp. 1040-1049, 1993.

M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: a Highly Efficient Automatic
Test Pattern Generation SystertEEE Transactions on CADvol. 7, no. 1, pp. 126—
137, 1988.

S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy, “Cost-Effective Generation of
Minimal Test Sets for Stuck-at Faults in Combinational Logic CircuSEE Trans-
actions on CADvol. 14, no. 12, pp. 1496-1504, 1995.

R. Karp, “Reducibility Among Combination ProblemsComplexity of Computer
Computationspp. 85-103, 1972.

M. Bushnell and V. AgrawalEssentials of Electronic TestingKluwer Academic
Publishers, 2000.

D. Drake and S. Hougardy, “A simple approximation algorithm for the weighted
matching problem,Information Processing Letterpp. 211-213, 2003.

M. Michael and S. Tagoudas, “ATPG Tools for Delay Faults at the Functional Level,”
ACM Transactions on Design Automation of Electronic Systeois7, no. 1, pp. 33—
57, 2002.

D. Sahoo, S. lyer, J. Jain, C. Stangier, A. Narayan, D. Dill, and E. Emerson, “A Parti-
tioning Methodology for BDD-Based Verification,” iRroc. of International Confer-
ence on Formal Methods in Computer-Aided Desjgm 399-413, 2004.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” inProc. of Design Automation Conferenqep. 530-535,
2001.

E. Goldberg and Y. Novikov, “BerkMin: A fast and robust Sat-solv@iScrete Ap-
plied Mathematicsvol. 155, no. 12, pp. 1549-1561, 2007.

158

[65] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem-
Proving,” Communications of the ACMol. 5, no. 7, pp. 394-397, 1962.

[66] T.Larabee, “Test Pattern Generation using Boolean SatisfiabillE Transactions
on CAD, vol. 1, no. 1, pp. 4 — 15, 1992.

[67] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational Test Gener-
ation Using Satisfiability,IEEE Transactions on CADvol. 15, no. 9, pp. 1167-1176,
1996.

[68] J. Marques-Silva and K. Sakallah, “Boolean satisfiability in electronic design automa-
tion,” in Proc. of ACM/IEEE Design Automation Confereneel. 5, pp. 675-680,
2000.

[69] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking without
BDDs,” Lecture Notes in Computer Scieneel. 1579, pp. 193-207, 1999.

[70] A. Biere, E. Clarke, R. Raimi, and Y. Zhu, “Verifying Safety Properties of a PowerPC
Microprocessor Using Symbolic Model Checking without BDDisg’cture Notes in
Computer Sciengevol. 1633, p. 60, 1999.

[71] G. Parthasarathy, M. lyer, and K. Cheng, “A comparison of BDDs, BMC, and se-
quential SAT for model checking,” iRroc. of the IEEE International Workshop on
High-Level Design Validation and Te&003.

[72] A.Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and decom-
pressionarchitectures based on Golomb cod&&E Transactions on CADvol. 20,
no. 3, pp. 355-368, 2001.

[73] H. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-dimensional test data compres-
sion for scan-based deterministic BIST,” ilroc. of International Test Conference
pp. 894-902, 2001.

[74] J. Rajski, J. Tyszer, and N. Zacharia, “Test Data Decompression for Multiple Scan
Designs with Boundary Scan.l[EEE Transactions on Computergol. 47, no. 11,
pp. 1188-1200, 1998.

[75] K. D. Wagner, C. K. Chin, and E. J. McCluskey, “Pseudorandom TestildZE
Transactions on Computergol. 36, no. 3, pp. 332-343, 1987.

159

[76] M. Lempel, S. Gupta, and M. Breuer, “Test Embedding with Discrete Logarithms,”
IEEE Transactions on CADvol. 15, no. 5, pp. 554-566, 1995.

[77] B. Koenemann, “LFSR-Coded Test Patterns for Scan DesignBjda. of European
Test Conference, pp. 237-242, 1991.

[78] A. A. Al-Yamani and E. J. McCluskey, “BIST-guided ATPG,” iaroc. of Interna-
tional Symposium on Quality of Electronic DesigoSA), pp. 244-249, IEEE Com-
puter Society, 2005.

[79] S. Hellebrand, B. Reeb, H.-J. Wunderlich, and S. Tarnick, “Pattern Generation for
a Deterministic BIST Scheme,” iRroc. of International Conference on Computer-
Aided Designpp. 88-94, 1995.

[80] S. Hellebrand, H.-J. Wunderlich, and H. Liang, “A Mixed Mode BIST Scheme
Based on Reseeding of Folding Counters,Pioc. of International Test Conference
pp. 778-784, 2000.

[81] E. Kalligeros, D. Kaseridis, X. Kavousianos, and D. Nikolos, “Reseeding-Based Test
Set Embedding with Reduced Test SequencesFrat. of International Symposium
on Quality of Electronic Desigmpp. 226—-231, 2005.

[82] E. Kalligeros, D. Kaseridis, X. Kavousianos, and D. Nikolos, “Efficient Multiphase
Test Set Embedding for Scan-based TestingPrioc. of International Symposium on
Quiality of Electronic Designpp. 433 — 438, 2006.

[83] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase BIST: a new reseed-
ing technique for high test-data compressiotEEE Transactions on CADvol. 23,
no. 10, pp. 1429- 1446, 2004.

[84] L. Li and K. Chakrabarty, “Hybrid BIST Based on Repeating Sequences and Cluster
Analysis,” in Proc. of Design Automation and Test in Eurppel. 2, pp. 1142-1147,
2005.

[85] S. Swaminathan and K. Chakrabarty, “On Using Twisted-Ring Counters for Test Set
Embedding in BIST,Journal of Electronic Testing, Theory and Applicatipwsl. 17,
pp. 529 — 542, Dec 2001.

160

[86] P. Flores, H. Neto, and J. Marques-Silva, “An Exact Solution to the Minimum Size
Test Pattern ProblemACM Transactions on Design Automation of Electronic Sys-
tems, vol. 6, no. 4, pp. 629—-644, 2001.

[87] H. Lee and D. Ha, “An efficient forward fault simulation algorithm based on the
parallel pattern single fault propagation,” Broc. of International Test Conference
pp. 946-955, Oct 1991.

[88] K. Butler and M. Mercer, “The Influences of Fault Type and Topology on Fault Model
Performance and the Implications to Test and Testable Desig®tdo. of Design
Automation Conferen¢@p. 673—678, 1990.

[89] J. Dworak, J. D. Wicker, S. Lee, M. R. Grimaila, M. R. Mercer, K. M. Butler, B. Stew-
art, and L.-C. Wang, “Defect-Oriented Testing and Defective-Part-Level Prediction,”
IEEE Design & Test of Computergol. 18, no. 1, pp. 31-41, 2001.

[90] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tama-
rapalli, K.-H. Tsai, and J. Rajski, “Impact of Multiple-Detect Test Patterns on Product
Quiality,” in Proc. of International Test Conferengap. 1031-1040, 2003.

[91] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke, “Embedded
Multi-Detect ATPG and Its Effect on the Detection of Unmodeled DefectsPrioc.
of International Test Conferencpp. 1-10, 2007.

[92] K. Kantipudi and V. Agrawal, “A Reduced Complexity Algorithm for Minimizing
N-Detect Tests,” ifProc. of VLSI Designpp. 492—-497, 2007.

[93] E. J. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual DefectBtan. of
International Test Conferencpp. 336—343, 2000.

[94] J. Nelson, J. Brown, R. Desineni, and R. Blanton, “Multiple-detect ATPG based on
physical neighborhoods,” iRroc. of Design Automation Conferenggp. 1099-1102,
2006.

[95] I. Pomeranz and S. Reddy, “On the Use of Fault Dominance in n-Detection Test Gen-
eration,” inProc. of of IEEE International VLSI Test Symposjyrp. 352—-357, 2001.

[96] I. Pomeranz and S. M. Reddy, “Definitions of the Numbers of Detections of Target
Faults and Their Effectiveness in Guiding Test Generation for High Defect Coverage,”
in Proc. of Design Automation and Test in Eurppe. 504-508, 2001.

161

[97] I. Pomeranz and S. M. Reddy, “Forming N-detection test sets without test generation,”
ACM Transactions on Design Automation of Electronic Systeois12, no. 2, p. 18,
2007.

[98] C.-W. Tseng and E. J. McCluskey, “Multiple-output Propagation Transition Fault
Test,” inProc. of International Test Conferengap. 358-366, 2001.

[99] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee, A. Ojha, and R. Guo, “An Experi-
mental Study of N-Detect Scan ATPG Patterns on a Processdtfom of VLSI Test
Symposiumpp. 23-28, 2004.

[100] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Techniques for Minimiz-
ing Power Dissipation in Scan and Combinational Circuits During Test Application,”
IEEE Transactions on CADvol. 17, no. 12, p. 1325, 1998.

[101] H. Lee and D. Ha, “Atalanta: an Efficient ATPG for Combinational Circuits,” tech.
rep., Dept of Electrical Eng., Virginia Polytechnic Institute and State University, 1993.

[102] R. Adapa, S. Tragoudas, and M. Michael, “Evaluation of Collapsing Methods for
Fault Diagnosis,” ifProc. of IEEE International VLSI Test Symposijyp. 439-444,
2006.

[103] T. Cormen, C. Leiserson, and R. Rivelitroduction to Algorithms McGraw-Hill,
1990.

[104] K. C. Y. Mei, “Bridging and stuck-at faults,IEEE Transactions on Computers
vol. 23, no. 7, pp. 720-727, 1974.

[105] H. Tang, G. Chen, S. M. Reddy, C. Wang, J. Rajski, and I. Pomeranz, “Defect aware
test patterns,” ilProc. of Design Automation and Test in Eurppe. 450-455, 2005.

[106] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tama-
rapalli, K.-H. Tsai, and J. Rajski, “Impact of Multiple-Detect Test Patterns on Product
Quiality,” in Proc. of International Test Conferengap. 1031-1040, 2003.

[107] J. Dworak, M. R. Grimaila, S. Lee, L.-C. Wang, and M. R. Mecer, “Enhanced DO-
RE-ME Based Defect Level Prediction Using Defect Site Aggregation-MPG-D,” in
Proc. of International Test Conferengap. 930-939, 2000.

162

[108] J. Dworak, B. Cobb, J. Wingfield, and M. R. Mercer, “Balanced excitation and its
effect on the fortuitous detection of dynamic defects,Phoc. of Design Automation
and Test in Europeop. 1066-1071, 2004.

[109] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H. Balachandran,
B. Houchins, V. Mathur, J. Park, L.-C. Wang, and M. R. Mercer, “REDO - Proba-
bilistic Excitation and Deterministic Observation - First Commercial Experiment,” in
Proc. of VLSI Test Symposiyupp. 268-274, 1999.

163

VITA

Contact Stelios Neophytou
Information: E-mail: sneophytou@ucy.ac.cy, sneophytou@hotmail.com

Education

2003- 2009 PhD candidate at Electrical and Computer Engineering Department,
University of Cyprus.

1998 - 2003 Engineering Diploma from Computer Engineering and Informatics
Department, University of Patras, Greece. Grade: 8.80 (distinction).

Publications

1. M. K. Michael, S. Neophytou, and S. Tragoudas, “Functions for Quality Transition
Fault Tests”in Proc. of IEEE International Symposium on Quality of Electronic De-
sign pp. 327-332, 2005.

2. S.Neophytou and M. K. Michael and S. Tragoudas, “Test Set Enhancement for Quality
Transition Faults using Function-based Methods”Proc. of the 15th IEEE/ACM
Great Lakes Symposium on VSpp. 182-187, 2005.

3. S. Neophytou, M. K. Michael, and S. Tragoudas, “Efficient Deterministic Test Gen-
eration for BIST Schemes with LFSR Reseedingi’,Proc. of IEEE International
On-Line Testing Symposiypp. 43-50, 2006.

4. S.N. Neophytou, M. K. Michael, and S. Tragoudas, “Functions for Quality Transition-
Fault Tests and Their Applications in Test-Set Enhancem#BEE Transactions on

165

ComputerAided Design of Integrated Circuits and Systewwd. 25, no. 12, pp. 3026-
3035, Dec. 2006.

. S. Neophytou and M. K. Michael, “Hierarchical Fault Compatibility Identification for
Test Generation with a Small Number of Specified Bits"Proc. of IEEE Defect and
Fault Tolerance Symposiymp. 439-447, Sep. 2007.

. S. Neophytou and M. K. Michael, “Two New Methods for Accurate Test Set Relax-
ation via Test Set Replacemeniti,Proc. of IEEE International Symposium on Quality
of Electronic Designpp. 827-831, Mar. 2008.

. S. Neophytou and M. K. Michael, “On the Relaxation of N-detect Test Set$roc.
of IEEE VLSI Test Symposiyupp. 187-192, Apr. 2008.

166

	Neophytou_PHD_Part1
	Neophytou_PHD_Part2
	Neophytou_PHD_Part3
	Neophytou_PHD_Part4
	Neophytou_PHD_Part5
	Neophytou_PHD_Part6
	Neophytou_PHD_Part7
	Neophytou_PHD_Part8
	Neophytou_PHD_Part9
	Neophytou_PHD_Part10
	Neophytou_PHD_Part11
	Neophytou_PHD_Part12
	Neophytou_PHD_Part13
	Neophytou_PHD_Part14
	Neophytou_PHD_Part15
	Neophytou_PHD_Part16
	Neophytou_PHD_Part17
	Neophytou_PHD_Part18
	Neophytou_PHD_Part19
	Neophytou_PHD_Part20
	Neophytou_PHD_Part21
	Neophytou_PHD_Part22
	Neophytou_PHD_Part23
	Neophytou_PHD_Part24
	Neophytou_PHD_Part25
	Neophytou_PHD_Part26
	Neophytou_PHD_Part27
	Neophytou_PHD_Part28
	Neophytou_PHD_Part29
	Neophytou_PHD_Part30
	Neophytou_PHD_Part31
	Neophytou_PHD_Part32
	Neophytou_PHD_Part33
	Neophytou_PHD_Part34
	Neophytou_PHD_Part35
	Neophytou_PHD_Part36
	Neophytou_PHD_Part37
	Neophytou_PHD_Part38
	Neophytou_PHD_Part39
	Neophytou_PHD_Part40
	Neophytou_PHD_Part41
	Neophytou_PHD_Part42
	Neophytou_PHD_Part43
	Neophytou_PHD_Part44
	Neophytou_PHD_Part45
	Neophytou_PHD_Part46
	Neophytou_PHD_Part47
	Neophytou_PHD_Part48
	Neophytou_PHD_Part49
	Neophytou_PHD_Part50
	Neophytou_PHD_Part51
	Neophytou_PHD_Part52
	Neophytou_PHD_Part53
	Neophytou_PHD_Part54
	Neophytou_PHD_Part55
	Neophytou_PHD_Part56
	Neophytou_PHD_Part57
	Neophytou_PHD_Part58
	Neophytou_PHD_Part59
	Neophytou_PHD_Part60
	Neophytou_PHD_Part61
	Neophytou_PHD_Part62
	Neophytou_PHD_Part63
	Neophytou_PHD_Part64
	Neophytou_PHD_Part65
	Neophytou_PHD_Part66
	Neophytou_PHD_Part67
	Neophytou_PHD_Part68
	Neophytou_PHD_Part69
	Neophytou_PHD_Part70
	Neophytou_PHD_Part71
	Neophytou_PHD_Part72
	Neophytou_PHD_Part73
	Neophytou_PHD_Part74
	Neophytou_PHD_Part75
	Neophytou_PHD_Part76
	Neophytou_PHD_Part77
	Neophytou_PHD_Part78
	Neophytou_PHD_Part79
	Neophytou_PHD_Part80
	Neophytou_PHD_Part81
	Neophytou_PHD_Part82
	Neophytou_PHD_Part83
	Neophytou_PHD_Part84
	Neophytou_PHD_Part85
	Neophytou_PHD_Part86
	Neophytou_PHD_Part87
	Neophytou_PHD_Part88
	Neophytou_PHD_Part89
	Neophytou_PHD_Part90
	Neophytou_PHD_Part91
	Neophytou_PHD_Part92
	Neophytou_PHD_Part93
	Neophytou_PHD_Part94
	Neophytou_PHD_Part95
	Neophytou_PHD_Part96
	Neophytou_PHD_Part97
	Neophytou_PHD_Part98
	Neophytou_PHD_Part99
	Neophytou_PHD_Part100
	Neophytou_PHD_Part101
	Neophytou_PHD_Part102
	Neophytou_PHD_Part103
	Neophytou_PHD_Part104
	Neophytou_PHD_Part105
	Neophytou_PHD_Part106
	Neophytou_PHD_Part107
	Neophytou_PHD_Part108
	Neophytou_PHD_Part109
	Neophytou_PHD_Part110
	Neophytou_PHD_Part111
	Neophytou_PHD_Part112
	Neophytou_PHD_Part113
	Neophytou_PHD_Part114
	Neophytou_PHD_Part115
	Neophytou_PHD_Part116
	Neophytou_PHD_Part117
	Neophytou_PHD_Part118
	Neophytou_PHD_Part119
	Neophytou_PHD_Part120
	Neophytou_PHD_Part121
	Neophytou_PHD_Part122
	Neophytou_PHD_Part123
	Neophytou_PHD_Part124
	Neophytou_PHD_Part125
	Neophytou_PHD_Part126
	Neophytou_PHD_Part127
	Neophytou_PHD_Part128
	Neophytou_PHD_Part129
	Neophytou_PHD_Part130
	Neophytou_PHD_Part131
	Neophytou_PHD_Part132
	Neophytou_PHD_Part133
	Neophytou_PHD_Part134
	Neophytou_PHD_Part135
	Neophytou_PHD_Part136
	Neophytou_PHD_Part137
	Neophytou_PHD_Part138
	Neophytou_PHD_Part139
	Neophytou_PHD_Part140
	Neophytou_PHD_Part141
	Neophytou_PHD_Part142
	Neophytou_PHD_Part143
	Neophytou_PHD_Part144
	Neophytou_PHD_Part145
	Neophytou_PHD_Part146
	Neophytou_PHD_Part147
	Neophytou_PHD_Part148
	Neophytou_PHD_Part149
	Neophytou_PHD_Part150
	Neophytou_PHD_Part151
	Neophytou_PHD_Part152
	Neophytou_PHD_Part153
	Neophytou_PHD_Part154
	Neophytou_PHD_Part155
	Neophytou_PHD_Part156
	Neophytou_PHD_Part157
	Neophytou_PHD_Part158
	Neophytou_PHD_Part159
	Neophytou_PHD_Part160
	Neophytou_PHD_Part161
	Neophytou_PHD_Part162
	Neophytou_PHD_Part163
	Neophytou_PHD_Part164
	Neophytou_PHD_Part165
	Neophytou_PHD_Part166
	Neophytou_PHD_Part167
	Neophytou_PHD_Part168
	Neophytou_PHD_Part169
	Neophytou_PHD_Part170
	Neophytou_PHD_Part171
	Neophytou_PHD_Part172
	Neophytou_PHD_Part173
	Neophytou_PHD_Part174
	Neophytou_PHD_Part175
	Neophytou_PHD_Part176
	Neophytou_PHD_Part177
	Neophytou_PHD_Part178
	Neophytou_PHD_Part179
	Neophytou_PHD_Part180
	Neophytou_PHD_Part181
	Neophytou_PHD_Part182
	Neophytou_PHD_Part183

