
HIGH QUALITY TEST PATTERN GENERATION

TECHNIQUES FOR DIGITAL VLSI C IRCUITS

by

Stelios N. Neophytou

Diploma in Computer Engineering and Informatics, 2003

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the University of Cyprus

Recommended for Acceptance by the

Department of Electrical and Computer Engineering

University of Cyprus

March, 2009

Stel
ios

 N
. N

eo
ph

yto
u

Copyright c©, by Stelios Neophytou 2009

All Rights Reserved

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

AN ABSTRACT OF THE DISSERTATION OF

Stelios N. Neophytou, for the Doctor of Philosophy degree in Computer Engineering, pre-

sented on 28 of January 2009, at the University of Cyprus

TITLE: High Quality Test Pattern Generation Techniques for Digital VLSI Circuits

SUPERVISOR PROFESSOR: Dr. Maria K. Michael

While traditional fault models, such as the stuck-at and transition delay fault models are still

widely used, they have been shown to be inadequate to handle the increased complexity of

modern digital integrated circuits. The goal of this dissertation is to provide a set of novel

test generation methodologies that increase the quality of post-manufacturing tests for digital

circuits, without increasing the complexity of the underlying fault models.

The first part of the thesis examines test generation under a linear variation of the transition

delay fault model for obtaining transition tests that are robust and excite critical path delays

in the circuit. Thus, an enhanced quality transition delay fault model is considered and a

method to implicitly derive all tests per transition fault, using well defined fault sensitization

criteria each of which provides different detection quality, is proposed.

The thesis also examines the problem of generating test patterns with a large number of un-

specified bits. The inherent flexibility of such test sets benefit different applications in VLSI

circuit testing. After appropriate unspecified bit fixing, the obtained test sets can provide

desired solutions to special applications and, thus, are of higher quality. Two versions of

this problem are examined: dynamic test generation and static test set relaxation. For the

dynamic problem, two different algorithms, based on fault compatibility properties repre-

sented by an appropriate undirected acyclic graph, are proposed. The obtained results give

very compact test sets with a large number of unspecified bits. Under the static problem,

two different techniques have been developed to maximize the number of unspecified bits in

iii

Stel
ios

 N
. N

eo
ph

yto
u

thetest set, without compromising the fault coverage or increasing the test set size. Experi-

mental results show increased reduction rates compared to existing methods, even when the

input test set is very compact or already contains unspecified bits. The impact of using test

sets with small number of specified bits for on-chip test set embedding is also investigated.

Two popular Built-In Self-Test schemes for deterministic test set embedding, are used to

demonstrate considerable reduction to the total number of on-chip bits required to encode

the generated test set.

The last part of the thesis investigates test set generation and relaxation for “n-detect” test

sets to increase the quality of such test sets. First, the novel problem of relaxingn-detect test

sets is addressed. A systematic algorithm is proposed, where each test is replaced by a new

one that detects a subset of the faults detected by the first one. This new test has fewer speci-

fied bits, yet the replacement algorithm ensures that then-detect fault coverage is maintained.

Next, the thesis proposes a novel technique which guarantees diversity in then different tests

that target the same fault, by propagating the fault via different propagation paths. This is

achieved by a linear and systematic partitioning of the circuit, into non-overlapping propaga-

tion sub-circuits. The experimental results show increased coverage in non-modeled faults

without invalidating any desired attributes of the initial test set.

iv

Stel
ios

 N
. N

eo
ph

yto
u

v

ΠΕΡΙΛΗΨΗ

Η εξέλιξη της τεχνολογίας ολοκλήρωσης επέτρεψε την υλοποίηση ολοκληρωµένων κυκλωµά-

των (µικροτσίπ) µε εκπληκτικές δυνατότητες. Η δραµατική αύξηση της πολυπλοκότητας των

ολοκληρωµένων, πολλές φορές δυσανάλογα ως προς το όφελος απόδοσης, είναι το φυσιολο-

γικό τίµηµα για το σηµαντικό αυτό επίτευγµα. Τόσο η αύξηση της πολυπλοκότητας όσο και η

πυκνότητα των τρανζίστορ στο ολοκληρωµένο, οδηγούν σε µεγαλύτερα ποσοστά ελαττωµα-

τικών ολοκληρωµένων κατά την παραγωγή. Τα προβλήµατα που προκύπτουν σε σχέση µε

τον σχεδιασµό των ολοκληρωµένων είναι σηµαντικά, όµως οι προκλήσεις που αφορούν τον

έλεγχο της ορθότητάς τους, είναι ακόµη σηµαντικότερες.

Λόγω της αυξανόµενης πολυπλοκότητας, τα παραδοσιακά µοντέλα σφαλµάτων αποδεικνύο-

νται αναποτελεσµατικά για την διασφάλιση της ποιότητας του ελέγχου ορθότητας στην παρα-

γωγή ολοκληρωµένων κυκλωµάτων. Ο σκοπός της παρούσας διατριβής είναι να προτείνει

ένα σύνολο από, υψηλής ποιότητας, καινοτόµες µεθοδολογίες αυτοµατισµού της παραγωγής

ελέγχων ορθότητας, για ψηφιακά κυκλώµατα πολύ µεγάλης κλίµακας ολοκλήρωσης. Η ποιό-

τητα ποσοτικοποιείται αναλόγως της εφαρµογής που εξετάζεται σε κάθε περίπτωση.

Το πρώτο µέρος της διατριβής πραγµατεύεται την διαδικασία ελέγχου ορθότητας χρονισµού

και παρουσιάζει µια αποδοτική και αποτελεσµατική µεθοδολογία για την παραγωγή διανυ-

σµάτων ελέγχου που δεν χάνουν την ικανότητα ανίχνευσης σφαλµάτων ακόµα και κάτω από

διαφορετικές συνθήκες χρονισµού. Για το σκοπό αυτό θεωρούµε µια παραλλαγή του παραδο-

σιακού µοντέλου σφάλµατος µετάβασης και προτείνουµε µεθοδολογίες για την παραγωγή

όλων των διανυσµάτων ελέγχου µε βάση καλώς ορισµένα κριτήρια ευαισθητοποίησης που

παρέχουν διαφορετικής ποιότητας ανίχνευση.

Επιπλέον, η διατριβή εξετάζει το πρόβληµα της παραγωγής διανυσµάτων ελέγχου τα οποία

έχουν ένα µεγάλο αριθµό από µη-καθορισµένες λογικές τιµές. Το πρόβληµα αυτό είναι ιδιαι-

Stel
ios

 N
. N

eo
ph

yto
u

vi

τέρως σηµαντικό για ένα αριθµό από εφαρµογές όπως, λ.χ. η µείωση κατανάλωσης ισχύος

κατά τον έλεγχο καθώς και η συµπίεση, ο περιορισµός και ο εµπλουτισµός του συνόλου δια-

νυσµάτων ελέγχου ορθότητας. Μελετήθηκαν δύο διαφορετικές εκδοχές του προβλήµατος, (ι)

δυναµική παραγωγή διανυσµάτων ελέγχου και (ιι) στατική χαλάρωση του συνόλου ελέγχου.

Για το δυναµικό πρόβληµα προτείνονται δύο αλγόριθµοι οι οποίοι χρησιµοποιούν ιδιότητες

συµβατότητας σφαλµάτων οι οποίες αναπαριστώνται µε ένα µη-κατευθυνόµενο ακυκλικό

γράφο. Τα πειραµατικά αποτελέσµατα παρουσιάζουν σύνολα διανυσµάτων ελέγχων τα οποία

είναι συνεπτυγµένου µεγέθους και, ταυτοχρόνως, περιέχουν µεγάλο αριθµό εισόδων µε µη-

καθορισµένες λογικές τιµές. Εξετάζεται επίσης, η επίπτωση της χρήσης αυτών των τεχνικών

σε αρχιτεκτονικές ενσωµάτωσης του ελέγχου στο ολοκληρωµένο. Τα αποτελέσµατα καταδει-

κνύουν αξιοσηµείωτη µείωση στις απαιτήσεις σε επιπλέον υλικό για την κωδικοποίηση των

παραγόµενων διανυσµάτων ελέγχου.

Για το στατικό πρόβληµα αναπτύχθηκαν δύο τεχνικές για την χαλάρωση ενός δοθέντος συνό-

λου διανυσµάτων ελέγχου, ώστε να περιέχει ένα µεγάλο αριθµό µη-καθορισµένων εισόδων

χωρίς την µείωση του ποσοστού ανίχνευσης σφαλµάτων ή αύξηση του µεγέθους του. Οι τε-

χνικές αυτές αντικαθιστούν κάθε διάνυσµα ελέγχου, στο δοθέν σύνολο, µε κάποιο εναλλακτι-

κό το οποίο ανιχνεύει µόνο τον απαραίτητο αριθµό σφαλµάτων. Στα πειραµατικά αποτελέ-

σµατα παρουσιάζονται υψηλά ποσοστά µείωσης, ακόµη και στις περιπτώσεις όπου το δοθέν

σύνολο περιέχει ήδη εισόδους µε µη-καθορισµένη τιµή.

Τέλος, µελετάται η παραγωγή και η χαλάρωση συνόλων διανυσµάτων ελέγχου ορθότητας µε

πολλαπλές ανιχνεύσεις για κάθε σφάλµα. Καταρχάς, διατυπώνεται, για πρώτη φορά, το πρό-

βληµα της χαλάρωσης υφιστάµενου συνόλου διανυσµάτων µε πολλαπλές ανιχνεύσεις σφαλ-

µάτων και προτείνεται ένας συστηµατικός αλγόριθµος αντικατάστασης διανυσµάτων έτσι που

να µειώνεται ο συνολικός αριθµός των εισόδων µε καθορισµένη τιµή. Εν συνεχεία, προτείνε-

ται µια πρωτότυπη τεχνική που εγγυάται ότι οι πολλαπλές ανιχνεύσεις σφαλµάτων θα είναι

διαφορετικές. Ο αλγόριθµος περιγράφει ένα συστηµατικό τρόπο για την κατάτµηση του µο-

ντέλου του κυκλώµατος, σε µη-αλληλοεπικαλυπτόµενα υπο-κυκλώµατα, στα οποία πραγµα-

τοποιείται η παραγωγή των διανυσµάτων ελέγχου. Όπως φαίνεται από τα πειραµατικά αποτε-

λέσµατα, τα παραγόµενα σύνολα διανυσµάτων ελέγχου παρέχουν αυξηµένο ποσοστό ανί-

χνευσης µη-µοντελοποιηµένων σφαλµάτων.

Stel
ios

 N
. N

eo
ph

yto
u

ACKNOWLEDGMENTS

This thesis is the result of my research activities during the last five years held at the Electrical
and Computer Engineering Department, University of Cyprus. However, this work would
not be possible without the precious help of many people, some of whom I mention here.

First, I would like to thank my advisor Dr. Maria Michael, Assistant Professor in ECE
Department, for the continuous academic help she provided me through all these years. She
was both a valuable colleague and an admonishing teacher.

Special thanks to all faculty and administrative staff of the Electrical and Computer Engi-
neering Department, University of Cyprus for all kind of help that have provided during the
years.

Furthermore, I am indebted to the members of my PhD examination committee Professor
Christoforos Hadjicostis, Dr. Theocharis Theocharides (University of Cyprus), Dr. Vassos
Soteriou (Cyprus University of Technology) and Professor Alex Orailoglu (University of
California, San Diego), for their helpful suggestions.

I would, also, like to thank Professor Irith Pomeranz (Purdue University), Professor Nur
Touba (University of Texas at Austin) and Professor Kohei Miyase (Japan Science and
Technology Agency) which made available to us their tools and/or experimental data which
helped in developing a number of the proposed techniques.

Last, but not least I would like to thank my wife Maria. Her patience, love and encourage-
ment have upheld me, especially at those days that research was my only concern.

Parts of the research described in this thesis has been funded by the Cyprus Research Pro-

motion Foundation under the programΠENEK/ENTAΞ/25 and a project funded by Intel

Corporation.

Stelios Neophytou

vii

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

TABLE OF CONTENTS

Abstract . iii

Acknowledgments . vii

List of Tables .xiii

List of Figures . xv

1 Introduction . 1

2 Functions for Quality Transition Fault Tests and their Applications in Test

Set Enhancement . 7

2.1 Introduction . 7

2.2 Recursive Definition of Propagation Functions11

2.3 Test Function Generation for Transition Faults15

2.4 Applications of Test Functions in Test Set Enhancement24

2.5 Experimental Results .32

2.6 Conclusions .39

3 Static Test Set Relaxation . 41

3.1 Introduction . 41

3.2 Problem Formulation and Notation .43

ix

Stel
ios

 N
. N

eo
ph

yto
u

3.3 Test-Based Replacement Method .44

3.4 Fault-Based Replacement Method .49

3.5 Post-Processing Compaction Step .55

3.6 Experimental Results .56

3.7 Conclusions .60

4 Dynamic Test Generation with Large number of Don’t care bits 63

4.1 Introduction . 63

4.2 The Constrained Fault Compatibility Graph66

4.3 Match-And-Merge Algorithm . 68

4.4 Hierarchical Fault Compatibility Identification Algorithm72

4.5 Implementation Overview .77

4.6 Experimental Results for the two Dynamic Methods82

4.7 Conclusions .91

5 Application of Relaxed Test Sets in BIST schemes with LFSR reseeding . . 93

5.1 Introduction . 93

5.2 Overview of Test Set Embedding Schemes94

5.3 A Generic Framework for LFSR-based Reseeding Parameter Exploration .98

5.4 Experimental Results .103

5.5 Conclusions .105

6 Relaxation ofn-detect Test Sets .107

6.1 Introduction .107

x

Stel
ios

 N
. N

eo
ph

yto
u

6.2 Motivation .110

6.3 Problem Formulation and Notation .112

6.4 Proposed Methodology .114

6.5 Test Replacement Example .118

6.6 Experimental Results .121

6.7 Conclusions .130

7 Generating Increased Qualityn-detect Test Sets via Fault Cone Partitioning 133

7.1 Introduction .133

7.2 Partitioning the Fault Site Cone into Propagation Subcircuits136

7.3 Test Generation Methodology .139

7.4 Experimental Results .143

7.5 Conclusions .147

8 Concluding Remarks .149

Bibliography .153

VITA .165

xi

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

L IST OFTABLES

2.1 Off-input constraints for event propagation through gateG 12

2.2 Fault activation functions .23

2.3 Test Function generation for the ISCAS’85 and ISCAS’89 circuits.33

2.4 Time and space requirements for test function generation for the ISCAS’85

and ISCAS’89 circuits. 34

2.5 Test Set Compaction for ISCAS’85 and ISCAS’89 circuits38

2.6 Time requirements for Test Set Compaction (CPU secs)39

3.1 Test-based Replacement Example .47

3.2 Fault-based Replacement Example .53

3.3 Results of the proposed methods for two different initial test sets.57

3.4 Comparison with existing work. .58

4.1 Impact of the cube optimization heuristic82

4.2 Results for the match-and-merge method83

4.3 Test generation results of the hierarchical dynamic method.85

4.4 Comparison between existing static and the proposed dynamic methods. . .86

xiii

Stel
ios

 N
. N

eo
ph

yto
u

4.5 Number of specified bits forν of different size, for s1494. 89

4.6 Effect of various vertex ordering methods in the method of section 4.4 . . .90

5.1 Using the resulting test sets with two popular BIST encodings.104

6.1 Average fault detections for single-detect and multiple-detect test sets . . .110

6.2 Test Replacement Method Example .119

6.3 Test Set Relaxation for 10-detect Test Sets123

6.4 Comparing with a Brute-Force Technique124

6.5 Fault Contribution for Different Fault Orderings125

6.6 Test Relaxation using Different Fault Orderings126

6.7 Test Relaxation using Different Fault Orderings (essential faults first) . . .127

6.8 Random Unspecified Bits Fixing Effect131

7.1 Average Number of Propagation Paths Per Fault144

7.2 Total Number of Propagation Paths .146

7.3 Test Set Sizes and Bridging Fault Coverage147

xiv

Stel
ios

 N
. N

eo
ph

yto
u

L IST OFFIGURES

2.1 Pseudocode for Propagation Function generation.20

2.2 Attempting to deriveC5 on original Graph C. 26

2.3 Replication of noded to deriveC5. 26

2.4 Pseudocode for Compaction Algorithm30

2.5 Pseudocode for Enrichment Algorithm .31

2.6 Finding new test functionT ′
i (). 32

2.7 SubcircuitCi details for some ISCAS’85 circuits.. 36

2.8 SubcircuitCi details for some ISCAS’89 circuits.. 37

3.1 Static Test-based Replacement Method.45

3.2 Static Fault-based Replacement Method.51

3.3 Specified bits distribution among generated tests of Table 3.459

4.1 An iteration of the match-and-merge algorithm71

4.2 Flowchart of proposed dynamic methodology.73

4.3 Hierarchical fault merging example. .74

4.4 Identifying additional unspecified bits per test in BDD-based implementations.81

xv

Stel
ios

 N
. N

eo
ph

yto
u

4.5 Specified bits distribution among tests after applying the hierarchical method87

4.6 The effect of the size ofν in Merging Efficiency, for s1494. 88

5.1 The basic Multiple Polynomial LFSR architecture96

5.2 Flowchart for parameter exploration framework102

5.3 Selecting theSh andSb parameters. .103

6.1 Proposedn-detect relaxation algorithm .117

7.1 Proposed Fault Cone Decomposition .138

7.2 Generatingn test functions for each fault140

7.3 Proposed ATPG method .141

7.4 Example of Barrier Test Compatibility Reduction Algorithm142

xvi

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 1

INTRODUCTION

Integration technology improvement has allowed the realization of circuits with astonish-

ing capabilities. The nanometer era is an incontestable fact with billions of transistors fit

in an integrated circuit. The natural price paid for this achievement is the increase on the

complexity of the circuits, in some cases disproportional to the benefit obtained. Both cir-

cuits’ complexity and transistor density lead to larger defective parts ratio, which implies

lower values for the manufacturing yield. According to the 2007 edition of theInterna-

tional Technology Roadmap for Semiconductors(ITRS) [1], in the near future, integrated

circuits will have a number of cores, possibly of different types. Following the trace of

the telecommunication evolution, future devices will be categorized as Systems-on-Chips

(SoCs), System-in-Package (SiPs), Multi-Chip Packaging (MCP), among others. Hence, the

trend is towards taking advantage of the large integration capabilities in order to put as many

as possible components of a system in an integrated circuit. This is imposing a number of

questions regarding the designing of an integrated circuit. At the same time, it gives rise to

great challenges regarding the testing methodologies of such circuits. Modern digital circuits

are accompanied with technologies such as RF, analog, optical etc [2, 3, 4]. The interaction

of all these diverging components impose new issues on testing the whole integrated circuit,

as well as on testing the digital part of the circuit [5, 6, 7]. Moreover, emerging multicore

architectures are of increased complexity due, mainly, to their interconnection and synchro-

nization structure as well as the memory access mechanism. These parameters need to be

taken into consideration to ensure the quality of digital circuit testing [8, 9, 10]. Furthermore,

since modern circuits run at very high frequencies, the need for low power testing arises in

order to avoid circuit overheating while test application. Tight timing constraints imposed by

technology scaling should also be accommodated effectively, without affecting the quality

1

Stel
ios

 N
. N

eo
ph

yto
u

of the test application and/or on-line generation process [11, 12]. Considering all these is-

sues, theTest and Testabilitychapter of the 2007 edition of the ITRS suggests that extended

attention should be given to high quality testing procedures in order to maintain Moore’s law

and, at the same time, keep the testing cost small.

The increased complexity of digital ICs limits the testing efficiency of traditional fault mod-

els. While traditional fault models, such as the stuck-at and transition delay fault models, are

still widely used, they have been shown inadequate to handle the new challenges [13]. The

goal of this thesis is to provide a set of novel test generation methodologies which increase

the quality of post-manufacturing tests for digital circuits. One important motivation of this

thesis is to avoid the use of complex fault models that can introduce increased complexity

in the test generation effort. Instead, the thesis investigates how traditional models, whose

usage is already established in the industry, can be enhanced to increase test quality. Quality

is measured based on the specific application under consideration. In the case of test set

compaction and on-chip or off-chip compression applications, the measure of quality could

be the size of the (compressed) test set. Alternatively, the quality of a single test pattern,

typically, depends on the capability of the pattern to detect modeled, as well as non-modeled

defects. In this case, some measures of quality include robustness of a test (guarantees that

the applied test cannot get invalidated), test criticality (whether a test detects critical faults),

encoding efficiency of a test, power dissipation, flexibility of enhancement for multiple fault

detection etc. Each of the problems examined in this thesis considers at least one of the

aforementioned quality measures.

Chapter 2 of the thesis examines test generation under the transition delay fault model and

shows how to effectively and efficiently generate transition delay tests which are robust and

excite critical path delays in the circuit. The proposed methodology considers an enhanced

version of the traditional transition fault model. Thus, it proposes a method to implicitly

derive all tests per transition fault, under established robust (and possibly other) fault sensiti-

zation criteria. The derived high quality test functions are further enhanced in three different

ways to derive better quality test sets. The first enhancement restricts fault sensitization along

critical sub-circuits whose paths have long delays under a fixed delay model. The second one

manipulates the functions in order to generate compact test sets. The last one enriches the

test set with additional test vectors, so that each new vector detects transition faults through

different activation and propagation paths, without any path enumeration. The results of this

work have already been published in [14, 15, 16].

2

Stel
ios

 N
. N

eo
ph

yto
u

Chapters3 and 4 of the proposed thesis examine the problem of generation of test patterns

with a large number of unspecified bits (bits withdon’t carevalue). This is a very impor-

tant problem since it has implications to a number of applications, such as low power test

(unspecified bits can be fixed appropriately to reduce power dissipation during test), test set

compaction (a test pattern with large number of unspecified bits has a higher probability

to detect additional faults), on-chip and off-chip test set compression (typically, the com-

pression ratio increases as the number of unspecified bits in the test set increases), and test

set enrichment for multiple fault detection or additional fault type detection. In these two

chapters, systematic procedures that generate “flexible” test sets (test sets that have a large

number of don’t care bits) are proposed. Therefore, quality here is measured with respect to

the number of unspecified bits in the generated test set. Further elaboration on the motivation

is provided in the corresponding chapters. Two distinct problems are examined:

(i) static test set relaxation, i.e. increasing the number of unspecified bits in a given test set,

and

(ii) dynamic test set generation with a large number of unspecified bits.

For problem (i), two different techniques have been developed to relax a given test set by

maximizing the number of unspecified bits in the test set, without compromising the fault

coverage or increasing the test set size (Chapter 3). The first method replaces each pattern in

the test set with one targeting as few faults as necessary. The second method iterates among

faults and tries to enforce detection of each fault by only a single test. This test is selected

among all tests that detect that fault such that the largest overall specified bits reduction is

achieved. Experimental results show increased reduction rates, when compared to existing

methods, even when the input test set has been compacted or already contains unspecified

bits. Part of this work has been published in [17].

While the proposed algorithms targeting the static test set relaxation problem result in test

sets with a large number of unspecified bits, their effectiveness is always biased on the given

test set. This is exactly the reason for examining problem (ii). In Chapter 4, two techniques

are proposed to generate test sets with a large number of unspecified bits, without consider-

ing a previously generated test set as a basis. Both techniques are deterministic algorithms

that consist of iterations on a constrained fault compatibility graph. The first algorithm iden-

tifies compatible faults that can be tested by a single test with a small number of specified

bits by considering the entire graph per iteration. The second method is, essentially, a hi-

3

Stel
ios

 N
. N

eo
ph

yto
u

erarchicalalgorithm which considers a small part of the graph per iteration to find a locally

optimized solution which is in term used in subsequent iterations. This hierarchical method

is more scalable than the first one and, thus, more applicable to larger circuits. The obtained

results give very compact test sets with a large number of unspecified bits. These approaches

were presented in [18] and [19] and have been submitted for publication to a peer-reviewed

international journal.

Extensive literature review, it is convincing that having test sets with a large number of un-

specified bits can benefit techniques targeting a number of different problems including, but

not limited to, test set compression, test set encoding, design-for-testability and low power

testing. Chapter 5 investigates the impact of using the test sets obtained by all the methods

described in Chapter 3 and Chapter 4 in one such possible application, that of determinis-

tic test set embedding. Particularly, focus is given on LFSR-based reseeding schemes for

mixed-mode Built-In Self Test (BIST). Such schemes are very popular, since they can easily

be used in a large range of designs without modifying critical parts of the design, like the

scan-in chain. Even though LFSR reseeding is chosen for demonstrating the applicability of

the methods of Chapter 3 and Chapter 4, their impact in other applications is also significant.

Two simple variations of LFSR reseeding, (i) multiple polynomial LFSR reseeding [20] and

(ii) partial reseeding [21]. Both these embedding schemes can impose certain constraints on

the test set to be embedded, e.g. the maximum number of specified bits in a single test pat-

tern. This chapter proposes a generic framework which allows for a systematic exploration of

parameters that are important to a specific embedding scheme, in order to derive those flex-

ible test sets that are best for the considered scheme. Hence, it is shown how the techniques

of Chapters 3 and 4 can be applied on top of some embedding scheme to further optimize the

generated test set. The storage requirements are shown to be reduced when the obtained test

sets are used. While this methods have been developed using the stuck-at fault model, any

linear fault model (such as the transition fault model used in the techniques of Chapter 2)

can be used without affecting the affecting the techniques’ complexity. Preliminary results

of this work have been published in [18].

Chapters 6 and 7 examine problems related to test sets that explicitly detect each modeled

fault multiple times. Such test sets, known asn-detect test sets since they enforce detection

of each fault with at leastn different test patterns, have been shown to be of increased quality

for detecting random defects and/or non-modeled faults. Chapter 6 investigatesn-detect test

set relaxation. This problem has not been studied before and, thus, is of increased interest.

4

Stel
ios

 N
. N

eo
ph

yto
u

Currentn-detecttest generation methods produce a large number of fully specified test pat-

terns, limiting their practical application to large circuits. The problem is formulated as an

optimization problem and propose a solution that iterates among faults. This methodology

enforces detection of each fault only by thosen tests resulting in the overall largest specified

bits reduction. Experimental results showed thatn-detect test set relaxation rates are very

similar and, in some cases, even higher than those of 1-detect test sets. Moreover, experimen-

tation with random bit fixing showed that then-detect test sets maintain their non-targeted

fault and defect coverage, after the relaxation process. As with 1-detect test set relaxation,

the results where obtained using the stuck-at fault model, but any linear model can be used.

A part of the results has appeared in [22].

Chapter 7 proposes a new test generation methodology forn-detect test sets, which increases

their quality in terms of the number of fault propagation paths per generated test. Specifically,

then tests per stuck-at fault are, for the first time, guaranteed to propagate the fault effect via

different propagation paths, without any path or path segment enumeration. The proposed

method can easily be extended to other linear, to the circuit size, static or dynamic fault mod-

els for multiple fault detections, such as the transition fault model for which both different

activation and propagation paths can be guaranteed. The generated test sets demonstrated

increased numbers of propagation paths and non-modeled fault coverage, when compared to

traditionaln-detect test sets.

Chapter 8 summarizes the conclusions of this thesis and discusses some future research di-

rections relevant to the presented work.

5

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 2

FUNCTIONS FORQUALITY TRANSITION FAULT

TESTS AND THEIRAPPLICATIONS IN TEST SET

ENHANCEMENT

2.1 Introduction

The need for testing accurate temporal behavior, commonly known as delay testing [23, 24],

is becoming increasingly important due to the demand for high performance in today’s digital

circuits as well as various process variations, manufacturing defects, and noise factors. The

two most popular delay fault models are thepath delay fault(PDF) model [25, 26, 27] and

thegate delay faultmodel [28, 29, 30, 31]. Even though the PDF model is the most accurate

one since it can detect both lumped and distributed delay defects, it can become impractical

because an exponential, to the circuit size, number of faults is explicitly examined. On the

other hand, gate delay fault models examine a linear, to the circuit size, number of faults

and, therefore, they are more feasible for larger circuits. For both models, a test consists of

a pair of vectors,< v1, v2 >, wherev1 initializes the target node/path andv2 launches the

appropriate transition and propagates it to an observable point (primary output).

The most commonly used gate delay fault model is thetransition faultmodel,which models

excessive delay on a single circuit node and associates two delay faults per node: aslow-to-

rise (rising) fault and aslow-to-fall (falling) fault. The generation of a transition fault test

involves two steps. First, theactivationof the target fault by creating a transition on the

7

Stel
ios

 N
. N

eo
ph

yto
u

faulty line through single or multiple paths and, second, thepropagationof the fault effect

to a primary output by single or multiple path sensitization. The underlying assumption

of this model is that the extra delay caused by a transition fault is large enough to cause

a timing failure at a primary output. Thus, the delay on any sensitizable propagation path

from the fault site to a primary output is assumed to exceed the maximum allowable circuit

delay. Based on this assumption, traditional transition faults are modelled as stuck-at faults

[23], making test generation simpler. Specifically, for a fault sitel, vectorv2 is a stuck-

at 0 (stuck-at 1) test for a rising (falling) transition fault atl and vectorv1 assertsl to a 0

(1) logic value. However, such transition fault tests, also known as weak non-robust tests

for their propagation properties [29, 32], can be invalidated during testing due to signal

hazards and other factors [33]. Recent research efforts on transition fault testing, such as

[32], have focused on generating high quality tests by examining various sensitization criteria

for activating and propagating transition faults.

In this chapter, we present the first ever proposed method to derive a function that contains

all possible tests for each transition fault. For a rising (falling) transition fault, we refer to

the corresponding function as therising (falling) test function. Test function generation is

advantageous for a variety of reasons including test set compaction, non-enumerative critical

path sensitization, and test set enrichment. Function–based ATPG methods are inherently

scalable and are gaining in popularity over structural methods as the circuit size increases

with the advances in deep sub–micron. They are also backed by advances in data struc-

tures and methods that store and manipulate functions which include canonical forms, such

as the Binary Decision Diagrams (BDDs) [34], and non-canonical forms, such as Boolean

satisfiability.

Quality tests for transition faults are generated by considering any previously proposed type

of sensitization to either activate a transition at the fault site or propagate it to a circuit output.

Events are also restricted to propagate along any path in a subcircuit containing paths that

meet predetermined delay criteria using the fixed delay model.

The difficulty in generating a function is primarily associated with the development of a

systematic methodology to incorporate the sensitization criteria required for quality tests

during either fault activation or fault propagation. This inherently requires structural meth-

ods (circuit traversals) during the function formulation. The desired functions are generated

by generalizing a recently proposed method in [35] which shows how to use structural meth-

8

Stel
ios

 N
. N

eo
ph

yto
u

ods to generate logic error as well as event propagation functions. For logic errors, the

traditional boolean difference functions are generated using structural methods1. For events

(transitions), [35] shows how to generate a Boolean function that represents all the possible

primary input assignments that allow for an event (a rising or falling transition) on some line

to be propagated at some primary output.

The work in this chapter generalizes the work in [35] and allows for events to propagate

through gates using specific sensitization rules either during the fault activation phase or the

fault propagation phase. We distinguish among robust, non-robust or function sensitization

criteria [25, 26, 27], but any other sensitization classification rules that have been proposed in

the literature can be incorporated in our framework. Subsequently, given a transition fault, it

is shown how to generate a function that contains all patterns that allow for its activation, and

a function that contains all patterns for its propagation. The product of these two functions

forms the final function for the transition fault. Better quality tests are obtained by working

on subcircuits whose paths meet criticality criteria as explained earlier.

Another important contribution of this work is that is shown how to reduce the required

amount of computational effort for generating all transition fault test functions in a circuit.

Specifically, it is shown that (i) all activation functions can be generated using a single for-

ward topological traversal of the original circuit and (ii) all propagation functions can be

generated using a backwards topological traversal on a linearly modified circuit. Thus, in

contrast to traditional brute-force approaches that would require, in the worst case, circuit

traversals per fault, the proposed method, which is based on dynamic programming princi-

ples, can derive all transition fault functions based only on two circuit traversals.

This work also shows how the proposed method for the function generation can be beneficial

to test set enhancement techniques that can be applied to provide higher quality tests. It is

first shown that events can be restricted to either sensitize paths in a subcircuit containing

paths that meet predetermined delay criteria using a fixed delay model. Previous attempts for

quality tests for transition faults insist that transitions are restricted along predefined paths

that pass through the fault cite [32, 36]. Such research efforts essentially propose that the

complexity of the PDF model is handled by examining only a subset of the PDFs. Re-

stricting the event activation along a predetermined activation and/or propagation route is, in

principle, associated with the PDF model and not the transition fault model whose original

1Given a circuit linea and primary outputz, the boolean difference function is defined as∂z
∂a .

9

Stel
ios

 N
. N

eo
ph

yto
u

definition is path independent. In contrast to any existing approach, the proposed method

generates test functions for each transition fault under any activation/propagation sensitiza-

tion criterion and at the same time allows the event to sensitize any path in a subcircuit whose

paths have exactly the same delay. In particular, using a dynamic programming algorithm,

we definek subcircuits: the first contains all longest paths, the second all second longest

paths, and so on. Then, for each transition fault,k functions are generated. Theith function

contains all tests to detect a transition fault where the event is propagated along any of the

paths of theith subcircuit, under a parameterized sensitization criterion. This is a path inde-

pendent, yet quality test oriented, method that focuses on critical routes and generates tests

for a polynomial number of delay faults, which we call quality transition fault tests for the

above mentioned reasons.

The second enhancement technique deals with test set compaction. The generated test func-

tions are manipulated to generate compact test sets. The objective is to cover the same

transition faults using a small subset of the original set of test functions. This amounts to

performing AND operations, in a systematic manner, on the original test functions. Two

simple heuristics for compaction are presented and the impact of each one is evaluated in

Section 2.5. It is shown that applying both compaction methods to the original test set gives

a compaction rate of 70–80% for all ISCAS’89 and ISCAS’85 circuits. Note that the studied

compaction problem differs from the one in [37] where the authors also benefit by transition

fault coverage by the additional (in-between) pairs of patterns that are formed when the tests

generated by the ATPG tool are placed in a test set, one after the other. Future research will

investigate reductions by such post-processing steps.

Finally, a novel method to enrich the compacted transition fault test set with additional tests

of a certain property is presented. This property is related to the paths sensitized by the test.

The rationale in this case is to add a number of new tests in the set such that they still detect

the targeted transition faults but through paths that have not been sensitized by the original

test set. Such test sets have higher quality since events propagate through many critical paths

and, thus, are more likely to detect a delay violation in the circuit. It is expected that, on

average, this procedure will allow the number of paths along which the event propagates to

increase proportionally to the number of tests per transition fault.

The remainder of this chapter is organized as follows. Section 2.2 presents the formulation of

event propagation functions at a single line under various sensitization criteria. Section 2.3

10

Stel
ios

 N
. N

eo
ph

yto
u

discussesmethodologies for generating propagation functions and activation functions for

all lines in a circuit. The various enhancement techniques are presented in Section 2.4. Sec-

tion 2.5 presents experimental results for the ISCAS’85 and ISCAS’89 benchmark circuits,

and Section 2.6 concludes Chapter 2.

2.2 Recursive Definition of Propagation Functions

An event is either a rising (R) or a falling (F) transition and is denoted bytr ∈ {R, F}. (The

terms event and transition are used interchangeably in this context.) The event propagation

function at some linel for transitiontr is denoted byPl,tr(). SetFI(G) denotes the set of

all fanin (immediate predecessor) lines of gateG. The controlling (non-controlling) value of

a gateg is denoted bycv(g) (ncv(g)) ∈ {0, 1}.

The event propagation function at a linel is defined recursively, with respect to the event

propagation function at the line’s immediate successor and the necessary sensitization criteria

required at lines driving the same gate as linel. Line l is called anon-inputand the lines

driving the same gate as linel are calledoff-inputs.

This Section discusses the formulation of such a recursive event propagation function for

a single circuit line. Different formulations are given in the respective subsections based

on the type of sensitization criteria proposed in [25], which extends those first presented in

[26, 27] by determining multiple path sensitization criteria. Table 2.1 shows the constraints

(or necessary conditions) on the off-inputs of a gateg which are determined based on the type

of transitiontr to be propagated from the on-input ofg and the type of sensitization under

consideration. Thedon’t care valueis denoted byx. Observe that in the case of multiple

path propagation (functional sensitization), the off-inputs can assume any value besides the

stable-at controlling value.

11

Stel
ios

 N
. N

eo
ph

yto
u

Table 2.1:Off-input constraints for event propagation through gateG
Sensitization tr on the on-input(s)

Condition cv(G)→ ncv(G) ncv(G)→ cv(G)
Robust x → ncv(G) stable at ncv(G)

Non-Robust x → ncv(G) x → ncv(G)
Functional x → ncv(G) not stable at cv(G)

2.2.1 Non-robust Sensitization

Consider a 2-input AND gateG with inputs{a, b} and outputc. An event on linea can

propagate through gateG to some primary output (letc be an internal line) only if the event

can propagate from linec to some primary output. Under the non-robust sensitization crite-

rion, all of the off-input lines ofG (line b for this example) must settle at ancv(G) value,

irrespective of the type of the event to be propagated ona. Therefore, lineb must settle to

value1 for G. (Similarly, b must settle to 0 isG is an OR gate).

Non-robust sensitization does not impose any constraints for the first vector (v1). This is

indicated by the don’t care requirement forv1 in Table 2.1. Thus, the off-input constraints

for v2 at some linex can be expressed with respect to a single boolean variable,x2. For every

line x we define a boolean variablex2, which will represent the two logic values{1, 0}. For

value 1 we usex2 and for value 0 we usex2.

The event propagation function at linea for gateG is defined asPa,tr() = Pc,tr() · b2.

Similarly, if G is an OR gate we havePa,tr() = Pc,tr() · b2. In general, given an AND gate

G with output lineg and on-input linel, the non-robust propagation function for eventtr on

l is given by:

Pl,tr() = Pg,tr() ·
∏

∀x∈FI(G),x6=l

(x2) (2.1)

For an OR gate Equation 2.1 becomes:

Pl,tr() = Pg,tr() ·
∏

∀x∈FI(G),x6=l

(x2) (2.2)

Finally, for a NOT gate anR(F) event onl is propagated as anF (R) event onG giving:

Pl,R() = Pg,F () (2.3)

Pl,F () = Pg,R() (2.4)

12

Stel
ios

 N
. N

eo
ph

yto
u

Observe that, in the above formulas, we have not yet defined the set of variables over which

the propagation functionsPl,tr() andPg,tr() are expressed. This will be presented in detail

in Section 2.3.

2.2.2 Robust Sensitization

A major disadvantage when applying non-robust tests is that they may get invalidated due,

primarily, to signal hazards [33]. A non-robust test assumes that all of the transitions on

the off-inputs of the gates on the propagation paths arrive earlier than the transitions on the

corresponding on-inputs. Only then it is guaranteed that a delay will be detected. Robust

tests, on the other hand, always guarantee the detection of the delay and, thus, are preferred

for high quality testing.

In contrast to non-robust sensitization, robust sensitization imposes more stringent rules on

the off-inputs (see Table 2.1). When the event to be propagated settles to a non-controlling

value the off-input constraints are the same as those for non-robust sensitization. However,

when it settles to a controlling value only stable-at non-controlling values are allowed on the

off-inputs, in order to avoid hazard excitation. In this case, bothv1 andv2 vectors must be

explicitly determined.

We define variabless0
l ands1

l for every linel ∈ L to represent the stable-at-0 and stable-at-1

values, respectively. (We elaborate on stability values and functions in Subsection 2.3.1.)

Assume the same 2-input AND gate example as in the previous subsection. The event prop-

agation function at linea for gateG is defined based on the type of the transition to be

propagated. If the transition settles to a non-controlling value, thustr = R, then the robust

event propagation function is identical to the non-robust event propagation function, thus

Pa,R() = Pc,R() · b2. If the transition settles to a controlling value,tr = F , then the robust

event propagation function is defined asPa,F () = Pc,F () · s1
b . Similarly, if G is an OR gate

thentr = R settles to a controlling value and we havePa,R() = Pc,R() · s0
b .

In general, given an AND gateG with output lineg and on-input linel, the robust propagation

function for eventtr that settles to a controlling value onl is given by:

Pl,F () = Pg,F () ·
∏

∀x∈FI(G),x6=l

(
s1

x

)

13

Stel
ios

 N
. N

eo
ph

yto
u

For an OR gate the above Eq. becomes:

Pl,R() = Pg,R() ·
∏

∀x∈FI(G),x6=l

(
s0

x

)

Observe that for events that settle to a non-controlling value onl, the robust event propa-

gation functions are identical to those given for non-robust propagation in Equation 2.1 –

Equation 2.2. Clearly, Equation 2.3 – Equation 2.4 are the same for all types of sensitization.

2.2.3 Functional Sensitization

The proposed propagation function formulation also handles the case where an event cannot

be propagated as a single event, but when propagated together with other events it can affect

the delay of the circuit. According to the classification of [25], when no non-robust tests exist

(in our context this means that the desired event cannot be propagated to some primary output

using a non-robust test) the targeted fault is either untestable or it can be detected together

with other faults as a multiple fault. Multiple faults are tested using functional sensitization.

As in the case of robust sensitization, the off-input constraints for event propagation under

functional sensitization conditions differ based on the type of event to be propagated (see

last row of Table 2.1). Whentr settles to a non-controlling value, the off-input constraints

are the same as those for non-robust sensitization and, thus, the event propagation functions

for functional sensitization are identical to those for non-robust propagation given by Equa-

tion 2.1 – Equation 2.2.

When the event to be propagated settles to a controlling value, the off-inputs can take any

value besides stable-at controlling since such a value would mask the propagation of the

event. As in the case of robust tests, the stability variables can be used to represent the nec-

essary values. Specifically, any value other than stable-at-1(0) on some linel is represented

by s1
l (s0

l).

Therefore,given an AND gateG with output lineg and on-input linel, the functional sen-

sitization propagation function for eventtr that settles to a controlling value onl, is given

by:

Pl,F () = Pg,F () ·
∏

∀x∈FI(G),x6=l

(
s0

x

)

14

Stel
ios

 N
. N

eo
ph

yto
u

For an OR gate the above Eq. becomes:

Pl,R() = Pg,R() ·
∏

∀x∈FI(G),x6=l

(
s1

x

)

2.3 Test Function Generation for Transition Faults

This Section discusses the generation of transition fault test functions for all circuit lines. A

transition fault test function is the product of fault activation and fault propagation functions.

First, a systematic methodology is presented for generating all event (transition fault) propa-

gation functions in the circuit based on a single traversal of a linearly modified circuit. This

method is a generalization of the recently proposed method of [35], to allow for the propa-

gation events, based on specific sensitization rules. Moreover, it is shown how considerable

speedup over the algorithm of [35] can be achieved. Next, it is shown how to generate all

activation functions based on a single traversal of the original circuit.

2.3.1 Propagation Function Generation

Generating Propagation Functions for all Faults

We defineL = {i1, i2, ..., in} to be the set of all lines in a circuit, excluding primary outputs,

andI ⊂ L to be the set of all primary inputs. For each lineik we maintain two boolean

variablesi1k andi2k to form the set of all variablesV = {i11, i21, i12, i22, ..., i1n, i2n}. We partition

V to V 1 = {i11, i12, ..., i1n} andV 2 = {i21, i22, ..., i2n} to be the subsetsi1k ∈ V , andi2k ∈ V ,

respectively. Additionally, we defineV 1
I ⊂ V 1 andV 2

I ⊂ V 2 as the sets of all variables in

V 1 andV 2, respectively, corresponding to only primary inputs.

Definition 2.1. The functionsof a linel ∈ L, denoted byF 1
l (V 1

I) andF 2
l (V 2

I), are the func-

tions realized at linel expressed with respect to the input variables inV 1
I andV 2

I , respectively.

Given a logic gateG with output linel, FI(G) stands for the set of all inputs (fanins) ofG.

The variable setsV G1 = {i1k | ik ∈ FI(G)} andV G2 = {i2k | ik ∈ FI(G)} consist of the

15

Stel
ios

 N
. N

eo
ph

yto
u

variables corresponding to the fanins ofG.

Definition 2.2. Thelocal functions, LF 1
l (V G1) andLF 2

l (V G2), of output linel ∈ L of gate

G, are the functions realized at linel, expressed with respect to variables inV G1 andV G2,

respectively.

Definition 2.3. Thestability functionsof line l ∈ L, denoted byS0
l (V

1
I ∪ V 2

I) andS1
l (V

1
I ∪

V 2
I), contain all vectors< v1, v2 > that bring a stable-at-0 and stable-at-1 value at linel,

respectively.

Stability functions were first introduced in [38] for single-input change tests, and later gen-

eralized in [39] for multi-input change tests. We use the latter method to derive multi-input

global stability functions for all circuit lines. According to [39], theS0
l () andS1

l () functions

are defined recursively with respect to the appropriate stability functions of the immediate

predecessor lines ofl, based on the type of gate that drivesl. If l ∈ I, S0
l () = l1 · l2 and

S1
l () = l1 · l2. (Primary inputs are assumed to always be hazard-free.)

For example, for a 2-input AND gate with inputs{a, b} and outputc, S1
c () = S1

a() ·S1
b () and

S0
c () = S0

a() + S0
b (). If c is a primary input then,S1

c () = c1 · c2 andS0
c () = c1 · c2. Similarly,

if G is an OR gate then,S0
c () = S0

a() · S0
b () andS1

c () = S1
a() + S1

b () whenc is an internal

line, andS0
c () = c1 · c2 andS1

c () = c1 · c2 whenc is a primary input.

We also define the set of boolean variablesSV = {s1
i1
, s0

i1
, s1

i2
, s0

i2
, . . . , s1

in , s0
in} such that for

every lineik ∈ L two variables,s0
ik

ands1
ik

, are maintained. The variables inSV will be

used to express the local stability requirements. Assume gateG with output linel and fanins

FI(G). The variable setSV G = {s1
ik
, s0

ik
|ik ∈ FI(G)} contains the stability variables for

the fanins ofG.

Definition 2.4. The local stability functionsof output line l ∈ L of gateG, denoted by

LS1
l (SV G) andLS0

l (SV G), are the stability functions realized at linel expressed with re-

spect to the variables inSV G.

For the same example of the 2-input AND gate,LS1
c = s1

a · s1
b andLS0

c = s0
a + s0

b .

The propagation functions for all circuit lines are generated using a single topological traver-

sal of a modified circuit, starting at the primary outputs, as in [35] where they were initially

16

Stel
ios

 N
. N

eo
ph

yto
u

proposed.The algorithm identifies topological levels, and iterates over these levels. [35]

shows that the size of the modified circuit remains linear to the size of the original one, since

a line may appear in at mostd topological levels, whered is the circuit depth. For clarity

purposes, we present in this subsection the algorithm for generating all event propagation

functions based on the topological level requirement (i.e. a line may be processed up to d

times) of [35]. However, we show at the end of this subsection that this requirement can be

relaxed such that each line is processedonly once, at the expense of some additional local

functions (LF 1() andLF 2()) generation.

We also defineLk ⊂ L to be the set of lines in a topological levelk. Thus the topological

level corresponding to the set of primary input lines is denoted byL0 and the one corre-

sponding to the set of primary output lines byLd. Now, let setVk ⊂ V = {i1j , i2j | ij ∈ Lk}
and setSVk ⊂ SV = {s1

ij
, s0

ij
| ij ∈ Lk} be sets of variables corresponding to the lines in

levelLk.

The propagation function for each line, in every level, is expressed in terms of the neces-

sary value assignments on all other lines in that level. This form of expressing propagation

functions using topological levels is referred to aslocal propagation function (LPF).

Definition 2.5. The local propagation functionof a line l ∈ Lk for eventtr, denoted by

LPF k
l,tr(Vk ∪ SVk), is the function that represents all necessary conditions at the lines con-

tained in levelk that propagate eventtr on linel to some primary output.

After generating theLPFs for all lines in a levelk, they are re-expressed with respect to the

variables in levelk − 1, so that they can be used to compute theLPFs for the lines in level

k − 1. OperatorSub l(), which substitutes every variable in anLPF with its corresponding

local function (LF) or local stability function (LS) is used to accomplish this.Supk
l ⊆ (Vk∪

SVk) denotes the set of variables in the support ofLPF k
l,tr(). OperatorSub l() is defined

to perform variable substitution corresponding to lines of successive topological levels as

follows:

Sub l(LPF k
l,tr()) = LPF k

l,tr(i1j ← LF 1
ij
(), i2j ← LF 2

ij
(), s1

ij
← LS1

ij
(), s0

ij
← LS0

ij
(),

| i1j , i2j , s1
ij
, s0

ij
∈ Supk

l \ (Vk−1 ∪ SVk−1))

17

Stel
ios

 N
. N

eo
ph

yto
u

Note that operatorSub l() doesnot affect variables that are contained in both levelsk and

k − 1.

The propagation functions given by Equation 2.1 – Equation 2.4 in Subsection 2.2.1 (for

non-robust sensitization) can now be expressed completely in terms of necessary operations.

For a gateG with output lineg ∈ Lk, input line l ∈ Lk−1, and fanin linesFI(G) ∈ Lk−1,

the local propagation function for linel for non-robust sensitization, denoted byLPF k−1
l,tr (),

for AND, OR, and NOT gates are given below.

AND : LPF k−1
l,tr () = Sub l(LPF k

g,tr()) ·
∏

∀ij∈FI(G),ij 6=l

(i1j)

OR : LPF k−1
l,tr () = Sub l(LPF k

g,tr()) ·
∏

∀ij∈FI(G),ij 6=l

(i2j)

NOT : LPF k−1
l,R () = Sub l(LPF k

g,F ())

NOT : LPF k−1
l,F () = Sub l(LPF k

g,R())

Similar equations can be derived for the remaining types of gates as well as for the robust and

functional sensitization propagation functions of all expressions given in Subsection 2.2.2

and Subsection 2.2.3.

We now give the definition of a propagation function of a stem. Assume a stems at level

k − 1 with two branchesb1 andb2 at levelk. Let P be the boolean cube that represents the

event to be propagated ats, namelyP = s1 · s2 for theF event andP = s1 · s2 for theR

event. TheLPF for stems, is given by:

LPF k−1
s,tr () = Sub l(LPF k

b1,tr(s
1
b1
← s1·s2, s

0
b1
← s1·s2) +LPF k

b2,tr(s
1
b2
← s1·s2, s

0
b2
← s1·s2))|P

18

Stel
ios

 N
. N

eo
ph

yto
u

With this formulation, propagation of the targeted event through any one of stem’s branches

is allowed. Moreover, it is ensured that the stems and all of its branches can only assume

the value of the propagating event by cofactoring theLPF with respect toP. Paths passing

through a stem and then reconverging at some other circuit cite may bring different values

on the stem’s branches. If no local functions and variables were considered, and thus, prop-

agation functions were expressed only with respect to variables corresponding to primary

inputs, conflicts between stems and branches could not be identified. Also, stability vari-

ables are associated with the local line variables, in order to implicitly identify all conflicting

assignments and exclude them from further consideration.

Expressing theLPF in terms of the circuit inputs gives the final form of a propagation

function, referred to aspropagation function (PF).

Definition 2.6. Thepropagation functionof a linel ∈ Lk for eventtr, denoted byPFl,tr(VI),

is the function that contains the complete set of primary input patterns that propagate event

tr on linel, to some primary output.

To derive thePF of a line, a variable substitution operation is performed on the lineLPF

accordingly. Such OperatorSub(), is defined below:

PFl,tr() = Sub(LPF k
l,tr()) = LPF k

l,tr(i
1
j ← F 1

ij
(), i2j ← F 2

ij
(), s1

ij
← S1

ij
(), s0

ij
← S0

ij
(),

| i1j , i2j , s1
ij
, s0

ij
∈ Supk

l)

PFs are the final form of a propagation function, expressed in terms of the circuit inputs.

Observe that they are not used in computing the propagation functions of lines in subsequent

levels.

Figure 2.1 describes the process of generating all propagation functions in a pseudocode

form. Lines 1 through 6 refer to global and local function generation. Then the topological

levels are derived and the algorithm iterates per such level to generate theLPF per line in a

level, based on the input sensitization criterionS. ThePF of a line is only computed once

(as shown in lines 12-13).

19

Stel
ios

 N
. N

eo
ph

yto
u

procedureevent propagation functions()
INPUT: circuit C,

sensitization criterionS
OUTPUT: Propagation FunctionPF per circuit line
% Propagation Function Generation
1: Generate set of linesL = {1, 2, ..., n}, ordered topologically.
2: for each line l ∈ L, l 6∈ POs
3: Declare Boolean variablesl1, l2, s1

l , ands0
l

4: for each line l ∈ L
5: Generate functionsF 1

l (), F 2
l (), S1

l (), andS0
l ()

6: Generate local functionsLF 1
l (), LF 2

l (), LS1
l (), andLS0

l ()
7: levels = Derive topologicallevels(C, d), %d = depth %
8: for k = d down to0
9: for each tr ∈ {R, F}
10: for each line l ∈ level[k]
11: LPF k

l,tr() = generateLPF (S)
12: if l 6∈ level[k − 1] then
13: PF k

l,tr() = generatePF ()

Figure 2.1:Pseudocode for Propagation Function generation.

Speeding up the Generation of All Propagation Functions

The topological level based processing requirement of the algorithm presented in the previ-

ous subsection, may result in generating the local propagation function (LPF) of a line at

mostd times, whered is the topological depth of the circuit. In practice, [35] showed that for

the ISCAS’85 and ISCAS’89 circuits, the number of local propagation function generations

per line is a very small constant, between 2.1 and 12.9 (whiled for these circuits is be-

tween 13 and 218). Here, we show that it is only necessary to generate the local propagation

function per line once, at the expense of some additional local function generations.

A topological level is defined as a set of circuit lines that has the following three properties:

(a) Every I/O path contains a line in the level.

(b) No two lines in the level are on the same I/O path.

(c) A line belongs in a level only after all of its successor lines have been processed.

As stated before a line can be present in at mostd levels. That is because of property (c)

above. As an example consider a lines at topological leveli that has 2 immediate successors

20

Stel
ios

 N
. N

eo
ph

yto
u

(i.e. s is a stem withb1 andb2 branches), in levelsi + 1 andi + j, respectively (this implies

that branchb2 also belongs in levelsi + 1 . . . i + j − 1). TheLPF i
s() cannot be generated

unless bothLPF i+1
b1

() andLPF i+1
b2

() are realized. TheLPF () for b2 is generated at level

i+j for the first time (LPF i+j
b2

()) and thus it must be re-expressed with variables in all levels

i + j − 1 downtoi + 1, beforeLPF i+1
b2

() can be generated (in the worst case,LPFb1() and

LPFb2() may have to be re-expressed up tod− 2 times, whered is the circuit depth).

Theorem 2.1. The local propagation function for a circuit linel, LPFl,tr(), needs to be

generated (expressed with respect to local variables only in a topological level) only the first

time it appears in a topological level, during the course of the algorithm.

Proof. We first give a definition that generalizes the local functionality and local stability

function definitions given so far (Definition 2.2 and Definition 2.4). LetLF 1,k
l () andLS1,k

l ()

(LF 2,k
l () andLS2,k

l ()) be the local function and local stability functions for linel the first

(second) vector, expressed with respect to variables corresponding to lines in topological

level k. Observe that for the algorithm of Subsection 2.3.1, onlyLF 1
l () andLS1

l () (LF 2
l ()

andLS2
l ()) are defined, since local functionalities and stabilities are expressed only with

respect to immediate predecessors, and not also with predecessors in some arbitrary level

k. Recall that levelsk = 0 andk = d are the levels containing all primary inputs and all

primary output lines, respectively, and that the algorithm starts at the primary outputs and

terminates at the primary inputs.

Let level i + j be the first topological level the algorithm visits linel and leti + 1 be the

last one to do so. Then for linel we maintaini + 1 LF 1,k
l () and LS1,k

l () (LF 2,k
l () and

LS2,k
l ()) functions withk = 0, 1, 2, ..., i, according to the definition given in the previous

section. ClearlyLF 1,0
l () = F 1

l () (LF 2,0
l () = F 2

l ()) (Definition 2.1) andLS1,0
l () = S1

l ()

(LS2,0
l () = S2

l ()) (Definition 2.3), which are used by theSub() operation to realize the

final form of propagation functionPFl(). Similarly, LF 1,i
l () = LF 1

l () (LF 2,i
l () = LF 2

l ())

(Definition 2.2) andLS1,i
l () = LS1

l () (LS2,i
l () = LS2

l () (Definition 2.4).

We redefine operatorSub l (LPF i+1
l,tr ()) to Sub l′ (LPF i+j

l,tr (), i) to apply the substitution

operation on the local propagation function of linel at leveli + j with respect to variables

in level i, by substituting every variablex in level i + j with their local functionalities and

local stability functions for leveli (LF 1,i
x (), LF 2,i

x (), LS1,i
x (), LS2,i

x ()).

Thus,

21

Stel
ios

 N
. N

eo
ph

yto
u

Sub l′(LPF i+j
l,tr (), i) = Sub l(LPF i+1

l,tr ()) = LPF i
l,tr andSub l′(LPF i+j

l,tr (), 0) = Sub(LPF i+1
l,tr ()) = PFl,tr.

Therefore,it is only necessary to generate theLPF for line l once, that ofLPF i+j
l,tr ().

Calculatingthe local propagation functions only once, can reduce the computation time up

to a factor ofd, whered is the number of topological levels of the circuit. This reduction

is made in the cost of maintaining all theLF 1,k
l (), LF 2,k

l (), LS1,k
l (), andLS2,k

l (), for all

k = 0, . . . , i which however is a one time cost, obtained by pre-processing of the circuit.

2.3.2 Generating Activation Functions for all Faults

Generating a test for a transition fault involves two steps: faultactivationand faultpropaga-

tion. So far, we have described a methodology that generates all fault propagation functions

in a circuit. Here, we describe the generation of all fault activation functions. The ultimate

goal is to derive the transition fault test functionTl,tr() = Al,tr() · PFl,tr(), wherePFl,tr()

is the propagation function as defined in the previous subsection (Definition 2.6) andAl,tr()

is the activation function for transitiontr at line l. The number of minterms inTl,tr() is the

total number of testsfor transition faulttr at l.

If no specific sensitization conditions are enforced from the primary inputs to the fault site

l, then the following test functions can be used for a falling and rising transition fault atl,

respectively:

Tl,F () = F 1
l () · F 2

l () · PFl,F ()

Tl,R() = F 1
l () · F 2

l () · PFl,R()

With the above equations, it is ensured that the appropriate transition is launched atl and

propagated (robustly, non-robustly, or functionally, depending on howPFl,tr() was gen-

erated) to some primary output. Observe that the above formulations do not allow for

non-robust activation atl based on static-hazard excitation (i.e. either a0 → 1 → 0 or a

1 → 0 → 1 at l) since only ”real” transitions (not hazards) can be launched atl.

For higher quality tests, one should also consider the various sensitization conditions of

Table 2.1 for fault activation so that the generated tests will guarantee to sensitizecomplete

22

Stel
ios

 N
. N

eo
ph

yto
u

Table 2.2:Fault activation functions

Non-Robust Sensitization

AND Ag,tr() =
∑
∀i∈FI(G)[Ai,tr() ·

∏
∀j∈FI(G),j 6=i F 2

j ()]

OR Ag,tr() =
∑
∀i∈FI(G)[Ai,tr() ·

∏
∀j∈FI(G),j 6=i F 2

j ()]

Robust Sensitization

AND Ag,F () =
∑
∀i∈FI(G)[Ai,F () ·∏∀j∈FI(G),j 6=i S1

j ()]

OR Ag,R() =
∑
∀i∈FI(G)[Ai,R() ·∏∀j∈FI(G),j 6=i S0

j ()]

FunctionalSensitization

AND Ag,F () =
∑
∀i∈FI(G)[Ai,F () ·∏∀j∈FI(G),j 6=i S0

j ()]

OR Ag,R() =
∑
∀i∈FI(G)[Ai,R() ·∏∀j∈FI(G),j 6=i S1

j ()]

pathsfrom the primary inputs to the primary outputs, through the fault site, in a robust, non-

robust, or functional manner. We briefly describe how to generate such activation functions

below.

Consider again the example of the 2-input AND gate with inputs{a, b} and outputc, and

the case of non-robust fault activation. If{a, b} are primary inputs thenAa,R() = a1 · a2,

Aa,F () = a1 · a2, Ab,R() = b1 · b2, andAb,F () = b1 · b2. Consequently,Ac,tr() = Aa,tr() · b2 +

Ab,tr() ·a2. Thus, the activation function at the output of a gate can be expressed with respect

to the activation functions and the off-input constraints of its immediate predecessors. If

{a, b} are internal circuit lines thenAc,tr() = Aa,tr() · F 2
b () + Ab,tr() · F 2

a (), whereF 2
i () is

the function of linei for vectorv2 (Definition 2.1).

In general, for a gateG with output lineg and faninsFI(G), the transition fault activation

functions forG ∈ {AND, OR}, under the various sensitization conditions of Table 2.1, are

shown in Table 2.2. Similar equations can be derived for the remaining types of gates. The

activation function of a branch is identical to that of its corresponding stem. Note that for

robust and functional sensitization, only the functions for transitiontr settling to a control-

ling value are given, since the functions fortr settling to non-controlling value are identical

to those of non-robust sensitization (see Table 2.1).

23

Stel
ios

 N
. N

eo
ph

yto
u

Observe that only variables for the primary inputs need to be used in this formulation. There-

fore, only functionsF 1() andF 2() and stability functionsS1() andS0() per line, are nec-

essary to derive the activation functions. No local variables (variables per internal line) or

local functions are used. A single topological traversal, for the primary inputs to the primary

outputs, on the original circuit suffices in generating all fault activation functions.

It is noted that with the proposed technique it is possible, as in [32], to combine different

activation and propagation sensitization conditions.

2.4 Applications of Test Functions in Test Set En-

hancement

In this section we show how test functions can be beneficial by presenting various test set

enhancement techniques that can be applied to produce better quality test sets. Specifically,

three such enhancement methods that benefit greatly from the use of test functions are dis-

cussed.

2.4.1 Testing Faults Through Paths of Specific Length

The method of Section 2.3 can be applied to restrict event activation/propagation through

a subcircuit that contains paths that meet predetermined delay criteria under the fixed gate

delay model. In this manner, specific sensitization criteria as well as path criticality can be

considered for high quality test generation.

We define a subcircuitCi of original circuitC which consists of all paths inC of lengthi.

Let d be the size of the longest topological path inC. ThenCd contains only the paths of

C of maximum length, namely the longest paths. In this mannerCd−1 contains only second

longest paths,Cd−2 contains only third longest paths, and so on. We use a dynamic program-

ming algorithm to generate the transition fault test functions fork such subcircuits, wherek is

a constant between 1 andd, defined by the desired path criticality criteria. Using the method

24

Stel
ios

 N
. N

eo
ph

yto
u

of Section2.3,k different test functions are generated for each fault, each of which restricts

event propagation/activation through all paths of the same lengthi, namely subcircuitCi.

Depending on the desired qualities of the test set, thek test functions can either be used

separately to derive a test for each fault in everyCi, or be combined (Boolean OR) to derive

a test for allCi subcircuits,i = d, d − 1, ..., d − k, that allows fault activation/propagation

through paths of any length betweend andd − k. This circuit decomposition can be run in

parallel, if necessary, so as to minimize the computation time.

Next we focus on how to derive aCi subcircuit. We use a simple algorithm, based on circuit

traversals and linear number of node replications, which guarantees that the generation of

Ci is done in linear, to the size of circuitC, time. First, a forward topological traversal is

performed inC. At each linel in the circuit, a list of buckets is maintained and each bucket

B is labelled with thelength(L) of sub-paths ending at that line. Each such bucketBL holds

a list of identifiers for allimmediatepredecessor ofl that reachl with sub-paths of length

L. As an example, consider the graph of Figure 2.2. Graph nodes represent circuit lines

andL[p1, p2, ...] for nodel denotes thatp1, p2, ... are immediate predecessors ofl that reach

l with sub-paths of lengthL (bucketBL and corresponding identifiers kept). For instance,

nodee is labelled with3[d], 2[d], 1[i3] which implies that it has 3 buckets,{B3, B2, B1}, one

for every sub-path length up to that node. Noded is the only identifier in the list for buckets

B3 andB2 of nodee, since sub-paths of length 3 and 2 reache from d. In the same manner,

the primary inputi3 is the only identifier contained in the list for bucketB1 of line e, sincei3
is the only immediate predecessor ofe that reachese with length 1. In general, the number

of buckets kept per line is no more thand, whered is the length of the longest path in the

circuit.

A backward traversal follows the forward traversal, starting from primary outputs that have

a bucket labelled with the desired path length, let this bei. When at some bucketBL, of a

nodel, the list of identifiers kept forBL is used to determine the nodes to be visited next.

For example, consider again the graph of Figure 2.2 and suppose that we are interested in

derivingC5. For simplicity, let’s focus only on paths of length 5 ending at primary outputk,

namelyi2adfhk, i2bdfhk andi1defhk. Then, forB5 atk we know that h is to be visited next.

Moreover, bucketB4 of h is selected, since in order to reachk with paths of length 5, it is

necessary to reachh with paths of length 4. In this manner, the paths of the desired length are

identified when the primary inputs are reached, based on the visited nodes and edges. During

this process, it is essential to ensure that no paths of any length other thani are included in

25

Stel
ios

 N
. N

eo
ph

yto
u

k

0

0

1[i2]

1[i2]

0

2[c]1[i0,i1]

0

5[f],4[f],3[f],2[f]

2[a,b],1[i1] 4[e],3[d,e],2[d,e],1[i1]

5[f],4[f],3[f],2[f,c]

6[h],5[h],4[h],3[h],2[c]

6[h,j],5[h,j],4[h,j],3[h,j]3[d],2[d],1[i3]

e

f

l
j

g

h

c

d

i0

a

b

i2

i3

i1

Figure 2.2:Attempting to deriveC5 on original Graph C.

2[d1]

d0

d1
0

1[i2]

2[a,b]

1[i2]

5[h]
4[f]

3[d0,e]

1[i1]
e

f

l
j

g

h k

c
i1

i0

b

a

i3

i2

Figure 2.3:Replication of noded to deriveC5.

Ci. Observe again Figure 2.2. If the process of backtracking fromB5 of k is applied till all

primary inputs are reached, then the identified paths are shown in bold lines in Figure 2.2. In

this case,C5 (bold part of the Figure 2.2) also contains paths of length 4 (i1dfhk) and length

6 (i2adefhk andi2bdefhk). In order to avoid such cases, our algorithm modifies the induced

subcircuit by replicating nodes to ensure the properties ofCi. Visited nodes (other than PIs)

that have sub-paths to POs, of different size are replicated with connections to appropriate

successors and predecessors. In the graph of Figure 2.3 (only used buckets per node are

shown), noded is replicated inC5 (consider again only paths of length 5 to POk) since it is

reached fromf via B3 and frome via B2. Noded0 reaches nodesa andb via B2 and node

26

Stel
ios

 N
. N

eo
ph

yto
u

d1 reachesi1 via its B1 bucket. Bold lines in Figure 2.3 show all visited nodes and edges. In

general, if d is the length of the longest path in circuitsC then a node may be replicated, in

the worst case, as many asd− i+1 times in order to derive subcircuitCi. Clearly, the circuit

modification is linear to the size of the original circuitC.

Note that a subcircuitCi does not contain lines which are not on a path of lengthi and are

needed by the method of Section 2.3 to ensure off input constraints presence along targeted

paths. We call these linesside linesof Ci. Formulation of test functions is trivially modified

in a way such that the side input constraints are met, but no fault sensitization through sub-

paths consisting of side lines are allowed.

2.4.2 Test Set Compaction

The second test set enhancement method proposed examines the problem of decreasing

the size of the test set without any compromise in fault coverage, known as test set com-

paction. By insisting on maintaining test functions per fault we have a major advantage over

structural-based techniques, that find only one test per fault (or small set of tests if don’t-cares

are allowed), when trying to compact a test set. Each test function can implicitly represent

an enormous number of tests per fault. This gives a much greater flexibility in finding tests

that detect many faults.

Consider faultf with transition fault test functionTf (). FunctionTf () contains all possible

tests forf, under the specified sensitization criterion. Any minterm ofTf (), let mf , can be

selected to cover faultf . Consider now a second faultf ’, other thanf, with corresponding

test functionTf ′(). One can again derive a minterm, letmf ′, from Tf ′() to cover faultf ′.

Alternatively, one may attempt to find a common test for the two faults, i.e., a single test that

will detect both faults simultaneously. This amounts to computing the intersection of the two

sets of minterms represented by each test function. When dealing with boolean functions,

set intersection is equivalent to Boolean AND. Thus,Tf () · Tf ′() will contain all possible

tests that can detect faultsf andf ′ simultaneously. IfTf () · Tf ′() = 0 then faultsf andf ′

are said to be incompatible, which means that they can never be detected together by a single

test. In general, given a list ofn faults,{f1, f2, . . . , fn} and their corresponding list of test

functions,{Tf1(), Tf2(), . . . , Tfn()}, the functionTN() that contains all tests that detected all

n faults simultaneously is given byTN() =
∏

i=1...n Tfi
().

27

Stel
ios

 N
. N

eo
ph

yto
u

Thegoal here is to select test functions that can be combined, i.e. have at least one common

minterm. Ideally, one would likeTN() to have as many minterms as possible, since this may

also indicate that further reduction of the test set is possible. In general, the main objective

for achieving good test set compaction using functions relies on finding a combination of the

faults in the targeted fault list such that each of generatedTN() combines a large number of

functions such that the number ofTN() functions necessary to detect all faults is minimized.

We use two simple heuristics to demonstrate the effectiveness of test function generation in

test set compaction. The first method starts with a test set that contains one test function per

fault and checks for local compatibilities, i.e. attempts to compact faults in the same locality.

Using a backward circuit traversal we check if the test function of a faultf at some linel can

be combined with the appropriate test functions for faults at one or more of the immediate

predecessor lines ofl. For instance, consider a 2-input NAND gate with inputsa and b

and outputg. There are 6 transition faults for lines{a, b, g} (3 rising and 3 falling faults)

with 6 corresponding test functions, denoted by{TR
a (), T F

a (), TR
b (), T F

b (), TR
g (), T F

g ()}. The

compaction algorithm will attempt first to compute functionsT1() = TR
a () · TR

b () · T F
g () and

T2() = T F
a () · T F

b () · TR
g (). FunctionT1() (T2()) attempts to combine all the rising (falling)

faults on the inputs with the falling (rising) fault at the output of the gate. If any of these

two functions is 0, the algorithm will select subsets of the inputs (instead of all) and try to

see if their corresponding faults can be tested together. Once a test function is considered

in one compacted set of functions, it is dropped from further consideration. We repeatedly

apply this scheme at each line in the circuit. At fanout stems the rising (falling) test function

for a fault at the stem is combined with all rising (falling) test functions for the faults at its

branches. If a single function that detects all does not exist (=0), then the algorithm again

selects subsets of the branches to be combined. This scheme is very effective, as it guarantees

to reduce the test set by at least 50% (except in the case where the stem fault is redundant),

since the test function of a gate’s output (fanout stem) can always be successfully combined

with the corresponding test function of at least one of the gate’s inputs (fanout branches).

We call this heuristic compaction methodA.

A second compaction heuristic, we call it methodB, is also applied on top of methodA.

It considers pair-wise compaction of all remaining functions in the test set. This greedy

approach can be applied in an iterative manner until the size of the test set cannot be further

reduced. We start with the set of test functions obtained by compaction methodA (one can

also apply methodB independently by considering one test function per fault in the input test

28

Stel
ios

 N
. N

eo
ph

yto
u

set)and perform pair-wise compaction. Once a test function is considered in one compacted

pair of functions, it is dropped from further consideration. Any functionTf () that cannot be

combined with any other function is also added in the new list of test functions to guarantee

that fault coverage is not compromised. The above process is repeated on the new list of test

functions until no further compaction is possible (size of starting list is equal to the size of the

new list). Although, this approach selects functions to combine greedily, our experimental

results for the ISCAS’85 and ISCAS’89 circuits show that it can achieve up to 80% of test

set compaction of the original test set (when applied on top of compaction methodA).

The pseudocode for the compaction heuristic is shown in Figure 2.4. MethodA is given in

lines 1–13 and methodB in lines 14–26. Faultf tr
i denotes transition fault at linei with tr =

{R,F}. Operator! denotes the change of transitionR(F) to transitionF (R). For example,

if tr = R then!tr = F . Operators· and+ denote Boolean AND and OR, respectively.

2.4.3 Test Set Enrichment

Here we discuss an additional application of high quality transition fault test functions for

test set enhancing. We present a novel method to enrich the compacted test set with more

tests by adding a number of new tests in the set such that they detect the same transition

faults but only through paths that have not been sensitized by the initial test set. Such test

sets have higher quality since events propagate through many different paths and, thus, are

more likely to detect a delay violation in the circuit. It is expected that, on the average, this

procedure will allow the number of paths sensitized by all transition fault tests to increase

proportionally to the number of tests per transition fault.

Any minterm of a transition fault test function guarantees to detect transition fault by ac-

tivating and propagating the transition through at least one circuit path. Using the method

described in Subsection 2.4.2 the test set is compacted as a first step. If the test set size drops

below some required upper bound (maximum test set size), one can select to enrich the test

set with new tests that guarantee detection of already detected faults, but via sensitization

of new (not already sensitized) paths, thus, improving the quality of the test set. (Note that

the method described in this section can be also applied independently to the compaction

method of Subsection 2.4.2.)

29

Stel
ios

 N
. N

eo
ph

yto
u

procedurecompact()
INPUT: circuit C,

test function arrayTA,
corresponding fault arrayFA

OUTPUT: compacted test function arraynew TA
% Compaction methodA
1: for each fault f tr

i in FA
2: G = gate driving linei
3: if G is inverting gatethen tr′ =!tr elsetr′ = tr
4: FI(G) = fanin list of gateG with output linei
5: comp TA = ∅
6: temp T tr

comp() = T tr
fi

(), T tr
comp() = logic one(1)

7: for each fanin j ∈ FI(G), wheref tr
j ∈ FA

8: temp T tr
comp() = T tr′

Fj
() · T tr

comp()

9: if temp T tr
comp() = logic zero(0) then break

10: elseT tr
comp() = temp T tr

comp()

11: Drop fault f tr′
j from FA

12: Add T tr
comp() to comp TA

13: for eachfault f tr
j ∈ FA, Add T tr

j () to comp TA
% Compaction methodB
14: k = 0, new TA = temp TA = ∅
15: do
16: if k = 0 then temp TA = comp TA elsetemp TA = new TA
17: Incrementk
18: for eachT tr

fi
() ∈ temp TA

19: for eachT tr
fj

() ∈ temp TA, T tr
fj

() 6= T tr
fi

()

20: T tr
comp() = T tr

fi
() · T tr

fj
()

21: if T tr
comp() 6= logic zero(0) then

22: Add T tr
comp() to new TA

23: Drop functionsT tr
fi

() andT tr
fj

() from temp TA
24: break
25: for eachT tr

fi
() ∈ temp TA, Add T tr

fi
() to new TA

26: while (|new TA| < |temp TA|)

Figure 2.4:Pseudocode for Compaction Algorithm

The enrichment algorithm starts with a compacted (or not) list of test functions. For every

functionTi() in the list, a mintermmTi
(test) is randomly selected and simulated to identify

all sensitized paths, under the given sensitization criterion that the function was originally

generated. Paths through which the targeted fault(s) is(are) sensitized, as well as other paths

of the circuit detected incidentally, are identified. Then, for each identified sensitized path,

the path test function (again, under the given sensitization criterion) is generated. Path test

30

Stel
ios

 N
. N

eo
ph

yto
u

procedureenrich()
INPUT: test function arrayTA, TestSetBound
OUTPUT: enhanced test setS
1: S = ∅
2: for each test functionTi() ∈ TA
3: mTi

= pick minterm(Ti())
4: Add testmTi

to S
5: while (|S| ≤ TestSetBound)
6: Pick testmTi

∈ S
7: SimulatemTi

8: P = set of paths sensitized bymTi

9: TP = logic zero(0)
10: for eachpathpi ∈ P
11: Tpi

() = test function for pathpi

12: TP () = TP () + Tpi
()

13: T ′
i = Ti() · TP ()

14: m′
Ti

= pick minterm(T′i ())
15: Add testm′

Ti
to S

Figure 2.5:Pseudocode for Enrichment Algorithm

functions, denoted here byTp() for some pathp, are discussed and generated in [38] and

[40], among others. LetP = {p1, p2, . . . , pn} be the set ofn paths sensitized by testmTi

andTP() = {Tp1(), Tp2(), . . . , Tpn()} be the set of their corresponding path test functions.

The set of all possible tests that can sensitize any path inP, denoted byTP () is given by

TP () =
∑

i=1...n

Tpi
(), where

∑
denotes the Boolean OR operation. To find the set of all tests

in Ti() that sensitize paths not inP, it suffices to compute functionT ′
i () = Ti() · TP (). We

can then enrich our test set with any mintermmT ′i of T ′
i (), which guarantees to detect faulti

through paths not inP.

The diagram in Figure 2.6 illustrates the above process in a Venn diagram. It assumes that test

functionTi covers 2 faults. It is shown how the set of minterms (tests) of functionT ′
i () =

Ti() · (Tpj
() + Tpk

()) is defined.U is the universe of possible patterns. The test function

Ti(), for fault i, is the intersection of activation and propagation functions,Ai() andPi(),

respectively. Any mintermmTi
, selected fromTi(), sensitizes paths whose corresponding

test functions can have some or complete overlap with functionTi(). These two cases are

illustrated in Figure 2.6. LetmTi
sensitize two paths,pj andpk. Their corresponding test

functions, denoted byTpj
() andTpk

(), are shown in Figure 2.6. Observe thatTpj
() ⊆ Ti(),

which implies that pathpj contains the line of transition faulti. On the other hand, pathpk

31

Stel
ios

 N
. N

eo
ph

yto
u

maybe an incidental path sensitized bymTi
. In any case,T ′

i () (shown in the patterned set in

Figure 2.6) contains those minterms ofTi() that will detect the faulti through any path other

thanpj or pk.

The number (or%) of new tests added to the original test set can be user defined. The

pseudocode of the proposed enrichment algorithm is shown in Figure 2.5.TestSetBound

denotesthe maximum number of tests allowed in the enriched test set. Operators· and+

denote Boolean AND and OR, respectively.

2.5 Experimental Results

The proposed methods were implemented in C language and run on a 1GHz SunBlade 1500

with 4GB of RAM. All Boolean functions were represented and manipulated using Binary

Decision Diagrams (BDDs)[34]. The package of [41] was used to generate the BDDs as well

as optimal initial ordering of variables, that is also provided along with [41]. No dynamic

variable reordering was allowed, even though it could have been invoked to provide space

saving at the expense of computation time. All circuits of the ISCAS’85 and ISCAS’89

benchmarks, with the exception of c6288, were considered. Circuit c6288 is a 16 x 16

multiplier that cannot be represented using BDDs. We note here that no comparison between

i ()

()

U

iA

P

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

T

T

T’

()

()

pk

pj

i

T

()

i

()

Figure 2.6:Finding new test functionT ′
i ().

32

Stel
ios

 N
. N

eo
ph

yto
u

our results and other methods is possible since, to our knowledge, no other existing work

considers such types of quality tests for transition faults.

Table 2.3: Test Function generation for the ISCAS’85 and ISCAS’89 circuits.

SubcircuitCmax SubcircuitCmax−1 SubcircuitCmax−2

Circuit Paths Faults Red. Paths Faults Red. Paths Faults Red.

s382 24 82 0 4 44 0 18 88 0

s420.1 9 64 0 4 86 0 13 156 0

s444 32 122 29 16 90 0 8 102 19

s641 2 200 113 2 198 113 4 386 38

s713 32 232 184 32 230 183 76 442 186

s1423 4 204 8 6 224 10 4 216 2

s9234.1 5632 1668 1475 512 704 652 10240 1858 1677

s13207.1 240 322 235 840 830 197 3184 1340 1252

s15850.1 1024 442 396 24292 1254 0 91432 2060 1042

s38417 64 238 192 112 322 259 96 498 397

s38584.1 896 598 524 128 338 293 7147 1176 1028

c880 108 196 0 270 244 0 334 388 0

c1355 196608 1588 894 65536 1508 801 298560 2664 1599

c1908 32 360 180 618 888 180 3328 1498 0

c2670 448 346 334 1248 528 516 5568 916 904

c3540 32 202 163 460 678 291 5014 1318 30

c5315 12 328 164 816 692 386 7388 1208 601

c7552 1 124 64 136 492 138 1743 980 204

We first present the results obtained for generating the transition fault test functions for non-

robust propagation, without enforcing any specific sensitization rule for fault activation. As

already mentioned in Subsection 2.3.2, the computational effort to generate all fault acti-

vation functions for various sensitization criteria is considerably less than the one required

to generate all fault propagation functions, since in the former case no local variables or

functions are involved. Table 2.3 shows the results when faults are activated and propagated

along any path in subcircuitsCmax, Cmax−1, andCmax−2, wheremax denotes the size of

the longest circuit path. For each subcircuit, the number of paths (Columns 2, 5, and 8),

33

Stel
ios

 N
. N

eo
ph

yto
u

Table 2.4: Time and space requirements for test function generation for the ISCAS’85 and

ISCAS’89 circuits.
SubcircuitCmax SubcircuitCmax−1 SubcircuitCmax−2

Circuit CPU Mem. CPU Mem. CPU Mem.

(secs) (MBs) (secs) (MBs) (secs) (MBs)

s382 0.04 1.94 0.01 1.94 0.04 2.05

s420.1 0.05 7.45 0.71 16.06 1.01 17.85

s444 0.04 2.02 0.02 2.04 0.0 2.05

s641 0.07 3.28 0.06 3.33 0.07 3.49

s713 0.06 3.33 0.04 3.35 0.07 3.35

s1423 0.75 22.85 1.11 22.50 10.91 30.36

s9234.1 12.75 172.7 0.26 81.99 19.91 213.74

s13207.1 0.38 30.83 0.54 31.45 0.41 31.45

s15850.1 0.26 34.02 0.19 34.02 0.09 34.02

s38417 24.27 4.0 31.13 5.01 38.11 4.97

s38584.1 37.15 57.99 25.18 55.98 41.51 63.99

c880 7.78 28.51 9.11 29.36 9.99 35.42

c1355 110.01 213.72 55.73 83.99 174.11 228.98

c1908 74.90 188.47 71.29 252.02 79.18 312.02

c2670 0.14 11.47 0.90 13.42 5.15 121.67

c3540 60.89 43.61 110.86 52.77 90.32 50.75

c5315 93.11 30.71 80.13 51.17 85.13 65.37

c7552 8.45 31.85 7.08 95.32 13.44 115.30

the number of faults (Columns 3, 6, and 9), and the number of identified redundant faults

(Columns 4, 7, 10) are reported. Time and space requirements are given in a similar manner

in Table 2.4. All faults were processed, i.e., there were no aborted faults in any of the three

subcircuits. An important observation from the obtained results is that a very large percent-

age of the faults, for many subcircuits, are redundant (cannot be activated or propagated to

some primary output under the considered sensitization criterion). A fault is identified as re-

dundant when its test function is the constant zero function. It is expected that when specific

sensitization criteria are enforced also for fault activation, the number of redundant faults

will increase further. Note that the number of faults considered and the number of redundant

34

Stel
ios

 N
. N

eo
ph

yto
u

faults are reported per subcircuit in Table 2.3. To determine the total number of redundant

faults after the three iterations of the approach (for subcircuitsCmax, Cmax−1, andCmax−2),

one should compute the sum (logic OR) of the test function for the same faults that appear in

any subcircuit. This information is not provided here, however, it could be trivially obtained.

Next we concentrate on presenting some static information per circuit, with regard to sub-

circuits Ci. One might want to know how many iterations of test function generation are

necessary (one iteration findsCi containing only paths of lengthi and applies the method of

Section 2.3 to find the transition fault test functions), given some user defined threshold for

transition fault coverage as well as % of considered paths of high quality (high length).

Figure 2.7 and Figure 2.8 show information for some of the ISCAS’85 and some of the IS-

CAS’89 circuits, respectively. Each figure contains two plots. The bottom plot in each figure

shows the percentage of circuit lines (analogous to the percentage of transition faults cov-

ered with high quality tests) considered, as the number of iterations increases. The maximum

number of iterations per circuit is equal to the size of the longest path in the circuit (under the

fixed gate delay model). Again, letmax be the size of the longest path in a circuit. Thus, for

some iterationi this plot shows the percentage of transition faults covered through paths of

at least lengthmax− i + 1. For example, for iteration 1 this plot will show what percentage

of transition faults can be covered through only longest paths (iteration 1 will consider sub-

circuit Cmax). Observe that the fault coverage reported here is pessimistic (it can be higher)

since the total number of the redundant faults is not considered in the calculation.

The top plot in each of the Figure 2.7 and Figure 2.8 shows the percentage of high quality

paths (in terms of length) considered for transition fault activation/propagation as the number

of iterations increases. For example, for iteration 1 this plot will give the percentage of the

total paths that are the longest. For iterationi these plots show the percentage of paths of

lengthmax− i + 1 or greater from the total number of paths in the circuit. Up to iterationi,

the method considers subcircuitsCmax, Cmax−1, . . . , Cmax−i+1 and the reported percentage

of paths shows the ratio of the sum of paths among all considered subcircuits over the total

number of paths in the circuit.

Consider, for example, circuit c3540 in the bottom plot of Figure 2.7. With approximately

21 iterations the targeted transition faults (around 55% of total number of transition faults

as given in the top plot of Figure 2.7) will be detected though only 40% of the paths of

35

Stel
ios

 N
. N

eo
ph

yto
u

Figure 2.7:SubcircuitCi details for some ISCAS’85 circuits.

the circuit. Each path in this 40% has lengthmax − 20 or more. Thus, around 55% of

the transition faults can be detected through paths of sizemax − 20 or more. As another

36

Stel
ios

 N
. N

eo
ph

yto
u

Figure 2.8:SubcircuitCi details for some ISCAS’89 circuits.

example, consider circuit s641 shown in Figure 2.8. It shows that with around 30 iterations,

approximately 45% of the transition faults can be detected through 20% of the total paths,

which have lengthmax − 30. Such information is very useful in guiding the overall ATPG

process.

37

Stel
ios

 N
. N

eo
ph

yto
u

Table 2.5:Test Set Compaction for ISCAS’85 and ISCAS’89 circuits
SubcircuitCmax SubcircuitCmax−1 SubcircuitCmax−2

Circuit No. Comp. Comp. Comp. No. Comp. Comp. Comp. No, Comp. Comp. Comp.

Tests A(%) B(%) Tot.(%) Tests A(%) B(%) Tot.(%) Tests A(%) B(%) Tot.(%)

s382 82 56 50 78 44 52 50 76 88 58 50 78

s420.1 64 55 47 77 86 48 50 74 156 61 50 81

s444 93 57 48 78 90 49 44 72 83 62 47 80

s526n 28 52 50 76 58 59 50 80 83 60 50 80

s641 87 56 50 78 85 53 50 77 348 55 47 76

s713 48 56 50 78 47 57 50 79 256 57 50 79

s1423 196 57 41 75 214 59 50 80 214 52 49 76

s9234.1 193 59 50 80 52 41 50 71 181 53 48 76

s13207.1 87 56 45 75 633 48 48 73 88 57 50 79

s15850.1 46 56 46 76 1254 51 47 74 1018 59 47 78

s38417 46 55 41 73 63 53 50 77 101 46 50 79

s38584.1 74 56 45 76 45 53 45 74 148 59 48 79

c880 196 55 48 77 244 51 50 76 388 59 48 79

c1355 694 55 48 77 707 46 46 71 1065 60 47 79

c1908 180 68 50 84 708 61 47 79 1498 57 50 79

c2670 12 58 50 79 12 53 50 77 12 53 50 77

c3540 39 61 47 79 387 43 50 72 1288 56 47 77

c5315 164 54 40 72 386 52 50 76 607 55 49 77

c7552 60 56 50 78 354 54 48 76 776 56 50 70

Avg. Comp. % 56.74 47.16 77.16 51.74 48.68 75.47 56.58 48.79 78.27

Next, we report compaction results, obtained by applying the compaction method described

in Subsection 2.4.2. Table 2.5 shows the compaction results for the test sets presented in

Table 2.3. Thus, Columns 2, 6, and 10 show the size of the original test set (equal to the

number of test functions generated) for subcircuitsCmax, Cmax−1, andCmax−2, respectively.

Columns 3, 7, and 11 show the reduction rate (%) achieved for MethodA of Subsection 2.4.2,

and Columns 4, 8, and 12 show the reduction rate achieved for MethodB of Subsection 2.4.2.

The total reduction rate when MethodB is applied on top of MethodA is shown in Columns

5, 9, and 13. The proposed compaction technique is very effective since the total reduction

rates are between 70% and 84% for all circuits. The last row of Table 2.5 reports the average

reduction rates for all listed circuits. The total time performance (CPU secs), shown in

Table 2.6, demonstrate that the proposed scheme is very efficient.

38

Stel
ios

 N
. N

eo
ph

yto
u

Table 2.6:Time requirements for Test Set Compaction (CPU secs)
Subcircuit Subcircuit Subcircuit

Cir cuit Cmax Cmax−1 Cmax−2

s382 0.01 0.01 0.01

s420.1 0.01 0.01 0.02

s444 0.01 0.01 0.01

s526n 0.01 0.02 0.02

s641 0.02 0.02 0.08

s713 0.02 0.02 0.03

s1423 0.03 0.02 0.03

s9234.1 0.23 0.01 0.02

s13207.1 0.03 0.04 0.02

s15850.1 0.01 8.17 5.11

s38417 0.02 0.02 0.03

s38584.1 0.02 0.01 0.04

c880 0.04 0.02 0.05

c1355 0.08 0.11 0.19

c1908 27.54 39.11 51.99

c2670 0.01 0.01 0.02

c3540 0.05 0.19 1.53

c5315 0.02 0.05 0.06

c7552 0.01 0.02 0.04

2.6 Conclusions

This chapter presented a novel methodology for efficient generation of transition fault test

functions for high quality tests. First we showed how to generate a function that contains all

possible tests to detect a transition fault. Moreover, a systematic methodology is presented,

that derives the functions for all transition faults based on only two circuit traversals. Quality

tests are generated by requiring that the function formulation considers established sensiti-

zation criteria to either activate a transition at the fault site, or propagate it to a circuit output.

Experimental results on the ISCAS’85 and ISCAS’89 circuits demonstrate the promise of the

method and that the examined test functions can be generated quickly and with reasonable

memory requirements. In addition, they show that, in many cases, only a small percentage of

the faults, for the examined problem, can have high quality tests. Moreover, it is shown how

the proposed method can be beneficial for further test set enhancement techniques which can

be applied to provide better quality test sets. One such method restricts events propagation

along any path in a subcircuit containing paths that meet predetermined delay criteria using

the fixed delay model. Another, manipulates the derived test functions to generate compact

test sets. Experimental results show a compaction rate of the order of 70% to 84%, with no

compromise in fault coverage. Finally, a novel method to enrich the compacted test set with

39

Stel
ios

 N
. N

eo
ph

yto
u

additionalvectors so that transition faults are tested through different activation and propa-

gation paths. Such test sets have higher quality, compared to traditional transition fault test

sets, since events can propagate through many critical paths.

The test generation methodology proposed in this chapter can be easily extended to produce

test sets with don’t care bits (incompletely specified test sets), on top of the quality criteria

specified in this work. Such “flexible” test patterns may be desirable for many reasons.

Appropriate don’t care bit fixing can be used to benefit different applications such as low

power testing, test set embedding, test set enrichment and test set compaction, among many

others. The subsequent chapters explicitly examine the problem of generating flexible test

sets. Even though the stuck-at fault model is used in the experiments, any linear fault model,

such as the enhanced transition delay fault model presented in this chapter, can be considered.

40

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 3

STATIC TEST SET RELAXATION

3.1 Introduction

A number of digital circuit testing problems can benefit when using flexible test sets, i.e.,

test sets with a large number of unspecified bits, as their starting point. In this chapter we

approach quality from a different direction from that of Chapter 2. Instead of generating test

sets of increased detection capabilities, we generate “flexible” test sets which under appropri-

ate manipulation benefit different test-related applications and problems. Such applications

include, but are not limited to, adding to a given test set extra properties such as fixing

unspecified bits appropriately for low power dissipation during test [11, 42] or additional

fault type detection [43]. Flexible test sets are also extremely crucial in various compression

schemes for on-chip or off-chip test set embedding, given in [44, 45, 46] among many others,

as well as in test set compaction as it will be demonstrated in this dissertation. The majority

of existing test generation tools produce fully specified test sets since fixing the values of

test bits is essential for the test set compaction methods they employ. Most of the popular

compaction techniques rely on having fully specified bits in order to take advantage of coin-

cidental detection of faults and removal of tests that do not target any new faults. Examples

of such compaction methods include the static technique of reverse order fault simulation as

well as the popular dynamic method of [47] which identifies and merges compatible tests.

Test generation techniques that allow the existence of don’t cares (unspecified bits) in the

generated test set usually result in larger test sets. Moreover, one drawback that is common

to all ATPG or dynamic compaction methods is that they cannot take advantage of random

test generation when don’t care values need to be considered.

41

Stel
ios

 N
. N

eo
ph

yto
u

Therefore,it is often necessary to relax an already generated test set so that it contains many

unspecified bits. The work in this chapter examines this problem, which is defined asre-

placing a fully or partially specified test set with a new partially specified test set such that

the total number of unspecified bits is maximized while fault coverage remains the same and

test set size does not increase. In this context, test set relaxation does not imply that the

specified bits of the new test set are a subset of the specified bits in the original test set, as

it is the case with the existing test relaxation methods in [48, 49]. These methods rely on

various ATPG concepts in order to identify specified bits in the test set that can be replaced

by don’t care values. [48] proposes a method for identifying don’t care bits in a test pattern

using ATPG concepts such as implication and justification. [49] uses a similar rationale, tak-

ing into consideration testability measures in the justification process. Moreover, this latter

method proposed some heuristic to improve the accuracy of the relaxation process.

The methods proposed here are essentially test replacement techniques, which ensure that

each new test pattern has fewer care bits than the one being replaced, and detects at least a

subset of the faults detected by the original test. In order to maintain fault coverage, each

fault is guaranteed to be detected at least once. Detecting a fault additional times is not

essential and can be eliminated in favour of decreasing the specified bits. This is actually a

major observation that is implicitly enforced by all previous methods that solve this problem

[48, 49]. Here, this observation is explicitly explored in the proposed techniques. Without

any loss of generality, the work in this chapter concentrates on single time stuck-at fault

detection, as in [48, 49]. However, the presented methodologies apply to any other linear, to

the size of the circuit, fault model, such as the transition fault model considered in Chapter 2.

The first method investigated proceeds in a test-oriented manner. It replaces each test with

one that has a larger number of unspecified bits and targets only those faults detected by the

original test but are not explicitly or coincidentally detected by already relaxed tests. This

is essentially a simple test dropping process, coupled with test generation for maximizing

unspecified bits, which in practice performs very well (as it is demonstrated by the obtained

experimental results). The second method presented is more sophisticated and proceeds

towards a different direction than the first one by considering one fault at a time. For each

fault, this method determines the one test to detect the fault (among all of the original tests

that detected the fault) that gives the maximum benefit in terms of specified bits savings in

the entire test set. Thus, it selects the “best” test to detect the fault and drops the fault from

the remaining tests in order to reduce the total number of specified bits in these tests.

42

Stel
ios

 N
. N

eo
ph

yto
u

Both of the proposed methods are different from the previously proposed techniques since

they use test set replacement instead of relaxing each test pattern. The latter can limit the

number of specified bits that can be relaxed. On the other hand, test set replacement implies

explicitly invoking a test generator, capable of generating tests with large number of unspec-

ified bits. However, this is not very different from what is required by the existing methods

[48, 49], which rely on modified ATPG routines (such as justification) or have to deal with

standard ATPG related problems (such as fault masking due to multiple path activation).

All test generation related routines can be implemented with any previously proposed method

that generates tests with many unspecified bits. Essentially, structural approaches like those

used in [48, 49] can be employed. Alternatively, symbolic techniques in a function-based

framework (e.g. BDD based, SAT based) can be used for all the proposed techniques, as well

as for the techniques we propose in the next chapter. Since the impact of the test generation

process is important for all the proposed techniques, we propose a function-based approach

based on Binary Decision Diagrams (BDDs) [34]. Beyond test generation, this approach

allows for efficient representation and manipulation of tests or group of tests. Moreover, we

take advantage of the canonical form of BDDs in order to generate tests with a large number

of specified bits. We postpone this discussion until the next chapter (Section 4.5) in order to

give a complete framework that can be used with all the proposed techniques of this as well

as the next chapter.

The rest of this chapter is organized as follows. Section 3.2 gives the problem formulation

together with some necessary definitions. Section 3.3 and Section 3.4 describe in detail the

two proposed methods. In Section 3.5 we present a post-processing compaction heuristic for

reducing the number of tests in the relaxed test set. Section 3.6 gives the obtained experi-

mental results and necessary comparisons for the proposed methods. Section 3.7 concludes

Chapter 3.

3.2 Problem Formulation and Notation

Consider a given test setT ={t1, t2, ..., tN} for a combinational or a fully-scanned sequential

circuit-under-testC. Each of the N test patterns consists of a string of 3-valued bits∈ {0,1,x},

43

Stel
ios

 N
. N

eo
ph

yto
u

thus,the test setT can be fully or partially specified. Consider also a fault modelM, based

on which the list of faults detected byT , denoted byF , is derived. For a test setT , we

denote the ratio of the bits having a specified value{0,1} over the total number of test set

bits by K(T). This ratio gives a test set property that indicates how flexible a test set is.

Clearly,0 ≤ K(T) ≤ 1, for any test set. The closerK(T) is to 0, the more flexibleT is.

For fully specified test sets,K(T) = 1.

The test set relaxation process refers to replacing test setT ={t1, t2, ..., tN} with a test set

T ′={t′1, t′2, ..., t′N} such that each of the following is satisfied:

• T ′ has the same fault coverage asT (under fault modelM)

•K(T ′) < K(T), i.e. T ′ has more unspecified bits thanT
• Everyt′i ∈ T ′ detects a subset of the faults detected by sometj ∈ T

Since there is no constraint on the place of specified bits that become unspecified at a test,

the replacement method may give tests that have no specified bits at all. Depending on the

targeted application, such tests can be either preserved or eliminated.

3.3 Test-Based Replacement Method

The optimal approach for solving the problem of minimizing the number of specified bits in

a test set is to identify a minimal input assignment to test each fault. In other words, the target

is to find the test that detects each fault with the minimum number of specified bits. Since, for

this problem, we focus on modifying a given test set to have as few specified bits as possible,

the optimal solution is to identify the pattern in the test set that contributes less in specified

bits and then convert the specified bits to don’t care in all other tests that detect the fault

under examination. The former step, however, can become problematic because it involves

test generation, not only for each one of the examined faults but for all the combinations of

faults, as well. Hence, since the number of combinations can be exponential, the methods

proposed in this subsection (as well as in the next subsection) try to identify the optimal test

(the one that gives the fewer specified bits), in an iterative manner. Of course the results

are not optimum; however, experimentation shows that they are better than other similar

methods.

44

Stel
ios

 N
. N

eo
ph

yto
u

Thefirst method proposed in this subsection iterates among tests examining the faults that

are targeted by the pattern considered at each iteration. Thus, the order by which the faults

are examined is defined by the order of the test patterns in the test set. All faults that have

been detected by a previous test are removed form the detect list of each test and a new test

is formed that has fewer specified bits than the given one. Thus, the new test, that replaces a

test in the initial test setT , detects the faults detected by the initial test excluding any faults

already detected. The proposed algorithm is given in Figure 3.1. The input parameters are

the circuit-under-testC, the test set to be relaxedT , and the considered fault modelM based

on which the targeted fault listF is derived (lines 1-2 of Figure 3.1). Consequently, for each

given testti ∈ T the algorithm first finds the faults detected byti and not already detected

by testst′1, t
′
2, ..., t

′
i−1 (this corresponds to lines 5-6 in Figure 3.1), and then generates a test

replacementt′ that only targets these faults. If all the faults detected byti are already detected

by at least one oft′1, t
′
2, ..., t

′
i−1 thenti is a fully unspecified test (i.e.K(t′) = 0 which is the

maximum relaxation possible forti) and is dropped from test setT ′. The process terminates

when all tests inT have been processed or when 100% fault coverage is achieved forT ′

(line 14 of Figure 3.1). In this manner, the relaxed test setT ′ is guaranteed to have no more

tests than the initial test setT .

procedureTest BasedReplacement

Inputs: circuit C, test setT , fault modelM
Outputs: relaxed test setT ′
01: Fault SimulateT based on fault modelM
02: F = list of faults detected byT
03: T ′ = ∅, F ′ = ∅
04: for each t ∈ T
05: Fi = list of faults detected byti
06: if Fi − F ′ 6= ∅
07: generate testt′ that detects all faults inFi − F ′

08: if t′ has more unspecified bits thanti
09: t′i = t′

10: else
11: t′i = ti
12: addt′i in T ′
13: F ′ = F ′ + Fi

14: if F ′ = F break
15: return T ′

Figure 3.1:Static Test-based Replacement Method.

45

Stel
ios

 N
. N

eo
ph

yto
u

All static test set relaxation methods rely, implicitly or explicitly (as in the proposed meth-

ods), on removing multiple detections of faults in the given test set. Letsp(ti) denote the

number of specified bits in testti. The effectiveness of the proposed static method, relies on

the following:

Theorem 3.1. If a testti detects a number of faultsFi = {fj, j = 1, 2..., n|ti detectsfj},
then∀ F ′

i ⊂ Fi ∃ t′i that detects all faults inF ′
i and such thatsp(t′i) ≤ sp(ti).

Proof. Let Tj denote the set of all tests that detect faultfj. Then the set of tests that detect

all faults inFi is given byTFi
=

⋂
Tj, fj ∈ Fi. Clearly, testti ∈ TFi

. Then, forF ′
i ⊂ Fi

andTF ′i =
⋂

Tj, fj ∈ F ′
i it holds thatTFi

⊆ TF ′i . The latter suggests thatti ∈ TF ′i which

implies thatt′i cannot have more specified bits thanti. This occurs because,t′i can be any

test inTF ′i then it can also beti. Moreover, in the case whereTFi
⊂ TF ′i , t′i can even have

fewer specified bits thanti since a test inT ′
Fi
− TFi

may have fewer specified bits inTFi
.

Therefore,sp(t′i) ≤ sp(ti). Since,F ′
i was arbitrarily selected and has no constraints except

that ofF ′
i ⊂ Fi, then this statement holds for all proper subsets ofFi.

Although, Theorem3.1 can only guarantee that when replacing a testti with anothert′i de-

tecting only a subset of the faults, the number of specified bits int′i cannot be more than those

in ti, we expect that removing faults fromFi will give tests with fewer specified bits. Thus,

the test generation process should be able to find a test for the faults inF ′
i that has fewer

specified bits thanti. Actually, the effectiveness of the proposed method depends greatly

on the ability of the test generation process (line 7 of Figure 3.1) to derive tests with a large

number of unspecified bits. Several existing methods can be used to solve this problem effec-

tively. Both of the structural methods of [48, 49] propose specific ATPG-like routines (using

implications, justifications, and testability measure concepts) to find a large test cube (test

with a large number of unspecified bits) that detects a number of faults. Alternatively, the

function-based routine that we describe in Section 4.5 can derive a large cube by extracting

the shortest path in a BDD-based implementation. Any of these techniques can be used by

the proposed method whose main contribution is not on this specific single test generation

problem but on finding a systematic method to replace an entire test set such that the total

number of unspecified bits is maximized.

46

Stel
ios

 N
. N

eo
ph

yto
u

Theproposed algorithm is quite effective, as it can be concluded from the experimental re-

sults, yet is of the same order with other comparable techniques, in terms of time complexity.

We give a brief worst-case time complexity analysis of the algorithm, expressed in necessary

typical operations such as number of fault simulations and number of test generations pre-

formed. The proposed algorithm requires, in the worst case,|T | fault simulations, and|T |
test generations. This is in the same order as the complexity of [48], which requires, in the

worst case,3 · |T | fault simulations and2 · |T | test-generations.

Initial Test SetT Test SetT ′ (ord. 1) Test SetT ′ (ord. 2) Test SetT ′ (ord. 3)

Fault t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t2 t4 t1 t3 t5 t3 t4 t2 t1 t5

f1 • • • – • – • –

f2 • • • •
f3 • • • – • – • –

f4 • • • – • – • –

f5 • • • – • – • –

f6 • • • • – – • – – • – –

f7 • • • •
f8 • • • – • – • –

Sp. Bits. 23 20 29 22 19 23 17 22 19 0 20 22 18 21 0 29 19 19 0 0

Total Bits 113 81 81 67

(a) (b) (c) (d)

Table 3.1: Test-based Replacement Example: (a) Initial Test Set (b) Relaxed Test Set with

orderingt1 < t2 < t3 < t4 < t5, (c) Relaxed Test Set when considering essential faults first,

(d) Relaxed Test Set with orderingt3 < t4 < t2 < t1 < t5.

Next we present an illustrative example for the method of Figure 3.1. Assume an initial test

setT = {t1, t2, t3, t4, t5} and a circuit with 8 faults given inF = {f1, f2, ..., f8}. Table 3.1(a)

gives the fault simulation results forT . The rows of the table correspond to the faults in the

fault list F and the columns correspond to the tests inT . A dot in a table cell indicates that

the fault in the corresponding row is detected by the test in the corresponding column. For

instance, testt1 detects faultsf1, f3 andf6. The cells in the last row show the number of

specified bits in the corresponding test. In the first iteration of the method, a test is generated

detecting faultsf1, f3 andf6 at the same time. This new test, let that bet′1, has as many

unspecified bits as possible. Faultsf1, f3 andf6 are then dropped from further consideration.

Next, t′2 is generated for faultsf2 andf5 only, sincef1 has already been covered by testt′1.

Testt′2 is guaranteed to have at least as few specified bits ast2, yet removing the constraint of

detectingf1 suggests the possibility of fewer specified bits int′2. In the following iterationt′3
is generated and detects onlyf4, whereas for the faultsf7 andf8 a new testt′4 is generated in

47

Stel
ios

 N
. N

eo
ph

yto
u

thesubsequent iteration. Finally, sincet5 only detects already detected by previous tests, it

is no more necessary in the test set. Thus, the complete fault coverage termination condition

(line 14 of Figure 3.1) determines the process which returns the relaxed test setT ′ (given in

Table 3.1(b)). According to Theorem 3.1, no test inT ′ can have a larger number of specified

bits than its corresponding tests in the initial test setT . Moreover, it is expected that tests

t′2, t
′
3 andt′4 will have fewer specified bits thant2, t3 andt4, respectively, since each of them

targets fewer faults. In the case oft′5 where no faults are left, the test is removed from the test

set. In this example, the total specified bits reduction in the entire test set is 32 bits, giving a

test set with only 81 specified bits instead of the 113 specified bits ofT .

The observation that targeting essential faults (i.e. faults that are targeted only by one test in

the test set) first, made by the authors of [48], might be beneficial for a number of compaction

techniques as well as the test set relaxation technique of [48]. To the contrary, it gives no

advantage in this test-based replacement method, since targeting essential faults first does

not guarantee that the resulting test will have larger number of specified bits. In Table 3.1(c)

we give the relaxed test set when we consider essential faults first. Since this is a test-based

method, considering essential faults first translates to examining the tests that target essential

faults first. Despite the fact that the initial test setT of this example was randomly chosen

to illustrate the algorithm, observe that no difference in the number of specified bits inT ′

was recorded. Actually, changing the ordering in which the tests are considered by our

algorithm, can affect the number of specified bits in the resulting test set, yet no clear benefit

was reported among all circuits during experimentation.

The results of this method clearly depend on the processing ordering of the tests inT . For

example, if we repeat the example of Table 3.1(a) using a decreasing test ordering on the

number of faults detected by each fault, i.e.t3 < t4 < t2 < t1 < t5, (sincet3 detects

4 faults,t1, t2 andt4 detect 3 faults, andt5 detects 2 tests) we have a differentT ′ shown in

Table 3.1(d). Here,T ′ contains 3 tests and a total of 67 specified bits. In this case more relax-

ation was achieved than applying the method with the different ordering (Table 3.1(b)). Our

implemented tool allows running the method under various ordering heuristics including:

i. increasing ordering on the number of faults detected by each test,

ii. decreasing ordering on the number of faults detected by each test,

iii. considering tests detecting essential faults first,

48

Stel
ios

 N
. N

eo
ph

yto
u

iv. considering tests detecting essential faults last,

v. existing test ordering in the initial test.

However, our extensive experimentation using all these orderings shows no consistent ad-

vantage for one of the orderings considered. In short, all orderings give larger numbers of

unspecified bits in some circuits and smaller numbers in the other circuits. Based, on that the

only conclusion that can be extracted, is that this test-based replacement method is highly

biased on the test ordering and that less biased methods should be investigated.

3.4 Fault-Based Replacement Method

This section discusses an alternative method for static test set relaxation which proceeds in

a different direction to that of the method described in the previous section. Essentially, the

method proposed in Section 3.3 is greedy, in the sense that the decision on which test should

detect each fault is taken based on the ordering under which the tests are examined. As

shown previously, this makes the test-based replacement method biased on the ordering of

the tests. Here, we describe a more intelligent approach that gives well-defined criteria based

on which the test that should target each fault is chosen. Thus, instead of concentrating on

one test at a time, this method pivots on one fault at a time. For some faultfi the algorithm

determines the testtj ∈ T to be the only one detecting the fault such that the number of

bits that can be relaxed in the entire test set is maximized. Put differently, the algorithm

determines the test to explicitly target the detection of the fault and relaxes the bits in the

remaining tests required to detect the fault. We formulate the problem as an optimization

problem were the proposed algorithm tries to identify the appropriate test for each based on

a closed-form equation.

Consider a faultfi detected by one or more tests inT . Let Ti ⊆ T denote the set of tests in

T that detect faultfi. Consider a testtk ∈ Ti.

Definition 3.1. The contribution of a faultfi in a testtk denoted bycik, is the number of

specified bits intk that can be unspecified iftk no longer detectsfi.

49

Stel
ios

 N
. N

eo
ph

yto
u

Thetotal number of specified bits inT that can become unspecified if faultfi is only detected

by some testtj ∈ Ti (and not by any other test in{Ti − tj}), is given by:

Gij =
∑

cik, k ∈ {Ti − tj} (3.1)

Thus,Gij denotes the gain in unspecified bits if faultfi is only explicitly targeted during the

test generation of testtj. Of course, coincidental detection offi by other tests may occur

but this is done with no extra cost in terms of specified bits. Observe that, based on theorem

Theorem 3.1,sp(tk) − cik ≤ sp(tk). Thus, the range of values ofcik is 0 ≤ cik ≤ sp(tk),

since by definitioncik cannot be more thansp(tk). In turn, the range of the values ofGij is

given by0 ≤ Gij ≤
∑

sp(tk), k ∈ {Ti − tj}.

In order to determinetm, i.e. the test inT = {t1, t2, ..., tN} that should explicitly target fault

fi, it suffices to calculate:

Ĝim = max{Gij}, tj ∈ Ti ⊆ T (3.2)

Figure 3.2 shows the proposed algorithm. First, fault simulation is performed to derive the

complete fault listF as well as the fault listsFj for each testtj ∈ T . Then, the algorithm

iterates over each faultfi ∈ F , to determine the “best” test to detectfi. This is done by

examining only tests inT that detectfi, that isTi (lines 06-16). For every testtj ∈ Ti the

contribution offi in tj (cij) is calculated (line 08). This is a crucial step which invokes a

similar test generation routine to that of the method in Section 3.3 (line 07 of Figure 3.1).

Specifically, to findcij for a faultfi and a testtj detecting the faults inFj, we generate a test

cubet′ targeting faults inFj − fi and calculatecij = sp(tj) − sp(t′). This is the number

of specified bits savings if testtj no longer detects faultfi. Oncecij is calculated for every

testtj ∈ Ti, the total gainGij in unspecified bits (meaningfi is detected bytj but not by

{Ti − tj}) for every testtj is easily computed (line 10). Consequently, the maximum gain is

found (line 11) indicating the testtm ∈ Ti selected to detectfi.

The next step (lines 13-16) convey the dynamic nature of the algorithm. Once testtm is

determined as the most appropriate to detectfi, it is no longer necessary for tests{Ti − tm}
to detectfi. Therefore, the fault listFj for each of the remaining tests inTi is updated. In

this manner, faultfi will never be targeted in any subsequent test generation step (line 08).

Observe that if a test’s fault list becomes empty at any point, the test can be fully relaxed

which means it can be dropped since all of the faults it detected are now detected by some

50

Stel
ios

 N
. N

eo
ph

yto
u

Procedure Fault-basedReplacement

Inputs: circuit C, test setT , fault modelM
Outputs: relaxed test setT ′
01: Fault SimulateT based on fault modelM
02: F = list of faults detected byT
03: for each testtj ∈ T
04: Fj = list of faults detected bytj
05: for each fault fi ∈ F
06: Ti = list of tests detectingfi

07: for each testtj ∈ Ti

08: useFj to calculatecij

09: for each testtj ∈ Ti

10: calculateGij =
∑

cik, k ∈ {Ti − tj}
11: Ĝim = max{Gij}, tj ∈ Ti

12: % testtm keeps faultfi, tests{Ti − tm} dropfi

13: for each tj ∈ {Ti − tm}
14: Fj = Fj − fi

15: if Fj = ∅
16: T = T − tj % drop testtj
17: T ′ = ∅
18: for each testtj ∈ T
19: generate testt′j that detects all faults inFj

20: addt′j to T ′

21: return T ′

Figure 3.2:Static Fault-based Replacement Method.

other test(s). The fault coverage ofT is maintained since every faultfi is guaranteed to be

detected by some testtm with Fm 6= ∅.

Once all faults are examined, the relaxed test setT ′ is generated based on the updated fault

list Fj for each testtj that has remained inT (lines 17-20). Each new testt′j ∈ T ′ is

guaranteed to detect a subset of the faults detected by the corresponding testtj ∈ T , since

the size of the updated fault list per test is reduced (in most cases) or, in the worst case,

remains the same.

The worst-case time complexity of this approach in terms of fault simulations and test gen-

erations performed is|T | fault simulations plus|T | · |F | + |T | test generations. In practice,

however, the factor|T | · |F | is much smaller since each faultfi ∈ F is examined only against

the small number of tests inTi ⊆ T that detect the fault, and not for the entire test setT .

51

Stel
ios

 N
. N

eo
ph

yto
u

Moreover, in practice, the initial test setT is small since it is required to be compact to

reduce the test application time.

The following Lemma is used to show the effectiveness of the fault-based replacement

method. Let us first assume that there exists a test generation process that identifies the

test that detects a number of faults with a minimal number of specified bits. We elaborate on

this assumption later in this section.

Lemma 3.1. For a given test setT , the fault-based replacement method (Figure 3.2) iden-

tifies a testt ∈ T that detects faultfi with the minimum overhead in specified bits, under

some fault ordering inF .

Proof. When |Ti| = 1 then testtj ∈ Ti is clearly the one with the minimum overhead in

specified bits for targetingfi. When|Ti| > 1, the values for theGij for fault fi are given by

Gij =
∑

cik, tk ∈ {Ti − tj}, ∀tj ∈ Ti (by Equation 3.1). That is the total cost in specified

bits of testingfi with tests inT (
i.e.,

∑
cik, tk ∈ T

)
minus the cost for testingfi with tj

(i.e. cij). Recall that by assumption the contribution in specified bits of each fault at a test

(i.e. cik), can be computed optimally. This occurs since the test generation process gives the

test with the minimal number of specified bits for a group of faults. Since the decision on

which test explicitly targetsfi in T ′ is taken by selecting the maximum over theGij, then this

number is the total cost in specified bits for testingfi with tests inT minus the minimum cost

for testingfi with a test inT i.e., Ĝim = maxj{Gij} ⇒ Ĝim = maxj{−cij +
∑

cik, tk ∈
T } ⇒ Ĝim =

∑
cik, tk ∈ T − minj{cij}. The total cost in specified bits for testingfi

with tests inT is constant and allcij have non-negative integer values; thus, the selected test

gives the minimum overhead in specified bits for testingfi with a test inT . By considering

different ordering of the faults may change the values for thecij. To prove this, consider two

testsfy andfx that are both tested by a specific testtu, i.e.,tu ∈ Tx, tu ∈ Ty andfx, fy ∈ Fu.

If we first consider faultfx (i.e. iteration for faultfx is before iteration for faultfy) and the

selected test to targetfx is nottu, thenFu = Fu−fx (step 14 in Figure 3.2). Thus, calculation

of cyu in the iteration for faultfy (step 8 of Figure 3.2) may give a different value than the

case where the originalFu was used. That is, if we first consider faultfy (i.e. iteration for

fault fy is before iteration for faultfx), calculation ofcyu will be done usingFu and not

Fu− fx. Since changing the ordering the faults are considered may change the values ofcij,

this statement holds only for the ordering considered and does not give a global minimum

for the testing overhead in specified bits for faultfi.

52

Stel
ios

 N
. N

eo
ph

yto
u

Table 3.2:Fault-based Replacement Example
Initial Test SetT RelaxedTest SetT ′

t1 t2 t3 t4 t5 Fault list t1 t2 t3 t4 t5

• • f1 • –

• f2 •
• • f3 – •

• • f4 • –

• • f5 • –

• • • f6 – – •
• f7 •
• • f8 • –

23 20 29 22 19 Spec.Bits 16 16 20 22 0

113 Total Spec. Bits 74

(a) (b)

Iteration for f1 Iteration for f2 Iteration for f3 Iteration for f4

Fault list t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

f1 3 4 • – • – • –

f2 8 • •
f3 5 3 – •
f4 4 5

f5

f6

f7

f8

Gij 4 3 3 5 5 4

Spec.Bits 23 20 29 22 19 23 16 29 22 19 23 16 29 22 19 18 16 29 22 19

(c)

Iteration for f5 Iteration for f6 Iteration for f7 Iteration for f8

Fault list t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

f1 • – • – • – • –

f2 • • • •
f3 – • – • – • – •
f4 • – • – • – • –

f5 4 5 • – • – • –

f6 5 4 3 – – • – – •
f7 1 •
f8 4 14

Gij 5 4 7 8 9 14 4

Spec.Bits 21 16 24 22 14 21 16 22 22 14 16 16 20 22 14 16 16 20 22 14

(d)

53

Stel
ios

 N
. N

eo
ph

yto
u

Obviously, the assumption on the test generation is not realistic since it implies full explo-

ration of a circuit’s test space, which is known to be an NP-hard problem. Yet, together with

Lemma 3.1 it ensures that if the test generation process is effective in generating tests with a

large number of unspecified bits, the resulting test set will have a large number of unspecified

bits, optimizing the test set relaxation method.

Next we give an illustrative example for the method of Figure 3.2. Consider an initial test

setT = {t1, t2, t3, t4, t5} detecting the 8 faults inF = {f1, f2, ..., f8} shown in Table 3.2(a).

The rows of the table correspond to the faults in the fault listF . The columns of the table

correspond to tests in the test set under consideration (T). A bullet on a cell denotes that

the fault of that row is detected by the test of the corresponding column, in the initial test

set. The last two rows report the number of specified bits for the test of the corresponding

column and the total number of specified bits in the entire test set, respectively.

Tables Table 3.2(c) and (d) summarize the execution of the proposed algorithm. Each sub-

table corresponds to an iteration of the algorithm, noted at the header. Recall that each

iteration examines one fault and so iteration 1 is forf1, iteration 2 forf2 and so on. The

test and fault orientation is as in the Table 3.2(a). An entry between a testtk and a faultfi,

for some iteration, denotes the number of specified bits that can be relaxed if faultfi is no

longer detected by the test that will replace testtk in the final test set (i.e.,cik). For instance,

consider faultf1 during the first iteration, which is detected by testst1 and t2. The entry

betweenf1 andt1 (t2) givesc11 = 3 (c12 = 4), meaning that iff1 is no longer detected by

t1 (t2) the number of bits that can be relaxed is 3 (4). Consequently,G11 = 4 andG12 = 3,

given in the row labeledGij in the table. The last row reports the number of specified bits in

a testtj, when all the faults in its fault list for a specific iteration (faults inFj) are explicitly

targeted. An empty entry indicates that the fault is not detected by the corresponding test.

We only show the values ofcij for the fault corresponding to the iteration considered.

During the first iteration, enforcing detection off1 by t1 and not byt2 results in more un-

specified bits than the opposite (G11 > G12). So the decision is to keepf1 in F1 and discard

it from F2. This is shown in the next subtable (iteration forf2) with a dot undert1 and a

hyphen undert2. The number of specified bits int2 has been reduced by 4 as the effect of not

consideringf1 when generating a test for the remaining faults inF2. Moving to the second

iteration (targeting faultf2) the gains for the tests that detectf2 are computed, in order to

reflect the new situation after removingf1. This computation gives 8 bits gain if we exclude

54

Stel
ios

 N
. N

eo
ph

yto
u

f2 from t2. Sincef2 is only detected byt2, no decision needs to be made and the algorithm

moves on to the next iteration forf3. Here,f3 is selected to be detected byt3 and not byt1,

resulting in 5 specified bits reduction for testt1. In the same manner, after iterations for fault

f4 andf5, t3 andt2 are selected for faultsf4 andf5, respectively. The process continues until

all faults are examined. The Table 3.2(b) shows the final distribution of the faults between

the tests. Each column determines the targeted fault list for the corresponding test. For each

list a test is generated to replace the one originally present in the given test set (lines 22-23

of Figure 3.2). Tests with empty lists (t5 in this example) are removed from the test set. The

proposed method gives a test set with 74 specified bits, instead of 113 in the original test

set. Note that, for the proposed fault-based method the ordering under which the tests are

considered is not important for the number of specified bits in the resulting test set. How-

ever, the ordering under which the faults are examined may affect the effectiveness of the

proposed method. This happens since the computation ofGij is based on the list of faults

that are detected by a test (i.e.Fi for testti ∈ T). If we change the ordering under which

the faults are examined, the elements of the listsFi will be different for the same iteration

of the algorithm. Experimentation shows that the fault ordering does not considerably affect

the results of this fault-based method.

3.5 Post-Processing Compaction Step

The performance of the presented methodologies is biased on the order in which the tests

in T (for the test-based method) as well as the faults inF (for the fault-based method) are

considered. Thus, as in the case of all existing methods that examine the same problem, the

algorithms are not optimal and it is possible to further reduce the number of tests in the re-

laxed test setT ′. We propose a test set compaction algorithm that formulates the problem as

a system of constraint equations, similar to the unate covering problem. Based on informa-

tion obtained by the fault simulation the constraint equations are formed in such a way that

they correspond to all fault considered. Each variable of the Boolean equation represents a

pattern in the test set and the optimal solution will give a single variable becoming true at

each equation. However, this problem is known to be NP-hard and, thus, we use heuristic

algorithm to solve the problem, giving a near-optimal solution.

55

Stel
ios

 N
. N

eo
ph

yto
u

For each fault in the fault listF , a constraint Boolean equation representing all tests that

detect the fault is given by:

Cfi
=

∨

tj detects fi

tj (3.3)

wherefi andtj are boolean variables corresponding to faults and tests, respectively. Satisfy-

ing each of these equations ensures detection of the corresponding fault by at least one test.

In order to preserve the fault coverage ofT it is necessary to also find a satisfying solution

for:

1 =
∧

fi∈F

fi (3.4)

The solution for the system of equations formed by Equation 3.3 and Equation 3.4 results

in a logic value assignment on the variablesti andfi. All variablesfi get a logic one value

(due to Equation 3.4). A test variableti given a logic zero variable implies, that the test cor-

responding toti can be safely dropped from the test set. The system can be solved using any

two-level logic minimization procedure such as Quine-McCluskey or Espresso Exact. Our

experimentation showed test set size reduction for uncompacted or moderately compacted

test sets.

3.6 Experimental Results

The proposed methods were implemented in C language and run on a SunBlade 1500 ma-

chine, running Solaris with 4GB of RAM. We experimental with the ISCAS’85 and the full-

scan versions of the ISCAS’89 benchmark circuits. The initial test sets were derived from

ATALANTA, for stuck-at faults. Two types of initial test sets were used; one fully-specified

and optimized in terms of compaction and the other optimized in terms of unspecified bits.

Furthermore, we experimented with the compact test sets provided by the authors of [48].

The fault simulation and test generation steps were implemented using an in-house function-

based tool for single stuck-at faults, based on BDDs.

Table 3.3 lists the results obtained by the proposed methodologies, for a number of circuits,

for each of the two initial test sets obtained by ATALANTA. We show results for the larger

ISCAS’89 as well as all the ISCAS’85 benchmark circuits. We do not report results for

circuit c6288, since it is known that its representation with BDDs is not feasible. Partitioned

56

Stel
ios

 N
. N

eo
ph

yto
u

Table 3.3:Results of the proposed methods for two different initial test sets.
Initial Test Set Test-based Replacement Fault-based Replacement

Cir cuit PIs |T | Sp.Bits K(T) |T ′| Sp.Bits K(T ′) Red. (%) CPU(secs) |T ′| Sp.Bits K(T ′) Red. (%) CPU(secs)

Initial Test Sets Optimized for Test Set Size

c2670 233 113 32853 1 60 3259 0.099 90.1 63.1 59 3384 0.103 89.7 62.1

c7552 207 238 49266 1 171 9444 0.192 80.8 6.1 75 6645 0.135 86.5 5.4

s838.1 66 149 9834 1 141 3406 0.346 65.4 0.3 140 3189 0.324 67.6 0.2

s1196 32 144 4608 1 125 1701 0.369 63.1 0.8 123 1657 0.360 64.0 0.8

s1238 32 158 5056 1 138 1845 0.365 63.5 0.9 124 1697 0.336 66.4 0.8

s1423 91 71 6461 1 24 1215 0.188 81.2 0.3 24 1174 0.182 81.8 0.2

s9234.1 247 365 90155 1 122 8512 0.094 90.6 3.4 123 8418 0.093 90.7 3.1

s13207.1 700 472 330400 1 275 11957 0.036 96.4 12.9 265 11453 0.035 96.5 12.4

s15850.1 611 441 269451 1 99 13003 0.048 95.2 7.6 100 13185 0.049 95.1 7.1

s38584.1 1464 637 932568 1 115 33215 0.036 96.4 23.1 114 33401 0.036 96.4 23.2

Average Reduction: 82.3 83.5

Initial Test Sets Optimized for Unspecifed bits

c2670 233 141 14620 0.45 81 3489 0.106 76.1 63.6 58 3413 0.104 76.7 63.8

c7552 207 258 31866 0.65 111 8054 0.163 74.7 6.2 110 7737 0.157 75.7 5.9

s838.1 66 184 6569 0.67 140 3312 0.337 49.6 0.3 144 3312 0.337 49.6 0.3

s1196 32 155 3546 0.77 126 1708 0.371 51.8 1.0 124 1677 0.364 52.7 0.9

s1238 32 164 3724 0.74 133 1801 0.356 51.6 0.9 134 1779 0.352 52.2 0.7

s1423 91 83 5955 0.92 41 1449 0.224 75.7 6.9 44 1448 0.224 75.7 6.1

s9234.1 247 495 65931 0.73 124 8568 0.095 87.0 3.7 126 8601 0.095 87.0 3.2

s13207.1 700 692 256333 0.78 274 11956 0.036 95.3 12.9 278 12125 0.037 95.3 11.2

s15850.1 611 519 163698 0.61 102 13241 0.049 91.9 7.9 103 13541 0.050 91.7 7.5

s38584.1 1464 840 868090 0.93 114 33860 0.036 96.1 26.1 114 34012 0.036 96.1 25.2

Average Reduction: 75.0 75.3

BDD techniques [50] can be used in order to represent this circuit and other larger and/or

more complex circuits. Columns 1-2 list the circuit name and the number of Primary Inputs,

respectively. Columns 3-5 give information regarding the initial test set. Column 3 lists

the number of tests in the initial test set; Column 4 lists the total number of specified bits,

and Column 5 givesK(T) which is the ratio of the specified bits over the total number of

bits in the test set. For the fully specified test setsK(T) = 1. Columns 6-8 and 10-12

show the same information for the relaxed test setT ′ obtained after applying the methods of

Section 3.3 and Section 3.4, respectively. Columns 9 and 13 give the reduction (%) achieved

by the two methods, calculated by 1-K(T ′)/K(T). In all results the postprocessing step

described in Section 3.5 has been applied on top of the two methods.

The average reduction in specified bits obtained by the test-based replacement method is 82.3

% for the initial compact test sets and 75 % for the initial partially-specified test sets. For

the fault-based replacement this reduction is 83.5 % and 75.3 %, respectively. Obviously,

the fault-based method gives better results for most of the circuits. However, the reduction

rates are very similar between the two methods, especially when the initial test sets have

57

Stel
ios

 N
. N

eo
ph

yto
u

unspecifiedbits. Moreover, the reduction is higher when the initial test set to be relaxed

is fully specified. However, the proposed methods also give significant reduction for the

partially specified test sets. Of course, the final values ofK(T ′) (Columns 8 and 13) are

very similar for the two different types of test sets, indicating a saturating behavior of the

proposed methods for the given test sets. Another interesting observation is that the size of

the relaxed test setT ′ is also significantly reduced (compacted), irrespective of the initial test

set, as it can be concluded by comparing Column 3 with Columns 6 and 11.

Table 3.4: Comparison with existing work.
Initial Test Set [48] Proposed

Cir cuit PIs Tests Smax Sp. Bits Smax Savg/PI (%) Sp. Bits Red. (%) Smax Savg/PI (%) Sp. Bits Red. (%)

c880 60 21 60 1260 60 65.6 827 34.4 50 62.7 790 37.3

c1355 41 84 41 3444 41 100.0 3444 0.0 41 82.3 2836 17.7

c1908 33 106 33 3498 33 83.0 2903 17.0 32 53.0 1853 47.0

c2670 233 45 233 10485 233 29.3 3072 70.7 183 26.4 2767 73.6

c3540 50 93 50 4650 50 46.7 2172 53.3 41 42.6 1982 57.4

c5315 178 46 178 8188 178 38.6 3161 61.4 132 36.0 2948 64.0

c7552 207 75 207 15525 207 45.5 7064 54.5 163 42.6 6613 57.4

s1238 32 125 32 4000 32 43.5 1740 56.5 23 42.5 1698 57.6

s1423 91 24 91 2184 91 58.0 1267 42.0 73 53.5 1168 46.5

s1494 14 100 14 1400 14 72.6 1016 27.4 14 72.0 1008 28.0

s9234 247 111 247 27417 247 31.0 8499 69.0 218 30.2 8293 69.8

s13207 700 235 700 164500 700 8.0 13160 92.0 672 7.3 12031 92.7

s15850 611 97 611 59267 611 22.7 13454 77.3 408 20.6 12186 79.4

s38417 1664 84 1664 139776 1664 25.2 35224 74.8 1145 22.9 32016 77.1

s38584 1464 114 1464 166896 1464 18.9 31543 81.1 1321 18.0 29984 82.0

Table 3.4 provides a comparison between the proposed methodologies and that of [48], which

reports the highest reduction among all existing techniques that examined the considered

problem. For a fair comparison, we experimented with the same initial test sets of [48],

which are fully specified and very compact1. Column 3 reports the size of the initial test set

and Column 5 gives the number of specified bits in the test set. The results of [48] are given

in Columns 6-9 and those of the proposed methodologies in Columns 10-13 (the best results

among the two methods are considered). Based on the reduction percentage for each of the

methods (Columns 9 and 13) we note that the proposed methods always outperform that of

[48]. In some cases the increase in our reduction is marginal; however, in some other cases

this increase is considerable (such as for circuits C1355 and C1908). For both methods, the

size of the relaxed test setT ′ equals that of the initial test setT . This occurs because the

initial test sets are very compact and all their tests detect at least one essential fault. In these

1We would like to thank the authors of [48] for kindly providing us their input test patterns

58

Stel
ios

 N
. N

eo
ph

yto
u

cases,the post-processing step of Section 3.5 gives no improvement. Columns 8 and 12 show

the average number of specified bits among tests as a percentage of the number of primary

inputs, i.e. the portion of unspecified bits at each test over the number of primary inputs.

Another useful observation is that the maximum number of specified bits on a test, denoted

by Smax (Columns 4,6,10), is significantly reduced by the proposed method, in many cases.

This value is very important in some applications, such as deterministic LFSR-based BIST,

because it determines the size of the LFSR hardware. Chapter 5 elaborates further on this

issue.

Figure 3.3:Specified bits distribution among generated tests ofTable 3.4

The values reported in the Columns 8 and 12 of Table 3.4 show the average number of speci-

fied bits (Savg) as a percentage on the maximum size of a test pattern. Since our experimenta-

tion is done using full-scan versions the maximum size of a pattern is identical to the number

of primary inputs of the circuit examined. This number, together with theSmax value, give an

indication on the distribution of the specified bits. Of course, these two numbers alone may

result in misleading conclusions regarding the specified bits distribution among test patterns.

Yet, as it can be concluded from our experimentation, the test sets resulting from both the

proposed static methods tend to have a lot of patterns whose numbers of unspecified bits are

59

Stel
ios

 N
. N

eo
ph

yto
u

closeto the value ofSavg. Figure 3.3 shows the distribution of specified bits, in the test pat-

terns, for 5 indicative circuits. The horizontal axis shows the percentage of specified bits per

test, while the vertical axis shows the distribution of tests in the test set based on the number

of specified bits per test. Observe that in all cases the number of specified bits in the majority

of tests is close to the value ofSavg. This kind of distribution can benefit certain applications

like test pattern concatenation used in the test set embedding scheme of [44]. We investigate

this application in Chapter 5. Analogous specified bits distribution is recorded for all the

circuits examined.

3.7 Conclusions

Two systematic methodologies for increasing the unspecified bits in a static test set have been

presented. The first method is test oriented. It iterates among tests, under a given ordering,

removing fault detections that have been covered by an already examined test. Essentially,

this is a straight forward, easy to implement method that gives high specified bits reduction

ratio. The second method proceeds on a fault oriented rationale. It iterates among faults in

order to identify the test in the test set, that gives the minimum cost in specified bits, when

detecting the fault examined. The test selection for each fault is done based on a gain factor

which is dynamically calculated, depending on the faults that remain undetected at each

iteration. Finally, we propose a post-processing compaction technique that reduces the test

size of the relaxed test set. This step can be applied on top of both the techniques proposed

here, and gives small reduction in the number of tests in the resulting tests when the given

test set is not highly compacted.

The reported experimental results demonstrate the effectiveness of the proposed methods in

achieving high specified bit reduction rates, for various types of test sets under the stuck-

at fault model (additional, linear fault models, such as the one discussed in Chapter 2 also

apply). Moreover, they give a smooth distribution of specified bits among the tests in the

test set, as well as small test set sizes. While the fault-based method gives slightly better

results than the test-based method, both methods outperform all the previously proposed

relaxation techniques. Nevertheless, since these two techniques are based on a given test set,

the obtained reduction of specified bits is limited by the initial test set. Thus, at this point,

60

Stel
ios

 N
. N

eo
ph

yto
u

it would be interesting to study if better results can be obtained when there is no constraint

on an initial test set. Thus, the following chapter, presents dynamic techniques that generate

compact test sets with many unspecified bits.

61

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 4

DYNAMIC TEST GENERATION WITH LARGE

NUMBER OF DON’ T CARE BITS

4.1 Introduction

While test set relaxation is highly desired when we want to maintain some properties of a

test set obtained by a certain test generation technique, starting from an initial test set may

limit the unspecified to specified bits ratio that can be achieved. This chapter investigates

test generation with many unspecified bits. Our motivation is analogous to compact test set

generation, yet in this context we impose extra constraint to keep the number of specified bits

in the test set as small as possible. Thus, this additional constraint makes the problem essen-

tially different from the well studied problem of test set compaction. Test set compaction is a

traditional problem in the VLSI testing area. Its goal is, mainly, to reduce the test application

time by reducing the number of tests in a test set. A number of other parameters also benefit

from small test sets, such as area requirements in test set embedding as well as the usage of

ATE resources. Various algorithms for compact test set generation have been proposed in

the literature, for various applications [51, 47, 52].

At the same time, test sets with many unspecified bits (inputs with don’t care values) have

become desirable for a number of applications. A large number of unspecified bits in the

test set gives the flexibility to fix values appropriately for low power dissipation during test

application [11, 53, 42]. Also, don’t care bits are typically beneficial in increasing the encod-

ing efficiency of many deterministic test set embedding schemes, such as [46, 44, 45]. For

63

Stel
ios

 N
. N

eo
ph

yto
u

example, in LFSR-based deterministic ATPG ([44, 45]), it is desirable to keep the number of

specified bits per pattern bounded to reduce the LFSR overhead, in addition to minimizing

the total number of bits stored on the chip. Having many unspecified bits can also be ad-

vantageous when enriching a test set with some additional desired property, like then-detect

property (also see Chapter 7) or detecting additional fault types (also see Chapter 2).

Existing methods for test set compaction are categorized as static or dynamic. Static tech-

niques [51, 47] are applied on top of the ATPG process, to compact the given test set while

maintaining the fault coverage. Dynamic compaction [54, 55] involves test replacement

through test generation, to explicitly consider test reduction during the test generation pro-

cedure. Existing methods for identifying don’t care bits in a test set (compact or not) are

mainly static, although they use some ATPG concepts such as implications and justifications

[48] and testability measures [49], in order to modify the given test set. The two static meth-

ods proposed in Chapter 3 outperform existing methods, mainly because they do not rely

on the structure of the circuit and, thus, can take decisions in a less localized manner. The

existing dynamic methods for generating test sets with a large number of don’t care bits are

usually application oriented. For instance, the work of [44] invokes a test generation process

which gives test sets with large numbers of unspecified bits, prior to the application of their

proposed test set embedding technique. However, this process is tuned toward the specific

application of deterministic test set embedding for LFSR-reseeding based BIST and, there-

fore, may result in a larger number of tests while trying to minimize the LFSR size. ATPG

tools that allow for unspecified inputs can also be used; however, their resulting test sets

are usually too large since compaction methods using reverse-order fault simulation [56] or

double detection [57] do not apply to test sets with unspecified bits.

This chapter presents two methodologies for generating small test sets containing a small

number of specified bits, in a dynamic manner. Thus, test generation and compaction are

performed in a unified single phase, which is optimized with respect to three measures:

(i) small number of specified bits per test,

(ii) small number of tests in the test set, and

(iii) small number of total specified bits in the test set.

The first two measures come from the motivation constraints discussed in the previous para-

64

Stel
ios

 N
. N

eo
ph

yto
u

graph,while the latter is a natural outcome of the first two, essentially defining the overall

goal of the dynamic methods proposed here. Whereas static methods attempt to relax the

specified bits in a given test set to don’t care values, the proposed techniques proceed toward

an opposite rationale, trying to minimize the number of specified bits during test generation.

The idea behind both methods is to identify a large number of compatible faults (faults that

can be mutually tested by a single test) at a time. This is a concept that has been tradition-

ally used in compaction methods (see [47], among others). Here we consider a constrained

version of compatible faults, wheretwo (or more) faults are considered compatible iff they

can be mutually detected by a test with a small number of specified bits. The proposed ap-

proaches employ ATPG methods to identify groups of such compatible faults. Faults are

placed in the same compatibility group (and, thus, will be detected by a single test), only

if there exists a test whose number of specified bits does not exceed a user defined thresh-

old and detects all faults of the group. The considered threshold is bounded and explored

systematically. This problem is modeled as an undirected graph, which we callconstraint

fault-compatibility graphand use in both methods.

The first method is essentially a straight forward match-and-merge algorithm. The method

is iterative on the graph’s vertices and proceeds in two phases. In the first phase the algo-

rithm identifies compatible faults, corresponding to graph vertices, considering the entire

fault compatibility graph. A local optimization selection criterion is used to identify pairs of

vertices of minimal cost in terms of specified bits. In the second phase the vartices of each

compatibility pair are merged into a single vertex, and the constrained compatibility graph

is reconstructed to reflect the new relationships between faults. The second method is essen-

tially a hierarchical refinement of the previous method. At each iteration it considers only

a small part of the graph (i.e. a subgraph) to identify the best matching among compatible

faults. The size of the subgraph can be explored in order to determine the value that gives

the best results in terms of specified bits. Moreover, this exploration can help handle large

circuits and, thus, give extra importance to the hierarchical nature of the second method.

Both the processes of identifying fault compatibility and of merging vertices, corresponding

to faults, involve test generation. Since test sets with a large number of unspecified bits

are desired, the test generation routine must have the ability of generating tests with many

don’t cares. Ideally thes test that has the fewer specified bits among all tests that detect a

fault or a group of faults is desired. The two approaches we propose here, can be combined

with any structural or function-based test generation procedure that gives test sets with many

65

Stel
ios

 N
. N

eo
ph

yto
u

don’t care bits. However, this chapter includes a function-based framework based on Binary

Decision Diagrams (BDDs) [34] which is used by the proposed methods, as well as with the

methods of Chapter 3.

As in Chapter 3 we experimented with the popular stuck-at fault model, yet any other fault

model with a linear number of faults can be considered. Both of the proposed dynamic

methods give small number of specified bits per generated test set, as it can be observed from

the experimental results. Moreover, the results show higher specified bit reduction ratios than

any static test relaxation technique. At the same time, they give high fault coverage while

keeping the test set size small.

In the remainder of this chapter, we first give the necessary notation and preliminaries (Sec-

tion 4.2). Next, we describe the match-and-merge dynamic algorithm (Section 4.3), while

in Section 4.4 we describe the hierarchical merging dynamic algorithm. Section 4.5 pro-

vides necessary implementation details for the ATPG process, including a function-based

BDD framework, which we have developed for the purpose of this dissertation. Finally

Section 4.6 presents the experimental results and relevant discussion, whereas Section 4.7

concludes the chapter.

4.2 The Constrained Fault Compatibility Graph

This section defines the constrained fault compatibility graph that is used by both of the

algorithms we propose in this chapter.

Let sp(t) denote the number of specified bits in some testt. Given a set of testsT , Smax =

max{sp(t)|t ∈ T }, i.e. Smax is the maximum number of specified bits in a test ofT . Also,

let Ti denote the set of all possible tests that detect some faultfi.

Consider a fault listF = {f1, f2, ..., fn} with corresponding sets of testsT1, T2, ..., Tn. A

weighted undirected graphG(V, E), whereV is the set of vertices andE is the set of edges,

is defined as thefault compatibility graph. In this graph, every vertexυi ∈ V initially

corresponds to a faultfi ∈ F . Thus,|V | = |F |. An edgeeij = (υi, υj) ∈ E exists if and

only if the two corresponding faultsfi andfj can both be detected by at least one test. In

66

Stel
ios

 N
. N

eo
ph

yto
u

general,compatibility can be expanded to more than two faults. For example, consider faults,

f1, f2 andf3. These faults are compatible iffT1 ∩ T2 ∩ T3 6= ∅. If the latter condition holds,

then it can be concluded that there is at least one test that detects all three faults. Thus, every

vertex may correspond to a group for faults, instead of a single fault, in the case, for example,

that two vertices are merged into one. The weight at some vertexυi ∈ V denoted byw (υi),

is the smallest number of specified bits in some testt that detects faultfi corresponding to

vertexυi, i.e.,w (υi) = min{sp(t)|t ∈ Ti}. The weight of a vertex gives the minimum cost,

in terms of number of specified bits, to detect the corresponding fault or group of faults. The

weight at some edgeeij ∈ E, denoted byW (eij), is the smallest number of specified bits

in some testt that detects both faults (group of faults),fi andfj, associated witheij, i.e.,

W (eij) = min{sp(t)|t ∈ Ti ∩ Tj}. In the case of an edge, the weight gives the minimum

number of specified bits required to detect the two associated faults (group of faults) by a

single test.

Now, consider two sets of testsFi andFj, with corresponding sets of testsTi andTj. Each

test inTi (Tj) detects all faults inFi (Fj). K-compatibility between the sets of faultsFi and

Fj is defined as follows.

Definition 4.1. Two sets of faultsFi andFj areK-compatible if and only if all of the fol-

lowing hold:

i. There exists at least one test that detects all faults inFi andFj , i.e. Ti ∩ Tj 6= ∅.

ii. At least one testt can be found inTi ∩ Tj that contains no more thanK specified bits,

i.e. ∃ t ∈ Ti ∩ Tj : sp(t) ≤ K.

Theconstrained fault compatibility graphis a subgraph of a fault compatibility graph where

all vertices corresponding to set of faults that are notK-compatible have been removed.

Stated otherwise, the constrained fault compatibility graph has edges only between sets of

faults that areK-compatible, i.e. can be both tested by at least one test that has no more

thanK specified bits. Like compatibility,K-compatibility can be expanded to more than two

sets of faults. For example, consider the sets of faults,F1, F2 andF3. These set of faults are

K-compatible iffT1 ∩ T2 ∩ T3 6= ∅ and∃ t ∈ T1 ∩ T2 ∩ T3 such thatsp(t) ≤ K. If the two

conditions hold, then it can be concluded that there is at least one test that detects all faults

in all three sets and does so with no more thanK specified bits. Of course,W (eij) ≤ K if

67

Stel
ios

 N
. N

eo
ph

yto
u

Fi andFj areK-compatibleand, thus, in the constrained fault compatibility graph no edge

weight is higher thanK. The same holds for the vertex weights, only ifK is greater than or

equal toSmax.

4.3 Match-And-Merge Algorithm

The first dynamic method is essentially a two phase match-and-merge procedure, employing

the constrained compatibility graph described in Section 4.2. The ideal solution for this

problem need to have complete information of (i.e. have all the tests targeting) both each

fault considered and all the possible combinations between faults. If this information was

available then the optimal solution can be obtained by finding a set of fault combinations

that gives the overall minimum number of specified bits and, at the same time, cover all the

considered faults. The latter can be reduced to the infamousset covering problemwhich

is known to be an NP-complete problem [58], i.e., has no polynomial time solution. This

is in addition to the test generation problem that is necessary for obtaining the complete

information about the tests described earlier. Specifically, it has been shown that the general

problem of test generation for digital circuits is NP-hard [59]. Hence, this section, as well

as the next one, propose heuristic algorithms for obtaining test sets with a large number of

unspecified bits using the constrained fault compatibility graph described in Section 4.2.

First, pairs of faults are identified and merged (via vertex merging) based on a minimum-

weight-neighbor criterion. The algorithm takes a decision on which neighbor to choose

based on local information, yet the minimization goal is global. The algorithm terminates

when no edge is left on the graph and the final vertices correspond to tests that detect all

the modeled faults considered. Initially each vertexυi in the graph corresponds to a fault

fi in the fault list, under the fault model considered. The edges between vertices are placed

according to theK constraint which is upper bounded by a user defined thresholdSh. The

value of parameterSh is important to the performance of the method since it directly impacts

the maximum number of specified bits allowed per generated test. The size ofSh can be

experimentally determined in a systematic manner.

In the first phase, the algorithm identifies pairs of compatible faults that give the minimum

68

Stel
ios

 N
. N

eo
ph

yto
u

testingcost in terms of specified bits. We formulate this problem as a modified min-cost max-

matching; instead of focusing on minimizing the overall weight (sum of all node weights in

the graph), as in the traditional min-cost max-matching problem, we concentrate on max

matching with individual node weights not greater thanSh. This procedure is applied iter-

atively, with pair-wise matching per iteration. The solution to this problem will give us a

maximal merging of the faults (max–matching) with a minimal number of specified bits in

each generated test.

To solve this problem, we use a Path Growing Algorithm for the weighted matching problem,

similar to the one proposed in [60]. The algorithm is linear to the size of the input graph

and guarantees a performance ratio of 1/2. More sophisticated algorithms could always be

used, at the expense of extra complexity in both implementation and running cost. Initially,

an arbitrary vertexv1 is selected and a growing pathPv1 is constructed by following the

minimum weight edgeemin. All other edges adjacent to the current vertex are dropped from

consideration. The other endpoint of the selected edge (emin) becomes the current vertex, and

the path is grown in the same manner, until the path can grow no further. Then, an unvisited

vertexv2 is selected to be the starting vertex of a new path. The algorithm terminates when

no more edges exist. In each iteration, two edge lists are maintained. The graph edges are

inserted in the appropriate list so that no adjacent edges are in the same list. The list with the

minimum size is a valid matching for the graph examined.

Once the weighted matching algorithm terminates, the match-and-merge procedure enters its

second phase, i.e. the one performing the vertex merging. For each edgeei in the matching

obtained, the algorithm merges its adjacent verticesv1 and v2 to form a new vertexv1,2.

Merging, essentially, refers to the union of the corresponding set of faults (F1 andF2) and,

consequently, to the intersection of the corresponding set of tests (T1 andT2). In this way

v(1,2) corresponds to a new set of faults containing all faults in bothF1 andF2 (i.e.,F1∪F2 =

F1,2). Each one of the faults inF1,2 can be detected by any test that belongs to bothT1 andT2,

(i.e., inT1 ∩ T2 = T1,2). In the next iteration of the algorithm a new constraint compatibility

graph is constructed using the merged vertices. The weights on the vertices are computed

again using test generation for the corresponding set of faults, in order to determine the set

of testsTi,j, for each vertexvi,j.

Lemma 4.1. The weight on a vertexvi,j emerged after the merging of two verticesvi andvj,

denoted byw(vi,j) always falls within the following bounds:

69

Stel
ios

 N
. N

eo
ph

yto
u

max(w (vi) , w (vj)) ≤ w (vi,j) ≤ w (vi) + w (vj)

Proof. Both bounds are determined by the intersection operation performed in the set of tests

corresponding tovi andvj in order to obtain the merged vertexvi,j. Recall that, the weight on

a vertex is essentially the minimum number of specified bits per test among all tests that de-

tect the corresponding faults. SinceTi,j consists only of tests that are in bothTi andTj, then

the test with the minimum number of specified bits inTi,j is the test with the minimum num-

ber of specified bits either inTi or inTj. From these two tests only the one with the maximum

number of specified bits can be in bothTi andTj. Thus,max(w (vi) , w (vj)) ≤ w (vi,j).

Furthermore, the test with the minimum number of specified bits inTi,j cannot be more

than the sum of the number of specified bits in the minimum test ofTi andTj. This hap-

pens because a test having specified bits in the same positions as the minimum test inTi

and the minimum test inTj together, is an element of bothTi andTj and, thus, an element

of Ti,j. Such test always exists since setsFi andFj are compatible and, so it holds that

w (vi,j) ≤ w (vi) + w (vj).

This match-and-merge algorithm iterates until all vertices in the constrained compatibility

graph are fully disjoint, indicating that no further matching/merging can be done for the

given value ofSh.

An example of the iterative match-and-merge procedure is shown in Figure 4.1. Figure 4.1(b)

shows the initial weighted constraint compatibility graph corresponding to the fault list in

Figure 4.1(a). For simplicity, the graph vertices are denoted by their corresponding sets of

faults. Let us setSh = 32, so that we consider a 32-compatibility constraint in the graph. The

procedure starts from the randomly selected vertexF2 and selects the edge (F2, F1) which is

placed in the first edge list, let that be denoted byL1 ={(F2,F1)}. All other edges adjacent

to F2 are dropped from further consideration. In the next step the edge (F2, F3) is selected

and inserted in the second list, i.e.L2 ={(F2,F3)}. The path cannot grow any more so a

new vertex is selected; let that beF6, which is matched withF4 and (F4,F6) is placed inL1.

At this point the matching phase of the algorithm ends. The maximum matching is given

in L1 containing the edges (F1, F2) and (F4, F6) which are merged and become the graph’s

vertices in the next iteration (second phase). All vertices not considered in the matching

are also included in the new graph. The starting graph in the second iteration is shown in

Figure 4.1(d) and the corresponding fault list in Figure 4.1(c). Note, that the test generation

70

Stel
ios

 N
. N

eo
ph

yto
u

Figure 4.1:An iteration of the match-and-merge algorithm

procedure was used in order to calculate the new weight on the graph’s edges. The weights

on the graph’s vertices are equal to the weight of the corresponding edges, before the merging

phase. The second iteration is the final one and matches vertexF1,2 with F3 and vertexF4,6

with F5. Thus, tests are generated for the sets of faultsF1,2,3=F1,2 ∪ F3 andF4,5,6 =F4,6∪F5

with as few specified bits as possible.

71

Stel
ios

 N
. N

eo
ph

yto
u

4.4 Hierarchical Fault Compatibility Identification Al-

gorithm

The second method that we propose in this chapter is essentially an improvement over the

algorithm of Section 4.3. It generates the desired test set by appropriate manipulations and

modifications on a constraint compatibility graph that corresponds to a given targeted fault

list. Essentially, the matching phase in this second dynamic method is totally different. The

decision is taken on a more localized rationale, considering only a small part of the graph

at each iteration. This makes the method more efficient and, at the same time, applicable to

large circuits for which the first dynamic method blows up.

The flowchart of the algorithm of the method is given in Figure 4.2. The inputs are the

circuit-under-testC, an ordered fault listF and a value for constraintK. The ordering of

the faults inF can be significant to the overall performance of the method. Section 4.6

elaborates further on this issue, presenting and evaluating various ordering methods.

The algorithm begins by constructing the corresponding test sets per fault inF , and the con-

strained fault compatibility graphG, as given in Section 4.2. Then, it enters a sequence of

iterations, where at each iteration a set of vertices inG, let that be denoted byν, is examined

for minimum-costK-compatibility. At the end of each iteration, the pairs ofK-compatible

vertices are merged into one and the vertex and edge weights inG are recomputed, based on

the new vertices inG. The algorithm is hierarchical in the sense that it does not examine all

the vertices inG for min-costK-compatibility at once. Instead, it selects a small number of

vertices (faults) and attempts to find the best way to pairwise merge (detect) them with some

other vertex inG, such that the overall cost on the number of specified bits is minimized.

Merging of two vertices corresponds to finding the set of tests that detect all faults repre-

sented by the two vertices. As explained in Section 4.2,K-compatible vertices can always

be merged. Next we discuss min-costK-compatibility. Consider a vertexυi ∈ ν ⊂ V .

Vertexυi is K-compatible with all vertices inG that are connected toυi via an edge. The

minimum cost incurred to merge vertexυi with one of itsK-compatible neighbors, referred

to as min-costK-compatibility, is given by:

72

Stel
ios

 N
. N

eo
ph

yto
u

min
j

{
W (eij) +

∑

eik∈E,k 6=j

w(υk)

}

The idea behind min-costK-compatibility is that fault (or faults) corresponding to some

vertexυi is selected to be detected with the fault(s) of some vertexυj by a single test such

that the number of specified bits in this test (W (eij)) plus the number of specified bits in the

remainingK-compatible vertices ofυi is minimized.

Begin

Construct initial weighted Graph G.
(section 2)

Inputs: Circuit C, Constraint K,
Ordered Fault List L, Size of v.

Select first |v| faults from L.

�

i ��X

�

j min-cost K-compatibility for �

i

Merge �

i
,

�

j
. Mark(�

i
), Mark(�

j
).

all nodes in
v marked

Reconstruct G.
Recompute weights.

G ?
inedges�

End

NO YES

YES
NO

?

Find Test Set Tfi for each fault in L

m = all merged nodes in v with
at least one edge.

v = m + next |v| - |m| faults in L

Figure 4.2:Flowchart of proposed dynamic methodology.

After the min-costK-compatibility is computed for all vertices inν, G is reconstructed to

reflect the new merged vertices as well as the new vertex and edge weights. In the next

iteration the setν includes the vertices merged in the previous iteration which have at least

one neighbor. For every such vertex with no neighbors, a new vertex that corresponds to

the next fault inF is added toν. Thus|ν| is kept constant among iterations. The algorithm

terminates when there are no more edges in the newG which indicates noK-compatibility

73

Stel
ios

 N
. N

eo
ph

yto
u

and,thus, no test that can detect all faults represented by two vertices ofG and have at most

K specified bits.

Figure 4.3:Hierarchical fault merging example.

Figure 4.3 gives an illustrative example. Consider an ordered fault listF = {a < b < c <

d < e < f < g < h}, K = 12 and |ν| = 2. Figure 4.3a shows the initial graphG (first

iteration) with some assumed vertex and edge weights. Here each vertex corresponds to a

unique fault inF and no edge or vertex weight is greater thanK. During the first iteration

ν = {a, b}. Vertexa isK-compatible with verticesc ande. The min-costK-compatibility for

a is 11, that is 6 for the edge(a, e) plus 5 for the cost of vertexc. Thus, vertexe is selected to

be merged with vertexa which implies that faultsa ande can be tested by a single test with

at most 6 specified bits. The other choice here would have been merginga with c which,

however, gives a higher cost of 14. In a similar manner, vertexb is selected to be merged

with vertexc with a cost of 11. Next, graphG is reconstructed to reflect the new merged

vertices and corresponding weights, as shown in Figure 4.3b. Observe that only vertex and

74

Stel
ios

 N
. N

eo
ph

yto
u

edgeweights involving the merged vertices need to be recomputed. In the next iteration,

only the merged vertexbc remains inν, since it is still connected. The unconnected vertex

ae implies that no moreK-compatible vertices exists for this vertex, thus will contribute with

6 specified bits in the final test set. Vertexd is the next in the order inF (c is part of a merged

vertex, already inν), so it is added toν. Verticesbc andf are merged since no other option

is left for the two vertices, during the second iteration. During this iteration verticesd andg

are merged together (cost=13 over 14 for mergingd with h) as illustrated in Figure 4.3c. The

previously merged vertexbcf is removed fromν andh is added. The algorithm terminates

after the fourth iteration with three disconnected vertices,ae, bcf anddgh (Figure 4.3d).

Thus, the resulting test set will contain three tests with a total number of 25 specified bits.

Observe that if we want to explicitly detect each fault with a dedicated test, the total cost in

specified bits is 38, as it can be concluded by adding all the vertex weights in Figure 4.3(a).

In order to demonstrate the effectiveness of the proposed dynamic method and give some

theoretical bounds on the execution time of the algorithm, we make the following statements.

Theorem 4.1. If two vertices,υx and υy of the fault compatibility graph corresponds to

faults (or group of faults) that areK-compatible, thenmax{w(υx), w(υy)} ≤ W (exy) ≤
min{K, w(υx) + w(υy)}.

Proof. Let us first denote bytmin
i the test inTi that has the minimum number of specified

bits among all tests inTi. From definitionw(υx) = min{sp(t) | t ∈ Tx} = sp(tmin
x) and

w(υy) = min{sp(t) | t ∈ Ty} = sp(tmin
y), whereTx andTy are the sets of tests detecting

the faults (or group of faults) corresponding to vertices,υx andυy, respectively. Since, the

weight on an edge of the fault compatibility graph corresponds to the specified bits of a

new test that detects all faults that corresponds to both the merged vertices, this test must

come from the intersection of the corresponding sets of tests. In the case considered here,

W (exy) = min{sp(t) | t ∈ Tx ∩ Ty}. Clearly, this new test cannot have less specified

bits than eithertmin
x or tmin

y . More precisely, it cannot have fewer specified bits than the

maximum of these two tests since, since only the maximum oftmin
x andtmin

y can be common

in Tx andTy, sincetmin
x andtmin

y are both minimum, in terms of specified bits, for each set.

Thus,max{w(υx), w(υy)} ≤ W (exy). In order to prove the upper bound of this theorem,

we consider the case where the two minimum tests (i.e.tmin
x andtmin

y) have no common bits

that have a specified logic value. In this case the new test consists of all the specified bits

of tmin
x and all the specified bits oftmin

y . Stated differently, since this new test is minimum

75

Stel
ios

 N
. N

eo
ph

yto
u

in the intersection ofTx andTy, it cannot have more thansp(tmin
x) + sp(tmin

y) since this

test exist in the intersection (no conflicting bits) and combining the bits in bothtmin
x and

tmin
y gives a test that detects all faults previously detected by each of the two tests. Thus,

W (exy) ≤ w(υx) + w(υy). Furthermore, by hypothesis the two tests areK-compatible, and

soW (exy) cannot be greater thanK. Thus, only ifK is greater thansp(tmin
x) + sp(tmin

y) the

proven upper bound holds. This implies thatW (exy) ≤ min{K, w(υx) + w(υy)}.

Lemma 4.2. The number of iterationsI that the algorithm can perform is bounded by:

0 ≤ I ≤ |F | − 1, where|F | is the number of faults considered.

Proof. The lower boundindicates that it is possible not to enter any iteration, in the case

where no two faults inF can be detected by a single test. Theupper boundis met when at

every iteration, the number of merged vertices is exactly one.

Definition 4.2. For one iteration, we refer to the ratio of the number of edges selected (indi-

cates selection of vertices/faults to be detected by a single test) to the maximum of the edges

that could be selected asMerging Efficiency, abbreviated as ME.

Lemma 4.3. The range ofME per iteration is given by1
2
≤ ME ≤ 1.

Proof. Theupper boundis when at every iteration all vertices inν are merged with vertices

outsideν, resulting in merging the maximum number of vertices at that iteration. Thelower

boundcomes when no vertex inν is merged with a vertex outsideν, i.e. when|ν|
2

merged

pairs consist only of vertices inν.

Theproposed algorithm guarantees that, after merging, the produced set of tests contains at

least one test that is of less specified bits than the tests in the merged sets. Actually, from

Theorem 4.1, it is guaranteed that if we are able to find the minimum test for detecting a

fault or a group of faults, vertex merging will not increase the number of specified bit of

the underlying test set, while the test set size is systematically reduced. In the worst case

vertex merging gives a test set with the same number of specified bits, and with fewer tests.

Experimental results in Section 4.6, show that the total number of specified bits in the test

set is also reduced because of the vertex merging. Further experimentation shows that the

upper bound of Theorem 4.1 is rarely met, especially in the first iterations of the algorithm

76

Stel
ios

 N
. N

eo
ph

yto
u

wherethe tests have very few specified bits. Moreover, from Lemma 4.2 we conclude that

the number of iterations are bounded. In practice, as our experimental results demonstrate,

the number of iterations decreases as|ν| increases, at the expense of more computation per

iteration. Another important attribute for the proposed algorithm is the number of vertices

merged at each iteration. In Definition 4.2 we have defined this attribute as the merging

efficiency. This number gives the rate by which our algorithm approaches the final solution.

In most cases the higher this rate is, the better the solution is. The latter is because ideally

our approach should expand each test as much as possible by combining it with as much

compatible faults as possible, before the corresponding fault is removed from setν. If two

faults insideν are merged together, then this expansion is constrained to one of the faults.

This can limit the efficiency of this dynamic method, especially when the fault ordering

considered, gives priority to the easy-to-detect faults.

4.5 Implementation Overview

While the methods described in Chapter 3 and Chapter 4 could be implemented using any

test generation and fault simulation procedures, for the purpose of this dissertation, we have

implemented all methods using a function-based framework. In this section we give some

details for this implementation, as well as some preliminaries on function-based implemen-

tation. We choose a function-based implementation for the test generation and the fault

simulation procedures because they provide an easy way to identify various desirable char-

acteristics of a test or a group of tests. Specifically, they provide an efficient way of finding

a minimum specified bits test among a set of tests, as well as an elegant systematic way of

identifying compatibility andK-compatibility between two or more tests.

4.5.1 Function-Based Test Generation and Fault Simulation

For all test generation and fault simulation proposed in this paper we have used a function-

based framework. Although any of the previously proposed function-based frameworks can

be used, in this work we have used an in-house tool that uses Binary Decision Diagrams

(BDDs) [34].

77

Stel
ios

 N
. N

eo
ph

yto
u

Test generation is performed by XORing the fault free functionality of the circuit with the

functionality of the circuit after the considered fault is injected. For the results obtained we

have used the stuck-at fault model. Given one or more faults, the corresponding test func-

tion implicitly represents all the test patterns detecting the fault(s)[59]. Essentially, every

minterm of this function is a valid test for the fault(s). By considering a large number of tests

for each fault a great advantage over structure-based techniques, is obtained. That is because

the large number of tests gives more flexibility in selecting the appropriate one, based on the

targeted application. This advantage is more important in the dynamic method where no ini-

tial test restriction exists and, thus, flexibility in the test selection process is highly desired.

For the test generation in all methods proposed in this work, we extract a test function for

each targeted fault in the collapsed stuck-at fault list of the circuit. Fault collapsing in this

phase is done using the static arguments of the Checkpoint Theorem [59]. Then, functional

fault equivalence and functional fault dominance are applied to further reduce the number of

faults that need to be considered.

Fault simulationis performed by checking if a test cube corresponding to a given test is

contained in the function generated for each fault considered. Containment here implies that

the cube consists only of minterms of the function examined and can be justified if the logic

ANDing between the test cube and the function corresponding to the fault gives a non-zero

function.

The process ofretrieving a test with a large number of unspecified bitsfrom a test function

is identical to the process of finding a large cube in that function. If the largest cube is

selected, then a test is found which is guaranteed to have the fewer specified bits among all

tests detecting the corresponding fault or group of faults. While the process of identifying

the largest cube in a generic test function is a hard process, it can be done efficiently when

BDDs are used. Because of their canonical form, the largest cube can be found by following

the shortest path in the diagram which is a linear time operation, with respect to the size

of the BDD. Obtaining the shortest path is done with respect to the BDD variable ordering

and, thus, it does not guarantee that it coincides with the function’s actual largest cube.

Improvements can be achieved using a heuristic described in the next subsection.

Fault compatibility, which is necessary for the dynamic method of Chapter 4, can be ex-

amined by ANDing the test functions corresponding to the faults checked for compatibility.

The result of the AND operation gives a test function whose each minterm can detect all the

78

Stel
ios

 N
. N

eo
ph

yto
u

faults considered, at the same time. If this function is zero then the faults are not compatible;

otherwise, faults can be tested together and the ANDing operation corresponds to the merg-

ing operation of the method described in Chapter 4. Consequently, the test function resulting

from this AND operation, implicitly holds all the tests that can detect all the merged faults.

In order to determine whether two faults meet theK-compatibility constraint, a largest cube

query on the merged test function is performed, as explained in the previous paragraph. If

the size of the largest cube is lower than, or equal to,K then the two faults areK-compatible.

Using BDDs for representing test functions may lead to high memory requirements, and,

consequently may be an issue for the scalability of the methods using BDDs. Both the

proposed methods essentially consist of two parts regarding the usage of the BDDs. The

first part is a pre-processing step that generates a test function for each fault considered.

The second part includes all the BDD-related operations of the methods. For the proposed

methods, the second part does not affect scalability, since the proposed methods perform

BDD operations just for obtaining temporal information used for locally taken decisions. The

BDDs constructed for this reason are released after the decision is made, and, thus memory

is not accumulated. The first part (i.e. generating a test function for each fault considered)

is the part that can give undesired memory increase. Stated differently, this is the only part

of the algorithm that can make the algorithm implementation blow-up and, thus, hurt the

scalability of the proposed methods. Based on our experience on the ISCAS benchmark

circuit, this happens mainly due to the complexity of a circuit and not proportional to its

size. It is well known that out of all ISCAS circuits, only c6288 from the ISCAS’85 suite

cannot be represented using BDDs, despite the fact that other circuits with much larger size

and much more paths can be represented.

A number of solutions can be used for handling more complex and/or larger circuits like

modern industrial circuits:

• Instead of building a BDD for the entire test function for each fault, construct a number

of simplified BDDs for each fault by systematically fixing a small number of the circuit’s

primary inputs. The inputs to be fixed should be selected so that they affect as small portion

of the circuit as possible. Different BDDs are generated for all possible value combinations

for these inputs. Appropriate merging of these BDDs gives a reduced size diagram which,

however, has smaller number of tests and, thus, smaller test space. Naturally, this affects the

obtained test set that may have more specified bits (sub-optimal solution). This approach has

79

Stel
ios

 N
. N

eo
ph

yto
u

beenused in [61] and manages to handle even the problematic benchmark c6288. Naturally,

this solution gives partial information and, thus, the decisions taken at different steps of the

proposed methods are not the best possible. Moreover, this rationale can be extended in

generating test functions at the input-output fault cones, and, hence, drastically reduce the

memory requirements of the methods.

• Constraint versions of the BDDs can be used in order to avoid blowing up. In [50] a frame-

work is proposed, where each test function is partitioned into k different partitions so that

each partition is represented by a different BDD. This way the total memory requirements

are reduced canceling any scalability problem that may occur. These new constraint BDDs

are called Partitioned BDDs and have been used in design verification [50, 62] and show

great reduction in the BDD size. The framework, also, proposes procedures for efficient ma-

nipulation of Partitioned BDDs. Yet, the efficiency of this solution should be verified, with

respect to the final test sets obtained by the two methods.

•Using heuristic techniques for the Boolean Satisfiability problem (SAT-solvers) in conjunc-

tion with the BDD structures in order to reduce the BDD size. A number of recent work (see

[63, 64] among others) has been proposed which describe some very fast implementations of

SAT-solvers, based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [65]. Pre-

vious work on using SAT-solvers for test generation (e.g. the work in [66, 67]) as well as in

a number of design automation problems [68]. Essentially, SAT-solvers can be used together

with BDDs in cases where BDDs blows-up in order to give a sub-optimal solution for the

corresponding function or can be used as a standalone solution in order to completely replace

BDDs for function representation and manipulation. This approach has been widely used for

Symbolic Model Checking ([69, 70, 71] among others) and shows to drastically reduce the

process response time.

4.5.2 An Optimization Heuristic for Obtaining a Larger Cube from

a BDD

We now present an optimization heuristic to further reduce the size of a largest cube in a

BDD-based function. This is a post-processing step, that can be optionally applied. The size

of the largest cube in a BDD depends on the BDD variable order. Thus, theoretically, the

80

Stel
ios

 N
. N

eo
ph

yto
u

largest cube derived from a BDD can be further enlarged. The heuristic tries to further en-

large the largest cubeLCi of a BDD-based test functionTFi by appropriately relaxing fixed

variables inLCi. It iterates on the variables in the support ofLCi and performs Existential

Abstraction onLCi with respect to each variable, i.e. removes the impact of the variable

from the corresponding functionTFi. The resulting cube is then checked against function

TFi for satisfiability. If the resulting cube satisfiesTFi the new cube is set as the largest

cube and the heuristic continues with the next variable, until all variables are considered.

The operations of existential abstraction and satisfiability are standard BDD operations and

can be done very efficiently due to the canonical structure of the BDDs. Figure 4.4 shows

the pseudocode of the heuristic using standard BDD operations.

procedureidentify extra xs()

INPUT : functionTFi

OUTPUT: largest cubeLCi of functionTFi,
1: LCtemp=LCi=ShortestPath(TFi)
2: S=Support(TFi)
3: for eachvariablev ∈ S
4: LCnew = ExistentialAbstract(LCtemp)|v
5: if (TFi(LCnew) = 1) then
6: LCtemp = LCnew

7: return LCi=LCtemp

Figure 4.4: Identifying additional unspecified bits per test in BDD-based implementations.

Next, we give some measurements that demonstrate the impact of this optimization proce-

dure. Table 4.1 shows this information for an indicative number of circuits when this opti-

mization is used together with the dynamic method of Section 4.4. Column 2 lists the average

gain (percentage against number of primary inputs) that can be obtained each time the op-

timization is called. This gain is considerable for certain cases. For example, C880 has 60

inputs. An average gain of 6.75% leads to approximately 4 new unspecified bits per test, on

the average. Columns 3 and 4 list the number of tests and the number of specified bits in the

test set, when no optimization was activated. Columns 5 and 6 list similar information, when

the optimization was applied every time a largest cube query in the BDD was performed.

Columns 7 and 8 report the optimization’s gain when the optimization is applied only once,

after the algorithm terminates and the test set has been derived. These measurements show

that applying the optimization just once at the end of the algorithm gives a noticeable benefit

on the total number of specified bits. Moreover, applying the optimization throughout the

81

Stel
ios

 N
. N

eo
ph

yto
u

algorithm’s execution does not always lead to a smaller number of specified bits. This oc-

curs since modifying the number of specified bits per vertex in the compatibility graph can

guide the fault merging algorithm to a different direction. The behavior of the optimization

is analogous for all the static and dynamic methods proposed in this dissertation.

Table 4.1: Impact of the cube optimization heuristic
Cir cuit Avg. Gain No optimization Always Activated Activated at the End

(% PIs) Test Func. Sp. Bits Test Func. Sp. Bits Test Func. Sp. Bits

c880 6.75 20 815 21 764 20 734

c1355 8.02 84 3120 84 2844 84 2985

c1908 2.72 107 1762 107 1701 107 1666

c2670 1.15 56 2945 55 2798 56 2834

c3540 3.08 100 2159 101 2075 100 2005

c5315 1.11 51 3106 52 3145 51 3005

c7552 0.59 78 6140 78 6044 78 6044

s953 4.33 78 1124 79 1003 78 972

s1196 3.23 118 1740 117 1634 118 1618

s1238 4.21 123 1875 123 1709 123 1709

s1423 4.22 25 1341 24 1186 25 1245

s1494 7.06 102 1171 103 1081 102 1063

s9234 0.02 145 8399 147 8419 145 8367

s13207 1.17 267 12173 267 11480 267 11596

4.6 Experimental Results for the two Dynamic Meth-

ods

The proposed methods were implemented in C language and run on a SunBlade 1500 ma-

chine, running Solaris with 4GB of RAM. We experimented with the ISCAS’85 and the

full-scan versions of the ISCAS’89 benchmark circuits. All the test generation related pro-

cedures were implemented using the framework described in Section 4.5.

In Table 4.2 we show results for the first dynamic method proposed in this chapter. Column

82

Stel
ios

 N
. N

eo
ph

yto
u

Table 4.2:Results for the match-and-merge method
Cir cuit PIs Faults Tests Smax Total Bits Sp. Bits % Sp. Bits # Iter. CPU (s)

c880 60 895 76 43 4560 2266 49.7 8 18.1

c1355 41 1536 200 40 8200 6844 83.5 9 14.6

c1908 33 1981 161 31 5313 3778 71.1 9 10.6

c2670 233 2681 69 188 16077 7536 46.9 10 75.7

c3540 50 3634 141 44 7050 3924 55.7 9 98.6

c5315 178 5623 N/A N/A N/A N/A N/A N/A N/A

c7552 207 7620 N/A N/A N/A N/A N/A N/A N/A

s510 25 551 70 11 1750 541 30.9 6 0.1

s713 54 514 125 26 6750 1453 21.5 6 0.1

s832 23 833 136 15 3128 1287 41.1 7 0.2

s953 45 1063 129 19 5805 1664 28.7 6 0.2

s1196 32 1334 182 18 5824 2577 44.2 8 0.8

s1238 32 1334 258 18 8256 2648 32.1 9 1.2

s1423 91 1532 212 20 19292 3233 16.8 7 2.0

s1494 14 1694 155 14 2170 1450 66.8 9 0.7

s9234 247 9402 N/A N/A N/A N/A N/A N/A N/A

s13207 700 13287 N/A N/A N/A N/A N/A N/A N/A

s15850 611 10278 N/A N/A N/A N/A N/A N/A N/A

s38417 1664 31183 N/A N/A N/A N/A N/A N/A N/A

s38584 1464 36301 N/A N/A N/A N/A N/A N/A N/A

2 lists the number of Primary Inputs and Column 3 lists the number of total faults in the

collapsed fault list, per circuit. The collapsed fault list was realized after functional equiva-

lence and structural dominance were applied to the given fault list. No faults were aborted.

Column 4 gives the number of tests by the obtained method and Column 5 reports the maxi-

mum number of specified bits per test for each test set. Observe that the sizes of the test sets

are large, which was expected, while theSmax attribute is much lower than the number of

primary inputs, indicating a significant reduction for this measure. Columns 6 and 7 report

the number of total test bits and the number of specified bits, respectively, while Column 8

gives the percentage of specified bits in the test set. The last two columns show the method’s

requirements in terms of iterations and CPU time (in secs) needed. The N/A indicates that

the results for the corresponding circuit could not be obtained, since the BDD-based im-

plementation could not handle the huge number of BDD operations. As we show next we

83

Stel
ios

 N
. N

eo
ph

yto
u

overcome this problem in the hierarchical method.

Table 4.3 gives our results for the hierarchical fault compatibility method. Column 2 lists

the number of Primary Inputs and Column 3 lists the number of total faults in the collapsed

fault list, per circuit. Column 4 reports the number of tests in the generated test set. The

value for constraintK is given in Column 5 which is actually theSmax parameter per test

set, i.e., the maximumsp(t) among all tests in the set. The value ofK ranges between the

maximum largest cube for each individual fault and the number of primary inputs of the

circuit. Columns 6 and 7 give the total number of bits and the number of specified bits per

test set, respectively. The percentage of the specified bits with respect to the total bits in the

resulting test sets is given in Column 8. As expected, circuits with a large number of primary

inputs tend to have a small number of specified bits, whereas circuits with a small number

of primary inputs do not allow for a large number of unspecified bits in compact test sets.

Column 9 shows the cardinality ofν considered for each benchmark and Column 9 reports

the CPU time for the proposed method in seconds.

In Table 4.4 we compare the two proposed approaches. To our knowledge no dynamic

technique that explicitly targets the same problem exists and, thus, we compare with the

best previously proposed static technique [48], for completeness. We intend to compare with

application specific dynamic techniques in Chapter 5. Since we are interested in maintaining

compact test sets, we compare with the results reported in [48] for compact test sets, which

also include information on theSmax parameter.

The results of the proposed dynamic methods are given again in Table 4.4. Columns 2-5 and

Columns 10-13 of the table show the results for the hierarchical method and the match-and-

merge method, respectively. The experimental results reported in [48] are listed in Columns

6-9. TheN/A value corresponds to non-reported circuits. In this comparison, the key mea-

sure is the total number of specified bits in the final test. We focus on the hierarchical fault

compatibility method, since it shows to give better results in terms of absolute numbers of

specified bits. Observe that in all cases, except for s1494, the hierarchical method reports

a reduction in the total number of specified bits per test set (Columns 4 and 8), which is

considerable in some cases such as for circuits c1908 and s13207. Also, despite the fact that

the method of [48] uses very compact initial test sets (derived from a compaction tool), the

proposed method was able to derive test sets with very comparable cardinality, with some

exceptions (s9234, s38417). This shows that the hierarchical method was able to generate

84

Stel
ios

 N
. N

eo
ph

yto
u

Table 4.3:Test generation results of the hierarchical dynamic method.
Cir cuit PIs Faults Tests Smax Total Bits Sp. Bits % Sp.Bits |ν| CPU (s)

c880 60 895 20 55 1200 734 61.2 2 23.4

c1355 41 1536 84 41 3444 2844 82.6 1 18.6

c1908 33 1981 107 31 3531 1666 47.2 1 12.3

c2670 233 2681 55 149 12815 2798 21.8 2 72.6

c3540 50 3634 100 33 5000 2005 40.1 4 89.4

c5315 178 5623 51 127 9078 3005 33.1 4 101.5

c7552 207 7620 78 160 16146 6044 37.4 2 38.1

s510 25 551 56 11 1400 447 31.9 2 0.2

s713 54 514 23 33 1242 632 50.9 2 0.3

s832 23 833 127 16 2921 1056 36.2 1 0.3

s953 45 1063 78 22 3510 972 27.7 1 0.4

s1196 32 1334 115 19 3680 1599 43.5 4 0.9

s1238 32 1334 123 20 3936 1709 43.4 1 1.1

s1423 91 1532 24 80 2184 1186 54.3 2 1.9

s1494 14 1694 102 14 1428 1063 74.4 4 0.7

s9234 247 9402 145 205 35815 8367 23.4 4 5.3

s13207 700 13287 267 458 186900 11480 6.1 2 7.9

s15850 611 10278 160 541 97760 11871 12.1 4 21.2

s38417 1664 31183 88 1012 146432 31731 21.7 4 95.1

s38584 1464 36301 126 1314 184464 29768 16.1 4 121.9

testswith a large number of unspecified bits, and at the same time, maintain a small number

of total tests. Based on this, we conclude that the highest relaxation achieved by the method

does not come because we have not imposed any constraint on the size of the test set. Relax-

ation is not even inversely proportional to the size of the test set (see results for c1355 and

c1908). On the contrary, the large percentage of unspecified bits is attributed mainly to the

constraints enforced on the fault compatibility graph, which guide the algorithm in choosing

groups of compatible faults to be detected by a single test with small number of specified

bits. In all cases, theSmax parameter is lower than those reported in [48], in some cases

considerably (e.g. s1238, s13207). A low value for theSmax parameter is desirable for many

test encoding/embedding methods, such as in deterministic BIST with LFSR-reseeding, giv-

ing the proposed technique a clear advantage for such applications. Despite the fact that the

85

Stel
ios

 N
. N

eo
ph

yto
u

methodof [48] did not target the problem of test set embedding specifically, it is quite com-

mon for these techniques to start from highly compacted test set, in order to reduce the area

of the embedding overhead. For this specific application, however, the results obtained by the

match-and-merge method may be of greater interest. Observe that, in most cases, while the

absolute number of specified bits is larger, the percentage of specified bits is lower, mainly

because the test set sizes are too large. Moreover, the values for theSmax attribute is, in most

of the cases, lower for the match-and-merge method. This occurs because the method of

Section 4.3 gives priority in minimizing theSmax parameter in disfavor of the total number

of tests. These two test set characteristic can become very desirable in test set embedding

techniques using compression, like those in [72, 73, 74]. More importantly, the technique

of Section 4.3 cannot handle large circuits for the problem considered. We investigate how

these test sets can be used in test embedding techniques in Chapter 5.

Table 4.4: Comparison between existing static and the proposed dynamic methods.
Hierar chical Method (Section 4.4) [48] BIST-guided (Section 4.3)

Cir cuit Tests Smax Sp. Bits % Sp. Bits Tests Smax Sp. Bits % Sp. Bits Tests Smax Sp. Bits % Sp. Bits

c880 20 55 734 61.2 21 60 827 65.6 76 43 2266 49.7

c1355 84 41 2844 82.6 84 41 3444 100.0 200 40 6844 83.5

c1908 107 31 1666 47.2 106 33 2903 83.0 161 31 3778 71.1

c2670 55 149 2798 21.8 45 233 3072 29.3 69 188 7536 46.9

c3540 100 33 2005 40.1 93 50 2172 46.7 141 44 3924 55.7

c5315 51 127 3005 33.1 46 178 3161 38.6 N/A N/A N/A N/A

c7552 78 160 6044 37.4 75 207 7064 45.5 N/A N/A N/A N/A

s510 56 11 447 31.9 N/A N/A N/A N/A 70. 11 541 30.9

s713 23 33 632 50.9 N/A N/A N/A N/A 125 26 1453 21.5

s832 127 16 1056 36.2 N/A N/A N/A N/A 136 15 1287 41.1

s953 78 22 972 27.7 N/A N/A N/A N/A 129 19 1664 28.7

s1196 115 19 1599 43.5 N/A N/A N/A N/A 182 18 2577 44.2

s1238 123 20 1709 43.4 125 32 1740 43.5 258 18 2648 32.1

s1423 24 80 1186 54.3 24 91 1267 58.0 212 20 3233 16.8

s1494 102 14 1063 74.4 100 14 1016 72.6 155 14 1450 66.8

s9234 145 205 8367 23.4 111 247 8499 31.0 N/A N/A N/A N/A

s13207 267 458 11480 6.1 235 700 13160 8.0 N/A N/A N/A N/A

s15850 160 541 11871 12.1 97 611 13454 22.7 N/A N/A N/A N/A

s38417 88 1012 31731 21.7 84 1664 35224 25.2 N/A N/A N/A N/A

s38584 126 1314 29768 16.1 114 1464 31543 18.9 N/A N/A N/A N/A

In Figure4.5 we show the specified bits distribution among the tests in the resulting test

set, for the second dynamic method proposed (hierarchical). The distribution is similar to

86

Stel
ios

 N
. N

eo
ph

yto
u

Figure 4.5:Specified bits distribution among tests after applying the hierarchical method

that of the static method (see Figure 3.3. Although the two methods may give different val-

ues for theSavg/PI, they both give a large percentage of tests that have number of specified

bits closed toSavg. Observe, for instance, s1423. In the static method it gives 55% for the

Savg/PI. Approximately, 57% of the obtained tests have specified around 50-65% of the test

pattern bits. Similarily, in the dynamic method, where theSavg/PI is 35%, 71% of the test

pattern have specified around 25-40% of each test pattern bits. The distribution of the speci-

fied bits, among the test patterns, follows this trend due to the constraint imposed to the test

selection process that inherently exists in both methods. Furthermore, the dynamic method

amplifies this trend, mainly because it is more flexible in selecting the tests to combine with-

out considering given tests. For circuit c1908, the resulting test set obtained by this dynamic

method does not follow the observed trend. This has to do with the structure of c1908. Since

c1908 is an error detector/corrector circuit all of its primary inputs are used to generate a

syndrome in order to identify the erroneous bit(s). This gives high corelation between the

circuit’s primary inputs, which eventually enforces large groups of the test patterns bits to

form clusters of bits that influence each other. Within these clusters test bits cannot be left

unspecified if one or more bits in the same cluster have been specified, and, thus the patterns

87

Stel
ios

 N
. N

eo
ph

yto
u

with similar number of specified bits are clustered too giving two or more values of specified

bits that correspond to a large number of tests.

|
�
| = 2

0.0

0.2

0.4

0.6

0.8

1.0

1 48 95 142 189 236 283 330 377 424 471 518 565 612 659 706 753

Iteration

M
er

gi
ng

 E
ffi

ci
en

cy
 .

|
�
| = 4

0

0.2

0.4

0.6

0.8

1

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Iteration
M

er
g

in
g

 E
ff

ic
ie

n
cy

 .

|
�
| = 8

0

0.2

0.4

0.6

0.8

1

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209
Iteration

M
er

gi
ng

 E
ffi

ci
en

cy
 .

|
�
| = 16

0

0.2

0.4

0.6

0.8

1

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Iteration

M
er

g
in

g
 E

ff
ic

ie
n

cy
 .

Figure 4.6:The effect of the size ofν in Merging Efficiency, for s1494.

The plots in Figure 4.6 show the merging efficiency (ME), as defined in Definition 4.2, per

iteration for circuit s1494, for four different values of|ν|, i.e. |ν| = 2, 4, 8, 16. Observe

that the bounds defined by Lemma 4.3 are clearly verified. The merging efficiency is almost

always optimal for|ν| = 2 and|ν| = 4, and it drops for|ν| = 16. Further experimentations

show that it drops further as|ν| increases. This demonstrates the advantage of the hierar-

chical nature of the second dynamic method. It is preferable to perform more iterations,

considering the merging of a small number of vertices in the constrained compatibility graph

per iteration and, thus, solving an easier problem at a time. This approach gives better overall

results (merging of vertices) than the case where a large portion or the entire compatibility

graph (such as in the match-and-merge method) is considered at a time, since this is theo-

retically a harder problem. For|ν| = 1, ME = 1 (optimal) since the single vertex inν is

always merged with a vertex outsideν.

Table 4.5 shows the number of tests and the number of total specified bits after applying the

88

Stel
ios

 N
. N

eo
ph

yto
u

Table 4.5:Number of specified bits forν of different size, for s1494.

|ν| Tests Sp. Bits Avg. ME # Iterat.

1 104 1134 1 1639

2 104 1116 0.99 829

4 102 1063 0.95 431

6 107 1136 0.92 298

8 108 1187 0.89 231

12 114 1162 0.84 163

16 116 1275 0.71 145

20 120 1228 0.69 120

30 121 1240 0.64 86

50 124 1262 0.59 56

100 129 1314 0.55 30

|V | 143 1445 0.54 8

algorithmof the hierarchical method using different values for|ν|, for circuit s1494. The

average merging efficiency and the number of iterations per run are also reported. In the last

row, the case of not imposing any constraint on the size ofν, i.e., whenν equals the number

of vertices on the graph, is reported. Observe how the Avg.ME drops as|ν| increases.

Also, the number of iterations increases as|ν| decreases. In this case, the best results were

obtained for|ν| = 4, which has an Avg.ME close to the optimal (=0.95) and a considerably

smaller number of iterations from the case of optimal Avg.ME (=1). The worst results were

obtained for the case in the last row, where the entire compatibility graph is considered per

iteration. As discussed in the previous paragraph, this occurs because the merging efficiency

of the method is considerably higher when considering a small number of vertices at a time.

The latter observation is justified by the results obtained for the match-and-merge method,

where essentiallyν is equal to the number of vertices in the graph (i.e.,ν = |G|). The

main conclusion from this observation is that although|ν| can be user-defined and, thus,

extensively explored to obtain the best results, this is not necessary in practice. The best

results can be obtained by considering a small value for|ν|.

Both algorithms of the dynamic methods consider an ordering on the vertices (faults) of

89

Stel
ios

 N
. N

eo
ph

yto
u

G, to guide the selection of the vertices in the graph, that are considered per iteration. We

experimented with the five different vertex ordering methods, for the hierarchical method

proposed:

Table 4.6: Effect of various vertex ordering methods in the method ofSection 4.4
(i) (ii) (iii) (iv) (v)

Circuit Sp. Avg. Sp. Avg. Sp. Avg. Sp. Avg. Sp. Avg.

Tests Bits ME Tests Bits ME Tests Bits ME Tests Bits ME Tests Bits ME

c880 20 734 0.99 23 953 0.96 21 785 0.98 22 932 0.97 23 984 0.96

c1355 84 2844 0.99 88 3015 0.97 85 2901 0.97 87 2991 0.97 88 3016 0.96

c1908 107 1666 0.99 109 1911 0.96 106 1785 0.98 108 1896 0.96 109 1921 0.96

c2670 56 2875 0.98 58 2975 0.97 55 2798 0.98 57 2891 0.97 59 2981 0.96

c3540 100 2005 0.99 102 2101 0.98 100 2075 0.98 103 2198 0.98 103 2214 0.97

c5315 52 3087 0.97 55 3125 0.95 51 3005 0.97 56 3208 0.95 56 3212 0.95

c7552 78 6075 0.99 80 6232 0.96 78 6044 0.99 81 6209 0.96 81 6286 0.96

s953 78 972 0.97 91 1165 0.97 85 1007 0.98 92 1202 0.96 93 1311 0.95

s1196 118 1618 0.98 144 1978 0.97 115 1599 0.99 139 1895 0.97 145 2015 0.95

s1238 123 1709 0.98 153 2115 0.94 125 1761 0.97 153 1965 0.96 155 2231 0.94

s1423 24 1197 0.99 27 1301 0.97 24 1186 0.99 26 1253 0.97 29 1330 0.96

s1494 102 1063 0.99 117 1212 0.97 103 1088 0.98 118 1227 0.97 118 1241 0.94

s9234 145 8367 0.97 154 8985 0.96 146 8412 0.97 152 8912 0.96 159 8981 0.93

s13207 266 11512 0.96 271 12012 0.95 267 11480 0.96 270 11971 0.96 275 12154 0.92

i. Descendingonw (υi) per vertexυi in the initial graph.

ii. Ascending onw (υi) per vertexυi in the initial graph.

iii. Ascending on the number of tests per vertex in the initial graph.

iv. Descending on the number of tests per vertex in the initial graph.

v. Random.

For example, considering the ordering of (i) the vertices with the largest weight will be

included first inν, during the initial iterations. Once a vertex cannot be further merged (to

cover additional faults), the vertex with the next largest weight is included inν. The ordering

of the vertices is a preprocessing step which is performed once and is considered throughout

the algorithm’s execution. A vertex weight indicates how many specified bits will be needed

90

Stel
ios

 N
. N

eo
ph

yto
u

to cover a vertex (detect one or more faults), whereas the number of tests at a vertex indicates

the merging difficulty of the corresponding faults. Clearly, methods (iii) and (iv) only apply

to implementations that can efficiently give all the tests for a fault or a group of faults, like

function-based implementations (see Section 4.5).

Table 4.6 lists the number of tests, the total number of specified bits, and the merging effi-

ciency (ME), for each one of the five orderings for the hierarchical method. The best results

are obtained when the ordering is descending on the node weights (i) or ascending on the

number of tests per fault (iii). In both of these cases, the algorithm starts by merging the

nodes that correspond to more “difficult” faults. The difficulty here represents the proba-

bility of a node to be merged at a future iteration of the algorithm and is attributed either

to a violation of theK-compatibility property or due to the small number of possible tests.

Merging the difficult nodes first, ensures no isolation of those nodes during future iterations

which results in a smaller test set. The other two options (ii and iv) are very close to the

random ordering.

4.7 Conclusions

We have proposed two new dynamic methods for obtaining test sets with a large number of

unspecified bits. The primary goal here is to generate such test sets without relying on an

initial test, that can bias the obtained results. We first transform the considered problem into

a graph representation, motivated from traditional test set compaction techniques. We call

this graph a constraint fault compatibility graph. The constrained compatibility is identified

here by function-based ATPG; however structural methods can also apply. Both methods

identify compatible faults, constrained by the number of specified bits in the common tests,

and try to test them together in order to increase the number of the don’t care bits in the test

set.

The first method is essentially a simple two phase algorithm which identifies pairwise match-

ing for the graph’s vertices. The matched vertices are then merged together, in order to give

a single test detecting all the faults corresponding two these vertices. We refer to this method

as thematch-and-merge method. The second method ishierarchicalandconsiders a small

91

Stel
ios

 N
. N

eo
ph

yto
u

partof the compatibility graph per iteration, in order to identify the compatible faults. Essen-

tially, it tries to detect as many faults as possible by a small number of tests before proceeding

to the generation of other tests.

The experimental results demonstrate that the match-and-merge method (first dynamic method)

results in high test set sizes, despite the fact that the percentage of specified bits in the re-

sulting test sets are higher than the hierarchical method (second dynamic method). However,

the maximum size of specified bits in a single test is smaller for the first method. On the

other hand, the proposed hierarchical dynamic method outperforms, in some cases consid-

erably, existing static methods as well as the static method proposed in Chapter 3 in terms

of the total number of specified bits, while keeping the size of the test set size small. These

results, together with the statistics on the distribution of specified bits in the obtained test set,

imply that the obtained test sets can give benefit to various applications, including test set

embedding architectures. We investigate this possibility in the following chapter.

92

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 5

APPLICATION OFRELAXED TEST SETS IN BIST

SCHEMES WITHLFSR RESEEDING

5.1 Introduction

Built-In Self Testing (BIST) architectures have received a lot of consideration in the last fif-

teen years. Modern complex designs demand more reliable and effective embedded testing

with no extra operational complexity and with as much reduction in hardware overhead as

possible. Replacement of costly Automatic Testing Equipment (ATE) with efficient on-chip

embedding architectures is desirable to fill the technology gap between ATE and integrated

circuits design capabilities. In this chapter we investigate how two popular BIST architec-

tures can benefit when considering the relaxed test sets obtained by the methods described

in Chapter 3 and Chapter 4. The purpose here is to investigate the possible reduction in the

overall hardware requirements for standard test set embedding schemes, since it is known

that such schemes benefit from test sets with a large number of unspecified bits. Moreover,

a small maximum number of specified bits per test, in the test set may reduce the overall

hardware since it determines an important part of the embedding hardware.

Traditional BIST schemes use pattern generation circuitry, like Linear Feedback Shift Reg-

isters (LFSRs), to generate pseudorandom patterns [75, 76]. However, for more complex de-

signs, it is necessary to apply deterministic test patterns (generated by an appropriate ATPG

tool) to cover hard-to-detect faults not targeted by the pseudorandom patterns . Thus, a

mixed-mode scheme is usually followed where a pseudorandom sequence of limited length,

93

Stel
ios

 N
. N

eo
ph

yto
u

followed by a sequence of deterministic tests, is applied [77, 20, 46]. Popular determinis-

tic BIST schemes involve ATPG and test set compaction, encoding and regeneration of the

embedded tests on the chip, and application of the patterns via scan-chain loading.

Most of the previous work for deterministic test set embedding for stuck-at faults focuses on

proposing new BIST architectures along with efficient test encoding techniques to provide

for high fault coverage. See [78, 46, 44, 79, 80, 81, 82, 83, 77, 45, 84, 73, 74, 85], among

others. Most of these techniques employ test-per-scan application to reduce the hardware

overhead as well as the on-chip storage. In contrast some other methods, such that of [81],

use test-per-clock schemes to gain from all intermediate patterns produced by the test re-

generating device and, thus, reduce the test application time. Many of the existing encoding

techniques try to take advantage of the unspecified bits in the test set to be embedded, in

order to reduce the on-chip storage for the encoded deterministic test patterns.

Even though existing test pattern generators (TPGs) can generate tests with unspecified bits,

they do not specifically consider the number and distribution of the specified bits in the

final compacted test set. [79] demonstrated that the scheme of [44] can benefit greatly, in

terms of reducing the storage requirement, if the embedded test patterns are generated by

an ATPG tool that (i) maximizes the number of unspecified bits in each generated test and

(ii) concatenates tests into sequences that have a number of specified bits equal or slightly

greater than the maximum number of specified bits in any test pattern.

In this chapter we investigate how the methods presented in Chapter 3 and Chapter 4 can be

used in test set embedding schemes. In Section 5.2 we review the previous work in BIST

architectures following the test set embedding and/or encoding rationale. Next, we present

an experimentation framework we have used in order to thoroughly explore the various test

set generation and embedding parameters (Section 5.3). Section 5.4 shows the obtained

experimental results and discusses the findings, while Section 5.5 concludes the chapter.

5.2 Overview of Test Set Embedding Schemes

In this section we give a brief overview of the existing work on test set embedding. We

assume atest-per-scanarchitecture, with a single scan chain. This implies that the size of

94

Stel
ios

 N
. N

eo
ph

yto
u

thethe scan chain equals the number of primary inputs; let this be denoted bym.

The traditional single-polynomial LFSR scheme, used for generating pseudorandom test pat-

terns, has been tuned to regenerate deterministic test patterns, by using different initializing

seeds [77] obtained on an algebraic rationale. Thus, it can be used in a mixed mode approach

(oftenly referred to as hybrid BIST) for both pseudorandom test generation and deterministic

pattern decompression and application. The seeds can be computed in a systematic way, by

solving a system of equations based on the number of specified bitssp(t) in a test pattern

t. In the general case for a test pattern with some don’t care values, (i.e,t ∈ {1, 0, x}m),

the corresponding LFSR seed can be computed in the following way. For each specified bit

in the pattern, an equation based on the companion matrix of the LFSR is obtained, forming

a system of linear equations. The solution of this system of equations gives the seed of the

LFSR that can be used for the reproduction of test patternt. For this test-per-seed scheme it

has been shown that a test pattern can be encoded, with a very high probability (greater than

1 − 10−6) of success, into ansp(t) + 20 bit-wide seed. Given a test setT = {t1, t2, ..., tk},
the total storage amount for the encoded tests is determined by the maximum number of

specified bits in a test pattern in the test set, i.e.,Smax = max{sp(t)|t ∈ T} as well as

the distribution of the numberssp(t1), sp(t2), ..., sp(tk). The hardware overhead is primarily

determined by the storage requirement for the LFSR seeds corresponding to all the deter-

ministic test patterns. The size of the LFSR, which determines the size of the LFSR seeds is

equal toSmax + 20.

In the Multiple-Polynomial LFSR (MPLFSR) reseeding scheme of [44], the LFSR hard-

ware is modified to become reconfigurable, i.e. include logic for reprogramming the LFSR

feedback. Essentially, reprogramming refers to the process of changing the characteristic

polynomial of the LFSR. This can be easily done by adding an AND and an XOR gate for

every LFSR bit as shown in Figure 5.1. TheLinear Feedback Controller(LFC) is a mem-

ory structure holding programming sequences, consisting ofl bits, wherel is the size of the

LFSR. Based on the chosen polynomial, theLFC determines the polynomial implemented

by the LFSR. The basic reseeding scheme implies storing only the seeds needed to initial-

ize the LFSR. This method manages to improve the encoding efficiency of LFSR reseeding

using an LFSR size equal toSmax by only considering 16 different polynomials. For the

MPLFSR scheme, extra storage is necessary to keep the polynomial selection sequences as

well as extra bits for each seed to identify the corresponding polynomials. In [79] the authors

managed to further improve the encoding efficiency of the scheme of [44] by allowing a se-

95

Stel
ios

 N
. N

eo
ph

yto
u

quenceof test patterns to be encoded by a single seed with size close toSmax (referred to as

test concatenation). [74] also achieves high encoding efficiency when considering variable-

length seeds. Once the seed is loaded to the configured LFSR, it requiresm autonomous

transitions of the LFSR to regenerate the encoded pattern and transfer it to the scan chain for

application. The storage requirement for MPLFSR reseeding is given by:

Storage = Sb · (P + G) + G

whereG is the number of seeds (concatenated patterns) to encode the entire test set andSb

is the size of each (concatenated) seed.P refers to the number of characteristic polynomials

required for the encoding. By restricting the number of specified bits in the concatenated

pattern to be at least equal toSmax (the maximum number of specified bits over all patterns

in the embedded test set), a high encoding efficiency can be guaranteed. The system for-

mulation for MPLFSR is done on the concatenated patterns and a seed for each pattern is

obtained. Thus, the storage requirements for the MPLFSR reseeding scheme is the sum of

the bits needed to store the feedback polynomials, the bits to store the seeds and one extra

bit for each seed to determine the corresponding polynomial. One bit is used here instead

of 4
(
=log2(16)

)
, since we assume that all seeds corresponding to the same polynomial are

stored in successive memory positions and so a ’next bit’ is adequate for indicating reconfig-

uration of the LFSR. Figure 5.1 shows the underlying architecture of the MPLFSR reseeding

scheme.

Figure 5.1:The basic Multiple Polynomial LFSR architecture

96

Stel
ios

 N
. N

eo
ph

yto
u

Several other LFSR reseeding schemes have been proposed that can further improve the over-

all seed storage at the expense of some extra BIST hardware to the one shown in Figure 5.1.

[80] proposed a new architecture based on folding counters to encode the static test set. The

number of seeds to be stored benefits from standard encoding techniques as well as input

reduction methods, which however implies reorganization of the scan chain. Hardware over-

head for this architecture consists of extra counters and comparators and when mixed-mode

BIST is desired, an extra LFSR is needed to deploy the pseudo-random patterns generation.

In [73] the scheme of [80] is extended to become more flexible by accommodating the LFSR

and the folding counter in a more general scheme in order to reduce the overall hardware.

Deterministic test cubes are encoded as LFSR seeds and those seeds are then compressed as

seeds of the folding counter.

A new architecture is also presented in [85] that uses Twisted-Ring Counters (TRC) to embed

a static test set. No extra hardware is added to the CUT as the test generation circuitry can be

implemented using the standard scan chain, a multiplexer and an inverter in the serial input

of the scan register. Moreover, a seed extraction technique is proposed to get the required

seeds that will allow the TRC circuitry to reproduce a given static test set. Here, the number

of specified bits in the test set needs to be small as it provides a better seed selection.

In [83] and [82] the authors present a multiphase architecture for regenerating a deterministic

test set. The scan chain is fed by multiple LFSR cells (not only the last one) to provide more

useful test patterns. During each phase the same set of seeds is loaded to the LFSR but a

different LFSR cell drives the scan chain per phase. In this manner a smaller set of seeds

needs to be stored at the expense of extra time due to the multiple phase application.

The work in [84] introduces a method for a three-phase mixed-mode BIST. First, a number

of pseudo-random test patterns is applied and easy-to-detect faults are dropped from further

consideration. Then ATPG is performed to get deterministic patterns for all the remaining

faults. A number of repeating sequences is then obtained from those patterns and grouped

using a clustering algorithm. The groups of repeating sequences are then used to construct

a test set of semi-random tests which are applied at the second phase of this scheme. The

repeating sequences, as well as some controlling overhead, are stored on-chip together with

deterministic patterns targeting faults which remain uncovered, even after applying the semi-

random patterns.

97

Stel
ios

 N
. N

eo
ph

yto
u

The work in [21] proposed a technique for partially reseeding the LFSR instead of fully

replacing the LFSR seed, reducing in this way the seed storage. While the architecture for

the partial reseeding scheme is the same as that of Figure 5.1 there is no Linear Feedback

Controller which selects from a number of available characteristic polynomials for the LFSR.

Instead, there is a structure between the ROM and the LFSR that appropriately combines the

current LFSR seed with the partial seed stored in ROM, in order to generate the new LFSR

seed. However, the size of the LFSR has to beSmax + 20 as stated in the original reseeding

scheme [77]. For this scheme the storage requirements is given by:

Storagepr = (B − 1) · r + Smax + 20

whereB is the number of partial seeds,r is the size of the partial seed andSmax + 20 is the

size of the LFSR and, thus, the size of the initial seed.

All the encoding techniques presented here can be improved if the targeted test set has a

large number of unspecified bits.

Without any loss of generality, the remainder of this chapter will focus on two simple LFSR

reseeding schemes for mixed-mode BIST, that of multi-polynomial reseeding presented in

[44] and that of partial reseeding presented in [21]. We will investigate the usage of the

methods of Chapter 3 and Chapter 4, for generating test sets appropriate for the consid-

ered schemes. Moreover, we will evaluate the impact of the proposed guided ATPG tool in

reducing the on-chip seed storage in such mixed-mode BIST schemes.

5.3 A Generic Framework for LFSR-based Reseeding

Parameter Exploration

Instead of using the generated relaxed test sets as they are in the considered embedding

schemes, we present a generic framework which allows to efficiently explore certain param-

eters relevant to the embedding mechanisms, in order to further minimize the seed space

requirements. Both the methods of Chapter 3 and Chapter 4 can be incorporated in this

98

Stel
ios

 N
. N

eo
ph

yto
u

framework.

The framework essentially integrates the two relaxation methods and the test embedding

techniques discussed in the previous section (i.e., [44, 21]. This exploration provides a sys-

tematic way of exploring two parameters of the methods presented in the two previous chap-

ters, when used in the LFSR-based BIST schemes reviewed in the previous section. Before

describing the framework we show theoretical and empirical bounds for these parameters.

The framework explores two parameters namelySh andSb which are given as input to the

relaxation methods and the MPLFSR encoding technique, respectively.Sh is a constraint

imposed on the number of specified bits allowed for each test pattern. The proposed frame-

work appliesSh on the relaxation methods (Chapter 3 and Chapter 4) as an upper bound to

the maximum number of specified bits per test pattern. Specifically, for the static method

(Chapter 3)Sh equals to theSmax parameter and for the dynamic method (Chapter 4) equals

to the constraintK. Sb is a constraint imposed on the number of specified bits per concate-

nated test pattern, in the MPLFSR reseeding and determines the maximum number specified

bits (and, thus, test patterns) that can be encoded in a single concatenated pattern.Sb is also

important because it determines the size of the LFSR and, thus, the hardware overhead of

this embedding scheme. Next, we give the range of the values that these parameters take the-

oretically, and we show how these ranges can be safely made tighter to reduce the number of

iterations applied by the framework.

ParameterSh determines the maximum number of specified bits in any test pattern in the

test set obtained by either of the proposed methods (static and dynamic). In order to exten-

sively explore this parameter, the proposed methods should examine all its possible values,

which is constrained by1 ≤ Sh ≤ # of PIs. This is becauseSh cannot be greater

than the number of primary inputs since this will give a test pattern with more specified bits

than its total number of bits. On the other hand,Sh cannot be smaller than the maximum

number of specified bits in any test among all tests in the initial test set (i.e.,Smax of the

initial test. Specifically, the lower bound ofSh can be accurately computed when a test set

containing all tests for each fault considered is generated and the test with fewer specified

bits for each fault is isolated. The test with the maximum number of specified bits deter-

mines the exact lower bound ofSh. Since this information is available only when symbolic

techniques (like that of [86]) are used, we have experimented by givingSh as small values

as possible, in this case 1, only avoiding fully unspecified bits. Of course this lower bound

99

Stel
ios

 N
. N

eo
ph

yto
u

resultsin unacceptable fault coverage. Extensive experimentation, on the benchmark cir-

cuits considered, shows that when starting theSh exploration form value# of PIs
2

usually

100%fault coverage is achieved. Thus, the following empirical lower bound may be used:
of PIs

2
≤ Sh ≤ # of PIs

Another important parameter which is, however, relevant only to the embedding scheme of

MPLFSR [44], isSb. As discussed in the previous subsection,Sb is the size of the concate-

nated test pattern which equals the size of the LFSR. The bounds for theSb parameter are

within theSh obtained and the total number of specified bits in the test set.

ParameterSb which, however, is relevant only to the embedding scheme of MPLFSR [44]

determines the size of the concatenated test pattern which equals the size of the LFSR. The

bounds for theSb parameter are within obtainedSh and the total # specified bits in the test

set (i.e.,obtainedSh ≤ Sb ≤ total # specified bits in the test set). The lower bound

is because the embedding procedure assumes the test sets obtained by one of the proposed

methods as its input. Thus, the concatenated pattern cannot have fewer specified bits that the

test with the maximum number of specified bits in the test set which is constrained bySh.

Moreover,Sb can be equal to the total number of specified bits of the entire test set. This

is the case when all test patterns are concatenated in a single test pattern, which is clearly

not desired and in most cases not feasible. In practice, we examine values ofSb that are

close to and larger thanSh, as this keeps the size of the LFSR small ant, thus, efficient to

implement. Nevertheless, the experimental results show that the lower storage requirements

are whenSb is much smaller thanSh+200 and in most cases very close toSh. Experimental

results show that for values ofSb that are not higher than1.2 × Sh gives the best results

in terms of storage requirements. Specifically, the exploration of all possible values ofSb

(defined by the theoretical bounds) showed that for values between 100% and 120% ofSh,

the best results have been obtained. The larger values were obtained for circuits with a small

number of primary inputs, and, thus it may not be the case with large industrial circuits. For

instance, for a circuit with only 32 primary inputs, the best results, in terms of storage, are

obtained forSh = 20 andSb = 24 which implies 20% increase (h = 120%). The same

increase for a circuit with 200 primary inputs andSh = 120 givesh = 103%. However,

experimentation shows that setting a constant value forSb (instead of a percentage onSh)

makes the experimntation framework not general, and, thus not applicable for a large range

of circuits. Of course, if the designer has the luxury to allow a larger sized LFSR, then

the practical bound ofSb can be increased appropriately. Based on this, in the proposed

100

Stel
ios

 N
. N

eo
ph

yto
u

framework we set the upper bound ofSb to be slightly larger thanSh, i.e.,h × Sh, whereh

is a user defined parameter greater than 1. Our expiriance showed that this number can be

safely put toh = 1.2. Thus, the empirical bounds of parameterSb, used in this framework,

are given bySh ≤ Sb ≤ h × Sh.

Figure 5.2 shows the flowchart of the proposed parameter exploration framework. When the

desired method is selected, it is iteratively run for the various values ofSh. For the static

method (Chapter 3),Sh is used to constrainSmax. Any test that has more specified bits than

Sh is not accepted to be in the final test set. For the dynamic method,Sh is used as the

valueK to determineK-compatibility. Since, in the fault compatibility graph, no vertex or

edge weight is larger thanK, the resulting test set does not contain tests with larger thanSh

specified bits. If for any value ofSh 100% fault coverage is not achieved, the results are

discarded and the next value ofSh is applied as a constraint.

The obtained test set is then encoded using one of the two techniques of MPLFSR [44]

and partial reseeding [21] and the best results among those with various values ofSh are

saved. Here, better results imply smaller storage requirements and at the same time small

size of the LFSR. While priority is given on the test set storage, the size of the LFSR is also

important and test sets with (slightly) larger storage and significantly smaller LFSR size are

preferred. Next,Sh increments by one and the same process is repeated, untilSh reaches

its upper bound (number of PIs). In the case of the MPLFSR technique, where test pattern

concatenation is preformed, two extra steps are inserted (shown in gray background) in order

to explore theSb parameter. The first extra (upper) step is made in order to initializeSb and

apply the test concatenation algorithm. The second (lower) step increments theSb parameter

and checks if the upper bound is met. If not the concatenation and encoding procedures are

repeated. Note, that this nested iterative process does not apply to partial reseeding. When

both parameters of interest are fully explored, the process terminates and the (saved) best

results are returned.

Since the two parametersSh andSb are highly related, in the MPLFSR scheme, we have ex-

perimented with taking a combined decision of the values of the two, instead of first choos-

ing Sh and thenSb. This is illustrated in Figure 5.3 where we show the exploration of the

Sb based on the proposed framework for a number of values ofSh, close to the best one as

determined for the test generation process, for circuit s15850. Observe that forSh = 36 the

storage is similar and falls below 4,500 bits in two cases, forSb = 60 andSb = 99. In this

101

Stel
ios

 N
. N

eo
ph

yto
u

End

2
PIs#

hS

select
method

Apply Method of
Chap t er 4

hSK
Apply Method of

Chap t er 3

hSSmax

hb SS

Apply Test Concatenation

better
results

?
save results

1bb SS

 >h x Sh

?

bS

1hh SS

 > # PIs
?

hS

StaticDynamic

Yes

Yes

Yes

No

No

No

Begin

LFSR-based Encoding

Figure 5.2:Flowchart for parameter exploration framework

case,Sb = 60 is selected since it gives a smaller size LFSR. While, this can be done with

all values of theSh, it is sufficient to be explored only for the four closest values to the best

Sh, as this has shown (from experimentation) to give the lower storage requirements. Higher

values ofSb can give lower total storage, yet the LFSR size will become too large and, thus,

these results are not preferred. These observations confirm that the best value forSb is very

close toSh.

102

Stel
ios

 N
. N

eo
ph

yto
u

4000

4500

5000

5500

6000

6500

7000

30
 50
 70
 90
 110
 130
 150
 170

Sb

S
to

ra
g

e
(b

it
s)

Sh = 39
 Sh = 42

Sh = 33
 Sh = 36

Figure 5.3:Selecting theSh andSb parameters.

5.4 Experimental Results

The proposed framework was implemented in C language and run on a 3GHz Pentium 4,

running Linux with 1GB of RAM. We experimented with the ISCAS’85 and the full-scan

versions of the ISCAS’89 benchmark circuits. The tool of [21] was used for the partial re-

seeding, while the method of [44] was implemented using a first fit decreasing Bin-Packing

algorithm for the test set concatenation step. We used the best test sets obtained by either

the static or the dynamic methods, after exploring parametersSh andSb (where applicable).

Since LFSR-based encoding has been shown to be beneficial for hybrid BIST schemes, we

first applied 10000 pseudo-random tests in order to catch all the easy-to-detect faults, and

then encoded only tests that target the remaining, hard-to-detect, faults using the two en-

coding schemes. All the generated test sets were verified for 100% coverage of the targeted

faults, using the FSIM simulator of [87].

Table 5.1 shows these results for the larger ISCAS ’85 and ISCAS ’89 circuits. After the

circuit name the number of faults considered by the proposed method is reported, i.e. the

number of faults not targeted after application of 10,000 pseudo-random test patterns. For

each of the two techniques we report the number of seeds to be stored (Columns 3,6,10

and 13), the LFSR size (Columns 4,7,11 and 14) as well as the total storage size, in bits

103

Stel
ios

 N
. N

eo
ph

yto
u

Table 5.1:Using the resulting test sets with two popular BIST encodings.
No. Full Reseeding (MPLFSR) [79] Partial Reseeding [21]

Cir cuit faults Proposed Reported in [79] Red. Proposed Reported in [21] Red.

seeds LFSR Storage seeds LFSR Storage Ratio seeds LFSR Storage seeds LFSR Storage Ratio

c2670 424 31 58 2061 52 60 3412 0.60 99 65 3165 N/A N/A N/A N/A

c7552 445 19 80 2179 41 100 5241 0.42 61 110 3478 N/A N/A N/A N/A

s838.1 343 50 51 2875 39 36 1623 1.79 99 69 3104 N/A N/A N/A N/A

s1196 11 11 16 235 12 17 267 0.88 11 36 256 N/A N/A N/A N/A

s1238 85 9 17 213 11 17 249 0.86 7 37 133 N/A N/A N/A N/A

s1423 17 3 18 111 N/A N/A N/A N/A 3 38 64 N/A N/A N/A N/A

s9234.1 1146 46 83 4412 103 61 6923 0.66 86 85 3485 138 81 5013 0.70

s13207.1 819 43 54 2635 138 24 3570 0.74 82 58 2299 157 44 3008 0.77

s15850.1 990 57 76 4767 134 46 6528 0.73 115 70 3801 167 58 5204 0.73

s38584.1 2007 44 65 2845 46 70 3406 0.86 54 91 2328 62 75 2942 0.79

(Columns5,8,12 and 15). The results are compared with those reported in [79]1 and [21],

for mixed-mode BIST. Columns 9 and 16 show the reduction ratio in total storage for the

two techniques. Here, N/A means not available values for the corresponding circuits.

For the technique of [79] in all but one circuit the test sets obtained by the proposed meth-

ods give lower seed storage, whereas the LFSR sizes, in most cases, are kept closed to those

reported in [79]. Note, that the test sets used in [79] were also optimized to have a large num-

ber of unspecified bits. Nevertheless, using the framework of Section 5.3, the results with

smaller LFSR size can be obtained, at the expense of more seed storage, by appropriately

adjusting the decision taken regarding the results to be saved.

In the case of partial reseeding of [21], the total seed storage is also reduced, as it can be

seen from Column 16. In all cases the obtained results are between 70 % and 80 % of the

reported in [21] which is considerable for BIST schemes. The LFSR size is also kept close

to that of [21], while the number of seeds is significantly reduced.

1We compare with the results reported in [79] instead of comparing with the results of [44], since the former

provides more detailed results and for more circuits. The work of [79] generalizes the work of [44], yet the

results in [79] are comparable to the results presented here.

104

Stel
ios

 N
. N

eo
ph

yto
u

5.5 Conclusions

The work in this chapter examines a specific application that can benefit when used in con-

junction with test sets that have a large number of unspecified (don’t care), namely built-in

self test. We have reviewed the most important work for BIST related with test set embed-

ding at the gate level. Two such methods that were made available to us have been used in

order to evaluate how the test sets obtained by the methods presented later in this thesis (i.e,

in Chapter 3 and Chapter 4) impact the final on-chip storage. A new systematic experimen-

tation framework is proposed in this chapter. The framework allows a thorough exploration

of the test generation and/or relaxation parameters, as well as, the test set embedding pa-

rameters, in order to find the solution with minimal area overhead. This exploration plays

an important role in obtaining optimal results, since it is done systematically and based on

theoretical and empirical bounds. The experimental results show improvement when used in

a mixed-mode BIST scheme. The embedding storage overhead reduction is, in most of the

cases, significant and denotes the importance of the static test set relaxation method and the

relaxed test set generation method presented in the two previous chapters.

105

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 6

RELAXATION OF n-DETECT TEST SETS

6.1 Introduction

The on-going increase in the complexity of the modern VLSI microchips demands more so-

phisticated post-manufacturing testing methodologies and/or procedures. Current nanome-

ter manufacturing processes suffer from larger defective parts ratio, partly due to numerous

emerging defect types. While traditional fault models, such as the stuck-at and transition

delay fault models are still widely used, they have been shown to be inadequate to handle

these new defects. One obvious approach is to develop complex fault models to imitate de-

fect behavior at either the logic or layout level of abstraction. The combination of the large

number of possible defect types together with the huge number of fault sites in a modern cir-

cuit implies that modeling these defects will give prohibitively large input for a systematic

test generation methodology [88, 89]. Moreover, detailed layout information is typically not

available until the fabrication phase, giving limited information to test engineers.

Instead, previous work proposed the use of test sets targeting each modeled fault multiple

times in order to increase the probability of detecting additional fault types as well as the

defect coverage. The rationale behind detecting a fault more than once is to achieve higher

quality in terms of defect coverage, by generating a number of different tests for each mod-

eled fault. Such test sets are known asn-detect test sets, since they detect each fault withn

different tests. As a result, a variety ofn-detect test set generation methods and their impact

in the quality of the testing process have been proposed [90, 91, 92, 93, 94, 95, 96, 97, 98, 99].

Existing methodologies forn-detect test generation produce tests that are fully specified (i.e.,

107

Stel
ios

 N
. N

eo
ph

yto
u

all the test set bits have a fixed value of 0 or 1). This occurs since many of these techniques

try to fix unspecified (don’t care) bits to logic values such that the number of detected faults

is increased. Actually, even if bit fixing does not improve on then-detect fault coverage,

it can improve on the coverage of non-targeted faults and defects even by randomly fixing

the unspecified bits. As a result, existing test generation tools return fully specified test sets.

This, however, limits the applicability ofn-detect test sets in several currently important

problems. Methods for low power test generation [11, 42, 100], for instance, can benefit

when the input test set includes a large number of unspecified bits by appropriately fixing

those bits. Such flexible test sets are also extremely crucial in various compression schemes

for on-chip or off-chip test set embedding, given in [79, 80, 83, 84, 85] among many others.

The work in this chapter considers the problem of relaxing ann-detect test set. The given test

set can be fully or partially specified. The total number of specified bits in the resulting test

set is minimized, while maintaining its originaln-detect fault coverage. Furthermore, the

test set size is guaranteed not to increase. The motivation behind this problem is that a test

bit needs to beinitially fixed only if this helps then-detect fault coverage, otherwise it can be

left unspecified. The generated relaxed test set can then be used in a variety of applications

that fix the unspecified bits appropriately. The applied fully specified test set is expected to

have similar defect and non-targeted fault coverages to that of the original test set. This is

justified by the simple observation that in existing test generation techniques considering the

traditionaln-detect fault definition, any improvement in the coverage of non-targeted faults

and defects, beyond then-detect per targeted fault improvement, is caused by the random bit

fixing. The latter is supported by experimentally obtained data.

Static relaxation of 1-detect test sets was studied in [48, 49] and in Chapter 3 which have

proposed methods relying on various ATPG concepts in order to identify specified bits in the

test set that can be replaced by don’t care values. [48] proposed a method for identifying

don’t care bits in a test pattern using ATPG concepts such as implication and justification.

[49] used a similar rationale, taking into consideration testability measures in the justification

process. The methods of Chapter 3 identify all fault detections for each fault under a given

test set and explicitly remove extra detections by using different selection criteria. Extend-

ing these methods ton-detect test sets is not straightforward. Actually, these methods benefit

from identifying essential tests1 which do not exist inn-detect test sets. The two methods

1A test is essential if it is the only one detecting a fault

108

Stel
ios

 N
. N

eo
ph

yto
u

presentedin Chapter 4 also consider test set relaxation, but in a dynamic manner. They do

not consider an initial test set to be relaxed; rather, they both restrict the ATPG process to

consider the number of specified bits in the generated compact test set. As a result, these dy-

namic approaches cannot be easily extended ton-detect test sets, especially for large values

n. While the extension of both the static and dynamic methods ton-detect test sets could be

investigates, in this chapter we propose a new methodology that is optimized based on the

characteristics and parameters of then-detect test sets.

Here, test set relaxation does not imply that the specified bits of the relaxed test set are a

subset of the specified bits of the initial test set, as it is the case with the existing static

relaxation methods in [49, 48]. Rather, relaxation refers to the process of increasing the total

number of unspecified bits in order to make the test set more “flexible” for other applications.

A novel systematic test replacement algorithm is proposed, in which each test is replaced by

a new one that detects a subset of the faults detected by the first one, with fewer specified bits.

In order to maintain the fault coverage, each fault is guaranteed to be detected at leastn times,

where this is possible2. The algorithm explicitly removes additional (more thann) detections

for each fault. The latter is possible since experimentation shows that inn-detect test sets

the average detections for each fault is much greater thann, mainly, due to the presence

of many easy-to-detect (randomly detected) faults. Specifically, the methodology targets an

optimization problem; it determines then most appropriate tests to detect a fault (among

all of the tests that detect the fault) that give the maximum benefit in terms of specified bits

savings in the entire test set. Thus, it selects the “best”n tests to detect the fault and drops

the fault from the remaining tests in order to reduce the total number of specified bits in these

tests.

The rest of this chapter is organized as follows. Section 6.2 elaborates on our motivation and

presents supportive data. Section 6.3 gives necessary notation and the problem formulation,

and Section 6.4 describes the proposed technique. A comprehensive example illustrating

the proposed method’s execution is presented in Section 6.5. Section 6.6 gives the obtained

experimental results for the specified bits reduction together with necessary discussion. This

experimentation was done using the popular stuck-at model; however other (linear) fault

model can be used such as the transition fault model discussed in Chapter 2. In Section 6.6

we also present experimentally obtained information on the method’s parameters and usage.

2somefaults inherently have less thann different tests

109

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.1:Average fault detections for single-detect and multiple-detect test sets
Fully specified single-detect Partially specified single-detect Fully specified

test setTA test setTB 10-detecttest setTN

Cir cuit |TA| AD(TA) AD(T ′
A) AD(T ′′

A) |TB| Xs (%) AD(TB) AD(T ′
B) AD(T ′′

B) |TN | AD(TN)

s510 64 10.83 5.24 10.91 65 0.30 11.86 5.96 12.03 543 57.17

s526 60 6.58 4.70 6.82 68 4.10 5.29 4.56 7.11 492 60.07

s641 55 9.26 4.13 9.11 62 12.80 9.25 4.22 9.42 227 45.01

s820 108 3.58 2.21 3.63 116 13.50 3.67 2.35 3.85 949 31.92

s953 91 26.71 13.21 26.18 95 3.80 18.65 11.26 27.23 766 112.21

s1196 144 17.66 9.98 17.99 151 23.10 14.36 8.65 18.37 1233 93.30

s1423 24 8.65 3.23 4.48 70 8.20 8.14 3.45 17.65 269 48.82

s1488 118 4.12 2.89 4.21 123 0.40 4.15 2.95 4.42 209 8.93

s9234 411 45.62 32.12 45.63 495 26.80 35.67 28.76 47.62 1132 142.14

s13207 472 77.46 56.39 77.51 692 22.10 61.48 54.59 83.15 2341 354.22

s15850 441 64.27 43.34 64.03 519 38.50 38.54 29.39 67.31 983 156.52

6.2 Motivation

Previously proposed methods for deriving single-detect relaxed test sets can be categorized

into static ([49, 48] as well that of Chapter 3) or dynamic (Chapter 4). Static methods con-

sider an initial test set whereas dynamic methods incorporate the problem in the ATPG pro-

cess. Extending these methods ton-detect test sets is not straightforward. Actually, the

static methods benefit from identifying essential tests (a test is essential if it is the only one

detecting a fault) which do not exist inn-detect test sets. Moreover, the common underlying

idea used in both types of methods is the identification of coincidental multiple times fault

detections, i.e. a fault is detected by several different tests even though it was only targeted

once in the test generation process. The latter occurs very often, especially in the traditional

stuck-at fault model (as well as in transition delay faults which are often modeled as stuck-

at faults during test generation), because the majority of the faults are easy-to-detect (also

referred to as randomly detected faults). The static methods drop multiple times detection

implicitly, through fault simulation and fault dropping, in order to determine bits that can

be relaxed. The dynamic method of Chapter 4 proceeds in a different rationale. It identifies

sets of faults that can be detected by a single test with a small number of specified bits and

explicitly avoids multiple-times detections. In any case, the derived relaxed test sets still

include some multiple-times detections due to coincidental fault detection. At this point we

have to define how we use the average detections concept in this context.

Definition 6.1. The Average Detectionsof a test setT (referred asAD(T)) denotes the

110

Stel
ios

 N
. N

eo
ph

yto
u

average times a fault is detected by a test setT . That is, the total detections of the faults in a

considered fault listF by the tests in the test setT divided by the number of faults inF . If

we callDT
fi

the number of tests inT that detect faultfi then the average detection parameter

is given by:

AD(T) =

∑

fi∈F

DT
fi

|F |

WhenT is relaxed to a partially-specified test setT ′ (with the same fault coverage) then,

based on the above definition and ifDT
fi

counts only detections by the specified bits ofT ′,

AD(T ′) < AD(T). Table 6.1 lists data that supports this observation. Columns 2-10 list data

for two different 1-detect stuck-at fault test sets derived from ATALANTA [101]. Test set

TA is fully-specified whereasTB contains a small number of don’t care bits. Columns 2 and

6 show the number of tests inTA andTB, respectively. The percentage of the don’t care bits,

with respect to the total number of bits, ofTB is given in Column 7. The average detections

per fault inTA andTB are listed in Columns 3 and 8, respectively. Observe thatAD(TA)

andAD(TB) are much higher than 1 in these 1-detect test sets, due to the coincidental fault

detections. Both test sets were relaxed using a technique similar to that of [48]. The average

specified bits reduction inTA is 82% and inTB 75% (fully-specified test sets allow for higher

specified bit reduction than partially-specified test sets of similar size). The fault coverage

and the test set size of the initial test setTA (TB) are maintained inT ′
A (T ′

B). Columns 4

and 9 give theAD(T ′
A) andAD(T ′

B) of T ′
A andT ′

B, respectively. As expected, based on the

discussion of the previous paragraph, the average detections per fault drops in the relaxed

test sets, increasing the number of unspecified bits.

The motivation behind relaxing 1-detect test sets is to make these test sets amenable to ad-

dressing additional issues beyond detection of the targeted faults. For example, the unspec-

ified bits can be specified appropriately to detect additional faults such as delay or bridging

faults. This process is referred to as test enrichment in [43] and has been used in Chapter 2

in a transition fault framework. Alternatively, the unspecified bits can be specified in such

a manner that power dissipation during test set application is minimized [42]. Also, relaxed

test sets give storage space reduction in on-chip or off-chip compression techniques, which

fully specify the test set before test application in some deterministic manner based on the

de-compressing hardware. The recent work in [91] proposed a new method that takes advan-

tage of the unspecified bits produced by a standard 1-detect ATPG tool, in order to embed

111

Stel
ios

 N
. N

eo
ph

yto
u

multiple detection in a 1-detect or ann-detect test set. This method can be combined with

the work proposed here, in order to maximize the times a fault is detected.

In any case, fully specified test sets are finally applied. Since fully-specified test sets take

advantage of coincidental fault detections to increase the average detections per fault, relaxed

test sets are expected to have the same advantage when they are finally applied. Columns 5

and 10 give theAD(T ′′
A) andAD(T ′′

B) of the test set derived after the relaxed test setsT ′
A

andT ′
B were randomly fully specified. Observe thatAD(TA) ≈ AD(T ′′

A) andAD(TB) <

AD(T ′′
B). The latter holds since the average fault detections per fault is lower in the original

partially specified test set (TB), than in the final fully specified test set (T ′′
B).

Maintaining average fault detections may not be of much importance in 1-detect test sets,

since their goal is to detect the targeted faults. However, it becomes of great importance in

n-detect test sets which are intended for increased non-targeted fault and defect coverage.

Coincidental fault detection (by randomly fixing some test bits) occurs similarly inn-detect

test sets as in 1-detect test sets. Column 12 of Table 6.1 givesAD(TN) of the fully specified

10-detect test set of [97], which is much higher than the targeted 10-detection coverage.

This shows a lot of room for relaxation in then-detect test sets. At the same time, since the

AD(TN)−n detections were achieved coincidentally, a relaxed testT ′
N (which maintains the

n-detection fault coverage) will recover the reduction inAD(T ′
N) when it will be finally fully

specified before test application. Thus, relaxedn-detect test sets are expected to maintain

their non-targeted fault and defect coverages.

6.3 Problem Formulation and Notation

Here, we expand the problem definition of test set relaxation presented in Chapter 3 for

n-detect test sets.

Consider a givenn-detect test setT ={t1, t2, ..., tm} for a combinational or a fully-scanned

sequential circuit-under-testC. Each of them test patterns consists of strings of 3-valued bits

∈ {0,1,x}. Consider also a fault modelM, based on which the list of faults detected byT ,

denoted byF , is derived. For the considered fault list, the test setT hasN(T) n-detect fault

coverageandK(T) specified bits ratio. In the following we define these two parameters of

112

Stel
ios

 N
. N

eo
ph

yto
u

a test set.

Definition 6.2. Then-detect fault coverage of a test setT , denoted byN(T) is the percent-

age of the faults considered, under a given fault modelM (i.e. F), that are detected byT
with n different tests. Note, that for some faultsFp ⊆ F , only p < n different tests exist

(i.e. can be generated by any test generation process), wherep ≥ 0. In the case where no

tests exist for a faultfr (i.e., p = 0), then faultfr is considered to be redundant. For the

cause of this definition and throughout this text,N(T) is calculated considering all faults in

Fp including redundant. For those faults thatp > 0 then they are considered to have full

n-detect fault coverage and, thus, do not reduce fault coverage.

For completeness, we repeat here the definition ofK(T), first introduced in Chapter 3, which

denotes the specified bits ratio in a test set.

Definition 6.3. For a test setT , we denote the ratio of the bits having a specified value

{0,1}over the total number of test set bits byK(T). This ratio gives a test set property that

indicates how flexible a test set is. Clearly,0 ≤ K(T) ≤ 1, for any test set. The closerK(T)

is to 0, the more flexibleT is. For fully specified test sets,K(T) = 1.

The test set relaxation process refers to replacing test setT ={t1, t2, ..., tm} with a test set

T ′={t′1, t′2, ..., t′m} such that each of the following constraints is satisfied:

(i) N(T ′) ≥ N(T)

(ii) K(T ′) < K(T)

The above constraints give the specifications of the test set relaxation problem considered.

Constraint (i) preserves then-detect fault coverage in the same way as the fault coverage is

preserved in single detect test sets. If a faultfi is detectedp < n times in test setT (i.e.,

DT
fi

= p < n), then faultfi is detectedp times in the relaxed test setT ′. All other faults,

i.e. those withDT
fi

= p ≥ n, are detected at leastn times in the relaxed test set, and not

necessarilyp times. Increase of the fault coverage may occur due to coincidental detections

of those faults that inT they haveDT
fi

= p < n and inT ′ they haveDT ′
fi

> p . Constraint

(ii) comes directly from the definition of the relaxation problem since the overall goal is to

decrease the portion of specified bits (K(T)) in the test set.

113

Stel
ios

 N
. N

eo
ph

yto
u

6.4 Proposed Methodology

In the proposed method, every test inT is systematically replaced by a new test with more

unspecified bits. The algorithm concentrates on one fault at a time to determinen different

tests{tj, j = 1, 2, ..., n} ∈ T that detect the fault such that the number of bits that can be

relaxed in the entire test set is maximized. Put differently, the algorithm determinesn tests

to explicitly target the detection of the fault and relaxes the bits required to detect the fault in

the remaining tests.

Consider a faultfi detected byT . LetTi ⊆ T denote the set of tests inT that detect faultfi.

The algorithm finds then tests inTi, given inT n
i ⊂ Ti that should detect faultfi. Consider

a testtk ∈ Ti. Let the number of specified bits intk that can be unspecified iftk no longer

detectsfi be denoted bycik. In other words,cik is the contribution, in specified bits, of fault

fi in testtk. Then, the total number of specified bits inT that can become unspecified if fault

fi is only detected by testtj ∈ Ti (and not by any other in{Ti − tj}) is given by:

Gij =
∑

cik, tk ∈ {Ti − tj} (6.1)

Thus,Gij denotes the gain in unspecified bits if faultfi is only explicitly targeted during the

test generation by testtj. Of course, coincidental detection offi by other tests may occur but

this is done by no extra cost in terms of specified bits.

In order to determine whichn tests ofT = {t1, t2, ..., tm}must explicitly target faultfi , we

calculate:

Ĝi = max
j
{Gij}, tj ∈ Ti (6.2)

n different times, removingtj from Ti each time this calculation is made. All the selected

tests form the set of testsT n
i that explicitly target faultfi.

Equation 6.1 and Equation 6.2 are the same used in 1-detect test set relaxation. At this point

we expand the two equations is such a way that can ensuren-detect fault coverage. It can

be argued that, since we want to find the number of test set bits that can become unspecified

after keepingn detections only, Equation 6.1 and Equation 6.2 should take into consideration

all combinations ofn detections. In other words, it is a question whether keeping then

detections that give the larger specified bits relaxation is quite as effective as keeping the

combination ofn detections that give the larger relaxation. Next, we prove that the two

decision criteria are identical. First we slightly modify Equation 6.1 and Equation 6.2 in

114

Stel
ios

 N
. N

eo
ph

yto
u

orderto evaluate the gain and maximum gain in specified bits considering all combinations

of n detections for the same fault.

Gn
ij =

∑
cik, tk ∈ {Ti − τj} (6.3)

With τj we denote a subset ofTi that have sizen. Thus,Gn
ij is calculated for all combination

of n tests out of all tests that detect faultfi.

Ĝn
i = max

j
{Gn

ij}, τj ⊂ Ti (6.4)

Theorem 6.1.When ann-detect test setT is fault simulated against a fault listF , there exist

a set of faultsFm ⊆ F that are detected more thann times. For every faultfi ∈ Fm we keep

those detections (n tests) that when using Equation 6.2 give then higher values, in setS(i).

Moreover, for the same faultfi ∈ F we keep those detections (tests inτj) that when using

Equation 6.4 give the higher value, in setC(i). We next show thatS(i) andC(i) coincide

for all faults inFm.

Proof. SetS(i) contains then tests that give the maximum values when calculating Equa-

tion 3.2, for faultfi. By substituting Equation 3.1 in Equation 3.2 we have:

Ĝi = max
j
{

∑

tk∈{Ti−tj}
cik}, tj ∈ Ti ⇔

Ĝi = max
j
{
∑
tk∈Ti

cik − cij}, tj ∈ Ti

and since allcij are non-negative integers we have :

Ĝi = min
j
{cij}, tj ∈ Ti (6.5)

In the same manner setC(i) contains then tests which are elements ofτj that gives the

maximum value in Equation 6.4, for faultfi. By substituting Equation 6.3 in Equation 6.4

we have:

Ĝn
i = max

j
{

∑

tk∈{Ti−τj}
cik}, τj ⊂ Ti ⇔

Ĝn
i = max

j
{
∑
tk∈Ti

cik −
∑
th∈τj

cih}, τj ⊂ Ti

and since allcih are non-negative integers we get:

Ĝn
i = min

j
{
∑
th∈τj

cih}, τj ⊂ Ti (6.6)

115

Stel
ios

 N
. N

eo
ph

yto
u

Equation6.5 implies that the setS(i) contains then tests that have the minimumcij i.e., the

tests that are elements of the subset ofTi of sizen that has the minimum sum ofcij. The

subset ofTi of sizen that has the minimum sum ofcij can be identified by Equation 6.6

which, however, gives the setC(i). Thus, setsS(i) andC(i) are identical.

Equation6.1 suggests that using Equation 6.1 and Equation 6.2 for selecting the best tests

detect each fault gives exactly the same decision as using Equation 6.3 and Equation 6.4.

Thus, there is no need of finding the contribution in specified bits for all combinations ofn

tests in the setTi for fault fi, in order to keep those tests that give the higher reduction in

terms of specified bits.

Figure 6.1 shows the proposed algorithm. The input parameters are the circuit-under-test

C, the test set to be relaxedT , the n-detect parametern, and the considered fault model

M based on which the targeted fault listF is derived (lines 1-2 of Figure 3.2). First, fault

simulation is performed to derive the complete fault listF as well as the fault listsFj for

each testtj ∈ T . Then, the algorithm iterates over each faultfi ∈ F , following a predefined

ordering (see discussion in Subsection 6.6.1), in order to determine the “best”n tests to

detectfi. This is done by examining only tests inT that detectfi, that isTi (lines 6-19).

For every testtj ∈ Ti the contribution offi in tj (cij) is first calculated (line 8). This is a

crucial step which invokes a test generation routine. Specifically, to findcij for a faultfi and

a testtj detecting the faults inFj, we generate a test cubet′ targeting faults inFj − fi. If the

number of specified bits in a testtj is denoted bys(tj), then,cij = s(tj)− s(t′). This is the

number of specified bits savings if testtj no longer detects faultfi. Oncecij is calculated for

every testtj ∈ Ti, the total gainGij in unspecified bits (meaningfi is detected bytj but not

by {Ti − tj}) for every testtj is easily computed (line 10). Consequently, then tests giving

the maximum gain are determined (lines 11-14). This is achieved by calculatingn times the

maximum gain, each time removing all the previously found tests with maximum gain. Tests

tmd
∈ Ti, d = 1, 2...n form the testT n

i containing all tests that detectfi.

The next steps (lines 16-19) convey the dynamic nature of the algorithm. Once setT n
i is

determined, it is no longer necessary for tests{Ti − T n
i } to detectfi. Therefore, the fault

list Fj for each of the remaining teststj ∈ Ti is updated. In this manner, faultfi will never

be targeted in any subsequent test generation step (line 8). Observe that if a test’s fault list

becomes empty at any point, the test can be fully relaxed which means it can be dropped

116

Stel
ios

 N
. N

eo
ph

yto
u

n detect relax
Inputs: circuit C, test setT , n, fault modelM
Outputs: relaxed test setT ′
01: fault simulateT based on fault modelM
02: F = list of faults detected byT
03: for each testtj ∈ T
04: Fj = list of faults detected bytj
05: for each fault fi ∈ F
06: Ti = list of tests detectingfi

07: for each testtj ∈ Ti

08: useFj to calculatecij

09: for each testtj ∈ Ti

10: calculateGij =
∑

cik, k ∈ {Ti − tj}
11: T n

i = ∅
12: for d = 1 to n
13: Ĝimd

= max{Gij}, tj ∈ {Ti − T n
i }

14: T n
i = T n

i + tmd

15: % tests inT n
i keepfi, tests in{Ti − T n

i } dropfi

16: for each tj ∈ {Ti − T n
i }

17: Fj = Fj − fi

18: if Fj = ∅
19: T = T − tj % drop testtj
20: T ′ = ∅
21: for each testtj ∈ T
22: generate testt′j that detects all faults inFj

23: addt′j to T ′

24: return T ′

Figure 6.1:Proposedn-detect relaxation algorithm

since all of the faults it used to detect are now detected by some other test(s). The fault

coverage ofT is maintained since every faultfi is guaranteed to be detected byn different

teststmd
∈ T n

i , d = 1, 2, ..., n with Fmd
6= ∅.

Once all faults are examined, the relaxed test setT ′ is generated based on the updated fault

list Fj for each testtj that has remained inT (lines 20-23). Each new testt′j ∈ T ′ is

guaranteed to detect a subset of the faults detected by the corresponding testtj ∈ T , since

the size of the updated fault list per test is reduced or, in the worst case, remains the same.

The effectiveness of the proposed method depends greatly on the ability of the test generation

process (line 8 and line 22 of Figure 6.1) to derive tests with a large number of unspecified

bits. Several existing methods can be used to solve this problem effectively. Both of the

117

Stel
ios

 N
. N

eo
ph

yto
u

structuralmethods of [49, 48] propose specific ATPG-like routines (using implications, jus-

tifications, and testability measure concepts) to find a large test cube (test with a large number

of unspecified bits) that detects a number of faults. Alternatively, the function-based frame-

work presented in Section 4.5 can derive a large cube by extracting the shortest path in a

BDD-based implementation. Any of these techniques can be used by the proposed method

whose main contribution is not on this specific single test generation problem but on finding

a systematic method to replace an entire test set such that the total number of specified bits

is minimized.

The proposed algorithm takes|T | fault simulations plus, in the worst case,|T | · |F | + |T |
test generations. In practice, however, the factor|T | · |F | is much smaller since each fault

fi ∈ F is examined only against the small number of tests inTi ⊆ T that detect the fault,

and not for the entire test setT .

6.5 Test Replacement Example

This section illustrates the proposed algorithm with an example. For simplicity, a 2-detect

test set is considered.

Consider an initial test setT = {t1, t2, t3, t4, t5, t6} for a circuitC with 12 Primary Inputs

that detects the 12 faults inF = {f1, f2, ..., f12}. For this test set then-detect fault coverage

is N(T) = 22
24

, since all faults, exceptf9 andf12, are detectedn = 2 times. Table 6.2 (c)

through (h) summarize the execution of the proposed algorithm and Table 6.2 (a) and (b)

show the initial test set and the final test set after the relaxation process has been applied.

Each pair of tables corresponds to an iteration of the algorithm, noted at the header of each

table. Recall that each iteration examines one fault and so iteration 1 is forf1, iteration 2 for

f2 and so on. At each pair, the leftmost table(i.e. Table 6.2 (c),(e) and (g)) corresponds to the

gain computation step of the algorithm (lines 6-14 of Figure 6.1), while the rightmost table

(i.e. Table 6.2 (d),(f) and (h)) corresponds to the fault lists updating step of the algorithm

(lines 16-20 of Figure 6.1). The rows of each table correspond to the test patterns in the test

setT showing the actual bit orientation in the test pattern. The last but one column at each

table shows the faults detected by each test (i.e. the listFj for testtj), while the last column

118

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.2:Test Replacement Method Example
Initial Test SetT after Fault Simulation RelaxedTest SetT ′

Test Pattern Detects Test Pattern Detects

t1 1 0 1 0 1 0 1 1 0 1 0 1 f1, f2, f3, f4, f5, f6 t1 1 0 x x 1 x 1 1 0 1 0 1 f2, f3, f4, f5, f6

t2 0 1 0 0 0 1 0 1 1 0 0 1 f2, f4, f6, f7, f8, f10 t2 0 1 x 0 x x x 1 1 0 0 1 f2, f6, f7, f8, f10

t3 1 0 0 1 0 1 1 1 1 0 1 1 f1, f3, f4, f5, f6, f8 t3 x x x x x x x x x x x x none(can be removed)

t4 0 1 0 0 0 1 0 0 0 1 0 1 f2, f4, f5, f7, f8, f10 t4 0 x x 0 0 1 0 0 x x x x f5, f7, f8, f10

t5 1 1 1 1 0 1 1 0 0 1 0 1 f1, f4, f9, f11, f12 t5 1 1 1 1 x 1 1 x 0 1 0 x f1, f9, f11, f12

t6 0 0 0 1 0 0 1 0 1 1 1 0 f1, f3, f4, f6, f8, f11 t6 0 0 x x 0 0 x x x x 1 0 f1, f3, f4, f11

(a) (b)

Iteration for f1 - Identify extra detections Iteration for f1 - Remove extra detections

Test Pattern Detects G1j Test Pattern Detects G1j

t1 1 0 1 0 1 0 1 1 0 1 0 1 f1, f2, f3, f4, f5, f6 7 t1 1 0 x x 1 x 1 1 0 1 0 1 ///////////f1, f2, f3, f4, f5, f6

t2 0 1 0 0 0 1 0 1 1 0 0 1 f2, f4, f6, f7, f8, f10 t2 0 1 0 0 0 1 0 1 1 0 0 1 f2, f4, f6, f7, f8, f10

t3 1 0 0 1 0 1 1 1 1 0 1 1 f1, f3, f4, f5, f6, f8 6 t3 1 0 0 x 0 1 x 1 x x 1 1 ///////////f1, f3, f4, f5, f6, f8

t4 0 1 0 0 0 1 0 0 0 1 0 1 f2, f4, f5, f7, f8, f10 t4 0 1 0 0 0 1 0 0 0 1 0 1 f2, f4, f5, f7, f8, f10

t5 1 1 1 1 0 1 1 0 0 1 0 1 f1, f4, f9, f11, f12 〈9〉 t5 1 1 1 1 0 1 1 0 0 1 0 1 f1, f4, f9, f11, f12 9

t6 0 0 0 1 0 0 1 0 1 1 1 0 f1, f3, f4, f6, f8, f11 〈8〉 t6 0 0 0 1 0 0 1 0 1 1 1 0 f1, f3, f4, f6, f8, f11 8

(c) (d)

Iteration for f2 - Identify extra detections Iteration for f2 - Remove extra detections

Test Pattern Detects G2j Test Pattern Detects G2j

t1 1 0 x x 1 x 1 1 0 1 0 1 ///////////f1, f2, f3, f4, f5, f6 〈6〉 t1 1 0 x x 1 x 1 1 0 1 0 1 ///////////f1, f2, f3, f4, f5, f6 6

t2 0 1 0 0 0 1 0 1 1 0 0 1 f2, f4, f6, f7, f8, f10 〈6〉 t2 0 1 0 0 0 1 0 1 1 0 0 1 f2, f4, f6, f7, f8, f10 6

t3 1 0 0 x 0 1 x 1 x x 1 1 ///////////f1, f3, f4, f5, f6, f8 t3 1 0 0 x 0 1 x 1 x x 1 1 ///////////f1, f3, f4, f5, f6, f8

t4 0 1 0 0 0 1 0 0 0 1 0 1 f2, f4, f5, f7, f8, f10 4 t4 0 x x 0 0 1 0 0 0 1 x x ///////////f2, f4, f5, f7, f8, f10

t5 1 1 1 1 0 1 1 0 0 1 0 1 f1, f4, f9, f11, f12 t5 1 1 1 1 0 1 1 0 0 1 0 1 f1, f4, f9, f11, f12

t6 0 0 0 1 0 0 1 0 1 1 1 0 f1, f3, f4, f6, f8, f11 t6 0 0 0 1 0 0 1 0 1 1 1 0 f1, f3, f4, f6, f8, f11

(e) (f)

•
•
•

Iteration for f8 - Identify extra detections Iteration for f8 - Remove extra detections

Test Pattern Detects G8j Test Pattern Detects G8j

t1 1 0 x x 1 x 1 1 0 1 0 1 ///////////f1, f2, f3, f4, f5, f6 t1 1 0 x x 1 x 1 1 0 1 0 1 ///////////f1, f2, f3, f4, f5, f6

t2 0 1 x 0 x x x 1 1 0 0 1 f2, ///////////f4, f6, f7, f8, f10 〈6〉 t2 0 1 x 0 x x x 1 1 0 0 1 f2, ///////////f4, f6, f7, f8, f10 6

t3 1 0 0 x x x x x x x x x //f1, f3, f4, f5, f6, f8 6 t3 x x x x x x x x x x x x ///f1, f3, f4, f5, f6, f8

t4 0 x x 0 0 1 0 0 x x x x ////////////////////////////f2, f4,f5, f7, f8, f10 〈9〉 t4 0 x x 0 0 1 0 0 x x x x ////////////////////////////f2, f4,f5, f7, f8, f10 9

t5 1 1 1 1 x 1 1 x 0 1 0 x f1, ///////////f4, f9, f11, f12 t5 1 1 1 1 x 1 1 x 0 1 0 x f1, ///////////f4, f9, f11, f12

t6 0 0 x x 0 0 1 0 1 x 1 0 f1, f3, f4, ///////////f6, f8, f11 6 t6 0 0 x x 0 0 x x x x 1 0 f1, f3, f4, ///////////////////////////f6, f8, f11

(g) (h)

119

Stel
ios

 N
. N

eo
ph

yto
u

reportsthe values ofGij where applicable. A valid detection for the fault considered at each

iteration is denoted by bold font, whereas a sketched fault denotes that the fault is no more

detected by the corresponding test. For instance, in Table 6.2(d) faultf1 is no more detected

by testt1, while it is detected byt5.

The given initial test setT has no unspecified bits(Table 3.2(a))and the fault simulation

identifies the lists of faultsFj that are detected by each testtj. We follow the execution of

the proposed algorithm by considering the fault ordering:f1 < f2 < f3 < f4 < f5 < f6 <

f7 < f8 < f9 < f10 < f11 < f12.

The first iteration considers the faultf1. Using Equation 6.3 we calculate the gain in specified

bits for each one of the testst1, t3, t5 andt6, when faultf1 is only considered in one of the

corresponding lists (F1, F3, F5 and F6, respectively). Recall thatG1j denotes how many

specified bits can be changed into unspecified iff1 is explicitly targeted only by testtj.

According to Table 6.2(c), iff1 is enforced to be detected by testt1 and not by any other test

that detects it (i.e.t3, t5, t6), 7 specified bits can be converted into don’t cares. This gain is

6 bits for t3, 8 bits fort5 and 9 bits fort6. Since,n = 2 the algorithm selects the 2 “best”

values, i.e. those that give the higher gain in specified bits, which in this case is testst5 and

t6. The 2 higher gains are shown in angular brackets. In Table 6.2(d), faultf1 is removed

from F1 andF3 so that 7 bits in the corresponding tests become unspecified, that is 3 int1

and 4 int3 shown in bold.

In the second iteration(Table 6.2 (e) and (f)), the algorithm considers faultf2 which is

detected by testst1, t2 andt4. Computing the values for theG2j results in 6, 6, and 4 bits

for testst1, t2 and t4, respectively. Thus,f2 is removed fromF4 giving 4 bits that can be

converted into unspecified, and which are shown in bold in Table 6.2(f). We follow the same

process for faultsf3, f4, f5, andf6, while faultf7 is kept in the only two lists that exists (i.e.

F2 andF4), without any computation.

The iteration for faultf8 identifies four tests that detect the fault, i.e.,t2, t3, t4 andt6. Test

t4 is certainly one of the two “best”, yet no clear decision can be made for the second best

test. Any secondary decision criterion can be used, yet in our implementation we decide in

favor of the first test in the test set order. Thus, faultf8 is removed fromF3 andF6 which

gives 3 more unspecified bits in testst3 and t6, respectively. The latter relaxation gives a

test (i.e.t3) what detects no faults.t3 can be removed or not in the final test set depending

120

Stel
ios

 N
. N

eo
ph

yto
u

on the intended application. For instance, if the application requires small application time

t3 should be removed, whereas if the targeted application demands high defect coveraget3

should be left in the test set and all bits should be fixed appropriately.

All remaining faults, i.e.,f9, f10, f11, andf12 are detected by only 2 or 1 tests, and, thus, no

further action is necessary. Recall, that, keeping all detections for a fault that is detectedn

or fewer times is essential, since, from the problem formulation (Section 6.3), then-detect

fault coverage should be preserved. Thus, processing these faults give no more unspecified

bits and leaves the test set unchanged. In Table 6.2(b) the final relaxed test setT ′ is shown,

together with the list of faults detected by each test. Observe that theN(T ′) = N(T) = 22
24

sinceall faults are detectedn times, except faultsf9 andf12 which are detected only once,

like they do in the given test setT . Moreover,K(T) > K(T ′) sinceT ′ has only 38 specified

bits (K(T ′) = 0.53), while T is a fully specified test set (K(T) = 1). Finally, the number

of test patterns is the same or can be smaller (by removingt3), depending on the targeted

application. Thus, all three constraints of the problem considered have been satisfied.

6.6 Experimental Results

The proposed algorithm was implemented using ANSI C++ language, in a UNIX environ-

ment. All experiments were run on a 1GHz SunBlade 1500 with 4GB of RAM, using the

full-scan versions of the ISCAS’89 benchmark circuits. The initialn-detect test sets were

obtained from [97].

From the method’s algorithm (Figure 6.1) we note that the test generation and the fault

simulation processes are important for the proposed technique. Although, any previously

proposed test generation process that produce tests with a lot of don’t cares bits can be used,

we use the in-house function-based tool for single stuck-at faults, based on Binary Decision

Diagrams and using the package of [41] described in Section 4.5.

First we present the test set characteristics before and after applying the proposed method

on the compact 10-detect test sets of [97]. Table 6.3 shows the number of Primary Inputs

in Column 2, next to the circuit name. Column 3 reports the number of faults considered

for each circuit. The number of faults considered for each faults was obtained after applying

121

Stel
ios

 N
. N

eo
ph

yto
u

function-basedfault equivalence rules similar to those used in [102] on top of the Checkpoint

Theorem [59]. Column 4 reports the size of the initial test setT and Column 5 the number

of specified bits inT . Column 6 reports then-detect fault coverage calculated using Defini-

tion 6.2. Columns 7-9 list the same information for the derived relaxed test setT ′. Moreover,

the specified to total bits ratioK(T ′) (Definition 6.3), after the test relaxation is reported, in

Column 10. The initial test sets are fully-specified, thus,K(T) = 1, in all cases. Finally,

Column 11 shows the time required for the proposed method, in seconds. For all circuits re-

ported then-detect fault coverage has been preserved. Circuits s386, s420, s1196, and s1488

then-detect fault coverage is increased due to coincidental detections of faults that have less

thann detections in the initial test set. The latter occurs since, as we mentioned before, our

method performs test generation for the list of faults remained for each test and, thus, extra

fault detections may arise. Clearly, the proposed method helps significantly in identifying

bits that can get don’t care values. The reduction in specified bits is, in most cases, around

50% and on the average is 59%, since the averageK(T ′) is 1-0.41. This reduction is signif-

icant, despite the fact that the 10-detect test sets used are very compact (close to the optimal

size for 10-detect). Typically, less compact test sets allow for higher specified bits reduction.

Since, to our knowledge, there is no prior work on test set relaxation forn-detect test sets we

have implemented a simple test relaxation technique in order to demonstrate the effectiveness

of the proposed method. Specifically, this method is a brute-force method in which each test

is fault simulated and only the detected faults that have not been coveredn times are used

to generate a new test, with fewer specified bits, to replace the one from the original test

set. Consequently, fault dropping is performed after each test replacement. In this manner,

each considered test to be relaxed will no longer have to target a fault if it has already been

detectedn times. Table 6.4 lists the obtained results. The initial test setsT are the same

as those used for the experiment in Table 6.3. Columns 3 and 4 list the specified to total

bits ratioK(T ′) for the brute-force and the proposed approach, respectively. In all cases

the proposed methodology is more effective in decreasing the number of specified bits. This

demonstrates that the optimization goal targeted in the proposed approach helps in finding

better sets ofn (10 for this experiment) tests to target a fault such that the number of specified

bits is reduced, than a straightforward approach that selects thesen test sets in a brute-force

manner (firstn tests in the test set that detect the fault).

122

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.3:Test Set Relaxation for 10-detect Test Sets
Initial Test Set After Proposed Method

Cir cuit PIs # faults |T | sp. bits N(T)(%) |T ′| sp. bits N(T ′)(%) K(T ′) CPU(s)

s208 18 210 271 4878 73.190 156 1050 63.524 0.22 1.36

s298 17 332 234 3978 100.000 234 2320 100.000 0.58 1.99

s344 24 334 138 3312 100.000 136 1907 100.000 0.58 2.32

s382 24 418 253 6072 100.000 251 2988 100.000 0.49 3.36

s386 13 430 201 2613 60.442 201 1903 60.535 0.73 3.49

s420 34 446 433 14722 58.991 224 2852 59.170 0.19 9.35

s510 25 572 543 13575 100.000 543 4278 100.000 0.32 4.01

s526 24 625 492 11808 100.000 491 6621 100.000 0.56 4.12

s641 54 518 227 12258 100.000 227 5997 100.000 0.49 8.25

s820 23 1018 949 21827 100.000 942 10270 100.000 0.47 9.85

s953 45 1078 766 34470 100.000 764 9442 100.000 0.27 13.12

s1196 32 1294 1233 39456 97.295 1131 15262 97.303 0.39 14.35

s1423 91 1408 269 24479 100.000 265 11974 100.000 0.49 13.75

s1488 14 1642 209 2926 55.164 209 2482 55.201 0.85 11.94

s9234 247 6960 1132 279604 100.000 1132 84656 100.000 0.30 232.32

s13207 700 9788 2341 1638700 100.000 2341 113449 100.000 0.07 325.36

s15850 611 11182 983 600613 100.000 983 114596 100.000 0.19 486.32

s38417 1664 31183 784 1304576 100.000 784 756652 100.000 0.58 912.33

Average: 91.394 Average: 90.874 0.41

6.6.1 Fault Ordering Effect on Relaxation

The algorithm of Figure 3.2 implies that the proposed method highly relies on the order in

which the faults are examined. The reason is that the main decision on which tests must ex-

plicitly detect each fault is taken based on the gain function (Equation 6.3 and Equation 6.4)

which is computed using the contribution, in specified bits, of each fault at each test (i.e.

cij). This contribution changes during the relaxation process, since every fault detection that

is removed from each test’s list (Fj for testtj) disturbs the bit orientation in the considered

test.

For example, consider a testte = {1, 0, 1, 0, 1, 0, 1, 1} that detects 3 faultsfx, fy, andfz

(i.e., Fe = {fx, fy, fz}), shown in Table 6.5. The contributionscxe, cye, and cze is 2, 1,

and 2 specified bits, respectively. Specifically, assume that by removingfx the first two

bits become don’t care, whereas removingfy the fifth bit of the test becomes of unspecified

value. Removingfz results in two don’t cares bits, i.e., the last two bits of the test (bits 7

123

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.4:Comparing with a Brute-Force Technique
Brute-force Proposed

Cir cuit |T | K(T ′) K(T ′)

s208 271 0.48 0.22

s298 234 0.82 0.58

s344 138 0.72 0.58

s382 253 0.89 0.49

s386 201 0.91 0.73

s420 433 0.35 0.19

s510 543 0.67 0.32

s526 492 0.74 0.56

s641 227 0.78 0.49

s820 949 0.66 0.47

s953 766 0.45 0.27

s1196 1233 0.54 0.39

s1423 269 0.69 0.49

s1488 209 0.91 0.85

s9234 1132 0.57 0.30

s13207 2341 0.69 0.58

s15850 983 0.38 0.19

s38417 784 0.72 0.58

and8). Bits 3 and 4 become don’t cares if both faultsfx andfy are removed fromFe and

bit 6 becomes don’t care if both faultsfy andfz are removed fromFe. Let us concentrate on

the contribution of faultfx and assume that this fault is examined second. If the algorithm

examinesfz first and the decision is to removefz from Fe then the contribution of faultfx

remains 2, as it is shown in the first double-row of Table 6.5. If the algorithm examines fault

fy first and removes it formFe, then the contribution of the fault becomescxe = 4 (second

double-row of Table 6.5). When the decision on faultfx is to be made, the outcome may

change depending on which offy andfz has been examined first. Table 6.5 summarizes

the changes in the faults contribution for different orderings. For real circuits, the faults

contribution change range can become very large, especially withn-detect test sets where

the average number of detections are larger and, thus, each test’s list of detected faults is

larger. The latter implies that the ordering of the examination of the considered faults has a

great effect on the final ratio of specified bits in the test set.

124

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.5:Fault Contribution for Different Fault Orderings
Ordering Fault Removed Test Pattern cxe cye cze Sp. bits in te:

none none 1 0 1 0 1 0 1 1 2 1 2 8

fz < fx < fy

fz 1 0 1 0 1 0 x x 2 2 - 6

fx x x 1 0 1 0 x x - 4 - 4

fy < fx < fz

fy 1 0 1 0 x 0 1 1 4 - 3 7

fx x x x x x 0 1 1 - - 3 3

fx < fy < fz

fx x x 1 0 1 0 1 1 - 3 2 6

fy x x x x x 0 1 1 - - 3 3

fz < fy < fx

fz 1 0 1 0 1 0 x x 2 2 - 6

fy 1 0 1 0 x x x x 4 - - 4

fy < fz < fx

fy 1 0 1 0 x 0 1 1 4 - 3 7

fz 1 0 1 0 x x x x 4 - - 4

fx < fz < fy

fx x x 1 0 1 0 1 1 - 3 2 6

fz x x 1 0 1 0 x x - 4 - 4

Next, we give experimental results for the proposed test relaxation method under a number

of different fault orderings. Sorting the faults under the different criteria can either be done

once before the application of the algorithm of the proposed method, or can be updated

dynamically during the execution of the algorithm. We have experimented using the first

method which keeps the execution time small. Specifically, our experimentation investigates

five different fault orderings:

i. Follow topological order of faults, i.e., examine faults closer to the primary inputs first.

ii. Consider faults with more tests detecting them first, i.e., consider faults with more

minterms in the corresponding test functions, first.

iii. Consider faults with fewer tests detecting them first, i.e., consider faults with less

minterms in the corresponding test functions, first.

iv. Consider faults with more tests in the initial test detecting them, first.

v. Consider faults with fewer tests in the initial test detecting them, first.

125

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.6:Test Relaxation using Different Fault Orderings

Cir cuit PIs
Initial Test Set Topological Order Mor e Minterms First

Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%)

s208 18 271 4878 92.688 177 1100 90.012 156 1052 89.516

s298 17 234 3978 99.595 234 2340 99.486 234 2329 99.582

s344 24 138 3312 98.643 138 1985 98.212 137 1923 98.133

s382 24 253 6072 99.722 253 3169 99.594 251 2988 99.515

s386 13 201 2613 94.471 201 1903 94.479 201 1904 94.479

s420 34 433 14722 85.641 243 3008 85.214 225 2862 84.972

s510 25 543 13575 98.383 542 4304 98.210 542 4291 98.141

s526 24 492 11808 99.382 492 6907 99.251 491 6668 99.124

s641 54 227 12258 99.125 226 6208 98.427 227 5997 98.350

s820 23 949 21827 99.959 948 10466 99.950 942 10285 99.948

s953 45 766 34470 90.938 766 9620 89.746 766 9469 89.745

s1196 32 1233 39456 96.564 1155 15715 95.867 1133 15299 95.890

s1423 91 269 24479 97.374 269 12755 96.198 269 12135 96.186

s1488 14 209 2926 89.162 209 2492 89.112 209 2483 89.161

s9234 247 1132 279604 99.058 1131 85273 88.430 1132 84656 88.302

s13207 700 2341 1638700 90.784 2341 114173 88.994 2341 113449 88.664

s15850 611 983 600613 92.798 983 114712 90.321 983 114618 90.331

s38417 1664 784 1304576 98.789 784 757011 87.413 784 756852 87.143

(a)

Cir cuit PIs
Fewer Minterms First Mor e Test Detecting it first Fewer Tests Detecting it First

Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%)

s208 18 195 1146 90.214 156 1050 89.527 206 1195 90.311

s298 17 234 2373 99.581 234 2320 99.579 234 2358 99.580

s344 24 137 1975 98.251 136 1907 98.175 138 1985 98.312

s382 24 253 3237 99.612 251 2993 99.521 253 3228 99.595

s386 13 201 1905 94.479 201 1904 94.479 201 1905 94.479

s420 34 275 3271 85.121 224 2852 84.965 286 3306 85.384

s510 25 543 4320 98.201 542 4281 98.134 543 4327 98.208

s526 24 492 7006 99.312 491 6621 58.346 492 6976 98.152

s641 54 226 6217 98.544 226 6001 98.483 226 6187 98.519

s820 23 949 10573 99.949 942 10270 99.949 949 10558 99.950

s953 45 765 9980 89.787 764 9442 89.745 766 9861 89.753

s1196 32 1180 16153 95.911 1131 15262 95.899 1178 16055 95.921

s1423 91 269 12856 96.198 265 11974 96.194 269 12918 96.201

s1488 14 209 2505 89.183 209 2482 89.178 209 2510 89.184

s9234 247 1132 85436 88.491 1132 84933 88.386 1132 85764 88.615

s13207 700 2340 113721 88.830 2341 113488 88.818 2341 114001 88.936

s15850 611 983 114811 90.242 983 114596 90.234 982 114686 90.239

s38417 1664 783 756768 87.186 784 756652 87.087 783 756822 87.217

(b)

126

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.7:Test Relaxation using Different Fault Orderings (essential faults first)

Cir cuit PIs
Initial Test Set Topological Order Mor e Minterms First

Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%)

s208 18 271 4878 92.688 178 1125 90.012 157 1057 89.516

s298 17 234 3978 99.595 234 2348 99.486 234 2333 99.582

s344 24 138 3312 98.643 138 1991 98.212 138 1935 98.133

s382 24 253 6072 99.722 253 3195 99.594 252 3012 99.515

s386 13 201 2613 94.471 201 1905 94.479 201 1905 94.479

s420 34 433 14722 85.641 243 3015 85.214 226 2931 84.972

s510 25 543 13575 98.383 542 4358 98.210 542 4302 98.141

s526 24 492 11808 99.382 492 7001 99.251 491 6702 99.124

s641 54 227 12258 99.125 226 6211 98.427 227 6004 98.534

s820 23 949 21827 99.949 948 10502 99.948 942 10320 99.948

s953 45 766 34470 90.938 766 9702 89.846 766 9511 89.773

s1196 32 1233 39456 96.564 1154 15680 95.877 1133 15320 95.890

s1423 91 269 24479 97.374 269 12854 96.203 269 12245 96.194

s1488 14 209 2926 89.162 209 2511 89.188 209 2503 89.193

s9234 247 1132 279604 90.058 1132 84927 88.322 1132 85002 88.421

s13207 700 2341 1638700 90.784 2340 114012 89.041 2341 113781 88.731

s15850 611 983 600613 92.798 983 114671 90.251 983 114681 90.257

s38417 1664 784 1304576 98.789 784 756799 87.255 784 756724 87.192

(c)

Cir cuit PIs
Fewer Minterms First Mor e Test Detecting it first Fewer Tests Detecting it First

Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%) Tests Sp.Bits BCE+(%)

s208 18 195 1151 90.223 175 1095 89.518 168 1073 90.320

s298 17 234 2421 99.591 234 2357 99.569 234 2325 99.570

s344 24 137 1977 98.261 138 1930 98.165 136 1931 98.322

s382 24 253 3241 99.622 253 3051 99.511 251 3119 99.585

s386 13 201 1905 94.479 201 1904 94.470 201 1904 94.488

s420 34 275 3299 85.130 224 2891 84.957 236 2931 85.393

s510 25 543 4403 98.211 543 4278 98.120 542 4335 98.218

s526 24 492 7012 99.322 492 6708 58.340 491 6812 98.142

s641 54 226 6258 98.649 227 6075 98.414 226 6040 98.521

s820 23 949 10580 99.948 949 10445 99.949 943 10446 99.950

s953 45 765 9997 99.836 766 9507 99.803 764 9563 99.811

s1196 32 1181 16192 95.976 1152 15581 95.889 1131 15408 95.915

s1423 91 269 12906 96.269 269 12232 96.056 265 12465 96.116

s1488 14 209 2509 89.169 209 2502 89.169 209 2485 89.157

s9234 247 1132 85554 88.429 1132 84711 88.342 1132 85281 88.496

s13207 700 2341 113851 88.838 2341 113563 88.719 2341 113982 88.739

s15850 611 983 114760 90.313 982 114842 90.355 983 114691 90.292

s38417 1664 784 756801 67.265 783 756742 67.118 784 756912 67.309

(d)

127

Stel
ios

 N
. N

eo
ph

yto
u

Orderings(iv) and (v) actually sort faults based on the number of tests that detect them on

the initial test set. This information can be easily obtained by the fault simulation procedure

preceding the main algorithm application. Ordering (i) examines faults based on the order the

corresponding circuit lines are visited during on a topological traversal of the circuit’s graph.

A topological order can be obtained in linear, to the size of the circuit’s graph, time [103].

Orderings (ii) and (iii) are different from (iv) and (v), since they consider all tests that detect

the corresponding fault obtained by a test generation process. Since, in our experimentation

the test generation is carried out by the function-based framework presented in Chapter 3, we

are able to obtained accurate information on the total number of tests that exist for each fault,

efficiently. The latter can be done by counting the number of minterms in the test function

corresponding to each fault. Recall that we use a BDD-based function implementation and,

thus, counting the function’s minterms is a linear operation on the diagram’s size.

Alternatively, if the test generation process used does not allow efficient retrieval of such

information, a limited number of test generation queries for each fault can be made, in order

to classify faults according to criteria (ii) and (iii). The motivation for this classification is

an attempt to sort faults depending on how “difficult” is to be detected. Thus, orderings (ii)

and (iv) give priority to easy-to-detect faults, while, ordering (iii) and (v) favor hard-to-detect

faults. Intuitively, we expect that orderings (ii) and (iii) will give more accurate classification

of faults for this criterion.

Table 6.6 (a) and (b) report experimental results for all five different orderings. For each

ordering the relaxed test set size, the number of specified bits in the relaxed test set and the

bridging fault coverage estimation (BCE+) are reported. Table Table 6.6(a) reports results

for orderings (i) and (ii) in Columns 6-8 and 9-11, respectively, while Columns 3-5 report

this information for the initial test set. Table 6.6(b) provides results for orderings (iii), (iv)

and (v) in Columns 3-6 , 6-8, and 9-11, respectively. The same information is reported

in Table 6.7 (a) and (b) when the orderings considered the essential faults first, i.e., those

faults that have fewer thann or exactlyn detections. The best results for all orderings are

shown in boldfaced font. Observe that there is a clear advantage for ordering (iv) i.e., when

considering faults with more tests in test setT , first. In all but six circuits the most relaxed

test sets are those where the faults are examined based on this rationale. Nevertheless, our

method allows applying two or three different ordering with small increase on the CPU time

and keep the best results in terms of specified bits. Considering essential faults first does

not give better results, thus, one can only focus on orderings (ii) and (iv) in order to get

128

Stel
ios

 N
. N

eo
ph

yto
u

thebest relaxation results. Both these orderings try to “accommodate” easy-to-detect faults

first, in the tests considered. While ordering (ii) is most accurate than ordering (iv) the best

results are obtained by the latter ordering, in most of the cases, while in the cases while (ii)

is best the difference in specified bits is not large. This observation eliminates the need for

considering ordering (ii) when no accurate information on the number of tests for each fault

is available, if for instance, a structure-based test generation framework is used.

6.6.2 Random Fixing of Unspecified Bits

Table 6.8 shows experimental results justifying that random bit fixing restores the average

detection parameter as well as the defect fault coverage. We have considerBridging Faults

to represent defects, using the standard non-feedback bridging fault model [104]. After

the circuit name and the number of primary inputs for each one of the circuits, we report

experimentally obtained information about three differentn-detect test sets. The first test set

(Columns 3-6) is the initial test set, the second one (Columns 7-10) is the relaxed test set

obtained by the proposed method and the third test set (Columns 11-14) is after random bit

fixing. For the bit fixing we have used a 0-1 random generator with uniform distribution and

have fixed all the unspecified bits, even in those tests that after the relaxation process detect

no faults and could be removed from the test set.

For each of these test sets we report the size of the test set (Columns 3,7, and 11), its es-

timated bridging fault coverage (Columns 4 and 5, 8 and 9, 12 and 13), and its average

detection (Columns 6, 10, and 14). The bridging fault coverage was estimated using two dif-

ferent estimators. The bridging fault coverage under the Columns named BCE+ (Columns 5,

9 and 13) were calculated using the estimator proposed in [105] which takes into considera-

tion the number of detections of each fault and the probabilities for each line to have the logic

one or the logic zero value. [105] shows that this estimator gives very good approximation

of the actual bridging fault coverage. Yet, in Columns 4, 8 and 11 we also provide a more

commonly used estimator (i.e., BCE), proposed in [106], for completeness.

The average detections in the obtained test set (AD(T ′)) has dropped, as expected, after the

relaxation, in all but three circuits (s298, s386 and s1488). These circuits have the lower

reduction (42 %, 27 % and 15 %, respectively). The latter two haveAD(T ′) < 10 since

there exist a lot of faults with lower than 10 different tests and only few with more than 10.

129

Stel
ios

 N
. N

eo
ph

yto
u

We observe that the drop inAD(T ′) is, most of the times, analogous toK(T ′). In other

words, the higher the reduction in specified bits (lowerK(T ′)), the higher is theAD(T ′)

drop. This is inherent to the test relaxation process, as explained in Section 6.2.

The major observation, here, is that the average detection is tightly correlated with the bridg-

ing fault coverage. When average detection decreases, due to the relaxation process, the

bridging fault coverage also decreases and in all but two cases (s208, s420) the decrease is

proportional for these two measures. Since an advantage ofn-detect test sets is the detection

of defects and faults not explicitly targeted, it could be argued that reducing the average fault

detections may cancel this advantage. Essentially, all the fixed value bits in the unrelaxed test

setT contribute to the detection of non-targeted faults and defects as it is concluded from

the bridging fault coverages before and after relaxation. Those of the test set bits that are

converted to don’t cares during the relaxation process remove their contribution to this extra

detection property. By observing the bridging fault coverage for the relaxed test set after

applying random bit-fixing, this is not problem that remains during test application where all

bits are fixed. The latter confirms that although our method removes additional modeled fault

coverages (i.e., beyondn-detect), non-targeted fault and defect coverages are maintained or

can be even increased, if bit fixing is applied. Despite the fact that the relaxation process

affects the values for both the average detection and the bridging fault coverage, after ran-

dom bit fixing the values for average detection, as well as for the bridging fault coverage, are

restored to the same level as in the initial test setT . Thus, experimentation shows that the

statement made in Section 6.2 assuming that the test relaxation process has no catastrophic

effect on the defect detection ability ofn-detect test sets, is very realistic. Since all applica-

tions that benefit from having relaxed test sets as input, will fix the don’t care bits prior to the

test application, the average fault detections for test setT ′ will eventually increase to that of

T .

6.7 Conclusions

In this chapter we have investigated the impact of test set relaxation inn-detect test sets. We

presented a systematic methodology for decreasing the number of specified bits in a given

n-detect test set. The motivation comes from the observation that the specified bits in an

130

Stel
ios

 N
. N

eo
ph

yto
u

Table 6.8:Random Unspecified Bits Fixing Effect
Initial Test Set After Proposed Method After Random Bit Fixing

Cir cuit PIs |T | BCE (%) BCE+ (%) AD(T ′) |T ′| BCE′ (%) BCE+′ (%) AD(T ′) |T ′′| BCE′′ (%) BCE+′′ (%) AD(T ′′)

s208 18 271 97.188 92.688 37.45 156 95.346 89.527 11.18 271 96.012 91.434 29.16

s298 17 234 99.950 99.595 25.57 234 99.946 99.579 25.21 234 99.959 99.661 34.32

s344 24 138 99.973 98.643 29.92 136 99.951 98.175 22.31 138 99.964 98.475 30.30

s382 24 253 99.979 99.722 38.22 251 99.953 99.515 25.34 253 99.964 99.880 38.29

s386 13 201 94.752 94.471 9.88 201 94.758 94.479 9.41 201 94.813 94.535 9.82

s420 34 433 93.917 85.641 54.14 224 93.903 84.965 18.23 433 96.410 88.214 54.92

s510 25 543 99.976 98.383 57.17 543 99.972 98.134 51.34 543 99.976 98.413 57.11

s526 24 492 99.984 99.382 60.07 491 99.958 99.110 39.1 492 99.968 99.258 60.38

s641 54 227 99.980 99.125 45.01 227 99.944 98.350 32.22 227 99.968 98.865 43.40

s820 23 949 99.959 99.959 31.92 942 99.956 99.949 29.67 949 99.956 99.956 31.71

s953 45 766 99.979 90.938 112.21 764 99.978 89.745 79.59 766 99.978 90.903 111.27

s1196 32 1233 99.814 96.564 93.3 1131 99.805 95.899 63.12 1233 99.841 99.709 94.97

s1423 91 269 99.991 97.374 48.82 265 99.964 96.194 26.12 269 99.990 97.359 47.70

s1488 14 209 90.727 89.162 8.93 209 90.744 89.178 8.15 209 90.760 89.202 8.95

s9234 247 1132 99.985 90.058 148.28 1132 99.969 88.302 60.51 1132 99.980 89.462 167.42

s13207 700 2341 99.984 90.784 354.22 2341 99.960 88.664 62.89 2341 99.974 89.705 413.97

s15850 611 983 99.991 92.978 156.52 983 99.969 90.234 48.41 983 99.982 91.722 172.15

s38417 1664 784 99.981 98.789 67.12 784 98.212 87.087 38.34 784 99.982 98.804 67.84

n-detecttest set adds extra detections for faults that are easy to detect. The actual number of

detections for these faults in these test sets is much larger thann and these extra detections

can be removed, by un-fixing the values for some test bits. This process makes the test

sets flexible and, thus, suitable for a number of applications that appropriately fix the values

for the don’t care test bits. The experimental results reported demonstrate the effectiveness

of the proposed method in achieving high specified bit reduction rates inn-detect test sets,

while maintaining then-detect fault coverage. Provided discussion also explains how the

defect coverage and non-targeted fault coverage of the relaxed test sets will be similar to that

of the initial test sets, when the relaxed test sets are fully-specified before test application.

131

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 7

GENERATING INCREASEDQUALITY n-DETECT

TEST SETS VIA FAULT CONE PARTITIONING

7.1 Introduction

In the previous chapter we have argued that test sets targeting each modeled fault more that

once are beneficial for targeting non-modeled faults and emerging defects. The rationale

behind detecting a fault more than one time is to achieve higher quality in terms of defect

coverage, by generating a number ofdifferent tests for each modeled fault. Test sets that

detect each fault multiple times or with at leastn different tests have been shown to give

high non-modeled fault coverage [90, 91, 92, 93, 94, 95, 97].

Most of the ATPG methods for multiple-detect orn-detect test sets concentrate, mainly, on

reducing the test generation effort while keeping the overall test set size small. Another

important issue addressed in the literature is the diversity of the different generated tests per

fault. While test generation is generally done with well defined techniques, in an iterative

manner, the main target is to quantify the difference between the tests that target the same

fault and, thus, generate as diverse tests as possible for each modeled fault. A number of

previous works address the issue of how different then tests for each fault should be, either

by changing the test set characteristics [96, 97], or by using structure-based metrics [89,

94, 107, 108]. This is because a test set with diverse tests per targeted modeled fault has

been shown to increase the defect and non-modeled fault coverage of the test set [96, 107,

108, 109]. Diversity, i.e., how different are the tests that detect a fault, has been defined

133

Stel
ios

 N
. N

eo
ph

yto
u

in various ways. [96] proposed a definition forsufficiently differenttests, in terms of how

different certain primary input signal values are with respect to the already generated tests for

a fault. The works in [96, 108, 109] introduce measures that quantify the difference between

tests detecting the same fault, based either on the internal signal values that excite the fault

[96, 108] or on propagating the fault to a primary output [109]. In essence, the motivation

behind all these methods is to find tests that activate the fault in different ways (internal

signal values) and propagate the fault effect to some primary output via different propagation

paths. They attempt to achieve that by incorporating randomness or some efficient brute-

force heuristic in the test pattern generation process. Hence, none of the existing methods

that generate diverse tests examines activation and/or propagation paths. As a result, the

number (and different constituent circuit lines) of the different activation/propagation paths

for a fault cannot be guaranteed.

The work in this chapter is motivated by previous work on the need for generating diverse

tests for increasing the quality, in terms of non-modeled fault coverage, of ann-detect test

set. Since, from the work presented in Chapter 2, we have observed that differentiating the

propagation paths increase the quality of the test sets, we follow the same rationale here, for

introducing diversity forn-detect test sets. Thus, we propose a methodology for generating

n-detect test sets such thateach of then tests detecting a fault is guaranteed to propagate

the fault via a different propagation path than the remainingn-1 tests. In the case where

only k < n such tests exist for a fault (the proposed method can efficiently determine this)

n tests are still generated in order to maintain 100%n-detect fault coverage. However, two

or more tests that propagate a fault through the same propagation path can still differ since

the proposed method can work in a complementary manner to the methods of [96, 108] to

generate tests with different excitation conditions or sufficiently different test pattern values.

Essentially, the proposed method gives a systematic way of partitioning the circuit under test

into non-overlappingpropagation subcircuits. For each fault a number of such subcircuits is

obtained, each of which contains a number of paths that allow the propagation of the fault to

at least one primary output. Each propagation subcircuit is guaranteed to contain at least one

different propagation path from any other propagation subcircuit for the same fault. The pro-

posed algorithm identifies the circuit cone starting from each fault site towards the primary

outputs. Then, it performs a breadth-first traversal on the cone and groups the propagation

paths (paths segments) in propagation subcircuits, based the cone’s fanout branches. The

process accommodates paths in different propagation subcircuits as soon as they are iden-

134

Stel
ios

 N
. N

eo
ph

yto
u

tified to be distinct cone’s stem. This decision criterion not only ensures non-overlapping

propagation subcircuits, but includes the longest paths from the fault site to some primary

output in different subcircuits for the fault under consideration. For each fault,n different

subcircuits are obtained. For faults with onlyk < n propagation paths,k subcircuits are

obtained with each subcircuit being a physical path segment.

Next, the algorithm generates test functions for each one of the faults, for all the subcircuits

obtained. Thus, the test space for each fault is partitioned inton (or k when less thann

propagation paths exist) groups which generally contain different tests. An undirected graph

is then constructed where each graph vertex corresponds to a test group. The proposed algo-

rithm iterates on the graph and merge compatible vertices together in a bottom-up rationale.

For this work we use a modified definition of test compatibility where two test groups corre-

sponding to the same fault are not considered as compatible, in order to avoid merging then

different tests for the same fault and, consequently, destroy then-detect property.

The main contributions of the method are:

• In contrast to existing methods, the propagation of a fault via different paths (if these

exist) isguaranteed.

• The different propagation paths have as little overlap (common circuit lines) as possi-

ble.

• Path and path segment enumeration isexplicitly avoided, allowing the method to be

efficient and scalable.

• The methods of [96, 108] can be used on-top of the proposed method. Hence, each of

then generated tests is guaranteed to propagate the fault via a different propagation

pathandwith different internal signal values than any of the othern-1 tests.

• The method can be easily generalized to apply to any other fault model (other than the

stuck-at fault model) that is linear to the size of the circuit. In particular, for dynamic

models such as the transition delay fault model, the method can guarantee different

activation paths on top of then different propagation paths.

While the proposed methodology is presented in this context for the stuck-at fault model, it

can be generalized to any fault model that is linear to the size of the circuit. For instance, the

135

Stel
ios

 N
. N

eo
ph

yto
u

transitionfault model can be used in the same manner. Specifically, for the transition fault

model, the subcircuit partitioning can be done not only for propagation, but also for activation

in order to obtain more diversity in then different tests for the same fault. Appropriate

sensitization criteria can be used in both activation and propagation in the same way as they

have been used in Chapter 2.

The rest of the chapter is organized as follows. Section 7.2 describes the process for parti-

tioning a circuit under test inton propagation subcircuitsper fault. Section 7.3 presents the

test generation methodology. Section 7.4 presents and discusses the obtained experimental

results which demonstrate the effectiveness of the proposed methodology in terms of increas-

ing the number of different fault propagation paths. The impact on defect coverage (using

the bridging fault model as surrogate) is also reported. Section 7.5 concludes the work in

this chapter.

7.2 Partitioning the Fault Site Cone into Propagation

Subcircuits

The significant difference in this work in terms of quality is that the proposed methodology

ensures as much diversity as possible between the different tests targeting the same fault. In

order to achieve this we perform test generation for different parts of the circuit for every

fault. This way we enforce implicit partitioning of the test space for each fault based on a

fault propagation criterion. An important role in the proposed methodology is accorder to

the partitioning process, described in this section.

Each fault defines a circuit cone which starts at the fault site and terminates at the primary

outputs driven by the fault site. In order to findn different tests, each detecting the fault

via different propagation paths, the proposed method partitions the propagation paths into

n groups and generates a test that detects the fault via at least one propagation path per

group (the latter is discussed in detail in Section 7.3). In this section we present how thesen

groups of different propagation paths can be derived in linear to the circuit size time, without

performing any path enumeration.

136

Stel
ios

 N
. N

eo
ph

yto
u

We first give some necessary definitions used later in this section.

Definition 7.1. The fault cone of line li is the part of the circuit originating from lineli
which includes all physical path segments from lineli (all circuit lines driven by lineli up to

the primary outputs).

Definition 7.2. A propagation path is a physical path segment from a circuit lineli to a

primary output which, under an appropriate value assignment at the primary inputs, allows

the propagation of the effect of a fault at lineli to a primary output.

Definition 7.3. A propagation subcircuit for a fault at lineli is a subpart of the fault cone

for li that contains at least one propagation path. Any non-redundant fault has at least one

such propagation subcircuit.

For any propagation subcircuit of a stuck-at fault at lineli, at least one primary input assign-

ment exists that allows the propagation of the fault effect through at least one propagation

path of the propagation subcircuit. Any such assignment is a valid test for the stuck-at fault

at line li. Moreover, it enforces propagation of the fault at least through the propagation

paths that form the propagation subcircuit. The idea of the proposed algorithm is to generate

then different tests for each fault forn different propagation subcircuits corresponding to

that fault. If onlyk < n propagation subcircuits exist then the proposed method uses multi-

ple copies of these subcircuits and tries to differentiate the tests using unspecified bits value

fixing.

The algorithm of Figure 7.1 describes the proposed decomposition of the fault cone into

n propagation subcircuits for a given fault site1. The algorithm performs a breadth-first-

search-like traversal of the circuit to identify then fanout branches that are closer (minimum

distance) to the fault site but to not contain same path segments. Each of these branches is

then used along with the fault site, to define a propagation subcircuit. The traversal starts

at the fault sitef , using a First-In-First-Out queue. For each line that is removed from the

queue all the successor lines are inserted in the queue. If the line under examination is a

fanout branch, then it is kept in a separate listB (lines 07-08). Moreover, if this branch is

driven by some other branchq′ in the fault cone (which is already inB), q′ is removed from

1In this section, the paths in an identified subcircuit correspond to physical path segments, instead of prop-

agation paths (as inDefinition 7.2). This requires ATPG to be determined, and is examined in the next section.

For simplicity, we still refer to propagation subcircuits here.

137

Stel
ios

 N
. N

eo
ph

yto
u

find propagation subcircuits(C, n, f)
Inputs: circuit C, n, fault sitef
Outputs: set of propagation subcircuitsPS
01: queueQ = ∅
02: listsL = ∅,B = ∅
03: insertf at the end ofQ
04: do
05: q = first element ofQ
06: removeq from Q
07: if q is a fanout branch
08: insertq in B
09: if B contains branchq′ that drives branchq
10: removeq′ from B
11: L = successor lines ofq in C
12: for each line l ∈ L
13: insertl at the end ofQ
14: until Q is emptyOR size ofB = n
15: for eachbranch lineq in B
16: ps = subcircuit defined by linesf andq
17: saveps in PS
18: end if
19: return PS

Figure 7.1:Proposed Fault Cone Decomposition

B. This ensures that no two propagation subcircuits will contain identical path segments

(starting a the fault site). The traversal terminates whenn such fanout branches are identified

or when the primary outputs are reached.

The second step of this algorithm (lines 15-20) derives then propagation subcircuits using

the branch lines included inB. For some lineq in B, the propagation subcircuit is defined as

the part of the circuit that includes all path segments starting at the fault sitef and passing

through the branch lineq. Since no two branch lines that can be on the same path are

included inB, every generated subcircuit contains different path segments. Moreover, the

path segments included in a subcircuit are guaranteed to have minimum overlap (in terms

of circuit lines) with the segments of other subcircuits, since the algorithm considers then

appropriate branch lines that are closer to the fault sitef . Thus, the number of lines between

the fault sitef and the fanout stem of two branchesq andq′ in B (which is the common lines

between path segments in the subcircuits derived byq andq′) is minimized.

In the case where the number of path segments from the fault sitef is k < n, the algorithm

returnsk propagation subcircuits, each containing a single path segment. Fork > n, the

138

Stel
ios

 N
. N

eo
ph

yto
u

generatedsubcircuit may contain more than one path segments. For the examined problem,

there is no need to have balanced subcircuits (in terms of the number of the path segments)

since propagating a fault through at least one path segment in each propagation subcircuit

suffices to derive the desiredn-detect test set. This method can be easily extended to the

transition fault model for which activation path diversity is desired, in addition to propagation

path diversity. The activation subcircuits can be obtained using the algorithm of Figure 7.1,

traversing the circuit from the fault site towards the primary inputs and keeping gate inputs

in list B, instead of fanout branches.

7.3 Test Generation Methodology

After partitioning the graph inton (if possible) subcircuits, we perform test generation for

each one of those subcircuits. The target here is to haven tests that propagate the fault via

n different paths in order to achieve as much diversity as possible. The algorithm here is

again graph-theoretic like the one presented in Chapter 4 and takes special consideration for

preserving both then-detect fault coverage and the difference on the propagation paths.

The proposed test generation procedure is function-based and starts by generating one test

function per subcircuit identified in Section 7.2. Hence, it will generaten different test

functions per fault. A test function in this case is derived by only considering the circuit

cone from the primary inputs to the fault site (fault activation subcircuit) and one propagation

subcircuit, instead of the entire circuit that is considered in traditional function-based ATPG

like that of Section 4.5. Figure 7.2 shows this first step of the proposed test generation

method.

For each fault the fault cone partitioning procedure of Figure 7.1 is invoked in order to getn

different subcircuits per fault (line 02). Then, for each subcircuit, a test function is generated

that implicitly holds all the tests that allow the propagation of the fault effect via any path

segment in the subcircuit (line 04). It is possible that a test function is the constant zero

(0) function, implying that no tests exist that can propagate the fault effect via one of the

path segments in a subcircuit, i.e., the fault is redundant when considering the particular

subcircuit. In this case the propagation subcircuit decomposition procedure of Section 7.2

139

Stel
ios

 N
. N

eo
ph

yto
u

generaten test functions(C, n, F)
Inputs: circuit C, n, fault list F
Outputs: n test functions for each fault inF
01: for each fault fi in F
02: PS = find propagation subcircuits(C, n, fi)
03: for eachsubcircuitpsj ∈ PS
04: tfij = generate test function forfi propagating viapsj

05: inserttfij in TF
06: # replace subcircuits inPS containing no propagation paths
07: k = |PS|
08: if k == n
09: while ∃ tfij = 0
10: k = k + 1
11: PSt=find propagation subcircuits(C, k, fi)
12: for eachpsj ∈ PSt − PS
13: tfij=generate test function forfi underpsj

14: inserttfij in TF
15: end while
16: end if
17: else
18: for z = k to n
19: tfiz = tf ∈ TF with zth larger number of minterms
20: end else
21: return TF

Figure 7.2:Generatingn test functions for each fault

is called again, untiln different subcircuits with non-zero test functions are derived (lines

07-16). In this case the algorithm of Section 7.2 is specifically guided to ignore the part of

the circuit corresponding to subcircuits already determined as undesired and concentrate on

the remaining part of the circuit (this is not shown in Figure 7.2 due to space limitations).

Finally, if fewer thann propagation paths exist (and thus, fewer thann test functions), the

already obtained test functions are used in order to cover the extra detections (lines 18-20).

Test functions with a higher number of minterms (tests) are preferred for this purpose.

The procedure of Figure 7.3 describes a graph based approach that allows for the generation

of propagation path diverse tests that detect a large number of faults, for reducing the test

size, without destructing then-detect test coverage. After generatingn different test func-

tions per fault using the algorithm of Figure 7.2, an undirected graphG is constructed, where

each vertex in the graph corresponds to one test function (setV) and an edge on the graph

denotes compatibility (or not) between two test functions (setE). There are two kind of

edges in our graph: weighted edges and barriers. The weighted edges between two vertices

140

Stel
ios

 N
. N

eo
ph

yto
u

denotecompatibility, i.e., that the two set of tests implicitly represented by the correspond-

ing test functions can be reduced into a single set of tests since they include common tests

that can detect all faults detected by both test functions (lines 08-15). The weight of an edge

denotes the number of specified bits in the largest cube (partially specified test pattern) in

the intersection of the two set of tests corresponding to the edges’ endpoints. The process

of combining minimum edge vertices in a compatibility graph has been shown to produce

compact test sets, in the case where single detection is desired for stuck-at faults (see Chap-

ter 4. The barriers are essentially non-edges (or edges with infinite weight) and denote that

the vertices at their endpoints can never be combined, because this will reduce the number

barrier compatibility merging
Inputs: circuit C, n, fault list F
Outputs: n-detect test setT
01: TF=generaten test functions(C, n, F)
02: undirected graphG(V, E) = ∅
03: for each fault fi in F
04: for j = i to n
05: insert vertex corresponding totfij in V
06: insert barrier betweentfij and alltfik for k 6= j in E
07: do
08: for eachvertexui ∈ V
09: for eachvertexuj ∈ V, uj 6= ui

10: tfi = test function corresponding toui

11: tfj = test function corresponding touj

12: if (tfi • tfj 6= 0) AND (@ barrier betweenui anduj)
13: insert edge betweenui anduj in E
14: weight(ui, uj)= size of maximum cube intfi • tfj

15: end if
16: for eachvertexui ∈ V
17: while adj(ui) 6= 0
18: umin = vertex of minimum weight in adj(ui)
19: ui = mergeui andumin

20: adj(ui) = adj(ui) ∩ adj(umin)
21: barr(ui) = barr(ui) ∪ barr(umin)
22: tfi = tfi • tfmin

23: end while
24: until E contains only barriers
25: for eachvertexui ∈ V
26: tfi = test function corresponding toui

27: T = T + cube fromtfi

28: fix unspecified bits inT
29: return T

Figure 7.3:Proposed ATPG method

141

Stel
ios

 N
. N

eo
ph

yto
u

f2
(1)

f1
(1)

f2
(2)

f3
(2)

f3
(1)

f4
(1)

f4
(2) f5

(1)

8

9
9

8
10

8

7

7

6

9

a

f2
(2)

f3
(2)

f3
(1)

f4
(1)

f4
(2) f5

(1)

12

8
10

8

6

9

7

a

b

f3
(1)

f4
(1)

f4
(2)

8

13

a

f2
(2)

f3
(1)

f4
(1)

f4
(2) f5

(1)
8

10

6

7

a

b

f3
(1)

f4
(1)

8

a

b

c

9

8

(a) (b) (c)

(d)

(e) (f)

Figure 7.4:Example of Barrier Test Compatibility Reduction Algorithm

of detections for some fault (line 06), and, thus, disturb then-detect fault coverage. The al-

gorithm then focuses on a single vertex (line 16) and identifies the minimum weighted edge

among the list of its adjacent edges (line 17-18). This edge is then absorbed byui (lines 19-

22). Only the common edges ofui andumin remain in the new adjacent list ofui (line 20).

The barriers ofumin are included in the list of barriers ofui (line 21) to avoid the combina-

tion of ui with a vertex thatumin can not be combined. Of course, the new test function ofui

is the result of the logic AND operation between the corresponding functions (line 22). The

same process is repeated until only barrier edges are left in graphG. The desiredn-detect

test set is generated by obtaining one test cube from every test function corresponding to

the remaining vertices. The don’t care bits in each test cube can be fixed either in a random

manner, or as in [108, 96] to increase the possibility of different fault excitation conditions

for even further diverse tests.

We demonstrate the execution of the algorithm of Figure 7.3 with an illustrative example

for n = 2, shown in Figure 7.4. Let the number of faults be 5,f1, ...f5. Initially graphG

contains 8 vertices. For each one of the faultsf2, f3 andf4 there are two vertices in the graph

indicating the two different detections and differentiated by the superscript index. For faults

f1 andf5, only one test exists and so a single vertex is present inG, for each one of these

faults. A solid line between two vertices represents a weighted edge inG, while a dashed

line represents a barrier (Figure 7.4(a)).

142

Stel
ios

 N
. N

eo
ph

yto
u

First, the algorithm examines vertexf (1)
1 (shown in light grey) and selects the minimum

edge adjacent to it (Figure 7.4(a)). The vertex at the other endpoint of the edge (i.e.,f
(1)
2)

in absorbed byf (1)
1 and the new nodea (Figure 7.4(b)) contains all tests that detect both

f
(1)
1 andf

(1)
2 . Only one common vertex exists in the lists of adjacent vertices off

(1)
1 and

f
(1)
2 , i.e., the vertex corresponding to faultf

(2)
3 . This edge is included in the list of adjacent

vertices ofa as it can be observed from Figure 7.4(b). The barrier off
(1)
2 is included in

the barrier list off (1)
1 . Next, the only weighted edge of vertexa is selected and vertexf (2)

3

is absorbed bya adding a new barrier betweena andf
(1)
3 (Figure 7.4(c)). Since, vertexa

has no more weighted edges the algorithm selects another vertex to examine, i.e.,f
(2)
2 and

vertexa is retired (shown in black). In the same rationale, the edge with faultf
(1)
5 is selected

andf
(1)
5 is absorbed (Figure 7.4(d)). The algorithm terminates when only barriers are left

in G (Figure 7.4(f)). Each vertex left corresponds to a test function that contains valid tests

for detecting all absorbed faults. Specifically, each test in the test function corresponding to

vertexa detects faultsf (1)
1 , f

(1)
2 andf

(2)
3 which means that faultsf1 andf2 are propagated

via some paths in their subcircuit named 1 and faultf3 via some path in its subcircuit named

2. Vertexb covers faultsf (2)
2 , f

(2)
4 andf

(1)
5 and vertexc f

(1)
3 andf

(1)
4 . Thus, then-detect

coverage required in the initialG is maintained, and each of the 2 tests for faultsf2, f3 and

f4 propagate their effect via different paths.

The vertices left correspond to a test function that contains valid tests for the same number

of detections of the faults initially present inG. Specifically,a contains all valid tests for all

faults f1, f2 andf3, vertexb for faults f2, f4 andf5 and vertexc for f3 andf4. Obtaining

a cube from each one of the test functions corresponding to these vertices, gives a valid

2-detect test set for the circuit under examination.

7.4 Experimental Results

The proposed methodology was implemented using ANSI C++, in a UNIX environment. All

experiments were run on a 1GHz SunBlade 1500 with 4GB of RAM, using the ISCAS’85

and the full-scan versions of the ISCAS’89 benchmarks. The function-based ATPG tool was

implemented using BDDs (on top of CUDD) (see Section 4.5).

143

Stel
ios

 N
. N

eo
ph

yto
u

Table 7.1:Average Number of Propagation Paths Per Fault
1-detecttest set 10-detecttest sets

avg. avg. non-empty avg. methodof Chapter 4 [97] Proposed

Cir cuit pathssegments prop. subcircuits prop. paths avg. prop. paths % increase avg. prop. paths % increase avg. prop. paths % increase

c880 6.634 6.234 3.691 4.121 1.000 n/a n/a 6.317 6.107

c1355 10.585 9.874 10.122 10.213 1.000 n/a n/a 10.527 4.451

c1908 9.666 8.123 8.198 8.213 1.000 n/a n/a 8.431 15.533

c2670 9.901 9.123 8.771 8.980 1.000 n/a n/a 9.686 4.378

c3540 12.857 9.345 8.931 9.045 1.000 n/a n/a 9.362 3.781

c5315 8.681 7.213 6.853 6.987 1.000 n/a n/a 7.583 5.448

c7552 10.401 9.111 5.139 6.436 1.000 n/a n/a 7.951 2.168

s208 2.877 2.789 2.473 2.769 1.000 2.789 1.068 2.794 1.084

s298 2.626 2.267 2.264 2.265 1.000 2.266 2.000 2.271 7.000

s344 3.863 3.685 3.449 3.663 107.000 3.451 1.000 3.686 118.500

s382 3.469 3.300 3.259 3.269 1.000 3.275 1.600 3.310 5.100

s420 3.683 3.415 2.825 2.843 1.000 2.881 3.111 3.467 35.667

s510 2.569 2.562 2.473 2.479 1.000 2.503 5.000 2.562 14.833

s526 2.578 2.471 2.213 2.391 1.113 2.373 1.000 2.474 1.631

s641 5.425 5.203 4.421 5.174 9.779 4.498 1.000 5.209 10.234

s820 1.571 1.570 1.570 1.570 1.000 1.570 1.000 1.570 1.000

s953 3.993 3.992 3.538 3.698 1.000 3.719 1.131 3.996 2.863

s1196 5.849 4.562 3.714 3.923 1.000 4.152 2.096 4.660 4.526

s1423 6.376 6.000 4.451 5.664 1.626 5.197 1.000 6.006 2.084

s9234 5.762 5.463 4.648 4.912 7.765 4.682 1.000 5.487 24.676

s13207 6.142 5.931 5.634 5.705 1.000 5.801 2.352 5.976 4.817

s15850 6.081 5.897 5.315 5.452 1.305 5.420 1.000 5.996 6.486

s38417 6.744 6.441 5.983 6.063 1.000 6.121 1.725 6.487 6.300

We consider the stuck-at fault model and obtain the fault lists using the checkpoint theorem.

We compare the generated test sets with two traditionaln-detect test sets available to us,

in order to demonstrate the increase in propagation paths obtained when using our method

for n-detect test generation. The first one was derived using the 1-detect test generation

method of Chapter 4, run 10 different times with special consideration in maintaining the

n-detect property. The second is the compact 10-detect test sets of [97]. A comparison with

the test sets of [96, 108] is not possible at this point, since we do not have them by the

time of this thesis completion. Nevertheless, as explained in the introduction of this chapter,

these two methods do not target explicitly the problem of guaranteeing different propagation

paths. More importantly, they are complementary to the proposed method (our technique

can apply on top of these methods). Finally, a 1-detect test set obtained by the academic tool

ATALANTA was used in order to show that the increase in the number of propagation paths

in the tests sets of the proposed method is not an inherent property of traditionaln-detect test

sets.

Table 7.1 shows comparisons on the average number of propagation paths per fault.After the

circuit name we show the average number of path segments per fault, obtained by a forward

traversal from the fault site to all primary outputs. This is essentially a static information

144

Stel
ios

 N
. N

eo
ph

yto
u

which gives an upper bound on how many different propagation paths exist per fault. Of

course this number is not expected to be reached for two reasons: (i) some of these paths

cannot propagate the fault effect to a primary output and, (ii) the algorithm does not generate

more thann tests, per fault, even if they exist. In Column 3 we report the average number of

possible non-empty propagation subcircuits (in each subcircuit, there exists at least one path

segment that can propagate the fault effect) as obtained by the algorithms of Figure 7.1 and

Figure 7.2. Observe that this gives the exact number of possible propagation paths per fault,

on the average, for n=10. For example, for c880 there exists only 6.234 propagation paths

per fault, on the average, for n=10. Hence, the proposed method should generate test sets

that detect each fault at least as many times. This is demonstrated in Column 9 (the slightly

higher numbers are attributed to additional coincidental fault propagations in a subcircuit).

We have used an in-house tool based on Zero-suppressed BDDs in order to count propagation

paths. This tool allows counting a propagation path only once (no double counting), without

an explicit enumeration of the paths. Moreover, it does not consider the subpaths of a path as

different propagation paths. Thus, in cases where propagation is achieved through two paths

segments one of which is a subpath of the other, the tool counts only one path, specifically

the larger one. Columns 4, 5, and 7 list the average number of fault propagations in the

1-detect, the 10-detect using the method of Chapter 4, and the 10-detect of [97] test sets,

respectively. An/a here indicates that no test set is available for the corresponding method.

In all cases the average number of propagation paths per fault is higher in the proposed

method. The small difference in the averages implies that the extra effort by the proposed

method is necessary when we need to target additional propagation paths. As an example

consider circuit s382. The average number of propagation paths per fault for the 1-detect

test set is 3.259 and for the 10-detect test set of the proposed method is 3.31, give an 0.051

improvement. However, the traditional 10-detect test sets give an even smaller improvement

with average numbers of 3.269 and 3.275, i.e., 0.01 and 0.016 improvement respectively.

Hence, the proposed method achieved 5 times more improvement from the first test set and

3.2 improvement from the second one (the 1-detect test set is used as a reference point here,

in order to show the real improvement on the number of propagation paths in the various

n-detect test sets). This analysis explains the difficulty in obtaining additional propagation

paths, from those already obtained in a 1-detect test set, and, thus, the importance of the

proposed method in increasing the quality of then-detect test sets. In Columns 6, 8 and 10

we show the % increase (improvement) of the average number of propagation paths for the

three different 10-detect test sets, similar to the example given before. This percentage is

145

Stel
ios

 N
. N

eo
ph

yto
u

computedas the difference in propagation paths from the 1-detect test set, normalized to the

smaller such difference among the 10-detect test sets presented here. For most of the cases

this increase is considerable and in some cases extremely high.

Table 7.2: Total Number of Propagation Paths
10-detecttest sets

Cir cuit 1-detect methodof Chapter 4 [97] Proposed

c880 1422 1459 n/a 6121

c1355 702908 712138 n/a 748038

c1908 8342 8621 n/a 9863

c2670 20959 21293 n/a 331307

c3540 10103212 10121231 n/a 12912812

c5315 589591 592103 n/a 642440

c7552 38350 40415 n/a 41878

s1196 2157 1989 1962 2157

s1423 3939 8647 6574 13940

s9234 20064 25727 20143 47692

s13207 582132 592346 598211 612391

s15850 7010166 7017295 7012133 7285178

s38417 424693 429089 432093 465903

Table 7.2 gives the total number of propagation paths. We show numbers only for the larger

circuits since the number of propagation paths for the small circuits are close to the total

number of physical paths in each circuit, even for the 1-detect test sets. For each test set

we count the total number of propagation paths among all fault avoiding double counting

of propagation paths as well as counting propagation paths that are fully contained in larger

propagation paths. Hence, the reported paths are all distinct, and not properly contained in

other, path segments that propagate at least one fault in each circuit. The number of these

paths is increased considerably by the proposed method, allowing us to conclude that in

traditional 10-detect test sets there is a lot of propagation path overlap between tests for

different faults.

Table 7.3 gives test set sizes (Columns 2, 4, and 6) and an estimation on non-modeled fault

coverages, using the Bridging Fault (BF) model as a surrogate for defects (Columns 3, 5, 7).

The BF coverages are estimated using the formula proposed in [105], indicated by BCE+ in

Table 7.3. Observe that the test set size may be larger in the case of the proposed algorithm,

yet this is necessary in order to guarantee propagation through different paths. For all the

examined circuits the BF coverage is increased, indicating that the proposedn-detect test

146

Stel
ios

 N
. N

eo
ph

yto
u

Table 7.3:Test Set Sizes and Bridging Fault Coverage
10-detectmethod ofChapter 4 10-detectof [97] Proposed

Cir cuit tests BCE+ tests BCE+ tests BCE+

c880 200 0.97044 n/a n/a 260 0.97493

c1355 840 0.92412 n/a n/a 891 0.92712

c1908 1070 0.95872 n/a n/a 1193 0.95934

c2670 550 0.95863 n/a n/a 689 0.96687

c3540 1000 0.96100 n/a n/a 1545 0.96809

c5315 510 0.97986 n/a n/a 872 0.99382

c7552 780 0.95213 n/a n/a 1238 0.96871

s208 340 0.92833 271 0.92688 350 0.95650

s298 290 0.99780 234 0.99595 281 0.99619

s344 200 0.98362 138 0.98643 168 0.98989

s382 290 0.99830 253 0.99722 283 0.99764

s420 690 0.89006 433 0.85641 705 0.91460

s510 560 0.97828 543 0.98383 586 0.98541

s526 580 0.99204 492 0.99382 568 0.99427

s641 330 0.98896 227 0.99125 307 0.99405

s820 1050 0.99899 949 0.99959 1064 0.99969

s953 780 0.88213 766 0.90938 935 0.91464

s1196 1150 0.95145 1233 0.96564 1450 0.96804

s1423 240 0.95621 269 0.97374 371 0.97114

s9234 1450 0.88093 1132 0.90058 1471 0.88620

s13207 2670 0.91213 2341 0.90784 2614 0.99989

s15850 1600 0.94524 983 0.92798 1824 0.96242

s38417 880 0.98127 784 0.98789 981 0.99012

setsare of higher quality.

7.5 Conclusions

In this chapter we presented a novel method for generating high qualityn-detetct test sets.

The methodology guarantees to increase the number of paths in the circuit that propagate

a fault to a primary output of the circuit. A new method for obtaining subcircuits per fault

cone and enforcing propagation through each subcircuit is presented, without explicit path or

path segment enumeration. A graph-based algorithm controls the size of the test set without

removing then-detect property of the test set. The obtained results show considerable im-

147

Stel
ios

 N
. N

eo
ph

yto
u

provement for then-detect test sets generated using the proposed method, in terms of prop-

agating the fault effect via additional propagation paths as well as increased non-modeled

fault coverages.

148

Stel
ios

 N
. N

eo
ph

yto
u

CHAPTER 8

CONCLUDING REMARKS

Manufacturing testing of digital VLSI circuits is becoming an increasingly challenging prob-

lem due to the enormous circuit complexity, as well as, the nanometer technology scaling.

Very complex large designs with tight timing constraints give rise to a number of diverse

types of defects. Thus, traditional fault models and/or test generation techniques are no

longer adequate for guaranteeing that, within reasonable time and effort, delivered devices

will not exhibit malfunction.

This dissertation presents a number of techniques that provide high quality test sets, for mod-

ern digital integrated circuits. Quality is defined in a number of different ways, depending

on the application under examination, defining a number of different problems.

The first part of the dissertation examines the problem of high quality test generation for

delay faults. The two traditional fault models for delay are either not efficient or not effec-

tive enough. The Transition Fault model, while of linear complexity, can only detect delays

lumped at a specific circuit site. On the other hand, the Path Delay Fault model can de-

tect both lumped and distributed delays, yet its complexity is exponential to the circuit size,

limiting its applicability. Thus, we considered a hybrid model that is of increased quality,

yet its complexity remains linear to the size of the circuit. A function-based test generation

framework was proposed following established path sensitization criteria that provide dif-

ferent quality levels. Moreover, we have proposed a number of enhancements on top of the

generated test sets in order to provide more quality characteristics. The test set compaction

method proposed, reduces the test set size with small decrease on the number of sensitized

paths, and allows for enriching the test set with tests that excites the circuit’s potential fault

sites through different paths. Additional quality attributes can be assigned to the test sets by

149

Stel
ios

 N
. N

eo
ph

yto
u

restrictingfault propagation only through critical parts of the circuit. The enrichment tech-

niques proposed here are some of many different enhancement methods that can be applied

on top of the test sets obtained for delay faults using the proposed function-based framework.

Future work could examine more such enhancement methods that take advantage of the size

reduction obtained by the proposed test set compaction technique. In addition, appropriate

combination of the test generation framework and compaction techniques could be used for

a number of different test related problems. An interesting direction would be to take ad-

vantage of the test generation framework in order to generate a large number of tests, with

different path sensitization criteria and for different critical parts of the circuit. On top of

that the proposed test compaction technique can be used, tailored for low power testing, i.e.,

a technique which selects the tests patterns that will give lower power density during test

application. The latter can be done effectively since, the compaction technique proposed can

take full advantage of the information on the tests’ quality used in the test generation process

of the function-based framework.

Making the test generation process flexible can benefit a number of test related applications,

yet for each different application the generation process has to be appropriately tuned in

order to give the desired results. A similar, yet more general approach is to have flexible

test sets, i.e. develop techniques that give test sets that can be appropriately utilized and give

benefit to different applications. In order for the test sets to be flexible, they should have a

large number of test bits that do not have a specified logic value, i.e., can either get the logic

one or the logic zero value. We proposed a number of different such techniques, with this

dissertation, that follow two different rationales for the stuck-at fault model, that can also be

used with any linear fault model. A static one, that concentrates on relaxing a given test set,

which may be fully or partially specified and a dynamic one, which essentially performs test

generation, keeping the number of specified bits in the test set, small. The static methods

give high unspecified to total test bits ratio and, at the same time, keep all the given test

set attributes. On the other hand, the dynamic methods give slightly larger test sets, yet the

unspecified to total test bits ratios are significantly larger. Moreover, they give more balanced

distribution of specified bits among the test patterns.

The flexible test sets can be used in a number of test related applications. Some of them, like

on-chip test set embedding and test set compression, use the unspecified bits as degrees of

freedom in order to increase the encoding efficiency and keep the required overhead small.

A number of other applications, like low power testing and test set enrichment, fix the values

150

Stel
ios

 N
. N

eo
ph

yto
u

of the unspecified bits appropriately so as to reach the desired result. We have experimented

with two, fairly simple, test set embedding schemes that are based on the reseeding of Linear

Feedback Shift Registers (LFSRs) using the flexible test sets obtained by the proposed meth-

ods. The results demonstrate the benefit that these applications have when using the flexible

test sets, instead of using general purpose test sets. While using flexible test sets in different

application has an interesting perspective, another promising direction is generating flexible

tests sets under non-traditional fault models in order to be used in a more demanding, in

terms of quality, scheme. Future research could concentrate on the generation of flexible

test sets for delay fault models like the recently proposed models for small delay faults or

even for modeled defects like bridging faults. Developing test generation of test sets with a

large number of unspecified bits, under the hybrid delay model proposed in this dissertation,

is expected to provide more room for quality enhancements of the obtained test sets. Even

examining static relaxation for the obtained test sets under the function-based framework for

this hybrid model, could be considered as a continuation of this work.

Finally, a different approach is presented in order to produce test sets of increased quality

by generating test sets that target each modeled fault more than one times. This has been

previously shown to give test sets with high defect detection capabilities, beyond stuck-at

fault coverage. These increased quality tests sets are commonly known asn-detect test sets,

as they enforce detection of each fault byn different test patterns. Our experimentation on the

relaxation ofn-detect test sets has shown high relaxation rates, similar to those of 1-detect

test sets. At the same time, they maintain their high quality after the relaxation process

and the unspecified bit value fixing, even in a random fashion. Relaxation is of increased

importance inn-detect test sets, since their large size can limit their usage in a large number

of applications. Future work should try to evaluate the relaxation effect on the applicability

of n-detect test sets. Preliminary work on higher qualityn-detects test set generation was

presented here. This technique imposes a diversity constraint on then different tests that

target the same fault. Diversity is ensured by systematic fault cone partitioning of the circuit-

under-test, which is guaranteed to be as balanced as possible. Experimental results show

increased defect coverage to that of traditionaln-detect test sets, denoting that there is great

potential. We intend to investigate more sophisticated methods to improve test set size, while

guaranteeing the maximum possible diversity. Promising ideas on developing a complete

function-based framework that controls the diversity of the tests via different propagation

paths, without explicit path enumeration are going to be explored in the future.

151

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

BIBLIOGRAPHY

[1] “International Technology Roadmap for Semiconductors,” tech. rep., ITRS, 2007.

[2] G. Gielen and R. Rutenbar, “Computer-aided Design of Analog and Mixed-Signal

Integrated Circuits,”Proceedings of the IEEE, vol. 88, no. 12, pp. 1825–1854, Dec.

2000.

[3] S. Hamilton, “Taking Moore’s law into the next century,”IEEE Computer, vol. 32,

no. 1, pp. 43–48, 1999.

[4] N. Verghese and D. Allstot, “Computer-aided Design Considerations for Mixed-

Signal Coupling in RF Integrated Circuits,”IEEE Journal of Solid-State Circuits,

vol. 33, no. 3, pp. 314–323, 1998.

[5] Y. Joannon, V. Beroulle, C. Robach, S. Tedjini, and J.-L. Carbonero, “Decreasing Test

Qualification Time in AMS and RF Systems,”IEEE Design & Test of Computers,

vol. 25, no. 1, pp. 29–37, Jan.-Feb. 2008.

[6] S. Krishnaswamy, I. Markov, and J. Hayes, “Tracking Uncertainty with Probabilistic

Logic Circuit Testing,”IEEE Design & Test of Computers, vol. 24, no. 4, pp. 312–321,

July-Aug. 2007.

[7] S. Akbay, A. Halder, A. Chatterjee, and D. Keezer, “Low-cost test of embedded

RF/analog/mixed-signal circuits in SOPs,”IEEE Transactions on Advanced Packag-

ing, vol. 27, no. 2, pp. 352–363, 2004.

[8] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopoulos, “Hybrid-

SBST Methodology for Efficient Testing of Processor Cores,”IEEE Design & Test of

Computers, vol. 25, no. 1, pp. 64–75, Jan.-Feb. 2008.

153

Stel
ios

 N
. N

eo
ph

yto
u

[9] Y. Zorian, S. Dey, and M. Rodgers, “Test of future system-on-chips,”IEEE/ACM

International Conference on Computer Aided Design, pp. 392–398, 2000.

[10] Y. Zorian, E. Marinissen, and S. Dey, “Testing Embedded-Core-Based System Chips,”

IEEE Computer, vol. 32, no. 6, pp. 52–60, 1999.

[11] P. Girard, “Survey of Low-Power Testing of VLSI Circuits,”IEEE Design & Test,

vol. 19, no. 3, pp. 82–92, 2002.

[12] J. Monteiro and S. Devadas,Computer-Aided Design Techniques for Low Power Se-

quential Logic Circuits. Kluwer Academic Publishers Norwell, MA, USA, 1997.

[13] R. Aitken, “Nanometer Technology Effects on Fault Models for IC Testing,”IEEE

Computer, vol. 32, no. 11, pp. 46–51, Nov 1999.

[14] M. K. Michael, S. Neophytou, and S. Tragoudas, “Functions for Quality Transition

Fault Tests,” inProc. of IEEE International Symposium on Quality of Electronic De-

sign, pp. 327–332, 2005.

[15] S. Neophytou and M. K. Michael and S. Tragoudas, “Test Set Enhancement for Qual-

ity Transition Faults using Function-based Methods,” inProc. of the 15th IEEE/ACM

Great Lakes Symposium on VSLI, pp. 182–187, 2005.

[16] S. N. Neophytou, M. K. Michael, and S. Tragoudas, “Functions for Quality Transition-

Fault Tests and Their Applications in Test-Set Enhancement,”IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 3026–

3035, Dec. 2006.

[17] S. Neophytou and M. K. Michael, “Two New Methods for Accurate Test Set Relax-

ation via Test Set Replacement,” inProc. of IEEE International Symposium on Quality

of Electronic Design, 2008.

[18] S. Neophytou, M. K. Michael, and S. Tragoudas, “Efficient Deterministic Test Gener-

ation for BIST Schemes with LFSR Reseeding,”Proc. of IEEE International On-Line

Testing Symposium, pp. 43–50, 2006.

[19] S. Neophytou and M. K. Michael, “Hierarchical Fault Compatibility Identification for

Test Generation with a Small Number of Specified Bits,” inProc. of IEEE Defect and

Fault Tolerance Symposium, pp. 439–447, 2007.

154

Stel
ios

 N
. N

eo
ph

yto
u

[20] S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski, “Generation of Vector Patterns

Through Reseeding of Multipe-Polynominal Linear Feedback Shift Registers.,” in

Proc. of International Test Conference, pp. 120–129, 1992.

[21] C. V. Krishna, A. Jas, and N. A. Touba, “Achieving high Encoding Efficiency with

Partial Dynamic LFSR Reseeding,”ACM Transactions on Design Automation of Elec-

tronic Systems, vol. 9, no. 4, pp. 500–516, 2004.

[22] S. Neophytou and M. K. Michael, “On the Relaxation of n-detect Test Sets,” inProc.

of IEEE International VLSI Test Symposium, pp. 187–192, 2008.

[23] A. Krstic and K. Cheng,Delay Fault Testing for VLSI Circuits. Kluwer Academic

Publishers, 1998.

[24] A. Majhi and V. Agrawal, “Delay Fault Models and Coverage,” inProc. of Interna-

tional Conference on VLSI Design, pp. 364–369, 1998.

[25] K. Cheng and H. Chen, “Classification and Identification of Nonrobust Untestable

Path-Delay Faults,”IEEE Transactions on CAD, vol. 15, no. 8, pp. 845–853, 1996.

[26] C. Lin and S. Reddy, “On Delay Fault Testing in Logic Circuits,”IEEE Transactions

on CAD, vol. 6, no. 5, pp. 694–703, 1987.

[27] G. Smith, “Model for delay faults based upon paths,” inProc. of International Test

Conference, pp. 342–349, 1985.

[28] Y. Levendel and P. Menon, “Transition Faults in Combinational Circuits: Input Tran-

sition Test Generation and Fault Simulation,” inProc. of International Fault Tolerant

Computing Symposium, pp. 278–283, 1986.

[29] A. Pramanick and S. Reddy, “On the Detection of Delay Faults,” inProc. of Interna-

tional Test Conference, pp. 845–856, 1988.

[30] M. Schulz and F. Brglez, “Accelerated Transition Fault Simulation,” inProc. of Con-

ference on Design Automation, pp. 237–243, 1987.

[31] J. Waicukauski, E. Lindbloom, B. Rosen, and V. Iyengar, “Transition Fault Simula-

tion,” IEEE Design & Test of Computers, vol. 4, no. 2, pp. 32–38, 1987.

155

Stel
ios

 N
. N

eo
ph

yto
u

[32] Y. Shao, I. Pomeranz, and S. Reddy, “On Generating High Quality Tests for Transition

Faults,” inProc. of Asian Test Symposium, pp. 1–8, 2002.

[33] H. Konuk, “On Invalidation Mechanisms for Non-Robust Delay Tests,” inProc. of

International Test Conference, pp. 393–399, 2000.

[34] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation.,”IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[35] M. Michael, T. Haniotakis, and S. Tragoudas, “A Unified Framework for Generating

all Propagation Functions for Logic Errors and Events,”IEEE Transactions on CAD,

vol. 23, no. 6, pp. 980–986, 2004.

[36] K. Yang, K. Cheng, and L. Wang, “TranGen: A SAT-Based ATPG for Path-Oriented

Transition Faults,” inProc. of Asia and South Pacific Design Automation Conference,

pp. 92–97, 2004.

[37] I. Hamzaoglu and J. Patel, “Compact two-pattern Test Set Generation for Combina-

tional and Full Scan Circuits,” inProc. of International Test Conference, pp. 944–953,

1998.

[38] P. Agrawal, D. Bhattacharya, and V. D. Agrawal, “Test Generation for Path Delay

Faults Using Binary Decision Diagrams,”IEEE Transactions on Computer, vol. 44,

no. 3, pp. 434–447, 1995.

[39] D. Kirkpatrick and A. Sangiovanni-Vincentelli, “Digital Sensitivity: Predicting Sig-

nal Interaction Using Functional Analysis,” inProc. of International Conference on

Computer-Aided Design, pp. 536–541, 1996.

[40] M. Michael and S. Tragoudas, “Function-based Compact Test Pattern Generation for

Path Delay Faults,”IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 13, no. 8, pp. 996–1001, Aug. 2005.

[41] F. Somenzi, “CUDD: CU Decision Diagram Package.” Dept. of ECE, The University

of Colorando., release 2.3.0 1999.

[42] S. Wang and S. Gupta, “ATPG for Heat Dissipation Minimization During Test Appli-

cation,” IEEE Transactions on Computers, vol. 47, no. 2, pp. 256–262, 1998.

156

Stel
ios

 N
. N

eo
ph

yto
u

[43] I. Pomeranz and S. M. Reddy, “Test Enrichment for Path Delay Faults Using Multiple

Sets of Target Faults,”IEEE Transactions on CAD, vol. 22, no. 1, pp. 82–90, 2003.

[44] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-In Test

for Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback

Shift Registers,”IEEE Transactions on Computers, vol. 44, pp. 223–233, 1995.

[45] C. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial LFSR

Reseeding,” inProc. of International Test Conference, pp. 885–893, 2001.

[46] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Deterministic Built-In Pattern Genera-

tion for High-Performance Circuits Using Twisted Ring Counters,”IEEE Transactions

on VLSI Systems, vol. 8, pp. 633 – 636, 2000.

[47] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational

Circuits,” IEEE Transactions on CAD, vol. 19, no. 8, pp. 957–963, 2000.

[48] K. Miyase and S. Kajihara, “XID: Don’t care Identification of Test Patterns for Com-

binational Circuits,”IEEE Transactions on CAD, vol. 23, no. 2, pp. 321–326, 2004.

[49] A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relaxation Technique for Com-

binational & Full-Scan Sequential Circuits,” inProc. of VLSI Test Symposium, pp. 53–

59, 2002.

[50] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli, “Partitioned ROBDDs

– a compact, canonical and efficiently Manipulable Representation for Boolean Func-

tions,” in Proc. of International Conference on Computer-Aided Design, pp. 547–554,

1996.

[51] J. Chang and C. Lin, “Test Set Compaction for Combinational Circuits,”IEEE Trans-

actions on CAD, vol. 14, no. 11, pp. 1370–1378, 1995.

[52] T. Niermann, R. Roy, J. Patel, and J. Abraham, “Test Compaction for Sequential Cir-

cuits,” IEEE Transactions on CAD, vol. 11, no. 2, pp. 260–267, 1992.

[53] S. Kajihara, K. Ishida, and K. Miyase, “Test Vector Modification for Power Reduction

during Scan Testing,” inProc. of VLSI Test Symposium, pp. 160–165, 2002.

157

Stel
ios

 N
. N

eo
ph

yto
u

[54] S. Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for Dynamic

Compaction in Sequential Circuits,”IEEE Transactions on CAD, vol. 16, no. 10,

pp. 1157–1172, 1997.

[55] I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST: a Method to Generate Com-

pact Test Sets for Combinational Circuits,”IEEE Transactions on CAD, vol. 12, no. 7,

pp. 1040–1049, 1993.

[56] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: a Highly Efficient Automatic

Test Pattern Generation System,”IEEE Transactions on CAD, vol. 7, no. 1, pp. 126–

137, 1988.

[57] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy, “Cost-Effective Generation of

Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits,”IEEE Trans-

actions on CAD, vol. 14, no. 12, pp. 1496–1504, 1995.

[58] R. Karp, “Reducibility Among Combination Problems,”Complexity of Computer

Computations, pp. 85–103, 1972.

[59] M. Bushnell and V. Agrawal,Essentials of Electronic Testing. Kluwer Academic

Publishers, 2000.

[60] D. Drake and S. Hougardy, “A simple approximation algorithm for the weighted

matching problem,”Information Processing Letters, pp. 211–213, 2003.

[61] M. Michael and S. Tagoudas, “ATPG Tools for Delay Faults at the Functional Level,”

ACM Transactions on Design Automation of Electronic Systems, vol. 7, no. 1, pp. 33–

57, 2002.

[62] D. Sahoo, S. Iyer, J. Jain, C. Stangier, A. Narayan, D. Dill, and E. Emerson, “A Parti-

tioning Methodology for BDD-Based Verification,” inProc. of International Confer-

ence on Formal Methods in Computer-Aided Design, pp. 399–413, 2004.

[63] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering

an Efficient SAT Solver,” inProc. of Design Automation Conference, pp. 530–535,

2001.

[64] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust Sat-solver,”Discrete Ap-

plied Mathematics, vol. 155, no. 12, pp. 1549–1561, 2007.

158

Stel
ios

 N
. N

eo
ph

yto
u

[65] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem-

Proving,”Communications of the ACM, vol. 5, no. 7, pp. 394–397, 1962.

[66] T. Larabee, “Test Pattern Generation using Boolean Satisfiability,”IEEE Transactions

on CAD, vol. 1, no. 1, pp. 4 – 15, 1992.

[67] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational Test Gener-

ation Using Satisfiability,”IEEE Transactions on CAD, vol. 15, no. 9, pp. 1167–1176,

1996.

[68] J. Marques-Silva and K. Sakallah, “Boolean satisfiability in electronic design automa-

tion,” in Proc. of ACM/IEEE Design Automation Conference, vol. 5, pp. 675–680,

2000.

[69] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking without

BDDs,” Lecture Notes in Computer Science, vol. 1579, pp. 193–207, 1999.

[70] A. Biere, E. Clarke, R. Raimi, and Y. Zhu, “Verifying Safety Properties of a PowerPC

Microprocessor Using Symbolic Model Checking without BDDs,”Lecture Notes in

Computer Science, vol. 1633, p. 60, 1999.

[71] G. Parthasarathy, M. Iyer, and K. Cheng, “A comparison of BDDs, BMC, and se-

quential SAT for model checking,” inProc. of the IEEE International Workshop on

High-Level Design Validation and Test, 2003.

[72] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and decom-

pressionarchitectures based on Golomb codes,”IEEE Transactions on CAD, vol. 20,

no. 3, pp. 355–368, 2001.

[73] H. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-dimensional test data compres-

sion for scan-based deterministic BIST,” inProc. of International Test Conference,

pp. 894–902, 2001.

[74] J. Rajski, J. Tyszer, and N. Zacharia, “Test Data Decompression for Multiple Scan

Designs with Boundary Scan.,”IEEE Transactions on Computers, vol. 47, no. 11,

pp. 1188–1200, 1998.

[75] K. D. Wagner, C. K. Chin, and E. J. McCluskey, “Pseudorandom Testing,”IEEE

Transactions on Computers, vol. 36, no. 3, pp. 332–343, 1987.

159

Stel
ios

 N
. N

eo
ph

yto
u

[76] M. Lempel, S. Gupta, and M. Breuer, “Test Embedding with Discrete Logarithms,”

IEEE Transactions on CAD, vol. 15, no. 5, pp. 554–566, 1995.

[77] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” inProc. of European

Test Conference, pp. 237–242, 1991.

[78] A. A. Al-Yamani and E. J. McCluskey, “BIST-guided ATPG,” inProc. of Interna-

tional Symposium on Quality of Electronic Design, (USA), pp. 244–249, IEEE Com-

puter Society, 2005.

[79] S. Hellebrand, B. Reeb, H.-J. Wunderlich, and S. Tarnick, “Pattern Generation for

a Deterministic BIST Scheme,” inProc. of International Conference on Computer-

Aided Design, pp. 88–94, 1995.

[80] S. Hellebrand, H.-J. Wunderlich, and H. Liang, “A Mixed Mode BIST Scheme

Based on Reseeding of Folding Counters,” inProc. of International Test Conference,

pp. 778–784, 2000.

[81] E. Kalligeros, D. Kaseridis, X. Kavousianos, and D. Nikolos, “Reseeding-Based Test

Set Embedding with Reduced Test Sequences.,” inProc. of International Symposium

on Quality of Electronic Design, pp. 226–231, 2005.

[82] E. Kalligeros, D. Kaseridis, X. Kavousianos, and D. Nikolos, “Efficient Multiphase

Test Set Embedding for Scan-based Testing,” inProc. of International Symposium on

Quality of Electronic Design, pp. 433 – 438, 2006.

[83] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase BIST: a new reseed-

ing technique for high test-data compression.,”IEEE Transactions on CAD, vol. 23,

no. 10, pp. 1429– 1446, 2004.

[84] L. Li and K. Chakrabarty, “Hybrid BIST Based on Repeating Sequences and Cluster

Analysis,” inProc. of Design Automation and Test in Europe, vol. 2, pp. 1142–1147,

2005.

[85] S. Swaminathan and K. Chakrabarty, “On Using Twisted-Ring Counters for Test Set

Embedding in BIST,”Journal of Electronic Testing, Theory and Applications, vol. 17,

pp. 529 – 542, Dec 2001.

160

Stel
ios

 N
. N

eo
ph

yto
u

[86] P. Flores, H. Neto, and J. Marques-Silva, “An Exact Solution to the Minimum Size

Test Pattern Problem,”ACM Transactions on Design Automation of Electronic Sys-

tems, vol. 6, no. 4, pp. 629–644, 2001.

[87] H. Lee and D. Ha, “An efficient forward fault simulation algorithm based on the

parallel pattern single fault propagation,” inProc. of International Test Conference,

pp. 946–955, Oct 1991.

[88] K. Butler and M. Mercer, “The Influences of Fault Type and Topology on Fault Model

Performance and the Implications to Test and Testable Design,” inProc. of Design

Automation Conference, pp. 673–678, 1990.

[89] J. Dworak, J. D. Wicker, S. Lee, M. R. Grimaila, M. R. Mercer, K. M. Butler, B. Stew-

art, and L.-C. Wang, “Defect-Oriented Testing and Defective-Part-Level Prediction,”

IEEE Design & Test of Computers, vol. 18, no. 1, pp. 31–41, 2001.

[90] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tama-

rapalli, K.-H. Tsai, and J. Rajski, “Impact of Multiple-Detect Test Patterns on Product

Quality,” in Proc. of International Test Conference, pp. 1031–1040, 2003.

[91] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke, “Embedded

Multi-Detect ATPG and Its Effect on the Detection of Unmodeled Defects,” inProc.

of International Test Conference, pp. 1–10, 2007.

[92] K. Kantipudi and V. Agrawal, “A Reduced Complexity Algorithm for Minimizing

N-Detect Tests,” inProc. of VLSI Design, pp. 492–497, 2007.

[93] E. J. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual Defects,” inProc. of

International Test Conference, pp. 336–343, 2000.

[94] J. Nelson, J. Brown, R. Desineni, and R. Blanton, “Multiple-detect ATPG based on

physical neighborhoods,” inProc. of Design Automation Conference, pp. 1099–1102,

2006.

[95] I. Pomeranz and S. Reddy, “On the Use of Fault Dominance in n-Detection Test Gen-

eration,” inProc. of of IEEE International VLSI Test Symposium, pp. 352–357, 2001.

[96] I. Pomeranz and S. M. Reddy, “Definitions of the Numbers of Detections of Target

Faults and Their Effectiveness in Guiding Test Generation for High Defect Coverage,”

in Proc. of Design Automation and Test in Europe, pp. 504–508, 2001.

161

Stel
ios

 N
. N

eo
ph

yto
u

[97] I. Pomeranz and S. M. Reddy, “Forming N-detection test sets without test generation,”

ACM Transactions on Design Automation of Electronic Systems, vol. 12, no. 2, p. 18,

2007.

[98] C.-W. Tseng and E. J. McCluskey, “Multiple-output Propagation Transition Fault

Test,” inProc. of International Test Conference, pp. 358–366, 2001.

[99] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee, A. Ojha, and R. Guo, “An Experi-

mental Study of N-Detect Scan ATPG Patterns on a Processor,” inProc. of VLSI Test

Symposium, pp. 23–28, 2004.

[100] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Techniques for Minimiz-

ing Power Dissipation in Scan and Combinational Circuits During Test Application,”

IEEE Transactions on CAD, vol. 17, no. 12, p. 1325, 1998.

[101] H. Lee and D. Ha, “Atalanta: an Efficient ATPG for Combinational Circuits,” tech.

rep., Dept of Electrical Eng., Virginia Polytechnic Institute and State University, 1993.

[102] R. Adapa, S. Tragoudas, and M. Michael, “Evaluation of Collapsing Methods for

Fault Diagnosis,” inProc. of IEEE International VLSI Test Symposium, pp. 439–444,

2006.

[103] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms. McGraw-Hill,

1990.

[104] K. C. Y. Mei, “Bridging and stuck-at faults,”IEEE Transactions on Computers,

vol. 23, no. 7, pp. 720–727, 1974.

[105] H. Tang, G. Chen, S. M. Reddy, C. Wang, J. Rajski, and I. Pomeranz, “Defect aware

test patterns,” inProc. of Design Automation and Test in Europe, pp. 450–455, 2005.

[106] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurthy, N. Tama-

rapalli, K.-H. Tsai, and J. Rajski, “Impact of Multiple-Detect Test Patterns on Product

Quality,” in Proc. of International Test Conference, pp. 1031–1040, 2003.

[107] J. Dworak, M. R. Grimaila, S. Lee, L.-C. Wang, and M. R. Mecer, “Enhanced DO-

RE-ME Based Defect Level Prediction Using Defect Site Aggregation-MPG-D,” in

Proc. of International Test Conference, pp. 930–939, 2000.

162

Stel
ios

 N
. N

eo
ph

yto
u

[108] J. Dworak, B. Cobb, J. Wingfield, and M. R. Mercer, “Balanced excitation and its

effect on the fortuitous detection of dynamic defects,” inProc. of Design Automation

and Test in Europe, pp. 1066–1071, 2004.

[109] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H. Balachandran,

B. Houchins, V. Mathur, J. Park, L.-C. Wang, and M. R. Mercer, “REDO - Proba-

bilistic Excitation and Deterministic Observation - First Commercial Experiment,” in

Proc. of VLSI Test Symposium, pp. 268–274, 1999.

163

Stel
ios

 N
. N

eo
ph

yto
u

Stel
ios

 N
. N

eo
ph

yto
u

V ITA

Contact Stelios Neophytou

Information: E-mail: sneophytou@ucy.ac.cy, sneophytou@hotmail.com

Education

2003- 2009 PhD candidate at Electrical and Computer Engineering Department,

University of Cyprus.

1998 - 2003 Engineering Diploma from Computer Engineering and Informatics

Department, University of Patras, Greece. Grade: 8.80 (distinction).

Publications

1. M. K. Michael, S. Neophytou, and S. Tragoudas, “Functions for Quality Transition

Fault Tests”,in Proc. of IEEE International Symposium on Quality of Electronic De-

sign, pp. 327-332, 2005.

2. S. Neophytou and M. K. Michael and S. Tragoudas, “Test Set Enhancement for Quality

Transition Faults using Function-based Methods”,in Proc. of the 15th IEEE/ACM

Great Lakes Symposium on VSLI, pp. 182-187, 2005.

3. S. Neophytou, M. K. Michael, and S. Tragoudas, “Efficient Deterministic Test Gen-

eration for BIST Schemes with LFSR Reseeding”,in Proc. of IEEE International

On-Line Testing Symposium, pp. 43-50, 2006.

4. S. N. Neophytou, M. K. Michael, and S. Tragoudas, “Functions for Quality Transition-

Fault Tests and Their Applications in Test-Set Enhancement”,IEEE Transactions on

165

Stel
ios

 N
. N

eo
ph

yto
u

Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 3026-

3035, Dec. 2006.

5. S. Neophytou and M. K. Michael, “Hierarchical Fault Compatibility Identification for

Test Generation with a Small Number of Specified Bits”,in Proc. of IEEE Defect and

Fault Tolerance Symposium, pp. 439-447, Sep. 2007.

6. S. Neophytou and M. K. Michael, “Two New Methods for Accurate Test Set Relax-

ation via Test Set Replacement”,in Proc. of IEEE International Symposium on Quality

of Electronic Design, pp. 827-831, Mar. 2008.

7. S. Neophytou and M. K. Michael, “On the Relaxation of N-detect Test Sets”,in Proc.

of IEEE VLSI Test Symposium, pp. 187-192, Apr. 2008.

166

Stel
ios

 N
. N

eo
ph

yto
u

	Neophytou_PHD_Part1
	Neophytou_PHD_Part2
	Neophytou_PHD_Part3
	Neophytou_PHD_Part4
	Neophytou_PHD_Part5
	Neophytou_PHD_Part6
	Neophytou_PHD_Part7
	Neophytou_PHD_Part8
	Neophytou_PHD_Part9
	Neophytou_PHD_Part10
	Neophytou_PHD_Part11
	Neophytou_PHD_Part12
	Neophytou_PHD_Part13
	Neophytou_PHD_Part14
	Neophytou_PHD_Part15
	Neophytou_PHD_Part16
	Neophytou_PHD_Part17
	Neophytou_PHD_Part18
	Neophytou_PHD_Part19
	Neophytou_PHD_Part20
	Neophytou_PHD_Part21
	Neophytou_PHD_Part22
	Neophytou_PHD_Part23
	Neophytou_PHD_Part24
	Neophytou_PHD_Part25
	Neophytou_PHD_Part26
	Neophytou_PHD_Part27
	Neophytou_PHD_Part28
	Neophytou_PHD_Part29
	Neophytou_PHD_Part30
	Neophytou_PHD_Part31
	Neophytou_PHD_Part32
	Neophytou_PHD_Part33
	Neophytou_PHD_Part34
	Neophytou_PHD_Part35
	Neophytou_PHD_Part36
	Neophytou_PHD_Part37
	Neophytou_PHD_Part38
	Neophytou_PHD_Part39
	Neophytou_PHD_Part40
	Neophytou_PHD_Part41
	Neophytou_PHD_Part42
	Neophytou_PHD_Part43
	Neophytou_PHD_Part44
	Neophytou_PHD_Part45
	Neophytou_PHD_Part46
	Neophytou_PHD_Part47
	Neophytou_PHD_Part48
	Neophytou_PHD_Part49
	Neophytou_PHD_Part50
	Neophytou_PHD_Part51
	Neophytou_PHD_Part52
	Neophytou_PHD_Part53
	Neophytou_PHD_Part54
	Neophytou_PHD_Part55
	Neophytou_PHD_Part56
	Neophytou_PHD_Part57
	Neophytou_PHD_Part58
	Neophytou_PHD_Part59
	Neophytou_PHD_Part60
	Neophytou_PHD_Part61
	Neophytou_PHD_Part62
	Neophytou_PHD_Part63
	Neophytou_PHD_Part64
	Neophytou_PHD_Part65
	Neophytou_PHD_Part66
	Neophytou_PHD_Part67
	Neophytou_PHD_Part68
	Neophytou_PHD_Part69
	Neophytou_PHD_Part70
	Neophytou_PHD_Part71
	Neophytou_PHD_Part72
	Neophytou_PHD_Part73
	Neophytou_PHD_Part74
	Neophytou_PHD_Part75
	Neophytou_PHD_Part76
	Neophytou_PHD_Part77
	Neophytou_PHD_Part78
	Neophytou_PHD_Part79
	Neophytou_PHD_Part80
	Neophytou_PHD_Part81
	Neophytou_PHD_Part82
	Neophytou_PHD_Part83
	Neophytou_PHD_Part84
	Neophytou_PHD_Part85
	Neophytou_PHD_Part86
	Neophytou_PHD_Part87
	Neophytou_PHD_Part88
	Neophytou_PHD_Part89
	Neophytou_PHD_Part90
	Neophytou_PHD_Part91
	Neophytou_PHD_Part92
	Neophytou_PHD_Part93
	Neophytou_PHD_Part94
	Neophytou_PHD_Part95
	Neophytou_PHD_Part96
	Neophytou_PHD_Part97
	Neophytou_PHD_Part98
	Neophytou_PHD_Part99
	Neophytou_PHD_Part100
	Neophytou_PHD_Part101
	Neophytou_PHD_Part102
	Neophytou_PHD_Part103
	Neophytou_PHD_Part104
	Neophytou_PHD_Part105
	Neophytou_PHD_Part106
	Neophytou_PHD_Part107
	Neophytou_PHD_Part108
	Neophytou_PHD_Part109
	Neophytou_PHD_Part110
	Neophytou_PHD_Part111
	Neophytou_PHD_Part112
	Neophytou_PHD_Part113
	Neophytou_PHD_Part114
	Neophytou_PHD_Part115
	Neophytou_PHD_Part116
	Neophytou_PHD_Part117
	Neophytou_PHD_Part118
	Neophytou_PHD_Part119
	Neophytou_PHD_Part120
	Neophytou_PHD_Part121
	Neophytou_PHD_Part122
	Neophytou_PHD_Part123
	Neophytou_PHD_Part124
	Neophytou_PHD_Part125
	Neophytou_PHD_Part126
	Neophytou_PHD_Part127
	Neophytou_PHD_Part128
	Neophytou_PHD_Part129
	Neophytou_PHD_Part130
	Neophytou_PHD_Part131
	Neophytou_PHD_Part132
	Neophytou_PHD_Part133
	Neophytou_PHD_Part134
	Neophytou_PHD_Part135
	Neophytou_PHD_Part136
	Neophytou_PHD_Part137
	Neophytou_PHD_Part138
	Neophytou_PHD_Part139
	Neophytou_PHD_Part140
	Neophytou_PHD_Part141
	Neophytou_PHD_Part142
	Neophytou_PHD_Part143
	Neophytou_PHD_Part144
	Neophytou_PHD_Part145
	Neophytou_PHD_Part146
	Neophytou_PHD_Part147
	Neophytou_PHD_Part148
	Neophytou_PHD_Part149
	Neophytou_PHD_Part150
	Neophytou_PHD_Part151
	Neophytou_PHD_Part152
	Neophytou_PHD_Part153
	Neophytou_PHD_Part154
	Neophytou_PHD_Part155
	Neophytou_PHD_Part156
	Neophytou_PHD_Part157
	Neophytou_PHD_Part158
	Neophytou_PHD_Part159
	Neophytou_PHD_Part160
	Neophytou_PHD_Part161
	Neophytou_PHD_Part162
	Neophytou_PHD_Part163
	Neophytou_PHD_Part164
	Neophytou_PHD_Part165
	Neophytou_PHD_Part166
	Neophytou_PHD_Part167
	Neophytou_PHD_Part168
	Neophytou_PHD_Part169
	Neophytou_PHD_Part170
	Neophytou_PHD_Part171
	Neophytou_PHD_Part172
	Neophytou_PHD_Part173
	Neophytou_PHD_Part174
	Neophytou_PHD_Part175
	Neophytou_PHD_Part176
	Neophytou_PHD_Part177
	Neophytou_PHD_Part178
	Neophytou_PHD_Part179
	Neophytou_PHD_Part180
	Neophytou_PHD_Part181
	Neophytou_PHD_Part182
	Neophytou_PHD_Part183

