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Abstract in Greek

H �a	mìthta èqei diadramatÐ�i �mantikì rìlo �hn an�lu� twn qrono�ir¸n

tis teleutaÐes dekaetÐes. H upìje� aut , an kai elku�ik  apo jewrhtik  pleur�,

epeid  epitrèpei thn an�ptuxh mias kal� tekmhriwmènhs �ati�ik s �mpera
a-

tologÐas, eÐnai periori�ik  � efarmogès. Mia pio reali�ik  proëggi� �hn

an�lu� twn qrono�ir¸n eÐnai aut  pou ja epitrèpei th dom  ex�rth�s ths �o-

qa�ik s anèlixhs kai pio �gkekrimèna tis idiìthtes deutèras t�xhs na all�zoun

omal� me to qrìno. H an�ptuxh mias tètoias proëggi�s epib�llei thn Ôparxh

k�poiwn periori
¸n �is apoklÐ�is apì th �a	mìthta gia na gÐnei dunat  mia

�ati�ik �mpera
atologÐa. 'Enas trìpos gia na melet �ume�ati�ik �mperas-

matologÐa gia qronik� metaballìmenes anelÐxeis eÐnai na aux�noume thn plhroforÐa

pou èqoume topik� gia thn anèlixh ì� aux�netai to mègejos ths qrono�ir�s. Top-

ik� ��	mes anelÐxeis eÐnai mh ��	mes �oqa�ikès anelÐxeis twn opoÐwn oi ropès

pr¸ths kai deÔterhs t�xhs all�zoun arg� �o qrìno.

H paroÔ� diatrib  èqei dÔo kurÐws �opoÔs:

1) Na anaptÔxei mia mèjodo anadeigmatolhyÐas pou na dhmiourgeÐ yeutopragmat¸-

�is tou topikoÔ periodogr�mmatos mias topik� ��	mhs �oqa�ik s anèlixhs.

2) Na protajeÐ ènas èlegqos ths upìje�s ìti h qronik� metaballìmenh fa
atik 

puknìthta èqei mia parametrik    hmiparametrik  dom . O èlegqos mporeÐ na efar-

mo�eÐ kai � qronik� metaballìmenes anelÐxeis autopalindrìmi�s.

H mèjodos anadeigmatolhyÐas pou proteÐnetai dhmiourgeÐ yeudoantÐgrafa tou top-

ikoÔ periodogr�mmatos kai �ndu�zei mÐa parametrik  proëggi� �o qrìno me mÐa

aparametrik  proëggi� f�
atos. Efarmìzoume pr¸ta topik� èna qronik� meta-

ballìmeno montèlo autopalindrìmi�s ¸�e na perigr�youme ta ba	k� qarakthris-

tik� ths anèlixhs. 'Enas, topik� upologi
ènos, mh parametrikìs diorjwt s �o
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x

fa
atikì pedÐo qrh	mopoieÐtai met� gia na beltiwjeÐ h parametrik  autopalindrìmi�.

DiereunoÔme tis a�mptwtikès idiìthtes ths mejìdou �is oikogèneies twn topik¸n

fa
atik¸n mè�n kai topik¸n�ati�ik¸n phlÐkou. A�mptwtik  apotele
atikìthta

ths mejodou anadeigmatolhyÐas apodeiknÔetai � dÔo peript¸�is. H mia afor� thn

perÐptw� ìpou h ��	mh proëggi� ths anèlixhs mporeÐ na para�ajeÐ �n mia

autopalindrìmi� �peirhs t�xhs kai h t�xh tou montèlou pou efarmìzetai teÐnei

�o �peiro kai h �llh ìtan h t�xh tou montèlou eÐnai �ajer . Pro�moi¸�is

exet�zoun th dunatìthta ths mejìdou na dÐnei kaloÔs ektimhtès twn po�t twn pou

mas endiafèroun � deÐgmata pepera
ènou megèjous. H an�lu� oloklhr¸netai me

thn parouÓa� kai efarmog  ths mejìdou � pragmatik� dedomèna.

O èlegqos upojè�wn pou proteÐnetai, baÓzetai �hn apì�a� L2 tou�ajmi
ènou

to-pikoÔ periodogr�mmatos apì thn anamenìmenh tim  tou k�tw apì th mhdenik 

upìje�. H��jmi� gÐnetai me thn ektim¸menh hmiparametrik  fa
atik  puknìthta

tou montèlou. H a�mptwtik  katanom  ths elegqo�n�rth�s pou proteÐnetai

èqei upologi�eÐ k�tw apì th mhdenik  upìje� gia mia meg�lh oikogèneia hmi-

parametrik¸n montèlwn topik���	mwn�oqa�ik¸n anelÐxewn. San eidik  perÐptw�,

gÐnetai an�lu� tou elègqou ths Ôparxhs mias qronik� metaballìmenhs autopalindrìmi�s.

Gia thn kalÔterh proëggi� ths katanom s ths elegqo�n�rth�s k�tw apì th mh-

denik  upìje� proteÐnetai mia mèjodos anadeigmatolhyÐas kai apodeiknÔetai jew-

rhtik� ìti aut  odhgeÐ �a ��� apotelè
ata. Pro�moi¸�is parou	�zoun thn

apotele
atikìthta ths mejodologÐas anadeigmatolhyÐas kai thn apodotikìthta

tou elègqou � pepera
èna deÐgmata.
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Abstract

Stationarity has played a major role in time series analysis during the last decades.

Although this assumption is attractive from a theoretical point of view because it

allows for the development of statistical inference procedures with good properties,

it seems rather restrictive in applications. A more realistic framework in time series

analysis is one which allows for the dependence structure of the underlying stochas-

tic process and more specifically for its second order properties to vary smoothly

over time. Developing a useful approach of statistical inference in such a context

requires however, that some restrictions have to be imposed on the deviations from

stationarity which are allowed. One way to investigate properties of statistical infer-

ence procedures for time-varying stochastic processes, is to allow for the amount of

local information available to increase to infinity as the sample size increases. Lo-

cally stationary processes are non-stationary stochastic processes whose second order

structure varies smoothly over time.

The aim of this thesis is twofold:

1) To develop a method to bootstrap the local periodogram of a locally stationary

process and

2) To propose a test of the hypothesis that the time varying spectral density of a

locally stationary process has a semiparametric structure including that of the time

varying autoregressive moving average model.

The bootstrap method proposed generates pseudo local periodogram ordinates by

combining a parametric time and non-parametric frequency domain bootstrap ap-

proach. We first fit locally a time varying autoregressive model in order to capture

the essential characteristics of the underlying process. A locally calculated non-

parametric correction in the frequency domain is then used in order to improve upon
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xii

the locally parametric autoregressive fit. Some remarks on choosing the resampling

parameters are considered. As an application, we investigate the asymptotic proper-

ties of the bootstrap method proposed applied to the class of local spectral means and

local ratio statistics. Asymptotic normality of these statistics have been proven un-

der two cases, i.e. when the stationary approximation of the process has an infinitive

order autoregressive and the order of the fitted model tends to infinitive and when

the order of the fitted model is fixed. Some simulations demonstrate the ability of

our method to give accurate estimates of the quantities of interest and an application

to an earthquake data set is presented.

Concerning the test introduced, it is based on the L2-distance of a kernel smoothed

version of the local periodogram rescaled by the estimated semiparametric, time

varying spectral density. The asymptotic distribution of the test statistic proposed is

derived under the null hypothesis and it is shown that this distribution is a Gaussian

distribution with the nice feature that its parameters do not depend on characteristics

or parameters of the underlying process. As an interesting special case, we consider

the problem of testing the presence of a time-varying autoregressive structure. A

bootstrap procedure to approximate more accurately the distribution of the test

statistic under the null hypothesis is proposed and theoretically justified. Remarks

on choosing the resampling parameters are considered. Some simulations illustrate

that the bootstrap provides a considerably better approximation of the distribution

of the test statistic under the null hypothesis than the normal approximation.
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Chapter 1

Introduction

1.1 Locally stationary processes

Most existing models in time series analysis assume that the underlying process is

second-order stationary. This assumption is useful in order to have estimators for

certain characteristics or parameters of the process with good statistical properties,

such as consistency, efficiency or central limit theorems. Weak stationarity refers to

the property that the first and second order moment structure of a stochastic process

is invariant with respect to time translations. It has been the dominating paradigm

in time series analysis for many decades. The theoretical setting of weak stationarity

together with an appropriate notion of weak dependence have been proven to be quite

effective in time series analysis dealing to the development of a powerful asymptotic

theory capable to investigate properties of statistical inference procedures, ref. [36],

[4] , [5], [1]. An important theorem for weak stationary processes is the spectral

representation theorem, cf. Brockwell and Davis [5], which states that it is possible

to write one stationary process as a stochastic integral i.e.

Xt =

∫ π

−π

eiλtA(λ)dξ(λ), t ∈ N (1.1.1)

with a transfer function A(λ) and an orthogonal increment process ξ(λ).

However, a more realistic framework in time series analysis is one which assumes that

the second order characteristics of the observed process vary over time. Priestley [35]

considers stochastic processes with a time varying spectral representation similar to

2
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that of stationary process; cf. also [36]. The development of statistical inference

procedures for such processes has attracted considerably interest in the literature.

Valuable statistical inference requires that the amount of local information available

increases to infinity as the sample size increases. In this context, a framework for

the development of an asymptotic theory of statistical inference has been provided

by Dahlhaus [9] who introduced the class of locally stationary processes. Locally

stationary processes are stochastic processes whose spectral structure varies smoothly

over time. This concept can be extended/modified in several directions. For instance,

Nason et al. [27] adopted the concept of local stationarity but replaced the spectral

representation and the Fourier basis involved by a representation with respect to a

wavelets basis; see also [30].

The idea of a nonstationary process with time-varying characteristics was made rigor-

ous in Priestley’s theory of processes with evolutionary spectra. Priestly investigates

processes {Xt, t ∈ N}, where Xt has time varying spectral representation,

Xt =

∫ π

−π

eiλtAt(λ)dξ(λ), t ∈ N (1.1.2)

with a time-varying transfer function At(λ) and an orthogonal increment process

ξ(λ). This approach, however, do not allow for asymptotic considerations due to the

nature of the nonstationarity considered. As a result, important tools like consistency,

asymptotic normality, efficiency etc. can not be proved in the theoretical treatment

of statistical procedures for such processes.

In order to overcome this problem Dahlhaus [9] introduced processes with time-

varying spectral representation, an approach similar to that in nonparametric regres-

sion. A simple example is the process

Xt = σtYt, t = 0, 1, 2, . . . (1.1.3)

where Yt, t = 0, 1, 2, . . . is a zero mean stationary process with unit variance and

σt is a deterministic positive function of the time parameter t. Here the degree of

nonstationarity of the process Xt is measured by its time-varying variance function

σt. Suppose that we have observations X1, X2, . . . , XT and that we want to estimate

the deterministic function σt. For this some regularity assumptions on the function
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4

σt have to be imposed. However, to estimate the variance function σt only T obser-

vations are available and with this approach we do not get any increasing amount of

information on the local structure of σt as the sample size increases. Thus, asymptotic

considerations are difficult to use in the statistical analysis of such processes.

To set up an adequate asymptotic theory for nonstationary processes, Dahlhaus [9]

proceeds with a rescaling of the time variable transforming the support of σt to be

the interval [0, 1]. The process is then rewritten as,

Xt,T = σ(
t

T
)Yt, (1.1.4)

where {XT}T∈N = {Xt,T , t = 1, . . . , T}T∈N, refers now to a triangular array of stochas-

tic processes. In this approach we have two scales of time: the observed time which

is the usual scale of time 1, 2, . . . , T , and, the rescaled time defined on [0, 1]. This

rescaling is a standard approach in nonparametric statistics. Now, letting T tend-

ing to infinity means in this context that more and more observations on the local

structure of the function σ(u) are available.

A second example is the time-varying AR(1) processes

Xt = a(t)Xt−1 + εt, (1.1.5)

where the εt’s are assumed to be i.i.d. standard normal random variables. As in

nonparametric regression and using a rescaling principle like the one described above,

the function a(t) is rescaled to the unit interval and a triangular array of stochastic

processes {XT}T∈N = {Xt,T , t = 1, . . . , T}T∈N is considered, where

Xt,T = a(
t

T
)Xt−1,T + εt. (1.1.6)

Comparing the process (1.1.6) with the spectral representation (1.1.2) one could

investigate a process of the form

Xt,T =

∫ π

−π

eiλtA(
t

T
, λ)dξ(λ). (1.1.7)

However, it can be shown that the model (1.1.6) has not exact but only approximative

a solution of the form (1.1.7), see [9]. This observation led Dahlhaus [9] to introduce

the following, general definition of locally stationary processes.

Mari
os

 Serg
ide

s



5

Definition 1.1.1. A triangular array of stochastic processes Xt,T (t=1,. . . ,T), T ∈ N
is called locally stationary with transfer function A0 if there exists a representation

Xt,T =

∫ π

−π

eiλtA0
t,T (λ)dξ(λ), (1.1.8)

where the following holds

(i) ξ(λ) is a stochastic process on [−π, π] with ξ(λ) = ξ(−λ) and

cumk{dξ(λ1), . . . , dξ(λk)} = η

(
k∑

j=1

λj

)
gk(λ1, . . . , λk−1)dλ1 . . . dλk

where cumk{·} denotes the kth order cumulant, g1 = 0, g2(λ) = 1, |gk(λ1, . . . , λk−1)| ≤
constk for all k and η(λ) =

∑∞
j=−∞ δ(λ+2πj) is the period 2π extension of the Dirac

delta function.

(ii) There exists constant K and a 2π-periodic function A : [0, 1] × R → C with

A(u,−λ) = A(u, λ) such that

sup
t,λ

∣∣∣∣A0
t,T (λ)− A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1 (1.1.9)

for all T . A(u, λ) is assumed to be continuous in u.

Remark: The complicated construction with the two functions A( t
T
, λ) and A0

t,T (λ)

is necessary because on the one hand the smoothness assumptions on A( t
T
, λ) guaran-

tees that the process has a locally stationary behavior and on the other hand A0
t,T (λ)

ensures that the class of processes considered is rich enough to include interesting

applications like the time-varying model (1.1.6).

Another definition for locally stationary processes was given by Dahlhaus and Polonik

[16] using an infinitive order, time-varying moving average representation instead of

the spectral representation (1.1.8).

Definition 1.1.2. A triangular array {XT}T∈N of stochastic processes XT = {Xt,T , t =

1, . . . , T} is called locally stationary if Xt,T fulfills the following conditions.

(i) Xt,T has the representation

Xt,T =
∞∑

j=−∞
αt,T (j)εt−j (1.1.10)
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6

where εt are independent, identically distributed random variables with Eεt = 0,

Eε2
t = 1 and Eεt

4 < ∞. Let κ4 = Eεt
4 − 3 be the fourth cumulant of εt.

(ii) A sequence {`(j), j ∈ Z} satisfying

∞∑
j=−∞

|j|
`(j)

< ∞

exists, such that

sup
t
|αt,T (j)| ≤ K

`(j)
. (1.1.11)

(iii) Functions α(·, j) : (0, 1] → R exist satisfying

sup
u
|α(u, j)| ≤ K

`(j)
, (1.1.12)

sup
u,v
|α(u, j)− α(v, j)| ≤ K|u− v|

`(j)
(1.1.13)

and

sup
t

∣∣∣∣αt,T (j)− α(
t

T
, j)

∣∣∣∣ ≤
K

T`(j)
. (1.1.14)

Dahlhaus [11] discusses the equivalence of the spectral and the infinite moving average

representations of a locally stationary process.

The concept of local stationarity has been extended, modified in several directions

during the last decade. For instance, Nason et al. [27] introduced the class of locally

stationary wavelet processes replacing the Fourier basis by a wavelet basis. Locally

stationary wavelet processes have the representation

Xt,T =
∑

j

∑

k

w0
j,k;T ψjk(t)ξjt (1.1.15)

where ξjt is a random orthonormal increment sequence and ψjk(t) a discrete, non-

decimated family of wavelets. Also they assume that there exist, appropriately de-

fined, functions Wj(z) and constants Cj such that similar to (1.1.14),

sup
k

∣∣w0
j,k;T −Wj(k/T )

∣∣ ≤ Cj/T. (1.1.16)

In the following we elaborate on the stationary approximation X̃t(u) of a locally

stationary process. Let u ∈ [0, 1] be fixed and define
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X̃t(u) :=

∫ π

−π

eiλtA(u, λ)dξ(λ), (1.1.17)

which has the following moving average representation

X̃t(u) :=
∞∑

j=−∞
α (u, j) εt−j. (1.1.18)

It then follows by simple algebra that

|Xt,T − X̃t(u)| ≤ K{|t/T − u|+ 1/T}Ut, (1.1.19)

where {Ut} is the stationary process

Ut :=
∞∑

j=−∞
`−1(j) |εt−j| . (1.1.20)

Thus, according to (1.1.19) the stationary process X̃t(u) is an approximation of Xt,T

in a local neighborhood around u = t/T ; cf. [17] and [40].

Recall that the spectral density of a stationary process Xt =
∫ π

−π
eiλtA(λ)dξ(λ), which

satisfies
∑

h γ(h) < ∞ where γ(·) is the covariance function of the process, is defined

by f(λ) = (2π)−1|A(λ)|2.
Similarly to this for locally stationary processes we have the following definition of a

time-varying spectral density.

Definition 1.1.3. The function

f(u, λ) =
1

2π
|A(u, λ)|2, (1.1.21)

where A(·, ·) is given in Definition 1.1.1 is the time-varying spectral density of a

locally stationary process.

Definition 1.1.4. The Fourier transform of the time-varying spectral density is the

time-varying covariance of lag k, k ∈ Z, at time u, u ∈ (0, 1), and it is defined by

c(u, k) :=

∫ π

−π

f(u, λ)eiλtdλ. (1.1.22)
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Note that f(u, λ) is the spectral density of the stationary approximation {X̃t(u), t ∈
Z} and that ∫ π

−π

|fT (u, λ)− f(u, λ)|2 dλ = o(1), as T →∞ (1.1.23)

where fT (u, λ) = (2π)−1
∑∞

k=−∞ Cov(X[uT−k/2],T , X[uT+k/2],T ) exp(−iλk) ; cf. [7] The-

orem 2.2. This means that if the process is locally stationary with a smooth function

A(u, λ) then f(u, λ) is uniquely defined by the triangular array.

1.2 Resampling the local periodogram

In inferring properties of stationary processes in the frequency domain one important

tool is the periodogram IT (λ) defined by

IT (λ) =
1

2πT

∣∣∣∣∣
T∑

t=1

Xte
−iλt

∣∣∣∣∣

2

, (1.2.24)

where X1, X2, . . . , XT are observations.

The periodogram ordinates behave for large sample sizes like independent, exponen-

tially distributed random variables and they are asymptotically unbiased but not

consistent estimators of the spectral density.

When dealing with locally stationary process one possibility is to consider the pe-

riodogram over a segment of length N length of consecutive observations around a

time point [uT ], u ∈ (0, 1), of the observed series.

Definition 1.2.1. The local periodogram is defined for every λ ∈ [−π, π] and u ∈
[0, 1] by

IN(u, λ) =
1

2πN

∣∣∣
N−1∑
s=0

X[uT ]−N/2+s+1,T e−isλ
∣∣∣
2

, (1.2.25)

where X1,T , X2,T , . . . , XT,T are observations.

A common assumption in inferring properties of statistics based on the local peri-

odogram is that the ”time window” width N tends to infinity at an appropriate rate

as the sample size increases.

Several interesting classes of statistics used in the analysis of locally stationary pro-

cesses can be expressed as functions of the local periodogram. For instance, spectral
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means are obtained by averaging over all frequencies the local periodogram multi-

plied by an appropriately defined complex valued function φ in [−π, π]. To be more

specific, such a statistic is given for u ∈ (0, 1), by

MT (u, φ) =

∫ π

−π

φ(λ)IN(u, λ)dλ. (1.2.26)

An interesting special cases of MT (u, φ) which is frequently used in inferring prop-

erties of locally stationary processes is obtained if we set φ(λ) = exp(iλτ) for some

τ , 0 ≤ τ ≤ N − 1. For this choice of φ the above statistic becomes the sample time

varying covariance ĉ(u, τ) given by

ĉ(u, τ) =

∫ π

−π

exp(iλτ)IN(u, λ)dλ

=
1

N

N−1∑
k,l=0

k−l=τ

X[uT ]−N/2+k+1,T X[uT ]−N/2+l+1,T .

Notice that ĉ(u, τ) is an estimator of the time varying covariance

c(u, τ) =

π∫

−π

exp(−iλτ)f(u, λ)dλ,

where f(u, λ) denotes the local spectral density of {XT}T∈N.

Another class of statistics derived from that of local spectral means is that of ratio

statistics which are defined for u ∈ (0, 1) by

RT (u, φ) =
MT (u, φ)

MT (u, 1)

=

∫ π

−π
φ(λ)IN(u, λ)dλ∫ π

−π
IN(u, λ)dλ

. (1.2.27)

An important member of the class (1.2.27) is the time varying sample autocorrelation

ρ̂(u, τ) = ĉ(u, τ)/ĉ(u, 0).

The asymptotic behavior of statistics like MT (u, φ) and RT (u, φ) has been investigated

by Dahlhaus [9] and Dahlhaus and Giraitis [13]. Under certain smoothness conditions

they showed asymptotic normality of appropriately centered and rescaled versions of

these statistics. In the second chapter of the thesis we use our bootstrap method

to bootstrap the local periodogram of a locally stationary stationary processes, to

approximate the asymptotic distribution of statistics like MT (u, φ) and RT (u, φ).
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Bootstrap methods for locally stationary processes have received little attention in

the literature. A time domain local block bootstrap procedure for locally station-

ary processes has been proposed by Paparoditis and Politis [34] and by Dowla et

al. [18]. For stationary processes frequency domain bootstrap methods have been

considered among others, by Nordgaard [29] and Theiler et al. [41]. Using a similar

to (2.1.1) property for the periodogram of a stationary process, Hurvich and Zeger

[22] and Franke and Härdle [19], proposed a nonparametric residual-based bootstrap

method. Dahlhaus and Janas [12] extended the validity of this bootstrap procedure

to the class of the ratio statistics and to Whittle estimators. An alternative idea to

bootstrap the periodogram of a stationary process has been proposed by Paparoditis

and Politis [33]. An overview of the different methods to bootstrap stationary time

series in the frequency domain is given by Paparoditis [32]. A common feature of the

aforementioned bootstrap approaches for stationary processes is that the generated

bootstrap periodogram ordinates are independent. This restricts the applicability

of the corresponding methods to statistics for which the asymptotically negligible

dependence of the periodogram does not affect properties of their asymptotic dis-

tribution; cf. Dahlhaus and Janas [12] and Paparoditis [32]. More recently, and in

order to overcome these problems, Kreiss and Paparoditis [24] proposed a bootstrap

method for the periodogram of a stationary process which is based on a combination

of a parametric time domain and a nonparametric frequency domain bootstrap and

which generates bootstrap periodogram replicates that capture to some extent the

dependence structure of the periodogram. The procedure proposed in the first chap-

ter extends to locally stationary process this idea of combining a time domain and

a frequency domain approach to bootstrap the periodogram of a stationary process.

Furthermore, it justifies theoretically the use of such an approach to approximate

the distribution of statistics like (1.2.26) and (1.2.27). The theory developed in this

chapter can be also used to establish validity of our bootstrap procedure applied to

other classes of statistics than (1.2.26) and (1.2.27) and which are based on the local

periodogram IN(u, λ). For instance, frequency domain estimators of the parameters

of a locally stationary parametric process and nonparametric estimators of the local

spectral density belong to this class.
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1.3 Testing semi-parametric hypothesis

Interesting subclasses of locally stationary processes are obtained by parameterizing

in a proper way the associated time-varying amplitude function and consequently the

underlying time varying spectral density. Such an interesting subclass of locally pro-

cesses is for instance, that of time-varying, autoregressive moving-average (tvARMA)

models. tvARMA models are autoregressive moving-average model which satisfy the

following system of difference equations

p∑
j=0

φj(
t

T
)Xt−j,T =

q∑

k=0

βk(
t

T
)σ(

t− k

T
)εt−k, (1.3.28)

φ0(·) = 1, β0(·) = 1, εt are i.i.d. with Eεt = 0 and Eε2
t < ∞. If all φj(·), βk(·) and

σ2(·) are of bounded variation and
p∑

j=0

φj(u)zj 6= 0 for all u and all 0 < |z| ≤ 1 + δ

for some δ > 0 then there exists a solution of the form

Xt,T =
∞∑

j=0

at,T (j)εt−j.

The time-varying spectral density is given in this case by

f(u, λ) =
σ2(u)

2π

∣∣∣∣
q∑

k=0

βk(u)eiλk

∣∣∣∣
2

∣∣∣∣∣
p∑

j=0

φj(u)eiλj

∣∣∣∣∣

2 ,

cf. Dahlhaus[7]. Notice that if all φj(·), βk(·) and σ2(·) are constant and independent

of t we obtain the stationary autoregressive-moving average process ARMA(p, q).

Estimation procedures for locally stationary processes have been considered by many

authors under different settings and assumptions. We mention here among others the

contributions by Neumann and von Sachs [28], Dahlhaus et al. [14], Chang and Moret-

tin [6] and van Bellegem and Dahlhaus [42]. Forecasting problems for non-stationary

time series have been considered by Fryzlewicz et al. [20]. An overview on some of

the different developments can be found in Dahlhaus [11]. However, the important

problem of testing for the presence of a parametric or semiparametric structure of the

underlying locally stationary process, has attracted less attention in the literature.

Testing for the presence of such a structure is important because it allows for the use

of efficient, i.e., model-based estimation and forecasting procedures. For Gaussian
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locally stationary processes, Sakiyama and Taniguchi [37] proposed likelihood ratio,

Wald and Lagrange multiplier tests of the null hypothesis that the time-varying spec-

tral density depends on a finite dimensional, real-valued parameter vector against a

real-valued parametric alternative. However, the class of parametric time-varying

spectral densities allowed in this context, is rather restrictive in that it does not in-

clude for instance the important case of testing for the presence of a semiparametric

tvARMA structure against an unspecified, locally stationary alternative.

In the third chapter of this thesis, we address the important problem of testing

whether a locally stationary process belongs to a semiparametric class of time varying

processes. The semiparametric class considered under the null is large enough to

include several interesting processes. The test statistic developed, evaluates over all

frequencies and over an increasing set of time points, a L2-type distance between

the sample local spectral density (local periodogram) and the time-varying spectral

density of the fitted semiparametric model postulated under the null. The asymptotic

distribution of the test statistic proposed is derived under the null hypothesis and

it is shown that this distribution is a Gaussian distribution with the nice feature

that its parameters do not depend on characteristics or parameters of the underlying

process. As an interesting special case we focus on the problem of testing for the

presence of a semiparametric, time-varying autoregressive model. In this context, a

bootstrap procedure is proposed to approximate more accurately the distribution of

the test statistic under the null hypothesis. Theoretical properties of the bootstrap

procedure are discussed and its asymptotic validity is established. It is demonstrated

by means of numerical examples that in the testing set-up considered in this chapter,

the bootstrap is a very powerful and valuable tool to obtain critical values in finite

sample situations.

1.4 Contribution

This thesis is contributing to the literature by proposing a bootstrap method for

resampling the local periodogram of a locally stationary process and a test of the

hypothesis that the time varying spectral density of a locally stationary process has
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a semiparametric structure. Properties of the methods proposed have been studied

theoretically and investigated by means of simulations. An application to a real-data

set is also given.
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Chapter 2

Bootstrapping the local

periodogram of a locally stationary

process.

2.1 Motivation

The aim of this chapter is to develop an alternative, bootstrap-based method to

approximate the distribution of statistics like (1.2.26) and (1.2.27). Our method

works by generating replicates I∗N(u, λ) of the local periodogram IN(u, λ). To describe

heuristically the basic idea underlying our method notice first that under certain

assumptions on the underlying process, the local periodogram of a locally stationary

process can be approximately written as

IN(u, λ) = IN, eX(u, λ) + Op(
N

T
)

= f(u, λ)IN,ε(u, λ) + Op(
N

T
) + Op(

1

N
) (2.1.1)

where IN, eX(u, λ) is the local periodogram based on observations X̃1(u), X̃2(u), . . . , X̃T (u)

of the process {X̃t(u)} which is defined in equation (1.1.10) of Section 1.1. IN,ε(u, λ) =

(2πN)−1
∣∣∣

N−1∑
s=0

ε[uT ]−N/2+s+1e
−isλ

∣∣∣
2

is the local periodogram of the i.i.d series ε1, ε2, . . . , εT .

Proof of the above approximation can be obtained by using Lemma A.0.4(i) and The-

orem 10.3.1 of [5].

To proceed, let ftvAR(t/T, λ) be the local spectral density of the pth order locally

14
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autoregressive process which best fits (in the mean square sense) the locally stationary

process Xt,T . Using (2.1.1) we can write

IN(u, λ) ≈ f(u, λ)

ftvAR(u, λ)
ftvAR(u, λ)IN,ε(u, λ).

Now, since ftvAR(u, λ)IN,ε(u, λ) can be considered as the local periodogram of a pth

order locally stationary autoregressive process, we end up with the following approx-

imative expression for the local periodogram,

IN(u, λ) ≈ g(u, λ)IN,tvAR(u, λ), (2.1.2)

where we have used the notation IN,tvAR(u, λ) = ftvAR(u, λ)IN,ε(u, λ) and

g(u, λ) = f(u, λ)/ftvAR(u, λ).

Expression (2.1.2) motivates the following procedure to generate replicates I∗N(u, λ) of

the local periodogram. We first fit in the time domain a pth order time varying autore-

gressive model and use the fitted model to generate pseudo series X+
1,T , X+

2,T , . . . , X+
T,T .

The local periodogram I+
N,tvAR(u, λ) of this series is obtained which can be used to

mimic the random behavior of I+
N,tvAR(u, λ) in (2.1.2). A nonparametric kernel es-

timator ĝ(u, λ) of g(u, λ) is calculated in the frequency domain by smoothing the

rescaled local periodogram IN(u, λ)/f̂tvAR(u, λ), where f̂tvAR(u, λ) is the local spec-

tral density of the fitted autoregressive process. Following (2.1.2) the bootstrapped

local periodogram is then obtained as I∗N(u, λ) = v̂(u, λ)I+
N,tvAR(u, λ). Details of

this procedure are given in Section 2.3. Notice that our method to bootstrap the

local periodogram is based on a combination of a parametric time domain and a

nonparametric frequency domain bootstrap. The parametric time domain bootstrap

generating I+
N,tvAR(u, λ) is used to capture the essential features and to reproduce (at

least to some extent) the dependence structure of the local periodogram IN(u, λ).

The nonparametric estimator ĝ(u, λ) is used to reproduce features of the local peri-

odogram that are not captured by the local parametric autoregressive fit.

Notice that if we set ĝ(u, λ) ≡ 1 the method described above is just a local version of

the autoregressive bootstrap. If, additionally, the underlying process has an infinite

order autoregressive representation and we allow the order p of the locally fitted

autoregressive process to increase to infinity as the sample size increases, then we have
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a local version of the autoregressive sieve bootstrap. However, our method differs from

such an autoregressive bootstrap scheme due to the frequency domain nonparametric

correction via the function ĝ(u, λ). Due to this correction our method is more general

than the pure local autoregressive bootstrap in that it leads to asymptotically valid

approximations for a larger class of statistics, cf. Section 2.4.

2.2 Assumptions

In this section we impose the assumptions needed in this chapter.

Assumption 2.1 The triangular array {XT}T∈N of stochastic processes XT =

{Xt,T , t = 1, . . . , T} satisfies Definition 1.1.2.

In the following we consider also the case where the local approximating process

X̃t(u) satisfies the following condition.

Assumption 2.2 The process {X̃t(u), t ∈ Z} has the representation

X̃t(u) =
∞∑

k=1

βk(u)X̃t−k(u) + α(u, 0)εt

where 1 +
∑∞

k=1 α(u, k)zk = (1 − ∑∞
k=1 βk(u)zk)−1,

∑∞
k=1 k |βk(u)| < ∞ and 1 −

∑∞
k=1 βk(u)zk 6= 0 for all complex z with |z| ≤ 1.

Regarding the time window width N we require that the following condition is sat-

isfied.

Assumption 2.3 The window width N satisfies N →∞ such that N3/2/T → 0 as

N →∞.

Remark: As a careful read of the proofs shows, the condition N3/2/T → 0 is needed

in order to make the difference between the centered local spectral mean based on

the local periodogram of the observations X+
1,T , X+

2,T , . . . , X+
T,T and the corresponding

centered local spectral mean based on the local periodogram of the observations

X̃+
1,T , X̃+

2,T , . . . , X̃+
T,T coming from the local approximating process, asymptotically

negligible. For instance, we get using the notation of Appendix A, that

J+
N (φ)− E+(J+

N (φ)) = J+

N, eX+
(φ)− E+(J+

N, eX+
(φ)) + Op(N/T + p2/N). (2.2.3)
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The Op(N/T ) error term on the right hand side above, is due to the variance of the

term

d
+(2)
N (u, λ) =

1√
N

N−1∑
s=0

∞∑
m=0

(α̂[uT ]−N/2+s+1,T (m)− α̂[uT ],T (m))ε+
s−m exp(−iλs),

which is of order N2/T 2; see the proof of Lemma A.0.7 in Appendix A. Now, mul-

tiplying equation (2.2.3) by
√

N , leads to the requirement N3/2/T → 0 as T → ∞.

We conjecture that the above condition can be relaxed to a less restrictive condi-

tion N/T → 0, by using procedures like those used to reduce the bias of the local

periodogram, e.g., by using tapered local bootstrap periodogram; see Dahlhaus and

Giraitis [13].

Since we are interested in investigating the properties of our bootstrap method applied

in order to approximate the distribution of statistics like those defined in (1.2.26)

and (1.2.27), we impose the following conditions on the functions φ appearing in the

corresponding definitions.

Assumption 2.4 φ ∈ Φ, where Φ is the set of complex-valued bounded functions

equipped with the uniform norm ‖φ‖∞ = supx |φ(x)|. Furthermore φ is periodi-

cally extended to R with period 2π and has a bounded second derivative φ
′′
(x) =

d2φ(x)/d2x.

As mentioned in the Introduction, our bootstrap method uses a nonparametric esti-

mator of the function q(u, λ) in the frequency domain in order to capture features of

the local spectral density not represented by the local parametric autoregressive fit.

This is done by smoothing the local periodogram rescaled by the local spectral den-

sity of the fitted autoregressive model. To obtain a nonparametric kernel estimator

of the function g(u, λ) used in our procedure, Assumptions 2.4 and 2.5 below are im-

posed. They deal with the properties of the smoothing kernel K and the smoothing

bandwidth h.

Assumption 2.5 K is a nonnegative kernel function with support [−π, π]. Further-

more, the Fourier transform k of K is symmetric, continuous, bounded and satisfies

k(0) = 2π and
∫∞
−∞ k2(x)dx < ∞.

Assumption 2.6 The smoothing bandwidth h = h(N) satisfies h → 0 such that

Nh →∞ as N →∞.
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2.3 The Bootstrap procedure

Before presenting the bootstrap algorithm in more detail we fix some notation. Recall

that in its first step our procedure is based on fitting locally to the time series a pth

order autoregressive process. A least squares estimator of the corresponding autore-

gressive parameters β1(u), . . . , βp(u) is obtained by minimizing the local quadratic

deviation

1

N − p

N∑
j=p

(
X[uT ]−N/2+j,T −

p∑
i=1

ci(u)X[uT ]−N/2+j−i,T

)2

(2.3.4)

with respect to ci(u), i = 1, 2, . . . , p. This leads to the estimates c1(u) = β̂1(u), . . . ,

cp(u) = β̂p(u) where β̂u(p)′ = (β̂1(u), . . . , β̂p(u)) satisfies the system of equations

R̂u(p)β̂u(p) = r̂u(p).

Here,

R̂u(p) =
N−1∑
j=p

Xj(u, p)Xj(u, p)′/(N − p), r̂u(p) =
N−1∑
j=p

Xj(u, p)X[uT ]−N/2+j,T /(N − p)

and

Xj(u, p)′ =
(
X[uT ]−N/2+j,T , X[uT ]−N/2+j−1,T , . . . , X[uT ]−N/2+j−p,T

)
.

Let

σ̂2
p(u) =

1

N − p

N−1∑
j=p

X2
[uT ]−N/2+j−p,T − β̂u(p)′r̂u(p)

be the estimated variance of the errors of the local autoregressive fit. We are now

ready to formulate our bootstrap algorithm which consists of the following five steps:

STEP 1: Fit locally a time varying autoregressive model of order p to

the observations X1,T , X2,T , . . . , XT,T and calculate the estimated parameters

β̂(t/T, p)′ = (β̂1(t/T ), . . . , β̂p(t/T )) and the error variance σ̂p
2(t/T ). Consider

the rescaled residuals

ε̃t,T = (Xt,T −
p∑

i=1

β̂i(
t

T
)Xt−i,T )/σ̂p(t/T ), t = p + 1, . . . , T

and let

F̂T (x) =
1

T − p

T∑
j=p+1

I(−∞,x](ε̂j,T ),
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where ε̂t,T = ε̃t,T − ε̄ , ε̄ = 1
T−p

T∑
t=p+1

ε̃t,T and IA(x) is the indicator function of

the set A ⊂ R.

STEP 2: Generate bootstrap observations X+
1,T , X+

2,T , . . . , X+
T,T using the fitted

local autoregressive model, i.e,

X+
t,T =

p∑
i=1

β̂i(
t

T
)X+

t−i,T + σ̂p(
t

T
) · ε+

t ,

where X+
j,T = Xj,T for j = 1, 2, . . . , p and ε+

t are i.i.d random variables with

ε+
t vF̂T .

STEP 3: Compute the local periodogram I+
N(u, λ) over a segment of length

N of the bootstrap pseudo-observations X+
t,T , i.e., compute

I+
N(u, λ) =

1

2πN

N−1∑
s1=0

N−1∑
s2=0

X+
[uT ]−N/2+s1+1,T X+

[uT ]−N/2+s2+1,T e−iλ(s1−s2).

STEP 4: Compute the local kernel estimator ĝ(u, λ) defined by

ĝ(u, λ) =
1

N

MN∑
j=−MN

Kh(λ− λj)
IN(u, λj)

f̂tvAR(u, λj)

where {λj = 2πj/N, j = −MN , . . . ,MN}, MN = [N/2] and

f̂tvAR(u, λ) =
σ̂p

2(u)

2π

∣∣∣1−
p∑

r=1

β̂r(u)e−iλr
∣∣∣
−2

.

STEP 5: The bootstrapped local periodogram is then defined by

I∗N(u, λ) = ĝ(u, λ)I+
N(u, λ).

Recall that if we set ĝ(u, λ) ≡ 1 for all u and λ in STEP 4 of the above bootstrap

procedure, then we have a version of the local autoregressive sieve bootstrap. This

is so since in this case the bootstrapped periodogram I∗N(u, λ) is given by I+
N(u, λ)

which is the local periodogram calculated using the replicates of the autoregressive fit.

Thus if the underlying locally stationary process satisfies Assumption 2.2, then the

local autoregressive sieve bootstrap procedure applied to the local periodogram can

be considered as a special case of our approach to bootstrap the local periodogram.
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2.4 Asymptotic Properties

In this section we investigate the asymptotic properties of our bootstrap method,

summarized by steps 1-5, applied to the class of local spectral means (1.2.26) and

local ratio statistics (1.2.27). Let

f̃(u, λ) = ĝ(u, λ)f̂tvAR(u, λ) (2.4.5)

which can be considered as a prewhitening type estimator of the local spectral density

f(u, λ). Proposition A.0.2 and Lemma A.0.5 of Appendix A imply that for every

u ∈ (0, 1) and λ ∈ [−π, π] we have under the assumptions made there, that, as

T →∞,

f̃(u, λ) → f(u, λ) (2.4.6)

in probability.

To approximate the distribution of the centered spectral mean

√
N

( ∫ π

−π

φ(λ)IN(u, λ)dλ −
∫ π

−π

φ(λ)f(u, λ)dλ
)
, (2.4.7)

our proposal is to use the distribution of the bootstrap statistic

√
N

( ∫ π

−π

φ(λ)I∗N(u, λ)dλ −
∫ π

−π

φ(λ)f̃(u, λ)dλ
)
.

Note that if instead of (1.2.26) the discretized version 2πN−1/2
∑MN

j=−MN
φ(λj)IN(u, λj)

is used, then the corresponding bootstrap statistic will be 2πN−1/2
∑MN

j=−MN
φ(λj)I

∗
N(u, λj).

Our first theorem deals with the case where the underlying process fulfills Assumption

2.1 and the order p of the local approximating process remains fixed as the sample

size increases.

Theorem 2.4.1. Let Assumption 2.1 and Assumptions 2.3 to 2.6 be satisfied. For

all fixed p ∈ N we have as T →∞, that

L



√

N
( π∫

−π

φj(λ)I∗N(u, λ)dλ−
π∫

−π

φj(λ)f̃(u, λ)dλ
)

j=1,...,m
|X1, . . . , XT



 ⇒ {ξj}j=1,...,m

in probability for functions φj(·), j = 1, . . . , m satisfying Assumption 2.4, where

ξ = (ξ1, ξ2, . . . , ξm)
′
is a Gaussian random vector with mean zero,
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cov(ξi, ξj) = 2π
{ π∫

−π

φi(λ){φj(λ) + φj(−λ)}f 2(u, λ)dλ

+κ4(p)

π∫

−π

π∫

−π

φi(λ)φj(−µ)f(u, λ)f(u, µ)dλdµ
}

and κ4(p) =
∫ 1

0
κ4(u, p)du−3 with κ4(u, p) = E(X̃p(u)−∑p

j=1 βj,p(u)X̃p−j(u))4/σ4
p(u).

Here, βj,p(u), j = 1, 2, . . . , p are the coefficients minimizing the mean square error

E(X̃p(u)−∑p
j=1 bjX̃p−j(u))2 and σ2

p(u) = E(X̃p(u)−∑p
j=1 βj,p(u)X̃p−j(u))2.

The following lemma from Dahlhaus and Giraitis [13] gives the asymptotic distribu-

tion of local spectral means.

Lemma 2.4.2. As T →∞,

L
{√

N
( π∫

−π

φj(λ)IN(u, λ)dλ−
π∫

−π

φj(λ)f(u, λ)dλ
)

j=1,...,m

}
⇒ {ξj}j=1,...,m

where ξ = (ξ1, ξ2, . . . , ξm)
′
is Gaussian random vector with mean zero and

cov(ξi, ξj) = 2π
{ π∫

−π

φi(λ){φj(λ) + φj(−λ)}f 2(u, λ)dλ

+κ4

π∫

−π

π∫

−π

φi(λ)φj(−µ)f(u, λ)f(u, µ)dλdµ
}

.

Notice that the term κ4 appearing in the above expression for the covariance of the

limiting Gaussian distribution is due to the asymptotically vanishing dependence

of the local periodogram ordinates IN(u, λj). A comparison of the above distribu-

tion to the limiting distribution given in Theorem 4.1 makes it clear that the local

periodogram bootstrap manages to reproduce to some extend the effects of the de-

pendence of the local periodogram on this limiting distribution. Furthermore, the

closer is κ4(p) to κ4 the closer is the limiting distribution of the bootstrap statistic

to the limiting distribution of the statistic of interest. It is therefore interesting to

bound the difference between the two fourth order cumulants. The following propo-

sition gives such a bound for the case where the underlying locally stationary process

X̃t(u) is causal.
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Proposition 2.4.1. Assume that κ4 6= 0 (see Defintion 1.1.2) and that the locally

stationary process (1.1.10) satisfies a(u, j) = 0 for j < 0. Then for any p ∈ N we

have ∣∣∣κ4(p)

κ4

− 1
∣∣∣ ≤ 2

∫ 1

0

L2(u, p)

1 + L2(u, p)
du (2.4.8)

where L2(u, p) =
∑∞

j=1 `2
p(u, j) and `p(u, j) = α(u, j)−∑p

k=1 βj,p(u)α(u, j−k) for j ≥
1 and βj,p(u) are the coefficients given in Theorem 2.4.1.

To shed some light onto the usefulness of the above bound, consider as an example the

case where X̃t(u) is the following simple locally stationary moving average process:

X̃t(u) = σ(u)Yt,

where infu σ(u) > 0, supu σ(u) < ∞ and Yt is the nonivertible first order moving

average process Yt = εt + εt−1. Notice that the process {X̃t(u)} above, does not

satisfy Assumption 2.2. Now, straightforward calculations yield

`p(u, j) =





1− β1,p(u) for j = 1

−βj−1,p(u)− βj,p(u) for j ∈ {2, . . . , p}
−βp,p(u) for j = p + 1

0 for j ≥ p + 2,

where for j = 1, 2, . . . , p,

βj,p(u) = (−1)j−1
(
1− j

p + 1

)
.

Simple algebra yields then

∫ 1

0

L2(u, p)

1 + L2(u, p)
du =

1

p + 2
,

which shows that for p sufficiently large the difference between the fourth order cu-

mulants κ4(p) and κ4, and consequently between the corresponding limiting Gaussian

distributions, can be made arbitrary small.

We proceed with our investigation concerning the asymptotic properties of our lo-

cal bootstrap procedure by considering the case where the approximating stationary

process
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{X̃t(u), t ∈ Z} has an infinite order autoregressive representation and satisfies As-

sumption 2.2. In this case we additionally assume that the order of the fitted approx-

imating autoregressive process increases to infinity with the sample size T . We can

then establish the following theorem which deals with the properties of our bootstrap

method applied to the class of local spectral means.

Theorem 2.4.3. Let Assumption 2.1 to 2.6 be satisfied. If p →∞ such that p4/N →
0 we have as T →∞, that

L



√

N
( π∫

−π

φj(λ)I∗N(u, λ)dλ−
π∫

−π

φj(λ)f̃(u, λ)dλ
)

j=1,...,m
|X1, . . . , XT



 ⇒ {ξj}j=1,...,m

in probability where ξ = (ξ1, ξ2, . . . , ξm)
′
is Gaussian random vector with mean zero

and

cov(ξi, ξj) = 2π
{ π∫

−π

φi(λ){φj(λ) + φj(−λ)}f 2(u, λ)dλ

+κ4

π∫

−π

π∫

−π

φi(λ)φj(−µ)f(u, λ)f(u, µ)dλdµ
}

Applying the so-called δ-method we can extend the validity of the proposed bootstrap

method to the class of ratio statistics. Recall that in this case the limiting distribution

of the corresponding statistics does not depend on characteristics of the error process

and in particular on the fourth order cumulant of εt; cf. Dahlhaus and Janas [12].

Theorem 2.4.4. Let Assumption 2.1 and Assumptions 2.3 to 2.6 be satisfied. For

all fixed p ∈ Ne we have that,

L





√
N

( π∫
−π

φj(λ)I∗N(u, λ)dλ

π∫
−π

I∗N(u, λ)dλ

−

π∫
−π

φj(λ)f̃(u, λ)dλ

π∫
−π

f̃(u, λ)dλ

)

j=1,...,m

|X1, . . . , XT




⇒ {ξj}j=1,...,m

in probability as T →∞, where, ξ = (ξ1, ξ2, . . . , ξm)
′
is Gaussian random vector with

mean zero,

cov(ξi, ξj) = 2π
{ π∫

−π

ψi(λ){ψj(λ) + ψj(−λ)}f 2(u, λ)dλ/
( π∫

−π

f(u, λ)dλ
)4}

and ψj(λ) = φj(λ)
∫ π

−π
f(u, µ)dµ− ∫ π

−π
φj(µ)f(u, µ)dµ.
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As we have already mentioned in Section 2.3, if the underlying process satisfies As-

sumption 2.2 then for ĝ(u, λ) ≡ 1 our approach can be considered as a local version

of the so-called autoregressive sieve bootstrap. The following corollary summarizes

the performance of this method for the classes of local spectral means and of local

ratio statistics.

Corollary 2.4.5. Let Assumption 2.1 to 2.6 be satisfied and set q̂(u, λ) ≡ 1 for all

u ∈ [0, 1] and λ ∈ [−π, π]. If p → ∞ such that p4/N → 0 we have as T → ∞, that

(i)

L



√

N
( π∫

−π

φj(λ)I+
N(u, λ)dλ−

π∫

−π

φj(λ)f̂tvAR(u, λ)dλ
)

j=1,...,m
|X1, . . . , XT



 ⇒ {ξj}j=1,...,m

in probability where, ξ = (ξ1, ξ2, . . . , ξm)
′
is Gaussian random vector with mean zero

and

cov(ξi, ξj) = 2π
{ π∫

−π

φi(λ){φj(λ) + φj(−λ)}f 2(u, λ)dλ

+κ4

π∫

−π

π∫

−π

φi(λ)φj(−µ)f(u, λ)f(u, µ)dλdµ
}

and

(ii)

L





√
N

( π∫
−π

φj(λ)I+
N(u, λ)dλ

π∫
−π

I+
N(u, λ)dλ

−

π∫
−π

φj(λ)f̂tvAR(u, λ)dλ

π∫
−π

f̂tvAR(u, λ)dλ

)

j=1,...,m

|X1, . . . , XT




⇒ {ξj}j=1,...,m

in probability where, ξ = (ξ1, ξ2, . . . , ξm)
′
is Gaussian random vector with mean zero,

cov(ξi, ξj) = 2π
{ π∫

−π

ψi(λ){ψj(λ) + ψj(−λ)}f 2(u, λ)dλ/
( π∫

−π

f(u, λ)dλ
)4}

and ψj(λ) = φj(λ)
∫ π

−π
f(u, µ)dµ− ∫ π

−π
φj(µ)f(u, µ)dµ.

From the above corollary it is clear that if the underlying process satisfies Assump-

tion 2.2, then the local autoregressive sieve bootstrap leads to asymptotically valid

approximations of the distribution of the statistics of interest. Recall that in this

case the local periodogram bootstrap method using the nonparametric correction

Mari
os

 Serg
ide

s



25

function ĝ(·, ·) works too; cf. Theorem 2.4.2. However, if the underlying process does

not have locally an infinite order autoregressive representation , i.e., if it does not

satisfy Assumption 2.2 and we apply a pth order autoregressive bootstrap where p is

fixed, then it can be shown that in this case,

L





√
N

( π∫
−π

φ(λ)I+
N(u, λ)dλ

π∫
−π

I+
N(u, λ)dλ

−

π∫
−π

φ(λ)f̂tvAR(u, λ)dλ

π∫
−π

f̂tvAR(u, λ)dλ

)
|X1, . . . , XT




⇒ N(0, σ2

φ(p))

in probability where,

σ2
φ(p) = 2π

{ π∫

−π

ψ(λ){ψ(λ) + ψ(−λ)}f 2
tvAR(u, λ)/

( π∫

−π

ftvAR(u, λ)dλ
)4}

,

ψ(λ) = φ(λ)
∫ π

−π
f(u, µ)dµ− ∫ π

−π
φ(µ)f(u, µ)dµ and

ftvAR(u, λ) =
σ2

p(u)

2π

∣∣∣1−
p∑

r=1

βr,p(u)e−iλr
∣∣∣
−2

.

This makes clear that even for the class of ratio statistics where the limiting dis-

tribution is free from parameters of the error process, the pure autoregressive sieve

bootstrap does not work if the approximating process {Xt(u), t ∈ Z} does not have

the infinite order autoregressive representation stated in Assumption 2.2. This is

in contrast to the local periodogram bootstrap proposed in this chapter which due

to the nonparametric correction in the frequency domain via the estimated function

ĝ(u, λ) leads to asymptotically valid approximations in this case and works therefore

for a larger class of stochastic processes and for a larger class of statistics.

We conclude this section by an application of the bootstrap to estimate the distribu-

tion of nonparametric local spectral density estimators. An interesting class of such

estimators is given by

f̂(u, λ) =
1

N

MN∑
j=−MN

Kb(λ− λj)IN(u, λj) (2.4.9)

where K(·) is a kernel satisfying Assumption 2.5, Kb(·) = b−1K(·/b) and b is a

smoothing bandwidth satisfying b → 0 such that Nb → ∞ as N → ∞. Suppose we

are interested in estimating the distribution of

√
Nb

(
f̂(u, λ)− E(f̂(u, λ))

)
. (2.4.10)
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For this, the bootstrap analogue

√
Nb

(
f̂ ∗(u, λ)− E∗(f̂ ∗(u, λ))

)
(2.4.11)

can be used, where

f̂ ∗(u, λ) =
1

N

MN∑
j=−MN

Kb(λ− λj)I
∗
N(u, λj). (2.4.12)

It can be shown under certain assumptions that (2.4.10) converges weakly to a Gaus-

sian distribution with mean zero and variance given by τ 2(u, λ) = (1+δ(λ))f 2(u, λ)
∫ π

−π
K2(w)dw,

where δ(λ) = 1 if λ = 0 or being a multiple of ±π and δ(λ) = 0 else; (see the proof

of Theorem 2.4.6 below). The following theorem shows asymptotic validity of the

proposed bootstrap approximation.

Theorem 2.4.6. Let Assumptions 2.1, 2.3, 2.5, and 2.6 be satisfied. Suppose that

the smoothing bandwidth b = b(N) satisfies b → 0 such that Nb → ∞ as N → ∞.

Then for all fixed p ∈ Ne, we have that,

L
{√

Nb
(
f̂ ∗(u, λ)− E(f̂ ∗(u, λ))

)
|X1, . . . , XT

}
⇒ N(0, τ 2(u, λ))

in probability, as T →∞, where τ 2(u, λ) = (1 + δ(λ))f 2(u, λ)
∫ π

−π
K2(w)dw.

2.5 Some remarks on choosing the resampling pa-

rameters

From the previous discussion it is clear that implementation of our method requires

the selection of three parameters, that is of the time window width N , of the order of

the locally fitted autoregression p and of the frequency domain smoothing bandwidth

h.

Concerning the time window width N , we stress here the fact that the selection of

its length is not inherit to our local bootstrap procedure but to any statical inference

procedure for locally stationary process which is based on the local periodogram.

That is, if some procedure to select N exist, which is needed in order to calculate

statistics (1.2.26) and (1.2.27), then the same time window N can be used in the

local bootstrap procedure applied to infer properties of these statistics.
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Nevertheless, the selection N can be investigated theoretically by minimizing over all

time points u and over all frequencies λ, an L2-distance between the estimated locally

spectral density f̃(u, λ) = ĝ(u, λ)f̂tvAR(u, λ) and its theoretical counterpart f(u, λ).

In particular, selection of N can be based on minimization of the leading terms of

the time integrated mean square error

MISE =

∫ 1

0

∫ π

−π

E(f̂(u, λ)− f(u, λ))2dλdu

where f̂(u, λ) = b−1
∫ π

−π
K((λ − µ)/b)IN(u, µ)dµ is a kernel estimator of the local

spectral density f(u, λ).

From Dahlhaus [8], Theorem 2.2, we get that

E(f̂(u, λ)) = f(u, λ)+
1

24

N2

T 2

∂2

∂u2
f(u, λ)+

1

2
b2

∫
x2K(x)dx

∂2

∂λ2
f(u, λ)+o(

N2

T 2
+

log N

N
+b2)

and

V ar(f̂(u, λ)) = (Nb)−1 1

12
f 2(u, λ)

∫
x2K(x)dx.

Using these results the mean square error equals

E(f̂(u, λ)− f(u, λ))2 = (Nb)−1 1

12
f 2(u, λ)

∫
x2K(x)dx +

1

576

N4

T 4
(

∂2

∂u2
f(u, λ))2

+
1

24

N2b2

T 2

∂2

∂u2
f(u, λ)

∫
x2K(x)dx

∂2

∂λ2
f(u, λ) + O(b4).

Notice the above expression of the mean square error is dominated by the first two

terms which lead to the following approximation:

AMISE = (Nb)−1 1

12

∫ 1

0

∫ π

−π

f 2(u, λ)dλdu

∫
x2K(x)dx+

1

576

N4

T 4

∫ 1

0

∫ π

−π

(
∂2

∂u2
f(u, λ))2dλdu.

Now for b = N−δ, and 0 < δ < 1, the above AMISE is minimized for Nopt given by

Nopt = T 4/(5−δ)

(
12(1− δ)

∫ 1

0

∫ π

−π
f 2(u, λ)dλdu

∫
x2K(x)dx

∫ 1

0

∫ π

−π
( ∂2

∂u2 f(u, λ))2dλdu

)1/(5−δ)

.

Clearly, implementation of this rule to select N in practice requires estimates of the

quantities
∫ 1

0

∫ π

−π
f 2(u, λ)dλdu and

∫ 1

0

∫ π

−π
( ∂2

∂u2 f(u, λ))2dλdu.

The selection of the autoregressive order p and of the smoothing bandwidth h are

more inherit to our local bootstrap procedure. Concerning the order p of the fitted
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autoregressive process a practical rule to determine this order is to use a local version

of the AIC-criterion, like for instance the one proposed by Dahlhaus [9]. We mention

here however, that as our numerical examples show, due to the nonparametric cor-

rection in the frequency domain, the numerical results obtained are less sensitive to

the choice of the order p used in the autoregressive fit.

Concerning the choice of the smoothing parameter h one possible approach is to select

h using a local version of a cross-validation criterion analogous to the one proposed

by Beltrão and Bloomfield [2]. To elaborate on, this approach uses as a starting point

a generalization of the Whittle function, given by

M∑
i=1

MN∑
j=−MN

{
log f(ui, λj) +

IN(ui, λj)

f(ui, λj)

}
. (2.5.13)

A leave-one-out estimator for q(u, λj) is given by

q̂−j(u, λj) =
1

N

∑
j∈Nj

Kh(λj − λs)
IN(u, λj)

f̂tvAR(u, λj)
(2.5.14)

where Nj = {s : −MN ≤ s ≤ MN and j − s 6= ±j mod MN}, see Beltrão and

Bloomfield [2] and Kreiss and Paparoditis [24]. Notice that q̂−j is a kernel estimator

of q obtained by ignoring the jth local periodogram ordinate. Now, substituting

q(u, λj)ftvAR(u, λj) for f(u, λj), q̂−j(u, λj) for q(u, λj) and f̂tvAR(u, λj) for ftvAR(u, λj)

in (3.3.11) leads after ignoring the factor log ftvAR(u, λj) to the function

CV (h) =
M∑
i=1

N∑
j=1

{
log q̂−j(ui, λj) +

IN(ui, λj)/f̂tvAR(ui, λj)

q̂−j(ui, λj)

}
, (2.5.15)

which can be used as a cross-validation-type criterion to select h.

2.6 Numerical Results

2.6.1 Simulations

We investigate the performance of our method in finite sample situations and com-

pare the results of the local periodogram bootstrap procedure to that of the pure

local sieve autoregressive bootstrap. For this we consider a case where both methods

work asymptotically, i.e, where both methods lead to asymptotically correct approxi-

mations. In particular, we consider the problem of estimating the standard deviation
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of the time varying autocorrelation estimator

ρ̂(u, 1) =
ĉ(u, 1)

ĉ(u, 0)
=

∫ π

−π
IN(u, λ) exp(iλ)dλ∫ π

−π
IN(u, λ)dλ

for different values of u in the interval (0, 1). Samples of length T = 512 observations

from the time varying MA(1)-process

Xt,T = 1.1 cos(1.5− cos(4πt/T ))εt−1 + εt (2.6.16)

are considered, where the εt’s are i.i.d with εt ∼ N(0, 1).

To estimate the exact standard deviation of ρ̂(u, 1) calculated over 40 equally spaced

points u in the interval (0, 1), we generate 5000 samples of the above process. The so

obtained estimates of the exact standard deviation are presented in Figure 2.1(a) and

Figure 2.1(b) by solid lines. The small crosses in these lines indicate the particular

points u in the interval [0, 1] for which the estimates of the standard deviation of

ρ̂(u, 1) have been calculated. To investigate the performance of the bootstrap, we

generate 50 different series from the above process and for each of these series we

use our bootstrap method by producing 300 bootstrap local periodogram replicates.

For the corresponding bootstrap estimates of the standard deviation we calculate the

mean, the standard deviation and the mean square error.

We apply both local periodogram bootstrap procedures using two different values of

the autoregressive order p. For the nonparametric correction of the local periodogram

bootstrap the Bartlett-Priestley kernel given by K(x) = 3(4π)−1(1 − (x/π)2) for

|x| ≤ π and a bandwidth of h = 0.2 has been used. We first fit a time varying autore-

gressive model of order p = 1 and use a window length of N = 40 observations. The

results for both bootstrap methods for p = 1 are presented in Figure 2.1(a), Figure

2.1(c) and Figure 2.1(e). Figure 2.1(a) clearly shows the effect of the nonparametric

correction via the function ĝ(u, λ). The mean estimate using our method captures

quite closely the exact standard deviation of ρ̂(u, 1), while the mean estimate using

the pure autoregressive bootstrap with p = 1 is very biased. Although, Figure 2.1(c)

shows that the standard deviation of our method is larger than that of the pure

autoregressive sieve bootstrap, the mean square error of both procedures shown in

Figure 2.1(e) clearly demonstrates that our method performs much better.
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In order to see the effects of increasing the autoregressive order p, we fit in a second

run to the same set of series a time varying autoregressive model of order p = 3. As

Figure 2.1(b) shows, in this case the mean estimates using both methods capture the

exact standard deviation quite well. Comparing Figure 2.1(c) and Figure 2.1(d) we see

that there is an increase in the standard deviation using the pure local autoregressive

sieve bootstrap which is due to the increase of the autoregressive order p from p = 1

to p = 3. For p = 3 the behavior of the mean square errors using both methods is

very similar with a slight advantage for our method, see Figure 2.1(f). A detailed

presentation of the simulation results is given in Table 2.1.

To see the quality of the asymptotic normal approximation and to compare its per-

formance with that of the bootstrap, we calculate the standard deviation of the first

order sample autocorrelation using the asymptotic formula for the variance given in

Theorem 2.4.4. To estimate the local spectral density f(u, λ) involved, we use the

non parametric estimator f̂(u, λ) with the bandwidth minimizing the mean square

error E(f̂(u, λ)− f(u, λ))2. The results are shown in Figure 2.2.

From this limited simulation study we can clearly conclude that the bootstrap proce-

dure proposed leads to very accurate estimates of the standard deviation of the time

varying first order autocorrelation ρ̂(u, 1). These estimates outperform those of the

other methods available in the literature.
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Table 2.1: Local Periodogram Bootstrap (LPB) and Local Autoregressive Bootstrap
(LARB) estimates of the standard deviation of the first-order local sample autocor-
relation.

Est. LPB LARB
Exact Mean(σ̂∗1) SD(σ̂∗1)×10 MSE(σ̂∗1)×103 Mean(σ̂∗1) SD(σ̂∗1)×10 MSE(σ̂∗1)×103

u σ1 p=1, h=0.2 p=1
0.200 0.122 0.120 0.1405 0.1993 0.151 0.0829 0.8944
0.246 0.121 0.115 0.1640 0.2938 0.147 0.0809 0.7506
0.292 0.120 0.123 0.1564 0.2494 0.150 0.0900 0.9799
0.338 0.149 0.148 0.1775 0.3097 0.164 0.1040 0.3434
0.385 0.163 0.165 0.2726 0.7311 0.176 0.1484 0.3782
0.431 0.121 0.127 0.1844 0.3639 0.152 0.0794 1.0105
0.477 0.115 0.117 0.1626 0.2631 0.147 0.0776 1.1039
0.523 0.113 0.118 0.1544 0.2539 0.148 0.0806 1.2923
0.569 0.120 0.124 0.1343 0.1893 0.153 0.0914 1.1473
0.615 0.164 0.163 0.2416 0.5734 0.175 0.1108 0.2317
0.662 0.149 0.147 0.2444 0.5880 0.167 0.0925 0.4005
0.708 0.121 0.120 0.1352 0.1803 0.150 0.0864 0.9111
0.754 0.121 0.114 0.1684 0.3254 0.146 0.0863 0.7470
0.800 0.124 0.122 0.1951 0.3791 0.151 0.0818 0.7426

p=3, h=0.2 p=3
0.200 0.122 0.121 0.1586 0.2473 0.126 0.1673 0.2889
0.246 0.121 0.118 0.1775 0.3178 0.122 0.1771 0.3087
0.292 0.120 0.125 0.1735 0.3208 0.130 0.1839 0.4319
0.338 0.149 0.150 0.1851 0.3377 0.154 0.1997 0.4149
0.385 0.163 0.161 0.2456 0.5943 0.166 0.2539 0.6227
0.431 0.121 0.127 0.1865 0.3718 0.128 0.1831 0.3799
0.477 0.115 0.120 0.1703 0.3105 0.119 0.1668 0.2942
0.523 0.113 0.119 0.1710 0.3237 0.121 0.1780 0.3682
0.569 0.121 0.127 0.1437 0.2439 0.126 0.1448 0.2417
0.615 0.164 0.161 0.2213 0.4938 0.164 0.2361 0.5464
0.662 0.149 0.148 0.2493 0.6099 0.153 0.2553 0.6555
0.708 0.121 0.121 0.1504 0.2218 0.125 0.1769 0.3242
0.754 0.121 0.115 0.1808 0.3499 0.121 0.1953 0.3749
0.800 0.124 0.123 0.1847 0.3356 0.128 0.1957 0.3903
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Figure 2.1: Estimated mean, variance, and mean square error of the standard devia-
tion of the first-order sample autocorrelation. On the left a tvAR(1) model is fitted
locally to the series while on the right a tvAR(3) model is fitted. The solid line in (a)
and (b) is the estimated exact standard deviation. The dashed line with circles and
the solid line with squares in (a) and (b) are the mean, in (c) and (d) the variance
and in (e) and (f) the mean square error of the standard deviation estimates of the
pure tvAR(·) bootstrap and of the local periodogram bootstrap respectively.
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Figure 2.2: Estimated mean, variance, and mean square error of the standard devia-
tion of the first-order sample autocorrelation. On the left a tvAR(1) model is fitted
locally to the series while on the right a tvAR(3) model is fitted. The solid line in (a)
and (b) is the estimated exact standard deviation. The dashed line with circles and
the solid line with squares in (a) and (b) are the mean, in (c) and (d) the variance
and in (e) and (f) the mean square error of the standard deviation estimates of the
normal approximation and of the local periodogram bootstrap respectively.
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2.6.2 A real-data example

In this example, we consider T = 2048 observations of the so-called earthquake

data obtained from Shumway and Stoffer [39]. The series is recorded at a seismic

recording station in Scandinavia where the recording instruments observe earthquakes

and mining explosions. It is shown in Figure 2.3.

0 500 1000 1500 2000

-0
.4

-0
.2

0.
0

0.
2

0.
4

Figure 2.3: 2048 observations of an earthquake obtained by Shumway and Stoffer
[39].

For this data set, we are interested in estimating the time-varying autocorrela-

tion function ρ̃(u, τ) for values of τ equal to τ = 1, 2, 3, 4 and in constructing

pointwise confidence intervals for the unknown ρ(u, τ) using the local periodogram

bootstrap. To estimate ρ(u, τ) we now use a modified kernel estimator given by,

ρ̃(u, τ) = c̃(u, τ)/c̃(u, 0), where

c̃(u, τ) =

T∑
t=1

K
(

uT−(t+τ/2)
N

)
Xt,T Xt+τ,T

T∑
t=1

K
(

uT−(t+τ/2)
N

) ,

K(x) = (3/2)(1− 4x2) for |x| ≤ 0.5 and N = 250 observations; cf. Dahlhaus (2003).

The above estimator has been calculated for 40 equally spaced points u in the interval

[0, 1]. The estimated functions ρ̃(u, τ) are shown in Figure 2.4(a) to Figure 2.4(d) by

a solid line.

To estimate the standard deviation of ρ̃(u, τ) we use our local periodogram bootstrap

procedure. For this, we fit locally an autoregressive model of order p = 3 and use a

window length of N = 250 observations. The kernel estimates have been calculated

using the Bartlett-Priestley’s kernel together with the bandwidth h = 0.1. For each
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of the 40 points ui considered, we calculate the corresponding bootstrap standard

deviation using B=1000 bootstrap replications. A simple 95% pointwise bootstrap

confidence interval has been then obtained using the limiting distribution of ρ̃(u, τ)

and formula

[ρ̃(ui, τ)− 1.96s∗(ui, τ) , ρ̃(ui, τ) + 1.96s∗(ui, τ)],

where s∗(ui, τ) denotes the bootstrap estimate of the standard deviation of ρ̃(ui, τ).

The estimated functions ρ̃(ui, τ) together with the so obtained 95% pointwise boot-

strap confidence intervals are shown in Figure 2.4. As this figure shows the earthquake

leads to a change in the correlation structure of the series. In particular, in the first

part of the series the observations are less correlated compared to the second part

where the earthquake occurred.
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Figure 2.4: Plots of the estimated sample local autocorrelation function ρ̃(u, τ)
against u for values of τ = 1, 2, 3, 4 of the earthquake data together with 95% point-
wise local periodogram bootstrap confidence intervals.
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Chapter 3

Testing semi-parametric hypothesis
for locally stationary processes

3.1 The Testing procedure

3.1.1 The set-up

Following Dahlhaus [9] we consider in this section triangular arrays {XT}T∈N, XT =

{Xt,T , t = 1, . . . , T} of stochastic processes which are locally stationary.

Assumption 3.1.1. For all T ∈ N, {XT}T∈N is a Gaussian locally stationary process

satisfying Definition 1.1.1

The aim of this chapter is to develop tests of the hypothesis that the time-varying

local spectral density f(u, λ) has a semiparametric structure. To elaborate on the

kind of null and alternative hypothesis considered, let FLS be the set of local spectral

densities of processes satisfying Assumption 3.1.1 and denote by FPLS ⊆ FLS a

semiparametric model class of local spectral densities, i.e.,

FPLS = {f(u, λ) = f(u, λ; ϑ(u)), ϑ(u) = (ϑ1(u), . . . , ϑm(u)),m ∈ N, u ∈ [0, 1], λ ∈ R},

where ϑi(·) : [0, 1] → R, i = 1, 2, . . . ,m, are appropriately defined real-valued func-

tions. We assume that in the set FPLS , the time-varying local spectral density

f(u, λ, ϑ(u)) is fully determined by the unknown functions ϑi(·), i = 1, 2, . . . , m,

and as we will see in the sequel, we impose some rather mild assumptions on ϑ(·)
allowing for several interesting classes of semiparametric models.

To give one important example which fits in the above set-up, consider the case

where FPLS is the semiparametric class of local spectral densities possessed by the

37
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class of time-varying autoregressive moving-average (tvARMA) models. Recall that

a locally stationary process {Xt,T} satisfying Assumption 2.1 has a tvARMA(p,q)

representation if Xt,T is generated by the equation

Xt,T +

p∑
j=1

aj(t/T )Xt−j,T = εt,T +

q∑
j=1

bj(t/T )εt−j,T (3.1.1)

where a0(·) ≡ b0(·) ≡ 1, the εt’s are i.i.d. N(0, σ2(t/T )) distributed random variables,

ap(u) 6= 0 and bq(u) 6= 0. Furthermore if all functions αj(·) and βk(·) as well as

the variance function σ2(·) are of bounded variation and
∑p

j=0 αj(u)zj 6= 0 for all

u ∈ [0, 1] and all 0 < |z| ≤ 1 + δ for some δ > 0, then model (3.1.1) belongs to the

locally stationary process class; see Dahlhaus [7]. Recall that, model (3.1.1) possesses

a time-varying spectral density given by

f(u, λ; ϑ(u)) =
σ2(u)

2π

∣∣∣∣∣
q∑

j=0

bj(u)eiλj

∣∣∣∣∣

2 /∣∣∣∣∣
p∑

j=0

aj(u)eiλj

∣∣∣∣∣

2

,

where ϑ(u) = (a1(u), . . . , ap(u), b1(u), . . . , bq(u), σ2(u)).

Based on the above discussion, the testing problem considered in this paper is de-

scribed by

H0 : f(·, ·) ∈ FPLS vs H1 : f(·, ·) ∈ FLS \ FPLS . (3.1.2)

The specific case where ϑ(u) is a constant function of the time variable u, that is

where ϑ(u) = (ϑ1, . . . , ϑm) ∈ Θ ⊂ Rm for all u ∈ (0, 1), is also allowed by (3.1.2).

Such a case occurs for instance if one is interested in testing the null hypothesis

that the underlying stochastic process is a parametric stationary process against the

alternative of a time-varying locally stationary process.

3.1.2 The test statistic

We start our construction of the test statistic by first considering the tapered local

periodogram defined for N < T , N ∈ N, by

IN(u, λ) =
1

2πH2,N(0)
|dN(u, λ)|2, (3.1.3)

where

dN(u, λ) =
N−1∑
s=0

h
( s

N

)
X[uT ]−N/2+s+1e

−iλs
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and

Hk,N(λ) =
N−1∑
s=0

h
( s

N

)
e−iλs.

To introduce, the basic statistic used, suppose first for simplicity that the paramet-

ric curves ϑ(u) determining the local spectral density f(u, λ; ϑ(u)) under the null

hypothesis are known, that is that ϑ(u) = ϑ0(u). Consider then the random variables

Y (u, λj) =
IN(u, λj)

f(u, λj; ϑ0(u))
, j = −[(N − 1)/2], . . . , [N/2].

It is easy to see that if the null hypothesis is true, then

E[Y (u, λj)] = 1 + O(N/T + 1/N),

for all u ∈ [0, 1] and λj ∈ (−π, π]. Furthermore, if the alternative hypothesis is true,

i.e., if f(u, λj) 6= f(u, λj; ϑ0(u)), then

E[Y (u, λj)] =
f(u, λj)

f(u, λj; ϑ0(u))
+ O(N/T + 1/N),

where the function f(·, ·)/f(·, ·; ϑ0(·)) is different from the unit function on [0, 1] ×
(−π, π].

Motivated by the above observations the idea used to obtain a test statistic for the

null hypothesis that f(u, λ) = f(u, λ, ϑ0(u)), is to estimate first non-parametrically

the mean function

q(u, λ) = E[Y (u, λ)− 1]

and then to evaluate its distance from the zero function using an appropriate L2-

distance measure. To elaborate on, for given u ∈ (0, 1) and λ ∈ [0, π], we use the

kernel estimator

q̂(u, λ) =
1

N

∑
j

Kb(λ− λj)

(
IN(u, λj)

f(u, λj; ϑ0(u))
− 1

)
(3.1.4)

to estimate the unknown mean function q(u, λ) non-parametrically. Here Kb(·) =

b−1K(·/b) where K(·) is an appropriate defined kernel and b a smoothing bandwidth

satisfying certain conditions; see Assumption 3.2.2 below.

To proceed with the construction of the test statistic proposed, we calculate q̂(uj, λ)

for different instants of time uj by using the local periodogram IN(uj, λ) for segments
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of observations having midpoints uj = tj/T , where tj := S(j − 1) + N/2 and j =

1, . . . , M . Here the constant S denotes the shift from segment to segment while M

refers to the total number of time points in the interval (0,1) considered. Note that

by the above construction we have T = S(M − 1) + N . Now, using a L2-measure

to evaluate the distance of the so estimated mean function q̂(uj, λ) from the zero

function and averaging over all time points uj = tj/T and over all frequencies λ

considered, we end-up with the test statistic

Q0,T =
1

M

M∑
s=1

∫ π

−π

(
q̂(us, λ)

)2

dλ. (3.1.5)

It can be shown that under some rather standard assumptions to be discussed later

and if M →∞ as T →∞, then, in probability,

Q0,T →





0 if H0 is true
∫ 1

0

∫ π

−π

(
f(u,λ)

f(u,λ,ϑ0)
− 1

)2

dλdu if H1 is true.

This behavior of Q0,T justifies its use for testing the null hypothesis of interest.

Recall that in order to derive the test statistic (3.1.5) we have assumed that the

parameterizing functions ϑ(u) are known. This corresponds to the case of testing a

simple hypothesis, that is a hypothesis where the local spectral density under the null

is fully specified. To extend the testing procedure proposed to the more interesting

case of testing a composite hypotheses, that is to the case where the functions ϑ(u)

determining the local spectral density are unknown, we replace ϑ(·) in (3.1.4) by
√

N -consistent estimators. Let ϑ̂(·) = (ϑ̂1(·), . . . , ϑ̂m(·))′ be such an estimator of

ϑ(·) = (ϑ1(·), . . . , ϑm(·))′ . Analogously to (3.1.5), the test statistic used in this case

is then given by

QT =
1

M

M∑
s=1

∫ π

−π

{
1

N

MN∑
j=−MN

Kb(λ− λj)

(
IN(us, λj)

f(us, λj; ϑ̂(us))
− 1

)}2

dλ. (3.1.6)

Notice that f(us, λj; ϑ̂(us)) appearing in the denominator above, is the semiparamet-

ric local spectral density obtained by substituting ϑ(·) appearing in f(u, λj; ϑ(u)) by

its estimator ϑ̂(·). The test statistic (3.1.6) is the one proposed in this chapter for

testing the pair of hypotheses (3.1.2).
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3.1.3 Asymptotic distribution under the null hypothesis

We first establish a basic theorem which deals with the asymptotic distribution of

the test statistic (3.1.6) under the null hypothesis in (3.1.2). For this the following

set of assumptions is imposed.

Assumption 3.1.2.

(i) K is a bounded, symmetric, nonnegative kernel function on (−∞,∞) with

support [−π, π] such that (2π)−1
∫∞
−∞ K(x)dx = 1.

(ii) The window length N satisfies N ∼ T δ for some 1/5 < δ < 4/5. Furthermore,

N = [κS] where κ is a positive constant independent of N and S.

(iii) The smoothing bandwidth b satisfies b ∼ N−λ, where

max{0, 9δ − 7

δ
} < λ < min{5δ − 1

3δ
,
1

2
,
1− δ

δ
}.

(iv) The taper function h is of bounded variation and vanishes outside the interval

[0,1].

(v)
√

N(θ̂(u)− θ(u)) = Op(1) where the Op(·) term does not depend on u.

Some remarks concerning the above assumptions are in order. Note that the constant

κ appearing in (ii) determines the degree of overlapping between the segments used.

We consider the case κ ≥ 1 only, since for κ < 1 the shift from segment to segment

described by S is greater than the segment length N . In the later case, a loss of

efficiency is expected due to the fact that some observations are omitted. If κ = 1

then the observed series is partitioned in nonoverlapping segments of length N while

if κ > 1 then the segments considered overlap. Concerning the rate at which the

segment length N is allowed to increase to infinity given in (ii) and the rate at which

the bandwidth b is allowed to converge to zero given in (iii), we mention that they

are controlled in a way that leads to simple expressions for the mean and for the

variance of the limiting distribution of QT under H0. Notice that the range of values

of N and of b is large enough allowing for a flexibility in choosing these parameters in

practice. Assumption 3.1.2(v) is general enough and allows for different estimators
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of ϑ(u); see among others, Dahlhaus and Giraitis [13], Dahlhaus [10], Dahlhaus and

Neumann [15] and van Bellegem and Dahlhaus [42] for different proposals.

The following theorem establishes the asymptotic distribution of QT when the null

hypothesis is true.

Theorem 3.1.1. Under Assumption 3.1.1 and 3.1.2 and if H0 is true, then, as

T →∞,

N
√

Mb(QT − µT ) ⇒ N(0, τ 2),

where

µT =
(tap(1))1/2

Nb

∫ π

−π

K2(x)dx +
(tap(1))1/2

4πN

∫ π

−π

∫ 2π

−2π

K(x)K(x− u)dxdu,

τ 2 = tap(κ)
2

π

∫ 2π

−2π

(∫
K(u)K(u + x)du

)2

dx

and for s ∈ {1, 2, . . . , m}

tap(s) =

∑
|m|<s

(∫ 1−|m|/s

0
h2(u)h2(u + |m|/s)du

)2

(∫ 1

0
h2(x)dx

)4 .

According to the above theorem, an attractive feature of the test statistic QT , is

that its limiting distribution under the null hypothesis does not depend on unknown

parameters or characteristics of the underlying locally stationary process {Xt,T}.
Furthermore, and based on this theorem, an asymptotically α-level test is obtained

by rejecting the null hypothesis if

QT ≥ µT +
τ

N
√

Mb
zα,

where zα denotes the 100(1− α)% percentile of the standard Gaussian distribution.

3.2 Testing for a time-varying autoregressive struc-

ture

3.2.1 Consistency

A special case of the testing problem (3.1.2) and which commonly arises in many

situations, is that of testing for the presence of a time-varying autoregressive (tvAR)
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model. Recall that a locally stationary process satisfying definition 1.1.1 obeys a time-

varying autoregressive representation of order p if Xt,T is generated by the equation

Xt,T =

p∑
j=1

βj(t/T )Xt−j,T + εt,T , (3.2.7)

where the εt,T ’s are i.i.d. N(0, σ2(t/T )) random variables, βp(u) 6= 0 for all u ∈ [0, 1],

the functions βj(·) as well as the variance function σ2(·) are of bounded variation

and
∑p

j=1 βj(u)zj 6= 0 for all u ∈ [0, 1] and all 0 < |z| ≤ 1 + δ, for some δ > 0. Al-

though the results of this chapter can be easily adapted to cover other special types

of semiparametric locally stationary processes i.e. tvARMA(p,q) or tvMA(q), we

concentrate on the class of time-varying autoregressive process because these pro-

cesses provide due to their simplicity, easy implementation and interpretation, a very

interesting subclass of semiparametric time varying processes. Now let FtvAR(p) be

the set of local spectral densities of time-varying autoregressive processes of order p.

The testing problem considered in this section is then described by the following pair

of null and alternative hypothesis

H0 : f(·, ·) ∈ FtvAR(p) vs H1 : f(·, ·) ∈ FLS \ FtvAR(p). (3.2.8)

Note that the set FLS \ FtvAR(p) contains also all locally stationary autoregressive

processes with an autoregressive order different from p.

We first discuss a consistency property of our test. For this, suppose that the true

spectral density f(u, λ) lies in the alternative and measure for u ∈ [0, 1] the distance

between f(u, λ) and f(u, λ; ϑ(u)) by the function

L(u, ϑ(u)) =
1

4π

∫ π

−π

(
log[f(u, λ; ϑ(u))] +

f(u, λ)

f(u, λ; ϑ(u))

)
dλ. (3.2.9)

Let ϑ(u) be the value of ϑ(u) which minimizes L(u, ϑ(u)) and let ϑ̂(u) be the estimator

of ϑ(u) which is obtained by minimizing the local Whittle likelihood, i.e., ϑ(u) =

arg minLN(u, ϑ(u)), where

LN{u, ϑ(u)} =
1

4π

∫ π

−π

(
log[f(u, λ; ϑ(u))] +

IN(u, λ)

f(u, λ; ϑ(u))

)
dλ.

Notice that

1

4π

∫ 1

0

∫ π

−π

(
log[f(u, λ; ϑ(u))]

f(u, λ)
+

f(u, λ)

f(u, λ; ϑ(u))
− 1

)
dλdu
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is the asymptotic Kullback-Leibler information divergence between two Gaussian

locally stationary processes with time-varying spectral densities f(u, λ; ϑ(u)) and

f(u, λ) respectively; see Theorem 3.4 of Dahlhaus [7]. The curve ϑ(u) obtained by

minimizing (3.2.9) is that leading to the best time-varying autoregressive fit, that is

to the p-th order autoregressive fit which minimizes the Kullback-Leibler information

divergence (3.2.9).

Assumption 3.2.1. Let ∇ = (∂/∂ϑ1, . . . , ∂/∂ϑm)′ be the gradient with respect to ϑ.

(i) ∇LN(u, ϑ̂(u)) = 0 , ∇LN(u, ϑ(u)) = 0 for all u and N .

(ii) The derivatives ∂2A(u, λ)/∂u∂λ and ∂3A(u, λ)/∂u3 are uniformly bounded in

(u, λ) ∈ [0, 1]× [−π, π].

(iii) The derivatives

∂3

∂ϑi1∂ϑi2∂ϑi3

f−1(u, λ; ϑ(u)),
∂3

∂ϑi1∂ϑi2∂ϑi3

f(u, λ; ϑ(u)),
∂2

∂λ2

∂

∂ϑi1

f−1(u, λ; ϑ(u))

are bounded for 1 ≤ i1, i2, i3 ≤ p uniformly in (u, λ, ϑ) ∈ [0, 1] × [−π, π] × Θ,

where Θ is an open convex subset of Rp.

(iv) sup0≤u≤1,ϑ∈Θ ||∇2L−1(u, ϑ̂(u))||sp where || · ||sp denotes the spectral norm of a

matrix.

We first state the following result which deals with the limiting properties of QT when

the alternative hypothesis is true.

Theorem 3.2.1. Under Assumptions 3.1.1, 3.1.2 and 3.2.1 and if f(·, ·) ∈ FLS \
FtvAR(p), then as T →∞,

QT → D2 =

∫ 1

0

∫ π

−π

(
f(u, λ)

f(u, λ; ϑ(u))
− 1

)2

dλdu,

in probability.

Notice that the limit D2 given above is a L2-distance measure between the true local

spectral density f(u, λ) and its best parametric fit f(u, λ; ϑ(u)). Theorem 3.2.1 im-

plies then that under the assumptions made and if H1 is true, then limT→∞ P (N
√

Mb(QT−
µT )/τ ≥ zα) = 1, that is the test QT is consistent against any alternative for which

D2 > 0.
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3.2.2 Bootstrapping the test statistic

To obtain critical values of the test, Theorem 3.1.1 enables us to approximate the

unknown distribution of N
√

Mb(QT − µT )/τ by that of a standard Gaussian distri-

bution. We experienced, however, that the quality of this approximation is rather

poor in finite sample situations and very large to huge sample sizes are required in

order for this approximation to be valuable in practice; see Section 3.4 for a numerical

illustration of this point. To improve upon the large sample Gaussian approximation

of Theorem 3.1.1, we propose here, an alternative, bootstrap-based procedure, which

leads in finite sample situations to more accurate estimates of the distribution of QT

under the null. The procedure proposed works by generating pseudo-observations

X+
1,T , X+

2,T , . . . , X+
T,T using the fitted tvAR(p) process and calculating the test statis-

tic QT of interest using the so generated pseudo-observations.

To elaborate on, we first fit locally to the time series the pth order time-varying

autoregressive process postulated under the null hypothesis. This can be done using

local Yule-Walker or local least squares estimators of the autoregressive parameter

functions β1(u), . . . , βp(u). Yule-Walker estimators β̂u(p)′ = (β̂1(u), . . . , β̂p(u)), for

instance satisfy the system of equations

R̂u(p)β̂u(p) = r̂u(p),

with

R̂u(p) = ĉN(u, i− j)i,j=1,...,p, r̂u(p) = (ĉN(u, 1), . . . , ĉN(u, p))′

and

ĉN(u, j) =
1

N

N−1∑
k,l=0

k−l=τ

X[uT ]−N/2+k+1,T X[uT ]−N/2+l+1,T .

Let

σ̂2
N(u) = ĉN(u, 0) + β̂′u(p)r̂u(p)

be the corresponding estimator of the variance function σ2(u) of the errors. Prop-

erties of the estimators β̂u(p) and σ̂2
p(u) have been investigated by Dahlhaus and

Giraitis [13]; see also Section 2.3. Notice that other estimators can be also used pro-

vided Assumption 2.1(v) is satisfied; cf. Dahlhaus et al. [14] and van Bellegem and

Dahlhaus [42].
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The bootstrap algorithm proposed to approximate the distribution of QT under the

null hypothesis of a tvAR(p) process consists then of the following four Steps:

STEP 1: Fit locally the time-varying autoregressive model of order p to the

observations X1,T , X2,T , . . . , XT,T and calculate the estimated parameters

β̂t/T (p)′ = (β̂1(t/T ), . . . , β̂p(t/T )) and σ̂p
2(t/T ).

STEP 2: Generate bootstrap observations X+
1,T , X+

2,T , . . . , X+
T,T using the fitted

local autoregressive model, that is,

X+
t,T =

p∑
j=1

β̂j(
t

T
)X+

t−j,T + σ̂p(
t

T
) · ε+

t ,

where X+
j,T = Xj,T for j = 1, 2, . . . , p and ε+

t are i.i.d random variables with

ε+
t vN(0, 1).

STEP 3: Compute the local periodogram I+
N(u, λ) over segments of length N

of the bootstrap pseudo-observations X+
t,T , i.e., compute

I+
N(u, λ) =

1

2πH2,N(0)
|d+

N(u, λ)|2 (3.2.10)

where

d+
N(u, λ) =

N−1∑
s=0

h
( s

N

)
X+

[uT ]−N/2+s+1e
−iλs.

STEP 4: The bootstrapped test statistic is then defined by

Q+
T =

1

M

M∑
i=1

∫ π

−π

{
1

N

MN∑
j=−MN

Kb(λ− λj)

(
I+
N(ui, λj)

f(ui, λj; ϑ̂)
− 1

)}2

dλ

Notice that we could have in STEP 4 rescaled the local bootstrap periodogram

I+
N(u, λ) by f(ui, λj; ϑ̂

+) instead by f(ui, λj; ϑ̂), where ϑ̂(·)+ denotes the estimator

of the autoregressive parameter functions ϑ(·) obtained using the bootstrap pseudo-

series X+
1,T , X+

2,T , . . . , X+
T,T . The specification of Q+

T used is, however, preferred

because besides of being computationally more convenient, it is also justified theoret-

ically by the fact that the limiting distribution of the test statistic QT under the null

is not affected if the unknown ϑ(·) is replaced by a
√

N -consistent estimator ϑ̂(·).

The following theorem shows that the bootstrap procedure proposed leads to an

asymptotically valid approximation of the distribution of the test statistic QT under

the null hypothesis of a tvAR(p) process.
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Theorem 3.2.2. Let Assumptions 3.1.1, 3.1.2 and 3.2.1 be satisfied. Then, condi-

tionally on X1,T , X2,T , . . . , XT,T , we have as T →∞,

N
√

Mb(Q+
T − µT ) ⇒ N(0, τ 2),

in probability, where µT and τ 2 are defined in Theorem 3.1.1.

3.3 Applications

3.3.1 Some remarks on choosing the testing parameters

From the previous discussion it is clear that implementation of the testing procedure

proposed, requires essentially the selection of two parameters: the time window width

N and the smoothing bandwidth b. Although a thorough investigation of this problem

is beyond the scope of this chapter, we in what follows we give a rather heuristic

discussion on how to select this parameters in practice.

Concerning the value of the time window width N , we mention that the selection of

this parameter is inherit to any statistical inference procedure for locally stationary

process which is based on segments of observations. Choosing N to large will induce

a large bias since a large N is associated with a loss of information on the local

structure of the underlying process. On the other hand, choosing N to small will

lead to an increase of the variance of the estimators involved due to the small number

of observations used. Any approach to select N should therefore be guided by the

requirement that N should be large enough to allow for reasonable local estimation

but not too large to avoid a ’smoothing out’ the interesting local characteristics of

the process. Based on this observation and depending on the overall size n of the

time series at hand, we propose for numerical reasons, to choose N to be some power

of 2, where the choices N = 64 or N = 128 are more convenient in most situations.

Concerning the choice of the smoothing parameter b, one way to proceed is to select

this parameter using a local version of a cross-validation criterion like the one pro-

posed by Beltrão and Bloomfield [2]. To elaborate on, notice first that our aim is to

obatin a “good” estimate of the function q(u, λ) = f(u, λ)/f(u, λ; ϑ). To stress the
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dependence of this function on the estimated parametric curves, we write q(u, λ, ϑ(u))

in the sequel. Using as a starting point the function

M∑
i=1

N∑
j=1

{
log q(ui, λj; ϑ̂) +

IN(ui, λj)/f(ui, λj, ϑ̂)

q(ui, λj; ϑ̂)

}
, (3.3.11)

a leave-one-out estimator of q(u, λj; ϑ) is given by

q̂−j(u, λj; ϑ̂) =
1

N

∑
j∈Nj

Kh(λj − λs)
IN(u, λj)

f(u, λj; ϑ̂)
(3.3.12)

where Nj = {s : −MN ≤ s ≤ MN and j − s 6= ±j mod MN}. Notice that q̂−j

is a kernel estimator of q obtained by ignoring the jth ordinate local periodogram

IN(u, λj). Now, substituting q̂−j(u, λj; ϑ̂) for q(u, λj; ϑ̂) in (3.3.11) leads to the func-

tion

CV (b) =
M∑
i=1

N∑
j=1

{
log q̂−j(ui, λj; ϑ̂) +

IN(ui, λj)/f(ui, λj; ϑ̂)

q̂−j(ui, λj; ϑ̂)

}
, (3.3.13)

which can be used as a cross-validation-type criterion to select b.

3.3.2 Simulations

Bootstrap Approximations

We first, illustrate the advantages of using the bootstrap procedure proposed by

comparing its performance in approximating the distribution of QT under the null

with that of the limiting Gaussian approximation. For this purpose, observations

{Xt,T , t = 1, . . . , T} from the first order, time-varying autoregressive model

Xt,T = φ(
t

T
)Xt−1,T + εt (3.3.14)

have been generated, where φ(t/T ) = 0.9 cos(1.5− cos(4π(t/T ))) and the εt’s are i.i.d.

random variables with εt ∼ N(0, 1). To estimate the exact distribution of the test

statistic QT we generate 1000 series of length T = 1024 and for each of these series we

calculated QT using the Bartlett-Priestley kernel, K(x) = 1[−π,π](x)3(4π)−1(1− (x/π)2)

and the bandwidth b = 0.2. The window width N has been set equal to N = 128

and two different shifts, S = 128 and S = 64, have been considered. Notice that for

S = 128 we have κ = 1, while for S = 64, κ = 2.
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To investigate the performance of the bootstrap method, we choose randomly 21 series

from the generated 1000 replications of process (3.3.14) and for each of the selected

series we apply the bootstrap procedure proposed using 300 bootstrap replications.

Based on the bootstrap replications, we estimated for each series the density ĝ∗

of the corresponding bootstrap approximation of the distribution of QT . We also

estimated the density of the exact distribution of QT based on the 1000 replications

of process (3.3.14). The so estimated density is denoted by ĝ. The density estimates

ĝ∗ and ĝ have been obtained using standard SPlus smoothing routines. We then

compare the estimated exact density ĝ with the Gaussian approximation given in

Theorem 3.1.1 and with the median bootstrap approximation. The median bootstrap

approximations is that for which
∑

xi
|ĝ∗(xi)− ĝ(xi)| takes its median value over the

21 series used. Figure 3.1 shows the estimated densities of the exact, the asymptotic

Gaussian and the median bootstrap approximation.

As it is clearly seen from these exhibits, the estimation results based on bootstrap are

striking. In particular, the bootstrap performs much better compared to the Gaussian

approximation and estimates very accurately the exact distribution of interest.
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Figure 3.1: Estimated density of the distribution of the test statistic QT under the
null hypothesis of a first order tvAR process and its different approximations. The
solid lines in (a) and (b) are the estimated exact densities, the dashed lines are the
estimated densities corresponding to the median bootstrap approximations while the
dotted lines are the densities of the asymptotic Gaussian approximations.
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Size and power performance of the test

We next investigate the size and power performance of the test in finite sample

situations by means of a small simulation study. For this, we consider realizations of

length T = 512 and T = 1024 of the time-varying AR(2) model

Xt,T = 0.9 cos(1.5− cos(4πt/T ))Xt−1,T − φ2Xt−2,T + εt (3.3.15)

where the εt’s are independent, standard Gaussian distributed random variables. The

null hypothesis is that the underlying process is a time-varying first order autoregres-

sive process. Different values of the parameter φ2 have been considered corresponding

to validity of the null (φ2 = 0) and of the alternative hypothesis (φ2 6= 0). In each

case we fit a time-varying AR(1) model using a local least squares estimator and

compute the test statistic QT using the Bartlett-Priestley kernel and different values

of the bandwidth parameter b. We also apply the test proposed for different segment

lengths N and shifts S. In all cases the critical values of the test have been obtained

using B=300 replications of the bootstrap procedure described in Section 3.2. The

results obtained over 500 replications are summarized in Table 3.1.
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b = 0.3 b = 0.2
T=512, N=64 a = 0.01 a = 0.05 a = 0.1 a = 0.01 a = 0.05 a = 0.1

φ2 = 0.0
κ = 1 0.008 0.038 0.084 0.008 0.042 0.078
κ = 2 0.008 0.032 0.070 0.008 0.032 0.068

φ2 = 0.2
κ = 1 0.072 0.204 0.358 0.098 0.244 0.364
κ = 2 0.200 0.296 0.408 0.174 0.354 0.474

φ2 = 0.25
κ = 1 0.188 0.410 0.582 0.238 0.482 0.612
κ = 2 0.408 0.564 0.680 0.422 0.640 0.744

φ2 = 0.3
κ = 1 0.392 0.668 0.814 0.474 0.752 0.852
κ = 2 0.692 0.820 0.898 0.738 0.882 0.936

b = 0.2 b = 0.1
T=1024, N=128 a = 0.01 a = 0.05 a = 0.1 a = 0.01 a = 0.05 a = 0.1

φ2 = 0.0
κ = 1 0.010 0.040 0.080 0.012 0.044 0.082
κ = 2 0.008 0.044 0.092 0.012 0.048 0.098

φ2 = 0.2
κ = 1 0.272 0.512 0.618 0.226 0.474 0.584
κ = 2 0.480 0.732 0.800 0.500 0.674 0.776

φ2 = 0.25
κ = 1 0.622 0.830 0.894 0.542 0.798 0.866
κ = 2 0.824 0.952 0.974 0.834 0.924 0.968

φ2 = 0.3
κ = 1 0.914 0.992 0.996 0.884 0.974 0.992
κ = 2 0.986 1.000 1.000 0.986 1.000 1.000

Table 3.1: Rejection frequencies in 500 replications of the tvAR(2) model Xt,T =
0.9 cos(1.5 − cos(4πt/T ))Xt−1,T − φ2Xt−2,T + εt for different values of φ2 and of the
testing parameters.Mari
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As Table 3.1 shows, estimating the critical values of the test using the bootstrap

procedure proposed, leads to a very good size and power behavior of the test. Notice

that for both sample sizes and all combinations of bandwidth values, segment lengths

and shifts considered, the empirical size of the test is very close to the nominal level of

5%. Furthermore, under the alternative, the test has power even for small deviations

from the null and the power of the test increases rapidly approaching unity as the

deviations from the null and/or the sample size become larger.
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Chapter 4

Conclusions and further research

4.1 Conclusions

We have proposed a bootstrap method to produce replicates of the local periodogram

and applied this method to the important classes of local spectral means and local

ratio statistics. We have derived the asymptotic distributions of the bootstrap ana-

logues of these statistics and some simulations have demonstrated the performance

of our bootstrap procedure against the local autoregressive sieve bootstrap and the

normal approximation. An application to a real-data set is given.

We have also addressed the important problem of testing whether a locally stationary

process belongs to a semiparametric class of time varying processes. The asymptotic

distribution of the test statistic proposed is derived. As an interesting special case

we focus on the problem of testing for the presence of a semiparametric, time-varying

autoregressive model and a bootstrap procedure is proposed to approximate the dis-

tribution of the test statistic under the null hypothesis. Theoretical properties of the

bootstrap procedure are discussed and its asymptotic validity is established. Simu-

lations demonstrated that, in the testing set-up considered, the bootstrap is a very

powerful and valuable tool to obtain critical values.

4.2 Further research

The bootstrap approach in the second chapter can be applied to the calculation of

pointwise confidence intervals for some parameters of interest. We demonstrated such

an application of the bootstrap by considering pointwise confidence intervals for the

time varying autocorrelation function ρ(u, τ), u ∈ [0, 1] and τ ∈ N. An interesting

54
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problem for future research would be the construction of simultaneous confidence

bands for such parameters. Applied to the time varying autocorrelation function,

this problem requires, for instance, the investigation of the distribution of statistics

like

sup
u∈[0,1]

|ρ̂(u, τ)− ρ(u, τ)|

and the development of a bootstrap procedure which is capable to approximate its

distribution.

Concerning the testing methodology proposed in Chapter 3, it will be interesting

to investigate more closely the power behavior of the test for classes of fixed and

of local alternatives. Furthermore, it is interesting to investigate how the testing

methodology proposed can be applied to the problem of testing stationarity in time

series analysis.

Another interesting problem for future research is how to bootstrap the preperi-

odogram defined for every λ ∈ [−π, π] and u ∈ [0, 1] by

JN(u, λ) =
1

2π

∑

k

XuT+(k+1)/2,T XuT−(k−1)/2,T e−ikλ, (4.2.1)

where the sum over k is for k ∈ Z such that 1 ≤ [uT−(k−1)/2], [uT +(k+1)/2] ≤ T .

The preperiodogram is an important tool in the analysis of locally stationary processes

and several statistics proposed in the literature are based on it. The method of

bootstrapping the local periodogram, proposed in the second chapter, can not be

directly applied to bootstrap the preperiodogram.

Finally, our bootstrap procedures depend on the choice of different smoothing pa-

rameters like the window length N, the smoothing bandwidth b, S and M. In this

thesis, we gave only some guidelines on how to choose these parameters in practice.

It will be interesting to develop a theory on how to choose these parameters based

on some optimality criteria.
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Appendix A

Auxiliary results and proofs for

Chapter 2

First we define the process Zt,T (u) = Xt − X̃t(u) which satisfies

∞∑
s=−∞

cov(Zt,T (u), Zt+s,T (u)) = O(
1

T
+ | t

N
− u|) (A.0.1)

Lemma A.0.1. If {Xt,T} are locally stationary processes satisfying Assumption 2.1

and

εp,j(u) = X[uT ]−N/2+j,T −
p∑

i=1

βi(u)X[uT ]−N/2+j−i,T ,

εj(u) = X̃[uT ]−N/2+j(u)−
∞∑
i=1

βi(u)X̃[uT ]−N/2+j−i(u)

for p ∈ N,

E

(
1

N − p

N∑
j=p+1

Xj(u, p)(εp,j(u)− εj(u))

)2

≤ K

((
N

T

)2

sup
0≤u≤1

p∑
i=0

βi
2(u)

+ sup
0≤u≤1

∞∑

k=p+1

βk
2(u)

)

where Xj(u, p) is defined in Section 2.3.

Proof : Since

εp,j(u)− εj(u) =

p∑
i=0

βi(u)Z[uT ]−N/2+j−i(u) +
∞∑

i=p+1

βi(u)X̃[uT ]−N/2+j−i(u)(A.0.2)

the result now follows by (A.0.1).

¥
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Lemma A.0.2. Let {Xt,T} be a locally stationary process satisfying Assumption 2.1,

and p ∈ N. Then

E((N−p)−1

N∑

k=p

X[uT ]−N/2+k+1−i,T X[uT ]−N/2+k+1−j,T−c(u, i−j))2 ≤ K

(
N2

T 2
+(N−p)−1

)

for every (i, j) ∈ Np × Np where Np = {1, 2, . . . , p} and c(u, τ) is the time varying

covariance defined in Section 1.1.

Proof : Let [uT ]−N/2 + 1 = ν. We then have

1

N − p

N∑

k=p

Xν+k−i,T Xν+k−j,T − c(u, i− j) =
1

N − p

N∑

k=p

X̃ν+k−i(u)X̃ν+k−j(u)− c(u, i− j)

+
1

N − p

N∑

k=p

Zν+k−i(u)Zν+k−j(u)

+
1

N − p

N∑

k=p

Zν+k−i(u)X̃ν+k−j(u)

+
1

N − p

N∑

k=p

Zν+k−j(u)X̃ν+k−i(u)

= T1,N + T2,N + T3,N + T4,N

with an obvious notation for Ti,N . Since X̃t(u) is a stationary process we have that

E(T1,N)2 = O((N − p)−1) uniformly in u and the result follows because (A.0.1) gives

that

E(T2,N)2=O(N4/T 4) and E(T3,N)2 and E(T4,N)2 are O(N2/T 2). ¥

Before establishing the next lemma we recall some properties of covariance matrices.

From Grenander and Szegö [21] we have that if 0 < F1 < f(λ) < F2 < ∞ and

λ1 < λ2 < · · · < λp are the eigenvalues of R(p) = [γ(i − j)]i,j=1,...,p with γ(τ) =
∫ π

−π
f(λ) exp(iλτ)dλ, then 2πF1 ≤ λ1 < · · · < λp ≤ 2πF2. Assumption 2.1 implies

that for each u the local spectral density f(u, λ) is continuous in λ, and there are

constants F1 and F2 such that 0 < F1 < f(u, λ) < F2 < ∞ for all u ∈ [0, 1].

Consequently, if we assume that λ1(u) < λ2(u) < · · · < λp(u) are the eigenvalues of

Ru(p) = [c(u, i− j)]i,j=1,...,p, then 2πF1 ≤ λ1(u) < · · · < λp(u) ≤ 2πF2.

For a matrix A, let ‖ A ‖= sup‖x‖2≤1 ‖ Ax ‖2, where ‖ . ‖2 is the Euclidean norm.

Thus ‖ A ‖≤‖ A ‖2 and if A is positive defined and symmetric ‖ A ‖= |λmax| where

λmax is the largest of the eigenvalues of the matrix A.
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We then have that, uniformly in u,

‖ Ru(p) ‖≤ 2πF2, ‖ R−1
u (p) ‖≤ 1/(2πF1). (A.0.3)

Lemma A.0.3. Let {X̃t(u)} satisfy Assumptions 2.2, 2.3 and p → ∞ such that

p3/N → 0. Then for every u ∈ [0, 1]

√
p ‖ R̂−1

u (p)−R−1
u (p) ‖→ 0

in probability.

Proof : Let

‖ R−1
u (p) ‖= k(u, p), ‖ R̂−1

u (p)−R−1
u (p) ‖= qT (u, p), ‖ R̂u(p)−Ru(p) ‖= QT (u, p)

and note that as in Berk (1974),

qT (u, p) = ‖ R̂−1
u (p)(R̂u(p)−Ru(p))R−1

u (p) ‖

≤ (‖ R̂−1
u (p)−R−1

u (p) ‖ + ‖ R−1
u (p) ‖) ‖ R̂u(p)−Ru(p) ‖‖ R−1

u (p) ‖

= (k(u, p) + qT (u, p))QT (u, p)k(u, p).

Choose T large enough such that k(u, p)QT (u, p) < 1 holds in probability. We have,

qT (u, p) ≤ k2(u, p)QT (u, p)

1− k(u, p)QT (u, p)
. (A.0.4)

By Lemma A.0.2 we get

E(Q2
T (u, p)) ≤ Kp2

(
N2T−2 + (N − p)−1

)
. (A.0.5)

which implies that

E(
√

p QT (u, p))2 ≤ Kp3

(
N2T−2 + (N − p)−1

)
→ 0

as T → ∞, since by assumption p3/N → 0. Assertions (A.0.3), (A.0.4) and (A.0.5)

yields

√
p ‖ R̂−1

u (p)−R−1
u (p) ‖= √

p qT (u, p) ≤ k2(u, p)
√

p QT (u, p)

1− k(u, p)QT (u, p)
→ 0

in probability. ¥
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Proposition A.0.1.

(i) Let {X̃t(u)} satisfy Assumptions 2.2, 2.3 and p → ∞ such that p3/N → 0.

Then

‖ β̂u(p)− βu(p) ‖= Op

(
p1/2N−1/2

)

where βu(p) = (β1(u), β2(u), · · · , βp(u))′.

(ii) If Assumptions 2.1 and 2.3 are satisfied and p ∈ N fixed, then

‖ β̂u(p)− β̃u(p) ‖= Op

(
N−1/2

)

where β̃u(p) = (β1,p(u), β2,p(u), · · · , β1,p(u))′.

Proof : (i)

‖ βu(p)− β̂u(p) ‖ = ‖ R̂−1
u (p)

N−1∑
j=p

Xj(u, p)
(
Xj(u, p)′βu(p)−X[uT ]−N/2+j,T

)
/(N − p) ‖

≤ ‖ R̂−1
u (p)−R−1

u (p) ‖‖
N−1∑
j=p

Xj(u, p)εp,j(u)/(N − p) ‖

+ ‖ R−1
u (p) ‖‖

N−1∑
j=p

Xj(u, p)(εp,j(u)− εj(u))/(N − p) ‖

+ ‖ R−1
u (p) ‖‖

N−1∑
j=p

Xj(u, p)εj(u)/(N − p) ‖

where εp,j(u) and εj(u) are defined in Lemma A.0.1.

Since for 1 ≤ s ≤ p we have,

E

( N−1∑
j=p

X[uT ]−N/2+j−s,T εj(u)

)2

=
N−1∑
j=p

∞∑
i=0

α2
[uT ]−N/2+j−s,T (i) ≤ K(N − p).

we get

E ‖
N−1∑
j=p

Xj(u, p)εj(u)/(N − p) ‖2≤ Kp(N − p)−1 → 0. (A.0.6)

A direct consequence of Lemma A.0.1 is that
√

N

p
E ‖

N−1∑
j=p

Xj(u, p)(εp,j(u)−εj(u))/(N−p) ‖2= O(
p1/2N3/2

T 2
)+O(

√
Np sup

0≤u≤1

∞∑

k=p+1

βk
2(u)).

(A.0.7)

(A.0.6) and (A.0.7) imply that
√

N

p
‖

N−1∑
j=p

Xj(u, p)εp,j(u)/(N − p) ‖→ 0. (A.0.8)
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The desired result follows then by (A.0.3), (A.0.8) and Lemma A.0.3.

(ii) By Lemma A.0.2 we have

√
N ‖ β̂u(p)− β̃u(p) ‖ =

√
N ‖ R̂−1

u (p)r̂u(p)−R−1
u (p)ru(p) ‖= Op(N(N − p)−1).

¥

To establish the next proposition we first define,

B(u, z) = 1−
∞∑

k=1

βk(u)zk, B̂p(u, z) = 1−
p∑

k=1

β̂k(u)zk and B̃p(u, z) = 1−
p∑

k=1

βk,p(u)zk.

Proposition A.0.2.

(i) Under Assumptions 2.1 to 2.3 and for p → ∞ such that p3/N → 0, we have

for every u ∈ [0, 1]

sup
λ∈[−π,π]

∣∣∣f̂tvAR(u, λ)− f(u, λ)
∣∣∣ → 0

in probability, as T →∞.

(ii) Under Assumptions 2.1 and 2.3 and for every p ∈ N fixed, we have for every

u ∈ [0, 1]

sup
λ∈[−π,π]

∣∣∣f̂tvAR(u, λ)− ftvAR(u, λ)
∣∣∣ → 0

in probability, as T →∞.

Proof: (i) It suffices to show that for every u ∈ [0, 1],

σ̂p
2(u) → α(u, 0) and B̂p(u, eiλ) → B(u, eiλ) (A.0.9)

in probability, where the last convergence is uniformly in λ ∈ [−π, π]. By Proposition

A.0.1(i) and Assumption 2.2 we have

sup
λ∈[−π,π]

∣∣∣B̂p(u, eiλ)−B(u, eiλ)
∣∣∣ ≤‖ β̂u(p)− βu(p) ‖ +

∞∑
j=p+1

|βj(u)| → 0.

To see that σ̂p
2(u) → α(u, 0) in probability note that E(X̃t(u))2 =

∞∑
k=1

βk(u)c(u, k) +

α(u, 0), which gives

E(X̃t(u))2 −
∞∑

k=1

βk(u)c(u, k) = c(u, 0) + βu(p)′ru(p) +
∞∑

k=p+1

βk(u)c(u, k) = α(u, 0).

(A.0.10)
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Now,

σ̂p
2(u)− α(u, 0) =

1

N − p

N−1∑
j=p

X2
[uT ]−N/2+j−p,T − β̂u(p)′r̂u(p)− α(u, 0)

=
1

N − p

N−1∑
j=p

X2
[uT ]−N/2+j−p,T + (β̂u(p)− βu(p))′(r̂u(p)− ru(p))

+(β̂u(p)− βu(p))′ru(p) + β̂u(p)′(r̂u(p)− ru(p)) + βu(p)′ru(p)− α(u, 0)

and a direct application of (A.0.10) gives

∣∣σ̂p
2(u)− α(u, 0)

∣∣ ≤ | 1

N − p

N−1∑
j=p

X2
[uT ]−N/2+j−p,T − c(u, 0)|+ ‖ (β̂u(p)− βu(p))′ ‖

× ‖ (r̂u(p)− ru(p)) ‖ + ‖ (β̂u(p)− βu(p))′ ‖

× ‖ (ru(p)) + β̂u(p)′ ‖‖ (r̂u(p)− ru(p)) ‖ +
∞∑

k=p+1

|βk(u)c(u, k)|

= O(N−1/2p−1/2) + O(N1/2p1/2T−1)

which implies that the right hand side of the above equation converges to zero.

(ii) Proposition A.0.1(ii) and Lemma A.0.2 imply that for every u ∈ [0, 1]

supλ∈[−π,π] |B̂p(u, eiλ)− B̃p(u, eiλ)| → 0 and σ̂p
2(u) → c(u, 0)− β̃u(p)′ru(p) = σ2

p(u) in

probability. ¥

Lemma A.0.4. Let {Xt,T} be a locally stationary process satisfying Assumption 2.1.

Then

(i)

IN,X(u, λ) = IN, eX(u, λ) + R̃N(u, λ)

where IN, eX(u, λ) is the local periodogram of the series X̃1(u), . . . , X̃T (u) and E(R̃N(u, λ))2 =

O(N2/T 2) uniformly in u and λ .

(ii) For {λj = 2πj/N, j = 1, . . . , (MN − 1)} we have that

E
(
IN,X(u, λj)

)
= f(u, λj) + O

( 1

N
+

N

T

)

V ar
(
IN,X(u, λj)

)
= f 2(u, λj) + O

( 1

N
+

N

T

)

Cov
(
IN,X(u, λj), IN,X(u, λk)

)
=

1

N
κ4f(u, λj)f(u, λk)+O

(N

T

)
+o(N−1) for λk 6= λj.
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Proof: (i) Let [uT ] − N/2 + 1 = ν. We then have for the local discrete Fourier

transform JX(u, λ) of {Xt,T} that

JX(u, λ) = N−1/2

N−1∑
s=0

Xν+s,T e−iλs

= N−1/2

N−1∑
s=0

Zν+s,T (u)e−iλs + N−1/2

N−1∑
s=0

X̃ν+s(u)e−iλs

= JZ(u, λ) + J eX(u, λ)

Using that

IN,X(u, λ) = IN, eX(u, λ) + IN,Z(u, λ) + J eX(u, λ)JZ(u,−λ) + JZ(u, λ)J eX(u,−λ),

and (A.0.1) which implies that E(IN,Y (u, λ)) = O (N2/T 2) and E(IN,Y (u, λ))2 =

O (N4/T 4) the proof for part (i) is completed.

(ii) The assertion for the variance follows using part (i), and the fact that for each u,

V ar(IN, eX(u, λj)) = f 2(u, λj) + O (N−1) and |Cov(R̃(u, λj), IN, eX(u, λj)| = O(NT−1)

by Cauchy’s inequality. For the covariance of the local periodogram we use the same

arguments as above and that Cov
(
IN, eX(u, λj), IN, eX(u, λk)

)
= 1

N
κ4f(u, λj)f(u, λk) +

o(N−1) for λk 6= λj. ¥

Lemma A.0.5.

(i) Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 be satisfied. If p → ∞ such that

p3/N → 0 as T →∞, then for each u ∈ [0, 1]

ĝ(u, λ) → 1 and
∫ π

−π
|ĝ(u, λ)− 1| dλ → 0 in probability.

(ii) Let Assumptions 2.1, 2.3, 2.5 and 2.6 be satisfied. For all fixed p ∈ N and for

each u ∈ [0, 1] we have that

ĝ(u, λ) → f(u, λ)/ftvAR(u, λ) and
∫ π

−π
|ĝ(u, λ)− f(u, λ)/ftvAR(u, λ)| dλ → 0 in

probability.
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Proof: (i) By Proposition A.0.2(i) we obtain

q̂(u, λ) =
1

N

MN∑
j=−MN

Kh(λ− λj)
IN(u, λj)

f̂tvAR(u, λj)

=
1

f(u, λ)

1

N

MN∑
j=−MN

Kh(λ− λj)IN(u, λj) + op(1)

= 1 + op(1).

By Lemma A.0.4 we have

E
( π∫

−π

∣∣∣∣∣
1

N

MN∑
j=−MN

Kh(λ− λj)(IN(u, λj)− EIN(u, λj))

∣∣∣∣∣ dλ
)2

≤ 1

N2

π∫

−π

MN∑
j=−MN

K2
h(λ− λj)V ar (IN(u, λj)) dλ

+

π∫

−π

MN∑
j,k=−MN

j 6=k

Kh(λ− λj)Kh(λ− λk)Cov(IN(u, λj), IN(u, λk))dλ = o(1).

(ii) Follows by using the same arguments as in (i) and Proposition A.0.2(ii). ¥

Before establishing the next lemma we define E+ and cov+ the expectation and the

covariance function respectively with respect to the measure F̂ .

Lemma A.0.6. (i) Let Assumptions 2.1 and 2.3 be satisfied. For all fixed p ∈ N we

have that E+(ε+
1 )4 − 3 → κ4(p) in probability.

(ii) Let Assumptions 2.1 to 2.3 be satisfied. If p → ∞ such that p3/N → 0 then

E+(ε+
1 )4 − 3 → κ4 in probability.

Proof: (i) We have using ε = O((N − p)−1/2) and the notation Yt,T = Xt,T −
∑p

i=1 β̂i(
t
T
)Xt−i,T that

E+(ε̂+
t )4 =

1

T − p

T∑
t=p+1

Y 4
t,T

σ̂4
p(t/T )

+ op(1). (A.0.11)

Furthermore, let Ỹt(u) = X̃t(u)−∑p
i=1 βi,p(u)X̃t−i(u) and consider the difference

Yt,T − Ỹt(t/T ) =

(
Xt,T −

p∑
i=1

β̂i(
t

T
)Xt−i,T

)
−

(
X̃t(t/T )−

p∑
i=1

βi,p(
t

T
)X̃t−i(t/T )

)

= Zt,T (t/T ) +

p∑
i=1

(βi,p(
t

T
)− β̂i(

t

T
))X̃t−i(t/T ) +

p∑
i=1

β̂i(
t

T
)Zt−i,T (t/T )

= Op(N
−1/2) (A.0.12)
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By (A.0.12) and because σ̂p(u) → σp(u) in probability (see proof of Proposition

6.2(ii)), we deduce that

∣∣∣∣∣
1

T − p

T∑
t=p+1

(
Y 4

t,T

σ̂4
p(t/T )

− Ỹ 4
t (t/T )

σ4
p(t/T )

)∣∣∣∣∣ → 0

in probability. Since E(Ỹt(u))4 < ∞ ∀u ∈ [0, 1], we have that

1

T − p

T∑
t=p+1

E(Ỹ 4
t (t/T )) →

1∫

0

E(Ỹ 4
t (u))du.

(ii) This is proved by using standard arguments for the autoregressive sieve bootstrap,

see for instance Kreiss [23], Proposition 3.1. ¥

The process X+
t,T possesses the following representation,

X+
t,T =

∞∑
j=0

α̂t,T (j)ε+
t−j (A.0.13)

where α̂t,T (j) are obtained by (α̂t,T (0) = 1) :

(
1−

p∑
j=0

β̂j(
t

T
)zj

)−1

= 1 +
∞∑

j=0

α̂t,T (j)zj. (A.0.14)

Let Assumptions 2.1 to 2.6 be satisfied and let p → ∞ such that p3/N → 0. By

Proposition A.0.1(i) we have that

∞∑
j=0

|α̂t,T (j)− αt,T (j)| = Op(p
2N−1/2) (A.0.15)

Also under Assumption 2.1 and Assumptions 2.3 to 2.6 and letting the order of the

fitted approximating process fixed, by Proposition A.0.1(ii) we have that

∞∑
j=0

|α̂t,T (j)− αj,p(t/T )| = Op(N
−1/2) (A.0.16)

where {αj,p(t/T ), j ∈ N} is defined as {α̂t,T (j), j ∈ N} if we replace β̂j(t/T ) by

βj,p(t/T ) in (A.0.14), see Kreiss(1999) Lemma 8.3.

Lemma A.0.7. Let Assumption 2.1 and Assumptions 2.3 to 2.6 and keep p ∈ N
fixed or Assumptions 2.1 to 2.6 and let p →∞ such that p4/N → 0 is satisfied. Let

J+
N (φ) =

π∫

−π

φ(λ)ĝ(u, λ)I+
N(u, λ)dλ and J+

N, eX+
(φ) =

π∫

−π

φ(λ)ĝ(u, λ)I+

N, eX+
(u, λ)dλ
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where I+

N, eX+
(u, λ) is the periodogram on the segment [uT ] − N/2 + 1, ..., [uT ] + N/2

of the bootstrap process X̃+
t (u) =

∑∞
i=0 α̂[uT ],T (i)ε+

t−i. Then as T →∞,

J+
N (φ)− E+(J+

N (φ)) = J+

N, eX+
(φ)− E+(J+

N, eX+
(φ)) + Op(N/T + p2/N)

Proof:

Let ν = [uT ]−N/2 + 1,

d
+(1)
N (u, λ) =

1√
N

N−1∑
s=0

∞∑
m=0

α̂[uT ],T (m)ε+
s−m exp(−iλs),

d
+(2)
N (u, λ) =

1√
N

N−1∑
s=0

∞∑
m=0

(α̂ν+s,T (m)− α̂[uT ],T (m))ε+
s−m exp(−iλs)

Then

J+
N (φ) =

1

2π

∫ π

−π

φ(λ)ĝ(u, λ)
2∑

j,l=1

d
+(j)
N (u, λ)d

+(l)
N (u,−λ)dλ =:

2∑

j,l=1

J
+(j,l)
N (φ)

Since J
+(1,1)
N (φ) = J+

N, eX+
(φ) it suffices to show that J

+(j,l)
N (φ) − E+J

+(j,l)
N (φ) =

Op(N/T +p2/N) for j + l > 2. Using (A.0.15) we get that E+|(d+(1)
N (u, λ))|2 = Op(1),

E+|(d+(2)
N (u, λ))|2 = Op(N

2/T 2 + p4/N2 + p2N−1/2T−1) and for j + l > 2

E|N1/2(J
+(j,l)
N (φ)− E+J

+(j,l)
N (φ))|2 ≤ K(

N3

T 2
+

p4

N
)

where 0 < K < ∞ is constant. ¥

Proof of Proposition 2.4.1: First write the processes X̃t(u) and Ỹt(u) := X̃t(u)−
∑p

i=1 βi,p(u)X̃t−i(u) as X̃t(u) = Ψ(u,B)εt where Ψ(u, z) =
∑∞

j=0 α(u, j)zj , and

Ỹt(u) = Φp(u,B)X̃t(u) where Φp(u, z) = 1−∑p
j=1 βj,p(u)zj respectively, where B is

the backward shift operator defined by BjXt = Xt−j. Observe that

Ỹt(u) = Λp(u,B)εt

where

Λp(u, z) = Φp(u, z)Ψ(u, z) =
∞∑

j=0

`p(u, j)zj,

`p(u, 0) = 1 and `p(u, j) = α(u, j)−∑p
k=1 βj,p(u)α(u, j−k) for j ≥ 1. Straightforward

calculations give

cums(Ỹt(u)) = cums(εt)
∞∑

j=0

`p(u, j) = cums(εt) + cums(εt)Ls(u, p)

Mari
os

 Serg
ide

s



66

where cums is the sth ordered cumulant and Ls(u, p) =
∑∞

j=0 `s
p(u, j). Recall the

definition of κ4(p) in Theorem 4.1 to see that

κ4(p) =

∫ 1

0

cum4(Ỹt(u))

cum2
2(Ỹt(u))

du

and use that L4(u, p) ≤ L2
2(u, p) to get

∣∣∣∣
κ4(p)

κ4

− 1

∣∣∣∣ =

∣∣∣∣
∫ 1

0

(L2(u, p)− 2)L2(u, p) + L4(u, p)

(1 + L2(u, p))2
du

∣∣∣∣

≤ 2

∫ 1

0

L2(u, p)

1 + L2(u, p)
du.

¥

Proof of Theorem 2.4.1 and Theorem 2.4.2:

Using similar arguments as in Theorem 4.1 of Kreiss and Paparoditis [24] we have

that

cov+(J+

N, eX+
(φi), J

+

N, eX+
(φj)) =

2π
{ π∫

−π

φi(λ){φj(λ) + φj(−λ)}q̂2(u, λ)f 2
tvAR(u, λ)dλ

+ κ+
4

π∫

−π

π∫

−π

φi(λ)φj(−µ)ĝ(u, λ)ftvAR(u, λ)q̂(u, µ)ftvAR(u, µ)dλdµ
}

where J+

N, eX+
(φ) is defined in Lemma A.0.7 and κ+

4 is the fourth cumulant of the boot-

strapped residuals ε+
t . Because of Lemmas A.0.5 and A.0.6 and Proposition A.0.2

we can replace E+(ε+
1 )4, ĝ(u, λ) and f̂tvAR(u, λ) by their limits and we obtain that,

cov+(J+

N, eX+
, J+

N, eX+
) → cov(ξi, ξj) in probability which with Lemma A.0.7 complete

the proof of both theorems. ¥

Proof of Theorem 2.4.4: Using Lemma A.0.4 (i) we can show that

√
Nb

(
f̂(u, λ)− E(f̂(u, λ))

)
=
√

Nb
(
f̃(u, λ)− E(f̃(u, λ))

)
+ op(1) (A.0.17)

where f̃(u, λ) = N−1
∑MN

j=−MN
Kb(λ− λj)IN, eX(u, λj) and IN, eX(u,w) is the local peri-

odogram of the stationary series X̃1(u), . . . , X̃T (u). Recall that {X̃s(u)} is a station-

ary process which approximates Xt,T in a local neighborhood around u = t/T . Now,
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set

f̃ ∗(u, λ) = N−1

MN∑
j=−MN

Kb(λ− λj)I
∗
N, eX∗(u, λj)

where I∗
N, eX∗(u, λ) = ĝ(u, λ)I+

N, eX+
(u, λ) and I+

N, eX+
(u, λ) is the local periodogram of

the segment of observations X+
[uT ]−N/2+1(u), ..., X+

[uT ]+N/2(u) coming from the station-

ary bootstrap process X̃+
t (u) =

∑∞
i=0 α̂[uT ],T (i)ε+

t−i. Following the same steps as in

Lemma A.0.7 the following result can be established

√
Nb

(
f̂ ∗(u, λ)− E(f̂ ∗(u, λ))

)
=
√

Nb
(
f̃ ∗(u, λ)− E(f̃ ∗(u, λ))

)
+ op(1). (A.0.18)

The assertion of the theorem follows then by the same arguments as of those used in

the proof of Theorem 5.1 of Kreiss and Paparoditis [24], since
√

Nb
(
f̃(u, λ)− E(f̃(u, λ))

)

and
√

Nb
(
f̃ ∗(u, λ)− E(f̃ ∗(u, λ))

)
are based on realizations of stationary processes.
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Appendix B

Auxiliary results and proofs for

Chapter 3

A useful tool for handling taper data, is the periodic extension (with period 2π) of

the function LT (α) : R→ R, with

LT (α) =





T, |α| ≤ 1/T

1/|α|, 1/T ≤ |α| ≤ π.
(B.0.1)

For the proof of the following lemma see Dahlhaus [9].

Lemma B.0.8.

a.
∫

Π
Lk

T (α) ≤ KT k−1 for all k > 1.

b.
∫

Π
LT (α) ≤ K log(T )

c. |α|LT (α) ≤ K

d.
∫

Π
LT (β − α)LS(α + γ) ≤ K max{log(T ), log(S)}Lmin{T,S}(β + γ)

For a complex-valued function f define HN(f(·), λ) :=
∑N−1

s=0 f(s)e−iλs and let

Hk,N(λ) = HN(hk(
·
N

), λ)

and

HN(λ) = H1,N(λ).
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Straightforward calculation gives

∑
j

Hk,N(α− λj)H`,N(λj − β) = 2πNHk+`,N(α− β)

where the sum extends over all the Fourier frequencies

λj = 2πj/N, j = −[(N − 1)/2], . . . , [N/2]. Under Assumption 3.1.2 (iv) there is a

constant C independent of T and λ such that

|Hk,N(λ)| ≤ CLN(α) (B.0.2)

and

Kb(λ) ≤ CbL2
1/b(λ). (B.0.3)

Lemma B.0.9.

(i) Let N, T ∈ N. Suppose that the data taper h satisfies Assumption 3.1.2 (iv)

and ψ : [0, 1] → R is Lipshitz continuous. Then we have for 0 ≤ t ≤ N ,

HN

(
ψ

( ·
T

)
h

( ·
N

)
, λ

)
= ψ

(
t

T

)
HN(λ) + O

(
N

T
LN(λ)

)
.

The same holds, if ψ(·/T ) on the left side is replaced by numbers ψs,T with

sups |ψs,T − ψ(s/T )| = O(T−1)

(ii) Let tj = S(j − 1) + N/2, uj = tj/T with N, M,S and T satisfying Assumption

3.1.2 and ψ : [0, 1] → R be Lipshitz continuous. Then

∣∣∣∣∣
M∑

j=1

ψ(uj)e
iλSj

∣∣∣∣∣ ≤ KLM(Sλ).

Proof: The proof is identical to the proof of Lemmas A.5 and A.6 in Dahlhaus [9].

¥

Before proceeding with the next lemma we use for simplicity the notation fϑ0(u, λ)

for f(u, λ; ϑ0(u)) and fϑ̂(u, λ) for f(u, λ; ϑ̂(u)).

Lemma B.0.10. Under Assumptions 3.1.1, 3.1.2 and if H0 is true, then

E(N
√

MbQ0,T ) = µT + o(1)
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where

µT =
M1/2ctap

b1/2

∫ π

−π

K2(x)dx +
M1/2b1/2ctap

4π

∫ π

−π

∫ 2π

−2π

K(x)K(x− u)dxdu

and ctap =
∫ 1

0
h4(x)/(

∫ 1

0
h2(x))2.

Proof: First note that

E(N
√

MbQ0,T ) =
b1/2

M1/2N

M∑
m=1

∫ π

−π

∑
j

∑
s

Kb(λ− λj)Kb(λ− λs)

fϑ0(ui, λj)fϑ0(ui, λs)

×cum (IN(um, λj), IN(um, λs)) dλ

+O(
√

MbN5/T 4 +
√

Mb log2(N)/N).

Using (3.1.3) and the following property for cumulants

cum(Z1Z2, Z3Z4) = cum(Z1, Z3)cum(Z2, Z4) + cum(Z1, Z4)cum(Z2, Z3), (B.0.4)

for Zi Gaussian random variables, we get

E(N
√

MbQ0,T ) =
b1/2

4π2M1/2NH2
2,N(0)

M∑
m=1

∫ π

−π

∑
j

∑
s

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
dλ

×
(
cum (dN(um, λj), dN(um, λs)) cum (dN(um,−λj), dN(um,−λs))

+cum (dN(um, λj), dN(um,−λs)) cum (dN(um,−λj), dN(um, λs))
)

+o(1)

= µ1,T + µ2,T + o(1)

with an obvious notation for µi,T , i = 1, 2.

Recall the definition of dN(u, λ) to see that

cum (dN(um, λj), dN(um, λs)) cum (dN(um,−λj), dN(um,−λs))

=

∫ π

−π

∫ π

−π

HN(A0
tm−N/2+1+·,T (µ1)h(

·
N

), λj − µ1)HN(A0
tm−N/2+1+·,T (−µ1)h(

·
N

),−λs + µ1)

×HN(A0
tm−N/2+1+·,T (µ2)h(

·
N

),−λj − µ2)HN(A0
tm−N/2+1+·,T (−µ2)h(

·
N

), λs + µ2)dµ1dµ2.

Substituting A0
tm−N/2+1+·,T (µ2) by A(t/T, µ2) on the above expression, and using

(1.1.9) and the fact that A(·, ·) is Lipshitz continuous, we get that the above term is

equal to

∫ π

−π

∫ π

−π

fϑ0(um, µ1)fϑ0(um, µ2)HN(λj−µ1)HN(−λs+µ1)HN(−λj−µ2)HN(λs+µ2)dµ1dµ2

(B.0.5)
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plus a remainder term Rm depending on the difference |A0
tm−N/2+1+·,T (µ2)−A(t/T, µ2)|

which satisfies
∣∣∣∣∣

b1/2

M1/2N3

M∑
m=1

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
Rm

∣∣∣∣∣

≤ N

T

b1/2M1/2

N3
log2(N)b

JN∑
j=−JN

JN∑
s=−JN

L2
1/b(λj − λs)L

2
N(λj − λs)

= O(
NM1/2 log2(N)

b1/2T
). (B.0.6)

Using the bound (B.0.6) and replacing fϑ0(um, µ1) and fϑ0(um, µ2) by fϑ0(um, λj) and

fϑ0(um, λs) respectively, we get that the term µ1,T is equal to

b1/2M1/2

NH2
2,N(0)

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)|HN(λj − λs)|2dλ

=
M1/2ctap

b1/2

∫ π

−π

K2(x)dx + O(
log(N)M1/2

Nb3/2
)

plus a remainder term Rm which depends on the difference |fϑ0(um, µ2)−fϑ0(um, λj)|
and which satisfies

∣∣∣∣∣
b1/2

M1/2N3

M∑
m=1

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
Rm

∣∣∣∣∣

≤ b1/2M1/2

N3

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)LN(λs − λj)dλ

= O(
b1/2M1/2 log2(N)

N
).

Using similar arguments we get that the second term µ2,T is equal to

b1/2M1/2

NH2
2,N(0)

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)|HN(λj + λs)|2dλ + o(1)

=
M1/2b1/2ctap

4π

∫ π

−π

∫ π

−π

K(x)K(x− u)dxdu + o(1)

¥

Lemma B.0.11. Under Assumptions 3.1.1 and 3.1.2 and if H0 is true, then

V ar(N
√

MbQ0,T ) = τ 2 + o(1)

where τ 2 is defined in Theorem 3.1.1.

Mari
os

 Serg
ide

s



72

Proof: First note that

V ar(N
√

MbQ0,T )

=
b

MN2

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
(
cum(IN(um1 , λj), IN(um2 , λk))cum(IN(um1 , λs), IN(um2 , λl))

+cum(IN(um1 , λj), IN(um2 , λl))cum(IN(um1 , λs), IN(um2 , λk))

+cum(IN(um1 , λj), IN(um2 , λk), IN(um1 , λs), IN(um2 , λl))
)
dλdµ + o(1)

= V1,T + V2,T + V3,T

with an obvious notation for Vi,T i = 1, 2, 3. From (3.1.3) and (B.0.4) we get that

the terms V1,T and V2,T can be written as the sum of four terms, that is for j = 1, 2

we can write Vj,T =
∑4

i=1 V
(i)
j,T .

The first term in this decomposition equals

V
(i)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

cum (dN(um1 , λj), dN(um2 ,−λk)) cum (dN(um1 ,−λj), dN(um2 , λk))

×cum (dN(um1 , λs), dN(um2 ,−λl)) cum (dN(um1 ,−λs), dN(um2 , λl))

To handle this term notice that using arguments similar to those used in the proof

of Lemma B.0.10 we have that the term
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

HN(A0
tm1−N/2+1+·,T (µ1)h(

·
N

), λj − µ1)

×HN(A0
tm2−N/2+1+·,T (−µ1)h(

·
N

),−λk + µ1)HN(A0
tm1−N/2+1+·,T (µ2)h(

·
N

),−λj − µ2)

×HN(A0
tm2−N/2+1+·,T (−µ2)h(

·
N

), λk + µ2)HN(A0
tm1−N/2+1+·,T (µ3)h(

·
N

), λs − µ3)

×HN(A0
tm2−N/2+1+·,T (−µ3)h(

·
N

),−λl + µ3)HN(A0
tm1−N/2+1+·,T (µ4)h(

·
N

),−λs − µ4)

×HN(A0
tm2−N/2+1+·,T (−µ4)h(

·
N

), λl + µ4)

× exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4

is equal to
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

A(um1 , µ1)A(um2 ,−µ1)A(um1 , µ2)A(um2 ,−µ2)A(um1 , µ3)A(um2 ,−µ3)

×A(um1 , µ4)A(um2 ,−µ4)HN(λj − µ1)HN(−λk + µ1)HN(−λj − µ2)HN(λk + µ2)

×HN(λs − µ3)HN(−λl + µ3)HN(−λs − µ4)HN(λl + µ4)

× exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4 + R1(m1,m2)
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where R1(m1, m2) satisfies

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×R1(m1,m2)dλdµ

≤ K1

H4
N

b

MN2

N

T

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

×LN(λj − µ1)LN(−λk + µ1)LN(−λj − µ2)LN(λk + µ2)LN(λs − µ3)HN(−λl + µ3)

×LN(−λs − µ4)LN(λl + µ4)L
2
M(S(µ1 + µ2 + µ3 + µ4))dµ1dµ2dµ3dµ4dλdµ (B.0.7)

since by Lemma A.6 of Dahlhaus [9] we have

M∑
m=1

1

fϑ0(um, λk)fϑ0(um, λl)
ei((µ1+µ2+µ3+µ4)(Sm) = O(LM(S(µ1 + µ2 + µ3 + µ4))).

Now using Lemma A.4(e) and Lemma A.4(j) of Dahlhaus [9], expression (B.0.7) can

be bounded by

K1

H4
N

b

MN2

N

T

NM

S
log3(N)

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

×L2
N(λj − λk)L

2
N(λs − λl)dλdµ = O(

log3(N)N2

ST
).

Furthermore, replacing A(ui, µ1) by A(ui, λj) in the first term of (B.0.7) we get that

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

A(um1 , µ1)A(um2 ,−µ1)A(um1 , µ2)A(um2 ,−µ2)A(um1 , µ3)A(um2 ,−µ3)

×A(um1 , µ4)A(um2 ,−µ4)HN(λj − µ1)HN(−λk + µ1)HN(−λj − µ2)HN(λk + µ2)

×HN(λs − µ3)HN(−λl + µ3)HN(−λs − µ4)HN(λl + µ4)

× exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4

=

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

A(um1 , λj)A(um2 ,−µ1)A(um1 , µ2)A(um2 ,−µ2)A(um1 , µ3)A(um2 ,−µ3)

×A(um1 , µ4)A(um2 ,−µ4)HN(λj − µ1)HN(−λk + µ1)HN(−λj − µ2)HN(λk + µ2)

×HN(λs − µ3)HN(−λl + µ3)HN(−λs − µ4)HN(λl + µ4)

× exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4 + R2(m1, m2)
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where the remainder term R2(m1,m2) satisfies

b

MN2H4
N

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×R2(m1,m2)dλdµ

≤ K1

H4
N

b

MN2

MN

S
log3(N)

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

×LN(λj − λk)L
2
N(λl − λs)dλdµ = O(

log3(N)

S
).

From (B.0.8) we get that the term V
(1)
1,T can be expressed as:

V
(1)
1,T =

b

16π4MN2H4
Nb4

∑
m1,m2

∫ π

−π

∫ π

−π

[∑

j,k

K(
λ− λj

b
)K(

µ− λk

b
)

∑
s1,s2,s3,s4

h(
s1

N
)h(

s2

N
)

×h(
s3

N
)h(

s4

N
)e−i[s1λj−s2λk−s3λj+s4λk]

∫ π

−π

ei[µ1(s1−s2)+µ1S(m1−m2)]dµ1

×
∫ π

−π

ei[µ2(s3−s4)+µ2S(m1−m2)]dµ2

]2

dλdµ + o(1)

=
b

N2H4
Nb4

∑

|m|<N/S

∫ π

−π

∫ π

−π

[ ∑

j,k

K(
λ− λj

b
)K(

µ− λk

b
)

×
∣∣∣∣∣

N−1−Sm∑
s1=0

h(
s1

N
)h(

s1 + Sm

N
)e−i[s1(λj−λk)]

∣∣∣∣∣

2]2

dλdµ + o(1),

which by straightforward calculations yield

V
(1)
1,T =

∑
|m|<κ

(∫ 1−m/κ

0
h2(u)h2(u + m/κ)du

)2

2π
(∫ 1

0
h2(x)

)4

∫ 2π

−2π

(∫
K(u)K(u + x)du

)2

dx

+O(
log2(N)

N2b4
).

The terms V
(j)
1,T , j = 2, 3, 4 are handled similarly. In particular, we get

V
(2)
1,T =

∑
|m|<κ

(∫ 1−m/κ

0
h2(u)h2(u + m/κ)du

)2

2π
(∫ 1

0
h2(x)

)4

∫ 2π

−2π

(∫
K(u)K(u− x)du

)2

dx + o(1),

V
(3)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum (dN(um1 , λj), dN(um2 , λk)) cum (dN(um1 ,−λj), dN(um2 ,−λk))

×cum (dN(um1 , λs), dN(um2 ,−λl)) cum (dN(um1 ,−λs), dN(um2 , λl)) = O(b)
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and

V
(4)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum (dN(um1 , λj), dN(um2 ,−λk)) cum (dN(um1 ,−λj), dN(um2 , λk))

×cum (dN(um1 , λs), dN(um2 , λl)) cum (dN(um1 ,−λs), dN(um2 ,−λl))

= O(b).

The term V2,T has the same structure as the term V1,T and converges, therefore, to

the same limit. Finally, for the term V3,T we have

V3,T =
b

MN2

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum(dN(um1 , λj)dN(um1 ,−λj), dN(um2 , λk)dN(um2 ,−λk), dN(um1 , λs)

×dN(um1 ,−λs), dN(um2 , λl)dN(um2 ,−λl))dλdµ.

To handle this term notice that using the product theorem of cumulants, see Brillinger

[4], we have to sum over all indecomposable partitions P1, . . . , Pm of the scheme

a1 b1

a2 b2

a3 b3

a4 b4

where a1 stands for the position of dN(um1 , λj) , b1 for the position of dN(um1 ,−λj),

etc. Following the notation of Dahlhaus [9], let Pi = {c1, . . . , ck}, P i := {c1, . . . , ck−1},
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βPi
:= (βc1 , . . . , βck−1

) and βck
= −∑k−1

j=1 βcj
. Also, let m be the size of the corre-

sponding partition and β = (βP i
, . . . , βP m

). We then get

V3,T =
b

MN2H4
N

∑
ip

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
∫

Π8−m

HN(A0
tm1−N/2+1+·,T (βa1)h(

·
N

), λj − βa1)

×HN(A0
tm1−N/2+1+·,T (βb1)h(

·
N

),−λj − βb1)

×HN(A0
tm2−N/2+1+·,T (βa2)h(

·
N

), λk − βa2)HN(A0
tm2−N/2+1+·,T (βb2)h(

·
N

),−λk − βb2)

×HN(A0
tm1−N/2+1+·,T (βa3)h(

·
N

), λs − βa3)HN(A0
tm1−N/2+1+·,T (βb3)h(

·
N

),−λs − βb3)

×HN(A0
tm2−N/2+1+·,T (βa4)h(

·
N

), λl − βa4)HN(A0
tm2−N/2+1+·,T (βb4)h(

·
N

),−λl − βb4)

m∏
ν=1

g|Pν |(βP ν
) exp {i(tm1(βa1 + βb1 + βa3 + βb3)

+ tm2(βa2 + βb2 + βa4 + βb4))} dβdλdµ (B.0.8)

Now replace in (B.0.8) the terms HN(A0
tmi−N/2+1+·,T (β)h( ·

N
),−λk−β) by A(umi

, β)HN(−λk−
β) to get

V3,T =
b

MN2H4
N

∑
ip

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
∫

Π8−m

A(um1 , βa1)HN(λj − βa1)A(um1 , βb1)HN(−λj − βb1)A(um2 , βa2)HN(λk − βa2)

×A(um2 , βb2)HN(−λk − βb2)A(um1 , βa3)HN(λs − βa3)A(um1 , βb3)HN(−λs − βb3)

×HN(A(um2 , βa4)HN(λl − βa4)A(um2 , βb4)HN(−λl − βb4)
m∏

ν=1

g|Pν |(βP ν
)

× exp {i(tm1(βa1 + βb1 + βa3 + βb3) + tm2(βa2 + βb2 + βa4 + βb4))} dβdλdµ

+ET , (B.0.9)

where due to the indecomposability of the partitions considered, the following upper

bound is true for the error term ET

b

MN2H4
N

N

T

∑
ip

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

∫

Π8−m

LN(λj − βa1)LN(−λj − βb1)LN(λk − βa2)LN(−λk − βb2)LN(λs − βa3)

×LN(−λs − βb3)LN(λl − βa4)LN(−λl − βb4)LM(S(βa1 + βb1 + βa3 + βb3))

×LM(S(βa2 + βb2 + βa4 + βb4))dβdλdµ

≤ b log4(N)

MN2

N

T

∑
ip

∫

Π8−m

LN(−βa1 − βb1)LN(−βa2 − βb2)LN(−βa3 − βb3)LN(−βa4 − βb4)

×LM(S(βa1 + βb1 + βa3 + βb3))LM(S(βa2 + βb2 + βa4 + βb4))dβ.
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Therefore, and because −βai
− βbi

6= 0 ∀i, βa1 + βb1 + βa3 + βb3 6= 0 and βa2 + βb2 +

βa4 + βb4 6= 0, we get that

b log4(N)

MN2

N

T

∑
ip

∫

Π8−m

LN(−βa1 − βb1)LN(−βa2 − βb2)LN(−βa3 − βb3)LN(−βa4 − βb4)

×LM(S(βa1 + βb1 + βa3 + βb3))LM(S(βa2 + βb2 + βa4 + βb4))dβ

≤ b log4(N)

N2M

N

T

N4

S3
log3(M) log3(S) → 0.

Similarly the first term on the right hand side of (B.0.9) is bounded by

b log4(N)

N2M

N4

S3
log3(M) log3(S) → 0,

which shows that V3,T → 0 as T →∞. ¥

Lemma B.0.12. Under Assumptions 3.1.1 and 3.1.2 and if H0 is true, we have for

every ` ≥ 3 that

N `M `/2h`/2cum`(Q0,T ) = o(1)

Proof: Let Π = (−π, π] and µ = (µ1, . . . , µ`). We then have

N `M `/2b`/2cum`(Q0,T )

= N−`M−`/2b`/2

M∑
m1,...,ml=1

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

cum{
2∏

k=1

(
IN(um1 , λjk,1

)− fϑ0(um1 , λjk,1
)
)
, . . . ,

2∏

k=1

(
IN(um`

, λjk,`) − fϑ0(um`
, λjk,`

)
)

dµ1 . . . dµ`.

Using the product theorem for cumulants, we have that

cum{
2∏

k=1

(
IN(um1 , λjk,1

)− fϑ0(um1 , λjk,1
)
)
, . . . ,

2∏

k=1

(
IN(um`

, λjk,`) − fϑ0(um`
, λjk,`

)
)

=
∑
i.p.

n∏
s=1

cum{(IN(ump , λjq,p)− fϑ0(ump , λjq,p)
)
, (p, q) ∈ Ps}

where the sum is over all indecomposable partitions {P1, . . . , Pn} of the table

(1, 1) (1, 2)

...
...

(`, 1) (`, 2).
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We consider the sum
∑

i.p.1 over all partitions with |Pi| > 1. That is,

N−`H−2`
2,N (0)M−`/2b`/2

∑
i.p.1

M∑
m1,...,ml=1

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

n∏
s=1

cum{dN(ump , λjq,p)dN(ump ,−λjq,p), (p, q) ∈ Ps}

dµ1 . . . dµ` (B.0.10)

Using again the product theorem of comulants, we have to sum over all indecompos-

able partitions {Qs,1, . . . , Qs,m} of the table

aps1 ,qs1
bps1 ,qs1

...
...

aps|Ps| ,qs|Ps|
bps|Ps| ,qs|Ps|

for all sets Ps = {(ps1 , qs1), . . . , (ps|Ps| , qs|Ps|)}. Note that apsr ,qsr
and bpsr ,qsr

stand for

the position of dN(u
m

(r)
p

, λ
j
(r)
q,p

) and dN(u
m

(r)
p

,−λ
j
(r)
q,p

) respectively where (r) denotes

the position of dN(u
m

(r)
p

,−λ
j
(r)
q,p

) in a fixed order. For simplicity we use the notation

apsr ,qsr
:= as,r and bpsr ,qsr

:= bs,r. Furthermore, if Qs,i = {cs,1, . . . , cs,k} we set

Qs,i = {cs,1, . . . , cs,k−1}, βQs,i
:= (βcs,1 , . . . , βcs,k−1

), βcs,k
= −∑k−1

j=1 βcs,j
and β(s) :=

(βQs,1
, . . . , βQs,m

). We then get that (B.0.10) is equal to

(
b

N2H4
2,N(0)M

)`/2 ∑
i.p.1

∑
i.p.∗

M∑
m1,...,ml=1

∑
j1,1,...,j1,`

∑
j2,1,...,j2,`

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

×
n∏

s=1

∫

Π2|Ps|−k

{ |Ps|∏
r=1

(p,q)∈Ps

HN(A0

t
(r)
mp−N/2+1+·,T (βas,r)h(

·
N

), λ
j
(r)
q,p
− βas,r)

×HN(A0

t
(r)
mp−N/2+1+·,T (βbs,r)h(

·
N

),−λ
j
(r)
q,p
− βbs,r)

}{ m∏
r=1

g|Qs,r|(β|Qs,r|)
}

× exp



i

|Ps|∑
r=1

t(r)mp
(βas,r + βbs,r)



 dβ(1) . . . dβ(n)dµ1 . . . dµ`

Replace the terms HN(A0

t
(r)
mp−N/2+1+·,T (β)h( ·

N
), λ−β) by the terms A(u

(r)
mp , β)HN(λ−
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β) to get that the above expression is equal to

(
b

N2H4
2,N(0)M

)`/2 ∑
i.p.1

∑
i.p.∗

M∑
m1,...,ml=1

∑
j1,1,...,j1,`

∑
j2,1,...,j2,`

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

×
n∏

s=1

∫

Π2|Ps|−k

{ |Ps|∏
r=1

(p,q)∈Ps

A(u(r)
mp

, βas,r)HN(λ
j
(r)
q,p
− βas,r)A(u(r)

mp
, βbs,r)HN(−λ

j
(r)
q,p
− βbs,r)

}

×
{ m∏

r=1

g|Qs,r|(β|Qs,r|)
}

exp



i

|Ps|∑
r=1

t(r)mp
(βas,r + βbs,r)



 dβ(1) . . . dβ(n)dµ1 . . . dµ`

+ET (B.0.11)

where the error term ET is bounded by

(
b

N2H4
2,N(0)M

)`/2
N

T

∑
i.p.1

∑
i.p.∗

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )

×Kb(µν − λj2,ν )
n∏

s=1

{ |Ps|∏
r=1

(p,q)∈Ps

∫

Π2|Ps|−m

LN(λ
j
(r)
q,p
− βas,r)LN(−λ

j
(r)
q,p
− βbs,r)

×LM(S(βas,r + βbs,r + βax,y + βbx,y))

}
dβ(1) . . . dβ(n)dµ1 . . . dµ`

for some (x, y) ∈ {1, . . . , n}×{1, . . . , |Px|} with x 6= s. Integration over all βas,r and

βbs,r gives that expression (B.0.11) is bounded by

(
b

N2H4
2,N(0)M

)`/2
N

T

M `−1N

S
N2` → 0,

which completes the proof. ¥

Lemma B.0.13. Under Assumptions 3.1.1 and 3.1.2 and if H0 is true, we have that

N
√

Mb(QT − µT ) = N
√

Mb(Q0,T − µt) + op(1)

Proof:

QT = Q0,T +
1

MN2

M∑
i=1

∫ π

−π

{
JN∑

j=−JN

Kb(λ− λj)

(
IN(ui, λj)

fϑ̂(ui, λj)
− IN(ui, λj)

fϑ0(ui, λj)

)}2

dλ

+
2b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

(
IN(ui, λj)

fϑ̂(ui, λj)
− IN(ui, λj)

fϑ0(ui, λj)

)

×
(

IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= Q0,T + Y1,T + Y2,T
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with an obvious notation for Y1,T and Y2,T . The term Y1,T is bounded by

|Y1,T | ≤ sup
u,j

(
fϑ0(u, λj)− fϑ̂(u, λj)

fϑ̂(u, λj)

)2
b1/2

M1/2N

M∑
i=1

∫ π

−π

{∑
j

Kb(λ− λj)
IN(ui, λj)

fϑ0(ui, λj)

}2

dλ

= Op

(
b1/2

M1/2

)
.

For the second term we have

Y2,T =
b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)

×
(

fϑ̂(ui, λj)− fϑ0(ui, λj)

fϑ̂(ui, λj)

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

+
b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

×
(

fϑ̂(ui, λj)− fϑ0(ui, λj)

fϑ̂(ui, λj)

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= W1,T + W2,T

with an obvious notation for W1,T and W2,T .

By a standard Taylor series argument, for fixed u, we have that for

ϑ̂(u) = (ϑ̂1(u), ϑ̂2(u), . . . , ϑ̂p(u))′ and

ϑ0(u) = (ϑ1(u), ϑ2(u), . . . , ϑp(u))′, ϑ̃0(u) = (ϑ̃1(u), ϑ̃2(u), . . . , ϑ̃p(u))′ with

||ϑ̃(u)− ϑ0(u)|| ≤ ||ϑ̂(u)− ϑ0(u)|| exists such that

fϑ̂(u, λ)− fϑ0(u, λ)

fϑ̂(u, λ)
=

Op(1)

{
p∑

m=1

(ϑ̂m(u)− ϑm(u))f
(1)
T (ϑm, λ)

+
1

2

p∑
m=1

p∑

l=1

(ϑ̂m(u)− ϑm(u))(ϑ̂l(u)− ϑl(u))f
(2)
T (ϑ̃m, ϑ̃l, λ)

}

where f
(1)
T (ϑm, λ) and f

(2)
T (ϑ̃m, ϑ̃l, λ) denote the first and second second partial deriva-

tives of f with respect to ϑm and ϑl and ϑm respectively, and evaluated at ϑm and

(ϑ̃m, ϑ̃l). Notice that the Op(1) term appear in (B.0.12) is due to the fact that

|1/fϑ̂(u, λ)| = Op(1). Using (B.0.12) we get
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W1,T = Op(1)
b1/2

NM1/2

M∑
i=1

p∑
m=1

(ϑ̂m(ui)− ϑm(ui))

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)f
(1)(ϑm, λj)

×
(

IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

+Op(1)
b1/2

NM1/2

M∑
i=1

p∑

l=1

p∑
m=1

(ϑ̂l(ui)− ϑl(ui))(ϑ̂m(ui)− ϑm(ui))

∫ π

−π

∑
j,s

Kb(λ− λj)

×Kb(λ− λs)f
(2)(ϑ̃m, ϑ̃l, λj)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= Op(N
−1/2) + Op(b

1/2).

The Op(N
−1/2) term is due to the fact that supu |ϑ̂m(u) − ϑm(u)| = Op(N

−1/2) and

that

b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)f
(1)(ϑm, λj)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)

×
(

IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

can be handled as Q0,T . Similarly we can show that W2,T = op(1) which completes

the proof. ¥

Proof of Theorem 3.1.1: By Lemma B.0.10, B.0.11 and B.0.12 we have that

the cumulants of all orders of Q0,T converge to the corresponding cumulants of the

limiting Gaussian distribution. The assertion of the theorem follows then by Lemma

B.0.13. ¥

Proof of Theorem 3.2.1 : Follow the same steps as in the proof of Lemma B.0.13

substituting ϑ for ϑ0 in fϑ0(ui, λj) and using the property that under the alternative

hypothesis, ϑ̂ is a
√

N -consistent estimator of ϑ. ¥

Proof of Theorem 3.2.2: First notice that X+
t,T is locally stationary with transfer

function Â0, that is,

X+
t,T =

∫ π

−π

Â0
t,T (λ)eiλtdξ+(λ) (B.0.12)

where

(i) ξ+(λ) is a Gaussian stochastic process on (−π, π] and

cov+{ξ+(λk), ξ
+(λj)} = δ(k, j)dλk (B.0.13)
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(ii) There exists a constant K and a function Â(u, λ) on [0, 1]× (−π, π) such that

for all T ,

sup
t,λ
|Â0

t,T − Â(t/T, λ)| ≤ K/T

(iii) Furthermore,

fϑ̂(u)(u, λ) =
1

2π
|Â(u, λ)|2 (B.0.14)

where ϑ̂(u) = (β̂1(u), . . . , β̂p(u), σ̂2(u)) and the function 1/f(u, λ; ϑ̂) is bounded

in probability.

Now, following the same steps as in the proof of Lemma B.0.10, B.0.11 and B.0.12, we

get that the limits of all cumulants of the bootstrap test statistic N
√

Mb(Q+
T − µT )

converge to the cumulants of the limiting Gaussian distribution given in Theorem

3.2.2. ¥
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Sørensen), Birkhäuser, Boston, 365–381, 2002.

[33] E. Paparoditis, and D. N. Politis, The local bootstrap for the periodogram.

Journal of Time Series Analysis, 20, 193–222, 1999.

[34] E. Paparoditis and D. N. Politis, Local block bootstrap.C.R. Acad. Sci.

Paris, Ser. I, 335, 959–962, 2002.

[35] M. B. Priestley, Evolutionary spectra and non-stationary processes. J. R.

Stat. Soc. Ser. B, 62, 204–237, 1965.

[36] M. B. Priestley, Spectral Analysis and Time Series. Academic Press, New

York, 1981.

[37] S. Sakiyama and M. Taniguchi, Testing composite hypotheses for locally

stationary processes. Journal of Time Series Analysis, 24, 483–504, 2003.

[38] M. Sergides and E. Paparoditis, Bootstrapping the local periodogram of

locally stationary processes. Journal of Time Series Analysis, 2007. to appear.

[39] R. Shumway and D. Stoffer Time Series and its Applications, Springer,

New York, 2000.

[40] S. Subba Rao, On some nonstationarity, nonlinear random processes and their

stationary approximations. Preprint, 2004.

[41] J. Theiler, L. S. Paul and D. M. Rubin, Detecting nonlinearity in data

with long coherence times. In: Times Series Prediction (Ed. by A. Weigend and

N. Gershenfeld), Addison-Wesley, Reading, MA, 1994.

[42] S. Van Bellegem and R. Dahlhaus, Semiparametric estimation by model

selection for locally stationary processes. J. R. Stat. Soc. Ser. B Stat. Methol.,

68, 721–746, 2006.

Mari
os

 Serg
ide

s




