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Abstract in Greek

H otacwédtnra €xer dradpauatioet onuaviind poho otny avdAuon ToV YpOVOGELR®DY
Tig tedeutaieg dexaetics. H undleon auty], av xow elxuotiny ano Oewpntixy| theupd,
eNELdY] EMLTEENEL TNV AVATTUEN ULAS XAAE TEXUNELWUEVNS OTATIOTIXTS GUUTEPACUA-
tohoylag, elvar neproplotny| oe egapuoyés. M mo peakiotixy| npocéyylon otny
avdAuon Ty yeovooelp®y elval auty mou fa emitpénel ) dour| e€dpTnong Tng oto-
YOOTXAG AVEAENG XAl TILO GLUYXEXPLUEVA TLS WLOTNTES deuTépag TAENS va alhalouy
ouald ye to yeoévo. H avdmntuén uag tétolag npocéyylong emtBadAAier tny Unopdn
XATOLWY TEPLOPLOUAY OTLS ATOXALGELS Ad TN GTAGLUOTHTA YLot Vo Yivel duvaty uta
otatloTixn ouunepaouatoloyia. “Evag tpdmog yia va UEAETAGOUUE GTATLOTLXY GUUTERIC-
natohoyia yio yeovixd petafarioueveg aveli&elg elvat va au&dvouuEe TNV TANeogopia
TOL €Y OLUE TOTUXA YLar TNV avéMEr oo auvidvetal to uéyebog tng ypovooeipds. Torn-
XA OTAOLUES AVEAEELS ElVaL UN OTAGLUES OTOYAGTIXES AVEALEELS TV oTolwy oL poTég
TG TN ot devTeENS TéENg aAAdlouy apyd oTo YebdVo.

H nagovoa draten €xet 0o xuplwg oxonolg:

1) Na avantiet pta uéfodo avaderypatorndioag mtou va dnutoveyel Peutompoypatd-
OELS TOL TOTUXOU TEPLOSOYPAUUATOS UG TOTUXA OTACUUNG OTOYAOTLXNS AVENENS.

2) Na npotafet évac éheyyoc tng undheong 6Tl N YEOVIXd UETABANNOUEYY PAOUATLXY
TUXVOTNTA EYEL UL ToEAUETELXY] 1) NULTapaUETEWXY) Soun. O éleyyog unopel va eqop-
HooTEL XL o€ Ypovixd UeTaBaANOUEVES AVEAEELS AUTOTAALVSEOULONG.

H péfodog avaderypatoindiog mou npoteivetan dnuiovpyet devdoavtiypapa tou Ton-
1X0U TEPLOSOYPAUUATOS oL GUVOLALEL Ulo TapAUETELXY) TPOGEYYLOY GTO Yedvo e ula
ATAPAUETELXY| TROGEYYLOT pdouatos. Egapudlovue npdta Tomxd Eva ypovixd ueta-
BaAhOuevo LOVTENO aUTOTAALVOPOULOTG HOTE Vo TEpLypddouue T faotxd yopaxTnets-

wwxd g avéline. “Evag, tomxd unoloylouévog, un napaueteixds dlophwthg oTto



X

paouatixd nedio yenolponoteital wetd yia vo BeATtobel ) TopaUeTeLX ) AUTOTAALYSEOULOT.
AlgpeLVOUUE TIG AOLUTTOTIXES WLOTNTES TNG UEDGBOL OTLG OLXOYEVELES TWV TOTUXGDY
PUOUATIXGY UECWY XL TOTUXDY OTATLOTIXGDY TNAIXOU. AGUUTTWTLXY ATOTEAECUATIXO TN T
g uebodou avadetypatoindlog anodetxvietal o dbo nepintidoelg. H uia agopd tny
neplntwon 6mov N 6Tdour TPOoGEYYLoT TN AvEAENS Unopel va tapaotabel cav uLa
autonaktvdpdulor dmetpng tééng xar N TEEN Tou Yoviélou Tou eqapudleTar Telvel
07O dmelpo oL 1 dAAn 6tay 7 Tdln tou wovtélou elvar otalepn. Ilpocouoidoeg
egetdlouv T SuvatdtnTa g Uebddou va divel xaholc exTUNTES TOY TOGOTHTOY TOU

wog evdlagépouy oe delyuata tenepaouévou peyéboug. H avdluon ohoxinpdveton ue

NV Tapoucioon xa eapuoyr e Uebddou oe mpayuatixd dedouéva.

O éheyyoc unobécewy Tou tpotetveta, Bacileto oty andotacy L% Tou otabuiouévou
TO-TX0V TEQLOSOYPAUMUATOS OO TNV AVOUEVOUEVY TWULH TOU XAT® oand TN UNndevixt
unéfeon. H otdbuiomn ylvetat ue tny eEXTLUOUEYYN NULTALOUUETELXY PAGUATIX TUXVOTNTA
Tou povtéhou. H aouuntwtixy xotavoun tng eAeyy0ouVAETNONG TOL TEOTELVETAL
€)eL UTOAOYLOTEL XATw and TN undevixy| undbeon Yy Ul UEYAAN OLXOYEVELX Nt
TUEAUETELXAY LOVTEA®Y TOTUXA OTAGLUOY OTOYACTIXOY AVEAEEDY. Lav elduxy| tepintwon,
yiveTal avdAuom Tou ehéyyou TNg UTaEENg ULag YeoviXd UETAPAAAGUEVNS AUTOTAALYSPOULOTS.
[ Ty xaAOTtepn TPOGEYYLON TNE XATAVOUNS TNG EAEY YOCLVEPTNONG XATK ATd TN UN-
deviny| undheon mpotelvetar o wébodog avaderypatolndiag xou anodewxvieton Hew-
enTuxd 6TL auTy| 0dnyel ota cwotd anoteréouata. Ilpocouoldoeig tapovoidlouvy Ty
anoteheouatixdTnTa Tng Uebodoloylag avadetypatolndlog xoar Ty anodotxdtnta

Tou eAéyYouL oE MEnepaoUEVaL DElyUaTA.



Abstract

Stationarity has played a major role in time series analysis during the last decades.
Although this assumption is attractive from a theoretical point of view because it
allows for the development of statistical inference procedures with good properties,
it seems rather restrictive in applications. A more realistic framework in time series
analysis is one which allows for the dependence structure of the underlying stochas-
tic process and more specifically for its second order properties to vary smoothly
over time. Developing a useful approach of statistical inference in such a context
requires however, that some restrictions have to be imposed on the deviations from
stationarity which are allowed. One way to investigate properties of statistical infer-
ence procedures for time-varying stochastic processes, is to allow for the amount of
local information available to increase to infinity as the sample size increases. Lo-
cally stationary processes are non-stationary stochastic processes whose second order

structure varies smoothly over time.

The aim of this thesis is twofold:

1) To develop a method to bootstrap the local periodogram of a locally stationary
process and

2) To propose a test of the hypothesis that the time varying spectral density of a
locally stationary process has a semiparametric structure including that of the time

varying autoregressive moving average model.

The bootstrap method proposed generates pseudo local periodogram ordinates by
combining a parametric time and non-parametric frequency domain bootstrap ap-
proach. We first fit locally a time varying autoregressive model in order to capture
the essential characteristics of the underlying process. A locally calculated non-

parametric correction in the frequency domain is then used in order to improve upon



xii
the locally parametric autoregressive fit. Some remarks on choosing the resampling
parameters are considered. As an application, we investigate the asymptotic proper-
ties of the bootstrap method proposed applied to the class of local spectral means and
local ratio statistics. Asymptotic normality of these statistics have been proven un-
der two cases, i.e. when the stationary approximation of the process has an infinitive
order autoregressive and the order of the fitted model tends to infinitive and when
the order of the fitted model is fixed. Some simulations demonstrate the ability of
our method to give accurate estimates of the quantities of interest and an application

to an earthquake data set is presented.

Concerning the test introduced, it is based on the L?-distance of a kernel smoothed
version of the local periodogram rescaled by the estimated semiparametric, time
varying spectral density. The asymptotic distribution of the test statistic proposed is
derived under the null hypothesis and it is shown that this distribution is a Gaussian
distribution with the nice feature that its parameters do not depend on characteristics
or parameters of the underlying process. As an interesting special case, we consider
the problem of testing the presence of a time-varying autoregressive structure. A
bootstrap procedure to approximate more accurately the distribution of the test
statistic under the null hypothesis is proposed and theoretically justified. Remarks
on choosing the resampling parameters are considered. Some simulations illustrate
that the bootstrap provides a considerably better approximation of the distribution

of the test statistic under the null hypothesis than the normal approximation.
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Chapter 1

Introduction

1.1 Locally stationary processes

Most existing models in time series analysis assume that the underlying process is
second-order stationary. This assumption is useful in order to have estimators for
certain characteristics or parameters of the process with good statistical properties,
such as consistency, efficiency or central limit theorems. Weak stationarity refers to
the property that the first and second order moment structure of a stochastic process
is invariant with respect to time translations. It has been the dominating paradigm
in time series analysis for many decades. The theoretical setting of weak stationarity
together with an appropriate notion of weak dependence have been proven to be quite
effective in time series analysis dealing to the development of a powerful asymptotic
theory capable to investigate properties of statistical inference procedures, ref. [36],
[4] , [5], [1]. An important theorem for weak stationary processes is the spectral
representation theorem, cf. Brockwell and Davis [5], which states that it is possible

to write one stationary process as a stochastic integral i.e.

X :/ eMAN)dE(N), tEN (1.1.1)
with a transfer function A(A) and an orthogonal increment process &(\).

However, a more realistic framework in time series analysis is one which assumes that
the second order characteristics of the observed process vary over time. Priestley [35]

considers stochastic processes with a time varying spectral representation similar to
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that of stationary process; cf. also [36]. The development of statistical inference
procedures for such processes has attracted considerably interest in the literature.
Valuable statistical inference requires that the amount of local information available
increases to infinity as the sample size increases. In this context, a framework for
the development of an asymptotic theory of statistical inference has been provided
by Dahlhaus [9] who introduced the class of locally stationary processes. Locally
stationary processes are stochastic processes whose spectral structure varies smoothly
over time. This concept can be extended /modified in several directions. For instance,
Nason et al. [27] adopted the concept of local stationarity but replaced the spectral
representation and the Fourier basis involved by a representation with respect to a

wavelets basis; see also [30].

The idea of a nonstationary process with time-varying characteristics was made rigor-
ous in Priestley’s theory of processes with evolutionary spectra. Priestly investigates
processes { Xy, t € N}, where X; has time varying spectral representation,

X, = / eMA,(N)dE(N), teEN (1.1.2)

—T

with a time-varying transfer function A;(\) and an orthogonal increment process
&(X). This approach, however, do not allow for asymptotic considerations due to the
nature of the nonstationarity considered. As a result, important tools like consistency,
asymptotic normality, efficiency etc. can not be proved in the theoretical treatment

of statistical procedures for such processes.

In order to overcome this problem Dahlhaus [9] introduced processes with time-
varying spectral representation, an approach similar to that in nonparametric regres-

sion. A simple example is the process
X;=0Y;, t=0,1,2,... (1.1.3)

where Y;, ¢t =0,1,2,... is a zero mean stationary process with unit variance and
oy is a deterministic positive function of the time parameter t. Here the degree of
nonstationarity of the process X; is measured by its time-varying variance function
o¢. Suppose that we have observations X, X5, ..., X7 and that we want to estimate

the deterministic function o;. For this some regularity assumptions on the function
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oy have to be imposed. However, to estimate the variance function o; only T obser-
vations are available and with this approach we do not get any increasing amount of
information on the local structure of o, as the sample size increases. Thus, asymptotic

considerations are difficult to use in the statistical analysis of such processes.

To set up an adequate asymptotic theory for nonstationary processes, Dahlhaus [9]
proceeds with a rescaling of the time variable transforming the support of o, to be

the interval [0, 1]. The process is then rewritten as,

t
Xt,T :O'(T>}/t, (].].4)

where {Xr}ren = { X, t = 1,...,T}ren, refers now to a triangular array of stochas-
tic processes. In this approach we have two scales of time: the observed time which
is the usual scale of time 1,2,...,T, and, the rescaled time defined on [0,1]. This
rescaling is a standard approach in nonparametric statistics. Now, letting T tend-
ing to infinity means in this context that more and more observations on the local

structure of the function o(u) are available.

A second example is the time-varying AR(1) processes
Xt = a(t)Xt_l + Et, (115)

where the ¢,’s are assumed to be i.i.d. standard normal random variables. As in
nonparametric regression and using a rescaling principle like the one described above,
the function a(t) is rescaled to the unit interval and a triangular array of stochastic

processes {Xr}ren = {Xir,t =1,...,T}ren is considered, where

t
Xt,T = G(T>Xt—1,T + & (116)

Comparing the process (1.1.6) with the spectral representation (1.1.2) one could

investigate a process of the form

X, = /” erA(%, NAE(N). (1.1.7)

However, it can be shown that the model (1.1.6) has not exact but only approximative
a solution of the form (1.1.7), see [9]. This observation led Dahlhaus [9] to introduce

the following, general definition of locally stationary processes.
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Definition 1.1.1. A triangular array of stochastic processes Xy (t=1,...,T), T € N

is called locally stationary with transfer function A° if there exists a representation

Xir = / ' eM A (N E(N), (1.1.8)

—T

where the following holds

(i) £(N) is a stochastic process on |—m, 7| with &(N\) = £(—\) and
k
cum{dé(\), ..., dEOW)} = 1 (Z Aj> GO M)A - A
j=1

where cumy{-} denotes the kth order cumulant, g1 = 0, ga(A) = 1, |gr(A1, ..., Aem1)| <

consty, for all k andn(\) = > o 0(A+2mj) is the period 27 extension of the Dirac

j=—00

delta function.

(ii) There exists constant K and a 2m-periodic function A : [0,1] x R — C with

A(u, —\) = A(u, \) such that

AN — A (% )\) ‘ < KT (1.1.9)

sup
£\

for all T. A(u, \) is assumed to be continuous in u.

Remark: The complicated construction with the two functions A(%, ) and A (X)
is necessary because on the one hand the smoothness assumptions on A(%, A) guaran-
tees that the process has a locally stationary behavior and on the other hand Ag}T()\)
ensures that the class of processes considered is rich enough to include interesting

applications like the time-varying model (1.1.6).

Another definition for locally stationary processes was given by Dahlhaus and Polonik
[16] using an infinitive order, time-varying moving average representation instead of

the spectral representation (1.1.8).

Definition 1.1.2. A triangular array {Xr}ren of stochastic processes Xp = {X;r,t =
1,...,T} is called locally stationary if Xip fulfills the following conditions.

(i) Xix has the representation

(e 9]

Xir= Y or(f)e, (1.1.10)

j==o0
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where g4 are independent, identically distributed random variables with Fe; = 0,

Ee? =1 and Eg* < co. Let ky = Egi* — 3 be the fourth cumulant of &;.

(ii) A sequence {{(j),j € Z} satisfying

> <
j=—o00

exists, such that

K
sup |a,7(J)] < - 1.1.11
tp| t,T(])| = é(]) ( )
(111) Functions a(-,7) : (0,1] — R exist satisfying
‘ K
sup |a(u, 7)| < ) (1.1.12)
. : Klu—v
sup |a(u, j) — a(v, j)| < —lg(j) | (1.1.13)
and
. t . K
sup |agr(7) = a5, )| < 7 (1.1.14)

¢ ’ T
Dahlhaus [11] discusses the equivalence of the spectral and the infinite moving average

representations of a locally stationary process.

The concept of local stationarity has been extended, modified in several directions
during the last decade. For instance, Nason et al. [27] introduced the class of locally
stationary wavelet processes replacing the Fourier basis by a wavelet basis. Locally

stationary wavelet processes have the representation

Xor = Z Z w?,k;ijk(t)gjt (1.1.15)
J k

where ¢ is a random orthonormal increment sequence and 1;;(t) a discrete, non-
decimated family of wavelets. Also they assume that there exist, appropriately de-

fined, functions W;(z) and constants C; such that similar to (1.1.14),

sup w9 — W;(k/T)| < C;/T. (1.1.16)

In the following we elaborate on the stationary approximation Xt(u) of a locally

stationary process. Let u € [0,1] be fixed and define



Ko(u) = / M A(u, NdE(), (1.1.17)
which has the following moving average representation
Xi(w) ==Y a(u,j)ea;. (1.1.18)
j=—00
It then follows by simple algebra that
X, — X, (u)| < K{|t/T —u| + 1/T}U,, (1.1.19)

where {U;} is the stationary process

U= > 7) eyl (1.1.20)

j=—00
Thus, according to (1.1.19) the stationary process X,(u) is an approximation of X, r

in a local neighborhood around u = ¢/7’; cf. [17] and [40].

Recall that the spectral density of a stationary process X, = [* e A(X)d&(N), which

satisfies ) >, 7(h) < oo where 7(+) is the covariance function of the process, is defined
by f(A) = (2m) AN
Similarly to this for locally stationary processes we have the following definition of a

time-varying spectral density.
Definition 1.1.3. The function
1 2
fu, A) = o—[Au, A)%, (1.1.21)
2
where A(-,) is given in Definition 1.1.1 is the time-varying spectral density of a

locally stationary process.

Definition 1.1.4. The Fourier transform of the time-varying spectral density is the

time-varying covariance of lag k, k € Z, at time u, u € (0,1), and it is defined by

c(u, k) = /_7r fu, N)eMdA. (1.1.22)
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Note that f(u,)) is the spectral density of the stationary approximation {X,(u),t €
Z} and that
/ el ) — Fw NEdr = o(1), as T — oo (1.1.23)

where fr(u,\) = (2m) "' 3700 Cov(Xpur—ky2). 1, Xurik/2,) exp(—iAk) ; cf. [7] The-
orem 2.2. This means that if the process is locally stationary with a smooth function

A(u, A) then f(u, \) is uniquely defined by the triangular array.

1.2 Resampling the local periodogram

In inferring properties of stationary processes in the frequency domain one important

tool is the periodogram Ir(A) defined by

2

1
: (1.2.24)

It () = T

T
E Xte—i)\t
t=1

where X1, X, ..., X are observations.

The periodogram ordinates behave for large sample sizes like independent, exponen-
tially distributed random variables and they are asymptotically unbiased but not

consistent estimators of the spectral density.

When dealing with locally stationary process one possibility is to consider the pe-
riodogram over a segment of length N length of consecutive observations around a

time point [uT], u € (0,1), of the observed series.

Definition 1.2.1. The local periodogram is defined for every A € [—m, 7| and u €

[0,1] by
=, s
]N(u7 /\) = m’ ; X[UT]_N/2+S+17T€_ZS>\ X (1.2.25)
where X171, Xor, ..., Xrr are observations.

A common assumption in inferring properties of statistics based on the local peri-
odogram is that the "time window” width N tends to infinity at an appropriate rate

as the sample size increases.

Several interesting classes of statistics used in the analysis of locally stationary pro-

cesses can be expressed as functions of the local periodogram. For instance, spectral
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means are obtained by averaging over all frequencies the local periodogram multi-
plied by an appropriately defined complex valued function ¢ in [—m, 7w]. To be more

specific, such a statistic is given for u € (0,1), by

Myp(u, ¢) = /_W d(A) I (u, \)dA. (1.2.26)

An interesting special cases of Mr(u,¢) which is frequently used in inferring prop-
erties of locally stationary processes is obtained if we set ¢(A) = exp(iAT) for some
7,0 <7 < N — 1. For this choice of ¢ the above statistic becomes the sample time

varying covariance ¢(u, T) given by

é(u, 1) = /7r exp(IAT) Iy (u, \)dA

-7
N-1

1
N Z X[uT)=N/24k+1,T X [uT)— N/24+14+1,T-

k,1=0
k—l=r1

Notice that ¢(u, 7) is an estimator of the time varying covariance

™

clu, ) = /exp(—i)n')f(u, A)dA,

—Tr

where f(u, \) denotes the local spectral density of {Xr}ren.

Another class of statistics derived from that of local spectral means is that of ratio

statistics which are defined for u € (0, 1) by

Re(u, ¢) = %
_ J7 NIy (u, A)dA

ST In(u, A)dA

(1.2.27)

An important member of the class (1.2.27) is the time varying sample autocorrelation

plu, 7) = ¢é(u, 7)/é(u,0).

The asymptotic behavior of statistics like Mr(u, ¢) and Rr(u, ¢) has been investigated
by Dahlhaus [9] and Dahlhaus and Giraitis [13]. Under certain smoothness conditions
they showed asymptotic normality of appropriately centered and rescaled versions of
these statistics. In the second chapter of the thesis we use our bootstrap method
to bootstrap the local periodogram of a locally stationary stationary processes, to

approximate the asymptotic distribution of statistics like Mr(u, ¢) and Rp(u, ¢).
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Bootstrap methods for locally stationary processes have received little attention in
the literature. A time domain local block bootstrap procedure for locally station-
ary processes has been proposed by Paparoditis and Politis [34] and by Dowla et
al. [18]. For stationary processes frequency domain bootstrap methods have been
considered among others, by Nordgaard [29] and Theiler et al. [41]. Using a similar
to (2.1.1) property for the periodogram of a stationary process, Hurvich and Zeger
[22] and Franke and Hérdle [19], proposed a nonparametric residual-based bootstrap
method. Dahlhaus and Janas [12] extended the validity of this bootstrap procedure
to the class of the ratio statistics and to Whittle estimators. An alternative idea to
bootstrap the periodogram of a stationary process has been proposed by Paparoditis
and Politis [33]. An overview of the different methods to bootstrap stationary time
series in the frequency domain is given by Paparoditis [32]. A common feature of the
aforementioned bootstrap approaches for stationary processes is that the generated
bootstrap periodogram ordinates are independent. This restricts the applicability
of the corresponding methods to statistics for which the asymptotically negligible
dependence of the periodogram does not affect properties of their asymptotic dis-
tribution; cf. Dahlhaus and Janas [12] and Paparoditis [32]. More recently, and in
order to overcome these problems, Kreiss and Paparoditis [24] proposed a bootstrap
method for the periodogram of a stationary process which is based on a combination
of a parametric time domain and a nonparametric frequency domain bootstrap and
which generates bootstrap periodogram replicates that capture to some extent the
dependence structure of the periodogram. The procedure proposed in the first chap-
ter extends to locally stationary process this idea of combining a time domain and
a frequency domain approach to bootstrap the periodogram of a stationary process.
Furthermore, it justifies theoretically the use of such an approach to approximate
the distribution of statistics like (1.2.26) and (1.2.27). The theory developed in this
chapter can be also used to establish validity of our bootstrap procedure applied to
other classes of statistics than (1.2.26) and (1.2.27) and which are based on the local
periodogram Iy (u, ). For instance, frequency domain estimators of the parameters
of a locally stationary parametric process and nonparametric estimators of the local

spectral density belong to this class.
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1.3 Testing semi-parametric hypothesis

Interesting subclasses of locally stationary processes are obtained by parameterizing
in a proper way the associated time-varying amplitude function and consequently the
underlying time varying spectral density. Such an interesting subclass of locally pro-
cesses is for instance, that of time-varying, autoregressive moving-average (tvARMA)
models. tvARMA models are autoregressive moving-average model which satisfy the

following system of difference equations

~ ot ot t—k
Z ¢j(f)Xt—j,T = Zﬁk(f)a( 7 Et—k, (1.3.28)
J=0 k=0
do(:) =1, Bo(-) =1, g are 1.i.d. with Fe; = 0 and Ee} < oco. If all ¢,(-), Bx(-) and
p .
o?(-) are of bounded variation and Y ¢;(u)z? # 0 for all w and all 0 < |z| < 1+§
j=0

for some § > 0 then there exists a solution of the form

o0

Xir = Z ar,r(J))e—-

J=0

The time-varying spectral density is given in this case by

q 2
2 Z ﬂk (u)eMk

f(u,/\) _ UQS:L) k:O =,
;0% (u)e

cf. Dahlhaus[7]. Notice that if all ¢;(-), 35(-) and () are constant and independent

of t we obtain the stationary autoregressive-moving average process ARM A(p, q).

Estimation procedures for locally stationary processes have been considered by many
authors under different settings and assumptions. We mention here among others the
contributions by Neumann and von Sachs [28], Dahlhaus et al. [14], Chang and Moret-
tin [6] and van Bellegem and Dahlhaus [42]. Forecasting problems for non-stationary
time series have been considered by Fryzlewicz et al. [20]. An overview on some of
the different developments can be found in Dahlhaus [11]. However, the important
problem of testing for the presence of a parametric or semiparametric structure of the
underlying locally stationary process, has attracted less attention in the literature.
Testing for the presence of such a structure is important because it allows for the use

of efficient, i.e., model-based estimation and forecasting procedures. For Gaussian
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locally stationary processes, Sakiyama and Taniguchi [37] proposed likelihood ratio,
Wald and Lagrange multiplier tests of the null hypothesis that the time-varying spec-
tral density depends on a finite dimensional, real-valued parameter vector against a
real-valued parametric alternative. However, the class of parametric time-varying
spectral densities allowed in this context, is rather restrictive in that it does not in-
clude for instance the important case of testing for the presence of a semiparametric

tvARMA structure against an unspecified, locally stationary alternative.

In the third chapter of this thesis, we address the important problem of testing
whether a locally stationary process belongs to a semiparametric class of time varying
processes. The semiparametric class considered under the null is large enough to
include several interesting processes. The test statistic developed, evaluates over all
frequencies and over an increasing set of time points, a L?-type distance between
the sample local spectral density (local periodogram) and the time-varying spectral
density of the fitted semiparametric model postulated under the null. The asymptotic
distribution of the test statistic proposed is derived under the null hypothesis and
it is shown that this distribution is a Gaussian distribution with the nice feature
that its parameters do not depend on characteristics or parameters of the underlying
process. As an interesting special case we focus on the problem of testing for the
presence of a semiparametric, time-varying autoregressive model. In this context, a
bootstrap procedure is proposed to approximate more accurately the distribution of
the test statistic under the null hypothesis. Theoretical properties of the bootstrap
procedure are discussed and its asymptotic validity is established. It is demonstrated
by means of numerical examples that in the testing set-up considered in this chapter,
the bootstrap is a very powerful and valuable tool to obtain critical values in finite

sample situations.

1.4 Contribution

This thesis is contributing to the literature by proposing a bootstrap method for
resampling the local periodogram of a locally stationary process and a test of the

hypothesis that the time varying spectral density of a locally stationary process has
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a semiparametric structure. Properties of the methods proposed have been studied
theoretically and investigated by means of simulations. An application to a real-data

set is also given.



Chapter 2

Bootstrapping the local
periodogram of a locally stationary

process.

2.1 Motivation

The aim of this chapter is to develop an alternative, bootstrap-based method to
approximate the distribution of statistics like (1.2.26) and (1.2.27). Our method
works by generating replicates Ix (u, A) of the local periodogram I (u, A). To describe
heuristically the basic idea underlying our method notice first that under certain
assumptions on the underlying process, the local periodogram of a locally stationary

process can be approximately written as

N
]N<u7 /\) = ]N,X (u’ )‘) + Op(?)
N 1
= fu,N)Ine(u,A\) +Op(=) + Op(=) (2.1.1)
T N
where Iy ¢(u, A) is the local periodogram based on observations X1(u), Xo(u), ..., Xp(u)

of the process { X;(u)} which is defined in equation (1.1.10) of Section 1.1. Iy .(u, \) =
N—1 2

(27N)71 g[uT]_N/2+S+1e_’5’\ is the local periodogram of the i.i.d series £1, &g, . .., &7.
s=0

Proof of the above approximation can be obtained by using Lemma A.0.4(i) and The-

orem 10.3.1 of [5].

To proceed, let fi,ar(t/T,\) be the local spectral density of the pth order locally
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autoregressive process which best fits (in the mean square sense) the locally stationary

process X;r. Using (2.1.1) we can write

fu,\)

I )~ e wn

froar(u, N)In(u, X).

Now, since frar(u, \)Inc(u, A) can be considered as the local periodogram of a pth
order locally stationary autoregressive process, we end up with the following approx-

imative expression for the local periodogram,
In(u,N) =~ g(u, \)Inwar(u, \), (2.1.2)

where we have used the notation Iy yar(u, A) = fiar(u, NIy (u, \) and

g(u, A) = f(u, N)/ froar(u, A).

Expression (2.1.2) motivates the following procedure to generate replicates I3 (u, A) of
the local periodogram. We first fit in the time domain a pth order time varying autore-
gressive model and use the fitted model to generate pseudo series X7, X5, ..., X7 7.
The local periodogram ]j{aw ar(u, A) of this series is obtained which can be used to
mimic the random behavior of Iy, 4z(u, A) in (2.1.2). A nonparametric kernel es-
timator g(u,A) of g(u, ) is calculated in the frequency domain by smoothing the
rescaled local periodogram Iy (u, )\)/ﬁvAR(u, A), where ﬁvAR(u, A) is the local spec-
tral density of the fitted autoregressive process. Following (2.1.2) the bootstrapped
local periodogram is then obtained as Iy (u,\) = o(u, I3, a5(u, A). Details of
this procedure are given in Section 2.3. Notice that our method to bootstrap the
local periodogram is based on a combination of a parametric time domain and a
nonparametric frequency domain bootstrap. The parametric time domain bootstrap
generating IJJ{,JU ar(u, \) is used to capture the essential features and to reproduce (at
least to some extent) the dependence structure of the local periodogram In(u,\).
The nonparametric estimator g(u, \) is used to reproduce features of the local peri-

odogram that are not captured by the local parametric autoregressive fit.

Notice that if we set §(u, A) = 1 the method described above is just a local version of
the autoregressive bootstrap. If, additionally, the underlying process has an infinite
order autoregressive representation and we allow the order p of the locally fitted

autoregressive process to increase to infinity as the sample size increases, then we have
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a local version of the autoregressive sieve bootstrap. However, our method differs from
such an autoregressive bootstrap scheme due to the frequency domain nonparametric
correction via the function g(u, A). Due to this correction our method is more general
than the pure local autoregressive bootstrap in that it leads to asymptotically valid

approximations for a larger class of statistics, cf. Section 2.4.

2.2 Assumptions

In this section we impose the assumptions needed in this chapter.

Assumption 2.1 The triangular array {Xg}reny of stochastic processes Xp =
{Xir,t =1,...,T} satisfies Definition 1.1.2.

In the following we consider also the case where the local approximating process

X, (u) satisfies the following condition.

Assumption 2.2 The process {X,(u),t € Z} has the representation
Zﬁk Xt k(u) + au, 0)e;

where 14 >0 a(u, k)zF = (1= 5702, Be(u)z)=1, S°02 k|Be(u)] < oo and 1 —
S, Br(u)z® # 0 for all complex z with |z] < 1.

Regarding the time window width N we require that the following condition is sat-

isfied.

Assumption 2.3 The window width N satisfies N — oo such that N*/2/T — 0 as

N — oo.

Remark: As a careful read of the proofs shows, the condition N3/2/T — 0 is needed
in order to make the difference between the centered local spectral mean based on
the local periodogram of the observations X; ., X5, ..., X7, and the corresponding
centered local spectral mean based on the local periodogram of the observations
)?1* T,)?;’ Ty ,)?;5 o coming from the local approximating process, asymptotically

negligible. For instance, we get using the notation of Appendix A, that

TN (0) = EX(JN(9) = J 00 (0) = EX(J ¢.(9)) + Op(N/T +p*/N).  (2.2.3)

N, X+ N, R+
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The O,(N/T) error term on the right hand side above, is due to the variance of the

term

1 o
dEP(u,\) = —

which is of order N2/T?; see the proof of Lemma A.0.7 in Appendix A. Now, mul-

(Gury—Nj2+s+1,7(m) — Gpury,r(m))e ), exp(—ids),

tiplying equation (2.2.3) by v/N, leads to the requirement N3/2/T — 0 as T — oc.
We conjecture that the above condition can be relaxed to a less restrictive condi-
tion N/T — 0, by using procedures like those used to reduce the bias of the local
periodogram, e.g., by using tapered local bootstrap periodogram; see Dahlhaus and
Giraitis [13].

Since we are interested in investigating the properties of our bootstrap method applied
in order to approximate the distribution of statistics like those defined in (1.2.26)
and (1.2.27), we impose the following conditions on the functions ¢ appearing in the

corresponding definitions.

Assumption 2.4 ¢ € ¢, where ¢ is the set of complex-valued bounded functions
equipped with the uniform norm |[|¢|l = sup, |¢(x)|. Furthermore ¢ is periodi-
cally extended to R with period 27 and has a bounded second derivative (b”(x) =
d*¢(x)/d*x.

As mentioned in the Introduction, our bootstrap method uses a nonparametric esti-
mator of the function ¢(u, \) in the frequency domain in order to capture features of
the local spectral density not represented by the local parametric autoregressive fit.
This is done by smoothing the local periodogram rescaled by the local spectral den-
sity of the fitted autoregressive model. To obtain a nonparametric kernel estimator
of the function g(u, A) used in our procedure, Assumptions 2.4 and 2.5 below are im-

posed. They deal with the properties of the smoothing kernel K and the smoothing
bandwidth h.

Assumption 2.5 K is a nonnegative kernel function with support [—m, 7]. Further-
more, the Fourier transform k of K is symmetric, continuous, bounded and satisfies
k(0) =27 and [7_k*(z)dx < oc.

Assumption 2.6 The smoothing bandwidth h = h(N) satisfies h — 0 such that

Nh — oo as N — o0.
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2.3 The Bootstrap procedure

Before presenting the bootstrap algorithm in more detail we fix some notation. Recall
that in its first step our procedure is based on fitting locally to the time series a pth

order autoregressive process. A least squares estimator of the corresponding autore-

gressive parameters [1(u),. .., 3,(u) is obtained by minimizing the local quadratic
deviation
- b 2
N—p Z (XWT]—N/QH,T - Z Ci(U)X[uT}—N/2+j—i,T) (2.3.4)
J=p i=1

with respect to ¢;(u), i =1,2,...,p. This leads to the estimates ¢;(u) = By (u),...,

cp(u) = B,(u) where 8,(p) = (B1(w), ..., B,(u)) satisfies the system of equations

Here,
N—-1 N-1
Ru(p) = > X;(u.p)X;(u,p) /(N =p),  Fu(p) =D X;(u.p)Xur)-ny2sir/ (N = p)
Jj=p Jj=p
and
X; (u,p)’ = (X[uT]fN/QJrj,Ta X[uT]fN/QJrjfl,Ta e 7X[uT]fN/2+jfp,T>-
Let

N-1

. 1 5 A
U;(U) = N——p Z X[iT]—N/Hj—pJ — Bu(p)Fu(p)
Jj=p

be the estimated variance of the errors of the local autoregressive fit. We are now

ready to formulate our bootstrap algorithm which consists of the following five steps:

STEP 1: Fit locally a time varying autoregressive model of order p to
the observations X 7, Xor,..., X7y and calculate the estimated parameters
Bt/T,p) = (B(t)T),... ,(,(t/T)) and the error variance ¢,%(t/T). Consider

the rescaled residuals

p

~ st R

5t,T = (Xt,T — Zﬁi(T)Xt_i’T)/o-p(t/T)’ t = p + 1, .. ,T
=1

and let

A

T
1 .
Fr(x) = T—p Z I(—oo21(E57),

Jj=p+1
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where & p = p— €, €= Z gcr and I4(z) is the indicator function of
t p+1

the set A C R.

STEP 2: Generate bootstrap observations X T X;T, cee X;{T using the fitted

local autoregressive model, i.e,

where X7 = Xjp for j = 1,2,...,p and & are ii.d random variables with

€£~_WFT.

STEP 3: Compute the local periodogram I} (u, \) over a segment of length
N of the bootstrap pseudo-observations X:T, i.e., compute

—1N-1

+
27TN Z Z X[uT N/2+51+1,TX[uT]—N/2+52+1,T€

$1=0 s2=0

—iA(s1—s2)

Iy (u, N

STEP 4: Compute the local kernel estimator g(u, \) defined by

. O In(u, ;)
g(u,\) = Nj;w Kn(A =\, )—fwAR(u w

where {\; =27j/N, j=—My,...,My}, My =[N/2] and

Foanu. ) = 2 ] Zﬁr |

STEP 5: The bootstrapped local periodogram is then defined by

I (u, N) = glu, NI (u, M),

Recall that if we set g(u,A) = 1 for all u and A in STEP 4 of the above bootstrap
procedure, then we have a version of the local autoregressive sieve bootstrap. This
is so since in this case the bootstrapped periodogram I%(u, ) is given by I3 (u, )
which is the local periodogram calculated using the replicates of the autoregressive fit.
Thus if the underlying locally stationary process satisfies Assumption 2.2, then the
local autoregressive sieve bootstrap procedure applied to the local periodogram can

be considered as a special case of our approach to bootstrap the local periodogram.
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2.4 Asymptotic Properties

In this section we investigate the asymptotic properties of our bootstrap method,
summarized by steps 1-5, applied to the class of local spectral means (1.2.26) and

local ratio statistics (1.2.27). Let

f(uu )‘> - g(u, A)fthR<u’ )\) (245)

which can be considered as a prewhitening type estimator of the local spectral density
f(u, A). Proposition A.0.2 and Lemma A.0.5 of Appendix A imply that for every
€ (0,1) and A € [—m, 7| we have under the assumptions made there, that, as

T — oo,
Flu, A) — f(u,\) (2.4.6)
in probability.

To approximate the distribution of the centered spectral mean

/¢ INu)\d/\—/ S(\ u/\d)\> (2.4.7)

our proposal is to use the distribution of the bootstrap statistic

/¢ I*u)\dA—/ S(\ u)\d)\)

Note that if instead of (1.2.26) the discretized version 27 N ~%/2 Z oty @) I (u, )

is used, then the corresponding bootstrap statistic will be 27 N /2 ZMN ay PN (1, Ag).

Our first theorem deals with the case where the underlying process fulfills Assumption
2.1 and the order p of the local approximating process remains fixed as the sample

size increases.

Theorem 2.4.1. Let Assumption 2.1 and Assumptions 2.3 to 2.6 be satisfied. For

all fived p € N we have as T — oo, that

/(b] AL (w, A)dA — /Qb] (u, \) d/\> X1, Xr p = {§)=1,m

Jj=1,....m

in probability for functions ¢;(-),j =1,...,m satisfying Assumption 2.4, where

§= (6,6, - ,Sm)/ 15 a Gaussian random vector with mean zero,
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con(si&y) = 20{ [ 0N + 6~} N

+r4(p) / / 01\ (—10)f (u, V) f )Ny |

1 . > >
and k4(p) = [, Ka(u, p)du—3 with k4(u,p) = E(Xp(u)— ?:1 Bip(u) X, j (u))4/a§(u).
Here, B;,(u), j = 1,2,...,p are the coefficients minimizing the mean square error

E(Xy(u) = 3251 X)) and o3(u) = E(X,(u) = 325, Bp(u) Xpy ().

The following lemma from Dahlhaus and Giraitis [13] gives the asymptotic distribu-

tion of local spectral means.

Lemma 2.4.2. AsT — oo,

J=1,...,

cVR( [ oW - [o,0@na) b= {6l
where £ = (§1,&2, . .. ,fm)/ is Gaussian random vector with mean zero and

con(éi&y) = 2n{ [ SO, + dy(-N}(w N

—T
™

+li4//w¢i(/\)gz§j(—,u)f(u, )\)f(u,u)d)\du}.

—T —T

Notice that the term k4 appearing in the above expression for the covariance of the
limiting Gaussian distribution is due to the asymptotically vanishing dependence
of the local periodogram ordinates Iy(u,\;). A comparison of the above distribu-
tion to the limiting distribution given in Theorem 4.1 makes it clear that the local
periodogram bootstrap manages to reproduce to some extend the effects of the de-
pendence of the local periodogram on this limiting distribution. Furthermore, the
closer is k4(p) to k4 the closer is the limiting distribution of the bootstrap statistic
to the limiting distribution of the statistic of interest. It is therefore interesting to
bound the difference between the two fourth order cumulants. The following propo-
sition gives such a bound for the case where the underlying locally stationary process

X, (u) is causal.
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Proposition 2.4.1. Assume that k4 # 0 (see Defintion 1.1.2) and that the locally
stationary process (1.1.10) satisfies a(u,j) = 0 for j < 0. Then for any p € N we

have

(“Z(f) . 1‘ < 2/01 el sz(ZLES,)p)d“ (2.4.8)

where Ly(u,p) = 3272, G(u, ) and by(u, j) = o(u, j)=3 75 Bip(u)alu, j=k) for j =

1 and B;,(u) are the coefficients given in Theorem 2.4.1.

To shed some light onto the usefulness of the above bound, consider as an example the

case where )N(t(u) is the following simple locally stationary moving average process:
Xi(u) = o(u)Ys,

where inf, o(u) > 0, sup, o(u) < oo and Y; is the nonivertible first order moving
average process Y; = &; + ¢,_1. Notice that the process {)?t(u)} above, does not

satisfy Assumption 2.2. Now, straightforward calculations yield

p

1 — Bip(u) for j=1
. —Bj1p(w) = Bip(u)  for je{2,...,p}
Cp(u, j) = |
—Bpp(u) for j=p+1
0 for j>p+2,

\

where for j =1,2,...,p,

Biale) = (~1 (1 - =L2).

p+1

Simple algebra yields then

1
L 1
o 1+ La(u,p) p+2
which shows that for p sufficiently large the difference between the fourth order cu-

mulants r4(p) and k4, and consequently between the corresponding limiting Gaussian

distributions, can be made arbitrary small.

We proceed with our investigation concerning the asymptotic properties of our lo-
cal bootstrap procedure by considering the case where the approximating stationary

process
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{X,(u),t € Z} has an infinite order autoregressive representation and satisfies As-
sumption 2.2. In this case we additionally assume that the order of the fitted approx-
imating autoregressive process increases to infinity with the sample size T'. We can
then establish the following theorem which deals with the properties of our bootstrap

method applied to the class of local spectral means.

Theorem 2.4.3. Let Assumption 2.1 to 2.6 be satisfied. If p — oo such that p*/N —

0 we have as T — oo, that
/@ [-* u )\ A\ — /¢J u )\ d/\) ‘Xl,...,XT = {fj}j:1 ..... m

in probability where § = (1,82, . .. &) is Gaussian random vector with mean zero

and

con(si&y) = 2m{ [ ON&0) + (-} N
s [ [ 6081 (02w ) A}

Applying the so-called J-method we can extend the validity of the proposed bootstrap
method to the class of ratio statistics. Recall that in this case the limiting distribution
of the corresponding statistics does not depend on characteristics of the error process

and in particular on the fourth order cumulant of &;; ¢f. Dahlhaus and Janas [12].

Theorem 2.4.4. Let Assumption 2.1 and Assumptions 2.3 to 2.6 be satisfied. For

all fired p € Ne we have that,

™

J 60T (. N f¢j<A>f<u,A>dA>

™

c \/N< e
[ I (u, A)dA [ Flu,Ndx  / j=1..,

in probability as T — oo, where, { = (£1,&2, . .. ,fm)' is Gaussian random vector with

cou(§i,&;) = 2 / B () + w5 (=N 12, N / ) '}

and 1;(N) = ¢;(N) [7 flu, p)dp — [7¢;() f(u, p)dp.
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As we have already mentioned in Section 2.3, if the underlying process satisfies As-
sumption 2.2 then for §(u, A) = 1 our approach can be considered as a local version
of the so-called autoregressive sieve bootstrap. The following corollary summarizes
the performance of this method for the classes of local spectral means and of local

ratio statistics.

Corollary 2.4.5. Let Assumption 2.1 to 2.6 be satisfied and set q(u, A) = 1 for all

€ [0,1] and \ € [—7,7]. If p — oo such that p*/N — 0 we have as T — oo, that

(i)
\/N</ﬁ¢j()\)lj,(u, )\)d)\—/ﬂ@()\)fwAR(u, A)dA)jz X1, Xrp = {& —1m

in probability where, § = (&1,&, ... ,ﬁm)/ 15 Gaussian random vector with mean zero

and
con(éi&) = 20 [ SO, + oM} (w i

b / / 84NV, (1) (0, ) ()N

and

(i)

|X1a"'7XT :>{£]}]:1

™

[ I (u, A)dA f Froar(u, Ndx — / j=1,..

-----

f @5 (A5 (u, A)dA f 05(N) Froar(u, \)dA
c m( ~ )
7j=1,....m

in probability where, £ = (£1,&s, . .. ,£m)’ 1s Gaussian random vector with mean zero,

cov(&;, &) = 2w{/¢i(x){¢j(A) + (=)} (u, A)dA/(/f(u, A)d>\>4}

and 1;(N) AN T flu,p)dp — [T ¢ () f(u, p)dp.

From the above corollary it is clear that if the underlying process satisfies Assump-
tion 2.2, then the local autoregressive sieve bootstrap leads to asymptotically valid
approximations of the distribution of the statistics of interest. Recall that in this

case the local periodogram bootstrap method using the nonparametric correction
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function g(-,-) works too; cf. Theorem 2.4.2. However, if the underlying process does
not have locally an infinite order autoregressive representation , i.e., if it does not
satisfy Assumption 2.2 and we apply a pth order autoregressive bootstrap where p is

fixed, then it can be shown that in this case,

™

[ dO) I (u, N)dX f SN froar (u, \)dX
c m( - —~ >|X1,...,XT = N(0,0%(p))
[ I (u, \)dA f Froar(u, \)dX

in probability where,
72(0) = 2n{ [ oV + (-} 2an N/ ([ fuant i)'},
W(A) = o) [T fu, p)dp — 7 ¢(u)f (u, pr)dp and

—z)\r
fthR(u )\ 271' ‘1 - Zﬁr,p

This makes clear that even for the class of ratio statistics where the limiting dis-
tribution is free from parameters of the error process, the pure autoregressive sieve
bootstrap does not work if the approximating process {X;(u),t € Z} does not have
the infinite order autoregressive representation stated in Assumption 2.2. This is
in contrast to the local periodogram bootstrap proposed in this chapter which due
to the nonparametric correction in the frequency domain via the estimated function
g(u, A) leads to asymptotically valid approximations in this case and works therefore

for a larger class of stochastic processes and for a larger class of statistics.

We conclude this section by an application of the bootstrap to estimate the distribu-
tion of nonparametric local spectral density estimators. An interesting class of such
estimators is given by

My

Flun) = — Z Ko — M) I (1, Ay) (2.4.9)

—Mn

where K(-) is a kernel satisfying Assumption 2.5, Kp(-) = b"'K(-/b) and b is a
smoothing bandwidth satisfying b — 0 such that Nb — oo as N — oco. Suppose we

are interested in estimating the distribution of

VNb ( Flu,\) — E(f(u, A))) . (2.4.10)
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For this, the bootstrap analogue
VD (f(u.2) = E*(f*(u, 1)) (2.4.11)

can be used, where

My
Frlu,A) = % S K= AT (). (2.4.12)
Jj=—Mn

It can be shown under certain assumptions that (2.4.10) converges weakly to a Gaus-
sian distribution with mean zero and variance given by 72(u, A) = (1+6(\)) f2(u, A) [ K*(w)dw,
where §(A) = 1 if A = 0 or being a multiple of &7 and §(\) = 0 else; (see the proof
of Theorem 2.4.6 below). The following theorem shows asymptotic validity of the

proposed bootstrap approximation.

Theorem 2.4.6. Let Assumptions 2.1, 2.3, 2.5, and 2.6 be satisfied. Suppose that
the smoothing bandwidth b = b(N) satisfies b — 0 such that Nb — oo as N — oo.
Then for all fired p € Ne, we have that,

c {m (f*(m ) — E(f*(u, /\))> X1, ... ,XT} — N(0,7%(u, \)

in probability, as T — oo, where 72(u, X) = (1 +6(N)) f2(u, A) [ K*(w)dw.

2.5 Some remarks on choosing the resampling pa-
rameters

From the previous discussion it is clear that implementation of our method requires
the selection of three parameters, that is of the time window width N, of the order of

the locally fitted autoregression p and of the frequency domain smoothing bandwidth

h.

Concerning the time window width N, we stress here the fact that the selection of
its length is not inherit to our local bootstrap procedure but to any statical inference
procedure for locally stationary process which is based on the local periodogram.
That is, if some procedure to select N exist, which is needed in order to calculate
statistics (1.2.26) and (1.2.27), then the same time window N can be used in the

local bootstrap procedure applied to infer properties of these statistics.
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Nevertheless, the selection N can be investigated theoretically by minimizing over all
time points u and over all frequencies ), an L2-distance between the estimated locally
spectral density f(u,\) = §(u, A) froar(u, A) and its theoretical counterpart f(u,\).
In particular, selection of N can be based on minimization of the leading terms of

the time integrated mean square error

MISE = /Ol/ﬂ E(f(u,\) — f(u,\))2dA\du

where f(u,\) = b ST K (XN — p)/b)In(u, p)dp is a kernel estimator of the local
spectral density f(u, \).
From Dahlhaus [8], Theorem 2.2, we get that

; 1 N* 9° 1 e N? log N
B(f(, ) = £, N+ 55 77 55 (0, )50 / P (a0 A ol + BN )

and
. 1
Var(f(u,\)) = (Nb)_lﬁja(u, A) /a:2K(x)dx.
Using these results the mean square error equals

B((u.)) = @ NP = ()7 5P 00) [PR@+ e )

| N2 g2 5 )
togmr A)/ K (o) (0 X) + O(H).

Notice the above expression of the mean square error is dominated by the first two

terms which lead to the following approximation:

2 2 A 2
AMISE = (Nb)™ / / F2(u, \)dAdu / K(z dx—|—576 i / / (u, \))2dAdu.

Now for b= N~° and 0 < § < 1, the above AMISE is minimized for N,,; given by

1/(5—46)
N — T4/(5-6) 12(1 fo f f2 (u, \) d/\dufoK Ydx
opt — ‘
' fo ff f u, A))2dAdu

Clearly, implementation of this rule to select NV in practice requires estimates of the

quantities fol ST f2(u, A)dAdu and fol I7 (2 fu, N))2dAdu.

The selection of the autoregressive order p and of the smoothing bandwidth h are

more inherit to our local bootstrap procedure. Concerning the order p of the fitted
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autoregressive process a practical rule to determine this order is to use a local version
of the AIC-criterion, like for instance the one proposed by Dahlhaus [9]. We mention
here however, that as our numerical examples show, due to the nonparametric cor-
rection in the frequency domain, the numerical results obtained are less sensitive to

the choice of the order p used in the autoregressive fit.

Concerning the choice of the smoothing parameter i one possible approach is to select
h using a local version of a cross-validation criterion analogous to the one proposed
by Beltrao and Bloomfield [2]. To elaborate on, this approach uses as a starting point

a generalization of the Whittle function, given by

M Mpn

> {logf wi, A )+%} (2.5.13)

=1 j=—M

A leave-one-out estimator for q(u, ;) is given by

i_i(u Z Ka(h = ) A) (2.5.14)
N & T )
where N; = {s: =My < s < My and j—s # +j mod My}, see Beltrao and
Bloomfield [2] and Kreiss and Paparoditis [24]. Notice that ¢_; is a kernel estimator
of ¢ obtained by ignoring the jth local periodogram ordinate. Now, substituting
q(u, \j) froar(u, Aj) for f(u, A;), G_;(u, A;) for g(u, \;) and Froar(u, Aj) for fiar(u, A;)
in (3.3.11) leads after ignoring the factor log fi,ar(u, A;) to the function

=D {10g G—j(ui, A;) + ]N(Ui’;\j?(fvié)(u“ L) } ) (2.5.15)

i=1 j=1

which can be used as a cross-validation-type criterion to select h.

2.6 Numerical Results

2.6.1 Simulations

We investigate the performance of our method in finite sample situations and com-
pare the results of the local periodogram bootstrap procedure to that of the pure
local sieve autoregressive bootstrap. For this we consider a case where both methods
work asymptotically, i.e, where both methods lead to asymptotically correct approxi-

mations. In particular, we consider the problem of estimating the standard deviation
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of the time varying autocorrelation estimator

é(u, 1) 7 In(u, A) exp(id)dA
¢(u,0) T In(u, A)dA

plu,1) =

for different values of w in the interval (0, 1). Samples of length 7" = 512 observations

from the time varying MA(1)-process
Xip = 1.1cos(1.5 — cos(4nt/T))er—1 + (2.6.16)

are considered, where the ¢;’s are i.i.d with &, ~ N(0,1).

To estimate the exact standard deviation of p(u, 1) calculated over 40 equally spaced
points u in the interval (0, 1), we generate 5000 samples of the above process. The so
obtained estimates of the exact standard deviation are presented in Figure 2.1(a) and
Figure 2.1(b) by solid lines. The small crosses in these lines indicate the particular
points u in the interval [0,1] for which the estimates of the standard deviation of
p(u, 1) have been calculated. To investigate the performance of the bootstrap, we
generate 50 different series from the above process and for each of these series we
use our bootstrap method by producing 300 bootstrap local periodogram replicates.
For the corresponding bootstrap estimates of the standard deviation we calculate the

mean, the standard deviation and the mean square error.

We apply both local periodogram bootstrap procedures using two different values of
the autoregressive order p. For the nonparametric correction of the local periodogram
bootstrap the Bartlett-Priestley kernel given by K(z) = 3(4m)~'(1 — (z/m)?) for
|z] < 7 and a bandwidth of h = 0.2 has been used. We first fit a time varying autore-
gressive model of order p = 1 and use a window length of N = 40 observations. The
results for both bootstrap methods for p = 1 are presented in Figure 2.1(a), Figure
2.1(c) and Figure 2.1(e). Figure 2.1(a) clearly shows the effect of the nonparametric
correction via the function g(u, ). The mean estimate using our method captures
quite closely the exact standard deviation of p(u, 1), while the mean estimate using
the pure autoregressive bootstrap with p = 1 is very biased. Although, Figure 2.1(c)
shows that the standard deviation of our method is larger than that of the pure
autoregressive sieve bootstrap, the mean square error of both procedures shown in

Figure 2.1(e) clearly demonstrates that our method performs much better.
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In order to see the effects of increasing the autoregressive order p, we fit in a second
run to the same set of series a time varying autoregressive model of order p = 3. As
Figure 2.1(b) shows, in this case the mean estimates using both methods capture the
exact standard deviation quite well. Comparing Figure 2.1(¢) and Figure 2.1(d) we see
that there is an increase in the standard deviation using the pure local autoregressive
sieve bootstrap which is due to the increase of the autoregressive order p from p =1
to p = 3. For p = 3 the behavior of the mean square errors using both methods is
very similar with a slight advantage for our method, see Figure 2.1(f). A detailed

presentation of the simulation results is given in Table 2.1.

To see the quality of the asymptotic normal approximation and to compare its per-
formance with that of the bootstrap, we calculate the standard deviation of the first
order sample autocorrelation using the asymptotic formula for the variance given in
Theorem 2.4.4. To estimate the local spectral density f(u, ) involved, we use the

non parametric estimator f (u, ) with the bandwidth minimizing the mean square

error E(f(u,\) — f(u,A))2. The results are shown in Figure 2.2.

From this limited simulation study we can clearly conclude that the bootstrap proce-
dure proposed leads to very accurate estimates of the standard deviation of the time
varying first order autocorrelation p(u,1). These estimates outperform those of the

other methods available in the literature.
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Table 2.1: Local Periodogram Bootstrap (LPB) and Local Autoregressive Bootstrap
(LARB) estimates of the standard deviation of the first-order local sample autocor-
relation.

Est. LPB LARB
Exact | Mean(67) SD(67)x10 MSE(67)x10% | Mean(6;) SD(67)x10 MSE(67)x103
u o1 p=1, h=0.2 p=1
0.200 || 0.122 0.120 0.1405 0.1993 0.151 0.0829 0.8944
0.246 || 0.121 0.115 0.1640 0.2938 0.147 0.0809 0.7506
0.292 || 0.120 0.123 0.1564 0.2494 0.150 0.0900 0.9799
0.338 || 0.149 0.148 0.1775 0.3097 0.164 0.1040 0.3434
0.385 || 0.163 0.165 0.2726 0.7311 0.176 0.1484 0.3782
0.431 || 0.121 0.127 0.1844 0.3639 0.152 0.0794 1.0105
0.477 || 0.115 0.117 0.1626 0.2631 0.147 0.0776 1.1039
0.523 || 0.113 0.118 0.1544 0.2539 0.148 0.0806 1.2923
0.569 || 0.120 0.124 0.1343 0.1893 0.153 0.0914 1.1473
0.615 || 0.164 0.163 0.2416 0.5734 0.175 0.1108 0.2317
0.662 || 0.149 0.147 0.2444 0.5880 0.167 0.0925 0.4005
0.708 || 0.121 0.120 0.1352 0.1803 0.150 0.0864 0.9111
0.754 || 0.121 0.114 0.1684 0.3254 0.146 0.0863 0.7470
0.800 || 0.124 0.122 0.1951 0.3791 0.151 0.0818 0.7426
p=3, h=0.2 p=3
0.200 || 0.122 0.121 0.1586 0.2473 0.126 0.1673 0.2889
0.246 || 0.121 0.118 0.1775 0.3178 0.122 0.1771 0.3087
0.292 || 0.120 0.125 0.1735 0.3208 0.130 0.1839 0.4319
0.338 || 0.149 0.150 0.1851 0.3377 0.154 0.1997 0.4149
0.385 || 0.163 0.161 0.2456 0.5943 0.166 0.2539 0.6227
0.431 || 0.121 0.127 0.1865 0.3718 0.128 0.1831 0.3799
0.477 || 0.115 0.120 0.1703 0.3105 0.119 0.1668 0.2942
0.523 || 0.113 0.119 0.1710 0.3237 0.121 0.1780 0.3682
0.569 || 0.121 0.127 0.1437 0.2439 0.126 0.1448 0.2417
0.615 || 0.164 0.161 0.2213 0.4938 0.164 0.2361 0.5464
0.662 || 0.149 0.148 0.2493 0.6099 0.153 0.2553 0.6555
0.708 || 0.121 0.121 0.1504 0.2218 0.125 0.1769 0.3242
0.754 || 0.121 0.115 0.1808 0.3499 0.121 0.1953 0.3749
0.800 || 0.124 0.123 0.1847 0.3356 0.128 0.1957 0.3903
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Figure 2.1: Estimated mean, variance, and mean square error of the standard devia-
tion of the first-order sample autocorrelation. On the left a tvAR(1) model is fitted
locally to the series while on the right a tvAR(3) model is fitted. The solid line in (a)
and (b) is the estimated exact standard deviation. The dashed line with circles and
the solid line with squares in (a) and (b) are the mean, in (c¢) and (d) the variance
and in (e) and (f) the mean square error of the standard deviation estimates of the
pure tvAR(:) bootstrap and of the local periodogram bootstrap respectively.
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Figure 2.2: Estimated mean, variance, and mean square error of the standard devia-
tion of the first-order sample autocorrelation. On the left a tvAR(1) model is fitted
locally to the series while on the right a tvAR(3) model is fitted. The solid line in (a)
and (b) is the estimated exact standard deviation. The dashed line with circles and
the solid line with squares in (a) and (b) are the mean, in (c¢) and (d) the variance
and in (e) and (f) the mean square error of the standard deviation estimates of the
normal approximation and of the local periodogram bootstrap respectively.
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2.6.2 A real-data example

In this example, we consider T' = 2048 observations of the so-called earthquake
data obtained from Shumway and Stoffer [39]. The series is recorded at a seismic
recording station in Scandinavia where the recording instruments observe earthquakes

and mining explosions. It is shown in Figure 2.3.

0.2 0.4
| I

0.0
L

-0.2
L

-0.4
L

T T T T T
0 500 1000 1500 2000

Figure 2.3: 2048 observations of an earthquake obtained by Shumway and Stoffer
[39].

For this data set, we are interested in estimating the time-varying autocorrela-
tion function p(u,7) for values of 7 equal to 7 = 1,2,3,4 and in constructing
pointwise confidence intervals for the unknown p(u,7) using the local periodogram
bootstrap. To estimate p(u,T) we now use a modified kernel estimator given by,

p(u, ) =¢(u, 7)/c(u, 0), where

K(z) = (3/2)(1 — 42?) for |x| < 0.5 and N = 250 observations; cf. Dahlhaus (2003).
The above estimator has been calculated for 40 equally spaced points u in the interval
[0,1]. The estimated functions p(u, T) are shown in Figure 2.4(a) to Figure 2.4(d) by

a solid line.

To estimate the standard deviation of p(u, 7) we use our local periodogram bootstrap
procedure. For this, we fit locally an autoregressive model of order p = 3 and use a
window length of N = 250 observations. The kernel estimates have been calculated

using the Bartlett-Priestley’s kernel together with the bandwidth h = 0.1. For each
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of the 40 points u; considered, we calculate the corresponding bootstrap standard
deviation using B=1000 bootstrap replications. A simple 95% pointwise bootstrap
confidence interval has been then obtained using the limiting distribution of p(u, 7)
and formula

[ﬁ(u’iaT) - 1968*(““ 7—) ) ﬁ(ula T) + 1968*(“27 T)]a

where s*(u;, 7) denotes the bootstrap estimate of the standard deviation of p(u;, 7).
The estimated functions p(u;, 7) together with the so obtained 95% pointwise boot-
strap confidence intervals are shown in Figure 2.4. As this figure shows the earthquake
leads to a change in the correlation structure of the series. In particular, in the first
part of the series the observations are less correlated compared to the second part

where the earthquake occurred.
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Figure 2.4: Plots of the estimated sample local autocorrelation function p(u,T)
against u for values of 7 = 1,2, 3,4 of the earthquake data together with 95% point-

wise local periodogram bootstrap confidence intervals.



Chapter 3

Testing semi-parametric hypothesis
for locally stationary processes

3.1 The Testing procedure

3.1.1 The set-up

Following Dahlhaus [9] we consider in this section triangular arrays { Xz }ren, Xr =

{Xir,t=1,...,T} of stochastic processes which are locally stationary.

Assumption 3.1.1. For allT € N, {Xr}ren @5 a Gaussian locally stationary process

satisfying Definition 1.1.1

The aim of this chapter is to develop tests of the hypothesis that the time-varying
local spectral density f(u,A) has a semiparametric structure. To elaborate on the
kind of null and alternative hypothesis considered, let F s be the set of local spectral
densities of processes satisfying Assumption 3.1.1 and denote by Fprs C Frs a

semiparametric model class of local spectral densities, i.e.,
fPES — {f(u7 >‘) = f(u7 /\779('”))’ 19(“) = (ﬁl(u)v s aﬁm(u))vm € Nau € [07 1]7)‘ € R}7

where ¥;(-) : [0,1] = R, i = 1,2,...,m, are appropriately defined real-valued func-
tions. We assume that in the set Fprs, the time-varying local spectral density
f(u, A, 9(u)) is fully determined by the unknown functions ¥;(-), ¢ = 1,2,...,m,
and as we will see in the sequel, we impose some rather mild assumptions on ¥(-)

allowing for several interesting classes of semiparametric models.

To give one important example which fits in the above set-up, consider the case

where Fp s is the semiparametric class of local spectral densities possessed by the
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class of time-varying autoregressive moving-average (tvARMA) models. Recall that
a locally stationary process {X;r} satisfying Assumption 2.1 has a tvARMA(p,q)
representation if X, r is generated by the equation
p q
Xir+ Y aj(t/T) Xy =cor + 3 bi(t/T)erjr (3.1.1)
=1 =1
where ag(+) = bo(-) = 1, theg/sareiid. N(0,0%(t/T)) distributed random variables,
ap(u) # 0 and by(u) # 0. Furthermore if all functions a;(-) and fi(-) as well as
the variance function ¢o?(-) are of bounded variation and Y°%_ja;(u)z’ # 0 for all
ue[0,1] and all 0 < |z] <1+ for some 6 > 0, then model (3.1.1) belongs to the
locally stationary process class; see Dahlhaus [7]. Recall that, model (3.1.1) possesses

a time-varying spectral density given by

qu% b;(u)e™ /

where 9(u) = (ay(u),...,ap(u),bi(u), ..., by(uw),c?(u)).

o?(u) y

fu, A 9(u) = o

Based on the above discussion, the testing problem considered in this paper is de-
scribed by
Hy f(, ) € Fprs vs Hyp: f(, ) € Frs \ Frrs. (312)

The specific case where ¥(u) is a constant function of the time variable u, that is
where ¥(u) = (01,...,7,) € © C R™ for all u € (0,1), is also allowed by (3.1.2).
Such a case occurs for instance if one is interested in testing the null hypothesis
that the underlying stochastic process is a parametric stationary process against the

alternative of a time-varying locally stationary process.

3.1.2 The test statistic

We start our construction of the test statistic by first considering the tapered local

periodogram defined for N < T, N € N, by

1

In(u,\) = ————|d A2 3.1.3
N(u’ ) 27TH2,N(0) | N(U; )| ) ( )
where
N-1 < '
dn(u, \) = h <N> X[uT]fN/QJrerle_Ms
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and

=

HovN) =S h (%) =i,

Il
o

S
To introduce, the basic statistic used, suppose first for simplicity that the paramet-
ric curves ¥(u) determining the local spectral density f(u,A;¥(u)) under the null
hypothesis are known, that is that ¥(u) = ¥Jo(u). Consider then the random variables

IN(U, )\])

Y /\j) B f(u, )‘jﬂ?O(u))’

j=-[(N-1)/2],...,[N/2].

It is easy to see that if the null hypothesis is true, then
E[Y(u,\))] = 1 + O(N/T +1/N),

for all w € [0,1] and \; € (—n, 7]. Furthermore, if the alternative hypothesis is true,
ie., if f(u,\;) # f(u, Aj; 90(u)), then

f(uv )‘j)
f(u, Aj;do(u))

where the function f(-,-)/f(:,;9(+)) is different from the unit function on [0, 1] X

EY (u, ;)] = + O(N/T +1/N),

(—m, 7.

Motivated by the above observations the idea used to obtain a test statistic for the
null hypothesis that f(u, ) = f(u, A, Jg(u)), is to estimate first non-parametrically
the mean function

q(u, \) = E[Y (u, A) — 1]

and then to evaluate its distance from the zero function using an appropriate L*-
distance measure. To elaborate on, for given u € (0,1) and A € [0, 7], we use the

kernel estimator

i) =y 2 Ko=) (7 Y (314)

to estimate the unknown mean function g(u, A\) non-parametrically. Here Kj(-) =
b~ K (-/b) where K (-) is an appropriate defined kernel and b a smoothing bandwidth

satisfying certain conditions; see Assumption 3.2.2 below.

To proceed with the construction of the test statistic proposed, we calculate ¢(u;, A)

for different instants of time u; by using the local periodogram In(u;, A) for segments
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of observations having midpoints u; = t;/T, where t; := S(j — 1) + N/2 and j =
1,..., M. Here the constant S denotes the shift from segment to segment while M
refers to the total number of time points in the interval (0,1) considered. Note that
by the above construction we have T'= S(M — 1) + N. Now, using a L*-measure
to evaluate the distance of the so estimated mean function ¢(u;, A) from the zero
function and averaging over all time points u; = t;/7" and over all frequencies A

considered, we end-up with the test statistic

Qor = % ﬁ:/i (qms, )\)>2d)\. (3.1.5)

It can be shown that under some rather standard assumptions to be discussed later

and if M — oo as T' — oo, then, in probability,

0 if Hy is true
QO,T - (

I I

This behavior of Qo justifies its use for testing the null hypothesis of interest.

2
f{ﬂjs)o) _ 1> dAdu  if Hy is true.

Recall that in order to derive the test statistic (3.1.5) we have assumed that the
parameterizing functions ¥(u) are known. This corresponds to the case of testing a
simple hypothesis, that is a hypothesis where the local spectral density under the null
is fully specified. To extend the testing procedure proposed to the more interesting
case of testing a composite hypotheses, that is to the case where the functions ¥(u)
determining the local spectral density are unknown, we replace 9J(-) in (3.1.4) by
V/N-consistent estimators. Let 9(-) = (J,(-),...,9m(:))" be such an estimator of
I() = (01(),...,9m(")). Analogously to (3.1.5), the test statistic used in this case

is then given by

Il 1 E o )\
Qr = M;/_W{Nj_;;]vmu Aj) (f(us,xj;é(us)) 1)} d\.  (3.1.6)

Notice that f(us, Aj; @(us)) appearing in the denominator above, is the semiparamet-

ric local spectral density obtained by substituting ¥(-) appearing in f(u, Aj;9(u)) by
its estimator 9(-). The test statistic (3.1.6) is the one proposed in this chapter for

testing the pair of hypotheses (3.1.2).
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3.1.3 Asymptotic distribution under the null hypothesis
We first establish a basic theorem which deals with the asymptotic distribution of

the test statistic (3.1.6) under the null hypothesis in (3.1.2). For this the following

set of assumptions is imposed.

Assumption 3.1.2.

(i) K is a bounded, symmetric, nonnegative kernel function on (—oo,00) with

support [—m, | such that (2m)~' [7 K(x)dx =1.

(ii) The window length N satisfies N ~ T° for some 1/5 < & < 4/5. Furthermore,

N = [kS] where K is a positive constant independent of N and S.

(iii) The smoothing bandwidth b satisfies b~ N~*, where

9 — 7 . Hh0—111-96
T}<)\<m1n{ 555 3 }.

max{0,

(iv) The taper function h is of bounded variation and vanishes outside the interval

[0,1].

(v) VN(O(u) —0(u)) = O,(1) where the Op(-) term does not depend on w.

Some remarks concerning the above assumptions are in order. Note that the constant
k appearing in (ii) determines the degree of overlapping between the segments used.
We consider the case £ > 1 only, since for k < 1 the shift from segment to segment
described by S is greater than the segment length N. In the later case, a loss of
efficiency is expected due to the fact that some observations are omitted. If Kk = 1
then the observed series is partitioned in nonoverlapping segments of length N while
if kK > 1 then the segments considered overlap. Concerning the rate at which the
segment length N is allowed to increase to infinity given in (ii) and the rate at which
the bandwidth b is allowed to converge to zero given in (iii), we mention that they
are controlled in a way that leads to simple expressions for the mean and for the
variance of the limiting distribution of ()7 under H,. Notice that the range of values
of N and of b is large enough allowing for a flexibility in choosing these parameters in

practice. Assumption 3.1.2(v) is general enough and allows for different estimators
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of ¥(u); see among others, Dahlhaus and Giraitis [13], Dahlhaus [10], Dahlhaus and

Neumann [15] and van Bellegem and Dahlhaus [42] for different proposals.

The following theorem establishes the asymptotic distribution of ()7 when the null

hypothesis is true.

Theorem 3.1.1. Under Assumption 3.1.1 and 3.1.2 and if Hy is true, then, as

T — o0,
NVMb(Qr — pir) = N(0,7%),
where
_ (tap(W)2 [T, (tap(1 1/2/
pr = Nb _WK (x)dx + N ) —27rK K(x — u)dzdu,

27 2
7 = tap(k / (/K u—l—w)du) dx

and for s € {1,2,...,m}
S e (o7 D22+ 5)du)

(fol hZ(x)d:c) !

According to the above theorem, an attractive feature of the test statistic Qr, is

tap(s) =

that its limiting distribution under the null hypothesis does not depend on unknown
parameters or characteristics of the underlying locally stationary process {X;r}.
Furthermore, and based on this theorem, an asymptotically a-level test is obtained

by rejecting the null hypothesis if

QTZ[JIT+ T Zavy
N~/ Mb

where z, denotes the 100(1 — a))% percentile of the standard Gaussian distribution.

3.2 Testing for a time-varying autoregressive struc-
ture

3.2.1 Consistency

A special case of the testing problem (3.1.2) and which commonly arises in many

situations, is that of testing for the presence of a time-varying autoregressive (tvAR)
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model. Recall that a locally stationary process satisfying definition 1.1.1 obeys a time-
varying autoregressive representation of order p if X, is generated by the equation
p
Xir = Z Bi(t/T)Xi—jr + i, (3.2.7)
j=1

where the &, 7’s are i.i.d. N(0,0%(t/T)) random variables, 3,(u) # 0 for all u € [0, 1],
the functions §;(-) as well as the variance function o?(-) are of bounded variation
and Y0, Bj(u)z? # 0 for all w € [0,1] and all 0 < [2| < 1+, for some ¢ > 0. Al-
though the results of this chapter can be easily adapted to cover other special types
of semiparametric locally stationary processes i.e. tvARMA(p,q) or tvMA(q), we
concentrate on the class of time-varying autoregressive process because these pro-
cesses provide due to their simplicity, easy implementation and interpretation, a very
interesting subclass of semiparametric time varying processes. Now let Fi,ar(p) be
the set of local spectral densities of time-varying autoregressive processes of order p.
The testing problem considered in this section is then described by the following pair

of null and alternative hypothesis

H() . f(, ) € ft'UAR(p) VS H1 . f(, ) € fgs\fwAR(p). (3.2.8)

Note that the set Frs \ Far(p) contains also all locally stationary autoregressive

processes with an autoregressive order different from p.

We first discuss a consistency property of our test. For this, suppose that the true

spectral density f(u, ) lies in the alternative and measure for u € [0, 1] the distance

between f(u,A) and f(u, A\;J(u)) by the function

L(u, ¥(u)) = % /7r (log[f(u, ;9 (u))] + %) dA. (3.2.9)

Let 9(u) be the value of 9(u) which minimizes £(u, 9(u)) and let 9(u) be the estimator
of ¥(u) which is obtained by minimizing the local Whittle likelihood, i.e., ¥(u) =

arg min Ly (u, 9(u)), where

Cfu, d(u)} = — /” (log[f(u, ()] + M) dx.

A J_.

Notice that

(o
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is the asymptotic Kullback-Leibler information divergence between two Gaussian
locally stationary processes with time-varying spectral densities f(u, A;¥(u)) and
f(u, \) respectively; see Theorem 3.4 of Dahlhaus [7]. The curve 9(u) obtained by
minimizing (3.2.9) is that leading to the best time-varying autoregressive fit, that is
to the p-th order autoregressive fit which minimizes the Kullback-Leibler information

divergence (3.2.9).

Assumption 3.2.1. Let V = (0/0V4,...,0/00,,) be the gradient with respect to 9.
(i) VLx(u,9(u)) =0, VLy(u,J(u)) =0 for all u and N.
(ii) The derivatives 0*A(u, \)/OudX and *A(u, \)/Ou? are uniformly bounded in
(u,A) € [0,1] x [—m,7].

(iii) The derivatives

83
0v;,00;,00,,

0 0* 0
819118791281913f(uj A,Q?(U)L W@ﬁ“

F7Hw, A9 (), F7Hu, A0 (u))

are bounded for 1 < iy is, iz < p uniformly in (u, \,9) € [0,1] X [—-7, 7] X ©,

where © s an open convex subset of RP.

(iv) SUPp< <1 9co IV2L " (u, D())||sp where || - ||sp denotes the spectral norm of a

matrix.

We first state the following result which deals with the limiting properties of ()7 when

the alternative hypothesis is true.

Theorem 3.2.1. Under Assumptions 3.1.1, 3.1.2 and 3.2.1 and if f(-,-) € Frs \

FwaR@p), then as T'— oo,

S N L (O )
r— D? = — — 1) d\du,
@ 0 /,r (f(u,/\;ﬁ(u))

i probability.

Notice that the limit D? given above is a Lo-distance measure between the true local
spectral density f(u,)\) and its best parametric fit f(u, A\;9(u)). Theorem 3.2.1 im-
plies then that under the assumptions made and if H; is true, then limy_., P(NvMb(Qr—
pr)/T > z,) = 1, that is the test Qr is consistent against any alternative for which

D? > 0.



45

3.2.2 Bootstrapping the test statistic

To obtain critical values of the test, Theorem 3.1.1 enables us to approximate the
unknown distribution of Nv/Mb(Qp — pr)/T by that of a standard Gaussian distri-
bution. We experienced, however, that the quality of this approximation is rather
poor in finite sample situations and very large to huge sample sizes are required in
order for this approximation to be valuable in practice; see Section 3.4 for a numerical
illustration of this point. To improve upon the large sample Gaussian approximation
of Theorem 3.1.1, we propose here, an alternative, bootstrap-based procedure, which
leads in finite sample situations to more accurate estimates of the distribution of Qr
under the null. The procedure proposed works by generating pseudo-observations
Xf:T, X;CT, . ,X;{T using the fitted tvAR(p) process and calculating the test statis-

tic Q7 of interest using the so generated pseudo-observations.

To elaborate on, we first fit locally to the time series the pth order time-varying
autoregressive process postulated under the null hypothesis. This can be done using
local Yule-Walker or local least squares estimators of the autoregressive parameter
functions Gy(w), ..., By(u). Yule-Walker estimators 3,(p) = (B1(u), ..., 3,(u)), for

instance satisfy the system of equations

with
éu(p) N CN(ua t j>7;7j:17...7p7 fu(p) = (éN(uu 1)7 s 7éN(u7p))/
and
1 =
en(u, j) = N I;J XuT)- N/24+k+1,T X [uT) - N/24+14+1,T-
k—i=7
Let

o3 (u) = én(u,0) + 5, (p)7u(p)
be the corresponding estimator of the variance function o?(u) of the errors. Prop-
erties of the estimators 3,(p) and 62(u) have been investigated by Dahlhaus and
Giraitis [13]; see also Section 2.3. Notice that other estimators can be also used pro-

vided Assumption 2.1(v) is satisfied; cf. Dahlhaus et al. [14] and van Bellegem and
Dahlhaus [42].
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The bootstrap algorithm proposed to approximate the distribution of ()7 under the

null hypothesis of a tvAR(p) process consists then of the following four Steps:

STEP 1: Fit locally the time-varying autoregressive model of order p to the

observations X 7, Xo 7, ..., X7 and calculate the estimated parameters
Bir(p) = (Bi(t/T), ..., B,(t/T)) and 6,°(t/T).

STEP 2: Generate bootstrap observations X7, X5, ..., X{ - using the fitted

local autoregressive model, that is,

p
~ T .t
X = Zﬁj(f)X;ﬁjj + Up(f) -ef,
j=1

where X = Xjp for j = 1,2,...,p and &/ are i.i.d random variables with

g/ ~N(0,1).

STEP 3: Compute the local periodogram I (u, \) over segments of length N

of the bootstrap pseudo-observations X;T, i.e., compute

1
I (u\) = ———|dE(u, \)|? 2.1
N(u7 ) 27TH27N(O)| N(uv )l (3 O)
where
N-1 < ‘
dy(u, \) = h (N) X[:T}—N/2+s+1eﬂ/\s'

I
o

S

STEP 4: The bootstrapped test statistic is then defined by
1y /“{i ST (M_ )}
Q=7 Zl 3 Nj:;@v Ky(A = \)) Funrd) 1] dA
Notice that we could have in STEP 4 rescaled the local bootstrap periodogram
I(u, \) by f(ug, Aj;0%) instead by f(u;, Aj; ), where 9(-) denotes the estimator
of the autoregressive parameter functions ¥(-) obtained using the bootstrap pseudo-
series Xip, X577, ..., Xfp. The specification of Q7 used is, however, preferred
because besides of being computationally more convenient, it is also justified theoret-

ically by the fact that the limiting distribution of the test statistic ()7 under the null

is not affected if the unknown 9(-) is replaced by a v/N-consistent estimator J(-).

The following theorem shows that the bootstrap procedure proposed leads to an
asymptotically valid approximation of the distribution of the test statistic ()r under

the null hypothesis of a tvAR(p) process.
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Theorem 3.2.2. Let Assumptions 3.1.1, 3.1.2 and 3.2.1 be satisfied. Then, condi-

tionally on Xy 7, Xor,..., Xrr, we have as T' — oo,
NVMb(QF — ur) = N(0,7?),

in probability, where pup and 72 are defined in Theorem 3.1.1.

3.3 Applications

3.3.1 Some remarks on choosing the testing parameters

From the previous discussion it is clear that implementation of the testing procedure
proposed, requires essentially the selection of two parameters: the time window width
N and the smoothing bandwidth b. Although a thorough investigation of this problem
is beyond the scope of this chapter, we in what follows we give a rather heuristic

discussion on how to select this parameters in practice.

Concerning the value of the time window width N, we mention that the selection of
this parameter is inherit to any statistical inference procedure for locally stationary
process which is based on segments of observations. Choosing N to large will induce
a large bias since a large N is associated with a loss of information on the local
structure of the underlying process. On the other hand, choosing N to small will
lead to an increase of the variance of the estimators involved due to the small number
of observations used. Any approach to select N should therefore be guided by the
requirement that N should be large enough to allow for reasonable local estimation
but not too large to avoid a ’smoothing out’ the interesting local characteristics of
the process. Based on this observation and depending on the overall size n of the
time series at hand, we propose for numerical reasons, to choose N to be some power

of 2, where the choices N = 64 or N = 128 are more convenient in most situations.

Concerning the choice of the smoothing parameter b, one way to proceed is to select
this parameter using a local version of a cross-validation criterion like the one pro-
posed by Beltrao and Bloomfield [2]. To elaborate on, notice first that our aim is to

obatin a “good” estimate of the function q(u, A) = f(u, )/ f(u, A;1). To stress the
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dependence of this function on the estimated parametric curves, we write g(u, A, ¥(u))

in the sequel. Using as a starting point the function

ZZ {logq ui, Ay 0) + Ivfus (u)/it(uq;’) )}, (3.3.11)

a leave-one-out estimator of q(u, A;; ¥) is given by

1 In(u, A
G5, A3 V) = > KA - AS)% (3.3.12)

JEN;
where N; = {s: =My < s < My and j—s # £j mod My}. Notice that ¢_;
is a kernel estimator of ¢ obtained by ignoring the jth ordinate local periodogram

In(u, \;). Now, substituting ¢_;(u, A;;9) for q(u, A;;9) in (3.3.11) leads to the func-

tion

M N A
= q—j(ui,)\j;ﬁ)

i=1 j=1

which can be used as a cross-validation-type criterion to select b.

3.3.2 Simulations
Bootstrap Approximations

We first, illustrate the advantages of using the bootstrap procedure proposed by
comparing its performance in approximating the distribution of Q7 under the null

with that of the limiting Gaussian approximation. For this purpose, observations

{Xir,t=1,...,T} from the first order, time-varying autoregressive model
t
X = ()Xo + & (3.3.14)

have been generated, where ¢(t/T) = 0.9 cos(1.5 — cos(4n(t/T))) and the &,’s are i.i.d.
random variables with ¢, ~ N(0,1). To estimate the exact distribution of the test
statistic Q1 we generate 1000 series of length T" = 1024 and for each of these series we
calculated Qr using the Bartlett-Priestley kernel, K () = 1i_y »(2)3(47) (1 — (z/m)?)
and the bandwidth b = 0.2. The window width N has been set equal to N = 128
and two different shifts, S = 128 and S = 64, have been considered. Notice that for

S = 128 we have k = 1, while for S =64, kK = 2.
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To investigate the performance of the bootstrap method, we choose randomly 21 series
from the generated 1000 replications of process (3.3.14) and for each of the selected
series we apply the bootstrap procedure proposed using 300 bootstrap replications.
Based on the bootstrap replications, we estimated for each series the density g*
of the corresponding bootstrap approximation of the distribution of Q7. We also
estimated the density of the exact distribution of ()7 based on the 1000 replications
of process (3.3.14). The so estimated density is denoted by g. The density estimates
g* and g have been obtained using standard SPlus smoothing routines. We then
compare the estimated exact density g with the Gaussian approximation given in
Theorem 3.1.1 and with the median bootstrap approximation. The median bootstrap
approximations is that for which ) |§*(z;) — g(w;)| takes its median value over the
21 series used. Figure 3.1 shows the estimated densities of the exact, the asymptotic

Gaussian and the median bootstrap approximation.

As it is clearly seen from these exhibits, the estimation results based on bootstrap are
striking. In particular, the bootstrap performs much better compared to the Gaussian

approximation and estimates very accurately the exact distribution of interest.
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Figure 3.1: Estimated density of the distribution of the test statistic Qr under the
null hypothesis of a first order tvAR process and its different approximations. The
solid lines in (a) and (b) are the estimated exact densities, the dashed lines are the
estimated densities corresponding to the median bootstrap approximations while the
dotted lines are the densities of the asymptotic Gaussian approximations.
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Size and power performance of the test

We next investigate the size and power performance of the test in finite sample
situations by means of a small simulation study. For this, we consider realizations of

length T'= 512 and 7' = 1024 of the time-varying AR(2) model
Xir = 0.9cos(1.5 — cos(dnt/T)) Xs—17 — $2Xi—o1 + €4 (3.3.15)

where the €,’s are independent, standard Gaussian distributed random variables. The
null hypothesis is that the underlying process is a time-varying first order autoregres-
sive process. Different values of the parameter ¢, have been considered corresponding
to validity of the null (¢ = 0) and of the alternative hypothesis (¢ # 0). In each
case we fit a time-varying AR(1) model using a local least squares estimator and
compute the test statistic ()7 using the Bartlett-Priestley kernel and different values
of the bandwidth parameter b. We also apply the test proposed for different segment
lengths NV and shifts .S. In all cases the critical values of the test have been obtained
using B=300 replications of the bootstrap procedure described in Section 3.2. The

results obtained over 500 replications are summarized in Table 3.1.



b=0.3 b=0.2
T=512, N=64 || a =001 a=0.05 a=01]|a=00l a=0.05 a=0.1
$s = 0.0
k=1 0.008 0.038  0.084 | 0.008 0.042  0.078
k=2 0.008 0.032  0.070 | 0.008 0.032  0.068
$o = 0.2
k=1 0072 0.204  0.358 | 0.098 0.244  0.364
k=2 0.200 0.296  0.408 | 0.174 0.354  0.474
$s = 0.25
k=1 0.188 0410  0.582 | 0.238 0482  0.612
k=2 0.408 0.564  0.680 | 0.422 0.640  0.744
¢s = 0.3
k=1 0.392 0.668  0.814 | 0.474 0.752  0.852
k=2 0.692 0.820  0.898 | 0.738 0.882  0.936
b=0.2 b=0.1
T=1024, N=128 |[a = 0.0l a=0.05 a=01]|a=001 a=0.05 a=0.1
$s = 0.0
k=1 0.010 0.040  0.080 | 0.012 0.044  0.082
k=2 0.008 0.044  0.092 | 0.012 0.048  0.098
$o = 0.2
k=1 0272 0512  0.618 | 0.226 0.474  0.584
k=2 0.480 0.732  0.800 | 0.500 0.674  0.776
¢s = 0.25
k=1 0622 0.830  0.894 | 0.542 0.798  0.866
k=2 0824 0.952  0.974 | 0.834 0.924  0.968
$s = 0.3
k=1 0914 0.992  0.996 | 0.884 0.974  0.992
k=2 00986 1.000  1.000 | 0.986 1.000  1.000

52

Table 3.1: Rejection frequencies in 500 replications of the tvAR(2) model X;r =
0.9cos(1.5 — cos(4mt/T)) Xi—1.10 — $2Xi—or + & for different values of ¢, and of the

testing parameters.
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As Table 3.1 shows, estimating the critical values of the test using the bootstrap
procedure proposed, leads to a very good size and power behavior of the test. Notice
that for both sample sizes and all combinations of bandwidth values, segment lengths
and shifts considered, the empirical size of the test is very close to the nominal level of
5%. Furthermore, under the alternative, the test has power even for small deviations
from the null and the power of the test increases rapidly approaching unity as the

deviations from the null and/or the sample size become larger.



Chapter 4

Conclusions and further research

4.1 Conclusions

We have proposed a bootstrap method to produce replicates of the local periodogram
and applied this method to the important classes of local spectral means and local
ratio statistics. We have derived the asymptotic distributions of the bootstrap ana-
logues of these statistics and some simulations have demonstrated the performance
of our bootstrap procedure against the local autoregressive sieve bootstrap and the

normal approximation. An application to a real-data set is given.

We have also addressed the important problem of testing whether a locally stationary
process belongs to a semiparametric class of time varying processes. The asymptotic
distribution of the test statistic proposed is derived. As an interesting special case
we focus on the problem of testing for the presence of a semiparametric, time-varying
autoregressive model and a bootstrap procedure is proposed to approximate the dis-
tribution of the test statistic under the null hypothesis. Theoretical properties of the
bootstrap procedure are discussed and its asymptotic validity is established. Simu-
lations demonstrated that, in the testing set-up considered, the bootstrap is a very

powerful and valuable tool to obtain critical values.

4.2 Further research

The bootstrap approach in the second chapter can be applied to the calculation of
pointwise confidence intervals for some parameters of interest. We demonstrated such
an application of the bootstrap by considering pointwise confidence intervals for the

time varying autocorrelation function p(u,7), v € [0,1] and 7 € N. An interesting
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problem for future research would be the construction of simultaneous confidence
bands for such parameters. Applied to the time varying autocorrelation function,
this problem requires, for instance, the investigation of the distribution of statistics
like

sup |p(u, 7) — p(u, 7)|
u€(0,1]

and the development of a bootstrap procedure which is capable to approximate its

distribution.

Concerning the testing methodology proposed in Chapter 3, it will be interesting
to investigate more closely the power behavior of the test for classes of fixed and
of local alternatives. Furthermore, it is interesting to investigate how the testing
methodology proposed can be applied to the problem of testing stationarity in time

series analysis.

Another interesting problem for future research is how to bootstrap the preperi-

odogram defined for every A\ € [—m, 7] and u € [0,1] by

1 ,
In(u,\) = > Zk:XuT+(k+l)/2,TXuT(k1)/2,T6_Zk)\a (4.2.1)
where the sum over k is for £ € Z such that 1 < [uT'— (k—1)/2], [uT+(k+1)/2] <T.

The preperiodogram is an important tool in the analysis of locally stationary processes
and several statistics proposed in the literature are based on it. The method of
bootstrapping the local periodogram, proposed in the second chapter, can not be

directly applied to bootstrap the preperiodogram.

Finally, our bootstrap procedures depend on the choice of different smoothing pa-
rameters like the window length N, the smoothing bandwidth b, S and M. In this
thesis, we gave only some guidelines on how to choose these parameters in practice.
It will be interesting to develop a theory on how to choose these parameters based

on some optimality criteria.



Appendix A

Auxiliary results and proofs for

Chapter 2

First we define the process Z; r(u) = X; — )?t(u) which satisfies

- 1t
> coo(Zir(u), Zigor(u) = O + |5 —ul) (A.0.1)

S§=—00

Lemma A.0.1. If {X;r} are locally stationary processes satisfying Assumption 2.1

and
£p.i(u u) = Xpur)- N/2+]T_Zﬁz X[uT —N/24j—i,T»
gj( ) X[uT N/2+] Zﬁz X[uT —N/2+435— z( )
forpeN,
1 2 N 2 p
E X;( - < K| [= 2
(N S X)) - ej<u>>) < ((T) s 3w
Jj=p+1 i=0
+ su *(u
o > )
where X;(u,p) is defined in Section 2.5.
Proof : Since
5p,j( Zﬁz Z[uT —N/2+4j— z Z 51 X[uT —N/2+j— z((‘AO2)
i=p+1

the result now follows by (A.0.1).
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Lemma A.0.2. Let {X: 7} be a locally stationary process satisfying Assumption 2.1,
and p € N. Then

N
_ o N? _
E((N—p) ! Z X[uT}fN/2+k+17i,TX[uT]fN/2+k+1fj,T_C(ua Z—J))Q < K(ﬁ—i-(N—p) 1)

k=p
for every (i,j) € N, x N, where N, = {1,2,...,p} and c(u,7) is the time varying

covariance defined in Section 1.1.

Proof : Let [uT] — N/2+ 1 =v. We then have

1

N N
Z Xoh—irXogo—jr — c(u,i —j) = N> Z Xopr—i(w) Xopn—j(u) — c(u, i — j)
k=p

1
N-p

k=p

= Tin+Thny+Tsny+Tin

with an obvious notation for 7; . Since )?t(u) is a stationary process we have that
E(Tyn)* = O((N —p)™!) uniformly in u and the result follows because (A.0.1) gives
that

E(Tyn)*=O(N*/T*) and E(T3y)? and E(Tyx)* are O(N?/T?). [ ]

Before establishing the next lemma we recall some properties of covariance matrices.
From Grenander and Szegé [21] we have that if 0 < F} < f(\) < F» < oo and
A1 < Ay < -+ < A\, are the eigenvalues of R(p) = [y(i — j)]ij=1...
f; f(A) exp(iAT)dA, then 2mFy < A < --- < A\, < 27F,. Assumption 2.1 implies
that for each u the local spectral density f(u, ) is continuous in A, and there are
constants [} and F; such that 0 < F} < f(u,\) < F, < oo for all u € [0, 1].
Consequently, if we assume that A\j(u) < Aa(u) < --- < A\ (u) are the eigenvalues of
R, (p) = [c(u,i— j)]ij=1,. p, then 27F) < A\j(u) < -+ < A\p(u) < 27F5.

For a matrix A, let || A ||= sup,,<1 | Az |2, where || . [ is the Euclidean norm.

Thus || A [|<]| A ||z and if A is positive defined and symmetric || A |[|= [A\nqz| Where

Amaz 18 the largest of the eigenvalues of the matrix A.
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We then have that, uniformly in u,

| Ru(p) [I< 27 F3, I R (p) 1< 1/(2nFy). (A.0.3)

Lemma A.0.3. Let {X,(u)} satisfy Assumptions 2.2, 2.3 and p — oo such that
p*/N — 0. Then for every u € [0,1]

VP | ByY(p) — RN (p) |— 0

wn probability.

Proof : Let

I B ) 1= k(up), | B p) =R (D) 1= ar(u.p), || Ru(p)—Rulp) 1= Qr(u,p)
and note that as in Berk (1974),
ar(u,p) = | B (0)(Ru(p) — Ru(p)) R, () |

< (1 B:'0) = B0 |+ 1 B 0) 1) 1 Bup) = Rulp) Il B () |

= (k(u,p) + qr(u, p))Qr(u, p)k(u, p).

Choose T large enough such that k(u, p)Qr(u,p) < 1 holds in probability. We have,

k2(u7p)QT<uap)
qT(u,p) = 1- k(“vP)QT(u’p) .

(A.0.4)
By Lemma A.0.2 we get
E(Q7(u,p)) < Kp? (NQT‘2 + (N — p)_l). (A.0.5)
which implies that
E(\/p Qr(u,p))* < Kp’ (N2T2 + (N - p)1> —0

as T — o0, since by assumption p?/N — 0. Assertions (A.0.3), (A.0.4) and (A.0.5)

yields

Ao PR k*(u, p)y/p Qr(u,p)
VB B @) = B0 = VB artup) < T AT

in probability. |
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Proposition A.0.1.

(i) Let {X,(u)} satisfy Assumptions 2.2, 2.3 and p — oo such that p*/N — 0.
Then

| 5ulp) = Bu(p) |I= Oy (12N 7H2)
where 3,(p) = (Br(w), B2(u), - -+, Bp(u))".
(i) If Assumptions 2.1 and 2.3 are satisfied and p € N fized, then
| Bup) = Bulp) II= Op (N77?)

where Bu(p) = (Brp(u), Bop(u), -+, Brp(w)).

Proof : (i)
| 8up) = Bue) | = | B (0) Z X, p) (X, p) Bulp) = Xpury-sgzvir ) /(N =) |
< | 7) HHZX . p)ps (u)/(N =) |

+1I B, () N ZXj(u,p)(»fp,j(U) —&;(w)/(N =p) |

+ 1 B (o) I Z_Xj(u,p)gj(U)/(N—p) I

where ¢, ;(u) and ¢;(u) are defined in Lemma A.0.1.

Since for 1 < s < p we have,

N-1 2 N-1 oo
E( Z XuT)-N/2+j—s,TEj (U)> = Z a[zuT]_N/z+j_s,T(i) < K(N —p).

Jj=p Jj=p =0

we get

B Y X))/ (N — ) IP< Kp(N —p)™ 0. (A06)

A direct consequence of Lemma A.0.1 is that

N-1 P2 N3/2
\/gE 13 X0 0) w02, 0)/ V) = O 20/ sup 3

j=p 0<u<l1 k=p+1

(A.0.7)

(A.0.6) and (A.0.7) imply that

— 1 22 X p)ep()/(N = p) = 0. (A.08)
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The desired result follows then by (A.0.3), (A.0.8) and Lemma A.0.3.

(ii) By Lemma A.0.2 we have

VN || Bulp) = Bulp) | = VN || R;'p)7u(p) — Ry (p)ru(p) [|= Op(N(N —p)7Y).

To establish the next proposition we first define,

B(u,z) = 1— Zﬁk ¥ By(u,z) =1— Zﬁk 2% and Ep(u,z) = 1—Zﬁk,p(u)z
k=1

Proposition A.0.2.

(1) Under Assumptions 2.1 to 2.8 and for p — oo such that p>/N — 0, we have

for every u € [0, 1]

sup ftUAR(u, A)— fu,\)| — 0

Ae|—7,7]

in probability, as T — oo.

(ii) Under Assumptions 2.1 and 2.3 and for every p € N fized, we have for every
€ [0,1]

sup | froar(t, \) = foar(u, \)| — 0

AE[—m,7]

in probability, as T — oo.

Proof: (i) It suffices to show that for every u € [0, 1],

6,2 (u) — a(u,0) and B,(u,e?) — B(u,e™) (A.0.9)

in probability, where the last convergence is uniformly in A € [—m, w|. By Proposition

A.0.1(i) and Assumption 2.2 we have

sup | B, (u, ) = B(u, )| <[ Bu(p) = Bulp) || + Z |8;(u)| — 0.

AE[—m,m] j=p+1

To see that 6,2(u) — a(u,0) in probability note that E(X(u))? = 3. Be(u)c(u, k) +
k=1
a(u, 0), which gives
Zﬁk c(u, k) = c(u,0) + By (p)ru( Z Br(u k) = a(u,0).

k=p+1

(A.0.10)
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Gy’ (u) — a(u,0) =

N
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2 A A
N——p Xt -N/24j-p Bulp)Tulp) = alu, 0)

p < XuT] N/2+5— pT+(6 ( )_ﬁu(p))/(fu(lﬁ _T”Lb<p>)

hS]

~

+(Bu(p) = Bu®))Tu(p) + Bu(P) (Fulp) = 1u(p)) + Bu(p)ru(p) — a(u,0)

and a direct application of (A.0.10) gives

Gy’ (u) — a(u,0)] <

Z ()~ N2+ j—pr — (U, 0)]+ || (Bu(p) = Bu(p)) |

x| (fu(p —ru(@) | + | (Bulp) = Bulp))' |
< | (ru(p)) + Bu®) Il (Fulp) = ru®)) Il + D 1Bew)eu, k

k=p+1

O(N—1/2p—1/2) +O(N1/2p1/2T_1)

which implies that the right hand side of the above equation converges to zero.

(i) Proposition A.0.1(ii) and Lemma A.0.2 imply that for every u € [0, 1]

A

SUPxe[—n,7] |Bp(u7 ei/\)

probability.

- ép(u,e“‘)| — 0 and 6,%(u) — c(u,0) — Bu(p)'ru(p) = 02(u) in

p

Lemma A.0.4. Let { X7} be a locally stationary process satisfying Assumption 2.1.

Then
(i)

IN7X(U7 >‘) = IN7X (U, )‘) + EN(uv >‘)

where Iy ¢(u, A) is the local periodogram of the series Xi(w),..., Xp(u) and E(Ry(u, \))? =

O(N?/T?) uniformly in v and X .

(i1) For {\; =2nj/N,j=1,...,(My — 1)} we have that

E(IN,X(ua)‘j)) = flu, X )+O< N>

N T

Var([N,X(u,/\j)> A (u, A )+O<N 2{)

Cov(IMX(u, ), Iy x (u, )\k)> = %/mf(u, )\j)f(u,)\k)jLO(%) +o(N7Y) for M\ # A
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Proof: (i) Let [uT] — N/2+ 1 = v. We then have for the local discrete Fourier
transform Jx (u, A) of {X;r} that

N-1
Ix(u,\) = N’l/sz,,Jrs,Te’i’\S
s=0

N-1 N-1
= N71/2 Z ZV+5,T(U)67MS + N71/2 Z XV+8(U)€7MS
s=0 s=0

= Jz(u,N) + Je(u, \)
Using that
[N,X(u,)\) = INX(u, )\) + Isz(u,)\) + JX(U, )\)Jz(u, —)\> + Jz(u,)\)JX(u, —)\),

and (A.0.1) which implies that E(Ixy(u,\)) = O(N?/T?) and E(Iny(u,\))? =
O (N*/T*) the proof for part (i) is completed.

(ii) The assertion for the variance follows using part (i), and the fact that for each w,

Var(Ly g(u, 1)) = £2(u,A) + O (N-1) and [Cov(R(u, Ay), Iy (. \,)| = ONT™)
by Cauchy’s inequality. For the covariance of the local periodogram we use the same
arguments as above and that Cov (IN,X (u, Aj)s Iy 2 (u, /\k)> = ~haf (u, ) fu, ) +
o(N71) for \x # A,. |

Lemma A.0.5.

(i) Let Assumptions 2.1, 2.2, 2.8, 2.5 and 2.6 be satisfied. If p — oo such that
p3/N — 0 as T — oo, then for each u € [0, 1]
gu,N) = 1 and [7_|§(u,\) — 1| dX — 0 in probability.

(ii) Let Assumptions 2.1, 2.3, 2.5 and 2.6 be satisfied. For all fivred p € N and for

each u € [0, 1] we have that

g<u7 >‘) - f<u7 )‘)/fthR(ua )‘> and fjﬂ- ‘g(uv )‘) - f(u7 A)/fthR(u7 )‘)l dA — 0 in

probability.
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Proof: (i) By Proposition A.0.2(i) we obtain

[N(u s )

fthR(u Aj)

G(u, \) = Z Kn(A = \)

_ ﬁ% | Z K\ — M) In(us Ay) + 0p(1)

= 1+ o0,(1).

By Lemma A.0.4 we have

d>\>2

S K= A)Un(uA) — Ely(u )

o([|5 3

s

< N2/ Z K2\ = X)Var (In(u, A;)) dA

Mpn

e

/ Z Kn(A = X)) EKn(h = M) Cov(In(u, \), In (u, A))dA = o(1).

Jik=—Mp
J#k

(ii) Follows by using the same arguments as in (i) and Proposition A.0.2(ii). |

Before establishing the next lemma we define ET and cov™’ the expectation and the

covariance function respectively with respect to the measure .

Lemma A.0.6. (i) Let Assumptions 2.1 and 2.3 be satisfied. For all fized p € N we
have that E*(e])* — 3 — r4(p) in probability.
(11) Let Assumptions 2.1 to 2.3 be satisfied. If p — oo such that p>/N — 0 then

ET(ef)* — 3 — Ky in probability.

Proof: (i) We have using = O((N — p)~/?) and the notation Y;7 = X, —
f=1 Bi(%)Xtﬂ',T that

T

Et(gf Z

+

Furthermore, let Y, (u) = X,(u) — P ﬁi,p(u))}t_i(u) and consider the difference

Yir = Y,(t/T) = (XtT—Z@ XHT)—<Xtt/T Z@p tht/T>)

p p

= Zyr(t)T) + Z(@-,p(p —Bi(T»Xt i(t/T) + Zﬁ, )Zy—ir(t)T)

=1

0,(1). (A.0.11)

4
p

= O,(N7'?) (A.0.12)
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By (A.0.12) and because 6,(u) — o0,(u) in probability (see proof of Proposition
6.2(ii)), we deduce that

Lo« (Y YT
‘T——pz <&;§(t/T) a;;(t/T)>

t=p+1

—0

in probability. Since E(Y;(u))* < oo Vu € [0,1], we have that

R /
— E(YA(t/T)) —>/E
T_pt:erl 0

(ii) This is proved by using standard arguments for the autoregressive sieve bootstrap,

see for instance Kreiss [23], Proposition 3.1. |

The process X;T possesses the following representation,
— Z ber(h)e) (A.0.13)
j=0

where &; 7 (j) are obtained by (&, 7(0) =1) :

(1 - Zﬁb(%)z]’) =1+ aur(j)?. (A.0.14)

Let Assumptions 2.1 to 2.6 be satisfied and let p — oo such that p*/N — 0. By
Proposition A.0.1(i) we have that
> larr(i) = awr(i)] = O,(p*N ") (A.0.15)
j=0
Also under Assumption 2.1 and Assumptions 2.3 to 2.6 and letting the order of the

fitted approximating process fixed, by Proposition A.0.1(ii) we have that

o0

> i (i) — ajp(t/T)| = O,(N7?) (A.0.16)

=0
where {a;,(t/T),j € N} is defined as {a;7(j),7 € N} if we replace §;(t/T) b
Bp(t/T) in (A.0.14), see Kreiss(1999) Lemma 8.3.

Lemma A.0.7. Let Assumption 2.1 and Assumptions 2.3 to 2.6 and keep p € N

fized or Assumptions 2.1 to 2.6 and let p — oo such that p*/N — 0 is satisfied. Let

NX+ N, X+

/¢ G(u, NI (u, \)d\ and J /gb Glu, T (u, N)dA
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where I;\;XJr(u, A) is the periodogram on the segment [uT] — N/2 +1,...,[uT] + N/2

of the bootstrap process X;" (u) = Yoo G r(i)el ;. Then as T — oo,

TN (0) = EX(J3(9) = J ¢.(8) = ET(J}, 0. (9)) + Op(N/T + p*/N)

N,&+ N,RB+

Proof:
Let v = [uT] — N/2 + 1,

d;\r,(l)(u, A= — Z Gy r(m)el_,, exp(—ils),

d;(Z) (U, )\) = Z (&V+S7T(m) - d[UT},T(m))Ej—m eXp(_iAS>

Then

2

m 2
Ju(9) = %/ d(N)g(u, \) Z d}(j)(w )\)d'ij\‘[(l) (4, —N)dA = Z J]J\;(j,l)(qb)

gl=1 g,l=1
Since J;V(¢) = J;7£+(¢) it suffices to show that J39"(¢) — E*J 00 (¢) =
O,(N/T+p2/N) for j+1 > 2. Using (A.0.15) we get that ET|(di" (u, A\))|2 = O,(1),
EH(d5® (u, \)2 = O,(N?/T? + p*/N? + p2N-Y2T-1) and for j + 1 > 2
N3 ph

< K(7 +7)

EINYVAI(0) = EX V0 < Ko +

where 0 < K < oo is constant. |

Proof of Proposition 2.4.1: First write the processes X;(u) and Y;(u) := X;(u) —

le@,p(u)f(t_i(u) as X;(u) = U(u, B)e; where U(u,z) = doZgafu,j)2 , and
Y;(u) = ®,(u, B)X;(u) where ®,(u,z)=1- > 41 Bjp(u)2? respectively, where B is
the backward shift operator defined by B/ X, = X;—j. Observe that

Yi(u) = Ay(u, Be,
where
Ap(u, z) = &p(u, 2)V(u, 2) = pr(u,j)zj,
=0

ly(u,0) =1and €y(u,j) = a(u,j)—> r_y Bip(w)a(u, j—Fk) for j > 1. Straightforward

calculations give

o0

cumy(Yy(u)) = cumy(e;) Zﬁp(u,j) = cums(er) + cums(er) Ls(u, p)
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where cum is the sth ordered cumulant and Lg(u,p) = > 372, (5(u,j). Recall the

definition of £4(p) in Theorem 4.1 to see that

i) = [T,

cum3(Yi(u))

and use that Ly(u,p) < L3(u,p) to get

Ka(p)

[ ated) Daten) L),

(14 La(u, p))?

1
o 1+ La(u,p)

_1‘ _

Proof of Theorem 2.4.1 and Theorem 2.4.2:
Using similar arguments as in Theorem 4.1 of Kreiss and Paparoditis [24] we have

that

COU+(J;\;’£+<¢Z')7 J;\;,X+ (#5)) =

2m{ [ ) (650) + 05N, ) anl, VA

+ K / / $i(N) b (—10)3(u, A) froar(u, N)q(u, 1) froar(u, ,u)d/\dM}

where J;\; o+ (¢) is defined in Lemma A.0.7 and k4 is the fourth cumulant of the boot-
strapped residuals £; . Because of Lemmas A.0.5 and A.0.6 and Proposition A.0.2
we can replace ET(e1)%, g(u, A) and fy,az(u, A) by their limits and we obtain that,
cov*(J;\L[XJr, JJJ\;’XQ — cov(§;, ;) in probability which with Lemma A.0.7 complete

the proof of both theorems. |

Proof of Theorem 2.4.4: Using Lemma A.0.4 (i) we can show that
VNG (f(u,2) = B(f(u, 1)) = VNB (Flu, 2) = B(F(, 1)) +0,(1)  (A.0.17)

where f(u,\) = N~ ZjﬂiN_MN Ky(A = M) Iy ¢ (u, Aj) and Iy ¢(u, w) is the local peri-
odogram of the stationary series X (u), ..., Xp(u). Recall that {X,(u)} is a station-

ary process which approximates X; r in a local neighborhood around v = t/T. Now,
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set
~ My
Frlu ) =N" " K- M)y g (s 2g)
Jj=—Mn
where I} ¢ (u,A) = g(u, )\>I]—\i;,,e+ (u, \) and I;\;X+(u,)\) is the local periodogram of

the segment of observations X[ZT]_N/ZH(u), o X[ZTHN/Q(U) coming from the station-

ary bootstrap process X; (u) = Yoo Guryr(i)e; ;. Following the same steps as in

Lemma A.0.7 the following result can be established

VNb (f*(u, ) — E(f*(u, A))) — VNb (f*(u, ) — E(F(u, /\))> +o(1). (A0.18)

The assertion of the theorem follows then by the same arguments as of those used in
the proof of Theorem 5.1 of Kreiss and Paparoditis [24], since v N'b (f(u, A) — E(f(u, A)))
and vV Nb (f* (u, \) — E(f*(u, A))) are based on realizations of stationary processes.



Appendix B

Auxiliary results and proofs for

Chapter 3

A useful tool for handling taper data, is the periodic extension (with period 27) of

the function Ly(a) : R — R, with

{ T, la| < 1T
Ly(a) = (B.0.1)
1/|al, 1/T <|a| <.

For the proof of the following lemma see Dahlhaus [9].
Lemma B.0.8.
a. [ L (a) < KT for all k > 1.
b. [ Lr(a) < Klog(T)
¢ JalLr(a) < K
d. [ Lr(8 — o) Ls(a+ ) < K max{log(T), 10g(S)} Luingr.5}(5 + 7)
For a complex-valued function f define Hy(f(+),A) := 22\7;01 f(s)e™™s and let

Hka()\) - HN(hk(N)7 /\)

and

Hy(N) = Hin(N).
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Straightforward calculation gives
Z Hin(a = Aj)Hen(Aj — B) = 2n N Hipon (a0 = )
J

where the sum extends over all the Fourier frequencies
Aj =2mj/N, j=—[(N—-1)/2],...,[N/2]. Under Assumption 3.1.2 (iv) there is a

constant C' independent of 7" and A such that
|Hpn(A)| < CLy () (B.0.2)

and

Ky(A) < CBL2 (M) (B.0.3)

Lemma B.0.9.

(i) Let N,T € N. Suppose that the data taper h satisfies Assumption 3.1.2 (iv)

and v : [0,1] — R is Lipshitz continuous. Then we have for 0 <t < N,

. . N
Hy <¢ (T) h <N> ,A) — (%) Hy(\) +0 (TLN()\)) .
The same holds, if ¥(-/T) on the left side is replaced by numbers s with
sup, [¢sr — U(s/T)| = O(T™)

(i) Lett; =S(j — 1)+ N/2, u; =t;/T with N,M,S and T satisfying Assumption
3.1.2 and ¢ : [0,1] — R be Lipshitz continuous. Then

M

Z ”lb(Uj)(Bi)\Sj

Jj=1

< KLy(SA).

Proof: The proof is identical to the proof of Lemmas A.5 and A.6 in Dahlhaus [9].
|

Before proceeding with the next lemma we use for simplicity the notation fy,(u, \)

for f(u, \;Uo(u)) and fy(u, A) for f(u, \; D (u)).
Lemma B.0.10. Under Assumptions 3.1.1, 3.1.2 and if Hy s true, then

E(N\/WQO’T) = ur + 0(1)
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where

MY2¢,, Ml/le/zc
pr = b1/2tp/ K*(z - fw /_ , K(z)K(x — u)dzdu

and cuap = fo B (2)/(Jy B2(2))%.

Proof: First note that

E(N\/WQOT = Ml/QNZ/ ZZ fl;o (wi, A (Un)\s)

xcum (In(tp, )\]), IN(um, As)) dA
O(VMbN®/T* + v/ Mblog*(N)/N).

Using (3.1.3) and the following property for cumulants
cum(Z1Zy, Z3Z4) = cum(Zy, Zs)cum(Zy, Zy) + cum(Zy, Zy)cum(Zs, Z3), (B.0.4)
for Z; Gaussian random variables, we get

A — A
E(N\/WQO,T) = 47T2M1/2NH2 Z/ﬂzz ((um,As;d)\

X (cum (i (s Ay ), iy (s As)) et (i (tm, — A ), diy (s —As )

eum (d (tm, Ay)s dy (s —Ns)) cum (A (s —A3), dav (i, As)) )

+o(1)
=+ por +o(1)

with an obvious notation for p; r, i = 1,2.

Recall the definition of dy(u, \) to see that

cum (dn (U, Aj), Ay (U, As)) cum (dn (Um, —Aj), AN (Um, —As))

= / HN(Atm—N/2+1+ T(Nl)h(ﬁ) Aj HI)HN(Atm N/2+1+, (= /~L1>h(N) —As + f11)

XHN(Atm N/2+1+- T(N2)h(N) —Aj = N2)HN(Atm N/2+1+-, r(— N2)h(ﬁ)v>‘s + p2)dprdps.
Substituting AY Njas1sr(p2) by A(t/T,p2) on the above expression, and using

(1.1.9) and the fact that A(-,-) is Lipshitz continuous, we get that the above term is

equal to

/ oo (W 11) foo (W, p2) Hn (Aj =) Hn (= Astp1 ) Hy (= Aj—p2) Hy (Astp2) dpa dps
(B.0.5)
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plus a remainder term R, depending on the difference [A} _ Jop1pr(t2) —A(t/T, po)]

which satisfies

M J
N ~ Kb A — /\ K (/\ - )\s)
M1/2N3 Z Z Z fﬁo (Um7)‘5) Rm

u
m=1j=—Jy s=—Jn Foo (tm; A

Nbl/2M1/2 IN
< NV v Y YY1 - A, - )
T N
j=—Jn s=—Jn
NM'?1og*(N)

= Oy

). (B.0.6)

Using the bound (B.0.6) and replacing fi, (tm, f11) and fig, (Um, f12) by fo, (um, A;) and

f9o(Um, As) respectively, we get that the term p 1 is equal to

pl/2 ) f1/2 JIN
/ > Z Ky — )K= M) Hy (A — A)[PdA

N2 (0
NH2 N T j=—JN s=—Jn
_ Ml/ Ctap KQ (IOg(N>M1/2)
b1/2 Nb3/2

plus a remainder term R,, which depends on the difference | fy, (tm, p2) — foo (Um, Aj)|

and which satisfies

pr2 MK DE(A = A,
M1/2N3 Z Z b( )Rm
fﬁo (um7 )‘8)

m=1j=—Jn s——JN

b1/2M1/2 In
< / > Z Ky(A = M) KA — M) Ly (s — Aj)dA

]——JN Sf—JN

b1/2M1/210g N
- oA og ),

Using similar arguments we get that the second term po 1 is equal to

bL/2 ppi/2 JIn
NHZ(0) / Z Z Ey(A = \)Ep(X = A Hy(Aj + As) 2\ + o(1)
2N T e Jn s=—Jn
ML/2pL/2
= M/ K(z)K(z — u)dxdu + o(1)

Lemma B.0.11. Under Assumptions 3.1.1 and 3.1.2 and if Hy is true, then
Var(NVMbQor) = 7> + o(1)

where 7% is defined in Theorem 3.1.1.
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Proof: First note that

V(IT(N\/_Q() T)
_ < Kp(A = X)) Kp(A = Ag) Ky (1 — M) Ky (0 — A
B MN2 Z Z / /7r Z f )fﬁo(umw)‘s)fﬁo(umz’Ak>f190<um27)‘l>

U
m1=1mo=1 T s kl=—Jn o (U J

(cum(IN(uml, ), I (tmgs M) eurn (I (s Ns )y Iy (tmgs A1)

+eum(In(tmy, Aj)s In(Umy, A1) cum(In (U, , As), IN(Umy s Ak))
e (I (s Ay ) In (s A )y Iy (o s A )y Iy (thmy, )\l))>d>\du +o(1)

= Vir+Vor+Vsrp

with an obvious notation for V;r i = 1,2,3. From (3.1.3) and (B.0.4) we get that
the terms Vj p and Vo can be written as the sum of four terms, that is for j = 1,2
we can write Vjp = S0+, V](Q

The first term in this decomposition equals

_ Ky (A = X)) Ky (A = X)) Ky (1 — X)) K (1 — A1)
VVLT B MN2 Z /ﬂ-/—ﬂ- f190 umw >f190<um17)‘S)fﬁo(umw/\k)fﬁo(umw/\l)

cum (dn (Umy, Aj)y AN (Umy, —Ak)) cum (dn (U, —Aj), AN (Uimy s Ak))

mi,msa 7,k,l,s

Xeum (dn(Umy s As)y AN (Upmy, — A1) cum (dy (tmy, —As), AN (Umy, A1)

To handle this term notice that using arguments similar to those used in the proof

of Lemma B.0.10 we have that the term

JO L R A TGS RV

XHN(Atm —N/2+1+, (= /M)h(ﬁ) — Ak + NI)HN(AtmfN/uH T(N2)h(ﬁ)7 —Aj — h2)
xHy (AL, _vjpsrs (= M2)h(ﬁ) N+ o) HN(AD L _njosis T(,UB)h(]‘V) As — Hi3)

X Hy (A, »—N/241+-, r(— M3)h(ﬁ) —A + MS)HN(Atm —N/2+1+4 T(M4>h(ﬁ)7 —As = fa)
><HN(A?W—N/2+1+-,T(—M4)h(ﬁ)» AL+ fhg)

xexp {i(p1 + p2 + p13 + pa) (bny — tny) } dpndpadpizdys

is equal to

[ ] A ) A =) Al 120 A, =) Al 1) At )
X Aty s pa) AUy, —pa) HN (N — ) Hn (= Ak + pa) Hn (=X — po) Hy (Mg + i)
X Hy(As = pa3) Hn (=N + pz) HN (= As — pa) Hy (N + f1a)

x exp {i(p1 + pi2 + 3 + pa) (bny — tiny) } dpndppdpisdpey + Ri(my, my)
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where Rj(mq, ms) satisfies

Kp(A = ) Ky (= X)) K (A — M) K (1 — A1)
MN2 Z /”/_”gk: lfﬁo uml7 )fﬁo(umw/\s)fﬂ (um2=)‘k>f190<um27>‘l>

mi,m2

X R1 (ml, meo d)\d,u

giMWT//W/_W/_W/_W/_WZK”A MV (1 — M) K — M) Ko — )

7,k,s,l
XLn(Nj = p) L (= + pn) Lv (=X — po) Ly (A + p2) Ly (As — pg) Hy (=N + p13)

IN

XL (=Xs = pa) Lv( N+ pa) L3y (S (i + pa + s + pua))dpndpadpisdpadrdp— (B.0.7)

since by Lemma A.6 of Dahlhaus [9] we have

1
mzl Foo (tms Ak) Fio (tms At)

e ((mtpotps+ua)(Sm) _ O(Lar(S(pr + po + p3 + pa))).

Now using Lemma A.4(e) and Lemma A.4(j) of Dahlhaus [9], expression (B.0.7) can
be bounded by

Ki b NNM
HLMN?>T S

log®(N // D KA = ) Ky (1= A (A = M) Ky (11— A

T skl
log®(N)N?

X LR (A = M) Ly (As = M)dAdp = O( o7 )

Furthermore, replacing A(u;, p1) by A(u;, Aj) in the first term of (B.0.7) we get that

[ A i) At =) Al 1) Al 1) A1) A, =1
XAty s pa) A, —pa) Hn (Aj — pa) Hn (= A + pa) H (= A = p2) Hy (A + p2)
XHy(As = pis) Hy (=N + p3) Hy (= As = pa) Hn (A 4 pa)
xexp {i(p1 + po + pt3 + f1a) (bmy — tny) } dpnndpiadpisdyis

= [ A ) At =) At 1) A =) A ) A, 1)
X AUy s p1a) AUy, —pa) Hy (N — 1) Hn (=X + 1) Hn (=X — po) Hy (A + p2)
XHn(Xs — p3) Hn (=N + ps) Hn (=g — pa) Hy (N + f4)

X exp {i(p1 + po + p3 + ) (tmy — tmy) } dpndpadpsdpg + Ro(my, ma)
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where the remainder term Rg(mq, my) satisfies

Z / / Kp(A = ) Ky (= X)) Kp(A = M) Ky (1 — A1)
MN2H4 =T ksl f190 uml7 )fﬁo(umlv/\S)f%(umw)‘k)fﬂo(umzﬂ)‘l>
X Ry (ml, m2)d)\d,u

K, b MN
HYMN? ™S log” (N // D KA = A K (1 = A K (A = M) Ky (= M)

T ksl

IN

log®(N)

X In(y = LA (= Add = O

From (B.0.8) we get that the term Vl(;) can be expressed as:

W = ’ (i Sy 2
Wiz = 167T4MN2H]‘§/b4m;2/ /_W[ZK ) YL hGph(R)

51,52,53,54

™

Xh(S_]\?)h(s_]\‘;)efi[éu)\jfszkkfs3/\j+84/\k] / ei[ul(31732)+u15(m17m2)]d’u/1

—T

—T

:—Z//[ZK Mbkk)

2
X/ ei[u2(83—84)+u23(m1—m2)]du2] d\dp + o(1)

jml<N/S
N—-1-Sm 292
g .
< 3 h(%)h(MTm)e—%[sM—w ]d/\du+o(1),
s1=0

which by straightforward calculations yield

R B2 (B2 (u -+ m k) du 2 2
v - Z|m|<n< - (fjo(hjh (>4+ /)d> / (/K (u+$)du> e
logQ(N))
N2pt

+0(

The terms VI(JT), 7 = 2,3,4 are handled similarly. In particular, we get

Vi = Zoee :(Z(hj(h;(;j ) du / (/K (u— ) du)zd:ero(l),

/ Z Kb A — )\ Kb()\ A )Kb(,u — )\k)Kb(/vL — )\l)
mima? T T ks f190 U’m17 )fﬂo(umw)‘s)fﬁo(umz’Ak‘)fﬁo<um27)‘l>

Xeum (dn (U, Aj), An (Umy s Ak)) cum (A (U, s —Aj), AN (Umy, —Ak))

3 _
VLT - MN2 Z/

Xeum (dy(Umy, As)y AN (Umy, =) cum (dn (Umy, —As)y AN (Umy, A1) = O(D)
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4 _ Ky(A = Nj) K (A = Ao Ky (i — M) Ky (1 — Ni)
‘G’T B MN2 Z /w/—ﬂjkl fﬂo uml, )fﬂo(umlv S)f%(umy)\lﬂ)fﬂo(umm)‘l)

xeum (dy (W, Aj), AN (Umy, —Ak)) cum (dy(Umy, —Aj), AN (Umy, Ak))

mi,m2

X eum (dn(Umy, As)y AN (Umg, A1) cum (dn (W, —As)y AN (Uny, — 1))

— o).

The term V5 ¢ has the same structure as the term V) r and converges, therefore, to
the same limit. Finally, for the term V3 we have

JIN

B Kp(A = X)) Kp (A = X)) Ky (1 — M) K (1 — Ni)
%’T B N2 7;17;1/ / gsklZ——J fo(umlv ])fﬁo(umu S)f%(umw)‘k)fﬂo(umm/\l)

XCUm(dN(UmI, )\])dN(umla _)\j)a dN (um27 Ak)d]\f (u’m27 _)\k‘)a dN(umla )\S)

XdN<um17 _)‘S>7 dn (umzv Al)dN(umza _Al))dAdM

To handle this term notice that using the product theorem of cumulants, see Brillinger

[4], we have to sum over all indecomposable partitions P, ..., P, of the scheme

ar by
as by
as b3
as by
where a; stands for the position of dn(um,, A;) , by for the position of dy (tpm,, —A;),

etc. Following the notation of Dahlhaus [9], let P; = {cy,...,ci}, Pi == {c1,... 1},
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Bp, == (Beys vy Bepy) and B, = — Zf;ll Be;. Also, let m be the size of the corre-
sponding partition and 3 = (85,,..., 55, ). We then get

Kb )\ A )Kb<>\ A )Kb(,u — )\k)Kb(/L — /\l)
V- —
T MN2H4 g;l 77;1 /—ﬂ /—ﬂ Jo um17 >f790<um17 )‘S)fﬁo(umw/\k)fﬂo(umz? Al)

HN(Atml—N/2+1+ T(/Bal) (N)’ >‘j - ﬂm)
[8—m
XHN(Atm —N/2+1+, 7(Be, )1 <N)’ —Aj = Bu)

><HN<Atm —N/2+1+-, T(ﬁaz) (N) ﬁaz)HN(Atm2—N/2+1+ T(ﬁbz) (N)’ _)‘k - ﬁbz)

XHx(AY, nyorie 2 (Bag (55 As = Bug) Hu(Ap, vjoas (B h57): = As = o)
X Hy (A7, e (Ba)h(55): M = Ba) Hy (A, njaiae (B h(55). =M = Br,)
H 917,1(85,) €xP {i (tm, (Bar + o, + Bas + Do)

=ty By + O + s + Oo))} dBdNI (B.O8)

Now replace in (B.0.8) the terms HN(A Nj21t 2(B)h(5), = e—08) by A(tm,, B) Hn(—Ap—
3) to get

Vir = MN2H4ZZ Z/ / Zbe)\ M) Eb(A = As) K (1 — M) K (e — A

2 2 (it ) (s \) ot (s ) o (s )
[ Al 0y = o)Aty 5 ) (= = ) At G O )
< Aty Bo) Hor (=N = ) At By I O = Bag) Aty By El (< — )
(At B BN = o) Al A N = ) T 0 5.

X {i(bms (Bon & Bor + Bos + Bos) & by (Bao + o+ Bos + Bo.))} dBdAIp

+Er, (B.0.9)

where due to the indecomposability of the partitions considered, the following upper

bound is true for the error term ET

MNb2ﬁ4 Z/_/_ Z Kp(A = A (A = N K (10— k) K (10— i)

3,8 kl=—JN

/Hsm LN()\j - ﬁal)LN(_)\j — ﬁbl)LN()\k: — ﬁaz)LN( )\k — ﬁbz)LN( ﬁag)
XLN(_)‘S - ﬁb3>LN()\l - ﬂa4)LN(_)\l - 6b4)LM<S(ﬂa1 + 6171 + ﬁag + /Bbg))
X Lng (S(Bay + By + Bay + Bo,))dBdAdp
bl

A]OSNZ Z/Hg . ﬁal 6171)LN(_5G2 - Bb2)LN(_ﬁa3 - ﬁbg)LN(_ﬁM - ﬁb4>
XLM( (501 + /Bbl + ﬁag + 6173))LM(S<5G2 + ﬁb2 + ﬁa4 + ﬁb4))dﬁ-

IN
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Therefore, and because —3,, — By, # 0 Vi, Bay + By, + Bas + By # 0 and By, + By, +
Bay + By, # 0, we get that

blﬁj\ﬂ Z/Hs Lo =By = B ) Ev(=Bus = Boa) Ly (~Buy = i) Liv(=Bay = o)

XLM( (ﬁal + ﬁbl + ﬁag, + 6b3))LM(S<ﬁa2 + /8b2 + ﬁa4 + ﬁb4))dﬁ
blog!(N) N N* ;
S N TS log®(M)log®(S) — 0.
Similarly the first term on the right hand side of (B.0.9) is bounded by

blog*(N) N*

o log* (M) Tog?() — 0,

which shows that V317 — 0 as T" — oo. |

Lemma B.0.12. Under Assumptions 3.1.1 and 3.1.2 and if Hy is true, we have for
every { > 3 that

NM PR eumy(Qor) = o(1)
Proof: Let Il = (=7, ] and p = (p1, ..., pe). We then have

NZME/QbK/Zcumg(QO T)

N Z Z Z / H f i) Ko (o — Ajy )
s Joo

U Uy s A
----- my=1j1.1,..,J1,0=—JIN J2,15-J2,6=—JIN e ]2")]0190( o ]2’”>

Cum{H (IN(umN )\jk,l) - fﬁo (umu )\jk,l ) >H [N ume? Jke) fﬁo (umev Ajk,é))
k=1 k=1
d,ul . . d/.Lg

Using the product theorem for cumulants, we have that

2 2
CU?TL{H ([N(umw )\jk,l) - fﬁo (um1> )\jk,l)) Y H ([N(umw )\jk,é) - fﬁo (umw Ajk,é))
k=1 k=1
Z H cum{([N(ump, Niaw) — Joo (U, )\jq,p)) ,(p,q) € P}
i.p. s=1
where the sum is over all indecomposable partitions {Py, ..., P,} of the table
(1,1) (1,2)

(0, 1) (¢,2).
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We consider the sum ), , over all partitions with |F;] > 1. That is,

JINn

M J
VRO S Y

e.p.l mi,..my=17j11,...j1,0=—JN J2,1,-J2,e=—JIN

Ky(p, — \j,
/ZH fﬁ = M) Kol = i) 15 [T cumfdn (um, . A, ,)dn (i, =N, ), (9o q) € Po}
II 0

uml/7 j21/>f79 (umu7)\]2u) s=1

(B.0.10)

Using again the product theorem of comulants, we have to sum over all indecompos-

able partitions {Qs1,...,Qsm} of the table

Aps, s, bpqusl

UPs ) 5y bpﬂpqusws\
for all sets Ps = {(psy:Gs1)s - - -+ (Psyp,» Gsyp, ) }- Note that ap, 4, and by, 4, stand for
the position of dy(u_, A.) and dy(u_(, —A.) respectively where (r) denotes
My Ja,p mp Ja,p
the position of dN(Umm, —)\jm) in a fixed order. For simplicity we use the notation
P q,p

as, and b, = bs,. Furthermore, if Qs; = {cs1,...,¢56} We set

srydsy  °

apsr sy =

Qui = f{esns s}ty By, = Bears s Beas ) Bese = = 2501 ey, and B =
Bg. s+ 0, ). We then get that (B.0.10) is equal to

—~

b — M) (= Asy)
(NQH%MM) ZZ Z 2 Z/ fﬂo Umw%w)f (U A

©.p. 1 a.p* M, =1 j1,1,..,01,¢ 32,1,--,J2,¢ J2,v
| Ps |
X H/HZ[PS ) o, { H HN t(T N/2+1+ T(/Bas r) ( ) )\ (T) ﬁas,r>
(p,a)€Ps
XHN(A% IR L ( )y =Aj — ﬁbs,r)}{Hngs,r|(ﬁm)}
r=1
| Ps|
xexp Qi > 1) (Ba,, + By.,) p dBY . dBWdp .. dpy
r=1

Replace the terms Hy (A° (B)h(5), A— B) by the terms A(u%, B)Hy(A—

t4) —N/2414-,T
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B) to get that the above expression is equal to

b J1 u)Kb<:U'1/ - )‘jz,u)
(vtow) TS % S % [11%

©.p.l i.p.* mi,..., =1J1,15-,71,0 J2,15--:J2,¢ fﬁo tmy ]2”)fﬂ0(uW”’)\j2’”>

| Ps|
XH/HQP k{ T A, s..,) Hy (N = Pa,, ) Au %Laﬁbs,r)HN(—/\jgg —ﬁbw)}

r=1
(p,a)EPs

| Ps |

{HQ\Q”\ (Gig.7) }eXp Zt (Bas, + Bo,,) ¢ dBY ... dB™dpy .. dp

+Er (B.0.11)

where the error term E7 is bounded by

b 7N il
<N2H4 (O)M> D) DEEDYD Z /HK” Y
2,N ©.p.1 .p* j1.1,.01,0=—JIN J2,1,--,02,e=—JIN
| Ps|

XKb ]21/ H { H / )‘ (T) ﬁas,r)LN<_)‘j;TI)) - ﬁbs,r)

2|Ps|—m
(p, q)EPs

X Lag (S(Bas, + Boo + Basy + Bor ) }dﬁ(l) o dB™dpy - dpy

for some (x,y) € {1,...,n} x{1,...,|P|} with x # s. Integration over all 3, , and

By, gives that expression (B.0.11) is bounded by

£/2 01
b NM“IN _,
— | = N 0,
N*HI (M) T S

which completes the proof. |

Lemma B.0.13. Under Assumptions 3.1.1 and 3.1.2 and if Hy is true, we have that
NVMYQr — pr) = NVMb(Qoxr — ) + 0p(1)
Proof:

Qr = QOT+MNQZ/ {

b1/2 IN(U )\) IN(U )‘)
Ky(A— A) KA — A S Bl ey
NWZ/ 2 Kl = )i 1(Fet - )
y (IN(uiu)\S) N 1) d\
fﬂo(u’h)\s)
= Qor+Yir+Yor

In(ui, Aj)  In(uis ) 2
Kb A=A ) (f@(uz,)\]) a fﬂo(u%)‘j))} ?

Jj=—JN
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with an obvious notation for Y; r and Y5 . The term Y; - is bounded by

Foo (0, A) — Fo(u, A)\® V2 In(ui\) |
il < s Fali ) ) MWNZ/ {ZK“ M) o, >} ?

u,j )

b1/2
= O (M—/)

For the second term we have

b1/2

= s S s (35 )

(Bt (Zﬁi SRR
/2

M1/2Z/ ZKb)\ M)A = A)

(B ) (o

= Wir+War

with an obvious notation for Wj r and Ws .

By a standard Taylor series argument, for fixed u, we have that for

O(u) = (91 (u), Da(u), ..., 0,(u)) and

Yo(u) = (V1(u), V2(u),...,0,(u)), Do(u) = (01 (u), Da(u), . .. ,@(u))’ with
1[0(u) — 9o ()| < ||0(u) — Io(u)|| exists such that

fb(lLvA) _'jbo(l% A) _
fé(“: >‘)

Op(l){ Z(ém(u) - 19m<u))f7(“1)(19m7 A)
iy

Z () (Dy(u) — 0y (u)) }”(ém,él,m}
=1

=1

where fél)(ﬁm, A) and fg) (U, Uy, A) denote the first and second second partial deriva-
tives of f with respect to 9,, and 1, and 9,, respectively, and evaluated at v,, and
(O, 9;). Notice that the O,(1) term appear in (B.0.12) is due to the fact that
11/ f3(u, \)| = Op(1). Using (B.0.12) we get
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2 M pr ™
Wir NliMm Z D (i) = O (w3)) /_ Z KA = M) Ep(A = A) f (0, Ay)
IN(uz,)\ ) (IN<UZ'7/\S) . > |
- (fﬁ0<ulv>‘j) ! fﬁo( i ) b
pl/2 M

Ve ZZ Z (D1 (ui) = Du(1s)) (Do (i) = V(1)) /W ZKb()\ —\)

i=1 [=1 m=1

N/3 3 Iy (Uh)\) [N(Ui,As) |
A=A T (s 1) () 1) o

= O,(N7Y2) 4+ 0,(b'?).

The O,(N~/2) term is due to the fact that sup,, |0y (1) — O (u)| = Op(N~/2) and
that

pL/2 1) In(ug, Az)
N Z/_WZKb (A = A KN = A D (O, A) <—fﬁo(ui,Aj~) - 1)

In(u;, Ag
can be handled as Qo r. Similarly we can show that W51 = 0,(1) which completes
the proof. |
Proof of Theorem 3.1.1: By Lemma B.0.10, B.0.11 and B.0.12 we have that
the cumulants of all orders of Qo1 converge to the corresponding cumulants of the
limiting Gaussian distribution. The assertion of the theorem follows then by Lemma
B.0.13. [ |
Proof of Theorem 3.2.1 : Follow the same steps as in the proof of Lemma B.0.13
substituting 9 for Jo in fy, (us, A;) and using the property that under the alternative
hypothesis, ¥ is a v/N-consistent estimator of 7. |
Proof of Theorem 3.2.2: First notice that XtTT is locally stationary with transfer

function AO, that is,

tT—/ A p(N)edgT (N (B.0.12)

where

(i) £€7(N) is a Gaussian stochastic process on (—m, 7] and

cort{EF (M), €5 (A} = 8(k, 5)dNs (B.0.13)
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(ii) There exists a constant K and a function A(u, ) on [0,1] x (=, ) such that
for all T,
sup | A}y — A(t/T,N)| < K/T
£

(iii) Furthermore,
1 -
Loy (1w 2) = 5| Aw, ) (B.0.14)

~

where J(u) = (61 (u), . . ., B,(u), 5(u)) and the function 1/f(u, ;7)) is bounded

in probability.

Now, following the same steps as in the proof of Lemma B.0.10, B.0.11 and B.0.12, we
get that the limits of all cumulants of the bootstrap test statistic Nv Mb(QF — pr)
converge to the cumulants of the limiting Gaussian distribution given in Theorem

3.2.2. |
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