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Abstract

An issue of fundamental importance in Probability and Statistics is the investigation

of Information Measures. These measures are classi�ed in di�erent categories and

measure the quantity of information contained in the data with respect to a parameter

�, the divergence between two populations or functions, the information we get after

the execution of an experiment and other important information according to the

application they are used for.

A literature review on the measures of information, classi�ed in four main cate-

gories namely divergence - type, entropy - type, Fisher - type and Bayesian - type is

provided. Special attention is given to the divergence - type measures.

In this work we �rst propose and investigate a general family of measures of diver-

gence which is based on the BHHJ measure of divergence of Basu, Harris, Hjort, and

Jones (1998). A number of main properties of the family, such as the nonnegativity

property, the continuity property, the invariance property, the symmetric property,

the limiting property, the order preserving property and the quadratic convergence

are discussed.

Since measures of divergence are used as indices of similarity or dissimilarity be-

tween populations, they can be used to develop new model selection criteria. Ap-

plying the same methodology used for the well known Akaike Information Criterion

(AIC), a new model selection criterion called Divergence Information Criterion (DIC)

is proposed as an approximately unbiased estimator of the expected overall BHHJ

discrepancy (divergence).

Then, we focus on the investigation of the discrete form of the measure. We

provide the distributional properties of the estimator of this general family of BHHJ

measures of divergence and we propose a test statistic based on this family of measures

for goodness of �t tests for multinomial distributions.

Finally, a number of simulations are performed to check the appropriateness of
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x

both the proposed model selection criterion and the test statistic for goodness of �t.

The simulations for the model selection criterion compare the performance of DIC,

with other well known criteria such as the standard BIC and AIC and also some

variants of them. The simulations for the goodness of �t test involve the new test

statistic based on the BHHJ measure, and the tests based on the Kullback - Leibler,

Kagan, Matusita, and Cressie and Read measures.
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Ðåñßëçøç

¸íá æÞôçìá ôï ïðïßï èåùñåßôáé ðïëý óçìáíôéêü Ýùò èåìåëéþäåò óôç èåùñßá ðéèáíïôÞôùí

êáé óôç óôáôéóôéêÞ èåùñßá åßíáé ç ìåëÝôç ôùí ÌÝôñùí Ðëçñïöïñßáò. Ôá ÌÝôñá

Ðëçñïöïñßáò êáôçãïñéïðïéïýíôáé óå äéÜöïñåò êëÜóåéò êáé ìåôñïýí ôçí ðïóüôçôá ôçò

ðëçñïöïñßáò ðïõ ðåñéÝ÷åôáé óôá äåäïìÝíá óå ó÷Ýóç ìå ìéá Üãíùóôç ðáñÜìåôñï, ôçí

áðüêëéóç (áðüóôáóç) ìåôáîý äýï ðëçèõóìþí Þ óõíáñôÞóåùí, ôçí ðëçñïöïñßá ðïõ

åîÜãåôáé ìåôÜ ôçí åêôÝëåóç åíüò ðåéñÜìáôïò êáé Üëëùí ìïñöþí óçìáíôéêÞ ðëçñïöïñßá,

óýìöùíá âÝâáéá ìå ôçí åöáñìïãÞ óôçí ïðïßá ôá óõíáíôïýìå Þ ôá ÷ñçóéìïðïéïýìå.

Óôçí ðáñïýóá äéáôñéâÞ ãßíåôáé áñ÷éêÜ ìéá âéâëéïãñáöéêÞ áíáóêüðçóç ðïõ áöïñÜ

ôá ÌÝôñá Ðëçñïöïñßáò êáé ç ïðïßá ðåñéëáìâÜíåé ìéá ôáîéíüìçóç ôùí ìÝôñùí áõôþí óå

ôÝóóåñéò êýñéåò êáôçãïñßåò ùò åîÞò: ìÝôñá ôýðïõ áðüêëéóçò, ìÝôñá ôýðïõ åíôñïðßáò,

ìÝôñá ôýðïõ Fisher êáé ìÝôñá ôýðïõ Bayes. Éäéáßôåñç âáñýôçôá äßíåôáé óôá ìÝôñá

áðüêëéóçò.

Óôç óõíÝ÷åéá ðñïôåßíåôáé ìéá íÝá ãåíéêåõìÝíç ïéêïãÝíåéá ìÝôñùí áðüêëéóçò, ç

ïðïßá âáóßæåôáé óôï ìÝôñï áðüêëéóçò BHHJ, ôï ïðïßï ðñïôÜèçêå áðü ôïõò Basu, Har-

ris, Hjort êáé Jones (1998). Ãéá ôçí ïéêïãÝíåéá áõôÞ, áðïäåéêíýïíôáé ïé êýñéåò éäéüôçôÝò

ðïõ áöïñïýí ôç ìç áñíçôéêüôçôá, ôç óõíÝ÷åéá, ôï áíáëëïßùôï, ôç óõììåôñßá, ôçí

áóõìðôùôéêÞ óõìðåñéöïñÜ, ôç äéáôÞñçóç ôçò äéÜôáîçò êáé ôçí ôåôñáãùíéêÞ óýãêëéóç.

Ôá ìÝôñá áðüêëéóçò ÷ñçóéìïðïéïýíôáé ùò åíäåßîåéò ïìïéüôçôáò ç áíïìïéüôçôáò

ìåôáîý ðëçèõóìþí. ÅðïìÝíùò åßíáé äõíáôüí íá ÷ñçóéìïðïéçèïýí ìåôáîý Üëëùí êáé ãéá

ôçí êáôáóêåõÞ íÝùí êñéôçñßùí åðéëïãÞò ìïíôÝëùí. Åöáñìüæïíôáò áíÜëïãç ìåèïäïëï-

ãßá ìå áõôÞí ðïõ ÷ñçóéìïðïéÞèçêå ãéá ôçí êáôáóêåõÞ ôïõ ãíùóôïý êñéôçñßïõ ôïõ

Akaike (Akaike Information Criterion, AIC, Akaike, 1973) ðñïôåßíåôáé Ýíá íÝï êñéôÞñéï

åðéëïãÞò ìïíôÝëùí, ôï Divergence Information Criterion (DIC) ðïõ ðñïêýðôåé ùò ìéá

áìåñüëçðôç åêôéìÞôñéá ôçò áíáìåíüìåíçò ïëéêÞò BHHJ áðüêëéóçò. Åðßóçò ðñïóäéïñß-

æåôáé ôï êÜôù öñÜãìá ôïõ ìÝóïõ ôåôñáãùíéêïý óöÜëìáôïò ðñüâëåøçò.

Áêïëïýèùò, ç äéáôñéâÞ åðéêåíôñþíåôáé óôç äéåñåýíçóç ôçò äéáêñéôÞò ìïñöÞò ôçò
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xii

íÝáò ãåíéêåõìÝíçò ïéêïãÝíåéáò ìÝôñùí áðüêëéóçò BHHJ êáé áðïäåéêíýïíôáé ïé éäéüôçôåò

ôçò êáôáíïìÞò ôçò åêôéìÞôñéÜò ôçò. Åðßóçò ðñïôåßíåôáé ìéá íÝá óôáôéóôéêÞ óõíÜñôçóç

ãéá åëÝã÷ïõò õðïèÝóåùí êáëÞò ðñïóáñìïãÞò óå ðïëõùíõìéêïýò ðëçèõóìïýò êáé áðïäåé-

êíýåôáé ç áóõìðôùôéêÞ êáôáíïìÞ ôçò êÜôù áðü ôçí ìçäåíéêÞ õðüèåóç üðùò êáé êÜôù

áðü ôçí åíáëëáêôéêÞ õðüèåóç ôçò óõíÜöåéáò (contiguous alternative).

ÔÝëïò ðáñïõóéÜæïíôáé ìéá óåéñÜ åöáñìïãþí ãéá äéåñåýíçóç ôçò êáôáëëçëüôçôáò

ôïõ êñéôçñßïõ åðéëïãÞò ìïíôÝëùí DIC êáèþò êáé ôçò óôáôéóôéêÞò óõíÜñôçóçò ãéá ôïõò

åëÝã÷ïõò êáëÞò ðñïóáñìïãÞò. Óôéò åöáñìïãÝò ãéá ôï êñéôÞñéï åðéëïãÞò ìïíôÝëùí

óõãêñßíåôáé ç áðüäïóç ôïõ DIC, ìå Üëëá ãíùóôÜ êñéôÞñéá, üðùò ôá Bayesian Infor-

mation Criterion (BIC, Scharz, 1977) êáé AIC, êáèþò êáé êÜðïéåò åéäéêÝò ìïñöÝò

ôïõò. Óôéò åöáñìïãÝò ãéá ôïõò åëÝã÷ïõò êáëÞò ðñïóáñìïãÞò ãßíåôáé óýãêñéóç ôçò

ðñïôåéíüìåíçò óôáôéóôéêÞò óõíÜñôçóçò ç ïðïßá âáóßæåôáé óôï ìÝôñï BHHJ êáé ôùí

åëÝã÷ùí ðïõ âáóßæïíôáé óôá ìÝôñá Kullback-Leibler, Kagan (¸ëåã÷ïò ÊáëÞò Ðñï-

óáñìïãÞò ôïõ Pearson), Matusita êáé Cressie and Read.
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Introduction

The divergence (or discrepancy) measures are used as indices of similarity or dis-

similarity between populations. They are also used to measure the distance or the

discrepancy between two functions or two populations. Finally they are used either to

measure mutual information concerning two variables or to construct model selection

criteria.

Measures of divergence between two probability distributions have a very long

history. One could consider as pioneers in this �eld the famous Mathematicians and

Statisticians of the 20th century, Pearson, Mahalanobis, L�evy and Kolmogorov. In

our days the most popular measure of divergence is considered the Kullback-Leibler

measure of divergence introduced in the 50's. A well known family of measures is the

'-divergence known also as Csiszar's measure of information which was introduced

and investigated independently by Csisz�ar (1963) and Ali and Silvey (1966). For

various functions for ' the measure takes di�erent forms. Members of this family

are among others, the Kullback-Leibler measure as well as Pearson's X2 divergence

measure also known as Kagan's divergence measure.

A uni�ed analysis has been provided by Cressie and Read (1984, 1988) who intro-

duced for both the continuous and the discrete case a family of measures of divergence

known as power divergence family of statistics that depends on a parameter � and

is used for goodness-of-�t tests for multinomial distributions. The Cressie and Read

family includes among others the well known Pearson's X2 divergence measure and for

multinomial models the loglikelihood ratio statistic. It should be noted that for the

appropriate limit of � to 0 the above measure becomes the Kullback-Leibler measure.

A new measure of divergence known as the BHHJ divergence measure, was re-

cently introduced by Basu et al. (1998). The measure depends on an index a which

1
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2

controls the trade-o� between robustness and e�ciency when the measure is used as

an estimating criterion for robust parameter estimation. Basu et al. (1998) showed

that values of a close to zero provide parameter estimators with good robust features

without signi�cant loss in terms of e�ciency. Note that for the appropriate limit of

a to 0 the measure reduces to the Kullback-Leibler measure.

As it was mentioned earlier measures of divergence can also be used in model

selection. Since some measures of divergence have been proposed as distinguisha-

bility indices between two distributions which are far from each other or from two

distributions which are close, they can be used for the construction of model selection

criteria. A model selection criterion can be considered as an approximately unbiased

estimator of the expected overall discrepancy, a nonnegative quantity which measures

the distance between the true unknown model and a �tted approximating model be-

longing to a class of candidate models. If the value of the criterion is small for a

speci�c member of the candidate class then the corresponding approximated model

is good. The Kullback-Leibler divergence was the measure used by Akaike (1973) to

develop the Akaike Information Criterion (AIC).

In this work, we focus on the BHHJ measure of divergence and we propose a

general class of continuous BHHJ divergence measures that includes the BHHJ di-

vergence measure of Basu et al. (1998) as well as a general class of discrete measures

of divergence which could be viewed as the discrete version of the above continuous

BHHJ class and could be used for goodness of �t tests. The continuity and discrete

character of the new class will be explained in the last section of Chapter 1. This

new class of measures is fully investigated in this thesis, by

• establishing a number of properties (Chapter 2),

• developing a new model selection criterion, the Divergence Information Crite-

rion (DIC) (Chapter 3) and

• introducing a new class of test statistics for performing goodness of �t tests

(simple null hypothesis) for multinomial populations (Chapter 4).

Simulation results are provided in Chapter 5 for testing the appropriateness of the
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3

proposed criterion as well as the test statistics. Chapter 1 is devoted to a Literature

Review on measures of divergence and the presentation of the new BHHJ class of

measures. The work is concluded with a Discussion and a Future Research plan.
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Chapter 1

Measures of Information-
Literature Review

Information Theory in Probability and Statistics has a very long history and it is of

fundamental importance. There are many approaches and de�nitions, for Information

in Statistics, from di�erent authors and from di�erent aspects.

'While information is a basic and fundamental concept in statistics there is no

universal agreement on how to de�ne and measure it in a unique way ' (Papaioannou,

2001). There have been several statements made over the years. For more details

on the variety of views see the review articles by Kendall (1973), Csisz�ar (1977),

Papaioannou (1985), Aczel (1986), Soo� (1994), Pardo (1999), Kullback (1959), Pa-

paioannou and Kempthone (1971) and Ferentinos and Papaioannou (1981).

Although not universally accepted, there is a classi�cation of measures of infor-

mation in four categories namely,

• Divergence - type,

• Entropy - type,

• Fisher - type and

• Bayesian - type.

Representative measures in each category are

• the Kullback-Leibler divergence (1951),

• the Shannon's entropy (1948),

4
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5

• the Fisher information measure (1925) and

• the Lindley's measure of information (1956)

correspondingly.

In the present literature review, important measures of information that play

a signi�cant role in statistical inference with numerous applications are presented.

Special attention is given to measures of divergence.

Two classical measures that illustrate the fundamental importance of the measures

of information are the Kolmogorov Distance and the L�evy Distance introduced in the

30's and 20's respectively.

Let � and � probability measures on R with associate distribution functions F1

and F2. Kolmogorov Distance (Kolmogorov, 1933) is de�ned as:

K (F1; F2) = sup
x∈R

|F1 (x)− F2 (x)| :

An important implementation of the Kolmogorov distance is the well known

Glivenko-Cantelli Theorem which states that the Empirical Distribution Function

Fn (x) =
1

n

n∑
i=1

I(−∞;x] (xi)

where I(−∞;x] (xi) = 1 if xi < x and 0 otherwise, is uniformly strongly consistent for

the true Distribution Function F in the sense that:

lim
n→∞

P {K (Fn; F ) > "} = 0; ∀ " > 0:

On the other hand, L�evy Distance (L�evy, 1925) between two distribution functions

F1 and F2 is de�ned as:

L (F1; F2) = inf {" > 0 : F1(x− ")− " ≤ F2(x) ≤ F1(x+ ") + "; ∀x ∈ R} :

Note that this distance is not easy to compute and convergence in L�evy Distance

means weak convergence for distribution functions in R. For the relations between

the Kolmogorov and L�evy Distances see Gibbs and Su (2002). Since � and � are

measures on R, it is customary to view the L�evy as well as the Kolmogorov distance

as measures of distance (divergence) between the corresponding distribution functions

F1 and F2.
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6

1.1 Measures of Divergence

A measure of divergence is used as a way to evaluate the distance or divergence be-

tween any two populations or functions. Let f1 and f2 be two probability density

functions which may depend or not on an unknown parameter of �xed �nite dimen-

sion. The most well known measure of (directed) divergence is the Kullback-Leibler

divergence which is given by

IKLX (f1; f2) =

∫
f1 log(f1/f2)d� = Ef1

[
log

(
f1

f2

)]
;

for a measure � which, for the continuous case, is the Lebesgue measure, and a random

variable X with absolutely continuous distribution. This means that for a density f

with probability distribution P , associated with the continuous random variable X,

f (x) =
dP
d�

(x) ; where � is the Lebesque measure.

The above notation covers not only the continuous case but also a discrete setting

where the measure � is a counting measure. Indeed, for the discrete case, the diver-

gence is meaningful for the probability mass functions f1 and f2 whose support is a

subset of the support S�, �nite or countable, of the counting measure � that satis�es

�(x) = 1 for x ∈ S�, and 0 otherwise. In this setting for a probability mass function

f with probability distribution P , we have

f (x) =
dP
d�

(x) = P (X = x) , where � is the counting measure

and X a discrete random variable.

So, for the above divergence and for the subsequent ones consider that, if k is a

measurable function, the expectation of k(X) is given by:

Ef [k (X)] =





∫
k (x) f (x)dx; if � is the Lebesgue measure

∑
x∈S�

k (x) f (x) ; if � is the counting measure
:

If f1 is the density of X = (U; V ) and f2 is the product of the marginal densities

of U and V , IKLX is the well known mutual or relative information in coding theory.

The Kullback-Leibler divergence is also looked upon as discriminatory information.
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Je�reys (1946) de�ned the symmetric divergence:

IJX(f1; f2) = IKLX (f1; f2) + IKLX (f2; f1)

Observe that Je�reys' measure as opposed to the Kullback-Leibler measure is a sym-

metric measure.

As generalizations of the Kullback-Leibler measure, the additive and non-additive

directed divergences of order � were introduced in the 60's and the 70's (R�enyi, 1961,

Csisz�ar, 1963 and Rathie and Kannappan, 1972). The so called order � information

measure of R�enyi (1961) is given by

IR;�X (f1; f2) =
1

�− 1
log

∫
f�1 f

1−�
2 d�

=
1

�− 1
logEf1

[(
f1 (X)

f2 (X)

)�−1
]
; � > 0; � 6= 1:

It should be noted that for � ↑ 1 (limit by the right) the above measure reduces to the

Kullback-Leibler divergence. Observe also that for � = 1=2 R�enyi's measure becomes

the well known Bhattacharyya measure.

An extension of IR;�X (f1; f2) was given by Liese and Vajda (1987), for all � 6= 0; 1:

IRlv;�X (f1; f2) =
1

�(�− 1)
log

∫
f�1 f

1−�
2 d�

=
1

�(�− 1)
logEf1

[(
f1 (X)

f2 (X)

)�−1
]
; � 6= 0; 1:

The cases � = 0; 1 are de�ned by continuity:

IRlv ;1X (f1; f2) = lim
�↑1

IRlv ;�X (f1; f2) = IKLX (f1; f2)

and

IRlv ;0X (f1; f2) = lim
�↓0

IRlv ;�X (f1; f2) = IKLX (f2; f1):

The second limit given as IKLX (f2; f1) is also known as the (Mean) Discrimination

Information for discriminating f2 from f1.

Furthermore, the Matusita measure [Matusita, 1951] given by

IMX (f1; f2) =

∫
(
√
f1 −

√
f2)

2d�

is the square of the well known Hellinger distance. Note that Matusita (1964) gener-

alized the above measure for any 0 < a < 1 (see Table 1.1).
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Another measure of divergence is the measure of Kagan (1963) which is known as

Pearson's X2 and is given by

IKaX (f1; f2) =
1

2

∫
(1− f1

/
f2)

2f2d�:

Csisz�ar's measure of information [Csisz�ar (1963), Ali and Silvey, 1966] is a general

divergence-type measure, known also as '-divergence based on a convex function '

and de�ned by

IC;'X (f1; f2) =

∫
'(f1/f2)f2d� = Ef2

[
'

(
f1

f2

)]
; ' ∈ Φ∗

where Φ∗ is the class of all convex functions ' on [0;∞) such that '(1) = 0 and

'′′ (1) 6= 0. In the expression of IC;'X (f1; f2) we shall assume the conventions

0' (0=0) = 0 and 0' (u=0) = lim
u→∞

' (u) =u; for u > 0:

Remark 1.1.1. [Pardo (2006)]. If ' ∈ Φ∗ is di�erentiable at x = 1, then the function

 (x) ≡ '(x)− '′(1)(x− 1)

also belongs to Φ∗ and has the additional property that  ′(1) = 0. This property,

together with convexity, implies that  (x) ≥ 0, for any x ≥ 0. Further,

IC; X (f1; f2) =

∫
f2

[
�

(
f1

f2

)
− �′ (1)

(
f1

f2

− 1

)]
d�

=

∫
f2'

(
f1

f2

)
d�

= IC;'X (f1; f2) :

Since the two divergence measures coincide, we can consider the set Φ∗ to be equivalent

to the set

Φ ≡ Φ∗ ∩ {' : '′ (1) = 0} :

Observe that Csisz�ar's measure reduces to Kullback-Leibler divergence if

'(u) = u log u:

If '(u) = (1=2)(1 − u)2 or '(u) = (1 − √u)2 Csisz�ar's measure yields the Kagan's

and the square of Matusita's divergence respectively.
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Table 1.1: Csisz�ar's Measures of Divergence

'-function Divergence

x log x− x+ 1 or x log x Kullback-Leibler (1959)

− log x+ x− 1 or − log x (Mean) Discrimination Information

(x− 1) log x Je�reys (1946)

1
2
(x− 1)2 Pearson (1900), Kagan (1963)

(x−1)2

(x+1)2
Balakrishnan and Saghvi (1968)

−xs+s(x−1)+1
1−s ; s 6= 1 Rathie and Kannappan (1972)

1+x
2
−

(
1+x−r

2

)−1=r
; r > 0 Harmonic mean (Mathai and Rathie (1975))

(1−x)2
2(a+(1−a)x) ; 0 ≤ a ≤ 1 Rukhin (1994)

ax log x−(ax+1−a) log(ax+1−a)
a(1−a) ; a 6= 0; 1 Lin (1991)

x�+1−x−�(x−1)
�(�+1)

; � 6= 0;−1 Cressie and Read (1984)

|1− xa|1=a ; 0 < a < 1 Matusita (1964)

|1− x|a ; a ≥ 1

{
�2 - divergence of order a (Vajda, 1973)

Total Variation if a = 1 (Saks, 1937)Kyri
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More examples of '-functions and the measures we obtain based on these functions

are given in Table 1.1 (reproduced from Pardo, 2006).

A well known generalization of measures of divergence is the family of power

divergences introduced independently by Cressie and Read (1984) and Liese and

Vajda (1987) which is given by

ICRX (f1; f2) =
1

� (�+ 1)

∫
f1

[(
f1

f2

)�

− 1

]
d�; � ∈ R;

where for � = 0;−1 is de�ned by continuity. Note that the Kullback-Leibler diver-

gence is obtained for � ↓ −1 or � ↑ 0. Note also that as it can be seen in Table 1.1

this divergence is a member of the Csisz�ar's family of measures.

Although most of the known measures belong to the family of the Csisz�ar's family

of measures there are measures that do not �t into this family. The gap has been

ful�lled by a generalization of Csisz�ar's '-divergence known as (h; ') divergence mea-

sure. This new family which has been proposed by Men�endez et al. (1995) involves

an additional di�erentiable increasing real function h with h(0) = 0, h′(0) > 0:

Ih;C;'X (f1; f2) = h
(
IC;'X (f1; f2)

)
:

This family of measures has been extensively investigated although the use of two

functions (' and h) increases both its complexity and its applicability.

Some measures included in this general family are R�enyi's (R�enyi, 1961) and the

extension of R�enyi's measure (Liese and Vajda, 1987) which were mentioned earlier,

Sharma-Mittal's measure (Sharma and Mittal, 1977) given by

Is;�X (f1; f2) =
1

s− 1

((∫
f�

1
f 1−�

2 d�
) s−1

�−1

− 1

)

=
1

s− 1




(
Ef1

[(
f1

f2

)�−1
]) s−1

�−1

− 1


 ;

for �; s 6= 1 or

Is;1X (f1; f2) =
1

s− 1

(
exp

(
(s− 1)

∫
f1 log

f1

f2

d�
)
− 1

)

=
1

s− 1

(
exp

(
(s− 1)Ef1

[
log

(
f1

f2

)])
− 1

)
;
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Table 1.2: (h; ') Measures of Divergence

Divergence h(x) '(x)

R�enyi 1
�(�−1)

log (� (�− 1) x+ 1) ; � 6= 0; 1 x�−�(x−1)−1
�(�−1)

; � 6= 0; 1

Sharma-Mittal 1
s−1

(
(1 + � (�− 1) x)

s−1
�−1 − 1

)
; s; � 6= 0; 1 x�−�(x−1)−1

�(�−1)
; � 6= 0; 1

Bhattacharyya − log (−x+ 1) −x1=2 + 1
2
(x+ 1)

for s 6= 1 and Bhattacharyya's measure (Bhattacharyya, 1943) given by

IBhX (f1; f2) = − log

∫ √
f1f2d�:

The above measures are summarized in Table 1.2 (Pardo, 2006). Observe that

4IBhX ≡ IRlv;1=2X .

1.2 Entropy - Type Measures-Diversities

For historical reasons the representative measure of this category is considered to be

Shannon's Entropy (1948) given by

IS (X) ≡ IS (f) = −
∫
f log fd� = Ef [− log f ];

where X is a random variable with density function f(x).

The word diversity quite often means \variety", referring to a large number (a

variety) of di�erent types of the same thing. In a given ecosystem, the variation of

life forms is known as biodiversity and is often used as a measure of the health of

biological systems. In such cases it is often important to have available a tool to

measure how much diversity (variety) there is.

Shannon's entropy was introduced and used during the second World War, in

Communication Engineering. Shannon derived the discrete version of IS (f) where

f a probability mass function and named it entropy because of its similarity with

thermodynamics entropy. The continuous version was de�ned by analogy. For a

�nite number of points, Shannon's entropy measures the expected information of a

signal transferred without noise from a source X with density f(x) and is related to
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Kullback-Leibler divergence through the following expression:

IS (f) = IS (h)− IKLX (f; h)

where h is the density of the uniform distribution.

The second most popular entropy measure in discrete settings is Gini-Simpson

Index (Gini, 1912, Simpson, 1949). Let P = (p1; p2; : : : ; pm) be a discrete �nite

probability distribution. Then the discrete version of Gini-Simpson Index is given by:

IGS(P ) = 1−
m∑
i=1

p2
i :

This measure was investigated among others by Agresti and Agresti (1978), Patil and

Taille (1982) and Rao (1982).

Many generalizations of Shannon Entropy were hereupon introduced. R�enyi's

(1961), given by

IR;a(f) =
1

a− 1
logEf [f ]a−1 ; a > 0; a 6= 1

and Liese and Vajda's (1987) extension of R�enyi's Entropy, given by

IRlv;a(f) =
1

a (a− 1)
logEf [f ]a−1 ; a 6= 0; 1:

Note that for a→ 1 and a→ 0 we get

lim
a→1

IRlv ;a (f) = IS (f)

and

lim
a→0

IRlv ;a (f) =

∫
log fd�:

For more about entropy measures the reader is referred to Mathai and Rathie (1975)

and Nadarajah and Zografos (2003, 2005).

In a similar way to the Csisz�ar generalization of '-divergences we have the '-

entropies introduced by Burbea and Rao (1982a, 1982b, 1982c) and de�ned by

I' (X) ≡ I' (f) =

∫
' (f)d�;

where ' is a continuous concave function de�ned on (0;∞), with ' (0) = lim
u↘0

' (u) ∈
(−∞;∞] : Some examples of the family of '-entropies are provided in Table 1.3. In
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Table 1.3: (')-Entropies

Entropy '(x)

Shannon (1948) −x log x

Havrda and Charvat (1967) (1− a)−1(xa − x); a 6= 1; a > 0

Kapur (1972) xs+(1−x)s−1
1−s ; s 6= 1

Burbea (1984) xs−(1+x)s+1+(s−1)−1(2s−2)x
s−2

; s 6= 2

order to include in the general family some additional measures, Salicr�u et al. (1993)

de�ned the (h; ') entropy as

Ih;' (X) ≡ Ih;' (f) = h
(∫

' (f) d�
)
;

where ' : (0;∞) → R concave and h : R → R di�erentiable and increasing, or

' : (0;∞) → R convex and h : R→ R di�erentiable and decreasing. Members of this

family are given in Table 1.4.

Based on the ' entropy Burbea and Rao (1982a, 1982b, 1982c) de�ned the family

of the R'-divergence

R' (f1; f2) = I'
(
f1 + f2

2

)
− I' (f1) + I' (f2)

2

which was generalized by Pardo, L. et al. (1993) using the (h; ') entropy to de�ne

the Rh
'-divergence

Rh
' (f1; f2) = Ih'

(
f1 + f2

2

)
− Ih' (f1) + Ih' (f2)

2
:

R'-divergence leads to another important family of divergences, the R�
'-divergence

(Havrda and Charvat, 1967) which is obtained by '-entropy using

' (x) ≡ '� (x) =





(1− �)−1 (x� − x) ; � 6= 1; � > 0

−x log x; � = 1
:

1.3 Fisher - Type Measures

Let X be a random variable with probability density function f� (x), that depends

on a parameter � (or a vector parameter �) and corresponding distribution function

Kyri
ac

os
 M

att
he

ou



14

Table 1.4: (h; ')-Entropies

Entropy '(x) h(x)

R�enyi (1961), xr (r (1− r))−1 log x
r 6= 0; 1

Varma (1966), xr=m (m (m− r))−1 log x
0 < r < m; m > 1

Arimoto (1971), x1=t (t− 1)−1 (xt − 1)
t 6= 1; t > 0

Sharma and Mittal (1977), xlnx exp[(s−1)x]−1
1−s

s 6= 1; s > 0

Sharma and Mittal (1977), xr 1
1−s

(
x
s−1
r−1 − 1

)

r 6= 1; s 6= 1; r > 0; s > 0

Ferreri (1980), (1 + �x) log (1 + �x)
(
1 + 1

�

)
log (1 + �)− x

�
� > 0

P�. Let the parametric space Θ be an open subset of <k, k ≥ 1. Fisher information

measure (Fisher, 1925)

FISX (�) =

∫ (
@ log f� (x)

@�

)2

f�(x)d�; f�(x) = P�=d�

is the representative and the most well known measure of this category. It measures

"the ease with which a parameter can be estimated" (Lehmann, 1983), or "the extent

to which uncertainty is reduced by the observation" (Rao, 1973). While Fisher's mea-

sure of information can be computed for any parametric family of distributions, it

posseses interesting information theoretic and statistical properties provided that cer-

tain regularity conditions on f�(x) are satis�ed (see e.g. Ferentinos and Papaioannou,

1981; Papaioannou, 1985).

Fisher information measure is connected to Kullback-Leibler divergence in the

following setting. Let

f1 = f� and f2 = f�+∆�;

where �, ∆� are univariate neighboring points in the parametric space. Then,

IKLX (f�; f�+∆�) = 2 (∆�)2 FISX (�) :
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So FISX (�) can be seen as a discrimination between neighboring points in the para-

metric space Θ.

If
d
@�
E�

( @
@�

log f�(X)
)

=

∫
@
@�

[ @
@�

(log f�(x))f�(x)
]
d�

then the Fisher information measure (see Casella and Berger, 2001, p. 338) takes the

form

FISX (�) = −
∫

@2

@�2
log f� (x) f�(x)d�:

According to the above expression, information may be seen to be a measure of the

"sharpness" of the support curve near the maximum likelihood estimate of �.

A famous result involving Fisher information is the well known Cram�er-Rao in-

equality, which states that the inverse of the Fisher information is an asymptotic

lower bound of the variance of any unbiased estimator of �. Another important result

is that if T = t(X) is a statistic, then

FIST (�) 6 FISX (�)

with equality if and only if T is a su�cient statistic.

A second form of Fisher's, is the so called Shift - Invariant Fisher Information

presented as

IFX = E
(
@
@x

log f� (x)
)2

or in a di�erent form as

JFX = −E
(
@2

@x2
log f� (x)

)
:

This quantity was initially used by Rao (1958) for the determination of a lower bound

analogous to Cram�er-Rao. Recently Kagan (2001) had a similar approach for the

Poisson distribution. Applications of this quantity in measuring the stochastic de-

pendence of two or more random variables have been discussed by Zografos (1998,

2000). In physics and more speci�cally in optics and mechanics, Frieden (1988, 1998)

refers to this quantity using the term "Extreme Physical Information".

Shift - Invariant Fisher Information IFX , also called Fisher information number, is

not a measure of information, but it is a characteristic of a distribution and has other
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Table 1.5: Fisher Information for typical Distributions

Distribution Information measure Information number

Normal, �2 known 1=�2 1=�2

Normal, � known 1=2�4 1=�2

Normal, (�; �2) known
(

1=�2 0
0 1=2�4

)
1=�2

Exponential (�) 1=�2 �2

interesting properties. Note also that

IFX 6= JFX

and in fact

IFX + f ′� (a)− f ′� (b) = JFX ;

where f� (x) is a probability density function and a 6 x 6 b.

Shift - Invariant Fisher Information coincides with the Fisher's information for a

location parameter, namely

IFX = IFY (�) ; if Y = X + �:

Some examples are presented in Table 1.5 which has been reproduced from Papaioan-

nou and Ferentinos (2005). For more about Shift - Invariant Fisher Information and

its properties refer to Papaioannou and Ferentinos (2005).

1.4 Bayesian- Type Measures

The main representative of this type of measures is Lindley's Information Measure

(1956) which will be presented in this section.

Consider the decision problem of reporting a distribution regarding an unknown

parameter �, belonging to a parametric space Θ, through an experiment å that will

result an observation x. In other words, we have a random variable X with probability

density function f(x) and an unknown quantity � that we suppose it follows a prior
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distribution with density function f�. According to this notation we have

f (x) =

∫

Θ

f (x |� )f�d�;

and Bayes' theorem reads

f (� |x) =
f (x |� ) f�
f (x)

:

The amount of information, before the experiment is performed, is de�ned to be

I0 ≡
∫
f� log f�d� ≡ E� [log f�] :

After the completion of the experiment, the posterior distribution of � is f(�|x) and

the amount of information becomes

I1 (x) ≡
∫
f (� |x) log f (� |x) d�:

Lindley's Information Measure is de�ned to be the average amount of information

provided by an experiment å with prior knowledge f�, as follows

IL (å; f�) ≡ EX [I1 (X)− I0]

= EXE�
[
log

{
f (� |X )

f�

}]

= EXE�
[
log

{
f (X |� )

f (X)

}]

=

∫∫
f (x; �) log

{
f (x; �)
f (x) f�

}
dxd�;

where f (x; �) is the joint density for X and �.

For more details on Bayes risk based measures of the information in an experiment,

see Lindley (1961), Chaloner and Verdinelli (1995), Dawid (1998), or Dawid and

Sebastiani (1999).

1.5 The BHHJ Measure of Divergence

One of the most recently proposed measures of divergence is the BHHJ power diver-

gence between f and g (Basu et al., 1998) which is denoted by BHHJ, indexed by a

positive parameter a, and de�ned as:

IaX (g; f) =

∫ {
f 1+a (z)−

(
1 +

1

a

)
g (z) fa (z) +

1

a
g1+a (z)

}
dz; a > 0: (1.5.1)

Kyri
ac

os
 M

att
he

ou



18

Note that the above family which is also referred to as a family of power divergences

is loosely related to the Cressie and Read power divergence (Basu et al., 1998). This

family of measures was proposed by Basu et al. (1998) for the development of a

minimum divergence estimating method for robust parameter estimation. The index

a controls the trade-o� between robustness and asymptotic e�ciency of the parameter

estimators which are the quantities that minimize (1.5.1). It should be also noted

that the BHHJ family reduces to the Kullback-Leibler divergence for a tending to

0 (see Lemma 2.2.3) and as it can be easily seen, to the square of the standard

L2 distance between f and g for a = 1. As a result, for a = 0 the family, as an

estimating method, reduces to the traditional maximum likelihood estimation while

for a = 1 becomes the mean squared error estimation. In the former case the resulting

estimator is e�cient but not robust while in the latter the method results in a robust

but ine�cient estimator. The authors observed that for values of a close to 0 the

resulting estimators have strong robust features without a big loss in e�ciency relative

to the maximum likelihood estimating method. As a result one is interested in small

values of a ≥ 0, say between zero and one, although values larger than one are also

allowed. One should be aware though of the fact that the estimating method becomes

less and less e�cient as the index a increases.

It is interesting to note that the BHHJ measure can be considered as a special

case of the Bregman divergence (Jones and Byrne, 1990; Csisz�ar, 1991) which has the

general form
∫ [

H{g(z)} −H{f(z)} − {g(z)− f(z)}H ′{f(z)}
]
dz;

where H is a convex function. Observe that a Taylor series expansion of the integrand

of the Bregman divergence when f is close to g gives

1

2
(f − g)2H ′′(f):

If ones wants the Bregman divergence to reduce to the square of the L2 distance

for a = 1 (and consequently to the mean squared error estimating method) then

H ′′(f) ∝ fa−1 for some a ≥ 0 so that H(f) ∝ fa+1 in which case the Bregman

divergence reduces to (1.5.1).
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Some motivation for the form of the BHHJ divergence can be obtained by looking

at the location model with location parameter �. Note that in this case
∫
f 1+a
� (z)dz

is independent of � and the minimum divergence estimator is now the maximizer of

n∑
i=1

fa� (Xi);

with the corresponding estimating equations having the form

n∑
i=1

u� (Xi) fa� (Xi) = 0; (1.5.2)

where u� (z) = @ log f� (z) =@� is the maximum likelihood score function. In the fully

e�cient case where a = 0, the estimating equation becomes
n∑
i=1

u� (Xi) = 0. For a

random variableX in the exponential family with � being the mean, u�(z) = (z−�)=�2

where �2 the variance of X. Thus the sample mean is the MLE for �, suggesting the

robustness problems of maximum likelihood since all observations, including very

severe outliers, get weights equal to one. On the other hand, when a > 0, and

for several parametric models such as the normal, u�(z)f�(z) is bounded function

of z for �xed �. As a result, (1.5.2) can be viewed as a weighted version of the

e�cient maximum likelihood score equation since it provides a relative-to-the-model

downweighting for outlying observations; observations that are wildly discrepant with

respect to the model will get nearly zero weights.

There can be no universal way of selecting an appropriate parameter a when ap-

plying the above estimating method. The value of a speci�es the underlying distance

measure and typically dictates to what extent the resulting method becomes statis-

tically more robust than the maximum likelihood method, and should be thought of

as an algorithmic parameter. A way of selecting the parameter a is by �xing the

e�ciency loss, at an ideal parametric model employed, at some low level, say 5%.

Other ways could in some practical applications involve prior motions of the extent

of contamination of the underlying model.

We generalize now the family (1.5.1) to a more general family of the following

form that involves a general function Φ(·).
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De�nition 1.5.1. For a general function Φ ∈ G and for a > 0 we de�ne the diver-

gence between two functions f and g by

IaX (g; f) = Eg
(
ga(X)Φ

(f(X)

g(X)

))

=

∫
g1+a (z) Φ

(f(z)
g(z)

)
d�;

(1.5.3)

where � represents the Lebesgue measure and G is the class of all convex functions Φ

on [0;∞) such that Φ(1) = 0, Φ′(1) = 0 and Φ′′ (1) 6= 0. In the expression of IaX (g; f)

we shall assume the conventions

0Φ (0=0) = 0 and 0Φ (u=0) = lim
u→∞

Φ (u) =u; for u > 0:

The BHHJ measure of Basu et. al (1998) can be obtained from the above general

BHHJ family if the function Φ takes the special form

Φ (u) = u1+a −
(

1 +
1

a

)
ua +

1

a
· (1.5.4)

Expression (1.5.3) covers not only the continuous case presented in (1.5.1) but

also a discrete setting where the measure � is a counting measure. Indeed, for the

discrete case, the divergence in (1.5.3) is meaningful for probability mass functions f

and g whose support is a subset of the support S�, �nite or countable, of the counting

measure � that satis�es

�(x) = 1 for x ∈ S�

and 0 otherwise.

Consider now two discrete distributions P = (p1; : : : ; pm) and Q = (q1; : : : ; qm)

with sample space Ω = {x : p(x) · q(x) > 0}, where p(x); q(x) are the probability

mass functions of the two distributions. Then the discrete version of the Cressie and

Read measure is given by

ICRX (P;Q) =
1

� (�+ 1)

m∑
i=1

pi
[(pi
qi

)�
− 1

]
; � ∈ R; � 6= 0;−1: (1.5.5)

The above measure was introduced by Cressie and Read (1984) for goodness of �t

tests for multinomial distributions. Observe that the family includes important and

well known test statistics like the Pearson's X2 statistic (for � = 1), the loglikelihood

ratio statistic (for � → 0) and the Freeman-Tukey statistic (for � = −1=2). Cressie
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and Read (1984) devoted their work to the analytic study of the asymptotic properties

of the above measure and found that the � = 2=3 case constitutes an excellent and

compromising alternative between the traditional �→ 0 (loglikelihood ratio test) and

� = 1 (Pearson's X2 test) cases.

The discrete version of Csisz�ar's measure is given in a similar fashion, by

dc =
m∑
i=1

qi' (pi=qi) :

The discrete Csisz�ar's measure has been used by Zografos et al. (1990) for purposes

analogous to the ones of the discrete Cressie and Read measure, namely for goodness

of �t tests for multinomial distributions.

In what follows we extend the class of measures of divergence (1.5.3) to a discrete

setting analogous to the above discrete versions of Csisz�ar's or Cressie and Read's

measures for multinomial distributions.

De�nition 1.5.2. For two discrete distributions P = (p1; : : : ; pm) and Q = (q1; : : : ; qm)

with sample space Ω = {x : p(x) · q(x) > 0}, where p(x); q(x) are the probability mass

functions of the two distributions, the discrete version of the general BHHJ family of

divergence measures with a general function Φ as in De�nition 1.5.1 and a > 0 is

given by

da ≡ da (Q;P ) = Eq
(
qa(X)Φ

(p(X)

q(X)

))

≡
m∑
i=1

q1+a
i

Φ

(
pi
qi

) (1.5.6)

which for Φ as in (1.5.4) becomes the discrete BHHJ measure given by

da ≡ da (Q;P ) =
m∑
i=1

p1+a
i

−
(

1 +
1

a

) m∑
i=1

qipai +
1

a

m∑
i=1

q1+a
i

: (1.5.7)

Lemma 2.2.3 shows that for a → 0 the measure reduces to the Kullback-Leibler

divergence while for Φ(u) = '(u) and for a = 0 we obtain the Csisz�ar's ' divergence.

The measures described in this chapter play a signi�cant role in statistical infer-

ence and have several applications. In the rest of this thesis we focus on the general

BHHJ family of divergence measures presented in De�nitions 1.5.1 and 1.5.2 and in-

vestigate on one hand its basic properties and on the other hand its implementation
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in statistical modelling and in testing statistical hypotheses. For a review on mea-

sures of information see Papaioannou (2001). For a comprehensive discussion about

statistical inference based on measures of divergence the reader is referred to Pardo

(2006).
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Chapter 2

Properties of the General BHHJ
Family of Measures

2.1 Introduction

The measures of divergence are not formal distance functions. It is well known that

any distance function I(u; v) must satisfy the following three properties:

(1) I(u; v) ≥ 0 with equality if and only if u = v

(2) I(u; v) = I(v; u) and

(3) I(u;w) ≤ I(u; v) + I(v; w):

On the other hand any bivariate function I(·; ·) that satis�es the non-negativity prop-

erty, namely I(·; ·) ≥ 0 with equality if and only if its two arguments are equal can

possibly be used as a measure of information or divergence. Note that the Hellinger

distance (the square root of the Matusita measure) given by

IHX (f; g) = (IMX (f; g))1=2 =
( ∫

(
√
f −√g)2d�

)1=2

is a true distance measure since it satis�es all three postulates.

Several properties of measures have been investigated over the years some of which

are of axiomatic character and others of operational. By operational character we

mean that the measures are involved in signi�cant results in statistical inference (like

the Cram�er-Rao bound).

23
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In this chapter we explore some of the basic properties of the general BHHJ family

of measures of divergence with special attention given to the case where Φ is given

by (1.5.4). In particular we discuss

• the nonnegativity property,

• the continuity property,

• the invariance property,

• the symmetry property,

• the limiting property,

• the order preserving property and

• the quadratic convergence.

For details about the properties mentioned in this chapter as well as about other

properties of measures and information see Mathai and Rathie (1975), Ferentinos

and Papaioannou (1981) and Papaioannou (1985).

2.2 Basic Properties

Let us de�ne by h(a) the integrand of IaX(g; f) given in (1.5.1):

h(a) = f 1+a (z)−
(

1 +
1

a

)
g (z) fa (z) +

1

a
g1+a (z):

The graphical representation of h(a) is given in Figure 2.1. Observe that h(−1) = 0

and the maximum of h(a) occurs for a < 0. Furthermore note that h (0) = lim
a↓0

h (a) >

h(a) for a > 0. Finally observe that

∃ a < 0; say a∗ s:t: h(0) = h(a∗) and h(0) > h(a) for a < a∗:

Note that some of these characteristics are not valid for all functions f and g.

It is important to point out that for a = 1, the function h(a) takes the form

h(1) = f 2 − 2gf + g2
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S S

Figure 2.1: Graphical representation of h(a) as a function of a and x (left graph)
and as a function of a at x = 1 (right graph), where the distributions involved are
Uniform(0,2) and Uniform(0,3).

so that the corresponding measure becomes the square of the standard L2 distance,

namely

I1
X(g; f) =

∫
(f(z)− g(z))2dz:

Furthermore, although h(a) is well de�ned for a = −1 this value is unacceptable due

to the fact that the corresponding BHHJ measure between any functions f and g for

a = −1 is meaningless.

It is easy to see that the BHHJ measure satis�es the basic properties of measures,

namely the properties of nonnegativity and the continuity. In particular, as it was

mentioned above, the value of measure is nonnegative for a > −1 while small changes

in the distributions result in small changes in the measure. In other words, IaX(·; ·) is

a continuous function in each of its arguments.

Finally, the value of the discrete measure is not a�ected by the simultaneous

and equivalent reordering of the discrete masses in both the pi's and the qi's which

con�rms the invariance property of the discrete form of the BHHJ measure. Indeed,

let Pj = (pj1 ; : : : ; pjm) and Qj = (qj1 ; : : : ; qjm) reorderings of the original orderings of

P and Q where j = (j1; : : : ; jm) is an arbitrary permutation of the natural ordering

of the set (1; 2; : : : ;m). Then,

da(Pj; Qj) = da(P;Q);
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Figure 2.2: Graphical representation of function (2.2.1) as a function of a and x (left
graph) and as a function of a at x = 1 (right graph), where the distributions involved
are the Exponential with mean 2 and the Standard Normal.

for any reordering j.

For the symmetric property which is de�ned as

IaX(f; g) = IaX(g; f) or da(P;Q) = da(Q;P );

the following Lemma holds.

Lemma 2.2.1. The symmetry property holds for the BHHJ measure for those values

of a for which

(1− a)[g1+a(x)− f 1+a(x)] + (1 + a)[f(x)ga(x)− g(x)fa(x)] = 0 (2.2.1)

(continuous case)

and

(1− a)[q1+a
i − p1+a

i ] + (1 + a)[piqai − qipai ] = 0; ∀ i (2.2.2)

(discrete case)

Proof. Using the de�nition of IaX(f; g) and IaX(g; f) it is easy to see that IaX(f; g) =

IaX(g; f) i.e.
∫ {

g1+a (z)−
(

1 +
1

a

)
f (z) ga (z) +

1

a
f 1+a (z)

}
dz =

=

∫ {
f 1+a (z)−

(
1 +

1

a

)
g (z) fa (z) +

1

a
g1+a (z)

}
dz (2.2.3)
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if the �rst of the above conditions is satis�ed.

The discrete part is shown similarly for da(P;Q) and da(Q;P ).

The graphical representation of the above function for the continuous case, as

a function of � and x, appears in Figure (2.2) where the distributions involved are

the Exponential with mean 2 and the Standard Normal. The �gure implies that the

Lemma holds true for a = 0 and a = 1 but only the second solution which is associated

with the L2 distance, is acceptable. The solution a = 0 is unacceptable since (2.2.3) is

not de�ned for a = 0. Indeed, Lemma 2.2.3 shows that the BHHJ measure is de�ned

for a = 0 by continuity and in fact it reduces to the Kullback-Leibler measure which

does not satisfy the symmetry property.

In Lemma 2.2.2 we investigate the limiting property according to which a sequence

of probability density functions fn converges to a probability density function f i�

the corresponding measure of divergence IaX(fn; f) tends to 0. Before the statement

of the Lemma we provide the de�nition of the �-almost everywhere convergence, fn

to f :

De�nition 2.2.1. �-almost everywhere convergence is a weakened version of point-

wise convergence which states that, for X a measure space, fn (x) → f (x) for all

x ∈ Y , where Y is a measurable subset of X such that � (X\Y ) = 0.

Lemma 2.2.2. Let � be a measure, Φ a function, fn and f two probability density

functions (pdfs) and a > 0 such that the following conditions hold

• I.
∫ ∣∣∣f 1+aΦ

(
fn
f

)∣∣∣ d� <∞,

• II. Φ is a continuous function,

• III. Φ(1) = 0; Φ′(1) = 0; and Φ is strictly convex,

• IV. f > 0 �-almost everywhere.

Then, the BHHJ family of measures satis�es the limiting property de�ned by

fn → f �− almost everywhere; i� IaX(fn; f) → 0;

where fn is a sequence of probability density functions, f is the limiting probability

density function and IaX(fn; f) is the general BHHJ measure based on the two pdfs.
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Proof. By (1.5.3) we have that

IaX (f; fn) =

∫
f 1+aΦ

(
fn
f

)
d�;

with Φ(u) given in (1.5.4). Observe that if fn → f �− almost everywhere then

lim
n→∞

IaX (fn; f) = lim
n→∞

∫
f 1+aΦ

(
fn
f

)
d�

condition I
=

∫
f 1+a lim

n→∞
Φ

(
fn
f

)
d�

condition II
=

∫
f 1+aΦ

(
lim
n→∞

fn
f

)
d�

=

∫
f 1+aΦ (1) d�

= 0:

On the other hand, let

IaX (fn; f) → 0:

Then,

lim
n→∞

∫
f 1+aΦ

(
fn
f

)
d� = 0: (2.2.4)

By condition III we have

Φ(z) ≥ 0: (2.2.5)

By (2.2.4), (2.2.5) and condition IV we have

lim
n→∞

Φ

(
fn
f

)
= 0; �− almost everywhere (2.2.6)

and �nally, by (2.2.6) and condition III we have

lim
n→∞

fn
f

= 1; �− almost everywhere:

The following Lemma provides the relation between the BHHJ measure and the

Kullback-Leibler measure. In particular, we show that for a tending to 0, the BHHJ

measure reduces to the Kullback-Leibler measure.

Lemma 2.2.3. The limit of (1.5.3) with Φ(u) as in (1.5.4) when a ↓ 0 is the Kullback-

Leibler divergence. Furthermore, the discrete form of the measure (1.5.6) tends to the

discrete Kullback-Leibler measure given by

da(P;Q) =
m∑
i=1

pi log
(pi
qi

)
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for a ↓ 0 and with Φ(u) as in (1.5.4).

Proof. The proof is given for (1.5.3). Observe that

I0
X (g; f) = lim

a↓0
IaX (g; f)

= lim
a↓0

∫ {
f 1+a (z)− (

1 + 1
a

)
g (z) fa (z) + 1

ag
1+a (z)

}
dz

= lim
a↓0

∫
f 1+a (z) dz − lim

a↓0

∫
g (z) fa (z) dz + lim

a↓0

∫ g(z)(ga(z)−fa(z))
a dz

=
∫
f (z)dz − ∫

g (z)dz +
∫
g (z) lim

a↓0
(ga(z)−fa(z))

a dz

=
∫ (

f (z)− g (z)
)
dz +

∫
g (z) lim

a↓0
{ga (z) log [g (z)]− fa (z) log [f (z)]} dz

= 1− 1 +
∫
g (z) log

{
g(z)
f(z)

}
dz

=
∫
g (z) log

{
g(z)
f(z)

}
dz

= IKLX (g; f):

We close this section with the order preserving property which has been introduced

by Shiva, Ahmed and Georganas (1973) for entropy-type measures and states that the

relation between the amount of information contained in a r.v X1 and that contained

in another r.v. X2 remains intact irrespectively of the measure of information used.

The property was extended to Fisher-type measures by Papaioannou (1985) and to

divergence measures by Zografos (1987). This property is natural in the sense that a

measure of information of any type (entropy, information, divergence etc.) measures

the amount of information available and therefore if a random variable contains a

larger amount of information than another random variable for a speci�c measure

then it is reasonable to expect that it will contain a larger amount of information for

any measure.

In particular, if the superscripts (1) and (2) represent two di�erent measures of

information then

I(1)
X1

(f1; g1) ≥ I(1)
X2

(f2; g2) ⇔ I(2)
X1

(f1; g1) ≥ I(2)
X2

(f2; g2):

The following Lemma holds for the BHHJ divergence.

Lemma 2.2.4. For some probability density functions f1, f2, g1 and g2, so that

I�X(f1; g1) and I�X(f2; g2) are decreasing for � > 0, the following statements are equiv-

alent:
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(a) I�X(f1; g1) ≥ I�X(f2; g2), for � ∈ (0; �3]

(b) IKLX (f1; g1) ≥ IKLX (f2; g2)

(c) IR;�X (f1; g1) ≥ IR;�X (f2; g2), for � ∈ (�1; �2)

(d) IKaX (f1; g1) ≥ IKaX (f2; g2), for �2 ≥ 2,

(e)IMX (f1; g1) ≥ IMX (f2; g2), for �1 ≤ 1=2,

where �1, �2 and �3 are determined from the equations

IR;�1

X (f1; g1) = IKLX (f2; g2);

IR;�2

X (f2; g2) = IKLX (f1; g1)

and

IKLX (f2; g2) = I�3
X (f1; g1):

Proof. Part (b) follows immediately from part (a) if we take the limit as a→ 0 on

both sides of

I�X(f1; g1) ≥ I�X(f2; g2):

Then, the result follows from Lemma 2.2.3. Assume now that part (b) holds, namely

IKLX (f1; g1) ≥ IKLX (f2; g2):

Since I�X(·; ·) is a decreasing function of �, for � > 0 and also

lim
�→0

I�X(·; ·) = IKLX (·; ·)

then

(i) IKLX (f2; g2) ≥ I�X(f2; g2), for � > 0

(ii) ∃ �3 > 0 such that IKLX (f2; g2) = I�3
X (f1; g1) and

(iii) I�X(f1; g1) ≥ I�3
X (f1; g1) if � ∈ (0; �3].

Hence if a ∈ (0; �3] and using (i) - (iii) we have

I�X(f1; g1) ≥ I�3
X (f1; g1) = IKLX (f2; g2) ≥ I�X(f2; g2):

Parts (b)−(e) are equivalent from Theorem 2.1 and Corollary 2.1 of Zografos et al.

(1989).
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The above Lemma clearly shows that the key role in establishing the order pre-

serving property is played by the parameter á involved in the measures examined.

In particular, the property holds provided that the parameter á belongs to a speci�c

interval, di�erent for each measure. It should be noted that the end points of the

interval depend on the distributions involved.

As a result, the order preserving property doesn't hold in a universal way for

every measure and for every parameter á. Furthermore, the lemma by providing the

range of values of the parameter á for which the measures describe properly (with

consistency) the amount of information contained in the data, implies that the use of

these measures should be limited to those values of á for which the order preserving

property holds.

2.3 Quadratic Convergence of Discretized Versions of

the BHHJ Measure

In practical situations the data are discrete or if they are continuous they are available

in groups. In the latter case, the sample space is partitioned into disjoint intervals

so that the theoretical distributions are approximated by the discrete distributions

generated by these intervals. Several authors have considered this problem. Ghurye

and Johnson (1981) showed that the discretized version of Kullback-Leibler divergence

converges quadratically to the theoretical Kullback-Leibler measure. The same was

proved by Zografos et al. (1986) for the Csisz�ar's '-family of divergences as well as for

the R�enyi's and Fisher's measures. Both papers examined this discretization problem

by considering a special partition of the sample space. In this section we generalize

the above results by showing the quadratic convergence of the general BHHJ measure

under suitable conditions and for the same special partition of the sample space.

Let us consider the following discretized partition of the sample space:

∆h;k =

((
k − 1

2

)
h;

(
k +

1

2

)
h
)
; k = 0;±1;±2; ::::; h > 0:
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Then the discretized versions of the functions f and g are given respectively by

pk (h) =

∫

∆h;k

f (x) dx

and

qk (h) =

∫

∆h;k

g (x) dx; k = 0;±1;±2; ::::

Observe that the general BHHJ family of measures given in (1.5.3) can be written

in the form

IaX(f; g) =

+∞∫

−∞

g1+a(x)Φ
(
f(x)
g(x)

)
dx

so that the discretized version becomes

Iah(f; g) =
∑

k

q1+a
k (h)Φ

(
pk (h)
qk (h)

)
:

The amount of information lost when using the discretized version Iah(f; g) of

IaX(f; g) is given by:

D (h; a) = IaX(f; g)− Iah(f; g) =
∑

k

Jak (h) (2.3.1)

where
Jak (h) =

∫
∆h;k

g1+a(x)Φ
(
f(x)
g(x)

)
dx− q1+a

k (h)Φ
(
pk(h)
qk(h)

)

=
∫

∆h;k

Ha(x)dx− q1+a
k (h)Φ

(
pk(h)
qk(h)

)

and

Ha(x) = g1+a(x)Φ
(
f(x)
g(x)

)
:

Regularity Conditions for the quadratic convergence:

• I.
+∞∫
−∞

g (x) |Φ (f (x) =g (x))| dx <∞

• II. f and g have the same support S = {x : f (x) > 0} = {x : g (x) > 0}; an

open interval in <.

Kyri
ac

os
 M

att
he

ou



33

• III. f and g have continuous second derivatives on S; Φ has also a continuous

second derivative on (0;∞).

• IV. The functions

gag′′Φ
(
f
g

)
; ga−1 (g′)2

Φ

(
f
g

)
; gaf ′′Φ′

(
f
g

)
;

ga−1f ′g′Φ′
(
f
g

)
; gaf

(
g′

g

)2

Φ′
(
f
g

)
;

fga−1g′′Φ′
(
f
g

)
; and g1+a [

(f=g)′
]2

Φ′′
(
f
g

)

are Riemann-integrable on (−∞;+∞).

• V. If xh;k; yh;k; zh;k ∈ ∆h;k = ((k − 1=2)h; (k + 1=2)h) ; k = 0;±1;±2; ::: and

a = a (h) = O (h
), with 
 < 1 then

lim
h→0

h
∑

k

ga (yh;k) g′′ (xh;k) Φ

(
f (yh;k)
g (yh;k)

)
=

+∞∫

−∞

g′′ (x)Φ
(
f (x)
g (x)

)
dx;

lim
h→0

h
∑

k

ga (zh;k) f ′′ (xh;k) Φ′
(
f (yh;k)
g (yh;k)

)
=

+∞∫

−∞

f ′′ (x)Φ′
(
f (x)
g (x)

)
dx;

lim
h→0

h
∑

k

g′′ (xh;k) f (yh;k)
g1−a (yh;k)

Φ′
(
f (zh;k)
g (zh;k)

)
=

+∞∫

−∞

g′′ (x) f (x)
g (x)

Φ′
(
f (x)
g (x)

)
dx;

lim
h→0

h
∑
k
g1+a (xh;k)

{(
f(xh;k)
g(xh;k)

)′}2

Φ′′
(
f(xh;k)
g(xh;k)

)
=

+∞∫
−∞

g (x)
{(

f(x)
g(x)

)′}2

Φ′′
(
f(x)
g(x)

)
dx:Kyri
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Theorem 2.3.1. Under the regularity conditions stated in the present section we have

the following result

h−2D (h; a) =

= h−1 (1− ha)
∑
k
g1+a(kh)Φ

(
f(kh)
g(kh)

)

+ h
24
a (1 + a)

∑
k
ga−1 (uh;k) (g′ (uh;k))2 Φ

(
f(uh;k)
g(uh;k)

)

+ (1 + a)
[
h
24

∑
k
ga (uh;k) g′′ (uh;k) Φ

(
f(uh;k)
g(uh;k)

)
− h1+a

24

∑
k
ga (kh) g′′(mh;k)Φ

(
f(kh)
g(kh)

)]

+ h
24

∑
k
ga (uh;k) f ′′ (uh;k) Φ′

(
f(uh;k)
g(uh;k)

)
− h1+a

24

∑
k
ga (kh) f ′′(vh;k)Φ′

(
f(wh;k)
g(wh;k)

)

+ h
24

∑
k

2aga−1 (uh;k) f ′ (uh;k) g′ (uh;k) Φ′
(
f(uh;k)
g(uh;k)

)

− h
24

∑
k

2aga (uh;k) f (uh;k)
(
g′(uh;k)
g(uh;k)

)2

Φ′
(
f(uh;k)
g(uh;k)

)

− h
24

∑
k
f (uh;k) ga−1 (uh;k) g′′ (uh;k) Φ′

(
f(uh;k)
g(uh;k)

)

−h1+a

24

∑
k
f (kh) ga−1 (kh) g′′(mh;k)Φ

′
(
f(wh;k)
g(wh;k)

)

+ h
24

∑
k
g1+a (uh;k)

[(
f(uh;k)
g(uh;k)

)′]2

Φ′′
(
f(uh;k)
g(uh;k)

)
+O (h3+a) +O (h5+a) ;

where uh;k; vh;k;mh;k; wh;k;∈ ∆h;k: Furthermore, if a = a (h) = O (h
) ; with 
 < 1 we

have the quadratic convergence:

lim
h→0

IaX(f; g)− Iah(f; g)
h2

=
1

24

+∞∫

−∞

g (x)
[(

f (x)
g (x)

)′]2

Φ′′
(
f (x)
g (x)

)
dx:

Proof. Using Taylor theorem in symmetric form,

!
(
u+

h
2

)
− !

(
u− h

2

)
= h!′(u) +

h3

24
!′′′(ū)

where ū ∈ (
u− h

2
; u+ h

2

)
and if !′′′ exists and is continuous, we obtain

∫

∆h;k

Ha(x)dx = hHa(kh) +
h3

24
H ′′
a (uh;k) ; uh;k ∈ ∆h;k (2.3.2)

where
H ′′
a = (1 + a) ga

(
a(g′)2

g + g′′
)

Φ
(
f
g

)

+g1+a
[(

f
g

)′]2

Φ′′
(
f
g

)

+ga
(
f ′′ + 2af

′:g′
g − 2af

(
g′
g

)2

− f:g′′
g

)
Φ′

(
f
g

)
:

A Taylor series expansion of Φ (·) around the point f (kh) =g (kh) yields

Φ

(
pk (h)
qk (h)

)
= Φ

(
f (kh)
g (kh)

)
+

(
pk (h)
qk (h)

− f(kh)
g(kh)

)
Φ′ (r) (2.3.3)
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with r a point belonging to the interval determined by the points f (kh) =g (kh)

and pk (h) =qk (h). In fact, since f=g is continuous in all ∆h;k partitions, h > 0;

k = 0,± 1,± 2,:::, belonging to S, we can easily see that there exists wh;k ∈ ∆h;k such

that

r =
f (wh;k)
g (wh;k)

: (2.3.4)

Also, for vh;k;mh;k ∈ ∆h;k we have

pk (h) = hf (kh) +
h3

24
f ′′ (vh;k)

and

qk (h) = hg (kh) +
h3

24
g′′ (mh;k) :

Using the binomial expansion for x¿ 1; namely,

(1 + x)p = 1 + px+O
(
x2

)
; ∀ p;

we have

qpk (h) = hpgp (kh) + p
h2+p

24
g′′ (mh;k) gp−1 (kh) +O

(
h4+p) ;∀ p: (2.3.5)

Multiplying both sides of (2.3.3) by qp
k
(h) with p = 1 + a and using (2.3.4) and

(2.3.5) we have

q1+a
k

(h) Φ
(
pk(h)
qk(h)

)
= h1+ag1+a (kh) Φ

(
f(kh)
g(kh)

)

+ (1 + a) h3+a

24
ga (kh) g′′(mh;k)Φ

(
f(kh)
g(kh)

)

+h3+a

24
ga (kh) f ′′(vh;k)Φ′

(
f(wh;k)
g(wh;k)

)

−h3+a

24
f (kh) ga−1 (kh) g′′(mh;k)Φ

′
(
f(wh;k)
g(wh;k)

)

+O (h5+a) :

Substituting the above formula along with (2.3.2) into (2.3.1) we have the form of
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D(h; a), namely

D (h; a) = IaX(f; g)− Iah(f; g) =
∑
k
Jak (h)

= h (1− ha)
∑
k
g1+a(kh):Φ

(
f(kh)
g(kh)

)

+h3

24
a (1 + a)

∑
k
ga−1 (uh;k) (g′ (uh;k))2 Φ

(
f(uh;k)
g(uh;k)

)

+ (1 + a)
[
h3

24

∑
k
ga (uh;k) g′′ (uh;k) Φ

(
f(uh;k)
g(uh;k)

)

−h3+a

24

∑
k
ga (kh) g′′(mh;k)Φ

(
f(kh)
g(kh)

)]

+h3

24

∑
k
ga (uh;k) f ′′ (uh;k) Φ′

(
f(uh;k)
g(uh;k)

)
− h3+a

24

∑
k
ga (kh) f ′′(vh;k)Φ′

(
f(wh;k)
g(wh;k)

)

+h3

24

∑
k

2aga−1 (uh;k) f ′ (uh;k) :g′ (uh;k) Φ′
(
f(uh;k)
g(uh;k)

)

−h3

24

∑
k

2aga (uh;k) f (uh;k)
(
g′(uh;k)
g(uh;k)

)2

Φ′
(
f(uh;k)
g(uh;k)

)

−h3

24

∑
k
f (uh;k) ga−1 (uh;k) :g′′ (uh;k) Φ′

(
f(uh;k)
g(uh;k)

)

−h3+a

24

∑
k
f (kh) ga−1 (kh) g′′(mh;k)Φ

′
(
f(wh;k)
g(wh;k)

)

+h3

24

∑
k
g1+a (uh;k)

[(
f(uh;k)
g(uh;k)

)′]2

Φ′′
(
f(uh;k)
g(uh;k)

)

+O (h5+a) :

Taking a = a (h) = O (h
) ; with 
 < 1, multiplying by h−2 and using Regularity

Condition (V), we have the desired result, namely

lim
h→0

1
h2D (h; a) = lim

h→0

IaX(f;g)−Iah(f;g)
h2

= lim
h→0

1
h2

∑
k
Jak (h)

= 1
24

+∞∫
−∞

g (x)
[(

f(x)
g(x)

)′]2

Φ′′
(
f(x)
g(x)

)
dx:

The regularity conditions of this theorem are generalizations of the conditions used

by Ghurye and Johnson (1981) for the Kullback-Leibler measure and by Zografos et

al. (1986) for the Csisz�ar's measure. As expected for various functions Φ we have

di�erent measures of divergence. More speci�cally for Φ = ' and a = 0 the above

result reduces to the result for Csisz�ar's family of measures obtained by Zografos et

al. (1986). Furthermore, for a → 0, the result of Ghurye and Johnson (1981) is

obtained. Notice that the same result can be obtained as a special case of Csisz�ar's

measure for Φ(u) = u log u and a = 0.
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Other measures covered by the above theorem are the Kagan, the Matusita mea-

sure and the Vajda [Vajda, 1973] measure given by

IVX(f; g) =

∫
g(y)

∣∣∣1− f(y)
g(y)

∣∣∣
�
dy; � ≥ 1:

Observe that the Vajda measure reduces to Kagan's measure for � = 2.
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Chapter 3

Model Selection Criteria

3.1 Introduction

Since the measures of divergence are used as indices of similarity or dissimilarity

between populations and for measuring mutual information concerning two variables

they can be used for the construction of model selection criteria. A model selection

criterion can be considered as an approximately unbiased estimator of the expected

overall discrepancy, a nonnegative quantity which measures the distance between the

true unknown model and a �tted approximating model. If the value of the criterion

is small then the approximated model is good.

The Kullback-Leibler measure was the one used by Akaike (1973) to develop the

Akaike Information Criterion (AIC). Let x = (x1; : : : ; xn) a realization of a random

vector X = (X1; : : : ; Xn) and assume that the Xi's are independent and identically

distributed each with true unknown density function g(·; �0), with �0 = (�01; : : : ; �0p)
′

the true but unknown value of the p-dimensional parameter of the distribution. Con-

sider a candidate model f�(·) and let �̂ the maximum likelihood estimator (MLE) of

�0 in some hypothesized set Θ, i.e.

l(�̂;x) =
n∑
i=1

log(f�̂(xi)) = max
�∈Θ

l(�;x)

so that f�̂(·) is an estimate of g(·; �0). The divergence between the estimate (candidate

model) and the true density can be measured by the Kullback-Leibler measure:

IKLX (g; f�̂) =

∫
g(y; �0) log

(g(y; �0)

f�̂(y)

)
dy

38
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which is a special case for a→ 0 (see Lemma 2.2.3) of the BHHJ measure

IaX (g; f�̂) =

∫ {
f 1+a
�̂

(z)−
(

1 +
1

a

)
g (z) fa�̂ (z) +

1

a
g1+a (z)

}
dz: (3.1.1)

Observe that IKLX (g; f�̂) can be written in the form

IKLX (g; f�̂) = Eg[log(g(X; �0)]− Eg[log(f�̂(X))]:

Note that the �rst term is independent of the candidate model and therefore the di-

vergence can be evaluated using only the second term, usually known as the expected

loglikelihood. Akaike proposed the evaluation of the �t of f�̂(·) using minus twice the

mean expected loglikelihood given by

−2Eg
[
Eg[log(f�̂(X))]

]
= −2

∫
: : :

∫
Eg[log(f�̂(X))]

n∏
i=1

g(xi; �0)dx1 : : : dxn

since the candidate model is close to the true model if the above quantity is small.

Furthermore, Akaike provided an unbiased estimator of the expected loglikelihood

given by

[−2l(�̂; x) + 2p]=n

so that the resulting AIC is de�ned to be

AIC = −2l(�̂;x) + 2p:

A general class of criteria has been introduced by Konishi and Kitagawa (1996)

which also estimates the Kullback-Leibler measure where the estimation is not nec-

essarily based on maximum likelihood.

Following the early work of Akaike, other model selection proposals include Bayesian

approaches with the Bayesian Information Criterion (BIC, Schwarz, 1978) and the

Deviance Information Criterion (DIC, Spiegelhalter et al., 2002; van der Linde, 2005)

being the most popular. The BIC criterion has a number of advantages worth men-

tioning. More speci�cally, it has been shown to be consistent (Schwarz, 1978; Wei,

1982) which means that it chooses the correct model with probability 1 as n tends

to in�nity. The second advantage is that the criterion depends on log n instead of n

and therefore it downweights the e�ective sample size which in some cases prevents

the erroneous rejection of null hypothesis for large sample sizes.
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Here we apply the same methodology used for AIC to the BHHJ divergence in or-

der to develop a new criterion, the Divergence Information Criterion (DIC). Note that

the DIC proposed here is not related to the above mentioned deviance information

criterion which is a Bayesian criterion for posterior predictive comparisons.

3.2 The Construction of the New Criterion

Consider a random sample X1; : : : ; Xn from the distribution g (the true model) and a

candidate model f� from a parametric family of models {f�}, indexed by an unknown

parameter � ∈ Θ, where Θ is an one dimensional parametric space. To construct the

new criterion for goodness of �t we shall consider the quantity:

W� =

∫ {
f 1+a

� (z)− (
1 + a−1

)
g (z) f a� (z)

}
dz; a > 0 (3.2.1)

which is the same as the BHHJ divergence IaX(g; f�) given in (1.5.1) without the last

term that remains constant irrespectively of the model f� used. Observe that (3.2.1)

can also be written as:

W� = Ef�
(
f a� (Z)

)− (
1 + a−1

)
Eg

(
f a� (Z)

)
; a > 0: (3.2.2)

3.2.1 The Expected Overall Discrepancy

The target theoretical quantity that needs to be later approximated by an unbiased

estimator is given by

EW�̂ = E
(
W�

∣∣∣� = �̂
)

(3.2.3)

where �̂ is any consistent and asymptotically normal estimator of �. This quantity

can be viewed as the average distance between g and f� up to a constant and is known

as the expected overall discrepancy between g and f�.

Observe that the expected overall discrepancy can be easily evaluated by using a

Taylor expansion around �0. The necessary derivatives of (3.2.2) are given below.

Lemma 3.2.1. The �rst and second derivatives of (3.2.2) are:

@W�

@�
= (a+ 1)

[∫
u� (z) f 1+a

� (z) dz − Eg
(
u� (Z) f a� (Z)

)]
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and

@2W�

@�2
= (a+ 1)

{
(a+ 1)

∫
[u� (z)]2 f 1+a

� (z) dz −
∫
i�f 1+a

� (z) dz

+Eg
(
i� (Z) f a� (Z)

)− Eg
(
a [u� (Z)]2 f a� (Z)

)}

where u� (z) = @
@� (log (f� (z))) and i� (z) = − @2

@�2 (log (f� (z))).

Proof. For the �rst derivative we have

@W�

@�
= (a+ 1)

∫
f a� (z) f ′� (z) dz −

(
a+ 1

a

)
Eg

(
af a−1

� (Z) f ′� (Z)
)

= (a+ 1)

[∫
@
@�

(log f� (z)) f 1+a

� (z) dz − Eg
(
@
@�

(log f� (Z)) f a� (Z)

)]

= (a+ 1)

[∫
u� (z) f 1+a

� (z) dz − Eg
(
u� (Z) f a� (Z)

)]
:

Observe also that

@2W�

@�2
= (a+ 1)

{∫ [
−i� (z) f 1+a

� (z) + u� (z) (a+ 1) fa� (z) f ′� (z)
]
dz

− E g

(
−i� (Z) f a� (Z) + a [u� (Z)] f a−1

� (Z) f ′� (Z)
)}

= (a+ 1)

{∫ [
(a+ 1) [u� (z)]2 f 1+a

� (z)− i� (z) f 1+a

� (z)
]
dz

− E g
(−i� (Z) f a� (Z) + a [u� (Z)]2 f a� (Z)

)}
:

= (a+ 1)

{
(a+ 1)

∫
[u� (z)]2 f 1+a

� (z) dz −
∫
i�f 1+a

� (z)dz

+ Eg
(
i� (Z) f a� (Z)

)− aE g
(
[u� (Z)]2 f a� (Z)

)}
:

Lemma 3.2.2. If the true distribution g belongs to the parametric family {f�}, then

the second derivative of (3.2.2) simpli�es to:

@2W�0

@�0
2 = (a+ 1)

∫
[u�0 (z)]2 f 1+a

�0 (z) dz = (a+ 1) J(�0) (3.2.4)

where J(�0) =
∫

[u�0 (z)]2 f 1+a

�0 (z) dz and �0 represents the best �tting value of the

parameter. Also the �rst derivative of (3.2.2), under the same assumption, is equal

to 0.

Proof.

If the true distribution g belongs to the parametric family {f�}, then:

Eg
(
[u�0 (Z)]2 f a�0 (Z)

)
=

∫
[u�0 (z)]2 f 1+a

�0 (z) dz
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and

Eg
(
i�0 (Z) f a�0 (Z)

)
=

∫
i�0 (z) f 1+a

�0 (z)dz

so that
@2W�0

@�0
2 = (a+ 1) J(�0):

For the �rst derivative the result follows immediately since

Eg
(
u�0 (Z)f a�0 (Z)

)
=

∫
u�0 (z)f 1+a

�0 (z) dz ⇒ @W�0

@�0

= 0: (3.2.5)

Theorem 3.2.1. Under the assumptions of Lemma 3.2.1 the expected overall dis-

crepancy at � = �̂ is given by

EW�̂ = W�0 +
(a+ 1)

2
E

[(
�̂ − �0

)2

J(�0)

]
+ ERn; (3.2.6)

where Rn = o((�̂ − �0)
2), �0 the true value of the parameter and

J(�0) =

∫
[u�0 (z)]2 f 1+a

�0 (z) dz:

Proof. Using a Taylor expansion of the quantity W� around the true parameter �0

and equation (3.2.4) and taking � = �̂, W� simpli�es to:

W�̂ = W�0 +
(a+ 1)

2

(
�̂ − �0

)2

J(�0) + o((�̂ − �0)
2): (3.2.7)

It is easily seen that the expectation of W�̂ is given by (3.2.6).

The assumption that the true distribution g belongs to the parametric family

{f�} is the assumption made by Akaike (Akaike, 1973). The assumption may be

questionable in practice but it is a useful one in the sense that provides the basis

for the evaluation of the estimator of the expected overall discrepancy as well as

the computation of expectations for central distributions which would not have been

possible otherwise (see also McQuarrie and Tsai, 1998, p. 20-21).

3.2.2 Estimation of the Expected Overall Discrepancy

In this section we construct an unbiased estimator of the expected overall discrep-

ancy (3.2.6). First we shall deal with the estimation of the unknown density g. An
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estimator of (3.2.2) with respect to g is given by replacing Eg
(
f a� (Z)

)
by its sample

analogue

Q� =

∫
f 1+a

� (z) dz −
(

1 +
1

a

)
1

n

n∑
i=1

f a� (Xi) : (3.2.8)

The derivatives of Q� are given in the following lemma.

Lemma 3.2.3. The derivatives of (3.2.8) are:

@Q�

@�
= (a+ 1)

[∫
u� (z) f 1+a

� (z) dz − 1

n

n∑
i=1

u� (Xi) f
a

� (Xi)

]

and
@2Q�

@�2
= (a+ 1)

{
(a+ 1)

∫
[u� (z)]2 f 1+a

� (z) dz−
∫
i�f 1+a

� (z) dz +
1

n

n∑
i=1

i� (Xi) f
a

� (Xi)− 1

n

n∑
i=1

a [u� (Xi)]
2 f a� (Xi)

}
;

where u� (z) and i� (z) are as in Lemma 3.2.1.

Proof. The proof is very similar to the proof of Lemma 3.2.1 and is omitted.

The Taylor expansion of the quantity Q� around the estimator �̂ yields the ap-

proximation:

Q� = Q�̂ +
(
� − �̂

) [
@Q�

@�

]

�̂
+

1

2

(
� − �̂

)2
[
@2Q�

@�2

]

�̂
+ o((�̂ − �)2): (3.2.9)

Recall that the estimator �̂ is a consistent and asymptotically normal estimator

of the parameter �. For such an estimator one could select the value of � that

either maximizes the loglikelihood function (MLE method) or minimizes the BHHJ

discrepancy or equivalently the quantity W� (Basu method). In the latter case the

consistency as well as the asymptotic normality are veri�ed by the theorem below

which is due to Basu et al. (1998).

Theorem 3.2.2 (Basu et al. (1998)). Under certain regularity conditions, there

exists �̂ such that, as n→∞ ,

(i) �̂ is consistent for �0, and

(ii)
√
n

(
�̂ − �0

)
is asymptotically normal with mean equal to zero and variance

equal to J−2 (�0)K (�0), where J (�0) and K (�0), under the assumption that the true

distribution g belongs to the parametric family {f�} and �0 being the true value of the

parameter, are given by:

J (�0) =

∫
[u�0 (z)]2 f 1+a

�0 (z) dz
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and

K (�0) =

∫
[u�0 (z)]2 f 1+2a

�0 (z) dz − �2 (3.2.10)

where � =
∫
u�0 (z) f 1+a

�0 (z) dz.

It is easy to see that by the weak law of large numbers, as n→∞, we have:
[
@Q�

@�

]

�=�0

P−→
[
@W�

@�

]

�=�0

(3.2.11)

and [
@2Q�

@�2

]

�=�0

P−→
[
@2W�

@�2

]

�=�0

: (3.2.12)

The consistency of �̂, the continuity of J(�), expressions (3.2.8), (3.2.11) and

(3.2.12) and a Taylor expansion of Q� around the point �̂ can be used to evaluate the

expectations of Q� and W�̂:

Theorem 3.2.3. The expectation of Q� evaluated at the true point �0 is given by

EQ�0 = EQ�̂ +
a+ 1

2
E

[(
�0 − �̂

)2

J(�0)

]
+ ERn

and the expected overall discrepancy evaluated at �̂ is given by

EW�̂ = E
{
Q�̂ + (a+ 1)

(
�̂ − �0

)2

J(�0) +Rn

}

where Rn and J(�0) as in Theorem 3.2.1.

Proof. Since �̂ → �0 as n → ∞, equations (3.2.4), (3.2.5), and (3.2.11), and under

the assumption that the true distribution g belongs to the parametric family {f�} we

have: [
@Q�

@�

]

�=�̂
→ 0

and [
@2Q�

@�2

]

�=�̂
→ (a+ 1) J(�̂)

so that for large n we have for a Taylor expansion of Q�0 around the estimator �̂, the

following approximation:

Q�0 = Q�̂ +
a+ 1

2

(
�0 − �̂

)2

J(�̂) + o((�̂ − �0)
2):
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By the continuity of J(�) we assert the �rst part of the theorem. For the second part

observe that

E (Q� |� = �0 ) = EQ�̂ +
a+ 1

2
E

[(
�̂ − �0

)2

J(�0)

]
+ ERn ≡ W�0 :

By combining the �rst part of the theorem and Theorem 3.2.1 we obtain the unbi-

asedness of the estimator of the expected overall discrepancy EW�̂.

3.2.3 The construction of the Divergence Information Criterion

Before the construction of the new criterion, the results of the previous two subsections

will be extended to the multivariate case. This extension is possible since Theorem

3.2.2 holds for a p−dimensional parameter space Θ, p ≥ 1 (Basu et al., 1998). Indeed,

in this case and under the same assumptions as those stated in Theorem 3.2.2 the

p−dimensional estimator �̂ =
(
�̂1; :::; �̂p

)′
is consistent for �0 = (�01; :::; �0p)

′ and
√
n(�̂ − �0) is asymptotically multivariate normal with vector mean 0 and variance-

covariance matrix J−1(�0)K(�0)J−1(�0) where

J (�0) =

∫
u�0 (z)u′�0 (z)f 1+a

�0 (z) dz

and

K (�0) =

∫
u�0 (z)u′�0 (z)f 1+2a

�0 (z) dz − ��′; (3.2.13)

� =
∫
u�0 (z) f 1+a

�0 (z) dz and u� (z) = @
@� (log (f� (z))).

As a result, for a p−dimensional parameter �, we can see that (3.2.6) at � = �̂

takes the form

EW�̂ = W�0 +
(a+ 1)

2
E

[(
�̂ − �0

)′
J(�0)

(
�̂ − �0

)]
+ E

{
o(||�̂ − �0||2)

}
: (3.2.14)

Similarly, the unbiasedness property of Theorem 3.2.3 takes the form:

EW�̂ = E
{
Q�̂ + (a+ 1)

(
�̂ − �0

)′
J (�0)

(
�̂ − �0

)
+ o(||�̂ − �0||2)

}
: (3.2.15)

Consider now the case that the candidate model f� comes from the family of

the multivariate normal distribution where � is the mean vector and �̂ is obtained by

minimizing 3.1.1 (Basu method). Then, it can be shown that (see Basu et al. (1998)),

J (�0) = (2�)−
a
2 (1 + a)−(1+ p

2) Σ−(1+a
2 )
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and

V ar
(
�̂
)

=

(
1 +

a2

1 + 2a

)1+ p
2

Σ

so that

J (�0) = (2�)−
a
2

(
1 + a
1 + 2a

)1+ p
2

Σ−a
2

[
V ar

(
�̂
)]−1

;

where Σ is the p x p asymptotic covariance matrix of the maximum likelihood esti-

mator of the p - dimensional parameter �0.

Taking now into consideration the fact that

n · o((�̂ − �0)
2) = oP (1)

since
√
n(�̂ − �0) is asymptotically normal, we have that

n
(
�̂ − �0

)′
Σ−a

2

[
V ar

(
�̂
)]−1 (

�̂ − �0

)
(3.2.16)

has approximately a X 2
p distribution for a small. Then, the Divergence Information

Criterion de�ned as the asymptotically unbiased estimator of EW�̂ is introduced in

the theorem below.

Theorem 3.2.4. Assume that the candidate model comes from the family of the

multivariate normal distribution with � the mean vector and �̂ the estimator obtained

by minimizing 3.1.1. An asymptotically unbiased estimator of n−times the expected

overall discrepancy evaluated at �̂ is given by

DIC = nQ�̂ + (a+ 1) (2�)−
a
2

(
1 + a
1 + 2a

)1+ p
2

p: (3.2.17)

The DIC criterion as it has been derived in the above theorem uses as an estima-

tor of the unknown parameter the estimator obtained by minimizing (3.1.1) (Basu

method). As it was mentioned earlier, the researcher may alternatively choose to use

the maximum likelihood method (MLE method) in which case the correction term is

adjusted accordingly. Indeed, in this case

J (�0) = (2�)−
a
2 (1 + a)−(1+ p

2) Σ−(1+a
2 )

= (2�)−
a
2 (1 + a)−(1+ p

2) Σ−a
2

[
V ar

(
�̂
)]−1
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since V ar
(
�̂
)

= Σ is the covariance matrix of the maximum likelihood estimator.

Using (3.2.15) and the fact that (3.2.16) follows again approximately a X 2
p distribution

it is easy to see that the adjusted DIC is given by

DICMLE = nQ�̂ + (2�)−
a
2 (1 + a)−

p
2 p: (3.2.18)

By comparing the correction terms of DIC and DICMLE we observe that they are

similar in the sense that for small a

(1 + a)
(

1 + a
1 + 2a

)1+ p
2

' (1 + a)−
p
2 < 1:

In order to put into the proposed criterion some extra penalty for too large models

(models with large number of parameters) we can replace the above term(s) by a

(common) quantity larger than 1. Observe that for small values of a the denominator

of the left hand side of the above expression can be assumed to be close to 1 and

therefore it can be disregarded. As a result both of the above terms can be replaced

in DIC and DICMLE by the remaining part of the expression on the left hand side,

namely

(1 + a)2+ p
2 :

Observe that the above quantity is now larger than 1 so that the penalty term of the

criterion will be larger for large values of p. Both criteria are adjusted accordingly

and in fact now, they are both given by the same corrected formula (although �̂ is

obtained by di�erent estimating methods), namely

DICc = nQ�̂ + (2�)−
a
2 (1 + a)2+ p

2 p: (3.2.19)

The MLE method and the associated DICMLE and DICc have a number of ad-

vantages. In particular, the MLE method is computationally faster than the Basu

method. This is due to the fact that the MLE method is given in closed form as

opposed to the Basu method which is not in closed form and as a result we rely on a

numerical method to obtain the desired estimator. Such numerical methods are usu-

ally associated with errors which may not be controllable, a feature that makes such

methods unattractive. As a consequence, the MLE method is more accurate than

the Basu method and at the same time satis�es the standard properties required by
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such estimators, namely the consistency and the asymptotic normality. The practical

implications of these two forms of the DIC criterion become evident in Chapter 5

were simulations are performed.

Observe that the DIC criterion consists of two terms. The �rst term, Q�̂, is a biased

estimator of the expected overall discrepancy. As a result, if we choose the model

with the smallest estimator of the expected overall discrepancy we may end up with

a selection with an unnecessarily large number of covariates. The estimator becomes

asymptotically unbiased by introducing the appropriate correction term according to

the estimating method used. The correction term could be viewed also as a penalty

term for too large dimension p.

3.3 Lower Bound of the MSE of Prediction

One of the main issues in model selection is the notion of asymptotic e�ciency [Shi-

bata, 1980; 1981]. The asymptotic e�ciency deals with the selection of a model

with �nitely many variables that provides the best possible approximation of the true

model with in�nity many variables with respect to the mean squared error (MSE) of

prediction. The issue of asymptotic e�ciency is of great interest whenever the object

of the analysis is a model selection that yields a good inference. Here we provide a

lower bound for the mean squared error of prediction. In particular we show that the

MSE of prediction of DIC is never below the so called Average Mean Squared Error

(Average MSE) of prediction. For the evaluation of the MSE the original set of n

observations are used for the estimation of the parameters and the one-step ahead

prediction is used for measuring the accuracy of the selection. Following Shibata's

assumption [Shibata, 1981] in�nitely many independent variables are assumed so that

the design matrix X is a n×∞ matrix.

Let X be the design matrix of the model

Y = Xâ + å

where â = (�0; �1; : : :)′ the vector of unknown coe�cients, å ∼ N(0; �2I) the error

sequence and I the in�nite dimensional identity matrix.
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Let

V (j) =

{
c (j) ; such that c (j) =

(
c0; 0; :::; cj1 ; 0; :::; cjkj ; 0; :::

)′}

be the subspace that contains the kj + 1 parameters involved in the model and let

â(n) =
(
�0; 0; :::; �j1 ; 0; :::; �jkj ; 0; :::

)′

be the projection of â on V (j).

The prediction Ŷ = (Ŷ1; : : : ; Ŷn)′ is given by

Ŷ = Xjâ̂;

where the estimator of â(n) obtained through a set of observations (Xij1 ; : : : ; Xijkj ; Yi),

i = 1; 2; : : : ; n is denoted by

â̂ =
(
�̂0; 0; :::; �̂j1 ; 0; :::; �̂j2 ; 0; :::; �̂jkj ; 0; :::

)′
:

Observe that the design matrix Xj is a n×∞matrix where only the columns j1; : : : ; jkj

have entries di�erent than zero.

The mean squared error (MSE) of prediction (up to a constant) and the average

MSE of prediction are de�ned respectively by

Sn(j) = E
[(

Ŷ −Y |Xj

)′ (
Ŷ −Y |Xj

)]
− n�2

and

Ln(j) ≡ E (Sn(j)) :

We will prove now that the above two quantities take the form given in the following

Lemma.

Lemma 3.3.1. Under the notation and conditions of this section we have that

Sn(j) =
∥∥∥â̂− â

∥∥∥
2

Mn(j)

and

Ln(j) = E
∥∥∥â̂− â

∥∥∥
2

Mn(j)
;

where Mn (j) = X ′
jXj and ‖A‖2

R = A′RA.
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Proof. It is easy to see that

E(Ŷ −Y |Xj )
′(Ŷ −Y |Xj ) = E(Xjâ̂−Xjâ− å|XJ)

′(Xjâ̂−Xjâ− å|XJ)

= E
(
Xj(â̂− â)− å|XJ

)′ (
Xj

(
â̂− â

)
− å|XJ

)

= E
(
(â̂− â)′X′

jXj(â̂− â)

+ å′å− 2å′Xj

(
â̂− â

)
|XJ

)

=
(
â̂− â

)′
X′

jXj

(
â̂− â

)
+ n�2

=
∥∥∥â̂− â

∥∥∥
2

Mn(j)
+ n�2:

The results follow immediately.

The Lemma below provides a lower bound for the MSE of prediction. In particular,

we show that Sn(j) is asymptotically never below the quantity

Ln (j∗) = min
j
Ln(j):

Lemma 3.3.2. Let Ln (j∗) = minj Ln(j). Assume also that for 0 < � < 1

lim
n→∞

∑
j

[(1− �!n (j)) exp (�!n (j))]
kj+1

2 = 0;

where

!n (j) =
Ln (j)

(kj + 1)g (a; kj + 1) �2

and g(a;m) = (1 + a2=(1 + 2a))
m
2

+1. Then, for every 0 < � < 1

lim
n→∞

P
[
Sn (j)
Ln (j∗)

> 1− �
]

= 1:

Proof. For every 0 < � < 1 and for every j and using the fact that

‖â̂− â‖2
Mn(j) = ‖â̂− â(n)‖2

Mn(j) + ‖â(n) − â‖2
Mn(j)Kyri
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we have

P
[
Sn (j)
Ln (j∗)

≤ 1− �
]
≤ P

[
Sn (j)
Ln (j)

≤ 1− �
]

≤
∑
j

P




∥∥∥â̂− â
∥∥∥

2

Mn(j)

Ln (j)
≤ 1− �




=
∑
j

P




∥∥∥â̂− â(n)
∥∥∥

2

Mn(j)
+

∥∥â(n) − â
∥∥2

Mn(j)

Ln (j)
≤ 1− �




=
∑
j

P




∥∥∥â̂− â(n)
∥∥∥

2

Mn(j)
+

∥∥â(n) − â
∥∥2

Mn(j)

Ln (j)
≤ 1− �




=
∑
j

P
[∥∥∥â̂− â(n)

∥∥∥
2

Mn(j)
≤ (1− �)Ln (j)−

∥∥â(n) − â
∥∥2

Mn(j)

]

(3.3.1)

By Theorem 3.2.2 the limiting covariance matrix of n1=2�̂ is a multivariate normal

random variable

Np (�0; g(a; p)Σ) ;

where

g (�; p) =

(
1 +

�2

1 + 2�

)p=2+1

:

Then, in this case we have
∥∥∥â̂− â(n)

∥∥∥
2

Mn(j)
=

(
â̂− â(n)

)′ {
�2g (�; kj + 1) Mn (j)

}−1
(
â̂− â(n)

)
�2g (�; kj + 1)

∼ �2g (�; kj + 1)X 2
kj+1

(3.3.2)

and

Ln(j) = E
∥∥∥â̂− â

∥∥∥
2

Mn(j)

=
∥∥â− â(n)

∥∥2

Mn(j) + E
∥∥∥â̂− â(n)

∥∥∥
2

Mn(j)

=
∥∥â− â(n)

∥∥2

Mn(j) + (kj + 1) g (�; kj + 1) �2:

Using (3.3.2) we have that (3.3.1) is bounded by
∑
j

P
[
X 2
kj+1 ≤ (kj + 1)− �(kj + 1)!n(j)

]

≤
∑
j

[exp (�!n (j)) (1− �!n (j))]
kj+1

2
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where the last inequality follows from the fact that for k > � [see Shibata, 1981]

P
[X 2

k ≤ k − �
] ≤ exp

(
�
2

) (
1− k−1�

) k
2 ≤ exp

(−�2

4k

)
: (3.3.3)

By the assumption of the theorem we get

lim
n→∞

P
[
Sn (j)
Ln (j∗)

≤ 1− �
]

= 0 ⇒

lim
n→∞

P
[
Sn (j)
Ln (j∗)

> 1− �
]

= 1:
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Chapter 4

Goodness of Fit Statistics

4.1 Introduction

It is important to state that model selection criteria are considered as statistics which

could be used for inferential purposes. More speci�cally, any model selection criterion

can be used for making a selection among competing hypotheses. Indeed, consider

a set of candidate models each of which may be the underlying process which the

available data came from. In that sense, each candidate model forms a hypothesis.

Then, each of the competing hypotheses is �tted to the data and the value of the

model selection criterion is computed. In such cases we select among the competing

hypotheses, the one for which the model selection criterion is minimized (for details

see Sakamoto et. al, 1986, Chapter 3).

One of the drawbacks of such a procedure is associated with the fact that the

statistical signi�cance of any di�erence observed in the values of the criterion for the

competing hypotheses cannot be veri�ed or evaluated. As a result, there is a need to

provide a formal hypothesis testing procedure using the measure on which the model

selection criterion is based.

The statistical analysis and in particular the testing of models for discrete multi-

variate data has been given considerable attention during the last 30 years. The books

of Cox (1970), Gokhale and Kullback (1978), Agresti (1984) and Cressie and Read

(1988) are focusing on various aspects of model development. The usual practice is

that the adequacy of a model can be tested by one of the traditional goodness-of-�t

tests, namely the Pearson's X2 or the loglikelihood ratio test. Note that both of these

53

Kyri
ac

os
 M

att
he

ou



54

tests are special cases of the Cressie and Read measure of divergence introduced in

(1.5.5). Indeed in a discrete setting and for � = 1 the Cressie and Read measure

reduces to
m∑
i=1

(pi − qi)2

qi

which multiplied by 2n is the Pearson's X2 test where pi plays the role of the observed

frequency and qi the role of the expected one. Furthermore, the loglikelihood ratio

test statistic (also known as Kullback-Leibler measure, see Lemma 2.2.3)

2n
m∑
i=1

pi log

(
pi
qi

)

can be deduced from the Cressie and Read measure for �→ 0.

In this Chapter we focus on a discrete setting and provide initially the distribu-

tional properties of the estimator of the general BHHJ family of measures which is

shown to be weakly consistent. These results are then used for establishing in Section

4.3 a goodness of �t test for multinomial distributions based on the general BHHJ

family of divergence measures.

4.2 Distributional Properties

De�nition 4.2.1. Let f be a continuous, convex, homogeneous function de�ned on

the set

Sk = {(s1; s2) : 0 < si <∞; i = 1; 2} ;

with continuous derivatives of second order. Then the f-dissimilarity is de�ned to be

da = df (Q;P ) =
m∑
j=1

f (pj; qj)

where pj; qj; j = 1; :::;m are the parameters from the multinomial distributions M (Np; P ),

P = (p1; p2; :::; pm) and M (Nq; Q) ; Q = (q1; q2; :::; qm).

For di�erent functions f we have speci�c dissimilarity measures. For example for

f(p; q) = q1+aΦ(p=q)
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we have the general BHHJ family of measures for a general function Φ while for Φ as

in (1.5.4) we have the discrete BHHJ measure and for Φ = � with � = 0 we have the

Csisz�ar's measure. Observe that the estimator of da is

d̂a = df
(
Q̂; P̂

)
=

m∑
j=1

f (p̂j; q̂j):

For the general BHHJ family of measures the estimator of the f -dissimilarity is

given by

d̂a =
m∑
j=1

q̂1+a
j Φ

(
p̂j
q̂j

)
(4.2.1)

where p̂j =
xj
Np , q̂j =

yj
Nq ; j = 1,:::,m, and X = (x1; ::::; xm) ; Y = (y1; :::; ym) are

random observations from M (Np; P ) and M (Nq; Q) :

Observe that in case one of the two independent distributions is known then the

obvious notation applies, namely

d̂a = df
(
Q; P̂

)
=

m∑
j=1

f (p̂j; qj)

if Q is known and

d̂a = df
(
Q̂; P

)
=

m∑
j=1

f (pj; q̂j)

if P is known.

Distributional properties and goodness of �t tests using measures of divergence

such as Csisz�ar's have been extensively investigated [Zografos et al., 1990; Morales et

al., 1997; Pardo, 1999 etc.]. In what follows we establish the distributional properties

of (4.2.1) and provide approximations of the moments of the estimator of the general

BHHJ family of measures.

Theorem 4.2.1. Given two independent random observations X = (x1; x2; :::; xm)

and Y = (y1; y2; :::; ym) from multinomial distributions M (Np; P ) ; P = (p1; p2; :::; pm)

and M (Nq; Q), Q = (q1; q2; :::; qm) the expected value of d̂a is approximately equal to:

E
(
d̂a

)
= da +

1

2Np

m∑
j=1

pj (1− pj) qa−1
j Φ′′

(
pj
qj

)
+

1

2Nq

m∑
j=1

(1− qj) qaj (p; q; a)+

+o(N−1
p ) + o(N−1

q )
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where da =
m∑
j=1

q1+a
j Φ

(
pj
qj

)
,Φ any function such that Φ′(1) = 0 and Φ′′(1) 6= 0 and

 (p; q; a) = a(a+ 1)Φ

(
pj
qj

)
− 2a

pj
qj

Φ′
(
pj
qj

)
+
p2
j

q2
j
Φ′′

(
pj
qj

)
:

Proof. By Zografos [1987, Theorem 4.2.1, p. 148] we deduce that the expected

value of the estimator of the f -dissimilarity is approximately equal to:

E
(
d̂a

)
= df (Q;P ) +

1

2Np

m∑
j=1

pj (1− pj)
[
f ′′(pj) (pj; qj)

]
+ o(||P̂ − P ||2)

+
1

2Nq

m∑
j=1

qj (1− qj)
[
f ′′(qj) (pj; qj)

]
+ o(||Q̂−Q||2) (4.2.2)

where Q̂ = (q̂1; : : : ; q̂m)′ and P̂ = (p̂1; : : : ; p̂m)′ the estimators of Q and P , f : <2 → <
a function with continuous second order partial derivatives in every point of an open

subset of <2 and

f ′′(si) (s1; s2) =
@2

@s2
i
f (s1; s2) ; i = 1; 2:

Take

f (p; q) = q1+aΦ

(
p
q

)
;

with Φ (·) as in the statement of the theorem. Then using

f ′′(p) (p; q) = qa−1Φ′′
(
p
q

)
and f ′′(q) (p; q) = qa−1 (p; q; a)

in (4.2.2) and the facts that Nq · o(||Q̂−Q||2) = Np · o(||P̂ − P ||2) = oP (1) we obtain

the desired result.

Theorem 4.2.2. Let two independent random observations Xi = (xi1; :::; xim); from

multinomial distributions M (NXi ; Pi) ; where Pi = (pi1; :::; pim) ; i = 1; 2 and another

two independent random observations Yi = (yi1; :::; yim); from multinomial distribu-

tions M (NYi ; Qi) where Qi = (qi1; :::; qim) ; i = 1; 2. Then the covariance of the

estimators of the f -dissimilarities

d̂1a1 =
m∑
j=1

p̂1+a1
2j Φ1

(
p̂1j

p̂2j

)
and d̂2a2 =

m∑
j=1

q̂1+a2
2j Φ2

(
q̂1j
q̂2j

)
;

with Φi(u), i = 1; 2 any functions such that Φ′
i(1) = 0 and Φ′′

i (1) 6= 0, i = 1; 2, is
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asymptotically equal to:

Cov
(
d̂1a1 ; d̂2a2

)
=

∑
i;j

pa1
2i q

a2
2j

{
Φ′

1

(
p1i

p2i

)
Φ′

2

(
q1j
q2j

)
Cov (p̂1i; q̂1j)

+ Φ′
1

(
p1i

p2i

)[
(1 + a2)Φ2

(
q1j
q2j

)
− q1j
q2j

Φ′
2

(
q1j
q2j

)]
Cov (p̂1i; q̂2j)

+ Φ′
2

(
q1j
q2j

)[
(1 + a1)Φ1

(
p1i

p2i

)
− p1i

p2i
Φ′

1

(
p1i

p2i

)]
Cov (p̂2i; q̂1j)

+

[
(1 + a1)Φ1

(
p1i

p2i

)
− p1i

p2i
Φ′

1

(
p1i

p2i

)]
×

×
[
(1 + a2)Φ2

(
q1j
q2j

)
− q1j
q2j

Φ′
2

(
q1j
q2j

)]
Cov (p̂2i; q̂2j)

}
+RN ;

where RN = o(N−1) assuming that NXi = NYi = N , ∀i.

Proof. The �rst order Taylor expansions of the estimators

d̂f1 =
m∑
j=1

f1 (p̂1j; p̂2j) and d̂f2 =
m∑
j=1

f2 (q̂1j; q̂2j)

of the dissimilarities

df1(Q;P ) =
m∑
j=1

f1 (p1j; p2j) and df2(Q;P ) =
m∑
j=1

f2 (q1j; q2j)

are given by

d̂f1 = df1(Q;P ) +
2∑
i=1

m∑
j=1

(p̂ij − pij)f1;(i) (p1j; p2j) + o(||P̂ − P ||)

and

d̂f2 = df2(Q;P ) +
2∑
i=1

m∑
j=1

(q̂ij − qij)f2;(i) (q1j; q2j) + o(||Q̂−Q||);

where p̂ij =
xij
NXi

; q̂ij =
yij
NYi

; i = 1; 2; j = 1; 2; :::;m; and

fk;(s) (w1; w2) =
@
@ws

fk (w1; w2) ; k; s = 1; 2:

By Zografos [1987, Theorem 4.2.2, p. 150] we have that the covariance of the

above estimators is equal to:

Cov
(
d̂f1 ; d̂f2

)
=

2∑
i;v=1

m∑
j;�=1

f1;(i) (p1j; p2j)f2;(v) (q1�; q2�)Cov (p̂ij; q̂v�) +RN ;

where RN the remainder term. The theorem is derived by using

f1 (p1; p2) = p1+a1
2 Φ1

(
p1

p2

)
; f2 (q1; q2) = q1+a2

2 Φ2

(
q1
q2

)
;
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fk;(1) (w1; w2) =
@
@w1

fk (w1; w2) = wa
2
Φ′
k

(
w1

w2

)
; k = 1; 2;

fk;(2) (w1; w2) =
@
@w2

fk (w1; w2)

= wa
2

[
(1 + ak) Φk

(
w1

w2

)
− w1

w2

Φ′
k

(
w1

w2

)]
; k = 1; 2:

with Φ1 (u) and Φ2 (u) as in the statement of the theorem.

Without loss of generality assume that NXi = NYi = N , ∀i. It is easily seen that

with the use of the relations

o(
√
N)o(

√
N) = o(N−1); o(N−1) + o(N−1) = o(N−1)

||P̂ − P || = ||Q̂−Q|| = OP (N−1=2) and o(OP (N−1=2)) = o(N−1=2);

the remainder term turns out to be equal to o(N−1).

Corollary 4.2.2. Given two independent random observations X = (x1; :::; xm) and

Y = (y1; :::; ym) from multinomial distributions M (Np; P ) ; P = (p1; :::; pm) and

M (Nq; Q) ; Q = (q1; :::; qm), the variance of the estimator d̂a of the f -dissimilarity

da is asymptotically equal to:

V ar
(
d̂a

)
=

1

Np

m∑
j=1

pjq2a
j

[
Φ′

(
pj
qj

)]2

− 1

Np

[
m∑
j=1

pjqajΦ
′
(
pj
qj

)]2

+
1

Nq

m∑
j=1

qjq2a
j

[
(1 + a)Φ

(
pj
qj

)
− pj
qj

Φ′
(
pj
qj

)]2

− 1

Nq

[
m∑
j=1

qjqaj
(
(1 + a)Φ

(
pj
qj

)
− pj
qj

Φ′
(
pj
qj

))]2

+ o(N−1
p ) + o(N−1

q ):

Proof. It follows immediately from the previous theorem since for

p1j = q1j ≡ pj; p2j = q2j ≡ qj; Φ1 = Φ2 and a1 = a2

the covariance reduces to the variance of the estimator d̂a.

This section ends with the consistency property of the proposed estimator d̂a.

Corollary 4.2.3. Let two independent random observations X = (x1; :::; xm) and

Y = (y1; :::; ym) from multinomial distributions M (Np; P ) ; P = (p1; :::; pm) and

M (Nq; Q) ; Q = (q1; :::; qm). Then the estimator d̂a is a weakly consistent estima-

tor of the f -dissimilarity da.
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Proof. The result follows immediately from Theorem 4.2.1 and Corollary 4.2.2 since,

as Nq →∞ and Np →∞,

E
(
d̂a

)
→ da and V ar

(
d̂a

)
→ 0:

4.3 Goodness of Fit Tests

If we have to examine whether the data (n1; n2; :::; nm) come from a multinomial

distribution M (N;P0) ; where P0 = (p10; p20; :::; pm0) and N =
m∑
i=1

ni, a well known

test statistic is the chi-square goodness of �t test statistic. We de�ne now for any

function Φ such that Φ′(1) = 0 and Φ′′(1) 6= 0, a new statistic for the above goodness

of �t test:

X2
a ≡

2N
(
d̂a − Φ (1)

m∑
i=1

p1+a
i0

)

Φ′′ (1)
(4.3.1)

which for Φ (u) as in (1.5.4) constitutes the test statistic associated with the BHHJ

divergence. Observe that for the purpose of goodness of �t tests we use

d̂a =
m∑
i=1

qi1+aΦ

(
p̂i
qi

)

with qi = pi0:

In what follows we establish the asymptotic distribution of the estimator d̂a (Corol-

lary 4.3.1) and the test statistic (4.3.1) (Theorem 4.3.2).

Theorem 4.3.1. Let g : <k → < a function of the form

g (x1; x2; :::; xm) =
m∑
i=1

q1+a
i Φ (xi=qi);

with Φ (u) any function such that Φ′(1) = 0 and Φ′′(1) 6= 0 and qi known. Then

√
N [g (p̂1; :::; p̂m)− g (p1; :::; pm)]

L−→ N
(
0; �2

a
)

where

�2
a =

{
m∑
j=1

pj
[
qajΦ

′
(
pj
qj

)]2

−
[

m∑
j=1

pjqajΦ
′
(
pj
qj

)]2




and p̂i = xi
N ; i = 1; ::;m.
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Proof. Since X = (x1; x2; :::; xm) is a random observation from the multinomial

distribution M (N;P ) ; P = (p1; p2; :::; pm) and p̂i = xi
N ; i = 1; ::;m it follows that

(see, e.g. Ser
ing, 1980, p. 108-109),

√
N (p̂1 − p1; p̂2 − p2; :::; p̂m − pm)

L−→ N (0;Σ) ;

where the variance-covariance matrix is given by Σ = [�ij]mxm ;

�ij =





pi (1− pi) ; i = j

−pipj; i 6= j

The theorem is derived by applying the well known Delta method to the case

under investigation (for a similar result see Rao, 1973, p. 387) with

�2
a =

m∑
i=1

m∑
j=1

�ij
@g
@pi

@g
@pj

;

where
@g
@pk

= qakΦ
′ (pk=qk); k = 1; 2; : : : ;m:

Indeed, in this case we have

�2
a =

m∑
i=1

pi(1− pi)
[
qai Φ

′
(pi
qi

)]2

−
∑∑

i6=j
pipj

[
qai Φ

′
(pi
qi

)][
qajΦ

′
(pj
qj

)]

=
m∑
i=1

pi
[
qai Φ

′
(pi
qi

)]2

−
m∑
i=1

p2
i

[
qai Φ

′
(pi
qi

)]2

−
∑∑

i6=j
pipj

[
qai Φ

′
(pi
qi

)][
qajΦ

′
(pj
qj

)]

and the result is immediate.

Corollary 4.3.1. Let da as in (1.5.6) and any function Φ such that Φ′(1) = 0 and

Φ′′(1) 6= 0 with qi ≡ pi0; i = 1; : : : ;m. Then

√
N

[
d̂a − da

]
L−→ N

(
0; �2

a
)

where

�2
a =





m∑
j=1

pj
[
paj0Φ

′
(
pj
pj0

)]2

−
[

m∑
j=1

pjpaj0Φ
′
(
pj
pj0

)]2




and

d̂a =
m∑
i=1

p1+a
i0

Φ

(
p̂
i

pi0

)
:
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Proof. It follows immediately from the previous theorem.

We provide below the de�nition of the usual stochastic ordering which is used in

Theorem 4.3.2 where the asymptotic distribution of the test statistic (4.3.1) under

the null hypothesis H0 : pi = pi0; i = 1; :::;m is established.

De�nition 4.3.2. Let X and Y continuous random variables with cdfs F and G. Let

F−1 and G−1 the inverses and F̄ = 1− F and Ḡ = 1−G the corresponding survival

functions. X is said to be smaller than Y in the usual stochastic order X ≺st Y if

F̄ (x) ≤ Ḡ(x) ∀x ∈ R:

Also X ≺st Y i� F−1(p) ≤ G−1(p); p ∈ (0; 1).

Theorem 4.3.2. Let (n1; ::::; nm) ∼ M (N;P ) with P = (p1; :::; pm) and pi; i =

1; :::;m unknown parameters. Under the null hypothesis H0 : pi = pi0; i = 1; :::;m we

have:

•
(
min
i
pai0

) m∑
i=1

N
pi0

(ni
N − pi0

)2 ≺st

m∑
i=1

Npai0
pi0

(ni
N − pi0

)2 ≺st

(
max
i
pai0

) m∑
i=1

N
pi0

(ni
N − pi0

)2

• X2
a −

m∑
i=1

Npai0
pi0

(ni
N − pi0

)2 P−→ 0 and

• the distribution of (4.3.1) is estimated to be approximately cX 2
m−1, where

c =
min
i
pa
i0

+ max
i
pa
i0

2
;

X 2
m−1 is the chi-square distribution with m− 1 degrees of freedom and ≺st the symbol

for stochastic ordering.

Proof. The Taylor expansion of Φ in an open ball Âå(pi=pi0) of radius å around the

point pi=pi0; i = 1; 2; :::;m; is given by:

Φ

(
p̂i
pi0

)
=Φ

(
pi
pi0

)
+

(
p̂i
pi0

− pi
pi0

)
Φ′

(
pi
pi0

)

+
1

2

(
p̂i
pi0

− pi
pi0

)2

Φ′′
(
pi
pi0

)
+ o

((
p̂i
pi0

− pi
pi0

))2

:

Multiplying both sides of the above relation by Np1+a
i0 , and taking the sum of both
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sides for i = 1; 2; :::;m we get

m∑
i=1

Np1+a
i0 Φ

(
p̂i
pi0

)
=

m∑
i=1

Np1+a
i0 Φ

(
pi
pi0

)
+

m∑
i=1

Np1+a
i0

(
p̂i
pi0

− pi
pi0

)
Φ′

(
pi
pi0

)

+
1

2

m∑
i=1

Np1+a
i0

(
p̂i
pi0

− pi
pi0

)2

Φ′′
(
pi
pi0

)

+
m∑
i=1

Np1+a
i0 o

((
p̂i
pi0

− pi
pi0

))2

:

which for pi = pi0 becomes:

Nd̂a −NΦ (1)
m∑
i=1

p1+a
i0 − 1

2
Φ′′ (1)

m∑
i=1

Npai0
pi0

(ni
N
− pi0

)2

= N
m∑
i=1

pai0
(ni
N
− pi0

)
Φ′(1) +

m∑
i=1

N
pai0
pi0
o((p̂i − pi0))2:

(4.3.2)

where p̂ = (n1=N; : : : ; nm=N)′ and p0 = (p10; : : : ; pm0)
′. But

m∑
i=1

N
pai0
pi0
o((p̂i − pi0))2 6 max

i

{
pai0
pi0

} m∑
i=1

No((p̂i − pi0))2

= max
i

{
pai0
pi0

}
·N · o(||p̂− p0||)2 = oP (1)

(4.3.3)

since
√
N(p̂− p0)

L−→ N(0;Σ)

where Σ as in the proof of Theorem 4.3.1 (see Ser
ing, 1980, p. 108-109). From

(4.3.2) and (4.3.3) we conclude that

2N
(
d̂a − Φ (1)

m∑
i=1

p1+a
i0

)

Φ′′ (1)
−

m∑
i=1

Npai0
pi0

(ni
N
− pi0

)2
P−→ 0:

Observe that
(

min
i
pai0

) m∑

i=1

N
pi0

(ni
N
− pi0

)2

≺st

m∑

i=1

Npai0
pi0

(ni
N
− pi0

)2

≺st

(
max
i
pai0

) m∑

i=1

N
pi0

(ni
N
− pi0

)2

:

The estimation of the distribution follow from the fact that as N → ∞ (Ser
ing,

1980, page 122, example B)

m∑
i=1

N
pi0

(ni
N
− pi0

)2
L−→ X 2

m−1:
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Observe that in the theorem above we assume that Φ′(1) = 0. This assumption

is necessary if the test statistic used is the one given by (4.3.1). It is easy to see

and it will be evident immediately after the Theorem 4.3.4 that this assumption is

satis�ed not only for the discrete BHHJ measure but also for all measures covered

by the Csisz�ar's family of measures. If though one selects a function Φ which does

not satisfy this assumption then the appropriate test statistic has to be de�ned. It

is not di�cult to see that in such a case (4.3.2) is the main expression a�ected since

the �rst term on the right hand side of the expression does not vanish. The resulting

test statistic will be given by

Ψ2
a ≡

2N
(
d̂a − Φ (1)

m∑
i=1

p1+a
i0

−∑m
i=1 p

a
i0

(ni
N − pi0

)
Φ′(1)

)

Φ′′ (1)
: (4.3.4)

It should be noted though that for values of a close to zero the last term in the

numerator of (4.3.4) vanishes since
m∑
i=1

pai0
(ni
N
− pi0

)
≈ 0:

Theorem 4.3.3. The power of the test

H0 : pi = pi0 vs Ha : pi = pib; i = 1; :::;m

using the test statistic (4.3.1) is approximately equal to:


a = P


Z ≥

Φ′′ (1) cX 2
m−1;� + 2NΦ (1)

m∑
i=1

p1+a
i0

− 2Nda

2
√
N�a


 (4.3.5)

where Z a standard Normal random variable, Xm−1;� the (1 − �)−percentile of the

X 2
m−1 distribution, and

�2
a =

m∑
i=1

pib
[
pai0Φ

′
(
pib
pi0

)]2

−
[

m∑
i=1

pibpai0Φ
′
(
pib
pi0

)]2

:

Proof. By de�nition, the power is given by


a = P
(

X2
a ≥ cX 2

m−1;�

∣∣∣pi = pib; i = 1; :::;m
)

= P


d̂a ≥

Φ′′ (1) cX 2
m−1;� + 2NΦ (1)

m∑
i=1

p1+a
i0

2N

∣∣∣pi = pib; i = 1; :::;m


 :
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From Corollary 4.3.1 with pj = pjb; j = 1; :::;m, we have

√
N

[
d̂a − da

]

�a
L−→ N (0; 1) :

The result is immediate.

Note that for the BHHJ test corresponding to the measure given in (1.5.6) and

(1.5.4) we have

Φ′′ (1) = 1 + a and Φ(1) = Φ′ (1) = 0

so that the BHHJ statistic corresponding to the goodness of �t test of Theorem 4.3.2

is given by

X2
a ≡

2Nd̂a
1 + a

(4.3.6)

while its power is given by


a = P
(
Z ≥ (1 + a)cX 2

m−1;� − 2Nda
2
√
N�a

)
: (4.3.7)

Note also that the Csisz�ar's statistic corresponding to the goodness of �t test of

Theorem 4.3.2 is given by

X2
c ≡

2N
(
d̂c − ' (1)

)

'′′ (1)
(4.3.8)

while its power is given by


c = P
(
Z ≥ '′′ (1)X 2

m−1;� + 2N' (1)− 2Ndc
2
√
N�a

)
; (4.3.9)

where

dc =
m∑
i=1

pi0' (pi=pi0) and d̂c =
m∑
i=1

pi0' (p̂i=pi0) :

For the usual Kullback-Leibler, Kagan and Cressie and Read measures we can easily

see that

'(1) = 0 and '′′ (1) = 1

so that the power is simpli�ed into the form


c = P
(
Z ≥ X 2

m−1;� − 2Ndc
2
√
N�

)
(4.3.10)
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where

�2 =
m∑
i=1

pib
[
'′

(
pib
pi0

)]2

−
[

m∑
j=1

pib'′
(
pib
pi0

)]2

and

'′(x) = log x (Kullback − Leibler);

'′(x) = x− 1 (Kagan);

'′(x) =
1

�
(x� − 1) (Cressie and Read):

For the square of the Matusita measure it is not di�cult to provide the appropriate

expressions for the test statistic and the power since we can easily see that

'(1) = 0; '′(x) = 1− x−1=2 and '′′(1) =
1

2
:

We turn now to a special type of alternative hypothesis for multinomial popula-

tions. Suppose that the null hypothesis indicates that pi = pi0, i = 1; 2; : : : ;m when

in fact it is pi = pin, ∀i. As it is well known if pi0 and pin are �xed then as n tends

to in�nity then the power of the test tends to 1. In order to examine the situation

when the power is not close to 1, we must make it continually harder for the test as

n increases. This can be done by allowing the alternative hypothesis steadily closer

to the null hypothesis. As a result we de�ne a sequence of alternative hypotheses as

follows

H1;n : pi = pin = pi0 + di=
√
n; ∀i (4.3.11)

which is known as Pitman transition alternative or Pitman (local) alternative or local

contiguous alternative to the null hypothesis H0 : pi = pi0. In vector notation the

local contiguous alternative takes the form

H1;n : p = pn = p0 + d=
√
n

and the null the form

H0 : p = p0

where p = (p1; : : : ; pm)′, pn = (p1n; p2n; : : : ; pmn)′, and d = (d1; : : : ; dm)′ is a �xed

vector such that
∑m

i=1 di = 0. Observe that as n tends to in�nity the local contiguous

alternative converges to the null hypothesis at the rate O(n−1=2).

We de�ne now the noncentral chi-square distribution.
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De�nition 4.3.3. If X1; : : : ; Xm are independent random variables with Xi ∼ N(�i; 1),

the distribution of
∑m

i=1X
2
i is noncentral chi-square with m degrees of freedom and

noncentrality parameter � =
∑m

i=1 �
2
i . In matrix notation we say that if X ∼ N(�; I)

then X ′X ∼ X 2
m;�, with � = �′� where X = (X1; : : : ; Xm)′, � = (�1; : : : ; �m)′ and I the

mxm identity matrix.

The following Lemma from Hunter (2002, p. 72) which will be used later is

presented below without proof. The lemma provides conditions for the noncentral

chi-square distribution but applies also to the chi-square distribution when � is taken

to be 0.

Lemma 4.3.1. Suppose that X ∼ N(�;Q) where Q is a projection matrix of rank

r ≤ m and Q� = �. Then, X ′X ∼ X 2
r;�′�.

In order to derive the asymptotic distribution of the test statistic (4.3.1) under

the local contiguous alternatives Hi;n, observe that when indeed pi = pin, ∀i and p̂i

the maximum likelihood estimator of pi then

√
n

(p̂i − pin)√
pin(1− pin)

L−→ N(0; 1):

Observe also that √
pin
pi0

=

√
1 +

pin − pi0
pi0

=

√
1 +

di√
npi0

which converges to 1 as n→∞. In a similar fashion one can easily show that
√

1− pin
1− pi0

=

√
1− di√

n(1− pi0)

which converges also to 1 as n→∞. As a result

√
n

(p̂i − pin)√
pin(1− pin)

·
√
pin(1− pin)√
pi0(1− pi0)

L−→ N(0; 1)

or equivalently
√
n

(p̂i − pin)√
pi0(1− pi0)

L−→ N(0; 1):

It is easily seen that

√
n(p̂i − pi0) =

√
n(p̂i − pin) +

√
n(pin − pi0)

=
√
n(p̂i − pin) + di:
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Hence, by Slutsky's theorem

√
n(p̂i − pi0)

L−→ N(di; pi0(1− pi0)):

Furthermore, observe that Cov (p̂i − pi0) (p̂j − pj0) = n−1pi0pj0. In conclusion for the

m-dimensional vector parameter we have (see also Ser
ing, 1980, pp. 108-109)

√
n(p̂− pn)

L−→ N(0;Σ)

and
√
n(p̂− p0)

L−→ N(d;Σ)

where p̂ = (p̂1; : : : ; p̂m)′ and Σ as in the proof of Theorem 4.3.1. Let P a diagonal

matrix with diagonal elements the inverses of the elements of the vector p0. Then,

from Theorem 4.3.2 we have
m∑
i=1

N
pi0

(ni
N
− pi0

)2

= N(p̂− p0)
′P (p̂− p0)

=
(√

N
(
P 1=2(p̂− p0)

)′) (√
N

(
P 1=2(p̂− p0)

))

so that by Slutsky's theorem

√
N

(
P 1=2(p̂− p0)

) L−→ N(P 1=2d; P 1=2ΣP 1=2):

Lemma 4.3.1 can now be applied provided that the matrix P 1=2ΣP 1=2 is of rank

m− 1 and that (P 1=2ΣP 1=2) · (P 1=2d) = P 1=2d.

For the �rst condition we have

P 1=2ΣP 1=2 = P 1=2[P−1 − p0p′0]P
1=2 = I − P 1=2p0p′0P

1=2 = I −√p0
√
p0
′

which clearly is symmetric with trace equal to m − 1. The sum of its eigenvalues

is also equal to m − 1 since for symmetric matrices the trace and the sum of the

eigenvalues coincide. Furthermore, since √p0
′√p0 = 1 we have that

(I −√p0
√
p0
′)(I −√p0

√
p0
′) = I − 2

√
p0
√
p0
′ +

√
p0
√
p0
′√p0

√
p0
′ = I −√p0

√
p0
′

and hence, the matrix P 1=2ΣP 1=2 is a projection matrix with implies that its eigen-

values are all equal to 0 or 1. As a result there are m− 1 eigenvalues equal to 1.
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The second condition is easily established since

P 1=2ΣPd = P 1=2[P−1 − p0p′0]Pd = P 1=2[d− p0(1)′d]

where the second term vanishes since (1)′d =
∑m

i=1 di = 0, Σ = P−1−p0p′0 the covari-

ance matrix appearing in the proof of the Theorem 4.3.1 and (1) an m-dimensional

vector with elements equal to 1.

As a result, in contrast to the chi-square distribution derived in Theorem 4.3.2,

here and as N → ∞ and under the local contiguous alternative hypotheses Hi;n we

observe the non-central distribution, namely

m∑
i=1

N
pi0

(ni
N
− pi0

)2
L−→ X 2

m−1;�;

where the noncentrality parameter � is given by

� = (P 1=2d)′P 1=2d = d′Pd

=
m∑
i=1

d2
i

pi0
:

The following theorem summarizes the above discussion:

Theorem 4.3.4. The asymptotic distribution of the test statistic given in (4.3.1)

under the local contiguous alternative hypotheses (4.3.11), is cX 2
m−1;� where c =

min
i
pa
i0

+max
i
pa
i0

2
and X 2

m−1;� is the noncentral chi-square distribution with m− 1 degrees

of freedom and noncentrality parameter given by � =
∑m

i=1
d2i
pi0

.

Following the above theorem the power of the test under the local contiguous

alternative hypotheses (4.3.11) is given by


n = P (X2
a > cX 2

m−1;�|pi = pin; i = 1; :::;m) = P (cX 2
m−1;� > cX 2

m−1;�)

= P (X 2
m−1;� > X 2

m−1;�): (4.3.12)

Note that the corresponding power of the above test using the Csisz�ar's statistic

(4.3.8) is given by exactly the same formula, namely


n = P (X2
c > X 2

m−1;�|pi = pin; i = 1; :::;m) = P (X 2
m−1;� > X 2

m−1;�): (4.3.13)
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Chapter 5

Simulations

5.1 Model Selection

In order to check the performance of the DIC criterion proposed in Section 3.2 we

performed a simulation study using

• the Divergence Information Criterion DIC

• The corrected DICc based on the MLE method

• the Akaike Information Criterion AIC

• the Bayesian Information Criterion BIC

• the AIC for small sample sizes and

• the AIC with the estimator of the variance obtained by the minimization of the

BHHJ measure.

The simulation study has the following characteristics. 50 observations of 4 vari-

ables X1; X2; X3; X4 were independently generated from the normal distributions

N(0; 3); N(1; 3); N(2; 3) and N(3; 3) correspondingly. Correlation coe�cients be-

tween these variables were less than 0.13 (in absolute values) in all cases. The �rst 2

of these variables was planned to be used to generate values of Yi, i = 1; : : : ; 50 using

the following model speci�cation:

Yi = a0 + a1X1;i + a2X2;i + "i

69
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with

a0 = a1 = a2 = 1 and "i ∼ N(0; 1):

Due though to contamination of the above model by 10% from the model

Yi = 1 +X1;i +X2;i + "∗i

with "∗i ∼ N(5; 1) the simulated values were generated from the model

Yi = 0:9(1 +X1;i +X2;i + "i) + 0:1(1 +X1;i +X2;i + "∗i ):

The reason for introducing contamination into the simulation study was to put into a

test the robust features of the DIC criterion. In other words, we wanted to force the

DIC to perform to the fullest extent and activate its prime feature according to which

when a > 0, observations signi�cantly discrepant with respect to the model get an

almost zero weight and therefore their contribution to the �nal selection is minimal.

With a set of 4 possible regressors there are 24−1 = 15 possible speci�cations that

include at least one regressor. These 15 possible regression speci�cations constitute

the set of candidate models for the experiment. As a result the candidate set consists

of the full model (X1; X2; X3; X4) given by

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + "

as well as all 14 possible subsets of the full model consisting of one (Xj1), two

(Xj1 ; Xj2) and three (Xj1 ; Xj2 ; Xj3), with ji ∈ {1; 2; 3; 4}; i = 1; 2; 3 of the 4 regressors

X1; X2; X3; X4. 50 such experiments were performed with the intention to select the

best model among the available candidate models.

Recall that the construction of DIC is similar in spirit to the construction of AIC

since they are both established by obtaining an unbiased estimator of the overall dis-

crepancy. Furthermore, the consistency property of BIC makes it a highly applicable

criterion. As a result it is highly desirable to compare the three criteria in terms of

their performance. Besides the standard AIC criterion two more variations of AIC

have also been included in the analysis.

First we consider the standard AIC criterion given by

AIC = n log �̂2
p + 2 (p+ 2)
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where n the sample size, p the number of variables of the model and �̂2
p the estimate

of the variance of the model with p variables.

We also consider the corrected AIC criterion introduced by Hurvich and Tsai

(1989) and used in small sample situations. The corrected AIC is given by

AICc = n log �̂2
p +

n(n+ p+ 1)

n− p− 3
:

Another variant of the AIC criterion used in the simulations is the one given by

AICa = n log �̂2
p;a + 2 (p+ 2)

where �̂2
p;a is the estimator of the variance �2

p;a of the model with p variables which

is obtained by the minimization of the BHHJ measure. Note that there is no closed

form for the estimators of the parameters but they are computed by using numerical

methods to solve the estimating equations

1

n

n∑
i=1

uè (Xi)faè (Xi)−
∫
uè (z)f 1+a

è (z) dz = 0

where uè (z) = @ log fè(z)
@è and è = (b0; : : : ; bp; �2

p;a), p = 1; 2; 3; 4. AICa is evaluated for

a = 0:01; 0:05 and 0:10.

From the various Bayesian approaches we have chosen to include in the simulations

the Bayesian Information Criterion (BIC, Schwarz, 1978) because of its consistency

property. The BIC is given by

BIC = n log �̂p2 + (p+ 2) log n:

Finally the DIC is used with both corrected and uncorrected penalty terms and

with both estimating methods, namely the Basu and the MLE methods. The original

DIC (uncorrected) based on the Basu method, is used with index a = 0:01; 0:05 and

0:10 and the corrected DICc based on the MLE method, with a = 0:01; 0:05; 0:10 and

0:15. To make the notation precise we will be using in the sequel DICMLE
c in place

of DICc. Recall that the formulas of the DIC criterion are given by

DIC = nQ�̂ + (a+ 1) (2�)−
a
2

(
1 + a
1 + 2a

)1+ p
2

p

and

DICMLE
c = nQ�̂ + (2�)−

a
2 (1 + a)2+ p

2 p:
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For each of the 50 experiments the value of each of the above model selection

criteria was calculated for each of the 15 possible regression speci�cations under con-

sideration. As a result, for each of the 50 experiments and for each model selection

criterion the 15 candidate models were ranked from 1st to 15th according to the

value of the criterion. Recall that the model chosen by a criterion is the one for which

the value of the criterion is the lowest among all 15 candidate models. Table 5.1

presents for each selection criterion, the proportion of times each candidate model

has been selected by the criterion. Notice that only 4 of the 15 candidate models

have been ranked 1st and therefore selected, namely the true model (X1; X2), and

the "larger" models (X1; X2; X3), (X1; X2; X4) and (X1; X2; X3; X4). Obviously, all

selections contain the correct variables of the model, namely X1 and X2.

Observe that the DIC criterion selects the true model in all instances where the

AIC criterion succeeds, that is 80% of the cases. The AICc has a higher success rate

(88%) which could be attributed to the relative small sample size used (n=50). The

AIC criterion with index a has the smaller rate of success (less than 80%). In fact

observe that the larger the value of the index a the worse the performance of the

resulting criterion.

On the other hand both BIC and DICMLE
c with a = 0:15 have the best selection

rate (96%) among all competing selection criteria. It should be noted that for DIC

the selection rate improves as a tends to 0 while for DICMLE
c the rate improves as a

increases up to a maximum value. This behavior is due to the di�erent form of the

correction term. Indeed, DIC decreases as a function of the index a while DICMLE
c

is an increasing function of a. As a result and as a (and p) increases, the DICMLE
c

criterion puts a heavier penalty in large models (in models where the dimension p

of the parameter is large) and therefore for too large values of a (and p) we end up

underestimating the true model.

The performance of DICMLE
c seems to be superior than that of DIC not only

because of its higher rate of success but also because it is based on the MLE method

which is computationally faster than the Basu method since the former is provided in

closed form while the latter relies on a numerical method for obtaining the required
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estimator.

In conclusion, the DIC expresses a good medium sample size performance which

is comparable to the traditional AIC criterion while the DICMLE
c is very powerful

and comparable to BIC.
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Table 5.1: Proportion of the selected models by model selection criteria (n=50)
Criteria Variables % Variables % Variables %

AIC AIC X1; X2 80 X1; X2; X4 20 * *

AICc X1; X2 88 X1; X2; X4 12 * *

BIC BIC X1; X2 96 X1; X2; X4 4 * *

AICa AIC0:01 X1; X2 80 X1; X2; X4 16 X1; X2; X3 4

AIC0:05 X1; X2 76 X1; X2; X4 16 X1; X2; X3 8

AIC0:10 X1; X2 68 X1; X2; X4 16 X1; X2; X3 or

X1; X2; X3; X4 16

DIC DIC0:01 X1; X2 80 X1, X2, X4 20 * *

DIC0:05 X1; X2 76 X1, X2, X4 20 X1; X2; X3 4

DIC0:10 X1; X2 72 X1, X2, X4 16 X1; X2; X3 or

X1; X2; X3; X4 12

DICMLE
c DIC0:01 X1; X2 80 X1, X2, X4 20 * *

DIC0:05 X1; X2 80 X1, X2, X4 20 * *

DIC0:10 X1; X2 88 X1, X2, X4 12 * *

DIC0:15 X1; X2 96 X1, X2, X4 4 * *
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5.2 Goodness of Fit Tests

For checking the accuracy of the proposed BHHJ test of Section 4.3 theoretical and

simulated results using trinomial distributions are obtained in the present section. In

particular and in order to understand the behavior of the BHHJ test we compare it

with four other tests, namely the goodness of �t tests based on

• the Kullback-Leibler measure (KL),

• the Kagan measure,

• the Matusita measure (Mat) and

• the Cressie and Read measure with � = 2=3 (CR).

The proposed BHHJ goodness of �t test is applied for three di�erent values of the

index a, namely for a = 0:01; 0:05 and 0:10. Both the power and the type I error

are investigated. For the theoretical (asymptotic) power formulas (4.3.7), (4.3.9) and

(4.3.10) are used. For the simulated results for both the power and the type I error

of the test the sample size from the trinomial distribution used is equal to 150 and

a number of 10000 simulations have been created. The large number of simulations

is explained by the fact that the theoretical power was required to be checked for

accuracy. The following null hypothesis is assumed

H0 : p10 = 0:2; p20 = 0:6; p30 = 0:2:

The various alternatives used are presented in Table 5.2 (p3b is omitted since
∑3

i=1 pib =

1).

In Table 5.2 the theoretical powers of the above tests are presented along with

the powers based on the simulated study. Table 5.2 provides also for comparative

purposes the theoretical power calculated by equation (4.3.13) of the test under the

local contiguous alternative hypotheses. This technique is used with n = 150 under

the alternative hypothesis H1 : pi = pib, i = 1; : : : ;m which is viewed as a contiguous

alternative with

d =
√
n(p1b − p10; p2b − p20; p3b − p30)

′:
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This test with the above alternative will be refer to in the sequel as Test with

Contiguous Alternatives and denoted by TCA in Table 5.2.

Table 5.2 compares the central values of the BHHJ test with a = 0:01; 0:05 and

0:10 and the 4 competing tests while Table 5.4 provides the results for the BHHJ test

for a = 0:01 (only the central BHHJ-C value is provided), a = 0:05 and a = 0:10.

Observe that in the case of the BHHJ statistic Table 5.4 provides the asymptotic

power of the test (BHHJ-C) as well as the upper (BHHJ-U) and lower (BHHJ-L)

limits of the asymptotic power as they can be deduced from Theorem 4.3.2.

The tables provide the probabilities for the former case while for the latter the

tables provide the number of times (out of 10000) the null hypothesis is rejected.

The results from the power calculations reveal a number of conclusions which are

stated below:

• It can be easily seen that the simulated results are much better that the the-

oretical ones for all 5 competing tests. This observation indicates that these

power approximations all of which are based on the normal distribution, are

not the best possible.

• The theoretical and simulated results for the Kagan test represent also the

corresponding results for the Pearson's chi-square test since the two tests are

identical. Recall that the theoretical power for all 4 competing tests in Table

5.2 were calculated using equations (4.3.7) and (4.3.9). The inclusion in our

analysis of the Test with Contiguous Alternatives is due to our e�ort to com-

pare the results, both theoretical and simulated, of the 4 competing tests to the

theoretical results based on the theory of contiguous alternatives. Note that the

equations for the evaluation of the power of the Test with Contiguous Alterna-

tives given by (4.3.12) and (4.3.13) imply that the power using this technique

is exactly the same irrespectively of the form of the function Φ and the value

of the index � used in (4.3.1). It seems that in almost all cases the power theo-

retical results of the Test with Contiguous Alternatives are closer to the power

simulated results obtained by each of the 4 competing tests.
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• The BHHJ statistic performs in simulations better than the Kullback-Leibler

statistic irrespectively of the alternative hypothesis. Note that this is also evi-

dent from the theoretical calculations.

• The BHHJ test performs better than all other tests for all alternatives that are

not far away from the null hypothesis. On the other hand it performs as good

as all other tests for all alternatives that are far away from the null hypothesis.

• Both the theoretical and the simulated results show that the Matusita and the

BHHJ tests have a very similar behavior and in most cases are the most powerful

tests among the ones examined. Both tests behave well for alternatives close to

the null hypothesis and better than the Kullback-Leibler test. This observation

indicates that the BHHJ test, as well as the Matusita test, is able to distinguish

between null and alternative hypotheses when they are very close.

• Recall that for the BHHJ statistic the central as well as the upper (BHHJ-U)

and lower (BHHJ-L) bounds of the power are provided for both the simulated

and the theoretical calculations in Table 5.4. It should be noted that the lower

bound depends on the smaller of the probabilities pi0 of the null multinomial

distribution while the upper bound depends on the larger of these probabilities.

Note though that for values of a close to zero (as it is the case in most appli-

cations) the corresponding quantities involved in the evaluation of the bounds,

namely min pai0 and max pai0 are equal to a value not far from 1 and consequently

the associated bounds are not far from the central value BHHJ-C. Finally note

that besides the average value proposed in Theorem 4.3.2 we could easily use

for the evaluation of the power of the BHHJ test, the middle value (the me-

dian value) of the probabilities of the multinomial distribution under the null

hypothesis.

• Finally observe that the larger the value of a the smaller the power of the BHHJ

test and the larger the range between the upper and the lower limits of the power

of the BHHJ test.
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Simulations have also been used to evaluate the type I error of the proposed BHHJ

test. The results presented in Table 5.3 and in Table 5.5 for various null hypotheses

in the case of the trinomial distribution show that all tests perform quite well with

sizes around the typical 5% level. Observe that in this case the larger the value of

the index a for the BHHJ test statistic the smaller the type I error (in the expense

of smaller power).

Since all tests do not have the correct size, it is desirable to make the necessary

power adjustment in order to compare properly the competing tests. One of the

graphical methods used for comparing the power of competing tests is the so called

size-power curve. These curves are constructed using empirical distribution functions

(EDF), one for an experiment where the null is true and one for an experiment where

the null is false. Let F1(x) and F2(x) the two EDFs evaluated at pre-chosen points

x1; : : : ; xn. F1(x) is the probability of getting a P-value less than x under the null.

Similarly, F2(x) is the corresponding probability under the alternative. Tracing the

locus (F1(x); F2(x)) inside the unit square as x varies from 0 to 1 we generate the

size-power curve with a correct size-adjusted basis. The purpose of including the

same points xi; i = 1; : : : ; n is the reduction of the experimental error. Note that the

method of size-power curve has been introduced by Wilk and Gnanadesikan (1968).

We have included in the manuscript only 2 power-size curves. Fig. 5.1 corresponds

to an alternative neither very close to the null nor far away from the null. More

speci�cally, the test corresponding to Fig. 5.1 is

H0 : p1 = 0:2; p2 = 0:6; p3 = 0:2

vs:

H1 : p1 = 0:2; p2 = 0:7; p3 = 0:1:

Fig. 5.2 corresponds to an alternative very close to the null hypothesis and is selected

to show that there are cases where there is not clear advantage in using one instead

of another test. The test corresponding to Fig. 5.2 is

H0 : p1 = 0:2; p2 = 0:6; p3 = 0:2

vs:
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H1 : p1 = 0:25; p2 = 0:60; p3 = 0:15:

The results clearly indicate that when the power is adjusted for size then the

proposed BHHJ test retains its superiority being the most powerful among the 6

competing tests although there are cases (very close to the null hypothesis) where all

tests perform equally well. It is interesting to note that Matusita's statistic performs

quite well coming second after the BHHJ statistic. On the other hand though the

Kagan's test (i.e. the Pearson's X2 test) and the Cressie and Read test for � = 2=3

have the worst performance among the 6 competing tests which puts into question

the hypothesized superiority of these two tests (Cressie and Read, 1988, Chapters 5

and 6). Further investigation is required though to verify such a claim.
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Figure 5.1: Power vs. Size curves for the comparison of competing tests (alternative
not far away).
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Table 5.2: Theoretical (asymptotic) and simulated power calculations for trinomial
distributions.

Alternative Competing Tests BHHJ Test

H0 : p10 = 0:20; p20 = 0:60; p30 = 0:20, X 2
2;0:05, n = 150

p1b & p2b KL Kagan Mat CR TCA a = 0:01 a = 0:05 a = 0:10

0.21, 0.59 0 0 0 0 0.0576 0 0 0
0.22, 0.60 0.0003 0.0002 0.0003 0.0002 0.0980 0.0003 0.0002 0.0001
0.25, 0.60 0.284 0.279 0.290 0.279 0.392 0.295 0.282 0.265
0.20, 0.70 0.818 0.793 0.825 0.803 0.815 0.828 0.825 0.821
0.10, 0.60 0.901 0.890 0.900 0.895 0.944 0.896 0.894 0.891
0.40, 0.36 0.997 0.996 0.997 0.996 1 0.996 0.996 0.996
0.45, 0.35 0.999 0.999 0.999 0.999 1 0.999 0.999 0.999
0.40, 0.30 0.999 0.999 0.999 1 1 0.999 0.999 0.999
0.55, 0.25 1 1 1 1 1 1 1 1

SIMULATIONS (# of rejections of H0 in 10000 samples)

0.21, 0.59 607 686 649 628 * 629 595 573
0.22, 0.60 944 1000 1013 969 * 1009 968 913
0.25, 0.60 3880 3926 4027 3906 * 4042 3867 3746
0.20, 0.70 8915 8839 9110 8853 * 9187 9182 9181
0.10, 0.60 9638 9608 9665 9622 * 9665 9617 9596
0.40, 0.36 9999 10000 9999 10000 * 9999 9999 9999
0.45, 0.35 10000 10000 10000 10000 * 10000 10000 10000
0.40, 0.30 10000 10000 10000 10000 * 10000 10000 10000
0.55, 0.25 10000 10000 10000 10000 * 10000 10000 10000

Kyri
ac

os
 M

att
he

ou



83

Table 5.3: Type I error calculations for trinomial distributions.

Null Competing Tests BHHJ Test

SIMULATIONS (# of rejections of H0 in 10000 samples), X 2
2;0:05, n = 150

p10 & p20 KL Kagan Mat CR a = 0:01 a = 0:05 a = 0:10

0.20, 0.60 512 567 578 544 575 558 524

0.30, 0.40 535 536 564 536 579 579 573

0.10, 0.80 499 512 569 453 589 555 476

0.10, 0.50 507 529 558 491 569 578 580

0.30, 0.35 518 504 538 513 560 560 558
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Table 5.4: Theoretical (asymptotic) and simulated power calculations for trinomial
distributions for the BHHJ test.

Alternative a = 0:01 a = 0:05 a = 0:10

H0 : p10 = 0:20; p20 = 0:60; p30 = 0:20, X 2
2;0:05, n = 150

p1b & p2b BHHJ-C BHHJ-L BHHJ-C BHHJ-U BHHJ-L BHHJ-C BHHJ-U

0.21, 0.59 0 0 0 0 0 0 0
0.22, 0.60 0.0003 0.0001 0.0002 0.0003 0.0001 0.0001 0.0003
0.25, 0.60 0.295 0.268 0.282 0.296 0.237 0.265 0.295
0.20, 0.70 0.828 0.819 0.825 0.830 0.809 0.821 0.832
0.10, 0.60 0.896 0.890 0.894 0.897 0.883 0.891 0.898
0.40, 0.36 0.996 0.996 0.996 0.996 0.996 0.996 0.996
0.45, 0.35 0.999 0.999 0.999 0.999 0.999 0.999 0.999
0.40, 0.30 0.999 0.999 0.999 0.999 0.999 0.999 0.999
0.55, 0.25 1 1 1 1 1 1 1

SIMULATIONS (# of rejections of H0 in 10000 samples)

0.21, 0.59 629 570 595 668 486 573 680
0.22, 0.60 1009 936 968 1050 787 913 1081
0.25, 0.60 4041 3819 3866 4083 3450 3745 4156
0.20, 0.70 9186 9147 9181 9203 8888 9080 9239
0.10, 0.60 9664 9606 9616 9670 9509 9595 9686
0.40, 0.36 9998 9998 9998 9998 9998 9998 9998
0.45, 0.35 9999 9999 9999 9999 9999 9999 9999
0.40, 0.30 9999 9999 9999 9999 9999 9999 9999
0.55, 0.25 9999 9999 9999 9999 9999 9999 9999
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Table 5.5: Type I error calculations for trinomial distributions for the BHHJ test.

Null a = 0:01 a = 0:05 a = 0:10

SIMULATIONS (# of rejections of H0 in 10000 samples), X 2
2;0:05, n = 150

p10 & p20 BHHJ-C BHHJ-L BHHJ-C BHHJ-U BHHJ-L BHHJ-C BHHJ-U

0.20, 0.60 575 531 558 601 430 524 625

0.30, 0.40 579 573 579 589 548 573 589

0.10, 0.80 589 482 555 600 333 476 612

0.10, 0.50 569 520 578 602 456 580 706

0.30, 0.35 560 550 560 566 550 558 566
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Discussion

The main topic of this thesis is the investigation of the BHHJ measure of divergence.

We propose a general BHHJ family of measures of divergence that includes the BHHJ

measure of divergence (Basu et. al, 1998) as well as the Csiszar's family of measures

(Csiszar, 1963; Ali and Silvey, 1966). Furthermore, we propose a class of discrete

measures of divergence which could be considered as the discrete version of the above

mentioned general class of measures.

A number of properties of the general BHHJ class of measures has been discussed

like the symmetry property, the limiting property, and the quadratic convergence.

Furthermore, we propose a new model selection criterion called Divergence Informa-

tion Criterion (DIC) which is based on the BHHJ measure. Finally we propose a test

statistic for goodness of �t tests for multinomial populations. Note that both the

DIC criterion and the test statistic are indexed by a single parameter a. The value

of a dictates to what extent the estimating method based on the minimization of the

measure of divergence becomes more robust than the maximum likelihood estimating

method. One should be aware of the fact that the larger the value of a the bigger the

e�ciency loss. Consequently, one should be interested in small values of a > 0, say

between zero and one.

The proposed DIC criterion could be used in applications where outliers or con-

taminated observations are involved. The prior knowledge of contamination may be

useful in identifying an appropriate value of a. Simulations show that values of a from

0:01 to 0:10 are su�cient in achieving high success rate of correct model selections.

The proposed BHHJ test statistic was compared with other tests like the Pearson's

X2 test or Kagan's test, the loglikelihood ratio test (Kullback-Leibler test), the Cressie

86

Kyri
ac

os
 M

att
he

ou



87

and Read test and the Matusita test and was found to perform well in cases where the

alternative hypothesis is close or not far away from the null. In cases where the two

hypotheses di�er signi�cantly, all tests, including the BHHJ test, perform equally

well. Simulations based on trinomial distributions show that the proposed BHHJ

test statistic is superior to other traditional goodness of �t tests when the power is

adjusted for the size of the test.
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Future Research

The results obtained in this thesis can be extended and generalized in a number of

ways.

Regarding the DIC model selection criterion proposed in Chapter 3 one should

investigate its asymptotic properties. Two of the issues in model selection that are

discussed in the literature are consistency and asymptotic e�ciency. A natural re-

quirement for a selection procedure is to choose the best possible model from a given

family of models. Needless to say, the goodness depends on the objective of the analy-

sis. Consistency is our main concern whenever we know the true model as correctly as

possible. In other words, consistency is of great importance if the true model belongs

to the family of models from which the selection is to be made. On the other hand,

the asymptotic e�ciency is associated with the predictive performance and requires

the selection of a model which yields good predictions. For this objective it is natural

to assume that the true model does not necessarily coincide with one of the models

under consideration. It is important to point out that the two issues are not compat-

ible. In particular, Shibata (1976) and Bhansali and Downham (1977) showed that

AIC and its alike tend asymptotically to over�t the true order (overestimation) and

therefore they are inconsistent. A recent paper by Wei (1992) investigates the distri-

butional properties of a number of criteria and establishes the consistency of BIC. In

the same paper, the author proposes the use of a new criterion that incorporates the

Fisher's Information (FIC) and proves its consistency. Notice the di�erent meaning

and di�erent usage of the terms "consistency" and "e�ciency" in the order selection

theory. For example, the notion of "inconsistency" (overestimation) of AIC could

be viewed as equivalent to "superconsistency" in the traditional sense. As a result,
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caution is required whenever such issues are raised so that unnecessary misinterpre-

tations would be avoided. As a result, if the true model is unknown the concept of

consistency should not be included at the top of the scientist's list. The asymptotic

e�ciency is solely associated with prediction and if this is the purpose of the study,

then a selection strategy carrying such a property should be used.

The notion of asymptotic e�ciency which was introduced by Shibata (1980) is

based on the selection of that model which leads to the smallest average mean

squared error of prediction. The theory developed in recent years (e.g. Shibata,

1981, Bhansali, 1986, Hurvich & Tsai, 1989, Karagrigoriou, 1997) shows that the

family of AIC-type criteria possesses such a property as opposed to the family of

BIC-type criteria which have been found to be consistent but not asymptotically ef-

�cient. This latter property however, is useful in practice only in the case where the

class of candidate models does include the correct model. Since however the true

underlying model is unknown in practice the notion of asymptotic e�ciency seems to

be a more realistic property.

Shibata (1980) was the �rst to make the innovative assumption that the data-

generating mechanisms belong to a class of linear models with in�nitely many un-

known parameters. As a result the concept of asymptotic e�ciency is associated with

a �nite approximation of the truly in�nite order of the model and as such it is not an

estimating but rather an approximation problem. The scope is to obtain a good ap-

proximation to the underlying model which could be potentially useful for predictive

purposes. In all cases where a predictor or a modelling assessment is required, the

evaluation of a risk function or a measure of e�ciency is necessary. The asymptotic

e�ciency focuses on the mean squared error (MSE) of prediction which plays the role

of the loss function and the average MSE of prediction which plays the role of the

expected loss function. Both of these issues should be investigated for the newly

developed DIC criterion. Note though that in regard to the asymptotic e�ciency

we have already obtained in Chapter 3 a lower bound for the mean squared error of

prediction. Now we should investigate whether the mean squared error evaluated for

the model selected by DIC can attain the known lower bound of prediction. If this
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can be shown then DIC will be an asymptotically e�cient criterion.

Another generalization is the application of the general BHHJ family of measures

of divergence to the location model for model selection. The location model (Olkin

and Tate, 1961) is an interesting model that describes the joint density of a random

vector with both categorical and continuous coordinates. Olkin and Tate consider the

problem of the multivariate normal distribution for the continuous component of the

density but more general parametric distribution families could be considered. It will

be very interesting to de�ne on one hand the general BHHJ measure of divergence in

this case and then construct a model selection criterion or generalize the DIC criterion

to this special setting. Alternatively an already known divergence could be used for

the construction of a proper model selection criterion.

In regard to the goodness of �t tests a number of important issues can be ad-

dressed. For example the test statistics proposed can be generalized to cover tests

of homogeneity. For example one could test the equality of the measures between

functions f1; g1 on one hand and f2; g2 on the other. In fact such a test could be

generalized to r divergences.

Furthermore, e�ort should be made to improve the asymptotic distribution of

the test statistic proposed. As it can be shown from the simulations the asymptotic

distribution is not a good approximation of the true distribution of the test statistic.

Preliminary simulations (with n = 500) show than even if the sample size is large the

theoretical powers are still behind the simulated ones.

Let us rede�ne the general class of BHHJ measures as follows. Let G be the class

of all convex functions Φ on [0;∞) such that Φ(1) = 0, Φ′(1) = 0 and Φ′′ (1) 6= 0.

Let f1 and f2 be two continuous probability density functions, P = (p1; : : : ; pm)

and Q = (q1; : : : ; qm) be two discrete �nite probability distributions and � a given

measure. The (Φ; a)− continuous power divergence family between 2 density functions

f1 and f2 is de�ned by:

IaΦ(f1; f2) =

∫
f 1+a

2 Φ

(
f1

f2

)
d�; a > 0;Φ ∈ G;

where we assume the conventions 0Φ (0=0) = 0 and 0Φ (u=0) = lim
u→∞

Φ (u) =u; for u >

0:
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Similarly, the (Φ; a)−discrete power divergence family between two discrete �nite

probability distributions P = (p1; : : : ; pm) and Q = (q1; : : : ; qm) is de�ned by

daΦ(P;Q) =
m∑
j=1

q1+a
j Φ

(
pj
qj

)
; a > 0;Φ ∈ F:

Observe that if

Φ(u) = Φ1(u) = u1+a − (1 +
1

a
)ua +

1

a

then the BHHJ measure (3.1.1) is obtained, namely,

IaΦ1
(f1; f2) =

∫
f 1+a

2 Φ1

(
f1

f2

)
d� ≡ IaX(f2; f1):

A similar result is obtained if

Φ(u) = Φ2(u) = 1− (1 +
1

a
)u+

u1+a

a
;

namely,

IaΦ2
(f1; f2) =

∫
f 1+a

2 Φ2(
f1

f2

)d� ≡ IaX(f1; f2):

The same results hold for the discrete case.

The (Φ; a)−family covers not only the BHHJ measure (Basu et al., 1998) but

also the Csisz�ar's family of measures. Indeed, if we take Φ = � and a = 0 then the

(Φ; a)−family coincides with Csisz�ar's measure.

Also, the (Φ; a)−family reduces to the family of Cressie and Read (1984) power

divergence family for a = 0 and for

Φ(u) =
u�+1 − u− �(u− 1)

�(�+ 1)
; � 6= 0;−1:

Finally, within the class of the (Φ; a)−family of measures we can introduce and

investigate another class of measures which can be considered as a generalization of

the family of Csisz�ar's measures. In particular, consider the case where Φ = � and

a > 0. Then we de�ne the continuous a-Csizs�ar family of measures by

IaC(f1; f2) =

∫
f 1+a

2 �
(
f1

f2

)
; a > 0

and the discrete a-Csisz�ar family of measures by

dac(P;Q) =
m∑
j=1

q1+a
j �

(
pj
qj

)
; a > 0:

Kyri
ac

os
 M

att
he

ou



92

For this last generalized Csisz�ar's family of measures one could explore its use in

developing goodness of �t tests and in particular one could investigate the e�ect of

the index a in improving the power and size of the resulting tests.
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