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Abstract

An issue of fundamental importance in Probability and Statistics is the investigation
of Information Measures. These measures are classified in different categories and
measure the quantity of information contained in the data with respect to a parameter
f, the divergence between two populations or functions, the information we get after
the execution of an experiment and other important information according to the
application they are used for.

A literature review on the measures of information, classified in four main cate-
gories namely divergence - type, entropy - type, Fisher - type and Bayesian - type is
provided. Special attention is given to the divergence - type measures.

In this work we first propose and investigate a general family of measures of diver-
gence which is based on the BHHJ measure of divergence of Basu, Harris, Hjort, and
Jones (1998). A number of main properties of the family, such as the nonnegativity
property, the continuity property, the invariance property, the symmetric property,
the limiting property, the order preserving property and the quadratic convergence
are discussed.

Since measures of divergence are used as indices of similarity or dissimilarity be-
tween populations, they can be used to develop new model selection criteria. Ap-
plying the same methodology used for the well known Akaike Information Criterion
(AIC), a new model selection criterion called Divergence Information Criterion (DIC)
is proposed as an approximately unbiased estimator of the expected overall BHHJ
discrepancy (divergence).

Then, we focus on the investigation of the discrete form of the measure. We
provide the distributional properties of the estimator of this general family of BHHJ
measures of divergence and we propose a test statistic based on this family of measures
for goodness of fit tests for multinomial distributions.

Finally, a number of simulations are performed to check the appropriateness of

X



X
both the proposed model selection criterion and the test statistic for goodness of fit.
The simulations for the model selection criterion compare the performance of DIC,
with other well known criteria such as the standard BIC and AIC and also some
variants of them. The simulations for the goodness of fit test involve the new test
statistic based on the BHHJ measure, and the tests based on the Kullback - Leibler,

Kagan, Matusita, and Cressie and Read measures.



IleptAndm

"Eva {fitnua 1o omolo Bewpeltol Todd onuavtind éng Beueliddes o1n fewpla tibavothtoy
xoL ot ototoTixy) Bewplo elvol 1 perétn twv Métpwv [Inpogoptac. Ta Métpa
ITAnpogoplag xatnyoplonolovvtal e dLdQopec XAJOELS XL UETEOUV TNV TOGOTNTA TNG
TANEOYOplag TOL TEPLEYETUL OTA DESOUEVA OE OYEOT UE ULXL dYVWOTH TAPIUETEO, TNV
anéxhon (anbotaon) petald ddo mAnBuoudy B cuvapthoewy, TNV TANPOYopid TOU
eZdyetal UeTd TNV EXTEREOT) EVOC TELRAUATOC XL GAAWY LORHYOY ONUAVTIXY TANpoQopla,
oVugwva Béfola UE TNV EQUEUOYT OTNV OTolo To GUVAVTOUUE 1) TA Y ENOLULOTOLOUUE.

Yy nopovoa dtater) yivetor apytxd wa BiBAtoypaguxy avaoxdtnon tou agopd
tae Métpa IThnpogoploc xat 1 onola tepthaufBdvet uta TagLvounon Tov UETpWY oUTOY OE
Téooeplg xUpleg xatnyoplec we e€nig: Uétpa TURoU andxAiong, Uétpa TUTOU evipoTiag,
uétpa tUmou Fisher xau pétpa timou Bayes. Idialtepn Papltnro dlvetar ota uétpa
andxAlong.

TN OUVEYELN TEOTELVETAL L0 VEO YEVLXEUUEVY) OLXOYEVELNL UETPOY ATOXALONG, T
omola Baotletal oto Yétpo andxhionc BHHJ, 1o onolo npotdfnxe and toug Basu, Har-
ris, Hjort xau Jones (1998). T'io tnv ouxoyéveta auth, amodetxviovtat oL xUpleg BLOTnTég
TOU 0QOPOUY TN UN ApVNTIXOTNTA, TN GUVEYELX, To avallolwTo, Tn cuuuetpla, TNy
QCUUTTWTLXTY CUUTEPLYPORd, T1) StaThpnon TNe SLdTalng xat TNV TETEAYWVLXY CUYXALOY.

Ta uétpa andxiiong yenoluonoovvial we evOellelc ouoLOTNTISC 1) AVOUOLOTNTAC
uetall mAnhuouny. Enouévwe elvat duvatdyv va yenoiworoinboly uetadl dAAmY %ol yLo
TNV XUTAGKEVT| VEOY XpLTholwy emhoyhic wovtéhwy. Egapudlovtac avdroyr uebodolo-
vl ye autAv TOU YENOLOTOLAONXE Yol TNV XATUGXEUT] TOU YVOOTOU %pLTnelou Tou
Akaike (Akaike Information Criterion, AIC, Akaike, 1973) npotelvetat éva véo xpLtiipLo
emhoyhc wovtéhwy, to Divergence Information Criterion (DIC) nou npoxintet w¢ uia
aUEPOANTTY eXTUTTELA TNC avauevouevng ohxhc BHHJ andxiione. Erntone npoodiopl-
CeTol TO XATW PEAYUA TOU UEGOU TETPAYWOLXOV GPIAUATOS TEOBAEdNC.

Axololbwe, 1 SlatpBn emxevtpdvetal otn Slepelvnor NG dLaxELThC Lop@nc Tne

xi



xii
VEOC YEVLXEUUEVTC OlxoYEVeLlag LéTpwy andxhione BHHJ xou arodetxviovtal o t8Lotnteg
e xatavouric tng extiuntelds e, Enlong mpotelvetar ua véa otatiotiny| cuvdptnon
vl ehéyyoug unobéoewy xahfic TEoGupUOYTC 08 TOAWYLULXOUS TANHUGUOUC XoL ATOdEL-
XVYUETOL 1) AOUUTTOTLXT XOTAVOUY) TNS XATw and TNy undevixr) undfeon dnwe xal x4tw
and v evahhaxtixr utdheon tne ouvdgelag (contiguous alternative).

Téhoc napoucidlovtat PLo Gelpd eQapUOY®OY YLl SLEpEVYNON TNS XATAAANASTNTAC
Tou xpLtnelou emthoyc wovtéhwy DIC xafdeg xat tng otatiotinfc ouvdptnong yio Toug
eEAEYYOUC XAANC TEOCAUPUOYNC. XTIC EQUPUOYES YL TO XELTAPLO ETLAOYNHC UOVIEAWY
ouvyxplvetal 1 andédoon tou DIC, ue dhha yvwotd xpithpla, 6nwe to Bayesian Infor-
mation Criterion (BIC, Scharz, 1977) xou AIC, xaBdc xoar xdnolec edixéc Loppéc
TOUC. XTIC EQUPUOYEC YLOL TOUC EAEYYOUC XAATC TRooapUOYNC YiveTal olyxpLlon Tng
TPOTELVOUEVNC oTaTIoTIXTC ouvdptnong 1 onola Paciletar oto uétpo BHHJ xou tov
eMéyywv Tou Paoctlovton ota uétpa Kullback-Leibler, Kagan ("Eleyyoc Kahic Ilpo-

oapuoyfic tou Pearson), Matusita xat Cressie and Read.
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Introduction

The divergence (or discrepancy) measures are used as indices of similarity or dis-
similarity between populations. They are also used to measure the distance or the
discrepancy between two functions or two populations. Finally they are used either to
measure mutual information concerning two variables or to construct model selection
criteria.

Measures of divergence between two probability distributions have a very long
history. One could consider as pioneers in this field the famous Mathematicians and
Statisticians of the 20th century, Pearson, Mahalanobis, Lévy and Kolmogorov. In
our days the most popular measure of divergence is considered the Kullback-Leibler
measure of divergence introduced in the 50’s. A well known family of measures is the
p-divergence known also as Csiszar’s measure of information which was introduced
and investigated independently by Csiszar (1963) and Ali and Silvey (1966). For
various functions for ¢ the measure takes different forms. Members of this family
are among others, the Kullback-Leibler measure as well as Pearson’s X2 divergence
measure also known as Kagan’s divergence measure.

A unified analysis has been provided by Cressie and Read (1984, 1988) who intro-
duced for both the continuous and the discrete case a family of measures of divergence
known as power divergence family of statistics that depends on a parameter A\ and
is used for goodness-of-fit tests for multinomial distributions. The Cressie and Read
family includes among others the well known Pearson’s X ? divergence measure and for
multinomial models the loglikelihood ratio statistic. It should be noted that for the
appropriate limit of A to 0 the above measure becomes the Kullback-Leibler measure.

A new measure of divergence known as the BHHJ divergence measure, was re-

cently introduced by Basu et al. (1998). The measure depends on an index a which



2
controls the trade-off between robustness and efficiency when the measure is used as
an estimating criterion for robust parameter estimation. Basu et al. (1998) showed
that values of a close to zero provide parameter estimators with good robust features
without significant loss in terms of efficiency. Note that for the appropriate limit of
a to 0 the measure reduces to the Kullback-Leibler measure.

As it was mentioned earlier measures of divergence can also be used in model
selection. Since some measures of divergence have been proposed as distinguisha-
bility indices between two distributions which are far from each other or from two
distributions which are close, they can be used for the construction of model selection
criteria. A model selection criterion can be considered as an approximately unbiased
estimator of the expected overall discrepancy, a nonnegative quantity which measures
the distance between the true unknown model and a fitted approximating model be-
longing to a class of candidate models. If the value of the criterion is small for a
specific member of the candidate class then the corresponding approximated model
is good. The Kullback-Leibler divergence was the measure used by Akaike (1973) to
develop the Akaike Information Criterion (AIC).

In this work, we focus on the BHHJ measure of divergence and we propose a
general class of continuous BHHJ divergence measures that includes the BHHJ di-
vergence measure of Basu et al. (1998) as well as a general class of discrete measures
of divergence which could be viewed as the discrete version of the above continuous
BHHJ class and could be used for goodness of fit tests. The continuity and discrete
character of the new class will be explained in the last section of Chapter 1. This

new class of measures is fully investigated in this thesis, by
e establishing a number of properties (Chapter 2),

e developing a new model selection criterion, the Divergence Information Crite-

rion (DIC) (Chapter 3) and

e introducing a new class of test statistics for performing goodness of fit tests

(simple null hypothesis) for multinomial populations (Chapter 4).

Simulation results are provided in Chapter 5 for testing the appropriateness of the
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proposed criterion as well as the test statistics. Chapter 1 is devoted to a Literature
Review on measures of divergence and the presentation of the new BHHJ class of

measures. The work is concluded with a Discussion and a Future Research plan.



Chapter 1

Measures of Information-
Literature Review

Information Theory in Probability and Statistics has a very long history and it is of
fundamental importance. There are many approaches and definitions, for Information
in Statistics, from different authors and from different aspects.

"While information is a basic and fundamental concept in statistics there is no
universal agreement on how to define and measure it in a unique way’ (Papaioannou,
2001). There have been several statements made over the years. For more details
on the variety of views see the review articles by Kendall (1973), Csiszar (1977),
Papaioannou (1985), Aczel (1986), Soofi (1994), Pardo (1999), Kullback (1959), Pa-
paioannou and Kempthone (1971) and Ferentinos and Papaioannou (1981).

Although not universally accepted, there is a classification of measures of infor-

mation in four categories namely,
e Divergence - type,
e Entropy - type,
e Fisher - type and
e Bayesian - type.
Representative measures in each category are
o the Kullback-Leibler divergence (1951),

e the Shannon’s entropy (1948),



e the Fisher information measure (1925) and

e the Lindley’s measure of information (1956)

correspondingly.

In the present literature review, important measures of information that play
a significant role in statistical inference with numerous applications are presented.
Special attention is given to measures of divergence.

Two classical measures that illustrate the fundamental importance of the measures
of information are the Kolmogorov Distance and the Lévy Distance introduced in the
30’s and 20’s respectively.

Let p and v probability measures on R with associate distribution functions Fj

and F,. Kolmogorov Distance (Kolmogorov, 1933) is defined as:

K (Fl,F2> = sup |F1 (LE) y F2 (.’L‘)| .

zeR
An important implementation of the Kolmogorov distance is the well known

Glivenko-Cantelli Theorem which states that the Empirical Distribution Function

1 n
Fol@) = = >~ Ii-aoa) (1)
=1

where I(_o 4 (2;) = 1 if 2; < x and 0 otherwise, is uniformly strongly consistent for

the true Distribution Function F' in the sense that:

lim P{K (F,,F)>e}=0,Ye>0.

n—00

On the other hand, Lévy Distance (Lévy, 1925) between two distribution functions
F| and F5 is defined as:

L(F,F)=inf{e >0: Fi(zx —¢) —e < Fy(x) < Fi(z +¢) +¢,Vo € R},

Note that this distance is not easy to compute and convergence in Lévy Distance
means weak convergence for distribution functions in R. For the relations between
the Kolmogorov and Lévy Distances see Gibbs and Su (2002). Since p and v are
measures on R, it is customary to view the Lévy as well as the Kolmogorov distance
as measures of distance (divergence) between the corresponding distribution functions

Fl and FQ.



1.1 Measures of Divergence

A measure of divergence is used as a way to evaluate the distance or divergence be-
tween any two populations or functions. Let f; and f; be two probability density
functions which may depend or not on an unknown parameter of fixed finite dimen-
sion. The most well known measure of (directed) divergence is the Kullback-Leibler

divergence which is given by

15" (fy, o) = / filog(fu/ f2)du = Ey, [bg (;—)} ,

for a measure p which, for the continuous case, is the Lebesgue measure, and a random
variable X with absolutely continuous distribution. This means that for a density f

with probability distribution P, associated with the continuous random variable X,

_ap

=5

(), where p is the Lebesque measure.

The above notation covers not only the continuous case but also a discrete setting
where the measure p is a counting measure. Indeed, for the discrete case, the diver-
gence is meaningful for the probability mass functions f; and f, whose support is a
subset of the support S, finite or countable, of the counting measure 1 that satisfies
p(z) =1 for x € S, and 0 otherwise. In this setting for a probability mass function

f with probability distribution P, we have

_dp

f(fl?)—@

(x) = P (X = x), where p is the counting measure

and X a discrete random variable.
So, for the above divergence and for the subsequent ones consider that, if k is a

measurable function, the expectation of k(X)) is given by:

[ k() f (z)dz, if pis the Lebesgue measure

Eslk(X)| = .
7l (X)) > k(x) f(x), if p is the counting measure

ZES),
If f; is the density of X = (U, V') and f is the product of the marginal densities
of U and V, I¥" is the well known mutual or relative information in coding theory.

The Kullback-Leibler divergence is also looked upon as discriminatory information.



Jeffreys (1946) defined the symmetric divergence:

IL(f1, fo) = TEE(fu, fo) + TEE(fo, f1)

Observe that Jeffreys’ measure as opposed to the Kullback-Leibler measure is a sym-
metric measure.

As generalizations of the Kullback-Leibler measure, the additive and non-additive
directed divergences of order av were introduced in the 60’s and the 70’s (Rényi, 1961,
Csiszér, 1963 and Rathie and Kannappan, 1972). The so called order « information

measure of Rényi (1961) is given by

o [ e

(48], o o

It should be noted that for a T 1 (limit by the right) the above measure reduces to the

I%(f1, fo) =

1
= log £
a1 eon

Kullback-Leibler divergence. Observe also that for « = 1/2 Rényi’s measure becomes
the well known Bhattacharyya measure.

An extension of I)Iz“’o‘(fl, f2) was given by Liese and Vajda (1987), for all a # 0, 1:

« 1 o —Q
I (f1, fa) = mlog/ﬁ fa~%dp

()] o

I (s fo) = i I3 (fr, f2) = 1K (fi, fo)

1
— "~ _logE
ala—1) 08 Ehn

The cases a = 0,1 are defined by continuity:

and
I3 (fus f2) = W I (fr, f2) = I (f2, o)

The second limit given as I£%(f2, f1) is also known as the (Mean) Discrimination
Information for discriminating fo from f.

Furthermore, the Matusita measure [Matusita, 1951] given by

B ) = [ /= VR de

is the square of the well known Hellinger distance. Note that Matusita (1964) gener-

alized the above measure for any 0 < a < 1 (see Table 1.1).



8
Another measure of divergence is the measure of Kagan (1963) which is known as

Pearson’s X? and is given by

1

IS(f1, f2) = 5/(1 — f1/ [2)* fodp.

Csiszar’s measure of information [Csiszar (1963), Ali and Silvey, 1966] is a general
divergence-type measure, known also as (-divergence based on a convex function ¢

and defined by

IT9(f, fo) = /SO(fl/f2)f2dM = Ey, {90 (%)] , p €D

where ®* is the class of all convex functions ¢ on [0,00) such that p(1) = 0 and

¢" (1) # 0. In the expression of I¥(fi1, f2) we shall assume the conventions
0p(0/0) =0 and Op (u/0)= lim ¢ (u)/u, for u > 0.
Remark 1.1.1. [Pardo (2006)]. If ¢ € ®* is differentiable at x = 1, then the function

(@) = o) — @' ((x - 1)

also belongs to ®* and has the additional property that /(1) = 0. This property,

together with convezity, implies that 1)(x) > 0, for any x > 0. Further,

I (o) = [ £ [¢ (%) —# ) (% - 1)] dy
= [ e (32 )
=I? (fu, fa) .-

Since the two divergence measures coincide, we can consider the set ®* to be equivalent

to the set

=0 "N{p:¢ (1)=0}.
Observe that Csiszar’s measure reduces to Kullback-Leibler divergence if
o(u) = ulogu.

If p(u) = (1/2)(1 — u)? or p(u) = (1 — y/u)* Csiszdr’s measure yields the Kagan’s

and the square of Matusita’s divergence respectively.



Table 1.1: Csiszar’s Measures of Divergence

p-function

Divergence

rlogx —xz+ 1 or xlogx

Kullback-Leibler (1959)

—logz+x—1or —logzx

(Mean) Discrimination Information

(x—1)logx Jeffreys (1946)
Tz —1) Pearson (1900), Kagan (1963)
Ei;; Balakrishnan and Saghvi (1968)

—xzf+s(x—1)+1
—— ., s#£1

Rathie and Kannappan (1972)

1+ 14z~ —ir
X X
- (T) , r>0

Harmonic mean (Mathai and Rathie (1975))

(1-x)*

2(a+(1—a)x)’ 0<ax<l

Rukhin (1994)

log z—(az+1—a)log(ax+1—a)
axlogx axa(liaa) g(ax a7 a%O,l

Lin (1991)

M _g-A@-1)
oy A #0,-1

Cressie and Read (1984)

11—z 0<a<1

Matusita (1964)

1—z|*, a>1

x? - divergence of order a (Vajda, 1973)
Total Variation if a = 1 (Saks, 1937)
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More examples of p-functions and the measures we obtain based on these functions
are given in Table 1.1 (reproduced from Pardo, 2006).
A well known generalization of measures of divergence is the family of power
divergences introduced independently by Cressie and Read (1984) and Liese and
Vajda (1987) which is given by

1 A
ISR (f1, fo) = m/ﬁ [(%) —1] du, N € R,

where for A = 0, —1 is defined by continuity. Note that the Kullback-Leibler diver-
gence is obtained for A | —1 or A T 0. Note also that as it can be seen in Table 1.1
this divergence is a member of the Csiszar’s family of measures.

Although most of the known measures belong to the family of the Csiszar’s family
of measures there are measures that do not fit into this family. The gap has been
fulfilled by a generalization of Csiszéar’s p-divergence known as (h, ) divergence mea-
sure. This new family which has been proposed by Menéndez et al. (1995) involves

an additional differentiable increasing real function h with h(0) = 0, '(0) > 0:

1¥9% (f1, f2) = h (I)C;’w (f17f2)> :

This family of measures has been extensively investigated although the use of two
functions (¢ and h) increases both its complexity and its applicability.

Some measures included in this general family are Rényi’s (Rényi, 1961) and the
extension of Rényi’s measure (Liese and Vajda, 1987) which were mentioned earlier,

Sharma-Mittal’s measure (Sharma and Mittal, 1977) given by

I (o f2) = (( [resean) - 1)
B 1 fl a—1 Z;—ll
_ L (Eh () ]) .
for a,s # 1 or

I3 (fu, f2) = S—Ll (GXP ((8 —1) /f1 log %W) - 1)

(e (oo () )
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Table 1.2: (h, p) Measures of Divergence

Divergence h(x) o(x)

Rényi aplog(a(a—1a+1), a#0,1 %,a#o,l

Sharma-Mittal | - ((1 Fa(a—1)z)eT — 1) s a#0,1 | el

s—1 a(a—1)

Bhattacharyya | —log (—z + 1) —at/?2 4+ L (x4+1)

for s # 1 and Bhattacharyya’s measure (Bhattacharyya, 1943) given by

I)l?h (flan) = —10g/ v f1fadp.

The above measures are summarized in Table 1.2 (Pardo, 2006). Observe that

Bh — 7Riv/2
ATBh = [im2,

1.2 Entropy - Type Measures-Diversities

For historical reasons the representative measure of this category is considered to be

Shannon’s Entropy (1948) given by

15 (X) = I () = —/flogfdu — B[~ log ],

where X is a random variable with density function f(z).

The word diversity quite often means “variety”, referring to a large number (a
variety) of different types of the same thing. In a given ecosystem, the variation of
life forms is known as biodiversity and is often used as a measure of the health of
biological systems. In such cases it is often important to have available a tool to
measure how much diversity (variety) there is.

Shannon’s entropy was introduced and used during the second World War, in
Communication Engineering. Shannon derived the discrete version of I° (f) where
f a probability mass function and named it entropy because of its similarity with
thermodynamics entropy. The continuous version was defined by analogy. For a
finite number of points, Shannon’s entropy measures the expected information of a

signal transferred without noise from a source X with density f(z) and is related to
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Kullback-Leibler divergence through the following expression:
I (f) =17 (h) — Ig" (f,h)

where h is the density of the uniform distribution.
The second most popular entropy measure in discrete settings is Gini-Simpson
Index (Gini, 1912, Simpson, 1949). Let P = (p1,p2,...,pm) be a discrete finite

probability distribution. Then the discrete version of Gini-Simpson Index is given by:
I9(P) =1-> p}.
i=1

This measure was investigated among others by Agresti and Agresti (1978), Patil and
Taille (1982) and Rao (1982).
Many generalizations of Shannon Entropy were hereupon introduced. Rényi’s

(1961), given by

1 .
IR’“(f):a_llogEf[f] Ya>0,a#1

and Liese and Vajda’s (1987) extension of Rényi’s Entropy, given by

)
a(a—1)

Note that for a — 1 and a — 0 we get

THeo(f) = log By [f]°~", a #0,1.

lim 7% (f) = 19 (f)

a—1

and

lim TP (f) = / log fdju.

a—0
For more about entropy measures the reader is referred to Mathai and Rathie (1975)
and Nadarajah and Zografos (2003, 2005).
In a similar way to the Csiszar generalization of -divergences we have the -

entropies introduced by Burbea and Rao (1982a, 1982b, 1982¢) and defined by

I,(X)=1,(f) = / o (Fd,

where ¢ is a continuous concave function defined on (0, 00), with ¢ (0) = li\r% o (u) €
u

(—00, 00| . Some examples of the family of p-entropies are provided in Table 1.3. In
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Table 1.3: (¢)-Entropies

Entropy o(z)

Shannon (1948) —xlogx

Havrda and Charvat (1967) | (1 —a) (2 —z), a # 1, a >0

Kapur (1972) IS+(t§)s—1, s 41
Burbea (1984) IS—(1+I)5+1;F£82—1)’1(28—2):0, 542

order to include in the general family some additional measures, Salicri et al. (1993)

defined the (h, ) entropy as

Inip (X) = I (F) = h ( [e du) ,

where ¢ : (0,00) — R concave and h : R — R differentiable and increasing, or
¢ :(0,00) — R convex and h : R — R differentiable and decreasing. Members of this
family are given in Table 1.4.

Based on the ¢ entropy Burbea and Rao (1982a, 1982b, 1982¢) defined the family

of the R, -divergence

R, (f1, f2) = 1, <f1 +f2> _ I, (f1) + 1, (f2)

2 2
which was generalized by Pardo, L. et al. (1993) using the (h, ) entropy to define

h .
the R}-divergence

fi+ fz) B 12 (fr) + IV (f2)

’ i) = 12 (2 :

R -divergence leads to another important family of divergences, the RZ-divergence

(Havrda and Charvat, 1967) which is obtained by p-entropy using

¢ (x) = po (z) = (L-a) @ —2), a# 1, a>0
—xlogx, a=1

1.3 Fisher - Type Measures

Let X be a random variable with probability density function fy (), that depends

on a parameter 6 (or a vector parameter ) and corresponding distribution function
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Table 1.4: (h, p)-Entropies

Entropy o(x) h(x)
Rényi (1961), x" (r(1—7r))""logz
r#0,1
Varma (1966), a7/ (m (m—7r)) " logz
O<r<m, m=1
Arimoto (1971), zl/t t—1)""(at—1)
t#£1,t>0
Sharma and Mittal (1977), | zlnx %
s#1,s>0
Sharma and Mittal (1977), | z” I (mij - 1)
r#1,s#1,r>0,s>0
Ferreri (1980), (14 Az)log (1 +Az) | (1+ 5)log(1+X) — %
A>0

Py. Let the parametric space © be an open subset of ®*, £ > 1. Fisher information

measure (Fisher, 1925)

0log fy (x)\*
p1sy o) = [ (D) oyt pte) = Pofin
is the representative and the most well known measure of this category. It measures
“the ease with which a parameter can be estimated” (Lehmann, 1983), or "the extent
to which uncertainty is reduced by the observation” (Rao, 1973). While Fisher’s mea-
sure of information can be computed for any parametric family of distributions, it
posseses interesting information theoretic and statistical properties provided that cer-
tain regularity conditions on fp(z) are satisfied (see e.g. Ferentinos and Papaioannou,
1981; Papaioannou, 1985).

Fisher information measure is connected to Kullback-Leibler divergence in the
following setting. Let

fi=fo and f2 = fo+no,

where 0, Af are univariate neighboring points in the parametric space. Then,

IE5 (fo, forno) = 2 (A0)? FISx (6).
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So FISx (0) can be seen as a discrimination between neighboring points in the para-
metric space ©.

If

5B (35108 500 = [ 2] (g o) ) s

then the Fisher information measure (see Casella and Berger, 2001, p. 338) takes the

form
2

FISy (6) = — / o108 fy () fo(x)dp.

According to the above expression, information may be seen to be a measure of the
”sharpness” of the support curve near the maximum likelihood estimate of 6.

A famous result involving Fisher information is the well known Cramér-Rao in-
equality, which states that the inverse of the Fisher information is an asymptotic
lower bound of the variance of any unbiased estimator of #. Another important result

is that if 7'=¢(X) is a statistic, then
FISr (8) < FISx (9)

with equality if and only if T is a sufficient statistic.
A second form of Fisher’s, is the so called Shift - Invariant Fisher Information

presented as
P 2
Iy=E (% log fo ($)>

or in a different form as

F 0’
Jy =—L (w log fo (@) :

This quantity was initially used by Rao (1958) for the determination of a lower bound
analogous to Cramér-Rao. Recently Kagan (2001) had a similar approach for the
Poisson distribution. Applications of this quantity in measuring the stochastic de-
pendence of two or more random variables have been discussed by Zografos (1998,
2000). In physics and more specifically in optics and mechanics, Frieden (1988, 1998)
refers to this quantity using the term ” Extreme Physical Information”.

Shift - Invariant Fisher Information 7%, also called Fisher information number, is

not a measure of information, but it is a characteristic of a distribution and has other
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Table 1.5: Fisher Information for typical Distributions

Distribution Information measure | Information number
Normal, 0 known 1/0? 1/0?
Normal, p known 1/204 1/0?

/0> 0
2 2
Normal, (¢, 0°) known ( 0 1/20° ) 1/o
Exponential ()\) 1/\2 A2

interesting properties. Note also that
Iy # Jx

and in fact
I+ fo (@) = f5 (b) = J¥,
where fy (x) is a probability density function and a < z < b.

Shift - Invariant Fisher Information coincides with the Fisher’s information for a

location parameter, namely
Iy =10, if Y =X +6.

Some examples are presented in Table 1.5 which has been reproduced from Papaioan-
nou and Ferentinos (2005). For more about Shift - Invariant Fisher Information and

its properties refer to Papaioannou and Ferentinos (2005).

1.4 Bayesian- Type Measures

The main representative of this type of measures is Lindley’s Information Measure
(1956) which will be presented in this section.

Consider the decision problem of reporting a distribution regarding an unknown
parameter ), belonging to a parametric space O, through an experiment € that will
result an observation x. In other words, we have a random variable X with probability

density function f(z) and an unknown quantity @ that we suppose it follows a prior
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distribution with density function fy. According to this notation we have
£@) = [ £10) s
e

and Bayes’ theorem reads

poln = L5 00,

The amount of information, before the experiment is performed, is defined to be

Iy = /fa log fedf = Ey [log fo] -

After the completion of the experiment, the posterior distribution of @ is f(6|z) and

the amount of information becomes

I (x)z/f(9|x)logf(9|x)d0.

Lindley’s Information Measure is defined to be the average amount of information

provided by an experiment € with prior knowledge fy, as follows

1" (e, fy) = Ex [I1 (X) = L]
_ B\E, {log{f(mX)}

|
f(X10) }]

) B {log{ X
f

= J[ oo 755 fasio

where f (z,0) is the joint density for X and 6.

For more details on Bayes risk based measures of the information in an experiment,
see Lindley (1961), Chaloner and Verdinelli (1995), Dawid (1998), or Dawid and
Sebastiani (1999).

1.5 The BHHJ Measure of Divergence

One of the most recently proposed measures of divergence is the BHHJ power diver-
gence between f and g (Basu et al., 1998) which is denoted by BHHJ, indexed by a

positive parameter a, and defined as:

o (g, f) = / {f1+a (2) (1 + é) 0(2) F* (=) + %glﬂ (z)} dz, 0> 0. (15.1)
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Note that the above family which is also referred to as a family of power divergences
is loosely related to the Cressie and Read power divergence (Basu et al., 1998). This
family of measures was proposed by Basu et al. (1998) for the development of a
minimum divergence estimating method for robust parameter estimation. The index
a controls the trade-off between robustness and asymptotic efficiency of the parameter
estimators which are the quantities that minimize (1.5.1). It should be also noted
that the BHHJ family reduces to the Kullback-Leibler divergence for a tending to
0 (see Lemma 2.2.3) and as it can be easily seen, to the square of the standard
Ly distance between f and ¢ for @ = 1. As a result, for a = 0 the family, as an
estimating method, reduces to the traditional maximum likelihood estimation while
for a = 1 becomes the mean squared error estimation. In the former case the resulting
estimator is efficient but not robust while in the latter the method results in a robust
but inefficient estimator. The authors observed that for values of a close to 0 the
resulting estimators have strong robust features without a big loss in efficiency relative
to the maximum likelihood estimating method. As a result one is interested in small
values of a > 0, say between zero and one, although values larger than one are also
allowed. One should be aware though of the fact that the estimating method becomes
less and less efficient as the index a increases.
It is interesting to note that the BHHJ measure can be considered as a special
case of the Bregman divergence (Jones and Byrne, 1990; Csiszar, 1991) which has the

general form

[ [}~ HUGY - (0 - £ (G az,

where H is a convex function. Observe that a Taylor series expansion of the integrand

of the Bregman divergence when f is close to g gives
1 2y
S(f = gPH().

If ones wants the Bregman divergence to reduce to the square of the L, distance
for a = 1 (and consequently to the mean squared error estimating method) then
H"(f) o fo=! for some a > 0 so that H(f) oc f¢™' in which case the Bregman

divergence reduces to (1.5.1).
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Some motivation for the form of the BHHJ divergence can be obtained by looking

at the location model with location parameter #. Note that in this case

JERCLE

is independent of # and the minimum divergence estimator is now the maximizer of

Zf;(X»,

with the corresponding estimating equations having the form

Z ug (X;) 2 (X;) =0, (1.5.2)

where ug (2) = dlog fp () /06 is the maximum likelihood score function. In the fully
efficient case where a = 0, the estimating equation becomes i?@ (X;) = 0. For a
random variable X in the exponential family with 6 being the mze;n, ug(z) = (2—0) /o>
where o2 the variance of X. Thus the sample mean is the MLE for 6, suggesting the
robustness problems of maximum likelihood since all observations, including very
severe outliers, get weights equal to one. On the other hand, when a > 0, and
for several parametric models such as the normal, wuy(2)fy(2) is bounded function
of z for fixed 6. As a result, (1.5.2) can be viewed as a weighted version of the
efficient maximum likelihood score equation since it provides a relative-to-the-model
downweighting for outlying observations; observations that are wildly discrepant with
respect to the model will get nearly zero weights.

There can be no universal way of selecting an appropriate parameter a when ap-
plying the above estimating method. The value of a specifies the underlying distance
measure and typically dictates to what extent the resulting method becomes statis-
tically more robust than the maximum likelihood method, and should be thought of
as an algorithmic parameter. A way of selecting the parameter a is by fixing the
efficiency loss, at an ideal parametric model employed, at some low level, say 5%.
Other ways could in some practical applications involve prior motions of the extent
of contamination of the underlying model.

We generalize now the family (1.5.1) to a more general family of the following

form that involves a general function ®(-).
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Definition 1.5.1. For a general function ® € G and for a > 0 we define the diver-

gence between two functions f and g by

I5 (9, f) = Eg@““”(%))

= [o6 q)(%)du,

where 1 represents the Lebesque measure and G is the class of all convex functions ®

(1.5.3)

on [0,00) such that ®(1) =0, ®'(1) =0 and D" (1) # 0. In the expression of I% (g, f)

we shall assume the conventions

00 (0/0) =0 and 0@ (u/0) = lim ® (u) /u, for u > 0.

U—00

The BHHJ measure of Basu et. al (1998) can be obtained from the above general

BHHJ family if the function ® takes the special form

1 1
(I) (U) = u1+a — (1 -+ a) u“ = a (154)

Expression (1.5.3) covers not only the continuous case presented in (1.5.1) but
also a discrete setting where the measure p is a counting measure. Indeed, for the
discrete case, the divergence in (1.5.3) is meaningful for probability mass functions f
and g whose support is a subset of the support S, finite or countable, of the counting
measure 4 that satisfies

wx)=1 forxesS,

and 0 otherwise.

Consider now two discrete distributions P = (p1,...,pm) and Q = (q1,---,q¢m)
with sample space Q = {z : p(x) - ¢(x) > 0}, where p(z), q(x) are the probability
mass functions of the two distributions. Then the discrete version of the Cressie and

Read measure is given by

IgR(p,Q):ﬁipi[(%yq], ANER AA0,—1. (1.5.5)

The above measure was introduced by Cressie and Read (1984) for goodness of fit
tests for multinomial distributions. Observe that the family includes important and
well known test statistics like the Pearson’s X? statistic (for A = 1), the loglikelihood

ratio statistic (for A — 0) and the Freeman-Tukey statistic (for A = —1/2). Cressie
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and Read (1984) devoted their work to the analytic study of the asymptotic properties
of the above measure and found that the A = 2/3 case constitutes an excellent and
compromising alternative between the traditional A — 0 (loglikelihood ratio test) and
A =1 (Pearson’s X2 test) cases.

The discrete version of Csiszar’s measure is given in a similar fashion, by
m
de = qie (pi/a)-
i=1

The discrete Csiszar’s measure has been used by Zografos et al. (1990) for purposes
analogous to the ones of the discrete Cressie and Read measure, namely for goodness
of fit tests for multinomial distributions.

In what follows we extend the class of measures of divergence (1.5.3) to a discrete
setting analogous to the above discrete versions of Csiszar’s or Cressie and Read’s

measures for multinomial distributions.

Definition 1.5.2. For two discrete distributions P = (p1,...,pm) and Q = (q1, - -, ¢m)
with sample space Q2 = {x : p(x)-q(x) > 0}, where p(x), q(x) are the probability mass
functions of the two distributions, the discrete version of the general BHHJ family of
divergence measures with a general function ® as in Definition 1.5.1 and a > 0 is
given by

dy=d,(Q,P) = E, (q“(X)‘I’<%>>

Zj: 1+aq)( )

which for ® as in (1.5.4) becomes the discrete BHHJ measure given by

W =do (QP) =) pte— (1 + é) Zzlqipf + é ;qj+“. (1.5.7)

=1

(1.5.6)

Lemma 2.2.3 shows that for a — 0 the measure reduces to the Kullback-Leibler
divergence while for ®(u) = ¢(u) and for a = 0 we obtain the Csiszar’s ¢ divergence.
The measures described in this chapter play a significant role in statistical infer-
ence and have several applications. In the rest of this thesis we focus on the general
BHHJ family of divergence measures presented in Definitions 1.5.1 and 1.5.2 and in-

vestigate on one hand its basic properties and on the other hand its implementation
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in statistical modelling and in testing statistical hypotheses. For a review on mea-
sures of information see Papaioannou (2001). For a comprehensive discussion about
statistical inference based on measures of divergence the reader is referred to Pardo

(2006).



Chapter 2

Properties of the General BHHJ
Family of Measures

2.1 Introduction

The measures of divergence are not formal distance functions. It is well known that

any distance function I(u,v) must satisfy the following three properties:

(1) I(u,v) > 0 with equality if and only if u = v

(2) I(u,v) = I(v,u) and

(3) I(u,w) < I(u,v)+ I(v,w).
On the other hand any bivariate function I(-,-) that satisfies the non-negativity prop-
erty, namely I(-,-) > 0 with equality if and only if its two arguments are equal can

possibly be used as a measure of information or divergence. Note that the Hellinger

distance (the square root of the Matusita measure) given by

A= s = ([T~ i)

is a true distance measure since it satisfies all three postulates.

Several properties of measures have been investigated over the years some of which
are of axiomatic character and others of operational. By operational character we
mean that the measures are involved in significant results in statistical inference (like

the Cramér-Rao bound).

23
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In this chapter we explore some of the basic properties of the general BHHJ family
of measures of divergence with special attention given to the case where ® is given

by (1.5.4). In particular we discuss

e the nonnegativity property,

the continuity property,

the invariance property,

the symmetry property,

the limiting property,

the order preserving property and

the quadratic convergence.

For details about the properties mentioned in this chapter as well as about other
properties of measures and information see Mathai and Rathie (1975), Ferentinos

and Papaioannou (1981) and Papaioannou (1985).

2.2 Basic Properties
Let us define by h(a) the integrand of I¢(g, f) given in (1.5.1):
by =1 @) = (14 1) g () )+ L )

The graphical representation of h(a) is given in Figure 2.1. Observe that h(—1) =0

and the maximum of h(a) occurs for a < 0. Furthermore note that h (0) = li?g h(a) >

h(a) for a > 0. Finally observe that
Ja <0, say a* s.t. h(0) = h(a*) and h(0) > h(a) for a < a™.

Note that some of these characteristics are not valid for all functions f and g.

It is important to point out that for a = 1, the function h(a) takes the form

hl)=f>—29f + ¢
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0.03
0.03-

0.04 A

1.1 B
W

Figure 2.1: Graphical representation of h(a) as a function of a and z (left graph)
and as a function of @ at x = 1 (right graph), where the distributions involved are
Uniform(0,2) and Uniform(0,3).

S S

so that the corresponding measure becomes the square of the standard L distance,

namely
Ix(g,f) = /(f(z) — g(2))?dz.

Furthermore, although h(a) is well defined for a = —1 this value is unacceptable due
to the fact that the corresponding BHHJ measure between any functions f and ¢ for
a = —1 is meaningless.

It is easy to see that the BHHJ measure satisfies the basic properties of measures,
namely the properties of nonnegativity and the continuity. In particular, as it was
mentioned above, the value of measure is nonnegative for ¢ > —1 while small changes
in the distributions result in small changes in the measure. In other words, I%(-, ) is
a continuous function in each of its arguments.

Finally, the value of the discrete measure is not affected by the simultaneous
and equivalent reordering of the discrete masses in both the p;’s and the ¢;’s which
confirms the invariance property of the discrete form of the BHHJ measure. Indeed,
let P; = (pj,,...,p;,) and Q; = (¢;,,- -, qj, ) reorderings of the original orderings of
P and @ where j = (j1,...,jm) is an arbitrary permutation of the natural ordering

of the set (1,2,...,m). Then,

do(Pj, Q;) = da(P, Q),


PLATO PC
Stamp
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Figure 2.2: Graphical representation of function (2.2.1) as a function of @ and x (left
graph) and as a function of a at = 1 (right graph), where the distributions involved
are the Exponential with mean 2 and the Standard Normal.

for any reordering j.

For the symmetric property which is defined as
[g((f;g) ~ Ig{(ga f) or da<Pa Q) = da(Qa P):
the following Lemma holds.

Lemma 2.2.1. The symmetry property holds for the BHHJ measure for those values
of a for which

(1 —a)lg"*(z) — f(@)] + (1 + a)[f (2)g"(x) — g()f*(2)] = 0 (2.2.1)

(continuous case)

and
(1—a)lg; ™ = p; ™+ (1 + a)[pig! — qipf] = 0, Vi (2.2.2)
(discrete case)

PROOF. Using the definition of I$(f, g) and I$(g, f) it is easy to see that I§(f,g) =

I (9, f) Le.
/{gl+a (2) — (1 + é) F(2) g% (2) + éfua (Z)}dz _
— / {f1+a (2) — (1 + é) g(2) f(2) + églﬂ (Z)}dz (229
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if the first of the above conditions is satisfied.
The discrete part is shown similarly for d,(P, Q) and d,(Q, P). [ |
The graphical representation of the above function for the continuous case, as
a function of a and z, appears in Figure (2.2) where the distributions involved are
the Exponential with mean 2 and the Standard Normal. The figure implies that the
Lemma holds true for a = 0 and @ = 1 but only the second solution which is associated
with the Lo distance, is acceptable. The solution a = 0 is unacceptable since (2.2.3) is
not defined for a = 0. Indeed, Lemma 2.2.3 shows that the BHHJ measure is defined
for a = 0 by continuity and in fact it reduces to the Kullback-Leibler measure which
does not satisfy the symmetry property.
In Lemma 2.2.2 we investigate the limiting property according to which a sequence
of probability density functions f,, converges to a probability density function f iff
the corresponding measure of divergence I%(f,, f) tends to 0. Before the statement

of the Lemma we provide the definition of the p-almost everywhere convergence, f,
to f:

Definition 2.2.1. p-almost everywhere convergence is a weakened version of point-
wise convergence which states that, for X a measure space, f,(x) — f(x) for all

z €Y, whereY is a measurable subset of X such that pu(X\Y) = 0.

Lemma 2.2.2. Let p be a measure, ® a function, f, and f two probability density

functions (pdfs) and a > 0 such that the following conditions hold

o [ [

flrag (%) ‘ dju < 0,

o /1. ® is a continuous function,

o [II. (1) =0, (1) =0, and P is strictly convez,

o IV. f >0 p-almost everywhere.
Then, the BHHJ family of measures satisfies the limiting property defined by
fn — [ pu— almost everywhere, it I$(f,, f) — 0,

where f, is a sequence of probability density functions, f is the limiting probability

density function and I1%(fy, f) is the general BHHJ measure based on the two pdfs.
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PROOF. By (1.5.3) we have that

18 (f. fu) = / fed (f7) du,

with ®(u) given in (1.5.4). Observe that if f,, — f u — almost everywhere then
lim 1% (fn, f) = lim /f”acb <ﬁ> d
condgon I /f1+a lim (fn)
n—oo f
condztwn 17 /fH_a(I) ( j;:L> d/j,

[,

On the other hand, let

IS (fas f) = 0.

Then,
Tim frred (J;f}) 1= 0. (2.2.4)
By condition III we have
d(2) > 0. (2.2.5)
By (2.2.4), (2.2.5) and condition IV we have
711220(1) (‘];f) =0, p — almost everywhere (2.2.6)

and finally, by (2.2.6) and condition IIT we have
Jn

lim — =1, p — almost everywhere.

|
The following Lemma provides the relation between the BHHJ measure and the
Kullback-Leibler measure. In particular, we show that for a tending to 0, the BHHJ

measure reduces to the Kullback-Leibler measure.

Lemma 2.2.3. The limit of (1.5.3) with ®(u) as in (1.5.4) when a | 0 is the Kullback-
Leibler divergence. Furthermore, the discrete form of the measure (1.5.6) tends to the

discrete Kullback-Leibler measure given by

N, )
;p210g<qi
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fora | 0 and with ®(u) as in (1.5.4).

PROOF. The proof is given for (1.5.3). Observe that

B (g, f) =limI (9./)
=tim [ {f1* () = (1+ §)g<z) fo(2)+ 29"t (2)} de
=l [ 14 (2)dz ~ T [ 9 () J* (=) d= + 13?3 [CICELEFS
= ff )dz— [g(2 dz+fg 2)lim =G g,
= [ (£ =9(2)dz+ [ g () lim{g* (2)log [g (2)] = f* () log [f ()]} &z
=1-1+[g(z log{gj)}dz

=[g(z log{f(z}dz

=I5 (g, f). n

We close this section with the order preserving property which has been introduced
by Shiva, Ahmed and Georganas (1973) for entropy-type measures and states that the
relation between the amount of information contained in a r.v X; and that contained
in another r.v. X, remains intact irrespectively of the measure of information used.

The property was extended to Fisher-type measures by Papaioannou (1985) and to
divergence measures by Zografos (1987). This property is natural in the sense that a
measure of information of any type (entropy, information, divergence etc.) measures
the amount of information available and therefore if a random variable contains a
larger amount of information than another random variable for a specific measure
then it is reasonable to expect that it will contain a larger amount of information for
any measure.

In particular, if the superscripts (1) and (2) represent two different measures of

information then

I)((1<f1;gl> > I (f2,92) < IXl (fi,91) > I( L (f2, 92).
The following Lemma holds for the BHHJ divergence.

Lemma 2.2.4. For some probability density functions fi, fa, g1 and g2, so that
IS(f1,q1) and I$(f2, g2) are decreasing for o > 0, the following statements are equiv-

alent:
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(a) IS(f1,91) = I$(f2, 92), for a € (0, a]
(b) Ig*(f1,91) = IX*(f2, 92)
() IN*(fr.01) = I (fa. 92). for @ € (a1, 02)
(d) I£(f1, 1) = I“(f2, g2), for a2 > 2,
()IF (f1,91) = 1Y (fa: 92), for an < 1/2,

where ay, as and ag are determined from the equations
R7
IX “ (fh gl) = I)[((L(f% 92)7

])}}az(fm 92) = I (f1, 1)
and

I)I((L(f% 92) = I?(B(fla 91)-

PROOF. Part (b) follows immediately from part (a) if we take the limit as a — 0 on

both sides of

I3 (f1,91) 2 I (f2) 92)-

Then, the result follows from Lemma 2.2.3. Assume now that part (b) holds, namely

I (fro0) = 157 (f20 92)-

Since I%(-,-) is a decreasing function of «, for a > 0 and also

lim Ig((': ) = I;((L('a )

a—0
then
(i) IE¥L(f2,92) > IS(f2, o), for a > 0
(ii) 3 a3 > 0 such that I§$*(fa, g2) = I$(f1, 1) and
(i) I%(fr,91) = I3 (f1,01) if o € (0, ).
Hence if a € (0, 3] and using (i) - (iii) we have
I$(fr00) 2 I8 (frog1) = Ix " (fa g2) = I3 (f2, g2)-

Parts (b)—(e) are equivalent from Theorem 2.1 and Corollary 2.1 of Zografos et al.

(1989).
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The above Lemma clearly shows that the key role in establishing the order pre-
serving property is played by the parameter o involved in the measures examined.
In particular, the property holds provided that the parameter o belongs to a specific
interval, different for each measure. It should be noted that the end points of the
interval depend on the distributions involved.

As a result, the order preserving property doesn’t hold in a universal way for
every measure and for every parameter a. Furthermore, the lemma by providing the
range of values of the parameter o for which the measures describe properly (with
consistency) the amount of information contained in the data, implies that the use of
these measures should be limited to those values of a for which the order preserving

property holds.

2.3 Quadratic Convergence of Discretized Versions of

the BHHJ Measure

In practical situations the data are discrete or if they are continuous they are available
in groups. In the latter case, the sample space is partitioned into disjoint intervals
so that the theoretical distributions are approximated by the discrete distributions
generated by these intervals. Several authors have considered this problem. Ghurye
and Johnson (1981) showed that the discretized version of Kullback-Leibler divergence
converges quadratically to the theoretical Kullback-Leibler measure. The same was
proved by Zografos et al. (1986) for the Csiszar’s p-family of divergences as well as for
the Rényi’s and Fisher’s measures. Both papers examined this discretization problem
by considering a special partition of the sample space. In this section we generalize
the above results by showing the quadratic convergence of the general BHHJ measure
under suitable conditions and for the same special partition of the sample space.

Let us consider the following discretized partition of the sample space:

Apy = ((k - %) h, <k+ %) h> k=0,41,42,...., h>0.
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Then the discretized versions of the functions f and g are given respectively by

=JJ€ [ (x)do

and

g (h) = /g(x)d:c, k=0,41,+42, ...
Ap ke

Observe that the general BHHJ family of measures given in (1.5.3) can be written

I5(f,9) = 7091*“(90)(1) (%) dx

— 00

in the form

so that the discretized version becomes

st = Lok 009 (G

The amount of information lost when using the discretized version I'(f,g) of

I%(f, g) is given by:

D (h,a) =I%(f,9) — Ii(f.9) = > _ Je(h) (2.3.1)
k
where
s = | g (@)@ (48) de — gt (n) ()
Ahfk H,(x)dx — q1+“(h)<I> (%)
and

i) =g (e (1),

9()

Regularity Conditions for the quadratic convergence:

o 1 )10 (f ) fo @)l de < o0

e II. f and g have the same support S = {z : f(z) > 0} = {z : g(z) > 0}, an

open interval in .
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e III. f and ¢ have continuous second derivatives on S; ¢ has also a continuous

second derivative on (0, 00).

e V. The functions

9°g"® (f) L9 (g) e (i) , g "o’ (i) ,
g 9 g
N 2
ga—lf/g/cp/ (i) , gaf <g_> (I), <i> ,
9 g 9

fg“ g (5) ,and g7 [(f/9)]" @" (i)

9

are Riemann-integrable on (—o0, +00).

o V. If Thky, Ynky Zhik € Ah,k: = ((k— 1/2) h, (k+1/2) h),k = 0,£1,%2,... and
a=a(h)=0(h"), with v < 1 then

e S m o (f3) - Fon ()

}jg%hzg Zhe) 'zmcb( z’;:) /f" ( 3)“

) i) g () _ [ @ F @), (F)Y
2 e ) ‘I’(guh,k))‘_é s () e
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Theorem 2.3.1. Under the reqularity conditions stated in the present section we have
the following result
h=2D (h,a) =
= h7 (1= ) S g (k)@ ¢)

9" (un) (¢ (un))” @ (f(wg)

)

+%a (1+a)

9° (unk) 9" (un )

5
5

+(1+a) [%
55 0" (i) £ (i) @ (Z((’”“;) — b 209" (kD) £ (on k)’ (f(wh:kg)
+i D 2a9° " (un) [’ (uni) g (un) ¥’ <g(uhjk)>

S ) (20 (1)

— 2 2 f (i) 9" (uni) g (ung) @ (fgff"'“))
S (k) g ) o ) (224
LY g () K;‘ gu:g)/} o (%) +0 (B¥) + 0 (h+9),

k

where Wy g, Vp g, Mp o, Whjo, € Dp . Furthermore, if a = a (h) = O (h7), with v < 1 we

have the quadratic convergence:

25200 4 o )] (o

— 00

PrOOF. Using Taylor theorem in symmetric form,
h h h?
w <u + 5) —w (u — 5) = ho'(u) + ﬁw’”(ﬂ)
where u € (u — %, u+ @) and if w” exists and is continuous, we obtain

/ H d!L‘ = hH, (kh) + Z H” (’LLh k) Up g € Ah,k (232)

4

where

H'= (1+a)g" <() —i—g")q)(g)
w6 (9
v (17 20— 20 (1) - 7Y @0 (1).

A Taylor series expansion of ® () around the point f (kh) /g (kh) yields

)
v (Z;: EZ;) ® (ﬁEkhi) * (Iq): 83 - ﬁé:ii) ' (r) (2.3.3)
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with 7 a point belonging to the interval determined by the points f (kh) /g (kh)
and pg (h) /qw (h). In fact, since f/g is continuous in all A, partitions, h > 0,
k =0,£1,£2,..., belonging to S, we can easily see that there exists wy, € Ay such

that

p = L (Wns) (2.3.4)

9 (Wh.k)

Also, for Uhk, Mpk € Ah,k we have

3
e (h) = hf (k) + o f” (tn)

and
3

i () = hg (kb) + 39

(mh,k) .

Using the binomial expansion for z < 1, namely,
(1+2) =1+pr+0 (2°), Vp,

we have

2+p

P — PP
qy (h) = hPg” (kh) +p !

g" (mnx) "~ (kh) + O (R*7) ¥ p. (2.3.5)

Multiplying both sides of (2.3.3) by ¢? (h) with p = 1 + a and using (2.3.4) and
(2.3.5) we have

q (h) (kh)
3+a kh
+(1 +a) h2 ( ) (mh k) <%>

I g (Bh) (1,0 (EH)
S (k) 7 (0) o s (24

g+ (h) @ <Pk(h)> — pitegita (kh) @ ( )>

+0 (hoTa).

Substituting the above formula along with (2.3.2) into (2.3.1) we have the form of
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D(h,a), namely

D(haa) = Ig((fag) _Iltzl(fag) = Zk:‘]l(cl<h)
= h (1= 1) X g (kh).@ (£4)

@Tkgmewmmm(%%ﬂ

h3
+ 24

+§;2ag H(un) £ (ung) - (ung) @ (jg:hkg)

_n % 209" (un ) f () (%)2 ' (ﬁﬁZZZD
S ) o ) o () @ (22
e 2 f (kh) g*= (kh) g (m i) & (fwfk))
e [ (429 o (1)
+0 (h°*?).

*(un) f" (ung) @'

Taking a = a (h) = O (), with v < 1, multiplying by 272 and using Regularity

Condition (V), we have the desired result, namely

lim 5D (h,a) = lim U fi00)

- lim h—12 E JE(h)

_ 1 f o [(Q(g)’] o (L) dr, -

The regularity conditions of this theorem are generalizations of the conditions used
by Ghurye and Johnson (1981) for the Kullback-Leibler measure and by Zografos et
al. (1986) for the Csiszdr’s measure. As expected for various functions ¢ we have
different measures of divergence. More specifically for ® = ¢ and a = 0 the above
result reduces to the result for Csiszar’s family of measures obtained by Zografos et
al. (1986). Furthermore, for a — 0, the result of Ghurye and Johnson (1981) is
obtained. Notice that the same result can be obtained as a special case of Csiszar’s

measure for ®(u) = ulogu and a = 0.
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Other measures covered by the above theorem are the Kagan, the Matusita mea-

sure and the Vajda [Vajda, 1973] measure given by

IX(f,9) Z/g(y)‘l—%‘ﬁdy, B>1.

Observe that the Vajda measure reduces to Kagan’s measure for § = 2.



Chapter 3

Model Selection Criteria

3.1 Introduction

Since the measures of divergence are used as indices of similarity or dissimilarity
between populations and for measuring mutual information concerning two variables
they can be used for the construction of model selection criteria. A model selection
criterion can be considered as an approximately unbiased estimator of the expected
overall discrepancy, a nonnegative quantity which measures the distance between the
true unknown model and a fitted approximating model. If the value of the criterion
is small then the approximated model is good.

The Kullback-Leibler measure was the one used by Akaike (1973) to develop the
Akaike Information Criterion (AIC). Let x = (z1,...,%,) a realization of a random
vector X = (X,...,X,,) and assume that the X;’s are independent and identically
distributed each with true unknown density function g(-, 6y), with 8y = (o1, . .., 6op)’
the true but unknown value of the p-dimensional parameter of the distribution. Con-
sider a candidate model fy(-) and let § the maximum likelihood estimator (MLE) of

o in some hypothesized set O, i.e.
1(0;7) = ;log(fg(wi)) = max(; )

so that f;(-) is an estimate of g(-, fy). The divergence between the estimate (candidate

model) and the true density can be measured by the Kullback-Leibler measure:

I¥(g. f3) = /g(y,ﬁo) log (gz&ygi)))dy

38
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which is a special case for a — 0 (see Lemma 2.2.3) of the BHHJ measure

Bt = [{nee-(147) s e i @fa 6Ly

Observe that I§"(g, f;) can be written in the form

I)If(L(g: fé) = Eg[log(g(X, 0o)] — Eg[log(fé(X))]-

Note that the first term is independent of the candidate model and therefore the di-
vergence can be evaluated using only the second term, usually known as the expected
loglikelihood. Akaike proposed the evaluation of the fit of f;(-) using minus twice the
mean expected loglikelihood given by
2B, [E,flog(f;(X))]] = —2 / . / B, log(£,))] [ o1, 0o} ...
i=1

since the candidate model is close to the true model if the above quantity is small.
Furthermore, Akaike provided an unbiased estimator of the expected loglikelihood
given by

~

[—21(6; ) + 2p]/n

so that the resulting AIC is defined to be
AIC = —=21(0; z) + 2p.

A general class of criteria has been introduced by Konishi and Kitagawa (1996)
which also estimates the Kullback-Leibler measure where the estimation is not nec-
essarily based on maximum likelihood.

Following the early work of Akaike, other model selection proposals include Bayesian
approaches with the Bayesian Information Criterion (BIC, Schwarz, 1978) and the
Deviance Information Criterion (DIC, Spiegelhalter et al., 2002; van der Linde, 2005)
being the most popular. The BIC criterion has a number of advantages worth men-
tioning. More specifically, it has been shown to be consistent (Schwarz, 1978; Wei,
1982) which means that it chooses the correct model with probability 1 as n tends
to infinity. The second advantage is that the criterion depends on logn instead of n
and therefore it downweights the effective sample size which in some cases prevents

the erroneous rejection of null hypothesis for large sample sizes.
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Here we apply the same methodology used for AIC to the BHHJ divergence in or-
der to develop a new criterion, the Divergence Information Criterion (DIC). Note that
the DIC proposed here is not related to the above mentioned deviance information

criterion which is a Bayesian criterion for posterior predictive comparisons.

3.2 The Construction of the New Criterion

Consider a random sample X, ..., X, from the distribution g (the true model) and a
candidate model fy from a parametric family of models { fp}, indexed by an unknown
parameter f € ©, where O is an one dimensional parametric space. To construct the

new criterion for goodness of fit we shall consider the quantity:

Wy = / {f;*“ (2) = (1+a ) g(2)fy (2)}dz, a>0 (3.2.1)

which is the same as the BHHJ divergence I$ (g, fg) given in (1.5.1) without the last
term that remains constant irrespectively of the model fp used. Observe that (3.2.1)

can also be written as:

W= By, (/3 (2) ~ (1 +a™) B, (5 (2)) a >0 (322

3.2.1 The Expected Overall Discrepancy

The target theoretical quantity that needs to be later approximated by an unbiased

estimator is given by
EW; = E (Wg ‘0 — é) (3.2.3)

where 0 is any consistent and asymptotically normal estimator of 6. This quantity
can be viewed as the average distance between g and fy up to a constant and is known
as the expected overall discrepancy between g and fy.

Observe that the expected overall discrepancy can be easily evaluated by using a

Taylor expansion around 6. The necessary derivatives of (3.2.2) are given below.

Lemma 3.2.1. The first and second derivatives of (3.2.2) are:

Tt =@y [w@ 8" G By (25 )
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and
aa?f —(a+1) {(a—l— 1) / g ()2 £ (2) dz — / 0 fIH (2) dz
+E, (9 (Z) fo (Z)) — Eq (alug (2)]* £, (2))}

where ug (2) = & (log (fo (2))) and ig (2) = —g—; (log (fe(2)))-

PRroOOF. For the first derivative we have

=@t ) [ G - (U

— @+ 1| [ 55 W0 fo ) 1" (1az~ B, (5 (081020 55 2))

) B, (af; ™ (2) £5(2))

—(a+1) Vug () fo" (2)dz = By (o (Z) f <Z>>} :

Observe also that

Lemma 3.2.2. If the true distribution g belongs to the parametric family {fp}, then

the second derivative of (3.2.2) simplifies to:

02 Wy,

0 (a+1) / [ugy ()] for " (2)dz = (a+ 1) J(6o) (3.2.4)

where J(0p) = [ [ug, (z)]zf;;a (2)dz and 6y represents the best fitting value of the
parameter. Also the first derivative of (3.2.2), under the same assumption, is equal

to 0.

PROOF.

If the true distribution g belongs to the parametric family {fy}, then:

E, ([us, (D) £, (2)) = / fugo () £ (2) d
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and
Eq (i00 (2) f;o (Z)) = /iao (2) 910+“ (z)dz
so that
0*Wy,

For the first derivative the result follows immediately since

oWy,
00y

E, (i, (2)£5,(2)) = [w, ()" ()= 0 0. (329

Theorem 3.2.1. Under the assumptions of Lemma 5.2.1 the expected overall dis-

crepancy at 0 = 0 is given by

(a+1)

~ 2
EW,; = W, + E [(0 ~ o) J(Ho)} + ER,, (3.2.6)

where R, = o((8 — 6,)2), 6y the true value of the parameter and
100) = [ lu, A £," (2)

PrOOF. Using a Taylor expansion of the quantity W, around the true parameter 6,

and equation (3.2.4) and taking 6 = 0, W, simplifies to:

(a+1)

W, = Wy, + = 90)2 T(09) + o( (6 — 00)?). (3.2.7)

It is easily seen that the expectation of W) is given by (3.2.6). |
The assumption that the true distribution g belongs to the parametric family
{fe} is the assumption made by Akaike (Akaike, 1973). The assumption may be
questionable in practice but it is a useful one in the sense that provides the basis
for the evaluation of the estimator of the expected overall discrepancy as well as
the computation of expectations for central distributions which would not have been

possible otherwise (see also McQuarrie and Tsai, 1998, p. 20-21).

3.2.2 Estimation of the Expected Overall Discrepancy

In this section we construct an unbiased estimator of the expected overall discrep-

ancy (3.2.6). First we shall deal with the estimation of the unknown density g. An
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estimator of (3.2.2) with respect to g is given by replacing E, (fg (Z)) by its sample
analogue

Qo = /f;*“ (2)dz — (1 + é) %zn:fg (X;). (3.2.8)

The derivatives of 0y are given in the following lemma.

Lemma 3.2.3. The derivatives of (3.2.8) are:

0 1+a 1 ¢ a
% =(a+1) /Ua (2) fo (Z)dz—ﬁiz:;ue (Xi) fo (Xz')]
82@9 1+a

and

002 (a+1) {(a +1) / [ug (Z)]2 fo (2)dz—

Jingire @z 23 in (X0 5 (X) = 23" alun (X £ <X¢>} ,

i=1

where ug (z) and ig (z) are as in Lemma 3.2.1.

PROOF. The proof is very similar to the proof of Lemma 3.2.1 and is omitted. |
The Taylor expansion of the quantity )y around the estimator 0 yields the ap-

proximation:

Qo =Q;+(0-9) [%L + % (0- 9)2 [02@,}@ +o((0—0)?). (3.2.9)

00 062
Recall that the estimator  is a consistent and asymptotically normal estimator
of the parameter 6. For such an estimator one could select the value of 6 that
either maximizes the loglikelihood function (MLE method) or minimizes the BHHJ
discrepancy or equivalently the quantity Wy (Basu method). In the latter case the
consistency as well as the asymptotic normality are verified by the theorem below

which is due to Basu et al. (1998).

Theorem 3.2.2 (Basu et al. (1998)). Under certain regularity conditions, there
ezists O such that, as n — oo ,

(i) 0 is consistent for 0y, and

(ii) /n (é — 00> 18 asymptotically normal with mean equal to zero and variance
equal to J72 (0) K (6y), where J (6y) and K (8y), under the assumption that the true
distribution g belongs to the parametric family {fy} and 0y being the true value of the

parameter, are given by:

3 (00) = [ lu, G 1y ()2
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and

14+2a

K (60) = [ s, () ™ (202 - € (3.2.10)
where & = [ug, (2) fo " (2) dz.

It is easy to see that by the weak law of large numbers, as n — oo, we have:

0Qy p |OW,y
9@l p Oy 211
{aehg [aehao (3:2.11)
and
0*Qq p [0*W,
{ o6 L:ao - { o6? L:ao' (3:2.12)

The consistency of 6, the continuity of J(f), expressions (3.2.8), (3.2.11) and
(3.2.12) and a Taylor expansion of (Qy around the point 0 can be used to evaluate the

expectations of (Qy and Wj:

Theorem 3.2.3. The expectation of Qg evaluated at the true point 0y is given by

a+1

EQq = EQ;+ X —F {(00 . é)2 J(Qo)] + ER,

and the expected overall discrepancy evaluated at 0 is given by
. 2
EW, = E{Qé Y(a+1) (9 - 90) T(60) + Rn}
where R, and J(0y) as in Theorem 3.2.1.

PROOF. Since f — 6 as n — oo, equations (3.2.4), (3.2.5), and (3.2.11), and under
the assumption that the true distribution g belongs to the parametric family { fp} we

have:
0Qy
{ o6 L@ -0

and

~

[GQQa]H e (a+1)J(0)

002
so that for large n we have for a Taylor expansion of )y, around the estimator é, the

following approximation:

a+1
2

Qo = Q-+ o (80-0) 7(0) + (0~ 65)).
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By the continuity of .J(#) we assert the first part of the theorem. For the second part

observe that

E Qo0 = 00) = BQy + “ -

E {(9 . 90>2 J(Go)] + ER, = W,,.

By combining the first part of the theorem and Theorem 3.2.1 we obtain the unbi-

asedness of the estimator of the expected overall discrepancy EWj. |

3.2.3 The construction of the Divergence Information Criterion

Before the construction of the new criterion, the results of the previous two subsections
will be extended to the multivariate case. This extension is possible since Theorem
3.2.2 holds for a p—dimensional parameter space ©, p > 1 (Basu et al., 1998). Indeed,
in this case and under the same assumptions as those stated in Theorem 3.2.2 the

~

~ ~ /
p—dimensional estimator = (01, ...,0p> is consistent for 8y = (o1, ...,Hop)/ and

Vn(f — 0y) is asymptotically multivariate normal with vector mean 0 and variance-

covariance matrix J1(09) K (0y)J 1 (0y) where

100 = [ un, iy (15 (2=
and
K (0) = / way (2l ()17 (2) dz — €€, (3.2.13)
&= Jug (2) fo, " (2)dz and ug (2) = & (log (f4 (2))).

As a result, for a p—dimensional parameter 6, we can see that (3.2.6) at § = 0

takes the form

(a+1)
2

EW, = Wy, + E {(9 - 90)' T(60) (é - 90)] + E{o(||é - 90||2)}. (3.2.14)

Similarly, the unbiasedness property of Theorem 3.2.3 takes the form:
. / . .
EW; = E{Qé+ (a+ 1)(9 —90) 7 (60) (9— 90) —|—0(||9—90H2)}. (3.2.15)

Consider now the case that the candidate model fy comes from the family of
the multivariate normal distribution where @ is the mean vector and @ is obtained by

minimizing 3.1.1 (Basu method). Then, it can be shown that (see Basu et al. (1998)),

a

J (60) = (27) "% (14 a)"(1#8) -(14%)
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and

so that

vle

() "= e ()]

where Y is the p x p asymptotic covariance matrix of the maximum likelihood esti-

J (60) = (2m)"

mator of the p - dimensional parameter 6.

Taking now into consideration the fact that
n-o((6 — 60)*) = op(1)

since \/ﬁ(é — 6p) is asymptotically normal, we have that
n (é - 0(])'2—% [Var (éﬂ % (é \ 90> (3.2.16)

has approximately a Xp2 distribution for a small. Then, the Divergence Information
Criterion defined as the asymptotically unbiased estimator of EW; is introduced in

the theorem below.

Theorem 3.2.4. Assume that the candidate model comes from the family of the
multivariate normal distribution with 6 the mean vector and 0 the estimator obtained
by minimizing 3.1.1. An asymptotically unbiased estimator of n—times the expected

overall discrepancy evaluated at 0 is given by

o [ 14+a 1+3
DIC =nQ; + (a+1)(2m) 2 (1 n Za) p. (3.2.17)

The DIC criterion as it has been derived in the above theorem uses as an estima-
tor of the unknown parameter the estimator obtained by minimizing (3.1.1) (Basu
method). As it was mentioned earlier, the researcher may alternatively choose to use
the maximum likelihood method (MLE method) in which case the correction term is

adjusted accordingly. Indeed, in this case

[S1S)

(14 a)~(145) £-(1+3)

(1+ a)_(H%) DI [Var (éﬂ -

J (60) = (2m)"

N|e

= (2m)"
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since Var (é) = Y is the covariance matrix of the maximum likelihood estimator.
Using (3.2.15) and the fact that (3.2.16) follows again approximately a &7 distribution

it is easy to see that the adjusted DIC is given by
DICyrp = nQ; + (QW)_% (1+ a)_% p. (3.2.18)

By comparing the correction terms of DIC and DICyp we observe that they are

similar in the sense that for small a

1 L+ .
(1—|—a)( +“) ~(1+a)} <1

14 2a
In order to put into the proposed criterion some extra penalty for too large models
(models with large number of parameters) we can replace the above term(s) by a
(common) quantity larger than 1. Observe that for small values of a the denominator
of the left hand side of the above expression can be assumed to be close to 1 and
therefore it can be disregarded. As a result both of the above terms can be replaced
in DIC and DIC);;r by the remaining part of the expression on the left hand side,

namely

(1+4a)**E.

Observe that the above quantity is now larger than 1 so that the penalty term of the
criterion will be larger for large values of p. Both criteria are adjusted accordingly
and in fact now, they are both given by the same corrected formula (although 0 is

obtained by different estimating methods), namely
DIC, = nQ; + (27) 2 (1 +a)* 2 p. (3.2.19)

The MLE method and the associated DICyr.r; and DIC,. have a number of ad-
vantages. In particular, the MLE method is computationally faster than the Basu
method. This is due to the fact that the MLE method is given in closed form as
opposed to the Basu method which is not in closed form and as a result we rely on a
numerical method to obtain the desired estimator. Such numerical methods are usu-
ally associated with errors which may not be controllable, a feature that makes such
methods unattractive. As a consequence, the MLE method is more accurate than

the Basu method and at the same time satisfies the standard properties required by
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such estimators, namely the consistency and the asymptotic normality. The practical
implications of these two forms of the DIC criterion become evident in Chapter 5
were simulations are performed.

Observe that the DIC criterion consists of two terms. The first term, (), is a biased
estimator of the expected overall discrepancy. As a result, if we choose the model
with the smallest estimator of the expected overall discrepancy we may end up with
a selection with an unnecessarily large number of covariates. The estimator becomes
asymptotically unbiased by introducing the appropriate correction term according to
the estimating method used. The correction term could be viewed also as a penalty

term for too large dimension p.

3.3 Lower Bound of the MSE of Prediction

One of the main issues in model selection is the notion of asymptotic efficiency [Shi-
bata, 1980; 1981]. The asymptotic efficiency deals with the selection of a model
with finitely many variables that provides the best possible approximation of the true
model with infinity many variables with respect to the mean squared error (MSE) of
prediction. The issue of asymptotic efficiency is of great interest whenever the object
of the analysis is a model selection that yields a good inference. Here we provide a
lower bound for the mean squared error of prediction. In particular we show that the
MSE of prediction of DIC is never below the so called Average Mean Squared Error
(Average MSE) of prediction. For the evaluation of the MSE the original set of n
observations are used for the estimation of the parameters and the one-step ahead
prediction is used for measuring the accuracy of the selection. Following Shibata’s
assumption [Shibata, 1981] infinitely many independent variables are assumed so that
the design matrix X is a n X oo matrix.

Let X be the design matrix of the model
Y=XB+e

where B = (S, B1,...)" the vector of unknown coefficients, € ~ N(0,02I) the error

sequence and [ the infinite dimensional identity matrix.
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Let

/
V()= {c(j), such that ¢ (j) = <co,0, ey Gy, 0, ...,cjkj,O,...> }

be the subspace that contains the k; + 1 parameters involved in the model and let

!/
B — (50,0,,__,5j1,0,,,.,ﬂjkj,o,...)

be the projection of B on V' (j).

~

The prediction Y = (171, ..., Y,) is given by

Y = X;B,
where the estimator of 3™ obtained through a set of observations (X, .. ., Xz'jkj Y0,
1=1,2,...,n is denoted by
~ ~ ~ ~ ~ /
B= (80,0, B0, 0, B 0, B, 0,1 )
Observe that the design matrix Xj is a n X oo matrix where only the columns ji, ..., ji;

have entries different than zero.
The mean squared error (MSE) of prediction (up to a constant) and the average

MSE of prediction are defined respectively by
A~ / A~
Su(j) =E {(Y —Y |Xj> (Y —Y |Xj>] — no?

and
L, (j) = E(Sn(5))-

We will prove now that the above two quantities take the form given in the following

Lemma.

Lemma 3.3.1. Under the notation and conditions of this section we have that

. 2
B_pHMn(j)
and
L) =E -8,
«(J)=E|B ﬁMn(j)’

where M, (j) = X;X; and |Al|% = A'RA.
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PROOF. It is easy to see that
E(Y =Y [X;)(Y = Y[X;) = B(X;f — X8 — ¢[Xy) (X;B — X; — ¢|Xy)
=F (Xj(ﬁ —B) - €|XJ>/ <Xj (B - B) - €|XJ>
—B(( - BYXiX;(6 - )
+e'e — 2'X; (ﬁ - 5) IXJ>
= (-8) xX; (B - p) +no?

B — BH; + no?.

n(j

The results follow immediately. [ |
The Lemma below provides a lower bound for the MSE of prediction. In particular,

we show that S, (j) is asymptotically never below the quantity
Ly (%) = mijn(])

Lemma 3.3.2. Let L, (j*) = min; L, (j). Assume also that for 0 <6 <1

k]- +1

T}L%Z[(l—wn (7)) exp (bwn (5))] 2 =0,

where

Ln ()
kj + 1)9 (a, kj + 1) o?

and g(a,m) = (1 +a?/(1 + Qa))%ﬂ. Then, for every 0 <6 <1

. S (5) }
lim P > 1 -6l =1.
n—oo {Ln (]*)

PRrROOF. For every 0 < § < 1 and for every j and using the fact that

1B~ BlRs.g) = 1B = B IRau + IB™ = BliRe.g)
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we have
[otgerd e
6+,

Ma ()
<N p |l Mal) g
<2 Ly, (5)

- 2
5 _ g ) _ gl
- ZP Hﬁ B ML) +B ﬁHMn(j) s
4 L (5) B
- 9 -
5 _ g0 ) _ all?
I | LA
T L L. (j) g

<=L ()~ [ =Bl

-y o-6lL,.,
(3.3.1)

By Theorem 3.2.2 the limiting covariance matrix of n'/ 26 is a multivariate normal

random variable

N, (60, g(a, p)¥),

where

012 p/2+1
=11 .

Then, in this case we have

18-l = (B-8") {oPg ok + DM ()} (B-B") Py (o ks + 1)

Nag(oz,kj—i-l)/'\’,fj+1

(3.3.2)

and

M (j)
—[Ig — g™ ; EH_ (n)
e~ e+ £[B -8,

=g -g™" HM ot (& +1)g(ak;+1)0"
Using (3.3.2) we have that (3.3.1) is bounded by

Zp[;c,gﬂ_ (ky +1) = 6(0; + Don ()]

kj+1

<Z exp (6w, (7)) (1 — 0wy, (7)) 2
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where the last inequality follows from the fact that for £ > § [see Shibata, 1981]
P X2 <k—0] <exp 3 (1—k716)° <exp Tk (3.3.3)

By the assumption of the theorem we get

L, (%)
: Sn (4) ]
JLHQOP[L,@U*)“ 5}_1



Chapter 4

(Goodness of Fit Statistics

4.1 Introduction

It is important to state that model selection criteria are considered as statistics which
could be used for inferential purposes. More specifically, any model selection criterion
can be used for making a selection among competing hypotheses. Indeed, consider
a set of candidate models each of which may be the underlying process which the
available data came from. In that sense, each candidate model forms a hypothesis.
Then, each of the competing hypotheses is fitted to the data and the value of the
model selection criterion is computed. In such cases we select among the competing
hypotheses, the one for which the model selection criterion is minimized (for details
see Sakamoto et. al, 1986, Chapter 3).

One of the drawbacks of such a procedure is associated with the fact that the
statistical significance of any difference observed in the values of the criterion for the
competing hypotheses cannot be verified or evaluated. As a result, there is a need to
provide a formal hypothesis testing procedure using the measure on which the model
selection criterion is based.

The statistical analysis and in particular the testing of models for discrete multi-
variate data has been given considerable attention during the last 30 years. The books
of Cox (1970), Gokhale and Kullback (1978), Agresti (1984) and Cressie and Read
(1988) are focusing on various aspects of model development. The usual practice is
that the adequacy of a model can be tested by one of the traditional goodness-of-fit

tests, namely the Pearson’s X? or the loglikelihood ratio test. Note that both of these

23
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tests are special cases of the Cressie and Read measure of divergence introduced in
(1.5.5). Indeed in a discrete setting and for A = 1 the Cressie and Read measure

reduces to

i ‘_qz

=1

which multiplied by 2n is the Pearson’s X? test where p; plays the role of the observed
frequency and ¢; the role of the expected one. Furthermore, the loglikelihood ratio

test statistic (also known as Kullback-Leibler measure, see Lemma 2.2.3)

2n, Z p; log (%)
i=1 !

can be deduced from the Cressie and Read measure for A — 0.

In this Chapter we focus on a discrete setting and provide initially the distribu-
tional properties of the estimator of the general BHHJ family of measures which is
shown to be weakly consistent. These results are then used for establishing in Section
4.3 a goodness of fit test for multinomial distributions based on the general BHHJ

family of divergence measures.

4.2 Distributional Properties

Definition 4.2.1. Let f be a continuous, convexr, homogeneous function defined on
the set

Sk:{(81,82>20<8i<00, 22172},

with continuous derivatives of second order. Then the f-dissimilarity is defined to be

Q P :Zf p]Jq]
j=1

where p;, q;,j = 1, ..., m are the parameters from the multinomial distributions M (N, P),

P = (p17p27"'7pm) and M(Nan)a Q = (Ch,(Iz,---,Qm)-

For different functions f we have specific dissimilarity measures. For example for

f(p,q) = ¢ @(p/q)
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we have the general BHHJ family of measures for a general function ® while for ® as
in (1.5.4) we have the discrete BHHJ measure and for ® = ¢ with o = 0 we have the

Csiszar’s measure. Observe that the estimator of d, is

do = dy (Q,P) = Zm:f (D5, 4j)-
j=1

For the general BHHJ family of measures the estimator of the f-dissimilarity is

given by

i e ( ) (4.2.1)

where p; = ff—;, g = ]Z{[—Z, j=1,.m, and X = (21,.....7), Y = (Y1, ..., Ym) are
random observations from M (N,, P) and M (N,, Q).
Observe that in case one of the two independent distributions is known then the

obvious notation applies, namely

d, =d ( ) éfpj,qj

if ) is known and

if P is known.

Distributional properties and goodness of fit tests using measures of divergence
such as Csiszar’s have been extensively investigated [Zografos et al., 1990; Morales et
al., 1997; Pardo, 1999 etc.]. In what follows we establish the distributional properties
of (4.2.1) and provide approximations of the moments of the estimator of the general

BHHJ family of measures.

Theorem 4.2.1. Given two independent random observations X = (x1,22, ..., Tp,)
andY = (Y1, Y2, .., Ym) from multinomial distributions M (N,, P), P = (p1,p2, .., Pm)
and M (N, Q), Q = (¢1, 92, .., gm) the ezpected value of d, is approzimately equal to:

. 1 & 1 —
FE (da> == da g (1 — a 1(1)” ANt [ 3]
+2ij§::pj( p;) 2qu Y(p,q,a)+

Jj=1



o6

where d, = Z q1+“<I> ( ),CID any function such that ®(1) =0 and ®"(1) # 0 and

Y(p,q,a) = ala +1)® (ﬁ) _ 9P g <1ﬁ) Pa Y <pj) ‘
9 G \¢/) G \g

PROOF. By Zografos [1987, Theorem 4.2.1, p. 148] we deduce that the expected

value of the estimator of the f-dissimilarity is approximately equal to:

B (%) =@ "N, Zpﬂ pi) [ £ i )] + 012 = PIID)
+2—quqj (=) [ fl) (pina) | +0(IQ = QID)  (422)

where Q = (41, ...,Gn) and P = (p1, ..., pp) the estimators of Q and P, f : R — R
a function with continuous second order partial derivatives in every point of an open

subset of R? and
f” ( = > ) =1.2
(s1) (81, 82) = @f(sl,sz), =12

Take
f(pq) =q'"® (B) :

q

with @ (-) as in the statement of the theorem. Then using

o p o
foy (0,q) = ¢* 19" <5) and f(o) (p,q) = ¢" 'Y (p, ¢, a)

n (4.2.2) and the facts that N, - o(||Q — Q|>) = N, - o||P — P||*) = 0p(1) we obtain

the desired result. [ |

Theorem 4.2.2. Let two independent random observations X; = (i1, ..., Tim), from
multinomial distributions M (Nx,, P;), where P; = (pi1, ..., Pim) , © = 1,2 and another
two independent random observations Y; = (Yi1, -, Yim), from multinomial distribu-
tions M (Ny,,Q;) where Q; = (¢ .-, @im), ¢ = 1,2. Then the covariance of the
estimators of the f-dissimilarities

m A
7 ~l+a P1j 7 a
o= St (B) ot = St ().
J

p2j

with ®;(u), i = 1,2 any functions such that ®}(1) = 0 and ®7(1) # 0, i = 1,2, is



asymptotically equal to:

Cov <czla1, azga2> =

D2

() oo
P2i

e (1) [ o
QQj

oo ()
x {(1 + a2) Dy (%)

57

a1 a b1 q1;j
2;qu{<1> ( Z) )COU(plz,QM)
J

<Q2

<Q£> B g, (qﬁ)] Cov (pui, 425)
(@) P Pri g (p“>] Cov (Pai, 1)
D2i D2i P2i

plz(I)/ (p“)] X

D2 P2

_ @(I)/Q (qﬂ)} Cov (ﬁzz’,@j)} + B,

q2; q2;

where Ry = o(N~1) assuming that Nx, = Ny, = N, Vi.

PRrROOF. The first order Taylor expansions of the estimators

dy, = Zfl P1j, D2;) and de

7j=1

of the dissimilarities

dleP Z

are given by

plg,p2g and df2 Q, P

Zf2 q1j, G2;)

m
Z q1j7 QQJ

2 m
d, = dj, (Q, P) +Z pr pij) f1,i) (P1j, p2;) + o(||P — Pl)

i=1 j=1
and
2 m
d dfz Q, P ‘I'Z Z QZ] qij f2 (3) (Q1]7QZJ) O(HQ _QH)a
i=1 j=1
where ﬁz'j = Ni;L, dij = %YL, 1= 1,2, ) = 1,2, ey and
0

fk,(s) (w1,w2) = Jw

8

fk (wlan)akaS = 172

By Zografos [1987, Theorem 4.2.2, p. 150] we have that the covariance of the

above estimators is equal to:

Cov (sz1> (ifz) Z Z fl p1]7p2j f2 (v) (qlua Q2u) Cov (plj7 QUu) + RN;

,v=1 j,u=1

where Ry the remainder term. The theorem is derived by using

fi (p1,p2) = py " @y (%) s folgn, ) =g Dy <ﬂ> ;

q2
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= ! [(1 +ay) By (ﬂ) ¥ Y (ﬂ)] k= 1,2,
w2 w2 w2
with @ (u) and @5 (u) as in the statement of the theorem.

Without loss of generality assume that Nx, = Ny, = N, Vi. It is easily seen that

with the use of the relations

1P~ Pl = 1Q ~ QI = Op(N"2) and o(0p(N"1/2)) = o(N17%)

the remainder term turns out to be equal to o( N~1). [ |

Corollary 4.2.2. Given two independent random observations X = (x1,...,xp) and
Y = (y1,-sYm) from multinomial distributions M (N, P),P = (p1,...,pm) and
M (N, Q),Q = (q1,---,qm), the variance of the estimator d, of the f-dissimilarity

do 18 asymptotically equal to:

Var (d,) = + Zpﬂ [ (_)] __[ij W( )r
o Syt [ n (2) -2 (2)]

i fviteeoe ) )]

ProoF. It follows immediately from the previous theorem since for

+0o(N, ") +o(N,1).

Py = Q=P P2y = G2 = g5, P =Py and ar = ag

the covariance reduces to the variance of the estimator d,. [ ]

This section ends with the consistency property of the proposed estimator cza.

Corollary 4.2.3. Let two independent random observations X = (x1,...,xy,) and
Y = (y1,.., Ym) from multinomial distributions M (N,, P),P = (p1,....,pm) and
M (Ng,@Q),Q = (¢1,-.-.qm). Then the estimator d, is a weakly consistent estima-

tor of the f-dissimilarity d,.
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PRrROOF. The result follows immediately from Theorem 4.2.1 and Corollary 4.2.2 since,

as Ny, — oo and N, — oo,

E <cZa> — d, and Var (cia> — 0.

4.3 Goodness of Fit Tests

If we have to examine whether the data (ni,ns,...,n,) come from a multinomial
m

distribution M (N, Py), where Py = (p1o, P20, -, Pmo) and N = > n;, a well known
i=1

test statistic is the chi-square goodness of fit test statistic. We define now for any

function ® such that ®’'(1) = 0 and ®”(1) # 0, a new statistic for the above goodness

of fit test:

. 2N (da —o(1 )Zp1+“)

&) (4.3.1)

which for @ (u) as in (1.5.4) constitutes the test statistic associated with the BHHJ

divergence. Observe that for the purpose of goodness of fit tests we use

)

with ¢; = pjo.
In what follows we establish the asymptotic distribution of the estimator d, (Corol-

lary 4.3.1) and the test statistic (4.3.1) (Theorem 4.3.2).

Theorem 4.3.1. Let g : ¥ — R a function of the form
g (xla T2y ey ‘Z‘m) = Z qil+a® (xl/ql)a
i=1
with ® (u) any function such that ®'(1) =0 and ®"(1) # 0 and ¢; known. Then

VNG (D1 s Br) — G D1y ooes D)) == N (0,072)

o2 _{zpj o (2] - [Zpﬂ i (3 )]

N, i=1,..,m.

where

x4

and p; =
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PROOF. Since X = (1,2, ..., Ts) is a random observation from the multinomial
distribution M (N, P), P = (p1,p2,.-..Pm) and p; = ££,4 = 1,..,m it follows that
(see, e.g. Serfling, 1980, p. 108-109),

R R . L
VN (By = Py, Py = Pas oy By — Pr) — N (0, %),
where the variance-covariance matrix is given by ¥ = [oy;],

Tij = S,
—Pij; 1 # ]
The theorem is derived by applying the well known Delta method to the case

under investigation (for a similar result see Rao, 1973, p. 387) with

~x~ _ 09 g
=2 0 :
i=1 j=1 9pi Ip;
where
99
oy, — ¥ e/w), k=1.2,....m.

Indeed, in this case we have

= 3n - mla ()] - S5 oo ()] [ (2)]
Sl () S (2]
SN ol () ()
and the result is immediate. [ ]

Corollary 4.3.1. Let d, as in (1.5.6) and any function ® such that (1) = 0 and
O"(1) # 0 with ¢; = pi, i =1,...,m. Then

VN [ — o] 2 N (0,0)
where

m 2 m 2
e @ (p_i>] _ % (p_i)
;pa {pgo » >_rri® |

j=1 J0

and
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Proor. It follows immediately from the previous theorem. [ |
We provide below the definition of the usual stochastic ordering which is used in
Theorem 4.3.2 where the asymptotic distribution of the test statistic (4.3.1) under

the null hypothesis Hy : p; = pio, ¢ = 1, ..., m is established.

Definition 4.3.2. Let X and Y continuous random variables with cdfs F' and G. Let
F~' and G7! the inverses and F' =1 — F and G = 1 — G the corresponding survival

functions. X is said to be smaller than Y in the usual stochastic order X <4 Y if

F(z) < G(x) Vz € R.
Also X < Y iff F~'(p) < G7'(p), p € (0,1).

Theorem 4.3.2. Let (ny,...,n,) ~ M (N,P) with P = (p1,....,pm) and p;, i =
1,...,m unknown parameters. Under the null hypothesis Hy : p; = pio, 1 = 1,...,m we

have:

;% (% - pi0>2

NgE

n; 2 UL Npqo n; 2 a
(% —pi0)” =st 2o 52 (B —pio) <= (mlaxpio)
=1

m
: a N
hd (mmpio> > Dio
¢ i=1 i=1

2 n Npqo n; 2 p
oXa—Zﬁ(ﬁ—pm) — 0 and
i=1

e the distribution of (4.5.1) is estimated to be approzimately cX? _,, where
min pj, + max pg,
13 K3

2 )

CcC =
X2 | is the chi-square distribution with m — 1 degrees of freedom and <y the symbol
for stochastic ordering.

PROOF. The Taylor expansion of ® in an open ball B.(p;/pio) of radius ¢ around the

point p;/pio, i =1,2,...,m, is given by:
G+ (o2 (2)
Pio Pio Pio Pio DPio
Lip m\ i B pi\\’
SR E) (52
2 \pio  Dio Pio Pio  Dio

Multiplying both sides of the above relation by N pggr ¢ and taking the sum of both
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sides for i = 1,2, ..., m we get

Soie(2) £ (3) £ (2-2) ()

) Di )
B () v ()
Z b Dio Do DPio
2
) D
=wlito (1))
Z Pio  Pio

which for p; = p;0 becomes:

. S 1 “\ Np& /n; 2
Nd, — N (1) plie — ~a" (1 —w<_z_pi)
DS U
= Pio \ 3y — Pio (1) + Z p_-oo((pi — Pio))"-
i=1 i= t
(4.3.2)
where p = (n1/N, ..., n,/N) and py = (p10,- -, Pmo)’. But
D P
ZNP_'O o((ps pzo)) mlax{pO}ZNo pio))2
=1 P 07 = (4.3.3)
Pl )
— g {2 o 2 = 0r(1)

since

VN(p = po) = N(0,%)

where 3 as in the proof of Theorem 4.3.1 (see Serfling, 1980, p. 108-109). From
(4.3.2) and (4.3.3) we conclude that

2N cZa—<I><>Zpl+a mone N
) oy

Observe that
. N /n; Np% /ny N /n;
a E i E 0 (. a E Y
(Hlilnplo> “ pig (N sz) st 2 pio (N sz) st <H1?XPZO> £ pio (N sz) -
The estimation of the distribution follow from the fact that as N — oo (Serfling,

1980, page 122, example B)
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Observe that in the theorem above we assume that ®'(1) = 0. This assumption
is necessary if the test statistic used is the one given by (4.3.1). It is easy to see
and it will be evident immediately after the Theorem 4.3.4 that this assumption is
satisfied not only for the discrete BHHJ measure but also for all measures covered
by the Csiszar’s family of measures. If though one selects a function ® which does
not satisfy this assumption then the appropriate test statistic has to be defined. It
is not difficult to see that in such a case (4.3.2) is the main expression affected since
the first term on the right hand side of the expression does not vanish. The resulting

test statistic will be given by

2N <da -9 (1> Z:lpz‘10+a - Z:il ng (n]_VL N piO) (I),<1))
2 =

e =
a @//(1)

(4.3.4)

It should be noted though that for values of a close to zero the last term in the

numerator of (4.3.4) vanishes since
m n;
Zp?o (N = pz’(]) ~ 0.
=1
Theorem 4.3.3. The power of the test
Hy:p,=pio vs Hy, :pi=pp, t=1,....m

using the test statistic (4.3.1) is approximately equal to:

a:P ZZ :
K 2/ No,

" (1) X2y, + 2N (1) D pte — 2Nd,

(4.3.5)

where Z a standard Normal random variable, X,,—1, the (1 — a)—percentile of the
X2 | distribution, and
m D 2 m » 2
a ib a ib
2= mn o (22)] | L mustir (22)
i1 Pio i1 Pio

PROOF. By definition, the power is given by

m—1,«

Yo =P (Xg > X2

pi = pibai = 17 >m>

A

(1) edy1 0 + 2N (1) 3 pl
=P |d,> =

Di = pib;i = 1, -~

2N
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From Corollary 4.3.1 with p; = pj, j = 1,...,m, we have

VN [do— ]

Oq

Ly N(0,1).

The result is immediate. [
Note that for the BHHJ test corresponding to the measure given in (1.5.6) and
(1.5.4) we have
P"(1)=14aand (1) =9'(1) =0

so that the BHHJ statistic corresponding to the goodness of fit test of Theorem 4.3.2

is given by
2Nd,
Xe=1"a (4.3.6)
while its power is given by
_p (Z S (I4+a)eXy ,, — 2Nda> (43.7)
7a - - 2\/No—a . .J.

Note also that the Csiszar’s statistic corresponding to the goodness of fit test of

Theorem 4.3.2 is given by

B
X, = ) (4.3.8)
while its power is given by
"(1) X% _, . +2Np (1) —2Nd,
’}/C:P<Z2g0 () m l,azmo-(p() )7 (439)

where

d. =Y _pioe (pi/pio) and do =Y piotp (Bi/pio) -

i=1 i=1

For the usual Kullback-Leibler, Kagan and Cressie and Read measures we can easily
see that

e(1)=0and ¢" (1) =1

so that the power is simplified into the form

(4.3.10)

X2y - 2Ndc>

c:P ZZ
7 ( 2V No
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where
. AV L o]
2 / ib / ib
o = Pin |¥ | — - Piry \ —
oo (2) [Z (pm)]

¢'(z) = logx (Kullback — Leibler),

and

o' (z) =z —1 (Kagan),

1
o'(z) = X(:z:)‘ — 1) (Cressie and Read).

For the square of the Matusita measure it is not difficult to provide the appropriate

expressions for the test statistic and the power since we can easily see that
/ -1/2 " 1
p(1)=0, '(z)=1—=x and@(l)za.

We turn now to a special type of alternative hypothesis for multinomial popula-
tions. Suppose that the null hypothesis indicates that p; = p;o, 2 = 1,2,..., m when
in fact it is p; = pin, Vi. As it is well known if p;y and p;, are fixed then as n tends
to infinity then the power of the test tends to 1. In order to examine the situation
when the power is not close to 1, we must make it continually harder for the test as
n increases. This can be done by allowing the alternative hypothesis steadily closer
to the null hypothesis. As a result we define a sequence of alternative hypotheses as

follows

Hyp P = Din = pio + di//n, Vi (4.3.11)

which is known as Pitman transition alternative or Pitman (local) alternative or local
contiguous alternative to the null hypothesis Hy : p; = pj. In vector notation the

local contiguous alternative takes the form

Hip:p=py=po+d/vn
and the null the form
Ho:p=po
where p = (p1,..-,0m)s P = (P1nsDons -« Pmn)’s and d = (dy,...,d,,) is a fixed
vector such that )", d; = 0. Observe that as n tends to infinity the local contiguous

alternative converges to the null hypothesis at the rate O(n=1/%).

We define now the noncentral chi-square distribution.
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Definition 4.3.3. If X, ..., X,, are independent random variables with X; ~ N(&;,1),

the distribution of Y -, X? is noncentral chi-square with m degrees of freedom and
noncentrality parameter § = > £2. In matriz notation we say that if X ~ N(&, 1)

then X'X ~ X2

m,0’

with 6 = '€ where X = (X1,..., X)), £ = (&1, ..., &) and T the

mxm identity matrix.

The following Lemma from Hunter (2002, p. 72) which will be used later is
presented below without proof. The lemma provides conditions for the noncentral

chi-square distribution but applies also to the chi-square distribution when £ is taken

to be 0.

Lemma 4.3.1. Suppose that X ~ N(&, Q) where Q is a projection matriz of rank
r<m and Q¢ =&. Then, X'X ~ X%&.

r

In order to derive the asymptotic distribution of the test statistic (4.3.1) under
the local contiguous alternatives H,,, observe that when indeed p; = p;n, Vi and p;

the maximum likelihood estimator of p; then

(Pi — Pin) L
\/ﬁ pzn(l - pin) —> N(O’ 1)

/@: /1+pin_pi(): 1+ d;
Pio Pio \/ﬁpio

which converges to 1 as n — oo. In a similar fashion one can easily show that

Observe also that

d;
= 1 _—
1 —pio \/ \/5(1 - pio)

which converges also to 1 as n — oco. As a result

. (ﬁz‘ _pin) ) \/pm(l —pm) i)
\/_\/pm(l - pm) \/pio(1 —Pz'o) N

(0,1)

or equivalently

n (ﬁz —pm) i}
Vi pio(1 — pio) N1

It is easily seen that

V(P — pio) = Vn(pi — pin) + V1(Din — Pio)

= V/n(pi — pin) + di.
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Hence, by Slutsky’s theorem
. L
Vn(pi — pio) — N(di, pio(1 — pio))-

Furthermore, observe that Cov (p; — pio) (B; — Pjo) = n” 'piopjo- In conclusion for the

m-~dimensional vector parameter we have (see also Serfling, 1980, pp. 108-109)
. L
V(p —pn) — N(0,%)

and

Vi(p = po) == N(d, %)
where p = (p1,-..,Pm) and ¥ as in the proof of Theorem 4.3.1. Let P a diagonal
matrix with diagonal elements the inverses of the elements of the vector py. Then,

from Theorem 4.3.2 we have

zmzﬁ (& _pi0>2 = N(ﬁ—po)lp(ﬁ—po)

— pio \N

so that by Slutsky’s theorem
VN (PY2(p— po)) -2 N(PY%d, PV?5PY?),

Lemma 4.3.1 can now be applied provided that the matrix PY/2YPY/? is of rank
m — 1 and that (P22 PY?). (PY/2d) = P'/2q.

For the first condition we have
P1/22P1/2 — Pl/Z[Pfl _pOp{)]Pl/2 _ I o P1/2p0p6P1/2 _ I . \/p_o\/p_gl

which clearly is symmetric with trace equal to m — 1. The sum of its eigenvalues
is also equal to m — 1 since for symmetric matrices the trace and the sum of the

eigenvalues coincide. Furthermore, since /po’/po = 1 we have that

(I = VPov/po ) = /Po/p0') = I = 2y/bov/Po’ + v/Po/o vPov/bo' = I = v/Poy/bo’

and hence, the matrix P/2XP'/? is a projection matrix with implies that its eigen-

values are all equal to 0 or 1. As a result there are m — 1 eigenvalues equal to 1.
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The second condition is easily established since

P22 Pd = PY2[P~! — popi] Pd = P*[d — po(1)'d]

m

where the second term vanishes since (1)'d = >"7" d; = 0, ¥ = P~ — pop}, the covari-
ance matrix appearing in the proof of the Theorem 4.3.1 and (1) an m-dimensional
vector with elements equal to 1.

As a result, in contrast to the chi-square distribution derived in Theorem 4.3.2,
here and as N — oo and under the local contiguous alternative hypotheses H;, we
observe the non-central distribution, namely

> X (-p) Lo
Y (R CAN SO BN
. Dio N Pio m—1,6°
where the noncentrality parameter § is given by
6 = (PY?d) P*d = d'Pd

The following theorem summarizes the above discussion:

Theorem 4.3.4. The asymptotic distribution of the test statistic given in (4.3.1)

under the local contiguous alternative hypotheses (4.53.11), is CXan—l,J where ¢ =
miin p?o +max p?o

5 and X, 5 is the noncentral chi-square distribution with m — 1 degrees

2
m

i=1 pio°

of freedom and noncentrality parameter given by 6 = >

Following the above theorem the power of the test under the local contiguous

alternative hypotheses (4.3.11) is given by

Vo = P(Xz > cX%_La|pi = Pin,i=1,...,m) = P(c/‘(,i_m > CX%_M)

=P(X2 ;> X0 1) (43.12)

Note that the corresponding power of the above test using the Csiszdr’s statistic

(4.3.8) is given by exactly the same formula, namely

Y = P(X2 > X;_La|pi = Pin,i=1,...,m) = P(X;_m > X;_La). (4.3.13)



Chapter 5

Simulations

5.1 Model Selection

In order to check the performance of the DIC criterion proposed in Section 3.2 we

performed a simulation study using

e the Divergence Information Criterion DIC

The corrected DIC,. based on the MLE method

the Akaike Information Criterion AIC

the Bayesian Information Criterion BIC

the AIC for small sample sizes and

the AIC with the estimator of the variance obtained by the minimization of the

BHHJ measure.

The simulation study has the following characteristics. 50 observations of 4 vari-
ables X1, X5, X3, X, were independently generated from the normal distributions
N(0,3), N(1,3), N(2,3) and N(3,3) correspondingly. Correlation coefficients be-
tween these variables were less than 0.13 (in absolute values) in all cases. The first 2
of these variables was planned to be used to generate values of Y;, i = 1,...,50 using

the following model specification:

Y; = Qo + G1X17i + CL2X27Z’ + s
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with

ap =a; =ay =1 and &; ~ N(0,1).

Due though to contamination of the above model by 10% from the model
Yi=1+X,+ Xy, +¢;
with ef ~ N(5,1) the simulated values were generated from the model
V;i=09(1+ X1, +Xo,;+2;) +0.1(1+ Xy, + Xo,; +7).

The reason for introducing contamination into the simulation study was to put into a
test the robust features of the DIC criterion. In other words, we wanted to force the
DIC to perform to the fullest extent and activate its prime feature according to which
when a > 0, observations significantly discrepant with respect to the model get an
almost zero weight and therefore their contribution to the final selection is minimal.

With a set of 4 possible regressors there are 2* —1 = 15 possible specifications that
include at least one regressor. These 15 possible regression specifications constitute
the set of candidate models for the experiment. As a result the candidate set consists

of the full model (X, Xs, X3, X4) given by
Y = bo + lel + b2X2 + ngg + b4X4 +¢

as well as all 14 possible subsets of the full model consisting of one (Xj,), two

X

J2»

(X;

Ji»

X,) and three (X;

I Xj,), with j; € {1,2,3,4},i = 1,2, 3 of the 4 regressors

X1, X5, X3, Xy. 50 such experiments were performed with the intention to select the
best model among the available candidate models.

Recall that the construction of DIC is similar in spirit to the construction of AIC
since they are both established by obtaining an unbiased estimator of the overall dis-
crepancy. Furthermore, the consistency property of BIC makes it a highly applicable
criterion. As a result it is highly desirable to compare the three criteria in terms of
their performance. Besides the standard AIC criterion two more variations of AIC
have also been included in the analysis.

First we consider the standard AIC criterion given by

AIC =nlogs, +2(p+2)



71

where n the sample size, p the number of variables of the model and &g the estimate
of the variance of the model with p variables.

We also consider the corrected AIC criterion introduced by Hurvich and Tsai
(1989) and used in small sample situations. The corrected AIC is given by

n(n+p+1)

AIC’c:nlog&z+ 3
n—p-—

Another variant of the AIC criterion used in the simulations is the one given by
AIC, =nlogé,, +2(p+2)

where 67, is the estimator of the variance o, of the model with p variables which
is obtained by the minimization of the BHHJ measure. Note that there is no closed
form for the estimators of the parameters but they are computed by using numerical

methods to solve the estimating equations
iy VEe (X)) — It _
S s (XS5 (%) — [ s (S (2)dz =0
i=1

where ug (z) = 81%’;9(2) and 6 = (bo, ..., by, 00,), p=1,2,3,4. AIC, is evaluated for
a = 0.01,0.05 and 0.10.
From the various Bayesian approaches we have chosen to include in the simulations

the Bayesian Information Criterion (BIC, Schwarz, 1978) because of its consistency

property. The BIC is given by
BIC = nloga,” + (p + 2)logn.

Finally the DIC is used with both corrected and uncorrected penalty terms and
with both estimating methods, namely the Basu and the MLE methods. The original
DIC (uncorrected) based on the Basu method, is used with index a = 0.01,0.05 and
0.10 and the corrected DIC' based on the MLE method, with a = 0.01, 0.05,0.10 and
0.15. To make the notation precise we will be using in the sequel DICY™¥ in place

of DIC.. Recall that the formulas of the DIC criterion are given by

o 14a )\t
DIC =nQ; + (a+ 1) (2r) "% (HQ‘;) P

and

DICMYE — nQ, + (27) 7% (1 +a)*" 2 p.
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For each of the 50 experiments the value of each of the above model selection
criteria was calculated for each of the 15 possible regression specifications under con-
sideration. As a result, for each of the 50 experiments and for each model selection
criterion the 15 candidate models were ranked from 1st to 15th according to the
value of the criterion. Recall that the model chosen by a criterion is the one for which
the value of the criterion is the lowest among all 15 candidate models. Table 5.1
presents for each selection criterion, the proportion of times each candidate model
has been selected by the criterion. Notice that only 4 of the 15 candidate models
have been ranked 1st and therefore selected, namely the true model (X, X3), and
the "larger” models (X7, Xo, X3), (X3, X2, X4) and (X, X9, X3, X4). Obviously, all
selections contain the correct variables of the model, namely X; and Xo.

Observe that the DIC criterion selects the true model in all instances where the
AIC criterion succeeds, that is 80% of the cases. The AIC, has a higher success rate
(88%) which could be attributed to the relative small sample size used (n=50). The
AIC criterion with index a has the smaller rate of success (less than 80%). In fact
observe that the larger the value of the index a the worse the performance of the
resulting criterion.

On the other hand both BIC and DICMEE with a = 0.15 have the best selection
rate (96%) among all competing selection criteria. It should be noted that for DIC
the selection rate improves as a tends to 0 while for DICMLE the rate improves as a
increases up to a maximum value. This behavior is due to the different form of the
correction term. Indeed, DIC decreases as a function of the index a while DICMLE
is an increasing function of a. As a result and as a (and p) increases, the DICMLE
criterion puts a heavier penalty in large models (in models where the dimension p
of the parameter is large) and therefore for too large values of a (and p) we end up
underestimating the true model.

CMLE gseems to be superior than that of DIC not only

The performance of DI
because of its higher rate of success but also because it is based on the MLE method
which is computationally faster than the Basu method since the former is provided in

closed form while the latter relies on a numerical method for obtaining the required
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estimator.

In conclusion, the DIC expresses a good medium sample size performance which

MLE
Cc

is comparable to the traditional AIC criterion while the DI is very powerful

and comparable to BIC.



Table 5.1: Proportion of the selected models by model selection criteria (n=50)

| Criteria | Variables | % || Variables | % | Variables | % |
AIC AIC || X0, X, |80 || X, X0, X, | 20 | % *
AlIC, X1, Xo 88 || X1, X0, X4 |12 * *
BIC BIC | X1, X, |96| X0, X5 X, |4 | * *
AlC, AlCy0 || X1, Xo 80 || X1,Xo, Xy |16 || X1, X5, X3 4
AlCy05 || X1, Xo 76 || X1, X9, Xy | 16 || X4, X9, X3 8
AlCyq10 || X1, Xo 68 || X1,X9, Xy | 16 || X1, X5, X3 or
X1, X5, X35, X, | 16
DIC DICyo1 || X1, Xo 80 || X1, Xo, Xy |20 | * *
DICyp5 | X1, X 76 || X1, Xo, X4 | 20 || X4, X5, X3 4
DICyq || X1, Xo 72 || Xq, X9, X4 | 16 || X1, X9, X5 01
X1, X0, X35, X, | 12
D[CCMLE DICyo1 || X1, Xo 80 || X1, Xo, Xy |20 | * *
DICyos | X1, X, |80 || X1, Xp, X4 | 20 | *
DICyq || X1, Xo 88 || Xi, Xo, Xy | 12| * *
DICy15 || X1, Xo 96 || X1, Xo, X4 | 4 * *
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5.2 Goodness of Fit Tests

For checking the accuracy of the proposed BHHJ test of Section 4.3 theoretical and
simulated results using trinomial distributions are obtained in the present section. In
particular and in order to understand the behavior of the BHHJ test we compare it

with four other tests, namely the goodness of fit tests based on

o the Kullback-Leibler measure (KL),
e the Kagan measure,
e the Matusita measure (Mat) and

o the Cressie and Read measure with A =2/3 (CR).

The proposed BHHJ goodness of fit test is applied for three different values of the
index a, namely for a = 0.01,0.05 and 0.10. Both the power and the type I error
are investigated. For the theoretical (asymptotic) power formulas (4.3.7), (4.3.9) and
(4.3.10) are used. For the simulated results for both the power and the type I error
of the test the sample size from the trinomial distribution used is equal to 150 and
a number of 10000 simulations have been created. The large number of simulations
is explained by the fact that the theoretical power was required to be checked for

accuracy. The following null hypothesis is assumed
Hy : pro = 0.2, p0 = 0.6, p30 = 0.2.

The various alternatives used are presented in Table 5.2 (ps;, is omitted since Z?:l Div =
1).

In Table 5.2 the theoretical powers of the above tests are presented along with
the powers based on the simulated study. Table 5.2 provides also for comparative
purposes the theoretical power calculated by equation (4.3.13) of the test under the
local contiguous alternative hypotheses. This technique is used with n = 150 under
the alternative hypothesis Hy : p; = pw, ¢ = 1,...,m which is viewed as a contiguous
alternative with

!/

d= \/ﬁ(plb — P10, P26 — P20, P3p — p3o)
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This test with the above alternative will be refer to in the sequel as Test with
Contiguous Alternatives and denoted by TCA in Table 5.2.

Table 5.2 compares the central values of the BHHJ test with a = 0.01,0.05 and
0.10 and the 4 competing tests while Table 5.4 provides the results for the BHHJ test
for a = 0.01 (only the central BHHJ-C value is provided), a = 0.05 and a = 0.10.

Observe that in the case of the BHHJ statistic Table 5.4 provides the asymptotic
power of the test (BHHJ-C) as well as the upper (BHHJ-U) and lower (BHHJ-L)
limits of the asymptotic power as they can be deduced from Theorem 4.3.2.

The tables provide the probabilities for the former case while for the latter the
tables provide the number of times (out of 10000) the null hypothesis is rejected.

The results from the power calculations reveal a number of conclusions which are

stated below:

e It can be easily seen that the simulated results are much better that the the-
oretical ones for all 5 competing tests. This observation indicates that these
power approximations all of which are based on the normal distribution, are

not the best possible.

e The theoretical and simulated results for the Kagan test represent also the
corresponding results for the Pearson’s chi-square test since the two tests are
identical. Recall that the theoretical power for all 4 competing tests in Table
5.2 were calculated using equations (4.3.7) and (4.3.9). The inclusion in our
analysis of the Test with Contiguous Alternatives is due to our effort to com-
pare the results, both theoretical and simulated, of the 4 competing tests to the
theoretical results based on the theory of contiguous alternatives. Note that the
equations for the evaluation of the power of the Test with Contiguous Alterna-
tives given by (4.3.12) and (4.3.13) imply that the power using this technique
is exactly the same irrespectively of the form of the function ® and the value
of the index « used in (4.3.1). It seems that in almost all cases the power theo-
retical results of the Test with Contiguous Alternatives are closer to the power

simulated results obtained by each of the 4 competing tests.
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e The BHHJ statistic performs in simulations better than the Kullback-Leibler
statistic irrespectively of the alternative hypothesis. Note that this is also evi-

dent from the theoretical calculations.

e The BHHJ test performs better than all other tests for all alternatives that are
not far away from the null hypothesis. On the other hand it performs as good

as all other tests for all alternatives that are far away from the null hypothesis.

e Both the theoretical and the simulated results show that the Matusita and the
BHHJ tests have a very similar behavior and in most cases are the most powerful
tests among the ones examined. Both tests behave well for alternatives close to
the null hypothesis and better than the Kullback-Leibler test. This observation
indicates that the BHHJ test, as well as the Matusita test, is able to distinguish

between null and alternative hypotheses when they are very close.

e Recall that for the BHHJ statistic the central as well as the upper (BHHJ-U)
and lower (BHHJ-L) bounds of the power are provided for both the simulated
and the theoretical calculations in Table 5.4. It should be noted that the lower
bound depends on the smaller of the probabilities p;y of the null multinomial
distribution while the upper bound depends on the larger of these probabilities.
Note though that for values of a close to zero (as it is the case in most appli-
cations) the corresponding quantities involved in the evaluation of the bounds,
namely min p§, and max pg, are equal to a value not far from 1 and consequently
the associated bounds are not far from the central value BHHJ-C. Finally note
that besides the average value proposed in Theorem 4.3.2 we could easily use
for the evaluation of the power of the BHHJ test, the middle value (the me-
dian value) of the probabilities of the multinomial distribution under the null

hypothesis.

e Finally observe that the larger the value of a the smaller the power of the BHHJ
test and the larger the range between the upper and the lower limits of the power

of the BHHJ test.
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Simulations have also been used to evaluate the type I error of the proposed BHHJ
test. The results presented in Table 5.3 and in Table 5.5 for various null hypotheses
in the case of the trinomial distribution show that all tests perform quite well with
sizes around the typical 5% level. Observe that in this case the larger the value of
the index a for the BHHJ test statistic the smaller the type I error (in the expense
of smaller power).

Since all tests do not have the correct size, it is desirable to make the necessary
power adjustment in order to compare properly the competing tests. One of the
graphical methods used for comparing the power of competing tests is the so called
size-power curve. These curves are constructed using empirical distribution functions
(EDF), one for an experiment where the null is true and one for an experiment where
the null is false. Let Fj(z) and Fy(x) the two EDFs evaluated at pre-chosen points
T1,...,%,. Fi(z) is the probability of getting a P-value less than x under the null.
Similarly, F»(z) is the corresponding probability under the alternative. Tracing the
locus (Fi(x), Fy(x)) inside the unit square as x varies from 0 to 1 we generate the
size-power curve with a correct size-adjusted basis. The purpose of including the
same points x;,7 = 1,...,n is the reduction of the experimental error. Note that the
method of size-power curve has been introduced by Wilk and Gnanadesikan (1968).

We have included in the manuscript only 2 power-size curves. Fig. 5.1 corresponds
to an alternative neither very close to the null nor far away from the null. More

specifically, the test corresponding to Fig. 5.1 is
Hy:p1 =0.2,p =0.6,p3 =0.2
vS.
Hy:p1 =0.2,p,=0.7,p3 =0.1.

Fig. 5.2 corresponds to an alternative very close to the null hypothesis and is selected
to show that there are cases where there is not clear advantage in using one instead

of another test. The test corresponding to Fig. 5.2 is
HO P11 = 0.2,p2 = 0.6,p3 =0.2

VS.
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H1 P11 = 025,])2 = 060,p3 = 0.15.

The results clearly indicate that when the power is adjusted for size then the
proposed BHHJ test retains its superiority being the most powerful among the 6
competing tests although there are cases (very close to the null hypothesis) where all
tests perform equally well. It is interesting to note that Matusita’s statistic performs
quite well coming second after the BHHJ statistic. On the other hand though the
Kagan’s test (i.e. the Pearson’s X? test) and the Cressie and Read test for A = 2/3
have the worst performance among the 6 competing tests which puts into question
the hypothesized superiority of these two tests (Cressie and Read, 1988, Chapters 5

and 6). Further investigation is required though to verify such a claim.
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Figure 5.1: Power vs. Size curves for the comparison of competing tests (alternative
not far away).
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Figure 5.2: Power vs. Size curves for the comparison of competing tests (alternative
close to the null).
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Table 5.2: Theoretical (asymptotic) and simulated power calculations for trinomial
distributions.

Alternative Competing Tests BHHJ Test

H() tP1o = 0.20,])20 = 0.60,p30 = 020, X22;0.05, n = 150

Py & pap KL Kagan Mat CR TCA|a=001 a=0.05 a=0.10

0.21, 0.59 0 0 0 0 0.0576 0 0 0

0.22, 0.60 || 0.0003 0.0002 0.0003 0.0002 0.0980 0.0003 0.0002 0.0001

0.25,0.60 | 0.284 0.279 0.290 0.279 0.392 0.295 0.282 0.265

0.20, 0.70 | 0.818 0.793 0.825 0.803  0.815 0.828 0.825 0.821

0.10, 0.60 | 0.901  0.890 0.900 0.895 0.944 0.896 0.894 0.891

0.40, 0.36 | 0.997  0.996 0.997  0.996 1 0.996 0.996 0.996
0.45,0.35 | 0.999 0.999 0.999  0.999 1 0.999 0.999 0.999
0.40, 0.30 | 0.999  0.999  0.999 1 1 0.999 0.999 0.999
0.53, 0.25 1 1 1 1 1 1 1 1

SIMULATIONS (# of rejections of Hy in 10000 samples)

0.21, 0.59 607 686 649 628 629 295 273

0.22, 0.60 944 1000 1013 969 1009 968 913

0.25, 0.60 3880 3926 4027 3906 4042 3867 3746

0.20, 0.70 8915 8839 9110 8853 9187 9182 9181

0.10, 0.60 9638 9608 9665 9622 9665 9617 9596

0.40, 0.36 9999 10000 9999 10000 9999 9999 9999

0.45, 0.35 | 10000 10000 10000 10000 10000 10000 10000

10000 10000 10000

KX K| X K| X K| X ¥

0.40, 0.30 | 10000 10000 10000 10000

0.55, 0.25 | 10000 10000 10000 10000 10000 10000 10000




Table 5.3: Type I error calculations for trinomial distributions.

Null

Competing Tests

BHHJ Test

SIMULATIONS (# of rejections of Hy in 10000 samples), X22;0.05, n = 150

P10 & pao KL Kagan Mat CR || a=0.01 a=0.05 a=0.10
0.20, 0.60 || 512 o067 578 544 275 258 524
0.30, 0.40 || 535 236 564 536 279 279 D73
0.10, 0.80 || 499 512 569 453 289 955 476
0.10, 0.50 || 507 529 558 491 569 078 580
0.30, 0.35 || 518 004 538 513 260 260 258
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Table 5.4: Theoretical (asymptotic) and simulated power calculations for trinomial

distributions for the BHHJ test.

Alternative | a = 0.01 a = 0.05 a = 0.10
Hy : p1o = 0.20, p2o = 0.60, p3o = 0.20, XQQ;O.OE), n = 150
p1v & pap BHHJ-C | BHHJ-. BHHJ-C BHHJ-U || BHHJ-. BHHJ-C BHHJ-U
0.21, 0.59 0 0 0 0 0 0 0
0.22, 0.60 0.0003 0.0001 0.0002 0.0003 0.0001 0.0001 0.0003
0.25, 0.60 0.295 0.268 0.282 0.296 0.237 0.265 0.295
0.20, 0.70 0.828 0.819 0.825 0.830 0.809 0.821 0.832
0.10, 0.60 0.896 0.890 0.894 0.897 0.883 0.891 0.898
0.40, 0.36 0.996 0.996 0.996 0.996 0.996 0.996 0.996
0.45, 0.35 0.999 0.999 0.999 0.999 0.999 0.999 0.999
0.40, 0.30 0.999 0.999 0.999 0.999 0.999 0.999 0.999
0.55, 0.25 1 1 1 1 1 1 1
SIMULATIONS (# of rejections of Hp in 10000 samples)
0.21, 0.59 629 570 595 668 486 573 680
0.22, 0.60 1009 936 968 1050 787 913 1081
0.25, 0.60 4041 3819 3866 4083 3450 3745 4156
0.20, 0.70 9186 9147 9181 9203 8888 9080 9239
0.10, 0.60 9664 9606 9616 9670 9509 9595 9686
0.40, 0.36 9998 9998 9998 9998 9998 9998 9998
0.45, 0.35 9999 9999 9999 9999 9999 9999 9999
0.40, 0.30 9999 9999 9999 9999 9999 9999 9999
0.55, 0.25 9999 9999 9999 9999 9999 9999 9999
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Table 5.5: Type I error calculations for trinomial distributions for the BHHJ test.

Null

a=0.01

a=0.05

a=0.10

SIMULATIONS (# of rejections of Hp in 10000 samples), X22;0.05, n =

150

P10 & pao BHHJ-C | BHHJ-. BHHJ-C BHHIJ-U | BHHJ-. BHHJ-C BHHJ-U
0.20, 0.60 375 931 258 601 430 524 625
0.30, 0.40 279 273 279 289 248 273 289
0.10, 0.80 289 482 959 600 333 476 612
0.10, 0.50 269 920 578 602 456 280 706
0.30, 0.35 260 950 560 266 950 258 266




Discussion

The main topic of this thesis is the investigation of the BHHJ measure of divergence.
We propose a general BHHJ family of measures of divergence that includes the BHHJ
measure of divergence (Basu et. al, 1998) as well as the Csiszar’s family of measures
(Csiszar, 1963; Ali and Silvey, 1966). Furthermore, we propose a class of discrete
measures of divergence which could be considered as the discrete version of the above
mentioned general class of measures.

A number of properties of the general BHHJ class of measures has been discussed
like the symmetry property, the limiting property, and the quadratic convergence.
Furthermore, we propose a new model selection criterion called Divergence Informa-
tion Criterion (DIC) which is based on the BHHJ measure. Finally we propose a test
statistic for goodness of fit tests for multinomial populations. Note that both the
DIC criterion and the test statistic are indexed by a single parameter a. The value
of a dictates to what extent the estimating method based on the minimization of the
measure of divergence becomes more robust than the maximum likelihood estimating
method. One should be aware of the fact that the larger the value of a the bigger the
efficiency loss. Consequently, one should be interested in small values of a > 0, say
between zero and one.

The proposed DIC criterion could be used in applications where outliers or con-
taminated observations are involved. The prior knowledge of contamination may be
useful in identifying an appropriate value of a. Simulations show that values of a from
0.01 to 0.10 are sufficient in achieving high success rate of correct model selections.

The proposed BHHJ test statistic was compared with other tests like the Pearson’s

X? test or Kagan’s test, the loglikelihood ratio test (Kullback-Leibler test), the Cressie
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and Read test and the Matusita test and was found to perform well in cases where the
alternative hypothesis is close or not far away from the null. In cases where the two
hypotheses differ significantly, all tests, including the BHHJ test, perform equally
well. Simulations based on trinomial distributions show that the proposed BHHJ
test statistic is superior to other traditional goodness of fit tests when the power is

adjusted for the size of the test.



Future Research

The results obtained in this thesis can be extended and generalized in a number of
ways.

Regarding the DIC model selection criterion proposed in Chapter 3 one should
investigate its asymptotic properties. Two of the issues in model selection that are
discussed in the literature are consistency and asymptotic efficiency. A natural re-
quirement for a selection procedure is to choose the best possible model from a given
family of models. Needless to say, the goodness depends on the objective of the analy-
sis. Consistency is our main concern whenever we know the true model as correctly as
possible. In other words, consistency is of great importance if the true model belongs
to the family of models from which the selection is to be made. On the other hand,
the asymptotic efficiency is associated with the predictive performance and requires
the selection of a model which yields good predictions. For this objective it is natural
to assume that the true model does not necessarily coincide with one of the models
under consideration. It is important to point out that the two issues are not compat-
ible. In particular, Shibata (1976) and Bhansali and Downham (1977) showed that
AIC and its alike tend asymptotically to overfit the true order (overestimation) and
therefore they are inconsistent. A recent paper by Wei (1992) investigates the distri-
butional properties of a number of criteria and establishes the consistency of BIC. In
the same paper, the author proposes the use of a new criterion that incorporates the
Fisher’s Information (FIC) and proves its consistency. Notice the different meaning

I

and different usage of the terms ”consistency” and ”efficiency” in the order selection
theory. For example, the notion of ”inconsistency” (overestimation) of AIC could

be viewed as equivalent to ”superconsistency” in the traditional sense. As a result,
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caution is required whenever such issues are raised so that unnecessary misinterpre-
tations would be avoided. As a result, if the true model is unknown the concept of
consistency should not be included at the top of the scientist’s list. The asymptotic
efficiency is solely associated with prediction and if this is the purpose of the study,
then a selection strategy carrying such a property should be used.

The notion of asymptotic efficiency which was introduced by Shibata (1980) is
based on the selection of that model which leads to the smallest average mean
squared error of prediction. The theory developed in recent years (e.g. Shibata,
1981, Bhansali, 1986, Hurvich & Tsai, 1989, Karagrigoriou, 1997) shows that the
family of AIC-type criteria possesses such a property as opposed to the family of
BIC-type criteria which have been found to be consistent but not asymptotically ef-
ficient. This latter property however, is useful in practice only in the case where the
class of candidate models does include the correct model. Since however the true
underlying model is unknown in practice the notion of asymptotic efficiency seems to
be a more realistic property.

Shibata (1980) was the first to make the innovative assumption that the data-
generating mechanisms belong to a class of linear models with infinitely many un-
known parameters. As a result the concept of asymptotic efficiency is associated with
a finite approximation of the truly infinite order of the model and as such it is not an
estimating but rather an approximation problem. The scope is to obtain a good ap-
proximation to the underlying model which could be potentially useful for predictive
purposes. In all cases where a predictor or a modelling assessment is required, the
evaluation of a risk function or a measure of efficiency is necessary. The asymptotic
efficiency focuses on the mean squared error (MSE) of prediction which plays the role
of the loss function and the average MSE of prediction which plays the role of the
expected loss function. Both of these issues should be investigated for the newly
developed DIC criterion. Note though that in regard to the asymptotic efficiency
we have already obtained in Chapter 3 a lower bound for the mean squared error of
prediction. Now we should investigate whether the mean squared error evaluated for

the model selected by DIC can attain the known lower bound of prediction. If this
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can be shown then DIC will be an asymptotically efficient criterion.

Another generalization is the application of the general BHHJ family of measures
of divergence to the location model for model selection. The location model (Olkin
and Tate, 1961) is an interesting model that describes the joint density of a random
vector with both categorical and continuous coordinates. Olkin and Tate consider the
problem of the multivariate normal distribution for the continuous component of the
density but more general parametric distribution families could be considered. It will
be very interesting to define on one hand the general BHHJ measure of divergence in
this case and then construct a model selection criterion or generalize the DIC criterion
to this special setting. Alternatively an already known divergence could be used for
the construction of a proper model selection criterion.

In regard to the goodness of fit tests a number of important issues can be ad-
dressed. For example the test statistics proposed can be generalized to cover tests
of homogeneity. For example one could test the equality of the measures between
functions fi, g1 on one hand and f;, g2 on the other. In fact such a test could be
generalized to r divergences.

Furthermore, effort should be made to improve the asymptotic distribution of
the test statistic proposed. As it can be shown from the simulations the asymptotic
distribution is not a good approximation of the true distribution of the test statistic.
Preliminary simulations (with n = 500) show than even if the sample size is large the
theoretical powers are still behind the simulated ones.

Let us redefine the general class of BHHJ measures as follows. Let G be the class
of all convex functions ® on [0, 00) such that (1) =0, (1) = 0 and ¢” (1) # 0.

Let fi and f; be two continuous probability density functions, P = (p1,...,pm)
and @ = (q1,-..,qmn) be two discrete finite probability distributions and p a given
measure. The (®, a)— continuous power divergence family between 2 density functions

f1 and f, is defined by:

s(f1, f2) = /fH“(I)( )du,a>0<1>eg

where we assume the conventions 0¢ (0/0) =0 and 0® (u/0) = lim ® (u) /u, for u >

U—00

0.
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Similarly, the (®, a)—discrete power divergence family between two discrete finite

probability distributions P = (p1,...,pm) and @ = (q1,- - ., ¢m) is defined by
de(P,Q) = }:1M¢< ),a>Q®EF.
Observe that if
1+a 1 a 1
O(u) =P (u) =u " — 1+ —-)u+ —
a a
then the BHHJ measure (3.1.1) is obtained, namely,

I3 (fi, f2) = /nga(I)l (%) dp =I5 (f2, f1)-

A similar result is obtained if

1+a

B(u) = Bau) = 1= (1+ Ju+

namely,

15 (fus o) = / f%*“%(%)du = 1%(fu, fo).

The same results hold for the discrete case.

The (®,a)—family covers not only the BHHJ measure (Basu et al., 1998) but
also the Csiszar’s family of measures. Indeed, if we take ® = ¢ and a = 0 then the
(®, a)—family coincides with Csiszar’s measure.

Also, the (@, a)—family reduces to the family of Cressie and Read (1984) power
divergence family for a = 0 and for

u Mt —u— Au —1)

) = A+ 1)

L NA£0,—1.

Finally, within the class of the (¥, a)—family of measures we can introduce and
investigate another class of measures which can be considered as a generalization of
the family of Csiszar’s measures. In particular, consider the case where ® = ¢ and

a > 0. Then we define the continuous a-Csizsar family of measures by

I8(f1, f) = / fitag (%) a0

and the discrete a-Csiszar family of measures by

da P Q Zq]l+a¢ (p]>
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For this last generalized Csiszar’s family of measures one could explore its use in
developing goodness of fit tests and in particular one could investigate the effect of

the index @ in improving the power and size of the resulting tests.
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