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PERILHYH

H Didaktorik  Diatrib  qwrÐzetai se dÔo enìthtec.

ENOTHTA I

Sto pr¸to mèroc melet�me thn plhrìthta ekjetik¸n suthm�twn ston q¸ro L2(−a, a).
'Estw µ = {µn, kn}∞n=1 mÐa akoloujÐa migadik¸n arijm¸n, dhlad , ta µn eÐnai diakritoÐ mi-

gadikoÐ arijmoÐ kai to kn h pollaplìthta touc. Me thn akoloujÐa µ susqetÐzoume to ekjetikì
sÔsthma

Eµ = {tk−1eiµnt : 1 ≤ k ≤ kn}.

Gia 1 ≤ p < ∞, lème ìti to Eµ eÐnai pl rec ston Lp(−a, a) e�n spanEµ = Lp(−a, a).
Dhlad , gia opoiad pote sun�rthsh f ∈ Lp(−a, a) kai tuqaÐo ϵ > 0, up�rqei ekjetikì polu¸numo∑k

n=1 Pn(t)e
iµnt ìpou o suntelest c Pn(t) eÐnai polu¸numo bajmoÔ to polÔ kn − 1, ètsi ¸ste

||f(t)−
k∑

n=1

Pn(t)e
iµnt|| < ϵ.

E�n èna sÔsthma eÐnai pl rec ston Lp(−a, a) all� paÔei na eÐnai pl rec me thn afaÐresh
enìc kai mìnou ìrou, tìte onom�zetai akribèc. Suqn� qrhsimopoioÔmai kai ton ìro pleìnasma
E(µ; p, a). Me autìn ennooÔmai to pl joc twn stoiqeÐwn pou prèpei na prostejoÔn (afairejoÔn)
ètsi ¸ste to sÔsthma na katasteÐ akribèc.

Gia na èqei èna sÔsthma peperasmèno pleìnasma, anagkaÐa sunj kh eÐnai ìpwc h akoloujÐa
µ na an kei sthn kl�sh B. Ta stoiqeÐa thc B eÐnai ìlec oi akoloujÐec µ = {µn, kn}∞−∞ ìpou
ℜµn ≥ 0 gia n > 0 kai ℜµn < 0 gia n < 0, oi opoÐec èqoun peperasmènh �nw puknìthta, o

ekjèthc sÔgklishc touc isoÔtai me to 1, kai h seir�
∑∞

n=−∞
|ℑµn|kn
|µn|2 sugklÐnei. OrÐzoume thn

upokl�sh B′ thc B, ìpou oi ìroi µn thc µ ∈ B ikanopoioÔn thn epiplèon sunj kh

(*) |µn − µn+1| ≤ c gia k�poio c > 0,−∞ < n <∞.

O stìqoc mac eÐnai, gia èna dosmèno sÔsthma Eµ me µ ∈ B′, na d¸soume èna genikì trìpo
kataskeu c enìc �llou sust matoc Eν me to Ðdio pleìnasma ston L2(−a, a). H kataskeu 
thc akoloujÐac ν basÐzetai sthn diamèrish thc µ se trÐa uposÔnola (diamèrish Pµ,δ). Dhlad 
gr�foume

µ = {γn}′ ∪ {λn}′ ∪ {ρn}′.

Tìte gia mÐa fragmènh akoloujÐa migadik¸n arium¸n {an}′ orÐzoume thn nèa akoloujÐa ν wc

ν = {γn + an}′ ∪ {λn − an}′ ∪ {ρn}′. (0.1)

To kÔrio mac apotèlesma eÐnai to akìlujo:

JEWRHMA

'Estw µ ∈ B′ kai gia k�poio δ > 0 èstw Pµ,δ mÐa diamèrish. 'Estw {an}′ mÐa fragmènh
akoloujÐa pragmatik¸n arijm¸n kai ν ìpwc sthn (0.1). Tìte isqÔei ìti E(ν; 2, a) = E(µ; 2, a).
E�n inf ℑµn ≥ u ∈ R mporoÔme na dialèxoume ta {an}′ wc akoloujÐa migadik¸n arijm¸n antÐ gia
pragmatik¸n.

PORISMA

Gia k�je jetikì akèraio q, pragmatikì arijmì α ∈ (0, 1/2π) kai migadikoÔc arijmoÔc

ν0 = 0, νn = nq + iα log |nq|, |n| ≥ 1,
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tìte h akoloujÐa {νn, q}∞−∞ mac dÐnei to akìloujo akribèc sÔsthma ston L2(−π, π)

{tkeitνn : k = 0, 1, . . . , q − 1}∞n=−∞.

ENOTHTA II

Sto deÔtero mèroc genikeÔoume to Je¸rhma Q�smatoc twn Fabry-Pólya. O Pólya apìdeixe
ìti e�n Λ = {λn}∞n=1 eÐnai mÐa akoloujÐa jetik¸n arijm¸n ètsi ¸ste λn+1 − λn ≥ c gia c > 0 kai
n/λn → D ≥ 0, tìte h seir� Dirichlet

f(z) =
∞∑
n=1

cne
−λnz

èqei toul�qiston èna an¸malo shmeÐo se k�je di�sthma m kouc megalÔterou tou 2πD sthn eujeÐa
thc sÔgklishc.

Stìqoc eÐnai na apodeÐxoume parìmoiou tÔpou je¸rhma ìpou antÐ gia arijmoÔc cn ∈ C na
èqoume polu¸numa.

OrÐzoume thn kl�sh L(c,D) thc opoÐac ta stoiqeÐa eÐnai oi akoloujÐecA={an}, |an| ≤ |an+1|
me ta an na ikanopoioÔn tic akìloujec sunj kec:

(1) n/|an| → D ≥ 0.

(2) |an − ak| ≥ c|n− k| gia n ̸= k ìpou c > 0.

(3) sup | arg an| < π/2.

Me dosmènh thn akoloujÐa A ∈ L(c,D), kataskeu�zoume akoloujÐa B wc ex c:

ORISMOS KLASHS Aα,β

'Estw A ∈ L(c,D) kai α, β jetikoÐ arijmoÐ ètsi ¸ste α + β < 1. Lème ìti h akoloujÐa
B={bn}∞n=1 an kei sthn kl�sh Aα,β e�n gia ìla ta n isqÔei pwc

bn ∈ {z : |z − an| ≤ |an|α}

kai gia k�je m ̸= n isqÔei èna apì ta ex c:

(i) bm = bn.

(ii) |bm − bn| ≥ max{e−|am|β , e−|an|β}.
Sthn sunèqeia anadiat�soume ta stoiqeÐa bn qwrÐzontac ta pr¸ta se om�dec ìrwn pou èqoun

to Ðdio mètro, kai met� wc proc to mègejoc tou orÐsmatoc touc. 'Etsi gr�foume {bn} = {λn, µn}
ìpou λn diakritoÐ migadikoÐ arijmoÐ kai µn h pollaplìthta touc. H morf  aut  onom�zetai h (λ, µ)
anadi�taxh. Se aut n thn kl�sh, oi ìroi plèon den eÐnai diakritoÐ kai mporoÔn na plhsi�zoun
polÔ kont�.

To kÔrio apotèlesma eÐnai to akìloujo.

JEWRHMA

'Estw akoloujÐa A ∈ L(c,D) me jetikoÔc ìrouc kai D > 0. 'Estw akoloujÐa B ∈ Aα,β

ètsi ¸ste B={bn}∞n=1 me jetikoÔc ìrouc kai èstw (λ, µ) h anadi�taxh touc. Tìte k�je seir�
Taylor-Dirichlet

f(z) =
∞∑
n=1

(
µn−1∑
j=0

cnj
zj

)
e−λnz, cnµn−1 ̸= 0,

h opoÐa ikanopoieÐ thn sunj kh

lim sup
n→∞

log |cnµn−1 |
λn

= lim sup
n→∞

logAn
λn

,

ìpou
An = max{|cnj

| : j = 0, 1, . . . , µn − 1},
èqei toul�qiston èna an¸malo shmeÐo se k�je di�sthma m kouc megalÔterou tou 2πD sthn eujeÐa
thc sÔgklishc.
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Abstract

This thesis is divided into two parts. In the first part, we give new criteria for two
complex sequences to have the same excess in the sense of Paley and Wiener in L2(−a, a).
As a result, we prove that given any positive integer q, a real number α ∈

(
0, 1

2π

)
and

complex numbers
ν0 = 0, νn = nq + iα log |nq|, |n| ≥ 1,

the exponential system {tkeitνn : k = 0, 1, . . . , q − 1}∞n=−∞ has excess 0 in L2(−π, π).
In the second part of the thesis, we give an extension of a theorem of N. Levinson

(see Theorems 3.1 and 3.2). As an application, we get a variation of the Fabry Gap
Theorem for frequencies with finite upper density (see Theorems 3.3 and 3.4), concerning
the location of singularities of Taylor-Dirichlet series, on the boundary of convergence.
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1 Introduction.

The theory of Nonharmonic Fourier Series in L2(−π, π) is concerned with the completeness
properties of sets of complex exponentials {eiµnt}∞n=−∞. The study of these series was initiated
by Paley and Wiener who showed that the system {eiµnt}∞n=−∞ is a Riesz basis for L2(−π, π)
whenever each µn is real and |µn − n| ≤ L < 1/π2 for −∞ < n <∞. A system {eiµnt}∞n=−∞ is
a Riesz basis in L2(−π, π) if it is isomorphic to the basis {eint}∞n=−∞. If this is the case, then
each function f ∈ L2(−π, π) has a unique nonharmonic Fourier expansion

f(t) =
∞∑
−∞

cne
iµnt (in the mean)

with {cn} in l2. In general, the sets of complex exponentials {eiµnt} which are appropriate, are
those which are complete in L2(−π, π). In other words, the span{eiµnt} = L2(−π, π), that is,
for each f ∈ L2(−π, π) and each ϵ > 0, there is a finite linear combination

∑k
n=1 cne

iµnt such
that ∣∣∣∣∣

∣∣∣∣∣f(t)−
k∑

n=1

cne
iµnt

∣∣∣∣∣
∣∣∣∣∣ < ϵ.

The first part of this thesis is concerned with complete sets of complex exponentials in
L2(−a, a). In fact, we allow for the terms µn to have multiplicity greater than 1. Thus we
consider the following: let µ={µn, kn}∞n=1 be a multiplicity sequence, that is, a sequence where
{µn} are distinct complex numbers satisfying |µn| ≤ |µn+1| 7→ ∞ as n 7→ ∞, and each µn
appears kn − times. We associate with this sequence the exponential system

Eµ = {tk−1eiµnt : 1 ≤ k ≤ kn}. (1.1)

For 1 ≤ p <∞, we say that the system Eµ is complete in Lp(−a, a) if spanEµ = Lp(−a, a). By
the Hahn-Banach theorem, incompleteness is equivalent to the existence of a non-trivial entire
function F (z) which vanishes on µ and which has the integral representation

F (z) =

∫ a

−a
eiztf(t)dt, f ∈ Lq(−a, a), 1

p
+

1

q
= 1. (1.2)

Our goal is to study the stability of a system Eµ under bounded perturbations of the terms of
µ. We give conditions under which we obtain equivalent systems in L2(−a, a), in other words,
systems which are simultaneously complete or incomplete in L2(−a, a). For this, we need to
introduce the concept of excess in §2 where we state our first main result (Th. 2.10). We
remark that the proof of Theorem 2.10 shall occupy most of §4. In addition, some other results
will be stated and proved in that section.

The second part of this thesis is concerned with the location of singularities on the boundary
of convergence of Taylor-Dirichlet series f(z). Given a multiplicity sequence B = {(λn, µn)}∞n=1,
we let

f(z) =
∞∑
n=1

pµn(z)e
−λnz, (1.3)

where pµn(z) =
∑µn−1

j=0 cnj
zj is a polynomial with cnµn−1 ̸= 0. Such a series occurs in nature as

the solution of an infinite order homogeneous differential equation with constant coefficients.
In §3 we state our result (Th. 3.3 and 3.4) which is a strong version of the Fabry Gap Theorem,
for frequencies with finite upper density. The result depends on extending a Levinson theorem
(Th. 3.1 Th. 3.2) concerning various estiamates of an entire even function. The proof of these
results shall occupy §5.

We remark, that our results for both parts of this thesis, depend on the comparison of two
entire functions of exponential type, where the zeros of one of the functions are obtained by
perturbating the zeros of the other. An entire function f(z) is said to be of exponential type if
|f(z)| ≤ AeB|z| for some positive constants A and B. In the following subsection we shall recall
various properties of such functions.
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1.1 Entire functions of exponential type

An entire function f(z) of exponential type is a function of order 1 and finite type, or a function
of order less than 1. The order ρ is defined as

ρ = inf{µ : max
|z|=r

|f(z)| < er
µ

, r > r0(µ)}.

From this we get that

ρ = lim sup
r→∞

log logmax|z|=r |f(z)|
log r

.

A function of finite order ρ is said to be of type σ if

σ = inf{K : max
|z|=r

|f(z)| < eKr
ρ

, r > r0(K)}.

Then one has that

σ = lim sup
r→∞

logmax|z|=r |f(z)|
rρ

.

An entire function f(z) of exponential type which vanishes an infinite number of times, has
the following expansion by the Hadamard Factorization Theorem. Let A = {an}∞n=1 be the set
of its zeros so that |an| ≤ |an+1| 7→ ∞. Then

f(z) = kzmebz
∞∏
n=1

(
1− z

an

)
e

z
an ,

where k and b are constants, and m denotes the multiplicity at 0. If the order of f(z) is less
than 1, then the exponential factors are missing.

The factorization is valid due to the following result of Lindelof.

Theorem 1.1. Let A = {an} be the zeros of f(z), an entire function of exponential type. Then

the lim supt→∞
nA(t)
t

<∞, where nA(t) is the counting function of A, that is,

nA(t) =
∑
|an|≤t

1,

and the sums
∑

|an|≤r
1
an

are uniformly bounded with respect to r.

We note that if for a sequence A the relation lim supt→∞
nA(t)
t

< ∞ holds, we say that it

has a finite upper density . We say that A has density D if the limt→∞
nA(t)
t

exists and is equal
to D. In both cases the exponent of convergence of A, κ, satisfies κ ≤ 1, where

κ = inf

{
α :

∞∑
n=1

1

|an|α
<∞

}
.

The converse is not true. The sequence an = n
logn

, n > 2, is an example where κ = 1 but the

lim supt→∞
nA(t)
t

= ∞.

Let f(z) be an entire function of exponential type σ. The growth of f(z) in various directions
is characterized in terms of its indicator function hf (θ). This is defined as

hf (θ) = lim sup
r→∞

log |f(reiθ)|
r

.

The indicator function hf (θ) is the supporting function of some convex compact set If . In other
words, there is a compact set If , called the indicator diagram of f(z), such that

hf (θ) = sup
z∈If

{x cos θ + y sin θ} = sup
z∈If

{ℜ(ze−iθ)}, θ ∈ [0, 2π]. (1.4)
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We note that since f(z) is of type σ, then

f(z) =
∞∑
n=1

an
n!
zn, σ = lim sup |an|

1
n . (1.5)

To this function there corresponds a function

ϕ(z) =
∞∑
n=1

an
zn+1

, (1.6)

called the Borel transform of f(z). The Borel transform is a holomorphic function in the do-
main |z| > σ. It is possible that ϕ(z) can be analytically continued into the disk |z| < σ. We call
the smallest convex compact set containing all the singularities of ϕ(z) the conjugate diagram
of f(z).

We end this section by a beautiful result obtained by George Polya. He established the
following remarkable connection between the conjugate diagram and the indicator diagram of
an entire function of exponential type.

Theorem 1.2. The conjugate diagram of an entire function of exponential type is the reflection
in the real axis of its indicator diagram.
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2 On the excess of complex exponential systems in L2(−a, a).

We note that the main sources for this topic are the survey papers of R. Redheffer [34] and of
A. Sedletskii [41], as well as the excellent expository account [44] of R. Young.

Let µ={µn, kn}∞n=1 be a multiplicity sequence. The completeness in Lp(−a, a) of the system
Eµ has lead to the notion of the completeness radius R(µ, p). This is defined as

R(µ, p) = sup{a ≥ 0 : Eµ is complete in L
p(−a, a)}.

The radius R(µ, p) is the same for all p ∈ [1,∞). It is infinite when the series
∑∞

n=1
|ℑµn|kn
|µn|2

diverges and zero when the exponent of convergence is less than 1 (see [34] Theorems 7 and
41). Thus, we are interested for the non-trivial case, that is, when the series converges and the
exponent of convergence is equal to 1. We remark, that for some time it was conjectured that
R(µ, p) = 0 if the sequence µ is real, with zero density. This was disproved first by Kahane
[19].

Theorem 2.1. There exists a sequence µ with real terms, of zero density, such that R(µ, p) =
∞.

Furthermore Koosis [25] proved the following.

Theorem 2.2. There exists a sequence µ with distinct positive integers, of zero density, such
that R(µ, p) = 2π.

A very interesting result which compares the radii of two systems, was obtained by Redheffer
[37].

Theorem 2.3. Let Λ = {λn} and Γ = {γn} be complex sequences converging to infinity, so
that ∑∣∣∣∣ 1λn − 1

γn

∣∣∣∣ <∞.

Then their completeness radii are equal, that is, R(Λ, p) = R(Γ, p).

One observes, that the result might hold even if |µn − λn| → ∞. This is the case if, for
example, we let µn = n and λn = n+

√
n.

The situation is quite different as far as the excess of two systems is concerned. A. Sedletskii
([39] Th. 4) proved that

Theorem 2.4. There exist sequences µ and λ with real terms satisfying |µn− λn| → 0 and yet
their excesses are not the same, that is, E(µ; p, a) ̸= E(λ; p, a).

By the term excess E(µ; p, a), we mean the number of terms that have to be removed from
(added to) the system Eµ in order for it to become exact in Lp(−a, a). The system Eµ is called
exact if it is complete but becomes incomplete on the removal of a single term. The most
classical example is the trigonometric system {eint}∞n=−∞ which is exact in Lp(−π, π) for all
p ∈ [1,∞) and whose excess in C[−π, π] is equal to -1.

It is well known, that replacing a finite number of terms from a system Eµ by an equivalent
number of other terms sn /∈ µ, does not change the excess . The result is due to N. Levinson
([30] Th. VI).

Theorem 2.5. The completeness of the exponential system Eµ in Lp(−a, a), 1 ≤ p < ∞, or
in C[−a, a] is unaffected if some element of Eµ is replaced by eist, where s ̸∈ µ.

Thus, the interesting case is, whether the excess of a system is preserved if an infinite
number of its terms is replaced. Perhaps, the most celebrated theorem towards this direction
is the Alexander-Redheffer theorem [34] (Th. 14).
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Theorem 2.6. For all p ∈ [1,∞) the excesses E(ν; p, a) and E(µ; p, a) of two exponential
systems Eµ and Eν are equal, assuming that

∞∑
n=1

|µn − νn|
1 + |ℑµn|+ |ℑνn|

<∞. (2.1)

This theorem is interesting on its own because it does not assume any regularity in the
distribution of either of the individual sequences. However, the necessary condition |νn−µn| 7→ 0
for the convergence of the series in (2.1), does not provide a large class of examples.

Remark 2.1. We note that the Alexander-Redheffer theorem has been generalized for spaces
of functions on arcs, other than the interval, and on domains, by Bulat Khabibullin ([21], [22],
[23]).

A positive result in L2(−a, a), without the condition |λn − γn| → 0, but under bounded
pure imaginary perturbations instead, was proved by D. Peterson ([34] Th. 17).

Theorem 2.7. Let Λ = {λn} and Γ = {γn} be complex sequences converging to infinity, so
that

ℜλn = ℜγn, |ℑλn −ℑγn| = O(1).

Then E(Λ, 2, a) = (Γ, 2, a).

We remark that the problem remains open for p ̸= 2. We note however, that the theorem
fails for L1(−a, a) and C[−a, a] ([40] Th. 1).

Another result without the condition |λn−γn| → 0, is the following theorem of A. Sedletskii
([38] Th. 2) which covers a case of nonabsolute closeness of the sequences Λ and Γ, preserving
the excess .

Theorem 2.8. Let Λ = {λn} and Γ = {γn} be sequences of real numbers converging to infinity,
so that

sup
N≥1

∣∣∣∣∣
N∑
1

(λn − γn)

∣∣∣∣∣+ sup
N≥1

∣∣∣∣∣
−N∑
−1

(λn − γn)

∣∣∣∣∣ <∞.

Then E(Λ, 2, a) = E(Γ, 2, a).

At this point we should note that in order for a system Eµ to have a finite excess , a
necessary condition is for µ to belong to (what we shall refer to) the class B. The elements of
B are all the two − sided sequences µ, that is, µ = {µn, kn}∞−∞ where ℜµn ≥ 0 for n > 0 and
ℜµn < 0 for n < 0, that have a finite upper density, their exponent of convergence is equal to
1 and the series

∑∞
n=−∞

|ℑµn|kn
|µn|2 converges.

We shall denote by B′ the subclass of B, where in addition the terms µn of some sequence
µ ∈ B satisfy
(*) |µn − µn+1| ≤ c for some c > 0, −∞ < n <∞.

Our goal is, given some system Eµ with µ ∈ B′, to give a general way to generate another
system Eν with the same excess in L2(−a, a). This new sequence ν may have radically different
geometric properties. Such an example is provided in Corollary 3.16, where we start with all
the terms of µ having multiplicity 1 and construct ν whose terms have multiplicity q ∈ N. The
constuction of ν is based on partitioning µ into at most three sets (see below the Pµ,δ partition)
and then subjecting two of them to a bounded perturbation.

Our method is particularly useful for systems Eµ having a finite excess, even if sup |ℑµn| =
∞. In [40] (Th. 3), A. Sedletskii constructed exact systems with unbounded imaginary parts.
We state a special form of his result as a theorem.
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Theorem 2.9. If µ = {µn, 1}∞−∞ with µ0 = 0 and µn = n+iα log |n| for |n| ≥ 1 and α ∈ (0, 1
2π
),

then the system Eµ is exact in L2(−π, π).

When A. Sedletskii searches for equivalent systems, he usually imposes the condition that
µ is a non-concentrated sequence where the sup |ℑµn| < ∞. A sequence µ is called non-
concentrated if nµ(t+1)−nµ(t) = O(1) where nµ(t) is the counting function. But the condition
sup |ℑµn| < ∞ is obviously a limitation when one wants to derive other exact systems from
the one in Theorem 2.9.

Thus, this latter condition and the Alexander-Redheffer theorem with the necessary con-
dition |µn − νn| → 0, are inadequate for what we want to prove. As mentioned before, our
method yields equivalent systems Eµ and Eν , with their sequences µ and ν having different
geometric properties, even when their imaginary parts are unbounded.

From now on, when we write a sequence {pn}′, a series
∑′, or a product

∏′, we mean that
the index-n is running through all n ∈ Z\{0}.

The Pµ,δ partition of some µ ∈ B′ and the construction of ν.

Let µ ∈ B′. We will partition µ into at most three sets, not necessarily disjoined,

µ = {γn}′ ∪ {λn}′ ∪ {ρn},

where {ρn} might be infinite, finite or empty. This is done as follows: Fix δ > 0 so that
δ ≥ c and write µ as µ = {µn,k : k = 1, 2, . . . , kn}∞n=−∞. Consider the closed disks Bn,k =
B(µn,k, δ) = {z : |µn,k − z| ≤ δ}. Since δ ≥ c, then in each Bn,k there are at least two elements
of µ. Thus, we pair µn,k with at most one other element of µ which is in Bn,k, and once paired
together, they cannot be paired with other ones. Thus, two subsets of µ are constructed, not
necessarily disjoined and each containing one of the two elements. We call them {γn}′ and
{λn}′, γn is paired with λn and satisfy |γn− λn| ≤ δ. It is not necessary to have |γ|n|| ≤ |γ|n+1||
or |λ|n|| ≤ |λ|n+1|| (see Example 2.1). The remaining (if any) terms of µ we call them {ρn} and
are totally independent, that is, they do not participate in the pairing. We shall refer to such
a partition by Pµ,δ.

Then for some two-sided, bounded sequence of complex numbers {an}′ we define the new
sequence ν as

ν = {γn + an}′ ∪ {λn − an}′ ∪ {ρn}. (2.2)

The following example illustrates the above construction.

Example 2.1. We present a Pµ,δ partition when µ = Z and δ = 4. From this we construct a
new sequence ν. Let {ρn} = {−2,−1, 1, 2} ∪ {5n}∞−∞, that is {ρn} = {0,±1,±2,±5,±10, . . . }
and let

γ1 = 3, γ2 = 4, γ3 = 8, γ4 = 9, γ5 = 13, γ6 = 14, . . . ,

λ1 = 7, λ2 = 6, λ3 = 12, λ4 = 11, λ5 = 17, λ6 = 16, . . . . (2.3)

that is, for n ≥ 1 (similarly for n ≤ −1) we put

γn =

{
5n+1

2
, nodd

5n−2
2
, neven

λn =

{
5n+9

2
, nodd

5n+2
2
, neven.

(2.4)

For n ≥ 1 take a2n−1 = 2, a2n = 1 and for n ≤ −1 take a2n+1 = −2, a2n = −1. Then from
(2.2) the new sequence ν is {0,±1,±2,±5,±10,±15, . . . } with all the terms having multiplicity
5, except {0,±1,±2} whose multiplicity is 1.

We now state our main result which is the following:
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Theorem 2.10. Let µ ∈ B′ and for some δ > 0 fixed let Pµ,δ be a corresponding partition. Let
{an}′ be a two-sided bounded sequence of real numbers and ν as in (2.2). Then the relation
E(ν; 2, a) = E(µ; 2, a) holds. If inf ℑµn ≥ u ∈ R we may choose the {an}′ to be a sequence of
complex numbers instead of real.

Remark 2.2. We note that for real µ and ν, our result follows from Theorem 2.8.

Corollary 2.1. Given any positive integer q, a real number α ∈
(
0, 1

2π

)
and complex numbers

ν0 = 0, νn = nq + iα log |nq|, |n| ≥ 1,

then the sequence ν = {νn, q}∞−∞ yields the following exact system in L2(−π, π)

{tkeitνn : k = 0, 1, . . . , q − 1}∞n=−∞. (2.5)

Moreover, we may construct a sequence ν = {νn, kn} with different multiplicities kn so
that for α ∈

(
0, 1

2π

)
Corollary 2.2. The exponential system

{tkeit(8n+iα log 8n) : k = 0, 1, 2} ∪ {tkeit[8n−4+iα log(8n−4)] : k = 0, 1, 2, 3, 4} (2.6)

is exact in L2(−π, π).

We end this section by two standard arguments.

Theorem 2.11. Let two systems Eµ and Eν be given. If incompleteness of anyone of the two
systems implies incompleteness of the other, then they have the same excess.

Proof

Assume that this is not true, say E(ν; p, a) < E(µ; p, a). We consider two cases, one with
|E(ν; p, a)− E(µ; p, a)| <∞ and the other with |E(ν; p, a)− E(µ; p, a)| = ∞.

Case 1, |Eν − Eµ| <∞: Then −∞ < Eν < ∞ and −∞ < Eµ < ∞. If necessary, we may
add or subtract the same finite number of terms from both systems, in order to get Eν′ and
Eµ′ respectively, so that −1 = Eν′ < Eµ′ , thus Eµ′ ≥ 0. Since Eν′ is incomplete, by assumption
the same holds for Eµ′ , thus Eµ ≤ −1. Therefore we reach a contradiction.

Case 2, |E(ν; p, a)− E(µ; p, a)| = ∞: Either E(ν; p, a) = −∞ and/or
E(ν; p, a) = +∞.

First, assume that E(ν; p, a) = −∞. Then Eν is incomplete and by assumption so is Eµ.
Thus −∞ < E(µ; p, a) < 0. Add a finite number of terms to both systems in order to get Eν′
and Eµ′ respectively, so that E(µ′; p, a) ≥ 0. Obviously we have E(ν ′; p, a) = −∞, in other
words Eν′ is incomplete. Again by assumption, this implies that Eµ′ is incomplete also, thus
E(µ′; p, a) < 0. Therefore we reach a contradiction.

Second, assume that E(µ; p, a) = +∞ and −∞ < E(ν; p, a) < ∞. Once more, add a finite
number of terms to both systems in order to get Eν′ and Eµ′ respectively, so that E(ν ′; p, a) < 0
and E(µ′; p, a) = +∞. Then, Eν′ is incomplete, and by assumption so is Eµ′ , thus E(µ

′; p, a) <
0. Therefore, once more we reach a contradiction. ♢

Theorem 2.12. Consider a multiplicity sequence µ = {µn, kn}. Shift all the terms by some
amount d to get a multiplicity sequence µ′ = {µn + d, kn}. Then their associate systems have
the same excess.
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Proof

Assume that Eµ is incomplete in Lp(−a, a). Then there is some f ∈ Lq(−a, a) so that

F (z) =

∫ a

−a
eiztf(t)dt (2.7)

vanishes on µ. But F (z) can also be written as

F (z) =

∫ a

−a
ei(z+d)te−idtf(t)dt, (2.8)

with g(t) = e−idtf(t) ∈ Lq(−a, a). Define now G(z) = F (z − d). Then

G(z) =

∫ a

−a
eiztg(t)dt, (2.9)

vanishes on µ′, thus Eµ′ is incomplete in Lp(−a, a). Similarly, if one first assumes incompleteness
of Eµ′ in L

p(−a, a), this yields the same for Eµ. Applying the previous theorem completes the
proof. ♢
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3 On a theorem of Norman Levinson and a variation of

The Fabry Gap Theorem.

The Fabry Gap Theorem (see [30] Th. XXIX) states that if Λ={λn}∞n=1 is a real positive
sequence such that λn+1 − λn ≥ c for c > 0 and n/λn 7→ D ≥ 0 as n 7→ ∞, then the Dirichlet
series f(z) =

∑∞
n=1 cne

−λnz has at least one singularity in every interval of length exceeding
2πD on the abscissa of convergence.

Pólya proved the theorem relying on certain properties of an entire function which vanishes
exactly on ±Λ (see [30] Th. XXX). Levinson extended the latter result to cover the complex
case as well (see [30] Th. XXXI). For a sequence A={an}∞n=1 satisfying for n ̸= k the spacing
condition |an − ak| ≥ c|n − k| for some c > 0, and the limit relations, n/an 7→ D ≥ 0 and

arg an 7→ 0, he proved that the entire function F (z) =
∏∞

n=1

(
1− z2

a2n

)
satisfies for every ϵ > 0

as r 7→ ∞ the following properties:
(1∗) |F (reiθ)| = O(exp{πr(D| sin θ|+ ϵ)}).
(2∗) 1/|F (reiθ)| = O(exp{πr(−D| sin θ|+ ϵ)}) whenever |reiθ ± an| ≥ c/8 for all n ≥ 1.
Furthermore for every ϵ > 0 as n→ ∞ one has:
(3∗) 1/|F ′(an)| = O(exp{ϵ|an|}).

We remark that for D = 0, Vidras [43] dropped the condition arg an 7→ 0 and constructed
an entire function of infraexponential type satisfying (2∗) and (3∗).

Our primary goal is to give an extension of Levinsons result. Based on a sequence A as
above, we construct a multiplicity sequence B = {(λn, µn)}∞n=1. For this sequence B we prove
that the infinite productG(z) which vanishes exactly on±B, satisfies µn!

|G[µn](λn)|
= O(exp{ϵ|λn|})

for every ϵ > 0 (see Theorem 3.1). That is, we have a sharp estimate for the µthn derivative
function of G(z) evaluated on λn. Similarly we extend Vidras result (see Theorem 3.2).

These results allow us to get a variation of the Fabry Gap Theorem. For the pre-mentioned
constructed multiplicity sequence B, having real positive λn and density D counting multiplic-
ities, we prove that the Taylor-Dirichlet series in (1.3) that satisfies the relation

lim sup
n→∞

log |cnµn−1 |
λn

= lim sup
n→∞

logAn
λn

, (3.1)

where
An = max{|cnj

| : j = 0, 1, 2, . . . , µn − 1}, (3.2)

has at least one singularity in every interval of length exceeding 2πD on the abscissa of conver-
gence (see Theorem 3.3). We note that our result holds even if we allow the distinct λn terms
satisfy the relation lim inf(λn+1 − λn) = 0 (see Example 3.15). Recall, that even in the simple
case when the multiplicity µn is equal to 1 for all the λn, authors such as Levinson [30] and
Mandelbrojt [31] impose the condition lim inf(λn+1 − λn) > 0.

When D = 0 the assumption that the λn are real can be dropped. We prove that if the
λn are complex numbers such that the sup | arg λn| < π/2, and if for every ϵ > 0 there exists
some n0 ∈ N such that

An
|cnµn−1 |

≤ eϵ|λn| ∀n ≥ n0, (3.3)

then the boundary of convergence of the Taylor-Dirichlet series in (1.3) is a natural boundary
(see Theorem 3.4). We remark that the set of arguments of the λn need not have a finite
number of cluster points in the interval (−π

2
, π
2
).

For D > 0, the desired multiplicity sequence B shall be constructed from a sequence A
satisfying those properties as stated in Levinsons theorem. For D = 0, we rely on Vidras result
where forA we replace the limit relation arg an → 0 by the weaker condition sup | arg an| < π/2.
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Since the condition arg an 7→ 0 is crucial for D > 0 but not for D = 0, in order to
work with anyone of these two cases we denote by L(c,D) the class of all sequences A={an},
|an| ≤ |an+1| satisfying the following properties: (1) n/|an| → D ≥ 0, (2) for n ̸= k one has
that |an − ak| ≥ c|n− k| for some c > 0, and (3) the sup | arg an| < π/2.

Given some sequence A ∈ L(c,D), the construction of the multiplicity sequence B is as
follows:

Definition 3.1. Let A ∈ L(c,D) and α, β real positive numbers so that α + β < 1 . We say
that a sequence B={bn}∞n=1 belongs to the class Aα,β if for all n we have

bn ∈ {z : |z − an| ≤ |an|α} (3.4)

and for all m ̸= n one of the following holds:
(i) bm = bn.
(ii) |bm − bn| ≥ max{e−|am|β , e−|an|β}.

One observes that (i) allows for the set {±B} to have coinciding terms, thus the entire
even function vanishing exactly on {±B} has multiple zeros. Also note that (ii) allows for
non-coinciding terms to come very close to each other, thus, it is possible for the relation
lim inf |λn+1 − λn| = 0 to hold. We may now rewrite B in the form of a multiplicity sequence,
and this is done as follows: first we split {±bn} into groups of terms having the same modulus,
and then within each group we order them by the size of their argument, beginning from smaller
to larger. The arguments are taken with respect to the principal one, that is, 0 ≤ arg bn < 2π.
Thus, we can rewrite the sequence B as {λn, µn}∞n=1. We shall call this form of B the (λ, µ)
reordering.

Remark 3.1. We point out that the spacing condition (2) of a sequence A ∈ L(c,D) plays a
very important role.

We note that the notation B={λn, µn}∞n=1 is not always useful when carrying out various
calculations. In such cases we keep the notation B={bn}∞n=1. This is more practical since the
terms bn and an are related by (3.4). From the latter one also deduces that n/|bn| → D as
n 7→ ∞. At this point we introduce the following two systems of unions of open disks given
some A ∈ L(c,D) and B ∈ Aα,β:

S1 =
∞∪
n=1

B

(
±an,

e−|an|β

3

)
, (3.5)

S2 =
∞∪
n=1

B

(
±bn,

e−|an|β

3

)
(3.6)

where as usual
B(z0, r) = {z : |z − z0| < r}.

Observe that the disks in S1 are non-overlapping, whereas in general this is not necessarily true
for S2 since for fixed n we might have bn = bm for m ̸= n. Nevertheless, note that if for fixed
n, Γn is the set of all integers j so that bn = bj, that is,

Γn = {j : bj = bn}, (3.7)

then ∪
m∈Γn

B

(
bm,

e−|am|β

3

)
= B

(
bn,

e−|aln |β

3

)
, ln = min{m : m ∈ Γn}. (3.8)

Relation (3.8) implies that S2 can be rewritten as an infinite union of non-overlapping disks.
Now we are ready to state the extension of Levinsons result.
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Theorem 3.1. Let A={an}∞n=1 be a complex sequence satisfying A∈ L(c,D) and arg an 7→ 0
as n→ ∞. Let B ∈ Aα,β and let (λ, µ) be its reordering. Then the entire function

G(z) =
∞∏
n=1

(
1− z2

λ2n

)µn
(3.9)

satisfies for every ϵ > 0 as r → ∞ the following:

|G(reiθ)| = O(exp{πr(D| sin θ|+ ϵ)}) (3.10)

and whenever reiθ ̸∈ S2

1

|G(reiθ)|
= O(exp{πr(−D| sin θ|+ ϵ)}). (3.11)

Furthermore for every ϵ > 0 as n→ ∞ one has:

µn!

|G[µn](λn)|
= O(exp{ϵ|λn|}). (3.12)

If D = 0 the previous result holds without the condition arg an 7→ 0.

Theorem 3.2. Let A={an}∞n=1 be a complex sequence so that A∈ L(c,0). Let B ∈ Aα,β and
let (λ, µ) be its reordering. Then G(z) as in (3.9) satisfies (3.10), (3.11) and (3.12) with
D = 0.

We now recall some basic facts about Taylor-Dirichlet series. Let B={λn, µn} be a multi-
plicity sequence with complex λn. Assume the following two properties are satisfied:

lim
n→∞

log n

λn
= 0, lim

n→∞

µn − 1

λn
= 0. (3.13)

Then according to Valiron [42], the regions of convergence of the Taylor-Dirichlet series f(z) in
(1.3) and its two associate series

f ∗(z) =
∞∑
n=1

Ane
−λnz, f ∗∗(z) =

∞∑
n=1

Anz
µn−1e−λnz, (3.14)

are the same. For any point z inside the open convex region, the three series converge absolutely.

If A ∈ L(c,D) is a real positive sequence and B ∈ Aα,β is such that B={bn} is real positive
too, then for the (λ, µ) reordering of B the three series f , f ∗, f ∗∗ as defined in (1.3) and
(3.14) have the pre-mentioned properties. Similarly, if instead of a real sequence A ∈ L(c,D)
we have a complex sequence A ∈ L(c,0). The claim is proved in Lemma 5.5. We are now
ready to present the following strong version of the Fabry Gap Theorem.

Theorem 3.3. Let A ∈ L(c,D) be a real positive sequence for D> 0. Let B ∈ Aα,β so that
B={bn} is real positive too and let (λ, µ) be its reordering. Then any Taylor-Dirichlet series
f(z) as in (1.3), satisfying (3.1), has at least one singularity in every interval of length exceeding
2πD on the abscissa of convergence.

The beauty of this result is evident from the following example

Example 3.1. Let

λn =

{
98 + n2+4n+3

4
, nodd

98 + n2+2n
4

+ 2
n
, neven

µn =

{
n+3
2
, nodd

n
2
, neven.

(3.15)

Then any Taylor-Dirichlet series f(z) as in (1.3), satisfying (3.1), has at least one singularity
in every interval of length exceeding 2π on the abscissa of convergence.
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Proof : Consider the real positive sequence A={an}∞n=1 where an = 98 + n, and note that
A ∈ L(1,1). Rewrite it as

∪∞
n=1{an2+k}nk=0 ∪ {an2+k}2nk=n+1.

For any fixed n ∈ N+ and all k = 0, 1, 2, . . . , n, define bn2+k = an2+n, and for all j =
n+ 1, n+ 2, . . . , 2n, define bn2+j = an2+n + 1/n. Then let B={bn}∞1 and note that these terms
are not distinct. Furthermore, the non-coinciding terms come very close to each other. We
claim that B is an Aα,β sequence. Indeed, for k = 0, 1, 2, . . . , n one gets

|bn2+k − an2+k| = |k − n| < (98 + n2 + k)
1
2 = (an2+k)

1
2 . (3.16)

Similarly for j = n + 1, n + 2, . . . , 2n. Thus (3.4) is satisfied for α = 1/2. Also note that for
any k = 0, 1, 2, . . . , n and any j = n+ 1, n+ 2, . . . , 2n, one has

|bn2+k − bn2+j| =
1

n
> max{e−|an2+k|

1
4 , e−|an2+j |

1
4 }. (3.17)

In other words these non-coinciding terms of B satisfy condition (ii) of Definition (3.4) for
β = 1/4. From these two relations it follows that B ∈ Aα,β for α = 1/2 and β = 1/4.

By simple calculations we find that the (λ, µ) reordering of B in (3.15) is valid. Theorem
3.3 completes the proof. ♢

When D = 0 the assumption that the λn are real can be dropped. In fact, the set of
arguments of the λn need not have a finite number of cluster points in the interval (−π

2
, π
2
).

We prove the following result:

Theorem 3.4. Let A ∈ L(c,0) be a complex sequence so that sup | arg an| ≤ τ < π/2. Let B ∈
Aα,β and (λ, µ) its reordering. Then any Taylor-Dirichlet series f(z) as in (1.3), satisfying
(3.3), has its boundary of convergence as a natural boundary.

We note that other results concerning the location of singularities of Taylor-Dirichlet series
have been derived by Blambert, Parvatham, and Berland (see [9], [10], [11]). A key role in their
work is played by the set of zeros of the polynomials pµn(z). In our case this has been avoided.
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4 On the excess of complex exponential systems in L2(−a, a).
Proof of the results.

This section is mainly devoted to the proof of Theorem 2.10. But first, we prove its Corollary
2.1 and then present some further results.

Proof of Corollary 2.1 : We consider the case when q = 5. For other values of q the proof is
similar.

Change the five terms µn for −2 ≤ n ≤ 2 into five zeros. By Theorem (2.5) the excess is not
altered. Next, for every n so that |n| ≥ 1, keep the terms µ5n fixed and shift vertically the terms
µ5n+β for β ∈ {−2,−1, 1, 2}, so that their new imaginary part is equal to ℑµ5n = α log |5n|.
Observe that this vertical shifting is bounded, thus from [34] (Th. 17) the excess does not
change. Write these new terms as {5n + β + iα log |5n| : β ∈ {−2,−1, 0, 1, 2}}|n|≥1. We then
proceed with a partition as in relations (2.3) and (2.4), that is, for |n| ≥ 1 keep 5n+ iα log |5n|
fixed and pair 5n − 2 + iα log |5n| with 5n + 2 + iα log |5n| and 5n − 1 + iα log |5n| with
5n+ 1+ iα log |5n|. Then carry out the same shifting as in Example 2.1 to get 5n+ iα log |5n|
with multiplicity 5. By Theorem 2.10 the result is valid. ♢

Similarly one proves Corollary 2.2.

4.1 Some additional results.

When µ = Z the set of integers, a more general result holds, when compared to Theorem 2.10.
Although this result might be known to some people, nevertheless, since we could not trace it
in the literature we state it here.

Theorem 4.1. Let PZ,δ be a partition for some δ > 0 fixed. Let {an}′ be a bounded two-sided
sequence of complex numbers and define ν as in (2.2). Then E(Z; p, π) = E(ν; p, π) for all
p ∈ (1,∞).

Remark 4.1. The theorem fails for L1(−π, π) and C[−π, π].

Two further results will be proved where the condition sup |ℑµn| < ∞ is once more not
essential. The first one generalizes the following recent result from [36]:

Theorem 4.2. Let {µn}∞−∞ be a sequence satisfying |µn − n| ≤ c for some c > 0. Let λ0 = µ0,

λn = µn + α, λ−n = µ−n − β, n > 0, (4.1)

where α ≥ 0 and β ≥ 0. Then E(λ; 2, π) ≤ E(µ; 2, π).

The authors of [36] asked whether their result remains true, assuming that |ℑµn| ≤ c and
|µn + µ−n| ≤ 2c, instead of |µn − n| ≤ c. The answer is affirmative, and in fact the assumption
that the imaginary parts are bounded is not required. Our result is as follows:

Theorem 4.3. Let µ ∈ B and assume that for some c > 0 the condition |µn + µ−n| ≤ c is
satisfied for every n ≥ 1. Assume also the condition |ℜµn| ≥ (ℑµn)2 holds for |n| ≥ 1, and
suppose that E(µ; 2, a) is finite for some a > 0. Let λ0 = µ0,

λn = µn + α, λ−n = µ−n − β, n > 0 (4.2)

where α ≥ 0 and β ≥ 0. Then E(λ; 2, a) ≤ E(µ; 2, a).
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We note that another generalization of Theorem 4.2 with unbounded imaginary parts, is
due to A. Boivin and H. Zhong [14].

If we now combine Theorems 2.10 and 4.3, another more interesting result is obtained. The
constants α and β may be replaced by a bounded two-sided real sequence {ϵn}′ subject to the
condition

ϵ2n−1 + ϵ2n = δ1 ≥ 0, n ≥ 1, ϵ2n+1 + ϵ2n = δ2 ≥ 0, n ≤ −1. (4.3)

Theorem 4.4. Let µ as in Theorem 4.3, and assume that µ ∈ B′ as well. Let Pµ,δ be a partition
with the set {ρn} finite, and let {ϵn}′ be a bounded two-sided real sequence satisfying (4.3). Then
construct the sequence

ν = {γn + ϵ2n−1}∞1 ∪ {λn + ϵ2n}∞1 ∪ {γn − ϵ2n+1}−∞
−1 ∪ {λn − ϵ2n}−∞

−1 ∪ {ρn}.

Assuming that E(µ; 2, a) is finite for some a > 0, the relation E(ν; 2, a) ≤ E(µ; 2, a) holds.

Proof : As usual write µ = {γn}′∪{λn}′∪{ρn}. Then construct a new sequence τ = {τn}′∪{ρn}
so that

τ2n−1 = γn +
ϵ2n−1 − ϵ2n

2
, τ2n = λn −

ϵ2n−1 − ϵ2n
2

, n ≥ 1,

τ2n+1 = γn −
ϵ2n+1 − ϵ2n

2
, τ2n = λn +

ϵ2n+1 − ϵ2n
2

, n ≤ −1.

Since {ϵn}′ is bounded, the fractions are uniformly bounded also. It follows from Theorem 2.10
that E(τ ; 2, a) = E(µ; 2, a).

Next, observe that one obtains ν by shifting to the right (left) all the terms of {τn}′ with
positive (negative) index-n, by the same amount δ1 (δ2). This holds since γn + ϵ2n−1 = τ2n−1 +
δ1/2 and λn + ϵ2n = τ2n + δ1/2 for n ≥ 1. Similarly γn − ϵ2n+1 = τ2n+1 − δ2/2 and λn − ϵ2n =
τ2n − δ2/2 for n ≤ −1. Then from Theorem 4.3 one has that E(ν; 2, a) ≤ E(τ ; 2, a). The
relation E(ν; 2, a) ≤ E(µ; 2, a) is now obvious. ♢

As a special case of Theorem 4.4, let ϵ2n−1 = δ1 and ϵ2n = 0. Then only half of the terms
are shifted and the inequality still holds. We also note that similar results with inequalities,
but with real sequences, are found in [39] (Th. 1).

The rest of this section is divided into three subsections. Our main result, Theorem 2.10,
is proved in subsection 4.3. For its proof a crucial role is played by a meromomorphic function
whose properties are discussed in subsection 4.2. In subsection 4.3 we also prove Theorem 4.1,
and Theorem 4.3 is proved in subsection 4.4.

4.2 Constructing a meromorphic function, that replaces frequen-
cies.

Throughout this subsection, we assume that µ ∈ B′ with ℑµn ≥ 0 for all n ∈ Z. For δ > 0
fixed, Pµ,δ is the partition of µ, µ = {γn}′ ∪ {λn}′ ∪ {ρn}. For the two-sided bounded sequence
of complex numbers {an}′ we construct the sequence ν as in (2.2).

A well known theorem of Plancherel-Polya [44] (Theorem 16, p. 79) states that if a function
F (z) of exponential type belongs to Lp(−∞,∞), then F (x− it) ∈ Lp(−∞,∞) for any t ∈ R.
Motivated by this, we define for every t ∈ (0,∞) the function

′∏ (
1− z

γn+an

)(
1− z

λn−an

)
e

z
γn+an

+ z
λn−an(

1− z−it
γn

)(
1− z−it

λn

)
e

z−it
γn

+ z−it
λn

. (4.4)

20

Elia
s Z

ikk
os



Standard calculations show that (4.4) defines a meromorphic function of z in the complex plane
with poles at {γn + it} ∪ {λn + it}. Note also that since the exponent of convergence for µ is 1
and {an}′ is bounded, then the series

′∑ (
1

γn
− 1

γn + an
+

1

λn
− 1

λn − an

)
converges to some ω ∈ C. Thus, multiplication of eωz with the function in (4.4) for fixed
t ∈ (0,∞) yields the meromorphic function of z

′∏ (
1− z

γn+an

)(
1− z

λn−an

)
(
1− z−it

γn

)(
1− z−it

λn

) e
it
γn

+ it
λn . (4.5)

We denote this function by M(z, t) and remark that for some t = t0, M(z, t0) has a certain
upper bound on the real line (see Prop. 4.1) which is very crucial for proving Theorem 2.10.
The key to all these is the following:

Lemma 4.1. There exists a positive t0 so that for any n ∈ Z \ {0} and all x ∈ R one has∣∣∣∣ (γn + an − x)(λn − an − x)

(γn − x+ it0)(λn − x+ it0)

∣∣∣∣ ≤ 1. (4.6)

Proof : When the {a′n} are imaginary numbers, the proof is rather easy. Thus, we will prove
it for the real case, and as a result the complex case follows as well. Let

(I) = |(γn − x+ it)(λn − x+ it)|2, (II) = |(γn + an − x)(λn − an − x)|2.

Denote the quantity (I) − (II) by gn(x, t). Observe that relation (4.6) is proved as soon as
we show that there is some t = t0 > 0, independent of n and x, so that gn(x, t0) ≥ 0 for any
n ∈ Z \ {0} and all x ∈ R.

One has

(I) = [(ℜγn − x)2 + (ℑγn + t)2][(ℜλn − x)2 + (ℑλn + t)2]

= (ℜγn − x)2(ℜλn − x)2 + (ℑγn + t)2(ℑλn + t)2

+ (ℑγn + t)2(ℜλn − x)2 + (ℑλn + t)2(ℜγn − x)2

= (ℜγn − x)2(ℜλn − x)2 + ωn(t) + τn(t)(ℜγn − x)2

+ σn(t)(ℜλn − x)2, (4.7)

where
ωn(t) = (ℑγn + t)2(ℑλn + t)2, τn(t) = (ℑλn + t)2, σn(t) = (ℑγn + t)2. (4.8)

Similarly

(II) = [(ℜγn − x+ an)
2 + (ℑγn)2][(ℜλn − x− an)

2 + (ℑλn)2]
= [(ℜγn − x)2 + 2an(ℜγn − x) + pn][(ℜλn − x)2 − 2an(ℜλn − x) + qn]

where
qn = a2n + (ℑλn)2, pn = a2n + (ℑγn)2. (4.9)

If we expand the terms we get:

(II) = (ℜγn − x)2(ℜλn − x)2 − 2an(ℜλn − x)(ℜγn − x)2 + qn(ℜγn − x)2

+ 2an(ℜγn − x)(ℜλn − x)2 − 4a2n(ℜγn − x)(ℜλn − x)

+ 2anqn(ℜγn − x) + pn(ℜλn − x)2 − 2anpn(ℜλn − x) + pnqn

= (ℜγn − x)2(ℜλn − x)2 + qn(ℜγn − x)2 + pn(ℜλn − x)2

+ ξn(ℜγn − x)(ℜλn − x) + 2anqn(ℜγn − x)− 2anpn(ℜλn − x)

+ pnqn (4.10)
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where
ξn = 2an(ℜλn −ℜγn)− 4a2n.

Since an = O(1) and |λn− γn| = O(1) then the sup |ξn| <∞. From now on we let t≫ sup |ξn|.
Since gn(x, t) = (I)− (II) then from (4.7) and (4.10) one gets

gn(x, t) = [τn(t)− qn](ℜγn − x)2 + [σn(t)− pn](ℜλn − x)2 + ωn(t) + Υn(x), (4.11)

where

Υn(x) = −ξn(ℜγn − x)(ℜλn − x)− 2anqn(ℜγn − x) + 2anpn(ℜλn − x)− pnqn. (4.12)

Observe now that since {an}′ is bounded, then for large t fixed we have

τn(t)− qn ≈ t2 + 2tℑλn, σn(t)− pn ≈ t2 + 2tℑγn. (4.13)

Since t≫ sup |ξn|, both quantities above are bigger than the sup |ξn|, and this implies that the
coefficient of x2 in (4.11) is positive. Thus for t fixed, large enough, gn(x, t) has a minimum.
Our goal is to prove that for t fixed gn(x, t) is non-negative there, thus everywhere else as well.
This suffices to complete the proof.

We differentiate gn(x, t) with respect to x to get

g′n(x, t) = 2(x−ℜγn)(t2 + 2tℑλn) + 2(x−ℜλn)(t2 + 2tℑγn)
− ξn(x−ℜγn)− ξn(x−ℜλn) + 2anqn − 2anpn

= 2(x−ℜγn)[t2 + 2tℑλn − ξn] + 2(x−ℜλn)(t2 + 2tℑγn − ξn)

+ 2anqn − 2anpn. (4.14)

It follows that g′n(x, t) = 0 when

x =
an(pn − qn)

2t2 − 2ξn + 2tℑγn + 2tℑλn
+

ℜγn
2

(
t2 − ξn + 2tℑλn

t2 − ξn + tℑγn + tℑλn

)
+

ℜλn
2

(
t2 − ξn + 2tℑγn

t2 − ξn + tℑγn + tℑλn

)
. (4.15)

Consider now the first fraction. From (4.9) one has

an(pn − qn)

2t2 − 2ξn + 2tℑγn + 2tℑλn
=
an(ℑγn −ℑλn)(ℑγn + ℑλn)
2t2 − 2ξn + 2t(ℑγn + ℑλn)

.

Since an = O(1), |γn − λn| = O(1) and ξn = O(1), it follows that for large t the fraction is
very small . Call this fixed t > 0, t0. Since t0 ≫ sup |ξn|, then ξn has no effect in the other two
fractions of (4.15). All these imply that g′n(x, t0) takes its minimum value at x = x0 where

x0 ≈
ℜγn
2

(
t0 + 2ℑλn

t0 + ℑγn + ℑλn

)
+

ℜλn
2

(
t0 + 2ℑγn

t0 + ℑγn + ℑλn

)
. (4.16)

This implies that

ℜγn − x0 ≈
(
ℜγn −ℜλn

2

)(
t0 + 2ℑγn

t0 + ℑγn + ℑλn

)
(4.17)

and

ℜλn − x0 ≈
(
ℜλn −ℜγn

2

)(
t0 + 2ℑλn

t0 + ℑγn + ℑλn

)
. (4.18)

If ℑγn ≤ t0 and ℑλn ≤ t0, then one gets

1

3
≤ t0 + 2ℑγn
t0 + ℑγn + ℑλn

≤ 3,
1

3
≤ t0 + 2ℑλn
t0 + ℑγn + ℑλn

≤ 3.
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If ℑγn ≥ t0 then the relation ℑγn
2
< ℑλn < 2ℑγn holds since {γn − λn}′ is bounded and t0 is

large. Similarly if ℑλn ≥ t0. Then one gets

1

4
<

t0 + 2ℑγn
t0 + ℑγn + ℑλn

< 3,
1

4
<

t0 + 2ℑλn
t0 + ℑγn + ℑλn

< 5.

Either way, substitution in (4.17) and (4.18) yields that |ℜγn − x0| < 3δ and |ℜλn − x0| < 3δ
since |γn − λn| ≤ δ. Then from (4.9) and the boundedness of {an}′ we deduce that there is
some positive constant κ so that Υn(x) in (4.12) satisfies

|Υn(x0)| ≤ κ+ κ(ℑγn)2 + κ(ℑλn)2 + (ℑγn)2(ℑλn)2. (4.19)

We now go back to relation (4.11). Observe that

gn(x0, t0) ≥ ωn(t0) + Υn(x0), (4.20)

and from (4.8) one has

ωn(t0) ≥ (ℑγn)2(ℑλn)2 + t40 + t20(ℑγn)2 + t20(ℑλn)2. (4.21)

Since t0 is large, it follows from (4.19) and (4.21) that ωn(t0)+Υn(x0) > 0. Thus gn(x0, t0) > 0
and this completes the proof. ♢

Proposition 4.1. There exist constants A > 0, C > 0 so that ∀x ∈ R the meromorphic
function M(z, t0) in (4.5) where t0 is as in Lemma 4.1, satisfies

|M(x, t0)| ≤ AeCt0 . (4.22)

Proof : Let us write |M(x, t0)| as

|M(x, t0)| =

∣∣∣∣∣
′∏ γnλn
(γn + an)(λn − an)

e
it0
γn

+
it0
λn

(γn + an − x)(λn − an − x)

(γn − x+ it0)(λn − x+ it0)

∣∣∣∣∣ . (4.23)

Since {an}′ is bounded, |γn− λn| ≤ δ, and the exponent of convergence for {γn}′ and {λn}′
is less than or equal to 1, then one deduces that the series

′∑ a2n + an(γn − λn)

(γn + an)(λn − an)

converges absolutely. It follows that the infinite product

′∏ ∣∣∣∣ γnλn
(γn + an)(λn − an)

∣∣∣∣
converges and is bounded above by some positive A. Also

′∏ ∣∣∣e( it0
γn

+
it0
λn
)
∣∣∣ = ′∏

eℜ(
it0
γn

+
it0
λn
) = e

t0
∑′ ℑγn

|γn|2
+ ℑλn

|λn|2 = eCt0

for some C > 0 since by definition the series converges. Applying Lemma 4.1 gives the upper
bound AeCt0 for the product in (4.23). ♢
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4.3 Proof of Theorems 2.10 and 4.1.

Proof of Theorem 2.10: By Theorem 2.11, in order to derive equivalent systems it suffices to
prove that incompleteness of anyone of the two systems implies incompleteness of the other. To
achieve this, we need to have symmetric conditions with respect to their associated sequences,
and in our case this holds since the terms an of the sequence causing the perturbations have
no pre − assigned argument . We compare this with Theorem 4.3 where due to the lack of such
conditions (α and β are positive), we cannot deduce equivalence.

We assume that Eµ is incomplete. This implies the existence of a non-trivial entire function
F of exponential type σ ≤ a, which vanishes on some sequence τ ⊃ µ with the properties:
(i) F ∈ L2(−∞,∞) and so does F (x− it) for all t ∈ R.
(ii) F (z) =

∫ a
−a f(t)e

iztdt for some f ∈ L2(−a, a).
(iii) The conjugate diagram of F is a vertical line segment of length 2σ, thus its indicator
function satisfies hF (π/2) + hF (−π/2) = 2σ.

(iv)
∑ |ℑτn|

|τn|2 <∞.

(v) limr→∞
n+(r,ϕ)

r
= limr→∞

n−(r,ϕ)
r

= σ/π where n+(r, ϕ) and n−(r, ϕ) are the numbers of zeros
of F in the sectors {z : |z| ≤ r, | arg z| ≤ ϕ} and {z : |z| ≤ r, |π − arg z| ≤ ϕ} respectively, for
ϕ ∈ (0, π).

Our goal is to show that there is some function G vanishing on ν with similar properties as
F . This will prove incompleteness of Eν .

For some d ∈ C we can write F as

F (z) = edz
∏(

1− z

wn

)
e

z
wn

∞∏
n=−∞

(
1− z

µn

)kn
e

zkn
µn , (4.24)

where kn is the multiplicity of µn and {wn} = τ \ µ. Note that the set {wn} might be infinite,
finite or the empty set. We can also assume that ℑτn ≥ 0 for all n ∈ Z. For if {ωn} ⊂ τ and
ℑωn < 0, then multiplication of F by a Blaschke product which vanishes on {ωn} and has poles
on {ωn} yields a function in L2(−∞,∞) whose zeros are all in the upper half-plane.

Then proceed with the Pµ,δ partition and construct ν as in (2.2). Let M(z, 0) be the
meromorphic function as in (4.5) for t = 0. Consider then t0 > 0 as in Lemma 4.1 and denote
by G(z) the function e−idt0F (z)M(z, 0). Then based on the partition of µ one expresses G(z)
as

ed(z−it0)
∏(

1− z

wn

)
e

z
wn

′∏ (
1− z

γn + an

)(
1− z

λn − an

)
e

z
γn

+ z
λn ,

where the {ρn} terms have been included in {wn}.
Note that µ is replaced by ν and this due to the bounded sequence {an}′. It follows that G

is of exponential type as well. For the same reason properties (iv) and (v) do not change which
implies the same for (iii). Then we can assume, without loss of generality, that hG(±π/2) = σ.
To complete the proof, we have to show that G ∈ L2(−∞,∞).

From (4.24) and the partition of µ, we may write F (x−it0)
ed(x−it0)

as

∏(
1− x− it0

wn

)
e

x−it0
wn

′∏ (
1− x− it0

γn

)(
1− x− it0

λn

)
e

x−it0
γn e

x−it0
λn .

Then one gets

∣∣∣∣ G(x)

F (x− it0)

∣∣∣∣ =
∣∣∣∣∣∣
∏(

1− x
wn

1− x−it0
wn

)
e

it0
wn

′∏(
1− x

γn+an

)(
1− x

λn−an

)
(
1− x−it0

γn

)(
1− x−it0

λn

) e
it0
γn

+
it0
λn

∣∣∣∣∣∣ .
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But the
∏′ function is the meromorphic function M(x, t0). Thus, from Proposition 4.1 there

are positive constants A and C so that∣∣∣∣ G(x)

F (x− it0)

∣∣∣∣ ≤ AeCt0
∏∣∣∣∣ wn − x

wn − x+ it0

∣∣∣∣ ∣∣∣e it0
wn

∣∣∣ ,
for every x ∈ R. Since ℑwn ≥ 0 and t0 > 0, we also have |wn− x| < |wn− x+ it0|. Combining
this with the convergence of the series

∑ ℑwn

|wn|2 , we deduce that

|G(x)| ≤ ϕ(t0)|F (x− it0)| ∀x ∈ R, (4.25)

where ϕ depends only on t0. This relation implies that G ∈ L2(−∞,∞). Then by the Paley-
Wiener theorem, G admits the integral representation

G(z) =

∫ a

−a
g(t)eiztdt, g ∈ L2(−a, a). (4.26)

Since G vanishes on ν, this implies that Eν in incomplete in L2(−a, a). ♢
Proof of Theorem 4.1: Let µ = Z and PZ,δ its partition with the term 0 ∈ {ρn}. Let ν be
the new sequence and ν ′ = ν \ {0}. Since {eint}∞−∞ is exact in L2(−π, π), then from Theorem
2.10 one has E(ν; 2, π) = 0 as well. But the excess is a decreasing function of p and changes at
most by 1 (see [44] p. 98 problems 1, 2). Thus
(A) E(ν; p, π) is either 0 or 1 for any p ∈ (1, 2).
(B) E(ν; p, π) is either 0 or -1 for any p ∈ (2,∞).
We will show that in both cases Eν is exact .

Case 1 < p < 2: Consider the function F (z) = sinπz
z

. Then
F (x) ∈ Lp(−∞,∞) for all p > 1 and vanishes exactly on Z \ {0}. Let M(z, 0) be the usual
meromorphic function and define G(z) as before. Then G(z) is an entire function of exponential
type not exceeding π, and vanishes exactly on ν ′. As in (4.25) one has that G(x) ∈ Lp(−∞,∞)
for all p > 1. Consider now any 1 < p0 < 2. Then, from [13] (Th. 6.4) G admits the integral
representation

G(z) =

∫ a

−a
g(t)eiztdt, g ∈ Lq0(−a, a), p−1

0 + q−1
0 = 1. (4.27)

This implies that Eν′ is incomplete in Lp0(−π, π), thus E(ν ′; p0, π) ≤ −1. It follows that
E(ν; p0, π) ≤ 0. Combining this with (A), shows that E(ν; p0, π) = 0.

Case 2 < p <∞: Assume E(ν; p0, π) = −1 for some p0 ∈ (2,∞). Thus, there exists a

non-trivial f ∈ Lq0(−π, π), p−1
0 + q−1

0 = 1, so that

H(z) =

∫ π

−π
f(t)eiztdt

is an entire function which vanishes exactly on ν. The latter holds since if H(u) = 0 for
some u /∈ ν, then Eν ∪ {eiut} is incomplete contradicting the fact that E(ν; p0, π) = −1. Since
q0 ∈ (1, 2), from [13] (Th. 6.5) one has that H is of exponential type π and H ∈ Lp0(−∞,∞).
Thus H(z) = keczz

∏
νn∈ν′(1− z/νn)e

z
νn for some constants k, c ∈ C.

We then consider the usual meromorphic function M(z, 0) but this time with {νn + it} as
its poles and Z as its zeros. Define analogously G(z) = H(z)M(z, 0). Then G is an entire
function of exponential type, vanishes exactly on Z, and as in (4.25) G(x) ∈ Lp0(−∞,∞). But
this implies that sin πx ∈ Lp0(−∞,∞) as well, which is false. Therefore E(ν; p0, π) ̸= −1, thus
Eν is exact . ♢

The theorem fails for L1(−π, π) and C[−π, π]: Consider the system

Eν = {eint}0−∞ ∪ {eit(n+ih(−1)n)}∞1 , h > 0,

and compare it with the system {eint}∞−∞ which is exact for all 1 ≤ p < ∞ and whose excess
equals -1 in C[−π, π]. From what we have already proved, it follows that the excess is unaltered
for 1 < p < ∞. However, in [40] A. Sedletskii proved that the excess of Eν in L1(−π, π) is 1,
and in the space C[−π, π] it is 0. ♢
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4.4 Proof of Theorem 4.3.

We will follow very closely the steps of the proof of Theorem 4.2, as given by its authors.

First, we need to make the following simplifications to enable us prove the result:

(a) By Theorem 2.12 replacing the sequence µ = {µn} with {µn + d} for any d ∈ R, does not
change the completeness properties of the new system. Thus we replace β with 0 and α with
α0 = α + β. However, in what follows we treat α as a variable where 0 ≤ α ≤ α0.
(b) Since ℜµn 7→ ∞ as n 7→ ∞ we assume that ℜµn ≥ 1 for all n ≥ 1. Then the condition
(ℜµn) ≥ (ℑµn)2 yields (ℜµn)2 ≥ (ℑµn)2 for all n ≥ 1 as well.
(c) Since E(µ; 2, a) is finite, we can assume that Eµ is an exact system in L2(−a, a) by adding
or removing a finite number of terms. By Theorem (2.5), we can also assume that µn ̸= 0 for
all n ∈ N. We then claim that for α = 0 the entire function

F (z, α) =
∞∏
n=1

(
1− z

µn + α

)(
1− z

µ−n

)
belongs to L2(−∞,∞). This would not have been true if we had retained the factor correspond-
ing to µ0. We remark that the convergence of the product is justified since |µn + µ−n| = O(1).

Let us justify the claim. Since Eµ is exact , then

lim
r→∞

∏
|µn|≤r

(
1− z

µn

)
(4.28)

converges uniformly on compact sets of C and G(z)
z−µn ∈ L2(−∞,∞) for any µn (see [29]). It

is also known that the limr→∞
∑

|µn|≤r
1
µn

exists and is finite, say τ . We also note that due

to the condition |µn + µ−n| = O(1), one deduces that the limN→∞
∑N

n=1

(
1
µn

+ 1
µ−n

)
exists.

Furthermore, by simple calculations one deduces that the relation τ = limr→∞
∑

|µn|≤r
1
µn

=

1
µ0

+
∑∞

n=1

(
1
µn

+ 1
µ−n

)
is valid. Thus, the product in (4.28) is equal to

e−τz lim
r→∞

∏
|µn|≤r

(
1− z

µn

)
e

z
µn , (4.29)

and also equal to

e−τz
(
1− z

µ0

)
e

z
µ0

∞∏
n=1

(
1− z

µn

)
e

z
µn

(
1− z

µ−n

)
e

z
µ−n . (4.30)

Finally, the relation τ = 1
µ0

+
∑∞

n=1

(
1
µn

+ 1
µ−n

)
shows that our claim holds.

Theorem 4.3 follows as soon as we show that F (x, α0) ∈ L2(−∞,∞) as well. In other words,

the integral
∫ R
−R |F (x, α0)|2dx denoted by S(R,α0) must converge to a real number as R 7→ ∞.

Thus we decompose S(R,α0) into the form

S(R,α0) =

∫ 0

−R
|F (x, α0)|2dx+

∫ α0+c+1

0

|F (x, α0)|2dx+
∫ R

α0+c+1

|F (x, α0)|2dx,

and observe that the middle integral is finite and independent of R. In order to complete the
proof we have to show that the first and third integrals denoted by I(R,α0) and III(R,α0)
respectively, converge to a real number as R 7→ ∞. Comparison is made with respect to I(R, 0)
and III(R, 0) which converge since F (x, 0) ∈ L2(−∞,∞). As already mentioned we treat α
as a variable, with α ∈ [0, α0].
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We give the proof for III(R,α0). After the substitution u = x− α, we have

III(R,α) =

∫ R−α

c+1

∞∏
n=1

∣∣∣∣1− u+ α

µn + α

∣∣∣∣2 ∣∣∣∣1− u+ α

µ−n

∣∣∣∣2 du
=

∫ R−α

c+1

∞∏
n=1

∣∣∣∣µn − u

µ−n

∣∣∣∣2 ∣∣∣∣µ−n − u− α

µn + α

∣∣∣∣2 du. (4.31)

Observe that ∣∣∣∣µ−n − u− α

µn + α

∣∣∣∣2 = (ℜµ−n − u− α)2 + (ℑµ−n)
2

(ℜµn + α)2 + (ℑµ−n)2
.

Denote the whole fraction by Ln(u, α) and the denominator by Un(α). For fixed u ≥ c + 1,
differentiating Ln(u, α) with respect to α gives

U2
n(α)L

′
n(u, α) = −2(ℜµ−n − u− α)[(ℜµn + α)2 + (ℑµ−n)

2]

− [(ℜµ−n − u− α)2 + (ℑµ−n)
2](ℜµn + α) = −2(ℜµ−n − u− α)[(ℜµn + α)2

+ (ℑµ−n)
2 + (ℜµ−n − u− α)(ℜµn + α)]− 2(ℑµ−n)

2(ℜµn + α)

≤ −2(ℜµ−n − u− α)[(ℜµn + α)(ℜµn + ℜµ−n − u) + (ℑµn)2]. (4.32)

We show now that (4.32) is negative. Since |ℜµn+ℜµ−n| ≤ c and u ≥ c+1 then (ℜµn+α)(ℜµn+
ℜµ−n − u) ≤ −ℜµn. Therefore (ℜµn + α)(ℜµn + ℜµ−n − u) + (ℑµn)2 ≤ −ℜµn + (ℑµn)2 ≤ 0,
since ℜµn ≥ (ℑµn)2. But ℜµ−n − u − α < 0 as well since u > 0. Thus (4.32) is negative and
the same is true for L′

n(u, α). This implies that for fixed u ≥ c + 1, Ln(u, α) is a decreasing
function of α. Thus Ln(u, α0) ≤ Ln(u, 0) for all u ≥ c + 1. It then follows that III(R,α0)
converges to a real number as R 7→ ∞.

Similarly we prove it for I(R,α0) using the conditions x ≤ 0 and (ℜµn)2 ≥ (ℑµn)2. ♢
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5 On a theorem of Norman Levinson and a variation of

The Fabry Gap Theorem. Proof of the results.

This section is devoted to the proofs of Theorems 3.1, 3.2, 3.3 and 3.4. The first two are given
in subsection 5.3, and the others follow in subsection 5.4. But first, we state and prove some
auxiliary results. One of them, Lemma 5.4, is very crucial and its proof is given separately in
subsection 5.2.

5.1 Some auxiliary results

Lemma 5.1. Let A ∈ L(c,D) and B ∈ Aα,β. Then

lim
r→∞

nB(r)

r
= D (5.1)

where nB(r) =
∑

|bn|≤r 1 is the counting function of B.

Proof : Assume that this is not true. Then there exists some ϵ > 0 and a sequence of
positive numbers {rk}∞n=1 so that |nB(rk)−Drk| > ϵrk. Assume nB(rk) > (D + ϵ)rk (similarly
for nB(rk) < (D − ϵ)rk), that is,

∑
|bj |≤rk 1 > (D + ϵ)rk. On the other hand, j < (D + ϵ)|bj|

for j > j0 since n/|bn| → D. Thus, if |bj| ≤ rk then j < (D + ϵ)rk, in other words, one has∑
|bj |≤rk 1 < (D + ϵ)rk. Therefore we reach a contradiction. ♢

Let Γn be as in (3.7). One deduces that if j ∈ Γn then Γj = Γn. We also define m(n) to be
the number of terms of Γn and we shall refer to m(n) as the pseudo-multiplicity of bn. In the
lemma that follows, we get an upper bound for m(n) with respect to bn. This bound is used in
the proof of Theorem 3.1.

Lemma 5.2. There exist positive constants ψ and χ so that for any n one has m(n) ≤ ψ|an|α ≤
χ|bn|α.

Proof : First note that the relation |an|/2 ≤ |bn| ≤ 2|an| holds for all n > n0 since |an−bn| ≤
|an|α. Consider now any j ∈ Γn. Then

|aj| = |(aj − bj) + (bj − bn) + bn| ≤ |aj|α + |bn|

≤ |aj|
2

+ 2|an|.

It follows that |aj| ≤ 4|an|. Then one also gets

|an − aj| = |(an − bn) + (bn − bj) + (bj − aj)| ≤ |an|α + |aj|α

≤ 5|an|α.

Finally, the spacing condition |an − ak| ≥ c|n− k| yields that for any j ∈ Γn one has

c|j − n| ≤ 5|an|α. (5.2)

Since m(n) is the number of terms of Γn, then m(n) ≤ 2max{|j − n| : j ∈ Γn}. From (5.2) it
follows that there exists a positive ψ so that m(n) ≤ ψ|an|α. Finally, the relation |an| ≤ 2|bn|
yields a positive χ so that m(n) ≤ χ|bn|α. ♢

Similarly, we get an upper bound for the multiplicity µn of the point λn in the (λ, µ)
reordering of B. This bound is used in the proof of the variation of the Fabry Gap Theorem.

Lemma 5.3. For any n one has µn ≤ χ|λn|α.
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Proof : Let λn = bk for some k ∈ N+. From the previous lemma we know that m(k) ≤
χ|bk|α for some χ > 0. But the pseudo-multiplicity m(k) of bk is the multiplicity µn of λn.
Thus, one obtains the relation µn ≤ χ|λn|α. ♢

We introduce now the meromorphic function M(z) through which we replace an L(c,D)
sequence by a multiplicity sequence.

Given sequences A={an} and B={bn}, where A ∈ L(c,D) and B ∈ Aα,β, we denote by
M(z) the infinite product

M(z) =
∞∏
n=1

(
1− z2

b2n

1− z2

a2n

)
. (5.3)

Standard calculations show that M(z) converges absolutely and uniformly on compact subsets
of C\{±an}. Thus it defines a meromorphic function in the complex plane. The possibility of
several terms of {±B} to coincide with a particular ak is not excluded. Thus, this ak is not a
pole. However, it makes no harm to keep M(z) in the form as in (5.3).

Our goal is to find upper and lower bounds of |M(z)| outside disks whose centers are the
elements of {±A} and {±B} respectively. This is done in the following lemma which is very
crucial for proving Theorems 3.1 and 3.2. The proof of this lemma will occupy subsection 5.2.

Lemma 5.4. Let M(z) be the meromorphic function as in (5.3) and let S1, S2 be the two
systems defined in (3.5) and (3.6), respectively. Then for every ϵ > 0 as r → ∞ one has

|M(reiθ)| = O(eϵr) whenever reiθ ̸∈ S1, (5.4)

1

|M(reiθ)|
= O(eϵr) whenever reiθ ̸∈ S2. (5.5)

Another important lemma, cited already in §3, is the following

Lemma 5.5. Let A ∈ L(c,D) be a real positive sequence and let B ∈ Aα,β so that B={bn} is
real positive too, with (λ, µ) its reordering. Then the regions of convergence of the three series
f , f ∗, f ∗∗ as defined in (1.3) and (3.14) are the same. For any point z inside the open convex
region, the three series converge absolutely. Similarly, if instead of a real sequence A ∈ L(c,D)
we have a complex sequence A ∈ L(c,0).

Proof : We have to show that (3.13) is satisfied. First, note that from Lemma 5.3 one
deduces that the right limit of (3.13) is valid. Thus, it remains to verify the left limit.

We claim that
|λn| ≥ |an|/2, n ≥ 1. (5.6)

This implies that

log n

|λn|
=

log n

n

n

|an|
|an|
|λn|

≤ log n

n

n

|an|
1

2
→ 0, n→ ∞, (5.7)

since n/|an| → D, and we are done.

Let us justify our claim. It is obvious that |λ1| ≥ |a1|/2. Assume that |λk| ≥ |ak|/2 for
some k. We will prove that |λk+1| ≥ |ak+1|/2 as well.

Note that there is at least one bn so that λk+1 = bn. If |λk+1| < |ak+1|/2 then |an|/2 ≤
|bn| = |λk+1| < |ak+1|/2. Since |an|/2 < |ak+1|, this implies that n ≤ k since |an| ≤ |an+1| for
all n ∈ N, therefore λk+1 ∈ {bm}km=1. This means that {(λm, µm)}km=1 ̸= {bm}km=1, thus there
is some bj ∈ {(λm, µn)}km=1 with j ≥ k + 1. It follows that

|ak+1|
2

> |λk+1| ≥ |λk| ≥ |bj| ≥
|aj|
2

≥ |ak+1|
2

, (5.8)

that is, |ak+1| > |ak+1| which is false. Thus |λk+1| ≥ |ak+1|/2 and this completes the proof. ♢
The last lemma in this section is needed for Theorem 3.4.

29

Elia
s Z

ikk
os



Lemma 5.6. LetA ∈ L(c,0) be a complex sequence and let B ∈ Aα,β with (λ, µ) its reordering.
If the series f ∗(z) in (1.3) converges absolutely at z0, then it converges absolutely for any point
z which lies inside the region

Ω =

{
z :

|ℑ(z − z0)|
ℜ(z − z0)

≤ 1

tan τ
, ℜ(z − z0) > 0

}
, (5.9)

where τ = sup | arg λn|.

Proof : If z ∈ Ω then one has −ℜ(z−z0)
tan τ

≤ ℑ(z − z0) ≤ ℜ(z−z0)
tan τ

, and this implies that

−ℜ(z−z0)
| tan θn| ≤ ℑ(z−z0) ≤ ℜ(z−z0)

| tan θn| , θn = arg λn, since | tan θn| ≤ tan τ for all n ∈ N. Thus, we have

−ℜ(z−z0)ℜλn
|ℑλn| ≤ ℑ(z− z0) ≤ ℜ(z−z0)ℜλn

|ℑλn| and this implies that −ℜλnℜ(z− z0)+ℑλnℑ(z− z0) ≤ 0

for all n ∈ N. Therefore, if z ∈ Ω then |Ane−λnz| ≤ |Ane−λnz0 | for all n ∈ N and the result
follows. ♢

5.2 On the lower and upper bounds of the infinite product M(z)

First, we need to factorize the meromorphic function M(z) into a product of six factors. This
factorization is based on an involved partitioning and counting of the terms {an, bn} in subdo-
mains of C.

Let ϵ > 0 fixed. Since |an − bn| ≤ |an|α, n/|an| → D and |an|α−1 → 0, then there exists a
positive integer n(ϵ) so that for all n ≥ n(ϵ) we have

1− ϵ ≤ |an|
|bn|

≤ 1 + ϵ, D − ϵ ≤ n

|an|
≤ D + ϵ, |an|α−1 <

ϵ2

1− ϵ
. (5.10)

Define the function
ξ(r, ϵ) = inf{n : |an| ≥ (1 + ϵ)r}, (5.11)

in variable r. For ϵ > 0 fixed, ξ(r, ϵ) is an increasing function of r. Fix r0 large enough so that
ξ(r0, ϵ) > n(ϵ). Then if ρ > r0 one has ξ(ρ, ϵ) ≥ ξ(r0, ϵ) ≥ n(ϵ). Recall also that n/|an| 7→ D
implies that nA(r)/r 7→ D where nA(r) denotes as usual the counting function of the sequence
A. Then for any r > r1(ϵ) =

r0
1−ϵ one has

(D − ϵ)r < nA(r) < (D + ϵ)r, (5.12)

(D − ϵ)(1 + ϵ)r < nA ((1 + ϵ)r) < (D + ϵ)(1 + ϵ)r, (5.13)

(D − ϵ)(1− ϵ)r < nA ((1− ϵ)r) < (D + ϵ)(1− ϵ)r. (5.14)

For sufficiently large z, |z| > r1(ϵ), break up sequences A and B into five disjoint sets which
depend simultaneously on ϵ and z. This partition is as follows:

L1(ϵ, z) = {(an, bn) : n ≤ n(ϵ)},

L2(ϵ, z) = {(an, bn) : |an| ≤ (1− ϵ)|z|} \ L1,

L3(ϵ, z) = {(an, bn) : |an − z| < 2|an|α} ∪ {(an, bn) : |an + z| < 2|an|α},

L4(ϵ, z) = {(an, bn) : (1− ϵ)|z| < |an| < (1 + ϵ)|z|} \ L3,

L5(ϵ, z) = {(an, bn) : |an| ≥ (1 + ϵ)|z|}.

We note that for |z| sufficiently large, L3 is a proper subset of the annulus Aϵ(z) = {w : (1 −
ϵ)|z| < |w| < (1+ϵ)|z|}. The reason is as follows: let an ∈ L3 and assume that |an−z| < 2|an|α
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(similarly if |an + z| < 2|an|α). This implies that |an| < 2|z| thus |an − z| < 2|z|α < ϵ|z| for |z|
sufficiently large. Therefore an ∈ Aϵ(z) and thus L4 is well defined.

We shall also denote by L6(ϵ, z) the set

L2(ϵ, z) ∪ L3(ϵ, z) ∪ L4(ϵ, z).

One should note that the set which makes the crucial difference is the set L3. It allows to make
more precise counting for the terms of the factor P3(z), defined in (5.17).

Define pointwise, the six product factors

Mi(z) =
∏

(an, bn)∈Li

(
1− z2

b2n

1− z2

a2n

)
i = 1, 5, (5.15)

U(z) =
∏

(an,bn)∈L6

(
a2n
b2n

)
, (5.16)

Pi(z) =
∏

(an, bn)∈Li

(
b2n − z2

a2n − z2

)
i = 2, 3, 4, (5.17)

and note that

M(z) =
∏

(an, bn)∈L1

(
1− z2

b2n

1− z2

a2n

) ∏
(an, bn)∈L5

(
1− z2

b2n

1− z2

a2n

) ∏
(an, bn)∈L6

(
1− z2

b2n

1− z2

a2n

)

= M1(z)M5(z)
∏

(an, bn)∈L6

(
a2n
b2n

) ∏
(an, bn)∈L6

(
b2n − z2

a2n − z2

)
= M1(z)M5(z)U(z)P2(z)P3(z)P4(z). (5.18)

We remark that (5.18) is the desired factorization of M(z) into a product of six factors.

In order to prove Lemma 5.4, we will obtain upper and lower bounds for each one of these
six functions, outside the systems S1 and S2 respectively as defined in (3.5) and (3.6). First we
prove the following result:

Lemma 5.7. Let A ∈ L(c,D) and B ∈ Aα,β. Let ϵ > 0 fixed and consider the function ξ(r, ϵ)
as in (5.11). Then for all θ ∈ [0, 2π] we have

lim
r→∞

1

r
log

∞∏
n=ξ(r,ϵ)

∣∣∣∣∣
(
1− reiθ

bn

1− reiθ

an

)∣∣∣∣∣ = 0. (5.19)

The limit is uniform with respect to θ.

Proof : Since |an|α−1 7→ 0 and |bn − an| ≤ |an|α, then for some r′ fixed we have

|bn| ≥
|an|
2

and |an|α−1 <
ϵ

4
,

for every n ≥ ξ(r′, ϵ). Observe that for any r we get

|an| − r ≥ ϵ|an|
1 + ϵ

,

for every n ≥ ξ(r, ϵ). Then for any r > r′ the previous inequalities yield∣∣∣∣∣
(

reiθ

an
− reiθ

bn

1− reiθ

an

)∣∣∣∣∣ = r|bn − an|
|bn||an − reiθ|

≤ 2r(1 + ϵ)|an|α−2

ϵ
≤ 2|an|α−1

ϵ
<

1

2
, (5.20)
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for every n ≥ ξ(r, ϵ). Applying the inequality | log(1 + w)| ≤ 3|w|
2
, which holds when |w| <1

2
,

together with (3.11) yields for any r > r′ the following :∣∣∣∣∣log
(
1− reiθ

bn

1− reiθ

an

)∣∣∣∣∣ ≤ 3r(1 + ϵ)|an|α−2

ϵ
, (5.21)

for every n ≥ ξ(r, ϵ). Then, since log

∣∣∣∣(1− reiθ

bn

1− reiθ

an

)∣∣∣∣ ≤ ∣∣∣∣log(1− reiθ

bn

1− reiθ

an

)∣∣∣∣, one deduces

1

r

∣∣∣∣∣∣log
∞∏

n=ξ(r)

∣∣∣∣∣
(
1− reiθ

bn

1− reiθ

an

)∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

r

∞∑
n=ξ(r)

∣∣∣∣∣log
(
1− reiθ

bn

1− reiθ

an

)∣∣∣∣∣
≤ 1

r

∞∑
n=ξ(r)

3r(1 + ϵ)|an|α−2

ϵ
=

3(1 + ϵ)

ϵ

∞∑
n=ξ(r)

|an|α−2. (5.22)

Since n/|an| 7→ D as n 7→ ∞, one gets
∑∞

n=1 |an|α−2 <∞, thus the last term in (5.22) converges
to 0 as r 7→ ∞. This implies that the limit in equation (5.19) is valid and one can also see that
it is independent of θ. ♢

Proof of Lemma 5.4. Let 0 < ϵ < 1/2 fixed. Recall that the factorization of M(z) into the
product of six factors holds for all z : |z| ≥ r1(ϵ) for some r1. We will get upper and lower
bounds for each one of them outside the systems S1 and S2 respectively. However, we remark
that these systems are crucial only for the factor P3(z), not for the other ones.

Estimates for M1(z)

Since the number of terms in L1 is independend of z it follows that

lim
|z|→∞

1

|z|
log

n(ϵ)∏
n=1

∣∣∣∣∣
(
1− z2

b2n

1− z2

a2n

)∣∣∣∣∣ = 0.

Thus there exists an r2 > r1 such that

e−ϵ|z| ≤ |M1(z)| ≤ eϵ|z| ∀z : |z| ≥ r2. (5.23)

Estimates for M5(z)

From Lemma (5.7) we deduce that there exists an r3 > r1 such that

e−ϵ|z| ≤ |M5(z)| ≤ eϵ|z| ∀z : |z| ≥ r3. (5.24)

Estimates for U(z)

Relation (5.13) gives the upper bound nA ((1 + ϵ)|z|) < (D + ϵ)(1 + ϵ)|z| for the number
of terms of the set L6 in the open disk B(0, (1 + ϵ)|z|). This and relation (5.10) give for all
z : |z| ≥ r1

(1− ϵ)2(D+ϵ)(1+ϵ)|z| ≤
∏

(an,bn)∈L6

∣∣∣∣(a2nb2n
)∣∣∣∣ ≤ (1 + ϵ)2(D+ϵ)(1+ϵ)|z|. (5.25)

Application of the inequalities 1 + ϵ ≤ eϵ and 1 − ϵ ≥ e−2ϵ which hold if ϵ ∈ (0, 1/2), implies
for all z : |z| ≥ r1

e−ϵ|z|4(D+ϵ)(1+ϵ) ≤ |U(z)| ≤ eϵ|z|2(D+ϵ)(1+ϵ). (5.26)

Estimates for P2(z)
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Relation (5.14) gives the upper bound nA ((1− ϵ)|z|) < (D + ϵ)(1− ϵ)|z| for the number of
terms of the set L2 in the open disk B(0, (1− ϵ)|z|). Notice also that if (an, bn) ∈ L2 then the
inequality |an| ≤ (1− ϵ)|z| implies that |an ± z| > ϵ|z| ≥ ϵ|an|/(1− ϵ). Then one has∣∣∣∣bn − an

an ± z

∣∣∣∣ ≤ |an|α

ϵ|z|
≤ |an|α

ϵ|an|
1−ϵ

≤ ϵ,

with relation (5.10) yielding the last inequality, and this gives

1− ϵ ≤
∣∣∣∣ bn ± z

an ± z

∣∣∣∣ ≤ 1 + ϵ.

Then for all z : |z| ≥ r1 we have the estimate

(1− ϵ)2(D+ϵ)(1−ϵ)|z| ≤
∏

(an,bn)∈L2

∣∣∣∣( b2n − z2

a2n − z2

)∣∣∣∣ ≤ (1 + ϵ)2(D+ϵ)(1−ϵ)|z|, (5.27)

and as before we deduce that

e−ϵ|z|4(D+ϵ)(1−ϵ) ≤ |P2(z)| ≤ eϵ|z|2(D+ϵ)(1−ϵ). (5.28)

Estimates for P4(z)

Relations (5.13) and (5.14) yield the upper bound (2ϵD+2ϵ)|z| for the number of terms in L4.
Notice also that if (an, bn) ∈ L4 then by definition (an, bn) /∈ L3. Thus we have |an±z| ≥ 2|an|α.
Then ∣∣∣∣bn − an

an ± z

∣∣∣∣ ≤ |an|α

2|an|α
=

1

2
,

and this gives
1

2
≤
∣∣∣∣ bn ± z

an ± z

∣∣∣∣ ≤ 3

2
.

Then for all z : |z| ≥ r1 we have the estimate(
1

4

)|z|(2ϵD+2ϵ)

≤
∏

(an,bn)∈L4

∣∣∣∣( b2n − z2

a2n − z2

)∣∣∣∣ ≤ (9

4

)|z|(2ϵD+2ϵ)

, (5.29)

in other words
e−ϵ|z|(log 4)(2D+2) ≤ |P4| ≤ eϵ|z|(log

9
4
)(2D+2). (5.30)

Estimates for P3(z)

This time the systems of disks are crucial. We find an upper bound outside S1 and a lower
bound outside S2.

Without loss of generality, we assume that for any z outside the two systems of disks, if
(an, bn) ∈ L3(ϵ, z) then it is relation |an − z| < 2|an|α which holds and not |an + z| < 2|an|α.
This implies that |an + z| > |an|. The relation |an − z| < 2|an|α also implies that |an| < 2|z|.
Then we have the following:

For z outside
∪∞
n=1B(±an, e−|an|β/3) and for (an, bn) ∈ L3(ϵ, z) we get∣∣∣∣ bn − z

an − z

∣∣∣∣ = ∣∣∣∣1 + bn − an
an − z

∣∣∣∣ ≤ 1 +

∣∣∣∣bn − an
an − z

∣∣∣∣ ≤ 1 +
3|an|α

e−|an|β
< e3|z|

β

and ∣∣∣∣ bn + z

an + z

∣∣∣∣ = ∣∣∣∣1 + bn − an
an + z

∣∣∣∣ ≤ 1 +

∣∣∣∣bn − an
an + z

∣∣∣∣ ≤ 1 +
|an|α

|an|
< 2.
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For z outside
∪∞
n=1B(±bn, e−|an|β/3) and for (an, bn) ∈ L3(ϵ, z) we get∣∣∣∣ bn − z

an − z

∣∣∣∣ ≥ e−|an|β/3

2|an|α
>
e−2|z|β

12|z|α
> e−3|z|β

and ∣∣∣∣ bn + z

an + z

∣∣∣∣ = ∣∣∣∣1 + bn − an
an + z

∣∣∣∣ ≥ ∣∣∣∣1− ∣∣∣∣bn − an
an + z

∣∣∣∣∣∣∣∣ ≥ 1− |an|α

|an|
>

1

2
.

One also needs to obtain an upper bound for the number of terms in L3(ϵ, z). Notice that if
(an, bn) ∈ L3(ϵ, z) then |an − z| ≤ |an|α < 2|z|α. In fact, we obtain an upper bound for the
number of terms of {an} in the disk B(z, 2|z|α). We claim that this is |z|γ for some γ ∈ (α, 1).
Indeed, suppose that for some integer k > 0 we have ak ∈ B(z, 2|z|α) and an /∈ B(z, 2|z|α) for
every n < k. Assume there are integers km ≥ 0 so that ak+km ∈ B(z, 2|z|α). Recalling that
|ak − an| ≥ c|k − n|, the following estimates hold

4|z|α ≥ |ak − ak+km | ≥ ckm ≥ cm.

Thus, m ≤ 4|z|α/c ≤ |z|γ for some γ ∈ (α, 1). We can take γ close to α so that γ + β <
1 as well. This last result and the above inequalities show that |P3(z)| ≤ (2e3|z|

β
)|z|

γ
and

|P3(z)| ≥ (1
2
e−3|z|β)|z|

γ
whenever z ̸∈ S1 and z ̸∈ S2 respectively. Then observe that the relation

(2e3|z|
β
)|z|

γ
= 2|z|

γ
e3|z|

β+γ ≤ eϵ|z| holds as |z| 7→ ∞ since γ + β < 1. Thus as |z| 7→ ∞ we get

|P3(z)| ≤ eϵ|z| and |P3(z)| ≥ e−ϵ|z| (5.31)

whenever z ̸∈ S1 or z ̸∈ S2 respectively.

By a suitable renormalisation of all the estimates we have obtained from the various steps,
we conclude the proof of Lemma 5.4. ♢

5.3 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1 : Let F (z) be the entire even function vanishing exactly at {±A} and
let M(z) be the meromorphic function as in relation (5.3). Define G(z) = F (z)M(z). Thus

G(z) =
∞∏
n=1

(
1− z2

b2n

)
=

∞∏
n=1

(
1− z2

λ2n

)µn
, (5.32)

with the second equality valid using the (λ, µ) reordering of B.

From the properties (1∗), (2∗) of F (z) and Lemma 5.4, we deduce the following:
If reiθ ̸∈

∪∞
n=1B(±an, e−|an|β/3) one has for every ϵ > 0 as r 7→ ∞

G(reiθ) = O(exp{πr(D| sin θ|+ ϵ)}). (5.33)

If reiθ ̸∈
∪∞
n=1B(±bn, e−|an|β/3) and |reiθ ± an| ≥ c/8 ∀n ∈ N+ then one has for every ϵ > 0 as

r 7→ ∞
1

|G(reiθ)|
= O(exp{πr(−D| sin θ|+ ϵ)}). (5.34)

From (5.33), (5.34), we will deduce (3.10) and (3.11) respectively. Then we also get (3.12).
Proof of (3.10):
Since G(z) is an entire function, its maximum value over any closed disk
B(an, e

−|an|β/3) is taken on the boundary. But for all z ∈ ∂B(an, e
−|an|β/3), relation (5.33) is

satisfied, implying the same for the interior.
Proof of (3.11):

Notice that from (5.34) we have to remove the condition |reiθ±an| ≥ c/8 ∀n ∈ N+. Therefore,
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suppose that {zk = rke
iθk} is a sequence of complex numbers so that for any k ∈ N+ we have

|zk − ak| < c/8 and |zk ± bn| ≥ e−|an|β/3 for all n ∈ N+. Our goal is to show that (5.34) holds
for 1/|G(rkeiθk)|. This makes the condition |reiθ± an| ≥ c/8 ∀n ∈ N+ redundant, thus proving
(3.11).

Take any k ∈ N+. Observe that for an arbitrary z ∈ ∂B(ak, c/8) the relation |z − bn| ≥
e−|an|β/3 might not hold for all n ∈ N+. Thus, we consider the larger closed disk B(ak, c/6)
and claim that there is a constant τ ∈ (c/8, c/6) so that for all z ∈ ∂B(ak, τ), one has |z−bn| ≥
e−|an|β/3 for all n ∈ N+. In other words, every point of this circle satisfies this spacing condition.
Needless to say that the condition |z − an| ≥ c/8 for all n ∈ N+ is also well satisfied for any
z ∈ ∂B(ak, τ).

Let us justify our claim. Note that it suffices to prove it for the set {bn : bn ∈ B(ak, c/6)}.
First, we get an upper bound for the number of zeros of G(z) inside this closed disk. For

any such zero there is an integer km, not necessarily positive, so that |ak − bk+km | ≤ c/6.
This relation and the usual conditions |an − ak| ≥ c|n − k|, |bk+km − ak+km| ≤ |ak+km |α and
|an| ≤ 2|bn|, yield

c|m| ≤ c|km| ≤ |ak − ak+km | = |(ak − bk+km) + (bk+km − ak+km)|
≤ c/6 + |ak+km|α

≤ 2|bk+km |α ≈ 2|ak|α. (5.35)

Thus, there are at most 4|ak|α/c zeros inside B(ak; c/6).

Next, consider all the annuli Cν(ak) ⊂ B(ak, c/6) for ν = 0, 1, 2, . . . , l(ak),

Cν(ak) =

{
z :

c

8
+ (ν − 1)e−|ak|

β
2 < |z − ak| ≤

c

8
+ (ν + 1)e−|ak|

β
2

}
.

In fact, Cν(ak) ⊂ C(ak) where C(ak) is the annulus

C(ak) =

{
z : c/8− e−|ak|

β
2 ≤ |z − ak| ≤ c/6

}
.

Assume that every annulus Cν(ak) ⊂ C(ak) contains at least one bn. Since the width of

each Cν(ak) is 2e−|ak|
β
2 , then the number of such annuli in C(ak) is of magnitude ce|ak|

β
2

48
. By

assumption, there should be at least as many bn terms in the disk B̄(ak; c/6). This contradicts

(5.35) since |ak|α < e|ak|
β
2 when k is sufficiently large. Thus, there exists some ν0 so that

the intersection of the annulus Cν0(ak) and the sequence B is the empty set. Then, taking

τ = c/8 + ν0e
−|ak|

β
2 , shows that any z ∈ ∂B(ak, τ) satisfies |z − bn| ≥ e−|ak|

β
2 for all n ∈ N+.

Finally note, that for every bn ∈ B(ak, τ) one gets |an| ≥ |ak|/2 from (5.35). Thus e−|ak|
β
2 ≥

e−|2an|
β
2 ≥ e−|an|β/3. This yields for all z ∈ ∂B(ak, τ) the relation |z − bn| ≥ e−|an|β/3 for all

n ∈ N+. Our claim is now fully justified.

Assume now that G(z) has zeros in the closed disk B(ak, τ), and define Yk = {n : bn ∈
B(ak, τ)}. Then write

G(z) =
∏
n∈Yk

(
1− z2

b2n

) ∏
n/∈Yk

(
1− z2

b2n

)
(5.36)

For all n ∈ Yk since |zk−ak| ≤ τ and |bn−ak| ≤ τ , then one has that |zk| ≈ |ak| ≈ |bn|. Also from
(5.35) one has that |an| ≤ 2|ak| for all n ∈ Yk. Combining all these with |zk ± bn| ≥ e−|an|β/3,
yields for all n ∈ Yk∣∣∣∣(1− z2k

b2n

)∣∣∣∣ = ∣∣∣∣(bn − zk)(bn + zk)

b2n

∣∣∣∣ ≥ e−2|an|β

9|bn|2
≥ e−8|ak|β

9|bn|2
≈ e−8|zk|β

9|zk|2
≥ e−10|zk|β .
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The last inequality holds since 0 < β < 1. Combination with (5.35), yields

1∣∣∣∏n∈Yk

(
1− z2k

b2n

)∣∣∣ ≤ e
40
c
rα+β
k = O(eϵrk). (5.37)

Next, note that for all n ∈ Yk and all z ∈ ∂B(ak, τ) one gets |1− z2/b2n| ≤ 1. This implies that
for all z ∈ ∂B(ak, τ) one has:

|G(z)| =

∣∣∣∣∣∏
n∈Yk

(
1− z2

b2n

)∣∣∣∣∣
∣∣∣∣∣∣
∏
n/∈Yk

(
1− z2

b2n

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∏
n/∈Yk

(
1− z2

b2n

)∣∣∣∣∣∣ . (5.38)

Observe that the right product in (5.36) has no zeros in the closed disk B(ak, τ). Thus it takes
its minimum value on the boundary. This and the previous relation yield∣∣∣∣∣∣

∏
n/∈Yk

(
1− z2k

b2n

)∣∣∣∣∣∣ ≥ min
z∈∂B(ak,τ)

∣∣∣∣∣∣
∏
n/∈Yk

(
1− z2

b2n

)∣∣∣∣∣∣ ≥ min
z∈∂B(ak,τ)

|G(z)|. (5.39)

But for all z ∈ ∂B(ak, τ) relation (5.34) holds. Thus, for every ϵ > 0 as k 7→ ∞ we get

1∣∣∣∏n/∈Yk

(
1− z2k

b2n

)∣∣∣ = O(exp{πrk(−D| sin θk|+ ϵ)}). (5.40)

This relation and (5.37) yield that 1/|G(rkeiθk)| satisfies (5.34).
Proof of (3.12):
Write

G(z) =

(
1− z2

λ2n

)µn ∏
k ̸=n

(
1− z2

λ2k

)µk
. (5.41)

Then one deduces that
G[µn](λn)

µn!
=

(−2)µn

λµnn

∏
k ̸=n

(
1− λ2n

λ2k

)µk
. (5.42)

Let us now obtain an upper bound for |λn|µn . From Lemma (5.2) we get

|λn|µn ≤ |λn|χ|λn|
α ≤ eϵ|λn| (5.43)

since χ|λn|α log |λn| ≤ ϵ|λn|.
Next we get a lower bound for the infinite product in (5.42). We note that for any λn

there is some bj so that λn = bj. Thus, consider the closed disk B(bj, e
−|alj |

β

/3) where lj is
as in (3.8). We claim that for all z on the boundary one has z ̸∈ S2, in other words we have
|z ± bk| ≥ e−|ak|β/3 for all k ∈ N+.

Indeed, if bk ∈ Γj the relation is trivial. Assume the opposite and consider the case when

|ak| ≤ |alj |. Then from (ii) in Definition 3.4 one has |blj − bk| ≥ e−|ak|β , thus |z − bk| =

|(z − blj) + (blj − bk)| ≥ 2e−|ak|β/3. Similarly we treat the case |ak| > |alj |, and our claim is
justified.

Then observe that for all z on the boundary we get that |(1− z2/b2j)
m(j)| < 1. Therefore for

any such z one has

1∣∣∣∏k ̸=n

(
1− z2

λ2k

)µk∣∣∣ < 1∣∣∣∏∞
k=1

(
1− z2

λ2k

)µk∣∣∣ = O(eϵ|z|) = O(eϵ|λn|). (5.44)

The first equality is valid since every z on the boundary satisfies z /∈ S2, thus we apply (3.11).
The second holds since |λn| ≈ |z| for all z on the boundary.
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Next, observe that the right product in (5.41) has no zeros in the closed disk B(bj, e
−|alj |

β

/3).
Thus it takes its minimum value on the boundary. Combining this with (5.44) gives

1∣∣∣∏k ̸=n

(
1− λ2n

λ2k

)µk∣∣∣ = O(eϵ|λn|). (5.45)

Substitution of (5.45) and (5.43) into (5.42), gives (3.12).

This concludes the proof of Theorem 3.1. ♢

Proof of Theorem 3.2 : Similar to the previous one.

5.4 Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3: We follow the lines of the proof of Theorem XXIX in [30].

Let f(z), f ∗(z), f ∗∗(z) and An as defined in (1.3), (3.14) and (3.2). From Lemma 5.5, the
regions of convergence of the three series are the same. Since the λn are real positive numbers,
we consider the non-trivial case, that is when the three series converge in identical half-planes
of the form ℜz > x0, x0 ∈ R. With no loss of generality we assume that the abscissa of
convergence (ordinary and absolute) is the line x = 0. In other words the relation

lim sup
n→∞

logAn
λn

= 0 (5.46)

holds. Thus, all three series converge absolutely and uniformly in any half-plane x ≥ τ > 0.
One also notes that from (3.1) we have

lim sup
n→∞

log |cnµn−1 |
λn

= 0. (5.47)

Suppose now that there exists an interval of length greater than 2πD on the line x = 0 on
which f(z) has no singularity. Then with no loss of generality we can also assume that this
interval is −B ≤ y ≤ B where B > πD. This implies the existence of some a > 0 such that
f(z) is analytic for x ≥ −a, |y| ≤ B. We put

γ = arctan
a

4πD
. (5.48)

so that 0 < γ < π/2 and let

b =
(B − πD) tan γ

2
. (5.49)

The rest of the proof is broken into three steps. The first two steps are rather straightforward
generalizations of parts of the proof of the original Fabry Gap theorem to be found in [30]
and are given here for the sake of completeness. Only the third step requires considerable new
effort. To facilitate the reader we give an outline for each one of the steps of the proof.

Step 1

Since f(z) is regular in the semi-strip (x ≥ −a, |y| ≤ B), then for all w ∈ C so that ℜw < 0,
we define

H(R,w) =

∫ −a+iB

−a
f(z)ewzdz +

∫ b+iB

−a+iB
f(z)ewzdz +

∫ R+iB

b+iB

f(z)ewzdz

+

∫ R

R+iB

f(z)ewzdz (5.50)
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where R > b and the paths of the integrals are the segments joining the various points. Then
we prove that H(R,w) converges as R 7→ ∞, and if we denote this limit by H(w), one has

H(w) =

∫ −a+iB

−a
f(z)ewzdz +

∫ b+iB

−a+iB
f(z)ewzdz

+
∞∑
n=1

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!
. (5.51)

But now H(w) is well defined for all w ∈ C\{λn}. In fact it is analytic in C\{λn}.
Next, we define J(w) = H(w)G(w) where G(w) is the entire even function defined in

Theorem 3.1. Then J(w) is an entire function in the complex plane.

Step 2

We prove that for some δ > 0 the relation |J(ρe±iγ)| = O
(
e−δρ cos γ

)
holds, thus |eδwJ(w)| =

O(1) for argw = ±γ.
Step 3

We show that eδwJ(w) is a function of exponential type bounded in the angle | argw| ≤ γ.
In particular, for real w this implies that J(w) = O(e−δw), thus J(λm) = O(e−δλm). This

eventually yields the relation |cmµm−1 | = O(e−
δ
2
λm) which contradicts relation (5.47). This will

complete the proof of our theorem.

All three steps make use of the convergence of

∞∑
n=1

An|b+ iB|µn−1|e−λn(b+iB)|, (5.52)

due to f ∗∗(b+ iB). We also need the following result:

Lemma 5.8. Let {Ln}∞n=1 be anyone of the following sequences: {λn}, {λn
3
}, {λn sin γ} or

{λα+ηn } where η > 0 so that α + β + η < 1. Then∣∣∣∣∣
µn−1∑
j=0

cnj

j∑
l=0

j!

(j − l)!

(
1

Ln

)l+1

(b+ iB)j−l

∣∣∣∣∣ < An|b+ iB|µn−1. (5.53)

Proof . Observe that it is enough to prove it for {Ln} = {λα+ηn }. For j = 0, 1, . . . , µn − 1,
one gets

j∑
l=0

j!

(j − l)!

(
1

λα+ηn

)l+1

<
1

λα+ηn

j∑
l=0

(
j

λα+ηn

)l
<

1

λα+ηn

j∑
l=0

(
µn

λα+ηn

)l
=

(
1

λα+ηn

)(
λα+ηn

λα+ηn − µn

)[
1−

(
µn

λα+ηn

)j+1
]
<

(
2

λα+ηn

)
,

since µn ≤ χλαn from Lemma 5.3. Then (5.53) follows easily. ♢

We proceed now with the proof of the various steps.

Proof of Step 1: Observe that the first two integrals in (5.50) are independent of R, thus we
deal with the other two. We will prove that (5.51) holds as R 7→ ∞.
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The absolute convergence of f(z) in the interval [b+ iB,R+ iB], justifies integrating it term
by term to get the following:∫ R+iB

b+iB

f(z)ewzdz =

−
∞∑
n=1

e(R+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(R + iB)j−l

(w − λn)l+1

j!

(j − l)!

+
∞∑
n=1

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!

Denote by I(R,w) the infinite series which depends on R. We will show that I(R,w) 7→ 0
as R 7→ ∞.

Since ℜw < 0 then |w − λn| > λn. It follows from Lemma (5.8) that∣∣∣∣∣
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(R + iB)j−l

(w − λn)l+1

j!

(j − l)!

∣∣∣∣∣ ≤ An|R + iB|µn−1.

Hence

|I(R,w)| ≤
∞∑
n=1

An|R + iB|µn−1|e(R+iB)(w−λn)|

≤ e−Bℑw
∞∑
n=1

An(2R)
µn−1e−Rλn .

On the other hand, since µn/λn 7→ 0 one has (2R)µn−1 < e
λnR
4 and therefore

|I(R,w)| < e−Bℑw
∞∑
n=1

2Ane
− 3R

4
λn ≤ e−Bℑwe−

R
4
λ1

∞∑
n=1

Ane
−Rλn

2 . (5.54)

From relation (5.46) one gets that lim supn→∞(logAn)/(λn/2) = 0, and this implies that the

Dirichlet series f ∗∗∗(z) =
∑∞

n=1Ane
−λn

2
z converges absolutely for any z if ℜz > 0. Thus, the

series

f ∗∗∗(R) =
∞∑
n=1

Ane
−λn

2
R

is defined for all R > 0 and is a positive decreasing function. Therefore there exists some
M > 0 so that for all R > 1 one has f ∗∗∗(R) < M . Combining this with (5.54), shows that
I(R,w) 7→ 0 as R 7→ ∞.

Similarly one deduces that

lim
R→∞

∫ R

R+iB

f(z)ewzdz = 0. (5.55)

Therefore for all w with ℜw < 0 one has that the limR→∞H(R,w) exists. If we denote this by
H(w) then H(w) has the form as in (5.51).

Next we prove that H(w) is well defined for all w ∈ C\{λn}. In fact, we prove that H(w)
is analytic in C\{λn}.

Note that the two integrals in (5.51) define analytic functions of w in the whole complex
plane. Thus, it remains to prove that the infinite series converges uniformly on any compact
subset K ∈ C such that K ∩ {λn}∞n=1 = ∅.
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Consider such a compact K. Then there exists an n0 ∈ N so that for all w ∈ K one has
|w − λn| ≥ λn/2 for all n ≥ n0. Let q = max{|e(b+iB)w| : w ∈ K}. For all w ∈ K define

In0(w) =
∞∑

n=n0

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!
.

Then for all w ∈ K, it follows from Lemma 5.8 and (5.52) that

|In0(w)| ≤ q

∞∑
n=n0

An|b+ iB|µn−1|e−λn(b+iB)| 7→ 0, n0 7→ ∞.

This implies uniform convergence on K.

Proof of Step 2: Let γ as in (5.48). Then

H(ρeiγ) =

∫ −a+iB

−a
f(z)ezρe

iγ

dz +

∫ b+iB

−a+iB
f(z)ezρe

iγ

dz

+
∞∑
n=1

e(b+iB)(ρeiγ−λn)
µn∑
j=1

cnj

µn−1∑
l=0

(−1)l+1(b+ iB)j−l

(ρeiγ − λn)l+1

j!

(j − l)!
.

Denote the infinite series by T (ρeiγ) and note that |ρeiγ − λn| ≥ λn sin γ. Then from Lemma
5.8 and (5.52), it follows that ∣∣T (ρeiγ)∣∣ = O(ebρ cos γ−Bρ sin γ). (5.56)

One also notes that ∣∣∣∣∫ −a+iB

−a
+

∫ b+iB

−a+iB

∣∣∣∣ = O
(
e−aρ cos γ + ebρ cos γ−Bρ sin γ

)
. (5.57)

Then by choosing the path of integration as the reflection in the real axis of that used in (5.50),
we get that (5.56) and (5.57) hold for ρe−iγ as well. Thus

H(ρe±iγ) = O
(
e−aρ cos γ + ebρ cos γ−Bρ sin γ

)
. (5.58)

From the definition of J(w) above, one deduces that

J(w) = G(w)

∫ −a+iB

−a
f(z)ewzdz +G(w)

∫ b+iB

−a+iB
f(z)ewzdz +Q(w), (5.59)

where Q(w) is the entire function defined as

G(w)
∞∑
n=1

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!
. (5.60)

Note that Q(w) is also written as

∞∑
n=1

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)µn+l+1(b+ iB)j−lj!

(j − l)!
(λn − w)µn−l−1Gn(w), (5.61)

where

Gn(w) =
(λn + w)µn

λ2µnn

∏
k ̸=n

(
1− w2

λ2k

)µk
. (5.62)
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One observes that combining (3.10) and (5.58), gives for every ϵ > 0

|J(ρe±iγ)| = O
(
e−aρ cos γ+πρD sin γ+ϵρ + ebρ cos γ+(πD−B)ρ sin γ+ϵρ

)
.

From (5.49) one also deduces that B−πD = 2b cot γ, and since ϵ is arbitrarily small this yields

|J(ρe±iγ)| = O
(
e−

a
2
ρ cos γ+πρD sin γ + e−

b
2
ρ cos γ

)
.

Relation (5.48) implies that πD sin γ = 1
4
a cos γ, thus for δ = 1

4
min(a, b) we have

|J(ρe±iγ)| = O
(
e−δρ cos γ

)
.

Therefore
|eδwJ(w)| = O(1), argw = ±γ. (5.63)

Proof of Step 3: We will show that (5.63) holds in the angle |ℑw| ≤ γ. In order to do this,
first we prove that J(w) is an entire function of exponential type. From (5.59) observe that it
suffices to work with the function Q(w).

Consider some η > 0 so that α + β + η < 1. For every w ∈ C so that w /∈ S2 where S2 is
the system defined in (3.6), we partition the sequence {λn} into two sets as follows:

A(w) = {λn : |w − λn| > λα+ηn }

and
B(w) = {λn : |w − λn| ≤ λα+ηn }.

Then we write
Q(w) = QA(w) +QB(w)

where QA(w) is defined as

QA(w) = G(w)
∑

λn∈A(w)

e(b+iB)(w−λn)
µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!
. (5.64)

Similarly one defines QB(w).

Consider now QA(w). We remark that in this case the condition w /∈ S2 plays no role. Note
that from Lemma 5.8, we deduce for any λn ∈ A(w) that∣∣∣∣∣

µn−1∑
j=0

cnj

j∑
l=0

(−1)l+1(b+ iB)j−l

(w − λn)l+1

j!

(j − l)!

∣∣∣∣∣ ≤ An|b+ iB|µn−1.

Thus
|QA(w)| ≤ |G(w)||e(b+iB)w|

∑
λn∈A(w)

An|b+ iB|µn−1|e−λn(b+iB)|,

and observe that the series is bounded above by the one in (5.52). This implies that |QA(w)| =
O(eκ|w|) for some κ > 0.

Next, we consider QB(w). We can also write it as

∑
λn∈B(w)

e(b+iB)(w−λn)

[
µn−1∑
j=0

cnj

j∑
l=0

((b+ iB)j−lj!

(−1)l+1(j − l)!
(λn − w)µn−l−1

]
Gn(w), (5.65)

41

Elia
s Z

ikk
os



where Gn(w) is defined in (5.62). Note that for any λn there is a bj so that λn = bj, thus
µn = m(j) the pseudo-multiplicity of bj. Since w /∈ S2, then one gets

|Gn(w)| =
|G(w)|

|λn − w|µn
=

|G(w)|
|bj − w|m(j)

≤ |G(w)|
(
3e|aj |

β
)m(j)

. (5.66)

Fix some ϵ > 0. Then from Lemma 5.2 we get(
3e|aj |

β
)m(j)

≤
(
3e|aj |

β
)ψ|aj |α

= 3eψ|aj |
α+β ≤ eϵ|aj |,

with the last inequality valid since α+ β < 1. One also observes that |aj| ≤ 2|bj| = 2λn ≤ 4|w|
since λn ∈ B(w). Thus for all λn ∈ B(w) one has |Gn(w)| ≤ |G(w)|e4ϵ|w|. This implies that
there are constants A′ > 0 and A′′ > 0, so that for any w ∈ C\S2 and all λn ∈ B(w) one has

|Gn(w)| ≤ A′eA
′′|w|. (5.67)

Next, observe that for any λn ∈ B(w), we have |λn−w|µn−l−1 ≤ (λα+ηn )
µn−l−1

. Combining this
with (5.67) shows that |QB(w)| is bounded above by

A′eA
′′|w|

∑
λn∈B(w)

∣∣e(b+iB)(w−λn)
∣∣ (λα+ηn

)µn µn−1∑
j=0

|cnj
|

j∑
l=0

|b+ iB|j−lj!
(j − l)!

(
λα+ηn

)l+1
.

Then from Lemma 5.8 we get that

|QB(w)| ≤ A′eA
′′|w| ∣∣e(b+iB)w

∣∣ ∑
λn∈B(w)

(
λα+ηn

)µn
An|b+ iB|µn−1

∣∣e−λn(b+iB)
∣∣ . (5.68)

Note also that from Lemma 5.3 one gets(
λα+ηn

)µn ≤
(
λα+ηn

)χλαn = λχ(α+η)λ
α
n

n | ≤ eϵλn ≤ e2ϵ|w|,

and combining this with (5.68) gives

|QB(w)| ≤ A′eA
′′|w| ∣∣e(b+iB)w

∣∣ e2ϵ|w| ∑
λn∈B(w)

An|b+ iB|µn−1
∣∣e−λn(b+iB)

∣∣ ,
with the series bounded above by the one in (5.52). This implies that |QB(w)| = O(eσ|w|) for
some σ > 0, provided w /∈ S2.

Since Q(w) = QA(w) + QB(w) it follows that |Q(w)| = O(eυ|w|) for some υ > 0, provided
w /∈ S2. But according to (3.8), S2 is the union of non-overlapping disks whose radius tends to
zero. Since Q(w) is an entire function, its maximum value over any such closed disk is obtained
on the boundary. All these imply that |Q(w)| = O(eυ|w|) for all w. It then follows that J(w)
is an entire function of exponential type. Combining this result with relation (5.63) and a
Phragmen-Lindelof theorem [30] (Th. C, p. 243), it yields

|eδwJ(w)| = O(1), | argw| ≤ γ. (5.69)

In particular, for real w this implies that J(w) = O(e−δw), thus

J(λm) = O(e−δλm). (5.70)

Note also that from (5.59) and (5.60), one deduces that

J(λm) =
cmµm−12

µm(µm − 1)!

λµmm

∏
k ̸=m

(
1− λ2m

λ2k

)µk
. (5.71)
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Then from (5.42) we can write

cmµm−1 = J(λm)

[
µm!

G[µm](λm)

] [
1

(−1)µm(µm − 1)!

]
. (5.72)

If we now apply (3.12) and (5.70) to (5.72), it yields for every ϵ > 0

|cmµm−1 | = O(e(−δ+ϵ)λm). (5.73)

Since ϵ is arbitrary we get that

|cmµm−1 | = O(e−
δ
2
λm). (5.74)

But this contradicts relation (5.47), and this completes the proof of our theorem. ♢

Proof of Theorem 3.4: Let us assume that the boundary of convergence is not a natural
boundary. That is, for some point z0 on the boundary the series can be continued analytically
in a disk B(z0, r) for some r > 0. For convenience, we replace f(z) by g(z) where

g(z) =
∞∑
n=1

pµn(z)e
−λnz0e−λnz

thus z = 0 replaces z0. Similarly we replace f ∗(z) by g∗(z) such that g∗(z) =
∑∞

n=1Ane
−λnz0e−λnz.

Since z = 0 is a boundary point, then for every r′ < r the disk B(0, r′) contains points z so
that g(z) converges absolutely. From Lemma 5.6 this implies that g(z) converges absolutely on
every point of the arc S = {z : |z| = r, | arg z| < 1

tan τ
}. The same holds for any point z in the

region W = {z : |z| ≥ r, | arg z| < 1
tan τ

}. Then, choose some point s ∈ S so that ℑs = ∆ > 0
and fix positive constants a and b so that a < r < b. We remark that the rest of the proof is
similar to the previous proof of Theorem 3.3. To facilitate the reader we have kept the same
notation.

We break the proof into three steps as done previously.

For Step 1, let R > b and ℜw < 0. Then define

H(R,w) =

∫ −a+i∆

−a
g(z)ewzdz +

∫ b+i∆

−a+i∆
g(z)ewzdz +

∫ R+i∆

b+i∆

g(z)ewzdz

+

∫ R

R+i∆

g(z)ewzdz (5.75)

where the paths of the integrals are the segments joining the various points.

The absolute convergence of g(z) in the intervals [b+ i∆, R+ i∆] and [R+ i∆, R], justifies
integration term by term. Letting R 7→ ∞ and using the relation |w − λn| ≥ |λn| cos τ which
holds since ℜw < 0, we apply Lemma 5.8 which is valid for Ln = |λn| cos τ . This yields that

H(w) =

∫ −a+i∆

−a
g(z)ewzdz +

∫ b+i∆

−a+i∆
g(z)ewzdz

+
∞∑
n=1

e(b+i∆)(w−λn)
µn−1∑
j=0

cnj
e−λnz0

j∑
l=0

(−1)l+1(b+ i∆)j−l

(w − λn)l+1

j!

(j − l)!
,

is an analytic function in C\{λn}. If we compare this relation with (5.51) we note that this
time we have the term cnj

e−λnz0 instead of just cnj
.

For Step 2, since sup | arg λn| ≤ τ < π/2 we can choose a constant γ so that τ < γ < π/2
and γ > arctan 2b

∆
. Then we get the following estimates on the ray argw = γ:∣∣∣∣∫ −a+i∆

−a
g(z)eρe

iγzdz +

∫ b+i∆

−a+i∆
g(z)eρe

iγzdz

∣∣∣∣ = O
(
e−aρ cos γ + ebρ cos γ−∆ρ sin γ

)
(5.76)
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and ∣∣T (ρeiγ)∣∣ = O(ebρ cos γ−∆ρ sin γ), (5.77)

where T (w) is the infinite series in the expression of H(w). The estimate for (5.77) holds since
|ρeiγ − λn| > |λn| sin(γ − τ) and Lemma 5.8 is valid for Ln = |λn| sin(γ − τ). Then by choosing
the path of integration as the reflection in the real axis of that used in (5.75), we get that (5.76)
and (5.77) hold for ρe−iγ as well. Thus

H(ρe±iγ) = O
(
e−aρ cos γ + ebρ cos γ−∆ρ sin γ

)
. (5.78)

Next, define J(w) = G(w)H(w) where G(w) is the entire function of infraexponential type as
in Theorem 3.2. Then for every ϵ > 0 one has

|J(re±iγ| = O
(
e−aρ cos γ+ϵρ + ebρ cos γ−∆ρ sin γ+ϵρ

)
. (5.79)

Since γ > arctan 2b
∆

andf ϵ is arbitrarily small, one has that

|J(re±iγ| = O
(
e−δρ cos γ

)
, (5.80)

for some δ > 0, that is, |eδwJ(w)| = O(1) for argw = ±γ.
For Step 3, we get again that J(w) is a function of exponential type, thus by the Phragmen-

Lindelof theorem [30] (Th. C, p. 243) one has |eδwJ(w)| = O(1) for | argw| ≤ γ. This implies
that J(λn) = O(e−δℜλn) and since ℜλn ≥ |λn| cos τ then J(λn) = O

(
e−δ cos τ |λn|

)
. Then, since

the term cnµn−1e
−λnz0 is equal to the right-hand side of (5.72), an application of Theorem 3.2

yields ∣∣cnµn−1e
−λnz0

∣∣ = O
(
e−

δ cos τ
2

|λn|
)
. (5.81)

Then from (3.3) we get ∣∣Ane−λnz0∣∣ = O
(
e−

δ cos τ
4

|λn|
)
. (5.82)

This relation implies that for some x < 0 the series g∗(x) converges absolutely. By Lemma 5.6

the same holds for all z in the region Ω = {z : |ℑ(z−x)|
ℜ(z−x) ≤ 1

tan τ
, ℜ(z − x) > 0}. But then the

point z = 0 is an interior point of Ω, a contradiction, since z = 0 is a boundary point of the
region of convergence of g(z) and g∗(z). ♢
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6 Future projects.

In this last section we discuss some possible future projects. The first one deals once more with
complete exponential systems in Lp(−a, a).

6.1 Complete exponential systems in Lp(−a, a)

In this subsection we discuss briefly two open problems for complete exponential systems in
Lp(−a, a). The first one was already mentioned in §2. We know that if the terms of a sequence
µ are subjected to bounded pure imaginary perturbations, then the excess is preserved in
L2(−a, a) and that the theorem fails for L1(−π, π) and C[−π, π]. The problem is still open
for p /∈ {1, 2}.

The next problem deals with non-concentrated sequences µ = {µn, kn}. As we know, A.
Sedlestkii usually imposses this condition. The question that we pose is the following: Does
µ have to be a non-concentrated sequence in order for its system Eµ to have a finite excess
in Lp(−a, a)? An affirmitive answer to the question, would imply that the multiplicities kn
are necessarily uniformly bounded, a result which is valid at least in the case of Riesz bases, a
particular example of exact systems.

In the following subsection we discuss the Carleman formulas in complex analysis, whose
aim is to restore a function holomorphic in a domain D by its values on a part M of the
boundary ∂D, provided that M is of positive Lebesgue measure.

6.2 Carleman formulas in complex analysis

In the theory of boundary values of holomorphic functions of one complex variable a question
was raised about the description of the class of holomorphic in a domain D functions which
are represented using their boundary values by the Cauchy integral formula. The answer was
very clear and was obtained for the case of the disk by F. and M. Riesz (1916) and for other
domains by V. Smirnov (1932). Their result states that this class of functions coincides with
the Hardy class H1(D), for the disk, and with the class E1(D) for other domains.

Definition 6.1. A function f(z) holomorphic in a domain D is said to belong to the class
Ep(D), p > 0, if there exists a sequence of curves γm in D converging to ∂D such that∫

γm

|f(z)|p|dz| ≤ C1,

whereC1 is independent of m.

During the last years there was a number of research papers devoted to the Carleman
formulas for holomorphic functions of one and several variables (their survey can be found in
[1]). These formulas solve the problem of the reconstruction of holomorphic functions in the
interior points of a domain D from their values on a subset M ⊂ ∂D of positive measure. In
order to do this, one needs to construct a quenching function ϕ, that is a function which is
holomorphic and bounded in D, satisfying two conditions:
(1) |ϕ(z)| = 1 almost everywhere on ∂D \M,
(2) |ϕ(z)| > 1 in D.

The idea of this function was first introduced by T. Carleman and then developed by
Goluzin-Krylov. They proved the following:
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Theorem 6.1. If f ∈ E1(D) and the set M ⊂ ∂D has positive Lebesgue measure, then for any
point z ∈ D the Carleman formula

f(z) = lim
m→∞

1

2πi

∫
M

f(ζ)

[
ϕ(ζ)

ϕ(z)

]m
dζ

ζ − z
(6.1)

is valid. The convergence in (6.1) is uniform on compact subsets in D.

Therefore, naturally arises the following problem:
Can we describe the class of holomorphic functions that are represented by Carleman formulas
as in (6.1)?

L. Aizenberg, A. Tumanov and A. Vidras (see [2]) conjectured that a necessary and sufficient
condition for a holomorphic function f to be representable by Carleman formulas over the set
M is that f must belong to the class H1 near the set M . In other words, we must have
f ∈ E1(Wn), where {Wn} is an Ahflors-regular exhaustion of D, that is, Mn = ∂Wn ∩M ⊂M .

We note that positive results were obtained in [2] for the bisected disk, that is a simply
connected domain Ω ⊂ D, 0 ̸= Ω, whose boundary consists of an arc of the unit circle and of
an Ahflors-regular curve M in the unit disk joining two points on |z| = 1. Similar results were
obtained in [3] for a simply connected domain in the right-half plane whose boundary consisted
of a vertical segment on the imaginary axis and an Ahflors-regular curve joining the endpoints
of the segment and the corresponding Fok-Kuni integral representation formula. We also note
that other results were derived in [4] and [15].

At this point we remark that the Carleman integral representation formulas are not pre-
served under conformal mappings. Thus, for different domains we are obliged to attack the
problem with a different quenching function. This will be the case for the following problem
that we shall study: For a special class of bounded, simply connected domains V ⊂ C with
piecewise smooth boundary, for example regular polygons, we shall derive a Carleman formula
representing all those holomorphic functions f ∈ H(V) from their boundary values (if they
exist) on the arcM ⊂ ∂V , whose length satisfies l(m) < l(∂V ) which belong to the Hardy class
H1 near the arc M .
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