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Περίληψη 
 

Μια συνήθης παραδοχή στην ανάλυση Νευτώνειων ροών είναι ότι η πυκνότητα και το 

ιξώδες είναι σταθερές. Η παραδοχή αυτή όμως, είναι σωστή μόνο σε συνθήκες χαμηλής 

πίεσης και δεν ευσταθεί σε ροές κατά τις οποίες αναπτύσσονται μεγάλες πιέσεις όπως 

είναι για παράδειγμα η εκβολή και η έγχυση πολυμερών, η μεταφορά κηρώδους αργού 

πετρελαίου, η λιπαντική ροή λεπτών υμενίων, η μικρορευστονική, και κάποιες γεωφυσικές 

ροές. Επιπλέον, η υπόθεση ότι η ροή είναι συμπιεστή, ενώ προκαλεί μικρές αλλαγές στης 

λύση της μόνιμης ροής μπορεί να επηρεάσει σημαντικά τη δυναμική της ροής λόγω 

εμφάνισης της παραγώγου της πυκνότητας ως προς το χρόνο στην εξίσωση συνέχειας.  

Στη διατριβή αυτή θεωρούμε Νευτώνειες ροές Poiseuille στις οποίες η πυκνότητα και το 

ιξώδες είναι συναρτήσεις της πίεσης και έτσι δεν είναι σταθερές. Σε αυτή την περίπτωση, 

οι εξισώσεις κινήσεως είναι έντονα μη-γραμμικές με αποτέλεσμα η εύρεση ακριβούς 

λύσης να είναι δύσκολη ή ακόμα και αδύνατη. Το γεγονός αυτό επιβάλλει συχνά τη χρήση 

προσεγγιστικών μεθόδων όπως είναι η προσέγγιση της λύσης μέσω ασυμπτωτικών 

αναπτυγμάτων τα οποία υπολογίζονται με τη μέθοδο των διαταραχών. 

Πριν τη επίλυση της συμπιεστής ροής Poiseuille ενός Νευτώνειου ρευστού με ιξώδες που 

εξαρτάται από την πίεση, επιλύσαμε τις δύο οριακές περιπτώσεις: την ασυμπίεστη ροή με 

μεταβλητό ιξώδες και τη συμπιεστή ροή με σταθερό ιξώδες. Στην πρώτη περίπτωση ήταν 

δυνατόν να βρούμε ακριβή λύση ενώ στη δεύτερη περίπτωση εφαρμόσαμε την κανονική 

μέθοδο των διαταραχών προσεγγίζοντας τις πρωτεύουσες εξαρτημένες μεταβλητές της 

ροής, δηλαδή τις δύο συνιστώσες της ταχύτητας και την πίεση με αναπτύγματα ως προς 

την ισόθερμή συμπιεστότητα. Στο τελευταίο μέρος της διατριβής η πυκνότητα και το 

ιξώδες μεταβάλλονται με την πίεση και χρησιμοποιήσαμε διπλό ανάπτυγμα μέσω της 

μεθόδου των διαταραχών για να βρούμε προσεγγιστική λύση. 

Στην περίπτωση της ασυμπίεστης ροής επιλύσαμε την επίπεδη, την αξονοσυμμετρική και 

τη δακτυλιοειδή ροή Poiseuille. Υποθέτοντας ότι η ροή είναι μονοκατευθυντική και ότι το 

ιξώδες εξαρτάται γραμμικά από την πίεση, κατέστει δυνατή η εύρεση ακριβούς λύσεως για 

την ταχύτητα, η οποία είναι συνάρτηση μόνο της κατακόρυφης συντεταγμένης και για την 

πίεση, η οποία εξαρτάται και από τις δύο συντεταγμένες. Μελετώντας τη λύση 

παρατηρήσαμε ότι καθώς η εξάρτηση του ιξώδους από της πίεση αυξάνεται, το προφίλ της 

ταχύτητας από παραβολικό τείνει να γίνει γραμμικό. Η κλίση της πίεσης κοντά στην έξοδο 
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είναι η ίδια όπως στην κλασική, πλήρως ανεπτυγμένη ροή. Η πίεση αυξάνεται εκθετικά 

καθώς κινούμαστε αντίθετα με τη φορά της ροής, και έτσι η πίεση που χρειάζεται για να 

κινήσει τη ροή αυξάνεται δραματικά.  

Στην περίπτωση της ροής με σταθερό ιξώδες επιλύσαμε την επίπεδη και την 

αξονοσυμμετρική ροή Poiseuille υποθέτοντας ότι η πυκνότητα έχει γραμμική εξάρτηση 

από την πίεση και ότι το ρευστό ολισθαίνει στο τοίχωμα με ταχύτητα που υπακούει στη 

συνθήκη του Navier. Εφαρμόσαμε κανονική μέθοδο των διαταραχών προσεγγίζοντας τις 

δύο συνιστώσες της ταχύτητας και την πίεση με ασυμπτωτικά αναπτύγματα ως προς την 

ισόθερμη συμπιεστότητα εξάγοντας έτσι προσεγγιστικές λύσεις μέχρι και τη δεύτερη τάξη. 

Τα αποτελέσματα έδειξαν ότι η αύξηση της ολίσθησης μειώνει της εξάρτηση της λύση από 

την κατακόρυφη συντεταγμένη. Επίσης, βλέπουμε ότι η ολίσθηση μειώνει την 

κατακόρυφη ταχύτητα και αυξάνει την οριζόντια. Καθώς κινούμαστε αντίθετα με τη φορά 

της ροής, η πίεση αυξάνεται καθώς η ροή γίνεται πιο συμπιεστή, αλλά αυξάνεται πιο αργά 

όταν η ολίσθηση στο τοίχωμα γίνεται μεγαλύτερη. Επίσης, μελετήσαμε σημαντικές 

ποσότητες όπως είναι ο ρυθμός ογκομετρική παροχής, η μέση πτώση της πίεσης και ο 

μέσος παράγοντας τριβής Darcy.  

Στο τελευταίο μέρος της διατριβής υποθέσαμε ότι τόσο η πυκνότητα όσο και το ιξώδες 

εξαρτώνται γραμμικά από την πίεση και μελετήσαμε την επίδραση που έχουν πάνω στη 

ροή. Εφαρμόσαμε κανονική μέθοδο διαταραχών πάνω στις κύριες εξαρτημένες 

μεταβλητές της ροής προσεγγίζοντας τις με ασυμπτωτικά αναπτύγματα ως προς την 

ισόθερμη συμπιεστότητα και το συντελεστή εξάρτησης του ιξώδους από την πίεση. 

Εξάγαμε έτσι προσεγγιστικές λύσεις δεύτερης τάξης για τις περιπτώσεις της επίπεδης και 

της αξονοσυμμετρικής ροής. Η λύση αυτή αποτελεί γενίκευση των λύσεων που βρήκαμε 

στις δύο προηγούμενες περιπτώσεις. Βλέπουμε ότι η κατακόρυφη ταχύτητα είναι πάντα 

θετική και εξαρτάται μόνο από την κατακόρυφη συντεταγμένη. Όταν η συμπιεστότητα και 

ο συντελεστή εξάρτησης του ιξώδους από την πίεση είναι της ίδιας τάξης, τότε η οριζόντια 

ταχύτητα επηρεάζεται από τη μεταβολή του ιξώδους στη δεύτερη τάξη αλλά όχι στην 

πρώτη τάξη. Αντίθετα, η πίεση επηρεάζεται από τη μεταβολή της πυκνότητας και του 

ιξώδους τόσο στη δεύτερη όσο και στην πρώτη τάξη και η επίδραση των δύο αυτών 

ποσοτήτων είναι ανταγωνιστική. Η κατακόρυφη ταχύτητα δεν επηρεάζεται από την 

εξάρτηση του ιξώδους από την πίεση σε καμία τάξη. Επίσης, μελετήσαμε την επίδραση 

του λόγου του ύψους του αγωγού ως προς το μήκος και του αριθμού Reynolds πάνω στη 

ροή. 
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Abstract 
 

A common assumption in the analysis of Newtonian flows is that both the density and the 

viscosity are constants. Such an assumption, however, is valid only at low processing 

pressures and cannot be used in important flows involving high pressures, such as polymer 

extrusion and injection model, waxy crude oil transport, fluid film lubrication, 

microfluidics, and in certain geophysical flows. Moreover, relaxing the incompressibility 

assumption may lead only to minor changes in the calculated steady-state solutions but 

may affect greatly the flow dynamics, given the density time derivative that appears in the 

continuity equation.  

This thesis is concerned with Newtonian Poiseuille flows in which the density and the 

viscosity of the fluid are not constants but functions of the pressure. In this case, the non-

linearity of the equations of motion is increased and the derivation of analytical solutions 

becomes more difficult if not ruled out opening the way to the use of approximate 

methods, such as the approximation of the solution by asymptotic expansions via the 

perturbation method. 

Before tackling the compressible Poiseuille flows of a Newtonian fluid with a pressure-

dependent viscosity, we solved the two limiting cases, i.e. incompressible flows with 

pressure-dependent viscosity and then, compressible flows with constant viscosity. In the 

former case it was possible to derive semi-analytical solutions whereas in the latter case a 

regular perturbation scheme was employed in which the primary fields, i.e. the two 

velocity components and the pressure where expanded in terms of the isothermal 

compressibility. In the last part of the thesis both the density and the viscosity of the fluid 

vary with pressure and we employed a double perturbation scheme in order to derive an 

approximate analytical solution.  

In the case of incompressible flow, we considered the plane, the axisymmetric, and the 

annular Poiseuille flows. Assuming that the flow is unidirectional and the viscosity varies 

linearly with pressure, we obtained closed-form solutions for the velocity, which is a 

function of the transverse coordinate, and for the pressure, which is two-dimensional. It is 

demonstrated that as the pressure-dependence of the viscosity becomes 
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stronger, the velocity tends from a parabolic profile to a triangular one. The pressure 

gradient near the exit is the same as that of the classical fully developed flow. This 

increases exponentially upstream and thus the pressure required to drive the flow increases 

dramatically.  

In the case of flow with constant viscosity, we considered the plane and axisymmetric 

compressible Poiseuille flows with Navier slip at the wall. A linear equation of state was 

employed to describe the variation of the density with pressure. We applied a regular 

perturbation method, perturbing the two non-zero velocity components and the pressure, 

using the isothermal compressibility number as the small perturbation parameter. 

Approximate solutions up to the second order where obtained and analysed. The results 

show that slip weakens the dependence of the solution on the vertical coordinate. The 

transverse velocity decreases and the horizontal velocity increases with slip. The pressure 

required to drive the flow increases slower upstream with slip but increases when the flow 

becomes more compressible. Important quantities such as the he volumetric flow rate, the 

average pressure drop and the Darcy friction factor were also studied.  

In the last part of the thesis the combined effects of compressibility and viscosity pressure 

dependence where investigated, assuming that both the density and the viscosity vary 

linearly with pressure. We applied a regular perturbation method using the isothermal 

compressibility number and the viscosity-to-pressure coefficient as the small perturbation 

parameters. All the primary variables were represented by a double asymptotic expansion, 

and via perturbation analysis second-order approximations were obtained for both the 

plane and axisymmetric Poiseuille flows. The solution was then analysed in terms of the 

two perturbation parameters. We noted that this generalizes the solutions corresponding to 

the aforementioned special cases. It is demonstrated that the transverse velocity is always 

positive and depends only on the transverse coordinate. When the compressibility number 

and the viscosity-pressure coefficient are of the same order, the horizontal velocity at first-

order is not affected by the viscosity but does at second order. The pressure is affected by 

the compressibility and the viscosity pressure-dependence at first and second-order and 

these effects compete each other. The transverse velocity is not affected by the viscosity’s 

pressure dependence at any order. The effects of the aspect ratio and the Reynolds number 

have also been studied. 
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Chapter 1 

Introduction 

 

The equations of motion, i.e. the continuity and momentum equation, for any fluid can be 

written as follows 

( ) 0
t





 


u      (1.1) 

and 

p
t

 
 

      
 

u
u u τ g .   (1.2) 

where u is the velocity vector, p is the pressure, τ is the viscous stress tensor, ρ is the 

density, and g is the gravitational acceleration. If the density is constant, then the 

continuity equation is simplified to 0 u . Otherwise, Eqs. (1.1)-(1.2) need to be 

supplemented by an equation of state, relating the density to the pressure. 

In the case of a compressible Newtonian fluid with zero bulk viscosity
1
 the viscous stress 

tensor is given by 

2
2

3

 

   
 

τ D I u ,     (1.3) 

where η is the viscosity, I is the unit second-order tensor, and D is the rate of deformation 

tensor defined by  

1
( )

2

T     D u u .     (1.4) 

In incompressible flow, Eq. (1.3) is reduced to the standard Newtonian constitutive 

equation: 

2 ( )T        τ D u u .    (1.5) 

                                                 
1
 In the more general case,  

2
2

3
  

 
    

 
τ D I u  

where χ is the bulk viscosity, which is neglected in most  studies. 
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Substituting Eq. (1.5) into the momentum equation and assuming that the viscosity is 

constant, one gets the Navier-Stokes equation: 

2p
t

  
 

       
 

u
u u u g .    (1.6) 

In the present thesis, we consider compressible Newtonian flows with pressure-dependent 

viscosity. In other words, both the density and the viscosity of the fluid are functions of 

pressure. Hence, the continuity equation (1.1) may be written as 

( )
[ ( ) ] 0

p
p

t





 


u      (1.7) 

and the viscous stress tensor is given by  

2
( ) 2

3
p
 

   
 

τ D I u ,     (1.8) 

where η is now a known function of the pressure p. Substituting the above constitutive 

equation into the momentum equation (1.2) leads to the following generalization of the 

Navier-Stokes equation: 

2 1 2
( ) 2 ( ) ( ) ( ) ( )

3 3
p p p p p p p

t
     

 
                 

 

u
u u u D u u g . 

 (1.9) 

To our knowledge, studies taking into account both the compressibility and the viscosity 

pressure-dependence are very scarce in the literature. The objective of this thesis is to 

obtain analytical solutions of the system (1.7)-(1.9) for steady two-dimensional Poiseuille 

flow problems. In addition to the standard incompressibility and constant-viscosity 

assumptions, we also relax the well-known no-slip boundary condition. 

The components of Eqs. (1.7) and (1.9) in Cartesian and cylindrical coordinates are 

tabulated in Tables 1.1 and 1.2, respectively. This system of equations is closed by means 

of an equation of state and an equation describing the pressure-dependence of the viscosity. 

These are discussed in Sections 1.1 and 1.2, respectively. In Section 1.3, we discuss the 

issue of wall slip. The two-dimensionality of the Poiseuille flows of interest is a 

consequence of the compressibility and excludes the possibility of an exact analytical 

solution. Approximate analytical solutions, however, can be obtained by perturbation 

methods, as discussed in Section 1.4. Finally, in Section 1.5 we present the objectives, and 

outline the chapters of the thesis. 

Stel
la 

Poy
iad

ji 



3 

Table 1.1: Components of the equations of motion in Cartesian coordinates when both the 

density and the viscosity are pressure dependent. 

Continuity equation  

 
     

0
yx z

uu u

x y z

  
  

  
  

 

x-momentum equation 

 

 

 

 

2 2 2

2 2 2

2
2

3

1

3

x x x x x x x

x y z

y yx x x xz z

yx z

u u u u u u up
u u u p

t x y z x x y z

u uu u u uu up p p p
p

x x y y x z z x x x y z

uu u
p

x x y z

 





         
         

          

              
            

                 

  
   

    
xg

  

 

y-momentum equation 

 

 

 

 

2 2 2

2 2 2

2
2

3

1

3

y y y y y y y

x y z

y y y yx xz z

yx z

u u u u u u up
u u u p

t x y z y x y z

u u u uu uu up p p p
p

x x y y y z z y y x y z

uu u
p

y x y z

 





         
                     

               
             

                  

  
  

   
yg




  

 

z-momentum equation 

 

 

2 2 2

2 2 2

2
2

3

1

3

z z z z z z z

x y z

y yx xz z z z

yx z

u u u u u u up
u u u

t x y z z x y z

u uu uu u u up p p p
p

x x z y y z z z z x y z

uu u
p

z x y z

 





         
         

          

              
            

                 

  
   

    
zg
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Table 1.2: Components of the equations of motion in cylindrical coordinates when both the 

density and the viscosity are pressure dependent. 

Continuity equation  

 
   

1 1
0z

r

u
r u u

t r r r z



 



  
   

     

 

r- momentum equation 

   

 
 

2 2

2 2 2 2

1

1 1 2

1 1 1 1 1
2

3

r r r r

r z

r r

r

rr z r

uu u u u p
u u u

t r r r z r

uu u
p ru

r r r r r z

ru u uu u up p
p u

r r r r r z r r r






 









  

      
       

      

    
     

     

           
                         

  
 1 1 1

3

rr z z

r

ru uu u up
p g

z z r r r r r z

 


      
      

           

 

θ- momentum equation 

   

 
 

2 2

2 2 2 2

1

1 1 1 2

1 2 1 1 1

r

r z

r

rr z

r

u u u uu
u u u

t r r r z

u uup
p ru

r r r r r r z

ruu u uu up p
p u u

r r r r r r r r z

   


 


  






 


   

      
      

     

     
      

      

           
            

             

 
 1 1 1 1 1

3

rz z
ruu uu up

p g
z z r r r r r z

 
 

  

 
   
 

      
       
           

 

z- momentum equation 

 

 
 

2 2

2 2 2

1 1 1

1 1 1 1 1
2

3

1

z z z r z z z

r z

rz r z z z

u u u u u u up
u u u p r

t r r z z r r r r z

ruu uu u u u up p p
p

r r z r r z z z r r r z



 

 
 


  

           
           

            

            
                                

  
 1 1

3

r z

z

ru u u
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1.1 Weak compressibility 

This thesis is concerned with flows of liquids, which are usually considered as 

incompressible. Such an assumption is valid if the applied pressures are not high and/or the 

flow is steady. At high processing pressures the effects of non-zero compressibility may be 

magnified and the presence of the density time-derivative in the continuity equation may 

affect dramatically the flow dynamics even for small values of the compressibility 

parameter (Georgiou and Crochet, 1994a). 

Laminar Poiseuille flows of weakly compressible gases have been of special interest in the 

past few decades and have been studied extensively as a result to their importance in many 

processes which involve gas flows in long capillaries or at high speeds (Venerus, 2006). 

Gas flows in long capillaries at high speeds are observed in micro-electro- mechanical 

systems (MEMS) where the gas is forced to flow in microchannels or microtubes, thus 

causing the appearance of compressibility effects (Arkillic and Schmidt 1997, Guo and 

Wu, 1997, Ansumal and Karlin, 2005, Cai et al., 2007).  

Compressibility effects in liquid flows become important at high processing pressures, i.e. 

in flows in relatively long tubes. Waxy crude oil transport (Vinay et al, 2006), polymer 

extrusion (Georgiou, 2003, Georgiou and Crochet, 1994a, Tang and Kalyon, 2008a, 

Hadjikyriakos et al, 1992, Piau and Kissi, 1994) and polymer injection molding (Kwon, 

1996) are important cases of liquid flows in long tubes were the effects of compressibility 

cannot be neglected.  

In flows of weakly compressible materials, two equations of state are usually employed at 

low pressures: 

(a) the linear equation of state: 

  0 01 p p       , (1.10) 

where  
0

0,
/ /

p T
V p V      is the isothermal compressibility which is assumed to be 

constant, V is the specific volume, ρ0 and p0 are respectively the density and the specific 

volume at the reference pressure ρ0 and T is the temperature which is assumed to be 

constant too; and 

(b) the exponential equation of state: 

 
 

0
op p

e


 


 . (1.11) 
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For small β and low pressures the linear equation is a very good approximation of the 

exponential equation.  

The Mach number, Ma, is defined as the ratio of a characteristic velocity, V0, of the flow to 

the speed, σ, of sound in the fluid:  

0V
Ma


 ,     (1.12) 

where 

1/2 1/2

0T

p 
 

  

    
     

    

,    (1.13) 

γ being the heat capacity ratio or adiabatic index. For weakly compressible flows, 1Ma , 

usually Ma<0.3.  

In the literature, one can find various numerical solutions for weakly compressible 

Poiseuille flows for Newtonian fluids (Guo, 1997, Georgiou and Crochet, 1994a, Georgiou 

and Crochet, 1994b, Guo and Wu, 1998) which is the case that we focus on in the thesis, 

for generalised Newtonian fluids (Cawkwell and Charles, 1989, Golay and Helluy, 1998, 

Keshtiban et al, 2005, Mitsoulis et al., 2007, Silva and Coupez, 2002, Tang and Kalyon, 

2008a) such as the Carreau fluid (Georgiou, 2003), for the Bingham plastic (Vinay et al., 

2006) and for viscoelastic fluids (Belblidia et al., 2006). 

In flows of liquids such as polymer melts, the combination of compressibility with 

nonmonotonic slip laws relating the wall shear stress to the slip velocity (Hadjikyriakos 

and Dealy, 1992) is reported to be the cause of the stick-slip polymer extrusion instability. 

The stick-slip polymer extrusion instability refers to the sustained pressure and flow rate 

oscillations observed under constant throughput. The compressibility-slip combination 

effect is confirmed by experimental observations and numerical simulations. Dubbeldam 

and Molenaar (2003) used one-dimensional phenomenological models to describe the 

pressure and flow rate oscillations and thus verifying the compressibility-slip effect while 

Taliadorou et al. (2007) developed numerical simulations for the stick-slip extrusion 

instability in the case of the time-dependent, compressible extrusion of a Carreau fluid, 

assuming that nonmonotonic slip occurs along the wall and employing the nonmonotonic 

slip law that was observed in the experiment of Hadjikyriakos and Dealy (1992a, 1992b). 

Tang and Kalyon (2008a, 2008b) developed a mathematical model describing the time-

dependent pressure-driven flow of compressible polymeric liquids subject to pressure-
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dependent slip in the simple shear flow. They reported that undamped periodic pressure 

oscillations in pressure and mean velocity are observed when the boundary condition 

changes from weak to strong slip.  

Taliadorou et al. (2008) reported extrusion simulations showing that the combination of 

strong compressibility with inertia may lead to stabled steady-state free surface 

oscillations, similar to those observed experimentally with liquid foams. Mitsoulis and 

Hadjikiriakos (2009) carried out steady flow simulations of polytetrafluoroethylene 

(PTFE) paste extrusion under severe slip taking into account the significant compressibility 

of the pastes.  

Perturbation and other approximate solutions have been reported for the weakly 

compressible Poiseuille flow of a Newtonian fluid, mainly under the assumption of ideal 

gas flow. In Prud’homme et al. (1986) the flow of an ideal gas in a long tube under the 

assumptions of zero radial velocity component, zero pressure gradient and no gravity, is 

approximated using a double perturbation expansion and taking the radius to length ratio 

and the relative pressure drop as the perturbation parameters. Van den Berg et al. (1993) 

and Zohar (2002) used a one-dimensional perturbation method for radial symmetric flow 

and two lumped perturbation parameters to approach the compressible laminar flow in a 

capillary and the subsonic gas flow in microtubes and channels with wall slip. 

Venerus (2006) and Venerus and Bugajsky (2010) derived perturbation solutions in terms 

of the compressibility for the axisymmetric and the plane isothermal Poiseuille flow of a 

weakly, compressible Newtonian liquid respectively, using the steamfunction/vorticity 

formulation and a linear relation of the density to pressure. Recently, Taliadorou et al. 

(2009) obtained perturbation solutions of the plane and axisymmetric Poiseuille flows of a 

weakly compressible Newtonian fluid. In their methodology, the perturbation is performed 

on the primary flow variables, i.e. on the velocity components and the pressure.  Housiadas 

and collaborators (2011, 2012) extended the primary-variable perturbation method to 

derive solutions of the plane and axisymmetric Poiseuille flows of a weakly compressible 

Oldroyd-B fluid.  

  

Stel
la 

Poy
iad

ji 



8 

1.2 Pressure-dependence of viscosity  

The viscosity of typical liquids begins to increase substantially with pressure when 

pressures of the order of 1000 atm are reached (Renardy, 2003). Fluids with pressure-

dependent viscosity are also referred to as piezoviscous fluids (Suslov and Tran, 2008). In 

such fluids, the dependence of the viscosity on pressure may be several orders of 

magnitude stronger than that of density (Dowson and Higginson, 1966; Renardy, 2003; 

Rajagopal, 2006; Roux, 2008). This is the case, for example, in fluid film lubrication, in 

polymer extrusion, and in injection molding where the pressure can be very high leading in 

large variations in the viscosity while the variation in density is insignificant (Szeri, 1998; 

Denn, 2008).  

The idea of a fluid with pressure-dependent viscosity was introduced by Stokes in his 

seminal 1845 paper on the constitutive response in fluids (Stokes, 1845). Barus (1893) was 

the first to propose an exponential isothermal equation of state for the viscosity of the form 

   0

pp e  , (1.14) 

where η is the viscosity, p is the pressure, η0 is the viscosity at atmospheric pressure, and β 

is the pressure-viscosity coefficient (which is temperature dependent)
2
. Even though Eq. 

(1.14) is extensively used, it is valid as a reasonable approximation only at moderate 

pressures. Barus (1893) himself used a more general equation of state of the form 

  
2p Kpp e       (1.15) 

 

which describes a stronger pressure-dependency at low pressures (Goubert et al., 2001). 

Denn (2008) notes that, to a first approximation, the viscosity of polymer melts can be 

written as follows 

  0

0    
T T pe e

  
 

 ,        (1.16) 

where η0, being the viscosity at atmospheric pressure (p=0) and the reference temperature 

T0, may depend on shear rate. 

Bair et al. (2001) noted that the experimental data show that at high pressures, Eq. (1.14) is 

not valid and that the use of more accurate models or experimental data is necessary. The 

experiments of Kottke (2004) showed that the accuracy of Eq. (1.14) at negative pressure 

                                                 
2
 The pressure coefficient of the viscosity should not be confused with the isothermal compressibility 

introduced in section 1.1. 
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(i.e. cavitation) is unknown. Rajagopal (2006) pointed out that Eq. (1.14) works well up to 

500 MPa, that is up to moderate pressures, and needs to be modified. Other equations 

proposed in the literature in order to describe experimental observations on the pressure-

dependence of the viscosity have been reviewed by Málek and Rajagopal (2007). Other 

useful reviews of experimental studies on the viscosity pressure dependence and the values 

of the pressure-dependence coefficient
3
 are those of Binding et al. (1998), Goubert et al. 

(2001), and Carreras et al. (2006).  

The pressure-dependence of the viscosity becomes important in processes involving high 

pressures, such as polymer processing, fluid film lubrication, microfluidics, and in 

geophysics. Due to these applications, fluids with pressure-dependent viscosity have 

received an increasing attention recently. Relevant references are provided and discussed 

in Chapter 2. 

The pressure-dependence of the viscosity has been analyzed mathematically by Renardy 

(1986, 2003), Gazzola (1997), Malek et al. (2002a, 2002b), Hron et al. (2003), Huilgol and 

You (2006), Bulíček et al. (2007), Málek and Rajagopal (2007) and others. In these 

analyses, some other convenient expressions were used for the viscosity pressure 

dependence, such as  

  p p   (1.17) 

used by Hron et al. (2003), and 

    0 1p p     (1.18) 

employed by Renardy (2003). Suslov and Tran (2008) pointed out that the linear 

constitutive equation (1.17) does not guarantee positive definiteness of the viscosity which 

requires the pressure to remain positive. This problem is not encountered when using the 

exponential constitutive equation (1.14) or in flows where the pressure remains positive.  

 

1.3 Wall slip 

The idea of wall slip dates back to 1761 when Euler (1761) assumed that common liquids 

slip over solid surfaces exhibiting Coulomb friction. Slip at the wall occurs in many flows 

of complex fluids, such as suspensions, emulsions, polymer melts and solutions, miscellar 

solutions, and foams, leading to very interesting phenomena and instabilities. These 

                                                 
3
 The values of  the pressure-dependence coefficient β are  in the range between 7 and 45 10

-3
/MPa (Carreras 

et al., 2006). 

Stel
la 

Poy
iad

ji 



10 

important implications of slip have been reviewed by various researchers (Denn, 2001; 

Hatzikiriakos and Migler, 2004). In order to better understand and simulate slip effects, it 

is necessary to have realistic slip velocity models. In a recent review, Hatzikiriakos (2012) 

classified slip models into static (weak slip) and dynamic ones and pointed out that the 

former are not valid in transient flows, since slip relaxation effects might become 

important, leading to delayed slip and other phenomena. 

The experimental data show that the slip velocity is in general a function of the wall shear 

stress, the wall normal stress (which includes pressure), the temperature, the molecular 

weight and its distribution, and the fluid/wall interface, e.g. the interaction between the 

fluid and the solid surface and surface roughness [see Denn (2001) and references therein]. 

Neto et al. (2005) reviewed experimental studies of wall slip of Newtonian liquids and 

discussed the effects of surface roughness, wettability, and the presence of gaseous layers. 

More recently, Sochi (2011) reviewed slip at fluid-solid interfaces from different 

perspectives, such as slip factors, mechanisms, and measurement, and discussed, in 

particular, slip with non-Newtonian behavior, i.e. yield stress, viscoelasticity, and time 

dependency. In this thesis we focus on the effects of wall shear stress on the steady-state 

slip velocity. Therefore, we discuss only static slip models and refer the reader to the 

review of Hatzikiriakos (2012) for dynamic slip models.  

Let su  denote the velocity of a solid wall and u  denote the velocity of a fluid. The slip 

velocity wu  is defined as the difference between the tangential velocity of the fluid and the 

tangential velocity of the solid wall, i.e. 

 ( ) ( )w s s    u u u u u n n ,     (1.19) 

where the subscript w denotes a tangential component and n  is the unit outward vector. 

An alternative way to define the slip velocity is the following (Silliman and Scriven, 1980) 

( )w s s  u Ι u u ,     (1.20) 

where 

s  Ι I nn      (1.21) 

is the second-order surface identity tensor (i.e., the geometric tensor that projects vectors 

onto the tangent plane to the wall surface), Ι  is the conventional identity tensor, and nn 

the surface normal dyadic. In the case of a fixed wall, s u 0 . In the case of no-slip, 

,w u 0  or equivalently, su u .  
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If Τ  is the stress tensor in the fluid, then the tangential stress at the wall wτ  is 

 ( ) ( )w s       τ T n T n n n Ι T n .    (1.22) 

Following Fortin et al. (1991) we consider the vector form of a slip law relating the slip 

velocity to the wall tangential stress: 

0,

1
, ,

w w c

c
w w w c

w








  


 
      

 

u τ

τ u τ
u

    (1.23) 

where c  is the slip yield stress, i.e. the stress below which no slip occurs, and   is the 

slip coefficient. According to slip equation (1.23), the tangential stress acts parallel to the 

slip velocity, but in the opposite direction. The factor 1/  can be viewed as the friction 

coefficient (Fortin et al., 1991) or the momentum transfer coefficient (Silliman and 

Scriven, 1980). According to Lawal et al. (1993)   is in general a function of the 

invariants of the stress tensor. Huilgol (1998) notes that 1/  is not constant, but depends 

on the magnitude of the slip velocity.  Huilgol and Nguyen (2001) also assumed that Eq. 

(1.23) can be inverted so that there is a unique solution for wu  in terms of wτ .  

The one-dimensional version of Eq. (1.23) can be written as follows: 

 

0,

, .

w c

w

w c w c

u
 

    


 

 
    (1.24) 

When 0c  , the classical slip law is recovered: 

w wu  .     (1.25) 

The above equation was proposed by Navier (1827). The slip coefficient   varies in 

general with temperature, normal stress and pressure, molecular parameters, and the 

characteristics of the fluid/wall interface. The inverse of α can be viewed as the friction 

dissipation coefficient. Obviously, for 0  , we have no slip, while for    we get 

perfect slip. The slip coefficient is also defined by 

 
b




 , (1.26) 

where η is the viscosity and b is the extrapolation length, i.e. the characteristic length equal 

to the distance that the velocity profile at the wall must be extrapolated to reach zero. In 

another classic paper, Stefan (1874) also employed a linear slip equation in order to 
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describe his experimental data on a Newtonian glycerol solution. The linear slip equation 

(1.25) has been used widely for many other fluid systems, including very concentrated 

suspensions (Yilmazer and Kalyon, 1989; Kalyon et al., 1993) and pastes (Adams et al., 

1997). 

 

Figure 1.1: Slip velocity and extrapolation length. 

 

More complex, non-linear slip equations have also been proposed. Pearson and Petrie 

(1965) postulated the following relationship 

 ( )w w wu f   . (1.27) 

A power-law expression, 

 m

w wu  , (1.28) 

where m is the power-law exponent, has been widely employed by several investigators, 

e.g. by Cohen and Metzner (1985), who studied experimentally the occurrence of slip in 

aqueous and organic polymer solutions, and by Jiang et al. (1986) to describe the slip 

exhibited by gels used in hydraulic fracturing.  

Experimental data on several fluid systems, such as linear polymers (mainly polyethylenes) 

(Ramamurthy, 1986; Kalika and Denn, 1987; Hatzikiriakos and Dealy, 1991), highly 

entangled polymers (Piau and El Kissi, 1994), pastes (Adams et al., 1997), and colloidal 

suspensions (Ballesta, 2008; 2011), indicate that slip occurs only when the stress exceeds a 

critical value τc, which is similar to a Coulomb friction term and can be viewed as a “wall 

shear”, or “interfacial”, or, simply, “slip” yield stress. Roquet and Saramito (2008) also 

used the term “yield-force” for this critical value. Hatzikiriakos and Dealy (1991) pointed 

out that slip model (1.29) fails to describe the slip velocity in the neighborhood of τc, which 

FLUID

WALL

y

x

b

wu
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is critical in understanding polymer slip phenomena. They thus used the following 

Bingham-type equation: 

 
0,

, .

w c

w m

w w c

u
 

  


 


 (1.29) 

The following general phenomenological slip equation  

 
 

0,

,

w c

mw

w c w c

u
 

    


 

 

 (1.30) 

has been used by various researchers in the analysis of squeeze flow of generalized 

Newtonian fluids with apparent wall slip (Yilmazer and Kalyon, 1989; Ji and Gotsis, 1992; 

Estellé and Lanos, 2007). A discussion on the validity of Eq. (1.30) as well as values of α 

and m for certain systems are provided by Yilmazer and Kalyon (1989). The non-

monotonic slip equations proposed by Piau and El Kissi (1994) for highly entangled 

polymers and by Leonov (1990) for elastomers also include a critical stress threshold 

below which no slip occurs. These slip equations exhibit one or two stress minima. 

 

1.4 Perturbation methods in fluid mechanics 

Solving fluid mechanics problems involves the solution of a nonlinear system of partial 

differential equations. Due to the presence of nonlinearity for most flow problems, it is rare 

to find exact analytical solutions. Therefore, one can seek approximate analytical solutions 

to the equations of fluid flow at hand. In order to seek an approximation, one or more 

parameters of variables in the problem should be either small or large. These perturbation 

quantities, most often than not, are dimensionless parameters of the problem. The 

approximate solution becomes more accurate as the small perturbation quantity tends to 

zero (or the large perturbation quantity tends to infinity). It is therefore called an 

asymptotic solution.  

For the sake of simplicity, let us assume we have only one perturbation parameter, denoted 

by  . From a physical point of view   can only take positive real values. Also, it is never 

uniquely defined; sometimes choosing the perturbation parameter ingenuously can greatly 

simplify the problem. As ε tends to zero, the flow approaches a limit. We can call this limit 

the basic solution. The basic solution can also be called the zero-order solution and 

henceforth the first perturbation term is called the first-order solution, and so on. The basic 
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solution and the subsequent perturbation terms added to it form an asymptotic expansion 

(Holmes, 1995). 

Let us now define an asymptotic expansion precisely: Firstly, we need to define an 

asymptotic sequence. A sequence  nf  is called asymptotic sequence at 0 if for every 

integer n  

     1 , as 0n nf o f    
         (1.31) 

where the symbol o (“little oh”) means that  

  
 

 
1

0
lim 0

n

n

f

f








 .    (1.32) 

Now, let  nf  be an asymptotic sequence as 0 . We say that the function f  is 

expanded in an asymptotic series 

    
0

~ , as 0n n

n

f a f  




                                  (1.33) 

where na  are constants, if  

         
0

0 , 0
N

N n n N

n

N R f a f o f    


      . (1.34) 

The series  nf  is called the asymptotic expansion of the function f  with respect to the 

asymptotic sequence nf .  NR   is called the remainder term of the asymptotic series. The 

asymptotic expansion of a function with respect to an asymptotic sequence is unique and 

may not converge. In a physical problem, the coefficients in an asymptotic expansion 

depend on space and/or time other than ε. 

The usefulness of an asymptotic expansion arises from the fact that the error is, by 

definition, of the order of the first neglected term, and therefore tends rapidly to zero as ε is 

reduced. Retaining only a few terms, when ε is reasonably small, may provide a highly-

accurate approximation. If the asymptotic expansion is uniformly valid (in all regions of 

the flow) we have a regular perturbation problem (in contrast to a singular perturbation 

problem, where the asymptotic expansion fails to give a good approximation in certain 

regions and another form of the solution must be sought). In this thesis, in Chapters 3 and 

4, we solve regular perturbation problems. 
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Note that the above asymptotic expansion refers to a problem with a single perturbation 

parameter. However, it is often the case that two (or more) perturbation quantities 

simultaneously approach zero (or other critical value-such as infinity). In those cases we 

speak of a double (or multiple) asymptotic expansion. Indeed, in Chapter 4, for the 

problem of weakly compressible flow with viscosity that is weakly pressure-dependent, we 

identify two perturbation quantities, the isothermal compressibility and viscosity-pressure 

coefficient, and we derive approximate solutions for the flow equations as double 

asymptotic expansions. 

 

1.5 Objectives and chapter content description  

The objective of this thesis is to derive analytical solutions for different cases of laminar 

Poiseuille flows of weakly compressible Newtonian fluids with pressure-dependent 

viscosity with or without slip at the wall. More specifically, we consider the plane, 

axisymmetric, and annular Poiseuille flows (illustrated in Fig. 1.2).  

 

Figure 1.2: Geometry and boundary conditions of (a) plane; (b) axisymmetric; and (c) 

annular Poiseuille flows. 
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In Chapter 2, we derive analytical solutions for the plane, axisymmetric and annular 

steady, laminar Poiseuille flows of a Newtonian fluid assuming that the flow is 

incompressible, the velocity is one-dimensional, the viscosity increases linearly with 

pressure, and no-slip occurs along the wall. The solution for the velocity and the pressure 

is given in terms of a constant A, which is calculated numerically. The effects of the 

viscosity pressure-dependence on the pressure and the velocity are discussed. (The solution 

corresponding to Navier slip along the wall is provided in Appendix A.) 

In Chapter 3, we consider both the plane, steady, laminar Poiseuille flows of a weakly 

compressible Newtonian fluid assuming that Navier slip occurs along the wall and that the 

density varies linearly with pressure. A perturbation analysis is performed in terms of the 

primary flow variables using the dimensionless isothermal compressibility as the 

perturbation parameter. Solutions up to the second-order are derived, and the combined 

effects of slip, compressibility, and inertia on the solutions are discussed. (The solution for 

the axisymmetric flow is provided in Appendix B.) 

In Chapter 4, we consider the plane, steady, laminar, Poiseuille flow of a weakly 

compressible Newtonian fluid with a viscosity that is weakly dependent on the pressure, 

assuming that both the density and the viscosity vary linearly with pressure. A perturbation 

analysis is performed on all primary variables using the dimensionless isothermal 

compressibility and the dimensionless viscosity-pressure coefficient as the perturbation 

parameters. Perturbation solutions up to the second order in terms of the two perturbation 

parameters are derived and the combined effects of the compressibility and the viscosity 

are discussed. (The solution for the axisymmetric flow is provided in Appendix C.) 

In Chapter 5, the results of this thesis are summarised and suggestions for future work are 

provided.  
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Chapter 2 

Poiseuille flows with pressure-

dependent viscosity 

 

The pressure-dependence of the viscosity becomes important in flows where high 

pressures are encountered. Applications include many polymer processing applications, 

microfluidics, fluid film lubrication, as well as simulations of geophysical flows. Under the 

assumption of unidirectional flow, we derive analytical solutions for steady, laminar plane, 

round, and annular Poiseuille flow of a Newtonian liquid, the viscosity of which increases 

linearly with pressure. These flows may serve as prototypes in applications involving tubes 

with small radius-to-length ratios. It is demonstrated that, the velocity tends from a 

parabolic to a triangular profile as the viscosity coefficient is increased. The pressure 

gradient near the exit is the same as that of the classical fully-developed flow. This 

increases exponentially upstream and thus the pressure required to drive the flow increases 

dramatically
4
. 

 

2.1. Introduction 

The viscosity of fluids, such as polymer melts and lubricants, depends strongly on 

temperature and to a less extent on pressure (Rajagopal, 2009). In such fluids, the 

dependence of the viscosity on pressure may be several orders of magnitude stronger than 

that of density (Rajagopal, 2009, Renardy, 2003). Denn (2008) emphasized that at a 

pressure of about 5 MPa, which can be reached in extrusion and in injection molding, the 

pressure dependence of the viscosity is expected to become important while the flow is still 

incompressible. Therefore, it is reasonable to study isothermal, incompressible flow of 

fluids with a pressure-dependent viscosity. The idea of a fluid with pressure-dependent 

viscosity was introduced by Stokes (1845). Barus (1893) proposed an exponential 

isothermal equation of state for the viscosity of the form 

 0( ) pp e  , (2.1) 

                                                 
4
 The material of this chapter appears in Kalogirou et al. (2011).  
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where η is the viscosity, p is the pressure, η0 is the viscosity at atmospheric pressure, and λ 

is the pressure-viscosity coefficient (which is temperature dependent). In polymer melts, λ 

is typically 1-5 10
-8

 Pa
-1

 (Denn, 2008). For lubricants, λ varies from 10 to 70 MPa
-1

 

(Kottke, 2004). Venner and Lubrecht (2000) reported that for mineral oils λ is generally in 

the range between 10
-8

 and 2 × 10
-8

 Pa
-1

. Carreras et al. (2006) compiled experimental 

values of the shear pressure coefficient λ. Εven though Eq. (2.1) is extensively used, it is 

valid as a reasonable approximation only at moderate pressures. A compilation of other 

equations proposed for the pressure dependence of the viscosity and useful references on 

the subject has been provided by Málek and Rajagopal (2007). 

There are numerous experimental studies concerning the determination of the pressure 

dependence of the viscosity of common polymer grades, such as polyethylenes (LDPE, 

LLDPE, HDPE), polypropylene, polystyrene, etc. Comprehensive reviews are provided by 

Binding et al. (1998) and Goubert et al. (2001) who compared measurement techniques in 

the literature for evaluating the pressure dependence of viscosity.  

As already mentioned, high pressures sufficient to cause significant change in the viscosity 

appear in many polymer processing operations. Driving pressures of 50 and 100 MPa are 

routinely required in extrusion and injection molding (Tadmor et al., 1999). The strong 

effect of pressure and its potential importance in plastics processing led to the development 

of high-pressure rheometers based on pressure driven or drag flow (Koran, 1999). 

Cardinaels et al. (2007) discussed different methods to obtain pressure coefficients for 

different polymers, such as PMMA and LDPE, from high-pressure capillary rheometer 

data. More recently, Park et al. (2008) also compared different experimental methods for 

the determination of the pressure coefficient of a styrenic polymer. 

The pressure-dependence of the viscosity becomes important in other applications, such as 

fluid film lubrication, microfluidics, and geophysics. In fluid film lubrication studies it is 

essential to include the variation of the viscosity with pressure (Hamrock et al., 2004). For 

technological applications in elastohydrodynamic lubrication and in thrust bearing or 

journal bearing applications, where the lubricant is forced to flow through a very narrow 

region which leads to very high pressures, the reader is referred to the work of Gwynllyw 

et al. (1996).  In the design of Micro Electro-Mechanical Systems (MEMS), the pressure-

dependence of the viscosity needs to be taken into account. Experimental data for liquid 

flows in microtubes driven by high pressures (1-30 MPa) show that the pressure gradient is 

not constant, an effect attributed to the pressure-dependence of the viscosity (Cui et al., 

2004, Silber-Li et al., 2006). In geophysical flows, the viscosity changes with the depth of 
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the fluid. Convection in planetary mantles is most likely dominated by the strong 

variability of the mantle viscosity depending on temperature and pressure (Binding et al., 

1998). In her mantle flow simulations, Georgen (2008) allowed the viscosity to vary over 

three orders of magnitude from 10
19

 to 10
22

 Pa s. 

Mathematical issues arising in the case of incompressible Newtonian or non-Newtonian 

flows with a pressure-dependent viscosity have been addressed by Renardy (1986), 

Gazzola (1997), and Malek et al. (2002a, 2002b). The existence of flows of fluids with 

pressure-dependent viscosity and the associated assumptions have been discussed by 

Bulíček et al. (2007). The properties of such solutions are also discussed by Málek and 

Rajagopal (2007). 

In addition to Eq. (2.1), Hron et al. (2001) also assumed the following expression for the 

viscosity pressure dependence:  

  p p  . (2.2) 

They showed that unidirectional flows are not possible between parallel plates in the case 

of the former model, since a secondary flow is necessary to that end. However, 

unidirectional flows are possible in the latter case.  

Renardy (2003) considered parallel shear flows of an incompressible Newtonian fluid 

allowing a general pressure dependence for the viscosity and proved that a sufficient 

condition for the existence of parallel pressure-driven flow in a pipe, regardless of its 

cross-section, is the linear dependence of the viscosity on the pressure:  

    0 1p p    . (2.3) 

This condition is not necessary; Denn (1981) showed that the quadratic velocity profile in a 

circular pipe remains a solution if the viscosity is an exponential function of the pressure. 

As indicated by Renardy (2003) and also shown in the present work, the velocity profile is 

not parabolic in the case of linear dependence of the viscosity; it may be almost parabolic 

when this dependence is weak. According to Suslov and Tran (2008), the major concern of 

the linear constitutive equation (2.3) is that it does not guarantee positive definiteness of 

the viscosity which requires the pressure to remain positive. This problem is not 

encountered when using the exponential constitutive equation (2.1) or in flows where the 

pressure remains positive, such as Poiseuille flows.  

It seems that Eq. (2.2) has been the most popular one in the various theoretical analyses 

presented in the literature. Analytical solutions have been reported by Renardy (2003) and 
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Vasudevaiah and Rajagopal (2005) for the round Poiseuille flow of a Newtonian fluid and 

by Hron et al. (2001) and Huilgol and You (2006) for the plane Poiseuille flow of a 

generalized Newtonian fluid. The reason for avoiding Eq. (2.1) is obvious, since this 

equation rules out the possibility of having analytical solutions, but Eq. (2.3) should be 

more preferable than Eq. (2.2), since the latter predicts a vanishing viscosity at zero 

pressure. Another advantage of Eq. (2.3) over Eq. (2.2) is that it involves a reference 

viscosity constant. However, as shown below, both equations result in the same solution 

for the velocity in the case of unidirectional Poiseuille flow. What is different is the 

pressure distribution.  

In the present work, we derive and discuss analytical solutions of axisymmetric, annular, 

and plane Poiseuille flows of Newtonian fluids with pressure-dependent viscosity obeying 

Eq. (2.3).  

The rest of the chapter is organized as follows: in Section 2.2 the governing equations of 

the flow are presented. In Section 2.3 the derivation of the analytical solution is described 

in the case of the round Poiseuille flow. The solutions for the other two Poiseuille flows of 

interest are also provided in Sections 2.4 and 2.5. In Section 2.6, the theoretical results and 

the effects of the viscosity pressure-dependence are discussed and finally, in Section 2.7 

we provide the conclusions. 

 

2.2 Governing equations  

For an incompressible Newtonian fluid, the viscosity of which is a function of pressure, the 

viscous stress tensor is given by 

  2 pτ D , (2.4) 

where 

  
1

2

T    
 

D u u  (2.5) 

is the rate-of-deformation tensor and u is the velocity vector. It can be shown in this case 

that the Navier-Stokes equation in the absence of gravity and under the assumption of a 

steady flow becomes:  

    2 2p p p p         u u u D . (2.6) 

It should also be noted that the continuity equation for incompressible flow is  
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 0 u . (2.7) 

In this Chapter, we consider incompressible Poiseuille flows of Newtonian fluids with 

pressure-dependent viscosity obeying Eq. (2.3). 

 

2.3 Axisymmetric Poiseuille flow 

We consider the nondimensionalized governing equations of axisymmetric Poiseuille flow 

in cylindrical coordinates with the origin located at the exit of the tube. The radial 

coordinate, r, is scaled by the radius R and the axial coordinate, z, by the length L of the 

tube and the viscosity η by the reference viscosity 0 . Moreover the axial velocity zu  is 

scaled by the mean velocity U at the exit, defined by 

 
M

U
HW

 , 

where M is the mass flow rate and W is  the unit length in the z-direction and finally the 

pressure p by 2

08 /LU R  (chosen so that the pressure at the inlet plane is equal to 1). 

Hence the dimensionless form of the viscosity equation is 

 * 1 *p   , (2.8) 

where stars denote dimensionless quantities and  

 0

2

8 LU

R


   (2.9) 

is the dimensionless isothermal compressibility number. For notational convenience, stars 

will be dropped hereafter.  

Under the assumption that the radial velocity component is zero, the continuity equation 

dictates that  z zu u r ; hence, only the pressure is a function of both r and z,  ,p p r z . 

As pointed out by Huilgol and You (2006), it is clear that as long as / p   is nonzero, a 

pressure gradient in the flow direction induces one in the direction of the velocity gradient, 

unless inertia is present. The z- and r-components of the momentum equation, defined over 

the domain    0,1 1,0  , are simplified as follows:  

  
1

8 1 0z zdu dup d p
p r

z r dr dr r dr
 

  
     

  
 (2.10) 
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and 

 28 0zdup p

r z dr


 
  

 
, (2.11) 

where 

 
R

L
   (2.12) 

is the tube aspect ratio. By eliminating p / r   from Eqs. (2.10) and (2.11) and separating 

variables we find that  

 

2

2

22 2

1

8

1
1

64

z z

z

du d u

pr dr dr A
p zdu

dr

 




  
  

  
 

, (2.13) 

where A is in general a function of r, taken here as a constant to be determined. We have 

thus, two differential equations to be solved for zu  and p. By solving the first equation of 

Eq. (2.13) for zu  and applying the symmetry boundary condition ( / 0zu r   ) at the axis 

of symmetry and the no-slip condition ( 0zu  ) at 1r  , one finds that  

 
0

2 2

0

64 8
( ) ln

8

z

A
I

u r
AA

I r

 

  

  
  
  
  
    

, (2.14) 

where I0 is the zero-order modified Bessel function of the first kind (Watson, 1996). The 

above expression has been previously derived by Renardy (2003) and Vasudevaiah and 

Rajagopal (2005) who employed Eq. (2.2) instead of Eq. (2.3). By integrating the other 

differential equation of Eq. (2.13), assuming that
 

 0 0 0p ,  , and taking into account the 

velocity profile, we find that  

 
/8

0

1
( , ) 1

8

A zA r
p r z I e 



  
   

  
. (2.15) 

The constant A is determined by demanding that the volumetric flow rate is 2π. This leads 

to the following equation 

 
2 2

1

0 0
0

2 ln ln 0
8 8 64

A r A A
I rdr I

           
        

      
 , (2.16) 
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which is easily solved for A by means of Newton’s method combined with numerical 

integration. 

If instead of Eq. (2.3), the following equation is used, as was done by Hron et al. (2001), 

  p p   (2.17) 

the above procedure leads to Eq. (2.14) for the velocity and to the expression 

 /8

0

1
( , )

8

A zA r
p r z I e 



 
  

 
 (2.18) 

for the pressure. In both cases, the pressure increases exponentially upstream, which means 

that an enormous pressure drop may be achieved with a tube of finite length. 

 

2.4 Annular Poiseuille flow 

Let us now consider the Poiseuille flow in an annulus of radii κR and R, where 0 1  . 

Using the same scaling and assumptions as in the axisymmetric case, we end up with the 

same separated differential equations to be solved for  zu r  and  p r,z . An additional 

dimensionless number is introduced, i.e. the radii ratio κ. With the assumption of no slip 

along the two walls, the following expression is obtained for the slip velocity 

 
   
   

0 0 0 0 0 0

2 2

0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )64
( ) ln

( ) ( ) ( ) ( ) ( ) ( )
z

K B K B I B I B I B K B
u r

A K B K B I Br I B I B K Br

 

   

    
  

    
, (2.19) 

where 

 
8

A
B


  (2.20) 

and K0 is the first order modified Bessel function of the second kind. Assuming that

 0 0p k,  , the pressure is found to be given by  

 
   
   

0 0 0 0 0 0 /8

0 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )1
( , ) ln 1

( ) ( ) ( ) ( ) ( ) ( )

Az
K B K B I Br I B I B K Br

p r z e
K B K B I B I B I B K B

 

  

    
  

    
. (2.21) 

Assuming that the (dimensionless) volumetric flow is equal to 2π, we find that the constant 

A is the root of the following equation: 
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1

0 0 0 0 0 0

2 2
2

0 0 0 0 0 0

2 ln ( ) ( ) ( ) ( ) ( ) ( )

1 ln ( ) ( ) ( ) ( ) ( ) ( ) 0.
64

K B K B I Br I B I B K Br rdr

A
K B K B I B I B I B K B


 

 
  

    

        


 (2.22) 

 

2.5 Plane Poiseuille flow 

We consider the pressure-driven flow in a channel of half-width H and length L and work 

in Cartesian coordinates with the origin at the intersection of the midplane and the exit 

plane of the channel and the x-axis in the flow direction. We nondimensionalize the 

governing equations scaling x by L, y by H, xu  by the mean velocity U, and the pressure 

by 2

03 /LU H . The resulting dimensionless numbers are  

 0

2

3
and

LUH

L H


   . (2.23) 

One finds that the velocity and pressure are given by  

 
2 2

cosh
9 3

( ) ln

cosh
3

x

A

u y
AA

y

 

  

  
  
  
  
    

 (2.24) 

and 

 
/31

( , ) cosh 1
3

A xA y
p x y e 



  
   

  
. (2.25) 

The constant A is determined by demanding that the volumetric flow rate is equal to unity. 

It turns out that A is the root of  

 
2 2

1

0
ln cosh ln cosh 0

3 3 9

A y A A
dy

           
        

      
 . (2.26) 

The solution (2.24) for the velocity has also been derived by Hron et al. (2001) and Huilgol 

and You (2006), who employed Eq. (2.2) for the pressure-dependence of the viscosity. 

 

2.6 Results and discussion 

In this section we discuss only results for the axisymmetric and annular Poiseuille flows 

(the results for the plane flow are similar to their axisymmetric counterparts). In order to 

construct solutions for the velocity and pressure for the axisymmetric Poiseuille flow, the 
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constant A must be determined from Eq. (2.16). It turns out that the latter equation has a 

unique nonzero root only when the parameter  

 08 U

R


   (2.27) 

is below the critical value  

   8 / 3
crit

  . (2.28) 

As illustrated in Fig. 2.1, at low values of αε, A is insensitive to αε; this is not the case at 

higher values and, as αε approaches the critical value, A grows rapidly to infinity. 

 

 

Figure 2.1: The constant A as a function of the parameter αε in axisymmetric Poiseuille 

flow. 

 

In Fig. 2.2, the calculated velocity profiles for various values of the parameter αε are 

shown. For 0.1   the velocity has the parabolic profile for incompressible flow and 

then gradually tends to a linear profile:  

  , 3 1z critu r  . (2.29) 

Let us point out that  
crit

  can be calculated analytically as the value zeroing the 

denominator of the left-hand side of Eq. (2.13).  

The velocity profiles of Fig. 2.2 suggest that in the two-dimensional flow the axial velocity 

is expected to change from a parabolic to a more triangular profile as we move upstream. 
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The velocity profiles of Fig. 2.2 are essentially the same as those obtained by Renardy 

(2003) and Vasudevaiah and Rajagopal (2005) for a Newtonian fluid obeying Eq. (2.2) 

instead. 

 

 

 

 

 

Figure 2.2: Velocity profiles in axisymmetric Poiseuille flow for various values of the 

parameter αε.  

 

 

The pressure distributions obtained with 0.01   and different values of αε along the wall 

and the axis of symmetry are shown in Fig. 2.3. We observe that the pressure distribution 

remains linear only near the exit and that as the parameter αε increases, the pressure 

upstream as well as the pressure gradient increase exponentially with the length of the 

tube. Clearly, the pressure required to drive the flow increases rapidly with the length of 

the tube.  
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(α) 

 

(b) 

Figure 2.3: Pressure distribution along (a) the axis of symmetry and (b) the wall for 

α=0.01 and various values of αε; axisymmetric Poiseuille flow. 
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Assuming that this is given by  Δ 0, 1P p   and that 8A  is a reasonable 

approximation for sufficiently small values of αε, e.g. for very long tubes, one gets 

  
1

1P e


   . (2.30) 

Now, if it is also assumed that ε is small, Eq. (2.30) gives 

  
2

31
2 6

P O
 

     . (2.31) 

The above expression can be viewed as a correction factor for the Hagen-Poiseuille 

formula and can be used in measuring the viscosity from viscometric data obtained using 

capillaries of different length.  

In Fig. 2.4, we show the pressure distributions along the inlet and outlet planes of the tube. 

We observe that the pressure starts deviating from the linear profile at sufficiently high 

values of αε. At the inlet plane the pressure seems to be insensitive to r, i.e. the relative 

deviations are negligible. This is not the case at the outlet plane where larger deviations are 

observed when moving from the axis of symmetry to the wall. However, the absolute value 

of pressure is essentially zero. These results are also illustrated in Fig. 2.5 where the 

pressure contours for a short  0.1   and a long  0.01   tube are plotted. For small 

values of α, the contours appear to be vertical; the bending of the contours is more clearly 

shown for bigger values of α, i.e. in shorter tubes. 

In the case of annular Poiseuille flow, we have chosen to show results for 0.1  . In this 

case, the parameter A is a unique nonzero root of Eq. (2.26) when αε is below the critical 

value 1.782, as illustrated in Fig. 2.6. It is easily shown that in general 

     
2

2 1 1
crit

      (2.32) 

and 

 

2

,

2

4( )
, ( 1) / 2

(1 )(1 )

4(1 )
, ( 1) / 2 1.

(1 )(1 )

z crit

r
r

u
r

r


 

 


 


    

 
   

  

 (2.33) 

In Fig. 2.7, the velocity profiles for various values of the parameter αε are shown. We 

notice that for 0.1   the velocity has the parabolic profile for incompressible flow 

which steadily tends to the triangular profile described by Eq. (2.30) as αε approaches the 

critical value.   
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(a) 

 

(b) 

Figure 2.4: Pressure distribution along (a) the inlet and (b) the outlet planes for α=0.01 

and various values of αε; axisymmetric Poiseuille flow. 
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(a) 

 

(b) 

Figure 2.5: Pressure contours for various values of αε when (a) α=0.01 and (b) α=0.1; 

axisymmetric Poiseuille flow. 
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Figure 2.6: The constant A as a function of αε in annular Poiseuille flow for κ = 0.1. 

 

As in round Poiseuille flow, the pressure gradient is roughly constant only for low values 

of αε. As the latter parameter increases, the pressure increases faster with the distance from 

the exit plane. Figure 2.8 shows the pressure contours for a short  0.1  and a long 

 0.01   annulus and various values of αε. The vertical contours for small values of α 

begin to bend for bigger values of α, i.e. in shorter tubes. 

 

 

Figure 2.7: Velocity profiles in annular Poiseuille flow for κ = 0.1 and various values of 

the parameter αε.   
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(a) 

 

(b) 

Figure 2.8: Pressure contours for various values of αε when (a) α=0.01 and (b) α=0.1; 

annular Poiseuille flow for κ=0.1. 
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2.7 Conclusions 

Analytical solutions for the steady axisymmetric, annular, and plane Poiseuille flows of an 

incompressible Newtonian fluid with pressure-dependent viscosity, obeying Eq. (2.3), have 

been derived, under the assumption of unidirectional flow. These solutions show that as the 

pressure-dependence of the viscosity becomes stronger, the velocity profile, which is 

independent of the axial coordinate, tends from a parabolic-type to a triangular profile and 

the pressure, which is a function of both the axial and the radial coordinate, increases 

exponentially upstream. The latter result implies that the pressure required to drive the 

flow increases rapidly with the length of the tube. 

In addition to the solution of the incompressible flow of a Newtonian fluid with pressure-

dependent viscosity, the solution under the combined effect of slip at the wall with 

viscosity pressure dependence is presented in Appendix A, for the case of the plane flow.  
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Chapter 3 

Weakly compressible Poiseuille flows 

with Navier slip 

 

We consider both the plane and axisymmetric steady, laminar, Poiseuille flows of a weakly 

compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s 

slip equation and that the density obeys a linear equation of state. A perturbation analysis is 

performed in terms of the primary flow variables using the dimensionless isothermal 

compressibility as the perturbation parameter. Solutions up to the second order are derived 

and compared with available analytical results. The combined effects of slip, 

compressibility, and inertia are discussed with emphasis on the required pressure drop and 

the average Darcy friction factor
5
. 

 

3.1 Introduction 

In a recent paper (Taliadorou et al., 2009), second-order perturbation solutions of both the 

planar and axisymmetric Poiseuille flows of weakly compressible Newtonian fluids have 

been derived using a methodology in which the primary flow variables, i.e. the velocity 

components and pressure, are perturbed, a linear equation of state is employed, and 

compressibility serves as the perturbation parameter. The same solutions were derived by 

Venerus (2006) and Venerus and Bugajsky (2010) respectively, for the axisymmetric and 

planar flow problems using a streamfunction/vorticity formulation. Housiadas and 

Georgiou (2011) have recently extended the primary-variable methodology to derive 

perturbation solutions of the planar Poiseuille flow of a weakly compressible Oldroyd-B 

fluid. The aforementioned references provide useful reviews of previous perturbation and 

other approximate solutions of the flow problems under consideration. 

The objective of the present chapter is to extend previous work for a Newtonian liquid 

allowing linear slip at the wall in order to study the combined effects of weak 

compressibility, slip and inertia. The importance of slip in a variety of macroscopic flows 

                                                 
5
 The material of this chapter appears in Poyiadji et al. (2012). 
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and processes has been emphasized in numerous studies in the past few decades (Denn, 

2001; Hatzikiriakos and Migler, 2005 and references therein). Strong interest has also been 

recently generated due to the effects of slip in microfluidic applications (Stone et al., 

2004). 

In flows of liquids, such as polymer melts and waxy crude oils, compressibility may 

become important when the liquids are processed at high pressures, which is the case with 

polymer extrusion (Hatzikiriakos and Dealy, 1992; Piau and El Kissi, 1994) or with flow  

through long tubes (Vinay et al., 2006). The stick-slip polymer extrusion instability, 

referring to the sustained pressure and flow rate oscillations observed under constant 

throughput, is attributed to the combination of compressibility with nonmonotonic slip 

laws relating the wall shear stress to the slip velocity (Hatzikiriakos and Dealy, 1992), as 

confirmed by one-dimensional phenomenological models (Dubbeldam and Molenaar, 

2003) as well numerical simulations (Taliadorou et al., 2007). Tang and Kalyon (2008a; 

2008b) also developed a mathematical model describing the time-dependent pressure-

driven flow of compressible polymeric liquids subject to pressure-dependent slip and 

reported that undamped periodic pressure oscillations in pressure and mean velocity are 

observed when the boundary condition changes from weak to strong slip. Taliadorou et al. 

(2008) reported extrusion simulations showing that severe compressibility combined with 

inertia may lead to stable steady-state free surface oscillations, similar to those observed 

experimentally with liquid foams. Mitsoulis and Hatzikiriakos (2009) carried out steady 

flow simulations of polytetrafluoroethylene (PTFE) paste extrusion under severe slip 

taking into account the significant compressibility of these pastes. 

The above material flows are weakly compressible, which means that the Mach number, 

Ma, is low, i.e. Ma<<1. The latter number is defined as the ratio of the characteristic speed 

of the flow to the speed of sound in the fluid. Georgiou and Crochet (1994) pointed out that 

taking into account the weak compressibility of the fluid may not have an effect on the 

steady flow solution but changes dramatically the flow dynamics. Similarly, Felderhof and 

Ooms (2011) studied the flow of a viscous compressible fluid in a circular tube generated 

by an impulsive point source and reported that compressibility has a significant effect on 

the flow dynamics in confined geometries.  

The combination of slip with compressibility is also very important in rarefied gas flows 

through microchannels and need to be taken into account in the micro-electro-mechanical 

systems (MEMS) technology (Beskok and Karniadakis, 1999; Zhang et al., 2009). There 

are of course some important differences from the liquid flow problem under 
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consideration: (a) the continuum assumption may not be valid and slip velocity is 

expressed in terms of the Knudsen number Kn (the ratio of the mean free path of the gas to 

the characteristic dimension of the tube); (b) the ideal gas law is used instead of the linear 

equation of state; and c) the flow is non-isothermal. Arkilic et al. (1997) and, more 

recently, Qin et al. (2007) derived perturbation approximations for compressible gas flow 

in microchannels with slip at the wall using the aspect ratio as the perturbation parameter. 

According to conventional theory, continuum based models for channels apply as long as 

the Knudsen number is lower than 0.01 (Kohl et al., 2005). On the other hand, according to 

Venerus and Bugajsky (2010), effects of slip in microchannels can be neglected for 

Knudsen numbers less than 0.001 Therefore, the present analysis concerns not only flows 

of compressible liquids with slip at the wall but also gas flows for 0.001<Kn<0.01. 

The chapter is organized as follows: In Section 3.2, the solution of the steady, 

compressible plane Poiseuille flow with slip at the wall is presented; the results for the 

axisymmetric flow are provided in Appendix B. Both the state and slip equations are 

assumed to be linear. In subsection 3.2.1 the governing equations and boundary conditions 

for the plane flow are presented. In subsection 3.2.2, the perturbation method in terms of 

the primary variables with the isothermal compressibility as the perturbation parameter is 

outlined and a solution is derived up to the second order. Explicit analytical solutions for 

the two non-zero velocity components, the pressure, and the density are obtained. In 

subsection 3.2.3 the volumetric flow rate and the stream function are given. In Section 3.3, 

the results are analyzed and discussed with the emphasis given on the combined effects of 

slip and compressibility on the pressure drop and the Darcy friction factor and finally in 

Section 3.4 the conclusions are outlined.  

 

3.2 Plane Poiseuille flow 

3.2.1 Governing equations 

We consider the steady, laminar plane Poiseuille flow of a Newtonian fluid in a slit of 

length L and width 2H in Cartesian coordinates  ,x y , as shown in Fig. 3.1.  

 

 

 

Figure 3.1: Geometry and symbols for plane Poiseuille flow with slip along the wall. 
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It is assumed that slip occurs along the wall according to a linear slip equation, 

 w wu   (3.1) 

where w  is the wall shear stress,   is the constant slip coefficient, and wu  is the slip 

velocity. The limiting case   corresponds to the no-slip boundary condition ( 0wu  ), 

whereas 0   corresponds to the theoretical case of full slip in which the velocity profile 

is plug. 

Let us consider first the incompressible, one-dimensional flow under constant pressure 

gradient, ( / )p x  . The velocity  xu y  is given by 

  2 21
( )

2
x

H p p
u y H y

x x 

    
       

    
, (3.2) 

where η is the constant viscosity. Obviously, the slip velocity is given by 

 ( )w x

H p
u u H

x

 
   

 
. (3.3) 

If the fluid is compressible, the flow becomes bidirectional and the two velocity 

components, ux and uy, are in general functions of both x and y. The isothermal 

compressibility is a measure of the ability of the material to change its volume under 

applied pressure at constant temperature. This is defined by 

 

0 0
0 ,

1

p T

V

V p


 
   

 
, (3.4) 

where V is the specific volume, ρ0 and V0 are respectively the density and the specific 

volume at the reference pressure, p0, and temperature, T0. Assuming that κ is constant, the 

above equation can be integrated yielding an exponential equation of state. In the present 

work however, we employ a linear equation of state, 

  0 01 ( )p p      (3.5) 

which approximates well the exponential equation for small values of κ and for small 

pressures. The value of κ is of the order of 0.001 MPa
-1

 for molten polymers (Hatzikiriakos 

and Dealy, 1994) and increases by an order of magnitude (0.0178-0.0247 0.001 MPa
-1

) in 

the case of PTFE pastes (Mitsoulis and Hatzikiriakos, 2009).  Mitsoulis and Hatzikiriakos 

(2009) suggest that for weakly compressible flows, the values of κ range between 0 

(incompressible fluids) and 0.02 MPa
-1

 (slightly to moderately compressible materials). 

Stel
la 

Poy
iad

ji 



38 

The linear equation of state can also be viewed as a special case of the well-established 

Tait equation and its variants for liquids and polymer melts (Guailly et al., 2011).  

In order to nondimensionalize the governing equations and the boundary conditions of the 

flow, we scale x by the length of the channel L, y by the channel half-width H, the density 

ρ by the reference density ρ0, the horizontal velocity, xu , by the mean velocity at the 

channel exit U, 

 
0

M
U

HW
 , 

where M is the mass flow rate and W is the unit length in the z-direction, and the 

transversal velocity, yu , by UH/L. The Mach number is defined by 

 
U

Ma


 , (3.6) 

where 

 

1/2 1/2

0T

p 
 

  

    
     

    

 (3.7) 

is the speed of sound in the fluid, γ being the heat capacity ratio or adiabatic index  

( /p vc c  ).With the above scalings, the dimensionless slip equation becomes  

 w wBu  , (3.8) 

where all variables are now dimensionless and B is the slip number defined by 

 
H

B



 . (3.9) 

The dimensionless velocity profile in the case of incompressible flow becomes 

  23 3
( ) 1

3 2( 3)
x

B
u y y

B B
  

 
 (3.10) 

or 

  
* *

2( ) 1
2

x

B B
u y y

B
   , (3.11) 

where 

 
* 3

3

B
B

B



 (3.12) 
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is an auxiliary slip number. In the no-slip limit, B   and 3
*

B  . Therefore 

 
     0 23

1
2

xu y y   (3.13) 

which is the standard velocity profile for incompressible flow with no slip at the wall. 

By demanding that the dimensionless pressure gradient in the case of incompressible flow 

with no slip at the wall be equal to 1, the pressure scale should be 
23 /LU H . The 

dimensionless form of the equation of state (3.5) is then  

 1 p   , (3.14) 

where  

 
2

3 LU

H


   (3.15) 

is the dimensionless compressibility number. The Mach number takes the form 

 23

3

Re
Ma Ma

Re

 


 

 
    

 
. (3.16) 

The present work deals with weakly compressible flows, e.g. Ma<0.3. Assuming that γ is 

of the order of unity, there must hold εαRe<0.27.  

The dimensionless forms of the continuity and the x- and y-momentum equations in the 

case of compressible Poiseuille flow under the assumptions of zero bulk velocity and zero 

gravity (Taliadorou et al., 2009) are 

 
   

0
yx

uu

x y

 
 

 
 (3.17) 

 
22 2 22

2

2 2 2
3

3

yx x x x x
x y

uu u u u up
Re u u

x y x x y x y x


  

      
                    

 (3.18) 

 
2 2 222

3 4 2

2 2 2
3

3

y y y y yx
x y

u u u u uup
Re u u

x y y x y x y y


   

       
                    

, (3.19) 

where 

 0HU
Re




  (3.20) 

is the Reynolds number, and  

 
H

L
   (3.21) 
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is the aspect ratio of the channel. 

As for the boundary conditions, the usual symmetry conditions are applied along the 

symmetry plane; along the wall ux obeys the slip equation (3.8) while uy vanishes. 

Moreover, the pressure at the upper right corner of the flow domain is set to zero and the 

mass flow rate at the exit plane should be equal to 1. Therefore, the conditions that close 

the system of the governing equations are the following: 

 ( ,0) ( ,0) 0x
y

u
x u x

y


 


 (3.22) 

 ( ,1) ( ,1) and ( ,1) 0x
x y

u
x Bu x u x

y


  


 (3.23) 

 (1,1) 0p   (3.24) 

 
1

0
1xu dy   (3.25) 

As in Venerus (2006) and Taliadorou et al. (2009), no boundary conditions for the velocity 

are imposed at the entrance and exit planes ( 0x   and 1). The flow problem defined by 

Eqs. (3.14), (3.17)-(3.19) and (3.22)-(3.25) involves four dependent variables, ux, uy, p, and 

ρ, and four dimensionless numbers: ε, B, Re and α. Even though the density ρ can be 

eliminated by means of Eq. (3.14), it is kept in order to facilitate the derivation of the 

perturbation solution.  

 

3.2.2 Perturbation solution 

The present work deals with weakly compressible flows, that is the Mach number is small, 

typically Ma<0.3. From (3.16), it is deduced that as long as Ma  is small and γ/(αRe) is of 

the order of unity or smaller, the compressibility number ε, is also small number that can 

be used as the perturbation parameter. We thus perturb all primary variables, ux, uy, p, and 

ρ, as follows: 

 

 

 
       
       

(0) (1) 2 (2) 3

(0) (1) 2 (2) 3

0 1 22 3

0 1 22 3

x x x x

y y y y

u u u u O

u u u u O

p p p p O

O

  

  

  

     

   

   

   

   

 (3.26) 
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By substituting expansions (3.26) into the governing equations (3.14),(3.17)-(3.19) and 

also in the boundary conditions (3.22)-(3.24) and in the condition (3.25) and by collecting 

the terms of a given order in ε the corresponding perturbation equations and the boundary 

conditions are obtained. These can be found in Taliadorou et al. (2009) who present the 

more general case with non-zero bulk viscosity. As for the slip equation, it can easily be 

shown that  

 

( )
( )( ,1) ( ,1), 0,1,2,

k
kx

x

u
x Bu x k

y


  


 (3.27) 

where k is the order of the perturbation. In what follows, emphasis will be given only to the 

derivation of the second-order solution; the derivation of the leading-order solutions, which 

is based on the assumption that the transverse velocity uy is zero, is straightforward and the 

methodology is the same as that described by Taliadorou et al. (2009). The zero-order 

solution is obviously the standard incompressible Poiseuille flow solution: 

            
* *

0 0(0) 2 (0)2 , 0, 1 , 1
2 3

x y

B B
u y B By u p x x

B
       . (3.28) 

The first-order solution is as follows:  

 

     

*2
(1) 2

*4
2 2 2 2 4 6

2

2 (1 )
6

5 45 98 3 11 77 140 35 5 6 7 1
7560

x

B
u B By x

B

ReB
B B B B y B B y B B y

B



    

           
 

 

 

 (3.29) 

 
(1) 0yu   (3.30) 

 
        

2 4 2 2
21 3 2 2

3
1 2 14 35 35 1 1

18 315 54

* * *B Re B B
p x B B B x y

B

 
           (3.31) 

 
     

*
1

1
3

B
x x    (3.32) 

At second order, the assumption for zero transverse velocity is relaxed. Based on 

symmetry arguments, it is assumed that (2)

yu  is an odd function of the form  

 
(2) 3 5 7

1 2 3 4yu A y A y A y A y    , (3.33) 

where 
1

A , A2, A3, and 
4

A  are unknown constants. By following the procedure outlined 

below it can be shown that all higher-order terms in (3.33) must be zero. For simplicity, we 
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employ here only the non-zero terms. Also, from the boundary condition ( ,1) 0yu x  , we 

get 

 1 2 3 4 0A A A A    . (3.34) 

From the state equation we have 
   2 1

p   and hence 

 
        

2 4 2 2
22 3 2 2

3
1 2 14 35 35 1 1

18 315 54

* * *B Re B B
x B B B x y

B

 
           . (3.35) 

Integrating the second-order continuity equation with respect to x gives 

 
       

(2)

1 2(2) (1) (0) 1
y

x x x

u
u u u x F y

y
 


     


, (3.36) 

with  F y  being an unknown function. Substituting all the known quantities into the above 

equation, we get  

 

     

 

     

   

*3
2(2) 2 2 4 6

1 2 3 4

*5
4 3 2

4

4 3 2 2

4 3 2 4 3 2 6

2 *3
2 4

2 1 3 5 7 1
12

67 603 2170 3780 2520
22680

39 273 840 1260

35 175 210 7 21 1

2 2 1 .
108

x

B
u B By x A A y A y A y x

B

ReB
B B B B

B

B B B B y

B B B y B B y x

B
B B y y F y

B





        

    

   

     


       
 

  (3.37) 

Applying now the second-order slip condition (3.27) we get the following equation 

    
2 *3

1 2 3 4 2 3 4 2

1 1
(1 ) 3 5 7 6 20 42 (1) (1) 0

27

B
x A A A A A A A F F

B B B

 
           

 
 

which is satisfied for any x in  0,1  only if 

 
2 *3

(1) (1)
27

B
F BF

B


     (3.38) 

or 

      1 2 3 43 2 5 4 7 6 0BA B A B A B A       . (3.39) 

Integrating now the y-component of the second-order momentum equation with respect to 

y and substituting all known quantities gives 
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2 *3 2
2 2 2 4 6

1 2 3 4

3 *5
4 3 2

4

4 3 2 2

4 3 2 4 4 3 6

2 1 3 5 7
54 3

67 603 2170 3780 2520
204120

39 273 840 1260

35 175 210 7 21 ,

B
p B By x A A y A y A y

B

ReB
B B B B

B

B B B B y

B B B y B B y G x

 



        

    

   

     


 (3.40) 

where G(x) is a second unknown function to be determined.  

Substituting all the known quantities in the second-order x-momentum equation and after 

some rearrangement we get 

    

   

   

*
2 2 4 6 * 2 4 6 8

1 2 3 4 1 2 3 4

2 2 *6
5 4 3 2

5

5 4 3 2 2 5 4 3 2 4

5 4 3 6 5 4

2 3 5 7
2

31 341 1594 3962 5040 2520
22680

34 306 1288 2940 2520 32 224 350 210

42 210 252 7 21

ReB
B By A A y A y A y ReB A y A y A y A y

B

Re B
B B B B B

B

B B B B B y B B B B y

B B B y B B y






         

     

        

        

  

 

2 *3
8 2

*3
2 2 4

2 3 4

*5
3 2 3 2 2 3 2 4

3

11 20 15
54

(1 ) 3 ( ) 6 60 210 1
6

59 413 980 840 70( 5 6 ) 35( 3 ) 1 .
1890

B
B By F y

B

B
x G x A A y A y x

ReB
B B B B B B y B B y x

B





    


       

           

 

  (3.41) 

In order to be able to separate variables, we demand that the terms involving both  1 x  

and y are scalar multiples of  1 x . This is equivalent to setting  

    
*5 *5

2

3 42
5 6 and 3

1620 11340

ReB ReB
A B B A B

B B

 
      . (3.42) 

Solving the system of Eqs. (3.34) and (3.39) for 
1

A  and 
2

A we find:  

    
*5 *5

2 2

1 22 2
5 45 98 and 11 77 140

11340 11340

ReB ReB
A B B A B B

B B

 
       . (3.43) 

Therefore, 
 2

y
u is given by  

         
*5

2 2 2 3 2 5 2 7

2
5 45 98 11 77 140 7 5 6 3

11340
y

ReB
u B B y B B y B B y B B y

B


           
 

 

 

 (3.44) 

or 
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*5

2 2 2 2 2 2 4

2
1 5 45 98 2 3 16 21 3

11340
y

ReB
u y y B B B B y B B y

B


         
 

. (3.45) 

In order to complete the derivation of the second-order solution we now need to determine 

the unknown functions  F y  and  G x . Substituting 
 2

y
u  into Eq. (3.41) and separating 

variables we get the following two ODEs: 

 

   

       

 

2 2 *6
5 4 3 2

5

5 4 3 2 2 5 4 3 2 4

2 *3
5 4 3 6 5 4 8 2

*3 *5
2 3 2

3

13 143 703 1883 2520 1260
11340

3 27 252 1050 1260 39 273 525 105

35 175 210 6 3 11 20 15
54

4
1 2 14 35

6 315

Re B
B B B B B

B

B B B B B y B B B B y

B
B B B y B B y B By F y

B

B ReB
x B B B

B







      


        

         


         35 1 3 ,x G x A   

 

 (3.46) 

where A is an unknown constant. Solving the first ODE of Eq. (3.46) for  F y  we get: 

   

 

 

2 2 *6
5 4 3 2 2

5

5 4 3 2 4 5 4 3 2 6

2 *3
2 4 2

1 2

60 13 143 703 1883 2520 1260
151200

30( 9 84 350 420 ) 12 13 91 175 35

1
2 11 20 5 ,

216 2

Re B
F y B B B B B y

B

B B B B B y B B B B y

B
B y By Ay c y c

B





       


        

       

 (3.47) 

where 1c  and 2c  are unknown constants.  

Condition ( ,0) / 0xu x y    in Eq. (3.22), gives  0 0F   and thus 1 0c  . Applying 

conditions (3.25) and (3.38) and solving the resulting system for A and 2c  we find that  

  



*4 2 2 2 *7
2 6 5 4

2 6

3 2

4 19 27 3044 42616 267036
81 9823275

951720 1964655 2182950 1091475

B Re B
A B B B B B

B B

B B B

 
      

   

 (3.48) 

and 

  



2 *4 2 2 *7
2 5 4 3

2 2 5

2

7 4 2193 35088 221641
648 314344800

731346 1409100 1358280 .

B Re B
c B B B B B

B B

B B

 
     

  

 (3.49) 

Hence, 
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2 *3
2 2 2 2 4

2 2 *7
5 4 3 2

5

5 4 3 2 2

5 4 3 2

7 4 6 5 2 5 3
648

2193 35088 221641 731346 1409100 1358280
314344800

4 2839 39746 239316 803880 1576575 1455300

2310 12 111 602 1470 12

B
F y B B B B y B B y

B

Re B
B B B B B

B

B B B B B y

B B B B B





        
 

     

     

       

    

4 5 4 3

2 6 5 4 3 2 8 5 4 3 10

60 924 13 130 448

560 105 5775 8 21 18 616 6 9 .

y B B B

B B y B B B B y B B B y

  

        


 (3.50) 

Integrating for  G x  the second ODE in Eq. (3.46) we get:  

         
*3 *5

3 23 2

33

2
1 2 14 35 35 1 1

54 315 3

B ReB A
G x x B B B x x c

B


          , (3.51) 

where the unknown constant c3 is determined from condition (3.24): 

  
3 *5

3 3

3 4
2 56 315 315

25515

ReB
c B B B

B


      , (3.52) 

with which the derivation of the second-order solution is completed.  

In summary, the perturbation solution of the flow problem up to second order is:  

      

     

  

 

* *2
2 2

*4
2 2 2 2 4 2 6

2

*3 *5
22 2 4 3 2

4

4 3 2 4 3 2

, 2 2 1
2 6

5 45 98 3 11 77 140 35 5 6 7 3
7560

2 1 19 171 658 1260 840
12 7560

3 3 21 140 35( 5 6

x

B B
u x y B By B By x

B B

ReB
B B B B y B B y B B y

B

B ReB
B By x B B B B

B B

B B B y B B B









       




             




         



         

   

 

4 4 3 6

2 *4
2 2 2 2 4

2

2 2 *7
5 4 3 2

5

5 4 3 2 2

5 4 3

) 7 3 1

3 8 2 7 3 3
648

2193 35088 221641 731346 1409100 1358280
314344800

4 2839 39746 239316 803880 1576575 1455300

2310 12 111

y B B y x
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 (3.56) 

Letting B   we get the solution obtained by Taliadorou et al. (2009) and Venerus and 

Bugajsky (2010) for flow with no-slip at the wall. The perturbation solution for the 

axisymmetric flow is given in Appendix B. 

 

3.2.3 Volumetric flow rate and stream function 

The volumetric flow rate, 

    
1

0
,xQ x u x y dy   (3.57) 

is given by  
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 (3.58) 

The streamfunction ψ(x,y), defined by  

 andy xu u
x y

 
   

 

 
  

is found to be as follows: 
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3.3 Results and discussion 

Let us first discuss the effect of the slip number on the two velocity components. In 

creeping flow (Re=0), the transverse velocity component, uy, is zero at second order. The 

effect of the slip number B on the transverse velocity is shown in Fig. 3.2. The transverse 

velocity is reduced as the slip number is reduced from infinity (no slip) to zero (full-slip). 

As slip becomes stronger the velocity in the flow direction tends to become more uniform 

and thus the flow tends to become one-dimensional. Given that the transverse velocity 

component is always positive (Eq. (3.54)), the streamlines of the flow under study are 

either horizontal or have a slight positive slope which reaches its maximum value roughly 

in the middle of the y-interval [0,1]. The effect of slip on the transverse velocity 

component is more clearly illustrated in Fig. 3, where the reduced mean value, 

      
3

1
2 3

2 2 50

1
19 209 504

1120( 3)

y

y

u B
u y dy B B

Re Re B
 

   
    

  (3.59) 

is plotted versus the slip number B. Appreciable slip occurs in the range 1<B<100 and slip 

may be considered as strong for B<1. In conclusion, the unidirectionality assumption is 

valid when the flow is creeping and/or slip is strong.  
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Figure 3.2: Effect of the slip number on the transverse velocity component. 

 

 

 

Figure 3.3: The mean transverse velocity as a function of the slip number. 

 

In Fig. 3.4, the contours of the velocity in the flow direction for B=∞ (no slip) and 1 

(strong slip) with Re=0, ε=0.1, and α=0.01 are compared. Even though the contour patterns 

are similar, the main difference is that the range of the velocity values, which in the case of 

no-slip is the interval [0, 1.5], shrinks with slip (Fig. 3.5); in the extreme case of full slip, 

ux is uniform and equal to 1 at the channel exit.  
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Figure 3.4: Contours of ux  for B=∞ (no slip) and 1 (strong slip); Re=0, ε=0.1, and α=0.01 

 

Figure 3.5: Profiles of the velocity in the flow direction at x=0, 0.5 and 1 for B=∞ (no 

slip) and 1; ε=0.1, Re=0, and α=0.01.  
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The effect of the compressibility number ε on the contours of ux for Re=0, α=0.01 and B=1 

(strong slip) is illustrated in Fig. 3.6. In Fig. 3.7, the velocity contours obtained with Re=0 

and 100 and B=1, ε=0.1, and α=0.01 are shown. The results are essentially the same, since 

higher-order contributions contain the product αRe which is small. To magnify the effect 

of αRe, the velocity contours for a shorter channel with aspect ratio α=0.1 are plotted in 

Fig. 3.8. It is observed that the effect of Reynolds number becomes significant. Note that, 

the Mach number corresponding to Re=100, ε=0.1, and α=0.1 is equal to 0.6 (γ is of unity 

order) and the flow can no longer be considered weakly compressible. However, the 

asymptotic expansions are still valid since the compressibility number is still small. Note 

that, since 
23( / )Re a Ma  , when the compressibility number ε and the Mach number 

are small (<0.3), solutions are admissible only below a critical value of the Reynolds 

number. (For example, the critical value for Re is 270 for the data in Fig. 3.7 and is 

reduced to 27 in Fig. 3.8 where α is increased from 0.01 to 0.1.) Generally, as the channel 

becomes shorter (α increasing) the admissible Reynolds numbers get smaller-the flow 

tends to creeping flow. 

 

Figure 3.6: Contours of ux  for ε=0 (incompressible flow) and 0.1; Re=0, B=1 and α=0.01. 
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Figure 3.7: Contours of ux  for Re=0 and 100; α=0.01 (long channel), B=1, and ε=0.1. 

 

 

Figure 3.8: Contours of ux  for Re=0 and 100; α=0.1 (shorter channel), B=1, and ε=0.1. 
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Figure 3.9: The volumetric flow rate at the inlet plane for different Reynolds numbers with 

α=0.01 and no slip at the wall (B=∞). 

 

Another way to investigate the validity of our solution arises from looking into the 

volumetric flow rate given by Eq. (3.58). Since the solution is up to second order, Q is a 

parabolic function of ε for any value of x. At the exit plane,  

  
 

 
 

2 2
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3

2 5
1

3
1

15

B B

B
Q O


 




   . (3.60) 

Obviously, Q(1) is slightly below unity, given that αε is small. Since the flow is 

compressible, the volumetric flow rate is reduced as we move upstream. A solution is 

assumed to be admissible if the volumetric flow rate Q(0) at the inlet is a decreasing 

function of ε and positive. In Fig. 3.9, Q(0) is plotted versus ε for various Reynolds 

numbers, with B=∞ (no slip) and α=0.01. In creeping flow (Re=0), solutions are admissible 

for ε<1/3. As the Reynolds number is increased, Q(0) decreases faster with ε and may 

become negative for even smaller compressibility numbers. In other words, given the 

compressibility number, the aspect ratio, and the Mach number, solutions are admissible 

only below a critical value of the Reynolds number, which has also be noted above.  

As shown in Fig. 3.10, slip weakens the compressibility effects and reduces the reduction 

of the volumetric flow rate upstream. As a result, slip extends the range of admissible 

solutions by shifting the minimum of Q(0) to the right (Fig. 3.11). 
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Figure 3.10: Variations of the slip velocity and the volumetric flow in the channel for 

different slip numbers, ε=0.1, Re=0, and α=0.01.  

 

Figure 3.11: Effect of slip number on the volumetric flow rate at the entrance plane; Re=0, 

α=0.01. 
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From Eq. (3.56), we see that the density ρ at the exit plane is 1 at leading order. At the inlet 

plane, where the density obviously is maximized, we have  

    20 1
3

B
x O

B
     


. (3.61) 

The maximum value for ρ, obtained in the case of no slip (B=∞), is given by 

  2

max 1 O     , (3.62) 

and is independent of Re and α. In creeping flow, ε<1/3 and thus the maximum admissible 

value of the density for any α is ρmax=4/3, which restricts the range of validity of the 

solution. However, more compression, which is expected for very small values of α (for 

very long channels), can be obtained only if higher values of the compressibility number 

are admissible, i.e. for lower values of the Reynolds number. In other words, moderately 

compressible flow is associated with finite, moderate Reynolds numbers. Recalling that for 

weakly compressible flow we have αεRe<0.27, such a combination of ε and Re is allowed 

only for smaller values of the aspect ratio α.  

Generally, slip reduces the pressure in the channel and the required pressure drop. In Fig. 

3.12, we show the distribution of the pressure along the centreline for different slip 

numbers, ε=0.1, Re=0 and α=0.01. As the slip number tends to zero (full slip) the pressure 

tends to become zero everywhere.  

 

Figure 3.12: Variation of the pressure along the centreline for various slip numbers; 

ε=0.1, Re=0, α=0.01 
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Following Venerus and Bugajsky (2010) we calculate the mean pressure drop as follows 

    
1

0
(0) (1) 0, 1,p p p p py y dy        , (3.63) 

which gives 
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 (3.64) 

Equation (3.62) gives the pressure drop for channel flow of a compressible Newtonian 

fluid with slip at the wall. This is a generalization of the result provided by Venerus and 

Bugajsky (2010) for the no-slip case ( B ): 

  2 2 2 2 31 18 1 5 36 3044
1

2 35 2 3 35 13475
p Re Re Re O       

   
          

   
. (3.65) 

(It should be noted that the Reynolds number in Venerus and Bugajsky (2010) is twice the 

present Reynolds number.) It is clear that the required pressure drop decreases with 

compressibility and increases with inertia, as illustrated in Fig. 3.13. The effect of slip is 

illustrated in Fig. 3.14 where the pressure drops for various slip numbers are plotted. Slip 

leads to the reduction of the pressure difference required to drive the flow and 

consequently alleviates compressibility effects. This is, of course, expected and also noted 

in previous works. For example, Zhang et al. (2009), in their analysis of slip flow 

characteristics of compressible gases in microchannels, reported that “slip effect makes the 

flow less compressible”. For the set of values used to construct Figs. 3.13 and 3.14, the 

wall and centerline pressures are essentially constant, i.e. the pressure is essentially a 

function of x. Hence, the pressure contours are practically straight lines, parallel to the inlet 

and exit planes (Fig. 3.15). This is not the case for short channels, e.g. when α=1, since the 

contributions of the higher-order terms become more important; this effect is illustrated in 

Fig. 3.16. 
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Figure 3.13: Effect of the Reynolds number on the mean pressure drop; no slip, α=0.01 

 

Figure 3.14: Effect of the slip number on the mean pressure drop; Re=0, α=0.01. 
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Figure 3.15: Pressure contours for different compressibility numbers, ε=0.2 Re=0, and 

α=0.01 (long channel). 

 

 

Figure 3.16: Pressure contours for different compressibility numbers, ε=0.2, Re=0, and 

α=1 (short channel). 
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The mean pressure drop for axisymmetric Poiseuille flow of a compressible Newtonian 

fluid with slip at the wall, defined by  

        
1

0
0 1 2 0, 1,p p p p z p z rdr        (3.66) 

is: 

 

 

   

   

* *2 *3
2

2

*3 *4 2 *4
2 2

2 2

2 2 *6
5 4 3 2 2 3

5

4 8
8 128 2048

4 8 49 300 576
1024 8192 294912

2 24 171 648 1080 864 .
14155776

B B ReB
p B B

B

B ReB B
B B B B

B B

Re B
B B B B B O

B


 

 


 

 
     

 


      



      

  

 

 (3.67) 

The above equation generalizes the result in Venerus (2006) for the no-slip case: 

  
2 2 2

2 31 1 49
1

2 4 2 2 72 27

Re Re Re
p O

   
   

  
         

   
. (3.68) 

We have derived a solution for equations (3.17)-(3.19) and (3.22)-(3.25) which is valid for 

all values of the channel aspect ratio α. It is, moreover, obvious from equation (3.19) that 

we recover the lubrication approximation (α
2
<<1) with the transverse pressure gradient 

being zero when αRe<<1 if all terms of order α
2 

or higher are neglected. (The aspect ratio α 

cannot be identically zero, since, in this limiting case, the pressure scale, i.e. the pressure 

required to drive the flow in a channel of infinite length with no slip at the wall, is infinite.) 

Therefore our solution gives the lubrication-theory solution in the presence of slip if we 

neglect the terms of order α
2
 or higher and assume that αRe<<1. The transverse velocity 

component vanishes, the pressure and the density are functions of x only, and the pressure 

drop is given by 

  
* *2 *3

2 3

3 18 54

B B B
p O       . (3.69) 

The velocity in the flow direction is simplified to: 

        
* * *2

22 2 32 1 1 1
2 3 6

x

B B B
u B By x x O

B
  

 
        

 
. (3.70) 

As already discussed, such a solution is admissible if Q(0) is a decreasing function of the 

compressibility number ε. This condition is satisfied when  
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*

3 1

3

B

B B



  . (3.71) 

If a more refined solution is desired, one could construct perturbation expansions using α 

as the perturbation parameter (for any compressible flow) or double asymptotic expansions 

where both ε and α are perturbation parameters. 

In the case of the axisymmetric Poiseuille flow, the average Darcy friction factor, defined 

by 

 
1

0

8
(1, )zu

f z dz
Re r


 


, (3.72) 

is of interest. Integrating the above equation yields 
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 (3.73) 

In the no-slip limit ( B ), one finds that 

  2 2 2 2 31 1 1 13 1 17
1 .

32 2 12 2 72 4 2160

Re f
Re Re Re O      

   
          

   
 (3.74) 

Venerus (2006) compared the pressure drop and the friction factor for the no-slip case, 

defined respectively by Eqs. (3.66) and (3.72), and noted that the effect of inertia on 

pressure drop is significantly larger than on drag force. He also pointed out that the one-

dimensional models for the no-slip case overpredict the friction factor by roughly 10%. 

Similarly to the pressure drop, the average Darcy friction factor is reduced dramatically 

with slip, as shown in Fig. 3.17. For a given slip number, it is essentially constant for a 

wide range of the parameter αRe corresponding to the weak compressibility regime and 

then increases rapidly. In Fig. 3.18, the average Darcy friction factor for Re=0 and 50, 

ε=0.2 and α=0.1 is plotted versus the slip number B. It can be seen that the friction factor is 

reduced with slip following a sigmoidal curve and also that the Reynolds number effect 

becomes weaker by slip.  
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Figure 3.17: The average Darcy friction factor for the axisymmetric Poiseuille flow versus 

αRe for various slip numbers; ε=0.2 and α=0.01. 

 

 

Figure 3.18: Average Darcy friction factor for the axisymmetric Poiseuille flow versus the 

slip number for Re=0 and 50; ε=0.2 and α=0.1. 
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3.4 Conclusions 

We have derived perturbation solutions of the weakly compressible plane and 

axisymmetric Poiseuille flows with Navier’s slip at the wall thus generalizing previous 

results by Taliadorou et al. (2009) and Venerus and Bugasjsky (2010). The density is 

assumed to be a linear function of pressure and the associated isothermal compressibility 

number is used as the perturbation parameter. In the proposed derivation, the primary flow 

variables, i.e. the two velocity components, the pressure, and the density, are perturbed. 

Solutions have been obtained up to second order. The corresponding expressions of the 

volumetric flow rate and the pressure drop are also provided and discussed. As expected, 

slip weakens the y-dependence of the solution. The unidirectionality assumption is valid if 

the Reynolds number is very small and/or slip along the wall is strong.  
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Chapter 4 

Weakly compressible Poiseuille flows 

with pressure-dependent viscosity 

 

4.1 Introduction  

We consider the steady, laminar, plane, Poiseuille flow of a weakly compressible 

Newtonian fluid with a viscosity that is weakly dependent on the pressure, assuming that 

both the density and the viscosity vary linearly with pressure. A perturbation analysis is 

performed on all primary variables using the dimensionless isothermal compressibility and 

the dimensionless viscosity-pressure coefficient as the perturbation parameters. This 

double asymptotic expansion allows us to derive analytical perturbation solutions up to the 

second order. These generalise the solutions obtained in Taliadorou et al. (2009) for the 

constant-viscosity case and those in Chapter 2 for the incompressible case, which 

correspond to the two limiting cases, and allow the study of the combined effects of 

compressibility and the viscosity pressure-dependence. 

The chapter is organized as follows: In Section 4.2 the governing equations of the plane 

Poiseuille flow are presented along with the appropriate boundary conditions, and then 

they are dedimensionalized. In Section 4.3 (subsections 4.3.1-4.3.6) the perturbation 

method is applied on the primary variables of the flow in terms of two perturbation 

parameters and approximate, analytical, perturbation solutions are obtained. In Section 4.4 

the solutions are discussed in terms of the various parameters that appear in the solutions. 

The conclusions of the chapter are summarized in Section 4.5. 

 

4.2 Governing equations 

We consider the steady, laminar, plane Poiseuille flow of a Newtonian fluid in a slit of 

length L and width 2H in Cartesian coordinates  ,x y  as in Fig. 4.1  
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Figure 4.1: Geometry of steady, laminar, plane Poiseuille flow. 

 

The fluid is assumed to be compressible with zero bulk viscosity, therefore the viscous 

stress tensor is given by 

,     (4.1) 

where η is the pressure-dependent viscosity,  

  p  , (4.2) 

I is the unit second-order tensor, and D is the rate of deformation tensor defined by  

1
( )

2

T     D u u .     (4.3) 

is the rate-of-deformation tensor and u is the velocity vector.  

Under the further assumption of zero gravity, the momentum equation becomes  

          2 1 2
2

3 3
p p p p p p p                  u u u D u u .  (4.4) 

Since we assume bidirectional flow, , we consider only the x- and y momentum 

equations:  
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y-momentum  
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The continuity equation for a steady compressible flow is given by 

  (4.7) 

or  

  (4.8) 

for the two dimensional flow. 

As for the boundary conditions, we apply again the symmetry conditions along the 

symmetry plane ( ) while xu  and 
yu  vanish along the wall (no slip and no 

penetration). The pressure at the upper right corner of the flow domain is taken to be equal 

to zero. Therefore the boundary conditions are: 

  (4.9) 

  (4.10) 

 . (4.11) 

We employ a linear equation of state for the density, 

 , (4.12) 

where κ is the constant isothermal compressibility. The constant κ is a measure of the 

ability of the material to change its volume under applied pressure at constant temperature, 

and it is defined by 

 , (4.13) 

where V is the specific volume, ρ0 and V0 are respectively the density and the specific 

volume at the reference pressure, p0, and temperature, T0.  

We also employ a linear equation for the viscosity  
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 , (4.14) 

where 
 

is the viscosity at atmospheric pressure and  is the viscosity-pressure 

coefficient (which depends on the temperature).  

To nondimensionalize the governing equations and the boundary conditions, we scale x by 

the length of the channel L, y by the channel half-width H, the density ρ by the reference 

density ρ0 and the viscosity η by the reference viscosity η0. Furthermore, we 

nondimensionalize the horizontal velocity, xu , by the mean velocity at the channel exit U 

which is defined by 

 , 

with M being the mass flow rate and W the unit length in the z-direction. The transverse 

velocity 
yu  is nondimensionalized by and the pressure by .  

The dimensionless forms of the equation of state (4.12) and of the viscosity equation (4.14) 

are  

  (4.15) 

and  

 , (4.16) 

where  

  (4.17) 

and 

  (4.18) 

are the dimensionless compressibility number and viscosity-pressure coefficient, 

respectively.  

The dimensionless forms of the continuity and of the x-momentum and the y-momentum 

equations in the case of compressible Poiseuille flow under the assumptions of zero bulk 

velocity and zero gravity are as follows: 

  (4.19) 
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  (4.20) 

  (4.21) 

where 

  (4.22) 

is the Reynolds number, and  

  (4.23) 

is the aspect ratio of the channel. 

The dimensionless conditions that complete the system of the governing equations are: 

  (4.24) 

  (4.25) 

 . (4.26) 

Even though the density ρ and the viscosity η can be eliminated using Eqs.(4.15) and 

(4.16), they are kept in order to facilitate the derivation of the perturbation solution.  

 

4.3 Perturbation solution 

In Chapter 3, we had considered problems whose approximate analytical solution was 

presented as an asymptotic expansion in a single perturbation parameter which was the 

small compressibility number ε. In Chapter 2, the dimensionless viscosity-pressure 

coefficient δ appears in the exact analytical solution (in Chapter 2, δ is denoted by ε). In 

the current problem we assume that both the density and the viscosity depend weakly on 

the pressure, so we have two small numbers in the governing equations (4.19)-(4.21); the 
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22 22 2

2 2

2
2

4
3

3 3

2
2

3

yx x x x
x y

y yx x

uu u u up
Re u u

x y x x y x y

u uu u

x x y y y x

 
  

  


     
                  

      
      

        

2 2 2
3 2 2

2 2

2
2 2

4 1
3

3 3

2
2

3

y y y y x
x y

y yx x

u u u u up
Re u u

x y y x y x y

u uu u

x x y y y x

    

  
 

      
                  

      
      

        

0

0

HU
Re






H

L
 

 ( ,0) ( ,0) 0, 0,1x
y

u
x u x x

y


  



 ( ,1)= ( ,1) 0, 0,1x yu x u x x 

(1,1) 0p 

Stel
la 

Poy
iad

ji 



67 

that both ε and δ are small, 1 , 1 , we assume that the solution, in terms of the 

primary variables ux, uy, p, ρ and η, is represented as a double asymptotic expansion in ε 

and δ, as shown below:  
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 (4.27) 

where h.o.t. stands for higher order terms, which in this case are terms of 

 3 3 2 2, , ,O       and higher. We substitute the expansions of Eq (4.27) into the 

governing equations (4.15), (4.16), (4.19)-(4.21) and into the boundary conditions (4.24)-

(4.26) and collect the terms of the same order in ε and δ. Thus, we derive perturbation 

equations and boundary conditions for the zero-order as well as for the orders ε, δ, ε
2
, 

δ
2
and εδ. The systems are solved analytically for all primary variables ux, uy, p, ρ and η. By 

retaining all orders above, we allow enough generality in our solution to be able to 

investigate the three possible cases:  ~ ,    and   . 

The systems of orders 1, ε, δ, ε
2
, δ

2 
and εδ, that are formed from the above equations and 

boundary conditions are presented in Tables (4.1)-(4.6). 
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Table 4.1:  Zero-order equations and boundary conditions  
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Table 4.2: Equations and boundary conditions of order ε 
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Table 4.3: Equations and boundary conditions of order δ 
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Table 4.4: Equations and boundary conditions of order ε
2
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Table 4.4: (continued) 
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Table 4.5: Equations and boundary conditions of order δ
2
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Table 4.5: (continued) 
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Table 4.6: Equations and boundary conditions of order εδ  
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Table 4.6: (continued) 

y-component of the momentum equation 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 

11 01 10 00

00 00 10 01 113

11 01 10 00

00 10 01 11

01 00 01 00

10 00 01 00 013

10

01 00 013

y y y y

x x x x

y y y y

y y y y

y y y y

x x y y

y y

x x

u u u u
Re u u u u

x x x x

u u u u
u u u u

y y y y

u u u u
Re u u u u

x x y y

u u
Re u u

x

 

 

 

    
  

    


   
    

   


    
    

    
 

 
 



 
 

 
 

 

   
 

 
   

 
     

 
     

 
 

00 10 00

00 10

00 00 11
11 00 003

11 11 01 012 2 2 211 012 2
00 102 2 2 2

2 2 2 2

102

012 2

3

4 1 4 1

3 3 3 3

y y

y y

y y

x y

y y y yx x

y

u u
u u

x y y

u u p
Re u u

x y y

u u u uu u
a a

x y x y x y x y

u
a

x

 

   

 

  
  

   
 

   
    

   
 

       
        

          
   






   
 

     

           

       

10 00 002 2 210 002 2
112 2

2 2 2 2

11 0111 0100 10

2 2 2 2

10 1001 11

2 2 2 2

4 1 4 1

3 3 3 3

y y yx x

y yx x

y yx

u u uu u
a

y x y x y x y

u uu u

x x y x x y

u uu

x x y x

 

 
   

 
   

      
       

         
   

      
      

        
   

   
   

    
 

   

           

           

00 00

11 0111 0100 102 2

10 0010 0001 112 2

2 2
2 2

3 3

2 2
2 2

3 3

x

y yx x

y yx x

u

x y

u uu u

y y x y y x

u uu u

y y x y y x

   

   

 
 

  
 

      
      

        
   

      
      

        
     

State and viscosity equations 

 
       11 01 11 10

andp p     

 

  

Stel
la 

Poy
iad

ji 



77 

Table 4.6: (continued) 
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The x-momentum equation gives us the differential equations  
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where c1, c2, and c3 are unknown constants. Applying the boundary conditions 
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we calculate that 

 .  

Therefore, the zero-order solution is:  
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 (4.32) 

As expected, the solution at zero order is that of a steady, laminar incompressible plane, 

flow with constant viscosity. 

 

4.3.2 Solution of order ε  

The equation of state  and the viscosity equation  lead to  

 . (4.33) 

Assuming that , the continuity equation becomes  

 . (4.34) 

By integrating Eq. (4.34) with respect to x we get  

 , (4.35) 

where  is an unknown function to be determined. 

The y-momentum equation is simplified to 

 . 

Integrating the above with respect to y we get  
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 , (4.36) 

where is an unknown function to be determined. 

The x-momentum equation becomes 

 , (4.37) 

which if we substitute  from Eq. (4.32) and use Eqs. (4.35) and (4.36) leads to  

 , (4.38) 

where A is an unknown constant. 

The solutions of the above ODEs for F and G respectively, are:  

  (4.39) 

and  

 , (4.40) 

where 1c , 2c , and 3c  are unknown constants.  

Applying the conditions  

 , 

we find that  

 . 

Using now the order ε mass-flow condition 

 , 

we easily see that 

 . (4.41) 

Therefore the solution of order ε is: 
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(4.42) 

The solution represents the order ε effect of the compressibility of the fluid and as 

expected, the solution agrees with that in Chapter 3 for the limiting case B  (no slip 

limit) and in Taliadorou et al. (2009) for order ε that there is no effect on the flow due to 

the pressure-dependence of viscosity at this order since . 

 

4.3.3 Solution of order δ  

Once more we assume that 
 
and from the state equation  and the viscosity 

equation , we have that  

 . 

The order δ continuity equation leads to 

 , 

where  is an unknown function. Substituting all the known quantities into the y- 

momentum equation anf integrating with respect to y we find  

 , (4.43) 

where 
 
is an unknown function. Substituting all the known quantities into the x-

momentum equation and separating variables we find 

 , (4.44) 

where A is an unknown constant. We can easily solve the two ODEs of Eq. (4.44) for F 

and G: 

  (4.45) 

and 
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 , (4.46) 

where 1c , 2c , and 3c  are unknown constants. Applying the boundary conditions  

 , 

the condition for the mass flow rate and the condition , the constants 1c , 2c , and 

3c  are easily calculated: 

 . (4.47) 

Therefore the solution of order δ is: 
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 (4.48) 

The solution represents the order δ effect due to the dependence of the viscosity on the 

pressure (there are no compressibility effects as indicated by ). Furthermore, we 

note that it agrees with )(O term in the expansion of the exact solution in Chapter 2, upon 

fixing some constants appropriately.  

 

4.3.4 Solution of order ε
2
 

To obtain the solution of order ε
2
 we assume again that , and from the 

equations of state  and the viscosity equation  we obtain  

  (4.49) 

and  

 . (4.50) 

Substituting all the known quantities into the order ε
2 

continuity equation and integrating 

with respect to x gives  
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 (4.51) 

where  is an unknown function. 

Substituting all the known quantities into the y-component of the order ε
2
 momentum 

equation and integrating with respect to y gives 

, (4.52) 

where 
 
is an unknown function. 

Substituting all the known quantities in the second-order x-momentum equation and after 

some calculations, we get: 

  (4.53) 

The equations and the boundary conditions we need for this problem are the same as those 

used in Taliadorou et al. (2009). Hence, we skip all further calculations and the solution of 

order ε
2 

is immediately given by: 
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(4.54) 

The pressure-dependence of the viscosity, as expected, does not have an effect at order ε
2
, 

as indicated by.
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4.3.5 Solution of order δ
2
 

Once more we assume that . From the equation of state and the equation of 

viscosity we have that 

  (4.55) 

and  

 . (4.56) 

Substituting all the known quantities into the continuity equation at order ε
2
 and integrating 

with respect to x we find that 

 , (4.57) 

where 
 
is an unknown function. From the y-momentum we get 

 , (4.58) 

where 
 
is also an unknown function. From the x-momentum we have 

 . 

  (4.59) 

In order to be able to separate variables we demand that the last term of Eq. (4.59) is a 

scalar multiple of ; therefore, we set  

 , (4.60) 

with γ being a constant to be determined. Integrating (4.60) we get  

 , 

where 1c , 2c , and 3c  are unknown constants.  

Conditions and lead to
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  (4.61) 

and  

 . (4.62) 

Applying the conditions  and the conditions in Eq. (4.61) we find 

that γ, 1c , 2c , and 3c  are equal to zero. Hence,  

 .   (4.63) 

By means of  Eq. (4.63) the x-momentum equation (4.59) takes the simpler form  

 , (4.64) 

where A is an unknown constant. The two ODEs of separate variables are easily solved 

under the conditions  

  

to get 

  (4.65) 

and 

 . (4.66) 

Finally, we find that the solution of order δ
2
 is: 
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 (4.67) 

This solution represents the order δ
2
 perturbation due to the dependence of the viscosity on 

the pressure. We notice that there is no contribution from the compressibility at order 
2 as 

   02 022

2

1 0

0
y y

y y

u u

y y
 

 
 

 

   1 0 0F F  

       02 02
,0 ,1 0y yu x u x 

 02
0yu 

     
22 2 3

3 3 1
2

y F y G x x A      

       02
1 0 0 and 1,1 0F F p  

      
2

02 2 21 1 5
20

xu F y y y


   

     
2

31
1 1

6 5
G x x x


   

Stel
la 

Poy
iad

ji 



85 

indicated by  02
0  ). Furthermore, we note that it is essentially the same as the )( 2O

term in the expansion of the exact solution in Chapter 2 (assuming that δ  is small enough 

in order to assure the validity of the  expansion), upon fixing some constants appropriately.  

 

4.3.6 Solution of order εδ  

To obtain the solution at order εδ we assume that . From the equation of 

state of the density and from the viscosity equation  

 , 

we get 

  (4.68) 

and  

 , (4.69) 

respectively. 

The continuity equation is simplified to 

 . (4.70) 

Substituting all the known quantities into Eq. (4.70) and integrating with respect to x we 

get  

 , (4.71) 

where 
 
is an unknown function. 

The y-momentum equation is simplified to  

.

 

  (4.72) 

Substituting all the known quantities into Eq. (4.72) and integrating with respect to y, we 

find that the pressure is given by 
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 , (4.73) 

where 
 
is an unknown function. 

Substituting all the known quantities in the x-momentum we end up with  

  (4.74) 

In order to separate variables we demand that the last term of Eq. (4.74) is a scalar multiple 

of , therefore we set  

 , (4.75) 

with γ being a constant to be determined.  

Integrating Eq. (4.75) three times we find that 

, 

where 1c , 2c , and 3c  are unknown constants.  

The boundary conditions and give respectively  

 

and in order for these to apply for every x in our domain we must have  
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Applying the conditions  

  

we find that  
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, 

and therefore  is zero.  

Equation (4.74) is simplified to  

  (4.76) 

The first ODE in Eq. (4.76) gives  

 , (4.77) 

where c4 and c5 are unknown constants. 

Applying the conditions  

  

 and  

 , 

we find, after some calculations, that 

 . (4.78) 

Therefore, 

 . (4.79) 

The second ODE in Eq. (4.76) gives  

 , (4.80) 

where 6c  is an unknown constant and from the condition for the pressure 
 
we 

find that  1 0G   which leads to 6 0c  .  

Finally, the solution of order εδ is: 
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        (4.81) 

 

At this order the solution represents the combined effect of the compressibility and of the 

pressure-dependence of the viscosity as both  and  are not zero. To understand 

this solution better, we consider the limiting case where the aspect ratio of the channel α, is 

equal to zero (lubrication approximation). We see then that for any fixed y,  decreases 

monotonically and  increases monotonically with x as we move from the left-end of 

the channel, , to the right-end of the channel, . 
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4.3.7 The solution up to order εδ  

Combining the solutions of zero-order and of orders ε, δ, ε
2
, δ

2
and εδ, we find that the 

approximate perturbation, analytical solution is given by: 
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4.4 Results and discussion 

The basic features of the velocity and the pressure fields are as follows: 

 The zero-order solution is just the solution of incompressible flow with constant 

viscosity. 

 The terms of orders ε and ε
2
 are the terms obtained in Taliadorou et al. (2009) and 

Venerus and Bugajsky (2010), for the compressible flow with constant viscosity 

 The terms of orders δ and δ
2
 represent the effects of the pressure dependence of the 

viscosity.  

 

These terms agree with the expansion of the exact solution derived in Chapter 2 (upon 

fixing some constants appropriately). (As already mentioned, in Chapter 2 the 

viscosity-pressure coefficient is denoted by ε.) Assuming that δ is small enough in 

order to ensure the validity of an infinite expansion in terns of δ, we find that the 

expansion of the solution of the plane flow in Section 2.5 is given by   

  (4.87) 

Giving an appropriate value to the constant A and fixing the Reynolds number to zero in 

the solution we obtained here, (4.87) is essentially the same as solution (4.82)-(4.84), but 

shifted to the right as the origin of the coordinates is located at the exit of the plane in 

Section 2.5. 

Let us examine now the expressions (4.80)-(4.84) for the primary variables in more detail. 

 

Transverse velocity 

The transverse velocity 
yu  is zero at first order in ε (by assumption). It is also zero for all 

other orders of ε and δ except at the second order in ε. 
yu  is always positive, it only 

depends on the y  coordinate and it varies linearly with the aspect ratio and the Reynolds 

number.  
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Velocity in the flow direction 

The horizontal velocity xu deviates from the parabolic incompressible solution at first 

order in ε due to fluid inertia and due to geometric effects (exhibited by the terms involving 

the aspect ratio  .  

The deviation of first order in ε depends on both the x  and y and it may be positive or 

negative depending on the value of α and Re. Since  10

xu  is linear in x  we can easily find 

that 
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*0 yy   where  *

1
14 161 0.43

7
  y . Therefore 
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0xu   for all 10  x . For 1*  yy  then  10
0xu   for 
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140

Re
x y y


     . 

When 0  we have  10
0xu   for the whole interval 10  x  and therefore we have a 

decrease of order ε in the horizontal velocity. The same holds as Re 0 . At second order 

in ε there is a reduction of the horizontal velocity that is independent of inertia and which 

does not alter its parabolicity. 

At first order in δ,  01

xu  is zero so the pressure-dependence of the viscosity does not affect 

the flow at this order. At second order in δ,  02

xu  depends only on the y  coordinate, and it 

is always positive for 10  y . It also increases with the square of the aspect ratio α. For 

long channels where 1 ,  02

xu  is therefore very small. 

The order εδ is a coupling term representing the interaction of the compressibility and the 

pressure dependence of viscosity. This term can be either positive or negative depending 

on the value of the aspect ratio α. Specifically, since  11

xu  is a quadratic in x  we can easily 

show that 
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Therefore, since 
223 5

0.87 1 0.97
30 23

y
 

   
 

 when  is approximately 1 (short channel) 

 11

xu  is positive for almost all values of x  and y . When the channel is long ( 1a ), since 

223 5
0.87 1 0.97

30 23
y

 
   

 
, we find that  11

xu  is negative for almost all values of x  and 

y  and the pressure-dependence of the viscosity decreases the horizontal velocity at this 

order. 

Contour plots of the horizontal velocity field are presented in Figs. 4.2-4.6. In Fig. 4.2, we 

have the case of incompressible flow with constant viscosity ( 0   ). The contours are 

horizontal lines. In Fig. 4.3 we fix the pressure dependence of viscosity at 01.0  and we 

vary the compressibility effect with ε=0.01, 0.1, and 0.2. In Fig. 4.3a ( 0.01)    the 

contours are almost horizontal lines (as in the case of the incompressible flow with 

constant viscosity), since there is almost no x -dependence. In Fig. 4.3b we have 1.0

and the x -dependence kicks in, making the contours bend. The larger deviation here is the 

term of )(O ,  10

xu  which increases linearly with x  as mentioned above. This explains the 

strong bend of the contours close to the symmetry plane y=0. Furthermore, the overall 

value of xu decreases. In Fig. 4.4 we fix the pressure dependence of viscosity at 1.0  

and we vary the compressibility effect with ε=0.01, 0.1, and 0.2. In Fig. 4.4a, even though 

1.0 , since 001 xu  the contours are still almost horizontal lines. Again as   increases 

the x -dependence becomes stronger and xu  decreases (note the x-y region of high values of 

xu  at the bottom right corner of the contour plot decreasing as   increases). In Fig. 4.5 we 

fix the pressure dependence of viscosity at 2.0  and we vary ε=0.01, 0.1, and 0.2. In 

Fig. 4.6 we fix 1.0  and we vary δ=0.01, 0.1, and 0.2.  

 

 

Figure 4.2: Contours of ux  for ε=0, 0 ; Re=0, α=0.1. 
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(a) 

 

(b) 

 

(c) 

Figure 4.3: Contours of ux  for δ=0.01 and ε=0.01, 0.1 and 0.2;  Re=0, α=0.1. 
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(a) 
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 (c)  

Figure 4.4: Contours of ux  for δ=0.1 and ε=0.01, 0.1 and 0.2; Re=0, α=0.1. 
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(a) 
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(c)  

Figure 4.5: Contours of ux  for δ=0.2 and ε=0.01, 0.1 and 0.2; Re=0, α=0.1. 
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(a) 

 

(b) 

 

(c) 

Figure 4.6: Contours of ux  for ε=0.1 and δ=0.01, 0.1 and, 0.2; Re=0, α=0.1. 
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Profiles of the deviation of xu  from  00 2(3 / 2)(1 )xu y 
 
at 0y  are presented in Figs. 

4.7. In Fig. 4.7a we fix 1.0  and we vary the compressibility number ε=0.01, 0.1 and 

0.2, (Re=0, α=0.1). As expected, the deviation is negative along the whole axis of the 

channel. In Fig. 4.7b we fix 1.0  and we vary δ=0.01, 0.1 and 0.2, (Re=0, α=0.1). As 

expected, the deviation is negative along the axis of the channel.  

 

 

 

 

 

 

 

 

                                                                         (a) 

 

  

 

 

 

 

 

                                                                               

                                                                                   (b) 

 

Figure 4.7: Deviation of ux from the incompressible flow along y=0 for: (a) δ=0.1 and 

ε=0.01, 0.1, and 0.2. (b) ε=0.1 and δ=0.01, 0.1, and 0.2; Re=0, α=0.1. 
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Pressure 

The pressure for planar, steady, incompressible, laminar flow with constant viscosity is 

linearly decreasing with x  along the channel and is independent of y . The compressibility 

and the pressure-dependent viscosity both introduce dependence on the y coordinate. The 

deviation at first order in ε is positive for  
*0 xx   where  

 
2

* 218 1 35
1 1 1 1

35 3 18

Re
x y

Re

  
         

   
 

. 

For long channels ( 1a ), 
*x is 1 ( )O  and the deviation at first order in ε is negative 

for almost all values of x  and y . (Note that the Reynolds number is assumed to be )1(O -

bounds on the values of the Reynolds number Re which ensure that the assumptions of the 

asymptotic expansions are respected are provided in Section 4.4.4.) Therefore, 

compressibility causes a reduction to the horizontal velocity at this order. 

At first order in δ,  01
p  is parabolic in both x  and y and the y -dependence becomes 

stronger as  increases.  01
p  decreases proportionally to the square of α; it is positive for 

*0 xx   where 
2* 11 yx   . For long channels ( 1a ), 

*x is approximately 

equal to 1 and the deviation at first order in ε is therefore positive  for almost all values of 

x  and y . 

Comparing the perturbations  10
p  and  01

p when 1a  (and )~   we conclude that 

the effects of the pressure-dependence of viscosity and of compressibility compete with 

each other in that case.  At second order in ε, the dependence of  20
p  on y  is not only due 

to geometric effects but also due to the fluid’s inertia (as exhibited by terms involving the 

Reynolds number). At the order εδ,  11
p  depends on x  and y . It is a cubic in x  and a 

cubic in
2y  and in the aspect ratio α. For long channels ( 1 ) we neglect the terms that 

involve   and we find 

3)11( )1(
3

2
xp  , 

which is independent of y  and negative throughout the channel.  

Contour plots of the pressure field are presented in Figs. 4.8-4.11 for various values of 

and  . We choose Re=0 but now we choose 1   since in the expression (4.86), for 

1 , the y-dependence is negligible and thus no bending in the contours would be 
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observed. For 1  and 0  the pressure contours are almost vertical since  00
p  

depends only on x . The contours bend for larger values of  and  . The competing effects 

of compressibility and the pressure-dependence of viscosity discussed above are clearly 

visible in Fig. 4.11 where we have 2.0 , 0.01, 0.1, 0.2   (Re=0, α=1). In Fig. 4.11a    

( 2.0 01.0 ) the contours bend to the left since the positive term  
2

21
6

a
y   in 

 10
p  is larger than the term  

2
21

2

a
y  in  01

p . In Fig. 4.11b ( 2.0 , 1.0 ) the 

positive term  
2

21
6

a
y   in  10

p  is somewhat smaller than the term  
2

21
2

a
y  in 

 01
p  and the contours are almost vertical. In Fig. 4.11c ( 2.0 2.0 ) the positive 

term  
2

21
6

a
y   in  10

p  is smaller than the term  
2

21
2

a
y  in  01

p  and the 

contours bend to the right. 

 

Density 

The density is constant at zero-order. The deviations of order ε and 
2 are both decreasing 

functions of x  and y  which is expected since the fluid is decompressed as it moves 

downstream (for constant viscosity). The deviations of order  and order 
2  are zero. The 

deviation of order εδ is, thus, the first order where the effect of the pressure-dependence of 

the viscosity appear and it is an increasing function of x  and y . This means that the fluid 

is compressed due to the pressure-dependence of the viscosity. We therefore conclude that, 

as the fluid moves downstream, the compression due to the pressure-dependence of the 

viscosity slightly reduces the decompression caused by compressibility.  

As an interesting remark, when  ~ , at the exit of the channel ( 1x ) 

  2 2 21
1 where 1

2 3
y


     

 
      

 
 

and since 0
3












 we have 0  which is different from the case with constant 

viscosity where the corresponding value at the exit was  2 2 21
1 0

2
y      . 
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(a)  

 

(b) 

 

(c)  

Figure 4.8: Contours of pressure for δ=0.01 and ε=0.01, 0.1 and 0.2; Re=0, α=1. 
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(a) 

 

(b) 

 

(c)  

Figure 4.9: Contours of pressure for δ=0.1 and ε=0.01, 0.1 and 0.2; Re=0, α=1. 
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(a) 

 

(b) 

 

(c)  

Figure 4.10: Contours of pressure for δ=0.2 and ε=0.01, 0.1 and 0.2; Re=0, α=1. 
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(a) 

 

(b) 

 

(c)  

Figure 4.11: Contours of pressure for ε=0.2 and δ=0.01, 0.1 and 0.2; Re=0, α=1. 
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4.4.1 Volumetric flow rate and streamfunction 

The volumetric flow rate, 

  (4.88) 

is given by  

. (4.89) 

The streamfunction ψ(x,y), defined by  

 ,  

is found to be as follows: 

   

  (4.90) 

 

4.4.2 Mean Pressure Drop 

The mean pressure drop is a very useful quantity defined by 

  (4.91) 

which gives 

 

2 2 2 2

2 2 2

1 18 1 5 36 3044
1

2 35 2 2 3 35 13475

1 2 2 61 18

6 15 3 45 35

p Re Re Re

Re


     

    

   
            

   

   
        

   

 (4.92) 

When   : 

2 21 2 1 18
1

2 6 15 2 35
p a Re


  

   
          

   
 

   
1

0
,xQ x u x y dy 

         
2 2

2 22

35

3 18 2 1 2
1 1 1 1 1

2 35 2 5

Re
Q x x x x x

  
 

   
      

   
       

,y xu u
x y

 
   

 

 

         

       

        

2
2 2 2 2 2 2

2 2 2 2
2 2 2

2 2 2 4 6 2 2

2
22 2 2 2

1 3 Re 3 Re
3 1 5 1 5 1

2 280 140

Re
1 1 6579 1802 1589 168 1

8 431200 20

1 9 Re
3 1 3 1 9 11 3 . . .

2 35 120

y y y y y y y x

y y y y y y y y y

y y x y x y y y h o t
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0
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When   : 

2 2 2 21 18 1 5 36 3044
1

2 35 2 3 35 13475 2
p Re a a Re a Re


  
   

            
   

. 

Therefore, compared to the case of weakly compressible flow (see Taliadorou et al. 

(2009)) with constant viscosity the mean pressure drop increases by δ/2. In Fig. 4.12(a) we 

plot p  as a function of  for fixed 1.0  (Re=0, α=1). We see that p  increases 

monotonically as the dependence of viscosity on pressure increases, while the 

compressibility has a constant value. (The discontinuity at 045.0  is due to the fact that 

as the relative size of  and  changes we have to use different asymptotic expansions for 

p  as explained above.) In Fig. 4.12(b) we plot p  as a function of   for fixed 1.0  

(Re=0, α=1). We see that p  decreases monotonically as the compressibility increases, 

while the dependence of viscosity on the pressure has a constant value. (The discontinuity 

of the curve at 045.0  is due to the fact that as the relative size of  and   changes we 

have to use different asymptotic expansions as explained above.) 

By examining expression (4.92) we can again conclude that the effect of compressibility –

ε/2 acts opposite to the effect due to the pressure-dependence of viscosity, δ/2. When ε~δ 

the effects are two effects are almost cancelled out, when ε>>δ the mean pressure drop 

decreases and when ε<<δ the mean pressure drop increases as compared to the mean 

pressure drop for an incompressible, constant-viscosity flow. 

 

4.4.3. Validity of the asymptotic expansion 

We always need to ensure that the parameter values we use in our plots do not violate the 

assumptions of the asymptotic expansions of the solution. We therefore need to ensure that 

the coefficients of all powers of ε and δ are of order 1.  The values of α we consider are at 

most 1 since we are primarily interested in long channels. Therefore, we examine only the 

terms that involve the Reynolds number Re and obtain constraints on the value of Re so 

that the asymptotic expansions are valid. 

Considering expression (4.92) we need to ensure that:  

  
18

1
35

Re O so, approximately 
18

5
35

Re   so approximately 10Re  . 

  
36

1
35

Re O  so, approximately 
36

5
35

Re   and therefore, approximately 
5

Re


 . 
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  2 23044
1

13475
Re O  so, approximately 2 23044

5
13475

Re   and therefore, 

approximately 
2

Re


 . 

Therefore the second constraint on the Reynolds number is less stringent than the third 

constraint, and, thus, not needed. Combining the first and the third constraint we conclude 

that when 
5

1
  we need to ensure  

2
Re


  and when 

5

1
  we need to ensure that 

10Re  . (These constraints are respected in all the plots in Section 4.4.5.) 

 

(a) 

 

(b) 

Figure 4.12: The average pressure drop p  for: (a) ε=0.1 and varying δ and  (b) δ=0.1 

and varying ε; Re=0, α=1  
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4.5 Conclusions 

In the present work we derive second-order perturbation solutions for the planar isothermal 

Poiseuille flows of weakly compressible Newtonian liquids where the viscosity also 

weakly depends on the pressure. A linear equation of state is employed and the isothermal 

compressibility and the viscosity pressure coefficient are taken as the perturbation 

parameters. The no slip boundary condition is assumed along the wall. (The shear and bulk 

viscosities are assumed to be zero.) The primary unknown variables are perturbed in the 

present work and explicit analytical solutions for pressure, density and velocity are 

obtained up to the second order. The derivation of the solution of the axisymmetric flow is 

provided in the Appendix. Our results extend previous work on the weakly compressible 

flow with constant viscosity and also on the incompressible flow with pressure-dependent 

viscosity. The effects of compressibility and the pressure dependence of viscosity, aspect 

ratio and Reynolds number on the velocity and pressure fields are analysed and discussed. 

When the compressibility number and the viscosity-pressure coefficient are of the same 

order, the viscosity-pressure coefficient perturbs the velocity component in the flow 

direction at the second-order only. The transverse velocity is not affected by the viscosity’s 

pressure dependence at any order; it is only affected by compressibility. The pressure field 

is affected by compressibility and the viscosity’s pressure-dependence at both the first 

order and the second order, and these two effects compete with each other.  
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Chapter 5 

Summary and recommendations for 

future work 

 

In this thesis, we have solved three different steady, laminar Poiseuille flows of Newtonian 

fluids: (a) the incompressible flow with viscosity varying with pressure; (b) the weakly 

compressible flow with Navier slip at the wall assuming a linear equation of state; and, (c) 

the weakly compressible flow with viscosity with pressure dependent viscosity.  

In Chapter 2, we considered the unidirectional Poiseuille flow of an incompressible 

Newtonian fluid with viscosity that increases linearly with pressure. Under these 

assumptions we obtained semi-analytical solutions for the velocity and the pressure for the 

plane, the axisymmetric and the annular flows. The velocity and the pressure vary with αε 

where α is the aspect ratio of the channel and ε is the dimensionless pressure-dependence 

coefficient. We observe that as αε increases and approaches a critical value, the velocity 

which is independent of the axial coordinate, tends from a parabolic profile to a symmetric 

triangular one. The pressure, which depends on both the axial and the radial coordinate, 

increases exponentially as we move upstream. Thus, the pressure required to drive the flow 

increases rapidly with the length of the channel. At the inlet plane the pressure depends 

weakly on the radial coordinate for all values of αε but the dependence becomes stronger 

towards the outlet plane. This effect is more noticeable for higher values of αε. 

In Chapter 3, we obtained perturbation solutions for the plane and axisymmetric Poiseuille 

flows of a weakly compressible Newtonian fluid with wall slip. We assumed that slip 

obeys the linear Navier’s slip equation and the density obeys a linear equation of state and 

used a regular perturbation method with the dimensionless isothermal compressibility 

number ε as the perturbation parameter and the primary flow fields as the dependent 

variables. Solutions have been obtained up to second order. Our results reveal that slip 

weakens the y-dependence of the solution. The transverse velocity decreases with slip and 

takes it maximum value near the middle-plane of the wall and the axis of symmetry. The 

horizontal velocity in a compressible flow increases faster when slip appears, in a smaller 

range of values. In addition, we noted that when the flow becomes compressible, a 
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dependence on the horizontal coordinate appears which comes in contrast with the 

incompressible flow. Examining the effects of inertia we saw that when the Reynolds 

number obtains larger values for a flow in a short channel, the velocity increases slower 

compared to a small Reynolds number. This was not the case in a long channel. As for the 

pressure, we saw that it increases slower upstream when slip appears. As the flow becomes 

more compressible the required pressure drop decreases but this effect is weakened by the 

appearance of slip and by large values of the Reynolds number. Finally, we observed that 

the volumetric flow rate decreases faster with compressibility and larger values of the 

Reynolds number and this is more intense with slip. 

In Chapter 4, we obtained perturbation solutions for the plane and axisymmetric steady, 

laminar Poiseuille flows of a weakly compressible Newtonian fluid with viscosity that is 

also weakly dependent on the pressure. As before, the density and the viscosity vary 

linearly with the pressure. Due to the nature of the flow it was reasonable to perform a 

perturbation analysis in terms of two small numbers: the isothermal compressibility 

number ε and the viscosity-pressure coefficient δ. This choice gave a double expansion for 

the solution which allowed ε and δ to be decoupled. We analytically derived the terms of 

the expansion up to the second order in terms of the two parameters.  We then studied the 

combined effects of the compressibility and the viscosity. Our results extend previous 

work on the weakly compressible flow with constant viscosity and also on the 

incompressible flow with pressure-dependent viscosity. The effects of compressibility and 

the pressure dependence of viscosity, aspect ratio and Reynolds number on the velocity 

and pressure fields are analysed and discussed. When the compressibility number and the 

viscosity-pressure coefficient are of the same order, they perturb the velocity component in 

the flow direction at first- and second-order, respectively. The transverse velocity is not 

affected by the viscosity’s pressure dependence at any order; it is only affected by 

compressibility. The pressure field is affected by compressibility and the viscosity’s 

pressure-dependence at both the first order and the second order, and these two effects 

compete each other.  

The results of this thesis, gave rise to questions and ideas for future work: Possible 

directions are the following: 

(a) it would be interesting to study the flows of generalized Newtonian fluids with 

pressure-dependent material parameters, such as power law fluid with pressure-dependent 

consistency index and/or a Bingham fluid with pressure-dependent plastic viscosity and 

yield stress.  
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(b) It would be nice if the regular perturbation method developed in Chapter 3 be extended 

to Bingham fluids with or without slip at the wall. This flow is of great importance to waxy 

crude oil transport.  

(c) In addition to the density and the viscosity, the slip coefficient may also be taken as a 

function of pressure.  
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Appendix A 

Poiseuille flows with pressure- 

dependent viscosity and wall slip 

 

In this Appendix we provide the solutions for the steady, two-dimensional, plane 

isothermal Poiseuille flow of an incompressible Newtonian fluid with pressure-dependent 

viscosity under zero gravity and zero bulk viscosity presented in chapter 2, replacing the 

no-slip boundary condition with by a linear slip condition: 

 w wu  , (A.1) 

where w  is the wall shear stress,   is the constant slip coefficient, and wu  is the slip 

velocity. The limiting case   corresponds to the no-slip boundary. 

The governing equations are: 

Continuity equation 

 0
yx

uu

x y


 

 
 (A.2) 

x-momentum 

    
2 2

2 2
2

yx x x x x x
x y

uu u u u u up p p
u u p p

x y x x y x x y y x
   

           
            

             
 

  (A.3) 

y-momentum 

    
2 2

2 2
2

y y y y y y x
x y

u u u u u u up p p
u u p p

x y y x y y y x x y
   

           
                          

 

  (A.4) 

We assume that the viscosity dependence obeys the linear equation of state 

  0 1 p    . 
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In order to nondimensionalize all the above equations, we scale x  by the length of the 

channel L, y by the channel half-width H, η by the reference viscosity 0  and the 

horizontal velocity xu  by the mean velocity U at the exit, defined by 

 
M

U
HW

 , 

where M is the mass flow rate and W is  the unit length in the x-direction. The transversal 

velocity 
yu  is scaled by /UH L  and finally the pressure p  by 2

03 /LU H . The last scale 

is taken so that the dimensionless pressure gradient of the incompressible flow is equal to 1 

Using the above scales the dimensionless equations turn out to be:  

Continuity equation 

 0
yx

uu

x y


 

 
 (A.5) 

x-momentum 

 

 

 

2 2
2

2 2

2 2

3

2

x x x x
x y

yx x

u u u up
Re u u p

x y x x y

uu up p
p

x x y y x

  

  

     
      

       

     
    

      

 (A.6) 

y-momentum 

 

 

 

2 2

3 2 2

2 2

2 2

Re 3

2

y y y y

x y

y yx

u u u up
u u p

x y y x y

u uup p
p

x x y y y

   

  

      
               

     
    

      

 (A.7) 

Viscosity equation 

 1 p   , (A.8) 

where the dimensionless numbers  

H
a

L
  

0

0

HU
Re




  

*

0

2

B LU

H


   

are the aspect ratio of the channel, the Reynolds number and the isothermal 

compressibility, respectively. 
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The boundary conditions that complete the above equations are in their dimensionless form 

    ,0 0, 0,1xu
x x

y


 


 (A.9) 

      ,1 ,1 , 0,1x
x

u
x Bu x x

y


  


 (A.10) 

  0,0 0p   (A.11) 

 
1

0
1xu dy  , (A.12) 

where we use for simplicity  

 
0

H
B




 . 

Under the assumption of one-dimensional flow, 0yu  , the continuity equation is 

simplified to 

 0xu

x





. (A.13) 

The x-component of the momentum equation becomes  

    
2 2

2 2

2 2
3 2x x x x x

x

u u u u up p p
Reu p p

x x x y x x y y
    

         
        

         
 (A.14) 

and the y-component 

   23 0.xup p
p

y x y
 

 
  

  
 (A.15) 

From the continuity equation (A.13) we get that  x xu u y . Considering this, as well as 

the state equation (A.8), the x-momentum and the y-momentum are simplified to  

  
2

2
3 1 0x xd u dup p

p
x dy y dy

 
 

    
 

 (A.16) 

and  

 
23 0xdudp p

dy x dy



  


, (A.17) 

respectively. 
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From Eq. (A.17) we get that 

 

2

3

xdup p

y x dy

 


 
. 

When we substitute the above equation into Eq. (A.16) we obtain  

 

2

2

22 2

3
.

1
1

9

x

x

d u

p dy
A const

p x du

dy

  


   

   
  

 

, (A.18) 

where A is a constant that we need to determine.To solve the above equations we set for 

simplicity  /xu y f y    and / 3E  , and by using these, the second differential 

equation becomes  

 
 

 2 21

f y
A

E f y


 


. (A.19) 

The solution of the above equation is  

   11
tanh Ef y Ay c

E

    , 

which gives  

    1

1
tanhf y AEy c

E
   . (A.20) 

Using the symmetry condition  / ,0 0xu y x   , we get  0 0f   which gives that 1 0c  . 

Therefore, Eq. (A.20) becomes 

  
1

tanhxu
AEy

y E


 


. (A.21) 

Integrating the above equation we get  

   22

1
lnxu cosh AEy c

AE
      . 

By applying the slip condition (A.10) we get that  

    2 2

1 1
ln cosh tanhc AE AE

AE BE
      

and the horizontal velocity component turns out to be 
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   2 2

cosh
9 33

ln tanh
3

cosh
3

x

A
y

A
u y

AA B





  

  
          
    
    

. (A.22) 

To find the pressure we solve the first differential equation of (A.18) and we obtain 

     3
1

, 1
A x

p x y C y e




 
  

 
. (A.23) 

Differentiating p with respect to x and y we get that  

   3

3

A x
p A

C y e
x




 


 (A.24) 

and  

   3
1

A x
p

C y e
y











, (A.25) 

respectively. When we substitute the above derivatives into Eq. (A.17) and using (A.21) 

we get the following ODE: 

 
 

 
 tanh

C y
AE AEy

C y


 . 

The solution of this is  

    3 coshC y c AEy . 

Condition (A.11) gives  0 0C which leads to 3 1c   and the pressure turns out to be  

   3
1

, cosh 1
3

A x
A

p x y y e






  
   

  
. 

The constant A is determined by demanding that the volumetric flow rate is equal to unity. 

It turns out that A is the root of  

 
2 2

1

0
ln cosh ln cosh tanh 0.

3 3 3 3 9

A A A A A
y dy

B

               
           

        
  

Therefore the analytical solution is given by: 
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  2 2

cosh
9 33

ln tanh
3

cosh
3

x

A
y

A
u y

AA B





  

  
          
    
    

 

  3
1

, cosh 1
3

A x
A

p x y y e






  
   

  
,

 

where A is the solution of  

2 2
1

0
ln cosh ln cosh tanh 0

3 3 3 3 9

A A A A A
y dy

B

               
           

        
 . 
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Appendix B 

Perturbation solutions  

of axisymmetric Poiseuille flow with 

wall slip 

 

In this Appendix, we obtain the perturbation solutions up to the second order for the 

axisymmetric, steady, laminar, two-dimensional, isothermal Poiseuille flow of a weakly 

compressible Newtonian fluid with constant (pressure-independent) viscosity. We employ 

the isothermal compressibility as the perturbation parameter and derive analytically the 

perturbation solutions up to the second order. 

 

B.1 Governing Equations and Boundary conditions 

In this section, we derive the second order perturbation solution for the steady, two-

dimensional, axisymmetric isothermal Poiseuille flow of a compressible Newtonian fluid 

with constant viscosity. The governing equations under zero bulk viscosity and zero 

gravity are: 

the continuity equation, 

 
   1

0
z ru r u

z r r

  
 

 
 (B.1) 

r-momentum 

  
 2

2

1 1

3

rr r r z
r z r

ruu u u up
u u ru

r z r r r r z r r r z


 

           
           

              
 (B.2) 

z-momentum 

 
 2

2

1 1

3

rz z z z z
r z

ruu u u u up
u u r

r z z r r r z z r r z


 

           
           

              
 (B.3) 
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where p  is the pressure, z
u  is the axial velocity component, ru is the radial velocity 

component,   is the density and   is the constant viscosity. We assume that the fluid 

obeys a linear equation of state 

  0 1 p    , (B.4) 

where   is the constant isothermal compressibility,. We also assume that it follows a liner 

slip equation along the wall 

w rz wr R
u  


   , 

where R  is the channel radius,   is the slip parameter which is a constant and w
u  is the 

slip velocity. 

We solve the problem under the following boundary conditions  

          and,0 0 ,0 ,0 0 ,0 0, 0,
 

     
 

z z
r rz

u u
u z z z z z L

r r
   (B.5) 

    and, 0 , 0,


    r w rz wr R
u z R u z L    (B.6) 

  , 0p L R  (B.7) 

 
0

2 
R

z

M
ρu rdr

πR
. (B.8) 

For the nondimensionalisation of Eqs. (B.1)-(B.4), we scale z  by the length L  of the 

channel, r  by R,   by the reference density 0
  and the axial velocity z

u  by the mean 

velocity at the exit U, defined as: 

2

0

M
U

R 
 , 

where M is the mass flow rate. The radial velocity ru  is scaled by /UR L  and finally the 

pressure p  by 28 /LU R  so that the dimensionless pressure gradient of the 

incompressible flow with no-slip at the wall is equal to 1.  

Imposing the scales on the governing equations (B.1)-(B.4) and on the boundary conditions 

(B.5)-(B.8) we find that the  flow is governed by the following dimensionless equations 

and boundary conditions: 
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Continuity equation 

    
1

0r zr u u
r r z

 
 

 
 

 (B.9) 

r-momentum 

  
2 22 2

3 4

2

4 1
Re 8

3 3

r r r z
r z r

u u u up
u u ru

r z r r r r z r z

 
  

        
       

         
 (B.10) 

z-momentum 

  
22 2

2

1 4 1
Re 8

3 3

z z z z
r z r

u u u up
u u r ru

r z z r r r z z r r

 
 

           
          

           
 (B.11) 

Equation of state 

 1 p    (B.12) 

Boundary conditions 

    ,0 0 and ,0 0z
r

u
u z z

r


 


 (B.13) 

      and,1 0 ,1 ,1z
r z

u
u z z Bu z

r


  


 (B.14) 

  1,1 0p   (B.15) 

 
1

0
2 1zu rdr   (B.16) 

Dimensionless numbers 

 0

2

8
, , ,

RUR LU R
a Re B

L R

  


 
     (B.17) 

 

B.2 Perturbation method  

We consider the compressibility number ε as the perturbation parameter so the expansions 

for all primary variables are: 

 

       
       
       
       

0 0 22 3

0 1 22 3

0 1 22 3

0 1 22 3 .

z z z z

r r r r

u u u u O

u u u u O

p p p p O

O

  

  

  

     

   

   

   

   

 (B.18) 
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As in the plane flow, we substitute equations (B.18) into the governing equations (B.9)-

(B.12) and also into the boundary conditions (B.13)-(B.16) and we collect the terms of the 

same order in ε up to the second order. 

The equations up to the second order along with the respective boundary conditions are 

tabulated in Tables B.1-B3. 

 

Table B.1:  Zero-order equations and boundary conditions 

Continuity equation   

         0 0 0 01
0r zr u u

r r z
 

 
 

 
 (B.19) 

r -component of the momentum equation  

   
 

 
     

  
 0 0 0 00 2 22 2

0 0 0 03 4

2

4 1
Re 8

3 3

r r r z
r z r

u u u up
u u ru

r z r z r r r r z

 
  

       
                 

  

  (B.20) 

z -component of the momentum equation  

   
 

 
       

  
0 0 0 00 22 2

0 0 0 0

2

1 4 1
Re 8

3 3

Z Z z z
r z r

u u u u
u u r ru

r z z r r r z z r r

  
 

          
                       

 

 (B.21) 

Equation of state 

 
 0

1   (B.22) 

Boundary conditions 

 
   

 

   
0

0
and,0 0 ,0 0, 0,1z

r

u
u z z z

r


  


 (B.23) 

 
   

 

       
0

0 0
and,1 0 ,1 ,1 , 0,1z

r z

u
u z z Bu z z

r


   


 (B.24) 

  (0) 1,1 0p   (B.25) 

    1 0 0

0
2 1zu rdr    (B.26) 
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Table B.2:  First-order equations and boundary conditions 

Continuity equation 

 
                 0 1 1 0 0 1 1 01

0r r z zr u u u u
r r z

   
     
  

 (B.27) 

r -component of the momentum equation  

   
 

 
 

   
 

 
 

 
 

 
 

   
  

 

0 0 1 0 1 0
1 0 0 0 0 1 0 13 3

1 11 2 22 2
14

2

Re Re

4 1
8

3 3

r r r r r r
r z r r z z

r z
r

u u u u u u
u u u u u u

r z r r z z

u up a
ru

r z r r r r z

   




        
                  

    
            

     

 (B.28) 

z -component of the momentum equation  

 

   
 

 
 

   
 

 
 

 
 

 
 

     
  

0 0 1 0 1 0
1 0 0 0 0 1 0 1

1 11 22 2
1

2

Re Re

1 4 1
8

3 3

z z z z z z
r z r r z z

z z
r

u u u u u u
u u u u u u

r z r r z z

u up a
r ru

z r r r z z r r

   



        
                  

      
              

  (B.29) 

Equation of state 

 
 1 (0)p   (B.30) 

Boundary conditions 

 
   

 

   
1

1
and,0 0 ,0 0, 0,1z

r

u
u z z z

r


  


 (B.31) 

 
   

 

       
1

1 1
and,1 0 ,1 ,1 , 0,1z

r z

u
u z z Bu z z

r


   


 (B.32) 

 
   1

1,1 0p   (B.33) 

         
1 0 1 1 0

0
2 0z zu u rdr    (B.34) 
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Table B.3:  Second-order equations and boundary conditions 

Continuity equation 

 
                       0 2 1 2 0 0 2 1 1 2 011

0r r r z z zr u u u u u u
r dr z

     
       
  

 (B.35) 

r-component of the momentum equation  

 

   
 

 
 

   
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

   
  

 

0 0 1 0 1 0
2 0 0 1 0 1 0 13 3

2 1 0 0 1 0
0 0 1 2 0 1 2

2 22 2 22 2
24

2

Re Re

4 1
8

3 3

r r r r r r
r z r r z z

r r r r r r
r r r z z z

r z
r

u u u u u u
a u u a u u u u

r z r r z z

u u u u u u
u u u u u u

r r r z z z

u up a
ru

r z r r r r z

 






      
            

     
     

     

    
           

  (B.36) 

z-component of the momentum equation  

 

   
 

 
 

   
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

     

0 0 1 0 1 0
2 0 0 1 0 1 0 1

2 1 0 2 1 0
0 0 1 2 0 1 2

2 22 22 2

2

Re

1 4
8

3 3

z z z z z z
r z r r z z

z z z z r z
r r r z z z

z z

u u u u u u
a u u u u u u

r z r r z z

u u u u u u
u u u u u u

r r r z z z

u up a
r

z r r r z

 





        
                  

      
             

    
           

  21
rru

z r r

 
  

 

  

(B.37)

 

Equation of state 

 
 2 (1)p   (B.38) 

Boundary conditions 

 
   

 

   
2

2
and,0 0 ,0 0, 0,1z

r

u
u z z z

r


  


 (B.39) 

 
   

 

       
2

2 2
and,1 0 ,1 ,1 , 0,1z

r z

u
u z z Bu z z

r


   


 (B.40) 

  (2) 1,1 0p   (B.41) 

             
1 0 2 1 1 2 0

0
2 0z z zu u u rdr      (B.42) 
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B.3 The solution up to the second order 

The solution of the axisymmetric flow up to the second order is: 

      

       

  

 

* *2
2 2

*4
2 2 2 2 4 2 6

2

*3 *5
22 2 4 3 2

4

4 3 2 2 4 3 2

, 2 2 1
4 32

2 10 24 9 8 16 9 6 8 2 4
73728

3
2 1 10 72 240 192

512 196608

6 8 12 16 9( 6 8 )

z

B B
u r z B Br B Br z

B B

ReB
B B B B r B B r B B r

B

B ReB
B Br z B B B B

B B

B B B B r B B B r









       




              




         



        

   

 

4 4 3 6

2 *4
2 2 2 4 3 4

2

2 2 *7
5 4 3 2

5

5 4 3 2 2

5 4 3 2

2( 4 ) 1

32 48 4 7 48 27 4
294912

43 774 1328 42720 268800 460800
4529848300

200 5 80 360 96 4032 6912

100 33 462 2112 2736 3456

B B r z

a B
B B B B r B B r

B

Re B
B B B B B

B

B B B B B r

B B B B B



  

       
 

     

     

     

 

     

4

5 4 3 2 6

5 4 3 2 8 5 4 3 10 3

6912

1200 3 36 148 224 64

1425 10 32 32 168 8 16

r

B B B B B r

B B B B r B B B r O 



    

       


 

         
*5

2 2 2 2 2 2 4

2
1 4 10 24 5 32 48 4

1179648
r

ReB
u r r r B B B B r B B r

B


          

 
 

        

      

 

* *2 *4
2 3 2

3

2 *2 *3 *5
3 22 2 3 2

3

2 *4
2 2 2

2

2 2 *7
6 5

6

, 1 1 8 24 32 1
8 128 16384

1 1 8 24 32 1
768 1024 65536

29 168 288 9( 4 ) 1
147456

2 32 267
113246208

B B ReB
p r z z z B B B z

B

a B B ReB
r z B B B z

B

B
B B B B r z

B

Re B
B B B

B












         



 
          

 

       

    

 

     

4 3 2

3 *5
3 2 3 2 2

3

3 2 4 3 2 6 3

1332 3672 5184 3456 1

19 202 576 288 18 3 24 52 16
14155776

45 6 8 10 4

B B B z

ReB
B B B B B B r

B

B B B r B B r O





    

       


     


 

          
* *2 *4 2 *2

22 3 2 2 3

3
, 1 (1 ) 1 8 24 32 1 1

8 128 16384 768

B B ReB B
r z z z B B B z r O

B

 
   

 
              

 
 

Taking into consideration the limiting case B  (no-slip case) we see that the solution 

agrees with the one found in Taliadorou et al. (2009) and Venerus and Bugajsky (2010). 
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The volumetric flow rate, 

    
1

0
2 ,zz rQ u r z dr   (B.43) 

is given by  

            
* *2 *3 2 *3

22 2 3

2
.

8

3
1 1 1 4 8 1 3

128 2048 9216

B
z

B ReB B
Q z z B B z B O

B B

 
  

 
 
 

           

  (B.44) 

The mean pressure drop is obtained by  

        
1

0
0 1 0, 1,2       r r rdrp p p p p , (B.45) 

which gives 

 

 

   

   

* *2 *3
2

2

*3 *4 2 *4
2 2 2

2 2

2 2 *6
5 4 3 2 3

5

4 8
8 128 2048

4 8 49 300 576
1024 8192 294912

2 24 171 648 1080 864 .
14155776

B B ReB
p B B

B

B ReB B
B B B B

B B

Re B
B B B B B O

B


 

 





 
     

 


      




      



 

  (B.46) 

The stream function  ,x y  is defined by  

 and  
 

 
z rrru u

r z

 
  . (B.47) 

Solving Eqs. (B.47) , we find that the stream function is given by  

 

         

     

   

* *3
2 2 2 2 2 4

*4
2 2 2 2 4

2 *4
2 2 2 2 2 4

2

2 2 *6
2 4

4

2 1 4

1 4

, 2 6 5 12
16 36864

Re
6 5 12

147456

13 104 48 2 13 78 24 13 3
589824

43 602
11324620800

         


     



 
 

     

  

      

 

r r r r Br

r r r Br

r r r

r

B ReB
x y B Br B B

B B

B
B B

B

B
B B B B B B

B

Re B
B B

B


 








 

   

     

3 2

4 3 2 2

4 3 2 4 4 3 2 6

4 3 2 8 4 3 10 3

1080 38400

60 576

144

285 28

115200

100 5 120 1728

100 11 110 264 576 300 3 24 52 16

6 8 4

  

  



  




 

       

  

r

r r

r r O

B B

B B B B

B B B B B B B B

B B B B B 

 

  (B.48) 
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Appendix C 

Weakly compressible axisymmetric 

Poiseuille flow with pressure-

dependent viscosity 

 

In this appendix, we consider the axisymmetric, steady, laminar, Poiseuille flow of a 

weakly compressible Newtonian fluid with a pressure-dependent viscosity employing 

linear equations of state for the density and for the viscosity. We perturb all primary 

variables using the dimensionless isothermal compressibility ε and the dimensionless 

viscosity-pressure coefficient δ as the perturbation parameters and thus obtaining a double 

expansion of the solution in terms of ε and δ. 

 

C.1 Governing equations and boundary conditions 

 We assume as in chapter 4 that the flow is bidirectional with 0u   with no bulk viscosity 

and with zero gravity. The governing equations and boundary conditions that describe this 

problem are listed below: 

Density state equation  

  0 01 ( )p p     , (C.1) 

where κ is the constant isothermal compressibility which is a measure of the ability of the 

material to change its volume under applied pressure at constant temperature. This is 

defined by 

 

0 0
0 ,

1

p T

V

V p


 
   

 
,  

where V is the specific volume, ρ0 and V0 are respectively the density and the specific 

volume at the reference pressure, p0, and temperature, T0.  
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Viscosity equation  

  0 01 p p       , (C.2) 

where 0  
is the viscosity at atmospheric pressure and   is the temperature dependent 

pressure-viscosity coefficient. 

Continuity equation 

 
   1

0
r zr u u

r r z

  
 

 
 (C.3) 

r-momentum  

 

 

 

2 2

2

4 1 1

3 3

1 1 1
2

3 3

r r z r
r z r

rr z r z

u u u up
u u ru

r z r r r r r z z

ruu u u u

r r r r z z z r

 

 

         
         

           

       
       

        

 (C.4) 

z-momentum  

 

 

 

2

2

1 4 1 1

3 3

2 1
2

3 3

z z z z
r z r

z z r
r

u u u up
u u r ru

r z z r r r z z r r

u u u
ru

z z r r r r z

 

 

            
           

            

       
             

 (C.5) 

Boundary conditions 

      ,0 ,0 0, 0,z
r

u
z u z z L

r


  


 (C.6) 

      , , 0, 0,z ru z R u z R z L    (C.7) 

  , 0p L R   (C.8) 

 
0

2
R

z

M
ρu rdr

πR
 . (C.9) 

For the nondimensionalisation of Eqs. (C.1)-(C.9), we scale z by the length L of the 

channel, r by the radius of the channel R, ρ by the reference density 0 , the axial velocity 

zu  by the mean velocity at the exit U, 

2

0

M
U

R 
 , 
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where M is the mass flow rate and the radial velocity ru  is scaled by /UR L . The pressure 

p  by
0

28 /LU R which again is taken so that the dimensionless pressure gradient of the 

incompressible flow is equal to 1.  

As before the asterisks in the following equations denote the dimensionless quantities.  

 Applying the scales mentioned above on the state equations (C.1) and (C.2) we find that 

   * * * *0
0 0 0 2

8
1 1 1

LU
p p p

R


        

 
        

 
 

and 

   * * * *0
0 0 0 2

8
1 1 1

LU
p p p

R


        

 
        

 
,

 

where  

 0 0

2 2

3 3
and

LU LU

R R

 
    

are the dimensionless compressibility number and the dimensionless viscosity-pressure 

coefficient respectively. The continuity equation (C.3) nondimensionalizes as follows  

   

* * * * *

0 02 * * *

* * * * *

* * *

1
0

1
0.

r z

r z

UR U
Rr Uu u

R r r L L z L

r u u
r r z

   

 

    
     

    

 
 

 

 

The r-momentum equation (C.4) becomes  
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where 
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R

L
   and 0

0

RU
Re




  

are the aspect ratio of the channel and the Reynolds number respectively. 

Similarly from the z-momentum Eq. (C.5) we have that  
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,z ru uU UR
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so we find the nondimensionalised z-momentum equation: 
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Nondimensionalising the boundary conditions we get: 

 at the centreline   

    * * * *,0 0 ,0 0r r

UR
u z u z

L
  

 

and 

    
* *

* *

* *
,0 0 ,0 0z zu uU

z z
R r r

 
  

 
 

 at the boundary 

    * * * *,1 ,1 0r zu z u z   

 the pressure condition  

    * *0

2
8 1,1 0 1,1 0

LU
p p

R


    

 the mass flow rate  

 
1 1

* * * * * *

0
0 0

2 2 1z z

M
Uu Rrdr u rdr

R
  


    . 
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In summary, the flow is governed by the following dimensionless equations and boundary 

conditions where the stars have been dropped: 

Continuity equation 

    
1

0r zr u u
r r z

 
 

 
 

 (C.10) 

r-momentum 

 

 

 

2 2
3 2 2

2

2 2 2

4 1 1
8

3 3

1 1
2

3 3

r r z r
r z r

r z r z
r

u u u up
Re u u ru

r z r r r r r z z

u u u u
ru

r r r r z z z r

    

 
  

          
        

           

        
               

 

  (C.11) 

z-momentum 

 

 

 

22 2

2

2 2

4 1 4 1
8

3 3 3

2 1
2

3 3

z z z z
r z r

z z r
r

u u u up
Re u u r ru

r z z r r r z z r r

u u u
ru

z z r r r r z

 
  

 
 

             
           

            

       
             

 

  (C.12) 

Equation of state and viscosity equation 

 1 and 1p p        (C.13) 

Boundary conditions 

      ,0 ,0 0, 0,1z
r

u
z u z z

r


  


 (C.14) 

      ,1 ,1 0, 0,1z ru z u z z    (C.15) 

  1,1 0p   (C.16) 

 
1

0
2 1zρu rdr   (C.17) 

Dimensionless numbers 

 0 0 0

2 2

0

3 3
, , ,

LU LU RUR
Re

R R L

  
  


     (C.18) 

  

Stel
la 

Poy
iad

ji 



130 

C.2 Perturbation method  

We consider the dimensionless numbers ε and δ as the perturbation parameters and we 

perform perturbation on all primary variables , ,z ru u , andp   : 

 

           

           

           

           

       

00 10 01 20 02 112 2

00 10 01 20 02 112 2

00 10 01 20 02 112 2

00 10 01 20 02 112 2

00 10 01 20 02 2

. . .

. . .

. . .

. . .

z z z z z z z

r r r r r r r

u u u u u u u h o t

u u u u u u u h o t

p p p p p p p h o t

h o t

    

    

    

        

       

      

      

      

      

    
   2 11

. . .,h o t 

 (C.19) 

where h.o.t. stands for higher order terms which in this case are terms of 

 3 3 2 2, , ,O       and higher. 

We substitute the above expansions into the governing equations and the boundary 

conditions (C.10)-(C.17) and collect the terms of the same order in ε and δ, thus obtaining 

differential systems for which analytical solutions have been of derived for all primary 

variables uz, ur, p, ρ and η, for the zero-order and for the orders ε, δ, ε
2
, δ

2
and εδ. 

The systems of orders 1, ε, δ, ε
2
, δ

2 
and εδ, that are formed from the above equations and 

boundary conditions are presented in Tables (C.1)-(C.6). 
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Table C.1 Zero-order equations and boundary conditions  

  

Continuity equation 

 
         00 00 00 001

0r zr u u
r r z

 
 

 
 

 (C.20) 

r-component of the momentum equation  

 

   
 

 
 

 
    

   

              

00 00
00 00 003

00 0000 2 2
00 002 2

2

00
00 00 00 0000 00

2 2 2

4 1 1
8

3 3

1 1
2

3 3

r r
r z

z r
r

r
r z r z

u u
Re u u

r z

u up
ru

r r r r r z z

ruu u u u

r r r r z z z r

 

  

 
  

  
     

      
     

       

                       

 

                  (C.21) 

 z-component of the momentum equation  

 

   
 

 
 

     
  

   
  

     

00 00
00 00 00

00 0000 22 2
00

2

00 00 0000 00
002 2

4 1 4 1
8

3 3 3

2 1
2

3 3

z z
r z

z z
r

z z r
r

u u
Re u u

r z

u up
r ru

z r r r z z r r

u u u
ru

z z r r r r z

 

 


 
 

  
     

        
                 

       
               

 (C.22) 

State and viscosity equations 

 
   00 00

1 and 1    (C.23)

 
Boundary conditions 

 

 

       
00

00
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.24) 

 
         00 00

,1 ,1 0, 0,1z ru z u z z    (C.25) 

 
   00

1,1 0p   (C.26) 

          

   1 00 00

0
2 1zρ u rdr          (C.27) 
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Table C.2 Equations and boundary conditions of order ε 

Continuity equation 

 
                 00 10 10 00 00 10 10 001

0r r z zr u u u u
r r z

   
     
  

 (C.28) 

r-component of the momentum equation 

 

   
 

 
 

 
 

 
 

   
 

 
   

    
   

    

10 00 10 00
00 00 10 00 103

00 00 10
10 00 003

10 102 2
00 102 2

2

2
10 002

8

4 1 1

3 3

4 1 1

3 3

    
        

   
        

    
    

      

  
  

  

r r r r
r r z z

r r
r z

z r
r

r

u u u u
Rep u u u u

r r z z

u u p
Rep u u

r z r

u u
n ru

r r r r z z

n ru
r r r





 


   

   
  

     
  

 

           

00 002
2

2

10 10 00 0000 10
10 002 2

10 10 00 0000 10

2 2 2 2

1 1 1 1
2 2

3 3 3 3

 
 

   

        
        

         

       
                 

z r

r z r z
r r

r z r z

u u

r z z

u u u un n
ru ru

r r r r z r r r z

u u u un n

z z r z z r



 

   

 

  (C.29) 

z-component of the momentum equation 

 

   
 

 
 

 
 

 
 

   
 

 
   

 
   

  

 
 

10 00 10 00
00 00 10 00 10

00 00 10
10 00 00

10 1022 2
00 10

2

00
10

8

1 4 1

3 3

1

z z z z
r r z z

z z
r z

z z
r

z

u u u u
Re u u u u

r r z z

u u p
Re u u

r z z

u u
n r ru

r r r z z r r

u
n r

r r r

 

 

 

    
        

   
        

      
               

 
  

 
  

   
  

   
  

           

0022 2
00

2

10 0000 102 2
10 00

10 10 00 0000 10

2 2

4 1

3 3

2 1 2 1
2 2

3 3

z
z

z z
r r

z r z r

u
ru

z z r r

u un n
ru ru

z z r r z z r r

u u u un n

r r z r r z

 

 

 

    
          

       
      

        

       
                 

 (C.30) 
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Table C.2 (continued) 

State and viscosity equations 

      10 01 10
and 0p    (C.31) 

Boundary conditions 

 
 

       
10

10
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.32) 

 
         10 10

,1 ,1 0, 0,1z ru z u z z    (C.33) 

 
   10

1,1 0p   (C.34) 

 
        

1 00 10 10 00

0
0z zρ u ρ u rdr   (C.35) 
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Table C.3 Equations and boundary conditions of order δ 

Continuity equation 

 
                 00 01 01 00 00 01 01 001

0r r z zr u u u u
r r z

   
     
  

 (C.36) 

r-component of the momentum equation 

 

   
 

 
 

 
 

 
 

   
 

 
   

    
   

    

01 00 01 00
00 00 01 00 013

00 00 01
01 00 003

01 012 2
00 012 2

2

2
01 002

8

4 1 1

3 3

4 1 1

3 3

r r r r
r r z z

r r
r z

z r
r

r

u u u u
Rep u u u u

r r z z

u u p
Rep u u

r z r

u u
n ru

r r r r z z

n ru
r r r





 



    
        

   
        

    
    

      

  
  

  

   

   
  

     
  

 

           

00 002
2

2

01 01 00 0000 01
01 002 2

01 01 00 0000 01

2 2 2 2

1 1 1 1
2 2

3 3 3 3

z r

r z r z
r r

r z r z

u u

r z z

u u u un n
ru ru

r r r r z r r r z

u u u un n

z z r z z r



 

   

 
 

   

        
        

         

       
                 

 

  (C.37) 

z-component of the momentum equation 

 

   
 

 
 

 
 

 
 

   
 

 
   

 
   

  

 
 

01 00 01 00
00 00 01 00 01

00 00 01
01 00 00

01 0122 2
00 01

2

00
01

8

1 4 1

3 3

1

z z z z
r r z z

z z
r z

z z
r

z

u u u u
Re u u u u

r r z z

u u p
Re u u

r z z

u u
n r ru

r r r z z r r

u
n r

r r r

 

 

 

    
        

   
        

      
               

 
  

 
  

   
  

   
  

           

0022 2
00

2

01 0000 012 2
01 00

01 01 00 0000 01

2 2

4 1

3 3

2 1 2 1
2 2

3 3

z
z

z z
r r

z r z r

u
ru

z z r r

u un n
ru ru

z z r r z z r r

u u u un n

r r z r r z

 

 

 

    
          

       
      

        

       
                   

               (C.38)
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Table C.3 (continued) 

State and viscosity equations 

         01 01 10
0 and p                                        (C.39) 

Boundary conditions 

 
 

       
01

01
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.40) 

 
         01 01

,1 ,1 0, 0,1z ru z u z z    (C.41) 

 
   01

1,1 0p   (C.42) 

 
        

1 00 01 01 00

0
0z zρ u ρ u rdr   (C.43) 
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Table C.4 Equations and boundary conditions of order ε
2
 

Continuity equation 

 
                         00 20 10 10 20 00 00 20 10 10 20 001

0r r r z r zr u u u u u u
r r z

     
       
  

 (C.44) 

r-component of the momentum equation 

 

   
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

   
 

 
 

20 10 00 20 10 00
00 00 10 20 00 10 203

10 00 10 00 00
10 00 10 00 10 203

00 00
20 00 003

r r r r r r
r r r z z z

r r r r r
r r z z z

r r
r z

u u u u u u
Rep u u u u u u

r r r z z z

u u u u u
Rep u u u u u

r r z z z

u u
Rep u u

r z







      
            

     
          

  
      

 

    
   

    
   

    
   

   

20

20 202 2
00 202 2

2

10 102 2
10 102 2

2

00 002 2
20 002 2

2

2000

2

8

4 1 1

3 3

4 1 1

3 3

4 1 1

3 3

2

z r
r

z r
r

z r
r

r

p

r

u u
n ru

r r r r z z

u u
n ru

r r r r z z

u u
n ru

r r r r z z

un

r r

 

 

 








    
    

      

    
    

      

    
    

      


 

 

  
 

   
  

 

   
  

 

           

 

20
20

10 1010
102

00 0020
002

20 20 10 1000 10

2 2 2 2

020

2 2

1 1

3 3

1 1
2

3 3

1 1
2

3 3

z
r

r z
r

r z
r

r z r z

r

u
ru

r r z

u un
ru

r r r r z

u un
ru

r r r r z

u u u un n

z z r z z r

un

z





   

 

 
 

  

   
   

    

   
   

    

       
                 






   0 00

zu

z r

 
    

 

  (C.45) 
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Table C.4 (continued) 

z-component of the momentum equation 

 

   
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 
   

 

20 10 00 20 10 00
00 00 10 20 00 10 20

10 00 00 10
10 00 10 10 00

00 00 20
20 00 00

00

8

1

z z z z z z
r r r z z z

z z z z
r r z z

z z
r z

u u u u u u
Re u u u u u u

r r r z z z

u u u u
Re u u u u

r r z z

u u p
Re u u

r z z

n
r

 

 

 

      
            

    
         

   
        


   

  

 
   

  

 
   

  

20 2022 2
20

2

10 1022 2
10 10

2

00 0022 2
20 00

2

4 1

3 3

1 4 1

3 3

1 4 1

3 3

z z
r

z z
z

z z
z

u u
r ru

r r z z r r

u u
n r ru

r r r z z r r

u u
n r ru

r r r z z r r

 

 

 

      
              

      
               

      
              

   
  

   
  

   
  

                 

20 1000 102 2
20 10

00202
00

20 20 10 10 00 0000 10 20

2 2 2

2 1 2 1
2 2

3 3

2 1
2

3

z z
r r

z
r

z r z r z r

u un n
ru ru

z z r r z z r r

un
ru

z z r r

u u u u u un n n

r r z r r z r r z

 



  





       
      

        

  
  

   

          
                      

 
  
 

 

  (C.46) 

State and viscosity equations 

      20 10 20
and 0p    (C.47) 

Boundary conditions 

 
 

       
20

20
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.48) 

 
         20 20

,1 ,1 0, 0,1z ru z u z z    (C.49) 

 
   20

1,1 0p   (C.50) 

 
            

1 00 20 10 10 20 00

0
0z z zρ u ρ u ρ u rdr    (C.51) 
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Table C.5 Equations and boundary conditions of order δ
2
 

Continuity equation 

                          00 02 01 01 02 00 00 02 01 01 02 001
0r r r z r zr u u u u u u

r r z
     

       
    

(C.52) 

r-component of the momentum equation 

 

   
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

 
 

   
 

 
 

02 01 00 02 01 00
00 00 01 02 00 01 013

01 00 01 00 00
01 00 01 00 01 023

00 00
02 00 003

r r r r r r
r r r z z z

r r r r r
r r z z z

r r
r z

u u u u u u
Rep u u u u u u

r r r z z z

u u u u u
Rep u u u u u

r r z z z

u u
Rep u u

r z







      
            

     
          

  
      

 

    
   

    
   

    
   

   

02

02 022 2
00 022 2

2

01 012 2
01 012 2

2

00 002 2
02 002 2

2

0200

2

8

4 1 1

3 3

4 1 1

3 3

4 1 1

3 3

2

z r
r

z r
r

z r
r

r

p

r

u u
n ru

r r r r z z

u u
n ru

r r r r z z

u u
n ru

r r r r z z

un

r r

 

 

 








    
    

      

    
    

      

    
    

      


 

 

  
 

   
  

 

   
  

 

           

 

02
02

01 0101
012

00 0002
002

02 02 01 0100 01

2 2 2 2

002

2 2

1 1

3 3

1 1
2

3 3

1 1
2

3 3

z
r

r z
r

r z
r

r z r z

r

u
ru

r r z

u un
ru

r r r r z

u un
ru

r r r r z

u u u un n

z z r z z r

un

z





   

 

 
 

  

   
   

    

   
   

    

       
                 






   0 00

zu

z r

 
    

 

  (C.53) 
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Table C.5 (continued) 

z-component of the momentum equation 

 

   
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 
   

 

02 01 00 02 01 00
00 00 01 02 00 01 02

01 00 00 01
01 00 01 01 00

00 00 02
02 00 00

00

8

1

z z z z z z
r r r z z z

z z z z
r r z z

z z
r z

u u u u u u
Re u u u u u u

r r r z z z

u u u u
Re u u u u

r r z z

u u p
Re u u

r z z

n
r

 

 

 

      
            

    
         

   
        


   

  

 
   

  

 
   

  

02 0222 2
02

2

01 0122 2
01 01

2

00 0022 2
02 00

2

4 1

3 3

1 4 1

3 3

1 4 1

3 3

z z
r

z z
z

z z
z

u u
r ru

r r z z r r

u u
n r ru

r r r z z r r

u u
n r ru

r r r z z r r

 

 

 

      
              

      
               

      
              

   
  

   
  

   
  

                 

02 0100 012 2
02 01

00022
00

20 20 01 01 00 0000 01 02

2 2 2

2 1 2 1
2 2

3 3

2 1
2

3

z z
r r

z
r

z r z r z r

u un n
ru ru

z z r r z z r r

un
ru

z z r r

u u u u u un n n

r r z r r z r r z

 



  





       
      

        

  
  

   

          
                      

 
  
 

 

  (C.54) 

State and viscosity equations 

      02 02 01
0 and p    (C.55) 

Boundary conditions 

 
 

       
02

02
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.56) 

 
         02 02

,1 ,1 0, 0,1z ru z u z z    (C.57) 

 
   02

1,1 0p   (C.58) 

 
            

1 00 02 01 01 02 00

0
0z z zρ u ρ u ρ u rdr    (C.59) 
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Table C.6 Equations and boundary conditions of order εδ 

Continuity equation 

 

                

                

00 11 01 10 10 01 11 00

00 11 01 10 10 01 11 00

1

0

r r r r

z z z z

r p u p u p u p u
r r

p u p u p u p u
z

    
 


    


 (C.60) 

r-component of the momentum equation 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 

11 10 01 00
00 00 01 10 113

11 10 01 00
00 01 10 11

10 00 10 00
01 00 10 00 103

01
10 00 013

r r r r
r r r r

r r r r
z z z z

r r r r
r r z z

r r
r r

u u u u
Rep u u u u

r r r r

u u u u
u u u u

z z z z

u u u u
Rep u u u u

r r z z

u u
Rep u u

r







    
      

   
        

    
         

 
 



 
 

 
 

 

   
 

 
   

    
   

    
   

00 01 00
00 01

00 00 11 1111 2 2
11 00 00 00 113 2 2

2

10 102 2
01 102 2

2

4 1 1
8

3 3

4 1 1

3 3

r r
z z

r r z r
r z r

z r
r

u u
u u

r z z

u u u up
Rep u u n ru

r z r r r r r z z

u u
n ru

r r r r z z

  

 

  
      

         
                      

    
    

      

    
   

    
   

   
  

     
  

 

01 012 2
10 012 2

2

00 002 2
11 002 2

2

11 11 10 1000 01
11 102 2

4 1 1

3 3

4 1 1

3 3

1 1 1 1
2 2

3 3 3 3

z r
r

z r
r

r z r z
r r

u u
n ru

r r r r z z

u u
n ru

r r r r z z

u u u un n
ru ru

r r r r z r r r r z

 

 

 

    
    

      

    
    

      

       
      

        

   
  

     
  

 

           

     

01 01 00 0010 11
01 002 2

11 11 10 1000 01

2 2 2 2

01 0110 1

2 2 2

1 1 1 1
2 2

3 3 3 3

r z r z
r r

r z r z

r z

u u u un n
ru ru

r r r r z r r r z

u u u un n

z z r z z r

u un n

z z r

 

   

  

 
 
 

        
       

         

       
                 

   
       

     00 001

2 r zu u

z z r

  

     

 

  (C.61) 
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Table C.6 (continued) 

z-component of the momentum equation 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
 

 
 

 
 

 
 

   
 

 
 

11 10 01 00
00 00 01 10 11

11 10 01 00
00 01 10 11

10 00 00 10
01 00 10 10 00

01 00
10 00 01

z z z z
r r r r

z z z z
z z z z

z z z z
r r z z

z z
r r

u u u u
Re u u u u

r r r r

u u u u
u u u u

z z z z

u u u u
Re u u u u

r r z z

u u
Re u u
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01 00
00 01

00 00 11
11 00 00

12 1122 2
00 11

2

10 1022 2
01

2

8

1 4 1
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z z
z z

z z
r z

z z
r

z z

u u
u u

r z z

u u p
Re u u

r z z

u u
n r ru

r r r z z r r

u u
n r

r r r z z r
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10 01

2

00 0022 2
11 00

2

11002 2
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1 4 1

3 3

1 4 1
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2 1 2
2

3

z

z z
r

z z
z

z
r

ru
r

u u
n r ru

r r r z z r r

u u
n r ru

r r r z z r r
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ru

z z r r
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01 0010 112 2
01 00

11 11 10 1000 01

2 2

01 0110

2

1
2

3

2 1 2 1
2 2

3 3

z
r

z z
r r

z r z r

z r

un
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z z r r

u un n
ru ru

z z r r z z r r
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r r z r r z
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     00 0011

2z ru un

r r z


  
      

 (C.62) 

State and viscosity equations 

 
       11 01 11 10

andp p    (C.63) 
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Table C.6 (continued) 

Boundary conditions 

 
 

       
11

11
,0 ,0 0, 0,1z

r

u
z u z z

r


  


 (C.64) 

 
         11 11

,1 ,1 0, 0,1z ru z u z z    (C.65) 

 
   11

1,1 0p   (C.66) 

 
                

1 00 11 01 10 10 01 11 00

0
0z z z zρ u ρ u ρ u ρ u rdr     (C.67) 

 

C.2.1 Zero-order solution 

From Eqs. (C.23) we have that  

    00 00
1 and 1   . (C.68) 

Assuming that 
 00

0ru  , the continuity equation and the r- momentum equations, when 

integrated with respect to z  and r, give respectively: 

 
     

00
00 00

0z
z z

u
u u r

x


  


, 

 
     

00
00 00

8 0
p

p p z
r


   


. 

The z- momentum equation simplifies to 

 
   0000

1
8 zup

r A
z r r r

  
      

, (C.69) 

where A is an unknown constant. Integrating the first ODE of Eq. (C.69) twice, we get  

 
 00 2

1 2
4

z

A
u r c log r c   , (C.70) 

and integrating the first ODE of Eq. (C.69) we have that 

 
   00

31
8

A
p z c    , (C.71) 

where 1 2 3, , ,A c c c  are constants to be determined. 
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Conditions 
   00

,0 / 0zu z r    and 
   00

1,1 0p   give 1 3 0c c  . The no-slip condition 

and the mass flow rate condition give respectively  

 
2 20 and 1

4 8

A A
c c    . (C.72) 

The solution of the system of equations (C.72) is 8A    and 2 2c  . We substitute 

constants 1 2, ,A c c  and
 3and c

 
into Eqs.(C.70) and (C.71) and we find that  the zero-order 

solution is: 

 

   
 

 

 

 

00 2

00

00

00

00

2 1

0

1

1

1

z

r

u r

u

p z





 



 





 

           (C.73) 

C.2.2 Solution of order ε 

From equations (C.31) we get that 

 
     10 00 10

1 and 0p z     , (C.74) 

and when we substitute all the known quantities into the continuity equation we find that 

      10 10 00
0z zu u

z



 


.

 

We assume that the radial velocity component is equal to zero: 
 10

0ru   and integrating the 

above with respect to z and using 
 10

1 z    we find that the horizontal velocity is 

       10 22 1 1zu r z F r     , (C.75) 

where  F r  is an unknown function. 

Using all the necessary quantities from Eq. (C.73) and Eqs. (C.74) the r momentum 

equation in Eq. (C.29) becomes  

 
   1010 22

8 0
3

zup a

r r z


  

  
 

and by integration with respect to r it gives 
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102

10

12

zua
p G z

z


 


, 

where  G z  is an unknown function to be determined. Substituting Eq. (C.75) we find  

     
2

10 21
12

a
p r G z   . 

Substituting all the known quantities in the z-momentum equation from Eq. (C.30) we 

obtain  

 
   

 
 10 1010

00 00 1
8z z

z

u up
Reu r

z z r r r
 

   
        

 

         
2

2 1
4 1 8 8 1Re r rF r G z z A

r r



      


, (C.76) 

with A being a constant that we will determine. From the first ODE of (C.76) 

     
2

2 1
4 1Re r rF r A

r r



  


, 

we have 

     
2

21
4 1rF r Re r A

r r



   


. (C.77) 

Integrating Eq. (C.77) we find  

  
5

3 12
3 2

cr A
F r Re r r r

r


 
      

 
, (C.78) 

where c1 is an unknown constant. From the boundary condition  
   10

,0 / 0zu z r    we 

get  0 0F  , and so 1 0c  . Integrating Eq. (C.78) we find  

    2 4 6 2

218 9 2
18 4

Re A
F r r r r r c


     , (C.79) 

with c2 being an unknown constant. The condition 
   10

,1 0zu z  gives  1 0F  so we get  

 
2

11

4 18

A Re
c


  . (C.80) 

From Eq. (C.35) we get  
1

0
F r rdr  and this leads to 
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2

13

8 36

A Re
c


  . (C.81) 

The solution of the system of Eqs. (C.80) and (C.81) is  

 
22 and

9

Re
A Re c


   . (C.82) 

Integrating the second ODE of (C.76) gives  

     
2

3

1
1 1

2 8

A
G z z z c      , 

where c3 is an unknown constant The condition for the pressure    10
1,1 0p   leads to 

 1 0G   and we find that 3 0c  . 

Therefore the solution of order ε is: 

  

       
 

       
 

 

10 2 2 2 4

10

2
210 2

10

10

2 1 1 1 2 7 2
18

0

1
1 1 1

2 4 12

1

0

x

y

Re
u r z r r r

u

Re
p z z r

z



 





       



      

 



  

              (C.83) 

 

C.2.3 Solution of order δ 

Eqs. (C.39) gives 

 
     01 01 00

0 and 1p z     . (C.84) 

The continuity equation in Eq. (C.36) becomes  01
/ 0zu z    and under the assumption 

that  01
0ru 

 
we integrate

 
the continuity equation to find 

       01 01

z zu u r F r  ,

 

where  F r  is an unknown function to be determined. 

The r-momentum in Eq. (C.37)becomes  
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     0001 01

28 0zup

r z r




 
  

  
,

 

and by integrating the above equation with respect to r we find  

     
2

01 21
4

p r G z


    ,

 

with  G z  being an unknown function. 

The z-momentum simplifies to 

 
 

 
 

 
 01 0001

00 011 1
3 0z zu up

r r
z r r r r r r

 
      

                
, (C.85) 

and from this we get the two following ODEs 

       
1

8 8 1rF r G z z A
r r


    


, (C.86) 

where A is an unknown constant. Integrating twice we find that the solution of the first 

ODE of Eq. (C.86) is 

   2

1 2
4

A
F r r c log r c   , (C.87) 

where 
1c  and 

2c  are unknown constants. Integrating the second ODE we find 

      
2

3

1
1 1

2 8

A
G z z z c     . (C.88) 

Applying the boundary condition    01
,0 / 0zu z r    we get  0 0F   and imposing this 

condition on Eq. (C.87) we find that 1 0c  . The boundary condition    01
,1 0zu z   when 

applied to Eq. (C.87) gives  1 0F  . Applying the mass flow rate condition gives 

  
1

0
0F r rdr  . 

 These two conditions give respectively 

2 20 and 0
4 8

A A
c c    . 

The solution of the above system is 2 0A c  , so we conclude from Eq. (C.87) that  F r  

and therefore the horizontal velocity component is equal to zero. 
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The condition for the pressure gives  1 0G  and from this we find that 3 0c  . 

Therefore, the solution of order δ is  

 

 

 

     
 

 

01

01

2
201 2

01

01

0

0

1
1 1

2 4

0

1

z

r

u

u

p z r

z











   



 

  

                          (C.89) 

C.2.4 Solution of order ε
2
 

As we can see from equation (C.47) the viscosity in this order is equal to zero and 

therefore does affect the flow. Αs expected the solution of order ε
2
 is the same as the 

solution of order ε
2
 in Taliadorou et al. (2009), so only the basic steps of the solution are 

presented. Here we assume that the radial velocity component in a function of r instead of 

being equal to zero so we have 

      20 20

r ru u r . (C.90) 

From Eqs. (C.47) we obtain 

          
2

220 10 21
1 1 1

2 4 12

Re
p z z r

 
          (C.91) 

and  

 
 20

0  . 

The continuity equation (C.44) becomes  

                 00 20 00 20 10 10 20 001
0r z r zr u u u u

r r z
   

 
   

 
. 

Integrating with respect to x we get  

                
2

2220 202 4 6 21
3 1 1 7 9 2 1 1 1

18 6
z r

Re
u r z r r z ru z r F r

r r

 
            


,(C.92) 

where  F r  is an unknown function. Conditions  

    
 

 
20

20
,1 0 and ,0 0z

z

u
u z z

r


 


 

give respectively  
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              20 20

1 0

1 1
1 1 0 and 1 0 0r r

r r

z ru F z ru F
r r r r r 

   
      

   
 (C.93) 

and in order for these to apply for every z in our domain we must have that  

          20 20

10

1 1
0 and 0 1 0r r

rr

ru ru F F
r r r r r 

   
    

   
. (C.94) 

The r-momentum equation (C.45) becomes  

 
    

 2020 2
00 202 4 1 1

8 0
3 3

z
r

up
ru

r r r r r z
 

    
     

      

 

and integrating the above with respect to r we find  

            
2 3 2

20 202 4 6 1
1 1 7 9 2

4 432 8
r

Re
p r z r r ru G z

r r

   
         


, (C.95) 

with  G z  being an unknown function. The x-momentum in Eq. (C.46) becomes 

 

   
 

 
 

 
 

   
 

 
 

   

00 20 10 10
00 20 00 10 10 00

20 2020 22
00

2

1 4
8

3

z z z z
r z z z

z z

u u u u
Re u u u Re u

r z z z

u up
n r

z r r r z

   



    
         

    
            .

 

 

 (C.96) 

Eqs. (C.91)-(C.96) are the same as those found in Taliadorou et al. (2009) so we 

immediately have the solution of order ε
2
:

  

          

 

     

            

   

2
220 2 2 4 2

2 2
2 4 6 8

220 2 2

2 2 2 3
3 220 2 2 2 4

220

3
2 1 1 1 7 2 1 1 27

2 12 144

43 957 2343 1257 168
43200

1 4
36

1
1 1 29 9 1 1 19 35 10

2 2 36 27 432

1
1 1

2 4


        




     



  

 
             

 

   

z

r

Re
u r z r r z r

Re
r r r r

Re
u r r r

Re Re Re
p z z r z r r r

Re
z

 





   


    
 

2
2

20

1
12

0

  



z r




 

               (C.97) 
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C.2.5 Solution of order δ
2
 

From the equations of state in Eq.
 
 (C.55) we find that 

 
 02

0   (C.98) 

and  

        
2

202 01 21
1 1

2 4
p z r


      . (C.99) 

From the continuity equation (C.52) is simplified to  

          00 02 00 021
0r zr u u

r r z
 

 
 

 
. (C.100) 

We assume that the radial velocity is a function of r so we have  

      02 02

r ru u r  (C.101) 

and when we integrate Eq. (C.100) with respect to r the solution of Eq. (C.100) for the 

horizontal velocity component is 

        02 021
1z ru ru z F r

r r


  


, (C.102) 

where  F r  is an unknown function. Conditions    02
,1 0zu z  and    02

,0 / 0zu z r    

give respectively  

              02 02

1 0

1 1
1 1 0 and 1 0 0r r

r r

z ru F z ru F
r r r r r 

   
      

   
 

  (C.103) 

and in order for these to apply for every z in our domain we must have that  

          02 02

10

1 1
0 and 0 1 0r r

rr

ru ru F F
r r r r r 

   
    

   
. (C.104) 

The r-component of the momentum equation in Eq. (C.53) is simplified to 

 
    

     02 0002 022
00 022 24 1 1

8 0
3 3

z z
r

u up n
n ru

r r r r r z z r
 

      
      

        
.

 

We solve the above equation for p
(02)

 by integrating with respect to r to find  

 
    

   
   

02 022 2 2
02 02 001

6 24 8

z
r z

u n
p ru u G z

r r z z

   
   

  
, (C.105) 
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with  G z  being an unknown function. By replacing all the known quantities into Eq. 

(C.105) we get  

          
2 2

02 02 21
1 1

8 4
rp ru r z G z

r r

 
    


. (C.106) 

By replacing all the known quantities, the z-component of the momentum equation is 

simplified to  

 

   
 

 
   

 
 

 
     

00 02 0202
00 02 00 00

00 0002
02

1
Re 8

1

z z z
r z

z z

u u up
u u n r

r z z r r r

u un
n r

r r r r r

 
      

                

   
       

 (C.107) 

By substituting all the known quantities into Eq. (C.107) results in  

 

         

        

02 022 2 2

2 02

1 1
4 2 1 2

1 1
8 4 1 1

r r

r

Re ru Re r ru rF r r
r r r r

G z z r ru z
r r r r r

  
 

     
 

     
      

    

 (C.108) 

In order to be able to separate variables we demand that the last term of Eq. (C.108) is a 

scalar multiple of  1 z  therefore we set  

 
  021 1
rr ru

r r r r r


     
  

    
, (C.109) 

with γ being an unknown constant. By integrating Eq. (C.109) once, we get  

 
  02 2

1

1

2
rr ru r c

r r r

  
  

  
, (C.110) 

where 1c  is an unknown constant. Applying the condition  

   02

0

1
0r

r

ru
r r r



  
 

  
, 

we find 1 0c  . By integrating Eq. (C.110) twice, we get  

   02 2

2

1

4
rru r c

r r


 


 (C.111) 

and 
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  02 4 22
3

16 2
r

c
ru r r c


   , (C.112) 

where 2c  and 3c  are unknown constants. Applying the boundary condition    02
0 0ru z,   

on Eq. (C.112) we get 
3 0c  and applying the conditions 

 
      02 02

1

1
,1 0 and 0r r

r

u z ru
r r 


 


, 

we get 

 
2 20 and 0

8 4
c c

 
    , (C.113) 

respectively. Solving the system in Eq. (C.113) we obtain 
2 0c   , thus the radial 

velocity component is equal to zero: 

 02
0ru  .  

Since the radial velocity component is equal to zero, Eq. (C.108) is simplified to  

       
22 2 1

2 8 4 1r rF r G z z A
r r




      


, (C.114) 

where A is an unknown constant. Integrating the first ODE of Eq. (C.114) twice with 

respect to r we find 

  
2

4 2

4
2 2

A
rF r r r c


   

 

and 

  
2

4 2

5
8 4

A
F r r r c


   , (C.115) 

where 4c , and 5c   are unknown constants. Imposing the condition  0 0F   we get that 

4 0c   and imposing the condition  1 0F   we get  

 
2

5
2 4

A
c


  . (C.116) 

The mass flow rate condition (C.59) yields the condition  
1

0
0F r rdr   which, when 

imposed to Eq. (C.115) leads to  
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2

5
8 24

A
c


  . (C.117) 

The solution of the system of Eqs. (C.116) and (C.117) is 
22

3
A


  and 

2

5
24

c


 . So, we 

find that  

       
2

02 2 21 1 3
24

zu F r r r


    . 

The solution of the second ODE of Eq. (C.114) is  

      
3

6

1
1 1

6 8

A
G z z z c     , (C.118) 

where 6c  is an unknown constant. Applying the condition    02
1,1 0p   on Eq. (C.115) 

we get  1 0G  . Applying this on Eq. (C.118) we find that 6 0c  . Finally, from Eqs. 

(C.118)and (C.106) we find that  

       
2

302 21
1 2 3 1

6 12
p z r z


     . 

Hence the solution of order δ
2
 is given by 

    
 

      

 

     

2
02 2 2

02

2
302 2

02

2
202 2

1 1 3
24

0

1
1 2 3 1

6 12

0

1
1 1

2 4

z

r

u r r

u

p z r z

z r










  



    



   

           

            (3.119) 

C.2.6 Solution of order εδ 

We assume that      11 11

r ru u r . From the equation of state and the equation of viscosity in 

Eq.
 
 (C.63) we find that 

 
     

2
211 21

1 1
2 4

z r


      (C.120) 

and  
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2

211 21
1 1 1

2 4 12

Re
z z r

 
        . (C.121) 

From the continuity equation we get  

 
         11 11 11 001

0r z zru u u
r r z


 

  
 

. (C.122) 

Integrating equation (C.122) with respect to z we obtain  

 
           11 11 00 111

1z z ru u ru z F r
r r




    


. (C.123). 

Substituting  00

zu  and 
 11

  from Eq. (C.73) and Eq. (C.120) we find  

             
2

2211 112 21
1 1 1 1

2
z ru r z ru z r F r

r r


        


. (C.124) 

Conditions    11
,1 0zu z  and 

 

 
11

,0 0zu
z

r





give respectively  

              11 11

1 0

1 1
1 1 0 and 1 0 0r r

r r

z ru F z ru F
r r r r r 

   
      

   
 

  (C.125) 

and in order for these to apply for every z in our domain we must have that  

          11 11

10

1 1
0 and 0 1 0r r

rr

ru ru F F
r r r r r 

   
    

   
. (C.126) 

The r-component of the momentum equation in Eq. (C.61) is simplified to 

 
    

 
 

 

       

11 1011? 2 22
00 11 012

10 0001 11

2 2

4 1 1
8

3 3 3

0

z z
r

z z

u up
n ru n

r r r r r z r z

u un n

z r z r




 

     
     

        

  
  

   
 

We solve the above equation for p
(11)

 by integrating with respect to r to find  

 
    

   
       

11 102 2 2 2 2
11 11 10 001

1
6 24 24 8 8 4

z z
r z z

u u Re
p ru u z u G z

r r z z

        
            

. 

  (C.127) 

By replacing all the known quantities in Eq. (C.127) we get  
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2 2 3

11 112 4 62 1 Re
1 1 7 9 2

2 8 144
rp r z ru r r G z

r r

  
        


. (C.128) 

The z-component of the momentum equation it is simplified to  

 

   
 

 
   

 
   

 
 

 
         

11 11 12 1111 22
00 00 00 00

2

10 00 10 0001 112
01 11

1 4
Re 8

3

1 1 4

3

z z z z
r z

z z z z

u u u up
u u n r

r z z r r r z

u u u un n
n r n r

r r r r r r z z r r


 



        
                     

         
                   

 

which by substituting all the known quantities results in  

 

           

          

2
11 112 2

2 11

1 1 2
4 2 1 7 13

3

1 1
16 1 8 1 4 1

r r

r

Re ru Re r ru rF r r
r r r r

z G z r ru z Re z
r r r r r


 



 
      

 

     
       

    

  

  (C.129) 

In order to be able to separate variables we demand that the terms involving both r and z 

are scalar multiples of  1 z  therefore we set  

 
  021 1

4rr ru Re Re
r r r r r

  
     

   
    

, (C.130) 

with γ being an unknown constant.  

By integrating Eq. (C.130) once we get  

 
    11 2

1

1
4

2
r

Re
r ru r c

r r r




  
   

  
, (C.131) 

where 1c  is an unknown constant. Applying the condition  

   11

0

1
0r

r

ru
r r r



  
 

  
, 

we find 1 0c  . By integrating Eq. (C.131) twice we get  

     11 2

2

1
4

4
r

Re
ru r c

r r





  


 (C.132) 

and 

    11 4 22
34

16 2
r

cRe
ru r r c


    , (C.133) 
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where 2c , and 3c  are unknown constants.  

Applying the boundary condition    11
0 0ru z,   on Eq. (C.133) we get 

3 0c  and applying 

the conditions 

 
      11 11

1

1
,1 0 and 0r r

r

u z ru
r r 


 


, 

we get 

    2 24 0 and 4 0
8 4

Re Re
c c

 
       , (C.134) 

respectively. Solving the system in Eq. (C.113) we obtain 4    and 
2 0c  , thus the 

radial velocity component is equal to zero: 

 11
0ru  . 

Since the radial velocity component is equal to zero, Eq.(C.108) is simplified to  

           
2

222 1
7 13 16 1 8 4 1

3
r rF r z G z Re z A

r r





        


, (C.135) 

where A is an unknown constant. 

Integrating the first ODE of Eq. (C.114) twice with respect to r we find 

  
2 2 4

2

4

14

3 2 2 2

r r A
rF r r c

  
     

   

and 

    
2

2 4 2

5

7
2

12 4

A
F r r r r c


    , (C.136) 

where 4c , and 5c  are unknown constants.  

Imposing the condition  0 0F   we get that 4 0c   and imposing the condition  1 0F   

we get  

 
2

5

7

4 12

A
c


  . (C.137) 

The mass flow rate condition yields the condition  
1

0
0F r rdr   which, when imposed to 

Eq. (C.136) leads to  
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2

5

7

8 18

A
c


  . (C.138) 

The solution of the system of Eqs. (C.137) and (C.138) is 
214

9
A


  and 

2

5

7

36
c


  . 

So, we find that  

        
2

211 2 2 21 1 1 23 3
72

zu r z r r


       . 

The solution of the second ODE of Eq. (C.135) is  

        
3 2

6

2
1 1 1

3 4 8

Re A
G z z z z c


        , (C.139) 

where 6c  is an unknown constant.  

Applying the condition    11
1,1 0p   on Eq. (C.128) we get  1 0G   and from Eq. 

(C.139) we find that 6 0c  .  

Finally combining Eqs. (C.128) and (C.139) we find that  

            
2 3

3 211 2 2 2 42 Re 2
1 1 4 3 1 1 7 6 2

3 4 9 144

Re
p z z r z r y y

  
            .

 

Finally summarizing we have that the solution of order εδ is  

 

       
 

        

  

     

       

2
211 2 2 2

11

2
3 211 2

3
2 2 4

2
211 2

2
211 2

1 1 1 23 3
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2 Re 2
1 1 4 3 1

3 4 9

1 7 6 2
144

1
1 1
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1
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2 4 12

z
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u r z r r

u

p z z r z

Re
r y y

z r

Re
z z r



 






 


      



       

   

   

      

  

(C.140) 
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C.3 The solution up to the second order 

Combining the solutions of zero-order and of orders ε, δ, ε
2
, δ

2 
and εδ, we find that the 

perturbation solution that includes these orders is given by: 

the perturbation solution is as follows: 

       

        

 

        

2 2 2 4

2
22 2 2 4 2

2 2
2 4 6 8

2 2
22 2 2 2 2

2 1 1 2 1 2 7 2
18

3
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43 957 2343 1257 168
43200
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u r r z r r

Re
r z r r z r

Re
r r r r

r r r z r h o t
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The volumetric flow rate, 
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is given by  
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The mean pressure drop for axisymmetric Poiseuille flow of a compressible Newtonian 

fluid, defined by  
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0 1 2 0, 1,     p p p p z p z rdr  (C.143) 

is: 
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 (C.144) 

For the axisymmetric Poiseuille flow, the average Darcy friction factor, defined by 
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gives  
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