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Abstract

There has been a considerable recent interest in measuring dependence by employing

the concept of distance covariance function, a new and appealing measure of dependence

for random variables, introduced by Székely et al. (2007). This tool has been recently

extended to time series analysis by Zhou (2012), but since then a limited number of works

are discussing its properties. In this thesis, we develop a testing methodology based on

distance covariance in the context of dependent data, and especially in time series. This

is an important research topic because distance covariance - and its normalized form,

the so-called distance correlation - can identify interesting links among the data, whereas

the traditional correlation coefficient cannot unless the data are Gaussian and/or linearly

related. Considering the univariate case, we construct a Box-Pierce type test statistic

based on distance covariance for examining independence. Compared to the usual Box-

Pierce test statistic - and its modified version, the Ljung-Box test statistic - the number of

lags used for the construction of the proposed test statistic is not constant but grows with

the sample size. Moreover, we extend the notion of distance covariance to multivariate time

series by defining its matrix version. The information contained in this matrix is useful

for identifying any possible relationships within and between the time series components.

Based on this new concept, we introduce a multivariate Ljung-Box type test statistic with

an increasing number of lags, suitable for testing independence.

The contributed R package dCovTS is also introduced. There is no available package

in the literature regarding the distance covariance theory in time series. The proposed

package provides functions that compute and plot distance covariance and correlation

functions for both univariate and multivariate time series. Additionally, it includes func-

tions for testing serial independence based on the proposed methodology presented in this
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thesis. In the last part of the thesis, we discuss in detail the implementation of the package

with several real data examples.

ii

MARIA PITSILL
OU



Περίληψη

Τα τελευταία χρόνια έχει μελετηθεί εκτενώς η εξάρτηση τυχαίων μεταβλητών υιοθετώντας

την έννοια της συνάρτησης distance covariance (συνδιακύμανση αποστάσεων). Πρόκειται

για ένα νέο μέγεθος εξάρτησης, το οποίο έχει εισαχθεί από τους Székely et al. (2007). Πρό-

σφατα ο Zhou (2012) έχει επεκτείνει την έννοια του distance covariance στις χρονοσειρές.

Ωστόσο, έκτοτε ένας περιορισμένος αριθμός άρθρων έχει μελετήσει τις ιδιότητες του νέου

αυτού μεγέθους εξάρτησης. Στην παρούσα διατριβή αναπτύσσουμε μία μεθοδολογία για έ-

λεγχο ανεξαρτησίας στις χρονοσειρές βασισμένη στη συνάρτηση distance covariance. Η

σημαντικότητα ενός τέτοιου ερευνητικού θέματος προκύπτει από το γεγονός ότι η συνάρτη-

ση distance covariance - και η κανονικοποιημένη της μορφή, η λεγόμενη distance correla-

tion - μπορούν να προσδιορίσουν ενδιαφέρουσες σχέσεις μεταξύ των δεδομένων, τις οποίες

η κλασσική συνάρτηση αυτοσυσχέτισης δεν ανιχνεύει, εκτός και αν τα δεδομένα ακολου-

θούν την κανονική κατανομή ή/και είναι γραμμικώς συσχετισμένα. Εξετάζοντας αρχικά την

μονοδιάστατη περίπτωση, κατασκευάζουμε ένα έλεγχο ανεξαρτησίας με στατιστικό τύπου

Box-Pierce. Σε αντίθεση με τα κριτήρια Box-Pierce και Ljung-Box, ο αριθμός των χρονικών

υστερήσεων που χρησιμοποιείται στην κατασκευή του προτεινόμενου στατιστικού δεν είναι

σταθερός αλλά αυξάνεται με το δειγματικό μέγεθος της χρονοσειράς. Επιπλέον, επεκτείνου-

με την μεθοδολογία αυτή σε πολυδιάστατες χρονοσειρές ορίζοντας αρχικά την συνάρτηση

distance covariance υπό μορφή πίνακα. Ο πίνακας distance covariance παρέχει πληροφορίες

σχετικά με τις σχέσεις που δυνατόν να υπάρχουν μεταξύ των διάφορων συνιστωσών της χρο-

νοσειράς. Με βάση αυτό το νέο μέγεθος εξάρτησης κατασκευάζουμε έλεγχο ανεξαρτησίας

για πολυδιάστατες χρονοσειρές. Το στατιστικό που προκύπτει έχει την μορφή του πολυδιά-

στατου στατιστικού Ljung-Box, βασισμένο στους πίνακες distance convariance παρά στους

κλασσικούς πίνακες αυτοσυσχέτησης.
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Στο τελευταίο μέρος της εργασίας αυτής παρουσιάζουμε το R πακέτο dCovTS. Μέχρι τώ-

ρα, δεν υπάρχει κάποιο αντίστοιχο πακέτο στην R για υπολογισμό της συνάρτησης distance

covariance στις χρονοσειρές. ΄Ετσι, το προτεινόμενο πακέτο παρέχει συναρτήσεις που υ-

πολογίζουν και σχεδιάζουν τις συναρτήσεις distance covariance και distance correlation

τόσο για μονοδιάστες όσο και για πολυδιάστατες χρονοσειρές. Επιπρόσθετα, περιλαμβά-

νει συναρτήσεις που αφορούν στους ελέγχους ανεξαρτησίας όπως εξηγήθηκαν πιο πάνω και

παρουσιάζονται σε αυτή την εργασία. Η παρουσίαση του πακέτου και των λειτουργιών του

γίνεται μέσω διάφορων πραγματικών δεδομένων.
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Chapter 1

Introduction

The problem of measuring and detecting generic serial dependence is often encountered in

time series analysis. The classical Pearson autocorrelation function (ACF) is a traditional

tool for measuring dependence and constructing tests of independence. Several authors

have also considered the use of the spectral density function, see Hong (1996, 1999) among

others. Therefore, the methodologies for constructing test statistics for checking serial

dependence can be divided into two main categories: time and frequency domain-based

methodologies.

It is well known that time domain analysis, includes correlation-based tests such as those

proposed by Box and Pierce (1970) and Ljung and Box (1978). The corresponding test

statistics employ the ACF to test serial dependence. However, these tests are inconsistent

for processes which are dependent but uncorrelated (Romano and Thombs, 1996; Shao,

2011). Another limitation of these tests is that the number of lags included in the con-

struction of a test statistic is held constant in the asymptotic theory (Xiao and Wu, 2014).

The latter may be a severe limitation in practice, since the actual dependence may be of

higher order (Hong, 2000). Moreover, the ACF is suitable for detecting serial dependence

in Gaussian models. Thus, the ACF fails to detect dependence for nonlinear and non-

Gaussian models and alternative dependence measures are required. In Section 2.4.2 we

provide a brief review of these alternative dependence tools and the corresponding tests

of independence.
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A different measure of dependence, which is termed distance covariance function, has

been proposed recently by Székely et al. (2007) (but see also Feuerverger (1993) for an

early treatment). It is defined as the weighted L2-norm between the joint characteristic

function of two random vectors of arbitrary, but not necessarily of equal dimensions, and

their marginal characteristic functions. The sample version of distance covariance function

can be viewed as a degenerate V -statistic. The limit distribution of degenerate U - and

V -statistics for stationary and ergodic random variables, as well as for weakly dependent

random variables, is examined thoroughly in the works by Dehling and Mikosch (1994)

and Leucht and Neumann (2013a,b) among others. Since Székely et al.’s (2007) work,

there has been a wide range of studies extending the distance covariance definition and

methodology in various topics; a detailed literature review is presented in Sections 2.2 and

2.3.

Székely et al.’s (2007) distance covariance methodology is based on the assumption that the

underlying data are independent and identically distributed (i.i.d). However, this assump-

tion is often violated in many practical problems. Remillard (2009) proposed to extend

the distance covariance methodology to a time series context in order to measure serial

dependence. There have been few works on how to explore and measure serial dependence

in time series based on distance covariance. Motivated by the work of Székely et al. (2007),

Zhou (2012) recently defined the so-called auto-distance covariance function (ADCV) - and

its rescaled version, the so-called auto-distance correlation function (ADCF), for a strictly

stationary multivariate time series. Although Zhou (2012) developed a distance covari-

ance methodology for multivariate time series, he did not explore the interrelationships

between the various time series components. In Chapter 4, we investigate this by defining

the matrix version of pairwise auto-distance covariance and correlation functions.

The key feature of the distance covariance function is that it identifies nonlinear depen-

dence structures which are not detected by the ACF (for instance, stock return data).

Indeed, compared to the ACF which measures the strength of linear dependencies and

can be equal to zero even when the variables are related, ADCF vanishes only in the case

where the observations are independent. This is better understood by examining Figure

1.1. The plot shows the ACF and ADCF of a second order bivariate nonlinear moving
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average process (NMA(2)) defined by Xt = (Xt;1, Xt;2) with

Xt;i = ε
(i)
t ε

(i)
t−1ε

(i)
t−2, i = 1, 2, (1.1)

where {ε(i)t , i = 1, 2} is an i.i.d. sequence of standard normal random variables. It is easy

to see that Xt;1 is independent of Xt;2 and {Xt;i, i = 1, 2} are uncorrelated sequences. This

fact is clearly discovered by the sample ACF (see Figure 1.1a). It is obvious though that

Xt;i, i = 1, 2, is a sequence of dependent random variables; in fact Xt;i depends on Xt−1;i

and Xt−2;i. This dependence structure is not discovered by the ACF but by the ADCF (see

Figure 1.1b). The upper left and lower plots show that there is a lag-2 dependence in each

of Xt;i, i = 1, 2. The horizontal bars shown in the plot are computed by the methodology

outlined in Section 4.5.2. The rest of plots in Figure 1.1b show the independence of Xt;1

and Xt;2.

Zhou (2012) proved the weak consistency of distance covariance under conditions related

to the so-called physical dependence measures. In this thesis, we prove the strong con-

sistency of distance covariance under strong mixing conditions. Moreover, Zhou (2012)

studied the asymptotic behavior of ADCV at a fixed lag order, while in our work we relax

this assumption by considering an increasing number of lags. This is achieved by employing

spectral domain methods, which allows us to incorporate a higher number of lags. From

a frequency domain point of view, if a stationary time series is serially uncorrelated, then

its standardized spectral density is uniformly distributed, i.e. it takes a constant value

over the interval (−π, π). Thus, any deviation of the normalized spectral density from

uniformity provides strong evidence of correlation. However, standard spectral density

approaches work sufficiently well for Gaussian processes. They become inappropriate for

non-Gaussian models since they miss nonlinear processes with zero autocorrelation (for in-

stance, autoregressive conditional heteroscedastic (ARCH), generalized ARCH (GARCH),

bilinear, nonlinear or nonlinear moving average (NMA) models; see Priestley (1981); Hong

(1999)). Motivated by this fact, Hong (1999) introduced a generalized spectral density ap-

proach that captures all form of dependencies, using the empirical characteristic function

(ECF) and its derivatives. Some applications of the ECF include the work by Feuerverger

(1993) who developed a consistent rank test for bivariate dependence, and Knight and

3
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Figure 1.1: (a) Sample ACF of the bivariate NMA(2) series. (b) Sample ADCF of the bivariate
NMA(2) series. Results are based on 2000 observations.
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Yu (2002) who proposed an estimation method, based on the ECF for strictly stationary

processes, leading to consistent and asymptotically normal estimators.

Based on Hong’s (1999) approach, in Chapter 3 we employ the ADCV to propose a new

univariate test for serial independence resulting to a Box-Pierce type test statistic. The

main contribution of this work is that the number of lags included in the construction

of test statistic grows with the sample size of the process. Moreover, because of the

generalized spectral density approach, the proposed test statistic captures all pairwise

dependencies. In addition, it is faster to compute than Hong’s (1999) statistic, since it

essentially avoids a two-dimensional integration. This contribution builds a bridge between

the theory of distance covariance functions proposed by Székely et al. (2007) and the work

of Hong (1999).

Subsequently, Chapter 4 deals with the aforementioned distance covariance testing method-

ology for multivariate processes. In several applications from various scientific fields, such

as economics (e.g. Lutkepohl (2005); Verbeek (2012); Kirchgassner et al. (2013)), medicine

(e.g. McLachlan et al. (2004); Parmigiani et al. (2003)) or environmetrics (e.g. Hipel and

McLeod (1994); Manly (2008)) we usually observe several time series evolving simultane-

ously. For instance, in Section 4.5.4 we look into a two-dimensional time series of monthly

log-returns of IBM stock and S&P 500 index. In Section 4.5.5 we investigate the depen-

dence structure of a twelve-dimensional EEG time series data. Several other examples

can be discussed but generally speaking, analyzing each time series separately, without

taking into account the rest, might result to wrong conclusions because any interrela-

tionships between series will not be discovered (Priestley, 1981). Thus, we introduce the

ADCV matrix (and so ADCF matrix - see again Figure 1.1b) which identifies relationships

among components of a vector series. We show that the sample version of ADCV matrix

is a consistent estimator of the population ADCV. The sample ADCV matrix serves as

a tool to construct tests for pairwise independence for multivariate time series. This is

accomplished by following the work of Hong (1999). In particular, we introduce the gen-

eralized cross spectral density and the corresponding generalized spectral density matrix.

Hence, extending the proposed univariate testing methodology, we construct multivariate

test of independence in order to identify whether there is some inherent nonlinear inter-

dependence between the component series. We note that our work in Chapter 4 can be
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seen as an extension to the work of Székely et al. (2007) since some of the results reported

can be transferred to the independent data case. Indeed, using the ADCV matrix for

identification of possible dependencies among the components of a random vector could

potentially yield to dimension reduction problem.

Rizzo and Szekely (2014) introduced the energy package for R (R Core Team, 2014),

which is a package that includes functions for the existing distance covariance method-

ology for random variables. Apart from this package, there is no available package for

the corresponding methodology for dependent data. We fill this gap by publishing the

dCovTS package, where in its first version provides functions for the aforementioned dis-

tance covariance methodology in time series. In Chapter 5, we discuss the implementation

of these functions by providing several real data examples.

The concluding Chapter 6 summarizes the work and addresses potential extensions for

further research. Below, we outline the main contributions of this thesis:

• We construct a univariate test of independence based on ADCV, by providing a

Box-Pierce type test statistic which is consistent against all pairwise dependencies.

• We extend the notion of ADCV by considering its matrix version for strictly sta-

tionary time series and show how it is interpreted for real data analysis.

• We provide a consistent estimator of the ADCV matrix and obtain simultaneous

confidence intervals (the horizontal bars shown in Figure 1.1b) to check visually

independence. This method is based on simulation as we explain the theoretical

challenges occurred when considering the ADCV matrix.

• We propose a test for testing independence for multivariate time series. The test

statistic is quite analog to the multivariate Ljung-Box test statistic (Hosking, 1980;

Li and McLeod, 1981) but it is formed with the ADCV matrices instead of the usual

autocorrelation matrices.

• The number of lags included in the construction of the proposed test statistics is not

constant, but increases with the sample size of the process.

• The suggested testing methodology is available in the package dCovTS for the R

language.
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1.1 Basic Definitions

We conclude this introductory chapter by giving some basic definitions required for the

sequel. Throughout the remaining, we denote by bold {Xt, t ∈ Z}, with index set Z =

{0,±1,±2, · · · }, a d-dimensional time series process, with components {Xt;i}di=1.

Definition 1.1.1 (Strict Stationarity), Brockwell and Davis (1991, Definition 1.3.3)

A time series {Xt, t ∈ Z} is said to be strictly stationary if the joint distributions of

(Xt1 , · · · , Xtk)′ and (Xt1+j, · · · , Xtk+j)
′ are the same for all positive integers k and for all

t1, · · · , tk, j ∈ Z.

Definition 1.1.2 (Stationarity - Univariate case), Brockwell and Davis (1991, Definition

1.3.2)

The time series {Xt, t ∈ Z} with mean EXt = µt and covariance function γX(r, s) :=

Cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], is said to be stationary if

(i) E |Xt|2 <∞, for all t ∈ Z,

(ii) EXt = m, m is constant, for all t ∈ Z,

(iii) γX(r, s) = γX(r + t, s+ t), for all r, s, t ∈ Z.

Definition 1.1.3 (Stationarity - Multivariate case), Brockwell and Davis (1991, Defini-

tion 11.1.1)

The time series {Xt} with mean vector EXt := µt and covariance matrices Γ(t + j, t) :=

E[(Xt+j −µt+j)(Xt−µt)′], j = 0,±1,±2, · · · , is said to be stationary if µt and Γ(t+ j, t)

are independent of t.

A strictly stationary process with finite second moments is stationary, whereas the converse

implication does not hold. We note that our asymptotic theory developed in this thesis is

based on strictly stationary time series.

Definition 1.1.4 (Autocovariance and autocorrelation functions), Brockwell and Davis

(1991, Section 1.5)

The autocovariance function (ACV) of a univariate stationary time series {Xt} is defined
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by

γ(j) = Cov(Xt+j, Xt) = E[(Xt+j − EXt+j)(Xt − EXt)], t, j ∈ Z,

with γ(j) = γ(−j). The autocorrelation function (ACF) of {Xt} is defined analogously as

the function

ρ(j) = Cor(Xt+j, Xt) = γ(j)/γ(0), t, j ∈ Z.

Definition 1.1.5 (Sample ACV and ACF), Brockwell and Davis (1991, Definition 1.5.2)

The sample ACV of a univariate stationary time series {Xt} with a sample of size n, is

defined by

γ̂(j) =
1

n

n−1∑
t=1

(Xt+j −X)(Xt −X), 0 ≤ j < n,

and γ̂(−j) = γ̂(j), −n < j ≤ 0, where X denotes the sample mean X = n−1
∑n

t=1Xt.

The corresponding sample ACF is defined in terms of the sample autocovariance function

as follows

ρ̂(j) = γ̂(j)/γ̂(0), |j| < n.

Definition 1.1.6 (Covariance and correlation matrices), Brockwell and Davis (1991, Sec-

tion 11.1)

The covariance matrix of a d-dimensional stationary time series {Xt} with mean vector

E(Xt) = µ, is given by

Γ(j) = E
[
(Xt+j − µ)(Xt − µ)′

]
=
[
γab(j)

]d
a,b=1

, t, j,∈ Z.

The correlation matrix r(·) of {Xt} is defined by

r(j) = D−1Γ(j)D−1 =
[
γab(j)/

(
γaa(0)γbb(0)

)1/2
]d
a,b=1

=
[
rab(j)

]d
a,b=1

, j ∈ Z,

where D is a d× d diagonal matrix D = diag{γ11(0)1/2, . . . , γdd(0)1/2}.

Definition 1.1.7 (Sample covariance and correlation matrices), Brockwell and Davis

(1991, Section 11.2)

The sample covariance matrix of a d-dimensional stationary time series {Xt} with sample
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of size n, is given by

Γ̂(j) =


1

n

n−j∑
t=1

(Xt+j −Xn)(Xt −Xn)′, 0 ≤ j ≤ n− 1;

1

n

n∑
t=−j+1

(Xt+j −Xn)(Xt −Xn)′, −n+ 1 ≤ j < 0,

where Xn denotes the vector of sample means. Observe that the mean of the ith time series,

µi, is estimated by n−1
∑n

t=1 Xt;i. Analogous to Definition 1.1.6, the sample correlation

matrix is then

r̂(j) =
[
γ̂ab(j)/(γ̂aa(0)γ̂bb(0))1/2

]d
a,b=1

,

where γ̂ab(j) denotes the (a, b)-component of Γ(j).

Definition 1.1.8 (Strong mixing processes), Doukhan (1994, Section 1.3.3)

A process {Xt} is said to be α-mixing (strong mixing) if

α(j) = sup
A∈F0

−∞,B∈F∞j
|P (A)P (B)− P (A ∩B)| → 0,

as j →∞, where F sj denotes the σ-algebra generated by {Xt, j ≤ t ≤ s}.

Mixing condition implies ergodicity, whereas the converse does not hold. For more details

on strong mixing properties and the definitions of other types of mixing processes, the

reader is referred to Rosenblatt (1956), Doukhan (1994) and Bradley (1983, 2007).
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Chapter 2

Measuring Dependence by Means of

Distances: A Review

2.1 Introduction

Almost a decade ago, Székely et al. (2007) introduced the distance covariance and dis-

tance correlation as measures of dependence between two random variables of arbitrary

dimensions. Since then, there have been a huge number of works extending the concept

of distance covariance in various scientific fields for i.i.d. data. We review several of them

in the first two sections of this chapter.

Compared to the case of i.i.d. data, only few papers have appeared in the literature where

the distance covariance concept is employed as a measure of dependence for dependent

data. In the last part of this chapter, we give a brief survey of these works and establish

the basis in order to accomplish the distance covariance testing methodology for dependent

data in the subsequent chapters of the thesis. We conclude the chapter by reviewing other

dependence measures used for constructing tests of independence in time series. The

intension is to examine the performance of our new developed tests to these related tests

of independence available in the time series literature. More on this comparison can be

found in Chapters 3 and 4 of this thesis.
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2.2 On Distance Covariance Function

For the next two sections, X denotes a univariate random variable, but X denotes a

multivariate random vector.

Székely et al. (2007) introduced the distance covariance function as a new measure of

dependence between random vectors, X and Y, of arbitrary, not necessarily equal dimen-

sions, say p and q respectively. The definition relies on the joint characteristic function of

X and Y,

φ(t, s) = E
[
exp
(
i(t′X + s′Y)

)]
and the marginal characteristic functions of X and Y. For instance, in the case of X its

marginal characteristic function is

φ(t) = E
[
exp
(
it′X

)]
,

where (t, s) ∈ Rp+q and i2 = −1. The marginal characteristic function of Y is defined

similarly. The distance covariance function is defined as the nonnegative square root of

a weighted L2-distance between the joint and the product of the marginal characteristic

functions of the random vectors, namely

V 2(X,Y) =

∫
Rp+q

|φ(t, s)− φ(t)φ(s)|2 dW(t, s) (2.1)

where W(·, ·) : Rp+q → R is a weight function for which the above integral exists and

whose choice is discussed later on. Rescaling (2.1) leads to the definition of the distance

correlation function between X and Y, which is the positive square root of

R2(X,Y) =


V 2(X,Y)√

V 2(X,X)V 2(Y,Y)
, V 2(X,X)V 2(Y,Y) > 0;

0, otherwise.

(2.2)

The previous display shows that the distance correlation function is a coefficient analogous

to Pearson’s correlation coefficient. But, unlike the classical coefficient which measures

the linear relationship between X and Y and could be zero even when the variables

are dependent, the distance correlation vanishes only in the case where X and Y are
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independent. More properties of (2.1) and (2.2) are established later. The choice of the

weight functionW(·, ·) is crucial. The following lemma gives a solution to this choice. We

state it here because of its importance for the sequel.

Lemma 2.2.1 Székely et al. (2007, Lemma 1)

If 0 < α < 2, then for all x in Rd

∫
Rd

1− cos(t′x)

|t|d+α
d

dt = C(d, α) |x|αd ,

where |x|d denotes the Euclidean norm of x in Rd and

C(d, α) =
2πd/2Γ(1− α/2)

α2αΓ((d+ α)/2)
, (2.3)

with Γ(·) denoting the complete gamma function. The integrals at 0 and ∞ are meant in

the principal value sense: limε→0

∫
Rd\{εB+ε−1Bc}, where B is the unit ball (centered at 0) in

Rd and Bc is the complement of B.

A proof of Lemma 2.2.1 can be found in Székely and Rizzo (2005). In view of Lemma

2.2.1 and for α = 1, we result to a nonintegrable weight function of the form

W(t, s) = (cpcq |t|1+p
p |s|1+q

q )−1, (2.4)

where cp and cq are given by

cd = C(d, 1) =
π(1+d)/2

Γ((1 + d)/2)
.

The weight function (2.4) results to a scale and rotation invariant distance correlation

function. Note that Bakirov et al. (2006) proposed a more complicated weight function.

As we will see, the choice of (2.4) yields to computational advantages as opposed to the

choice proposed by Bakirov et al. (2006). The main properties of distance correlation

function are listed below:

• If E
(
|X|p + |Y|q

)
< ∞, then the distance correlation, R(X,Y), satisfies 0 ≤

R(X,Y) ≤ 1 and R(X,Y) = 0 if and only if X and Y are independent.
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• R(X,Y) is invariant under orthogonal transformations of the form (X,Y)→
(
α1 +

b1C1X, α2 + b2C2Y
)

, where α1, α2 are arbitrary vectors, b1, b2 are arbitrary nonzero

numbers and C1, C2 are arbitrary orthogonal matrices.

• If p = q = 1 and X and Y have standard normal distributions with r = Cov(X, Y ),

then

(i) R(X, Y ) ≤ |r| and

(ii) R2(X, Y ) =
rarcsinr +

√
1− r2 − rarcsinr/2−

√
4− r2 + 1

1 + π/3−
√

3
.

The idea of employing (2.1) for detecting independence was previously discussed by

Feuerverger (1993) who considered measures of the form of (2.1). To develop nonparamet-

ric test, Feuerverger (1993) first suggested to replace the univariate sample points Xi and

Yi, i = 1, . . . , n, by approximate normal score quantities X ′i and Y ′i . That is, with

X ′i = Φ−1

(
rank(Xi)− 3/8

n+ 1/4

)
, (2.5)

with Φ denoting the N(0, 1) distribution function and similarly for Y ′i , Feuerverger (1993)

proposed the statistic

∫
R2

∣∣∣φ̃(t, s)− φ̃(t)φ̃(s)
∣∣∣2 |t|−2 |s|−2 dtds,

where φ̃(t, s) = n−1
∑n

j=1 e
i(tX′j+sY ′j ) is the empirical joint characteristic function and

φ̃(t) := φ̃(t, 0) and φ̃(s) := φ̃(0, s) are the empirical marginal characteristic functions.

Clearly, this statistic is similar to the statistic proposed by Székely et al. (2007) (the em-

pirical version of (2.1) given in (2.6)), where the main differences are the use of formula

(2.5) and the restriction to the univariate case. Considering the unscored data, Xi and Yi,

Feuerverger (1993) also considered a second statistic which is identical to that of Székely

et al. (2007) (equation (2.1)), providing interesting choices for the integrable weight func-

tion W(·, ·). More on the comparison between the distance covariance and the statistics

proposed by Feuerverger (1993) can be found in Gretton et al. (2009).
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2.3 Estimation and Testing

2.3.1 Estimation

In this section, we consider the empirical counterparts of (2.1) and (2.2), whose definition

is based on the weighting function given by (2.4). Suppose that {Xt}, {Yt} is a random

sample of size n from the joint distribution of the random vectors X and Y. Substituting

the empirical joint characteristic function

φ̂(t, s) = n−1

n∑
j=1

exp
(
it′Xj + is′Yj

)

and the corresponding marginal characteristic functions φ̂(t) := φ̂(t, 0) and φ̂(s) := φ̂(0, s)

in (2.1), an intuitive sample version of distance covariance is given by the square root

of

V̂ 2(X,Y) =
1

cpcq

∫
Rp+q

∣∣∣φ̂(t, s)− φ̂(t)φ̂(s)
∣∣∣2

|t|1+p
p |s|1+q

q

dtds. (2.6)

The empirical distance covariance and correlation measures can also be viewed as functions

of the double centered distance matrices of the samples. In particular, we consider n× n

Euclidean pairwise distance matrices with elements (aij) =
(
|Xi −Xj|p

)
and (bij) =(

|Yi −Yj|q
)

. These matrices are double centered so that their row and column sums are

equal to zero. In other words, let

Aij = aij − āi. − ā.j + ā..,

Bij = bij − b̄i. − b̄.j + b̄..,

where āi. =
(∑n

j=1 aij

)
/n, ā.j =

(∑n
i=1 aij

)
/n, ā.. =

(∑n
i,j=1 aij

)
/n2. Similarly for b̄i.,b̄.j

and b̄... The sample distance covariance is defined by the square root of the statistic

V̂ 2(X,Y) =
1

n2

n∑
i,j=1

AijBij. (2.7)
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The simplicity of the sample distance covariance version (2.7) is proved in Székely et al.

(2007, Theorem 1) and it is essentially based on Lemma 2.2.1. It is obvious that we can

directly compute the sample distance correlation in terms of (2.7) by (2.2) as

R̂2(X,Y) =


V̂ 2(X,Y)√

V̂ 2(X,X)V̂ 2(Y,Y)
, V̂ 2(X,X)V̂ 2(Y,Y) > 0;

0, otherwise.

Some of the main properties of sample distance covariance and correlation functions are

outlined as follows:

• The estimators of distance covariance and distance correlation are both consistent,

that is

limn→∞V̂
2(X,Y) = V 2(X,Y),

limn→∞R̂
2(X,Y) = R2(X,Y),

almost surely.

• V̂ 2(X,Y) ≥ 0, where the equality holds when X and Y are independent.

• 0 ≤ R̂(X,Y) ≤ 1.

• R̂(X, α + bXC) = 1, where α is a vector, b is a nonzero real number and C is an

orthogonal matrix.

An unbiased estimator of distance covariance which was proposed by Székely and Rizzo

(2014), is given by

Ṽ 2(X,Y) =
1

n(n− 3)

∑
i6=j

ÃijB̃ij (2.8)

for n > 3, where Ãij denotes the (i, j)th entry of the new centered matrix, or the so-called

U -centered matrix Ã, defined by

Ãij =

 aij − 1
n−2

∑n
l=1 ail −

1
n−2

∑n
k=1 akj + 1

(n−1)(n−2)

∑n
k,l=1 akl, i 6= j;

0, i = j.
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Note that Ãij have the additional property that E[Ãij] = 0 for all i,j. Although this

centering turns out to be more complicated process than the process of obtaining (2.7),

there are advantages of using the new centering. Following Székely and Rizzo (2014)

define the Hilbert space Hn = {Ã : A = (aij) ∈ Sn}, where Sn is the linear span of all

n × n distance matrices (aij). The inner product of any pair of elements C = (Cij) and

D = (Dij) in the linear span of Hn is defined by

(
C ·D

)
=

1

n(n− 3)

∑
i6=j

CijDij.

The main advantages of using U -centered matrices are listed below (Székely and Rizzo,

2014, Lemma 1):

1. (̃Ã) = Ã. That is, if B is a matrix obtained by U -centering the matrix Ã ∈ Hn, then

B = Ã.

2. Ã is invariant to double centering. More precisely, if B is a matrix obtained by

double centering the matrix Ã, then it holds that B = Ã.

3. Considering B a matrix obtained by adding a constant c to the off-diagonal elements

of Ã, then B̃ = Ã. This invariance property with respect to c holds only for the

U -centered matrices but it does not hold for the double centered matrices.

2.3.2 Asymptotic Tests

Following Székely et al. (2007, Theorem 5), it can be proved that under the null hypothesis

of independence between the random vectors X and Y, the statistic

nV̂ 2(X,Y)→ Q ≡
∞∑

j=−∞

λjZ
2
j ,

in distribution, where Zj are independent standard normal variables, {λj} are eigenvalues

which depend on the joint distribution of the random vectors (X,Y) and E[Q] = 1. Large

values of the proposed statistic support the alternative hypothesis that X and Y are not

independent.
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Székely and Rizzo (2014) defined the partial distance covariance and partial distance

correlation to measure the dependence of two random vectors X, Y given a third random

vector Z, where X, Y and Z are in arbitrary dimensions. Based on these measures,

the authors proposed a test for testing conditional independence. Testing for conditional

independence based on distance covariance has also been studied by Poczos and Schneider

(2012) and Wang et al. (2015).

2.3.3 Extensions of Distance Covariance

The α-distance covariance function is a generalization of the distance covariance function

introduced by Székely et al. (2007). For α ∈ (0, 2) the α-distance covariance function is

defined as the positive square root of

V 2(α)(X,Y) =
1

C(p, α)C(q, α)

∫
Rp+q

|φ(t, s)− φ(t)φ(s)|2

|t|α+p
p |s|α+q

q

dtds, (2.9)

where C(p, α) and C(q, α) are given by (2.3). Following similar strategy of obtaining (2.7),

(2.9) can be computed by defining aij = |Xi −Xj|αp and bij = |Yi −Yj|αq . This modified

distance covariance measure unifies and extends the theory of distance covariance since

(2.1) is a special case of (2.9) for α = 1. Dueck et al. (2014) introduced an affinely invariant

version of the distance correlation, whereas in Dueck et al. (2015), the authors considered

the problem of computing distance correlation when the underlying joint distribution of

the random vectors belongs to the class of Lancaster distributions.

Another extension was proposed by Székely and Rizzo (2009) who considered the notion

of Brownian distance covariance which is based on Brownian motion/Wiener process for

random vectors X ∈ Rp and Y ∈ Rq. First, recall that a Wiener process {W (t) : t ∈ Rd}

with expectation zero has covariance

Cov
(
W (t),W (s)

)
= |t|d + |s|d − |t− s|d . (2.10)

The authors considered two independent Brownian motions {W (t) : t ∈ Rp} and {W ′(s) :

s ∈ Rq} with covariance function (2.10) and defined the Brownian covariance of X and Y
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as the positive number whose square is

W 2(X,Y) = E[XWX′WYW ′Y
′
W ′ ], (2.11)

where XW is the W -centered version of X with respect to W given by

XW = W (X)− E[W (X)|W ],

whenever the conditional expectation exists and (W,W ′) are independent of (X,Y,X′,Y′).

The authors proved the surprising result that the Brownian covariance coincides with the

population distance covariance (Székely and Rizzo, 2009, Theorem 8), that is

W 2(X,Y) = E |X−X′|p |Y−Y′|q + E |X−X′|pE |Y−Y′|q

− E |X−X′|p |Y−Y′′|q − E |X−X′′|p |Y−Y′|q

= V 2(X,Y),

with (X′,Y′) and (X′′,Y′′) being independent copies of (X,Y). Székely and Rizzo (2009,

2013) have also extended this idea to other stochastic processes, such as fractional Brow-

nian motions and to more general Gaussian processes, like the Laplace-Gaussian process.

Moreover, a familiar special case is obtained when a bivariate random vector (X, Y ) is

considered, that is when p = q = 1. In particular, if in (2.11) the one-dimensional stochas-

tic processes W and W ′ are replaced by the identity function id such that Xid = X−E[X]

and Yid = Y − E[Y ], then we obtain the square of the classical Pearson covariance.

Remillard (2009) suggested to extend the notion of distance covariance by replacing the

samples {Xi}, {Yi} by their normalized ranks, that is {RX,i/n} and {RY,i/n} respectively,

where RX,ij is the rank of Xij. He further suggested to generalize the distance covariance

to measure dependence between more than two random vectors, say X1, . . . , Xd, taking

values in Rp1 , . . . ,Rpd respectively. Belu (2012) achieved this by defining the distance

covariance as the difference between the d-dimensional joint characteristic function,

φ(t1, . . . , td) = E
[
exp
(
i(t′1X1 + · · ·+ t′dXd)

)]
,
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and the product of the individual marginals,

φ(tj) = E
[
exp
(
i(t′jXj)

)]
,

for j = 1, . . . , d, (t1, . . . , td) ∈ Rp1+...pd and i2 = −1, weighted similarly as in Székely et al.

(2007). In particular, this extended version of distance covariance is defined as the positive

square root of

V 2(X1, . . . ,Xd) =
1

cp1 ...cpd

∫
Rp1+···+pd

|φ(t1, . . . , td)− φ(t1)...φ(td)|2

|t1|α+p1
p1

... |td|α+pd
pd

dt1 . . . dtd,

where cpj , j = 1, . . . , d, is given by (2.3) and α is a positive constant that lies in the

interval (0,2).

2.3.4 Distance Covariance in the Machine Learning Literature

Distance covariance and all its modifications discussed in Section 2.3.3, are mainly based

on Euclidean distance spaces. Kosorok (2009) proposed a generalization of the Brown-

ian distance covariance by considering alternative norms to Euclidean norms in order to

increase power of the tests based on distance covariance. In addition, Lyons (2013) gener-

alized the theory of distance covariance from Euclidean spaces to metric spaces of negative

type. Moving far away from dependence measures based on Euclidean distances, one may

also consider kernel-based measures of dependence into reproducing kernel Hilbert spaces

(RKHS), as established in the machine learning community. Gretton et al. (2005) intro-

duced the Hilbert-Schmidt independence criterion (HSIC) as the associated test statistic

of testing independence. Extending Lyons’s (2013) work, Sejdinovic et al. (2013) consid-

ered the link between the distance covariance function and the HSIC. For more details on

recent methods for measuring dependence based on distance covariance one can referred

to Josse and Holmes (2014) and the references therein.
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2.4 Dependence Measures Based on Distances in Time

Series and Related Tests of Independence

2.4.1 On Auto-Distance Covariance Function

Székely et al. (2007) distance covariance methodology discussed in Sections 2.2 and 2.3

is based on the assumption that the observations are i.i.d. However, in many applied

problems this assumption is violated, so Remillard (2009) proposed an extension of the

distance covariance methodology to the case of non-i.i.d. observations, especially for time

series data, for measuring serial dependence. A few researchers since then have developed

a distance covariance methodology in the context of time series (Zhou, 2012; Dueck et al.,

2014; Davis et al., 2016). Zhou (2012) defined the ADCV for strictly stationary multivari-

ate processes and studied its asymptotic distribution at a fixed lag. He further showed

that the limiting distribution is identical to the limiting distribution obtained by Székely

et al. (2007) in the case of independent data (see Section 2.3.2). Moreover, although

Zhou (2012) defined the distance correlation coefficient to explore temporal nonlinear

dependence structure in multivariate time series, his approach does not identify possible

interrelationships between various time series components. Our work is different in various

ways. Fokianos and Pitsillou (2016a,b) relaxed the assumption of fixed lag and constructed

both univariate (Chapter 3) and multivariate (Chapter 4) tests of independence based on

ADCV by considering an increasing number of lags. The proposed multivariate test of in-

dependence is based on the novel notion of distance covariance matrix which is calculated

by considering all pairs of random variables and it identifies possible dependencies among

and between different components of a vector time series.

Dueck et al. (2014) extended the notion of distance correlation to the affinely invariant

cross-distance correlation to multivariate time series, by considering a four-dimensional

time series of wind observations at and near the Stateline wind energy center in the Pacific

Northwest of United States. However, they emphasized that this part of their study is

purely exploratory and provided for illustration purposes in order to develop parametric

and nonparametric bootstrap tests for Gaussianity in future work. Davis et al. (2016)

also applied distance covariance methodology to stationary univariate and multivariate
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time series to study serial dependence under various choices of the weight functionW(·, ·).

Moreover, one of their main results was concerned with the asymptotic distribution of

the empirical ADCV when applied to the residuals of a fitted autoregressive process with

finite or infinite variance.

Extending the work by Hong (1999), Chen and Hong (2012) developed a nonparametric

test for the Markov property of a multivariate time series based on the conditional charac-

teristic function. Based on the fact that the correlation coefficient is suitable for Gaussian

data but it fails for nonlinear cases, many authors defined the correlation function in a lo-

cal sense, including Tjøstheim and Hufthammer (2013), Berentsen and Tjøstheim (2014),

Støve et al. (2014) and Støve and Tjøstheim (2014) among others. In the context of time

series, Lacal and Tjøstheim (2016) defined a new measure of dependence, the so-called lo-

cal Gaussian autocorrelation that works well for nonlinear models. The authors compared

the proposed test statistic to distance covariance function and found that they both work

in a similar way.

2.4.2 Other Dependence Distance Measures for Time Series Data

There are many other tests for examining serial independence in time series literature

using both time domain and frequency domain methodologies, see Tjøstheim (1996) for

a review. Recall that {Xt, t ∈ Z} denotes a d-dimensional time series process, with

components {Xt;i}di=1. The most well known testing procedures for both univariate and

multivariate time series are mainly based on the ACF, which usually serves as a measure

of dependence. Two widely used univariate correlation-based tests are those proposed by

Box and Pierce (1970)

BP = n

p∑
j=1

ρ̂2(j),

and Ljung and Box (1978)

LB = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2(j),
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where p is chosen arbitrarily and denotes the maximum lag order employed for the tests.

Most of these procedures were extended to the multivariate case; see Mahdi (2011) for

an overview and a new proposed correlation-based test. The multivariate Ljung-Box test

statistic (Hosking, 1980; Li and McLeod, 1981; Li, 2004)

mLB = n2

p∑
j=1

(n− j)−1trace{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)} (2.12)

is widely used for testing Γ(1) = · · · = Γ(p) = 0. Although these tests perform well

under linear and Gaussian processes, their performance is poor against general types of

nonlinear dependencies including those with zero autocorrelation (ARCH, bilinear, NMA

processes). As Tjøstheim (1996) pointed out, although a standard procedure for increasing

the power of the correlation-based tests in such nonlinear and non-Gaussian cases is to

compute the correlation of the squared observations, generally such a procedure leads to a

loss of power compared to the ordinary correlation based tests. Robinson (1991) presented

a variety of test statistics for testing serial correlation under the presence of conditional

heteroskedasticity, whereas Escanciano and Lobato (2009) further proposed an automatic

Portmanteau test that allows for nonlinear dependencies and the lag order p is selected

automatically from the data.

Many studies in the literature have considered the problem of measuring dependence

between Xt and Yt ≡ Xt−|j| for j = 0,±1, · · · , in terms of the distance between the

bivariate distribution of (Xt, Yt), FX;Y (x, y) = P (Xt ≤ x, Yt ≤ y), and the product of their

marginal distribution functions, FX(x) = P (Xt ≤ x) and FY (y) = P (Yt ≤ y). Well known

distance measures for distribution functions are:

• Kolmogorov-Smirnov distance

D1(j) = sup
(x,y)∈R2

|FX;Y (x, y)− FX(x)FY (y)| (2.13)

• Cramer-von Mises type distance

D2(j) =

∫
R2

{
FX;Y (x, y)− FX(x)FY (y)

}2
dFX;Y (x, y) (2.14)
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Replacing the theoretical distribution functions with their empirical analogues

F̂X;Y (x, y) =
1

(n− |j|)

n∑
t=|j|+1

I(Xt ≤ x)I(Yt ≤ y)

F̂X(x) =
1

(n− |j|)

n∑
t=|j|+1

I(Xt ≤ x)

(2.15)

where I(·) is the indicator function, we can calculate the corresponding estimated measures

of dependence D̂1(·) and D̂2(·). Alternatively, similar distance measures are obtained by

employing density functions (see Skaug and Tjøstheim (1996) and Bagnato et al. (2014)

for an overview) or characteristic functions (Pinkse, 1998; Hong, 1999). Hong (1999, p.

1206) explained how tests based on the empirical characteristic function may have omnibus

power against tests based on the empirical distribution function.

Skaug and Tjøstheim (1993) extended the work by Blum et al. (1961) and considered

the asymptotic behavior of the Cramer-von Mises type statistic (2.14) at lag j, under

ergodicity of {Xt}. Moreover, they constructed a test for pairwise independence among

pairs (Xt, Xt−1), (Xt, Xt−2), . . . , (Xt, Xt−p) using the statistic

D̂2p =

p∑
i=1

D̂2(i)

where p is a fixed constant denoting the maximum lag order employed for the test. Un-

der the null hypothesis that {Xt} consists of i.i.d. random variables, nD̂2p converges

in distribution (as n → ∞) to
∑∞

i,j=1 λijWij(p) where λij are nonzero eigenvalues and

{Wij(p), i, j ≥ 1} are i.i.d. Chi-squared variables with p degrees of freedom. However,

the latter test statistic is consistent against serial dependencies up to a finite order p.

From a practical point of view, this may be restrictive since the actual serial dependence

may be detected at lags larger than p. Motivated by the construction proposed by Skaug

and Tjøstheim (1993), Hong (1998) introduced a statistic where the number of lags in-

creases with the sample size and different weights are given to different lags; in other words

let

Vn =
n−1∑
i=1

k2(i/p)(n− i)D̂2
2(i)
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where k(·) is an appropriate chosen kernel function. He further proved that after proper

standardization and for large p, the statistic is asymptotically standard normally dis-

tributed.

In general, incorporating a large number of lags in the asymptotic theory is an issue nicely

addressed by the frequency domain framework. Paparoditis (2000, 2001) developed a new

goodness-of-fit test with a test statistic based on the distance between the estimator of the

ratio between the true and the hypothesized spectral density and the expected value of the

estimator under the null. The asymptotic normality along with the properties of the test

are discussed. Hong (1996) proposed three test statistics for testing serial independence

in univariate time series by comparing a kernel-based standardized spectral density

f̂(ω) =
1

2π

(n−1)∑
j=−(n−1)

k(j/p)ρ̂(j)cos(jω), ω ∈ [−π, π] (2.16)

where p → ∞, p/n → 0 and the kernel function k(·) satisfies some standard properties

and the null spectral, f0(ω) = 1/2π via divergence measures. In particular, he used a

quadratic norm, the Hellinger metric and the Kullback-Leibler information criterion

T1n = Q(f̂ , f0) =

[
2π

∫ π

−π

{
f̂(ω)− f0(ω)

}2
dω

]1/2

,

T2n = H(f̂ , f0) =

[∫ π

−π

{
f̂ 1/2(ω)− f 1/2

0 (ω)
}2
dω

]1/2

,

T3n = I(f̂ , f0) = −
∫
ω:f̂(ω)>0

ln
(
f̂(ω)/f0(ω)

)
f0(ω)dω

respectively. He further suggested a closed form expression for T1n:

T1n = n
n−1∑
j=1

k2(j/p)ρ̂2(j).

Compared to the classical Portmanteau statistics, like BP and LB, all these suggested

statistics, properly standardized, are asymptotically standard normally distributed and

are derived without having to impose a specific alternative model. One of the main con-

tributions of Xiao and Wu (2014) was that T1n in its standardized version remains true
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under the presence of serial correlation, whereas Shao (2011) proved its robustness to

conditional heteroscedasticity. Although Hong’s (1996) tests incorporate an increasing

number of lags, they are based on the classical correlation coefficient and are not con-

sistent against all pairwise dependencies of unknown form. To achieve this, Hong (2000)

generalized both Cramer-von Mises and Kolmogorov-Smirnov type test statistics using a

generalized spectral theory, in combination with the empirical distribution function. In

fact, he first defined the following dependence measure

ρ∗j(x, y) = FX;Y (x, y)− FX(x)FY (y). (2.17)

Clearly, the distance dependence measure ρ∗j(·, ·) defined in (2.17) vanishes only in the

case where Xt and Yt ≡ Xt−|j| are independent, leading to the observation that ρ∗j(·, ·) can

capture all pairwise dependencies including those with zero autocorrelation. Replacing the

theoretical distribution functions with the empirical ones given in (2.15), one can find the

empirical analogue of (2.17), ρ̂∗j(·, ·). One can observe that Skaug and Tjøstheim (1993)

approach was merely based on (2.17). Hong (2000) introduced the generalized spectral

density function as the Fourier transform of ρ∗j(·, ·)

h(ω, x, y) =
1

2π

∞∑
j=−∞

ρ∗j(x, y)e−ijω, ω ∈ [−π, π], (2.18)

and the corresponding generalized spectral distribution function

H(λ, x, y) := 2

∫ λπ

0

h(ω, x, y)dω, λ ∈ [0, 1].

A kernel-based estimator of (2.18) can be similarly defined as in (2.16), with the sample

autocorrelation function ρ̂(j) being replaced by the distance measure ρ̂∗j(·, ·) and so a cor-

responding estimator Ĥ(·, ·, ·) is derived. The suggested generalized Kolmogorov-Smirnov

and Cramer-von Mises type test statistics are then derived by replacing Ĥ(λ, x, y) and

the null Ĥ0(λ, x, y) = ρ̂∗0(x, y)λ in the analogous quantities given in (2.13) and (2.14) re-

spectively. The author also proved the asymptotic normality of statistics under the null

hypothesis of independence. Compared to related test statistics, the latter tests do not

involve the choice of a lag order, require no moment conditions and have accurate sizes in
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finite samples.

In a latest work, Dette et al. (2015) introduced a ”new” spectrum as the Fourier transform

of the so-called copula cross-covariance kernel

ρUj (τ1, τ2) := Cov(I(Ut ≤ τ1), I(Ut−j ≤ τ2)), (2.19)

where (τ1, τ2) ∈ (0, 1)2 and Ut := FX(Xt). They proposed to estimate the corresponding

spectral densities associated with measures (2.17) and (2.19) via Laplace periodograms.

In addition, they highlighted that in the case of using (2.19), replacing the original obser-

vations with their ranks we may achieve an invariance property with respect to transfor-

mations of the marginal distributions.
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Chapter 3

Testing for Pairwise Dependence in

Univariate Time Series

3.1 Introduction

After having introduced a general framework of distance covariance function as it appears

in the statistics literature, we introduce the notion of distance covariance function in time

series, the so-called auto-distance covariance function (ADCV), and its rescaled version;

the so-called auto-distance correlation function (ADCF) (Section 3.2). We show that the

distance covariance methodology can be motivated by a generalized spectral domain point

of view as explained in Section 3.3. In Section 3.4, we suggest the use of a new Box-Ljung

type test statistic defined in terms of the ADCV, suitable for detecting pairwise depen-

dencies in univariate stationary time series. We show that, under the null hypothesis of

independence and under mild regularity conditions, the test statistic converges to a normal

random variable. We illustrate several examples in Section 3.5, that complement our re-

sults. We finally note that, although the proposed methodology is for univariate processes,

it can be extended for multivariate processes as we will see in the next chapter.

27

MARIA PITSILL
OU



3.2 On Auto-Distance Covariance Function

Assume that {Xt, t ∈ Z} is a univariate strictly stationary time series (see Definition 1.1.1)

and suppose that we have available a sample of size n. In what follows, we will make the

following assumptions for developing the theory:

Assumption 1 {Xt} is a strictly stationary α-mixing process with mixing coefficients

α(j), j ≥ 1.

Assumption 2 E |Xt| <∞.

Assumption 3 The mixing coefficients of {Xt}, α(j), satisfy (i)
∑∞

j=−∞ α(j) < ∞,

(ii) α(j) = O(1/j2).

Assumption 1 is useful for developing theoretical results about the ADCV. It is a rather

natural assumption as a first step towards studying the estimation of (3.4) in the context

of time series. Assumption 2 guarantees the finiteness of (3.4). Assumption 3(i) implies

the existence of the generalized spectral density (3.9), as we will see in the next section.

Assumption 3(ii) is the minimal condition needed to obtain a Marcinkiewicz-Zygmund

type inequality (Doukhan and Louhichi, 1999, Lemma 6) for the proofs of Lemmas 3.5.1

and 3.5.2 given in the Appendix. Assumption 3(ii) implies 3(i). For a formal definition

of a strong mixing process and its mixing coefficients, the reader is referred to Definition

1.1.8 of Chapter 1.

We will define the distance covariance function by resorting to the joint and marginal

characteristic functions of the pair
(
Xt, Xt−|j|

)
. Denote the joint characteristic function

of Xt and Xt−|j| by φ|j|(u, v); that is

φ|j|(u, v) = E
[
exp
(
i(uXt + vXt−|j|)

)]
, j = 0,±1,±2, . . . ,

where (u, v) ∈ R2, and i2 = −1. Furthermore, let

φ(u) = E
[
exp
(
iuXt

)]
,
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be the marginal characteristic function of Xt. Following Hong (1999), and because of the

assumed stationarity, we define

σj(u, v) = Cov
(
eiuXt , eivXt−|j|

)
= φ|j|(u, v)− φ(u)φ(v), (3.1)

i.e. (3.1) denotes the covariance function between the two series eiuXt and eivXt−|j| . From

(3.1) we note that σj(u, v) is simply the difference between the joint characteristic function

of (Xt, Xt−|j|) and the product of their marginals. Hence σj(u, v) = 0, ∀ (u, v) ∈ R2 implies

that the random variables Xt and Xt−|j| are independent. Define the ‖.‖W-norm of σj(u, v)

by

‖σj(u, v)‖2
W =

∫
R2

|σj(u, v)|2 dW(u, v), j = 0,±1,±2, . . . , (3.2)

where W(u, v) is an arbitrary positive weight function for which the above integral exists.

In particular, the weight function W0(u) = 1/(π |u|2) yields

W(u, v) = W0(u)W0(v) =
1

π |u|2
1

π |v|2
, (u, v) ∈ R2, (3.3)

which results to the ADCV defined by the positive square root of

V 2
X(j) =

1

π2

∫
R2

|σj(u, v)|2

|u|2 |v|2
dudv, j = 0,±1,±2, . . . . (3.4)

It is clear from the above definition that V 2
X(j) ≥ 0, ∀ j, and that Xt and Xt−|j| are

independent if and only if V 2
X(j) = 0. Although Hong (1999) defined implicitly (3.2) by

using an integrable weight function W(·, ·), it turns out that utilizing a nonintegrable

weight function, like (3.3), yields a closed form expression of the estimate of the auto-

distance covariance function. In addition, the calculation of the estimator based on (3.3) is

faster than using Hong’s (1999) approach. The auto-distance correlation function (ADCF)

is the square root of

R2
X(j) =


V 2
X(j)

V 2
X(0)

, V 2
X(0) 6= 0;

0, V 2
X(0) = 0.

(3.5)

Davis et al. (2016) provided alternative representations of ADCV and ADCF by consid-
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ering various choices of finite and infinite measures W(·, ·). However, choosing (3.3) leads

to the fact that (3.5) is scale invariant and nonzero when Xt and Xt−|j| are dependent at

lag j. In addition, the most important feature of (3.4) is that if it is calculated by using

an integrable function then it might miss the potential dependence among observations

(Székely et al., 2007, p. 2771). To develop an estimator for (3.4), define

σ̂j(u, v) = φ̂j(u, v)− φ̂j(u, 0)φ̂j(0, v), j = 0,±1,±2, . . . (3.6)

with

φ̂j(u, v) ≡ 1

n− |j|

n∑
t=|j|+1

ei(uXt+vXt−|j|).

Then, the sample auto-distance covariance function is defined by

V̂ 2
X(j) =

1

π2

∫
R2

|σ̂j(u, v)|2

|u|2 |v|2
dudv, j = 0,±1,±2, . . . (3.7)

Estimator (3.7) can be computed as follows: Let Yt = Xt−|j|. Then, based on the sample

{(Xt, Yt) : t = 1 + |j| , . . . , n}, we can calculate the (n− |j|)× (n− |j|) Euclidean distance

matrices A = (Arl) and B = (Brl) with elements

Arl = arl − ār. − ā.l + ā..,

with arl = |Xr −Xl|, ār. =
(∑n

l=1+|j| arl

)
/(n − |j|), ā.l =

(∑n
r=1+|j| arl

)
/(n − |j|), ā.. =(∑n

r,l=1+|j| arl

)
/(n− |j|)2, and quite analogously for Brl. Then,

V̂ 2
X(j) =

1

(n− |j|)2

n∑
r,l=1+|j|

ArlBrl. (3.8)

Clearly (3.8) can be easily implemented for any given time series data, because it is

computed by simple summation and multiplication. It is expected to perform better

than the usual autocovariance function especially for nonlinear time series models. In

addition, it is an appealing measure of dependence since its computation is based on

linear combinations of distances among observations. Note that (3.4) (and its empirical
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analogue) have been studied by Zhou (2012) under the setup of multivariate time series.

However, although in this chapter we will be focusing exclusively on univariate responses,

our results can be extended to the case of multivariate time series, as we will see in the

next chapter.

It is interesting to observe that in the special case of a Gaussian process, the ADCF can

be expressed as a function of the usual autocorrelation function. In particular, we have

the following proposition.

Proposition 3.2.1 If {Xt} is a Gaussian stationary time series such that E(Xt) = 0,

Var(Xt) = 1 and ρ(j) = Cov(Xt, Xt−|j|), then

(i) RX(j) ≤ |ρ(j)|, j = 0,±1,±2, . . .

(ii) R2
X(j) =

ρ(j)arcsinρ(j) +
√

1− ρ2(j)− ρ(j)arcsinρ(j)/2−
√

4− ρ2(j) + 1

1 + π/3−
√

3
, j =

0,±1,±2, . . . ,

where RX(·) is given by (3.5).

Hence, for a Gaussian process ρ(j) = 0 implies R2
X(j) = 0, ∀ j 6= 0. A detailed proof can

be found in the Appendix of this chapter.

The following proposition shows the consistency of the estimator V̂ 2
X(·).

Proposition 3.2.2 Suppose that Assumptions 1 and 2 hold true. Then for all j =

0,±1,±2, . . .

V̂ 2
X(j)→ V 2

X(j),

almost surely, as n→∞.

The proof of the above proposition is based on similar arguments given in the proof of

Székely et al. (2007, Theorem 2). The α-mixing condition enables application of the

ergodic theorem to the case of time series data. Under mild conditions, Zhou (2012)

obtained the weak consistency of V̂X(·). Note that in the approach taken by Zhou (2012)

it is required that E |Xt|1+δ <∞ for some δ > 0. In our approach we require E |Xt| <∞.

However, Zhou (2012) proved this result using the physical dependence measure suggested

by Wu (2005), whereas we employ the notion of α-mixing (Rosenblatt, 1956; Doukhan,
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1994).

3.3 Generalized Spectral Density Approach

We now discuss the connection of ADCV with the work by Hong (1999).

Recall (3.1) and suppose that sup(u,v)∈R2

∑
j |σj(u, v)| <∞, which holds under Assumption

3(i). Then, the Fourier transform of σj(u, v) exists and is given by

f(ω, u, v) =
1

2π

∞∑
j=−∞

σj(u, v)e−ijω, ω ∈ [−π, π]. (3.9)

When σj(u, v) = 0, ∀ j 6= 0, then (3.9) reduces to the constant

f0(ω, u, v) =
1

2π
σ0(u, v), ω ∈ [−π, π].

Therefore testing whether f is constant with respect to ω implies that all σj(u, v) = 0,

i.e. Xt and Xt−|j| are independent for all j 6= 0. Hong (1999) studies a kernel-density

estimator of f(ω, u, v) and calculates its L2-distance from f0(ω, u, v) to test for f being

constant. In addition to Assumptions 1 - 3 consider also the following:

Assumption 4 Suppose that k(·) is a kernel function such that k : R → [−1, 1], is

symmetric and is continuous at 0 and all except a finite number of points, with k(0) = 1,∫∞
−∞ k

2(z)dz <∞ and |k(z)| ≤ C |z|−b for large z and b > 1/2.

Assumption 4 is mild and allows for kernels with bounded or unbounded support. Set the

following nonparametric estimator of f ,

f̂n(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)σ̂j(u, v)e−ijω, (3.10)

where k(·) is a kernel function satisfying Assumption 4, and p is a bandwidth. Similarly,

put

f̂0(ω, u, v) =
1

2π
σ̂0(u, v), ω ∈ [−π, π]
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where σ̂0(·, ·) is given by (3.6). Then, we consider the squared weighted norm of f̂n minus

f̂0; that is

L2
2

(
f̂n(ω, u, v), f̂0(ω, u, v)

)
=

∫ π

−π
‖f̂n(ω, u, v)− f̂0(ω, u, v)‖2

Wdω

=

∫
R2

∫ π

−π
|f̂n(ω, u, v)− f̂0(ω, u, v)|2dωdW

=

∫
R2

∫ π

−π

∣∣∣ 1

2π

n−1∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)σ̂j(u, v)e−ijω

− 1

2π
σ̂0(u, v)

∣∣∣2dωdW
=

∫
R2

∫ π

−π

∣∣∣ 1

2π

−1∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)σ̂j(u, v)e−ijω

+
n−1∑
j=1

(1− j/n)1/2k(j/p)σ̂j(u, v)e−ijω +
1

2π
σ̂0(u, v)

− 1

2π
σ̂0(u, v)

∣∣∣2dωdW
=

∫
R2

∫ π

−π

∣∣∣∣∣2× 1

2π

n−1∑
j=1

(1− j/n)1/2k(j/p)σ̂j(u, v)e−ijω

∣∣∣∣∣
2

dωdW

=
2

π

∫
R2

1

2π

∫ π

−π

∣∣∣∣∣
n−1∑
j=1

(1− j/n)1/2k(j/p)σ̂j(u, v)e−ijω

∣∣∣∣∣
2

dωdW ,

where dW ≡ dW(u, v). At this point, making use of the Parseval’s identity we observe

that
1

2π

∫ π

−π
|f(ω)|2 dω =

n−1∑
j=1

|zj|2,

for f(ω) =
∑n−1

j=1 zje
−ijω and zj = (1− j/n)1/2k(j/p)σ̂j(u, v). Thus, we have that,

L2
2

(
f̂n(ω, u, v), f̂0(ω, u, v)

)
=

2

π

∫
R2

n−1∑
j=1

∣∣(1− j/n)1/2k(j/p)σ̂j(u, v)
∣∣2 dW

=
2

π

∫
R2

n−1∑
j=1

(1− j/n)k2(j/p) |σ̂j(u, v)|2 dW , (3.11)

for any suitable weighting function such that the above integral exists. In particular, for
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the choice of W(·, ·) given by (3.3) we obtain that

L2
2

(
f̂n(ω, u, v), f̂0(ω, u, v)

)
=

2

π

n−1∑
j=1

(1− j/n)k2(j/p)V̂ 2
X(j).

This fact motivates our study of Box-Pierce type statistics based on auto-distance covari-

ance function. Indeed, if k(z) = 1 if |z| ≤ 1 and 0 otherwise (i.e. in the case of uniform

weighting), then the last expression becomes

L2
2

(
f̂n(ω, u, v), f̂0(ω, u, v)

)
=

2

π

p∑
j=1

(1− j/n)V̂ 2
X(j). (3.12)

Equation (3.12) can be viewed as a Box-Pierce type statistic for testing the hypotheses

V 2
X(j) = 0, j = 1, . . . , p, since the factor (1−j/n) can be replaced by unity. It is interesting

to observe that, by recalling (3.1) and letting

ρj(u, v) =
σj(u, v)

VX(0)
,

then working analogously we can obtain a test statistic for testing independence in terms

of ADCF. Indeed, recall that sup(u,v)∈R2

∑
j |σj(u, v)| < ∞ under Assumption 3(i), and

define the Fourier transform of ρj(u, v) by

g(ω, u, v) =
1

2π

∞∑
j=−∞

ρj(u, v)e−ijω, ω ∈ [−π, π],

where under independence, it reduces to the constant

g0(ω, u, v) =
1

2π
ρ0(u, v), ω ∈ [−π, π].

Analogous to (3.10), a kernel-density estimator of g is given by

ĝn(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)ρ̂j(u, v)e−ijω,

where ρ̂j(u, v) = σ̂j(u, v)/V̂X(0) with σ̂j(·, ·) and V̂X(·) defined by (3.6) and (3.8) respec-

tively. Considering now the squared weighted norm between ĝn(ω, u, v) and ĝ0(ω, u, v) =

34

MARIA PITSILL
OU



ρ̂0(u, v)/2π , we get

L2
2

(
ĝn(ω, u, v), ĝ0(ω, u, v)

)
=

∫ π

−π
‖ĝn(ω, u, v)− ĝ0(ω, u, v)‖2

Wdω

=

∫
R2

∫ π

−π
|ĝn(ω, u, v)− ĝ0(ω, u, v)|2dωdW

=

∫
R2

∫ π

−π

∣∣∣ 1

2π

n−1∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)ρ̂j(u, v)e−ijω

− 1

2π
ρ̂0(u, v)

∣∣∣2dωdW
=

∫
R2

∫ π

−π

∣∣∣ 1

2π

−1∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)ρ̂j(u, v)e−ijω

+
n−1∑
j=1

(1− j/n)1/2k(j/p)ρ̂j(u, v)e−ijω
∣∣∣2dωdW

=

∫
R2

∫ π

−π

∣∣∣∣∣2× 1

2π

n−1∑
j=1

(1− j/n)1/2k(j/p)ρ̂j(u, v)e−ijω

∣∣∣∣∣
2

dωdW

=
2

π

∫
R2

1

2π

∫ π

−π

∣∣∣∣∣
n−1∑
j=1

(1− j/n)1/2k(j/p)ρ̂j(u, v)e−ijω

∣∣∣∣∣
2

dωdW .

Using at this point the Parseval’s identity as before and choosing the weighting function

defined in (3.3), we obtain that

L2
2

(
ĝn(ω, u, v), ĝ0(ω, u, v)

)
=

2

π

∫
R2

n−1∑
j=1

∣∣(1− j/n)1/2k(j/p)ρ̂j(u, v)
∣∣2 dW

=
2

π

∫
R2

n−1∑
j=1

(1− j/n)k2(j/p) |ρ̂j(u, v)|2 dW

=
2

π

n−1∑
j=1

(1− j/n)k2(j/p)

∫
R2 |σ̂j(u, v)|2 dW

V̂ 2
X(0)

=
2

π

n−1∑
j=1

(1− j/n)k2(j/p)
V̂ 2
X(j)

V̂ 2
X(0)

=
2

π

n−1∑
j=1

(1− j/n)k2(j/p)R̂2
X(j),

where R̂2
X(·) is given by (3.5). Therefore, in the case of uniform weighting function, the
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last expression becomes
p∑
j=1

(1− j/n)R̂2
X(j).

3.4 Main Results

In this section, we develop a test statistic for testing the hypotheses that the sequence

{Xt, t = 1, . . . , n} forms an i.i.d. sequence. The test statistic is motivated by (3.11) and

is based on

Tn =
n−1∑
j=1

(n− j)k2(j/p)V̂ 2
X(j), (3.13)

following Hong (1999). However, there is an important difference between the test statistic

obtained by Hong (1999) and the one given by (3.13). The weight function chosen previ-

ously in (3.11) to form test statistics like (3.13) is assumed to be integrable. However, in

our case we propose (3.13) by allowing nonintegrable weight functions W(·, ·). We have

the following results.

Theorem 3.4.1 Suppose that Assumptions 2 and 4 hold and let p = cnλ, where c > 0,

λ ∈ (0, 1). Then, under the null hypothesis that {Xt} is an i.i.d. sequence, we have that

Mn =
Tn − Ĉ0

∑n−1
j=1 k

2(j/p)[
D̂0

∑n−2
j=1 k

4(j/p)
]1/2

→ N(0, 1),

as n→∞, in distribution, where

C0 =

∫
R2

σ0(u,−u)σ0(v,−v)dW =

(∫
R

1− |φ(u)|2

π |u|2
du

)2

=
[
E |Xt −X ′t|

]2

,

D0 = 2

(∫
R2

|σ0(u, u′)|2 dW0(u)dW0(u′)

)2

= 2

(∫
R2

|φ0(u, u′)− φ(u)φ(u′)|2

π2 |u|2 |u′|2
dudu′

)2

= 2V 4
X(0),

and Ĉ0, D̂0 are their sample counterparts and the expectation is taken with respect to the

distribution of Xt with X ′t an independent copy of Xt.

The following proposition gives the asymptotic distribution of the statistic Tn in the special
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case of a standard Gaussian process.

Proposition 3.4.1 If {Xt} is a Gaussian stationary time series such that EXt = 0,

Var(Xt) = 1 and ρ(j) = Cov(Xt, Xt−|j|) then under Assumption 4 and p = cnλ for c > 0

and λ ∈ (0, 1),

Mn =
Tn − 4/π

∑n−1
j=1 k

2(j/p)

4
√

2/π(1 + π/3−
√

3)
[∑n−2

j=1 k
4(j/p)

]1/2
→ N(0, 1),

as n→∞, in distribution.

Theorem 3.4.2 Suppose that Assumptions 1, 3(i) and 4 hold and p = cnλ for c > 0 and

λ ∈ (0, 1). Then,

√
p

n
Mn →

π

2

∫
R2

∫ π

−π
|f(ω, u, v)− f0(ω, u, v)|2 dωdW(u, v)[

D0

∫ ∞
0

k4(z)dz

]1/2
,

as n→∞, in probability.

The above theorem assures that under any alternative hypothesis, Mn has asymptotic

power 1 whenever the weighted squared norm of f(ω, u, v) minus f0(ω, u, v) is positive.

This is a consequence of the fact that

∫
R2

∫ π

−π
|f(ω, u, v)− f0(ω, u, v)|2 dωdW(u, v) =

2

π

∞∑
j=1

V 2
X(j). (3.14)

Clearly, (3.14) is equal to 0 if and only if Xt and Xt−j are independent for all j ≥ 1. There-

fore, the statistic Mn is consistent against the hypothesis of pairwise dependence.
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3.5 Applications

3.5.1 Investigating the Size of Tn

We first report some empirical results concerning the behavior of the test statistic Tn

given by (3.13). The simulations correspond to different sample sizes and we use standard

nonparametric bootstrap (number of replications b = 499) to obtain critical values for

studying the size and the power of the proposed statistic. The calculation of the test

statistic is based on the use of R package dCovTS implemented in Chapter 5.

To examine the effects of using different kernel functions for constructing the test statistic

Tn, we choose Lipschitz continuous functions, i.e. functions k(·) such that for any z1, z2 ∈

R

|k(z1)− k(z2)| ≤ C |z1 − z2|

for some constant C. In particular, we use the following

• The Daniell kernel (DAN), given by

k(z) =
sin(πz)

πz
, z ∈ R− {0},

• The Parzen kernel (PAR), given by

k(z) =


1− 6(πz/6)2 + 6 |πz/6|3 , |z| ≤ 3/π,

2(1− |πz/6|)3, 3/π ≤ |z| ≤ 6/π,

0, otherwise,

• The Bartlett kernel (BAR), given by

k(z) =

 1− |z| , |z| ≤ 1,

0, otherwise.

We also compare the test statistic Tn with other test statistics, available in time series
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literature and reviewed in Section 2.4.2, to examine its relative performance. In particular,

we consider the Box-Pierce (BP) test statistic

BP = n

p∑
j=1

ρ̂2(j),

the Ljung-Box (LB) test statistic

LB = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2(j),

the test statistic proposed by Hong (1996)

T (1)
n = n

n−1∑
j=1

k2(j/p)ρ̂2(j).

Furthermore, we consider the test statistic obtained by Hong (1999)

T (2)
n =

∫
R2

n−1∑
j=1

(1− j/n)k2(j/p) |σ̂j(u, v)|2 dW(u, v),

where W(·, ·) is an arbitrary integrable weight function. Note that, a convenient way to

calculate T
(2)
n , is to employ the bivariate cumulative distribution function of a standard

normal random variable (Chen and Hong, 2012); i.e.W(u, v) =W0(u)W0(v) = Φ(u)Φ(v).

This allows us to consider a countable number N of grid points (u, v) for which the integral

in equation (3.11), is replaced by its empirical mean. The number N is chosen to be 500,

because a larger choice of N would not alter the results significantly. Table 3.1 shows the

computational time taken to obtain Tn and T
(2)
n , for various choices of sample size n and

bandwidth p on a standard laptop with Intel Core i5 system and CPU 2.30 GHz. Clearly,

T
(2)
n is computationally more expensive than Tn, especially when n and p are large. The

computational time of calculating Tn is still quite high because Tn is based on V̂ 2
X(j).

The sequence {V̂ 2
X(j), j = 1, · · · , n} is computed by employing a distance matrix among

observations for each lag j. The computation therefore is quite demanding; some recent

progress towards this issue was reported by Huo and Székely (2015).
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Table 3.1: Computational time (in seconds) for computing the test statistics Tn and T
(2)
n .

n: 100 200 500
p: 3 7 16 3 9 25 4 13 42

Tn BAR 0.13 0.14 0.18 1.20 1.12 1.12 18.39 18.56 17.94
PAR 0.13 0.12 0.11 0.83 0.79 0.78 18.19 17.97 18.69
DAN 0.11 0.12 0.11 0.80 0.80 0.78 18.93 18.48 18.47

T
(2)
n BAR 1.20 1.21 1.20 4.79 4.74 4.72 29.61 29.58 29.58

PAR 1.21 1.22 1.22 4.82 4.79 4.77 29.62 29.58 29.69
DAN 1.21 1.24 1.24 4.82 4.77 4.81 29.61 29.60 29.61

We now investigate the size of the test. Suppose that {Xt} is an i.i.d. sequence of stan-

dard normal random variables. To examine the sensitivity of the test statistic Tn on the

values of bandwidth p, we use p = nλ with λ = 1/5, 2/5, 3/5. If n = 100, then p takes

approximately the values 3, 7 and 16. Similarly for other sample sizes. Table 3.2 contains

achieved type I error rates at 5% and 10% nominal levels. We note that the proposed

test statistic keeps its size closer to its nominal level. In fact the Bartlett kernel yields

better approximations. Further support for the asymptotic normality of the proposed test

statistic is given in Table 3.3. These results show that the asserted asymptotic normal-

ity is adequate especially for large sample sizes. Moreover, Figure 3.1 shows box plots

and qq-plots for the sampling distribution of the standardized statistic Mn, verifying the

adequacy of the normal distribution.
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Table 3.2: Achieved type I error rates of the test statistics for testing the hypothesis that the data are i.i.d. The data are generated by the
standard normal distribution. Achieved significance levels are given in percentages. The results are based on b = 499 bootstrap replications
and 100 simulations.

n: 100 200 500
p: 3 7 16 3 9 25 4 13 42

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Tn BAR 6 2 10 6 11 5 11 7 6 3 9 3 13 4 7 2 7 2
PAR 12 6 16 6 4 1 10 5 6 3 7 2 10 5 14 9 11 5
DAN 9 3 10 4 7 4 9 5 8 6 10 4 15 9 13 5 8 4

BP 9 5 10 6 11 9 12 5 6 2 6 4 4 4 8 2 8 6

LB 9 3 13 5 10 8 10 6 6 2 6 4 4 4 8 2 7 6

T
(1)
n BAR 6 2 4 1 11 5 12 8 10 3 9 6 10 4 13 5 9 5

PAR 6 2 9 2 13 6 12 7 14 11 6 2 10 5 4 1 4 1
DAN 8 4 15 6 19 8 8 5 15 8 16 6 13 5 9 5 10 4

T
(2)
n BAR 12 6 8 2 12 5 11 4 11 4 10 6 9 3 6 4 6 4

PAR 12 3 13 6 8 5 10 3 7 4 9 2 9 5 10 6 8 2
DAN 14 6 8 3 7 1 13 5 12 5 10 5 15 9 5 2 7 1
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Table 3.3: Skewness, kurtosis and p-values obtained by performing a one-sample Kolmogorov-
Smirnov test, for testing normality of the normalized test statistic Mn given by Theorem 3.4.1.
The results are based on b = 499 bootstrap replications and 100 simulations.

Skewness Kurtosis p-value
BAR PAR DAN BAR PAR DAN BAR PAR DAN

n = 100

p = 3 0.741 -0.032 0.2638 4.701 3.150 2.5546 0.627 0.740 0.9286
p = 7 0.203 0.479 0.0855 2.478 3.832 2.8492 0.739 0.756 0.8669
p = 16 0.178 0.404 0.5142 2.951 2.825 3.2691 0.982 0.949 0.3336

n = 200

p = 3 -0.169 -0.171 0.2313 2.827 2.826 3.2557 0.977 0.989 0.9517
p = 9 0.198 0.187 0.6011 2.320 2.301 3.2171 0.509 0.508 0.3376
p = 25 0.338 0.335 0.4768 3.002 2.989 3.4548 0.905 0.882 0.4091

n = 500

p = 4 0.490 -0.097 0.113 2.764 2.422 2.768 0.338 0.814 0.9508
p = 13 0.004 0.046 0.190 2.727 2.404 2.637 0.686 0.564 0.9344
p = 42 -0.016 0.312 -0.003 2.680 2.710 2.660 0.460 0.980 0.9367
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Figure 3.1: Box plots and qq-plots for the sampling distribution of the normalized statistic Mn.
The results are based on (a) 500 and (b) 1000 observations, for p = [n3/5] and 1000 simulations.
The statistic Mn was calculated based on the Bartlett kernel.

3.5.2 Comparison Between ADCF and ACF

As mentioned at the beginning of this chapter, compared to the ACF where it measures

the strength of linear dependencies and can be equal to zero even when the variables are

related, ADCF vanishes only in the case where the observations are independent. We

compare the performance of ADCF and ACF by considering the following alternative
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models:

• ARCH(2)-model

Xt = σtεt, σ2
t = 0.5 + 0.8X2

t−1 + 0.1X2
t−2 (3.15)

• TAR(1)-model

Xt =

 −1.5Xt−1 + εt, Xt−1 < 0;

0.5Xt−1 + εt, Xt−1 ≥ 0
(3.16)

• NMA(2)-model

Xt = εtεt−1εt−2, (3.17)

where {εt} is a sequence of i.i.d. standard normal random variables. Note that (3.15)

corresponds to an autoregressive conditional heteroscedastic model of order two (see Engle

(1982)) and (3.16) corresponds to a threshold autoregressive model (TAR) of order one (see

Tsay (2005, Section 4.1.2) for instance). The TAR model generates data with nonlinear

dependence structure (Tong, 1990). Model (3.17) is an example of nonlinear moving

average of order two. It is well known that the process {Xt} generated by (3.17) consists

of a sequence of 2-dependent but uncorrelated random variables.

Figure (3.2) compares the sample ACF and sample ADCF of models (3.15) – (3.17) with

sample size n = 2000. In all these three cases, ADCF performs better than ACF, and

correctly reflects the underlying nonlinear dependence structure of the aforementioned

models. In particular, the sample ADCF for model (3.15) (Figure 3.2a) exhibits nice ex-

ponential decay strongly suggesting dependence among the data. Moreover, the ADCF

for models (3.16) and (3.17) (Figures 3.2b and 3.2c) cuts off at lag 1 and lag 2 respectively,

whereas the corresponding ACF plots fail to show any serial correlation among the obser-

vations. The shown critical values (blue dotted horizontal line) of the ADCF plots (second

column) are the pairwise 95% critical values that correspond to the pairwise independence

test. They are computed via the subsampling approach suggested by Zhou (2012, Section
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5.1), where the choice of the block size is based on the minimum volatility method pro-

posed by Politis et al. (1999, Section 9.4.2). Additionally, the 95% simultaneous critical

values are also shown in the sample ADCF plots (last column). They are computed via

the independent wild bootstrap approach (Dehling and Mikosch, 1994; Shao, 2010; Leucht

and Neumann, 2013b) explained in detail in the appropriate section of Chapter 4.

3.5.3 Investigating the Power of Tn

For investigating the power of the test statistic Tn we consider the data generating pro-

cesses given by (3.15), (3.16) and (3.17). Figure 3.3 (respectively Figure 3.4) shows the

power of all test statistics considered for various sample sizes and bandwidth parameters

when the data are generated by (3.15) (respectively (3.16)). We note that in both cases

Tn and T
(2)
n perform better than all the other test statistics in the sense that they achieve

the maximum power. For bandwidth values of the form n1/5 and n2/5 the power of both

test statistics increases to one, especially for large sample sizes. When p = n3/5 then we

note that, for the case of model (3.15), the power of T
(2)
n is superior to the power of Tn.

However, the simulation suggests that as the sample size tends to larger values, the power

of Tn approaches the power of T
(2)
n . The situation is reversed in Figure 3.4, but the fact

that both tests give similar results is clearly depicted, especially for large values of sample

size.

Figure 3.5 shows bootstrap p-values for various values of the bandwidth parameter and

sample sizes when the data are generated by (3.17). We note again that the performance

of both test statistics Tn and T
(2)
n is superior to the performance of the rest test statistics.

3.5.4 S&P 500 Stock Return Data

Typically, the stock return data do not have a constant variance, but highly volatile pe-

riods tend to be clustered. That is, there is a change in volatility over time. So, models

that study this change in volatility need to be considered. It is well known that ARMA

models assume constant variance. However, ARCH - and the generalized ARCH - models,
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Figure 3.2: Comparison of the sample ADCF and sample ACF. Results are based on sample
size n = 2000. (a) Data are generated by the ARCH(2) model given by (3.15). (b) Data are
generated by the TAR(1) model given by (3.16). (c) Data are generated by the NMA(2) model
given by (3.17).
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Figure 3.3: Achieved power of all test statistics. The data are generated by the ARCH(2) model
given by (3.15). The results are based on b = 499 bootstrap replications and 100 simulations.

The test statistics Tn, T
(1)
n , T

(2)
n are calculated by employing the Daniell kernel.
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Figure 3.4: Achieved power of all test statistics. The data are generated by the TAR(1) model
given by (3.16). The results are based on b = 499 bootstrap replications and 100 simulations.

The test statistics Tn, T
(1)
n , T

(2)
n are calculated by employing the Daniell kernel.
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Figure 3.5: Bootstrap p-values of all test statistics as a function of the bandwidth p. The data
are generated by the NMA(2) model given by (3.17). The results are based on b = 499 bootstrap

replications and 100 simulations. The test statistics Tn, T
(1)
n , T

(2)
n are calculated by employing

the Daniell kernel.

are developed to model changes in volatility. We analyze monthly excess returns of the

S&P 500 index starting from 1926. This series consists of 792 observations (Tsay, 2005,

Example 3.3). Figure 3.6 shows the ACF (upper plot) and the ADCF (lower plots) of

the original series and the squared original series. The ACF plot of the original series

suggests a moderate serial correlation at lags 1 and 3, while the ACF plot of the squared

series shows strong linear dependence. This is a common feature in financial returns.

However, the ADCF plots strongly suggest dependence, especially when considering the

shown critical values that correspond to the independence test. Tsay (2005) suggested an

AR(3)-GARCH(1,1) model for the series. However, it is further observed that all autore-

gressive parameters are insignificant at the 5% significance level. Hence, a GARCH(1,1)

model is fitted to these data. After data fitting it is of interest to study the behavior

of the standardized residuals. The upper panel of Figure 3.7 show the ACF plots of the

standardized residuals and the squared standardized residuals of the fitted model. These

plots, fail to show any signal of serial correlation. On the other hand, their ADCF plots

(lower plots of Figure 3.7) indicate that there is dependence among the residuals. Table

3.4 contains the p-values obtained by constructing tests of independence among the resid-
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uals for various choices of the bandwidth p. The BP, LB and T
(1)
n test statistics yield large

p-values suggesting no serial correlation between the residuals, whereas T
(2)
n and Tn give

low p-values suggesting dependence among the observations. All results are calculated by

using b = 199 and 499. The test statistics Tn, T
(1)
n and T

(2)
n are calculated by employing

the Bartlett kernel. Any other choice of the kernel function, k(·), results to the same

conclusions.

Table 3.4: P-values obtained by constructing tests of independence among the standardized
residuals after fitting the GARCH(1,1) model to S&P 500 returns with Gaussian and standard
normal inverse Gaussian innovations. All test statistics were calculated for both b = 199 and
b = 499 bootstrap replications and by employing the Bartlett kernel.

Bandwidth Replications Gaussian Model NIG Model

p b Tn T
(2)
n BP LB T

(1)
n Tn T

(2)
n BP LB T

(1)
n

4 199 0.020 0.015 0.640 0.695 0.670 0.650 0.380 0.890 0.880 0.875
499 0.036 0.004 0.672 0.686 0.638 0.660 0.350 0.910 0.864 0.890

15 199 0.030 0.005 0.260 0.255 0.370 0.420 0.065 0.725 0.500 0.525
499 0.016 0.004 0.242 0.280 0.388 0.404 0.174 0.730 0.498 0.538

55 199 0.030 0.005 0.580 0.665 0.305 0.410 0.210 0.625 0.815 0.795
499 0.028 0.026 0.652 0.632 0.336 0.412 0.196 0.626 0.786 0.766

Therefore, ignoring dependence will lead to unreliable inference and forecasts. Analyzing

in depth these data is outside the scope of this chapter. However, a model with heavy

tailed innovations might be a better approximation for these data. Indeed, a GARCH(1,1)

model with innovations following a standard normal-inverse gaussian distribution (NIG)

seems to be more appropriate choice for the data. Figure 3.8 shows the ACF plots (upper

panel) and the ADCF plots (lower panel) of the standardized residuals and the squared

standardized residuals of the fitted model with NIG innovations. Both ACF and ADCF

plots do not indicate any serial dependence among the residuals. Furthermore, all test

statistics yield large p-values indicating the absence of dependence among observations–see

Table 3.4.
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Figure 3.6: Upper plots: The ACF of the original series and the squared original series. Lower
plots: The ADCF of the original and the squared original series.
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Figure 3.7: Upper plots: The ACF of the standardized residuals and the squared standardized
residuals. Lower plots: The ADCF of the standardized residuals and squared standardized resid-
uals. The results are obtained after fitting the GARCH(1,1) model with Gaussian innovations.
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Figure 3.8: Upper plots: The ACF of the standardized residuals and the squared standardized
residuals. Lower plots: The ADCF of the standardized residuals and squared standardized resid-
uals. The results are obtained after fitting the GARCH(1,1) model with innovations following
the standard NIG distribution.
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Appendix – Proofs

In this section, we give proofs of the main results discussed in this chapter. We first prove

Proposition 3.2.1.

Proof of Proposition 3.2.1 (i) It is well known that if {Xt} follows a standard normal

distribution with autocorrelation function ρ(·), then the joint characteristic function of

the pair (Xt, Xt−|j|) and the corresponding marginal characteristic functions are given by

φ|j|(u, v) = exp
(
−(u2 + v2)/2− ρ(j)uv

)
,

φ(u) = exp
(
−u2/2

)
,

and

φ(v) = exp
(
−v2/2

)
respectively. Define the function F (ρ(j)) such that V 2

X(j) = F (ρ(j))/π2, that is

F (ρ(j)) =

∫
R2

∣∣φ|j|(u, v)− φ(u)φ(v)
∣∣2 du
u2

dv

v2

=

∫
R2

∣∣∣e−(u2+v2)/2−ρ(j)uv − e−u2/2e−v2/2
∣∣∣2 du
u2

dv

v2

=

∫
R2

∣∣∣e−(u2+v2)/2−ρ(j)uv − e−(u2+v2)/2
∣∣∣2 du
u2

dv

v2

=

∫
R2

e−(u2+v2)
(
e−ρ(j)uv − 1

)2du

u2

dv

v2

=

∫
R2

e−(u2+v2)
(
1− 2e−ρ(j)uv + e−2ρ(j)uv

)du
u2

dv

v2
. (3.18)

Considering now the Taylor series of the exponential function we have the following

e−ρ(j)uv = 1− ρ(j)uv +
∞∑
k=2

(−ρ(j)uv)k

k!
,

and

e−2ρ(j)uv = 1− 2ρ(j)uv +
∞∑
k=2

2k
(−ρ(j)uv)k

k!
.
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So,

(3.18) =

∫
R2

e−(u2+v2)

∞∑
k=2

2k − 2

k!
(−ρ(j)uv)k

du

u2

dv

v2

=

∫
R2

e−(u2+v2)

∞∑
n=1

22n − 2

(2n)!
(−ρ(j)uv)2ndu

u2

dv

v2

= ρ2(j)

[∫
R2

e−(u2+v2)

∞∑
n=1

22n − 2

(2n)!
(ρ(j)uv)2(n−1)dudv

]

= ρ2(j)

[
∞∑
n=1

22n − 2

(2n)!
ρ(j)2(n−1)

∫
R2

e−(u2+v2)(uv)2(n−1)dudv

]
= ρ2(j)G(ρ(j)).

Clearly, G(ρ(j)) is a function consisting of positive terms, is nondecreasing in ρ(j) and

G(ρ(j)) ≤ G(1). Thus,

R2
X(j) =

V 2
X(j)

V 2
X(0)

=
F (ρ(j))/π2

F (1)/π2
= ρ2(j)

G(ρ(j))

G(1)
≤ ρ2(j).

So, RX(j) ≤ |ρ(j)|.

(ii) We first note that F (0) = F ′(0) = 0, thus F (ρ(j)) =
∫ ρ(j)

0

∫ x
0
F ′′(z)dzdx, where the

second derivative of F (z) is

F ′′(z) =
d2

dz2

∫
R2

e−(u2+v2)
(
1− 2e−zuv + e−2zuv

)du
u2

dv

v2

=

∫
R2

e−(u2+v2)
(
4e−2zuv − 2e−zuv

)
dudv

= 4V (z)− 2V

(
z

2

)
,

where

V (z) =

∫
R2

e−u
2−v2−2zuvdudv.
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Using the results
∫
R e
−at2e−2btdt = eb

2/a
√
π/a and

∫
R e
−at2dt =

√
π/a, we observe that

V (z) =

∫
R
e−v

2

∫
R
e−u

2

e−2zvududv

=

∫
R
e−v

2

ez
2v2
√
πdv

=
√
π

∫
R
e−v

2(1−z2)dv

=
√
π

√
π

1− z2
=

π√
1− z2

.

Therefore, we have the following result for the function F (ρ(j)):

F (ρ(j)) =

∫ ρ(j)

0

∫ x

0

(
4π√

1− z2
− 2π√

1− z2/4

)
dzdx

= 4π

∫ ρ(j)

0

(
arcsin(x)− arcsin(x/2)

)
dx

= 4π
[
xarcsin(x) +

√
1− x2 − xarcsin(x/2)−

√
4− x2

]ρ(j)

0

= 4π
(
ρ(j)arcsinρ(j) +

√
1− ρ2(j)− ρ(j)arcsin(ρ(j)/2)−

√
4− ρ2(j) + 1

)
.

Finally, using the above result we get the required relation

R2
X(j) =

F (ρ(j))/π2

F (1)/π2
=
ρ(j)arcsinρ(j) +

√
1− ρ2(j)− ρ(j)arcsin(ρ(j)/2)−

√
4− ρ2(j) + 1

1 + π/3−
√

3
,

for j = 0,±1,±2, . . . .

We next prove two lemmas which will be employed in the proof of the remaining results

of the chapter. In what follows C, possibly with a subscript, denotes a generic constant.

We first define the pseudoestimator:

f̄n(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

k(j/p)(1− |j| /n)1/2σ̃j(u, v)e−ijω,
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where

σ̃j(u, v) =
1

n− |j|

n∑
t=|j|+1

ψt(u)ψt−|j|(v) (3.19)

and

ψt(u) ≡ eiuXt − φ(u). (3.20)

Lemma 3.5.1 Suppose that {Xt, t ≥ 1} satisfies Assumptions 1 and 3(ii). Then,

(n− |j|)2E |σ̂j(u, v)− σ̃j(u, v)|2 ≤ C,

and

(n− |j|)E |σ̃j(u, v)|2 ≤ C,

uniformly in (u, v) ∈ R2. The result of the Lemma is also true under independence.

Proof of Lemma 3.5.1 Note that

σ̃j(u, v) =
1

n− |j|

n∑
t=|j|+1

ei(uXt+vXt−|j|) − φ(v)

n− |j|

n∑
t=|j|+1

eiuXt

− φ(u)

n− |j|

n∑
t=|j|+1

eivXt−|j| + φ(u)φ(v)

Therefore, by subtracting σ̃j(u, v) from σ̂j(u, v) we get:
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σ̂j(u, v)− σ̃j(u, v) = − 1

n− |j|

n∑
t=|j|+1

ei(uXt)

n∑
t=|j|+1

ei(vXt−|j|) +
φ(v)

n− |j|

n∑
t=|j|+1

eiuXt

+
φ(u)

n− |j|

n∑
t=|j|+1

eivXt−|j| − φ(u)φ(v)

= − 1

n− |j|

n∑
t=|j|+1

eiuXt

[∑n
t=|j|+1 e

ivXt−|j|

n− |j|
− φ(v)

]

+φ(u)

[∑n
t=|j|+1 e

ivXt−|j|

n− |j|
− φ(v)

]

= −

{∑n
t=|j|+1 e

iuXt

n− |j|
− φ(u)

}{∑n
t=|j|+1 e

ivXt−|j|

n− |j|
− φ(v)

}
.

= − 1

(n− |j|)2

n∑
t=|j|+1

ψt(u)
n∑

t=|j|+1

ψt−|j|(v).

The Cauchy – Schwarz inequality implies that

E |σ̂j(u, v)− σ̃j(u, v)|2 ≤ 1

(n− |j|)4

{
E

∣∣∣∣∣∣
n∑

t=|j|+1

ψt(u)

∣∣∣∣∣∣
4

E

∣∣∣∣∣∣
n∑

t=|j|+1

ψt−|j|(v)

∣∣∣∣∣∣
4}1/2

≤ C

(n− |j|)2

uniformly, because E
∣∣∣∑n

t=|j|+1 ψt(u)
∣∣∣4 ≤ C(n − |j|)2 given Assumption 3(ii) (Doukhan

and Louhichi, 1999, Lemma 6).

From the definition of σ̃j(u, v) in (3.19), it follows that:

E |σ̃j(u, v)|2 = E

∣∣∣∣∣∣ 1

n− |j|

n∑
t=|j|+1

ψt(u)ψt−|j|(v)

∣∣∣∣∣∣
2

≤ C

n− |j|

uniformly.

Lemma 3.5.2 Suppose that {Xt, t ≥ 1} satisfies Assumptions 1, 3(ii) and 4. For each

γ > 0, denote by D(γ) the region D(γ) = {(u, v) : γ ≤ |u| ≤ 1/γ, γ ≤ |v| ≤ 1/γ}. Then,
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under Assumption 4, for any fixed γ > 0,

∫
D(γ)

n−1∑
j=1

k2(j/p)(n− j)
{
|σ̂j(u, v)|2 − |σ̃j(u, v)|2

}
dW = OP (p/

√
n) = oP (

√
p)

as p/n→ 0. The result of the Lemma is also true under independence.

Proof of Lemma 3.5.2 From the properties of kernels (Hong, 1999, p. 1213) we obtain

that

∑
|j|<n

1

n− |j|
k2(j/p) = O(p/n)

for bandwidth p = cnλ, λ ∈ (0, 1). In addition, we observe that

∑
|j|<n

1

n− |j|
k2(j/p) =

n−1∑
j=−(n−1)

1

n− |j|
k2(j/p)

=
−1∑

j=−(n−1)

1

n− |j|
k2(j/p) +

1

n
k2(0) +

n−1∑
j=1

1

n− j
k2(j/p)

= 2
n−1∑
j=1

1

n− j
k2(j/p) +

1

n

and so

n−1∑
j=1

1

n− j
k2(j/p) = O(p/n). (3.21)

Now, using that
√
n− j ≤

√
n, we further observe that

n−1∑
j=1

1√
n− j

k2(j/p) ≤
n−1∑
j=1

√
n

n− j
k2(j/p) = O(p/

√
n). (3.22)

Now, define

Zγ
n;p =

∫
D(γ)

n−1∑
j=1

k2(j/p)(n− j)
{
|σ̂j(u, v)|2 − |σ̃j(u, v)|2

}
dW ,

and observe that, for any fixed γ > 0, the chosen weight function W(u, v) in equation
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(3.3), is bounded on D(γ). Thus, W(u, v) is an integrable function in this region. To

prove the first result of this Lemma, we need to show that for any ε > 0, there exists a

finite M = δ(ε) > 0 such that

P

(√
n
∣∣Zγ

n;p

∣∣
p

≥M

)
≤ ε.

Using,

|σ̂j(u, v)|2 − |σ̃j(u, v)|2 = |σ̂j(u, v)− σ̃j(u, v)|2 + 2Re{|σ̂j(u, v)− σ̃j(u, v)| σ̃j(u, v)∗},

where ∗ denotes complex conjugate, we get the following:

E
∣∣Zγ

n;p

∣∣ ≤ ∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j)E
(
|σ̂j(u, v)|2 − |σ̃j(u, v)|2

)}
dW

=

∫
D(γ)

{
n−1∑
j=1

k2(j/p)

(n− j)
(n− j)2E

(
|σ̂j(u, v)− σ̃j(u, v)|2

)}
dW

+2

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j)Re{E |σ̂j(u, v)− σ̃j(u, v)| σ̃j(u, v)∗}

}
dW .

Now Lemma 3.5.1, the Cauchy – Schwarz inequality, relations (3.21) and (3.22) and the

fact that
∫
D(γ)

dW <∞ show that,

E
∣∣Zγ

n;p

∣∣ ≤ ∫
D(γ)

{
n−1∑
j=1

k2(j/p)

(n− j)
(n− j)2E

(
|σ̂j(u, v)− σ̃j(u, v)|2

)}
dW

+ 2

∫
D(γ)

n−1∑
j=1

k2(j/p)√
n− j

√
(n− j)2E |σ̂j(u, v)− σ̃j(u, v)|2

√
(n− j)E |σ̃j(u, v)|2dW

≤ C1

∫
D(γ)

dW
n−1∑
j=1

k2(j/p)

n− j
+ C2

∫
D(γ)

dW
n−1∑
j=1

k2(j/p)√
n− j

= O(p/
√
n) (3.23)

as p/n→ 0. By Markov’s inequality, (3.23) implies the first result.
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To prove the second result of the Lemma, we actually need to show that

P

(∣∣Zγ
n;p

∣∣
√
p
≥ ε

)
→ 0,

as n, p→∞ and p/n→ 0, ∀ ε > 0. By Markov’s inequality and (3.23), the second result

follows immediately.

Proof of Proposition 3.2.2 Recall the region D(γ) defined in Lemma 3.5.2, and for

each γ > 0, define the random variables

V̂ 2
X;γ(j) =

∫
D(γ)

|σ̂j(u, v)|2 dW . (3.24)

Because of the SLLN for α-mixing random variables and the fact that
∫
D(γ)

dW <∞, we

obtain

lim
n→∞

V̂ 2
X;γ(j) = V 2

X;γ(j) =

∫
D(γ)

|σj(u, v)|2 dW ,

almost surely. Clearly, V 2
X;γ(j) → V 2

X(j) as γ tends to zero. So, it remains to prove that

almost surely

lim sup
γ→0

lim sup
n→∞

∣∣∣V̂ 2
X;γ(j)− V̂ 2

X(j)
∣∣∣ = 0. (3.25)

For each γ > 0, we obtain that

∣∣∣V̂ 2
X;γ(j)− V̂ 2

X(j)
∣∣∣ ≤ ∫

|u|<γ
|σ̂j(u, v)|2 dW +

∫
|u|>1/γ

|σ̂j(u, v)|2 dW

+

∫
|v|<γ
|σ̂j(u, v)|2 dW +

∫
|v|>1/γ

|σ̂j(u, v)|2 dW . (3.26)

Now, for z ∈ R, define H(y) =
∫
|z|<y (1− cosz)/ |z|2 dz. This is bounded by π, and
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limy→0H(y) = 0. Because of |x+ y|2 ≤ 2 |x|2 +2 |y|2 and the Cauchy – Schwarz inequality

|σ̂j(u, v)|2 = |σ̃j(u, v) + σ̂j(u, v)− σ̃j(u, v)|2

≤ 2

∣∣∣∣∣∣ 1

n− |j|

n∑
t=|j|+1

ψt(u)ψt−|j|(v)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣ 1

n− |j|

n∑
t=|j|+1

ψt(u)
1

n− |j|

n∑
t=|j|+1

ψt−|j|(v)

∣∣∣∣∣∣
2

≤ 4

{
1

(n− |j|)

n∑
t=|j|+1

|ψt(u)|2
}{

1

(n− |j|)

n∑
t=|j|+1

∣∣ψt−|j|(v)
∣∣2}. (3.27)

But, the first summand in (3.26) satisfies:

∫
|u|<γ
|σ̂j(u, v)|2 dW ≤

{ 4

(n− |j|)

n∑
t=|j|+1

∫
|u|<γ

|ψt(u)|2

π |u|2
du
}

×
{ 1

(n− |j|)

n∑
t=|j|+1

∫
R

∣∣ψt−|j|(v)
∣∣2

π |v|2
dv
}
. (3.28)

However, (3.20) yields

∣∣ψt−|j|(v)
∣∣2 =

(
eivXt−|j| − φ(v)

)(
eivXt−|j| − φ(v)

)∗
= eivXt−|j|

(
eivXt−|j|

)∗ − φ(v)∗eivXt−|j| − φ(v)
(
eivXt−|j|

)∗
+ φ(v)φ(v)∗

= 1 + |φ(v)|2 − φ(v)∗eivXt−|j| − φ(v)
(
eivXt−|j|

)∗
and similarly for |ψt(u)|2. Now, letting Xt−|j| ≡ Yt and using Lemma 2.2.1 we get
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∫
R

∣∣ψt−|j|(v)
∣∣2

π |v|2
dv =

∫
R

1 + |φ(v)|2 − φ(v)∗eivXt−|j| − φ(v)
(
eivXt−|j|

)∗
π |v|2

dv

= E

∫
R

1 + eiv(Y−Y ′) − eiv(Yt−Y ) − eiv(Y−Yt)

π |v|2
dv

= E

∫
R

1 + cos(v |Y − Y ′|)− cos(v |Yt − Y |)− cos(v |Yt − Y |)
π |v|2

dv

= E

∫
R

2− 1 + cos(v |Y − Y ′|)− 2cos(v |Yt − Y |)
π |v|2

dv

= E

∫
R

−(1− cos(v |Y − Y ′|)) + 2(1− cos(v |Yt − Y |))
π |v|2

dv

= 2EY |Yt − Y | − E |Y − Y ′| ≤ 2(|Yt|+ E |Y |) = 2(
∣∣Xt−|j|

∣∣+ E |X1|),

where the expectation EY is taken with respect to Y and we denote by Y ′ the random

variable which is a copy of Y and independent of Yt. Similarly

∫
|u|<γ

|ψt(u)|2

π |u|2
=

∫
|u|<γ

1 + |φ(u)|2 − eiuXtφ(u)∗ − φ(u)
(
eiuXt

)∗
π |u|2

du

= E

∫
|u|<γ

1 + cos(u |X −X ′|)− 2cos(u |Xt −X|)
π |u|2

du

= E

∫
|u|<γ

−(1− cos(u |X −X ′|)) + 2(1− cos(u |Xt −X|))
π |u|2

du

= 2EX |Xt −X|H(γ |Xt −X|)− E |X −X ′|H(γ |X −X ′|)

≤ 2EX |Xt −X|H(|Xt −X| γ)

where the expectation EX is taken with respect to X. Therefore, from (3.28)

∫
|u|<γ
|σ̂j(u, v)|2 dW ≤ 16

1

(n− |j|)

n∑
t=|j|+1

(
∣∣Xt−|j|

∣∣+ E |X1|)

× 1

(n− |j|)

n∑
t=|j|+1

EX [|Xt −X|H(|Xt −X| γ)].

Because of the Assumptions 1 and 2 and the ergodic theorem for α-mixing processes we
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obtain

1

n− |j|

n∑
t=|j|+1

(∣∣Xt−|j|
∣∣+ E |X1|

)
→ E |X1|+ E |X1| = 2E |X1| ,

1

n− |j|

n∑
t=|j|+1

EX |Xt −X|H(|Xt −X| γ) → E |X0 −X1|H(|X0 −X1| γ),

as n→∞, almost surely. Therefore,

lim sup
n→∞

∫
|u|<γ
|σ̂j(u, v)|2 dW ≤ 32E |X1|E |X0 −X1|H(|X0 −X1| γ)

and by Lebesgue’s dominated convergence theorem,

lim sup
γ→0

lim sup
n→∞

∫
|u|<γ
|σ̂j(u, v)|2 dW = 0.

For the second term of (3.26), (3.27) implies that |ψt(u)|2 ≤ 4 and 1/(n−|j|)
∑n

t=|j|+1 |ψt(u)|2 ≤

4. Therefore

∫
|u|>1/γ

|σ̂j(u, v)|2 dW ≤ 16

∫
|u|>1/γ

du

π |u|2
∫
R

1

n− |j|

n∑
t=|j|+1

∣∣ψt−|j|(v)
∣∣2

π |v|2
dv

≤ 16γ
2

n− |j|

n∑
t=|j|+1

(
∣∣Xt−|j|

∣∣+ E |X1|).

Then, almost surely for suitable chosen γ > 0

lim sup
γ→0

lim sup
n→∞

∫
|u|>1/γ

|σ̂j(u, v)|2 dW = 0.

The other two summands of (3.26) can be dealt in a similar way to obtain (3.25).

Proof of Theorem 3.4.1 Arguing as in Hong (1999), we first define

Vtsj(u, v) = Ctsj(u, v) + Cstj(u, v)∗,
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where

Ctsj(u, v) = ψt(u)ψs(u)∗ψt−j(v)ψs−j(v)∗.

Since Ctsj(u, v) = Cstj(u, v)∗, Vtsj(u, v) is real-valued and symmetric in t and s; that is,

Vtsj(u, v) = Vstj(u, v). We then get the following result:

n−1∑
j=1

k2(j/p)(n− j) |σ̃j(u, v)|2 =
n−1∑
j=1

k2(j/p)

n− j

∣∣∣∣∣
n∑

t=j+1

ψt(u)ψt−j(v)

∣∣∣∣∣
2

=
n−1∑
j=1

k2(j/p)

n− j
|ψj+1(u)ψ1(v) + · · ·+ ψn(u)ψn−j(v)|2

=
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+1

|ψt(u)|2 |ψt−j(v)|2

+2
n∑

t=j+2

t−1∑
s=j+1

|ψt(u)| |ψs(u)| |ψt−j(v)| |ψs−j(v)|

]

=
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+1

|ψt(u)|2 |ψt−j(v)|2

+2
n∑

t=j+2

t−1∑
s=j+1

|ψt(u)| |ψs(u)∗| |ψt−j(v)| |ψs−j(v)∗|

]

=
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+1

Cttj(u, v) +
n∑

t=j+2

t−1∑
s=j+1

Vtsj(u, v)

]

= Ĉ(u, v) + V̂ (u, v) (3.29)

where

Ĉ(u, v) =
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+1

Cttj(u, v)

]
,

V̂ (u, v) =
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+2

t−1∑
s=j+1

Vtsj(u, v)

]
.

63

MARIA PITSILL
OU



Consider the first term of (3.29). We observe that
∫
D(γ)

Cttj(u, v)dW and
∫
D(γ)

Cssj(u, v)dW

are two independent integrals unless t = s or s± j. In addition

E

∫
D(γ)

Cttj(u, v)dW = E

∫
D(γ)

|ψt(u)|2 |ψt−j(v)|2 dW

= E

∫
D(γ)

|ψt(u)|2 dW0(u)E

∫
D(γ)

|ψt−j(v)|2 dW0(v)

=

∫
D(γ)

1− |φ(u)|2 dW0(u)

∫
D(γ)

1− |φ(v)|2 dW0(v)

=

∫
D(γ)

σ0(u,−u)dW0(u)

∫
D(γ)

σ0(v,−v)dW0(v)

=

∫
D(γ)

σ0(u,−u)σ0(v,−v)dW =: Cγ
0 <∞.

It follows that E

{∑n
t=j+1

[∫
D(γ)

Cttj(u, v)dW − Cγ
0

]}2

≤ C(n− j), under independence.

We now prove that

∫
D(γ)

Ĉ(u, v)dW − Cγ
0

n−1∑
j=1

k2(j/p) = OP (p/
√
n). (3.30)

To prove (3.30), we actually need to show that for any ε > 0, there exists a finite M =

δ(ε) > 0 such that

P

(√
n

p

∣∣∣∣∣
∫
D(γ)

Ĉ(u, v)dW − Cγ
0

n−1∑
j=1

k2(j/p)

∣∣∣∣∣ ≥M

)
≤ ε.

At first place, we observe that E
∫
D(γ)

Ĉ(u, v)dW = Cγ
0

∑n−1
j=1 k

2(j/p). Applying the
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Cauchy – Schwarz inequality and (3.21) we obtain that

E

(∫
D(γ)

Ĉ(u, v)dW − Cγ0
n−1∑
j=1

k2(j/p)

)2

= E

(
n−1∑
j=1

k2(j/p)

n− j

[
n∑

t=j+1

{∫
D(γ)

Cttj(u, v)dW − Cγ0

}])2

= E

(
n−1∑
j=1

k(j/p)√
n− j

[
n∑

t=j+1

k(j/p)√
n− j

×

{∫
D(γ)

Cttj(u, v)dW − Cγ0

}])2

≤ E

(
n−1∑
j=1

k2(j/p)

n− j

n−1∑
j=1

[
n∑

t=j+1

k(j/p)√
n− j

×

{∫
D(γ)

Cttj(u, v)dW − Cγ0

}]2)

=
n−1∑
j=1

k2(j/p)

n− j

n−1∑
j=1

k2(j/p)

n− j

×E

(
n∑

t=j+1

{∫
D(γ)

Cttj(u, v)dW − Cγ0

})2

≤ O(p/
√
n).

By Markov’s inequality this implies the relation (3.30). Lemma 3.5.2 and Equations (3.29)

and (3.30) yield that

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW =

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̃j(u, v)|2
}
dW

+OP (p/
√
n)

=

∫
D(γ)

Ĉ(u, v)dW +

∫
D(γ)

V̂ (u, v)dW

+OP (p/
√
n)

= Cγ
0

n−1∑
j=1

k2(j/p) + V̂ γ
n +OP (p/

√
n), (3.31)

where V̂ γ
n ≡

∫
D(γ)

V̂ (u, v)dW .

65

MARIA PITSILL
OU



Because of Assumption 4, we obtain by applying Hong (1999, Theorem A3) on D(γ) that

V̂ γ
n = V̂ γ

ng + oP (
√
p) (3.32)

where

V̂ γ
ng =

n∑
t=g+2

t−g−1∑
s=1

g∑
j=1

k2(j/p)

n− j

∫
D(γ)

Vtsj(u, v)dW

and g ≡ g(n) such that g/p → 0, g/n → 0. Now, by applying Hong (1999, Theorem A4)

on D(γ) we get the following:

[
pDγ

0

∫ ∞
0

k4(z)dz

]−1/2

V̂ γ
ng → N(0, 1) (3.33)

as n→∞ in distribution, where

Dγ
0 = 2

[∫
D(γ)

|σ0(u, u′)|2 dW0(u)dW0(u′)

]2

.

Then, using (3.31), (3.32) and (3.33) we have the following:

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW − Cγ

0

n−1∑
j=1

k2(j/p)

[
pDγ

0

∫ ∞
0

k4(z)dz

]1/2
→ N(0, 1). (3.34)

as n→∞ in distribution.

Observe that Ĉγ
0 − Cγ

0 = OP (1/
√
n) and that

∑n−1
j=1 k

2(j/p) = O(p). Hence Cγ
0 can

be replaced by Ĉγ
0 asymptotically given p/n → 0. Furthermore, p−1

∑n−2
j=1 k

4(j/p) →∫∞
0
k4(z)dz and D̂γ

0 → Dγ
0 , in probability. We conclude that the factor pDγ

0

∫∞
0
k4(z)dz
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can be replaced by D̂γ
0

∑n−2
j=1 k

4(j/p), by Slutsky’s theorem. Thus, (3.34) becomes

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW − Ĉγ

0

n−1∑
j=1

k2(j/p)

[
D̂γ

0

n−2∑
j=1

k4(j/p)

]1/2
→ N(0, 1). (3.35)

Write Tn;γ as the test-statistic Tn defined on D(γ) rather than on R2, i.e.

Tn;γ =

∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW .

and note that

Tn − T = Tn − Tn;γ + Tn;γ − T.γ + T.γ − T,

where T.γ is defined as an asymptotically distributed normal random variable such that

T.γ − Ĉγ
0

n−1∑
j=1

k2(j/p)

[
D̂γ

0

n−2∑
j=1

k4(j/p)

]1/2
→ N(0, 1),

in distribution, as n→∞ such that p/n→ 0. In addition, T is an asymptotically normally

distributed random variable with

T − Ĉ0

n−1∑
j=1

k2(j/p)

[
D̂0

n−2∑
j=1

k4(j/p)

]1/2
→ N(0, 1)

as γ → 0. Obviously, (3.35) shows that

Tn;γ − T.γ = oP (1),
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as n→∞. But, it is also true that

T.γ − T = oP (1),

as γ → 0, because Ĉγ
0 → Ĉ0 and D̂γ

0 → D̂0. If we show that

lim sup
γ→0

lim sup
n→∞

|Tn − Tn;γ| = 0, (3.36)

almost surely, then the proof of Theorem 3.4.1 will be completed.

For each γ > 0:

|Tn − Tn;γ| =

∣∣∣∣∣
∫
R2

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW

−
∫
D(γ)

{
n−1∑
j=1

k2(j/p)(n− j) |σ̂j(u, v)|2
}
dW

∣∣∣∣∣
=

n−1∑
j=1

k2(j/p)(n− j)
∣∣∣∣∫

R2

|σ̂j(u, v)|2 dW −
∫
D(γ)

|σ̂j(u, v)|2 dW
∣∣∣∣

=
n−1∑
j=1

k2(j/p)(n− j)
∣∣∣V̂ 2
X;γ(j)− V̂ 2

X(j)
∣∣∣ (3.37)

where V̂ 2
X;γ(j) is defined as in (3.24). Now, recall result (3.25). Combine (3.37) and (3.25)

to finally get the required relation (3.36).

Proof of Proposition 3.4.1 Note that if Xt follows a standard normal distribution and

X ′t is an i.i.d. copy of Xt, then Xt −X ′t follows the normal distribution with mean 0 and

variance 2, i.e Xt − X ′t ∼ N(0, 2). It is well known that the random variable |Xt −X ′t|

follows a half-normal distribution with mean given by

E |Xt −X ′t| =
2√
π
,

and so

C0 =
(
E |Xt −X ′t|

)2
= 4/π. (3.38)
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Moreover, recall that D0 = 2V 4
X(0) and that V 2

X(0) = F (1)/π2. By a careful check in the

calculations derived in the proof of Proposition 3.2.1 we obtain that

D0 = 2

[
4

π
(1 + π/3−

√
3)

]2

. (3.39)

From the asymptotic normality of Tn derived in Theorem 3.4.1 and combining (3.38) and

(3.39) we finally get the required result.

Proof of Theorem 3.4.2 We need to show the following: (i) 1/p
∑n

j=1 k
4(j/p)→

∫∞
0
k4(j/p).

This follows from Assumption 4, p → ∞ and p/n → 0. In addition, we need that (ii)

EL2
2:γ(f̂n, f)→ 0 where

L2
2;γ(f̂n, f) ≡

∫
D(γ)

∫ π

−π

∣∣∣f̂n(ω, u, v)− f(ω, u, v)
∣∣∣2 dωdW(u, v)

and

f̂n(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)σ̂j(u, v)e−ijω.

This condition is established along the lines of Hong (1999, Theorem 2) on D(γ) given

Assumptions 1, 3(i) and 4. Furthermore, by applying Markov’s inequality we get (iii)

Ĉγ
0 = OP (1) and (iv) D̂γ

0 → Dγ
0 in probability.

Combining (i) and (iv) and by using Slutsky’s theorem we get

1
√
p

[
D̂γ

0

n−2∑
j=1

k4(j/p)

]1/2

→

[
Dγ

0

∫ ∞
0

k4(z)dz

]1/2

, (3.40)

in probability.

Now, recall (3.11) and (3.13) and define

L2
2;γ(f̂n, f̂0) ≡

∫
D(γ)

∫ π

−π

∣∣∣f̂n(ω, u, v)− f̂0(ω, u, v)
∣∣∣2 dωdW =

2

π
Tn;γ.
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Using the inequality |x+ y|2 ≤ 2 |x|2 + 2 |y|2 and after some calculations we observe that

π

2

[
1

n
L2

2;γ(f̂n, f̂0)− L2
2;γ(f, f0)

]
≤ L2

2;γ(f̂n, f).

Based on the last expression, we obtain that

E

∣∣∣∣∣π2
[

1

n
L2

2;γ(f̂n, f̂0)− L2
2;γ(f, f0)

]
− 1

n

n−1∑
j=1

k2(j/p)Ĉγ
0

∣∣∣∣∣ ≤ EL2
2;γ(f̂n, f) +

1

n

n−1∑
j=1

k2(j/p)E
∣∣∣Ĉγ

0

∣∣∣ .
By applying Markov’s inequality and (ii) and (iii), the last result yields

π

2

1

n
L2

2;γ(f̂n, f̂0)− 1

n

n−1∑
j=1

k2(j/p)Ĉγ
0 → π

2
L2

2;γ(f, f0),

as n→∞, in probability, i.e.

1

n

[
Tn;γ − Ĉγ

0

n−1∑
j=1

k2(j/p)

]
→ π

2

∫
D(γ)

∫ π

−π
|f(ω, u, v)− f0(ω, u, v)|2 dωdW , (3.41)

as n→∞, in probability.

Therefore, combining (3.40) and (3.41) we get the required result on D(γ). However,

considering Ĉγ
0 → Ĉ0 and D̂γ

0 → D̂0 as γ → 0 and (3.36), the required result is now

proved on R2.
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Chapter 4

Testing Pairwise Independence for

Multivariate Time Series by the

Auto-Distance Correlation Matrix

4.1 Introduction

In this chapter, we introduce the notions of multivariate auto-distance covariance and

auto-distance correlation functions. In fact, we extend them in a different direction by

putting forward their matrix version. By doing so, possible interrelationships among the

components of a multivariate time series are identified. Section 4.2 is devoted to the

definition and interpretation of the distance covariance matrix, whereas in Section 4.3

we show that it can be consistently estimated. The empirical distance covariance matrix

is used as a tool for developing a testing methodology for testing pairwise dependence

in multivariate time series. The resulting test statistic is analogous to the multivariate

Ljung-Box test statistic, and its asymptotic properties are derived in Section 4.4. To

visually check independence for a multivariate time series, we construct a plot based on the

distance correlation matrix, where the shown critical values are obtained simultaneously

via a bootstrap methodology explained in Section 4.5. We conclude this chapter with

several simulated and real data examples.
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4.2 On Auto-Distance Covariance Matrix

4.2.1 Definitions

Consider a d-variate strictly stationary time series (see Definition 1.1.1), denoted by

{Xt, t ∈ Z} with components {Xt;r}dr=1 and suppose that its cumulative distribution

function (c.d.f) is denoted by F (x1, x2, . . . , xd). Let further Fr(x) denote the marginal

distribution of {Xt;r} with r = 1, 2, . . . , d. Suppose we have available a sample of size n,

that is {Xt, t = 1, 2, . . . , n}. For the rest of the chapter we impose the following assump-

tions.

Assumption 1 {X t} is a strictly stationary and ergodic process.

Assumption 2 (i) E |Xt;r| < ∞, ∀ t and ∀ r = 1, 2, . . . , d. (ii) E |Xt;r|2 < ∞, ∀ t and

∀ r = 1, 2, . . . , d.

Assumption 1 is used for developing an asymptotic theory for the ADCV matrix defined

in (4.4). Assumption 2(i) guarantees the finiteness of the elements of (4.4). While As-

sumption 2(ii) is used for proving the weak consistency of the ADCV matrix, its strong

consistency is established by imposing - among others - Assumption 2(i); details are dis-

cussed in the corresponding Section 4.3.

Extending the work of Székely et al. (2007), Zhou (2012) defined the distance covariance

function for multivariate time series processes, but without taking into account possible

cross-dependence relationships between all possible pairs of the component series of {Xt}.

Aiming to fill this gap, we define the pairwise distance covariance function as the distance

between the joint characteristic function and the marginal characteristic functions of the

pair (Xt;r, Xt−|j|;m), for r,m = 1, 2, . . . , d. Denote the joint characteristic function of Xt;r

and Xt−|j|;m by φ
(r,m)
|j| (u, v); that is

φ
(r,m)
|j| (u, v) = E

[
exp
(
i(uXt;r + vXt−|j|;m)

)]
, j = 0,±1,±2, . . . ,
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where (u, v) ∈ R2, r,m = 1, 2, . . . , d and i2 = −1. Furthermore, let

φ(r)(u) = E

[
exp
(
i(uXt;r)

)]
,

be the marginal characteristic function of Xt;r for r = 1, 2, . . . , d. Denote by

Σ|j|(u, v) =
[
σ

(r,m)
j (u, v)

]
d×d

, j = 0,±1,±2, . . . ,

the d×d matrix whose (r,m) element is σ
(r,m)
j (u, v) which is simply the covariance function

between eiuXt;r and eivXt−|j|;m ; that is

σ
(r,m)
j (u, v) = Cov

(
eiuXt;r , eivXt−|j|;m

)
= φ

(r,m)
|j| (u, v)− φ(r)(u)φ(m)(v). (4.1)

It is easily seen from (4.1) that if σ
(r,m)
j (u, v) = 0 ∀ (u, v) ∈ R2, then the random variables

Xt;r and Xt−|j|;m are independent, for all j 6= 0. Let the ‖ · ‖W-norm of σ
(r,m)
j (u, v) be

defined by

‖σ(r,m)
j (u, v)‖2

W =

∫
R2

∣∣∣σ(r,m)
j (u, v)

∣∣∣2 dW(u, v), j = 0,±1,±2, . . . ,

where W(·, ·) is an arbitrary positive weight function for which the above integral ex-

ists. For instance, Székely et al. (2007) employed a nonintegrable weight function, of the

form

W(u, v) = W0(u)W0(v) =
1

π |u|2
1

π |v|2
, (u, v) ∈ R2. (4.2)

This choice of W(·, ·) would be of central focus in this work. Obviously, (4.2) is a nonin-

tegrable function in R2. However, other choices of W(·, ·) with
∫
dW < ∞ are possible.

Davis et al. (2016) provided various choices of finite and infinite measures W(·, ·) leading

to alternative definitions of the distance covariance and correlation functions in a time

series context. Moreover, following Hong (1999) and Chen and Hong (2012) we can as-

sume that W(·, ·) : R2 → R+ is nondecreasing with bounded total variation. Such an

assumption obviously holds for the choice of W(u, v) = Φ(u)Φ(v), where Φ(·) is the c.d.f
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of a standard normal random variable. In what follows we use (4.2) though. This choice

is supported by the fact that integrable weight functions might miss potential dependence

among observations (see Székely et al. (2007, p. 2771)).

Definition 4.2.1 The pairwise auto-distance covariance function betweenXt;r andXt−|j|;m

is denoted by Vrm(j) and it is defined by the positive square root of

V 2
rm(j) = ‖σ(r,m)

j (u, v)‖2
W , r,m = 1, . . . , d, j = 0,±1,±2, . . . (4.3)

with W(·, ·) given by (4.2). The auto-distance covariance matrix of {Xt} at lag j will be

denoted by V (j) and it is the d× d matrix

V (j) =

[
Vrm(j)

]d
r,m=1

, j = 0,±1,±2, . . . . (4.4)

Clearly, V 2
rm(j) ≥ 0, ∀ j and Xt;r and Xt−|j|;m are independent if and only if V 2

rm(j) = 0.

Furthermore, we define d× d matrices of the form

V (2)(j) =

[
V 2
rm(j)

]d
r,m=1

, j = 0,±1,±2, . . . . (4.5)

Based on the above definition, it is natural to define the auto-distance correlation matrix.

We have the following definition.

Definition 4.2.2 The pairwise auto-distance correlation function betweenXt;r andXt−|j|;m

is denoted by Rrm(j) and it is defined as the positive square root of

R2
rm(j) =

V 2
rm(j)√

V 2
rr(0)

√
V 2
mm(0)

, r,m = 1, . . . , d, j = 0,±1,±2, . . .

provided that Vrr(0)Vmm(0) 6= 0. The auto-distance correlation matrix of {Xt} at lag j

will be denoted by R(j) and it is the d× d matrix

R(j) =

[
Rrm(j)

]d
r,m=1

, j = 0,±1,±2, . . . .
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Similarly, define the d× d matrices, say R(2)(j), by

R(2)(j) =

[
R2
rm(j)

]d
r,m=1

, j = 0,±1,±2, . . . .

Then (4.5) shows that

R(2)(j) = D−1V (2)(j)D−1

where D = diag{
√
V 2
rr(0), r = 1, 2, . . . , d}. This is the usual formula we obtain for the

relationship between the standard correlation and covariance matrix. All above population

quantities exist and are well defined because of standard properties of the characteristic

function.

Vrm(j) measures the dependence of Xt;r on Xt−|j|;m. In addition, if Vrm(j) > 0, we say

that the series Xt;m leads the series Xt;r at lag j. There are two main properties of the

pairwise distance covariance function when j 6= 0. Firstly, in general, Vrm(j) 6= Vmr(j) for

r 6= m, since they measure different dependence structure between the series {Xt;r} and

{Xt;m} for all r,m = 1, 2, . . . , d.

Based on the above discussion, the elements of distance covariance matrices {V (j), j =

0,±1,±2, . . . } can be interpreted as follows:

1. For all j ∈ Z, the diagonal elements
(
Vrr(j)

)d
r=1

are the auto-distance covariance

function of {Xt;r} and they express the dependence among the pairs of observations

of the series {Xt;r}.

2. The off-diagonal elements
(
Vrm(0)

)d
r=1

measure the concurrent dependence between

{Xt;r} and {Xt;m}. If Vrm(0) > 0, {Xt;r} and {Xt;m} are concurrently dependent.

3. For j ∈ Z−{0},
(
Vrm(j)

)d
r,m=1

measures the dependence of {Xt;r} on the past values

of {Xt−|j|;m}. Thus, if Vrm(j) = 0 for all j ∈ Z− {0}, then {Xt;r} does not depend

on any past values of {Xt;m}.

4. For all j ∈ Z, Vrm(j) = Vmr(j) = 0 implies that {Xt;r} and {Xt;m} are independent.

Moreover, for all j ∈ Z− {0}, if Vrm(j) = 0 and Vmr(j) = 0 then {Xt;r} and {Xt;m}
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have no lead-lag relationship.

5. If for all j ∈ Z − {0} Vrm(j) = 0 but there exists some j ∈ Z − {0} such that

Vmr(j) > 0, then {Xt;r} does not depend on the past values of {Xt;m}, but {Xt;m}

depends on some past values of {Xt;r}.

We now turn to the estimation problem.

4.2.2 Estimation

To develop an estimator of (4.3) and consequently an estimator of (4.4), define first

σ̂
(r,m)
j (u, v) = φ̂

(r,m)
|j| (u, v)− φ̂(r)(u)φ̂(m)(v), j = 0,±1,±2, . . . ,

with

φ̂
(r,m)
|j| (u, v) =

1

n− |j|

n∑
t=|j|+1

ei(uXt;r+vXt−|j|;m).

Thus, the sample pairwise ADCV is defined by the positive square root of

V̂ 2
rm(j) =

1

π2

∫
R2

∣∣∣σ̂(r,m)
j (u, v)

∣∣∣2
|u|2 |v|2

dudv, j = 0,±1,±2, . . . (4.6)

To calculate (4.6), let Yt;m = Xt−|j|;m. Then, based on the sample {(Xt;r, Yt;m) : t =

1+ |j| , . . . , n}, we calculate the (n−|j|)×(n−|j|) Euclidean distance matrices Ar = (Arts)

and Bm = (Bm
ts ) with elements

Arts = arts − ārt. − ār.s + ār..,

with αrts = |Xt;r −Xs;r|, bmts = |Yt;m − Ys;m| and

ᾱrt. =

∑n
s=1+|j| a

r
ts

(n− |j|)
, ᾱr.s =

∑n
t=1+|j| a

r
ts

(n− |j|)
, ᾱr.. =

∑n
t=1+|j|

∑n
s=1+|j| a

r
ts

(n− |j|)2
.
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Similarly, we define the quantities b̄mt. , b̄
m
.s , b̄m.. and Bm

ts . Then, following the arguments of

Chapter 3, we obtain that

V̂ 2
rm(j) =

1

(n− |j|)2

∑
t,s

ArtsB
m
ts . (4.7)

By (4.5) define the d× d matrices

V̂ (2)(j) =

[
V̂ 2
rm(j)

]
, j = 0,±1,±2, . . . .

The sample ADCV matrix is given by

V̂ (j) =

[
V̂rm(j)

]
, j = 0,±1,±2, . . . .

4.3 Asymptotic Properties of the Sample Distance

Covariance Matrix

We first show that V̂ 2
rm(j) can be expressed as a V -statistic of order two. Recall that a

V -statistic of order p on the basis of a sample {Xt, t = 1, 2, . . . , n} of Rd-valued random

variables, where d ≥ 1 and n ≥ p, is defined by (see, for instance, Kowalski and Tu (2008,

Chapters 3 and 5) and Serfling (1980, Section 5.1.2))

Vn =
1

np

n∑
i1=1

· · ·
n∑

ip=1

h(Xi1 , . . . , Xip)

for any real valued measurable kernel function h : Rd × · · · × Rd → R.

Let u, u′ ∈ R and suppose, in general, that X is a real valued random variable with c.d.f

FX(·). Then, define

mX(u) := E |X − u| =
∫
R
|x− u| dFX(x),

m̄X := E[mX(X)] =

∫
R
mX(u)dFX(u) =

∫
R

{∫
R
|x− u| dFX(x)

}
dFX(u),
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dX(u, u′) = |u− u′| −mX(u)−mX(u′) + m̄X .

With some abuse of notation and setting X ≡ Xt;r and Y ≡ Xt−|j|;m we obtain that

V 2
rm(j) = E

[
dX(X1, X2)dY (Y1, Y2)

]
where X, X1 and X2 and Y , Y1 and Y2 are i.i.d. copies (Székely and Rizzo, 2013, p. 1262).

Hence, we have defined a kernel h : R2 × R2 → R by

h(x, y;x′, y′) = dX(x, x′)dY (y, y′), (4.8)

such that

V 2
rm(j) =

∫
R2

∫
R2

h(x, y;x′, y′)dF (x, y)dF (x′, y′).

Thus, the empirical analogue of the parameter V 2
rm(j) is a V -statistic of order two with

kernel (4.8). Indeed,

V̂ 2
rm(j) =

1

(n− |j|)2

n∑
t=1+|j|

n∑
s=1+|j|

h
(
Xt;r, Yt;m;Xs;r, Ys;m

)
=

1

(n− |j|)2

n∑
t=1+|j|

n∑
s=1+|j|

dX(Xt;r, Xs;r)dY (Yt;m, Ys;m)

=
1

(n− |j|)2

n∑
t=1+|j|

n∑
s=1+|j|

{
|Xt;r −Xs;r| −mX(Xt;r)−mX(Xs;r) + m̄X

}
×
{
|Yt;m − Ys;m| −mY (Yt;m)−mY (Ys;m) + m̄Y

}
=

1

(n− |j|)2

n∑
t=1+|j|

n∑
s=1+|j|

×

{
|Xt;r −Xs;r| −

∑
s |Xt;r −Xs;r|
n− |j|

−
∑

t |Xt;r −Xs;r|
n− |j|

+

∑
t

∑
s |Xt;r −Xs;r|

(n− |j|)2

}

×

{
|Yt;m − Ys;m| −

∑
s |Yt;m − Ys;m|
n− |j|

−
∑

t |Yt;m − Ys;m|
n− |j|

+

∑
t

∑
s |Yt;m − Ys;m|

(n− |j|)2

}
=

1

(n− |j|)2

∑
t

∑
s

{
αrts − ᾱrt. − ᾱr.s + ᾱr..

}
×
{
bmts − b̄mt. − b̄m.l + b̄m..

}
=

1

(n− |j|)2

∑
t

∑
s

ArtsB
m
ts .
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Note that the kernel function is a symmetric, continuous and positive semidefinite function.

We now show that under pairwise independence, the V -statistic V̂ 2
rm(·) is degenerate. First

note that, under Assumption 2(i), Lemma 2.2.1 and Fubini’s theorem, we obtain that (see

also Székely and Rizzo (2013, p. 1261))

V 2
rm(j) = E[h(X, Y ;X ′, Y ′)] = E[dX(X,X ′)dY (Y, Y ′)]

= E |X −X ′| |Y − Y ′|+ E |X −X ′|E |Y − Y ′′| − 2E |X −X ′| |Y − Y ′′| . (4.9)

where X ′ is an i.i.d. copy of X and Y ′ and Y ′′ are i.i.d. copies of Y . Indeed, recall that

V 2
rm(j) is a weighted integral defined by (4.3). Simple algebra gives that the numerator of

the integral includes terms of the form

E
[
cos (u(X −X ′)) cos (v(Y − Y ′))

]
.

Applying the identity

cosucosv = 1− (1− cosu)− (1− cosv) + (1− cosu)(1− cosv),

employing the Fubini’s theorem and Lemma 2.2.1 we get terms of the form

E

∫
R2

[
1− cos (u(X −X ′))

][
1− cos (v(Y − Y ′))

]
π2 |u|2 |v|2

dudv = E |X −X ′|E |Y − Y ′| .

Employing similar steps for all terms obtained in the integral (4.3), we finally get (4.9).

Using the result (4.9) and assuming that the data are pairwise independent, then

E[h(x, y;X, Y )] = 0,

which shows that V̂ 2
rm(j) is a degenerate V -statistic of order two.

Based on the above observation, the following proposition shows the strong consistency of

the estimator V̂ (j). Proofs of all results are listed in the Appendix.

Proposition 4.3.1 Let {Xt} be a d-variate process satisfying Assumptions 1 and 2(i)

with distribution function F (x1, x2, . . . , xd) and marginal distribution function Fr(x) for
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r = 1, . . . , d. Then, for all j = 0,±1,±2, . . .

V̂ (j)→ V (j)

almost surely as n→∞.

Remark 4.3.1 The above result follows by the proof of Székely et al. (2007) and Proposi-

tion 3.2.2 of Chapter 3. In particular, under strict stationarity, ergodicity and existence of

first moments the strong consistency of the sample distance covariance can be established

by considering individually the elements of V̂ (2)(j) and then the elements of V̂ (j). We

mention that our assumptions are minimal for proving this result. Related work by Borov-

cova et al. (1999) requires stationarity, ergodicity, existence of second moments, almost

surely (Fr × Fm) continuity of h(·) and uniform integrability. Under these assumptions,

it can be shown that V̂ (j) is a weakly consistent estimator of V (j) (see Borovcova et al.

(1999, Theorem 1) in connection to Aaronson et al. (1996, Proposition 2.8)). Furthermore,

by dropping the continuity assumption and replacing it with β-mixing we obtain again

the weak consistency of V̂ (j) (see Borovcova et al. (1999, Theorem 2) in connection to

Aaronson et al. (1996, Proposition 2.8)).

The following theorem reveals the limiting distribution of the sample pairwise ADCV,

V̂ 2
rm(j), when {X t} is a pairwise independent sequence.

Theorem 4.3.1 Suppose that Assumptions 1 and 2(i) hold. Then under pairwise inde-

pendence and for fixed j

(n− |j|)V̂ 2
rm(j) → Z :=

∑
k

λkZ
2
k , (4.10)

where (Zk)k is an i.i.d. sequence of N(0, 1) random variables and (λk)k is a sequence of

nonzero eigenvalues which satisfy the Hilbert - Schmidt equation

E
[
h(x, y;X, Y )Φ(X, Y )

]
= λΦ(x, y),
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where h(·) is a kernel defined by (4.8) and is represented as

h(x, y;x′, y′) =
∞∑
k=1

λkΦk(x, y)Φk(x
′, y′).

Here, (Φk)k is the sequence of the corresponding orthonormal eigenfunctions (for more

details see Leucht and Neumann (2013a,b)).

The above result follows from Leucht and Neumann (2013a, Theorem 1). It shows that

the asymptotic distribution of V̂ 2
rm(j) is non standard when the hypothesis of interest is

that of independence. In fact, we note the following associated problems:

1. Generally, it is of interest to approximate the asymptotic distribution of the matrix

variate U -statistic {V (2)(j), j = 0,±1,±2, . . . }, regardless whether the assumption

of independence holds true. This is a problem which has not been addressed to the

literature, to the best of our knowledge (see Chen (2016) for some recent work on

this topic).

2. Under independence, it is of interest to form simultaneous confidence intervals for

V (j) as it is done in the case of the standard autocorrelation function. But (4.10)

cannot be employed in applications and therefore some simulation based method

should be applied. We discuss further this point in Section 4.5.2.

4.4 Testing Independence

To derive a test statistic for testing the null hypothesis of multivariate independence

and investigate its asymptotic null distribution, we further impose the following condi-

tions.

Assumption 3 Suppose that {Xt} is an α-mixing process with mixing coefficients {αj}

satisfying (i)
∑

j αj <∞ or (ii) α(j) = O(j−2).

Assumption 4 K : R → [−1, 1] is symmetric and is continuous at 0 and all except a

finite number of points, with K(0) = 1,
∫∞
−∞K

2(z)dz <∞ and |K(z)| ≤ C |z|−b for large

z and b > 1/2.
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Assumption 3(i) ensures the existence of the generalized spectral density (4.12), whereas

its second part, 3(ii), is the minimal condition for proving Lemmas 4.5.1 and 4.5.2 in the

Appendix. Assumption 4 is standard for univariate kernel functions K(·), also stated in

Chapter 3. It is used for obtaining kernel-based estimators for (4.12). A wide range of

well known kernel functions with bounded (e.g. QS, Daniell) or unbounded support (e.g.

Bartlett, Parzen) satisfy Assumption 4.

For establishing a multivariate distance covariance testing methodology, we first need to

define the following matrix norm. In particular, for an m × n matrix A, recall that its

Frobenius norm is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|αij|2 =
√

tr{A∗A},

where A∗ denotes the conjugate transpose of A, and tr{A} denotes the trace of the matrix

A.

4.4.1 The Generalized Spectral Density Approach

Recall (4.1) and suppose that

sup
(u,v)∈R2

∞∑
j=−∞

∣∣∣σ(r,m)
j (u, v)

∣∣∣ <∞, (4.11)

which holds under Assumption 3. Thus, the sequence of covariance matrices {Σ|j|(u, v), j =

0,±1,±2, . . . } has absolutely summable components for all (u, v) ∈ R2. We can then

define the Fourier transform of σ
(r,m)
j (·, ·) as

f (r,m)(ω, u, v) =
1

2π

∞∑
j=−∞

σ
(r,m)
j (u, v)e−ijω, ω ∈ [−π, π]. (4.12)

Under (4.11), f (r,m)(·, ·, ·) is bounded and uniformly continuous. If r = m, then f (r,m)(ω, u, v)

is called the generalized spectrum or generalized spectral density of Xt;r at frequency ω

for all (u, v) ∈ R2. If r 6= m, then f (r,m)(ω, u, v) is called the generalized cross-spectrum

or generalized cross spectral density of Xt;r and Xt;m at frequency ω for all (u, v) ∈ R2
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(Brillinger (1981, Section 7.1), Priestley (1981, Section 9.1) and Chen and Hong (2012) in

our context). Collecting all elements defined by (4.12) in a d× d matrix, we obtain

F (ω, u, v) =
1

2π

∞∑
j=−∞

Σ|j|(u, v)e−ijω

=
[
f (r,m)(ω, u, v)

]d
r,m=1

which is called the generalized spectral density matrix. Under the null hypothesis of

independence, F (·, ·, ·) reduces to the matrix

F0(ω, u, v) =
1

2π

[
σ

(r,m)
0 (u, v)

]d
r,m=1

.

In general F0(·, ·, ·) is not a diagonal matrix, but when Xt;r and Xt;m are independent for

all r,m = 1, 2, . . . , d then F0(·, ·, ·) reduces to a diagonal matrix. We consider the following

class of kernel-density estimators,

f̂ (r,m)(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2K(j/p)σ̂
(r,m)
j (u, v)e−ijω, ω ∈ [−π, π],

where p is a bandwidth parameter and K(·) is a univariate kernel function with the

properties stated in Assumption 4.

Then, we can form the matrices

F̂ (ω, u, v) =
[
f̂ (r,m)(ω, u, v)

]d
r,m=1

and

F̂0(ω, u, v) =
1

2π

[
σ̂

(r,m)
0 (u, v)

]d
r,m=1

respectively. We then consider the squared L2-distance between F̂ (·, ·, ·) and F̂0(·, ·, ·) by
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the following

L2
2

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
=

∫
R2

∫ π

−π
‖F̂ (ω, u, v)− F̂0(ω, u, v)‖2

FdωdW(u, v)

=

∫
R2

∫ π

−π
tr
{(
F̂ (ω, u, v)− F̂0(ω, u, v)

)∗
×
(
F̂ (ω, u, v)− F̂0(ω, u, v)

)}
dωdW(u, v).

Working analogously as in the univariate case for obtaining the similar result (3.11), we

get the following

L2
2

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
=

2

π

∑
r,m

n−1∑
j=1

(1− j/n)K2(j/p)

∫
R2

∣∣∣σ̂(r,m)
j (u, v)

∣∣∣2 dW(u, v),

for any suitably weighting function W(·, ·) - see the discussion after equation (4.2). In

particular, employing (4.2) yields to

L2
2

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
=

2

π

∑
r,m

n−1∑
j=1

(1− j/n)K2(j/p)V̂ 2
rm(j)

=
2

π

n−1∑
j=1

(1− j/n)K2(j/p)tr{V̂ ∗(j)V̂ (j)}. (4.13)

Equation (4.13) can be formed in terms of the distance correlation matrix by working

analogously. Indeed, recall D = diag{
√
V 2
rr(0), r = 1, 2, . . . , d} and define the d × d

matrix

R|j|(u, v) = D−1/2Σ|j|(u, v)D−1/2

with elements

ρ
(r,m)
j (u, v) =

σ
(r,m)
j (u, v)√

Vrr(0)
√
Vmm(0)

.

By recalling (4.11), we can define the Fourier transform of ρ
(r,m)
j (·, ·) by

g(r,m)(ω, u, v) =
1

2π

∞∑
j=−∞

ρ
(r,m)
j (u, v)e−ijω, ω ∈ [−π, π],
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which form the d× d matrix

G(ω, u, v) =
1

2π

∞∑
j=−∞

R|j|(u, v)e−ijω

=
[
g(r,m)(ω, u, v)

]d
r,m=1

.

Under independence, G(·, ·, ·) reduces to

G0(ω, u, v) =
1

2π

[
ρ

(r,m)
0 (u, v)

]d
r,m=1

.

An analogous to (6.3) kernel-density estimator of g(r,m)(·, ·) is given by

ĝ(r,m)(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2K(j/p)ρ̂
(r,m)
j (u, v)e−ijω, ω ∈ [−π, π].

We can then define the estimators of G(·, ·, ·) and G0(·, ·, ·) by

Ĝ(ω, u, v) =
[
ĝ(r,m)(ω, u, v)

]d
r,m=1

and

Ĝ0(ω, u, v) =
1

2π

[
ρ̂

(r,m)
0 (u, v)

]d
r,m=1

respectively. Considering now the squared L2-distance between G(·, ·, ·) and G0(·, ·, ·) we

get

L2
2

(
Ĝ(ω, u, v), Ĝ0(ω, u, v)

)
=

∫
R2

∫ π

−π
‖Ĝ(ω, u, v)− Ĝ0(ω, u, v)‖2

FdωdW(u, v)

=

∫
R2

∫ π

−π
tr

{(
Ĝ(ω, u, v)− Ĝ0(ω, u, v)

)∗
×
(
Ĝ(ω, u, v)− Ĝ0(ω, u, v)

)}
dωdW(u, v).

After some calculations and choosing the weighting function defined in (4.2) we find that
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(compare to the multivariate Ljung-Box statistic given in (2.12))

L2
2

(
Ĝ(ω, u, v), Ĝ0(ω, u, v)

)
=

2

π

∑
r,m

n−1∑
j=1

(1− j/n)K2(j/p)

∫
R2

∣∣∣ρ̂(r,m)
j (u, v)

∣∣∣2 dW(u, v)

=
2

π

∑
r,m

n−1∑
j=1

(1− j/n)K2(j/p)
V̂ 2
rm(j)√

V̂ 2
rr(0)

√
V̂ 2
mm(0)

=
2

π

∑
r,m

n−1∑
j=1

(1− j/n)K2(j/p)R̂2
rm(j)

=
2

π

n−1∑
j=1

(1− j/n)K2(j/p)tr
{
R̂∗(j)R̂(j)

}
=

2

π

n−1∑
j=1

(1− j/n)K2(j/p)

×tr
{

[D̂−1/2V̂ (j)D̂−1/2]∗D̂−1/2V̂ (j)D̂−1/2
}

=
2

π

n−1∑
j=1

(1− j/n)K2(j/p)tr
{
V̂ ∗(j)D̂−1V̂ (j)D̂−1

}
. (4.14)

Equations (4.13) and (4.14) motivate our study of multivariate tests of independence.

In particular, it is of interest to test the null hypothesis that the vector series {Xt} is

i.i.d. regardless of the possible dependence between time series components {Xt;r} for

r = 1, 2, . . . , d. Equation (4.14) can be viewed as a multivariate Ljung-Box type statistic

based on the distance covariance matrix rather than on Pearson covariance matrix. Indeed,

choosing the truncated periodogram window, that is K(z) = 1 for |z| ≤ 1 and 0 otherwise,

equation (4.14) becomes

L2
2

(
Ĝ(ω, u, v), Ĝ0(ω, u, v)

)
=

2

π

p∑
j=1

(1− j/n)tr{V̂ ∗(j)D̂−1V̂ (j)D̂−1}

which can be viewed as a multivariate Ljung-Box type statistic for testing that V (j) = 0,

j = 1, 2, . . . , p, because (1− j/n) can be replaced by unity.

Define

T (r,m)
n =

n−1∑
j=1

(n− j)K2(j/p)V̂ 2
rm(j).
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The test statistic motivated by (4.13) is based on

T̃n =
∑
r,m

T (r,m)
n =

n−1∑
j=1

(n− j)K2(j/p)tr{V̂ ∗(j)V̂ (j)}.

Similarly, we can consider

T n =
∑
r,m

T
(r,m)
n√

V̂ 2
rr(0)

√
V̂ 2
mm(0)

=
n−1∑
j=1

(n− j)K2(j/p)tr{V̂ ∗(j)D̂−1V̂ (j)D̂−1}.

using (4.14). We have the following results:

Theorem 4.4.1 Suppose that Assumption 4 is true and let p = cnλ, where c > 0,

λ ∈ (0, 1). Then, if {X t} is an i.i.d. sequence, we have that

M (r,m)
n =

T
(r,m)
n − Ĉ(r,m)

0

∑
jK

2(j/p)[
D̂

(r,m)
0

∑
jK

4(j/p)
]1/2

→ N(0, 1)

as n→∞ in distribution, where

C
(r,m)
0 =

∫
R2

σ
(r,r)
0 (u,−u)σ

(m,m)
0 (v,−v)dW(u, v),

D
(r,m)
0 = 2

∫
R4

∣∣∣σ(r,r)
0 (u, u′)σ

(m,m)
0 (u, u′)

∣∣∣2 dW(u, v)dW(u′, v′) = 2V 2
rr(0)V 2

mm(0),

and Ĉ
(r,m)
0 , D̂

(r,m)
0 are their sample counterparts.

The previous theorem implies the following results.

Corollary 4.4.1 Suppose that Assumption 4 is true and let p = cnλ, where c > 0,

λ ∈ (0, 1). Then, under the null hypothesis that {X t} is an i.i.d. sequence, we have that

M̃n ≡
T̃n −

∑
r,m Ĉ

(r,m)
0

∑n−1
j=1 K

2(j/p)[∑
r,m D̂

(r,m)
0

∑n−2
j=1 K

4(j/p)
]1/2

→ N(0, 1)

as n→∞ in distribution.

Corollary 4.4.2 Suppose that Assumption 4 is true and let p = cnλ, where c > 0,
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λ ∈ (0, 1). Then, under the null hypothesis that {X t} is an i.i.d. sequence, we have that

Mn ≡
T n −

∑
r,m Ĉ

(r,m)

0

∑n−1
j=1 K

2(j/p)

d
[
2
∑n−2

j=1 K
4(j/p)

]1/2
→ N(0, 1)

as n→∞ in distribution, where

C
(r,m)
0 =

C
(r,m)
0

Vrr(0)Vmm(0)
,

and Ĉ
(r,m)

0 is the corresponding empirical analogue.

The following result illustrates the consistency of the test statistics.

Theorem 4.4.2 Suppose that Assumptions 1, 3(i) and 4 hold and p = cnλ for c > 0 and

λ ∈ (0, 1). Then,

√
p

n
M̃n →

π
2
L2

2

(
F (ω, u, v), F0(ω, u, v)

)
[∑

r,mD
(r,m)
0

∫∞
0
K4(z)dz

]1/2

and

√
p

n
Mn →

π
2
L2

2

(
G(ω, u, v), G0(ω, u, v)

)
d
[
2
∫∞

0
K4(z)dz

]1/2
,

as n→∞, in probability.

The above results depend on the value of the bandwidth parameter p and the sample size

n. We will not discuss the issue of choosing the bandwidth parameter but our limited

experience shows that choosing roughly p ≥ 15 for a sample size of n = 500 yields a

better asymptotic approximation. Because we deal with a testing problem, it is preferable

in applications to vary the value of p and then examine closely the sensitivity of the

results. For small n, we suggest the use of simulation based techniques to approximate

the distribution of T̃n (or T n). This topic is discussed next.
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4.5 Computation of Test Statistic With Applications

4.5.1 Bootstrap Methodology

To examine the empirical behavior of the proposed test statistic we present a limited

simulation study. We suggest a resampling method to approximate the asymptotic dis-

tribution of T̃n (equivalently T n). Recalling Section 4.3, the test statistics T̃n (or T n) are

functions of degenerate V -statistic of order two. Dehling and Mikosch (1994) proposed

wild bootstrap techniques to approximate the distribution of degenerate U -statistics for

the case of i.i.d. data. In a recent contribution Leucht and Neumann (2013a,b) proposed

the use of a novel scheme of dependent wild bootstrap (Shao, 2010) to approximate the

distribution of degenerate U - and V -statistics calculated for dependent data. More specif-

ically, the method relies on generating auxiliary random variables (W ∗
tn)n−jt=1 and compute

the bootstrap realizations of V̂ 2
rm(j) as

V̂ 2∗
rm(j) =

1

(n− j)2

n−j∑
t,s=1

W ∗
tnh(Xt;r, Yt;m;Xs;r, Ys;m)W ∗

sn

where h(·, ·) is defined by (4.8), for r,m = 1, 2, . . . , d and j = 1, 2, . . . , n − 1. Then, the

bootstrap realization of T̃n is computed by

T̃ ∗n =
n−1∑
j=1

(n− j)K2(j/p)
∑
r,m

V̂ 2∗
rm(j).

To test for independence, we repeat the above steps b times to obtain T̃ ∗n,1, T̃
∗
n,2, . . . , T̃

∗
n,b

and then approximate the p-value of the test statistic by

p− value :=
1

b+ 1

( b∑
i=1

I{T̃ ∗n,i ≥ T̃n}
)
,

where I(·) denotes the indicator function. We work analogously when employing T n;

details are omitted. Shao (2010) highlighted that the methodology of wild bootstrap

for time series extends that of Wu (1986) by allowing the auxiliary random variables

W ∗
tn to be dependent. In fact, Leucht and Neumann (2013b) proposed to generate the

89

MARIA PITSILL
OU



sequence W ∗
tn by a first order autoregressive model. In the case of independent data,

Dehling and Mikosch (1994) studied the limit distribution of degenerate U -statistic based

on independent auxiliary variable W ∗
tn. Because we test independence, we generate W ∗

tn

as i.i.d. standard normal variables.

4.5.2 Obtaining Simultaneous Critical Values for the ADCF Plots

It is customary in time series analysis to plot the ordinary autocorrelation function together

with simultaneous confidence intervals for checking the white noise assumption. The

critical values employed for obtaining confidence intervals are deduced by the asymptotic

normality of the vector which consists of the first q sample autocorrelations under the white

noise assumption (Brockwell and Davis, 1991, Theorem 7.2.1). Our aim is to illustrate a

similar plot but in terms of the distance correlation function. This task is quite complicated

though since if we form the vector of the first q sample distance correlation function then

this consists of V -statistics (which under the hypothesis of pairwise independence are

degenerate). Theorem 4.3.1 makes this point precise. To overcome this difficulty we resort

to Monte Carlo simulation. We explain the steps in what follows.

We first note that critical values chosen by the wild bootstrap maintain asymptotically the

nominal size of a given test statistic for testing a hypothesis of interest. Given b bootstrap

realizations of R̂rm(j) say {R̂∗rm,i(j), i = 1, 2, . . . , b} we compute the p-value

prm(j) =
1

b+ 1

( b∑
i=1

I{R̂∗rm,i(j) ≥ R̂rm(j)}
)
.

Then considering {prm(j), j = 1, 2, . . . , q}, we note that these correspond to the p-values

obtained by testing hypotheses Rrm(j) = 0, j = 1, 2, . . . , q. Because this is a multiple

testing situation, we adjust the p-values to obtain a new set {p̃rm(j), j = 1, 2, . . . , q}

using the False Discovery Rate method suggested by Benjamini and Hochberg (1995),

at some prespecified level α. Based on the adjusted p-values we obtain critical points

{crm(j), j = 1, 2, . . . , q} which satisfy

p̃rm(j) =
#{R̂∗rm,i(j) ≥ crm(j)}

b
, j = 1, 2, . . . , q,
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Table 4.1: Simultaneous empirical critical values at a significance level α = 0.05, for various
sample sizes and dimensions. Results are based on b = 499 bootstrap replications and 100
simulations.

N(0,1) Pois(4) Gamma(1,1) Beta(2,3) U(1,1) X2
4 Exp(1) ρ = 0.9 ρ = 0.4

n = 500
d = 2 0.116 0.117 0.118 0.113 0.109 0.117 0.114 0.117 0.116
d = 3 0.117 0.116 0.130 0.115 0.111 0.119 0.119 0.119 0.117
d = 4 0.118 0.117 0.132 0.118 0.112 0.121 0.118 0.119 0.119
d = 5 0.121 0.116 0.129 0.114 0.113 0.122 0.122 0.116 0.117
n = 600
d = 2 0.106 0.105 0.102 0.103 0.100 0.105 0.106 0.106 0.106
d = 3 0.107 0.105 0.106 0.106 0.102 0.112 0.107 0.108 0.106
d = 4 0.108 0.106 0.104 0.104 0.104 0.108 0.106 0.105 0.107
d = 5 0.109 0.107 0.106 0.102 0.106 0.110 0.107 0.110 0.107
n = 700
d = 2 0.098 0.095 0.099 0.096 0.092 0.098 0.099 0.097 0.098
d = 3 0.098 0.097 0.098 0.097 0.092 0.103 0.099 0.099 0.099
d = 4 0.100 0.099 0.096 0.097 0.095 0.101 0.099 0.099 0.099
d = 5 0.099 0.097 0.098 0.098 0.093 0.100 0.103 0.099 0.098
n = 800
d = 2 0.091 0.090 0.092 0.091 0.088 0.092 0.090 0.095 0.092
d = 3 0.091 0.093 0.093 0.090 0.089 0.095 0.092 0.094 0.094
d = 4 0.093 0.091 0.095 0.090 0.087 0.093 0.093 0.092 0.094
d = 5 0.092 0.092 0.095 0.090 0.089 0.097 0.094 0.092 0.092
n = 900
d = 2 0.087 0.084 0.088 0.085 0.080 0.086 0.085 0.086 0.084
d = 3 0.086 0.085 0.089 0.084 0.081 0.088 0.086 0.087 0.088
d = 4 0.087 0.086 0.090 0.085 0.083 0.089 0.086 0.088 0.088
d = 5 0.087 0.086 0.093 0.085 0.084 0.087 0.086 0.087 0.087

n = 1000
d = 2 0.081 0.080 0.082 0.081 0.079 0.081 0.081 0.083 0.082
d = 3 0.081 0.081 0.084 0.082 0.080 0.083 0.083 0.083 0.084
d = 4 0.083 0.081 0.084 0.081 0.081 0.082 0.083 0.082 0.082
d = 5 0.083 0.081 0.085 0.083 0.079 0.084 0.083 0.084 0.083

where #{A} denotes the number of times the event A occurs. The horizontal line in the

plots (see for instance Figure 1.1) corresponds to c = maxr,m,jcrm(j). This is somehow a

conservative approach but guarantees that all simultaneous confidence intervals are at a

given level α.

Table 4.1 illustrates that critical values obtained under independence are not sensitive

to the choice of response distribution or dimension but depend on the sample size, as it

should be expected. The first seven columns of Table 4.1 have been obtained by considering

univariate data. The last two columns correspond to independent samples drawn from a d-

dimensional normal distribution with mean zero and equicorrelation matrix ρ with ρij = ρ,

i 6= j. We set ρ = 0.9 and 0.4 respectively.
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4.5.3 Monte Carlo Simulation Results

The empirical results presented in this section are based on the test statistic T n; see

Corollary 4.4.2. Simulations were run for n = 500, 1000 and the bootstrap procedure

described in Section 4.5.1 was applied to calculate the power and the nominal level of the

test.

The test statistic T n is calculated by using univariate kernel functions K(·) which are

Lipschitz continuous; that is for any z1, z2 ∈ R

|K(z1)−K(z2)| ≤ C |z1 − z2| ,

for some constant C. We use the Daniell kernel (DAN), the Parzen kernel (PAR) and

the Bartlett kernel (BAR) whose definition is given in Section 3.5 and satisfy the above

condition. Although Lipschitz condition rules out the truncated kernel (TRUNC)

K(z) =

 1, |z| ≤ 1,

0, otherwise,

results based on this kernel are also provided. We compare the performance of T n to the

performance of multivariate Ljung-Box statistic (Hosking, 1980; Li and McLeod, 1981)

given in (2.12). We re-state it here for the reader’s convenience:

mLB = n2

p∑
j=1

(n− j)−1trace{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)}.

We first investigate the size of the proposed test under H0. We consider a sample of

bivariate standard normal time series. Table 4.2 reports the achieved level of all test

statistics at 5% and 10% nominal levels. The results indicate that the proposed test

statistics approximate the nominal levels quite adequately.
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Table 4.2: Achieved type I error of the test statistics for testing the hypothesis that the data are
i.i.d. The data are generated by the bivariate standard normal distribution. Achieved significance
levels are given in percentages. The value of bandwidth p is chosen by p = [3nλ], λ = 0.1, 0.2
and 0.3. The results are based on b = 499 bootstrap replications and 100 simulations.

n : 500 1000
p : 6 11 20 6 12 24

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Tn BAR 10 4 11 4 13 5 6 3 4 1 12 6
TRUNC 9 3 14 7 8 7 8 3 8 5 5 3

PAR 9 6 7 3 11 5 8 3 11 6 12 6
DAN 7 2 5 2 3 0 7 2 12 7 11 5

mLB 10 6 8 4 11 7 7 3 10 7 9 6

Furthermore Table 4.3 presents some empirical evidence of the asymptotic normality of

T n.

Table 4.3: Skewness, kurtosis and p-values obtained by performing a one-sample Kolmogorov-
Smirnov test, for testing normality of the normalized test statistic Mn given by Corollary 4.4.2.
The results are based on b = 499 bootstrap replications and 100 simulations.

Skewness Kurtosis p-value
BAR PAR DAN TRUNC BAR PAR DAN TRUNC BAR PAR DAN TRUNC

n = 500

p = 6 -0.043 -0.119 -0.026 -0.058 2.010 2.619 3.263 2.569 0.590 0.997 0.998 0.957
p = 11 0.506 0.383 0.116 0.005 3.472 2.668 3.110 3.392 0.489 0.851 0.999 0.994
p = 20 -0.127 0.377 -0.066 0.047 2.550 2.915 2.588 2.546 0.950 0.502 0.943 0.983

n = 1000

p = 6 -0.234 -0.045 0.054 -0.092 2.313 2.338 2.442 2.692 0.703 0.930 0.877 0.985
p = 12 0.110 -0.233 -0.285 0.357 3.223 2.836 2.768 3.181 0.469 0.972 0.868 0.917
p = 24 -0.233 -0.239 0.691 0.425 2.398 3.101 3.744 3.164 0.665 0.955 0.546 0.535

To investigate the power of the proposed test, we consider the bivariate NMA(2) process

discussed in the Introduction of the thesis and given by (1.1), and the following data

generating processes:

• Bivariate ARMA(1,1)-model

Xt;1

Xt;2

−
0.2 −0.6

0.3 1

Xt−1;1

Xt−1;2

 =

εt;1
εt;2

−
−0.5 0

0 −0.6

εt−1;1

εt−1;2

 (4.15)

where {εt} is a bivariate sequence of serially uncorrelated random vectors with mean
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zero and covariance matrix Σ =

 4 0.8

0.8 1

.

• Bivariate GARCH(1,1)-model

Xt;i = h
1/2
t;i εt;i, i = 1, 2 (4.16)

where ht;1
ht;2

 =

0.003

0.005

+

0.2 0.1

0.1 0.3

X2
t−1;1

X2
t−1;2

−
 0.4 0.05

0.05 0.5

ht−1;1

ht−1;2


and {εt} is a bivariate sequence of uncorrelated random vectors with mean zero and

unconditional correlation matrix R =

 1 0.4

0.4 1

.

Figure 4.1 shows the power of both T n and mLB statistics considered for various sample

sizes and bandwidth parameters when the data are generated by models (1.1), (4.15) and

(4.16) respectively. Clearly, when the data are generated by the nonlinear models NMA(2)

and GARCH(1,1) (Figures 4.1a and 4.1c) T n performs better, whereas in the case of the

bivariate ARMA(1,1) (Figure 4.1b) both test statistics achieve similar power.

4.5.4 Application to a Bivariate Series

We study the relation between monthly log returns of the stocks of IBM and the S&P

500 composite index during the period January 1937 to December 2011 (900 observations

in total). Figure 4.2 shows the ACF and ADCF plots of the original series, whereas

Figure 4.3 shows the ACF and ADCF of the squared series. The first ACF plot (upper

panel of Figure 4.2) indicates that there is no correlation among observations, whereas

the ACF plot of the squared series (upper panel of Figure 4.3) confirms the conditional

heteroscedasticity in monthly log-returns. However, both ADCF plots (lower panels of

Figures 4.2 and 4.3) suggest strongly dependence among observations. The horizontal line

in the ADCF plots has been drawn following the methodology outlined in Section 4.5.2.

Applying the proposed testing methodology to the bivariate log returns directly, we note
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Figure 4.1: Achieved power of all test statistics. The results are based on b = 499 bootstrap
replications and 100 simulations. The test statistic Tn is calculated by employing the Bartlett
kernel. Solid line corresponds to Tn, whereas dashed line corresponds to mLB. (a) The data
are generated by the bivariate NMA(2) model given by (1.1). (b) The data are generated by
the bivariate ARMA(1,1) model given by (4.15). (c) The data are generated by the bivariate
GARCH(1,1) model given by (4.16).
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Table 4.4: P-values of tests of independence among the residuals after fitting both VAR(3) and
VAR(4) model to the bivariate log returns

(
IBMt, SPt

)
. P-values obtained after employing uni-

variate EGARCH(1,1) models to the bivariate series are also presented. All results are computed
based on b = 499 wild bootstrap replications. Tn is calculated based on the Bartlett kernel.

Model fitted p mLB T n
VAR(3) 6 0.714 0.032

12 0.954 0.022
24 0.798 0.002

VAR(4) 6 0.998 0.030
12 0.998 0.012
24 0.972 0.008

EGARCH(1,1) 6 0.155 0.164
12 0.718 0.148
24 0.845 0.144

that the test statistic T n yields low p-values (0.004, 0.002 and 0) when p = 6, 12 and

24 respectively. The multivariate Ljung-Box statistic (mLB) yields large p-values (0.122,

0.488 and 0.348 respectively) for the same choices of p. Assuming that the bivariate series(
IBMt, SPt

)
follows a VAR model and employing the AIC to choose its order we obtain

that a fourth order VAR fits well the data. Figure 4.4 shows the ACF (upper panel) and

ADCF plots (lower panel) of the residuals of the fitted model. Note that the ADCF plot

still indicates that there is dependence among the residuals. Table 4.4 shows the p-values

of constructing tests of independence among the residuals after fitting both VAR(3) and

VAR(4) model to the data. In both cases, mLB statistic gives large p-values, whereas

T n yields low p-values suggesting dependence among the residuals. However, entertaining

univariate exponential GARCH(1,1) (EGARCH) models seems to be a more appropriate

choice for the data. Indeed, Figures 4.5 and 4.6 present the ACF and ADCF plots of the

standardized residuals and their squared series of the two univariate models respectively,

indicating no serial dependence among the observations. Moreover, both test statistics,

T n and mLB, yield large p-values, confirming the model adequacy (Table 4.4).

4.5.5 Application to a 12-Dimensional Time Series

We analyze the electroencephalograph (EEG) signals recorded extracranially and intracra-

nially from twelve segments of both healthy and epileptic subjects. The dataset used here
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Figure 4.2: (a) The sample ACF of the original series. (b) The sample ADCF of the original
series.
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Figure 4.3: (a) The sample ACF of the squared series. (b) The sample ADCF of the squared
series.
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Figure 4.4: (a) The sample ACF of the residuals from VAR(4) model. (b) The sample ADCF
of the residuals from VAR(4) model.
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Figure 4.5: (a) The sample ACF of the standardized residuals after fitting univariate
EGARCH(1,1) models. (b) The sample ADCF of the standardized residuals after fitting uni-
variate EGARCH(1,1) models.
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Figure 4.6: (a) The sample ACF of the squared standardized residuals after fitting univariate
EGARCH(1,1) models. (b) The sample ADCF of the squared standardized residuals after fitting
univariate EGARCH(1,1) models.
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is a subset of an original data set publicly available by Andrzejaki et al. (2001). The

selected data set contains three EEG time series recorded from healthy volunteers during

the relaxed state with eyes open and closed. It also consists of three EEG signals ob-

tained from patients during seizure interval. Six time series recorded from patients during

seizure-free interval were also included in the data set; three of them were recorded from

the epileptic zone and three from the hippocampal formation of the opposite hemisphere

of the brain. Each of these EEG signals consists of 400 observations. We assume that

this 12-dimensional time series follows a VAR model. Applying the AIC we obtain that a

fifth order VAR model fits well the data. To check the adequacy of the model fit, we look

at the behavior of the residuals. Constructing tests of independence among the residuals,

both mLB and T n yields large p-values. In particular, mLB gives p-values equal to 1 and

T n gives p-values equal to 0.882, 0.852 and 0.782 when p = 6, 10 and 19 respectively. All

p-values are calculated for b = 499 wild bootstrap replications. The test statistic T n is

calculated by employing the Bartlett kernel. However, other choices of bandwidth values,

p, and kernel functions, K(·), yield similar results.
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Appendix – Proofs

In this section we prove the main theorems of the chapter. Note that some of the arguments

used for the proofs are similar to those given in the Appendix of Chapter 3, and thus they

are omitted.

Proof of Theorem 4.3.1 In Section 4.3 we showed that under Assumption 2(i) and

pairwise independence, V̂ 2
rm(·) can be expressed as a degenerate V -statistic of order 2 with

a measurable, symmetric, continuous and semidefinite kernel function given by (4.8). By

Assumption 1, we may apply Theorem 1 of Leucht and Neumann (2013a) and get:

(n− |j|)V 2
rm(j)→ Z :=

∑
k

λkZ
2
k ,

as n→∞ in distribution.

For the rest of the proofs, we first define

f̄ (r,m)(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

K(j/p)(1− |j| /n)1/2σ̃
(r,m)
j (u, v)e−ijω,

where

σ̃
(r,m)
j (u, v) =

1

n− |j|

n∑
t=|j|+1

ψt;r(u)ψt−|j|;m(v) (4.17)

and

ψt;r(u) ≡ eiuXt;r − φ(r)(u).

The corresponding pseudoestimator of the generalized spectral density matrix is defined

as

F (ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

K(j/p)(1− |j| /n)1/2Σ̃|j|(u, v)e−ijω,

where Σ̃|j|(·, ·) is the covariance matrix of eiuXt with elements given by (4.17). For the
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proof of Theorem 4.4.1, we will need the following two lemmas whose proof is omitted

as it follows closely the arguments of the corresponding proofs given in the Appendix of

Chapter 3.

Lemma 4.5.1 Suppose that {X t} satisfies Assumptions 1 and 3(ii). Then we have that

(n−|j|)2E
∣∣∣σ̂(r,m)
j (u, v)− σ̃(r,m)

j (u, v)
∣∣∣2 ≤ C and (n−|j|)E

∣∣∣σ̃(r,m)
j (u, v)

∣∣∣2 ≤ C uniformly in

(u, v) ∈ R2 for r,m = 1, 2, . . . , p.

Lemma 4.5.2 Suppose that {X t} satisfies Assumptions 1, 3(ii) and 4. For each γ > 0,

let D(γ) = {(u, v) : γ ≤ |u| ≤ 1/γ, γ ≤ |v| ≤ 1/γ}. Then

∫
D(γ)

n−1∑
j=1

K2(j/p)(n− j)
{∣∣∣σ̂(r,m)

j (u, v)
∣∣∣2 − ∣∣∣σ̃(r,m)

j (u, v)
∣∣∣2}dW(u, v) = OP (p/

√
n) = oP (

√
p)

for r,m = 1, 2, . . . , p as p/n→ 0.

Proof of Theorem 4.4.1 Following similar arguments as in the corresponding proof

given in Chapter 3, it can be shown that (Hong, 1999)

n−1∑
j=1

K2(j/p)(n− j)
∣∣∣σ̃(r,m)
j (u, v)

∣∣∣2 = Ĉrm(u, v) + V̂ rm(u, v) (4.18)

where

Ĉrm(u, v) =
n−1∑
j=1

K2(j/p)

n− j

[
n∑

t=j+1

Crm
ttj (u, v)

]
,

V̂ rm(u, v) =
n−1∑
j=1

K2(j/p)

n− j

[
n∑

t=j+2

t−1∑
s=j+1

V rm
tsj (u, v)

]
,

with

V rm
tsj (u, v) = Crm

tsj (u, v) + Crm
stj (u, v)∗
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and

Crm
tsj (u, v) = ψt;r(u)ψs;r(u)∗ψt−j;m(v)ψs−j;m(v)∗

where ∗ denotes complex conjugate.

For the first summand of (4.18), it holds that
∫
D(γ)

Crm
ttj (u, v)dW and

∫
D(γ)

Crm
ssj (u, v)dW

are independent integrals unless t = s or s± j. In addition,

E

∫
D(γ)

Crm
ttj (u, v)dW(u, v) = Crmγ

0 ≡
∫
D(γ)

σ
(r,r)
0 (u,−u)σ

(m,m)
0 (v,−v)dW(u, v) <∞,

shows that E
{∑n

t=j+1

[∫
D(γ)

Crm
ttj (u, v)dW − Crmγ

0

]}2

≤ C(n − j). Hence, by Markov’s

inequality, Cauchy-Schwarz inequality and the properties of the kernel function, we obtain

that

∫
D(γ)

Ĉrm(u, v)dW = OP (p/
√
n) + Crmγ

0

n−1∑
j=1

K2(j/p). (4.19)

So, using Lemma 4.5.2, equations (4.18) and (4.19) we have the following:

∫
D(γ)

{n−1∑
j=1

K2(j/p)(n− j)
∣∣∣σ̂(r,m)
j (u, v)

∣∣∣2}dW =

∫
D(γ)

{n−1∑
j=1

K2(j/p)(n− j)
∣∣∣σ̃(r,m)
j (u, v)

∣∣∣2}dW
+OP (p/

√
n)

=

∫
D(γ)

Ĉrm(u, v)dW +

∫
D(γ)

V̂ rm(u, v)dW

+OP (p/
√
n)

= Crmγ0

n−1∑
j=1

K2(j/p) + V̂ rmγ
n +OP (p/

√
n),

where V̂ rmγ
n ≡

∫
D(γ)

V̂ rm(u, v)dW . Therefore, the test statistic, T
(r,m)
n;γ , takes the form:

T (r,m)
n;γ =

∫
D(γ)

{n−1∑
j=1

K2(j/p)(n− j)
∣∣∣σ̂(r,m)
j (u, v)

∣∣∣2}dW
= Crmγ

0

n−1∑
j=1

K2(j/p) + V̂ rmγ
n +OP (p/

√
n). (4.20)
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Given Assumption 4 and by applying Hong (1999, Theorem A.3) on D(γ), we obtain

V̂ rmγ
n = V̂ rmγ

ng + oP (
√
p) (4.21)

where

V̂ rmγ
ng =

n∑
t=g+2

t−g−1∑
s=1

g∑
j=1

K2(j/p)

n− j

∫
D(γ)

V rm
tsj (u, v)dW

and g ≡ g(n) such that g/p→ 0, g/n→ 0. Now, by applying Hong (1999, Theorem A.4)

on D(γ) we get the following:

[
pDrmγ

0

∫ ∞
0

K4(z)dz
]−1/2

V̂ rmγ
ng → N(0, 1) (4.22)

as n→∞ in distribution, where

Drmγ
0 = 2

∫
D(γ)

∣∣∣σ(r,r)
0 (u, u′)σ

(m,m)
0 (v, v′)

∣∣∣2 dW(u, v)dW(u′, v′).

Equations (4.20), (4.21) and (4.22) yield to

∫
D(γ)

{∑n−1
j=1 K

2(j/p)(n− j)
∣∣∣σ̂(r,m)
j (u, v)

∣∣∣2}dW − Crmγ0

∑n−1
j=1 K

2(j/p)[
pDrmγ

0

∫∞
0 K4(z)dz

]1/2
→ N(0, 1). (4.23)

as n→∞, in distribution.

Observe that Ĉrmγ
0 −Crmγ

0 = OP (1/
√
n) and that

∑n−1
j=1 K

2(j/p) = O(p). Combining both

results, we can replace Crmγ
0 by Ĉrmγ

0 when p/n → 0. In addition, p−1
∑n−2

j=1 K
4(j/p) →∫∞

0
K4(z)dz and that D̂rmγ

0 → Drmγ
0 in probability. By Slutsky’s theorem, pDrmγ

0

∫∞
0
K4(z)dz

can be replaced by D̂rmγ
0

∑n−2
j=1 K

4(j/p).

Summarizing, (4.23) becomes

T
(r,m)
n;γ − Ĉrmγ

0

∑n−1
j=1 K

2(j/p)[
D̂rmγ

0

∑n−2
j=1 K

4(j/p)
]1/2

→ N(0, 1),

as n → ∞ in distribution. The rest of the proof follows by similar arguments given in
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Chapter 3, by showing that

lim sup
γ→0

lim sup
n→∞

∣∣T (r,m)
n − T (r,m)

n;γ

∣∣ = 0. (4.24)

Proof of Corollary 4.4.1 From Theorem 4.4.1 and under the null hypothesis of inde-

pendence, the random variables T
(r,m)
n satisfy

T
(r,m)
n − Ĉ(r,m)

0

∑n−1
j=1 K

2(j/p)[
D̂

(r,m)
0

∑n−2
j=1 K

4(j/p)

]1/2
→ N(0, 1) (4.25)

in distribution, as n→∞, for r,m = 1, . . . , d. Then, it can be shown by arguments quite

analogous to Hong (1999, Proof of Theorem 3) that

M̃n =

∑
r,m T

(r,m)
n −

∑
r,m Ĉ

(r,m)
0

∑n−1
j=1 K

2(j/p)[∑
r,m D̂

(r,m)
0

∑n−2
j=1 K

4(j/p)

]1/2
→ N(0, 1),

in distribution, as n→∞.

Proof of Corollary 4.4.2 Recall that T
(r,m)

n may be written as

T
(r,m)

n =
1√

V̂ 2
rr(0)

√
V̂ 2
mm(0)

T (r,m)
n .

By recalling result (4.25), we get

T
(r,m)

n − Ĉ
(r,m)

0

∑n−1
j=1 K

2(j/p)[
D̂

(r,m)

0

∑n−2
j=1 K

4(j/p)

]1/2
→ N(0, 1), (4.26)
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in distribution, as n→∞, for r,m = 1, 2, . . . , d, where

Ĉ
(r,m)

0 =
Ĉ

(r,m)
0

V̂rr(0)V̂mm(0)
, D̂

(r,m)

0 =
D̂

(r,m)
0

V̂ 2
rr(0)V̂ 2

mm(0)
= 2.

The sum of the normal random variables defined in (4.26) is also normally distributed,

namely

Mn =
T n −

∑
r,m Ĉ

(r,m)

0

∑n−1
j=1 K

2(j/p)

d

[
2
∑n−2

j=1 K
4(j/p)

]1/2
→ N(0, 1),

in distribution, as n→∞ and the proof is now completed.

Proof of Theorem 4.4.2 We prove the first result of the theorem. Recall D(γ) defined

in Lemma 4.5.2. For the proof we show the following: (i) 1/p
∑n

j=1 K
4(j/p)→

∫∞
0
K4(j/p)

given Assumption 4 and p→∞ and p/n→ 0,

(ii) E
∫
D(γ)

∫ π
−π

∣∣∣f̂ (r,m)(ω, u, v)− f (r,m)(ω, u, v)
∣∣∣2 dωdW(u, v)→ 0 which is proved similarly

to the proof of Hong (1999, Proof of Theorem 2, p. 1213) on D(γ) for all r,m = 1, . . . , d

given Assumptions 1, 3(i) and 4. Additionally, by applying Markov’s inequality we get

(iii) Ĉrmγ
0 = OP (1) and (iv) D̂rmγ

0 → Drmγ
0 in probability.

Combining remarks (i) and (iv) and by Slutsky’s theorem we get

1

p
D̂rmγ

0

n−2∑
j=1

K4(j/p) → Drmγ
0

∫ ∞
0

K4(z)dz,

in probability. Then, from the properties of convergence in probability,

1
√
p

[∑
r,m

D̂rmγ
0

n−2∑
j=1

K4(j/p)

]1/2

→

[∑
r,m

Drmγ
0

∫ ∞
0

K4(z)dz

]1/2

, (4.27)

in probability.
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By recalling (4.13) we define

L2
2;γ

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
≡

∫
D(γ)

∫ π

−π
tr

{(
F̂ (ω, u, v)− F̂0(ω, u, v)

)∗
×
(
F̂ (ω, u, v)− F̂0(ω, u, v)

)}
dωdW(u, v)

=
2

π

∑
r,m

T (r,m)
n;γ =

2

π
T̃n;γ.

Using the inequality |x+ y| ≤ 2 |x|2 + 2 |y|2 and after some calculations, we observe that

π

2

[
1

n
L2

2;γ

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
− L2

2;γ

(
F (ω, u, v), F0(ω, u, v)

)]

≤
∑
r,m

∫
D(γ)

∫ π

−π

∣∣∣f̂ (r,m)(ω, u, v)− f (r,m)(ω, u, v)
∣∣∣2 dωdW .

Thus,

E

∣∣∣∣∣∣π2
[

1

n
L2

2;γ

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
− L2

2;γ

(
F (ω, u, v), F0(ω, u, v)

)]
− 1

n

∑
r,m

Ĉrmγ0

n−1∑
j=1

K2(j/p)

∣∣∣∣∣∣
≤

∑
r,m

E

∫
D(γ)

∫ π

−π

∣∣∣f̂ (r,m)(ω, u, v)− f (r,m)(ω, u, v)
∣∣∣2 dωdW +

1

n

n−1∑
j=1

K2(j/p)
∑
r,m

E
∣∣∣Ĉrmγ0

∣∣∣ .
By applying Markov’s inequality and using remarks (ii) and (iii), the last expression yields

π

2

1

n
L2

2;γ

(
F̂ (ω, u, v), F̂0(ω, u, v)

)
− 1

n

∑
r,m

Ĉrmγ
0

n−1∑
j=1

K2(j/p)

→ π

2
L2

2;γ(F (ω, u, v), F (ω, u, v)),

in probability, i.e.,

1

n

[
T̃n;γ −

∑
r,m

Ĉrmγ
0

n−1∑
j=1

K2(j/p)
]
→ π

2
L2

2;γ

(
F (ω, u, v), F0(ω, u, v)

)
, (4.28)

in probability. Combining now (4.27) and (4.28) we get the required result on D(γ).

However, considering Ĉrmγ
0 → Ĉ

(r,m)
0 and D̂rmγ

0 → D̂
(r,m)
0 as γ → 0 and (4.24), the first
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result is now proved on R2.

The proof of the second result is derived by following similar arguments. In particular, the

first remark (i) remains the same. Following (Hong, 1999, Proof of Theorem 2), remark

(ii) becomes

E
∫
D(γ)

∫ π
−π

∣∣ĝ(r,m)(ω, u, v)− g(r,m)(ω, u, v)
∣∣2 dωdW(u, v)→ 0, where

ĝ(r,m)(ω, u, v) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2K(j/p)
σ

(r,m)
j (u, v)√
Vrr(0)Vmm(0)

e−ijω,

for all r,m = 1, . . . , d given Assumptions 1, 3(i) and 4. Remark (iii) becomes Ĉ
rmγ

0 =

OP (1). The quantity Crmγ
0 is defined as the corresponding quantity Crmγ

0 being divided by

the term {Vrr;γ(0)Vmm;γ(0)} (or its empirical analogue where appropriate), with Vrm;γ(0)

given by

V 2
rm;γ(0) =

∫
D(γ)

∣∣∣σ(r,m)
0 (u, v)

∣∣∣2 dW(u, v),

for all r,m = 1, 2, . . . , d. Thus, applying the same steps followed in the proof of the first

result of the theorem, equations (4.27) and (4.28) become now

d
√
p

[
2
n−2∑
j=1

K4(j/p)

]1/2

→ d

[
2

∫ ∞
0

K4(z)dz

]1/2

, (4.29)

in probability, and

1

n

[
T n;γ −

∑
r,m

Ĉ
rmγ

0

n−1∑
j=1

K2(j/p)
]
→ π

2
L2

2;γ

(
G(ω, u, v), G0(ω, u, v)

)
, (4.30)

in probability, where

T n;γ =
∑
r,m

T
(r,m)

n;γ ,

and

T
(r,m)

n;γ =
T

(r,m)
n;γ

Vrr;γ(0)Vmm;γ(0)
.

Equations (4.29) and (4.30) prove the second result on D(γ). We further obtain that
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following similar arguments as in Chapter 3, one can show that

lim sup
γ→0

lim sup
n→∞

∣∣∣T (r,m)

n − T (r,m)

n;γ

∣∣∣ = 0. (4.31)

Considering Ĉ
rmγ

0 → Ĉ
(r,m)

0 as γ → 0 and (4.31), the proof of the second result is now

proved on R2.
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Chapter 5

dCovTS: An R Package that

Implements Distance Covariance and

Correlation Theory in Time Series

5.1 Introduction

As we have already highlighted in the previous chapters, although Székely et al. (2007)

initially introduced the concept of distance covariance under the assumption that the data

are i.i.d., Zhou (2012) extended this notation to a time series framework and developed

an asymptotic theory based at a fixed lag order. In Chapters 3 and 4, we relaxed this

assumption and constructed a distance covariance testing methodology for both univariate

and multivariate time series by considering an increasing number of lags. The energy

(Rizzo and Szekely, 2014) package for R, is a package that involves a wide range of functions

for the existing distance covariance methodology. However, there is no package for the

aforementioned distance covariance methodology in time series. Thus, we aim at filling

this gap by publishing an R package named dCovTS.

The current version of dCovTS package (version number 1.1) is available from CRAN

and can be downloaded via https://cran.r-project.org/web/packages/dCovTS/. The

aim of the dCovTS package is to provide a set of functions that compute and plot dis-

112

MARIA PITSILL
OU



Table 5.1: Functions in dCovTS
Function Description
ADCF, mADCF Estimates distance correlation for a univariate and mul-

tivariate time series respectively
ADCV, mADCV Estimates distance covariance for a univariate and mul-

tivariate time series respectively
ADCFplot, mADCF-
plot

Plots sample distance correlation in a univariate and
multivariate time series framework respectively

kernelFun Computes univariate kernel function, k(·)
UnivTest Performs a univariate test of independence based on Tn
mADCFtest, mAD-
CVtest

Perform multivariate tests of independence based on T n
and T̃n respectively

Table 5.2: Datasets in dCovTS
Data Description
ibmSp500 Monthly returns of IBM and S&P 500 composite index

from January 1926 to December 2011
MortTempPart Mortality, temperature and pollution data measured

daily in Los Angeles County over the period 1970-1979

tance covariance and correlation functions in both univariate and multivariate time series.

Moreover, it offers functions that perform univariate and multivariate tests of indepen-

dence based on distance covariance function as explained in Chapters 3 and 4 (see Table

5.1). The package also provides two real datasets listed in Table 5.2. In Section 5.2, we

recall the main features of this testing methodology and we demonstrate how they can

be implemented with dCovTS. In the last Section 5.3, we apply dCovTS to several real

data examples. A more detailed description of the functions and datasets can be found in

the help files of the package.

5.2 Implementation of dCovTS Package

In this section, we recall the main results provided in Chapters 3 and 4 and demonstrate

how they can be developed in R from our package dCovTS.
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5.2.1 Distance Covariance Function via dCovTS

Consider first the univariate case. Recall that the ADCV, VX(j), between Xt and Xt−|j|

is defined as the positive square root of

V 2
X(j) =

1

π2

∫
R2

∣∣φ|j|(u, v)− φ(u)φ(v)
∣∣2

|u|2 |v|2
dudv, j = 0,±1,±2, . . . (5.1)

where φ|j|(u, v) = E
[
exp
(
i(uXt + vXt−|j|)

)]
is the joint characteristic function of Xt

and Xt−|j| and φ(u) := φ|j|(u, 0) , φ(v) := φ|j|(0, v) are their corresponding marginal

characteristic functions, for (u, v) ∈ R2.

Rescaling (5.1), one can define the ADCF as the positive square root of

R2
X(j) =

V 2
X(j)

V 2
X(0)

, j = 0,±1,±2, . . .

for V 2
X(0) 6= 0 and zero otherwise.

Székely and Rizzo (2014) proposed an unbiased version of the sample distance covariance.

Considering a sample of size n, in the context of time series data this is given by

Ṽ 2
X(j) =

1

(n− |j|)(n− |j| − 3)

∑
r 6=l

ÃrlB̃rl, (5.2)

for n > 3, where Ãrl is the (r, l) element of the so-called U -centered matrix Ã, defined

by

Ãrl =


arl −

1

n− |j| − 2

n∑
t=1+|j|

art −
1

n− |j| − 2

n∑
s=1+|j|

asl +
1

(n− |j| − 1)(n− |j| − 2)

n∑
t,s=1+|j|

ats, r 6= l;

0, r = l,

with arl = |Xr −Xl|, r, l = 1 + |j| , . . . , n. B̃rl is defined analogously with brl = |Yr − Yl|,

where Yt ≡ Xt−|j|.

The functions ADCV() and ADCF() in dCovTS return the empirical quantities V̂X(·) and

R̂X(·) respectively, discussed in Chapter 3. Moreover, based on the definitions of VX(·)

and RX(·), we observe that V̂ 2
X(j) = V̂ 2

X(−j) and R̂2
X(j) = R̂2

X(−j), and thus results

based on negative lags are omitted from the package. Using the same functions with
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argument unbiased=TRUE, the results correspond to the unbiased squared quantities Ṽ 2
X(·)

and R̃2
X(·). Note that the default option has been set to unbiased=FALSE (corresponding

to empirical version discussed in Chapter 3).

We now turn on to the multivariate case. Recall that the pairwise ADCV between Xt;r

and Xt−|j|;m, is denoted by Vrm(j) and it is defined as the nonnegative square root of

V 2
rm(j) =

1

π2

∫
R2

∣∣∣φ(r,m)
|j| (u, v)− φ(r)(u)φ(m)(v)

∣∣∣2
|u|2 |v|2

dudv, j = 0,±1,±2, . . .

where φ
(r,m)
|j| (u, v) = E

[
exp
(
i(uXt;r+vXt−|j|;m)

)]
denotes the joint characteristic function

of Xt;r and Xt−|j|;m and φ(r)(u) := φ
(r,m)
|j| (u, 0), φ(m)(v) := φ

(r,m)
|j| (0, v) are their correspond-

ing marginal characteristic functions. The ADCV matrix, V (j), is then defined by

V (j) =
[
Vrm(j)

]d
r,m=1

, j = 0,±1,±2, . . .

The pairwise ADCF between Xt;r and Xt−|j|;m, Rrm(j), is a coefficient that lies in the

interval [0, 1] and also measures dependence and is defined as the positive square root

of

R2
rm(j) =

V 2
rm(j)√

V 2
rr(0)

√
V 2
mm(0)

,

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The ADCF matrix of Xt, is then defined as

R(j) =
[
Rrm(j)

]d
r,m=1

, j = 0,±1,±2, . . .

Analogously to (5.2), an unbiased estimator of V̂ 2
rm(·) is given by

Ṽ 2
rm(j) =

1

(n− |j|)(n− |j| − 3)

∑
t6=s

ÃrtsB̃
m
ts ,

where Ãrts are computed appropriately, with arts = |Xt;r −Xs;r|, t, s = 1 + |j| , . . . , n. B̃m
ts

is computed analogously with bmts = |Yt;m − Ys;m|, where Yt;m ≡ Xt−|j|;m.

In Chapter 4, we showed that under the null hypothesis of pairwise independence, the em-

pirical counterpart of the squared pairwise ADCV, V̂ 2
rm(·), is a degenerate V -statistic of
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order two with a measurable kernel function that is symmetric, continuous and semidef-

inite. Following the same arguments, one can show that under the null hypothesis of

pairwise independence, V̂ 2
X(·) is a degenerate V -statistic of order two. For more properties

of these functions the reader is referred to Chapter 4.

The sample ADCV matrix, V̂ (·), and ADCF matrix, R̂(·), whose definitions are discussed

in Chapter 4, are calculated from dCovTS using the functions mADCV() and mADCF()

respectively. The unbiased estimators of ADCV and ADCF matrices are obtained from

dCovTS using the argument unbiased=TRUE. We note that the functions of dCovTS

that calculate ADCV and ADCF are mainly based on the functions dcov() and dcor()

respectively from energy (Rizzo and Szekely, 2014) package.

The distance correlation plots for both univariate and multivariate time series are ob-

tained by the ADCFplot() and mADCFplot() functions respectively, where the shown criti-

cal values (blue dotted horizontal line) are the simultaneous 95% empirical critical values

computed by employing the independent wild bootstrap described in Section 4.5.2 (ar-

gument bootMethod=”Wild Bootstrap”). In the case of a univariate time series, we also

use the subsampling approach suggested by Zhou (2012, Section 5.1) in order to compute

the pairwise 95% critical values (argument bootMethod=”Subsampling”). In addition, the

package provides the ordinary independent bootstrap methodology to derive simultaneous

95% critical values for the ADCF plots (argument bootMethod=”Independent Bootstrap”)

for both univariate and multivariate time series. Recall that these are computed by using

the biased definition of distance covariance and correlation.

5.2.2 Univariate and Multivariate Tests of Independence Based

on Distance Covariance via dCovTS

In Chapters 3 and 4, we developed a distance covariance testing methodology considering

an increasing number of lags by employing Hong’s (1999) generalized spectral domain

methodology. We recall the resulting test statistics below. We proposed the following
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Portmanteau type statistic based on ADCV

Tn =
n−1∑
j=1

(n− j)k2(j/p)V̂ 2
X(j), (5.3)

where p is a bandwidth of the form p = cnλ for c > 0 λ ∈ (0, 1), k(·) is a univariate kernel

function satisfying Assumption 4 (stated in Chapters 3 and 4). kernelFun() in dCovTS

computes a number of such kernel functions including the truncated (the default), Bartlett,

Daniell, QS and Parzen kernels.

We also considered a similar test statistic based on ADCF

n−1∑
j=1

(n− j)k2(j/p)R̂2
X(j). (5.4)

The function UnivTest() from dCovTS package performs univariate tests of independence

based on (5.3) and its rescaled version (5.4), using the arguments testType=”covariance”

(the default) and testType=”correlation” respectively.

The proposed test statistic for testing pairwise independence in a multivariate time series

framework is based on the ADCV matrix, V (·), and it is given by

T̃n =
n−1∑
j=1

(n− j)k2(j/p)tr{V̂ ∗(j)V̂ (j)}. (5.5)

where k(·) is a univariate kernel function and p is a bandwidth as both described before

and V̂ ∗(·) denotes the complex conjugate matrix of V̂ (·). In Chapter 4, we formed the

statistic (5.5) in terms of the ADCF matrix as follows

T n =
n−1∑
j=1

(n− j)k2(j/p)tr{V̂ ∗(j)D̂−1V̂ (j)D̂−1}. (5.6)

where D = diag{Vrr(0), r = 1, 2, . . . , d}. The multivariate tests of independence based

on T̃n and T n are performed via mADCVtest() and mADCFtest() respectively in dCovTS

package.

All test statistics Tn, T̃n and T n of equations (5.3), (5.5) and (5.6) respectively, are func-

117

MARIA PITSILL
OU



tions of degenerate V -statistics of order two. In the case of independent data, Dehling and

Mikosch (1994) studied the wild bootstrap distribution for degenerate U -statistics. Based

on Leucht and Neumann (2013a,b) we suggest the use of a new variant of wild bootstrap

(Shao, 2010), the so-called independent wild bootstrap suitable for dependent data. Thus,

the empirical p-values of the tests are derived based on this methodology. In Chapter

4, all the steps followed are described in detail. The package also provides the ordinary

independent bootstrap methodology to derive empirical p-values of the tests.

The computation of the bootstrap replications, and thus the empirical p-values and the

critical values, can be distributed to multiple cores simultaneously (argument parallel=TRUE).

To do this, the doParallel (Analytics and Weston, 2015) package needs to be installed

first, in order to register a computing cluster.

5.3 Applications

In this section, we apply dCovTS on both univariate and multivariate real data. Note

that for the reader’s convenience we include the main R commands used with the help of

dCovTS for the analysis of these examples.

5.3.1 Univariate Time Series

Pollution, Temperature and Mortality Data

We first consider the pollution, temperature and mortality data measured daily in Los

Angeles County over the 10 year period 1970-1979 (Shumway et al., 1988). The data

are available in our package by the argument MortTempPart and contain 508 observations

and 3 variables representing the mortality (cmort), temperature (tempr) and pollutant

particulates (part) data.

> library(dCovTS) #loading the package

> data(MortTempPart)

> MortTempPart[1:10,] # the first ten observations
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cmort tempr part

1 97.85 72.38 72.72

2 104.64 67.19 49.60

3 94.36 62.94 55.68

4 98.05 72.49 55.16

5 95.85 74.25 66.02

6 95.98 67.88 44.01

7 88.63 74.20 47.83

8 90.85 74.88 43.60

9 92.06 64.17 24.99

10 88.75 67.09 40.41

> attach(MortTempPart)

Following the analysis of Shumway and Stoffer (2011), the possible effects of temperature

(Tt) and pollutant particulates (Pt) on daily cardiovascular mortality (Mt) are examined

via regression. In particular, once the temperature is adjusted for its mean (T. = 74.3),

we fit the following regression model using the function lm() already existing in R

M̂t = 2831.49− 1.396(0.101)t− 0.472(0.032)(Tt − T.)

+0.023(0.003)(Tt − T.)2 + 0.255(0.019)Pt, (5.7)

where the standard errors of the estimators are given in parentheses. Figure 5.1 provides

the ACF, partial correlation (PACF) and ADCF plots of the residuals of model (5.7). The

plots shown in Figure 5.1 suggest an AR(2) process for the residuals. The new fit is

M̂t = 3075.15− 1.517(0.423)t− 0.019(0.050)(Tt − T.)

+0.015(0.002)(Tt − T.)2 + 0.155(0.027)Pt, (5.8)

where the standard errors of the estimators are given in parentheses. The above model fit

is derived using arima() function of R. The correlation plots for the residuals from the new

model (5.8) are shown in Figure 5.2 indicating that there is no serial dependence. The

calls for both model fits and their diagnostic plots are given below. ADCF plots (lower
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Figure 5.1: Sample ACF, PACF and ADCF plots of the mortality residuals of model (5.7).

plots of Figures 5.1 and 5.2) are constructed using both resampling schemes explained

in the previous chapter: independent wild bootstrap (with b = 499 replications) and

Subsampling.

> temp = tempr-mean(tempr) # center temperature

> temp2 = temp^2

> trend = time(cmort)

> fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)

> Residuals <- as.numeric(resid(fit))

> ##Correlation plots

> acf(Residuals,lag.max=18,main="")

> pacf(Residuals,lag.max=18,main="")

> ADCFplot(Residuals,MaxLag=18,main="Wild Bootstrap",bootMethod="Wild")

> ADCFplot(Residuals,MaxLag=18,main="Subsampling",bootMethod="Subsampling")
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Figure 5.2: Sample ACF, PACF and ADCF plots of the mortality residuals of model (5.8)
indicating that the new residuals can be taken as white noise.

> fit2 <- arima(cmort, order=c(2,0,0), xreg=cbind(trend,temp,temp2,part))

> Residuals2 <- as.numeric(residuals(fit2))

> ##Correlation plots

> acf(Residuals2,lag.max=18,main="")

> pacf(Residuals2,lag.max=18,main="")

> ADCFplot(Residuals2,MaxLag=18,main="Wild Bootstrap",bootMethod="Wild")

> ADCFplot(Residuals2,MaxLag=18,main="Subsampling",bootMethod="Subsampling")

To formally confirm the absence of any serial dependence among the new residuals of

model (5.8), as shown in Figure 5.2, we perform univariate tests of independence based

on the test statistic Tn given in (5.3) using the UnivTest() function from our package with

argument testType=”covariance”, which is the default. In order to examine the effect of

using different bandwidths, we choose p = [3nλ] for λ=0.1, 0.2 and 0.3, that is p = 6,
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11, and 20 and we apply Bartlett kernel. The resulting p-values are 0.118, 0.170 and

0.208 respectively suggesting acceptance of independence. P-values are calculated for

b = 499 independent wild bootstrap replications. Bootstrap procedure can be computed

on multiple cores simultaneously (argument parallel=TRUE) in order to be computationally

less expensive (they take about 10, 14 and 23 seconds respectively on a standard laptop

with Intel Core i5 system and CPU 2.30 GHz):

> UnivTest(Residuals2, type="bartlett", p=6, b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: Residuals2, kernel type: bartlett, bandwidth=6, replicates 499

Tn = 67.7344, p-value = 0.118

> UnivTest(Residuals2, type="bartlett", p=11, b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: Residuals2, kernel type: bartlett, bandwidth=11, replicates 499

Tn = 125.6674, p-value = 0.170

> UnivTest(Residuals2, type="bartlett", p=20, b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: Residuals2, kernel type: bartlett, bandwidth=20, replicates 499

Tn = 225.9266, p-value = 0.208

We compare the proposed test statistic with other test statistics, given in Chapter 3, in

order to check its performance. We recall these statistics below. We consider the Box-
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Pierce (Box and Pierce, 1970) test statistic,

BP = n

p∑
j=1

ρ̂2(j),

the Ljung-Box (Ljung and Box, 1978) test statistic,

LB = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2(j),

the test statistic proposed by Hong (1996),

T (1)
n = n

n−1∑
j=1

k2(j/p)ρ̂2(j)

and the test statistic suggested by Hong (1999),

T (2)
n =

∫
R2

n−1∑
j=1

(n− j)k2(j/p) |σ̂j(u, v)|dW(u, v), (5.9)

where W(·, ·) : R2 → R is an arbitrary nondecreasing function with bounded total vari-

ation. For the aforestated bandwidth values, all these alternative test statistic give large

p-values indicating the absence of any serial dependence among the new residuals. More

precisely, BP and LB give 0.848, 0.906, 0.170 and 0.844, 0.901, 0.142 respectively. BP and

LB based tests are performed in R by the function Box.test() as follows:

> box1 <- Box.test(Residuals2,lag=6)

> box2 <- Box.test(Residuals2,lag=11)

> box3 <- Box.test(Residuals2,lag=20)

> ljung1 <- Box.test(Residuals2,lag=6,type="Ljung")

> ljung2 <- Box.test(Residuals2,lag=11,type="Ljung")

> ljung3 <- Box.test(Residuals2,lag=20,type="Ljung")

The p-values obtained by T
(1)
n are 0.896, 0.930 and 0.870 respectively. T

(2)
n gives the follow-

ing p-values: 0.854, 0.752 and 0.504 respectively. T
(1)
n and T

(2)
n are calculated by employing

the Bartlett kernel. These p-values are calculated for b = 499 ordinary bootstrap replica-

tions. The R functions for constructing these test statistics are beyond the scope of this
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Figure 5.3: The time-series plot of the Canadian lynx data.

chapter and are available upon request.

The Canadian Lynx Data

We now study the numbers of the Canadian lynx trapped in the Mackenzie River district of

northwest Canada, recorded annually from 1821 to 1934. The data are available from the

R package datasets by the name lynx. The logarithms of the lynx data (at a log 10 scale)

are plotted in Figure 5.3, exhibiting a periodic fluctuation with asymmetric population

cycles.

> ## Reading and plotting the lynx data

> log.lynx <- log10(lynx)

> plot.ts(log.lynx,ylab="log_10 lynx data",xlab="Years")

Following the detailed analysis of Fan and Yao (2003, p. 136), we fit the following two-

regime TAR model

Xt =


0.546 + 1.032Xt−1 − 0.173Xt−2 + 0.171Xt−3 − 0.431Xt−4

+0.332Xt−5 − 0.284Xt−6 + 0.210Xt−7 + ε
(1)
t , Xt−2 ≤ 3.116;

2.632 + 1.492Xt−1 − 1.324Xt−2 + ε
(2)
t , Xt−2 > 3.116,

(5.10)

where {ε(i)t } are i.i.d. sequences of N(0,1) random variable, for i = 1, 2. The above model

is derived in R, using the function tar() from the TSA (Chan and Ripley, 2012) package.

Like all statistical fitting, we look at the behavior of the residuals as the most popular
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diagnostic tool. Figure 5.4 shows the sample ADCF plots of the residuals of model (5.10),

suggesting no serial dependence among the residuals.
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Figure 5.4: Sample ADCF plots of the residuals of the TAR model (5.10) fitted to the Canadian
lynx data.

The R-code for the above TAR model fit and the corresponding diagnostic plots is given

below:

> ## TAR model fit

> library(TSA)

> fit <- tar(log.lynx,p1=10,p2=10,d=2,threshold=3.116, estimate.thd = F)

> res <- residuals(fit)

> res <- res[!is.na(res)] #removing the NA’s

> ADCFplot(res,MaxLag=18,bootMethod="Wild",main="Wild Bootstrap")

> ADCFplot(res,MaxLag=18,bootMethod="Subs",main="Subsampling")

To formally confirm the adequacy of model (5.10), we construct tests of independence

among the residuals. The resulting p-values are provided in Table 5.3, for various choices

of the bandwidth parameter p. All test statistics yield large p-values indicating the absence

of serial dependence among the residuals. We note that the kernel-based test statistics Tn,

T
(1)
n and T

(2)
n are computed based on the Bartlett kernel. However, any other choices of

the kernel function and the bandwidth parameter p, yield the same conclusions. Indeed,

Figure 5.5 presents the p-values obtained by constructing tests of independence among

the residuals based on the proposed statistic Tn, for various choices of the kernel function

and the bandwidth parameter, p. The main message from these plots is that the statistic
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Tn is not very sensitive to the choice of the kernel function and the bandwidth parameter

p. P-values are calculated for b = 499 independent wild bootstrap replications. The R

commands for the tests of independence based on Tn, BP and LB are given below:

> #Tn tests

> UnivTest(res,type="bar",p=3,b=499,parallel=TRUE)

Univariate test of independence based on distance covariance

data: res, kernel type: bartlett, bandwidth=3, replicates 499

Tn = 0.0243, p-value = 0.552

> UnivTest(res,type="bar",p=7,b=499,parallel=TRUE)

Univariate test of independence based on distance covariance

data: res, kernel type: bartlett, bandwidth=7, replicates 499

Tn = 0.0774, p-value = 0.632

> UnivTest(res,type="bar",p=17,b=499,parallel=TRUE)

Univariate test of independence based on distance covariance

data: res, kernel type: bartlett, bandwidth=17, replicates 499

Tn = 0.2343, p-value = 0.586

> #BP and LB tests

> box1 <- Box.test(res,lag=3)

> box2 <- Box.test(res,lag=7)

> box3 <- Box.test(res,lag=17)

> ljung1 <- Box.test(res,lag=3,type="Ljung")

> ljung2 <- Box.test(res,lag=7,type="Ljung")

126

MARIA PITSILL
OU



Table 5.3: P-values obtained by constructing tests of independence among the residuals after
fitting the TAR model (5.10) to Canadian lynx data. All test statistics are calculated for b = 499

independent wild bootstrap replications. The statistics Tn, T
(1)
n and T

(2)
n are computed by

employing the Bartlett kernel.

p Tn T
(2)
n BP LB T

(1)
n

3 0.552 0.804 0.978 0.976 0.958

7 0.632 0.916 0.904 0.886 0.934

17 0.586 0.770 0.699 0.564 0.738

> ljung3 <- Box.test(res,lag=17,type="Ljung")

Monthly Log Returns of Intel Stock

In this final example, we analyze the monthly log stock returns of Intel Corporation

from January 1973 to December 2003, for 372 observations. The univariate time series is

available from FinTS (Graves, 2014) package under the name m.intc7303:

> library(FinTS)

> data(m.intc7303)

> data <- zoo(m.intc7303,as.yearmon(index(m.intc7303)))

> data <- ts(data)

> ldata <- log(data+1) #convert into log returns

> #ACF and ADCF plots of the series

> acf(ldata,main="log_intel",lag.max=18)

> acf(ldata^2,main="log_intel^2",lag.max=18)

> ADCFplot(ldata,main="Wild Bootstrap",ylim=c(0,0.2))

> ADCFplot(ldata,bootMethod="Subs",main="Subsampling",ylim=c(0,0.2))

Figure 5.6 shows the sample ACF of the log returns and their squared values (upper panel),

as well as the sample ADCF plots of the log series (lower panel). Clearly, the sample

ACF of the squared returns and the sample ADCF plots of the log returns indicate the

existence of conditional heteroscedasticity. Thus, we fit the following GARCH(1,1) model
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Figure 5.5: P-values obtained by performing tests of independence based on Tn, among the
residuals of the TAR model (5.10) for the Canadian lynx data. Results are based on b = 499
independent wild bootstrap replications for various choices of the bandwidth parameter, p, and
for three different choices of the kernel function, the Parzen, the Daniell and the QS. The red
dotted line is marked at the significance level 0.05.
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Figure 5.6: Sample ACF and ADCF plots of the monthly log returns of intel stock.

with normal innovations

Xt = σtεt, σ2
t = 0.001 + 0.087X2

t−1 + 0.846σ2
t−1. (5.11)

The above model fit is derived in R using garch() function from the package tseries

(Trapletti and Hornik, 2015). After model fitting, we look at the behavior of the stan-

dardized residuals by performing tests of independence among the residuals. All test

statistics give large p-values (Table 5.4) suggesting that the model used is suitable for the

data. The R commands for the model fit and the corresponding tests of independence

based on Tn, BP and LB are given below:

> # model fit

> library(tseries)

> model <- garch(ldata, order = c(1,1))

> res <- residuals(model)
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Table 5.4: P-values obtained by constructing tests of independence among the residuals after
fitting the GARCH(1,1) model given in (5.11) to Intel stock data. All test statistics are calculated

for b = 499 bootstrap replications. The statistics Tn, T
(1)
n and T

(2)
n are computed by employing

the Bartlett kernel.

p Tn T
(2)
n BP LB T

(1)
n

4 0.906 0.950 0.496 0.488 0.756

11 0.332 0.498 0.542 0.523 0.552

35 0.386 0.550 0.734 0.663 0.464

> res <- res[!is.na(res)]

> std.res <- res/sd(res)

> # Tests of independence

> UnivTest(std.res,"bar",p=4,b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: std.res, kernel type: bartlett, bandwidth=4, replicates 499

Tn = 0.66593, p-value = 0.906

> UnivTest(std.res,"bar",p=11,b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: std.res, kernel type: bartlett, bandwidth=11, replicates 499

Tn = 3.9101, p-value = 0.332

> UnivTest(std.res,"bar",p=35,b=499, parallel=TRUE)

Univariate test of independence based on distance covariance

data: std.res, kernel type: bartlett, bandwidth=35, replicates 499

Tn = 13.431, p-value = 0.386
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> box1 <- Box.test(std.res,lag=4)

> box2 <- Box.test(std.res,lag=11)

> box3 <- Box.test(std.res,lag=35)

> ljung1 <- Box.test(std.res,lag=4,type="Ljung")

> ljung2 <- Box.test(std.res,lag=11,type="Ljung")

> ljung3 <- Box.test(std.res,lag=35,type="Ljung")

5.3.2 Multivariate Time Series

IBM and S&P 500 Data

We now analyze the monthly log returns of the stocks of International Business Machines

(IBM) and the S&P 500 composite index starting from 29 May 1936 to 28 November 1975

for 474 observations. A larger dataset is available in our package by the object ibmSp500

starting from January 1926 for 1032 observations. It is actually a combination of two

smaller datasets: the first one was first reported by Tsay (2010) and the second one was

first reported by Tsay (2014). Below, we give the R commands for reading this smaller

dataset from the package:

> data(ibmSp500)

> new_data <- ibmSp500[224:588,2:3]

> lseries <- log(new_data+1)

> at=scale(lseries,center=T,scale=F)

We first construct test of independence among the series based on the multivariate Ljung-

Box statistic (Hosking, 1980; Li and McLeod, 1981) defined by

mLB = n2

p∑
j=1

(n− j)−1trace{Γ̂′(j)Γ̂−1(0)Γ̂(j)Γ̂−1(0)}.

Choosing p = [3nλ] for λ=0.1, 0.2 and 0.3, that is p = 6, 11 and 20, mLB gives large

p-values (0.090, 0.159 and 0.235 respectively) suggesting no serial correlation among ob-

servations. However, constructing test of independence among the squared series, mLB
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yields low p-values close to zero implying strong linear dependence. This confirms the

conditional heteroscedasticity in the monthly log returns. These tests are preformed in R

using LjungBox() function from portes (Mahdi and McLeod, 2012) package. As expected,

the proposed test statistic T n detects the dependence among the original series giving low

p-values (0.030, 0.014 and 0.016 respectively). The statistic T n is computed by employing

the Bartlett kernel. As in the univariate examples described above, to speed up the com-

putation of the empirical p-values for our proposed test, the bootstrap procedure can be

computed on multiple cores simultaneously (argument parallel=TRUE). The calls for all

the above multivariate tests of independence can be found below (T n tests take about 1,

2 and 3 minutes respectively for b = 499 bootstrap replications on a standard laptop with

Intel Core i5 system and CPU 2.30 GHz):

> ##mLB tests

> test1 <- LjungBox(at,c(6,11,20))

> test2 <- LjungBox(at^2,c(6,11,20))

> ## \bar{T}_n tests

> mADCFtest(at,p=6,b=499,type="bar",parallel=TRUE)

Multivariate test of independence based on distance correlation

data: at, kernel type: bartlett, bandwidth=6, replicates 499

Tnbar = 32.4818, p-value = 0.03

> mADCFtest(at,"bartlett",p=11,type="bar",b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: at, kernel type: bartlett, bandwidth=11, replicates 499

Tnbar = 62.2055, p-value = 0.014

> mADCFtest(at,"bartlett",p=20,type="bar",b=499,parallel=TRUE)

132

MARIA PITSILL
OU



Multivariate test of independence based on distance correlation

data: at, kernel type: bartlett, bandwidth=20, replicates 499

Tnbar = 113.405, p-value = 0.016

Assuming that the bivariate log returns follows a VAR model and employing the AIC to

choose its best order, we obtain that a VAR(2) model fits well the data. Figure 5.7 shows

the ACF plots (upper panel) and ADCF plots (lower panel) of the residuals after fitting

a VAR(2) model to the original bivariate log return series using the function VAR() from

the MTS (Tsay, 2015) package. Based on these plots, the residuals of VAR(2) model do

not have any strong dependence. Constructing tests of independence based on T n and

mLB for the same choices of bandwidth, p =6, 11, 20, we confirm this visual result. The

resulting p-values are given in the following R demonstration:

> ##ACF and ADCF plots

> library(MTS)

> model <- VAR(at,2)

> resids <- residuals(model)

> colnames(resids) <- c("IBM_res","SP_res")

> windows(9,6)

> acf(resids,lag.max=18)

> mADCFplot(resids,MaxLag=18,ylim=c(0,0.25))

> ## Tests of independence based on \bar{T}_n

> mADCFtest(resids,"bartlett",p=6,b=499,type="bar",parallel=TRUE)

Multivariate test of independence based on distance correlation

data: resids, kernel type: bartlett, bandwidth=6, replicates 499

Tnbar = 25.4731, p-value = 0.254
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Figure 5.7: The sample ACF (upper panel) and sample ADCF (lower panel) of the residuals
after fitting VAR(2) model to the bivariate series IBM and S&P500.
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> mADCFtest(resids,"bartlett",p=11,type="bar",b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: resids, kernel type: bartlett, bandwidth=11, replicates 499

Tnbar = 52.9218, p-value = 0.19

> mADCFtest(resids,"bartlett",p=20,type="bar",b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: resids, kernel type: bartlett, bandwidth=20, replicates 499

Tnbar = 103.2249, p-value = 0.098

> ## Tests of independence based on mLB

> LjungBox(resids,lags=c(6,11,20))

Lags Statistic df pvalue

6 13.44822 24 0.9581479

11 35.69476 44 0.8094291

20 68.74206 80 0.8111627

Growth Rates of Real Gross Domestic Product of UK, Canada and US

We now consider the quarterly percentage growth rates of real gross domestic product

(GDP) of UK, Canada and US from the first quarter of 1980 to the second quarter of

2011. The three dimensional time series corresponding to the data is available from MTS

(Tsay, 2015) package under the name qgdp:

> library(MTS)

> data("mts-examples",package="MTS")

> Y <- qgdp[,3:5]
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> gdp <- log(Y)

> z=gdp[2:126,]-gdp[1:125,] ## growth rates

> z=z*100 # percentage growth rates

Following the analysis of Tsay (2014, p. 51), we employ a VAR(2) model to the data, where

the VAR order was determined by the AIC criterion. After model fitting we perform a

residual analysis, by looking at the sample ACF plots (upper panel) and ADCF plots

(lower panel) of Figure 5.8 of the three residual series. These plots fail to show any strong

dependence among the residuals. Indeed, constructing tests of independence based on T n

and mLB, we get large p-values for bandwidth parameters p=6, 10 and 18. In particular,

the corresponding p-values given by T n and mLB are 0.308, 0.226, 0.102 and 0.885, 0.809,

0.769 respectively. Note that the statistic T n was computed by employing a Parzen kernel.

The R commands for the VAR(2) model fit, the corresponding residual plots of Figure 5.8

and the tests of independence mentioned above are given below:

> model <- VAR(z,2)

> resi <- model$residuals

> acf(resi,lag.max=18)

> mADCFplot(resi,MaxLag=18)

### Tests of independence based on \bar{T}_n

> mADCFtest(resi,type="parzen",p=6,b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: resi, kernel type: parzen, bandwidth=6, replicates 499

Tnbar = 98.838, p-value = 0.308

> mADCFtest(resi,type="parzen",p=10,b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation
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Figure 5.8: The sample ACF (upper panel) and sample ADCF (lower panel) of the residuals of
the VAR(2) model for the percentage quarterly growth rates of real gross domestic products of
UK, Canada and US.
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data: resi, kernel type: parzen, bandwidth=10, replicates 499

Tnbar = 170.75, p-value = 0.226

> mADCFtest(resi,type="parzen",p=18,b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: resi, kernel type: parzen, bandwidth=18, replicates 499

Tnbar = 311.56, p-value = 0.102

### Tests of independence based on mLB

> LjungBox(resi, lags=c(6,10,18))

Monthly Unemployment Rates of the 50 States in the United States

Lastly, we study the monthly unemployment rates of the US 50 states (Tsay, 2014, p. 4)

from January 1976 to September 2011 for 429 observations. Note that the data were

seasonally adjusted and are available from Tsay’s (2014) book site http://faculty.

chicagobooth.edu/ruey.tsay/teaching/mtsbk/. In this example, we consider the dif-

ferenced monthly rates of the first five states corresponding to Alabama (AL), Alaska

(AK), Arizona (AZ), Arkansas (AR) and California (CA) for the last 300 observations.

The first order differencing of the data is performed via diffM() function from MTS (Tsay,

2015) package:

> data <- read.table("m-unemp-states.txt",header=T)

> dim(data)

[1] 429 50

> rates <- diffM(data)

> dim(rates)

[1] 428 50

> zt <- tail(rates[,1:5],300)

> head(zt)
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AL AK AZ AR CA

[1,] -0.1 -0.1 -0.2 -0.1 -0.2

[2,] -0.2 0.0 -0.3 -0.1 -0.1

[3,] -0.1 0.0 -0.2 -0.1 -0.1

[4,] 0.0 0.0 -0.2 -0.1 0.0

[5,] 0.0 0.1 -0.1 -0.1 0.0

[6,] 0.2 0.3 0.0 -0.1 0.1

Assuming that the 5-dimensional series (ALt, AKt, AZt, ARt, CAt) follows a VAR model

and employing the AIC to choose its order, we obtain that a fifth order VAR model fits

well the data. After a VAR(5) data fitting, we construct multivariate tests of independence

among the 5-variate residual series for bandwidth parameters p=6, 10 and 17, to check

the adequacy of the model fit. Constructing tests of independence among the residuals

based on mLB and T n, both test statistics give large p-values close to 1, indicating that

a VAR(5) model is adequate for the data. We note that the kernel-based statistic T n is

computed based on the truncated kernel (the default) for b = 499 bootstrap replications.

The R commands for the above model fit and the corresponding tests of independence

among the residuals are as follows:

> var5 <- VAR(zt,5)

> residuals <- var5$residuals

> mADCFtest(residuals,p=6,b=499, parallel=TRUE)

Multivariate test of independence based on distance correlation

data: residuals, kernel type: truncated, bandwidth=6, replicates 499

Tnbar = 438.9153, p-value = 0.99

> mADCFtest(residuals,p=10,b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation
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data: residuals, kernel type: truncated, bandwidth=10, replicates 499

Tnbar = 763.8492, p-value = 0.916

> mADCFtest(residuals,p=17,b=499,parallel=TRUE)

Multivariate test of independence based on distance correlation

data: residuals, kernel type: truncated, bandwidth=17, replicates 499

Tnbar = 1296.841, p-value = 0.932

> LjungBox(residuals,lags=c(6,10,17))

Lags Statistic df pvalue

6 56.04981 150 1.0000000

10 159.56430 250 0.9999983

17 316.24291 425 0.9999778
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have developed a novel distance covariance testing methodology for

testing pairwise dependence in both univariate and multivariate time series. The main

contribution of this work is that the resulting test statistics are calculated for an increasing

number of lags, whereas the results based on ADCV available in the literature (reviewed

in Section 2.4.1) have been obtained under the assumption of a fixed lag order.

The first part of the thesis (Chapter 3) considers the univariate case suggesting a test

statistic that is based on the ADCV and is motivated by a spectral domain point of

view. In fact, we compared a kernel-based generalized estimated spectral density to the

null spectral density, by a weighted quadratic norm. It turns out that the resulting test

statistic is defined in terms of the ADCV and its asymptotic distribution is standard

normal, suitably normalized. As Hong (1999) pointed out, the use of the generalized

spectral density allows us to detect pairwise dependence in both linear and nonlinear time

series structures. Our approach differs from that of Hong (1999), since our test statistic

is calculated by means of a nonintegrable weighting function. The nonintegrability of the

weight function yields more interesting results. In addition, we allow the number of lags

tested in H0 to increase with the sample size n. Empirical results suggest that our new test

of independence has better power than the Portmanteau tests of Box and Pierce (1970)
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and Ljung and Box (1978) and the test proposed by Hong (1996), against a nonlinear

structure. The proposed test is quite close in terms of power to the test proposed by Hong

(1999), denoted by T
(2)
n , and in some cases it outperforms T

(2)
n .

In the second part of this work (Chapter 4), we extend the ADCV function in the context

of multivariate time series by defining its matrix version. The information contained in

this matrix is useful for examining any possible relationships within and between time

series. In fact, we introduced the generalized spectral density matrix and compared it to

the corresponding null matrix obtained under serial independence, by a squared weighted

Frobenius norm. The resulting test statistic is a multivariate Ljung-Box (mLB) type

test statistic defined in terms of the ADCV matrices, where its standardized version is

asymptotically normally distributed. Simulations and real data examples propose that

our new developed multivariate test of independence performs better than the one based

on the mLB, especially against non-Gaussian and nonlinear data structures. Several

extensions of this work are discussed in the next section.

The test statistics derived from the univariate and multivariate methodology demonstrated

in Chapters 3 and 4 respectively, depend on a bandwidth parameter p. A cross-validation

method might be suitable to choose the bandwidth parameter but we can also vary p to

examine the sensitivity of the results obtained. However, in our data examples we did not

discover any notable relation between p and the outcome of all test statistics. Moreover,

we can obtain the optimal kernel function k(.) that maximizes the asymptotic power of

the test statistics under some conditions. In this sense, the Daniell kernel is the optimal

kernel which maximizes the power of the test statistic proposed by Hong (1999, Theorem

6).

The R package energy (Rizzo and Szekely, 2014) provides functions that covers distance

methodology for random variables. Dropping the assumption of i.i.d. data, there is no

published package that includes functions about distance covariance for time series data.

Many R users can now use the package dCovTS which fills this gap by providing func-

tions that compute distance covariance and correlation functions for both univariate and

multivariate time series. We also include functions that develop univariate and multivari-

ate tests of serial dependence based on distance covariance and correlation functions as
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described in Chapters 3 and 4.

6.2 Future Work

The results presented in this thesis can be seen as a starting point for further research.

Below, we briefly name few prospective investigations related to the theory of distance

covariance in time series.

6.2.1 Other Types of Data

A possible extension of the methodology outlined in this thesis is to explore the use of

ADCV (univariate version and matrix version) in areas where the assumption of strict

stationarity is relaxed. For this goal, the framework introduced by Dahlhaus (1996) con-

cerning locally stationary processes can be quite useful to define a local ADCV. Such a

measure will detect local dependencies in non-stationary time series since the framework

of locally stationary processes allows segmented approximation to the process by a station-

ary process. Moreover, experiencing with other types of dependent data, like space/time

data, spatial data and data observed in an irregular lattice is another challenging topic

which offers special attention for research since such data is observed quite frequently in

applications.

6.2.2 ADCV Matrix in High Dimensions

Another possible direction for further research is to study the behavior of ADCV matrix

in high dimensions. High-dimensionality occurs in cases where the time series dimen-

sion d is of much larger order than the observed sample n, that is d � n (Bühlmann

and van der Geer, 2011). Many important examples of high dimensional data, in par-

ticular those studied in economics and finance, environmetrics or medical imaging have

the feature that the observations are dependent over time; this characteristic adds up to

the expected dimensional dependence. Classical models for time series analysis assume a

stationary correlation structure and employ spectral domain based methods (equivalently

143

MARIA PITSILL
OU



methods which are based on the sample autocovariance matrix) to carry out inference and

prediction. In spite of this, to the best of our knowledge, no work exists that analyzes

the behavior of ADCV matrix, especially for high-dimensions. We envision to approach

this problem by the theory of U - and V -statistics. It can be shown that the ADCV ma-

trix is matrix variate U -statistic. Therefore the study of matrix variate U -statistics for

dependent data will yield asymptotic results for the ADCV (Chen, 2016). Here, we need

to point out that this problem is demanding but its solution will give insights for several

other problems. In particular, from the discussion of Chapter 4, we expect that the ADCV

matrix will be quite useful on determining possible dependencies among and between time

series. This is an important step for understating the dependence structure of the observed

process and the ways in which the dimensionality affects the inference.

6.2.3 Graphical Modeling Based on ADCV Matrix

Closely related to the research topic of high dimensionality is the study of graphical mod-

els for multivariate time series (Brillinger, 1996; Dahlhaus, 2000; Eichler, 2008, 2012). In

general, graphical models describe conditional independence relationships among the com-

ponents of a d-dimensional time series {Xt} by means of a graph. Particularly, a graph

G = (I, E) consists of a set of vertices I = {1, 2, . . . , d} representing the components of

the series, and a set of edges E ⊂ {(a, b) ∈ I×I} indicating conditional dependence. Con-

sidering multivariate stationary time series, Dahlhaus (2000) proposed the use of partial

frequency methods and especially the use of partial spectral density and partial spectral

coherence. His approach leads to the definition of the so-called partial correlation graph,

where an edge a−b is missing from the graph if and only if the corresponding series {Xt;a}

and {Xt;b} are uncorrelated after removing the linear effects of all the other components

{Xt;I\{a,b}} for all t ∈ Z.

Motivated by this, an extension for further research is to define the so-called partial dis-

tance correlation graph which is constructed based on the ADCV matrix, where a missing

edge a− b indicates conditional independence for the corresponding components. In fact,

we first propose instead of using the original series {Xt}, to use the series {Wt} with
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components

Wt;r = |X −X ′| −mX(X)−mX(X ′) + m̄X ,

where mX(u) := E |X − u| and m̄X := E |mX(X)| for u ∈ R, with X ≡ Xt;r and X ′ be

an i.i.d. copy of X, for r = 1, 2, . . . , d. We note that if Wt;a and Wt;b are independent

given Wt;Iab, then Xt;a and Xt;b are independent given Xt;Iab (and vice versa), where we

have set Iab = I \ {a, b} for ease of notation. By recalling Section 4.3, we obtain that the

transformed series {Wt} is a zero-mean process with covariance matrix

V (2)(j) =
[
V 2
rm(j)

]d
r,m=1

, j = 0,±1,±2, . . . .

Motivated by Brillinger (1981, Chapter 5), we may consider that two fixed components

{Wt;a} and {Wt;b} are partially independent if the corresponding partial cross-spectrum

fab/Iab(ω) = fab(ω)− faIab(ω)
[
fIabIab(ω)

]−1

fIabb(ω), (6.1)

or its rescaled version, the so-called partial spectral coherence

Rab/Iab(ω) =
fab/Iab(ω)√

faa/Iab(ω)fbb/Iab(ω)
, (6.2)

is zero for all frequencies ω ∈ Π, where

fab(ω) =
1

2π

∞∑
j=−∞

Cov(Wt;a,Wt−|j|;b)e
−ijω

=
1

2π

∞∑
j=−∞

V 2
ab(j)e

−ijω.

Considering a sample of size n, a kernel-based estimator for fab(·) is given by

f̂ab(ω) =
1

2π

(n−1)∑
j=−(n−1)

(1− |j| /n)1/2k(j/p)V̂ 2
ab(j)e

−ijω, ω ∈ Π, (6.3)

where k(·) is a univariate kernel function, p is a bandwidth parameter and V̂ 2
ab(·) is given by

(4.7). Therefore, substituting (6.3) in the definitions of (6.1) and (6.2), we obtain f̂ab/Iab(·)

and R̂ab/Iab(·) respectively. Studying the properties of Rab/Iab(·) and its sample version is an
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important problem on its own. In addition, developing a test statistic based on Rab/Iab(·)

for testing conditional independence among the components of multivariate time series is

another challenging problem. The testing problem is of the following form

H0 : Rab/Iab(ω) = 0 against H1 : Rab/Iab(ω) 6= 0,

for all ω ∈ Π. Extending Eichler’s (2008) testing methodology which is based on the

classical partial spectral coherence, we may consider the following test statistic

Sn =

∫
Π

‖R̂ab/Iab(ω)‖2dω,

where ‖ · ‖ denotes the Euclidean norm. The above test statistic can be approximated by

the following

Sn =
2π

n

n∑
j=1

∥∥∥R̂ab/Iab

(2πj

n

)∥∥∥2

.

Considering several real data problems from economics, finance, biology, environmetrics

and other scientific fields, we may compare these results to the existing methodology based

on classical approaches. Clearly, studying the asymptotic properties of Sn gives rise to

develop a new statistical testing theory based on the notion of ADCV matrix.

6.2.4 Enhance dCovTS Package

A number of possible extensions of the first version of dCovTS package can be seen as

further research. In particular, we can enhance the package with R functions that cover the

proposed theory for the different types of dependent data presented in Section 6.2.1 and

for high-dimensional data discussed in Section 6.2.2. Moreover, a related R theory for the

suggested graphical modeling theory briefly explained in Section 6.2.3 can be developed

for a future version of this package.
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