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Abstract

In recent years, concepts of dependence, including positive and negative association

introduced by Esary et al. (1967) and Joag-Dev and Proschan (1983) respectively,

have been the focus of substantial research activity. Among the various results pre-

sented in the literature are extensions and generalizations. In particular, Newman and

Wright (1982) introduced the concept of a demimartingale and a demisubmartingale

as a generalization of the notion of martingales and submartingales. The definition

is rather a technical one and serves, among other things, the purpose of studying in

a more general way the behavior of the partial sum of mean zero associated random

variables. The class of N-demimartingales introduced later, generalizes in a natu-

ral way the concept of negative association and includes as special case the class of

martingales equipped with the natural choice of σ-algebras. The aim of this work is

to provide maximal and moment inequalities for the classes of demimartingales and

N-demimartingales. The results presented in this thesis in many cases improve and

generalize known results for martingales, and for positively and negatively associated

random variables. The inequalities provided for these two new classes of random vari-

ables are instrumental in obtaining asymptotic results. The asymptotic results derived

for demimartingales can also be applied to the case of partial sums of positively as-

sociated random variables while the asymptotic results concerning N-demimartingales

can be applied to partial sums of negatively associated random variables and other

statistical functions involving negatively associated random variables. As a natural

generalization of demimartingales and demisubmartingales we introduce multidimen-
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sionally indexed demi(sub)martingales. For this new class of random variables we prove

a maximal inequality which becomes the source result for obtaining several inequalities

for multidimensionally indexed associated random variables. These inequalities, when

reduced to the case of single index, are in some cases sharper than the bounds already

known in the literature.
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PerÐlhyh

Ta teleutaÐa qrìnia èqoun melethjeÐ ekten¸c oi di�forec ènnoiec ex�rthshc tuqaÐwn

metablht¸n. IdiaÐtero endiafèron parousi�zoun oi ènnoiec thc jetik c kai arnhtik -

c susqètishc oi opoÐec èqoun eisaqjeÐ apì touc Esary et al. (1967) kai Joag-Dev

kai Proschan (1983) antÐstoiqa. 'Ektote sth bibliografÐa gÐnontai anaforèc kai se

�llec ènnoiec ex�rthshc oi opoÐec apoteloÔn genikeÔseic kai epekt�seic twn ennoi¸n

thc jetik c kai arnhtik c ex�rthshc. Sugkekrimèna oi Newman kai Wright (1982)

èqoun orÐsei tic ènnoiec twn demimartingales kai demisubmartingales se mia prosp�-

jeia genÐkeushc twn martingales kai submartingales. O orismìc thc akoloujÐac demi-

martingale exuphreteÐ th melèth thc sumperifor�c twn merik¸n ajroism�twn jetik�

susqetismènwn tuqaÐwn metablht¸n me mèso mhdèn. H kl�sh twn N-demimartingales

orÐsthke me trìpo an�logo twn demimartingales kai genikeÔei thn ènnoia twn arnhtik�

susqetismènwn tuqaÐwn metablht¸n kai sumperilamb�nei, ìpwc kai oi demimartingales,

wc eidik  perÐptwsh thn kl�sh twn martingales. O stìqoc thc paroÔsac diatrib -

c eÐnai na parousi�sei megistikèc anisìthtec kai anisìthtec rop¸n gia tic dÔo autèc

kl�seic tuqaÐwn metablht¸n. Ta apotelèsmata pou parousi�zontai se aut  thn er-

gasÐa genikeÔoun   kai belti¸noun  dh gnwst� apotelèsmata pou aforoÔn tic martin-

gales kai tic susqetismènec tuqaÐec metablhtèc. Oi anisìthtec pou prokÔptoun eÐnai

ta basik� ergaleÐa gia thn apìdeixh asumptwtik¸n apotelesm�twn. Epiplèon ta a-

sumptwtik� apotelèsmata pou aforoÔn tic demimartingales mporoÔn na efarmostoÔn

sthn perÐptwsh twn merik¸n ajroism�twn jetik� susqetismènwn tuqaÐwn metablht¸n

en¸ ta asumptwtik� apotelèsmata pou aforoÔn tic N-demimartingales efarmìzontai
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sthn paroÔsa ergasÐa tìso sthn perÐptwsh twn merik¸n ajroism�twn ìso kai sth-

n perÐptwsh �llwn statistik¸n sunart sewn pou kataskeu�zontai me b�sh arnhtik�

susqetismènec tuqaÐec metablhtèc. Wc genÐkeush twn demimartingales orÐzetai h an-

tÐstoiqh kl�sh me poludi�statouc deÐktec. Gia aut  thn kl�sh twn tuqaÐwn metabl-

ht¸n apodeiknÔetai mia megistik  anisìthta apì thn opoÐa aporrèoun apotelèsmata pou

aforoÔn jetik� susqetismènec tuqaÐec metablhtèc me poludi�stato deÐkth, ta opoÐa sth

perÐptwsh tou monodi�statou deÐkth belti¸noun ta antÐstoiqa gnwst� apotelèsmata.
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Chapter 1

Introduction

1.1 Dependence in probability and statistics

The first encounter with dependent random variables that one faces is the drawing

of balls without replacement from an urn: Suppose that an urn contains balls of two

colors A and B. Drawing balls repeatedly from the urn, and putting Ik = 1 if the k ball

has color A and 0 otherwise, produces a sequence of random variables. The sum of the

first n indicators describes the number of balls with color A obtained after n draws. If

we draw with replacement the indicators are independent; however if we draw without

replacement then they are dependent.

There exist many notions of dependence. A fundamental notion is Markov depen-

dence where vaguely speaking the future depends on the past only through the present.

Another important dependence concept is martingale dependence.

There exist various concepts which are defined via some kind of decay, i.e., the

further the two elements are apart in time or index, the weaker the dependence is. The

simplest such concept is called m-dependence.

Definition 1.1.1 The random variables X1, X2, . . . , are m-dependent if Xi and Xj

are independent whenever |i− j| > m.

Remark 1.1.2 Independence is the same as 0-dependence.

1
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2 CHAPTER 1. INTRODUCTION

Since m-dependence is a natural generalization of independent random variables,

classical results for sequences of independent random variables can also be established

for m-dependent random variables. For example Diananda (1955) and Orey (1958)

provide central limit theorems for a collection of random variables with m-dependence

structure, Chen (1997) established the law of the iterated logarithm, while Romano

and Wolf (2000) and Berk (1973) developed central limit theorems for m-dependent

random variables with unbounded m. Furthermore, in the analysis of time series certain

natural statistics have this m-dependence structure even if the underlying processes

are independent such as long-memory processes (Beran (1994)) and the moving blocks

bootstrap (Künsch (1989)).

Examples

1. We flip a coin repeatedly and let the events

Bn = {the (n− 1)th and the nth toss both yield heads}, n ≥ 2.

It is obvious that we don’t have independent events. However, the events with even

indices are independent, and so are those with odd indices, i.e., Bi and Bj are inde-

pendent if |i− j| > 1. Attaching indicators to the B-events, such that In = 1 whenever

Bn occurs and 0 otherwise, we obtain a 1-dependent sequence of random variables.

2. Let X1, X2, . . . be independent random variables and let g : Rm+1 → R. Then the

so called (m + 1)-block factors sequence which is defined as

Yn = g(Xn, Xn+1, . . . , Xn+m−1, Xn+m), n ≥ 1

is m-dependent.

In the m-dependence case the dependence stops abruptly. As a generalization of this

case the concept of mixing is introduced which allows dependence to drop gradually.

Let (Ω,F ,P) be a probability space and let H and G be sub-σ-algebras of F . Then

α(H,G) = sup
F∈H,G∈G

|P (F ∩G)− P (F )P (G)|,
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1.1. DEPENDENCE IN PROBABILITY AND STATISTICS 3

φ(H,G) = sup
F∈H,G∈G

|P (G|F )− P (G)|, P (F ) > 0,

ψ(H,G) = sup
F∈H,G∈G

|P (F
⋂

G)− P (F )P (G)|
P (F )P (G)

ρ(H,G) = sup
X∈L2(H),Y ∈L2(G)

|ρX,Y |

where ρX,Y is the correlation coefficient between X and Y , are some measures of de-

pendence. It can be shown that (see for example Berkes and Phillip (1978), Herrndorff

(1983), Peligrad (1986,1990) etc.)

α(H,G) ≤ 1

4
, ψ(H,G) ≤ 1, ρ(H,G) ≤ 1,

4α(H,G) ≤ 2φ(H,G) ≤ ψ(H,G)

4α(H,G) ≤ ρ(H,G) ≤ ψ(H,G)

ρ(H,G) ≤ 2
√

φ(H,G).

Corresponding to these measures we have the following mixing coefficients:

α(n) = sup
k∈Z+

α(Fk
1 ,F∞

k+n),

φ(n) = sup
k∈Z+

φ(Fk
1 ,F∞

k+n),

ψ(n) = sup
k∈Z+

ψ(Fk
1 ,F∞

k+n),

ρ(n) = sup
k∈Z+

ρ(Fk
1 ,F∞

k+n),

Milto
 H

ad
jik

yri
ak

ou



4 CHAPTER 1. INTRODUCTION

where Fi
j = σ{Xk, i ≤ k ≤ j}.

These coefficients measure the dependence of those portions of the sequence {Xk, k ≥
1} that are located n ”time units” apart. From the inequalities above we can see that

some measures of dependence are stronger than others. In the case of independent

random variables all the above coefficients are equal to 0 and if the coefficients converge

to 0 as n → ∞ we may interpret this as asymptotic independence. Strong mixing

conditions are used to establish strong laws of large numbers for non-independent

random variables. A famous problem is the so called Ibragimov conjecture (1962)

which states that a strictly stationary, centered φ-mixing sequence X1, X2, . . . such that

EX2
1 < ∞ and V ar (

∑n
k=1 Xk) →∞ as n →∞ satisfies the central limit theorem. An

extensive study of strong mixing conditions is presented by Bradley (2005).

One of the fundamental problems of dependence has been to obtain conditions on

a multivariate vector X = (X1, . . . , Xn) such that the condition

P (X1 > x1, . . . , Xn > xn) ≥
n∏

i=1

P (Xi > xi) (1.1)

holds for all real xi. Problems involving dependent pairs of variables (X, Y ) have been

studied intensively in the case of bivariate normal distributions. Studies involving the

general case are focused on the definition and estimation of measures of association.

If for a random vector X = (X1, . . . , Xn) the above condition (1.1) holds true then

X is said to be positively upper orthant dependent (PUOD)and if the random vector

satisfies

P (X1 ≤ x1, . . . , Xn ≤ xn) ≥
n∏

i=1

P (Xi ≤ xi) (1.2)

it is said to be positively lower orthant dependent (PLOD).

Remark 1.1.3 A random vector X satisfying such a condition is called negatively

upper orthant dependent (NUOD) (with the reverse inequalities inside parentheses we

define negatively lower orthant dependent (NLOD)). An infinite sequence is said to be

negatively orthant dependent (NOD) if it is both NUOD and NLOD.
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1.1. DEPENDENCE IN PROBABILITY AND STATISTICS 5

The pair (X,Y ) is said to be positively quadrant dependent if

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y) (1.3)

and it is said to be negatively quadrant dependent if the inequality sign is reversed.

By rewriting (1.3) as

P (Y ≤ y|X ≤ x) ≥ P (Y ≤ y) (1.4)

one can say that the knowledge that X is small increases the probability of Y being

small. Tukey (1958) and Lehmann (1959) discussed the stronger condition

P (Y ≤ y|X = x) is nonincreasing in x. (1.5)

If (1.5) holds then Y is said to be positively regression dependent on X.

Association was introduced by Esary, Proschan and Walkup (1967) and it is a

concept that is also considered and used in actuarial mathematics and mathematical

physics. In actuarial science it was first considered by Norberg (1989) who used it in

order to investigate some alternatives to the independence assumption for multilife sta-

tuses in life insurance, as well as to quantify the consequences of a possible dependence

on the amounts of premium relating to multilife insurance contracts. In mathemat-

ical physics the concept of association is due to the so called FKG inequalities (the

inequalities are named after Fortuin, Kastelyn and Ginibre) i.e., the positive lattice

condition which holds for many natural families of events, implies positive association.

Newman (1980) proved that in a translation invariant pure phase of a ferromagnet,

finite susceptibility and the FKG inequalities together imply convergence of the block

spin scaling limit to the infinite temperature Gaussian fixed point. Newman (1983)

provides a central limit theorem which is applicable to (not necessarily monotonic)

functions of random variables satisfying the FKG inequalities. Furthermore, Preston

(1974) provides a generalization of Holley’s inequality which is itself a generalization

of the FKG inequalities while Holley (1974) generalizes the FKG inequalities to two

probability distributions.
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6 CHAPTER 1. INTRODUCTION

Definition 1.1.4 A finite collection of random variables X1, . . . , Xn is said to be (pos-

itively)associated if

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0,

for any componentwise nondecreasing functions f, g on Rn such that the covariance is

defined. An infinite collection is associated if every finite subcollection is associated.

It is known that if X is associated then X is PUOD and PLOD.

A weaker concept of association is obtained by assuming that, for every pair of

disjoint subsets A1, A2 of {1, . . . , n},

Cov(f(Xi, i ∈ A1), g(Xi, i ∈ A2)) ≥ 0,

for every pair of coordinatewise nondecreasing functions f, g of {xi, i ∈ A1} and {xi, i ∈
A2}, respectively. In this case the sequence X1, . . . , Xn is called weakly associated. One

can easily verify that association implies weak association.

Association has the following properties (Esary et al. (1967)):

P1 Any subset of associated random variables is associated;

P2 If two sets of associated random variables are independent of one another then their

union is a set of associated random variables;

P3 The set consisting of a single random variable is associated;

P4 Nondecreasing functions of associated random variables are associated;

P5 If X(k) are associated, for each k, and X(k) → X in distribution then X is associated.

Examples

1. Let X1, . . . , Xn be independent random variables and let Sn =
∑n

i=1 Xi. Then

{S1, . . . , Sn} are associated.

2. The order statistics X(1), . . . , X(n) of a sample X1, . . . , Xn are associated.
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1.1. DEPENDENCE IN PROBABILITY AND STATISTICS 7

In many cases, for distributions with nonpositive corellations, it is important to

have checkable conditions, which imply the inequality

P (X1 > x1, . . . , Xn > xn) ≤
n∏

i=1

P (Xi > xi)

for xi ∈ R, i = 1, . . . , n.

Definition 1.1.5 A finite collection of random variables X1, . . . , Xn is said to be neg-

atively associated if

Cov(f(Xi, i ∈ A), g(Xj, j ∈ B)) ≤ 0,

for any disjoint subsets A and B of {1, 2, . . . , n} and for any two componentwise non-

decreasing functions f, g on R|A| and R|B| respectively, where |A| = card(A), provided

that the covariance is defined. An infinite collection is negatively associated if every

finite subcollection is negatively associated.

The concepts of negative orthant dependence and negative association were intro-

duced by Joag-Dev and Proschan (1983). They pointed out that negative orthant

dependence is weaker than negative association since negative association implies neg-

ative orthant dependence but neither negative upper orthant dependence nor negative

lower orthant dependence implies negative association. In their work they presented

an example in which X possesses the NOD property but it is not negatively associated.

Negative association possesses the following properties (Joag-Dev and Proschan (1983)):

P1 A pair (X, Y ) of random variables is negatively associated if and only if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y).

P2 For disjoint sets A1, . . . , Am of {1, . . . , n}, and nondecreasing positive functions

f1, . . . , fm, X is negatively associated implies

E

m∏
i=1

fi(XAi
) ≤

m∏
i=1

Efi(XAi
)

where XAi
= (Xj, j ∈ Ai).
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8 CHAPTER 1. INTRODUCTION

P3 If X is negatively associated then it is negatively orthant dependent.

P4 A subset of negatively associated random variables is negatively associated.

P5 If X has independent components then it is negatively associated.

P6 Increasing functions defined on disjoint subsets of a set of negatively associated

random variables are negatively associated.

P7 If X is negatively associated and Y is negatively associated, and X is independent

of Y, then (X,Y) is negatively associated.

Examples

1. Let x = (x1, . . . , xn) be a set of real numbers. A permutation distribution is the

joint distribution of the vector X, which takes as values all permutations of x with

equal probabilities 1/n!. Such a distribution is negatively associated (Joag-Dev and

Proschan (1983)).

2. (Multivariate Hypergeometric) An urn contains M balls of different colors. Suppose

that a random sample of N balls is chosen without replacement and Yi indicates the

presence of ball of the ith color in the sample. Then Y has a permutation distribution,

and hence it is negatively associated. More generally, Mi balls are of the ith color,

i = 1, . . . , n, with
∑n

i=1 Mi = M , and let Xi be the number of balls of the ith color in

the sample. Then Xi can be viewed as the sum of Mi indicators in the sample model

above. Since Xi are sums over nonoverlapping sets of random variables, the negative

association is transmitted.

Joag-Dev and Proschan (1983) pointed out that a number of well-known multivari-

ate distributions possess the negative association such as, multinomial distribution,

negatively correlated normal distribution and joint distribution of ranks. Negatively

associated random variables have been studied extensively because of their wide appli-

cations in multivariate statistical analysis and reliability theory.

Throughout the years the need of deep generalizations and new constructions arises,

and the concept of dependence is extended to multidimensionally indexed random
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1.2. OUTLINE 9

variables. Classical results of probability theory, such as central limit theorems and

strong laws of large numbers and other important tools, are established for this new

class of random variables. Roussas (1993) studied the empirical distribution function of

a random field of associated identically distributed random variables with distribution

function F and probability density function f . He proves that under some additional

conditions the empirical distribution function converges almost surely and uniformly to

F . Moreover, Roussas (1994) under the assumption of positive or negative association

establishes the asymptotic normality of partial sums of random variables. Kim and

Seok (1998) in their work derive maximal inequalities of linearly quadrant dependent

random variables and they also obtain weak convergence for 2-parameter arrays of

linearly quadrant dependent random variables. An extensive study of the theory of

associated random fields is presented by Bulinski and Shashkin (2007).

1.2 Outline

Demimartingales and N-demimartingales are collections of random variables which

generalize in a natural way the concepts of association and negative association re-

spectively. The main objective of this thesis is to provide useful inequalities for the

general classes of demimartingales and N-demimartingales and further advance their

theory. We establish maximal and moment inequalities which, in many cases improve

and generalize known results for other classes of random variables such as martingales

and positively and negatively associated random variables. Strong laws of large num-

bers are also established since these inequalities are very useful in obtaining asymptotic

results.

Chapter 2 is dedicated to the concept of demimartingales. First, we present a

literature review on demimartingales, which includes important findings as well as key

results that are used in this thesis. Next, we prove a maximal inequality which becomes

the source for obtaining various other results. By proving an inequality for nonnegative

real numbers we derive moment inequalities for demimartingales. In the last section
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10 CHAPTER 1. INTRODUCTION

of the chapter we introduce the concept of conditional demimartingales. For this class

of random elements the review of known results is followed by several inequalities and

a strong law of large numbers.

Various results for the class of N-demimartingales are presented in Chapter 3. Ini-

tially we present maximal inequalities and in particular a maximal inequality using the

concept of complete downcrossings of an interval by a sequence of N-demimartingales.

Then we provide an extension of Azuma’s inequality for martingales to the case of

N-demimartingales. The Azuma-type inequality for N-demimartingales is the key re-

sult for proving several exponential inequalities and asymptotic results not only for

N-demimartingales but for mean zero negatively associated random variables as well.

Furthermore, the Marcinkiewicz-Zygmund and Blackwell-Ross type inequalities are

extended to the case of N-demimartingales.

In Chapter 4 the concept of demimartingales is extended to the case of collections

of random variables which are multidimensionally indexed. We prove a Chow-type

inequality for multidimensionally indexed demimartingales which becomes the source

result for obtaining a Doob-type inequality and a Hájek-Rényi inequality for mean zero

multidimensionally indexed associated random variables.

In Chapter 5 we discuss the future work which can be initiated based on the results

presented in this thesis. The class of multidimensionally indexed N-demi(super)martingales

can be defined and for this new class of random variables we intend to provide sev-

eral inequalities and asymptotic results. We also emphasize the fact that one can

define a stochastic process with a demimartingale and N-demimartingale structure

and extend results to the case of random elements with continuous time index. Fi-

nally, we define the concept of domination of a strong N-demisupermartingale by an

N-demisupermartingale, following the idea of Prakasa Rao (2007). The three concepts

provide seed elements for further research on probability and moment inequalities.
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Chapter 2

Demimartingales

2.1 Introduction

The concept of demimartingales was introduced by Newman and Wright (1982) in order

to study the relation between sums of associated random variables and martingales.

It is known that the partial sum of mean zero independent random variables with

the natural choice of σ-algebras is a martingale. The motivation for the definition

of demimartingales was based on the following proposition which refers to mean zero

positively associated random variables.

Throughout this thesis all random variables, unless otherwise stated, are defined

on a probability space (Ω,A,P). Also Lk, will denote the class of random variables

with finite moments of up to order k.

Proposition 2.1.1 Suppose {Xn, n ∈ N} are L1, mean zero, associated random vari-

ables and Sn =
∑n

i=1 Xi. Then

E [(Sj+1 − Sj)f(S1, . . . , Sn)] ≥ 0, j = 1, 2, . . .

for all coordinatewise nondecreasing functions f .

The definition of demimartingales which follows is motivated by the previous proposi-

tion.

11
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12 CHAPTER 2. DEMIMARTINGALES

Definition 2.1.2 A sequence of L1 random variables {Sn, n ∈ N} is called a demi-

martingale if for all j = 1, 2, . . .

E [(Sj+1 − Sj)f(S1, . . . , Sj)] ≥ 0,

for all componentwise nondecreasing functions f whenever the expectation is defined.

Moreover, if f is assumed to be nonnegative, the sequence {Sn, n ∈ N} is called a

demisubmartingale.

It is clear by Proposition 2.1.1 that the partial sum of mean zero associated random

variables is a demimartingale.

A martingale with the natural choice of σ-algebras is a demimartingale. This can

easily be proven since

E[(Sn+1 − Sn)f(S1, . . . , Sn)] = E{E[(Sn+1 − Sn)f(S1, . . . , Sn)|Fn]}

= E{f(S1, . . . , Sn)E[(Sn+1 − Sn)|Fn]}

= 0

where Fn = σ(X1, . . . , Xn).

Following the same steps, it can be verified that a submartingale is a demisub-

martingale. The converse statement is false as we can see by the following Example

2.1.3.

Example 2.1.3 We define the random variables {X1, X2} such that

P (X1 = −1, X2 = −2) = p, P (X1 = 1, X2 = 2) = 1− p

where 0 ≤ p ≤ 1
2
. Then {X1, X2} is a demisubmartingale since for every nonnegative

nondecreasing function f

E [(X2 −X1)f(X1)] = −pf(−1) + (1− p)f(1) ≥ p (f(1)− f(−1)) ≥ 0.
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2.1. INTRODUCTION 13

Observe that {X1, X2} is not a submartingale since

E [X2|X1 = −1] =
∑

x2=−2,2

x2P (X2 = x2|X1 = −1) = −2 < −1.

As pointed out above, the partial sum of mean zero associated random variables

is a demimartingale. The converse statement is false, as we can see in Example 2.1.4,

where we construct a demimartingale so that the demimartingale differences do not

possess the association property.

Example 2.1.4 We define the random variables X1 and X2 such that

P (X1 = 5, X2 = 7) =
3

8
, P (X1 = −3, X2 = 7) =

1

8
, P (X1 = −3, X2 = −7) =

4

8
.

Let f be a nondecreasing function. Then {X1, X2} is a demimartingale since

E [(X2 −X1)f(X1)] =
6

8
[f(5)− f(−3)] ≥ 0.

Let g be a nondecreasing function such that

g(x) = 0 for x < 0, g(2) = 2, g(5) = 5, g(10) = 20.

By simple algebra we can verify that

E[g(X1)] =
3

8
g(5) +

5

8
g(−3) =

15

8
,

E[g(X2 −X1)] =
3

8
g(2) +

1

8
g(10) +

4

8
g(−4) =

26

8
,

E[g(X1)g(X2 −X1)] =
3

8
g(5)g(2) +

1

8
g(−3)g(10) +

4

8
g(−3)g(−4) =

30

8
.

The random variables X1 and X2 −X1 are not associated since

Cov (g(X1), g(X2 −X1)) = −75

32
< 0.

The partial sum of mean zero associated random variables is not the only special

case of a demimartingale. Below we provide two more examples.
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14 CHAPTER 2. DEMIMARTINGALES

Example 2.1.5 Let X1, . . . , Xn be associated random variables and let h(x1, . . . , xm)

be a ”kernel” mapping Rm to R for an integer 1 ≤ m ≤ n. Without loss of generality

assume that h is symmetric in its arguments, i.e., invariant under permutations of

arguments. We construct the U-statistic

Un =

(
n

m

)−1 ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim)

where
∑

1≤i1<···<im≤n denotes summation over the
(

n
m

)
combinations of m distinct ele-

ments {i1, . . . , im} from {1, . . . , n}.
The following proposition is due to Christofides (2004).

Proposition 2.1.6 Let Un be a U-statistic based on associated random variables and

on the kernel h. Assume that h is componentwise nondecreasing and without loss of

generality E(h) = 0. Then Sn =
(

n
m

)
Un, n ≥ m is a demimartingale.

Example 2.1.7 Let X1, X2, . . . be associated and identically distributed random vari-

ables with density (or probability mass) function f(., θ).

Define the following ”likelihood ratio” type statistical function

Ln =
n∏

k=1

f(Xk, θ1)

f(Xk, θ0)
.

Observe that the above statistic in case of independent observations tests the hypotheses

H0 : θ = θ0 vs H1 : θ = θ1.

Assume that the function

h(x) =
f(x, θ1)

f(x, θ0)

is nondecreasing in x.

Then under H0, {Ln, n ∈ N} is a demisubmartingale. Since

Ln+1 − Ln =

(
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1

)
Ln,
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2.2. AN OVERVIEW OF INEQUALITIES 15

then for g a nonnegative componentwise nondecreasing function

E[(Ln+1 − Ln)g(L1, . . . , Ln)] = E

[(
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1

)
Lng(L1, . . . , Ln)

]

≥ E

(
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1

)
E (Lng(L1, . . . , Ln))

= 0,

since under H0

E

(
f(Xn+1, θ1)

f(Xn+1, θ0)

)
= 1.

In particular, one can verify that, if f(., θ) is the density of N(θ, σ2) for θ1 ≥ θ0 and

under H0 the process {Ln, n ∈ N} is a demimartingale and if f(., θ) is the density of

the exponential distribution with parameter θ, then under H0 and provided that θ0 ≥ θ1

{Ln, n ∈ N} is a demimartingale.

2.2 An overview of inequalities

Wang et al. (2010) and Wang and Hu (2009) provide maximal inequalities for demi-

martingales as well as Doob type maximal inequality and strong law of large numbers.

Fakoor and Azarnoosh (2005) establish a maximal inequality which improves the maxi-

mal inequality provided by Christofides (2000). Wood (1984) presents Doob’s maximal

inequality and upcrossing inequality for demimartingales.

Newman and Wright (1982) established the following inequality using the concept

of complete upcrossings of an interval by a demimartingale. The number of complete

upcrossings of the interval [a, b] is defined as the number of times a sequence of random

variables passes from below a to above b. Their result will be used later in order to

prove a maximal inequality for demimartingales.

Theorem 2.2.1 Let {Sn, n ∈ N} be a demisubmartingale and let Ua,b be the number

of complete upcrossings of the interval [a, b] by S1, . . . , Sn.

Then

E(Ua,b) ≤ 1

b− a
E

[
(Sn − a)+ − (S1 − a)+

]
.
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16 CHAPTER 2. DEMIMARTINGALES

The next lemma, which is a consequence of the properties of convex functions,

establishes the fact that a nondecreasing convex function of a demi(sub)martingale is

a demisubmartingale (Christofides (2000)).

Lemma 2.2.2 Let {Sn, n ∈ N} be a demimartingale or a demisubmartingale and g a

nondecreasing convex function. Then {g(Sn), n ∈ N} is a demisubmartingale.

In particular, as special cases, Lemma 2.2.2 establishes the demisubmartingale prop-

erty for two important sequences of random variables as it is shown in the following

corollary.

Corollary 2.2.3 If {Sn, n ∈ N} is a demimartingale, then {S+
n , n ∈ N} and {S−n , n ∈

N} are demisubmartingales where X+ = max{0, X} and X− = max{0,−X}.

Corollary 2.2.3 was essential for the proof of a Chow-type maximal inequality for

demisubmartingales provided by Christofides (2000). The result is presented in the

following theorem and it is a generalization of the corresponding inequality for martin-

gales.

Theorem 2.2.4 Let {Sn, n ∈ N} be a demisubmartingale with S0 ≡ 0. Let {ck, k ≥ 1}
be a nonincreasing sequence of positive numbers. Then for every ε > 0,

εP

{
max
1≤k≤n

ckSk ≥ ε

}
≤

n∑
j=1

cjE(S+
j − S+

j−1).

The Chow-type inequality for demimartingales is the source result for the following

Hájek-Rényi inequality for associated random variables (Christofides (2000)).

Corollary 2.2.5 Let X1, . . . , Xn be mean zero associated random variables and {cj, j ≥
1} a nonincreasing sequence of positive numbers. Let Sn =

∑n
i=1 Xi with S0 ≡ 0.

Then for every ε > 0,

P

{
max
1≤k≤n

ck|Sk| ≥ ε

}
≤ 2ε−2

{
2

n∑
j=1

c2
jCov(Xj, Sj−1) +

n∑
j=1

c2
jE(X2

j )

}
.
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2.2. AN OVERVIEW OF INEQUALITIES 17

A Hájek-Rényi inequality for associated sequences is also presented in Prakasa Rao

(2002a) and in Sung (2008).

The following Doob type inequality follows directly from Theorem 3 of Newman

and Wright (1982).

Corollary 2.2.6 Let {Sn, n ≥ 1} be a demisubmartingale. Then for ε > 0,

εP ( max
1≤k≤n

Sk ≥ ε) ≤ E[SnI{max
1≤k≤n

Sk ≥ ε}]

Remark 2.2.7 In case of a nonnegative demisubmartingale the above corollary im-

mediately leads to the following moment inequalities by applying Lemma 9.1 of Gut

(2005).

E

(
max
1≤k≤n

Sk

)p

≤
(

p

p− 1

)p

E(Sp
n), p > 1

and

E

(
max
1≤k≤n

Sk

)p

≤ e

e− 1
(1 + E(Sn log+ Sn)), p = 1

where log+x = max{1, log x}.

Wang et al (2010) have generalized the above two inequalities for nonnegative con-

vex functions of demimartingales.

Wang (2004) establishes a maximal inequality for random variables which general-

izes and improves the Chow-type inequality provided by Christofides (2000). His result

is presented in the following theorem.

Theorem 2.2.8 Let S1, . . . , Sn be a demimartingale. Let g be a nonnegative convex

function on R with g(0) = 0 and {cn, n ≥ 1} be a nonincreasing sequence of positive

numbers. Define S∗n = max{c1g(S1), . . . , cng(Sn)} with S∗0 ≡ 0. Then for every ε > 0,

εP (S∗n ≥ ε) ≤
n∑

i=1

ciE[(g(Si)− g(Si−1))I{S∗n ≥ ε}].

By using the result of Theorem 2.2.8, Wang (2004) proves the following Hájek-Rényi

inequality for mean zero associated random fields.
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18 CHAPTER 2. DEMIMARTINGALES

Theorem 2.2.9 Let {X(m,n),m ≥ 1, n ≥ 1} be a mean zero double sequence of asso-

ciated random variables. Let {b(m,n),m ≥ 1, n ≥ 1} be an array of positive constants

such that b(m,n) = 0 if m = 0 or n = 0 and

∆b(m,n) = b(m,n) − b(m−1,n) − b(m,n−1) + b(m−1,n−1) ≥ 0 (2.1)

for all m ≥ 1, n ≥ 1. Then for all ε > 0

P ( max
1≤k≤m

max
1≤j≤n

|S(k,j)|/b(k,j) ≥ ε) ≤ 64

ε2
E

(
m∑

k=1

n∑
j=1

X(k,j)

b(k,j)

)2

.

The following Whittle-type inequality for demisubmartingales was established by

Prakasa Rao (2002c) and generalizes the Hájek-Rényi inequality obtained by Christofides

(2000).

Theorem 2.2.10 Let the sequence of random variables {Sn, n ∈ N} be a demisub-

martingale and φ(.) be a nonnegative nondecreasing convex function such that φ(S0) =

0. Let ψ(u) be a nonnegative nondecreasing function for u > 0. Let An be the event

that φ(Sk) ≤ ψ(uk), 1 ≤ k ≤ n, where 0 = u0 < u1 ≤ . . . ≤ un. Then

P (An) ≥ 1−
n∑

k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
.

If, in addition, there exist nonnegative real numbers ∆k, 1 ≤ k ≤ n, such that

0 ≤ E[(φ(Sk)− φ(Sk−1))f(φ(S1), . . . , φ(Sk−1))]

≤ ∆kE[f(φ(S1), . . . , φ(Sk−1))], 1 ≤ k ≤ n,

for all componentwise nonnegative nondecreasing functions f such that the expectation

is defined and

ψ(uk) ≥ ψ(uk−1) + ∆k, 1 ≤ k ≤ n

then

P (An) ≥
n∏

k=1

(
1− ∆k

ψ(uk)

)
.
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2.3. A MAXIMAL INEQUALITY FOR DEMIMARTINGALES 19

2.3 A maximal inequality for demimartingales

For a martingale sequence {(Xn,Fn), n ∈ N} with X1 = 0, Brown (1971) showed that

for any t > 0,

P

[
max
1≤k≤n

|Xk| > 2t

]
≤ P [|Xn| > t] + t−1E[(|Xn| − 2t)I{|Xn| > 2t}].

Bhattacharya (2005) proved an extension of Brown’s inequality for nonnegative

submartingales.

Theorem 2.3.1 (Bhatthacharya 2005) Suppose that {(Xk,Fk), k ≥ 1} is a nonnega-

tive submartingale. Then for any t > 0,

P

[
max
1≤k≤n

Xk > 2t

]
≤ P [X1 > t] + t−1E[XnI{Xn > t}].

Brown’s and Bhattacharya’s results was the motivation for proving the following max-

imal inequality for demimartingales. The ”key” theorem for obtaining the desired

inequality is the upcrossing inequality of Theorem 2.2.1.

Theorem 2.3.2 Let {Sn, n ∈ N} be a demimartingale. Then for c > 0

P

(
max
k≤n

|Sk| > 2c

)
≤ P (|Sn| > c) +

1

c

∫

{|Sn|>2c}
(|Sn| − 2c)dP. (2.2)

Proof. We define the sets An = {mink≤n Sk < −2c} and let b1 be the number of

upcrossings of [−2c,−c] by S0 ≡ 0, S1, . . . , Sn. Then

P (An) = P (An, Sn ≥ −c) + P (An, Sn < −c)

≤ P

(
min
k≤n

Sk < −2c, Sn ≥ −c

)
+ P (Sn < −c)

≤ P (b1 > 0) + P (Sn < −c)

≤ Eb1 + P (Sn < −c) . (2.3)

Let Bn = {maxk≤n Sk > 2c} and let b2 be the number of upcrossings of [−2c,−c] by

S0,−S1, . . . ,−Sn. Then,
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20 CHAPTER 2. DEMIMARTINGALES

P (Bn) = P (Bn, Sn ≤ c) + P (Bn, Sn > c)

≤ P

(
max
k≤n

Sk > 2c, Sn ≤ c

)
+ P (Sn > c)

= P

(
−max

k≤n
Sk < −2c,−Sn ≥ −c

)
+ P (Sn > c)

= P

(
min
k≤n

(−Sk) < −2c,−Sn ≥ −c

)
+ P (Sn > c)

≤ P (b2 > 0) + P (Sn > c)

≤ Eb2 + P (Sn > c) . (2.4)

Furthermore,

P (An ∪Bn) = P

(
{min

k≤n
Sk < −2c} ∪ {max

k≤n
Sk > 2c}

)

= P

(
{−min

k≤n
Sk > 2c} ∪ {max

k≤n
Sk > 2c}

)

= P

(
{max

k≤n
(−Sk) > 2c} ∪ {maxk≤nSk > 2c}

)

= P

(
max
k≤n

|Sk| > 2c

)
.

Therefore,

P

(
max
k≤n

|Sk| > 2c

)
= P (An ∪Bn)

≤ P (An) + P (Bn)

≤ Eb1 + Eb2 + P (Sn < −c) + P (Sn > c) (2.5)

= Eb1 + Eb2 + P (|Sn| > c) (2.6)

where inequality (2.5) follows by (2.3) and (2.4).

Applying Theorem 2.2.1 we have

Eb1 + Eb2 ≤ 1

c

{
E [Sn + 2c]+ − E[S0 + 2c]+ + E [−Sn + 2c]+ − E [−S0 + 2c]+

}

=
1

c

{∫

{Sn≥−2c}
(Sn + 2c)dP +

∫

{Sn≤2c}
(−Sn + 2c)dP − 4c

}

=
1

c

{∫

{Sn≥−2c}
SndP +

∫

{Sn≤2c}
(−Sn)dP −

∫

{|Sn|>2c}
2cdP

}
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=
1

c

{∫

{Sn>2c}
SndP +

∫

{Sn<−2c}
−SndP −

∫

{|Sn|>2c}
2cdP

}

=
1

c

∫

{|Sn|>2c}
(|Sn| − 2c)dP. (2.7)

Then (2.2) follows by (2.6) and (2.7).

The next corollary gives a more convenient bound for the quantity P (maxk≤n |Sk| > 2c).

Corollary 2.3.3 Let Sn, n ∈ N be a demimartingale.

Then for c > 0

P

(
max
k≤n

|Sk| > 2c

)
≤ 1

c
E [|Sn|I{|Sn| > c}] .

Proof. Follows easily from Theorem 2.3.2 since

(|Sn| − 2c) I{|Sn| > 2c} ≤ (|Sn| − c) I{|Sn| > c}.

As an application of Corollary 2.3.3 we immediately have the following maximal

inequality.

Corollary 2.3.4 Let {Sn, n ∈ N} be a demimartingale.

Then for c > 0

P

(
max
k≤n

|Sk| > 2c

)
≤ 1

c

√
ES2

n

√
P (|Sn| > c).

Proof. Follows from Corollary 2.3.3 by using the Cauchy-Schwartz inequality.

2.4 Moment inequalities for demimartingales

The result that follows provides a useful (deterministic) inequality for nonnegative

real numbers. The inequality is used in the theorem that follows in which we obtain

moment inequalities for demimartingales.

Lemma 2.4.1 Let x, y ≥ 0 and p ≥ 2. Then,

yp ≥ xp + pxp−1(y − x) + (y − x)p.
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Proof. The lemma is trivially true if x = 0 and/or y = 0. In addition the result holds

as an equality for p = 2. Therefore we assume that y > 0 and p > 2.

We can write yp as:

yp = xp + pxp−1(y − x) + py(yp−1 − xp−1)− (p− 1)(yp − xp).

It needs to be shown that:

py(yp−1 − xp−1)− (p− 1)(yp − xp) ≥ (y − x)p. (2.8)

We divide both sides of (2.8) by yp and by defining r = x/y it is sufficient to show that

the function

g(r) = p(1− rp−1)− (p− 1)(1− rp)− (1− r)p

is nonnegative for r ≥ 0. For the first derivative of the function g(r) we have that:

g′(r) = p(1− r)
[
(1− r)p−2 − (p− 1)rp−2

]
.

The solutions of the equation g′(r) = 0 are r = 1 and r = 1
a+1

where a = (p− 1)
1

p−2 .

Observe that r = 1
a+1

∈ (0, 1
2
).

The second derivative of the function g(r) is given by:

g′′(r) = −p(p− 1)(p− 2)rp−3 + p(p− 1)2rp−2 − p(p− 1)(1− r)p−2

= −p(p− 1)rp−3 [(p− 2)− (p− 1)r]− p(p− 1)(1− r)p−2

= −p(p− 1)rp−3 [p(1− r) + (r − 2)]− p(p− 1)(1− r)p−2.

Since g′′(1) > 0, the point (1, 0) is a local minimum.

Let

f(r) = rp−3 [p(1− r) + (r − 2)] + (1− r)p−2.

Then for 0 < r < 1
2

f(r) ≥ rp−3(2− 2r + r − 2) + (1− r)p−2

= −rp−2 + (1− r)p−2

> 0.
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Since g′′
(

1
a+1

)
< 0, the function g(r) has a local maximum for r = 1

a+1
.

We need to prove that g
(

1
a+1

)
> 0.

It can be shown that:

g

(
1

a + 1

)
=

(
1

a + 1

)p

[(a + 1)p − ap− ap − 1] .

We define :

h(a) = (a + 1)p − ap− ap − 1

for a ≥ 0.

The function h is nonnegative since h(0) = 0 and

h′(a) = p
[
(a + 1)p−1 − ap−1 − 1

]

= p
[
(a + 1)p−1 − (ap−1 + 1)

]

>
[
(a + 1)p−1 − (a + 1)p−1

]

= 0.

Summarizing, we have that g (with g(0) = 0), has two points of inflection, 1
a+1

∈ (0, 1
2
)

and 1, the first being a maximum and the second a minimum.

Therefore we conclude that the function g(r) is nonnegative.

Next, with the use of Lemma 2.4.1 we prove moment inequalities for demimartingales.

Theorem 2.4.2 Let {Sn, n ∈ N} be a nonnegative demisubmartingale with S0 ≡ 0.

Then for p ≥ 2,

ESp
n ≥

n∑
j=1

Edp
j

where dj = Sj − Sj−1, j = 1, . . . , n.

Proof. By Lemma 2.4.1 we have that:

ESp
j+1 ≥ ESp

j + pE
[
Sp−1

j (Sj+1 − Sj)
]
+ Edp

j+1

≥ ESp
j + Edp

j+1
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where the last inequality follows by the demisubmartingale property. Using induction

we finally have the desired result.

For the special case of p being a positive even number, the previous result can be

extended for demimartingales.

Theorem 2.4.3 Let {Sn, n ∈ N} be a demimartingale with S0 ≡ 0 and let p be a

positive even integer. Then,

E|Sn|p ≥ 1

2p−1

n∑
j=1

E|dj|p

where dj = Sj − Sj−1, j = 1, . . . , n.

Proof. It is known that for every a, b ∈ R and p ≥ 2

|a + b|p ≤ 2p−1(|a|p + |b|p). (2.9)

Applying (2.9) for p positive even integer we have that

(x+ − y+)p + (x− − y−)p ≥ 1

2p−1
(x− y)p. (2.10)

Therefore, since by Lemma 2.2.3 {S+
n , n ∈ N} and {S−n , n ∈ N} are nonnegative

demisubmartingales then

E|Sn|p = E(S+
n )p + E(S−n )p

≥
n∑

j=1

E(S+
j − S+

j−1)
p +

n∑
j=1

E(S−j − S−j−1)
p (2.11)

≥ 1

2p−1

n∑
j=1

E(Sj − Sj−1)
p (2.12)

=
1

2p−1

n∑
j=1

E|dj|p

where inequality (2.11) follows by applying Theorem 2.4.2 to the sequences {S+
n , n ∈ N}

and {S−n , n ∈ N} and inequality (2.12) follows from (2.10).

An immediate application of Theorem 2.4.3 for mean zero associated random variables

gives the following:

Milto
 H

ad
jik

yri
ak

ou



2.5. CONDITIONAL DEMIMARTINGALES 25

Corollary 2.4.4 Let {Xn, n ∈ N} be mean zero positively associated random variables.

Then for p positive even integer,

E|Sn|p ≥ 1

2p−1

n∑
j=1

E|Xj|p

where Sn =
∑n

j=1 Xj.

Proof. The result follows by Corollary 2.4.3 since Sn is a demimartingale.

The result of Corollary 2.4.4 is comparable to Theorem 3 of Christofides and Vagge-

latou (2004). In the case where
∑n

k=1 E|Xk|p > 1
2
max

{
(
∑n

k=1 E(X2
k))

p
2 ,

∑n
k=1 E|Xk|p

}

and p is a positive even number, the result of Corollary 2.4.4 gives a sharper bound.

2.5 Conditional demimartingales

Chow and Teicher (1978), Majerak et al. (2005), Roussas (2008) and Prakasa Rao

(2009) studied the concept of conditionally independent random variables as well as

conditional association and provided several results such as conditional versions of gen-

eralized Borel-Cantelli lemma, generalized Kolmogorov’s inequality, generalized Hájek-

Rényi inequalities and further related applications.

Let (Ω,A,P) be a probability space and let F be a sub-algebra of A. Let us recall

the definition of F independent random events.

Definition 2.5.1 The set of events A1, . . . , An are said to be conditionally independent

given F or F-independent if

E

(
k∏

j=1

IAij
|F

)
=

k∏
j=1

E[IAij
|F ] a.s.

for all 1 ≤ i1 < i2 < . . . < ik ≤ n, 2 ≤ k ≤ n.

Majerak et al. (2005) provided counterexamples showing that the independence of

events does not imply conditional independence and that conditional independence of

events does not imply their independence. Next we give the definition of conditionally

independent random variables.
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Definition 2.5.2 A sequence of random variables {Xn, n ∈ N} defined on a probability

space (Ω,A,P) is said to be conditionally independent given a sub-algebra F or F-

independent if the sequence of events ζn = σ(Xn), n ≥ 1 are conditionally independent

given F . Equivalently, the sequence of random variables {Xn, n ∈ N} is said to be

F-independent if and only if for (x1, . . . , xn) ∈ Rn

E

(
n∏

i=1

I{Xi≤xi}|F
)

=
n∏

i=1

E[I{Xi≤xi}|F ] a.s., for n = 2, 3 . . . .

Prakasa Rao (2009) provides counterexamples where independent random variables

lose their independence under conditioning and dependent random variables become

independent under conditioning.

Conditional association is defined in analogy of (unconditional) association. Fol-

lowing Prakasa Rao (2009) for notational simplicity we will use the notation EF(Xn)

to denote E[Xn|F ].

Definition 2.5.3 A finite collection of random variables X1, . . . , Xn is said to be F-

associated if

CovF(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0,

for any componentwise nondecreasing function f , g on Rn where

CovF(Y1, Y2) = EF(Y1Y2)− EF(Y1)E
F(Y2)

such that the covariance is defined. An infinite collection is F-associated if every finite

subcollection is F-associated.

Independence, conditioned upon a given σ-field, is a useful concept, which occurs in

many situations described by stochastic processes, such as Markov processes. Further-

more, conditioning is an effective tool in such classical cases as Rao-Blackwellization

of an estimator, in establishing Wald’s identity for sequential sampling, and in many

cases as a tool for simplifying proofs. Conditioning is also crucial in studying efficiency

and dealing with certain parametric models.

Milto
 H

ad
jik

yri
ak

ou



2.5. CONDITIONAL DEMIMARTINGALES 27

Since conditioning has an important role in statistics and motivated by the fact

that the partial sum of mean zero associated random variables is a demimartingale

we introduce the concept of F -demi(sub)martingales. For this new class of random

variables we provide maximal inequalities and related asymptotic results.

Definition 2.5.4 Let {Sn, n ≥ 1} be a collection of random variables defined on a

probability space (Ω,A,P). The sequence {Sn, n ≥ 1} is called an F-demimartingale if

for every componentwise nondecreasing function f

E [(Sj − Si) f(S1, . . . , Si)|F ] ≥ 0, j > i

where F is a sub-σ-algebra of A. If moreover f is nonnegative then {Sn, n ≥ 1} is

called an F-demisubmartingale.

It is clear that a sequence of random variables which is an F -demimartingale is al-

ways a demimartingale and if moreover f is nonnegative, then an F -demisubmartingale

is always a demisubmartingale. The converse cannot always be true as it can be seen

by the following example.

Example 2.5.5 We define the random variables X1 and X2 such that

P (X1 = 5, X2 = 7) =
3

8
, P (X1 = 5, X2 = −7) = 0,

P (X1 = −3, X2 = 7) =
1

8
, P (X1 = −3, X2 = −7) =

4

8
.

As it has already been shown in Example 2.1.4 {X1, X2} is a demimartingale. Moreover,

we assume that f is a nonnegative function. Notice that, given the event

{| X1X2 |= 21}, {X1, X2} is not a demisubmartingale since

E [(X2 −X1)f(X1)| | X1X2 |= 21] = −6

8
f(−3) < 0. (2.13)

Let {Xn, n ∈ N} be a sequence of F -associated random variables such that EFXk =

0 for all k ≥ 1. It is trivial to prove that Sn =
∑n

k=1 Xk is an F -demimartingale.

Milto
 H

ad
jik

yri
ak

ou



28 CHAPTER 2. DEMIMARTINGALES

Lemma 2.5.6 Let S1, S2, . . . be an F-demimartingale or an F-demisubmartingale and

let g be a nondecreasing convex function. Then {g(Sn), n ∈ N} is an F-demisubmartingale.

Proof. Since g is a nondecreasing convex function

g(Sn+1) ≥ g(Sn) + (Sn+1 − Sn)h(Sn)

where h is the left derivative of g and by the convexity and monotonicity of g, the

function h is a nonnegative nondecreasing function. Then for every f nonnegative

componentwise nondecreasing function

E[(g(Sn+1)− g(Sn))f(g(S1), . . . , g(Sn))|F ] ≥ E[(Sn+1 − Sn)f1(S1, . . . , Sn)|F ] ≥ 0

since {Sn, n ∈ N} is an F -demi(sub)martingale and f1(S1, . . . , Sn) = h(Sn)f(g(S1), . . . , g(Sn))

is nonnegative componentwise nondecreasing function.

The following result provides a Chow type inequality for the sequence {g(Sn), n ∈
N} where {Sn, n ∈ N} is an F -demimartingale and g is a nonnegative nondecreasing

convex function.

Theorem 2.5.7 Let {Sn, n ∈ N} be an F-demimartingale, with S0 ≡ 0 and let g be a

nonnegative nondecreasing convex function such that g(0) = 0.

Let

A = {max
1≤i≤n

cig(Si) ≥ ε}

where {cn, n ∈ N} is a nonincreasing sequence of positive F-measurable random vari-

ables and ε an F-measurable random variable such that ε > 0 a.s.

Then

εP (A|F) ≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)]− cnEF [g(Sn)IAc ]

≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)] a.s.

Proof. We define the sets:

Ai = {ckg(Sk) < ε, 1 ≤ k < i, cig(Si) ≥ ε}, i = 1, . . . , n
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Then

εP (A|F) = εP (
n⋃

i=1

Ai|F)

= ε

n∑
i=1

P (Ai|F)

=
n∑

i=1

εEF [IAi
]

≤
n∑

i=1

EF [cig(Si)IAi
]

= c1E
F [g(S1)IA1 ] +

n∑
i=2

ciE
F [g(Si)IAi

]

= c1E
F [g(S1)]− c1E

F [g(S1)IAc
1
] + c2E

F [g(S2)IA2 ] +
n∑

i=3

ciE
F [g(Si)IAi

]

≤ c1E
F [g(S1)]− c2E

F [g(S1)IAc
1
] + c2E

F [g(S2)IAc
1
]

− c2E
vF [g(S2)IAc

1

⋂
Ac

2
] +

n∑
i=3

ciE
F [g(Si)IAi

]

= c1E
F [g(S1)] + c2E

F [(g(S2)− g(S1))IAc
1
]− c2E

F [g(S2)IAc
1

⋂
Ac

2
]

+
n∑

i=3

ciE
F [g(Si)IAi

]

= c1E
F [g(S1)− g(S0)] + c2E

F [g(S2)− g(S1)]− c2E
F [(g(S2)− g(S1))IA1 ]

− c2E
F [g(S2)IAc

1

⋂
Ac

2
] +

n∑
i=3

ciE
F [g(Si)IAi

].

By the convexity of the function g we have:

g(S2)− g(S1) ≥ (S2 − S1)h(S1)

where h is the left derivative of the function g which is a nonnegative nondecreasing

function. Then:

EF [(g(S2)− g(S1))IA1 ] ≥ EF [(S2 − S1)h(S1)IA1 ] ≥ 0

where the last inequality follows from the F -demimartingale property.

Therefore:

εP (A|F) ≤ c1E
F [g(S1)− g(S0)] + c2E

F [g(S2)− g(S1)]− c2E
F [g(S2)IAc

1

⋂
Ac

2
]
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+
n∑

i=3

ciE
F [g(Si)IAi

].

Working in the same way we have the desired result.

Theorem 2.5.7 was proved under the assumption that g is a nonnegative nonde-

creasing convex function. The following Theorem 2.5.8 shows that the assumption of

monotonicity can be dropped.

Theorem 2.5.8 Let {Sn, n ∈ N} be an F-demimartingale, with S0 = 0 and let g be a

nonnegative convex function such that g(0) = 0.

Let

A = {max
1≤i≤n

cig(Si) ≥ ε}

where {cn, n ∈ N} a nonincreasing sequence of positive F-measurable random variables

and ε an F-measurable random variable such that ε > 0 a.s.

Then:

εP (A|F) ≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)]− cnEF [g(Sn)IAc ]

≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)] a.s.

Proof. We define the functions:

u(x) = g(x)I{x≥0} and v(x) = g(x)I{x<0}.

Observe that the function u(x) is nonnegative nondecreasing convex and the function

v(x) is nonnegative nonincreasing convex. From the definition of the functions u and

v we have

g(x) = u(x) + v(x) = max{u(x), v(x)}.

Then

P (A|F) = P (max
1≤i≤n

cimax{u(Si), v(Si)} ≥ ε|F)

≤ P (max
1≤i≤n

ciu(Si) ≥ ε|F) + P (max
1≤i≤n

civ(Si) ≥ ε|F). (2.14)
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By Theorem 2.5.7 we have

εP (max
1≤i≤n

ciu(Si) ≥ ε|F) ≤
n∑

i=1

ciE
F [u(Si)− u(Si−1)]. (2.15)

We define the sets:

Bi = {ckv(Sk) < ε, 1 ≤ k < i, civ(Si) ≥ ε}, i = 1, . . . , n.

Following the steps of the proof of Theorem 2.5.7, we have

εP (max
1≤i≤n

civ(Si) ≥ ε|F) ≤
n∑

i=3

ciE
F [v(Si)IBi

] + c1E
F [v(S1)] + c2E

F [v(S2)− v(S1)]

− c2E
F [v(S2)IBc

1

⋂
Bc

2
]− c2E

F [(v(S2)− v(S1))IB1 ].

Let h(x) be the left derivative of the function v. Then h is a nonpositive nondecreasing

function. Then, since IB1 is a nonincreasing function of S1, h(S1)IB1 is a nondecreasing

function of S1. Then by the F -demimartingale property :

EF [(v(S2)− v(S1))IB1 ] ≥ 0.

Using the same arguments we can show that:

εP (max
1≤i≤n

civ(Si) ≥ ε|F) ≤
n∑

i=1

ciE
F [v(Si)− v(Si−1)]. (2.16)

By inequalities (2.14), (2.15) and (2.16) we have the desired result.

As an application of Theorem 2.5.8 we derive a Hájek-Rényi inequality for mean

zero F -associated random variables.

Corollary 2.5.9 Let {Xn, n ≥ 1} be F-associated random variables, with EF(Xk) = 0

for all k, {cn, n ≥ 1} be a nonincreasing sequence of positive F-measurable random

variables and let ε be an F-measurable random variable such that ε > 0 a.s.

Then:

P (max
1≤i≤n

ci|Si| ≥ ε|F) ≤ ε−2

{
n∑

i=1

c2
i E

F(X2
i ) + 2

n∑
i=1

c2
i CovF(Xi, Si−1)

}
a.s. (2.17)

where Sk = X1 + · · ·+ Xk.

Milto
 H

ad
jik

yri
ak

ou



32 CHAPTER 2. DEMIMARTINGALES

Proof. Since g(x) = |x|2 is a nonnegative convex function by the Chow-type inequality

we have:

P (max
1≤i≤n

ci|Si| ≥ ε|F) = P (max
1≤i≤n

c2
i |Si|2 ≥ ε2|F)

≤ ε−2

n∑
i=1

c2
i E

F [
(Si)

2 − (Si−1)
2
]

= ε−2

n∑
i=1

c2
i E

F [Xi(Xi + 2Si−1)]

= ε−2

{
n∑

i=1

c2
i E

F(X2
i ) + 2

n∑
i=1

c2
i CovF(Xi, Si−1)

}
.

The next result, which is a Kronecker’s type lemma will provide the link for ob-

taining a strong law of large numbers.

Lemma 2.5.10 Let S0 ≡ 0, S1, S2, . . . be a sequence of random variables and let

{cn, n ∈ N} be a nonincreasing sequence of positive F-measurable random variables

such that for n →∞
cn → 0 a.s.

Further assume that
∞∑

k=1

ckE
F [g(Sk)− g(Sk−1)] < ∞ a.s.

where g is a real function such that g(0) = 0. Then for n →∞

cnEF [g(Sn)] → 0 a.s.

Proof. Let

A = {ω :
∞∑

k=1

ck(ω)EF [g(Sk(ω))− g(Sk−1(ω))] < ∞}.

By assumption P (A) = 1. We define

B = {ω : cn(ω)EF [g(Sn(ω))] → 0}.

Let ω0 ∈ A. Then

∞∑

k=1

ck(ω0)E
F [g(Sk(ω0))− g(Sk−1(ω0))] < ∞
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and by Kronecker’s lemma
n∑

k=1

cn(ω0)E
F [g(Sk(ω0))− g(Sk−1(ω0))] → 0 a.s.

which is equivalent to cn(ω0)E
F [g(Sn(ω0))] → 0 a.s.

Therefore ω0 ∈ B and finally P (B) = 1.

The next result provides a strong law of large numbers for F -demimartingales.

Corollary 2.5.11 Let {Sn, n ≥ 1} such that S0 ≡ 0, be an F-demimartingale, {cn, n ≥
1} a nonincreasing sequence of positive F-measurable random variables such that for

n →∞
cn → 0 a.s.

and let g be a nonnegative convex function such that g(0) = 0. We further assume that:
∞∑

k=1

ckE
F [g(Sk)− g(Sk−1)] < ∞ a.s. (2.18)

and

EF [g(Sn)] < ∞ a.s.

Then conditionally on F for n →∞

cng(Sn) → 0 a.s.

Proof. By the Chow type inequality and if ε is an F -measurable random variable such

that ε > 0 a.s.

εP (sup
k≥n

ckg(Sk) ≥ ε|F) ≤
∞∑

k=n

ckE
F [g(Sk)− g(Sk−1)]

≤ cnEF [g(Sn)] +
∞∑

k=n+1

ckE
F [g(Sk)− g(Sk−1)]. (2.19)

By (2.18) we have that:
∞∑

k=n+1

ckE
F [g(Sk)− g(Sk−1)] → 0 a.s. (2.20)

and by (2.18) and Lemma 2.5.10 we have that a.s.

cnE
F [g(Sn)] → 0. (2.21)

Inequalities (2.19), (2.20) and (2.21) give the desired result.
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Chapter 3

N-demimartingales

3.1 Introduction

Motivated by the definition of a demimartingale, the idea of a similar generalization

for negatively associated random variables leads to the concept of the so called N-

demimartingales and N-demisupermartingales.

Definition 3.1.1 A sequence of L1 random variables {Sn, n ∈ N} is called an N-

demimartingale if for all j = 1, 2, . . .

E [(Sj+1 − Sj)f(S1, . . . , Sj)] ≤ 0,

for all componentwise nondecreasing functions f provided the expectation is defined.

Moreover, if f is assumed to be nonnegative, the sequence {Sn, n ∈ N} is called an N-

demisupermartingale.

Various results and examples of N-demimartingales and N-demisupermartingales

can be found in Christofides (2003) and Prakasa Rao (2004, 2007).

It is trivial to verify that the partial sum of mean zero negatively associated random

variables is an N-demimartingale. The converse statement is false and a counterexam-

ple of an N-demimartingale so that N-demimartingale differences do not possess the

negative association property is given in the following Example 3.1.2.

35

Milto
 H

ad
jik

yri
ak

ou



36 CHAPTER 3. N-DEMIMARTINGALES

Example 3.1.2 We define the random variables X1, X2 such that

P (X1 = 5, X2 = 5) =
1

8
, P (X1 = −3, X2 = 5) =

2

8
,

P (X1 = 5, X2 = −3) =
2

8
, P (X1 = −3, X2 = −3) =

3

8

and let f be a nondecreasing function. Then:

E [(X2 −X1)f(X1)] = 2[f(−3)− f(5)] ≤ 0. (3.1)

We define the random variable X3 such that:

P (X1 = 5, X2 = 5, X3 = −2) = P (X1 = 5, X2 = −3, X3 = −2) =
1

12
,

P (X1 = −3, X2 = 5, X3 = −2) = P (X1 = −3, X2 = −3, X3 = −2) =
1

12
,

P (X1 = 5, X2 = 5, X3 = 1) =
1

24
, P (X1 = 5, X2 = −3, X3 = 1) =

4

24
,

P (X1 = −3, X2 = 5, X3 = 1) =
4

24
, P (X1 = −3, X2 = −3, X3 = 1) =

7

24
.

Notice that EX1 = EX2 = EX3 = 0.

Let g be a nondecreasing function. Then

E [(X3 −X2)g(X1, X2)] =
18

24
[g(5,−3)− g(5, 5)] +

30

24
[g(−3,−3)− g(−3, 5)] ≤ 0.

(3.2)

By inequalities (3.1) and (3.2) we have that {X1, X2, X3} is an N-demimartingale.

Let h be a nondecreasing function. Then we have that:

E[h(X1)] =
3

8
h(5) +

5

8
h(−3),

E[h(X3 −X2)] =
1

6
h(−7) +

1

6
h(1) +

5

24
h(−4) +

11

24
h(4),

E[h(X1)h(X3 −X2)] = h(5)

[
1

12
h(−7) +

1

12
h(1) +

1

24
h(−4) +

4

24
h(4)

]

+ h(−3)

[
1

12
h(−7) +

1

12
h(1) +

4

24
h(−4) +

7

24
h(4)

]
.
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We now take h such that: h(−7) = h(−4) = h(−3) = 0, h(1) = 4, h(4) = 8 and h(5) =

16.

The random variables X1, X3 −X2 are not negatively associated since

Cov (h(X1), h(X3 −X2)) =
2

3
> 0.

It can easily be shown that a martingale with the natural choice of σ-algebras is

also an N-demimartingale. Furthermore, it can be verified that a supermartingale is an

N-demisupermartingale. The converse statement is false as we can see in the following

example.

Example 3.1.3 We define the random variables {X1, X2} such that

P (X1 = 1, X2 = 0) = p, P (X1 = 0, X2 = 1) = 1− p

where 1
2
≤ p ≤ 1. Then {X1, X2} is an N-demisupermartingale since for every f

nonnegative nondecreasing function

E [(X2 −X1)f(X1)] = (1− p)f(0)− pf(1) ≤ p (f(0)− f(1)) ≤ 0.

Observe that {X1, X2} is not a supermartingale since

E [X2|X1 = 0] =
∑

x2=0,1

x2P (X2 = x2|X1 = 0) =
P (X2 = 1, X1 = 0)

P (X1 = 0)
= 1 > 0.

The partial sum of mean zero associated random variables is not the only special

case of an N-demimartingale. One more special case is presented in the following

proposition.

Proposition 3.1.4 Let {Xn, n ∈ N} be negatively associated random variables with

E(Xk) ≤ 0, ∀ k and let {Yn, n ∈ N} be a sequence of nonnegative, independent random

variables and independent of the Xi’s. Let

Tn =
n∑

i=1

XiYi.

Then Tn is an N-demisupermartingale. In case E(Xk) = 0 ∀ k, Tn is an N-demimartingale.
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Proof. Let f be a nonnegative componentwise nondecreasing function. Then for

y1, . . . , yn real numbers

E [(Tn+1 − Tn)f(T1, . . . , Tn)]

= E [Xn+1Yn+1f(T1, . . . , Tn)]

= E(Yn+1)E [Xn+1f(T1, . . . , Tn)]

= E(Yn+1)E {E [Xn+1f(T1, . . . , Tn)|Y1, . . . , Yn]}

= E(Yn+1)

∫
E

[
Xn+1f

(
X1y1, . . . ,

n∑
i=1

Xiyi

)]
dFY1(y1) . . . dFYn(yn)

≤ E(Yn+1)

∫
E(Xn+1)E

[
f

(
X1y1, . . . ,

n∑
i=1

Xiyi

)]
dFY1(y1) . . . dFYn(yn) (3.3)

≤ 0 (3.4)

where (3.3) follows from the negative association property and (3.4) follows from the

fact that E(Yn+1) ≥ 0, E(Xn+1) ≤ 0 and E(f(T1, . . . , Tn)) ≥ 0.

If E(Xk) = 0 ∀ k then f need not be nonnegative and (3.4) follows immediately

implying that {Tn, n ∈ N} is an N-demimartingale.

Remark 3.1.5 Following the same steps, for the sequences of the previous proposition

and considering the random variables

Vn =
∑

1≤i<j≤n

cij min{Xi, Xj} (3.5)

and

Un,m =
n∑

i=1

m∑
j=1

cijXiYj (3.6)

where cij are nonnegative real numbers, one can show that {Vn, n ∈ N} is an N-

demisupermartingale and for each m {Un,m, n ∈ N} is an N-demisupermartingale or

an N-demimartingale depending on whether E(Xk) ≤ 0 ∀ k or E(Xk) = 0 ∀ k.

This can easily be proven since for the sequence of {Vn, n ∈ N} we have that

E[(Vn+1 − Vn)f(V1, . . . , Vn) = E

[
n∑

i=1

cin+1 min{Xi, Xn+1}f(V1, . . . , Vn)

]
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≤ E

[
Xn+1

(
n∑

i=1

cin+1

)
f(V1 . . . , Vn)

]

≤ E(Xn+1)E

[(
n∑

i=1

cin+1

)
f(V1 . . . , Vn)

]

≤ 0.

For the sequence of {Un,m, n ∈ N} the proof follows by using similar arguments to

those we used for the proof of the Proposition 3.1.4.

The random variable in (3.5) can be considered as a special case of an one sample

U-statistic while the random variable in (3.6) can be considered as a special case of a

generalized U-statistic.

As it has already been mentioned in Chapter 2 the sequence {g(Sn), n ∈ N}, where

{Sn, n ∈ N} is a demimartingale and g a nondecreasing convex function, is always

a demisubmartingale. The same question arises for the case of N-demimartingales,

i.e., for what functions g the N-demisupermartingale property is not violated for the

sequence {g(Sn), n ∈ N} if {Sn, n ∈ N} is an N-demimartingale.

Christofides (2003) (Remark 1.4) states that if {Sn, n ∈ N} is an N-demimartingale

and Yn = aSn + b with a, b ∈ R then {Yn, n ∈ N} is also an N-demimartingale. This

can be seen in the next lemma. However, the problem of finding a general class of

functions with this property remains open.

Lemma 3.1.6 Let {Sn, n ∈ N} be an N-demimartingale and let Yn = aSn + b with

a, b ∈ R. Then {Yn, n ∈ N} is an N-demimartingale. If {Sn, n ∈ N} is an N-

demisupermartingale then Yn = aSn + b is also an N-demisupermartingale provided

a > 0.

Proof. Let f be a componentwise nondecreasing function. Then

E[(Yn+1 − Yn)f(Y1, . . . , Yn)] = E[a(Sn+1 − Sn)f(aS1 + b, . . . , aSn + b)] ≤ 0.

since f1(S1, . . . , Sn) = af(aS1 + b, . . . , aSn + b) is a componentwise nondecreasing

function of S1, . . . , Sn for a ∈ R.
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In the case where {Sn, n ∈ N} is an N-demisupermartingale and if f is a nonnegative

componentwise nondecreasing function then

E[(Yn+1 − Yn)f(Y1, . . . , Yn)] ≤ 0

since the function f1(S1, . . . , Sn) = af(aS1 + b, . . . , aSn + b) is a nonnegative compo-

nentwise nondecreasing function for a > 0.

Although no general class of functions can be found so that the N-demimartingale

or the N-demisupermartingale property is maintained, we can establish that some

functions of N-demimartingales also form an N-demi(super)martingale by direct veri-

fication. We provide two such examples.

Example 3.1.7 Let X1, X2, . . . be negatively associated and identically distributed ran-

dom variables. Let ψ(t) = MX1(t) = E[etX1 ] for t ∈ R be the moment generating

function of X1. Let Sn =
∑n

k=1 Xk and

Yn(t) =
etSn

[ψ(t)]n
=

n∏

k=1

etXk

ψ(t)

for n ≥ 1 and t ∈ R. Then {Yn(t), n ∈ N} for t ≥ 0 is an N-demisupermartingale. This

can easily be proven since for f nonnegative componentwise nondecreasing function

E[(Yn+1 − Yn)f(Y1, . . . , Yn)] = E

[(
etXn+1

ψ(t)
− 1

)
f1(Y1, . . . , Yn)

]
. (3.7)

For t ≥ 0 the function g(X) = etX is a nondecreasing function of X, therefore

f1(Y1, . . . , Yn) is a nonnegative componentwise nondecreasing function of X1, . . . , Xn.

Then by equality 3.7

E[(Yn+1 − Yn)f(Y1, . . . , Yn)] ≤ E

(
etXn+1

ψ(t)
− 1

)
E [f1(Y1, . . . , Yn)] = 0

where the first inequality follows by the negative association property and the last equal-

ity by the fact that E
[

etXn+1

ψ(t)

]
= 1.

Example 3.1.8 Let {Sn, n ∈ N} be an N-demimartingale such that

−a ≤ Sj − Sj−1 ≤ b for all j
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where a, b > 0. Then

Zn = exp{Sn − a− bn}

is an N-demisupermartingale. Let

L(x) =
a

a + b
eb +

b

a + b
e−a +

eb − e−a

a + b
x

be the line through the points (−a, e−a), (b, eb). By the convexity of the exponential

function we have that ex ≤ L(x) for x ∈ [−a, b]. Let f be a nonnegative componentwise

nondecreasing function. In what follows f ∗ denotes a nonnegative, componentwise

nondecreasing function which is allowed to change from line to line.

E [(Zn+1 − Zn)f(Z1, . . . , Zn)] = E
[
(e(Sn+1−Sn)−b − 1)f ∗(S1, . . . , Sn)

]

≤ E
[
(e−bL(Sn+1 − Sn)− 1)f ∗(S1, . . . , Sn)

]

= c1Ef ∗(S1, . . . , Sn) + c2e
−bE [(Sn+1 − Sn)f ∗(S1, . . . , Sn)]

≤ 0

since c1 =
(

a
a+b

eb + b
a+b

e−a
)
e−b − 1 ≤ 0, c2 = eb−e−a

a+b
≥ 0 and {Sn, n ∈ N} is an

N-demimartingale.

Several maximal inequalities can be found in the literature for sequences of N-

demimartingales. In particular Prakasa Rao (2004) provides the following inequality

for N-demimartingales for a special case of real functions.

Theorem 3.1.9 Let {Sn, n ∈ N} be an N-demimartingale. Let m(.) be a nonnegative

nondecreasing function on R with m(0) = 0. Let g(.) be a function such that g(0) = 0

and suppose that

g(x)− g(y) ≥ (y − x)h(y)

for all x, y where h(.) is a nonnegative nondecreasing function. Further, suppose that

{ck, 1 ≤ k ≤ n} is a sequence of positive numbers such that (ck − ck−1)g(Sk) ≥ 0, 1 ≤
k ≤ n− 1. Define

Yk = max{c1g(S1), . . . , ckg(Sk)}, k ≥ 1, Y0 ≡ 0.
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Then

E

(∫ Yn

0

udm(u)

)
≤

n∑

k=1

ckE[(g(Sk)− g(Sk−1))m(Yn)].

For the special case of m(t) = I{t ≥ ε} Prakasa Rao’s inequality has the following

useful form

εP (Yn ≥ ε) ≤
n∑

k=1

ckE[(g(Sk)− g(Sk−1))I{Yn ≥ ε}]. (3.8)

3.2 Maximal inequalities for N-demimartingales

Theorem 3.1.9 can serve as a source to obtain several useful probability and moment

inequalities for the maximum of an N-demimartingale.

Theorem 3.2.1 Let {Sn, n ∈ N} be an N-demimartingale. Then for ε > 0

εP ( max
1≤k≤n

Sk ≥ ε) ≤ E

(
SnI{max

1≤k≤n
Sk ≥ ε}

)
.

Proof. Since {Sn, n ∈ N} is an N-demimartingale then by Lemma 3.1.6 {−Sn, n ∈ N}
is also an N-demimartingale. Then by (3.8) for g(x) = −x and ck = 1 ∀ k, we have

εP ( max
1≤k≤n

Sk ≥ ε) ≤
n∑

k=1

E

[
(Sk − Sk−1) I{max

1≤k≤n
Sk ≥ ε}

]

= E

(
SnI{max

1≤k≤n
Sk ≥ ε}

)
. (3.9)

From the previous theorem, we immediately have the following.

Corollary 3.2.2 If {Sn, n ∈ N} is a nonnegative N-demimartingale then for ε > 0,

εP ( max
1≤k≤n

Sk ≥ ε) ≤ E(Sn).

Remark 3.2.3 Following the same steps as above, one can show that for a nonnegative

N-demimartingale {Sn, n ∈ N} and ε > 0 we have that

εP ( max
n≤k≤L

Sk ≥ ε) ≤ E(Sn)
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and since the right hand side does not depend on L, we can immediately infer that

εP (sup
k≥n

Sk ≥ ε) ≤ E(Sn).

Corollary 3.2.4 Let {Sn, n ∈ N} be a nonnegative N-demimartingale. Then

E

(
max
1≤k≤n

Sk

)p

≤
(

p

p− 1

)p

E(Sp
n), p > 1

and

E

(
max
1≤k≤n

Sk

)p

≤
(

e

e− 1

) (
1 + E(Snlog

+Sn)
)
, p = 1.

Proof. Follows by combining (3.9) and Lemma 9.1 of Gut (2005).

The next maximal inequality for N-demimartingales that is provided by the follow-

ing theorem is proved through the concept of complete downcrossings of an interval

by a sequence of random variables. The numbers of complete downcrossings of the

interval [a, b] is defined as the number of times a sequence of random variables passes

from above b to below a. The next lemma is due to Prakasa Rao (2002b).

Lemma 3.2.5 (Prakasa Rao (2002)) Let {Sn, n ∈ N} be an N-demimartingale. Then

for any real numbers a, b such that a < b

E(Da,b) ≤ 1

b− a

[
E(b− Sn)+ − E(b− S1)

+
]

where Da,b is the number of complete down crossings of the interval [a, b] by S1, . . . , Sn.

Theorem 3.2.6 Let {Sn, n ∈ N} be an N-demimartingale.

Then for c > 0

P

(
max
k≤n

|Sk| > 2c

)
≤ P (| Sn |> c) +

1

c

[∫

{|Sn|>2c}
(|Sn| − 2c)dP

−
∫

{|S1|>2c}
(|S1| − 2c)dP

]
. (3.10)
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Proof. Following similar steps to those in the proof of Theorem 2.3.2, we define the

sets An = {maxk≤n Sk > 2c} and let d1 be the number of downcrossings of [c, 2c] by

S1, . . . , Sn. Then,

P (An) = P (An, Sn ≤ c) + P (An, Sn > c)

≤ P

(
max
k≤n

Sk > 2c, Sn ≤ c

)
+ P (Sn > c)

≤ P (d1 > 0) + P (Sn > c)

≤ Ed1 + P (Sn > c) . (3.11)

Let Bn = {mink≤n Sk < −2c} and let d2 be the number of downcrossings of [c, 2c] by

−S1, . . . ,−Sn. Then,

P (Bn) = P (Bn, Sn ≥ −c) + P (Bn, Sn < −c)

≤ P

(
min
k≤n

Sk < −2c, Sn ≥ −c

)
+ P (Sn < −c)

= P

(
−min

k≤n
Sk > 2c,−Sn ≤ c

)
+ P (Sn < −c)

= P

(
max
k≤n

(−Sk) > 2c,−Sn ≤ c

)
+ P (Sn < −c)

≤ P (d2 > 0) + P (Sn < −c)

≤ Ed2 + P (Sn < −c) . (3.12)

Furthermore,

P (An ∪Bn) = P

(
{min

k≤n
Sk < −2c} ∪ {max

k≤n
Sk > 2c}

)

= P

(
{−min

k≤n
Sk > 2c} ∪ {max

k≤n
Sk > 2c}

)

= P

(
{max

k≤n
(−Sk) > 2c} ∪ {max

k≤n
Sk > 2c}

)

= P

(
max
k≤n

|Sk| > 2c

)
.

Therefore,

P

(
max
k≤n

|Sk| > 2c

)
= P (An ∪Bn)
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≤ P (An) + P (Bn)

≤ Ed1 + Ed2 + P (Sn < −c) + P (Sn > c) (3.13)

= Ed1 + Ed2 + P (|Sn| > c) (3.14)

where inequality (3.13) follows by (3.11) and (3.12).

Applying Lemma 3.2.5 we have

Ed1 + Ed2 ≤ 1

c

{
E [2c− Sn]+ − E [2c− S1]

+ + E [2c + Sn]+ − E [2c + S1]
+}

=
1

c

{∫

{|Sn|>2c}
(|Sn| − 2c)dP −

∫

{|S1|>2c}
(|S1| − 2c)dP

}
. (3.15)

Then (3.10) follows by (3.14) and (3.15).

By applying Theorem 3.2.6 for nonnegative N-demimartingales we have the follow-

ing corollary.

Corollary 3.2.7 Let {Sn, n ∈ N} be a nonnegative N-demimartingale. Then for all

c > 0

P (max
k≤n

Sk > 2c) ≤ P (Sn > c) +
1

c

∫

A

(Sn − 2c)dP

where A = {Sn > 2c, S1 ≤ 2c}.

Proof. Since {Sn, n ∈ N} is a nonnegative N-demimartingale by Theorem 3.2.6 we

have

P (max
k≤n

Sk > 2c) ≤ P (Sn > c) +
1

c
{E[(Sn − 2c)I{Sn > 2c}]

−E[(S1 − 2c)I{S1 > 2c}]} (3.16)

We need to find an upper bound for the quantity

B ≡ E[(Sn − 2c)I{Sn > 2c}]− E[(S1 − 2c)I{S1 > 2c}].

Therefore,

B = E[(Sn − 2c)(I{S1 > 2c}+ I{Sn > 2c} − I{S1 > 2c})]
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−E[(S1 − 2c)I{S1 > 2c}]

= E[(Sn − S1)I{S1 > 2c}] + E[(Sn − 2c)(I{Sn > 2c} − I{S1 > 2c})]

≤ E[(Sn − 2c)(I{Sn > 2c} − I{S1 > 2c})]

= E[(Sn − 2c)I{Sn > 2c, S1 ≤ 2c}, (3.17)

where the last inequality follows by the N-demimartingale property. Inequalities (3.16)

and (3.17) together give the desired result.

3.3 Azuma’s inequality

Hoeffding (1963) obtained the following inequality for independent random variables.

Theorem 3.3.1 Let {Xn, n ∈ N} be a sequence of independent random variables such

that ai ≤ Xi ≤ bi for i = 1, 2, . . .. Then for t > 0

P

(
Sn

n
− µ ≥ t

)
≤ exp

{ −2n2t2∑n
i=1(bi − ai)2

}

where Sn =
∑n

i=1 Xi and µ = 1
n
ESn.

Hoeffding’s result was extended to the case of bounded martingale differences. The

following result for martingale differences was given by Azuma (1967).

Theorem 3.3.2 Let {Xn, n ∈ N} be a sequence of martingale differences such that

|Xi| < α < ∞ for all i = 1, 2, . . . and let Sn = X1 + · · ·+ Xn. Then for every ε > 0,

P (Sn ≥ nε) ≤ exp

{−nε2

2α2

}
.

Given that a martingale with the natural choice of σ-algebras is an N-demimartingale,

it is of interest to see whether an analog of the above inequality holds true for N-

demimartingales. The answer is given by the following result.

Theorem 3.3.3 Let {Sn, n ∈ N} (with S0 ≡ 0) be an N-demimartingale and assume

that

|Si − Si−1| ≤ ci < ∞ i = 1, 2, . . . ,
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where c1, c2, . . . are positive real numbers. Then for every ε > 0,

P (Sn − E(Sn) ≥ nε) ≤ exp

{ −n2ε2

2
∑n

i=1 c2
i

}
(3.18)

and

P (|Sn − E(Sn)| ≥ nε) ≤ 2 exp

{ −n2ε2

2
∑n

i=1 c2
i

}
. (3.19)

Proof. Without loss of generality we assume that E(S1) = 0. Let t ∈ R and x ∈
[−ci, ci]. We can write

tx =
1

2

(
1 +

x

ci

)
(cit) +

1

2

(
1− x

ci

)
(−cit).

By the convexity of the exponential function we have:

etx ≤ cosh(cit) +
x

ci

sinh(cit).

Then

E
[
etSn

]
= E

[
n∏

i=1

et(Si−Si−1)

]
≤ E

[
n∏

i=1

[
cosh(cit) + (Si − Si−1)

sinh(cit)

ci

]]
.

By induction we will prove that

E
[
etSn

] ≤
n∏

i=1

cosh(cit) ∀ t > 0. (3.20)

First observe that,

E
[
etS2

] ≤ E

[(
cosh(c1t) + S1

sinh(c1t)

c1

) (
cosh(c2t) + (S2 − S1)

sinh(c2t)

c2

)]

= cosh(c1t) cosh(c2t) +
sinh(c1t) sinh(c2t)

c1c2

E[S1(S2 − S1)]

+
cosh(c1t) sinh(c2t)

c2

E(S2 − S1) +
cosh(c2t) sinh(c1t)

c1

E(S1)

= cosh(c1t) cosh(c2t) +
sinh(c1t) sinh(c2t)

c1c2

E[S1(S2 − S1)]

≤ cosh(c1t) cosh(c2t)

where the first inequality follows by the fact that ES1 = 0 and ES2 = ES1 (im-

plied by the N-demimartingale property) and the second inequality follows from the
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N-demimartingale property. Thus (3.20) is true for n = 2. Assume now that the

statement is true for n = k. We will show that it is true for n = k + 1.

E
[
etSk+1

]
= E

[
et(Sk+1−Sk).etSk

]

≤ E

[(
cosh(ck+1t) + (Sk+1 − Sk)

sinh(ck+1t)

ck+1

)
etSk

]

= cosh(ck+1t)E
[
etSk

]
+

sinh(ck+1t)

ck+1

E
[
(Sk+1 − Sk)e

tSk
]

≤
k+1∏
i=1

cosh(cit)

where the last inequality follows from the N-demimartingale property and the induction

hypothesis. Thus (3.20) is established.

Since cosh(cit) ≤ e
c2i t2

2 , by inequality (3.20) we have:

E
[
etSn

] ≤ exp

{
t2

∑n
i=1 c2

i

2

}
.

For ε, t > 0

P (Sn ≥ nε) = P (tSn ≥ tnε)

= P (etSn ≥ etnε)

≤ e−tnεE
[
etSn

]

≤ exp

{
−tnε +

t2
∑n

i=1 c2
i

2

}
.

The above upper bound is minimized with respect to t by choosing t = nε/
∑n

i=1 c2
i

and (3.18) is established.

To prove inequality (3.19) we write:

P (|Sn| ≥ nε) = P (Sn ≥ nε) + P (−Sn ≥ nε).

Since by Lemma 3.1.6 the collection {−Sn, n ∈ N} is also an N-demimartingale, in-

equality (3.19) follows by applying inequality (3.18) twice.
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Remark 3.3.4 In case the N-demimartingale differences are uniformly bounded, i.e.,

when |Si−Si−1| ≤ c < ∞ for i = 1, 2, . . ., then (3.18) and (3.19) have the simple form

P (Sn − E(Sn) ≥ nε) ≤ exp

{−nε2

2c2

}
,

and

P (|Sn − E(Sn)| ≥ nε) ≤ 2 exp

{−nε2

2c2

}

respectively.

Given that the partial sum of mean zero negatively associated random variables is an

N-demimartingale, we immediately have the following result.

Corollary 3.3.5 Let {Xn, n ∈ N} be mean zero negatively associated random variables

such that |Xk| ≤ ck, k = 1, 2, . . .. Let Sn = X1 + · · ·+ Xn. Then for every ε > 0,

P (Sn ≥ nε) ≤ exp

{ −n2ε2

2
∑n

i=1 c2
i

}
,

and

P (|Sn| ≥ nε) ≤ 2 exp

{ −n2ε2

2
∑n

i=1 c2
i

}
.

Remark 3.3.6 Exponential inequalities for mean zero negatively associated random

variables {Xi, i ≥ 1} have been obtained by Han (2007) following a different approach,

and in particular a Hoeffding inequality under the assumption that ai ≤ Xi ≤ bi for all

i. It is worth mentioning that for bi = ci and ai = −ci for i = 1, 2 . . ., Corollary 3.3.5

provides the same bound.

As an application of Corollary 3.3.5 we give the following result which was first proven

by Matula (1997).

Corollary 3.3.7 Let {Xn, n ∈ N} be a sequence of negatively associated random vari-

ables with common distribution function F . Then for every ε > 0 and for x ∈ R,

P (|Fn(x)− F (x)| > ε) ≤ 2 exp

{−nε2

2

}

where Fn denotes the empirical distribution function.
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Corollary 3.3.7, follows immediately from Corollary (3.3.5), given that for fixed x,

{I{Xn≤x} − F (x), n ∈ N} is a sequence of mean zero, negatively associated random

variables satisfying

|I{Xn≤x} − F (x)| ≤ 1, n = 1, 2, . . . ,

where I{Xn≤x} is the indicator function of the set {Xn ≤ x}.
The following exponential inequality for mean zero negatively associated random

variables is due to Matula (1997).

Theorem 3.3.8 Let {Xn, n ∈ N} be mean zero negatively associated random variables

such that |Xk| ≤ α ∀ k. Let Sn = X1 + · · ·+ Xn. Then for every ε > 0,

P (Sn ≥ nε) ≤ exp

{−nε

2α
sinh−1

(
nεα

2bn

)}
.

where bn =
∑n

i=1 EX2
i .

The bounds of Corollary 3.3.5 (for the special case where ck = α for k = 1, 2, . . .)

and Theorem 3.3.8 are not directly comparable given that the bound in Theorem 3.3.8

is expressed in terms of the variances of the random variables. Let y = ε/α. To

compare the two bounds it is sufficient to check under what conditions the function

f(y) = y − sinh−1

(
nyα2

2bn

)
, y > 0

is nonnegative. Simple calculations show that if nα2 ≤ 2bn or y ≥ 1 then f is nonde-

creasing and since f(0) = 0, the function is nonnegative. This means that if nα2 ≤ 2bn

or ε ≥ α the bound of Corollary 3.3.5 is sharper than the bound of Theorem 3.3.8. How-

ever, if nα2 > 2bn and y <
√

α4 − 4b2
n/n2, i.e., if nα2 > 2bn and ε < α−1

√
α4 − 4b2

n/n
2,

the function is nonincreasing implying that Matula’s bound is sharper than the bound

of Corollary 3.3.5.

Remark 3.3.9 By applying Theorem 3.3.3, one can obtain large deviation inequalities

for other statistical functions involving negatively associated random variables such as

the ones described in (3.5) and (3.6).
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Remark 3.3.10 The problem of providing exponential bounds for the tail probabilities

P (| Sn |≥ nε) is of great importance in probability and statistics. From a statistical

view-point such inequalities can be used for obtaining rates of convergence for estimates

of various quantities especially in a nonparametric setting. Qin and Li (2010) discuss

the construction of confidence intervals for the regression vector β in a linear model

under negatively associated errors. Lemma 2 of their paper provides an exponential

inequality for the tail probability of the sum of the negatively associated errors which is

the ”key” result for obtaining a central limit theorem leading to the desired result.

3.4 Marcinkiewicz-Zygmund inequality

The previous section provides exponential inequalities for the tail probability P (Sn ≥
nε) under the assumption of bounded N-demimartingale differences. It is of interest

to study the case where this assumption is replaced by

‖Sn+1 − Sn‖p < M < ∞

for p > 1, where ‖X‖p = [E(|X|p)] 1
p . The answer is given through the so called

Marcinkiewicz-Zygmund inequality for N-demimartingales.

The Marcinkiewicz-Zygmund inequalities, named after Jozef Marcinkiewicz and

Antoni Zygmund, give relations between moments of sums and moments of summands.

In the following theorem we present two of those inequalities.

Theorem 3.4.1 Let p ≥ 1. Suppose that {Xn, n ∈ N} are mean zero independent

random variables such that E|Xk|p < ∞ for all k, and let {Sn, n ∈ N} denote the

partial sums. Then there exist constants Ap and Bp depending only on p such that

ApE

(
n∑

k=1

X2
k

) p
2

≤ E|Sn|p ≤ BpE

(
n∑

k=1

X2
k

) p
2

or equivalently

(Ap)
1
p‖Qn(X)‖p ≤ ‖Sn‖p ≤ (Bp)

1
p‖Qn(X)‖p
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where

Qn(X) =

(
n∑

k=1

X2
k

) 1
2

is the quadratic variation of the summands and ‖Sn‖p = [E(|Sn|p)]
1
p .

Burkholder (1966) proved the following Marcinkiewicz-Zygmund inequality for mar-

tingales.

Theorem 3.4.2 Let p > 1. Suppose that {(Xn,Fn), n ∈ N} is a martingale with

martingale differences {Yk, k ≥ 0} and let Sn(X) = (
∑n

k=0 Y 2
k )

1
2 be the square function.

Then there exist constants Ap and Bp depending only on p such that

Ap‖Sn(X)‖p ≤ ‖Xn‖p ≤ Bp‖Sn(X)‖p.

Remark 3.4.3 If the increments are independent mean zero, Theorem 3.4.2 reduces

to Theorem 3.4.1.

It is worth mentioning that a lot of attention has been given to the best constants

or the growth rates of the constants appearing in these moment inequalities.

We now present a known, useful inequality for real numbers. The proof follows by

standard arguments and it is therefore omitted.

Lemma 3.4.4 Let a, b be real numbers and let p ∈ (1, 2].

Then

|a + b|p ≤ |a|p + p|a|p−1sign(a)b + 22−p|b|p. (3.21)

The next result provides a Marcinkiewicz-Zygmund inequality for nonnegative N-

demimartingales. Although important by itself, the result is used in the theorem that

follows to establish an upper bound for the tail probability P (Sn ≥ nε).
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Lemma 3.4.5 Let {Sn, n ∈ N} (with S0 ≡ 0) be a nonnegative N-demimartingale.

Then

(i) For p ∈ (1, 2],

‖Sn‖p
p ≤ ‖d1‖p

p + 22−p

n−1∑
j=1

‖dj+1‖p
p

≤ 22−p

n∑
j=1

‖dj‖p
p.

(ii) For p positive even integer,

‖Sn‖2
p ≤ ‖d1‖2

p + (p− 1)
n−1∑
j=1

‖dj+1‖2
p

≤ (p− 1)
n∑

j=1

‖dj‖2
p,

where dj = Sj − Sj−1, j = 1, 2, . . . , n.

Proof. Let p ∈ (1, 2]. By applying Lemma 3.4.4 for a = Sj, b = Sj+1 − Sj we have

that:

ESp
j+1 ≤ ESp

j + pE[Sp−1
j (Sj+1 − Sj)] + 22−pE|dj+1|p

≤ ESp
j + 22−pE|dj+1|p

where the last inequality follows by the N-demimartingale property.

By induction we have that,

ESp
n ≤ Edp

1 + 22−p

n∑
j=2

E|dj|p

= ‖d1‖p
p + 22−p

n∑
j=2

‖dj‖p
p

≤ 22−p

n∑
j=1

‖dj‖p
p.

Let p be positive even integer.

We assume that ‖Sj‖p > 0, for all j, otherwise the result is trivially true. Without loss
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of generality we assume that ‖Sj‖p = 1.

Following Rio (2009), we define the function ϕ on [0,∞) by

ϕ(t) = ‖Sj + t(Sj+1 − Sj)‖p
p.

We need to prove that,

ϕ(t) ≤ [
1 + (p− 1)‖Sj+1 − Sj‖2

pt
2
] p

2 . (3.22)

By Taylor’s integral formula for ϕ1(t) = |Sj + t(Sj+1 − Sj)|p,

|Sj + t(Sj+1 − Sj)|p = Sp
j + pt(Sj+1 − Sj)S

p−1
j

+p(p− 1)

∫ t

0

(t− s)(Sj+1 − Sj)
2|Sj + s(Sj+1 − Sj)|p−2ds.

Therefore,

ϕ(t) = ESp
j + ptE[(Sj+1 − Sj)S

p−1
j ]

+p(p− 1)

∫ t

0

(t− s)E
[
(Sj+1 − Sj)

2|Sj + s(Sj+1 − Sj)|p−2
]
ds.

By Hölder’s inequality and the N-demimartingale property we have that,

ϕ(t) ≤ 1 + p(p− 1)‖dj+1‖2
p

∫ t

0

(t− s)[ϕ(s)]1−
2
p ds := ψ(t).

For the first two derivatives of the function ψ(t) we may write,

ψ′(t) = p(p− 1)‖dj+1‖2
p

∫ t

0

[ϕ(s)]1−
2
p ds

and

ψ′′(t) = p(p− 1)‖dj+1‖2
p[ϕ(t)]1−

2
p ≤ p(p− 1)‖dj+1‖2

p[ψ(t)]1−
2
p .

By multiplying the above inequality by 2ψ′ and integrating between 0 and x:

∫ x

0

2ψ′(t)ψ′′(t)dt ≤ 2p(p− 1)‖dj+1‖2
p

∫ x

0

ψ′(t)[ψ(t)]1−
2
p dt

ψ′(x) ≤ p‖dj+1‖p

√
[ψ(x)]2−

2
p − 1.
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By Lemma 2.1 of Rio (2009) we have that:

ψ′(t) ≤ p
√

p− 1‖dj+1‖p[ψ(t)]1−
2
p

√
[ψ(t)]

2
p − 1.

By defining z = ψ(t)
2
p and solving the differential inequality we finally obtain,

ψ(t) ≤ [1 + (p− 1)‖dj+1‖2
pt

2]
p
2 .

Since ϕ ≤ ψ (3.22) is established.

For t = 1 and by induction we finally have the desired result.

Let us consider the case of an N-demimartingale difference sequence with finite

moments of order p.

Theorem 3.4.6 Let {Sn, n ∈ N} be a nonnegative N-demimartingale such that for

p > 1

‖Sj+1 − Sj‖p < Mj+1 < ∞, for j = 1, 2, . . . .

Then for every ε > 0,

(i)

P (Sn > nε) ≤ 4

(2nε)p

n∑
j=1

Mp
j , 1 < p ≤ 2

(ii)

P (Sn > nε) ≤ (p− 1)
p
2

npεp

(
n∑

j=1

M2
j

) p
2

, p positive even integer.

Proof. Let p ∈ (1, 2]. By Lemma 3.4.5 and since ‖Sj+1 − Sj‖p < Mj+1 we have that

ESp
n ≤ 22−p

n∑
j=1

‖dj‖p
p ≤ 22−p

n∑
j=1

Mp
j .

Therefore for every ε > 0,

P (Sn > nε) ≤ ESp
n

npεp
≤ 4

(2nε)p

n∑
j=1

Mp
j .

Let p be a positive even integer. Using Lemma 3.4.5 we can write

ESp
n ≤ (p− 1)

p
2

(
n∑

j=1

M2
j

) p
2

.
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Then for every ε > 0,

P (Sn > nε) ≤ ESp
n

npεp
≤ (p− 1)

p
2

npεp

(
n∑

j=1

M2
j

) p
2

.

For the special case of uniformly bounded N-demimartingale difference sequences

of order p the result of Theorem 3.4.6 has the following form.

Corollary 3.4.7 Let {Sn, n ∈ N} be a nonnegative N-demimartingale such that

‖Sj+1 − Sj‖p < M < ∞

for p > 1.

Then for every ε > 0,

(i)

P (Sn > nε) ≤ 4

np−1

(
M

2ε

)p

, 1 < p ≤ 2

(ii)

P (Sn > nε) ≤
(

p− 1

n

) p
2
(

M

ε

)p

, p positive even integer.

3.5 Asymptotic results

Large deviation inequalities serve, among other things, the purpose of studying the

asymptotic behavior of statistical functions, and in particular those of estimators.

The following asymptotic results concern the complete convergence of bounded N-

demimartingales. First, let us recall the definition of complete convergence.

Definition 3.5.1 Let X1, X2, . . . be random variables. Xn converges completely to the

random variable X as n →∞, if and only if

∞∑
n=1

P (| Xn −X |> ε) < ∞, for all ε > 0.
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Theorem 3.5.2 Let {Sn, n ∈ N} be an N-demimartingale such that | Si − Si−1 |≤ α

for all i = 1, 2, . . .. Then for r > 1
2
,

n−rSn −→ 0 completely.

Proof. Assume without loss of generality that ES1 = 0. Then,

∞∑
n=1

P (| Sn |≥ nrε) ≤ 2
∞∑

n=1

exp

{−n2r−1ε2

2α2

}

= 2
∞∑

n=1

exp
{−n2r−1d

}

= 2
∞∑

n=1

(exp(−d))n2r−1

< ∞

where d = ε2/2α2 and the first inequality follows from Azuma’s inequality for N-

demimartingales given in Remark 3.3.4.

As an application of Theorem 3.5.2 we immediately have the following asymptotic

result for mean zero negatively associated random variables.

Corollary 3.5.3 Let {Xn, n ∈ N} be mean zero negatively associated random variables

such that |Xk| ≤ α for k = 1, 2, . . .. Let Sn = X1 + · · ·+ Xn. Then for r > 1
2
,

n−rSn −→ 0 completely.

The next result generalizes Theorem 3.5.2 since the assumption of uniformly bounded

N-demimartingale differences is dropped.

Theorem 3.5.4 Let {Sn, n ∈ N} be an N-demimartingale such that | Si − Si−1 |≤ ci,

for all i = 1, 2, . . .. Let the following two conditions :

(i)
∑∞

i=1 c2
i < ∞ and let r be a positive number,

(ii)
∑n

i=1 c2
i = O(nρ) where ρ > 0 and let r > ρ

2
.

If (i) or (ii) is true, then

n−rSn −→ 0 completely.
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Proof. Assume without loss of generality that ES1 = 0. Furthermore, assume that

(i) is true. Then

∞∑
n=1

P (| Sn |≥ nrε) ≤ 2
∞∑

n=1

exp

{−n2n2r−2ε2

2
∑n

i=1 c2
i

}

= 2
∞∑

n=1

exp

{ −n2rε2

2
∑n

i=1 c2
i

}

≤ 2
∞∑

n=1

exp

{ −n2rε2

2
∑∞

i=1 c2
i

}

= 2
∞∑

n=1

(exp(−d))n2r

< ∞

where d = ε2/2
∑∞

i=1 c2
i and the first inequality follows from inequality (3.19).

Assume now that (ii) is valid. By using Theorem 3.3.3 we can write

P (Sn ≥ nrε) ≤ exp

{
− n2rε2

2
∑n

i=1 c2
i

}

= exp

{
−ε2

2
O(n2r−ρ)

}
.

Therefore we obtain

∞∑
n=1

P (Sn ≥ nrε) ≤
∞∑

n=1

exp

{
−ε2

2
O(n2r−ρ)

}
< ∞

for r > ρ
2
.

Remark 3.5.5 Observe that for ρ = 1 the second part of Theorem 3.5.4 reduces to the

result of Theorem 3.5.2.

By applying Theorem 3.5.4 for mean zero negatively associated random variables

we have the following result.

Corollary 3.5.6 Let {Xn, n ∈ N} be mean zero negatively associated random variables

such that |Xi| ≤ ci for all i = 1, 2, . . . and let Sn = X1 + · · · + Xn. Assume that
∑∞

i=1 c2
i < ∞. Then for r > 0,

n−rSn −→ 0 completely.
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Complete convergence results for nonnegative N-demimartingales can also be es-

tablished by using the large deviation inequality of Theorem 3.4.6.

Theorem 3.5.7 Let {Sn, n ∈ N} be a nonnegative N-demimartingale such that for

p > 1

‖Sj+1 − Sj‖p < Mj+1 < ∞.

Let us consider the following conditions for p ∈ (1, 2]:

(i)
∑∞

j=1 Mp
j < ∞ and let r be a positive number such that pr > 1,

(ii)
∑n

j=1 Mp
j = O(nα) and let r be a positive number such that pr − 1 > α,

(iii)
∑∞

j=2

Mp
j

(j−1)pr−1 < ∞ and let r be a positive number such that pr > 1.

For p positive even integer let the following conditions:

(iv)
∑∞

j=1 M2
j < ∞ and let r be a positive number such that pr > 1,

(v)
∑n

j=1 M2
j = O(nα), and let r be a positive number such that pr − αp

2
> 1.

If anyone of the above conditions is true, then

n−rSn → 0, completely.

Proof. Let p ∈ (1, 2]. Assume that (i) is true. Then by using condition (i) and by

applying Theorem 3.4.6 we have that

∞∑
n=1

P (Sn > nrε) ≤ 4

(2ε)p

∞∑
n=1

(
∑n

j=1 Mp
j )

npr

≤ 4

(2ε)p

∞∑
n=1

(
∑∞

j=1 Mp
j )

npr
< ∞.

Assume now that condition (ii) is valid. By applying Theorem 3.4.6 we can write

P (Sn > nrε) ≤ 4

(2ε)p

1

npr
O(nα) =

4

(2ε)p
O(nα−pr).

Therefore
∞∑

n=1

P (Sn > nrε) ≤ 4

(2ε)p

∞∑
n=1

O(nα−pr) < ∞

for pr − 1 > α.
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Finally for the case p ∈ (1, 2] assume that condition (iii) holds. By applying Theorem

3.4.6 we arrive at the following inequality

∞∑
n=1

P (Sn ≥ nrε) ≤ 4

(2ε)p

∞∑
n=1

1

npr

n∑
j=1

Mp
j

=
4

(2ε)p

∞∑
j=1

∞∑
n=j

Mp
j

npr

=
4

(2ε)p

{ ∞∑
n=1

Mp
1

npr
+

∞∑
j=2

∞∑
n=j

Mp
j

npr

}
. (3.23)

It can easily be verified that

∞∑
n=j

1

npr
≤

∫ ∞

j−1

x−prdx =
1

pr − 1
(j − 1)1−pr. (3.24)

We can write

∞∑
n=1

Mp
1

npr
= Mp

1 + Mp
1

∞∑
n=2

1

npr

≤ prMp
1

pr − 1

where the last inequality follows from (3.24).

Therefore by applying (3.24) to the second term of (3.23) we finally have

∞∑
n=1

P (Sn ≥ nrε) ≤ 4

(2ε)p

{
prMp

1

pr − 1
+

1

pr − 1

∞∑
j=2

Mp
j

(j − 1)pr−1

}
< ∞.

Let p be a positive even integer. Assume that condition (iv) holds. By following the

same steps as above we can verify that

∞∑
n=1

P (Sn > nrε) ≤ (p− 1)
p
2

εp

∞∑
n=1

1

npr

( ∞∑
j=1

M2
j

) p
2

< ∞.

Finally under the assumption that condition (v) is valid,

∞∑
n=1

P (Sn > nrε) ≤ (p− 1)
p
2

εp

∞∑
n=1

O

(
1

npr−αp
2

)
< ∞.

for pr − αp
2

> 1.

Using Corollary 3.4.7 we establish complete convergence for nonnegative N-demimartingales

in the case where the N-demimartingale differences are uniformly bounded.
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Theorem 3.5.8 Let {Sn, n ∈ N} be a nonnegative N-demimartingale such that for

p > 1

‖Sj+1 − Sj‖p < M < ∞.

Let the following two conditions:

(i) Let p ∈ (1, 2] and let r be a positive number such that pr > 2.

(ii) Let p be a positive even integer and let r be a positive number such that p(r− 1
2
) > 1.

If (i) or (ii) is true, then

n−rSn → 0, completely.

Proof. Let p ∈ (1, 2]. By applying Theorem 3.4.7 we have that

∞∑
n=1

P (Sn > nrε) ≤
∞∑

n=1

4

(
M

2ε

)p
1

npr−1
< ∞.

Following the same steps we can verify that for p > 2

∞∑
n=1

P (Sn > nrε) ≤
∞∑

n=1

(
M

ε

)p

(p− 1)
p
2

1

npr− p
2

< ∞.

3.6 Blackwell-Ross inequality

Blackwell (1954) presented the following gambling problem: Let us consider a game

where the player’s gain or loss does not exceed one unit and that the player’s expec-

tation doesn’t exceed −ug, where g is his maximum loss or gain and u is a constant

0 < u < 1. The player wants to maximize his probability of becoming at least t units

ahead, where t is a positive constant. The system of play is a sequence X1, X2 . . . , of

chance variables satisfying

|Xn| ≤ 1 (3.25)

and

E(Xn|X1, . . . , Xn−1) ≤ −u(max |Xn||X1, . . . , Xn−1). (3.26)
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Blackwell proved that for any system X1, X2, . . . satisfying conditions (3.25) and (3.26)

and any positive number t

P (Sn ≥ t, for some n) ≤
(

1− u

1 + u

)t

.

where Sn =
∑n

i=1 Xi. Blackwell’s result proves that this is the best system in the sense

of maximizing the probability of attaining at least t.

Blackwell (1997) extended his inequalities for the case of martingales.

Theorem 3.6.1 Let {Sn =
∑n

i=1 Xi, S0 = 0,Fn, n ≥ 0} be a supermartingale such

that |Xn| ≤ 1 and E(Xn|Fn−1) ≤ −γ for all n, 0 < γ < 1. Then for any a > 0,

P (Sn ≥ a for some n ≥ 1) ≤
(

1− γ

1 + γ

)a

.

Theorem 3.6.2 Let {Sn =
∑n

i=1 Xi,Fn} be a martingale where |Xi| ≤ 1, i = 1, 2, . . ..

Then for any positive constants a, b

P (Sn ≥ a + bn for some n ≥ 1) ≤ e−2ab

and for 0 < b < 1 and suitable r,

P (Sn ≥ bn for some n ≥ m) ≤ rm ≤ e
−mb2

2 .

Ross (1995) extended the previous inequalities for martingales of the form Sn =
∑n

i=1 Xi when −a ≤ Xn ≤ b, n = 1, 2, . . . for nonnegative a, b.

Khan (2007) generalizes the Blackwell-Ross inequalities for martingales by assuming

a suitable condition on the conditional moment generating function

φn(θ) = E[exp(θXn)|Fn−1].

The main result of his paper is presented in the following theorem.

Theorem 3.6.3 Let {Sn =
∑

1≤i≤n Xi,Fn, n ≥ 0} be a (super)martingale such that

the conditional moment generating function φn(θ) satisfies

φn(θ) ≤ f(θ) ≤ exp(−γθ + λθ2), γ ≥ 0, λ > 0, θ > 0
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where f is a continuous positive function such that f(0) = 1. Then for positive a and

b,

P (Sn ≥ a + bn for some n ≥ m) ≤ Am exp[−a(b + γ)/λ]

where A = e−bθ0f(θ0) ≤ 1 and θ0 = (b + γ)/λ. Moreover,

P (Sn ≥ bn for some n ≥ m) ≤ Am
0 exp

(
−m(b + γ)2

4λ

)
,

where A0 = exp(−(b− γ)θ0/2)f(θ0) and θ0 = (b + γ)/2λ.

Khan (2007) also provides as an extension of the above theorem inequalities of the

form

P

(
| Sn |≥ b

n∑
i=1

vi for some n ≥ m

)
≤ 2 exp

{
− b

2
δ

(
b

2

) m∑
i=1

vi

}

where vn = E(X2
n|Fn−1) and δ(b) is the unique solution of the equation eθ−(1−b)θ−1 =

0.

These inequalities are useful for certain convergence problems. Clearly Sn/
∑n

i=1 vi

converges to zero a.s. provided
∑n

i=1 vi →∞ as n →∞.

In the following theorem we prove a Blackwell-Ross inequality for N-demimartingales.

Theorem 3.6.4 Let {Sn, n ∈ N}, (S0 ≡ 0) be an N-demimartingale such that E(S1) =

0 and

−a ≤ Sj − Sj−1 ≤ b for all j

where a, b > 0.

Then for m ∈ N

P (Sn ≥ a + bn for some n ≥ m) ≤ a + b

b(1− e−(a+b))
e−a

(
a + be−(a+b)

a + b

)m

.

Proof. Using Markov’s inequality we have that

P (Sn ≥ a + bn for some n ≥ m) ≤
∞∑

n=m

P (exp(Sn − a− bn) ≥ 1)

≤
∞∑

n=m

e−ae−nbE(eSn).
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We need to find an upper bound for the quantity E(eSn). Let

L(x) =
a

a + b
eb +

b

a + b
e−a +

eb − e−a

a + b
x

be the line through the points (−a, e−a), (b, eb). By the convexity of the exponential

function ex ≤ L(x) and by using simple algebra we have that

E
[
eSn

]
= E

[
e

∑n
i=1(Si−Si−1)

]

= E

[
n∏

i=1

e(Si−Si−1)

]

≤ E

[
n∏

i=1

[A + B(Si − Si−1)]

]

where A = a
a+b

eb + b
a+b

e−a and B = eb−e−a

a+b
. We will prove that EeSn ≤ An.

For n = 2 the statement holds true since

E
[
eS2

] ≤ E [(A + BS1)(A + B(S2 − S1))]

= A2 + ABE(S2 − S1) + ABE(S1) + B2E[S1(S2 − S1)]

≤ A2

where the last inequality follows by the N-demimartingale property.

We assume that the statement is true for n = k. For n = k + 1

E
[
eSk+1

]
= E

[
eSk+1−SkeSk

]

≤ E
[
(A + B(Sk+1 − Sk))e

Sk
]

(3.27)

= AE
[
eSk

]
+ BE

[
(Sk+1 − Sk)e

Sk
]

≤ Ak+1

where (3.27) follows from the fact that ex ≤ L(x) and the last inequality follows by

applying the N-demimartingale property and the induction hypothesis.

Therefore

P (Sn ≥ a + bn for some n ≥ m) ≤
∞∑

n=m

e−a

(
a + be−(a+b)

a + b

)n

=
a + b

b(1− e−(a+b))
e−a

(
a + be−(a+b)

a + b

)m

.
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Remark 3.6.5 The result of Theorem 3.6.4 can easily be applied to the case of mean

zero negatively associated random variables. In particular let {Xn, n ∈ N} be a col-

lection of mean zero negatively associated random variables such that −a ≤ Xi ≤ b,

a, b > 0, and let Sn =
∑n

i=1 Xi. Then for m ∈ N,

P (Sn ≥ a + bn for some n ≥ m) ≤ a + b

b(1− e−(a+b))
e−a

(
a + be−(a+b)

a + b

)m

.

In the next corollary we establish a Blackwell-Ross inequality for N-demimartingales

for the case of uniformly bounded N-demimartingale differences.

Corollary 3.6.6 Let {Sn, n ∈ N}, (S0 ≡ 0) be an N-demimartingale such that E(S1) =

0 and

|Sj − Sj−1| ≤ a for all j,

where a > 0.

Then for m ∈ N

P (Sn ≥ a(1 + n) for some n ≥ m) ≤ 2

1− e−2a
e−a

(
e−2a + 1

2

)m

.

Proof. The result follows by applying Theorem 3.6.4 for a = b.

Remark 3.6.7 The bound provided by Theorem 3.6.4 might not be useful for certain

values of a, b and m, and in particular for values of a and b such that a + b is very

small.

Remark 3.6.8 Theorem 3.6.4 provides uniform exponential rates for the strong law

of large numbers for N-demimartingales with bounded differences.

Remark 3.6.9 The result of Theorem 3.6.4 can be viewed as a generalization of the

result provided by Theorem 3.3.3 since the event {Sm ≥ a + bm} is replaced by the

larger event {Sn ≥ a + bn for some n ≥ m}.
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Chapter 4

Multidimensionally Indexed

Extensions

4.1 Introduction

In this chapter we define the class of multidimensionally indexed demimartingales and

demisubmartingales as a natural generalization of the notion of Newman and Wright

(1982).

Let d be a positive integer. We denote by Nd the d-dimensional positive integer

lattice. For n,m ∈ Nd with n = (n1, . . . , nd) and m = (m1, . . . , md) the notation

n ≤ m means that ni ≤ mi for all i = 1, . . . , d, while the notation n < m means that

ni ≤ mi for all i = 1, . . . , d with at least one inequality strict. Finally the notation |n|
stands for

∏d
i=1 ni.

Definition 4.1.1 A collection of multidimensionally indexed random variables {Xi, i ≤
n} is said to be associated if for any two coordinatewise nondecreasing functions f, g :

R|n| → R

Cov (f(Xi, i ≤ n), g(Xi, i ≤ n)) ≥ 0,

provided that the covariance is defined. An infinite collection is associated if every

finite subcollection is associated.
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The above definition is just the classical definition of association stated for the case

of multidimensionally indexed random variables. The index of the variables in no way

affects the qualitative property of association, i.e., that nondecreasing functions of all

(or some) of the variables are nonnegatively correlated.

Definition 4.1.2 An array of random variables {Xn,n ∈ Nd} is called a multidimen-

sionally indexed demimartingale if:

E {(Xj −Xi)f(Xk,k ≤ i)} ≥ 0, ∀ i, j ∈ Nd with i ≤ j,

and for all componentwise nondecreasing functions f . If in addition f is required to

be nonnegative then {Xn,n ∈ Nd} is said to be a multidimensionally indexed demisub-

martingale.

It is easy to verify that the partial sum of mean zero associated multidimensionally

indexed random variables is a multidimensionally indexed demimartingale. Further-

more, a multidimensionally indexed martingale equipped with the natural choice of

σ-algebras, is a multidimensionally indexed demimartingale.

In this chapter we present maximal inequalities and related asymptotic results for

multidimensionally indexed demimartingales and demisubmartingales.

4.2 Chow-type maximal inequality

The following result will provide a Chow-type maximal inequality for the collection

{g(Yn),n ∈ Nd} where {Yn,n ∈ Nd} is a multidimensionally indexed demimartingale

and g is a nondecreasing convex function. The monotonicity assumption of g will be

relaxed later.

Lemma 4.2.1 Let {Yn,n ∈ Nd} be a multidimensionally indexed demimartingale with

Yk ≡ 0 when
∏d

i=1 ki = 0. Furthermore, let {cn,n ∈ Nd} be a nonincreasing array of
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positive numbers and let g be a nonnegative nondecreasing convex function on R with

g(0) = 0. Then for every ε > 0

εP

(
max
k≤n

ckg(Yk) ≥ ε

)
≤ min

1≤s≤d

{∑

k≤n

ckE[g(Yk;s;i)− g(Yk;s;i−1)]

}
,

where Yk;s;i = Yk1...ks−1iks+1...kd
, i.e., at the sth position of the index k the component ks

is equal to i.

Proof. For simplicity the proof is presented for d = 2. The case d > 2 is similar.

Define the sets

A =

{
max

(k1,k2)≤(n1,n2)
ck1k2g(Yk1k2) ≥ ε

}
,

B1k2 = {c1k2g(Y1k2) ≥ ε} , 1 ≤ k2 ≤ n2,

Bk1k2 = {clk2g(Ylk2) < ε, 1 ≤ l < k1, ck1k2g(Yk1k2) ≥ ε} , 2 ≤ k1 ≤ n1, 1 ≤ k2 ≤ n2.

By the definitions of the sets A and Bk1k2 we have that A =
⋃

k1,k2
Bk1k2 and thus

εP (A) = εP


 ⋃

(i,j)≤(n1,n2)

Bij




≤ ε

n2∑
j=1

n1∑
i=1

P (Bij)

=

n2∑
j=1

n1∑
i=1

E
(
εIBij

)

≤
n2∑

j=1

n1∑
i=1

E
(
cijg(Yij)IBij

)

=

n2∑
j=1

E
[
c1jg(Y1j)IB1j

]
+

n2∑
j=1

n1∑
i=2

E
[
cijg(Yij)IBij

]

=

n2∑
j=1

E [c1jg(Y1j)]−
n2∑

j=1

E
[
c1jg(Y1j)IBc

1j

]
+

n2∑
j=1

E
[
c2jg(Y2j)IB2j

]

+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]

≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

c2jE
[
g(Y2j)IB2j

− g(Y1j)IBc
1j

]
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+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]

where the last inequality follows from the monotonicity of the array {cn,n ∈ N2}.
Since B2j ⊆ Bc

1j we can write IB2j
= IBc

1j
− IBc

1j

⋂
Bc

2j
. Then:

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E
[
c2j(g(Y2j)− g(Y1j))IBc

1j

]

−
n2∑

j=1

c2jE
[
g(Y2j)IBc

1j

⋂
Bc

2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]

=

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

−
n2∑

j=1

E
[
c2j(g(Y2j)− g(Y1j))IB1j

]−
n2∑

j=1

c2jE
[
g(Y2j)IBc

1j

⋂
Bc

2j

]

+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]
.

Since g is nondecreasing convex, we can write

g(y)− g(x) ≥ (y − x)h(x)

where

h(y) = lim
x→y−

g(x)− g(y)

x− y

is the left derivative of g. Observe that IB1j
h(Y1j) is a nonnegative and nondecreasing

function of Y1j and by the demimartingale property of {Yn,n ∈ N2} we have that

E
[
(g(Y2j)− g(Y1j))IB1j

] ≥ E
[
(Y2j − Y1j)h(Y1j)IB1j

] ≥ 0, for j = 1, 2, . . . , n2.

Then,

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]−
n2∑

j=1

c2jE
[
g(Y2j)IBc

1j

⋂
Bc

2j

]

+

n2∑
j=1

E
[
c3jg(Y3j)IB3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]

≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

+

n2∑
j=1

c3jE
[
g(Y3j)IB3j

− g(Y2j)IBc
1j

⋂
Bc

2j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
(4.1)
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where (4.1) follows from the monotonicity of the array {cn,n ∈ N2}.
Since B3j ⊆ Bc

1j

⋂
Bc

2j then IB3j
= IBc

1j

⋂
Bc

2j
− IBc

1j

⋂
Bc

2j

⋂
Bc

3j
and we further have:

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

+

n2∑
j=1

c3jE
[
(g(Y3j)− g(Y2j))IBc

1j

⋂
Bc

2j

]
−

n2∑
j=1

c3jE
[
g(Y3j)IBc

1j

⋂
Bc

2j

⋂
Bc

3j

]

+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]

=

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))] +

n2∑
j=1

c3jE [(g(Y3j)− g(Y2j))]

−
n2∑

j=1

c3jE
[
(g(Y3j)− g(Y2j))IB1j

⋃
B2j

]−
n2∑

j=1

c3jE
[
g(Y3j)IBc

1j

⋂
Bc

2j

⋂
Bc

3j

]

+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
.

Using the same arguments as before regarding the demimartingale property of {Yn,n ∈ N2}
it can be shown that, since IB1j

⋃
B2j

is a nonnegative nondecreasing function of Y1j and

Y2j,

E
[
(g(Y3j)− g(Y2j)) IB1j

⋃
B2j

] ≥ 0, for j = 1, 2, . . . , n2.

Therefore

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))] +

n2∑
j=1

c3jE [(g(Y3j)− g(Y2j))]

−
n2∑

j=1

c3jE
[
g(Y3j)IBc

1j

⋂
Bc

2j

⋂
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
.

Continuing in the same manner and since by definition Y0j = 0 we finally have:

εP (A) ≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yi−1j)]−
n2∑

j=1

cn1jE
[
g(Yn1j)I⋂n1

i=1 Bc
ij

]
(4.2)

≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yi−1j)] . (4.3)
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Similarly it can be shown that:

εP (A) ≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yij−1)]−
n1∑
i=1

cin2E
[
g(Yin2)I⋂n2

j=1 Bc
ij

]

≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yij−1)] . (4.4)

Inequalities (4.3) and (4.4) together give the desired result.

Remark 4.2.2 Lemma 4.2.1 was proved under the assumption that g is nondecreasing.

However,as the next result shows, the assumption can be dropped. The proof of Theorem

4.2.3 uses Lemma 4.2.1 as an auxiliary result.

Theorem 4.2.3 Let {Yn,n ∈ Nd} be a multidimensionally indexed demimartingale

such that Yk ≡ 0 when
∏d

i=1 ki = 0. Let {cn,n ∈ Nd} be a nonincreasing array of

positive numbers and let g be a nonnegative convex function on R with g(0) = 0.

Then for every ε > 0:

εP

(
max
k≤n

ckg(Yk) ≥ ε

)
≤ min

1≤s≤d

{∑

k≤n

ckE [g(Yk;s;i)− g(Yk;s;i−1)]

}
.

Proof. (For d = 2.)

Following a standard argument ( see for example, Wang (2004)) let u(x) = g(x)I{x ≥
0} and v(x) = g(x)I{x < 0}. Clearly u is a nonnegative nondecreasing convex function

while v a nonnegative nonincreasing convex function. From the definition of u(x) and

v(x) we have:

g(x) = u(x) + v(x) = max{u(x), v(x)}.

Then,

εP

(
max

(i,j)≤(n1,n2)
cijg(Yij) ≥ ε

)
= εP

(
max

(i,j)≤(n1,n2)
cij max{u(Yij), v(Yij)} ≥ ε

)

≤ εP

(
max

(i,j)≤(n1,n2)
ciju(Yij) ≥ ε

)

+ εP

(
max

(i,j)≤(n1,n2)
cijv(Yij) ≥ ε

)
.
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Since u is nonnegative nondecreasing convex, by Lemma 4.2.1 we have:

εP

(
max

(i,j)≤(n1,n2)
ciju(Yij) ≥ ε

)
≤ min

{
n1∑
i=1

n2∑
j=1

cijE [u(Yij)− u(Yi−1j)] ,

n1∑
i=1

n2∑
j=1

cijE [u(Yij)− u(Yij−1)]

}
.

We will show that

εP

(
max

(i,j)≤(n1,n2)
cijv(Yij) ≥ ε

)
≤ min

{
n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yi−1j)] ,

n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yij−1)]

}
. (4.5)

Define the sets

A =

{
max

(i,j)≤(n1,n2)
cijv(Yij) ≥ ε

}
,

B1j = {c1jv(Y1j) ≥ ε} , 1 ≤ j ≤ n2,

Bij = {cljv(Yij) < ε, 1 ≤ l < i, cijv(Yij) ≥ ε} , 2 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Then,

εP (A) = εP


 ⋃

(i,j)≤(n1,n2)

Bij




≤ ε

n1∑
i=1

n2∑
j=1

P (Bij)

=

n1∑
i=1

n2∑
j=1

E
(
εIBij

)

≤
n1∑
i=1

n2∑
j=1

E
[
cijv(Yij)IBij

]

=

n2∑
j=1

c1jE
[
v(Y1j)IB1j

]
+

n2∑
j=1

n1∑
i=2

E
[
cijv(Yij)IBij

]

=

n2∑
j=1

c1jE [v(Y1j)]−
n2∑

j=1

c1jE
[
v(Y1j)IBc

1j

]

+

n2∑
j=1

c2jE
[
v(Y2j)IB2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijv(Yij)IBij

]
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≤
n2∑

j=1

c1jE [v(Y1j)] +

n2∑
j=1

c2jE
[
(v(Y2j)− v(Y1j))IBc

1j

]

−
n2∑

j=1

c2jE
[
v(Y2j)IBc

1j

⋂
Bc

2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijv(Yij)IBij

]

=

n2∑
j=1

c1jE [v(Y1j)] +

n2∑
j=1

c2jE (v(Y2j)− v(Y1j))

−
n2∑

j=1

c2jE
[
(v(Y2j)− v(Y1j))IB1j

]−
n2∑

j=1

c2jE
[
v(Y2j)IBc

1j

⋂
Bc

2j

]

+

n2∑
j=1

n1∑
i=3

E
[
cijv(Yij)IBij

]
.

Since v(x) is a nonnegative nonincreasing convex function, the function

h(y) = lim
x→y−

v(x)− v(y)

x− y

is a nonpositive nondecreasing function. By the convexity of the function v,

v(Y2j)− v(Y1j) ≥ (Y2j − Y1j)h(Y1j).

Since h(Y1j) is a nonpositive nondecreasing function, the function −h(Y1j) is nonneg-

ative nonincreasing and −h(Y1j)IB1j
is a nonincreasing function of Y1j, since by defi-

nition the indicator function IB1j
is a nonincreasing function of Y1j. Then h(Y1j)IB1j

is a nondecreasing function of Y1j. Furthermore, by the demimartingale property of

{Yn,n ∈ N2} we have:

E
[
(v(Y2j)− v(Y1j))IB1j

] ≥ E
[
(Y2j − Y1j)IB1j

h(Y1j)
] ≥ 0.

Thus,

εP (A) ≤
n2∑

j=1

c1jE [v(Y1j)] +

n2∑
j=1

c2jE [(v(Y2j)− v(Y1j))]−
n2∑

j=1

c2jE
[
v(Y2j)IBc

1j

⋂
Bc

2j

]

+

n2∑
j=1

c3jE
[
v(Y3j)IB3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]

≤
n2∑

j=1

2∑
i=1

cijE [(v(Yij)− v(Yi−1j))] +

n2∑
j=1

c3jE
[
v(Y3j)IB3j

− v(Y2j)IBc
1j

⋂
Bc

2j

]
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+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]

=

n2∑
j=1

3∑
i=1

cijE [(v(Yij)− v(Yi−1j))]−
n2∑

j=1

c3jE
[
(v(Y3j)− v(Y2j))IB1j

⋃
B2j

]

−
n2∑

j=1

c3jE
[
v(Y3j)IBc

1j

⋂
Bc

2j

⋂
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]
.

The indicator IB1j
⋃

B2j
is a nonincreasing function of Y1j, Y2j, so by using the same

arguments as before we have:

E[(v(Y3j)− v(Y2j))IB1j
⋃

B2j
] ≥ 0.

Continuing in the same way we finally have:

εP (A) ≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yi−1j)]−
n2∑

j=1

cn1jE
[
v(Yn1j)I⋂n1

i=1 Bc
ij

]

≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yi−1j)] . (4.6)

By symmetry it can be shown that:

εP (A) ≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yij−1)]−
n1∑
i=1

cin2E
[
v(Yin2)I⋂n2

j=1 Bc
ij

]

≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yij−1)] . (4.7)

Inequalities (4.6) and (4.7) together finally give

εP

(
max

(i,j)≤(n1,n2)
cijv(Yij) ≥ ε

)
≤ min

{
n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yi−1j)] ,

n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yij−1)]

}

and (4.5) is established.

4.3 Doob-type inequality

The following result gives a Doob type inequality for multidimensionally indexed demi-

martingales.
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Corollary 4.3.1 Let {Yn,n ∈ Nd}, be a multidimensionally indexed demimartingale

with Yk ≡ 0 when
∏d

i=1 ki = 0 and let g be a nonnegative, nondecreasing convex function

on R with g(0) = 0.

Let

A =

{
max
k≤n

g(Yk) ≥ ε

}
, Ck(s) =

{
max

1≤ks≤ns

g(Yk) ≥ ε

}

and

k(s) = (k1, . . . , ks−1, ks+1, . . . , kd).

Then, for every ε > 0:

εP (A) ≤ min
1≤s≤d





∑

k(s)≤n(s)

∫

C
k(s)

g(Yn)dP



 .

Proof. We give the proof for d = 2. The case for d > 2 is similar.

By (4.2) and for cij = 1 ∀ (i, j) ≤ (n1, n2) we have:

εP

(
max

(i,j)≤(n1,n2)
g(Yij) ≥ ε

)
≤

n1∑
i=1

n2∑
j=1

E[g(Yij)− g(Yi−1j)]−
n2∑

j=1

E
[
g(Yn1j)I⋂n1

i=1 Bc
ij

]

≤
n2∑

j=1

E
[
g(Yn1j)ICj

]

=

n2∑
j=1

∫

Cj

g(Yn1j)dP

≤
n2∑

j=1

∫

Cj

g(Yn1n2)dP, (4.8)

where the last inequality follows from the demimartingale property.

Similarly it can be shown that:

εP

(
max

(i,j)≤(n1,n2)
g(Yij) ≥ ε

)
≤

n1∑
i=1

∫

Ci

g(Yn1n2)dP. (4.9)

Inequalities (4.8) and (4.9) together give the desired result.
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4.4 Hájek-Rényi inequality

Using Theorem 4.2.3 we derive a Hájek-Rényi inequality for arrays of mean zero asso-

ciated random variables.

Corollary 4.4.1 Let {Xn,n ∈ Nd} be mean zero multidimensionally indexed associ-

ated random variables and {cn,n ∈ Nd} a nonincreasing array of positive numbers.

Let

Sn =
∑

k≤n

Xk, with Sk ≡ 0 if
d∏

i=1

ki = 0.

Then for every ε > 0,

P

(
max
k≤n

ck | Sk |≥ ε

)
≤ min

1≤s≤d

{
ε−2

∑

k≤n

c2
k

[
2Cov(Sk;s;i−1, S

(s)
k ) + E(S

(s)
k )2

]}

where

S
(s)
k =

k1∑
i1=1

. . .

ks−1∑
is−1=1

ks+1∑
is+1=1

. . .

kd∑
id=1

Xi1...is−1ksis+1...id

and

Sk;s;ks−1 =

k1∑

l1=1

. . .

ks−1∑

ls−1=1

ks−1∑

ls=1

ks+1∑

ls+1=1

. . .

kd∑

ld=1

Xl.

Proof. (For d = 2)

It can be easily verified that the array {Sn,n ∈ N2} is a 2-indexed demimartingale.

Let g(x) =| x |2. Then g is a nonnegative convex function.

P

(
max

(i,j)≤(n1,n2)
cij | Sij |≥ ε

)
= P

(
max

(i,j)≤(n1,n2)
c2
ij | Sij |2≥ ε2

)

≤ ε−2

n1∑
i=1

n2∑
j=1

c2
ijE

(| Sij |2 − | Si−1j |2
)

= ε−2

n1∑
i=1

n2∑
j=1

c2
ijE [(Sij + Si−1j)(Sij − Si−1j)]

= ε−2

n1∑
i=1

n2∑
j=1

c2
ijE

[
j∑

m=1

Xim

(
2Si−1j +

j∑
m=1

Xim

)]

= ε−2

n1∑
i=1

n2∑
j=1

c2
ij

[
2Cov

(
Si−1j,

j∑
m=1

Xim

)

Milto
 H

ad
jik

yri
ak

ou



78 CHAPTER 4. MULTIDIMENSIONALLY INDEXED EXTENSIONS

+E

(
j∑

m=1

Xim

)2

 (4.10)

where the first inequality follows from Theorem 4.2.3. Similarly it can be shown that:

P

(
max

(i,j)≤(n1,n2)
cij | Sij |≥ ε

)
≤ ε−2

n1∑
i=1

n2∑
j=1

c2
ij


2Cov

(
Sij−1,

i∑
m=1

Xmj

)
+ E

(
i∑

m=1

Xmj

)2

 .

(4.11)

The result now follows from (4.10) and (4.11).

Remark 4.4.2 The bound derived for d = 1 is sharper than the bound provided by

Corollary 2.2.5.

Remark 4.4.3 For d = 2 and cij = 1 for all (i, j) ∈ N2 the right hand side of Corollary

4.4.1 becomes

ε−2 min

{
E[

n1∑
i=1

n2∑
j=1

n1∑

k=1

n2∑

l=1

XijXkl] +

n2−1∑
s=1

n2−s∑
j=1

n1−1∑
i1=1

n1∑
i2=1,i2>i1

E[Xi1j + Xi2j]
2,

E[

n1∑
i=1

n2∑
j=1

n1∑

k=1

n2∑

l=1

XijXkl] +

n1−1∑
s=1

n1−s∑
i=1

n2−1∑
j1=1

n2∑
j2=1,j2>j1

E[Xij1 + Xij2 ]
2

}

and for small values of n1 and n2 it compares favorably with the Hájek-Rényi inequality

in Theorem 2.2.9. Observe that the bound of Theorem 2.2.9 is

64

ε2
E[

n1∑
i=1

n2∑
j=1

n1∑

k=1

n2∑

l=1

XijXkl]

for bn1n2 = 1 for all n1 ≥ 1, n2 ≥ 1. The same conclusion holds for general arrays

{cij, (i, j) ∈ N2} satisfying (2.1).

4.5 Further maximal inequalities

Using Theorem 4.2.3 as a source result, one can obtain various maximal probability

and maximal moment inequalities, such as those provided by the next two corollaries.
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Corollary 4.5.1 Let {Yn,n ∈ Nd}, be a multidimensionally indexed demimartingale

with Yk = 0 when
∏d

i=1 ki = 0 and let g be a nonnegative convex function on R with

g(0) = 0.

Let

A =

{
max
k≤n

g(Yk) ≥ ε

}
, Ck(s) =

{
max

1≤ks≤ns

g(Yk) ≥ ε

}

and

k(s) = (k1, . . . , ks−1, ks+1, . . . , kd).

Then for every ε > 0:

εP (A) ≤ min
1≤s≤d





∑

k(s)≤n(s)

∫

C
k(s)

g(Yn)dP



 .

Proof. (For d = 2)

Let u(x) and v(x) be the functions defined in Theorem 4.2.3. We further define:

A(u) =

{
max

(i,j)≤(n1,n2)
u(Yij) ≥ ε

}

and

B
(u)
1k2

= {u(Y1k2) ≥ ε} , B
(u)
k1k2

= {u(Ylk2) < ε, 1 ≤ l < k1, u(Yk1k2) ≥ ε}.

Since u is nondecreasing convex, by Doob’s inequality in Corollary 4.3.1 we have,

εP (A(u)) ≤
n2∑

j=1

∫
⋃n1

i=1 B
(u)
ij

u(Yn1n2)dP. (4.12)

We need to prove a similar result for the quantity P (A(v)):

εP (A(v)) ≤
n2∑

j=1

n1∑
i=1

E [v(Yij)− v(Yi−1j)]−
n2∑

j=1

cn1jE
[
v(Yn1j)I(

⋃n1
i=1 B

(v)
ij )c

]

=

n2∑
j=1

E
[
v(Yn1j)− v(Yn1j)I(

⋃n1
i=1 B

(v)
ij )c

]
=

n2∑
j=1

E
[
v(Yn1j)I⋃n1

i=1 B
(v)
ij

]

=

n2∑
j=1

∫
⋃n1

i=1 B
(v)
ij

v(Yn1j)dP ≤
n2∑

j=1

∫
⋃n1

i=1 B
(v)
ij

v(Yn1n2)dP (4.13)
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where the first inequality follows from Theorem 4.2.3. By (4.12) and (4.13) we have

that:

εP (A) ≤ εP (A(u)) + εP (A(v))

≤
n2∑

j=1

{∫

{max1≤i≤n1
u(Yij)≥ε}

u(Yn1n2) +

∫

{max1≤i≤n1
v(Yij)≥ε}

v(Yn1n2)

}
dP

≤
n2∑

j=1

∫

{max1≤i≤n1
max{u(Yij),v(Yij)}≥ε}

(u(Yn1n2) + v(Yn1n2))dP

=

n2∑
j=1

∫

Cj

g(Yn1n2)dP. (4.14)

Similarly,

εP (A) ≤
n1∑
i=1

∫

Ci

g(Yn1n2)dP. (4.15)

Inequalities (4.14) and (4.15) together give the desired result.

Corollary 4.5.2 Let {Yn,n ∈ N2} be a 2-indexed demimartingale with Yi0 = Y0j = 0

for all (i, j) ≤ (n1, n2). Let g be a nonnegative convex function on R with g(0) = 0.

Then for all p > 1:

E

(
max

(i,j)≤(n1,n2)
g(Yij)

)p

≤ Cp,n1,n2E (g(Yn1n2))
p

with Cp,n1,n2 = min{n1, n2}
(

p
p−1

)2p−1

.

Proof.

E

[
max

(i,j)≤(n1,n2)
g(Yij)

]p

= p

∫ ∞

0

xp−1P

(
max

(i,j)≤(n1,n2)
g(Yij) ≥ x

)
dx

≤ p

∫ ∞

0

xp−2

n2∑
j=1

E

[
g(Yn1n2)I{ max

1≤i≤n1

g(Yij) ≥ x}
]

dx (4.16)

= p

n2∑
j=1

E

[
g(Yn1n2)

∫ max1≤i≤n1
{g(Yij)}

0

xp−2dx

]

=
p

p− 1

n2∑
j=1

E

[
g(Yn1n2)

(
max

1≤i≤n1

g(Yij)

)p−1
]

≤ p

p− 1
[E(g(Yn1n2))

p]
1
p

n2∑
j=1

{
E

(
max

1≤i≤n1

g(Yij)

)p} p−1
p

(4.17)
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where inequality (4.16) follows from Corollary 4.5.1. Now observe that for j = 1, . . . , n2,

{Yij, i ≥ 1} is a single index demimartingale. Therefore by Theorem 3.3 of Wang and

Hu (2009)

E

(
max

1≤i≤n1

g(Yij)

)p

≤
(

p

p− 1

)p

E (g(Yn1j))
p

≤
(

p

p− 1

)p

E

(
max

1≤j≤n2

g(Yn1j)

)p

≤
(

p

p− 1

)2p

E (g(Yn1n2))
p (4.18)

where (4.18) follows from Theorem 3.3 of Wang and Hu (2009) and the fact that

{Yn1j, j ≥ 1} is a single index demimartingale. Combining (4.17) with (4.18) we have

that

E

(
max

(i,j)≤(n1,n2)
g(Yij)

)p

≤ n2

(
p

p− 1

)2p−1

E (g(Yn1n2))
p . (4.19)

Similarly,

E

(
max

(i,j)≤(n1,n2)
g(Yij)

)p

≤ n1

(
p

p− 1

)2p−1

E (g(Yn1n2))
p . (4.20)

The desired result follows by combining (4.19) and (4.20).

Remark 4.5.3 The upper bound of Corollary 4.5.2 unfortunately depends on n1, n2

and therefore this result might be useful only for small values of n1, n2 or for asymptotic

results in case of n1 or n2 is fixed or bounded.

Next, we present a strong law of large numbers for multidimensionally indexed demi-

martingales.

Corollary 4.5.4 Assume that {Yk,k ∈ Nd}, {ck,k ∈ Nd} and the function g are

as in Theorem 4.2.3. We also assume that there exists a number p ≥ 1 such that

E(g(Yk))
p < ∞ and for some 1 ≤ s ≤ d

∑

k

cp
kE([g(Yk)]

p−[g(Yk;s;ks−1)]
p) < ∞ and

∑

ki,i6=s

cp
k;s;NE[g(Yk;s;N)]p < ∞ for each N ∈ N.

(4.21)

Then

ckg(Yk) → 0 a.s as k →∞
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where k →∞ means ki →∞ for all i = 1, . . . , d.

Proof. We give the proof for d = 2. Without loss of generality we assume that s = 2.

Then, conditions (4.21) can be written in the form

∑

(n1,n2)

cp
n1n2

E([g(Yn1n2)]
p−[g(Yn1n2−1)]

p) < ∞ ,
∑
n1

cp
n1NE[g(Yn1N)]p < ∞ for each N ∈ N.

(4.22)

Then by applying Theorem 4.2.3 for ε > 0,

εpP ( max
(n1,n2)≥(N,N)

cn1n2g(Yn1n2) ≥ ε) = εpP ( max
(n1,n2)≥(N,N)

cp
n1n2

[g(Yn1n2)]
p ≥ εp)

≤
∑

(n1,n2)≥(N,N)

cp
n1n2

E ([g(Yn1n2)]
p − [g(Yn1n2−1)]

p)

≤
∞∑

n1=N

cp
n1NE[g(Yn1N)]p

+
∑

(n1,n2)≥(N,N+1)

cp
n1n2

E ([g(Yn1n2)]
p − [g(Yn1n2−1)]

p) .

By using conditions (4.22) it is straightforward to verify that

P ( max
(n1,n2)≥(N,N)

cn1n2g(Yn1n2) ≥ ε) → 0 as N →∞.

Given that the partial sum of mean zero multidimensionally indexed associated

random variables is a multidimensionally indexed demimartingale we immediately have

the following result.

Corollary 4.5.5 Let {Xn,n ∈ Nd} be multidimensionally indexed mean zero associ-

ated random variables and let {ck,k ∈ Nd} be as in Theorem 4.2.3. Let Sn =
∑

i≤n Xi.

We also assume that there exists a number p ≥ 1 such that E(|Sk|p) < ∞ and for some

1 ≤ s ≤ d

∑

k

cp
kE(|Sk|p − |Sk;s;ks−1|p) < ∞ and

∑

ki,i6=s

cp
k;s;NE|Sk;s;N |p < ∞ for each N ∈ N.

Then

ckSk → 0 a.s as k →∞.
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Proof. The result follows by Corollary 4.5.4 since the function g(x) = |x| is nonnega-

tive convex and g(0) = 0.

For the special case where ck =
{∏d

i=1 ki

}−1

and p = 2, Corollary 4.5.5 gives a

generalization of Kolmogorov’s strong law of large numbers.

Corollary 4.5.6 Let {Xn,n ∈ Nd} be multidimensionally indexed mean zero associ-

ated random variables and let Sn =
∑

i≤n Xi. We assume that E(|Sk|2) < ∞ and for

some 1 ≤ s ≤ d
∑

k

a2
kE(|Sk|2 − |Sk;s;ks−1|2) < ∞

and
∑

ki,i6=s

a2
k;s;NE|Sk;s;N |2 < ∞ for each N ∈ N.

where ak =
(∏d

i=1 ki

)−1

and ak;s;N = ak1...ks−1Nks+1...kd
.

Then

Sn

| n | → 0 a.s. as n →∞.
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Chapter 5

Future Work

5.1 Introduction

The results presented in this thesis in no way exhaust the research on the concepts of

demimartingales and N-demimartingales. It would be naive to state that everything

one wants to know is included in this manuscript. However the results can serve as

a starting point for further advances on this important area of probability theory.

In what follows we briefly describe plans for future work on three topics, namely on

multidimensionally indexed N-demimartingales, on continuous time demimartingales

(and N-demimartingales) and on strong N-demisupermartingales.

The class of multidimensionally indexed N-demimartingales is a natural general-

ization of the notion of N-demimartingales defined in Chapter 3. In a future work,

maximal and moment inequalities can be provided for this new class of random vari-

ables as well as asymptotic results.

The class of continuous time demimartingales and N-demimartingales is an exten-

sion to the case of continuous time index and one might conjecture that in the future

could be proven to be useful given the fact that continuous time martingales are ap-

plicable to important areas of human activity such as finance and economics.

The class of strong N-demisupermartingales, is mainly of theoretical interest and

85
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it is defined following Prakasa Rao (2007) who considers the case of strong demisub-

martingales. This concept is closely related to the ideas of strong martingales and

domination, studied in detail by Osekowski (2007).

5.2 Multidimensionally indexed N-demimartingales

Motivated by the definition of multidimensionally indexed demimartingales which are

presented in Chapter 4, the class of multidimensionally indexed N-demimartingales can

be defined in a similar way as a natural generalization of the notion of N-demimartingales

discussed in Chapter 3. Closely related to multidimensionally indexed N-demimartingales

is the notion of negatively associated multidimensionally indexed random variables.

Definition 5.2.1 A collection of multidimensionally indexed random variables {Xi, i ≤
n} is said to be negatively associated if

Cov(f(Xi, i ∈ A), g(Xj, j ∈ B)) ≤ 0

where A and B are disjoint subsets of the set {i, i ≤ n} and f, g are componentwise

nondecreasing functions on R|A| and R|B| respectively. An infinite collection is nega-

tively associated if every subcollection is associated.

The above definition is the classical definition of negatively associated random vari-

ables stated for the case of multidimensionally indexed random variables. Let us

now introduce the definitions of multidimensionally indexed N-demimartingales and

N-demisupermartingales.

Definition 5.2.2 An array of random variables {Xn,n ∈ Nd} is called a multidimen-

sionally indexed N-demimartingale if:

E {(Xj −Xi)f(Xk,k ≤ i)} ≤ 0, ∀ i, j ∈ Nd with i ≤ j,

and for all componentwise nondecreasing functions f . If in addition f is required

to be nonnegative, then {Xn,n ∈ Nd} is said to be a multidimensionally indexed N-

demisupermartingale.
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It is trivial to verify that the partial sum of mean zero negatively associated multidi-

mensionally indexed random variables is a multidimensionally indexed N-demimartingale.

Clearly a multidimensionally indexed martingale with the natural choice of σ-

algebras is a multidimensionally indexed N-demimartingale (and of course, a multi-

dimensionally indexed demimartingale).

In a future work, our goal is to provide maximal and moment inequalities for this

new class of random variables. These inequalities can lead us to asymptotic results

which will be also valid for the case of negatively associated multidimensionally indexed

random variables.

5.3 Continuous time demimartingales

A stochastic process is the mathematical generalization of an empirical process whose

development is governed by probabilistic laws. Many applications of stochastic pro-

cesses occur in physics, engineering, biology, medicine, psychology as well as other

branches of mathematical analysis.

Let a filtered complete probability space, (Ω,F , F, P ) with filtration F = (Ft, t ∈
T ) be given. A time-index set, T , is considered to be continuous: T = R+ := [0,∞)

or discrete: T = N := {0, 1, 2, . . .}.
In the case of a time-index set T = R+, the filtration, F is an increasing and right

continuous family of σ-algebras. A filtered probability space (Ω,F , F, P ) is also called

a stochastic basis.

Let (E, E) be a measurable space, usually Polish, i.e., a complete separable metric

space, for example Rd.

Definition 5.3.1 An F -adapted stochastic process X = {Xt, t ∈ T } is given by a

family of E-valued random variables that is, for each t ∈ T , Xt(ω) is Ft-measurable,

for each ω ∈ Ω. X(ω) is an E-valued function on T and called a trajectory or path of

X.
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For a given F -adapted stochastic process X = {Xt, t ∈ T }, the natural filtration

of X is:

FX
t := σ{Xs, s ≤ t}, t ∈ T ,

generated by paths of Xs up to and including time t. By definition, X is always

FX
t -adapted and FX

t ⊂ Ft for each t ∈ T .

Next we introduce the concept of stopping times which turn out to have several

attractive properties in the martingale theory. For example, many martingales can be

suitably ”stopped” in such a way that the martingale property is maintained.

Definition 5.3.2 A random variable τ = τ(ω) : Ω → T̄ is called a stopping time, if

for all t ∈ T
{ω : τ(ω) ≤ t} ∈ Ft.

where T̄ := T ⋃{∞}. The stopping time τ is finite if P{τ < ∞} = 1 and is bounded

if P{τ ≤ c} = 1 for some constant c.

The right continuity of the filtration F = {Ft, t ∈ R+} implies that {ω : τ(ω) <

t} ∈ Ft for all t ∈ R+.

The stopping time σ-algebra, Fτ , is defined to be:

Fτ := {A ∈ F : A
⋂
{τ ≤ t} ∈ Ft, ∀ t ∈ T }.

The important feature is that stopping times are measurable with respect to ”what

has happened so far”, and hence, do not depend on the future. Typical stopping times

are first entrance times, such as the first time a random walk reaches a certain level, the

first time a simple, symmetric random walk returns to 0, and so on. Such questions can

be answered by looking at what has happened until ”now”. Typical random indices

which are not stopping times are last exit times, for example, the last time a simple,

symmetric random walk returned to 0. Such questions cannot be answered without

knowledge of the future.

Milto
 H

ad
jik

yri
ak

ou



5.3. CONTINUOUS TIME DEMIMARTINGALES 89

The following properties of stopping times can easily be verified (see for example

Karlin and Taylor (1975), Szekli (1995), Borovskikh and Korolyuk (1997)) .

1. If τ1 and τ2 are two stopping times, then τ1 + τ2, τ1 ∧ τ2 := min{τ1, τ2} and

τ1 ∨ τ2 := max{τ1, τ2} are also stopping times and

Fτ1∧τ2 = Fτ1

⋂
Fτ2 , Fτ1∨τ2 = Fτ1

⋃
Fτ2

2. Let {τn, n ≥ 1}, be a sequence of stopping times. Then ∧nτn and ∨nτn are also

stopping times and

F∧nτn =
⋂
Fτn .

3. Let τ ≤ σ. Then Fτ ⊆ Fσ.

4. Let X = {Xt, t ∈ T } be an F -adapted stochastic process. Then Xτ is Fτ -

measurable and the process stopped at τ . Also Xτ = {Xt∧τ , t ∈ T } is Ft∧τ -measurable

where Xt∧τ = XtI{t<τ} + XτI{t≥τ}.

Let us now introduce the concept of a continuous time-indexed martingale. As in

the case of discrete index, a martingale, in the context of games, is the mathematical

expression of the fairness of the game, in the sense that the conditional expectation of

a gain in the next game is its current value.

Definition 5.3.3 A real valued F -adapted stochastic process X = {Xt, t ∈ T } is

called a martingale (respectively submartingale, supermartingale) if for all t ∈ T , Xt

is integrable E | Xt |< ∞ and for all s < t

E[Xt|Fs] = Xs a.s.

(respectively E[Xt|Fs] ≥ Xs, E[Xt|Fs] ≤ Xs).

As in the case of discrete index, if {Xt, t ∈ T } has independent increments whose

means are zero, then {Xt, t ∈ T } is a continuous time indexed martingale.

One question that is important to be answered is under what conditions a stopped

martingale (submartingale) remains a martingale (submartingale). The answer is given

by the following theorem which is known as Doob’s optional sampling theorem.
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Theorem 5.3.4 Let Z ∈ L1, and suppose that {(Xn,Fn), n ≥ 0} is a martingale of the

form Xn = E(Z|Fn), n ≥ 0, and that τ is a stopping time. Then {(Xτ ,Fτ ), (Z,F∞)}
is a martingale, and in particular,

EXτ = EZ.

A property of martingales is that they have constant expectation. As a corollary

of the previous result we can derive the fact that martingales evaluated at bounded

stopping times have constant expectation. The following theorem proves that this

property characterizes martingales.

Theorem 5.3.5 Suppose that X1, X2, . . . is an Fn-adapted sequence. Then {(Xn,Fn), n ≥
0} is a martingale if and only if

EXτ = constant for all bounded stopping times τ.

Doob’s optional sampling theorem can be extended in order to cover a sequence of

non-decreasing stopping times.

Theorem 5.3.6 Let Z ∈ L1 and suppose that {(Xn,Fn), n ≥ 0} is a martingale of

the form Xn = E(Z|Fn), n ≥ 0. If τ1 ≤ τ2 ≤ · · · ≤ τk are stopping times, then

{X0, Xτ1 , Xτ2 , . . . , Xτk
, Z} is a martingale, and

EX0 = EXτ1 = · · · = EZ.

For further study on the continuous time index martingales see Gut (2005) or

Borovskikh and Korolyuk (1997).

As a natural generalization of the definition of demi(sub)martingales we can define

continuous time-indexed demi(sub)martingales.

Let M(k) denote the class of real-valued coordinatewise nondecreasing functions

on Rk, k ∈ N.
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Definition 5.3.7 The stochastic process {Xt, t ∈ T } is called a demimartingale if for

all t ∈ T and for all s < t

E[(Xt −Xs)f(Xu1 , . . . , Xuk
, ui ≤ s, i = 1, . . . , k)] ≥ 0,

for all f ∈ M(k) such that the expectation is defined. Moreover, if f is also assumed

to be nonnegative, the sequence is called a demisubmartingale.

Remark 5.3.8 In the case where the time-index set is of the form T = {t1, t2, . . .} the

sequence will be called a discrete time-index demi(sub)martingale while in the case of

T = R+ the sequence is called a continuous time-index demi(sub)martingale.

Let us now introduce the concept of (positive) association for a stochastic process

{Xt, t ∈ T }.

Definition 5.3.9 Let T be a time index. The stochastic process {Xt, t ∈ T } is said

to be (positively) associated if

Cov(f(Xt, t ∈ T1), g(Xt, t ∈ T2)) ≥ 0

for all T1 and T2 finite subsets of T and f ∈ M(| T1 |) and g ∈ M(| T2 |) provided

such that the covariance is defined.

Remark 5.3.10 Let {Xt, t ∈ T } be an associated stochastic process such that E(Xt) =

0 for all t ∈ T = {t1, t2, . . .}. We define

St =
∑
ti≤t

Xti .

Then {St, t ∈ T } is a demimartingale since, for t > s

E[(St − Ss)f(Sl, l ≤ s)] = E

[(∑
ti≤t

Xti −
∑
ti≤s

Xti

)
f(Xti , ti ≤ s)

]

= E

[( ∑
s<ti≤t

Xti

)
f(Xti , ti ≤ s)

]

≥ E

( ∑
s<ti≤t

Xti

)
E[f(Xti , ti ≤ s)]

= 0,
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where f ∈M(k) with k being the cardinality of the set Ts = {t ∈ T : t ≤ s}.

The class of continuous time-index N-demimartingales can be defined in a similar

way.

Definition 5.3.11 The stochastic process {Xt, t ∈ T } is called an N-demimartingale

if for all t ∈ T and for all s < t

E[(Xt −Xs)f(Xu1 , . . . , Xuk
, ui ≤ s, i = 1, . . . , k)] ≤ 0

for all f ∈ M(k) such that the expectation is defined. Moreover, if f is also assumed

to be nonnegative, the sequence is called an N-demisupermartingale.

Remark 5.3.12 In the case where the time-index set is of the form T = {t1, t2, . . .} the

sequence will be called a discrete time-index N-demi(super)martingale while in the case

of T = R+ the sequence is called a continuous time-index N-demi(super)martingale.

Our goal is to explore the relation between continuous time index martingales and

continuous time index demimartingales and between continuous time index martingales

and continuous time index N-demimartingales. It is worth trying to see if the results

of this thesis and other results are valid for the case of continuous index. Finally, we

will investigate the role of stopping times in the theory of demimartingales. It would

be interesting to see if stopping times have as crucial a role as the one they have in the

theory of martingales.

5.4 Strong N-demisupermartingales

Let (Ω,F ,P) be a probability space equipped with the discrete filtration (assume that

F0 = {Ω, ∅}). Suppose that {Mn, n ∈ N} and {Nn, n ∈ N} are Hilbert-space-valued

martingales such that M0 = N0 = 0 a.s.. Define the difference sequences {dn, n ∈ N}
and {en, n ∈ N} where dn = Mn−Mn−1 and en = Nn−Nn−1, n = 1, 2, . . .. Burkholder
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(1988, 1989) states that if {Mn, n ∈ N} is differentially subordinated by {Nn, n ∈ N},
that is, with probability 1

|dn| ≤ |en|

then for all t > 0 and all n,

tP (|Mn| ≥ t) ≤ 2E(|Nn|)

and for any 1 < p < ∞ and any n,

(E|Mn|p)
1
p ≤ (p∗ − 1)(E|Nn|p)

1
p (5.1)

where p∗ = max{p, p/(p− 1)}.
Burkholder’s results have many extensions since the subordination condition can

be replaced by other conditions called dominations. Ozekowski (2007) introduced the

concept of dominated martingales.

Definition 5.4.1 Let {Mn, n ∈ N} and {Nn, n ∈ N} be Fn-adapted martingales and

let φ : R+ → R be a nondecreasing convex function. Then Mn is dominated by the

martingale Nn if for any n ≥ 1

E(φ(|dn|)|Fn−1) ≤ E(φ(|en|)|Fn−1) a.s.

The notation M ≺C N is used to denote domination of Mn by Nn.

Ozekowski (2007) provides the following weak-type inequality for dominated mar-

tingales.

Theorem 5.4.2 For all martingales (Mn), (Nn) taking values in the Hilbert space H,

such that M ≺C N , and any t > 0, we have

tP (|Mn| ≥ t) ≤ 6E|Nn|, n = 0, 1, 2, . . . .

Motivated by the work of Burkholder (1988, 1989) and Osekowski (2007) for inequal-

ities for dominated martingales, Prakasa Rao (2007) defines strong demisubmartin-

gales.
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Definition 5.4.3 Let {Mn, n ≥ 0} with M0 = 0 be a sequence of random variables

defined on a probability space (Ω,F ,P). Suppose that

E [(Mn+1 −Mn)f(M0, . . . ,Mn)|ζn] ≥ 0

for any nonnegative coordinatewise nondecreasing function f given the filtration {ζn, n ≥
0} contained in F . Then the sequence {Mn, n ≥ 0} is said to be a strong demisub-

martingale with respect to the filtration {ζn, n ≥ 0}.

It is obvious that a strong demisubmartingale is always a demisubmartingale.

In the following definition, Prakasa Rao (2007) introduces the concept of domination

of strong demisubmartingales by demisubmartingales.

Definition 5.4.4 Suppose that {Mn, n ≥ 0} is a strong demisubmartingale with respect

to the filtration generated by a demisubmartingale {Nn, n ≥ 0}. Let M0 = N0 = 0.

The strong demisubmartingale {Mn, n ≥ 0} is said to be weakly dominated by the

demisubmartingale {Nn, n ≥ 0}, if for every nondecreasing convex function φ : R+ →
R, and for any nonnegative coordinatewise nondecreasing function f : R2n → R,

E [(φ(|en|)− φ(|dn|))f(M0, . . . , Mn−1; N0, . . . , Nn−1)|N0, . . . , Nn−1] ≥ 0, a.s.,

for all n ≥ 1, where dn = Mn −Mn−1 and en = Nn −Nn−1. In such a case we use the

notation M ¿ N .

In analogy with the inequalities for dominated martingales developed in Osekowski

(2007), Prakasa Rao (2007) establishes the following inequality regarding the domina-

tion of a strong demisubmartingale by a demisubmartingale.

Theorem 5.4.5 Let {Mn, n ≥ 0} be a strong demisubmartingale with respect to the

filtration generated by a demisubmartingale {Nn, n ≥ 0}. Furthermore suppose that

M ¿ N . Then for any λ > 0,

λP (|Mn| ≥ λ) ≤ 6E|Nn|, n ≥ 0. (5.2)
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Motivated by these definitions and results, we can define the class of strong N-

demisupermartingales.

Definition 5.4.6 Let {Yn, n ≥ 0} with Y0 = 0 be a sequence of random variables

defined on a probability space (Ω,F ,P). Suppose that

E [(Yn+1 − Yn)f(Y0, . . . , Yn)|Fn] ≤ 0

for any nonnegative coordinatewise nondecreasing function f , given the filtration {Fn, n ≥
0} contained in F . The sequence {Yn, n ≥ 0} is said to be a strong N-demisupermartingale

with respect to the filtration {Fn, n ≥ 0}.

Remark 5.4.7 It is straightforward to verify that a strong N-demisupermartingale is

an N-demisupermartingale in the sense of N-demimartingales discussed in Chapter 3.

Definition 5.4.8 Let {Yn, n ≥ 0} be a strong N-demisupermartingale with respect to

the filtration generated by an N-demisupermartingale {Xn, n ≥ 0} with Y0 = X0 ≡ 0.

The strong N-demisupermartingale {Yn, n ≥ 0} is said to be weakly dominated by the

N-demisupermartingale {Xn, n ≥ 0} if for every nondecreasing convex function φ :

R+ → R, and for any nonnegative coordinatewise nondecreasing function f : R2n → R,

E[(φ(|en|)− φ(|dn|))f(Y0, . . . , Yn−1; X0, . . . , Xn−1) | X0, . . . , Xn−1] ≤ 0 a.s.,

for all n ≥ 1 where dn = Yn−Yn−1 and en = Xn−Xn−1. The notation Y ¿ X is used

to denote domination of {Yn, n ≥ 0} by {Xn, n ≥ 0}.

In analogy to the case of strong demisubmartingales studied by Prakasa Rao (2007),

we intend to investigate the concept of domination of a strong N-demisupermartingale

by an N-demisupermartingale. In particular, it would be of interest to see if results such

as (5.2) can be obtained or norm inequalities similar to (5.1) can be established for the

case of domination of a strong N-demisupermartingale by an N-demisupermartingale.

In addition it is natural to see how these results are related to convergence concepts of

the two sequences. Furthermore, the classes of strong demisubmartingales and strong

N-demisubmartingales will be fully investigated. This investigation could include max-

imal and moment inequalities as well as related asymptotic results.
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5.5 Best constants for the Marcinkiewicz-Zygmund

inequalities

An interesting subject for future work is to determine the optimal constants for the

Marcinkiewicz-Zygmund-type inequalities for nonnegative N-demimartingales provided

in Section 3.4. In the present work we didn’t focus on this task. However the various

constants which appear in the literature for the corresponding inequalities for inde-

pendent random variables and martingales raise the question whether the constant

cp = p− 1 which appears in our result can be improved.
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