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Abstract

An important tool for the solution of differential equations is the application of symmetry

methods which reflect invariance under infinitesimal transformations. The Norwegian

mathematician Marious Sophus Lie (1842–1899) was the developer of “Lie theory” [38,39].

Lie came to the study of the symmetries of differential equations [40] through his extensive

work on continuous groups [44] of geometrical transformations [41–43] and, later, contact

transformations [45].

Lie group methods are perhaps the most powerful tool currently available in finding

exact solutions of nonlinear partial differential equations (PDEs). Probably the most

useful method is the application of Lie point transformations which are those that form

a continuous Lie group of transformations, leaving the PDE invariant. Symmetries of

this PDE are then revealed, perhaps enabling new solutions to be found directly or via

similarity reductions.

The idea of group classification of nonlinear equations introduced by Ovsiannikov [49]

who studied the Lie symmetries of the well known nonlinear diffusion equation

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
.

In recent years, Lie group methods were extended. For example, Bluman and coauthors

presented the nonclassical reduction method and also introduced the idea of potential

symmetries.

The nonclassical method, introduced by Bluman in 1967 [3], generalises and includes

Lie’s classical method for obtaining solutions of PDEs. In this case we require the invari-

ance of the PDE, in conjunction with the invariant surface condition, under the infinites-

imal transformations.

Bluman and coauthors [4,5] introduced a method for finding a new class of symmetries

for a system of PDEs ∆(t, x, u), in the case that the system possesses at least one con-
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servation law. If we introduce potential variables v as further unknown functions using

conservation laws of the system, we obtain a new system Z(t, x, u, v). Any Lie symme-

try of Z(t, x, u, v) induces a symmetry for the system ∆(t, x, u). If at least one of the

generators which correspond to the variables t, x and u depends explicitly on the poten-

tial variables v, then the local symmetry of Z(t, x, u, v) induces a nonlocal symmetry of

∆(t, x, u), otherwise the symmetry of Z(t, x, u, v) induces a local symmetry of ∆(t, x, u).

These nonlocal symmetries are known as potential symmetries.

If we combine the method for finding potential symmetries and the nonclassical method

we derive the so-called, nonclassical potential symmetries. In this method we search for

nonclassical symmetries for the potential system or the potential equation. However, it

turns out that it is easier to search for nonclassical symmetries for the potential equation

which is the equation that arises if we eliminate the variable u from the potential system.

Equivalence transformations play an important role in the theory of Lie group classifi-

cation. The set of all equivalence transformations of a given family of differential equations

forms a group which is called the equivalence group [39,50].

The idea of Lie symmetries and their generalisations as described above will be applied

to certain evolution equations. Chapters 2–3 come from the literature and Chapters 4–9

is the new contribution of this work. This thesis is organised as follows. In Chapter 2 we

present the basic ideas and definitions that are needed in later chapters. In Chapter 3 we

show the known results for a second-order nonlinear diffusion equation. In Chapters 4, 5

and 6 we prove symmetry properties for a chain of a third-, fourth-, fifth- and sixth-order

equations. In Chapter 4 we exhibit symmetry properties for a fourth-order equation writ-

ten in conservation form. It was introduced in the literature as a generalisation of the

fourth-order thin-film equation. We derive equivalence transformations, Lie symmetries,

nonclassical symmetries, potential symmetries and nonclassical potential symmetries. In

Chapter 5 we give the analysis for a third-order equation and in Chapter 6 the symmetry

properties for the sixth- and fifth-order equations of the chain. In Chapter 7 we show

the Lie symmetries and the potential symmetries for a fourth- and third-order generalised

evolution equations, respectively. In Chapter 8 we derive an enhanced Lie group clas-

sification for a class of dispersive equations. The complete list of form-preserving point

transformations is presented. We show the nonclassical reductions, potential symmetries
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and nonclassical potential symmetries. In Chapter 9 we exhibit the Lie symmetry classifi-

cation for a third-order generalised equation with variable coefficients. Finally, in Chapter

10, we give certain conclusions and we suggest certain problems that can be considered

in the near future.
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PerÐlhyh

'Ena polÔ qr simo erg�leio gia thn epÐlush diaforik¸n exis¸sewn eÐnai h efarmog  twn

mejìdwn summetri¸n ìpou tic af noun analloÐwtec k�tw apì thn epÐdrash apeirost¸n

metasqhmatism¸n. O Norbhgìc majhmatikìc Marious Sophus Lie (1842–1899)  tan o em-

pneust c thc “jewrÐac Lie” [38,39]. O Lie melèthse tic summetrÐec twn diaforik¸n exis¸-

sewn [40] di� mèsou thc ektetamènhc melèthc twn suneq¸n om�dwn [44] twn gewmetrik¸n

metasqhmatism¸n [41�43] kai, argìtera, twn metasqhmatism¸n epaf c [45].

Oi mèjodoi summetri¸n Lie is¸c na apoteloÔn to pio dunatì diajèsimo ergaleÐo sthn

epÐlush mh-grammik¸n merik¸n diaforik¸n exis¸sewn. Pijanìn h pio qr simh mèjodoc

eÐnai h efarmog  twn shmeiak¸n metasqhmatism¸n Lie ìpou sqhmatÐzoun mia suneq  om�da

metasqhmatism¸n Lie kai af noun th merik  diaforik  exÐswsh analloÐwth. SqhmatÐzontai

ètsi oi summetrÐec thc merik c diaforik c exÐswshc apì tic opoÐec pijanìn na prokÔyoun

nèec lÔseic eÐte apeujeÐac eÐte me metasqhmatismoÔc omoiìthtac.

H idèa thc taxinìmhshc twn om�dwn miac mh-grammik c exÐswshc prwtoemfanÐsthke apì

ton Ovsiannikov [49] o opoÐoc melèthse tic summetrÐec Lie thc kal� gnwst c mh-grammik c

exÐswshc thc di�qushc

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
.

Ta teleutaÐa qrìnia, oi mèjodoi om�dwn epekt�jhkan. Gia par�deigma, o Bluman kai

oi sunerg�tec tou parousÐasan thn idèa twn mh-klasik¸n summetri¸n kai twn dunamik¸n

summetri¸n.

H mh-klasik  mèjodoc, h opoÐa parousi�sthke apì ton Bluman to 1967 [3], genikeÔei

kai perièqei thn klasik  mèjodo tou Lie gia ton prosdiorismì lÔsewn merik¸n diaforik¸n

exis¸sewn. Se aut  thn perÐptwsh apaitoÔme na eÐnai analloÐwth h merik  diaforik  exÐ-

swsh se sunÔparxh me thn sunj kh analloÐwthc epif�neiac, k�tw upì thn epÐdrash twn

apeirost¸n metasqhmatism¸n.
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O Bluman kai oi sunerg�tec tou [4, 5] parousÐasan mia mèjodo gia ton upologismì

miac nèac t�xhc summetri¸n gia èna sÔsthma merik¸n diaforik¸n exis¸sewn ∆(t, x, u),

sthn perÐptwsh pou to sÔsthma epidèqetai toul�qiston èna nìmo diat rhshc. Eis�goume

metablhtèc dunamikoÔ v kai qrhsimopoi¸ntac to nìmo diat rhshc paÐrnoume èna nèo sÔsthma

Z(t, x, u, v). Opoiad pote summetrÐa Lie tou sust matoc Z(t, x, u, v) dÐnei mia antÐstoiqh

summetrÐa gia to sÔsthma ∆(t, x, u). An toul�qiston ènac apì touc genn torec o opoÐoc

antistoiqeÐ stic metablhtèc t, x kai u exart�tai apì thn metablht  omoiìthtac v, tìte h

topik  summetrÐa tou Z(t, x, u, v) par�gei mia mh-topik  summetrÐa gia to sÔsthma ∆(t, x, u),

alli¸c h summetrÐa tou Z(t, x, u, v) ja d¸sei topik  summetrÐa gia to ∆(t, x, u). Autèc oi

mh-topikèc summetrÐec eÐnai gnwstèc wc dunamikèc summetrÐec.

Sundu�zontac th mèjodo upologismoÔ dunamik¸n summetri¸n kai th mh-klasik  mèjodo

prokÔptei h oÔtwc kaloÔmenh, mèjodoc upologismoÔ mh-klasik¸n dunamik¸n summetri¸n.

Me aut  th mèjodo y�qnoume gia mh-klasikèc summetrÐec gia to sÔsthma dunamikoÔ   thn

exÐswsh dunamikoÔ. En toÔtoic, faÐnetai ìti eÐnai eukolìtero na y�qnoume gia mh-klasikèc

summetrÐec gia thn exÐswsh dunamikoÔ h opoÐa eÐnai h exÐswsh pou prokÔptei apaleÐfontac

th metablht  u apì to dunamikì sÔsthma.

Oi isodÔnamoi metasqhmatismoÐ èqoun shmantikì rìlo sth jewrÐa thc taxinìmhshc o-

m�dwn Lie. To sÔnolo ìlwn twn isodÔnamwn metasqhmatism¸n miac dosmènhc oikogèneiac

diaforik¸n exis¸sewn sqhmatÐzoun mia om�da h opoÐa onom�zetai isodÔnamh om�da [39,50].

H idèa twn summetri¸n Lie kai twn genikeÔsewn touc ìpwc perigr�fhkan pio p�nw ja

efarmostoÔn se sugkekrimènec exis¸seic exèlixhc se aÔth th diatrib  h opoÐa èqei organw-

jeÐ wc ex c. Sto Kef�laio 2 dÐnoume tic basikèc idèec kai orismoÔc pou qrei�zontai gia ta

metèpeita kef�laia kai sto Kef�laio 3 parousi�zoume ta gnwst� apotelèsmata thc deÔte-

rhc t�xhc mh-grammik c exÐswshc thc di�qushc. Sta Kef�laia 4, 5 kai 6 parousi�zoume tic

idiìthtec summetri¸n gia mia alusÐda exis¸sewn trÐthc, tètarthc, pèmpthc kai èkthc taxhc.

Sto Kef�laio 4 parousi�zoume tic idiìthtec summetri¸n gia mia exÐswsh tètarthc t�xhc h o-

poÐa eÐnai grammènh se morf  diat rhshc. Sth bibliografÐa eis qjhke wc mia genÐkeush thc

tètarthc t�xhc exÐswshc thin-film. Ex�goume isodÔnamouc metasqhmatismoÔc, summetrÐec

Lie, mh-klasikèc summetrÐec, dunamikèc summetrÐec kai mh-klasikèc dunamikèc summetrÐec.

Sto Kef�laio 5 parousi�zoume thn an�lush gia thn exÐswsh trÐthc t�xhc kai sto Kef�laio

6 tic idiìthtec summetri¸n gia tic exis¸seic èkthc kai pèmpthc t�xhc thc alusÐdac. Sto Ke-
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f�laio 7 parousi�zoume tic summetrÐec Lie kai tic dunamikèc summetrÐec gia tic genikeumènec

exis¸seic exèlixhc tètarthc kai trÐthc t�xhc, antistoÐqwc. Sto Kef�laio 8 parousi�zoume

ekten  taxinìmhsh om�dwn Lie gia mia kathgorÐa exis¸sewn diaspor�c. Parousi�zontai

ìlec oi morfèc twn shmeiak¸n metasqhmatism¸n diat rhshc morf c. Parousi�zoume touc

mh-klasikoÔc metasqhmatismoÔc, dunamikèc summetrièc kai mh-klasikèc dunamikèc summe-

trÐec. Sto Kef�laio 9 parousi�zoume thn taxinìmhsh summetri¸n Lie gia mia genikeumènh

exÐswsh trÐthc t�xhc me metablhtoÔc suntelestèc. Telei¸nontac, sto Kef�laio 10 parou-

si�zoume sugkekrimèna sumper�smata kai proteÐnoume sugkekrimèna probl mata ta opoÐa

ja mporoÔsan na melethjoÔn mellontik�.
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Chapter 1

Introduction

“I am certain, absolutely certain that. . .these theories will be recognized as fundamental at

some point in the future.”

Marious Sophus Lie (1842–1899), a Norwegian mathematician, said these words more

than one hundred years ago and he was absolutely right since Lie’s theories are powerful

tools for understanding the physical laws of Nature. Lie, was the establisher of group

analysis of differential equations [38,39].

Following the works of Lie, Ovsianikov in the late 1950’s and 1960’s and Bluman in

the late 1960’s and 1970’s developed a major revival of interest in symmetry methods

for differential equations. With the publication of the texts of Ovsiannikov [50], Bluman

and Kumei [5] and Olver [47], there are now several comprehensive accounts of the basic

theory as well as more recent applications and generalisations.

Nowadays, transformation methods are one of the most powerful tool currently avail-

able in the area of nonlinear PDEs. While there is no existing general theory for solving

such equations, many special cases have yielded to appropriate changes of variables. Point

transformations are the ones which are mostly used. These are transformations in the

space of the dependent and the independent variables of a PDE. Probably the most useful

point transformations of PDEs are those which form a continuous Lie group of transfor-

mations, which leave the equation invariant. Symmetries of this PDE are then revealed,

perhaps enabling new solutions to be found directly or via similarity reductions. The clas-

sical method of finding Lie symmetries is first to find infinitesimal transformations, with

the benefit of linearization, and then to extend these to groups of finite transformations.
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The investigation of nonlinear diffusion equations by means of symmetry methods

began in 1959 with Ovsiannikov’s work [49] in which the author performed the group

classification of the class of equations of the form

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
.

If f(u) = un then we have the nonlinear diffusion equation of the form

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
.

In Chapter 3 we recall the known results of the above second-order nonlinear diffusion

equation. Namely, we present the equivalence transformations, Lie symmetries, nonclas-

sical symmetries, potential symmetries and nonclassical potential symmetries.

Motivated by these results, in Chapters 4, 5 and 6, we present the symmetry properties

for a chain of nonlinear diffusion equations. One of the generalisations of the fourth-order

evolution PDE that were considered by King in [31] is

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3
+ aun−1

∂u

∂x

∂2u

∂x2
+ bun−2

(
∂u

∂x

)3
)
. (1.1)

Symmetry properties of this equation are presented in Chapter 4. Furthermore King, in

the same article, introduced the sixth-order nonlinear thin-film equation

∂u

∂t
= − ∂

∂x

[
un
∂5u

∂x5
+ a1u

n−1∂u

∂x

∂4u

∂x4
+ a2u

n−1∂
2u

∂x2
∂3u

∂x3
+ a3u

n−2
(
∂u

∂x

)2
∂3u

∂x3

+ a4u
n−2∂u

∂x

(
∂2u

∂x2

)2

+ a5u
n−3
(
∂u

∂x

)3
∂2u

∂x2
+ a6u

n−4
(
∂u

∂x

)5
]
, (1.2)

for which symmetry properties are presented in Chapter 6. However, there exist two

missing pieces of the chain which are the third-order nonlinear equation,

∂u

∂t
= − ∂

∂x

(
un
∂2u

∂x2
+ aun−1

(
∂u

∂x

)2
)
, (1.3)

for which symmetry properties are presented in the Chapter 5 and the fifth-order nonlinear

equation

∂u

∂t
= − ∂

∂x

[
un
∂4u

∂x4
+ a1u

n−1∂u

∂x

∂3u

∂x3
+ a2u

n−1
(
∂2u

∂x2

)2

+ a3u
n−2
(
∂u

∂x

)2
∂2u

∂x2

+ a4u
n−3
(
∂u

∂x

)4
]
, (1.4)
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for which symmetry properties are presented in Chapter 6.

In Chapter 7 we consider the classes of a fourth- and third-order generalised evolution

equations, respectively,

∂u

∂t
=
∂

∂x

(
f(u)

∂3u

∂x3
+ g(u)

∂u

∂x

∂2u

∂x2
+ h(u)

(
∂u

∂x

)3
)

(1.5)

and

∂u

∂t
=
∂

∂x

(
f(u)

∂2u

∂x2
+ g(u)

(
∂u

∂x

)2
)
. (1.6)

We note that equation (1.5) is the generalisation of the fourth-order equation (1.1) for

which the complete group analysis is presented in Chapter 4. Equation (1.6) is the gen-

eralisation of the third-order equation (1.3) for which symmetry properties are presented

in Chapter 5. In Chapter 7 we show the Lie symmetries and the potential symmetries for

these equations.

In Chapter 8, we present an enhanced Lie group analysis for the class of dispersive

equations of the form

ut + ε (um)x +
1

b

[
ua
(
ub
)
xx

]
x

= 0, (1.7)

which generalises the K(m,n) equation

ut + ε (um)x + (un)xxx = 0.

Finally, in Chapter 9 we present the Lie symmetry classification for the generalised

K(m,n) equations with variable coefficients of the form

ut + ε(um)x + f(t) (un)xxx = 0. (1.8)

Since the differential equations which we examine depend upon arbitrary elements, for

certain values of these parameters we obtain useful symmetry properties. These values

need not be those which arise in a physical situation. The existence of an additional

symmetry motivates us to search for patterns of values of the parameters for which the

exceptional symmetry occurs, specifically in Chapters 4, 5 and 6 in which we examine a

chain of equations.

All the calculations involved in this thesis have been facilitated by the computer alge-

braic package “REDUCE” [21].
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Chapter 2

Basic Definitions

2.1 Introduction

This Chapter introduces the basic ideas that are needed in the chapters that follow. We

define Lie groups of transformations and infinitesimal transformations, we examine when a

PDE is invariant under the action of an infinitesimal transformation and how we construct

the so-called optimal system and the invariant solutions that arise from transformations

which yield invariants. We also give the definitions of nonclassical symmetries, potential

symmetries, nonclassical potential symmetries and finally equivalence transformations.

2.2 Lie Groups of Transformations

Sophus Lie developed a theory of transformations, currently known as Lie groups of trans-

formations. These transformations map a given differential equation to itself. In other

words, we can say that the differential equation remains invariant under some continuous

group of transformations usually known as symmetries of the differential equation. In

this Section we provide the definitions of the groups, the groups of transformations and

finally, more specifically, the one-parameter Lie groups of transformations.

2.2.1 Groups

Definition 2.1. A group is a set G together with a law of composition φ such that for

any two elements g and h of G the product φ(g, h) is again an element of G. The group
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operation is required to satisfy the following axioms:

(i) Associativity: If g, h and k are elements of G, then

φ(g, φ(h, k)) = φ(φ(g, h), k).

(ii) Identity Element: There is a distinguished element e of G, called the identity element,

which has the property that

φ(e, g) = g = φ(g, e)

for all g in G.

(iii) Inverses: For each g in G there is an inverse, denoted by g−1, with the property that

φ(g, g−1) = e = φ(g−1, g).

Definition 2.2. A group G is abelian if φ(g, h) = φ(h, g) for g, h ∈ G.

Definition 2.3. A subgroup of G is a group formed by a subset of elements of G with the

same group operation.

2.2.2 Examples of Groups

Example 2.1. G is the set of all integers with φ(g, h) = g+h. Here e = 0 and g−1 = −g.

Example 2.2. G is the set of all positive reals with φ(g, h) = gh. Here e = 1 and g−1 = 1
g
.

2.2.3 Groups of Transformations

Definition 2.4. Let x = (x1, x2, . . . , xn) lie in a region D ⊂ Rn. The set of transforma-

tions

x∗ = X(x, ε),

defined for each x in D, depending upon parameter ε lying in set S ⊂ R, with φ(ε, δ)

defining a law of composition of parameters, ε and δ, in S, forms a one-parameter group

of transformations on D if:

(i) For each parameter ε in S the transformations are one-to-one onto D, in particular x∗

lies in D.
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(ii) S with the law of composition φ forms a group G.

(iii) x∗ = x, ∀ x ∈ D when ε = e, i.e.,

X(x, e) = x.

(iv) If x∗ = X(x, ε) and x∗∗ = X(x∗, δ), then

x∗∗ = X (x, φ(ε, δ)) .

2.2.4 One-parameter Lie Group of Transformations

Definition 2.5. A group of transformations defines a one-parameter Lie group of trans-

formations if in addition to satisfying axioms (i)-(iv):

(v) ε is a continuous parameter, i.e., S is an interval in R. Without loss of generality

ε = 0 corresponds to the identity element e.

(vi) X is infinitely differentiable with respect to x in D and an analytic function of ε in

S.

(vii) φ(ε, δ) is an analytic function of ε and δ for ε, δ ∈ S.

2.2.5 Examples of One-parameter Lie Groups of Transforma-

tions

Example 2.3. Group of Scaling in the Plane:

x∗ = αx, y∗ = α2y, 0 < α <∞.

Here φ(α, β) = αβ and the identity element α = 1. This group of transformations can

also be reparametrized in terms of ε = α− 1:

x∗ = (1 + ε)x, y∗ = (1 + ε)2y, −1 < ε <∞,

so that the identity element is ε = 0 with the law of composition of parameters given by

φ(ε, δ) = ε+ δ + εδ.

Example 2.4. Group of Rotations in the Plane:

x∗ = x cos ε− y sin ε, y∗ = x sin ε+ y cos ε,

where φ(ε, δ) = ε+ δ and the identity element is ε = 0.
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Example 2.5. Affine Transformations :

x∗ = x, y∗ = αy.

In this case φ(α, β) = αβ and the identity element is α = 1.

Example 2.6. Perspective Transformations :

x∗ = αx, y∗ = αy.

Here φ(α, β) = αβ and the identity element is α = 1.

2.3 Infinitesimal Transformations

An important tool for the solution of differential equations is the application of symmetry

methods which reflect invariance under infinitesimal transformation.

Consider a one-parameter (ε) Lie group of transformations

x∗ = X(x, ε) (2.1)

with identity ε = 0 and law of composition φ. Expanding (2.1) about ε = 0, we get (for

some neighborhood of ε = 0)

x∗ = x+ε

(
∂X(x, ε)

∂ε

∣∣∣∣
ε=0

)
+
ε2

2!

(
∂2X(x, ε)

∂ε2

∣∣∣∣
ε=0

)
+· · · = x+ε

(
∂X(x, ε)

∂ε

∣∣∣∣
ε=0

)
+O

(
ε2
)
.

Let

ξ(x) =
∂X(x, ε)

∂ε

∣∣∣∣
ε=0

.

The transformation x + εξ(x) is called the infinitesimal transformation of the Lie group

of transformations (2.1) and the components of ξ(x) are called the infinitesimal functions

of (2.1).

2.3.1 First Fundamental Theorem of Lie

Theorem 2.1. There exists a parameterization τ(ε) such that the Lie group of transfor-

mations (2.1) is equivalent to the solution of the initial value problem of the system of

first-order differential equations

dx∗

dτ
= ξ(x∗),
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with

x∗ = x when τ = 0.

In particular

τ(ε) =

∫ ε

0

Θ(ε′)dε′,

where

Θ(ε) =
∂φ(α, β)

∂β

∣∣∣∣
(α,β)=(ε−1,ε)

and

Θ(0) = 1.

(ε−1 denotes the inverse element to ε.)

2.3.2 Infinitesimal Generators

In view of Lie’s First Fundamental Theorem, from now on, without loss of generality, we

assume that a one-parameter (ε) Lie group of transformations is parameterized such that

the law of composition is φ(α, β) = α+ β so that ε−1 = −ε and Θ(ε) ≡ 1. Thus in terms

of its infinitesimal functions, ξ(x), the one-parameter Lie group of transformations (2.1)

becomes

dx∗

dε
= ξ(x∗) (2.2)

with

x∗ = x at ε = 0.

Definition 2.6. The infinitesimal generator of the one-parameter Lie group of transfor-

mations (2.1) is the operator

Γ = Γ(x) = ξ(x) · ∇ =
n∑
i=1

ξi(x)
∂

∂xi
,

where ∇ is the gradient operator

∇ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
.
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For any differentiable function, F (x) = F (x1, x2, . . . , xn), we have

ΓF (x) = ξ(x) · ∇F (x) =
n∑
i=1

ξi(x)
∂F (x)

∂xi
.

Example 2.7. We consider the group of projective transformations on the real plane

x∗ =
x

1− εx
, y∗ =

y

1− εx
.

The infinitesimal functions for the projective transformations are

dx∗

dε

∣∣∣∣
ε=0

=
x2

(1− εx)2

∣∣∣∣
ε=0

= x2,
dy∗

dε

∣∣∣∣
ε=0

=
xy

(1− εx)2

∣∣∣∣
ε=0

= xy

and the infinitesimal generator is

Γ = x2∂x+ xy∂y.

Hence the system (2.2) has the following form

dx∗

dε
= x∗2,

dy∗

dε
= x∗y∗

with initial conditions

x∗ = x, y∗ = y when ε = 0.

2.3.3 Invariant Functions

Definition 2.7. An infinitely differentiable function F (x) is called an invariant function

of the Lie group of transformations (2.1) if F (x∗) = F (x) identically in x and ε in a

neighborhood of ε = 0.

Remark 2.1. Given an invariant function F (x), any function Φ(F (x)) is also invariant.

Theorem 2.2. A function F (x) is absolute invariant of the Lie group of transformations

(2.1) with the generator Γ if and only if it solves the homogeneous PDE

ΓF (x) ≡ ξ(x) · ∇F (x) = 0.

Example 2.8. If we take the group of projective transformations, a function F (x, y) is

invariant if and only if

ΓF (x, y)≡x2∂F
∂x

+ xy
∂F

∂y
= 0.
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When we use the method of characteristics, we can solve the above first-order linear PDE,

that is,

dx

x2
=
dy

xy
=
dF

0
,

from which we deduce that

F = Ψ

(
x

y

)
.

Hence any function of the form Ψ
(
x
y

)
remains invariant under the group of projective

transformations.

2.4 Invariance of a PDE

In this Section we apply infinitesimal transformations to the construction of solutions of

PDEs. We show that the infinitesimal criterion for invariance of PDEs leads directly to

an algorithm to determine infinitesimal generators Γ admitted by given PDEs. Invariant

surfaces of the corresponding Lie group of point transformations lead to invariant solutions

(similarity solutions). These solutions are obtained by solving PDEs with less independent

variables than the given PDEs.

Theorem 2.3. (Infinitesimal Criterion for Invariance of PDEs). Firstly we consider a

nth-order PDE in two independent variables of the form

E(t, x, u, ut, ux, . . . , uij) = 0. (2.3)

Here t and x denote the two independent variables, u denotes the coordinate corresponding

to the dependent variable and uij denotes the nth-order partial derivatives of ∂i+ju
∂ti∂xj

with

respect to t, x for 2 ≤ i+ j ≤ n.

Let

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u (2.4)

be the generator of the one-parameter Lie group of infinitesimal transformations

τ ∗ = T (t, x, u, ε), ξ∗ = X(t, x, u, ε), u∗ = U(t, x, u, ε) (2.5)
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and

Γ(n) = Γ+ηt(t, x, u, ut, ux)∂ut+η
x(t, x, u, ut, ux)∂ux+. . .+η

(n)
ij (t, x, u, ut, ux, . . . , uij)∂uij

be the nth-prolongation infinitesimal generator of (2.4), where ηt and ηx are given by

ηt = Dtη − (Dtτ)ut − (Dtξ)ux and ηx = Dxη − (Dxτ)ut − (Dxξ)ux

in terms of τ(t, x, u), ξ(t, x, u) and η(t, x, u). For η
(n)
ij ,we give some examples of expan-

sions:

ηxx = Dxη
x − (Dxτ)uxt − (Dxξ)uxx,

ηxxt = Dtη
xx − (Dtτ)uxxt − (Dtξ)uxxx,

ηtttx = Dxη
ttt − (Dxτ)utttt − (Dxξ)uxttt.

(Dt and Dx are the total derivative operators with respect to t and x, respectively.)

Similarly, we can construct the other expansions of η
(n)
ij . See for example, [5].

We say that the one-parameter Lie group of point transformations (2.5) is admitted by

PDE (2.3), i.e., is a point symmetry of PDE (2.3), if and only if

Γ(n)E(t, x, u, ut, ux . . . , uij) = 0 when E(t, x, u, ut, ux, . . . , uij) = 0.

2.4.1 Optimal System

The following two definitions are useful:

Definition 2.8. One of the most important operations on vector fields is their commu-

tator (Lie bracket). If Γi and Γj are vector fields on M (infinitesimal generators), then

their commutator [Γi,Γj] is the unique vector field satisfying

[Γi,Γj](f) = Γi(Γj(f))− Γj(Γi(f))

for all smooth functions f : M → R.

The Lie bracket has the following properties:

(i) Bilinearity

[aΓi + bΓj,Γk] = a[Γi,Γk] + b[Γj,Γk],
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[Γi, aΓj + bΓk] = a[Γi,Γj] + b[Γi,Γk],

where a, b are constants.

(ii) Skew-Symmetry

[Γi,Γj] = −[Γj,Γi].

(iii) Jacobi Identity

[Γi, [Γj,Γk]] + [Γj, [Γk,Γi]] + [Γk, [Γi,Γj]] = 0.

Definition 2.9. The formula of the adjoint representation Ad (using Lie series), which

is given by

Ad [exp(εΓi)] Γj = Γj − ε[Γi,Γj] +
ε2

2!
[Γi, [Γi,Γj]] + . . . ,

denotes the separate adjoint actions for each element Γi acting on all the other elements.

For the construction of the optimal system of subalgebras, firstly we make the commu-

tator table for the Lie algebra of the Γi and then using the Lie series we construct a table

showing the separate adjoint actions for each element Γi acting on all the other elements.

This table enables us to derive the optimal system that provides all possible invariant

solutions.

Ovsiannikov [50] proved that the optimal system of solutions consists of solutions

invariant with respect to all proper inequivalent subalgebras of the symmetry algebra.

More detail about the construction of optimal sets of subalgebras can be found in [47,50].

2.4.2 Similarity Transformations

The invariant solutions that arise from transformations which yield invariants allow one

to obtain solutions through reducing the number of independent variables of a PDE by

at least one. For example a PDE with two independent variables can be reduced to

an ordinary differential equation (ODE) or even to algebraic equation. The similarity

transformations are constructed from the solution of the invariant surface condition

τ(t, x, u)ut + ξ(t, x, u)ux = η(t, x, u). (2.6)
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Now, if ξ(t,x,u)
τ(t,x,u)

is independent of u, then the solution of (2.6) has the form

η(t, x) = constant,

u(t, x) = F (t, x, η, f(η)), (2.7)

where F is a known function. Equation (2.7) is the invariant solution and the function

η(t, x) is called the similarity variable that constitutes the independent variable of the

ODE that we get from the transformation. The function f(η) is the unknown function of

the ODE.

2.5 Nonclassical Symmetries

The nonclassical method, introduced in Bluman [3], generalises and includes Lie’s classical

method for obtaining solutions of PDEs. In this case we require the invariance of the PDE,

E(t, x, u, ut, ux, utt, utx, uxx, . . .) = 0, (2.8)

in conjunction with the invariant surface condition, (2.6), under the infinitesimal trans-

formations generated by

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (2.9)

which results in an overdetermined nonlinear system of PDEs for the determination of

the coefficients τ(t, x, u), ξ(t, x, u) and η(t, x, u).

A “nonclassical symmetry” is not a symmetry of a given PDE (2.8) unless the infinites-

imal coefficients yielding an infinitesimal generator (2.9) yield a point symmetry of (2.8).

Otherwise a mapping resulting from such an infinitesimal generator maps no solution of

(2.8) into a different solution of it. In other words the nonclassical method is not a “sym-

metry” method but an extension of Lie’s symmetry method (“classical method”) for the

purpose of finding specific solutions of PDEs.

From the nature of the constraint invariant surface condition equation (2.6), without

loss of generality, in using the nonclassical method, two simplifying cases need only be

considered when solving the determining equations for finding the form of the infinitesimal

coefficients, namely τ 6= 0 and τ = 0. In the case τ(t, x, u) 6= 0 we can assume that τ = 1,
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without loss of generality. Also, when τ = 0, we can take ξ = 1, without loss of generality.

In this latter case the invariant conditions result to a single nonlinear PDE in η(t, x, u).

Here we only consider the case where τ = 1. For recent applications of this method

see [35] and references therein.

2.6 Potential Symmetries

Bluman and coauthors [4, 5] introduced a method for finding a new class of symmetries,

nonlocal symmetries, for a system of PDEs ∆(t, x, u), with independent variables t, x

and dependent variables u in the case when at least one of the PDEs can be written in

conserved form.

If we introduce new potential variables v, which are potentials for the PDEs written

in conserved forms as further unknown functions, we obtain a new system Z(t, x, u, v).

By construction any solution u(t, x), v(t, x) of Z(t, x, u, v) defines a solution u(x, t) of

∆(t, x, u). The given system ∆(t, x, u) is the said to be embedded in the auxiliary system

Z(t, x, u, v) so that any Lie group of transformation for Z(t, x, u, v) induces a symmetry

for ∆(t, x, u). If at least one of the generators which correspond to the variables t, x and

u depends explicitly on the potential variables v, then the local symmetry of Z(t, x, u, v)

induces a nonlocal symmetry of ∆(t, x, u). Otherwise the symmetry of Z(t, x, u, v) induces

a local symmetry of ∆(t, x, u). These nonlocal symmetries are known as potential sym-

metries. More details about potential symmetries and their uses can be found in [4,5,28].

2.7 Nonclassical Potential Symmetries

As we have seen for a given scalar PDE, a potential variable can be introduced through a

conservation law. Such a conservation law yields an equivalent system (potential system)

of PDEs with the given dependent variable and the potential variable as its dependent

variables. Also the nonclassical method for obtaining solutions of PDEs is a generalisation

of the classical method for obtaining invariant solutions from point symmetries admitted

by a given PDE. Here we combine the two approaches to derive the so-called, nonclassical

potential symmetries. In other words we search for nonclassical symmetries for the po-

tential system or the potential equation. However, it turns out that it is easier to search
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for nonclassical symmetries for the potential equation which is the equation that arises if

we eliminate the variable u from the potential system. More details about nonclassical

potential symmetries can be found in [54].

2.8 Equivalence Transformations

Equivalence transformations play an important role in the theory of Lie group classifica-

tion. An equivalence transformation of a class of PDEs is an invertible transformation of

the independent and dependent variables of the form that maps every equation of the class

into an equations of the same form. The set of all equivalence transformations of a given

family of differential equations forms a group which is called the equivalence group [39,50].

There exist two methods for calculation of equivalence transformations, the direct which

was used first by Lie [39] and the Lie infinitesimal method which was introduced by

Ovsyannikov [50]. Although the direct method involves considerable computational dif-

ficulties, it has the benefit of finding the most general equivalence group. For recent

applications of the direct method one can refer, for example, to references [34, 52,71,72].

More detailed description and examples of both methods can be found in [27]. Here we

use the direct method to derive the desired equivalence transformations.
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Chapter 3

Group Analysis of a Second-Order

Nonlinear Diffusion Equation

3.1 Introduction

The investigation of nonlinear heat (or diffusion if u represents mass concentration) equa-

tions by means of symmetry methods began in 1959 with Ovsiannikov’s work [49] in which

the author performed the group classification of the class of equations of the form

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
. (3.1)

Equation (3.1) describes the stationary motion of a boundary layer of fluid over a flat

plate and a vortex of incompressible fluid in a porus medium with polytropic relation

between gas density and pressure.

If we consider the case that the diffusion term is f(u) = un, then (3.1) becomes

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
. (3.2)

Equation (3.2) is called a fast diffusion equation for −2 < n < 0 and a slow diffusion

equation for n > 0. In the first case the spread of mass is much faster than in the linear

case n = 0 and in the second case it is slower.

In this Chapter we present the known results for equation (3.2). We give the equivalence

transformations, the group classification of point symmetries, the optimal system of one-

dimensional subalgebras and all possible types of invariant solutions [49]. Also we give the
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nonclassical symmetries [1,20], the potential symmetries [5] and the nonclassical potential

symmetries [54]. Motivated by the results of this Chapter, in next Chapters we show a

complete group analysis for a chain of nonlinear evolution equations. Namely, we derive

the symmetry properties for the third-order nonlinear equation (1.3), the fourth-order

thin-film equation (1.1), the fifth-order nonlinear equation (1.4) and the sixth-order thin-

film equation (1.2). Also, we present symmetry properties for the fourth- and third-order

generalised equations (1.5) and (1.6), respectively. Finally, we give symmetry properties

for the third-order dispersive equation (1.7) and the third-order generalised equation with

variable coefficients (1.8).

3.2 Equivalence Transformations

We find that equation (3.2) admits the equivalence transformations

t′ = c1t+ c2, x′ = c3x+ c4, u′ = c
−1/n
1 c

2/n
3 u, n′ = n,

where c1c3 6= 0. Furthermore in the case for which n = −4
3

we have the additional

equivalence transformations

t′ = c1t+ c2, x′ =
c3x+ c4
c5x+ c6

, u′ = c
−1/n
1 (c5x+ c6)

−4/nu, n′ = n,

where c1 6= 0 and c3c6 − c4c5 = ±1.

3.3 Lie Symmetries

From the definition, a second-order PDE admits Lie point symmetries if and only if

Γ(2)E
∣∣
E=0

= 0,

where Γ(2) is the second prolongation of the generator

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u,

which is given by the relation

Γ(2) = Γ + [Dtη − (Dtτ)ut − (Dtξ)ux]∂ut + [Dxη − (Dxτ)ut − (Dxξ)ux]∂ux

+[Dxη
x − (Dxτ)uxt − (Dxξ)uxx]∂uxx.
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Here Dt and Dx are the total derivatives with respect to t and x respectively and ηx is

the coefficient function of ∂ux.

In this case we have that

E = ut − unuxx − nun−1u2x = 0

and equation (3.2) admits Lie point symmetries if and only if

Γ(2)[ut − unuxx − nun−1u2x] = 0 (3.3)

for ut = unuxx + nun−1u2x.

After the elimination of ut due to the above expression equation (3.3) becomes an

identity in the variables ux, utx and uxx. The coefficients of different powers of these

variables must be zero and these give the determining equations on the coefficients τ , ξ

and η. Using the general results on point transformations between evolution equations [34]

that τ = τ(t) and ξ = ξ(t, x), we take the following determining equations from the

coefficients of uxx, u
2
x, ux and the term independent of derivatives of (3.3), respectively,

(τt − 2ξx)u+ nη = 0, (3.4)

ηuuu
2 + n(τt − 2ξx + ηu)u+ n(n− 1)η = 0, (3.5)

(ξxx − 2ηxu)u
n+1 − 2nηxu

n − ξtu = 0, (3.6)

ηxxu
n − ηt = 0. (3.7)

When we solve these equations (3.4)–(3.7), we observe that for the case where n is arbi-

trary, the symmetry Lie algebra is four-dimensional and is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 2t∂t + x∂x, Γ4 =
nx

2
∂x + u∂u.

An additional Lie symmetry exists for the specific value of the parameter n = −4
3
. In

particular, equation (3.2) admits a fifth symmetry

Γ5 = x2∂x +
4xu

n
∂u.
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3.3.1 Invariant Solutions

The primary use of Lie symmetries is to obtain a reduction of variables. Similarity vari-

ables appear as constants of integration in the solution of the characteristic equations

dt

τ
=

dx

ξ
=

du

η
.

Reductions could be obtained from any symmetry which is an arbitrary linear combina-

tion, i.e.

a1Γ1 + a2Γ2 + a3Γ3 + a4Γ4 + a5Γ5.

To ensure that a minimal complete set of reductions is obtained from the Lie symmetries

of equation (3.2), we construct the so-called optimal system of subalgebras. In the case

for which n is arbitrary the optimal system and the corresponding similarity reductions

that transform (3.2) into an ODE are given by the operators

〈Γ2〉 : u = φ(ω), ω = t,

〈Γ1 + cΓ2〉 : u = φ(ω), ω = x− ct,

〈Γ3 + cΓ4〉 : u = t
c
2φ(ω), ω =

 x if nc+ 2 = 0,

t−
1
2x

2
nc+2 if nc+ 2 6= 0,

〈Γ4 + cΓ1〉 : u =

 x
2
nφ(ω), ω = etx−

2c
n if n 6= 0,

e
t
cφ(ω), ω = x if n = 0,

〈Γ4 + cΓ2 − n
2
Γ3〉 : u =

 t−
1
nφ(ω), ω = x+ c

n
ln t if n 6= 0,

e
x
c φ(ω), ω = t if n = 0.

In the special case n = −4
3
, for which a fifth symmetry exists, we obtain the following

additional reductions that correspond to the additional subalgebras:

〈Γ5 + cΓ2 + 2kΓ3〉 : u =



((x+ k)2 + 1)
2
n exp

[
−4k

n
tan−1(x+ k)

]
φ(ω),

ω = t exp [−4k tan−1(x+ k)] if c− k2 = 1,

((x+ k)2 − 1)
2
n exp

[
4k
n

tanh−1(x+ k)
]
φ(ω),

ω = t exp
[
4k tanh−1(x+ k)

]
if c− k2 = −1,

(x+ k)
4
n exp

[
4k

n(x+k)

]
φ(ω),

ω = t exp
[

4k
x+k

]
if c− k2 = 0,
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where ω is the independent, φ the dependent variable of the reduced ODE, c = 0,±1 and

k ∈ R.

The results of Sections 3.2 and 3.3 can be found in [49].

3.4 Nonclassical Symmetries

From the corresponding definition in Chapter 2, in this case we require the invariance of

the system of PDEs,

ut = (unux)x,

τ(t, x, u)ut + ξ(t, x, u)ux = η(t, x, u),

under the class of infinitesimal transformations generated by

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.

This results in an overdetermined nonlinear system of PDEs for the determination of the

coefficients τ(t, x, u), ξ(t, x, u) and η(t, x, u). After we choose τ = 1, the nonclassical

method applied to equation (3.2) gives rise to the four nonlinear determining equations

ξuuu− nξu = 0, (3.8)

(2ξxu − ηuu)un+2 − nηuun+1 + nηun − 2ξξuu
2 = 0, (3.9)

(ξxx − 2ηxu)u
n+1 − 2nηxu

n − (ξt + 2ξξx − 2ξuη)u+ nξη = 0, (3.10)

ηxxu
n+1 − (2ξxη + ηt)u+ nη2 = 0. (3.11)

After we have solved the determining system (3.8)–(3.11), we can assure that equation

(3.2) admits a proper nonclassical symmetry only for n = −1
2
. For n 6= −1

2
we only

recover the classical symmetries. For n = −1
2

we obtain the nonclassical symmetry,

Γ = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

d2φ

dx2
− 1

2
φ2 = 0.
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A particular solution of this equation is φ = 12x−2. The nonclassical operator above

produces the nonclassiclal reduction

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces (3.2) to the ODE

d2F

dx2
− 1

2
φF = 0.

If φ = 12x−2, this ODE becomes an equation of Euler type with the form

x2
d2F

dx2
− 6F = 0

and solution

F (x) = c1x
−2 + c2x

3

which yields the explicit solution for (3.2)

u(t, x) =
(
6tx−2 + c1x

−2 + c2x
3
)2
.

The results which are presented in this Section can be found in [1, 20].

3.5 Potential Symmetries

If we introduce the potential variable v, we can write equation (3.2) as a system of two

PDEs

vx = u, (3.12)

vt = unux.

Suppose (3.12) admits an infinitesimal generator of the form

Γ = τ(t, x, u, v)∂t + ξ(t, x, u, v)∂x + η(t, x, u, v)∂u + ζ(t, x, u, v)∂v. (3.13)

We search for Lie point symmetries for the system (3.12) with the optimal goal of find-

ing potential symmetries for equation (3.2). Lie symmetries of (3.12) induce potential

symmetries for (3.2) if the following condition holds,

τv
2 + ξv

2 + ηv
2 6= 0.
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The system (3.12) admits Lie symmetries if and only if

Γ(1)[vx − u] = 0, (3.14)

Γ(1)[vt − unux] = 0,

where system (3.12) holds. Here Γ(1) is the first extension of the generator (3.13) and is

given by the relation

Γ(1) = Γ + [Dtη − (Dtτ)ut − (Dtξ)ux]∂ut + [Dxη − (Dxτ)ut − (Dxξ)ux]∂ux

+[Dtζ − (Dtτ)vt − (Dtξ)vx]∂vt + [Dxζ − (Dxτ)vt − (Dxξ)vx]∂vx.

(Here Dt and Dx are the total derivatives with respect to t and x, respectively.)

Eliminating vt, vx through substitution of (3.12) into (3.14), we obtain seven deter-

mining equations for τ, ξ, η and ζ which simplify to:

τu = 0, (3.15)

τvu+ τx = 0, (3.16)

ξuu− ζu = 0, (3.17)

τvu
n − ξu = 0, (3.18)

ηvu
n+1 + ηxu

n + ξtu− ζt = 0, (3.19)

(τt − ξx + ηu − ζv)u+ nη = 0, (3.20)

ξvu
2 + (ξx − ζv)u− ζx + η = 0. (3.21)

Solution of the determining equations (3.15)–(3.21) can be summarised as follows:

For the case that n 6= −2, the system (3.12) admits a five-parameter group with

infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 2t∂t + x∂x + v∂v, Γ4 = ∂v, (3.22)

Γ5 = x∂x +
2u

n
∂u +

(
1 +

2

n

)
v∂v. (3.23)

When n = −2, the system (3.12) admits an infinite-parameter group with infinitesimal

generators (3.22), (3.23) and

Γ6 = −xv∂x + u(xu+ v)∂u + 2t∂v,
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Γ7 = 4t2∂t +−x(2t+ v2)∂x + u(6t+ 2xuv + v2)∂u + 4tv∂v,

Γ∞ = f∂x − u2fv∂u,

where f = f(t, v) is a solution of the linear heat equation ft = fvv.

The Lie symmetries (3.22) and (3.23) project into local symmetries of (3.2) and the Lie

symmetries Γ6, Γ7 and Γ∞ induce potential symmetries for the corresponding equation

(3.2).

The results of this Section can be found in [5].

3.6 Nonclassical Potential Symmetries

In this case we search for nonclassical symmetries for a potential system or potential

equation. It is easier to search for nonclassical symmetries for the potential equation,

which is obtained from the associated auxiliary system of (3.2) given by

vx = u,

vt = unux.

To archieve this we eliminate u from the above system to get

vt = vnxvxx,

which is the potential form of equation (3.2). Now we take into consideration the case

n = −1 for which the potential equation becomes

vt = v−1x vxx. (3.24)

Here the invariance surface condition has the form

τ(t, x, v)vt + ξ(t, x, v)vx = ζ(t, x, v)

and the reduction operators have the general form

Γ = τ(t, x, v)∂t + ξ(t, x, v)∂x + ζ(t, x, v)∂v.

We assume that τ = 1 without loss of generality. The four determining equations for the

coefficients ξ and ζ have the form

ξvv − ξξv = 0, (3.25)
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ζxx − ζζx = 0, (3.26)

ξt − 2ξxv + ζvv + ξζv − ξvζ + ξξx = 0, (3.27)

ζt − 2ζxv + ξxx + ξxζ − ξζx + ζζv = 0. (3.28)

The nonclassical symmetries of the potential fast diffusion equation (3.24) that result

from the solution of the determining equations (3.25)–(3.28) are

Γ1 = ∂t + ε∂x + f(ω)∂v, where ω = x+ εt,

Γ2 = ∂t + f(ω) (∂x + ∂v) , where ω = x+ v,

Γ3 = ∂t + ξ∂x + (ϕt + ϕxξ) ∂v, where ξ =
−2

v + ϕ
and ϕε {t+ ex, tf(x)} ,

Γ4 = ∂t + ξ∂x −
gt + gxξ

1 + g2
∂v, where ξ = −2

1 + g tan v

tan v − g
and

gε {tan(2t) tanhx, coth(2t) cotx} ,

Γ5 = ∂t + ξ∂x −
gt + gxξ

1− g2
∂v, where ξ = −2

1− g tanh v

tanh v − g
and

gε

{
tanh(2t) tanhx, tanh(2t) cothx, coth(2t) cothx,

e2x tanh(2t) + 1

e2x − tanh(2t)
,
2− e2x − e4t

2 + e2x + e4t

}
.

Here ε ε {0, 1} and f is an arbitrary nonconstant solution of the ODE fωω = ffω with

the solution being in parametric form

ω =

∫
df

f2

2
+ c

+ c1

which leads to the particular solution

f =



√
2c tan

[√
c
2
(ω − c1)

]
if c > 0,√

2|c|
[
1+exp

(√
2|c|(ω−c1)

)
1−exp

(√
2|c|(ω−c1)

)
]

if c < 0,

2
c1−ω if c = 0.

The results of this Section can be found in [54].
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Chapter 4

Group Analysis of a Fourth-Order

Nonlinear Thin-Film Equation

4.1 Introduction

Thin-films arise in a variety of contexts. They can be between two solid surfaces in the

form of a lubricant or with one solid surface and the other free as in water or oil on a

road. When surface tension is a dominant physical effect driving the motion, the governing

evolution PDE is nonlinear and of the fourth-order in the spatial derivatives. Myers [46]

presented a review of research into thin-films of fluid for which the surface tension is a

driving mechanism. The introduction of surface tension into standard lubrication theory

leads to the nonlinear evolution PDE

∂u

∂t
+
∂

∂x

(
u3uxxx + f (u, ux, uxx)

)
= 0,

where u(t, x) is the height of the film of fluid. For suitable choices of the function f this

equation has been applied to models for coating, drainage of foams and the movement of

contact lenses.

King [31] provided some generalisations of the fourth-order evolution PDE,

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
,

which has been the subject of extensive investigations [2, 13, 22, 32, 46, 66]. For example,

the case n = 3 corresponds to the study of capillary-driven flow and the case n = 1
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it describes the thickness of a thin bridge between two masses of fluid in a Hele–Shaw

cell [13]. One of the forms considered by King is

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3
+ aun−1

∂u

∂x

∂2u

∂x2
+ bun−2

(
∂u

∂x

)3
)
. (4.1)

In [31] it is shown that for appropriate choices of n, a and b in terms of new parameters

k, l and m, equation (4.1) can be written in the interestingly compact form

ut = − 1

m

(
uk
(
ul (um)xx

)
x

)
x
,

which immediately invites generalisation to an equation of higher order of the form

ut = − 1

m1

(
umn

(
umn−1

(
· · · (um2 (um1)xx)x

)
· · ·
)
x

)
x
.

Symmetry properties for this equation have been explored recently in [69].

If we introduce a potential variable v, equation (4.1) can be written as a system of two

PDEs

vx = u, (4.2)

vt = −(unuxxx + aun−1uxuxx + bun−2u3x).

Eliminating u from system (4.2) we have the, so-called, potential form of (4.1),

vt = −(vnxvxxxx + avn−1x vxxvxxx + bvn−2x v3xx). (4.3)

Equations (4.1)–(4.3) are equivalent in the sense that if {u(t, x), v(t, x)} satisfy (4.2), then

u(t, x) solves (4.1) and v(t, x) solves (4.3).

Our goal in this Chapter is to perform a complete group analysis of equation (4.1).

We derive the equivalence group of (4.1) and Lie symmetries are presented. Also we

present the nonclassical symmetries and give the special forms of (4.1) that admit potential

symmetries. Finally we derive nonclassical potential symmetries. These results have

already appeared in [10].

4.2 Equivalence Transformations

We call an equivalence transformation of a class of PDEs, E(t, x, u) = 0, an invertible

transformation of the variables t, x and u of the form

t′ = Q(t, x, u), x′ = P (t, x, u), u′ = R(t, x, u) (4.4)
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that maps every equation of the class into an equation of the same form, E(t′, x′, u′) = 0.

For example, in the case of (4.1), an equivalence transformation maps (4.1) into

∂u′

∂t′
= − ∂

∂x′

(
u′
n′ ∂

3u′

∂x′3
+ a′u′

n′−1∂u
′

∂x′
∂2u′

∂x′2
+ b′u′

n′−2
(
∂u′

∂x′

)3
)
.

For invertibility we require that ∂(Q,P,R)
∂(t,x,u)

6= 0.

Since evolution equation (4.1) is a multipolynomial in the derivatives of u with respect

to x, equivalence transformations are restricted to the class [34]

t′ = Q(t), x′ = P (t, x), u′ = R(t, x, u),

where QtPxRu 6= 0.

Details of the method can be found in [34, 52, 71, 72]. We find that equation (4.1)

admits the equivalence transformations

t′ = c1t+ c2, x′ = c3x+ c4, u′ = c
−1/n
1 c

4/n
3 u, (n′, a′, b′) = (n, a, b), (4.5)

where c1c3 6= 0. Furthermore in the case for which

(n, a, b) ∈
{

(−4,−6, 6),

(
−8

3
,−16

3
,
44

9

)
,

(
−8

5
,−24

5
,
104

25

)}
, (4.6)

we have the additional equivalence transformations

t′ = c1t+ c2, x′ =
c3x+ c4
c5x+ c6

, u′ = c
−1/n
1 (c5x+ c6)

−8/nu, (n′, a′, b′) = (n, a, b), (4.7)

where c1 6= 0 and c3c6 − c4c5 = ±1. We note that a special case of these additional

equivalence transformations is the cyclic group of order two,

t′ = t, x′ =
1

x
, u′ = xnu.

We have similar definitions for the equivalence transformations of the system (4.2).

Here the results separate into two branches:

t′ = c−n3 cn+4
1 t+c5, x

′ = c1x+c2, u
′ = c−11 c3u, v

′ = c3v+c4, (n′, a′, b′) = (n, a, b) (4.8)

and

t′ = c−n1 cn+4
3 t+ c5, x′ = c1v + c2, u′ = c−11 c3u, v′ = c3x+ c4,
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(n′, a′, b′) = (−n− 4,−a− 10, 3a+ b+ 15), (4.9)

where c1c3 6= 0.

Similarly we observe that the equivalence transformations for the potential form (4.3)

are either

t′ = c−n3 cn+4
1 t+ c5, x′ = c1x+ c2, v′ = c3v + c4, (n′, a′, b′) = (n, a, b) (4.10)

or

t′ = c−n1 cn+4
3 t+c5, x

′ = c1v+c2, v
′ = c3x+c4, (n′, a′, b′) = (−n−4,−a−10, 3a+b+15). (4.11)

Transformations such as those in (4.11) are known as potential equivalence transforma-

tions. More examples of such transformations can be found in [53,67].

We note that a special case of the equivalence transformation (4.11) is the pure hodo-

graph transformation

t′ = t, x′ = v, v′ = x

which leaves

vt = −(v−2x vxxxx − 5v−3x vxxvxxx + bv−4x v3xx)

invariant and also maps

vt = −(v−4x vxxxx − 10v−5x vxxvxxx + 15v−6x v3xx)

into the linear equation vt + vxxxx = 0.

4.3 Lie Symmetries

We look for vector fields of the form,

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u,

which generate one-parameter groups of point symmetry transformations of equation

(4.1). These vector fields form the maximal Lie invariance algebra of this equation. Any

such vector field, Γ, satisfies the criterion of infinitesimal invariance, i.e., the action of the
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fourth prolongation Γ(4) of Γ on equation (4.1) results in the conditions being an identity

for all solutions of this equation, namely, we require that

Γ(4)[ut + unuxxxx + (n+ a)un−1uxuxxx + aun−1u2xx + [a(n− 1) + 3b]un−2u2xuxx

+b(n− 2)un−3u4x] = 0 (4.12)

identically, modulo equation (4.1).

After the elimination of ut due to (4.1) equation (4.12) becomes a multivariable polyno-

mial in the variables ux, uxx, utx, uxxx, utxx, uxxxx and utxxx. The coefficients of different

powers of these variables must be zero, giving the determining equations on the coeffi-

cients τ , ξ and η. If we use the general results on point transformations between evolution

equations [34], then the remaining determining equations produce the functional forms of

τ(t), ξ(t, x) and η(t, x, u). Also from the coefficient of uxxxx we deduce that

η =
(4ξx − τt)u

n
. (4.13)

After we use the fact that τ is a function of t, ξ is a function of t and x and the expression

(4.13) for η, from the coefficients of uxxx, uxx, uxuxx, u
3
x, u

2
x, ux and the term independent

of derivatives of (4.12) we have the following determining equations, respectively,

(2a− n+ 8)ξxx = 0, (4.14)

(2a− n+ 6)ξxxx = 0, (4.15)

(3an+ 20a+ 24b− 3n2 + 12n)ξxx = 0, (4.16)

(9an− 8a− 8b− an2 + 13bn)ξxx = 0, (4.17)

(3an+ 8a+ 12b− n2 + 12n)ξxxx = 0, (4.18)

(4a+ 3n+ 16)ξxxxxu
n − nξt = 0, (4.19)

4ξxxxxxu
n + 4ξtx − τtt = 0. (4.20)

When we solve the determining equations (4.14)–(4.20), we conclude that, if n, a and b

are arbitrary, the symmetry Lie algebra is four-dimensional and is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x, Γ4 =
nx

4
∂x + u∂u.
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An additional Lie symmetry exists for specific values of the parameters n, a and b. In

particular equation (4.1) admits a fifth symmetry

Γ5 = x2∂x +
8xu

n
∂u

if (n, a, b) ∈
{

(−4,−6, 6),
(
−8

3
,−16

3
, 44

9

)
,
(
−8

5
,−24

5
, 104

25

)}
. The three cases of (4.1) corre-

spond to the following equations:

ut = −
[
u−4uxxx − 6u−5uxuxx + 6u−6u3x

]
x
,

ut = −
[
u−8/3uxx −

4

3
u−11/3u2x

]
xx

,

ut = −
[
u−8/5ux

]
xxx

.

We note that transformations (4.5) and (4.7) do not change arbitrary elements and

hence their projections onto the space of the variables of equation (4.1) form point sym-

metry groups. In fact these symmetry groups are the finite forms of the infinitesimal

groups derived in the present Section. We recall that finite forms arise from infinitesimal

forms using Lie first fundamental theorem.

4.3.1 Invariant Solutions

The next step is the construction of the optimal system of subalgebras. Firstly we make

the commutator table for the Lie algebra of the Γi and then using the Lie series we

construct a table showing the separate adjoint actions for each element Γi acting on all

the other elements. This table enables us to derive the optimal system of subalgebras

that provides all possible invariant solutions (Lie ansatzes).

In the following tables we present the commutator relations and the adjoint actions for

the Lie algebra of the Γi.
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Table 4.1: Commutation relations for the Lie algebra of equation (4.1)

Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 0 0 4Γ1 0 0

Γ2 0 0 Γ2
n
4 Γ2

8
nΓ4

Γ3 −4Γ1 −Γ2 0 0 Γ5

Γ4 0 −n4 Γ2 0 0 n
4 Γ5

Γ5 0 − 8
nΓ4 −Γ5 −n4 Γ5 0

Table 4.2: Adjoint actions for the Lie algebra of equation (4.1)

Ad Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 Γ1 Γ2 Γ3 − 4εΓ1 Γ4 Γ5

Γ2 Γ1 Γ2 Γ3 − εΓ2 Γ4 − nε
4 Γ2 Γ5 − 8ε

n Γ4 + ε2Γ2

Γ3 e4εΓ1 eεΓ2 Γ3 Γ4 e−εΓ5

Γ4 Γ1 e
nε
4 Γ2 Γ3 Γ4 e−

nε
4 Γ5

Γ5 Γ1 Γ2 + 8ε
n Γ4 + ε2Γ5 Γ3 + εΓ5 Γ4 + nε

4 Γ5 Γ5

In the case for which n, a, b are arbitrary the optimal system consists of the following

inequivalent subalgebras

〈Γ2〉, 〈Γ1 + cΓ2〉, 〈Γ3 + cΓ4〉, 〈Γ4 + cΓ1〉, 〈Γ4 + cΓ2 − n
4
Γ3〉.

In the case for which (n, a, b) are given by equation (4.6), in addition to the above list,

we have a reduction that corresponds to the subalgebra

〈Γ5 + cΓ2 + 2kΓ3〉.

For each component of the optimal system we construct the corresponding similarity
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reduction that transforms (4.1) into an ODE. We obtain the following results:

〈Γ2〉 : u = φ(ω), ω = t,

〈Γ1 + cΓ2〉 : u = φ(ω), ω = x− ct,

〈Γ3 + cΓ4〉 : u = t
c
4φ(ω), ω =

 x if nc+ 4 = 0,

t−
1
4x

4
nc+4 if nc+ 4 6= 0,

〈Γ4 + cΓ1〉 : u =

 x
4
nφ(ω), ω = etx−

4c
n if n 6= 0,

e
t
cφ(ω), ω = x if n = 0,

〈Γ4 + cΓ2 − n
4
Γ3〉 : u =

 t−
1
nφ(ω), ω = x+ c

n
ln t if n 6= 0,

e
x
c φ(ω), ω = t if n = 0.

In the case for which we have five symmetries we obtain the following additional re-

duction

〈Γ5 + cΓ2 + 2kΓ3〉 : u =



((x+ k)2 + 1)
4
n exp

[
−8k

n
tan−1(x+ k)

]
φ(ω),

ω = t exp [−8k tan−1(x+ k)] if c− k2 = 1,

((x+ k)2 − 1)
4
n exp

[
8k
n

tanh−1(x+ k)
]
φ(ω),

ω = t exp
[
8k tanh−1(x+ k)

]
if c− k2 = −1,

(x+ k)
8
n exp

[
8k

n(x+k)

]
φ(ω),

ω = t exp
[

8k
x+k

]
if c− k2 = 0,

where ω is the independent, φ is the dependent variable of the reduced ODE, c = 0,±1

and k ∈ R.

We give some examples of reduced ODEs. The reduction that corresponds to the

subalgebra 〈Γ1 + cΓ2〉 leads to the equation

cφω − [φn−2(φ2φωωω + aφφωφωω + bφ3
ω)]ω = 0

which provides traveling-wave solutions for the thin-film equation (4.1). We integrate this

equation by parts and the integral has the form

φn−2(φ2φωωω + aφφωφωω + bφ3
ω) = cφ+ c1, (4.21)

where c1 is the constant of integration.
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For the special case that (n, a, b) = (2, 3, 0) and c1 = 0 this has the form

φφωωω + 3φωφωω = c,

with solution [51]

φ2 = A2ω
2 + A1ω + A0 +

c(ω − x0)3

3
, where x0 is an arbitrary number.

Consequently, the form of u is

u = ±
√
A2(x− ct)2 + A1(x− ct) + A0 +

c(x− ct− x0)3
3

.

For c1 = 0, c = −k1 6= 0 and n = 0, equation (4.21) admits the symmetry generator

φ∂φ. By means of the substitution y(ω) = φω
φ

, (4.21) can be reduced to

yωω + (a+ 3)yyω + (a+ b+ 1)y3 + k1 = 0. (4.22)

For the case that (a, b) = (−2, 1), equation (4.22) has the form

yωω + yyω + k1 = 0.

This equation can be integrated and we obtain a Riccati equation

yω = −y
2

2
− k1ω − k0,

where k0 is the constant of integration. If we use the substitution ω = s − k0
k1

we obtain

the ODE

ys = −y
2

2
− k1s.

The solutions to this equation can be given in term of Bessel functions [57] as

y(s) =

√
2k1
√
s
(
c0J 2

3
(χ)− J− 2

3
(χ)
)

J 1
3
(χ) + c0J− 1

3
(χ)

, (4.23)

with χ(s) = −1
3

√
2k1s

3/2 and c0 arbitrary constant. Since y = φω
φ

, from (4.23) we

can obtain solutions for the equation (4.21) and consequently we take the correspond-

ing traveling-wave solutions of equation (4.1).

We note that for the case that (n, a, b) = (0,−2, 1) equation (4.1) has the form

ut = −
(
uxxx − 2u−1uxuxx + u−2u3x

)
x
≡ − [u (lnu)xx]xx
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which is the Derriba–Lebowitz–Speer–Spohn equation [16].

In the case nc+ 4 = 0 the subalgebra 〈Γ3 + cΓ4〉 leads to the reduced equation

φ− n[φn−2(φ2φxxx + aφφxφxx + bφ3
x)]x = 0.

From subalgebra 〈Γ4 + cΓ1〉 in the case n = 0 we obtain

φ+ c[φ−2(φ2φxxx + aφφxφxx + bφ3
x)]x = 0.

The subalgebra 〈Γ4 + cΓ2 − n
4
Γ3〉 leads to the reduced ODE

cφω − φ+ n[φn−2(φ2φωωω + aφφωφωω + bφ3
ω)]ω = 0,

where n 6= 0. In the case n = 0, we obtain the solution

u = c1 exp

[
1

c4
(
c3x− (a+ b+ 1)t

)]
.

In the case for which we have five symmetries and k = 0 we obtain the following solutions:

For c = ±1 and (n, a, b) =
(
−8

5
,−24

5
, 104

25

)
we have

u = (x2 + c)−5/2(24t+ c1)
5/8

and for (n, a, b) =
(
−8

3
,−16

3
, 44

9

)
we have

u = (x2 + c)−3/2(8t+ c1)
3/8.

4.4 Nonclassical Symmetries

From the definition, in the case of nonclassical symmetries we require invariance of equa-

tion (4.1) in conjunction with its invariant surface condition,

τ(t, x, u)ut + ξ(t, x, u)ux = η(t, x, u)

under the infinitesimal transformations generated by

Γ = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.

We can assume that τ = 1 without loss of generality. After the application of the method

to equation (4.1), from the coefficient of uxxuxxx we can conclude that ξ = ξ(t, x). Using
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this fact, the system of PDEs that results in the determination of the coefficients ξ and η

comprises of the equations

2(3ξxx − 2ηxu)u− (a+ n)ηx = 0, (4.24)

4ηuuu
2 + (a+ n)ηuu− (a+ n)η = 0, (4.25)

3ηuuu
2 + aηuu− aη = 0, (4.26)

6ηuuuu
3 + (5a+ 3n)ηuuu

2 + 2(an− a+ 3b)ηuu− 2(an− a+ 3b)η = 0, (4.27)

12ηxuuu
2 − [(5a+ 3n)ξxx − (7a+ 3n)ηxu]u+ 2(an− a+ 3b)ηx = 0, (4.28)

(2ξxxx − 3ηxxu)u− aηxx = 0, (4.29)

ηuuuuu
4 + (a+ n)ηuuuu

3 + (an− a+ 3b)ηuuu
2 + 3b(n− 2)ηuu

−3b(n− 2)η = 0, (4.30)

4ηxuuuu
3 + 3(a+ n)ηxuuu

2 − (an− a+ 3b)(ξxx − 2ηxu)u+ 4b(n− 2)ηx = 0, (4.31)

6ηxxuuu
2 − (a+ n)(ξxxx − 3ηxxu)u+ (an− a+ 3b)ηxx = 0, (4.32)

(ξxxxx − 4ηxxxu)u
n+1 − (a+ n)ηxxxu

n + (ξt + 4ξξx)u− nξη = 0, (4.33)

ηxxxxu
n+1 + (4ξxη + ηt)u− nη2 = 0. (4.34)

After we have solved the equations (4.24)–(4.34), it turns out that equation (4.1) admits

a nonclassical symmetry only in the case where (n, a, b) = (−1
2
,−3

2
, 3
4
). This symmetry

has the form

Γ = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

d4φ

dx4
+

1

2
φ2 = 0.

A particular solution of this equation is φ = −1680x−4 [51]. The nonclassical operator

above produces the ansatz

u =
[
1
2
φ(x)t+ F (x)

]2
(4.35)

which reduces (4.1) to the ODE

d4F

dx4
+

1

2
φF = 0. (4.36)
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For the particular solution φ = −1680x−4, equation (4.36) becomes an equation of Euler

type of the form

x4
d4F

dx4
− 840F = 0

and solution

F (x) = c1x
−4 + c2x

7 + x3/2

[
c3 cos

(√
111 ln |x|

2

)
+ c4 sin

(√
111 ln |x|

2

)]
.

Consequently we have that the solution of (4.1) is

u(t, x) =

{
−840tx−4 + c1x

−4 + c2x
7 + x3/2

[
c3 cos

(√
111 ln |x|

2

)
+ c4 sin

(√
111 ln |x|

2

)]}2

.

Equation (4.1) with (n, a, b) = (−1
2
,−3

2
, 3
4
) can be written in the form

∂u

∂t
= −2

∂4

∂x4
√
u. (4.37)

If we interpret (4.35) as an ansatz with the two new unknown functions φ and F of the

single variable x, then this ansatz reduces equation (4.37) to a system of the two ODEs

above with respect to the functions φ and F ,

d4φ

dx4
+

1

2
φ2 = 0 and

d4F

dx4
+

1

2
φF = 0.

This means that the generalised vector field (
√
u)tt∂u associated with the ansatz (4.35) is

a generalised conditional symmetry of the equation (4.37).

The ansatz (4.35) first appeared in [48] for the u−1/2-diffusion equation. Γ is an ex-

tension of a nonclassical symmetry operator presented, e.g. in [1] (p. 26), for the u−1/2-

diffusion equation to equations of the form (4.1). The same ansatz, the same generalised

conditional symmetry and similar nonclassical symmetries are possessed by any equation

of the form

∂u

∂t
=

N∑
i=0

ci(x)
∂i

∂xi
√
u.

4.5 Potential Symmetries

As we have said, in this case we search for Lie symmetries for the system (4.2) with the

optimal goal of finding potential symmetries for equation (4.1).
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The system (4.2) admits Lie symmetries if and only if

Γ(1)[vx − u] = 0, (4.38)

Γ(3)[vt + (unuxxx + aun−1uxuxx + bun−2u3x)] = 0 (4.39)

for vx = u and vt = −(unuxxx + aun−1uxuxx + bun−2u3x). Here Γ(1) and Γ(3) are the first

and third extensions, respectively, of the generator

Γ = τ(t, x, u, v)∂t + ξ(t, x, u, v)∂x + η(t, x, u, v)∂u + ζ(t, x, u, v)∂v.

From the coefficients of uxuxxx, uxxx and ux of (4.38) and from the coefficient u2xx of (4.39)

we have the determining equations, respectively,

τu = 0,

τvu+ τx = 0,

ξuu− ζu = 0,

ξu = 0,

from which we can deduce that the coefficients τ is a function of t and ξ and ζ are functions

of t, x and v. After we have used these results, equation (4.38) gives that

η = −ξvu2 − (ξx − ζv)u+ ζx. (4.40)

We substitute the form of η (4.40) into (4.39) and we have the simplifying determining

system for the determination of the coefficients τ, ξ, η and ζ which has the form

(n+ 4)ξvu
2 − [τt − (n+ 4)ξx + nζv]u− nζx = 0, (4.41)

(an+ 5a+ 10)ξvu
2 − a[τt + nζv − (n+ 4)ξx]u− a(n− 1)ζx = 0, (4.42)

(a+ 10)ξvvu
3 + [2(a+ 8)ξxv − (a+ 4)ζvv]u

2 + [(a+ 6)ξxx − 2(a+ 2)ζxv]u

−aζxx = 0, (4.43)

(3a+ bn+ 6b)ξvu
2 − b[τt + nζv − (n+ 4)ξx]u− b(n− 2)ζx = 0, (4.44)

(2a+ b+ 5)ξvvu
3 + [(3a+ 2b+ 4)ξxv − (a+ b+ 1)ζvv]u

2

+[(a+ b)ξxx − (a+ 2b)ζxv]u− bζxx = 0, (4.45)
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(a+ 10)ξvvvu
4 + [3(a+ 8)ξxvv − (a+ 6)ζvvv]u

3 + [3(a+ 6)ξxxv − 3(a+ 4)ζxvv]u
2

+[(a+ 4)ξxxx − 3(a+ 2)ζxxv]u− aζxxx = 0, (4.46)

ξvvvvu
n+5 + (4ξxvvv − ζvvvv)un+4 + 2(3ξxxvv − 2ζxvvv)u

n+3

+2(2ξxxxv − 3ζxxvv)u
n+2 + (ξxxxx − 4ζxxxv)u

n+1 − ζxxxxun + ξtu− ζt = 0. (4.47)

Equation (4.47) breaks up into more equations depending upon the values of the param-

eter n.

When we have solved the determining system (4.41)–(4.47), we deduce that potential

symmetries exist in two cases. The Lie symmetries of (4.2) with the forms

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x − u∂u, Γ4 = ∂v, Γ5 = u∂u + v∂v

project into local symmetries of (4.1). We obtain that the following Lie symmetries of the

system (4.2) induce potential symmetries for the corresponding equation (4.1):

(1) (n, a, b) = (0,−4, 3): Γ6 = 2uv∂u + v2∂v.

(2) (n, a, b) = (−4,−10, 15): Γ7 = ψ(t, v)∂x − u2ψv∂u, where ψt + ψvvvv = 0.

Since the system

vx = u,

vt = −(uxxx − 4u−1uxuxx + 3u−2u3x),

admits six linearly independent Lie symmetries (Γ6 and five that project into Lie sym-

metries of the original equation), we can construct the optimal system. In the next set

of tables we present the commutator table and the adjoint table for the Lie algebra of

the Γi, i = 1, . . . , 6, for (n, a, b) = (0,−4, 3), from which we are going to construct the

optimal system that provides all possible invariant solutions.
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Table 4.3: Commutation relations for the Lie algebra of the system (4.2)

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 0 0 4Γ1 0 0 0

Γ2 0 0 Γ2 0 0 0

Γ3 −4Γ1 −Γ2 0 0 0 0

Γ4 0 0 0 0 Γ4 2Γ5

Γ5 0 0 0 −Γ4 0 Γ6

Γ6 0 0 0 −2Γ5 −Γ6 0

Table 4.4: Adjoint actions for the Lie algebra of the system (4.2)

Ad Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 − 4εΓ1 Γ4 Γ5 Γ6

Γ2 Γ1 Γ2 Γ3 − εΓ2 Γ4 Γ5 Γ6

Γ3 e4εΓ1 eεΓ2 Γ3 Γ4 Γ5 Γ6

Γ4 Γ1 Γ2 Γ3 Γ4 Γ5 − εΓ4 Γ6 − 2εΓ5 + ε2Γ4

Γ5 Γ1 Γ2 Γ3 eεΓ4 Γ5 e−εΓ6

Γ6 Γ1 Γ2 Γ3 Γ4 + 2εΓ5 + ε2Γ6 Γ5 + εΓ6 Γ6

We find that the only linear combination of Lie symmetries that is not equivalent to any

component of the optimal system derived in Subsection 4.3.1, is the following:

∆ = 4εt∂t + εx∂x + (2uv − εu)∂u + (v2 + α)∂v,

where ε = ±1 and α ∈ {−1, 0, 1}. Depending upon the value of the constant α, symmetry

∆ leads to the following reductions:

v = tan[ε lnx+ f(ω)], u = g(ω)(v2 + 1) exp
(
−ε tan−1 v

)
, α = 1,
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v = − tanh[ε lnx+ f(ω)], u = g(ω)(v2 − 1) exp
(
ε tanh−1 v

)
, α = −1,

v = − ε

lnx+ f(ω)
, u = g(ω)v2eε/v, α = 0,

where ω = x4/t.

4.5.1 Further Potential Symmetries

For a complete investigation of potential symmetries the first step is to calculate the

conservation laws. For PDEs in two independent variables, t and x, the general form of

(local) conservation laws is

DtF +DxG = 0,

where Dt and Dx are the total derivatives with respect to t and x. The above equality

is assumed to be satisfied for any solution of the corresponding system of equations. The

components F and G of the conserved vector (F,G) are functions of t, x and derivatives

of u and are called the density and the flux of the conservation law, respectively. Basic

definitions and statements on conservation laws can be found in [47].

Here we have derived the conservation laws using the direct method [71, 72] in the

special case where

F = F (t, x, u), G = G(t, x, u, ux, uxx, uxxx).

In fact if the density F does not depend upon the derivatives of u, the above is the most

general form of conservation laws for evolution equation (4.1) [55]. In the case for which

the parameters a and b are arbitrary we have the conservation law

F = −u, G = un−2
(
u2uxxx + auuxuxx + bu3x

)
.

If the parameters satisfy the relation 2b− (n− 1)(a− n) = 0, then equation (4.1) admits

a second conservation law

F = −xu, G = 1
2
un−2

[
2xu2uxxx + 2axuuxuxx − 2u2uxx

+ (n− 1)(a− n)xu3x + (n− a)uu2x
]
.

Finally, if a = 3n and b = n(n− 1), we have two additional conservation laws

F = −x2u, G = un−2
[
x2u2uxxx + 3nx2uuxuxx − 2xu2uxx

+ n(n− 1)x2u3x − 2nxuu2x + 2u2ux
]
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and

F = −x3u, G = un−2
[
x3u2uxxx + 3nx3uuxuxx − 3x2u2uxx

+ n(n− 1)x3u3x − 3nx2uu2x + 6xu2ux − 6
n+1

u3
]
.

System (4.2) which corresponds to the first conservation law, was employed in the

present Section to derive potential symmetries for the thin-film equation (4.1). On the

other hand Lie symmetries of the auxiliary systems that correspond to the second and

third conservation laws project into Lie symmetries of equation (4.1), that is, we obtain

no further potential symmetries. Examples of potential symmetries for diffusion type

equations that are obtained form different potential systems can be found in [28,68].

The exhaustive analysis of potential symmetries of (4.1) can only be achieved when

all conservation laws are derived, that is, all potential systems are known. We also point

out that it is possible to construct potential systems using linear combinations of basis

conservation laws. For example, the conservation law with F = −(x2 + c)u leads to a

potential system which is not equivalent to the above.

4.5.2 Linearising Mappings

In [5] it is shown that an invertible mapping which transforms a nonlinear PDE to a linear

one does not exist if the nonlinear PDE does not admit an infinite-parameter Lie group

of contact transformations. Also such mappings which transform a nonlinear system of

PDEs to a linear one do not exist if a system does not admit an infinite-parameter Lie

group of transformations. If such infinite-parameter groups exist then the nonlinear PDE

(or system of nonlinear PDEs) can be transformed into a linear PDE (or into a system of

linear PDEs) provided that these groups satisfy certain criteria [5].

Here we have seen that the nonlinear system (4.2) for (n, a, b) = (−4,−10, 15) with the

form

vx = u,

vt = −(u−4uxxx − 10u−5uxuxx + 15u−6u3x),

admits the infinite-dimensional Lie symmetry Γ7. This Lie symmetry leads to the point

transformation

t′ = t, x′ = v, u′ =
1

u
, v′ = x
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that connects the above nonlinear system and the linear system

v′x′ = u′,

v′t′ = −u′x′x′x′ .

In turn this mapping produces the one-to-one contact transformation

dt′ = dt, dx′ = udx− (u−4uxx − 3u−5u2x)xdt, u′ =
1

u

which transforms the linear equation u′t′ + u′x′x′x′x′ = 0 into the nonlinear PDE

ut +
(
u−4uxx − 3u−5u2x

)
xx

= 0.

4.6 Nonclassical Potential Symmetries

Following the idea of Section 4.4, we search for nonclassical symmetries for the potential

equation (4.3). If we take τ = 1, the invariance surface condition has the form

vt = ζ(t, x, v)− ξ(t, x, v)vx

and the reduction operator has the form

Γ = ∂t + ξ(t, x, v)∂x + ζ(t, x, v)∂v.

The determining system for the coefficients ξ and ζ has the form

(a+ 10)ξvv = 0, (4.48)

2(a+ 8)ξxv − (a+ 4)ζvv = 0, (4.49)

(a+ 6)ξxx − 2(a+ 2)ζxv = 0, (4.50)

aζxx = 0, (4.51)

aζx = 0, (4.52)

(a+ 10)ξv = 0, (4.53)

(3a+ 2b)ξv = 0, (4.54)

bζx = 0, (4.55)
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(2a+ b+ 5)ξvv = 0, (4.56)

(3a+ 2b+ 4)ξxv − (a+ b+ 1)ζvv = 0, (4.57)

(a+ b)ξxx − (a+ 2b)ζxv = 0, (4.58)

bζxx = 0, (4.59)

(a+ 10)ξvvv = 0, (4.60)

3(a+ 8)ξxvv − (a+ 6)ζvvv = 0, (4.61)

(a+ 6)ξxxv − (a+ 4)ζxvv = 0, (4.62)

(a+ 4)ξxxx − 3(a+ 2)ζxxv = 0, (4.63)

aζxxx = 0, (4.64)

ξvvvvv
n+6
x + (4ξxvvv − ζvvvv)vn+5

x + 2(3ξxxvv − 2ζxvvv)v
n+4
x + 2(2ξxxxv − 3ζxxvv)v

n+3
x

+(ξxxxx − 4ζxxxv)v
n+2
x − ζxxxxvn+1

x + (n+ 4)ξvξv
3
x + [ξt + (n+ 4)(ξxξ − ξvζ)− nξζv]v2x

−[(n+ 4)ξxζ + ζt + n(ξζx − ζvζ)]vx + nζζx = 0. (4.65)

Depending upon the values of the parameter n, equation (4.65) can be split into more

equations.

Solving the system (4.48)–(4.65), we deduce that equation (4.3) admits such symmetries

in two cases, for which

(n, a, b) ∈ {(−1, 0, 0), (−3,−10, 15)} .

In particular, we find that for (n, a, b) = (−1, 0, 0) equation (4.3) has the form

vt = −vx−1vxxxx (4.66)

and it admits the reduction operator

Γ1 = ∂t + c∂x + φ(x+ ct)∂v,

where φ(ω) is a solution of the ODE

d4φ

dω4
+ φ

dφ

dω
= 0. (4.67)
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Now the pure hodograph transformation connects equation (4.66) and

vt = −(v−3x vxxxx − 10v−4x vxxvxxx + 15v−5x v3xx), (4.68)

which is the form of equation (4.3) for (n, a, b) = (−3,−10, 15). Hence equation (4.68)

admits the reduction operators

Γ2 = ∂t + φ(v + ct)∂x + c∂v,

where φ(ω) is a solution of the ODE (4.67).
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Chapter 5

Group Analysis of a Third-Order

Nonlinear Evolution Equation

5.1 Introduction

In this Chapter we show the symmetry properties of third-order nonlinear evolution equa-

tions of the class

∂u

∂t
= − ∂

∂x

(
un
∂2u

∂x2
+ aun−1

(
∂u

∂x

)2
)
. (5.1)

Examples of this class of equations are the well-known Harry–Dym equation, which is one

of the most interesting integrable models for physicists and mathematicians,

ut = 2
(
u−1/2

)
xxx

.

It arises, e.g., in the analysis of the Saffman–Taylor problem with surface tension [30].

Other examples are the integrable equations [9],

ut = 2
(
u−2
)
xxx

and

ut = −
(
u−6uxx − 3u−7u2x

)
x
.

If we introduce a potential variable v, equation (5.1) can be written as a system of two

PDEs

vx = u, (5.2)
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vt = −
(
unuxx + aun−1u2x

)
and elimination of u from this system gives the potential form of equation (5.1),

vt = −
(
vnxvxxx + avn−1x v2xx

)
. (5.3)

In the subsequent analysis we present equivalence transformations, Lie symmetries,

nonclassical symmetries, potential symmetries and potential nonclassical symmetries.

Furthermore we find those forms of (5.1) that can be linearised and we provide the cor-

responding linearising mappings [10].

5.2 Equivalence Transformations

Unlike equations (4.1) which admit equivalence transformations in the case in which

the primed variables are equal to the corresponding unprimed variables, here we have

additional equivalence transformations when these variables are not equal. In the first

case, the equivalence group of the class (5.1) consists of the transformations

t′ = c1t+ c2, x′ = c3x+ c4, u′ = c
−1/n
1 c

3/n
3 u, (n′, a′) = (n, a),

where u′(t′, x′) satisfies (5.1) with the variables and parameters being primed and c1c3 6= 0.

In the case where

(n, a) ∈
{(
−3,−3

2

)
,

(
−3

2
,−3

2

)}
we have the additional equivalence transformation

t′ = c1t+ c2, x′ =
c3x+ c4
c5x+ c6

, u′ = c
−1/n
1 (c5x+ c6)

−6/nu, (n′, a′) = (n, a)

in which c1 6= 0 and c3c6 − c4c5 = ±1.

In the second case we have the additional equivalence transformations

t′ = c1t+ c2, x′ = c3x+ c4, u′ = c
−1/n′
1 c

3/n′

3 un/n
′
, (5.4)

where

a =
nn′ − 2n′ + n

2n′
, a′ =

nn′ + n′ − 2n

2n
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and n, n′ are arbitrary. Furthermore in the case for which a = a′ = −3
2

and n = −3, n′ =

−3
2

we have, additionally,

t′ = c1t+ c2, x′ =
c3x+ c4
c5x+ c6

, u′ = c
2/3
1 c−25 (c5x+ c6)

4u2.

Note that in the above two cases we assumed that nn′ 6= 0.

The equivalence group of the system (5.2) is generated by the transformations

t′ = c−n3 cn+3
1 t+ c5, x′ = c1x+ c2, u′ = c−11 c3u, v′ = c3v + c4

if (n′, a′) = (n, a) and by the transformations

t′ = c−n1 cn+3
3 t+ c5, x′ = c1v + c2, u′ = c−11 c3u, v′ = c3x+ c4

if (n′, a′) = (−n− 3,−a− 3), where c1c3 6= 0.

5.3 Lie Symmetries

Equation (5.1) admits Lie point symmetries if and only if

Γ(3)[ut + unuxxx + (2a+ n)un−1uxuxx + a(n− 1)un−2u3x] = 0 (5.5)

for ut = − [unuxxx + (2a+ n)un−1uxuxx + a(n− 1)un−2u3x].

If we use the above expression, we can eliminate ut and equation (5.5) becomes an

identity in the variables ux, uxx, utx, uxxx and utxx. From coefficients of different powers

of these variables, which must separately be equal to zero, we derive the determining

equations for the coefficients τ , ξ and η. We again use the general results on point

transformations between evolution equations [34], that τ = τ(t) and ξ = ξ(t, x). From

the coefficient of uxxx we have that

η =
(3ξx − τt)u

n
.

If we use the above facts, from the coefficients of uxx, u
2
x, ux and the term independent

of derivatives of (5.5) we have the following determining equations, respectively,

(2a+ 3)ξxx = 0, (5.6)

(7an+ 3a− n2 + 6n)ξxx = 0, (5.7)
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(6a+ 2n+ 9)ξxxxu
n − nξt = 0, (5.8)

3ξxxxxu
n + 3ξtx − τtt = 0. (5.9)

The solution of the determining equations (5.6)–(5.9) gives that for n and a arbitrary the

symmetry Lie algebra is four-dimensional and is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x, Γ4 =
nx

3
∂x + u∂u.

If (n, a) ∈ {
(
−3,−3

2

)
,
(
−3

2
,−3

2

)
}, then equation (5.1) also admits a fifth Lie symmetry

Γ5 = x2∂x +
6xu

n
∂u

and the two cases of (5.1) correspond to the equations

ut = −
[
u−3uxx −

3

2
u−4u2x

]
x

and

ut = −
[
u−3/2ux

]
xx
.

Furthermore, for the case that n = 0, from the coefficient of uxxx we have that

3ξx − τt = 0

from which we can conclude that

ξ =
1

3
τtx+ L(t).

If we use this expression, from the coefficient of uxuxx we have that

3ηuuu
2 + 2aηuu− 2aη = 0 (5.10)

which is an equation of Euler type with solution

η = g(t, x)u+ φ(t, x)u−2a/3. (5.11)

After we have substituted the expression η (5.11) into (5.5), from the coefficients of uxx, u
3
x,

u2x, ux and the term independent of derivatives of (5.5), we have the following determining

equations, respectively,

(2a+ 3)gx = 0, (5.12)

aφ(8a2 + 18a+ 9) = 0, (5.13)
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a
[
3gxu

2a+3
3 − (4a+ 3)φx

]
= 0, (5.14)

3(2a+ 3)gxx − τttx− 3Lt = 0, (5.15)

(gt + gxxx)u
2a+3

3 + φt + φxxx = 0. (5.16)

In this case, after we have solved the determining equations (5.12)–(5.16), we conclude

that, if (n, a) = (0,−3
4
), in addition to the four Lie symmetries, equation (5.1) admits the

infinite-dimensional Lie symmetry

Γ∞ = φ(t, x)
√
u∂u,

where φ(t, x) is a solution of the linear equation φt + φxxx = 0.

5.3.1 Linearising Mappings

The existence of infinite-dimensional Lie symmetries suggests linearisation of the equation

being studied. For the criteria of the existence of such mappings and how to construct

them, one can read [5].

The equation

ut = −
(
uxx −

3

4
u−1u2x

)
x

that admits the infinite-dimensional Lie symmetry Γ∞ can be mapped into the linear

PDE

u′t′ + u′x′x′x′ = 0 (5.17)

by the transformation

t′ = t, x′ = x, u′ =
√
u.

In the case of the class of fourth-order equations (4.1) we have seen that no subclass exists

that can be linearised by a local mapping. It appears that only equations of odd-order

from the chain can be linearised by a local mapping.
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5.3.2 Invariant Solutions

In the following tables we present the commutator table and the adjoint table for the

Lie algebra of the Γi which, as we know, are needed for the construction of the optimal

system of subalgebras.

Table 5.1: Commutation relations for the Lie algebra of equation (5.1)

Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 0 0 3Γ1 0 0

Γ2 0 0 Γ2
n
3 Γ2

6
nΓ4

Γ3 −3Γ1 −Γ2 0 0 Γ5

Γ4 0 −n3 Γ2 0 0 n
3 Γ5

Γ5 0 − 6
nΓ4 −Γ5 −n3 Γ5 0

Table 5.2: Adjoint actions for the Lie algebra of equation (5.1)

Ad Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 Γ1 Γ2 Γ3 − 3εΓ1 Γ4 Γ5

Γ2 Γ1 Γ2 Γ3 − εΓ2 Γ4 − nε
3 Γ2 Γ5 − 6ε

n Γ4 + ε2Γ2

Γ3 e3εΓ1 eεΓ2 Γ3 Γ4 e−εΓ5

Γ4 Γ1 e
nε
3 Γ2 Γ3 Γ4 e−

nε
3 Γ5

Γ5 Γ1 Γ2 + 6ε
n Γ4 + ε2Γ5 Γ3 + εΓ5 Γ4 + nε

3 Γ5 Γ5

In the case in which n and a are arbitrary the optimal system consists of the list of

inequivalent subalgebras

〈Γ2〉, 〈Γ1 + cΓ2〉, 〈Γ3 + cΓ4〉, 〈Γ4 + cΓ1〉, 〈Γ4 + cΓ2 − n
3
Γ3〉.

If (n, a) ∈
{(
−3,−3

2

)
,
(
−3

2
,−3

2

)}
, in addition to the above list, we have a reduction that
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corresponds to the subalgebra

〈Γ5 + cΓ2 + 2kΓ3〉.

The similarity reductions that result from the components of the optimal system that

transform (5.1) into an ODE are:

〈Γ2〉 : u = φ(ω), ω = t,

〈Γ1 + cΓ2〉 : u = φ(ω), ω = x− ct,

〈Γ3 + cΓ4〉 : u = t
c
3φ(ω), ω =

 x if nc+ 3 = 0,

t−
1
3x

3
nc+3 if nc+ 3 6= 0,

〈Γ4 + cΓ1〉 : u =

 x
3
nφ(ω), ω = etx−

3c
n if n 6= 0,

e
t
cφ(ω), ω = x if n = 0,

〈Γ4 + cΓ2 − n
3
Γ3〉 : u =

 t−
1
nφ(ω), ω = x+ c

n
ln t if n 6= 0,

e
x
c φ(ω), ω = t if n = 0.

In the case for which we have five symmetries, we obtain the following additional

reduction

〈Γ5 + cΓ2 + 2kΓ3〉 : u =



((x+ k)2 + 1)
3
n exp

[
−6k

n
tan−1(x+ k)

]
φ(ω),

ω = t exp [−6k tan−1(x+ k)] if c− k2 = 1,

((x+ k)2 − 1)
3
n exp

[
6k
n

tanh−1(x+ k)
]
φ(ω),

ω = t exp
[
6k tanh−1(x+ k)

]
if c− k2 = −1,

(x+ k)
6
n exp

[
6k

n(x+k)

]
φ(ω),

ω = t exp
[

6k
x+k

]
if c− k2 = 0,

where ω is the independent and φ the dependent variable of the reduced ODE, c = 0,±1

and k ∈ R.

We give some examples of reduced ODEs. The reduction that corresponds to the

subalgebra 〈Γ1 + cΓ2〉 leads to the equation

cφω − [φn−1(φφωω + aφ2
ω)]ω = 0

which provides traveling-wave solutions for the equation (5.1). If we integrate the above

equation by parts, the integral has the form

φn−1(φφωω + aφ2
ω) = cφ+ c1, (5.18)
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where c1 is the constant of integration. If (n, a) = (1,−1), this has the form

φφωω − φ2
ω = cφ+ c1

with solutions [51]:

(1) φ = A1 sinh(A3ω) + A2 cosh(A3ω) + cA−23 , where the constants A1, A2 and A3 are

related by the constraint (A2
1 − A2

2)A
2
3 + c1 + c2A−23 = 0. In this case the form of u is

u = A1 sinh(A3(x− ct)) + A2 cosh(A3(x− ct)) + cA−23 .

(2) φ = A1 sin(A3ω) + A2 cos(A3ω) − cA−23 , where the constants A1, A2 and A3 are

related by the constraint (A2
1 + A2

2)A
2
3 + c1 − c2A−23 = 0. Here the form of u is

u = A1 sin(A3(x− ct)) + A2 cos(A3(x− ct))− cA−23 .

For c1 = 0, c 6= 0 and n = 0, equation (5.18) admits the symmetry generator φ∂φ. By

means of the substitution y(ω) = φω
φ

, (5.18) can be reduced to

yω + (a+ 1)y2 − c = 0. (5.19)

For the case that a = −1, the solution of (5.19) is y = cω + k1 and since y(ω) = φω
φ

we

obtain that

u = φ(ω) = exp

[
1

2
c(x− ct)2 + k1(x− ct) + k2

]
.

Otherwise, when a 6= −1 and a+ 1 > 0, the solution for (5.19) is

y =


√

c
a+1

[
1+exp

(
2
√
c(a+1)(k1−ω)

)
1−exp

(
2
√
c(a+1)(k1−ω)

)
]

if c > 0,√
|c|
a+1

tan
(√
|c|(a+ 1)(k1 − ω)

)
if c < 0.

The corresponding travelling wave solutions to the equation (5.1) can be written as

u =


k2 exp

[
−
√

c
(a+1)

ω

] [(
exp

[
2
√
c(a+ 1)ω

]
− exp

[
2k1
√
c(a+ 1)

])]1/(a+1)

if c > 0,

k2

[
tan2

(√
|c|(a+ 1)(k1 − ω)

)
+ 1
]−1/2(a+1)

if c < 0.

Here, k1 and k2 are arbitrary constants and ω = x− ct. Similarly we can find the form of

u for the case that a+ 1 < 0.

In the case nc+ 3 6= 0 the subalgebra 〈Γ3 + cΓ4〉 leads to the reduced equation

81φn+2φωωωω
−nc + 81(2a+ n)φn+1φωφωωω

−nc − 81ncφn+2φωωω
−nc−1
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+81(n− 1)aφnφ3
ωω
−nc − 27(2a+ n)ncφn+1φ2

ωω
−nc−1 + 9(2nc+ 3)ncφn+2φωω

−nc−2

−(n3c3 + 9n2c2 + 27nc+ 27)φ2φωω + (n3c3 + 9n2c2 + 27nc+ 27)cφ3 = 0

and for nc+ 3 = 0 we have the ODE

φ− n[φn−1(φφxx + aφ2
x)]x = 0.

From subalgebra 〈Γ4 + cΓ1〉 in the case n 6= 0, we obtain

27c3φn+2φωωωω
3 + 27(2a+ n)c3φn+1φωφωωω

3 − 27(2a− 3c+ 3)c2φn+2φωωω
2

+27(n− 1)ac3φnφ3
ωω

3 + 9c2(6ac− 7an− 3a+ 3nc+ n2 − 6n)φn+1φ2
ωω

2

−3(18ac− 15an− 27a− 9c2 + 27c+ 4n2 − 9n− 27)cφn+2φωω

−n3φ2φωω − 3(3an+ 9a− n2 + 9)φn+3 = 0

and for the case that n = 0, we have that

φ+ c[φ−1(φφxx + aφ2
x)]x = 0.

The final example is the subalgebra 〈Γ4 + cΓ2 − n
3
Γ3〉 which leads to the reduced ODE

cφω − φ+ n[φn−1(φφωω + aφ2
ω)]ω = 0,

where n 6= 0. In the case n = 0, we obtain the solution u = c1 exp
[
1
c3

(c2x− (a+ 1)t)
]
.

5.4 Nonclassical Symmetries

Here we apply the nonclassical method to equation (5.1). From the coefficient of u2xx we

conclude that ξ = ξ(t, x). We use this fact and the form of the determining system for

the coefficients ξ and η becomes

3ηuuu
2 + (2a+ n)ηuu− (2a+ n)η = 0, (5.20)

3(ξxx − ηxu)u− (2a+ n)ηx = 0, (5.21)

ηuuuu
3 + (2a+ n)ηuuu

2 + 2a(n− 1)ηuu− 2a(n− 1)η = 0, (5.22)

3ηxuuu
2 − (2a+ n)(ξxx − 2ηxu)u+ 3a(n− 1)ηx = 0, (5.23)
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(ξxxx − 3ηxxu)u
n+1 − (2a+ n)ηxxu

n + (ξt + 3ξξx)u− nξη = 0, (5.24)

ηxxxu
n+1 + (3ξxη + ηt)u− nη2 = 0. (5.25)

We solve the equations (5.20)–(5.25) to deduce that equation (5.1) admits nonclassical

symmetries in two cases. If (n, a) = (−1
2
,−1

2
) it admits the reduction operator

Γ1 = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

d3φ

dx3
+

1

2
φ2 = 0.

A special solution of this latter equation is φ = 120x−3. If (n, a) = (−1
3
,−5

6
), then (5.1)

admits the reduction operator

Γ2 = ∂t + ψ(x)u2/3∂u,

where ψ(x) is a solution of the ODE

d3ψ

dx3
+

1

3
ψ2 = 0.

A special solution is ψ = 180x−3. We point out that these two equations, which admit

nonclassical symmetries, are connected by the mapping

u 7→ u3/2

which is a special case of the equivalence transformation (5.4).

In the case for which (n, a) =
(
−1

2
,−1

2

)
, Γ1 leads to the ansatz (4.35)

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces (5.1) to the ODE

d3F

dx3
+

1

2
φF = 0. (5.26)

For the solution φ = 120x−3, equation (5.26) becomes an equation of Euler type of the

form

x3
d3F

dx3
+ 60F = 0 (5.27)
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which has the solution

F (x) = c1x
−3 + x3

[
c2 cos

(√
11 ln |x|

)
+ c3 sin

(√
11 ln |x|

)]
, (5.28)

which produces the solution of (5.1),

u(t, x) =
[
60tx−3 + c1x

−3 + x3
(
c2 cos

(√
11 ln |x|

)
+ c3 sin

(√
11 ln |x|

))]2
.

The corresponding solution for the case (n, a) =
(
−1

3
,−5

6

)
can be determined either by

using the above mapping or the ansatz that can be obtained from Γ2. Namely, we have

the ansatz

u =
[
1
3
ψ(x)t+ F (x)

]3
(5.29)

with the form of the reduced ODE (5.1)

d3F

dx3
+

1

3
ψF = 0. (5.30)

For ψ = 180x−3 equation (5.30) becomes an equation of Euler type with the form of (5.27)

x3
d3F

dx3
+ 60F = 0

and solution the same as the solution of F (x) in (5.28). Consequently in this case the

solution of (5.1) is

u(t, x) =
[
60tx−3 + c1x

−3 + x3
(
c2 cos

(√
11 ln |x|

)
+ c3 sin

(√
11 ln |x|

))]3
.

5.5 Potential Symmetries

In this case the system (5.2) admits Lie symmetries if and only if

Γ(1) [vx − u] = 0, (5.31)

Γ(2)
[
vt +

(
unuxx + aun−1u2x

)]
= 0 (5.32)

for vx = u and vt = − (unuxx + aun−1u2x) . Γ(1) and Γ(2) are the first and second extensions,

respectively, of the generator

Γ = τ(t, x, u, v)∂t + ξ(t, x, u, v)∂x + η(t, x, u, v)∂u + ζ(t, x, u, v)∂v.
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From the coefficients of uxuxx, uxx and ux of (5.31) and from the coefficient uxuxx of

(5.32) we have the determining equations, respectively,

τu = 0,

τvu+ τx = 0,

ξuu− ζu = 0,

ξu = 0.

After we have solved these equations we can deduce that the coefficient τ is a function of

t and the coefficients ξ and ζ are functions of t, x and v. We use these results and from

equation (5.31) we have that

η = −ξvu2 − (ξx − ζv)u+ ζx. (5.33)

We substitute the form of η (5.33) into (5.32) and the simplified determining system, that

arises from the coefficients of uxx, u
2
x, ux and the term independent of derivatives, for the

determination of the coefficients τ, ξ η and ζ has the following form, respectively,

(n+ 3)ξvu
2 − [τt − (n+ 3)ξx + nζv]u− nζx = 0, (5.34)

(an+ 4a+ 3)ξvu
2 − a[τt + nζv − (n+ 3)ξx]u− a(n− 1)ζx = 0, (5.35)

2(a+ 3)ξvvu
3 + [(4a+ 9)ξxv − (2a+ 3)ζvv]u

2 + [(2a+ 3)ξxx − (4a+ 3)ζxv]u

−2aζxx = 0, (5.36)

ξvvvu
n+4 + (3ξxvv − ζvvv)un+3 + 3(ξxxv − ζxvv)un+2 + (ξxxx − 3ζxxv)u

n+1

−ζxxxun + ξtu− ζt = 0. (5.37)

Equation (5.37) can be broken into more equations in proportion the values of the pa-

rameter n.

When we have solved the determining system (5.34)–(5.37), we obtain that the system

(5.2) admits Lie symmetries which induce potential symmetries of (5.1) in two cases.

In particular, if (n, a) = (−3,−3) equation (5.1) admits the potential symmetry

Γ = ψ(t, v)∂x − u2ψv∂u,

where ψ(t, v) is a solution of the linear equation ψt + ψvvv = 0.

If (n, a) =
(
0,−3

2

)
, it admits the potential symmetry

Γ = 2uv∂u + v2∂v.
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5.5.1 Further Potential Symmetries

Equation (5.1) can be also written in the conserved form[
u2a−n+2

]
t
+ (2a− n+ 2)

[
u2a+1uxx + 1

2
(n− 1)u2au2x

]
x

= 0,

where a 6= n
2
− 1. If we introduce a potential variable v, we obtain the auxiliary system

vx = − u2a−n+2

2a− n+ 2
, (5.38)

vt = u2a+1uxx + 1
2
(n− 1)u2au2x.

In the case for which a = n
2
− 1, the corresponding auxiliary system takes the form

vx = − lnu, (5.39)

vt = un−2
(
uuxx + 1

2
(n− 1)u2x

)
.

Lie symmetries of the system (5.38) induce potential symmetries of (5.1) in two cases,

while Lie symmetries of the system (5.39) lead only to Lie symmetries of (5.1). The first

case is when (n, a) = (3, 0) system (5.38) admits the following Lie symmetry which is a

potential symmetry of (5.1)

Γ = ψ(t, v)∂x + ψv∂u,

where ψ(t, v) is a solution of the linear equation ψt + ψvvv = 0. We point out that the

potential equation (5.3) that corresponds to (n, a) = (−3,−3) is the same as the potential

equation that is obtained by eliminating u in (5.38) when (n, a) = (3, 0).

The second case that the system (5.38) produces potential symmetry is when (n, a) =(
0,−3

2

)
and the symmetry has the form

Γ = −2uv∂u + v2∂v.

Here, when (n, a) =
(
0,−3

2

)
the potential equation (5.3) is the same as the potential

equation obtained from system (5.38).

Equation (5.1) can be written in other conserved forms when the parameters n and a

satisfy certain relations. For example, if a = n, then equation (5.1) can be written as a

system of two equations

vx = −xu,
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vt = un−1
(
xuuxx + nxu2x − uux

)
or

vx = −x2u,

vt = un−1
(
x2uuxx + nx2u2x − 2xuux +

2

n+ 1
u2
)
.

However Lie symmetries, of the above two systems do not induce potential symmetries

for equation (5.1).

5.5.2 Linearising Mappings

The infinite-dimensional Lie symmetry admitted by the system (5.2) for (n, a) = (−3,−3)

with the form

vx = u,

vt = −
(
u−3ux

)
x

leads to the mapping

t′ = t, x′ = v, u′ =
1

u
, v′ = x

that transform any solution (u(t, x), v(t, x)) of this system into a solution

(u′(t′, x′), v′(t′, x′)) of the linear system

v′x′ = u′, (5.40)

v′t′ = −u′x′x′ .

In turn this mapping produces the one-to-one contact transformation

dt′ = dt, dx′ = udx− (u−3ux)xdt, u′ =
1

u

which transforms the linear equation (5.17) into the nonlinear PDE

ut +
(
u−3ux

)
xx

= 0.

We have seen also that the system (5.38) for (n, a) = (3, 0) with the form

vx =
1

u
,
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vt = (uux)x

admits an infinite-dimensional Lie symmetry. This symmetry leads to the mapping

t′ = t, x′ = v, u′ = u, v′ = x

that connects this nonlinear system and the linear system (5.40). In turn this mapping

produces the one-to-one contact transformation

dt′ = dt, dx′ = udx+ (uux)xdt, u′ = u

which transforms the linear equation (5.17) into the nonlinear PDE

ut + u2 (uux)xx = 0.

5.6 Nonclassical Potential Symmetries

Here we list the nonclassical symmetries of the potential equation (5.3) that induce poten-

tial nonclassical symmetries of equation (5.1). Firstly, we present the determining system

for the determination of the coefficients ξ and ζ.

(a+ 3)ξv = 0, (5.41)

aζx = 0, (5.42)

(a+ 3)ξvv = 0, (5.43)

(4a+ 9)ξxv − (2a+ 3)ζvv = 0, (5.44)

(2a+ 3)ξxx − (4a+ 3)ζxv = 0, (5.45)

aζxx = 0, (5.46)

ξvvvv
n+5
x + (3ξxvv − ζvvv)vn+4

x + 3(ξxxv − ζxvv)vn+3
x + (ξxxx − 3ζxxv)v

n+2
x

−ζxxxvn+1
x + (n+ 3)ξvξv

3
x + [ξt + (n+ 3)(ξxξ − ξvζ)− nξζv]v2x

−[(n+ 3)ξxζ + ζt + n(ξζx − ζvζ)]vx + nζxζ = 0. (5.47)

Depending upon the values of the parameter n, equation (5.47) is able to be broken into

more equations.
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We solve the system of equations (5.41)–(5.47) and we conclude that we have nonclas-

sical potential symmetries in two cases.

If (n, a) = (−1, 0), then equation (5.3) admits the reduction operator

Γ1 = ∂t + c∂x + φ(x+ ct)∂v

and if, (n, a) = (−2,−3), it admits the reduction operator

Γ2 = ∂t + φ(v + ct)∂x + c∂v.

In both operators φ(ω) is a solution of the ODE

d3φ

dω3
+ φ

dφ

dω
= 0.

This latter equation can be integrated to give∫
dφ√

−1
3
φ3 + c1φ+ c2

= ω + c3.

The corresponding potential equations to these two cases are connected via the pure

hodograph transformation.
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Chapter 6

Group Analysis of a Sixth-Order and

a Fifth-Order Nonlinear Evolution

Equations

6.1 Introduction

Equation (3.1) is one of the most known and well studied nonlinear PDEs. King [31]

introduced and studied the fourth-order nonlinear thin-film equation (4.1) which was

examined in the Chapter 4 from the point of view of Lie group analysis. Furthermore

King [31] introduced the sixth-order nonlinear thin-film equation

∂u

∂t
= − ∂

∂x

[
un
∂5u

∂x5
+ a1u

n−1∂u

∂x

∂4u

∂x4
+ a2u

n−1∂
2u

∂x2
∂3u

∂x3
+ a3u

n−2
(
∂u

∂x

)2
∂3u

∂x3

+ a4u
n−2∂u

∂x

(
∂2u

∂x2

)2

+ a5u
n−3
(
∂u

∂x

)3
∂2u

∂x2
+ a6u

n−4
(
∂u

∂x

)5
]
. (6.1)

A study of an elementary form of (6.1), namely

∂u

∂t
=
∂

∂x

(
u3
∂5u

∂x5

)
,

was made from the viewpoints of numerical solution and asymptotic solution by Smith et

al. [65]. Another example is the sixth-order equation of the form

ut =

[
u

(
1

u
(u (lnu)xx)xx +

1

2
((lnu)xx)

2

)
x

]
x

,
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which serves as an extension of the Derriba–Lebowitz–Speer–Spohn equation of the fourth-

order [16],

ut = − [u (lnu)xx]xx .

This equation originates from the generalised quantum drift-diffusion model for semi-

conductors of Degond et al. [14] in the O(~6) approximation, with ~ denoting the reduced

Planck constant. The element u(t, x) represents the particle density. After we expand the

derivatives, the above equation can be written as

∂u

∂t
=

∂

∂x

[
∂5u

∂x5
− 3u−1

∂u

∂x

∂4u

∂x4
− 5u−1

∂2u

∂x2
∂3u

∂x3
+ 8u−2

(
∂u

∂x

)2
∂3u

∂x3

+ 11u−2
∂u

∂x

(
∂2u

∂x2

)2

− 18u−3
(
∂u

∂x

)3
∂2u

∂x2
+ 6u−4

(
∂u

∂x

)5
]
.

One can observe that the second-order equation (3.2), the fourth-order equation (4.1)

and the sixth-order equation (6.1) consist of a chain of nonlinear evolution equations.

However, there exist two missing pieces of the chain which are the third-order nonlinear

equation (5.1),

∂u

∂t
= − ∂

∂x

(
un
∂2u

∂x2
+ aun−1

(
∂u

∂x

)2
)
,

for which symmetry properties presented in the Chapter 5 and the fifth-order nonlinear

equation

∂u

∂t
= − ∂

∂x

[
un
∂4u

∂x4
+ a1u

n−1∂u

∂x

∂3u

∂x3
+ a2u

n−1
(
∂2u

∂x2

)2

+ a3u
n−2
(
∂u

∂x

)2
∂2u

∂x2

+ a4u
n−3
(
∂u

∂x

)4
]
. (6.2)

In this Chapter we present symmetry properties for the equations (6.1) and (6.2). We

show the Lie point symmetries of the equations, the nonclassical symmetries and we give

the special forms of the equations that admit potential symmetries. Finally, we give the

nonclassical potential symmetries of the equations. Part of the results of this Chapter

have already appeared in [11].

62

Kyri
ak

os
 C

ha
ral

am
bo

us



6.2 Symmetry Properties for a Sixth-Order Evolu-

tion Equation

In this Section we summarise the symmetry properties of sixth-order nonlinear evolution

equations of the class (6.1)

∂u

∂t
= − ∂

∂x

[
un
∂5u

∂x5
+ a1u

n−1∂u

∂x

∂4u

∂x4
+ a2u

n−1∂
2u

∂x2
∂3u

∂x3
+ a3u

n−2
(
∂u

∂x

)2
∂3u

∂x3

+ a4u
n−2∂u

∂x

(
∂2u

∂x2

)2

+ a5u
n−3
(
∂u

∂x

)3
∂2u

∂x2
+ a6u

n−4
(
∂u

∂x

)5
]
.

If we introduce a potential variable v, we can write equation (6.1) as a system of two

PDEs with the form

vx = u, (6.3)

vt = −
(
unuxxxxx + a1u

n−1uxuxxxx + a2u
n−1uxxuxxx + a3u

n−2u2xuxxx

+ a4u
n−2uxu

2
xx + a5u

n−3u3xuxx + a6u
n−4u5x

)
and, if we eliminate u from this system, we derive the potential form of equation (6.1),

vt = −
(
vnxvxxxxxx + a1v

n−1
x vxxvxxxxx + a2v

n−1
x vxxxvxxxx + a3v

n−2
x v2xxvxxxx

+ a4v
n−2
x vxxv

2
xxx + a5v

n−3
x v3xxvxxx + a6v

n−4
x v5xx

)
. (6.4)

6.2.1 Lie Symmetries

The equation for the sixth-order model, (6.1), has the Lie point symmetries

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 6t∂t + x∂x, Γ4 =
nx

6
∂x + u∂u.

In the cases that the parameters (n, a1, a2, a3, a4, a5, a6) take the particular values(
−6,−15, a2,

3

2
(−a2 + 50),−6a2, 15(a2 − 10), 9(−a2 + 10)

)
,(

−4,−12, a2,
4

3
(−a2 + 37),

(−31a2 − 8)

6
,
104

9
(a2 − 7),

56

9
(−a2 + 7)

)
,(

−3,−21

2
,−33

2
,
237

4
,
153

2
,−885

4
,
225

2

)
,(

−12

5
,−48

5
,−84

5
,
1326

25
,
1836

25
,−24684

125
,
60588

625

)
or(

−12

7
,−60

7
,−120

7
,
2280

49
,
3420

49
,−59280

343
,
195624

2401

)
(6.5)

63

Kyri
ak

os
 C

ha
ral

am
bo

us



equation (6.1) admits a fifth Lie point symmetry, namely

Γ5 = x2∂x +
12xu

n
∂u.

The following equations correspond to the above five cases:

ut = −
[
u−6uxxxxx − 15u−7uxuxxxx + a2u

−7uxxuxxx +
3

2
(−a2 + 50)u−8u2xuxxx

− 6a2u
−8uxu

2
xx + 15(a2 − 10)u−9u3xuxx + 9(−a2 + 10)u−10u5x

]
x
,

ut = −
[
u−4uxxxx − 8u−5uxuxxx +

1

2
(a2 + 8)u−5u2xx

+
4

3
(−a2 + 7)u−6u2xuxx +

8

9
(a2 − 7)u−7u4x

]
xx

,

ut = −
[
u−3uxxx −

9

2
u−4uxuxx +

15

4
u−5u3x

]
xxx

,

ut = −
[
u−12/5uxx −

6

5
u−17/5u2x

]
xxxx

,

ut = −
[
u−12/7ux

]
xxxxx

.

When n, a1, a2, a3, a4, a5 and a6 are arbitrary, the optimal system consists of the list of

inequivalent subalgebras

〈Γ2〉, 〈Γ1 + cΓ2〉, 〈Γ3 + cΓ4〉, 〈Γ4 + cΓ1〉, 〈Γ4 + cΓ2 − n
6
Γ3〉

and when (n, a1, a2, a3, a4, a5, a6) are given by equation (6.5), in addition to the above list,

we have a reduction that corresponds to the subalgebra

〈Γ5 + cΓ2 + 2kΓ3〉.

We present some solutions for u. For the element 〈Γ4 + cΓ2 − n
6
Γ3〉, in the case that

n = 0, the similarity reduction has the form u = exp
(
x
c

)
φ(t) and it leads to the solution

u = c1 exp

[
1

c6
(
c5x− (a1 + a2 + a3 + a4 + a5 + a6 + 1)t

)]
.
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In the case for which we have five symmetries, the additional reduction has the form

〈Γ5 + cΓ2 + 2kΓ3〉 : u =



((x+ k)2 + 1)
6
n exp

[
−12k

n
tan−1(x+ k)

]
φ(ω),

ω = t exp [−12k tan−1(x+ k)] if c− k2 = 1,

((x+ k)2 − 1)
6
n exp

[
12k
n

tanh−1(x+ k)
]
φ(ω),

ω = t exp
[
12k tanh−1(x+ k)

]
if c− k2 = −1,

(x+ k)
12
n exp

[
12k

n(x+k)

]
φ(ω),

ω = t exp
[
12k
x+k

]
if c− k2 = 0,

where ω is the independent, φ the dependent variable of the reduced ODE, c = 0,±1 and

k ∈ R. If c = ±1 and k = 0 the reduction has the form u = (x2 + c)
6
nφ(t) and we obtain

the solutions:

For (n, a1, a2, a3, a4, a5, a6) =
(
−12

7
,−60

7
,−120

7
, 2280

49
, 3420

49
,−59280

343
, 195624

2401

)
we have the solu-

tion

u = (x2 + c)−7/2(540ct+ c1)
7/12,

for (n, a1, a2, a3, a4, a5, a6) =
(
−12

5
,−48

5
,−84

5
, 1326

25
, 1836

25
,−24684

125
, 60588

625

)
we have

u = (x2 + c)−5/2(108ct+ c1)
5/12

and finally, when

(n, a1, a2, a3, a4, a5, a6) =
(
−4,−12, a2,

4
3
(−a2 + 37), (−31a2−8)

6
, 104

9
(a2 − 7), 56

9
(−a2 + 7)

)
,

we have

u = (x2 + c)−3/2[(−18a2 − 324)ct+ c1]
1/4.

6.2.2 Nonclassical Symmetries

We find that equation (6.1) admits nonclassical symmetries in one case. If

(n, a1, a2, a3, a4, a5, a6) = (−1
2
,−5

2
,−5, 15

2
, 45

4
,−75

4
, 105

16
), (6.1) admits the reduction opera-

tor

Γ = ∂t + φ(x)
√
u∂u,
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where φ(x) is a solution of the ODE

d6φ

dx6
+

1

2
φ2 = 0.

A special solution of this equation is φ = −665280x−6. The nonclassical operator above

produces the ansatz (4.35)

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces (6.1) to the ODE

d6F

dx6
+

1

2
φF = 0. (6.6)

For the particular solution φ = −665280x−6, equation (6.6) becomes an equation of Euler

type with the form

x6
d6F

dx6
− 332640F = 0.

6.2.3 Potential Symmetries

We obtain that the system (6.3) admits Lie symmetries which induce potential symmetries

of (6.1) in two cases.

Equation (6.1) admits the potential symmetry

Γ = ψ(t, v)∂x − u2ψv∂u,

where ψ(t, v) is a solution of the linear equation ψt + ψvvvvvv = 0 in the case

(n, a1, a2, a3, a4, a5, a6) = (−6,−21,−35, 210, 280,−1260, 945) and the potential symme-

try

Γ = 2uv∂u + v2∂v

in the case (n, a1, a2, a3, a4, a5, a6) = (0,−6, (−2a6−45)
9

, (a6+45)
3

, 2
9
(4a6 + 45), (−2a6−15), a6).

The existence of the infinite-dimensional Lie symmetry

Γ = ψ(t, v)∂x − u2ψv∂u,

indicates possible linearisation. In fact the mapping

t 7→ t, x 7→ v, u 7→ 1

u
, v 7→ x
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connects system (6.3) in the case where

(n, a1, a2, a3, a4, a5, a6) = (−6,−21,−35, 210, 280,−1260, 945) with the linear system

vx = u,

vt = −uxxxxx.

6.2.4 Nonclassical Potential Symmetries

Here we present the nonclassical symmetries of the potential equation (6.4) that induce

potential nonclassical symmetries of equation (6.1). We have nonclassical potential sym-

metries in two cases. Firstly, for (n, a1, a2, a3, a4, a5, a6) = (−1, 0, 0, 0, 0, 0, 0), equation

(6.4) admits the reduction operator

Γ1 = ∂t + c∂x + φ(x+ ct)∂v

and secondly, when (n, a1, a2, a3, a4, a5, a6) = (−5,−21,−35, 210, 280,−1260, 945), it ad-

mits the reduction operator with the form

Γ2 = ∂t + φ(v + ct)∂x + c∂v.

In both operators φ(ω) is a solution of the ODE

d6φ

dω6
+ φ

dφ

dω
= 0.

We recall that the potential equations corresponding to these two cases are connected via

the pure hodograph transformation.

6.3 Symmetry Properties for a Fifth-Order Evolu-

tion Equation

Here we summarise the symmetry properties of fifth-order nonlinear evolution equations

of the class (6.2)

∂u

∂t
= − ∂

∂x

[
un
∂4u

∂x4
+ a1u

n−1∂u

∂x

∂3u

∂x3
+ a2u

n−1
(
∂2u

∂x2

)2

+ a3u
n−2
(
∂u

∂x

)2
∂2u

∂x2

+ a4u
n−3
(
∂u

∂x

)4
]
.
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If we introduce a potential variable v, equation (6.2) can be written as a system of two

PDEs

vx = u, (6.7)

vt = −
(
unuxxxx + a1u

n−1uxuxxx + a2u
n−1u2xx + a3u

n−2u2xuxx + a4u
n−3u4x

)
and elimination of u from this system gives the potential form of equation (6.2), namely,

vt = −
(
vnxvxxxxx + a1v

n−1
x vxxvxxxx + a2v

n−1
x v2xxx + a3v

n−2
x v2xxvxxx + a4v

n−3
x v4xx

)
. (6.8)

6.3.1 Lie Symmetries

The fifth-order equation, (6.2), possesses four Lie point symmetries if n, a1, a2, a3 and a4

are arbitrary. They are

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 5t∂t + x∂x, Γ4 =
nx

5
∂x + u∂u.

If the parameters (n, a1, a2, a3, a4) take the particular values(
−5,−10, a2, 3(−a2 + 10),

9

4
(a2 − 10)

)
,(

−10

3
,−25

3
,−5, 35,−640

27

)
,(

−5

2
,−15

2
,−5,

245

8
,−315

16

)
or(

−5

3
,−20

3
,−5,

80

3
,−440

27

)
,

(6.9)

where a2 is a free parameter, there is a fifth Lie point symmetry given by

Γ5 = x2∂x +
10xu

n
∂u.

The four cases of (6.9) correspond to the following equations:

ut = −
[
u−5uxxxx − 10u−6uxuxxx + a2u

−6u2xx + 3(−a2 + 10)u−7u2xuxx +
9

4
(a2 − 10)u−8u4x

]
x

,

ut = −
[
u−10/3uxxx − 5u−13/3uxuxx +

40

9
u−16/3u3x

]
xx

,

ut = −
[
u−5/2uxx −

5

4
u−7/2u2x

]
xxx

,

ut = −
[
u−5/3ux

]
xxxx

.
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Furthermore, if (n, a1, a2, a3, a4) = (0,−5
2
,−5

4
, 5,−35

16
), equation (6.2) admits the

infinite-dimensional Lie symmetry

Γ∞ = φ(t, x)
√
u∂u,

where φ(t, x) is a solution of the linear equation φt+φxxxxx = 0, in addition to the generic

four symmetries.

In the case for which n, a1, a2, a3 and a4 are arbitrary the optimal system comprises

the list of inequivalent subalgebras

〈Γ2〉, 〈Γ1 + cΓ2〉, 〈Γ3 + cΓ4〉, 〈Γ4 + cΓ1〉, 〈Γ4 + cΓ2 − n
5
Γ3〉

and in the case for which (n, a1, a2, a3, a4) are given by equation (6.9), in addition to the

above list, we have a reduction that corresponds to the subalgebra

〈Γ5 + cΓ2 + 2kΓ3〉.

We note that c = 0,±1 and k ∈ R.

For the subalgebra 〈Γ4 + cΓ2− n
5
Γ3〉 in the case n = 0, the similarity reduction has the

form u = exp
(
x
c

)
φ(t). For this case we obtain the solution

u = c1 exp

[
1

c5
(
c4x− (a1 + a2 + a3 + a4 + 1)t

)]
.

The existence of infinite-dimensional Lie symmetry indicates linearisation. The equa-

tion

ut = −
(
uxxxx −

5

2
u−1uxuxxx −

5

4
u−1u2xx + 5u−2u2xuxx −

35

16
u−3u4x

)
x

that admits the infinite-dimensional Lie symmetry Γ∞ can be mapped into the linear

equation

ut + uxxxxx = 0

by the mapping

u 7→
√
u.

In the case of the class of fourth-order equations (4.1) and sixth-order equations (6.1)

we have seen there exists no member that can be a linearised by local mapping. From
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the other hand the equation of the third-order (5.1) was found to possess an infinite-

dimensional Lie symmetry. Whilst such examples do not constitute a proof of the property,

it appears that only equations of odd-order from the chain can be linearised by a local

mapping.

6.3.2 Nonclassical Symmetries

Equation (6.2) admits nonclassical symmetries in two cases.

For the case that (n, a1, a2, a3, a4) = (−1
2
,−2,−3

2
, 9
2
,−15

8
) it admits the reduction op-

erator

Γ1 = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

d5φ

dx5
+

1

2
φ2 = 0

and a special solution is φ = 30240x−5. In this case Γ1 leads to the ansatz (4.35)

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces (6.2) to the ODE

d5F

dx5
+

1

2
φF = 0. (6.10)

For the solution φ = 30240x−5 equation (6.10) becomes an equation of Euler type with

the form

x5
d5F

dx5
+ 15120F = 0. (6.11)

If (n, a1, a2, a3, a4) = (−1
3
,−3,−11

6
, 64

9
,−88

27
) then (6.2) admits the reduction operator

Γ2 = ∂t + ψ(x)u2/3∂u,

where ψ(x) is a solution of the ODE

d5ψ

dx5
+

1

3
ψ2 = 0
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with particualar solution ψ = 45360x−5. From Γ2 we have the nonclassical reduction

(5.29)

u =
[
1
3
ψ(x)t+ F (x)

]3
.

Equation (6.2) is reduced to the ODE

d5F

dx5
+

1

3
ψF = 0

which for ψ = 45360x−5 becomes an equation of Euler type just as (6.11).

We point out that these two equations that admit nonclassical symmetries are con-

nected by the mapping

u 7→ u3/2.

6.3.3 Potential Symmetries

System (6.7) admits Lie symmetries which induce potential symmetries of (6.2) in two

cases. In particular, if (n, a1, a2, a3, a4) = (−5,−15,−10, 105,−105), equation (6.2) ad-

mits the potential symmetry

Γ = ψ(t, v)∂x − u2ψv∂u,

where ψ(t, v) is a solution of the linear equation ψt+ψvvvvv = 0. As we know, the existence

of infinite-dimensional Lie symmetry indicates linearisation. Namely, the mapping

t 7→ t, x 7→ v, u 7→ 1

u
, v 7→ x

connects system (6.7) in the case where (n, a1, a2, a3, a4) = (−5,−15,−10, 105,−105) with

the linear system

vx = u,

vt = −uxxxx.

If (n, a1, a2, a3, a4) = (0,−5, 4a4
9
, (−4a4+15)

3
, a4), (6.2) admits the potential symmetry

Γ = 2uv∂u + v2∂v.
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6.3.4 Nonclassical Potential Symmetries

Here we list the nonclassical symmetries of the potential equation (6.8). It appears that

we have only two cases that nonclassical symmetries of the potential equation (6.8) in-

duce potential nonclassical symmetries of equation (6.2). In the case (n, a1, a2, a3, a4) =

(−1, 0, 0, 0, 0) equation (6.8) admits the reduction operator

Γ1 = ∂t + c∂x + φ(x+ ct)∂v

and in the case that (n, a1, a2, a3, a4) = (−4,−15,−10, 105,−105), (6.8) admits the re-

duction operator

Γ2 = ∂t + φ(v + ct)∂x + c∂v.

We state that in both operators, φ(ω) is a solution of the ODE

d5ω

dω5
+ φ

dφ

dω
= 0

and also that the potential equations in these two cases are connected via the pure hodo-

graph transformation.
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Chapter 7

Lie and Potential Symmetries of a

Fourth- and Third-Order

Generalised Evolution Equations

7.1 Introduction

In this Chapter we consider the class of a fourth- and third-order generalised evolution

equations, respectively,

∂u

∂t
=
∂

∂x

(
f(u)

∂3u

∂x3
+ g(u)

∂u

∂x

∂2u

∂x2
+ h(u)

(
∂u

∂x

)3
)

(7.1)

and

∂u

∂t
=
∂

∂x

(
f(u)

∂2u

∂x2
+ g(u)

(
∂u

∂x

)2
)
. (7.2)

Here f = f(u), g = g(u) and h = h(u) are arbitrary smooth functions. In both

equations f(u) 6= 0. We note that equation (7.1) is the generalisation of equation (4.1)

for which we presented the complete group analysis in Chapter 4 and equation (7.2) is the

generalisation of equation (5.1) for which symmetry properties are presented in Chapter

5. We know that, if we introduce a potential variable, v, equations (7.1) and (7.2) can be

written as a system of two PDEs, respectively,

vx = u, vt =
(
f(u)uxxx + g(u)uxuxx + h(u)u3x

)
(7.3)
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and

vx = u, vt =
(
f(u)uxx + g(u)u2x

)
. (7.4)

In this Chapter we present the Lie symmetries of equations (7.1) and (7.2) and the Lie

symmetries of the systems (7.3) and (7.4) that induce potential symmetries for the cor-

responding equations.

7.2 Equation (7.1)

7.2.1 Lie Symmetries

Equation (7.1) admits Lie point symmetries if and only if

Γ(4)[ut − fuxxxx − (fu + g)uxuxxx − gu2xx − (gu + 3h)u2xuxx − huu4x] = 0 (7.5)

identically, modulo equation (7.1).

We eliminate ut due to (7.1) and equation (7.5) becomes an identity in the variables ux,

uxx, utx, uxxx, utxx, uxxxx and utxxx. From the coefficients of different powers of these vari-

ables, which must be zero, we derive the determining equations on the coefficients τ , ξ and

η. We use the general results on point transformations between evolution equations [34]

and the remaining determining equations produce the functional forms of τ(t), ξ(t, x) and

η(t, x, u). From the coefficient of uxxxx we deduce that

η =
f

fu
(4ξx − τt) where f 6= constant. (7.6)

For the special case that f(u) is an arbitrary function, from (7.6) we have that η = 0

and ξ = 1
4
τtx + L(t). Substituting the forms of η and ξ into (7.5), from the coefficient of

ux, the only nonzero coefficient, we get that τttx+ 4Lt = 0. We deduce that τ = c1t+ c2

and L = constant. We mention that the forms of g(u) and h(u) also must be arbitrary

functions of u. In this case the Lie algebra is three-dimensional and is given by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x.

If we assume that f(u) is not an arbitrary function and after we have used the fact

that τ is a function of t, ξ is a function of t and x and the expression (7.6) for η, from
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the coefficient of u2xx we have the equation

(4ξx − τt)
(
3ffufuuu − 6ff 2

uu + 3f 2
ufuu + fufuug − f 2

ugu
)

= 0, (7.7)

where 4ξx − τt 6= 0, because otherwise we get the results of case where f is arbitrary.

Equation (7.7) can be written in the form

gu −
(
fuu
fu

)
g = −3fu

(
f

fu

)
uu

which is a first-order linear ODE with solution

g = −3fu

(
f

fu

)
u

+ kfu, where k = constant. (7.8)

We substitute this form of g from (7.8) into (7.5) and from the coefficient of uxuxxx we

take the equation

ffufuuu − 2ff 2
uu + f 2

ufuu = 0

which can be written in the form

−f 3
u

(
f

fu

)
uu

= 0.

This equation has solution f(u) = un (with limiting case f(u) = eu), where n is an

arbitrary constant. We conclude that we have to examine the following forms of f(u):

(1) f(u) = un,

(2) f(u) = eu and

(3) f = constant.

Case 1. f(u) = un.

From (7.8) we have that g = (kn − 3)un−1. We can take a = (kn − 3), where a is an

arbitrary constant so that g = aun−1. We substitute the form of g into (7.5) and from the

coefficient of u2xuxx we take the equation with the form

(4ξx − τt) [huu− (n− 2)h] = 0 with 4ξx − τt 6= 0.

We conclude that from the solution of the first-order ODE, huu− (n− 2)h = 0, the form

of h is h = bun−2. Finally, from the forms of f , g and h we have that equation (7.1) has

the same form as equation (4.1), the equation for which we presented complete group

analysis in Chapter 4.
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Case 2. f(u) = eu.

In this case, from (7.8), g = keu. After we have substituted the form of g into (7.5) from

the coefficient of u2xuxx we can take the form of h. The coefficient of u2xuxx has the form

(4ξx − τt) (hu − h) = 0 with 4ξx − τt 6= 0

and we conclude that h = meu. We use this form of h and we take the simplifying

determining system for the determination of the coefficients τ , ξ and η which has the

form

(2k − 1)ξxx = 0, (7.9)

(2k − 1)ξxxx = 0, (7.10)

(k + 8m− 1)ξxx = 0, (7.11)

(k − 13m)ξxx = 0, (7.12)

(3k + 12m− 1)ξxxx = 0, (7.13)

(4k + 3)ξxxxxe
u + ξt = 0, (7.14)

4ξxxxxxe
u − 4ξtx + τtt = 0. (7.15)

We solve the determining equations (7.9)–(7.15) and we conclude that the symmetry Lie

algebra is four-dimensional with infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x, Γ4 = x∂x + 4∂u.

Case 3. f = constant (f 6= 0).

In this case, without loss of generality, we can assume that f = 1. From the coefficient of

uxxxx we have that

4ξx − τt = 0.

We deduce that the form of ξ is given by

ξ =
1

4
τtx+ L(t).

We use the above expression for ξ and we take the simplifying determining system for the

determination of the coefficients τ , ξ and η. The system is

4ηxu + gηx = 0, (7.16)
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4ηuu + gηu + guη = 0, (7.17)

3ηuu + gηu + guη = 0, (7.18)

3ηxxu + gηxx = 0, (7.19)

12ηxuu + 7gηxu + 2(gu + 3h)ηx = 0, (7.20)

6ηuuu + 5gηuu + 2(gu + 3h)ηu + (guu + 3hu)η = 0, (7.21)

ηuuuu + gηuuu + (gu + 3h)ηuu + 3huηu + huuη = 0, (7.22)

4ηxuuu + 3gηxuu + 2(gu + 3h)ηxu + 4huηx = 0, (7.23)

6ηxxuu + 3gηxxu + (gu + 3h)ηxx = 0, (7.24)

16ηxxxu + 4gηxxx + τttx+ 4Lt = 0, (7.25)

ηxxxx − ηt = 0. (7.26)

In order to solve the determining equations (7.16)–(7.26) we need to consider the following

cases depending on the forms of g(u) and h(u):

(1) g(u) = au−1 and h = bu−2,

(2) g = constant and h(u) is arbitrary,

(3) g = constant and h = constant,

(4) g = h = 0.

Subcase 3.1: g(u) = au−1 and h = bu−2.

In this case we have the same results as the case of equation (4.1) with a and b to be

arbitrary and n = 0. Namely, PDE (7.1) admits a four-parameter group with infinitesimal

generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x, Γ4 = u∂u.

Subcase 3.2: g = constant and h(u) is arbitrary.

This case is a subcase for f(u), g(u) and h(u) be arbitrary functions. We recall that the

Lie algebra in this case is three-dimensional spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x.
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Subcase 3.3: g = constant and h = constant.

The Lie algebra in this case is four-dimensional and is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x, Γ4 = ∂u.

Subcase 3.4: g = h = 0.

In this case equation (7.1) becomes a linear PDE and it admits an infinite-parameter

group with infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x, Γ4 = u∂u and

Γ∞ = φ(t, x)∂u,

where φ(t, x) is a solution of the linear equation φt = φxxxx.

In the following table we present briefly the Lie point symmetries for the different forms

of f(u), g(u) and h(u).

Table 7.1: Classification of equation (7.1)

Cases f(u) g(u) h(u) Basis of Amax

1 ∀ ∀ ∀ Aker = 〈∂t, ∂x, 4t∂t + x∂x〉

General case of (n, a, b)

2i un aun−1 bun−2 Aker ⊕
〈
nx
4 ∂x + u∂u

〉
(n, a, b) ∈

{
(−4,−6, 6), (− 8

3 ,−
16
3 ,

44
9 ), (− 8

5 ,−
24
5 ,

104
25 )
}

2ii un aun−1 bun−2 Aker ⊕
〈
nx
4 ∂x + u∂u, x

2∂x + 8xu
n ∂u

〉
3 eu keu meu Aker ⊕ 〈x∂x + 4∂u〉

4 1 constant constant Aker ⊕ 〈∂u〉

5 1 0 0 Aker ⊕ 〈u∂u, φ(t, x)∂u〉

The function φ(t, x) is a solution of φt = φxxxx.
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7.2.2 Potential Symmetries

Here we search for Lie symmetries for the system (7.3) with the optimal goal of finding

potential symmetries for equations (7.1).

The system (7.3) admits Lie symmetries if and only if

Γ(1)[vx − u] = 0, (7.27)

Γ(3)
[
vt −

(
f(u)uxxx + g(u)uxuxx + h(u)u3x

)]
= 0 (7.28)

for vx = u and vt = f(u)uxxx+g(u)uxuxx+h(u)u3x. From the determining system we have

that the coefficient τ is a function of t and the coefficients ξ and ζ are functions of t, x

and v. We use these results and from equation (7.27) we get that

η = −ξvu2 − (ξx − ζv)u+ ζx. (7.29)

We substitute the form of η (7.29) and from equation (7.28) we have the simplifying

determining system for the determination of the coefficients τ, ξ, η and ζ. From the

coefficient of uxxx we have that

fu
f

=
−4ξvu+ τt − 4ξx

ξvu2 + (ξx − ζv)u− ζx
. (7.30)

If we rewrite (7.30) as

fu
f

=
−4λ1u+ λ2

λ1u2 + λ3u+ λ4
for λ1 = 1,

we derive the form of f which is

f = (u2 + pu+ q)−2 exp

[∫
rdu

u2 + pu+ q

]
with p, q and r being arbitrary constants such that 4p2− 16q− r2 6= 0. We point out that

for the case λ1 = 0 and 4p2− 16q− r2 = 0 we recover the results which we have presented

in Chapter 4. We substitute the form of f and, after we have solved the determining

system, we conclude that the forms of functions g and h are given by the forms

g = (−10u+ k)(u2 + pu+ q)−3 exp

[∫
rdu

u2 + pu+ q

]
,

h = (15u2 − 3ku+ c)(u2 + pu+ q)−4 exp

[∫
rdu

u2 + pu+ q

]
.
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We conclude that a potential symmetry exists in one case. The Lie symmetries of (7.3)

with the forms

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 4t∂t + x∂x + v∂v and Γ4 = ∂v

project into local symmetries of (7.1) and the Lie symmetry

Γ5 = (r − 2p)t∂t + v∂x − (u2 + pu+ q)∂u − (qx+ pv)∂v

induces a potential symmetry for the corresponding equation (7.1).

7.3 Equation (7.2)

7.3.1 Lie Symmetries

Equation (7.2) admits Lie point symmetries if and only if

Γ(3)[ut − fuxxx − (fu + 2g)uxuxx − guu3x] = 0 (7.31)

for ut = fuxxx + (fu + 2g)uxuxx + guu
3
x.

We use the above expression to eliminate ut and the equation (7.31) becomes an iden-

tity in the variables ux, uxx, utx, uxxx and utxx. From coefficients of different powers of

these variables, which must be equal to zero, we derive the determining equations for the

coefficients τ , ξ and η. We use again the general results on point transformations between

evolution equations [34], that τ = τ(t) and ξ = ξ(t, x). From the coefficient of uxxx we

have that

η =
f

fu
(3ξx − τt), where f 6= constant.

If f(u) is an arbitrary function, then the Lie algebra is three-dimensional given by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x.

If we use the above facts, from the coefficients of uxx, uxuxx, u
3
x, u

2
x, ux and the term

independent of derivatives of (7.31) we have the following determining equations, respec-

tively,

(3ffuu − 3f 2
u − 2fug)ξxx = 0, (7.32)
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3ffufuuu − 6ff 2
uu + 3f 2

ufuu + 2fufuug − 2f 2
ugu = 0, (7.33)

f 2f 2
ufuuuu − 6f 2fufuufuuu + 3ff 3

ufuuu + 2ff 2
ufuuug + 6f 2f 3

uu

−5ff 2
uf

2
uu − 4ffuf

2
uug + f 4

ufuu + 2f 3
ufuug + 2ff 2

ufuugu

−f 4
ugu − ff 3

uguu = 0, (7.34)

(9f 2fufuuu − 18f 2f 2
uu + 15ff 2

ufuu + 12ffufuug − 5f 4
u − 10f 3

ug

−9ff 2
ugu)ξxx = 0, (7.35)

f 2
uξt − (9f 2fuu − 11ff 2

u − 6ffug)ξxxx = 0, (7.36)

τtt − 3ξtx + 3fξxxxx = 0. (7.37)

From equation (7.32) we can distinguish two special cases. In summary we have the

following special cases:

(1) ξxx = 0,

(2) 3ffuu − 3f 2
u − 2fug = 0.

Case 1. ξxx = 0.

In this case we have that equations (7.32) and (7.35) are identically to zero, from (7.36)

we have that ξ is not a function of t and also equation (7.37) gives that τ = c1t + c2.

Equation (7.33) can be written in the form

gu −
(
fuu
fu

)
g = −3

2
fu

(
f

fu

)
uu

which is a first-order linear ODE with solution

g = −3

2
fu

(
f

fu

)
u

+ kfu, where k = constant. (7.38)

From (7.38) we have that

fuu =
2fu
3f

[
g +

(
3

2
− k
)
fu

]
. (7.39)

We substitute the form of fuu in (7.39) into (7.31) and from (7.34) we have a relation

between functions f and g

3(4k − 3)ffugu − 8(2k − 3)fug
2 + 9f 2guu − 36fggu + 16g3 = 0. (7.40)
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Finally we conclude that the symmetry Lie algebra is four-dimensional and is spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x and Γ4 = x∂x +
3f

fu
∂u

when functions f(u) and g(u) satisfy equation (7.40).

Case 2. 3ffuu − 3f 2
u − 2fug = 0.

From the above condition, we have that the form of g is

g = −3

2
fu

(
f

fu

)
u

. (7.41)

This form of g satisfies (7.33). From equation (7.36) we have that ξ equals to ξ =

1
2
a1x

2 + a2x+ a3 and from equation (7.37) we have that τ is a linear equation respect to

t. After we have used these facts, from equation (7.35) we take that

9f 2fufuuu − 27f 2f 2
uu + 36ff 2

ufuu − 20f 4
u = 0 (7.42)

which satisfies (7.34).

To conclude, we have that the symmetry Lie algebra is five-dimensional and is spanned

by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x, Γ4 = x∂x +
3f

fu
∂u and

Γ5 = x2∂x +
6xf

fu
∂u,

where the function f(u) satisfies equation (7.42).

Case 3. f = constant (f 6= 0).

Finally, we have to examine the special case for which f = constant. We assume that

f = 1. From the coefficient of uxxx we have that

3ξx − τt = 0,

which means that ξ = 1
3
τtx+L(t). After we have used the expression for ξ, the simplifying

determining system for the determination of the coefficients τ , ξ and η is

3ηxu + 2gηx = 0, (7.43)

3ηuu + 2gηu + 2guη = 0, (7.44)

ηuuu + 2gηuu + 2guηu + guuη = 0, (7.45)
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3ηxuu + 4gηxu + 3guηx = 0, (7.46)

9ηxxu + 6gηxx + τttx+ 3Lt = 0, (7.47)

ηxxx − ηt = 0. (7.48)

If we write equation (7.44) as

ηuu = −2

3
(gη)u (7.49)

and substitute it into equation (7.45), we derive the equation

(
3gu − 4g2

)
ηu = −1

2

(
3gu − 4g2

)
u
η. (7.50)

From (7.50) we distinguish three special subcases:

(1) (3gu − 4g2) = 0,

(2) (3gu − 4g2) 6= 0,

(3) g = 0.

Subcase 3.1: (3gu − 4g2) = 0.

We solve the ODE (3gu − 4g2) = 0 and we have that g(u) has the form

g =
3

3µ− 4u
where µ = constant.

We integrate (7.49) and using the form of g(u) we obtain the first-order ODE with the

form

ηu +
2

3µ− 4u
η = k1(t, x)

and solution

η = −(3µ− 4u)

2
k1(t, x) +

√
|3µ− 4u|ϕ(t, x). (7.51)

Finally, after we have used the form of η (7.51), we infer that equation (7.2) admits an

infinite-parameter group with infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x, Γ4 = (3µ− 4u)∂u and

Γ∞ =
√
|3µ− 4u|ϕ(t, x)∂u,

where ϕ(t, x) satisfies the linear equation ϕt = ϕxxx.
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Subcase 3.2: (3gu − 4g2) 6= 0.

In this case the solution of (7.50) gives

η =
1√

|3gu − 4g2|
ψ(t, x).

We substitute the form of η into (7.31) and we calculate that τ = c1t + c2 and functions

L and ψ must be constants. From equation (7.44) we derive a relation with function g(u)

with the form

2(3gu − 4g2)guuu − 9g2uu + 36gguguu + 16g3guu − 24g3u − 32g2g2u = 0

which satisfies equation (7.45). In this subcase the Lie algebra is four-dimensional and is

spanned by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x, Γ4 =
1√

|3gu − 4g2|
∂u.

Subcase 3.3: g = 0.

Equation (7.2) becomes a linear PDE with the form ut = uxxx and this admits an infinite-

parameter group with infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x, Γ4 = u∂u and

Γ∞ = ϕ(t, x)∂u,

where ϕ(t, x) is a solution of the linear equation ϕt = ϕxxx.

In Table 7.2 we summarize the Lie point symmetries for the different forms of f(u) and

g(u).

84

Kyri
ak

os
 C

ha
ral

am
bo

us



Table 7.2: Classification of equation (7.2)

Cases f(u) g(u) Basis of Amax

1 ∀ ∀ Aker = 〈∂t, ∂x, 3t∂t + x∂x〉

2 f(u) − 3
2fu

(
f
fu

)
u

+ kfu Aker ⊕
〈
x∂x + 3f

fu
∂u

〉
3 f(u) − 3

2fu

(
f
fu

)
u

Aker ⊕
〈
x∂x + 3f

fu
∂u, x

2∂x + 6xf
fu
∂u

〉
4 1 3

3µ−4u Aker ⊕
〈

(3µ− 4u)∂u,
√
|3µ− 4u|ϕ(t, x)∂u

〉
5 1 6= 3

3µ−4u Aker ⊕
〈

1√
|3gu−4g2|

∂u

〉
6 1 0 Aker ⊕ 〈u∂u, φ(t, x)∂u〉

In Case 2 k = constant and the functions f(u) and g(u) satisfy the relation

3(4k − 3)ffugu − 8(2k − 3)fug
2 + 9f2guu − 36fggu + 16g3 = 0.

In Case 3 the function f(u) satisfies

9f2fufuuu − 27f2f2uu + 36ff2ufuu − 20f4u = 0.

In Cases 4 and 6 the function ϕ(t, x) is a solution of ϕt = ϕxxx.

In Cases 4 and 5 µ = constant.

In Case 5 the function g(u) satisfies

2(3gu − 4g2)guuu − 9g2uu + 36gguguu + 16g3guu − 24g3u − 32g2g2u = 0.

7.3.2 Potential Symmetries

The system (7.4) admits Lie symmetries if and only if

Γ(1)[vx − u] = 0 and (7.52)

Γ(2)
[
vt −

(
f(u)uxx + g(u)u2x

)]
= 0 (7.53)

for vx = u and vt = f(u)uxx + g(u)u2x. From the determining system we have that that

the coefficient τ is a function of t and the coefficients ξ and ζ are functions of t, x and v.

After we have used these results from equation (7.52) we have that

η = −ξvu2 − (ξx − ζv)u+ ζx. (7.54)
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We use the form of η, (7.54), and from equation (7.53) we have the simplifying determining

system for the determination of the coefficients τ, ξ, η and ζ. The coefficient of uxx gives

that

fu
f

=
−3ξvu+ τt − 3ξx

ξvu2 + (ξx − ζv)u− ζx
,

with solution the form of f :

f = (u2 + pu+ q)−3/2 exp

[∫
rdu

u2 + pu+ q

]
.

In this case p, q and r are arbitrary constants such that 9p2−36q−4r2 6= 0. We substitute

the form of f and after we have solved the determining system we conclude that the form

of g is

g = (−3u+ k)(u2 + pu+ q)−5/2 exp

[∫
rdu

u2 + pu+ q

]
.

Here the system (7.4) admits a five-parameter group with infinitesimal generators

Γ1 = ∂t, Γ2 = ∂x, Γ3 = 3t∂t + x∂x + v∂v, Γ4 = ∂v and

Γ5 =

(
r − 3

2
p

)
t∂t + v∂x − (u2 + pu+ q)∂u − (qx+ pv)∂v.

The Lie symmetries Γ1, Γ2 Γ3 and Γ4 project into local symmetries of (7.2) and the Lie

symmetry Γ5 induces a potential symmetry for the corresponding equation (7.2).
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Chapter 8

Group Analysis for a Class of

Nonlinear Dispersive Equations

8.1 Introduction

We consider the class of nonlinear dispersive equations [63]

ut + ε (um)x +
1

b

[
ua
(
ub
)
xx

]
x

= 0 (8.1)

which is of interest in Mathematical Physics. Special cases of this class have been used

to model successfully physical situations in a wide range of fields. For example, if a = 0

and b = n, we have the generalisation of the KdV equation [58,59],

ut + ε (um)x +
1

n
(un)xxx = 0, (8.2)

and the equation that corresponds to the values m = 2, a = b = 1 describes a motion

of a diluted suspension [64]. Equations of the type (8.2) with values of the parameters

m and n are denoted by K(m,n). For example, the properties of equation K(2, 2) were

examined in [58]. Further applications of the class (8.1) can be found in [61–63] and

references therein.

Our goal in this Chapter is to extend certain results of the recent work [8]. In particular

we give an enhanced Lie group classification for the class (8.1). The complete list of

form-preserving point transformations is presented. We show the nonclassical reductions,

potential symmetries and nonclassical potential symmetries [12].
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8.2 Equivalence Transformations

We recall that an equivalence transformation of a class of PDEs, E(x, t, u) = 0, is an

invertible transformation of the independent and dependent variables of the form

t′ = Q(x, t, u), x′ = P (x, t, u), u′ = R(x, t, u) (8.3)

that maps every equation of the class into an equations of the same form, E(x′, t′, u′) = 0.

A complete classification of transformations of the class (8.3) that connect equations (8.1)

and

u′t′ + ε′
(
u′
m′
)
x′

+
1

b′

[
u′
a′
(
u′
b′
)
x′x′

]
x′

= 0 (8.4)

provides us the so-called form-preserving transformations [34] (or admissible transforma-

tions [56]) of equations (8.1). Equivalence transformations can be regarded as a subset

of such transformations. The complete list of preserving transformations is presented in

Section 8.5.

In order to derive the desired equivalence group of transformations we need to consider

two cases:

(1) a+ b− 1 6= 0 and

(2) a+ b− 1 = 0.

Case 1. a+ b− 1 6= 0.

In this case we find that

t′ = βt+ γ, x′ = αx+ δ, u′ = α−
1

a+b−1β
3

a+b−1u (8.5)

where

ε′β
a+b−m
a+b−1 = εα

a+b−3m+2
a+b−1 .

From the above relation we deduce that εε′ > 0 or ε = ε′ = 0 and α, β are nonnegative.

Furthermore nonzero ε and ε′ may be fixed. For example an equation with ε > 0 can be

transformed into one with ε′ = 1 and an equation with ε < 0 can be transformed into one

with ε′ = −1. That is, we can take, without loss of generality, ε = ε′ = ±1. Hence, for

this last possibility, equation (8.1) admits a three-parameter group of transformations

t′ = α
a+b−3m+2
a+b−m t+γ, x′ = αx+δ, u′ = α

2
a+b−mu, (a′, b′,m′, ε′ = ±1) = (a, b,m, ε = ±1). (8.6)
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While in the case ε = ε′ = 0 equation (8.1) takes the form

ut +
1

b

[
ua
(
ub
)
xx

]
x

= 0 (8.7)

and it admits the four-parameter equivalence group (8.5).

Now if m = m′ = 1 we obtain the 4-parameter equivalence group

t′ = βt+ γ, x′ = αx+ (βε′−αε)t+ δ, u′ = α−
1

a+b−1β
3

a+b−1u, (a′, b′) = (a, b). (8.8)

From this equivalence transformation we deduce that equations (8.1) and (8.4) are con-

nected with ε or ε′ being zero. In other words, in the case where m = 1, equation (8.1)

can be mapped into equation (8.7).

Case 2. a+ b− 1 = 0.

In this case, which also implies that a′ + b′ = 1, we have

t′ = α3t+ γ, x′ = αx+ δ, u′ = βu (8.9)

where

εβ1−m = α2ε′.

As in the previous case we have εε′ > 0 or ε = ε′ = 0. Hence, in the case ε = ε′ = ±1

equation (8.1) admits a three-parameter equivalence group

t′ = α3t+ γ, x′ = αx+ δ, u′ = α
2

(1−m)u (8.10)

while in the case ε = ε′ = 0, it admits the four-parameter equivalence group (8.9).

Finally, if m = 1 which also implies that m′ = 1, equation (8.1) admits the four-

parameter equivalence group

t′ = α3t+ γ, x′ = αx+ (α3ε′ − αε)t+ δ, u′ = βu.

Clearly, as in the previous case, if m = 1 equation (8.1) can be mapped into the simpler

equation (8.7).

8.3 Lie Symmetries

Equation (8.1) admits Lie point symmetries if and only if

Γ(3)[ut+u
a+b−1uxxx+(a+3b−3)ua+b−2uxuxx+(b−1)(a+b−2)ua+b−3u3x+εmum−1ux] = 0 (8.11)
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identically, modulo equation (8.1).

After elimination of ut due to (8.1), equation (8.11) becomes a multivariable polynomial

in the variables ux, uxx, utx, uxxx and utxx. The coefficients of the different powers of

these variables must be zero, giving the determining equations on the coefficients τ, ξ and

η. Since (8.1) has a specific form (it is a quasilinear evolution equation, the right-hand

side of (8.1) is a polynomial in the pure derivatives of u with respect to x), the forms of

the coefficients can be simplified. That is, τ = τ(t) and ξ = ξ(t, x) [34].

The coefficient of uxxx in identity (8.11) gives

(a+ b− 1)η + (τt − 3ξx)u = 0

which implies that the analysis needs to be split into two cases:

(1) a+ b− 1 6= 0 and

(2) a+ b− 1 = 0.

Case 1. a+ b− 1 6= 0.

If a+ b− 1 6= 0, we have

η =
(3ξx − τt)u
a+ b− 1

and the coefficients of uxx, u
2
x, ux and the term independent of derivatives in (8.11)

produce the following overdetermined system

(2b+ 1)ξxx = 0, (8.12)

(a2 − 6b2 − 5ab− a+ 3b+ 3)ξxx = 0, (8.13)

εm [(a+ b−m)τt − (a+ b− 3m+ 2)ξx]u
m + (2a+ 8b+ 1)ξxxxu

a+b

−(a+ b− 1)ξtu = 0, (8.14)

3εmξxxu
m + 3ξxxxxu

a+b − (τtt − 3ξtx)u = 0. (8.15)

This system (8.12)–(8.15) provides the forms of τ(t) and ξ(t, x) and consequently the

desired Lie symmetries are obtained. They are tabulated as Cases 1–3 and 6–11 in the

Table 8.1.

Case 2. a+ b− 1 = 0.

In this case, we have

ξ =
1

3
τtx+ L(t)
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and the coefficients of uxuxx, uxx, u
3
x, u

2
x, ux and the term independent of derivatives in

(8.11) produce the following overdetermined system

3ηuuu
2 − 2aηuu+ 2aη = 0, (8.16)

3ηxuu− 2aηx = 0, (8.17)

ηuuuu
3 − 2aηuuu

2 + 2aηuu− 2aη = 0, (8.18)

3ηxuuu
2 − 4aηxuu+ 3aηx = 0, (8.19)

2εmτtu
m+1 + 3εm(m− 1)ηum + (9ηxxu − τttx− 3Lt)u

2 − 6aηxxu = 0, (8.20)

εmηxu
m + (ηt + ηxxx)u = 0. (8.21)

The solution of the above system (8.16)–(8.21) leads to the Lie symmetries which are

tabulated as Cases 4, 5 and 12–15 in the Table 8.1.
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Table 8.1: Classification of equation (8.1)

Cases a b m Conditions Basis of Amax

1 ∀ ∀ ∀ Aker = 〈∂t, ∂x, (a+ b− 3m+ 2)t∂t + (a+ b−m)x∂x + 2u∂u〉

2 ∀ ∀ 0 Aker ⊕ 〈3t∂t + x∂x〉

3 ∀ ∀ 1 Aker ⊕ 〈3t∂t + (x+ 2εt)∂x〉

4 0 1 2 Aker ⊕ 〈2εt∂x + ∂u〉

5 3
4

1
4

3
2 Aker ⊕ 〈3εt∂x + 4

√
u∂u〉

6 0 − 1
2 0 Aker ⊕

〈
3t∂t + x∂x, x

2∂x − 4xu∂u
〉

7 − 3
2 − 1

2 0 Aker ⊕
〈
3t∂t + x∂x, x

2∂x − 2xu∂u
〉

8 0 − 1
2 1 Aker ⊕

〈
3t∂t + (x+ 2εt)∂x, (x− εt)2∂x − 4(x− εt)u∂u

〉
9 − 3

2 − 1
2 1 Aker ⊕

〈
3t∂t + (x+ 2εt)∂x, (x− εt)2∂x − 2(x− εt)u∂u

〉
10 0 − 1

2 − 1
2 Aker⊕

ε = 1
〈√

2e
x√
2 ∂x − 2ue

x√
2 ∂u,

√
2e
− x√

2 ∂x + 2ue
− x√

2 ∂u

〉
ε = −1

〈√
2 sin

(
x√
2

)
∂x − 2u cos

(
x√
2

)
∂u,
√

2 cos
(
x√
2

)
∂x + 2u sin

(
x√
2

)
∂u

〉
11 − 3

2 − 1
2 −2 Aker⊕

ε = 1
〈√

2e
√
2x∂x − 2ue

√
2x∂u,

√
2e−
√
2x∂x + 2ue−

√
2x∂u

〉
ε = −1

〈√
2 sin(

√
2x)∂x − 2u cos(

√
2x)∂u,

√
2 cos(

√
2x)∂x + 2u sin(

√
2x)∂u

〉
12 0 1 0 Aker ⊕ 〈3t∂t + x∂x, ψ(t, x)∂u〉

13 3
4

1
4 0 Aker ⊕ 〈3t∂t + x∂x,

√
uψ(t, x)∂u〉

14 0 1 1 Aker ⊕ 〈3t∂t + (x+ 2εt)∂x, φ(t, x)∂u〉

15 3
4

1
4 1 Aker ⊕ 〈3t∂t + (x+ 2εt)∂x,

√
uφ(t, x)∂u〉

The function φ(t, x) is a solution of φt + φxxx + εφx = 0 and the function ψ(t, x) is a solution of

ψt + ψxxx = 0.
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Now as we have seen in the previous section, if m = 1, then equation (8.1) is mapped

into (8.7). Hence in the above Table Cases 3, 8, 9, 14 and 15 are equivalent to Cases 2, 6,

7, 12 and 13, respectively. Furthermore we have additional equivalence transformations

that connect the following cases:

4̃ 7→ 5 : t̃ = t, x̃ = x, ũ =
3ε

4ε′
√
u

6̃ 7→ 7 : t̃ = t, x̃ =
1

x
, ũ = x4u

6̃ 7→ 10ε=1 : t̃ = t, x̃ =

∫
dx

α2ex/
√
2 − 2

√
2α+ 2e−x/

√
2
, ũ =

(
α2ex/

√
2 − 2

√
2α+ 2e−x/

√
2
)2
u

6̃ 7→ 10ε=−1 : t̃ = t, x̃ =

∫
dx(

2
√

2 sin x
2
√
2

+ α cos x
2
√
2

)2 , ũ =

(
2
√

2 sin
x

2
√

2
+ α cos

x

2
√

2

)4

u

6̃ 7→ 11ε=1 : t̃ = t, x̃ =

∫
2dx

e−
√
2x − 2α+ 2(α2 + 1)e

√
2x
, ũ =

1

4

(
e−
√
2x − 2α+ 2(α2 + 1)e

√
2x
)2
u2

6̃ 7→ 11ε=−1 : t̃ = t, x̃ =

∫
dx(√

2 sin x√
2

+ α cos x√
2

)2 , ũ =

(√
2 sin

x√
2

+ α cos
x√
2

)4

u2

1̃2 7→ 13 : t̃ = t, x̃ = x, ũ =
√
u

Therefore we can summarize the results of the symmetry classification in the following

theorem:

Theorem 8.1. Equation (8.1) admits

(1) a three-parameter Lie group if a, b and m are arbitrary;

(2) a four-parameter Lie group if (a) a, b are arbitrary and m = 0

and if (b) a = 0, b = 1 and m = 2;

(3) a five-parameter Lie group if a = 0, b = −1
2
and m = 0;

(4) an infinite-dimensional Lie group if a = 0, b = 1 and m = 0.

Any other member of the class (8.1) is equivalent to the above five cases.

In the case m = 0 which is equation (8.7), if we set n = a + b − 1 and k = b − 1, we

obtain the class of equations (5.1)

ut +
[
unuxx + kun−1u2x

]
x

= 0

which was studied in Chapter 5. The results on Lie symmetries presented in Theorem 8.1

in the case m = 0 agree with those in Chapter 5.
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8.3.1 Invariant Solutions

We give the optimal system which, consists a list of inequivalent subalgebras for the three

cases of Theorem 8.1. and we give some examples of reduced ODEs.

(1) Here we have three Lie symmetries, Γ1 = ∂t, Γ2 = ∂x, Γ3 = (a+ b− 3m+ 2)t∂t +

(a + b −m)x∂x + 2u∂u, that produce an optimal system which depends upon the values

of the parameters a, b and m. We get four subcases.

(i) a+ b− 3m+ 2 6= 0, a+ b−m 6= 0

〈Γ3〉, 〈Γ1 + cΓ2〉, 〈Γ2〉,

where c = 0,±1. For each component of the optimal system we construct the corre-

sponding similarity reduction that transforms (8.1) into an ODE. We obtain the following

results:

〈Γ2〉 : u = φ(ω), ω = t,

〈Γ1 + cΓ2〉 : u = φ(ω), ω = x− ct,

〈Γ3〉 : u = t
2

a+b−3m+2φ(ω), ω = xt−
a+b−m

a+b+2−3m .

The reduction that corresponds to the subalgebra 〈Γ1 + cΓ2〉 leads to the equation

cφω − [φa+b−2(φφωω + (b− 1)φ2
ω) + εφm]ω = 0

which provides traveling-wave solutions for equation (8.1).

(ii) a+ b− 3m+ 2 6= 0, a+ b−m = 0

〈Γ3 + αΓ2〉, 〈Γ1 + cΓ2〉, 〈Γ2〉,

where c = 0,±1 and α ∈ R. The subalgebra 〈Γ3 + αΓ2〉 produces the reduction

u = t1/(1−m)φ(ω), ω = t
α

2(m−1) ex.

(iii) a+ b− 3m+ 2 = 0, a+ b−m 6= 0

〈Γ3 + αΓ1〉, 〈Γ1 + cΓ2〉, 〈Γ2〉,

where c = 0,±1 and α ∈ R. The subalgebra 〈Γ3 + αΓ1〉 produces the reduction

u = x1/(m−1)φ(ω), ω = x
α

2(1−m) et.
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(iv) a+ b− 3m+ 2 = 0, a+ b−m = 0 ⇒ m = 1, a+ b = 1,

〈Γ3 + αΓ2 + βΓ1〉, 〈Γ1 + γΓ2〉, 〈Γ2〉,

where α, β, γ ∈ R. The subalgebra 〈Γ3 + αΓ2 + βΓ1〉 produces the reduction

u = e
t
βφ(ω), ω = x− α

β
t, if β 6= 0,

u = e
x
αφ(ω), ω = t, if β = 0.

In the case β 6= 0 the subalgebra 〈Γ3 + αΓ2 + βΓ1〉 leads to the equation

αφω − φ− β[φωω + (b− 1)φ−1φ2
ω + εφ]ω = 0

and in the case β = 0, we obtain the solution

u = c1 exp

[
1

α3

(
α2x− (εα2 + b)t

)]
.

(2a) Here we have four Lie symmetries, Γ1, Γ2,Γ3 (m = 0) and Γ4 = 3t∂t + x∂x, which in

addition to the subcases 1(i)-1(iii) produce the reduction that corresponds to the subal-

gebra

〈Γ4 + cΓ3〉,

where c = 0,±1. This subalgebra gives

u = t
2c

3+(a+b+2)cφ(ω), ω = xt−
1+(a+b)c

3+(a+b+2)c , if 3 + (a+ b+ 2)c 6= 0,

u = x−c/(c+1)φ(ω), ω = t, if 3 + (a+ b+ 2)c = 0.

In the case 3 + (a+ b+ 2)c = 0, we obtain the solution

u = x−c/(c+1)

[
3(a+ b+ 2)(1 + 2b− a)t

(a+ b− 1)2
+ c1

]−1/(a+b−1)
.

(2b) Here we have four Lie symmetries, Γ1, Γ2, Γ3 (a = 0, b = 1, m = 2) and Γ4 =

2εt∂x + ∂u, which in addition to the subcase 1(i) produce the reduction that corresponds

to the subalgebra

〈Γ4 + cΓ1〉,
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where c = 0,±1. We obtain

u =
t

c
+ φ(ω), ω = x− ε

c
t2, if c 6= 0,

u =
x

2εt
+ φ(ω), ω = t, if c = 0.

In the case c 6= 0 we obtain

φωωω + 2εφφω +
1

c
= 0.

We integrate this equation and the integral has the form

φωω + εφ2 +
ω

c
= c1, where c1 is the constant of integration.

Subcase of the above equation, is the First Painlevé transcendent with the form

φωω = 6φ2 + ω.

Finally, in the case c = 0, we obtain the solution

u =
x+ 2εc1

2εt
.

(3) Here we have five Lie symmetries, Γ1, Γ2, Γ3 (a = 0, b = −1
2
, m = 0), Γ4 = 3t∂t+x∂x

and Γ5 = x2∂x − 4xu∂u, which in addition to the subcases 1(i) and (2a) produce the

reduction that corresponds to the subalgebra

〈Γ5 + αΓ2 + βΓ4〉,

where α, β ∈ R. The reductions in this subcase can be found in Chapter 5.

8.4 Nonclassical Symmetries

Here we require invariance of equation (8.1) in conjunction with its invariant surface

condition,

ut = η(t, x, u)− ξ(t, x, u)ux

under the infinitesimal transformation generated by

Γ = ∂t + ξ(t, x, u)∂x + η(t, x, u)∂u.
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The nonclassical conditions results in an overdetermined nonlinear system of PDEs for

finding the forms of the coefficient functions ξ and η.

Coefficient of u2xx gives ξu = 0. Coefficients of uxuxx, uxx, u
3
x, u

2
x, ux and the term

independent of derivatives give, respectively,

3ηuuu
2 + (a+ 3b− 3)ηuu− (a+ 3b− 3)η = 0, (8.22)

3(ξxx − ηxu)u− (a+ 3b− 3)ηx = 0, (8.23)

ηuuuu
3 + (a+ 3b− 3)ηuuu

2 + 2(ab− a+ b2 − 3b+ 2)ηuu

−2(ab− a+ b2 − 3b+ 2)η = 0, (8.24)

3ηxuuu
2 − (a+ 3b− 3)(ξxx − 2ηxu)u+ 3(ab− a+ b2 − 3b+ 2)ηx = 0, (8.25)

2εmξxu
m+1 − εm(a+ b−m)ηum − (ξxxx − 3ηxxu)u

a+b+1 + (a+ 3b− 3)ηxxu
a+b

−(ξt + 3ξξx)u
2 + (a+ b− 1)ξηu = 0, (8.26)

εmumηx + ua+bηxxx + (3ξxη + ηt)u− (a+ b− 1)η2 = 0. (8.27)

This overdetermined nonlinear system (8.22)–(8.27) is solved to give the desired nonclassi-

cal reductions. It turns out that such reductions exist in two cases, m = 1 and m 6= 1. We

have seen that, if m = 1, when we use the equivalence transformations equation (8.1) can

be mapped into (8.7) which is equivalent with (5.1). Nonclassical reductions for equation

(5.1) can be found in Chapter 5.

Solution of the above system, when m 6= 1, provides a nonclassical symmetry for two

special cases of equation (8.1). In particular, if (a, b,m) = (0, 1
2
, 1
2
), it admits the reduction

operator:

Γ1 = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

2
d3φ

dx3
+ ε

dφ

dx
+ φ2 = 0

and, if (a, b,m) = (1
2
, 1
6
, 2
3
), it admits the reduction operator:

Γ2 = ∂t + ψ(x)u2/3∂u,
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where ψ(x) is a solution of the ODE

3
d3ψ

dx3
+ 2ε

dψ

dx
+ ψ2 = 0.

The operator Γ1 leads to the ansatz (4.35)

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces (8.1) with (a, b,m) = (0, 1

2
, 1
2
) to the ODE

d3F

dx3
+

1

2

(
φF + ε

dF

dx

)
= 0.

Here we can interpret (4.35) as an ansatz with the two new unknown functions φ and F

which reduces equation

ut + ε
(√

u
)
x

+ 2
(√

u
)
xxx

= 0 (8.28)

to a system of two ODEs:

2
d3φ

dx3
+ ε

dφ

dx
+ φ2 = 0 and

d3F

dx3
+

1

2

(
φF + ε

dF

dx

)
= 0.

Similarly, Γ2 produces the ansatz (5.29)

u =
[
1
3
ψ(x)t+ F (x)

]3
which reduces (8.1) with (a, b,m) = (1

2
, 1
6
, 2
3
) to the ODE

d3F

dx3
+

1

3

(
ψF + 2ε

dF

dx

)
= 0

which can also be interpreted as a mapping that reduces the PDE into a system of two

ODEs.

8.5 Form-preserving Transformations

Probably the most useful point transformations of PDEs are those which form a continuous

(Lie) group of transformations, each member of which leaves an equation invariant. As

we have seen in order to achieve this goal, we employ the classical method where we find

these transformations in the infinitesimal form. Then, we can extend these to groups of
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finite transformations. However, this method may well overlook discrete symmetries such

as simple reflection or hodograph transformations. Also infinitesimal transformations are

not appropriate for directly linking a PDE with an equation of a different form. Therefore

there is merit in studying point transformations directly in finite form with the ultimate

dual goals of finding the complete set of point transformation symmetries of PDEs and

discovering new links between different equations.

Here we present point transformations of the class (8.3) that connect equations (8.1)

and (8.4). Since both equations (8.1) and (8.4) are polynomials in the derivatives in the

spatial variable, it can be shown that the most general class of point transformations that

connects them has the form [34]

t′ = Q(t), x′ = P (x, t), u′ = R(x, t, u). (8.29)

Such transformations are the equivalence transformations and the additional equivalence

transformations derived in Section 8.3. In this Section we complete list of form-preserving

transformations. Details of how such transformations are derived can be found in [34,71–

73].

The analysis is split into two main cases:

( 1) a+ b 6= 1 and

( 2) a+ b = 1.

Case 1. a+ b− 1 6= 0.

Equation (8.1) is connected with (8.4) under the mapping

t′ = βt+ γ, x′ = αx+ δ, u′ = α
3

a+b−1β−
1

a+b−1u
a+b−1
a′+b′−1 (8.30)

where αβ 6= 0 and

a′ =
a− 3b

2(a− b− 1)
, b′ = − a+ b

2(a− b− 1)
. (8.31)

Furthermore if mm′ 6= 0, the following identities must hold

m′ε′β
a′+b′+m′
a′+b′−1 = mεα

a′+b′+3m′+2
a′+b′−1 , (m− 1)(a′ + b′ − 1) = (m′ − 1)(a+ b− 1).

We also note that a′ + b′ 6= a + b, otherwise we obtain the results derived earlier. An

example of such mapping is the following

t′ = t, x′ = x, u′ = u3/2
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that connects equation (8.28) and equation

u′t′ +
3

4
ε
(
u′

2/3
)
x′

+ 6
[
u′

1/2
(
u′

1/6
)
x′x′

]
x′

= 0.

As we have seen in the previous Section, both of these latter equations admit nonclassical

symmetries. A second example is the mapping

t′ = t, x′ = x, u′ = u3

that connects equation

ut +
(
u2
)
x

+
1

2

(
u2
)
xxx

= 0

which was studied in [58] and equation

u′t′ +
3

2

(
u′

4/3
)
x′

+ 3
[
u′
(
u′

1/3
)
x′x′

]
x′

= 0.

In the special case m′ = m = 1, we obtain the transformation

t′ = βt+ γ, x′ = αx+ (βε′ − αε)t+ δ, u′ = α
3

a+b−1β−
1

a+b−1u
a+b−1
a′+b′−1 ,

where αβ 6= 0 and the relations (8.31) hold.

Case 2. a+ b− 1 = 0.

This case, also implies that a′ + b′ = 1. The form preserving transformation

t′ = α3t+ γ, x′ = αx+ δ, u′ = κu2b (8.32)

connects equations (8.1) and (8.4), where ακ 6= 0 and

b′ =
1

4b
.

Furthermore if mm′ 6= 0, the following identities must hold

m = 2bm′ + 1− 2b, α2ε′m′ − (2εm′b− 2εb+ ε)κ1−m
′
= 0.

Finally, in the special case m′ = m = 1, we obtain the transformation

t′ = α3t+ γ, x′ = αx+ (α3ε′ − αε)t+ δ, u′ = κu2b,

where ακ 6= 0 and the parameters b′ and b are related as above.
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8.6 Potential Symmetries

In this case we consider the potential system,

vx = u, (8.33)

vt = −εum − 1

b

[
ua
(
ub
)
xx

]
,

which it admits Lie symmetries if and only if

Γ(1) [vx − u] = 0, (8.34)

Γ(2)

[
vt + εum +

1

b

[
ua
(
ub
)
xx

]]
= 0 (8.35)

for vx = u and vt = −
[
εum + ua+b−1uxx + (b− 1)ua+b−2u2x

]
. We recall that Γ(1) and Γ(2)

are the first and second extensions of the generator

Γ = τ(t, x, u, v)∂t + ξ(t, x, u, v)∂x + η(t, x, u, v)∂u + ζ(t, x, u, v)∂v.

From the coefficients of uxuxx, uxx and ux of (8.34) and from the coefficient uxuxx of (8.35)

we get that the coefficient τ is a function of t and the coefficients ξ and ζ are functions

of t, x and v. From equation (8.34) we have that

η = −ξvu2 − (ξx − ζv)u+ ζx.

After we have used the above results, we have that functions τ , ξ, η and ζ are satisfying

the following determining system

(a+ b+ 2)ξvu
2 − [τt − (a+ b+ 2)ξx + (a+ b− 1)ζv]u− (a+ b− 1)ζx = 0, (8.36)

(b2 + ab+ 2b− a)ξvu
2 − (b− 1) [τt − (a+ b+ 2)ξx + (a+ b− 1)ζv]u

−(b− 1)(a+ b− 2)ζx = 0, (8.37)

2(b+ 2)ξvvu
3 + [(4b+ 5)ξxv − (2b+ 1)ζvv]u

2 + [(2b+ 1)ξxx − (4b− 1)ζxv]u (8.38)

−2(b− 1)ζxx = 0, (8.39)

ε(m− 1)ξvu
m+2 − ε [τt −mξx + (m− 1)ζv]u

m+1 − εmζxum

ξvvvu
a+b+4 + (3ξxvv − ζvvv)ua+b+3 + 3(ξxxv − ζxvv)ua+b+2 + (ξxxx − 3ζxxv)u

a+b+1

−ζxxxua+b + ξtu
2 − ζtu = 0. (8.40)
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Equation (8.40) can break up into more equations in proportion the values of the param-

eters a, b and m.

From the coefficient of u2 in equation (8.36), we get two cases: ξv = 0 or a+b+2 = 0.

After we have solved the determining system (8.36)–(8.40) we observe that for the case

that ξv = 0 and a + b + 2 = 0 we do not find potential symmetries. The system (8.33)

admits Lie symmetries which induce potential symmetries for the corresponding equation

(8.1) in two cases:

(1) a+ b+ 2 = 0 and ξv 6= 0,

(2) a+ b+ 2 6= 0 and ξv = 0.

We present only the potential symmetries when m 6= 1 because, as we have seen in

Section 8.2, if m = 1 and we use the equivalence transformations, equation (8.1) can be

mapped into (8.7) which is equivalent to (5.1). Potential symmetries for equation (5.1)

can be found in Chapter 5. We obtain that the following Lie symmetries of the system

(8.33) induce potential symmetries for the corresponding equation (8.1):

(1) (a, b,m) = (0,−2,−1)

Γ = v∂x − u2∂u − 2εt∂v.

(2) (a, b,m) = (3
2
,−1

2
, 3)

(i) ε > 0

Γ1 =
√

2εu cos(
√

2εv)∂u + sin(
√

2εv)∂v,

Γ2 = −
√

2εu sin(
√

2εv)∂u + cos(
√

2εv)∂v.

(ii) ε < 0

Γ1 =
√

2|ε|ue
√

2|ε|v∂u + e
√

2|ε|v∂v,

Γ2 = −
√

2|ε|ue−
√

2|ε|v∂u + e−
√

2|ε|v∂v.

8.6.1 Further Potential Symmetries

Equation (8.1) can be written in other conserved forms when the parameters n, a and b

satisfy certain relations. For example, if a 6= b + 1, a 6= b and m 6= a − b, the auxiliary
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system takes the form

vx = ub−a+1, (8.41)

vt = (a− b− 1)

[
u2b−1uxx +

1

2
(a+ b− 2)u2b−2u2x −

εm

a− b−m
ub−a+m

]
for which Lie symmetries induce potential symmetries of (8.1) in two cases. The first

case is when (a, b,m) = (3, 1, 3) the system admits the following Lie symmetry which is a

potential symmetry of (8.1)

Γ = v∂x + ∂u + 6εt∂v.

The second case that the system (8.41) produces potential symmetries is when (a, b,m) =

(3
2
,−1

2
,−1) and the symmetries have the form

(i) ε > 0

Γ1 = −2εu

3
e
√

2ε
3
v∂u +

√
2ε

3
e
√

2ε
3
v∂v,

Γ2 =
2εu

3
e−
√

2ε
3
v∂u +

√
2ε

3
e−
√

2ε
3
v∂v.

(ii) ε < 0

Γ1 = −2|ε|u
3

cos

(√
2|ε|
3
v

)
∂u +

√
2|ε|
3

sin

(√
2|ε|
3
v

)
∂v,

Γ2 =
2|ε|u

3
sin

(√
2|ε|
3
v

)
∂u +

√
2|ε|
3

cos

(√
2|ε|
3
v

)
∂v.

In the case for which m = a− b, a 6= b+ 1 and a 6= b equation (8.1) can be written as

a system of two equations

vx = ub−a+1,

vt = (a− b− 1)

[
u2b−1uxx +

1

2
(a+ b− 2)u2b−2u2x + ε(a− b) lnu

]
.

If a = b and m 6= 0, then equation (8.1) admits the conservation law

vx = u lnu,

vt = −u2b−1(1 + lnu)uxx +
1

2
u2b−2 [2(1− b) lnu+ 3− 2b]u2x +

ε

m
(1−m−m lnu)um.

Finally, if a = b+ 1 and m 6= 1 we have the system

vx = lnu,

vt = −u2b−1uxx +
1

2
(1− 2b)u2b−2u2x −

εm

m− 1
um−1.

Lie symmetries of the above three systems lead only to Lie symmetries of (8.1).
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8.7 Nonclassical Potential Symmetries

In this Section we search for nonclassical symmetries for the potential form of (8.1) which

is given by

vt = −εvmx −
1

b

[
vax
(
vbx
)
xx

]
. (8.42)

The invariance surface condition has the form

vt = ζ(t, x, v)− ξ(t, x, v)vx

and the reduction operators have the form

Γ = ∂t + ξ(t, x, v)∂x + ζ(t, x, v)∂v.

The determining system for the determination of the coefficients ξ and ζ is

(b+ 2)ξv = 0, (8.43)

(b− 1)ζx = 0, (8.44)

(b+ 2)ξvv = 0, (8.45)

(4b+ 5)ξxv − (2b+ 1)ζvv = 0, (8.46)

(2b+ 1)ξxx − (4b− 1)ζxv = 0, (8.47)

(b− 1)ζxx = 0, (8.48)

ε(a+ b−m+ 3)ξvv
m+2
x + ε[(a+ b−m+ 2)ξx − (a+ b−m)ζv]v

m+1
x

−ε(a+ b−m− 1)ζxv
m
x − ξvvvva+b+4

x − (3ξxvv − ζvvv)va+b+3
x

−3(ξxxv − ζxvv)va+b+2
x − (ξxxx − 3ζxxv)v

a+b+1
x + ζxxxv

a+b
x − (a+ b+ 2)ξvξv

3
x

−[ξt + (a+ b+ 2)(ξxξ − ξvζ)− (a+ b− 1)ξζv]v
2
x

+[(a+ b+ 2)ξxζ + ζt + (a+ b− 1)(ξζx − ζvζ)]vx − (a+ b− 1)ζζx = 0. (8.49)

Depending upon the values of the parameters a, b and m, equation (8.49) is able to break

up into more equations.

After the solution of the system (8.43)–(8.49), we deduce that equation (8.42) admits

such symmetries in two special cases for which
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(1) a = −1 and b = 1,

(2) a = 1 and b = −2.

(We do not present the results for m = 1.)

Case 1. a = −1 and b = 1.

For the case that (a, b,m) = (−1, 1,−1) equation (8.1) admits nonclassical potential

symmetries. In particular we find that equation (8.42) admits the reduction operator

Γ1 = ∂t + c∂x + φ(ω)∂v,

respectively, where ω = x+ ct.

Case 2. a = 1 and b = −2.

In this case equation (8.1) admits nonclassical potential symmetries for m = 2. Equation

(8.42) admits the reduction

Γ2 = ∂t + φ(ω)∂x + c∂v,

respectively, where ω = v + ct.

In both reductions the function φ(ω) is a solution of the ODE

d3φ

dω3
+ φ

dφ

dω
= 0.

We note that the corresponding potential equations to these two cases are connected by

the pure hodograph transformation

x 7→ v, v 7→ x.
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Chapter 9

Lie Symmetry Classification for a

K(m,n) Equation with Variable

Coefficients

9.1 Introduction

In this Chapter we present the Lie symmetry classification for the following generalised

equation with variable coefficients

ut + ε(um)x + f(t) (un)xxx = 0, (9.1)

where f(t) is a function of t and ε is an arbitrary constant. If f is constant is known as

K(m,n) equation. A study of the generalised K(n, n) equation with variable coefficients

with the form

ut + a(t)(un)x + b(t) (un)xxx = 0, n 6= 0, 1,

for which a(t) and b(t) are functions of t, was done in [74]. Equation (9.1) is a subcase of

this equation.

9.2 Lie Symmetries

Equation (9.1) admits Lie point symmetries if and only if

Γ(3)[ut + f
(
nun−1uxxx + 3n(n− 1)un−2uxuxx + (n3 − 3n2 + 2n)un−3u3x

)
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+εmum−1ux] = 0 (9.2)

for ut = − [f (nun−1uxxx + 3n(n− 1)un−2uxuxx + (n3 − 3n2 + 2n)un−3u3x) + εmum−1ux].

After we have used the above expression we can eliminate ut and equation (9.2) becomes

an identity in the variables ux, uxx, utx, uxxx and utxx. From coefficients of different powers

of these variables, which must be equal to zero, we derive the determining equations on

the coefficients τ , ξ and η. We use the general results again on point transformations

between evolution equations [34] and the forms of the coefficients can be simplified, that

is, τ = τ(t) and ξ = ξ(t, x).

From the coefficient of uxxx we have that

[ftτ + f(τt − 3ξx)]u+ (n− 1)fη = 0.

We deduce that the analysis needs to be split in two cases:

(1) n 6= 1 and

(2) n = 1.

Case 1. n 6= 1.

In this case the form of η is

η = − [ftτ + f(τt − 3ξx)]u

(n− 1)f

and the coefficients of uxx, u
2
x, ux and the term independent of derivatives in (9.2) produce

the following determining equations, respectively,

n(2n+ 1)fξxx = 0 (The coefficient of uxx is the same as the coefficient of u2x), (9.3)

[εm(m− n)fτt − εm(3m− n− 2)fξx + εm(m− 1)ftτ ]um

−8n(n+ 1)f 2ξxxxu
n + (n− 1)fξtu = 0, (9.4)

3εmf 2ξxxu
m + 3nf 3ξxxxxu

n −
[
f 2τtt + fftτt + ffttτ − f 2

t τ − 3ξtxf
2
]
u = 0. (9.5)

After we have solved the determining equations (9.3)–(9.5), we take the forms of τ(t),

ξ(t, x) and the function f(t). The Lie symmetries according the form of f(t) are tabulated

in the Table 9.1.
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Table 9.1: Classification of equation (9.1) (n 6= 1)

Cases n m f(t) Conditions Basis of Amax

n 6= 1

1 ∀ ∀ ∀ ∂x

2 3m− n− 2 = 0 ∀ ∂x, x∂x + 3u
n−1∂u

3 ∀ 0 ∀ 1
f ∂t, ∂x, x∂x + 3u

n−1∂u, 3
∫
fdt
f ∂t + x∂x

4 − 1
2 0 ∀ 1

f ∂t, ∂x, x∂x − 2u∂u, 3
∫
fdt
f ∂t + x∂x,

x2∂x − 4xu∂u

5 ∀ ∀ constant ∂t, ∂x, (3m− n− 2)t∂t + (m− n)x∂x − 2u∂u

6 − 1
2 − 1

2 constant ∂t, ∂x, 3t∂t + 2u∂u,

f
ε > 0

√
f
ε sin

(√
ε
f x
)
∂x − 2u cos

(√
ε
f x
)
∂u,√

f
ε cos

(√
ε
f x
)
∂x + 2u sin

(√
ε
f x
)
∂u

f
ε < 0

√
| fε |e
√
| εf |x∂x − 2ue

√
| εf |x∂u,√

| fε |e
−
√
| εf |x∂x + 2ue−

√
| εf |x∂u

7 ∀ ∀ tk ∂x, (3m− n− 2)t∂t + (km− k +m− n)x∂x

+(k − 2)u∂u

8 3m− n− 2 = 0 t2 ∂x, x∂x + 3u
n−1∂u, t∂t + x∂x

9 ∀ ∀ ekt ∂x, (3m− n− 2)∂t + k(m− 1)x∂x + ku∂u

For the Cases 3 and 4, for which m = 0, we can introduce a new time T =
∫
fdt.

Case 2. n = 1.

In this case, from the coefficient of uxuxx we have that ηuu = 0, so η = a1(t, x)u+a2(t, x).

We use the fact that τ = τ(t), ξ = ξ(t, x) and the form for η and from (9.2) we obtain

the following determining equations

ftτ + f(τt − 3ξx) = 0, (9.6)
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a1x − ξxx = 0, (9.7)

εm [τt − ξx + (m− 1)a1]u
m+1 + εm(m− 1)a2u

m + (3fa1xx− ξt− fξxxx)u2 = 0, (9.8)

εma1xu
m+1 + εma2xu

m + (a1t + fa1xxx)u
2 + (a2t + fa2xxx)u = 0. (9.9)

We solve the system (9.6)-(9.9) and in Table 9.2 we present the different forms for the Lie

algebra according to the possible forms of the function f(t).

Table 9.2: Classification of equation (9.1) (n = 1)

Cases f(t) Conditions Basis of Amax

n = 1

m 6= 2

1 ∀ ∂x

2 constant ∂t, ∂x, 3(m− 1)t∂t + (m− 1)x∂x − 2u∂u

3 tk ∂x, 3(m− 1)t∂t + (m− 1)(k + 1)x∂x + (k − 2)u∂u

4 ekt ∂x, 3(m− 1)∂t + k(m− 1)x∂x + ku∂u

m = 2

5 ∀ ∂x, 2εt∂x + ∂u

6 constant ∂t, ∂x, 2εt∂x + ∂u, 3t∂t + x∂x − 2u∂u

7 tk k 6= 1 ∂x, 2εt∂x + ∂u, 3t∂t + (k + 1)x∂x + (k − 2)u∂u

8 t ∂x, 2εt∂x + ∂u, 3t∂t + 2x∂x − u∂u,

2εt2∂t + 2εtx∂x + (x− 2εtu)∂u

9 ekt ∂x, 2εt∂x + ∂u, 3∂t + kx∂x + ku∂u

10 f1(t) p2 − 4q − 4r2 6= 0 ∂x, 2εt∂x + ∂u, 6ε(t2 + pt+ q)∂t + ε(6t+ 2r + 3p)x∂x

−(6εtu− 2εru+ 3εpu− 3x)∂u

In Case 10, f1(t) =
√
t2 + pt+ q exp

(∫
rdt

t2+pt+q

)
and p, q and r are arbitrary constants such that

p2 − 4q − 4r2 6= 0 because then we revert to Case 8.
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Chapter 10

Conclusions

The main goal of this thesis was the investigation of symmetry properties for special

classes of nonlinear evolution PDEs. Our motivation started from the known results of

the nonlinear diffusion equation

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
.

In Chapters 4, 5 and 6 we gave the symmetry properties for a chain of nonlinear

diffusion equations. Namely, we have seen the symmetry properties for the third-, fourth-,

fifth- and sixth-order equations, respectively,

∂u

∂t
= − ∂

∂x

(
un
∂2u

∂x2
+ aun−1

(
∂u

∂x

)2
)
,

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3
+ aun−1

∂u

∂x

∂2u

∂x2
+ bun−2

(
∂u

∂x

)3
)
,

∂u

∂t
= − ∂

∂x

[
un
∂4u

∂x4
+ a1u

n−1∂u

∂x

∂3u

∂x3
+ a2u

n−1
(
∂2u

∂x2

)2

+ a3u
n−2
(
∂u

∂x

)2
∂2u

∂x2

+ a4u
n−3
(
∂u

∂x

)4
]
,

∂u

∂t
= − ∂

∂x

[
un
∂5u

∂x5
+ a1u

n−1∂u

∂x

∂4u

∂x4
+ a2u

n−1∂
2u

∂x2
∂3u

∂x3
+ a3u

n−2
(
∂u

∂x

)2
∂3u

∂x3

+ a4u
n−2∂u

∂x

(
∂2u

∂x2

)2

+ a5u
n−3
(
∂u

∂x

)3
∂2u

∂x2
+ a6u

n−4
(
∂u

∂x

)5
]
.
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In Chapter 7 we presented the Lie symmetries and the potential symmetries for the

third- and fourth-order generalised evolution equations, respectively,

∂u

∂t
=
∂

∂x

(
f(u)

∂2u

∂x2
+ g(u)

(
∂u

∂x

)2
)
,

∂u

∂t
=
∂

∂x

(
f(u)

∂3u

∂x3
+ g(u)

∂u

∂x

∂2u

∂x2
+ h(u)

(
∂u

∂x

)3
)
,

which are the generalisations of the the third-order equation for which symmetry proper-

ties presented in Chapter 5 and the fourth-order equation for which the complete group

analysis presented in Chapter 4.

In Chapter 8 we performed an enhanced group analysis for the class of dispersive

equations

ut + ε (um)x +
1

b

[
ua
(
ub
)
xx

]
x

= 0

and we saw the relation with the third-order equation (5.1) for which symmetry properties

presented in Chapter 5.

Finally in Chapter 9 we presented the Lie symmetry classification for the generalised

K(m,n) equation with variable coefficients

ut + ε(um)x + f(t) (un)xxx = 0.

We have studied differential equations which depend upon parameters and for certain

values of these parameters we obtained useful symmetry properties. One of the main

goals that we had was to find patterns between the values of the parameters for which

exceptional symmetries occur. Such investigation occurs in Chapters 4, 5 and 6 in which

we examine a chain of equations. Possible patterns between the values will be useful for

the investigation of higher-order equations of the chain.

We present some interesting conclusions from the analysis that we had through the

results of these three chapters.

Firstly, we have seen that the symmetry Lie algebra is four-dimensional and is spanned

by

Γ1 = ∂t, Γ2 = ∂x, Γ3 = λt∂t + x∂x, Γ4 =
nx

λ
∂x + u∂u,
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where λ is the order of the equation and λ ∈ N − {1}. An additional Lie symmetry

exists for specific values of the parameters. In particular the equations (including the

second-order equation) admit a fifth symmetry

Γ5 = x2∂x +
2λxu

n
∂u.

We have seen that the second-, third-, fourth-, fifth- and sixth-order equations admit

a fifth symmetry when the parameters take the particular values, respectively,

n = −4

3
,

(n, a) =

(
−3

2
,−3

2

)
,

(n, a, b) =

(
−8

5
,−24

5
,
104

25

)
,

(n, a1, a2, a3, a4) =

(
−5

3
,−20

3
,−5,

80

3
,−440

27

)
,

(n, a1, a2, a3, a4, a5, a6) =

(
−12

7
,−60

7
,−120

7
,
2280

49
,
3420

49
,−59280

343
,
195624

2401

)
.

The above five cases, correspond to the following equations:

ut = −
[
u−4/3ux

]
x
,

ut = −
[
u−6/4ux

]
xx
,

ut = −
[
u−8/5ux

]
xxx

,

ut = −
[
u−10/6ux

]
xxxx

,

ut = −
[
u−12/7ux

]
xxxxx

and the generalisation of this class of equations is given by

ut = − ∂λ−1

∂xλ−1
[
u−2λ/(λ+1)ux

]
, where λ ∈ N− {1}.

Also, we have seen that the third-, fourth-, fifth- and sixth-order equations admit a fifth

symmetry when the parameters take the particular values, respectively,

(n, a) =

(
−3,−3

2

)
,

(n, a, b) =

(
−8

3
,−16

3
,
44

9

)
,

(n, a1, a2, a3, a4) =

(
−5

2
,−15

2
,−5,

245

8
,−315

16

)
,

(n, a1, a2, a3, a4, a5, a6) =

(
−12

5
,−48

5
,−84

5
,
1326

25
,
1836

25
,−24684

125
,
60588

625

)
.
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The above four cases, correspond to the following equations:

ut = −
[
u−6/2uxx −

3

2
u−8/2u2x

]
x

,

ut = −
[
u−8/3uxx −

4

3
u−11/3u2x

]
xx

,

ut = −
[
u−10/4uxx −

5

4
u−14/4u2x

]
xxx

,

ut = −
[
u−12/5uxx −

6

5
u−17/5u2x

]
xxxx

and the generalised form for the above equations is

ut = − ∂λ−2

∂xλ−2

[
u−2λ/(λ−1)uxx −

λ

λ− 1
u(−3λ+1)/(λ−1)u2x

]
, where λ ∈ N− {1, 2}.

Finally, the fourth-, fifth- and sixth-order equations admit a fifth symmetry for the specific

values of the parameters, respectively,

(n, a, b) = (−4,−6, 6),

(n, a1, a2, a3, a4) =

(
−10

3
,−25

3
,−5, 35,−640

27

)
,

(n, a1, a2, a3, a4, a5, a6) =

(
−3,−21

2
,−33

2
,
237

4
,
153

2
,−885

4
,
225

2

)
.

These three cases correspond to the following equations:

ut = −
[
u−8/2uxxx −

12

2
u−10/2uxuxx +

4 · 6
22

u−12/2u3x

]
x

,

ut = −
[
u−10/3uxxx −

15

3
u−13/3uxuxx +

5 · 8
32

u−16/3u3x

]
xx

,

ut = −
[
u−12/4uxxx −

18

4
u−16/4uxuxx +

6 · 10

42
u−20/4u3x

]
xxx

.

In this case the generalisation of this class of equations is given by

ut = − ∂λ−3

∂xλ−3

[
u−

2λ
(λ−2)uxxx −

3λ

(λ− 2)
u

(−3λ+2)
(λ−2) uxuxx +

λ(2λ− 2)

(λ− 2)2
u−

4(λ−1)
(λ−2) u3x

]
,

where λ ∈ N− {1, 2, 3}.

We have seen three generalisations from which we can derive the particular values of

the parameters of higher-order equations for which they admit a fifth symmetry. When

the free parameter a2 involved in our results, for the fifth- and sixth-order equations, it

was difficult to find such generalisations for the corresponding equations. More thorough

examination of the higher-order equations of the chain could give us some answers.
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In the case for which the parameters are arbitrary, the optimal system and the corre-

sponding similarity reductions that transform the corresponding equation into an ODE

are given by the operators

〈Γ2〉 : u = φ(ω), ω = t,

〈Γ1 + cΓ2〉 : u = φ(ω), ω = x− ct,

〈Γ3 + cΓ4〉 : u = t
c
λφ(ω), ω =

 x if nc+ λ = 0,

t−
1
λx

λ
nc+λ if nc+ λ 6= 0,

〈Γ4 + cΓ1〉 : u =

 x
λ
nφ(ω), ω = etx−

λc
n if n 6= 0,

e
t
cφ(ω), ω = x if n = 0,

〈Γ4 + cΓ2 − n
λ
Γ3〉 : u =

 t−
1
nφ(ω), ω = x+ c

n
ln t if n 6= 0,

e
x
c φ(ω), ω = t if n = 0.

In the case that a fifth symmetry exists, we obtain the following additional reductions,

correspond to the additional subalgebras:

〈Γ5 + cΓ2 + 2kΓ3〉 : u =



((x+ k)2 + 1)
λ
n exp

[
−2λk

n
tan−1(x+ k)

]
φ(ω),

ω = t exp [−2λk tan−1(x+ k)] if c− k2 = 1,

((x+ k)2 − 1)
λ
n exp

[
2λk
n

tanh−1(x+ k)
]
φ(ω),

ω = t exp
[
2λk tanh−1(x+ k)

]
if c− k2 = −1,

(x+ k)
2λ
n exp

[
2λk

n(x+k)

]
φ(ω),

ω = t exp
[
2λk
x+k

]
if c− k2 = 0,

where ω is the independent, φ the dependent variable of the reduced ODE, c = 0,±1,

k ∈ R and λ ∈ N− {1}, where λ denotes the order of the equation.

We noticed that for the subalgebra 〈Γ4 + cΓ2 − n
λ
Γ3〉 in the special case n = 0, we

obtain the generalised form of the solution

u = c1 exp

[
1

cλ

(
cλ−1x−

(∑
ai + 1

)
t
)]

, where λ ∈ N− {1, 2}

and ai the parameters involved in the corresponding equations.

Also, for the fourth-order equation (4.1), in the case for which we have five symmetries

and k = 0 we obtain the following solutions:
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For c = ±1 and (n, a, b) =
(
−8

5
,−24

5
, 104

25

)
we have the solution

u = (x2 + c)−5/2(24t+ c1)
5/8

and for (n, a, b) =
(
−8

3
,−16

3
, 44

9

)
we have the solution

u = (x2 + c)−3/2(8t+ c1)
3/8.

Similarly, the sixth-order equation (6.1), admits the solutions:

For (n, a1, a2, a3, a4, a5, a6) =
(
−12

7
,−60

7
,−120

7
, 2280

49
, 3420

49
,−59280

343
, 195624

2401

)
u = (x2 + c)−7/2(540ct+ c1)

7/12,

for (n, a1, a2, a3, a4, a5, a6) =
(
−12

5
,−48

5
,−84

5
, 1326

25
, 1836

25
,−24684

125
, 60588

625

)
u = (x2 + c)−5/2(108ct+ c1)

5/12

and finally, when

(n, a1, a2, a3, a4, a5, a6) =
(
−4,−12, a2,

4
3
(−a2 + 37), (−31a2−8)

6
, 104

9
(a2 − 7), 56

9
(−a2 + 7)

)
,

we have

u = (x2 + c)−3/2[(−18a2 − 324)ct+ c1]
1/4.

The third- and fifth-order equations do not admit such forms of solutions. We suppose

that the higher even-order equations will admit such solutions but the odd-order equations

will not.

The final comment for the Lie group analysis of the chain is that, in the case of the class

of fourth-order equations (4.1) and sixth-order equations (6.1) we have seen there exists

no member that can be a linearised by local mapping. On the other hand the equation

of the third-order (5.1) and fifth-order (6.2) was found to possess an infinite-dimensional

Lie symmetry, for the special case that n = 0, with the form

Γ∞ = φ(t, x)
√
u∂u,

where φ(t, x) is a solution of the linear equation

∂φ

∂t
+

∂2λ1−1

∂x2λ1−1
φ = 0, for λ1 ∈ N− {1},
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where 2λ1 − 1 indicates the order of the equation. Equations that admit the infinite-

dimensional Lie symmetry Γ∞ can be mapped into the linear equation

∂u

∂t
+

∂2λ1−1

∂x2λ1−1
u = 0, for λ1 ∈ N− {1},

by the mapping

u 7→
√
u.

It appears that only equations of odd-order from the chain can be linearised by local

mappings.

We have seen that the second-, third-, fourth-, fifth- and sixth-order equations admit

proper nonclassical symmetry

Γ1 = ∂t + φ(x)
√
u∂u,

where φ(x) is a solution of the ODE

dλ2+1φ

dxλ2+1
+

1

2
φ2 = 0, where λ2 ∈ N.

Here, λ2 + 1 denotes the order of the equation. A special solution for the obove ODE is

φ = (−1)λ2
2(2λ2 + 1)!

λ2!
x−(λ2+1).

In this case, Γ1 leads to the ansatz (4.35)

u =
[
1
2
φ(x)t+ F (x)

]2
which reduces the corresponding equation to the ODE

dλ2+1F

dxλ2+1
+

1

2
φF = 0.

The third- and fifth-order equations, and we suppose all odd-order equations of the chain,

admit also the reduction operator

Γ2 = ∂t + ψ(x)u2/3∂u,

where ψ(x) is a solution of the ODE

d2λ3+1ψ

dx2λ3+1
+

1

3
ψ2 = 0, where λ3 ∈ N
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and particualar solution

ψ =
3(4λ3 + 1)!

(2λ3)!
x−(2λ3+1).

We have that 2λ3 + 1 indicates the order of the equation. In this case, Γ2 leads to the

nonclassical reduction (5.29)

u =
[
1
3
ψ(x)t+ F (x)

]3
.

Equation is reduced to the ODE

d2λ3+1F

dx2λ3+1
+

1

3
ψF = 0.

The two special forms of the odd-order equations that admit nonclassical symmetries are

connected by the mapping u 7→ u3/2.

The four equations admit proper potential symmetries with the forms:

Γ = ψ(t, v)∂x − u2ψv∂u,

where ψ(t, v) is a solution of the linear equation

∂ψ

∂t
+

∂λ

∂vλ
ψ = 0, for λ ∈ N− {1, 2}

and

Γ = 2uv∂u + v2∂v.

Finally, the four equations admit nonclassical potential symmetries. If n = −1 and the

other parameters are equal to zero then the corresponding potential equation admits the

reduction operator

Γ1 = ∂t + c∂x + φ(x+ ct)∂v.

Also, it admits a second form of reduction operator

Γ2 = ∂t + φ(v + ct)∂x + c∂v.

In both operators φ(ω) is a solution of the ODE

dλφ

dωλ
+ φ

dφ

dω
= 0, where λ ∈ N− {1, 2}.
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For the above cases we recall that λ denotes the order of the equation. The corresponding

potential equations to these two cases are connected via the pure hodograph transforma-

tion

t′ = t, x′ = v, v′ = x.

Lengthier investigation of the chain could give us new interesting answers and new

patterns for the construction of the different forms of symmetries. Also we can use Lie

group analysis for the ODEs that arise through the analysis and construct exact solutions.
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The French scholar Jean Dieudonne said:

“Lie theory is the process of becoming the most important part of modern mathematics.

Little by little it became obvious that the most unexpected theories, from arithmetic to

quantum physics, came to encircle the Lie field like a gigantic axis.”
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