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Περίληψη

Η περίληψη είναι εκείνο το μέρος ενός βιβλίου που γράφεται τελευταίο, τοπο-

θετείται πρώτο και διαβάζεται λιγότερο. — Alfred Lotka.

Σε αυτή τη διατριβή μελετούμε περιοχές των μαθηματικών που μπορεί να φαίνονται ασυ-

σχέτιστες αλλά έχουν κοινή προέλευση τη θεωρία των συστημάτων ριζών. Τα συστήματα

ριζών χρησιμοποιούνται για την ταξινόμηση των αλγεβρών Lie αλλά εμφανίζονται και σε άλλες

ταξινομήσεις, για παράδειγμα στην ταξινόμηση των πεπερασμένων ομάδων Coxeter. Επίσης

χρησιμοποιούνται και στα ολοκληρώσιμα συστήματα στην κλασική και κβαντική μηχανική.

Να αναφέρουμε τα συστήματα Toda, τα συστήματα Calogero-Moser και τα γενικευμένα συ-

στήματα Volterra του Bogoyavlensky. Για ευκολία αυτή η διατριβή χωρίζεται σε δύο μέρη.

Στο πρώτο μέρος ασχολούμαστε με τα πολυώνυμα Coxeter των αφινικών αλγεβρών Lie

και επίσης με τα πολυώνυμα Coxeter μιας οικογένειας ομάδων Coxeter οι οποίες ορίζονται

μέσω γραφημάτων. Υπολογίζουμε τα πολυώνυμα Coxeter, τους αριθμούς Coxeter και τους

εκθέτες για κάθε μία από τις αφινικές άλγεβρες Lie χρησιμοποιώντας στοιχειώδεις ιδιότητες

των πολυωνύμων Chebyshev. Γενικεύουμε δύο μεθόδους των Steinberg και Berman, Lee

και Moody για τον υπολογισμό των αφινικών αριθμών Coxeter και των αφινικών εκθετών

στην περίπτωση της αφινικής άλγεβρας Lie τύπου A
(1)
n . Χρησιμοποιούμε αυτές τις μεθόδους

για τον υπολογισμό των αφινικών αριθμών Coxeter και των εκθετών για κάθε μία από τις

αφινικές άλγεβρες Lie. Επίσης υπολογίζουμε τα πολυώνυμα Coxeter μίας οικογένειας ομάδων

Coxeter τις οποίες ορίζουμε μέσω γραφημάτων. Σε αυτά τα γραφήματα περιλαμβάνονται

πολλά γνωστά γραφήματα, για παράδειγμα τα διαγράμματα Dynkin τύπου Dn, τα αφινικά

διαγράμματα Dynkin τύπου D
(1)
n , τα διαγράμματα En και πολλά άλλα γνωστά γραφήματα.

Υπολογίζουμε το όριο της φασματικής ακτίνας των μετασχηματισμών Coxeter αυτών των

ομάδων Coxeter όταν ο αριθμός των κορυφών τους τείνει στο άπειρο.

Στο δεύτερο μέρος αυτής της διατριβής ασχολούμαστε με ολοκληρώσιμα συστήματα

τα οποία είναι του τύπου Lotka-Volterra. Χρησιμοποιούμε μία καινούρια μέθοδο για να

παράγουμε Χαμιλτονιανά συστήματα κατασκευάζοντας τα αντίστοιχα ζεύγη Lax. Αυτό το

επιτυγχάνουμε χρησιμοποιώντας υποσύνολα των θετικών ριζών, συστημάτων ριζών απλών

αλγεβρών Lie, τα οποία περιέχουν τις απλές ρίζες. Σε αρκετές περιπτώσεις η μέθοδος αυτή

δίνει γνωστά Χαμιλτονιανά συστήματα τα οποία είναι τύπου Lotka-Volterra. Ονομάζουμε τα

συστήματα τα οποία παίρνουμε από αυτή τη μέθοδο γενικευμένα συστήματα τύπου Lotka-

Volterra. Ταξινομούμε όλα τα υποσύνολα των θετικών ριζών, που περιέχουν τις απλές ρίζες

του συστήματος ριζών τύπου An, τα οποία μετά από μία απλή αλλαγή μεταβλητών δίνουν

συστήματα τύπου Lotka-Volterra. Επίσης αποδεικνύουμε ότι η μέθοδος μας δουλεύει και για

αρκετά άλλα υποσύνολα των θετικών ριζών.
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Abstract

The abstract is that part of a book which is written last, placed first and read

least. — Alfred Lotka.

In this thesis we investigate some areas of mathematics which may be unrelated but

nevertheless they have as common theme the theory of abstract root systems. Root

systems of course are used in the classification of simple Lie algebras. They also appear in

other classifications, for example the classification of finite Coxeter groups. They are also

used in the theory of integrable systems in classical and quantum Mechanics. A number of

mechanical systems are defined to correspond to simple or affine Lie algebras. We mention

the various Toda lattices, Calogero-Moser systems and the generalized Volterra lattices of

Bogoyavlensky. For convenience we divide this thesis in two parts.

The first part is concerned with the Coxeter polynomials of finite and affine Lie algebras

and also with the Coxeter polynomials of a family of Coxeter groups arising from graphs.

We define the Coxeter number and exponents with respect to each conjugacy class of

the Coxeter elements of the simple and affine Lie algebras. In the case of the affine Lie

algebra of type A
(1)
n we have

⌊
n+1

2

⌋
different conjugacy classes of Coxeter elements while

for all the other cases we have only one. We compute the Coxeter polynomial, the Coxeter

number and exponents of each one of the simple and affine Lie algebras using properties

of Chebyshev polynomials. We generalize two methods of Steinberg and Berman, Lee and

Moody for the computation of affine Coxeter number and affine exponents in the case

of the affine Lie algebra of type A
(1)
n . We use these methods for the computation of the

affine Coxeter number and affine exponents of each one of the affine Lie algebras. We also

compute the Coxeter polynomials of a family of Coxeter groups defined by their Coxeter

graphs. This family of graphs includes several well known graphs, e.g. the Dn Dynkin

diagrams, the D
(1)
n affine Dynkin diagrams, the En diagrams and many other diagrams.

We find the limit of the spectral radius of the Coxeter elements of these graphs as the

number of the vertices of their arms tends to infinity.

The second part of this thesis is concerned with the theory of integrable systems and

more specifically with Lotka-Volterra systems. We device a new method for producing

integrable systems by constructing the corresponding Lax pairs. This is achieved by con-

sidering a larger subset of the positive roots than the simple roots of a simple complex Lie

algebra. In several cases these subsets of the positive roots recover well known Hamilto-

nian systems which are of Lotka-Volterra type. Therefore we call the systems produced by

this method generalized Lotka-Volterra systems. We find all subsets of the positive roots

of the simple Lie algebra of type An which produce after a suitable change of variables

Lotka-Volterra systems. Furthermore we show that our method works for several other

cases.
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Chapter 1

Introduction

The greatest challenge to any thinker is stating the problem in a way that will

allow a solution — Bertrand Russell

This thesis is divided in two parts. In the first part we investigate the connection

between Chebyshev polynomials and root systems of affine Lie algebras. We generate the

Coxeter polynomials and the characteristic polynomials of Cartan and adjacency matrices

of the affine Lie algebras using properties of Chebyshev polynomials. We also generalize

two results of Steinberg and Berman, Lie and Moody to the case of the affine Lie algebra

of type A
(1)
n . We calculate the Coxeter polynomials of a family of Coxeter groups and we

also find a family of Pisot numbers as limits of sequences of Salem numbers.

In his seminal paper [?], Coxeter gave the definition of Coxeter groups and classified

the finite Coxeter groups. He also defined the Coxeter element of the Coxeter groups and

observed that the eigenvalues of these elements have remarkable properties. These and

several other properties were later developed by various mathematicians (see [?, ?, ?, ?]).

The order h, of a Coxeter element is the Coxeter number of the Coxeter group W and

the eigenvalues of the Coxeter element are of the form e
πimj
h , for some integers mj ∈

{1, 2, . . . , h− 1}. The integers mj are called the exponents of the Coxeter group. Some of

the properties of the exponents and the Coxeter number are

• The cardinality of W is
∏

(mj + 1).

• The rank r of the corresponding Lie algebra is |R|
h

, where |R| is the cardinality of

the root system.

• A word for the longest element is σ
h
2 (σ is a Coxeter element).

• The length of the longest element in W is
∑
mj = r·h

2
.

• The height of the highest root is h− 1.

1
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• When the Coxeter group is the Weyl group of a Lie algebra, the dimension of the

Lie algebra is r(h+ 1).

• Assume that m1 ≤ m2 ≤ . . . ≤ mr and that n1 ≤ . . . ≤ nh−1 is the partition of∑
mj conjugate to that of mi’s. Then ni is the number of reflections with trace i.

• The spectrum of the Coxeter graph is
{

2 cos
(mjπ

h

)}
.

• The spectrum of the Cartan matrix is
{

4 cos2
(mjπ

2h

)}
.

• Let km denotes the number of roots of height m. Then km − km+1 is the number of

times m occurs as an exponent of W .

• The Poincare polynomial of the Coxeter group W is defined as W (x) =
∑

w∈W x`(w)

where `(w)is the length of w. It factors as
∏

(1 + x+ . . .+ xmj).

• The Poincare polynomial of a compact Lie group with W its Weyl group factors as∏
(1 + x2mj+1).

• The determinant of the Cartan matrix is

det(C) = 22r

r∏
i=1

sin2 miπ

2h
.

After the work of Coxeter, several authors (see e.g. [?, ?]) started investigating the

Coxeter element of the affine Coxeter groups. The eigenvalues of these elements, satisfy

similar properties, as the eigenvalues of the Coxeter elemens of the finite Coxeter groups.

If σ is a Coxeter element of an affine Coxeter group then it satisfies a relation of the form

(σ − 1)(σh − 1) = 0. The number h is the affine Coxeter number and the eigenvalues

of σ are, again, of the form e
πimj
h , for some integers mj ∈ {0, 1, . . . , h}. The integers mj

are the affine exponents. In the first part of this thesis we are mainly concerned with

the Coxeter polynomials associated with the affine Lie algebras. For completeness we

include the corresponding results for the complex simple finite dimensional Lie algebras

(section 3.2 and part of section 3.4) which are taken from [?] and [?].

For a Dynkin diagram Γ of a root system of type X, in addition to the Cartan matrix

CX , we associate the Coxeter adjacency matrix which is the matrix AX = 2I − CX . The

characteristic polynomial of Γ is that of AX and the spectral radius of Γ is

ρ (Γ) = max {|λ| : λ is an eigenvalue of AX} .

We use the following notation. The subscript n in all cases is equal to the degree of the

polynomial except that Qn(x) is of degree 2n.

2
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- pn(x) will denote the characteristic polynomial of the Cartan matrix,

- qn(x) = det (2xI + AX),

- an(x) = qn
(
x
2

)
will denote the characteristic polynomial of −AX and finally,

- Qn(x) = xnan
(
x+ 1

x

)
.

Note the relation between the polynomials an, qn and pn

pn(x) = an(x− 2) = qn

(x
2
− 1
)
.

We prove the following result

Theorem 1. Let C be the n× n affine Cartan matrix of an affine Lie algebra of type X.

Then qn is a polynomial related to Chebyshev polynomials as follows

for X = A
(1)
n−1, qn(x) = 2

(
Tn(x) + (−1)n−1

)
,

for X = B
(1)
n−1, qn(x) = 2 (Tn(x)− Tn−4(x)) ,

for X = C
(1)
n−1, qn(x) = 2 (Tn(x)− Tn−2(x)) and

for X = D
(1)
n−1, qn(x) = 8x2 (Tn−2(x)− Tn−4(x)) ,

where Tn(x) is the nth Chebyshev polynomial of first kind.

Using the fact that for bipartite Dynkin diagrams the spectrum of the Coxeter adja-

cency matrix A is the same as the spectrum of −A it follows that the eigenvalues of the

Cartan matrix occur in pairs, λ and 4−λ (see e.g. [?, ?, ?]). In our case this happens in all

cases except for A
(1)
n−1, n odd. In the bipartite cases, an(x) is the characteristic polynomial

of the Coxeter adjacency matrix.

Let L be a complex finite dimensional simple Lie algebra with Cartan matrix C of rank

n and simple roots Π = {α1, . . . , αn}. The Killing form on L induces an inner product on

the real vector space V with basis Π. The Weyl group W of L is a subgroup of AutV which

is generated by reflections on V . Namely, for each fixed root αi consider the reflection σi

through the hyperplane perpendicular to αi

σi : V −→ V, α 7→ α− 2
(α, αi)

(αi, αi)
αi.

Then the Weyl group of L is W = 〈σ1, σ2, . . . , σn〉. The Cartan matrix C satisfies

Ci,j = 2
(αi, αj)

(αj, αj)
,

3
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and therefore σi(αj) = αj −Cj,iαi. The Weyl group of an affine Lie algebra of rank n and

Cartan matrix C is W = 〈σ1, σ2, . . . , σn〉, where

σi(αj) = αj − Cj,iαi

is a “reflection” in the real vector space with basis {α1, . . . , αn}. If z = (z1, . . . , zn) is a

left zero eigenvector of C (z can be taken to be in Zn, see [?]) and α =
∑n

k=1 zkαk then

σi(α) = α, ∀i = 1, . . . , n. Thus the Weyl group W , acts on {kα : k ∈ Z} as the identity.

A Coxeter polynomial fn is the characteristic polynomial of σπ(1)σπ(2) . . . σπ(n) ∈ gl(V )

for some π ∈ Sn. When the Dynkin diagram does not contain cycles the Coxeter poly-

nomial is uniquely defined and for bipartite Dynkin diagrams is closely related to the

polynomial Qn(x); the polynomial Qn(x) turns out to be Qn(x) = fn(x2). For the case

of A
(1)
n−1, Coleman showed in [?] that, there are

⌊
n
2

⌋
different Coxeter polynomials. For

n even, Qn (
√
x) is one of the Coxeter polynomials, the one corresponding to the largest

conjugacy class of the Coxeter transformations. According to [?] the largest conjugacy

class contains the Coxeter transformations with the property that the set

{
i : π−1(i) > π−1(i+ 1 (mod n)), i = 1, 2, . . . , n

}
has the largest cardinality, i.e. contains n

2
elements. For example one may choose the

Coxeter transformation σ1σ3 . . . σn−1σ2σ4 . . . σn, which is the one considered in [?].

The roots of Qn are in the unit disk and therefore by a theorem of Kronecker (the-

orem 8), Qn(x) is a product of cyclotomic polynomials. We determine the factorization

of Qn as a product of cyclotomic polynomials. This factorization in turn determines the

factorization of fn. The irreducible factors of Qn are in one-to-one correspondence with

the irreducible factors of an(x).

The roots of a Coxeter polynomial fn, of a Lie algebra of affine type, are of the form

e
2mjπi

h for some integers mj ∈ {0, 1, . . . , h}, where the numbers mj are the affine exponents

and h the affine Coxeter number associated with the Coxeter transformation σ. These

numbers are normally defined only for the bipartite case. For A
(1)
n , n odd one defines

them with respect to the Coxeter polynomial corresponding to the largest conjugacy class

of the Coxeter element. We examine in detail the case of A
(1)
n for n both even and odd

and we calculate the affine exponents and affine Coxeter number for each conjugacy class.

These numbers are related to the Cartan matrix and give a universal formula for the

spectrum of the Dynkin diagram Γ and the eigenvalues of the Cartan matrix. For the

bipartite case the spectrum is {
2 cos

mjπ

h
: j = 1, . . . n

}
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and the eigenvalues of the Cartan matrix are
{

4 cos2 mjπ

2h
: j = 1, . . . n

}
.

The affine exponents, affine Coxeter number of X
(1)
n and the roots of the corresponding

simple Lie algebraXn are related in an inquisitive way (see [?, ?]). Let Π = {α1, α2, . . . , αn}
be the simple roots of Xn, V = R -span(α1, α2, . . . , αn) and β the branch root of Xn. Let

wβ∨ ∈ V ∗ be the weight corresponding to the co-root β∨. Then for some c ∈ N and a

proper enumeration of mj we have

c · wβ∨ =
n∑
j=1

mjα
∨
j , (1.1)

where c is the smallest integer such that c · wβ∨ belongs to the co-root lattice. The

coefficient of β∨ is the affine Coxeter number. Here we have identified V with V ∗ using

the inner product induced by the Killing form. We generalize that result and show that

the relation (1.1) is valid for all conjugacy classes in A
(1)
n .

Steinberg [?], in his explanation of the MacKay correspondence, shows a mysterious

relation between affine Coxeter polynomials (for the simply laced Dynkin diagrams and

later Stekolshchik in [?] for the multiple laced) and Coxeter polynomials of type An. Each

affine Coxeter polynomial is a product of Coxeter polynomials of type An. From Xn

remove the branch root. If g(x) is the Coxeter polynomial of the reduced system then

the Coxeter polynomial of X
(1)
n is (x − 1)2g(x). The affine exponents and affine Coxeter

number of an affine Lie algebra are easily computed using Steinberg’s theorem. We include

the table 2.1 listing the affine exponents and affine Coxeter number for affine Lie algebras.

Furthermore, we demonstrate that the method of Steinberg works also in the case of A
(1)
n .

In [?], Lakatos proves a result about the spectral radius of Coxeter transformations of

noncyclotomic starlike trees, which she called wild stars. Let S
(0)
p1,...,pk denote the wild star

consisting of k paths of length p1, . . . , pk and one branching point. Lakatos proved that the

limit of the spectral radius of the Coxeter transformations of S
(0)
p1,...,pk as p1, . . . , pk → ∞

is k − 1. We define S
(i)
p1,...,pk to be the join of i Dynkin diagrams of type Dp1 , . . . , Dpi and

k − i Dynkin diagrams of type Api+1
, . . . , Apk . We generalize the sesult of Lakatos and

show that the limit of the spectral radius of the Coxeter transformations of S
(i)
p1,...,pk as

p1, . . . , pk →∞ is k− 1. We also calculate the Coxeter polynomials of the Coxeter graphs

S
(i)
p1,p2,p3 and find the limit of the spectral radius of the Coxeter transformations of S

(i)
p1,p2,p3

as pj →∞ and pj, pl →∞. These limits are Pisot numbers.

The second part of this thesis is concerned with the theory of integrable Hamiltonian

systems. Some parts of chapter 6 and chapter 7 were done in collaboration with the

postdoctoral fellow Stelios Charalambides.

Jurgen K. Moser made important contributions to the theory of completely integrable

Hamiltonian systems. To quote Moser from [?]
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In the last twenty years one of the most fascinating developments in the theory

of Hamiltonian systems is connected with the discovery of the new integrable

systems, like the Toda lattice and various other systems. This subject grew

very rapidly. Although it originated from applied problems, it has in the

meantime spread to a variety of other more abstract fields such as Lie algebras.

In this part we investigate a new class of Hamiltonian systems which are connected with

subsets of the positive roots of a root system of a complex simple Lie algebra.

The Volterra system (also known as the KM system) is a well-known integrable system

defined by

ẋi = xi(xi+1 − xi−1) i = 1, 2, . . . , n, (1.2)

where x0 = xn+1 = 0. It was studied by Lotka in [?] to model oscillating chemical

reactions and by Volterra in [?] to describe population evolution in a hierarchical system

of competing species. It was first solved by Kac and van-Moerbeke in [?], using a discrete

version of inverse scattering due to Flaschka [?]. In [?] Moser gave a solution of the system

using the method of continued fractions and in the process he constructed action-angle

coordinates. Equations (1.2) can be considered as a finite-dimensional approximation

of the Korteweg-de Vries (KdV) equation. The Poisson bracket for this system can be

thought as a lattice generalization of the Virasoro algebra [?]. The Volterra system is

associated with a simple Lie algebra of type An in the sense that it can be written in Lax

pair form L̇ = [B,L], where

L =
n∑
i=1

ai (Xαi +X−αi)

and

B =
n−1∑
i=1

aiai+1

(
Xαi+αi+1

−X−αi−αi+1

)
,

with {α1, . . . , αn} being the simple roots of the root system of the Lie algebra of type

An and Xαi the corresponding root vectors. This Lax pair is due to Moser [?]; it gives

a polynomial (in fact cubic) system of differential equations. The change of variables

xi = 2a2
i , produces equations (1.2). We generalize this Lax pair and produce a larger class

of Hamiltonian systems which we call generalized Volterra systems.

We devise a new method for producing Hamiltonian systems by constructing the cor-

responding Lax pairs. This is achieved by considering a larger subset of the positive roots,

than the simple roots, of a simple Lie algebra. In several cases these subsets of the posi-

tive roots recover well known Hamiltonian systems which are of Lotka-Volterra type. For

example using the simple roots of the root system of type An we recover the KM system

while using the simple roots and the highest root we recover the periodic KM system. We

find and classify all subsets of the positive roots of the Lie algebra of type An which give
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rise to Lotka-Volterra systems and we also show that in several other cases our algorithm

works. In higher dimensions we are able, using our method, to derive new completely

integrable Hamiltonian systems.

Bogoyavlensky in [?, ?] and [?] produces Lotka-Volterra systems which are generaliza-

tions of the periodic KM system. Our method produces Lotka-Volterra systems which are

different from these of Bogoyavlensky. The systems produce in [?] and [?] are described

explicitly in [?] and they are different from the Lotka-Volterra systems produced by our

algorithm (see section 5.5). Also the construction of Bogoyavlensky in [?] covers a wide

variety of generalizations. However as it can be seen by the diagrams of interactions of the

systems in [?], by restricting these systems one cannot obtain our systems in an obvious

way.

This thesis is structured as follows.

In chapter 2 we give the basic definitions needed for the remaining chapters. We review

the basic results about root systems, Lie algebras, Coxeter groups and the Mahler measure

of integer polynomials. The rest of this thesis is divided in two parts.

The first part (made up of the chapters 2 to 4) is about is about the Coxeter polynomials

of simple and affine Lie algebras and also about the Coxeter transformations of a family of

Coxeter groups, defined by their Coxeter graphs. In chapter 3 we calculate the spectrum

of Cartan matrices and the Coxeter polynomials of simple and affine Lie algebras, using

properties of Chebyshev polynomials. We also compute the associated polynomials an, qn

and Qn of the simple and affine Lie algebras and we use them for the explicit calculation

of their Coxeter polynomials, Coxeter number and exponents. The Coxeter graphs of the

simple and affine Lie algebras are all trees, except the one of the affine Lie algebra with

root system of type A
(1)
n . For this Lie algebra the Coxeter polynomial is not uniquely

defined. We calculate all of their Coxeter polynomials in section 3.5. In that section we

generalize the methods of Steinberg and Berman, Lee and Moody, for the case of the affine

Lie algebra with root system of type A
(1)
n . We show that these methods can be modified

and applied to the case of the affine Lie algebra with root system of type A
(1)
n , and give

all of their Coxeter polynomials. In chapter 4 we generalize a result of Piroska Lakatos

about the spectral radius of the Coxeter transformations of the Coxeter graphs S
(i)
p1,...,pk .

The new results of the first part can be summarized as follows.

1. Let an(x) be the characteristic polynomial of the Coxeter adjacency matrix. The

spectrum of this polynomial is called the spectrum of the Dynkin graph. Using the

knowledge of the roots of Un(x), the Chebyshev polynomial of the second kind, we

are able to compute the roots of an(x) and in the bipartite case they turn out to be

2 cos
mjπ

h
.
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Let C be the generalized Cartan matrix associated with the affine Lie algebra. The

eigenvalues of C in the bipartite case are

4 cos2 mjπ

2h
.

Let f(x) be the affine Coxeter polynomial (in the case of A
(1)
n with n odd we use the

Coxeter polynomial corresponding to the largest conjugacy class). Then the roots

of f in terms of the exponents and Coxeter number are

e
2mjπi

h .

2. Let Π = {α1, α2, . . . , αn} be the simple roots of the associated simple Lie algebra,

V = R -span(α1, α2, . . . , αn) and β the branch root. Let wβ∨ ∈ V ∗ be the weight

corresponding to the co-root β∨. Then for some c ∈ N and a proper enumeration of

mj we have

c · wβ∨ =
n∑
j=1

mjα
∨
j ,

where c ∈ N is the smallest integer such that c · wβ∨ belongs to the co-root lattice.

The coefficient of β∨ is the affine Coxeter number. This method is extended for each

conjugacy class in the Coxeter group of A
(1)
n .

3. One may use a procedure of Steinberg which relates affine Coxeter polynomials with

the corresponding Coxeter polynomial of the reduced system obtained by removing

a branch root. Each affine Coxeter polynomial is a product of Coxeter polynomials

of type An. This method is also extended to the case of A
(1)
n .

4. We generalize a result of Piroska Lakatos about the Coxeter polynomials of the

Coxeter graphs, S
(i)
p1,...,pk . We show that for k = 3 the limits

lim
pj→∞

ρ
(
S(i)
p1,p2,p3

)
and

lim
pj ,pm→∞

ρ
(
S(i)
p1,p2,p3

)
are Pisot numbers for all i ∈ {0, 1, 2, 3} and j,m = 1, 2, 3. We also show that for all

k ∈ N and 0 ≤ i ≤ k

lim
p1,...,pk→∞

ρ
(
S(i)
p1,...,pk

)
= k − 1.

The second part is about Lotka-Volterra systems and is made up of the chapters 5

to 7. In chapter 5 we give the basic definitions about Hamiltonian systems and Poisson
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brackets. In chapter 6 we explain the new algorithm for constructing Hamiltonian systems

by producing the corresponding Lax pairs (section 6.2). In section 6.3 we present all

systems produced by our algorithm for the cases of root systems of type A3 and A4 and

we classify, in section 6.4, all subsets of the positive roots of the root system of type

An which give, under the transformation xi = 2a2
i , systems of Lotka-Volterra type. We

describe the corresponding systems and discuss their integrability. In section 6.5 we present

two interesting methods for finding first integrals for Hamiltonian system emerging from

Lax pairs and we use these methods in section 6.6, to find additional first integrals for

systems corresponding to certain subsets of the positive roots of the root system of type

An. Finally in chapter 7 we present a variation of our algorithm where we use complex

coefficients.

The new results of the second part can be summarized as follows.

1. We device an algorithm for constructing Hamiltonian systems corresponding to sub-

sets of the positive roots of root systems of simple Lie algebras. This algorithm

produces the corresponding Lax pairs.

2. We explicitly present all the Lotka-Volterra systems produced by this algorithm from

subsets of the positive roots of the root systems of type A3 and A4. In several cases

we recover well known integrable systems but we also produce some new systems of

Lotka-Volterra type which we show that they are integrable.

3. We classify all subsets of the positive roots of the root system of type An which

produce, under the change of variables xi = 2a2
i , Lotka-Volterra systems. We ex-

plicitly describe the corresponding Lotka-Volterra systems. We also show that our

algorithm produces consistent Lax pairs for certain families of subsets of the positive

roots of the root system of type An, and we describe the corresponding Hamiltonian

systems.

4. We present a variation of the algorithm which uses complex coefficients. We show

that this method produces different Hamiltonian systems and more Lotka-Volterra

systems, than the previous one.
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Chapter 2

Background

He turned the handle and the door opened. Beyond it was another door. He

turned the handle and the other door stood wide. He opened doors, a hundred

and twenty-four. Then he grew tired, and he collapsed. Beyond the hundred

and twenty-fifth door, there is a garden where the roses have just opened, he

though, drowsily dying. Beyond that door was another door.—Antanas Skema

2.1 Root systems

In the following V will be a finite dimensional real Euclidean space (with inner product

written ( , )). We write 〈x, y〉 := 2(x,y)
(y,y)

.

Given a nonzero vector α orthogonal to the hyperplane H, the reflection in the hyper-

plane H, denoted sα, is given by

sα(x) = x− 〈x, α〉α, ∀x ∈ V.

It is characterized by the properties, sα(α) = −α and sα(x) = 0 for all x orthogonal to α.

We easily verify that (sα(x), sα(y)) = (x, y) for all x, y ∈ V . Also, if w is an automorphism

of V which preserves the inner product, then

wsαw
−1(β) = swα.

Indeed,

wsαw
−1(wα) = wsα(α) = −wα

and if (wα, β) = 0, it follows that (α,w−1β) = 0. Therefore

wsαw
−1(β) = wsα(w−1β) = 0.
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Definition 1.

• A root system of V is a finite subset R of V which satisfies

1. The set R spans V ,

2. If α ∈ R then kα ∈ R if and only if k = ±1,

3. If α ∈ R then sα(R) = R

• A root system R of V is called crystallographic root system if 〈x, y〉 ∈ Z for all

x, y ∈ R.

Remark 1. Crystallographic root systems are the root systems corresponding to the semi-

simple complex finite dimensional Lie algebras (see section 2.2).

The elements of R are called roots and the group generated by {sα : α ∈ R} will be

denoted by W .

Lemma 1. The group W is finite.

Proof. If α ∈ R then sα is a permutation of R. The restriction of W to R is faithfull

because if w1 = w2 on R, then since span(R) = V , it follows that w1 = w2 on V .

Therefore W is a subgroup of the symmetric group on the elements of R and hence is

finite.

Definition 2.

• A subset Π of a root system R is called a base for the root system if it is a basis

for the vector space V and each element of R is written as a linear combination of

elements of Π where all coefficients are either non negative or non positive.

• The elements of R which are written as a non negative linear combination of the

elements of Π are called positive roots of R with respect to the base Π. An element

α of R is called negative with respect to the base Π if −α is positive with respect to

the base Π.

• The subset of R containing the positive roots will be denoted by R+ and the the

subset containing the negative roots by R−.

Theorem 2. Every root system has a base.

The proof of the previous theorem can be found in standard textbooks of Lie algebras

(see for instance [?, ?]).

Lemma 2. If Π is a base for a root system R then
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1. (α, β) < 0 for all α, β ∈ Π with α 6= β.

2. If p ∈ R+ then there exists an α ∈ Π such that (p, α) > 0.

Proof. 1. If α, β ∈ Π and (α, β) > 0 then sα(β) = β − 〈β, α〉α ∈ R. This is a

contradiction since 〈β, α〉 < 0.

2. Let p =
∑

α∈Π kαα where all kα are non negative. Then

0 < (p, p) =
∑
α∈Π

kα(p, α)

and therefore (p, α) > 0 for some α ∈ Π.

Lemma 3. If Π is a base of the root system R and α ∈ Π then sα (R+ \ {α}) = R+ \ {α}.

Proof. Let p ∈ R+ \ {α} and

p =
∑
β∈Π

kββ

with kβ ≥ 0. Then

sα(p) =
∑
β∈Π

kβsα(β) =
∑

β∈Π\{α}

kββ + k′αα.

But there is a β0 ∈ R \ {α} such that kβ0 > 0. Therefore the coefficient of β0 when we

write sα(p) as a linear combination of the elements of B is positive. Hence sα(p) is positive

and of course different from α.

Definition 3. If R is a root system with a base Π and p ∈ R with p =
∑

α∈Π kαα then

the number
∑

α∈Π kα is the height of p and is denoted ht(p).

For example ht(α) = 1 for all α ∈ Π.

Example 1. In the vector space R2 with the usual euclidean inner product, let R be the

subset of R2 with

R = {±α,±β,± (α + β)},

where α = (1, 0), β = (−1
2
,
√

3
2

) as shown in fig. 2.1.

It is straightforward to verify that R is a crystallographic root system and that the

following subsets are bases for R.

{α, β}, {α,−α− β}, {α + β,−β}, {α + β,−α}, {β,−α− β}, {−α,−β}.

This root system is said to be of type A2. With respect to the base Π = {α, β} we have

ht(α + β) = 2, while with respect to the base Π = {β,−α− β} we have ht(α + β) = −1.
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Figure 2.1: Root system of type A2

The group W is generated by the reflections sα, sβ, sα+β. Note that

sα+β = sαsβ,

and therefore W is generated by sα, sβ, i.e. W = 〈sα, sβ〉. The homomorphism φ : W → S3

generated by φ(sα) = (1 2) and φ(sβ) = (2 3) is an isomorphism of the group W and the

symmetric group on 3 elements. There is another way to describe this root system as

shown in §2.1.

Lemma 4. Let R be a root system with base Π and W0 the group generated by {α : α ∈ Π}.
If w ∈ W0, p

′ ∈ R+ and p = w(p′) ∈ R+ then ht(p) ≥ 1.

Proof. Let p ∈ W0(R+)∩R+ be such that ht(p) is minimum. We will show that ht(p) = 1.

Assume, for contradiction that ht(p) < 1. Then p 6∈ Π and therefore there exists an α ∈ Π

such that (p, α) > 0. Hence ht(sα(p)) = ht(p − 〈p, α〉α) = ht(p) − 〈p, α〉 < ht(p) and

sα(p) ∈ W0(R+) ∩R+, contradiction. Therefore ht(p) = 1.

We see, from the proof of the previous lemma, that if ht(p) = 1 then p is a simple root.

Therefore we have the following corollary.

Corollary 1. If p ∈ R+ \ Π then ht(p) > 1.

Proof. Let α ∈ Π be such that (p, α) > 0. Then ht(sα(p)) = ht(p) − 〈p, α〉 < ht(p) and

therefore ht(p) > 1 (from the previous lemma it couldn’t be ht(p) = 1).

If R is a root system with base Π and α, β ∈ Π we denote the order of sαsβ by n(α, β).

For example for all α ∈ Π, n(α, α) = 1 and n(α, β) > 1 for all α, β ∈ Π with α 6= β.

The next theorem shows, how the group W can be described through generators and

relations. A proof of this theorem can be found in [?, ?] or [?].
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Theorem 3. The group W ′ generated by the elements {σα : α ∈ Π} and the relations

{(σα, σβ)n(α,β) = 1 : α, β ∈ Π} is isomorphic to the group W .

The groups with presentation as the one described in the previous theorem are known

as Coxeter groups. This is the subject of section 2.5.

Next we present the root systems associated with the four classical simple Lie algebras

(see section 2.2), as subsets of the euclidean spaces Rn with the usual inner product. These

are the root systems of type An, Bn, Cn and Dn.

Root system of type An

Let V be the hyperplane of Rn+1 for which the coordinates sum to 0 (i.e. vectors orthogonal

to (1, 1, . . . , 1)). Let R be the set of vectors in V of length
√

2 with integer coordinates.

There are
(
n
2

)
such vectors in all. We use the standard inner product in Rn+1 and the

standard orthonormal basis {e1, e2, . . . , en}. Then, it is easy to see that

R = {ei − ej | i, j ∈ {1, 2, . . . , n+ 1}, i 6= j}.

The set R is a root system known as root system of type An. The set

Π = {αi = ei − ei+1 | i = 1, 2, . . . , n}

is a base of this root system in the sense that each vector in R is a linear combination

of these n vectors with integer coefficients, either all nonnegative or all nonpositive. For

example, the positive roots are written as ei−ej = αi+αi+1+. . .+αj−1 for 1 ≤ i < j ≤ n+1.

Therefore Π = {α1, α2, . . . , αn}, and the set of positive roots R+ is given by

R+ = {ei − ej+1 = αi + αi+1 + . . .+ αj | 1 ≤ i ≤ j ≤ n}.

The highest root for the root system An is the root

e1 − en = α1 + α2 + . . .+ αn,

of height n. Note that the homomorphism φ : W → Sn+1 generated by

φ(sαi) = (i i+ 1), i = 1, 2, . . . , n

is an isomorphism between the group W and the symmetric group Sn+1.
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Root system of type Bn

Let V be the the Euclidean space Rn with the usual inner product and let R be the subset

of V which consist of the vectors with integer coefficient whose length is 1 or
√

2. The

subset R consist of the vectors

R = {±ei,±ej ± ek | i = 1, 2, . . . , n, 1 ≤ j < k ≤ n},

where as usual {e1, e2, . . . , en} is the orthonormal basis of Rn. In total there are 2n2 such

vectors. The set R is a root system known as root system of type Bn. A base for the root

system Bn is

Π = {α1, α2, . . . , αn},

where αi = ei − ei+1, i = 1, 2, . . . , n− 1 and αn = en.

The set of positive roots of Bn is given by

R+ = R1 ∪R2 ∪R3,

where

R1 = {ei = αi + αi+1 + . . .+ αn | i = 1, 2, . . . , n},

R2 = {ei − ej+1 = αi + αi+1 + . . .+ αj | 1 ≤ i ≤ j ≤ n− 1} and

R3 = {ei + ej = αi + αi+1 + . . .+ αj−1 + 2αj + . . .+ 2αn | 1 ≤ i < j ≤ n}.

The highest root for the root system of type Bn is the root

e1 + en = α1 + 2α2 + 2α3 + . . .+ 2αn,

of height 2n− 1

Root system of type Cn

Let V be the the Euclidean space Rn with the usual inner product and let R be the subset

of V which consist of the vectors

R = {±2ei,±ej ± ek | i = 1, 2, . . . , n, 1 ≤ j < k ≤ n},

where as usual {e1, e2, . . . , en} is the orthonormal basis of Rn. In total there are 2n2 such

vectors. The set R is a root system known as root system of type Cn. A base for the root

system Cn is

Π = {α1, α2, . . . , αn},
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where αi = ei − ei+1, i = 1, 2, . . . , n− 1 and αn = 2en.

The set of positive roots of Cn is given by

R+ = R1 ∪R2 ∪R3,

where

R1 = {2ei = 2αi + 2αi+1 + . . .+ 2αn−1 + αn | i = 1, 2, . . . , n},

R2 = {ei − ej+1 = αi + αi+1 + . . .+ αj | 1 ≤ i ≤ j ≤ n− 1} and

R3 = {ei + ej = αi + αi+1 + . . .+ αj−1 + 2αj + . . .+ 2αn−1 + αn | 1 ≤ i < j ≤ n}.

The highest root for the root system of type Cn is

2e1 = 2α1 + 2α2 + . . .+ 2αn−1 + αn,

of height 2n− 1.

Root system of type Dn

Let V be the the Euclidean space Rn with the usual inner product and let R be the subset

of V which consist of all vectors with integer coefficients and length
√

2. The set R is

given by

R = {±ei ± ej | 1 ≤ i < j ≤ n},

where as usual {e1, e2, . . . , en} is the canonical orthonormal basis of Rn. In total there are

2n2 − 2n such vectors. The set R is a root system known as root system of type Dn. A

base for the root system Dn is

Π = {α1, α2, . . . , αn},

where αi = ei − ei+1, i = 1, 2, . . . , n− 1 and αn = en−1 + en.

The set of positive roots of Dn is given by

R+ = R1 ∪R2 ∪R3,

where

R1 = {ei − ej+1 = αi + αi+1 + . . .+ αj | 1 ≤ i ≤ j ≤ n− 1},

R2 = {ei + ej = αi + . . .+ αj−1 + 2αj + . . .+ 2αn−2 + αn−1 + αn | 1 ≤ i < j ≤ n− 1},

R3 = {ei + en = αi + αi+1 + . . .+ αn−2 + αn | 1 ≤ i ≤ n− 2} ∪ {en−1 + en = αn}.
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The highest root for the root system of type Dn is

e1 + e2 = α1 + 2α2 + . . .+ 2αn−2 + αn−1 + αn,

of height 2n− 3.

2.2 Lie algebras

Definition 4. A Lie algebra L over the field F is an F-vector space with a bilinear map

[ , ], called the Lie bracket, which satisfies

• (skew-symmetry) [x, x] = 0 for all x ∈ L,

• (Jacobi identity) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L.

We give some basic examples of Lie algebras.

Example 2.

1. Write gln(C) for the C-vector space of all n × n matrices. The vector space gln(C)

becomes a Lie algebra, known as the general linear algebra, if we define the Lie

bracket

[x, y] = xy − yx, for x, y ∈ gln(C).

It is straightforward to verify that [ , ] is indeed a Lie bracket.

2. The vector space R3 becomes a Lie algebra with Lie bracket the cross product.

3. Write sln(C) for the special linear algebra, the C-vector subspace of gln(C) of all

n×n traceless matrices. Note that from the property tr(xy) = tr(yx) it follows that

if x, y,∈ sln(C) then [x, y] ∈ sln(C). Therefore the vector space sln(C) becomes a

Lie algebra with Lie bracket

[x, y] = xy − yx, for x, y ∈ gln(C).

For n = 2 the Lie algebra sln(C), as a vector space, has a basis consisting of the

matrices

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

More generally, if we denote by ei,j the n× n matrix which has 1 in the i, j position

and all other entries zero, then the Lie algebra sln(C), as a vector space, has a basis

consisting of the matrices ei,j for i 6= j and ei,i − ei+1,i+1 for i = 1, 2, . . . , n− 1.
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Definition 5. Let L,L1, L2 be Lie algebras with Lie brackets [ , ] , [ , ]1 , [ , ]2 respectively.

• A Lie subalgebra L′ of L is a vector subspace of L which is a Lie algebra with Lie

bracket the Lie bracket of L.

• An ideal L′ of L is a Lie subalgebra of L with the property [x, y] ∈ L′ for all

x ∈ L, y ∈ L′.

• A linear map φ : L1 → L2 is an homomorphism of Lie algebras if

φ ([x, y]1) = [φ(x), φ(y)]2 .

The map φ is called monomorphism or epimorphism of Lie algebras if φ is injective

or surjective respectively. The map φ is called isomorphism of Lie algebras if it

is both monomorphism and epimorphism. In that case the Lie algebras L1, L2 are

called isomorphic Lie algebras.

If L is an algebra, that is a vector space with a bilinear form (x, y) 7→ xy, then a

derivation on L is a linear map f : L→ L with the property

f(xy) = xf(y) + f(x)y, for all x, y ∈ L.

For example, any Lie algebra is an algebra with bilinear form the Lie bracket. If L is a

Lie algebra, then for x ∈ L, the adjoint map adx : L → L defined by adx(y) = [x, y] is a

derivation with respect to the Lie bracket, i.e. for all x, y, z ∈ L

adx([y, z]) = [adx(y), z] + [y, adx(z)] .

The last equality is exactly the Jacobi identity.

All Lie algebras considered from now on are over the field of complex numbers C.

Example 3. If L is an algebra of dimension n, then the subspace Der(L) of gln(C), con-

taining the n × n matrices corresponding to the derivations of L is a Lie subalgebra of

gln(C). Indeed if f, g ∈ Der(L) then for all x, y ∈ L,

[f, g] (xy) =

fg(xy)− gf(xy) = f(g(x)y + xg(y))− g(f(x)y + xf(y)) =

f(g(x))y + g(x)f(y) + f(x)g(y)) + xf(g(y))−

g(f(x))y − f(x)g(y)− g(x)f(y)− xg(f(y)) =

[f, g] (x)y + x [f, g] (y).

Therefore [f, g] ∈ Der(L) and Der(L) is a Lie subalgebra of gln(C)
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If S ⊆ L, then the Lie subalgebra spanned by S is the minimal Lie subalgebra of L

containing the set {x : x ∈ S}. For S1, S2 ⊆ L we denote by [S1, S2] the Lie subalgebra of

L spanned by {[x, y] : x ∈ S1, x ∈ S2}. Therefore if L′ is a vector subspace of L then L′ is

a Lie subalgebra of L if [L′, L′] ⊆ L′, while it is an ideal of L if [L,L′] ⊆ L′. If L1, L2 are

ideals of L then, from the Jacobi identity, it follows that [L1, L2] is also an ideal of L. The

ideal [L,L] of L is called the derived algebra of L and the Lie algebra L is called abelian

if its derived algebra vanishes. The derived series of L is the decreasing series of ideals

L(0) = L,L(i+1) =
[
L(i), L(i)

]
i ≥ 0.

The Lie algebra L is called solvable if L(k) = 0 for some k ∈ N while it is called simple

if it is not abelian and has no non trivial ideals (i.e. no ideals other than 0 and L). The

radical, rad(L), of L is the maximal solvable ideal of L.

The next lemma is an immediate consequence of the definitions.

Lemma 5. Let L be a Lie algebra. Then the following are equivalent

i) The radical of L is trivial, rad(L) = 0.

ii) The Lie algebra L has no nontrivial abelian ideals.

Proof. If I is an abelian ideal of L then I is solvable and hence rad(L) ⊇ I. Therefore

ii) ⇒ i). Conversely if I = rad(L) 6= 0 and I(k) = 0 with k minimum then I(k−1) is a

nontrivial abelian ideal of L.

Example 4. Let L be the Lie algebra sl2(C) with basis e, f, h as in example 2. Then we

have the relations [e, f ] = h, [e, h] = −2e, [f, h] = 2f . If I is an ideal of L and e ∈ I

then [e, f ] = h ∈ I and
[

1
2
f, h
]

= f ∈ I. Similarly if f ∈ I or h ∈ I we deduce that

e, f, h ∈ I and therefore I = L. If x = λ1e + λ2f + λ3h ∈ I then
[
[e, x] , 1

2
e
]

= λ2e and[
1
2
f, [x, f ]

]
= λ2f . Therefore I = L and we conclude that L is simple, rad(L) = 0 and

that L(k) = L for all k ∈ N.

Definition 6. The Killing form k : L × L → C of the Lie algebra L is the bilinear map

defined by

k(x, y) = tr(adx ady).

Proposition 1. For a Lie algebra L the following are equivalent.

1. The radical of L is trivial, rad(L) = 0.

2. The Lie algebra L is the direct sum of finitely many simple Lie algebras.

3. The Killing form on L is nondegenerate.
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The equivalence of 1. and 2. is a theorem of Weyl while the equivalence of 1. and 3. is

a theorem of Cartan known as Cartan’s second criterion. For a proof of this proposition

see [?, ?, ?].

Definition 7. A Lie algebra satisfying one of the properties of proposition 1 is called

semisimple .

From now on all Lie algebras are assumed semisimple. An element x ∈ L is called

semisimple if the linear map adx is diagonalizable.

Definition 8. A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra if

it is abelian, every element x ∈ H is semisimple and it is maximal with these properties.

In the following we give some basic properties of semisimple Lie subalgebras

All Cartan subalgebras of L have the same dimension known as the rank of L. Let H

be a Cartan subalgebra of L. A root of the Lie algebra L is a nonzero function α ∈ H∗ such

that for all h ∈ H, α(h) is an eigenvalue of adh corresponding to a common eigenvector

x ∈ L. We denote by Lα the weight space Lα = {x ∈ L : [h, x] = α(h)x for all h ∈ H}.
For all roots α ∈ H∗, dim(Lα) = 1.

The Cartan subalgebra is a maximal abelian subalgebra, therefore if α = 0, Lα = H.

The set of the roots of L is denoted by R. The Lie algebra L is decomposed as

L = H ⊕ ⊕
α∈R

Lα. (2.1)

The above decomposition is known as the root space decomposition.

Let Xα ∈ Lα be nonzero. Then Lα = span(Xα) and [h,Xα] = α(h)Xα for all h ∈ H
and α ∈ R. If α, β ∈ R are such that α + β ∈ R then

[h, [Xα, Xβ]] = [Xα, [h,Xβ]] + [[h,Xα] , Xβ] =

(α(h) + β(h)) [Xα, Xβ] ∈ Lα+β,

and therefore [Lα, Lβ] ⊆ Lα+β.

The roots R generate H∗ as a vector space over C. The Killing form on H is nonde-

generate and defines an inner product, denoted ( , ), on the vector space H∗ as follows.

For α ∈ H∗ define hα to be the element of H defined by the relation

k(h, hα) = α(h), ∀h ∈ H.

If α, β ∈ H∗ we define (α, β) = k(hα, hβ).

The set R, of the roots of L satisfies the following properties.

1. It spans H∗ as a vector space over R.
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2. If α ∈ R then kα ∈ R if and only if k = ±1.

3. For all α, β ∈ H, 〈α, β〉 = 2(α,β)
(β,β)

∈ Z.

4. If α ∈ H and sα is the reflection defined by the relation

sα(x) = x− 〈x, α〉α,

then sα(R) = R.

Therefore R is a root system in the sense of section 2.1. It can be proved that if R is a

crystallographic root system then it is the root system of some finite dimensional complex

semisimple Lie algebra (see [?, ?, ?, ?]).

The root space decomposition (2.1) can be rewritten as

L = H ⊕ ⊕
α∈R

Lα = H ⊕ ⊕
α∈R+

(Lα ⊕ L−α) = L− ⊕H ⊕ L+, (2.2)

where L− = ⊕
α∈R+

L−α and L+ = ⊕
α∈R+

Lα.

The decomposition (2.2) is known as triangular decomposition of the Lie algebra L

because L+ can be represented by upper triangular matrices and L+ by lower triangular

matrices.

Let Π = {α1, α2, . . . , αn} be a set of simple roots of the Lie algebra L (i.e. a set of

simple roots of the root system R of the Lie algebra L, see section 2.1) and let W be the

group generated by Π. The group W is called Weyl group of the Lie algebra L.

Definition 9.

1. If α, β ∈ R and α + β ∈ R define Nα,β by the relation

[Xα, Xβ] = Nα,βXα+β.

If α + β 6∈ R we define Nα,β = 0

2. The α-string of roots through β is the sequence of roots

β − rα, β − (r − 1)α, . . . , β, . . . , β + qα

where β + iα ∈ R for all i = −r,−r + 1, . . . , q and β − (r + 1)α, β + (q + 1)α 6∈ R.

For a proof of the following two propositions see [?, ?, ?]

Proposition 2. The elements Xα can be chosen so that

i) [Xα, X−α] = hα.
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ii) If α, β are roots with β 6= ±α and β − rα, . . . , β + qα is the α-string through β then

N2
α,β = q(r + 1)

|α + β|2

|β|2

Proposition 3. If α, β, α + β ∈ R then

q|α + β|2 = (r + 1)|β|2.

Therefore we have the following theorem.

Theorem 4 (C. Chevalley). Let Xα be chosen as in proposition 2. Then the basis

{hαi : i = 1, 2, . . . , n} ∪ {Xα : α ∈ R}

satisfies

1.
[
hαi , hαj

]
= 0 for i 6= j.

2. [hαi , Xα] = 〈α, αi〉Xα.

3. [Xα, X−α] = hα.

4. If α + β ∈ R, [Xα, Xβ] = ±(r + 1)Xα+β.

5. If α + β 6∈ R and α + β 6= 0 then [Xα, Xβ] = 0.

Definition 10. A basis satisfying the properties of theorem 4 is said to be a Chevalley

basis.

There is a matrix and a diagram associated to each complex semisimple Lie algebra

known as the Cartan matrix and the Dynkin diagram respectively. These are of particular

interest since they are used for the classification of the simple Lie algerbas. We can define

the notion of isomorphic root systems and then one shows that two root systems are

isomorphic if and only if they have the same Dynkin diagram (or equivalently the same

Cartan matrix). Also if two Lie algebras have isomorphic root systems then they are

isomorphic. Therefore for the classification of simple Lie algebras is sufficient to classify

the connected Dynkin diagrams (it can be shown that a Lie algebra is simple if and only

if its Dynkin diagram is connected), or equivalently the indecomposable Cartan matrices.

It turns out that the Dynkin diagrams associated with the simple Lie algebras are four

infinite families (where the associated Lie algebras are known as the classical simple Lie

algebras) An, Bn, Cn and Dn and five exceptional cases (where the associated Lie algebras

are known as the exceptional simple Lie algebras) E6, E7, E8, F4 and G2.
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Definition 11. Let Π = {α1, α2, . . . , αn} be a set of simple roots for the root system of a

semisimple complex Lie algebra L.

• The integers Ci,j = 〈ai, aj〉 =
2(αi,αj)

(αj ,αj)
are the Cartan integers of the Lie algebra L.

• The matrix C = (Ci,j) is the Cartan matrix of the Lie algebra L.

• The graph Γ with n vertices V = {v1, . . . , vn} and Ci,jCj,i edges between the vertices

i, j is the Coxeter-Dynkin diagram of the Lie algebra L.

• The Dynkin diagram of the Lie algebra L is the Coxeter-Dynkin diagram of L where

whenever we have multiple edges between two vertices vi, vj, we put an arrow point-

ing to the vertex vi if the root αi is shorter than the root αj, or we put an arrow

pointing to the vertex vj if the root αj is longer than the root αj.

Now we give a linear representation of the four classical Lie algebras whose root systems

are of type An, Bn, Cn and Dn (see [?, ?], see also section 2.1). We also present the

Cartan matrices and the Dynkin diagrams associated with these Lie algebras. By a linear

representation we mean that we view our Lie algebra as a Lie subalgebra of the general

linear algebra gln(C) of n×n complex matrices with the usual Lie bracket [x, y] = xy−yx.

All Lie algebras will be subalgebras of the special linear Lie algebra (the one with root

system of type An). There will be of the form glS(n,C) for a suitable matrix S, where

glS(n,C) is described in the next lemma.

Lemma 6. Let S be an invertible n× n complex matrix. We define

glS(n,C) = {M ∈ gln(C) : M + S−1MTS = 0}.

Then the vector space glS(n,C) is a Lie subalgebra of the special linear Lie algebra sln(C)

of the traceless n× n complex matrices.

Proof. First, if M ∈ glS(n,C) it follows that

tr(−M) = tr(S−1MTS) = tr(M)⇒ tr(M) = 0

and therefore M ∈ sln(C). Since for all M,N ∈ glS(n,C), we have

S−1 [M,N ]T S = S−1(NTMT −MTNT )S =

S−1NTSS−1MTS − S−1MTSS−1NTS = − [M,N ]

it follows that glS(n,C) is indeed a Lie subalgebra of sln(C).
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In the next lemma we show that if the matrices S1, S2 are congruent (i.e. P tS1P = S2

for some invertible matrix P ) then the Lie algebras glS1
(n,C) and glS2

(n,C) are isomor-

phic.

Lemma 7. Let S1, S2 be two invertible congruent n×n complex matrices; i.e. P tS1P = S2

for some invertible matrix P . Then the homomorphism

φ : glS1
(n,C)→ glS2

(n,C), M 7→ P−1MP

is an isomorphism of Lie algebras.

We denote by Ei,j the n × n matrix with zeros everywhere except in the position i, j

where it has 1. We denote by ∆n the n× n matrix ∆n =
∑n

i=1Ei,n+1−i with ones on the

antidiagonal and zeros elsewhere. Let A = (ai,j) be an n×n matrix. The per transpose of

the matrix A is the matrix ∆nA
T∆n and is denoted by APT . The i, j entry of the matrix

APT is an+1−j,n+1−i. We say that the matrix A is per symmetric if APT = A and we say

that the matrix A is per skew-symmetric if APT = −A. Equivalently the matrix A is per

symmetric if it is symmetric with respect to its anti diagonal (i.e. ai,j = an+1−j,n+1−i for

all 1 ≤ i, j ≤ n) and it is per skew-symmetric if it is skew-symmetric with respect to its

anti diagonal (i.e. ai,j = −an+1−j,n+1−i for all 1 ≤ i, j ≤ n).

Simple Lie algebra of type An

The simple Lie algebra with root system An is the special linear Lie algebra sln+1(C),

the vector space of the traceless n + 1 × n + 1 matrices. The root system An with base

Π = {α1, α2, . . . , αn} contains the roots ±(αi + αi+1 + . . . + αj) for all 1 ≤ i ≤ j ≤ n.

The Lie algebra sln+1(C), as a vector space has a basis containing the matrices Ei,j for

1 ≤ i 6= j ≤ n and also the matrices Ei,i−Ei+1,i+1, i = 1, 2, . . . , n. A Cartan subalgebra H

of the Lie algebra sln+1(C) is the subalgebra spanned by the diagonal matrices in sln+1(C),

Ei,i − Ei+1,i+1, i = 1, 2, . . . , n, i.e.

H =

{
n+1∑
i=1

λiEi,i :
n+1∑
i=1

λi = 0

}
.

The rank of the Lie algebra sln+1(C) (i.e. the dimension of H) is n. If h =
∑n+1

i=1 λiEi,i ∈ H
then [h,Ei,j] = (λi − λj)Ei,j and therefore Ei,j is a root vector corresponding to the root

α ∈ H∗, h 7→ λi − λj. The root system R of type An contains the roots

R =

{
αi,j ∈ H∗ : αi,j(

n+1∑
i=1

λiEi,i) = λi − λj

}
.
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A base of the root system An consist of the roots

Π = {αi := αi,i+1 : i = 1, 2, . . . , n} .

From §2.1 it follows that the Cartan integers for the root system An are

Ci,j =
2(αi, αj)

(αj, αj)
= (αi, αj) =


2, if i = j,

−1, if |i− j| = 1,

0, if |i− j| > 1.

Therefore its Cartan matrix is

CAn =



2 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . .

. . .

−1 2 −1

−1 2


(2.3)

and its Dynkin diagram isi i i i i. . .

Simple Lie algebra of type Bn

Let S be the 2n+ 1× 2n+ 1 matrix of the form

S =

 0 0 ∆n

0 −2 0

∆n 0 0

 .

The simple Lie algebra with root system of type Bn is the orthogonal Lie algebra o2n+1(C)

of the square 2n+ 1× 2n+ 1 matrices M which satisfy M +S−1MTS = 0 or equivalently

o2n+1(C) = glS(n,C). The Lie algebra L = o2n+1(C) contains the matrices M of the form

M =

A 2∆nw B

vT 0 wT

C 2∆nv D

 ,

where D = −APT , the matrices B and C are per skew-symmetric matrices and v, w are

column vectors of size n. The dimension of L is n(2n + 1) and a basis of L contains the
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matrices

Hαi = Ei,i − E2n+2−i,2n+2−1, i = 1, 2, . . . , n,

Xαi+...+αn = 2Ei,n+1 + En+1,2n+2−i, i = 1, 2, . . . , n,

X−αi−...−αn = −2E2n+2−i,n+1 − En+1,i, i = 1, 2, . . . , n,

Xαi+...+αj = Ei,j − E2n+2−j,2n+2−i, 1 ≤ i ≤ j < n,

X−αi−...−αj = −Ej,i + E2n+2−i,2n+2−j, 1 ≤ i ≤ j < n,

Xαi+...+αj−1+2αj+...+2αn = Ei,2n+2−j − Ej,2n+2−i, 1 ≤ i < j ≤ n,

X−αi−...−αj−1−2αj−...−2αn = −E2n+2−j,i + E2n+2−i,j, 1 ≤ i < j ≤ n.

A Cartan subalgebra H of the Lie algebra o2n+1(C) is the subalgebra spanned by the

diagonal matrices in o2n+1(C), Hαi , i = 1, 2, . . . , n. The rank of the Lie algebra o2n+1(C)

is n.

If h =
∑n+1

i=1 λiHαi ∈ H then [h,Xα] = (α(h))Xα where α ∈ H∗ is the corresponding

root and α(h) is determined by the relations (δi,j is the Kronecker delta)

αi(Hαj) = δi,j − δi+1,j, i = 1, 2, . . . , n− 1 and αn(Hαj) = δj,n.

Therefore Xα is a root vector corresponding to the root α ∈ H∗. A base of the root system

Bn consist of the roots

Π = {αi : i = 1, 2, . . . , n} .

From §2.1 it follows that the Cartan integers for the root system Bn are

Ci,j =
2(αi, αj)

(αj, αj)
= (αi, αj) =


2, if i = j,

−1, if |i− j| = 1,

0, if |i− j| > 1

for all 1 ≤ i, j ≤ n− 1

and

Ci,n = Cn,i = 0, for 1 ≤ i ≤ n− 2,

Cn,n = 2,

Cn−1,n = 2Cn,n−1 = −2.
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Its Cartan matrix is

CBn =



2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −2

−1 2


. (2.4)

and its Dynkin diagram isi i i i i. . . >

Simple Lie algebra of type Cn

The simple Lie algebra with root system Cn is the Lie algebra sp2n(C) = glS(2n,C) where

S is the matrix

S =

(
0 ∆n

−∆n 0

)
.

We call it the symplectic Lie algebra. Note that sp2n(C) contains the 2n× 2n matrices of

the form (
A B

C D

)
,

where D = −APT and the matrices B and C are per symmetric. The dimension of this

Lie algebra is n(2n+1)
2

and a basis contains the matrices

Hαi = Ei,i − E2n+1−i,2n+1−1, i = 1, 2, . . . , n,

X2αi+...+2αn−1+αn = Ei,2n+1−i, i = 1, 2, . . . , n,

X−2αi−...−2αn−1−αn = −E2n+1−i,i, i = 1, 2, . . . , n

Xαi+...+αj = Ei,j+1 − E2n−j,2n+1−i, 1 ≤ i ≤ j < n,

X−αi−...−αj = −Ej+1,i + E2n+1−i,2n−j, 1 ≤ i ≤ j < n,

Xαi+...+αj−1+2αj+...+2αn−1+αn = Ei,2n+1−j + Ej,2n+1−i, 1 ≤ i < j ≤ n,

X−αi−...−αj−1−2αj−...−2αn−1−αn = −E2n+1−i,j − E2n+1−j,i, 1 ≤ i < j ≤ n.

A Cartan subalgebra H of the Lie algebra sp2n(C) is the subalgebra spanned by the

diagonal matrices in sp2n(C), Hαi , i = 1, 2, . . . , n. The rank of the Lie algebra sp2n(C) is

n.

If h =
∑n+1

i=1 λiHαi ∈ H then [h,Xα] = (α(h))Xα where α ∈ H∗ is the corresponding
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root and α(h) is determined by the relations (δi,j is the Kronecker delta)

αi(Hαj) = δi,j − δi+1,j, i = 1, 2, . . . , n− 1 and αn(Hαj) = 2δj,n.

Therefore Xα is a root vector corresponding to the root α ∈ H∗. A base of the root system

Cn consist of the roots

Π = {αi : i = 1, 2, . . . , n} .

From §2.1 it follows that the Cartan integers for the root system Cn are

Ci,j =
2(αi, αj)

(αj, αj)
= (αi, αj) =


2, if i = j,

−1, if |i− j| = 1,

0, if |i− j| > 1

for all 1 ≤ i, j ≤ n− 1

and

Ci,n = Cn,i = 0, ∀1 ≤ i ≤ n− 2,

Cn−1,n−1 = Cn,n = 2, Cn,n−1 = 2Cn−1,n = −2.

Therefore its Cartan matrix is the transpose of the Cartan matrix of the root system of

type Bn

CCn = CT
Bn

and its Dynkin diagram isi i i i i. . . <

Simple Lie algebra of type Dn

The simple Lie algebra with root system Dn is the orthogonal Lie algebra o2n(C) =

glS(2n,C) where S is the matrix

S =

(
0 ∆n

∆n 0

)
.

The Lie algebra o2n(C) consists the 2n× 2n matrices of the form(
A B

C D

)
,
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where D = −APT and the matrices B and C are per skew-symmetric. Its dimension is
n(2n−1)

2
and a basis contains the matrices

Hαi = Ei,i − E2n+2−i,2n+2−1, i = 1, 2, . . . , n,

Xαi+...+αn−2+αn = Ei,n+1 − En,2n+1−i, i = 1, 2, . . . , n− 2,

X−αi−...−αn−2−αn = −En+1,i + E2n+1−i,n, i = 1, 2, . . . , n− 2,

Xαn = En−1,n+1 − En,n+2,

X−αn = −En+1,n−1 + En+2,n,

Xαi+...+αj = Ei,j+1 − E2n−j,2n+1−i, 1 ≤ i ≤ j < n,

X−αi−...−αj = −Ej+1,i + E2n+1−i,2n−j, 1 ≤ i ≤ j < n,

Xαi+...+αj−1+2αj+...+2αn−2+αn−1+αn = Ei,2n+1−j − Ej,2n+1−i, 1 ≤ i < j ≤ n,

X−αi−...−αj−1−2αj−...−2αn−2−αn−1−αn = −E2n+1−j,i + E2n+1−i,j, 1 ≤ i < j ≤ n.

A Cartan subalgebra H of the Lie algebra o2n+1(C) is the subalgebra spanned by the

diagonal matrices in o2n+1(C), Hαi , i = 1, 2, . . . , n. The rank of the Lie algebra o2n+1(C)

is n.

If h =
∑n+1

i=1 λiHαi ∈ H then [h,Xα] = (α(h))Xα where α ∈ H∗ is the corresponding

root and α(h) is determined by the relations (δi,j is the Kronecker delta)

αi(Hαj) = δi,j − δi+1,j, i = 1, 2, . . . , n− 1 and αn(Hαj) = δj,n−1 + δj,n.

Therefore Xα is a root vector corresponding to the root α ∈ H∗. A base of the root system

Dn consist of the roots

Π = {αi : i = 1, 2, . . . , n} .

From §2.1 it follows that the Cartan integers for the root system Dn are

Ci,j =
2(αi, αj)

(αj, αj)
= (αi, αj) =


2, if i = j,

−1, if |i− j| = 1,

0, if |i− j| > 1

for all 1 ≤ i, j ≤ n− 1

and

Ci,n = Cn,i = 0, ∀1 ≤ i ≤ n− 3,

Cn−1,n−1 = Cn,n = 2, Cn−2,n = 2Cn,n−2 = −1, Cn,n−1 = Cn−1,n = 0.
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Therefore its Cartan matrix is

CDn =



2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1 −1

−1 2 0

−1 0 2


(2.5)

and its Dynkin diagram is

�
�
��

@
@
@@

i i i i i
i

i
. . .

The Cartan matrices and Dynkin diagrams for the exceptional Lie algebras are

Simple Lie algebra of type E6

Its Cartan matrix is 

2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2


(2.6)

and its Dynkin diagram isi i i i i
i

Simple Lie algebra of type E7

Its Cartan matrix is 

2 0 −1 0 0 0 0

0 2 0 −1 0 0 0

−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2


(2.7)
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and its Dynkin diagram is

i i i i i
i

i

Simple Lie algebra of type E8

Its Cartan matrix is 

2 0 −1 0 0 0 0 0

0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


(2.8)

and its Dynkin diagram is

i i i i i i i
i

Simple Lie algebra of type F4

Its Cartan matrix is 
2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

 (2.9)

and its Dynkin diagram is

i i i i>

Simple Lie algebra of type G2

Its Cartan matrix is (
2 −1

−3 2

)
(2.10)
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and its Dynkin diagram is i i<

Many authors prefer to choose different matrices S than the ones we give here and

get isomorphic representations of the classical Lie algebras (see lemma 7). We prefer the

representations given in [?, ?]. However the most common representations are given (see

for instance [?, ?]), for the case of the Lie algebra of type Bn, by the matrix1 0 0

0 0 In

0 In 0

 = P T

 0 0 ∆n

0 −2 0

∆n 0 0

P,

where P is the invertible matrix

P =

 0 ∆n 0
i√
2

0 0

0 0 In

 .

For the Lie algebra of type Cn by the matrix(
0 In

−In 0

)
= P T

(
0 ∆n

−∆n 0

)
P,

where P is the invertible matrix

P =

(
∆n 0

0 In

)
.

For the Lie algebra of type Dn by the matrix(
0 In

In 0

)
= P T

(
0 ∆n

∆n 0

)
P,

where P is the invertible matrix

P =

(
∆n 0

0 In

)
.

The finite dimensional simple Lie algebras are classified via their root system. All data

of the root system is encoded in the Cartan matrix, or in the Dynkin diagram.

Cartan matrices can be defined abstractly.

Definition 12. A Cartan matrix is an n× n-integer matrix C which obeys
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• Ci,i = 2,

• Ci,j = 0⇒ Cj,i = 0, ∀i, j

• Ci,j ≤ 0, ∀i 6= j,

• detC > 0 .

Given a semisimple Lie algebra L with Cartan matrix C, then there is a set of generators

of L,

{x±i , hi : 1 ≤ i ≤ n},

where x+
i ∈ Lαi , x−i ∈ L−αi , which are subjected to the Chevalley-Serre relations

• [hi, hj] = 0,

• [hi, x
±
j ] = ±Ci,jx±j ,

• [x+
i , x

−
j ] = δi,jhi,

• (adx±i )1−Cj,i(x±j )) = 0 .

The converse of the previous statement, is also true and is a theorem of Serre (see [?, ?]).

Theorem 5 (J.-P. Serre). Let C be a Cartan matrix and L the Lie algebra generated

by the generators {x±i , hi : 1 ≤ i ≤ n}, which are subjected to the Chevalley-Serre rela-

tions. Then L is a finite dimensional semisimple Lie algebra and its Cartan subalgebra is

generated by hi, i = 1, 2, . . . , n.

Relaxing the last condition on Cartan matrices we obtain the so called generalized

Cartan matrices. Generalized Cartan matrices are classified into three disjoint categories,

finite, affine and indefinite (see [?] Chapter 4). Finite are the usual Cartan matrices associ-

ated with complex semi-simple finite dimensional Lie algebras, while affine and indefinite,

give rise to infinite dimensional Lie algebras.

An affine Cartan matrix is one for which detC = 0 and each proper principal minor of

C is positive. Thus each (n−1)× (n−1) submatrix of C obtained by removing an ith row

and ith column is a Cartan matrix. Chevalley-Serre relations on affine Cartan matrices give

rise to affine Lie algebras. This important subclass of generalized Cartan matrices is char-

acterized by the property that they are symmetrizable and the corresponding symmetric

matrices DC are positive semidefinite.

With each affine Cartan matrix C we associate a graph, which we also call the Dynkin

diagram. It is a connected graph with n vertices {v1, . . . , vn}, and Ci,jCj,i edges between

the vertices vi, vj for i 6= j. In case Ci,j < Cj,i we put an arrow in edge (vi, vj) pointing to

33

Cha
ral

am
po

s E
vri

pid
ou



vj. For an affine Cartan matrix it is customary to enumerate the vertices as {v0, v1, . . . , vn}
so that the corresponding Dynkin diagram has n+ 1 vertices.

Similar to root systems there are the so called affine root systems. We will not give

the general definitions but instead we will describe how from an irreducible root system of

type X we obtain an affine root system of type X(1). From this root system we define an

affine Cartan matrix C and an affine Dynkin diagram and therefore we obtain an affine

Lie algebra. These are the untwisted affine Lie algebras.

Let R be an irreducible root system on the Euclidean space V of type X. Let Π =

{α1, α2, . . . , αn} be a base of R and α0 its highest root. In the Euclidean space V × R
(with inner product ((v1, r1), (v2, r2)) = (v1, v2) + r1r2) consider the set

R̃ = {(α, i) : i ∈ Z, (α, i) 6= (0, 0)}.

This set is called the affine root system of type X(1). As in the case of root systems we

can show that the set

Π̃ = {α̃0 = (−α0, 1), α̃1 = (α1, 0), α̃2 = (α2, 0), . . . , α̃n = (αn, 0)},

is a base of R̃, in the sense that every element of R̃ is a linear combination of elements of

Π̃ where all coefficients are either non negative or non positive. This follows from the fact

that for every root α ∈ R, α0 − α ∈ R+.

The affine Cartan matrix associated to the root system R̃ (of type X(1)) is the n +

1 × n + 1 matrix C defined by Ci,j =
2(αi,αj)

(αj ,αj)
, i, j = 0, 1, . . . , n. We can easily verify

that this matrix is indeed an affine Cartan matrix in the sense of definition 12. The

affine Dynkin diagram of type X(1) is the graph with n + 1 vertices {v0, v1, . . . , vn} and

Ci,jCj,i edges between the vertices vi, vj. If Ci,jCj,i > 1 we put an arrow pointing to vi if

(α̃i, α̃i) < (α̃j, α̃j) and to vj if (α̃i, α̃i) > (α̃j, α̃j). The Lie algebra defined by the affine

Cartan matrix C is called untwisted affine Lie algebra of type X(1).

Next we display all the affine Dynkin diagrams. The corresponding affine Cartan

matrices are presented in chapter 3. The black nodes correspond to the root α̃0.

Dynkin Diagrams for affine Lie algebras

��
���

���
���

�

XX
XXX

XXX
XXX

X

i i i i i
y

. . .

A(1)
n

aaaaa

!!
!!
!

i
y
i i i i. . .

B(1)
n

>
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y i i i i. . .
C(1)

n
<>

aaaaa

!!
!!
!

!!
!!

!

aaaaa

i
y
i i i i

i
i

. . .

D(1)
n

i i i i i
i
y

E
(1)
6

y i i i i i i
i

E
(1)
7

y i i i i i
i
i iE

(1)
8

y i i i iF
(1)
4

>

i iyG
(1)
2

>

2.3 Chebyshev Polynomials

There are several kinds of Chebyshev polynomials which all play important role in modern

developments (polynomial approximation, orthogonal polynomials, numerical approxima-

tion). We will show that these polynomials can also be used in the theory of Lie algebras

for the explicit calculation of the Coxeter polynomials of the simple Lie algebras over C.

The Chebyshev polynomials of first and second kind (denoted respectively Tn and Un) are
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defined by

Tn (x) =
1

2
· det



2x 1 0 · · · 0 0 0

1 2x 1 · · · 0 0 0

0 1 2x · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2x 1 0

0 0 0 · · · 1 2x 2

0 0 0 · · · 0 1 2x


and

Un (x) = det



2x 1 0 · · · 0 0 0

1 2x 1 · · · 0 0 0

0 1 2x · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2x 1 0

0 0 0 · · · 1 2x 1

0 0 0 · · · 0 1 2x


.

The first few polynomials are

T0(x) = 1 U0(x) = 1

T1(x) = x U1(x) = 2x

T2(x) = 2x2 − 1 U2(x) = 4x2 − 1

T3(x) = 4x3 − 3x U3(x) = 8x3 − 4x

T4(x) = 8x4 − 8x2 + 1 U4(x) = 16x4 − 12x2 + 1

T5(x) = 16x5 − 20x3 + 5x U5(x) = 32x5 − 32x3 + 6x

T6(x) = 32x6 − 48x4 + 18x2 − 1 U6(x) = 64x6 − 80x4 + 24x2 − 1.

Expanding the determinants with respect to the first row we obtain the recurrence

Fn+1 = 2xFn − Fn−1.

For the initial values F0 = 1, F1 = x and F0 = 1, F1 = 2x we get the Chebyshev

polynomials of first and second kind respectively.

For x = cos θ, the trigonometric identities

2x cosnθ = cos (n+ 1)θ + cos (n− 1)θ

and

2x sin (n+ 1)θ = sin (n+ 2)θ + cosnθ,
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give

Tn(x) = cosnθ, Un(x) =
sin (n+ 1)θ

sin θ
. (2.11)

Proposition 4. The Chebyshev polynomials of first kind Tn(x), satisfy

Tn(−x) = (−1)nTn(x)

Tn(1) = 1

T2n(0) = (−1)n

T2n−1(0) = 0,

while the Chebyshev polynomials of second kind Un(x), satisfy

Un(−x) = (−1)nUn(x)

Un(1) = n+ 1

U2n(0) = (−1)n

U2n−1(0) = 0.

Proof. All properties are easily verified for n = 0, 1. So let n ∈ N with n ≥ 2.

If Tk(−x) = (−1)kTk(x) for k = n− 2, n− 1 then

Tn(−x) = −2xTn−1(−x)− Tn−2(−x) =

(−1)n (2xTn−1(x)− Tn−2(x)) = (−1)nTn(x).

If Tk(1) = Tk−1(1) = 1 for k = n− 1 then Tn(1) = 2Tk(1)− Tk−1(1) = 1.

If T2k(0) = (−1)k and T2k−1(0) = 0 then T2k+1(0) = 0 · T2k(1) − T2k−1(1) = 0, while if

T2k(0) = (−1)k and T2k+1(0) = 0 then T2k+2(0) = 0 · T2k+1(1)− T2k(1) = (−1)k+1.

The proof of the properties for the Un polynomials is similar.

In addition, (see [?]), using the formulas (2.11) we can easily find the roots of the

Chebyshev polynomials.

Tn(x) = 2n−1

n∏
j=1

(
x− cos

(
(2j − 1)π

2n

))

and

Un(x) = 2n
n∏
j=1

(
x− cos

(
jπ

n+ 1

))
.

In several cases it is useful and convenient to express the Chebyshev polynomials in

terms of the monomials xn. In our cases it is more convenient to express them in terms

of the polynomials (1− x)n (see propositions 12 to 18). In the next proposition we write

the Chebyshev polynomials explicitly in terms of powers of (1− x).
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Proposition 5. The Chebyshev polynomials of first and second kind are expressed in terms

of powers of (1− x) as

Tn(x) = n
n∑
j=0

(−2)j
(n+ j − 1)!

(n− j)!(2j)!
(1− x)j (n > 0), (2.12)

and

Un(x) =
n∑
j=0

(−2)j
(
n+ j + 1

2j + 1

)
(1− x)j. (2.13)

Proof. The proof of these formulas is by induction using the three term recurrence relation

of the Chebyshev polynomials. We prove only the formula for the Tn polynomials since

the proof for the Un polynomials is similar.

The polynomials Tn satisfy the recurrence relation

Tn(1− x) = 2(1− x)Tn−1(1− x)− Tn−2(1− x).

Therefore we only need to prove that

2(n− 1)
(n+ k − 2)!

(n− k − 1)!(2k)!
+ (n− 1)

(n+ k − 3)!

(n− k)!(2k − 2)!
− (n− 2)

(n+ k − 3)!

(n− k − 2)!(2k)!
=

n
(n+ k − 1)!

(n− k)!(2k)!
,

which is a straightforward verification.

2.4 Minimal polynomials of 2 cos 2kπ
n

A complex number ω of order n is called a primitive nth root of unity, e.g. e
2πi
n is a

primitive nth root of unity. If ω is a primitive nth root of unity then ωk is a primitive nth

root of unity if and only if gcd(n, k) = 1. Since the root e
2πi
n produces all nth roots of

unity (i.e. e
2kπi
n , k = 0, 1, 2, . . . , n − 1 are all the nth roots of unity) it follows that there

are exactly φ(n) primitive nth roots of unity where φ is Euler’s totient function. Primitive

nth roots of unity are conjugate algebraic integers (i.e. their minimal polynomial over Z
is the same). This polynomial is what we call nth cyclotomic polynomial.

Let ω be a primitive nth root of unity and Φn(x) its minimal polynomial. Then

Φn(x) = (x− ωk1)(x− ωk2) · · · (x− ωkφ(n)),

where 1 ≤ k1, k2, . . . , kφ(n) < n are the integers relatively prime to n. The polynomial

Φn(x) ∈ Z[x] is the nth cyclotomic polynomial. From ωk·n − 1 = 0 we conclude that the
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polynomial Φn(x) divides the polynomial xk·n − 1, ∀k ∈ N. In fact

xn − 1 =
∏
d|n

Φd(x). (2.14)

Following Lehmer [?], using cyclotomic polynomials we can derive the minimal poly-

nomials Ψn of the algebraic integers 2 cos 2kπ
n

, where gcd (k, n) = 1 (for n ≥ 2). The

polynomial Φn, being reciprocal (i.e. Φn(x) = xφ(n)Φn

(
1
x

)
), it can be written in the form

Φn(x) = x
φ(n)
2 Ψn

(
x+

1

x

)
, (2.15)

for some monic irreducible polynomial Ψn with integer coefficients and degree half of that

of Φn. The irreducibility of Ψn is equivalent to the irreducibility of Φn.

For x = e
2kπi
n , a primitive nth root of unity, we have x + 1

x
= 2 cos 2kπ

n
. From equation

(2.15) we conclude that 2 cos 2kπ
n

is a root of the irreducible polynomial Ψn and therefore

the polynomial Ψn is the minimal polynomial of 2 cos 2kπ
n

. Equation (2.15) can also be

used for the calculation of the polynomials Ψn. The first fifteen polynomials Ψn are

Ψ1(x) = x− 2

Ψ2(x) = x+ 2

Ψ3(x) = x+ 1

Ψ4(x) = x

Ψ5(x) = x2 + x− 1

Ψ6(x) = x− 1

Ψ7(x) = x3 + x2 − 2x− 1

Ψ8(x) = x2 − 2

Ψ9(x) = x3 − 3x+ 1

Ψ10(x) = x2 − x− 1

Ψ11(x) = x5 + x4 − 4x3 − 3x2 + 3x+ 1

Ψ12(x) = x2 − 3

Ψ13(x) = x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1

Ψ14(x) = x3 − x2 − 2x+ 1

Ψ15(x) = x4 − x3 − 4x2 + 4x+ 1.

Proposition 6. The roots of the polynomials Ψn are

2 cos
2kπ

n
, where gcd(k, n) = 1.

39

Cha
ral

am
po

s E
vri

pid
ou



2.5 Coxeter groups

Weyl groups of Lie algebras belong to a larger class of groups known as Coxeter groups.

Definition 13.

• A Coxeter matrix with n vertices is an n × n symmetric matrix M = (mi,j)1≤i,j≤n

which satisfies mi,j ∈ N ∪ {+∞} and mi,j = 1 if and only if i = j.

• A Coxeter graph Γ, is a simple graph (i.e. a graph without multiple edges or loops)

with n vertices V = {v1, v2, . . . , vn} such that each edge (vi, vj) is labeled with an

integer mi,j ≥ 3. If mi,j = 3 we usually don’t label the edge (vi, vj).

There is a one to one correspondence between Coxeter matrices and Coxeter graphs. If

M = (mi,j)1≤i,j≤n is a Coxeter matrix, the corresponding Coxeter graph is the graph with

n vertices V = {v1, v2, . . . , vn} such that there is an edge (vi, vj) between the vertices vi

and vj if and only if mi,j ≥ 3. The edge (vi, vj) is labeled with mi,j if and only if mi,j ≥ 4.

Definition 14. The Coxeter group of a Coxeter matrixM (or of the corresponding Coxeter

graph) is the group W with presentation

W = 〈s1, s2, . . . , sn : (sisj)
mi,j = 1〉

Weyl groups of Lie algebras are important examples of Coxeter groups. If W is the

Weyl group of a Lie algebra with Cartan matrix C = (ci,j)1≤i,j≤n then W is a Coxeter

group with Coxeter matrix M = (mi,j)1≤i,j≤n where mi,i = 1 for all i = 1, 2, . . . , n and the

integers mi,j for i 6= j are defined by

mi,j ci,jcj,i

2 0

3 1

4 2

6 3

Let W be a Coxeter group with Coxeter matrix M . We define a bilinear form B on

the real vector space V with basis {e1, e2 . . . , en}, as

B(ei, ej) = − cos

(
π

mi,j

)
.

Let σi : V → V be the involution defined by

σi(v) = v − 2B(v, ei)ei, v ∈ V. (2.16)
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The group generated by the involutions σi, i = 1, 2, . . . , n is isomorphic to the Coxeter

group W .

It is known that the Coxeter group W is finite if and only if the bilinear form B is

positive definite (see [?, ?]). The affine Coxeter groups are the infinite Coxeter groups for

which the bilinear form B is positive semidefinite.

The finite Coxeter groups are classified as follows (the subscripts denote the number

of the elements of the set S)

An, BCn, Dn, E6, E7, E8, F4, G2, H3, H4, I
(m)
2 .

The corresponding Coxeter graphs are the following.

Coxeter graphs of finite Coxeter groups

i i i i i. . .

An

4i i i i i. . .

BCn

�
�
��

@
@
@@

i i i i i
i

i
. . .

Dn

i i i i i
i

E6

i i i i i
i

i
E7

i i i i i i i
i

E8
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4i i i i
F4

6i i
G2

5i i iH3

5i i i i
H4

mi i
I
(m)
2

The Coxeter groups An, BCn, Dn, E6, E7, E8, F4, G2 are the Weyl groups of the finite

dimensional complex simple Lie algebras (see section 2.2).

The affine Coxeter groups are

Ãn, B̃n, C̃n, D̃n, Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2.

The corresponding Coxeter graphs are the following.

Coxeter graphs of affine Coxeter groups
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. . .
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i i i i i
i
i

Ẽ6

i i i i i i i
i

Ẽ7

i i i i i i
i
i iẼ8

4i i i i iF̃4

6i iiG̃2

∞i iÃ1

All these, except Ã1 are the affine Weyl groups of the affine Lie algebras.

Let W be a Coxeter group, V a vector space over R and σi : V → V , the involutions

defined by (2.16).

Definition 15. An element s ∈ W of the form

σ = σπ1σπ2 . . . σπn

where π ∈ Sn is a permutation of n elements is known as a Coxeter element (or Coxeter

transformation) of the Coxeter group. The characteristic polynomial of the element σ is

called Coxeter polynomial of the Coxeter group.

The next proposition shows that when the Coxeter graph of the Coxeter group is a

tree then any two of the Coxeter elements are conjugate in W (see[?])

Proposition 7 (H. S. M. Coxeter). Assume that W is a Coxeter group with Coxeter

graph Γ. If Γ is a tree then any two Coxeter elements of the Coxeter system are conjugate

in W .
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For the proof we need the following lemma.

Lemma 8. Suppose that Γ is a simple graph with n vertices V = {v1, v2 . . . , vn} and edges

E = {(vi, vj) : there is an edge between the vertices vi and vj}. Suppose also that we have

an alphabet {s1, s2, . . . , sn}. In the set

A = {sπ(1)sπ(2) · · · sπ(n) : π ∈ Sn}

we define the equivalence relation generated by

1. sπ(1)sπ(2) · · · sπ(n) ∼ sπ(2)sπ(3) · · · sπ(1)

2. sπ(1) · · · sπ(i)sπ(i+1) · · · sπ(n) ∼ sπ(1) · · · sπ(i+1)sπ(i) · · · sπ(n) for all π ∈ Sn such that(
vπ(i), vπi+1

)
6∈ E.

Then s ∼ t for all s, t ∈ A.

Proof. We assume without loss of generality that the vertices of Γ are enumerated so that

vi is a leaf in the subgraph of Γ with vertex set {v1, v2, . . . , vi} (i.e. there is one and only

one vertex vj which is connected with vi with an edge). Let s = sπ(1)sπ(2) · · · sπ(n) ∈ A.

We may assume that π(n) = n and therefore s = sπ(1)sπ(2) · · · sπ(n−1)sn.

If (vπ(1), vn) ∈ E then (vπ(i), vn) 6∈ E for all i = 1, 2, . . . , n and therefore

s ∼ sπ(2) . . . sπ(n−1)snsπ(1) ∼ sπ(2) . . . snsπ(n−1)sπ(1) ∼ · · · ∼

snsπ(2) . . . sπ(n−1)sπ(1) ∼ sπ(2) . . . sπ(n−1)sπ(1)sn

It follows that if B = {s1, s2, . . . , sn−1} and ∼′ is the equivalence relation defined by the

subgraph Γ′ of Γ with vertex set v1, v2, . . . , vn−1, then if s′, t′ are words with the letters

s1, s2, . . . , sn−1 and s ∼′ t, then s′sn ∼ t′sn. Using induction on n the lemma is proved.

As a corollary we obtain proposition 7.

Definition 16. Let W be a finite Coxeter group. The Coxeter transformation of W has

finite order h. The integer h is known as the Coxeter number of the Coxeter group.

Lemma 9. The Coxeter polynomial of the finite Coxeter group W is of the form

f(x) = (x− ζm1) (x− ζm2) · · · (x− ζmn) ,

where 0 ≤ mi ≤ h and ζ is an hth root of unity.

Proof. Since the Coxeter transformation σ of the Coxeter group W has finite order h

it follows that σh = 1 and therefore σh − 1 = 0. We conclude that the characteristic

polynomial of σ divides the polynomial xh − 1 and the result follows.
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Definition 17. The integers mi in lemma 9 are known as the exponents of the Coxeter

group.

Coxeter was the first one (see [?]) who studied the Coxeter transformations of the

finite Coxeter groups and observed that their eigenvalues have remarkable properties. For

example hn = |R| where R is the root system associated with the Coxeter group W . In

the case of the Weyl groups the order of W is equal to

(m1 + 1)(m2 + 1) · · · (mn + 1).

If β = k1α1 + · · ·+ knαn is the highest root in R, then h = k1 + k2 + · · ·+ kn + 1.

All these and many other relations were proved later by B.Kostant in [?], by C. Chevalley

in [?], by R. Steinberg in [?] and other authors (see also [?]).

For an affine Lie algebra with affine Cartan matrix C of rank n, the roots of the Coxeter

polynomial f(x) are in the unit disk. Thus, from Kronecker’s theorem (theorem 8), the

polynomial f(x) is a product of cyclotomic polynomials.

Let V = R− span {α0, α1, . . . , αn} and D a diagonal matrix with positive entries such

that CD is symmetric. The matrix CD defines a semi-positive bilinear form ( , ) on V .

For α =
∑n

i=0 ziαi, (α, .) = 0 if and only if (z0, z1, . . . , zn)C = 0. Thus if (z0, z1, . . . , zn) is

a left zero eigenvector of C and α =
∑n

i=0 ziαi, the induced bilinear form on Ṽ = V/〈α〉 is

positive definite and corresponds to an n× n submatrix of C. Therefore if σ : V −→ V is

a Coxeter transformation of the affine Lie algebra, the induced transformation on Ṽ has

finite order h. It follows that (σ−1)(σh−1) = 0 and therefore the roots of f are h
th

roots

of unity and we have the following proposition.

Proposition 8. The roots of f(x) are of the form{
e

2mjπi

h : mj ∈ {0, 1, . . . , h}
}
. (2.17)

Definition 18. The integers mj of the previous proposition are the affine exponents and

h is the affine Coxeter number associated with the Coxeter transformation σ.

These numbers are uniquely defined for each affine Lie algebra except in the case of

A
(1)
n where we define them for each conjugacy class. Using the fact that the corank of the

Cartan matrix CX(1) is 1 and the relation between the polynomials p(x) and f(x) (for the

bipartite case) it follows that (x − 1)2 | f(x) and (x − 1)3 - f(x). For the factor (x − 1)2

we define the associated affine exponents to be 0 and h.

Definition 19. For a Dynkin diagram Γ with corresponding Cartan matrix C we define

a weight function b : V (Γ) → N on the vertices of Γ. If the vertex ri has only one

neighbor we define b(ri) = 1−
∑

j 6=iCi,j while if it has more than one neighbors we define
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b(ri) = −
∑

j 6=iCi,j. For a Dynkin diagram Γ not of type An, we define the branch vertex

ri to be the one which maximize b. For the case of An, n odd, we define the branch vertex

to be the middle one.

Example 5. For the case of the Dynkin diagrams Dn, E6, E7, E8 the branch vertex is the

one which is the common endpoint of three edges. For the Dynkin diagram of type Cn the

branch vertex is the one which corresponds to the highest root.

Steinberg’s theorem [?, p.591 ], provides a relation between the affine exponents and

affine Coxeter number of an affine Lie algebra of type X
(1)
n 6= A

(1)
n and the exponents and

Coxeter number of the root system An.

Theorem 6 (R. Steinberg). Let Π = {α1, α2, . . . , αn} be the set of the simple roots of

the Lie algebra of type Xn. Define the branch root β to be that root which corresponds

to the branch vertex of the corresponding Dynkin diagram. If we delete the branch root

the reduced system is a product of root systems An. The Coxeter polynomial of X
(1)
n is

f(x) = (x− 1)2g(x) where g(x) is the Coxeter polynomial of the reduced system.

Therefore from Steinberg’s theorem we conclude that the affine Coxeter number h is

the Coxeter number of the reduced system and the affine exponents are obtained using

the following procedure:

From the factor (x− 1)2 | f(x) it follows that 0 and h are affine exponents. If Y appears

in the reduced system and m
′
j is an exponent, h

′
the Coxeter number of Y then h

h′
m
′
j is

an affine exponent of X(1).

.

Root system Affine Exponents Affine Coxeter number

A
(1)
n 0, kj, 2kj, . . . , jkj, jkj

nj, 2nj, . . . , (n− j)nj
B

(1)
2n+1 0, 1, 2, 3, . . . , 2n, n 2n

B
(1)
2n 0, 2, 4, . . . , 2(2n− 1), 2n− 1 2(2n− 1)

C
(1)
n 0, 1, 2, . . . , n n

D
(1)
2n+1 0, 2, 4, . . . , 2(2n− 1), 2n− 1, 2n− 1 2(2n− 1)

D
(1)
2n 0, 1, 2, 3, . . . , 2n− 2, n− 1, n− 1 2n− 2

E
(1)
6 0, 2, 2, 3, 4, 4, 6 6

E
(1)
7 0, 3, 4, 6, 6, 8, 9, 12 12

E
(1)
8 0, 6, 10, 12, 15, 18, 20, 24, 30 30

F
(1)
4 0, 2, 3, 4, 6 6

G
(1)
2 0, 1, 2 2

Table 2.1: Affine Exponents and affine Coxeter number for affine root systems
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Example 6. For the root system E
(1)
8 the reduced system is A1×A2×A4. The exponents of

An are 1, 2, . . . , n and the Coxeter number n+1 (see [?]). We conclude that the affine Cox-

eter number is lcm(2, 3, 5) = 30 and the affine exponents are 0, 6, 10, 12, 15, 18, 20, 24, 30.

In table 2.1 we list the affine exponents and the affine Coxeter number for the affine

Lie algebras. In the case of A
(1)
n , for j = 1, 2, . . . ,

⌊
n+1

2

⌋
we have denoted kj = n+1−j

dj
and

nj = j
dj

, where dj = gcd(n+ 1, j). The affine exponents and affine Coxeter number of A
(1)
n

given in table 2.1, are those associated with the Coxeter polynomial (xj − 1)(xn+1−j − 1).

For n odd and j = n+1
2

we have nj = kj = 1, dj = j and we obtain the case considered in

[?]. Note the duality in the set of affine exponents:

mi +mn−i = h, i = 0, 1, . . . , n, (2.18)

where h is the affine Coxeter number. This is a consequence of proposition 8.

The affine exponents, affine Coxeter number of X
(1)
n and the roots of Xn are related in

a mysterious way given by a theorem of Berman, Lee and Moody (see [?, ?, ?]).

Theorem 7 (S. Berman, Y. S. Lee, R. V. Moody). Let Π = {α1, α2, . . . , αn} be the

simple roots of the Lie algebra of type Xn 6= An, V = R -span(α1, α2, . . . , αn) and β be

the branch root of Xn. Denote α∨i = 2 αi
(αi,αi)

the coroots and wα∨i ∈ V
∗ the corresponding

weights. Write wβ∨ = (v, ·), v ∈ V and let c ∈ N be the smallest integer such that

c · v ∈ Z -span(α∨1 , α
∨
2 , . . . , α

∨
n). Then

c · v =
n∑
j=1

mjα
∨
j

where mj are the nonzero affine exponents of X
(1)
n and the coefficient of β∨ is the affine

Coxeter number.

Example 7. Removing the branch vertex of B4 we obtain the root system A2 × A1 with

Coxeter polynomial g(x) = (x2 + x+ 1)(x+ 1); the Coxeter polynomial of B
(1)
4 is

f(x) = (x− 1)2(x2 + x+ 1)(x+ 1).

The Coxeter number of A2 × A1 is the affine Coxeter number of B
(1)
4 , that is 3 · 2 = 6.

The roots of the Coxeter polynomial are 1, 1,−1, ω, ω2, where ω is a primitive third

root of unity. If ζ = e
2πi
6 then 1 = ζ0, ω = ζ2,−1 = ζ3, ω2 = ζ4, 1 = ζ6. The numbers

0, 2, 3, 4, 6 are the affine exponents of B
(1)
4 .

From the representation of the root system B4 given given in section 2.1 we conclude

that the corresponding co-roots are α∨i = ei − ei+1 ∈ R4, i = 1, 2, 3 and α∨4 = 2e4 (which

is the root system of type C4). The branch root is the root α3 and the corresponding
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co-weight is v = wα∨3 = (1, 1, 1, 0) ∈ (R4)∗. Now v does not belong to the co-root lattice

but 2v = 2α∨1 + 4α∨2 + 6α∨3 + 3α∨4 does. Therefore for B
(1)
4 , c = 2, the non zero affine

exponents are 2, 3, 4, 6 and the affine Coxeter number is 6.

Example 8. For the case of D6 with root system {α1, α2, . . . , α6} and branch root α4, it

can be easily verified that v = wα4 = (1, 1, 1, 1, 0, 0) = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 2α6.

Therefore for D
(1)
6 , c = 1, the nonzero affine exponents are 1, 2, 2, 2, 3, 4 and the affine

Coxeter number is 4.

The following proposition can be found in [?] and shows that the Coxeter polynomial

of a Coxeter tree is reciprocal.

Proposition 9 (S. Berman, Y. S. Lee, R. V. Moody). Let Γ be a Coxeter tree. The

characteristic polynomial χΓ(x) of the graph Γ and the Coxeter polynomial Γ(x) are related

in the following way

Γ(x2) = xnχΓ

(
x+

1

x

)
,

where n is the degree of χΓ(x).

Proof. Let V(Γ) = {v1, v2, . . . , vk, vk+1, . . . , vk+m} be the vertices of Γ enumerated such

that if i, j ≤ k or i, j > k then (vi, vj) 6∈ E(Γ). Let σi be the Coxeter reflections associated

to vi, i.e. if ê = {e1, e2, . . . , ek+m} is a basis of the vector space V then σi(ej) = ej −
(2δi,j − Aj,i)ei. Then with respect to the basis ê the Coxeter reflection σi is given by the

matrix where its ith row is the ith row of the matrix A − I and its jth row is the jth row

of the identity matrix I. We see at once that σ2
i = I for all i and that for i, j ≤ k or

i, j > k ⇒ σiσj = σi + σj − I. Therefore we obtain the following relations

σ1σ2 . . . σk = σ1 + σ2 + . . .+ σk − (k − 1)I,

σk+1σk+2 . . . σk+m = σk+1 + σk+2 + . . .+ σk+m − (m− 1)I.

Let’s denote by C1 the transformation σ1σ2 . . . σk and by C2 the transformation defined

by σk+1σk+2 . . . σk+m. It follows that C2
1 = I, C2

2 = I and C1 + C2 = A. We thus get

2I + C1C2 + C2C1 = (C1 + C2)2 = A2.

If ez1 , ez2 , . . . are the roots of the Coxeter polynomial of the graph Γ then 2+ez1 +e−z1 , 2+

ez2 + e−z2 , . . . are the roots of χA2(x). Since Γ is bipartite the polynomial χΓ(x) is of the

form

χΓ(x) = (x− r1)(x+ r1)(x− r2)(x+ r2) . . . = (x2 − r2
1)(x2 − r2

2) . . .
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where r2
i = 2 + ezi + e−zi . It follows that

x
n
2χΓ

(√
x+

1√
x

)
=
(
x2 +

(
2− r2

1

)
x+ 1

) (
x2 +

(
2− r2

2

)
x+ 1

)
. . . =(

x2 −
(
ez1 + e−z1

)
x+ 1

) (
x2 −

(
ez2 + e−z2

)
x+ 1

)
. . . =

(x− ez1)
(
x− e−z1

)
(x− ez2)

(
x− e−z2

)
. . . = Γ(x).

We immediately get the following corollary.

Corollary 2. The Coxeter polynomial of a tree Γ is reciprocal.

The next two propositions shows how the Coxeter polynomial of two trees Γ1,Γ2 and

the Coxeter polynomial of the tree Γ′ which is the join of Γ1,Γ2 are related.

Proposition 10 (A. Boldt). Suppose that Γ is a tree which is the Coxeter graph of a

Coxeter group W . Assume that v0 is a vertex on Γ, Γ1 is the tree obtained from Γ by

adding an edge (v0, v1) and Γ2 the tree obtained by adding an edge (v1, v2) on Γ2. Then

the Coxeter polynomials Γ(x),Γ1(x),Γ2(x) of the Coxeter graphs Γ,Γ1,Γ2 are related in

the following way

Γ2(x) = (x+ 1)Γ1(x)− Γ(x).

The previous proposition (due to [?]) is a special case of the next one which is due to

to Subbotin-Sumin (see [?]).

Proposition 11 (V. F. Subbotin, M. V. Sumin). Let e = (v1, v2) ∈ E(Γ) be a splitting

edge of the tree Γ that splits it to the simple graphs Γ1 and Γ2. Assume that v1 ∈ V(Γ1)

and v2 ∈ V(Γ2). Then

Γ(x) = Γ1(x)Γ2(x)− xΓ̃1(x)Γ̃2(x)

where Γ̃i denotes the subgraph of Γi with vertex set V(Γi) \ {vi}.

Proof. We enumerate the vertices of Γ as V(Γ1) = {u1, u2, . . . , uk} the vertices of Γ1 and

V(Γ2) = {uk+1, uk+2, . . . , uk+m} the vertices of Γ2, where v1 = uk and v2 = uk+1. Let

ê = ê1 ∪ ê2 be a basis for the vector space V , where ê1 = {e1, e2, . . . , ek} is a basis of

V1 and ê2 = {ek+1, ek+2, . . . , ek+m} is a basis of V2. Also let σi be the Coxeter reflections

corresponding to ui. Therefore R1 = σ1σ2 . . . σk is a Coxeter transformation of Γ1, R2 =

σk+1σk+2 . . . σk+m is a Coxeter transformation of Γ2 and R1R2 is a Coxeter transformation

of Γ. If we represent R1, R2 and R as matrices with respect to the basis ê we have

R = R1R2 =

(
Q1 Ek,1

0m,k Im

)(
Ik 0k,m

E1,k Q2

)
,
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where Qi are the transformations Ri restricted to Vi, Ei,j is the matrix with all entries zero

except the i, j entry which is 1 and 0i,j is the i× j zero matrix. The Coxeter polynomial

of Γ is then given by

Γ(x) = det(R− xIk+m) = det

(
Q1 + Ek,k − xIk Ek,1Q2

E1,k Q2 − xIm

)
.

Subtracting the k + 1th row from the kth row we obtain

Γ(x) = det

(
Q1 − xIk xEk,1

E1,k Q2 − xIm

)
.

Expanding the determinant with respect to the kth row we deduce that

Γ(x) = Γ1(x)Γ2(x)− xΓ̃1(x)Γ̃2(x).

2.6 Mahler measure

This subsection is about the Mahler measure of integer monic polynomials and Lehmer’s

problem. For an excellent survey on this subject see [?].

Lehmer in [?], in order to construct large prime numbers, considers irreducible integer

monic polynomials. Let

f(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 = (x− α1)(x− α2) . . . (x− αd)

be an irreducible monic polynomial with integer coefficients. Lehmer defines the numbers

∆k(f) =
d∏
i=1

(αki − 1)

and

Qk(f) =
d∏
i=1

(αki + 1).

Since ∆k(f) and Qk(f) are symmetric polynomials on the roots α1, α2, . . . , αd, it follows

that they are polynomials on the coefficients a0, a1, . . . , ad of f . Therefore the numbers

∆k(f) and Qk(f) are integers. These integers were introduced and studied by Pierce in

1916 (see [?]).

Lehmer was able to describe the prime factors of these integers and therefore to produce
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large prime numbers. Note that for f(x) = x − 2 the integers ∆k(f) are the Mersenne

numbers which give rise to the Mersenne primes. In order to handle easily the integers

∆k(f), Lehmer was looking for polynomials such that ∆k(f) increase as slow as possible.

For polynomials whose roots are not on the unit circle, the limit

lim
n→∞

∣∣∣∣∆n+1

∆n

∣∣∣∣
is a measure of the rate of growth of the sequence (∆n)n∈N. It can be easily seen that this

limit equals

lim
n→∞

∣∣∣∣∆n+1

∆n

∣∣∣∣ =
d∏
i=1

max{1, |αi|}.

For lack of something better, Lehmer used the quantity
∏d

i=1 max{1, |αi|} to measure the

rate of growth of the sequence (∆n)n∈N, even when some of the roots of the polynomial f

were on the unit circle.

Definition 20. Given an integer polynomial

f(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0 = (x− α1)(x− α2) . . . (x− αd),

its Mahler measure is

M(f) = |ad|
d∏
i=1

max{1, |αi|}.

Mahler in [?] generalized the definition of the “Mahler measure” to polynomials f of

several variables and called it the measure of f . Later Waldschmidt, Boyd and Durand

coined the term Mahler measure for this quantity.

It can be easily seen that the functions ∆n(f), Qn(f) and the Mahler measure M(f),

are multiplicative, i.e. ∆n(fg) = ∆n(f)∆n(g), Qn(fg) = Qn(f)Qn(g) and M(fg) =

M(f)M(g). Therefore it is reasonable to consider only irreducible polynomials. From

now on, unless otherwise said, all polynomials considered will be monic, irreducible with

integer coefficients.

Plainly, for every polynomial f we have M(f) ≥ 1 while if f is cyclotomic M(f) = 1.

A classical theorem of Kronecker says that the converse is true (see [?, ?]).

Theorem 8 (L. Kronecker). If f is a monic irreducible integer polynomial with integer

coefficients then its Mahler measure equals 1 if and only if f is cyclotomic.

For a cyclotomic polynomial f , the sequences (∆n(f))n∈N and (Qn(f))n∈N are fi-

nite. In that particular case, Lehmer, explicitly describes the sequences (∆n(f))n∈N and

(Qn(f))n∈N, and shows that they are of no importance for his purposes. Therefore he con-

centrates on the non-cyclotomic polynomials, or in other words, on the polynomials with
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Mahler measure greater than one. The following question, known as Lehmer’s problem,

arises.

Question. If ε is a positive number, can we find a monic integer polynomial such that its

Mahler measure lies between 1 and 1 + ε?

In other words Lehmer’s problem asks if Kronecker’s theorem can be strengthened.

The smallest known Mahler measure greater than 1 is

M(L) = 1.17628 . . . .

This number is the Mahler measure of Lehmer’s polynomial

L(x) = x10 + x9 + x7 + x6 + x5 + x4 + x3 + x+ 1

and is known as Lehmer’s number. Lehmer conjectured in [?] that Lehmer’s number is

the smallest Mahler measure of the non-cyclotomic polynomials. Both Lehmer’s problem

and conjecture are still unanswered.

Definition 21. Let f(x) ∈ R[x] be a polynomial with real coefficients.

• The reciprocal of the polynomial f is the polynomial f ∗(x) = xnf
(

1
x

)
.

• The polynomial f is called reciprocal if f = f ∗.

An equivalent definition is that the polynomial f(x) = adx
d+ad−1x

d−1 + . . .+a1x+a0

is reciprocal if ai = ad−i for all i = 0, 1, . . . , d. If α is a nonzero root of the polynomial f

then 1
α

is a root of the polynomial f ∗. Therefore the Mahler measure of the polynomials

f and f ∗ is the same.

Definition 22. Let

f(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 = (x− α1) . . . (x− αd)

be a polynomial and suppose that only one of its roots, let us say αd, lies outside the unit

circle.

• The algebraic integer αd is called a Salem number if |αi| ≤ 1 for all i = 1, 2, . . . , d−1

and at least one |αi| = 1. In that case the polynomial f is called Salem polynomial.

• The algebraic integer αd is called a Pisot number if |αi| < 1 for all i = 1, 2, . . . , d−1.

In that case the polynomial f is called Pisot polynomial.
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Remark 2. If α is a root of f then the complex conjugate ᾱ of α is also a root of the

polynomial f and therefore both Salem and Pisot numbers are real.

Lemma 10. Let f be a polynomial of degree greater than 2 and suppose that only one of

its roots, let us say αd, lies outside the unit circle. Then f is a Salem polynomial if and

only if f is reciprocal.

Proof. If f is a Salem polynomial then there is a root α of f with |α| = 1. Since ᾱ = 1
α

is also a root of f and f is irreducible it follows that f is the minimal polynomial of

the algebraic integer 1
α

. It can be easily seen that the minimal polynomial of 1
α

is the

polynomial f ∗ and therefore f = f ∗.

Conversely suppose that f = f ∗. Then if α is a root of f , 1
α

is also a root of f and

therefore only one root of f can lie inside the unit circle (since there is only one outside).

Hence, f is a Salem polynomial.

There are polynomials which are neither Salem nor Pisot. For example the polynomial

x10 − x8 + x7 − x5 + x3 − x2 + 1

is not a Salem polynomial. The polynomial

x4 − x+ 1

is not a Pisot polynomial. Both these polynomials have 2 roots outside the unit circle.

Siegel in [?] proved that the smallest Pisot number (that is the smallest Mahler measure

among the Pisot polynomials) is θ0 = 1.3247 . . ., root of the Pisot polynomial x3 − x −
1. Later Smith in [?] proves that θ0 is the smallest Mahler measure among the non

reciprocal polynomials and therefore solves Lehmer’s problem and Lehmer’s conjecture

for this particular class of polynomials. Thus, to solve Lehmer’s problem it suffices to look

at reciprocal polynomials.

Salem in 1945 shows that every Pisot number is a Limit point of a sequence of Salem

numbers (see [?]). Therefore, from Siegel’s theorem, we conclude that for any M > θ0,

there are infinite Salem numbers in the interval (1,M). In chapter 4 we define new Pisot

numbers and find sequences of Salem polynomials converging to them.
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Chapter 3

Cartan matrices and Coxeter

polynomials of Lie algebras

He (Wilhelm Killing) exhibited the characteristic equation of the Weyl group

when Weyl was 3 years old and listed the orders of the Coxeter transformation

19 years before Coxeter was born.—A.J.Coleman

3.1 Introduction

In this chapter we compute the characteristic and Coxeter polynomials of affine Lie alge-

bras. This allows us to compute the affine Coxeter number and the affine exponents of the

affine Lie algebras. For completeness we include the analog results for simple Lie algebras

following [?, ?]. We generalize the definition of the branch vertex of Dynkin diagrams

(definition 19) to the case of the Dynkin diagram of type An. With the generalization,

the two theorems, of Steinberg (theorem 6) and of Berman, Lee and Moody (theorem 7)

are applicable, to the case of the affine Lie algebra of type A
(1)
n .

3.2 Cartan matrices of the classical finite Lie algebras

3.2.1 Cartan matrix of type An

Toeplitz matrices have constant entries on each diagonal parallel to the main diagonal.

Tridiagonal Toeplitz matrices are commonly the result of discretizing differential equations.
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The eigenvalues of the Toeplitz matrix

b a

c b a
. . .

. . .
. . .

. . .
. . .

. . .

c b a

c b


are given by

λj = b+ 2a

√
c

a
cos

jπ

n+ 1
j = 1, 2 . . . , n , (3.1)

see e.g. [?, p. 59].

The Cartan matrix, CAn , of type An is a tri-diagonal matrix of the form (2.3). It

appears in the classification theory of simple Lie algebras over C.

Taking a = c = −1, b = 2 in (3.1) we deduce that the eigenvalues of An are given by

λj = 2− 2 cos
jπ

n+ 1
= 4 sin2 jπ

2(n+ 1)
j = 1, 2, . . . , n .

Let dn be the determinant of CAn . One can compute it using expansion on the first

row and induction. We obtain dn = 2dn−1 − dn−2, d1 = 2, d2 = 3. This is a simple linear

recurrence with solution dn = n+ 1.

We conclude that
n∏
j=1

4 sin2 jπ

2(n+ 1)
= n+ 1,

or equivalently that

22n

n∏
j=1

sin2 jπ

2(n+ 1)
= n+ 1.

Lemma 11. The characteristic polynomial pn(x) of CAn satisfies

pn(x) = Un

(x
2
− 1
)
,

where Un is the Chebyshev polynomial of the second kind.

Proof. We write the eigenvalue equation in the form det(xIn − CAn) = 0 where In is the
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n× n identity matrix. Explicitly,

det (xIn − CAn) = det



x− 2 1

1 x− 2 1
. . .

. . .
. . .

. . .
. . .

. . .

1 x− 2 1

1 x− 2


=

det



2
(
x−2

2

)
1

1 2
(
x−2

2

)
1

. . .
. . .

. . .

. . .
. . .

. . .

1 2
(
x−2

2

)
1

1 2
(
x−2

2

)


= Un

(x
2
− 1
)
.

Remark 3. Note that

pn(0) = Un(−1) = (−1)nUn(1) = (−1)n(n+ 1) ,

which agrees (up to a sign) with the formula for the determinant of An.

We list the formula for the characteristic polynomial of the matrix CAn for small values

of n.

p1(x) = x− 2

p2(x) = x2 − 4x+ 3 = (x− 1)(x− 3)

p3(x) = x3 − 6x2 + 10x− 4 = (x− 2)(x2 − 4x+ 2)

p4(x) = x4 − 8x3 + 21x2 − 20x+ 5 = (x2 − 5x+ 5)(x2 − 3x+ 1)

p5(x) = x5 − 10x4 + 36x3 − 56x2 + 35x− 6 = (x− 1)(x− 2)(x− 3)(x2 − 4x+ 1)

p6(x) = x6 − 12x5 + 55x4 − 120x3 + 126x2 − 56x+ 7

p7(x) = x7 − 14x6 + 78x5 − 220x4 + 330x3 − 252x2 + 84x− 8 .

Using the formula (2.13) we prove the following.

Proposition 12. Let pn(x) be the characteristic polynomial of the Cartan matrix CAn.

Then

pn(x) =
n∑
j=0

(−1)n+j

(
n+ j + 1

2j + 1

)
xj.
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Proof. From the properties of Chebyshev polynomials (see section 2.3) it follows that

Un
(
x
2
− 1
)

= (−1)nUn
(
1− x

2

)
. Therefore from the formula (2.13) we deduce that

pn(x) = (−1)nUn

(
1− x

2

)
=

n∑
j=0

(−1)n+j

(
n+ j + 1

2j + 1

)
xj.

3.2.2 Cartan matrix of type Bn and Cn

The Cartan matrix CBn , of type Bn, is a tri-diagonal matrix of the form (2.4). Since the

Cartan matrix of type Cn is the transpose of this matrix we consider only the Cartan

matrix of type Bn. Using expansion on the first row it is easy to prove that det(CBn) = 2.

We list the formula for the characteristic polynomial of the matrix Bn for small values

of n.

p2(x) = x2 − 4x+ 2

p3(x) = x3 − 6x2 + 9x− 2 = (x− 2)(x2 − 4x+ 1)

p4(x) = x4 − 8x3 + 20x2 − 16x+ 2

p5(x) = x5 − 10x4 + 35x3 − 50x2 + 25x− 2

= (x− 2)(x4 − 8x3 + 19x2 − 12x+ 1)

p6(x) = x6 − 12x5 + 53x4 − 104x3 + 85x2 − 20x+ 1

= (x2 − 4x+ 1)(x4 − 8x3 + 20x2 − 16x+ 1)

p7(x) = x7 − 14x6 + 77x5 − 210x4 + 294x3 − 196x2 + 49x− 2

= (x− 2)(x6 − 12x5 + 53x4 − 104x3 + 86x2 − 24x+ 1) .

By expanding the determinant of the matrix 2xI + ABn with respect to the first row, we

obtain the recurrence

q1(x) = 2x, q2(x) = 4x2 − 2, qn+1(x) = 2xqn(x)− qn−1(x).

One may define q0(x) = 2. The recurrence implies that qn(x) = 2Tn(x) where Tn is the

nth Chebyshev polynomial of the first kind.

Using the formula (2.12) we obtain the following result.

Proposition 13. Let pn(x) be the characteristic polynomial of the Cartan matrix (2.4).

Then

pn(x) =
n−1∑
j=0

(−1)n+j 2n(n+ j − 1)!

(n− j)!(2j)!
xj .
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3.2.3 Cartan matrix of type Dn

The Cartan matrix CDn , of type Dn, is a matrix of the form (2.5). Note that the matrix is

no longer tri-diagonal. Using expansion on the first row and induction it is easy to prove

that det (CDn) = 4.

We list some formulas for the characteristic polynomial of the matrix CDn for small

values of n.

p2(x) = x2 − 4x+ 2 = (x− 2)2

p3(x) = x3 − 6x2 + 10x− 4 = (x− 2)(x2 − 4x+ 2)

p4(x) = x4 − 8x3 + 21x2 − 20x+ 4 = (x− 2)2(x2 − 4x+ 1)

p5(x) = x5 − 10x4 + 36x3 − 56x2 + 34x− 4

= (x− 2)(x4 − 8x3 + 20x2 − 16x+ 2)

p6(x) = x6 − 12x5 + 55x4 − 120x3 + 125x2 − 52x+ 4

= (x− 2)2(x4 − 8x3 + 19x2 − 12x+ 1) .

By expanding the determinant of the matrix 2xI + ADn with respect to the first row,

we deduce the recurrence

q2(x) = 4x2, q3(x) = 8x3 − 4x, qn+1(x) = 2xqn(x)− qn−1 .

We may define q1(x) = 4x. It is clear that qn(x) = 4xTn−1(x) where Tn is the nth

Chebyshev polynomial of the first kind.

Proposition 14. Let pn(x) be the characteristic polynomial of the Cartan matrix (2.5).

Then

pn(x) = (2− x)
n−1∑
j=0

(−1)n+j (2n− 2)(n+ j − 2)!

(n− j − 1)!(2j)!
xj .

Proof. From the formula pn(x) = qn
(
x
2
− 1
)

and (2.12) it follows that

pn(x) = 2(x− 2)(−1)n−1Tn−1

(
1− x

2

)
=

(2− x)
n−1∑
j=0

(−1)n+j (2n− 2)(n+ j − 2)!

(n− j − 1)!(2j)!
xj .
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3.3 Cartan matrices of the classical affine Lie algebras

3.3.1 Cartan matrix of type A
(1)
n

The Cartan matrix of type A
(1)
n is the matrix

C
A

(1)
n

=



2 −1 0 · · · 0 0 −1

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

−1 0 0 · · · 0 −1 2


. (3.2)

We list some formulas for the characteristic polynomial of the matrix for small values

of n.

p3(x) = x3 − 6x2 + 9x = x(x− 3)2

p4(x) = x4 − 8x3 + 20x2 − 16x = x(x− 4)(x− 2)2

p5(x) = x5 − 10x4 + 35x3 − 50x2 + 25x = x(x2 − 5x+ 5)2

p6(x) = x6 − 12x5 + 54x4 − 112x3 + 105x2 − 36x = x(x− 4)(x− 1)2(x− 3)2

p7(x) = x7 − 14x6 + 77x5 − 210x4 + 294x3 − 196x2 + 49x =

x(x3 − 7x2 + 14x− 7)2

p8(x) = x8 − 16x7 + 104x6 − 352x5 + 660x4 − 672x3 + 336x2 − 64x =

x(x− 4)(x− 2)2(x2 − 4x+ 2)2 .

We define the sequence of polynomials qn(x) in the following way

qn(x) = det



2x 1 0 · · · 0 0 1

1 2x 1 · · · 0 0 0

0 1 2x · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2x 1 0

0 0 0 · · · 1 2x 1

1 0 0 · · · 0 1 2x


.

By expanding the determinant we obtain the following formula for qn

qn(x) = 2xUn−1(x)− 2Un−2(x) + 2(−1)n−1 = Un(x)− Un−2(x) + 2(−1)n−1 =

2Tn(x) + 2(−1)n−1.
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It is easy then to compute the first few polynomials.

q3(x) = 8x3 − 6x+ 2 = 2(x+ 1)(2x− 1)2

q4(x) = 16x4 − 16x2 = 16x2(x− 1)(x+ 1)

q5(x) = 32x5 − 40x3 + 10x+ 2 = 2(x+ 1)(4x2 − 2x− 1)2

q6(x) = 64x6 − 96x4 + 36x2 − 4 = 4(x+ 1)(x− 1)(2x− 1)2(2x+ 1)2

q7(x) = 128x7 − 224x5 + 112x3 − 14x+ 2 = 2(x+ 1)(8x3 − 4x2 − 4x+ 1)2.

For n even the polynomial qn is divisible by x− 1. Indeed

qn(1) = Un(1)− Un−2(1) + 2(−1)n−1 = (n+ 1)− (n− 1)− 2 = 0.

Remark 4. Note that

pn(0) = qn(−1) = Un(−1)− Un−2(−1) + 2(−1)n−1 =

(−1)nUn(1)− (−1)n−2Un−2(1) + 2(−1)n−1 = 0.

Therefore the determinant of A
(1)
n is zero and pn is divisible by x.

Proposition 15. Let pn be the characteristic polynomial of the Cartan matrix (3.2). Then

pn(x) =
n∑
j=1

(−1)n+j 2n(n+ j − 1)!

(n− j)!(2j)!
xj.

Proof. Using the properties of Chebyshev polynomials it follows that

1

2
pn(x) + (−1)n =

1

2
qn

(x
2
− 1
)

+ (−1)n = Tn

(x
2
− 1
)

= (−1)nTn

(
1− x

2

)
.

Using the formula (2.12) we have

Tn

(
1− x

2

)
= n

n∑
j=0

(−2)j
(n+ j − 1)!

(n− j)!(2j)!

(
1−

(
1− x

2

))j
=

n

n∑
j=0

(−1)j
(n+ j − 1)!

(n− j)!(2j)!
xj.

Therefore

pn(x) =
n∑
j=0

(−1)n+j 2n(n+ j − 1)!

(n− j)!(2j)!
xj + 2(−1)n−1

and the result follows.
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3.3.2 Cartan matrix of type B
(1)
n

The Cartan matrix of type B
(1)
n is the matrix

C
B

(1)
n

=



2 0 −1 0 · · · 0 0 0

0 2 −1 0 · · · 0 0 0

−1 −1 2 −1 · · · 0 0 0

0 0 −1 2 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 2 −1 0

0 0 0 0 · · · −1 2 −2

0 0 0 0 · · · 0 −1 2


. (3.3)

Using expansion on the first row it is easy to show that det
(
C
B

(1)
n

)
= 0.

We list some formulas for the characteristic polynomial of the matrix for small values

of n.

p4(x) = x4 − 8x3 + 20x2 − 16x = x(x− 4)(x− 2)2

p5(x) = x5 − 10x4 + 35x3 − 50x2 + 24x = x(x− 1)(x− 2)(x− 3)(x− 4)

p6(x) = x6 − 12x5 + 54x4 − 112x3 + 104x2 − 32x =

x(x− 4)(x− 2)2(x2 − 4x+ 2)

p7(x) = x7 − 14x6 + 77x5 − 210x4 + 293x3 − 190x2 + 40x =

x(x− 2)(x− 4)(x2 − 5x+ 5)(x2 − 3x+ 1) .

Define qn(x) = det
(

2xI + A
B

(1)
n

)
. By expanding the determinant we obtain the fol-

lowing formula for qn

qn(x) = 4x (Tn−1(x)− Tn−3(x)) = 8x
(
x2 − 1

)
Un−3(x).

Equivalently

qn(x) = 2 (Tn(x)− Tn−4(x)) .

The first few polynomials are:

q4(x) = 16x4 − 16x2 = 16x2(x− 1)(x+ 1)

q5(x) = 32x5 − 40x3 + 8x = 8x(x− 1)(2x+ 1)(2x− 1)(x+ 1)

q6(x) = 64x6 − 96x4 + 32x2 = 32x2(x− 1)(x+ 1)(2x2 − 1)

q7(x) = 128x7 − 224x5 + 104x3 − 8x =

8x(x− 1)(x+ 1)(4x2 − 2x− 1)(4x2 + 2x− 1).
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As in the case of the Cartan matrix C
A

(1)
n

, we can easily compute the explicit form of the

pn polynomial.

Proposition 16. Let pn(x) be the characteristic polynomial of the Cartan matrix (3.3).

Then

pn(x) = x(x− 2)(x− 4)
n−3∑
j=0

(−1)n+j+1

(
n+ j − 2

2j + 1

)
xj.

Proof. From pn(x) = qn
(
x
2
− 1
)

and qn(x) = 8x (x2 − 1)Un−3(x) we only need to show

that

Un−3

(x
2
− 1
)

=
n−3∑
j=0

(−1)n+j+1

(
n+ j − 2

2j + 1

)
xj,

which is formula (2.13) combined with Un(−x) = (−1)nUn(x).

3.3.3 Cartan matrix of type C
(1)
n

The Cartan matrix of type C
(1)
n is the tri-diagonal matrix

C
C

(1)
n

=



2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −2 2


. (3.4)

Using expansion on the first row it is easy to show that det
(
C
C

(1)
n

)
= 0.

We list the formula for the characteristic polynomial of the matrix (3.4) for small values

of n.

p3(x) = x3 − 6x2 + 8x = x(x− 2)(x− 4)

p4(x) = x4 − 8x3 + 19x2 − 12x = x(x− 1)(x− 3)(x− 4)

p5(x) = x5 − 10x4 + 34x3 − 44x2 + 16x = x(x− 2)(x− 4)(x2 − 4x+ 2)

p6(x) = x6 − 12x5 + 53x4 − 104x3 + 85x2 − 20x =

x(x− 4)(x2 − 5x+ 5)(x2 − 3x+ 1)

p7(x) = x7 − 14x6 + 76x5 − 200x4 + 259x3 − 146x2 + 24x =

x(x− 1)(x− 2)(x− 3)(x− 4)(x2 − 4x+ 1).

Define qn(x) = det (2xI + A). By expanding the determinant with respect to the first row

we obtain

qn(x) = 4 (xTn−1(x)− Tn−2(x)) ,
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where Tn(x) is the nth Chebyshev polynomial of the first kind. Equivalently,

qn(x) = 2 (Tn(x)− Tn−2(x)) = 4
(
x2 − 1

)
Un−2(x).

Proposition 17. Let pn(x) be the characteristic polynomial of the Cartan matrix (3.4).

Then

pn(x) = x(x− 4)
n−2∑
j=0

(−1)n+j

(
n+ j − 1

2j + 1

)
xj.

3.3.4 Cartan matrix of type D
(1)
n

The Cartan matrix of type D
(1)
n is the matrix

C
D

(1)
n

=



2 0 −1 0 · · · 0 0 0 0

0 2 −1 0 · · · 0 0 0 0

−1 −1 2 −1 · · · 0 0 0 0

0 0 −1 2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 2 −1 0 0

0 0 0 0 · · · −1 2 −1 −1

0 0 0 0 · · · 0 −1 2 0

0 0 0 0 · · · 0 −1 0 2



. (3.5)

We list the formula for the characteristic polynomial of the matrix C
D

(1)
n

for small

values of n.

p5(x) = x(x− 4)(x− 2)3

p6(x) = x(x− 1)(x− 2)2(x− 3)(x− 4)

p7(x) = x(x− 2)3(x− 4)(x2 − 4x+ 2)

p8(x) = x(x− 2)2(x− 4)(x2 − 3x+ 1)(x2 − 5x+ 5)

p9(x) = x(x− 2)3(x− 4)(x− 1)(x− 3)(x2 − 4x+ 1).

By expanding the determinant qn(x) = det (2xI + A), with respect to the first row we get

qn(x) = 2xq̂n−1(x)− 2xq̂n−3(x),

where q̂n is the qn polynomial of the matrix CDn . Therefore

qn(x) = 8x2(Tn−2(x)− Tn−4(x)) = 16x2(x2 − 1)Un−4(x).
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Proposition 18. Let pn(x) be the characteristic polynomial of the Cartan matrix (3.5).

Then

pn(x) = x(x− 2)2(x− 4)
n−4∑
j=0

(−1)n+j

(
n+ j − 3

2j + 1

)
xj.

3.4 Coxeter polynomials

3.4.1 Coxeter polynomials for the classical finite Lie algebras

Associated polynomials for An

We present the factorization of the polynomial Qn(x) for small values of n, as a product of

cyclotomic polynomials. The polynomial Qn(x) is an even polynomial. For, if n is even,

then Un(x) is an even polynomial and an(x) = Un(x
2
) is also even. If n is odd then Un(x)

and an(x) are both odd functions. This implies that Qn(x) is even. The factorization of

Qn for small values of n, as product of cyclotomic polynomials is given in table 3.1.

Root system Cyclotomic Factors
A2 Φ3Φ6

A3 Φ4Φ8

A4 Φ5Φ10

A5 Φ3Φ4Φ6Φ12

A6 Φ7Φ14

A7 Φ4Φ8Φ16

A8 Φ3Φ6Φ9Φ18

A9 Φ4Φ5Φ10Φ20

A10 Φ11Φ22

A11 Φ3Φ4Φ6Φ8Φ12Φ24

Table 3.1: Factorization of the polynomials Qn(x) for the root system An

It is not difficult to guess the factorization of Qn(x). The characteristic polynomial of

the Coxeter transformation has roots ζk where ζ is a primitive h root of unity and k runs

over the exponents of a root system of type An. Therefore

fn(x) = (x− ζ)(x− ζ2) . . . (x− ζn) .

⇒ (x− 1)fn(x) = xn+1 − 1⇒ fn(x) =
xn+1 − 1

x− 1
.
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Using the formula (2.14) we obtain

fn(x) =
∏
j|n+1
j 6=1

Φd .

The next proposition is from [?].

Proposition 19. The factorization of the polynomial Qn for the root system An is given

by

Qn(x) =
∏

j|2n+2
j 6=1,2

Φj(x) . (3.6)

Proof. Since

Qn(x) = fn(x2) =
∏
j|n+1
j 6=1

Φj(x
2)

we should know what is Φj(x
2).

It is well-known, see [?], that

Φj(x
2) =

{
Φ2j(x), if j is even

Φj(x)Φ2j(x), if j is odd

To complete the proof we must show that each divisor of 2n+ 2 bigger than 2 appears

in the product (3.6). Let d be a divisor of 2n+ 2 bigger than 2. We consider two cases:

i) If d is odd then since d|2(n+ 1) we have that d|n+ 1. Since Φd is a factor of fn(x), then

fd(x
2) = Φd(x)Φ2d(x), and therefore Φd appears.

ii) If d is even, then d = 2s for some integer s bigger than 1. Since 2s|2(n + 1) we have

that s|n+ 1. Therefore Φs appears in the factorization of fn(x). If s is odd then Φs(x
2) =

Φs(x)Φ2s(x) and if s is even Φs(x
2) = Φ2s(x). In either case Φ2s = Φd appears.

An alternative way to derive the formula for fn is the following. Note that the Coxeter

adjacency matrix AAn is related to the Cartan matrix with AAn = 2I − CAn and an(x) =

pn(x+ 2) = qn(x+2
2
− 1) = qn(x

2
). Therefore we have

an(x) = Un

(x
2

)
and

Qn(x) = xnUn

(
1

2

(
x+

1

x

))
.

Set x = eiθ to obtain

Qn(x) = einθUn

(
1

2

(
eiθ + e−iθ

))
= einθUn(cos θ) =
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einθ
sin(n+ 1)θ

sin θ
= einθ

ei(n+1)θ + e−i(n+1)θ

eiθ − e−iθ
=
x2(n+1) − 1

x2 − 1
.

Setting u = x2 we deduce that

fn(u) =
un+1 − 1

u− 1
= un + un−1 + · · ·+ u+ 1 .

Therefore Qn(x) = x2n + x2(n−1) + · · ·+ x2 + 1 for all x ∈ C.

We present the characteristic polynomial of the adjacency matrix and the Coxeter

polynomial for small values of n.

Root system The polynomial an(x) Coxeter polynomial
A2 a2 = x2 − 1 f2 = Φ3

A3 a3 = x3 − 2x f3 = Φ2Φ4

A4 a4 = x4 − 3x2 + 1 f4 = Φ5

A5 a5 = x5 − 4x3 + 3x f5 = Φ2Φ3Φ6

A6 a6 = x6 − 5x4 + 6x2 − 1 f6 = Φ7

A7 a7 = x7 − 6x5 + 10x3 − 4x f7 = Φ2Φ4Φ8

A8 a8 = x8 − 7x6 + 15x4 − 10x2 + 1 f8 = Φ3Φ9

A9 a9 = x9 − 8x7 + 21x5 − 20x3 + 5x f9 = Φ2Φ5Φ10

A10 a10 = x10 − 9x8 + 26x6 − 35x4 + 15x2 − 1 f10 = Φ11

Table 3.2: Characteristic and Coxeter polynomials for the root system An

Note that an(x) is explicitly given by the formula

an(x) = Un

(x
2

)
=

[n
2

]∑
j=0

(−1)j
(
n− j
j

)
(x)n−2j

due to formula (2.13).

Associated Polynomials for Bn and Cn

In the case of Bn we have

an(x) = 2Tn

(x
2

)
and therefore

Qn(x) = 2xnTn

(
1

2

(
x+

1

x

))
.

Set x = eiθ to obtain
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Qn(x) = 2einθTn

(
1

2

(
eiθ + e−iθ

))
= 2einθTn(cos θ) =

2einθ cosnθ = 2einθ
1

2

(
einθ + e−inθ

)
= e2inθ + 1 = x2n + 1.

Therefore Qn(x) = x2n + 1 for all x ∈ C. As a result the Coxeter polynomial is fn(x) =

xn + 1. We present the factorization of fn(x) for small values of n.

Root system The polynomial an(x) Coxeter polynomial
B2 a2 = x2 − 2 f2 = Φ4

B3 a3 = x3 − 3x f2 = Φ2Φ6

B4 a4 = x4 − 4x2 + 2 f4 = Φ8

B5 a5 = x5 − 5x3 + 5x f5 = Φ2Φ10

B6 a6 = x6 − 6x4 + 9x2 − 2 f6 = Φ4Φ12

B7 a7 = x7 − 7x5 + 14x3 − 7x f7 = Φ2Φ14

B8 a8 = x8 − 8x6 + 20x4 − 16x2 + 2 f8 = Φ16

B9 a9 = x9 − 9x7 + 27x5 − 30x3 + 9x f9 = Φ2Φ6Φ18

B10 a10 = x10 − 10x8 + 35x6 − 50x4 + 25x2 − 2 f10 = Φ4Φ20

Table 3.3: Characteristic and Coxeter polynomials for the root system Bn

Write n = 2αN where N is odd. As we already mentioned

fn(x) = xn + 1 =
∏
d|N

Φ2md(x) ,

where m = 2α. Therefore

fn(x) = xn + 1 =
∏
d|n
d odd

Φ2α+1d(x) =
∏
d|N

Φ2α+1d(x) .

Proposition 20. Let r = 2α+2. Then

Qn(x) =
∏
d|n
d odd

Φrd(x) .

Proof. It follows from the formula Φk(x
2) = Φ2k(x) when k is even.

Note that the an(x) polynomial is explicitly given in this case by the formula

an(x) = 2Tn

(x
2

)
=

[n
2

]∑
j=0

(−1)j
n(n− j − 1)!

j!(n− 2j)!
(x)n−2j,
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due to formula (2.12). Since an(x) = 2Tn
(
x
2

)
these polynomials satisfy the recursion

an+1 = xan(x)− an−1(x)

with a0(x) = 2 and a1(x) = x.

We mention a useful application of these polynomials. One can use them to express

xn + x−n as a function of ζ = x + 1
x
. For x = eiθ it is just the expression of 2 cosnθ as a

polynomial in 2 cos θ. This polynomial is clearly an(x), the adjacency polynomial of Bn.

Example 9. Since (
x+

1

x

)2

= x2 +
1

x2
+ 2 .

it follows that

x2 +
1

x2
= ζ2 − 2 = a2(ζ) .

Similarly

x3 +
1

x3
= ζ3 − 3ζ = a3(ζ) ,

and

x4 +
1

x4
= ζ4 − 4ζ2 + 2 = a4(ζ) .

Associated Polynomials for Dn

In the case of Dn we have

qn(x) = 4xTn−1(x).

Therefore,

an(x) = 2xTn−1

(x
2

)
,

and

Qn(x) = 2xn
(
x+

1

x

)
Tn−1

(
1

2

(
x+

1

x

))
.

Using the methods of the previous section we obtain Qn(x) = x2n + x2(n−1) + x2 + 1.

We conclude that fn(x) = xn + xn−1 + x + 1. We present the formula for an(x) and the

factorization of fn(x) for small values of n.

Proposition 21. Write n− 1 = 2αN where N is odd. Then

fn(x) = (x+ 1)(xn−1 + 1) = Φ2(x)
∏
d|N

Φ2α+1d(x) .

and

Qn(x) = Φ4(x)
∏
d|n−1
d odd

Φ2α+2d(x) . (3.7)
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Root system The polynomial an(x) Coxeter polynomial
D4 a4 = x4 − 3x2 f4(x) = Φ2

2Φ6

D5 a5 = x5 − 4x3 + 2x f5 = Φ2Φ8

D6 a6 = x6 − 5x4 + 5x2 f6 = Φ2
2Φ10

D7 a7 = x7 − 6x5 + 9x3 − 2x f7 = Φ2Φ4Φ12

D8 a8 = x8 − 7x6 + 14x4 − 7x2 f8 = Φ2
2Φ14

D9 a9 = x9 − 8x7 + 20x5 − 16x3 + 2x f9 = Φ2Φ16

D10 a10 = x10 − 9x8 + 27x6 − 30x4 + 9x2 f10 = Φ2
2Φ6Φ18

Table 3.4: Characteristic and Coxeter polynomials for the root system Dn

3.4.2 Coxeter polynomials for the exceptional finite Lie algebras

Lie algebra of type G2

The Cartan matrix for G2 is (2.10), with characteristic polynomial

p2(x) = x2 − 4x+ 1 ,

since

q2(x) = 2T2(x)− U0(x) = 4x2 − 3

and p2(x) = q2

(
x
2
− 1
)
. The roots of a2(x) = x2 − 3 are

2 cos
miπ

h

where m1 = 1 and m2 = 5 are the exponents of the root system of type G2. The Coxeter

number h is 6. Finally,

Q2(x) = x4 − x2 + 1 = Φ12(x) ,

and

f2(x) = x2 − x+ 1 = Φ6(x) .

Lie algebra of type F4

The Cartan matrix for F4 is (2.9) with characteristic polynomial

p4(x) = x4 − 8x3 + 20x2 − 16x+ 1 ,

and

a4(x) = x4 − 4x2 + 1 = ψ24(x) .

69

Cha
ral

am
po

s E
vri

pid
ou



The roots of a4(x) are
1

2
(±
√

6±
√

2)

i.e.

2 cos
mi π

12

where mi ∈ {1, 5, 7, 11}. These are the exponents for F4 and being the numbers less than

12 and prime to 12 imply

f4(x) = x4 − x2 + 1 = Φ12(x) .

Lie algebras of type En

• n = 6

The Cartan matrix for E6 is (2.6). The associated polynomials are

q6(x) = 64x6 − 80x4 + 20x2 − 1 = (2x+ 1)(2x− 1)(16x4 − 16x2 + 1),

p6(x) = (x− 1)(x− 3)(x4 − 8x3 + 20x2 − 16x+ 1),

a6(x) = x6 − 5x4 + 5x2 − 1 = (x+ 1)(x− 1)(x4 − 4x2 + 1) = ψ3(x)ψ6(x)ψ24(x)

and

Q6(x) = (x2 + x+ 1)(x2 − x+ 1)(x8 − x4 + 1) = Φ3(x)Φ6(x)Φ24(x).

The exponents of E6 are {1, 4, 5, 7, 8, 11} and the Coxeter number is 12. The subset

{1, 5, 7, 11} produces Φ12 and {4, 8} produces Φ3. Therefore

f6(x) = Φ3(x)Φ12(x) .

The roots of a6(x) are

±1,
1

2
(±
√

6±
√

2)

i.e.

2 cos
mi π

12

where mi ∈ {1, 4, 5, 7, 8, 11}. These are the exponents for E6 and the Coxeter number

is 12.

• n = 7
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The Cartan matrix for E7 is (2.7) The associated polynomials are

q7(x) = 128x7 − 192x5 + 72x3 − 6x = 2x(64x6 − 96x4 + 36x2 − 3),

p7(x) = (x− 2)(x6 − 12x5 + 54x4 − 112x3 + 105x2 + 1),

a7(x) = x7 − 6x5 + 9x3 − 3x = x(x6 − 6x4 + 9x2 − 3) = ψ4(x)ψ36(x)

and

Q7(x) = (x2 + 1)(x12 − x6 + 1) = Φ4(x)Φ36(x).

The exponents of E7 are {1, 5, 7, 9, 11, 13, 17} and the Coxeter number is 18. The

subset {1, 5, 7, 11, 13, 17} produces Φ18 and {9} produces Φ2. Therefore the Coxeter

polynomial factors out as

f7(x) = Φ2(x)Φ18(x).

• n = 8

The Cartan matrix for E8 is (2.8) The associated polynomials are

q8(x) = 256x8 − 448x6 + 224x4 − 32x2 + 1,

p8(x) = x8 − 16x7 + 105x6 + 364x5 + 714x4 − 784x3 + 440x2 − 96x+ 1,

a8(x) = x8 − 7x6 + 14x4 − 8x2 + 1 = ψ60(x)

and

Q8(x) = x16 + x14 − x10 − x8 − x6 + x2 + 1 = Φ60(x).

The exponents of E8 are {1, 7, 11, 13, 17, 19, 23, 29} which are the positive integers

less than 30 and prime to 30. Therefore the Coxeter polynomial of E8 is

f8(x) = Φ30(x).

3.4.3 Coxeter polynomials for the classical affine Lie Algebras

The Coxeter polynomials for the affine Lie algebras are well-known, see e.g. [?]. We

display their formulas in table 3.5 and then we derive the same formulas using Chebyshev

polynomials.

Associated Polynomials for A
(1)
n

In the case of A
(1)
n−1 we have
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Dynkin Diagram Coxeter polynomial Cyclotomic Factors

A
(1)
n (xi− 1) · (xn+1−i− 1),

i = 1, 2, . . . ,
⌊
n+1

2

⌋ ∏
d|i Φd

∏
d|n+1−i Φd,

i = 1, 2, . . . ,
⌊
n+1

2

⌋
B

(1)
n (xn−1 − 1)(x2 − 1) Φ1Φ2

∏
d|n−1 Φd

C
(1)
n (xn − 1)(x− 1) Φ1

∏
d|n Φd

D
(1)
n (xn−2 − 1)(x − 1)(x +

1)2

Φ1Φ2
2

∏
d|n−2 Φd

E
(1)
6 x7 + x6 − 2x4 − 2x3 +

x+ 1
Φ2

1Φ2Φ2
3

E
(1)
7 x8 + x7 − x5 − 2x4 −

x3 + x+ 1
Φ2

1Φ2
2Φ3Φ2

4

E
(1)
8 x9 +x8−x6−x5−x4−

x3 + x+ 1
Φ2

1Φ2Φ3Φ5

F
(1)
4 x5 − x3 − x2 + 1 Φ2

1Φ2Φ3

G
(1)
2 x3 − x2 − x+ 1 Φ2

1Φ2

Table 3.5: Coxeter polynomials for Affine Graphs

qn (x) = 2
(
Tn (x) + (−1)n−1), so an (x) = 2

(
Tn
(
x
2

)
+ (−1)n−1)

and Qn (x) = 2xn
(
Tn
(

1
2

(
x+ 1

x

))
+ (−1)n−1).

If we set x = eiθ we have

2xnTn

(
1

2

(
x+

1

x

))
= 2xnTn (cos θ) = 2xn cos (nθ)

= 2xn
1

2

(
einθ + e−inθ

)
= xn

(
xn +

1

xn

)
= x2n + 1.

Therefore

Qn (x) = x2n + (−1)n−1 2xn + 1 =
(
xn + (−1)n−1)2

.

and the factorization of Qn is given by

Qn (x) =

g2 n even

g1
g2

n odd
,

where g1 =
∏
d|2n

Φ2
d, g2 =

∏
d|n

Φ2
d.

In the case of A
(1)
n (since the graph A

(1)
n is not a tree) the Coxeter polynomial is not

uniquely defined. There are
⌊
n+1

2

⌋
non conjugate Coxeter elements each one producing a
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different Coxeter polynomial. These polynomials are given by the formula (see [?])

(xj − 1) · (xn+1−j − 1), j = 1, 2, . . . ,

⌊
n+ 1

2

⌋
.

The factorization of these polynomials is given by

∏
d|j

Φd(x)
∏

d|n+1−j

Φd(x), j = 1, 2, . . . ,

⌊
n+ 1

2

⌋

and for the first values of n we obtain table 3.6.

n fn+1(x)
3 j = 1 : x4 − x3 − x+ 1 = (x− 1)(x2 − 1) = Φ2

1Φ2

j = 2 : x4 − 2x2 + 1 = (x2 − 1)(x2 − 1) = Φ2
1Φ2

2

4 j = 1 : x5 − x4 − x+ 1 = (x− 1)(x4 − 1) = Φ2
1Φ2Φ4

j = 2 : x5−x3−x2 + 1 = (x2− 1)(x3− 1) = Φ2
1Φ2Φ3

5 j = 1 : x6 − x5 − x+ 1 = (x− 1)(x5 − 1) = Φ2
1Φ5

j = 2 : x6−x4−x2 + 1 = (x2− 1)(x4− 1) = Φ2
1Φ2

2Φ4

j = 3 : x6 − 2x3 + 1 = (x3 − 1)(x3 − 1) = Φ2
1Φ2

3

6 j = 1 : x7−x6−x+1 = (x−1)(x6−1) = Φ2
1Φ2Φ3Φ6

j = 2 : x7−x5−x2 + 1 = (x2− 1)(x5− 1) = Φ2
1Φ2Φ5

j = 3 : x7−x4−x3+1 = (x3−1)(x4−1) = Φ2
1Φ2Φ3Φ4

7 j = 1 : x8 − x7 − x+ 1 = (x− 1)(x7 − 1) = Φ2
1Φ7

j = 2 : x8−x6−x2+1 = (x2−1)(x6−1) = Φ2
1Φ2

2Φ3Φ6

j = 3 : x8−x5−x3 + 1 = (x3− 1)(x5− 1) = Φ2
1Φ3Φ5

j = 4 : x8 − 2x4 + 1 = (x4 − 1)(x4 − 1) = Φ2
1Φ2

2Φ2
4

8 j = 1 : x9−x8−x+1 = (x−1)(x8−1) = Φ2
1Φ2Φ4Φ8

j = 2 : x9−x7−x2 + 1 = (x2− 1)(x7− 1) = Φ2
1Φ2Φ7

j = 3 : x9−x6−x3+1 = (x3−1)(x6−1) = Φ2
1Φ2Φ2

3Φ6

j = 4 : x9−x5−x4+1 = (x4−1)(x5−1) = Φ2
1Φ2Φ4Φ5

Table 3.6: Coxeter polynomials for A
(1)
n

Note that when n is even the polynomial Qn(x) can be written in the form Qn(x) =

fn(x2) with fn(x) the Coxeter polynomial corresponding to the largest conjugacy class of

Coxeter elements. In fact, for n even,

fn(x) =
(
x
n
2 − 1

)2
.

Using the formula we have found for the polynomial Qn(x) we can calculate the roots
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of the polynomial an(x). Since Qn(x) = (xn + (−1)n−1)
2
, the roots of Qn are given by

e
2kπi
n , k = 0, 1, . . . , n− 1 , for n even

e
(2k+1)πi

n , k = 0, 1, . . . , n− 1 , for n odd

each one being a double root. Now if r is a root of an, it follows that x−r is a factor of an so

x

(
x+

1

x
− r
)

= x2−rx+1 is a factor of Qn(x), meaning that x2−rx+1 = (x−c)(x− c̄),

with c being one of the roots of Qn and r = 2 Re(c). We conclude that the roots of an are

given by

2 cos
2kπ

n
, k = 0, 1, . . . , n− 1 for n even,

2 cos
(2k + 1)π

n
, k = 0, 1, . . . , n− 1 for n odd.

From the identity cos(−x) = cos x it follows that the roots of a2n+2(x) are given by

2 cos
kπ

n+ 1
, k = 0, 1, 1, 2, 2, . . . , n, n, n+ 1,

where k = 0, 1, 1, 2, 2, . . . , n, n, n + 1 are the affine exponents and h = n + 1 is the affine

Coxeter number associated with the Coxeter polynomial (xn+1 − 1)2.

Example 10. In the case of A
(1)
5 we have

a6(x) =
(
x2 − 1

)2 (
x2 − 4

)
.

Therefore the roots of a6(x) are

1, 1,−1,−1, 2,−2,

and they have the form

2 cos
miπ

h
,

where mi are the affine exponents and h is the affine Coxeter number associated with the

Coxeter polynomial (x3 − 1)2.

Associated Polynomials for B
(1)
n

In the case of B
(1)
n−1 we have

qn (x) = 8x
(
x2 − 1

)
Un−3 (x) .
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Therefore,

an (x) = qn

(x
2

)
= x

(
x2 − 4

)
Un−3

(x
2

)
,

and

Qn (x) = xn
(
x3 − x− 1

x
+

1

x3

)
Un−3

(
1

2

(
x+

1

x

))
.

Set x = eiθ to obtain

Qn (x) = xn−3
(
x6 − x4 − x2 + 1

)
Un−3 (cos θ)

= xn−3
(
x4 − 1

) (
x2 − 1

) sin (n− 2) θ

sin θ

= xn−3
(
x4 − 1

) (
x2 − 1

) (ei(n−2)θ − e−i(n−2)θ
)

eiθ − e−iθ

= xn−3
(
x4 − 1

) (
x2 − 1

) x

xn−2

x2(n−2) − 1

x2 − 1
= x2n − x2(n−2) − x4 + 1.

Therefore

Qn (x) = x2n − x2(n−2) − x4 + 1 =
(
x4 − 1

) (
x2(n−2) − 1

)
= Φ1Φ2Φ4

∏
d|2(n−2)

Φd,

for all x ∈ C. The Coxeter polynomial for B
(1)
n is then

fn+1 (x) = xn+1 − xn−1 − x2 + 1 =
(
xn−1 − 1

) (
x2 − 1

)
= Φ1Φ2

∏
d|n−1

Φd

and the factorization of an is given by

an(x) = Ψ4

∏
j|2(n−2)

Ψj(x).

We present the factorization of fn(x), in table 3.7, for small values of n.

In general we have two cases:

1) For the case of B
(1)
2n+1

a2n+2(x) = x
(
x2 − 4

)
U2n−1

(x
2

)
.

Since the roots of Un(x) are

cos

(
kπ

n+ 1

)
, k = 1, 2, . . . , n,
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Root system The polynomial an(x) Coxeter polynomial

B
(1)
3 a4 = x4 − 4x2 f4(x) = Φ2

1Φ2
2

B
(1)
4 a5 = x5 − 5x3 + 4x f5 = Φ2

1Φ2Φ3

B
(1)
5 a6 = x6 − 6x4 + 8x2 f6 = Φ2

1Φ2
2Φ4

B
(1)
6 a7 = x7 − 7x5 + 13x3 − 4x f7 = Φ2

1Φ2Φ5

B
(1)
7 a8 = x8 − 8x6 + 19x4 − 12x2 f8 = Φ2

1Φ2
2Φ3Φ6

B
(1)
8 a9 = x9 − 9x7 + 26x5 − 25x3 + 4x f9 = Φ2

1Φ2Φ7

B
(1)
9 a10 = x10 − 10x8 + 34x6 − 44x4 + 16x2 f10 = Φ2

1Φ2
2Φ4Φ8

Table 3.7: Characteristic and Coxeter polynomials for the root system B
(1)
n

the roots of a2n+2 are 0,±2 and

2 cos
kπ

2n
, k = 1, 2, . . . , 2n− 1.

Therefore the affine exponents are 0, 1, 2, . . . , n−1, n, n, n+1, . . . , 2n−1, 2n and the affine

Coxeter number is h = 2n.

2) For the case of B
(1)
2n

a2n+1(x) = x
(
x2 − 4

)
U2n−2

(x
2

)
.

Since the roots of Un(x) are

cos

(
kπ

n+ 1

)
, k = 1, 2, . . . , n,

the roots of a2n+1 are 0,±2 and

cos
2kπ

2(2n− 1)
, k = 1, 2, . . . , 2n− 2.

It follows that the affine exponents are 0, 2, . . . , 2n − 2, 2n − 1, 2n, . . . , 2(2n − 1) and the

affine Coxeter number is h = 2(2n− 1).

Associated Polynomials for C
(1)
n

For C
(1)
n−1 we have

qn(x) = 4
(
x2 − 1

)
Un−2(x).

Therefore,

an(x) = qn

(x
2

)
=
(
x2 − 4

)
Un−2

(x
2

)
,
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and

Qn(x) = xn
(
x2 − 2 +

1

x2

)
Un−2

(
1

2

(
x+

1

x

))
.

Using the same method as in the previous case we obtain

Qn(x) = x2n − x2(n−1) − x2 + 1 =
(
x2(n−1) − 1

) (
x2 − 1

)
= Φ1Φ2

∏
d|2(n−1)

Φd,

for all x ∈ C. The Coxeter polynomial for C
(1)
n is then

fn+1(x) = xn+1 − xn − x+ 1 = (xn − 1) (x− 1) = Φ1

∏
d|n

Φd.

We present the factorization of fn(x) for small values of n.

Root system The polynomial an(x) Coxeter polynomial

C
(1)
3 a4 = x4 − 5x2 + 4 f4(x) = Φ2

1Φ3

C
(1)
4 a5 = x5 − 6x3 + 8x f5 = Φ2

1Φ2Φ4

C
(1)
5 a6 = x6 − 7x4 + 13x2 − 4 f6 = Φ2

1Φ5

C
(1)
6 a7 = x7 − 8x5 + 19x3 − 12x f7 = Φ2

1Φ2Φ3Φ6

C
(1)
7 a8 = x8 − 9x6 + 26x4 − 25x2 + 4 f8 = Φ2

1Φ7

C
(1)
8 a9 = x9 − 10x7 + 34x5 − 44x3 + 16x f9 = Φ2

1Φ2Φ4Φ8

C
(1)
9 a10 = x10 − 11x8 + 43x6 − 70x4 + 41x2 − 4 f10 = Φ2

1Φ3Φ9

Table 3.8: Characteristic and Coxeter polynomials for the root system C
(1)
n

The factorization of an is given by

an(x) =
∏

j|2(n−1)

Ψj(x).

In general we have

an+1(x) =
(
x2 − 4

)
Un−1

(x
2

)
and therefore the roots of an+1 are ±2 and

2 cos
kπ

n
k = 1, 2, . . . , n− 1.

The affine exponents are 0, 1, . . . , n− 1, n and the affine Coxeter number is h = n.
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Associated Polynomials for D
(1)
n

In the case of D
(1)
n−1 we have

qn(x) = 16x2
(
x2 − 1

)
Un−4(x).

Therefore,

an(x) = qn

(x
2

)
= x2

(
x2 − 4

)
Un−4

(x
2

)
and

Qn(x) = xn
(
x4 − 2 +

1

x4

)
Un−4

(
1

2

(
x+

1

x

))
.

It follows that

Qn(x) =
(
x4 − 1

) (
x2(n−2) + x2(n−3) − x2 − 1

)
=
(
x4 − 1

) (
x2 + 1

) (
x2(n−3) − 1

)
and the Coxeter polynomial for D

(1)
n is

fn+1(x) =
(
xn−2 − 1

) (
x2 − 1

)
(x+ 1) .

We present the factorization of fn(x) for small values of n.

Root system The polynomial an(x) Coxeter polynomial

D
(1)
4 a5 = x5 − 4x3 f5 = Φ2

1Φ3
2

D
(1)
5 a6 = x6 − 5x4 + 4x2 f6 = Φ2

1Φ2
2Φ3

D
(1)
6 a7 = x7 − 6x5 + 8x3 f7 = Φ2

1Φ3
2Φ4

D
(1)
7 a8 = x8 − 7x6 + 13x4 − 4x2 f8 = Φ2

1Φ2
2Φ5

D
(1)
8 a9 = x9 − 8x7 + 19x5 − 12x3 f9 = Φ2

1Φ3
2Φ3Φ6

D
(1)
9 a10 = x10−9x8+26x6−25x4+4x2 f10 = Φ2

1Φ2
2Φ7

Table 3.9: Characteristic and Coxeter polynomials for the root system D
(1)
n

Note that the factorization of Qn(x) is

Qn(x) = Φ1Φ2Φ2
4

∏
j|2(n−3)

Φj(x),

and the factorization of fn(x) is

fn(x) = Φ1Φ2
2

∏
j|(n−3)

Φj(x).
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The corresponding factorization of an(x) is

an(x) = Ψ2
4

∏
j|2(n−3)

Ψj(x).

In general we have two cases:

1) For the case of D
(1)
2n+1 we have

a2n+2(x) = x2(x2 − 4)U2n−2

(x
2

)
.

The roots of a2n+2 are 0, 0,±2 and

2 cos
2kπ

2(2n− 1)
, k = 1, 2, . . . , 2n− 2.

The affine exponents are 0, 2, . . . , 2n − 2, 2n − 1, 2n − 1, 2n, . . . , 2(2n − 1) and the affine

Coxeter number h = 2(2n− 1).

2) For the case of D
(1)
2n

a2n+1(x) = x2(x2 − 4)U2n−3

(x
2

)
and the roots of a2n+1 are 0, 0,±2 and

2 cos
kπ

2(n− 1)
k = 1, 2, . . . , 2n− 3.

Therefore the affine exponents are 0, 1, . . . , n − 2, n − 1, n − 1, n, 2n − 3, 2n − 2 and the

affine Coxeter number is h = 2n− 2.

3.4.4 Coxeter polynomials for the exceptional affine Lie algebras

Affine Lie algebra of type E
(1)
6

The Cartan matrix of E
(1)
6 is

C
E

(1)
6

=



2 0 0 0 0 0 −1

0 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 −1

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

−1 0 0 −1 0 0 2


.
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The polynomial p7(x) is

p7(x) = x7 − 14x6 + 78x5 − 220x4 + 329x3 − 246x2 + 72x

and the polynomial a7(x)

a7(x) = x7 − 6x5 + 9x3 − 4x.

The roots of a7(x) are

0, 1,−1, 1,−1, 2,−2

i.e.

2 cos
mi π

6
,

where mi ∈ {0, 2, 2, 3, 4, 4, 6}. These are the affine exponents for E
(1)
6 and the affine

Coxeter number is h = 6.

The Coxeter polynomial is

f7(x) = x7 + x6 − 2x4 − 2x3 + x+ 1 =
∏
mi

(
x− e

2miπ

6

)
= Φ2

1Φ2Φ2
3.

Affine Lie algebra of type E
(1)
7

The Cartan matrix of E
(1)
7 is

C
E

(1)
7

=



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 −1

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 −1 0 0 0 2


.

The polynomial p8(x) is

p8(x) = x8 − 16x7 + 105x6 − 364x5 + 714x4 − 784x3 + 440x2 − 96x

and the polynomial a8(x)

a8(x) = x8 − 7x6 + 14x4 − 8x2.
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The roots of a8(x) are

0, 0, 1,−1,
√

2,−
√

2, 2,−2

i.e.

2 cos
mi π

12
,

where mi ∈ {0, 3, 4, 6, 6, 8, 9, 12}. These are the affine exponents for E
(1)
7 and h = 12 is

the affine Coxeter number.

The Coxeter polynomial is

f8(x) = x8 + x7 − x5 − 2x4 − x3 + x+ 1 =
∏
mi

(
x− e

2miπ

12

)
= Φ2

1Φ2
2Φ3Φ2

4.

Affine Lie algebra of type E
(1)
8

The Cartan matrix for E
(1)
8 is

2 0 0 0 0 0 0 −1 0

0 2 −1 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0

0 0 −1 2 −1 0 0 0 −1

0 0 0 −1 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 −1 2 −1 0

−1 0 0 0 0 0 −1 2 0

0 0 0 −1 0 0 0 0 2


and

p9(x) = x9 − 18x8 + 136x7 − 560x6 + 1364x5 − 1992x4 + 1679x3 − 730x2 + 120x.

The polynomial a9(x) is given by

a9(x) = x9 − 8x7 + 20x5 − 17x3 + 4x,

with roots

0, 1,−1, 2,−2,

√
5− 1

2
,
−
√

5 + 1

2
,

√
5 + 1

2
,
−
√

5− 1

2

i.e.

2 cos
mi π

30
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where mi = 0, 6, 10, 12, 15, 18, 20, 24, 30 are the affine exponents and h = 30 is the affine

Coxeter number.

The Coxeter polynomial is

f9(x) = x9 + x8 − x6 − x5 − x4 − x3 + x+ 1 =
∏
mi

(
x− e

2miπ

30

)
= Φ2

1Φ2Φ3Φ5.

Affine Lie algebra of type F
(1)
4

The Cartan matrix for F
(1)
4 is 

2 −1 0 0 0

−1 2 −2 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2


with

p5(x) = x5 − 10x4 + 33x3 − 38x2 + 2x+ 12

and

a5(x) = x5 − 5x3 + 4x.

The roots of the polynomial a5(x) are

0, 1,−1, 2,−2

i.e.

2 cos
mi π

6
,

where mi = 0, 2, 3, 4, 6 are the affine exponents and h = 6 is the affine Coxeter number.

The Coxeter polynomial is

f5(x) = x5 − x3 − x2 + 1 =
∏
mi

(
x− e

2miπ

6

)
= Φ2

1Φ2Φ3.

Affine Lie algebra of type G
(1)
2

The Cartan matrix for G
(1)
2 is  2 −1 0

−1 2 −3

0 −1 2
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and the polynomial p3(x) is given by

p3(x) = x3 − 6x2 + 8x.

The polynomial a3(x) is

a3(x) = x3 − 4x,

with roots

0, 2,−2

i.e.

2 cos
mi π

2
,

where mi ∈ {0, 1, 2}. These are the affine exponents for G
(1)
2 and the affine Coxeter number

is h = 2.

The Coxeter polynomial is

f3(x) = x3 − x2 − x+ 1 =
∏
mi

(x− emiπ) = Φ2
1Φ2.

3.5 The A
(1)
n case

The aim of this section is to show that the formulas of Berman, Lee, Moody (see [?]) and

Steinberg (see [?, ?]), for the Coxeter polynomials can be modified and applied to the case

of A
(1)
n . In particular we show in propositions 22 and 23 that these formulas can be used

for the explicit calculation of all the Coxeter polynomials for any affine Lie algebra. We

compute and list in table 2.1 the affine exponents and affine Coxeter number associated

with each Coxeter polynomial of A
(1)
n .

First we fix some notation. Let X
(1)
n be an affine Lie algebra with Cartan matrix C,

{α1, α2, . . . , αn} a set of simple roots of the root system of type Xn and α0 minus the

highest root of Xn. Let V = R − span{α0, α1, α2, . . . , αn}, z = (z0, z1, . . . , zn) ∈ Zn+1

the left zero eigenvector of C, α =
∑n

i=0 ziαi and Ṽ = V/〈α〉 as in section 2.5. Let

σ = σπ(0)σπ(1)σπ(2) . . . σπ(n) ∈ gl(V ) and π ∈ Sn+1 be a Coxeter transformation of X
(1)
n .

From the definition of the simple reflections as σj(αi) = αi−Ci,jαj it follows that σ leaves

α invariant. Therefore σ is defined on Ṽ and it has finite order. Its order is the affine

Coxeter number h, associated with σ.

3.5.1 Berman, Lee, Moody’s method

The defect map of the Coxeter transformation σ is the map ∂ : V → Rα, defined by

∂ = IdV − σh : V → V . In [?] Berman, Lee and Moody consider all cases of affine Lie
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algebras where the Dynkin diagram is bipartite and they show that for all i, ∂(αi) ∈ cZα
for some c ∈ N (for the case A

(1)
n , n odd, they consider the defect map of the Coxeter

transformation corresponding to the largest conjugacy class). Further, they prove that if

β is the branch root of X, then c is the least positive integer such that cwβ∨ belongs to the

co-root lattice and cwβ∨ =
∑n

i=0 miα
∨
i , where mi are the affine exponents. We generalize

this result to include all Coxeter transformations corresponding to A
(1)
n , for n both even

and odd.

First we generalize the notion of a branch vertex of the Dynkin diagram of a simple

Lie algebra to the case of An.

Definition 23. Let Γ be a finite Dynkin diagram of type Xn and b : V (Γ)→ N the weight

function of definition 19. A vertex ri is said to be a branch vertex of Γ if b attains its

maximum value on ri.

Therefore, for the case of the Dynkin diagram of type An, all vertices are branch vertices

with b(ri) = 2 for all i = 1, 2, . . . , n. Now we can extent Berman, Lee and Moody’s result

to the case of A
(1)
n .

Proposition 22. Let Γ be the Dynkin diagram of the simple finite dimensional Lie algebra

of type Xn and let β = αi0 be a root corresponding to a branch vertex of Γ. If c is the least

positive integer such that cwβ∨ belongs to the co-root lattice of Xn, then

cwβ∨ =
n∑
i=0

miα
∨
i ,

where mi are the affine exponents and mi0 is the affine Coxeter number of X
(1)
n associated

with a Coxeter polynomial of X
(1)
n .

Proof. We consider only the case Xn = An since the other cases follow from theorem 7.

We realize (see section 2.2) the root system An as the set of vectors in Rn+1 with length√
2 and whose coordinates are integers and sum to zero. The inner product is the usual

inner product in Rn+1. One choice of a base of the root system of type An is

αi = (0, 0, . . . , 0, 1︸ ︷︷ ︸
i terms

,−1, 0, . . . , 0, 0).

The co-roots are α∨i = 2αi
(αi,αi)

= αi and the corresponding weights are

wi =
1

n+ 1
(n+ 1− i, n+ 1− i, . . . , n+ 1− i︸ ︷︷ ︸

i terms

,−i,−i, . . . ,−i).
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Let di = gcd(n + 1 − i, i) = gcd(n + 1, i). If we choose as branch root the root β = αi0

(or β = αn+1−i0), i0 ∈
{

1, 2, . . . ,
⌊
n+1

2

⌋}
then the smallest positive integer c for which cwβ

belongs to the co-root lattice is c =
n+ 1

di0
(in the case where n is odd and i = n+1

2
we

have c = 2; for the other cases c > 2). For that c we have

cwβ =

(
n+ 1− i0

di0
,
n+ 1− i0

di0
, . . . ,

n+ 1− i0
di0

,− i0
di0
,− i0

di0
, . . . ,− i0

di0

)
=
n+ 1− i0

di0
α1 + 2

n+ 1− i0
di0

α2 + . . .+ i0
n+ 1− i0

di0
αi0+

i0
n− i0
di0

αi0+1 + i0
n− 1− i0

di0
αi0+2 + . . .+

i0
di0
αn.

The coefficients

0,
n+ 1− i0

di0
, 2
n+ 1− i0

di0
, . . . , i0

n+ 1− i0
di0

, i0
n− i0
di0

, i0
n− 1− i0

di0
, . . . ,

i0
di0

are precisely the affine exponents and i0
n+1−i0
di0

is the affine Coxeter number corresponding

to the Coxeter polynomial

(xi0 − 1)(xn+1−i0 − 1).

We illustrate with two examples for the cases A
(1)
4 and A

(1)
5 .

Example 11. In the case of the root system of type A4

i1 i2 i3 i4
the simple roots are

α1 = (1,−1, 0, 0, 0), α2 = (0, 1,−1, 0, 0), α3 = (0, 0, 1,−1, 0), α4 = (0, 0, 0, 1,−1).

If we choose α1 (or α4) as the branch root then

w1 =
1

5
(4,−1,−1,−1,−1)

and 5w1 = 4α1 + 3α2 + 2α3 +α4. The affine Coxeter number is 4 and the affine exponents

0, 1, 2, 3, 4 which give rise to the Coxeter polynomial (x− 1)(x4 − 1).

If we choose α2 (or α3) as the branch root then

w2 =
1

5
(3, 3,−2,−2,−2)
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and 5w1 = 3α1 +6α2 +4α3 +2α4. The affine Coxeter number is 6 and the affine exponents

0, 2, 3, 4, 6 which give rise to the Coxeter polynomial (x2 − 1)(x3 − 1).

Example 12. Dynkin diagram of A5:

i1 i2 i3 i4 i5
In this case the simple roots for A5 are

α1 = (1,−1, 0, 0, 0, 0), α2 = (0, 1,−1, 0, 0, 0), α3 = (0, 0, 1,−1, 0, 0),

α4 = (0, 0, 0, 1,−1, 0), α5 = (0, 0, 0, 0, 1,−1).

The affine Coxeter number corresponding to the Coxeter polynomial (x− 1)(x5 − 1) is 5

and the affine exponents are 0, 1, 2, 3, 4, 5. They correspond to the branch root α1 (or α5)

for which the co-weight is

w1 =
1

6
(5,−1,−1,−1,−1,−1)

and 6w1 = 5α1 + 4α2 + 3α3 + 2α4 + α5.

The branch root α2 (or α4) corresponds to the Coxeter polynomial (x2 − 1)(x4 − 1)

which give rise to the affine Coxeter number 4 and the affine exponents 0, 1, 2, 2, 3, 4.

If we choose the middle root α3, as the branch root then

w3 =
1

2
(1, 1, 1,−1,−1,−1)

and 2w1 = α1 + 2α2 + 3α3 + 2α4 + α5. The affine Coxeter number is 3 and the affine

exponents are 0, 1, 2, 3, 2, 1 which give rise to the Coxeter polynomial (x3 − 1)2.

3.5.2 Steinberg’s method

Steinberg in [?] (see also [?]) shows that for the affine root systems considered in def-

inition 19, their Coxeter polynomial is a product of Coxeter polynomials of type Ai.

Removing the branch root, if g(x) is the Coxeter polynomial of the resulting root system

then (x− 1)2g(x) is the Coxeter polynomial of X
(1)
n .

We generalize Steinberg result to the case of root systems of type A
(1)
n .

Proposition 23. Let β be a branch root, as defined in definition 23 of an affine root

system of type X
(1)
n . If g(x) is the Coxeter polynomial of the root system obtained by

removing β from the root system of type Xn, then (x− 1)2g(x) is a Coxeter polynomial of

X
(1)
n .
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Proof. For Xn 6= An we have Steinberg’s theorem. For Xn = An if we take as branch

root β = αi0 , i0 ∈
{

1, 2, . . . ,
⌊
n+1

2

⌋}
, then the root system obtained by removing β is

Ai0−1 × An−i0 with Coxeter polynomial

g(x) =
(
xi0−1 + xi0−2 + . . .+ x+ 1

) (
xn−i0 + xn−i0−1 + . . .+ x+ 1

)
.

Then (x− 1)2g(x) = (xi0 − 1) (xn−i0 − 1) is one of the Coxeter polynomials of A
(1)
n

Example 13. In the case of the root system of type A
(1)
4 , if we choose α1 (or α4) as the

branch root then the root system obtained by removing α1 is A3 with Coxeter polynomial

x3+x2+x+1. We obtain the Coxeter polynomial (x−1)2(x3+x2+x+1) = (x−1)(x4−1).

If we choose α2 (or α3) as the branch root then the root system obtained by removing

the branch root is A1×A2 with Coxeter polynomial (x+1)(x2 +x+1). The corresponding

Coxeter polynomial is (x− 1)2(x+ 1)(x2 + x+ 1) = (x2 − 1)(x3 − 1).

Example 14. In the case of the root system of type A
(1)
5 if we choose α1 (or α5) as the

branch root then the root system obtained by removing the branch root is A4 with Coxeter

polynomial x4 + x3 + x2 + x + 1. We obtain the Coxeter polynomial (x − 1)2(x4 + x3 +

x2 + x+ 1) = (x− 1)(x5 − 1).

If we choose α2 (or α4) as the branch root then the root system obtained by removing

the branch root is A1 ×A3 with Coxeter polynomial (x+ 1)(x3 + x2 + x+ 1). We obtain

the Coxeter polynomial (x− 1)2(x+ 1)(x3 + x2 + x+ 1) = (x2 − 1)(x4 − 1).

If we choose α3 as the branch root then the root system obtained by removing α3

is A2 × A2 with Coxeter polynomial (x2 + x + 1)2. We obtain the Coxeter polynomial

(x− 1)2(x2 + x+ 1)2 = (x3 − 1)2.
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Chapter 4

Coxeter polynomials of Salem trees

If only I had the theorems! Then I should find the proofs easily enough. —

Bernhard Riemann

4.1 Introduction

In this chapter we will be concerned only with simple graphs that are trees. This class of

graphs Γ has the property that all their Coxeter elements are conjugate in the correspond-

ing Coxeter group WΓ (see proposition 7 and also [?, ?, ?]) and therefore we can speak

about the Coxeter polynomial of Γ which is the characteristic polynomial of a Coxeter

element. We denote this polynomial by Γ(x). Another important property of trees is that

they are bipartite, i.e. the set of their vertices, V(Γ), can be partitioned into two sets

V1,V2 with the property v1, v2 ∈ V1 or v1, v2 ∈ V2 implies (v1, v2) 6∈ E(Γ). The adjacency

matrix of Γ is the n × n symmetric matrix A ∈ Mn(Z), with Ai,j = 1 if (vi, vj) ∈ E(V )

and Ai,j = 0 if (vi, vj) 6∈ E(V ). The characteristic polynomial of Γ is the polynomial

χΓ(x) = det (xIn − A).

For a monic polynomial p(x) ∈ Z[x] the set of its zeros {z ∈ C : p(z) = 0} will be

denoted by Z(p) and the maximum value of the set {|z| : z ∈ Z(p)} by ρ(p). With the

polynomial p(x) we associate the polynomial f(x) = xnp
(
x+ 1

x

)
, where n = deg(p), which

is reciprocal (see section 2.6). The sets Z(p) and Z(f) are related in the following way.

If r ∈ Z(p) is real and z = r±
√
r2−4
2

then z ∈ Z(f). Furthermore, if |r| ≤ 2 then |z| = 1

while if |r| > 2 then z ∈ R and |z| > 1.

A Coxeter graph Γ is called cyclotomic graph if all the roots of its Coxeter polynomial

are on the unit disk or equivalently if its Coxeter polynomial is a product of cyclotomic

polynomials. It is called a Salem graph if its Coxeter polynomial has only one root outside

the unit circle or equivalently its Coxeter polynomial is a product of a Salem and cyclotomic

polynomials.
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t d v1,1d . . . v1,p1−3d v1,p1−2d&%
'$

H1

HHHHv2,1d· · · v2,p2−3d
H
HHHv2,p2−2d&%
'$

H2

· · ·

vk,1d
...
vk,pk−3d

vk,pk−2

d&%
'$

Hk

d
vj,pj−1

d
vj,pj−2

d
vj,pj

Hj for j = 1, 2, . . . , i.

d
vj,pj−2

d
vj,pj−1

d
vj,pj

Hj for j = i + 1, i + 2, . . . , k.

Figure 4.1: The graphs S
(i)
p1,...,pk

The join of the Coxeter graphs Γ1,Γ2, . . . ,Γk on the vertices vi ∈ V(Γi) is the graph

obtained by adding a new vertex and joining that to vi for all i = 1, 2, . . . , k. In [?] it

was shown that if a noncyclotomic tree is the join of cyclotomic trees then it is a Salem

tree. For k ∈ N, p1, . . . , pk ∈ N and i ∈ {0, 1, 2, . . . , k} consider the graph S
(i)
p1,...,pk which

is the join of the Dynkin diagrams Dp1 , . . . , Dpi and Api+1
, . . . , Apk , as shown in fig. 4.1.

For particular values of i and pj the graphs S
(i)
p1,··· ,pk give rise to well known graphs. For

k = 2, i = 0 we obtain the Dynkin diagrams Ap1+p2+1, for k = 3, i = 0, p1 = 2, p2 = 1

we obtain the graphs Ep3+4, for k = 3, i = 0, pj = 2 the affine Dynkin diagram E
(1)
6 ,

for k = 3, i = 1, p2 = p3 = 1 the affine Dynkin diagrams D
(1)
p1+2 and many others. The

polynomial S
(0)
1,2,6(x) is Lehmer’s polynomial which is conjectured to have the smallest

Mahler measure among the monic integer polynomials (see section 2.6 and [?]). We prove

three theorems about the Coxeter polynomials S
(i)
p,q,r(x) for i = 0, 1, 2, 3. In theorem 9 we

explicitly calculate the Coxeter polynomials S
(i)
p,q,r(x) for i = 0, 1, 2, 3 and in theorem 10 we

show that the limits limp→∞ ρ
(
S

(i)
p,q,r

)
, limq→∞ ρ

(
S

(i)
p,q,r

)
and limr→∞ ρ

(
S

(i)
p,q,r

)
are Pisot

numbers. We also prove that limp,q,r→∞ ρ
(
S

(i)
p,q,r

)
= 2 for all i = 0, 1, 2, 3. In [?] Lakatos

showed that limp1,...,pk→∞ ρ
(
S

(0)
p1,...,pk

)
= k− 1. In theorem 11 we generalize that result by

showing that limp1,...,pk→∞ ρ
(
S

(i)
p1,...,pk

)
= k − 1 for all i ∈ {0, 1, . . . , k}.

Remark 5. James McKee and Chris Smyth in [?] gave a characterization of all Salem trees.

It follows from their characterization that the cyclotomic cases of S
(i)
p1,...,pk are those for

k = i = 2 or k = 3, i = 0, p1 = p2 = p3 = 2 or k = 3, i = 0, p1 = 1, p2 = p3 = 2 or

k = 3, i = 0, p1 = 1, p2 = 2, p3 = 5 and subgraphs of these. For all the other cases, S
(i)
p1,...,pk

are Salem trees.
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4.2 Coxeter polynomials of the S
(i)
p1,...,pk graphs

Theorem 9. For i ≤ 2 the Coxeter polynomial S
(i)
p,q,r(x), of the Coxeter graph S

(i)
p,q,r is

given by the formula

x− 1

(x+ 1)i
S(i)
p,q,r(x) = xr+2F (i)

p,q(x)−
(
F (i)
p,q

)∗
(x).

where the polynomials F
(i)
p,q are

F (0)
p,q (x) = xp+q − Ap−1(x)Aq−1(x),

F (1)
p,q (x) = xp+q−2(x− 1)−

(
xp−2 + 1

)
Aq−1(x) and

F (2)
p,q (x) = xp+q−4(x− 1)2 −

(
xp−2 + 1

) (
xq−2 + 1

)
.

The Coxeter polynomial S
(3)
p,q,r(x) is given by the formula

1

(x+ 1)3
S(3)
p,q,r(x) = xrF (3)

p,q (x) +
(
F (3)
p,q

)∗
(x)

with F
(3)
p,q (x) = F

(2)
p,q (x).

Proof. For simplicity of notation, we will write uj, vj, wj instead of v1,j, v2,j, v3,j respec-

tively. Applying proposition 11 to the splitting edge (t, u1) of the graph S
(0)
p,q,r we see

that

S(0)
p,q,r(x) = Ap(x)Aq+r+1(x)− xAp−1(x)Aq(x)Ar(x).

The Coxeter polynomial Am(x) can be easily calculated using proposition 11 (see also

section 3.3). It satisfies the recurrence

Am(x) = Am−1(x) + x (Am−1(x)− Am−2(x))

and is given by the formula Am(x) = xm + xm−1 + . . .+ x+ 1. Therefore

(x− 1)3S(0)
p,q,r(x) = xp+q+r+4 − 2xp+q+r+3 + xp+r+2 + xq+r+2 − xr+2

+xp+q+2 − xp+2 − xq+2 + 2x− 1⇒

(x− 1)2S(0)
p,q,r(x) = xp+q+r+2(x− 1)− xr+2(xq − 1)Ap−1(x)

+x2(xq − 1)Ap−1(x)− x+ 1⇒

(x− 1)S(0)
p,q,r(x) = xp+q+r+2 − xr+2Ap−1(x)Aq−1(x) + x2Ap−1(x)Aq−1(x)− 1

= xr+2F (0)
p,q (x)−

(
F (0)
p,q

)∗
(x).

90

Cha
ral

am
po

s E
vri

pid
ou



The cases i = 1, 2 are proved similarly by applying proposition 11 to the splitting edges

(up−2, up) and using the formula for S
(i−1)
p,q,r (x).

For the Coxeter polynomial S
(3)
p,q,r we apply proposition 11 to the splitting edge (wr−2, wr)

to obtain

S(3)
p,q,r(x) = (x+ 1)S

(2)
p,q,r−1 − x(x+ 1)S

(2)
p,q,r−3.

Therefore

x− 1

(x+ 1)3
S(3)
p,q,r(x) =

x− 1

(x+ 1)2
S

(2)
p,q,r−1 − x

x− 1

(x+ 1)2
S

(2)
p,q,r−3 =

xr+1F (2)
p,q (x)−

(
F (2)
p,q

)∗
(x)− xrF (2)

p,q (x) + x
(
F (2)
p,q

)∗
(x)⇒

1

(x+ 1)3
S(3)
p,q,r(x) = xrF (2)

p,q (x) +
(
F (2)
p,q

)∗
(x)

Remark 6. For the case i = 1 we could have applied proposition 11 to the splitting edge

(up−2, up) to obtain

1

(x+ 1)
S(1)
p,q,r(x) = xpF (0)

q,r (x) +
(
F (0)
q,r

)∗
(x).

Similarly by noting that q, r are interchangeable in S
(1)
p,q,r and p, q are interchangeable in

S
(2)
p,q,r, then applying proposition 11 to the splitting edge (vq−2, vq) we obtain

1

(x+ 1)2
S(2)
p,q,r(x) = xpF (1)

q,r (x) +
(
F (1)
q,r

)∗
(x).

For the next theorem we need two lemmas first. The first lemma is due to Hoffman

and Smith (see [?]).

Lemma 12 (A. J. Hoffman, J. H. Smith). If k, p1, . . . , pk ∈ N, 0 ≤ i ≤ k and p′j > pj for

some 1 ≤ j ≤ k then

1. ρ
(
S

(i)
p1,...,pj ,...,pk

)
≤ ρ

(
S

(i)

p1,...,p′j ,...,pk

)
if j > i and

2. ρ
(
S

(i)
p1,...,pj ,...,pk

)
≥ ρ

(
S

(i)

p1,...,p′j ,...,pk

)
if j ≤ i.

Equality can happen if and only if the graph S
(i)

p1,...,p′j ,...,pk
is cyclotomic.

We also need the following lemma.

Lemma 13. Suppose that fn(x) = xng(x) + h(x) is a sequence of functions such that

g, h are continuous, for all n ∈ N fn(zn) = 0 and that limn→∞ zn = z0. If |z0| > 1 then

g(z0) = 0 while if |z0| < 1 then h(z0) = 0.
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Proof. Suppose that |z0| > 1. Since h is continuous and |g(zn)| = |h(zn)|
|znn |

it follows that

limn→∞ |g(zn)| = 0. Using |g(z0)| − |g(zn)| ≤ |g(z0) − g(zn)| −−−→
n→∞

0 we conclude that

g(z0) = 0. The proof for the case |z0| < 1 is similar.

Theorem 10. The spectral radius, ρ
(
S

(i)
p,q,r

)
of the Coxeter transformation of S

(i)
p,q,r sat-

isfies

i) lim
r→∞

ρ
(
S(i)
p,q,r

)
= ρ

(
F (i)
p,q

)
and ρ

(
F

(i)
p,q

)
is a Pisot number for i = 0, 1, 2,

ii) lim
p→∞

ρ
(
S(i)
p,q,r

)
= ρ

(
F (i−1)
q,r

)
for i = 1, 2, 3,

iii) lim
p,q→∞

ρ
(
S(i)
p,q,r

)
= ρ

(
xr+2 − 2xr+1 + 1

)
for i = 0, 1, 2,

iv) lim
q,r→∞

ρ
(
S(i)
p,q,r

)
= ρ

(
xp − 2xp−1 − 1

)
for i = 1, 2, 3 and

v) lim
p,q,r→∞

ρ
(
S(i)
p,q,r

)
= 2 for all i = 0, 1, 2, 3.

Proof. From theorem 9 and lemma 13 we conclude that in order to prove (i) is enough

to show that the sequence
(
ρ(S

(i)
p,q,r)

)
r∈N

is convergent. It follows from lemma 12 that

for i = 0, 1, 2 the sequence
(
ρ(S

(i)
p,q,r)

)
r∈N

is increasing. Since the polynomials S
(i)
p,q,r(x)

are of the form S
(i)
p,q,r(x) = xr+2F (x) +G(x) where F (x), G(x) are monic polynomials, the

sequence
(
ρ(S

(i)
p,q,r)

)
r∈N

is also bounded. For, ifM is large enough such that F (x), G(x) > 0

for all x ≥ M , then z < M for all z ∈ Z
(
S

(i)
p,q,r

)
. We now prove that ρ

(
F

(i)
p,q

)
is a Pisot

number (cf. lemma 4.3 in [?]). Let ε > 0 be small enough and r be large enough such that

ρ
(
S

(i)
p,q,r

)
> 1 + ε and

∣∣∣xr+2F
(i)
p,q(x)

∣∣∣ > ∣∣∣(F (i)
p,q

)∗
(x)
∣∣∣ for every |x| = 1 + ε. From Rouche’s

theorem it follows that the polynomial F
(i)
q,r(x) has only one root, let’s say z0, outside

the unit circle. If z0 was a Salem number then we would have F ∗(z0) = 0 and therefore

S
(i)
p,q,r(z0) = 0 for all large r, contrary to lemma 12. Therefore z0 = ρ

(
F

(i)
p,q(x)

)
and it is a

Pisot number.

The proof of (ii) is similar to that of (i) and it follows from lemma 13 using the

alternative form of S
(i)
p,q,r, i = 1, 2, 3 given in remark 6. If we set `q,r = limp→∞ S

(0)
p,q,r

then it follows from lemma 12 that `q,r is increasing on q. Since `q,r = ρ
(
F

(0)
q,r

)
>

1 and (x − 1)2F
(0)
q,r = xq (xr+2 − 2xr+1 + 1) + xr − 1 we deduce from lemma 13 that

limp,q→∞ ρ
(
S

(0)
p,q,r(x)

)
= ρ (xr+2 − 2xr+1 + 1). The other cases of (iii) and (iv) are done

similarly.

It remains to prove (v). Let `p = limq,r→∞ ρ
(
S

(0)
p,q,r(x)

)
. The polynomial F (x) =

xp+2−2xp+1 +1 is decreasing in
(

1, 2p+2
p+2

)
, increasing in

(
2p+2
p+2

, 2
)

, F (1) = 0 and F (2) = 1.

Therefore the only root of H outside the unit circle is `p and satisfies 2p+2
p+2

< `p < 2. We

conclude that limp,q,r→∞ ρ
(
S

(0)
p,q,r(x)

)
= 2. The cases i = 1, 2, 3 are similar.
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Theorem 11. For k, p1, . . . , pk ∈ N and all i ∈ {0, 1, . . . , k}

lim
p1,...,pk→∞

ρ
(
S(i)
p1,...,pk

)
= k − 1

Proof. The proposition 11 applied to the splitting edge (t, vk,1) yields (x− 1)S
(i)
p1,...,pk(x) =

xpkG(x)−G∗(x) where

G(x) = S(i)
p1,··· ,pk−1

(x)−Dp1(x) . . . Dpi(x)Api+1
(x)Apk−1

(x),

for any i ∈ {0, 1, . . . , k}. Therefore limpk→∞ ρ
(
S

(i)
p1,...,pk(x)

)
= ρ(G(x)). Inductively we

show that limp2,...,pk→∞ ρ
(
S

(i)
p1,...,pk(x)

)
= ρ(H(x)) where the polynomial H(x) is given by

H(x) =

xp1 − (k − 1)xp1−1 − k + 2, ifi 6= 0,

xp1+1 − (k − 1)xp1 + k − 2, ifi = 0.

Hence limp1,p2,...,pk→∞ ρ
(
S

(i)
p1,...,pk(x)

)
= k − 1.

Example 15. For the case of the Dynkin diagrams Dn, theorem 9 gives

Dn(x) = S
(0)
1,1,n−3(x) =

1

x− 1

(
xn−1(x2 − 1) + x2 − 1

)
= xn + xn+1 + x+ 1.

For the affine Dynkin diagrams D
(1)
n , theorem 9 gives

D(1)
n (x) = S

(1)
n−2,1,1(x) =

x+ 1

x− 1

(
x3(xn−2 − xn−3 − xn−4 − 1) + xn−2 + x2 + x− 1

)
=(

xn−2 − 1
)

(x− 1) (x+ 1)2 .

For the En diagrams it gives

En(x) = S
(0)
1,2,n−4(x) =

1

x− 1

(
xn−2(x3 − x− 1) + x3 + x2 − 1

)
.

All these agree with the known formulas of Coxeter polynomials of the Dynkin and En

diagrams (see section 3.4 and also [?] and [?]).

We also prove the following theorem concerning joins of Coxeter graphs.

Theorem 12. Let Γ be the join of the simple graphs Γi, i = 1, 2, . . . , n. Suppose that z

is a zero of Γi(x) with multiplicity mi. Then z is a zero of the Coxeter polynomial Γ(x)

with multiplicity at least

min{m−mi : i = 1, 2, . . . , n}
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where m = m1 +m2 + . . .+mn.

Proof. Let us denote by Γ(k) the join of the graphs Γi at the vertices vi ∈ V(Γi), i =

1, 2, . . . , k. The graph Γ(n) looks like the one in fig. 4.2.
t d d

v1

Γ1

��
��

HH
HHH

HH d��
��
v2

Γ2

. .
.

d��
��
vn

Γn

Figure 4.2: The join of the graphs Γi

Applying proposition 11 to the splitting edge (t, vn) we obtain

Γ(n)(x) = Γ(n−1)(x)Γn(x)− xΓ̃n(x)Γ1(x)Γ2(x) . . .Γn−1(x),

where Γ̃n is the subgraph of Γn on the vertices V (Γn) \ {vn}. Since the polynomial Γ(2)

satisfies the relation

Γ(2)(x) = (x− z)m1+m2f(x)− (x− z)m1g(x)− (x− z)m2h(x)

for some polynomials f, g, h we can now proceed by induction and see that the theorem

is true.

Theorem 12 generalize a theorem of V.F.Kolmykov (see [?]) which says that if Γ is

the join of the Coxeter graphs Γ1,Γ2 and z is a root of the Coxeter polynomials Γ1(x)

and Γ2(x) then Γ(z) = 0. According to [?] if z 6= ±1 then mi ∈ {0, 1} and therefore in

that case, theorem 12 can be found in [?] where the authors have proved that z is a zero

of Γ(x) with multiplicity at least m − 1. For z = ±1 however z can be a zero of Γ(x)

with multiplicity less than m − 1. For example consider the join Γ of the affine Dynkin

diagrams D
(1)
4 as shown in fig. 4.3. The polynomials Γ(x) and D

(1)
4 (x) both have 1 as a

zero with multiplicity 2. d d
dZ

ZZ
�
��

d d�
��

Z
ZZ
d
d d
dZ

ZZ
�

��

d d�
��

Z
ZZ

Figure 4.3: The join of two D
(1)
4
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Chapter 5

Hamiltonian systems

Integrable systems, what are they? It’s not easy to answer precisely. The

question can occupy a whole book, or be dismissed as Louis Armstrong is

reputed to have done once when asked what jazz was—’If you gotta ask, you’ll

never know!’—Nigel Hitchin

5.1 Hamiltonian systems

One of the most interesting type of nonlinear systems of differential equations are the

Hamiltonian systems. They arise in many physical problems. The Hamiltonian equations

for such a system are obtained by a single function, the Hamiltonian.

Definition 24. Let H ∈ C∞(R2n) where H = H(q1, q2, . . . , qn, p1, . . . , pn) = H(q, p). A

dynamical system of the form

q̇i =
∂H

∂pi
, i = 1, 2, . . . , n,

ṗi = −∂H
∂qi

, i = 1, 2, . . . , n

(5.1)

is called Hamiltonian system. Equations (5.1) are known as Hamilton’s equations. The

coordinates q, p denote respectively, the positions and the momenta and the Hamiltonian

as the total energy of the system.

A more compact form of Hamilton’s equations is

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

,
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where q̇ = (q̇1, . . . , q̇n), ṗ = (ṗ1, . . . , ṗn) and ∂H
∂q

=
(
∂H
∂q1

. . . ∂H
∂qn

)
, ∂H
∂p

=
(
∂H
∂p1

. . . ∂H
∂pn

)
. Intro-

ducing x = (q, p) and the symplectic matrix J defined by

J =

(
0 In

−In 0

)
,

where In is the n× n identity matrix, then Hamilton’s equations (5.1) can be written as

ẋ = J∇H,

where ∇H is the column vector
(
∂H
∂x1
, ∂H
∂x2
, . . . , ∂H

∂x2n

)T
.

Example 16. Consider the Hamiltonian

H =
n∑
i=1

epi+
1
2

(qi+1−qi−1) ∈ C∞
(
R2n
)
,

where q0 = qn+1 = 0. Then H gives rise to the system

q̇i = epi+
1
2

(qi+1−qi−1), i = 1, 2, . . . , n

ṗ1 =
1

2
ep2+ 1

2
(q3−q1),

ṗi =
1

2

(
epi+1+ 1

2
(qi+2−qi) − epi−1+ 1

2
(qi−qi−2)

)
, i = 2, . . . , n− 1,

ṗn = −1

2
epn−1+ 1

2
(qn−qn−2),

The transformation ui = epi+
1
2

(qi+1−qi−1), i = 1, 2, . . . , n transforms the system to the

system

u̇1 = u1u2,

u̇i = ui (ui+1 − ui−1) , i = 2, 3, . . . , n− 1,

u̇n = −unun−1.

This system is the well known KM system. It was studied first by Volterra in [?] and it

was first solved by Kac and van-Moerbecke in [?].

Lemma 14. For a Hamiltonian system (5.1) the total energy (i.e. its Hamiltonian) re-

mains constant along the solutions of (5.1).

Proof. If x = (q, p) is a solution of (5.1) then

Ḣ =
n∑
i=1

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
=

n∑
i=1

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0,
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and therefore H is constant.

Example 17. The Newtonian system

ẍ = f(x)

is a Hamiltonian system. It can be written as

ẋ = y

ẏ = f(x).

A special type of Hamiltonian that often occurs in physical systems is

H =
1

2
y2 + U(x),

where 1
2
y2 is the kinetic energy and U(x) = −

∫ x
x0
f(t)dt is the potential energy.

5.2 Poisson brackets

The symplectic matrix J can be used to define an operation, called the canonical Poisson

bracket, between two smooth functions on R2n. Let f, g be two smooth functions on R2n,

on the variables q, p. The (canonical) Poisson bracket of f and g is defined by

{f, g} = ∇fTJ∇g =
n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

With respect to the Poisson bracket, Hamilton’s equations can be written as

ẋi = {xi, H} , i = 1, 2, . . . , 2n.

In general for any smooth function f ∈ C∞ (R2n), if x is a solution of (5.1) then

ḟ = ∇fTJ∇H = {f,H} .

The canonical Poisson bracket satisfies the following properties.

1. (skew-symmetry) {f, g} = −{g, f},

2. (Bilinearity) {λf + g, h} = λ {f, h}+ {g, h},

3. (Jacobi identity) {{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0,
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4. (Leibniz rule) {fg, h} = f {g, h}+ g {f, h}.

A smooth function f is called a first integral (or a constant of motion) of the system (5.1),

if ḟ(x) = 0 for any solution x of (5.1). Equivalently, if {f,H} = 0.

For example, due to property 1 of Poisson brackets we derive lemma 14, i.e. that the

Hamiltonian of the system (5.1) is constant of motion (in Hamiltonian systems the total

energy is conserved).

Example 18. (The Holt Hamiltonian, (see [?, ?]))

A straightforward computation shows that the Hamiltonian system defined by the

Hamiltonian

H1 =
1

2

(
p2

1 + p2
2

)
+ e(q2−

√
3q1) + e(q2+

√
3q1) + e−2q2 ,

has the function

I1 = p3
1 − 3p1p

2
2 + 3

(
e(q2−

√
3q1) + e(q2+

√
3q1) − 2e−2q2

)
p1−

3
√

3
(
e(q2+

√
3q1) − e(q2−

√
3q1)
)
p2

as a constant of motion.

The Hamiltonian system defined by the Hamiltonian function

H2 =
1

2

(
p2

1 + p2
2

)
+

3

4
q

4
3
1 +

(
q2

2 + λq1

)− 2
3 ,

where λ is a constant, has the following function as a constant of motion

I2 = p3
2 +

3

2
p2p

2
1 +

(
−9

2
q

4
3
1 + 3q2

2q
− 2

3
1 + 3λq

− 2
3

1

)
p2 + 9p1q2q

1
3
1 .

Example 19 (The Toda lattice). The Hamiltonian system defined by the Hamiltonian

function

H(q1, q2, . . . , qn, p1, p2, . . . , pn) =
n∑
i=1

1

2
p2

1 +
n−1∑
i=1

eqi−qi+1 ,

is the well known classical, non-periodic Toda lattice. It was first studied by Morikazu

Toda in [?]. Hamilton’s equations become

q̇i = pi, i = 1, 2, . . . , n,

ṗi = eqi−1−qi − eqi−qi+1 , i = 1, 2, . . . , n,

where we set q0 = qn+1 = 0. Flaschka’s transformation (see [?, ?, ?])

ai =
1

2
e

1
2

(qi−qi+1), bi = −1

2
pi,
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transforms the system to

ȧi = ai(bi+1 − bi), i = 1, 2, . . . , n− 1

ḃi = 2(a2
i − a2

i−1), i = 1, 2, . . . , n.

Flaschka’s transformation can be used to find plenty constants of motion for this sys-

tem. In fact, if L is the Jacobi matrix

L =



b1 a1 0 · · · · · · 0

a1 b2 a2 · · ·
...

0 a2 b3

. . .
...

. . .
. . .

...
...

. . .
. . . an−1

0 · · · · · · an−1 bn


then it can be proved that the functions

Hi =
1

i
tr
(
Li
)
,

are all constants of motion for the Toda lattice (see proposition 26). Note that

H1 =
n∑
i=1

bi = −1

2
(p1 + p2 + . . .+ pn)

corresponds to the total momentum and

H2 =
1

2

n∑
i=1

b2
i +

n∑
i=1

a2
i

is the Hamiltonian of the system.

Poisson who introduced, together with his teacher Joseph-Louis Lagrange, the Poisson

bracket, proved the following proposition.

Proposition 24 (S. D. Poisson). If I, J are first integrals of a Hamiltonian system,

then the function {I, J} is also a first integral of the system.

Jacobi gave a simple proof of Poisson’s proposition, which rely on the Jacobi identity

of the Poisson bracket.

Proof. (Jacobi) If I, J are first integrals of the Hamiltonian system with Hamiltonian

function H, then {I,H} = {J,H} = 0. From the Jacobi identity of the Poisson bracket it
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follows that

{{I, J} , H} = {I, {J,H}}+ {{I,H}, J} = 0

and therefore {I, J} is indeed a first integral.

Definition 25. A first integral I is polynomial if I ∈ R[x] while it is rational if I ∈ R(x).

There is a more general definition of Poisson brackets, than the canonical Poisson

bracket, defined on associative algebras; the canonical Poisson bracket is defined on the

algebra of smooth function on R2n.

Definition 26. • If A is a commutative associative algebra with unity (with respect

to an operation “ · ”), then a Poisson bracket, {, }, is a Lie bracket which further, it

satisfies the Leibniz rule

{fg, h} = f {g, h}+ g {f, h} , ∀f, g, h ∈ A,

i.e. the linear map adf (g) = {f, g} is a derivation with respect to the operation “ ·”.

• A smooth Poisson structure (or simply a Poisson structure) on a smooth finite di-

mensional manifoldM is a Poisson bracket defined on the algebra C∞(M) of smooth

functions on M.

Hamiltonian systems can be defined in a more general framework, in the sense that

the corresponding Poisson structure is not canonical.

Let { , }, be a Poisson bracket on the manifold M , (x1, x2, . . . , xn) local coordinates on

M and H ∈ C∞(M). A dynamical system of the form

ẋi = {xi, H} , i = 1, 2, . . . , n, (5.2)

is called a Hamiltonian system.

For simplicity we give the definitions in the caseM = Rn with coordinates (x1, . . . , xn).

The Poisson structure can be encoded in a matrix known as the Poisson matrix of the

Poisson structure. This matrix is defined by the functions {xi, xj}; i.e. is the n×n matrix

π = (xi,j)1≤i,j≤n with xi,j = {xi, xj}.

Example 20. The Poisson matrix of the canonical Poisson structure is the matrix(
0 In

−In 0

)
.

The Poisson bracket of two functions f, g on Rn can be written in terms of the Poisson

matrix π, as

{f, g} = ∇fTπ∇g.
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In terms of the Poisson matrix, the Hamiltonian system 5.2, can be written as

ẋ = π∇H.

Note that due to the skew-symmetry of the Poisson bracket it follows that the Poisson

matrix is skew-symmetric. However, given a skew-symmetric matrix π, then, the bracket

{f, g} = ∇fTπ∇g satisfies all but the Jacobi identity, the properties of the Poisson bracket.

The Leibniz rule rests upon the Leibniz rule for the derivation of the product of two

functions. From the Leibniz rule and the fact that the second order partial derivatives of

a smooth function commute, we obtain the following formula.

If f, g, h are smooth functions on Rn, then

{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} =∑
1≤i,j,k,l≤n

xl,k
∂xi,j
∂xl

(
∂f

∂xi

∂g

∂xj

∂h

∂xk
+
∂f

∂xj

∂g

∂xk

∂h

∂xi
+

∂f

∂xk

∂g

∂xi

∂h

∂xj

)
=

∑
1≤i,j,k≤n

n∑
l=1

(
xl,k

∂xi,j
∂xl

+ xl,i
∂xj,k
∂xl

+ xl,j
∂xk,i
∂xl

)
∂f

∂xi

∂g

∂xj

∂h

∂xk
.

Therefore we have the following proposition

Proposition 25. If π = (xi,j) is a skew-symmetric n× n matrix of smooth functions on

Rn = (x1, x2, . . . , xn), then the bracket, {, }, defined by the formula

{f, g} = ∇fTπ∇g, f, g ∈ Rn

is a Poisson bracket if and only if for all 1 ≤ i < j < k ≤ n,

{{xi, xj} , xk}+ {{xj, xk} , xi}+ {{xk, xi} , xj} = 0.

Definition 27. The rank of the Poisson matrix of the Poisson structure, {, }, on Rn at

the point x0 ∈ Rn is the rank of the Poisson matrix evaluated at the point x0, and is

denoted Rankx0(π). The maximum maxx0∈Rn Rankx0(π) is the rank of the Poisson matrix

and is denoted Rank (π).

Remark 7. Note that since the Poisson matrix is skew-symmetric, its rank is always even.

Definition 28. A Casimir function is a smooth function C ∈ C∞(Rn) such that

{C, f} = 0, ∀f ∈ C∞ (Rn) .

If the rank of the Poisson structure is k, then there are n− k Casimirs.
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Example 21. For the Toda lattice (19) the function H1 = b1 + b2 + . . .+ bn is a Casimir.

5.3 Liouville integrability

Definition 29. The set of elementary functions f(x) in Rn is the set E ⊇ R(x) with the

property

1. If f1, f2 ∈ E then f1 + f2, f1 − f2, f1 · f2,
f1
f2
∈ E .

2. If f0, f1, . . . , fn ∈ E , f a smooth function in Rn and f0 + f1f + f2f
2 + . . . + fkf

k

then f ∈ E .

3. If f ∈ E then ∂f
∂xi
∈ E .

4. If f ∈ E then ef and log f ∈ E .

For example the function F (x) = x
3
√
ex2+y−ex+y2 log2(

√
x+2y) is elementary. The function∫ x

0
tet

2
dt is elementary. There are functions which are not elementary, but to prove that

a function is not elementary is far from being obvious. For example it was proved by

Liouville himself (see [?]) that the function
∫ x

0
e−t

2
dt is not elementary.

Definition 30. • The set Λ containing the elementary functions and also the functions

satisfying the property

5. If f ∈ Λ then
∫ x

0
fdxi ∈ Λ

is called the set of Liouvillian functions. If f ∈ Λ then we say that f can be

represented by quadratures.

• A set of functions {f1, f2, . . . , fn} is said to be involutive (or that the functions

f1, f2, . . . , fn are in involution) if {fi, fj} = 0 for all i, j = 1, 2, . . . , n.

• The Hamiltonian system (5.1) is said to be (Liouville) integrable if it admits n

independent first integrals in involution.

• In general the Hamiltonian system (5.2) on Rn defined by a Poisson bracket of rank

2r is said to be (Liouville) integrable if it admits n− r independent first integrals in

involution.

Remark 8. The terminology integrable system is in the sense that if a Hamiltonian sys-

tem is integrable then it can be solved by quadratures; the solutions of the system are

Liouvillian functions (see [?]).
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5.4 Lax pairs

Peter Lax in [?] noted that for L = −6 d2

dx2
− u and B = −4 d3

dx3
− u d

dx
− 1

2
ux, the equation

dL

dt
= [B,L] ,

is equivalent to the KdV equation

ut + uux + uxxx = 0.

Definition 31. • A Lax pair is a pair of matrices L,B ∈ Mk(C
∞(Rn)) such that

L̇ = [B,L].

• A Lax pair L,B for which the equation L̇ = [B,L] is equivalent to the Hamiltonian

system (5.2) is called a Lax pair for (5.2).

The definition will be better understood with the following examples

Example 22. The system

ẋ1 = x1(x2 − x3),

ẋ2 = x2(x3 − x1),

ẋ3 = x3(x1 − x2)

is equivalent to the Lax pair L,B with

L =

 0 1 x1

x2 0 1

1 x3 0

 , B =

x1 + x2 0 1

1 x2 + x3 0

0 1 x1 + x3

 .

It is straightforward to verify that

L =

 0 0 ẋ1

ẋ2 0 0

0 ẋ3 0

 =

 0 0 x1(x2 − x3)

x2(x3 − x1) 0 0

0 x3(x1 − x2) 0

 = [L,B] .

In the next example we see that a system can admit several Lax pairs.

Example 23. The KM system is defined by the equations

ẋ1 = x1x2,

ẋi = xi(xi+1 − xi−1), i− 2, 3, . . . , n− 1,

ẋn = −xnxn−1.

103

Cha
ral

am
po

s E
vri

pid
ou



It admits several Lax pairs. The pair L,B with

L =



x1 0
√
x1x2 0 · · · 0

0 x1 + x2 0
√
x2x3

...

√
x1x2 0 x2 + x3

. . .

0
√
x2x3

...
. . .

√
xn−1xn

xn−1 + xn 0

0 · · · √
xn−1xn 0 xn


and

B =



0 0 1
2

√
x1x2 0 . . . 0

0 0 0 1
2

√
x2x3

...

−1
2

√
x1x2 0 0

. . .

0 −1
2

√
x2x3

...
. . . 1

2

√
xn−1xn

0 0

0 · · · −1
2

√
xn−1xn 0 0


is a Lax pair of the KM system. So is the Lax pair

L =



0 1 0 · · · · · · 0

x1 0 1
. . .

...

0 x2 0
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . 1

0 · · · · · · 0 xn 0


and

B =



0 1 0 · · · · · · 0

0 0 1
. . .

...

x1x2 0 0
. . .

...
... x2x3

. . .
. . . 0

...
. . .

. . . 1

0 · · · · · · xn−1xn 0 0


.
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Finally, there is a symmetric version due to Moser (see [?]) where

L =



0
√
x1 0 · · · · · · 0

√
x1 0

√
x2

. . .
...

0
√
x2 0

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
√
xn

0 · · · · · · 0
√
xn 0


and

B =



0 0
√
x1x2 · · · · · · 0

0 0 0
. . .

...

−√x1x2 0 0
. . .

√
x2x3

...
... −√x2x3

. . .
. . .

√
xn−1xn

...
. . .

. . . 0

0 · · · · · · −√xn−1xn 0 0


.

Example 24. The Lax pair

L =



0
√
x1 0 · · · · · · −√xn+1

√
x1 0

√
x2

. . .
...

0
√
x2 0

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
√
xn

−√xn+1 · · · · · · 0
√
xn 0


,

B =



0 0
√
x1x2 · · · √

xnxn+1 0

0 0 0
. . .

√
x1xn+1

−√x1x2 0 0
. . .

√
x2x3

...
... −√x2x3

. . .
. . .

√
xn−1xn

−√xnxn+1
. . .

. . . 0

0 −√x1xn+1 · · · −√xn−1xn 0 0


.

defines the periodic KM system,

ẋi = xi(xi+1 − xi−1), i− 2, 3, . . . , n− 1,

where x0 = xn.
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Example 25. The Lax pair (see [?])

L =



b1 1 0 · · · · · · an

a1 b2 1
. . .

...

0 a2 b3

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 1

−1 · · · · · · 0 an−1 bn


, B =



0 0 0 · · · · · · an

a1 0 0
. . .

...

0 a2 0
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0

0 · · · · · · 0 an−1 0


.

gives rise to the periodic Toda lattice which is defined by the equations

ḃi = ai − ai−1, i = 1, 2, . . . , n,

ȧi = ai(bi+1 − bi), i = 1, 2, 3, . . . , n− 1,

where a0 = an.

Lax pairs are useful for finding first integrals for the system of differential equations

they define. The next proposition shows that for the system defined by the Lax pair L,B,

the traces of Lk are all constants of motion.

Proposition 26. If L,B is a Lax pair for the system (5.1) then the functions tr(Lk) are

constants of motion for the system (5.1).

Proof. We compute the derivative of the functions tr(Lk).

1

k
tr
(
Lk
)

= tr(Lk−1L̇) = tr(LkB − Lk−1BL) =

tr(LkB)− tr(LKB) = 0.

We have used the property of the trace

tr(AB) = tr(BA).

Therefore trLk is indeed a constant of motion.

We immediately get the following result.

Corollary 3. If L,B is a Lax pair and

χL(λ) = λn + fn−1λ
n−1 + . . .+ f1λ+ f0

is the characteristic polynomial of L, then the functions fi are constants of motion.
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Example 26. For the case of the KM system it can be proved that the traces of L give

enough independed constants of motion, in involution, so that the KM system is integrable.

5.5 Lotka-Volterra systems

The Lotka-Volterra equations were discovered independently by Alfred Lotka and Vito

Volterra around 1925. Volterra was trying to make sense of the fact that the predator

fish increased in numbers after WWI. This question was posed to him by his son-in-law

Umberto D’Ancona a marine biologist who collected data of fish catches in the Adriatic

for the years during and after the war. Volterra proposed the following simple system to

model the interaction between predator and prey fish.

ẋ = x(a− by)

ẏ = y(−c+ dx)

where a, b, c, d > 0. This system and its generalizations to n dimensions is one of the

most basic models in population dynamics. The variable x denotes the density of prey fish

while y is the density of predator fish. Note that if there are no predators (y = 0) then

x grows at a constant rate ẋ = ax, the so called Malthusian law of population. Volterra

made the assumption that the interaction between predator and prey fish depends on both

x and y, hence the Malthusian law is modified by subtracting a term bxy. Note that he

did not take into account a possible death of prey fish due to other causes. Similarly, the

density of the predator fish increases at a rate proportional to both x and y, i.e. a factor

dxy. Assuming that they die at the rate ẏ = −cy we get the second equation. The same

model was also derived by Lotka [?] in the context of chemical reaction theory.

Note that the vector field vanishes at the origin (0, 0) and at the point ( c
d
, a
b
). The

origin is saddle point while the second point is a center, i.e. it corresponds to a periodic

solution. It is not difficult to produce a constant of motion. We multiply the first equation

by c−dx
x

and the second by a−by
y

and then we add the result. We obtain

ẋ

x
(c− dx) +

ẏ

y
(a− by) = 0 .

This equation is equivalent to

d

dt
(c lnx− dx+ a ln y − by) = 0 .

Therefore the function

H(x, y) = c lnx+ a ln y − dx− by
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is a constant of motion. The function H is actually a Hamiltonian. By defining the Poisson

bracket on R2 by {x, y} = xy we produce the following Hamiltonian formulation

ẋ = {x,H} = x(a− by)

ẏ = {y,H} = y(−c+ dx) .

The Lotka-Volterra equations generalize from two to n species. The most general form

of the equations is

ẋi = εixi +
n∑
j=1

aijxixj, i = 1, 2, . . . , n , (5.3)

where xi denotes the density of the ith species, εi is its intrinsic growth (or decay) rate and

the matrix A = (aij) is called the interaction matrix. We consider Lotka-Volterra equations

without linear terms (εi = 0), i.e., the population of the ith species stays constant if there

is no interraction with other species. We also assume that the matrix of interaction

coefficients A = (aij) is skew-symmetric. This assumption places the problem in the

context of the so called conservative Lotka-Volterra systems.

These systems can be written in Hamiltonian form using the Hamiltonian function

H = x1 + x2 + · · ·+ xn.

Hamilton’s equations take the form ẋi = {xi, H} =
∑n

j=1 πij with quadratic functions

πij = {xi, xj} = aijxixj, i, j = 1, 2, . . . , n. (5.4)

From the skew symmetry of the matrix A = (aij) it follows that the Schouten-Nijenhuis

bracket [π, π] vanishes identically:

[π, π]ijk = 2 (aij{xixj, xk}+ ajk{xjxk, xi}+ aki{xkxi, xj})

= 2 (aij(ajk + aik) + ajk(aki + aji) + aki(aij + akj))xixjxk = 0 .

The bivector field π is an example of a diagonal Poisson structure.

The Poisson tensor (5.4) is Poisson isomorphic to the constant Poisson structure defined

by the constant matrix A (see [?]).

Proposition 27. If k = (k1, k2 · · · , kn) is a vector in the kernel of A then the function

f = xk11 x
k2
2 · · · xknn

is a Casimir.
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Proof. For an arbitrary function g the Poisson bracket {f, g} is

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
=

n∑
j=1

(
n∑
i=1

aijki

)
xjf

∂g

∂xj
= 0 .

If the matrix A has rank r then there are n − r functionally independent Casimirs.

This type of integral can be traced back to Volterra [?]; see also [?, ?, ?].
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Chapter 6

Generalized Lotka-Volterra systems

If you would be a real seeker after truth, it is necessary that at least once in

your life you doubt, as far as possible, all things. — René Descartes

6.1 Introduction

Recall the system (1.2), also known as the Volterra system. It is associated with a simple

Lie algebra of type An in the sense that it can be written in Lax pair form L̇ = [B,L]

where

L =



0 a1 0 · · · · · · 0

a1 0 a2

. . .
...

0 a2 0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . an

0 · · · · · · 0 an 0


, (6.1)

and

B =



0 0 a1a2 · · · · · · 0

0 0 0
. . .

...

−a1a2 0 0
. . . a2a3

...
... −a2a3

. . .
. . . an−1an

...
. . .

. . . 0

0 · · · · · · −an−1an 0 0


.

This Lax pair is due to Moser [?]; it gives a polynomial (in fact cubic) system of differential

equations. The change of variables xi = 2a2
i gives equations (1.2). It is evident from the
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form of L in the Lax pair, that the position of the variables ai corresponds to the simple

root vectors of a root system of type An. On the other hand a non-zero entry of the matrix

B occurs at a position corresponding to the sum of two simple roots αi and αj.

There is a similar Lax pair which gives rise to the periodic KM system (see section 5.5).

Bogoyavlensky generalized this system for each simple Lie algebra and showed that the

corresponding systems are also integrable. In [?], Bogoyavlensky studies the systems

defined by the equations

ȧi = ai

(
p∑
j=1

ai+j −
p∑
j=1

ai−j

)
, i = 1, 2, . . . , n

where an+i = ai for all i. These systems are generalizations of the periodic KM system;

for p = 1 we obtain the periodic KM system. Bogoyavlensky finds Lax pairs for these

systems and proves that for n = 4 and n = 5 they are integrable. In [?, ?], Bogoyavlensky

constructed integrable systems connected with simple Lie algebras which generalize the

periodic KM system. He constructs the systems by defining the corresponding Lax pairs

as follows. He considers the matrices

L =
n∑
i=1

biXαi +X−α0 +
∑

1≤i<j≤n

[
Xαi , Xαj

]
and

B =
n∑
i=1

ki
bi
X−αi +Xα0 ,

where α1, α2, . . . , αn are the simple roots, α0 is the highest positive root and Xαi the

corresponding root vectors of a root system of a simple Lie algebra. Also α0 =
∑n

k=1 kiαi.

The systems produce by these Lax pairs are integrable and are called Bogoyavlensky-

Volterra systems. There is a complete description of these systems in [?]. See [?] and [?]

for more details.

In this chapter we generalize the Lax pair of Moser and produce a larger class of

Hamiltonian systems which we call generalized Volterra systems since in some cases by a

simple change of variables we produce Lotka-Volterra systems. It is clear that the systems

we obtain are not subsystems of the ones defined by Bogoyavlensky. The systems defined

in [?, ?] (by a completely different approach) are of a different nature. For example the

defining matrix is not even skew-symmetric. The systems obtained in [?] are also different

as one easily notices by comparing the resulting equations. By restricting the systems

in [?] it is impossible to obtain our type of systems. This can be seen by examining the

associated graph of the Lotka-Volterra systems.

We generalize the Lax pair of Moser (6.1) as follows. Instead of considering the set of
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simple roots Π, we begin with a subset Φ of the positive roots R+ of a root system of a

complex simple Lie algebra, which contains Π, i.e. Π ⊂ Φ ⊂ R+. For each such choice

of a set Φ we produce a Lax pair and thus a new Hamiltonian system. We restrict our

attention to some examples in the An case, however this algorithm applies more generally,

for each complex simple Lie algebra. In dimension 3, this procedure produces only two

systems, the KM system and the periodic KM system. In dimensions 4 and 5 (i.e. the

cases of A3 and A4) and by allowing the use of complex coefficients (see chapter 7) this

method works in all possible cases and in fact we have verified using Maple that all the

resulting systems are Liouville integrable.

6.2 The procedure

We recall the following procedure from [?]. Let L be any simple Lie algebra equipped with

its Killing form 〈· | ·〉. One chooses a Cartan subalgebra H of L, and a base Π of simple

roots for the root system R of H in L. To each positive root α one can associate a triple

(Xα, X−α, Hα) of vectors in L which generate a Lie subalgebra isomorphic to sl2(C). The

set (Xα, X−α)α∈R+ ∪ (Hα)α∈Π is a basis of L, called a root basis. Let Π = {α1, . . . , α`} and

let Xα1 , . . . , Xα` be the corresponding root vectors in L. Define

L =
∑
αi∈Π

ai(Xαi +X−αi) .

To find the matrix B we use the following procedure. For each i, j form the vectors[
Xαi , Xαj

]
. If αi + αj is a root then include a term of the form aiaj

[
Xαi , Xαj

]
in

B. We make B skew-symmetric by including the corresponding negative root vectors

aiaj[X−αi , X−αj ]. Finally, we define the system using the Lax pair equation

L̇ = [L,B] .

For a root system of type An we obtain the KM system.

We generalize this algorithm as follows. Consider a subset Φ of R+ such that

Π ⊂ Φ ⊂ R+ .

The Lax matrix is easy to construct

L =
∑
αi∈Φ

ai(Xαi +X−αi) .

Here we use the following enumeration of Φ which we assume to have m elements. The
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variables aj correspond to the simple roots αj for j = 1, 2, . . . , `. We assign the variables

aj for j = ` + 1, ` + 2, . . . ,m to the remaining roots in Φ. To construct the matrix B we

use the following algorithm. Consider the set Φ ∪ Φ− which consists of all the roots in Φ

together with their negatives. Let

Ψ =
{
α + β | α, β ∈ Φ ∪ Φ−, α + β ∈ R+

}
,

and define

B =
∑

cijaiaj
(
Xαi+αj −X−αi−αj

)
, (6.2)

where cij = ±1 if αi + αj ∈ Ψ with αi, αj ∈ Φ ∪ Φ− and 0 otherwise. In all eight cases in

A3 we are able to make the proper choices of the sign of the cij so that we can produce a

Lax pair. This method produces a Lax pair in all but five out of sixty four cases in A4.

However, when we allow the cij to take the complex values ±i we are able to produce a

Lax pair in all 64 cases. By using Maple we were able to check that all these examples in

A3 and A4 are in fact Liouville integrable. We will not attempt to prove the integrability

of these systems in general due to the complexity of their definition. We restrict our

attention to some examples in the An case and we prove that for several subsets Φ of

special form the algorithm works; i.e., there is a choice of the signs of ci,j which produce

a consistent Lax pair.

This algorithm for certain subsets Φ recovers well known integrable systems. For

example for Φ = Π, the simple roots of the root system An, and ci,i+1 = 1 for i =

1, 2, . . . , n−1 we obtain the KM system while for Φ = Π∪{αn+1}, the simple roots and the

highest root, the choice of the signs ci,i+1 = 1 for i = 1, 2, . . . , n−1 and c1,n+1 = cn,n+1 = −1

produces the periodic KM system.

We have to point out that in [?] there is a similar construction for the case of the Toda

lattice where Hamiltonian systems were defined which interpolate between the classical

Kostant-Toda lattice and the full Kostant-Toda lattice. In that case there is a simple

criterion on the set Φ which ensures the construction of the Lax pair. In our case there

is no such simple criterion. However, in the next proposition we present a sufficient (but

not necessary) condition on the subset Φ which gives a consistent Lax pair.

Proposition 28. Let Π ⊂ Φ ⊂ R+ be a subset of the positive roots with the property that

whenever α, β, γ ∈ Φ∪Φ− then α+ β + γ 6= 0 and if α+ β + γ ∈ R+ then α+ β + γ ∈ Φ.

Also let B be the matrix constructed using the algorithm described in (6.2). Then for any

choice of the signs ci,j the pair L,B is a Lax pair.

Proof. Let K be the following subset of the positive roots

K = {α + β + γ : α, β, γ ∈ Φ ∪ Φ−, α + β + γ ∈ R+}.
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It is evident, from the construction of the matrix B, that for all possible choices of the

signs ci,j, the nonzero entries of the bracket [L,B] appear in the positions corresponding

to the root vectors Xα, α ∈ K. The condition α, β, γ ∈ Φ ∪ Φ− ⇒ α + β + γ 6= 0 implies

that there are no variables in the diagonal of [L,B] while the condition α, β, γ ∈ Φ ∪ Φ−

and α+ β + γ ∈ R+ ⇒ α+ β + γ ∈ Φ implies that K ⊂ Φ. Since we also have Φ ⊂ K we

deduce that Φ = K and therefore the pair L,B is a Lax pair.

This condition is of course not necessary. For example the KM and the periodic KM

systems do not fall in this class. In theorem 13 and proposition 30 we find several other

families of subsets Φ which give consistent Lax pairs.

A corollary of proposition 28 is the following.

Corollary 4. Let Φ be the subset of the positive roots of the root system of any simple Lie

algebra containing all the roots of odd height. If L and B are the matrices constructed as

described in (6.2) then for all all possible choices of the signs ci,j, L,B is a consistent Lax

pair.

We illustrate the previous corollary with examples from the roots systems of the clas-

sical simple Lie algebras.

Example 27. For the root system of type A3 the subset of the positive roots of odd height

is Φ = {α1, α2, α3, α4 = α1 + α2 + α3}. This choice gives rise to the matrix

L =


0 a1 0 a4

a1 0 a2 0

0 a2 0 a3

a4 0 a3 0

 .

The corresponding subset Ψ is

Ψ = {α1 + α2, α2 + α3}

and the roots in Ψ are formed as α1 + α2 = α4 = α3 and α2 + α3 = α4 − α1. Therefore

the skew-symmetric matrix B constructed using (6.2) is
0 0 c1,2a1a2 + c3,4a3a4 0

0 0 0 c1,4a1a4 + c2,3a2a3

−c1,2a1a2 − c3,4a3a4 0 0 0

0 −c1,4a1a4 − c2,3a2a3 0 0

 .

We can easily verify that all 16 possible choices of the signs ci,j give a consistent Lax pair.
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The equation L̇ = [L,B] is equivalent to the system

ȧ1 = −c1,2a1a
2
2 − c1,4a1a

2
4 − c2,3a2a3a4 − c3,4a2a3a4,

ȧ2 = c1,2a2a
2
1 − c2,3a2a

2
3 + c3,4a1a3a4 − c1,4a1a3a4,

ȧ3 = c2,3a3a
2
2 + c3,4a3a

2
4 + c1,2a1a2a4 + c1,4a1a2a4,

ȧ4 = c1,4a
2
1a4 − c3,4a

2
3a4 + c2,3a1a2a3 − c1,2a1a2a3.

Of course only half of the choices of the signs give possibly non-isomorphic systems and

only one of them gives a Lotka-Volterra system (see theorem 13 below), the well known

periodic KM system.

Example 28. For the root system of type B3 the subset of the positive roots of odd height

is

Φ = {α1, α2, α3, α4 = α1 + α2 + α3, α5 = α2 + 2α3, α6 = α1 + 2α2 + 2α3}.

This choice of the positive roots gives rise to the matrix

L =



0 a1 0 2a4 0 2a6 0

a1 0 a2 0 2a5 0 −2a6

0 a2 0 2a3 0 −2a5 0

a4 0 a3 0 a3 0 a4

0 2a5 0 2a3 0 −a2 0

2a6 0 −2a5 0 −a2 0 −a1

0 −2a6 0 2a4 0 −a1 0


or equivalently

L =
6∑
i=1

ai (Xαi +X−αi) .

The subset Ψ is

Ψ = {α1 + α2, α2 + α3, α1 + α2 + 2α3}

where the roots in Ψ are formed as α1+α2 = α4−α3 = α6−α5, α2+α3 = α4−α1 = α6−α4

and α1 + α2 + 2α3 = α3 + α4 = α1 + α5 = α6 − α2.

Therefore the matrix B constructed using (6.2) is given by

(c1,2a1a2 + c4,3a3a4 + c5,6a5a6) (Xα1+α2 −X−α1−α2) +

(c2,3a2a3 + c1,4a1a4 + c4,6a4a6 + c3,5a3a5) (Xα2+α3 −X−α2−α3) +

(c3,4a3a4 + c1,5a1a5 + c2,6a2a6) (Xα1+α2+α2+2α3 −X−α1−α2−2α3) .
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In matrix form (see section 2.2) is the 7× 7 matrix of the formA1 2∆w A2

vT 0 wT

A3 2∆v A4


where A1, A2, A3, A4 are 3 × 3 matrices, A2 is per skew-symmetric, A3 = −AT2 and A4 is

minus the per transpose matrix of A1. The matrices A1 and A4 are skew-symmetric and

v and w are 3× 1 vectors. The matrix A1 is

A1 =

 0 0 c1,2a1a2 + c4,3a3a4 + c5,6a5a6

0 0 0

−c1,2a1a2 − c4,3a3a4 − c5,6a5a6 0 0

 ,

the matrix A2 is given by

A2 =

c3,4a3a4 + c1,5a1a5 + c2,6a2a6 0 0

0 0 0

0 0 −c3,4a3a4 − c1,5a1a5 − c2,6a2a6

 .

The vectors v, w are w = −v = (0, c2,3a2a3 + c1,4a1a4 + 2c4,6a4a6 + 2c3,5a3a5, 0, 0). Now it

is straightforward to verify that the pair L,B is indeed a Lax pair. The equation L̇ = [L,B]

is equivalent to the equations

ȧ1 = −2c2,3a2a3a4 − 2c1,4a1a
2
4 − 4c4,6a

2
4a6 − 4c1,5a1a

2
5 − 4c3,5a3a4a5−

4c3,4a3a4a5 − 4c2,6a2a5a6 − c1,2a1a
2
2 − 2c4,3a2a3a4 − 4c5,6a2a5a6,

ȧ2 = c1,2a
2
1a2 + 2c4,3a1a3a4 + 4c5,6a1a5a6 − 4c1,5a1a5a6 − 4c3,5a

2
3a5−

4c3,4a3a4a6 − 4c2,6a2a
2
6 − 2c2,3a2a

2
3 − 2c1,4a1a3a4 − 4c4,6a3a4a6,

ȧ3 = c1,2a1a2a4 + 2c4,3a3a
2
4 + 4c5,6a4a5a6 + 2c1,5a1a4a5 + 2c3,4a3a

2
4 + 2c2,6a2a4a6+

2c2,3a2a3a5 + 2c1,4a1a4a5 + 4c4,6a4a5a6 + c2,3a
2
2a3 + c1,4a1a2a4 + 2c4,6a2a4a6+

2c3,5a2a3a5 + 4c3,5a3a
2
5,

ȧ4 = −c1,2a1a2a3 − 2c4,3a
2
3a4 − 4c5,6a3a5a6 − 2c1,5a1a3a5 − 2c3,4a

2
3a4 − 2c2,6a2a3a6−

2c2,3a2a3a6 − 2c1,4a1a4a6 − 4c4,6a4a
2
6 + c2,3a1a2a3 + c1,4a

2
1a4 + 2c4,6a1a4a6+

2c3,5a1a3a5 − 4c3,5a3a5a6,

ȧ5 = c1,5a
2
1a5 + c3,4a1a3a4 + c2,6a1a2a6 − c1,2a1a2a6 − 2c3,5a

2
3a5

2c4,3a3a4a6 − 4c5,6a5a
2
6 − c2,3a2a

2
3 − c1,4a1a3a4 − 2c4,6a3a4a6,

ȧ6 = c2,3a2a3a4 + c1,4a1a
2
4 + 2c4,6a

2
4a6 + c1,5a1a2a5+
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c3,4a2a3a4 + c2,6a
2
2a6 + c1,2a1a2a5 + 2c4,3a3a4a5 + 4c5,6a

2
5a6 + 2c3,5a3a4a5.

Example 29. For the root system of type C3 the subset of the positive roots of odd height

is

Φ = {α1, α2, α3, α4 = α1 + α2 + α3, α5 = 2α2 + α3, α6 = 2α1 + 2α2 + α3}.

This choice of the positive roots gives rise to the matrix

L =



0 a1 0 a4 0 2a6

a1 0 a2 0 2a5 0

0 a2 0 a3 0 a4

a4 0 a3 0 −a2 0

0 2a5 0 −a2 0 −a1

2a6 0 a4 0 −a1 0


The matrix B constructed using (6.2) is the skew-symmetric 6× 6 matrix of the form(

A1 A2

A3 A4

)

where A1, A2, A3, A4 are 3 × 3 matrices, A2 is per symmetric and A4 is minus the per

transpose matrix of A1. The matrix A1 is

A1 =

 0 0 c1,2a1a2 + c3,4a3a4 + 2c4,6a4a6

0 0 0

−c1,2a1a2 − c3,4a3a4 − 2c4,6a4a6 0 0


and the per symmetric part of the matrix A2 is

A2 =

 0 2c1,5a1a5 + c2,4a2a4 + 2c1,6a1a6 0

c1,4a1a4 + c2,3a2a3 + 2c2,5a2a5 0 0

0 0 0

 .

It is straightforward to verify that the pair L,B is indeed a Lax pair. The equation

L̇ = [L,B] is equivalent to the system

ȧ1 = −c1,4a1a
2
4 − 2c2,5a2a4a5 − c2,3a2a3a4 − 4c1,6a1a

2
6−

4c1,5a1a5a6 − 2c2,4a2a4a6 − c1,2a1a
2
2 − c3,4a2a3a4−

2c4,6a2a4a6 − 4c1,5a1a
2
5 − 4c1,6a1a5a6 − 2c2,4a2a4a5,

ȧ2 = c1,2a
2
1a2 + c3,4a1a3a4 + 2c4,6a1a4a6 − 2c1,4a1a4a5−
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4c2,5a2a
2
5 − 2c2,3a2a3a5 − 2c1,5a1a4a5 − 2c1,6a1a4a6−

c2,4a2a
2
4 − c1,4a1a3a4 − c2,3a2a

2
3 − 2c2,5a2a3a5,

ȧ3 = 2c1,4a1a2a4 + 2c2,3a
2
2a3 + 4c2,5a

2
2a5+

2c1,2a1a2a4 + 2c3,4a3a
2
4 + 4c4,6a

2
4a6,

ȧ4 = 2c1,5a1a2a5 + 2c1,6a1a2a6 + c2,4a
2
2a4−

c1,2a1a2a3 − c3,4a
2
3a4 − 2c4,6a3a4a6 + 2c1,2a1a2a6+

2c3,4a3a4a6 + 4c4,6a4a
2
6 + c1,4a

2
1a4 + c2,3a1a2a3 + 2c2,5a1a2a5,

ȧ5 = 2c1,5a
2
1a5 + 2c1,6a

2
1a6 + c2,4a1a2a4+

c1,4a1a2a4 + c2,3a
2
2a3 + 2c2,5a

2
2a5,

ȧ6 = 2c1,5a
2
1a5 + 2c1,6a

2
1a6 + c2,4a1a2a4−

c1,2a1a2a4 − c3,4a3a
2
4 − 2c4,6a

2
4a6.

Example 30. The root system D3 is exactly the root system A3 and therefore the corre-

sponding systems are the same as in the case of A3. For the root system of type D4 the

subset of the positive roots of odd height is

Φ = {α1, α2, α3, α4, α1 + α2 + α3, α1 + α2 + α4, α2 + α3 + α4, α1 + 2α2 + α3 + α4}.

This choice of the positive roots gives rise to the matrix

L =



0 a1 0 a5 a6 0 a8 0

a1 0 a2 0 0 a7 0 −a8

0 a2 0 a3 a4 0 −a7 0

a5 0 a3 0 0 −a4 0 −a6

a6 0 a4 0 0 −a3 0 −a5

0 a7 0 −a4 −a3 0 −a2 0

a7 0 −a7 0 0 −a2 0 −a1

0 −a7 0 −a6 −a5 0 −a1 0


.

The matrix B constructed using (6.2) is the skew-symmetric 8× 8 matrix of the form(
A1 A2

A3 A4

)

where A1, A2, A3, A4 are 4×4 matrices, A2 is per skew-symmetric and A4 is minus the per
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transponse matrix of A1. The matrix A1 is

A1 =


0 0 c1,2a1a2 + c3,5a3a5 + c4,6a4a6 + c7,8a7a8 0

0 0 0 c1,5a1a5 + c2,3a2a3 + c4,7a4a7 + c6,8a6a8

0 0 0 0

0 0 0 0


and the per skew-symmetric part of the matrix A2 is

A2 =


0 c1,7a1a7 + c2,8a2a8 + c3,6a3a6 + c4,5a4a5 0 0

c1,6a1a6 + c2,4a2a4 + c3,7a3a7 + c5,8a5a8 0 0 0

0 0 0 0

0 0 0 0

 .

It is straightforward to verify that the pair L,B is indeed a Lax pair.

The equation L̇ = [L,B] is equivalent to the system

ȧ1 = −c1,5a1a
2
5 − a5a2a3c2,3 − a5a4a7c4,7 − a6c6,8a8a5 − c1,6a

2
6a1 − a6a2c2,4a4−

a6a7a3c3,7 − a5c5,8a8a6 − c1,7a
2
7a1 − a8a7a2c2,8 − a6a7a3c3,6 − a7a4c4,5a5−

c1,2a
2
2a1 − a5a3a2c3,5 − a2a4c4,6a6 − a8a7a2c7,8,

ȧ2 = c1,2a2a
2
1 + a1a3c3,5a5 + a6a4a1c4,6 + a8a7a1c7,8 − a8a7a1c1,7 − c2,8a

2
8a2−

a8a6a3c3,6 − a4c4,5a5a8 − a6a4a1c1,6 − c2,4a
2
4a2 − a7a4a3c3,7 − a4a5c5,8a8−

a5a3a1c1,5 − c2,3a
2
3a2 − a7a4a3c4,7 − a8a6a3c6,8,

ȧ3 = a2a5a1c1,5 + c2,3a3a
2
2 + a7a4a2c4,7 + a8a6a2c6,8 − a6a7a1c1,6 − a7a4a2c2,4−

c3,7a
2
7a3 − a5c5,8a8a7 − a6a7a1c1,7 − a8a6a2c2,8 − a3c3,6a

2
6 − a6a4c4,5a5+

a2a5a1c1,2 + a2
5a3c3,5 + a4c4,6a6a5 + a5a7c7,8a8,

ȧ4 = a2a6a1c1,6 + c2,4a4a
2
2 + a7a3a2c3,7 + a8a5a2c5,8 − a5a7a1c1,5 − a7a3a2c2,3−

c4,7a
2
7a4 − a6c6,8a8a7 − a5a7a1c1,7 − a8a5a2c2,8 − a6a5a3c3,6 − a4c4,5a

2
5+

a2a6a1c1,2 + a6a3c3,5a5 + a4c4,6a
2
6 + a6a7c7,8a8,

ȧ5 = c1,5a5a
2
1 + a2a3a1c2,3 + a7a4a1c4,7 + a8a6a1c6,8 + a8a6a1c1,6 + a8a4a2c2,4+

a8a7a3c3,7 + a5c5,8a
2
8 + a7a4a1c1,7 + a8a4a2c2,8 + a6a4a3c3,6 + a2

4c4,5a5−

a2a3a1c1,2 − a2
3c3,5a5 − a4a3c4,6a6 − a8a7a3c7,8,

ȧ6 = c1,6a6a
2
1 + a1a2c2,4a4 + a7a3a1c3,7 + a8a5a1c5,8 + a8a5a1c1,5 + a8a3a2c2,3+

a8a7a4c4,7 + a6c6,8a
2
8 + a7a3a1c1,7 + a8a3a2c2,8 + a2

3c3,6a6 + a5a4a3c4,5−

a4a2a1c1,2 − a4a3c3,5a5 − a2
4c4,6a6 − a8a7a4c7,8,

ȧ7 = c1,7a7a
2
1 + a8a2a1c2,8 + a6a3a1c3,6 + a5a4a1c4,5 − a8a2a1c1,2 − a8a5a3c3,5−

a8a6a4c4,6 − a7c7,8a
2
8 + a6a3a1c1,6 + a4a3a2c2,4 + c3,7a7a

2
3 + a8a5a3c5,8+

a5a4a1c1,5 + a4a3a2c2,3 + c4,7a7a
2
4 + a8a6a4c6,8,
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ȧ8 = −a6a5a1c1,6 − a5a4a2c2,4 − a5a7a3c3,7 − a2
5c5,8a8 − a6a5a1c1,5 − a6a3a2c2,3−

a6a7a4c4,7 − a2
6c6,8a8 + a2a7a1c1,7 + c2,8a8a

2
2 + a6a3a2c3,6 + a5a4a2c4,5+

a2a7a1c1,2 + a5a7a3c3,5 + a6a7a4c4,6 + a2
7c7,8a8.

6.3 Examples in A3 and A4

Example 31. For the root system A3 if we take Φ = {α1, α2, α3, α1 + α2} then

Φ ∪ Φ− = {α1, α2, α3, α1 + α2,−α1,−α2,−α3,−α1 − α2}

and Ψ = {α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3}. In this example the variables ai for

i = 1, 2, 3 correspond to the three simple roots α1, α2, α3. We associate the variable a4 to

the root α1 + α2. We obtain the following Lax pair:

L =


0 a1 a4 0

a1 0 a2 0

a4 a2 0 a3

0 0 a3 0

 , and B =


0 −a4a2 a1a2 −a4a3

a4a2 0 −a1a4 a2a3

−a1a2 a1a4 0 0

a4a3 −a2a3 0 0

 .

Using the substitution xi = a2
i followed by scaling, the Lax pair is equivalent to the

following Lotka-Volterra system.

ẋ1 = x1x2 − x1x4,

ẋ2 = −x2x1 + x2x3 + x2x4,

ẋ3 = −x3x2 + x3x4,

ẋ4 = x4x1 − x4x2 − x4x3 .

This system is integrable. There exist two functionally independent Casimir functions

F1 = x1x3 = det L and F2 = x1x2x4. The additional integral is the Hamiltonian H =

x1 + x2 + x3 + x4 = trL2.

The standard quadratic Poisson bracket (5.4) is given by

π =


0 x1x2 0 −x1x4

−x2x1 0 x2x3 x2x4

0 −x3x2 0 x3x4

x4x1 −x4x2 −x4x3 0

 .

120

Cha
ral

am
po

s E
vri

pid
ou



One can find the Casimirs by computing the kernel of the matrix

A =


0 1 0 −1

−1 0 1 1

0 −1 0 1

1 −1 −1 0

 .

The two eigenvectors with eigenvalue 0 are (1, 0, 1, 0) and (1, 1, 0, 1). We obtain the two

Casimirs F1 = x1
1x

0
2x

1
3x

0
4 = x1x3 and F2 = x1

1x
1
2x

0
3x

1
4 = x1x2x4.

There is a similar Lax pair defined by the subset Φ = {α1, α2, α3, α2 + α3}, where the

L matrix is

L =


0 a1 0 0

a1 0 a2 a4

0 a2 0 a3

0 a4 a3 0

 .

The resulting system is isomorphic to the one of example 31.

Example 32. A Lax pair L,B corresponding to Φ = {α1, α2, α3, α1 + α2 + α3} is

L =


0 a1 0 a4

a1 0 a2 0

0 a2 0 a3

a4 0 a3 0



B =


0 0 a1a2 − a4a3 0

0 0 0 −a1a4 + a2a3

−a1a2 + a4a3 0 0 0

0 a1a4 − a2a3 0 0

 .

Using the substitution xi = 2a2
i we obtain the periodic KM-system

ẋ1 = x1x2 − x1x4,

ẋ2 = −x2x1 + x2x3,

ẋ3 = x3x4 − x3x2,

ẋ4 = x4x1 − x4x3 .

(6.3)
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The Poisson matrix (which can be read from the right hand side of (6.3)) is

π =


0 x1x2 0 −x1x4

−x1x2 0 x2x3 0

0 −x2x3 0 x3x4

x1x4 0 −x3x4 0


of rank 2. In addition to the Hamiltonian

H = x1 + x2 + x3 + x4

it possesses two Casimirs C1 = x1x3 and C2 = x2x4.

Example 33. The Lax equation L̇ = [B,L], corresponding to the subset of the positive

roots of the root system A3,

Φ = {α1, α2, α3, α1 + α2, α2 + α3}

with

L =


0 a1 a4 0

a1 0 a2 a5

a4 a2 0 a3

0 a5 a3 0


and

B =


0 −a4a2 a1a2 −a1a5 − a4a3

a4a2 0 −a1a4 − a5a3 a2a3

−a1a2 a1a4 + a5a3 0 −a2a5

a1a5 + a4a3 −a2a3 a2a5 0


is equivalent to the following equations of motion

ȧ1 = a1a
2
2 − a1a

2
5 − a1a

2
4 − 2a3a4a5,

ȧ2 = a2a
2
4 + a2a

2
3 − a2a

2
1 − a2a

2
5,

ȧ3 = a3a
2
5 + a3a

2
4 − a3a

2
2 + 2a1a4a5,

ȧ4 = a4a
2
1 − a4a

2
2 − a4a

2
3,

ȧ5 = a5a
2
1 − a5a

2
3 + a5a

2
2.

Note that the system is not Lotka-Volterra. It is Hamiltonian with Hamiltonian function
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H = 1
2

(a2
1 + a2

2 + a2
3 + a2

4 + a2
5). The system has Poisson matrix

π =


0 a1a2 −2 a4a5 −a1a4 −a1a5

−a1a2 0 a2a3 a2a4 −a2a5

2 a4a5 −a2a3 0 a3a4 a3a5

a1a4 −a2a4 −a3a4 0 0

a1a5 a2a5 −a3a5 0 0


of rank 4 . The determinant C = (a1a3 − a4a5)2 of L is the Casimir of the system. The

trace of L3 gives the additional constant of motion

F =
1

6
tr
(
L3
)

= a1a2a4 + a2a3a5 .

Since the three constants of motion are evidently independent, the system is Liouville

integrable.

Example 34. Let

L =


0 a1 0 a5

a1 0 a2 a4

0 a2 0 a3

a5 a4 a3 0


and

B =


0 a4a5 a1a2 + a5a3 −a1a4

−a4a5 0 −a4a3 a1a5 + a2a3

−a1a2 − a5a3 a4a3 0 −a4a2

a1a4 −a1a5 − a2a3 a4a2 0

 .

This Lax pair arises when we choose Φ = {α1, α2, α3, α2 + α3, α1 + α2 + α3}. The

corresponding Poisson matrix has rank 4. In addition to the Hamiltonian H it possesses

a Casimir C = det(L) = (a1a3 − a2a5)2 and the integral F = 1
6

tr (L3) = a1a4a5 + a2a3a4.

The Lax pair corresponding to the subset of the positive roots Φ = {α1, α2, α3, α1 +

α2, α1 + α2 + α3} gives rise to a system which is isomorphic to the one of the previous

example.

Example 35. For the case of

Φ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}

there are three different choices of the signs of ci,j which give consistent Lax pairs.
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The Lax matrix is given by

L =


0 a1 a4 a6

a1 0 a2 a5

a4 a2 0 a3

0 a5 a3 0


In order to have a consistent Lax pair the upper triangular part of the skew-symmetric

matrix B should be
0 c5,6a5a6 − a2a4 a1a2 − a3a6 −c5,6a1a5 + a3a4

0 0 −c3,5a3a5 − a1a4 c5,6a1a6 + c3,5a2a3

0 0 0 −c3,5a2a5 − a4a6

0 0 0 0

 .

For c3,5 = c5,6 = 1 we obtain the system

ȧ1 = −a1a
2
2 + a1a

2
4 + a1a

2
5 − a1a

2
6

ȧ2 = a2
1a2 − 2a1a3a6 − a2a

2
3 − a2a

2
4 + a2a

2
5 + 2a4a5a6

ȧ3 = 2a1a2a6 − 2a1a4a5 + a2
2a3 + a3a

2
4 − a3a

2
5 − a3a

2
6

ȧ4 = −a2
1a4 + a2

2a4 − a2
3a4 + a4a

2
6

ȧ5 = −a2
1a5 + 2a1a3a4 − a2

2a5 − 2a2a4a6 + a2
3a5 + a5a

2
6

ȧ6 = a2
1a6 + a2

3a6 − a2
4a6 − a2

5a6

,

for c3,5 = −c5,6 = 1 the system

ȧ1 = −a1a
2
2 + a1a

2
4 − a1a

2
5 + a1a

2
6

ȧ2 = a2
1a2 − a2a

2
3 − a2a

2
4 + a2a

2
5

ȧ3 = a2
2a3 + a3a

2
4 − a3a

2
5 − a3a

2
6

ȧ4 = −a2
1a4 − 2a1a3a5 + a2

2a4 + 2a2a5a6 − a2
3a4 + a4a

2
6

ȧ5 = a2
1a5 + 2a1a3a4 − a2

2a5 − 2a2a4a6 + a2
3a5 − a5a

2
6

ȧ6 = −a2
1a6 + a2

3a6 − a2
4a6 + a2

5a6

,

for c3,5 = −c5,6 = −1 the system

ȧ1 = −a1a
2
2 + a1a

2
4 + a1a

2
5 − a1a

2
6 + 2a2a3a6 − 2a3a4a5

ȧ2 = a2
1a2 − 2a1a3a6 + a2

3a2 − a2a
2
4 − a2a

2
5 + 2a4a5a6

ȧ3 = 2a1a2a6 − 2a1a4a5 − a2
2a3 + a3a

2
4 + a3a

2
5 − a3a

2
6

ȧ4 = −a2
1a4 + 2a1a3a5 + a2

2a4 − 2a2a5a6 − a2
3a4 + a4a

2
6

ȧ5 = −a2
1a5 + 2a1a3a4 + a2

2a5 − 2a2a4a6 − a2
3a5 + a5a

2
6

ȧ6 = a2
1a6 − 2a1a2a3 + 2a2a4a5 + a2

3a6 − a2
4a6 − a2

5a6
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and for c3,5 = c5,6 = −1 the system

ȧ1 = −a1a
2
2 + a1a

2
4 − a1a

2
5 + a1a

2
6 + 2a2a3a6 − 2a3a4a5

ȧ2 = a2
1a2 + a2

3a2 − a2a
2
4 − a2a

2
5

ȧ3 = −a2
2a3 + a3a

2
4 + a3a

2
5 − a3a

2
6

ȧ4 = −a2
1a4 + a2

2a4 − a2
3a4 + a4a

2
6

ȧ5 = a2
1a5 + 2a3a4a1 + a2

2a5 − 2a4a6a2 − a2
3a5 − a5a

2
6

ȧ6 = −a2
1a6 − 2a2a3a1 + 2a4a5a2 + a2

3a6 − a2
4a6 + a2

5a6

Example 36. For the root system of type A4 the Lax pair corresponding to

Φ = {α1, α2, α3, α4, α2 + α3}

is given by the matrices

L =


0 a1 0 0 0

a1 0 a2 a5 0

0 a2 0 a3 0

0 a5 a3 0 a4

0 0 0 a4 0


and

B =


0 0 a1a2 −a1a5 0

0 0 −a5a3 a2a3 −a5a4

−a1a2 a5a3 0 −a2a5 a3a4

a1a5 −a2a3 a2a5 0 0

0 a5a4 −a3a4 0 0

 .

Using the change of variables xi = 2a2
i the corresponding Lotka-Volterra system becomes

ẋ1 = x1x2 − x1x5,

ẋ2 = −x2x5 + x2x3 − x2x1,

ẋ3 = x3x5 + x3x4 − x3x2,

ẋ4 = x4x5 − x4x3,

ẋ5 = −x5x4 − x5x3 + x5x1 + x5x2 .
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The associated Poisson matrix is of rank 4. The constants of motion are

H = x1 + x2 + x3 + x4 + x5 (Hamiltonian),

F = x1x3 + x1x4 + x2x4,

C = x2x3x5 (Casimir) .

Example 37. The Lax pair corresponding to the subset

Φ = {α1, α2, α3, α4, α1 + α2 + α3 + α4}

of the positive roots of the root system of type A4 is given by the matrices

L =


0 a1 0 0 a5

a1 0 a2 0 0

0 a2 0 a3 0

0 0 a3 0 a4

a5 0 0 a4 0


and

B =



0 0 a1a2 −a4a5 0

0 0 0 a2a3 −a1a5

−a1a2 0 0 0 a3a4

a4a5 −a2a3 0 0 0

0 a1a5 −a3a4 0 0


.

Using the change of variables xi = 2a2
i we obtain the periodic KM system

ẋ1 = x1x2 − x1x5,

ẋ2 = x2x3 − x1x2,

ẋ3 = x3x4 − x2x3,

ẋ4 = x4x5 − x3x4,

ẋ5 = x1x5 − x4x5 .

The associated Poisson matrix is of rank 4. The traces of L2 and L4 together with the

Casimir, C = x1x2x3x4x5 ensure the integrability of the system.

Example 38. For the root system of type A4 we obtain two isomorphic Lotka-Volterra

systems corresponding to the subsets

Φ = {α1, α2, α3, α4, α1 + α2 + α3} and Φ = {α1, α2, α3, α4, α2 + α3 + α4}.
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The corresponding matrices are

L =


0 a1 0 a5 0

a1 0 a2 0 0

0 a2 0 a3 0

a5 0 a3 0 a4

0 0 0 a4 0

 ,

B =


0 0 a1a2 − a3a5 0 −a4a5

0 0 0 −a1a5 + a2a3 0

−a1a2 + a3a5 0 0 0 a3a4

0 a1a5 − a2a3 0 0 0

a4a5 0 −a3a4 0 0


and

L =


0 a1 0 0 0

a1 0 a2 0 a5

0 a2 0 a3 0

0 0 a3 0 a4

0 a5 0 a4 0

 ,

B =


0 0 a1a2 0 −a1a5

0 0 0 a2a3 − a4a5 0

−a1a2 0 0 0 −a2a5 + a3a4

0 −a2a3 + a4a5 0 0 0

a1a5 0 a2a5 − a3a4 0 0

 .

We describe the corresponding systems and the isomorphism between them in the next

section.

6.4 Subsets Φ corresponding to Lotka-Volterra sys-

tems

In the previous section we have presented several examples of cubic systems which (after

a simple change of variables) are equivalent to Lotka-Volterra systems. In this section we

classify all subsets Φ of the positive roots of An which produce, after a suitable change of

variables, Lotka-Volterra systems. We prove the following theorem.

Theorem 13. The only choices for the subset Φ of R+ so that the corresponding gen-
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eralized Volterra system transforms into a Lotka-Volterra system, using the substitution

xi = 2a2
i , are the following five.

1. Φ = Π,

2. Φ = Π ∪ {α2 + α3 + · · ·+ αn−1},

3. Φ = Π ∪ {α1 + α2 + · · ·+ αn−1},

4. Φ = Π ∪ {α2 + α3 + · · ·+ αn},

5. Φ = Π ∪ {α1 + α2 + · · ·+ αn} .

Case (1) gives rise to the KM system while case (5) gives rise to the periodic KM

system.

Case (2) corresponds to the Lax equation L̇ = [L,B] with L matrix

L =



0 a1 0 · · · 0 0 0 0

a1 0 a2 0 0 an+1 0

0 a2 0 a3

. . . 0 0
... 0 a3

. . .
. . . 0

0
. . .

. . . 0 an−2 0
...

0 0 an−2 0 an−1 0

0 an+1 0 0 an−1 0 an

0 0 0 0 · · · 0 an 0


.

The skew-symmetric matrix B is defined using the method described in section (6.2) (see

also the proof of proposition 29). Its upper triangular part is given by the formula

n−1∑
i=1

aiai+1Xαi+αi+1
− an−1an+1Xαn+1−αn−1 − a2an+1Xαn+1−α2−

a1an+1Xα1+αn+1 − anan+1Xαn+1+αn .

After substituting xi = 2a2
i for i = 1, . . . , n+ 1, the Lax pair L,B becomes equivalent

to the following equations of motion:

ẋ1 = x1(x2 − xn+1),

ẋ2 = x2(x3 − x1 − xn+1),

ẋi = xi(xi+1 − xi−1), i = 3, 4, . . . , n− 2, n

ẋn−1 = xn−1(xn − xn−2 + xn+1),

ẋn+1 = xn+1(x1 + x2 − xn−1 − xn).
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It is easily verified that for n even, the rank of the Poisson matrix is n and the function

f = x2x3 · · · xn−1xn+1 is the Casimir of the system, while for n odd, the rank of the Poisson

matrix is n − 1 and the functions f1 = x1x3 · · · xn =
√

detL and f2 = x2x3 · · · xn−1xn+1

are the Casimirs.

Case (3) corresponds to the Lax pair whose Lax matrix L is given by

L =



0 a1 0 · · · 0 an+1 0

a1 0 a2 0 0 0

0 a2 0 a3

. . . 0
... 0 a3

. . .
. . .

...
. . .

. . . 0 an−2 0

0 an−2 0 an−1 0

an+1 0 0 an−1 0 an

0 0 0 · · · 0 an 0


.

The upper triangular part of the skew-symmetric matrix B is

n−1∑
i=1

aiai+1Xαi+αi+1
− an−1an+1Xαn+1−αn−1 − a1an+1Xαn+1−α1 − anan+1Xαn+1+αn .

After substituting xi = 2a2
i for i = 1, . . . , n+1, we obtain the following equivalent equations

of motion:

ẋ1 = x1(x2 − xn+1)

ẋi = xi(xi+1 − xi−1), i = 2, 3, 4, . . . , n− 2, n

ẋn−1 = xn−1(xn − xn−2 + xn+1)

ẋn+1 = xn+1(x1 − xn − xn−1).

For n even, the rank of the Poisson matrix is n and the function f = x1x2 · · · xn−1xn+1 is

the Casimir, while for n odd, the rank of the Poisson matrix is n − 1 and the functions

f1 = x1x3x5 · · · xn =
√

detL and f2 = x1x2 · · · xn−1xn+1 are Casimirs.

The system obtained in case (4) turns out to be isomorphic to the one in case (3). In

fact, the change of variables un+1−i = −xi for i = 1, 2, . . . , n and un+1 = −xn+1 in case

(3) gives the corresponding system of case (4).

Since subsystems of Lotka-Volterra systems are also Lotka- Volterra, in order to prove

theorem 13 it is enough to consider the case where the subset Φ contains the simple roots

and only one extra root. The following proposition shows that we have only four possible

choices for the extra root in Φ which give rise to a Lotka-Volterra system. Therefore the
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proof of theorem 13 is a case by case verification of the 16 possible subsets Φ containing

the simple roots and roots given in the following proposition.

Proposition 29. Let Φ = {α1, . . . , αn+1} be the subset of the positive roots of the root

system An containing the simple roots and the additional extra root αn+1. Suppose that

αn+1 = αk + αk+1 + . . .+ αm for some 1 ≤ k < m ≤ n. Then the only possible choices of

k,m that lead to a Lotka-Volterra system are

(k,m) = (1, n), (1, n− 1), (2, n) and (2, n− 1).

Proof. The matrix L is given by

L =
n∑
i=1

ai (Xαi +X−αi) + an+1

(
Xαn+1 +X−αn+1

)
.

The matrix B is the skew-symmetric matrix constructed using the algorithm described in

section 6.2, and its upper triangular part is∑
1≤i≤n−1

ci,i+1aiai+1

[
Xαi , Xαi+1

]
+

ck−1,n+1ak−1an+1

[
Xαk−1

, Xαn+1

]
+ ck,n+1akan+1

[
X−αk , Xαn+1

]
+

cm,n+1aman+1

[
X−αm , Xαn+1

]
+ cm+1,n+1am+1an+1

[
Xαm+1 , Xαn+1

]
.

Note that this is the generic form of the matrix B. In some special cases B will be different;

i.e. for k = 1 the term ck−1,n+1ak−1an+1

[
Xαk−1

, Xαn+1

]
will be missing and for m = n the

term cm+1,n+1am+1an+1

[
Xαm+1 , Xαn+1

]
will be missing from B.

In order to determine the signs ci,j in a way such that the corresponding system, after

the substitution xi = 2a2
i , is transformed into a Lotka-Volterra system we calculate the

bracket [L,B]. Its upper triangular part is given by∑
2≤i≤n−1

ci,i+1ai−1aiai+1

[
Xαi−1

,
[
Xαi , Xαi+1

]]
+∑

1≤i≤n−2

ci,i+1aiai+1ai+2

[
Xαi+2

,
[
Xαi , Xαi+1

]]
+∑

1≤i≤n−1

ci,i+1

(
a2
i ai+1

[
X−αi ,

[
Xαi , Xαi+1

]]
+ aia

2
i+1

[
X−αi+1

,
[
Xαi , Xαi+1

]])
+

ck−1,n+1a
2
k−1an+1

[
X−αk−1

,
[
Xαk−1

, Xαn+1

]]
+

ck−1,n+1ak−2ak−1an+1

[
Xαk−2

[
Xαk−1

, Xαn+1

]]
+

ck−1,n+1ak−1aman+1

[
X−αm ,

[
Xαk−1

, Xαn+1

]]
+

ck−1,n+1ak−1am+1an+1

[
Xαm+1 ,

[
Xαk−1

, Xαn+1

]]
+

130

Cha
ral

am
po

s E
vri

pid
ou



ck−1,n+1ak−1a
2
n+1

[
X−αn+1 ,

[
Xαk−1

, Xαn+1

]]
+

ck,n+1a
2
kan+1

[
Xαk ,

[
X−αk , Xαn+1

]]
+

ck,n+1akak+1an+1

[
X−αk+1

,
[
X−αk , Xαn+1

]]
+

ck,n+1akaman+1

[
X−αm ,

[
X−αk , Xαn+1

]]
+

ck,n+1akam+1an+1

[
Xαm+1 ,

[
X−αk , Xαn+1

]]
+

ck,n+1aka
2
n+1

[
Xαn+1 ,

[
Xαk , X−αn+1

]]
+

cm,n+1ak−1aman+1

[
Xαk−1

,
[
X−αm , Xαn+1

]]
+

cm,n+1akaman+1

[
X−αk ,

[
X−αm , Xαn+1

]]
+

cm,n+1a
2
man+1

[
Xαm ,

[
X−αm , Xαn+1

]]
+

cm,n+1am−1aman+1

[
X−αm−1 ,

[
X−αm , Xαn+1

]]
+

cm,n+1ama
2
n+1

[
Xαn+1 ,

[
Xαm , X−αn+1

]]
+

cm+1,n+1ak−1am+1an+1

[
Xαk−1

,
[
Xαm+1 , Xαn+1

]]
+

cm+1,n+1am+1am+2an+1

[
Xαm+2 ,

[
Xαm+1 , Xαn+1

]]
+

cm+1,n+1akam+1an+1

[
X−αk ,

[
Xαm+1 , Xαn+1

]]
+

cm+1,n+1a
2
m+1an+1

[
X−αm+1 ,

[
Xαm+1 , Xαn+1

]]
+

cm+1,n+1am+1a
2
n+1

[
X−αn+1 ,

[
Xαm+1 , Xαn+1

]]
+

ck−2,k−1ak−2ak−1an+1

[
Xαn+1 ,

[
Xαk−2

, Xαk−1

]]
+

ck,k+1akak+1an+1

[
Xαn+1 ,

[
X−αk , X−αk+1

]]
+

cm−1,mam−1aman+1

[
Xαn+1 ,

[
X−αm−1 , X−αm

]]
+

cm+1,m+2am+1am+2an+1

[
Xαn+1 ,

[
Xαm+1 , Xαm+2

]]
.

Note that as in the case of the matrix B, for some special cases of k and m, some extra

terms in the bracket [L,B] will be missing; e.g. for k = 2 the terms corresponding to

the positions
[
Xαk−2

[
Xαk−1

, Xαn+1

]]
and

[
Xαn+1 ,

[
Xαk−2

, Xαk−1

]]
will be missing. In the

general case the system will be transformed to a Lotka-Volterra system if the signs satisfy

ci,i+1 = ci+1,i+2 = c i = 1, 2, . . . , n− 2,

cm+1,n+1 = −ck−1,n+1, ck,n+1 = −ck,k+1 = −c, ck−1,n+1 = −cm,n+1,

cm+1,n+1 = −cm+1,m+2 = −c, ck,n+1 = −cm,n+1, cm,n+1 = cm−1,m = c

cm+1,n+1 = −ck,n+1, ck−1,n+1 = ck−2,k−1 = c.

This linear system is solvable if and only if the equations cm+1,n+1 = −cm+1,m+2 and

ck−1,n+1 = ck−2,k−1 are missing. Therefore the system is solvable if and only if m ≥ n− 1

and k ≤ 2, and the result follows.

131

Cha
ral

am
po

s E
vri

pid
ou



6.5 Two Lax pair techniques

In this section we present two techniques that we use to prove the integrability of the

generalized Lotka-Volterra systems presented in the next section. The first one is due to

Deift, Li, Nanda and Tomei (see [?]). It was used to establish the complete integrability

of the full Kostant Toda lattice. The traces of powers of L were not enough to prove

integrability, therefore the method of chopping was used to obtain additional integrals.

First we describe the method: For k = 0, . . . ,
⌊
n−1

2

⌋
, denote by (L− λ Id)(k) the result of

removing the first k rows and last k columns from L− λ Id, and let

det(L− λ Id)(k) = E0kλ
n−2k + · · ·+ En−2k,k .

Set
det(L− λ Id)(k)

E0k

= λn−2k + I1kλ
n−2k−1 + · · ·+ In−2k,k .

The functions Irk, r = 1, . . . , n − 2k, are constants of motion for the full Kostant Toda

lattice.

Example 39. We consider in detail the gl(3,C) case of the full Toda. Let

L =

f1 1 0

g1 f2 1

h1 g2 f3

 ,

and take B to be the strictly lower part of L. The function H2 = 1
2

trL2 is the Hamiltonian,

and using the standard Lie-Poisson bracket the equations

ẋ = {H2, x}

are equivalent to

ḟ1 = −g1

ḟ2 = g1 − g2

ḟ3 = g2

ġ1 = g1(f1 − f2)− h1

ġ2 = g2(f2 − f3) + h1

ḣ1 = h1(f1 − f3) .

Note that H1 = f1 + f2 + f3 while H2 = 1
2
(f 2

1 + f 2
2 + f 2

3 ) + g1 + g2. The chopped matrix is

given by (
g1 f2 − λ
h1 g2

)
.
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The determinant of this matrix is h1λ+ g1g2 − h1f2 and one obtains the rational integral

I11 =
g1g2 − h1f2

h1

.

Note that the phase space is six dimensional, we have two Casimirs H1, I11 and the

functions H2, H3 are enough to ensure integrability.

In the next example we use this technique to obtain the Casimir of a generalized

Lotka-Volterra system.

Example 40. Consider the generalized Lotka-Volterra system defined by the Lax matrix

L =


0 a1 0 a5 0

a1 0 a2 0 0

0 a2 0 a3 0

a5 0 a3 0 a4

0 0 0 a4 0


which corresponds to the subset Φ = {α1, α2, α3, α4, α1 + α2 + α3}. According to proposi-

tion 29 a suitable choice of signs for the entries of B gives rise to a Lotka-Volterra system.

However, there is a second choice of sings which results in a different system. Define the

matrix B to be
0 0 a1a2 + a3a5 0 a4a5

0 0 0 a2a3 + a1a5 0

−a1a2 − a3a5 0 0 0 a3a4

0 −a2a3 − a1a5 0 0 0

−a4a5 0 −a3a4 0 0

 .

In this case the Lax equation L̇ = [B,L] corresponds to the following system

ȧ1 = a1a
2
2 + a1a

2
5 + 2a2a3a5

ȧ2 = −a2a
2
1 + a2a

2
3

ȧ3 = −a3a
2
2 + a3a

2
4 − a3a

2
5 − 2a1a2a5

ȧ4 = −a4a
2
3 − a4a

2
5

ȧ5 = −a5a
2
1 + a5a

2
3 + a5a

2
4 .

The Hamiltonian of the system is H =
1

2
(a2

1 + a2
2 + a2

3 + a2
4 + a2

5) and the Poisson
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matrix (of rank 4) is 
0 a1a2 2a2a5 0 a1a5

−a1a2 0 a2a3 0 0

−2a2a5 −a2a3 0 a3a4 −a3a5

0 0 −a3a4 0 −a4a5

−a1a5 0 a3a5 a4a5 0

 .

The system is integrable with constants of motion H =
1

2
(a2

1 + a2
2 + a2

3 + a2
4 + a2

5) and

F =
1

2
a4

1 + a2
1a

2
5 +

1

2
a4

5 + a2
1a

2
2 + 2a1a5a2a3 + a2

3a
2
5 + a2

4a
2
5 +

1

2
a4

2 + a2
2a

2
3 +

1

2
a4

3 + a2
4a

2
3 +

1

2
a4

4.

In fact F is equal to tr
(
L4

4

)
. The Casimir of the system is C = a2

2 −
a1a2a3

a5

and may be

obtained by the method of chopping as follows. We have

x · I5 − L =


x −a1 0 −a5 0

−a1 x −a2 0 0

0 −a2 x −a3 0

−a5 0 −a3 x −a4

0 0 0 −a4 x


and the one-chopped matrix is 

−a1 x −a2 0

0 −a2 x −a3

−a5 0 −a3 x

0 0 0 −a4


with determinant a4a5x

2+a1a2a3a4−a2
2a4a5. Dividing the constant term of this polynomial

by the leading term a4a5 we obtain the Casimir C.

The second method that we use is an old recipe of Moser. Moser in [?] describes a

relation between the KM system and the non–periodic Toda lattice. The procedure is the

following.

Form L2 which is not anymore a tridiagonal matrix but is similar to one. Let ê =

{e1, e2, . . . , en} be the standard basis of Rn. Also let Eo = span {e2i−1, i = 1, 2, . . . }
and Ee = span {e2i, i = 1, 2, . . . }. Then L2 leaves Eo and Ee invariant and reduces in

each of these spaces to a tridiagonal symmetric Jacobi matrix. For example, if we omit all

even columns and all even rows we obtain a tridiagonal Jacobi matrix and the entries of

this new matrix define the transformation from the KM system to the Toda lattice. We
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illustrate with a simple example where n = 5.

We use the symmetric version of the KM system Lax pair given by

L =


0 a1 0 0 0

a1 0 a2 0 0

0 a2 0 a3 0

0 0 a3 0 a4

0 0 0 a4 0

 .

It is simple to calculate that L2 is the matrix
a2

1 0 a1a2 0 0

0 a2
1 + a2

2 0 a2a3 0

a1a2 0 a2
2 + a2

3 0 a3a4

0 a2a3 0 a2
3 + a2

4 0

0 0 a3a4 0 a2
4

 .

Omitting even columns and even rows of L2 we obtain the matrix a2
1 a1a2 0

a1a2 a2
2 + a2

3 a3a4

0 a3a4 a2
4

 .

This is a tridiagonal Jacobi matrix. It is natural to define new variables A1 = a1a2,

A2 = a3a4, B1 = a2
1, B2 = a2

2 + a2
3, B3 = a2

4. The new variables A1, A2, B1, B2, B3 satisfy

the Toda lattice equations.

This procedure shows that the KM-system and the Toda lattice are closely related.

The explicit transformation which is due to Hénon maps one system to the other. The

mapping in the general case is given by

Ai = −1

2

√
a2ia2i−1 , Bi =

1

2
(a2i−1 + a2i−2) .

The equations satisfied by the new variables Ai, Bi are given by:

Ȧi = Ai (Bi+1 −Bi)

Ḃi = 2 (A2
i − A2

i−1) .

These are precisely the Toda equations in Flaschka’s form.

This idea of Moser was applied with success to establish transformations from the

generalized Volterra lattices of Bogoyavlensky [?, ?] to generalized Toda systems. The

relation between the Volterra systems of type Bn and Cn and the corresponding Toda
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systems is in [?]. The similar construction of the Volterra lattice of type Dn and the

generalized Toda lattice of type Dn is in [?]. We use this method in the next section to

obtain a missing integral for some generalized Lotka-Volterra systems.

6.6 2-diagonal systems

In this section we define an infinite family of systems with a cubic Hamiltonian vector

field. We present each such system in Lax pair form L̇ = [B,L] which allows us to obtain

a large family of first integrals, Hi = tr(Li). Additional integrals are obtained by the

method of Moser described in the previous section. In the examples we present, these

integrals are enough to ensure the Liouville integrability of the systems. We believe that

all these systems are Liouville integrable.

We begin with the definition of the matrices L and B. For convenience we let di

denote the ith diagonal starting from the upper right corner and moving towards the main

diagonal. We take L to be an n× n symmetric matrix with the only non-zero entries on

two diagonals dm and dn−1 where n > 2m and m > 2. Note that for m = 1 we obtain the

periodic KM system.

The matrix L is given by

L =



0 a1 0 · · · 0 an 0 · · · 0

a1 0 a2 0 0 an+1

. . .
...

0 a2 0 a3

. . .
. . .

. . . 0
... 0 a3

. . .
. . . 0 an+m−1

0
. . . 0

an 0 an−2 0
...

0 an+1

. . . an−2 0 an−2 0
...

. . .
. . . 0 0 an−2 0 an−1

0 · · · 0 an+m−1 0 · · · 0 an−1 0



.

That is, L is a symmetric n× n matrix whose non-zero upper diagonals are:

dn−1 = (a1, a2, . . . , an−1)

dm = (an, an+1, . . . , an+m−1)

To put it in the terminology of section (6.2) this matrix has variables in the positions
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corresponding to the simple roots and also at the positive roots of height n−m, i.e.

L =
∑
αi∈Φ

ai(Xαi +X−αi),

where

Φ = {α1, α2, . . . , αn−1, α1 + α2 + . . .+ αn−m, . . . , αm + αm+1 + . . .+ αn−1}.

By considering the set Ψ = {α + β | α, β ∈ Φ ∪ Φ−, α + β ∈ R+} we define B to be the

matrix

B =
∑

cijaiaj
(
Xαi+αj +X−αi−αj

)
, (6.4)

where the non-zero terms are taken over all αi + αj ∈ Ψ with αi, αj ∈ Φ ∪ Φ− and

cij = ±1. The following proposition shows that there is a choice of the signs ci,j that leads

to a consistent Lax pair.

Proposition 30. Let Φ be the subset of the positive roots of a root system of type An−1

containing the simple roots and the roots of height n − m where n ≥ 2m and m ≥ 2.

The skew-symmetric matrix B constructed using the algorithm of section 6.2 has nonzero

variables in the positions corresponding to the root vectors X±α where α runs through the

positive roots of height 2, n−m− 1 and n−m+ 1. The following choice of the signs ci,j

gives a consistent Lax pair.

ci,i+1 = 1, i = 1, 2, . . . , n− 1,

cn−m+i,n+i = ci,n+i−1 = −1, i = 1, 2, . . . ,m,

cn−m+i,n+i−1 = ci,n+i = 1, i = 1, 2, . . . ,m− 1.

Proof. We form the subset K of the positive roots as in the proof of proposition 28

K = {α + β + γ : α, β, γ ∈ Φ ∪ Φ−, α + β + γ ∈ R+}.

In order to have a consistent Lax pair we must choose the signs ci,j in a way such that the

variables in [L,B] corresponding to the roots in K \Φ vanish. The set K \Φ contains the

roots of height 3, n−m−2 and n−m+ 2. Each corresponding root vector is formed only

in two ways as [Xα, [Xβ, Xγ]] and [Xγ, [Xα, Xβ]]. From the Jacobi identity we conclude

that, in order for the corresponding variables to vanish, the coefficients of these two root

vectors must be the same. For example the root vectors corresponding to roots of height

3 are formed as
[
Xαi ,

[
Xαi+1

, Xαi+2

]]
and

[
Xαi+2

,
[
Xαi , Xαi+1

]]
for i = 1, 2, . . . , n − 3

and we obtain the conditions ci,i+1 = 1 for all i = 1, 2, . . . , n − 2. The root vectors

corresponding to roots of height n −m − 2 are formed as
[
X−αi+1

,
[
X−αi , Xαn+i−1

]]
and
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[
Xαn+i−1

,
[
X−αi , X−αi+1

]]
for i = 1, 2, . . . ,m. Note that here the root αn+i−1 = αi+αi+1 +

. . .+αn−m+i−1. We obtain the conditions −ci,i+1 = ci,n+i−1 for all i = 1, 2, . . . ,m. Similar

formulas for the roots of height n−m− 2 and n−m+ 2 give our result.

Therefore the matrix B is the n × n skew-symmetric matrix with non-zero upper

diagonals:

dn−2 = (a1a2, a2a3, . . . , an−2an−1),

dm+1 = (−an−man,−an−m+1an+1 − a1an, . . . ,−an−1an+m−1 − am−1an+m−2,−aman+m−1),

dm−1 = (an−m+1an + a1an+1, an−m+2an+1 + a2an+2, . . . , an−1an+m−2 + am−1an+m−1).

(6.5)

The Poisson bracket { , } is determined by the N ×N Poisson matrix π = q−qt, where

N = n+m− 1, and the non-zero entries of q are given by:

qi,i+n = aiai+n for 1 6 i 6 m− 1,

qi,i+n−1 = −aiai+n−1 for 1 6 i 6 m,

qi+n−m−1,i+n−1 = ai+n−1ai+n−m−1 for 1 6 i 6 m,

qi+n−m,i+n−1 = −ai+n−1ai+n−m for 1 6 i 6 m− 1,

qi,i+1 = aiai+1 for 1 6 i 6 n− 2,

qi+n−1,i+n = 2aiai+n−m for 1 6 i 6 m− 1 .

(6.6)

6.6.1 Special case with two diagonals, m = 2

In this subsection we consider the case where m = 2. The matrix L is defined by

L =



0 a1 0 · · · 0 an 0

a1 0 a2

. . . 0 an+1

0 a2 0
. . . 0

...
. . .

. . .
. . . 0

...

0 an−2 0

an 0 0 an−2 0 an−1

0 an+1 0 · · · 0 an−1 0


and corresponds to the subset Φ of the positive roots containing the simple roots and the

roots of length n− 2. The matrix B is defined by equation (6.4) and its upper triangular
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part is

0 0 a1a2 0 · · · 0 −an−2an 0 a1an+1 + an−1an

0 0 0 a2a3 0 −a1an − an−1an+1 0
...

. . . 0 0
. . . 0 −a2an+1

. . .
. . . 0

. . . 0
...

0 an−3an−2 0

0 0 an−2an−1

...
. . . 0 0

0 · · · · · · 0 0



,

The Lax equation L̇ = [B,L] is equivalent to the following system:

ȧ1 = a1a
2
2 + a1a

2
n+1 − a1a

2
n,

ȧ2 = a2a
2
3 − a2

1a2 − a2a
2
n+1,

...
...

ȧi = aia
2
i+1 − a2

i−1ai, i = 3, 4, . . . , n− 3

...
...

ȧn−2 = an−2a
2
n − a2

n−3an−2 + an−2a
2
n−1,

ȧn−1 = an−1a
2
n+1 − a2

n−2an−1 − an−1a
2
n,

ȧn = a2
1an + a2

n−1an − a2
n−2an + 2a1an−1an+1,

ȧn+1 = a2
2an+1 − a2

1an+1 − an+1a
2
n−1 − 2a1an−1an .

The Poisson matrix π is defined by equations (6.6) and its upper triangular part is

0 a1a2 0 · · · 0 −a1an a1an+1

... 0 a2a3 0 0 −a2an+1

0 a3a4 0
. . .

. . . 0
. . .

. . . 0 0
...

0 an−2an−1 an−2an 0

0 −an−1an an−1an+1

... 0 2a1an−1

0 · · · · · · 0



.
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For n even, the system has n+ 1 variables and the Poisson matrix has rank n and thus

the Poisson structure has one Casimir. The traces of L give n
2

functionally independent

first integrals in involution. Hence the system is integrable in the sense of Liouville. The

Casimir is

C = detL = (a3a5 . . . an−5an−3anan+1 − a1a3 . . . an−3an−1)2.

For n odd, the system has n + 1 variables and the Poisson matrix has rank n + 1.

Therefore the Poisson structure is non-degenerate with no Casimirs. The traces tr(Li) give

only n+1
2
− 1 functionally independent first integrals in involution. For the integrability of

the system we need one more constant of motion which we obtain using the procedure of

Moser described in section (6.5).

We give two examples for n = 7, n = 9.

Example 41. Consider the following matrices

L =



0 a1 0 0 0 a7 0

a1 0 a2 0 0 0 a8

0 a2 0 a3 0 0 0

0 0 a3 0 a4 0 0

0 0 0 a4 0 a5 0

a7 0 0 0 a5 0 a6

0 a8 0 0 0 a6 0


and

Λo(L
2) =

a
2
1 + a2

2 + a2
8 a2a3 a1a7 + a6a8

a2a3 a2
3 + a2

4 a4a5

a1a7 + a6a8 a4a5 a2
5 + a2

6 + a2
7

 ,

where Λo(L
2) denotes the matrix obtained from L2 by omitting all odd rows and columns.

We define a new set of variables A1 = a2a3, A2 = a4a5, A3 = a1a7 + a6a8, B1 = a2
1 + a2

2 +

a2
8, B2 = a2

3 +a2
4 and B3 = a2

5 +a2
6 +a2

7. These variables satisfy the periodic Toda equations

which are equivalent to the Lax equation Λ̇o(L
2) = [C,Λo(L

2)] with

Λo(L
2) =

B1 A1 A3

A1 B2 A2

A3 A2 B3

 and C =

 0 A1 −A3

−A1 0 A2

A3 −A2 0

 .

This system has two Casimirs B1 +B2 +B3 and A1A2A3. The Casimir B1 +B2 +B3

expressed as a function of the original variables gives the Hamiltonian while the Casimir
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A1A2A3 gives the extra integral

A1A2A3 = a2a3a4a5 (a1a7 + a6a8) .

We could also obtain this integral from the system Λ̇e(L
2) = [C,Λe(L

2)] where Λe (L2)

denotes the matrix obtained from L2 by omitting all even rows and columns.

Λe(L
2) =


a2

1 + a2
7 a1a2 a5a7 a1a8 + a6a7

a1a2 a2
2 + a2

3 a3a4 a2a8

a5a7 a3a4 a2
4 + a2

5 a5a6

a1a8 + a7a6 a2a8 a5a6 a2
6 + a2

8

 =


B1 A1 A4 A6

A1 B2 A2 A5

A4 A2 B3 A3

A6 A5 A3 B4


and

C =


0 A1 −A4 A6

−A1 0 A2 −A5

A4 −A2 0 A3

−A6 A5 −A3 0

 .

This system is not the full symmetric Toda lattice of Deift, Li, Nanda and Tomei

[?]. Although the L matrix is the same, the C matrix is different. This system has two

polynomial Casimirs, B1 +B2 +B3 +B4 and A1A2A4 + A2A3A5, with

A1A2A4 + A2A3A5 = a2a3a4a5 (a1a7 + a6a8) .

Example 42. We take L to be

0 a1 0 0 0 0 0 a9 0

a1 0 a2 0 0 0 0 0 a10

0 a2 0 a3 0 0 0 0 0

0 0 a3 0 a4 0 0 0 0

0 0 0 a4 0 a5 0 0 0

0 0 0 0 a5 0 a6 0 0

0 0 0 0 0 a6 0 a7 0

a9 0 0 0 0 0 a7 0 a8

0 a10 0 0 0 0 0 a8 0



.
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The matrix

Λo(L
2) =


a2

1 + a2
2 + a2

10 a2a3 0 a1a9 + a8a10

a2a3 a2
3 + a2

4 a4a5 0

0 a4a5 a2
5 + a2

6 a6a7

a1a9 + a8a10 0 a6a7 a2
7 + a2

8 + a2
9

 =


B1 A1 0 A4

A1 B2 A2 0

0 A2 B3 A3

A4 0 A3 B4


produces the periodic-Toda lattice which can be written in Lax pair form Λ̇o(L

2) =

[C,Λo(L
2)] with

C =


0 A1 0 −A4

−A1 0 A2 0

0 −A2 0 A3

A4 0 −A3 0

 .

This system also has two polynomial Casimirs B1 + B2 + B3 + B4 and A1A2A3A4. By

writing the latter one in the original variables we obtain the extra integral, namely

A1A2A3A4 = a2a3a4a5a6a7 (a1a9 + a10a8) .

The intermediate Toda system Λ̇e(L
2) = [C,Λe(L

2)] with

Λe(L
2) =



B1 A1 0 A5 A7

A1 B2 A2 0 A6

0 A2 B3 A3 0

A5 0 A3 B4 A4

A7 A6 0 A4 B5


and

C =


0 A1 0 −A5 A7

−A1 0 A2 0 −A6

0 −A2 0 A3 0

A5 0 −A3 0 A4

−A7 A6 0 −A4 0

 .

has two Casimirs B1 +B2 +B3 +B4 +B5 and A1A2A3A5 +A2A3A4A6. The second Casimir

gives the extra constant of motion.

A1A2A3A5 + A2A3A4A6 = a2a3a4a5a6a7 (a1a9 + a8a10) .
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Note that this intermediate Toda system is not of the type considered in [?].

6.6.2 Special case with two diagonals, m = 3

In this subsection we consider the case where m = 3.

The matrix L is given by

L =



0 a1 0 . . . 0 an 0 0

a1 0 a2

. . . 0 an+1 0

0 a2 0
. . . 0 an+2

...
. . .

. . .
. . . 0

0
. . .

. . .
. . .

...

an 0
. . .

. . . an−2 0

0 an+1 0
. . . an−2 0 an−1

0 0 an+2 0 · · · 0 an−1 0


That is L is a symmetric n× n matrix whose non-zero upper diagonals are:

dn−1 = (a1, a2, a3, a4, . . . , an−1),

d3 = (an, an+1, an+2).

It corresponds to the subset Φ of the positive roots of the root system of type An−1

containing the simple roots and the roots of length n−3. The matrix B constructed using

the procedure described in section 6.2 is the n×n skew-symmetric matrix whose non-zero

upper diagonals are:

dn−2 = (a1a2, a2a3, a3a4, . . . , an−2an−1),

d4 = (−an−3an,−an−2an+1 − a1an,−an−1an+2 − a2an+1,−a3an+2),

d2 = (an−2an + a1an+1, an−1an+1 + a2an+2).

These systems are Hamiltonian systems with a Poisson matrix determined by equations

(6.6). For n even, the Poisson structure has two Casimirs and the traces of Li together

with an extra constant of motion obtained by Moser’s technique give the integrability of

the system. For n odd the system has one Casimir and the traces of the Li give enough first

integrals to ensure the integrability of the system. We illustrate this with two examples

for n = 7 and n = 8.
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Example 43. For n = 7 the matrix L is given by

0 a1 0 0 a7 0 0

a1 0 a2 0 0 a8 0

0 a2 0 a3 0 0 a9

0 0 a3 0 a4 0 0

a7 0 0 a4 0 a5 0

0 a8 0 0 a5 0 a6

0 0 a9 0 0 a6 0


.

The Casimir for the corresponding Poisson bracket is given by

detL = −2a1a3a4a6(a1a5a9 + a2a6a7 − a7a8a9).

Note that the constants of motion Hi = trLi for i = 4, 5, 6, together with the Hamiltonian

H2 = 1
2

(a2
1 + a2

2 + · · ·+ a2
9) are functionally independent and in involution. Therefore the

system is integrable.

Example 44. For n=8 the matrix L is given by

L =



0 a1 0 0 0 a8 0 0

a1 0 a2 0 0 0 a9 0

0 a2 0 a3 0 0 0 a10

0 0 a3 0 a4 0 0 0

0 0 0 a4 0 a5 0 0

a8 0 0 0 a5 0 a6 0

0 a9 0 0 0 a6 0 a7

0 0 a10 0 0 0 a7 0


and the matrix B is determined by the relations (6.5). It defines a Hamiltonian system

with Poisson structure determined by the Poisson matrix

0 a1a2 0 0 0 0 0 −a1a8 a1a9 0

−a1a2 0 a2a3 0 0 0 0 0 −a2a9 a2a10

0 −a2a3 0 a3a4 0 0 0 0 0 −a3a10

0 0 −a3a4 0 a4a5 0 0 0 0 0

0 0 0 −a4a5 0 a5a6 0 a5a8 0 0

0 0 0 0 −a5a6 0 a6a7 −a6a8 a6a9 0

0 0 0 0 0 −a6a7 0 0 −a7a9 a7a10

a1a8 0 0 0 −a5a8 a6a8 0 0 2a1a6 0

−a1a9 a2a9 0 0 0 −a6a9 a7a9 −2a1a6 0 2a2a7

0 −a2a10 a3a10 0 0 0 −a7a10 0 −2a2a7 0



,
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which has rank 8. The Hamiltonian of the system is H2 = 1
2

(a2
1 + a2

2 + · · ·+ a2
10). A

constant of motion is obtained using Moser’s technique.

If we delete the odd numbered rows and columns of L2 we obtain the matrix

Λo(L
2) =


a2

1 + a2
2 + a2

9 a2a3 a1a8 + a6a9 a7a9 + a2a10

a2a3 a2
3 + a2

4 a4a5 a3a10

a1a8 + a6a9 a4a5 a2
5 + a2

6 + a2
8 a6a7

a7a9 + a2a10 a3a10 a6a7 a2
7 + a2

10

 =


B1 A1 A4 A6

A1 B2 A2 A5

A4 A2 B3 A3

A6 A5 A3 B4

 .

We have

Ȧ1 = ˙(a2a3)

= ȧ2a3 + a2ȧ3 = (a2a
2
3 + a2a

2
10 − a2

1a2 − a2a
2
9)a3 + a2(a3a

2
4 − a2

2a3 − a3a
2
10)

= a2a3(a2
3 + a2

4 − a2
1 − a2

2 − a2
9)

= A1(B2 −B1)

and similarly the new variables Bi, Ai satisfy the system

Ḃ1 = 2(A2
1 + A2

6 − A2
4) , Ḃ2 = 2(A2

2 − A2
1 − A2

5) ,

Ḃ3 = 2(A2
3 + A2

4 − A2
2) , Ḃ4 = 2(A2

5 − A2
3 − A2

6) ,

Ȧ1 = A1(B2 −B1) , Ȧ2 = A2(B3 −B2) ,

Ȧ3 = A3(B4 −B3) , Ȧ4 = A4(B1 −B3) + 2A3A6 ,

Ȧ5 = A5(B2 −B4)− 2A1A6 , Ȧ6 = A6(B4 −B1)− 2A3A4 + 2A1A5 .

(6.7)

This system can be written in Lax pair form ˙Λo(L2) = [C,Λo(L
2)] with

C =


0 A1 −A4 A6

−A1 0 A2 −A5

A4 −A2 0 A3

−A6 A5 −A3 0

 .

It is Hamiltonian with Hamiltonian function

H = tr

(
Λo (L2)

2

2

)
=

1

2
(B2

1 +B2
2 +B2

3 +B2
4) + A2

1 + A2
2 + A2

3 + A2
4 + A2

5 + A2
6
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and Poisson matrix

0 0 0 0 A1 0 0 −A4 0 A6

0 0 0 0 −A1 A2 0 0 −A5 0

0 0 0 0 0 −A2 A3 A4 0 0

0 0 0 0 0 0 −A3 0 A5 −A6

−A1 A1 0 0 0 0 0 0 0 0

0 −A2 A2 0 0 0 0 0 0 0

0 0 −A3 A3 0 0 0 0 0 0

A4 0 −A4 0 0 0 0 0 0 A3

0 A5 0 −A5 0 0 0 0 0 −A1

−A6 0 0 A6 0 0 0 −A3 A1 0



.

It has 2 Casimir functions B1 +B2 +B3 +B4 and A1A2A4 + A2A3A5. The function

F = A1A2A4 + A2A3A5 = a2a3a4a5 (a1a8 + a6a9) + a3a4a5a6a7a10 =

a1a2a3a4a5a8 + a2a3a4a5a6a9 + a3a4a5a6a7a10

is a constant of motion for the original system. The integrals H2, H4, H6, F together with

the two Casimirs given by

C1 = a1a3a5a7,

C2 =
√

detL− C1 = a1a4a6a10 + a2a4a7a8 − a4a8a9a10

ensure the integrability of the original system.

In general for n even Moser’s technique gives the following additional constant of

motion.

n F = a2a3 . . . an−3(a1an + an−2an+1) + a3a4 . . . an−1an+2

6 a1a2a3a6 + a2a3a4a7 + a3a4a5a8

8 a1a2a3a4a5a8 + a2a3a4a5a6a9 + a3a4a5a6a7a10

10 a1a2a3a4a5a6a7a10 + a2a3a4a5a6a7a8a11 + a3a4a5a6a7a8a9a12

Table 6.1: Additional constant of motion obtained using Moser’s technique

The following two tables contain the Casimirs of the Poisson structure for m = 3.
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n C = −1
2

detL

7 a1a3a4a6(a1a5a9 + a2a6a7 − a7a8a9)

9 a1a3a4a5a6a8(a1a7a11 + a2a8a9 − a9a10a11)

11 a1a3a4a5a6a7a8a10(a1a9a13 + a2a10a11 − a11a12a13)

13 a1a3a4a5a6a7a8a9a10a12(a1a11a15 + a2a12a13 − a13a14a15)

n a1a3a4 · · · an−3an−1(a1an−2an+2 + a2an−1an − anan+1an+2)

Table 6.2: Casimirs for m = 3 and n odd

n C1 C2 =
√
| detL| − C1

6 a1a3a5 −(a1a4a8 + a2a5a6 − a6a7a8)

8 a1a3a5a7 a4(a1a6a10 + a2a7a8 − a8a9a10)

10 a1a3a5a7a9 −a4a6(a1a8a12 + a2a9a10 − a10a11a12)

12 a1a3a5a7a9a11 a4a6a8(a1a10a14 + a2a11a12 − a12a13a14)

14 a1a3a5a7a9a11a13 −a4a6a8a10(a1a12a16 + a2a13a14 − a14a15a16)

n a1a3 · · · an−3an−1 a4a6 · · · an−6an−4(a1an−2an+2 + a2an−1an − anan+1an+2)

Table 6.3: Casimirs for m = 3 and n even
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Chapter 7

Using complex coefficients

Now I will have less distraction.— Leonhard Euler, upon losing his eyesight.

As we noted in the introduction of the previous chapter, we may produce more Lotka-

Volterra systems by changing the matrix L from symmetric to Hermitian. The aim of this

chapter is to describe this idea of using complex coefficients and give some examples of

new Lotka-Volterra systems produced by this new method. Let us begin with an example

Example 45. Consider the case of a root system of type A4 and the subset of positive roots

Φ = {α1, α2, α3, α4, α5 = α1 + α2}. It turns out that if

L =
4∑
i=1

ai (Xαi +X−αi) + a5 (Xα5 +X−α5)

then the corresponding linear system of signs (described in the proof of proposition 29)

does not have a solution, while if

L =
4∑
i=1

ai (Xαi +X−αi) + ia5 (Xα5 −X−α5)

then the corresponding system of signs does have a solution and gives rise to the system

ȧ1 = a1a
2
2 + a1a

2
5

ȧ2 = −a2
1a2 + a2a

2
3 − a2a

2
5

ȧ3 = −a2
2a3 + a3a

2
4 − a3a

2
5

ȧ4 = −a2
3a4

ȧ5 = −a2
1a5 + a2

2a5 + a2
3a5.

(7.1)

This system can be easily transformed to a Lotka-Volterra system which is integrable with

one rational Casimir a1a2
a5

, and an extra constant of motion, tr(L4).
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In general, the idea is to make the matrix L Hermitian by replacing some terms of the

form ai (Xαi +X−αi) with iai (Xαi −X−αi) where i is the imaginary unit. The construction

of the matrix B is the same as in section 6.2 with the only difference of B being skew-

Hermitian. Example 45 suggest that we may replace with iai (Xαi −X−αi) all variables

in L corresponding to the roots of height 2. But doing so we see that the only possible

way to have a consistent Lax pair is to replace with iai (Xαi −X−αi) all variables in L

corresponding to roots of even height. Therefore we end up with the following alternative

method of constructing Lax pairs.

We begin with a subset Φ of the positive roots containing the simple roots. We write

Φ = Φ1 ∪ Φ2 where Φ1 are the roots in Φ of odd height and Φ2 are the roots in Φ of even

height. The Lax matrix is constructed as

L =
∑
αi∈Φ1

ai(Xαi +X−αi) +
∑
αi∈Φ2

iai(Xαi −X−αi) =
∑
αi∈Φ

bi(Xαi ±X−αi) , (7.2)

where the variables bi are defined as bi = ai if αi ∈ Φ1 and bi = iai if αi ∈ Φ2. Consider

the set Φ ∪ Φ− which consists of all the roots in Φ together with their negatives. Let

Ψ =
{
α + β | α, β ∈ Φ ∪ Φ−, α + β ∈ R+

}
.

We define the upper triangular part of the skew-Hermitian matrix B as∑
cijbibjXαi+αj , (7.3)

where cij = ±1 if αi + αj ∈ Ψ with αi, αj ∈ Φ ∪ Φ− and 0 otherwise.

An easy consequence of the construction of the matrices L and B is the following

lemma.

Lemma 15. Let Φ be a subset of the positive roots containing the simple roots and L,B

the matrices constructed in (7.2) and (7.3). Also let K be the subset of the positive roots

defined by

K = {α + β + γ : α, β, γ ∈ Φ ∪ Φ−, α + β + γ ∈ R+}.

Let’s write K = K1 ∪K2 where K1 are the roots in K of odd height and K2 are the roots

in K of even height. Then the bracket [L,B] is decomposed into [L,B] = A1 + iA2 for

a symmetric matrix A1 and a skew-symmetric matrix A2 where the nonzero entries of

A1 and A2 appear in the “correct” positions; i.e. those of A1 in positions corresponding

to root vectors Xα, α ∈ K1 while those of A2 in positions corresponding to root vectors

Xα, α ∈ K2.

Next we show that this method in general produces more Lax pairs than the one
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described in section 6.2. Since for this method we don’t have to worry about the diagonal

entries of the bracket [L,B] (see lemma 15) we end up with the following proposition.

Proposition 31. Let Π ⊂ Φ ⊂ R+ be a subset of the positive roots containing the simple

roots with the property that whenever α, β, γ ∈ Φ∪Φ− and α+β+γ ∈ R+ then α+β+γ ∈ Φ.

Also let L,B be the matrices constructed using the algorithms described in (7.2) and (7.3)

respectively. Then for any choice of the signs ci,j the pair L,B is a Lax pair.

Example 46. Let k, n ∈ N with 1 ≤ k < n. If Φ is the subset of the positive roots of the

root system An containing the simple roots and all the roots of height larger than k then

for all possible choices of the signs ci,j we have a consistent Lax pair.

Example 47. For the root system of type A3 all Lax pairs corresponding to

Φ = {α1, α2, α3, α2 + α3, α1 + α2 + α3}

are given by the matrices

L =


0 a1 0 a5

a1 0 a2 ia4

0 a2 0 a3

a5 −ia4 a3 0


and B, whose upper triangular part is

0 ic4,5a4a5 c1,2a1a2 − c3,5a3a5 −ic3,4a1a4

0 0 −ic3,4a3a4 c1,5a1a5 + c2,3a2a3

0 0 0 ic4,5a2a4

0 0 0 0

 .

We can verify that for all 32 choices of the signs ci,j no one of the corresponding systems

is the same as the one produced by the method of section 6.2. Therefore this procedure

produces systems which in general are different from the ones of section 6.2.

Example 48. Define the matrix L to be

L =



0 a1 0 0 0 a9

a1 0 a2 ia6 0 ia8

0 a2 0 a3 0 0

0 −ia6 a3 0 a4 ia7

0 0 0 a4 0 a5

a9 −ia8 0 −ia7 a5 0
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and the upper triangular part of the skew-Hermitian matrix B to be

0 ia8a9 −a1a2 −ia1a6 − ia7a9 a5a9 ia1a8

0 0 −ia3a6 −a2a3 + a7a8 −ia4a6 + ia5a8 a1a9 + a6a7

0 0 0 −ia2a6 −a3a4 ia2a8 − ia3a7

0 0 0 0 −ia5a7 −a4a5 + a6a8

0 0 0 0 0 −ia4a7

0 0 0 0 0 0


.

This Lax pair gives rise to a Lotka-Volterra system. The associated Poisson matrix is

given by

π =



0 −a1a2 0 0 0 −a1a6 0 a1a8 a1a9

a1a2 0 −a2a3 0 0 −a2a6 0 a2a8 0

0 a2a3 0 −a3a4 0 a3a6 −a3a7 0 0

0 0 a3a4 0 −a4a5 a4a6 −a4a7 0 0

0 0 0 a4a5 0 0 a5a7 −a5a8 −a5a9

a1a6 a2a6 −a3a6 −a4a6 0 0 −a6a7 a6a8 0

0 0 a3a7 a4a7 −a5a7 a6a7 0 −a7a8 −a7a9

−a1a8 −a2a8 0 0 a5a8 −a6a8 a7a8 0 a8a9

−a1a9 0 0 0 a5a9 0 a7a9 −a8a9 0



,

which has the following Casimirs.

a2a4a9,
a2a4a8

a1

,
a1a3a7

a4

,
a6

a2a3

, a1a3a5.

The additional integral is H4 = tr (L4).

We prove the following proposition which is the equivalent of proposition 29 and shows

that this method gives more Lotka-Volterra systems than the one described in section 6.2.

Proposition 32. Let Φ = {α1, . . . , αn+1} be the subset of the positive roots of the root

system An containing the simple roots and the additional extra root αn+1. Suppose that

αn+1 = αk + αk+1 + . . .+ αm for some 1 ≤ k < m ≤ n. Then the only possible choices of

k,m that lead to a Lotka-Volterra system are

(k,m) = (1, n), (1, n− 1), (2, n), (2, n− 1) and (i, i+ 1) for i = 1, 2, . . . , n− 1.

Proof. The proof for the case m− k > 1 is the same as the proof of proposition 29. When

m−k = 1, since the matrix [L,B] is Hermitian, from lemma 15 it follows that its diagonal

151

Cha
ral

am
po

s E
vri

pid
ou



entries are zero. The corresponding linear system of signs becomes

ci,i+1 = ci+1,i+2 = c i = 1, 2, . . . , n− 2,

cm+1,n+1 = −ck−1,n+1, ck−1,n+1 = −cm,n+1 cm+1,n+1 = −cm+1,m+2 = −c,
cm+1,n+1 = −ck,n+1, ck−1,n+1 = ck−2,k−1 = c.

which has a solution and therefore the Lax equation L̇ = [L,B] is transformed to a Lotka-

Volterra system.
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