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Abstract

Let TB1 = R2 × i{(y1, y2) ∈ R2 : y2
1 + y2

2 < 1}, TB2 = {(x1, x2) ∈ R2 : x2
1 + x2

2 <

1} × iR2 be tubes in C2 and H2(TBj), j = 1, 2, be the spaces of holomorphic functions

f(z) =
∫
R2

f(t)e2πiz·tdt, z ∈ TB1 and g(z) =
∫
R2

f(t)e2πz·tdt, z ∈ TB2 . The main result of the

present thesis is a separation of singularity type theorem allowing to express a function

f ∈ H2(TB1) as a difference of two holomorphic functions f1 ∈ H2(T(S−H)int) and f2 ∈

H2(T(S+
H)int), defined on suitable tubes T(S−H)int and T(S+

H)int , whose base contains a cone,

and satisfying TB1 = T(S−H)int∩T(S+
H)int . It is proven that every function f1 ∈ H2(T(S−H)int) or

f2 ∈ (T(S+
H)int) is representable by Cauchy-Fantappie formula (and conversely). As a direct

consequence of separation of singularities theorem it is shown also that every function

f ∈ H2(TB1) is represented by Cauchy-Fantappie formula supported on the boundary

∂TB1 . Actually, if Φ1(ζ, ζ̄) =
(
ζ1−ζ̄1

2i

)2

+
(
ζ2−ζ̄2

2i

)2

− 1 is the defining function of the tube

TB1 then for every function f ∈ H2(TB1)

f(z) =
1

(2π)2

∫
R2×iS1

f(ζ)
(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)(
< ∇ζΦ1(ζ, ζ̄), ζ − z >

)2

Similar results are valid for the tube H2(TB2).

i

NIKOLE
TA ALE

XANDROU



PerÐlhyh

'Estw TB1 = R2× i{(y1, y2) ∈ R2 : y2
1 + y2

2 < 1}, TB2 = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}× iR2

kulindrik� qwrÐa sto C2 kai H2(TBj), j = 1, 2, eÐnai oi q¸roi olìmorfwn sunart sewn

f(z) =
∫
R2

f(t)e2πiz·tdt, z ∈ TB1 kai g(z) =
∫
R2

f(t)e2πz·tdt, z ∈ TB2 . To kÔrio apotèlesma thc

paroÔsac ergasÐac eÐnai èna je¸rhma tÔpou diaqwrismoÔ twn idiazìntwn shmeÐwn to opoÐo

epitrèpei thn èkfrash sun�rthshc f ∈ H2(TB1) ¸c diafor� dÔo olìmorfwn sunart sewn

f1 ∈ H2(T(S−H)int) kai f2 ∈ H2(T(S+
H)int), orismènwn se kat�llhla epilegmèna, m  fragmèna

kulindrik� qwrÐa T(S−H)int kai T(S+
H)int , twn opoÐwn h b�sh perièqei k¸no, tètoia ¸ste na

ikanopoioÔn th sunj kh TB1 = T(S−H)int∩T(S+
H)int . EpÐshc, apodeiknÔetai ìti k�je sun�rthsh

f1 ∈ H2(T(S−H)int)   f2 ∈ H2(T(S+
H)int), antÐstoiqa, ekfr�zetai mèsw oloklhrwtik c ana-

par�stashc tÔpou Cauchy-Fantappie (kai antÐstrofa). 'Wc �meso apotèlesma lamb�noume,

epÐshc, ìti k�je sun�rthsh f ∈ H2(TB1) mporeÐ na anaparastajeÐ mèsw oloklhrwtik c ana-

par�stashc tÔpou Cauchy-Fantappie me forèa sto sÔnoro ∂TB1 . Eidikìtera, �n Φ1(ζ, ζ̄) =(
ζ1−ζ̄1

2i

)2

+
(
ζ2−ζ̄2

2i

)2

− 1 eÐnai h orÐzousa sun�rthsh pou antistoiqeÐ sto kulindrikì qwrÐo

TB1 tìte gia k�je sun�rthsh f ∈ H2(TB1) isqÔei

f(z) =
1

(2π)2

∫
R2×iS1

f(ζ)
(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)(
< ∇ζΦ1(ζ, ζ̄), ζ − z >

)2

'Omoia apotelèsmata isqÔoun kai gia ton q¸ro Hardy H2(TB2).
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Chapter 1

Introduction

The theory of Hardy spaces and their integral representations is rather well developed

for bounded domains Ω ⊂ Cn of different types of convexity (convex and pseudo-convex

domains with reasonably smooth boundaries). However, almost nothing is known about

the related questions for Hardy spaces on unbounded domains G ⊂ Cn, the main reason

being the absence of suitable integral representation for holomorphic functions f ∈ H(G)

on such domains, even if one assumes high degree of smoothness of the boundary ∂G and

continuity of f on the closure G. The main obstacle to be able to obtain such integral

formulas is the lack of Stoke’s theorem for unbounded domains.

The main result of the present thesis is a Cauchy-Fantappie formula for the Hardy spaces

H2(TBj), j = 1, 2, on tubular domains consisting of holomorphic functions

F (z) =

∫
R2

f(t)e2πiz·tdt, z ∈ TB1 and G(z) =

∫
R2

f(t)e2πz·tdt, z ∈ TB2

correspondingly. The tubes are described by their defining functions as follows

TB1 = {z ∈ C2 : (
z1 − z̄1

2i
)2 + (

z2 − z̄2

2i
)2 − 1 < 0}

TB2 = {z ∈ C2 : (
z1 + z̄1

2
)2 + (

z2 + z̄2

2
)2 − 1 < 0}.

Our approach is based on that of Aizenberg-Martineau ([1, 2, 4],[21, 22]) with the use of the

notion of the ”exterior of a domain ” not in a topological sense, but rather through a gen-

eralized complement (or dual complement in ([10])). To be more specific, if G ⊂ Cn, then

1
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G∗ denotes its generalized complement, that is, the set of points through which there exists

a complex hyperplane that does not intersect G. One of the main results of Aizenberg-

Martineau theory is that the Cauchy-Fantappie Transform FC : (O(G))′ −→ O(G∗),

mapping the analytic functional µ ∈ (O(G))′ into the space of analytic functions O(G∗)

via FC(µ)(ζ) = µ( 1
(1+<ζ,·>)2 ), is an isomorphism whenever G is an open (or compact) C-

convex set ([10, 29]). Such approach was used to obtain duality results for Hardy spaces

on bounded domains with suitably smooth boundary. Namely, it was proved in ([6, 7])

that (Hp(G))′ = Hq(G∗), whenever 1
p

+ 1
q

= 1, p > 1 and G is a bounded convex domain

with smooth enough boundary, where a crucial step was the knowledge of the boundary

values of the Cauchy-Fantappie integral from ([27]). One should note here a string of re-

cent papers concerning the boundary values behavior of the Cauchy-Fantappie kernel and

the description of the corresponding Hardy spaces ([19, 18, 26]). This cycle of ideas breaks

down when G = TB1 or G = TB2 , because no Stokes theorem can be applied. Instead, we

prove separation of singularity (Aronsajn type theorem ([11]) for functions spaces equipped

with norm, using the approach developed by L.Aizenberg in [5] via duality arguments for

Hardy spaces on the generalized exteriors (generalized dual complement) and then using

the reflexivity of spaces obtained we return back to the original space. The outline of the

thesis is as follows: in Chapter 2 we present the results describing precisely the ”exterior”

(generalized dual complement) of suitable tubes TS−H
and TS+

H
with convex , unbounded

base containing a cone, whose intersection is TB1 , in order to obtain the fact that T ∗B1
is

the envelope of holomorphy of the union of the compacts T ∗
S−H

and T ∗
S+
H

. In Chapter 3 we

formulate and prove some results concerning H2(TB1) (similarly arguing results concerning

H2(TB2)). In Chapter 4 we prove that f ∈ H2(TS−H
) if and only if it is representable by

Cauchy-Fantappie formula. In Chapter 5 we develop sort of duality theory in the spirit of

Martineau-Aizenberg for the spaces H2(TS−H
) and H2(TB1). The main result of this chap-

ter describes the general form of F ∈
(
H2(TS−H

)
)′

. Finally, in Chapter 6 we derive the

separation of singularities theorem and its consequence: the Cauchy-Fantappie integral

representation for f ∈ H2(TB1).

2
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Chapter 2

Convexity and exterior

We begin by recalling some basic notions and facts from the theory of real and complex

convexity emphasizing on the linear (lineal in ([20])) convexity theory for domains in Cn

that will be used throughout the thesis. Next, we introduce the notion of generalized

dual complement of a domain in Cn and then we describe explicitly the generalized dual

complement of particular convex sets in C2.

2.1 Notions of convexity

A domain Ω in Cn is a non-empty, open and connected subset of Cn. A domain Ω ⊂ Cn

has a boundary of class Ck for k ≥ 1 ([17]) if Ω = {z ∈ Cn : ΦΩ(z, z) < 0} where ΦΩ is

a real-valued function at least k times continuously differentiable in some neighborhood

of the closure of Ω so that the complex gradient ∇zΦΩ = (∂ΦΩ

∂z1
, · · · , ∂ΦΩ

∂zn
) is assumed to

be non-vanishing at all points of the boundary ∂Ω. We write ∂Ω ∈ Ck. It is clear that

the boundary of Ω corresponds to the set ∂Ω = {z ∈ Cn : ΦΩ(z, z̄) = 0}. Thus, the

boundary ∂Ω has real dimension 2n− 1. If k = 1, then one says that Ω is a domain with

smooth boundary. The function ΦΩ is called the defining function for the domain Ω and

in general is not uniquely determined. This notation for Ω will be used throughout the

thesis. Furthermore, notice that if U ⊃ Ω̄ is a neighborhood of the closure of Ω then

U ∩ ∂Ω = {z ∈ Cn : ΦΩ(z, z) = 0}. Note that once a defining function is given on a

neighborhood of the boundary of a domain Ω, then using a partition of unity, the defining

3
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function is extended to the whole domain.

A domain Ω has a piece-wise smooth boundary ([17]) if Ω = {z ∈ Cn : ΦΩj(z) <

0, j = 1, · · · ,m} where the real-valued functions ΦΩj are of class C1 in some neighbor-

hood of Ω̄ and for every set of distinct indices j1, · · · , jl where 1 ≤ l ≤ m, the condition

dΦΩj1
∧ · · · ∧ dΦΩjl

6= 0 is valid on the set {z ∈ Cn : ΦΩj1
(z, z̄) = · · · = ΦΩjl

(z, z̄) = 0}. In

the particular case when m = 1, a domain Ω ⊂ Cn has a smooth boundary if dΦΩ 6= 0 on

∂Ω.

We are going to study particular type of domains and compact subsets of Cn that

are described in terms of notions analogous to those of real convexity theory. Recall that

A ⊂ R2n is called geometrically convex set if and only if its intersection with every line

is connected or equivalently if and only if the line segment connecting any two points of

A lies entirely in A. An alternative and equivalent description of convexity consists in the

study of the exterior of a set. Particularly, A ⊂ R2n is convex if and only if for every

α ∈ Ac there is a real hyperplane {x ∈ R2n :< x, y >≤ α} which does not intersect A,

where < x, y >= x1y1 + · · ·+x2ny2n is the usual inner product in R2n. Thus, through every

point in the topological complement of a convex set A ⊂ R2n there passes a real hyper-

plane which does not intersect A. The topological dimension of such a hyperplane is 2n−1.

Actually, assume that A ⊂ R2n has the property that through any point of its exterior

there passes a real hyperplane not intersecting A. If A is not geometrically convex then

there are points x, y ∈ A so that for some a ∈ xy, implies that a ∈ R2n \ A. Then there

is a point b ∈ ∂A (which may be a itself) on the line segment connecting x and b and a

real hyperplane through b which is disjoint from A. Since all points sufficiently near to x,

y belong to A, this is a contradiction. Conversely, assume A is convex according to the

line segment definition and take x ∈ ∂A. Assume c ∈ Ac. Then there is a point a ∈ A

so that the distance |ac| is minimum for points ranging over A. Then the real hyperplane

< a, x >= |ac| is passing through c and is disjoint from A. Indeed, if this hyperplane

contains b ∈ A, then since the line segment ab is consisted of points of A, there will be a

point x ∈ A such that |cx| is less than |ca|, a contradiction. Thus, geometric convexity of

4
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a set A ⊂ R2n is equivalently described through the conditions stated above.

Thus, it is natural to define the polar set of a domain Ω ⊂ Cn (not necessarily convex)

as the set of all real hyperplanes passing through some point ζ ∈ Ω that do not intersect

Ω. The polar set is denoted by Ω◦. Straightforward reasoning shows that one always has

that Ω ⊂ (Ω◦)◦. The equality Ω = (Ω◦)◦ is valid only when the domain Ω is convex. The

difference (Ω◦)◦ \ Ω is measuring then how far from being convex is the set Ω.

At this point, we remark that the inner product is a linear map from R2n to R. Thus,

by Riesz Representation Theorem, being linear it is an element of the dual space (R2n)
′
.

Thus, points in R2n correspond to hyperplanes in (R2n)
′
. In order to derive further con-

vexity information we may exploit the duality stated above.

Next, let us recall the notions of real and complex tangent space ([25]).

The real tangent space of a domain Ω ⊂ Cn ≈ R2n with Ck boundary for k ≥ 1 at a point

p ∈ ∂Ω is the (2n− 1)- real dimensional hyperplane

Tp(∂Ω) =

{
w ∈ Cn : <

(
n∑
=1

∂ΦΩ

∂z
(p)w

)
= 0

}

Analogously, the complex tangent space of a domain Ω ⊂ Cn at the point p ∈ ∂Ω is

the (n− 1)- complex dimensional hyperplane

Tp(∂Ω) =

{
w ∈ Cn :

n∑
=1

∂ΦΩ

∂z
(p)w = 0

}

It is clear that Tp(∂Ω) is a real (2n− 2)− dimensional subspace of Tp(∂Ω).

For domains with smooth enough boundary its convexity (or its variations) is often

deduced by the boundary behavior of the gradient of its defining function.

For simplicity, we first remark that for a real-valued twice continuously differentiable

5
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function ΦΩ the quadratic form

HΦΩ
(p, w) = <

(∑
j,k

∂2ΦΩ

∂zj∂zk
(p)wjwk

)
+
∑
j,k

∂2ΦΩ

∂zj∂z̄k
(p)wjw̄k (2.1.1)

is called the Hessian of ΦΩ at p, whereas its hermitian part

LΦΩ
(p, w) =

∑
j,k

∂2ΦΩ

∂zj∂z̄k
(p)wjw̄k (2.1.2)

is called the Levi form.

If Φ′Ω is another defining function for the domain Ω then Φ′Ω = hΦΩ where the function

h is strictly positive in a neighborhood of the boundary ∂Ω. If p ∈ ∂Ω and w ∈ Tp(∂Ω) we

therefore have that HΦΩ
(p, w) = h(p)HΦ′Ω

(p, w). In other words, the value of the Hessian

is independent of the selection of the defining function.

It is a complicated problem to describe the geometric convexity of a domain Ω in Cn

by using its definition. Thus, one is looking for alternative approaches for testing it. Such

is the approach for bounded domains Ω = {z ∈ Cn : ΦΩ(z, z̄) < 0} with C2 boundary by

using the Hessian of the defining function. The following definition is from ([25]).

Definition 2.1.1 Let Ω = {z ∈ Cn : ΦΩ(z, z) < 0} ⊂ Cn is a domain with C2 boundary

then it is convex if the value of the Hessian when restricted to the real tangent space is

positive semi-definite:

HΦΩ
(p, w) ≥ 0 whenever p ∈ ∂Ω and w ∈ Tp(∂Ω) (2.1.3)

When the inequality (2.1.3) is proper for any w ∈ Tp(∂Ω)\{0}, the domain Ω is strictly

convex at p ∈ ∂Ω and p is called a point of strict convexity for the domain Ω. If every

point of the boundary ∂Ω is a point of strict convexity then Ω is called strictly convex

domain.

It is well known that the usual geometric definition of convexity is equivalent to the

above analytic requirement that the Hessian of the defining function ΦΩ be positive,

semidefinite, whenever it is restricted to the real tangent space at every p ∈ ∂Ω ([10]).

6
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E. Levi introduced another notion of convexity for domains with C2 boundary satisfying

a complex analogue of (2.1.3), by formulating the following ([20], [25])

Definition 2.1.2 Let Ω ⊂ Cn be a domain with C2 boundary and ΦΩ be its corresponding

defining function. Then ∂Ω is called Levi pseudoconvex at the point p ∈ ∂Ω if the restric-

tion of the Levi form to the complex tangent plane is positive semi-definite. A domain is

Levi pseudoconvex if every boundary point is a point of Levi pseudoconvexity.

A domain is called strictly Levi pseudoconvex if in the neighborhood of each of its

boundary points the domain is strictly convex for a suitable choice of coordinates.

Every domain in C is Levi pseudoconvex. However, that is not the case for n > 1. It is

elementary to verify directly that convex domains are Levi pseudoconvex but the converse

is not always true. Simply observe that Cn minus a hyperplane is Levi pseudoconvex.

More precisely, if ℘ is a complex hyperplane in Cn then Cn \ {℘} is Levi pseudoconvex

but not convex.

An alternative way to describe the convexity of the domain Ω is to involve directly its

boundary. To be more specific, one observes that for a convex domain Ω ⊂ Cn there is a

real hyperplane through every point ζ ∈ Cn \Ω which does not meet the domain. Remark

that a real hyperplane in R2n is of real dimension 2n− 1, while a complex hyperplane in

Cn is of real dimension 2(n− 1).

The complex analogue of this was introduced by A. Martineau and L. Aizenberg and

is formulated as follows :

Definition 2.1.3 A domain Ω ⊂ Cn is said to be linearly convex ( or weakly lineally

convex in ([10])) if for every ζ ∈ ∂Ω there exists a complex hyperplane ℘ = {z ∈ Cn :

α1z1 + ... + αnzn + β = 0} through ζ that does not intersect Ω. A domain Ω ⊂ Cn is

called strictly linearly convex if through every point ζ ∈ Ωc of its exterior there passes an

(n− 1)− dimensional complex hyperplane not intersecting Ω.

Thus, strict linear convexity amounts to the condition that through any boundary

point there should pass a complex tangent hyperplane intersecting ∂Ω at precisely one

7
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point.

We will say that a set Ω ⊂ Cn is approximated from the outside (inside) by the sequence of

domains {Ωk}k∈N if Ω̄k+1 ⊂ Ωk (Ω̄k ⊂ Ωk+1 respectively ) and Ω = ∩kΩk (Ω = ∪kΩk corre-

spondingly ) where Ωk = {z ∈ Cn : ΦΩk(z, z) < 0},ΦΩk ∈ C2(Ωk) and ∇zΦΩk(z, z̄) 6= 0 for

all z ∈ ∂Ωk. A compact set M ⊂ Cn is said to be linearly convex if there exists a sequence

of linearly convex domains approximating M from the outside ([3], [5]).

Linear convexity is preserved under intersections. Furthermore, all cartesian products

Ω1 × Ω2 of linearly convex sets are also linearly convex ([10]). Since every real hyper-

plane contains a complex hyperplane, it is clear that every convex domain Ω ⊂ Cn is

linearly convex. However, the converse claim is not always true. For example, the set

Ω = {(z1, z2) ∈ C2 : |z1| < 2, |z2| < 1} ∪ {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 2} is linearly

convex, but not convex.

The above approach has a natural realization for domains Ω with C1 boundary (so that

it has unique complex tangent hyperplane at every boundary point). Indeed, for a linearly

convex domain Ω ⊂ Cn and ζ ∈ Ωc we consider the complex hyperplane

{z ∈ Cn :< ∇ζΦΩ(ζ, ζ̄), ζ − z >= 0},

that is, the complex tangent hyperplane passing through ζ. Whenever < ∇ζΦΩ(ζ, ζ̄), ζ >6=

0, ζ ∈ Cn \ Ω the tangent hyperplane above can be written as

{
z ∈ Cn :

〈
∇ζΦΩ(ζ, ζ̄)

< ∇ζΦΩ(ζ, ζ̄), ζ >
, z

〉
= 1

}

Particularly, let us take n = 2 and assume that Ω = {z ∈ C2 : ΦΩ(z, z̄) < 0} ⊂ C2 is a

linearly convex domain with smooth boundary, that is ∇ζΦΩ(ζ, ζ̄) = (∂ΦΩ(ζ,ζ̄)
∂ζ1

, ∂ΦΩ(ζ,ζ̄)
∂ζ2

) 6= 0

for ζ ∈ ∂Ω. Furthermore, assume that 0 ∈ Ω. For a (1, 0)− form q =
∑2

j=1 qjdzj and z ∈ C2

we will write < q, z >=
∑2

j=1 qjzj. For convenience, we will sometimes identify (1, 0)−

forms with vectors, i.e. we identify ∂ζΦΩ(ζ, ζ̄) with (∂ΦΩ(ζ,ζ̄)
∂ζ1

, ∂ΦΩ(ζ,ζ̄)
∂ζ2

). Identifying the slope
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w =
∇ζΦΩ(ζ,ζ̄)

<∇ζΦΩ(ζ,ζ̄),ζ>
with the hyperplane above we have the correspondence

C2 3 w −→ {z ∈ C2 :< z,w >= 1} ∈ Ωc

Thus, we obtain a description of the exterior of such a domain.

A. Martineau in [21] introduced a way to measure how far away is a set of being linearly

convex. He measured the linear convexity of a domain through the existence of certain

hyperplanes contained in its topological complement. More specifically, he defined the

notion of the generalized dual complement (dual complement in ([10]))

Definition 2.1.4 Let Ω ⊂ Cn be a domain. The generalized dual complement Ω∗ of Ω is

defined to be the set

Ω∗ = {ζ ∈ Cn : z1ζ1 + ...+ znζn 6= 1, ∀z ∈ Ω} (2.1.4)

The notion of the generalized dual complement is geometric in spirit and it plays the

role of the exterior for the domain Ω. For the domain Ω ⊂ C one obtains that Ω∗ = Ωc,

since there is no difference between a complex hyperplane and a point. However in higher

dimensions this is not in general the case. In particular, for n = 1 the dual complement

can be expressed as Ω∗ = {1
ζ

: ζ ∈ C \ Ω} ∩ {0}. The whole space Cn and the singleton

{0} are generalized dual complements the one of the other.

Even though the concept of polar of a set and the concept of its dual complement appear

to be similar, there is no equality between the sets Ω◦ and Ω∗, even though Ω◦ ⊂ Ω∗ is

always valid, unless some additional geometric characteristics of Ω are present.
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2.2 Generalized dual complement for particular

linearly convex domains

2.2.1 Basic properties of generalized dual complement

We now briefly recall some properties of the generalized dual complement and the notion

of linear (weakly linear) convexity (linearly convex in ([10])) to be found in ([1],[2], [10]).

For a domain Ω ⊂ Cn the generalized dual complement of its closure,
(
Ω
)∗
, is the interior

of Ω∗, that is
(
Ω
)∗

= (Ω∗)int. The interior of a linearly convex set is linearly convex while

its closure is not in general ( i.e. Hartogs triangle ). In addition if Ω is compact then Ω∗

is open and vice versa. Furthermore, if Ω1, Ω2 are domains in Cn so that the inclusion

Ω1 ⊂ Ω2 is hold, then Ω∗2 ⊂ Ω∗1. The generalized dual complement of a domain Ω = ∪k∈NΩk

is Ω∗ = ∩k∈NΩ∗k. Furthermore,
(
∩k∈N Ωk

)∗ ⊇ ∪k∈NΩ∗k. On the other hand, if a compact set

M ⊂ Cn is defined as M = ∩Mk and Mk+1 is relatively compact in Mk for every k ∈ N

(we denote this by Mk+1 ⊂⊂ Ω̄k) then M∗ = ∩k∈NM∗
k and

(
∩k∈N Mk

)∗∗
= ∪k∈NM∗∗

k .

Subsequently, any linearly convex and compact set admits a basis of linearly convex open

neighborhoods.

Some examples are in order.

Example 2.2.1 Let Bn(0, r) = {(z1, · · · , zn) ∈ Cn : |z1|2 + · · · + |zn|2 < r2} be the

open ball in Cn. Assume, now, that ζ ∈ (Bn(0, r))∗ . Then z1ζ1 + · · · + znζn 6= 1 for all

z = (z1, · · · , zn) ∈ Bn(0, r). Without loss of generality take |ζn| 6= 0. Thus the hyperplane

zn 6=
1

ζn
− (

ζn−1

ζn
zn−1 + · · ·+ ζ1

ζn
z1)

does not meet the ball Bn(0, r) for ζn−1

ζn
zn−1 + · · ·+ ζ1

ζn
z1 = zn. Follows that (0, · · · , 0, 1

ζn
) /∈

Bn(0, r). Hence | 1
ζn
|2 ≥ r2 or equivalently |ζn|2 ≤ 1

r2 . Similarly, take |ζj| 6= 0 for j =

1, · · · , n− 1 and conclude that (Bn(0, r))∗ ⊂ B̄n(0, 1
r
). For the converse inclusion, assume

ζ ∈ B̄n(0, 1
r
). Then |ζ1|2 + · · ·+ |ζn|2 ≤ 1

r2 . Therefore for every z ∈ Bn(0, r) we have that

|z1ζ1 + · · ·+ znζn| ≤ (
n∑
i=1

|zi|2)
1
2 (

n∑
j=1

|ζj|2)
1
2 ≤

(
1

r2
r2

) 1
2

= 1
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Thus z1ζ1 + · · ·+ znζn 6= 1 for every z ∈ Bn(0, r) and the inclusion B̄n(0, 1
r
) ⊂ (Bn(0, r))∗

follows. Hence (Bn(0, r))∗ = B̄n(0, 1
r
). Note that both Bn(0, r) and B̄n(0, 1

r
) have smooth

boundary, but that is not the case in general. For r = 1 we obtain that (Bn(0, 1))∗ =

B̄n(0, 1).

One might be tempted, motivated by the previous example, to assume that Ω∗∗ =

(Ω∗)∗ = Ω, where Ω∗∗ is the union of all complex hyperplanes that intersect Ω. In general,

however, only the inclusion Ω ⊂ Ω∗∗ is valid and the difference (Ω∗)∗ \ Ω quantifies how

far away is the set Ω from being linearly convex. The domains for which Ω = Ω∗∗ were

introduced and studied by A. Martineau in [22] in relation to the solution of the duality

problem in several complex variables. These domains are known also as Martineau linearly

convex domains. However, ([9]) provides examples of linearly convex domains which are

not Martineau linearly convex domains. Therefore one can define for any domain Ω its

linearly convex hull to be the smallest linearly convex domain containing it, that is, the

generalized dual complement of its generalized dual complement, Ω∗∗ ([10]). Hence, linear

convexity is a type of convexity defined more conveniently in terms of the generalized dual

complement of a domain in Cn. Specifically, if Ω = Ω∗∗ ([10]) then the domain Ω is linearly

convex.

Of particular interest to us is the following domain with non-smooth boundary and its

generalized dual complement.

Example 2.2.2 Let A2 = {(z1, z2) ∈ C2 : |z1| + |z2| < 1} be the hyper-cone. We claim

that its generalized dual complement A∗2 is the closed complex bi-disk D2(0, 1) = {(ζ1, ζ2) ∈

C2 : |ζ1| ≤ 1, |ζ2| ≤ 1}. Let ζ = (ζ1, ζ2) ∈ D2(0, 1). Then |ζ1| ≤ 1, |ζ2| ≤ 1. Therefore, for

every z ∈ A2 we have

|ζ1z1 + ζ2z2| ≤ |ζ1||z1|+ |ζ2||z2| < |z1|+ |z2| < 1

Thus ζ1z1 + ζ2z2 6= 1 for every z ∈ A2. Hence D2(0, 1) ⊂ A∗2. In order to prove the

converse inclusion, let us assume that ζ ′ = (ζ ′1, ζ
′
2) ∈ A∗2. It means that ζ ′1z1 + ζ ′2z2 6= 1

for every z = (z1, z2) ∈ A2. Without loss of generality, we may assume that |ζ ′2| = %2 6= 0.

Hence z2 6= 1
ζ′2
− ζ′1

ζ′2
z1 . Now, the line 1

ζ′2
− ζ′1

ζ′2
z1 does not intersect the hyper-cone for z1 = 0
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also, thus (0, 1
ζ′2

) 6∈ A2 or | 1
ζ′2
| > 1. Thus |ζ ′2| < 1. Similarly, we treat the other cases. Thus

A∗2 ⊂ D2(0, 1). Thus D̄2(0, 1) = A∗2. Note that both domains are circular (Reinhardt), but

do have a non smooth boundary.

The above example can be generalized for the hyper-cone

An = {(z1, ..., zn) ∈ Cn : r|z1|+ ...+ r|zn| < 1}

whose generalized dual complement is

An∗ = {(ζ1, ..., ζn) ∈ Cn : |ζ1| ≤
1

r
, ..., |ζn| ≤

1

r
} = Dn(0,

1

r
)

If the bounded domain Ω ⊂ Cn is convex containing the origin 0 ∈ Ω then λΩ ⊂ Ω,

for all |λ| < 1 and thus, Ω and (Ω)∗ are star shaped domains. Recall that a set Ω ⊂ Cn

is called star shaped with respect to some point z0 ∈ Ω if λz0 + (1 − λ)z ∈ Ω for every

z ∈ Ω and 0 ≤ λ ≤ 1. Observe that all convex sets are star shaped with respect to any

point z0 ∈ Ω, but a star shaped set is not convex in general, (i.e. consider the star set ).

Furthermore, if Ω is a convex domain containing the origin with smooth boundary then

Ω∗ is star-shaped ([7]). The converse claim is not true in general.

Example 2.2.3 The domains A2 and D̄2(0, 1) considered in Example (2.2.2) are both

star-shaped sets with a non-smooth boundary.

Definition 2.2.1 A domain Ω ⊂ Cn is called C− convex if Ω∩ l is connected and simply

connected for every complex line l = {λz : λ ∈ C}.

In order that the Cauchy-Fantappie Transform F̃ : H(E) −→ H(E∗) is isomorphism

it is necessary and sufficient the set E ⊂ Cn being convex ([10]). In the one variable case

a non-empty set E is C− convex precisely if its complement is. For n > 1 however, the

complement of a C− convex set, E ⊂ Cn, is never C− convex. Every convex domain

Ω ⊂ Cn is strictly linearly convex since through each point in Ωc there is a (2n − 1) real

hyperplane α that does not intersect Ω containing a complex hyperplane of dimension

n− 1. A linearly convex domain Ω ⊂ Cn is not necessarily a C− convex domain. In fact
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the two notions coincide when the domain is smoothly bounded ([10]).

Example 2.2.4 Let Ω ⊂ R2n ⊂ Cn. Then Ω is C− convex if and only if Ω is convex.

Notice that Ω ⊂ R2n is linearly convex if its complement in R2n is a union of real (n−2)−

dimensional planes. This happens because any complex hyperplane’s intersection with R2n

represents either a real (n − 2)− plane or a real hyperplane. For example, a circle in R2

is complex linearly convex, but a sphere in R3 is not.

2.2.2 On the generalized dual T∗B1
for the tube TB1

Consider the tube domains TB = Rn × iB ⊂ Cn (or TB = B × iRn), where the set B is

called the base of TB. A tubular domain is convex whenever its base is convex. Thus, for

the rest of the thesis, we assume that the base B of TB is open and convex.

At this point we turn our attention to the tube domains

TB1 = R2 × i{(y1, y2) ∈ R2 : y2
1 + y2

2 < 1} (2.2.1)

TB2 = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} × iR2

having a convex base (namely a disk). Actually, B1 = {(y1, y2) ∈ R2 : y2
1 + y2

2 < 1} and

B2 = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}. Observe that the intersection of the tubes (2.2.1) is

realizing the topological bi-disk:

Uτ = {(x1, x2, iy1, iy2) ∈ R2 × iR2 :
2∑
ı=1

xı
2 < 1,

2∑
ı=1

yı
2 < 1} = TB1 ∩ TB2 (2.2.2)

Notice that the tubes TB1 , TB2 are star shaped with respect to the origin.

It is straight-forward to verify that the defining functions for the tubes TBi i = 1, 2 are

correspondingly the C2 maps

Φ1(ζ, ζ̄) =

(
ζ1 − ζ̄1

2i

)2

+

(
ζ2 − ζ̄2

2i

)2

− 1

Φ2(ζ, ζ̄) =

(
ζ1 + ζ̄1

2

)2

+

(
ζ2 + ζ̄2

2

)2

− 1 (2.2.3)
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for ζ = (ζ1, ζ2) ∈ C2. Furthermore, ∂TBi = {ζ ∈ C2 : Φi(ζ, ζ̄) = 0}, i = 1, 2. We use,

for simplicity, the notation ∂ζjΦi(ζ, ζ̄), i, j = 1, 2 for the partial derivatives of the defining

functions at the point (ζ, ζ̄) and the corresponding 1-form as well. Furthermore, notation

∇ζΦi(ζ, ζ̄) = (∂Φi(ζ,ζ̄)
∂ζ1

, ∂Φi(ζ,ζ̄)
∂ζ2

) is used for the complex gradient at the point (ζ, ζ̄) ∈ TBi .

The tubes TB1 and TB2 are convex sets by definition and thus are linearly convex sets also.

Let us consider the tube TB1 . Calculating the partial derivatives of Φ1 in order to verify

convexity condition (2.1.1) we obtain for j = 1, 2

∂Φ1(ζ, ζ̄)

∂ζj
=

2

(2i)2
(ζj − ζ̄j) = −∂Φ1(ζ, ζ̄)

∂ζ̄j

Furthermore,

∂2Φ1(ζ, ζ̄)

∂ζi∂ζj
= −∂

2Φ1(ζ, ζ̄)

∂ζi∂ζ̄j
=

 2
(2i)2 , i=j;

0, i 6= j

for i, j = 1, 2. Hence, ∇ζΦi(ζ, ζ̄) 6= 0 for any ζ ∈ ∂TB1 = R2 × iS1 where S1 = ∂B1 =

{(y1, y2) ∈ R2 : y2
1 + y2

2 = 1}. Condition (2.1.1) is equal to

−1

2
<(w2

1 + w2
2) +

1

2
(|w1|2 + |w2|2) = =2w1 + =2w2 ≥ 0

valid for all w ∈ Tp(∂TB1).

Setting ζj = xj + iyj for j = 1, 2 one obtains

∂Φ1(ζ, ζ̄)

∂ζj
=

1

2

(
∂Φ1(x, y)

∂xj
− i∂Φ1(x, y)

∂yj

)
= −iyj

and thus,

∂Φ1(x, y)

∂xj
= 0 and

∂Φ1(x, y)

∂yj
= 2yj

∂2Φ1(x, y)

∂x2
j

=
∂2Φ1(x, y)

∂xjyi
= 0 and

∂2Φ1(x, y)

∂y2
j

= 2

An essential characteristic of the domains TB1 , TB2 is that they do not contain any

complex line. In particular, if ε : αζ1 + βζ2 = 1 is a complex line then for β 6= 0 we

have that ζ2 = 1
β
− λζ1 for λ = α

β
. Thus ε cannot lie entirely in TB1 considering the fact
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that the values of <ζ1 and <ζ2 can be arbitrarily large although =ζ1,=ζ2 are restricted

inside the unit disc. Similarly, one derives that TB2 can not contain an entire complex line.

Our purpose is to describe the generalized dual complement of the tubes introduced

in (2.2.1). Since ∇ζΦi(ζ, ζ̄) 6= 0 is valid for any ζ ∈ ∂TBi we may consider the complex

hyperplane passing through ζ ∈ ∂TBi without intersecting TBi . This hyperplane is given

by the equation

〈
∇ζΦi(ζ, ζ̄), ζ − z

〉
6= 0

for every z ∈ TBi or equivalently by the equation

〈 ∇ζΦi(ζ, ζ̄)〈
∇ζΦi(ζ, ζ̄), ζ

〉 , z〉 =
∂ζ1Φi(ζ, ζ̄)〈
∇ζΦi(ζ, ζ̄), ζ

〉z1 +
∂ζ2Φi(ζ, ζ̄)〈
∇ζΦi(ζ, ζ̄), ζ

〉z2 6= 1

Conclude that

w =
∇ζΦi(ζ, ζ̄)

< ∇ζΦi(ζ, ζ̄), ζ >
=

(
∂ζ1Φi(ζ, ζ̄)

< ∇ζΦi(ζ, ζ̄), ζ >
,

∂ζ2Φi(ζ, ζ̄)

< ∇ζΦi(ζ, ζ̄), ζ >

)
∈ T ∗B1

for ζ ∈ C2 \ TBi , i = 1, 2.

In order to define the generalized dual complement of the tubular domains TBi , i = 1, 2

we introduce increasing families of unbounded tubular domains TBi,r for i = 1, 2 and

1 ≤ r <∞. Precisely, we consider the tubular sets

TB1,r =

{
(ζ1, ζ2) ∈ C2 : Φ1,r(ζ, ζ̄) =

(
ζ1 − ζ̄1

2i

)2

+

(
ζ2 − ζ̄2

2i

)2

− r < 0

}

TB2,r =

{
(ζ1, ζ2) ∈ C2 : Φ2,r(ζ, ζ̄) =

(
ζ1 + ζ̄1

2

)2

+

(
ζ2 + ζ̄2

2

)2

− r < 0

}

It is straightforward to verify that Φi,r(ζ, ζ̄) are C2 functions for every i = 1, 2 and

every r ∈ [1,∞). Particularly, for 1 ≤ i, j ≤ 2

∂Φi,r(ζ, ζ̄)

∂ζj
=
∂Φi(ζ, ζ̄)

∂ζj
and

∂2Φi,r(ζ, ζ̄)

∂ζi∂ζj
=
∂2Φi(ζ, ζ̄)

∂ζi∂ζj
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Furthermore, ∇Φi,r(ζ, ζ̄) 6= 0 for all ζ ∈ ∂TBi,r and i = 1, 2.

Observe that for every ζ ∈ C2 \ TB1 there exists unique 1 ≤ r <∞ so that ζ ∈ ∂TB1,r .

The tubes TBi,r are all star shaped, linearly convex sets so that TBi ⊆ TBi,r ⊂ TBi,r′ when-

ever r, r′ ∈ [1,∞), r ≤ r′ and i = 1, 2. Thus, T ∗Bi,r′ ⊂ T ∗Bi,r when i = 1, 2 and r, r′ ∈ [1,∞)

for r ≤ r′.

Following ([1]) we define the generalized dual complements of the tubular domains

TBi , i = 1, 2.

Lemma 2.2.1 Let TBi, i = 1, 2 be the tubes defined by (2.2.1). Then

T ∗B1
= {(ω1, ω2) ∈ C2 : ωi =

∂ζiΦ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
, i = 1, 2, 1 ≤ r <∞}

T ∗B2
= {(ω1, ω2) ∈ C2 : ωi =

∂ζiΦ2,r(ζ, ζ̄)

< ∇ζΦ2,r(ζ, ζ̄), ζ >
, i = 1, 2, 1 ≤ r <∞},

Furthermore T ∗Bi ⊂ B̄(0, 1) ⊂ C2, i = 1, 2.

Proof: First we observe that (0, 0) ∈ T ∗Bi , i = 1, 2. For the nontrivial elements of the

generalized dual sets it is enough to prove only the first claim, the proof of the second

follows along the same lines. For every point ζ ∈ T cB1
there exists unique 1 ≤ r < ∞ so

that ζ ∈ ∂TB1,r . Fix 1 ≤ r < ∞. Since ∇ζΦ1,r(ζ, ζ̄) 6= (0, 0) for every ζ ∈ ∂TB1,r , there

exists complex analytic hyperplane passing through ζ ∈ ∂TB1,r and not intersecting TB1,r .

This hyperplane is given by the equation < ∇ζΦ1,r(ζ, ζ̄), ζ − z >6= 0 for every z ∈ TB1,r or

equivalently, for the same z, by the equation

<
∇ζΦ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
, z >=

∂ζ1Φ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
z1 +

∂ζ2Φ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
z2 6= 1.

Hence

(
∂ζ1Φ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
,

∂ζ2Φ1,r

< ∇ζΦ1,r, ζ >
) ∈ T ∗B1,r

,

whenever ζ ∈ ∂TB1,r . Thus, if we put yi = wi−w̄i
2i

, xi = wi+w̄i
2

, i = 1, 2, with w ∈ ∂TB1 ,
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then at ζ = r · w we have

ω1 =
∂ζ1Φ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
=
r3(y1(x1y1 + x2y2)− iy1(y2

1 + y2
2))

r4((y2
1 + y2

2)2 + (x1y1 + x2y2)2)

=
1

r

∂w1Φ1(w, w̄)< ∇wΦ1(w, w̄), w >

| < ∇wΦ1(w, w̄), w > |2
(2.2.4)

and

ω2 =
∂ζ2Φ1,r(ζ, ζ̄)

< ∇ζΦ1,r(ζ, ζ̄), ζ >
=
r3(y2(x1y1 + x2y2)− iy2(y2

1 + y2
2))

r4((y2
1 + y2

2)2 + (x1y1 + x2y2)2)

=
1

r

∂w2Φ1(w, w̄)< ∇wΦ1(w, w̄), w >

| < ∇wΦ1(w, w̄), w > |2
(2.2.5)

This essentially means that

T ∗B1,r
=

1

r
T ∗B1

whenever 1 ≤ r <∞ (2.2.6)

Furthermore, elementary computations show that

(<ω1)2 + (<ω2)2 + (=ω1)2 + (=ω2)2 =
1

r2

y2
1 + y2

2

(y2
1 + y2

2)2 + (x1y1 + x2y2)2
(2.2.7)

=
1

r2
− 1

r2

(x1y1 + x2y2)2

(y2
1 + y2

2)2 + (x1y1 + x2y2)2
≤ 1

r2

where the equality occurs in the case when x1y1 + x2y2 = 0. Hence the mapping defined

by (2.2.4) and (2.2.5) maps the exterior of tubes into the unit ball. We observe that T ∗B1

contains a disk. Actually, since T ∗B1
is a star compact and the circumference y2

1 + y2
2 = 1

(when x1y1 +x2y2 = 0 ) is subset of the generalized dual we have the desired result. Thus

T ∗B1
⊂ B̄(0, 1) ⊂ C2. Actually

T ∗B1
∩ ∂B(0, 1) = {(0, 0,−iy1,−iy2) ∈ R2 × iR2 : y2

1 + y2
2 = 1}

Similarly, T ∗B2
⊂ B̄(0, 1) ⊂ C2. ♦

Lemma 2.2.2 The generalized dual T ∗B1
cannot contain a ball in its interior.

Proof : Assume that B(q, %) ⊂ (T ∗B1
)int for some q, % > 0. Hence B(q, %) ⊂ T ∗B1

. Thus,
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(B(q, %))∗ ⊃ (T ∗B1
)∗ = TB1 because TB1 is strictly linearly convex. But (B(q, %))∗ = B(q, 1

%
).

Thus the tube TB1 (unbounded set) is contained in a ball, contradiction. ♦

Since
〈
∇ζΦ1(ζ, ζ̄), ζ

〉
6= 0 for ζ ∈ ∂TB1 , one considers the mapping σ : T cB1

−→ T ∗B1

σ(ζ, ζ̄) =
∇ζΦ1(ζ, ζ̄)〈
∇ζΦ1(ζ, ζ̄), ζ

〉 = (
∂ζ1Φ1(ζ, ζ̄)

< ∇ζΦ1(ζ, ζ̄), ζ >
,

∂ζ2Φ1(ζ, ζ̄)

< ∇ζΦ1(ζ, ζ̄), ζ >
)

= (
ζ1 − ζ̄1

(ζ1 − ζ̄1)ζ1 + (ζ2 − ζ̄2)ζ2

,
ζ2 − ζ̄2

(ζ1 − ζ̄1)ζ1 + (ζ2 − ζ̄2)ζ2

)

for every ζ = (ζ1, ζ2) ∈ T cB1
. It is straightforward to see that σ is onto but it is neither R−

linear nor C− linear (σ is C− anti-linear). Next, notice that σ is non invertible for any

ζ ∈ T cB1
. More precisely, we formulate the following.

Lemma 2.2.3 The real Jacobian of σ is identically zero.

Proof: One can do the computations directly to verify the claim, however we can have

the following short argument. Assume that Jσ(x, y) 6= 0 for some ω = (x, iy) ∈ T cB1
. From

the inverse function theorem follows that there exist open neighborhoods B(ω, r) ⊂ T cB1

and B(σ(ω), ρ) ⊂ T ∗B1
for some r, ρ > 0 such that σ(B(ω, r)) ⊂ B(σ(ω), ρ) and the restric-

tion σ|B(ω,r)
: B(ω, r)→ B(σ(ω), ρ) is biholomorphic. Lemma 2.2.2 leads to a contradiction

and the desired result follows. ♦

2.3 Holomorphic extension in tubular domains

A function f defined on an open set U ⊂ Cn belongs to the space Ck(U), where k is

a non-negative integer, if f is k times continuously differentiable in U. More precisely,

f ∈ Ck(U) if all of the partial derivatives ∂kfi

∂z
k1
i1
···∂zklil

exist and are continuous, where

1 ≤ i1, · · · , il ≤ n, k = (k1, · · · , kl) ∈ Nl is a non-negative integer and k = k1 + · · · + kl.

We then write f ∈ Ck(U). In the special case of k = 0 one obtains the space of continuous

functions, C0(U) = C(U). If M is a closed set in Cn then f ∈ Ck(M) when f extends

to some neighborhood U of M as a function of class Ck(U). Similarly, the space H(U) is
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consisted of all functions f that are holomorphic on the open set U. Whenever M is a

closed set, H(M) consists of all functions f that are holomorphic in some neighborhood of

M. Recall that if Ω ⊂ Cn is a domain then the vector space H(Ω) of all holomorphic func-

tions on Ω is equipped with the usual topology of uniform convergence on compact subsets.

For every domain Ω ⊂ C there exists a holomorphic function f ∈ H(Ω) which cannot be

holomorphically extended to a strictly larger domain. Take, for instance, ζ0 ∈ ∂Ω ⊂ C and

then consider the function f(z) = 1
ζ−ζ0 which is holomorphic in a neighborhood U of Ω but

is not holomorphically extendable at ζ0. A domain for which this simultaneous extension

phenomenon does not occur is called a domain of holomorphy. Recall that f ∈ H(Ω) can

be holomorphically extended to a larger domain Ω̃ ⊃ Ω if there is a function F ∈ H(Ω̃)

whose restriction to Ω coincides with f, i.e., F|Ω = f. We recall the notion of the domain

of holomorphy from ([16]).

Definition 2.3.1 A domain Ω in Cn is called a domain of holomorphy if the following

property holds : There do not exist non-empty open sets Ω1,Ω2 with Ω2 connected, Ω2 *

Ω,Ω1 ⊆ Ω2 ∩ Ω, such that for every holomorphic function f on Ω there is a function f2

holomorphic on Ω2 such that f = f2 on Ω1.

A domain Ω is a domain of holomorphy if every f ∈ H(Ω) cannot be holomorphically

extended to a strictly larger domain. In the complex plane C every open set is a domain

of holomorphy (i.e. f(ζ) = 1
ζ−ζ0 cannot holomorphically extend at ζ0). Every linearly

convex domain in Cn is a domain of holomorphy. To be more precise, if < ζ − ζ0, ζ0 >= 0

is a hyperplane passing through ζ0 ∈ ∂Ω, then the function f(ζ) = 1
<ζ−ζ0,ζ0> ∈ H(Ω) can-

not be holomorhically extended at ζ0. Particularly, for convex tube domains the notions

domain of holomorphy, Levi pseudoconvex domain and geometrically convex domain are

all equivalent ([16]). Any domain of holomorphy can be approximated from the inside by

strictly pseudoconvex domains ([4]).

Next, we recall the notion of envelope of holomorphy.

Definition 2.3.2 Let Ω ⊂ Cn be a domain. The envelope of holomorphy of Ω is a domain

EΩ with the following properties:
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(i) Every holomorphic function in Ω can be extended holomorphically to EΩ

(ii) For every boundary point z0 ∈ EΩ there exists a function holomorphic in EΩ which

has no holomorphic extension to a neighborhood of z0.

Thus, the envelope of holomorphy EΩ of a domain Ω ⊂ Cn is the largest domain to

which all holomorphic functions on Ω may holomorphically extend.

Next, we recall some facts connecting the envelope of holomorphy to convexity.

For arbitrary domains Ω1 ⊂ Ω2 ⊂ Cn the inclusions Ω1 ⊂ EΩ1 and EΩ1 ⊂ EΩ2 are

always true. Furthermore, the envelope of holomorphy of any domain is a domain of holo-

morphy, while condition EΩ = Ω is valid for any domain of holomorphy Ω. Fundamental

results of Oka and Cartan show that a necessary and sufficient condition for a domain

Ω ⊂ Cn to be a domain of holomorphy is that each function holomorphic on a domain

Ω′ ⊂ Ω ⊂ Cn is the restriction of some function holomorphic on the whole domain Ω. Fur-

thermore, the theorem of Bochner ([16]), for tubular domains TB = Rn × iB states that

the notion of the envelope of holomorphy coincides with the one of the convex envelope

(convex hull), conv(TB). Thus, ETB = conv(TB) = Tconv(B). Recall, at this point, that the

convex hull of a set is the smallest convex set containing it and it is defined to be the

intersection of all convex sets containing a given set. It is clear that for convex sets one

simply has that conv(Ω) = Ω. Thanks to Caratheodory, the convex hull of a set Ω ⊂ R2n

is given by

conv(Ω) = {
2n∑
j=0

λjxj, whenever xj ∈ Ω, λj ∈ [0, 1],
2n∑
j=0

λj = 1}

It is easy to observe that if Ω is open, then so is its convex hull, conv(Ω). Thus, the

smallest convex set containing a tubular domain TB is exactly the largest set in which all

holomorphic functions defined on TB may holomorphically extend.

It is known that the relation T ∗B1
∪ T ∗B2

⊂ (TB1 ∩ TB2)∗ always holds. However, for

the intersection of the above tubes one has that the generalized dual complement of the

topological bi-disk is a compact in C2 , which is similar to the closed hyper-cone.

Lemma 2.3.1 Let Uτ = TB1 ∩ TB2 be the topological bi-disk and G2 ⊂ C2 be the compact
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defined as the closure of the convex hull of star compact T ∗B1
∪ T ∗B2

, that is

G2 = {(1− λ)w + λu, λ ∈ [0, 1], w, u ∈ T ∗B1
∪ T ∗B2

}. (2.3.1)

Then G2 = {(w1, w2) ∈ R2 × iR2 : ‖w1‖2 + ‖w2‖2 ≤ 1, }, where ‖ · ‖2 is the standard

Euclidean norm, is compact of holomorphy and U∗τ = G2.

Proof: First we observe that µT ∗Bi ⊂ T ∗Bi , µ ∈ [0, 1], i = 1, 2, because the com-

pacts T ∗Bi , i = 1, 2 are star. Thus the set G2 is convex and hence linearly convex com-

pact set. Thus G2 = E(T ∗B1
∪T ∗B2

) is a hull of holomoprhy. Furthermore, if (z1, z2) =

(x1, x2, iy1, iy2) ∈ Uτ and (w, u) ∈ U∗τ then < (z1, z2), (w, u) >6= 1 implies that ei-

ther |x1<w + x2<u − y1=w − y2=u| > 1 or |x1<w + x2<u − y1=w − y2=u| ≤ 1. The

first case is excluded, because U∗τ is star with respect to the origin. Rewriting the

above equation in the standard norm as ‖(x1, x2)‖2 · ‖(<w,<u)‖2 cos θ − ‖(y1, y2)‖2 ·

‖(=w,=u)‖2 cosα 6= 0 and assuming that ‖(<w,<u)‖2 cos θ 6= 0 we observe that the

line ‖(x1, x2)‖2 = 1
‖(<w,<u)‖2 cos θ

− ‖(=w,=u)‖2 cosα
‖(<w,<u)‖2 cos θ

‖(y1, y2)‖2 does not intersect Uτ for any

value (z1, z2) ∈ Uτ . In particular for z2 = 0 we deduce that | 1
‖(<w,<u)‖2 cos θ

| > 1. This

implies that (<w,<u, 0, 0) ∈ G2 for particular choice of θ . Similar argument shows that

(0, 0,−=w,−=u) ∈ G2. Convexity of G2 implies that U∗τ ⊂ G2. On the other hand, if

(w, u) ∈ G2, then |(z1w + z2u)| ≤ |z1w| + |z2u| ≤ |w| + |u| ≤ 1. Thus G2 ⊂ U∗τ . This

concludes the proof of the lemma. ♦

Furthermore, we show that the generalized dual complement of the topological bi-disk

is the envelope of holomorphy of the star compact T ∗B1
∪ T ∗B2

.

Lemma 2.3.2 Let Uτ = TB1 ∩ TB2 be the topological bi-disk in C2. Then

G2 = U∗τ = (TB1 ∩ TB2)∗ = E(T ∗B1
∪T ∗B2

)

where ET ∗B1
∪T ∗B2

denotes the envelope of holomorphy of the normal compact T ∗B1
∪ T ∗B2

and

G2 is defined in (2.3.1).

Proof: Observe that the compact T ∗B1
∪ T ∗B2

⊂ C2 is also star with respect to the

origin. Thus T ∗B1
∪ T ∗B2

⊂ C2 has an envelope of holomorphy E(T ∗B1
∪T ∗B2

). Furthermore,
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T ∗B1
∪ T ∗B2

⊂ (TB1 ∩ TB2)∗ = G2 where G2, is a compact of holomorphy. Consequently,

E(T ∗B1
∪T ∗B2

) ⊂ G2. At the same time, the envelope of holomorphy, E(T ∗B1
∪T ∗B2

) is by definition

the maximal set in which all holomorphic functions in T ∗B1
∪ T ∗B2

can holomorphically

extend. The converse inclusion follows and E(T ∗B1
∪T ∗B2

) = G2.♦

2.4 Tubular domains of type one

We begin this section by recalling the notion of an open cone.

Definition 2.4.1 A non-empty set Γ ⊂ Rn satisfying

(i) 0 /∈ Γ

(ii) For every x1, x2 ∈ Γ and λ1, λ2 > 0 then λ1x1 + λ2x2 ∈ Γ

is an open cone in Rn.

A closed cone is an open cone’s closure. We define the dual cone Γ∗ to be the set

Γ∗ = {y ∈ Rn : y1t1 + · · ·+ yntn ≥ 0, t ∈ Γ}

Obviously, whenever Γ is open then Γ∗ is closed. If n = 1 is the case then the open cones

are just the half-lines Γ11 = {y ∈ R : y > 0} and Γ12 = {y ∈ R : y < 0}. For n = 2 open

cones are angular regions of two rays meeting at the origin and forming an angle less or

equal to π.

Consider the tubular domain TB having a base containing a cone. Notice that B may

contain cones of different dimensions. Assume, for instance, that TB ⊂ R2× iR2. Then its

base, B, may contain one-dimensional cones, two-dimensional cones, or both. It is natu-

ral therefore to define the type of the tube TB to be the dimension of the maximal cone

for which a displacement lies in B([13], [14]), i.e. the type is equal to 2. With the term

displacement of B we mean the parallel transfer of all vectors lying in B. The simplest

tubular domain TB having type the dimension of a cone Γ contained in B is taken when

B = Γ.

We restrict our attention to particular tubular domains. In order to realize TB1 as
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an intersection of tubular domains whose base contain a cone, we introduce the tubular

domains with bases contained in iR2. We define

S−H = {(iy1, iy2) ∈ iR2 : y2
1 + y2

2 ≤ 1, −1 ≤ y1 < 0}

∪ {(iy1, iy2) ∈ iR2 : −1 ≤ y2 ≤ 1, y1 ≥ 0}

S+
H = {(iy1, iy2) ∈ iR2 : y2

1 + y2
2 ≤ 1, 0 < y1 ≤ 1}

∪ {(iy1, iy2) ∈ iR2 : −1 ≤ y2 ≤ 1, y1 ≤ 0} (2.4.1)

and then

T(S−H)int = R2 × (S−H)int

T(S+
H)int = R2 × (S+

H)int (2.4.2)

Thus,

TB1 = T(S−H)int ∩ T(S+
H)int = R2 × {(iy1, iy2) ∈ iR2 : y2

1 + y2
2 < 1} (2.4.3)

The tubular domains (2.4.2) with bases the convex open sets (S−H)int, (S+
H)int (interiors of

the sets S−H , S+
H correspondingly) are open, convex sets and hence linearly convex. Thus

both tubular domains defined by (2.4.2) are hulls of holomorphy. Furthermore, notice that

the bases (S−H)int, (S+
H)int of the half tubes T(S−H)int , T(S+

H)int have been selected in order not

to contain any entire straight line, but they both contain a cone.

One observes that both T(S−H)int and T(S+
H)int contain only one-dimensional cone, that

is {(y1, 0), y1 ≥ 0} ⊂ R2 for the first and {(y1, 0), y1 ≤ 0} ⊂ R2 for the latter. Obviously,

they cannot contain angular regions of two rays meeting at the origin and forming an

angle less or equal to π. Following ([14], [13]), we observe that the type of T(S−H)int is the

dimension of the cone {(y1, 0), y1 ≥ 0} ⊂ R2 and for T(S+
H)int its type is the dimension of

the cone {(y1, 0), y1 ≤ 0} ⊂ R2. According to ([14], [13]) we will say that T(S−H)int and

T(S+
H)int are tubular domains of type one.

It is straightforward from (2.4.1) that the semi-tubes are defined via smooth defining
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functions. One corresponding to the strictly convex part of them and another for the one

of the strip. It follows from (2.4.1) and (2.4.2) that

T(S−H)int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ1(ζ, ζ̄) = Φ−1 (ζ, ζ̄),when − 1 ≤ y1 < 0}

∪ {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ−1 (ζ, ζ̄) = (
ζ2 − ζ̄2

2i
)2 − 1, when y1 ≥ 0}

T(S+
H)int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ1(ζ, ζ̄) = Φ+

1 (ζ, ζ̄),when 0 < y1 ≤ 1, }

∪ {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ+
1 (ζ, ζ̄) = (

ζ2 − ζ̄2

2i
)2 − 1, when y1 ≤ 0}

(2.4.4)

The tubes defined equivalently by (2.4.2) and (2.4.4) are piece-wise smooth, in the

sense that each one of their boundaries ∂T(S−H)int and ∂T(S+
H)int is the union of disjoint,

smooth hyper-surfaces. Namely, the connected part R2 × iS− and the part consisting of

two connected components R2 × i{(y1, y2) ∈ R2 : y1 > 0, y2 = 1} and R2 × i{(y1, y2) ∈

R2 : y1 > 0, y2 = −1} where S− denotes the left hand-side half unit circle. Similarly,

the boundary of the tube T(S+
H)int is the union of the connected part R2 × iS+ and the

part consisting of two connected components R2 × i{(y1, y2) ∈ R2 : y1 < 0, y2 = 1} and

R2 × i{(y1, y2) ∈ R2 : y1 > 0, y2 = −1}, where S+ denotes the right hand-side half unit

circle. At every point ζ ∈ ∂T(S−H)int ( ∂T(S+
H)int respectively ) of strict convexity there is

a unique analytic hyperplane (complex line) passing through ζ without intersecting the

interior of T(S−H)int(T(S+
H)int respectively ). Furthermore, the existence of (algebraic) tangent

line at the non-smoothness points R2× i{(0,±1)} of the boundary ∂T(S−H)int is guaranteed

by the convexity of the tubes (2.4.4).

Observe that for every point of strict convexity (ζ1, ζ2) ∈ T(S−H)int , that is −1 < =ζ1 < 0,

the defining function of the semi-tube T(S−H)int coincides with the defining function of TB1

(2.4.4). Hence, the partial derivatives of first and second order of Φ−1 coincide with the

corresponding partial derivatives of Φ1 as they were calculated in (2.2.4). Actually,

∂Φ−1 (ζ, ζ̄)

∂ζj
=

2

(2i)2
(ζj − ζ̄j) = −∂Φ−1 (ζ, ζ̄)

∂ζ̄j
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and

∂2Φ−1 (ζ, ζ̄)

∂ζi∂ζj
= −∂

2Φ−1 (ζ, ζ̄)

∂ζi∂ζ̄j
=

 2
(2i)2 , i=j;

0, i 6= j

whenever −1 < =ζ1 < 0 and j = 1, 2. However, that is not the case for (ζ1, ζ2) ∈ T(S−H)int

with =ζ1 > 0. Since Φ−1 (ζ, ζ̄) =
(
ζ2−ζ̄2

2i

)2

− 1 for =ζ1 > 0 it is clear that all partial

derivatives with respect to ζ1 or ζ̄1 are equal to zero on these points. Furthermore,

∂Φ−1 (ζ, ζ̄)

∂ζ2

=
2

(2i)2
(ζ2 − ζ̄2) = −∂Φ−1 (ζ, ζ̄)

∂ζ̄2

∂2Φ−1 (ζ, ζ̄)

∂ζ2
2

=
2

(2i)2
=
∂2Φ−1 (ζ, ζ̄)

∂ζ̄2
2

∂2Φ−1 (ζ, ζ̄)

∂ζ2∂ζ̄2

= − 2

(2i)2
=
∂2Φ−1 (ζ, ζ̄)

∂ζ̄2∂ζ2

whenever =ζ1 > 0.

Rewriting in real variables, taking into account that Φ−1 (x1, x2, y1, y2) = y2
1 + y2

2 − 1

whenever −1 < y1 < 0 and Φ−1 (x1, x2, y1, y2) = y2
2 − 1 for y1 ≥ 0, one obtains

∂Φ−1 (x, y)

∂xi
=

∂Φ−1 (ζ, ζ̄)

∂ζi
+
∂Φ−1 (ζ, ζ̄)

∂ζ̄i
= 0 for i = 1, 2

∂Φ−1 (x, y)

∂y1

=
1

i

(
∂Φ−1 (ζ, ζ̄)

∂ζ̄1

− ∂Φ−1 (ζ, ζ̄)

∂ζ1

)
=

 2y1,−1 < y1 < 0;

0, y1 > 0.

∂Φ−1 (x, y)

∂y2

=
1

i

(
∂Φ−1 (ζ, ζ̄)

∂ζ̄2

− ∂Φ−1 (ζ, ζ̄)

∂ζ2

)
= 2y2

It is clear, now, that all partial derivatives of second order are equal to zero except from

the cases
∂2Φ−1 (x,y)

∂y2
1

for −1 < y1 < 0 and
∂2Φ−1 (x,y)

∂y2
2

for y1 ∈ R that are both equal to 2.
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Particularly,

∂2Φ−1 (x, y)

∂x2
i

=
∂2Φ−1 (x, y)

∂xiyj
=
∂2Φ−1 (x, y)

∂yiyj
= 0 for i, j = 1, 2

∂2Φ−1 (x, y)

∂y2
j

=

 2, j=1;

2, j=2.
whenever −1 < y1 < 0

∂2Φ−1 (x, y)

∂y2
j

=

 0, j=1;

2, j=2.
whenever y1 > 0

It is straightforward that Φ−1 is smooth except from the points (x1, x2, 0,±1) ∈ ∂T(S−H)int .

Assume ζ ∈ C2 \ T(S−H)int , i.e. Φ−1 (ζ, ζ̄) > 0. The complex gradient of Φ−1 (ζ, ζ̄) is the

vector ∇ζΦ
−
1 (ζ, ζ̄) =

(
∂Φ−1
∂ζ1

,
∂Φ−1
∂ζ2

)
. For ζ ∈ R2 × iS− we obtain that

∇ζΦ
−
1 (ζ, ζ̄) = −1

2

(
(ζ1 − ζ̄1), (ζ2 − ζ̄2)

)
As expected ∇ζΦ

−
1 (ζ, ζ̄) 6= 0 is valid for any ζ in the strictly convex part of the boundary,

R2 × iS−. Actually, every ζ = (ζ1, ζ2) ∈ R2 × iS− satisfies

(
ζ1 − ζ̄1

2i

)2

+

(
ζ2 − ζ̄2

2i

)2

= 1 or equivalently (ζ1 − ζ̄1)2 + (ζ2 − ζ̄2)2 = −4

Since ∇ζΦ
−
1 (ζ, ζ̄) 6= 0 is valid for any ζ ∈ R2 × iS− we consider the analytic hyperplane

passing through ζ ∈ R2 × iS− without intersecting T(S−H)int . This hyperplane is given by

the equation

〈
∇ζΦ

−
1 (ζ, ζ̄), ζ − z

〉
6= 0

for every z ∈ T(S−H)int or equivalently by the equation

〈 ∇ζΦ
−
1 (ζ, ζ̄)〈

∇ζΦ
−
1 (ζ, ζ̄), ζ

〉 , z〉 =
∂ζ1Φ−1 (ζ, ζ̄)〈
∇ζΦ

−
1 (ζ, ζ̄), ζ

〉z1 +
∂ζ2Φ−1 (ζ, ζ̄)〈
∇ζΦ

−
1 (ζ, ζ̄), ζ

〉z2 6= 1

In order to describe the generalized dual complements of the semi-tubes as they were

introduced in (2.4.4) we consider more ”narrow” tubes. More precisely, we consider the
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tubular domains :

T(S−Hr )int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ−1,r(ζ, ζ̄) =

(
ζ1 − ζ̄1

2i

)2

+

(
ζ2 − ζ̄2

2i

)2

− r,

when − r ≤ y1 < 0, Φ−1,r(ζ, ζ̄) = (
ζ2 − ζ̄2

2i
)2 − r, when y1 ≥ 0}

T(S+
Hr

)int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ+
1,r(ζ, ζ̄) =

(
ζ1 − ζ̄1

2i

)2

+

(
ζ2 − ζ̄2

2i

)2

− r,

when 0 < y1 ≤ r, Φ+
1,r(ζ, ζ̄) = (

ζ2 − ζ̄2

2i
)2 − r, when y1 ≤ 0} (2.4.5)

Observe that Φ−1,r(ζ, ζ̄) and Φ+
1,r(ζ, ζ̄) are C1 functions, for every r ∈ [1,∞), except

from the points R2 × i{(0,±1)} which are points of non-smoothness. Particularly,

∇ζΦ
−
1,r(ζ, ζ̄) = ∇ζΦ

−
1 (ζ, ζ̄) and

∂2Φ−1,r(ζ, ζ̄)

∂ζi∂ζj
=

∂2Φ−1 (ζ, ζ̄)

∂ζi∂ζj
for i, j = 1, 2

∂2Φ−1,r(ζ, ζ̄)

∂ζi∂ζ̄j
=

∂2Φ−1 (ζ, ζ̄)

∂ζi∂ζ̄j
for i, j = 1, 2

Thus, ∇Φ−1,r(ζ, ζ̄) 6= 0 for ζ ∈ ∂T(S−Hr )int \ {R2 × i(0,±1)}.

2.5 Generalized dual complement of the semi-tubes

The tubes TS−H
and TS+

H
were suitably chosen in order to have a convex, unbounded base

containing a cone, whose intersection is TB1 , in order to obtain the fact that T ∗B1
is the

envelope of holomorphy of the union of the compacts T ∗
S−H

and T ∗
S+
H

.

Next, we turn to the precise description of the generalized dual of the domains (2.4.2), by

using the method of lemma (2.2.1).

Lemma 2.5.1 Let T(S−H)int, T(S+
H)int be the unbounded domains in C2 defined by (2.4.2).
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Then T ∗
(S−H)int

= V−2 , T ∗
(S+
H)int

= V+
2 , where (x, iy) ∈ ∂T(S−H)int or ∂T(S+

H)int correspondingly

V−2 = {(ω1, ω2) ∈ C2 : ωi =
r3 (yi(x1y1 + x2y2)− iyi(y2

1 + y2
2))

r4 ((y2
1 + y2

2)2 + (x1y1 + x2y2)2)
,

(x, iy) ∈ R2 × iR2, 1 ≤ r <∞, i = 1, 2, −1 < y1 < 0}

∪ {(ω1, ω2) ∈ C2 : (0, ω2) = (0,
1

r

x2y
2
2 − iy3

2

y4
2 + (x2y2)2

),

(x, iy) ∈ R2 × iR2, whenever y1 > 0, r ≥ 1}

V+
2 = {(ω1, ω2) ∈ C2 : ωi =

r3 (yi(x1y1 + x2y2)− iyi(y2
1 + y2

2))

r4 ((y2
1 + y2

2)2 + (x1y1 + x2y2)2)
,

(x, iy) ∈ R2 × iR2, i = 1, 2, 1 ≤ r <∞, 0 < y1 < 1}

∪ {(ω1, ω2) ∈ C2 : (0, ω2) = (0,
1

r

x2y
2
2 − iy3

2

y4
2 + (x2y2)2

),

(x, iy) ∈ R2 × iR2, whenever y1 < 0, r ≥ 1}

(2.5.1)

The closure V±2 corresponds to the case when we add to V±2 the slopes of complex tangent hy-

perplanes to the tubes T(S−H)int and T(S+
H)int at the points (x1, x2, 0,±i) ∈ ∂T(S±H)int. Thus, we

are leading to (ω1, ω2) = (0, 1
r
x2±i
1+x2

2
) ∈ T ∗

(S±H)int
. These slopes exist because ∇Φ±1 (x1, x2, 0,±i)

is well defined. Furthermore,

T ∗
(S−H)int

∪ T ∗
(S+
H)int

= T ∗B1
⊂ B̄(0, 1) ⊂ C2. (2.5.2)

and

T ∗
(S−H)int

∩ ∂B(0, 1) = T ∗
(S−H)int

∩ R2 × iS+

= {(0, 0,−iy1,−iy2) ∈ R2 × iR2 : y2
1 + y2

2 = 1, −1 ≤ y1 ≤ 0} ⊂ B̄(0, 1)

T ∗
(S+
H)int

∩ ∂B(0, 1) = T ∗
(S+
H)int

∩ R2 × iS−

= {(0, 0,−iy1,−iy2) ∈ R2 × iR2 : y2
1 + y2

2 = 1, 0 ≤ y1 ≤ 1} ⊂ B̄(0, 1) (2.5.3)

Proof: It is enough to prove the first claim in (2.5.1), since the proof of the second

follows along the same lines. Recall that the boundary of the tube T(S−H)int is union of a half

circle with parallel lines. Following the method of Lemma (2.2.1) we consider the tubular

domains T(S−Hr )int whenever r ∈ [1,∞). For every ζ ∈ T c
(S−H)int

there exist r ∈ [1,∞) so that

T (S−H)int ⊆ T (S−Hr )int . Note that at every point (ζ1, ζ2) ∈ ∂T(S−Hr )int where the boundary is
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strictly convex the tangent line (hyperplane) is uniquely determined. If ζ ∈ ∂T(S−Hr )int is a

point of strict convexity then Φ−1 (ζ, ζ̄) =
(
ζ1−ζ̄1

2i

)2

+
(
ζ2−ζ̄2

2i

)2

− r = 0 where −1 < =ζ1 < 0

and r ∈ [1,∞). The complex line passing through ζ without intersecting T(S−H)int or

T(S−Hr )int is described by the equation
〈
∇ζΦ

−
1,r(ζ, ζ̄), ζ − z

〉
6= 0 or equivalently,

〈 ∇ζΦ
−
1,r(ζ, ζ̄)〈

∇ζΦ
−
1,r(ζ, ζ̄), ζ

〉 , z〉 =
∂ζ1Φ−1,r(ζ, ζ̄)〈
∇ζΦ

−
1,r(ζ, ζ̄), ζ

〉z1 +
∂ζ2Φ−1,r(ζ, ζ̄)〈
∇ζΦ

−
1,r(ζ, ζ̄), ζ

〉z2 6= 1

since < ∇ζΦ
−
1,r(ζ, ζ̄), ζ >6= 0 for every ζ ∈ ∂T(S−Hr )int and −1 < =ζ1 < 0. Thus, for

ζ ∈ ∂T(S−Hr )int such that −1 < =ζ1 < 0 one has that

(
∂ζ1Φ−1,r(ζ, ζ̄)〈
∇ζΦ

−
1,r(ζ, ζ̄), ζ

〉 , ∂ζ2Φ−1,r(ζ, ζ̄)〈
∇ζΦ

−
1,r(ζ, ζ̄), ζ

〉) ∈ T ∗
(S−Hr )int

Setting yi = wi−w̄i
2i

, xi = wi+w̄i
2

, i = 1, 2, with w ∈ ∂T(S−H)int , at ζ = r · w we have

ωi =
∂ζiΦ

−
1,r(ζ, ζ̄)

< ∇ζΦ
−
1,r(ζ, ζ̄), ζ >

=
r3(yi(x1y1 + x2y2)− iyi(y2

1 + y2
2))

r4((y2
1 + y2

2)2 + (x1y1 + x2y2)2)

=
1

r

∂wiΦ
−
1 (w, w̄)< ∇wΦ−1 (w, w̄), w >

| < ∇wΦ−1 (w, w̄), w > |2

for i = 1, 2, −1 < =ζ1 < 0 and r ∈ [1,∞).

Thus, T ∗
(S−Hr )int

= 1
r
T ∗

(S−H)int
for 1 ≤ r <∞. Similarly one obtains that T ∗

(S+
Hr

)int
= 1

r
T ∗

(S+
H)int

for 1 ≤ r <∞.

The elements of the generalized duals at the smooth points of r · T(S±H)int , 1 ≤ r < ∞

are described in (2.5.1). For every ζ = (ζ1, ζ2) = (x1, x2, iy1, iy2) ∈ ∂T(S−H)int satisfying

Φ−1 (ζ, ζ̄) = y2
2 − 1 = 0 the existence of a complex (algebraic) line passing through ζ

without intersecting T(S−H)int is guaranteed from the convexity of the tube. Actually, if

ζ = (x1, x2, iy1,±i) ∈ ∂T(S−H)int whenever y1 > 0 then for r ≥ 1

ω1 =
∂ζ1Φ−1,r(ζ, ζ̄)

< ∇ζΦ
−
1,r(ζ, ζ̄), ζ >

= 0

ω2 =
∂ζ2Φ−1,r(ζ, ζ̄)

< ∇ζΦ
−
1,r(ζ, ζ̄), ζ >

=
r(ζ2 − ζ̄2)

r2(ζ2 − ζ̄2)ζ2

=
1

r

1

x2 ± i
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Taking the closure V−2 by adding to V−2 the slopes of complex tangent hyperplanes to

the tube T(S−H)int at the points (x1, x2, 0,±i) ∈ ∂T(S−H)int we are leading to (ω1, ω2) =

(0, 1
r
x2±i
1+x2

2
) ∈ T ∗

(S−H)int
. These slopes exist because ∇Φ−1 (x1, x2, 0,±i) is well defined.

It is straightforward to observe that if (ω1, ω2) ∈ then

T ∗
(S−H)int

∪ T ∗
(S+
H)int

= {(ω1, ω2) ∈ C2 : ωi =
r3yi((x1y1 + x2y2)− i)
r4(1 + (x1y1 + x2y2)2)

for i = 1, 2, r ≥ 1}.

Elementary computations as in Lemma (2.2.1) show that if (ω1, ω2) ∈ T ∗
(S−H)int

∪ T ∗
(S+
H)int

then

(<ω1)2 + (<ω2)2 + (=ω1)2 + (=ω2)2 =
1

r2

y2
1 + y2

2

(y2
1 + y2

2)2 + (x1y1 + x2y2)2
≤ 1

r2

Recall that

T ∗B1
=
(
T(S−H)int ∩ T(S+

H)int

)∗
⊃ T ∗

(S−H)int
∪ T ∗

(S+
H)int

valid for any intersection of sets. In order to derive the converse inclusion it is sufficient to

see what happens with the points (y1, y2) = (0,±1). Now, it remains to show that the com-

pact sets V−2 ,V−2 are contained in the closure of the unit ball. It is enough to verify that the

norm of the regular points of the form (0, ω) from (2.5.1) have norm smaller or equal to 1.

But this indeed is the case because in this case y2 = 1. Thus, the topological closure of the

set of regular points cannot generate points in the sets V−2 ,V+
2 , whose norms are strictly

larger than 1. In order to proof the last claim one observes that ‖(0, ω2)‖2 = 1
x2

2+1
< 1 for

every (0, ω2) ∈ V−2 , since for y2 = 1 (and hence y1 = 0) we deduce that ‖(0, ω2)‖ = 1
1+x2

2
,

for every element (0, ω2) ∈ T ∗B1
and (2.5.2) has been proved. In order to prove (2.5.3), it is

enough to observe that in (2.5.4) one has equality only when either r = 1, x1y1 +x2y2 = 0

or r = 1 and x2 = 0. Similarly the other case. Thus the claim follows. ♦

An immediate observation is that the only elements w ∈ T ∗
(S−H)int

satisfying ||w|| = 1

are of the form w = (w1, w2) = (0 − iy1, 0 − iy2) whenever y2
1 + y2

2 = 1,−1 ≤ y1 ≤ 0.

Furthermore, if w ∈ T ∗
(S−H)int

is such that ||w|| < 1 then either w = (0, w2) ∈ C2 or w

belongs to the generalized dual complement of the circular part of T(S−H)int .
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Observe that equation (2.5.2) follows directly from the linear convexity of the tubular

domains TB1 , T(S−H)int and T(S+
H)int . Actually,

(
T ∗B1

)∗ ⊂ (T ∗
(S−H)int

∪ T ∗
(S+
H)int

)∗
=

(
T ∗

(S−H)int

)∗
∩
(
T ∗

(S+
H)int

)∗
= T(S−H)int ∩ T(S+

H)int

= TB1 ⊂
(
T ∗B1

)∗
Recall, now, that for a compact K ⊂ Cn , which is also a star, there exists a sequence

of star domains {Dk}k∈N so that K = ∩kDk, Dk+1 ⊂⊂ Dk, ∀k ∈ N. Since every star

domain Dk is Runge, there exists its holomorphic envelope EDk , for every k ∈ N. Thus

the compact K, which is a star, is a normal compact (a compact is called normal if it

can be approximated from outside by a sequence of compactly contained in each other

domains having envelope of holomorphy) ([3]). The envelope of holomorphy EK of a

normal compact K is defined to be the intersection of envelopes of holomoprhy EDk of

domains Dk approximating K, that is, EK = ∩k∈NEDk ([2]). A normal compact K is

called a compact of holomorphy if EK = K. Furthermore, every function holomorphic on

K is also holomorphic on EK . Thus, the envelope of holomorphy E
(V−2 ∪V

+
2 )

of the compact

V−2 ∪ V+
2 is defined. We have the following lemma.

Lemma 2.5.2 Let V−2 ,V+
2 be the compacts defined in (2.5.1). Then E

(V−2 ∪V
+
2 )

= T ∗B1
.

Proof: Since T ∗B1
is a strictly linearly convex set it is a compact of holomorphy. The

last claim follows from Proposition 2.1.5 in ([10]), because T ∗B1
is connected (being star)

and taking into account that there linear convexity means strict linear convexity in the

present paper. Thus from equality (2.5.2) the claim of the lemma is valid.♦

In order to realize the tube TB2 as an intersection of tubular domains whose base

contain a cone, we define the closed half-strips contained in R2 :

R−H = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1, −1 ≤ x1 ≤ 0}

∪ {(x1, x2) ∈ R2 : −1 ≤ x2 ≤ 1, x1 ≥ 0}

R+
H = {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1, 0 ≤ x1 ≤ 1}

∪ {(x1, x2) ∈ R2 : −1 ≤ x2 ≤ 1, x1 ≤ 0} (2.5.4)
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Similarly to (2.4.2) and using the interiors (R−H)int, (R+
H)int of the closed half-strips from

(2.5.4) we introduce tubular domains with unbounded base contained in R2 :

T(R−H)int = (R−H)int × iR2

T(R+
H)int = (R+

H)int × iR2 (2.5.5)

The tube domains introduced above in (2.5.5) are defined via piece-wise smooth defining

functions similarly to (2.4.2) as follows:

T(R−H)int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ2(ζ, ζ̄) = Φ−2 (ζ, ζ̄),when − 1 ≤ x1 < 0}

∪ {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ−2 (ζ, ζ̄) = (
ζ2 + ζ̄2

2i
)2 − 1, when x1 ≥ 0}

T(R+
H)int = {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ2(ζ, ζ̄) = Φ+

2 (ζ, ζ̄),when 0 < x1 ≤ 1, }

∪ {(x1, x2, iy1, iy2) ∈ R2 × iR2 : Φ+
2 (ζ, ζ̄) = (

ζ2 + ζ̄2

2i
)2 − 1, when x1 ≤ 0}

(2.5.6)

where Φ2(ζ, ζ̄) = ( ζ1+ζ̄1
2i

)2+( ζ2+ζ̄2
2i

)2−1 is smooth. One deduces that the domains defined in

(2.5.5) are convex tube domains whose bases contain the one-dimensional cones {(x1, 0) ∈

R2 : x1 > 0} and {(x1, 0) ∈ R2 : x1 < 0} respectively. Thus, a tube domain with convex

base contained in R2 is now realized as the intersection of the tubes defined in (2.5.5).

Actually,

TB2 = T(R+
H)int ∪ T(R−H)int = {(x1, x2) ∈ R2 : x2

1 + x2
2 < 1} × iR2 (2.5.7)

Analogously to the case of the tube TB1 one obtains the generalized dual complement T ∗B2

of TB2 . We formulate the following lemma without proof.

Lemma 2.5.3 Let T(R−H)int, T(R+
H)int be the unbounded domains defined in (2.5.5). Then
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T ∗
(R−H)int

= V ′−2 , T ∗
(R+
H)int

= V ′+2 , where (x, iy) ∈ ∂T(R−H)int or ∂T(R+
H)int, correspondingly.

V ′−2 = {(ω1, ω2) ∈ C2 : ωi =
r3(xi(x1y1 + x2y2)− ixi(y2

1 + y2
2))

r4((x2
1 + x2

2)2 + (x1y1 + x2y2)2)
,

(x, iy) ∈ R2 × iR2, 1 ≤ r <∞, i = 1, 2, −1 < x1 < 0}

∪ {(ω1, ω2) ∈ C2 : (0, ω2) = (0,
1

r

x2
2y2 − ix3

2

x4
2 + (x2y2)2

),

(x, iy) ∈ R2 × iR2, when x1 > 0, r ≥ 1}

V ′+2 = {(ω1, ω2) ∈ C2 : ωi =
r3(xi(x1y1 + x2y2)− ixi(x2

1 + x2
2))

r4((x2
1 + x2

2)2 + (x1y1 + x2y2)2)
,

(x, iy) ∈ R2 × iR2, i = 1, 2, 1 ≤ r <∞, 0 < x1 < 1}

∪ {(ω1, ω2) ∈ C2 : (0, ω2) = (0,
1

r

x2
2y2 − ix3

2

x4
2 + (x2y2)2

),

(x, iy) ∈ R2 × iR2, whenever x1 < 0, r ≥ 1} (2.5.8)

The closures V ′±2 correspond to the case when we add to V ′±2 the slopes of complex tangent

hyperplanes to the tubes T(R±H)int at the points (0,±1, iy1, iy2) ∈ ∂T(R±H)int. Thus, we are

leading to (ω1, ω2) = (0, 1
r
x2±i
1+x2

2
) ∈ T ∗

(R±H)int
. These slopes exist because ∇Φ±2 (0,±1, iy1, iy2)

is well defined, where Φ±2 are the defining functions of the tubes involved.

Furthermore,

T ∗B2
= T ∗

(R+
H)int

∪ T ∗
(R−H)int

= V ′−2 ∪ V ′+2 ⊂ B̄(0, 1) (2.5.9)

and

T ∗
(R−H)int

∩ ∂B(0, 1) = T ∗
(R−H)int

∩ S+ × iR2

= {(x1, x2, 0, 0) ∈ R2 × iR2 : x2
1 + x2

2 = 1, −1 ≤ x1 ≤ 0} ⊂ B̄(0, 1)

T ∗
(R+
H)int

∩ ∂B(0, 1) = T ∗
(S+
H)int

∩ S− × iR2

= {(x1, x2, 0, 0) ∈ R2 × iR2 : x2
1 + x2

2 = 1, 0 ≤ x1 ≤ 1} ⊂ B̄(0, 1) (2.5.10)

Similarly to lemma 2.5.2 one obtains the following equality for the envelope of holo-

morphy of the compact T ∗
(R+
H)int

∪ T ∗
(R−H)int

.

Lemma 2.5.4 Let T(R−H)int , T(R+
H)int be the unbounded domains defined in (2.5.5). If T ∗

(R−H)int
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and T ∗
(R+
H)int

are like in Lemma 2.5.3 then

T ∗B2
= E

(V ′−2 ∪V
′+
2 )

Corollary 2.5.1 Let T(S−H)int , T(S+
H)int and T(R−H)int , T(R+

H)int be the unbounded domains de-

fined in (2.4.2) and (2.5.5) correspondingly. It follows directly from (2.5.2) and (2.5.9)

that

T ∗B1
∪ T ∗B2

= (T(S+
H)int ∩ T(S−H)int)

∗ ∪ (T(R+
H)int ∩ T(R−H)int)

∗

=
(
T ∗

(S+
H)int

∪ T ∗
(S−H)int

)
∪
(
T ∗

(R+
H)int

∪ T ∗
(R−H)int

)
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Chapter 3

The Hardy space H2(TB1
) and its

dual

We begin this chapter by recalling some basic facts about Hardy spaces H2(TD) on tubular

domains TD = R2×D, taken from [27]. One considers then the Hardy space of holomorphic

functions F ∈ H(TD) defined by

H2(TD) = {F ∈ H(TD) :

∫
R2

|F (x+ iy)|2dx ≤ A2 < +∞, ∀y ∈ D} (3.0.1)

The space defined by (3.0.1) becomes a normed vector space when

‖F‖H2(TD) = infA where the constant A is satisfying (3.0.1). (3.0.2)

The main result in Chap.3, §2, [27] states that F ∈ H2(TD) if and only if

F (z) =

∫
R2

f(t)e2πiz·tdt, z ∈ TD, (3.0.3)

whenever f satisfies

sup
y∈D

∫
R2

|f(t)|2e−4πy·tdt ≤ A2 < +∞ (3.0.4)
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Plancherel’s Theorem implies then

sup
y∈D

∫
R2

|f(t)|2e−4πy·tdt

 1
2

= ‖F‖H2(TD).

3.1 Basic properties of the Hardy space H2(T(S−H)int)

If y0 ∈ ∂D is such that it can be approached by a sequence {yn}n, yn ∈ D, non-tangentially,

then the function

F0(x) = F (x+ iy0) =

∫
R2

f(t)e2πi(x+iy0)·tdt,

defined for almost all x, is the L2(R2)-limit of functions Fn(x) = F (x + iyn). We remark

that this definition of the function F (x+ iy0) is independent from the sequence {yn}n.

We look at the particular tube T(S−H)int with base the unbounded, symmetric, convex

set (S−H)int, introduced in the previous chapter, focusing on the values of F ∈ H2(T(S−H)int)

at the boundary ∂T(S−H)int = R2 × ∂S−H . As was pointed out in Cor.2.10 in [27] these

values in general exist almost everywhere. Their existence is proven by using the analytic

continuation of Fourier Transform and then its inversion. However, it is also stated in

Th.2.11 in [27] that such limits do exist at every point of the boundary ∂T(S−H)int provided

the point is polygonal (that is, vertex of bounded, convex polygon contained entirely in the

tube T(S−H)int), which is exactly the setting in our case. However, for completeness of the

presentation of the results, we will prove the existence of our limits at every z0 ∈ R2×∂S−H
by simple, classical means.

Actually, consider the sequence {rn} ⊂ (0, 1] such that rn ↑ 1. Define the sequence

of functions gn(t) = |f(t)|2e−4πrny·t converging point-wise in t ∈ R2 as n −→ ∞ (i.e

rn ↑ 1) to g(t) = |f(t)|2e−4πy·t. Now, y · t = ‖y‖‖t‖ cos θ, where θ is the angle be-

tween the corresponding vectors. Fix y ∈ R2, y 6= 0, its direction defines the hor-

izontal ”axis”. Then, we split the plane R2 into two closed half-planes, intersecting

along a line. Namely, the closed half-plane Π+ = {(t1, t2) : y · t = ‖y‖‖t‖ cos θ ≥ 0}

and the closed half-plane Π− = {(t1, t2) : y · t = ‖y‖‖t‖ cos θ ≤ 0}. Observe that

Π+ ∩ Π− = {(t1, t2) : y · t = ‖y‖‖t‖ cos θ = 0}. If cos θ ≥ 0, then, after changing co-
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ordinates in Π+, gn(‖t‖ cos θ, ‖t‖ sin θ) ≤ |f(‖t‖ cos θ, ‖t‖ sin θ)|, g(‖t‖ cos θ, ‖t‖ sin θ) ≤

|f(‖t‖ cos θ, ‖t‖ sin θ)|. Since

∫
Π+

|f(t1, t2)|2dt1dt2 =

π
2∫

−π
2

∞∫
0

|f(θ, r)|2rdθdr, r = ‖t‖

Lebesgue dominated convergence theorem implies then that
∫

Π+

|f(t)|2e−4πrny·tdt −→∫
Π+

|f(t)|2e−4πy·tdt, as n −→∞. Similarly, in the half-plane Π−, cos θ ≤ 0, and thus Mono-

tone convergence theorem combined with the fact that
∫

Π−

|f(t)|2e−4πrny·tdt ≤ A2 imply that∫
Π−

|f(t)|2e−4πrny·tdt −→
∫

Π−

|f(t)|2e−4πy·tdt, as n −→ ∞. The case cos θ = 0 corresponds

to line Π+ ∩ Π−. Now, it is straightforward to show that ‖gn − g‖L2(R2) −→ 0 in L2(R2)

also. Thus, every function F ∈ H2(T(S−H)int) has boundary values on R2×∂S−H everywhere.

Furthermore, one can also show, using the particular form of boundary of the base of the

tube, that whenever yn −→ y0, yn, y0 ∈ ∂S−H for every n ∈ N one has that F(yn) −→ F(y),

n −→∞ , where

F(y) =

∫
R2

|f(t)|2e−4πy·tdt, y ∈ ∂S−H . (3.1.5)

Thus, we have the following

Lemma 3.1.1 Let F (z) =
∫
R2

f(t)e2πiz·tdt ∈ H2(T(S−H)int). Then the function F(y), y ∈

∂S−H defined by (3.1.5) is continuous.

Reasoning along the same lines, when the tube in question is the tube TB1 and y ∈ ∂TB1 ,

y2
1 + y2

2 < 1 leads to the formulation of the following

Lemma 3.1.2 Let F1(z) =
∫
R2

f(t)e2πiz·tdt ∈ H2(TB1). Then the function F1(y), defined

by (3.1.5) for y ∈ S1 ⊂ R2 is continuous.

Direct implications of the above lemmas are the facts:

1) if F ∈ H2(T(S−H)int) then its norm ‖F‖H2(T
(S−
H

)int
) is realized on the part of the boundary

∂S−H satisfying ‖y‖ =
√
y2

1 + y2
2 = 1;

2) if G ∈ H2(TBj), j = 1, 2, then its norm ‖G‖H2(TBj ) is realized on the boundary R2× iS1
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(S1 × iR2) or at ‖y‖ = 0, using the concavity of the functions in question, after proving

similar results for the tube TB2 . Direct comparison of the integrals implies then that

‖G‖H2(TBj ) appears on the boundary of the tubes R2 × iS1 (S1 × iR2) .

The proof of the above claims is subject to the following comparison of norms corollary.

Corollary 3.1.1 1) If F ∈ H2(T(S−H)int), then the following is valid

π

2
‖F‖2

H2(T
(S−
H

)int
) < ‖F‖2

L2
ν(R2×iS−) < 2π‖F‖2

H2(T
(S−
H

)int
), (3.1.6)

where the measure ν is equivalent to the Lebesgue measure λ on C2 restricted to the R2 ×

iS−, that is, any measure ν that satisfies dΦ(ζ,ζ̄)

‖∇ζΦ(ζ,ζ̄)‖ ∧ ν = |K|dx1dx2dy1dy2

2) If G ∈ H2(TBj), then the following is valid

π

2
‖F‖2

H2(TBj ) < ‖F‖2
L2
νj

(V) < 2π‖F‖2
H2(TBj ), (3.1.7)

where V is R2× iS1 or S1× iR2 and the measure νj is equivalent to the Lebesgue measure

λ on C2 restricted to the R2 × iS1 (or to S1 × iR2), that is, any measure νj that satisfies

dΦ(ζ,ζ̄)

‖∇ζΦ(ζ,ζ̄)‖ ∧ νj = |Kj|dx1dx2dy1dy2

Proof: In order to proof the first part we begin by remarking that the continuity of

the function F : y −→
∫
R2

|F (x + iy)|2dx for all y ∈ ∂S−H implies that it is integrable on

S−.

Furthermore, for every point y ∈ S−H one has that F(y) =
∫
R2

|f(t)|2e−4π‖y‖‖t‖ cos θdt1dt2,

where θ is the angle between vectors y and t. It is evident that θ ∈ [0, 2π]. Now,

by taking the direction of y as our new ”x” axis one has that ‖y‖‖t‖ cos θ = ‖y‖τ1.

Thus the integral defining F(y) is transformed, after rotation of the coordinate system,

to F(y) =
∫
R2

|f(τ1, τ2)|2e−4π‖y‖τ1dτ1dτ2, taking into account that the determinant of the

rotation matrix in the plane is equal to 1. Thus F(y) = F(‖y‖). It is straightforward to see

now that the norm ‖F‖H2(T
(S−
H

)int
) is realized on the arc S−, where we have ‖F‖H2(T

(S−
H

)int
) =∫

R2

|f(τ)|2e−4πτ1dτ1dτ2, since ‖y‖ = 1. Actually, differentiating twice F(r) with respect to

r = ‖y‖, one has on the horizontal part of ∂S−H , except at the points (0,±1), that this

function is concave up at every point (which means that possible changes of its monotony

on every horizontal component of ∂S−H determines only local minima ). Since at r = +∞
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the value of F is finite one has the desired result. It is easy now to deduce that since∫
R2

|F (x + iy)|2dx =
∫
R2

|f(t)|2e−4πy·tdt1dt2 for y ∈ (S−H)int we have, after taking limits and

integrating with respect to y, that

π

2
‖F‖2

H2(T
(S−
H

)int
) ≤

∫
S−

∫
R2

|F (x+ iy)|2dxdνS− ≤ 2π‖F‖2
H2(T

(S−
H

)int
),

where dνiS− is a measure on the arc iS− that makes the measure dν = dxdνiS− equivalent

to the Lebesgue measure in C2. This implies the required inequality in the first part.

To prove the second part , we argue along the same line, but the justification that supre-

mum appears on the circumference or at the center of the base of the tube has to do with

the concavity of the map Fj involved. ♦

An example of such a measure is in order.

Lemma 3.1.3 The Lebesgue measure m(ζ, ζ̄) in C2 restricted to the sets R2×iS− ⊂ ∂TS−H
,

R2 × iS+ ⊂ ∂TS+
H

or ∂TB1 = R2 × iS1 is equivalent to any one of the following measures

µΦ1(ζ, ζ̄) = ∂Φ1(ζ, ζ̄) ∧ (∂∂̄Φ1(ζ, ζ̄))

µΦ+
1

(ζ, ζ̄) = ∂Φ+
1 (ζ, ζ̄) ∧ (∂∂̄Φ+

1 (ζ, ζ̄))

µΦ−1
(ζ, ζ̄) = ∂Φ−1 (ζ, ζ̄) ∧ (∂∂̄Φ−1 (ζ, ζ̄))

induced by the defining functions of the tubes involved.

Proof: The proof consists of direct verification by computation. We will verify the

claim only for the defining function Φ1, the rest of the cases are proved analogously.

Recall that the Lebesgue measure m(ζ, ζ̄)|R2×iS1 is equivalent to the measure ∂Φ1(ζ, ζ̄) ∧

(∂∂̄Φ1(ζ, ζ̄)) if there exists a positive constant K satisfying

(
1

2i
)2 dΦ1(ζ, ζ̄)

‖∇ζΦ1(ζ, ζ̄)‖
∧ ∂Φ1(ζ, ζ̄) ∧ (∂∂̄Φ1(ζ, ζ̄)) = Km(ζ, ζ̄), z ∈ R2 × iS1.

Elementary calculations show that

∂̄Φ1(ζ, ζ̄) = ∂̄((
ζ1 − ζ̄1

2i
)2 + (

ζ2 − ζ̄2

2i
)2 − 1) =

1

2
(ζ1 − ζ̄1)dζ̄1 +

1

2
(ζ2 − ζ̄2)dζ̄2

39

NIKOLE
TA ALE

XANDROU



Similarly,

∂Φ1(ζ, ζ̄) = ∂((
ζ1 − ζ̄1

2i
)2 − (

ζ2 − ζ̄2

2i
)2 − 1) = −1

2
(ζ1 − ζ̄1)dζ1 −

1

2
(ζ2 − ζ̄2)dζ2

Furthermore,

∂∂̄Φ1(ζ, ζ̄) = ∂∂̄((
ζ1 − ζ̄1

2i
)2 − (

ζ2 − ζ̄2

2i
)2 − 1) =

1

2
dζ1 ∧ dζ̄1 +

1

2
dζ2 ∧ dζ̄2

Finally, after substitution, we get

∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄) =
1

4
((ζ1 − ζ̄1)dζ1 + (ζ2 − ζ̄2)dζ2)) ∧ (−dζ1 ∧ dζ̄1 − dζ2 ∧ dζ̄2)

= −1

4
(ζ1 − ζ̄1)dζ1 ∧ dζ2 ∧ dζ̄2 −

1

4
(ζ2 − ζ̄2)dζ2 ∧ dζ1 ∧ dζ̄1

= −1

4
(ζ1 − ζ̄1)dζ1 ∧ dζ2 ∧ dζ̄2 −

1

4
(ζ2 − ζ̄2)dζ1 ∧ dζ̄1 ∧ dζ2

On the other hand

dΦ1(ζ, ζ̄)

‖∇ζΦ1(ζ, ζ̄)‖
=

∂Φ1(ζ, ζ̄)

‖∇ζΦ1(ζ, ζ̄)‖
+

∂̄Φ1(ζ, ζ̄)

‖∇ζΦ1(ζ, ζ̄)‖
= ∂Φ1(ζ, ζ̄) + ∂̄Φ1(ζ, ζ̄)

Thus, for (ζ, ζ̄) ∈ R2 × iS1, we deduce that

(
1

2i
)2 dΦ1(ζ, ζ̄)

‖∇ζΦ1(ζ, ζ̄)‖
∧
(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)
= −∂̄Φ1(ζ, ζ̄) ∧

(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)
= (

1

2i
)2(

4y2
1 + 4y2

2

8
)dζ1 ∧ dζ̄1 ∧ dζ2 ∧ dζ̄2

=
1

2
dx1 ∧ dy1 ∧ dx2 ∧ dy2,

that is, the measures in question are equivalent. ♦

Corollary 3.1.2 1) The space (H2(T(S−H)int), ‖ · ‖H2(T
(S−
H

)int
)) is Banach.

2) The space (H2(TB1), ‖ · ‖H2(TB1
)) is Banach.

Proof: We will give the proof of the first part only, because the second one is proved

similarly. The completeness of the space in question is proven as follows: let {Fn}n ⊂
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H2(T(S−H)int) be Cauchy. Then, for every z = x + iy ∈ T(S−H)int we have by Plancherel

Theorem

∫
R2

|Fn(x+ iy)− Fm(x+ iy)|2dx1dx2 =

∫
R2

|fn(t)− fm(t)|2e−4πy·tdt1dt2

≤ ||Fn − Fm||H2(T
(S−
H

)int
) < ε,

for every n,m ≥ n0. Thus, for y = 0 one is led to
∫
R2

|fn(t) − fm(t)|2dt1dt2 −→ 0.

Completeness of the space L2(R2) implies that ‖fn − f‖L2(R2) −→ 0, where f ∈ L2(R2).

We claim that F (z) =
∫
R2

f(t)e2πiz·tdt, z ∈ T(S−H)int , belongs to the space H2(T(S−H)int).

Actually, ‖fn − f‖L2(R2) −→ 0 implies that ‖fn‖L2(R2), ‖f‖L2(R2) < C. Hence we deduce

that f 2
n(t) −→ f 2(t) a.e and

∫
R2

||fn(t)|2 − |f(t)|2|dt −→ 0. Thus, Fatou’s lemma implies

that for every z ∈ T(S−H)int one has

∫
R2

|f 2(t)|e4πy·tdt ≤ lim inf
n−→∞

∫
R2

|f 2
n(t)|e−4πy·tdt ≤ lim inf

n−→∞
‖Fn‖H2(T

(S−
H

)int
).

This completes the proof of the claim. The other part is proved similarly. ♦

The following proposition is similar to convergence in mean results for the classical Hardy

spaces to be found in ([12], [24]).

Proposition 3.1.1 Let F ∈ H2(T(S−H)int) and r ∈ (0, 1]. Then lim
r↑1

F (rz1, rz2) = F (z1, z2)

in ‖ · ‖H2(T
(S−
H

)int
) norm. Consequently, there exists a subsequence {rk}k ⊂ (0, 1], rk ↑ 1 so

that Frk(z) = F (rkz1, rkz2) −→ F (z1, z2) for almost all (z1, z2) ∈ R2 × iS−. Similarly, the

same claim is valid for G ∈ H2(TB1) with respect to ‖.‖H2(TB1
)− norm.

Proof: First we observe that if (z1, z2) ∈ T(S−H)int then (rz1, rz2) ∈ T(r·S−H)int , that is,

(iry1, iry2) ∈ (rS−H)int ⊂ (S−H)int for every r ∈ (0, 1]. For simplicity of the reasoning, we

consider the sequence Fn(z) = F (rnz), rn ∈ (0, 1], F ∈ H2(T(S−H)int). Since
∫
R2

|Fn(x +

iy)|2dx =
∫
R2

|f(t)|2e−4rnπy·tdt ≤ A2, A2 = ‖F‖2
H2(T

(S−
H

)int
), for every rn, we deduce that

Fn ∈ H2(T(S−H)int) for every n = 1, 2, . . . . Furthermore,

∫
R2

|f(t)|2e−4rnπy·tdt ≤ A2,
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for all y ∈ S−. Thus, taking into account that the functions above have values everywhere

on the boundary of the tube, one has there for t ∈ Π−

|f(t)e−2πrny·t − f(t)e−2πy·t|2 ≤ |f(t)|2e−4πrny·t + |f(t)|2e−4πy·t

+ 2|f(t)|2e−2π(1+rn)y·t ≤ 4|f(t)|2e−4πy·t.

Similarly, whenever t ∈ Π+, one has that

|f(t)e−2πrny·t − f(t)e−2πy·t|2 ≤ |f(t)|2e−4πrny·t + |f(t)|2e−4πy·t

+ 2|f(t)|2e−2π(1+rn)y·t ≤ 4|f(t)|2e−2πy·t,

if one assumes (without loss of generality ) that r1 = 1
2
. Thus, by keeping y fixed, Lebesgue

dominated convergence theorem implies that

∫
R2

|f(t)e−2πrny·t − f(t)e−2πy·t|2dt −→ 0, (3.1.8)

as rn −→ 1. Since (3.1.8) is valid in particular at the points y of the boundary where the

norm ‖.‖H2(T
(S−
H

)int
) is realized one deduces the convergence in ‖.‖H2(T

(S−
H

)int
) norm. The

second claim follows. The other case is proved analogously. ♦

3.2 Duality results

At this point we recall the Schwarz space S(Rn) of rapidly decreasing functions on Rn

S(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn
|xα∂βf(x)| < +∞,∀α, β ∈ N0}

where xα = xα1
1 · · · xαnn , |α| = α1 + · · ·+ αn and ∂βx = ∂|β|

∂x
β1
1 ···∂x

βn
n

.

The natural topology on S(Rn) is defined as follows :

fn → f if and only if lim
n→∞

sup
x∈Rn
|xα∂βx (fn − f)(x)| = 0 for all α, β
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If f ∈ S(Rn) then its derivative and xjf(x) are elements of S(Rn). Direct computations

show that

F (xα∂βxf)(x) =
1

(2πi)β
(
∂

∂x
)α(xβF (x))

The inclusion S(Rn) ⊂ Lp(Rn) is valid for any p ≥ 1. If C∞0 (Rn) is the space of smooth

functions with compact support on Rn then C∞0 (Rn) ⊂ S(Rn). Since C∞0 (Rn) is dense in

Lp(Rn), follows that S(Rn) is dense in Lp(Rn) for any p ≥ 1. Furthermore, the Fourier

transform is an automorphism of the Schwarz space.

The following result is of importance, because using the Corollary 3.1.1 it allows to

connect the regular L2− approximants of functions to approximants in the spaces with

sup-norms.

Theorem 3.2.1 Every F ∈ H2(T(S−H)int) is a ‖ · ‖H2(T
(S−
H

)int
) limit of a sequence {Fn} ⊂

H2(T(S−H)int), where

Fn(x+ iy) =

∫
R2

fn(t)e2πiz·t =

∫
R2

fn(t)e2πix·te−2πy·tdt, z ∈ T(S−H)int ,

whenever z = x+ iy ∈ T(S−H)int, fn ∈ S(R2) and ‖fn − f‖L2(R2) −→ 0. Similarly, the same

claim is valid for every G ∈ H2(TB1) with respect to the ‖ · ‖H2(TB1
)-norm and z ∈ TB1.

Proof: Recall that F ∈ H2(T(S−H)int) is equivalent by definition to the fact that∫
R2

|F (x + iy)|2dx ≤ A2, ∀y ∈ (S−H)int. As it was pointed above, for any y0 ∈ ∂
(
S−H
)int

=

∂S−H one has that

F0(x) = F (x+ iy0) =

∫
R2

f(t)e2πiz·tdt =

∫
R2

f(t)e2πix·te−2πy0·tdt,

is the L2(R2)-limit of functions

F (x+ iyn) =

∫
R2

f(t)e2πizn·tdt =

∫
R2

f(t)e2πix·te−2πyn·tdt, yn ∈ (S−H)int,

whenever yn −→ y0. Therefore F (x+ iy0) ∈ L2(R2) as a function of x = (x1, x2).
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Hence
∫
R2

|F (x + iy0)|2dx ≤ A2 for all y0 ∈ S−. Then, Corollary 3.1.1 implies that we

can integrate the last inequality with respect to y0 on S−. Thus, we imply that F ∈

L2
µ

Φ−1
(R2 × iS−).

Next , we are going to show that F (x+ iy) is a limit of rapidly decreasing functions for

y-fixed in L2(R2), for every y ∈ (S−H)int. To this end we need to recall the constructions

of such approximants . Here again one takes into account the particular form of F for

y-fixed:

F (x+ iy) =

∫
R2

f(t)e2πiz·tdt =

∫
R2

f(t)e2πix·te−2πy·tdt

It implies that f(t) decreases sufficiently rapidly at infinity when −2πy · t > 0. Now,

since f ∈ L2(R2) (this is the case when y = 0), we know that there exists a sequence

{fn}n ⊂ S(R2) converging to f in L2(R2)-norm. We claim that there exists a subsequence

{fnk}nk ⊂ {fn}n ⊂ S(R2) such that

lim
nk−→∞

∫
R2

|fnk(t)|2e−4πy·tdt =

∫
R2

|f(t)|2e−4πy·tdt, while

∫
R2

|fnk(t)|2e−4πy·tdt ≤ K

∫
R2

|f(t)|2e−4πy·tdt, ∀nk, (3.2.9)

for some constant K > 0. Actually, given any M > 0, define gM(t) = f(t), whenever

|f(t)| ≤ M , |t| ≤ M and gM(t) = 0 otherwise. If Kδ(t) = 1
δ2φ(x

δ
) is an approximation to

the identity, then gM ∗Kδ(t) ≤ supt∈R2 |gM(t)|, meaning that gM ∗Kδ is uniformly bounded

with respect to δ. It is known that |gM ∗Kδ(t) − gM(t)| −→ 0 for almost all t ∈ R2 , as

δ −→ 0. From bounded convergence theorem it follows that ‖gM ∗Kδ − gM‖L2(R2) −→ 0.

But ‖gM ∗Kδ(t)‖L2(R2) ≤M supt∈R2 |gM(t)|, ‖gM(t)‖L2(R2) ≤M supt∈R2 |gM(t)|, thus

∫
R2

||gM ∗Kδ(t)|2 − |gM(t)|2|dt ≤ 4M sup
t∈R2

|gM(t)|‖gM ∗Kδ − gM‖L2(R2)

≤ 4M2‖gM ∗Kδ − gM‖L2(R2)

44

NIKOLE
TA ALE

XANDROU



Then, for sufficiently small δ > 0, one has that

∫
R2

|gM ∗Kδ(t)|2dt ≤ 2

∫
R2

|gM(t)|2dt (3.2.10)

Relation (3.2.10) implies then that

∫
R2

|gM ∗Kδ(t)|2dt ≤ 2

∫
R2

|gM(t)|2dt ≤ 2

∫
R2

|f(t)|2dt, (3.2.11)

where the function gM ∗Kδ(t) ∈ S(R2) by construction. Appropriate choice of M > 0 and

δ > 0 leads to the construction of sequence fnk = gMnk
∗Kδ satisfying (3.2.9) taking into

account that

‖gM(t)− f(t)‖2
L2(R2) −→ 0, while M −→∞

Relation (3.2.11) implies that for every nk ∈ N we have

supy∈(S−H)int

∫
R2

|fnk(t)|2e−4πy·tdt ≤ Ksupy∈(S−H)int

∫
R2

|f(t)|2e−4πy·tdt,

where K is a positive constant independent of y. Hence, we deduce that

Fnk(x+ iy) =

∫
R2

fnk(t)e
2πiz·tdt ∈ H2(T(S−H)int) (3.2.12)

Direct computations show that for every y ∈ ∂S−H fixed, Fnk(x+ iy) ∈ S(R2).

It remains to show that Fnk converges to F in L2
µ

Φ−1
(R2 × iS−). Actually, it follows from

(3.2.12) and the fact that F ∈ H2(T(S−H)int) that for any y ∈ iS− ⊂ ∂S−H fixed, one has

that

∫
R2

|fnk(t)− f(t)|2e−4πy·tdt −→ 0

and thus ‖Fnk − F‖H2(T
(S−
H

)int
) −→ 0, since the norm ‖ · ‖H2(T

(S−
H

)int
) is realized on iS−.

Integrating with respect to y on S−, using Lemma 3.1.1, and applying the comparison of
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the norms Corollary 3.1.1 one concludes the proof of the first claim. The other case is

proved analogously.♦

The last Theorem gives us a first, rather simplistic, description of the dual space
(
H2(T(S−H)int)

)′
,

which is the following

Corollary 3.2.1 Consider the subspace of the space L2
µ

Φ−1
(R2 × iS−) defined by

G− = {h ∈ L2
µ

Φ−1
(R2 × iS−) : every restriction h|R2×i{(y1,y2)} ∈ S(R2)} (3.2.13)

Then
(
H2(T(S−H)int)

)′
= G̃−, where G̃− is L2

µ
Φ−1

(R2 × iS−)-closure of the space (3.2.13).

Furthermore, the space H2(T(S−H)int) is reflexive.

Proof: It follows from the above that every F ∈ H2(T(S−H)int) has boundary val-

ues on R2 × iS− denoted also by F and it is the L2
µ

Φ−1
(R2 × iS−)-limits of a sequence

{Fnk} ⊂ H2(T(S−H)int) satisfying (3.2.12), where fnk ∈ S(R2). Thus, in order to de-

termine L ∈
(
H2(T(S−H)int)

)′
, it is enough to determine it on elements of H2(T(S−H)int)

of the form (3.2.12). In this case Fnk(x + iy) ∈ S(R2), for y-fixed, while remaining

Fnk ∈ L2
µ

Φ−1
(R2× iS−). Hence, if g ∈ L2

µ
Φ−1

(R2× iS−) represents the functional L, then for

almost all (iy1, iy2) ∈ iS− the mapping (y1, y2) −→
∫
R2

|g(x1, x2, y1, y2)|2dx1dx2 is almost

everywhere continuous (with respect to the measure µΦ−1
) on iS−. Denote by ∆ ⊂ iS−

the metric space of continuity points of the mapping. Note that ∆ is a paracompact.

Following, [23], we consider the carrier ϕg : ∆ −→ 2Y , where Y = L2
dx1dx2

(R2) is a Banach

space. The carrier ϕg maps every element (iy1, iy2) ∈ ∆ into a ball of positive radius

centered at the element

iy2

2
g(y1,y2)(x1, x2) =

iy2

2
g(x1, x2, y1, y2) ∈ L2

dx1dx2
(R2).

This ball a convex set. The factor iy2

2
that appears above is there to justify the compati-

bility of the measures: the measure iy2

2
dx1dx2 is the measure µΦ−1

on the surface R2× iS−

taking into account that dy1dy2 = 0 on it. It is straightforward to check that the carrier φg

is lower semi-continuous and thus admits a continuous selection G : ∆ −→ Y , satisfying

G(y1, y2) ∈ φ−1
g (y1, y2). We choose our selection to be an element (depending on (y1, y2))

G(y1,y2) ∈ S(R2) which is sufficiently close to g(y1,y2)(x1, x2) in L2
dx1dx2

(R2) norm. We ex-
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tend our selection to the set S− \∆ by corresponding to every (y1, y2) ∈ S− \∆ the value 0

considered now as an element of S(R2). Since (y1, y2) −→
∫
R2

|g(x1, x2, y1, y2)|2 iy2

2
dx1dx2 is

integrable with respect to (y1, y2) we deduce that the extended selection G(y1,y2)(x1, x2) ∈

S(R2) defines an integrable mapping with respect to y1 via the formula

(y1, y2) ∈ S− −→
∫
R2

|G(y1,y2)(x1, x2)|2 iy2

2
dx1dx2.

Thus, every functional acting on a function defined by (3.2.12), slice-wise gives rise to

the space G−. Taking the closures of both spaces with respect to the L2
µ

Φ−1
(R2×iS−)-norm

and the application of the relation (3.1.6) lead to the desired conclusion. The only thing

that remains to show is the reflexivity of the space H2(T(S−H)int). Let {gn}n ⊂ H2(T(S−H)int)

be a bounded sequence. Then (3.1.6) implies that this sequence is also bounded L2
µ

Φ−1
(R2×

iS−). Reflexivity of the space L2
µ

Φ−1
(R2×iS−) implies that there exists a weakly convergent

subsequence of {gnk}nk of {gn}n. Thus, it is weakly convergent with respect to G̃− too as

a subset of H2(T(S−H)int), taking into account (3.1.6).♦

Similarly, we have the following

Corollary 3.2.2 Consider the subspace of the space L2
µΦ1

(R2 × iS1), where Φ1(ζ1, ζ2) =

( ζ1−ζ̄1
2i

)2 + ( ζ2−ζ̄2
2i

)2 − 1 is the defining function for the tube TB1, defined by

GS1 = {h ∈ L2
µΦ1

(R2 × iS1) : every restriction h|R2×i{(y1,y2)} ∈ S(R2)} (3.2.14)

Then (H2(TB1))
′

= G̃S1, where G̃S1 is L2
µΦ1

(R2 × iS1)-closure of the space (3.2.14). Fur-

thermore, the space H2(TB1) is reflexive.

Proof: The proof follows along the line of the previous corollary and is given here for

the completeness of presentation. Actually, every F ∈ H2(TB1) has boundary values on

R2 × iS1 denoted also by F and it is the L2
µΦ1

(R2 × iS1)-limits of a sequence {Fnk} ⊂

H2(TB1) satisfying

Fnk(x+ iy) =

∫
R2

fnk(t)e
2πiz·tdt ∈ H2(TB1) (3.2.15)

(3.2.15), where fnk ∈ S(R2). The proof of this claim is the repetition of the one pre-
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sented in the proof of the previous lemma. Thus, in order to determine L ∈ (H2(TB1))
′
,

it is enough to determine it on elements of H2(TB1) of the form (3.2.15). In this case

Fnk(x + iy) ∈ S(R2), for y-fixed, while remaining Fnk ∈ L2
µΦ1

(R2 × iS1). Thus, following

the reasoning of the previous corollary with respect to the Michael selection principle,

every functional acting on such a function, slice-wise gives rise to the space GS1 . Taking

the closures of both spaces with respect to the L2
µΦ1

(R2 × iS1)-norm and the application

of the relation (3.1.6) lead to the desired conclusion. The only thing that remains to show

is the reflexivity of the space H2(TB1). Let {gn}n ⊂ H2(TB1) be a bounded sequence.

Then (3.1.7) implies that this sequence is also bounded L2
µΦ1

(R2× iS1). Reflexivity of the

space L2
µΦ1

(R2× iS1) implies that there exists a weakly convergent subsequence of {gnk}nk
of {gn}n. Thus, it is weakly convergent with respect to G̃S1 too as a subset of H2(TB1),

taking into account (3.1.7).♦

We note however, that this description of the dual space is rather restrictive, because it

does not provide us with the exact information about the structure of the space G− and

the space GS1 .
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Chapter 4

Integral representation for the space

H2(T(S−H)int)

Our purpose is to describe this space through Cauchy-Fantappie type formulas to be found

in [13]. To be more specific, we recall the closed half-strips (which are convex sets) in iR2

defined by (2.4.1). Using the interiors (S−H)int, (S+
H)int of the closed half-strips from (2.4.1)

we consider the tubular domains defined in (2.4.2).

Following ([14], [13]), we have derived in Chapter 2 that the tubular domains T(S−H)int

and T(S+
H)int defined by (2.4.2) are both tubular domains of type one. The corresponding

(to the type of the domain cones) conjugate cones are the half-planes

P (S−H)int = {(t1, t2) ∈ R2 : t1 > 0}

= {(t1, t2) ∈ R2 : t1y1 + t20 ≥ 0, y1 ≥ 0}

P (S+
H)int = {(t1, t2) ∈ R2 : t1 < 0}

= {(t1, t2) ∈ R2 : t1y1 + t20 ≥ 0, y1 ≤ 0} (4.0.1)

It is easy to see that the half planes (4.0.1) are cones of the corresponding half-circles.

That is, if S+ and S− denote the closed half circles on the unit circle S = {(t1, t2) ∈ R2 :

t21 + t22 = 1}, corresponding to t1 > 0 and t1 < 0 correspondingly, then

P (S−H)int = {αS+, α > 0, (t1, t2) ∈ S+}

P (S+
H)int = {αS−, α > 0, (t1, t2) ∈ S−} (4.0.2)
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In particular, P (S±H)int are the sets of generators on S1 for the conjugate cones of the

cones defining the type of the tubes.

We now observe that the boundary ∂S−H is smooth and is the union of half circle with

parallel lines. For every vector t ∈ ∂S−H , where the boundary is strictly convex, one can

correspond a unique unit vector ξ ∈ S1 so that < ξ, y >= p, for some p = a(ξ)- the

supporting hyperplane to S−H at t and satisfying < ξ, y >< a(ξ) for y ∈ (S−H)int. Near the

point of strict convexity of ∂S−H , that is , where ∂S−H is described by Φ−1 (y) = y2
1 + y2

2 − 1,

−1 < y1 < 0, the domain S−H is characterized by Φ−1 (y) < 0 and its boundary by Φ−1 (y) = 0.

Thus, for (y1, y2) satisfying y2
1 +y2

2−1 = 0, −1 ≤ y1 < 0, one has that the vector ξ realizing

the supporting hyperplane (line) at the present point is the vector

ξ(y) =
−∇Φ−1 (y)

||∇Φ−1 (y)||
∈ S+ ⊂ P (S−H)int

The points {(y1, y2) ∈ ∂S−H : y1 ∈ [0,∞), y2 = ±1} are not points of strict convexity. The

above correspondence means in this case that to the vector (0, 1) ∈ S1 there correspond

the points (y1, 1) ∈ ∂S−H and to the vector (0,−1) ∈ S1 there correspond the points

(y1,−1) ∈ ∂S−H .

This leads us to consider the skeleton ΩS−H
([13]).

Definition 4.0.1 The skeleton Ω(S−H)int of the base of the tube T(S−H)int is defined to be the

set of ξ(y) ∈ S1 realizing the supporting hyperplane to ∂S−H at a unique y ∈ ∂S−H .

Direct computation shows that

ΩS−H
= S−.

Furthermore, one observes that T(S−H)int = {z ∈ C2 : =(< ξ, z >) < a(ξ), ∀ξ ∈ S+}.

Now we are ready to formulate and prove the following proposition following closely the

ideas from ([14], [13]).

Proposition 4.0.1 Let f be function holomorphic in T(S−H)int so that for every (y1, y2) ∈

∂S−H the limit lim
r−→1−

f(x1 + iry1, x2 + iry2) = f(x1 + iy1, x2 + iy2). Assume further that for

every (z1, z2) ∈ T (S−H)int ⊂ C2 with (y1, y2) = (=z1,=z2) fixed, the restriction f |R2×i{(y1,y2)}

is in S(R2). If f |R2×i{(y1,y2)} is continuous with respect to (y1, y2) = (=z1,=z2) ∈ S− and
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is also in L2(∂T(S−H)int), then

f(w) =
1

(2π)2

∫
R2×iS−

f(z)‖∇Φ−1 (y)‖2dθdx1dx2

(< ∇Φ−1 (y), z − w >)2
, w ∈ T(S−H)int . (4.0.3)

Proof: The Radon transform of the function f is f̌(ξ, p) =
∫

<ξ,z>=p

f(z)dωξ, where the

integral is over the hyperplane < ξ, z >= p, ξ =
−∇Φ−1 (y)

||∇Φ−1 (y)|| ∈ S
+, chosen in a such a way

that =z = y ∈ (S−H)int and < ξ, y >= =p. The value f̌(ξ, p) is independent from the choice

of y satisfying < ξ, y >= =p. Thus the resulting function f̌(ξ, p) is holomorphic function

of p in the strip −a(−ξ) < =p < a(ξ). Furthermore, f̌(ξ, p) 6= 0, since both, ξ and −ξ

do not belong to S+. We observe that f̌(ξ, p) 6= 0 for =z = y ∈ (S−H)int fixed is identical

to the Radon Transform f̌(ξ,<p) 6= 0, as a function of <z = x ∈ R2. Radon Transform

Inversion Formula for n = 2 implies that one has for every w ∈ T(S−H)int the following

f(w) =
(−1)2(2− 1)!

(2πi)2

∫
S+

dξ

∫
=p=a(ξ)

f̌(ξ, p)dp

(p− < ξ,w >)2

=
1

(2πi)2

∫
S+

dξ

∫
=z=y(ξ)

f(z)dz

(< ξ, z − w >)2

=
1

(2πi)2

∫
R2×Ω

S−
H

f(z)‖∇Φ−1 (y)‖2dθdx1dx2

(< ∇Φ−1 (y), z − w >)2

=
1

(2πi)2

∫
R2×iS−

f(z)‖∇Φ−1 (y)‖2dθdx1dx2

(< ∇Φ−1 (y), z − w >)2
, (4.0.4)

where dθ = −dξ is a measure on S−, making the measure dθdx1dx2 equivalent to a three

dimensional Lebesgue measure. We remark here that the first equality in (4.0.4) is just

the Radon inversion formula involving the first derivative with respect to p of f̌(ξ,<p),

represented by the inner integral. The second equality is realized by replacing f̌(ξ,<p)

with its equal f̌(ξ,<p) =
∫

<ξ,<z>=<p
f(<z)dωξ, taking into account that 1-form dωξ is

chosen, by the definition of the Radon transform, to satisfy dωξdp = dx1dx2. The last

equality follows from the discussion that preceded the formulation of the proposition. ♦

Recall that the measure µΦ−1
(ζ, ζ̄) = ∂Φ−1 (ζ, ζ̄)∧ ∂∂̄Φ−1 (ζ, ζ̄) is equivalent to the Lebesgue

measure also. This observation and the concluding remarks of the last proof allow to
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rewrite (4.0.3) as a classic Cauchy-Fantappie formula for w ∈ T(S−H)int :

f(w) =
1

(2πi)2

∫
R2×iS−

f(ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ − w >)2

, w ∈ T(S−H)int (4.0.5)

=
1

(2πi)2

∫
R2×iS−

f(ζ)

(1− <
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, w >)2

(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ >)2

.

One more observation is needed to clarify the relation between the functions satisfying

(4.0.5) and functions satisfying (4.0.3): whenever z ∈ T(S−H)int , the restriction of (4.0.3)

to the plane R2 × i(=z1,=z2) is a rapidly decreasing function. The crucial information

available to us here is that (4.0.3) is holomorphic for z ∈ T(S−H)int . Therefore it is not the

case when z ∈ ∂T(S−H)int . That is, the theorem below has to be understood in the context of

understanding the boundary behavior of the function in question. Therefore when we say

that a function F is representable by (4.0.5) then it means that F is holomorphic in the

tube and has directional boundary values with respect to y ∈ ∂T(S−H)int , i.e. lim
r−→1−

F (x1 +

iry1, x2 + iry2) = F (x1 + iy1, x2 + iy2). Furthermore, in addition to F ∈ L2(R2 × iS−) we

require

(y1, y2) −→
∫
R2

|F (x1, x2, y1, y2)|2dx1dx2

to be continuous when y ∈ ∂T(S−H)int . We say, for simplicity, that F is continuous along

the boundary of the base of the tube. Before proceeding any further, we set S−Hr = r ·S−H ,

0 < r ≤ 1. Then (S−Hr)
int = r · (S−H)int and we have the following

Theorem 4.0.2 Consider the tube domain T(S−H)int ⊂ C2. If F ∈ H2(T(S−H)int) then F

satisfies (4.0.5). If F satisfies (4.0.5) then F ∈ H2(T(S−H)int).

Proof : If F ∈ H2(T(S−H)int), then its Cauchy-Fantappie CFa(F ) transform is given by

CFa(F )(w) =
(2− 1)!

(2π)2

∫
R2×iS−

F (ζ)‖∇Φ−1 (y)‖2dθdx1dx2

(< ∇Φ−1 (y), ζ − w >)2

=
1

(2π)2

∫
R2×iS−

F (ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ − w >)2

, w ∈ T(S−H)int , (4.0.6)

because of the relation (4.0.5). We want to prove that CFa(F )(w) = F (w) for w ∈ T(S−H)int .
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Prop.4.0.1 and relation (4.0.6) imply that

CFa(F )(w)− CFa(Fnk)(w) = CFa(F )(w)− Fnk(w)

=
1

(2π)2

∫
R2×iS−

(F − Fnk)(ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ − w >)2

,

whenever w ∈ T(S−H)int and {Fnk} is a sequence such that Fnk −→ F in ‖·‖H2(T
(S−
H

)int
)-norm.

Since Fnk −→ F in ‖ · ‖H2(T
(S−
H

)int
)-norm, taking the limit when nk −→ ∞ leads to the

desired conclusion.

In order to prove the second claim, we assume first that F satisfies the conditions of

Prop.4.0.1 and thus is expressed by (4.0.3) or , equivalently, by (4.0.5). Hence, F being

holomorphic in the tube T(S−H)int , implies that it is holomorphic in the closure of a more

”narrow” tube T(S−Hr )int , 0 < r < 1. The convexity of S− and straightforward calculations

imply the inequality

2< < ∇ζΦ
−
1 (ζ, ζ̄), ζ − z >≥ Φ−1 (ζ)− Φ−1 (z) + γ‖ζ − z‖2, (4.0.7)

whenever ζ ∈ R2 × iS− and z ∈ T(S−Hr )int for 0 < r −→ 1−. Using (4.0.7) and (4.0.5) one

deduces, using Holder inequality, that the function

|F (z)| ≤ 1

γ

∫
R2×iS−

|F (ζ)| 1

‖ζ − z‖4
|∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)|

≤ ‖F‖L2
µ

Φ−1
(R2×iS−)‖

1

γ‖z − ζ‖4
‖L2

µ
Φ−1

(R2×iS−) = α(r),

is bounded by a constant α(r) dependent on r, whenever z ∈ T(S−Hr )int . Thus, for (=z1,=z2)

fixed, using (4.0.3) one has from Tonelli’s Theorem,

∫
R2

|F (<z1,<z2,=z1,=z2)|2d<z1d<z2 ≤ α(r)

∫
R2

|F (<z1,<z2,=z1,=z2)|d<z1d<z2

≤ α(r)

∫
R2

 ∫
R2×iS−

|F (ζ, ζ̄)||∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)|

(
2∑
i=1

(=zi −=ζi)2 +
2∑
i=1

(<zi − xi)2)4

 d<z1d<z2
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≤ α(r)

∫
R2×iS−

∫
R2

|F (ζ, ζ̄)|d<z1d<z2

(
2∑
i=1

(=zi −=ζi)2 +
2∑
i=1

(<zi − xi)2)4

 |∂Φ−1 (ζ, ζ̄) ∧ ∂̄∂Φ−1 (ζ, ζ̄)|,

(4.0.8)

where xi = <ζi, i = 1, 2, and (=z1 − =ζ1)2 + (=z2 − =ζ2)2 ≥ (1 − r)2 > 0. Now, in

order to compute the inner integral we make the change of variables <z1 − x1 = ρ cos θ,

<z2 − x2 = ρ sin θ, 0 ≤ ρ < +∞, 0 ≤ θ ≤ 2π and obtain

∫
R2

d<z1d<z2

((1− r)2 + (<z1 − x1)2 + (<z2 − x2)2)4
≤

∞∫
0

2π∫
0

ρdρdθ

((1− r)2 + ρ2)4
≤ π

3(1− r)6
.(4.0.9)

Thus, using (4.0.9), (4.0.8) becomes

∫
R2

|F (<z1,<z2,=z1,=z2)|2d<z1d<z2 ≤
πα(r)

3(1− r)6

∫
R2×iS−

|F (ζ, ζ̄)||∂Φ−1 (ζ) ∧ ∂∂̄Φ−1 (ζ)|

(4.0.10)

On the other hand, if the point (=ζ10,=ζ10) = (y10, y20) realizes the maximum of the

continuous function

S− 3 (=ζ1,=ζ2) −→
∫
R2

|F (x1 + i=ζ1, x2 + i=ζ2)|dx1dx2,

then

∫
R2×iS−

|F (ζ, ζ̄)||∂Φ−1 (ζ) ∧ ∂̄∂Φ−1 (ζ)| =

∫
S−

∫
R2

|F (ζ, ζ̄)|| − y1dx1dx2dy2 + y2dx1dx2dy1|

≤ C

∫
R2

|F (x1 + i=ζ10, x2 + i=ζ20)|dx1dx2 (4.0.11)

Thus, for some constant C, (4.0.11) implies that

∫
R2

|F (<z1,<z2,=z1,=z2)|2d<z1d<z2 ≤
Cπ2α(r)

(1− r)6

∫
R2

|F (x1, x2, y10, y20)|dx1dx2, (4.0.12)
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where the last integral is finite because the restriction of F (x1 + iy10, x2 + iy20)|R2 ∈ S(R2).

Combining (4.0.8) and (4.0.12) we deduce that F ∈ H2(T(S−Hr )int). We now rewrite (3.0.3)

for F ∈ H2(T(S−Hr )int) as follows: for any sequence {rk} ⊂ [0, 1], rk ↑ 1− one has that

S−Hrk
= rk · S−H . Thus, the restriction of F (z) from (4.0.5) to the closure T (S−Hrk

)int is given

by

Frk(w) =

∫
R2

f(t)e2rkπiw·tdt, whenever w ∈ T(S−H)int ,

and sup
y∈(S−H)int

∫
R2

|f(t)|2e−4rkπy·tdt < β2(rk), (4.0.13)

where the constant β2(rk) depends on the base of the tube S−Hrk
. Since the function Frk(z)

(an element of H2(T(S−H)int)) is a restriction of the function F (z) to the tube T(S
H−rk

)int the

directional limit (along iy) exists and we denote it by
∫
R2

f(t)e2rkπiz·tdt, thus defining

F (z) =

∫
R2

f(t)e2rkπiz·tdt = lim
rk−→1−

∫
R2

f(t)e2rkπiz·tdt

for every z ∈ T(S−H)int . Now the crucial step is to show that (4.0.13) is extended to the

case when rk = 1. We achieve it by proving first that the claim is valid since f ∈ S(R2)

(inverse Fourier transform is a mapping from S(R2) into S(R2)). The desired conclusion

will follow then from the fact that every element f ∈ L2(R2) is a L2(R2) limit of sequence

of functions {fk} ⊂ S(R2) and from the way one extends the definition of the Fourier

transform in the space L2(R2).

Let us begin by considering the integral

∫
R2

|Frk(x1 + iy1, x2 + iy2)|2dx1dx2 =

∫
R2

|f(t)|2e−4πrky·tdt

=

2π∫
0

∞∫
0

|f(%, θ)|2e−4πrk‖y‖% cos θ%d%dθ,

where f ∈ S(R2) and y-fixed is assumed to be defining the ”horizontal axis” for the use of

polar coordinates. This integral cannot be bounded above (independently of ‖y‖), when

rk = 1 and cos θ < 0. Thus, it is enough to consider the integral over the ”left” hand-side
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half-plane:
3π
2∫

π
2

∞∫
0

|f(%, θ)|2e−4πrk‖y‖% cos θ%d%dθ.

In general this is a non-solvable problem. However, in the present setting we do the

following. Choosing sufficiently large y0
1 > 0 we split the strip (S−H)int into two parts: the

part S−H ∩ i{(y1, y2) ∈ R2 : −1 < y1 < y0
1} whose closure is compact and the unbounded

part S−H ∩ i{(y1, y2) ∈ R2 : y0
1 < y1}. Over the unbounded part of the strip one expresses

an estimate like (4.0.11) in terms of a constant like Cπα(r)
(1−r)6 but now written in terms of

(=z1,=z2) = (y1, y2) ∈ ∂S−H ∩ i{(y1, y2) ∈ R2 : −1 ≤ y0
1 < y1}. That is , we rewrite (4.0.8)

as (y1 − =ζ1)2 − (y2 − =ζ2)2 ≥ 1
2
‖y‖2 > 0. This is possible for suitably chosen y0

1 > 0,

because (=ζ1,=ζ2) ∈ S−. This way one can have the estimate |F (z)| ≤ 2‖F‖L2(R2×iS−)

‖y‖4

whenever (y1, y2) ∈ ∂S−H ∩ i{(y1, y2) ∈ R2 : y0
1 < y1}. Furthermore, the bound on the right

of (4.0.9) becomes 2π
‖y‖8 . Thus, modified inequalities (4.0.10) and (4.0.11) give

∫
R2

|F (<z1,<z2,=z1,=z2)|2d<z1d<z2 ≤
C12π2

‖y‖8

∫
R2

|F (x1, x2, y10, y20)|dx1dx2, (4.0.14)

whenever (=z1,=z2) = (y1, y2) ∈ ∂S−H ∩ {(y1, y2) ∈ R2 : y0
1 < y1}, for y0

1 > 0 large enough.

It remains to show the boundedness of the integrals over the rest of the tube. Since

point-wise

3π
2∫

π
2

∞∫
0

|f(%, θ)|2e−4πrk‖y‖% cos θ%d%dθ ≤

3π
2∫

π
2

∞∫
0

|f(%, θ)|2e−4π‖y‖% cos θ%d%dθ,

on the ”left” half-plane. The continuity of F along the boundary of the base of the

tube implies the desired result. That is, we have shown that F ∈ H2(T(S−H)int), with

F (z) =
∫
R2

f(t)e2πiz·tdt, z ∈ T(S−H)int whenever f ∈ S(R2). Using the definition of the

Fourier Transform on L2(R2) we deduce that

3π
2∫

π
2

∞∫
0

|f(r, θ)|2e−4π‖y‖r cos θrdrdθ < +∞, (4.0.15)
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for every f ∈ L2(R2). Finally, for every z = (z1, z2) = (x1 + iy1, x2 + iy2) ∈ T(S−H)int we

have, using Plancherel’s Theorem, that

∫
R2

|F (x1, x2, y1, y2)|2dx =

∫
R2

|f(t)|2e−4πy·tdt < +∞, (4.0.16)

whenever y ∈ S−H is fixed. Furthermore, using previously developed argument, one can

deduce know that F (z) ∈ H2(T(S−H)int), by splitting the set ∂S−H into non compact part

∂S−H ∩ i{(y1, y2) ∈ R2 : y0
1 < y1}, y0

1 > 0 and into compact part ∂S−H ∩ i{(y1, y2) ∈ R2 :

−1 ≤ y1 < y0
1}. ♦

Next, we are going to examine the boundary behavior of the Cauchy-Fantappie type

integral over R2 × iS− of a function f ∈ L2(R2 × iS−). We begin by considering the

other form of (4.0.5) but for a function f ∈ L2(R2 × iS−) so that for every the restriction

f |R2×i{(y1,y2)} ∈ S(R2). Namely, the identity

CFa(f)(z) =
1

(2πi)2

∫
R2×iS−

f(ζ)

(1− <
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, z >)2

(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄)ζ >)2

,(4.0.17)

whenever z ∈ T(S−H)int , describing the Cauchy-Fantappie type integral. It was shown pre-

viously that
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
is an element of the generalized dual complement T ∗

(S−H)int
. For

every (ζ, ζ̄) ∈ R2× iS−, the denominator 1− <
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, z > is the equation of hyper-

plane, which does not intersect the closure of the tube T(S−H)int whenever ‖ ∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
‖ <

1. Therefore, the singularities of the integral occur when ‖ ∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
‖ = 1 and ‖ζ‖ = 1

or, taking into account the endpoints of the semicircle S−, when w = (w1, w2) ∈ T ∗
(S−H)int

,

‖w‖ = 1 and ζ ∈ ∂T(S−H)int . Analytically, the above are expressed by the realization of

the points of generalized dual having length equal to one, that is ((0,−iy1), (0,−iy2))

satisfying y2
1 + y2

2 = 1, −1 ≤ y1 ≤ 0 while z ∈ T(S−H)int and tends to the boundary. This

means CFa(f)(z) is holomorphic in a neighborhood of the part of the tube T(S−H)int whose

imaginary part of the base is described by the {(y1, y2) ∈ S−H : y1 > 0}. Thus it remains

only to examine the existence of the boundary values of CFa(f)(z) at the singular points

((0,−iy1), (0,−iy2)) satisfying y2
1 + y2

2 = 1, −1 ≤ y1 ≤ 0. In our particular setting this

problem is reduced (see the proof of next corollary) to the extension of the domain of
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convergence of the Fourier Transform.♦

Lemma 4.0.1 The value of the integral

∫
R2×iS−

Ω(Φ−1 (ζ, ζ̄))

< ∇Φ−1 (ζ, ζ̄), ζ >2
=

∫
R2×iS−

∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇Φ−1 (ζ, ζ̄), ζ >4
(4.0.18)

is finite.

Proof: We have the following

1

|(y2
1 + y2

2 − i(x1y1 + x2y)4|
=

1

(1 + ‖x‖2‖y‖2 cos2 θ)2
=

1

(1 + ‖x‖2y2
1)2

,

where ‖ · ‖ is the usual norm in R2 and θ is the angle between the vectors x and y in

R2 and we assume that y1 = ‖y‖ cos θ. Furthermore, the integration on R2 × iS−, for

(ζ, ζ̄) ∈ R2× iS−, is reduced to the integration of the forms y1dx1dx2dy2 and y2dx1dx2dy1,

while S− = lim
ε−→0

S−ε , where S−ε = {(−
√

1− y2
2, y2), y2 ∈ [−1 + ε, 1 − ε]}. Thus, we have

that (understanding the integrals on the arc as generalized ones)

∫
R2×iS−ε

|∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >4

| ≤ |
∫
R2

1−ε∫
−1+ε

(−
√

1− y2
2)

dx1dx2dy2

(1 + ‖x‖2y2
1)2
|

+ |
∫
R2

1−ε∫
−1+ε

y2
2√

1− y2
2

dx1dx2dy2

(1 + ‖x‖2y2
1)2
|

We turn now to the evaluation of every integral in the last relation. We have, since

|
∫
R2

1−ε∫
−1+ε

(−
√

1− y2
2)

dx1dx2dy2

(1 + ‖x‖2y2
1)2
| = 2π

∫
[−1+ε,1−ε]

dy2

2
√

1− y2
2

= πθε,
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where ±θε −→ ±π
2
. Similarly, the other integral is

|
∫
R2

1−ε∫
−1+ε

y2
2√

1− y2
2

dx1dx2dy2

(1 + ‖x‖2y2
1)2
| = |

∫
R2

1−ε∫
−1+ε

−1− y2
2 − 1√

1− y2
2

dx1dx2dy2

(1 + ‖x‖2y2
1)2
|

≤ π

1−ε∫
−1+ε

√
(1− y2

2)dy2 + π|
1−ε∫

−1+ε

1√
(1− y2

2)
dy2|

≤ 2π2.

Therefore

∫
R2×iS−

|∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >4

| = lim
ε−→0

∫
R2×iS−ε

|∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >4

≤ 2π2

Thus we have the desired result. ♦

The proof of the last Theorem, the concept of generalized dual T ∗
(S−H)int

introduced in

Chapter 2 and the above lemma lead to the following

Corollary 4.0.3 Let us assume that the function h ∈ L2(R2 × iS−) so that for every the

restriction h|R2×i{(y1,y2)} ∈ S(R2). Assume further that Φ−1 (ζ, ζ̄) is the defining function

for the tube T(S−H)int. Then the Cauchy-Fantappie transform of the function h defined by

CFa(h)(z) =

∫
R2×iS−

h(ζ, ζ̄)Ω(Φ−1 (ζ, ζ̄))

(1− <
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, z >)2

, z ∈ T(S−H)int (4.0.19)

is holomorphic in T(S−H)int. The function CFa(h) ∈ H2(T(S−H)int), provided that the ratio

|h(ζ,ζ̄)|
(1−r)2 remains bounded, whenever (=z1,=z2) −→ (0,±i) within an angle ]α ≤ π

4
and

(ζ, ζ̄) ∈ ∂T(S−H)int are near (0, 0, 0,±i). The differential form-measure is

Ω(Φ−1 (ζ, ζ̄)) =
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >2

(4.0.20)

Proof: The analyticity of CFa(h)(z) follows from the fact that
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
∈ T ∗

(S−H)int

for any ζ = (ζ1, ζ2) ∈ R2 × iS−, thus implying that 1− <
∇ζΦ−1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, z >6= 0 for every
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ζ ∈ T(S−H)int . Hence, we can rewrite the desired formula as

CFa(h)(z) =

∫
R2×iS−

h(ζ, ζ̄)∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ − z >2

, z ∈ T(S−H)int (4.0.21)

Using (4.0.7) and Holder inequality, like in the proof of the Theorem 4.0.2, one can show

that for any 0 < r < 1,

|CFa(h)(z)| ≤ β(r) ∀ z ∈ T(S
H−r

)int , (4.0.22)

where the constant β(r) depends on the tube T(S
H−r

)int . Now, using the same line of

arguments that led to (4.0.8), (4.0.9),(4.0.10),(4.0.11), we deduce that for =z = (=z1,=z2)-

fixed the inequality

∫
R2

|CFa(h)(<z1,<z2,=z)|2d<z1d<z2 ≤
Kπ2δ(r)

(1− r)8

∫
R2

|h(x1, x2, y10, y20)|dx1dx2 (4.0.23)

holds for some constant K > 0, since the last integral is finite because the restriction of

h(x+ iy10, x+ iy20)|R2 ∈ S(R2). The inequality (4.0.23) is similar to (4.0.12). Combining

(4.0.8) and (4.0.23) we deduce that CFa(h) ∈ H2(T(S−Hr )int). We now rewrite (3.0.3) for

CFa(h) ∈ H2(T(S−Hr )int) as follows. For any sequence {rk} ⊂ [0, 1], rk ↑ 1− one has that

S−Hrk
= rk · S−H . Thus, the restriction of CFa(h)(z) from (4.0.5) to the closure T (S−Hrk

)int is

given by

Crk
Fa(h)(z) =

∫
R2

j(t)e2rkπiz·tdt, whenever z ∈ T(S−H)int ,

and sup
y∈(S−H)int

∫
R2

|j(t)|2e−4rkπy·tdt < γ2(rk), (4.0.24)

where the constant γ2(rk) depends on the base of the tube S−Hrk
. The difference here

with respect to the proof of Theorem 4.0.2 is that we do not know that the function

j(t) ∈ S(R2), we know that j(t) ∈ L2(R2) instead. The discussion that preceded the

present corollary has shown that Crk
Fa(h)(z) = CFa(h)(z), z ∈ T(S−Hrk

)int for every rk has

directional boundary values for every z0 = (z01, z02) ∈ ∂T(S−H)int , with Imz01 > 0, but we

do not know how it is realized. In other words, if it is realized as a Fourier transform of
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j at the boundary point z0, with Imz01 > 0. At any such boundary point consider the

sub-tube TΠz0
⊂ T(S−H)int , having as a base the convex polygon with one of its vertices at

z0 ∈ ∂T(S−H)int . The fact that the boundary values of CFa(h)(z) in the tube T(S−H)int are

bounded (locally) (especially in {(0, 0)} × iS−) we deduce that CFa(h)(z) ∈ H2(TΠz0
).

Thus one can define CFa(h)(z0) =
∫
R2

j(t)e2πiz0·tdt, whenever z0 ∈ ∂T(S−H)int , Imz01 > 0.

Since the arc S+ (the right half of the circumference) is open, is contained in the strip

(S−H)int and the integral
∫
R2

|j(t)|2e−4πy·tdt converges whenever y ∈ S−. Thus, the only

points where we do not know the behavior of CFa(h)(z) are the boundary points whose

imaginary parts are (y1, y2) = (0,±i). These cases are covered by the assumptions of the

corollary. Once we have established the existence of boundary values, the boundedness

of integrals follows as in the Theorem 4.0.2. Thus CFa(h) ∈ H2(T(S−H)int). Note however,

that in this case CFa(h)(z0) 6= h(z0) in general for z0 ∈ R2 × iS− ⊂ ∂T(S−H)int . ♦
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Chapter 5

Version of Aizenberg-Martineau

duality for the space H2(T(S−H)int)

In the present section we will formulate and prove duality results for spaces H2(T(S−H)int)

in the spirit of results of Aizenberg-Martineau, [1, 3, 21, 22]. Similar results are valid

for space H2(T(S+
H)int). Using the relation (2.5.1) from Chapter 2 we consider the star

compact T ∗
(S−H)int

= V−2 and denote by H(T ∗
(S−H)int

) the space of holomorphic functions in a

neighborhood U of the compact T ∗
(S−H)int

.

The notation of the (n, n − 1)-form Ω(Φ−1 (ζ, ζ̄)) =
∂Φ−1 (ζ,ζ̄)∧∂∂̄Φ−1 (ζ,ζ̄)

(<∇ζΦ−1 (ζ,ζ̄),ζ>)2 and the vector

function τ(Φ−1 ) = (τ1(Φ−1 ), . . . , τn(Φ−1 )), τi(Φ
−
1 ) =

∂ζiΦ
−
1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, i = 1, 2 is consistent with

notation in ([1]).

We begin by observing that in the integral representation of f ∈ H2(T(S−H)int), given by

(4.0.5),where the only part of the boundary ∂T(S−H)int present is the set R2 × iS−. Thus

for every ζ ∈ R2 × iS− there exists a tangent complex line

{z ∈ C2 :< ∇ζΦ
−
1 (ζ, ζ̄), ζ − z >= 0} = {z ∈ C2 : τ1(Φ−1 )z1 + τ2(Φ−1 )z2 = 1}

where τi(Φ
−
1 ) =

∂ζiΦ
−
1 (ζ,ζ̄)

<∇ζΦ−1 (ζ,ζ̄),ζ>
, i = 1, 2, not intersecting T(S−H)int . Observe that

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >6= 0, since 0 ∈ T(S−H)int . Furthermore, for ζ ∈ R2× iS− and from Lemma

62

NIKOLE
TA ALE

XANDROU



2.5.1 we have that

τ1(Φ−1 ) =
∂ζ1Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >

=
y1(x1y1 + x2y2)− iy1(y2

1 + y2
2)

(y2
1 + y2

2)2 + (x1y1 + x2y2)2

τ2(Φ−1 ) =
∂ζ2Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >

=
y2(x1y1 + x2y2)− iy2(y2

1 + y2
2)

(y2
1 + y2

2)2 + (x1y1 + x2y2)2

Using the fact that the compact T ∗
(S−H)int

is star, the same computations for the vector

(
r∂ζ1Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >

,
r∂ζ2Φ−1 (ζ, ζ̄)

< ∇ζΦ
−
1 (ζ, ζ̄), ζ >

),

where 0 < r ≤ 1, as in Lemma 2.5.1 imply that

r2τ 2
1 (Φ−1 ) + r2τ 2

2 (Φ−1 ) =
y2

1 + y2
2

(y2
1 + y2

2)2 + (x1y1 + x2y2)2
≤ 1

r
,

with equality taking place when x1y1 + x2y2 = 0. This last inequality implies that

(rτ1(Φ−1 ), rτ2(Φ−1 )) ∈ T ∗
(S−H 1

r

)int
, whenever r ∈ (0, 1].

Recall the fact that the measure µΦ−1
(ζ, ζ̄) = ∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄) is equivalent to

the Lebesgue measure on the boundary of the tube R2 × iS−. Furthermore, any linear

continuous functional F ∈ (H2(T(S−H)int))
′ is represented by an element h ∈ G̃−, as we have

seen in Corollary 3.2.1. However, this description gives us an implicit description of the

dual space, because there is no knowledge of the limit points. Our goal is to give a sharper

description for the space (H2(T(S−H)int))
′, that is, for h ∈ L2

µ
Φ−1

(R2 × iS−)

F (f) =

∫
R2×iS−

f(ζ)h(ζ)∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄) =

∫
R2×iS−

f(ζ)h(ζ)µΦ−1
(ζ, ζ̄),

|F (f)| ≤ ‖f‖L2
µ

Φ−1
(R2×iS−)‖h‖L2

µ
Φ−1

(R2×iS−) ≤ A‖h‖L2
µ

Φ−1
(R2×iS−)‖f‖H2(T

(S−
H

)int
), (5.0.1)

where the constant A depends on constants from comparison of norms corollary.

Thus, using (4.0.5) for f ∈ H2(T(S−H)int) we have the following formula representing the

functional F :

F (f) =

∫
R2×iS−

f(ζ)h(ζ)µΦ−1
(ζ, ζ̄) (5.0.2)

=

∫
R2×iS−

lim
rk−→1−

f(rkζ)h(ζ)µΦ−1
(ζ, ζ̄), (5.0.3)
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where the limit denotes the L2-limit in the sense of Prop. 3.1.1. But, for every 0 < rk < 1

the point rkζ ∈ T(S−H)int , whenever ζ ∈ R2 × iS−. Theorem 4.0.2, formal application of

Fubini’s Theorem and the properties of the inner product imply then

(2π)2F (f) =

∫
R2×iS−

(
lim

rk−→1−

∫
R2×iS−

f(ω)Ω(Φ−1 (ω, ω̄))

(1− <
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >)2

)
h(ζ)µΦ−1

(ζ, ζ̄)

=

∫
R2×iS−

(
lim

rk−→1−

∫
R2×iS−

h(ζ)µΦ−1
(ζ, ζ̄)

(1− <
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >)2

)
f(ω)Ω(Φ−1 (ω, ω̄)).

(5.0.4)

This approach has meaning provided that the denominator 1

(1−<
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
,ζ>)2

in the

inner integral does not vanish. Actually, the line l = 1− <
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ > is tangent to

the tube T( 1
rk
S−H)int only at a point of its boundary, and thus does not vanish at any point

inside this tube. Thus, in particular, it does not vanish for any ζ ∈ R2× iS− ⊂ T( 1
rk
S−H)int .

Thus, assuming that h is also in L1
µ

Φ−1
(R2 × iS−), the inner integral has a meaning.

This approach brings forward the following two problems with respect to the inner integral:

1) the inner integral

∫
R2×iS−

h(ζ)µΦ−1
(ζ, ζ̄)

(1− <
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >)2

, (5.0.5)

defines a function of w =
rk∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ω ∈ R2 × iS−, whose behavior at r = 1 has to be

investigated

2) what is the meaning of the limit in the front of it.

Furthermore, one observes that there is a question related to the outer integral in (5.0.4)

(its existence).

One observes that for every 0 < r < 1, the function φh,r : T ∗
(S−H)int

−→ C defined by

φh,r(w) = φh(rw) =

∫
R2×iS−

h(ζ)µΦ−1
(ζ, ζ̄)

(1− < rw, ζ >)2
(5.0.6)

is well defined since 1− < rw, ζ > 6= 0. The relation (5.0.5) is particular case of (5.0.6) in
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the case when w =
∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ω ∈ R2 × iS−. One can also interpret the limiting case

r −→ 1− of (5.0.6) as the analogue of the Cauchy-Fantappie transform of the element of the

dual space of the normed space of analytic functions H2(T(S−H)int) , i.e analytic functional,

defined by h(ζ)µΦ−1
(ζ, ζ̄), ζ ∈ R2 × iS−. Recall that in the Aizenberg-Martineau setting

for an open domain U ⊂ Cn, the Cauchy-Fantappie transform FC(µ)(w) = µ( 1
(1+<w,>)2 )

maps an element of (H(U))′ into the function belonging to H(U∗). Furthermore, the main

result of their approach is the fact that the Cauchy-Fantappie transform is an isomorphism

whenever U is C-convex ([1, 2],[10, 21, 22],[29]).

It is clear therefore, that the integral in (5.0.6) might have singularities when r = 1

among the points w ∈ T ∗
S−H

having ‖w‖ = 1 and ‖w‖ < 1. Recall that, according to

results of Chapter 2, w ∈ T ∗
(S−H)int

and ‖w‖ = 1 happens only when w = (w1, w2) =

((0,−iy1), (0,−iy2)) satisfying y2
1 +y2

2 = 1, −1 ≤ y1 ≤ 0. The following lemma, describing

the values of the pseudo-analogue of the Cauchy-Fantappie transform of an element of the

dual space (H2(T(S−H)int))
′ is of importance.

Lemma 5.0.2 Let us assume that the function h ∈ L2
µΦ

(R2 × iS−) and satisfies the prop-

erty: for every (y1, y2) ∈ S− the restriction h|R2×i(y1,y2) ∈ S(R2). Let

B = {w =
r∇Φ−1 (ω, ω̄)

< ∇Φ−1 (ω, ω̄), ω >
∈ T ∗

(S−H)int
, 0 ≤ r < 1}.

Then the function φh : B −→ C defined by

φh(
r∇Φ−1 (ω, ω̄)

< ∇Φ−1 (ω, ω̄), ω >
) =

∫
R2×iS−

h(ζ)µΦ−1
(ζ, ζ̄)

(1− <
r∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >)2

extends in a unique way to a holomorphic function φ̃h defined on the open set E ⊂ C2 con-

taining the set T ∗
(S−H)int

\B. Furthermore, this extension is bounded on T ∗
S−H

and continuous

on T ∗
S−H
\ {((0, 0), (0,±i))}.

Proof: We begin by pointing out that the assumption on h implies also that h ∈

L1
µ

Φ−1
(R2 × iS−). Furthermore, one observes that when xr =

r∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
∈ B ⊂ T ∗

S−H
,

0 < r < 1, then <ω1=ω1 +<ω2=ω2 = 0 and thus its norm is equal to ‖xr‖ = r taking into

account Lemma 2.5.1. Since the set T ∗
(S−H)int

is star with respect to the origin the point

r∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
∈ T ∗

(S−H)int
for every 0 < r < 1. Thus, for every 0 < r < 1 one obtains the
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function

φh(rτ1(Φ−1 ), rτ2(Φ−1 )) =

∫
R2×iS−

h(ζ)µΦ−1
(ζ, ζ̄)

(1− <
r∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >)2

defined on a segment contained in T ∗
(S−H)int

. Even though the above integral at first glance is

similar to Cauchy-Fantappie type integral they differ crucially: the direction of the element

(w1, w2) ∈ T ∗
(S−H)int

does not change with ζ ∈ ∂T(S−H)int . The claim is that it extends to a

full dimensional open set E ⊂ C2. Actually, for r0 ∈ (0, 1), the convexity of the tube in

w implies that <
r0∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
, ζ >6= 1, for every ζ ∈ R2 × iS−, since ζ ∈ R2 × iS− ⊂

T( 1
r0
S−H)int . Thus, there exists δ(r0, wr0) > 0 so that ζ ∈ R2 × iS− ⊂ T( 1

r
S−H)int , whenever

r ∈ (r0−δ, r0 +δ). Thus the function (5.0.6) has holomorphic extension in a neighborhood

of every point rw ∈ T ∗
(S−H)int

defined by the same formula, whenever r ∈ [0, 1). Thus, it

remains to see what happens in the case r = 1. In this setting there are two possibilities:

i) w ∈ T ∗
(S−H)int

and ‖w‖ = 1 or

ii) w ∈ T ∗
(S−H)int

and ‖w‖ < 1.

If w ∈ T ∗
(S−H)int

and ‖w‖ < 1, then according to (2.5.1), w = (w1, w2) = (0, w2) ∈ C2 or w

belongs to generalized dual of the circular part of the strip T(S−H)int .

In the first case it represents the line that is passing through the point ”above ” the

horizontal part of the strip and thus does not intersect the tube R2 × iS−. In the second

case w coincides (through a different parametrization) with a point ”outside” the cylinder

R2 × iS−. In both cases one can consider a small ball centered at w so that for every

w′ in this ball the line passing through this point does not intersect the cylinder, that is

1− < w′, ζ >6= 0 for every ζ ∈ R2× iS−. Thus (5.0.6) extends holomorphically into a ball

around every such point through the same formula. The union of all the balls provides us

with the open set E .

Thus, the only case left to examine about the behavior of the function in question is on

the points of w ∈ T ∗
S−H

satisfying ‖w‖ = 1. As pointed out above, these are exactly the

points with coordinates ((0,−iy1), (0,−iy2)) satisfying y2
1 + y2

2 = 1, 0 ≤ y1 ≤ 1. That is,
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whenever (w1, w2) 6= (0, 0, 0,±i) ∈ T ∗
S−H

and ‖w‖ = 1, then (w1, w2) ∈ R2 × iS+,

|(1− < rw, ζ >)2| = |(1− < (−riy1,−riy2), (ζ1, ζ2) >)|2

= |(1− r(y1=ζ1 + y2=ζ2)− i(ry1<ζ1 + ry2<ζ2)|2

≥ (1− r‖y‖‖=ζ‖ cos β)2 = (1− r cos β)2,

since ‖y‖ =
√
y2

1 + y2
2 = 1, ‖=ζ‖ =

√
=ζ2

1 + =ζ2
2 = 1 and β is the angle between the

vectors y and =ζ. The only solutions to 1 − r cos β = 0 occur when r = 1 and β = 0,

which is impossible since β 6= 0. Thus the function φ̃h(w) is well defined and holomorphic

in a neighborhood of any point w ∈ T ∗
S−H

that satisfies ‖w‖ < 1 and is continuous at any

w ∈ T ∗
S−H
\ {((0, 0), (0,±i))}. If w = (w1, w2) = ((0, 0), (0,±i)) then the denominator in

(5.0.6) vanishes 1− < ((0, 0), (0, i)), r(ζ1, ζ2) >= 0 if and only if 1 − riζ2 = 0, or, which

is equivalent, (1 + r=ζ2) + ir<ζ2 = 0. Hence, the only singularity that appears in the

integral (5.0.6) corresponds to the case when r = 1, =ζ2 = ∓1 and <ζ2 = 0. Naturally,

these points provide the sets {(<ζ1, 0,=ζ1,∓1)} when viewed as points on R2×iS−. Thus,

even though the denominator in the integral (5.0.6) does not vanish (recall that S− is an

open arc), it is not evident that its value is finite. We have

|φh,r(0 + i0, 0 + i)| = |φh(0 + i0, 0 + ri)| ≤
∫

R2×iS−

|
h(ζ)µΦ−1

(ζ, ζ̄)

(1− < (0, i), rζ >)2
|, (5.0.7)

even if we do not know yet that the right hand-side of (5.0.7) is finite when r = 1. Observe,

that the denominator of (5.0.7) is estimated from below in the context of the observation

above (approaching the singularity at =ζ2 = −1 within a cone located in Cζ2 coordinate),

leads in the case r = 1, to

|(1− < ((0, 0), (0, i)), (ζ1, ζ2) > |2 = |(1− iζ2)|2

= ((1 + =ζ2)2 + (<ζ2)2)

≥ (1 + =ζ2)2,

where (1+=ζ2)2 becomes very small, whenever =ζ2 −→ −1−. Similar estimate from below
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one obtains in the case

|(1− < ((0, 0), (0,−i)), (ζ1, ζ2) > |2 = |(1 + iζ2)|2

= ((1−=ζ2)2 + (<ζ2)2)

≥ (1−=ζ2)2,

where (1−=ζ2)2 becomes very small, whenever =ζ2 −→ 1−. Recall now that

∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄) = −=ζ1d<ζ1d<ζ2d=ζ2 + =ζ2d<ζ1d<ζ2d=ζ1.

Using the fact that =ζ1 = −
√

1− (=ζ2)2, =ζ2 ∈ (−1, 1), we deduce that

∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄) =
√

1− (=ζ2)2d<ζ1d<ζ2d=ζ2 +
(=ζ2)2√

1− (=ζ2)2
d<ζ1d<ζ2d=ζ2.

Thus, if h ∈ L2
µ

Φ−1
(R2× iS−)∩L1

µ
Φ−1

(R2× iS−), then the above implies that h tends to ∞

(in the worst case) to the order strictly smaller than that of 1√
1−(=ζ2)2

while approaching

the points ((0, 0), (0,±i)) ∈ R2 × iS−. Now, in a small neighborhood of B((0, 0,−i), %0)

of (0, 0,−i) ∈ R2 × iR we introduce the spherical coordinates z = −i + i% cosφ, x1 =

% sinφ cos θ, x2 = % sinφ sin θ, where 0 ≤ % ≤ %0 << 1, π
2
< φ0 < φ < φ1 < π, 0 <

φ1 − φ0 << 1, θ ∈ [0, 2π]. Thus

|(1− < ((0, 0), (0, i)), (ζ1, ζ2) > |2 = |(1− iζ2)|2

= |1− i((−i+ i% cosφ) + i% sinφ sin θ)|2

= |% cosφ+ i% sinφ sin θ|2 ≥ %2 cos2 φ.

Thus, approaching =ζ2 = −1 non-tangentially, through a wedge in R2× iS− with the apex

at ((0, 0), (0,−i)) (or with the apex at ((0, 0), (0, i))), removed, described by

W δ
φ,%0

= {(x1, x2, y1) : y1 = % cosφ, x1 = % sinφ cos θ, x2 = % sinφ sin θ,

% ∈ (δ, %0), φ ∈ (φ0, φ1), θ ∈ [0, 2π)}
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in the three dimensional space we are led to the following estimate, valid for every δ > 0

φ1∫
φ0

%0∫
δ

2π∫
0

|h(%, φ, θ)

%2 cos2 φ
|%2 sinφd%dφdθ ≤ Aφi,φj

φ1∫
φ0

%0∫
0

2π∫
0

|h(%, φ, θ)|d%dφdθ

≤ Aφi,φj

∫
R2×iS−

|h(ζ, ζ̄)|µΦ−1
(ζ, ζ̄) <∞,

(5.0.8)

where the positive constant Aφi,φj = | sinφ1|
cos2 φ0

depends only on cosφi and sinφj, i, j = 0, 1.

The size of the radius %0 also does not depend on h and on φ0, φ1. The second inequality

follows by comparison of integrals over subsets of R2 (”horizontal slices” of the wedge

Wφ,%0) and of integrals over R2. Taking the limit δ −→ 0 in (5.0.8) one is led to the

estimate

|φh(0 + i0, 0± i)| ≤ (1 + Aφi,φj)

∫
R2×iS−

|h(ζ, ζ̄)|µΦ(ζ, ζ̄) <∞. (5.0.9)

Similarly one treats the case of the singular point ((0, 0), (0,−i)) ∈ T ∗
(S−H)int

. That is, φh is

bounded function on T(S−H)∗ and continuous everywhere in T(S−H)∗ ⊂ C2, except at points

(0 + i0, 0± i). This completes the proof of the lemma. ♦

We may assume that the open set E ⊂ C2 from the last lemma is an open ellipsoid

contained in the unit ball and containing the set T ∗
(S−H)int

\{((0,−iy1), (0,−iy2)) : y2
1 +y2

2 =

1} so that ∂E∩T ∗
(S−H)int

= {((0,−iy1), (0,−iy2)) : y2
1 +y2

2 = 1}. Then, φ̃h ∈ L2(E) ⊂ L1(E),

also it is holomorphic in E . The open set E is independent of h.

Now, for a function φ̃h like in Lemma 5.0.2, we define the function

φ̃h,χ : (ω, ω̄) ∈ R2 × iS− −→ C

φ̃h,χ(ω, ω̄) := φ̃h ◦ χ, (5.0.10)

that is, φ̃h,χ is composition of the mapping χ : R2 × iS− −→ T ∗
(S−H)int

sending (ω, ω̄) ∈

R2 × iS− to
∇Φ−1 (ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>
∈ T ∗

(S−H)int
and of the function φ̃h. It follows from the definition

of χ that it is continuous. Thus we have the following result
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Lemma 5.0.3 Let us assume that the function h ∈ L2
µ

Φ−1
(R2 × iS−) and satisfies the

property: for every (y1, y2) ∈ S− the restriction h|R2×i{(y1,y2)} ∈ S(R2). Let

A = {f ∈ H2(T(S−H)int) : every restriction f |R2×i{(y1,y2)} ∈ S(R2)}.

Then the functional Lh : A −→ R defined by

Lh(f) =

∫
R2×iS−

φ̃h,χ(ω)f(ω)Ω(Φ−1 (ω, ω̄)), (5.0.11)

for f ∈ A, is continuous and extends to continuous functional on H2(T(S−H)int).

Proof: The functional defined by (5.0.11) is continuous. Actually the conditions on

both functions f and h imply that both of them belong to space L2
µ

Φ−1
(R2× iS−), because

being in S(R2) for fixed (y1, y2) ∈ S− implies integrability on R2 and then integrability

(or square integrability ) on the finite measure arc S−. Furthermore, applying Holder

inequality in (5.0.11), because φ̃h,χ is bounded and because of the Lemma 4.0.1, we have

that

|
∫

R2×iS−

φ̃h,χ(ω)f(ω)Ω(Φ−1 (ω, ω̄))| = |
∫

R2×iS−

φ̃h,χ(ω)

< ∇Φ−1 (ω, ω̄), ω >2
f(ω)µΦ−1

(ω, ω̄)|

≤ ‖ φ̃h,χ(ω)

< ∇Φ−1 (ω, ω̄), ω >2
‖L2

µ
Φ−1

(R2×iS−)‖f‖L2
µ

Φ−1
(R2×iS−).

Now, every function g ∈ H2(T(S−H)int), which on the boundary of the tube is L2
µ

Φ−1
(R2×iS−),

is the ‖ · ‖H2(T
(S−
H

)int
)-limit of the sequence {gn}n ⊂ A. Thus, using (3.1.6), the functional

defined above is extended by continuity

Lh(g) =

∫
R2×iS−

φ̃h,χ(ω)g(ω)Ω(Φ−1 (ω, ω̄))

= lim
n−→∞

∫
R2×iS−

φ̃h,χ(ω)gn(ω)Ω(Φ−1 (ω, ω̄))

and gives us an element of the space
(
H2(T(S−H)int)

)′
. ♦

Taking into account that S ′(Rn) = S(Rn) and the fact that every element f ∈ A is as
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in the lemma above implies that on almost any slice R2 × i{(y1, y2)} an element g ∈

(H2(T(S−H)int))
′ = L2

µ
Φ−1

(R2 × iS−) gives a rise to the same continuous functional realized

by an element h(y1,y2) ∈ S ′(R2). This implies that {h(y1,y2), for almost all (y1, y2) ∈ S−}

is also in L2
µ

Φ−1
(R2 × iS−). Such a selection is possible by the use of Michael’s selection

principle as in the proof of the lemmas in Chapter 3. Thus, such a function gives rise to

an element

φ̃h, h ∈ L2
µ

Φ−1
(R2 × iS−) : every restriction h|R2×i{(y1,y2)} ∈ S(R2),

by completing h|R2×i{(y1,y2)} ≡ 0, when necessary.

If A(T ∗
(S−H)int

) denotes the space of functions holomorphic in a neighborhood of every point

belonging to T ∗
(S−H)int

\ {((0, 0), (0,±i))} and bounded on the compact T ∗
(S−H)int

then

VT ∗
(S−
H

)int
= {φ̃h ∈ A(T ∗

(S−H)int
), h ∈ L2

µ
Φ−1

(R2 × iS−) : every restriction h|R2×i{(y1,y2)} ∈ S(R2)}

is its subspace. Note also that the space A(T ∗
(S−H)int

) equipped with

‖φ‖A(T ∗
(S−
H

)int
) = sup

w∈T ∗
(S−
H

)int

|φ(w)|

becomes a normed space.

Lemma 5.0.4 Let G− be the space described by (3.2.13). The mapping ψ : G− −→ VT ∗
(S−
H

)int

defined by correspondence ψ(h) = φ̃h using (5.0.6) is monomorphism. Furthermore, if

{hn}n ⊂ G− is Cauchy, then so is the sequence {φ̃hn} ⊂ VT ∗
(S−
H

)int
.

Proof: The only non-obvious part of the first part of lemma is to show that the

correspondence is one-to-one. Let us assume that h1 6= h2 almost everywhere, but ψ(h1) =

ψ(h2). Thus the equality φ̃h1 = φ̃h2 implies the equality of holomorphic φh1 = φh2 on the

set B defined in the Lemma 5.0.2 above. But this set is a set of uniqueness for the

holomorphic functions involved. Thus φh1 = φh2 everywhere on the set T ∗
(S−H)int

. Thus the

function h1 − h2 ∈ L2
µ

Φ−1
(R2 × iS−) defines the zero functional in (5.0.11). The action on

the boundary R2× iS− implies that the restriction of h1− h2 on the slice R2× i{(y1, y2)}

is (h1 − h2)(y1,y2) = 0 for almost all (y1, y2) ∈ S−. Thus h1 = h2 a.e. This concludes the
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proof of the first part of the lemma.

In order to prove the second part we first observe that the Jensen inequality

 ∫
R2×iS−

|hn(ζ)− hm(ζ)|µΦ−1
(ζ, ζ̄)

2

≤
∫

R2×iS−

|hn(ζ)− hm(ζ)|2µΦ−1
(ζ, ζ̄)

holds. Actually, applying the classical Jensen inequality on the sets of finite measure

DR × iS−, where DR = {(x, y) ∈ R2 : x2 + y2 < R}, R > 0 and then taking the limit

R −→∞ one gets the Jensen inequality on R2 × iS− stated above.

Now for every compact subset K ⊂ T ∗
(S−H)int

⊂ E so that ((0, 0), (0,±i)) 6∈ K there exists

an open set V ⊂ E containing it, so that V ∩ ∂B(0, 1) = ∅. Then for every w ∈ V , in

particular for every w ∈ K, taking into account (5.0.6), one has

|φhn(w)− φhm(w)|2 ≤ Cw,V

 ∫
R2×iS−

|hn(ζ)− hm(ζ)|µΦ−1
(ζ, ζ̄)

2

≤ Cw,V

∫
R2×iS−

|hn(ζ)− hm(ζ)|2µΦ−1
(ζ, ζ̄),

where |(1− < w, ζ >)2| ≥ Cw,V > 0 for every w ∈ V and ζ ∈ R2 × iS− and for

some constant Cw,V , which depends on V and w only ( or, alternatively on K and w

only). Thus, one has that the sequence {φhn} is Cauchy over compact subsets (such as

K) under the topology of uniform convergence over compact set. K can be realized as

(B((0, 0), (0,−i)), %′0) ∪B((0, 0), (0, i)), %0))c∩T ∗
(S−H)int

. Using the estimates (5.0.9) one can

prove that {φhn(w)− φhm(w)} ⊂ A(T ∗
(S−H)int

) is Cauchy, in the sense that

|φhn(w)− φhm(w)|2 ≤ (2 + Aφi,φj)

∫
R2×iS−

|hn(ζ)− hm(ζ)|2µΦ−1
(ζ, ζ̄) < ε

for every w ∈ E , whenever n,m ≥ n0(ε) or which is the same

|φhn(w)− φhm(w)| ≤
√

(2 + Aφi,φj)||hn − hm||L2
µ

Φ−1
(R2×iS−) < ε (5.0.12)

The relation (5.0.12) shows that lim
n−→∞

φhn(w) = φ belongs to the space VT ∗
(S−
H

)int
. This

concludes the proof of the lemma. ♦
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Thus it is natural to state the following

Lemma 5.0.5 Let G̃− be L2
µ

Φ−1
(R2× iS−)-closure of the space G−. Then ψ has continuous

extension ψ̃ : G̃− −→ ṼT ∗
(S−
H

)int
, where ṼT ∗

(S−
H

)int
is the closure of VT ∗

(S−
H

)int
under (5.0.12).

Proof : Every element h ∈ G̃− is a limit of the sequence {hn}n ⊂ G−. Without loss

of generality, passing to a subsequence if necessary, we may assume that lim
n−→∞

hn(ζ, ζ̄) =

h(ζ, ζ̄) for almost all (ζ, ζ̄) ∈ R2 × iS−. Therefore the extension is defined by

ψ̃(h) = lim
n−→∞

ψ(hn) = lim
n−→∞

φhn .

But {φhn} ⊂ VT ∗
(S−
H

)int
is a Cauchy sequence, since the sequence {hn} ⊂ G− is. Thus

ψ̃(h) = φ, where φ(w) = lim
n−→∞

φhn(w), that is φ is of the form φh. The existence of the

limit above follows from (5.0.12).♦

Lemma 5.0.6 1) For every h ∈ A(T ∗
(S−H)int

) the function (h◦χ)(ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>2 ∈ L2
µ

Φ−1
(R2× iS−)

and whose norm is ‖ h◦χ(ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>2‖L2
µ

Φ−1
(R2×iS−).

2) For every ζ ∈ T(S−H)int fixed and w ∈ T ∗
(S−H)int

, consider the function ϑζ(w) = 1
(1−<w,ζ>)2 .

Then the function ϑζ ∈ A(T ∗
(S−H)int

) and
(ϑζ◦χ)(ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>2 =
ϑζ,χ(ω,ω̄)

<∇Φ−1 (ω,ω̄),ω>2 ∈ L2
µ

Φ−1
(R2 × iS−).

Proof: The proof of the first part follows directly from the fact that 1
<∇Φ−1 (ω,ω̄),ω>2 ∈

L2
µ

Φ−1
(R2 × iS−). In order to prove the second part, one observes first that for every

ζ ∈ T(S−H)int the function ϑζ(w) = 1
(1−<w,ζ>)2 is holomorphic in a neighborhood of the

compact T ∗
(S−H)int

. We may assume that this neighborhood contains the closure of the

ellipsoid E considered above. Furthermore, direct computation shows that

ϑζ,χ(ω, ω̄)

< ∇Φ−1 (ω, ω̄), ω >2
=

1

< ∇Φ−1 (ω, ω̄), ω − ζ >2

Thus, on a strictly convex part of the boundary ∂TS−H
consisting of R2× iS−, we have the

estimate (4.0.7). Using the reasoning that led to (4.0.9) we deduce the desired conclusion.

♦

Now we are ready to formulate the following theorem, interpreted as boundary value

analogue of the result from ([1]), describing the space (H2(T(S−H)int))
′.
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Theorem 5.0.3 Every linear continuous functional F ∈ (H2(T(S−H)int))
′ = G̃− is repre-

sented by

F (f) = Fh(f) =
1

(2πi)2

∫
R2×iS−

f(ω)h(ω)µΦ−1
(ω, ω̄)

=
1

(2πi)2

∫
R2×iS−

f(ζ)φ̃h(τ(Φ−1 ))Ω(Φ−1 (ζ, ζ̄))

=
1

(2πi)2

∫
R2×iS−

f(ζ)
φ̃h(τ(Φ−1 ))µΦ−1

(ζ, ζ̄)

< ∇Φ−1 (ζ, ζ̄), ζ >2
= Fφh(f), (5.0.13)

where h ∈ G̃− and φ̃h ∈ A(T ∗
(S−H)int

). This mapping, corresponding to every h ∈ (H2(T(S−H)int))
′ =

G̃− the element ψh◦χ
<∇Φ−1 (ω,ω̄),ω>2 ∈ WT ∗

(S−
H

)int
, where

WT ∗
(S−
H

)int
= { ψ ◦ χ

< ∇Φ−1 (ω, ω̄), ω >2
, where ψ ∈ A(T ∗

(S−H)int
)},

is subspace of the space (L2
µ

Φ−1
(R2 × iS−), ‖ · ‖L2

µ
Φ−1

(R2×iS−)), induces a norm preserving

monomorphism. Furthermore, every element φ ∈ A(T ∗
(S−H)int

) induces an element of the

space WT ∗
(S−
H

)int
defining an analytic functional.

Proof: The relation (5.0.4), as we have shown in the above lemmas, is valid whenever

h ∈ G− and the holomorphic extension of φh, defined by (5.0.5), belongs to the space

A(T ∗
(S−H)int

) as described by the corresponding lemma (5.0.2). The relation (5.0.4), as it

follows through by using all the steps in between, shows that h and
φ̃h,χ

<∇Φ−1 (ζ,ζ̄),ζ>2 define

the same analytic functional on H2(T(S−H)int). Furthermore, for every h ∈ G̃− there exists

an element φ̃h ∈ A(T ∗
(S−H)int

) satisfying

(2π)2F (f) =

∫
R2×iS−

f(ζ)h(ζ)µΦ−1
(ζ, ζ̄)

=

∫
R2×iS−

φ̃h(ω)

< ∇Φ−1 (ω, ω̄), ω >2
f(ω)µΦ−1

(ω, ω̄), (5.0.14)

where φ̃h(ω)

<∇Φ−1 (ω,ω̄),ω>2 ∈ L2
µ

Φ−1
(R2 × iS−). The above identity follows from continuity of the

correspondence L, without the intermediary steps to justify it. Now, if one interprets the

first equality in (5.0.14) using Riesz Representation Theorem, then ‖F‖ = ‖h‖L2
µ

Φ−1
(R2×iS−).
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On the other hand, the second equality in (5.0.14) and Riesz Representation Theorem im-

ply that ‖F‖ = ‖ φ̃h(ω)

<∇Φ−1 (ω,ω̄),ω>2‖L2
µ

Φ−1
(R2×iS−). Thus, the correspondence is norm preserving.

To conclude the proof of the theorem we just remark that for every element φ̃ ∈ A(T ∗
(S−H)int

),

the function φ̃(ω)

<∇Φ−1 (ω,ω̄),ω>2 ∈ L2
µ

Φ−1
(R2 × iS−) defines an element of the dual space. The

proof of the theorem is complete. ♦

Naturally, results analogous to the proven ones in the present section for the space

H2(TS−H
), can be obtained for the space H2(TS+

H
) after suitable (and direct) reformulation.
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Chapter 6

Separation of singularities and

integral representation theorem for

the space H2(TB1
)

Assume that a bounded domain Ω ⊆ Cn is realized as the intersection of bounded do-

mains Ω1 and Ω2. If f is a holomorphic function in Ω is it possible to define functions f1

holomorphic in Ω1 and f2 holomorphic in Ω2 such that f = f1 − f2? This is known as

a separation of singularities problem for holomorphic functions on domains Ω ⊂ Cn. For

n = 1 it was proved by Aronsajn ([11]).

However for n > 1 this is not valid in general. More precisely, recalling ([3]), consider

the bi-disk Dr,ρ = {(z1, z2) ∈ C2 : |z1| < r, |z2| < ρ} and set Ω = D1,1,Ω1 = D1,2 and

Ω2 = D2,1. Then Ω = Ω ∩ Ω2. The function

f(z1, z2) =
1

(1− z1)(1− z2)
=

∞∑
n,m=0

zm1 z
n
2

is holomorphic in Ω although it is not representable as a sum of holomorphic func-

tions f1 and f2 defined in the domains Ω1 and Ω2 respectively. Simply, observe that

Ω∗ = {(ζ1, ζ2) ∈ C2 : |ζ1| + |ζ2| ≤ 1} while Ω∗1 ∪ Ω∗2 = {(ζ1, ζ2) ∈ C2 : |ζ1| + 2|ζ2| ≤

1} ∪ {(ζ1, ζ2) ∈ C2 : 2|ζ1| + |ζ2| ≤ 1}. The compact Ω∗1 ∪ Ω∗2 is star with respect to

the origin. Thus, it has an envelope of holomorphy EΩ∗1∪Ω∗2
. Furthermore, Ω∗1 ∪ Ω∗2 ⊂
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(Ω1 ∩Ω2)∗ = {(ζ1, ζ2) ∈ C2 : |ζ1|+ |ζ2| ≤ 1} = Ā2 where A2 is the hyper-cone as in exam-

ple 2.2.2. Recalling that Ā2 is a compact of holomorphy one has that EΩ∗1∪Ω∗2
⊂ Ā2 and

thus EΩ∗1∪Ω∗2
= Ā2. Hence, Ω∗1 ∪ Ω∗2 ⊂ EΩ∗1∪Ω∗2

. Thus, f is not representable as a difference

of holomorphic functions f1 and f2 defined in the domains Ω1 and Ω2 respectively.

However, in the opposite direction one has the following result ([3]).

Theorem 6.0.4 Any holomorphic function f defined in a strictly linearly convex domain

Ω = Ω1 ∩ Ω2 can be represented as f = f1 + f2, where fi is holomorphic in Ωi, i =

1, 2 if and only if the compactum of holomorphy EΩ∗1∪Ω∗2
for the union Ω∗1 ∪ Ω∗2 satisfies

EΩ∗1∪Ω∗2
= (Ω1 ∩ Ω2)∗ .

For classical Hardy spaces similar results were formulated by L. Aizenberg and G.

Henkin ([3]). Their formulation is the following

Theorem 6.0.5 Let Ω = Ω1 ∩ · · · ∩Ωk where all of the domains are strictly pseudoconvex

with C3 boundary. Every f ∈ Hp(Ω) for 1 < p < ∞ is written as f = f1 + · · · + fk with

fj ∈ Hp(Ωj) for every j = 1, · · · , k.

Our purpose is to state and proof similar results for the space H2(TB1).

Consider the space H2(TB1), where the tube TB1 , is defined by (2.2.1). Furthermore,

we recall that TB1 = TS−H
∩ TS+

H
. The first result in the present section states that ev-

ery f ∈ H2(TB1) can be written in a unique way as f = f1 − f2, where f1 ∈ H2(TS−H
),

f2 ∈ H2(TS−H
). It essentially means that while f ∈ H2(TB1) cannot be expressed through

Cauchy-Fantappie integral representation formula, it can be represented as a sum of func-

tions which are represented in a such a manner. The first result of the present section is

following separation of singularities theorem (Aronsajn type Theorem).

Theorem 6.0.6 Let f ∈ H2(TB1). Then there exist functions f1 ∈ H2(TS−H
) and f2 ∈

H2(TS+
H

) that satisfy

f(z) = f1(z)− f2(z), z ∈ TB1 .
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Furthermore, for every z ∈ TB1 one has that

f(z) =
1

(2π)2

∫
R2×iS−

f1(ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ − z >)2

+
1

(2π)2

∫
R2×iS+

f2(ζ)
(
∂Φ+

1 (ζ, ζ̄) ∧ ∂∂̄Φ+
1 (ζ, ζ̄)

)
(< ∇ζΦ

+
1 (ζ, ζ̄), ζ − z >)2

(6.0.1)

and

f(z) =
1

(2π)2

∫
R2×iS1

f(ζ)
(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)
(∇ζΦ1(ζ, ζ̄), ζ − z >)2

. (6.0.2)

Proof: Recall that E(T ∗
S−
H

∪T ∗
S+
H

) = T ∗B1
because of the Lemma 2.5.2. We equip the space

A(T ∗B1
) consisting of functions which are holomorphic in a neighborhood of every point

of T ∗B1
\ {((0, 0), (0,±i))} and bounded on the compact T ∗B1

, with the supremum norm

‖φ‖A(T ∗B1
) = supw∈T ∗B1

|φ(w)|. Now, we consider the spaces

W̃T ∗
(S−
H

)int
= { ψh ◦ χ

< ∇Φ−1 (ω, ω̄), ω >2
, where ψh ∈ A(T ∗

(S−H)int
) for some h ∈ G̃−}

and

W̃T ∗
(S+
H

)int
= { ψh ◦ χ

< ∇Φ+
1 (ω, ω̄), ω >2

, where ψh ∈ A(T ∗
(S+
H)int

) for some h ∈ G̃+}

subspaces of (L2
µ

Φ−1
(R2× iS−), ‖ · ‖L2

µ
Φ−1

(R2×iS−)) and of (L2
µ

Φ+
1

(R2× iS+), ‖ · ‖L2
µ

Φ+
1

(R2×iS+))

correspondingly. Here we used the notation Φ±1 for the defining functions of T(S±H)int cor-

respondingly. Similarly, we consider the space, subspace of (L2
µΦ1

(R2×iS1), ‖ · ‖L2
µΦ1

(R2×iS1)),

for Φ1 being the defining function for the tube TB1 :

W̃T ∗B1
= { φh− ◦ χ

< ∇Φ1(ω, ω̄), ω >2
, ω ∈ R2 × iS−, when φh− ∈ A(T ∗

(S−H)int
),

φh+ ◦ χ′

< ∇Φ1(ω, ω̄), ω >2
, ω ∈ R2 × iS+, when φh+ ∈ A(T ∗

(S+
H)int

), for h ∈ G̃S1},

where χ′ is the mapping defined on the complementary half-tube to the domain of definition

of the mapping χ and h∓ denotes the restriction of h ∈ G̃S1 to the corresponding R2× iS∓.

Here ψh stands for a function defined by a relation similar to (5.0.6) with integration taking
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place over R2×iS1 and measure µΦ1 or by completion of limits like in a lemma before. Note

that all measures of integration involved are equivalent to the Lebesgue measure. One can

identify the space W̃T ∗B1
as a subspace of G̃S1 . We claim that the topology corresponding

to this norm coincides with the initial (projective ) topology induced by the topologies

of normed spaces W̃T ∗
(S−
H

)int
, W̃T ∗

(S+
H

)int
. To be more specific, by initial topology we mean

the weakest (coarsest) topology that make the maps maps p̃− : W̃T ∗B1
−→ W̃T ∗

(S−
H

)int
,

p̃+ : W̃T ∗B1
−→ W̃T ∗

(S+
H

)int
continuous. The open sets of the initial topology are unions of

finite intersections (p̃+)−1(V )∩(p̃−)−1(U), were U and V are open sets in the corresponding

normed spaces. Naturally, it is meant that (p̃±)−1(g) = ∅ whenever g ∈ W̃T ∗
(S±
H

)int
\ W̃T ∗B1

.

Thus, it follows from Havin’s lemma ([5]) every continuous functional F ∈ (W̃T ∗B1
)′ can be

written as

F (φ) = F1(φ) + F2(φ), (6.0.3)

where the functionals F1 ∈ (W̃T ∗
(S−
H

)int
)′ and F2 ∈ (W̃T ∗

(S−
H

)int
)′ are continuous with respect

to the initial topology induced by the corresponding spaces. Since W̃T ∗B1
⊂ G̃S1 one has

that (G̃S1)′ ⊂ (W̃T ∗B1
)′. Since the space H2(TB1) is reflexive (see Chapter 3) we have that

H2(TB1) ⊂ (W̃T ∗B1
)′ and thus the equation (6.0.7) becomes

F (φ) = F1(φ)
⊕

F2(φ), (6.0.4)

taking into account that (W̃T ∗
(S−
H

)int
)′ ⊂ H2(T(S−H)int) , (W̃T ∗

(S+
H

)int
)′ ⊂ H2(T(S+

H)int),

H2(T(S−H)int) ∩H2(T(S+
H)int) = ∅. Hence we have

g = g1 + g2, (6.0.5)

where the equality is understood as equality of functionals (elements of L2(∂TB1)) on

H2(TB1). It implies that the boundary values of the function

h(z) = g(z)− g1(z)− g2(z) =

∫
R2

fh(t)e
2πiz·tdt ∈ H2(TB1)

on the ∂TB1 = R2×iS1 defines a zero functional. Its slice-wise action (i.e =z0 = (=z0
1 ,=z0

2)
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fixed) on h(=z0
1 ,=z0

2 , x1, x2) and Parseval’s Theorem imply that

∫
R2

|h(=z0
1 ,=z0

2 , x1, x2)|2dx1dx2 =

∫
R2

|fh(t)e−y
0·t|2dt1dt2 = 0.

This implies that fh(t) = 0 a.e on R2 and hence g(z0) = g1(z0) + g2(z0) for almost all

z0 ∈ ∂TB1 . Thus every element g ∈ H2(TB1), is expressed ( almost everywhere at the

boundary) in a unique way as a difference on the boundary ∂TB1 of the boundary values

of two elements g1 and g2 from the spaces H2(T(S−H)int) and H2(T(S+
H)int) correspondingly.

Furthermore, for every z ∈ TB1 fixed, we have that the function φz(w1, w2) = 1
(1−z1w1−z2w2)2

is holomorphic in a neighborhood of the compact T ∗B1
, and thus in a neighborhood of the

compacts T ∗
S−H

, T ∗
S+
H

also. Then

(g1 + g2)(φz) = g1(z) + g2(z), ∀z ∈ TB1 , (6.0.6)

because of the Theorem 4.0.2 and the equality

(w1, w2) =
∇ζΦ1(ζ, ζ̄)

< ∇ζΦ1(ζ, ζ̄), ζ >
∈ T ∗B1

.

Thus, taking into account that (6.0.5) holds for almost all z0 ∈ ∂TB1 and the identity

(6.0.6) one has firstly the relation (6.0.1) and secondly that

g(φz) = (g1 + g2)(φz) = g1(z) + g2(z), ∀z ∈ TB1

Thus, a Cauchy-Fantappie type integral g(φz), as a function of z, equals g1(z)+g2(z), ∀z ∈

TB1 . Going to the boundary values on the left hand side of the last equality, we have that

for almost all z0 ∈ ∂TB1 the following identity

g1(z0) + g2(z0) =

∫
R2

f1(t)e2πiz0·tdt+

∫
R2

f2(t)e2πiz0·tdt

holds. Thus, for every z ∈ TB1

g(φz) = (g1 + g2)(φz) = g1(z) + g2(z) = g(z).
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This identity concludes the proof of the theorem . ♦

The last proposition of the present describes the partial converse of the previous theo-

rem. Its formulation and proof could be well located in Chapter 3, since the mathematical

content of its proof is closer in spirit to results presented there.

Proposition 6.0.2 Let f be holomorphic function in the tube TB1, defined also on ∂TB1

and such that f ∈ L2(∂TB1). Assume also that f satisfies the property that every restriction

f |R2×i{(y1,y2)} belongs to S(R2) , whenever (y1, y2) ∈ S1 and that the growth estimate at the

endpoints present in Corollary 4.1 holds. If (6.0.2) is valid, then f ∈ H2(TB1).

Proof: Let us assume that for every z ∈ TB1 the integral representation formula (6.0.2)

is valid. Then for the same z ∈ TB1 one defines the functions

f1(z) =
1

(2π)2

∫
R2×iS−

f(ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(∇ζΦ

−
1 (ζ, ζ̄), ζ − z >)2

f2(z) =
1

(2π)2

∫
R2×iS+

f(ζ)
(
∂Φ+

1 (ζ, ζ̄) ∧ ∂∂̄Φ+
1 (ζ, ζ̄)

)
(< ∇ζΦ

+
1 (ζ, ζ̄), ζ − z >)2

(6.0.7)

It is easy to see that application of Corollary 4.1 implies that f1 ∈ H2(T(S−H)int), f2 ∈

H2(T(S+
H)int). Thus f1(z) =

∫
R2

g1(t)e2πiz·tdt, z ∈ T(S−H)int , f2(z) =
∫
R2

g2(t)e2πiz·tdt, z ∈

T(S+
H)int . Therefore, one deduces that ‖f‖H2(TB1

) ≤ ‖f1‖H2(T
(S−
H

)int
) + ‖f2‖H2(T

(S+
H

)int
). This

concludes the proof of the proposition.♦
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

The main objective of this thesis was to describe the Hardy space H2(TBi), for i = 1, 2,

through a Cauchy-Fantappie type formula, where TBi , i = 1, 2, are the tube domains

(2.2.1). The main obstacle was the absence of Stoke’s theorem for unbounded domains.

In this direction, we realized each of tubes TBi , i = 1, 2, as an intersection of tube domains

with convex, unbounded base which contains a cone. Namely, we defined TB1 = T(S−H)int ∩

T(S+
H)int and TB2 = T(R−H)int ∩ T(R+

H)int where the bases S±H and R±H are defined in (2.4.1)

and (2.5.4), correspondingly. Following ([13], [14]) we derived a Cauchy-Fantappie formula

for the space H2(T(S−H)int). More specifically, we proved that a function is an element of

the space H2(T(S−H)int) if and only if it is representable by a Cauchy-Fantappie formula.

Similarly arguing results are valid for the space H2(T(S+
H)int). In the spirit of Martineau-

Aizenberg we obtained that every analytic functional F ∈
(
H2(T(S−H)int)

)′
is represented

by

F (f) = Fh(f) =
1

(2πi)2

∫
R2×iS−

f(ω)h(ω)µΦ−1
(ω, ω̄)

=
1

(2πi)2

∫
R2×iS−

f(ζ)φ̃h(τ(Φ−1 ))Ω(Φ−1 (ζ, ζ̄))

=
1

(2πi)2

∫
R2×iS−

f(ζ)
φ̃h(τ(Φ−1 ))µΦ−1

(ζ, ζ̄)

< ∇Φ−1 (ζ, ζ̄), ζ >2
= Fφh(f),
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where h ∈ G̃− and φ̃h ∈ A(T ∗
(S−H)int

). Recall at this point that A(T ∗
(S−H)int

) is the space of

holomorphic functions on a neighborhood of every point belonging to T ∗
(S−H)int

\{((0, 0), (0,±i))}

and bounded on the compact T ∗
(S−H)int

and

G− = {h ∈ L2
µ

Φ−1
(R2 × iS−) : every restriction h|R2×{(y1,y2)} ∈ S(R2)}

where G̃− is its L2
µ

Φ−1
(R2 × iS−)-closure. Concluding, we derived the separation of singu-

larities type theorem for the space H2(TB1) providing that for every f ∈ H2(TB1) there

exist functions f1 ∈ H2(T(S−H)int) and f2 ∈ H2(T(S−H)int) that satisfy f(z) = f1(z) − f2(z)

for z ∈ TB1 . Actually, for every z ∈ TB1 we have obtained that

f(z) =
1

(2π)2

∫
R2×iS−

f1(ζ)
(
∂Φ−1 (ζ, ζ̄) ∧ ∂∂̄Φ−1 (ζ, ζ̄)

)
(< ∇ζΦ

−
1 (ζ, ζ̄), ζ − z >)2

+
1

(2π)2

∫
R2×iS+

f2(ζ)
(
∂Φ+

1 (ζ, ζ̄) ∧ ∂∂̄Φ+
1 (ζ, ζ̄)

)
(< ∇ζΦ

+
1 (ζ, ζ̄), ζ − z >)2

and finally

f(z) =
1

(2π)2

∫
R2×iS1

f(ζ)
(
∂Φ1(ζ, ζ̄) ∧ ∂∂̄Φ1(ζ, ζ̄)

)
(∇ζΦ1(ζ, ζ̄), ζ − z >)2

.

As a direct consequence we have derived an integral representation formula valid for any

f ∈ H2(TB1). Actually, if f is a holomorphic function in the tube TB1 , defined also on ∂TB1

and such that f ∈ L2(∂TB1) satisfying the property that every restriction f |R2×i{(y1,y2)}

belongs to S(R2) , whenever (y1, y2) ∈ S1 and (6.0.2) is valid, then f ∈ H2(TB1).

7.2 Further Research

In this thesis we exclusively focus on the tube domains T(S−H)int and T(S+
H)int (2.4.2) the

intersection of which defines the tube TB1 (2.2.1). An obvious consideration consists in

the determination of a class of convex tube domains TD = R2 × iD, D ⊂ R2 that admits

a Cauchy-Fantappie integral representation formula. One considers that we may assume

once again that the base of the tube is convex, does not contain an entire straight line but

is intersection of tubes TDi , i = 1, 2, containing a cone. Furthermore, one has to ensure
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that whenever f ∈ H2(TDi) then ‖f‖H2(TDi )
is realized on the strictly convex part of ∂Di.

At this point, we note that the existence of boundary values everywhere on ∂T(S±H)int was

based to the fact that each point on ∂T(S±H)int was polygonal. Furthermore, an important

fact is the form of the complex tangent hyperplanes when the strictly convex part of the

boundary is not a part of a circle ( half circle in our case ) .

The problem of obtaining a Cauchy-Fantappie type integral formula for functions on

Hardy spaces H2(TD) over tube domains in higher dimensions is worth further investiga-

tion. Actually, if we assume that TD = Rn × iD, D ⊂ Rn then in order to ensure the

existence of a complex tangent hyperplane at every boundary point ζ ∈ ∂TD one requires

higher degree of smoothness of the boundary Rn × i∂D, D ⊂ Rn. If one decides to ex-

plore the duality for Hardy spaces Hp(TD) over tube domains for p 6= 2 then the loss

of Plancherel’s theorem will change an important part of the resulting method, thus the

generalization of results to Hp(TD) for p 6= 2 are far from obvious.
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