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ABSTRACT

In this thesis we examine the algebraic complete integrability of Lotka-Volterra equations

in three and four dimensions. We restrict our attention to Lotka-Volterra systems that are

defined by a skew symmetric matrix. The goal is a complete classification of such systems.

The classification is obtained using Painlevé analysis and more specifically by the use of

Kowalevski exponents. The imposition of certain integrality conditions on the Kowalevski

exponents gives necessary conditions for the algebraic integrability of the corresponding

systems.

Therefore the first step is to impose some conditions on the exponents, i.e., we require

that all the Kowalevski exponents be integers. This gives a finite number of values of

the parameters satisfying such conditions. This step requires some elementary number

theoretic techniques as is usual in this type of classification. In the three-dimensional case

the general expressions for the Kowalevski exponents are rational and therefore the number

theoretic analysis in not very complicated. On the other hand in the four-dimensional case

some exponents appear in radical form and therefore the analysis is more involved. The

number of cases in the four-dimensional classification is much higher, as expected.

The second step is to check that the leading behavior of the Laurent series solutions agrees

with the weights of the corresponding homogeneous vector field defining the dynamical

system. In our case the weights are all equal to one and therefore we must exclude the

possibility that some of the Laurent series have leading terms with poles of order greater

than one. This is a step usually omitted by some authors due to its complexity, but in

this thesis we find that it is necessary to check this in detail. To accomplish this step

we use old-fashioned Painlevé Analysis, i.e., Laurent series we assume a solution and try

to determine the free parameters. In performing Painlevé Analysis we use the fact that

the sum of the variables is always a first integral. Surprisingly a Painlevé analysis does

not reveal any additional solution besides the ones already found by using the Kowalevski

exponents. As we already mentioned, the four-dimensional case is more involved and in

fact we do not present all the details in this thesis. In this classification of the algebraic

completely integrable Lotka-Volterra systems in three and four dimensions we discover,

as expected, some well known integrable systems like the open and periodic Kac-van

Moerbeke systems and some systems connected with simple Lie algebras.

To make sure that our conditions are not only necessary but also sufficient we check

that the systems obtained are indeed algebraically completely integrable by checking the
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number of free parameters. We also have to point out that our classification is up to

isomorphism. In other words, if one system is obtained from another by an invertible

change of variables, we do not consider them as different. Using this identification we only

have six classes of solutions in three dimensions but over one hundred in four dimensions.

The Lotka-Volterra systems are important in population dynamics, Biology, Chemistry,

Economics and many other disciplines. They were proposed independently by Alfred

J. Lotka in 1925 and Vito Volterra in 1926. The original system was used to describe

population evolution in a hierarchical system of competing individuals. This system has

close connection with the Toda lattice. The systems were studied by a great number of

authors in their various aspects. i.e. complete integrability and chaotic behavior, Poisson

and bihamiltonian formulation, stability of solutions and Darboux polynomials.
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PERILHYH

S' aut n th diatrib , exet�zoume thn pl rh algebrik  oloklhrwsimìthta twn exis¸sewn

Lotka-Volterra stic treic kai stic tèsseric diast�seic. Epikentr¸noume thn prosoq  mac

sta sust mata Lotka-Volterra pou orÐzontai apì èna antisummetrikì pÐnaka. O stìqoc eÐnai

h pl rh taxinìmhsh aut¸n twn susthm�twn. H taxinìmhsh èqei epiteuqjeÐ qrhsimopoi¸ntac

�nalush Painlevé kai pio sugkekrimèna me th qr sh twn ekjet¸n Kowalevski. Epib�llontac

k�poiec sunj kec stouc ekjètec Kowalevski katal goume se anagkaÐec sunj kec gia thn

pl rh algebrik  oloklhrwsimìthta twn antÐstoiqwn susthm�twn.

Epomènwc, to pr¸to b ma eÐnai na epib�loume k�poiec sunj kec stouc ekjètec. H shmanti-

kìterh sunj kh eÐnai na apait soume na eÐnai ìloi oi ekjètec Kowalevski akèraioi arijmoÐ.

Autì mac dÐnei èna peperasmèno pl joc tim¸n twn paramètrwn pou ikanopoioÔn th sunjhk 

aut . Autì to b ma apaiteÐ k�poiec stoiqei¸deic teqnikèc thc JewrÐac Arijm¸n, ìpwc su-

nhjÐzetai se tètoiou tÔpou taxinom seic. Sthn perÐptwsh twn tri¸n diast�sewn, oi genikoi

tÔpoi twn ekjet¸n Kowalevski eÐnai klasmatikoÐ kai �ra h arijmojewrhtik  an�lush den

eÐnai polÔ polÔplokh. Apì thn �llh ìmwc, sthn perÐptwsh twn tess�rwn diast�sewn,

k�poioi ekjètec emfanÐzontai se rizik  morf  ki ètsi h antÐstoiqh an�lush eÐnai pio polÔ-

plokh. To pl joc twn peript¸sewn sthn taxinìmhsh twn tess�rwn diast�sewn eÐnai polÔ

megalÔteroc ap' ìso anamenìtan.

To deÔtero b ma eÐnai na elègxoume ìti h kÔria sumperifor� twn seir¸n Laurent twn

lÔsewn sumfwneÐ me touc bajmoÔc twn antÐstoiqwn omogen¸n dianusmatik¸n pedÐwn pou

orÐzoun to dunamikì sÔsthma. Sthn perÐptwsh mac, oi bajmoÐ eÐnai ìloi Ðsoi me to èna ki

�ra prèpei na apokleÐsoume thn pijanìthta ìti k�poiec apì tic seirèc Laurent èqoun kÔria

sumperifor� me thn t�xh twn pìlwn na eÐnai megalÔterh tou enìc. Autì to b ma sun jwc

paraleÐpetai apì k�poiouc suggrafeÐc, lìgw thc poluplokìthtac tou, all� s' aut n th

diatrib  jewroÔme ìti eÐnai aparaÐthto na to exet�soume leptomer¸c. Gia na to katafèrou-

me autì, qrhsimopoioÔme paradosiak  an�lush Painlevé, dhlad  na upojètoume th seir�

Laurent twn lÔsewn kai na prospajoÔme na prosdiorÐsoume tic eleÔjerec paramètrouc.

Sthn efarmog  thc an�lushc Painlevé, qrhsimopoioÔme to gegonìc ìti to �jroisma twn

metablht¸n eÐnai p�nta stajer� kin shc. Proc èkplhxh mac, h an�lush Painlevé de fane-

r¸nei kami� peraitèrw lÔsh ektìc apì autèc pou èqoun  dh brejeÐ qrhsimopoi¸ntac touc

ekjètec Kowalevski. 'Opwc kai sto pr¸to b ma, h perÐptwsh twn tess�rwn diast�sewn

eÐnai pio polÔplokh kai kat' akrÐbeian de ja parousi�soume ìlec tic leptomèreiec s' aut n

th diatrib . S' aut n thn taxinìmhsh twn pl rwc algebrik� oloklhr¸simwn susthm�twn
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Lotka - Volterra stic treic kai stic tèsseric diast�seic, anakalÔyame, ìpwc anamenìtan,

k�poia gnwst� oloklhr¸sima sust mata, ìpwc to anoiktì kai periodikì sÔsthma Kac-van

Moerbeke kai k�poia sust mata pou sundèontai me aplèc �lgebrec Lie.

Gia na epibebai¸soume ìti oi sunj kec den eÐnai mìno anagkaÐec, all� kai ikanèc, exet�zou-

me ìti ìntwc ta sust mata sta opoÐa katal xame eÐnai pl rwc algebrik� oloklhr¸sima,

elègqontac to pl joc twn eleÔjerwn paramètrwn. 'Eqoume epÐshc na shmei¸soume kai k�ti

�llo gia thn taxinìmhsh mac. An èna sÔsthma prokÔptei apì k�poio �llo mèsw miac antri-

strèyimhc allag c twn paramètrwn, tìte de jewroÔme aut� ta dÔo sust mata diaforetik�.

Qrhsimopoi¸ntac aut n thn tautopoÐhsh, èqoume mìno èxi peript¸seic tètoiwn susthm�twn

stic treic diast�seic kai p�nw apì ekatì stic tèsseric diast�seic.

Ta sust mata Lotka - Volterra eÐnai shmantik� sth BiologÐa, sth QhmeÐa, sta Oikonomik�

kai se pollèc �llec perioqèc. 'Eqoun protajeÐ anex�rthta apì ton Alfred J. Lotka to

1925 kai ton Vito Volterra to 1926. To arqikì sÔsthma qrhsimopoi jhke gia na perigr�yei

thn exèlixh tou plhjusmoÔ s' èna ierarqikì sÔsthma sunagwnistik¸n organism¸n. To

sÔsthma autì eÐnai sten� sundedemèno me to plègma Toda. Ta sust mata èqoun melethjeÐ

apì meg�lo �rijmì suggrafèwn apì di�forouc tomeÐc, ìpwc thn pl rh oloklhrwsimìthta

kai th qaotik  sumperifor�, th di-Qamiltonian  dom  kai th dom  Poisson, th stajerìthta

twn lÔsewn kai ta polu¸numa Darboux.
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1 Introduction

In this thesis we consider Lotka-Volterra systems. The most general form of the equations

is

ẋi = εixi +
n∑

j=1

aijxixj, i = 1, 2, . . . , n,

following [22] and [33].

More precisely we examine the algebraic complete integrability of the three- and four-

dimensional cases of Lotka-Volterra equations without linear terms (εi = 0); we also

assume that the matrix A = (aij) is skew-symmetric. The basic tools for the required

classification are the use of Painlevé analysis, the examination of the eigenvalues of the

Kowalevski matrix and other standard Lax pair and Poisson techniques.

The associated Poisson Bracket for the Lotka-Volterra systems is defined by

{xi, xj} = aijxixj, i, j = 1, 2, . . . , n.

One can write the system in the Hamiltonian form ẋi = {xi, H}, where H =
∑
xi. The

complete integrability in the three-dimensional case can be easily proved. In addition

to the Hamiltonian function H, there exists a Casimir function, F , since rank(π) = 2,

where π is the Poisson matrix, i.e. πi,j = {xi, xj}. The formula for this Casimir function

F is given afterwards. In the four-dimensional case this does not hold generally, but

it does under some conditions that are discussed. In this thesis we are interested in

the algebraically complete integrability of these systems. The definition of an algebraic

completely integrable system, due to Adler and van Moerbeke [4], is given later. We have

to point out that algebraic integrability does not imply integrable and vice versa.

The application of Painlevé analysis and especially of the ARS algorithm (see [1], [2], [10],

[11], [5]) is useful in calculating the Laurent solution of a system and check if there are

(n−1) free parameters. This fact is necessary in proving the algebraic integrability. Some

examples from [10] are in detail in order to see how the ARS algorithm can be applied.

Another important tool of this work is the Kowalevski exponents and their properties. The

definition of Kowalevski exponents and some relevant results are from the book [4] and

[17]. We compute the Kowalevski exponents of some Hamiltonian systems that are related

to simple Lie Algebras. In the review article of Goriely [23] one can find many properties of

these exponents and some relations of the exponents of the algebraic completely integrable

systems. These are necessary conditions for the algebraic integrability of the systems and
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so they have an important role for our work. Using the result of a particular Proposition

in [4] we see that some number-theoretic techniques are also needed.

We can see that there is a connection between the two basic tools of our work. Actually in

[4] we can see an application of the ARS algorithm in weight homogeneous systems that

contains the calculation of the Kowalevski exponents.

In order to prove the algebraic complete integrability of a system (n− 1) free parameters

are needed in the Laurent expansion of its solution. In the cases that Kowalevski exponents

can be defined we can find a remark in [4] that is very important to our work because since

this assures us that the free parameters appear in a finite number of steps of calculation.

So we find the Lotka-Volterra systems that satisfy some necessary conditions of algebraic

complete integrability and then using this result we can check which of these systems are

algebraic completely integrable by a finite number of steps of calculation and this is how

we end up classifying the algebraic completely integrable Lotka-Volterra equations in three

and four dimensions.

The three-dimensional case leads to few non isomorphic algebraic integrable systems.

The corresponding number in the four-dimensional case becomes bigger. All the known

integrable cases appear including the open and periodic Kac-van Moerbeke (KM) systems.

The special case of the KM-system has been used as a model for predator-prey evolution

systems in [44]. The Hamiltonian description of this system appeared in the book of

Fadeev and Takhtajan [19] and was investigated later by Damianou [14] who looked for

the relation between Volterra model and the Toda lattices. The integrability of the KM-

systems was established in [28] and [35]. The Volterra’s realization of this system can be

found in [7] and in a more general form in [6].

Finally we illustrate in this thesis the method of Kowalevski exponents on some integrable

systems related to simple Lie algebras. In this thesis we also consider the completely

integrable Hamiltonian systems that are defined by a set of the roots of some simple Lie

Algebras. Bogoyavlensky in [8] and in [9] constructed integrable Hamiltonian systems

connected with simple Lie algebras, generalizing the KM-system. In [15] Damianou and

Kouzaris had found a relation between Birkhoff integrable systems starting from Volterra

systems. A Birkhoff system is discussed in Subsection 4.2.1.

In the next few subsections we give a brief historical review of Kowalevski exponents and

Painleve analysis.
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1.1 History of Kowalevski exponents

The theory of linear differential equations in the complex plane was first developed by

Lazarus Fuchs in 1866. He succeeded in characterizing those differential equations the

solutions of which have no essential singurality in the extended complex plane.

Consider the system

ż = A(t)z, z ∈ Cn. (1)

Fuchs proved that in the case of a regular singular point located at t = t0, i.e.

A(t) =
H(t)

t− t0
,

where H(t) is analytic in t ∈ C, the fundamental solution of (1) can be expressed as a

convergent Laurent series if the solutions of the indicial equation

det(H(t)− λI) = 0

are distinct and do not differ by an integer. Later, Frobenius considered the case in which

the roots of the indicial equation differ by an integer.

The idea of using Laurent expansion solutions for investigating differential equations mo-

tivated two students of Weierstrass, Paul Hoyer and Sophie Kowalevski, to investigate this

area. Paul Hoyer [26] studied the system

d

dt


x1

x2

x3

 =


a1 a2 a3

b1 b2 b3

c1 c2 c3



x2x3

x1x3

x1x2

 . (2)

His thesis project was to find the required condition on the parameters so that the

Kowalevski exponents (in modern terminology) are integers.

S. Kowalevski [30], before her work on rigid bodies, also considered a similar system, a

3-dimensional Lotka-Volterra system of the form

d

dt


x1

x2

x3

 =


a1x1 a2x1 a3x1

b1x2 b2x2 b3x2

c1x3 c2x3 c3x3



x1

x2

x3

 . (3)

In the present thesis we consider Lotka-Volterra systems defined by a skew-symmetric

matrix in three and four dimensions.
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1.2 Kowalevski’s work

The work of Kowalevski in rigid bodies (Bordin prize 1898) is important for two reasons.

One is the discovery of a new case which helps constructing a general solution in terms

of theta functions of two variables. The other is that she proved that there are no other

case for which the solution is single-valued [30, 31].

The motion of a rigid body around a fixed point is ruled by the system,

Aω̇1 + (C −B)ω2ω3 + (x3k2 − x2k3) = 0, k̇1 = ω3k2 + ω2k3

Bω̇2 + (A− C)ω3ω1 + (x1k3 − x3k1) = 0, k̇2 = ω1k3 + ω3k1

Cω̇3 + (B − A)ω1ω2 + (x2k1 − x1k2) = 0, k̇3 = ω2k1 + ω1k2,

(4)

depending on six parameters that are the positive components A,B and C of the diagonal

momentum I and the real components x1, x2 and x3 of the vector
−−→
OM starting from a

fixed point O to the mass center M . We have three integrals

K1 = (I
−→
Ω) · −→Ω − 2

−−→
OM · −→k

= Aω2
1 +Bω2

2 + Cω2
3 − 2(x1k1 + x2k2 + x3k3),

K2 = (I
−→
Ω · −→k ) = Aω1k1 +Bω2k2 + Cω3k3,

K3 =
−→
k · −→k = k2

1 + k2
2 + k2

3.

(5)

A fourth first integral, independent of time, is needed as a sufficient condition to prove

integrability. As we mentioned above, Kowalevski’s work there were three known such

cases:

• The isotropic case with A = B = C, for which

K4 =
−−→
OM · −→Ω = x1ω1 + x2ω2 + x3ω3. (6)

• The Euler - Poinsot case with the fixed point O being the origin (0,0,0) and M = O

for which

K4 =
∣∣∣I−→Ω ∣∣∣2 = A2ω2

1 +B2ω2
2 + C2ω2

3. (7)

• The Lagrange - Poisson case with A = B and x1 = x2 = 0 for which

K4 = ω3. (8)

6
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For these three cases the general solution is meromorphic [25].

Let now

ωi = tn
∞∑

j=0

ωijt
j, ki = tm

∞∑
j=0

kijt
mi+j with

3∏
i=1

ωi0ki0 6= 0 (9)

and ωij, kij ∈ C for i = 1, 2, 3.

The case in which n = −1 and m = −2 was defined in [30] and the ωi0 and ki0 are solutions

of the simultaneous equations

Aω1,0 + (B − C)ω2,0ω3,0 + x2k3,0 − x3k2,0 = 0,

Bω2,0 + (C − A)ω3,0ω1,0 + x3k1,0 − x1k3,0 = 0,

Cω3,0 + (A−B)ω1,0ω2,0 + x1k2,0 − x2k1,0 = 0,

2k1,0 + ω3,0k2,0 − ω2,0k3,0 = 0,

2k2,0 + ω1,0k3,0 − ω3,0k1,0 = 0,

2k3,0 + ω2,0k1,0 − ω1,0k2,0 = 0

and the linear system for j ≥ 1 is

(j − 1)A (C −B)ω3,0 (C −B)ω2,0 0 x3 −x2

(A− C)ω3,0 (j − 1)B (A− C)ω1,0 −x3 0 x1

(B −A)ω2,0 (B −A)ω1,0 (j − 1)C x2 −x1 0

0 k3,0 −k2,0 j − 2 −ω3,0 ω2,0

−k3,0 0 k1,0 ω3,0 j − 2 −ω1,0

k2,0 −k1,0 0 −ω2,0 ω1,0 j − 2





ω1,j

ω2,j

ω3,j

k1,j

k2,j

k3,j


+ Qj = 0.

The determinant, det P, must have five positive zeroes.

If A,B and C are all different and M 6= O, there exists a unique solution to the simulta-

neous equation depending on an arbitrary parameter and the root of an equation of eighth

degree, given in [31],

det P = ABC(j + 1)(j − 2)(j − 4)(j2 − j − µ), (10)

where µ is an expression of A,B,C, x1, x2 and x3.

Kowalevski found the subcase

A = B, (x1, x2) 6= (0, 0), ω2
1,0 + ω2

2,0 = 0, (11)

for which the unique solution is

ω1,0 = − iC

2(x1 + ix2)λ
, ω2,0 = iω1,0, ω3,0 = 2i, i2 = −1,

k1,0 = − 2C

x1 + ix2

, k2,0 = ik1,0, k3,0 = 0,
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det P = ABC(j + 1)(j − 2)(j − 4)(j + 1− 2C/A)(j − 2 + 2C/A),

where λ is the solution of the equation

2C − A− 4λx3 = 0, λ 6= 0. (12)

There exist five positive integer indices if and only if A = 2C, x3 = 0 and the first integral

A = B = 2C, x3 = 0 =⇒ K4 =
∣∣∣C(ω1 + iω2)

2 + (x1 + ix2)(k1 + ik2)
∣∣∣2 . (13)

This gives a complete proof of reducibility to quadratures.

In the next section we present the work Painlevé which is one of the two basic tools for

the desired classification.
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2 The work of Painlevé

Paul Painlevé considered the problem of looking at all second-order differential equations

which possess the Painlevé property (simply called P-property). The following definition

of this property is for first-order differential equations.

2.1 The P-property

Definition 1

Consider the ODE (Ordinary Differential Equation)

dx

dt
= f(x, t), x ∈ C,

where f is rational in x and analytic in t. This ODE possesses the Painlevé property

(or the P−property) if its general solution has no movable singularities other than poles.

This property can be also defined for second-order differential equations for which the

function f in the equation
d2x

dt2
= f

(
dx

dt
, x, t

)
is rational in dx/dt, algebraic in x and analytic in t.

The following example points out how we can calculate the Laurent series of a differential

equation.

Example 1 We find the solution of

dx

dt
= x− x2 (14)

near a singularity t∗. Let τ = t− t∗. We firstly seek to determine the leading behavior of

the solution.

x(t) =
A

τ p
, A 6= 0.

The leading behavior of each term is

x(t) ∼ Aτ−p

ẋ(t) ∼ −Apτ−p−1

−x2(t) ∼ −A2τ−2p.

(15)

Equating the leading behavior of each side of (14) we have

−2p = −p− 1 ⇒ p = 1 .

9

Kyri
ac

os
 C

on
sta

nd
ini

de
s



Equating also the leading coefficients (15) of each side we have that

−Ap = −A2 =⇒ A(A− p) = 0 =⇒ A=p=1 , since A 6= 0.

Therefore we have that

⇒ x(t) =
1

τ
+ a0 + a1τ + a2τ

2 + . . .

ẋ = − 1

τ 2
+ a1 + 2a2τ + . . .

x2 =
1

τ 2
+

2a0

τ
+ a2

0 + 2a1 + 2a0a1τ + 2a2τ + . . .

Substituting into (14) and equating the coefficients of τ k of each side (k ∈ N ∪ {0}) we

have that

⇒ a0 =
1

2
, a1 =

1

12
, . . .

⇒ x(t) =
1

τ
+

1

2
+

τ

12
+ . . .

=⇒ x(t) =
1

τ
+

∞∑
n=0

anτ
n.

Painlevé was well aware of Kowalevski’s work, ([30, 31]) but he realized that in order to

test this property the existence of the Laurent series is just a necessary condition.

2.2 Classification of ODEs possessing the P-property

There has been a classification of first- and second-order ODEs that possess the P-property.

2.2.1 First-order ODEs

Paul Painlevé proved in 1900 the following theorem, in which we can see that only one

type of first-order ODEs possesses this P-property and all those that can be transformed

into it.

Theorem 1

Only one ODE possesses the P−property and this is the Riccati equation:

dx

dt
= a(t)x2 + b(t)x+ c(t). (16)

The transformation

x(t) = − ψ̇

a(t)ψ
, where ψ̇ =

dψ

dt
(17)

transforms the (16) into a linear second-order ODE.
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It is implied that the equations that can be transformed into a Riccati equation also

possess this property, like the equation

dx

dt
= x− xn,

that possesses the P-property, since it can be transformed into (16)

ψ̇ = (n− 1)ψ − (n− 1)ψ2,

using the Bernoulli transformation

x = ψ
1

n−1 .

Painlevé proved that there is a finite set of second-order ODEs that possess the P−property.

Some of them are displayed in the next theorem.

2.2.2 Second-order ODEs

In the case of second-order ODEs we can see that there are many more cases possessing

this P-property than in the case of first-order ODEs.

Theorem 2

There are exactly 50 ODEs of the form

d2x

dt2
= f

(
x,
dx

dt
, t

)
, (18)

where f is rational in dx/dt, algebraic in x and analytic in t, the solutions have no movable

singularities other than poles. The first 44 were already known. We display the first three

of the remaining six new ones.

(PI)
d2x

dt2
= 6x2 + t,

(PII)
d2x

dt2
= 2x3 + tx+ a,

(PIII)
d2x

dt2
=

1

x

(
dx

dt

)2

− 1

t

dx

dt
+

1

t

(
ax2 + b

)
+ cx2 +

d

x
.

2.3 ARS Algorithm

In 1981 Ablowitz, Ramani and Segur conjectured that all reductions of integrable Partial

Differential Equations (PDEs) possess the Painlevé property. They constructed a pro-

cedure (ARS algorithm [1], [2]) in the spirit of Kowalevski’s work in order to check the

Painlevé Property and then the integrability of the system. Another equivalent method

is that of Yoshida (1983). The ARS algorithm has three steps. In the first one we find
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the leading behavior of the solution. In the second one, the terms that have arbitrary

coefficients are determined. We always know that the term t−1−p always appears, where

p is the leading behavior of the solution found in the first step. In the last compatibility

step one has to prove that indeed the coefficients of the terms found in the second step

are arbitrary constants.

Example 2 We apply this algorithm to the simplest equation of Theorem 2

(PI)
d2x

dt2
= 6x2 + t. (19)

Step 1.

We firstly seek to determine the leading behavior of the solution

x(t) = cτ p + . . . , p < 0, where τ = t− t∗. (20)

From (19) we have that

p(p− 1)cτ p−2 = 6c2τ 2p ⇒ 2p = p− 2 ⇒ p = −2

⇒ 6c = 6c2 ⇒ c = 1,

because c 6= 0. Otherwise cτ p would not be the leading behavior of the solution. Now we

want to find another arbitrary constant α so that

x(t) =
1

τ 2
+ . . .+ ατ r−2 + . . . .

Step 2.

We determine the value of r such that the coefficient of the term τ r−2 is an arbitrary

constant.

ẍ ∼ (r − 2)(r − 3)ατ r−4

6x2 = 6
(

1
τ2 + . . .+ ατ r−2

)2
∼ 12 1

τ2ατ
r−2 = 12ατ r−4.

We equate the leading behaviors of the solution and we have

(r − 2)(r − 3)ατ r−4 = 12ατ r−4

[(r − 2)(r − 3)− 12]ατ r−4 = other terms of τ r−4.
(21)

We want α to be an arbitrary constant. This occurs if and only if

(r − 2)(r − 3)− 12 = 0 ⇒ r2 − 5r + 6− 12 = 0

⇒ r2 − 5r − 6 = 0 ⇒ (r + 1)(r − 6) = 0.

Since the term (r + 1) always appears, the value of r in order to have another arbitrary

constant is the number 6. Therefore the arbitrary constant is expected to be the coefficient

of τ 4.
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Step 3.

Now we find the coefficients of the powers of τ and we test the compatibility condition.

That means that we have to prove that the coefficient of τ 4 is an arbitrary constant as

found in the previous step of this algorithm.

x(t) =
1

τ 2
+
a0

τ
+ a1 + a2τ + a3τ

2 + a4τ
3 + a5τ

4 + . . .

ẍ(t) =
6

τ 4
+

2a0

τ 3
+ 2a3 + 6a4τ + 12τ 2 + . . .

6x2(t) = . . . =
6

τ 4
+

12a0

τ 3

12a1 + 6a2
0

τ 2
+

12a0a1 + 12a2

τ

+
(
6a2

1 + 12a3 + 12a0a2

)
+ (12a4 + 12a0a3 + 12a1a2) τ

+ (12a5 + 12a0a4 + 12a1a3 + a2) τ
2 + . . .

t = τ + t∗.

With respect to the ODE (19) equating the coefficients of all the powers of τ leads to

1

τ 4
: 6 = 6

1

τ 3
: 2a0 = 12a0 ⇒ a0 = 0

1

τ 2
: 0 = 12a1 + 6a2

0 ⇒ a1 = 0

1

τ
: 0 = 12a0a1 + 12a2 ⇒ a2 = 0

Constant terms : 2a3 = 6a2
1 + 12a3 + 12a0a2 − t∗ ⇒ a3 = t∗

10

τ : 6a4 = 12a4 + 12a0a3 + 12a1a2 + 1 ⇒ a4 = −1
6

τ 2 : 12a5 = 12a5 + 12a0a4 + 12a1a3 + 6a2
2 ⇒ 12a5 = 12a5

Therefore a5, the coefficient of τ 4, is the arbitrary constant as it was expected and so the

necessary conditions are satisfied.

This algorithm can be applied to systems of ODEs, as well.

It is now time to define the Kowalevski exponents and how these quantities are related to

the algebraic integrability or algebraic non integrability of a weight-homogeneous vector

fields. The exposition follows the book [4].
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3 Background

3.1 Basic definitions

The first thing to do is to define what is a (weight) homogeneous polynomial of weight k.

Definition 2

A polynomial f ∈ C [x1, x2, . . . , xn] is called a weight-homogeneous polynomial of

weight k with respect to a vector v = (v1, v2, . . . , vn) if

f(tv1x1, . . . , t
vnxn) = tkf(x1, x2, . . . , xn)

and the vector v is called weight vector. The weight k is denoted by $(f).

This definition is given in order to see a special kind of vector field in which we interested

for the classification below.

Definition 3

A polynomial vector field on Cn,

ẋ1 = f1(x1, x2, . . . , xn)
...

ẋn = fn(x1, x2, . . . , xn)

(22)

is called a weight-homogeneous vector field of weight k (with respect to a weight

vector v), if $(fi) = vi + k = $(xi) + k for i = 1, 2, . . . , n. A weight-homogeneous vector

field of weight 1 is called weight-homogeneous vector field. Furthermore, when all

the weights are equal to 1, this is simply called homogeneous vector field.

A vector field ẋi = f(x) on Cn, is called homogeneous if and only if $(fi) = 2.

Example 3 We consider the periodic 5-particle Kac-van Moerbeke lattice that is given by

the quadratic vector field

ẋi = xi(xi−1 − xi+1), i = 1, . . . , 5, (23)

with xi = xi+5. This system has the constants of motion,

F1 = x1 + x2 + x3 + x4 + x5,

F2 = x1x3 + x2x4 + x3x5 + x4x1 + x5x2,

F3 = x1x2x3x4x5.

(24)
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If one takes v = (1, 1, 1, 1, 1), (23) becomes a homogeneous vector field and the weights of

the constants of motion in (24) are $(F1)=1, $(F2) = 2 and $(F3) = 5.

Now it is time to see the definition which can be found in [24] of an algebraically completely

integrable system. Our objective is complete classification of the algebraically completely

integrable Lotka-Volterra systems in three and four dimensions.

Definition 4

A vector field,

ẋ1 = f1(x1, x2, . . . , xn)
...

ẋn = fn(x1, x2, . . . , xn),

(25)

is called an algebraically completely integrable system (a.c.i.) if its solution can be

expressed as Laurent series

xi(t) =
1

tvi

∞∑
k=0

x
(k)
i tk, i = 1, 2, . . . , n,

where n− 1 of the coefficients x
(k)
i are free parameters.

3.2 Two important propositions

The following proposition is important for two reasons. The first one is that it gives us

an induction formula to find the Laurent solution of a weight-homogeneous vector field

and the second one is that through it the Kowalevski exponents can be defined, which

constitututes the most important tool for this thesis.

Proposition 1

Suppose that V is a weight-homogeneous vector field on Cn given by

ẋi = fi(x1, . . . , xn), i = 1, 2, . . . , n,

and suppose that

xi(t) =
1

tvi

∞∑
k=0

x
(k)
i tk, i = 1, 2, . . . , n, (26)

is a weight-homogeneous Laurent solution for this vector field. Then the leading coeffi-

cients, x
(0)
i , satisfy the non linear algebraic equations

v1x
(0)
1 + f1(x

(0)
1 , . . . , x(0)

n ) = 0,
...

vnx
(0)
n + fn(x

(0)
1 , . . . , x(0)

n ) = 0,

(27)
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while the subsequent terms x
(k)
i satisfy(
kIdn −K

(
x(0)

))
x(k) = R(k), (28)

where x(k) =


x

(k)
1

...

x(k)
n

 and R(k) =


R

(k)
1

...

R(k)
n

. R(k) is a polynomial, which depends on the

variables x
(l)
1 , . . . , x

(l)
n with 0 ≤ l < k only. Also the elements of the n × n matrix K are

given by

Ki,j :=
∂fi

∂xj

+ viδij, (29)

where δ is the Kronecker delta.

Remark 1 The pole order vi of xi in (26) is the ith component of the weight vector that

makes the vector field a weight homogeneous one. The number, vi, is not necessarily the

pole order of xi because some of the x
(0)
i that can be calculated solving (27) may be equal

to zero.

Definition 5

The set of equations (27) is called the indicial equation of V and its solution set is called

the indicial locus and it is denoted by I. The n× n matrix K, defined by (29), is called

the Kowalevski matrix and its eigenvalues are called Kowalevski exponents.

Example 4 In the case of the Example 1 the indicial equation is

x
(0)
1 (1 + x

(0)
5 − x0

2) = 0

x
(0)
2 (1 + x

(0)
1 − x0

3) = 0

x
(0)
3 (1 + x

(0)
2 − x0

4) = 0

x
(0)
4 (1 + x

(0)
3 − x0

5) = 0

x
(0)
5 (1 + x

(0)
4 − x0

1) = 0

(30)

The non trivial elements of the indicial locus are m1, m
′
1, m2, m

′
2, m3, m

′
3, m4, m

′
4, m5

and m′
5. The labels, 1,2,3,4 and 5, indicate the positions of zeroes. The two of them are

m1 = (0, 0,−1, 1, 0) and m′
1 = (0,−2, 1,−1, 2)
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to which correspond the following Kowalevski matrices:

K(m1) =



1 0 0 0 0

0 2 0 0 0

0 −1 0 1 0

0 0 1 0 −1

0 0 0 0 2


,K(m′

1) =



5 0 0 0 0

−2 0 2 0 0

0 1 0 −1 0

0 0 −1 0 1

−2 0 0 2 0


(31)

The Kowalevski exponents of K(m1) and K(m′
1) are −1, 1, 1, 2, 2 and −2,−1, 1, 2, 5 re-

spectively. It has been proved that this system is indeed integrable and we observe that

the positive Kowalevski exponents of K(m′
1), 1, 2 and 5, are the degrees of the invariant

polynomials.

A necessary condition for algebraic integrability is that n − 1 eigenvalues of K should

be integers. It turns out that the last eigenvalue is always −1. The eigenvector that

corresponds to −1 is also known. This is given from the following Proposition, that can

be found in [1, 2, 4].

Proposition 2

For any m which belongs to the indicial locus I, except for the trivial element, the

Kowalevski matrix K(m) of a weight homogeneous vector field always has −1 as an eigen-

value. The corresponding eigenspace contains (v1m1, . . . , vnmn)T as an eigenvector.

4 Properties of Kowalevski exponents

In this section we see some relations about the Kowalevski exponents and the weights

of the first integrals of a system and therefore these results also give us some necessary

conditions in order to have algebraic completely integrable systems. The following results

can be found in [21, 40, 46] their summary in the article [23].

Theorem 3

If the weight-homogeneous system ẋ = f(x) has k independent algebraic first integrals

I1, . . . , Ik of weighted degrees d1, . . . , dk and Kowalevski exponents ρ2, . . . , ρn, then there

exists a k × (n− 1) matrix N with integer entries, such that
n∑

j=2

Nij.ρj = di, i = 1, . . . , k. (32)

From this theorem we have the two following corollaries:
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Corollary 1

If the Kowalevski exponents are Z-independent, then there is no rational first integrals.

Corollary 2

If the Kowalevski exponents are N-independent, then there is no polynomial first integrals.

The next theorem which can be found in [4] gives us a necessary condition for a system

to be integrable, that can be examined very easily without any extra calculations except

for the computation of the Kowalevski exponents.

Theorem 4

A necessary condition for a system of the form (22) to be algebraically integrable is that

all the Kowalevski exponents be rational numbers, i.e., if at least one Kowalevski exponent

is irrational or complex, then (22) cannot have a complete set of algebraic integrals.

We illustrate the Theorem 4 with an example.

Example 5 We determine the values of ε ∈ N∪{0} so that the Hamiltonian vector field

derived by the Hamiltonian

Hε =
1

2

(
p2

1 + p2
2

)
+

1

4

(
q4
1 + q4

2

)
+
ε

2
q2
1q

2
2 (33)

is integrable.

Hamilton’s equations are

q̇1 = p1

q̇2 = p2

ṗ1 = −q3
1 − εq1q

2
2

ṗ2 = −q3
2 − εq2

1q2.

(34)

Assuming that

q1 = c1τ
g1 , q2 = c2τ

g2 , p1 = c3τ
g3 , p2 = c4τ

g4

and substituting into (34) give

g1c1τ
g1−1 = c3τ

g3 ⇒ g1 − 1 = g3, g1c1 = c3, (35)

g2c2τ
g2−1 = c4τ

g4 ⇒ g2 − 1 = g4, g2c2 = c4, (36)

g3c3τ
g3−1 = −c31τ 3g1 − εc1c

2
2τ

g1+2g2 , (37)

g4c4τ
g4−1 = −c32τ 3g2 − εc21c2τ

2g1+g2 . (38)
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From (35) and (37) we have

(g1 − 1) g1c1τ
g1−2 = −c31τ 3g1 − εc1c

2
2τ

g1+2g2 (39)

and from (36) and (38)

(g2 − 1) g2c2τ
g2−2 = −c32τ 3g2 − εc21c2τ

2g1+g2 . (40)

From (39) we have that

g1 − 2 = 3g1 ⇒ g1 = −1 ⇒ g3 = −2 , c3 = −c1
or

g1 − 2 = g1 + 2g2 ⇒ g2 = −1 ⇒ g4 = −2 , c4 = −c2

(41)

and

2c1 = −c31 − εc1c
2
2 ⇒ 2 = −c21 − εc22 (c1 6= 0) . (42)

From (40) we get

2c2 = −c32 − εc21c2 ⇒ 2 = −c22 − εc21 (c2 6= 0) (43)

and then (
c22 − c21

)
− ε

(
c22 − c21

)
= 0 ⇒

(
c22 − c21

)
(1− ε) = 0 (44)

=⇒
(i) c21 = c22 ⇒ c21 = c22 = − 2

1+ε

(ii) ε = 1 ⇒ c21 + c22 = −2
(45)

Therefore

q1 = c1
τ

+ . . .+ aτ r−1, p1 = 2c1
τ3 + . . .+ a(r − 1)(r − 2)τ r−3

q2 = c2
τ

+ . . .+ bτ r−1, p2 = 2c2
τ3 + . . .+ b(r − 1)(r − 2)τ r−3.

(46)

Substituting them into (34) and equating the coefficients of τ r−3 lead to

a(r − 1)(r − 2) = −3c21a− εac22 − 2εc1c2b

b(r − 1)(r − 2) = −3c22b− εbc21 − 2εc1c2a
(47)

⇒M(r)

 a

b

 = other terms of τ r−3, (48)

where

M(r) =

 (r − 1)(r − 2) + 3c21 + εc22 2εc1c2

2εc1c2 (r − 1)(r − 2) + 3c22 + εc21

 . (49)

In the case of (45i) we have that

M(r) =

 (r − 1)(r − 2) + c21(3 + ε) 2εc1c2

2εc1c2 (r − 1)(r − 2) + c21(3 + ε)

 . (50)
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Non trivial solutions of (48) are desired and so

detM(r) = 0

⇒
[
(r − 1)(r − 2) + c21(3 + ε)

]2
− 4ε2c21c

2
2 = 0

⇒
[
(r − 1)(r − 2) + c21(3 + ε)

]2
− 4ε2c41 = 0.

Let γ = (r − 1)(r − 2),

⇒
(
γ + c21(3 + ε)− 2εc21

) (
γ + c21(3 + ε) + 2εc21

)
= 0

⇒
(
γ + c21(3− ε)

) (
γ + c21(1 + ε)

)
= 0

⇒
(
γ + c21(3− ε)

)
(γ − 6) = 0, since c21 = − 2

1 + ε(
r2 − 3r + 2− 6

) [
r2 − 3r + 2 + c21(3− ε)

]
= 0

(r + 1)(r − 4)
[
r2 − 3r + 2 + c21(3− ε)

]
= 0

In order to have rational solutions the discriminant of the third factor has to be a square

of an integer number and so

9− 4

(
2− 2(3− ε)

1 + ε

)
= 1 +

8(3− ε)

1 + ε
= k2

⇒ . . .⇒ ε =
32

k2 + 7
− 1. (51)

Since ε ∈ N∪{0}

k2 + 7 ∈ {1, 2, 4, 8, 16, 32}

k2 ∈ {−6,−5,−3, 1, 9, 25}

k ∈ {1, 3, 5}

⇒ ε ∈ {0, 1, 3} from(51).

So ε ∈ {0, 1, 3} is a necessary condition for the integrability of the Hamiltonian system

derived by the Hamiltonian (33). It is very easy to see that for ε = 0 this system is

completely integrable because the dynamics

V =
1

4
q4
1 +

1

4
q4
2

is separable. The cases in which ε = 1, 3 are also known as completely integrable systems.

4.1 Kowalevski exponents and Hamiltonian systems

As we saw in the previous example, the Kowalevski exponents can be applied to Hamilto-

nian systems. This was expected since they are derived by a vector field, usually a weight

homogeneous one. However, in the case of Hamiltonian vector fields there are stronger
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results that connect the Kowalevski exponents and complete integrability. In this sub-

section we present these results for the Kowalevski exponents of a Hamiltonian system in

(q, p) coordinates with a natural potential.

Proposition 3

Let ẋ = f(x) be a Hamiltonian system and H its Hamiltonian. If ρ is a Kowalevski

exponent, then so is h− 1− ρ, where h is the weighted degree of the Hamiltonian H.

This result was firstly pointed out by Yoshida and given in its final form by Lochak [32].

As shown in [47] and [48] the Kowalevski exponents of the Hamiltonian system with

diagonal kinetic energy and homogeneous potential,

H =
1

2

(
p2

1 + . . .+ p2
n

)
+ V (q1, . . . , qn),

where V (x) is homogeneous of degree k, but k 6= 0,±2, always come by pairs such that

ρi + ρi+n =
k + 2

k − 2
.

We can now define the difference between two exponents of each pair ∆ρi = ρi − ρi+n.

This leads us directly to the following theorem.

Theorem 5

If the n numbers ∆ρi are Q-independent, then the Hamiltonian system has no additional

first integral beside the Hamiltonian itself.

4.2 Special cases of Hamiltonian systems

We now investigate the integrability of the Hamiltonian system with exponential dynamics.

We follow the notation of [18]. The Hamiltonian is given by

H =
1

2
〈p,Ap〉+

N∑
i=1

cie
〈νi,q〉, (52)

where p, q, νi ∈ Rn, 〈·, ·〉 is the scalar product in Rn and A is a symmetric n× n matrix.

The set of vector {ν1, ν2, . . . νN} is called the spectrum of the system. Hamilton’s equations

are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(53)

and, if we change the variables to

ai = −cie〈νi,q〉, bi = 〈νi, p〉, (54)
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then the Hamiltonian equations (53) are transformed into

ȧk = akbk, ḃk =
N∑

i=1

Mkiai, 1 ≤ k ≤ N, (55)

where Mki = 〈νk, νi〉.

We can see that the vector field (55) is a weight-homogeneous vector field respect to the

weight vector v = (v1, v2, . . . , v2N), where

vi = 2 and vi+N = 1, for 1 ≤ i ≤ N.

Using Proposition 1 we firstly need to find the elements of the indicial locus, that is the

set of the solutions of the equations:

2a
(0)
k + a

(0)
k b

(0)
k = 0, b

(0)
k +

N∑
i=1

Mika
(0)
i = 0 for 1 ≤ k ≤ N. (56)

We find all the elements of the indicial locus by setting all the variables a
(0)
k equal to zero

except a
(0)
i . So we have that

a
(0)
k = 0, a

(0)
i =

2

Mii

, b
(0)
k = −Mki

Mii

, b
(0)
i = −2 for k 6= i. (57)

Similarly we can set some of the variables of a(0) =
(
a

(0)
1 , a

(0)
2 , . . . a

(0)
N

)T
equal to zero. If

we set the first m variables equal to zero, we have the following results:

a
(0)
j = 0,


a

(0)
m+1

...

a
(0)
N

 = (M (m))−1


2
...

2

 ,

b
(0)
j = −∑N

k=m+1Mjka
(0)
k , b

(0)
m+1 = . . . = b

(0)
N = −2,

for 1 ≤ j ≤ m,

(58)

where M (m) is the diagonal submatrix of M , with the first m rows and the last m columns

deleted. For m = N − 1 the solution of (58) is also the solution of (57).

All these calculations is useful in finding the Kowalevski exponents in order to have a clue

whether or not the Hamiltonian system derived from the Hamiltonian (52) is integrable.

So the formulas (58) for finding the indicial locus allow us to write the Kowalevski matrix

in a block form:

K =

 U C

M E

 ,where

U = diag(2 + b
(0)
1 , . . . , 2 + b

(0)
N ),

C = diag(a
(0)
1 , . . . , a

(0)
N ),

E = diag(1, . . . , 1).

(59)
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The most common case of this system is when A = Idn, that is the identity n×n matrix.

These systems become more interesting when the spectrum is the set of the simple roots

for a simple Lie Algebra G, from which it follows that N = rankG.

4.2.1 Kozlov-Treshchev Birkhoff system

We consider the Hamiltonian system derived by the Hamiltonian

H =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 + e−q1−q2 + eqn + e2qn , n ≥ 4, (60)

in its simplest form, for n = 4. Due to (52) we have that

A = Id4 ci = 1, for i = 1, 2, . . . , 6

ν1 = (1,−1, 0, 0) ν2 = (0, 1,−1, 0)

ν3 = (0, 0, 1,−1) ν4 = (−1,−1, 0, 0)

ν5 = (0, 0, 0, 1) ν6 = (0, 0, 0, 2).

Solving the corresponding equations (27) we can find all the elements of the indicial locus

of this system. In the Table 1 we can see that for the non trivial element of the indicial

locus the number −1 is always a Kowalevski exponent and this can be considered as an

application of the Theorem 2. In addition the results (Theorems 3, 4 and 5, Proposition

3 and Corollaries 1 and 2) we have seen in the Section 4 are also true for this system.

So Table 1 is a strong evidence that this system is integrable. In fact it has been recently

proved that it is completely integrable. The proof can be found in [16].

Table 1: Kowalevski exponents of Kozlov-Treshchev Birkhoff system

Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,0,0,0,0) 1, 1, 1, 1, 1,1,2,2,2,2,2,2 (0,0,0,0,0, 12 ) -1, 1, 1, 1, 1,1,2,2,2,2,2,3

(0,0,0,0,2,0) -2,-1, 1, 1, 1,1,1,2,2,2,2,4 (0,0,0,1,0,0) -1, 1, 1, 1, 1,1,2,2,2,2,2,3

(0,0,1,0,0,0) -1, 1, 1, 1, 1,1,2,2,2,3,3,4 (0,1,0,0,0,0) -1, 1, 1, 1, 1,1,2,2,2,3,3,3

(1,0,0,0,0,0) -1, 1, 1, 1, 1,1,2,2,2,2,2,3 (0,0,0,1,0, 12 ) -1,-1, 1, 1, 1,1,1,2,2,2,3,3

(0,0,3,0,0,2) -3,-1, 1, 1, 1,1,1,2,2,2,4,5 (0,1,0,0,0, 12 ) -1,-1, 1, 1, 1,1,1,2,2,3,3,4

(1,0,0,0,0, 12 ) -1,-1, 1, 1, 1,1,1,2,2,2,3,3 (0,0,0,1,2,0) -2,-1,-1, 1, 1,1,1,2,2,2,3,4

(0,2,0,2,0, 12 ) -2,-1,-1, 1, 1,1,1,2,2,3,4,5 (1,0,0,1,0, 12 ) -1,-1,-1, 1, 1,1,1,2,2,2,3,4

(0,5,8,0,0, 92 ) -5,-3,-1, 1, 1,1,1,2,4,6,7,7 (2,2,0,0,0, 12 ) -2,-1,-1, 1, 1,1,1,2,2,3,4,5

(0,0,3,1,0,2) -3,-1,-1, 1, 1,1,1,2,2,2,4,6 (1,0,3,0,0,2) -3,-1,-1, 1, 1,1,1,2,2,2,4,6

(0,0,4,1,6,0) -3,-2,-1, 1, 1,1,1,2,2,2,4,7 (1,0,0,1,2,0) -1,-1,-1, 1, 1,1,2,2,2,4,4,6

(0,6,10,0,12,0) -5,-3,-2,-1, 1,1,1,2,4,6,8,8 (1,0,4,0,6,0) -3,-2,-1,-1, 1,1,1,2,2,2,4,7
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Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,4,0,6,0) -3,-2,-1, 1, 1,1,1,2,2,2,4,6 (0,1,0,0,2,0) -1,-1, 1, 1, 1,1,1,2,2,3,3,5

(1,0,0,0,2,0) -2,-1,-1, 1, 1,1,1,2,2,2,3,4 (0,0,1,1,0,0) -1,-1, 1, 1, 1,1,2,2,2,3,4,4

(1,0,0,1,0,0) -1,-1, 1, 1, 1,1,2,2,2,2,2,4 (0,2,2,0,0,0) -2,-1, 1, 1, 1,1,2,3,4,4,4,6

(1,0,1,0,0,0) -1,-1, 1, 1, 1,1,2,2,2,3,4,4 (2,2,0,0,0,0) -2,-1, 1, 1, 1,1,2,2,2,3,4,4

(2,2,0,0,2,0) -2,-2,-1,-1, 1,1,1,2,2,3,4,6 (1,0,1,1,0,0) -1,-1,-1, 1, 1,1,2,2,2,3,4,5

(3,4,3,0,0,0) -3,-2,-1, 1, 1,1,2,3,4,5,6,8 (1,0,3,1,0,2) -3,-1,-1,-1, 1,1,1,2,2,2,4,7

(3,4,0,3,0, 1
2
) -3,-2,-1,-1, 1,1,1,2,2,3,4,7 (7,12,15,0,0,8) -7,-5,-3,-1, 1,1,1,2,4,6,8,14

(1,0,4,1,6,0) -3,-2,-1,-1,-1,1,1,2,2,2,4,8 (8,14,18,0,20,0) -7,-5,-3,-2,-1,1,1,2,4,6,8,16

The following Toda lattices of types of the Lie Algebras A3, B3, C3, D4 and G2. The root

systems of these Lie Algebras can be in the books [27] and [43]. The following systems

are found in [36], [37], [38] and [42]. Some further investigation on Hamiltonian systems

can be seen in [13] and [29]. In [45] there are some properties of Poisson Brackets.

4.2.2 Toda lattice of type A3

We consider the Hamiltonian system derived by the Hamiltonian

H =
1

2

4∑
i=1

p2
i +

3∑
i=1

eqi−qi+1 . (61)

Due to (52) we have that

A = Id4 ci = 1, for i = 1, 2, 3

ν1 = (1,−1, 0, 0) ν2 = (0, 1,−1, 0)

ν3 = (0, 0, 1,−1).

The indicial locus of this system and the corresponding Kowalevski exponents of this

system are shown in the Table 2

Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,0) 1,1,1,2,2,2 (0,0,1) -1,1,1,2,2,3

(0,1,0) -1,1,1,2,3,3 (1,0,0) -1,1,1,2,2,3

(0,2,2) -2,-1,1,2,3,4 (1,0,1) -1,-1,1,2,2,4

(2,2,0) -2,-1,1,2,3,4 (3,4,3) -3,-2,-1,2,3,4

Table 2: Kowalevski exponents of Toda lattice of type A3

From Table 2, as in the previous subsection, there is strong evidence that this system is

integrable.
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4.2.3 Toda lattice of type B3

We consider the Hamiltonian system derived by the Hamiltonian

H =
1

2

3∑
i=1

p2
i +

2∑
i=1

eqi−qi+1 + eq3 . (62)

Due to (52), we have that

A = Id3 ci = 1, for i = 1, 2, 3

ν1 = (1,−1, 0) ν2 = (0, 1,−1)

ν3 = (0, 0, 1).

The indicial locus of this system and the corresponding Kowalevski exponents of this

system are shown in the table below.

Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,0) 1,1,1,2,2,2 (0,0,2) -1,1,1,2,2,4

(0,1,0) -1,1,1,2,3,3 (1,0,0) -1,1,1,2,2,3

(0,4,6) -3,-1,1,2,4,6 (1,0,2) -1,-1,1,2,2,5

(2,2,0) -2,-1,1,2,3,4 (6,10,12) -5,-3,-1,2,4,6

Table 3: Kowalevski exponents of Toda lattice of type B3

From this table, as in the previous cases, there is strong evidence that this system is

integrable.

4.2.4 Toda lattice of type C3

We consider the Hamiltonian system derived by the Hamiltonian

H =
1

2

3∑
i=1

p2
i +

2∑
i=1

eqi−qi+1 + e2q3 . (63)

Again due to (52) we have that

A = Id3 ci = 1, for i = 1, 2, 3

ν1 = (1,−1, 0) ν2 = (0, 1,−1)

ν3 = (0, 0, 2).

The indicial locus of this system and the corresponding Kowalevski exponents of this

system are shown in the Table 4.
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Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,0) 1,1,1,2,2,2 (0,0,12 ) -1,1,1,2,2,3

(0,1,0) -1,1,1,2,3,4 (1,0,0) -1,1,1,2,2,3

(0,3,2) -3,-1,1,2,4,5 (1,0,12 ) -1,-1,1,2,2,4

(2,2,0) -2,-1,1,2,3,6 (5,8,92 ) -5,-3,-1,2,4,6

Table 4: Kowalevski exponents of Toda lattice of type C3

Again there is a strong evidence that this system is integrable.

4.2.5 Toda lattice of type D4

We consider the Hamiltonian system derived by the Hamiltonian

H =
1

2

4∑
i=1

p2
i +

3∑
i=1

eqi−qi+1 + eq3+q4 . (64)

Due to (52) we have that

A = Id4 ci = 1, for i = 1, 2, 3, 4

ν1 = (1,−1, 0, 0) ν2 = (0, 1,−1, 0)

ν3 = (0, 0, 1,−1) ν4 = (0, 0, 1, 1).

The indicial locus of this system and the corresponding Kowalevski exponents of this

system are shown in the Table 5.

Vector a(0) Kowalevski Vector a(0) Kowalevski

Exponents Exponents

(0,0,0,0) 1,1,1,1,2,2,2,2 (0,0,0,1) -1,1,1,1,2,2,2,3

(0,0,1,0) -1,1,1,1,2,2,2,3 (0,1,0,0) -1,1,1,1,2,3,3,3

(1,0,0,0) -1,1,1,1,2,2,2,3 (0,0,1,1) -1,-1,1,1,2,2,2,4

(0,2,0,2) -2,-1,1,1,2,3,4,4 (0,2,2,0) -2,-1,1,1,2,3,4,4

(1,0,0,1) -1,-1,1,1,2,2,2,4 (1,0,1,0) -1,-1,1,1,2,2,2,4

(2,2,0,0) -2,-1,1,1,2,3,4,4 (0,4,3,3) -3,-2,-1,1,2,3,4,6

(1,0,1,1) -1,-1,-1,1,2,2,2,5 (3,4,0,3) -3,-2,-1,1,2,3,4,6

(3,4,3,0) -3,-2,-1,1,2,3,4,6 (6,10,6,6) -5,-3,-3,-1,2,4,4,6

Table 5: Kowalevski exponents of Toda lattice of type D4

As in the previous cases, there is a strong evidence that this system is integrable.
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4.2.6 Toda lattice of type G2

We consider the Hamiltonian system derived by the Hamiltonian.

H =
1

2

2∑
i=1

p2
i + e

√
3q1−3q2 + e2q2 . (65)

Due to (52) we have that

A = Id2 ci = 1, for i = 1, 2

ν1 = (
√

3,−3) ν2 = (0, 2).

This Hamiltonian system can be derived also from the Hamiltonian

H =
1

2

3∑
i=1

p2
i + eq1−q2 + e−2q1+q2+q3 . (66)

Due to (52), we have that

A = Id3 ci = 1, for i = 1, 2

ν1 = (1,−1, 0) ν2 = (−2, 1, 1).

The indicial locus of this system and the corresponding Kowalevski exponents of this

system are shown in the Table 6.

Vector a(0) (65) Vector a(0) (66) Kowalevski

exponents

(0,0) (0,0) 1,1,2,2

(0, 1
2 ) (0, 13 ) -1,1,2,5

( 1
6 ,0) (1,0) -1,1,2,3

( 5
3 ,3) (6, 103 ) -5,-1,2,6

Table 6: Kowalevski exponents of Toda lattice of type G2

From this table, as in the previous cases, there is strong evidence that this system is

integrable.

In fact the complete integrability of all of these systems we have just seen is well known.

Adler and Moerbeke found in [3] a necessary and sufficient condition for the algebraic

complete integrability of this kind of systems. Let N be the matrix whose rows are the

vectors νi of each system. If the matrix N has a full rank, then the corresponding system

is algebraically completely integrable if and only if

2
(
NNT

)
ij

(
NNT

)−1

ij
∀i 6= j.

are non positive integers.
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All the above systems, except Kozlov-Treshchev Birkhoff, are algebraically completely

integrable. The matrix W = wij where

wij =
(
NNT

)
ij

(
NNT

)−1

ij

which corresponds to each systems is displayed below.

Toda lattice of type A3 : W =


3 −1 0

−1 4 −1

0 −1 3



Toda lattice of type B3 and C3 : W =


4 −2 0

−2 8 −4

0 −4 6



Toda lattice of type D4 : W =



4 −2 0 0

−2 8 −2 −2

0 −2 4 0

0 −2 0 4


Toda lattice of type G2 : W =

 8 −6

−6 8

 .
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5 Lotka-Volterra systems

The Lotka-Volterra equations are

ẋj =
n∑

k=1

ajkxjxk, for j = 1, 2, . . . , n, (67)

where the matrix A = (aij) is a fixed matrix. In this thesis we restrict our attention to

the case where A is a skew-symmetric. In [20] the Hamiltonian formulation is obtained

based on Volterra’s work using a symplectic realization from R2n 7→ Rn. He defined the

variables

qi(t) =
∫ t

0
ui(s)ds

and

pi(t) = ln(q̇i)−
1

2

n∑
k=1

aikqk,

for i = 1, 2, . . . , n, for a skew-symmetric matrix A, as in our case. Now the number of

variables is doubled and Volterra’s transformation is

R2n 7→ Rn

(q1, . . . , qn, p1, . . . , pi) 7→ (x1, . . . , xn),
(68)

where

xi = epi+
1
2

∑n

k=1
aikqk for i = 1, 2, . . . , n.

The Hamiltonian in these (q, p) coordinates becomes

H =
n∑

i=1

xi =
n∑

i=1

q̇i =
n∑

i=1

epi+
1
2

∑n

k=1
aikqk .

The vector field, (67), for which A is a skew-symmetric can be written as

q̇i = ∂H
∂pi

= {qi, H},

ṗi = −∂H
∂qi

= {pi, H},
(69)

i = 1, 2, . . . , n, and the bracket {·, ·} is the Poisson canonical one, that is:

{qi, pj} = δij =

 1, if i = j

0, if i 6= j
, i, j = 1, 2, . . . , n.

All other Poisson Brackets are equal to zero. The corresponding Poisson Bracket in the x

coordinates is

{xi, xj} = aijxixj, i, j = 1, 2, . . . , n.

Equations (67) are obtained by using this Poisson bracket and the Hamiltonian, H =

x1 + x2 + . . .+ xn.
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The Lotka - Volterra equations were studied by many authors in its various aspects, e.g.

complete integrability [10] Poisson and bi-Hamiltonian formulation ([13] and [29]), stability

of solutions and Darboux polynomials ([12] and [39]).

5.1 The three-dimensional case

Firstly we search for necessary conditions for algebraic integrability on the three-dimensional

case of this system. For n = 3 we have the matrix

A =


0 a b

−a 0 c

−b −c 0

 . (70)

From (29) the Kowalevski matrix is
ax

(0)
2 + bx

(0)
3 + 1 ax

(0)
1 bx

(0)
1

−ax(0)
2 −ax(0)

1 + cx
(0)
3 + 1 cx

(0)
2

−bx(0)
3 −cx(0)

3 −bx(0)
1 − cx

(0)
2 + 1

 , (71)

where x(0) =
(
x

(0)
1 , x

(0)
2 , x

(0)
3

)
is an element of the indicial locus, that is a solution of the

simultaneous equation (27), which in this problem is written as

x
(0)
1 + ax

(0)
1 x

(0)
2 + bx

(0)
1 x

(0)
3 = 0,

x
(0)
2 − ax

(0)
1 x

(0)
2 + cx

(0)
2 x

(0)
3 = 0,

x
(0)
3 − bx

(0)
1 x

(0)
3 − cx

(0)
2 x

(0)
3 = 0.

(72)

In Table 7 we can see the corresponding Kowalevski exponents, the eigenvalues of (71),

for each element of the indicial locus.

Vector x(0) Kowalevski Vector x(0) Kowalevski

exponents exponents

(0,0,0) 1,1,1 (0, 1c ,- 1
c ) -1,1,a−b+c

c

( 1
b ,0,- 1

b ) -1,1,-a−b+c
b ( 1

a ,- 1
a ,0) -1,1,a−b+c

a

Table 7: Kowalevski exponents of 3x3 Lotka-Volterra equations

Kowalevski exponents must be integers in order to have an integrable system. So we have

to solve the simultaneous equations

a− b+ c

a
= k1,

a− b+ c

c
= k2, −a− b+ c

b
= k3, (73)

30

Kyri
ac

os
 C

on
sta

nd
ini

de
s



where k1, k2, k3 ∈ Z. The case b = a+ c for which k1 = k2 = k3 = 0 is investigated below.

Solving (73) we find that

k3 =
k1k2

k1k2 − k1 − k2

,

 c = k1

k2
a, b = k1+k2−k1k2

k2
a

a = k2

k1
c, b = k1+k2−k1k2

k1
c

(74)

k2 =
k1k3

k1k3 − k1 − k3

,

 b = −k1

k3
a, c = k1+k3−k1k3

k3
a

a = −k3

k1
b, c = k1+k3−k1k3

k1
b

(75)

k1 =
k2k3

k2k3 − k2 − k3

,

 b = −k2

k3
c, a = k2k3−k2−k3

k3
c

c = −k3

k2
b, a = k2+k3−k2k3

k2
b

(76)

since the Kowalevski exponents cannot be zero. We examine the solution

k3 =
k1k2

k1k2 − k1 − k2

, b =
k1 + k2 − k1k2

k2

a, c =
k1

k2

a. (77)

to check for which integer values for k1 and k2 the fraction,

k3 =
k1k2

k1k2 − k1 − k2

, (78)

is an integer. Firstly if we take positive values for both k1 and k2, then

k1k2 − k1 − k2 > 0 ⇒ k1 > 2 or k2 > 2

Proof

If k1k2 − k1 − k2 > 0, k1 ≤ 2 and k2 ≤ 2, then we have

• If k1 = 1, then

k1k2 − k1 − k2 = k2 − 1− k2 = −1 < 0.

This is a contradiction.

• If k1 = 2, then

k1k2 − k1 − k2 = 2k2 − 2− k2 = k2 − 2 ≤ 0.

This is a contradiction.

The proof for k2 = 1 and k2 = 2 is similar.

Therefore for these values of k1 and k2

k1k2

k1k2−k1−k2
= 1 + k1+k2

k1k2−k1−k2
∈ Z ⇐⇒ k1k2 − k1 − k2 ≤ k1 + k2

⇐⇒ k1 ≤ 2k2

k2−2
.

(79)

Now the function

f(k2) =
2k2

k2 − 2
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is decreasing since its derivative is

f ′(k2) = − 4

(k2 − 2)2
.

Since f(3) ≤ 6,

f(k2) ≤ 6 for k2 ≥ 3 =⇒ k1 ≤ 6.

Now we observe that the fraction (78) is symmetric with respect to k1 and k2. So for

positive values of k1 and k2 it is enough to check its values for 1 ≤ k1 ≤ k2 ≤ 6.

For 1 ≤ k1 ≤ k2 ≤ 6



k1 = 1 =⇒ ∀k2 ∈ N

k1 = 2 =⇒ k2 ∈ {3, 4, 6}

k1 = 3 =⇒ k2 ∈ {3, 6}

k1 = 4 =⇒ k2 = 4.

(80)

Secondly we take positive values for k1 and negative values for k2. Let now, k2 = −x, x >

0. Then

k3 =
−k1x

−k1x− k1 + x
=

k1x

k1x+ k1 − x
.

For k1 = 1 the Kowalevski exponent, k3, is an integer. We have also that

k1x+ k1 − x = k1 + (k1 − 1)x > 0, ∀k1 ≥ 1, ∀x > 0, (81)

and, since k3 is an integer, we have that

k1x+ k1 − x ≤ k1x⇐⇒ k1 − x ≤ 0 ⇐⇒ k1 ≤ x. (82)

Writing k1x in the form

k1x = 1 · (k1x+ k1 − x) + x− k1,

we can see that

0 ≤ x− k1 < k1x

by using the results of (81) and (82). That means that k1x + k1 − x cannot be a divisor

of k1x if k1 6= x and so k3 is not an integer. Then in this case k3 is an integer only if

k1 ∈ {1, x} =⇒ k1 ∈ {1,−k2}.

If we take negative values for k1 and positive values for k2, the result is similar, i.e., k3 is

an integer only if

k2 ∈ {1, x} =⇒ k2 ∈ {1,−k1}

because of the symmetry of the fraction (78).

If we take negative values for both k1 and k2, then

k3 =
xy

xy + x+ y
= 1− x+ y

xy + x+ y
,
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where k1 = −x and k2 = −y with x, y > 0. We have that xy > 0 and xy + x + y > 0 so

that the Kowalevski exponent is an integer if

xy + x+ y ≤ x+ y ⇐⇒ xy ≤ 0,

that is a contradiction and so in this case k3 cannot be an integer.

We examined the case that k1k2 − k1 − k2 6= 0.

The case

k1k2 − k1 − k2 = 0 ⇒ k2 =
k1

k1 − 1
= 1 +

1

k1 − 1
.

In order to have integer values of k2,

k1 − 1 ∈ {±1} ⇒ k1 ∈ {0, 2}.

So for non zero Kowalevski exponents we have that k1 = k2 = 2. For this case the triple,

−1, 1, k3,

does not appear in the set of the Kowalevski exponents, since its denominator is zero.

Many of the cases that are obtained below are isomorphic in the following sense.

We firstly see that the Lotka-Volterra equations in n dimensions can be transformed into

a simpler form if the elements of the matrix A = (aij) in (67) are multiples of a constant

parameter. Precisely, if

aij = Cija, where Cij ∈ R, i, j = 1, 2, . . . , n,

then the Lotka-Volterra system (67) can be written as

u̇i =
n∑

j=1

Cijuiuj, i = 1, 2 . . . , n,

using the transformation

ui = a · xi, i = 1, 2 . . . , n. (83)

Secondly we consider two systems isomorphic if there is an invertible linear transformation

mapping one to other. Special cases of isomorphic systems are those that are derived from

a given system by applying a permutation, σ ∈ Sn, setting

Xi 7−→ xσ(i), i = 1, 2, . . . , n.

We illustrate an example for n = 3.
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Example 6 We prove that the system

ẋ1 = ax1x2 − a
3
x1x3 ẋ1 = 3x1x2 − x1x3

ẋ2 = −ax1x2 + 2a
3
x2x3

−−−−−−−−−→ui = a · xi ẋ2 = −3x1x2 + 2x2x3

ẋ3 = a
3
x1x3 − 2a

3
x2x3 ẋ3 = x1x3 − 2x2x3

(84)

is isomorphic to the system

ẋ1 = ax1x2 − 2ax1x3 ẋ1 = x1x2 − 2x1x3

ẋ2 = −ax1x2 + 3ax2x3
−−−−−−−−−→ui = a · xi ẋ2 = −x1x2 + 3x2x3

ẋ3 = 2ax1x3 − 3ax2x3 ẋ3 = 2x1x3 − 3x2x3

(85)

Applying σ = (1 3 2) to the system (84) we have that

Ẋ1 = ẋσ(1) = ẋ3 = x1x3 − 2x2x3 = X2X1 − 2X3X1

Ẋ2 = ẋσ(2) = ẋ1 = 3x1x2 − x1x3 = 3X2X3 −X2X1

Ẋ3 = ẋσ(3) = ẋ2 = −3x1x2 + 2x2x3 = −3X2X3 + 2X3X1

,

that is the vector field (85).

In Table 8 we can see the different values of (a, b, c) of the solutions (74), (75) and (76)

of the simultaneous equations (73) in order to have integer Kowalevski exponents for the

Lotka Volterra system (67) in three dimensions derived from the matrix (70). We also can

see the elements of the symmetric group S3 that makes them isomorphic. Note that λ ∈

Z.

Table 8: Cases with integer Kowalevski exponents

Vector (a, b, c) Kowalevski σ

exponents(
a, a

λ , a
λ

)
−1, 1, 1

(a, a, λa) −1, 1, λ σ = (1 3)

(a, λa,−a) −1, 1,−λ σ = (2 3)(
a,−a

3 , 2a
3

)
σ = (1 3 2)(

a,− 2a
3 , a

3

)
−1, 1, 2 σ = (1 3)(

a,− 3a
2 , a

2

)
−1, 1, 3 σ = (1 2 3)(

a,−a
2 , 3a

2

)
−1, 1, 6 σ = (2 3)

(a,−2a, 3a)

(a,−3a, 2a) σ = (1 2)
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Vector (a, b, c) Kowalevski σ

exponents

(a, 0, a)

(a,−a, 0) −1, 1, 2 σ = (1 3 2)

(0, b,−b) σ = (1 2 3)(
a,−a

2
, a

2

)
−1, 1, 2

(a,−a, 2a) −1, 1, 4 σ = (1 3)

(a,−2a, a) σ = (1 3 2)

(a,−a, a) −1, 1, 3

Example 7 The periodic KM system in three dimensions is the system derived from the

system

ẋi =
3∑

i=1

aijxixj, i = 1, 2, 3, (86)

where A is the 3× 3 skew-symmetric matrix

A =


0 −1 1

1 0 −1

−1 1 0

 . (87)

This system is a special case of the system (67) derived from the matrix (70), where

(a, b, c) = (−1, 1,−1), that is, one of the cases in Table 8. We can see that the Kowalevski

exponents of this system are −1, 1, 3. The system can be written in the Lax-pair form

L̇ = [L,B], where

L =


0 x1 1

1 0 x2

x3 1 0

 , B =


0 0 x1x2

x2x3 0 0

0 x3x1 0

 . (88)

We have the constants of motion

Hk = trace
(
Lk
)
, k ∈ N.

The functions

H2 = x1 + x2 + x3

H3 = 1 + x1x2x3

(89)

are independent constants of motion in involution due to the Poisson Bracket derived from

the Poisson matrix 
0 −x1x2 x1x3

x1x2 0 −x2x3

−x1x3 x2x3 0

 . (90)
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The positive Kowalevski exponents, 1 and 3, are the degrees of the constants of motion of

the system. Therefore this system is integrable.

All of these systems are integrable in the sense of Liouville since there exist two constants

of motion that are independent and in involution. The function

H2 = x1 + x2 + x3

is the Hamiltonian for these systems because due to the Poisson Bracket that is derived

from the Poisson matrix 
0 ax1x2 bx1x3

−ax1x2 0 cx2x3

−bx1x3 −cx2x3 0

 . (91)

the equations (86), where A = (aij) is the matrix in (70), can be written in the form

ẋi = {xi, H2}, i = 1, 2, 3.

Therefore we need one more constant of motion that is independent and in involution with

H2. The rank of the Poisson matrix is two and there is a Casimir function, F , (since the

Poisson matrix is degenerate). We also have the integral, H2, so and the system is always

integrable. We can see the second constant of motion of each non isomorphic system in

the Table 9.

Vector Kowalevski Casimir

(a, b, c) exponents function

(a, 0, a) −1, 1, 2 F = x1x3

(a,−a, a) −1, 1, 3 F = x1x2x3(
a,−a

2 , a
2

)
−1, 1, 2 F = x1x2x

2
3

−1, 1, 4

−1, 1, 2

(a,−2a, 3a) −1, 1, 3 F = x3
1x

2
2x3

−1, 1, 6

(a, a + c, c) −1, 1, 0 F = xc
1xa

3

xa+c
2

−1, 1, 1(
a, a

λ , a
λ

)
−1, 1, λ F = xλ

3 x1
x2

−1, 1,−λ

Table 9: Casimir function for each case
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The Casimir function for each case can be written in a general form

F = xc
1x

−b
2 xa

3.

We would like to classify the algebraic completely integrable Lotka-Volterra equations in

three dimensions. In order to use Proposition 1 we have to check for which systems the

Laurent solutions are of the form

xi(t) =
1

tvi

∞∑
k=0

x
(k)
i tk, i = 1, 2, . . . , n, (92)

where vi are the components of the weight vector v that makes the vector field

ẋi = fi(x1, . . . , xn), i = 1, 2, . . . , n,

to be a weight homogeneous one. In this case

fi(x1, . . . , x3) =
3∑

k=1

aikxixk, for i = 1, 2, . . . , 3.

So we get the weight vector v = (1, 1, 1).

We have to check whether these systems are a.c.i., which means that the Laurent series

of the solution x1, x2 and x3 must have n− 1 = 2 free parameters. If we use the remark

in [4], the free parameters appear in a finite number of steps of calculation. The first

thing to do is to substitute (92) into equations (67) derived from the matrix (70). After

that we equate the coefficients of tk. We have already equated the coefficients of t−vi−1

by solving the indicial equation to find x
(0)
i . Then we call Step m (m ∈ N) if we equate

the coefficients of t−vi−1+m to find x
(m)
i . According to remark in [4] all the free parameters

appear in the first kp Steps, where kp is the largest (positive) Kowalevski exponent of the

system.

Table 10: Free parameters for the algebraically completely integrability of each system

Vector Kowalevski Free

(a, b, c) exponents parameters

(a, 0, a) −1, 1, 2 x
(1)
3 , x

(2)
3

(a,−a, a) −1, 1, 3 x
(1)
3 , x

(3)
3(

a,−a
2 , a

2

)
−1, 1, 2 x

(1)
3 , x

(2)
3

−1, 1, 4
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Vector Kowalevski Free

(a, b, c) exponents parameters

−1, 1, 2

(a,−2a, 3a) −1, 1, 3 x
(1)
3 , x

(2)
3

−1, 1, 6

(a, a+ c, c) −1, 1, 0 x
(1)
1 , x

(0)
3

−1, 1, 1(
a, a

λ
, a

λ

)
−1, 1, λ x

(1)
1 , x

(1)
2

−1, 1,−λ

We can see that in the three-dimensional case all of the systems displayed in Table 10 are

a.c.i. showing the n− 1 = 2 free parameters of each case.

Suppose that the Laurent solution of the system is

x1(t) = 1
tν1

∑∞
k=0 x

(k)
1 tk, with x

(0)
1 6= 0,

x2(t) = 1
tν2

∑∞
k=0 x

(k)
2 tk, with x

(0)
2 6= 0,

x3(t) = 1
tν3

∑∞
k=0 x

(k)
3 tk, with x

(0)
3 6= 0.

(93)

If ν1, ν2, ν3 ≤ 1, then these systems can be investigated using Proposition 1 since v =

(1, 1, 1). On the other hand, keeping in mind that H = x1 + x2 + x3 is always a constant

of motion, we have the following cases:

(i) ν1 = ν2 = ν > 1 and ν3 < ν, or

(ii) ν1 = ν3 = ν > 1 and ν2 < ν, or

(iii) ν2 = ν3 = ν > 1 and ν1 < ν, or

(iv) ν1 = ν2 = ν3 = ν > 1.

If we take

A =


0 a b

−a 0 c

−b −c 0

 , (94)

equations (67) become
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ẋ1 = ax1x2 + bx1x3, (95)

ẋ2 = −ax1x2 + cx2x3, (96)

ẋ3 = −bx1x3 − cx2x3. (97)

We examine the cases below

(i) ν1 = ν2 = ν > 1 and ν3 < ν

Since ν1 = ν2 = ν, we have that

x
(0)
1 = −x(0)

2 = α 6= 0

because H = x1 + x2 + x3 is a constant of motion.

We also note that ν+ ν3 < 2ν and x
(0)
1 x

(0)
2 6= 0. Equating the coefficients of t2ν of the

LHS and RHS of (95) or (96), we are led to

a x
(0)
1 x

(0)
2 = 0 =⇒ a = 0 .

As we know that ν3 + 1 < ν + ν3, the coefficient of tν+ν3 of the RHS of (97) must be

equal to zero. So

x
(0)
3

(
−bx(0)

1 − cx
(0)
2

)
= 0,

but x
(0)
3 6= 0 and x

(0)
2 = −x(0)

1 6= 0; therefore

b = c .

If b = 0 ⇒ c = 0, then from (95) and (96) we have that

ẋ1 = ẋ2 = 0 =⇒ x1, x2 are constant functions,

that is a contradiction because ν1 = ν2 = ν > 1.

If b 6= 0 ⇒ c 6= 0, then the equations (95) and (96) become

ẋ1 = bx1x3, (98)

ẋ2 = bx2x3. (99)

So we have that

(98) =⇒ ν + 1 = ν + ν3 ⇒ ν3 = 1

since x
(0)
1 x

(0)
3 6= 0 and x

(0)
2 x

(0)
3 6= 0. From equations (98) and (99) we have that

ẋ1

x1

=
ẋ2

x2

= bx3 =⇒ x1 = κx2, κ is a constant.
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However, we know that

x
(0)
1 = −x(0)

2 =⇒ κ = −1 ⇒ x1 = −x2.

Equation (97) becomes

ẋ3 = −b(−x2)x3 − bx2x3 = 0 =⇒ x3 = c, c is a constant.

This is a contradiction because we proved above that ν3 = 1 and x
(0)
3 6= 0.

(ii) ν1 = ν3 = ν > 1 and ν2 < ν

It leads to a contradiction, similarly as case (i) does.

(iii) ν2 = ν3 = ν > 1 and ν1 < ν

It leads to a contradiction, similarly as case (i) does.

(iv) ν1 = ν2 = ν3 = ν > 1

In this case, for i = 1, 2, 3,

xi(t) =
1

tν

∞∑
k=0

x
(k)
i tk,

we have that the degrees of the leading term of the LHS of the equations (95), (96)

and (97) are equal to ν+1, but the degrees of the leading term RHS of these equations

are equal to 2ν and so the coefficients of 1
tν+k of the RHS of these equations must be

zero for k = 2, 3, . . . , ν.

The coefficients of 1
tν+k of the RHS of these equations must be zero for k = 2, 3, . . . , ν.

The coefficients of 1
tν+k , k = 1, 2, . . . , ν, are given by the sums

Si,k =
ν−k∑
λ=0

x
(λ)
i u

(λ)
i,k , for i = 1, 2, 3, (100)

where

u
(λ)
1,k = ax

(ν−k−λ)
2 + bx

(ν−k−λ)
3 ,

u
(λ)
2,k = −ax(ν−k−λ)

1 + cx
(ν−k−λ)
3 ,

u
(λ)
3,k = −bx(ν−k−λ)

2 − cx
(ν−k−λ)
3 .

(101)

Note that

u
(λ)
i,k = u

(m)
i,j , if k + λ = j +m. (102)

In addition

Si,k = 0, for i = 1, 2, 3 and k = 2, 3, . . . , ν.
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For k = n sum, (100), becomes

Si,ν = x
(0)
i u

(0)
i,ν = 0 =⇒ u

(0)
i,ν = 0

since x
(0)
i 6= 0.

For k = ν − 1 we have that

Si,ν−1 = x
(0)
i u

(0)
i,ν−1 + x

(1)
i u

(1)
i,ν−1 = 0

(102) ⇒ x
(0)
i u

(0)
i,ν−1 + x

(1)
i u

(0)
i,ν = x

(0)
i u

(0)
i,ν−1 = 0

⇒ u
(0)
i,ν−1 = 0 because x

(0)
i 6= 0.

(103)

Let m ∈ {1, 2, . . . , ν − 1} and assume that u
(0)
i,k = 0 for k > m.

For k = m we have that

Si,m =
ν−m∑
λ=0

x
(λ)
i u

(λ)
i,m = x

(0)
i u

(0)
i,m +

ν−m∑
λ=1

x
(λ)
i u

(λ)
i,m

= x
(0)
i u

(0)
i,m +

ν−m∑
λ=1

x
(λ)
i u

(0)
i,m+λ = x

(0)
i u

(0)
i,m.

We saw above that Si,m = 0 if m > 1 and, since x
(0)
i 6= 0, then u

(0)
i,m = 0.

Now we equate the coefficients of 1
tν+1 of the both sides of the equations (95)-(97)

and so

Si,1 = x
(0)
i u

(0)
i,1 = −νx(0)

i =⇒ ν + u
(0)
i,1 = 0.

Therefore we have that

ax
(ν−1)
2 + bx

(ν−1)
3 = −ν,

−ax(ν−1)
1 + cx

(ν−1)
3 = −ν,

−bx(ν−1)
2 − cx

(ν−1)
3 = −ν.

(104)

These simultaneous equations have solutions only if

b = a+ c.

If a = 0 ⇒ b = c (obviously b = c 6= 0), then the system is isomorphic to the following

ẋ1 = x1x3

ẋ2 = x2x3

ẋ3 = −x1x3 − x2x3

Equating the coefficients of t−2ν (ν > 1) in the first and second equations we have

that

x
(0)
1 x

(0)
3 = x

(0)
2 x

(0)
3 = 0,
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that is impossible because x
(0)
i 6= 0, for i = 1, 2, 3.

The same happens if bc = 0. So in the following calculations we assume that abc 6= 0.

Firstly we see that there cannot be such a solution with ν > 2. Since b = a + c and

the function H = x1 + x2 + x3 is a constant of motion, the Lotka-Volterra equations

in three dimensions become

ẋ1 = akx1 − ax2
1 + cx1x3,

ẋ2 = −ẋ1 − ẋ3,

ẋ3 = −ckx3 + cx2
3 − ax1x3,

(105)

where k is the constant value of the function H. Using Maple we can see that if

k 6= 0, then the solution is

x1 =
kC1e

akt

C1eakt + ae−ckt − C2

, x3 =
kae−ckt

C1eakt + ae−ckt − C2

,

x2 = k − x1 − x3 = − kC2

C1eakt + ae−ckt − C2

. (106)

Obviously C2 6= 0. The pole is t∗ satisfies

C1e
akt∗ + ae−ckt∗ − C2 = 0 ⇒ C2 = C1e

akt∗ + ae−ckt∗ 6= 0

Hence using De l’ Hôpital Rule we are led to the fact that

lim
t→t∗

(t− t∗)x2(t) =
C2

aC1eakt∗ − ace−ckt∗
.

Since the pole order is greater than 1, we have that

lim
t→t∗

(t− t∗)x2(t) = ∞.

Therefore

C1 = ce−(a+c)kt = ce−bkt

The solution (106) possesses only one arbitrary constant k, but we need n− 1 = 2.

Now if k = 0 the solutions of (105) are

x3(t) = 0, x1(t) =
1

at+ C1

,

or

x1(t) =
C1 − c

a(C1t+ C2)
, x3(t) = − 1

C1t+ C2

. (107)

Both solutions lead us to a contradiction since the pole order of x1 and x3 is greater

than 1.

Therefore the case ν1 = ν2 = ν3 = ν > 1 cannot give us an algebraic completely

integrable system. The solution (107) proves that the case b = a+ c is algebraically

completely integrable system when ν1 = ν2 = ν3 = 1.
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5.2 The four-dimensional case

Now we examine the vector field (67) for n = 4. In this case we have the matrix

A =



0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0


(108)

There is an important difference between the present and the three-dimensional case. In

the latter, the Poisson matrix is not invertible for all values of a, b and c and this explains

why can be found two independent integrals for this system. In the four-dimensional case

there are some values of a, b, c, d, e and f for which the Poisson matrix,

P =



0 ax1x2 bx1x3 cx1x4

−ax1x2 0 dx2x3 ex2x4

−bx1x3 −dx2x3 0 fx3x4

−cx1x4 −ex2x4 −fx3x4 0


, (109)

is invertible, particularly if af + cd− be 6= 0, since

det(P ) = (af + cd− be)2 x2
1x

2
2x

2
3x

2
4.

If P−1 does not exist, we can find a second Casimir function (independent of H = x1 +

x2 + x3 + x4) that is one of the following six functions

F1 = xd+e
1 x−b−c

2 xa
3x

a
4,

F2 = x−d+f
1 xb

2x
−a−c
3 xb

4,

F3 = xd
1x

−b+f
2 xa−e

3 xd
4,

F4 = x−e−f
1 xc

2x
c
3x

−a−b
4 ,

F5 = xe
1x

−c−f
2 xe

3x
a−d
4

and F6 = xf
1x

f
2x

−c−e
3 xb+d

4 .

(110)

In order to calculate the Kowalevski exponents we have to use the formula (29). The

Kowalevski matrix is
aχ1 + bχ3 + cχ4 + 1 aχ1 bχ1 cχ1

−aχ2 −aχ1 + dχ3 + eχ4 + 1 dχ2 eχ2

−bχ3 −dχ3 −bχ1 − dχ2 + fχ4 + 1 fχ3

−cχ4 −eχ4 −fχ4 −cχ4 − eχ4 − fχ4 + 1

 , (111)

where x(0) = (χ1, χ2, χ3, χ4) is an element of the indicial locus, that is a solution of the
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simultaneous equation (27), which in this problem it is written as

χ1 + aχ1χ2 + bχ1χ3 + cχ1χ4 = 0

χ2 − aχ1χ2 + dχ2χ3 + eχ2χ4 = 0

χ3 − bχ1χ3 − dχ2χ3 + fχ3χ4 = 0

χ4 − cχ1χ4 − eχ2χ4 − fχ3χ4 = 0

(112)

In Table 11 we can see the corresponding Kowalevski exponents, the eigenvalues of (111),

to each element of the indicial locus, where

q1 = b+ f − c, q2 = d+ f − e,

q3 = a+ e− c, q4 = a+ d− b,
(113)

p = det(P ) = af + cd− be.

Vector x(0) Kowalevski Vector x(0) Kowalevski

exponents exponents

(0,0,0,0) 1,1,1,1 (0,0, 1
f ,- 1

f ) -1,1, q1
f , q2

f

(0, 1e ,0,- 1
e ) -1,1,- q2

e , q3
e (0, 1d ,- 1

d ,0) -1,1, q4
d , q2

d

( 1
c ,0,0,- 1

c ) -1,1,- q3
c ,- q1

c ( 1
b ,0,- 1

b ,0) -1,1,- q4
b , q1

b

( 1
a ,- 1

a ,0,0) -1,1, q4
a , q3

a ( q2
p ,- q1

p , q3
p ,- q4

p ) -1,1,
√

q1q2q3q4

p ,-
√

q1q2q3q4

p

Table 11: Kowalevski exponents of 4x4 Lotka-Volterra equations

We can observe that the sets of Kowalevski exponents, except that one which corresponds

to the last element of the indicial locus, are similar to those we had in the three-dimensional

case. The method we apply in the four-dimensional case is exactly the same. In particular,

we set

k1 = q1

b
, k2 = q1

f
, k3 = − q1

c
,

m1 = q2

d
, m2 = q2

f
, m3 = − q2

e
,

p1 = q3

a
, p2 = q3

e
, p3 = − q3

c
,

n1 = q4

a
, n2 = q4

d
, n3 = − q4

b
.

(114)

If one of the parameters a, b, c, d, e and f is zero, then the corresponding eigenvalues

disappear.

Solving these equations simultaneously we find that

a =
p2e

p1

, b =
(p1p2 − p1 − p2)k3e

p1k1

, c = −(p1p2 − p1 − p2)e

p1

,

d =
[((−p1 − p2 + p1p2)k3 − p1p2 + p2)k1 + (−p1p2 + p1 + p2)k3]e

p1k1(m1 − 1)
,

f =
(−p1 − p2 + p1p2)(k1k3 − k3 − k1)e

p1k1

,
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m2 =
[((−p1 − p2 + p1p2)k3 − p1p2 + p2)k1 + (−p1p2 + p1 + p2)k3]m1

p1k1(m1 − 1)
,

m3 = − [((−p1 − p2 + p1p2)k3 − p1p2 + p2)k1 + (−p1p2 + p1 + p2)k3]m1

(m1 − 1)(−p1 − p2 + p1p2)(k1k3 − k3 − k1)
,

n1 =
((−p1 − p2 + p1p2)k3 − p1p2 + p2m1)k1 +m1(−p1p2 + p1 + p2)k3

k1p2(m1 − 1)
,

n2 =
((−p1 − p2 + p1p2)k3 − p1p2 + p2m1)k1 +m1(−p1p2 + p1 + p2)k3

((−p1 − p2 + p1p2)k3 − p1p2 + p2)k1 + (−p1p2 + p1 + p2)k3

,

n3 =
((p1 + p2 − p1p2)k3 + p1p2 − p2m1)k1 +m1(p1p2 − p1 − p2)k3

k3(−p1 − p2 + p1p2)(m1 − 1)
,

k2 =
k3k1

k1k3 − k1 − k3

, p3 =
p1p2

p1p2 − p1 − p2

.

Starting from the two fractions for k2 and p3 we can find the values of k1, k3, p1 and

p3 for which k2 and p3 take integer values using the results we concluded in the three-

dimensional case. Then we can see that the other fractions take very simple symbolic forms

and therefore they can be investigated with elementary techniques of Number Theory. We

are led to some values of a, b, c, d, e and f , for which the values the above fractions are

integers. Furthermore taking theses values we must check for which values of a, b, c, d, e

and f the exponent √
(b+ f − c)(d+ f − e)(a+ e− c)(a+ d− b)

af + cd− be

takes integer values.

For the classification, we consider the following four cases:

1. abcdef 6= 0 and p 6= 0

2. abcdef 6= 0 and p = 0

3. abcdef = 0 and p 6= 0

4. abcdef = 0 and p = 0.

45

Kyri
ac

os
 C

on
sta

nd
ini

de
s



5.2.1 First case

The results for abcdef 6= 0 and p 6= 0 are shown in Table 12, where we can see the

values of a, b, c, d, e and f for which the Kowalevski exponents are integers. The values of

Kowalevski exponents in each case are given as a proof. We do not give isomorphic cases

because the table would be very large. It should be noted that k ∈ Z.

Table 12: First case of 4x4 Lotka-Volterra equations

Vector (a, b, c, d, e, f) Kowalevski exponents

±1, 1, 1, 1

(e, 2ke,−e,−2e, e,−e) −1, 1,±4, 4

−1, 1,±k, 2

−1, 1,±2k, 4

±1, 1, 1, 1

(3e, 6ke,−2e,−3e, e,−2e) −1, 1,±6, 6

−1, 1,±2k, 2

−1, 1,±3k, 3

±1, 1, 1, 1

(e, ke,−e,−e, e,−e) −1, 1,±3, 3

−1, 1,±k, 3

±1, 1, 1, 1

(ke,−e, e,−e, e,−2e) −1, 1,±2, 2

−1, 1,±k, 4

±1, 1, 1, 1

(2ke,−2e, e,−2e, e,−3e) −1, 1,±2, 2

−1, 1,±k, 3

−1, 1,±2k, 6

±1, 1, 1, 1

(e, ke, e,−e, e, e) −1, 1,±k,±1

−1, 1, ke,−ke

±1, 1, 1, 1

( e
2 ,− e

2 ,− e
2 , e, e, 2e) −1, 1,±2, 2

−1, 1,±4, 4

1, 1, 1, 1

(3e,−2e, e, e, e,−3e) −1, 1,±3, 3

−1, 1, 6,−3

−1, 1, 1, 2
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Vector (a, b, c, d, e, f) Kowalevski exponents

±1, 1, 1, 1

(−e, k2e, ke, e, e, ke) −1, 1,±k, k

−1, 1,±k, 1

−1, 1,±k2, k

±1, 1, 1, 1

(e, e,−e, ke, e, e) −1, 1, 3, 3

−1, 1,±k, 3

−1, 1, 3ke,−3ke

1, 1, 1, 1

−1, 1, 1, 2

(2e,−e,−3e, 3e, e, e) −1, 1, 3, 3

−1, 1,−3, 6

−1, 1, 9e,−9e

1, 1, 1, 1

−1, 1, 1, 2

(e,−e,−2e, 2e, e, e) −1, 1, 2, 2

−1, 1,−2, 4

−1, 1, 4, 4

−1, 1, 8e,−8e

±1, 1, 1, 1

(2e,−e,−e, e, e, e) −1, 1, 2, 2

−1, 1,±1, 4

−1, 1, 2e,−2e

±1, 1, 1, 1

−1, 1,±kx, x

(xe, xe, e, ekx, e, e) −1, 1,±k, 1

−1, 1,−x,−x

−1, 1, ekx,−ekx

±1, 1, 1, 1

−1, 1,±3k, 3

(3e
2
, 3e

2
,− e

2
, 3ke, e, e) −1, 1, 6, 6

−1, 1,±2k, 2

−1, 1, 6ke,−6ke
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Vector (a, b, c, d, e, f) Kowalevski exponents

±1, 1, 1, 1

−1, 1,±x, 1

(−kxe, ke, e, ke, e, e) −1, 1, k, k

−1, 1,±kx,−k

−1, 1, ke,−ke

1, 1, 1, 1

−1, 1,−2, 4

(e, e,−2e,−2e, e,−e) −1, 1, 2, 2

−1, 1,±4, 4

−1, 1, 1, 2

±1, 1, 1, 1

−1, 1,±1, 2

(2e
3
,− e

3
,− e

3
, e, e, e) −1, 1, 3, 3

−1, 1,±3, 6

−1, 1, 3e,−3e

±1, 1, 1, 1

(−e,−e, ke, xe, e, e) −1, 1,±x,±k

−1, 1,−kex, kex

±1, 1, 1, 1

(e, e,−2e, ke, e, e) −1, 1, 2, 2

−1, 1,±k, 4

−1, 1, 4ke,−4ke

±1, 1, 1, 1

(−e, ke, e, e, e, e) −1, 1,−1,−1

−1, 1,±k, 1

−1, 1, ke,−ke

±1, 1, 1, 1

−1, 1,±k, 2

(3e, 3e,−2e, 3ke, e, e) −1, 1, 3, 3

−1, 1,±3k, 6

−1, 1, 6ke,−6ke

48

Kyri
ac

os
 C

on
sta

nd
ini

de
s



Vector (a, b, c, d, e, f) Kowalevski exponents

±1, 1, 1, 1

−1, 1,±k, 3

(2e, 2e,−3e, 2ke, e, e) −1, 1, 2, 2

−1, 1,±2k, 6

−1, 1, 6ke,−6ke

±1, 1, 1, 1

−1, 1,±2k, 4

(2e, 2e,−e, 2ke, e, e) −1, 1, 4, 4

−1, 1± k, 2

−1, 1, 4ke,−4ke

5.2.2 Second case

If abcdef 6= 0 and p = 0, then we get the results given in Table 13. We recall that

isomorphic cases are not shown.

Table 13: Second case of 4x4 Lotka-Volterra equations

Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

(−e,−e, 2e,−2e, e,−3e) −1, 1, 2, 3

−2,−1, 1, 6

−1, 1, 1, 3

1, 1, 1, 1

−1, 1, 1, 2

(e,−e, e, e, e,−2e) −1, 1, 1, 3

−1, 1, 1, 4

−1, 1, 3, 4

−2,−1, 1, 3
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 1, 4

( e
4
,− e

4
, e

4
,− e

2
, e,− e

2
) −1, 1, 1, 2

−1, 1, 2, 4

−4,−1, 1, 4

1, 1, 1, 1

−1, 1, 1, 2

−1, 1, 1, 4

(2e,−3e,−e, e, e,−e) −1,−1, 1, 6

−1, 1, 1, 3

−3,−1, 1, 4

−1, 1, 2, 3

We also recall that in this case, p = af + cd− be = 0 and we have the Casimirs (110) that

are independent of the function H = x1 + x2 + x3 + x4.

5.2.3 Third case

The results for abcdef = 0 and p 6= 0are given in Table 14. We recall again that isomorphic

cases are not shown.

Table 14: Third case of 4x4 Lotka-Volterra equations

Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0,−2e,−e,−2e, e, e) −1, 0, 1, 1

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 1, 3

−1, 0, 1, 1

(0, e,−e, e, e, e) −1, 0, 0, 1

−1, 1, 1, 2

−1, 1, 1, 3

−3,−2,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0, e,−e, e, e,−2e) −1, 0, 1, 1

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

(e, 0, e, e, 0, e) −1, 0, 0, 1

−1, 0, 1, 2

−1, 1, 2, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(0,−e,−e,−e, e, e) −1,−1, 0, 1

−1,−1, 1, 2

−1,−1, 1, 1

−2,−1,−1, 1

1, 1, 1, 1

(0, e, e,−e, e, 0) −1, 0, 0, 1

−1, 1, 2, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, l

−1, 0, 1, 2

(0, e,−e, e, e, 2e) −1, 0, 1, 4

−1, 1, 1, 2

−1, 1, 2, 2

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 2e,−e, 0, e, e) −1, 0, 1, 2

−1, 0, 1, 4

−1,−1, 1, 2

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, k

(0,−ke, e, ke, e, e) −1, 0, 1,−k

−1, 1, 1, 2

−1, 1, k,−k

−2,−1, 1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0,− 2e
3

,−e,− 2e
3

, e,− e
3
) −1, 0, 1, 3

−1, 0, 1, 6

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(0,− e
3
,−e,− e

3
, e,− 2e

3
) −1, 0, 1, 3

−1, 0, 1, 6

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(0,−2e,−e,−2e, e,−e) −1, 0, 1, 2

−1, 1, 2, 4

−2,−1, 1, 2

−4,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

(0,−e,−e,−e, e,−2e) −1, 0, 1, 4

−1, 1, 1, 2

−2,−1, 1, 2

−4,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 1, 1, 3

(0,−e, e, e, e,−e) −1,−1, 0, 1

−1,−1, 1, 2

−2,−1, 1, 3

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(e, 0,−2e, e, e,−2e) −1, 1, 2, 4

−2,−1, 0, 1

−2,−1, 1, 2

−2,−1, 1, 4
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0, e
2
, e,− e

2
, e, e

2
) −1, 1, 2, 2

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(− e
2
, 0, e

2
, e

2
, e,− e

2
) −1, 1, 2, 2

−1,−1, 0, 1

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 0, e,−e, e, 0) −1, 1, 1, 2

−1,−1, 0, 1

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0,−e, e, e, e, 2e) −1, 0, 1, 1

−1, 0, 1, 2

−1, 1, 2, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e,−e, e, 0, 2e, 2e) −1, 0, 1, 1

−1, 0, 1, 2

−1, 1, 2, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e,−e, 0, 0, e, e) −1, 0, 1, 2

−1, 1, 2, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 1, 1, 2

(0,−e, e, e, e,−2e) −2,−1, 0, 1

−2,−1, 1, 2

−2,−1, 1, 4

−4,−1, 0, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0, 3e, e,−3e, e,−2e) −1, 0, 1, 3

−1, 1, 2, 2

−2,−1, 0, 1

−6,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(2e, 0, 3e,−2e, e,−3e) −1, 0, 1, 3

−1, 1, 2, 2

−2,−1, 0, 1

−6,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 3e
2

, e,− 3e
2

, e,− e
2
) −1, 0, 1, 6

−1, 1, 2, 2

−2,−1, 0, 1

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

( e
2
, 0, 3e

2
,− e

2
, e,− 3e

2
) −1, 0, 1, 6

−1, 1, 2, 2

−2,−1, 0, 1

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 2e, e,−2e, e,−e) −1, 0, 1, 4

−1, 1, 2, 2

−2,−1, 0, 1

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, 0, e,−e, e, e) −1, 1, 1, 2

−1,−1, 0, 1

−1,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 1, 1, 2

(0, e, e,−e, e,−2e) −1, 1, 2, 4

−2,−1, 0, 1

−2,−2,−1, 1

−4,−1, 0, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 1, 2, 4

(0, e
2
, e,− e

2
, e,− e

2
) −1, 0, 0, 1

−1,−1, 0, 1

−2,−1, 0, 1

−2,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(e, 0,−e, e, e,−e) −1, 1, 2, 3

−1,−1, 1, 2

−1,−1, 1, 3

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e, 0, 2e, e, e, 2e) −1, 0, 1, 1

−1, 0, 1, 2

−1, 1, 2, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

( e
2
, 0,− e

2
, e

2
, e,− e

2
) −1, 1, 2, 4

−1,−1, 1, 2

−2,−1, 1, 2

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, e, 0, 2e, e, e) −1, 0, 1, 1

−1, 0, 1, 2

−1, 1, 2, 2

1, 1, 1, 1

−1, 0, 0, 1

(e, 0, 0, 0, e, e) −1, 0, 1, 2

−1, 1, 1, 2

−1,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(ke, 0, e, ke, e, e) −1, 0, 1, k

−1, 1, 1, 2

−1, 1, k, k
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(−3e, 0,−2e,−3e, e,−2e) −1, 0, 1, 2

−1, 1, 2, 2

−1, 0, 1, 3

−6,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e,−3e, 0,−2e, e,−3e) −1, 0, 1, 2

−1, 0, 1, 3

−1, 1, 2, 2

−6,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(− 3e
2

, 0,− e
2
,− 3e

2
, e,− e

2
) −1, 0, 1, 2

−1, 0, 1, 6

−1, 1, 2, 2

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e,− 3e
2

, 0,− e
2
, e,− 3e

2
) −1, 0, 1, 2

−1, 0, 1, 6

−1, 1, 2, 2

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−2e, 0,−e,−2e, e,−e) −1, 0, 1, 2

−1, 0, 1, 4

−1, 1, 2, 2

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 4

(− e
2
, 0,− e

2
,− e

2
, e,− e

2
) −1, 1, 2, 4

−2,−1, 0, 1

−2,−1, 1, 1

−2,−1, 1, 2
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

( e
2
, 0,− e

2
,− e

2
, e, e

2
) −1, 0, 1, 4

−1,−1, 1, 2

−2,−1, 1, 2

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(2e, 0,−e,−2e, e, e) −1, 0, 1, 2

−2,−1, 1, 2

−2,−1, 1, 4

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, k

(−e, 0,−ke, e, e, ke) −1, 0, 1,−k

−1, 1, 1, 2

−1, 1, k, k

−2,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

( e
2
, 0, e

2
,− e

2
, e,− e

2
) −1, 0, 1, 4

−1, 1, 2, 4

−2,−1, 1, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

(e,−e, 0, 2e, e, e) −1, 1, 1, 2

−1, 1, 2, 2

−1, 1, 2, 4

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, 0, 0,−e, e,−2e) −1, 0, 1, 2

−1, 1, 1, 2

−1, 1, 2, 4

−4,−1, 0, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(e,−2e, 0, e, e, 2e) −1, 0, 1, 1

−1, 1, 2, 2

−1, 1, 2, 4

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e,−e, 0,−2e, e, e) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(e, 2e, 0, e, e,−2e) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(0,−e, e, e, e, 0) −1, 0, 1, 2

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(e, 2e
3

, 0,− e
3
, 0,− 2e

3
) −1, 0, 1, 2

−1, 0, 1, 3

−1, 0, 1, 6

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 4

(e, e, 0,−2e, e,−e) −1, 1, 1, 2

−2,−1, 0, 1

−2,−1, 1, 2

−4,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(e, e
2
, 0,− e

2
, e,− e

2
) −1, 0, 1, 2

−1, 0, 1, 4

−2,−1, 1, 2
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(2e, 2e,−e, 0, e,−e) −1, 0, 1, 2

−2,−1, 1, 2

−2,−1, 1, 4

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

(−e,−e, 2e, 0, e,−e) −1, 0, 1, 4

−1, 1, 2, 4

−2,−1,−1, 1

−2,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(e,−2e, 0, e, e, 0) −1, 0, 1, 2

−1, 0, 1, 4

−1, 1, 2, 4

−2,−1, 1, 1

1, 1, 1, 1

−1, 0, 0, 1

(2e, 2e, e, 0, e,−e) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(2e, e, e,−e, e, 0) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 1, 2

1, 1, 1, 1

(−e, e, 0, 0, e, e) −1, 0, 0, 1

−1, 0, 1, 2

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(−2e,−2e, e, 0,−3e, 3e) −1, 0, 1, 2

−1, 0, 1, 3

−2,−1, 1, 2

−6,−1, 0, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

1, 0, 0, 1

−1, 0, 1, 1

(−2e,−2e, e, 0, e,−e) −1, 0, 1, 2

−1, 1, 2, 4

−2,−2,−1, 1

−4,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(−2e, e, e, 3e,−3e, 0) −1, 0, 1, 2

−1, 0, 1, 3

−2,−1, 1, 2

−6,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e,−e, 2e, 0,−3e, 3e) −1, 0, 1, 2

−1, 0, 1, 6

−2,−1, 1, 2

−3,−1, 0, 1

1, 1, 1, 1

(0, 0, e, ke, e, e) −1, 0, 0, 1

−1, 0, 1, k

−1, 1, 1, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, 2e, 2e, 3e,−3e, 0) −1, 0, 1, 2

−1, 0, 1, 6

−2,−1, 1, 2

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e, e,−e, 0, 2e,−2e) −1, 0, 1, 2

−1, 0, 1, 4

−2,−1, 1, 2

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

(e, e,−2e, 0, e,−e) −1, 0, 1, 4

−2,−1, 1, 2

−2,−1, 1, 4

−2,−1,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(−e, e,−e, 0, e, e) −1, 0, 1, 3

−1,−1, 1, 2

−2,−1, 1, 3

−3,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 2

(2e,−2e, e, 0, e, e) −1, 1, 1, 2

−2,−1, 0, 1

−2,−1, 1, 1

−2,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 3

(e,−e, e, e, 0, e) −1, 1, 2, 3

−1,−1, 0, 1

−1,−1, 1, 2

−3,−1, 1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 1, 1, 3

(−e, e, e,−e, e, 0) −1, 1, 2, 3

−1,−1, 0, 1

−3,−1, 0, 1

−2,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(e,−e, e, e, e, 0) −1, 0, 1, 3

−1, 1, 1, 3

−2,−1, 1, 1

−3,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(e,−e, e,−2e,−2e, 0) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 0, 1

−2,−2,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(−2e,−e, e, e, e, 0) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 0, 1

−2,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(e, 2e,−2e, e, e, 0) −1, 0, 1, 2

−1, 0, 1, 4

−2,−2,−1, 1

1, 1, 1, 1

−1, 1, 1, 1

(0, 0,−e,−k2e, e, e) −k,−1, 1, 2

−2ke,−1, 1, 2ke

−2,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 0,−e,−e, e,−e) −1, 0, 1, 3

−1, 1, 1, 3

−2, 1, 0, 1

−3,−1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(0, 0, e, e, e,−e) −1, 0, 1, 1

−1,−1, 1, 1

−1,−1, 1, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 0,−e, 2e, e,−e) −1, 0, 1, 4

−1, 1, 1, 2

−2,−1, 0, 1

−4,−1, 1, 2

1, 1, 1, 1

−1, 1, 1, 1

(e,−e,−e, 0, 0, k2e) −1, 1, 2, 2

−2ke,−1, 1, 2ke

−k,−2,−1, 1

1, 1, 1, 1

(e, 0, 0,−e, e, 2e) −1, 0, 0, 1

−1, 0, 1, 1

−1, 0, 1, 2
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0, 0,−e,−2e, e,−e) −1, 0, 1, 1

−1, 0, 1, 2

−2,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 0, e,−e, e,−e) −1, 1, 1, 3

−1, 1, 2, 3

−2,−1, 0, 1

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, 0, e,−2e, e,−e) −1, 1, 1, 2

−1, 1, 2, 4

−2,−1, 0, 1

−4,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, ke, 0, e, e, 0) −1, 0, 1, k

−1,−1, 1, 1

−k,−1, 0, 1

1, 1, 1, 1

−1, 1, 2, k

(e,−k2e, 0,−e, e, 0) −1,−1, 1, 1

−2,−1, 1, 2

−k,−1, 1, 2

−2ke,−1, 1, 2ke

1, 1, 1, 1

−1, 0, 0, 1

(0, e, 0, e, e, e) −1, 0, 1, 1

−1, 0, 1, 2

−1, 1, 1, 1

−1, 1, 1, 2

1, 1, 1, 1

−1, 0, 0, 1

(e,−e, 0, e, e, 0) −1, 0, 1, 2

−1, 0, 1, 3

−1, 1, 2, 3

−3,−1, 1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(−e, e, 0,−e, e, 0) −1, 0, 1, 3

−1, 1, 2, 3

−2,−1, 0, 1

−3,−1, 1, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, 2e, 0,−e, e, 0) −1, 0, 1, 4

−1, 1, 2, 4

−2,−1, 0, 1

−2,−1, 1, 1

1, 1, 1, 1

−1,−1, 1, 1

(0,−k2e,−e, 0, e,−e) −2,−1, 1, 2

−k,−1, 1, 2

−2ke,−1, 1, 2ke

−k,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0, e,−e, 0, e, e) −1, 0, 1, 2

−1, 0, 1, 3

−1,−1, 1, 3

−3,−2,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0,−e,−e, 0, e, e) −1, 0, 1, 1

−1, 0, 1, 2

−1,−1,−1, 1

−2,−1,−1, 1

1, 1, 1, 1

(0, e,−e, e, e, 0) −1, 0, 0, 1

−1, 0, 1, 2

−2,−2,−1, 1

1, 1, 1, 1

−1, 1, 2, 2

(0,−e, k2e, e, 0, e) −2,−1, 1, k

−k,−1, 1, 2

−2ke,−1, 1, 2ke

−1,−1,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0,−e, e, e, 0,−e) −1, 0, 1, 2

−1, 0, 1, 3

−2,−1, 1, 3

−3,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0,−e, 2e, e, 0,−e) −1, 0, 1, 2

−1, 0, 1, 4

−2,−1, 1, 4

−2,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

(0,−e, 0, e, e, 0) −1, 0, 1, 2

−1− 1, 0, 1

−2,−1, 1, 1

1, 1, 1, 1

−1, 1, 1, 1

(e, 0, 0, e, e, k2e) −1, 1, 2, 2

−1, 1, 2, k

−2ke,−1, 1, 2ke

1, 1, 1, 1

(−e, 0, 0, e, e,−ke) −1, 0, 0, 1

−1, 1, 1, 1

−k,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(−e, 0, 0,−e, e,−e) −1, 0, 1, 2

−1, 1, 1, 3

−1, 1, 2, 3

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(e, 0, 0,−e, e,−2e) −1, 0, 1, 2

−1, 0, 1, 4

−1, 1, 1, 2

−4,−1, 1, 2

1, 1, 1, 1

−1, 1, 1, 1

(−k2e, 0, e, 0, e,−e) −1, 1, 2, 2

−2ke,−1, 1, 2ke

−k,−2,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(e, 0,−e, 0, e,−e) −1, 0, 1, 2

−1, 1, 1, 3

−2,−1, 1, 3

−3,−1, 0, 1

1, 1, 1, 1

−1, 0, 0, 1

(2e, 0,−e, 0, e,−e) −1, 0, 1, 2

−1, 1, 1, 2

−2,−1, 1, 4

−4,−1, 0, 1

1, 1, 1, 1

(0, 0, e, e, e, 0) −1, 0, 0, 1

−1, 0, 1, 1

−1,−1, 0, 1

1, 1, 1, 1

−1, 1, 1, 2

(0, 0,−e,−e, e, 0) −2,−1, 1, 2

−2e,−1, 1, 2e

−2,−1,−1, 1

1, 1, 1, 1

−1, 1, 2, 2

(0,−e, 0, 0, e,−e) −1,−1, 1, 2

−2,−1, 1, 1

−2e,−1, 1, 2e

1, 1, 1, 1

(e, 0, 0, e, 0, e) −1, 1, 1, 2

−1, 1, 2, 2

−2e,−1, 1, 2e

1, 1, 1, 1

(0, 0, e, k2e, 0, 0) −1, 1, 1, 1

−ke,−1, 1, ke

−1,−1,−1, 1

1, 1, 1, 1

−1, 0, 0, 1

−1, 0, 1, 1

(0, 2e,−e, 2e, e, e) −1, 0, 1, 2

−1, 1, 2, 2

−1, 1, 2, 4

−4,−2,−1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

−1, 0, 0, 1

(0,− e
2
,−e,− e

2
, e,− e

2
) −1, 0, 1, 4

−2,−1, 0, 1

−2,−1, 1, 2

5.2.4 Fourth case

The results for abcdef = 0 and p = 0are given in Table 15. Isomorphic cases are not

shown.

Table 15: Fourth case of 4x4 Lotka-Volterra equations

Vector (a, b, c, d, e, f) Kowalevski exponents

(0, e, e, e, e, 0) 1, 1, 1, 1

−1, 0, 0, 1

(0, 0, 0, e, e, 0) 1, 1, 1, 1

−1, 0, 1, 1

(0, 0, e, 0, e, e) 1, 1, 1, 1

−1, 0, 0, 1

1, 1, 1, 1

(e, 0,−e, e, 0, e) −1, 1, 2, 2

−2,−2,−1, 1

1, 1, 1, 1

(0, 0, 0,−e, e, 0) −1, 1, 1, 2

−2,−1, 1, 1

1, 1, 1, 1

(−e, e, 0, 0,−e, e) −1, 1, 2, 2

−2,−1, 1, 2

1, 1, 1, 1

(0, 0, 0, ke, e, e) −1, 1, 1, 1

−1, 1, 1, k

1, 1, 1, 1

(0, 0, 0, e, ke,−e) −1, 1, 1, k

−1,−1, 1, 1

−k,−1, 1, 1

1, 1, 1, 1

(0, 0, 0,−3e, e,−2e) −1, 1, 1, 2

−1, 1, 1, 3

−6,−1, 1, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

1, 1, 1, 1

(0, 0, 0, 3e,−2e, e) −1, 1, 1, 2

−1, 1, 1, 6

−3,−1, 1, 1

1, 1, 1, 1

(0, 0, 0, 2e,−3e, e) −1, 1, 1, 3

−1, 1, 1, 6

−2,−1, 1, 1

1, 1, 1, 1

(0, 0, 0,−2e, e,−e) −1, 1, 1, 2

−1, 1, 1, 4

−4,−1, 1, 1

1, 1, 1, 1

(0, 0, 0, e,−2e, e) −1, 1, 1, 4

−2,−1, 1, 1

1, 1, 1, 1

(0, 0, 0,−e, e,−e) −1, 1, 1, 3

−3,−1, 1, 1

(e, 0, 0, 0, e, 0) 1, 1, 1, 1

−1, 1, 1, 2

1, 1, 1, 1

(0, 0,−e, 0, e, e) −1, 0, 1, 2

−2,−2,−1, 1

1, 1, 1, 1

(0, 0, e, 0, e,−e) −1, 1, 2, 2

−2,−1, 0, 1

1, 1, 1, 1

(0, 0,−e, 0, e,−e) −1, 0, 1, 2

−2,−1, 0, 1

−2,−1, 1, 2

1, 1, 1, 1

(e, 0, 0, e, e, 0) −1, 0, 1, 2

−1, 1, 2, 2

1, 1, 1, 1

(−e, 0, 0,−e, e, 0) −1, 1, 2, 2

−2,−1, 1, 2

1, 1, 1, 1

(e, 0, 0,−e, e, 0) −1, 0, 1, 2

−2,−1, 1, 2

1, 1, 1, 1

(e, 0, e, 0, 0,−e) −1, 0, 1, 1

−1, 1, 1, 2

−2,−1, 0, 1
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Vector (a, b, c, d, e, f) Kowalevski exponents

(e, 0, 0, 0, 0, e) 1, 1, 1, 1

−1, 1, 1, 1

These are all the non isomorphic cases of the algebraically completely integrability of

Lotka-Volterra equation in four dimensions, for which the Kowalevski exponents can be

defined.

We have classified the algebraically completely integrable Lotka-Volterra equations in four

dimensions, for which the Kowalevski exponents can be defined. However there are some

systems for which the Kowalevski exponents cannot be defined. These are those whose

Laurent solutions are:

xi(t) =
1

tνi

∞∑
k=0

x
(k)
i tk, i = 1, 2, . . . , n

where at least one of νi is greater than 1.

In addition, keeping in mind that H = x1 + x2 + x3 + x4 is always a constant of motion,

we can see that we have the following cases:

(i) ν1 = ν2 = ν > 1 and ν3, ν4 < ν,

(ii) ν1 = ν3 = ν > 1 and ν2, ν4 < ν,

(iii) ν1 = ν4 = ν > 1 and ν2, ν3 < ν,

(iv) ν2 = ν3 = ν > 1 and ν1, ν4 < ν,

(v) ν2 = ν4 = ν > 1 and ν1, ν3 < ν,

(vi) ν3 = ν4 = ν > 1 and ν1, ν2 < ν,

(vii) ν1 = ν2 = ν3 = ν > 1 and ν4 < ν,

(viii) ν1 = ν2 = ν4 = ν > 1 and ν3 < ν,

(ix) ν1 = ν3 = ν4 = ν > 1 and ν2 < ν,

(x) ν2 = ν3 = ν4 = ν > 1 and ν1 < ν,

(xi) ν1 = ν2 = ν3 = ν4 = ν > 1.

It is implied that x
(0)
i 6= 0 because otherwise the pole order of xi would not be equal to νi.

It is also implied that the cases (i) up to (vi) have been investigated with the same way,

as well as the cases (vii) up to (x).
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We take

A =



0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0


. (115)

Equations (67) become

ẋ1 = ax1x2 + bx1x3 + cx1x4, (116)

ẋ2 = −ax1x2 + dx2x3 + ex2x4, (117)

ẋ3 = −bx1x3 − dx2x3 + fx3x4, (118)

ẋ4 = −cx1x4 − ex2x4 − fx3x4. (119)

(i) ν1 = ν2 = ν > 1 and ν3, ν4 < ν

The function H = x1 + x2 + x3 + x4 is a constant of motion and so we have that

x
(0)
1 = −x(0)

2 .

In addition, since ν1 = ν2 = ν > 1, ν3, ν4 < ν and x
(0)
i 6= 0 for i = 1, 2, 3, 4, we can

easily see that the coefficients of t2ν in the RHSs of (116) and (117) are equal to zero.

We have that

ax
(0)
1 x

(0)
2 = 0 =⇒ a = 0 .

For the same reason the coefficients of tν+ν3 and tν+ν4 in the RHSs of (118) and (119),

respectively, are equal to zero. Therefore

x
(0)
3

(
−bx(0)

1 − dx
(0)
2

)
= 0 =⇒ b = d

and

x
(0)
4

(
−cx(0)

1 − ex
(0)
2

)
= 0 =⇒ c = e .

Hence, equations (116)-(119) become

ẋ1 = x1(bx3 + ex4), (120)

ẋ2 = x2(bx3 + ex4), (121)

ẋ3 = x3(−bx1 − bx2 + fx4), (122)

ẋ4 = x4(−cx1 − ex2 − fx3). (123)
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From (120) and (121) we obtain that

ẋ1

x1

=
ẋ2

x2

= bx3 + ex4 =⇒ x1 = λx2, λ is a constant.

But since

x
(0)
1 = −x(0)

2 =⇒ λ = −1 ⇒ x1 = −x2,

then equations (122) and (123) become

ẋ3 = fx3x4

ẋ4 = −fx3x4.
(124)

We have that

⇒ ẋ3 = −ẋ4 ⇒ x3 = −x4 + k, (125)

where k is a constant. Hence

ν3 = ν4.

If f = 0, then x3 and x4 are constant functions. Equations (121) become

ẋ1 = µx1, where µ is a constant,

the solution of which is

x1 = Aeµt,

where A is a constant. This is a contradiction because this solution has no pole (we

assumed above that x1 has pole order ν > 1). Therefore we have that

f 6= 0 .

This constraint leads us along with equations (124) to the conclusion that

ν3 = ν4 = 1.

We can equate the non zero coefficients of 1
t2

of both sides of (124), that is

−x(0)
3 = fx

(0)
3 x

(0)
4 .

Because of (125) we have that x
(0)
4 = −x(0)

3 , and then

−x(0)
3 = −f

[
x

(0)
3

]2
=⇒ x

(0)
3 =

1

f
= −x(0)

4 .

When we substitute (125) into the equations (120) and (123), they become

ẋ1 = bkx1 + (−b+ e)x1x4, (126)

ẋ4 = fx2
4 − fkx4 (Bernoulli), (127)
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respectively. Now from (126), if we equate the coefficients 1
tν+1 , we have that

νx
(0)
1 = (−b+ e)x

(0)
1

(
− 1

f

)
⇒ −ν =

−b+ e

−f

ν = e−b
f
> 1 .

We can solve the Bernoulli equation (127) considering two cases, namely k = 0 or

k 6= 0.

If k = 0, then the solution of (127) is

x4(t) = − 1

ft+ C1

, x1(t) =
C2

(ft+ C1)ν

where C1 and C2 are arbitrary constants. This proves that this case does not lead

to an algebraic completely integrable system, because we have only two arbitrary

constants (we need n− 1 = 3 constants).

If k 6= 0, then on solving the Bernoulli equation (127) we find that

x4(t) =
k

1 + C1ekft
, x1(t) =

C2e
ket

(1 + C1ekft)ν ,

where C1 and C2 are arbitrary constants. We can see that this case does not either

lead to an algebraically completely integrable system since its solution has only two

arbitrary constants C2 and k and we need n− 1 = 3.

Remark: The same result holds for the cases (ii) up to (vi) with similar calculations.

(vii) ν1 = ν2 = ν3 = ν > 1 and ν4 < ν

The coefficients of 1
t2ν in RHS of the equations (116), (117) and (118) are all equal to

zero because ν > 1. Therefore we have

ax
(0)
2 + bx

(0)
3 = 0,

−ax(0)
1 + dx

(0)
3 = 0,

−bx(0)
1 − dx

(0)
2 = 0

(128)

because x
(0)
i 6= 0, i = 1, 2, 3. Also, because of that, as we saw in the last case of the

three-dimensional problem, we are led to the relation

b = a+ d .

Equating also the coefficients of 1
tν+ν4

of the equation (119) we have that

−cx(0)
1 − ex

(0)
2 − fx

(0)
3 = 0 (129)
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because ν > 1 and x
(0)
4 6= 0. From equations (128) and (129) we have that

af − be+ cd = 0 .

If a = 0, then from (128) we have that b = d = 0 because x
(0)
i 6= 0 for i = 1, 2, 3. The

Lotka-Volterra equations become

ẋ1 = cx1x4,

ẋ2 = ex2x4,

ẋ3 = fx3x4,

ẋ4 = x4(−cx1 − ex2 − fx3).

(130)

If cef = 0, then

xi = constant

for some i ∈ {1, 2, 3}, but this is a contradiction, because we assumed that ν > 0.

Therefore cef 6= 0 and from (130) we have that

ẋ1

cx1

=
ẋ2

ex2

=
ẋ3

fx3

= x4 =⇒ xc
1 = Axe

2 = Bxf
3 ,

where A and B are non zero constants. In addition the pole orders of xc
1, x

e
2 and xf

3

are cν, eν and fν respectively. So

cν = eν = fν =⇒ c = e = f 6= 0 (ν > 1).

Substituting this relation into (130) we can see that the solution is:

x1 =
C2

−1 + feC3(t+C4)
, x2 =

C1

−1 + feC3(t+C4)
,

x3 =
−C3 + fC2 + fC1

f(1− feC3(t+C4))
, x4 =

C3e
C3(t+C4)

feC3(t+C4) − 1
,

where Ci are constants for i = 1, 2, 3, 4. The question here is: ”What is the pole

order of each xi?”. Before answering this question, we must observe that C1C2C3 6= 0

because otherwise x1 and x2 are constant functions. That cannot be true since ν > 1.

The pole t∗ satisfies the equation

feC3(t∗+C4) = 1. (131)

Using the De l’ Hôpital Rule and (131) we can find that

lim
t→t∗

(t− t∗)x1(t) =
C2

fC3eC3(t∗+C4)
=
C1

C3

∈ R

because C3 6= 0. This is a contradiction because in this case we assumed that the

order of the pole t∗ is greater than 1.
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Therefore if a = 0, we are not led to an algebraically completely integrable system.

What happens if a 6= 0? Equations (128) make us conclude that bd 6= 0 because

x
(0)
i 6= 0 for i = 1, 2, 3. So

abd 6= 0 .

Using a similar notation as in the three-dimensional case we are led to important

results. Assume firstly that ν4 ≥ 1. Let

u
(λ)
1,k = ax

(ν−k−λ)
2 + bx

(ν−k−λ)
3 ,

u
(λ)
2,k = −ax(ν−k−λ)

1 + dx
(ν−k−λ)
3 ,

u
(λ)
3,k = −bx(ν−k−λ)

2 − dx
(ν−k−λ)
3 ,

u
(λ)
4,k = −cx(ν−k−λ)

1 − ex
(ν−k−λ)
2 − fx

(ν−k−λ)
2

(132)

and

v
(λ)
1,k = u

(λ)
1,k + cx

(ν4−k−λ)
4 ,

v
(λ)
2,k = u

(λ)
2,k + ex

(ν4−k−λ)
4 ,

v
(λ)
3,k = u

(λ)
3,k + fx

(ν4−k−λ)
4 .

(133)

Let Si,k be the coefficient of 1
tν+k in the RHS of ẋi for i = 1, 2, 3 in (116, 117, 118),

respectively. Si,k is given by the sum

Si,k =
ν−k∑
λ=0

x
(λ)
i u

(λ)
i,k , k = ν4 + 1, . . . , ν, (134)

and for k = 1, 2, . . . , ν4 the corresponding coefficient is given by

Si,k =
ν4−k∑
λ=0

x
(λ)
i v

(λ)
i,k +

ν−k∑
λ=ν4−k+1

x
(λ)
i u

(λ)
i,k . (135)

The corresponding coefficients of 1
tν4+k in the RHS of (119) is given by the sum

S4,k =
ν4−k∑
λ=0

x
(λ)
4 u

(λ)
4,k , for k = 1, . . . , ν4. (136)

Using calculations similar to those in the corresponding case in three dimensions

(ν1 = ν2 = ν3 = ν), since

Si,k = 0, for k = 2, 3, . . . , νi, i = 1, 2, 3, 4,

we are also led to

u
(0)
i,k = 0, ∀k ∈ {ν4 + 1, . . . , ν},

v
(0)
i,k = 0, ∀k ∈ {2, 3, . . . , ν4},

(137)

These are true ∀i ∈ {1, 2, 3}. For i = 4,

u
(0)
4,k = 0, ∀k ∈ {2, 3, . . . , ν4}. (138)
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using that

u
(λ)
i,k = u

(q2)
i,q1
, if k + λ = q1 + q2,

v
(λ)
i,k = v

(q2)
i,q1

, if k + λ = q1 + q2.
(139)

We have that

Si,1 = x
(0)
i v

(0)
i,1 = −νix

(0)
i =⇒ v

(0)
i,1 = −νi.

So we have the linear simultaneous equation

ax
(ν−1)
2 + bx

(ν−1)
3 + cx

(ν4−1)
4 = −ν,

−ax(ν−1)
1 + dx

(ν−1)
3 + ex

(ν4−1)
4 = −ν,

−bx(ν−1)
1 − dx

(ν−1)
2 + fx

(ν4−1)
4 = −ν,

−cx(ν−1)
1 − ex

(ν−1)
2 − fx

(ν−1)
3 = −ν4.

(140)

We have also that

x
(ν−1)
1 + x

(ν−1)
2 + x

(ν−1)
3 + x

(ν4−1)
4 = 0

since the LHS of this equation is the coefficient of 1
t

in H = x1 + x2 + x3 + x4, that

is constant on the solutions of the Lotka-Volterra equations we work on. The matrix

of this linear system is 

1 1 1 1

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ν

−ν

−ν

−ν4


. (141)

Applying elementary row transformations, we have the equivalent linear system

1 1 1 1

0 1 b
a

c
a

0 0 0 a− c+ e

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ν
a

0

− cν−eν−aν4

a

0


. (142)

Assuming that x
(ν−1)
3 6= 0 then c = a+ e. If x

(ν−1)
3 = 0 then the system (140) derives

a system which has a solution if and only if c = a+ e. So in both cases

c = a+ e .

Therefore from the fourth row of the system (142) we have that

ν4 =
(c− e)ν

a
=
aν

a
= ν,
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that is a contradiction, since in this case ν4 < ν.

Remark: The same result holds for the cases (viii) up to (x) with similar calculations.

(xi) ν1 = ν2 = ν3 = ν4 = ν > 1

We use the same notation as in the previous case without the need of the v
(λ)
i,k . As in

the previous case we equate the coefficients of 1
tν+k for k = 1, 2, . . . , ν. For k = ν we

have the linear system

ax
(0)
2 + bx

(0)
3 + cx

(0)
4 = 0,

−ax(0)
1 + dx

(0)
3 + ex

(0)
4 = 0,

−bx(0)
1 − dx

(0)
2 + fx

(0)
4 = 0,

−cx(0)
1 − ex

(0)
2 − fx

(0)
3 = 0.

(143)

We solve last three equations with respect to a, b and c, we find that

a =
dx

(0)
3 + ex

(0)
4

x
(0)
1

, b =
−dx(0)

2 + fx
(0)
4

x
(0)
1

,

c = −ex
(0)
2 + fx

(0)
3

x
(0)
1

.

We can easily check that

af − be+ cd = 0 .

Having also that u
(0)
i,k = 0, k = 2, 3, . . . , ν, we obtain the simultaneous equations

ax
(ν−1)
2 + bx

(ν−1)
3 + cx

(ν−1)
4 = −ν,

−ax(ν−1)
1 + dx

(ν−1)
3 + ex

(ν−1)
4 = −ν,

−bx(ν−1)
1 − dx

(ν−1)
2 + fx

(ν−1)
4 = −ν,

−cx(ν−1)
1 − ex

(ν−1)
2 − fx

(ν−1)
3 = −ν.

(144)

We have also that

x
(ν−1)
1 + x

(ν−1)
2 + x

(ν−1)
3 + x

(ν−1)
4 = 0

because this is the coefficient of 1
t

the function H = x1 +x2 +x3 +x4, that is always a

constant of motion for this system. The matrix of this linear system is the following:

1 1 1 1

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ν

−ν

−ν

−ν


, (145)
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that is similar to the matrix (141) with the only difference being that ν4 = ν.

If a = 0 and b = 0, then from (143) we have also that c = 0, that is a contradiction

because

ẋ1 = 0 =⇒ x1 is a constant.

Assume that d = b 6= 0. Then

af − be+ cd = 0 =⇒ be = cb⇒ e = c.

The matrix (145) is row equivalent to the matrix

1 1 1 1

0 0 1 c
b

0 0 0 b+ f − c

0 0 0 c(b+f−c)
b

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ν
b

0

−ν(b+f−c)
b

0


. (146)

This is also the row equivalent of the matrix which derives from which the system

(143) if we replace ν by 0. We can see very easily that the above linear system has a

solution if and only if

f = c− b .

The solution for x4 of this system is:

x4(t) = C2 + C3 sin(t
√
m) + C4cos(t

√
m), (147)

where m = 3b2 + 3d2 − 2bd = 2(d2 + b2) + (d − b)2 and C1, C2, C3, C4 are constants.

This is a contradiction because the function (147) has no poles. So, if we assume that

d 6= b and having that b 6= 0, then

af − be+ cd = 0 ⇒ be = cd =⇒ e =
cd

b
.

Hence the row equivalent matrix of (145) is

1 1 1 1

0 1 b
b−d

b+f
b−d

0 0 1 c
b

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ν
b−d

ν
b

(b−d)ν
b

(b+f−c)ν
b


. (148)

This system has no solution since d 6= b. Hence we conclude that

a 6= 0 .
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Therefore we have that

f =
be− cd

a
. (149)

The row equivalent matrix of (145) is

1 1 1 1

0 1 b
a

c
a

0 0 a+ d− b a+ e− c

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

−ν
a

0

− (a+d−b)ν
a

− (a+e−c)ν
a


. (150)

Hence this system has a solution only if

b = a+ d , c = a+ e

and from the (149) we have that

f = e− d .

The present ODE system can be solved for any values of a, d and e. The simplest

form of the solution is

x2 = C1 + C2 sin(t
√
m) + C3 cos(t

√
m),

where C1, C2 and C3 are constants and

m = −2ed+ 3a2 + 3d2 + 2da+ 3e2 + 2ae

⇐⇒ m = (a+ d− e)2 + 2(a+ e)2 + 2d2.

The contradiction is that this function has no poles.

So the case ν1 = ν2 = ν3 = ν4 = ν > 1, cannot provide an algebraically completely

integrable system.

As we can see, the Painleve Analysis does not lead to an algebraically completely integrable

Lotka-Volterra system in four dimensions, as it happened in the three-dimensional case.
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6 Conclusion-Open problems

In this thesis we examine the algebraic integrability of Lotka-Volterra systems in three

and four dimensions. We restrict attention to systems defined by a skew-symmetric ma-

trix. The basic tool in the classification is the use of Painleve analysis, examination of

the eigenvalues of the Kowalevski matrix and other standard Lax pair and Poisson tech-

niques. Some number theoretic techniques are also used. In the four dimensional case

the classification involves over 100 cases. All the known integrable cases appear including

the open and periodic Kac-van Moerbeke systems and a big number of new cases. The

application of Painleve analysis and especially of the ARS algorithm is a useful tool for

calculating Laurent solutions and the check for the correct number of free parameters.

Another important tool is the use of the Kowalevski exponents. Imposing some integral-

ity conditions on the exponents and using some number theoretic techniques we obtain

necessary conditions for the algebraic integrability of the systems. Afterwards we prove

that the conditions are not only necessary but also sufficient. We would like to close by

stating some open problems as ideas for future research in this area.

1. Generalizations to higher dimensions The first and obvious problem is to try to

generalize this results in Rn for n ≥ 5. We believe that this problem would be quite

difficult at the present time. However, some of the systems that appear in the three

and four dimensional classification should generalize in an arbitrary dimension.

2. Applications In this thesis we consider a theoretical problem from a mathematical

point of view. However the big number of systems in the four dimensional classifi-

cation should be analyzed from various viewpoints, e.g. Complete Integrability, Lax

pair representation, Poisson geometry and also for potential applications in Mathe-

matical Physics.

3. Other systems Another open problem is to do a similar classification for systems

for which the defining matrix is not skew-symmetric, e.g. symmetric or a general

matrix.

4. Connections with Toda lattices It is well-known that the KM-system is equivalent

to the classical Toda lattice. It will be interesting to find a similar connection for the

new systems that appear in the four dimensional classification.

5. Negative Exponents As was suggested by Peter Leach it would be interesting to

consider the case of negative Kowalevski exponents.
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6. Darboux polynomials Is the classification of Darboux polynomials for such systems

related to the present classification? We believe that the answer is positive

7. Kowalevski Exponents Looking at the tables in the present thesis it is not abso-

lutely clear what is the relation between the degrees of the invariants and the set of

Kowalevski exponents. However, there are many relevant results in the literature.
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