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Abstract

, expanding field in Probability and Statistics is the field of multidimension-

indexed random variables. In this thesis we introduce asymptotic results for
s type of random variables which are not necessarily independent and identically
ributed. More specifically a new kind of dependence is introduced, the p-radius
' dependence, which is an extension of the notion of the m-dependence. See for ex-
~ ample Berk (1973) and Shergin (1983). For multidimensionally indexed p-radius

'idﬂpmdent random variables, classical asymptotic results are established.

First, well known asymptotic results related to multidimensionally indexed ran-
dom variables are stated without proofs. Then, a general technique is given which
is subsequently used for the proofs of most of the asymptotic results. The first
classical result presented, is the proof of the central limit theorem. Next, the Berry-
Esséen theorem for multidimensionally indexed p-radius dependent random variables
is given. In addition, the strong law of large numbers for multidimensionally indexed

p-radius dependent random variables using classical techniques is proved.

All the above results are proved for the case of two-dimensionally indexed random
variables. The extension to higher dimensions can be easily done even though the

notation might become quite complicated.

Finally, various probability inequalities for non identically distributed random vari-
ables are established. These inequalities can easily be extended to multidimension-

aliy indexed random variables.




Mepidndm

) topgag Twv tuyatey petaflntdy pe noludidotatoug Selxteg elvan évag okl yp¥-

TTUGe buevog topfag otg IMbavétnres xar oty Ltatiotnxd. H St
cUETAL AOVUTTOTIXE anoTeEAEoMATE YL TiG Mo Tdve tuyales petafh-
xat’ avéyxn, o. yaltes petafintéc va elvar aveldptnres xau todvopeg.
napdderypa dec Berk (1973) xau Shergin (1983). Eidixétepa, mapovoid-
- éva véo eldoc eEdpone, ™y axtivixd eE&ptnom, N onola etvan pla enéxtaom
m-e&dptnone. N axtivixd efapmpéveg Tuyaleg petafintés pe noludidotatoug

¢ dlvovtan xhaouxd aovunteTixd aroteAéopata.

exd Sratundvovial Yvwotd acuunteTxd aroteAéopata oyeTxd pe tuyaleg pe-
aflntéc pe noludidotatoug Selxteg, ywpls buwe va dlvovrar anodeifeis § Aentoué-
Y1n ouvéyewa, dlvetar 1 yevuxy| texvixt v onola ypnotponoeita oty andédeln
TV tAelotey ex TV anoteleopdtey tou napovaidloviat. To npdto xhaocowxé ano-
téheopa mov mparypateletal M Satpyr aut elvar n anédergn Tou Kevrpuixol Optaxot
spfipatos. AxorolBwg, napovoiéletar o Bedpnua Berry-Esséen yia axtivixd
- eaptnuéves tuyaies puetaPhntéc e moludidotatoug Seixtes. Entong, anodeuxvieta
' lasxupéq Népog twov Meydhwv AptBudy yia axtivixd efaptnuéves tuyales peta-

Bléc pe moludidotatoug Belxtes xpnowonotdvtag xhaotxés TeEVXES.

)

Ta o Téve anoteléopata amodeuxviovial yia TNV mEpinTwon TV tuyalev
afhqrdy pe dididotatoug Seixtec. H enéxtaon twv anoteheopdtwy oe ddotaon
rakbtepou Babuod pnopel va emtevyBel edxola av xau o oupfoliouds uropet va

gL apxeTd ToAGTAOXOG.




‘Téhog, anoderxvioviar Sdgopes aviobtnreg mbavétqrag yia un obévopeg tuyaieg
? éc. O aviobnreg autég pnopody elxoha va yevixeuBolv xar oty neplnt-
won ey wyatoy petaBlntdy pe toludidotatoug Selxtes.
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Chapter 1

Introduction

Arrays of independent multidimensionally indexed random variables constitute a
relatively new field in Probability and Statistics. Since 1951 when Dunford made
_ his first approach, many researchers followed and many useful results have been
~ obtained. See for example Wichura (1969), Cairoli (1970), Smythe (1973, 1974),
Cairoli and Walsh (1975), Gut (1976, 1978), Shorack and Smythe (1976), Etemadi

(1981), Klesov (1981), Christofides and Serfling (1990) and Christofides (1992).

For this special topic in probability called “arrays of independent multidimension-
?le indexed random variables” or otherwise “independent random fields” there are
s concerning weak convergence, almost sure behavior, rates of convergence and

“ mptotic behavior of partial sums in general.

is reasonable to ask whether there is a need to study multidimensionally indexed
m variables. Couldn’t we just easily extend all the well known results for
iensionally indexed random variables? The answer is no. The reason for not
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; able to generalize the classical results is the lack of total ordering. In the
nensional case total ordering is out of the question. We therefore have to deal
with partial ordering (see Section 1.2). Cairoli (1970) showed by a counterexample
%hat well known classical maximal inequalities are not valid in the r-dimensional

case and therefore a different approach has to be considered.

In Chapter 2, relevant asymptotic results on multidimensionally indexed random

variables are stated without proofs or any further details.

In Chapter 3, a general technique is given which is subsequently used for the proofs
of most of the asymptotic results. The technique is based on that of Bernstein’s,
the so called “big blocks technique” first introduced in 1927. The main objective of
Chapter 3, is the proof of the central limit theorem. The assumptions made for the
proof of the central limit theorem are general and not very restrictive. In fact, it
is the kind of assumptions one expects for the central limit theorem to hold in the

case of non i.i.d. random variables.

- In Chapter 4, the Berry-Esséen theorem for multidimensionally indexed p-radius de-
- pendent random variables is given. This is a theorem which gives information about
“ﬂ:e central limit theorem by providing an upper bound for the absolute difference

tween the distribution of a specific statistic and the standard normal distribution.
As it was expected the Berry -Esséen rate achieved is not optimal. For a sequence of
independent and identically distributed random variables X;, X3, ..., X, the optimal
e of convergence is O(n~%). For two dimensionally indexed p-radius dependent

idom variables the rate of convergence depends on the value of the parameters.
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As in the case of the central limit theorem, the conditions imposed for the Berry

séen theorem are reasonable for cases of non i.i.d. random variables.

In Chapter 5, we prove the strong law of large numbers for multidimensionally
‘indexed p-radius dependent random variables using classical techniques, such as

runcation.

All the above results are proved for the case of two-dimensionally indexed random
L
variables. The extension to higher dimensions can be easily done even though the

‘notation might become quite complicated.

In Chapter 6, various probability inequalities for non identically distributed ran-
‘dom variables are established. It is generally accepted that probability inequalities
for partial sums are extremely useful for asymptotic theory and therefore are very
frequently used. These inequalities can easily be extended to multidimensionally

indexed random variables.




-‘bhapter 2

Survey on multidimensionally

indexed random variables

2.1 Introduction and notation

In this chapter key results referring to multidimensionally indexed random variables

which are relevant to this thesis are presented.

Even though the field of multidimensionally indexed random variables is a relatively
new one, many asymptotic results have been established as mentioned in Chapter
1. These results are primarily related to the strong law of large numbers, strong

convergence in general, and the rate of convergence.

Before we proceed with the literature survey, all basic definitions and notation which

will be used throughout this manuscript are presented.




Let {Xj, i € N"} be an r-dimensionally indexed array of i.i.d. random variables
defined on a probability space (2, A,P) where r is a positive integer and N"

denotes the r-dimensional positive integer lattice. Clearly, for » = 1 we have
the classical case of a sequence of independent and identically distributed random

variables.

From now on partial ordering is assumed. For i= (3y,...,%,) and j= (j1,...,Jr) €
NT the notation i1 < j means that 3 < jx, k = 1,...,r. In addition, if n =
(n1,...,ns), |n| denotes the product []i_,n; while the notation |n|—oco means

that n;—o0 for i = 1,...,r or equivalently, min;<i<, ni—o0.

Associated with any probability space (12, A, P) arethe L, spaces of all measurable
functions X and therefore of random variables, for which E|X|P < oo, p > 0.

Specifically, X € L, means that E|X| < oo.

In addition, if X is a measurable function, then its positive and negative parts are

defined by X* = max(0,X) and X~ = max(0,—X) respectively.
As a consequence we define, logt X = max(0,log X) or log* X = log(max(1, X)).

The symbols “big oh” and “little oh” are to be used. These symbols compare the

magnitude of two functions in the following way. The notation
u(n)

u(n) = O(v(n)), n — L, means that lim, | ——=|<C

v(n)

where L is not necessarily finite and C is a constant. In addition, the notation

u(n)

u(n) = o(v(n)), n = L, means that lim,.,—— =0.

v(n)




2.2 Literature review on multidimensionally in-

dexed random variables

In this section we give briefly, some asymptotic results related to multidimensionally

indexed random variables without providing any proofs or details.

Smythe (1973) has studied the strong law of large numbers for r-dimensional arrays
of random variables. He approached the problem by stating the following question.
Given a probability space (Q,’.?-' ,P) and an r-dimensional array of independent
random variables with zero mean defined on (£, F, P), under what conditions will

the sample average converge to zero?

Dunford (1951) proved that for the case of independent and identically distributed
r-dimensionally indexed random variables the integrability of |Xy|log" |Xy| is
sufficient when r = 2 and in general, for » > 2 the corresponding condition for

almost sure convergence is the integrability of the term |Xj|(log* |Xy|)" ™.

Smythe (1973) showed that the above conditions are necessary and sufficient when
the random variables are independent and identically distributed. The necessity
part of the proof of Smythe, is given by classical arguments, i.e., Fubini’s theorem
and Borel-Cantelli’s lemma while for the sufficiency part of the proof martingale

properties and theory are used. The theorem is as follows:

Theorem 2.2.1: Let {Xy, k € N" } be an array of independent and identically

distributed zero mean random variables.




(1) If E{|Xu|(log* |Xi|)" '} < 00, then gk Tick Xi— 0 a.s.
(2) If E{|Xxl(log* |Xxl)"™'} = oo, then gy TigkXi /0 a.s..

Clearly the first condition is the “sufficiency” part while the second is the “necessity”
part. In addition, Smythe (1973) considered the non-identically distributed case
and stated that in general, the usual sufficient conditions for convergence in the one
dimensional case are sufficient for convergence in the r-dimensional case as well,
provided that they are appropriate stated (or generalized). For example, one of
these conditions is the adjusted three-series theorem appropriately generalized to

the r-dimensionally indexed random variables.

Etemadi (1981) also presented a proof of the strong law of large numbers for a
sequence of pairwise independent random variables, which is elementary and at the
same time can be extended to “ r-dimensional arrays of random vectors” as it is

quoted by his paper. The theorem is stated below.

Theorem 2.2.2: Let {X,., (m,n) € N?} be an array of pairwise independent

and identically distributed random variables. Let Spp = 372y 37—y Xij. Then,

E(lell log+ Ix:ul) < 00

implies that

h = EXU_ a.s. .
(m,;n)—c0 MN




The above theorem is the strong law of large numbers for 2-dimensionally indexed
random variables. The generalization to r-dimensional arrays is immediate by using
the sufficient condition E{|X|(log" |X|)"™'} < co. Notice that the conditions of
Smythe (1973) and Etemadi (1981) are more or less the same but the proofs of their

main results are different.

Theorem 2.2.2 is quite applicable since it only requires the random variables to be

pairwise independent and not mutually independent as theorem 2.2.1 requires.

Klesov (1981) gave the strong law of large numbers for independent multidimension-
ally indexed random variables as a special case of the strong law of large numbers

for multidimensionally indexed martingales. His result is stated below.

Theorem 2.2.3: Let {X;, i <n € N" } be an r-dimensionally indezed array of

independent random variables with zero mean and let Sp = Yijcn Xi. If > 1 and

ST EIXM < oo,
i

—l-Sn —0 as., as |n|— oo.

In|

Using some standard arguments such as symmetrization and desymmetrization,
Christofides and Serfling (1990) generalized the classical Kolmogorov strong law

of large numbers by the following theorem.
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Theorem 2.2.4: Let Sp = Tycn Xk where the Xy’ s are independent random
variables with EXy =0 and E(Xy?) < 0o for each k. Assume that 3" -l-k?-IrEXl% &

00. Then,

I—IS;. —0 as, as |n|— oo.

A very interesting class of statistics is the class of U-statistics which was initially
introduced and studied by Hoeffding (1948) as a generalization of the notion of
the sample mean. The class of U-statistics based on arrays of independent r-
dimensionally indexed random variables has been first introduced by Christofides

(1987).

Definition 2.2.5: Let {Xj, 1< n € N" } be independent random variables from
a distribution F. Let 0 = 0(F) be a parametric function for which there is an
unbiased estimator. The function h = h(Xj,,...,Xi,) 8 called kernel and it is

assumed that it is symmetric without any loss of generality.

For the estimation of the parametric function 0 the following U-statistic is used:

|\~
Un = U(xh i < n) = ( . ) Zh(xht'"!xim)

m

In|
where Y. denotes the summation over the combinations of m distinct
m

elements {ii,...,im} from the set {(1,...,1),...,(n1,...,7,)}.




Clearly,

8 = 8(F) = Eh(X,, ... Xi,) = f / h(z1,, .y 21, )dF (21, )...dF (21,

where the set {ii,...,im} consists of m distinct elements taken from the set

001,....1),..., (B, s 1))

Apparently, EU, = 6. What is also clear from the definition is that this class can

indeed be considered as a generalization of the sample mean.

Christofides (1992) presented the strong law of large numbers for the class of U-

statistics defined above, under the following necessary and sufficient condition
E{|h|(log" [h])""} < o0
thus generalizing the result of Smythe (1973) and Etemadi (1981).

Theorem 2.2.6: Let {Xj, i< n € N"} be a random sample from a distribution
F. Let Uy be a U-statistic based on this sample and the kernel h for estimation
of the parameter 8(F) = E{h(X;,,..,Xi,)}. If E{|h|(log*|h|)"™"} < oo then

Up — 60 a.s. as |n| — oo.
The proof of the above theorem is based on truncation and martingale theory.

In addition to the strong law of large numbers, Christofides (1997) presented the
following theorem which gives the rate of convergence for the strong law of large
numbers. The proof is obtained using martingale inequalities.
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Theorem 2.2.7: Assume that E|h(X;,,...,X;,)|" <oo for v>2 andlet Un
be a U-statistic based on a multidimensionally indezed array of random variables

‘and on the kernel h(Xj,,...,X;,) . Then fore> 0

P{ sup|Ux — 6] > €} = o(|In|'™), |n| — co.
k>n

Furthermore, in Christofides (1998) a Berry-Esséen theorem for U-statistics is pre-

sented which gives the rate of convergence for » = 2. The theorem is as follows:

. Theorem 2.2.8: Let

I\~
Un:( ) Eh(xivxiz)

2
be a U-statistic based on a multidimensionally indezed array of random variables

for estimation of the parameter 6. Let of be the variance of Un and assume
that E|h(Xi,,Xi,)|> < 0o. Then, if ®(z) denotes the distribution function of the

standard normal,

sup |P{ 03'(Un—0) < z} — @(z)| = O(In| %), as |n| = co.

—oo<T<o0




Chapter 3

The central limit theorem

3.1 Introduction

One of the most widely studied subjects in probability theory is the concept of
dependence. The nature of dependence varies and unless specific assumptions are
made about the dependence between random variables, no meaningful statistical

model can be assumed.

A measure of dependence indicates how closely two random variables X and Y are,
with extremes at mutual independence and complete mutual dependence. Measures
of dependence could be conditions based on order or time between random variables,
or could be conditions expressed in terms of covariance or correlation coefficient.
Distance is also usually considered as a measure of dependence. For example, Fréchet

(1946) proposed as a measure of dependence the use of an average of the distances

of the distribution of Y conditional on X from some typical value such as the

12




conditional mean or median. Fréchet (1948) also proposed the use of the Lévy
‘metric (distance). A very important kind of dependence considering distance as a

measure of dependence, is the m-dependence case. See for example Berk (1973).

Definition 3.1.1: A sequence of random variables {X,} is said to be m-dependent
if there ezists a positive integer r such that any subsequence {X,, j > 1} of {X,}
with {n; + m < nj}1} for every 7 > 1 and ny > r is a sequence of independent

random variables.

On the other hand, limit theorems in probability theory are of great importance.
They are generally regarded as theorems giving convergence of sequences of prob-
ability distributions or random variables. Typically, three are the most important
classical limit theorems: The classical forms of the strong and weak law of large
numbers and the central limit theorem. These theorems generally deal with the
asymptotic behavior of the sum of n random variables S, = X; +...+ X, taken from

a sequence of independent and identically distributed random variables X, X, ... .

These classical results have been generalized in various ways during the last fifty
years. Such generalizations may refer to the conditions imposed on the random
variables such as dependence, extension to higher dimensions than the first, or gen-
eral “smallness” conditions. See for example the classical books by Loéve (1977)

and Petrov (1974).

The classical central limit theorem has been extended to the case of dependent

random variables by several authors. See for example Bernstein (1927), Heinrich
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| (1987), and Utev (1989). An important special type of dependent random vari-
ables mentioned before and applied to the central limit theorem is the m-dependent
case. According to the definition of the m-dependence, two sets of random variables
(X1, X2, ..., X;) and (Xj, Xj41,...,Xn) are independent whenever j —i >m. On
the basis of this case many techniques and variations have appeared concerning the

central limit theorem. See for example Shergin (1983).

The first who studied the central limit theorem based on m-dependent random
variables were Hoeffding and Robbins (1948). As it is mentioned in their work, the
central limit theorem for m-dependent random variables can also be extended to
what is called f(n)-dependence. A sequence is said to be f(n)-dependent if for
j—1i > f(n) the two sets of random variables (X3, X3,...,X;) and (Xj, Xj41,..., Xs)
are independent. The magnitude of f(n) should be of sufficiently lower order than

the magnitude of n.
Notice that in the case where f(n) is a constant m we have the m-dependent case.

We now extend the notion of m-dependence to the case of multidimensionally in-

dexed random variables:

Definition 3.1.2: For a positive integer r let N™ denote the r-dimensional positive
integer lattice and {Xj, 1 € N"} be an array of random variables defined on a
common probability space (2, A,P). Let p > 0. The random variables {X;, i€
N"} are said to be p-radius dependent if X; and X;, are independent whenever

d(iy,iz) > p, where d(iy, i) is the Euclidean distance between i, and is.

14




Notice that, if p = 0 the random variables {Xj, i € N"} are independent.

Following Hoeffding and Robbins (1948) we can choose p to be a function of |n|,
where |n| = nin,...n,, and thus we have the extension of f(n)-dependence to mul-
tidimensionally indexed random variables. As stated before, for f(n)-dependence

the magnitude of p should be of sufficiently lower order than that of |n|.

The idea of p-radius dependent multidimensionally indexed random variables is
a natural extension of the notion of m-dependent random variables. However,
the extension of m-dependence to random fields can be defined in a different
way. According to Heinrich (1987), a family of random variables X,, z € Z¢ =
{£0,+£1,42,...}¢, defined on a probability space (£, A, P) is said to be a random
field (my,...,mq)-dependent if for any finite U, V C Z? the random vectors
(Xu)uev and (X,)vev are independent whenever minyeyev |u; —v;| > m; for
at least one j € {1,...,d}. In the case where m; = ... = mg =m (= 0) the random

field is usually called m-dependent.

Although the concept of p-radius dependence is geometrically more difficult to deal

with than the idea of an m-dependent random field, it appears to be more natural.

There are several applications concerning p-radius multidimensionally indexed ran-
dom variables. One might find applications in media technology, meteorology and

in general in situations where spatial statistics should be considered.

The main objective of this chapter is to establish a central limit theorem for an
array of multidimensionally indexed p-radius dependent random variables.
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In the following we are dealing with the case r = 2. The case r > 2 can be treated

‘similarly although the notation becomes more complicated.

3.2 Lattice decomposition and related results

For a real number z , [z] denotes its integer part. That is, [z] denotes the greatest

integer less than or equal to z.

We assume the usual partial ordering for the elements of N2, i.e., the notation

(41,71) < (32,72) means #; <3 and j; < ja.

In addition, the notation (n1,n2)—c0 means n;—oo for i = 1,2 or equivalently,

minls.-sg n;—0oo0.

To avoid any trivialities assume that p > 1. Let (ni,n;) € N? and assume that

{Xi;, (i,7) < (n1,n2)} is an array of p-radius dependent random variables.

Let

y P if p is an integer

P =
[p+1] if p is not an integer

i.e., p* is the smallest integer greater than or equal to p.

Let D,

'.i ."e

denote the disk with center at the point (31,%;) and radius v where v is a

positive integer greater that p*, that is,

D}, ;, = {(51,52) : d((41, J2), (1, %2)) S v}

16




Let S}f ,), = Y X;; where the summation is taken over all
(52,72)€D},

lattice points (y,72) which are in the disk DY ; . Let

t1,92°

Ti;,i,={(J.1,j2):i1—l/£j1$il+ll, i3 —v<j; <i3+v}

i.e., Tj i, is the square circumscribing the disk D, . .

Let S(T) =t Z X

s
To keep the notation simple, let k = v+ 1, A = 2v + p* + 1, d; = [n1/]] and

d; = [ny/A].

By the definition of p-radius dependent random variables the following random

variables are mutually independent:

T
Stws Seleeny - Shikiriny

T
Sitar Stian s Skin)(kerday

(1)
Stitr -k Srir@-) k3 Sk -1)(ktriz)

S duyt” Stebraineay s Sthirts)bde)




Clearly,

di—=1da~1 )
Smma = 25 22 S(ebria) (kriz)
11=0 i3=0

is a sum of independent random variables.

To avoid further complications we assume that

ny =di(2v+ 1)+ (dy — 1)p* and ny =dy(2v + 1) + (da — 1)p".

Let
Aﬂl.ﬂz = {(":J) : (1! 1) < (i,j) < (ﬂ1,ﬂ2)}
and

By = {USR2 USRS Tinigicerrin )

In order to make things more clarified we shall give a brief explanation of the ele-

ments of the set By, n,. -

First, we divide the two-dimensional positive integer lattice points into indepen-
dent disks, i.e., we require that the distance between any two points, belonging
to two different disks is greater than p*. In other words, the distance between
the centers of two different disks is greater than or equal to A = 2v + p* + 1.
To each of the independent disks we circumscribe a square. Therefore, starting
from the lowest left corner, the first row of squares consists of the random variables
Sknty Siairykr o Sietaay) - Similarly, the first column of disks includes the random
variables S,(,?, S,(:{‘LA), ...,S,E?'(LM’). Figure 3.1 shows the special case where p* = 1
and v = 2.

18




Figure 3.1

The number D; of the circumscribing squares in the horizontal dimension is

— n1+P‘ =ﬂ1+p‘
2v+1+4p* A

1

while the number D, of the circumscribing squares in the vertical dimension is

D, = ny + p* =“2+P‘
1T+ A

Now, the set By, ., includes all lattice points which are not included in any cir-

cumscribing square.

& i
Let  AGui ;ina) = 2 2 Xa-

=1y t=5

Then the sequence Afl%, = A(ui—p+1A(a-1)+1 ; Mz Aia—p*) 1O

1.'1 = 1, sany D] —1 and ‘l'z = 1, ...,Dg

19




is a sequence of independent random variables and consequently
ESEaING
A= Z E A":-*'z

11=1 ix=1

is a sum of independent random variables.

Note that A, is the sum of random variables which belong to vertical strips between
the circumscribing squares but not to any horizontal strip. By saying “vertical strip”
we mean the strip which is formed between two successive columns of circumscribing
squares. A “horizontal strip” is the part of the lattice which is formed between two

successive rows of circumscribing squares.
Similarly, let A%, = A ii-1)4102-p041  sprpiy) 0T
‘il = 1, aeey Dl and l.z = 1,...,D3 -1

and

A,

AL,
11=1 iz=1 =
Then, A, is also a sum of independent random variables.

A, denotes the sum of random variables which belong to horizontal strips between

the circumscribing squares but not to any vertical strip.
O = Ao ; g T
Let Ai; d2 = D(ii=p*+1,Ma=p*+1 ; ig,Mp) 10T

l:l = 1,...,D1 —1 and 'I'.g = 1,...,02 -1.

20




In Figure 3.1 for the special case p* =1, v =2 A®.

11,12

is denoted by ® . Clearly,
AS % s an array of independent random variables and consequently
D;—1D;-1
5 22 Al
t1=1 ig=l

is a sum of independent random variables.

If Ay, n, denotes the sum of random variables which do not belong to any circum-

scribing square then

Dy = 2 Xigs = Dc+Ar + Ay
(jhb)e-sn;.ng

The following results will be needed for the proof of the central limit theorem in

Section 3.3.

Yemma 3.2.1: Let {Xi i, #.=1,...m, i3 = 1,...,n2} be an array of
independent random variables with zero mean. Let o ; be the variance of X, i,

while R} ; < oo denotes the third absolute moment of X, i, .

Let
“l n2 2 Z Ifls'? “1 mz2 E Z o-‘l. Wz*
11=112=1 i1=11i3=1
If
Tnyma =0
(“1 n2 )_"m 3111 na
then

(i) Riyjiy < Trany 0nd Oy iy < Snymp for (41,42) < (n1,n2) and
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(i) Ri, iy < Spym, for all (n1,n2) > ng for some ng € N? and (i1,13) < (n1,n2).

Proof: The proof of (i) is trivial. For (ii) observe that since

Tnimng _ 0
(n1,m2)—00 8y 1y

then 3 ng € N? such that for (n1,n2) > noy, Tnymy < Sny s
Thus, by (1) Ri, i, < Tnyna < 8ny,m, and the proof is complete.

Lemma 8.2.2: Let {X;,;,, 41 =1,.,n, i3 =1,...,n} be an array of in-
dependent random variables with zero mean. If EX? ., =of ., and E|X; ;|* =

Ih?hgs < 0o then,

Ti4,ia ﬁ Rﬂ,t'a for (il)iz) S (ﬂl,ﬂg).

Proof: By Liapounov’s inequality (E|X|")* is increasing in r, for r > 0.

Then, (EIX‘-I,.-,P)'} < (B|Xi,,[)% ie., (62 ,)% < (R} ,,)s which implies that

0ii» < Ri, i, and the proof is complete.

The inequality in the following lemma is the so called Rosenthal inequality the proof

of which can be found in Petrov (1994).

Lemma 3.2.3: Let X,..., X, be a sequence of independent random variables with
E|Xi|P < 00 for i=1,..,n and for some p > 2. Without any loss of generality

assume that EX; =0, 1=1,...,n.
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Let

Sa=%.X:, M,,=Y E|Xif and B,=Y EX}.

f=1 =1 =1

E|S, " < c(p)(Mpn + BY?)

where c(p) 1is a positive constant depending only on p .

3.3 A Liapounov type theorem

The main result of this chapter is the following Liapounov type theorem.

Theorem 3.3.1: Let N? be the two dimensional positive integer lattice. For n €

N? let {X;, i< n} be an array of p-radius dependent random variables.
Assume that EX;; =0 fori=1,..,n1, j =1,...,ny without any loss of generality.

Let

{SE:E-M;),(MM,)’ 11=0,.,d1—1, 1= 0,..,d0 — l}
be the array of independent random variables defined in Section 3.2.

Let o2 ;. be the variance of S{p)ri) ksripy and let also

l!'.z

f§ . = Elsgﬁnl).(ﬁ,\g,)ls Md ('l'.(f,}.-.-)s = ElAEf?lz‘a for C= 1’2’3'

1182

Assume the finiteness of the above quantities and define
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di—1dz—1 di—1dy-1

n;.na = E E Tirsiar aﬂlm z E ‘-";;,.3

11=0 i2=0 11=0 i2=0
and (9, = 3% 350K F, (=123
i1=113=1

where

) =B =D p =0 for i1=1,.,Dy, ir=1,..,Ds

Assume that the following conditions are satisfied.

4

Trimae _ Juma _ o
(n1,n2)—00 Onymp - (n1 l“’)"‘”anl n2

nz.nz Z E(Affl,)” — 0 as (n1,ng) = 0 for (=1,2,3.

11=112=1

Then,

—sz,lu is AN(O )

N2 § —1i=1

Proof: The proof is based on the technique first introduced by S. Bernstein (see

Hoeffding and Robbins (1948)).

nm
We can express the sum > > X, i, as

i1=11ip=1




di—-1dz—-1

n n
Z Z Xisia = 2 2 Sgﬂxi,).(u,\a,) + Anyna

i1=1i3=1 11=0 i=0

where Ay, », is defined in Section 3.2.

The theorem will be proved if we show that as (ny,n3) — oo

- 1 dy—1d—1 (T) d
(?) —— 2 2 S keri — N(©0,1)
n1,M2 43=0 i3=0
and
5, 1 »
(u) Z X.ﬁ..l'z =0

a“hu’ (-nhﬂ)eB"ll"S
where B, ., is defined in Section 3.2.
We proceed to prove (i).

Following Cramer (1945), we denote by ®;, ;,(t) the characteristic function of the
random variable S((alit).(k-l-a\iz] and by ®@,, .,,(t) the characteristic function of the
random variable ‘—m’f-;Sﬂ, ny Where

di1—1dz—1 )
Saymg = E 2 S{H-\ﬁ):(ﬂ"\"?)'

11=0 i2=0

Then, by the independence of the random variables

{s((,f}_,“.l,,(,‘+,“.z,, = O e =0, dy — 1)

25




we have

] di—1dy—1 dy—1dz~1
Q"':l N2 (t) =E ezp{‘t E E S(k'h\u),(k-l-.\lz)} 53 1-.[ H @‘1"2(
nin2 !1=0 32 ll—o Q:I:D “'l lnﬂ

Using a standard argument of complex analysis (see Cartan (1963) for an extended

treatment of the topic) we take the loga.nthms of 1423 1225 @, "’(’M “3) and
D, n,(t) to get
di—1da—1
In@py iy (8) = 30 2 In®iyip(—). (3.3.1)
#1=0 i2=0 On1ima

Then using the MacLaurin expansion we can write

B (t) =1+ E{'ts(ku‘,),(u-,\.,)} + E{“S(Hau).(kq.m)} + 31 = E |f5(k+.\.,).(k+»,)|

2 52 .
=1- t.__aln'z + I |3 u.ta
i 2 o2 g
n1,n2 nuﬂz

where 0; is a quantity with modulus not exceeding unity.

Then
t2 o.! ’.3
In ®;, . In{1 — ——ud2 ! ItIS 11,02
‘2( “hm) { 20 ?'l 4, a‘ghm
=In(1+2) (3.3.2)
where
~t* 7} iy O1ips rﬁ i2
= u tP i, 3.3.3
o T WO LT (3:33)
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For t fixed, since :—:i—::— — 0, then z — 0 as (n1,n2) — o0, i.e., |z| < 1/2 for

(ny,n,) sufficiently large. Now,

3 48
BB b = ol e e v
(1+2)==z 2+3 4+
1o (" 2%
=2 e e et L)
=z+ 2 2+3 4+5 i)
=2+ 0,2°
whereﬂ::-—-i—+§-—-‘z-+%—... and |[6;] < 1.

This is true since

1 1 1 1
6] < -2— +3lel+ 7121+ 512 +
5N 2 3
<z + +4(2)+5(2)
it _2 ___3
< HGI+HGP
=1.

Equation (3.3.3) can be written

t‘r 01 2

z2=0;——18 4 — a 1 o Tinia (3.3.4)
2 0'31 N2 aﬂl n2
=5 Pii i
L) — L s
where 65 = _r’m.-,.‘, and 64 = —1—'L,“M :

Notice that by Lemma 3.2.1 for (n;,n;) sufficiently large, we have that |04 < 1 and

by Lemma 3.2.2 |3] < 1.

Now, using 3.3.2, 3.3.3 and 3.3.4
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In @, (~——) = In(1+2)
ﬂhﬂa

=z +6,2°
-2 o}, el [t

s lnt e ! Itla !nlz = 5 é (a 1»'2 =L SR 919 lmz )2
3 Osia Oy o 2 A1 6 -3
t2 ‘1 iz 3 7"‘3 1: T‘: (] Itla 2

- y + |t[ 182 9 182 (93 $ 019 )
= Tais O O a:: m2

~t2 o? 15 s M

. il 11y TRt |t|3 uﬁz + a 9‘ l:.t: (03 + 9194 )2
2 0‘21'1!“3 agllnﬂ aﬁl 2

= % + Tiia |t| + 0504(03— + 6164—— ) }
2 a',,1 . o‘?,‘ 9 6 2

Summing over (i1,1;) we have by (3.3.1) that

2 dy—=1dy-1 0.2 di—1dz—1 3

t 1 i 9 tz t
ln@nhng(t) Z Z 1;‘2 =5 Z Z L Gllt|3+9204(03'é'+6104| | )2}

11=0 i2=0 ﬂnﬂe 11=0 12=0 ﬂlu“‘!

"ta we |t| 2
—+ ) z ':"2 |t|3+9294(93—+9194 g

11=0 i2=0 m 2
Therefore,

ta dl—l dﬁ—l ‘ 01 5 tz
[1n @p, 1y (2) + EI - E m: o 0294(935 + 6,0

11=0 i2=0 ru.ﬂa 6

[t

=P

Observe that,
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t
B+ 0264(03-— o0, Bye)
6 5
| |t|3 + 030493 1 029393 Itl + 01920302 lt' I

P ti t t 8
< Lﬁﬂlﬂa + |92949§|Z o |020203|| X » |61929393|-I-6L

LA LA L
3 L I8 oI < St
=5 E) 4 * 36 * 6

since all s are quantities with modulus less than or equal to 1. Thus,

Me Ms dy—-1dz—~1 ,,

S S e

11=0 i2=0 ﬂa.ﬂa

|t16 |t‘s) ni l“ﬂ

ﬂlﬂi

1080, () + 51 < L4 £ K

L

( + +

Since
r“hﬂ? = 0
(n1,n2)—00n; ny
then for every fixed t
t?
olim 0 .(0) = —5
and thus

lim @, 0,(1) = emp(—)

(“3 yng)—+co
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Using the continuity of characteristic functions of Lévy and Cramér the proof of (i)

is complete.

We proceed to prove (ii). Using Markov’s inequality we have that,

A +A+A

P{I¢r Y. Xial>e=Pf | > €}

PN2 (jy,52)€Bny,ng Onyyng
<1"{| | 5 -}+P{| —| > —}+P{| —| > }

Onyyng Ony iy Tnyng
< 2 (BIAP + EIAP + EIA)
e asln“ﬂes : g
D;-1 1 Di-1 Dy >
s bk B PSS 5 BAL P+ 3 BIAL,P
aﬂi:ﬂa i1=1 iz=1 11=1 iz=1 11=1 iz=1

Dy Dy-1 Dy-1D;y-1
HY Y EGD,)E+ SR AP (Y 3 EAD) (335)

t1=1 ip=1 i1=1 =1 i1=1 iz=1

(1) Y3 (42 )3 3
- oqfm) |, O Obl | Lios 35 5% pad,

aﬁl ﬂ'lca 0.3':'1 ﬂ'zea 0'21 w;ea f1=1 iz=1
(2) g e =T
+§ . 1ZIE(A.,,.,.)’} + {a.u,.., Zl -El E(AYL, )i} (3.3.6)
ll- 2= =1 1=

where inequality (3.3.5) follows from Lemma 3.2.3 and C denotes a positive

constant which is allowed to change from line to line.
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By the assumptions of the theorem and using the fact that

Dy D,
o z:; El E(AY,)? -0 as(ny,ny) — 0 for (=1,2,3
t11=112=

we have that
1

P > Xial>e -0,

o'!'ll ha (J'l -jﬁ)GBn; £

1

X1 2 50
Tnana (5 »j‘a‘)eBn; n2

and therefore the proof of (ii) is complete.
The theorem follows from Slutsky’s Theorem.
Remarks

1) Theorem 3.3.1 can be compared to that of Bernstein’s (1927) in the sense that the
method of “big blocks” used here was first introduced by him. The major difference
is that Bernstein imposed assumptions on conditional expectations while in this we

don’t.

2) In the case of independent and identically distributed multidimensionally indexed
random variables, under the second moment assumption, the central limit theorem
is proved in Christofides and Serfling (1998). In contrast to the i.i.d. case, in the
case of p-radius dependent random variables the finiteness of the third moment is
needed, in order to prove the result. On the other hand, the finiteness of the third
absolute moment of Xj, ;, which is needed to prove the central limit theorem for
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p-radius dependent random variables, is also needed for proving the result in the

case of independent but not necessarily identically distributed random variables.

3) The conditions under which Theorem 3.3.1 is proved are not very restrictive and
are fulfilled in the case p = 0, i.e., in the case of independent random variables. For

example, the assumptions

¢
M=0 and lim h-’-"3-’--=0 for: { =1,2,3
(n1n2)—00 0y, ny (n1,m2)—=00 0, 0y

are the classical assumptions for the proof of the central limit theorem for indepen-
dent but not necessarily identically distributed random variables.

In addition, the assumptions

Dy D;
02,5 S EMY.)? -0 for (=1,2,3

11=113=1

are mild.

4) Theorem 3.3.1 can be extended to an analogous theorem for f(|n|)-dependence.
Of course, p= f(|n|) has to have sufficiently lower order than |n| and therefore

lower order than v.

5) In this chapter the central limit theorem has been shown for » = 2. The result can
be extended under the same assumptions to higher dimensions although notation

becomes cumbersome and complicated.




Chapter 4

The Berry-Esséen theorem

4.1 Introduction

The exact distribution of a statistic is usually complicated to define and work with.
Hence, we usually turn to the approximation of the exact distribution by a sim-
pler distribution with known properties. This is done in Chapter 3. That is, we
have approximated the distribution of a sum of multidimensionally indexed p-radius
dependent random variables by the standard normal distribution under general con-

ditions.

In this chapter we shall show how the values of the parameters affect the speed
of convergence to the limit and how large (ny,n;) has to be in order the limit
distribution (standard normal) to serve as a satisfactory approximation. These two
aims are fulfilled to a certain extend by the Berry-Esséen theorem and they have

considerable practical and theoretical significance, since one needs to know how
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large (n1,7m2) should be in employing the limit theory. However, estimates of the
rate of convergence in the central limit theorem were obtained for the first time
by Liapounov (1901), even though the classical result of the Berry-Esséen theorem
for a sequence of independent and identically distributed random variables were
separately obtained by Berry (1941) and Esséen (1942). We shall therefore give
here an explicit upper bound for the difference between the distribution function of

a sum of multidimensionally indexed p-radius dependent random variables and the

standard normal distribution function.

4.2 Preliminaries

The proof of the main theorem involves many estimates. We present these estimates

in three different lemmata and then complete the proof of the theorem afterwards.

We will use the same notation as in Chapter 3. First, we present the following

lemmata.

Lemma 4.2.1: Assume that X and Y are arbitrary random variables and
F(z)=P(X <z) and G(z) = P(X+Y < z). Forany ¢ >0, z € R and any

distribution function H, we have that
|G(z) — H(z)| < max{|F(z +¢) — H(z +¢)|, |[F(z — ) - H(z — €)|}

+max{|H(z — &) — H(z)|,|H(z + €) — H(z)|} + P(IY] > ).




Proof: For every real z and € > 0,
PX+Y <z)=P(X+Y <2z, Y> —-€)+P(X+Y <z, Y < —¢)

SPX<z+e)+PY < —e
<PX<z+e)+P(|Y]>¢)
which implies that
G(z)—H(z) < F(z+e¢)— H(z)+ P([Y| 2 ¢)
=F(z+¢)—H(z)+ H(z+¢)— H(z+e)+ P(|Y| 2 ¢)
< |F(z+€) = H(z+¢)| + |H(z + €) — H(z)| + P([Y] 2 €)
< max{|F(z+¢) - H(z +¢)|,|F(z— ¢) - H(z — €[}

+max{|H(z — &) = H(z)|,|H(z + ) — H@)[} + P(Y] > ¢).
Respectively we have that,

Gz)=P(X+Y <z)=1-P(X+Y 2 z)

=1-P(X+Y>2, Y<e—-P(X+Y 2z, Y 2¢)
>1-P(X>z—€—PY 2 21-P(X2z—¢—P(Y]|2¢

= F(z — ) — P(IY] = ¢).

Thus,

G(z) - H(z) > F(s — &) — H(z) — P(IY] > ¢)
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=F(z—€)—H(z—¢€)+ H(z—¢)— H(z)—P(|Y]| 2 ¢)
> —|F(z—¢)—H(z—¢)|—|H(z—€)— H(z)| - P([Y| 2 ¢)
> —max{|F(z +¢) — H(z +¢)|,|F(z — €) — H(z — €|}

— max{|H(z — ¢) — H(2)},|H(z +¢) - H(z)|} - P(Y] > ¢).

Therefore,
IG() — H(z)| < max{|F(z+¢) — H(z + €)|,|F(z — ) — H(z — ¢)]}
+max{|H(z — ¢) — H(z)|, |H(z + €) - H(z)} + P([Y] 2 ¢).
Notice that the previous inequality lead us to another very important inequality,

namely

|G(=) — H(=)| < sup |F(z) - H(z)|
+max{|H(z — ¢) — H(z)|,|H(z + ¢) — H(z)|} + P([Y| 2 €) (4.2.1)

for every real z and €>0.

Lemma 4.2.2: Let F be a distribution function and G a real differentiable

function with G(z)—0 as z——co or G(z)—1 asz—oo.
Let sup, |G'(z)| < M where M is a positive constant.

If F—G € Ly and G is of bounded variation on (—00, o) then for every T >0

sgplF(m) _ (@) < %f: I¢F(t) ; da(t) dt + 2:;{

where ¢p(t) and ¢g(t) are Fourier-Stieltjes transforms of F,G.

36




Proof: The proof can be found in Chow and Teicher (1988) p. 302.

Lemma 4.2.3: Assume that X and Y are arbitrary random variables and let

F(z)=P(X <z) and G(z) = P(X + Y < z).
Let €>0, z € R and ®(z) be the standard normal distribution function.

If sup |F(z) — ®(z)| < M then,

sup |G(z) — &(a)| < M + max{|®(z — ) — &(2)], |®(z +€) = ()|} + P([Y] 2 ).

Proof: The proof is straightforward from Lemma 4.2.1 by setting H(z) = ®(z).

Lemma 4.2.4: Let {X;, i,, (31,%2) € {(1,1), ..., (n1,n2)}} be an array of indepen-

dent random variables with

EXy i =0, EX};, = and Elxtmzl = Ri?:.!’:'

11,2 ‘1 ¥z

Define

m,nz E E X-:.m n:.ﬂn Z Z Siysia? .

11=114=1 f=11i=1

3 el I e 1S, 1z
Tring = E Z R?m'a and @m.ﬂa(t) = EGXp(—a———-—)

i1=143=1 ni,n2

Then, 3 a positive constant C such that

i 2 " 2t
[Buua) — € F| SOZEPE for < g
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Proof: Following Cramer (1945), we denote by ®;, ;,(t) the characteristic function
of the random variable X; ; and by ®s, . (t) the characteristic function of the

random variable —— = LS ma-

Then, by the independence of the random variables

{Xi, iay (31,32) € {(1,1),...,(n1,m2)}} we have that

5, (1) = Beap(22) = T T @105

n1n2 i1=114p=1 Onymz

Using the same argument as that of Chapter 3 we get

In@s,,., () = 3 3 In Bip(——)- (422)

i1=1i2=1 “! 2
Using the MacLaurin expansion we write

B i,(t) =1+ E(stX,h.,) s i~ E(‘txu.-z) + E 1t X1 2 |3

=P g El 242 + I3 Ri’l 12

“1 N2 “l 2

where @ is a quantity with modulus not exceeding unity.

Then

t 3.: ‘m.'
ln@'l.sz( )—']Il{]. 2 ?‘ . 3 |‘|803m

“1 N2 ny,n2

o

=In(1 + 2) (4.2.3)




where

—$2 3 2
2= a“"’ + 6|t|""§‘"° (4.2.4)
: ni1,n2 n1,n2

Let 6; = —-ﬁgl-'fﬂ- Then, by Lemma 3.2.2, |6,| < 1.

1,02

Therefore, z becomes

R?
o= p i | By }z?"". (4.2.5)
2 ot 6 aR

By equation (4.2.3)

In ®;, ,.,( ) =In(1 4 2) = z + 652° (4.2.6)

ﬂl W2

with |#3| < 1 and where the last equality of (4.2.6) follows using the same arguments

as in the proof of the central limit theorem in Chapter 3.

Replacing the two forms of z from (4.2.4) and (4.2.5) into (4.2.6) we have,

—$2 g2 .
111 @,1‘,2( ) = t ’;mz = |t|3 R?mz + 9 {02 tg Ru 2 & < |t|3 &"m, }3
ﬂ: N2 2 aﬂ] M2 nl N2 “'.I. N2 “], na

t2 32 iz SR? R: 02 6 R|
o s a0 : 1,62 9 t‘ 1,42 1,92 12
2 aﬂ1ﬂz+ ||o,31m+ a::nz{ +6I l"m.uz}
_tﬁ 32 iz 3-@ Rl 82 0 '& 12 12
— e + + 1:42 +a ¢ 1442 I 14 ) ;
T, [¢] n1,m{6 | o “m( alt i }
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Let 6, = 2[t|ﬁ:ﬂ- and assume that 64 < 1.

Then,
—t2 s : i R? 0 R‘ i é (7] R‘l:'z
lnq’um( )= 2 1'3 I |3 1.12{ + — 39 3 2( 2 12 r )2}
ﬂltﬂﬂ “1 N2 “1 na “1 na T
o _t_ su-'z SR?ma 03 92 i 2
T 9 o2 + |tl o { E 0495("5' -+ 126495) }

ny,nz ny,n2

where 05 = E‘l'-’l and by Lemma 3.2.1 65 is less than 1.

Now put

RN
0 = 5 - 59495(5 + -1—59495) -

Then,

t 12l mtz
)= 2 02.2 +9|tla 1y ;

ni,nz “1 M2

]’n Q'l n‘:(

“1 M2

Clearly, |0¢| < % Thus, put 8, = %> and |67| <1 so that we can finally have

that

—t? 8] 1 2 R‘s
== 11,1 0 ts 1,82 il
In @, i, ( n:.n-a) 2 o2 + 6r|t] o3 288

ny,ng ny,n2

By equation (4.2.2),




ln'I'Sn, n,(t)-" E Zln@,m,( )

t1=114z=1 nin2

R}, 91
o { '1;‘2 + 6 Itla 1,12 }
uz—:l lzz—l 'lli 2 0'3‘1 n2 288

97
i 0 ta “1!"’3 :
+ 7l o3 288

ny,ng

Therefore,

3
050 )~ 51 = lesp( 5 + 222 500 — o8]

,.3
= e HlexpBrlP 2 20 1

aﬁhﬂz
= 2w 97 srﬁ 97
< & 767|183 ooz exp(|67IE "5 )
a3, ., 288 o3 .. 288

where the last inequality follows from the elementary inequality |e* — 1] < |z|e®\.

. on Thy, 97 _ 1
Since [t] < F725% then |~.‘|3<-8;'§'°i_—.Also, <3

Therefore,

() — %1 < o F hpp et

[ @50, 10z
ni,n2
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< e—--’;— lms rﬁ: "2 9

nynz
since exp (3355) <2 and thus,
2 g Led
|®s,, 0, (1) — €T | < e 7 [t SH (4.2.7)
i oﬁl!“‘l

Equation (4.2.7) is valid for [t| < {r—’:uh"“";-.
We shall extend the range of |t| as it is in the statement of Lemma 4.2.4.

Let X, X, be two independent random variables with corresponding characteristic
functions ¢; and ¢;. Clearly, the characteristic function of the sum Xi+ X, is

the product ¢;1¢s.

Suppose now that X; and X; are two independent and identically distributed
random variables with Var(X;) = o2, E|Xi* = and E(e*1) = ¢(t). Clearly,
the corresponding characteristic function of X+ X, is ¢”. Now,let ¥ = X; —X;.

Then, Var(Y) = Var(Xy — Xz) = 20> and E|X; — X,|* < 8°. Next, instead of
writing that the characteristic function of X; — X3, is equal to the square of |¢(t)],

we expand the characteristic function of the random variable Y, with variance 202
and absolute third moment less than or equal to 8r°. In other words we symmetrize

the random variable X.

So,
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|3 E; W2

"1 2

By =1 - E0ha) o g2

ﬂ'l' m2 n1,n2

t’s R,
'11'2 + 3] |30- lt‘?)

ﬂl a2 nyn2

where the last inequality follows from the elementary inequality 1+ z < €®.

Thus,

1 tﬁ 2
In [0, ()| < 5(-p20 4 T

“l M2 ﬂ], 2

ml 12 )

“l W2

By equation (4.2.2)

ny N2

Z Z In lea(

11=1143=1

In®g, ., (t)=

and equation (4.2.8) we have that

na 2.2
05 m (O Sexp(3 35 (o 4 Ay T )

11=112=1 ﬂ: n2

_exp( t2+ Itlsaglnﬂﬂ

n1n2

By the assumption of Lemma 4.2.4, [t| < %3'51!-'—'33- and therefore we have that
nyn
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4203 13
o I < 2 o n1,n2 ~nng
I Snl.ug( )l — exp( t 3 2 rg 73 )

nynz TNy n2

2 2 2 tz
= exp(—t* + £#7) = exp(— ).

So, using the triangle inequality
2 2
1950,y (8) = € 7| < | @5, 0, (B)] + €77

<eFpe T <25

On d,
Let 72122 < ¢ < 732

ny,n2
™ 3
Then, Saﬁ:‘;ltl >1 and

|®s,., ., (£) — e":'l < 2%

3
< 81’;"—"“|t|32e":'

ny,nz

3
2 165“—”’|t|3e":. (4.2.9)
nima
Combining (4.2.7) and (4.2.9) we have that,
2 r3 2 o3
— | n,m 413 - F L ¢
D5, 0, (8) —€77| < 0_03..1,“, [t]"e for |t| < =

and the proof of the lemma is complete.
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4.3 Berry-Esséen theorem

Theorem 4.3.1: Let {X;, iy, (31,%2) € {(1,1),...,(n1,n2)}} be an array of p-radius

dependent random variables. Assume that EX;, ;, = 0 without any loss of generality.
Let

{S((::l)-lﬁ),(k-h\t'z)’ 5.1 = 0, eany dl - 1, 3.2 = 0, vany dg S 1}

be the array of independent random variables defined in Section 3.2.

Let o} ;, be the variance of S(HAu) (k+rip) ond let also

EIS(k+J\u).(b+Au)l3 and (v9,)* = EIASLP for ¢=1,2,3.

‘1'2

Assume that the above quantities are finite ane define

and ’(‘E)'M)S Z Z ('Tt(f.)tz)as ¢=12,3.

f1=1ip=1

Assume that the following condition is satisfied.

i ZE(AE‘ =0(v™) for (=1,2,3

i1=11i3=1

with v =0((mn2)*), 0<a<l.
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Then for, €én =¢€(n) >0 and z € R we have that

i‘: i X0 <) — ®(2)| <

Onimz jy=1ix=1

sup | P(

Ofﬁ,,n, % C('r‘“ )? N 0(1.‘.3’,.,)3 & c,('r,‘f’;’..,)a

L T N
agl.nz ny Meg» m.ﬂné ni m% cls:l + ‘\/-2;

for some constant C.

Proof: We can express the sum Yin; iy Xigia

ny ng
Z Z Xﬁ-iz = Sﬂuﬂz + Aﬁhﬂc

f1=11=1

where Sn, n, and Ay, n, are given in Section 3.2.

Put

x=£n1_mg and Y =—"—

Onyma Tnyna
In addition, let F(z)= P(X <) and G(z) = P(X +Y < z).

Using equation (4.2.1) and taking H (z) to be the standard normal distribution

function we have that

|G(z) — ®(z)| < sup |F(z) — @()|

+ max{|®(z — €) — ®(2)|, |®(z + €) — B(2)|} + P(IY| 2 €)-

Observe that @'(z) = Vlﬁe";‘ and sup, |®'(z)| < 7
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In addition, the random variables with the following corresponding distribution func-
tions F(z) and ®(z) both have mean zero and variance one. By Chebychev’s
inequality F(z) < % for 2 <0 and 1- F(z) < & for z > 0. Similarly,
d(z) < % for 2<0 and 1—9(z) < 5 for > 0. Then F—® € L, and the

assumptions of Lemma 4.2.2 are satisfied.

Therefore

wup F(2) - 0(e)] < 2 [ 1280114 2

where ¢r(t) and ¢(t) denote the characteristic functions of F and @ .

By Lemma 4.2.3 we get

sup [6(s) - 8(a)| < 2 [ 12O = g T

+ max{|®(z — €) — ®(z)|, |®(z + €) — ®(z)[} + P(|Y] = ¢). (4.3.1)

Clearly,

max{|®(z — €) — &(2)], |2(= + €) - ®(2)[} < \/—

Using Lemma 4.2.4 and since X represents a sum of independent random variables

we have

o2
6r(t) — 9(2)] = |dr(t) — 7| < O EATR S It < 22

“'1 nz njnz

L 7

Therefore for T = :a;-l—::- the right hand side of inequality (4.3.1) is less than or
ni

equal to
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24
—0 """’t’ ~Sdt + MY 4 e P(|Y] 2
/ l'l:.nz \/2_* nina V/_ (I l e)
0/ e % Timy fLp(¥zd, kl<gue
Oy 2 V2K O3y ~/_ : 2raim
Then,

sup [G(z) — (z)| <

24 13
“ nmz 2,- nyng
oj o) Tdt+\/2_w Mm-i-\/__+P(|Y|>e)

= "W{ c'f e ";dt+\/_}+\/__+P(|Y|>e)

ﬂl M2

__0 “hﬂﬂ +

+ P(lY| > €
= \/— (IY] 2 e).

Using Markov’s inequality and inequality (3.3.6) we have that

P(Y| > ¢) = P(IA“""’|>|5)<
(M) )8 (42 )3 {3) 3
(:s"’; - (aa 4 Lot 32 25 BB

ny,n2 n1,n2 11=1 iz=1

c{

;;"...,): 3 EAD, ) + 5 { b g 53 3 EAR, )M

=1 =1 i1=1 izx=1

where C is a constant.




Since by the assumption of the theorem,

Dy D;
02 3 B(ASLY =0(v?) for (=1,2,3

4 1
f1=112=1

with ¥ =0((n1n2)?), 0<a<1

sup |G(z) — ®(z)| <

ma (6. o wlvida Y (48900 10 €
C 1,12 _l_C 11 ,n2 +C n1,n2 +0 ny,ng e - _.i
R | g€ | Tpa® | Ohm® BN

and the proof of the Theorem 4.3.1 is complete.

Remarks

1) For the case where the random variables are independent and identically dis-

tributed, the rate of convergence of G(z) to ®(z) is equal to
min{ln|~3, |n|~3ez®, 3¢, en) |
where 0 <a <1 and ey = €(n).

Notice that, as it was mentioned at the beginning of this chapter, the rate of con-

vergence is based on the behavior of a and €(n).

2) The “standard” tricks which are used in the above estimates have their clear
origin in Liapounov’s proof of his theorem in 1901 as the important problem of

error estimation is considered there for the first time.
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Chapter 5

The strong law of large numbers

5.1 Introduction

The laws of large numbers have a long history. The standard approach to the strong
laws of large numbers for independent random variables is based on truncation
and the use of the Kolmogorov’s criterion. We distinguish here two fundamental
references. The first one is due to Kolmogorov (1933) which includes the well known
three-series theorem and the second is a classical paper of Chung (1947). Surveys
on the strong law of large numbers for sequences of independent random variables

can be found in Stout (1974).

For this classical limit theorem there are various extensions. Such extensions include
the strong law of large numbers for multidimensionally indexed random variables
and the strong law of large numbers for dependent random variables. For the former

extension, several results and references are presented in the first chapter of this
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thesis while for the latter see Blum and Brennan (1980), Kuchkarov (1990) and
Sharakhmetov (1995). In this chapter we give a strong law of large numbers for
multidimensionally indexed p-radius dependent random variables using the method
of truncation, followed by the adjusted Kronecker’s lemma for multidimensionally

indexed random variables.

5.2 Main results

For the proof of the strong law of large numbers the following lemma is to be used.

The lemma can be found in Chung (1974) p. 124.
Lemma 5.2.1: Let ¢ be a positive and even function on R' such that as |z|
increases !'(;"1 increases and ig) decreases.

Then, for |z| < a

ﬁ:) < ﬂ:) and therefore — ¢((:;. (5.2.1)
In addition, for |z| >a >0 we have that
#(2)  #(a) | | o $(=)
£ 2 £ andthus 1< 0. (5.2.2)

Theorem 5.2.2: Let {Xn,n,} be an array of independent random variables with
EXpm =0 for every (ny,n;) and assume that {an,n,} is an array such that

0 < Gnm, 1 00 as (n1,n2) — o00. The notation (ny,nz)—00 means n—o0o0
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for i = 1,2 or equivalently, minicicani—0c0. If ¢ 1is a function satisfying the

conditions of Lemma 5.2.1 and

Z Z #(an :.M)E(¢(X“1'M))<m

ni=1nz=1

then,

e <] [+ X
S 3 =2 converges a.s..

n1=1nz=1 Gny nz

Proof: Following Chung (1974) we put

r

Xoymp(w) if | Xy m2 (@)] < @y mg

Y;‘h"ﬂ (w) = 1

0 if |Xn1.ﬂz(w)| > Gnyny-

By the truncation of the {X, »,} we have that

S 3 Ver(GRem) < T 5 E( Zmum)

ni=1ns=1 Qny np ny=1ng=1 “1 ]

2 Z E( n:.nz 2 (| Xy inz | < Gy ima))

ny=1n3=1 “l n2

< i f: fb(("j:)’ $KEnsma) (X, ol < Gea))
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= E Z #( I'M)E(‘#(thnz)f(lxmml < nyina))

ny=1nz=1

<X 3

n1=1nz=1 ﬂ%,ﬂ,)E(ﬂXM ma)) < 00

where the second inequality follows from (5.2.1) and the last from the assumption

of the theorem.

Therefore,
Z E Var(—™2 ""“’) < oo. (5.2.3)
n1=1nz=1 Gy ma
In addition,
EY, X,
$ 3 Blual $ 5 lpCRR (Xl Somm)): (624)
ni1=1 na=1 Qny np ny=1 na=1
Since EX, , =0 we can easily conclude that
Xn Xn,,
E(J‘I(Ixmml < @pymp)) = “E(__l&-r(lxmml > Gnyny))-
1:.M2 a'“h“ﬂ

Therefore the right hand side of equality (5.2.4) is equal to

Z Z IE( Zoame I(|an.na| > Gnyng))|

n1=1ny=1
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00

<5 5 BEmalix, 0> o)

n3=1nz=1 1,12

SR E("(x“'*"“’r(lx,.,...,l 4 Gacnd)

np=1np=1 Gny iy

S i; i: ¢(X“hﬂ2))

$(any nz)

where the second inequality follows from (5.2.2) and thus from the assumption

Z Z IEK‘nﬂal

ni=1nz=1 Qny ,ny

Now,

i i P{ Xy # Yoym } = i i P{| X0 m2| > @nypna}

n1=1nz=1 ni=1nz=1

= 323 BU{Xusima] > Grma}]

ni=1nz=1

<3 3 EEEmm) 11X, 1> an)

ny=1ng=1 $(anyinz)

Inequality (5.2.6) follows from (5.2.2). Therefore we have that,
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i io: P{Xnyn; # Yoym } < 00. (5.2.7)

ni1=1nz=1

It is known that for a sequence of independent random variables, the three-series
theorem is sufficient for the a.s. convergence of ¥, X,. As it is stated in Smythe
(1973), the three-series theorem is also sufficient for independent multidimensionally
indexed random variables. Therefore, inequalities (5.2.3), (5.2.5) and (5.2.7) are

sufficient and thus the sum 3°7°_, % Esiing converges almost surely.

ng=1 Gny,ny

Corollary 5.2.3: Let {X,, n.,} be an array of independent random variables with

EXpyn, =0 for every (ny,n;) and assume that an, n, = niny. Let ¢(z) = |z|*+?

where 0 < p < 1. Assuming that

E| X sl
Z E (ning)+ .00

n1=1nz=1

we have that,

EZX.J-—)OGS

N2 51 j=1

Proof: First we show that the assumptions of Lemma 5.2.1 and Theorem 5.2.2

concerning the function ¢(z) = |z|'*? and the array {an,n,} are satisfied.

For

z? |z +?

0<p<1 and |z| < niny

(ning)? = (nang)'t?




while for

|z |=[*+?

zl > i
I I — ﬂlﬂz (nlm) P (n1ﬂ2)1+p

Since,

E|X“1|ni ll

(ﬂgnz)l'ﬂ’ < o0

3 3 Smm

ni1=1nz=1

we have by Theorem 5.2.2 that

o o0

B 7Y converges a.s..

n1=1nz=1 nn2

Using the analog of Kronecker’s Lemma for multidimensionally indexed random

variables, which can be found in Méricz (1981),

EZX.,,-aOa.s

mMn2 o =1

and the proof is complete.

The extension of Corollary 5.2.3 to the case of r-dimensionally indexed p-radius

dependent random variables can be easily obtained.

Corollary 5.2.4: Letn € N? and let {X;, i < n} be an array of p-radius

dependent random variables such that EX,, », = 0 and Bl < o for

everyny = 1,2,... and nyz=1,2,....
Assume that
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Z Z (mu).(m»ﬂ i

f1=11=1 ("113)1”
and
(<)

£

t11=1142=1 ('1'2)14“?
for

(=123 and 0<p<l.

Then,

Z Z.Xu.s, — 0 a.s..

ning #1=143=1

Proof: We shall only give the proof for the case r = 2. The extension to a higher
dimension is similar although notation becomes quite complicated. By Corollary
5.2.3 and since the following four terms are sums of independent random variables,

as minj<ica Ni—00 i = 1,2 we have that

1 di—1dz;—1
T = ﬁ D.D, 2 'zz: (k+4\u).(b+-\u) —0as
i1
1 (1)
Ty = o 9)(Ds = 1)D; .,2_1 ‘;]Agm—r{}a.s
T : SERTam g
—] LR — a.s
> h(p*,v)Dy(D; - 1) Yt Gae 11t
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T, = i Zlnil (3) , — 0as
9(p*)(D1 —1)(D2 - 1) -

f1=1 =1

where 8 denotes the number of lattice points which belong to a square with length

v i.e., B is equal to (2v + 1)21 h(p*,v) = (2v +1)p", 9(p") = (P‘)ai d; = di(n;) and

D; = Di(n;) for i=1,2.

Now,

nng = ﬁ.D]_Dg . h(p‘, V)(Dl = 1)D2+
h(p*,v)D1(D; — 1) + g(p")(D1 — 1)(D2 — 1)

whereas

n nz
z Z X"l W2 -

i;=1i2=1

we () @)
3 Z S(k+At1)(h+Aaa)+ Z E A, + E Z A-m + Z E Aj e
11=0 12=0 i1=1 iz=1 11=1 i3=1 f1=1 iz=1

Clearly, any linear combination of continuous functions is continuous. We keep p*

and v fixed and we write Y0 Tit Xy i, a8

HE W L e ® 3
n {Z 2 S(k-i-ku).(Hth) + Z Z Alx W2 Hr Z Z Atm: + E Z A'me
112 13=0 12=0 i1=1 ip=1 i1=1 i3=1 i1=1 =1

1 el -
——{BD:D,Ty + h(p*,v)(Dy — 1) Dy To+
ning

h(p*,v)D1(Da — 1)Ts + g(p*)(D1 — 1)(D2 — 1)Ts}.
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Clearly,

BD;yD,
ning

-, T,—0 &6,

h(p*,v)(Dy —1)D,
ning

— ¢, Tg — 0 a.s.,

h(ﬂ', V)DI(DS il 1)
ning

—cs, T3—0as.,

9(p*)(Dy —1)(D; — 1)
ning

—cyy Ty—0as.

and since ¢;, 1 =1,2,3,4 are fixed constants

——E ZX.,,,,—rOas

ning i1=11i3=1

and the proof is complete.
Remarks

1) For the case of independent and identically distributed random variables, the

following assumption in Corollary 5.2.3 and consequently in Corollary 5.2.4

E‘X“l W2 |1+P
(ning)'*?

Sy Tome

ni=1nz=1

<00

is valid since

59




— 1

o EIXM m|1+p 1 - 1
. = E|X;,|'"?
mz—l raz—:l (nang)t*e | n;z=l ny 147 MZ:.-l ny'+?

converges.

2) Let the array {Xj, i < n} in Corollary 5.2.4 be an array of independent
multidimensionally indexed random variables. Then for p = 1 Corollary 5.2.4

coincides with Theorem 2.2.4, where for p =1 and r = 1 we have the classical

Kolmogorov’s strong law of large numbers.




Chapter 6

Probability inequalities

6.1 Introduction

The behavior of sums {S,, n > 1} of independent random variables {X;, i=
1,2,...} is of great interest in probability theory. In particular, in the case where the
random variables {X;, i=1,2,...} are independent and identically distributed,
there are many interesting results. In this chapter two Kolmogorov inequalities
for the sample average of independent (but not necessarily identically distributed)

Bernoulli random variables are presented.

For a sequence of independent and identically distributed Bernoulli random variables

X1, Xa,... with E(X;) = p, Kolmogorov (1963) provided the following inequality:

P{iup | X —p| > €} < 2e=2w'(1-9
>n
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where

k
X;,=%ZX;, €> 0.

=1

Improvements, extensions and many related results can be found in Hoeffding (1963),
Kambo and Kotz (1966), Young, Seaman and Marco (1987), Turner, Young and
Seaman (1992), Young, Turner and Seaman (1988), Christofides (1991), Christofides
(1994) and Banjevic (1985). In this final chapter, we provide two Kolmogorov
inequalities for the case of independent but not necessarily identically distributed

Bernoulli random variables.

6.2 Deterministic inequalities and other results

We will make use of the following results. Let =1 Y, p; where py,...,pn € RF.

Lemma 6.2.1: Fort >0

TI(net +1 - 50) < (5e* +1—5)"

i=1

Proof: The proof of the lemma is quite trivial. From the arithmetic-geometric mean

inequality, we have that

T +1- 2 < {3 2 (piet +1 - )"

i=1 =3




= (pe' +1—p)".
The following result is due to Christofides (1994).

Lemma 6.2.2: Let e < ; and

+ €
")

g(p,e)—(l—'—e)ln( -5 )+(p+£)ln(

IA
-1l
IA

b

Then, forp+e< 1 or 1+1e

o(p,€) 2 —3in(1 —4¢).

Lemma 6.2.3: Letz=2(p+¢)—1 and y=1—2p. Then,

Z 2’.(2" ){:c + (2r — 1)y* + 2rzy® '} = g(p, €).

re]

where g(p,€) is defined in Lemma 6.2.2 .

Proof: We have p+ ¢ = Z* and p=25Y. Then,

o(p,6) = (3 D) + (i)

Using the Taylor series expansions
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(1 +2) = 31 ad In(1-2)=-3

r=1

we have that

r

00,9 = L5 2-£ 2 - S Ly PE T+ 2 T

r=] r =] 2 r=1 r=1

After algebraic manipulations we arrive at the desired result.
Lemma 6.2.4: Let v be a positive integer and = > 1. Then

222z 1 £ 1) — (2 + 1) > 0.

Proof: Let

F(E) = 22#-2(323—1 + 1) — (3 + 1)2v—1.

Then,
F'(z)=2"?2v -1)z"? = (2v—1)(z + p)ars?
= (2v - 1){2* 2?2 — (z + 1)*?}
= (2v - 1){(22)*% — (z + 1)*7*} > 0 since z > 1.
Thus, F(z) is an increasing function and F(z) > F(1) = 0.

Lemma 6.2.5: Lety > 1 andv =1,2,... . Then,
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4
H{y)=y* +2 -1+ 2y - (y+1)* 20.

Proof: For the derivative of H(y) we have

4
H'(y)=2vy* ' +2v — —2;21/(9 +1)»1

4 229 - 92v e
=2l’F Tyz 1+T__(y+1)2v 1}

— 23-2vp {22v—2y2v~1 + QWw=2 _ (y - 1)2v-1}

=¥ %2002 1) = (y+ 1))

By Lemma 6.2.4, H'(y) > 0 implying that H is increasing and therefore H(z) >

H(1) =0.

Lemma 6.2.6: Let © and y be as in Lemma 6.2.8 andr = 1,2,.... Then

z¥ + (2r — 1)y + 2rzy®™ 1 > 4(#)2’.

Proof: By lemma 6.2.5 for ¢ > 1

4
c"+2r—1+2rc—F(c+1)2' > 0.
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Taking ¢ = z/y we have

2r

—1+2r—>—(-—+1)"

and therefore

2r
27 + (2r — 1)y* + 2rzy® ! > 4(3 = y)

6.3 Kolmogorov type inequalities

The following theorems provide exponential bounds for Y, the sample average of

independent Bernoulli random variables.

Theorem 6.3.1: Let Y:,Ys,...,Y, be a sequence of independent Bernoulli random
variables with E(Y;) = pi, & = 1,..,n and € < }. Then forp+e¢ < ; or

%+%€S§51,

P{Y —p> e} < (1 —4é%)}

where Y = 25, Y: and 1‘3:%):};1?:‘-

Proof: Let s > 0. Then,

P{Y —p>e}=P{s(Y —p—¢) >0}




< B( e:(?—f.l—e))

= HFIB(eT) = B DY)

= ¢™*(P+e) 1'[ E(en™) (6.3.1)

=1

= =0+ [ (pie? +1 - pi)

=1

< e P (Ged 41— p) = eI

where f(s) = s(p + €) — nin(pes + 1 — p). Observe that the last inequality follows

from Lemma 6.2.1.

The function f is maximized at s™** = nln{‘a-lﬂgyl} and

fame=) = n(p+ in{ EEIE =T} ninf =22y = ngt, 9

where

o9 = -+ an{ EEL =B (22,




P{Y —p> ¢} < (P9

and by Lemma 6.2.2

P{Y —p> ¢} < (1-4€)%.

The following theorem gives an exponential bound under different conditions on p

and e.
Theorem 6.3.2: Let Y1,Y3,...,Yn be a sequence of independent Bernoulli random
variables, with E(Y;) =pi;, i =1,..,n. Then forp+e¢e> Jorp<jand Ve<l,

P {? —-p>e < e—u(ﬂe’{-i;‘:"&")

where ? e %E?:'I.Y; ﬂﬂd§= %E?:lp"‘

Proof: From the proof of Theorem 6.3.1

P{Y —p> e} < e

where

97,9 = (1 =7~ n(-TE=5) + o+ in(E25),

P

By Lemma 6.2.3




9(p,€) = Z  Srar = - Y ————{z¥ + (2r — 1)y* + 2ray” '}

Since z + y = 2¢ and using Lemma 6.2.6 we have

2T gy
oo 2€2r
- Z_E r(2r — 1)
= 4 2(5)29”4
=t E r@2r—1)

ek gl S
28 +2¢ . 516 — 26

since r(2r — 1) < 4""%(r — 2)!6 for r > 2. Then,

o502 28 + 205 35 A ey

r-2

=2¢% + -1-643‘:'.
3
Thus,

P{Y —p>€ < c-u(ﬂe’-l-*e‘e“:')
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and the proof of the theorem is complete.
Remarks

1) The left hand side of Theorem 6.3.1 and that of Theorem 6.3.2 can in fact be

replaced by the stronger version

k k
P{sup(Yi — pr) > ¢} where ¥y =) Y; and pj = %Ep,-.
k>n

i=1 fal
This is possible because by applying Lemma 1 of Turner, Young and Seaman (1994)
we arrive at (6.3.1) having the required quantity P{supys,(Yi — ) > €} as our

left hand side. Then, the exact same steps can be followed.

2) In view of the previous remark both Theorem 6.3.1 and 6.3.2 provide sharper
bounds than that of the main result of Turner, Young and Seaman (1994), under of

course restrictions on p and e.
3) Theorem 6.3.1 is an extension of Corollary 3.2 of Christofides (1994).

4) It is straightforward that both Theorems 6.3.1 and 6.3.2 can easily be generalized

to the case of multidimensionally indexed random variables.
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Applications and future work

The importance of multidimensionally indexed p-radius dependent random variables
is due to the fact that they can be very applicable. In real life, most of the time
we have to deal with spatial random variables which very often as expected are not

independent.

Let us take as an example data in meteorology. Rainfall is measured at rainfall
stations. The location of each station is defined by height, latitude and longitude.
Therefore, we can assume that rainfall in each station is a three-dimensionally in-
dexed random variable, i.e., X ;,:,. Apparently, measurements of rainfall are asso-
ciated to each other according to the location of the stations. This association can

be interpreteted as p-radius dependence.

A television screen can be thought of as a two-dimensional lattice, with n;,n,,

sufficiently large. For each lattice point we can associate a two dimensionally indexed
random variable which measures the intensity or the brightness of the picture at the
specific point. Clearly, lattice points which are close to each other are expected to
have similar intensity or brightness whereas these characteristics for distant points

should be independent.

Multidimensionally indexed p-radius dependent random variables and tools like the
central limit theorem and strong laws, play an important role in the statistical

inference of the above cases.

For research purposes, multidimensionally indexed p-radius dependent random vari-
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ables could serve as the basis for other interesting results. For example, we could
extend the above results to the case of U-statistics, that is, we can derive asymp-
totic results for U-statistics based on multidimensionally indexed p-radius dependent

random variables.

Furthermore, one might consider the possibility of exploring a more general notion
of dependence between the random variables. For example, we could investigate the
asymptotic behavior of multidimensionally indexed random variables satisfying a
condition which is analogous to a mixing condition in the case of one dimensionally

indexed random variables.
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