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Abstract 

Α fast expanding field in Probability and Statistics is the field of multidimension­

ally indexed random va.riables. In this thesis we introduce asymptotic results for 

this type of random va.ria.bles which a.re not necessa.rily independent and identically 

distributed. More specifically a. new kind of dependence is introduced, the p-radius 

dependence, which is an extension of the notion of the m-dependence. See for ex­

ample Berk (1973) and Shergin (1983). For multidimensionally indexed p-ra.dius 

dependent ra.ndom va.riables, classical asymptotic results are established. 

First, well known asymptotic results related to multidimensionally indexed ran­

dom variables a.re sta.ted without proofs. Then, a. general technique is given which 

is subsequently used for the proofs of most of the asymptotic results. The first 

classical result presented, is the proof of the central limit theorem. Next, the Beπy­

Esseen theorem for multidimensionally indexed p-ra.dius dependent random variables 

is given. In addition, the strong la.w of large numbers for multidimensionally indexed 

p-ra.dius dependent random va.riables using classical techniques is proved. 

All the above results a.re proved for the case of two-dimensionally indexed random 

va.riables. The extension to higher dimensions can be easily done even though the 

notation might become quite complica.ted. 

Finally, various probability inequalities for non identically distributed random va.ri­

ables a.re esta.blished. These inequalities can easily be extended to multidimension­

a.lly indexed random varia.bles. 
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Πι:ρtληψη 

Ο τομέας των τυχαtων μεταβλητών με πολυδιάστατους δε(χτες ε(ναι ένας πολύ γρή­

γορα αναπτυσσόμενος τομέας στις Πιθανότητες χαι στη Στατιστιχή. Η διατριβή 

αυτή πραγματεύεται ασυμπτωτιχά αποτελέσματα για τις πιο πάνω τυχα(ες μεταβλ­

ητές χωρ(ς χατ' ανάγχη, οι τυχα(ες μεταβλητές να ε(ναι ανεξάρτητες χαι ισόνομες. 

Για παράδειγμα δες Berk (1973) χαι Shergin (1983). Ειδιχότερα, παρουσιά­

ζουμε ένα νέο ε(δος εξάρτησης, την αχτινιχή εξάρτηση, η οπο(α ε(ναι μια επέχταση 

της m-εξάρτησης. Για αχτινιχά εξαρτημένες τυχα(ες μεταβλητές με πολυδιάστατους 

δε(χτες δινονται χλασιχά ασυμπτωτιχά αποτελέσματα. 

Αρχιχά διατυπώνονται γνωστά ασυμπτωτιχά αποτελέσματα σχετιχά με τυχα(ες με­

ταβλητές με πολυδιάστατους δεtχτες, χωρ(ς όμως να δι νονται αποδε(ξεις ή λεπτομέ­

ρειες. Στη συνέχεια, &ινεται η γενική τεχνική η οπο(α χρησιμοποιε(ται στην απόδειξη 

των πλε(στων εχ των αποτελεσμάτων που παρουσιάζονται. Το πρώτο κλασσιχό απο­

τέλεσμα που πραγματεύεται η διατριβή αυτή ε(ναι η απόδειξη του Κεντρικού Οριακού 

θεωρήματος. Ακολούθως, παρουσιάζεται το θεώρημα Beπy-Esseen για ακτινικά 

εξαρτημένες τυχα(ες μεταβλητές με πολυδιάστατους δε(κτες. Επ(σης, αποδειχνύεται 

ο Ισχυρός Νόμος των Μεγάλων Αριθμών για αχτινικά εξαρτημένες τυχα(ες μετα­

βλητές με πολυδιάστατους δε(χτες χρησιμοποιώντας χλασικές τεχνικές. 

Ολα τα πιο πάνω αποτελέσματα αποδειχνύονται για την περ(πτωση των τυχα(ων 

μεταβλητών με διδιάστατους 8εtχτες. Η επέκταση των αποτελεσμάτων σε διάσταση 

μεγαλύτερου βαθμού μπορει να επιτευχθει εύχολα αν χαι ο συμβολισμός μπορε( να 

γ(νει αρκετά πολύπλοχος. 

11 

Petr
ou

la 
Μ. M

av
rik

iou



Τtλος, αποδειχνύονται διάφορες ανισότητες πιθανότητας για μη ισόνομες τυχαίες 

μεταβλητtς. Οι ανισότητες αυτtς μπορούν εύχολα να γενιχευθούν χαι στην περίπτ­

ωση των τυχαίων μεταβλητών με πολυδιάστατους δείχτες. 
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Chapter 1 

Introduction 

Arrays of independent mώtidimensionally indexed random variables constitute a 

relatively new field in Probability and Statistics. Since 1951 when Dunford made 

his first approach, many resea.rchers followed and many useful resώts have been 

obta.ined. See for example Wichura (1969), Ca.iroli (1970), Smythe (1973, 1974), 

Cairoli and Walsh (1975), Gut (1976, 1978), Shorack a.nd Smythe (1976), Etemadi 

(1981), Klesov (1981), Christofides a.nd Serfling (1990) and Christofides (1992). 

For this special topic in probability called "arra.ys of independent multidimension­

ally indexed random va.riables" or otherwise "independent ra.ndom fields" there are 

resώts concerning weak convergence, almost sure behavior, rates of convergence and 

asymptotic behavior of partial sums in general. 

It is reasona.ble to ask whether there is a need to study multidimensionally indexed 

ra.ndom va.riables. Couldn 't we just easily extend all the well known resώts for 

one-dimensionally indexed random variables? The answer is no. The reason for not 
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being able to generalize the classical results is the lack of total ordering. In the 

r-dimensional case total ordering is out of the question. We therefore have to deal 

with partial ordering (see Section 1.2). Cairoli (1970) showed by a counterexample 

that well known classica.1 maximal inequalities are not va.lid in the r-dimensional 

case and therefore a different approach has to be considered. 

In Chapter 2, relevant asymptotic results on multidimensionally indexed random 

variables are stated without proofs or any further details. 

In Chapter 3, a general technique is given which is subsequently used for the proofs 

of most of the asymptotic results. The technique is based on that of Bernstein's, 

the so ca.lled "big blocks technique" first introduced in 1927. The main objective of 

Chapter 3, is the proof of the central limit theorem. The assumptions made for the 

proof of the centra.1 limit theorem are general and not very restrictive. In fact, it 

is the kind of assumptions one expects for the central limit theorem to hold in the 

case of non i.i.d. random variables. 

ln Chapter 4, the Berry-Esseen theorem for multidimensionally indexed p-radius de­

pendent random variables is given. This is a theorem wh.ich gives information about 

the central limit theorem by providing an upper bound for the absolute difference 

between the distribution of a specific statistic and the sta.ndard norma.l distribution. 

As it was expected the Berry -Esseen rate achieved is not optima.l. For a sequence of 

independent and identically distributed ra.ndom va.riables Χι, Χ2 , ••• , Xn the optimal 

rate of convergence is O(n-t). For two dimensionally indexed p-radius dependent 

random va.riables the rate of convergence depends on the va.lue of the para.meters. 
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As in the case of the centraJ limit theorem, the conditions imposed for the Beπy 

-Esseen theorem are reasonable for cases of non i.i.d. random varia.bles. 

ln Chapter 5, we prove the strong law of large numbers for multidimensionally 

indexed p-ra.dius dependent random variables using classicaJ techniques, such as 

trunca.tion. 

All the above results are proved for the case of two-dimensionally indexed random 

variables. The extension to higher dimensions can be easily done even though the 

notation might become qώte complica.ted. 

In Chapter 6, various probability inequalities for non identically distributed ran­

dom variables are established. It is generally accepted that probability inequalities 

for partial sums are extremely useful for asymptotic theory and therefore are very 

frequently used. These inequalities can easily be extended to multidimensionally 

indexed random variables. 
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Chapter 2 

Survey οη multidimensionally 

indexed random variables 

2.1 Introduction and notation 

In this cha.pter key results refeπing to multidimensionally indexed ra.ndom va.riables 

which are releva.nt to this thesis are presented. 

Even though the field of multidimensionally indexed ra.ndom va.riables is a. rela.tively 

new one, ma.ny asymptotic results have been esta.blished as mentioned in Chapter 

1. These results are prima.rily rela.ted to the strong la.w of large numbers, strong 

convergence in general, a.nd the rate of convergence. 

Before we proceed with the literature survey, all basic definitions a.nd notation which 

will be used throughout this ma.nuscήpt are presented. 
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Let {Χϊ, i Ε Nr} be a.n r-dimensionally indexed arra.y of i.i.d. ra.ndom va.ria.bles 

defined on a. proba.bility spa.ce (Ω, Α, Ρ) where r is a. positive integer a.nd Nr 

denotes the r-dimensional positive integer la.ttice. Clea.rly, for r = 1 we ha.ve 

the classical case of a. sequence of independent a.nd identically distributed ra.ndom 

va.ria.bles. 

From now on pa.rtia.l ordering is assumed. For ί = ( i 1, ... , ir) a.nd j = (j1 , ... , jr) Ε 

Nr the nota.tion i < j mea.ns tha.t ik < jk, k = 1, ... , r. In a.ddition, if η = 

(n1 , .. . , nr), lnl denotes the product Πi=ι nί while the nota.tion lnl-+oo means 

tha.t ni-+OO for i = 1, ... , r or equivalently, minι~i~r ni-+OO. 

Associa.ted with a.ny proba.bility spa.ce (Ω, Α, Ρ) a.re the Lp spa.ces of a.11 mea.sura.ble 

functions Χ a.nd therefore οί ra.ndom va.ria.bles, for which EIXIP < οο, p > Ο. 

Specifically, Χ Ε Lι means that EIXI < οο. 

In addition, if Χ is a. mea.surable function, then its positive a.nd negative pa.rts a.re 

defined by χ+ = ma.x(O, Χ) and χ- = ma.x(O, -Χ) respectively. 

As a. consequence we define, log+ Χ = ma.x(O, log Χ) or log+ Χ = log(ma.x(l, Χ)). 

The symbols "big oh" a.nd "little oh" a.re to be used. These symbols compa.re the 

ma.gnitude οί two functions in the following wa.y. The notation 

u(n) = O(v(n)), n---+ L, 

where L is not necessa.rily finite a.nd C is a consta.nt. In a.ddition, the notation 

u(n) = o(v(n)), n---+ L, 
. u(n) 

means that liffln-Lv(n) =Ο. 
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2.2 Literature review οη multidimensionally in­

dexed random variables 

In this section we give briefiy) some asymptotic results related to mώtidimensionally 

indexed random variables without providing any proofs or details. 

Smythe (1973) has studied the strong law of large numbers for r-dimensional arrays 

of random variables. He approa.ched the problem by stating the following question. 

Given a probability space (Ω) :F) Ρ) and an r-dimensional array of independent 

random variables with zero mean defined on (Ω, :F) Ρ)) under what conditions will 

the sample average converge to zero? 

Dunford (1951) proved that for the case of independent and identically distributed 

r-dimensionally indexed random variables the integra.bility of ιχkι log+ ιχkι is 

suflicient when r = 2 and in general, for r > 2 the coπesponding condition for 

almost sure convergence is the integra.bility of the term IXkl(log+ IXkl/-1
. 

Smythe (1973) showed tha.t the above conditions are necessary and sufficient when 

the random variables are independent and identically distributed. The necessity 

part of the proof of Smythe) is given by classical arguments, i.e.) Fubini's theorem 

and Borel-Cantelli )s lemma while for the suffi.ciency part of the proof ma.rtingale / 

properties and theory are used. The theorem is as follows: 

T heorem 2.2.1: Let {Xk, k Ε Nr } be an array of independent and identically 

distribu.ted zero mean random variables. 
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Clea.rly the first condition is the "sufficiency" pa.rt while the second is the "necessity" 

pa.rt. In a.ddition, Smythe {1973) considered the non-identica.lly distributed case 

a.nd sta.ted tha.t in genera.l, the usua.l sufficient conditions for convergence in the one 

dimensiona.l case are su:fficient for convergence in the r-dimensiona.l case as well, 

provided tha.t they a.re appropriate sta.ted (or genera.lized). For exa.mple, one of 

these conditions is the a.djusted three-series theorem a.ppropria.tely genera.lized to 

the r-dimensiona.lly indexed ra.ndom va.ria.bles. 

Etemadi (1981) also presented a proof of the strong law of la.rge numbers for a. 

sequence of pairwise independent ra.ndom va.ria.bles, which is elementa.ry a.nd a.t the 

sa.me time ca.n be extended to " r-dimensional a.rrays of ra.ndom vectors" as it is 

quoted by his paper. The theorem is stated below. 

T heorem 2.2.2: Let {Xmn, (m, n) Ε Ν2} be an array of pairwise independent 

and identically distributed random variables. Let Smn = Σ~ι Σi=ι Xi;. Then, 

Ε(\Χιι\ lοg+ \Χιι I) < οο 

implies that 

lim Smn - ΕΧ -- - 11 a.s .. 
(m,n)-+oo mn 
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The above theorem is the strong law of large numbers for 2-dimensionally indexed 

random variables. The generalization to r-dimensional arrays is immediate by using 

the suflicient condition E{IXl(log+ IXl)r-l} < οο. Notice that the conditions of 

Smythe (1973) and Etemadi (1981) are more or less the same but the proofs of their 

main results are different. 

Theorem 2.2.2 is qώte applicable since it only reqώres the random variables to be 

pa.irwise independent and not mutually independent as theorem 2.2.1 requires. 

Klesov (1981) gave the strong law of large numbers for independent multidimension-

ally indexed random variables as a specia.l case of the strong law of large numbers 

for multidimensionally indexed martingales. His result is stated below. 

\ 
Theorem 2.2.3: Let {Χί, i < n Ε Nr } be an r-dimensionally indexed array of 

independent random variables 'W'ith zero mean and let Sn = Σi~n Xi. If q > 1 and 

then1 

1 
~Sn--+ Ο a.s.1 as lnl--+ οο. 

Using some standard arguments such as symmetrization and desymmetήzation, 

Christofi.des and Serfling (1990) generalized the classical Kolmogorov strong law 

of large numbers by the following theorem. 
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Theorem 2.2.4: Let Sn = Σk$n Xk where the Xk' s are independent random 

variables with EXk =Ο and E(Xk 2) < οο for each k . Assume that Σk WEX~ < 

οο. Then1 

1 
~Sn--+ Ο a.s., as ln l--+ οο. 

Α very interesting class of statistics is the class of U-statistics which was initially 

introduced and studied by Hoeffding (1948) as a generalization of the notion of 

the sample mean. The class of U-statistics based on arrays of independent r-

dimensionally indexed random variables has been first introduced by Christofides 

(1987). 

Definition 2.2.5: Let {Χϊ, i :5 η Ε Nr } be independent random variables from 

α distribution F . Let θ = θ( F) be α parametric fu.nction for which there is an 

unbiased estimator. The function h = h(Χϊ1 , ... , Χϊm) is called kernel and it is 

assumed that it is symmetric without any loss of generality. 

For the estimation ο/ the parametric fu.nction θ the f ollowing U-statistic is used: 

( 
ΙπΙ)-ι 

Un = U(X1, i :5 η) = m ξ: h(X11 , ... , X1m) 

where Σc denotes the summation oυer the ( 
1
: ) combinαtions of m distinct 

elements {i1 , ... ,im} from the set {(1, ... ,1), ... ,(nι, ... ,nr)}. 
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Clea.rly, 

where the set {i1 , ... , im} consists of m distinct elements ta.ken from the set 

{(1, ... , 1), ... , (nι, ... , nr )}. 

Appa.rently, EUn = θ. What is also clea.r from the definition is that this class can 

indeed be considered as a generalization of the sample mean. 

Christofides (1992) presented the strong la.w of la.rge numbers for the cla.ss of U­

statistics defined a.bove, under the following necessa.ry and su:flicient condition 

thus genera.lizing the result of Smythe (1973) and Etemadi (1981 ). 

Theorem 2.2.6: Let {Χι, i < η Ε Nr} be α random sample from α distribution 

F. Let Un be α U-statistic based on this sample and the kemel h for estimation 

of the parameter θ(F) = E{h(Xi1 , ... ,Xim)}. lf E{jhj(log+ lhl/-
1

} < οο then 

Un ~ θ a.s. as lnl ~ οο. 

The proof of the a.bove theorem is ba.sed on truncation and martinga.le theory. 

In a.ddition to the strong la.w of la.rge numbers, Christofides (1997) presented the 

following theorem which gives the rate of convergence for the strong la.w of la.rge 

numbers. The proof is obta.ined using ma.rtingale inequa.lities. 
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Theorem 2.2. 7: Assume that Elh(Xi1 , ... , Xim)lν < οο for ν > 2 and let Un 

bι α U-statistic based on α multidimensionally indezed array of random variables 

and on the kernel h( Xi1 , ••• , Χϊm) . Then f or ε > Ο 

Ρ{ sup ιuk - θl > ε} = ο(ΙπΙ1-ν), ΙπΙ --+ 00. 
k~n 

Furthermore, in Christofides (1998) a Berry-Esseen theorem for U-statistics is pre-

sented which gives the rate of convergence for r = 2. The theorem is as follows: 

Theorem 2.2.8: Let 

( Ιηl)-ι Un = 
2 

ξ=h(Χϊ1 ,Χϊ2 ) 

be α U-statistic based on α multidimensionally indezed array of random variables 

for estimation ο/ the parameter θ. Let σ~ be the variance of Un and assume 

that Elh(X1
1

, Χ12 )13 < οο. Then, if Φ(χ) denotes the distribution function of the 

standard normal, 

sup IP{ σ~1(Un - θ) <χ} - Φ(χ)I = Ο(ΙπΓi), as lnl--+ οο. 
-οο<:ι:<οο 
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Chapter 3 

The central limit theorem 

3.1 Introduction 

One of the most widely studied subjects in probability theory is the concept of 

dependence. The nature of dependence varies and u.nless specific assurnptions are 

made about the dependence between random variables, no meaningful statistical 

model can be assurned. 

Α measure of dependence indicates how closely two random variables Χ and Υ are, 

with extremes at mutual independence and complete mutual dependence. Measures 

of dependence could be conditions based on order or time between random variables, 

or coώd be conditions expressed in terms of covariance or correlation coeflicient. 

Distance is also usually considered as a measure of dependence. For example, Frechet 

(1946) proposed as a measure of dependence the use of an average of the distances 

of the distribution of Υ conditional on Χ from some typical value such as the 
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conditiona.l mean or median. Frechet (1948) a.lso proposed the use of the Levy 

metric (distance). Α very important kind of dependence considering distance as a. 

measure of dependence, is the m-dependence case. See for example Berk (1973). 

Definition 3.1.1: Α sequence of random υariables {Xn} is said to be m-dependent 

if there ezists α positiυe integer r such that any subsequence {Xn; j 2:: 1} of {Xn} 

with { n; + m < n;+ι} for eυery j > 1 and nι > r is α sequence of independent 

random υariables. 

On the other hand, limit theorems in probability theory are of great importance. 

They are generally regarded as theorems giving convergence of sequences of prob­

a.bility distributions or random variables. Typically, three are the most important 

classical limit theorems: The classica.l forms of the strong and wea.k law of large 

numbers and the centra.l limit theorem. These theorems generally dea.l with the 

asymptotic beha.vior of the sum of n random varia.bles Sn = Χι+ ... + Xn taken from 

a sequence of independent and identically distributed random variables Χι, Χ2, ... . 

These classica.l results ha.ve been genera.lized in various wa.ys during the last fifty 

years. Such genera.lizations may refer to the conditions imposed on the random 

varia.bles such as dependence, extension to higher dimensions than the first, or gen­

era.l "sma.llness" conditions. See for exa.mple the classica.l books by Loeve (1977) 

and Petrov (1974). 

The classica.l centra.l limit theorem has been extended to the case of dependent 

random varia.bles by severa.l authors. See for exa.mple Bernstein (1927), Heinrich 
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(1987), and Utev (1989). An important special type of dependent random vari­

ables mentioned before and applied to the central limit theorem is the m-dependent 

case. According to the definition of the m-dependence, two sets of random variables 

(X1,X2, ... ,Xi) and (X;,X;+1, ... ,Xn) areindependentwhenever j-i >m. On 

the basis of this case many techniques and variations have appeared concerning the 

central limit theorem. See for example Shergin (1983). 

The first who studied the central limit theorem based on m-dependent random 

variables were Hoeffding and Robbins (1948). As it is mentioned in their work, the 

central limit theorem for m-dependent random variables can also be extended to 

what is called f ( n )-dependence. Α sequence is said to be f ( n )-dependent if for 

j-i > f(n) thetwosetsofrandomvariables (X1,X2, ... ,Xi) and (Χ;,Χ;+ι, ... ,Χn) 

are independent. The magnitude of f(n) should be of su:fficiently lower order than 

the magnitude of n. 

Notice that in the case where f(n) is a constant m we have the m-dependent case. 

We now extend the notion of m-dependence to the case of multidimensionally in­

dexed random variables: 

Definition 3.1.2: For α positive integer r let Nr denote the r-dimensional positive 

integer lattice and {Χι, i Ε Nr} be an array of random variables defined on α 

common probability space (Ω, Α, Ρ). Let p 2:: Ο. The random variables {Xi, i Ε 

Nr} αre said to be p-raditΙιS dependent if Xi1 and Xi2 are independent whenever 

d(i1 ,i2 ) > p, where d(i1 ,i2) is the Eu.clidean distance between iι and i2. 
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Notice that, i.f ρ =Ο the random va.riables {Χϊ , ί Ε Nr} a.re independent. 

Following Hoeffding a.nd Robbins {1948) we ca.n choose ρ to be a function of lnl, 

where lnl = nιn2 ... nr, a.nd thus we have the extension of /(n)-dependence to mul­

tidimensionally indexed ra.ndom va.riables. As stated before, for f ( n )-dependence 

the magnitude of ρ should be οί sufficiently lower order tha.n that οί ΙηΙ. 

The idea of p-radius dependent multidimensionally indexed ra.ndom va.riables is 

a na.tura.l extension of the notion of m-dependent ra.ndom va.ria.bles. However, 

the extension of m-dependence to ra.ndom fields ca.n be defined in a different 

way. According to Heinrich (1987), a fa.mily of ra.ndom va.riables X z, Ζ Ε zd = 

{±Ο, ±1, ±2, ... }d, defined on a. proba.bility spa.ce (Ω, Α1 Ρ) is sa.id to be a ra.ndom 

field ( mι' ... 'md)-dependent if ίοr any finite u, v c zd the ra.ndom vectors 

(Xu)uεu a.nd (Χ11) 11εv a.re independent whenever minuεu,νεv lιι; - v;I > m; for 

at lea.st one j Ε {1, ... , d}. In the ca.se where m1 = ... = md = m (>Ο) the ra.ndom 

:field is usua.lly ca.lled m-dependent. 

Although the concept of p-radius dependence is geometrically more difficult to dea.l 

with tha.n the idea of a.n m-dependent ra.ndom field, it appea.rs to be more natura.l. 

There a.re severa.l applications concerning p-radius multidimensionally indexed ra.n­

dom va.riables. One might find applica.tions in media. technology, meteorology a.nd 

in genera.l in situations where spatia.l statistics should be considered. 

The ma.in objective οί this chapter is to establish a. centra.l limit theorem for a.n 

a.rray of multidimensiona.lly indexed p-radius dependent ra.ndom varia.bles. 
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In the following we a.re dealing with the case r = 2. The case r > 2 can be treated 

simila.rly although the notation becomes more complica.ted. 

3.2 Lattice decomposition and related results 

For a real number χ , [χ] denotes its integer part. That is, [χ] denotes the greatest 

integer less than or equal to χ. 

We assume the usual partial ordering for the elements of Ν2 , i.e. 1 the notation 

In addition, the nota.tion (n1, n2)-+oo means ni-+OO for i = 1, 2 or equivalently, 

Το avoid any trivialities assume that p ~ 1. Let (n1 , n2) Ε Ν2 and assume that 

{Xί,ji (i,j) < (n1 , n2 )} is an array of p-radius dependent random variables. 

Let 

p• = { 
Ρ if p is an integer 

[p + 1] ίf p is not an integer 

i.e.
1 
p• is the smallest ίnteger greater than or equal to p. 

Let D'! . denote the disk with center at the poίnt (i1, i2) and radius ν where ν is a. •1.•2 

positive ίnteger greater that ρ• 1 tha.t is, 
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Let s!~~ = Σ X;1.fJ where the summa.tion 18 ta.ken over a.11 
(;1J2)ED~,i2 

la.ttice points (j1 ,j2) which a.re in the disk Df ί . Let 
1. 2 

1.e., Τί1 ,ί2 is the squa.re circumscήbing the disk Dfι,ί2 • 

Let 

Το keep the nota.tion simple, let k = ν + 1, .λ - 2ν + p• + 1, d1 - [n1 /.λ] a.nd 

By the definition of p-ra.d.ius dependent ra.ndom va.ήa.bles the following ra.ndom 

va.ria.bles a.re mutua.lly independent: 

S (T) s<T) s<T) 
k,k' k,(k+λ)' ..• , k,(k+λ~)' 
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Clea.rly, 

is a sum of independent random va.riables. 

Το avoid further complications we assume that 

Let 

and 

In order to make things more clarified we shall give a brief explanation of the ele-

ments of the set Bn1 .~ . 

First, we divide the two-dimensional positive integer lattice points into indepen-

dent disks, i.e., we require that the distance between any two points, belonging 

to two different disks is greater than p*. In other words, the distance between 

the centers of two different disks is greater than or equal to λ = 2ν + p* + 1. 

Το each of the independent disks we circumscribe a square. Therefore, starting 

from the lowest left corner, the first row of squares consists of the random variables 

s1~, S~[~>.).k' ... , S~[~>.di),k· Siinilarly, the first column of disks includes the random 

variables s1~J, Sk~~+>.)' ... , Sk~~+Ml)· Figure 3.1 shows the special case where p* = 1 

and ν = 2. 
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Figure 3.1 

The number D1 of the circumscribing squa.res in the horizonta.l dimension is 

Dι = nι + p* _ nι + p* 
2ν + 1 + p* λ 

while the number D2 of the circumscribing squares in the vertica.l dimension is 

Now, the set Bnι,flll includes a.ll lattice points which are not included in any cir-

cumscribing square. 

ί2 h 

Let Λ(ί1J1 ; ί2,;2) = Σ Σ X ,,t. 
1=ί1 t=jι 

iι = 1, ... , D1 - 1 and i2 = 1, ... , D2 
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is a sequence of independent random variables and consequently 

D1-l D2 

Δc = Σ Σ Λ~:~i2 
i1=l i2=l 

is a sum of independent random variables. 

Note that Δc is the sum of random varia.bles which belong to vertica.1 stήps between 

the circumscribing squares but not to any horizonta.l strip. By saying "vertica.l strip" 

we mean the strip which is formed between two successive columns of circumscήbing 

squares. Α "horizontal stήp" is the part of the lattice which is formed between two 

successive rows of circumscribing squares. 

iι = 1, ... , Dι and i2 = 1, .. . , D2 - 1 

and 
D1 D2-l 

Δ,. = Σ Σ Λ~:~ί2 · 
i1=l ί2=l 

Then, Δ,. is a.lso a. sum ο{ independent random varia.bles. 

Δ,. denotes the sum of random variables which belong to hoήzonta.l strips between 

the circumscribing squares but not to any vertica.1 strip. 

i 1 = 1, ... , D1 - 1 and iz = 1, ... , D2 - 1. 
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In Figure 3.1 for the special case p* = 1, ν = 2 Λ~:!ί2 is denoted by <!> • Clearly, 

Λ~:!ί2 is a.n arra.y of independent ra.ndom va.ria.bles a.nd consequently 

D1-l D2-l 

Δb = Σ Σ Λ~:~ί2 
i1=l i2=l 

is a sum of independent ra.ndom variables. 

If Δn1 ,n2 denotes the sum of ra.ndom variables which do not belong to any circum-

scribing square then 

Δnι,712 = Σ X;1,i2 = Δc + Δr + Δb. 
(;1 J2) EBn1 ,n2 

The following results will be needed for the proof of the central limit theorem in 

Section 3.3. 

Lemma 3.2.1: Let {Xi1 ,i2 , iι = 1, ... ,nι, i2 = 1, ... , n2} be an array of 

independent random υariables with zero mean. Let σl1 ,i2 be the υariance of Xi1 ,i2 

while ~1 ,ί2 < οο denotes the third absoltιte moment of Xi1 ,i:ι. 

Let 

IJ 

then 

n1 712 nι n2 

r:i .712 = Σ Σ Rf1 ,i2 and 8~1.n2 = Σ Σ σf1,i2 · 
i1=l i2=l 

1ίm Tn1 ,712 = 0 
( ni ,n2 )-+οο Sn1 ,712 
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Proof: The proof of (i) is trivial. For (ii) observe that since 

lim rn11"2 = ο 
( ni 1"2 )-+οο Sn1 ,"2 

Thus, by (i) ~1 ,ί:ι < r n 1 ,n2 < Sn1 ,n2 and the proof is complete. 

Lemma 3.2.2: Let {Χί11ί2 , i1 = 1, ... , nι, i2 = 1, ... , n2} be an array of in~ 

Ιt!ι ,ί:ι < οο then, 

Proof: By Liapounov's inequality (ΕIΧΠ~ is increasing in r, for r >Ο. 

σί1 ,ί:ι < ~1 ,ί:ι and the proof is complete. 

The inequality in the following lemm.a. is the so called Rosenthal inequa.lity the proof 

of which can be found in Petrov (1994). 

Lemma 3.2.3: Let Χ1 , ... , Xn be α sequence of independent random variables with 

EIXil" < οο for i = 1, ... , n and for some p ~ 2. Without any loss of generality 

assume that ΕΧί =Ο, i = 1, ... , n. 
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Let 
n n n 

Sn = ΣΧί, Mp,n = ΣΕIΧίlΡ and Bn = ΣΕΧ[. 
ί=l ί=l i=l 

Then1 

where c(p) is α positive constant depending only on p . 

3.3 Α Liapounov type theorem 

The ma.in result of this cha.pter is the following Lia.pounov type theorem. 

Theorem 3.3 .1: Let Ν2 be the two dimensional positive integer lattice. For n Ε 

Ν2 let { Xi, i ~ η} be an array of p-radiiιs dependent random variables. 

Assume that ΕΧί,; =Ο for i = 1, ... , n1, j = 1, ... , n2 without any loss of generality. 

Let 

iι =Ο, ... , dι - 1, 

be the array of independent random variables defined in Section 9.2. 

Let σli ,ί2 be the variance of S~[2.λίι),(k+>.ί2) and let also 

Assume the finiteness of the above quantities and define 
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ζ = 1,2,3 

where 

Assume that the following conditions are satisfied. 

(ζ) 
lim fn1 ι"2 = Ο, 

(nι ,"2)-+οο σ nι ,n2 

D1 D2 

σ-;,1~n2 Σ Σ Ε(Λ~;~i2 )2 -+ Ο as (nι, n2) -+ οο for ζ = 1, 2, 3. 
ίι=l i2=l 

Then, 

2 

is ΑΝ(Ο, σn;·n; ). 
nιn2 

Proof: The proof is based on the technique first introduced by S. Bernstein (see 

Hoeffding a.nd Robbins (1948)). 

ni "2 

We ca.n express the sum Σ Σ Χί1 ,ί2 as 
iι=l i2=l 
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nι n:ι dι -1 d:ι-1 

Σ Σ Xi1,i2 = Σ Σ s~Jlλi1),(k+λi2) + Δnι,n:ι 
iι=l i:ι=l iι=Ο i 2 =0 

where Δn1 ,n2 is defined in Section 3.2. 

The theorem will be proved iί we show that as (n1 , n2)-+ οο 

(i) 
1 di-1 d:ι-1 

Σ Σ (Τ) d ( -σ-- S(k+.λiι).(k+λί:ι) -+ Ν Ο, 1) 
n1,n:ι iι=Ο ί:ι=Ο 

a.nd 

(ii) 

where Bn1 ,n2 is defined in Section 3.2. 

We proceed to prove (i). 

Following Cramer (1945), we denote by Φi1 ,i2 (t) the characteristic function οί the 

random variable sti°l.λίι),(k+.λi:ι) and by Φn1 ,n2 (t) the characteristic function of the 

ra.ndom variable - 1 -Sn1 n2 where 
C7n11"2 ' 

Then, by the independence οί the random variables 
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we have 

Using a standard argument of complex analysis (see Cartan {1963) for an extended 

treatment of the topic) we ta.ke the logarithms of Πf;~J Πf:~J Φί1 ,ί2 (un:,n) and 

(3.3.1) 

Then using the MacLaurin expansion we can write 

. (Τ) 1 . (Τ) }2 θι \ (Τ) \3 
Φί1,ί2(t) = 1 + E{itS(k+.λί1).{k+.λί2)} + 2E{itS{k+.λi1).(k+.λi2) + 3! Ε tS(k+.λί1).(k+.λi2) 

t 2 σ2 θ r 3 
= 1 __ ~~,ί2 + -2\t13 ~ι,ί2 

1 

2 σnι,1\2 6 σn1,n2 

where 81 is a quantity with modulus not exceeding unity. 

Then 

= ln{l + z) (3.3.2) 

where 

(3.3.3) 
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For t fixed, since rnι ,na ~ Ο, then z ~ Ο as (n1, n2) ~ οο, i.e., lzl < 1/2 for 
σnι .na 

(n1, n2) sufliciently la.rge. Now, 

z2 z3 z4 
ln(l + z) = Ζ - 2 + 3 - 4 + ... 

1 z z2 z3 
= Ζ + z 2

(- - + - - - + - - ) 2 3 4 5 ... 

where θ2 = -! + ~ - ~ + z; - ... a.nd lθ2I < 1. 

This is true since 

= 1. 

Equa.tion (3.3.3) ca.n be written 

(3.3.4) 

-~ • r · . 
where θ3 = ~ a.nd θ - ~ --,:r-:-- 4 - σ . 

'1 •'2 n1 ι"2 

Notice tha.t by Lemma. 3.2.1 for (n1, n2) sufficiently la.rge, we ha.ve tha.t lθ4I < 1 a.nd 

by Lemma. 3.2.2 lθ3Ι ::::; 1. 

Now, using 3.3.2, 3.3.3 a.nd 3.3.4 
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-t2 σ~ · θ1 r~ · t 2 r~ · ltl3 r~ · _ 11,12 + ltl3 11,12 + θ (θ 11,12 + θ θ 11,12 )2 - --- - -- 2 3--- 1 4---
2 σ2 6 σ3 2 σ2 6 σ2 n1 ,n2 n1 ,n:;ι n1 ,n2 n1 ,n:;ι 

Summing over (i1 , i2) we have by (3.3.1) that 

t2 d1-1 d:ι-1 2 dl-1 d:ι-1 rs θ t2 1t13 
lnΦ (t) = =- Σ Σ σi1,ί2 + Σ Σ i1,i2 {....!.1t13 + θ θ (θ - + θ θ -)2} 

n 1 ,n2 2 . . σ2 . . σ3 6 2 4 3 2 1 4 6 11=0 ι2=Ο nι,n2 ιι=Ο ι2=Ο n1,n2 

Therefore, 

t2 d1 -1 d:ι-1 rs θ t2 1t13 
l lnΦ (t)+-1 < Σ Σ ί1 ,ί2 Ι-2Ιtl3 +θ θ (θ -+θ θ -)21 n1 ,n:;ι 2 - . . σ3 6 2 4 3 2 1 4 6 · 

•ι=Ο 12=0 n1,n2 

Observe tha.t, 
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= ι 81 ιtl3 +θ ο θ2 t
4 

+θ2θ θ31.!L+ ο θ θ θ2 1.!f.ι 6 2 4 3 4 1 2 4 36 1 2 3 4 6 

< ~1tl3 + ιο θ 02 ιt
4

+1020 θ3 ll!f + ιο ο θ θ2 ι!.!f. - 6 2 4 3 4 1 2 4 36 1 2 3 4 6 

since a.ll θ's are qua.ntities with modulus less tha.n or equal to 1. Thus, 

Since 

li Τnι,n:ι Ο m --= 
(nι ,n:ι}-+οο σn1 ,n:ι 

then for every :fixed t 

a.nd thus 
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Using the continuity of chara.cteristic functions of Levy and Cra.mer the proof of (i) 

ίs complete. 

We proceed to prove (ii). Using Markov's inequality we have that, 

Dι D:i-1 D1-1 D:i-1 Dι-1 D:ι-1 

+{Σ Σ Ε(Λί~~ί:ι)2}~+ Σ Σ Ε1Λί:~ί:ιl3 +{Σ Σ Ε(Λί:~ί:ι)2}~} 
ίι=l ί:ι=l ίι=l ί2=l ίι=l ί:ι=l 

(3.3.5) 

( (1) )3 ( (2) )3 ( (3) )3 l Dι-1 D:ι = C{ 'Ύn1 ,n:ι + 'Ύn1,n:i + 'Ύn1,n:i +-{σ-2 Σ Σ Ε(Λ(l)_ )2}! 
σ3 ε3 σ3 ε3 σ3 ε3 ε3 n1 .n:i . . •ι ,ι:ι 
~~ ~~ ~~ ~~~~ 

(3.3.6) 

where inequality (3.3.5) follows from Lemma 3.2.3 and C denotes a positive 

constant which is allowed to change from line to line. 
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By the assumptions of the theorem and using the fact that 

Dι D2 

σ;,1~n2 Σ Σ Ε(Λ~;~ί2)2-+ Ο as(nι, n2) -+Ο for ζ = 1, 2, 3 
ί1=l i2=l 

we have that 

and therefore the proof οί (ii) is complete. 

The theorem follows from Slutsky's Theorem. 

Remarks 

1) Theorem 3.3.1 can be compared to that of Bernstein's (1927) in the sense that the 

method of "big blocks" used here was first introduced by him. The major difference 

is that Bernstein imposed assumptions on conditional expectations while in this we 

don't. 

2) ln the case of independent and identically distributed multidimensionally indexed 

random varia.bles, under the second moment assumption, the central limit theorem 

is proved in Christofides and Serfling (1998). In contrast to the i.i.d. case, in the 

case of p-radius dependent random variables the finiteness of the third moment is 

needed, in order to prove the result. On the other hand, the finiteness of the third 

absolute moment of Χί1 ,ί2 which is needed to prove the central limit theorem for 
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p-radius dependent ra.ndom va.ria.bles, is a.lso needed for proving the result in the 

case of independent but not necessa.rily identically distributed ra.ndom va.riables. 

3) The conditions under which Theorem 3.3.1 is proved a.re not very restrictive a.nd 

a.re fulfilled in the case p = Ο, i.e., in the case of independent ra.ndom va.ria.bles. For 

exa.mple, the assumptions 

lim rn1,n2 =ο and 
(nι .~)-+οο σnι .~ 

ω 
lim 'Ύnι ι"2 = Ο .t ζ 1 2 3 .ιοr = , , 

( nι 1fi2)-+oo σ nι ι"2 

a.re the classica.l assumptions for the proof of the centra.l limit theorem for indepen-

dent but not necessa.rily identica.lly distributed ra.ndom va.ria.bles. 

In a.ddition, the assumptions 

D1 D2 
σ;1~n2 Σ Σ Ε(Λ~;~i2 )2 ___.Ο for ζ = 1, 2, 3 

i1=1 i2=1 

a.re mild. 

4) Theorem 3.3.1 ca.n be extended to a.n ana.logous theorem for J(lnl)-dependence. 

Of course, p= J(ln\) has to have sufficiently lower order tha.n \nl a.nd therefore 

lower order than ν. 

5) In this cha.pter the centra.l limit theorem has been shown for r = 2. The result ca.n 

be extended under the same assumptions to higher dimensions a.lthough nota.tion 

becomes cumbersome a.nd complica.ted. 
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Chapter 4 

The Berry-Esseen theorem 

4.1 Introduction 

The exact distribution of a sta.tistic is usua.lly complicated to define and work with. 

Hence, we usua.lly turn to the approximation of the exact distribution by a sim­

pler distribution with known properties. This is done in Cha.pter 3. Tha.t is, we 

ha.ve approximated the distribution of a sum of m.ultidim.ensiona.lly indexed p-radius 

dependent random variables by the standard norm.al distribution under general con­

ditions. 

In this chapter we sha.11 show how the va.lues of the param.eters a.ffect the speed 

of convergence to the lim.it and how large (n1 , n2 ) has to be in order the lim.it 

distribution (standard norm.al) to serve as a satisfa.ctory approximation. These two 

aims are fulfilled to a certain extend by the Berry-Esseen theorem. and they have 

considerable pra.ctical and theoretica1 significance, since one needs to know how 
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large (n1 , n2) should be in employing the limit theory. However, estima.tes of the 

rate of convergence in the central limit theorem were obtained for the first time 

by Liapounov (1901), even though the cla.ssical result of the Berry-Esseen theorem 

for a sequence of independent and identically distributed random va.riables were 

separately obtained by Berry (1941) and Esseen (1942). We shall therefore give 

here an explicit upper bound for the difference between the distribution function of 

a. sum of mu1tidimensionally indexed p-radius dependent random va.riables and the 

standard normal distribution function. 

4 .2 Preliminaries 

The proof of the main theorem involves many estima.tes. We present these estima.tes 

in three different lemma.ta. and then complete the proof of the theorem afterwards. 

We will use the sa.me nota.tion a.s in Cha.pter 3. First, we present the following 

lemma.ta.. 

Lemma 4.2.1: Assume that Χ and Υ are arbitrary random variables and 

F(:ι:) = Ρ(Χ < :ι:) and G(:ι:) = Ρ(Χ + Υ < :ι:). For any ε > Ο, :ι: Ε R and any 

distribution function Η, we have that 

IG(:ι:) - Η(:ι:)I < ma.x{IF(:ι: + ε) - Η(:ι: + ε)Ι, IF(:ι: - ε) - Η(:ι: - ε)I} 

+ma.x{IH(:ι: - ε) - Η(:ι:)!, IΗ(:ι: + ε) - Η(:ι:) I } + P(IYI > ε). 
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Proof: For every real χ and ε >Ο, 

Ρ(Χ +Υ <χ)= Ρ(Χ +Υ <χ, Υ > -ε)+Ρ(Χ +Υ <χ, Υ < -ε) 

:5 Ρ(Χ <χ+ ε) + Ρ(Υ < -ε) 

:::; Ρ(Χ <χ+ ε) + P(IYI ?: ε) 

which irnplies that 

G(x)- Η(χ):::; F(x + ε) - Η(χ) + P(IYI?: ε) 

= F(x + ε) - Η(χ) + Η(χ + ε) - Η(χ + ε) + P(IYI > ε) 

< IF(x + ε) - Η(χ + ε)I + IH(x + ε) - H(x)I + P(IYI > ε) 

< rnax{IF(:ι: + ε) - Η(χ + ε)I, IF(:c - ε) - H(:c - ε)I} 

+rnax{IH(x - ε) -H(x)I, IH(x + ε) - H(x)I} + P(IYI > ε). 

Respectively we have that, 

G(x) = Ρ(Χ + Υ <χ)= 1-Ρ(Χ + Υ >χ) 

Thus, 

= 1 - Ρ(Χ + Υ >χ, Υ < ε) - Ρ(Χ + Υ?: χ, Υ?: ε) 

?: 1 - Ρ(Χ > χ - ε) - Ρ(Υ > ε) ?: 1 - Ρ(Χ > χ - ε) - P(IYI ?: ε) 

= F(x - ε) - P(IYI > ε). 

G(x) - Η(χ) > F(:c - ε) - Η(χ) - P(IYI?: ε) 
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= F(χ-ε)-Η(χ-ε)+Η(χ-ε)-Η(χ)-Ρ(\Υ\ > ε) 

2: -IF(χ-ε)-Η(χ-ε)\-\Η(χ-ε)-Η(χ)\-Ρ(\ΥI 2: ε) 

> - max{\F(x + ε) - Η(χ + ε)I, \F(x - ε) - Η(χ - ε)\} 

-max{\H(x - ε) - Η(χ)\, \Η(χ + ε) - Η(χ)\} - Ρ(\Υ\ > ε) . 

Therefore, 

\G(x) - Η(χ)\::; max{\F(x + ε) - Η(χ + ε)\, \F(x - ε) - Η(χ - ε)\} 

+max{\H(x - ε) - Η(χ)Ι, \Η(χ + ε) - Η(χ)\} + Ρ(\Υ\ 2: ε) . 

Notice tha.t the previous inequa.lity lea.d us to a.nother very importa.nt inequa.lity, 

na.mely 

\G(x) - Η(χ)\ ::; sup \F(x) - Η(χ)\ 
:ι: 

+max{IH(x - ε)- H(x)I, \Η(χ + ε) - Η(χ)\} + P(IYI 2: ε) (4.2.1) 

for every rea.l χ a.nd ε > Ο . 

Lemma 4.2.2: Let F be α distribution function and G α real diiferentiable 

function with G(x)-+0 as χ-+-οο or G(x)-+1 as χ-+οο. 

Let sup:ι: \G'(x)\ < Μ where Μ is α positive constant. 

If F - G Ε L1 and G is ο/ bounded variation on ( -οο, οο) then for every Τ > Ο 

sup \F(x) - G(x)\ < ~ {Τ ιφp(t) - Φο(t) \dt + 24Μ 
:ι: π lo t πΤ 

where φp(t) and Φο(t) are Fou.rier-Stieltjes transforms ο/ F, G. 
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Proof: The proof ca.n be found in Chow a.nd Teicher (1988) p. 302. 

Lemma 4.2.3: Assume that Χ and Υ are arbitrary random variable3 and let 

F(x) = Ρ(Χ <χ) and G(x) = Ρ(Χ + Υ <χ). 

Let ε >Ο, χ Ε R and Φ(χ) be the standard normal distribution function. 

If sup IF(x)- Φ(χ)I ~ Μ then, 
:ι:: 

sup IG(x) - Φ(χ)I ~ Μ + max{IΦ(x - ε) - Φ(χ)\, IΦ(χ + ε) - Φ(χ)I} + P(IYI > ε). 
:ι:: 

Proof: The proof is stra.ightforwa.rd from Lemma 4.2.1 by setting Η(χ) = Φ(χ) . 

Lemma 4.2.4: Let {Χί1 ,ί2 , (iι, i2) Ε {(1, 1), ... , (nι, n2)}} be an array of indepen-

dent random variables wi.th 

Define 
nι Π2 

Sn1,n2 = Σ Σ Χί1,ί21 
ίι=l ί2=l 

nι Π2 

r~1,n2 = Σ Σ R/1,ί2 and 
ίι=l ί2=l 

Then, 3 α positive constant C such that 
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Proof: Following Cra.mer (1945), we denote by Φί1 ,ί2 (t) the cha.racteήstic function 

of the ra.ndom va.riable Χί1 ,i2 a.nd by Φsnι ."2 (t) the cha.ra.cteristic function of the 

ra.ndom variable - 1 -Sn1 n2 • 
Unl •"2 ' 

Then, by the independence of the random va.riables 

Using the sa.me a.rgument as that of Chapter 3 we get 

(4.2.2) 

Using the MacLaurin expansion we wήte 

where θ is a quantity with modulus not exceeding unity. 

Then 

= ln(l + z) (4.2.3) 
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where 

- -t
2 3~1 .i2 θ 1 13 lξ,i2 

Z---
2
-+-t --. 

2 σnι,~ 6 σ;ι,~ 
(4.2.4) 

.. ~ . 
Let θ2 = - ~~··~. Then, by Lemma. 3.2.2, lθ2I ~ 1. 

•1 1•2 

Therefore, z becomes 

( 4.2.5) 

By equa.tion ( 4.2.3) 

(4.2.6) 

with lθ3I < 1 a.nd where the last equa.lity of ( 4.2.6) follows using the sa.me a.rguments 

as in the proof οί the centra.l limit theorem in Cha.pter 3. 

Repla.cing the two forms of z from (4.2.4) a.nd (4.2.5) into (4.2.6) we ha.ve, 
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Let θ4 = 2lt1~ and assume tha.t θ4 < 1. 
CTn1 •"2 

Then, 

where θ5 = Rίι,ίa and by Lemma. 3.2.1 θ5 is less than 1. 
rn1 •"2 

Now put 

Then, 

Clea.rly, lθ6 I < ::S. Thus, put θ1 = θ6 2: and lθ7 I < 1 so tha.t we can fina.lly ha.ve 

tha.t 

By equa.tion (4.2.2), 

40 

Petr
ou

la 
Μ. M

av
rik

iou



Therefore) 

where the last inequality follows from the elementa.ry inequality ιeχ - 11 ~ l:z:\elx\. 

0'3 

Since ltl < 2σnι ,n:z then \t\3 < ~ . A1so) :~ < ~ . 
rnι ,n:z r nι ,n:z 

Therefore) 
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sιnce exp (~ :~) < 2 and thus, 

(4.2.7) 

Equation (4.2.7) is νalid for ltl < 2σnι,n;;ι • 
rn1 ,n;;ι 

We shall extend the range of ltl as it is in the statement of Lemma 4.2.4. 

Let Χι, Χ2 be two independent random variables with corresponding characteristic 

functions Φι and <h· Clearly, the characteristic function of the sum Χι + Χ2 is 

the product Φι<h· 

Suppose now that Χι and Χ2 are two independent and identically distributed 

random variables with Vαr(Χι) = σ2 , EIXιl3 = r 3 and E(e'tX1
) = φ(t) . Cle.arly, 

the corresponding characteristic function of Χι +Χ2 is φ2 . Now, let Υ =Χι -Χ2 • 

Then, Var(Y) = Var(Xι - Χ2) = 2σ2 and Ε\Χι - Χ2 \3 ~ 8r3
• Next, instead of 

writing that the characteristic function of Χι -Χ2, is equal to the square of IΦ(t)I, 

we expand the characteristic function of the random variable Υ, with variance 2σ2 

and absolute third moment less than or equal to 8r3
• In other words we symmetrize 

the random varia.ble Χ. 

So, 
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where the last inequality follows from the elementa.ry inequality 1 + χ =:::; e:r:. 

(4.2.8) 

By equation ( 4.2.2) 

a.nd equation ( 4.2.8) we have that 

3 

By the assumption of Lemma 4.2.4, \tl < ;rt""'λ a.nd therefore we have that 
nι,n:ι 
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( 2 2 2) ( t2 = exp -t + -t = exp --) 3 3 . 

So, using the tria.ngle inequality 

(4.2.9) 

Combining (4.2.7) a.nd (4.2.9) we ha.ve tha.t, 

a.nd the proof of the lemma. is complete. 
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4 .3 Berry-Esseen theorem 

T heorem 4.3.1: Let {Xi1 ,i2 , (i1, i2) Ε {(1, 1), ... , (n1, n2)}} be an array of p-radius 

dependent random variables. Assume that ΕΧ,1 ,i2 = Ο without any loss of generality. 

Let 

iι = o, ... ,d1 -1, i2 = ο, ... , d2 - 1} 

be the array of independent random variables defined in Section 9.2. 

Let σf1 ,i2 be the variance ο/ S~[!>.iι).(k+>.i:i) and let also 

Assume that the above quantities are finite ane define 

and 

Assume that the following condition is satisfied. 
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Then for, εn = ε( η) > Ο and χ Ε R we have that 

for some constant Ο. 

Proof: We ca.n express the sum Σfι1=1 Σi;=ι Xi1 ,i2 as 

nι 712 

Σ Σ Xi1 ,i2 = Snι ,'12 + Δnι,'12 
iι=l i2=l 

where Sn
1

,
712 

a.nd Δn1 ,712 are given in Section 3.2. 

Put 

Χ = Snι ,n2 a.nd y = Δnι 1n2 • 

σnι,'12 σnι,'12 

In addition, let F(:z:) = Ρ(Χ < :z:) a.nd G(x) = Ρ(Χ + Υ < :z:). 

Using equation (4.2.1) a.nd taking H(:z:) to be the sta.ndard normal distribution 

function we have that 

IG(:z:) - Φ(:z:)I ~ sup \F(x)- Φ(:z:)\ 
:ι: 

+max{\Φ(x - ε) - Φ(:z:)\, \Φ(χ + ε) - Φ(:z:)\} + Ρ(\Υ\ > ε). 

s2 

Observe that Φ'(:z:) = Jke-τ and sup:ι: IΦ'(x)I < Jk· 
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In a.ddition, the random va.riables with the following corresponding distribution func-

tions F(:ι:) and Φ(:ι:) both have mean zero and variance one. By Chebychev's 

inequa.lity F( :ι:) < ~ for :ι: < Ο and 1 - F( :ι:) ~ ~ for :ι: > Ο. Simila.rly, 

Φ( :ι:) < ~ for :ι: < Ο and 1 - Φ( :ι:) ~ ~ for :ι: > Ο. Then F - Φ Ε L1 and the 

assumptions of Lemma 4.2.2 a.re satisfied. 

Therefore 

sup IF(:ι:) - Φ(:ι:)Ι ~ ~ {Τ ιΦF(t) - φ(t) ldt + ~ 
χ πh t πΤ 2π 

where ΦF(t) and φ(t) denote the cha.racteristic functions of F and Φ . 

By Lemma 4.2.3 we get 

sup IG(:ι:) - Φ(χ)I < ~ {Τ ιΦF(t)- φ(t)ldt + ~ 
χ π lo t πΤ 2π 

+ma.x{IΦ(:z: - ε) - Φ(:ι:)Ι, IΦ(:ι: + ε) - Φ(:ι:)I} + P(IYI ~ ε). (4.3.1) 

Clea.rly, 

ε 

ma.x{IΦ(x - ε) - Φ(:ι:)I, IΦ(:ι: + ε) - Φ(:ι:)I} < .;ϊΠ' 

Using Lemma.4.2.4 and since Χ represents a sum of independent random variables 

we have 

σ3 
Ιtl < n;·"2 . 

2r nι,"2 

3 
Therefore for Τ = ~ the right hand side of inequa.lity (4.3.1) is less than or 

rn1 •"2 

equal to 
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Then, 

sup IG(x) - Φ(χ)I < 
:ι; 

Using Markov's inequality and inequality (3.3.6) we have that 

P(IYI > ε) = P(I Δnι,n:ι ι 2:: ε) ::; 
σnι,n:ι 

where C is a constant. 
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Since by the assumption of the theorem, 

D1 D2 

σ;1~n2 Σ Σ Ε(Λ~;~i2 )2 = Ο(ν-1 ) for ζ = 1,2,3 
i1=l i2=l 

sup IG(x) - Φ(χ)I:::; 
:ιι 

a.nd the proof of the Theorem 4.3.1 is complete. 

Remarks 

1) For the case where the ra.ndom variables are independent a.nd identically dis-

tributed, the rate of convergence of G( χ) to Φ( χ) is equa.l to 

where Ο < α < 1 a.nd εn = ε(η). 

Notice that, as it was mentioned at the beginning of this cha.pter, the rate of con-

vergence is based on the behavior of α a.nd ε(η). 

2) The "sta.ndard" tricks which are used in the a.bove estima.tes ha.ve their clear 

origin in Liapounov's proof of his theorem in 1901 as the importa.nt problem of 

eπor estima.tion is considered there for the fust time. 
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Chapter 5 

The strong law of large numbers 

5.1 Introduction 

The laws of la.rge numbers have a long history. The standa.rd approach to the strong 

laws of la.rge numbers for independent random va.riables is based on truncation 

and the use of the Kolmogorov's criterion. We distinguish here two fundamental 

references. The first one is due to Kolmogorov {1933) which includes the well known 

three-series theorem and the second is a classica.l paper of Chung {1947). Surveys 

on the strong law of la.rge numbers for sequences of independent random variables 

can be found in Stout {1974). 

For this classical limit theorem there a.re va.rious extensions. Such extensions include 

the strong law of la.rge numbers for multidimensionally indexed random variables 

and the stτong law of la.rge numbers for dependent random va.riables. For the former 

extension, several results and references a.re presented in the first chapter of this 
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thesis while for the la.tter see Blum and Brennan (1980), Kuchka.rov (1990) and 

Sha.ra.khmetov (1995). In this cha.pter we give a. strong la.w of la.rge numbers for 

multidimensiona.lly indexed p-ra.dius dependent random va.ria.bles using the method 

of trunca.tion, followed by the a.djusted Kronecker's lemma. for multidimensiona.lly 

indexed random varia.bles. 

5.2 Main results 

For the proof of the strong la.w of la.rge numbers the following lemma. is to be used. 

The lemma. can be found in Chung (1974) p. 124. 

Lemma 5.2.1: Let φ be α positive and even function on R1 stιch that as \χ\ 

increases Φ1~> increases and Φ;~> decreases. 

Then, for lxl ~ α 

φ(α) < φ(χ) and therefore χ2 
< φ(χ). 

a2 - χ2 a2 - φ(α) 
(5.2.1) 

In addition, for lxl > α >Ο we have that 

φ(χ) > φ(α) and thus J.:.l < φ(χ). 
lxl - α α - φ(α) 

(5.2.2) 

T h eorem 5.2.2: Let {Χnι,n·Λ be an array of independent random variables with 

Ε Xn
1 

,f12 = Ο f or every ( n 1, n2) and asstιme that { αn1 ,f12} is an array stι.ch that 
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for i = 1, 2 or equivalently, minι$ί9 ni-+OO. If φ is α function satisfying the 

conditions of Lemma 5.2.1 and 

then, 

Proof: Following Chung {1974) we put 

By the truncation οί the { Xn1 ,Yi2} we have that 
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where the second inequality follows from (5.2.1) a.nd the la.st from the a.ssumption 

of the theorem. 

Therefore, 

(5.2.3) 

In a.ddition, 

(5.2.4) 

Since ΕΧ =Ο we ca.n ea.sily conclude tha.t 
nι 1"2 

Therefore the right ha.nd side of equa.lity (5.2.4) is equa.l to 
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where the second inequality follows from (5.2.2) a.nd thus from the assumption 

(5.2.5) 

Now, 

00 00 00 00 

Σ Σ P{Xn1 ,n2 =/= Yn1 ,n2 } = Σ Σ P{ \Xn1,n2\ > αn1 1~} 
~~~~ ~~~~ 

00 00 

= Σ Σ E[J{\Xn1 ,n2\ > αn1,n2 }] 
nι=l n2=l 

< .~,Ε. E(~~::.:i Ι(ΙΧ.,,.,ι > a.,,.,)) (5.2.6) 

Inequality (5.2.6) follows from (5.2.2). Therefore we have that, 

54 

Petr
ou

la 
Μ. M

av
rik

iou



00 00 

Σ Σ Ρ{Χnι,~ ψ Yn1,n2} < 00. (5.2.7) 
nι=l n2=l 

It is known tha.t for a. sequence of independent ra.ndom va.ria.bles, the three-series 

theorem is suflicient for the a..s. convergence of Σn Xn. As it is sta.ted in Smythe 

(1973), the three-series theorem is a.lso suflicient for independent multidimensiona.lly 

indexed ra.ndom va.ria.bles. Therefore, inequa.lities (5.2.3), (5.2.5) a.nd (5.2. 7) a.re 

ffi. ' t d th th Σ00 Σ00 ~ a.l t 1 su cιen a.n us e sum nι=l n2=l αn1,n2 converges mos sure y. 

Corollary 5.2.3: Let {Χnι,nΛ be an array of independent random variables with 

where Ο < p < 1. Assιιming that 

we have that, 

1 nι ~ 

--Σ Σ Xi,;-+ Ο a.s .. 
n1n2 ί=t;=ι 

Proof: First we show tha.t the a.ssumptions of Lemma. 5.2.1 a.nd Theorem 5.2.2 

concerning the function φ( χ) = lx lι+" a.nd the a.rra.y { αn1 .~} a.re sa.tisfied. 

For 

Ο < p < 1 a.nd 1χ1 < nι n2 
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while for 

lxl lxll+P 
{n1n2) ::5 {n1n2)1+P · 

Since, 

we have by Theorem 5.2.2 that 

00 00 χ 

Σ Σ 
nι,7\2 converges a.s .. 

nι=l n2=l n1n2 

Using the analog of Κronecker's Lemma for multidimensionally indexed random 

va.riables, which can be found in Mόricz {1981), 

1 nι n2 

-ΣΣΧί,j -t ο a.s. 
n1n2 ί=l j=l 

and the proof is complete. 

The extension of Corollary 5.2.3 to the case of r-dimensionally indexed p-radius 

dependent random va.riables can be easily obtained. 

Corollary 5.2.4: Let n Ε Ν2 and let {Χϊ, i ::5 n} be an array of p-radi'US 

dependent random variables such that EXn1 ,R2 = Ο and EIXn1 ,R2ll+P < οο for 

every n 1 = 1, 2, ... and n 2 = 1, 2, .... 

Assume that 
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and 

for 

ζ = 1, 2, 3 and Ο < p < 1. 

Then, 

Proof: We shall only give the proof for the case r = 2. The extension to a. higher 

dimension is simila.r although nota.tion becomes quite complica.ted. By Corolla.ry 

5.2.3 a.nd since the following four terms a.re sums of independent ra.ndom va.ria.bles, 

as m1n1$ί$2 nί-+οο i = 1, 2 we ha.ve tha.t 

1 dl-1 <l2-l - Σ Σ (Τ) Τι = βD D S(k+>.ί1),(k+>.ί2) -+ Ο a..s 
1 2 ί1=Ο ί2=Ο 

1 D1-l D2 - Σ Σ <ι> Τ2 = h( • )(D - )D . . Λί1,ί2 -+Ο a..s 
Ρ , ν ι 1 2 •1=1 •2=1 

1 Di D2-l - - Σ Σ <
2> Ts - h( • )D (D _ l) . . Λί1 ,ί2 -+Ο a..s 

Ρ , ν 1 2 ,1 =1 ι2=1 
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where β denotes the number of lattice points which belong to a. squa.re with length 

ιι i.e., β is equa.l to (2ιι + 1)2, h(p*,v) = (2ιι + l)p*, g(p*) = (p*)2, dι = dι(nί) and 

Now, 

h(p*, v)D1(D2 - 1) + g(p*)(Dι - l)(D2 - 1) 

whereas 

nι n2 

Σ Σ Χί1,ί2 = 
ίι=l ί2=l 

Clearly, any linea.r combination of continuous functions is continuous. We keep p* 

and ιι fixed and we write nι~2 Σfι1=1 Σ~=l Χί1 ,ί2 as 

h(p*, v)D1(D2 - l)T3 + g(p*)(D1 - l)(D2 - l)T4}. 
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Clearly, 

Τι -t Ο a.s., 

g(ρ*)(Dι - l)(D2 - 1) 
~---"-..:...__-=---~--..:... -t c4, Τ4-. Ο a.s. 

nιn2 

and since Ci, i = 1, 2, 3, 4 a.re fixed constants 

and the proof is complete. 

Remarks 

1) For the case of independent and identic.ally distributed random va.ria.bles, the 

following assumption in Corolla.ry 5.2.3 and consequently in Corolla.ry 5.2.4 

is valid since 
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converges. 

2) Let the a.rra.y {Χ1, i ~ η} m Corolla.ry 5.2.4 be a.n a.rra.y of independent 

multidimensionally indexed ra.ndom va.ria.bles. Then for p = 1 Corolla.ry 5.2.4 

coincides with Theorem 2.2.4, where for p = 1 a.nd r = 1 we ha.ve the cla.ssical 

Kolmogorov's strong la.w of la.rge numbers. 
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Chapter 6 

Probability inequalities 

6.1 Introduction 

The beha.vior of sums {Sn, n;? 1} of independent ra.ndom va.ria.bles {Χί, i = 

1, 2, ... } is of grea.t interest in proba.bility theory. In pa.rticula.r, in the ca.se where the 

ra.ndom va.ria.bles {Χί, i = 1, 2, ... } a.re independent a.nd identica.lly distήbuted, 

there a.re ma.ny interesting results. In this cha.pter two Kolmogorov inequa.lities 

for the sa.mple a.vera.ge of independent (but not necessa.rily identica.lly distributed) 

Bernoulli ra.ndom va.ria.bles a.re presented. 

For a. sequence of independent a.nd identica.lly distributed Bernoulli ra.ndom va.riables 

Χ1,Χ2 , .•• with Ε(Χι) = p, Kolmogorov (1963) provided the following inequa.lity: 
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where 

Improvements, extensions a.nd ma.ny rela.ted results ca.n be found in Hoe:ffding (1963), 

Kambo a.nd Kotz (1966), Young, Seama.n a.nd Marco (1987), Ί\ιrner, Young a.nd 

Sea.ma.n (1992), Young, Turner and Sea.man (1988), Christofides (1991), Christofides 

(1994) and Banjevic (1985). ln this final chapter, we provide two Kolmogorov 

inequalities for the case of independent but not necessarily identically distributed 

Bernoulli random va.riables. 

6.2 Deterministic inequalities and other results 

We will ma.ke use of the following results. Let p = * Σ?=ι Ρί where Ρι, ... ,pn Ε R+. 

Lemm a 6 .2.1: For t >Ο 

n 

ll(pίet + 1 - Ρί) ~ (pet + 1 - p)n. 
ί=l 

Proof: The proof of the lemma. is quite trivial. From the a.rithmetic-geometric mea.n 

inequality, we have tha.t 
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The following result is due to Chήstofides (1994). 

Lemma 6.2.2: Let ι < ! and 

1-p-ι .Ρ+ι 
g(p, ι) = (1 - p- ι)ln( 

1 
_ ) + (.Ρ + ι)ln(-_-). 

-p Ρ 

Then, for p + ι < ! or ! + ~ι < p < 1 

Lemma 6.2.3: Let χ= 2(.Ρ + ι) - 1 and y = 1 - 2p. Then, 

00 1 
Σ {x2r + (2r -1)y2r + 2rxy2r-l} = g(p, ι). 
r=l 2r(2r - 1) 

where g(p, ι) is defined in Lemma 6.2.2. 

Proof: We ha.ve p + ι = ~i1 a.nd p = 1;11 . Then, 

1-χ 1-χ l+x l+x 
g(p,ι) = (-)ln(-) + (-)ln(-). 

2 l+y 2 1-y 

Using the Ta.ylor seήes expa.nsions 
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οο :ι{ οο :r/· 
ln(1 +χ)= Σ(-1y-1- a.nd ln(1 - χ)= - Σ-

r=ι r r=l r 

we ha.ve tha.t 

g(p,ε) = (1- χ) {-Σ :ι:r - Σ(-1y-1Yr} + (1 +x){f(-1y-1Xr + Σ yr }. 
2 r=l r r=l r 2 r=l r r=l r 

After algebra.ic manipulations we arrive at the desired result. 

Lemma 6.2.4: Let ν be α positive integer and χ > 1. Then 

z2v-2(x2v-1+1) - (χ+ 1)2v-1 > ο. 

Proof: Let 

F(x) = 22v-2(x2v-1 + l) _(χ+ l)2v-1. 

Then, 

F'(x) = 22v-2(2ν -1)χ2ν-2 - (2ν - l)(:ι: + 1)2v-2 

= (2ν _ 1){22v-2X2v-2 _(χ+ l)2v-2} 

= (2ν -1){(2:ι:)2v-2 - (χ+ 1)2v-2} >Ο sιnce χ> 1. 

Thus, F( χ) is a.n increa.sing function and F( χ) > F(1) = Ο. 

Lemma 6.2.5: Let y ~ 1 and ν = 1, 2, ... . Then, 
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4 
H(y) = Υ211 + 2ν - 1 + 2νy - 2211 (y + 1)211 >Ο. 

Proof: For the deriva.tive of H(y) we ha.ve 

Η' (y) = 2νy211-1 + 2ν -
2
; 11 2ν(y + 1 )211- 1 

4 2211 2211 
= 2ν-{-y211-l + __ (y + l)211-1} 

2211 4 4 

= 23-211ν{2211-2Υ211-l + 2211-2 _ (y + l)211-l} 

= 23-211ν{2211-2(y211-l + l) _ (y + l)211-l }. 

By Lemma. 6.2.4, H'(y) > Ο implying tha.t Η is increa.sing a.nd therefore Η(χ) ~ 

H(l) =Ο. 

Lemma 6.2.6: Let χ and y be as in Lemma 6.2.9 and r = 1, 2, ... . Then 

X2r + (2r _ l )y2r + 2rxy2r-1 > 4( Χ ~ Υ )2r. 

Proof: By lemma. 6.2.5 for c > 1 

4 
c2r + 2r - 1 + 2rc - 22r ( c + 1 )2r ~ Ο. 
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Ta.king c = x/y we have 

and therefore 

x2r χ 4 χ 
-+2r-1 +2r- > -(-+ 1)2

r y2r y - 22r y 

Χ +y 2r 
x2r + (2r - l)y2r + 2rxy2r-l ;:::: 4(-2-) . 

6 .3 Kolmogorov t y pe inequalities 

The following theorems provide exponential bounds for Υ, the sample average of 

independent Bernoulli random variables. 

T heorem 6.3.1: Let Υί, Yi, ... , Yn be α seqiιence of independent Bernoiιlli random 

variables with E(Yi) = Ρί, i = 1, ... , n and ε < ~· Then for p + ε < ~ or 

Ρ {Υ - p > ε} < ( 1 - 4ε2) ~ 

Proof: Let s >Ο. Then, 

Ρ{Υ - .Ρ > ε} = P{s(Y - .Ρ- ε) >Ο} 
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n 
= e-.. (Ρ+ι) Π E(e-;Y;) (6.3.1) 

i=l 

n 

= e-.. (Ρ+ι) Π (pie1' + 1 - Pi) 
i=l 

where f(s) = .s(p + ε) - nln(pe!a + 1-p). Observe that the last inequality follows 

from Lemma 6.2.1. 

The function f is maximized at smαx = nln{ ~-;_~/_~) } and 

(fi+ε)(l-p) 1-p 
f(smσ.x) = n(p + ε)ln{ _ _ } - nln{ _ } = ng(p, ε) 

p( 1 - p - ε) 1 - p - ε 

where 

(p + ε)(l - p) 1 - p 
g(p, ε) = (p + ε)ln{ -cι - ) } - ln{ 1 - }. p -p-ε -p-ε 

Thus 
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Ρ{Υ - Ρ > ε} < e-ng(fS,ι) 

and by Lemma 6.2.2 

Ρ{Υ - .Ρ > ε} < (1 - 4ε2)~. 

The following theorem gives an exponential bound under different conditions on p 

and ε. 

Theorem 6.3.2: Let Υί, Ύ2, ... , Yn be α sequence of independent Bernoulli random 

variables, with E(Yi) = Ρίι i = 1, ... , n. Then for p + ε > ~ or p < ~ and V ε < 1, 

h Υ- - ! Σn V: d - - ! Σn . w ere - n ί=l i i an Ρ - n ί=l p,. 

Proof: From the proof οί Theorem 6.3.1 

Ρ{Υ - p > ε} ~ e-ng(fJ,ι) 

where 

1-p-ε p+ε 
g(p, ε) = (1 - p- ε)ln( _ ) + (.Ρ + ε)ln(-_-). 

1-p Ρ 

By Lemma 6.2.3 
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00 1 
g(p,ε) = Σ {:ι:2r + (2r - l)y2r + 2r:ι:y2r-l} . 

r=l 2r(2r - 1) 

Since :ι: + y = 2ε and using Lemma 6.2.6 we have 

00 1 2ε ~ 
g(p, ε) >?; 2r(2r - 1) 4( 2) 

οο 2ε2r 

=Σ--
r=l r(2r -1) 

4 00 2( ε )2r-4 

= 2ε2 + ε ~ r (2r -1) 

2 4 Σοο ( ε2)r-2 
~ 2ε + 2ε -4r---'-2-(r..;....--2-)!-6 

r=2 

since r(2r - 1) < 4r-2(r - 2)16 for r > 2. Then, 

Thus, 

- 2 .1 Σοο c ε2 )r-2 ι 
g(p, ε) > 2ε + 2ε 6 r=2 4 (r - 2)! 

-2 1 4 ~ 
=2ε-+-εeΤ . 

3 
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a.nd the proof of the theorem is complete. 

Remarks 

1) The left ha.nd side of Theorem 6.3.1 a.nd that of Theorem 6.3.2 ca.n in fact be 

replaced by the stronger version 

k 1 k 

P{sup(Yk - p"k) > ε} where Yk = ΣΥi and p"k = - ΣΡί· 
k2:n ί=l k ί=l 

This is possible because by applying Lemma 1 of Thrner, Young a.nd Seaman (1994) 

we arrive at (6.3.1) having the required quantity P{supk;::n(Yk - p1e) > ε} as our 

left hand side. Then, the exact same steps can be followed. 

2) In view of the previous remark both Theorem 6.3.1 and 6.3.2 provide sharper 

bounds than that of the main result of Thrner, Young and Seaman (1994), under of 

course restrictions on p and ε. 

3) Theorem 6.3.1 is an extension of Corollary 3.2 of Christofides (1994). 

4) It is straightforward that both Theorems 6.3.1 and 6.3.2 can easily be generalized 

to the ca.se of multidimensionally indexed random variables. 
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Applications and future work 

The importa.nce of multidimensiona.lly indexed p-radius dependent ra.ndom va.ria.bles 

is due to the fa.ct tha.t they ca.n be very a.pplica.ble. In rea.l life, most of the time 

we ha.ve to dea.l with spa.tia.l ra.ndom va.riables which very often a.s expected a.re not 

independent. 

Let us ta.ke a.s a.n example da.ta in meteorology. Rainfa.11 is mea.sured a.t ra.infa.11 

sta.tions. The loca.tion of each station is defined by height, la.titude a.nd longitude. 

Therefore, we ca.n a.ssume tha.t rainfa.11 in each sta.tion is a three-dimensiona.lly in­

dexed ra.ndom va.riable, i.e., Xi1 ,i2 ,is· Appa.rently, mea.surements of rainfa.11 a.re a.sso­

cia.ted to each other according to the loca.tion of the sta.tions. This a.ssociation ca.n 

be interpreteted a.s p-radius dependence. 

Α television screen ca.n be thought of a.s a. two-dimensiona.l la.ttice, with n1, n2, 

sufficiently la.rge. For each lattice point we ca.n a.ssociate a two dimensiona.lly indexed 

ra.ndom va.ria.ble which mea.sures the intensity or the brightness of the picture at the 

specific point. Clea.rly, lattice points which are close to ea.ch other a.re expected to 

ha.ve similar intensity or brightness whereas these characteristics for dista.nt points 

should be independent. 

Multidimensiona.lly indexed p-radius dependent ra.ndom varia.bles a.nd tools like the 

centra.l limit t heorem a.nd strong la.ws, pla.y a.n importa.nt role in the sta.tistical 

inference of the a.bove cases. 

For resea.rch purposes, multidimensiona.lly indexed p-radius dependent ra.ndom va.ri-
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ables could serve as the basis for other interesting results. For exa.mple, we could 

extend the above results to the case of U-statistics, tha.t is, we can derive asymp­

totic results for U-statistics based on multidimensionally indexed p-radius dependent 

random variables. 

Furthermore, one might consider the possibility of exploring a. more general notion 

of dependence between the random variables. For exa.mple, we could investiga.te the 

asymptotic behavior of multidimensionally indexed random va.riables sa.tisfying a. 

condition which is a.nalogous to a. mixing condition in the case of one dimensionally 

indexed random va.ria.bles. 
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