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PerÐlhyh
Sthn paroÔsa diatrib  upojètoume ìti to G eÐnai èna fragmèno qwrÐo Jordan me kat�tm ma analutikì sÔnoro mèsa sto migadikì epÐpedo kai èstw ìti Ω := C \ G sumbolÐzeito sumpl rwma tou G. Parousi�zoume jewrhtikèc ektim seic kai arijmhtik� apotelèsmatasqetik� me thn efarmog  thc mejìdou tou Bergman (BKM) qrhsimopoi¸ntac mÐa b�shpou perièqei algebrikèc sunart seic. H mèjodoc aut  eÐnai gnwst  wc BKM/AB gia thnprosèggish thc sÔmmorfhc apeikìnishc f0 apì to G ston kanonikopoihmèno dÐsko. Ed¸shmei¸noume ìti parousi�zoume dÔo eid¸n sf�lmata gia thn prosèggish thc f0 apo tabèltista L2(G) polu¸numa: to L2(G)-sf�lma kai to L∞(G)-sf�lma. Me autì ton trìpoparèqoume pl rh jewrhtik  aitiolìghsh thc mejìdou BKM/AB.Sto pr¸to kef�laio perigr�foume th sÔgklish thc BKM gia tic di�forec peript¸seictou sunìrou Γ tou G. Pio sugkekrimèna, ìson afor� th sÔgklish thc mejìdou, sthnperÐptwsh pou h f0 èqei analutik  epèktash se ìlo to Γ, tìte autì eÐnai sunèpeia toujewr matoc tou Walsh perÐ mègisthc sÔgklishc [27, §4.7, §5.3]. Sthn perÐptwsh ìpou tosÔnoro Γ eÐnai kat� tm ma analutikì kai h f0 èqei idiomorfÐec sto Γ (gwnÐec), tìte ta pioakrib  apotelèsmata gia to sf�lma sthn prosèggish thc f0 ofeÐlontai ston D. Gaier [7].Oi Levin, Papamiqa l kai SiderÐdhc  tan oi prwtoi pou prìteinan sto [12] ìti to sf�lmaìson afor� thn prosèggish thc f0 sto G apì polu¸numa qamhloÔ bajmoÔ exart�taitìso apì tic gwnièc tou sÔnorou Γ ìso kai apì touc pìlouc thc f0 sto Ω. Wc ektoÔtou, prokeimènou na beltiwjeÐ h arijmhtik  apìdosh thc BKM gia thn prosèggishthc f0, eis�goun mia mèjodo pou basÐzetai sthn orjokanonikopoÐhsh enìc sust matoc pouapoteleÐtai apì mon¸numa kai idiìmorfec sunart seic pou anakloÔn mazÐ tic gwnièc kaitouc pìlouc thc f0 sto Γ kai sto Ω. H epèktash aut  eÐnai gnwst  wc BKM/AB. Stoiii
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deÔtero kef�laio orÐzoume ton sumbolismì pou ja qrhsimopoihjeÐ gia thn kataskeu  thcmejìdou BKM/AB kai suzht�me thn kat�llhlh epilog  twn sunart sewn pou apoteloÔnthn b�sh. To trÐto kef�laio eÐnai afierwmèno sth jewrhtik  aitiolìghsh twn diafìrwn
BKM kai BKM/AB sfalm�twn, sthn perÐptwsh ìpou h f0 èqei analutik  epèktash seìlo to Γ, wc ek toÔtou mìno sunart seic pou anakloÔn touc pìlouc qrhsimopoioÔntai sthn
BKM/AB. Se aut  thn perÐptwsh par�gontai �nw kai k�tw fr�gmata gia ta BKM kai
BKM/AB sf�lmata.H jewrhtik  pistopoÐhsh thc mejìdou BKM/AB me sunart seic pou anakloÔn mìnotic idiomorfÐec thc f0 sto sÔnoro Γ dìjhke sto [16]. O skopìc tou kefalaÐou 4 eÐnai napar�xei jewrhtik� apotelèsmata gia thn prosèggish thc f0 qrhsimopoi¸ntac sunart seicpou anakloÔn tautìqrona, tic idiomorfÐec thc f0 sto sÔnoro Γ kai sto Ω. Pio sugkekrimèna,èqoume ex�gei �nw fr�gmata gia ta BKM kai BKM/AB sf�lmata. Sto kef�laio 5melet�me ta BKM kai BKM/AB sf�lmata eswterik� tou G gia tic duo diaforetikècpeript¸seic twn kefalaÐwn 3 kai 4, ìpou kai ex�goume �nw fr�gmata. Tèloc, sto kef�laio6 parousi�zoume arijmhtik� apotelèsmata pou pistopoioÔn ta jewrhtik� apotelèsmata twnkefalaÐwn 3, 4 kai 5.
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Abstract
In this thesis we assume that G is a bounded Jordan domain in the complex plane withpiecewise analytic boundary and let Ω := C \G denote the complement of G. We presenttheoretical estimates and numerical evidence for certain phenomena, regarding the ap-plication of the Bergman kernel method (BKM) with algebraic and pole singular basisfunctions, denoted as BKM/AB for approximating the conformal mapping f0 of G ontothe normalized disk. More precisely, we obtain two sided-estimates for the L2(G) and
L∞(G)-error, in the best L2(G)-polynomial approximation to f0. In this way, we com-plete the task of providing full theoretical justi�cation of this method.In the �rst chapter we describe the convergence of the BKM for several cases of theboundary Γ of G. More speci�cally, regarding the convergence of the method, in thecase when f0 has analytic continuation across Γ, then this is a consequence of Walsh'stheory of maximal convergence [27, �4.7, �5.3]. In the case when Γ is piecewise analyticwithout cusps and f0 has singularities on Γ, then the most precise results for the error inapproximating f0 are due to D. Gaier [7].Levin, Papamichael and Siderides were the �rst to suggest in [12] that the error inapproximating f0 on G by polynomials of low degree will depend on both the boundaryand the pole singularities of f0 in Ω. Hence, in order to improve the numerical perfor-mance of the BKM for approximating f0, they introduced a method which is based onorthonormalizing a system of functions consisting of monomials and singular terms thatre�ect both corner and pole singularities of f0 on Γ and in Ω. This extension is knownas BKM/AB. In Chapter 2 we set up the notation and recall the BKM/AB. Chapter 3is devoted to the theoretical justi�cation of the various BKM and BKM/AB errors, inv
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cases when f0 has an analytic continuation across Γ, hence only basis functions re�ectingpoles are used in the BKM/AB. In this case we derive upper and lower estimates for theBKM/AB errors. Also we derive upper and lower estimates for the BKM errors.The theoretical justi�cation of the BKM/AB with basis function that re�ect the cor-ner singularities of f0 was given in [16], by means of sharp estimates for the associatedBKM/AB errors. The purpose of Chapter 4 is to derive theoretical results that justify theuse of basis functions that re�ect both corner and pole basis functions. More speci�cally,we derive upper estimates for the BKM/AB errors. In addition, we derive more informa-tive estimates for the BKM errors. In Chapter 5 we study the BKM and BKM/AB errorinterior the domain G for the two di�erent cases of Chapter 3 and 4, and we derive upperestimates. Finally, in Chapter 6, we present numerical computations that illustrate thetheory of Chapter 3, 4 and 5.
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Chapter 1
Preliminary results
1.1 IntroductionThe purpose of this chapter is to present the preliminary results needed in the analysis ofthe method considered in this thesis. The presentation is as follows:(i) In Section 1.2 we introduce the conformal mapping of a bounded Jordan domain Gonto the normalized disk.(ii) A constructive characterization of the above conformal map in terms of a Hilbertspace of analytic functions is given in Section 1.3.(iii) The Bergman kernel method (BKM) for approximating the conformal mapping isdescribed in Section 1.4.(iv) Well-known results for the BKM errors for approximating the conformal mappingare given in Section 1.5.1.2 Conformal mappingLet G be a bounded, simply-connected domain in the complex plane C whose boundary
Γ := ∂G is a Jordan curve and let Ω := C\G denote the complement of G with respect tothe extended complex plane. Fix z0 ∈ G and let f0 denote the Interior Conformal Map1
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of G onto the disk D(0, r0) := {z : |z| < r0}, normalized by the conditions f0(z0) = 0 and
f ′
0(z0) = 1. The quantity r0 := r0(G, z0) is called the conformal radius of G with respectto z0.The unique existence of the interior conformal map f0 is a consequence of the Rie-mann's mapping theorem. In order to be more speci�c, let G be a simply connecteddomain in the extended complex plane, whose boundary contains more than one pointand let z0 be an arbitrary point of G. Then there exists a unique function w = fz0(z)which maps G conformally onto the disk |w| < 1 and satis�es the conditions

fz0(z0) = 0, f ′
z0
(z0) > 0. (1.2.1)Clearly, f0(z) = fz0(z)/f

′
z0
(z0) and r0 = 1/f ′

z0
(z0).Also, let Φ denote the Exterior Conformal Map of Ω onto ∆ := {w : |w| > 1},normalized so that near in�nity,

Φ(z) = γz + γ0 +
γ1
z

+
γ2
z2

+ . . . , γ > 0. (1.2.2)(Φ(∞) = ∞ and Φ′(∞) > 0.) Note that γ = 1/cap(Γ), where cap(Γ) denote the (loga-rithmic) capacity of Γ.1.3 The Hilbert space L2
a(G)For the inner product

〈f, g〉 :=
∫

G

f(z) g(z) dA(z), (1.3.1)where dA denotes the di�erential of the area measure on C, we consider the space L2
a(G)of all square integrable functions which are analytic in G, i.e.,

L2
a(G) :=

{
f : f analytic in G, 〈f, f〉 < ∞

}
. (1.3.2)This space with inner product de�ned as in (1.3.1) is a Hilbert space with correspondingnorm

‖f‖L2(G) := 〈f, f〉 1
2 . (1.3.3)2
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In this section we state a number of well-known results, concerning the space L2
a(G),which are needed for the analysis in subsequent chapters. The detailed proof of most ofthese results can be found in [2], [3], [4], [15] and [24].Lemma 1.3.1. Suppose f ∈ L2

a(G), z0 ∈ G, and dz0 := dist(z0,Γ) denotes the distanceof z0 from Γ. Then,
|f(z0)| ≤

‖f‖L2(G)√
πdz0

. (1.3.4)Proof. We have ‖f‖2L2(G) ≥
∫
D
|f(z)|2dA(z), where D is the disk with radius R = dz0 andcenter z0. By considering the Taylor series expansion of f(z) in D we have

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + · · · .Set z = z0 + reiθ, then

∫

D

|f(z)|2dA(z) =
∫ R

0

∫ 2π

0

∣∣∣∣
∞∑

k=0

akr
keikθ

∣∣∣∣
2

rdθdr

= 2π
∞∑

k=0

|ak|2
2(k + 1)

R2(k+1).

(1.3.5)Relation (1.3.5) implies that
∫

D

|f(z)|2dA(z) ≥ π|a0|2R2 = π|f(z0)|2d2z0,and inequality (1.3.4) is established.We note that for each compact subset B of G, inequality (1.3.4) implies that
|f(z)| ≤ ‖f‖L2(G)√

πd
(z ∈ B),where d = dist(B,Γ).Theorem 1.3.1. With 〈f, g〉 de�ned as in (1.3.1), L2

a(G) is a Hilbert space.Proof. Let {fn(z)}∞n=1 be a Cauchy sequence of functions in L2
a(G), that is, given an ε > 0,we can �nd an N(ε) ∈ N such that

‖fn − fm‖2L2(G) < ε, m, n ≥ N(ε).3
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For each compact subset B of G, Lemma 1.3.1 implies that
|fn(z)− fm(z)|2 <

ε

πd
, z ∈ B,where d = dist(B,Γ). This means that for each compact subset B of G, the sequence

{fn(z)}∞n=1 convergence uniformly to an analytic function F . The inequality ‖fn −
fm‖2L2(G) < ε further implies ∫

B
|fn − fm|2dA(z) < ε. Now by letting m → ∞, we obtainthat ∫

B
|fn(z) − F (z)|2dA(z) < ε; hence fn(z) − F (z) ∈ L2

a(G). Since fn(z) ∈ L2
a(G)then F (z) ∈ L2

a(G) and that ‖fn − F‖L2(G) → 0, (n → ∞). In other words, each Cauchysequence in L2
a(G) converges.De�nition 1.3.1. If H is a Hilbert space, we say that a subset S ⊂ H is an ON system(orthonormal system) in H if

〈u, v〉 =





1, if u = v,

0, if u 6= v,whenever u, v ∈ S.De�nition 1.3.2. Suppose S is a subset of a Hilbert space H. Then, S is complete ifwhenever y ∈ H with 〈y, x〉 = 0 for all x ∈ S, implies that y = 0.Suppose {u1, u2, . . . , un} ⊂ H is a linearly independent set with n elements. Thestandard way to construct an ON system {v1, v2, . . . , vn} is the Cram-Schmidt process(GS); see e.g. [4, p. 6]. Now we return to our special Hilbert space L2
a(G) and choose

uj = zj−1, j = 1, 2, . . .. If G is bounded, the uj clearly belong to L2
a(G), and therefore wecan use the GS process to construct uniquely determined polynomials

Pn(z) = λnz
n + · · · , λn > 0, n = 0, 1, 2, . . . . (1.3.6)These polynomials are called the Bergman polynomials of G and are orthonormal withrespect to the inner product (1.3.1), i.e.,

∫

G

Pm(z)Pn(z)dA(z) = δm,n. (1.3.7)4
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De�nition 1.3.3. A domain G ⊂ C has the PA property if the polynomials are dense in
L2
α(G).Here PA stands for polynomial approximation.De�nition 1.3.4. A simply-connected, bounded domain G is said to be a Caratheodorydomain if the boundary ∂G of G is also the boundary of the complement of G = G ∪ ∂G.All domains considered in this thesis are Jordan domains and hence, by the Jordancurve theorem (see [15, p. 70]), they are Caratheodory domains. This implies by theTheorem1 in [4, p. 17], (see e.g. [15, p. 117]) that the Bergman polynomials have the PAproperty in L2

a(G) and hence by Theorem2 in [4, p. 25] the Bergman polynomials {Pn}∞n=0form a complete orthonormal system (CON) in the Hilbert space L2
a(G).For the practical determination of Bergman polynomials {Pn}∞n=0, the Cram-Schmidtmethod requires the evaluation of the double integrals 〈zi−1, zj−1〉, where i, j = 1, 2, . . ..These double integrals can be converted into one-dimensional integrals as outline below:

• If the boundary of G is starlike with r = r(φ) (0 ≤ φ ≤ 2π) representing theboundary Γ in polar coordinates, the integral becomes
〈zk−1, zl−1〉 =

∫

G

zk−1 zl−1 dA(z)

=

∫ 2π

φ=0

∫ r(φ)

ρ=0

ρk+l−1eiφ(k−l)dpdφ

=
1

k + l

∫ 2π

φ=0

[r(φ)]k+leiφ(k−l)dφ.

(1.3.8)
• Assume that G has a piecewise smooth, positively oriented boundary Γ, and supposethat the functions f and g are analytic in G and continuous in G. An applicationof Green's formula leads to

∫

G

f(z)g(z) ′dA(z) =
1

2i

∫

Γ

f(z)g(z)dz.Applying this to the inner products 〈zk−1, zl−1〉, we transform the area integral intoa line integral, i.e.,
〈zk−1, zl−1〉 =

∫

G

zk−1 z l−1 dA(z)

=
1

2il

∫

Γ

zk−1z ldz.

(1.3.9)5
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Suppose H is a Hilbert space with corresponding norm ‖ · ‖ and {vj} is an ON systemin H . For each x ∈ H , we form the Fourier coe�cients γj = 〈x, vj〉. The followingtheorem gives the minimum property of the Fourier coe�cients.Theorem 1.3.2. Let cj ∈ C and x ∈ H. Then,(i) The quantity ‖x−∑n
j=1 cjvj‖2, is minimum if and only if cj = γj, j = 1, 2, . . . , n.(ii) The minimum in part (i) equals ‖x‖2 −∑n

j=1 |γj|2.(iii) For each x ∈ H, Bessel's inequality holds: ∑n
j=1 |γj|2 ≤ ‖x‖2.Proof. The three assertions are a consequence of the following computations:

‖x−
n∑

j=1

cjvj‖2 = 〈x−
n∑

j=1

cjvj , x−
n∑

j=1

cjvj〉

= ‖x‖2 −
n∑

j=1

cjγj −
n∑

j=1

cjγj +

n∑

j=1

|cj|2

= ‖x‖2 −
n∑

j=1

|γj|2 +
n∑

j=1

(γj − cj)(γj − cj)

= ‖x‖2 +
n∑

j=1

|γj − cj |2 −
n∑

j=1

|γj|2.

(1.3.10)
For the next theorem we shall require that {vj} is a complete orthonormal system(CON).Theorem 1.3.3. The following statements are equivalent.(i) {vj} is a CON system.(ii) For each x ∈ H, the relation ‖x−

∑n
j=1 γjvj‖ → 0, n → ∞.(iii) For each x ∈ H, Perseval's identity holds: ∑n

j=1 |γj|2 = ‖x‖2.Proof. The equivalence of the above statements follows from the Theorem 1.3.2.6
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Now suppose H = L2
a(G), where, to begin with, G is a bounded, simply-connecteddomain in complex place C whose boundary Γ is a Jordan curve and let {φn} is an ONsystem of functions in L2
a(G). For each f ∈ L2

a(G), the Fourier coe�cients are
γj = 〈f, φj〉 =

∫

G

f(z)φj(z)dA(z), j = 1, 2, . . . ,and the Fourier series of f becomes
f ∼

∞∑

j=1

γjφj .If {φj} forms a CON system, Theorem 1.3.3 implies that
‖f −

n∑

j=1

γjφj‖L2(G) → 0, n → ∞. (1.3.11)Theorem 1.3.4. If {φj} form a CON system in L2
a(G) and∑∞

j=1 γjφj is the correspondingFourier series of the function f ∈ L2
a(G), then the Fourier series ∑∞

j=1 γjφj converges to
f uniformly on each compact subset B of G.Proof. If d := dist(B,Γ) denotes the distance from B to the boundary Γ, then Lemma1.3.1 implies that

|f(z)−
n∑

j=1

γjφj(z)| ≤
‖f −

∑n
j=1 γjφj‖L2(G)√

πd
, z ∈ B,and because of (1.3.11) our assertions follows.If H is a Hilbert space and M is a bounded linear functional on H , then by the Rieszrepresentation theorem, there exist a uniquely determined element u ∈ H such that

M(x) = 〈x, u〉, ∀ x ∈ H.In cases where H = L2
a(G), Lemma 1.3.1 gives that |f(z0)| ≤ ‖f‖L2(G)/(

√
πdz0), where

dz0 = dist(z0,Γ), and hence
M(f) := f(z0), f ∈ L2

a(G),7
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is a bounded linear functional in L2
a(G), for each �xed z0 ∈ G. Thus, there exist a uniquelydetermined uz0 ∈ L2

a(G) such that
f(z0) = 〈f, uz0〉, f ∈ L2

a(G).We use the notation K(z, z0) instead of uz0, where K(z, z0) is called the Bergman ker-nel function of G with respect to z0 and is the unique function of L2
a(G) satisfying thereproducing property

〈g,K(·, z0)〉 = g(z0), for all g ∈ L2
a(G). (1.3.12)Now, it is easy to �nd the Fourier series expansion of K(·, z0) with respect to some CONsystem φj, because by (1.3.12), the Fourier coe�cient are

γj = 〈K(·, z0), φj〉 = φj(z0), j = 1, 2, . . . . (1.3.13)Theorem 1.3.4 and (1.3.13) gives the following result.Theorem 1.3.5. Let {φj} be an arbitrary CON system, the Bergman kernel function
K(·, z0) has the Fourier series expansion

K(z, z0) =

∞∑

j=1

φj(z0)φj(z), z, z0 ∈ G. (1.3.14)For each �xed z0 ∈ G, the series convergence uniformly on each compact subset B of G.In view of the Theorem 1.3.5 and the fact that the Bergman polynomials form acomplete orthonormal system in L2
a(G) we have

K(z, z0) =
∞∑

j=1

Pj(z0)Pj(z), (1.3.15)locally uniformly with respect to z ∈ G.The result of the following theorem is needed for establishing a connection betweenthe Bergman kernel function K(·, z0) and the interior conformal map f0 of Section 1.2.Theorem 1.3.6. Suppose that G ⊂ C is a simply-connected domain and f0 is the interiorconformal map which maps G one-one conformably onto the disk D(0, r0) := {z : |z| <8
Mich

ae
l L

ytr
ide

s



r0}, normalized by the conditions f0(z0) = 0 and f ′
0(z0) = 1, where z0 is some �xed pointin G. Then the kernel K(·, z0) is related to the mapping function f0 by means of

f ′
0(z) =

K(z, z0)

K(z0, z0)
and f0(z) =

1

K(z0, z0)

∫ z

z0

K(ζ, z0)dζ. (1.3.16)Proof. The details of the proof are as follows.Assume fz0 is the conformal map of Section 1.2 which satis�es the contitions (1.2.1)and let Gp := {z : |fz0(z)| < p, 0 < p < 1}. Since fz0(z)fz0(z) = p2 for z ∈ ∂Gp, Green'sformula gives for any g ∈ L2
a(G)

∫

Gp

g(z)f ′
z0
(z)dA(z) =

1

2i

∫

∂Gp

g(z)fz0(z)dz

=
p2

2i

∫

∂Gp

g(z)

fz0(z)
dz.

(1.3.17)Using the residue theorem the last integral equals with 2πig(z0)/f
′
z0
(z0) and hence if welet p → 1,

〈g, f ′
z0
〉 = πg(z0)

f ′
z0(z0)

,i.e.
〈g, 1

π
f ′
z0(z0)f

′
z0〉 = g(z0),The uniqueness of the reproducing kernel K(z, z0) and the fact that f0(z) = fz0(z)/f

′
z0
(z0)implies the �rst relation in (1.3.16). The second relation is an easy consequence of the�rst relation.Theorem 1.3.6 yields the two relation,

K(z, z0) =
1

πr20
f ′
0(z) and r0 =

1√
πK(z0, z0)

. (1.3.18)where r0 is the conformal radius of Section 1.2.1.4 Bergman kernel methodThe Bergman kernel method (BKM) is an orthonormalization method for computingapproximations to the conformal map f0(z). It is based on the fact that the kernel9
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K(z, z0) is given explicitly in terms of the Bergman polynomials {Pn(z)}∞n=0. Thus, thepartial sums of the Fourier series expansion of K(z, z0) are given by
Kn(z, z0) :=

n∑

j=0

〈K(·, z0), Pj〉Pj(z) =
n∑

j=0

Pj(z0)Pj(z), n ∈ N. (1.4.1)The polynomials {K(z, z0)}∞n=0 are the so called kernel polynomials of G, with respect to
z0. In accordance with (1.3.16), the n-th BKM approximation to f0 is given by

πn(z) :=
1

Kn−1(z0, z0)

∫ z

z0

Kn−1(ζ, z0)dζ, n ∈ N. (1.4.2)This de�nes the sequence {πn}∞n=1 of the Bieberbach polynomials of G with respect to z0.Also from (1.3.18)
rn =

1√
πKn(z0, z0)

, n ∈ N, (1.4.3)is the BKM approximation to the conformal radius of G at z0.The polynomials πn solve the following minimal problem: Let Pn denote the class ofcomplex polynomials of degree at most n and let
P
∗
n := {p : p ∈ Pn, with p(z0) = 0 and p′(z0) = 1}. (1.4.4)Then, for each n ∈ N, the polynomial πn minimizes uniquely the two norms ‖f ′

0 −
p′‖L2(G) and ‖p′‖L2(G) over all p ∈ P∗

n; see e.g. [4, p. 34], [3, Kap. III, �1].Next we observe the followings:(i) Because of the Theorem 1.3.4 the kernel polynomials Kn(z, z0) converge to K(z, z0)uniformly on each compact subset B of G.(ii) The kernel polynomials {Kn(z, z0)} provide the best L2(G)- approximation toK(z, z0)out of the space Pn of complex polynomials of degree at most n, i.e.,
‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ ‖K(·, z0)− p‖L2(G), (1.4.5)for any p ∈ Pn.(iii) Finally we observe that the approximations {Kn(z, z0)} can be expressed in theform

Kn(z, z0) =

n∑

j=1

knjz
j .10
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Therefore, by the reproducing property 〈zi, Kn(z, z0)〉 = zi0 the coe�cient kn1, kn2, . . . , knnsatisfying the normal equations
n∑

j=1

〈zj , zi〉kni = zi0, i = 1, 2, . . . , n.1.5 Well-known results for the BKM errors.Next we consider only the special case where the boundary Γ of G is a Jordan curve and
f0 is analytic on G.Let LR (R ≥ 1), denote the level curve in the exterior of G, i.e.,

LR := {z : |Φ(z)| = R}, (1.5.1)so that L1 ≡ Γ. With this notation we have the following lemma which describes thegrowth of polynomials in C. (See Gaier [4, p. 27], Markushevich [15, p. 112])Lemma 1.5.1. (Bernstein's Lemma) If P (z) is a polynomial with deg(P ) = n and
|P (z)| ≤ 1 for z ∈ G, then |P (z)| ≤ Rn for z ∈ LR.Proof. The function

F (z) = P (z)/Φn(z)is analytic in C\G and continuous in C\G. Hence the maximum value of F is on G and
|F (z)| ≤ 1, z ∈ C\G.For z ∈ LR we have the required result.Regarding the convergence of the method, we note that in cases when f0 has ananalytic continuation across Γ, then this is a consequence of Walsh's theory of maximalconvergence [27, �4.7, �5.3]; see also [4, Ch. I]. In order to be more speci�c,Theorem 1.5.1. Let Γ be a Jordan curve. Then the relation

‖f0 − πn‖L∞(G) = O

(
1

Rn

)
, (1.5.2)holds for any 1 < R < |Φ(z1)|, but for no R > |Φ(z1)|, where z1 denotes the nearestsingularity of f0 in Ω. (We use ‖ · ‖L∞(G) to denote the sup-norm on G.)11
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For the proof of the above theorem we use the Bernstein's Lemma to show �rst thatthere are no polynomials πn such that the (1.5.2) holds for R > |Φ(z1)|. The positivepart of the statement (1.5.2), that is for R < |Φ(z1)|, is proved by using the method ofinterpolation to show �rst that
‖f0 − πn‖L2(G) = O

(
1

Rn
1

) (1.5.3)where 1 < R1 < |Φ(z1)|. Therefore, using Lemmas 1.3.1 and 1.5.1, implies
‖f0 − πn‖L∞(G) ≤ N

(
σ

R1

)n (1.5.4)where 1 ≤ σ < R1 < |Φ(z1)| and N is a positive constant independent on n. The proveof the statement (1.5.2) for R < p follows from (1.5.4).In cases when Γ is piecewise analytic and f0 has singularities on Γ, then Levin, Pa-pamichael and Siderides were the �rst to observe in [12] that the error (1.5.2) depends onthe boundary singularities of the mapping function f0 on Γ, and also on the singularitiesof the extension of f0 across the segments of Γ into Ω. Accordingly, in order to improvethe numerical performance of the BKM, they extended the method by orthonormalizing asystem of basis functions consisting from monomials, as in the BKM, and also from func-tions that re�ect the dominant singularities of f0 on Γ and in Ω. This extension is knownas BKM/AB (AB stands for augmented basis). The BKM/AB was used subsequently in[19] and [20].The most precise results regarding the convergence of the BKM are due to D. Gaier[7]. In particular, under the assumption that Γ is piecewise analytic without cusps, Gaierderived the estimate
‖f0 − πn‖L∞(G) = O(logn)

1

ns
, (1.5.5)where s := λ/(2 − λ) and λπ (0 < λ < 2) denotes the smallest exterior angle where twoanalytic arcs of Γ meet. Regarding sharpness of the estimate (1.3.16), it was shown in[6, Thm. 4] that there are cases where the exponent s can not be replaced by a smallernumber. However, the factor logn can be replaced by √

log n, see [1] and [16, Rem. 3.1].A lower estimate of the form
‖f0 − πn‖L∞(G) ≥ c

1

ns
, (1.5.6)12
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provided that 1/(2− λ) is not a positive integer, where c is a constant that does not de-pend on n, was established in [16, Thm. 3.2] by Maymeskul, Sa� and Stylianopoulos. Thetheoretical justi�cation of the BKM/AB with basis function that re�ect the corner singu-larities of f0 was given in [16], by means of sharp estimates for the associated BKM/ABerrors.The purpose of the present thesis is to derive theoretical results that justify the useof basis functions that re�ect (a) pole singularities of f0 and (b) both corner and polesingularities of f0. More speci�cally, we derive upper and lower estimates for the BKM/ABerrors in the case (a), and upper estimates for the BKM/AB errors in the case (b). Indoing so, we complete the task that was put forward by Yu. E. Khokhlov, reviewer of theintroductory paper [12] of the BKM/AB in the Mathematical Reviews, who concludedthat: �A proof of the convergence of the numerical method given and an investigation ofits convergence rate are lacking, so the results obtained are of a heuristic nature�.This thesis is organized as follows: In Chapter 2 we set up the notation and recallthe BKM/AB. Chapter 3 is devoted to the study of the various BKM and BKM/ABerrors, in cases when f0 has an analytic continuation across Γ, hence only basis functionsre�ecting poles are used in the BKM/AB. In Chapter 4, we consider the case when bothcorner and pole basis functions are included in BKM/AB. In Chapter 5 we study theBKM and BKM/AB error interior the domain G for the two di�erent cases of Chapter 3and 4. Finally, in Section 6, we present numerical computations that illustrate the theoryof Chapter 3, 4 and 5.

13
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Chapter 2
The Bergman kernel method withsingular basis functions
2.1 Corner singularitiesThroughout this chapter we assume that the boundary Γ of G consist of N analyticarcs that meet at corner points τk, k = 1, 2, . . . , N , where they form interior angles αkπ,
0 < αk < 2. Then, we have the following asymptotic expansions for f0, valid near τk:(i) If αk is irrational, then

f0(z) = f0(τk) +
∑

p,q

Bp,q(z − τk)
p+q/αk , (2.1.1)where p and q run over all integers p ≥ 0, q ≥ 1 and B0,1 6= 0.(ii) If αk = a/b, with a and b relative prime numbers, then

f0(z) = f0(τk) +
∑

p,q,m

Bp,q,m(z − τk)
p+q/αk(log(z − τk))

m, (2.1.2)where p, q and m run over all integers p ≥ 0, 1 ≤ q ≤ a, 1 ≤ m ≤ p/b and B0,1,0 6= 0.(iii) If τk is formed by two straight-line segments, then
f0(z) = f0(τk) +

∞∑

l=1

Bl(z − τk)
l/αk , (2.1.3)14
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where B1 6= 0. Furthermore, (2.1.1) holds in the case when τk is formed by twocircular arcs, or a straight-line and a circular arc.In the above, (i) and (ii) are due to Lehman [10], while (iii) emerges easily from there�ection principle; see also [7, �2.1] and [18, pp. 6�7].It follows from (iii) that if G is a half-disk or a rectangle, then f0 has a Taylor seriesexpansion valid around each corner, and thus an analytic continuation across Γ into Ω.In this case, the only singularities of f0 are simple poles in Ω. This shows that the studyof the BKM/AB, even with only pole basis function is important in the applications.For simplicity in the exposition, we shall assume throughout this paper that no loga-rithmic terms occur in the asymptotic expansion of f0 near the corner τk, k = 1, 2, . . . , N .This, for example, will be the case in the expansions (2.1.1) and (2.1.3) above. Neverthe-less, our method of study can be adjusted to cover logarithmic singularities as well.Let M denote the number of corners of Γ for which αk is not of the special form
1/m, m ∈ N. When we present results for corner singularities we shall assume that
M ≥ 1. We index such corners by τk, k = 1, . . . ,M . That is, if N > M , then themapping function f0 has an analytic continuation in some neighborhood of the corner τN .For k = 1, . . . ,M , we denote by {γ(k)

j }∞j=1 the increasing arrangement of the possiblepowers p+ q/αk of (z − τk) that appear in the asymptotic expansion of f0(z) near τk. Inparticular, if τk is formed by two straight-line segments, then γ
(k)
j = j/αk, j = 1, 2, . . ..Also, if αk is irrational, or the corner τk is formed by two circular arcs, then

γ
(k)
1 = 1/αk;

γ
(k)
2 = 1/αk +min(1/αk, 1);

γ
(k)
3 =





1/αk + 2, 0 < αk < 1/2,

2/αk, 1/2 < αk < 1,

1/αk + 1, 1 < αk < 2;...Remark 2.1.1. Under the assumption regarding the no-appearance of logarithmic terms,15
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the asymptotic expansion near τk, k = 1, 2, . . . ,M , can be written in the form
f0(z) =

∞∑

j=0

a
(k)
j (z − τk)

γ
(k)
j , (2.1.4)where, γ(k)

0 := 0 and a
(k)
1 6= 0. Note that, we always have γ(k)

1 > 1/2, and since τk is not aspecial corner, γ(k)
1 /∈ N. Therefore (z−τk)

γ
(k)
1 has an algebraic singularity at τk. However,when αk is rational, it is possible that γ(k)

j ∈ N, for indices j ≥ 2, so that (z − τk)
γ
(k)
j isanalytic at τk.2.2 Pole singularitiesSince f0(z0) = 0, z0 ∈ G, it follows from the re�ection principle for analytic arcs thatthe extension of f0 across any segment constituting Γ would have a pole or a pole-typesingularity at the re�ected images of z0. For example, if Γ consists explicitly from straight-line segments and/or circular arcs, then f0 has a simple pole (due to the univalency of

f0) at every mirror image of z0 (with respect to the straight-lines) and at every geometricinverse of z0 (with respect to the circular arcs), that lies in Ω. More generally, f0 mayhave at points zj ∈ Ω a pole, or a poly-type, singularity of the form
(z − zj)

−kj/mj , kj, mj ∈ N. (2.2.1)According to [21, � 5.1], the following three special cases occur frequently in the applica-tions:(i) kj = mj = 1. In this case, f0 has a simple pole at zj .(ii) kj = 2, mj = 1. In this case, f0 has a double pole at zj.(iii) kj = 1, mj = 2. In this case, f0 has a rational pole singularity at zj .In order to describe the BKM/AB, we assume that the nearest singularities of f0in Ω are poles or rational poles, of the form (2.2.1) at points zj , j = 1, 2, . . . κ, where
|Φ(z1)| ≤ |Φ(z2)| ≤ . . . ≤ |Φ(zκ)| and that the other singularities of f0 in Ω occur atpoints zκ+1, zκ+2, . . ., where |Φ(zk)| < |Φ(zκ+1)| ≤ |Φ(zκ+2)| ≤ . . ..16
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2.3 BKM/ABUsing the above notation, the BKM/AB with n monomials, κ poles and pk corner singu-larities at each (non-special) corner τk, k = 1, 2 . . . ,M , can be summarized as follows:(i) Start with the augmented system {ηj} consisting of:1. the nearest poles or rational poles, i.e., for j = 1, 2 . . . κ,
ηj(z) =

[(
1

z − zj

)kj/mj
]′
; (2.3.1)2. the dominant rM :=

∑M
k=1 pk algebraic singular functions, i.e., for each non-special corner τk, k = 1, 2, . . . ,M ,

ηκ+j(z) = [(z − τk)
γ
(k)
j ]′, j = 1, 2, . . . pk; (2.3.2)3. the monomials

ηκ+rM+j(z) = (zj)′, j = 1, 2, . . . , n. (2.3.3)(As it was noted in Remark 2.1.1, it might be possible that γ(k)
j ∈ N. If this happens,we avoid redundancy in the basis by omitting such γ

(k)
j .)(ii) Orthonormalize {ηj}, by means of the Gram-Schmidt process to produce the or-thonormal set {P̃j}, wherẽ

Pj(z) =

j∑

i=1

bj,i ηi(z), bj,j > 0. (2.3.4)(iii) Approximate K(z, z0) by its �nite Fourier expansion with respect to {P̃j}:
K̃n(z, z0) :=

κ+rM+n∑

j=1

P̃j(z0)P̃j(z) =

κ+rM+n∑

j=1

dn,jηj(z). (2.3.5)(iv) Approximate f0(z) by
π̃n+1(z) :=

1

K̃n(z0, z0)

∫ z

z0

K̃n(ζ, z0)dζ =

κ+rM+n∑

j=1

cn,jµj(z), (2.3.6)where
µj(z) :=

∫ z

z0

ηj(ζ)dζ. (2.3.7)17
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We call the functions {P̃j} the augmented Bergman polynomials of G, with respectto {ηj}, and the functions {π̃n} the augmented Bieberbach polynomials over the system
{µj}. Clearly, π̃n(z0) = 0 and π̃′

n(z0) = 1, n ∈ N. Also
r̃n =

1√
πK̃n(z0, z0)

, (2.3.8)is the BKM/AB approximation to the conformal radius of G at z0. Note that {P̃j}∞j=1forms a complete orthonormal system in L2
a(G). Consequently,

K(z, z0) =
∞∑

j=1

P̃j(z0)P̃j(z), (2.3.9)locally uniformly with respect to z ∈ G, cf. (1.3.15).We conclude this section by presenting a result which shows that the two errors ‖f ′
0−

π̃′
n+1‖L2(G) and ‖K(·, z0) − K̃n(·, z0)‖L2(G) are of the same order. This fact will be usedbelow in Sections 3 and 4.In what follows we denote by c, c1, c2, . . . , constants that are independent of n. Forquantities A > 0, B > 0, we use the notation A � B (inequality with respect to theorder) if A ≤ cB. The expression A � B means that A � B and B � A simultaneously.Lemma 2.3.1. It holds that,

‖f ′
0 − π̃′

n+1‖L2(G) � ‖K(·, z0)− K̃n(·, z0)‖L2(G). (2.3.10)Proof. We set m := κ+ rM + n and note that (1.3.14), (2.3.5)�(2.3.9), imply:
f ′
0(z)− π̃′

n+1(z) =πr20

∞∑

j=1

P̃j(z0)P̃j(z)− {
m∑

j=1

|P̃j(z0)|2}−1
m∑

j=1

P̃j(z0)P̃j(z)

=

m∑

j=1

[
πr20 − {

m∑

j=1

|P̃j(z0)|2}−1
]
P̃j(z0)P̃j(z)

+πr20

∞∑

j=m+1

P̃j(z0)P̃j(z).Therefore, by using the orthonormality of P̃j we see that,
‖f ′

0 − π̃′
n+1‖2L2(G) =

m∑

j=1

[
πr20 − 1/K̃n(z0, z0)

]2|P̃j(z0)|2 + (πr20)
2

∞∑

j=m+1

|P̃j(z0)|2.18
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Now, using once more (1.3.18), we obtain, after some trivial calculation, that
‖f ′

0 − π̃′
n+1‖2L2(G) =

[
K(z0, z0)− K̃n(z0, z0)

] [
K(z0, z0) K̃n(z0, z0)

]−1

.This and (1.3.12), with g(·) = K(·, z0)− K̃n(·, z0), leads to
‖f ′

0 − π̃′
n+1‖2L2(G) =

‖K(·, z0)− K̃n(·, z0)‖2L2(G)

K(z0, z0) K̃n(z0, z0)
(2.3.11)and the result (2.3.10) follows from the set of the obvious inequalities,

|P̃1(z0)| = K̃1(z0, z0) ≤ K̃n(z0, z0) ≤ K(z0, z0) = (πr20)
−1,with constants depending on r0 and |P̃1(z0)| only.Remark 2.3.1. It is clear from the proof that the result of Lemma 2.3.1 holds true forany complete orthonormal system. We note that for the system {P̃j}∞j=1 to be completeit su�ces that Γ is a bounded Jordan curve. In particular, (2.3.10) holds with πn+1 and

Kn in the place of π̃n+1 and K̃n, i.e.
‖f ′

0 − π′
n+1‖L2(G) � ‖K(·, z0)−Kn(·, z0)‖L2(G). (2.3.12)

19
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Chapter 3
BKM/AB with pole singularities
In this chapter we study the BKM and BKM/AB errors ‖f0−πn‖L∞(G) and ‖f0−π̃n‖L∞(G),under the assumption that f0 has an analytic continuation across Γ in Ω and its onlysingularities are poles, or rational poles, of the type (2.2.1). More precisely, we re�ne theclassical result (1.5.2) for the BKM error, and at the same time we obtain a lower estimatefor it. Furthermore, we establish upper and lower estimates for the BKM/AB error. Thelower estimates and the re�nement are obtained by exploiting the assumption regardingthe singularities of f0 and by using certain important results of E.B. Sa� on polynomialinterpolation of meromorphic functions [22]. Since the results of [22] were established fordomains with smooth boundaries, we show in the next lemma that they hold true fordomains with corners.In order to do so, we use the Faber polynomials {Fn}∞n=0 of G. We recall that Fn(z) isde�ned as the polynomial part of the Laurent series expansion of Φn at in�nity, i.e.,

Fn(z)− Φn(z) = O

(
1

z

)
, as z → ∞. (3.0.1)This, in view of (5.1.1), gives Fn ∈ Pn and

Fn(z) = γnzn + · · · . (3.0.2)We recall that LR (R ≥ 1), denote the level curve of index R of Φ, i.e.,
LR := {z : |Φ(z)| = R}, (3.0.3)20
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so that L1 ≡ Γ. Note that LR, for R > 1, is an analytic Jordan curve. We use GRto denote its interior, i.e., GR := int(LR). The following result gives the exact rate ofconvergence of the minimum uniform error in approximating meromorphic functions bypolynomials.Lemma 3.0.2. Assume that the boundary Γ of G is piecewise Dini-smooth and considera function f which is analytic on G%, for some % > 1, apart from a �nite number of poleson L%. Let m denote the highest order of the poles of f on L%. Then,
inf
p∈Pn

‖f − p‖L∞(G) �
nm−1

%n
. (3.0.4)A curve Γ is piecewise Dini-smooth if it consists of a �nite number of Dini-smootharcs. An arc z = z(s), where s ∈ [a, b] stands for the arclength, is called Dini-smoothif z′(s) is continuous on [a, b], and if z′(s) has a modulus of continuity ω which satis�es

∫ α

0
[ω(t)/t] dt < ∞, for some α > 0. We note, in particular, that a piecewise Dini-smooth curve may have corners or cusps and that a piecewise analytic Jordan curve isalso piecewise Dini-smooth.Proof. We recall the following two facts regarding Faber polynomials:(i) For any r, R, with 1 < r < R, it holds

Fn(z) = Φn(z)

{
1 +O

(
rn

Rn

)}
, z ∈ LR, (3.0.5)see e.g. [26, p. 43].(ii) Under the assumption on Γ, the Faber polynomials are uniformly bounded on G(see [8]), i.e.,

‖Fn‖L∞(G) ≤ c(Γ), n ∈ N, (3.0.6)where c(Γ) is a positive constant that depends on Γ only.Observe that (3.0.5) implies that the sequence {Fn(z)}∞n=1 has no limit point of zerosexterior to G. Also, from (3.0.5) and (3.0.6) we have for z ∈ G and t ∈ L% that,
|Fn(z)|
|Fn(t)|

≤ c1(Γ)

%n
, n ∈ N. (3.0.7)21
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Now, following the proof of Theorem 2 of [22] and using the sequence of the Faber polyno-mials {Fn} in the place of {ωn}, we conclude that there exist polynomials {pn}∞n=1, suchthat
‖f − pn‖L∞(G) ≤ c2(Γ)

nm−1

%n
, n ∈ N, (3.0.8)see also [23, p. 399]. This yields the upper bound in (2.3.2). The lower bound followsat once from Theorem 10 of [22], by observing that Ω is simply-connected and hence itsGreen function with pole at in�nity has no critical points.3.1 The method of Andrievskii and SimonenkoIn the study of the BKM approximation of the Bieberbach polynomials πn to the conformalmap f0 the method of Andrievskii and Simonenko; see e.g [6, p. 292] plays a crucial rolebecause enables the transition from the L2(G)- error ‖f ′

0 − π′
n‖L2(G) to the uniform error

‖f0 − πn‖L∞(G).The following result is the so-called Andrievskii's lemma for polynomials and rationalpolynomials and is used to the method of Andrievskii and Simonenko. Its proof, forbounded Jordan domains such that the inverse conformal map g : D → G satis�es aLipschitz condition on D, can be found in [5]. This condition is certainly satis�ed by thetype of domains considered below.Lemma 3.1.1. Assume that Γ is piecewise analytic without cusps. Then:(i) For any Pn ∈ Pn, with Pn(z0) = 0, it holds
‖Pn‖L∞(G) �

√
log n ‖P ′

n‖L2(G), n ≥ 2. (3.1.1)(ii) For any Pn ∈ Pn, with Pn(z0) = 0, and q a �xed polynomial with no zeros on G, itholds that
‖Pn/q‖L∞(G) �

√
log n ‖(Pn/q)

′‖L2(G), n ≥ 2. (3.1.2)In what follows, we describe the method of Andrievskii and Simonenko:First, in order to obtain a uniform estimate of the form ‖f0− pn‖L∞(G), it su�ces to have22
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an estimate of ‖f ′
0 − p′n‖L2(G) for some arbitrary polynomials pn ∈ P∗

n. For assume thatwe have
‖f ′

0 − p′n‖L2(G) �
nr

Rn
,for some positive constants r, R and n = 2, 3, 4, . . .. Then by the minimum property ofthe Bieberbach polynomials

‖f ′
0 − π′

n‖L2(G) �
nr

Rn
, (3.1.3)and it follows that

‖f0 − πn‖L∞(G) �
√

logn
nr

Rn
. (3.1.4)To see this we take (3.1.3) for n with 2k ≤ n ≤ 2k+1 and after some computations:

‖π′
2k+1 − π′

n‖L2(G) �
nr

Rn
.Then apply Andrievskii's Lemma [5] (see also Lemma 3.1.1(i) of this thesis) to get

‖π2k+1 − πn‖L∞(G) �
√
log 2k+1

nr

Rn
,in particular,

‖π2k+1 − π2k‖L∞(G) �
√
k + 1

2(k+1)r

R2k
,for k = 1, 2, . . ..Now since

f0(z)− πn(z) = [π2k+1(z)− πn(z)] +
∞∑

j=k+1

[π2j+1(z)− π2j (z)], (z ∈ G),we have
‖f0 − πn‖L∞(G) ≤ c1

√
log n

nr

Rn
+ c2

∞∑

j=k+1

√
j + 1

2(j+1)r

R2j
.for some positive constant c1, c2. Finally the latter sum is bounded by

∞∑

j=k+1

√
j + 1

2(j+1)r

R2j
�

√
k
2kr

R2k
�
√

logn
nr

Rn
,which establishes (3.1.4).Remark 3.1.1. It is clear from the proof that the method of Adrievskii and Simonenkoholds true with the rational polynomials pn/q in the place of pn, (q is the �xed polynomialdescribed is Lemma 3.1.1(ii)). 23
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3.2 BKMThe next theorem complements the classical result (1.5.2) of Walsh, in the sense that itprovides a lower estimate and, in addition, uses the precise % = |Φ(z1)| in the denominator,instead of any R, with 1 < R < %. This is done by utilizing extra information on thenature of the singularities of f0 in Ω.Theorem 3.2.1. Assume that Γ is piecewise analytic without cusps. Assume further thatthe conformal map f0 has an analytic continuation across Γ, such that f0 is analytic on
G%, for some % > 1, apart from a �nite number of poles on L%. Let m denote the highestorder of the poles of f0 on L%. Then,

nm−1

%n
� ‖f0 − πn‖L∞(G) �

nm
√
log n

%n
, n ≥ 2. (3.2.1)Proof. We observe �rst that the kernel K(z, z0) shares the same analytic properties with

f0 on G%, apart from an unit increase on the order of its poles on L%. Therefore, usingLemma 3.0.2 with f ≡ K(·, z0), we conclude that
‖K(·, z0)− pn‖L∞(G) �

nm

%n
, n ∈ N, (3.2.2)for some sequence of polynomials {pn}∞n=1. Since the L2(G)-norm is dominated by the

L∞(G)-norm, (3.2.2) leads to the estimate
‖K(·, z0)− pn‖L2(G) �

nm

%n
. (3.2.3)Then, the minimum property of the kernel polynomials implies that

‖K(·, z0)−Kn(·, z0)‖L2(G) �
nm

%n
, (3.2.4)which, in conjunction with Remark 2.3.1, yields the estimate

‖f ′
0 − π′

n‖L2(G) �
nm

%n
. (3.2.5)Now, we use Andrievskii's Lemma 3.1.1(i) and employ the method of Andrievskii andSimonenko, described in Section 3.1 of this thesis or see e.g. [6, �2.1]. This method enables24
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the transition from an upper bound of the error ‖f ′
0 − π′

n‖L2(G) to a similar bound for theerror ‖f0−πn‖L∞(G), with the extra cost of a√log n factor, and leads to the upper estimatein (3.2.1). The lower estimate follows immediately from Lemma 3.0.2 taking f ≡ f0 andthe fact that
‖f0 − πn‖L∞(G) ≥ inf

p∈Pn

‖f0 − p‖L∞(G).Remark 3.2.1. There are cases where Γ is piecewise analytic with corners and still f0 hasan analytic (though not one-to-one) continuation in an open set containing G. This is thecase for example, when G is a rectangle.The following pointwise estimate is useful in the study of the distribution of the zerosof the Bergman polynomials; see e.g., [11], [17], [23] and [9].Corollary 3.2.1. With the assumptions of Theorem 3.2.1 it holds,
|Pn(z0)| �

nm

%n
, n ∈ N, (z0 ∈ G). (3.2.6)Proof. The result emerges easily from (3.2.4), using the reproducing property of K(·, z0),the fact that Pn+1 is orthogonal to any polynomial in Pn, and the Cauchy-Schwarz in-equality:

|Pn+1(z0)| = |〈Pn+1, K(·, z0)〉| = |〈Pn+1, K(·, z0)−Kn(·, z0)〉|

≤ ‖Pn+1‖L2(G) ‖K(·, z0)−Kn(·, z0)‖L2(G)

= ‖K(·, z0)−Kn(·, z0)‖L2(G).We end this section by providing an estimate for the error in the resulting BKMapproximation rn to the conformal radius r0.Corollary 3.2.2. With the assumptions of Theorem 3.2.1 it holds,
|r0 − rn| �

n2m

%2n
. (3.2.7)
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Proof. It follow from (1.3.18) and (1.4.3) that
rn − r0 =

1√
π

(
1√

Kn(z0, z0)
− 1√

K(z0, z0)

)

=
1√
π

√
K(z0, z0)−

√
Kn(z0, z0)√

Kn(z0, z0)K(z0, z0)

=
1√
π

K(z0, z0)−Kn(z0, z0)√
Kn(z0, z0)K(z0, z0)

(√
K(z0, z0) +

√
Kn(z0, z0)

) .Also, from the minimum properties of Fourier expansion for K(z, z0) and the reproducingproperty; see e.g [2, p. 172],
‖K(·, z0)−Kn(·, z0)‖2L2(G) = K(z0, z0)−Kn(z0, z0)and hence, the result (3.2.7) follows by working in the way as in the proof of Lemma2.3.1.Remark 3.2.2. The result above con�rms theoretically the experimental observation made[12] by Levin, Papamichael and Siderides that the BKM error in approximation f0 bypolynomials depends on the index of the nearest singularity of f0 in Ω even for smallvalues of n ∈ N. More precisely, it follows from (3.2.1) and (3.2.4) that if m = 1, then

c1
1

|Φ(z1)|n
≤ ‖f0 − πn‖L∞(G) ≤ c2

n
√
log n

|Φ(z1)|n
. (3.2.8)

‖K(·, z)−Kn(·, z)‖L2(G) ≤ c3
n

|Φ(z1)|n
. (3.2.9)3.3 BKM/AB with pole singularitiesWe exploit now the speci�c assumptions on the singularities of the analytic extension of

f0 studied in Section 2.2. More precisely, the assumption that the nearest singularitiesof f0 are κ poles, each one of order kj at zj , j = 1, 2, . . . κ, where |Φ(z1)| ≤ |Φ(z2)| ≤
· · · ≤ |Φ(zκ)|, and that the other singularities of f0 occur at points zκ+1, zκ+2, . . ., where
|Φ(zκ)| < |Φ(zκ+1)| 6 |Φ(zκ+2)| 6 · · · . Therefore, for the BKM/AB we consider thesystem {ηj}, de�ned by the singular functions in (1.3.18), with mj = 1, j = 1, 2, . . . , κ,26
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and the n monomials in (1.4.2). Accordingly, we let PA1
n denote the following space ofaugmented polynomials:

P
A1
n := {p : p(z) =

κ+n∑

j=1

tjηj(z), tj ∈ C}. (3.3.1)We note that the associated augmented kernel polynomial K̃n(z, z0) is the best approxi-mation to K(z, z0) in L2(G) out of the space PA1
n , i.e.,

‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ ‖K(·, z0)− p‖L2(G), (3.3.2)for any p ∈ PA1
n .It is clear that, the Remark 3.1.1, holds with π̃n and π̃′

n in the place of rationalpolynomials πn/q and (πn/q)
′, i.e.,if we assume

‖f ′
0 − π̃′

n‖L2(G) �
nr

Rn
(3.3.3)for some positive constants r, R and n = 1, 2, . . . , it follows that

‖f0 − π̃n‖L∞(G) �
√

logn
nr

Rn
. (3.3.4)The next theorem provides an estimate for the error in the resulting BKM/AB ap-proximation π̃n to f0.Theorem 3.3.1. Assume that Γ is piecewise analytic without cusps and set % := |Φ(zκ+1)|.Then,

‖f0 − π̃n‖L∞(G) �
1

Rn
, (3.3.5)for any R, with 1 < R < %, but for no R > %.Proof. Observe that K(·, z0) has poles of order kj + 1 at each zj , j = 1, 2, . . . , κ, and set

Q(z) :=
∏k

j=1(z − zj)
kj+1. Then, the function K(z, z0)Q(z) is analytic in the interior

G% of the level curve of L%, and from Walsh's maximal convergence theorem [27, �4.7] itfollows that, for any R, with 1 < R < %, there exists a sequence of polynomial {pn}∞n=1,such that
‖K(·, z0)Q− pn‖L∞(G) �

1

Rn
, n ∈ N. (3.3.6)27
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Let now d := minj=1,2,...,κ{|z − zj | : z ∈ Γ} denote the distance of Γ from the poles
{zj}κj=1, and set ξ :=

∑κ
j=1 kj . Then, |Q(z)| ≥ dκ+ξ, z ∈ Γ, and (3.3.6) gives

‖K(·, z0)−
pn
Q
‖L∞(G) ≤

c

dκ+ξ

1

Rn
.Since the L2(G)-norm is dominated by the L∞(G)-norm, we see that there exist a sequenceof rational functions {Qn}∞n=1, with Qn ∈ PA1

n , such that,
‖K(·, z0)−Qn‖L2(G) �

1

Rn
, n ∈ N.Therefore, using the minimum property (3.3.2) of the augmented kernel polynomials, wehave

‖K(·, z0)− K̃n(·, z0)‖L2(G) �
1

Rn
, n ∈ N, (3.3.7)and this, in conjunction with the equivalence Lemma 2.3.1, yields the estimate

‖f ′
0 − π̃′

n‖L2(G) �
1

Rn
, n ∈ N. (3.3.8)Next, we recall that

π̃n(z) =

κ∑

j=1

cn,j

[
1

(z − zj)kj
− 1

(z0 − zj)kj

]
+

n∑

j=1

cn,κ+j

[
zj − zj0

]
, (3.3.9)i.e.,

π̃n(z) =
P (z)

q(z)
, where q(z) :=

κ∏

j=1

(z − zj)
kj , (3.3.10)and P (z) is a polynomial of degree n+ ξ.Then, the transition from the L2(G)-norm to the L∞(G)-norm is done as in the proofof Theorem 3.2.1, where now, in view of (3.3.10), Lemma 3.1.1(ii) is applicable (see themethod of Andrievskii and Simonenko in Section 3.1). This leads to,

‖f0 − π̃n‖L∞(G) �
√
log n

Rn
, n ≥ 2, (3.3.11)and (3.3.5) follows with a di�erent, but still less than %, R.Finally, the fact that (3.3.5) holds for no R > % is evident from [27, Thm. 6, Ch. IV],since the contrary assumption would lead to the contradicting conclusion that f0 has nosingularities on L%; see the next remark. 28
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Remark 3.3.1. From (3.3.9) it is clear that π̃n(z) = q̃κ(z) + pn(z), where q̃κ is de�ned bythe nearest κ poles of f0 in Ω and pn ∈ Pn. Hence, (3.3.5) gives
‖(f0 − q̃κ)− pn‖L∞(G) �

1

Rn
,for any 1 < R < %, and Theorem 6 in [27, Ch. V] implies that the function f0 − q̃κis analytic in G%. This shows that the the rational polynomial q̃κ, constructed by theBKM/AB considered above, cancels out the speci�c poles of f0 that contains. In particular,this provides the theoretical justi�cation for the heuristic observation made to that e�ectby Papamichael and Warby in [20, p. 652].A �ner estimate than (3.3.5) can be obtained if the singularities of f0 on L|Φ(zκ+1)| area �nite number of poles.Theorem 3.3.2. Assume that Γ is piecewise analytic without cusps and set % := |Φ(zκ+1)|.Assume, in addition to Theorem 3.3.1, that f0 has a �nite number of poles and no othersingularities on L% and let m denote their highest order. Then,

nm−1

%n
� ‖f0 − π̃n‖L∞(G) �

nm
√
log n

%n
, n ≥ 2. (3.3.12)Proof. The upper estimate follows by working in the same way as in the proof of The-orem 3.3.1, but using here the precise result of Lemma 3.0.2, in the place of Walsh'stheorem in (3.3.6). In order to be more speci�c: Observe that K(·, z0) has poles of order

kj + 1 at each zj , j = 1, 2, . . . , κ, and set Q(z) :=
∏k

j=1(z − zj)
kj+1. Then, the function

K(z, z0)Q(z) is analytic in the interior G% of the level curve of L%, and from Lemma 3.0.2it follows that, there exists a sequence of polynomial {pn}∞n=1, such that
‖K(·, z0)Q− pn‖L∞(G) �

nm

%n
, n ∈ N. (3.3.13)Let now d := minj=1,2,...,κ{|z − zj | : z ∈ Γ} denote the distance of Γ from the poles

{zj}κj=1, and set ξ :=
∑κ

j=1 kj . Then, |Q(z)| ≥ dκ+ξ, z ∈ Γ, and (3.3.13) gives
‖K(·, z0)−

pn
Q
‖L∞(G) ≤

c

dκ+ξ

nm

%n
.29
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Since the L2(G)-norm is dominated by the L∞(G)-norm, we see that there exist a sequenceof rational polynomials {Qn}∞n=1, with Qn ∈ P
A1
n , such that,

‖K(·, z0)−Qn‖L2(G) �
nm

%n
, n ∈ N.Therefore, using the minimum property (3.3.2) of the augmented kernel polynomials, wehave

‖K(·, z0)− K̃n(·, z0)‖L2(G) �
nm

%n
, n ∈ N, (3.3.14)and this, in conjunction with the equivalence Lemma 2.3.1, yields the estimate

‖f ′
0 − π̃′

n‖L2(G) �
nm

%n
, n ∈ N. (3.3.15)Next, we recall that

π̃n(z) =
κ∑

j=1

cn,j

[
1

(z − zj)kj
− 1

(z0 − zj)kj

]
+

n∑

j=1

cn,κ+j

[
zj − zj0

]
, (3.3.16)i.e.,

π̃n(z) =
P (z)

q(z)
, where q(z) :=

κ∏

j=1

(z − zj)
kj , (3.3.17)and P (z) is a polynomial of degree n+ ξ.Then, the transition from the L2(G)-norm to the L∞(G)-norm is done as in the proofof Theorem 3.2.1, where now, in view of (3.3.17), Lemma 3.1.1 and relations (3.3.3) and(3.3.4) are applicable. This leads to the required result,

‖f0 − π̃n‖L∞(G) �
nm

√
log n

%n
, n ≥ 2. (3.3.18)To obtain the lower estimate, observe that qπ̃n is a polynomial of degree n + ξ (see(3.3.10)) and that the function qf0 is analytic on G%, apart from a �nite number of poleson L%. Hence, from Lemma 3.0.2 we have, for n ∈ N,

‖qf0 − qπ̃n‖L∞(G) � inf
p∈Pn+ξ

‖qf0 − p‖L∞(G) �
nm−1

%n
, (3.3.19)which yields the estimate

‖f0 − π̃n‖L∞(G) ≥
c

‖q‖L∞(G)

nm−1

%n
.and hence the required result. 30
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The next result follows by working in the same way as in the proof of Corollaries 3.2.1and 3.2.2 of Section 3.2. We recall that P̃n(z) denote the augmented Bergman polynomialsout of the space PA1
n and r̃n denote the BKM/AB approximation in the space PA1

n to theconformal radius r0.Corollary 3.3.1. With the assumptions of Theorem 3.3.2 it holds,
|P̃n(z0)| �

nm

%n
, n ∈ N, (z0 ∈ G). (3.3.20)and

|r0 − r̃n| �
n2m

%2n
, n ∈ N. (3.3.21)In the more general case, where the nearest κ singularities of f0 in Ω are rationalpoles of the type (2.2.1), we have the following result regarding the associated kernelpolynomials K̃n(·, z0).Theorem 3.3.3. Assume that Γ is piecewise analytic without cusps and set % := |Φ(zκ+1)|.Then,

‖K(·, z0)− K̃n(·, z0)‖L2(G) �
1

Rn
, (3.3.22)for any R, 1 < R < %.Proof. Set Q(z) :=

∏k
j=1(z − zj)

kj/mj+1. Then, the function K(z, z0)Q(z) is analytic inthe interior G% of the level curve of L%, and from Walsh's maximal convergence theorem[27, �4.7] it follows that, for any R, with 1 < R < %, there exists a sequence of polynomial
{pn}∞n=1, such that

‖K(·, z0)Q− pn‖L∞(G) �
1

Rn
, n ∈ N. (3.3.23)Let now d := minj=1,2,...,κ{|z − zj | : z ∈ Γ} denote the distance of Γ from the poles

{zj}κj=1, and set ξ :=
∑κ

j=1 kj . Then, |Q(z)| ≥ dκ+ξ, z ∈ Γ, and (3.3.23) gives
‖K(·, z0)−

pn
Q
‖L∞(G) ≤

c

dκ+ξ

1

Rn
.Since the L2(G)-norm is dominated by the L∞(G)-norm, we see that there exist a sequenceof rational polynomials {Qn}∞n=1, with Qn ∈ PA1

n , such that,
‖K(·, z0)−Qn‖L2(G) �

1

Rn
, n ∈ N.31
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Therefore, using the minimum property (3.3.2) of the augmented kernel polynomials, wehave the required result (3.3.22)Similar corollary as 3.3.1 of this section holds in this case. That is,Corollary 3.3.2. With the assumptions of Theorem 3.3.3 it holds,
|P̃n(z0)| �

1

Rn
, n ∈ N, (z0 ∈ G). (3.3.24)and

|r0 − r̃n| �
1

R2n
, n ∈ N. (3.3.25)
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Chapter 4
BKM with pole and corner singularities
In this chapter we assume that f0 has a singularity on Γ and study the BKM and BKM/ABerrors, corresponding to a variety of di�erent syntheses of the system {ηj} of basis func-tions. In stating the results we use the notation and the assumptions set up in Sections 2.1and 2.2.4.1 BKMOur �rst result is a straightforward consequence of Theorem 3.1 of [23] and Lemma 3.1.1above. In this section, it is clear from the proof of the method of Andrievskii and Simo-nenko of Section 3.1 that if we assume

‖f ′
0 − π′

n‖L2(G) ≤ c1
1

na
+ c2

1

Rn
(4.1.1)for some positive constants c1, c2, a, R and n = 1, 2, . . . , it follows that

‖f0 − πn‖L∞(G) ≤ c3
√

logn
1

na
+ c4

1

Rn
. (4.1.2)(see e.g [6, p. 292] for the term 1

na .)Theorem 4.1.1. Assume that Γ is piecewise analytic without cusps and set % := |Φ(z1)|and s := min{(2− αk)/αk : 1 ≤ k ≤ M}. Then,
‖f0 − πn‖L∞(G) ≤ c1

√
logn

1

ns
+ c2

1

Rn
, n ≥ 2. (4.1.3)33
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for any R, 1 < R < %.Proof. The conformal map f0 can be extended analytically, by means of the re�ectionprinciple, beyond Γ to a larger Jordan domain G̃, such that the boundary ∂G̃ of G̃consists of analytic arcs to be �xed below. For this, we recall our assumptions on theposition of the nearest pole z1, of f0 in Ω and pick up a point ζ1 near z1, but interior tothe level curve L%, with % := |Φ(z1)|. Thus from the Theorem 3.1 of [23] there exist asequence of polynomials {pn}∞n=1, of degree at most n, such that
‖K(·, z0)− pn‖L2(G) ≤ c1

1

ns
+ c2

1

Rn
, n ≥ 2. (4.1.4)for any R, 1 < R < |Φ(ζ1)|. Observe that ζ1 can be chosen arbitrarily close to z1. Thus,from the minimum property of the kernel polynomials Kn(·, z0) we have

‖K(·, z0)−Kn(·, z0)‖L2(G) ≤ c3
1

ns
+ c4

1

Rn
, n ∈ N, (4.1.5)for any R, 1 < R < %, and the transition from the L2(G)-error in (4.1.5) to the L∞(G)-error in (4.1.3), goes along the same lines as in the proof of Theorem 3.3.1. (see (4.1.1)and (4.1.2)).Remark 4.1.1. Clearly, as n → ∞, (4.1.3) yields the result (1.3.16). However, Theo-rem 4.1.1 does more: It captures, in a very precise form, the dependance of the BKMerror ‖f0 − πn‖L∞(G) for �small" values of n, on both the corner and pole singularitiesof f0. This dependance has been testi�ed numerically in [12] and has given rise to theintroduction of the BKM/AB.The following result is a simple consequence of (4.1.5). The proof is similar to theproofs of Corollaries 3.2.1 and 3.2.2.Corollary 4.1.1. Under the assumptions of Theorem 4.1.1 the following holds,

|Pn(z0)| ≤ c1
1

ns
+ c2

1

Rn
, n ∈ N, (z0 ∈ G). (4.1.6)and

|r0 − rn| ≤
(
c3

1

ns
+ c4

1

Rn

)2

, n ∈ N. (4.1.7)34
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Remark 4.1.2. For small values of n and for values of R near 1, the dominant term in(4.1.6) is the second one, provided that the two constants c1 and c2 are of the samemagnitude. This can be observed numerically in Section 6.3, in Table 6.3.10, where for nbetween 10 and 50, the values of |Pn(z0)| decay with geometric rate.Remark 4.1.3. Since |Pn(z0)| ≤ ‖K(·, z0)−Kn(·, z0)‖L2(G), it follows from Corollary 4.1.1that, if for small values of n, Pn(z0) decays geometrically to zero, then the most �serious"singularity of K(·, z0), and hence of f0, is the nearest pole in Ω and not an algebraicsingularity on the boundary, as the asymptotic estimate (1.5.5) would suggest. On theother hand, given that f0 has a singularity on Γ, Theorem 2.1 of [11] implies that anypoint of Γ is a point of accumulation of the zeros of the sequence {Pn}∞n=1. Therefore, aneasy way to check whether a pole singularity is more serious than an algebraic singularity,for a range of values of n, is by plotting the zeros of Pn for the same range: If the zeros stayaway from a speci�c part of the boundary, this indicates that Pn(z0) decays geometricallyand therefore the presence of a pole singularity near that part. We refer to [23, Examples2, 3], where (4.2.18) was used as the tool for explaining the misleading nature of suchplots.4.2 BKM/AB with corner singularitiesWe recall that the boundary Γ ofG consist ofN analytic arcs that meet at corner points τk,
k = 1, 2, . . . , N , where they form interior angles αkπ, 0 < αk < 2. From our assumptionson Γ, it follows that the conformal map f0 can be extended analytically, by means ofthe re�ection principle, beyond Γ to a larger Jordan domain G̃, such that the boundary
∂G̃ of G̃ consists of analytic arcs to be �xed below. For this, we recall our assumptionson the position of the nearest poles zj , j = 1, . . . , κ, of f0 in Ω and pick up a point ζ1near z1, but interior to the level curve L%, with % := |Φ(z1)|. Next, we draw the levelcurve L%̃, with %̃ := |Φ(ζ1)| and �x on it points ζk, k = 2, . . . , N , "between" τk and τk+1,where we set τN+1 = τ1. We connect each non-special corner τk, k = 1, . . . ,M , withthe two adjacent ζk's, by using two analytic arcs. Next, we denote by lk the two arcs35
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emanating from τk and call lN the part (or parts) of the level line L%̃ that joins togetherthose consecutive points ζk that have only one connection with τk. See Figure 4.1, for apossible arrangement of corners τk, points ζk, and arcs lk and lN . Finally, we de�ne G̃ bytaking ∂G̃ := {∪M
k=1lk} ∪ lN .The above construction is such that:(i) ∂G̃ is a piecewise analytic Jordan curve that meets Γ at the non-special corner τk,

k = 1, . . . ,M .(ii) f0 is continuous on G̃ ∪ ∂G̃ and analytic in G̃ and on ∂G̃, except for the endpoints
τk.(iii) The asymptotic expansion (2.1.4) holds for z ∈ lk, k = 1, . . . ,M , in the sense that,for any pk ∈ N0,

f0(z) =

pk∑

j=0

a
(k)
j (z − τk)

γ
(k)
j + f̃

γ
(k)
pk+1,τk

(z),

f̃
γ
(k)
pk+1,τk

(z) = O
(
(z − τk)

γ
(k)
pk+1

)
.

(4.2.1)We consider now the application of BKM/AB with only corner singularities, where weuse pk ∈ N0 singular function for each non-special corner τk, k = 1, 2, . . . ,M . In order tomeasure the BKM/AB error we set
νk := min{j > pk : γ

(k)
j /∈ N, a

(k)
j 6= 0}, (4.2.2)and assume that at least one of νk's is �nite, otherwise the results become trivial. Theassociated BKM/AB system {ηj} is thus de�ned by rM =
∑M

k=1 pk singular functions ofthe form (1.3.11) and n monomials (1.4.2). Accordingly, we let PA2
n denote the space ofaugmented polynomials:

P
A2
n := {p : p(z) =

rM+n∑

j=1

tjηj(z), tj ∈ C}. (4.2.3)Clearly, the associated augmented polynomial K̃n(z, z0) is the best approximation to
K(z, z0) in L2(G) out of the space PA2

n . 36
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z0

G̃

lN
Ω

ζM

τk

z1

ζN

τN

Le%

τ1

ζ1

l1

l1

l′
1

τM

lk

lk
lM

lM

ζk l′k

l′M

Γ

G

Figure 4.1: The domain G̃ in the proof of Theorem 4.2.1.The following lemma is a simple consequence of a result of Andrievskii and Gaier [1,Lemma 6] and it will be used in the proof of the concluding theorem of this section wherewe establish the BKM/AB error in approximating f0 by the augmented polynomials π̃nderived from PA2
n . It's proof follows easily from Lemma 6 in [1] by taking into accountthe remark follows Theorem 1 in [1].Lemma 4.2.1. (Andrievskii and Gaier [1, Lemma 6])Assume that Γ is piecewise analytic without cusps and let l be any one of the arcs lk de�nedat the begging of the section. Assume further that g is a function analytic on l\{τk}, suchthat

|g(z)| � |z − τk|1/αk , for z ∈ l,and set
F (z) =

∫

l

g(z)

t− z
dt, z ∈ G.Then, there exist a sequence of polynomials {qn}∞n=1 satisfying

‖F − qn‖L2(G) �
1

ns
, n ∈ N, (4.2.4)37
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where s := (2− αk)/αk.The next result of Maymeskul, Sa� and Stylianopoulos [16, Corollary 2.5] is a versionof Andrievsii's lemma (see Lemma 3.1.1) for functions with anti-derivatives in PA2
n . It willbe used below for the transition from the L2(G)-norm to the L∞(G)-norm.Lemma 4.2.2. (Maymeskul, Sa� and Stylianopoulos [16, Corollary 2.5])Assume that Γ is piecewise analytic without cusps and let tk ∈ Γ, k = 1, 2, . . . , m. Also, let

P ∈ Pn and assume further that for some constants an,k,j, k = 1, 2, . . . , m, j = 1, 2, . . . , rk,the function
L(z) := P (z) +

m∑

k=1

rk∑

j=1

an,k,jfβ(k)
j ,tk

(z),where f
β
(k)
j ,tk

(z) := (z − tk)
β
(k)
j , with β

(k)
j > 0 non-integer, satis�es: L(z0) = 0 and

‖L′‖L2(G) ≤ M . Then,
‖L‖L∞(G) ≤ CM

√
log n, (4.2.5)where C is a constant independent of n and of {{an,k,j}rkj=1}mk=1.Let π̃n denote the BKM/AB approximation resulting from P

A2
n . Then we have thefollowing:Theorem 4.2.1. Assume that Γ is piecewise analytic without cusps and set % := |Φ(z1)|and s? := min{(2− αk)γ

(k)
νk : 1 ≤ k ≤ M}. Then,

‖f0 − π̃n‖L∞(G) ≤ c1
√

logn
1

ns?
+ c2

1

Rn
, n ≥ 2, (4.2.6)for any R, 1 < R < %.Proof. Using Cauchy's integral formula for the derivative of the extension of f0 we have,for z ∈ G,

f ′
0(z) =

1

2πi

∫

∂G̃

f0(t)

(t− z)2
dt

=
1

2πi

M∑

k=1

∫

lk

f0(t)

(t− z)2
dt+

1

2πi

∫

lN

f0(t)

(t− z)2
dt.

(4.2.7)
38
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For each τk, k = 1, . . . ,M , we consider the �rst terms up to pk, of the Lehmanexpansion (4.2.1) for f0:
Fk(z) :=

pk∑

j=0

a
(k)
j (z − τk)

γ
(k)
j . (4.2.8)Since the function Fk(z), is analytic in G̃ and continuous on ∂G̃ we have, as in (4.2.7),for z ∈ G,

F ′
k(z) =

1

2πi

M∑

r=1

∫

lr

Fk(t)

(t− z)2
dt+

1

2πi

∫

lN

Fk(t)

(t− z)2
dt.Therefore,

M∑

k=1

F ′
k(z) =

1

2πi

M∑

k=1

M∑

r=1

∫

lr

Fk(t)

(t− z)2
dt+

1

2πi

M∑

k=1

∫

lN

Fk(t)

(t− z)2
dt

=
1

2πi

M∑

k=1

∫

lk

Fk(t)

(t− z)2
dt+

1

2πi

M∑

k=1

M∑

r=1
r 6=k

∫

lr

Fk(t)

(t− z)2
dt

+
1

2πi

M∑

k=1

∫

lN

Fk(t)

(t− z)2
dt.Hence, for z ∈ G,

f ′
0(z)−

M∑

k=1

F ′
k(z) = g(z) + h(z), (4.2.9)where,

g(z) :=
1

2πi

M∑

k=1

∫

lk

f0(t)− Fk(t)

(t− z)2
dt, (4.2.10)and

h(z) :=
1

2πi

∫

lN

f0(t)

(t− z)2
dt− 1

2πi

M∑

k=1

M∑

r=1
r 6=k

∫

lr

Fk(t)

(t− z)2
dt

− 1

2πi

M∑

k=1

∫

lN

Fk(t)

(t− z)2
dt.

(4.2.11)Now, we denote by l′r, r = 1, . . . ,M , the part of the level line L%̃ that shares the sameendpoints with lr, so that L%̃ = {∪M
r=1l

′
r} ∪ lN and lr ∪ l′r is the boundary of a Jordandomain in Ω; see Figure 4.1. Since, for k 6= r, the function Fk(z), z ∈ G, is analyticin the interior of lr ∪ l′r and continuous on lr ∪ l′r, we can replace in (4.2.11) the path of39
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integration lr by l′r, with suitable orientation, i.e., for z ∈ G,
h(z) =

1

2πi

∫

lN

f0(t)

(t− z)2
dt− 1

2πi

M∑

k=1

M∑

r=1
r 6=k

∫

l′r

Fk(t)

(t− z)2
dt

− 1

2πi

M∑

k=1

∫

lN

Fk(t)

(t− z)2
dt.

(4.2.12)Observe that, by construction, f0 is continuous on lN and Fk is continuous on lN ∪ l′r,for k 6= r. Thus, the function h in (4.2.12) is analytic in G%̃ and by Walsh's maximalconvergence theorem there exist a sequence of polynomials {tn}∞n=1 such that,
‖h− tn‖L∞(G) �

1

Rn
, n ∈ N, (4.2.13)where 1 < R < %̃. Since we can choose ζ1 arbitrarily close to z1, (4.2.13) is valid for any

1 < R < %.The function g in (4.2.10) consists of sums of integrals of the type,
G(z) =

∫

lk

gk(t)

(t− z)2
dt,where in view of (4.2.1) and (4.2.8) we have , for t ∈ lk,

|gk(t)| � |t− τk|γ
(k)
pk+1 .Hence, by using the result of Lemma 6 in [1] (see also Lemma 4.2.1), in conjunctionwith the remark following Theorem 1 of the same paper and the triangle inequality, weconclude that there exists a sequence of polynomials {qn}∞n=1 satisfying

‖g − qn‖L2(G) �
1

ns̃
, n ∈ N, (4.2.14)where s̃ := min{(2 − αk)γ

(k)
pk+1 : k = 1, 2, . . . ,M}. This, combined with (4.2.9), (4.2.13)and the triangle inequality, yields

‖f ′
0 −

M∑

k=1

F ′
k − (tn + qn)‖L2(G) ≤ c1

1

ns̃
+ c2

1

Rn
, n ∈ N. (4.2.15)Note that s̃ = s?, if γ(k)

pk+1 /∈ N for the index k for which the minimum is attained in thede�nition of s̃. In the opposite case, where for the same index k, it holds γ(k)
pk+1 ∈ N, we40
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get s̃ = s? in (4.2.15) by simply subtracting from g(z) and adding to h(z), in the righthand side of (4.2.9), the derivative of the Cauchy integral on lN , with density function
a
(k)
pk+1(z − τk)

γ
(k)
pk+1. This observation and (1.3.14) imply that there exists a sequence ofaugmented polynomials {p̃n}, with p̃n ∈ PA2

n , such that,
‖K(·, z0)− p̃n‖L2(G) ≤ c3

1

ns?
+ c4

1

Rn
, n ∈ N, (4.2.16)and the rest goes in similar lines as in the proof of Theorem 3.2.1, except here we use theversion of Andrievskii's lemma for functions with anti-derivatives in the space PA2

n , givenin [16, Corollary 2.5] (see also Lemma 4.2.2). These yield,
‖f0 − π̃n‖L∞(G) 6 c5

√
logn

1

ns?
+ c6

√
log n

1

Rn
, n ≥ 2, (4.2.17)and (4.2.6) follows with a di�erent, but still less than %, R.Remark 4.2.1. Note that ns? ≤ Rn, as n → ∞. Therefore from (4.2.6) we recover theresult of [16, Thm. 3.1]. However, Theorem 4.2.1 above gives, in addition, the precisedependence of the BKM/AB error on the pole singularities of f0 for small values of n.We also note the lower estimate

‖f0 − π̃n‖L∞(G) ≥ c
1

ns?
, n ∈ N,established in [16, Thm. 3.2].The following result is a simple consequence of the minimum property of the kernelpolynomials Kn(·, z0) out of the space PA2

n . The proof follows by working in the same wayas in the proof of Corollaries 3.2.1 and 3.2.2. We recall that P̃n(z) denote the augmentedBergman polynomials out of the space PA2
n and r̃n denote the BKM/AB approximationin the space PA2

n to the conformal radius r0.Corollary 4.2.1. Under the assumptions of Theorem 4.2.1 the following holds,
|P̃n(z0)| ≤ c1

1

ns?
+ c2

1

Rn
, n ∈ N, (z0 ∈ G). (4.2.18)and

|r0 − r̃n| ≤
(
c3

1

ns?
+ c4

1

Rn

)2

, n ∈ N. (4.2.19)41
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4.3 BKM/AB with pole and corner singularitiesWe consider now the application of the BKM/AB with both pole and corner singularbasis function of the form studied in Sections 3.3 and 4.2. Regarding poles we recall,in particular, our assumptions in Section 3.3. That is, the nearest singularities of f0in Ω are κ poles, each one of order kj at zj , j = 1, 2, . . . κ, where |Φ(z1)| ≤ |Φ(z2)| ≤
· · · ≤ |Φ(zκ)|, while the other singularities of f0 occur at points zκ+1, zκ+2, . . ., where
|Φ(zκ)| < |Φ(zκ+1)| 6 |Φ(zκ+2)| 6 · · · . Therefore, for the BKM/AB we consider thesystem {ηj}, de�ned by:(i) the κ pole singular functions (1.3.18), with mj = 1, j = 1, 2, . . . , κ;(ii) the rM =

∑M
k=1 pk corner singular functions of the form (1.3.11);(iii) and the n monomials (1.4.2).Accordingly, we let PA3

n denote the space,
P
A3
n := {p : p(z) =

κ+rM+n∑

j=1

tjηj(z), tj ∈ C},and note that the associated augmented polynomial K̃n(z, z0) is the best approximationto K(z, z0) in L2(G) out of the space PA3
n .The following result is a version of Andrievsii's lemma for functions with anti-derivativesin PA3

n . It will be used below, in the proof of the concluding theorem of this section in thetransition from the L2(G)-norm to the L∞(G)-norm, where we establish the BKM/ABerror in approximating f0 by the augmented polynomials π̃n derived from PA3
n .Lemma 4.3.1. Assume that Γ is piecewise analytic without cusps and let tk ∈ Γ, k =

1, 2, . . . , m. Also, let P ∈ Pn and q be a �xed polynomial with no zeros on G. Assumefurther that for some constants an,k,j, k = 1, 2, . . . , m, j = 1, 2, . . . , rk, the function
L(z) :=

P (z)

q(z)
+

m∑

k=1

rk∑

j=1

an,k,jfβ(k)
j ,tk

(z),
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where f
β
(k)
j ,tk

(z) = (z − tk)
β
(k)
j , with β

(k)
j > 0 non-integer, satis�es: L(z0) = 0 and

‖L′‖L2(G) ≤ M . Then,
‖L‖L∞(G) ≤ CM

√
log n, (4.3.1)where C is a constant independent of n and of {{an,k,j}rkj=1}mk=1.Proof. The proof is based on Andrievskii's lemma for singular algebraic functions givenin [16, Corollary 2.5] (see also Lemma 4.2.2 above) and relies on the results contained in[16, �2]. The details of the derivation are as follows:First, we note that our assumption implies that Γ is a quasiconformal curve. Then,it is straightforward to verify that the results of Theorems 2.1 and 2.2 (and hence theresult of Corollary 2.2) in [16] hold true for functions of the form q2(z)fβ,τ (z), where

fβ,τ(z) := (z − τ)β, with τ ∈ Γ and β > 0 non-integer. That is,
inf
p∈Pn

‖q2fβ,τ − p‖L2(G) �
1

n(2−a)(β+1)
, (4.3.2)where απ (0 < α < 2) denotes the interior angle of Γ at τ .With (4.3.2) at hand it is, again, straightforward to verify consequentially that theresults of Theorem 2.3, Corollaries 2.3 and 2.4, Lemma 2.3 and Corollary 2.5, of [16], holdtrue if we replace f ′

β,τ by q2f ′
β,τ . In particular, Corollary 2.5 of [16] applied to the function

S(z) :=

∫ z

z0

q2(z)L′(z)dz,where the path of integration [z0, z] is any recti�able arc in G, gives that
‖S‖L∞(G) ≤ c1

√
logn ‖S ′‖L2(G).(Note that S(z0) = 0 and S ′(z) = q2(z)L′(z).) Therefore, our hypothesis on ‖L′‖L2(G)yields the inequality

‖S‖L∞(G) ≤ c2
√

lognM. (4.3.3)On the other hand we have,
L(z) =

∫ z

z0

q−2(z)S ′(z)dz = q−2(z)S(z) + 2

∫ z

z0

q−3(z)q′(z)S(z)dz,43
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which implies
‖L‖L∞(G) ≤ c3 ‖S‖L∞(G)and (4.3.1) follows from (4.3.3); cf. [5, p. 122].The concluding result of this section provides the theoretical justi�cation for the use ofthe BKM/AB, with both corner and pole singularities. For the next theorem we recall thatthe nearest singularities of f0 in Ω are κ poles, each one of order kj at zj , j = 1, 2, . . . κ,where |Φ(z1)| ≤ |Φ(z2)| ≤ · · · ≤ |Φ(zκ)|, while the other singularities of f0 occur at points

zκ+1, zκ+2, . . ., where |Φ(zκ)| < |Φ(zκ+1)| 6 |Φ(zκ+2)| 6 · · · .Let π̃n denote the BKM/AB approximation to f0 resulting from the space PA3
n . Thenwe have the following:Theorem 4.3.1. Assume that Γ is piecewise analytic without cusps and set % := |Φ(zκ+1)|and s? := min{(2− αk)γ

(k)
νk : 1 ≤ k ≤ M}. Then,

‖f0 − π̃n‖L∞(G) ≤ c1
√

logn
1

ns?
+ c2

1

Rn
, n ≥ 2, (4.3.4)for any R, 1 < R < %.Proof. As in the proof of Theorem 3.3.1, we set Q(z) :=
∏κ

j=1(z − zj)
kj+1. The result(4.3.4) will emerge by working as in the proof of Theorem 4.2.1. The basic idea is toconsider, in a bigger domain G̃, the anti-derivatives F and Gk of the functions Qf ′

0 and
QF ′

k, respectively, in the place of the functions f0 and Fk. The details of the derivationare as follows:We note that the function Qf ′
0 shares the same analytic properties with f ′

0, apart fromthe fact that it has the singularities at the points zj , j = 1, . . . , κ, all removed. Therefore,the function
F (z) :=

∫ z

z0

Q(ζ)f ′
0(ζ)dζ, (4.3.5)can be extended analytically to a larger domain G̃ than the one considered in Section 4.2.This larger domain G̃ is obtained by choosing the point ζ1 close to the nearest pole zκ+1of Qf ′

0 in Ω, but inside the level curve L%, where now % := |Φ(zκ+1)|. The remaining partof the construction of G̃ is exactly the same as in Section 4.2.44
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It follows therefore that (4.3.5) is valid for z ∈ G̃, provided the arc of integration
[z0, z] lies on G̃ ∪ ∂G̃ \ {∪M

k=1τk} and is recti�able. (This is always possible because ∂G̃is piecewise analytic.) Since the derivative of f0 near τk can be obtained by termwisedi�erentiation of the expansion (4.2.1), (cf. [10, p. 1448]) and since any power in theresulting expansion is bigger than −1
2
, we see that f ′

0 is integrable along any recti�ablearc in G̃ with one endpoint at τk. Therefore, integration by parts gives, for z ∈ G̃ ∪ ∂G̃,
F (z) = Q(z)f0(z)−

∫ τk

z0

Q′(ζ)f0(ζ)dζ −
∫ z

τk

Q′(ζ)f0(ζ)dζ, (4.3.6)where we made use of the normalization of f0 at z0. This shows that F is continuouson ∂G̃ and analytic and on ∂G̃, except for the endpoints τk. By arguing as in (4.2.7) wehave, for z ∈ G,
Q(z)f ′

0(z) = F ′(z) =
1

2πi

M∑

k=1

∫

lk

F (t)

(t− z)2
dt+

1

2πi

∫

lN

F (t)

(t− z)2
dt. (4.3.7)Similar properties to those of F apply to the anti-derivative

Gk(z) :=

∫ z

z0

Q(ζ)F ′
k(ζ)dζ, (4.3.8)of QF ′

k, k = 1, . . . ,M . That is, for z ∈ G̃ ∪ ∂G̃,
Gk(z) = Q(z)Fk(z)−Q(z0)Fk(z0)

−
∫ τk

z0

Q′(ζ)Fk(ζ)dζ −
∫ z

τk

Q′(ζ)Fk(ζ)dζ,
(4.3.9)and, for z ∈ G,

Q(z)F ′
k(z) = G′

k(z) =
1

2πi

M∑

r=1

∫

lr

Gk(t)

(t− z)2
dt+

1

2πi

∫

lN

Gk(t)

(t− z)2
dt. (4.3.10)Next, by combining (4.3.6) and (4.3.9) we get,

F (z)− dk −Gk(z) = Q(z)[f0(z)− Fk(z)]−
∫ z

τk

Q′(ζ)[f0(z)− Fk(ζ)]dζ, (4.3.11)where
dk := Q(z0)Fk(z0)−

∫ τk

z0

Q′(ζ)[f0(ζ)− Fk(ζ)]dζ.45
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This and (4.2.1) lead to
|F (z)− dk −Gk(z)| � |z − τk|γ

(k)
pk+1 , z ∈ lk. (4.3.12)By reasoning as in the proof of Theorem 4.2.1 we conclude, by using (4.3.7) and(4.3.10) that, for z ∈ G,

Q(z)f ′
0(z)−Q(z)

M∑

k=1

F ′
k(z) = g(z) + h(z), (4.3.13)where the singular part

g(z) :=
1

2πi

M∑

k=1

∫

lk

F (t)− dk −Gk(t)

(t− z)2
dt, (4.3.14)of the splitting (4.3.13) can be approximated, eventually, by a sequence of polynomials

{qn}∞n=1 at a polynomial rate, viz.,
‖g − qn‖L2(G) �

1

ns?
, n ∈ N, (4.3.15)with s? := min{(2− αk)γ

(k)
νk : 1 ≤ k ≤ M} and the analytic part

h(z) :=
1

2πi

M∑

k=1

∫

lk

dk
(t− z)2

dt+
1

2πi

∫

lN

F (t)

(t− z)2
dt

− 1

2πi

M∑

k=1

M∑

r=1
r 6=k

∫

lr

Gk(t)

(t− z)2
dt− 1

2πi

M∑

k=1

∫

lN

Gk(t)

(t− z)2
dt.

(4.3.16)
can be approximated by a sequence of polynomials {tn}∞n=1 at a geometric rate, viz.,

‖h− tn‖L∞(G) �
1

Rn
, n ∈ N, (4.3.17)where 1 < R < %. Hence using the triangle inequality we get

‖Q(f ′
0 −

M∑

k=1

F ′
k)− (tn + qn)‖L2(G) ≤ c1

1

ns?
+ c2

1

Rn
. (4.3.18)This implies ∥∥∥∥∥f

′
0 −

M∑

k=1

F ′
k −

tn + qn
Q

∥∥∥∥∥
L2(G)

≤ c

dκ+ξ

[
c1

1

ns?
+ c2

1

Rn

]
, (4.3.19)46
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where d := minj=1,2,...,κ{|z − zj | : z ∈ Γ} and ξ :=
∑κ

j=1 kj. Thus, from (1.3.18) weconclude there exists a sequence of augmented polynomials {p̃n}, where p̃n ∈ P
A3
n , suchthat,

‖K(·, z0)− p̃n‖L2(G) ≤ c3
1

ns?
+ c4

1

Rn
, n ∈ N, (4.3.20)Therefore, using the minimum property of the augmented kernel polynomials, we have

‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ c3
1

ns?
+ c4

1

Rn
, n ∈ N, (4.3.21)and this, in conjunction with the equivalence Lemma 2.3.1, yields that

‖f ′
0 − π̃′

n‖L2(G) ≤ c5
1

ns?
+ c6

1

Rn
, n ∈ N. (4.3.22)Since,

π̃n(z) =
P (z)

q(z)
+

M∑

k=1

pk∑

j=0

an,k,j(z − τk)
γ
(k)
j , (4.3.23)where q(z) :=

∏κ
j=1(z − zj)

kj and P (z) is a polynomial of degree n + ξ, the rest goesas the concluding part of the proof of Theorem 4.2.1, except here we use the result ofLemma 4.3.1 in the place of [16, Corollary 2.5].The following result is a simple consequence of the minimum property of the kernelpolynomials K̃n(·, z0) out of the space PA3
n . We recall that P̃n(z) denote the augmentedBergman polynomials out of the space PA3
n and r̃n denote the BKM/AB approximationin the space PA3

n to the conformal radius r0.Corollary 4.3.1. With the assumptions of Theorem 4.3.1 it holds,
|P̃n(z0)| ≤ c1

1

ns?
+ c2

1

Rn
, n ∈ N, (z0 ∈ G). (4.3.24)and

|r0 − r̃n| ≤
(
c3

1

ns?
+ c4

1

Rn

)2

, n ∈ N. (4.3.25)We end this section providing the theoretical justi�cation for the use of the BKM/AB,with only pole singularities. 47
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Theorem 4.3.2. Assume Γ is piecewise analytic without cusp and set % = |Φ(zκ+1)| and
s := min{(2− αk)γ

(k)
1 : 1 ≤ k ≤ M}. Then,
‖f0 − π̃n‖L∞(G) ≤ c1

√
logn

1

ns
+ c2

1

Rn
, n ≥ 2, (4.3.26)for any R, 1 < R < %.Proof. We set Q(z) :=

∏κ
j=1(z − zj)

kj+1 and as in the proof of Theorem 4.3.1, let thefunction
F (z) :=

∫ z

z0

Q(ζ)f ′
0(ζ)dζ. (4.3.27)Hence, integration by parts gives, for z ∈ G̃ ∪ ∂G̃,

F (z) = Q(z)f0(z)−
∫ τk

z0

Q′(ζ)f0(ζ)dζ −
∫ z

τk

Q′(ζ)f0(ζ)dζ. (4.3.28)Observe, (4.2.1) can be written in the form
f0(z) = f0(τk) + f̃

γ
(k)
1 ,τk

(z), (4.3.29)This and (4.3.28) lead to
|F (z)− dk| � |z − τk|γ

(k)
1 , z ∈ lk. (4.3.30)where

dk = f0(τk)Q(z0)−
∫ τk

z0

Q′(ζ)f̃
γ
(k)
1 ,τk

(ζ)dζ.Using Cauchy's integral formula for the F we have for z ∈ G

Q(z)f ′
0(z) = F ′(z) =

1

2πi

M∑

k=1

∫

lk

F (t)

(t− z)2
dt+

1

2πi

∫

lN

F (t)

(t− z)2
dt. (4.3.31)By reasoning as in the proof of Theorem 4.3.1 we conclude that, for z ∈ G,

Q(z)f ′
0(z) = g(z) + h(z), (4.3.32)where the singular part

g(z) :=
1

2πi

M∑

k=1

∫

lk

F (t)− dk
(t− z)2

dt, (4.3.33)48
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of the splitting (4.3.32) can be approximated, eventually, by a sequence of polynomials
{qn}∞n=1 at a polynomial rate, viz.,

‖g − qn‖L2(G) �
1

ns
, n ∈ N, (4.3.34)with s := min{(2− αk)γ

(k)
1 : 1 ≤ k ≤ M} and the analytic part

h(z) =
1

2πi

M∑

k=1

∫

lk

dk
(t− z)2

dt+
1

2πi

∫

lN

F (t)

(t− z)2
dt (4.3.35)can be approximated by a sequence of polynomials {tn}∞n=1 at a geometric rate, viz.,

‖h− tn‖L∞(G) �
1

Rn
, n ∈ N, (4.3.36)where 1 < R < %. Hence using the triangle inequality we get

‖Qf ′
0 − (tn + qn)‖L2(G) ≤ c1

1

ns
+ c2

1

Rn
. (4.3.37)This implies ∥∥∥∥f

′
0 −

tn + qn
Q

∥∥∥∥
L2(G)

≤ c

dκ+ξ

[
c1

1

ns
+ c2

1

Rn

]
, (4.3.38)where d := minj=1,2,...,κ{|z − zj | : z ∈ Γ} and ξ :=

∑κ
j=1 kj. Thus, from (1.3.18) weconclude there exists a sequence of augmented polynomials {p̃n}, where p̃n ∈ PA1

n , suchthat,
‖K(·, z0)− p̃n‖L2(G) ≤ c3

1

ns
+ c4

1

Rn
, n ∈ N, (4.3.39)Therefore, using the minimum property of the augmented kernel polynomials, we have

‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ c3
1

ns
+ c4

1

Rn
, n ∈ N, (4.3.40)and this, in conjunction with the equivalence Lemma 2.3.1, yields that

‖f ′
0 − π̃′

n‖L2(G) ≤ c5
1

ns
+ c6

1

Rn
, n ∈ N. (4.3.41)Since,

π̃n(z) =
P (z)

q(z)
, (4.3.42)49
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where q(z) :=
∏κ

j=1(z − zj)
kj and P (z) is a polynomial of degree n + ξ, the transitionfrom the L2(G)-norm to the L∞(G)-norm is done as in the proof of Theorem 3.3.1, wherenow, in view of (4.3.42), Lemma 3.1.1(ii) is applicable. This leads to,

‖f0 − π̃n‖L∞(G) ≤ c7

√
logn

ns
+ c8

√
logn

Rn
, n ∈ N (4.3.43)and Theorem 4.3.2 follows with a di�erent, but still less than %, R.The following result is a simple consequence of the minimum property of the kernelpolynomials Kn(·, z0) out of the space PA1

n in case where now the boundary Γ is piecewiseanalytic without cusps. The proof is similar to the proofs of Corollaries 3.2.1 and 3.2.2.We recall that P̃n(z) denote the augmented Bergman polynomials out of the space P
A1
nand r̃n denote the BKM/AB approximation in the space PA1

n to the conformal radius r0.Corollary 4.3.2. With the assumptions of Theorem 4.3.2 it holds,
|P̃n(z0)| ≤ c1

1

ns
+ c2

1

Rn
, n ∈ N, (z0 ∈ G). (4.3.44)and

|r0 − r̃n| ≤
(
c3

1

ns
+ c4

1

Rn

)2

, n ∈ N. (4.3.45)
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Chapter 5
Pointwise error estimates for the BKMand BKM/AB method
Let πn(z, z0) = πn(z) and π̃n(z, z0) = π̃n(z) denote the BKM and BKM/AB approximationto f0(z) for z ∈ G, given respectively by (1.4.2) and (2.3.6). The purpose of this chapteris to study the pointwise BKM and BKM/AB errors

|f0(z)− πn(z, z0)| and |f0(z)− π̃n(z, z0)|, z ∈ G. (5.0.1)This is done by means of the two pointwise errors
|K(z, z0)−Kn(z, z0)| and |K(z, z0)− K̃n(z, z0)|, z ∈ G. (5.0.2)in approximating the kernel K(z, z0) in terms of the associated kernel polynomials.For the next two results we assume, as in the introduction, that G is a boundedJordan domain in C. We state both results for the augmented case π̃n(z, z0) and K̃n(z, z0),although it is clear that they hold also for the polynomial case πn(z, z0) and Kn(z, z0).Lemma 5.0.2. For any z ∈ G the following holds,

|K(z, z0)− K̃n(z, z0)| ≤

‖K(·, z)− K̃n(·, z)‖L2(G)‖K(·, z0)− K̃n(·, z0)‖L2(G).
(5.0.3)
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Proof. Since G is a bounded Jordan domain the augmented polynomials (2.3.4) form acomplete orthonormal system in L2
a(G). Therefore, we have from (1.3.15) and (2.3.5) thatfor z ∈ G,

K(z, z0)− K̃n(z, z0) =

∞∑

k=1

P̃k(z)P̃k(z0)−
n∑

k=1

P̃k(z)P̃k(z0)

=

∞∑

k=n+1

P̃k(z)P̃k(z0),

(5.0.4)and the result (5.0.3) follows at once from the Cauchy-Schwarz inequality
|K(z, z0)− K̃n(z, z0)| ≤

( ∞∑

k=n+1

|P̃k(z)|2
)1/2( ∞∑

k=n+1

|P̃k(z0)|2
)1/2

, (5.0.5)and the fact that
∞∑

k=n+1

|P̃n(ζ)|2 = ‖K(·, ζ)− K̃n(·, ζ)‖2L2(G), ζ ∈ G. (5.0.6)which follows from the reproducing property (1.3.12).Lemma 5.0.3. Assume that z ∈ G can be connected by a recti�able arc γ(z, z0) to a �xedpoint z0 ∈ G. Then,
|f0(z)− π̃n+1(z, z0)| ≤

c
[
|γ(z, z0)|‖K(·, z0)− K̃n(·, z0)‖L2(G) max

ζ∈γ(z,z0)
‖K(·, ζ)− K̃n(·, ζ)‖L2(G)

+ ‖K(·, z0)− K̃n(·, z0)‖2L2(G)

]
,

(5.0.7)where |γ(z, z0)| denotes the length of γ(z, z0) and c is a positive constant which dependson z0 but not on n.Proof. From (1.4.5) and (1.3.14) with z = z0 we have for γ := γ(z, z0)

[
f0(z)− π̃n+1(z)

]
K̃n(z0, z0) = f0(z)K̃n(z0, z0)−

∫

γ

K̃n(ζ, z0)dζ

= f0(z)

[
K̃n(z0, z0)−

1

πr20

]
+

[
f0(z)

πr20
−
∫

γ

K̃n(ζ, z0)dζ

]

=

∫

γ

[
K(ζ, z0)− K̃n(ζ, z0)

]
dζ − f0(z)

[
K(z0, z0)− K̃n(z0, z0)

]
.52
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We note that the application of the reproducing property (1.3.4), gives for any ζ ∈ G,that
K(ζ, ζ)− K̃n(ζ, ζ) = ‖K(·, ζ)− K̃n(·, ζ)‖2L2(G). (5.0.8)We also note (see (5.0.6)) the two relations:

∞∑

k=n+1

|P̃n(z0)|2 = ‖K(·, z0)− K̃n(·, z0)‖2L2(G), (5.0.9)and
∞∑

k=n+1

|P̃n(ζ)|2 = ‖K(·, ζ)− K̃n(·, ζ)‖2L2(G). (5.0.10)Therefore, from the Cauchy-Schwarz inequality
∣∣∣∣
∫

γ

K(ζ, z0)− K̃n(ζ, z0)dζ

∣∣∣∣ =
∣∣∣∣
∫

γ

∞∑

k=n+1

P̃n(ζ)P̃n(z0)dζ

∣∣∣∣

≤
[ ∞∑

k=n+1

|P̃n(z0)|2
]1/2 ∫

γ

[ ∞∑

k=n+1

|P̃n(ζ)|2
]1/2

|dζ |

≤
[ ∞∑

k=n+1

|P̃n(z0)|2
]1/2

|γ(z, z0)| max
ζ∈γ(z,z0)

{[ ∞∑

k=n+1

|P̃n(ζ)|2
]1/2}

.and the result (5.0.7) follows from (5.0.9) and (5.0.10).Remark 5.0.1. It is clear from the proof that the results of Lemmas 5.0.2 and 5.0.3 holdtrue for any complete orthonormal system. In particular if we use the Bergman polyno-mials Pn in the place of P̃n then (5.0.3) and (5.0.7) hold for the usually Kn(z, z0) and
πn+1(z, z0), i.e.,

|f0(z)− πn+1(z, z0)| ≤

c
[
|γ(z, z0)|‖K(·, z0)−Kn(·, z0)‖L2(G) max

ζ∈γ(z,z0)
‖K(·, ζ)−Kn(·, ζ)‖L2(G)

+ ‖K(·, z0)−Kn(·, z0)‖2L2(G)

]
, z ∈ G.

(5.0.11)and
|K(z, z0)−Kn(z, z0)| ≤

‖K(·, z)−Kn(·, z)‖L2(G)‖K(·, z0)−Kn(·, z0)‖L2(G), z ∈ G.
(5.0.12)
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5.1 BKMClearly, the relations (1.3.16), (1.3.18) (1.4.1) and (1.4.2) hold when the �xed point z0 ∈ Gis replaced by another point z ∈ G, and we use the notation fz for the normalizedconformal mapG → D(0, rz). Note that f0 and fz are related by a Mobius transformation.According to (1.3.18), rz = rz(G, z) is called the conformal radius of G with respect to z.We recall that Φ denote the exterior conformal map of Ω onto ∆ := {w : |w| > 1},normalized so that near in�nity,
Φ(z) = γz + γ0 +

γ1
z

+
γ2
z2

+ . . . , γ > 0, (5.1.1)and let LR (R ≥ 1) denote the level curve,
LR := {z : |Φ(z)| = R}, (5.1.2)so that L1 ≡ Γ. Note that LR, for R > 1, is an analytic Jordan curve. We use GR todenote its interior, i.e., GR := int(LR). The next theorem provides an estimate for theerror in the BKM approximation πn(z, z0) to f0(z) and also Kn(z, z0) to K(z, z0) for any

z ∈ G under the assumption that f0, and hence, fz has an analytic continuation across
Γ in Ω. We use ρ(z) > 1 to denote the index of the nearest poles of fz on Ω and m(z) todenote the highest order of the poles of fz. For the next theorem we use %(z0) to denote
|Φ(z1)|.Theorem 5.1.1. Assume that Γ is piecewise analytic without cusps. Assume further thatthe conformal maps f0 has an analytic continuation across Γ, such that f0 and fz arerespectively analytic on G%(z0) and Gρ(z), with %(z0) > 1 and ρ(z) > 1, apart from a �nitenumber of poles on L%(z0) and Lρ(z). Let m(z0) and m(z) denote the highest order of thepoles of f0 and fz on L%(z0) and Lρ(z), then, for any z ∈ G,

|f0(z)− πn(z)| ≤ c1|γ(z, z0)|
nm(z0)

%n(z0)
max

ζ∈γ(z,z0)

nm(ζ)

ρn(ζ)
+ c2

n2m(z0)

%2n(z0)
, (5.1.3)and

|K(z, z0)−Kn(z, z0)| ≤ c3
nm(z0)

%n(z0)

nm(z)

ρn(z)
, (5.1.4)where |γ(z, z0)| denotes the length of γ(z, z0) and c1, c2, c3 are positive constants whichdepend on z0 but not on n. 54
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Proof. From (3.2.4) of Theorem 3.2.1 we have
‖K(·, z0)−Kn(·, z0)‖L2(G) �

nm(z0)

%n(z0)
, (5.1.5)and similar

‖K(·, z)−Kn(·, z)‖L2(G) �
nm(z)

ρn(z)
. (5.1.6)By applying (5.1.5) and (5.1.6) to Remark 5.0.1 we have the required results. (5.1.3) and(5.1.4)Remark 5.1.1. If z = z0 then |γ(z, z0)| = 0. So the estimate in (5.1.3) takes the form

|f0(z0)− πn(z0, z0)| ≤ c2
n2m(z0)

%2n(z0)
, (5.1.7)If z → Γ then ρ(z) → 1. So the estimate in (5.1.3) takes the form

|f0(z)− πn(z, z0)| ≤ c1|γ(z, z0)|
nm(z0)+m(z)

%n(z0)
, (5.1.8)5.2 BKM/AB with pole singularities inside the domainIn this section we study the pointwise BKM/AB errors |K(z, z0)− K̃n(z, z0)| and |f0(z)−

π̃n(z, z0)| inside the domain G under the assumption that f0 has an analytic continuationacross Γ in Ω and its only singularities are poles, or rational poles, of the type (2.2.1).We exploit now the speci�c assumptions on the singularities of the analytic extension of
f0 studied in Section 2.2. More precisely, the assumption that the nearest singularitiesof f0 are κ poles, each one of order kj at zj , j = 1, 2, . . . κ, where |Φ(z1)| ≤ |Φ(z2)| ≤
· · · ≤ |Φ(zκ)|, and that the other singularities of f0 occur at points zκ+1, zκ+2, . . ., where
|Φ(zκ)| < |Φ(zκ+1)| 6 |Φ(zκ+2)| 6 · · · . We recall the space PA1

n of augmented polynomialscontains only the singular functions in (2.3.1), with mj = 1, j = 1, 2, . . . , κ, and the nmonomials in (2.3.3):
P
A1
n := {p : p(z) =

κ+n∑

j=1

tjηj(z), tj ∈ C}. (5.2.1)Since fz is related to f0 by a Mobius transformation it has exactly the similar behavior in
Ω. In particular the nearest singularities of fz in Ω are κ poles of order kj, j = 1, 2, . . . κ.55
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The next theorem provides an estimate for the interior error in the resulting BKM/ABapproximation π̃n(z, z0) to f0 and K̃n(z, z0) to K(z, z0) inside the domain G. We recallthat ρ(z) > 1 is the index of the nearest poles of fz on Ω and m(z) is the highest order ofthe poles of fz. For the next theorem we use %(z0) to denote |Φ(zκ+1)|.Theorem 5.2.1. Assume that Γ is piecewise analytic without cusps. Assume, in additionthat f0 and fz have a �nite number of poles and no other singularities on L%(z0) and Lρ(z)and let m(z0), m(z) denote their highest order. Then, for any z ∈ G

|f0(z)− π̃n(z, z0)| ≤ c1|γ(z, z0)|
nm(z0)

%n(z0)
max

ζ∈γ(z,z0)

nm(ζ)

ρn(ζ)
+ c2

n2m(z0)

%2n(z0)
, (5.2.2)and

|K(z, z0)− K̃n(z, z0)| ≤ c3
nm(z0)

%n(z0)

nm(z)

ρn(z)
, (5.2.3)where |γ(z, z0)| denotes the length of γ(z, z0) and c1, c2, c3 are positive constants whichdepend on z0 but not on n.Proof. From (3.3.7) of Theorem 3.3.2 we have

‖K(·, z0)− K̃n(·, z0)‖L2(G) �
nm(z0)

%n(z0)
. (5.2.4)Now for the estimate

‖K(·, z)− K̃n(·, z)‖L2(G), (5.2.5)we set Q(t) :=
∏k

j=1(t − zj)
kj+1, where kj is de�ned at the beginning of the section andobserve that, the function K(t, z)Q(t) is analytic in the interior of the level curve of Lρ(z).Hence from Lemma 3.0.2 it follows that, there exists a sequence of polynomial {pn}∞n=1,such that
‖K(·, z)Q− pn‖L∞(G) �

nm(z)

ρn(z)
. (5.2.6)(The singular functions of the form [( 1

t−zj
)kj/mj+1]′ doesn't cancel out the nearest singu-larities of K(·, z).) Let now d := minj=1,2,...,κ{|t − zj | : t ∈ Γ} denote the distance of Γfrom the poles {zj}κj=1, and set ξ :=

∑κ
j=1 kj. Then, |Q(t)| ≥ dκ+ξ, t ∈ Γ, and (5.2.6)gives

‖K(·, z)− pn
Q
‖L∞(G) ≤

c

dκ+ξ

nm(z)

ρn(z)
.56
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Since the L2(G)-norm is dominated by the L∞(G)-norm, we see that there exist a sequenceof rational polynomials {Qn}∞n=1, with Qn ∈ P
A1
n , such that,

‖K(·, z)−Qn‖L2(G) �
nm(z)

ρn(z)
, n ∈ N.Therefore, using the minimum property (3.3.2) of the augmented kernel polynomials, wehave

‖K(·, z)− K̃n(·, z)‖L2(G) �
nm(z)

ρn(z)
, n ∈ N. (5.2.7)By applying (5.2.4) and (5.2.7) to Lemmas 5.0.2, 5.0.3 we have the required results of(5.2.2) and (5.2.3).Remark 5.2.1. If z = z0 then |γ(z, z0)| = 0 and the estimate in (5.2.2) takes the form

|f0(z0)− π̃n(z0, z0)| ≤ c2
n2m(z0)

%2n(z0)
. (5.2.8)If z → Γ then ρ → 1 and the estimate in (5.2.2) takes the form

|f0(z)− π̃n(z, z0)| ≤ c1|γ(z, z0)|
nm(z0)+m(z)

%n(z0)
. (5.2.9)5.3 BKM/AB with corner singularities inside the do-mainWe consider now the application of the BKM/AB with corner singular basis function.This form of BKM/AB was studied in Section 4.2. We recall the associated space PA2

n ofaugmented polynomials contains only the rM singular functions of the form (2.3.2), andthe n monomials (2.3.3):
P
A2
n := {p : p(z) =

rM+n∑

j=1

tjηj(z), tj ∈ C}. (5.3.1)In this case we note that the associated augmented kernel polynomials K̃n(t, z0), K̃n(t, z)belong to the same space PA2
n . The next theorem provides an estimate for the error inthe resulting BKM/AB approximation π̃n(z, z0) to f0(z) and K̃n(z, z0) to K(z, z0) insidethe domain G. We recall that ρ(z) is the index of the nearest pole of fz on Ω and we use

%(z0) to denote |Φ(z1)|. 57
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Theorem 5.3.1. Assume that Γ is piecewise analytic without cusps and as in Theorem4.2.1 set s? := min{(2 − αk)γ
(k)
νk : 1 ≤ k ≤ M} where γ

(k)
j is de�ned in Section 2.1 and

νk is given by (4.2.2). Then, for any z ∈ G

|f0(z)−π̃n(z)| ≤ c1
1

n2s?
+c2

1

ns?Rn(z0)
+c3

1

ns?
max
ζ∈γ

1

Rn(ζ)
+c4

1

Rn(z0)
max
ζ∈γ

1

Rn(ζ)
+c5

1

R2n(z0)
,(5.3.2)and

|K(z, z0)− K̃n(z, z0)| ≤ c6
1

n2s?
+ c7

1

ns?Rn(z0)
+ c8

1

ns?Rn(z)
+ c9

1

Rn(z0)R(z)
, (5.3.3)where R(z0), R(z), 1 < R(z0) < %(z0) and 1 < R(z) < ρ(z) and ci i = 1, 2, . . . 9 arepositive constants which depend on z0 but not on n.Proof. Since f0 and fz have exactly the same singular behavior on Γ both s? in the errors

‖K(·, z) − K̃n(·, z)‖L2(G), ‖K(·, z0) − K̃n(·, z0)‖L2(G) in (4.2.16) of Theorem 4.2.1 are thesame. We have
‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ c1

1

ns?
+ c2

1

Rn(z0)
, (5.3.4)and

‖K(·, z)− K̃n(·, z)‖L2(G) ≤ c3
1

ns?
+ c4

1

Rn(z)
, (5.3.5)where R(z0), R(z), 1 < R(z0) < %(z0) and 1 < R(z) < ρ(z). Then applying (5.3.4) and(5.3.5) to Lemmas 5.0.2 and 5.0.3, we have the required results.Remark 5.3.1. It is clear that, (5.3.2) and (5.3.3) hold for the usual Kn(z, z0) and πn(z, z0)of the space Pn in the place of K̃n(z, z0) and π̃n(z, z0), i.e., for any z ∈ G

|f0(z)− π̃n(z)| ≤ c1
1

n2s
+ c2

1

nsRn(z0)
+ c3

1

ns
max
ζ∈γ

1

Rn(ζ)
+ c4

1

Rn(z0)
max
ζ∈γ

1

Rn(ζ)
+ c5

1

R2n(z0)
,(5.3.6)and

|K(z, z0)− K̃n(z, z0)| ≤ c6
1

n2s
+ c7

1

nsRn(z0)
+ c8

1

nsRn(z)
+ c9

1

Rn(z0)R(z)
, (5.3.7)where R(z0), R(z), 1 < R(z0) < %(z0) and 1 < R(z) < ρ(z) and as in Theorem 4.1.1

s := min{(2 − αk)/αk : 1 ≤ k ≤ M} and ci i = 1, 2, . . . 9 are positive constants dependon z0 but not on n. 58
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5.4 BKM/AB with pole and corner singularities insidethe domainWe consider now the application of the BKM/AB with both pole and corner singularbasis function inside the domain. This form of BKM/AB studied in Sections 3.3 and 4.2.We recall the associated space PA3
n of augmented polynomials contains the κ pole singularfunctions in (2.3.1), with mj = 1, j = 1, 2, . . . , κ, the rM corner singular functions of theform (2.3.2), and the n monomials (2.3.3):

P
A3
n := {p : p(z) =

κ+rM+n∑

j=1

tjηj(z), tj ∈ C}. (5.4.1)The next theorem provide an estimate for the error in the resulting BKM/AB approx-imation π̃n(z, z0) to f0(z) and K̃n(z, z0) to K(z, z0) inside of the domain G. For the nexttheorem we recall that ρ(z) is the index of the nearest pole of fz on Ω and we use %(z0)to denote |Φ(zκ+1)|.Theorem 5.4.1. Assume that Γ is piecewise analytic without cusps and and as in Theo-rem 4.3.1 set s? := min{(2− αk)γ
(k)
νk : 1 ≤ k ≤ M}. Then, for any z ∈ G

|f0(z)−π̃n(z)| ≤ c1
1

n2s?
+c2

1

ns?Rn(z0)
+c3

1

ns?
max
ζ∈γ

1

Rn(ζ)
+c4

1

Rn(z0)
max
ζ∈γ

1

Rn(ζ)
+c5

1

R2n(z0)
,(5.4.2)and

|K(z, z0)− K̃n(z, z0)| ≤ c6
1

n2s?
+ c7

1

ns?Rn(z0)
+ c8

1

ns?Rn(z)
+ c9

1

Rn(z0)R(z)
, (5.4.3)where R(z0), R(z), 1 < R(z0) < %(z0) and 1 < R(z) < ρ(z) and ci i = 1, 2, . . . 9 arepositive constants which depend on z0 but not on n.Proof. Since f0 and fz have exactly the same singular behavior on Γ both s? in the errors

‖K(·, z) − K̃n(·, z)‖L2(G), ‖K(·, z0) − K̃n(·, z0)‖L2(G) in (4.3.21) of Theorem 4.3.1 are thesame. We have
‖K(·, z0)− K̃n(·, z0)‖L2(G) ≤ c1

1

ns?
+ c2

1

Rn(z0)
, (5.4.4)59
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and
‖K(·, z)− K̃n(·, z)‖L2(G) ≤ c3

1

ns?
+ c4

1

Rn(z)
, (5.4.5)where R(z0), R(z), 1 < R(z0) < %(z0) and 1 < R(z) < ρ(z), because K̃n(·, z) ∈ PA3

n .By applying the (5.4.4) and (5.4.5) to the Lemmas 5.0.2, 5.0.3 we have the requiredresults.Remark 5.4.1. Note that ns? ≤ Rn, as n → ∞. Therefore Theorems (5.3.1) and (5.4.1)becomes
|f0(z)− π̃n(z, z0)| ≤ c1

1

n2s?
, (5.4.6)and

|K(z, z0)− K̃n(z, z0)| ≤ c2
1

n2s?
, (5.4.7)where c1, c2 are positive constants which depend on z0 but not on n.
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Chapter 6
Numerical results
In this section we present numerical examples, that illustrate the convergence resultspredicted by the theory of Sections 3, 4 regarding the following six errors:

En,2(K,G) := ‖K(·, z0)−Kn(·, z0)‖L2(G), (6.0.1)
En,∞(f0, G) := ‖f0 − πn‖L∞(G), (6.0.2)

Ẽn,2(K,G) := ‖K(·, z0)− K̃n(·, z0)‖L2(G), (6.0.3)
Ẽn,∞(f0, G) := ‖f0 − π̃n‖L∞(G), (6.0.4)

En(r0, G) := |r0 − rn|, (6.0.5)
Ẽn(r0, G) := |r0 − r̃n|, (6.0.6)and the four pointwise errors inside of G of Section 5,

En(K,G) := |K(z, z0)−Kn(z, z0)|, z ∈ G, (6.0.7)
En(f0, G) := |f0(z)− πn(z)|, z ∈ G, (6.0.8)

Ẽn(K,G) := |K(z, z0)− K̃n(z, z0)|, z ∈ G, (6.0.9)
Ẽn(f0, G) := |f0(z)− π̃n(z)|, z ∈ G. (6.0.10)We do this by considering two di�erent geometries: (a) lens-shaped domains; and (b)circular sectors. In both cases the normalized conformal map f0, and hence the kernel61
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function K(·, z0), are known explicitly in terms of elementary functions. In addition,we present results illustrating the decay of the two sequences of points {Pn(z0)}∞n=1 and
P̃n(z0)

∞
n=1 of the Bergman polynomials.6.1 Computational detailsLet {ηj} denote the set of linearly independent functions de�ned in (1.3.18)�(1.4.2). Forthe application of the BKM/AB (or BKM), we compute the associated orthonormal set

{P̃j} by using the Arnoldi variant of the Gram-Schmidt (GS) process studied in [25], ratherthan the conventional GS, which is based on the orthonormalization of the monomials
{zj}, as it is suggested in [12] and [20]. In the Arnoldi GS we construct �rst the polynomialpart of the set {P̃j} by orthonormalizing consequently the functions 1, zP̃0, zP̃1, . . . , zP̃n−1.Then, we orthonormalize the singular basis functions (1.3.18) and (1.3.11). As it is shownin [25], in this way we avoid the instability di�culties associated with the application ofthe conventional GS method. For a comprehensive report of experiments testifying theinstability of the conventional GS in BKM and BKM/AB we refer to [20, �5].The GS process, requires the computation of inner products of the form

〈ηk, ηl〉 =
∫

G

ηk(z) ηl(z) dA(z). (6.1.1)For our purposes here, we compute these inner products by using Green's formula in orderto transform the area integral into a line integral. For instance, when ηk = zk, ηl = zl, wehave
〈zk, zl〉 = 1

2(l + 1)i

∫

Γ

zk zl+1 dz. (6.1.2)In all cases considered below this leads to explicit formulas for the inner products (6.1.1).Regarding the computation of the errors (6.0.1)�(6.0.10) we note the following:(i) The two errors ‖K(·, z0) − Kn(·, z0)‖L2(G) and ‖K(·, z0) − K̃n(·, z0)‖L2(G) are com-puted by using Parseval's identity, i.e.,
‖K(·, z0)−Kn(·, z0)‖2L2(G) = K(z0, z0)−Kn(z0, z0), (6.1.3)62

Mich
ae

l L
ytr

ide
s



and
‖K(·, z0)− K̃n(·, z0)‖2L2(G) = K(z0, z0)− K̃n(z0, z0). (6.1.4)(ii) Estimates for the two errors ‖f0 − πn‖L∞(G) and ‖f0 − π̃n‖L∞(G) are obtained byusing the exact formula for f0 and then sampling the di�erences f0−πn and f0− π̃non 100 uniformly distributed points on each analytic arc forming the boundary Γ.(iii) Estimates for the two errors |r0 − rn| and |r0 − r̃n| are obtained by using the exactvalue for r0 and then sampling the di�erences |r0 − rn| and |r0 − r̃n|.(iv) In all the numerical examples we present, the conformal map f0 is known explicitlyin terms of elementary functions. Hence, estimates for the four pointwise errorestimates |f0(z) − πn(z)|, |f0(z) − π̃n(z)|, and |K(z, z0) − Kn(z, z0)|, |K(z, z0) −

K̃n(z, z0)|, for z ∈ G, are obtained by using the exact formula for f0 and thencomputing the di�erences |f0(z)−πn(z)|, |f0(z)− π̃n(z)|, and |K(z, z0)−Kn(z, z0)|,
|K(z, z0)− K̃n(z, z0)| for some �xed point z ∈ G.All results were obtained with Maple 11, using the systems facility for 64-digit �oatingpoint arithmetic, on a pentium PC.6.2 BKM and BKM/AB approximation6.2.1 Lens-shaped domainsLet Ga,b denote the lens-shaped domain, whose boundary Γ consists of two circular arcs

Γa and Γb that join together the points i and −i (Γa being to the left of Γb) and formangles a and b, respectively, with the linear segment [−i, i]. (Thus, with the notation ofSection 2.1 we have α1 = α2 = α, where α := (a + b)/π.) Let f0 denote the normalizedconformal map from Ga,b onto D(0, r0), with f0(0) = 0 and f ′
0(0) = 1. By working as in[17, �4], it is easy to check that, if a+ b = kπ/m, where k,m ∈ N, then f0 is given by

f0(z) = r0

[
z−i
z+i

]m
k − (−1)

m
k

[
z−i
z+i

]m
k − (−1)

m
k e−2iam

k

, z ∈ Ga,b, (6.2.1)63
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where r0 = (k/m) sin(ma/k). Also,
K(z, 0) = −4m2

πk2

[(z − i)(z + i)]
m
k
−1

[
eia

m
k (−i)

m
k (z − i)

m
k − e−iam

k (i)
m
k (z + i)

m
k

]2 , (6.2.2)and thus
K(0, 0) :=

m2

πk2

1

sin2(ma/k)
.It is also easy to verify that the formulas (71)�(73) of [17] work as well for the exteriorconformal map Φ : C\Ga,b → ∆ consider here. That is, w = Φ(z) is given by thecomposition of the following three transformations:

ξ(z) := ei((m−k)π/m+a) z − i

z + i
, (6.2.3)

t(ξ) := ξm/(2m−k), arg ξ ∈ (−kπ/m, (2m− k)π/m], (6.2.4)
w(t) :=

1− λat

t− λa
, λa := ei((m−k)π+ma)/(2m−k). (6.2.5)We consider separately the following three cases:(i) α = 1/2, with a = π/6 and b = π/3;(ii) α = 1/2, with a = π/4 and b = π/4;(iii) α = 2/13, with a = π/13 and b = π/13.Cases (i) and (ii): In the �rst two cases the conformal map f0 is a rational function, andhence it has an analytic continuation across Γ into Ω. When a = π/6, (see Figure (6.1))then the two nearest singularities of f0 in Ω are the two simple poles at z1 = −

√
3/3 and

z2 =
√
3, where |Φ(z1)| ≈ 1.347 and |Φ(z2)| ≈ 2.532. Accordingly, in our experiments, weuse the singular function [1/(z − z1)]

′. This cancels out the nearest singularity at z1. Inthe symmetric case, (see Figure (6.2)) where a = b = π/4, we have
f0(z) =

−2iz

z2 − 1
,and the only singularities of f0 are the two simple poles at z1 = −1 and z2 = 1, where

|Φ(z1)| = |Φ(z2)| =
√
3. In this case, we use the singular function [z/(z2 − z21)]

′, which64
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Figure 6.1: Lens-shaped domain, Case (i).
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Figure 6.2: Lens-shaped domain, Case (ii).takes care of both poles at z1 and z2. It follows from Remark 3.3.1 that this cancels outall the singularities of f0.We recall from Theorems 3.2.1 and 3.3.2 (and their proof) the four estimates,
En,2(K,G) � n

|Φ(z1)|n
, (6.2.6)

1

|Φ(z1)|n
� En,∞(f0, G) � n

√
log n

|Φ(z1)|n
, (6.2.7)and

Ẽn,2(K,G) � n

|Φ(z2)|n
, (6.2.8)

1

|Φ(z2)|n
� Ẽn,∞(f0, G) � n

√
log n

|Φ(z2)|n
. (6.2.9)Below, we present numerical results that illustrate the laws of the above errors and rates.In presenting the numerical results we use the following notation:65
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• % : This denotes the order of approximation (the base of n) in the errors (6.2.6)�
(6.2.9).

• %n : This denotes the estimate of %, corresponding to n, and is determined as follows:With En denoting any of the two errors En,2(K,G) or Ẽn,2(K,G), we assume that
En ≈ c

n

%n
(6.2.10)and seek to estimate % by means of the formula,

%n =

(
n

n−m

En−m

En

) 1
m

. (6.2.11)(Here we take m = 4, or m = 5.) If En denotes either of the two errors En,∞(f0, G)or Ẽn,∞(f0, G), then we assume that
En ≈ c

n
√
log n

%n
, (6.2.12)and seek to estimate % by means of the formula,

%n =

(
n

n−m

√
log n√

log(n−m)

En−m

En

) 1
m

, (6.2.13)with m = 4, or m = 5.
• %?n : With En denoting either of the errors En,∞(f0, G) or Ẽn,∞(f0, G), we also testthe law

En ≈ c
1

%n
, (6.2.14)thereby estimating % by means of

%?n =

(
En−m

En

) 1
m

. (6.2.15)The presented results show some evidence of the advantage of the BKM/AB overthe BKM. In addition, they indicate a close agreement between the theoretical and thecomputed order of approximation. In Tables 6.2.1 and 6.2.3, the results associated withthe errors En,2(K,G) and Ẽn,2(K,G) indicate the convergence of %n to %. Regarding66
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BKM: % ≈ 1.347 BKM/AB: % ≈ 2.532

n En,2(K,G) %n Ẽn,2(K,G) %n5 4.4e-01 - 2.7e-02 -10 1.3e-01 1.47 3.6e-04 2.7215 3.5e-02 1.41 4.1e-06 2.6520 8.9e-03 1.39 4.6e-08 2.6025 2.2e-03 1.38 4.9e-10 2.5930 5.4e-04 1.37 5.2e-12 2.5735 1.3e-04 1.36 5.4e-14 2.57Table 6.2.1: BKM approximations to K: Lens-shaped, Case (i).the errors En,∞(f0, G) and Ẽn,∞(f0, G), the results of the Tables 6.2.2 and 6.2.4 showthat %?n converges faster to % than %n. This suggest, at least for the geometry underconsideration, a behavior of the type (6.2.14) for the errors En,∞(f0, G) and Ẽn,∞(f0, G).As it is predicted by Remark 3.3.1, in Case (ii) the two errors Ẽn,2(K,G) and Ẽn,∞(f0, G)vanish. This was testi�ed in our experiments, in the sense that the computed errors
Ẽn,2(K,G) and Ẽn,∞(f0, G) were zero within machine precision, thus they are not quotedin Tables 6.2.3 and 6.2.4.Case (iii): In this case (see Figure 6.3) the conformal map f0 has a branch point singularityat each of the two corners τ1 = i and τ2 = −i, and therefore Lehman's expansions(2.1.4) are valid with γ

(1)
1 = γ

(2)
1 = 13/2 and γ

(1)
2 = γ

(2)
2 = 1 + 1/α = 15/2. This gives

(2− α)/α = 12 and (2− α)(1 + 1/α) = 180/13 = 13.84 · · · . Furthermore, it follows from(6.2.1) that the nearest singularities of f0 in Ω, are the two simple poles at z1 = tan(π/13)and z2 = − tan(π/13), where |Φ(z1)| = |Φ(z2)| ≈ 1.119, and the next singularity occursat a point z3, where |Φ(z3)| ≈ 2.055.Therefore, from Theorem 4.1.1 we have that,
En,2(K,G) 6 c1

1

n12
+ c2

2

Rn
, (6.2.16)67
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BKM: % ≈ 1.347 BKM/AB: % ≈ 2.532

n En,∞(f0, G) %?n %n Ẽn,∞(f0, G) %?n %n5 2.5e-01 - - 1.4e-02 - -10 6.8e-02 1.299 1.54 1.3e-04 2.541 3.0315 1.6e-02 1.331 1.47 1.3e-06 2.528 2.7920 3.8e-03 1.342 1.43 1.2e-08 2.537 2.7125 8.5e-04 1.346 1.42 1.1e-10 2.532 2.6730 1.9e-04 1.347 1.41 1.1e-12 2.532 2.6435 4.3e-05 1.347 1.40 1.1e-14 2.532 2.62Table 6.2.2: BKM approximations to f0: Lens-shaped, Case (i).
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Figure 6.3: Lens-shaped domain, Case (iii).and
En,∞(f0, G) 6 c3

√
logn

1

n12
+ c4

1

Rn
, (6.2.17)where 1 < R < |Φ(z1)|. In order to decide which singular functions to include in theBKM/AB the following estimates, valid for n = 32, are relevant; see also Theorem 4.3.1:

1

n(2−α)/α
≈ 8.7× 10−19,

1

|Φ(z1)|n
≈ 2.7× 10−2,

1

n(2−α)(1+1/α)
≈ 1.4× 10−21,

1

|Φ(z2)|n
≈ 1.0× 10−10.The estimates in the �rst line indicate that for n = 32 (even for bigger values of n),the dominant term in the errors (6.2.16) and (6.2.17) is c2 1

Rn . As it is suggested by the68
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BKM: % ≈ 1.732

n En,2(K,G) %n4 2.7e-01 -8 4.0e-02 1.9212 5.3e-03 1.8316 6.7e-04 1.8020 8.3e-05 1.7824 1.0e-05 1.7828 1.2e-06 1.7732 1.4e-07 1.7636 1.7e-08 1.75Table 6.2.3: BKM approximations to K: Lens-shaped, Case (ii).estimate in the second line, we use in our BKM/AB approximations only the singularfunction [z/(z2 − z21)]
′, which takes care of the two symmetric poles at z1 and z2, andwe include no basis functions re�ecting the corner singularities of f0 on Γ. Then, fromTheorem 4.3.1 we have for the resulting approximations that

Ẽn,2(K,G) ≤ c1
1

n12
+ c2

1

Rn
, (6.2.18)

Ẽn,∞(f0, G) 6 c3
√

logn
1

n12
+ c4

1

Rn
, (6.2.19)where 1 < R < |Φ(z2)|.Below, we present numerical results that illustrate the rates in (6.2.16)�(6.2.19). Inpresenting the numerical results we use the following notation:

• % : This denotes the order of approximation (the base of n) in the errors (6.2.16)�
(6.2.19).

• %n : This denotes the estimate of %, corresponding to n, and is determined as follows:With En denoting any of the four errors En,2(K,G), Ẽn,2(K,G), En,∞(f0, G) or69
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BKM: % ≈ 1.732

n En,∞(f0, G) %?n %n4 1.3e-01 - -8 1.6e-02 1.685 2.1112 1.8e-03 1.718 1.9516 2.0e-04 1.729 1.8920 2.3e-05 1.732 1.8324 2.5e-06 1.732 1.8328 2.8e-07 1.732 1.8132 3.1e-08 1.732 1.8036 3.4e-09 1.732 1.79Table 6.2.4: BKM approximations to f0: Lens-shaped, Case (ii).
Ẽn,∞(f0, G) we assume that

En ≈ c
1

%n
, (6.2.20)and seek to estimate % by means of the formula,

%n =

(
En−4

En

) 1
4

. (6.2.21)The results quoted in Tables 6.2.5 and 6.2.6, show the remarkable approximationachieved by the BKM/AB by using as little as 32 monomials. Moreover, they highlightthe signi�cance of Theorem 4.3.1, as it is compared to the estimate (1.3.16), in the sensethat they con�rm fully the theoretical prediction that the two poles at z1 and z2 are themost serious singularities of f0 for small values of n; see also Remark 4.2.1.
70
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BKM: % ≈ 1.119 BKM/AB: % ≈ 2.055

n En,2(K,G) %n Ẽn,2(K,G) %n4 2.8819 - 7.3e-02 -8 2.3812 1.049 5.6e-03 1.89812 1.3864 1.145 3.9e-04 1.93416 0.9188 1.108 2.6e-05 1.96520 0.5961 1.114 1.7e-06 1.97424 0.3812 1.118 1.1e-07 1.98228 0.2413 1.121 7.2e-09 1.98132 0.1538 1.119 4.6e-10 1.992Table 6.2.5: BKM approximations to K: Lens-shaped, Case (iii).6.2.2 Circular sectorLet Gα denote the symmetric circular sector of radius 2 and opening angle απ, 0 < α < 2,at the origin, i.e.,
Gα := {z : |z| < 2, −απ/2 < arg z < απ/2}.Let f0 denote the normalized conformal map from Gα onto D(0, r0), with f0(1) = 0 and

f ′
0(1) = 1. For each value of the parameter α the conformal map f0(z) can be computedby means of the transformations (see [16, p. 532]):

f0(z) =

[
2α(41/α − 1)

41/α + 1

]
t− d

td− 1
, (6.2.22)where

t =

(
iz1/α + 21/α

iz1/α − 21/α

)2 and d =

(
i+ 21/α

i− 21/α

)2

. (6.2.23)This gives
r0 =

2α(41/α − 1)

41/α + 1
and K(1, 1) =

1

π

(
41/α + 1

2α(41/α − 1)

)2

. (6.2.24)The normalized exterior map Φ : C\Gα → ∆ is given, as can be easily veri�ed, by the71
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BKM: % ≈ 1.119 BKM/AB: % ≈ 2.055

n En,∞(f0, G) %n Ẽn,∞(f0, G) %n4 0.8820 - 1.2e-02 -8 0.3817 1.232 6.1e-04 2.10112 0.2044 1.170 3.4e-05 2.05316 0.1180 1.147 2.0e-06 2.02920 0.0702 1.139 1.2e-07 2.02824 0.0424 1.135 7.0e-09 2.02828 0.0259 1.131 4.1e-10 2.02832 0.0160 1.128 2.5e-11 2.028Table 6.2.6: BKM approximations to f0: Lens-shaped, Case (iii).composition of the following three transformations:
ξ(z) :=

i(21−1/αz1/α − 2i)

21−1/αz1/α + 2i
, arg z ∈ (−π, π], (6.2.25)

t(ξ) := ξ2/3, arg ξ ∈ (−π/2, 3π/2], (6.2.26)
w(t) :=

1− eiπ/3t

t− eiπ/3
. (6.2.27)We consider separately the following two cases:(i) α = 1 (half-disk);(ii) α = 3/2 (three-quarter disk).Case (i): When α = 1, then the domain Gα is the half-disk

G1 = {z : |z| < 2,Rz > 0}.In this case (see Figure (6.4)) the conformal map f0 has an analytic continuation across
Γ into Ω. The nearest singularities of f0 in Ω, are the two simple poles at z1 = −1 and
z2 = 4, where |Φ(z1)| ≈ 1.452 and |Φ(z2)| ≈ 2.212. Accordingly, in our experiments we72
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Figure 6.4: Half-disk.use the singular function [1/(z − z1)]
′, which cancels out the nearest pole at z1. Thiscase is similar to the lens-shaped domain with α = 1/2. Hence, the errors En,2(K,G),

En,∞(f0, G), Ẽn,2(K,G) and Ẽn,∞(f0, G) satisfy respectively (6.2.6), (6.2.7), (6.2.8) and(6.2.9). Our purpose here, is to illustrate that the error bounds in (6.2.6)�(6.2.9) re�ectthe actual errors. We do so by computing estimates to %n and %?n of % by using (6.2.10)�(6.2.15).In Table 6.2.7, the results associated with the errors En,2(K,G) and Ẽn,2(K,G) indicateclearly the convergence of %n to %. Regarding the errors En,∞(f0, G) and Ẽn,∞(f0, G), theresults of Table 6.2.8 show that %?n converges faster to % than %n. This suggest a behaviorof the type (6.2.14) for En,∞(f0, G) and Ẽn,∞(f0, G). In both tables the numbers con�rmthe remarkable advantage of the BKM/AB over the BKM.Case (ii): In this case f0 (see Figure (6.5)) has a branch point singularity at the point
τ1 = 0 with

f0(z) = f0(0) +

∞∑

j=1

ajz
j/α, a1 6= 0,valid for z close to 0. The nearest singularity of f0 in Ω is a simple pole at z1 = 4, where

|Φ(z1)| ≈ 2.04.For the application of BKM, Theorem 4.1.1 gives that
En,2(K,G) 6 c1

1

n1/3
+ c2

1

Rn
, (6.2.28)and

En,∞(f0, G) 6 c3
√
log n

1

n1/3
+ c4

1

Rn
, (6.2.29)73
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BKM: % ≈ 1.452 BKM/AB: % ≈ 2.212

n En,2(K,G) %n Ẽn,2(K,G) %n5 7.1e-02 - 2.8e-02 -10 1.6e-02 1.55 7.2e-04 2.3915 2.8e-03 1.54 1.7e-05 2.2920 5.1e-04 1.49 3.6e-07 2.2925 8.7e-05 1.49 7.6e-09 2.2630 1.5e-05 1.48 1.6e-10 2.2435 2.4e-06 1.47 3.2e-12 2.2440 4.0e-07 1.47 6.4e-14 2.2445 6.6e-08 1.47 1.3e-15 2.2350 1.1e-08 1.46 2.6e-17 2.23Table 6.2.7: BKM approximations to K: Half-disk.where 1 < R < |Φ(z1)|.Since 1/|Φ(z1)|50 ≈ 3.3× 10−16, and in view of Theorem 4.3.1, we include in our basisonly singular functions that re�ect the branch point singularity of f0 at τ1. More precisely,in order to keep the contribution of both sources of error balanced, we choose to use the�rst 15 singular function of the form zj/α−1, where j/α /∈ N. This gives s? = 23/3 inTheorem 4.3.1, and hence the following estimates for the errors in the resulting BKM/ABapproximations,
Ẽn,2(K,G) ≤ c1

1

n23/3
+ c2

1

Rn
, (6.2.30)and

Ẽn,∞(f0, G) 6 c3
√

logn
1

n23/3
+ c4

1

Rn
, (6.2.31)where 1 < R < |Φ(z1)|.Below, we present numerical results that illustrate the rates in (6.2.30)�(6.2.31), wherewe use the following notation: 74
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BKM: % ≈ 1.452 BKM/AB: % ≈ 2.212

n En,∞(f0, G) %?n %n Ẽn,∞(f0, G) %?n %n5 1.1e-01 - - 4.0e-02 - -10 2.2e-02 1.401 1.64 7.7e-04 2.20 2.6215 3.4e-03 1.446 1.60 1.5e-05 2.20 2.4220 5.3e-04 1.450 1.55 2.8e-07 2.22 2.3725 8.3e-05 1.452 1.53 5.2e-09 2.22 2.3430 1.3e-05 1.452 1.51 9.8e-11 2.21 2.3135 2.0e-06 1.452 1.51 1.8e-12 2.22 2.3040 3.1e-07 1.452 1.50 3.5e-14 2.20 2.2745 4.8e-08 1.452 1.49 6.6e-16 2.21 2.2750 7.4e-09 1.452 1.49 1.2e-17 2.22 2.27Table 6.2.8: BKM approximations to f0: Half-disk.
• σ : This denotes the exponent of 1/n in the errors (6.2.30)�(6.2.31).
• σn : This denotes the estimate of σ corresponding to n, and is determined as follows:With En denoting any of the two errors En,2(K,G), Ẽn,2(K,G), we assume that

En ≈ c
1

nσ
(6.2.32)and seek to estimate σ by means of the formula

σn = log

(
En−5

En

)
/ log

(
n

n− 5

)
. (6.2.33)If En denotes either of the two errors En,∞(f0, G) or Ẽn,∞(f0, G), then we assumethat

En ≈ c
√

logn
1

nσ
, (6.2.34)and seek to estimate σ by means of the formula

σn =
log
(
En−5

En

)
− 1

2
log
[
log(n−5)

logn

]

log
(

n
n−5

) . (6.2.35)75
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Figure 6.5: 3/4-disk.In addition, we check a behavior of the form (6.2.20) for the errors Ẽn,2(K,G) and
Ẽn,∞(f0, G), by computing %n as in (6.2.21), with 5 in the place of 4.Our purposes here is to show that the change of the dominant term in both (6.2.30)and (6.2.31) can actually be detected in the computed errors. This is indeed the case inthe results quoted in Table 6.2.9. More precisely, the results associated with the errors
Ẽn,2(K,G) and Ẽn,∞(f0, G) indicate the convergence of %n to % for values of n up to 50and the convergence of σn to σ for values larger than 50. Furthermore, the results showthat the two constants c1 and c2 in (6.2.30) and c3 and c4 in (6.2.31) are, respectively, ofthe same magnitude.6.3 Rates of decrease of the Bergman polynomials.First, we present results illustrating the rate of decrease of the sequence {Pn(1)} for thecircular sector considered in Section 6.2.2, with α = 2/5 (see Figure (6.6)). In this case,the nearest singularities of f0 in Ω are the two simple poles at the symmetric points
z1 = e2iπ/5, z2 = e−2iπ/5, where |Φ(z1)| = |Φ(z2)| ≈ 1.145.From the proof of Corollary 3.2.1 and (6.2.28) we have that

|Pn(z0)| ≤ ‖K(·, z0)−Kn(·, z0)‖L2(G) ≤ c1
1

n(2−α)/α
+ c2

1

Rn
, (6.3.1)where 1 < R < |Φ(z1)|, Accordingly, we check to detect the decay in the following twoforms:

|Pn(1)| ≈ c
1

%n
and |Pn(1)| ≈ c

1

nσ
, (6.3.2)76
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BKM/AB: σ ≈ 7.67 % ≈ 2.04

n Ẽn,2(K,G) σn %n Ẽn,∞(f0, G) σn %n20 7.2e-05 - - 8.2e-05 - -25 1.6e-05 6.74 1.35 1.5e-05 7.62 1.4030 2.9e-06 9.31 1.41 2.6e-06 9.70 1.4235 2.2e-07 16.84 1.67 1.8e-07 17.37 1.7140 1.0e-08 22.81 1.84 7.7e-09 23.44 1.8645 4.1e-10 27.41 1.90 2.8e-10 28.17 1.9450 1.3e-11 32.83 1.99 1.0e-11 31.25 1.9555 7.5e-12 5.84 1.12 5.3e-12 7.05 1.1460 2.6e-12 11.84 1.23 2.0e-12 11.20 1.2265 1.3e-12 8.68 1.15 9.9e-13 8.73 1.1570 7.4e-13 7.50 1.12 5.9e-13 7.04 1.1175 4.4e-13 7.58 1.11 3.5e-13 7.57 1.1180 2.7e-13 7.66 1.10 2.1e-13 7.62 1.10Table 6.2.9: BKM approximations to f0 and K: 3/4-disk.with % = |Φ(z1)| and, in view of the remark made in [16, pp. 530�531], σ = (2−α)/α+1/2.We do so, by estimating % and σ, respectively, by means of the formulas
%n =

( |Pn−10(1)|
|Pn(1)|

) 1
10

, (6.3.3)and
σn = log

( |Pn−10(1)|
|Pn(1)|

)
/ log

(
n

n− 10

)
. (6.3.4)The results listed in Table 6.3.10 show clearly the transition from one dominant termto the other in (6.3.1) for values of n around 50.We end, by presenting results that illustrate the rate of decrease of the augmentedsequence {P̃n(1)}, for the circular sector considered in Section 6.2.2, where now we con-sider the two cases α = 3/4 and α = 4/5 (see Figures (6.7) and (6.8)). When α = 3/4,77
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Figure 6.6: Circular sector, α = 2/5
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Figure 6.7: Circular sector, α = 3/4then the nearest singularities of f0 in Ω are the two simple poles at the symmetric points
z1 = e3iπ/4 and z2 = e−3iπ/4, where |Φ(z1)| = |Φ(z2)| ≈ 1.349. When α = 4/5, then thenearest singularities of f0 in Ω are the two simple poles at the symmetric points z1 = e4iπ/5and z2 = e−4iπ/5, where |Φ(z1)| = |Φ(z2)| ≈ 1.372.In both cases, we construct the sequence {P̃n(z)} by augmenting the monomial basisfunctions with the singular function z1/α−1, which re�ects the branch point singularity of
f0 at τ1 = 0, and we seek to detect the decay of the sequence {P̃n(1)} in the form

|P̃n(1)| ≈ c
1

nσ
,where, in view of Theorem 4.3.1 and [16, pp. 530�531], σ = 2(2− α)/α+ 1/2. As above,we estimate σ by means of the formula

σn = log

( |P̃n−10(1)|
|P̃n(1)|

)
/ log

(
n

n− 10

)
. (6.3.5)The results listed in Tables 6.3.11 and 6.3.12 indicate clearly the convergence of σn to78
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σ = 4.5 % ≈ 1.145

n |Pn(1)| σn %n10 2.6e-02 - -20 1.2e-03 4.51 1.3730 7.6e-06 12.38 1.6540 1.7e-06 5.14 1.1650 4.0e-07 6.57 1.1660 1.8e-07 4.35 1.0870 9.1e-08 4.49 1.0780 5.0e-08 4.50 1.0690 2.9e-08 4.50 1.05100 1.8e-08 4.50 1.05Table 6.3.10: Rate of decrease of |Pn(1)|: Circular sector, α = 2/5.the predicted value of σ, indicating that the argument in [16, pp. 530�531] applies also tothe case of the augmented Bergman polynomials.
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Figure 6.8: Circular sector, α = 4/5

σ ≈ 3.833

n |P̃n(1)| σn10 2.8e-03 -20 7.2e-05 5.3030 1.1e-05 4.6040 3.2e-06 4.3650 1.3e-06 3.8660 6.6e-07 3.8970 3.6e-07 3.8980 2.2e-07 3.8890 1.4e-07 3.88100 9.1e-08 3.87Table 6.3.11: Rate of decrease of |P̃n(1)|: Circular sector, α = 3/4.
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σ = 3.5

n |P̃n(1)| σn10 2.3e-03 -20 2.7e-04 3.1030 2.2e-05 6.1740 8.7e-06 3.2050 3.8e-06 3.7260 2.0e-06 3.6670 1.1e-06 3.6380 6.9e-07 3.6190 4.5e-07 3.59100 3.1e-07 3.58Table 6.3.12: Rate of decrease of |P̃n(1)|: Circular sector, α = 4/5.
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6.4 BKM and BKM/AB approximation of the confor-mal radius r0First, we present results illustrating the rate of convergence of the sequence {rn} and {r̃n}to the conformal radius r0 for the lens-shade domain considered in Section 6.2, where weconsider the two cases (i) and (ii). We recall that when a = π/6, then the two nearestsingularities of f0 in Ω are the two simple poles at z1 = −
√
3/3 and z2 =

√
3, where

|Φ(z1)| ≈ 1.347 and |Φ(z2)| ≈ 2.532. Accordingly, in our experiments, we use the singularfunction [1/(z − z1)]
′. This cancels out the nearest singularity at z1. In the symmetriccase, where a = b = π/4, the only singularities of f0 are the two simple poles at z1 = −1and z2 = 1, where |Φ(z1)| = |Φ(z2)| =

√
3. In this case, we use the singular function

[z/(z2 − z21)]
′, which takes care of both poles at z1 and z2.We recall from Corollary 3.2.2 and 3.3.1 the two estimates,

En(r0, G) � n2

|Φ(z1)|2n
, (6.4.1)and

Ẽn(r0, G) � n2

|Φ(z2)|2n
. (6.4.2)Below, we present numerical results that illustrate the laws of the above errors andrates. In presenting the numerical results we use the following notation:

• % : This denotes the order of approximation (the base of n) in the errors (6.4.1) and
(6.4.2).

• %n : This denotes the estimate of %, corresponding to n, and is determined as follows:With En denoting any of the two errors En(r0, G) or Ẽn(r0, G), we assume that
En ≈ c

n2

%n
, (6.4.3)and seek to estimate % by means of the formula,

%n =

(
n2

(n−m)2
En−m

En

) 1
m

. (6.4.4)(Here we take m = 4, or m = 5.) 82
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BKM: % ≈ 1.814

n En(r0, G) %n5 2.7e-02 -10 2.2e-03 2.1915 1.6e-04 1.9820 1.0e-05 1.9325 6.3e-07 1.9030 3.8e-08 1.8735 2.2e-09 1.86Table 6.4.13: BKM approximations to r0: Lens-shaped, Case (i).The presented results show clearly the advantage of the BKM/AB over the BKM. Inaddition, they indicate a close agreement between the theoretical and the computed orderof approximation. In Tables 6.4.13 - 6.4.16, the results associated with the errors En(r0, G)and Ẽn(r0, G) indicate the convergence of %n to %. As it is predicted by Remark 3.3.1, inCase (ii) the error Ẽn(r0, G) vanish. This was testi�ed in our experiments, in the sensethat the computed error Ẽn(r0, G) was zero within machine precision, see Table 6.4.16.We end this section by presenting results illustrating the rate of convergence of thesequence {rn} and {r̃n} to the conformal radius r0 for the circular sector considered inSection 6.2, where now we consider the two cases α = 3/4 and α = 4/5. When α = 3/4,then the nearest singularities of f0 in Ω are the two simple poles at the symmetric points
z1 = e3iπ/4 and z2 = e−3iπ/4, where |Φ(z1)| = |Φ(z2)| ≈ 1.349 and the next singularityoccurs at a point z3 = 4, where |Φ(z3)| ≈ 2.866. When α = 4/5, then the nearestsingularities of f0 in Ω are the two simple poles at the symmetric points z1 = e4iπ/5 and
z2 = e−4iπ/5, where |Φ(z1)| = |Φ(z2)| ≈ 1.372 and the next singularity occurs at a point
z3 = 4, where |Φ(z3)| ≈ 2.687. In both cases, we augment the monomial basis functionswith the singular function z1/α−1, which re�ects the branch point singularity of f0 at
τ1 = 0, 83
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BKM/AB: % ≈ 6.411

n Ẽn(r0, G) %n5 9.3e-05 -10 1.6e-08 7.4515 2.2e-12 6.9620 2.7e-16 6.7625 3.1e-20 6.7030 3.5e-24 6.6535 3.7e-28 6.60Table 6.4.14: BKM/AB approximations to r0: Lens-shaped, Case (i).Therefore, from Corollary 4.1.1 we have respectively for α = 3/4 and α = 4/5 that,
En(r0, G) 6

(
c1

1

n5/3
+ c2

1

Rn

)2

, (6.4.5)and
En(r0, G) 6

(
c3

1

n3/2
+ c4

1

Rn

)2

, (6.4.6)where 1 < R < |Φ(z1)|. In order to decide which singular functions to include in theBKM/AB the following estimates, valid for n = 60, are relevant; for α = 3/4

1

n(2−α)/α
≈ 1.1× 10−3,

1

|Φ(z1)|n
≈ 1.6× 10−8,

1

n(2−α)(2/α)
≈ 1.2× 10−6,

1

|Φ(z3)|n
≈ 3.7× 10−28.and for α = 4/5

1

n(2−α)/α
≈ 2.1× 10−3,

1

|Φ(z1)|n
≈ 5.7× 10−9,

1

n(2−α)(2/α)
≈ 4.6× 10−6,

1

|Φ(z2)|n
≈ 1.8× 10−26.The estimates in the �rst line indicate that for n = 60 (even for smaller values of

n), the dominant term in the errors (6.4.5) and (6.4.6) is c2
1

n(2−α)/α . As it is suggested84
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BKM: % = 3

n En(r0, G) %n4 1.5e-02 -8 3.1e-04 3.7212 5.5e-06 3.3416 8.9e-08 3.2420 1.3e-09 3.1624 2.0e-11 3.1328 2.8e-13 3.1132 4.0e-15 3.0936 5.5e-17 3.08Table 6.4.15: BKM approximations to r0: Lens-shaped, Case (ii).by the estimate in the second line, we use in our BKM/AB approximations only thesingular function z1/α−1, which re�ects the branch point singularity of f0 at τ1 = 0, andwe include no basis functions re�ecting the pole singularities of f0 at z1 and z2. Then,from Corollary 4.3.1 we have for the resulting approximations that
Ẽn(r0, G) ≤

(
c1

1

n10/3
+ c2

1

Rn

)2

, (6.4.7)
Ẽn(r0, G) ≤

(
c3

1

n3
+ c4

1

Rn

)2

, (6.4.8)where 1 < R < |Φ(z2)|.Below, we present numerical results that illustrate the rates in (6.4.5) � (6.4.8). Inpresenting the numerical results we use the following notation:
• σ : This denotes the exponent of 1/n in the errors (6.4.5) � (6.4.8).
• σn : This denotes the estimate of σ, corresponding to n, and is determined as follows:With En denoting any of the two errors En(r0, G) or Ẽn(r0, G), we assume that

En ≈ c
1

nσ
, (6.4.9)85
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BKM/AB:
n En(r0, G) %n4 1.0e-64 -8 1.0e-64 -12 1.0e-64 -16 1.0e-64 -20 1.0e-64 -24 1.0e-64 -28 1.0e-64 -32 1.0e-64 -36 1.0e-64 -Table 6.4.16: BKM/AB approximations to r0: Lens-shaped, Case (ii).As above, we estimate σ by means of the formula

σn = log

(
En−10

Ẽn

)
/ log

(
n

n− 10

)
. (6.4.10)The presented results show clearly the advantage of the BKM/AB over the BKM.In addition, they indicate a close agreement between the theoretical and the computedorder of approximation. In Tables 6.4.17 - 6.4.20, the results associated with the errors

En(r0, G) and Ẽn(r0, G) indicate the convergence of σn to σ.
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BKM: σ = 10/3

n En(r0, G) σn10 9.9e-04 -20 2.3e-05 5.4430 6.2e-06 3.2440 2.3e-06 3.3650 1.1e-06 3.3460 6.0e-07 3.3470 3.6e-07 3.3480 2.3e-07 3.3490 1.6e-07 3.33100 1.1e-07 3.33Table 6.4.17: BKM approximations to r0: Circular sector, α = 3/4.

87
Mich

ae
l L

ytr
ide

s



BKM/AB: σ = 20/3

n Ẽn(r0, G) σn10 4.4e-01 -20 1.8e-04 12.7830 2.6e-08 8.2640 1.1e-10 7.2250 2.6e-11 6.6860 7.5e-12 6.7270 2.7e-12 6.7180 1.1e-12 6.7090 4.9e-13 6.69100 2.4e-13 6.69Table 6.4.18: BKM/AB approximations to r0: Circular sector, α = 3/4.
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BKM: σ = 3

n En(r0, G) σn10 1.2e-03 -20 4.2e-05 5.3430 1.2e-05 3.1440 4.9e-06 3.1050 2.5e-06 3.0660 1.4e-06 3.0470 8.9e-07 3.0480 5.9e-07 3.0290 4.1e-07 3.02100 3.0e-07 3.01Table 6.4.19: BKM approximations to r0: Circular sector, α = 4/5.
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BKM/AB: σ = 6

n En(r0, G) σn10 8.3e-05 -20 1.0e-07 9.6430 5.6e-09 7.2040 9.6e-10 6.1250 2.4e-10 6.2860 7.6e-11 6.2070 3.0e-11 6.1680 1.3e-11 6.1490 6.3e-12 6.12100 3.3e-12 6.10Table 6.4.20: BKM/AB approximations to r0: Circular sector, α = 4/5.
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Figure 6.9: Half-disk.6.5 BKM and BKM/AB approximation inside the do-main6.5.1 Example: Half diskFirst, we present results illustrating the rate of convergence of the Bieberbach polynomials
{πn(z)} and {π̃n(z)} to the conformal map f0(z) and the kernel polynomials Kn(z, z0)and K̃n(z, z0) to K(z, z0) interior to the half disk considered in Section 6.2. (see Figure6.9) As in Section 6.2 we set z0 = 1 and choose z = 0.25. We recall that, in this case boththe conformal maps f0 and fz have an analytic continuation across Γ into Ω and that thenearest singularities of f0 in Ω are the two simple poles at z1 = −1 and z2 = 4, where
|Φ(z1)| ≈ 1.452 and |Φ(z2)| ≈ 2.212. Accordingly, in our experiments we use the singularfunction [1/(z − z1)]

′, which cancels out the nearest pole at z1. Let now γ = [z, z0]. Thepoint on γ for which the max
ζ∈γ

‖K(·, ζ)−Kn(·, ζ)‖L2(G) occurs is z. The nearest singularitiesof fz are the two simple poles at z∗1 = −0.25 and z∗2 = 16, where |Φ(z∗1)| ≈ 1.101 and
|Φ(z∗2)| ≈ 9.922.We recall from Theorems 5.1.1 and 5.2.1 the estimates,

En(f0, G) ≤ c1|γ(z, z0)|
n2

|Φ(z1)Φ(z∗1)|n
+ c2

n2

|Φ(z1)|2n
, n ∈ N, (6.5.1)

En(K,G) ≤ c3
n2

|Φ(z1)Φ(z∗1)|n
, n ∈ N, (6.5.2)
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and
Ẽn(f0, G) ≤ c1|γ(z, z0)|

n2

|Φ(z2)Φ(z∗1)|n
+ c2

n2

|Φ(z2)|2n
, n ∈ N, (6.5.3)

Ẽn(K,G) ≤ c3
n2

|Φ(z2)Φ(z∗1)|n
, n ∈ N. (6.5.4)Below, we present numerical results that illustrate the laws of the above errors andrates. In presenting the numerical results we use the following notation:

• % : This denotes the order of approximation (the base of n) in the errors (6.5.1) -
(6.5.4). (Note that n2

|Φ(z1)Φ(z∗1 )|
n > n2

|Φ(z1)|2n

)

• %n : This denotes the estimate of %, corresponding to n, and is determined as follows:With En denoting any of the errors En(f0, G), Ẽn(f0, G), En(K,G), Ẽn(K,G) weassume that
En ≈ c

n2

%n
(6.5.5)and seek to estimate % by means of the formula,

%n =

(
n2

(n−m)2
En−m

En

) 1
m

. (6.5.6)The presented results show clearly the advantage of the BKM/AB over the BKM alsoin the interior of G. In addition, they indicate a close agreement between the theoreticaland the computed order of approximation. In Tables 6.5.21�6.5.24, the results associatedwith the errors En(f0, G), Ẽn(f0, G) and En(K,G) and Ẽn(K,G) indicate the convergenceof %n to %.
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BKM: z = 0.25, % ≈ 1.60

n En(f0, G) %n5 4.7e-02 -10 5.9e-03 2.0015 6.0e-04 1.8620 5.9e-05 1.7925 5.7e-06 1.7530 5.4e-07 1.7235 5.2e-08 1.7040 5.0e-09 1.6945 4.8e-10 1.6850 4.6e-11 1.67Table 6.5.21: BKM interior approximations to f0: Half-disk.
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BKM/AB: z = 0.25, % ≈ 2.4352 n Ẽn(f0, G) %n5 3.7e-03 -10 4.6e-05 3.1715 6.2e-07 2.7920 7.6e-09 2.7025 9.3e-11 2.6530 1.1e-12 2.6135 1.3e-14 2.5840 1.6e-16 2.5645 1.8e-18 2.5550 2.2e-20 2.53Table 6.5.22: BKM/AB interior approximations to f0: Half-disk.
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BKM: z = 0.25, % ≈ 1.60

n En(K,G) %n5 4.3e-02 -10 7.1e-03 1.2215 9.3e-04 1.3420 1.1e-04 1.3625 1.3e-05 1.4030 1.5e-06 1.4435 1.7e-07 1.4640 1.8e-08 1.4845 1.9e-09 1.4950 2.0e-10 1.50Table 6.5.23: BKM interior approximations to K: Half-disk.
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BKM/AB: z = 0.25, % ≈ 2.435

n Ẽn(K,G) %n5 2.8e-03 -10 6.7e-05 2.7815 1.1e-06 2.6720 1.7e-08 2.5925 2.4e-10 2.5530 3.4e-12 2.5335 4.6e-14 2.5140 6.0e-16 2.5045 7.9e-18 2.4950 1.0e-19 2.49Table 6.5.24: BKM/AB interior approximations to f0: Half-disk.
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Figure 6.10: Circular sector, α = 3/4
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Figure 6.11: Circular sector, α = 4/56.5.2 Example: Circular sectorIn this example we present results illustrating the rate of convergence of the sequence
{πn(z)} and {π̃n(z)} to the conformal map f0(z) and the kernel polynomials {Kn(z, z0)}and {K̃n(z, z0)} to K(z, z0) interior to the the circular sector considered in Section 6.3,where we consider the two cases α = 3/4 and α = 4/5. (see Figure 6.10 and 6.11)As in Section 6.3 we set z0 = 1 and choose z = 0.5. We recall that when α = 3/4,then the nearest singularities of f0 in Ω are the two simple poles at the symmetric points
z1 = e3iπ/4 and z2 = e−3iπ/4, where |Φ(z1)| = |Φ(z2)| ≈ 1.349 and the next singularityoccurs at a point z3 = 4, where |Φ(z3)| ≈ 2.866. Let now γ = [z, z0]. The point on γfor which the max

ζ∈γ
‖K(·, ζ)−Kn(·, ζ)‖L2(G) occurs is z. The nearest singularities of fz in

Ω are the two simple poles at the symmetric points z∗1 = e3iπ/4

2
and z∗2 = e−3iπ/4

2
, with

|Φ(z∗1)| = |Φ(z∗2)| ≈ 1.203.When α = 4/5, then the nearest singularities of f0 in Ω are the two simple poles at97
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the symmetric points z1 = e4iπ/5 and z2 = e−4iπ/5, where |Φ(z1)| = |Φ(z2)| ≈ 1.372 andthe next singularity occurs at a point z3 = 4, where |Φ(z3)| ≈ 2.687. For the same z and
z0 as above let γ = [z, z0]. The point on γ for which the max

ζ∈γ
‖K(·, ζ) − Kn(·, ζ)‖L2(G)occurs is z. In this case the nearest singularities of fz in Ω are the two simple poles atthe symmetric points z∗1 = e4iπ/5

2
and z∗2 = e−4iπ/5

2
, with |Φ(z∗1)| = |Φ(z∗2)| ≈ 1.232.Therefore, from Remark 5.3.1 we have respectively for α = 3/4 and α = 4/5 that,

En(f0, G) ≤ c1
1

n10/3
+ c2

1

Rn
1n

5/3
+ c3

1

Rn
2n

5/3
+ c4

1

Rn
1R

n
2

+ c5
1

R2n
1

, n ∈ N, (6.5.7)
En(K,G) ≤ c6

1

n10/3
+ c7

1

Rn
1n

5/3
+ c8

1

Rn
2n

5/3
+ c9

1

Rn
1R

n
2

, n ∈ N, (6.5.8)and
En(f0, G) ≤ c1

1

n3
+ c2

1

Rn
1n

3/2
+ c3

1

Rn
2n

3/2
+ c4

1

Rn
1R

n
2

+ c5
1

R2n
1

, n ∈ N, (6.5.9)
En(K,G) ≤ c6

1

n3
+ c7

1

Rn
1n

3/2
+ c8

1

Rn
2n

3/2
+ c9

1

Rn
1R

n
2

, n ∈ N, (6.5.10)where 1 < R1 < |Φ(z1)| and 1 < R2 < |Φ(z∗1)|.In order to decide which singular functions to include in the BKM/AB the followingestimates, valid for n = 60, are relevant; for α = 3/4

1

n2(2−α)/α
≈ 1.2× 10−6,

1

n(2−α)/α|Φ(z1)|n
≈ 1.7× 10−11,

1

n(2−α)/α|Φ(z∗1)|n
≈ 1.6× 10−8,

1

(|Φ(z∗1)||Φ(z1)|)n
≈ 2.4× 10−13,

1

|Φ(z1)|2n
≈ 2.5× 10−16.and for α = 4/5

1

n2(2−α)/α
≈ 4.6× 10−6,

1

n(2−α)/α|Φ(z1)|n
≈ 1.2× 10−11,

1

n(2−α)/α|Φ(z∗1)|n
≈ 8.7× 10−9,

1

(|Φ(z∗1)||Φ(z1)|)n
≈ 2.3× 10−14,

1

|Φ(z1)|2n
≈ 3.3× 10−17.The estimates in the �rst line indicate that for n = 60 (even for smaller values of n),the dominant term in the errors (6.5.7)� (6.5.10) is c2 1

n2(2−α)/α . As it is suggested by the98
Mich

ae
l L

ytr
ide

s



estimate in the second line, we use in our BKM/AB approximations only the singularfunction z1/α−1, which re�ects the branch point singularity of f0 at τ1 = 0, and we notinclude basis functions re�ecting the pole singularities of f0 at z1 and z2. Then, fromTheorem 5.3.1 we have respectively for α = 3/4 and α = 4/5 that,
Ẽn(f0, G) ≤ c1

1

n20/3
+ c2

1

Rn
1n

10/3
+ c3

1

Rn
2n

10/3
+ c4

1

Rn
1R

n
2

+ c5
1

R2n
1

, n ∈ N, (6.5.11)
Ẽn(K,G) ≤ c6

1

n20/3
+ c7

1

Rn
1n

10/3
+ c8

1

Rn
2n

10/3
+ c9

1

Rn
1R

n
2

, n ∈ N, (6.5.12)and
Ẽn(f0, G) ≤ c1

1

n6
+ c2

1

Rn
1n

3
+ c3

1

Rn
2n

3
+ c4

1

Rn
1R

n
2

+ c5
1

R2n
1

, n ∈ N, (6.5.13)
Ẽn(K,G) ≤ c6

1

n6
+ c7

1

Rn
1n

3
+ c8

1

Rn
2n

3
+ c9

1

Rn
1R

n
2

, n ∈ N, (6.5.14)where 1 < R1 < |Φ(z2)| and 1 < R2 < |Φ(z∗1)|.Below, we present numerical results that illustrate the rates in (6.5.7)�(6.5.14). Inpresenting the numerical results we use the following notation:
• σ : This denotes the exponent of 1/n in the errors (6.5.7) � (6.5.14).
• σn : This denotes the estimate of σ, corresponding to n, and is determined as follows:With En denoting any of the errors En(f0, G), Ẽn(f0, G), En(K,G), Ẽn(K,G), weassume that

En ≈ c
1

nσ
(6.5.15)As above, we estimate σ by means of the formula

σn = log

(
En−10

En

)
/ log

(
n

n− 10

)
. (6.5.16)The presented results show clearly the advantage of the BKM/AB over the BKM.In addition, they indicate a close agreement between the theoretical and the computedorder of approximation. In Tables 6.5.25 - 6.5.32, the results associated with the errors

En(f0, G), Ẽn(f0, G) and En(K,G), Ẽn(K,G) indicate the convergence of σn to σ.99
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BKM: z = 0.5, σ = 10/3

n En(f0, G) σn10 1.5e-03 -20 3.7e-05 5.3130 8.0e-06 3.7840 3.1e-06 3.2750 1.5e-06 3.3860 8.0e-07 3.3670 4.8e-07 3.3580 3.1e-07 3.3590 2.1e-07 3.34100 1.4e-07 3.34Table 6.5.25: BKM approximations to f0: Circular sector, α = 3/4.
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BKM/AB: z = 0.5, σ = 20/3

n Ẽn(f0, G) σn10 1.3e-04 -20 4.3e-07 8.2230 2.2e-09 12.9940 3.2e-10 6.7950 7.8e-11 6.2960 2.2e-11 6.8870 8.0e-12 6.6780 3.2e-12 6.6990 1.5e-12 6.70100 7.3e-13 6.70Table 6.5.26: BKM/AB approximations to f0: Circular sector, α = 3/4.
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BKM: z = 0.5, σ = 10/3

n En(K,G) σn10 1.7e-03 -20 8.5e-05 4.2930 1.3e-05 4.5540 5.4e-06 3.1450 2.6e-06 3.3760 1.4e-06 3.3870 8.3e-07 3.3680 5.3e-07 3.3590 3.6e-07 3.35100 2.5e-07 3.34Table 6.5.27: BKM approximations to K: Circular sector, α = 3/4.
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BKM/AB: z = 0.5, σ = 20/3

n Ẽn(K,G) σn10 5.0e-04 -20 1.2e-06 8.7030 6.1e-09 13.0340 2.9e-10 10.6550 1.7e-10 2.3460 4.5e-11 7.3170 1.6e-11 6.6880 6.6e-12 6.6690 3.0e-12 6.69100 1.5e-12 6.69Table 6.5.28: BKM/AB approximations to K: Circular sector, α = 3/4.
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BKM: z = 0.5, σ = 3

n En(f0, G) σn10 1.0e-03 -20 7.6e-05 3.7730 1.5e-05 3.9940 6.0e-06 3.1850 3.0e-06 3.1060 1.7e-06 3.0970 1.1e-06 3.0680 7.1e-07 3.0590 5.0e-07 3.04100 3.6e-07 3.03Table 6.5.29: BKM approximations to f0: Circular sector, α = 4/5.
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BKM/AB: z = 0.5, σ = 6

n Ẽn(f0, G) σn10 1.3e-04 -20 1.2e-06 6.7830 1.8e-08 10.3140 2.2e-09 7.3350 6.4e-10 5.5660 2.1e-10 6.1870 8.0e-11 6.2180 3.5e-11 6.1790 1.7e-11 6.14100 8.9e-12 6.12Table 6.5.30: BKM/AB approximations to f0: Circular sector, α = 4/5.
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BKM: z = 0.5, σ = 3

n En(K,G) σn10 8.2e-04 -20 1.5e-04 2.4830 2.6e-05 4.2940 9.8e-06 3.3450 4.9e-06 3.3760 2.8e-06 3.0970 1.7e-06 3.0780 1.2e-06 3.0690 8.1e-07 3.05100 5.9e-07 3.04Table 6.5.31: BKM approximations to K: Circular sector, α = 4/5.
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BKM/AB: z = 0.5, σ = 6

n Ẽn(K,G) σn10 3.5e-04 -20 2.2e-06 7.3130 6.5e-08 8.6640 3.4e-09 10.2450 1.2e-09 4.8060 4.0e-10 5.9170 1.5e-10 6.2480 6.7e-11 6.1990 3.2e-11 6.15100 1.7e-11 6.13Table 6.5.32: BKM/AB approximations to K: Circular sector, α = 4/5.
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